Remotely controlled stroboscope
PLL sine wave generator
MIDI master keyboard
FAX interface for PCs
Mini EPROM viewer
CRO calibrator

WIN A SATELLITE TV RECEIVING SYSTEM!
by taking part in our exciting Summer Competition on page 39 of this issue.
What we offer in addition to efficient sales service and professional backup!

We not only offer professional advice when you are purchasing your system but we will also provide friendly assistance afterwards. All our products carry a 12 month full warranty for parts and labour.

TECHNOMATIC

Techno House 468 Church Lane, London NW9 8UF.
Tel: 01-205 9558 Fax: 01-205 0190

Archimedes COMPUTERS

- A3000 (no monitor) £649
- A3000 (for TV use) £698
- A3000 Acorn Colour £829
- A410/1 (no monitor) £1199
- A410/1 Acorn Colour £1340
- A410/1 Taxan 770+ £1559
- Acorn 420/1 systems £1699
- 420/1 (no monitor) £1888
- Acorn Colour £2579
- 440/1 Acorn Colour £2809
- 440/1 Taxan 770+ £2809

Techno 410/1 systems

- upgraded to 420/1 spec. £1559
- Colour system £1799
- Taxan 770+ system £1799

Carriage £8/computer £12/system

TECHNO 410/40 UPGRADES

- A410/1 upgraded to 4 MB RAM and 40 MB Hard Drive complete with Mouse Mat, 1 box of 3.5 discs, printer lead and First Word Plus Release 2.
- Our 40 MB Hard Drive is a high spec. AutoPark, 25ms, quality drive with a reliable Toshiba mechanism.

- techno 410/40 with Acorn Colour Monitor £1699
- techno 410/40 with Taxan 770+ £1899

Finance available on chargeable basis.

GENIUS DIGITISING TABLET

The latest model of the Genius GT121A PC tablet adapted for use with Archimedes computers offers a resolution of 1000 lines/in over a 12" x 12" working area and connects through the serial port of the computer.

The Tablet is operated by moving a four button puck controller over the special surface and a two button stylus with switched tip is also available.

The software to drive the tablet is supplied as a module to operate within the RISC OS desktop environment. Once loaded, several commands are available to control the tablet:

- turn the tablet on or off
- select relative or absolute coordinates etc.
- change puck movement sensitivity
- Three of the puck buttons act as standard mouse buttons and the fourth allows special operations such as changing the size of the tablet work area.

The tablet can virtually take over all the functions of a mouse making the use of graphics packages much simpler. The puck has a set of cross-wires which allow simple and accurate transfer of technical drawings. The optional stylus will make tracings, line drawings etc much easier and more accurate.

The standard Archimedes mouse or a Tracker Ball can be left connected and can even be used as alternatives for some operations.

The package includes the tablet, puck, software and mains power supply.

GT121A Tablet £259(a)

Optional Stylus £35(d)

SPECIAL FINANCIAL DEAL

Computers alone or complete systems can be purchased at NO EXTRA CHARGE over 9 months. The deposit will be payable with the order followed by 9 monthly payments. Please phone or write for full details and a personal quotation. Subject to status we should be able to dispatch your order within 7 days of receiving your order.

TECHNO 410/1 SPECIAL

Offer extended due to popular demand. Archimedes 410/1 upgraded to full 440/1 specification with 4 MB RAM and 50 MB Hard Disc (Acorn) plus
- Taxan 770+ Multisync Monitor
- and including a packet of discs, a printer lead and a mouse mat.

for only £1999 carr £12

Finance available on chargeable basis.

10% VOUCHER ON CASH & CREDIT CARD SALES

Cash and credit card purchasers of Archimedes computers and complete systems will receive a voucher to the value of 10% of the purchase price. Vouchers will be valid for 90 days from the date of issue. Vouchers are not available on Techno bundled packages.

TECHNO DTP PACKAGE

Archimedes 410/1 Colour System upgraded to full 420/1 spec with 2 Mb RAM and 20 Mb Hard disc featuring our technoSCAN package and either
- Acorn DTP Package
- First Word Plus Rel 2, Logistix
- or
- Impression and Pipedream 3

and a free mouse mat for only £1777 carr £12

Finance available on chargeable basis.

Special Educational Subsidy on the Techno DTP package.

R140 UNIX SYSTEM

Limited Period Offer

- R140 Base System with Taxan 770+ and PC Emulator
- Viking II plus
- Ethernet Card and Administrators Guide for only £3000

and it also includes on-site maintenance contract.

FINANCE OFFER

This advertisement can only show an example of the range of products stocked by Technomatic. So send for our latest BBC catalogues providing detailed information and prices on BBC Computer Systems, Peripherals, Software and Books.

NAME
ADDRESS
Post Code

Return to Technomatic Ltd, Techno House, 468 Church Lane, London NW9 8UF.

CONTACT

For fast delivery telephone your order on 01-205 9558 using VISA/Access Card

Orders welcome from government depts & educational establishments.
In next month's issue:

- 36-PAGE SUPPLEMENT OF CONSTRUCTION PROJECTS
- Square-wave generator
- Car-theft deterrent
- INMARSAT'S Standard C
- Sound demodulator for SAT TV receivers
- Battery tester
- SCART-plug FM mini sender
- Versatile NiCd battery charger
- TTL-level 100 MHz crystal oscillator

Front cover
Computers that recognize sounds are faced with enormous problems, including the fact that there are a very large number of different words in a language and so much variation in the way they are spoken.

This puts huge demands on computers that are required to interpret quickly the information fed in by the electronic ear. A British system, known as Armada, is one of the first large vocabulary speech recognition systems to be based on an array of transputers, each capable of handling 10 million instructions a second. As it works in real time, it can process continuous speech.

Seen in the photograph, a scientist at the Royal Signals and Radar Research Establishment illustrates the science behind the Armada system, which uses a technique known as hidden Markov modelling.

Broadly, the system recognizes words by using statistical models of their constituent sound. Unlike other systems, it is said to be able to recognize words that do not occur in the training data, needs minimal training when new speakers are introduced and can easily be reconfigured for new applications.

Speech Research Unit, Royal Signals & Radar Establishment, St Andrews Road, Malvern WR14 3PS, Fax (0684) 894540

CONTENTS

39 WIN A SATELLITE TV RECEIVING SYSTEM!

LEADER
11 Optical fibre telecommunications link remote areas

COMPONENTS
34 Electronic fuses
A Bourns Electronics product
60 ACL: Advanced CMOS Logic
by F.P. Zantis

COMPUTERS & MICROPROCESSORS
14 PROJECT: Facsimile interface for IBM PCs and compatibles
by M. Brochard, F6BFX, and G. Warin, F6DCK
36 PROJECT: Automatic power-down for PCs
by J. Ruffell
44 PROJECT: Mini EPROM viewer
by J. Ruffell

ELECTROPHONICS
24 PROJECT: MIDI master keyboard - Part 1
by D. Doepfer

GENERAL INTEREST
20 PROJECT: Remotely controlled stroboscope
an ELV design
40 PROJECT: Rear window wiper coupler
by G. Kleine
53 PROJECT: Four-sensor sunshine recorder
by J. Ruffell
62 PROJECT: R-2R resistance network in SMT
by H. Bierveld

INTERMEDIATE PROJECT
41 Power zener diode
by K. Walters

RADIO & TELEVISION
50 Aztec 24 cm FM ATV transmitter and 24 cm GaAs FET preamplifier
A review by Mike Wooding, G6IQM

SCIENCE & TECHNOLOGY
56 'Intelligent' road systems
by Prof. Peter Hills, University of Newcastle-on-Tyne

TEST & MEASUREMENT
16 PROJECT: Electronic load
by G. Boddington
30 PROJECT: PLL sine wave generator
by J. Bareford
48 PROJECT: CRO calibrator
by D. McBright

MISCELLANEOUS INFORMATION
Electronics scene 12: Events 63: New books 63:
Letters 64: Switchboard 64: Readers services 65: Terms 66:
Buyers guide 74: Index of advertisers 74

Profile of Wilmslow Audio
p. 59

Facsimile interface for IBM PCs and compatibles, p. 14

MIDI master keyboard, p. 24

Mini EPROM viewer, p. 44
Please mention ELEKTOR ELECTRONICS when contacting advertisers

Please note that from 6 May 1990 our Telephone and Fax code will change from 01 to 081

IMPORTANT NOTICE: Please note that from 6 May 1990 our Telephone and Fax code will change from 01 to 081

VIEWCOM ELECTRONICS
77 UPPERTON ROAD WEST
PLAISTOW, LONDON E13 9LT
PLEASE PHONE WRITE FOR ITEMS NOT LISTED

PLEASE ADD 70p P & P and then 15% VAT.

OFFICIAL ORDERS from Govt. & Educational Establishments are accepted.
OVERSEAS orders, postage AIR SURFACE charged at cost. VAT not applicable for EXPORT orders. Stock items by return of post.

N.B. Prices subject to change without notice & stock availability

ELEKTOR ELECTRONICS JUNE 1990
OPTICAL FIBRE TELECOMMUNICATIONS
LINK REMOTE AREAS

Outer areas of the United Kingdom in Northern Ireland and Scotland are poised to become hubs of world business, thanks to a telecommunications revolution.

The Northern Ireland development stems from a £100 million boost to its economy from a joint initiative between its Department of Economic Development, British Telecom and the European Commission.

Central to the plan is the award of £7.25 million from the European Regional Development Fund as part of the European Community's programme of Special Telecommunications Action for Regional Development (STAR).

British Telecom was chosen to implement STAR, which the company is integrating into a broader programme worth about £100 million over the next three years. The Northern Ireland award will help to develop a full optical fibre telecommunications network within the province, linking with the rest of the United Kingdom and offering access to databases in continental Europe.

The total investment package will give Northern Ireland a world-beating telecommunications infrastructure, creating opportunities for high growth computing-based industries, and offering the business community a vital technological and marketing edge for the unified European market after 1992.

The technology will make it possible for businesses to operate from almost anywhere. From 1992, this should shift Northern Ireland into a strategic position for communications between Europe and America.

Northern Ireland, the UK region included in the STAR programme, already had a head start with a highly developed British Telecom network. As a result, the STAR investment there will now be used to bring in further advances some five years ahead of schedule. The infrastructure will be phased in over the next two years.

Decentralized departments. Large organizations are capitalizing on the technology that makes remote working possible, particularly for back office type jobs where it is easy to monitor output.

British Telecom has demonstrated how far the idea is possible by transferring its directory assisted service to locations out of London, many of them in the north of England. The company now handles Northern Ireland directory services from London, derry, and uses Portadown to deal with many of London's directory enquiries.

In the north of Scotland, an ambitious £16 million communications project involves a partnership between British Telecom and the Highlands and Islands Development Board.

The Highlands and Islands Initiative will put remote rural areas on an equal footing with the major cities of Europe by providing technology five years ahead of rural European rivals. The backbone of the scheme will be a fully digital network that can transmit and process every kind of communication at high speed. This will put businesses in peripheral areas such as Lerwick, Wick and Ullapool on an equal footing with firms in the large cities.

The network is being enhanced by the support of a newly formed British Telecom company, Network Services Agency Ltd (NSA), which will run a host computer for local businesses to develop and make use of added value-added data services.

The revolution in the modern office has happened as telecommunication is responding to the needs of business for fast, accurate transmission of voice and data.

The catalyst has been the link-up of computing and telecommunications technology. For the past few years, British Telecom has been setting up a fully integrated single digital network (ISDN) to combine all the qualities needed to handle telephone data and other services.

This single public switched network will enable users to send data, text, facsimile, graphics and other features as easily as speech.

An international service introduced in 1989 links British Telecom's ISDN with similar networks being introduced in the United States and Japan.

Establishing an integrated digital network that offers ISDN-based services is only the first step in a trend that will continue.
into the 21st century. It will lead to a merging of communication, computing, control, information and entertainment services.

Video conferencing. The inflexible nature of the old analogue system made it increasingly unsuitable for the newer, more specialized communications needs. British Telecom responded by creating a variety of specialist, customized networks and services, mostly based on digital technology.

MegaStream and KiloStream provide high-capacity digital private circuits, while VideoStream provides a national and international private video-conferencing service. SatStream provides high-speed private links based on the INTELSAT and EUTELSAT systems, satellite links owned by partnerships between countries.

On a broader scale, high-speed data communications can be provided over public networks. The public data network is to data what the telephone is to voice. It provides a reliable and secure data transmission service nationwide, and it is the largest fully managed data network in the United Kingdom. The service is linked internationally to more than 120 network in over 80 countries.

Fibre optic technology—pioneered in Europe by British Telecom since 1966—represents the future for high-quality, high-speed communications. These hair-thin fibres of purest glass can transmit huge quantities of information on laser light pulses at phenomenal speeds.

This is ideal for delivering vast amounts of uncorrupted computer data, high-definition television, and two-way video. It also makes possible developments such as home shopping or remotely fed computer applications.

As technology evolves, costs will come down. For example, the STAR partnership in Northern Ireland should lead to significant reductions in the cost of new non-voice services. Special digital equipment at 44 points across the province will allow advanced communications from an ordinary telephone line. Specially switched transmissions down simple telephone lines from computer to computer were previously available only to large businesses able to afford dedicated private circuits.

The extension of advanced data facilities into remote areas of Northern Ireland will mean that electronic mail, Prestel and many computing processes will be just as accessible in small towns as in Belfast.

The conversion from analogue to digital is the key that will unlock the full potential of teleworking. The public network will become a huge computer to which everyone will have access, whether from office or home.

SOLDERING WITHOUT CFCs

A new soldering process, resulting from a joint project between the British Oxygen Company (BOC) and the Multicore Solderers Group, has eliminated the need to use environmentally harmful CFC (chlorofluorocarbon) solvents in the assembly of surface mount printed circuit boards.

The process uses a controlled reactive atmosphere to decompose into gases the organic binder of a specially formulated solder cream. As it leaves behind only solder and a clean circuit board, there are no residues to removed, which is normally done with solvents containing CFCs.

The soldering process may be carried out with standard equipment used in printed circuit board manufacture, including a conventional screen printer and a component pick-and-place machine, along with a conveyorized oven designed for use with a combustible atmosphere, such as has been used for many years in the hybrid electronic circuit industry.

Details from Multicore Solderers Ltd. Kelsey House, Wood Lane End, HEMEL HEMPSTEAD HP2 4RQ, Fax (0442) 69554.

NEWSCASTER IN YOUR POCKET

The world's first 'pocket newsflash service' has been launched by the BBC and Mercury Paging. It allows users of a new radio pager instantly to receive BBC teletext news-flashes on the unit's display screen anywhere in the UK.

Via Mercury's Messenger One paging service, subscribers can be sent messages in the normal way, and in addition can obtain automatically updated news items covering world events. The average number of news-flashes on BBC's Ceefax teletext service is 12 a day, covering national and international news.

The service will operate 365 days a year, with the BBC taking full news gathering and editorial responsibility.

Although believed to be the smallest and lightest message pager in the world—it weighs a mere 113 g, including an AA type battery said to last for up to three months in normal use—Messenger One can accept and hold up to 16 alphanumeric messages totalling nearly 2000 characters of text or data. This is typically the equivalent of 300 words.

Details from BBC Enterprises Ltd. Woodlands, 80 Wood Lane, LONDON W12 OTT. telephone 081 743 5588.

PROTECTION AGAINST STATIC ELECTRICITY

A range of products to protect sensitive electronics components against damage by electrostatic discharge is available from Vitec Composite Systems. The products protect components during manufacture, test, repair, transportation and storage.

For the service engineer there is a portable 'Safe Handling Area' consisting of a mat packaged in a wallet. The mat is made from conductive scrim coated on both sides with a dissipative material. One-piece construction ensures continuity over the whole surface. It is provided with two pockets that can hold circuit boards. The mat may be complemented by wrist straps and earthing cords and may be printed with the servicing company's names or symbols.

Vitec Composite Systems. Soudan St., Middleton, MANCHESTER M24 2DB. FAX 061 655 3361.
ics and Radio Technicians, the new Institution of Electronics and Electrical Incorporated Engineers was launched in April. The new institution has 25 years experience since both the forming bodies were founded in 1965. The combined resources are to be used as a springboard for the new institution, which is based at Savoy Hill House, London.

The new institution has over 27,000 members. It will be by far the largest non-chartered engineering institution and the fourth biggest of the fifty or so nominated bodies of the Engineering Council — both chartered and non-chartered.

Speaking at the launch, the IEEIE’s new president, major-general G.N. Hutchinson highlighted three topics on which the institution is placing particular emphasis during its first year: the institution’s links with industry; its work on continuing professional development; and the role of the IEEIE in the European Community.

IEEIE, Savoy Hill House, Savoy Hill, LONDON WC2R OBS. Telephone 081 836 3357.

FASTER PUBLIC DATA COMMUNICATIONS — BY RADIO

The world’s first public data communications network using radio links has recently begun operating commercially in the UK.

Based on packet radio switching, it allows much faster access to computer systems than dial-up modems. Typically, a retail point-of-sale credit card check or electronic funds transfer can be made in seven seconds compared with existing telephone-based methods taking 30–40 seconds or even longer if the called number is engaged.

Dedicated to transferring data rather than voice communications, the Paknet high-speed radio-based network is owned equally by Racal Telecom and Mercury Communications. With advanced error detection and correction techniques, it provides a standard of accuracy normally expected from expensive leased telephone-based methods taking 30–40 seconds or even longer if the called number is engaged.

At present the network covers the Greater London area, but Paknet plans to have 100 base stations in service by next March, covering areas in which about half the population of Britain is located.

Paknet Ltd, Coombe House, Coombe Square, THATCHAM RG13 4FJ, Fax (0635) 72340.

IDENTIKIT FOR CARS

The concept of using a computer to build up photofit pictures of wanted criminals has now been developed to identify vehicles used in criminal activities such as abduction, robbery or hit-and-run traffic accidents.

ELEKTOR ELECTRONICS JUNE 1990

Known as Motorfit, the system has been produced by a member of the Dorset police force. It evolved as a result of incidents dealt with by sergeant Simon Grantham who found that there was a lack of support equipment to help witnesses in vehicle identification. His research that led to Motorfit was funded by the Home Office under a scheme aimed at helping police forces to research and develop projects of benefit to the police. Sgt. Grantham was helped by Southampton University, several software companies and the Dorset police's organization and planning department.

The result is a system that is similar in concept to the well-established photofit system, but instead of building up an image of a face, it helps to identify the make and model of a car seen by a witness. A series of questions are put to a witness and from the answers information is fed into a computer that analyses all the details and presents a full colour picture of the vehicle concerned on a visual display unit linked to it.

Sgt. Simon Grantham, Dorset Police Headquarters, Winfrith, DORCHESTER DT2 8DZ.

NEW MARITIME DISTRESS SYSTEM GO-AHEAD

A new global maritime distress system developed by the International Maritime Organization in London has been given the go-ahead and will be introduced between 1992 and 1993.

The new system, described as one of the biggest advances in maritime communications since the beginnings of radio, will make use of satellite communications and other new technologies and will result in the gradual phasing out of radio telegraphy, which has formed the basis of the maritime distress system since the early days of this century.

The Global Maritime Distress and Safety System, or GMDSS as it will be known, is designed to overcome the shortcomings of the present system, which is a combination of radio telephony and Morse with a required range of only 150 nautical miles. Currently, reception can be affected by bad propagation conditions and other factors, and ships still vanish without trace because a distress message is not sent in time or not received.

Before the end of this century, it will be compulsory for all ships to carry equipment that will not vary according to the size of the ship, as now, but according to the area in which it operates. GMDSS will divide the earth into four areas: Area 1 is within the range of VHF coastal radio; Area 2 is within the range of coastal MF radio; Area 3 is within the range of INMARSAT satellites that cover the whole globe except for small areas of navigable water in polar regions; and Area 4 covers the remaining sea areas.

Equipment that will be required by GMDSS includes satellite communications that will automatically send a distress message giving the ship’s name and position at the touch of a special button, digital selective calling (DSC), NAVTEX, radar transponders and satellite emergency position-indicating radio beacons (EPIRBs).

International Maritime Organization, 4 Albert Embankment, LONDON SE1 7SR.

AGREEMENT ON HDTV

High-definition television — HDTV — experts representing 16 countries from Europe, the Americas and Asia Pacific meeting under the auspices of the CCIR (International Radio Consultative Committee) in Atlanta last March have agreed on additional parameters for the development of HDTV standards.

There have been important developments in HDTV around the world in the past few months and the CCIR is building on these developments with the view of establishing recommendations for standards that meet the requirements of a broad range of broadcasting and non-broadcasting applications.

During the meeting in Atlanta, in an effort to achieve a global consensus on a full set of parameters for a single world-wide HDTV studio standard, new approaches were developed that will enhance the prospects for complete harmonization of HDTV.

Significant work remains in the definition of a reference system and interfaces, as well as application-specific standards for recording, transmission and emission. Studies are required in the areas of opto-electronic conversion, improvements in colour rendition beyond those achieved with the interim primaries, and in the use of linear and quasi-linear derivations of luminance and colour difference signals.

The authors, two dyed-in-the-wool radio amateurs, describe how the facsimile decoder we published early last year for Atari and Archimedes micros can be adapted to run on EGA-based IBM PCs and compatibles. In addition, they present the required software, PCFAXPC, which, as an extra feature, supports fax transmission!

Hardware

The decoder described in Ref. 1 requires a few minor modifications to enable it to work with an IBM PC. Fortunately, most modern PCs accept TTL levels at their RS-232 port, so that the connection between it and the fax decoder need not be more complex than when an Archimedes or Atari computer is used. Apart from its simplicity, the advantage of the RS-232 link is that it ensures the correct pulse timing, irrespective of the clock speed of the PC. In fact, the sampling frequency of the fax board (determined by a quartz crystal plus associated 4060 divider) is in direct relation to the bit rate set on the RS-232 port.

To ensure perfect synchronization, the fax board also provides the central clock in the transmit mode. This clock, 2.4576 MHz, allows a bit rate of 19,200 per second on the RS-232 port. Other quartz crystals may be used (e.g., 4.9252 MHz), provided that the clock at the input of the 4040, pin 10, is 19,200 Hz to give a sampling rate of 19,200/12=1,600 per second. Hence, the 2-lines-per-second fax standard would require an image resolution of 800 pixels per line. Since the EGA card offers only 640 lines, 160 are simply ignored.

When the 2.4576 MHz crystal is retained, connect the 4060 to the 4040 via pin 6 instead of pin 14. This modification is not required when the 2.4576 MHz crystal is replaced by a 4.9252 MHz type.

The authors found that the central VCO frequency of the decoder must not be set too high to keep it within the pass band of communications receivers. To centre the pass band at 1800 Hz, change the following component values: R2=100k, C2=22 nF and C4=10nF. Also change P4 to 4k7, and R14 to 470 Ω.

It is worth while to change P4 to a potentiometer fitted on the front panel of the decoder to enable the adjustment to be changed in accordance with the standard of the received signal.

The PC connection

Receive mode

Only two wires are required:

- ground of the decoder is connected to pin 7 (GND) of the 25-way D-connector at the PC end (or pin 1 of the AT-style 9-pin version);
- the signal output of the decoder (pin 10 of the 74150) is connected to pin 3 (RXD; received data) of the 25-way D-connector at the PC end (or pin 2 of the AT-style 9-pin version).

When a 25-way D-connector is used, connect pin 4 (RTS) to pin 5 (CTS), and pin 8 (DCD) to pin 20 (DTR) to make it permanently high. The connections for the 25-way as well as the 9-way D-connector are shown in Fig. 1.

The program defaults to the use of serial port COM1. To run the program with COM2, actuate either NUM LOCK or CAPS LOCK and exit the welcome screen by pressing the '2' key. The PC may run at 4.77 MHz or 8 MHz.

Transmit mode

In this mode, the datawords supplied to the computer at a rate of 1600 per second are ignored and serve to generate hardware interrupts. Each of these is acknowledged by the CPU sending out a tone—via the PC's internal loudspeaker—whose frequency corresponds to the relative intensity of the currently ad-
Fig. 1. Connections between the fax decoder and the RS-232 input on the PC.

dressed pixel on the screen. The necessary connection between the PC and the microphone input of the transceiver or transmitter is shown in Fig. 2. Do not omit the 100-nF capacitor since one terminal of the loudspeaker in the PC is usually at +5 V. Obviously, the transmit mode works only with the decoder board switched on.

Fax transmission is simple: load a picture from disk and press the 'T' (for 'transmit') key. The image is sent following a tone that allows the receiving station to get synchronized.

Control software

The control program, FAXEGA22, written in Turbo Pascal 4, handles the receive as well as the transmit mode with the aid of PC hardware interrupt 0Ch.

The receive mode brings you pictures transmitted by radio amateurs, VLF utility stations, and meteorology services including low-orbit satellites. The .DOC file provides all the necessary background information on the program (produce your own copy of the manual by sending the file to your printer).

The software is contained on two diskettes. Disk ESS119-1 contains:
- the control program, FAXEGA22.EXE
- a video driver, EGAVGA.BGI
- two example picture files.

Disk ESS119-2 contains three further example image files of 112 Kbytes each.

The PCFAXPC program can be used on any IBM PC or compatible fitted with a colour or monochrome EGA card. Contrary to what might be assumed, the monochrome mode is likely to give the best results since it provides up to 14 levels of grey. In the EGA colour mode, up to 11 shades are available of a single colour. Owners of a VGA-based computer must use a utility program (supplied with your computer or with the VGA card) to switch to EGA emulation.

Controls summary

The help menu is accessible via the ESC key. Press it again to return to the program. The functions of the keys used to control the program are as follows:

- F1 to F10 allow the grey levels or the colour shades to be changed within a certain range. Use F5 for monochrome operation.
- DEL clears the screen without changing the cursor position.
- HOME clears the screen and moves the cursor to the top line without changing its horizontal position.
- PgUp moves the cursor to the first line without changing its horizontal position and without clearing the screen.
- moves the cursor about 10 mm to the left (use this function to centre the image during the run-in and sync periods).
- moves the cursor about 10 mm to the right (use this function to centre the image during the run-in and sync periods).
- CTRL e- moves the cursor about 1 mm to the left.
- CTRL e+ moves the cursor about 1 mm to the right.

M writes the current image to disk. After pressing M the screen is cleared and you are prompted to enter the file name. The file is saved and the image appears again.

W retrieves an image file from disk. After pressing W you are prompted to enter the name of the requested file. Reception is blocked once the image appears on the screen. Press Q to receive a new image.

END exits PCFAXPC.

Q blocks reception and allows an image to be frozen without disconnecting the interface.

S resumes reception after Q or W.

P writes lines from the right to the left (for press photo stations).

C writes lines from the left to the right (for meteorological stations).

I creates a horizontally mirrored image. Useful as a correction to swap the P and Q modes once the image is on the screen.

T switches to transmit mode.

D go to DOS without leaving the program.

Example image files and PC Paintbrush

The program comes with a number of example files that contain press photographs and weather charts. These files allow the quality of the images to be gauged before commencing the construction of the interface. To load one of these example images, leave the welcome menu by pressing any key except ESC. Next, press W and enter the name of the requested file.

Note that the file load and display operations take a while, so do not press any keys in the mean time.

The transmit routine of the PCFAXPC program accepts image files made with the well-known drawing program PC Paintbrush and the associated image capture utility, Frieze. These powerful programs allow you to design your own images or capture existing graphics images.

Reference:

The load is based on a number of power transistors. The output current, which is the sum of the collector currents of these transistors, is converted into heat that is lost by convection and radiation through a suitable heat sink.

The base current of the transistors is arranged at a value that results in the required level of emitter-collector current. Since the base-emitter voltage that determines the base current of a transistor varies with temperature (≈ 2-8 mV/°C), an opamp is used to iron out any consequent variations of the base current.

The end result is an adjustable load with a 'resistance' value ranging from almost zero to infinity and a thermal rating that depends solely on the power transistors and the manner in which these are cooled.

The load may operate in either the constant-current mode or the constant-resistance mode. In the first, the current remains constant irrespective of the applied voltage, while in the second it is directly proportional to the applied voltage.

A waveform generator (triangular, sinusoidal and rectangular) enables the 'resistance' to be modulated.

Circuit description

Each of the power transistors, T3-T7, in Fig. 1 can draw a collector current of up to 2 A with an appropriate heat sink. Resistors R21-R33 provide a measure of current feedback, which ensures equalization of the currents drawn by the individual power transistors.

Resistance simulation

Each group of power transistors, T3-T7 and T8-T12 respectively, is driven by one half of dual opamp IC2 via a driver transistor, T1 and T2 respectively. The driver is necessary since the opamp cannot provide the required current by itself. Note that the two groups are connected in parallel, since

| Dissipation: 300 W (up to 1 kW with forced cooling) |
| Adjustable from 0.25 Ω to 1000 Ω |
| Voltage range 4-60 V |
| Maximum current 20 A |
| Operating modes: constant current and constant resistance |
| Internal or external modulation |
| Internal waveform generator (triangular, sinusoidal or rectangular) |

"U" and "T" are strapped together as explained later.

The inverting input of the opamps is connected to the emitter resistor of the first power transistor in each group. The non-inverting inputs are connected in parallel and linked to the pole of switch S1b. This pole receives one of four different control signals via the switch contacts.

When S1 is in position 1 (7), terminal "P" carries part of the voltage, as set by R3 and R9, that exists between terminal "U" and earth. The opamp tries to reduce the potential difference between its inputs to virtually zero. It will therefore increase the base currents of the power transistors, and thus the load current, until the voltage drop across R24 (R32) and the input voltage set by R3 are equal. When the input voltage rises, the potential at the non-inverting inputs, and thus the load current, increases. This means that the circuit behaves as a resistance, the value of which may be set with the aid of R3.

Modulation and constant current

Opamps IC1a and IC1b form a simple function generator that produces rectangular waveforms when S1 is in position 2 (8) and triangular waveforms when the switch is in position 3 (9). The frequency is adjustable over the range 5-50 Hz by P3.

The signal from the generator is amplified in IC1a and fed, via S1b and "P", to the non-inverting inputs of control amplifier IC2 where it serves as reference voltage. Since this potential is no longer dependent on the input voltage to the load, an increase in the input level no longer leads to a higher load current. In fact, if the signal, whether triangular or rectangular, is used as the control signal, the circuit functions as a modulated constant-current source.

The load current is modulated in the same way as the control signal. The gain of IC1a, which determines the depth of modulation, is set by Pt.

Potentiometer P4 enables an offset to be added to the control signal. This offset makes it possible to shift the modulation level with respect to zero. In other words, Pt sets the level by which the current varies, while P4 determines between which values modulation is effected, for instance, between 2.5 A and 3.0 A. This assumes, of course, that the unit or device under test can provide currents at those levels.

External modulation

Opamp IC1c serves as an inverting, unity-gain amplifier. Its output signal is available at contact 4 of S1. It may be fed with an external modulating signal via Kt. The input must be between 0 V and +10 V. The control characteristic may be set between 3 A/V and 1.5 A/V for each power transistor. If, for example, the voltage at Kt changes by 100 mV, the output current varies by 3 A with Pt set to maximum and by 1.5 A with Pt set to minimum.

Constant-current operation

With Kt connected to ground, it is possible, with the aid of Pt, to arrange a constant current to flow through the power transistors.

Lower loads

It is not necessary to use all ten power transistors: the circuit operates perfectly well with just one, but the permissible load is then, of course, reduced to 1/10. If the
group T8 - T12 is omitted. T2, C4, R39 - R53 and R19 - R23 may also be omitted. The maximum load current is then 10 A.

Construction and alignment

The load is best built on the PCB shown in Fig. 2. This figure does not show the part of the board for power transistors T8 - T12 and associated components since this is identical to that for T3 - T7. Before any start can be made with populating, the board must be cut into four with a fine hacksaw.

Screw each of the two long parts to a 5 mm thick aluminium bracket. Since the collectors of the power transistors will be at the same potential, there is no need for insulating washers, provided that the heat sinks and aluminium brackets are isolated from the enclosure.

Do not fit the emitter resistors too close to the board, because even in normal operation these get fairly hot. The same applies to R22 and R23.

The choice of enclosure depends in the first instance on the heat sinks used. The requirements of these are fairly stringent because they have to dissipate some 300 W. The dissipation may be increased to 1 kW if forced cooling is used.

The only calibration is in the provision of a scale for P2. For that purpose, a laboratory-type power supply with variable output and capable of providing an output current of at least a few amperes is required. Measure the voltage and current for a number of positions of P2 and calculate the corresponding resistance. The resulting scale is linear for input voltages greater than about 4 V.
Parts List

Resistors:
- R1, R2, R5, R7, R8, R14, R15 = 10 k
- R3, R10–R13 = 100 k
- R4 = 47 k
- R6 = 1 k
- R9 = 6 k
- R16, R18, R19, R21 = 1 k
- R22, R23 = 22 k, 5 W
- P1, P3 = 100 k, linear potentiometer
- P2 = 1 k, linear potentiometer
- P4 = 10 k, linear potentiometer

Capacitors:
- C1 = 1 µF
- C2 = 470 n
- C3, C4 = 390 p
- C5, C6 = 100 n
- C7 = 10 µF, 16 V

Semiconductors:
- D1 = 3V3, 400 mW
- T3–T12 = 2N3055
- IC1 = LM324
- IC2 = LM358

Miscellaneous:
- K1 = PCB mounting socket
- S1 = 2-pole, 6-position rotary switch
- 2 off aluminium angle bracket, 5 mm thick
- 2 off heat sink, SK42, 75 mm, 1.5 K/W

(Dau UK Ltd - 0243 553031)

Fig. 2. Printed-circuit board for the electronic load. Note that the part for the second group of power transistors is not shown.
Fit the potentiometers and switch on the front panel of the enclosure together with two heavy-duty, spring-loaded, insulated terminals. Connect points "U" and "T" to the positive terminals, and the earth points to the negative terminal.

To ensure that sufficient current flows through the power transistors, the load needs its own 12 V power supply, for which a simple unit with a 500 mA transformer and a Type 7812 voltage regulator will do fine.

Limiting values

The maximum values the power transistors can tolerate are not those found in their data sheet, that is, 60 V, 15 A, 115 W. Instead, the maximum dissipation is determined from the safe operating area (SOA) shown in Fig. 3. This shows that the maximum collector current decreases with a rising collector-emitter voltage. Conversely, when a current of 15 A flows through the transistor, its collector-emitter voltage should not exceed 8 V. It is imperative that at no time the C-E voltage exceed the limit for a given current and vice versa. But that is not all. The SOA characteristic in Fig. 3 refers to a maximum dissipation of 115 W at a case temperature of 25°C. With rising temperature, the dissipation is degraded at a rate of 0.65 W/°C. This means that at a case temperature of 80°C the maximum dissipation is only 80 W and at 140°C it is only 40 W.

The design of the load allows for each power transistor to tolerate a current of up to 2 A, so that the input voltage can go up to close to 60 V. If that is not sufficient, the 2N3055 transistors should be replaced by types with a higher rating.

Finally

The load is intended for use with direct currents, but alternating currents may be used by inserting a bridge rectifier between the current source and the load. The rectifier must, of course, be rated at the maximum current through the load.

The internal resistance, R_i, of a stabilized voltage source is calculated from:

$$R_i = \frac{\Delta V}{\Delta I}$$

where ΔV and ΔI are the changes in modulating voltage and current respectively. In the "controlled constant-current" mode, the current is set with P_1 and P_2, while the change in voltage at the output terminals of the load may be measured with an oscilloscope.

The internal generator is also useful for determining whether the internal resistance depends on frequency.

In the "preset constant-current" mode, it is possible, for instance, to discharge a battery at a preset current. Measuring the exact capacity of the battery at a number of discharge currents is then a simple matter.

SATELLITE COMMUNICATIONS ON THE ROAD

The car glides silently through the simmering desert air, heat waves and sand rising in its wake. A few miles behind the car follows an unmarked blue truck.

In the back seat of the car, a man reaches for the telephone at his side. He speaks a couple of words into the mouthpiece, and within a few seconds he is talking to a banker in London. The connexion is crystal clear.

It sounds easy, but behind this simple telephone call from the USA to London is a complex array of telecommunications technology. The call is relayed from the car via a mobile radio link to the nearby truck, where it is patched into a satellite communications terminal. The call is beamed up to a satellite orbiting high above the earth's equator, then down to an earth station in Great Britain, where it is in turn connected into the British public telephone network.

All this is made possible by a new technology pioneered by the US electronics manufacturer Magnavox. The truck is actually a complete mobile communications centre built by Magnavox to provide high-quality communications on a worldwide scale. The system is especially useful for remote locations not covered by cellular networks or other mobile telephone services.

Further information on this system from Magnavox, 9 Brandywine Drive, Deer Park, NEW YORK 11729, phone (516) 667-7710, fax (516) 667-2235.
REMOTELY CONTROLLED STROBOSCOPE

This mains-powered stroboscope, designed by ELV, offers a wide range of settings as well as an external trigger feature so that it can be used as a slave flash unit.

A stroboscope is an instrument that produces light flashes with an intensity far greater than may be obtained with common light bulbs. The flash is a brilliant burst of light produced as a result of firing a gas (usually xenon) in a glass envelope, by means of a high-voltage pulse. Since the rate of the light flashes can be controlled accurately, moving objects illuminated by the stroboscope appear to stand still. This effect is obtained if the flash rate of the stroboscope corresponds to the period of the movement of the illuminated object. Useful applications of a stroboscope include the visual examination of rotating or relatively fast moving objects or parts such as flywheels and camshafts. Among the less useful, but certainly interesting, applications are lighting effects on theatre stages, on dancefloors, in discos and window sills.

The stroboscope presented here has two basic modes of operation:

- as a continuously operating stand-alone light effects unit with an adjustable flash rate of 0.5 to 5 flashes per second (= 30 to 300 per minute);
- as a slave flash unit with an adjustable trigger delay of up to one second. In this mode, the stroboscope is triggered by a light flash from another unit. After the set delay, the slave stroboscope produces its own flash. Exciting lighting effects may be obtained by using a single (mother-) stroboscope and an array of slave units, each with its own trigger delay.

Operation and controls

The stroboscope is simple to use since the complete circuit is contained in a single ABS enclosure that can be plugged straight into a mains outlet.

Operating the TRIGGER push-button in the lower right-hand corner of the front panel switches the unit from stand-alone (continuous) operation to slave operation, or vice versa (toggle function). A green and a red LED indicate the respective modes of operation.

The functions of the FLASH RATE and DELAY controls are self-evident: both are based on potentiometers and therefore offer a continuously variable setting. The light sensor located in the lower left-hand corner of the front panel has a lens to boost its sensitivity. This sensitivity, and that of the associated circuitry, is such that even relatively weak flashes, or flashes from a distance of 10 m or more, are reliably detected to enable the stroboscope to be triggered. Although the unit is largely insensitive to light from normal bulbs or sound-to-light units, two points should be noted in relation to the external triggering mode:

- the sensor must not be illuminated directly by a constant light source;
- flickering luminescent tubes may cause erroneous triggering owing to the light pulses they emit.

The shape of the reflector behind the xenon tube ensures a light distribution that is particularly suitable for effects applications. Since a straight xenon tube is used, the reflector is U-shaped rather than spherical as in, for instance, a torch.

Circuit description

Power supply and flash tube circuit

The power supply of the circuit consists of mains transformer Tr1, diodes D1-D6 and capacitors C1-C3. Note that although a mains transformer is used, the circuit is not isolated from the mains: a path exists via R1, R2, D1, D2 and C2. This means that the circuit must never be used when it is not enclosed in the ABS case supplied with the kit. After removing the stroboscope from the mains outlet, always wait at least 30 s before opening the enclosure so as to allow the flash capacitors to get rid of their lethal high voltage.

Diodes D5-D8 and capacitor C3 provide voltage regulator IC1 with its direct input voltage. The output voltage of IC1 is 15 V.

The mains voltage is applied to a two-phase voltage doubler, D1-D1-D2-D3, via power series resistors R1 and R2. The flash voltage of about 600 V exists between the terminals of C1 and the -terminal of C2. The xenon tube, H1, is fired by a high-frequency, high-voltage burst at its trigger electrode. This burst is provided by the discharging of C1 across the primary winding of the firing transformer, Tr2. Voltages in excess of 10,000 V occur at this point.

The firing capacitor, C1, is charged via R3a, R3b and the primary winding of Tr2. When thyristor Thy1 is fired via R4, it conducts and enables C1 to be discharged via the primary winding of Tr2. The voltage induced in the secondary winding fires the xenon tube. Since the xenon gas in the tube conducts during the flash, C1 and C2 are rapidly discharged. The energy stored in these capacitors is thus converted to light. When the high voltage has fallen to about 100 V, the xenon tube turns into a high impedance again, so that the buffer capacitors can be charged again via R1 and R2. The firing capacitor, C1, is also charged again via R3a and R3b. The values of the components used in the firing and supply circuit around the xenon tube are such that up to five flashes per second can be produced.

Continuous operation and mode selection

When the stroboscope is used in the stand-alone mode (continuous operation), the firing pulse for thyristor Thy1 is provided by an oscillator formed by ICc3-ICc4. This is a fairly conventional two-gate stable multivibrator with potentiometer R19 acting as an output frequency control. Resistor R17 may have to be adapted to ensure...
REMOTELY CONTROLLED STROBOSCOPE

The highest flash rate of 5 per second with R19 turned fully counterclockwise. When this highest flash rate is exceeded, increase R17 to 120 kΩ. When it is too low, change R17 to 82 kΩ. When R19 is turned fully clockwise, the flash rate should be 0.5 per second, i.e., one flash is produced every two seconds.

The oscillator output signal is applied to input pin 5 of NAND gate IC4d. Another NAND gate, IC4g, is provided with external trigger pulses. The bistable composed of IC4e-IC4a and push-button T4 determines whether the oscillator output signal or the external trigger output voltage is passed to IC4d. Each time the push-button is pressed, the selection changes between IC4b (continuous trigger) and IC4a (external trigger).

A differentiating network, C14-R25, changes each level transition at the output of IC4d into a positive-going needle pulse, which is fed to inverter IC5d. The two parallel-connected inverters that follow IC5d, IC5e and IC5f, make this pulse positive again (for firing Thy) via R4.

External trigger

When photodiode D11 detects externally generated light flashes, amplifier IC4c supplies a positive output pulse, which is converted into a negative-going rectangular signal by comparator IC2b. This signal sets bistable IC3a-IC3b via pin 1. The output, pin 4, changes from high to low so that buffer pair IC5a-IC5b supplies a positive pulse. This results in C10 being charged via potentiometer R15. When the delay has lapsed, comparator IC2a toggles and provides IC1a with a negative pulse. The result is that the stroboscope is in the continuous trigger mode (selected by T1), the pulse obtained from the external trigger circuit causes the xenon tube to fire as described above. It also causes the rapid discharge of C10 via R15 so that bistable IC3a-IC3b is reset via its second input, pin 6. The result is that C11 is rapidly discharged via IC5a-IC5b and D7 to prepare this circuit for the next trigger pulse. The short delay introduced by R15-C10 is required to prevent the stroboscope being triggered by its own light flash.

The flash sensor circuit around photodiode D11 has an automatic sensitivity control function to cope with changing ambient light conditions. Transistor T1 provides D11 with a current that causes the diode to drop about half the supply voltage. This voltage is fed to IC2a via R12 for comparison with a reference level applied to pin 2 of the opamp. When the ambient light intensity increases, the voltage across D11 drops. The current source, T1, and the opamp, IC2a form a control loop that ensures a point of optimum sensitivity.
Track lay-outs and component overlays of the two printed-circuit boards.
Construction of the reflector, which is secured to the PCB with the aid of three M3 screws. These also serve to carry the xenon tube voltage.

sitivity of the photodiode in relation to the ambient light intensity.

Construction

The circuit is constructed on two printed-circuit boards—see Fig. 2. Construction is mostly straightforward on the electronic side; the following descriptions therefore deal mainly with certain points in the mechanical work.

Start the population of the flash tube board with the nine wire links. Fit the two potentiometers at the track side of the board, and secure them with the nuts provided. Push-button Tat is mounted on two solder pins to enable it to protrude from the front panel. The reflector is fitted with the aid of three screws as shown in Fig. 3. The cathode (marked by a black ring) and the anode of the flash tube are connected to solder eyes fitted on M3 screws. Nuts are used to provide the correct mounting height of the reflector.

The high-voltage transformer, Tr2, is mounted on to the board as indicated by the component overlay. The firing voltage is carried by the flexible, insulated wire at the top of the transformer. Carefully remove the insulation material over a distance of about 12 mm at the end of this wire. Wind this wire end around the xenon tube, roughly at the position indicated in Fig. 3, and join the turns of the winding by soldering rapidly and carefully. This completes the construction of the flash tube board.

It should be noted that ELV may supply a high-voltage transformer whose connections are different from the type for which the PCB was originally designed. Fortunately, the replacement transformer is readily fitted—see Fig. 4. Solder a short flexible wire to the high-voltage output terminal which is at the top of the transformer after this has been fitted on the PCB. The other end of this wire is secured to the flash tube as described earlier.

The construction of the transformer board is straightforward and requires no description other than that power resistors R1 and R2 are mounted at a height of about 10 mm above the transformer board.

The two boards are connected with 6 flexible wires between the corresponding points 'a' to 'f'. Connect the photodiode to the circuit with two short lengths of wire—the electrical orientation is marked on the component overlay look at the line in the box printed on the PCB; it marks the anode of the BPW34, which is also visible as a kind of line in the photodiode).

Next, fit the completed boards into the enclosure. Use two short lengths (approx. 50 mm) of insulated 0.75 mm wire to connect input terminals ST1 and ST2 to the moulded mains voltage (live and neutral) pins in the enclosure. The two boards are stacked and secured to the bottom half of the enclosure with the aid of four M3x35 mm screws and associated 30-mm long spacers. Each of the four screws is inserted into a corner hole of the flash tube board. Next, fit the spacer, and insert the screw into the corner hole in the transformer board. Place this 'sandwich' into the enclosure and secure the screws in the moulded threadings.

To prevent the reflector or other parts of the circuit being touched while the stroboscope is operating, the rectangular clearance for the xenon tube is covered by a 2-mm thick perspex plate, which is secured to the inside of the enclosure with a little glue. Also with safety in mind, make sure that the LEDs and the mode control push button, Tat, are mounted at a height that enables them to protrude 1 to 2 mm from the front panel; they must fully occupy the relevant holes so as to prevent any likelihood of the circuit being touched.

The spindles of the two potentiometers are cut to a length of about 20 mm above the front panel. Finally, screw the top part of the enclosure to the bottom plate, fit the collet knobs on the potentiometer spindles, and fit the coloured caps.

A complete kit of parts for the stroboscope is available from the designers' exclusive worldwide distributors (regrettably not in the USA and Canada):

ELV France
B.P. 40
F-57480 Sierck-les-Bains
FRANCE
Telephone: +33 82837213
Fax: +33 82838180
The multi-purpose MIDI controller described here is based on a microcontroller and a special MIDI keyboard processor, the E510. The circuit is ideal for upgrading many types of existing keyboard, synthesizer, or even grand piano with a MIDI interface.

In the present application, port P0 and bits P2.0–P2.4 of port P2 are used to interface to the program memory, an EPROM (see Fig. 2). Port P1 and bits P3.4–P3.7 of port P3 form a kind of data and address bus for various functions on the controls board. The other four bits of port P3 are used for special applications:

- P3.0: serial input for MIDI data from E510
- P3.1: MIDI output
- P3.2: VCO interrupt for modulation wheel
- P3.3: input for pedal status

Terminal P3.3 (INTO) reads the position of the break-type switch in the SUSTAIN pedal connected to K4.

The program memory formed by EPROM IC3 is addressed by the processor via data/address demultiplexer IC2 and port lines P2.0–P2.4. The address latch enable (ALE) signal of the 8031 allows port P0 to

![Block diagram of the MIDI master keyboard.](image-url)
supply the least-significant address byte (A0-A7) and to act as an 8-bit wide data bus (D0-D7). The double function is achieved by time-multiplexing: the LS address byte is latched when ALE is actuated.

Once the LS address byte is latched in IC2, port P0 functions as a databus that allows the processor to fetch instructions from the EPROM. A read operation on part of the 8031 is marked by PSEN going low, which actuates the EPROM via its OE (output enable) terminal. The EPROM that contains the control program may be a 27128 (16 KByte) or a 2764 (8 KByte).

Quartz crystal Qt and the associated capacitors, C1 and C2, sets the processor clock frequency at 12 MHz. The standard MIDI bit rate of 31,250 per second is derived from this clock by means of software.

The CPU is reset at power-on by a brief pulse supplied by network R1-C3.

Keyboard interface

The keyboard scanning circuit is based on a dedicated MIDI controller, the E510 (Ref. 1, 2). This chip has been developed for scanning keyboards capable of supplying velocity information. The output of the E510 supplies serial MIDI data with NOTE ON/NOTE OFF and velocity information. It does not, however, supply additional control data such as PROGRAM NUMBER, PITCH BEND or MODULATION. The data on the P1 bus is latched into the write-only registers (IC2-IC5) at the leading edge of the relevant clock signal (V1-V4 of ICs).

The registers that drive the eight LEDs and the 7-segment LED displays via current-limiting resistors are octal D-bit stabilizes Type 74HC574. The display actuation logic is reversed: writing a 0 turns on a LED or display segment.

Controls board

The circuit diagram of the control/indicator circuit is shown in Fig. 3. The control of this circuit is assumed by the 8-bit databus formed by CPU port P1 and the 4-bit address bus formed by P3.4-P3.7. The databus is connected to all datalines of I/O drivers IC1-IC5. Of these, IC2-IC5 are write-only registers, and IC1 a read-only register. Address lines P3.4-P3.7 are connected to demultiplexer IC9, which arranges the register selection. The selection is accomplished with the aid of the Y0-Y7 outputs, which are connected to the OE (output enable) input of the demultiplexer register, and the CLK (clock) inputs of the write-only registers. This creates the following functions of the demultiplexer outputs:

<table>
<thead>
<tr>
<th>Address</th>
<th>IC</th>
<th>Function</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y0</td>
<td>IC1</td>
<td>8 keys</td>
<td>read</td>
</tr>
<tr>
<td>Y1</td>
<td>IC2</td>
<td>8 LEDs</td>
<td>write</td>
</tr>
<tr>
<td>Y2</td>
<td>IC3</td>
<td>1st display</td>
<td>write</td>
</tr>
<tr>
<td>Y3</td>
<td>IC4</td>
<td>2nd display</td>
<td>write</td>
</tr>
<tr>
<td>Y4</td>
<td>IC5</td>
<td>3rd display</td>
<td>write</td>
</tr>
</tbody>
</table>

The status of the eight keys is requested via a non-inverting three-state driver Type 74HCS41, whose inputs A1-A8 are fitted with pull-up resistors so that an actuated key produces a logic 0. When the driver is selected via its OE input, the dataword at inputs A1-A8 is transferred to databus P1 from which it can be read by the processor via port P1. When the driver is not selected, its outputs Y1-Y8 are switched to high impedance.

Thus, to be able to read the status of the control keys, the processor must first select the "keys" register by placing the appropriate address nibble on P3.4-P3.7. The data on the P1 bus is latched into the write-only registers (IC2-IC5) at the leading edge of the relevant clock signal (V1-V4 of ICs).

Many parts for this project, including the programmed EPROM (IC9), the E510 MIDI controller (IC6), the switches, the printed-circuit boards and 61-, 76- and 88-key keyboards are available from Doepfer Musiklelektronik, Lochemstrasse 63, D-8032 Grafelfino, West-Germany. Telephone: +49 89 855758 Facsimile: +49 89 8541598.

The E510 MIDI controller is also available from C-I Electronics, P.O. Box 22059, 6360 AB Nuth, Holland.

Construction of the boards

The two circuits discussed are accommodated on two double-sided, through-plated printed-circuit boards (see Figs. 4 and 5).

All ICs with the exception of the 74LS629 are CMOS types which should be handled with the usual care to prevent damage from static electricity. Since tantalum capacitors are particularly prone to developing internal short-circuits, each device must be checked with an ohmmeter before it is fitted. Note the orientation of the polarized components, which include the ICs, diodes, electrolytic capacitors, the single resistor array, the LEDs and the switches. All capacitors are fitted on the boards are fitted to afford adequate decoupling of the supply voltage. Each pair of capacitors consists of a 100-nF ceramic type and a 10-µF tantalum type in parallel. The voltage regulator (IC12) is bolted direct to the board, together with its heat-sink.

The controls board has components at both sides. First, fit the capacitors, IC sockets, resistors, the resistor array and pin headers at the side of the printed overlay. Note that the resistor array, R4, is a polarized part: its common terminal is marked by a dot which is also found back on the component overlay. Next, fit the keys, the displays and the LEDs at the reverse side of the board. These parts are shown in dashed outlines.

The fitting of the switches requires special attention. First, solder one of the four terminals, and check whether the switch rests flat on the PCB surface. If necessary
Fig. 2. Circuit diagram of the main controller board. The heart of the circuit is formed by the 8031 microcontroller and the E510 MIDI keyboard controller.
align the position before soldering the other pins. This simple procedure prevents irregular key positions which spoils the look of the keyboard and causes difficulty with the clearances in the front panel.

Since the faces of the LED displays must be roughly level with the key bases, they are fitted at a certain height above the top side of the key bases (i.e., not the keytops!). The rectangular LEDs may be soldered with IDC sockets (note the position of pin 1 of the IDC socket with respect to the cable and pin 1 of the header on the board).

The author can supply an adapter board with mounting instructions to enable the main board to be connected to keyboards with 76, 61 or 49 keys. This adapter is plugged on to ST2 and provides the relevant connections to the keyboard from there.

Modulation wheel

The potentiometer that forms the modulation wheel is connected to header ST3 on the main board. The wheel may be a type which re-adjusts itself by means of a spring (mainly for a pitch-bend function), or one with normal action (for all other control functions, including modulation, volume, panorama and portamento).

Since the full 270° range of the potentiometer will not be covered when the modulation wheel is operated, the required compensation is provided by the control software. The range of the VCO control voltage is defined by preset Pt, and the actual value within that range by the modulation wheel.

The wheel potentiometer must not be secured until the complete circuit has been checked for correct operation. Initially, set the associated preset, Pt, to minimum resistance.

When a re-adjusting wheel is used (pitch-bend function; this is automatically selected at power-on), the preset is adjusted until the circuit sends a MIDI parameter value of 4011 (64o) (do not operate the wheel). When a MIDI monitor with parameter selection and a data read-out is not available for this alignment, connect a MIDI receiver (e.g., an expander), and adjust the preset until there is no tone shift with the wheel at its rest position. The software provides a self-adjusting function for the parameter range around 4011, to afford a kind of compensation for mechanical tolerance on the rest position of the potentiometer.

In case a normal (non-re-adjusting)
The VCO preset is adjusted until the modulation potentiometer covers a range of about 00H to 7FH. Small deviations from these values should not cause problems and may be tolerated. Repeat the adjustment with a slightly different value for P1 in case either the lowest (00H) or the highest (7FH) value is sent long before the end stop of the potentiometer is reached. When the previously mentioned MIDI monitor is not available for checking the relevant data, the modulation wheel is best assigned the function of volume control. This allows you to check whether the volume can be reduced to nought at the corresponding wheel position.

Assembly

The completed and tested controls board is secured to the front panel (Fig. 6) with three M3x15 mm or M3x20 mm screws and plastic PCB spacers. The distance between the panel and the board should be 13 mm. This is achieved by fixing each of the three M3 screws to the front panel with the aid of a 10-mm long spacer and an M3 nut. Next, mount the controls board.

COMPONENTS LIST

MAIN BOARD (E510.8031)

<table>
<thead>
<tr>
<th>Components</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10k</td>
</tr>
<tr>
<td>23</td>
<td>1kΩ</td>
</tr>
<tr>
<td>4</td>
<td>22Ω</td>
</tr>
<tr>
<td>1</td>
<td>10k preset V</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22p</td>
</tr>
<tr>
<td>2</td>
<td>10μF 10V tantalum</td>
</tr>
<tr>
<td>1</td>
<td>1μF 10V tantalum</td>
</tr>
<tr>
<td>2</td>
<td>100μF 10V tantalum</td>
</tr>
<tr>
<td>6</td>
<td>100n ceramic</td>
</tr>
<tr>
<td>7</td>
<td>2μF 10V tantalum</td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1N4001</td>
</tr>
<tr>
<td>1</td>
<td>8031 or 8051</td>
</tr>
<tr>
<td>1</td>
<td>74HC573</td>
</tr>
<tr>
<td>1</td>
<td>2764 or 27128</td>
</tr>
<tr>
<td>1</td>
<td>74LS629</td>
</tr>
<tr>
<td>1</td>
<td>E510</td>
</tr>
<tr>
<td>2</td>
<td>74HC133</td>
</tr>
<tr>
<td>2</td>
<td>74HC138</td>
</tr>
<tr>
<td>1</td>
<td>74HC237</td>
</tr>
<tr>
<td>1</td>
<td>74HC04</td>
</tr>
<tr>
<td>1</td>
<td>7805</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2×20-way pin header</td>
</tr>
<tr>
<td>1</td>
<td>2×8-way pin header</td>
</tr>
<tr>
<td>1</td>
<td>DC supply socket for PCB mounting</td>
</tr>
<tr>
<td>1</td>
<td>5-way DIN socket for PCB mounting</td>
</tr>
<tr>
<td>1</td>
<td>stereo 6.3-mm jack socket for PCB mounting</td>
</tr>
<tr>
<td>1</td>
<td>Heat-sink for IC12</td>
</tr>
</tbody>
</table>

Fig. 5. Track layouts and component mounting plan of main controller board.
and secure it with the remaining M3 nuts. Cover the displays with a bezel glued to the front panel.

The mounting bracket for the modulation wheel is fitted from below to the front panel with the aid of 5-mm long PCB spacers. The completed and wired front panel is secured to the left side panel of the flight case.

Next time

The concluding part of this article will deal with the function test and troubleshooting procedures. In addition, some attention will be given to the menus offered by the keyboard, as well as to the velocity curves and the default presets.

Fig. 5. Track layouts and component mounting plan of the controls/indicator board.

COMPONENTS LIST

CONTROLSDISPLANOINDICATOR BOARD

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 330Ω</td>
<td></td>
<td>R1-R8</td>
</tr>
<tr>
<td>24 1kΩ</td>
<td></td>
<td>R9-R32</td>
</tr>
<tr>
<td>1 SIL 8x10k</td>
<td></td>
<td>RA1</td>
</tr>
<tr>
<td>Capacitors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 100n ceramic</td>
<td></td>
<td>C1</td>
</tr>
<tr>
<td>1 2μ2 10V</td>
<td></td>
<td>C2</td>
</tr>
<tr>
<td>Semiconductors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 LED red rectangular</td>
<td></td>
<td>D1-D8</td>
</tr>
<tr>
<td>3 LTS546AP</td>
<td></td>
<td>LD1,LD2,LD3</td>
</tr>
<tr>
<td>1 74HC541</td>
<td></td>
<td>IC1</td>
</tr>
<tr>
<td>4 74HC574</td>
<td></td>
<td>IC2,IC3</td>
</tr>
<tr>
<td>1 74HC138</td>
<td></td>
<td>IC6</td>
</tr>
<tr>
<td>Miscellaneous:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2x8-way pin header</td>
<td></td>
<td>ST2</td>
</tr>
<tr>
<td>8 locking SPST push-button</td>
<td></td>
<td>T1-T8</td>
</tr>
</tbody>
</table>

Fig. 6. Cutting and drilling details of the front panel.
PLL SINE WAVE GENERATOR

J. Bareford

Precise frequencies that can be set very accurately are much more easily generated with the aid of digital technology than with analogue techniques. A snag with digital signals is, however, that their shape is rectangular rather than sinusoidal as required for many tests and measurements. The generator described in this article uses digital techniques, yet provides true sinusoidal signals.

It is fairly simple to generate frequencies with the aid of, for example, an MS-DOS computer working with GW-BASIC. Without spending any extra money, every PC owner thus has a variable tone generator available. Unfortunately, the signal is rectangular and, therefore, not suitable for a number of tests and measurements.

If the generator is to be used without a computer system, another source of digital reference signal is required. For a number of applications, a simple variable square-wave generator will be perfectly acceptable. Where greater accuracy is required, a stable crystal oscillator with preset scaler must be used.

Control of the VCO

The generator is based on a combination of a phase-locked loop (PLL), here a Type 4046, and an integrated function generator, Type XR2206.

The principle of a PLL is shown in Fig. 1. The two most important parts of a PLL are a phase comparator and a voltage-controlled oscillator (VCO). The VCO will oscillate when a signal at a given frequency is fed to it. This frequency is determined by an external RC network. The output of the VCO (2) is fed to one of the inputs of the phase comparator; the other input of this stage is provided with the reference frequency (1). The output of the phase comparator (3) is the difference between the two input signals. It is invariably a rectangular signal of which the mark-space ratio depends on the phase difference between the two input signals.

A low-pass filter at the output of the comparator integrates the pulses, which results in a signal whose absolute level is directly proportional to the phase difference of the input signals. The output becomes constant at the instant the loop is locked; this normally occurs at a phase difference of 90°.

As shown in Fig. 2, the 4046 used in the generator contains two different phase comparators. The first one of these is a single XOR gate, whose output is 1 if the levels of the two input signals are not equal. This comparator is not suitable for the present circuit because it requires symmetrical input signals and it will lock to harmonics of the input signals. Signals associated with this comparator are shown in Figure 3.

The second comparator is rather more complex and perfectly suitable for the present purposes. It is not sensitive to asymmetry of the input signals, since it operates on the edges of these signals. Moreover, it does not lock to harmonics of the input signals. This means that the sinusoidal signal is of exactly the same frequency as the reference signal. Associated signals are shown in Fig. 4.

An additional advantage of this stage is that it allows connexion to an LED that lights when the loop is locked to indicate that the output signal is as stable as the reference signal.

The output of the second comparator has not two but three states, depending on the input signals: 0, 1 or high impedance. The dependence of the output signal on the input signal is clear from Fig. 4. When the output of the comparator is high impedance it has no effect on the circuit following the comparator; it is, as it were, not present.

The period of time that the output is 1 or 0 depends directly on the phase difference between the input signal and the reference signal. If the input signal is first to have a leading edge, that is, is in advance of the VCO signal, the output becomes 1. If the VCO signal is first, the output becomes 0.

The low-pass filter following the comparator converts the output pulses into a direct voltage. This voltage increases when the comparator output goes high; it remains constant when the comparator
output is high impedance; and it decreases when the comparator output goes low. This means that the direct voltage is directly proportional to the phase difference between the input signal and the VCO signal.

Since the direct voltage is used to control the VCO, the circuit stabilizes at a given set of conditions. In the present comparator that happens when the phase difference between the input signal and the VCO signal is 0° and not 90° as is usual in PLLs. Because of this, the VCO frequency is exactly the same, and as stable, as the input signal.

Even a cursory glance at the circuit diagram in Fig. 8 shows that instead of the VCO in the 4046 a separate VCO, formed by IC5, is used. This circuit, strictly speaking a function generator, has the important advantage that it pro-

Fig. 2. Block diagram of the Type 4046 phase-locked loop (PLL).

Fig. 3. Signals associated with phase comparator I.

Fig. 4. Signals associated with phase comparator II.

Fig. 5. Phase comparator II in the 4046 and the VCO in the XR2206 form a good-quality PLL.

Fig. 6. Circuit diagram of the XR2206.

Fig. 7. The VCO input of the XR2206 is, strictly, a current-controlled output across which a fixed potential of 3 V exists. Applying a counter potential U_f via resistance R_f sets the input current.
Fig. 8 Circuit diagram of the sine wave generator.

Fig. 9. Printed circuit board for the sine wave generator.

PARTS LIST

Resistors:
R1 = 220 k
R2 = 10 M
R3, R6, R17 = 1 k
R4 = 10 k
R5, R13 = 12 k
R6, R7, R16 = 100 k
R9, R10 = 4 k
R11 = 22 k
R12 = 1 k
R14 = 560 Ω
R15 = 1 M

Capacitors:
C1 = 10 n
C2 = 470 μ, 16 V
C3, C5 = 1 μ, 16 V
C4 = 100 μ, 16 V
C6, C7 = 100 p
C8, C14 = 47 p, 16 V
C9 = 680 n
C10 = 8 n
C11 = 10 μ, 16 V
C12 = 200 μ, 16 V
C13 = 1 n

Semiconductors:
IC1 = 4046
IC2 = IC4 = CA3130
IC5 = XR2206
IC6 = LF356
IC7 = 78L05
D1, D3, D4 = 1N4148
D2 = LED (green)

Miscellaneous:
S1 = SPST switch
PCB 890097-1
vides both a rectangular and a sinusoidal signal, since it has a sine wave converter on board. Moreover, the IC remains perfectly reliable at low frequencies, so that it is truly linear over a wide range of frequencies.

The XR2206 is used in exactly the same way as that in the 4046 would have been. Its internal circuit is shown in Fig. 6.

Reverting to Fig. 8, opamp IC3, between the phase comparator and the VCO performs three distinct functions. In the first place, it inverts the control voltage for the VCO, because a decreasing voltage at pin 7 of IC3 would result in an increase in the output frequency. Secondly, its output signal has been arranged to allow it driving the VCO over its full range. Finally, the input of the VCO is controlled by a current rather than by a voltage. In other words, the control input of the VCO is in reality an output across which a fixed potential (U_2) exists and from which a current flows. The output voltage of IC3 determines the potential difference across R8 and thus the value of the current that will flow. The frequency f, is determined from:

\[
f = \frac{(U_i - U_f)}{f_{\text{ref}}} \frac{1}{3 \times C \times R}
\]

in which \(U_i = 3 \text{V}\); \(U_f\) is the output voltage of IC3, \(C = C_{11}\) or, if \(S_i\) is closed, \(C_{9} + C_{10}\).

It may be calculated that, depending on the position of switch \(S_i\), a frequency range of 6 Hz to 125 kHz is available.

The remainder of the circuit is virtually nothing but the connections between the various components.

The output of the phase comparator is connected to the VCO via low-pass filter R1-R2-R3-C1 and buffer IC5 in a manner that precludes any feedback to the comparator.

Diodes D3 and D4 shorten the time required by the circuit to lock by enabling the quicker charging and discharging of IC4. This is possible because at higher voltage levels R1 is connected in parallel with D2. This causes the impedance to decrease from 10 MΩ for small signals (PLL not locked) to about 220 kΩ for large signals (PLL locked).

Since the PLL may be used over a fairly wide frequency range, the low-pass section has a fairly large time constant to ensure good stability. Because of this, the PLL takes a relatively long time to lock. The 'acceleration' provided by the diodes is therefore welcome.

Diode D2, which is controlled by opamp IC4, lights to indicate that the PLL is locked. The opamp is connected to pin 1 of the PLL, which is specially provided for this purpose. A constant high level exists at this pin as long as the PLL is locked. As soon as the PLL tends to drift, small pulses appear at this pin and these are used by diode D1 to arrange for the fast discharge of C13. The voltage across C13 then drops to a level that causes the output of IC4 to become low. This in turn results in D3 being extinguished to indicate that the frequency is not stable.

Finally, a number of components are necessary for the proper functioning of ICs:

- resistors R6 and capacitors C9 and C10 determine the frequency range; \(S_i\) makes it possible to choose between the two ranges;
- resistors R8 and R10 set the d.c. operating level at the output (pin 2);
- preset P1 determines the amplitude of the output signal;
- preset P1 serves to shape the output waveform;
- resistor R17 is the collector resistor for the open-collector output of the VCO;
- circuit ICs forms the output stage proper.

Construction and alignment

The circuit is intended to be built on the PCB shown in Fig. 9 and Fig. 10. A number of soldering pins must be fitted on the board to facilitate connexions to other equipment.

The ICs may be soldered direct to the board.

With careful work, and particular attention to the polarity of the diodes and electrolytic capacitors, nothing should go amiss in populating the board.

Commence the alignment by setting all potentiometers to the centre of their travel.

Connect the output of the generator to an oscilloscope.

Apply a rectangular signal of 1 kHz, at a level of 5 V, to the input of the generator. As stated at the beginning of this article, this signal may emanate from a computer, simple square-wave generator or crystal oscillator.

Open \(S_i\) and connect an external ±12 V supply to the supply lines of the circuit.

If all is well, the oscilloscope should now show a reasonably well-shaped sine wave. If necessary, adjust P1 to make the signal as truly sinusoidal as can be judged. Once that is done, adjust P2 to make the signal look even better. Since the two potentiometers affect one another, the alignment must be carried out a few times. After correct alignment, the harmonic distortion is not greater than 0.5%.

The optimum position of P3 depends on the desired output level; be careful not to produce distortion of the output through overdriving.

If you prefer a continuously variable output level, that can be provided by a small modification. This consists of replacing R14 by two soldering pins. Connect a 1 kΩ potentiometer between the pin that is connected to the output of ICs and earth. Connect the wiper of the potentiometer to the other pin. A continuously variable output signal is then provided via C12.

The suggested front panel shown in Fig. 11 should be given a calibrated scale to give a (relative) indication of the output signal.
ELECTRONIC FUSES

Bourns Electronics has for some time marketed a series of circuit breakers that, in a number of applications, form good alternatives to the usual glass fuses. Known as MultiFuse, the devices are similar in their basic characteristics to positive temperature coefficient (PTC) resistors made from doped barium titanate ceramics, but are of a totally different construction based on conductive polymer composite materials. An important advantage of the MultiFuse is that after it has been tripped by an overload it needs only a short period after the overload has been removed to regain its normal operational characteristics.

Automatic circuit breakers are, of course, not new. Many electric coffee-makers and deep fryers have a thermal trip device that switches off the mains when the appliance gets too hot. After the heating element has had time to cool off, the trip element returns to its original position and the appliance operates normally again.

The MultiFuse has a similar function. As soon as the current through it exceeds a certain value, its resistance increases significantly. This reduces the current to a safe value so that the load does not get damaged.

However, in contrast to the usual electro-mechanical circuit breaker, the MultiFuse is an electronic component that has no moving (mechanical) parts. The advantages of this are clear: a mechanical circuit breaker is sensitive to vibrations, produces sparks when it is operated, and, after a time, presents an increasing resistance owing to corrosion of the contacts.

Ceramic positive temperature coefficient (PTC) resistors that occasionally are used in protection circuits operate in a manner similar to that of the MultiFuse. They have the serious drawback, however, of a much longer switching time. Another snag is that their resistance may decrease significantly, even to the point of a short circuit, when the voltage across them is too high.

Principle of operation

Although the basic characteristics of the MultiFuse are similar to those of a PTC, the construction of the two devices is quite different. Whereas a PTC is made from doped barium titanate ceramics, the MultiFuse is made from conductive polymer. In the past two decades substantial progress has been made in research on conductive polymer materials. In these materials, conductive particles—carbon black in the case of MultiFuse—are dispersed in a polymeric matrix of a suitable plastic material.

The properties of the conductive polymer composites used in MultiFuse lead to improvements in device characteristics that are not obtainable with conventional PTC resistor technologies. In the low resistance state, resistances as low as a few milliohms can be obtained. The PTC effect, which is the basis of the current-limiting function, can increase resistance by typically 5-7 decades. This PTC characteristic is maintained over and beyond the operating range of MultiFuse. Ceramic PTC resistors on the other hand can exhibit a negative temperature characteristic under overvoltage when their temperature rises beyond the anomaly temperature.

Properties of conductive polymers

To better understand some of the characteristics of MultiFuse devices, it is necessary to look at the underlying properties of conductive polymers.

The conductive polymer materials used to produce MultiFuse devices are filled with carbon black. The carbon black particles form themselves into chains instead of randomly dispersed particles. The resulting electrical conductivity of the polymer composition is of the order of 0.001 S (1 Ω⁻¹ cm⁻¹).

The type of carbon black and the volume ratio of carbon black to polymer determine the value of electrical resistivity. Changes in the volume ratio will cause changes in resistivity. A lower ratio of carbon black to polymer means a decreased number of conductive chains and therefore an increase in resistivity.

For MultiFuse devices a crystalline polymer is used. The crystalline structure of this material disappears in the region of 125 °C. The resulting increase in polymer volume reduces the ratio of carbon black to polymer and a very large resistance increase results within a very narrow temperature band. This anomalous positive temperature coefficient of resistance explains the “switching” characteristic of MultiFuse devices.

Figure 1 shows the link between volume and resistance. An increase in resistance of six orders of magnitude over a few tenths of a degree Celsius is typical. The figure also shows that the PTC characteristic is persistent far beyond the anomaly temperature.

With cooling of the device below the anomaly temperature the polymer starts to recrystallize and more and more of the opened carbon black chains are re-established. Although most of the carbon black chains are closed again after minutes, the further crystallization process takes time. This fact leads to the slight increase in resistance after trip: after a cooling period of 1 hour, the value of the resistance is still up to 20% higher than original. However, the resistance value will return within 24 hours to within the tolerances specified by the makers.

MultiFuse devices are manufactured to yield a basic resistance close to its minimum specified value. When they are delivered, they have never been tripped and their volumetric ratio of carbon black to polymer is at a maximum.

Designing in a MultiFuse

The questions you need to answer when designing with MultiFuse devices include:

1. What is the maximum normal current that can pass through the circuit at the maximum ambient temperature without tripping the device?
2. What is the maximum current that can pass through the circuit at the minimum ambient temperature without causing damage to circuit components?

3. What is the maximum fault current and voltage to which the device will be exposed?

A practical example

Suppose that a resistive load of 33 Ω, for instance, a motor, transformer or heating element, is to be protected against overcurrent with the aid of a MultiFuse.

In normal circumstances, the highest current is 150 mA, the highest ambient temperature is 70 °C and the maximum voltage is 30 V.

On the basis of these data, the most suitable type of MultiFuse is chosen from the table: in this case, the MF-R030. This has a hold current of 160 mA at a temperature of 70 °C and will, therefore, not trip in normal circumstances. Also, it can stand a voltage of 60 V, which is more than adequate for the requirement. At room temperature, the MF-R030 has a minimum resistance of 0.87 Ω so that if a short-circuit occurs, the maximum current through the device is 34.8 A. This is lower than the maximum allowable current of 40 A. This example makes it clear that the device will not trip spontaneously and will survive the short circuit condition in this application.

Then there is the question whether the device will trip fast enough to protect the load. The relevant datasheet of the makers gives a typical response time at a specified current value at 20 °C: 0.4 s at a current of 2 A, that is an 0.20 = 1.6. Therefore, energy equivalent to 52.8 joules ((1/2) × R_L) may be deposited in the load before the MultiFuse trips. If data on the load indicates that the load can withstand more energy than that amount before it fails, this particular MultiFuse device may be the right one for the application.

To confirm your choice, measure the P_L failure curve for R_L and compare it with the P_L trip curve for the MultiFuse device. If the curve for the MultiFuse device is below that for the load, the load will be protected.

Further information and datasheets from:
Bourns Electronics Ltd
90 Park Street
Camberley
Surrey GU15 3NY
Telephone (0276) 69 23 92
Telefax (0276) 69 10 37
AUTOMATIC POWER-DOWN FOR PCs

There are many programs that take up a lot of precious time, even on relatively fast PC AT computers. Examples include electronic circuit simulators, sorting routines, disk compression programs, and PCB auto-routers. Eventually, the enjoyment of the PC user sitting back and sipping coffee or tea as the machine crunches its way through masses of data turns into impatience. After a few such sessions, you have seen it all happening, and time-consuming programs are usually banned to night-time hours.

Unfortunately, this means that the computer remains on long after finishing the relevant program. The circuit presented here does away with this disadvantage of off-peak, unmanned computing by enabling the computer to shut itself down.

Although the circuit is designed specifically for IBM PCs and compatibles, it may be used with other types of computer as well, provided the user is sufficiently au fait with the hardware. In principle, the external part of the automatic power-down circuit could be located in the computer. Apart from the difficulties that may be expected from working on the power supply of the PC, this option is likely to infringe on electrical safety requirements. With that in mind, a separate enclosure that contains a mains-rated relay, a control circuit and a low-voltage power supply will be preferred in many cases.

Block diagram

The block diagram of the circuit is shown in Fig. 1. The keyboard is connected to the PC via the auto power-down unit to enable it to function as an on-control. In the external switching box, the keyboard clock signal is 'tapped' and fed to the control circuit fitted in the computer. This arrangement enables the control circuit to switch the computer on when a key is pressed.

The control circuit switches the computer on, and off again when required. A short delay is provided to prevent the computer being switched off by a 'hanging' program. The switch-off procedure starts with a small program making data bit D1 of the address at which the control board resides logic high. After a while, this address is read back. If the 1 is still there, the relay is de-energized after a delay of about 10 s (useful for parking the hard disk).

Bit D0 at the control board address determines whether or not the keyboard is to remain on when the computer is switched off. The 'keyboard active' option allows the computer to be switched on by any key action. The other option, 'keyboard disabled' is useful for applications where the computer will remain off for a relatively long period, or where the risk of accidental key actions (cleaners in your office...) must be eliminated. The keyboard remains enabled when bit D0 is high during the write operation that starts the switch-off sequence. A low at D0 causes the keyboard to be switched off with the computer (note that the keyboard is powered separately by the auto power-down unit).

Circuit description

Figure 2 shows the circuit diagram of the auto power-down control. Only a few of the signals on the PC extension bus connector are used. The 10-bit I/O address bus, A0-A9, is connected to an address decoder formed by comparator IC1 and OR gate IC3. The I/O address occupied by the circuit can be set between 300H and 31FH with the aid of DIP switch S1. The output signal of the address decoder at pin 10 of IC3 is split into I/O read and...
AUTOMATIC POWER-DOWN FOR PCs

Fig. 2. Circuit diagram of the auto power-down controller. The parts in the shaded block are fitted external to the computer.

ELEKTOR ELECTRONICS JUNE 1990
For easy reference: signal assignment on the PC expansion slot connector. Note that 'track side' and 'component side' refer to insertion cards.

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Pin designation</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>B04</td>
<td>A01</td>
</tr>
<tr>
<td>RESET</td>
<td>B02</td>
<td>A02</td>
</tr>
<tr>
<td>+5V</td>
<td>B04</td>
<td>A03</td>
</tr>
<tr>
<td>IRQ2</td>
<td>B04</td>
<td>A04</td>
</tr>
<tr>
<td>DREQ2</td>
<td>B07</td>
<td>A05</td>
</tr>
<tr>
<td>-12V</td>
<td>B09</td>
<td>A06</td>
</tr>
<tr>
<td>GND</td>
<td>B10</td>
<td>A07</td>
</tr>
<tr>
<td>MEMW</td>
<td>B11</td>
<td>A08</td>
</tr>
<tr>
<td>MEMR</td>
<td>B12</td>
<td>A09</td>
</tr>
<tr>
<td>IQWC</td>
<td>B13</td>
<td>A10</td>
</tr>
<tr>
<td>IRQC</td>
<td>B14</td>
<td>A11</td>
</tr>
<tr>
<td>DACK3</td>
<td>B15</td>
<td>A12</td>
</tr>
<tr>
<td>DREQ3</td>
<td>B16</td>
<td>A13</td>
</tr>
<tr>
<td>DACK1</td>
<td>B17</td>
<td>A14</td>
</tr>
<tr>
<td>DREQ1</td>
<td>B18</td>
<td>A15</td>
</tr>
<tr>
<td>DACK0</td>
<td>B19</td>
<td>A16</td>
</tr>
<tr>
<td>CLK</td>
<td>B20</td>
<td>A17</td>
</tr>
<tr>
<td>IRQ7</td>
<td>B21</td>
<td>A18</td>
</tr>
<tr>
<td>IRQ6</td>
<td>B22</td>
<td>A19</td>
</tr>
<tr>
<td>IRQ5</td>
<td>B23</td>
<td>A20</td>
</tr>
<tr>
<td>IRQ4</td>
<td>B24</td>
<td>A21</td>
</tr>
<tr>
<td>IRQ3</td>
<td>B25</td>
<td>A22</td>
</tr>
<tr>
<td>DACK2</td>
<td>B26</td>
<td>A23</td>
</tr>
<tr>
<td>TC</td>
<td>B27</td>
<td>A24</td>
</tr>
<tr>
<td>ALE</td>
<td>B28</td>
<td>A25</td>
</tr>
<tr>
<td>+5V</td>
<td>B29</td>
<td>A26</td>
</tr>
<tr>
<td>OSC</td>
<td>B30</td>
<td>A27</td>
</tr>
<tr>
<td>GND</td>
<td>B31</td>
<td>A28</td>
</tr>
</tbody>
</table>

The power supply is conventional with two LEDs, D1 and D2, to indicate the presence of mains voltage and the state of the relay respectively. The unregulated voltage of about 12 V across C13 is brought down to 5 V by IC8 on the control board in the computer.

Programming and adjusting

The programs that start the power-down sequence can be as simple as shown below. The examples are written in Turbo Pascal. First, a routine to switch off the computer only:

```pascal
VAR DUMMY: BYTE;
BEGIN
  PORT[S300] := 3;
  DUMMY := PORT[S300];
  END.
```

This works provided the auto power-down circuit is assigned I/O address 300h by appropriate setting of the DIP switches. The second example switches the computer off but leaves the keyboard enabled:

```pascal
VAR DUMMY: BYTE;
BEGIN
  PORT[S300] := 2;
  DUMMY := PORT[S300];
  END.
```

The executable programs made in this way may be included in a batch file, just before the park (or shutdown) routine for the hard disk.

Preset P1 is relatively simple to adjust. Use the program that leaves the keyboard enabled. The computer is switched off via the relay (it is in normal use). Initially, set P1 to minimum resistance, then run the auto power-down program. If necessary adjust P1 until LED D3 goes out; this indicates that the circuit works. Press any key; the computer must be switched on again. Try a few settings of P1 until the circuit responds reliably to the software. In case the relay is de-energized with P1 set to minimum resistance, or when nothing happens with P1 set to maximum resistance, the value of C9 may have to be reduced or increased respectively.

of about 10 s introduced by IC8. However, the delay allows the system shutdown (or hard disk parking) program to be loaded and run from a batch file. After the 10-s delay, IC8 resets bistable IC5a via network R13-C11. As a result, the relay is de-energized via T1 so that the computer is switched off.

The computer may be switched on in three ways. All three have in common that IC5a is set so that the relay is energized. The first way is by means of the RESET switch, S3. This is the RESET key fitted on most PCs. When S3 is pressed, the clock input of IC5a is made high via OR gate IC2a (the data input of IC5a is permanently high). To retain the original function of the RESET key, it is connected to the computer via T1. This allows it to be used as before when the computer is on.

The second way to turn on the computer is by means of a pulse applied to the EXT input (pin 8 of connector K1). The leading edge of the pulse clocks IC5a and switches the computer on. The pulse may be supplied by external equipment or a computer peripheral that requires a relatively long period of computer activity. It should not be used for short intervals since frequent switching on and off may reduce the lifetime of the computer.

The third way to switch the computer on is via the keyboard. As already discussed, this works only if databit DO is high when the CPU writes to the I/O address occupied by the circuit. Since it is powered by the power-off circuit, the keyboard is on irrespective of whether the computer is on or off. In virtually all cases, a key code is sent when any key is pressed. The accompanying clock signal is fed to OR gate IC2b. This gate passes the clock pulses only when the keyboard is actually on (this is done to prevent interference from a disabled keyboard), and when at least a second has passed since the computer was switched off. The delay is provided by R11 and C12 which maintain a brief high level after the switching off.

The keyboard interface brings us to a part of the circuit that is fitted into an external enclosure instead of into the computer. In the circuit diagram, this section is shown with a shaded background. The keyboard connection consists of two DIN sockets to establish the connection to the computer. All terminals of K4 and K5 are interconnected with the exception of the keyboard supply pin 5 (remember that the keyboard is powered by the auto power-down supply). The keyboard clock signal is ‘tapped’ at K4.

The second way to turn on the computer is by means of a pulse applied to the EXT input (pin 8 of connector K1). The leading edge of the pulse clocks IC5a and switches the computer on. The pulse may be supplied by external equipment or a computer peripheral that requires a relatively long period of computer activity. It should not be used for short intervals since frequent switching on and off may reduce the lifetime of the computer.

The computer may be switched on in three ways. All three have in common that IC5a is set so that the relay is energized. The first way is by means of the RESET switch, S3. This is the RESET key fitted on most PCs. When S3 is pressed, the clock input of IC5a is made high via OR gate IC2a (the data input of IC5a is permanently high). To retain the original function of the RESET key, it is connected to the computer via T1. This allows it to be used as before when the computer is on.

The second way to turn on the computer is by means of a pulse applied to the EXT input (pin 8 of connector K1). The leading edge of the pulse clocks IC5a and switches the computer on. The pulse may be supplied by external equipment or a computer peripheral that requires a relatively long period of computer activity. It should not be used for short intervals since frequent switching on and off may reduce the lifetime of the computer.

The third way to switch the computer on is via the keyboard. As already discussed, this works only if databit DO is high when the CPU writes to the I/O address occupied by the circuit. Since it is powered by the power-off circuit, the keyboard is on irrespective of whether the computer is on or off. In virtually all cases, a key code is sent when any key is pressed. The accompanying clock signal is fed to OR gate IC2b. This gate passes the clock pulses only when the keyboard is actually on (this is done to prevent interference from a disabled keyboard), and when at least a second has passed since the computer was switched off. The delay is provided by R11 and C12 which maintain a brief high level after the switching off.

The keyboard interface brings us to a part of the circuit that is fitted into an external enclosure instead of into the computer. In the circuit diagram, this section is shown with a shaded background. The keyboard connection consists of two DIN sockets to establish the connection to the computer. All terminals of K4 and K5 are interconnected with the exception of the keyboard supply pin 5 (remember that the keyboard is powered by the auto power-down supply). The keyboard clock signal is ‘tapped’ at K4.

The third way to switch the computer on is via the keyboard. As already discussed, this works only if databit DO is high when the CPU writes to the I/O address occupied by the circuit. Since it is powered by the power-off circuit, the keyboard is on irrespective of whether the computer is on or off. In virtually all cases, a key code is sent when any key is pressed. The accompanying clock signal is fed to OR gate IC2b. This gate passes the clock pulses only when the keyboard is actually on (this is done to prevent interference from a disabled keyboard), and when at least a second has passed since the computer was switched off. The delay is provided by R11 and C12 which maintain a brief high level after the switching off.
WIN A SATELLITE TV RECEIVING SYSTEM

Answer the following six questions and then say in not more than twelve words why you read *Elektor Electronics*. Write the answers and the phrase on the coupon below and send it to the address shown, where it should reach not later than Friday, 22 June 1990.

The first correct answer taken from the post-bag will win a magnificent satellite TV receiving system that will connect to any existing television receiver. The next 10 correct answers will win a year's free subscription to *Elektor Electronics*. The winners will be announced in the September 1990 issue of *Elektor Electronics* (on sale 16 August 1990).

1. By whom and when was the junction transistor invented?
2. In electronics, what is a negator?
3. What has replaced the mho?
4. What is the name of the method of reception of UHF radio signals in which the detector is a squeegeing oscillator?
5. What is FORTRAN an acronym of?
6. What, in electronic music or electrophonics, is MIDI?

NOTE: PHOTOCOPIED COUPONS WILL NOT BE ACCEPTABLE.

This competition is not open to members of the staff of *Elektor Electronics* (Publishing) and associated companies.

IT PAYS TO SUBSCRIBE TO *ELEKTOR ELECTRONICS*

If you take out an annual subscription to *Elektor Electronics*, you not only save money compared with buying the magazine from your local newsagents, but you have the convenience of having it delivered to your home and the peace of mind that you will not miss any issue. The total cover price for the 11 issues appearing in 1990 will amount to £21.20 in the United Kingdom: more overseas, because importers and their retailers have to add their charges and profit margin. The (post paid!) subscription rates for 1990 are:

United Kingdom

<table>
<thead>
<tr>
<th>Service</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRMAIL</td>
<td>£24.50</td>
</tr>
<tr>
<td>Europe & Eire</td>
<td>£23.50</td>
</tr>
<tr>
<td>Outside Europe - surface mail</td>
<td>£22.50</td>
</tr>
</tbody>
</table>

Airmail:

<table>
<thead>
<tr>
<th>Service</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe & Eire</td>
<td>£25.50</td>
</tr>
<tr>
<td>Middle East & North Africa</td>
<td>£30.00</td>
</tr>
<tr>
<td>South East Asia, Central & Southern Africa</td>
<td>£34.50</td>
</tr>
<tr>
<td>Central & South America, USA & Canada</td>
<td>£35.00</td>
</tr>
<tr>
<td>Australia, New Zealand, Far East and Pacific regions</td>
<td>£37.00</td>
</tr>
</tbody>
</table>

The differences in these prices are caused merely by the postage: the basic subscription price is well over 20% below the cover price and is the same all over the world.

Write now for your subscription to:

Elektor Electronics • World Wide Subscription Service Ltd • Unit 4 • Gibbs Reed Farm • TICEHURST • East Sussex TN5 7HE • England • Phone (0580) 200657.

COMPETITION JUNE 1990

Send this coupon to:

SEYMOUR

1470 London Road

LONDON SW16 4DH

to reach there not later than 22 June 1990.

The answers to the questions are:

1.
2.
3.
4.
5.
6.

I read *Elektor Electronics* because:

Name

Address
From any point of view, it is convenient to couple the rear window wiper on our cars to the windscreen wiper. Since the rear window of a moving car does not get nearly as wet as the windscreen, it suffices if the rear wiper operates only once for every 8, 16 or 32 wipes of the windscreen.

At terminal 53e (green/black wire) on most cars, which is the return of the windscreen wiper motor, the clock signal for that motor is present. This signal, which is a square wave, is applied to the clock input of counter IC1 via R2-R3. The Q3 output of the counter goes high every eighth clock pulse, and the Q4 output once every sixteenth clock pulse. The output pulse is applied to monostable IC2 via switch S1. The monostable may be a Type 4528 (as drawn) or a Type 4548. At each trailing edge at pin 5, the monostable output (pin 6) goes high at a frequency of 1.5–16 Hz. When that happens, T3 is switched on, the relay is energized and the rear wiper operates.

The supply for the circuit is taken from terminal 53e also: during the intervals between the clock pulses, this terminal is at a potential of 12 V. In that state, T1 is switched on and C1 charges. When the clock signal is present at the terminal, T1 is off so that C1 cannot discharge. Diode D1 limits the supply to 5 V.

Network R5-R6-C5-T2-D2 ensures a regular reset of the circuit during the windscreen wiper interval.

NEXT MONTH

IN ELEKTOR ELECTRONICS

- Simple square-wave generator
- Car theft deterrent
- INMARSAT's standard C
- Sound demodulator for SAT TV receivers
- Battery tester
- SCART-plug FM mini sender
- Simple, versatile NiCd battery charger
- TTL-level 100 MHz crystal oscillator

Make sure of your copy by filling in this coupon and handing it to your Newsagent.

To: ..
(your newsagent)

Please reserve for me copies of
Elektor Electronics at £2.95 each
Name: ..
Address: ..

ELEKTOR ELECTRONICS JUNE 1990
INTERMEDIATE PROJECT

A series of projects for the not-so-experienced constructor. Although each article will describe in detail the operation, use, construction and, where relevant, the underlying theory of the project, constructors will, none the less, require an elementary knowledge of electronic engineering. Each project in the series will be based on inexpensive and commonly available parts.

POWER ZENER DIODE

K. Walters

Power zener diodes are rare, hard-to-obtain and quite expensive electronic devices. The circuit described here is based on a handful of common discrete parts that simulate a high-power zener diode. Apart from the saving in cost, the discrete equivalent has an additional advantage in that it can be set up to meet a wide range of output voltage and power requirements without the need of changing components.

Many voltages, whether direct or alternating, are far from constant. Examples of fluctuating alternating voltages include those supplied by the mains and many types of generator. In the case of direct voltages, sources like car batteries, inexpensive DC adapters and solar cells come to mind. Fortunately, most electronic equipment can cope reasonably well with too low a supply voltage, which is not usually worth worrying about because it is unlikely to cause damage. Overvoltage, however, often has disastrous effects even when the nominal supply voltage is exceeded by as little as 15%. Examples of easily damaged components include certain types of battery and chips from the now obsolete 74-TTL series.

In many cases, such damage may be prevented by inserting a regulator between the voltage supply and the equipment to be powered. Two types of regulator are available for this purpose as discussed later.

Although they may consume power from an alternating voltage source, most electronic circuits work from direct voltages, that are usually regulated (alternating voltages are fairly difficult to regulate with simple means).

Most of you will be familiar with the 78xx and 79xx series of three-pin fixed voltage regulators (Fig. 1). These devices are widely used in many circuits because they are both inexpensive and simple to use: all they require is an input and an output decoupling capacitor, a small heatsink and, importantly, an input voltage

![Fig. 1. Circuit symbol of three-pin fixed voltage regulator.](image-url)
that is at least 3 V higher than the output voltage, but not so high as to exceed the maximum specification (which is usually between 30 V and 40 V). These regulators are available in a wide range of output voltages (both negative and positive) and output currents (100 mA to 2.5 A).

Series or parallel?
The basic circuit shown in Fig. 1 is a series regulator. The regulating device is essentially an adjustable resistor connected between the voltage source (input) and the load (output) — see Fig. 2. In practice, the series resistor nearly always takes the form of a power transistor. The circuit compares the voltage across the load with a reference level. The difference between these voltages is used to provide the series transistor with a proportional base voltage. When the output voltage drops, the difference voltage rises so that the series transistor is driven harder. This, in turn, causes a lower series resistance so that the circuit counteracts the load variation by keeping its output voltage constant.

A series regulator based on an 78xx or 79xx integrated circuit typically has a relatively wide input voltage range with the minimum level defined as 3 V above the output level, and the maximum level defined by the permissible dissipation, which is the product of the voltage across the regulator and the output current. Unfortunately, the minimum voltage drop requirement may be a problem in a number of applications. For these, a different type of regulator is required.

Parallel regulation
In a parallel (or shunt-) regulator (Fig. 3), the regulating element prevents the voltage across the load exceeding a certain value. The zener diode is the simplest shunt regulator, although transistor are also commonly used for this purpose.

The operation of the shunt regulator is based on the internal resistance, R_i, of the voltage source. Assuming that the voltage rises above the level established by the regulator, R_i drops the resultant voltage difference. In more practical terms, the shunt lowers its resistance so that the voltage source sees a heavier load. The resulting current increase thus counteracts the voltage rise.

The shunt regulator is relatively inefficient since it passes more current as the voltage rises above the maximum level. Its advantage, however, lies in the absence of a voltage drop between the voltage source and the load.

Returning for a moment to the previously mentioned example of the solar cells, it will be evident that series regulation is of little use in that application: the maximum output voltage of the cell will seldom be high enough to cater for the 3-V drop caused by a series regulator used to charge a battery. The reasons for applying a shunt regulator are fairly obvious here.

Power zener diode

It may well happen that the zener diode cannot handle the current supplied by the solar cells because its maximum dissipation is exceeded. Most zener diodes have a maximum dissipation of 400 mW or 1.3 W, while 5-W types are also found occasionally. Zener diodes with a higher power rating are expensive and hard to find, whereas the idea to make one from discrete components requires careful selection and testing of the diode and the series resistor. This has a further advantage in that it allows the zener voltage to be made adjustable.

Figure 6 shows the principle. The base of a medium-power transistor is connected to the junctions of a series of diodes. Since a normal (silicon) diode starts to conduct at a forward voltage of about 0.6 V, the rotary switch allows the collector-emitter voltage at which the transistor starts to conduct to be set in steps of 0.6 V. When the switch is set to position 1, the circuit simulates a 0.6-V zener diode, or 3.6 V when the switch is
Ultra-fast co-processors break price barriers

IIT Inc. can now supply the 2C87, a high-performance numerics co-processor that is plug-and-object-code compatible with the 80287. The IIT 2C87 is a low-power CMOS device capable of operating at clock rates up to 20 MHz. Its low current demand makes it ideally suited for lap-top computer implementation.

The 2C87 is less expensive than an 80387-16, yet performs most of its functions in far fewer clock cycles. When combined with the faster clock frequency (the 2C87 can operate at the same clock as the 80286), the floating point processor achieves performance at least two times faster than the 80287. When used with an 80286 processor, the computing system completely conforms to the IEEE Floating Point Standard. The new co-processor includes a built-in instruction to calculate a 4x4 matrix transformation. This results in the capability to perform matrix transformations 6 to 8 times faster than the 80287. In addition, the 2C87 provides extra functions which are not available on the 80287. The benchmark test and the table compare the performance of the 2C87 with the 80287. The IIT 2C87 is housed in a 40-pin ceramic package.

NEW PRODUCTS

Also new from IIT is the 3C87, which is claimed to operate up to 50% faster than the 80387 in the same application.

Integrated Information Technology Inc. (IIT) • 2540 Mission College Blvd. • Santa Clara, California 95054 • U.S.A. Telephone: (408) 727-1885. Fax: (408) 980-0432.

UK representative: DMST Ltd. • Mead House • Pinkneys Drive • Maidenhead • Berkshire SL6 6QD. Telephone: (0628) 777700. Fax: (0628) 27237.
This circuit complements the mini EPROM programmer featured a few months ago (Ref. 1). The simple-to-build unit allows data loaded into most of the currently used types of EPROM to be examined in a straightforward manner.

It may be argued that a full-blown EPROM programmer with PC control is, in many cases, superfluous luxury when only a small part of the contents of an EPROM is to be examined. The EPROM viewer discussed here allows this to be done rapidly and in a simple manner with the aid of three keys for address selection and EPROM type, and, of course, a clear display to indicate the relevant data.

Simplified circuit diagram

Integrated circuit IC5 is a suitable starting point for the description of the operation of the circuit shown in Fig. 1. For the sake of clarity, this diagram is a simplified version of the full circuit diagram, which is discussed later.

When the circuit is switched on, IC5, a decade counter, and dividers IC1-IC3, are reset by an R-C network. The reset condition is indicated by all LEDs (D6, D7 and D8) and all decimal points in the displays LD1-LD4 remaining off. Circuit IC5 controls all functions of the EPROM viewer. By pressing the SET key, it is provided with a single clock pulse, so that counter IC1 is enabled via an electronic switch. The other counters, IC1, IC2 and IC3, remain disabled. Thus, only IC4 is set by actuating the UP and DOWN keys. By pressing the SET key, IC5 is actuated. The next key actions actuate IC2 and, lastly, IC3. This selection allows the four nibbles that forms the EPROM address to be set (one nibble = four bits = one hexadecimal number). The decimal points on the 7-segment LED displays indicate the current nibble selection.

The next three states of IC4 determine the EPROM type selection. The types are divided into three groups: xx512, xx256, and xx128, and xx64. When IC4 reaches one of the last three states, IC1-IC3 are transformed from four discrete 4-bit counters into a single 16-bit synchronous counter. At the same time, the display is switched from an address read-out to a combined data/address read-out: the data byte in the EPROM is shown on the two least-significant displays, and the least-significant EPROM address byte on the two most-significant displays. This combined display mode is indicated by the decimal points on the 'data' displays, LD1 and LD2.

The EPROM address may be set by pressing the UP or DOWN key. It is possible to cross page boundaries (one page = 256 addresses). This is achieved with the aid of the CARR output of IC3, which enables IC3 and in addition causes IC6 to switch via a monostable, so that the full address is briefly displayed again. After the monostable time has lapsed, the display reverts to the combined LSB-address/data byte indication mode with the two actuated decimal points. The next action on the SET key causes IC3 to reset itself, allowing a new function to be set.

MAIN SPECIFICATIONS

- Reads 8-KByte, 16-KByte, 32-KByte and 64-KByte EPROMs.
- Full address entry or one-address up/down mode.
- Combined address/data read-out mode.
- Multiplexed 7-segment LED display.
- Three-button control.
- Optional computer interface.
- Ideal for small-scale EPROM applications.
The 4-digit LED display is multiplexed under the control of counter IC7. The displays are rapidly actuated and turned off again by the respective outputs of IC7. The data associated with a particular address is simultaneously fed to the 7-segment decoder, IC17, via data switches IC13, IC14 and IC15. Since the outputs of IC7 are alternately connected and not connected, a short delay is introduced during which the data switches are allowed to change state. The delay effectively prevents 'ghosting' of the display owing to the settling time of the switches and the display driver transistors, T1-T4.

Circuit IC16 distributes the multiplex signals in two ways across the switches. The distribution shown in the circuit diagram enables the combined 'LSB-address/data' read-out, the other distribution the 'full address' read-out.

The real thing

The full circuit diagram, shown in Fig. 2, differs from the previously discussed simplified version in a number of ways. This is mostly due to practical realizations of target functions set out in Fig. 1. Take, for instance, the OR gate for the reset function of ICs in Fig. 1: in the actual circuit, this takes the form of a diode-resistor combination, DI-R5. Similarly, counters IC1-IC4 are not actually reset but preset with value 0000, which has the same effect. The simple up/down control suggested by Fig. 1 is actually realized by a clock pulse generator, NAND gate 1043, a delay, RC, a re-triggerable monostable, IC6a, and IC9c. The latter controls the level of the UP/DOWN inputs of the counters. The clock pulses for the counters are provided by IC6a, whose monotime is set to about 2 ms to cope with fast actions on the keys. The 2-ms delay must be taken into account if the circuit is controlled by a computer via terminals A, B, and C.

The EPROM type selection circuit must ensure the correct signals at pins 1, 26 and 27 of the EPROM used. Pin 26 is either not connected (xx64 types) or forms the A13 input (all other types). This allows A13 to be connected to EPROM pin 26 with impunity. The situation is a little more complex in the case of pin 1. Fortunately, a single three-input OR gate, IC12b, does it all. If an xx512 is selected, this gate passes address signal A15. In all other cases, it holds pin 1 logic high. Pin 27 is controlled in a similar manner: with xx64 and xx128 types, it is logic high, while with xx256 and xx512 types signal A14 is applied via IC12c. The valid address ranges for the four EPROM types that may be used are as follows:

<table>
<thead>
<tr>
<th>EPROM size</th>
<th>address range</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx64</td>
<td>8 KByte</td>
</tr>
<tr>
<td>xx128</td>
<td>16 KByte</td>
</tr>
<tr>
<td>xx256</td>
<td>32 KByte</td>
</tr>
<tr>
<td>xx512</td>
<td>64 KByte</td>
</tr>
</tbody>
</table>

The circuit is powered by a single 5 V rail. The power supply used must be capable
Fig. 2. Complete circuit diagram of the EPROM viewer. The EPROM to be examined is plugged into the zero-insertion force (ZIF) socket marked IC16.

Fig. 3. Pin-outs of the EPROMs that can be handled by the viewer.
of providing a regulated 5 V at up to 0.5 A to cater for the relatively high current consumption of the LED displays.

Construction

The printed-circuit board for the project, shown in Fig. 3, is double-sided and through-plated. Construction is mostly straightforward soldering work with reference to the parts list and the component marks printed on the board. Position IC16 represents a 28-way zero-insertion force (ZIF) socket to ensure that the EPROM to be examined can be fitted and removed from the viewer without its pins being deformed. Depending on the height of the enclosure used, it may be necessary to mount the LEDs, the displays, the ZIF socket and the switches at a certain height above the board. The displays are conveniently given the appropriate height by stacking a few IC sockets. A bezel may be used to improve the readability of the displays.

The circuit has only one adjustment: P1. The preset defines the time during which the full address is shown when the most-significant address byte changes. This time may be set to a value between 0.5 s and about 5 s.

Finally, always switch off the circuit before inserting or removing an EPROM.

Reference:
CRO CALIBRATOR

D. McBright

A true-square-wave signal is useful for measuring the performance of the Y-amplifier of an oscilloscope. In particular, it enables three parameters to be checked: gain, amount of tilt produced by the amplifier and the frequency response. The calibrator described here provides such a signal.

The calibrator delivers a true-square-wave signal to facilitate (see Fig. 1):

- (a) measurement of the gain of the Y-amplifier by displaying a signal whose peak-to-peak level has been set accurately;
- (b) measurement of the amount of 'tilt' produced by capacitive coupling circuits along the flat top, at a frequency of about 50 Hz;
- (c) checking the frequency response of the Y-amplifier (but not its rise time) set by the frequency correcting trimmers in the coarse gain switch and in the probe at a frequency of 500-1500 Hz.

The calibrator is also useful when the oscilloscope is used in the 'variable gain' mode to measure accurately the level of a displayed signal (especially if the scope is home-built!).

The principle

The principle used in the calibrator is a simple but effective one for which only a handful of components are needed to produce a good square wave.

First, the level of a direct voltage is set with the aid of a DC voltmeter. The voltage is then 'chopped' to produce a square wave of known amplitude, and this is used as an AC signal to calibrate the oscilloscope.

Since the calibrator is connected directly across the output terminals, the accuracy of the system is determined chiefly by the accuracy of the voltmeter used. For level measurements, the voltmeter remains connected all the time, but is only read when the calibrator is switched to SET UP, since the square wave in the CAL position produces a reading of approximately half the peak-to-peak value. However, when the calibrator is used for checking the frequency response, the voltmeter should be disconnected to reduce any shunt capacity that might degrade the signal.

Level measurements may be made in two ways:

- first, the DC level is set with the aid of a voltmeter, after which the oscilloscope is adjusted to the resultant square wave;
- the square wave, as viewed on the oscilloscope, is adjusted to the required level, after which the calibrator is switched to SET UP and the voltmeter read to give the peak-to-peak level.

The output impedance, with terminating switch S4 open, is of the order of 600 Ω, but this will be modified by the resistance of the connected voltmeter. With S4 open, the output voltage range extends from over 4 V_{pp} to less than 2 mV_{pp}, when both the coarse (S2) and fine (P2) are set correctly. When S4 is closed, R21 is connected in parallel with the output, which causes the voltage range to be halved: this makes setting up easier at some levels.

Since the meter terminals are wired in...
parallel with the coaxial outlet, the connexion to the scope may be taken from either. However, since the output impedance is relatively high, connexions made in screened cable should be kept as short as possible.

A separate output of about 1 Vpp is provided for use as a triggering signal. The calibrating square wave is delayed some 20 μs relative to this output.

The frequency range is of the order of 30 Hz to 3 kHz.

The circuit

The variable oscillator is based on Schmidt NAND gate IC1a: oscillations result from the 'toggle' action of the gate on network R1-P1-C1. The output signal of the oscillator is divided between IC1a and IC1c.

Circuit IC1b provides an output of about 1 V across 600 Ω for triggering purposes.

After a delay of some 20 μs provided by network R1-C1, circuits IC1a and IC1d produce a square wave and an inverted square wave respectively. These signals are used to drive the control circuits of the analogue switches.

One input of IC1c is connected to the mother contact of CAL/SET UP switch S1. This switch, when in position SET UP (GND), keeps the analogue switches connected to the emitter of TI; in position CAL (+9 V), it allows control of IC1a and IC1d by the square wave.

Circuit IC3 is connected as a change-over switch with its mother (common) contact, connected to coarse level control P2a, switching between the reference voltage at the emitter of TI and GND. The switches in IC3 are connected as parallelled pairs in series with small isolating resistors: R5, R6, R7, and R8. The base voltage of TI is set by 'fine level' control P2. The potential across PT-R19 is stabilized by zener diode D1.

The choice of output impedance was limited by the series resistance of the analogue switches and their inability to handle high currents. Ideally, 75 Ω or 50 Ω would have been preferred, but since this was not possible without greatly reducing the maximum output voltage, 600 Ω was chosen.

The square-wave output of the calibrator has a rise time of about 0.08 μs and, at some levels, small overshoots at the same speed. These are, however, fast enough to be ignored in any measurements for which the calibrator is designed.

The current drawn from the 9 V battery lies between 5 mA and 11 mA.

Construction

All components, except the potentiometers, switches and terminals which should be fitted to the front panel, may be mounted conveniently on a piece of veroboard of about 75 x 75 mm.

Stand-off pins should be used for connecting the wiring to the various controls and the battery. The board, together with the battery, is fitted in a 150 x 100 x 60 mm enclosure.

Only two precautions are necessary: decoupling capacitors C2 and C4 should be mounted as close as possible to the relevant ICs, and, because of the presence of 'fast edges', connexions to coarse level switch S2, the output terminals, and frequency control P1 must be kept as short as possible.

A SPEAKER FOR ALL SEASONS

Fieldtech has introduced a range of weather-proof drive units. The cones are made from transparent polyester film material and are thus unaffected by water and less prone to tearing and degradation than conventional cones.

The units are particularly suited to environments where water or excess humidity may be encountered. Their robust construction means that they are relatively unaffected by rough handling, while dirty/dusty surroundings will not significantly affect their operation. They are ideal for use as sounders and alarms where multiple tones are required, particularly in portable or exterior mounted equipment.

The units are available in 10 sizes, ranging from 1 in. (25 mm) to 4 in. (100 mm). Maximum power input ranges from 0.1 W to 12 W. Nominal impedance is 8 Ω.

Fieldtech Heathrow Ltd, Huntavia House, 420 Bath Road, Longford, WEST DRAYTON UB7 0L

NEW MOSPOWER TRANSISTORS FROM SILICONIX

Siliconix has introduced eight new MOSPOWER transistors in the TO-257 package—the smallest isolated hermetic power MOSFET package currently available. This compact new package allows designers to pack higher power densities into a given space and results in lower drain-to-ground capacitance, which reduces EMI currents.

Siliconix Ltd, Weir House, Overbridge Square, Hambridge Lane, NEWBURY RG14 5UX, Telephone (0635) 30905.

LONG-TERM PROTECTION OF ELECTRONIC CIRCUITS

APL, a new acrylic lacquer from Electrolube, provides long-term protection of PCBs, enclosures, containers and boxes against wear, humidity and handling.

The flexible, transparent coating is especially useful on instruction/information panels where decals, logos, lettering and numbering must be protected yet remain clearly visible. With an operating temperature range of -55 °C to +125 °C, the product provides excellent adhesion and resistance to mould growth, and dries to touch within 20 minutes of application (optimum properties are achieved in 24 hours). Because it contains no phenoxyes, it is resistant to dioxygen and zinc plate, while the absence of isocyanates ensures it can also be soldered through without producing toxic gases.

An additional safety feature is that the cured product is self-extinguishing.

Electrolube Ltd, Blakes Road, WARGRAVE RG10 8AW, Telephone (073 522) 4031.
Ever since it was first exhibited at last year's Leicester Show, the Aztex 24 cm FM ATV transmitter has created a lot of interest and I have often been asked for details of this unit. These requests prompted me to do a detailed review to satisfy the many enquirers.

Before commencing the review, I had some correspondence with designer Ken Stevens, G4BVK, from which I quote: "In the design of a transmitter, the need of a stable output is one of the governing factors and in the 24 cm model the Type SP5060 phase-locked loop was specified. The use of surface-mounted components was another way of maintaining stability."

"The video pre-emphasis network, whilst based on the standard CCIR circuit was designed to give an rf lift in addition to that given by a standard CCIR network. This overcomes the rf losses in the modulator in addition to providing the normal rf lift. Introducing some kind of dc restoration on the signal was also deemed necessary before it was injected into the modulator, and the circuit adopted to achieve this is very effective in stopping the video content from altering the black-level position."

"The two sound inputs are mixed actively with the aid of a Type TL072 bipolar before they are fed to the modulator. There is a separate PCB-mounted preset for adjusting the level input only: the front panel sound control adjusts the composite level of both inputs. A sub-carrier injection level preset is also provided on the PCB."

Description

The unit comes fully assembled in a die-cast case measuring 188 x 120 x 57 mm and has a removable lid secured by six cross-head screws. The professionally produced front panel contains the mains on-off switch; channel selector; two potentiometers—one for the sound and the other for the video deviation; and four LEDs—one indicating the connection of the dc supply, one indicating transmit, and two indicating which channel is selected.

The rear panel contains an n-type socket for connecting the aerial: a xsc socket for the video input; two sockets for the audio inputs; a phono socket for the line input and a 1/4 inch socket for the microphone. The dc input is via a 3-pin plug: a lead with a matching line socket is provided.

My only criticism of the outward appearance of the unit as supplied was the lack of identification of the connection points at the rear of the unit. Whilst no one is likely to confuse the aerial socket or the power plug with any other, confusion could arise between the two audio inputs and, perhaps, the video input. I understand, however, that these deficiencies are attended to in production models (the review model was only the fourth or fifth made).

Internally, the transmitter is laid out neatly, with the mother board housing the audio amplifier, modulator and sub-carrier generator circuits, and the video circuits. The board is held in place with four nuts, bolts and spacers, so that removal for any servicing will be an easy matter.

All the rf circuits are contained in a small die-cast box, occupying about one third of the main case at the right-hand side. This has the advantage of providing a further level of screening between the baseband and rf sections of the transmitter. The n-type rf output socket is mounted through the case directly into the inner box and is soldered direct to the PCB, so that no rf cables float around inside. Interconnections between the rf box and the mother board is effected by several feed-through terminals carrying the baseband signal, power supply and frequency switching control signals.

The rf assembly is bolted to the main case with the same bolts securing the internal PCB via spacers. The n-type aerial socket is bolted to the rf box and a clearance has been drilled through the main case. Thus, although a little intricate, removal of the rf assembly and circuit board for servicing can be effected fairly easily, although some care is required. The circuitry is designed in state-of-the-art surface mount technology (SMT).

Three user adjustment points are provided inside the transmitter: a preset for audio sub-carrier injection level; a trimmer capacitor for setting the audio sub-carrier frequency; and a preset potmeter for the line audio level. The supply is protected by a miniature wire-ended fuse soldered between two posts on the mother board.

Bench tests

The test equipment used to carry out the laboratory tests is listed below. I would like to thank Roland Hall, GOGSA, for his assistance with the analyser tests and plots:
- Marconi 2383 Spectrum Analyser & Tracking Generator.
- Racal Dana 9087 Signal Generator.
- Hewlett Packard 435A Power Meter.
- Racal Dana 998 Frequency Counter.
- Philips PM3262 Oscilloscope.
- Fluke 8050A Digital Multimeter.
- Racal Dana 9732 Bench Power Supply.

Frequency stability

Because of the crystal-controlled PLL exciter, the frequency stability is good as shown in Table 1. It is seen that the total

<table>
<thead>
<tr>
<th>TIME</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch on</td>
<td>1249.0263 MHz</td>
</tr>
<tr>
<td>10 sec</td>
<td>1249.0261 MHz</td>
</tr>
<tr>
<td>20 sec</td>
<td>1249.0258 MHz</td>
</tr>
<tr>
<td>30 sec</td>
<td>1249.0256 MHz</td>
</tr>
<tr>
<td>40 sec</td>
<td>1249.0255 MHz</td>
</tr>
<tr>
<td>50 sec</td>
<td>1249.0255 MHz</td>
</tr>
<tr>
<td>60 sec</td>
<td>1249.0254 MHz</td>
</tr>
<tr>
<td>70 sec</td>
<td>1249.0254 MHz</td>
</tr>
<tr>
<td>80 sec</td>
<td>1249.0254 MHz</td>
</tr>
<tr>
<td>90 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>100 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>110 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>120 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>3 min</td>
<td>1249.0252 MHz</td>
</tr>
<tr>
<td>10 min</td>
<td>1249.0242 MHz</td>
</tr>
<tr>
<td>15 min</td>
<td>1249.0241 MHz</td>
</tr>
<tr>
<td>20 min</td>
<td>1249.0240 MHz</td>
</tr>
<tr>
<td>30 min</td>
<td>1249.0239 MHz</td>
</tr>
</tbody>
</table>

Technical Specification

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency - channel 1</td>
<td>1249 MHz</td>
</tr>
<tr>
<td>Channel 2</td>
<td>1255 MHz</td>
</tr>
<tr>
<td>Harmonics</td>
<td><50 dBc</td>
</tr>
<tr>
<td>Modulation system</td>
<td>FM with built-in emphasis</td>
</tr>
<tr>
<td>Audio sub-carrier</td>
<td>Preset to 6 MHz: 47 dB below carrier (variable with deviation setting)</td>
</tr>
<tr>
<td>Video input</td>
<td>1 V p-p into 75 Ω</td>
</tr>
<tr>
<td>Audio inputs</td>
<td>Dynamic microphone, adjustable line input (VCR, etc.)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>1.5 A at 13.8 V</td>
</tr>
</tbody>
</table>

Table 1

Frequency deviation

<table>
<thead>
<tr>
<th>TIME</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch on</td>
<td>1249.0263 MHz</td>
</tr>
<tr>
<td>10 sec</td>
<td>1249.0261 MHz</td>
</tr>
<tr>
<td>20 sec</td>
<td>1249.0258 MHz</td>
</tr>
<tr>
<td>30 sec</td>
<td>1249.0256 MHz</td>
</tr>
<tr>
<td>40 sec</td>
<td>1249.0255 MHz</td>
</tr>
<tr>
<td>50 sec</td>
<td>1249.0255 MHz</td>
</tr>
<tr>
<td>60 sec</td>
<td>1249.0254 MHz</td>
</tr>
<tr>
<td>70 sec</td>
<td>1249.0254 MHz</td>
</tr>
<tr>
<td>80 sec</td>
<td>1249.0254 MHz</td>
</tr>
<tr>
<td>90 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>100 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>110 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>120 sec</td>
<td>1249.0253 MHz</td>
</tr>
<tr>
<td>3 min</td>
<td>1249.0252 MHz</td>
</tr>
<tr>
<td>10 min</td>
<td>1249.0242 MHz</td>
</tr>
<tr>
<td>15 min</td>
<td>1249.0241 MHz</td>
</tr>
<tr>
<td>20 min</td>
<td>1249.0240 MHz</td>
</tr>
<tr>
<td>30 min</td>
<td>1249.0239 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch on</td>
<td>2.72 W</td>
</tr>
<tr>
<td>5 min</td>
<td>2.54 W</td>
</tr>
<tr>
<td>10 min</td>
<td>2.46 W</td>
</tr>
<tr>
<td>15 min</td>
<td>2.37 W</td>
</tr>
<tr>
<td>20 min</td>
<td>2.35 W</td>
</tr>
<tr>
<td>25 min</td>
<td>2.34 W</td>
</tr>
<tr>
<td>30 min</td>
<td>2.34 W</td>
</tr>
</tbody>
</table>

Table 2.

drift of the review unit amounted to only 2200 Hz over a 30-minute period from switch-on.

Power output and harmonics.
The RF power output was monitored over a 30-minute period at 1249 MHz: the results are shown in Table 2. After the initial 20-minute period during which the power dropped by 0.37 W (0.65 dB), the output, to all intents and purposes, remained constant at 2.3 W. A similar check was carried out at 1255 MHz: here the initial power output was slightly higher at 2.84 W, with the final output settling at 2.54 W.

The harmonic content of the unmodulated output was very low, indeed, probably thanks to the out-of-band rejection characteristic of the SC1043 PA output device. The second harmonic was measured at slightly less than 50 dB down on the carrier. Third and subsequent harmonics were not detectable above the -75 dB noise floor of the analyser.

Video and audio characteristics.
A modulation index of 0.5 was ascertained by applying a 5 MHz sine wave to the video input and, viewing the output on a spectrum analyser, adjusting the video amplitude (deviation) from the signal generator so that the sidebands coincided with the recommended modulation index of 0.5. The output from the signal generator was then measured and this level used as the reference output level from the Philips TV pattern generator for the plots shown in Figures 1, 2 and 3.

The audio sub-carrier generator is normally set for UK use at 5.9996 MHz, but can be easily reset to the 5.5 MHz European standard with the sub-carrier oscillator trimmer, which is accessible when the top cover is removed from the transmitter.

At maximum video deviation, the sub-carrier level was measured at 17 dB below carrier, but this relative difference becomes greater as the video deviation is reduced with the VIDEO control on the front panel. At minimum deviation, the sub-carrier was measured at 32 dB below carrier. With a standard video input level of 1 V-p-p, it was necessary to set the video control at approximately 50% to achieve a normally deviated picture, and at this setting, the audio sub-carrier was measured as about 24 dBc, which proved to be quite sufficient for good audio with P5 contacts. Nevertheless, I did adjust the sub-carrier injection control on the main PCB and brought the relative level back to 17 dB at this VIDEO control setting. This provided very good audio fidelity commensurate with picture reception.

In all fairness, I should point out that if the input video level to the transmitter is adjusted so that the VIDEO control on the transmitter is set towards fully clockwise in operation, the audio sub-carrier level is satisfactory without internal adjustment.

On-air tests and conclusions
Overall, I was very impressed with the workmanship and presentation of the transmitter. Upon receipt, it was simply a matter of connecting 13.8 V, plugging in the antenna and microphone, connecting the aerial, switching on, and adjusting the audio and video controls. This is ideal for those of us who are not of the home-brewing fraternity. In my opinion, this is currently the only unit available that satisfies this need.

Furthermore, the very useful output level of around 2.5 W is enough to drive a 2C39A valve linear to quite a useful output (in my case to about 60 W). The colour handling characteristics of the unit gave excellent results, as did the audio response, when tested over a P5 path.

Apart from the criticism mentioned earlier on, I do not like the use of a soldered-in fuse. Although to some of us obtaining and changing this should failure occur would not be much of a problem, at some stations it could be a daunting task.

The Aztex ULNA 23-24 GaAs FET preamplifier

<table>
<thead>
<tr>
<th>MANUFACTURER'S SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical gain</td>
</tr>
<tr>
<td>Noise figure</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Rejection</td>
</tr>
<tr>
<td>DC supply</td>
</tr>
</tbody>
</table>

The ultra-low-noise preamplifier comes in a blue hammer-finished die-cast case measuring 110x60x30 mm, with N-type input and output sockets provided at the sides. The top cover of the case is secured by four crosshead screws. NOTE: this enclosure is not water-proof, as stated by the manufacturers, and therefore needs to be mounted inside another weather-sealed enclosure for external/mast mounting.

The printed-circuit board is secured by two of the N-type socket's fixing bolts on each side. The DC supply is fed into the box by two insulated solder terminals and is provided with a reverse polarity protection diode.

The GaAs FET is a Type ATF10135, one of the latest Avanteek products. It is mounted on a vertical PCB screen soldered to the main circuit board. A brass horizontal top screen is soldered to the vertical PCB screen and is
also clamped to the side of the box under two of the retaining screws of the N-type output socket.

Input and output tuning trimmer capacitors are mounted at each socket and a bias preset perometer is located on the main PCB.

Bench tests

The test equipment used to carry out the laboratory tests consisted of:
- Marconi 2383 Spectrum Analyser and Tracking Generator.
- Fluke 8050 Digital Multimeter.
- Racal Dana 9232 Bench Power Supply.
- Racal Dana 9232 Bench Power Supply.

Air tests and conclusions

The flat, even response of the preamp over the entire 23-24 cm band meant that I was able to tune to signals at the RMT2 repeater or laboratory tests consisted of:

The preamps with perhaps higher gain figures are complex and I do not intend to go into these, but I can say that this unit with its noise figure of around 1 dB will take a lot of beating.

My overall impression of the preamp is of a sound, well-made unit that provides very good performance. I wholeheartedly recommend anyone requiring a preamp for the 23-24 cm band (which, to my mind, just about includes everyone working 24 cm FM). Noise figures

LOW-COST INTRODUCTION TO SURFACE-MOUNTED ASSEMBLY

Surface-mounted components are much smaller than conventional ones and can, therefore, be used closer together, leading to smaller circuit boards with the same function or the addition of further functions to a board of the same size. This allows equipment to be updated or improved without changing its outer appearance.

The disadvantage of such a system is that it normally requires automatic machinery to position the components on the board. The 'Microline' range from Flint Distribution offers an entry system to take an introductory step into this technology without undue expense. It includes an infra-red reflow oven, vacuum pick-up pen, rotary component tray, screen/stencil printer and static-safe wrist rest. The low cost of the system allows production to be started with minimal outlay: the system may be expanded at a later stage if required.

The reflow oven, designed to take surface-mount boards up to 100x160 mm, measures only 260x290x160 mm (WxDxH). It uses infra-red panel emitters similar to those in larger ovens together with a sensitive proportional temperature controller and timer alarm. Double-sided assembly is possible by using standard solder cream for the first side and repeating the operation with low-temperature solder for the second side.

The 'kilter' is a rotary tray holding 30 removable fiddler containers for components; it is covered by a Perspex lid with access holes.

The vacuum pick-up pen allows the easy picking and positioning of components on the board.

The static-safe wrist rest supports the operator's wrist, allowing precise movement close to the board, thereby improving placement speed and accuracy.

The screen/stencil printer takes screen printing frames or a holder for stencils of connector patterns to be etched or drilled.

Flint Distribution Ltd. Enterprise House, Ashby Road, COALVILLE LE6 2LA, Fax (0255) 873098.

RECEIVER AND TRANSMITTER BOARDS FOR LOW-POWER SECURITY

Low-cost receiver and transmitter boards for low-power security applications are available from Quantelec. They use surface acoustic wave frequency sources operating at 418 MHz, are approved to NWT 1340, and offer an easily applied solution to RF control problems.

Further details from Quantelec Sales Ltd., 110 Corn Street, WITNEY OX8 7Bl.
Although it is almost impossible to imagine present-day meteorology without electronic equipment, sunshine is still widely measured with the aid of the classic, all-mechanical, Campbell-Stokes recorder. The electronic instrument described in this article offers far better accuracy than the Campbell-Stokes meter. It measures the total time during which sunshine is detected, and records this information with the aid of a computer.

The recording of the duration of sunshine time over a certain period is among the daily routines of meteorologists. The measurement is usually carried out with the aid of the Campbell-Stokes recorder, a drawing of which is shown in Fig. 1. The recorder consists of a sphere arranged to focus the sun's image on to a bent strip of card on which the hours are marked. When the sun shines with sufficient intensity, the sphere focuses the light on the paper, which is burned at that spot. At the end of the day, the length of the burnt track on the paper enables the sunshine duration to be calculated. Interruptions in the track indicate passing clouds. Although the inaccuracy of the Campbell-Stokes recorder is fairly high at 10 to 20%, the instrument is still widely used for lack of a better alternative.

Like the original Campbell-Stokes recorder, the all-electronic version discussed here has no moving parts. Its measuring principle does, however, require a computer for data recording purposes. In principle, any computer may be used for this application, provided the right interface and control program are available. In this article we will assume that a 8052-BASIC computer board is used (see Refs. 1 and 2).

Four sensors: a new principle

The electronic sunshine recorder is based on four photodiodes Type BPW21 which measure the ambient light intensity. Since meteorologists hold that there is sunshine if there is a shadow, the position of each of the four sensors enables it to measure a different light intensity when the sun shines. When the illumination is homogeneous, as is the case with an overcast sky, all sensors measure the same light intensity. When the sun shines, the sensor that is best aimed at the sun receives the highest light intensity. The computer connected to the sensor assembly runs a continuous calculation on the position of the sun, while accounting for the geographical coordinates, the season and the local time. In this manner, the system always knows which sensor faces the sun and thus receives more light than the others. Next, the average light intensity on all four sensors is measured. The system detects sunshine when the sensor aimed at the sun measures a substantially higher light intensity than the sensor with the weakest illumination. This approach makes the accuracy with which the number of sunshine hours is recorded dependent on the measurement frequency only. While an accuracy of about 30 minutes per day is quite good for a Campbell-Stokes recorder, the present circuit is capable of resolving seconds of sunshine—quite an improvement!

Sun position calculations

The fact that the movements of the planets in the solar system are regular makes it fairly easy to provide reasonably accurate predictions for the position of the moon, the sun and planets in relation to the earth. This means that the sunrise and sunset times on earth may be calculated. In his article “Calculating the position of the sun” (Ref. 3), R. Walraff proposed a
Fortran computer program for calculating the position of the sun in the sky above any location on earth, with an accuracy of 0.01°. This program has been used as the basis for developing a BASIC version that works in conjunction with the real-time clock function available in most PCs.

The program has been adapted further for use on the single-board BASIC computer. Since this has a real-time clock, the system may be used as a stand-alone application that works around the clock for sunshine recording. In this set-up, the PC may collect measured data when required by connecting it to the BASIC computer via its RS-232 interface. The program that runs on the BASIC computer is available as a ready-programmed EPROM.

Sensor assembly

The photograph in Fig. 2 shows that the four photodiodes are fitted together to form a transparent sensor. Each photodiode faces one of the compass directions, north, west, south and east. Since they are enclosed in a perspex, plastic or glass cover, they may be used for many years without the need of being serviced.

The control program that runs on the BASIC computer performs light intensity measurements at regular intervals. The data so obtained is collected and processed statistically by the PC at a later time. The sun position calculations enable the computer to know which photodiode (measurement sensor) is expected to measure the highest light intensity. The photodiode that measures the lowest light intensity forms the reference. The system decides that there is sunshine if the light intensity on the measurement sensor is four times greater than that on the reference sensor.

The sensitivity of the photodiode used in the sensor assembly is highest for light incident at right angles to the face of the diode. The altitude, α, of the sun varies between 0° and 90° in the tropics, but this reduces the further north or south one is from that region; in the UK (and most of north and central Europe, the southern parts of Canada and the northern states of the USA) it varies from 0° to 65°. In this article that value is used, and the sensor assembly is therefore constructed in a manner that ensures that the maximum deflection of the direction of the light with respect to the normal, n (the line perpendicular to the plane of the photodiode), is 32.5°. In other regions of the earth that angle needs to be adapted as appropriate. The maximum deflection of 32.5° causes a sensitivity reduction of 75%, which is still acceptable in this application.

The computer calculates the sensitivity as a function of the position of the sun and that of the sensor. This is done to make the measurement independent of the position of the sensor relative to the sun, so that the angle at which lights falls upon the sensors (angle of incidence) has virtually no effect on the collected data. The drawing in Fig. 3 shows that each photodiode is mounted on a post or plate that is at an angle, β, of 57.5° (90° - 32.5°) with respect to the earth surface (this angle needs to be adapted in other regions). The assembly must be mounted such that photodiode D_1 faces north, D_2 west, D_3 south and D_4 east.

Fig. 2. Prototype sensor assembly enclosed in a glass vessel. The photodiodes are mounted on small pieces of stripboard.

Fig. 4. Circuit diagram of the sensor amplifiers and the VCO that enables the measured values to be recorded by the BASIC computer.
The result of this process forms the basis for lines A and B. Immediately after each separate measurement, the computer alternately selects the measuring sensor and the reference sensor by addressing the analogue multiplexer, IC3, via control lines A and B. Immediately after each selection, the frequency of the signal on the output line, F, is measured. Next, the program determines the sensitivity of the sensors and converts the measured frequency into a corresponding illumination intensity. The result of this process forms the basis of the sunshine/no sunshine decision.

Construction and test

Both the interface circuit and the time-base circuit are so small that they are easily constructed on veroboard or prototyping board. Wiring is not critical since only low frequencies are involved. Care should be taken, however, to fit all the decoupling capacitors indicated in the circuit diagram as close as possible to the relevant ICs.

The interface has four adjustments, the time-base circuit only one. If a frequency meter is available, adjust the preset on the time-base board until 32.768 kHz is measured. If you do not have access to a frequency meter, set the preset to the centre of its travel.

Initially, presets P2, P3, and P1 on the interface board are also set to the centre of their travel. Turn P1 to maximum resistance and install jumper J1 to connect the non-inverting input of IC1 to ground. Adjust P2 until the output of IC1 is at 0 V.

Preset P1 determines the sensitivity of the VCO. This sensitivity, in turn, determines the full-scale measurement value, which may lie between 500 μA and 1000 μA for each sensor. The prototype was set for 700 μA, which corresponds to an illumination of about 100 lux. This value is achieved by setting the amplification of IC1 to 1/8 times (= variable 'Au' in the control program).

The adjustment is fairly simple: apply ±1 V to the output of the op amp and adjust P1 until the output voltage is ±1-429 V.

Next, adjust the VCO. Remove jumper J2 and apply ±10 V from an external supply to the VCO input resistor, R1a. Adjust P3 and P4 until an output frequency of 100 kHz is obtained at terminal F on connector K2. In some cases, this requires a 10-k Ohm resistor to be fitted between the positive supply line and the collector of T1. This adjustment results in a VCO sensitivity of 10 kHz/V and completes the setting-up procedure.

The control program

Insert the EPROM (order number 5921) with the control program into the relevant socket on the BASIC computer board.

Fig. 5. Suggested power supply.

Fig. 6. Timebase for use with the BASIC computer.
In spite of periodic oil ‘crises’ and fitful bouts of environmental concern, in almost every country the dominance of road vehicles over other forms of transport cannot be denied. Traffic congestion in Europe is set to go on rising well into the next century. In the UK, latest revisions to official forecasts by the Department of Transport, published early in 1989, acknowledge that the persistent upward trend of car ownership could double the amount of road traffic within 20 years.

Building roads can not of itself prevent the spread of congestion; indeed, it is argued that building more roads in cities may often make matters worse. Even if the obvious response to rising demand for road space were to be increased supply, it could not be provided fast enough to catch up with the predicted growth of traffic. Moreover, vehicle users have a poor perception of the actual costs that their use of the congested road system is causing to others while significant components of these costs, notably pollution and accidents, are borne by the community at large. This inefficiency of pricing is compounded by the inefficiency of routing because, at the outset of many journeys, drivers have only a hazy idea of what traffic levels they are likely to meet. A surprisingly high proportion of them do not know the shortest route to their destination, let alone the quickest; most decisions about journeys are based on a mixture of hunch and hearsay. To add to all this, finding somewhere to park at the destination will get progressively harder as congestion grows.

In spite of this gloomy prediction, one way forward lies in the harnessing of information by making the road system more than just the infrastructure for vehicles to reach their destinations. Making it also a reliable source of up-to-date information about the service it can provide, given that traffic conditions are changing all the time, requires that each driver should be able to communicate with the road system in an ‘intelligent’ two-way conversation. That would improve efficiency through better decisions about journeys, better traffic control, fewer accidents and less pollution.

I shall go on to describe work on a technological means of attaining this two-way communication between moving vehicles and the roadside.

The DRIVE programme

Launched in January 1989, the European Commission’s DRIVE programme is one of imaginative and wide-ranging research, costing some £40 million over three years. It brings together, in 73 different consortia, multidisciplinary groups from universities, government agencies, industry and potential users to explore ways of applying information technology to the problems of road traffic. A further programme, DRIVE II, to run from 1992 to 1997, is being planned to develop the ideas and apply them in practice. It is called Advanced Road Transport Telematics and will compete for funds with other research programmes in the EC.

One of the consortia in the present programme is co-ordinated from Newcastle. It comprises the University, jointly with the Polytechnic, three separate Philips companies (in the UK, Sweden and Federal Germany) and two potential users, namely Compagnie de Signaux et Equipements Electroniques (CSEE) in France and Empresa de Investigacao e Desenvolvimento de Electronica (EMI) in Portugal. The consortium is working on an automatic two-way communications system for traffic.
INTELLIGENT ROAD SYSTEMS

Microwave oscillator
Horn antenna
Roadside transmitter
Microstrip antenna
Detector
Signal processing
Microprocessor
Display
Vehicle-mounted receiver

Fig. 2. Block diagram of an overall roadside-to-vehicle data communications system now being developed under the European drive programme.

Microwave system
The aims of the research work at Newcastle have been to investigate the feasibility of using a low-energy microwave link for two-way data communications between a short-range transmitting beacon at the roadside and moving vehicles, and to develop and test the equipment necessary for the system.

The transponder unit for the vehicle was developed in microstrip circuit technology to make all the microwave-frequency components needed. Microstrip technology is highly suited to traffic applications because the circuits have a low profile, are small and may be made cheaply. The associated logic and auxiliary circuits for the vehicle unit will be made compatible in size and profile with the transponder microstrip circuitry by the use of custom-built very large scale integrated (VLSI) circuits. This has not yet been done, so the signal processing and logic circuits described are built from discrete components.

The roadside transmitting unit has been built from off-the-shelf components. It is battery powered, small enough to be portable and can be set up at the roadside on, say, a lamp-post or gantry.

Field trials to find out how the transponder performs when mounted in a vehicle have been very encouraging. Substantial amounts of error-free data have been received by the device when mounted either on the windscreen or on the side window of a vehicle moving at up to 40 km/h. More field trials are planned for this year at vehicle speeds up to 120 km/h.

Background to development
Work began at the University and the Polytechnic in September 1985, with two surveys of the literature to investigate (a) what systems were already available for traffic monitoring and control applications, and (b) the various types of microstrip antenna that might be used and the methods of analysis used to predict their performance.

Existing systems use a variety of techniques to communicate with vehicles, including inductive loops in the road surface and local radio broadcast systems. Most are restricted to a low data transfer rate of a few hundred bytes per second. This indicated the need for a system with a high data rate. At the proposed 2.45 GHz operating frequency of the system under development, it is expected that the microwave communications link can transfer several thousand bytes of data from the roadside to a passing vehicle.

Figure 2 shows a block diagram of the component parts of the roadside unit and the transponder. The vehicle-mounted transponder unit comprises four distinct components: an antenna; a detector with associated circuits; a signal processing unit; and a microprocessor and display unit. The prototype roadside unit was built from off-the-shelf components.

Fig. 3. Rectangular microstrip antenna with stub matched feeder.

monitoring and pricing, with the aid of microwave technology. The intention is to apply the system to the automation of motorway tolls in France and to a parking information and management scheme in Lisbon. The following is a description of the work.

Fig. 4. Radiation polar patterns of a 2.45 GHz rectangular antenna.

Experimental — **Theory**

E-PLANE POLAR PATTERN

H-PLANE POLAR PATTERN
and comprised a 6502 microcomputer to generate the data to be transmitted over the microwave link, a microwave oscillator and modulator, and a pyramidal horn antenna.

Prior to transmission over the link, the digital data stream generated by the roadside microprocessor has to modulate the microwave-frequency carrier generated by the roadside unit. Several techniques of digital modulation were considered, including frequency shift keying (FSK), phase shift keying (PSK) and amplitude shift keying (ASK). Although FSK and PSK have better performances in terms of bit error-rate, ASK was chosen for the prototype system because it simplified the design of the transponder demodulator.

Vehicle transponder

Microstrip circuit technology has been used for all the microwave-frequency components of the vehicle transponder circuit. Microstrip circuits are made by a photo-etching process similar to that used in the manufacture of printed-circuit boards. A conducting pattern is etched on the upper surface of an insulating substrate, about 1–2 mm thick, with a metallic ground-plane on its lower surface. The microstrip structure may be made cheaply: because of the low profile and small size of the circuits it is very attractive for vehicle-mounted applications where low cost and small size are at a premium. It is expected that the final version of the vehicle unit will use a single custom-built VLSI circuit to perform all the signal processing and logic functions, thereby maintaining the low profile of the transponder. The prototype, however, used discrete components for these circuits.

Several geometric shapes were considered for the microstrip antenna, including circular ring, annular ring and rectangular. Theoretical and experimental studies showed that their performance characteristics were similar. We selected a rectangular shaped antenna because it could be fed from a microstrip feeder line, thereby retaining the low profile of the circuit. To ensure maximum energy transfer to or from an antenna via its feeder is necessary to match the characteristic impedance of the feeder to the impedance of the antenna itself. This was done in two ways: the first by a quarter-wave matching transformer, and the other by stub matching. In this, a short length, or stub, of feeder is attached to the feeder itself and is short-circuited at its far end. By adjusting the point of attachment of the stub to the feeder and the length of the stub itself, it is possible to cancel out any effects of a mismatch and thus effectively match the feeder to the antenna. Both methods of matching may be employed in practice with the use of microstrip lines, and it was found that any loss through mismatch was kept to not less than 25 dB below the signal level. Figure 3 shows the arrangement of using a stub on a 50 Ω microstrip feeder. The dimensions relate to an antenna operating at 2.54 GHz.

A detector circuit is necessary to recover the digital data signal from the ASK modulated microwave signal received by the antenna. The circuit is shown in Fig. 5, where a Schottky barrier diode and filter network based on microstrip were employed. A band-pass filter was used at the input and a low-pass filter at the output to remove residual carrier and unwanted products generated by the diode in the demodulation process. The radio-frequency power from the receiving antenna may vary over the range 0.1 μW to 10 μW, depending on the distance from the transmitter, while the demodulated digital waveform output from the detector has a peak value of between 2 mV and 250 mV.

Processing and logic

In the final design, the signal processing and logic circuits will be put together in custom-built VLSI circuits. For testing the prototype, discrete components were used. Signal processing is needed to increase the voltage amplitude of the digital pulses from the detector and to reshape them to compensate for any distortion to the signal that may have taken place during transmission and demodulation. To do this, a direct-current stabilized amplifier and a level detection circuit were used.

To perform the logic functions on board the receiver, a microprocessor was used. A Type 6502 was chosen because of its compatibility with existing ‘smart card’ technology. The microprocessor may be a stand-alone item and perform all the processing needed at the receiver or, for more advanced applications, it could be interfaced with a more powerful microprocessor and display unit fitted in the vehicle.

Roadside beacon

As shown in Fig. 2, the roadside unit consists of a 6502 microprocessor, a microwave oscillator, a modulator and a horn antenna. The antenna has a radiation pattern shaped to cover transmission to either a single lane or a multi-lane road. The transmitter should be designed to feed several antennas to cover different approaches to a road junction, thereby reducing the cost of a large number of units. The microprocessor may work as an autonomous unit or be coupled to a central control computer governing all the beacons in a certain area. The prototype unit is fully portable, battery powered and measures 200 x 300 x 400 mm.

System performance

Field trials were carried out to test the performance of the transponder in a moving vehicle, mounted either in the side window or on the windscreen to find out the best place to fit it. Results showed that, while the vehicle is in range of the roadside beacon, substantial amounts of error-free data can be received. No interference was observed either from sources in the vehicle, such as the engine, or externally from other vehicles or objects blocking or reflecting the microwave transmissions.

At a speed of 19.2 kilometers per second, over 1000 bytes of data were transferred. This amount is enough to send a small digitized map or real-time information relating to prevailing traffic and road conditions.

So far, the serial ports of the roadside and vehicle microprocessors have been used as the data input and output ports. This has restricted the data rate to 19.2 kilobits/second. However, if the processors’ parallel ports were used to generate the data much higher rates would be available to test the prototype system, though a parallel-to-series data conversion would be needed prior to the transmission or reception by the microprocessors. Preliminary tests have shown that error-free data can be received successfully at rates of up to 200 kilobits/second.

To improve the flexibility of the system, the present stage of development under the DRIVE Programme is to make the system into a full two-way data communications link that would enable a vehicle transponder to ‘talk back’ interactively to the roadside beacon. That would greatly enhance the system capability, especially in the fields of vehicle fleet control, automatic toll collection and route guidance. This in turn would herald the beginnings of an ‘intelligent’ road system capable of reducing congestion substantially.
Wilmstown Audio of Knutsford in Cheshire offers one of the widest ranges of loudspeaker kits and drive units in the United Kingdom. Founded some thirty years ago, the company recently moved into new, 10,000 sq. ft. premises at Wellington Close, Parkgate Estate, Knutsford.

In the new showroom, Mike Aldington, one of the directors, told Elektor Electronics: "We offer very competitive prices and nowhere else are you likely to find the interest, the product knowledge and the sound advice that is based on so many years in this specialist market".

"In addition to loudspeaker kits and drive units, we offer a wide choice of hi-fi products and public-address equipment: all models selected for sound design and reliability and in keeping with the Wilmstown Audio philosophy of value for money".

Mike stresses: "Our orders come from all over the world. We have orders from Japan, France, Germany and the United States, to name but a few".

Drive units range in price from £4.95 to £350.
Most of the kits are created from bought-in components, but the company does manufacture cross-over networks.

The company dispatches the majority of orders on the same day of receipt of instructions, depending on the availability of the equipment, of course.

Mike continued: "DIY loudspeakers can be as good as ready-made units with considerable savings. We offer the most popular models in three forms".

- "The BASIC kit, which includes all drive units and cross-over filters (although the filters are sometimes in easily assembled kit form). The BASIC kit usually provides all that is necessary if you're upgrading a pair of speaker cabinets".

- "The PLUS kit, which includes all items in the BASIC kit, as well as wadding, terminals, T nuts and bolts, reflex tubes (where applicable), etc. This is the kit to buy if you're building the cabinets from your own materials".

- "The TOTAL kit, which includes all items in the PLUS kit, with the addition of cabinets in flat-pack form. These are accurately machined from smooth MDF board and are very easy to assemble. Baffle apertures, etc., are cut and rebated where applicable and it is a simple job to construct a pair of loudspeakers to a professional standard".

"Using the Wilmstown Audio iron-on veneer," he says, "it is possible, with a little care and attention to detail, to achieve a finish that is at least the equal of commercially produced cabinets. Only the very best of ready-made loudspeakers will have a similar bass extension as this results from several aspects of the individual speaker design. Do not confuse good bass response with extended bass response. Extended but 'boomy', ill-controlled bass is by no means as pleasant to listen to as a tightly controlled but less extended bass response. Room dimensions inhibit perceived bass response. A small, relatively insensitive speaker, such as our micro monitor design, will provide all the sound quality, volume and bass response that you could desire in a small room and yet would be quite incapable of providing the bass response, power handling and volume that you might require for a noisy party in a large room".

The company is looking forward to 1992, because it knows that the prices for such kits are high in continental Europe and once various restrictions have been removed and the barriers are down, Wilmstown Audio believe that they are in for an even rosier business than they are currently enjoying. Whatever, the company and its team of six people are very much in sound heart.
Almost ten years ago, the CMOS logic technology took a giant step forward with the introduction of the HC and HCT series. However, in the intervening years, it has become clear that even these fast logic devices can not replace all types of bipolar (TTL) circuit. The introduction of the fourth CMOS generation, Advanced CMOS Logic or ACL, means that now even the fastest TTL logic circuits, ALS, may be replaced by CMOS devices.

For the efficient operation of fast bus and transfer systems, it is essential that short transit times are combined with a large fan-out. This was not possible with CMOS logic until the arrival of the ACL series. This new CMOS technology also takes us a step further on the way to removing the disparity between high switching speeds and low power dissipation. Another drawback of HC/HCT circuits is their sensitivity to electrostatic charges: ACL devices have all but lost this sensitivity.

The essential characteristics of ACL, TTL, HC/HCT, ECL, and ICL logic circuits are compared in Table 1.

ACL technology
ACL devices are manufactured in time-proven CMOS technology. The thickness of a single wafer has been reduced to 1 μm; however, a number of production improvements make it possible for certain properties of the circuits to be optimized. For instance, the transfer resistance of not only the output terminals, but also of the internal junctions, has been reduced significantly. Moreover, the relatively large parasitic capacitances found in HC/HCT devices are virtually absent from ACL circuits. All these improvements make it possible for ACL circuits to be used in applications that until now were the preserve of TTL logic.

Characteristic data
The transit delay in ACL chips is about 3 ns per gate, so that operating frequencies of up to 160 MHz are possible. The maximum permissible output current is 24 mA per gate. It is of no relevance whether the gate functions as a source or as a sink. This level of current is high enough to enable direct driving of high-gain transistors, such as darlington transistors.

Low power dissipation is of great importance in many circuits, because it allows greater packing density, extends the duty cycle in battery operation, and increases the reliability of the system because of the lower temperature.

Thanks to CMOS technology, the power dissipation in ACL circuits is very low: in quiescent operation, it is only a few nW per gate, which rises to 1–2 mW during operation at 1 MHz. As an example, Fig. 1 shows the relation between dissipation and operating frequency for an ACL1008 and a similar TTL circuit (four AND gates).

The signal-to-noise ratio is also very good. The output varies from 0.1 V (low level) to $U_b - 0.1$ V (high level) at a load current of 50 μA (equivalent to 50 CMOS inputs). At the full load current of 24 mA, the low level is 0.5 V and the high level, $U_b - 0.8$ V.

The change-over thresholds at the inputs are type-dependent. In CMOS compatible devices, they lie between 30% and 70% of the supply voltage. In TTL compatible circuits, they are 0.8 V (low level) and 2 V (high level).

The operating temperature of standard ACL versions extends from -40 °C to $+55$ °C; types with an extended range of -55 °C to $+125$ °C are also available.

Circuit design
Very fast logic devices switch with very steep edges and this creates a few difficulties. For instance, parasitic reactances and line reflections in the circuit may cause functional interference. To obviate such difficulties with ACL chips, no attempt was made to achieve pin compatibility with HC/HCT or TTL devices. Instead, ACL circuits are designed in flow-through architecture, which
means that the internal structure, as well as the pin-out, is as much as feasible in line with the signal flow. This results in a number of supply connections being parallelled, inputs and outputs of gates being well isolated, and the less frequently used control connections being grouped at the upper or lower part of the package. These measures result in an average reduction of the inductive layer in and around the chip by a factor of 3.8 in standard DIL-packaged circuits and higher in other housings.

When ACL devices are used in bus-oriented systems, notable simplications are possible in the wiring of the printed-circuit board. However, the great advantages of the unorthodox pin-out become really conspicuous when ACL circuits are used in conjunction with multi-layer PCBs.

The pin-outs of a number of important ACL circuits in a standard DIL package are shown in Fig. 3.

Type coding

ACL circuits are available in two different versions:

1. The 74AC series with cmos compatible high/low thresholds ($U_T = U_H / 2$) for operation from supply voltages of 2–5.5 V.

2. The 74ACT series with TTL compatible high/low thresholds ($U_T = 1.5 V$) for operation from 4.5–5.5 V.

The type coding consists of six groups, the meaning of each of which is shown in Table 2. Note that group 5 defines the logic function in the same way as for TTL and HC/HCT circuits. Also, group 4 is always 11, indicating that the supply connections are located at the centre of the housing (and thus there is no pin compatibility with HC/HCT or TTL devices).

Protection against electrostatic charges

All switching inputs and outputs are protected against static charges. This holds good for potentials of whatever polarity at levels up to 2 kV. The protection circuits, consisting of two diodes connected as shown in Fig. 5, are equivalent to a 100 pF capacitor being earthed via a 1.5 kΩ resistor across the input or output. Proper operation of the protection circuit may therefore be verified by the circuit shown in Fig. 4.

The difficulty with efficient protection is that the protection elements, integrated on the chip, can, owing to their small size, cope only with relatively low levels of energy. In ACL circuits, taking the values stated earlier on, protection is guaranteed up to an energy, E, of

$$E = CV^2/2 = 10^{-10} \times 4 \times 10^6 / 2 = 0.2 \text{ mJ}$$

The diodes in the protection circuits have a forward voltage of about 0.9 V and a reverse (zener) voltage of around 17 V.

Table 2. ACL circuits are type-coded by these six groups.

Group 1	blank = standard version
SNU = meets MIL STD 883	JANB = meets MIL STD 30510
Group 2	74 = temperature range of -40°C to +85°C
54 = temperature range of -55°C to +125°C	
Group 3	45 = CMOS compatible thresholds
ACT = TTL compatible thresholds	
Group 4	11 = supply connection in centre
Group 5	conventional functional type coding, e.g.:
00D = quad quad NAND gate	
02D = dual D-type bistable	
Group 6	N = plastic DIL case
NT = plastic slim-line DIL case	
J = ceramic DIL case	
JT = ceramic slim-line DIL case	
D = plastic miniature case	
Summary

The ACL series gives the designer the opportunity of putting to use all the advantages of CMOS technology, such as high signal-to-noise ratio and small power dissipation, at fairly high operating frequencies.

The pin-out is unorthodox and not compatible with either TTL or HC/HCT circuits. It is, however, of paramount importance in realizing the excellent properties of the ACL devices.

ACL circuits may replace TTL as well as HC/HCT chips, and are already widely used in new designs. There is no doubt that ACL technology will become the new standard for integrated digital circuits.

Fig. 4. Test circuit to verify the proper operation of the protection circuits in an ACL device.

Fig. 5. The protection diodes in an ACL circuit are connected as shown here.

R-2R RESISTANCE NETWORK IN SMT

H. Bierwith

The 8-bit R-2R network intended for use in, say, a digital-to-analogue converter, is constructed in surface-mount technology (SMT). It is inexpensive, precise, space-saving and allows unusual values to be obtained. It is described here in a digital-to-analogue converter that uses a CMOS latch Type 4042.

The latch and the associated R-2R network are connected in the feedback loop of an LF356. The network uses 100 kΩ resistors (the 2R resistors are made up of two series-connected 100 kΩ resistors).

The output voltage of the converter is calculated from:

\[U_o = \frac{U_r}{R_1 + P_1} \frac{6R}{R_1 + P_1} \frac{1}{6R} \frac{1}{R_1 + P_1} \]

The Qs in the formula have a value of 0 or 1, depending on the state of the latch output. The factor \(\frac{R_1 + P_1}{6R} \) is the amplification, \(A \), which may be set between 0.4 and 2.0 by \(P_1 \).

The supply voltage for the latch, which is also the reference voltage for the network, \(V_r \), may be between 5 V and 15 V; the logic levels at latch inputs D0-D3 and at CL are thus in accordance with those of the reference voltage which must be decoupled directly at the input of the IC.

The circuit is calibrated by making the inputs of the latch 0 and adjusting \(P_2 \) for an output of 0 V from the opamp. Then, load the data inputs with \(V_{\text{REF}} \) and adjust \(P_1 \) to obtain maximum output voltage.

If a larger number of bits is to be processed, two or more PCBs may be connected back-to-back.

Moreover, the PCB may be used with other components, such as diodes, capacitors, combinations of resistors and diodes or simple potential dividers for measuring instruments.

The current drawn from the \(V_r \) supply is 75 μA; that from the 5 V supply is about 7.5 mA.
DIGITAL SATELLITE COMMUNICATIONS
by Dr. Tri T. Ha
ISBN 0 672 22547 6
574 pages - 245x160 mm
Price £43.00 (hardcover)
Digital Satellite Communications, aimed at practising engineers and advanced students in satellite systems, communications and related areas, is, perhaps, currently the professional reference book on the subject.

Although Dr Ha says that the book addresses fundamental principles of satellite communications in which the mathematics have been kept to a minimum, I found it a fairly complete treatment of the subject and the mathematics not too difficult.

The book starts with very useful lists of acronyms (many of which can not easily be found elsewhere) and symbols used.

The geometry of artificial satellites in space is covered in great detail with plenty of clear drawings and mathematical treatment.

In spite of the word 'digital' in the title, and most systems are, of course, digital, analogue systems are also covered in detail. Examples are used throughout the book, while each chapter closes with a number of problems (for which no answers are provided). Appendices are not given at the end of the book, but rather at the end of the relevant chapter - unorthodox but useful.

Apart from the geometry of satellites, the book covers earth stations, satellite links, frequency division multiple access, time division multiple access, speech interpolation, satellite packet communications, digital modulation, carrier and symbol timing synchronization and satellite spread spectrum communications.

I have no doubt that Digital Satellite Communications will become, and remain, a cherished reference book of many for quite some time to come.

McGraw-Hill Publishing Company
Shoppenhangers Road
MAIDENHEAD SL6 2QL

BATTERY REFERENCE BOOK
by T.R. Crompton
ISBN 0 408 00790 7
734 pages - 250x190 mm
Price £120.00 (hardcover)

Not so long ago, most people thought of a battery as of a car battery or a torch battery. Nowadays, there exists a wide variety of batteries, primary and secondary, ranging from minute button cells to large installations weighing several hundred tons. Indeed, there is such an assortment of batteries that it is doubtful whether anyone knows their details without referring to one or more reference books. But, until Battery Reference Book became available, what reference book(s) I and many of my colleagues had nothing to refer to but the manufacturers' data sheets.

Mr Crompton, formerly research manager at Oldhams Batteries, has now given us in one volume a guide through the subject in a logical sequence. The work covers electrochemical theory as it applies to batteries; battery selection; theory, design, electrical and performance characteristics; applications of various types of battery; and theory and practice of battery charging. It includes information from battery manufacturers about the performance characteristics they supply. A number of appendices cover suppliers of primary and secondary batteries; battery standards; battery journals; and trade organizations and conferences. Finally, there is a useful glossary, bibliography and very detailed index.

Battery Reference Book should prove a godsend for designers of all types of battery-operated equipment, battery manufacturers, and electrical and electronic engineers and technicians who use batteries in their work. It should also prove useful to research organizations.

Batterworth Scientific Ltd
Westbury House, Bury Street
GUILDFORD GU2 5BH

IEE MEETINGS
5–7 June—Advanced infra-red detectors and systems.
27–29 June—Expert planning systems.

Readers are also advised that each year the IEE organizes a range of conferences, vacation schools, technical seminars and workshops on subjects within the fields of electrical, electronic and control engineering, and computing.

Information on these, and many other events may be obtained from the IEE, Savoy Place, LONDON WC2R 0BL, Telephone 01-240 1871.

The tenth Networks exhibition and conference, organized by Blenheim Online, will take place on 19–21 June at the National Exhibition Centre, Birmingham. A number of other events are also organized by Blenheim, among them: The European Satellite Broadcasting conference at the QEII Centre, London, on 5–6 June; the High Tech Buildings conference at the Tara Hotel, London, on 6–8 June, and the Software Tools exhibition and conference at the Wembley Exhibition Centre, London, on 12–14 June; The International Mobile Communications exhibition and conference at the QEII Centre, London, on 12–14 June; and the Image Processing conference at the QEII Centre, London, on 7–8 June. Details from Blenheim House, Blenheim House, Ash Hill Drive, PINNER HA5 5AE. Telephone 081 868 4466.

EVENTS

The tenth Networks exhibition and conference, organized by Blenheim Online, will take place on 19–21 June at the National Exhibition Centre, Birmingham. A number of other events are also organized by Blenheim, among them: The European Satellite Broadcasting conference at the QEII Centre, London, on 5–6 June; the High Tech Buildings conference at the Tara Hotel, London, on 6–8 June, and the Software Tools exhibition and conference at the Wembley Exhibition Centre, London, on 12–14 June; The International Mobile Communications exhibition and conference at the QEII Centre, London, on 12–14 June; and the Image Processing conference at the QEII Centre, London, on 7–8 June. Details from Blenheim House, Blenheim House, Ash Hill Drive, PINNER HA5 5AE. Telephone 081 868 4466.

An INFRA-RED Technology and Applications exhibition and conference will be held at the Wembley Exhibition Centre, London, on 26–28 June. Details from the organizers, Evan Steadman Group, The Hub, Emson Close, Saffron Walden CB10 1HL.

The International Telecommunication Union has issued a Call for Papers for presentation to the Technical Symposium at TELECOM 91, which will be held in Geneva on 10–15 October 1991. Papers must be based on original research, developments and approaches carried out during the period between TELECOM 87 and TELECOM 91. They should concern themselves with the technical aspects of telecommunications, technologies, networks and services. Abstracts of proposed paper, on no more than one A4 page, should be submitted before 15 October 1990 to The Forum 91 Secretariat, ITU, Place des Nations, CH-1211, GENEVA 20.
Let Letters of a general nature, or expressing an opinion, or concerning a matter of common interest in the field of electronics (in its widest sense), should be addressed to The Editor at our London offices. Their publication in *Elektor Electronics* is at the discretion of the Editor.

HORN LOUDSPEAKER

Dear Sir—In the excellent article on the "Horn Loudspeaker" (May 1990), you do not mention from whom the McFarlow drive units are available in the UK. Where can I get them from?

K. Stevens, Winchester.

Sorry for the oversight about which we have had a number of letters and telephone calls from other readers. The suppliers are: Bachalo, 46 London Road, Kingston-upon-Thames KT2 6QF, Telephone 081 541 4433, Fax 081 547 1096.

[Ed]

ORDER FULFILMENT

Dear Sir—I am very unhappy about your handling of readers' orders. Twice in the past year I have had to wait almost eight weeks before I received the PCBs I ordered. Compared with the speed with which some of your advertisers turn around orders yours is snail's pace. Can't something be done about that, as I'm sure I'm not the only sufferer.

What makes matters worse is that in spite of the delays you cashed my cheque immediately on one occasion and credited my credit account on the other long before I received the goods.

I feel that that is an unfair (even illegal?) practice.

P. Fairclough, Edinburgh.

We try to adhere to the undertaking given in our Terms of Business that "Although every effort will be made to dispatch your order within 2–3 weeks from receipt of your instructions, we can not guarantee this time scale for all orders." Note that we say 'dispatch', not 'deliver', as we can not be responsible for the postal services in readers' area or country. All goods are now sent by 'Recorded Delivery'.

All customers' orders are handled by our central computer processing and stores department in the Netherlands; to avoid delay, they are transmitted daily by fax from London over the world. Note that NO STOCKS are held at our London offices.

At the time of transmission, my office manager in London knows whether an item is available or not. If not, the customer is advised immediately. Unfortunately, what can not be known at that time is that, since orders are handled in strict chronological order, it may happen that stocks of a particular item have run out by the time certain orders for that item are being processed. This sometimes causes a delay of 2–3 weeks (here we are in the hands of our suppliers), but normally much less. There is, therefore, usually no time to advise customers who may live in the UK, but equally well in New Zealand or Brazil, of the delay.

Some 50 orders are packed together and sent as one consignment from Holland to London. Unfortunately, sometimes, but not often, the consignment is delayed by customs at Dover, Harwich or London.

As you can see, it would be very difficult to organize having customers' cheques cashed, or credit card accounts credited, only say, 4–5 days before goods are sent to them from our London office. Furthermore, bear in mind that we, in common with all mail order firms, do not dispatch any orders until we have received payment (that is, customers' cheques are cashed or credit card accounts are debited) since that is our only way of avoiding bad and irrecoverable debts.

[Ed]

SWITCHBOARD

Switchboard allows all PRIVATE READERS of *Elektor Electronics* one FREE advertisement of up to 108 characters, including spaces, commas, numerals, etc. per month.

Write the advertisement, which must relate to electronics, computers and other subjects. Please include a private telephone number or name and address: post office boxes are not acceptable.

Elektor Electronics (Publishing) can not accept responsibility for any correspondence or transaction as a result of a free advertisement or for any inaccuracy in the text of such an advertisement.

Advertisements will be placed in the order in which they are received.

Elektor Electronics (Publishing) reserve the right to refuse advertisements without giving reasons or without returning them.

WANTED. Student (Audio Engineering) needs books, tools, non-working equipment. All letters answered. Postage paid on all items. Write to Mr. J. D. Reece, 12 Railway Cottages, Salton Road, Whitstable, Kent CT5 1JZ.

WANTED. IC LG3514 & 7370; TDA 5280; 28N532A, Tr 25C383. Schematic diagram Sony Model KV2555, KV1892F. Write to Reza Nazhad Soleymen, Flat 63, Tehran Regional Water Board, Town 14878, Tehran, Iran.

PEN FRIENDS sought to exchange information on electronics, computers and other subjects. Please write to Daryush Allahyarz, Khiabane Shahrom (Bhar), Dinparast Lane no. 31, 57186 Orumieh, Iran.

WANTED. Language C for Intel 8051 on IBM PC. Please write to Arman Pierre, Service des Eaux, 31600 Lherm, France.

WANTED. Circuit diagram or handbook Heathkit Audio Generator IGS218. Borrow or buy— all costs refunded. Phone B. Hayward (0385) 021 705 3583.

WANTED. UC2906/UC3906 (Unitronde). Write to Shih Chih Kuang, 118 Bedok North St. 2, #04-190 Singapore (1646); Fax +65 744-5316.

FOR SALE. Cossor CDU 150 scope. 35 MHz bandwidth, delayed timebase, dual beam. £95 o.n.o. Telephone (0484) 843161 (evenings only).

FOR SALE. Voltmeters: ammeters, RF signal generator, 2-beam scope, switches, capacitors, resistors, radio books. Mr. K. Wagg, 63 Comyn Road, Bromley, Kent BR1 2SL.

FOR SALE. Model 10C calculator Hewlett Packard with peripheral control and more. Hewlett Packard 9863A Tape Reader. £50 o.n.o. Phone (0734) 559544.

FOR SALE. Dumb terminals (2), computer chips, 280 suffix, EPROMs, etc. very cheap. Phone 081 316 6930.
160 PAGES OF "THE BEST DEALS OF THE DECADE" IN ELECTRONICS IN CRICKLEWOOD ELECTRONICS NEW 90’S FIRST EDITION CATALOGUE

Cricklewood Electronics new catalogue of the decade offers a host of new features & the usual Cricklewood benefits, including:

- One of the largest ranges of components in the UK
- Fast and Efficient same day personal service
- Very competitive prices; Quantity discounts available
- Discount vouchers included
- No minimum order

Fill in the coupon and post it with your Cheque, PO etc for £1.50 to receive your 1990 Cricklewood Electronics Catalogue and vouchers which you can use against your next purchase.

Cricklewood Electronics Ltd, 40 Cricklewood Broadway, London, NW2 3ET
Tel: 081-450 0995/452 0161 Fax: 081-208 1441 Telex: 914977
Does yours pass the screen test?

We believe ours do!!!

Precision laboratory oscilloscopes. Triple-trace 20MHz 3 channels-3 trace. XY mode allows Lissajous patterns to be produced and phase shift measured. 150mm rectangular CRT has internal graticule to eliminate parallax error. 20ns div sweep rate makes fast signals observable. Stable triggering of both channels even with different frequencies is easy to achieve and a TV sync separator allows measurement of video signals. Algebraic operation allows the sum or difference of channel 1 and 2 to be displayed. 50mV div output from CH 1 available to drive external instrument e.g. frequency counter. Also available, 40MHz triple trace oscilloscope. Similar to the model described above but with 12KV tube that is super bright even at the highest frequencies. This instrument also has a delayed sweep time base to provide magnified waveforms and accurate time interval measurements.

TOA40 (20MHz Triple Scope) £349.95
TOB40 (40MHz Triple Scope) £549.95

TEST EQUIPMENT - Choose from the extensive range featured in our new 560 page Electronics Catalogue. Available in all our shops or from WHSmith for £2.25 or £2.75 by mail. No carriage charge if ordering Catalogue only.

CREDIT CARD HOTLINE
0702 554161
PHONE BEFORE 5PM FOR SAME DAY DESPATCH

P.O. BOX 3, RAYLEIGH, ESSEX, SS6 8LR.
All items subject to availability, all items will be on sale in our shops in Birmingham, Bristol, Leeds, Hammersmith, Edgware, Manchester, Nottingham, Newcastle-upon-Tyne, Reading, Southampton and Southend-on-Sea.
Add Carriage 75p.
ALL PRICES INCLUDE VAT.