How accurate is your watch?
Find out with our opto-coupled timepiece timer.

A gyrophone to make your stereo wander.

PLUS: audio embellisher • address decoding • weather vane •
universal active filter • audio sleuth • Z80 EPROM programmer •
programmable crystal oscillator • digital cassette recording
gyrophone
With this unit connected to your stereo system you can produce an effect very like that of a Lesley rotating speaker system.

how accurate is your watch?
'Clockwork' watches can be very accurate provided they are adjusted properly. The circuit described here quickly calculates the error in a mechanical ticker so that it can be set correctly.

digital cassette recorder
Cassette tape is often used as memory storage in personal computers. Unfortunately, the quality of the computer's cassette interface usually leaves a lot to be desired. The present circuit improves matters considerably without affecting the audio performance of the cassette recorder.

audio signal embellisher
A three part modular system that can increase your listening pleasure if you are forced to connect mono and stereo equipment together.

universal active filter
An IC that can act as a universal active filter with a minimum of external components is certainly worth having a look at.

from thermometer to thermostat
Adding a single IC and a handful of other components to the LCD thermometer featured in our October 1982 issue permits it to be used as a thermostat.

missing link
PC board pages
audio sleuth at work
When something goes wrong (and it often does) this article can help you find the root of the problem.

wind direction indicator
Many lament the passing of the weathercock, but our electronic version has at least one distinct advantage in that you no longer have to see the actual weather vane to know which direction the wind is blowing.

Z80 EPROM programmer
A small circuit consisting of just a few components is all that is needed to enable any Z80 system to program 2716 EPROMs in situ.

home-made low-cost wiring probe
Wiring prototype circuits is greatly simplified by keeping the wire tidily on a spool.

address decoding
One of the least understood aspects of computing is address decoding. This article is intended to throw some light onto the subject.

applicator
New programmable crystal oscillators in which the oscillator, dividers, and selector circuits are housed together with the quartz crystal in a 16-pin DIL package.

market
switchboard
EPS service
advertisers index

At the beginning of a new year it is quite appropriate that our cover item deals with time. It enables the error of a mechanical watch to be measured so that the watch can be set correctly. The titles of the rest of this month's articles more or less speak for themselves, except maybe what do we mean by 'a gyrophone to make your stereo wander'? Some of the more musical of gyrophonists suggest that it is like a cross between a moose and a set of bagpipes! Well, we're not too sure. Suffice it to say that the effect has to be heard to be appreciated. We must warn you to beware of masked types appearing at your door claiming to be gyrophones, they are likely to make more than your stereo 'wander'!
Semiconductor types
A large number of equivalent semiconductors and ICs exist with different type numbers.
For this reason, "universal" type numbers are used in Elektor wherever possible: for instance, "741" stands for μA741, LM 741, MC741, MIC741, RM 741, and so on.

Type numbers 'BC 107B', 'BC 237B', 'BC 547B' all refer to the same "family" of almost identical good-quality silicon transistors.
In general, all members of the same family can be interchanged.

BC 107 (-8, -9) families (PNP):
BC 107 (-8, -9), BC 147 (-8, -9),
BC 207 (-8, -9), BC 237 (-8, -9),
BC 317 (-8, -9), BC 347 (-8, -9),
BC 547 (-8, -9), BC 171 (-2, -3),
BC 182 (-3, -4), BC 382 (-3, -4),
BC 437 (-8, -9), BC 414

BC 177 (-8, -9) families (PNP):
BC 177 (-8, -9), BC 157 (-8, -9),
BC 204 (-5, -6), BC 207 (-8, -9),
BC 320 (-1, -2), BC 350 (-1, -2),
BC 557 (-8, -9), BC 251 (-2, -3),
BC 212 (-3, -4), BC 512 (-3, -4),
BC 261 (-2, -3), BC 416.

Resistance and capacitance values

Decimals and large numbers of zeros are avoided in values of resistors and capacitors wherever possible.
Instead, the following prefixes are used:

- μ (micro-) = \(10^{-6}\)
- $\mu\mu$ (milli-) = \(10^{-3}\)
- $\mu\mu\mu$ (micro-) = \(10^{-6}\)
- $\mu\mu\mu\mu$ (milli-) = \(10^{-9}\)

A few examples of resistance values:

- $2.9 \times 10^3 \Omega = 2.9 \text{ k}\Omega$
- $1.5 \times 10^5 \Omega = 150 \text{ M}\Omega$
- $8.2 \times 10^6 \Omega = 82 \text{ G}\Omega$
- $4 \times 10^{-3} \text{ F} = 4 \mu\text{F}$

A few examples of capacitance values:

- $6 \times 10^{-3} \text{ F} = 6 \mu\text{F}$
- $10 \times 10^{-7} \text{ F} = 10 \text{ nF}$
RESI & TRANSI
A series of strip cartoons in this form in which two contrasting characters explore the field of electronics in their own in- tensely divergent way. Their adventures are full of surprises because they often go against the current - whereas they encounter much resistance, while they expected success. These books familiarise the reader with microelectronics in an unusual way, and yet touch the very core of the subject. Part I comes complete with a printed circuit board and resister pack.

Part I: Banish the Myster- Price £5.75 ies of Electronics
Part II: Hands on my Brain! Price £4.50

TV GAMES COMPUTER
This book provides a different - and in many ways an approach to micro proce- ssor. The TV Games Computer is dedicated to one specific task, as the name suggests. This provides an almost unattainable opportunity to have fun whilst you learn!

Price £6.75

DIGIBOOK
 Provides a simple step-by-step introduc- tion to the basic theory and application of digital electronics and gives the fundamentals of digital computer concepts needed to develop ideas designed to reinforce this newly acquired knowledge. Supplied with an equipment PCB.

Price £6.00

300 CIRCUITS
For the home constructor - 300 projects ranging from the basic to the very sophis- ticated is one specific task, as the name suggests. This provides an almost unattainable opportunity to have fun whilst you learn!

Price £6.50

MICROPROCESSOR HARDWARE
This book describes a range of peripheral equip- ment that can be connected and used with an array of personal computers which use the 8900, 8902, 6800, 6809 or the 6502 chip.

Price £7.50

JUNIOR PAPERWEAR 1
Modification of the famous EPM-PROV- SOURCE listing, hex dump of the Software enhancer and puncher Elektor (36, May 1987)

Price £2.00

JUNIOR PAPERWEAR 2
Source listing of the bootstrap loaders for Ohio Scientific Floppies. Hex dump of the EPROM (452, 1987)

Price £2.00

DATA SHEET BOOK
Here at last is the book that designers have been waiting for the 'elitem' Data Sheet Book. In 240 pages it gives you a CMOS, a Linear, Special Function and Audio DataSheet, plus a full range of device information on hundreds of the most popular and it's, very useful and economical reference book!

Price £6.00

JUNIOR COMPUTER VIA 6522
This book deals with the well-known Versatile Interface Adapter (VIA) type 6522. Although it is an inexpensive addi- tion to the six books already devoted to the Junior Computer, it is still aimed mostly at the enthusiast, but is anybody who has a system with one or more 6522's, it affords a complete familiarisation with this flexible and effective component.

Price £3.25

JUNIOR COMPUTER BOOK 1
For anyone wishing to become familiar with microcomputer systems, this book gives the opportunity to build and program a personal computer at a very reasonable cost.

Price £6.50

JUNIOR COMPUTER BOOK 2
Follows on a logical construction of Book 1, and contains a detailed approach of the software. Three major programming tasks, the monitor, an assembler and an editor, are discussed together with practical programs for input and debugging.

Price £6.50

JUNIOR COMPUTER BOOK 3
This book, the third in the series, deals with the Junior Computer. It is intended for those who have a Junior computer and want to extend the basic software of the machine. The next, transforming the basic, single board Junior Computer into a completely personal computer system.

Price £6.50

JUNIOR COMPUTER BOOK 4
The book describes the assembly language of the 6502 microprocessor, and gives a detailed description of the machine's registers and memory, the assembly language, and a selection of programs for the 6502.

Price £6.50

301 CIRCUITS
The book is a continuation of our popular 300 circuits publication. It contains a collection of 301 circuits with a wide range of applications. Each circuit is described and explained in straightforward language.

Price £5.50

COMPUTER (1)
Describes how to build and operate your own microprocessor system - the first book of a series. Further books will show how the system may be extended to meet various requirements.

Price £5.50

COMPUTER (2)
The second book in the series. The second book of the Microcomputer System - a series with a 6502 central processing unit. This book describes the assembly language of the 6502 microprocessor, and gives a detailed description of the machine's registers and memory, the assembly language, and a selection of programs for the 6502.

Price £5.50

FORMANT
Contains constructional details of the Elektor Formant Synthesiser - with a free cassette of sounds that the Formant is capable of producing together with advice on how to achieve them.

Price £6.00

33 ELECTRONIC GAMES
A selection of circuits which give as much enjoyment as building them in actually playing the games. The circuits are fully tested, although the electronics involved are not complex and therefore anyone with a good soldering iron will find this book stimulating. There are electronic games that do not need a TV screen, and as a result can be played just about anywhere.

Price £4.50

To order please use the postage paid order form in this issue.
ADD 50p P & P UK OR 1 REAS £1.00
Most of us have heard the stereo effect of an express train, a gale force wind, or perhaps an artificially created sound transferring from the right-hand to the left-hand speaker. It's just as impressive when the sound returns from the left-hand to the right-hand speaker, as when, for instance, a train from the opposite direction passes by. The circuit described in this article makes it possible for both effects to happen simultaneously: creating a sound very much like that of a Lesley rotating speaker system.

Before we go any further, there is one thing to be borne in mind: the contents of the two stereo channels must be quite distinct from one another if the effect is to be realized. A short listening test will soon show which type of recording is suitable: listen to it and then turn one of the speakers off. If half of the sound just 'dies', the recording is usable. Stereo records produced ten years or more ago are particularly suitable.

The circuit is not really an electronic version of a Lesley because phase shifts are not catered for, but its action is none the less remarkable. Briefly, the right-hand signal 'wanders' to the left-hand channel, and vice versa. Shortly afterwards, the two sounds revert to their original channel. This effect is achieved by periodically inverting the two channels.

The block diagram in figure 1 shows that the signals from the two channels are split and applied to four operational transconductance amplifiers (OTAs). However, although both OTA1 and OTA3 are fed with the left-hand signal (and OTA2 and OTA4 with the right-hand signal), they are not controlled by the same sawtooth voltage. The low-frequency oscillator (LFO) drives OTAs 1 and 4 directly and OTAs 2 and 3 via an inverter. This means that OTAs fed with the same stereo signal have opposing control signals. The left-hand information is therefore amplified in OTA1 but attenuated in OTA3 and consequently appears in the left-hand but not in the right-hand output. From time to time, however, the control signals are such that the left-hand information appears in the right-hand but not in the left-hand output. The right-hand input signal is treated in an identical manner. The whole process is continuous and therefore causes the characteristic swelling and fading of the loudspeaker outputs. In contrast to a real Lesley, our circuit creates the effect only by differences in volume in each individual channel.

A low-frequency oscillator consisting of integrator A1 and trigger A2 (see figure 2) generates a sawtooth voltage. This voltage should not go negative because that would block the OTAs, and a diode, D1, is therefore included in the feedback path of A2. The sawtooth voltage is fed to A3 and to inverter IC2. The output of IC2 is applied to the inverting input of A4. Opamps A3 and A4 drive transistors T1 and T2 and these in turn feed the four OTAs.

As already explained, the signals from the two channels are split and the parts are amplified in different OTAs. Output channel L contains a mixture of the signals
fed to OTAs 1 and 2 and, similarly, output channel R a mixture from OTAs 3 and 4. The mixing elements are formed by two resistors and a capacitor (for instance, R27/R28/C2).

The buffers contained in IC3 and IC4 (pins 7, 8 and 9, 10 respectively) must not be used in this application.

Construction and calibration

The design has been kept as simple and inexpensive as possible and its construction on a prototyping (Vero) board should not present any trouble to the hobbyist with some experience.

Preset P1 enables the frequency of the sawtooth generator to be set to your own individual taste. The frequency, \(f \), is given by \(f = \frac{1}{C_1(P1 + R1)} \). With values shown, the frequency can be set anywhere between 0.2 Hz and 4 Hz, corresponding to periods of 5 s and 250 ms respectively.

Because IC2 inverts the sawtooth waveform, its output would normally be mostly negative. As stated, this cannot be tolerated as it would block the OTAs. Therefore, the inverted sawtooth voltage is superimposed on a d.c. voltage, the level of which is preset by P2. If an oscilloscope is not available, the presetting can be done by ear. Apply a signal to one of the input channels and set the LFO to a low-frequency output. If P2 has been set correctly, the loudspeaker volume should gradually fade away and then gradually swell again. If not, limiting is taking place and this is indicated by an absence of sound for some time followed by a sudden burst of volume.

The audio input signals to the circuit may lie between 0.7 V and 10 V. However, when you use inputs of just about 0.7 V and have a powerful main amplifier connected to the output of the gyrophone, it may happen that the maximum and minimum values of the sawtooth voltage become audible in the loudspeakers. This can be prevented by increasing the signal input by, for instance, inserting an additional amplifier between the signal source and the inputs to the gyrophone.

We shall be very brief about the required mains supply: the current consumption of the gyrophone is around 50 mA per channel at ±15 V.
Man has always tried to measure time in one way or another. Sundials, water clocks, oil lamps, candles, and hour glasses are just some of the timekeepers that have been used to measure time. The first clocks in the fourteenth century have been made since the fourteenth century. Since then, mechanical clocks have been consistently improved and refined. Watches have been made since about the end of the fourteenth century, but it took a long time to come up with a wristwatch. The automatic wristwatch was introduced in 1924 and the second World War was the electric watch. In 1925 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight. The automatic wristwatch was introduced in 1924. In 1957 a watch appeared on the market that used an electromagnetic system to drive the balance weight.
The modern watch is the final stage (so far) and uses a quartz crystal as the time base. The accuracy of this design is such that the error per year is negligible.

A mechanical watch always has much more charm than its 'cold' electronic counterpart. It is a testament to the skill of the craftsman who made it, and this alone is a great point in its favour. Clockwork watches do have one undeniable advantage, of course: they have no batteries to fail at the most unexpected and inconvenient moment.

There are, of course, still a lot of mechanical watches in circulation and several firms currently sell clockwork watches at the 'expensive' end of the market. Mechanical 'tickers', it seems, are always in fashion.

Adjusting a mechanical watch is a lengthy process because changing the effective length of the balance spring does not give an immediately noticeable change. A good watchmaker, certainly, has expensive equipment that can measure the error fairly quickly, but anybody else simply could not afford one. With the watch meter here anybody can quickly adjust almost any clockwork watch accurately.

The block diagram

This circuit uses an optical pick-up. An acoustic pick-up should also be possible but in practice that seemed to be more susceptible to problems with ambient noise. With this optical pick-up we use a small lamp to shine light on the spokes of the balance wheel and the reflections are received by a photo transistor. The pulses given by the photo transistor are processed and compared with a 'standard' frequency, and the error is then shown on a display.

The block diagram of figure 1 is a bit more complex than our usual circuits, but this simply makes the circuit easier to understand. The photo transistor pulses are converted to 'proper' digital signals in the
Figure 2. The various sections of the block diagram can easily be recognized in the circuit diagram here, especially as the make-up of each block is indicated in the block diagram.

first block. These pulses then go to a monostable multivibrator. The monostable timer can be set to three different values with switch S1a. These values are < 400 ms, < 333 ms and < 200 ms, and they require a short explanation.

Almost every mechanical watch falls into one of two standard tick frequencies, namely 18000 ticks per hour (= 5 ticks per second) or 21600 ticks per hour (= 6 ticks per second). The first generally applies to older watches. There are also some clocks that beat with 36000 ticks per hour (10 ticks/s). One complete swing of the balance (from the middle to one side, back to the other side and to the middle again) consists of two ticks. Five ticks then consist of 2.5 swings. Because we want to measure swing times with this circuit, the MMV time must be chosen so that only every second
The error in minutes per day. If a time of 20 seconds is used the counter must count 14400 clock pulses. This means that the clock frequency for the counter must be 1440/2 (or 1400/20) = 720 Hz. This reference frequency is supplied by a crystal and a few dividers.

With a measuring time of 2 seconds the preset value of the counter must be -1440 so that the count is exactly zero if the watch is running correctly. The counter can actually only count from -99 to +99, so a preset value of -1440 is impossible. Because the read out only shows two figures, we set the preset to -40 (the last two digits of -1440). The counter will then be at zero after two seconds. This 'trick' works here because a normal watch will never have an error of more than 99 minutes a day. The counter starts by counting from -40 to zero then from zero to 99 and six times from -99 to +99 and finally from -99 to zero making 1440. Note that there is a delay of one clock cycle every time the count crosses zero on its 'jump' from +99 to -99. Without this our arithmetic would not be correct. If 20 seconds is used as the measuring time the counter is preset to zero (the last two digits of 14400).

In practice the counter cannot itself work out if its count is positive or negative, so the '+' or '-' sign is stored by a flip-flop. This flips (or flops) every time the counter is at zero, and drives the ± sign in the display.

Finally there is a reset circuit whereby all counters can be reset simply by pressing one button. The circuit is then ready to begin measuring anew.

The practical layout

As we have spent quite a long time talking about the block diagram, we do not really need to say much about the actual circuit diagram of figure 2. The block diagram also simplifies matters by stating which components make up each block.

We will have a look at the input stage separately. The d.c. voltage setting of photo
how accurate is your watch?

Parts list

Resistors:
R1 = 120 Ω 1/8 W
R2, R3*: R10 = 2 MΩ
R4, R14, R16, R21, R27, R28, R44 = 1 k
R5, R17 = 1 MΩ
R6, R12, R25, R26 = 56 k
R7 = 100 k
R8, R18, R22 = 10 k
R9 = 1 M
R11 = 47 k
R13, R15 = 10 M
R18, R20, R23, R24 = 100 k
R29 = 680 Ω
R30...R43 = 820
P1 = 1 M preset

Capacitors:
C1, C15, C18, C23 = 100 n
C2, C17 = 220 n
C3, C9, C22 = 10 µF/16 V
C4 = 100 µF/16 V
C5, C10 = 680 n
C7, C14, C20, C21 = 10 p
C8 = 40 p trimmer
C9 = 22 n
C11 = 560 n
C12 = 330 n
C13 = 1 n
C16 = 1000 µF/25 V
C19 = 100 p
C24 = 560 p

Semiconductors:
D1...D4 = 1N4001
D5, D6 = LED
LD1 = 7756 universal
LD2, LD3 = 7760 common
LD4 = 7760 seven segment
display
T1 = BS250, BC516
T2 = TIL 81
T3 = BC548C
T4 = BC547
IC1 = 3140
IC2 = 4060
IC3 = 4518
IC4 = 4017
IC5, IC6 = 4008
IC7, IC15 = 4013
IC8 = 7812
IC10, IC11 = 4511
IC12, IC13 = 4510
IC14 = 4078

Figure 3. This is the printed circuit board design for the measuring section of the circuit.

transistor T2 is handled by FET T1. For low frequencies and d.c., T1 acts as a voltage source; its drain voltage is then fed back to the gate via R2. The low-pass filter consisting of R3 and C1 ensures that T1 acts as a current source at higher frequencies. Slow variations in the light picked up (from ambient conditions for example) are therefore compensated by the FET, while fast changes in light cause a large change in the voltage on the collector of the photo transistor. This is exactly what we need to detect the moving spoked of the balance wheel. These voltage changes are transmitted via C2 to T3 where the pulses are rectified. The voltage on C4 is the same as the maximum value of the pulses. This voltage goes via voltage divider R9/R10 to IC1 where it acts as the trigger-level setting for this schmitt trigger. The other input of the schmitt trigger is fed the voltage changes from the photo transistor via C3. This setup allows the circuit to adapt itself to the strength of the input signal. If the photo transistor provides a strong input signal then the triggering threshold is high. The strength of the input signal is indicated by the meter connected parallel to C4. If switch S4 is closed the output of IC1 is heard through the buzzer. An LED, D5, at the Q output of FF1 flashes in time with the tick pulses. The measuring time is shown by means of LED D6 at the output of FF4.

The supply for the whole circuit is handled
Constructing the circuit
The circuit has been divided between two printed circuit boards that are shown in figures 3 and 4. The 'measuring' section is located on the board shown in figure 3 and contains all the components shown in the left half of the circuit diagram, with the exception of R21 and D5. The second board consists of two sections which may be separated if desired. These are the counter section and the read-out (the right half of the circuit diagram with the exception of FF4). The numbered points on the two boards must be connected to each other. The supply for the display must be taken from points 1 and 2. Trying to tap a supply from anywhere else will probably cause problems. It is quite possible that the BS 250 FET may prove difficult for some people to get their hands on. If this is the case, a BC 516 may be substituted for T1, but R3 must then be 3M9. Fortunately this transistor can be fitted to the board exactly the same as the FET.

When all the electronics is assembled we can turn our attention to building the sensor. The photo transistor and the lamp are mounted next to each other, but in such a way that the light from the bulb does not...
fall directly on the photo transistor. This is easily done with a piece of black paper between the two. The emitter of the transistor can now be soldered directly to the collar of the lamp. This leaves three connections which can be linked to the printed circuit board with a piece of screened stereo cable. The collar of the lamp (which can be a miniature type) must be connected to the screen. This unit can then be fitted into something like a big felt tip pen. A clip can be made up to hold this 'pen' steady during a measurement. The photos and the front cover show how our prototype was built.

A nicer (but also more expensive) possibility is to use a reflection sensor, such as the OPB 730, which contains a LED and a photodarlington. If this is done the sensor must be well screened from ambient light, and the value of resistor R1 must be increased to 560 Ω.

Adjustment and use
Adjustment is very easy. The frequency of the crystal can be set to the exact value required with trimmer C8. To do this a frequency meter with a maximum error of 0.005% is needed. A frequency of 115200 Hz must be measured at test point TP. If you cannot get hold of a good frequency meter then simply put C8 in mid position. In most cases the frequency will then be reasonably accurate.

Next, MMV1 must be set, preferably with an oscilloscope. Potentiometer P1 is set so that the monostable time is 360 ... 380 ms with S1a in position A. If you do not have an oscilloscope, this MMV can also be adjusted with the aid of a watch that is known to be accurate. Place the watch under the sensor and turn the sensor until the meter shows a strong signal and the buzzer ticks regularly. Turn the preset to maximum, set switch S2 in position A (2 s measuring time) and read-out. It is simply connected to the display.

A mechanical watch works with almost incredible accuracy considering that it has to tick nearly a half million times per day.

What we mean is that the LED lights if it was out and it goes out if it was lit. The display now shows the error in minutes per day. Whenever D6 changes the measurement has been taken and the result is shown on the display.

If the error of the watch is less than ten minutes, S5 can be moved to position B (20 s measuring time). First press the RESET again and after 20 seconds LED D3 changes and the error is shown on the display in tenths of minutes.

With a pocket watch the photo transistor can also be focused on the balance screws and this usually gives good results. In this case, however, it is important to reduce the level of ambient light as much as possible. Incandescent lamps and fluorescent tubes in particular can cause problems.

A period counter could also be used in the circuit in place of the counter section and read-out. It is simply connected to the wiper of switch S2a. However, IC2, IC7, X1, C7, C8, C9, C13, R15, R16 and R18 can then be removed and point 4 of the measuring board and pin 1 of IC3 must be connected to earth. The read-out on the meter will not, of course, be in minutes per day any more. It is a simple matter to convert the output to minutes per day using the formula 60 x 24 x (2 − T)/T, where T is the period measured in seconds. If T is 1.986 seconds the error of the watch is 60 x 24 x (2 − 1.986)/1.986 = +10 minutes per day.

The COUNT LED, D5, should flash regularly to show that the circuit is receiving the pulses. The correct ticking frequency (5, 6, or 10 ticks per second) must be set with S1.

A measuring time of 2 seconds is selected using S2. Press the RESET and after 2 seconds LED D6 (GATE TIME) 'changes'. What we mean is that the LED lights if it was out and it goes out if it was lit. The display now shows the error in minutes per day. Whenever D6 changes the measurement has been taken and the result is shown on the display.

If the error of the watch is less than ten minutes, S5 can be moved to position B (20 s measuring time). First press the RESET again and after 20 seconds LED D3 changes and the error is shown on the display in tenths of minutes.

With a pocket watch the photo transistor can also be focused on the balance screws and this usually gives good results. In this case, however, it is important to reduce the level of ambient light as much as possible. Incandescent lamps and fluorescent tubes in particular can cause problems.

A period counter could also be used in the circuit in place of the counter section and read-out. It is simply connected to the wiper of switch S2a. However, IC2, IC7, X1, C7, C8, C9, C13, R15, R16 and R18 can then be removed and point 4 of the measuring board and pin 1 of IC3 must be connected to earth. The read-out on the meter will not, of course, be in minutes per day any more. It is a simple matter to convert the output to minutes per day using the formula 60 x 24 x (2 − T)/T, where T is the period measured in seconds. If T is 1.986 seconds the error of the watch is 60 x 24 x (2 − 1.986)/1.986 = +10 minutes per day.

A mechanical chronometer has an error of one minute per month at most; with an automatic watch that is about one minute per week.

S1 position: A = 5 ticks/s B = 6 ticks/s C = 10 ticks/s
S2 position: A = 2 second gate time B = 20 second gate time
Cassette recordings are still the most popular memory for home computers because they offer the cheapest method available. Unfortunately, it is not the most reliable method because a cassette recorder is, after all, intended for processing audio rather than digital signals. The present circuit converts a normal cassette recorder into a digital one with vastly improved data transfer capability without the loss of the audio facility.

Most home computers have a cassette recorder interface which usually obeys a simple rule: the cheaper and simpler the computer, the worse the data transfer to the recorder. This only becomes evident, of course, when you 'read' a newly loaded program and find that all is not what it's supposed to be. Why is that? And can anything be done about it?

In most computers, a signal is delivered to the interface which is not really suitable for an audio cassette recorder. The amplitude of the signal is normally limited to prevent the overloading of the recorder, while a transfer speed is chosen which, according to the computer manufacturers, is 'safe'. In other words, the computer is adapted to the cassette recorder without too much thought to the fact that the recorder was designed for a different purpose.

We have tackled the problem from the opposite direction by matching the recorder to the computer. A 'read' (playback) and a 'write' (recording) amplifier are added which improves the data transfer to the extent that baud rates of 4800 may be used! When you consider that the baud rate in most, if not all, home computers cannot exceed a three-figure number, you realize what a considerable improvement our circuit offers.

Analogue and digital recording

The (analogue) recording of audio signals onto magnetic tape requires special circuits to ensure that the playback signal is a faithful reproduction of the original. After all, Dolby and DBX did not come about by accident! One of the important design considerations, for instance, is to prevent saturation of the magnetic tape (as saturation would cause distortion).

A square-wave pulse, as generated by most computers, consists of a large number of sinusoidal voltages. As the recording/playback amplifier of a recorder is optimized for audio signals, it will suppress a number of constituents of such a pulse. The result is that what's recorded is no longer a square-wave signal. Further disintegration of the pulse takes place during playback, there is the tape noise, and... The consequence of it all is that the Schmitt trigger normally found in the input stages of a cassette interface is not presented with one proper pulse, but several distorted ones.
The process in a digital recorder is much simpler: the magnetic tape is driven into saturation. This is, without any doubt, the best method for recording data onto tape, particularly if the tape is positively magnetized during logic 'high' signals and negatively during 'low' signals.

Before we analyze the circuit diagram, a reassurance about the cassette recorder: it needs only one modification. The screened cable to the tape head needs to be cut and the digital read/write amplifier inserted between the cut ends as shown in figure 2. The audio recording/playback amplifier is not touched at all so that the recorder remains fully usable for normal audio operation.

The circuit
The write/read (recording/playback) amplifier consists of two functional units separated by the switch-over unit (see figure 1). The read amplifier is constructed in two parts to which we'll come back in the circuit description. Other items shown in figure 1 are the write and read indicator LEDs.

Write (recording) amplifier
As explained in 'switching' below, we'll assume that ES1 and ES2 (see figure 2) are closed and that contacts Rel and Re2 are open.

The square-wave pulses from the computer are applied across preset P1 and from there fed to the inverting input of opamp IC1 via R1 and C1. Diodes D1 and D2 limit the signal to ±0.7 V. The gain of IC1 is fixed at about 100 by voltage divider R2/R3. Anti-parallel connected diodes D3 and D4 in the feedback loop limit the output of the opamp to ±0.7 V. Plus or minus? you may ask. Surely the supply voltage is ±12 V only?

True, but the non-inverting input of IC1 does not lie at earth potential but at ±6 V because of voltage divider R12/R13. The signal output of IC1 is therefore superimposed onto ±6 V. This arrangement is also used in other parts of the circuit.

Figure 3 shows how a sinusoidal (FSK) input signal is converted by this method: the frequency remains unchanged, but the waveform becomes rectangular. You can well imagine that if a sine wave is so converted, a distorted rectangular pulse will certainly be fully resorted to its original shape. We have taken an FSK signal as an example because that shows the operation of the circuit most clearly. In general, our digital recorder is not required with computers which have an FSK output, but as this example shows: you never know . . .

The rectangular output of IC1 is inverted again by trigger A1 and increased to the maximum possible level of 12 Vpp (wave shape 4, figure 3).

The output of A1 is split: one part is applied to terminal 'A' of the tape head via R32 and ES1; a second is again inverted by trigger A2 and then fed to the earth terminal 'B' of the tape head via R33 and ES2. The signal at the tape head is therefore the difference in outputs of the two opamps A1 and A2: note that the tape head is not connected to earth.

This method not only saves some coupling capacitors (which might distort the signal slightly) but, what's far more important, the tape magnetization for a logic low signal is the opposite of that for a high signal.

Switching
A third part of the output of A1 is applied to the electronic switching circuit via C3. This circuit consists of electronic switches ES1 and ES2, relays Re1 and Re2, diodes D7 and D8, and a few resistors and capacitors.
The non-inverting input of comparator A3 is at a level of about +6 V via voltage divider R12/R13. Under no-signal conditions, the inverting input is at about +4.4 V via voltage divider R30/R31. The output of A3 is therefore at +12 V and relays Re1 and Re2 are actuated. The voltage at the inverting input also exists at the inputs of electronic switches ES1 and ES2, but is not sufficient to close the switches: a voltage close to the supply voltage is required to do that. Summarizing: under no-signal conditions, ES1 and ES2 are open and the contacts of Re1 and Re2 closed. The circuit is then in the 'read' condition.

When a signal arrives from the computer, the output of A1 is applied to the control inputs of ES1 and ES2, and to the inverting input of A3 via C3 and D7. The output of A3 goes low, the relays open, and ES1 and ES2 close. The circuit is then in the 'write' condition. Capacitor C4 charges and continues to do so as long as there is a signal coming in from the computer. As the input current of A3, ES1, and ES2 is very small, the charge on C4 is sufficient to keep the switching circuits in the same state even during the pauses between the pulses. When the computer signal ceases, C4 discharges through R10 and the circuit reverts to the 'read' condition.

Read (playback) amplifier
In the 'read' condition, Re2 connects the earth terminal of the tape head to the circuit earth (0 V). The tape signal is connected via Re1 to the gate of FET T4. This small-signal amplifier is followed by a second consisting of T1 and T2, and a third formed by IC2. To ensure that the maximum signal is available at the output of IC2, its input is 'raised' to about 6 V, derived from the voltage divider R12/R13. The total gain of the three stages is around 80 dB, of which half is contributed by IC2. This is ample for many computers and the output of IC2 is therefore available at terminal 'AN'. The output level can be matched to the computer input requirement by preset P3.

For those situations where more gain is required, a fourth amplifier, A4, has been provided. The gain of this amplifier can be...
The various phases of signal conversion are clearly seen in this representation. The operation of the circuit can be checked with the aid of this figure and an oscilloscope.

Construction and calibration
Assembling the printed circuit board should not present any difficulties: figure 4 and the parts list give all the information required. One point needs watching, however. Although we are dealing with a double-sided board, the two points ‘B’ must be connected by means of a short length of screened cable. The reason for this is that during ‘read’ operation the signal from the tape head is very small (remember the 80 dB gain!). For the same reason, the screened cable between ‘A’ and the head must be kept as short as possible. In contrast to audio circuits, there is no central earth point here, so that the earths at both sides of the cable must be connected with one another.

The circuit is very simple to set up. The correct positions of P1...P3 are dependent upon the type of computer and on the baud rate. If you start at the centre position of these presets and have checked that the d.c. levels shown in the circuit diagram are set between 17 dB and 37 dB by preset P2. As A4 is driven into saturation, its output is virtually identical with signal 4 in figure 3. The output is raised to TTL-level via voltage divider R26/D13/D14 and made available at terminal ‘DIG’.

A few further points
To avoid confusion, some aspects of the circuit have been ignored so far. To start with: LED D11. This lights when the output of A3 is low, that is, during the ‘write’ condition. It is possible that it continues to light faintly during the ‘read’ condition; if you find this disturbing, the only solution is to replace D11 by a cheaper LED (giving less light).

Then there is LED D12. This diode lights during the ‘read’ condition. Capacitor C12 keeps T3 conducting so that this does not switch on and off in time with the input signal. Resistor R25 prevents the indicator circuit affecting the output signal.

Finally, diode D10. This component appears to be located in a somewhat strange position, but a good look at the circuit will show that it functions as a protection diode for relays R1 and R2.
OK (no-signal conditions), the right settings should soon be apparent.

Final tip: load a not-too-small memory region of the tape with a fixed hex-value and program a loop. It is then possible with the aid of an oscilloscope to check the conversion of the signal (with reference to figure 3) at various test points. During 'write' operation simply run the tape with this fixed hex-value. It is, by the way, not necessary to press the 'record' button during 'write' operations to erase any material already present on the tape because the signal now fed to the tape head is considerably stronger than the previous recording.

Current consumption of the circuit is around 50 mA and it may therefore just be possible to draw this from the existing recorder power supply.
It is often unavoidable to have to connect an item of mono equipment that is rather less than hi-fi to a modern stereo installation. Although this may give some improvement in the resulting sound quality, the reproduction remains monaural (mono) invariably with a level of hum and noise which by present-day standards is unacceptable. We have designed a circuit which by hum suppression, stereo simulation, and dynamic noise limiting (DNL) gives a greatly enhanced performance. The stereo effect is created by splitting the audio spectrum into sixteen frequency bands which are fed alternately to the left and right-hand channels.

Ever since the arrival of hi-fi audio equipment and the introduction of stereo, our aural senses have been spoilt to the point of addiction. Nowadays when we listen to ordinary monaural music, we soon feel there's something missing. If in addition the sound is accompanied by hum and noise, this feeling soon becomes one of disappointment or even annoyance. However, sometimes there is no alternative to the poor sound source, if only for the simple reason that we don't want to throw away perfectly good equipment. This could, for instance, take the form of simple cassette recorders, AM receivers, sound projectors, and TV sets or video recorders. The last three are particularly prone to being neglected by audio designers. While the picture quality is praised (often deservedly so) as hi-bri (high brilliance), more often than not the sound is a disgrace by modern standards.

Spatial sound
We are aware of depth in sound because we have two ears. As the sound waves reach each ear at a slightly different time and with a slightly different amplitude, the brain receives two separate signals. It is able to deduce the relative position of the sound source from the differences: our ears form a true stereo receiver! The shape of the ear also plays a role: if you want to know more about this, we refer you to 'our remarkable sense of pitch' in the May 1979 issue of Elektor.

What can we do with a mono sound? It is impossible to convert it into true stereo, because the subtle differences between the left and right-hand channels just cannot be added afterwards. What we can do is to create artificial differences by splitting the sound into a number of frequency bands and then feed these selectively to the left or right-hand channel of the stereo installation. This is, by the way, the method
used in the TDA 3810 stereo-IC featured in 'pseudo stereo' in our November 1983 issue. The present design is rather more radical and effective: the audio spectrum is split into sixteen bands by means of active filters. If the filter outputs are numbered 1 ... 16 in order of ascending centre frequency, all odd-numbered frequency bands are fed to the left-hand channel, and all the even ones to the right-hand channel. The result is truly remarkable: the sound, which at first seemed to come from between the speakers, now seems to 'hang in space' around the speakers.

The block schematic
The block schematic in figure 1 clearly shows that the design consists of three distinct main parts: each of these is housed on a separate printed-circuit board. The input of the circuit is a pre-amplifier (with variable sensitivity), followed by a 100 Hz and a 50 Hz band-stop filter (sometimes called a 'notch' filter). These filters respectively reject the 100 Hz fundamental frequency of a double-phase rectified voltage and the 50 Hz fundamental of a single-phase rectified voltage. Both filters can be switched out. The next element is a level indicator which is useful when the input sensitivity is set. Nothing sophisticated, just a simple amplifier and LED which blinks away quietly when the sensitivity is set correctly.

Next, we come to the heart of the design: the sixteen active band-pass filters. The outputs of the odd-numbered filters, and those of the even-numbered ones, are separately combined and are then, in principle, suitable for processing in a stereo installation.

We have, however, added dynamic noise limiting (DNL) stages which, if required, can be switched off or be omitted altogether. Some of you may even use this part of the design only.

The circuit diagrams
There is a circuit diagram for each of the three mains parts of the design: the pre-amplifier, band-stop filters, and power supply (figure 2), the sixteen-element active band-pass filter (figure 3), and the DNL stages (figure 7).

The pre-amplifier, band-stop filters, and power supply
The input sensitivity is preset by means of P1. Pre-amplifier A1 has a gain of about 10 dB and is followed by active band-stop filters A2 (100 Hz) and A3 (50 Hz). The output of A3 is fed to the band-pass filters on the second printed-circuit board (see figure 3), and also to the level indicator stage. After amplification in A4, the signal is applied to the base of T1 via C13. When it exceeds a certain level, T1 conducts to light LED D1.

The power supply for the entire design consists of the customary mains transformer, bridge rectifier, voltage regulators, and smoothing capacitors. The output is symmetrical: ± 12 V at 85 mA.

The band-pass filters
The sixteen band-pass filters (see figure 3) are identical in construction. The basic diagram of one of them is shown in figure 4: a common filter circuit with an opamp as the active element and RC combinations to give the required frequency response and Q factor. As you can see from the formulas
Figure 2. The circuit of the pre-amplifier, band-stop filters, and power supply.

in figure 4, if a fixed value is chosen for R1 and R2, the centre frequency becomes inversely proportional with the value of capacitance C. By appropriate values of C in the sixteen filters, the centre frequencies are varied, but the Q factor and gain A_0 remain the same.

The DNL stages
For those of you who are not completely familiar with the operation of a dynamic noise limiter, here is a short description.

The simplest noise limiter is a low-pass filter. Unfortunately, its action is somewhat radical and affects the audio signal. A dynamic noise limiter is a low-pass filter with variable cut-off profile which only functions during soft passages (when the noise is most audible) by suppressing those frequencies to which the ear has the highest sensitivity, that is, about $1 \ldots 10$ kHz. The amount of suppression is therefore dependent upon the level of the input signal. During loud passages, the cut-off frequency is shifted upwards so that the entire audio range is passed, including the noise, but this is then, of course, masked by the audio signal. At lower levels of signal input, the cut-off frequency is lowered, so that a relatively larger amount of noise is suppressed. The action of a DNL is illustrated by the graphs in figure 5: for an input signal, U_i, of 2.0 mV, the attenuation with respect to the output level at 1 kHz is 10 dB at 7.5 kHz and 20 dB at 10 kHz. The slope is then approximately -18 dB/ octave. With input signals above about 6 mV, the response is virtually flat to 20 kHz! The input stage, A, (see figure 6) ensures correct impedance matching between the band-pass filter and the DNL. From here, the signal is fed to two channels: the upper one consists of a high-pass filter (B), amplifier (D), variable attenuator (E), and fixed attenuator (G), while the lower one comprises a phase shifter (C) and a fixed attenuator (F). The output of the DNL is the sum of the outputs of the two channels which are, of course, in anti-phase. For low levels of input, U_i, the output, U_1, of the phase shifter is, apart from the phase shift, identical with U_i. The output, U_2, of the high-pass filter contains only the high-frequency content of U_i. Signals U_1 and U_2 are, as already stated, in anti-phase so that if they are summed the high-frequency content of U_i is cancelled out. The net result is therefore that of a low-pass filter. When the level of input signal rises, the variable attenuator in the upper channel comes into operation and reduces the contribution of U_2 to the output signal, U_o. The high-frequency portion of U_i is then no longer (or to a lesser degree) suppressed and U_o will tend to resemble U_i more and more. Turning to the circuit diagram (see figure 7), the input amplifier, transistor T2, in con-
Figure 3. Circuit diagram of the sixteen-element band-pass filter unit. The stereo effect is obtained by feeding the frequency bands alternately to the left and right-hand channels.
Figure 4. Basic circuit of a band-pass filter showing the formulas for calculating the various filter characteristics.

\[
\begin{align*}
\text{Centre frequency: } & \quad \omega_c = \frac{1}{\sqrt{LC}} \\
\text{Amplification: } & \quad A_v = \frac{A_0}{A_1} \\
\text{Gain: } & \quad G = \frac{1}{R_2 C} \\
\text{Bw: } & \quad B_w = \frac{1}{\pi R_2 C}
\end{align*}
\]

Figure 5. Transfer characteristic of the DNL: the filter action is dependent upon the level of the input signal.

Figure 6. Simplified block schematic of the DNL.

\[\text{A = Input stage} \quad \text{B = active high-pass filter} \quad \text{C = phase shifter} \quad \text{D = amplifier} \quad \text{E = variable attenuator} \quad \text{F, G = fixed attenuator}\]
junction with C52 and R70, forms the phase shifter. The output of the phase shifter is taken to the DNL output via fixed attenuator R70/R79.

The active high-pass filter, formed by C53, C54, T3, and R72...76, is followed by amplifier T4 and a variable attenuator consisting of T5 and associated components. The collector as well as the emitter of T5 feed a signal to the diode bridge D8...D11. Capacitors C56 and C59 are charged to the emitter voltage via R83/D8 and R84/D11 respectively. If the audio signal level lies below the forward voltage of the diodes, these will not conduct. The signal from T5 is then taken directly to the DNL output where it is summed with the signal from the phase shifter. As the two signals are in anti-phase, the cut-off frequency is about 6...7 kHz and filter action is at a maximum.

When the audio signal is greater than the diode forward voltage, the diodes conduct and present a low impedance to audio frequencies. A low-pass filter is then formed by R84, C58, C59, which causes the higher frequencies to be attenuated. The end result will be that fewer (or hardly any) high frequencies are removed from the final output signal, which shows up as a flattening of the overall frequency response.

Construction
As stated before, the design is built up from three modules: pre-amplifier plus power supply plus band-stop filters, the sixteen-element band-pass filter, and the DNL stages. This type of construction makes it possible for everyone to choose which part(s) of the design he needs: some of you may not want the stereo effect, in which case all you have to do is omit the sixteen-element band-pass filter. If the DNL unit only is built, it is, of course, necessary to add a suitable power supply.

When the printed-circuit boards shown in figures 8...10 are used, no particular problems should be encountered in the construction. During the building of the power supply, make sure that one voltage regulator IC is turned 180° with respect to the other. In view of the small current consumption, these ICs do not need heat sinks.

The band-pass filter board is best commenced by wiring in the four wire bridges which are to be located under IC2...IC5: this will make things a lot easier later on. The DNL board consists of two absolutely symmetrical halves: it is possible to cut it into two and have two independent mono DNLs! In contrast to the remainder of the

Parts list (DNL)
Circuit: figure 7
PC board: figure 10
Resistors:
- R67, R67' = 270 k
- R68, R68' = 150 k
- R69, R69', R71, R71' = 1k5
- R70, R70', R80, R80' = 5k6
- R72, R72' = 15 k
- R73, R73' = 2k2
- R74, R74' = 180 k
- R75, R75' = 680 k
- R76, R76' = 3k9
- R77, R77' = 330 k
- R78, R77', R84, R84' = 22 k
- R79, R79' = 6k8
- R81, R81', R82, R82' = 680 Ω
- R83, R83' = 120 k
- R85, R85' = 220 k
- P2, P2' = 47 k (50 k preset
Capacitors:
- C51, C51', C61, C61' = 4μ7/16 V
- C52, C52', C60, C60' = 4n7
- C53, C53' = 1n8
- C4, C4' = 270 p
- C55, C55' = 1n5
- C66, C66' = 680 p
- C57, C57' = 2n2
- C58, C58', C59, C59' = 22 n
- C62, C62' = 10 μ16 V
Semiconductors:
- D8...D11, D8'...D11' = 1N4148
- T2...T5, T2'...T5' = BC5478
Miscellaneous:
- S4 = DPST switch

Figure 7. The circuit diagram of the DNL: two such circuits are required, one for each channel.
Parts list (filters and power supply)
Circuits: figures 2 and 3;
PC boards: figures 8 and 9

Resistors:
- R1 = 47 k
- R2 = 100 k
- R3, R4 = 18 k
- R5, R11 = 8k2
- R6, R12 = 820 k
- R7, R13 = 470 k
- R8, R14 = 100 k
- R9, R10 = 18 k
- R15 = 12 k
- R16 = 220 k
- R17 = 3.6 k
- R18 = 2k2
- R19 ... R34 = 1k2
- R35 ... R50 = 330 k
- R51 ... R66 = 1 k
- P1 = 47 k (50 k) preset

Capacitors:
- C1 = 220 n
- C2, C9, C10 = 180 n
- C3, C5 = 82 n
- C4, C6 = 8 n
- C7, C27, C28 = 33 n
- C8 = 330 n
- C11 = 2µ2/25 V tantalum
- C12, C13 = 10 µ/25 V
- C14 = 10 µ/16 V
- C15, C17 = 1000 µ/25 V
- C16, C18 = 10 µ/16 V tantalum
- C19, C20 = 150 n
- C21, C22 = 100 n
- C23, C24 = 68 n
- C25, C26 = 47 n
- C29, C30 = 22 n
- C31, C32 = 15 n
- C33, C34 = 10 n
- C35, C36 = 68 n
- C37, C38 = 47 n
- C39, C40 = 33 n
- C41, C42 = 2 n
- C43, C44 = 1 n
- C45, C46 = 1 n
- C47, C48 = 680 p
- C49, C50 = 470 p
- C63 ... C66 = 10 µ/16 V

Semiconductors:
- D1 = LED
- D2, D3 = 1N418
- D4 ... D7 = 1N4001
- T1 = BC 5478
- IC1 ... IC5 = TL 084
- IC6 = 7812
- IC7 = 7912

Miscellaneous:
- S1, S2 = SPST switch
- S3 = DPST switch (mains)
- T4 = supply transformer
- F1 = fuse, delayed action, 500 mA
- fuse carrier
- printed-circuit boards 83133-1 and 83133-2

Figure 9. Layout and component side of the printed-circuit for the sixteen-stage band-pass filter.
design, the DNL needs only a single supply line: +12 V and earth.

Calibration
With the output of a tuner or record player connected to the input of the pre-amplifier board, adjust the overall sensitivity by means of P1 until LED D1 quietly blinks in rhythm with the incoming audio signal. Because the DNL is a variable filter, the action of which is dependent upon the signal level at the base of T2, preset P2 should be adjusted carefully. Connect an a.c. voltmeter (input impedance at least 100 kΩ) between the wiper of P2 and earth, and inject a signal of about 1 V into the input terminals of the DNL. Adjust P2 for a reading 775 mV on the voltmeter. If the input signal was derived from a tuner, or record player, it may be necessary to re-adjust P1 slightly.

If you have no access to a suitable a.c. voltmeter, adjust the preset(s) by ear. Make sure that with a reasonably large input signal the high frequencies are not cut. If that happens, the input signal is too small and must be adjusted with P2. If this has already been set for maximum sensitivity, adjust P1 also. If this still does not give a satisfactory result, the output from the signal source (tuner, record player, tape recorder) is too low, in which case an extra amplifier has to be added.

Final note:
The DNL can be inserted almost anywhere into the audio chain, but as its 0 dB input level must correspond to 775 mV it must be located before the volume control.
Not so very long ago, active-filter ICs would have seemed about as likely as pocket washing machines but today they are, if not exactly commonplace, certainly readily available. With the aid of very few extra components the Reticon R5620 can form the basis of a versatile active filter for use in audio or synthesiser applications — or as an extra piece of test equipment for use in the workshop. All this — and not a single coil in sight!

universal active filter

five filter modes from one IC

The full title of the Reticon R5620 is 'a second order switched capacitor filter network'. It is able to implement the five basic filter modes: low pass, band pass, high pass, all pass, and notch. One further, very useful, function of this IC is that of a programmable sine-wave oscillator.

One could be forgiven for expecting to find all this in a large IC of the LSI variety. In fact, it is all contained in an 18-pin package thanks to one further feature of the R5620: all functions of the IC are fully programmable. This includes the filter centre frequency and the Q factor both of which are independently programmable by means of two five-bit binary codes. For example, to program the filter for a given Q factor, table 1 provides the binary code required — no potentiometers, no coils and, best of all, no calculations! The same is of course true for the filter centre frequency. As can be seen from the table, clock frequency to centre frequency ratio \(f_C/f_O \) can be varied over two octaves, from 50 to 200, in 32 logarithmically spaced increments. The Q factor range is also in 32 steps from 0.57 to 150 with approximately logarithmic spacing.

The filter mode selection is determined by routing the AF input to the tree inputs of the IC (see table 2) by means of switches. All this is illustrated in the circuit diagram of figure 1.

The circuit diagram

To make practical use of the R5620, we have featured the IC in a circuit for a universal filter suitable for use as test equipment in the workshop.
The AF input signal is fed to the appropriate inputs of IC1 by wafer switches S3A ... S3D. The switches also ensure that unused inputs are taken to earth.

The five-bit codes for programming the Q factor and centre frequency are presented to IC1 at pins 2 ... 6 (Q) and 13 ... 17 (f0) respectively. As a glance at Table 1 will show, all that we require to generate the two five-bit codes is a pair of 5-pole 32-way switches! Yes, that's what we thought too, so back to figure 1!

Both IC2 and IC3 are 7-stage (we only use 5 here) binary ripple counters that will count up (and only up) when presented with a clock input at pin 1. This is provided by the oscillator formed by a 555 (IC4) and its associated components. With the component values given the frequency is fairly low and it is possible to step the binary counters along by means of the pushbutton switches S1 and S2. The RC networks consisting of R4/C2 and R5/C3 are included to 'debounce' the switches. When the required five-bit number is arrived at, the switches are released and the R5620 will then be programmed according to Table 1.

As stated, ICs 2 and 3 are 'up' counters only and, therefore, to return to the starting code of 00000, the entire binary code must be run through to the end. This method of operation was chosen simply for the sake of economy (it's a shade cheaper than pushbutton S2 is not touched! If this should happen inadvertently, simply switch S3 to another position and then back to 6.

All that we have left to discuss in the circuit is IC5 and its surrounding components. This is the clock oscillator for IC1 and its frequency is variable by means of potentiometer P2. We can now clarify the relationship between the clock frequency and the binary number that appears on pins 13 ... 17 of IC1. When the code is 00000, the centre frequency of the filter is 1/200th of the clock frequency as can be seen in Table 1. It will now be apparent that the code sets the centre frequency to a ratio of the clock frequency. This gives a very wide filter response range. Some final points worthy of note! It is of course possible to vary away with the switches and counters and simply 'hard wire' the R5620 inputs to whatever function and parameters that are required. Bear in mind that 10 V can be considered as a maximum for the power supply voltage and some protection from turn-on transients must be included. The clock frequency range is fairly wide and can be anywhere between 10 Hz and 1.25 MHz.

In conclusion, the R5620 uses NMOS technology and its chances of instant death due to mishandling are inversely proportional to the quantity you have of them at that time!

The R5620 is available from:
EG and G Reticon,
34/35 Market Place,
Wokingham,
Berkshire.

Table 1

<table>
<thead>
<tr>
<th>Binary code</th>
<th>Q factor</th>
<th>Binary code</th>
</tr>
</thead>
<tbody>
<tr>
<td>at pins 6 ... 2</td>
<td>at pins 13 ... 17</td>
<td></td>
</tr>
<tr>
<td>00000</td>
<td>0.57</td>
<td>00000</td>
</tr>
<tr>
<td>00001</td>
<td>0.66</td>
<td>00001</td>
</tr>
<tr>
<td>00010</td>
<td>0.71</td>
<td>00010</td>
</tr>
<tr>
<td>00011</td>
<td>0.79</td>
<td>00011</td>
</tr>
<tr>
<td>00100</td>
<td>0.87</td>
<td>00100</td>
</tr>
<tr>
<td>00101</td>
<td>0.95</td>
<td>00101</td>
</tr>
<tr>
<td>00110</td>
<td>1.05</td>
<td>00110</td>
</tr>
<tr>
<td>00111</td>
<td>1.12</td>
<td>00111</td>
</tr>
<tr>
<td>01000</td>
<td>1.35</td>
<td>01000</td>
</tr>
<tr>
<td>01001</td>
<td>1.65</td>
<td>01001</td>
</tr>
<tr>
<td>01010</td>
<td>1.95</td>
<td>01010</td>
</tr>
<tr>
<td>01011</td>
<td>2.21</td>
<td>01011</td>
</tr>
<tr>
<td>01100</td>
<td>2.51</td>
<td>01100</td>
</tr>
<tr>
<td>01101</td>
<td>3.00</td>
<td>01101</td>
</tr>
<tr>
<td>01110</td>
<td>3.51</td>
<td>01110</td>
</tr>
<tr>
<td>01111</td>
<td>4.23</td>
<td>01111</td>
</tr>
<tr>
<td>10000</td>
<td>5.01</td>
<td>10000</td>
</tr>
<tr>
<td>10001</td>
<td>6.81</td>
<td>10001</td>
</tr>
<tr>
<td>10010</td>
<td>7.21</td>
<td>10010</td>
</tr>
<tr>
<td>10011</td>
<td>8.71</td>
<td>10011</td>
</tr>
<tr>
<td>10100</td>
<td>10.01</td>
<td>10100</td>
</tr>
<tr>
<td>10101</td>
<td>11.51</td>
<td>10101</td>
</tr>
<tr>
<td>10110</td>
<td>13.01</td>
<td>10110</td>
</tr>
<tr>
<td>10111</td>
<td>15.01</td>
<td>10111</td>
</tr>
<tr>
<td>11000</td>
<td>17.51</td>
<td>11000</td>
</tr>
<tr>
<td>11001</td>
<td>19.01</td>
<td>11001</td>
</tr>
<tr>
<td>11010</td>
<td>23.01</td>
<td>11010</td>
</tr>
<tr>
<td>11011</td>
<td>28.01</td>
<td>11011</td>
</tr>
<tr>
<td>11100</td>
<td>35.01</td>
<td>11100</td>
</tr>
<tr>
<td>11101</td>
<td>40.01</td>
<td>11101</td>
</tr>
<tr>
<td>11110</td>
<td>50.01</td>
<td>11110</td>
</tr>
<tr>
<td>11111</td>
<td>50.01</td>
<td>11111</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>S3 in position</th>
<th>Filter mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>low pass (LP)</td>
</tr>
<tr>
<td>2</td>
<td>high pass (HP)</td>
</tr>
<tr>
<td>3</td>
<td>band pass (BP)</td>
</tr>
<tr>
<td>4</td>
<td>notch</td>
</tr>
<tr>
<td>5</td>
<td>all pass</td>
</tr>
<tr>
<td>6</td>
<td>oscillator (see text)</td>
</tr>
</tbody>
</table>

Table 1. The binary programming codes for the Q factor and the ratio of clock frequency, f0, to filter centre frequency, f0. Table 2. This table shows the input selection required for the various filter modes. Refer to the text for sine-wave oscillator operation.
The LCD thermometer featured in the October 1982 issue was originally intended as an ambient temperature indicator. We don't, of course, know what you're using it for, but from the many letters we have received asking for a switched output extension, it would appear that many of you would like to use it as a thermostat. We wouldn't dream of disappointing you!

from thermometer to thermostat

At first glance, the circuit does not look too exciting: a preset and a comparator. Yet there's more to it than meets the eye: after all, it has to work reliably for very long periods. Tests conducted in our own laboratories over a long period of time have proved the extension to be entirely trouble-free.

Operation is simple: if the ambient temperature rises above a value preset with P1, the relay is actuated. The relay contacts can, of course, be connected to whatever you wish: an alarm, the contacts of a room thermostat, and the like. It is also possible to have an optical warning of rising temperatures by connecting an LED and suitable series resistor (Rv) as shown in dotted lines in figure 1. In this case, the relay may not be required and R3 and R4 can be replaced by a single resistor of 10 kΩ. And, of course, there are many other possibilities as a little thought will show.

The non-inverting input (pin 3) of the opamp, IC1, is connected to the junction of R10/R11 in the LCD thermometer. The voltage at this point is proportional to the measured temperature. A reference voltage, representing the set temperature, is preset by P1 and applied to the inverting input (pin 2) of IC1.

If the voltage at pin 3 is greater than that at pin 2 (that is, measured temperature is higher than reference temperature), the voltage at the output (pin 6) of IC1 is high (nearly Ub). A current will then flow through R3 and R4 which is sufficient to cause a drop of about 1.5 V across R4. This is more than enough to make T1 conduct. The consequent collector current flows through the relay, Re, which is then actuated. An optical indication can also be provided by the LED.

The supply voltage for the extension can be obtained from terminal B (+Ub) on the printed-circuit board of the thermometer. Pin 3 of IC1 can be soldered directly to junction R10/R11, while R22 in the extension should be soldered to the junction of R11 and P2 (suitable soldering points are already provided on the printed-circuit board). Don't forget to connect the two earths together!

If the thermometer is powered from a primary battery, it would be wise to provide the power for the relay from a separate source - a low-current relay is, of course, ideal.

Figure 1. The circuit of the switched extension shows that it takes only a preset, a comparator, and a switching stage to convert an electronic thermometer into a thermostat.
Now we have reached the hundredth in our series of infocards, we thought it the right moment to put a few matters right. In this issue you'll therefore find three completely revised cards, numbers 6, 13, and 15, which needed corrections beyond a simple ‘missing link’.

Infocard 97
(November 1983)
The logic symbols for a buffer and an inverter are shown with two inputs, whereas these devices have, of course, only one input.
PC board pages

How accurate is your watch?

Audio embellisher: 16-stage band-pass filter
The following pages contain the mirror images of the track layout of the printed circuit boards (excluding double-plated ones as these are very tricky to make at home) relating to projects featured in this issue to enable you to etch your own boards.

To do this, you require:
- an aerosol of 'ISOdraft' transparentizer (available from your local drawing office suppliers; distributors for the UK: Cannon & Wrin), an ultraviolet lamp, etching sodium, ferric chloride, positive photo-sensitive board material (which can be either bought or home made by applying a film of photo-copying lacquer to normal board material).
- Wet the photo-sensitive (track) side of the board thoroughly with the transparent spray.

Note: due to lack of space we are unable to include the layouts for the wind direction indicator or the reverse side of the digital cassette recorder.

PC board pages
- Lay the layout cut from the relevant page of this magazine with its printed side onto the wet board. Remove any air bubbles by carefully ‘ironing’ the cut-out with some tissue paper.
- The whole can now be exposed to ultra-violet light. Use a glass plate for holding the layout in place only for long exposure times, as normally the spray ensures that the paper sticks to the board. Bear in mind that normal plate glass (but not crystal glass or perspex) absorbs some of the ultra-violet light so that the exposure time has to be increased slightly.
- The exposure time is dependent upon the ultra-violet lamp used, the distance of the lamp from the board, and the photo-sensitive board. If you use a 300 watt UV lamp at a distance of about 40 cm from the board and a sheet of perspex, an exposure time of 4...8 minutes should normally be sufficient.
- After exposure, remove the layout sheet (which can be used again), and rinse the board thoroughly under running water.
- After the photo-sensitive film has been developed in sodium lye (about 9 grammes of etching sodium to one litre of water), the board can be etched in ferric chloride (500 grammes of FeC13 to one litre of water). Then rinse the board (and your hands!) thoroughly under running water.
- Remove the photo-sensitive film from the copper tracks with wire wool and drill the holes.
audio sleuth at work

fault finding in audio installations

The finding of a fault in an audio system would have been very much to Sir Arthur Conan Doyle's liking. Like Sherlock Holmes, you should sit down and calmly reason out what's wrong. Take the symptoms one by one, put them in logical order and then try to find the solution by deduction.

First of all, we are not going to suggest that you open up each item of your installation, heat your soldering iron, and prepare yourself for 'surgery'. On the contrary, the hints in this article deal with fault-finding without special tools and without expensive test equipment.

As a rule, start your fault-finding with a list of questions. How did the system behave before the fault? Was everything all right? Was there any noise, hum, or crackle? Has it ever worked satisfactorily? Such a list often points to the most likely area of the fault. You then carry out a quick check of whether this is indeed so. If so, all well and good; if not, a more systematic check has to be made.

One of the quickest methods is the so-called 'halving method'. Let us assume that the fault lies in an unknown part of a chain of units or circuits. Such a chain may consist of any number of items: figure 1 shows a typical 'audio chain'.

If a signal is applied to the input of the chain and something is wrong with the output of the pre-amplifier, you know that the fault lies somewhere in that unit. Then 'halve' the possibilities, and check the signal at the tape output: if this is all right, the fault lies between there and the final output. If, however, the signal at the tape 'OUT' is faulty, the fault lies in the pre-amplifier before the tape output.

Never start with the more complicated checks but rather with the simple ones; only when these give negative results, bring in the big guns. The possibilities vary from checking whether the mains plug is securely in the socket to 'open heart surgery' where

Figure 1. Possible cross-over points of the left and right-hand channels to enable the correct operation of either channel to be checked. Only one cross-over should be made at a time.
the main amplifier with the various printed circuit boards temporarily removed is surrounded by an array of test instruments like a de luxe sine/square-wave generator, a double-beam oscilloscope, spectrum analyzer, and so on.

Checking the mains plug may sound ridiculous, but in practice many problems can be traced back to this sort of simple cause. Check therefore whether somewhere in the chain there are no controls in the wrong position, and whether all fuses are OK.

The 'interchange trick'

A check which is very suitable as an indicator is the so-called 'interchange trick' in which the left and right-hand channels are crossed over somewhere in the chain. Figure 1 shows which inputs and outputs of an amplifier can be used in such a check. If we assume that the symptom is the nonsatisfactory operation of one channel, change left to right and vice versa. If now the other channel shows the symptom, the fault lies before the point where the channels were interchanged. If the signs of disorder continue in the same channel, the fault exists after the cross-over point. Take care to make only one interchange at a time!

Restore the crossed-over point and make a similar check elsewhere in the chain. Such a check may also be combined with the 'halving' check. It is true that the number of possible interchange points in figure 1 is not great, but we felt it better not to show all the intermediate ones.

If the amplifier uses DIN connectors, an adapter as shown in figure 2 may have to be made up to enable cross-overs to be made. If 'phono' connectors are used, making an interchange is, of course, simplicity itself.

If the checks described so far fail to give the right result, the time has come to bring in the big guns! Get the temporary use of a second, soundly functioning audio system and replace one or more of the units from the malfunctioning chain by the corre-
sponding ones from the auxiliary system. The interchange points indicated in figure 1 can be used for connecting the replacement units.

Balance check

If a loudspeaker is connected between the 'hot' terminals of a stereo amplifier (the two earth terminals thus remain 'open'), sound will come from the speaker even if only one channel is working properly. If no sound at all is auditable, neither channel is operating. With the loudspeaker connected as above, apply a mono signal to both channels and set the mono/stereo selector to mono. With the balance control in its mid position, no sound will come from the loudspeaker, while increasing sound should be heard when the balance control is turned left or right. The sound-null will often coincide with the popular '12 o'clock' position of the balance control. Because only one loudspeaker is used, the coincidence is not the result of acoustical imbalance (that is, incorrect positioning of the loudspeakers), but rather of electronic imbalance of the two channels (it could also be faulty positioning of the knob of the balance control onto its spindle).

Signal generator

Before getting out the tone generator (if you have one), remember that you yourself are an excellent hum generator. Take a piece of bare wire between thumb and index finger and insert it into the relevant input. Before you do, turn down the volume control!

A better, but still inexpensive, alternative is the test circuit shown in figure 3 which, believe it or not, enables you to even check the high-frequency control! It uses a small transformer (for instance, a bell transformer) of which the secondary voltage is rectified and from which the d.c. component is removed by C1. The result is an alternating voltage with a fundamental frequency of 100 Hz and a large number of harmonics (primarily caused by the characteristic of diodes D1...D4). When S2 is switched from position 1 to 2, the unit to which the circuit is connected should produce more hum. If it does not, a fault is indicated.

Open circuits and dirty contacts

Is the sound weak and shrill, in other words, does the output consist mainly of high frequencies? That could indicate an open circuit, like a break in a cable (the high frequencies still come through, albeit attenuated, via the capacitance caused by the break).

Any crackling or loud clicks when a switch is turned? That may be caused by leaking coupling capacitors. Just behind each output coupling capacitor, and just before an input coupling capacitor, a resistor connected to earth is required to keep the d.c. across the capacitor constant. If d.c. appears across the resistor, the capacitor leaks and should be replaced. This sort of check requires the amplifier to be on: using a multimeter (lowest d.c. voltage range), measure the d.c. voltage across the relevant resistors. Often the cause for the crackling and clicking is far simpler and can be cured by the following 'shock therapy'. Switch off the amplifier and turn each switch a couple of times from one to the other extreme positions: this normally 'cleans' the switch contacts. This sort of remedy is also very useful for the connections at the back of the amplifier. Remove and re-insert each plug a couple of times. Phono connectors should be turned around their axis so that the contact areas are moved. Loudspeaker connections should be given a 'fresh' start by renewing the bare ends. Do NOT tin the new ends!

It does, of course, no harm to carry out this sort of 'shock' treatment once in a while even if there is no fault.

Phase check

If the sound is all rightish, but not really 'stereo', the betting is that the phasing of the loudspeaker connections is not right. The most reliable check for this is still the battery check. Take a 1.5 V battery and remove the cloth from the loudspeakers so that the cones become visible. Remove the speaker leads from the rear of the amplifier. Connect one of these leads to the + terminal of the battery and with the other touch the - terminal briefly. The cone of the loudspeaker will make a forward or a backward movement. Repeat this with the second loudspeaker. Both cones should move in the same direction if the speaker leads are connected to the battery with identical polarity. If not, the connections of one of the loudspeakers to the amplifier should be reversed.
The article featuring the wind speed meter (anemometer) published in our October 1983 issue prompted us to expand the 'Elektor weather station' by adding an electronic wind direction meter. This instrument consists of a 'pick-up' and a read-out, connected together by means of two wires. The read-out indicates the wind direction with 16 LEDs. This could also be expanded so that the read-out is shown on an alphanumeric display.

In this electronic wind direction indicator the position of a wind vane is first translated into a code, which is sent below to display the wind direction on a wind compass card made up of 16 LEDs. The great advantage of the set-up used here is that only two wires are needed for interconnection between the pick-up section (at the wind vane) and the read-out section (with the wind compass). These two wires are used to provide the power for both sections and at the same time to carry the wind direction information to the read-out.

The principle
Because a simple connection between the two sections was considered important in this design, an easy method had to be found to allow both the measurement signal and the supply voltage to be transmitted over a single line. As we will see later, we solved this problem in a very unusual way.

The direction of the wind is translated into a four bit code by means of a coding disc fixed to the wind vane and four reflection sensors mounted below the disc. This code must now be sent in serial form to the receiver. There the signal is reconverted into a four bit code that is used to drive the 16 LED's of the wind compass. The block diagram of figure 1a shows the main parts of the circuit.

Before going on to look at the circuit diagram, we must first see how the power and the wind direction information are carried on the same line. This will then make the layout of the circuit much easier to understand. The diagram of figure 1b shows how this two-wire 'traffic' is achieved. In principle the supply transformer is situated between the pick-up and the read-out sections. Each section has its own supply buffer consisting of a diode and an electrolytic capacitor. Data is transferred between the two sections by means of a transistor in the 'transmitter' end and an opto coupler in the 'receiver' (display) end. The transformer is linked to the connecting cable via a diode and a resistor as shown.

Positive half-cycles of the mains frequency are now treated differently from the negative. What happens during a positive half-cycle is shown in figure 1c. The transformer voltage is half-wave rectified by a diode so that the two electrolytic capacitors are charged and the two sections of the circuit are provided with a d.c. voltage. The diodes prevent the capacitors from discharging during negative half-cycles. As we have said, the negative half-cycles are treated differently, and this is illustrated in figure 1d. If transistor T conducts the two wires are short circuited. If T is not conducting a current will flow through the LED in the opto coupler of the read-out section, so that
The opto transistor will give a pulse. The operation of the whole circuit is as easy as it is clever; when T is conducting no pulse appears at the output of the opto coupler, but when T is not conducting the opto coupler gives one pulse for each negative half-cycle. In this way signals can be transmitted during the time when there are no supply pulses on the line.

The lines therefore carry positive pulses with a frequency of 50 Hz and negative pulses 'supplied' by T. The result is shown in figure 1d. We use the number of 50 Hz pulses between two negative pulses as information relating to the wind direction.

As far as logic is concerned, the circuit for the wind direction indicator is also split into two sections; the pick-up (figure 2) and the read-out (figure 3). We will begin with the pick-up circuit, which will later be fixed to the wind vane. The power supply for this section is handled by D5, C2, C3 and regulator IC3. The 50 Hz pulses appearing at point P are formed into a square wave by N3. High frequency interference on the lines is suppressed by RC network R18/C4. Negative signals on the line are blocked by diode D6.

Figure 1. A rough block diagram of the wind direction indicator and three drawings to illustrate how both the power and the information signals are transmitted over the same two wires.
The wind vane is fixed to a four bit Gray code disc, by means of which 16 wind directions are coded into a four bit code. The disc contains opaque and translucent sections, and its layout is shown in figure 5. A digital signal is supplied by four reflection sensors, IC11...IC14, mounted below the disc. Alternatively, four LEDs and four photo transistors could be substituted, with the diodes shining through the disc onto the transistors. These are indicated in the parts list as D1...D4 and T1...T4, which are simply four red LEDs and four ordinary photo transistors.

The signal from each sensor is amplified by a transistor stage (T5...T8), so that the output of each stage is logic zero if no light is falling on the photo transistor and logic one if the opposite is the case. The four-bit wind direction information is now available at points P0...P3. This code is fed to the preset inputs of counter IC1. This counter is arranged so that it counts down from the preset value to zero. When it reaches zero the counter automatically presets itself via the monostable multivibrator consisting of N1 and N2. The clock signal (50 Hz) is supplied by N3. The pulse given by N2 lasts about 5 ms and is used to transmit the wind direction information to the 'receiver'. The appearance of the pulse causes the LED (and therefore the photo transistor) in the opto coupler to be switched off via T9, and this in turn means that T10 is turned off. The moment at which N2 gives the pulse is defined by the preset value of the counter. Because IC1 is clocked at the mains frequency, the number of mains pulses between two successive N2 pulses is exactly equal to the binary code at the preset inputs. Assume, for example, that the binary code is 1001 (=9), then N2 will give an 'information pulse' after every 9 mains pulses. Because transistor T10 and the photo transistor in IC4 need to be protected against positive mains pulses, two extra diodes, D7 and D8, have been added.

The circuit for the read-out section is shown in figure 3. Here we see the mains transformer with the diode (D11) and resistor (R19), just as they appeared in the block diagram. The supply section (D12, C6, C7 and IC6) and clock pulse circuitry (R20, R21, C5, D9 and N4) are identical to these parts of the pick-up section.

When an information pulse from N2 is received, the LED in opto coupler IC7 will light, causing the photo transistor to conduct and short the input of N5 to ground. In this section diode D10 is used as a protection against positive voltage pulses on the line. The serial information is reconverted to a four bit code by IC8 and IC9.
IC8 is a four bit counter that counts up from 0000 at the clock frequency. Whenever the circuit receives an information pulse the counter is reset via the monostable multivibrator of N5 and N6. Just before IC8 is reset the count is read into latch IC9 with a latch pulse from N5. The latch stores this count until a new information pulse arrives. The outputs of the latch therefore show the same four bit information that was supplied to the preset inputs of IC1. The code then goes to IC10, which acts as a 4 to 16 line decoder. The 16 outputs drive the LEDs that indicate the wind direction.

The current through the LEDs is limited to about 20 mA by resistor R24. The table beside the diagram shows the conditions for indicating each wind direction.

The mechanical layout

All the electronics we have just been describing is located on the four printed circuit boards shown in figure 4. The two circular boards contain the pick-up section, and the read-out section is on the other two boards. These four boards are supplied as one unit through the EPS service and have to be separated. The two read-out boards could also be left together, depending on the amount of room available.

The mechanical construction for the pick-up section with the wind vane is fairly straightforward. There are various details that must be considered, however. One thing that must be decided is whether to use LEDs and photo transistors or reflection sensors. The latter are recommended due to the fact that

Figure 3. This is the read-out circuit. Here the information received is converted back to a four bit code which defines which one of the 16 LEDs in the 'wind compass' will light.
shielding from stray light can be a major problem when discrete LEDs are used. The layout of the coding disc is shown in figure 5, and also (full size) on the layout pages at the centre of this issue. A disc is made up with either the shape of figure 5a or 5b. If reflection sensors are used then 5a is needed, otherwise 5b is used with LEDs mounted above the disc and phototransistors below them on the printed board. The two pick-up boards are cut into a circular disc shape and the components can then be mounted.

Capacitor C3 must be soldered to the track side of the board, ideally with some form of insulation between it and the copper. Six points on the two boards (P0, P1, P2, P3, +8 V and 1) must be connected by means of wires or some ribbon cable. The boards can then be fixed together 'sandwich fashion' held in place by a 5 mm diameter rod that is fixed to the base of the 'transmitter' casing. The coding disc is fitted in such a way that it is allowed to rotate freely about 1 mm above the reflection sensors. A further plastic disc with two strong magnets glued diametrically opposite each other
is fixed above the coding disc such that the two discs rotate together. The whole construction must fit into the (inverted) transparent jar so that the disc with the magnets can rotate freely. The connecting cable is passed through a hole drilled in the lid and soldered to the lower printed circuit board. The opening is then sealed well. The form of construction is illustrated in figure 6 but, as usual, individual ideas will probably change this significantly.

Now all the electronics is protected in a watertight package, but, if the light sensitive components are not to be affected by ambient light, it must also be made light-proof. This can easily be done by painting the outside of the jar black.

Looking at the mechanical construction it is obvious why again we recommend using reflection sensors if possible. If LEDs and photo transistors are used the LEDs must somehow be fixed above the coding disc and they must also be provided with their own power supply.

The construction of the outer casing is very dependent upon what material is available. It could, for example, be made using PVC tubing. This outer casing ideally should have bearings for the shaft of the wind vane and some sort of cap is needed to prevent rainwater from getting at these bearings. Remember to provide a hole at the bottom of the casing to prevent condensation building up.

Another plastic disc (or simply a strip of plastic) with two strong magnets is mounted at the lower end of the wind vane shaft. Be sure to get the 'polarity' of the magnets correct as their purpose is to induce the magnets inside the jar to rotate 'in sympathy' with them.

It may be necessary to experiment with the value of resistor R1. In reflection sensors the sensitivity is often so good that the current through the LEDs can easily be reduced and so help to prevent 'false' reflections. With normal LEDs the current could be increased a little. Trial and error is probably the best method to use here until a value is found that enables all wind directions to be correctly indicated.

Constructing the read-out is very straightforward. Depending on the case used, the two boards can either be left joined or separated, but in this latter case points A0...A3, +8 V and I must be linked on both boards. To keep this section as small as possible the two boards can again be mounted sandwich fashion. The transformer is connected to the read-out.
Figure 6. This drawing gives an insight into the mechanical construction of the pick-up section complete with wind vane and 'case'. The electronics are protected from water by sealing them inside a jam jar. Magnetic coupling is used between the wind vane and the coding disc.

Figure 7. The transformer does not necessarily need to be located near the read-out. It can also be connected to the cable somewhere else. If this is done, D11 and R19 stay with the transformer instead of being mounted on the printed circuit board.

The circuit can be expanded slightly by enabling the 16 wind directions to be shown on three dot matrix displays. The circuit for this 'extra' is given in figure 8. This is connected to the data outputs A0 ... A3 of the read-out section (the outputs of IC9). The 'data' for driving the displays is contained in a 2 Kbyte EPROM, IC1. The hexdump of the contents of this EPROM is shown in table 1, and this chip is also available from Technomatic Ltd. The displays are multiplexed by counter/oscillator IC3 and 4 to 16 line decoder IC4. The outputs of IC4 drive the 15 LED columns of the displays via transistors T8 ... T22. The multiplexing frequency is about 3.5 kHz.

The LED rows of the displays are driven by the data outputs D0 ... D6 of the EPROM. The output signals are amplified by transistors T1 ... T7, and the current through the LEDs is defined by the values of resistors R3 ... R9. The maximum current through the LEDs is about 75 mA. This current is needed because each LED is only driven for 1/16 of the time.

The four outputs of IC4 are also connected to the address inputs A0 ... A3 of IC1, so that when a certain LED column is being driven the appropriate 'switching' data appears at the output. Address inputs A4 ... A7 receive their data from the latch in the read-out section so that, depending on the wind direction, a specific 16 byte address of the EPROM is selected that contains the information needed to give the correct display. Voltage dividers R12 ... R15/R16 ... R19 are included to reduce the 8 V signals of the read-out circuit to the 5 V used by the display. Finally, a link must be connected between pins 12 and 21 of the 2716. This is necessary to select the correct section of the EPROM. The power supply for this section is handled by a separate 5 V stabilizer (IC2). The current consumption of this circuit is about 150 mA.
Figure 8. Here we show an additional circuit that can be added to enable the wind direction to be read on three dot-matrix wind direction indicators.

Table 1. (Table not visible in the image)

Out on three dot-matrix wind direction to be read.

Addition circuit that can be added to enable the wind direction to be read on three dot-matrix wind direction indicators.
Careful manipulation of the WAIT input of the Z 80 is what enables this little circuit to fulfill the particular conditions that have to be met to program an EPROM in situ given the unusual timing of the control signals of this processor.

any Z 80 system with static RAM can be used to program 2716 EPROMs

In order to program a 2716 EPROM there are several conditions that have to be met. The OE (Output Enable) pin must be 'high', the levels on the address and data lines must be stable, the potential on pin V_{pp} must rise from 5 V to the programming voltage of 25 V and finally, the CE (Chip Enable) pin must go 'high' for 50 ms. There is nothing really unusual there but a certain amount of care is needed as the speed of the processor must be slowed down and the peculiarities of the timing of the control signals must be taken into account. It is notable, looking at figure 1, that the RD (read) signal appears at the same time as the memory validation signal MREQ (memory request), whereas during a write operation there is a delay of one clock cycle between the appearance of MREQ and the transition to 'low' of the WR signal (write). This is important for us as the programming consists of a prolonged write operation. However, to be able to access the EPROM it must be located somewhere in the addressable area. An address decoding (not represented here) is needed to supply a validation signal for the memory zone occupied by the EPROM.

The circuit and its timing
The address decoding signal must set point 'A' in figure 2 logic 'low'. If this signal has been generated without combining the address lines with the MREQ line, they can still be combined using OR gate N7. If these signals have already been combined, the

Figure 1. This is the timing diagram for the Z 80 control signals during read and write cycles. It is notable that there is a significant time delay between the appearance of MREQ and WR, whereas MREQ and RD appear simultaneously. A wait circuit is used to set the WAIT line 'low' as soon as the EPROM is addressed, even during a write cycle.
decoding signal, called ADDRESS here can be applied directly to point 'A'. We will return later to the PE (program enable) signal which could, in certain applications, take the place of a validation signal.

Write cycle
When the EPROM is addressed, the logic level applied to point 'A' of the programmer produces a falling edge at the output of N3, which triggers monostable MMV1. A calibrated 50 ms pulse then appears at pin 8 of this IC and is used as a programming pulse at the CE input of the EPROM. This same pulse sets the WAIT input of the Z 80 'low' via N1 and N5 so that the address word and the data word on the buses remain stable. As the RD line is 'high', input OE of the EPROM is also 'high'. At the same time T1 is turned off, T2 saturates and the potential at pin Vpp of the EPROM goes from 5 V to 25 V.

None of this will happen, however, if the WR signal is not delayed, as we mentioned at the beginning of this article. In fact the output of OR gate N3 cannot go 'low' unless the WR line is also 'low'. Also the delay introduced by monostable MMV1 must be taken into account. This is the reason for adding a circuit to introduce a 'wait' of several cycles. It consists of a series of flip-flops FF1...FF4, which hold the WAIT pin of the Z 80 'low' immediately after point 'A' goes 'low'. The maximum delay between the time that the WAIT input should go 'low' (making the address and data words on the buses stable) and the time when the 'low' appears on the WR line is about 150 ns. A few dozen ns delay introduced by MMV1 must be added to this. With the four flip-flops we gain three wait cycles, or 750 ns with a 4 MHz clock. As the timing diagram of figure 1 shows, the WAIT input goes 'low' just after MREQ, even though the WR line is still 'high'. As soon as the 50 ms CE pulse arrives, the address and data buses are fixed and remain so for the duration of the programming.

Read cycle
The wait circuit is triggered by the address decoding signal, so it also works during the read cycles of the EPROM. This gets over the problem of EPROMs whose access time is normally too long (450 ns). The monostable, on the other hand, is not activated, so CE remains 'low', as the first part of the timing diagram shows. However, the potential at the address and data words on the buses does not remain stable, as the RD line is 'high'. The signals for the EPROM are then applied to the pins as follows:

- pin 10 (IC6): OE (pin 20 of the EPROM)
- pin 11 (IC6): Vpp (pin 21 of the EPROM)
- pin 4 (IC6): CE (pin 18 of the EPROM)

Programming in situ
This is not a totally autonomous EPROM programmer. It is, in fact, an auxiliary circuit in which the EPROM socket has wire wrapping terminals. There are, of course, a few links that have to be wired in: PHI/EX (the clock), WAIT, RD, WE, the address decoding signal (or PE) and finally the programming potential of 26 V (not 25 V as there will be some voltage dropped across D3 and T2). Make sure that the address decoding signal (ADDRESS) does not contain the RD signal as its presence would prevent any writing, and therefore programming, from taking place. The programming unit of the polyphonic synthesizer is a nice example of programming in situ. If you look at the circuit diagram in the relevant article you will see what we mean. In this case there is no need even to fit a special socket for the EPROM as it takes the place of RAM IC9. The 4071 (IC6) is removed from its socket and the signals for the EPROM are then applied to the pins as follows:

- pin 6 of N4 (OE) with pin 4 (PR) of flip-flop FF1, which will then no longer be connected to +5 V.

Figure 2. The circuit diagram for the Z 80 2716 EPROM programmer consists of a monostable that generates a calibrated 50 ms programming pulse, and a wait circuit that sets the WAIT line 'low' even before the WR signal appears. By mounting this circuit on a piece of veroboard fitted with 24 wire wrap pins, this programmer could be substituted for the EPROM to be programmed on any memory card with address decoding.
A printed circuit board is ideal for constructing reliable circuits. Not everyone, however, has the necessary material and tools to produce such boards. Apart from that, it is often not worth the trouble and expense to design, photograph and etch a print layout for one printed circuit board. There are however more ways which lead to Rome.

There are two main alternative prototyping circuit boards which differ principally in the method of wiring. The first is one with continuous copper tracks: when this is used, only a few additional connections have to be made - provided, of course, that the component layout has been well thought out that the final product has as few wire connections as possible. Readers who like solving puzzles are well away with these boards! However, particularly in the case of digital circuits, these boards can give problems: depending on the position of IC's, it is often necessary to break the copper track between the connecting pins. Even with the right tools this can prove to be a tiresome and time-consuming job. The second alternative is better suited to such circuits: boards containing only solder pads. Because no account needs to be taken of copper tracks, components can be placed rather more freely on such boards and, of course, the breaking of tracks has become superfluous.

How to make it

A propelling pencil with a lead diameter of 0.5 mm, a cotton reel and a strip of aluminium (about 90 x 20 mm) are required. If a propelling pencil is not available, take a ball-pen and hypodermic needle (also with an opening of 0.5 mm). Remove the top of the propelling pencil so that it becomes open-ended. When a ball-pen is used, remove the ink reservoir and operating pin or button; the hypodermic needle is then placed in the pen such that it protrudes about 5 mm from the normal writing end. At the centre of the strip of aluminium drill a hole of suitable diameter into which the top end of the pencil or ball-pen is to be inserted. Two smaller holes are then drilled at either side of, and equidistant to, the centre hole. The aluminium is then bent into a U-shape so that the cotton reel fits between the two vertical sides as shown in figure 1. To ensure that the reel can rotate freely, use a 2 BA screw and nut as spindle. All that remains to be done is to wind a suitable length of enamelled copper wire onto the reel.

Home-constructed circuits should present no problems

Material

Prototyping circuit boards are usually available from an electronics retailer in so-called Eurocard sizes. The most suitable material is epoxy board which is appreciably more stable than pertinax. The wire to be used is enamelled copper wire of 0.25 - 0.35 mm diameter. A special type of wire is available which, although it is a little dearer, is more easily tinned and soldered. Moreover, it is available in different colours, which is useful for complicated circuits. Whatever wire is used, however, there is one golden rule: tin first, solder
Readers who are thinking of using the wire of a transformer or choke will find that the enamel on such wire is very difficult to remove. A further disadvantage is that the enamel has often become so hard that it crumbles during removal of the wire from the transformer or during rewinding onto the cotton reel: the possibility of a short then becomes very real! The most important tool, the soldering iron, is required to have a tip temperature of 350...400 degrees centigrade, otherwise it will not be possible to remove the enamel with it. An iron with adjustable temperature is ideal, but if this is not available, try to remove the enamel with the one that is to hand. More tools are not really required, although a pair of small pliers and a pair of tweezers are very useful.

Preparation and construction
It is advisable at all times (and not just with this method of construction) to use IC sockets, as soldering direct onto IC pins often ruins the component. It may also be worthwhile, especially for beginners, to take sufficient time to consider the best location for the IC’s. A mirror image sketch or drawing of the IC connections obviates a lot of turning over of the board.

First place the socket onto the board and solder the diagonally opposite pins (for instance, the + and - of the IC) to the board. After all other components, screws, pins, and so on, have been placed in their respective positions on the board, a start can be made with the wiring. The supply lines should be done first (see figure 2). The 0 V (earth) line is best done in bare copper wire and the + line in insulated copper wire, somewhat thicker than is used for the remainder of the connections. In most digital circuits a diameter of 0.4 mm for the supply lines is adequate. A hint: mark pin 1 of all IC’s on both sides of the board: this will simplify finding one’s way in the tangle of wires appreciably.

With careful work, it is possible to construct even a 16 or 64 k RAM card in this way, which shows that prototyping circuit boards are not necessarily inferior to printed circuit boards!
Memory in a computer is a hardware combination of logic elements which is totally independent of the software but which the software must take into account. The structure and organization of the addressable area is far more than simply a matter of getting the appearance right. This is one of the least understood characteristics of computers, and yet it plays an essential role in the operation of the machine, in the layout of the software, and even in adding memory extensions or peripherals, such as input/output modules.

The memory of a computer could be compared to a large library: the information, or data if you prefer, is the books and their contents, which we will only mention briefly here. What interests us in this library is its filing system, and especially the way that it is laid out, with its groups, categories, sub-groups and so on. In other words, it is the reference system that we are interested in.

The value of the information

Imagine a catalogue of several billion works dealing with the most varied and different subjects. Our library, of course, contains books on electronics. These are gathered under the reference 'E'. Books about digital electronics are located under the reference of 'ED', whereas those concerning analogue subjects are classified under 'EA'. In data terms we would call the letter 'E' the most significant bit of the references 'ED' and 'EA', and 'D' and 'A' are less significant bits. This distinction is easily seen as the letter 'E' here signifies all works dealing with electronics in our imaginary library, whereas the letters 'D' and 'A' refer only to a certain number of these books. If we continue to make our references even more detailed, the next character (which is less significant again than the previous two) could, for example, be used to distinguish between words in English and those that are not. So a book filed under 'EDE' is in English and deals with digital electronics, while a book with the reference 'EAF' deals with analogue electronics and is written in French. This last character (English or not) is less significant than its predecessor (digital or analogue): within the category of 'electronic works', the distinction between 'digital' works and 'analogue' works is more important than between works written in English and those written in French.

To finish with this attempt to clarify the idea of the significance (or importance) of information, here is a little example. It has to do with the prices displayed by shopkeepers on their merchandise. They would much rather ask £9999.99 than £10000.00 for a product. Why is that? The most significant information (the number of thousands of pounds seems cheaper between one price and the other), but in fact the difference is insignificant as it only involves a very slight change in the least significant information character.

Subdivision and double addressing

Let us now turn to computer memories. These appear as a stack of compartments (called memory cells), each containing 8 irreducible units in the systems most familiar to us, that is 8-bit microcomputers. These discrete units, the bits, are not separately accessible: they constitute an eight-bit word called a byte, and their logic values make up the data. This word travels to the interior of the system via the data bus, which consists of eight lines numbered D7...D0, each corresponding to one data bit. The words in the memory are accessed by the processor via an address bus, consisting of 16 lines numbered A15...A0, along which our compartments are arranged. This organization could be compared to that of the library in the preceding example. In figure 1 we have represented the six least significant address bits (A5...A0) as corridors with successive branches as it could be imagined in a library. Whether a left or right turn is taken in these corridors, the end is reached little by little. The decision to go 'left or right' in an address line is indicated by its high or low logic level (indicated as '1' or '0'), which are the only two states possible. The more the binary 'weight' of an address bit is increased, the more important the zone covered by it becomes. Because bits 5 and 4 in figure 1 are both '0', a '0' at bit 3 means that the area from 00 to 07 is selected, whereas if bit 3 is '1' the zone from 08 to 1F is accessed. If bit 4 then changes to '1' with 5 still being '0', the decision of bit 3 selects between zone 10...17 and 18...1F. Assume that in a specific application the logic level of bit 3 is not defined while bits 4 and 5 are both '0', then the result is that the zones mentioned before are no longer differentiated. Zone 00...0F will be confused with zone 08...0F. This is called double addressing. Depending on the binary weight of the undefined bit, the range of the doubly addressed zones will be more or less important.

\[2^{16} = 65536 \]

The six most significant address lines are shown in figure 2, which also indicates their contribution to splitting up the addressable area. Quantities indicated by the sign 'K' are always multiples of 1024 (not 1000), which is the number of memory cells ac-
depends on the binary of a zone whose size determines the decoding (high or low logic level) how the decision of a bit affects which address is to be decoded.

Figure 1. This binary 'tree' of the six least significant bits of an address shows how the decision of a bit (high or low logic level) determines the decoding of a zone whose size depends on the binary 'weight' of the bit.

Table 1. Using 16 address lines 65536 words can be addressed. This table shows how the decision of each bit affects which address is to be decoded.

is undefined two normally distinct blocks are confused. So if the logic level of A15 is not specified, address 0 and address 32768 are mixed up. The same applies for address 1 and address 32769, and so on.

Don't forget that for addressing, no matter what the base (binary, decimal or hexadecimal), the count always starts from 0.

This leads us to Table 1, which shows the 16 address lines; their 65536 possible combinations and the corresponding addresses. Despite the apparent linearity of the progression of this table, the weight of the address lines increases from right to left, and in line with this increase the range of the zones covered by the decision of an address bit becomes more important. This is shown at the extreme left of the table where the ranges of the zones decoded are indicated.

Generating enable signals

So far we have considered the problem of addressing purely as a matter of topography. Looking at the integrated circuits that we must manipulate, we see that the most common ones do not have 16 address lines but a lesser number, proportional to their capacity. As can be deduced from Figure 2, a chip containing 4 K (such as a 2732 EPROM) must have 12 address lines (A11 ... A0). Addressing each of the 4096 words is achieved by means of an internal address decoder incorporated in the IC. In the same way an IC containing 2 K of memory (for example the still common 6116 RAM) will have 11 address lines (A10 ... A0) which will enable the internal decoder to distinguish between the 2048 memory cells. What is called address decoding is not, strictly speaking, this internal
Decoding in the block of memory contained in an IC, but rather the location of this block in the area addressable by the CPU. For our examples we will concentrate on the 6502 and Z 80, both of which have 16 address lines and can therefore decode up to 64 K of memory. Every memory IC has, in addition to the address lines we have just mentioned, one or more enable inputs. These have to be brought to a certain logic level (generally low, which is indicated by a negation bar above the ‘name’ of the corresponding pin) to make the chip active. This means that the internal addressing only takes place when the enable signal is present, and the data words are not placed on the data bus until this condition is fulfilled. This enable signal is obtained using the most significant address lines, combined with certain control signals that are essential for the timing of the operations (see figure 3). These control signals are different for each system; for the 6502 they are:

- clock signal 4)2 which only permits reading and writing operations during the second half of each clock cycle of the processor, and
- the R/W signal which distinguishes between read operations (Read) and write operations (Write).

The corresponding signals in the Z 80 are:

- WE and RE to distinguish between writing (Write Enable) and reading (Read Enable), and

Figure 2. The levels of the most significant bits determine how the addressable area is broken up into blocks that fit inside one another. So, line A15 distinguishes two blocks of 32 K inside each of which A14 can select between two 16 K blocks, and so on.

Figure 3. The data and address buses are not all that is needed for addressing the memory; a certain number of control signals are also essential to ensure the correct timing of the read and write operations.

Figure 4a. The 6502 has no specific instructions or signals to distinguish the memory from the input/output modules. The control signals needed to enable the operations are clock 4)2 and the read/write (R/W) signal.
MREQ and IOREQ to distinguish between operations carried out with the memory and those dealing with the input/output module for which the Z 80 has specific instructions. The differences between the two processors are clarified by figures 4a and 4b. The validation signals, obtained from the most significant address signals and the control signals, are all referred to here as CS (Chip Select). Just for the sake of making things easier to follow, we will assume that they are always active at the low logic level. However, depending on the system and the manufacturer, it is possible to find some signals, including the enable signal, which are active high.

Before getting on to the logic combinations which will allow these enable signals to be generated it is no harm to emphasize the importance of the hexadecimal base. We have sixteen address lines grouped as 4 x 4 lines. There is a hexadecimal figure (0 ... F; 0 ... 15 in decimal) corresponding to each group of four lines. In address 4A2F, for example, the 4 corresponds to the binary word for lines A15, A14, A13 and A12 (0100), the A corresponds to the binary word on lines A11, A10, A9 and A8 (1010), the 2 to the word on lines A7, A6, A5 and A4 (0010) and the F to that on A3, A2, A1 and A0 (1111). This simple conversion allows the configuration of the 16 address lines, corresponding to an address given in hexadecimal, to be easily found.

Fixed logic combinations

Now we will start looking at the address decoding proper, achieved by means of more or less complex logic combinations. Imagine a memory circuit to be enabled between addresses 2000 and 2FFF. Lines A11 ... A0 decode 4098 memory cells between X000 and XFFF. Combining the A15 ... A12 lines as shown in figure 5a provides a CS signal active (at logic zero) only when the configuration of the lines is '0010', that is the number 2. The example of figure 5b shows more precise decoding. The enable signal CS, obtained by combining lines A15 ... A11 logically, is only active when the configuration of these lines gives the values E0 ... E7. The other address lines allow each of the 2048 addresses between E000 and E7FF to be addressed. The decoding obtained with the combination shown in figure 5c is even more precise: CS is only at logic zero when A3 ... A15 give the hexadecimal value C10; while the three remaining lines are used for addressing the eight bytes between C100 and C107.

Figure 5a & 5b. Examples of fixed address decoding, of 4 K and 2 K bytes. As the zone addressed becomes smaller, so the number of address signals combined becomes larger.

Figure 4b. The internal structure of a Z 80 system is quite similar to that of a 6502, except that it has more (and more specific) control signals. It is beyond the scope of this article to discuss the problems associated with timing these signals.
These three examples show how the decoding is narrowed down by using a larger number of significant address lines to generate the enable signal, and how this reduces the range of the zone addressed. For the sake of simplification, these examples have completely ignored the command signals that are needed to put all this into practice.

A multiple address decoding circuit is shown in figure 6. It contains a commonly used decoder IC, the 74LS138, which has three binary data inputs and two enable inputs (G2A, G2B). Signal G2A, which is obtained from a combination of A13 ... A15, is only active between C000 and DFFF, a block of 8 K. Input G2B picks up the MREQ signal from a Z 80, or is tied to earth (logic zero) if used with a 6502 processor. The three bit binary word created by combining A10 ... A12 allows eight successive blocks of 1 K to be decoded. The eight CS signals thus produced could be applied to the memory, in conjunction with command signals WE, RD or R/W.

Variable logic combinations

The decoding examples examined so far have one thing in common, that they are invariable, but variable address decoding is also possible, as illustrated by figure 7. The main part of this diagram is the four bit magnitude comparator, a 74LS85. A binary word A0 ... A3 is provided by address lines A12 ... A15. This is compared by the 74LS85 with the binary word supplied by four switches connected to earth and four polarizing resistors to the high logic level. When binary word A0 ... A3 is the same as binary word B0 ... B3 pin 3 (A = B) goes logic high. The output of this pin is then inverted and becomes the CS signal for a 4 K memory block (X000 ... XFFF, where X is the hexadecimal value corresponding to binary word B0 ... B3).

The same sort of programmable address decoding could be achieved using EXNOR gates, as shown in figure 7b. The open collector outputs of the 74LS266 are all logic high only when the two inputs of each gate are at the same logic level. Each gate compares one bit of the address word formed by A12 ... A15 with the corresponding bit of the binary word programmed using the switches and polarizing resistors. This procedure has the advantage that it adds flexibility to the address decoding. Furthermore, as the dotted lines of figure 7b suggest, it is quite easy to narrow the programmable decoding by increasing the number of significant address lines used, and thus reducing the range of the block enabled by the CS signal.

With that we will finish this article on address decoding, and, while we realize that there is much that has not been said about the subject, we hope that at least some light has been thrown on the address bus and how it works.
Programmable crystal oscillator

Programmable crystal oscillators (PXOs) are not new. They normally consist of a discrete stabilized oscillator, quartz crystal, and one or more dividers which are controlled by logic levels. What is new about the range of PXOs recently introduced by Statek Corporation, one of the largest oscillator manufacturers in the USA, is that the oscillator, dividers, and selector circuits are constructed as a CMOS-IC which is housed together with the quartz crystal in a standard 16-pin DIL package.

Statek has already brought eight of these PXO units onto the market: the only difference between them is the fundamental quartz frequency. This frequency is indicated by the number in the type-coding on the unit: for instance, in a PXO-600 it is 600 kHz. Standard crystal frequencies at this moment are: 192 kHz, 327.68 kHz, 600 kHz, 768 kHz, 983 kHz, 1 MHz, 1.3 MHz, 1.6 MHz, and 1.97 MHz. Statek can meet individual customer's requirements for non-standard frequencies.

The internal construction and pin-out are shown in figure 1. The direct output of the internal oscillator (OSC) is amplified and then available at pin 11 (Fout). The oscillator is also connected to the selection logic (SEL) which is controlled from pin 13 (CSEL). When this pin is logic high (TTL-level), the selector connects an external clock (EXC-pin 12) instead of the internal oscillator to the first divider.

The divide ratios of the two dividers are determined by three inputs each (PROG 1, 3, and 4, respectively): table 1 correlates the inputs and the ratios. A little arithmetic will show that 57 different frequencies are available from a single crystal.

The output of the second divider is amplified and then available at pin 9 (OUT).

A logic 0 at the RESET input (pin 14) sets the dividers to 1/1 and the output (pin 9) to logic low.

A somewhat unfortunate designation has been given to pin 10: TEST. When this pin is logic high, the output frequency is multiplied by 1000, provided the overall divide ratio is not lower than 1/1000.

Table 1. The divide ratios of the two dividers can be set independent of one another - note that the program numbers do NOT coincide with the pin numbers!
Table 2. Output frequencies of the PXO-768 model for various logic levels at the PROGram pins (Unit shown: Hz.)

<table>
<thead>
<tr>
<th>Program pin levels</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>256k</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>192k</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>153.6k</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>128k</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>64k</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*33% duty cycle **40% duty cycle

Table 2. Output frequencies of the PXO-768 model for various logic levels at the PROGram pins (Unit shown: Hz.)

ambiguous logic level, even if the relevant pins are not connected. Pins 1 and 15 are not used.

Other important technical parameters are:
- high calibration tolerance - standard ± 100 ppm
- low ageing - maximum 10 ppm in first 12 months
- high frequency stability - maximum drift ± 0.015% over the temperature range -10°C ... +75°C (not including the calibration tolerance)
- low current consumption (CMOS), yet fully TTL compatible
- very short rise and decay times (in the PXO-600, for instance, typically 70 ns and 30 ns respectively)

A typical application is shown in figure 2 where a PXO-768 is connected as a baud rate generator. Table 2 shows typical rates available from this unit. The baud rate is obtained by dividing the output frequency by 16: the extreme values of 0.0004 and 48,000 baud/sec are, of course, hardly ever used. It is, unfortunately, not possible to obtain all baud rates encountered in practice from each PXO unit; a rate of 75, for instance, cannot be derived from a PXO-768 (although it can from a PXO-600).

The PXOs can also be used for a variety of other applications, such as a square-wave generator, a rectangular-wave generator with variable duty-cycle, or a monostable multivibrator.

Further information from:
I.Q.D. Limited
29 Market Street
Crewkerne
Somerset
TA18 7LJ
Telephone: (0460)74433

Table 3. Some baud rates — in baud per second — available from the generator in figure 2.

<table>
<thead>
<tr>
<th>Output freq. kHz</th>
<th>19.2</th>
<th>38.4</th>
<th>76.8</th>
<th>153.6</th>
<th>768</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>1200</td>
<td>2400</td>
<td>4800</td>
<td>9600</td>
<td>48000</td>
</tr>
<tr>
<td>Pin 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pin 3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pin 4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pin 5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3. Some baud rates — in baud per second — available from the generator in figure 2.
Fast C-meter

The newly released CM 200 from Thurlby Electronics Ltd is a digital capacitance meter which has a maximum delay between connecting a capacitor and getting the first valid reading of less than half a second. This rapid settling combined with a reading update rate of 3 per second makes the meter unusually fast to use.

The meter has a 4½ digit liquid crystal display with a maximum reading in excess of 25,000 counts. It measures capacitance between 1 pF and 2,500 µF to an accuracy of 0.2%.

Very low power consumption enables the instrument to operate for several hundred hours from batteries. Alternatively it can be operated from the AC line adaptor supplied with it. The CM 200 is housed in a rugged bench/portable case with built-in tilt stand and is lightweight and fully portable for field use.

A special input socket arrangement allows, for the direct connection of a wide variety of capacitors, or for the connection of standard test loads. A front panel calibration control enables the user to null out up to 25 pF of test lead capacitance.

Thurlby Electronics Ltd.,
New Road.
St. Ives,
Cambridgeshire.
Telephone: 0480 69570

(2838 M)

4½ Digit LCD DPM

A new LCD DPM now available from Lascar Electronics is claimed to offer levels of performance never previously available in a compact module.

The DPM 60 features auto-zero, auto-polarity, and a logic switched 200 mV or 2 V f.s.d., giving a resolution of 10 µV. Other features include programmable decimal points, digital hold, 'low battery' indication, 'continuity' indication and a 10 mm 4½ digit high contrast LCD read out.

The unit can be readily scaled by user to indicate amps, volts, ohms and many other engineering units. Supplied complete with mounting bezel, clips and connector, it will suit many applications calling for low-cost, high accuracy measurement in portable instruments.

Specifications DPM 60

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>± 0.01% ± 1 digit</td>
</tr>
<tr>
<td>Samples/Sec</td>
<td>1.6</td>
</tr>
<tr>
<td>Temp. Stability</td>
<td>50 ppm/°C typ.</td>
</tr>
<tr>
<td>Temp. Range</td>
<td>0-35°C</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>7.5 - 15 V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>1 mA typ.</td>
</tr>
<tr>
<td>Max d.c. input Voltage</td>
<td>± 20 V</td>
</tr>
<tr>
<td>Lascar Electronics Limited,</td>
<td></td>
</tr>
<tr>
<td>Module House,</td>
<td>a digital capacitance meter, has a maximum delay between connecting a capacitor and</td>
</tr>
<tr>
<td></td>
<td>getting the first valid reading of less than half a second. This rapid settling</td>
</tr>
<tr>
<td></td>
<td>combined with a reading update rate of 3 per second makes the meter unusually</td>
</tr>
<tr>
<td></td>
<td>fast to use.</td>
</tr>
<tr>
<td>Telephone</td>
<td>079 48 567(2831 M)</td>
</tr>
</tbody>
</table>

Windspeed sensor

The windspeed sensor from Enterprise A/V Productions has a polyester resin-moulded stator with integral read switch. The rotor is a two-part device. The spinner is a black polyester resin moulding machined to accept a sealed stainless steel roller bearing. The magnet is of isotropic ferrite press-fitted into the rotor. The wind cups are black plastic mouldings and are a press-fit in the rotator. The windspeed sensor gives 1 pulse per revolution with a 50 per cent duty cycle, and will operate in winds from 0.5 MPH to 100 MPH. Mounting is by means of a single 0 BA brass stud. The price is £14.95 (excl. VAT) plus p & p.

Enterprise A/V Productions,
Manor Farm, C
Grendon Underwood,
Aylebury,
Bucks.
HP18 OSU
Telephone: 029677503

(2832 M)

Toroids from STC

Twenty-one toroidal transformers from the "Budget Range" manufactured by STC Electronics Ltd. are now available in a compact module.

The transformers have two separate primary windings for parallel 120 V operation or series connection for 240 V operation. Twin separate secondary windings provide a range of output voltages including: 2 x 6, 9, 12, 15, 18, 22, 25, 30, 35, 45 and 50 V r.m.s., depending on the VA size selected. The winding termination is via 150 mm long flexible leads.

The transformers are constructed to materials standards as used in professional electronics in avionics, telecommunications and electo-medical etc., including primary to secondary winding insulation to Class E (120°C); winding wire to Class A (105°C) and P.V.C., high temperature grade Class A (105°C). The construction enables these toroids to be operated for short periods at 120°C without deterioration. The transformers can also be operated in a "derated" condition at lower temperature reg and improved regulation. The nominal frequency is 50 to 60 Hz with an operating range of 47 to 400 Hz and the secondary voltage tolerance is within 3% at nominal input and full load.

STC Electronics Ltd.,
Unit T.,
Kingsville Road,
Kingslitch Trading Estate,
Cheltenham, GL51 9NX
Telephone: 0242 41313

(2836 M)
State-of-the-art 16-bit micro

The Duet-16 is an advanced new 16-bit microcomputer with a wealth of benefits for the technical and scientific user. Independent benchmark tests show its price/performance ratio to be better than any other micro in its class.

Heart of the system is a powerful 16-bit 8086 processor (which runs at a fast 8 MHz+) with a facility for an 8087 maths code processor. The operating system is MS-DOS, with CP/M-86 coming soon. Languages currently available are Basic-86 (supplied with the system), Advanced Basic and Cobol. Fortran 77 and Pascal are due out shortly.

Other developments are in the pipeline: a Unix facility will enable up to seven people to plug into the Duet-16 processor — all the multi-user, multi-tasking circuitry is built in. A Database, Project Control System and 1-3270 Emulator will be available within weeks.

Duet-16 has a user-expandible memory to 512 Kb and 728064 bytes of disk space. The file storage in the CPU employs two of the new Shugart slim-line 5½" floppy drives, double density, double tracking and with a total of 1.44 Mb (formatted) onboard storage.

Ten and 16 Mb 5½" Winchester mini-

Security light

Securilite — a new home safety plug-in security light — is being launched on to the UK electrical market by Smiths Industries Environmental Controls Company.

The inexpensive plug-in security light you can use all round your house whether you are at home or away.

The new appliance looks similar to a standard 13 amp plug, but contains four neon bulbs which give a soft light as soon as the unit is plugged into a conventional three pin socket. It has been developed as a multi-purpose and economic household safety aid, and has a wide variety of lighting uses.

SI ECC are positioning the Securilite as a cost-effective addition to the home safety market, and believe its versatility and competitive pricing will find favour with consumers. It can be used in a variety of settings, including children's bedrooms, garages and dark hallways — in the home and in the office. The product is extremely economical to run, and can operate for 12 hours a day for less than a penny a week.

Sold on a twin pack blister card the product is the latest addition to the Company's range of plug-in controllers, and SI ECC are anticipating a strong demand for Securilite from both trade and consumer in the winter sales period.

Smiths Industries
THE NEW
MPF1 PLUS...
...THE LOWEST COST
Z80 SINGLE BOARD COMPUTER
AVAILABLE WITH ALL THESE FEATURES!

£140
+VAT & carriage

THE MPF1 PLUS
Just look at the specification:-

Technical Specification

CPU: Z80A - 158 instructions
Software:
- Z80 Assembler, line and 2 pass
- 8K BASIC Interpreter (Extrn)
- 8K FORTH (Extri)
- ROM: 8K Monitor (full listing and
 comments)
RAM: 4K CMOS (2 x 6116)
Input/Output: 48 system I/O lines
Speaker: 2.25" coned linear
Display: 20 character 14 segment green
 phosphorescent

Expansion:
- Socket for 8K ROM
- Cassette Interface
- Connectors 40 way, complete CPU bus
 Keyboard: 40 key, Full "QWERTY" real
 movement good tactile feedback
Batteries: 4 x U11 for memory back-up
 (batteries not included)
Serial Interface: 165 baud for read/write
 via audio cassette

Manuals
 1. Overview and Installation.
 2. Specification (hardware and
 software). 3. Description of
 4. Operation. 4. Operating the MPF-1
 5. 4.4 Useful Sub-Subroutines.
 6. The Text Editor.
 7. Assembler and Disassembler.
 8. System Hardware Configuration.
 2. Experiment Manual. 16 experiments.
 3. Monitor Program Source Listing with
 full commenting.
 4. Also available the MPF-1 Plus Student
 Workbook (self-learning text).

Accessories
- PRT-MPF-1P: 20 character printer.
 Ready to plug in. Memory dump.
- EPB-MPF-1P: Copy/list/verify
 1K/2K/4K/8K-ROMs. Ready to plug in.
- SSB-MPF-1P: Speech Synthesiser
 Inc. 20 words and clock program.
 1200 words available.
- SGB-MPF-1P: Sound Synthesiser
 Board.
- I/O - MPF-1P: Input/output board

FLIGHT
Electronics Ltd.
Quayside Rd., Southampton. Hants S02 4AD. Tel (0703) 34003/27721.

Yes! I now realise that I need an MPF1
PLUS and that it is the lowest cost Z80
SBC available with all these features.
I enclose £165.00 (£140.00 + £21 VAT
plus £4 carriage). Overseas P.O.A.

Cheques payable to
FLIGHT ELECTRONICS LTD.
Please debit my
Barclaycard/Access

Account No.

An invoice will automatically be sent.
Name
Address
Signature
Date

Teaching you in a step-by-step method the MPF1 PLUS
helps the user fully understand the Software and Hardware of a
microprocessor easily and conveniently - as opposed to
microcomputers that aim to

The MPF1 PLUS
incorporates the Z80 - the most
widely used 8-bit microprocessor
in the world, to form a Single
Board Computer (SBC).
Packed in a plastic bookcase
together with three
comprehensive manuals and
power supply (to BS3651
standard), the MPF1 PLUS is a
microprocessor learning tool for
every application.

FLIGHT
Electronics Ltd.
GEMOTRONIK

U.K. Agent: H. A. Moulton
12 Holly Road St, May's Bay Romney, Mass.
Kam TN 20 OX8 Phone 0303/872 3228

This list represents a portion of our stock. Please ask for our catalogue and our special offers. Orders from Government Deps. & Colleges etc. welcome.
How to order: Mail order with cheque, P.O. etc. Please add 60 P&P (more for heavy goods) and 15% VAT or pay delivery. Government Deps., etc. send official order. send large SAE for list. B/card orders accepted.

1. Railway model kits:

3001 Intermittent light, 14-16V AC/DC
3002 Traffic light signal, 14-16V AC/DC
The fully kit journal is available upon request and has full technical specification on each kit.

All kits are designed and developed using the latest technology.

2. Amplifier systems:

3037 4-W Audio-amplifier mono 9-18V DC
3033 ditto stereo 9-24V DC
3032 Ditto especially for three-way-point

3151 ditto for three functions
3150 Electronic signal-switch for two functions
3144 ditto for four tracks
3143 Control for two occupied tracks 14-16V AC/DC
3142 ditto especially for three-way-point

3020 Feedback for two magnetic systems with 4 LEDs (two
3022 Complete pre-amplifier, tone control and 40-W-
3027 ditto stereo 18-30 V DC
3051 20-W Audio-amplifier mono 28-30V DC
3120 ditto stereo 15-22V
3092 ditto stereo 10-15V DC
3091 4-W Audio-amplifier mono 10-15V DC
3131 ditto stereo
3029 Mice pre-amplifier mono 9-24V DC
3084 ditto stereo 9-24V DC
3082 Power supply for no. 3071 and 3124 2x339 AC/7A
1054 ditto stereo using 24 LEDs 9-18V DC
3117 ditto stereo
3124 ditto stereo 2x35-38V DC
3072 90-W Audio-amplifier mono 1,35-15V DC
3059 ditto stereo 24-30V DC
3052 HF-amplifier
3043 Mini organ,
3107 Transformer for no. 3052 2x28/30V/2x2A
3040 Twilight-switch
3124 ditto stereo 2x35-38V DC
3048 Electronic die
3107
3069 ditto 10-Channel
3118 6-Channel running light organ
3017 4-Channel light organ max., 2600-Watt
3016 Complex sound generator incl. speaker
3043 Thermal switch 220V/600W
3047 Transformer for no. 3081 2x24V/2x1.5A
3078 FM receiver

3057 Digital thermometer

3. Power supplies:

3156 ditto 10-Channel
3087 Car LED Voltage meter
3114 ditto stereo 10-15V DC
3119 1-W Audio-amplifier mono 18-22V
3092 ditto stereo 10-15V DC
3091 4-W Audio-amplifier mono 10-15V DC
3131 ditto stereo
3029 Mice pre-amplifier mono 9-24V DC
3084 ditto stereo 9-24V DC

4. Set (only piano)

Keyboard 5 octaves
Noise generator
Power supply and transformer
plus set no. 3

Please order our special catalogue (1.09)

elektor january 1984
advertisement
THE NEW ANTEX TCSU-D
At last—a digital soldering unit
for £67.50
THE NEW ANTEX TCSU-D gives you total control over production soldering temperatures

Again Antex research and development pays off—with this new high-value high-performance unit. Its simple design incorporates an LED display and a unique ULA integrated circuit, specially designed and produced for Antex by Ferranti. Tight temperature control can be maintained by setting the station—then removing the knob, preventing any further alteration.

For laboratory, for workshop, for production line—TCSU-D is the station. Let it figure in your soldering specifications.

- Temperature range—ambient to 495°C.
- Working temperature reached in under 1 minute.
- Detachable sponge tray—no drips or spillage.
- Includes the world-famous Antex iron.
- Bit temperature maintained to ±5°C.
- Conforms to BS 3456 and CEE 11.
- Zero crossing switching.

Look into the future of soldering technology—send for the TCSU-D fact pack now.

ANTEX (Electronics) Ltd.,
Mayflower House, Plymouth, Devon. Telephone: 0752 667377 Telex: 45296
More data, more circuits, more pictures, in the brand new 480 page Maplin catalogue. Take a look at the completely revised Semiconductor section or the new Heathkit section with descriptions and pictures of dozens of kits and educational products from digital clocks to 16-bit business computers. The much expanded computer section itself, gives details of hundreds of pieces of software for Atari, BBC, Commodore 64, Dragon, Spectrum and VIC20. In addition to all this you'll find hundreds of fascinating new items spread through the rest of the catalogue.

As always, the Maplin catalogue is tremendous value for money and now has prices on the page!

Pick up a copy at any branch of W.H. Smith or in one of our shops for just £1.35 or send £1.65 including postage to our Rayleigh address. On sale from 1st Nov 1983.

Projects for the Home Constructor