DIFFERENTIAL PROBE FOR OSCILLOSCOPES

Morse decoder

Stamp BASIC Computer

General purpose sensor monitor

80C535 Course-Part 3
Your design ideas are quickly captured using the ULTIcap schematic design Tool. ULTIcap uses Real-Time checks to prevent logic errors. Schematic editing is painless; simply click your start and end points and ULTIcap automatically wires them for you. ULTIcap’s auto snap to pin and auto junction features ensure your netlist is complete, thereby relieving you of tedious netlist checking.

ULTIshell, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTlboard. Good manual placement tools are vital to the progress of your design, therefore ULTlboard gives you a powerful suite of Real-Time functions such as, FORCE VECTORS, RATS NEST RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

Now you can quickly route your critical tracks. ULTlboard's Real-Time Design RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTlboard's powerful TRACE SHOVE and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount designs are fully supported.

If you need partial ground planes, then with the Dos extended board systems you can automatically create copper polygons simply by drawing the outlines. The polygon is then filled with copper of the desired metal. All connect pins are connected to the polygon with the thinnest metal connections and any defined gaps are respected around all other pads and tracks.

ULTIboard’s autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTlboard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease production costs. The autorouter will handle up to 32 layers, as well as single sided routing.

ULTlboard’s backannotation automatically updates your ULTIcap schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate silk screen, photo plots, dot matrix or laser and postscript prints and custom drill files.

ULTIboard, one of the leading PC-based design systems, is supplied worldwide via a network of ULTImate Technology offices and distributors. ULTlboard’s success in the professional design community is primarily due to its superior interactive functionality.

Real Time Placement Aids, Real Time Design Rule Check, Trace Remote While Move and Trace above, are all features which will dramatically reduce your design time.

Integration with ULTIcap guarantees smooth data flow between Schematic and PCB editing and the inclusion of third party netlist interfaces ensures ULTlboard will fit into any design environment.

Another of Ultimate Technology’s strengths is its flexible growth path. Users may start with a low cost ULTlboard Challenger Lite and grow, step by step, to a 32-bit Advanced system with Ripup and Retry Autorouting and Digital Simulation.

ULTImate Technology also looks after existing users, providing they have valid maintenance subscriptions they will be upgraded to a new system based on their original investment. For instance, a 1987 ULTlboard-DOS System has now been upgraded to a 32-bit Advanced system with Windows compliance and 2 Autorouters.

ULTImate Technology not only adds value to your investment in a ULTlboard system but backs it up with the highest quality support from our distributors and offices.
In next month’s issue
- 80C535 SBC extension board
- I2C bus booster
- RS485 interface
- Heat sinks – how and when to use them
- The IL300 linear optoisolator
- RC active filters
- Intelligent EPROM eraser
- Fuel consumption monitor for injection engines
and more for your continued interest

BOOK CREDIT VOUCHER. In this and the next issue we will publish a voucher that will entitle the holder to up to 30% discount on the purchase price of any Elektor Electronics book – page 67

COMPONENTS
5 Low-voltage CMOS devices
By our Editorial Staff

COMPUTERS & MICROPROCESSORS
33 COURSE: 80C535 hardware/assembly – Part 3
Software by Dr. M. Ohsmann
38 PROJECT: Stamp BASIC computer
Sources: Parallel Inc. USA & K.H. Eichler

GENERAL INTEREST
10 PROJECT: Mains signalling system – Part 2
Design by W. Hackländer and S. Furchtab
28 PROJECT: General purpose sensor monitor
Design by M. Haas
42 COURSE: Figuring it out – Part 16: More about Fourier
By Owen Bishop
62 PROJECT: TV sound-to-light unit
From an idea by B. Willaert

RADIO, TELEVISION & COMMUNICATIONS
16 PROJECT: Morse decoder
Design by Velleman NV
52 Using the double balanced mixer
By Joseph J. Carr, BSc, MSEE

TEST & MEASUREMENT
22 PROJECT: Differential probe for oscilloscopes
Design by H. Bonekamp
46 PROJECT: Low-voltage monitor
Design by J. Ruiters

MISCELLANEOUS INFORMATION
74 Buyers’ guide
69 Component ratings
7 Credits
74 Index of advertisers
69 Letters
50 New books
68 Product/Industry news
70 Readers’ services
67 Switchboard
72 Terms of Business

Low-voltage CMOS devices – p. 5

Mains signalling system – p. 10

Morse decoder – p. 16

Stamp BASIC computer – p. 38
EASY-PC, Schematic and PCB CAD

Over 18,000 Installations in 80 Countries World-wide!

Still Only £98.00!

Britsh Design Award 1989

Runs on:- PC/XT/AT/286/386/486 with Hercules, CGA, EGA or VGA display and many DOS emulations.

Design:- Single sided, Double sided and Multi-layer (8) boards.

Provides full Surface Mount support.

Standard output includes Dot Matrix / Laser / Ink-jet Printer, Pen Plotter, Photo plotter and N.C. Drill.

Tech Support - free.

Superbly easy to use.

Options:- 500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library £38, Gerber Import facility £98.

Electronic Designs Right First Time?

Integrated Electronics CAD

Affordable Electronics CAD

EASY-PC: Entry level PCB and Schematic CAD.

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III and PULSAR.

PULSAR: Digital Circuit Simulator - 1500 gate capacity.

PULSAR Professional: Digital Circuit Simulator - 50,000 gate capacity.

ANALYSER III: Linear Analogue Circuit Simulator - 130 node capability.

ANALYSER III Professional: Linear Analogue Circuit Simulator - 750 node capability.

Z-MATCH for Windows: NEW Windows based Smith-Chart program for RF Engineers.

Prices from UK£195 / US$375

For full information, please write, phone or fax:-

Number One Systems

UK/EEC: Ref. EK, HARDING WAY, ST.IVES, CAMBS., ENGLAND, PE17 4WR.
Telephone UK: 0480 461778 (7 lines) Fax: 0480 494042 International +44 480 461778

USA: Ref. EK, 1795 Granger Avenue, Los Altos, CA 94024 Telephone/Fax: (415) 968 9306

ACCESS, MASTERCARD, VISA Welcome.

ELEKTOR ELECTRONICS MAY 1994
LOW-VOLTAGE CMOS DEVICES

By our editorial staff

One sector of the electronics market continues to demand faster and more powerful personal computers. Another demands a longer life from one battery charge in case of portable computers: 2-3 hours is now a minimum. Such demands are not restricted to computers: they apply equally to portable radio receivers, radio telephones and instrumentation equipment. At the same time, the world needs a more efficient use of energy. These conflicting demands force designers of electronic components to bring out ever faster, smaller and more energy-friendly devices. A logical consequence of this is that ICs are becoming smaller and smaller. This in turn means that their dissipation becomes a problem.

All these requirements have resulted in a lowering of the traditional 5-V supply voltage to 3.3 V (JEDEC standard for mains-operated equipment). Low-voltage versions of 80386 and 680x0 processors, memories, ASICs, disc controllers, LCD controllers, data converters and regulators are already available.

This article takes a closer look at a number of low-voltage families of CMOS logic devices from Philips. Each of these families has a unique product differentiator:

- LV-HCMOS is a 3.3 V medium-speed CMOS family that is compatible with LS and HCMOS.
- LVC is a 3.3 V CMOS logic family that is compatible with FAST, ACL, QFACT and ALS.
- HLL is the world's fastest CMOS family with centre supply pinning and providing low skew, low EMI and a speed as FCT-C.
- ALVC is basically the Multi-byte™ version of HLL.
- LVT is a 3.3 V BiCMOS family that is optimized for driving backplanes and provides live insertion/auto three-state, bus hold and outputs that can handle forced 5 V. It is compatible with ABT, BCT and FCT-A.

All devices in these families operate from supplies of 1.2-3.6 V. Because of their low dissipation, these devices are eminently suitable for use in battery-operated equipment. Moreover, in view of their high speed, they are also a good choice in fast digital circuits.

Other advantages are that, because of the low supply voltage, noise levels are down and the reliability of the system increases (because of the lower mechanical stresses in the ICs).

Wide voltage range

Although JEDEC has standardized the supply voltage for mains-operated equipment at 3.3 V ±0.3 V, this does not apply to battery-operated equipment. The problem there is the large variation of the battery voltage over the life of the battery. For instance, the e.m.f. of two series-connected alkaline or carbon-zinc batteries at the end of their life is 1.8 V, while that of a NiCd battery is 1.2 V to just before it is fully discharged. Thanks to the wide range of operating voltages of the new devices, the use of dry as well as rechargeable batteries presents no problems.

Low voltage, same speed

As shown in Fig. 1, the speed of a logic component and the supply voltage from which it operates are related. The dynamic power dissipation (the static dissipation of CMOS devices is virtually nil) decreases roughly with the square of a reduction in supply voltage. Thus, an obvious method of reducing the dissipation of these circuits is a decrease of the nominal supply voltage. The relevant graph in Fig. 1 shows that the dissipation of a 3.3-V component is about 65% lower than that of a 5-V component, but is accompanied by a 20% reduction in speed. Thus, the immediate advantages of moving from 5-V to 3.3-V operation are that the speed/dissipation ratio is more than doubled, and it becomes possible to power CMOS logic from a 1-cell or 2-cell battery in portable equipment. The reduction of maximum speed may be negated, and even reversed, by the use of sub-micron technology.

LV-HCMOS family

The LV-CMOS logic family is based on HCMOS (HC) technology and is manufactured in a similar manner. Although developed primarily for operation from 3.3 V supplies, the components in this family can work with supply voltages ranging from 1.0 V to 3.6 V. With a 3.3 V supply, the speed and performance are the same as HCMOS working from 5 V. There are, therefore, no disadvantages in replacing 5 V logic components with LV-HCMOS devices.

Fig. 1. Relation between supply voltage, speed and dissipation of logic components.
LVC family

The LVC family is compatible with the F(ast) CMOS series as far as speed, output drive characteristics and pinning are concerned. It is manufactured in 6 µm CMOS technology and thus dissipates much less power than F(ast) logic devices. Although designed for operation from a 3.3 V ±0.3 V supply, the devices can be used with a supply voltage range of 1.2 V to 3.6 V, but they tend to slow down at the lower voltages. With a supply of 2 V, they provide a drive of up to 24 mA. With a 3.3 V supply, outputs can drive loads ≥ 50 Ω. Because of the sub-micron technology (0.6 µm), the propagation delay with a supply of 3.3 V is not greater than 6.5 ns. Since, with a supply of 3.3 V, the input levels may be as high as 5.5 V, this family is ideally suitable for use in 5 V or 3 V to 5 V level shifting in mixed 3 V/5 V systems.

HLL family

The HLL family is a new logic family: the world's fastest 3.3 V logic ICs. The devices are manufactured in sub-micron (0.6 µm) CMOS technology that uses two-level metal and epitaxial substrates. HLL ICs operating from 3.3 V ±0.3 V work at twice the speed of F(ast) bipolar logic. Since they are CMOS devices, they dissipate only a fraction of the power needed by bipolar components. The family is ideally suited for very high speed operation in data buses of mains-powered equipment. The sub-micron technology guarantees a propagation delay of not more than 4 ns with a 3.3 V supply. The high dynamic output drive allows transition times to be much shorter than the propagation delay. Outputs can drive loads ≥ 50 Ω. With a 3.3 V supply, the devices interface directly with TTL logic.

Table 1. Main parameters of the low-voltage CMOS logic families.

<table>
<thead>
<tr>
<th>Key parameter/feature</th>
<th>LV-HCMOS</th>
<th>LVC</th>
<th>HLL/ALVC</th>
<th>LVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature*</td>
<td>74LVxxxX</td>
<td>74LVCxxxX</td>
<td>74HLL33xxxX</td>
<td>74LVTxxxX</td>
</tr>
<tr>
<td>Supply voltage range</td>
<td>V</td>
<td>1.0 to 3.6</td>
<td>1.2 to 3.6</td>
<td>1.2 to 3.6</td>
</tr>
<tr>
<td>Output current I_{OL} mA</td>
<td>6/6</td>
<td>24/24</td>
<td>24/24</td>
<td>32/64</td>
</tr>
<tr>
<td>Quiescent current I_{CC} µA</td>
<td>80</td>
<td>20</td>
<td>80/40</td>
<td>80</td>
</tr>
<tr>
<td>Typical propagation delay: data to output ns</td>
<td>9</td>
<td>4.0</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>output-enable to output ns</td>
<td>14</td>
<td>5.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Max. ground bounce (V_{GD}) V</td>
<td>0.5</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Temperature range °C</td>
<td>-40 to +125</td>
<td>-40 to +85</td>
<td>-40 to +85</td>
<td>-40 to +85</td>
</tr>
<tr>
<td>Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full CMOS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Advanced BiCMOS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Drive capability:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135 Ω</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>50 Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective channel length:</td>
<td>2.0 µm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>0.8 µm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>0.6 µm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Corner supply pins</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Centre supply pins</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TTL level input</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TTL level output</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5 V input capability</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Forced 5 V output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live insertion</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Input bus hold</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Packages:</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SSOP</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TSSOP</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Application:</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>glue logic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>battery-powered equipment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>local bus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>super µP backplane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatible 5 V families</td>
<td>LS-TTL</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HC/HCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FAST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACL/I(Q)FACT</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>ALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCT-C</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BC/BECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCT-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product differentiator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* xxx = 245 etc, X = package code: D = SO, DB = SSOP II, PW = TSSOP I, DL=SSOP 48-56, DGG=TSSOP 48-56
** For transceivers $V_{IN, max} = V_{CC} + 0.5$ V.

Fig. 2. Propagation delay vs supply voltage characteristic.

Fig. 3. Each logic family has its own operating area.
LVT family

The low-voltage BiCMOS logic family is manufactured in 0.8 µm QUBiC technology to combine the best properties of CMOS with the best of bipolar devices. This results in very high output currents and very high speed without compromise of dissipation or noise levels. The outputs can deliver currents of up to 32 mA and sink currents of up to 64 mA. They can drive loads ≥ 35 Ω directly. The QUBiC technology guarantees propagation delays of not greater than 4 ns with a supply of 3.3 V. The devices may be used in mixed 3 V/5 V systems.

END
<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0820288-8</td>
<td>8086-2</td>
</tr>
<tr>
<td>0820287-8</td>
<td>8086-2</td>
</tr>
<tr>
<td>808581-1-2</td>
<td>286-8</td>
</tr>
</tbody>
</table>

Please see previous issues for other items & Feb/Mar 1992 issues for the United Kingdom.
MAINS SIGNALLING SYSTEM

PART 2: TRANSMITTER

Design by W. Hackländer & S. Furchtbar

Mains signalling is a method by which signals can be superimposed on mains wiring for the remote control of electrical equipment. It was first proposed by two Swiss inventors, Routin and Brown, who patented the method to control street lighting in 1896. The technique is well established and accepted in the USA, but in this country and Europe interest in it as a medium for communication has begun only in the late 1980s. This article deals with a system for use in home automation. The main advantages of the system are ease of installation, flexibility and relatively low cost (because it uses existing mains wiring.

Since the transmitter is provided with a microprocessor, the command computer need only send simple instructions. These are translated by the transmitter into switching codes for specific receivers. At the same time, the transmitter arranges for the status of each receiver to be sent back to the computer. Communication between the transmitter and computer is via a standard RS232 link.

The circuit

Several sections of the circuit—see Fig. 9—are identical to parts of the receiver circuit. For instance, modulating and demodulating of the digital signals that are transferred via the mains wiring are again effected by an NE5050. Capacitors C15 and C16 and transformer Tr2 form part of a 110 kHz transmit oscillator, whose carrier is switched on and off by the digital signal generated by IC7c. The output signal is supplied via R21 and R22 to L1 (which provides harmonics suppression), R6 (which provides impedance matching), and C12 (which provides d.c. decoupling). From there, the signal is applied to transformer Tr1 which is linked to the mains wiring via C14. Capacitor C13 and the transformer form a bandpass filter with a centre frequency of 110 kHz.

At the demodulating end, the level of the incoming signal (at pin 20) is limited by D8 and D9, which also suppress any spurious signals. In the IC, the signal is applied to an amplifier, to a band-pass filter, Tr3, C6, a low-pass filter, C11, an AM suppressor, a comparator and a bistable. Finally, it is available at pin 11.

The power supply is conventional: a mains transformer, Tr3, bridge rectifier, D8-D11, buffer capacitor, C18, and two regulators, IC11 and IC12. The first regulator, IC11, provides a direct voltage of 12 V, from which IC12 derives a direct voltage of 5 V. Moreover, a direct voltage of 9 V (for the decoder/encoder, IC1) is provided by R11-D3.

Circuit IC4 is a miniature control system with a clock frequency of 12 MHz (derived from crystal X1).

Circuit IC3 organizes the addresses on the multiplexed address/data lines P00-P07. The control program for the transmitter is contained in EPROM IC6.

Optoisolators IC9 and IC10 connected to pins 10 and 11 of IC3 effect the communication between the transmitter and computer via the serial interface. They are necessary to ensure proper electrical isolation between the transmitter and equipment connected to the RS232 interface, since transformer Tr1 does not provide this. Circuit IC8 passes the data received from the computer to IC4, while IC9 sends data from IC1 to the computer.

Network D1-R3 at pin 12 of IC4 serves to indicate confirmation of receipt of data. This interrupt input is controlled by T1.

The LED at pin 15 of IC4 lights during transmission and receiving back its own data during transmission.

Network D1-R3 at pin 12 of IC4 serves to indicate confirmation of receipt of data. This interrupt input is controlled by T1.

The LED at pin 15 of IC4 lights during transmission and receiving back its own data during transmission.

Circuit IC7 and transistors T1-T3 ensure the correct switching sequence during transmitting and receiving. If, for instance, a receiver needs to be switched over, the processor provides the correct address at P1 and, via pin 14, gives the instruction for this address to be sent. Transistor T3 raises the level from 5 V to 9 V and inverts this signal. The output of IC7d then goes high, whereupon T3 conducts, so that the output signal of the modem IC is suppressed to prevent IC1 receiving back its own data during transmission.

NAND gate IC7d sets IC1 to the transmit mode via its mode input and enables IC7b. The serial data then become available at pin 17 of IC1 are passed via IC7b and IC7a and IC71, where they are modulated and applied to the mains wiring. The code is transmitted several times in succession, which is indicated by the flickering of D9, while D1 lights permanently.

After about 15 seconds, output TO of the processor goes low, which causes IC1 to switch from transmit to receive (mode input goes low. IC7b is disabled, and T3 switches off, so that the signals received by IC10 are applied to pin 16 of IC1). Two addresses monitor whether the slave reacts: that just transmitted and this address plus a '1' in the tenth position, from which the switching status of the receiver

ELEKTOR ELECTRONICS MAY 1994
becomes clear.

When, within a given period, a valid address is received four times, pin 17 of IC1 goes low. This signal is passed to pin 12 of IC4 via inverter IC7a, and level compensator/inverter T1. This is indicated by D1 going out. Confirmation of receipt of the data is then given to the computer by IC4.

Construction
Building the transmitter is simpler than the receiver. All components are housed on a generously sized printed-circuit board, which, for safety's sake, is intended for installation in a man-made fibre enclosure. The use of sockets for the ICs is recommended: this is not only convenient for the construction but also for the calibration.

Screw the backs of regulators IC11 and IC12 together with in between a U-shaped heat sink. They need not be isolated.

Provide holes in the top of the enclosure for K2 and the three 5-mm LEDs (for safety's sake, do not use 3-mm types because these may protrude from the enclosure). Provide a hole in one of the shorter

Fig. 9. Circuit diagram of the mains signalling transmitter.

MAINS SIGNALLING SYSTEM - PART 2
side for mains cable (use a strain relief) entry.

Do not yet place the ICs into their sockets; this should be done during or after calibration.

Calibration

The transmitter and one receiver are required for calibration. Make sure that the ground of the units is connected to the mains earth. Stick insulating tape over all PCB tracks that carry mains voltage to prevent them being touched by accident. It is better to screw the transmitter board to the bottom inside of the enclosure, which effectively prevents any of the mains-carrying tracks to be touched.

Begin by checking that all supply voltages at the IC sockets are as specified (do not insert the test prods into the socket terminals to prevent these losing their elasticity).

When the voltages are correct, switch off the mains and insert IC10 into its socket. Temporarily interlink pin 19 and pin 1, whereupon a sine wave at an amplitude of about 9 Vpp should appear on an oscilloscope connected to pin 16. Measure the frequency of this signal with a frequency meter and adjust to 110 kHz by turning the core of Tr2 with a plastic screwdriver. If a frequency meter is not available, use a long-wave radio receiver (preferably with digital dial). Tune the radio to 330 kHz (3rd harmonic of 110 kHz), place it close to the transmitter (in a position where the 50 Hz mains hum is not or least noticeable) and turn the core of Tr2 for minimum noise output of the radio. Next, connect the oscilloscope across Tr1 (at the side with the centre tap) with...
the oscilloscope ground to the +12 V terminal: disconnect the mains earth from the unit earth, since the ground of the oscilloscope is normally also connected to the mains earth. Adjust the core of Tr1 for maximum signal level on the oscilloscope.

Then, connect the oscilloscope to pin 3 or pin 6 of IC10, where a square wave at an amplitude of about 0.5 V and a d.c. offset of around 4.5 V should be available.

Next, connect the oscilloscope to pin 4 or pin 5, where a sine-wave-like signal with a sort of cross-over distortion should be present. Adjust the core of Tr3 so that the distortion peaks are symmetrical around the cross-over points. It will probably not be possible to obtain the same picture at pin 4 as at pin 5, but try to make them as identical as feasible.

Disconnect the link between pin 1 and pin 19 and insert the remaining ICs into their sockets and close the case.

In the receiver, take all ICs from their sockets and check the supply voltages. When these are all correct, insert IC2 into its socket and carry out exactly the same procedure as just described for IC10 in the transmitter.

Insert the other ICs into their sockets. With the use of jump leads, set the desired address on K1: the numbering is binary - no jumper at K1 gives address 0 and seven jump leads give address 127.

For instance, address 1 (decimal) requires a jump lead on K1 at the side of pin 1 of IC5 (call this connection 1); address 100 (decimal), i.e., binary 1100100, needs jumpers on connections 3, 6 and 7. Mark the address on the outside of the case for future reference. Close the case.

Taking into use

Insert the receiver into a mains outlet and connect a mains-operated apparatus to it. At this stage, it is advisable to keep the receiver in sight.

Insert the transmitter into a different mains outlet and connect it to the computer via a serial cable of which all wires are linked 1:1, that is, not with the send and receive lines crossed as in a standard serial cable.

Start the program on the computer with the aid of diskette Ref. 1913 (see Parts List). The computer monitor shows an operating panel on which with the mouse or the keyboard (Alt plus underlined character) a COM port may be selected. It is also possible for a relay number to be keyed in, whereupon the software can switch over the relay. The remainder of the procedure is shown on the monitor.

It is also possible to send instructions manually to the transmitter with the aid of a communication program such as Telemate, Unicom or Procomm. The transmitter recognizes the following:

- **R** (52hex) - reset transmitter (the program in the transmitter starts from the beginning).
- **C** (43hex) - clear status transmitter (only status bits are reset).
- **T** (54hex) - switch over the receiver: after the T, the address (0-127) of the relevant receiver must be sent as a byte.
- **S** (53hex) - demand status transmitter: in this case, the transmitter sends back a byte containing the following data: bit 0 - receiver status (0 = relay not actuated; 1 = relay energized). This is valid only if reception was correct.
 - bits 1-3 - not used.
 - bit 4 - syntax error: the command sent by the computer is not recognized.
 - bit 5 - time out of 20 s: the bit becomes '1' if during this time no answer from the receiver has come in.
 - bit 6 - busy write: this is high during the period when the transmitter is waiting for an answer from the receiver.
 - bit 7 - busy read: this high during the period when the transmitter is waiting for an answer from the receiver.

It is, of course, possible for an individual program that uses these commands to be written in, say, Pascal or BASIC.
Parts list

Resistors:
- \(R_1 = 180 \, \text{k}\Omega \)
- \(R_2, R_5, R_6, R_{12}, R_{16} = 2.2 \, \text{k}\Omega \)
- \(R_3 = 3.9 \, \text{k}\Omega \)
- \(R_4, R_6, R_{10}, R_{14} = 10 \, \text{k}\Omega \)
- \(R_8, R_{18}, R_{19} = 5.6 \, \text{k}\Omega \)
- \(R_{11} = 180 \, \Omega \)
- \(R_{13} = 4.7 \, \text{k}\Omega \)
- \(R_{15} = 390 \, \Omega \)
- \(R_{17} = 1 \, \text{k}\Omega \)
- \(R_{20} = 47 \, \Omega \)
- \(R_{21, R_{22}} = 10 \, \Omega \)

Capacitors:
- \(C_1 = 220 \, \text{pF}, \text{polystyrene} \)
- \(C_2, C_5, C_{19}, C_{20} = 10 \, \text{pF}, 16 \, \text{V}, \text{radial} \)
- \(C_3, C_4 = 33 \, \text{pF} \)
- \(C_6, C_{16} = 2.2 \, \text{nF}* , \text{pitch 5 mm} \)
- \(C_7, C_9, C_{17}, C_{21} - C_{24} = 100 \, \text{nF}* \)
- \(C_8 = 10 \, \text{nF} \)
- \(C_{10}, C_{11} = 4.7 \, \text{nF} \)
- \(C_{12} = 470 \, \text{nF} \)
- \(C_{13} = 6.8 \, \text{nF} \star \)
- \(C_{14} = 470 \, \text{nF}, 630 \, \text{V} \)
- \(C_{15} = 12 \, \text{pF} \)
- \(C_{18} = 220 \, \mu\text{F}, 35 \, \text{V}, \text{radial} \)
- \(* = \text{polypropylene (MKT)} \)

Inductors:
- \(L_1 = 390 \, \mu\text{H} \)

Semiconductors:
- \(D_1 = \text{LED}, 5 \, \text{mm}, \text{yellow} \)
- \(D_2 = \text{LED}, 5 \, \text{mm}, \text{green} \)
- \(D_3 = \text{zener}, 9.1 \, \text{V}, 1 \, \text{W} \)
- \(D_4 = \text{LED}, 5 \, \text{mm}, \text{red} \)
- \(D_5 = 1N4148 \)
- \(D_6, D_7 = BZT03/C15 \)
- \(D_8 - D_{11} = 1N4001 \)
- \(T_1, T_3 = BC547 \)
- \(T_2 = BS170 \)
- \(T_4 = BC557 \)

Integrated circuits:
- \(\text{IC}_1 = \text{MM53200N (National Semiconductor)} \)
- \(\text{IC}_2 = \text{ULN2803} \)
- \(\text{IC}_3 = 74HCT541 \)
- \(\text{IC}_4 = 80C31 \)
- \(\text{IC}_5 = 74HCT573 \)
- \(\text{IC}_6 = \text{EPROM Ref. 6371 (see p.70)} \)
- \(\text{IC}_7 = 4093 \)
- \(\text{IC}_8, \text{IC}_9 = \text{CNY65} \)
- \(\text{IC}_{10} = \text{NE5050N (Philips/Signetics)} \)
- \(\text{IC}_{12} = 7805 \)

Miscellaneous:
- \(K_1 = 2\text{-way terminal block, pitch 7.5 mm} \)
- \(K_2 = 9\text{-pole male D connector, right-angled for PCB mounting} \)
- \(X_1 = \text{crystal}, 12 \, \text{MHz} \)
- \(T_{r1} = \text{transformer T1001} \)
- \(\text{Tr}_{2, \text{Tr}_{3}} = \text{transformer 4201} \)
- \(\text{Tr}_4 = \text{mains transformer, 15 V, 3 VA} \)
- \(\text{Tr}_5, \text{Tr}_6 = \text{Velleman 1150038M (Maplin)} \)
- \(\text{Tr}_7 = \text{BZT03/C15} \)
- \(\text{Tr}_8 - \text{Tr}_{11} = 1N4001 \)
- \(\text{T}_1, \text{T}_3 = \text{BC547} \)
- \(\text{T}_2 = \text{BS170} \)
- \(\text{T}_4 = \text{BC557} \)
- \(\text{IC}_1 = \text{MM53200N (National Semiconductor)} \)
- \(\text{IC}_2 = \text{ULN2803} \)
- \(\text{IC}_3 = 74HCT541 \)
- \(\text{IC}_4 = 80C31 \)
- \(\text{IC}_5 = 74HCT573 \)
- \(\text{IC}_6 = \text{EPROM Ref. 6371 (see p.70)} \)
- \(\text{IC}_7 = 4093 \)
- \(\text{IC}_8, \text{IC}_9 = \text{CNY65} \)
- \(\text{IC}_{10} = \text{NE5050N (Philips/Signetics)} \)
- \(\text{IC}_{12} = 7805 \)

*Further information on the general aspects of mains signalling may be obtained from the BEAMA Interactive and Mains Systems Association, Leicester House, 8 Leicester Street, London WC2H 7BN. Telephone 071 437 0678. Fax 071 437 4901.

In general, for domestic applications, the level of the signal signal applied across the mains wiring must not exceed 116 dB pV (631 mV). Measured across the line or neutral terminal and ground, the level must not exceed 316 mV (110 dB µV). The specified impedance must be 50 Ω.

Third harmonic spurious radiations must not exceed 57 dB pV (0.7 mV).

EN 50 065-1 specifies a frequency range of 95–125 kHz.

In practice, these requirements mean that only small energy levels may be applied across the mains wiring. This in turn means that the receiver must be fairly sensitive and that spurious signals and the 50 Hz mains hum must be suppressed adequately. Moreover, as extra precautions, switching instructions must be sent several times, while at the receiver, received codes are compared several times.
The document provides information on various electronic products, including amplifiers, mixers, and speakers. It mentions features like switchable faders, DIL switches, and advanced 3-way stereo active cross-over. Prices are listed for different models, ranging from £49.99 to £175.00, with specifications such as power ratings, frequency response, and sensitivity. The text also highlights products suitable for professional users and includes details on ordering and delivery. The overall content is technical and informative, focusing on the features and specifications of the products.
MORSE DECODER

Some of you may call them hopelessly old-fashioned, but they can still be heard at many frequencies when tuning across the short-wave bands, those unsurpassed long and short tones used to convey messages by radio. Telegraphy, or morse, still exists in the face of the tremendous strides that have been made in modern communication technology. The morse decoder described in this article is available as a kit from Velleman distributors, and enables those cryptic tones from your communication receiver to be deciphered, and turned into text on a liquid crystal display.

The circuit

The circuit diagram of the morse decoder is given in Fig. 1. Broadly speaking, the schematic may be divided into three parts. The circuit around IC2 turns the morse signal into a digital pulse train. The digital circuit around microcontroller IC1 turns the digital pulses into text which can be read on a liquid crystal display (LCD). The display used is capable of showing up to 16 characters on one line.

The third section of the circuit is the power supply, which consists of a mains transformer (2×8 V at 150 mA), a double-phase rectifier, and an integrated 5-V regulator. Obviously, the transformer may be replaced by a suitable mains adaptor with an output voltage of between 9 and 12 V.

The input stage of the morse decoder is simple, but effective. The analogue signal picked up by the electret microphone is applied to the input of IC2 via a coupling capacitor. The XR2211 in position IC2 is an integrated FSK (frequency-shift keying) demodulator/tone decoder from Exar. As shown by the internal block diagram in Fig. 2, this IC contains all components needed to use it as a tone decoder.

The design of a tone decoder should take into account the wide frequency spread of the morse tones. The actual frequency of the morse tones produced by the communication receiver is never fixed because it depends on the exact tuning and, in some cases, the BFO (beat frequency oscillator) setting. Hence, the frequency to which the tone decoder responds is made adjustable. This adjustment is carried out with potentiometers RV3 (frequency) and RV4 (lock range). Components C4, R11 and RV3 turn the VCO (voltage controlled oscillator) contained in the XR2211 into a variable frequency oscillator. The detector, another sub-circuit of the XR2211, compares the frequency of the oscillator output signal with that of the morse tones picked up by the microphone. Since the frequency of the morse tones can vary considerably, a certain capture range is provided, the span of which is determined by R9 and RV4. With the component values shown, the decoder is capable of locking on to frequencies between 77 Hz and 240 Hz with RV3 set to minimum. This capture range is changed to 550 Hz to 1720 Hz with RV3 set to maximum.

MORSE or telegraphy code is a communication method developed at a time when it was impossible to convey speech reliably over large distances using radio links. The morse transmitter is the simplest type of transmitter in existence because basically it is switched on and off by a morse key. Using a relatively simple protocol, the 26 letters in the alphabet, numbers 0 through 9, and a number of punctuation signs, are encoded into a series of short and long tones, which are often called ‘dots’ (short tones) and ‘dashes’ (long tones).

Morse transmissions can be received in the short-wave and long-wave bands using a communication receiver fitted with a narrow IF (intermediate frequency) filter and a beat frequency oscillator (BFO). To the uninitiated, morse code is just a series of meaningless tones. Experienced morse operators (or ‘telegraphists’), however, are capable of copying messages from very weak signals buried under a lot of interference. Meanwhile, they will chat with you, write down the message and smoke a cigarette. This proficiency level and skill is impossible to achieve without training and years of experience. Not surprisingly, many amateurs prefer the automated solution, for which the present morse decoder is the perfect companion.
maximum. In both cases, the lock range pot, RV4, is set to maximum. The adjustment of the two potentiometers can be optimized as soon as a morse transmission is picked up, and the first characters start to appear on the LCD. The two adjustments serve to minimize the decoder's susceptibility to noise, which is unfortunately inherent to radio signals.

The sensitivity of the decoder is adjusted with RV2. It is recommended to use the lowest possible sensitivity which allows a good degree of acoustic coupling to be achieved. As with the previously mentioned frequency and lock range adjustments, this helps to keep the distorting effect of noise sources beleaguering the morse signals to a minimum. If desired, R1, RV2 and the microphone may be omitted, and replaced by a simple input stage with a resistor of 47 kΩ to ground. This allows the decoder to be connected directly to the receiver's line output.

Apart from to the LED driver, T1, the morse signals are also applied to the input of microcontroller IC1. The controller runs at a clock of 6 MHz, and turns the serial datastream at its input into corresponding parallel codes which can be recognized by the LCD. Preset RV1 serves to set the LCD contrast for the best legibility/brightness trade-off, which will take you only half a minute or so to find.

The microcontroller used here is a Type 8748 from Intel's MCS48 family. The 8748 has on-board RAM and ROM. The decoder software is located in ROM, and has been developed by Velleman N.V.

Components R10 and C11 supply the microcontroller with a reset signal at power-on. Diode D1 ensures that capacitor C11 is discharged rapidly when the circuit is switched off. Capacitor C11 has a value of 10 μF in the kit supplied by Velleman. Based on practical experience, we recommend changing this into 100 μF to ensure a more reliable reset.

Construction

Assembling the decoder is easy using the components and the printed circuit board contained in the kit. The track layout and component mounting plan of the printed circuit board designed for the morse decoder are shown in **Fig. 3**. Construction is straightforward, and no problems are expected to arise if you work carefully. The LC display module is fitted on to

Fig. 1. Circuit diagram of the morse decoder, which is available as a kit through Velleman distributors.

Fig. 2. Internal organization of the XR2211 FSK demodulator/tone decoder (courtesy Exar).
Fig. 3. Track layout (reflected) and component mounting plan of the single-sided PCB included in the kit.

Fig. 4. Completed morse decoder. If desired, the unit may be built into a suitable case.

COMPONENTS LIST

Resistors:
- R1 = 150Ω
- R2 = 100kΩ
- R3, R4 = 470kΩ
- R5, R6, R7 = 4kΩ
- R8 = 47kΩ
- R9 = 10kΩ
- R10 = 1kΩ
- R11 = 15kΩ
- R12 = 330Ω
- RV1 = 5kΩ preset
- RV2 = 500kΩ preset
- RV3 = 25kΩ preset
- RV4 = 100kΩ preset

Capacitors:
- C1, C2 = 15pF
- C3 = 10nF
- C4 = 33nF
- C5, C6 = 47nF
- C7, C8, C9, C10 = 100nF
- C11 = 100μF 16V
- C12 = 470pF 16V

Semiconductors:
- IC1 = programmed 8748 (supplied by Velleman: order no. VK2659)
- IC2 = XR2211
- VR1 = 7805
- T1 = BC557
- D1 = 1N4148
- D2, D3 = 1N4001
- LD1 = LED red

Miscellaneous:
- Mic = M300 or CM-105-8.
- X1 = quartz crystal 6MHz
- Tr1 = 2x9V/4.2VA (e.g. Velleman 2090050M).

One 1-line, 16-character LCD module, HLM1615 or Hitachi LM020L.

Kits for the morse decoder are available from

Maplin Electronics, P.O. Box 3, Rayleigh, Essex SS6 2BR. Tel. (0702) 554161, fax (0702) 553935.

Cirkit Distribution Ltd., Park Lane, Broxbourne, Herts EN10 7NQ. Tel.: (0992) 444111, fax (0992) 464457.

Apply power, and check that the display is connected to the board via short lengths of flexible wire. Insert the spindles into the three presets on the board, and connect the microphone via a short length of screened wire, so that it can be mounted close to the receiver’s loudspeaker.

One-line, 16-character LCD module, HLM1615 or Hitachi LM020L.

Apply power, and check that the display is connected to the board via short lengths of flexible wire. Insert the spindles into the three presets on the board, and connect the microphone via a short length of screened wire, so that it can be mounted close to the receiver’s loudspeaker.

Apply power, and check that the display is connected to the board via short lengths of flexible wire. Insert the spindles into the three presets on the board, and connect the microphone via a short length of screened wire, so that it can be mounted close to the receiver’s loudspeaker.

Apply power, and check that the display is connected to the board via short lengths of flexible wire. Insert the spindles into the three presets on the board, and connect the microphone via a short length of screened wire, so that it can be mounted close to the receiver’s loudspeaker.
Morse, a simple code

The morse or telegraphy code was developed to convey messages over radio and telegraph wire links with a very limited bandwidth. Apart from the complete alphabet, the code set also includes numbers and a couple of punctuation signs. The complete morse alphabet was developed by Samuel Morse, who lived from 1791 to 1872. This American is also the inventor of the writing telegraph (1837). All morse codes are a combination of two elementary characters: a dot (.) and a dash (—). The dot has a length of one time unit, the dash, a length of three units. The length of the pause between a dot and a dash, but also between a dot and a dot, and a dash and a dash, is fixed at one unit. The length of the pause between letters, numbers or signs equals three units. Similarly, the pause between words or number groups equals six (or seven) time units. The actual length (say, in ms) of the time unit is not defined, and is merely a relative indicator of the transmission speed. In most cases, however, a time unit is simply equal to a dot.

<table>
<thead>
<tr>
<th>Letters</th>
<th>Punctuation signs</th>
<th>Special codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>D</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>E</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>F</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>G</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>H</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>I</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>J</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>K</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>L</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>M</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>N</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>O</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Q</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>R</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>S</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>T</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>V</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>W</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Y</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Z</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

play reads 'Velleman kit'. This indicates that the hardware is operational. Switch off again.

Adjustment

Before you can start adjusting the various controls on the morse decoder, it is necessary to tune to a strong, clear, morse transmission. In many cases, these can be picked up from Coast Guard and similar utility stations transmitting at countless frequencies across the short-wave bands. The prototype of the kit assembled in our design laboratory was tested with the morse signals received from Scheveningen Radio (PCH20) coast guard on 4,250 kHz. Set the receiver to CW mode, or SSB using the BFO, and adjust the tuning until the morse tones sound as clear as possible. Some background noise is normal and no cause for alarm. In any case, make sure you use a good antenna, and select a station which remains on the air for some time (in most cases, that will be a utility station, not a radio amateur).

Next, switch on the morse decoder. After the test message 'Velleman kit', the decoded text should scroll along horizontally across the display. Using the LED as an indicator, the best possible adjustment of the tone frequency and the lock range will soon be found. Reduce the receiver volume, or the decoder sensitivity, if the LED appears to light continuously, since that indicates that the circuit is being overdriven. If the LED is nearly always out, the microphone does not pick up enough signal, and the acoustic coupling should be examined.
SURVEILLANCE
PROFESSIONAL QUALITY KITS

No. 1 for Kits

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only directly from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter
Smallest room transmitter kit in the world! Incredible 10mm x 20mm including mic. 3-12v operation. 500m range. ...£16.45

XTX Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter Just 17mm x 17mm including mic. 3-12v operation. 1000m range ...£13.45

STX High-performance Room Transmitter
Hi performance transmitter with a buffered output stage for greater stability and range. Measures 22mm x 22mm including mic. 6-12v operation, 1500m range ...£15.45

VT500 High-power Room Transmitter
Powerful 250mW output providing excellent range and performance. Size 20mm x 40mm. 9-12v operation. 3000m range ...£11.45

VXT Voice Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size 20mm x 67mm. 9V operation. 1000m range. ...£10.45

HYV400 Mains Powered Room Transmitter
Connects directly to 240V AC supply for long-term monitoring. Size 30mm x 35mm. 500m range. ...£13.45

SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size 20mm x 67mm. 9V operation. 1000m range ...£16.45

SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled to requires SCDM connected to receiver. Size 32mm x 37mm. 1000m range. ...£13.45

STX High-performance Room Transmitter
Hi performance transmitter with a buffered output stage for greater stability and range. Connects to line (anywhere) with switches on and off with phone use All conversations transmitted. Powered from line. 1000m range ...£10.45

STLX High-performance Telephone Transmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1500m range ...£16.45

CDX900 Signal/Eng Tracking Transmitter
Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000m. Size 25mm x 63mm. 9V operation ...£32.45

CD400 Packet Bug Detector/Locator
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tone increase as you approach signal. Gain control allows pinpointing of source. Size 45mm x 54mm. 9V operation. ...£30.95

CD600 Professional Bug Detector/Locator
Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFIRM mode to distinguish between localised bug transmission and normal legitimate signals such as pages, cellular, taxis etc. Size 70mm x 100mm. 9V operation ...£60.95

QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our ORX180 kit (see catalogue). Size 20mm x 67mm. 9V operation. 1000m range ...£40.95

QLX180 Crystal Controlled Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. 20mm x 67mm. 9V operation. 1000m range ...£40.95

QX180 Line Powered Crystal Controlled Transmitter
As per QLX180 but draws power requirements from line. No batteries required. Size 32mm x 37mm. Range 500m...£35.95

QX180 Crystal Controlled FM Receiver
For monitoring any of the '0' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Output to headphones. 60mm x 75mm. 9V operation. ...£60.95

A build-up service is available on all our kits if required. UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add £5.00 per order for shipment. Credit card orders welcomed on 0827 714476.

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCs.

SUMA DESIGNS

DEPT. EE
THE WORKSHOPS, 95 MAIN ROAD, BAXTERLEY, NEAR AHERSTONE, WARWICKSHIRE CV9 2LE
VISITORS STRICTLY BY APPOINTMENT ONLY

Tel: 0827 714476
Fax: 0827 714476

ELEKTOR ELECTRONICS MAY 1994
TEST and MEASURE with your COMPUTER.

Oscilloscopes

Spectrum

Handyscope

PRINTER PORT
BUS SLOT
MULTI INSTRUMENTS
COLOUR SOFTWARE

Multimeter

Transient

For more information on the HANDYSCOPE and other data acquisition instruments please contact...

INSTRUTEK (UK)
TEL: (0480) 460028 FAX: (0480) 460340.
The probe described overcomes several of the shortcomings of the probe supplied with many oscilloscopes. It is a 10:1/100:1 design that enables floating measurements to be carried out. Its presettable attenuation to 10 V or 100 V and its facility for floating measurements makes it also suitable for measuring high voltages.

When the resistive or capacitive load connected to many oscilloscopes is too large, serious measurement errors may occur. Moreover, the voltage range on many oscilloscopes is limited to 5 V graticules, so that the maximum voltage that can be measured is 40 V. This is, of course, improved by the supplied 10:1 probe to 400 V, but even this is inadequate for many applications. Another problem with a number of oscilloscopes is created by the external (mains) earth being permanently connected to the ground of the instrument. Since, moreover, the equipment on which measurements are carried out is often also connected to the mains earth, a potentially dangerous situation may arise when very high voltages are measured. This also means that measurements are always referred to earth: in mains-operated apparatus it is virtually impossible to measure the potential between two random points.

Differential measurements
Measurements not referred to earth can be made only by using a differential probe. Such a probe has two prods, each of which 'floats' with respect to earth. An accurate differential amplifier/buffer ensures that the probe is provided with the true potential difference between the prods. Differential probes with presettable attenuator are commercially available, but tend to be fairly expensive. The present probe is considerably less so.

Since the probe must not noticeably load the equipment on test, its input resistance is high and its input capacitance low. Moreover, the input is frequency compensated to ensure that linear performance is obtained over a wide frequency range. The attenuator networks for each prod are as nearly equal as possible. Moreover, the common-mode suppression is high.

The circuit
The circuit—see Fig. 1—is based on special dual differential amplifier I^C_1. This is a wide-band device that provides accurate processing of a differential input signal. Moreover, it attenuates common-mode signals up to very high frequencies. Basically, it consists of two separate differential amplifiers followed by a common buffer. Pins 1 and 2 respectively form the +ve and -ve inputs of one and pins 3 and 4 those of the other. The common output is available at pin 7. Feedback network R_10 - R_11 fixes the amplification at x2. The potential divider at pin 4 ensures accurate compensation of the d.c. offset (owing to the offset current, the value of R_9 is equal to that of R_10 and R_11 in parallel).

The attenuator networks are situated between I^C_1 and connector K_1 (to which the test prods are connected). They consist of precision resistors R_1 - R_7. Frequency compensation is provided by capacitors C_1 - C_8. With values as specified, the input resistance is about 2 MΩ and the input capacitance around 2.5 pF. Moreover, the specified values ensure that the time constants in the probe are determined by the actual components rather than by parasitic effects.

Since for good common-mode suppression equality of the networks is imperative, one has a fixed 10-Ω resistor (R_9), whereas the corresponding (20-Ω) resistance in the other is variable (P_1). This arrangement makes it possible for any measurement error to be nullified.

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>100:1 or 10:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_9</td>
<td>2 MΩ (approx)</td>
</tr>
<tr>
<td>C_9</td>
<td><2.5 pF (without test leads)</td>
</tr>
<tr>
<td>U_in (differential)</td>
<td>450 V peak: 450 V r.m.s.</td>
</tr>
<tr>
<td>U_cm (common mode)</td>
<td>700 V peak: 500 V r.m.s.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>20 MHz (100:1)</td>
</tr>
<tr>
<td></td>
<td>15 MHz (10:1)</td>
</tr>
<tr>
<td>CMRR</td>
<td>80 dB (up to 100 kHz)</td>
</tr>
<tr>
<td></td>
<td>60 dB (up to 1 MHz)</td>
</tr>
<tr>
<td>Accuracy (see text)</td>
<td>40 dB (up to 10 MHz)</td>
</tr>
<tr>
<td></td>
<td>0.6% max (100:1)</td>
</tr>
</tbody>
</table>
Moreover, variable capacitors C_4 and C_8 enable equality of the networks to be achieved at high frequencies.

Although the wanted maximum attenuation factor is 100:1, the input attenuator is set to 200:1. This is to keep the differential input voltage of IC1 within limits: the AD830 has internal limiting that comes into operation when the level of the differential signal reaches 2.3 V. As the amplification of the device is $x2$, the final attenuation is 100:1.

Because of the internal limiting in IC1, it is not possible to switch the input attenuator to 10:1 without degradation of the common-mode suppression. This is resolved by adding amplifier IC2. The amplification of this stage can be switched between 1 and 10, so that the attenuation can be switched between 10:1 and 100:1. So as to affect the bandwidth of IC2 as little as possible, the input resistance, rather than the feedback resistance, is switched (by S_1) between 1 kΩ (R_{12}) and 100 Ω (R_{12} in parallel with R_{13}).

The output impedance of the probe is 50 Ω (R_{15}) to ensure good matching to RG58 coaxial cable.

The operating voltage for the probe is provided by a standard supply. The two power lines are stabilized by regulators IC3 and IC4. Each rectifier diode is shunted by a capacitor to eliminate any spurious signals. Diode D_1 functions as an on/off indicator.

Note that each of the ICs is individually decoupled for r.f. by C_{17}-C_{18} and C_{19}-C_{20} respectively: this measure is necessary with fast devices.

As already stated, attenuator resistors R_9-R_7 are close-tolerance (0.1%) types, whereas R_9-R_{14} are precision (1%) types. This gives an overall measurement accuracy of 4.2%, which is an acceptable practical value. If maximum accuracy (0.6% in the 100:1 position and 1.6% in the 10:1 position) is required, R_9-R_{14} must also be 0.1% types. If 0.1% resistors can not be obtained, R_9-R_7 may be 1% types, but the value of R_9 and P_1 must then be increased to 100 Ω and 200 Ω respectively. This not only degrades the measurement accuracy, but may also affect the equality of the networks adversely and reduce the common-mode attenuation.

Construction

The probe, including its power supply, is best built on the printed-circuit board shown in Fig. 2. Because of the high signal frequencies likely to be encountered, mount the ICs directly on to the board: do not use sockets. A number of components must be soldered at both sides of the board. Since, for safety's sake, conductors carrying high voltages must be separated by ≥ 6 mm, remove the centre terminal of terminal block K_1. Mount S_1 directly on to the board and solder its metal case to earth.

When all components have been fitted, three tin plate screens have to be installed: one around each of the attenuator networks and one around the active circuits. These screens are shown in Fig. 2 and Fig. 3. They must be about 15 mm high and be provided with holes for ad-
justing C_4, C_8, P_1 and P_2, as well as for accepting the spindle of S_1. Solder them to pins placed in suitable positions on the board. Make sure that the distance between components and screens is not less than 6 mm. Cover the compartments so formed with a tin plate lid soldered in place.

Fit a tin plate screen (of which the edges have been bent at right angles) over the track side of the board. Cover the inside of this lid with a sheet of thin polythene to ensure that the screen does not short circuit any of the tracks or solder pads.

The board is intended to be fitted in a man-made fibre enclosure of 150x80x55 mm (6x31/8x23/16 in). The enclosure may be finished at the front and side as shown in Fig. 4.

Connect the prods to terminal block K_1 via 30 cm lengths of flexible multi-strand cable. Connect the probe to the oscilloscope via a 60 cm length of RG58 coaxial cable. Terminate this cable at one end into a BNC connector and solder the other end to pins PC1 and PC2 on the PCB.

Calibration

Calibration must be carried out with S_1 in position 10:1. It is advisable to let the probe warm up for about 15 minutes before starting the calibration.

Short-circuit both input terminals to earth. Connect the probe output to an oscilloscope or millivoltmeter set to its most sensitive d.c. range. Adjust P_2 until the d.c. (offset) measured is zero.

Interlink the input terminals and apply a direct voltage or low-frequency voltage between this link and earth. Connect the probe output to an oscilloscope or millivoltmeter set to its most sensitive d.c. range. Adjust P_1 for zero reading. This sets the **common-mode rejection ratio** (CMRR) at low frequencies.

Connect a 1 kHz square wave signal between input 1 and earth. Connect the output of the probe to an oscilloscope. Adjust C_4 until the oscilloscope shows a neat square wave. Then do the same at input 2. This sets the **frequency compensation**.

Interlink the input terminals and connect the probe output to an oscilloscope. Inject a 1 MHz sine wave signal between the linked inputs and earth. Carefully adjust C_4 and C_8 in turn until the amplitude of the signal on the oscilloscope is as small as feasible. This sets the **common-mode rejection ratio** at high frequencies. Check the setting of the frequency compensation.
Parts list

Resistors:
- R1, R2, R5, R6 = 499 kΩ, 0.1%
- R3, R7 = 4.99 kΩ, 0.1%
- R4 = 10 kΩ, 1%
- R8 = 330 kΩ, 5%
- R9 = 249 kΩ, 1%
- R10, R11 = 499 kΩ, 1%
- R12, R14 = 1.00 kΩ, 1%
- R13 = 110 kΩ, 1%
- R15 = 49.9 kΩ, 1%
- R16 = 1.2 kΩ, 5%
- P1 = 20 Ω multiturn preset
- P2 = 20 kΩ multiturn preset

Capacitors:
- C1, C2, C5, C6 = 4.7 pF, 400 V, ceramic
- C3, C7 = 390 pF, ceramic
- C4, C8 = 120 pF trimmer
- C9-C12 = 47 nF
- C13, C14 = 100 µF, 40 V, radial
- C15, C16 = 10 µF, 16 V, radial
- C17-C20 = 100 nF

Semiconductors:
- B1 = B80C1500
- D1 = LED, 5 mm, red

Integrated circuits:
- IC1 = AD830AN
- IC3 = AD844AN
- IC5 = 7815
- IC4 = 7915

Miscellaneous:
- K1 = 3-way terminal block, pitch 5 mm
 (remove centre terminal)
- K2 = 2-way terminal block, pitch 7.5 mm
- S1 = single-pole slide switch
- PC1, PC2 = solder pin
- Tr1 = mains transformer, 2x15 V, 3 VA
- Enclosure 150x80x55 mm
 (6x31/8x23/16 in)
 (for instance Bopla Type E440BB—in
 UK available from Phoenix Mecano,
 telephone 0296 398 853)
- PCB Ref.940018

Fig. 3. Completed prototype with lid removed; note the three screened boxes.

Fig. 4. Suggested side and front panel marking (not available ready made).
Low cost data acquisition for IBM PCs & compatibles

A unique range of easy to use data acquisition products designed for use with IBM compatible computers. Combined with the software they allow your PC to be used as a host of useful test and measurement instruments, or as an advanced data logger.

Installed in seconds they simply plug into the parallel port (except the ADC-16 which connects to the serial port). They are self contained, require no power supply and take up no expansion slots.

Each device comes with a comprehensive manual. C, Pascal and Basic drivers are included for users who wish to write their own software. Software supplied on 3.5" disk.

PicoScope

'Virtual instrument' software package. Storage oscilloscope with trigger, timebase, rulers and offset functions. Real time spectrum analysis with min/ max frequency and signal averaging. Multiple meters on screen (digital and bargraph).

Printer and file handling support

PicoLog

Collect, store, display and print data from 1 sample per ms to 1 per day. Record average, min/ max values or scaled values (linear, equation, table look up). Report types: monitor (with min/ max alarms), y-t graphs, x-y graphs, tabulation.

OVERSEAS DISTRIBUTORS WANTED:

TEL +44 954 211405
FAX +44 954 211880

ADC-10 single channel 8 bit

- Up to 24kHz sampling rate from a 386/33MHz machine
- 0-5V Input range
- BNC input connector allows use of standard scope probes
- 30V overload protection
- Parallel port connection

ADC-11 eleven channel 10 bit

- Up to 18kHz sampling rate from a 386/33MHz machine
- 0-2.5V Input range
- Digital output
- D25 input connector
- 30V overload protection
- Parallel port connection

ADC-12 single channel 12 bit

- Up to 18kHz sampling rate
- 0-5V Input range
- BNC input connector allows use of standard scope probes
- 30V overload protection
- Parallel port connection

ADC-16 eight channel 16 bit

- Software selectable single ended or differential inputs
- Resolution programmable between 8 and 16 bits + sign
- ±2.5V input range
- 5V reference output
- Connects to serial port

Typical application

<table>
<thead>
<tr>
<th>ADC</th>
<th>ADC</th>
<th>ADC</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC-10</td>
<td>ADC-11</td>
<td>ADC-12</td>
<td>ADC-16</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Voltmeter</td>
<td>Spectrum analyser</td>
<td>Audio sampling</td>
</tr>
<tr>
<td>Chart recorder emulation</td>
<td>Temperature measurement</td>
<td>Pressure measurement</td>
<td>Automotive monitoring</td>
</tr>
<tr>
<td>Medical research</td>
<td>Education</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prices

- ADC-10 with PicoScope: £49
- ADC-10 with PicoScope and PicoLog: £59
- ADC-11 with PicoScope: £85
- ADC-11 with PicoScope and PicoLog: £95
- ADC-12 with PicoScope: £85
- ADC-12 with PicoScope and PicoLog: £95
- ADC-16 with PicoLog: £109
- PicoLog (for ADC-10/11/12): £25
- Oscilloscope probes (x1 x10): £10

Pico Technology Ltd. Broadway House, 149-151 St Neots Road, Hardwick, Cambridge. CB3 7QJ.

TEL: 0954-211716 FAX: 0954-211880

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT.

ELEKTOR ELECTRONICS MAY 1994
8051 TOOLS

IKE51
£225
Low cost entry level In-Circuit-Emulator for the 8031/51.
Operates at 11Mhz 28k bytes of program memory, includes
many features to aid program development but uses none of
the target 8051 resources.

ICE51+
£495
Advanced emulator for the 8031/51. Operation selectable up
to 16Mhz, 64k bytes of program memory, uses none of the
target (8051) resources.

8051 "C" COMPILER
£95
MicroC51 is an integer 'C' like compiler for the MCS51
family. Easily customised for any MCS51 family variant.
High level language debugger available (£75)

8051 BOOK
£49.95
A very good text on the 8051 architecture, programming and
application. The book is supplied with free (un-supported)
IBM/PC based assembler and simulator.

Other tools available prices exclude VAT and delivery

Micro AMPS Limited
66 SMITHBROOK KILNS,
CRANLEIGH,
SURREY GU6 8JJ, UK
Tel: +44(0)483 268999
Fax: +44(0)483 268397

ELEKTOR ELECTRONICS MAY 1994

Please mention ELEKTOR ELECTRONICS when contacting advertisers

SUMMER 1993/94
CATALOGUE

NEW EDITION!

The new enlarged Catalogue is out now!

Included in this issue:

- A further 16 extra pages
- £200 worth discount vouchers
- 100's new products
- 256 pages, 26 sections, over 4000 products from
some of the worlds finest manufactures and supplies
- Expanded entertainment section with in-car amps,
speakers, crossovers and low cost disco equipment
- Further additions from Europe's leading kit
manufacture - Veillemen
- Published April 28th1994
- Available from most large newsagents or direct from
Cirkit

Send for your copy today!

£1.99
+ 30p p&p

CIRKIT DISTRIBUTION LTD
Park Lane · Broxbourne · Hertfordshire · EN10 7NQ
Telephone (0992) 448899 · Fax (0992) 471314

Further additions from Europe's leading kit
manufacture - Veillemen
Sensors and transducers are interesting electronic devices to work with, but the snag is that their output signal invariably requires a made-to-measure amplifier that enables an indicator circuit to be driven. LDRs, temperature sensors, strain gauges, they all need an amplifier with very specific characteristics. The amplifier described here is designed to handle almost any sensor signal, has adjustable switching thresholds, and will be invaluable for quick experiments with a wide variety of sensors, both polarized and unpolarized.

Design by M. Haas

Bistable

The output signal of the comparator is also used to clock a D-type bistable, IC2b. Because the D (data) input of the bistable (pin 9) is tied permanently to the +10-V supply rail, the Q output will go high on the first positive-going edge of the clock signal. The high level of Q is used to drive T2 into saturation, whereupon LED D3 lights. That condition is maintained until the circuit is reset manually by pressing switch S1. The LED so indicates that the circuit was actuated at least once, which is very useful if it is used as a sensor monitor which operates unattended for long periods. Note that such a memory function can not be obtained from the relay, because that is simply a 'slave' to the comparator output.

Inputs

The input of the sensor monitor consists of four electronic switches, IC3a-IC3d, and an oscillator built around IC1a and IC1b. The oscillator supplies a square wave signal with a frequency of

Fig. 1 is formed by the trusty 741 opamp, IC4. Here, the 741 is wired as a comparator with hysteresis. The sensor voltage arrives at the non-inverting input, pin 3, via a low-pass filter, R4-C3, which serves to suppress fast signal variations. The inverting input of the opamp, pin 2, is held at a reference level which is adjustable with preset P1. As long as the voltage on pin 3 is lower than that on pin 2, the output of the 741, pin 6, will remain low (approx. 0 V). The output swings high (to about 10 V) if the voltage on pin 3 is higher than that on pin 2.

Hysteresis is introduced by R7 and P2 which feed a small portion of the output voltage back to the input. The opamp output voltage is fed to two NAND Schmitt trigger gates, IC1e and IC1f, via low-pass filter R8-C5. The two gates are inverters, and allow a single jumper to select between a relay which is normally energized or normally off. The choice between jumper A or B depends on the comparator's output level under normal conditions, and, thus, on the type of sensor used.

The relay is driven by transistor T1 via resistor R9. LED D2 gives an extra indication of the current relay state (on or off). Since the relay coil current is greater than the maximum permissible current through the LED, the two devices can not be connected in series just like that. Shunt resistor R10 prevents a too high voltage across the LED (i.e., too much current through the device).

The relay contacts are brought out to pins on connector K2. The pin marked 'P' is the pole, while 'NO' and 'NC' mark the normally open and normally closed contact respectively.

Although the contacts of the relay mentioned in the parts list are, in principle, capable of switching the mains voltage, that should not be attempted for the sake of safety. If you still wish to switch mains operated loads, mount the relay off the board, in a separate, ABS, enclosure. For the sake of safety, use grommets and strain reliefs for the mains wiring, and isolate the relay pins with heat-shrink sleeving.
Fig. 1. The circuit consists of a comparator, a relay, and four electronic switches driven by an oscillator.

about 1 Hz. This signal is fed to bistable IC2a, which divides it by two, and provides two complementary output signals with a frequency of 0.5 Hz, and a duty factor of 0.5. These signals are available on outputs Q (pin 1) and Q (pin 2), and control the four electronic switches contained in IC3.

Assuming that output Q is high, and Q low, switches IC3b and IC3d are closed, and the other two, open. In other words, the 'left-hand' side of the sensor (which is wired to K1), is connected to the +10 V line via IC3b and resistor R3, while the 'right-hand' side is taken to ground via IC3d.

One second later, this situation is reversed: the Q output of IC2a is logic high, switches IC3a and IC3c are closed, and the other two, opened. The right-hand side of the sensor is then connected to the +10 V rail via IC3b and resistor R3, while the other side is connected to ground via IC3d. In other words, the sensor connections are 'reversed' at a rate of 0.5 Hz. The purpose of this arrangement will be discussed further on.

Low-pass filter R4-C3 prevents the comparator from noticing the opening and closing of the electronic switches (unless the sensor is a polarized type, which will also be reverted to below).

Power supply

The circuit is powered by a ready-made mains adaptor, which is safer and (in many cases) less expensive than a separate transformer. The type of adaptor required is one with a direct output voltage between 11 V and 26 V. The adaptor output is stepped down to 10 V by a three-pin fixed voltage regulator Type L4810. The more common 7810 is not used here because it would require an input voltage of at least 13 V, which means that at least 3 V is 'wasted'. By contrast, the L4810 introduces a voltage drop of only 1 V, which means that less supply power is needed.

Applications

To start with, it is, of course, possible to use two electrodes to form a sensor. This could be used to monitor the conductivity or concentration of a certain solution. Alternatively, you may want to use an LDR (light-dependent resistor), which has a high resistance in the dark, and a low resistance in the light. Consequently, the sensor voltage at the comparator input will be high in the dark, and low in the light.

A potentiometer may also be used as a positioning sensor to check the operation of a mechanical device. For temperature measurements, an NTC (negative temperature coefficient) or a PTC (positive temperature coefficient) resistor may be connected up.

The above sensors are all non-polarized. Consequently, they pass current in both directions, and may be connected both ways around. Polarized sensors may also be used. The simplest of these is created by connecting a diode in series with the previously mentioned LDR. Consequently, current can flow in one direction only. That has the following effect: as it grows dark, the sensor voltage rises to a level where the comparator toggles, and the relay is energized (or de-energized, depending on which jumper is fitted). However, as soon as the polarity of the sensor is reversed (by the oscillator and the electronic switches), the comparator will toggle again. This on/off change is repeated over and over again, so that the relay is switched on and off.
at a rate of 0.5 Hz. In certain cases, this may boost the attention drawing effect of, for instance, an alarm siren connected to the relay contacts. The 'trick' may also be applied to the previously mentioned 'positioning' potentiometer.

A photodiode forms a polarized sensor without the help of an extra diode. Photodiodes may be connected either way around, taking into account that the operation of the relay changes 180 degrees. The same may, of course, be achieved by moving the jumper to the other position, or by swapping the NO and NC relay contacts.

Construction

The artwork of the printed circuit board designed for the sensor monitor is shown in Fig. 2. Unfortunately, this board is not available ready-made through the Readers Services, so that you have to produce it yourself from the drawings given, or build the circuit on prototyping board.

The board is populated in the usual way, that is, starting with the wire links and the low-profile parts, followed by the taller parts. The ICs are fitted last.

After a careful check on the solder work and the orientation of the polarized components, the board may be fitted into suitable enclosure. The photograph in Fig. 3 shows our prototype, which may give you further ideas as regards construction. The circuit is then almost ready for use.

Adjustment

The reference voltage at the inverting input of the comparator may be varied between about 2 V and 7.3 V with preset P1. To enable the comparator to toggle, the sensor output voltage must lie in this range. Remember, the sensor forms a voltage divider together with R3 (100 kΩ). Consequently, to enable a
ELEKTOR ELECTRONICS MAY 1994

74LS109 74LS04 74LS03 74LS02 74LS01
74LS151 74LS125 74LS670 74LS51 74L5393 741_5390 741_5374 74LS279 74LS27 74LS257 74LS0241 74LS240 74LS174
38 SWG 30 SWG 14 SWG
74LS93 74LS86
All 2oz Reels
WIRE
£0.25 £0.16 £0.18 £0.31 £0.14 £0.32 £0.24 £0.24 £0.24 £1.22 £0.93 £0.89 £0.76
4043 4041 4031 4027 4024 4021 4014 4011 4009 4000 Series
4516 4508 4502 4072 4068 4567
3mm Orange LED
40163 40109 4572 4534 4532 4527
common anode
Please mention ELEKTOR ELECTRONICS when contacting advertisers
suitable switching threshold to be set, the sensor must have an impedance between about 32 kΩ and 270 kΩ. A sensor having an impedance of between 10 kΩ and 20 kΩ is, therefore, not suitable straight away, because then the voltage at the non-inverting input of the comparator can never become high enough for the comparator to toggle. If you still want to use such a sensor, you have to change the value of R₃ to satisfy the following two equations:

\[
\frac{R_{\text{sens(min)}}}{R_{\text{sens(min)}}+R_3} \times 10 \, \text{V} = 2 \, \text{V};
\]

\[
\frac{R_{\text{sens(max)}}}{R_{\text{sens(max)}}+R_3} \times 10 \, \text{V} = 7.3 \, \text{V}.
\]

Briefly, this means that the voltage divider formed by R₃ and the sensor has to be calculated again, whereupon the switching threshold and the amount of hysteresis can be adjusted with P₁ and P₂ respectively.

Correct adjustments of these two presets is awarded with good sensitive and an accurate switching point without relay 'chatter'.

Electrodes

Measuring the concentration of a saline solution is possible by measuring its conductivity. Two electrodes (for instance, copper ones) are immersed in the solution, a current is sent through them, and the voltage drop is measured. Since pure water does not conduct, the resistance formed by the solution, and therefore the voltage across the electrodes, is a measure of the concentration of 'salt' ions in the solution. Ordinary tap water conducts only because it contains a fair concentration of dissolved salts, and, therefore, many (positive or negative) ions.

The sensor monitor could be used to keep a continuous check on a certain concentration level. Unfortunately, electrolysis occurs readily if a direct current is sent through the electrodes. Electrolysis causes a number of chemical reactions to occur at the electrodes. The result is usually gas, the gradual dissolving of one electrode, and deposits of metal ions on the other electrode. Obviously, these effects can easily distort the results of the conductivity measurement.

Fortunately, the above problems are easily avoided by using alternating current instead of direct current. In practice, this minimizes the effects of electrolysis at the electrodes, provided the frequency of the current is high enough. It seems that about 100 Hz is the absolute minimum for such measurements, which means that the 0.5-Hz signal produced in the switching circuit at the input of the present monitor is wide off the mark. To change the switching frequency to about 100 Hz, the values of the timing components in the oscillator are modified as follows: \(R_1=39 \, \text{kΩ}; \, C_1=10 \, \text{nF} \). Professional instruments of this type often use a much higher switching frequency: up to 10 kHz!
Since the CCU (compare/capture unit) of the 80C535 is functionally related to interrupts in general, these two subjects are discussed alongside each other in the present course installment. When used in capture mode, the CCU enables, for instance, accurate time measurements to be performed by software. Similarly, the compare mode may be used to program a generator for variable pulsewidth signals. The timing of the CCU is arranged by Timer 2 in the 80C535. Some of the features of Timer 2 will be discussed here. Only a handful of components, and simple programs, are required to become familiar with the ins and outs of the CCU. As usual, the relevant programs may be found on your course disk.

The extended interrupt system

To some of you, some interrupts may already be familiar, for instance, those related to Timer 0 and Timer 1, and the external interrupts (P3.2=INT0 and P3.3=INT1). From the 8051/80C32 assembler course, you may also remember that individual interrupt events cause bits in the special function register TCON to be set. Provided the relevant interrupt has been enabled by setting the corresponding bits in the IEN register, an interrupt is then actually generated. In the 80C535, this system has been extended with a couple of interrupt sources. The extended architecture is shown in Fig. 5. Special attention should be drawn to the new external interrupts IEX2 to IEX6, which correspond to port bits P1.0 to P1.4 (although differently numbered). As illustrated in Fig. 6, the interrupt event then sets the corresponding bit in the 1RCON register at address 0C0H. Bits IEX2 to IEX6 are automatically cleared when the interrupt routine is finished. Alternatively, they may be set and reset via software. To be able to enable these interrupts, the relevant bits in the IENO or IEN1 register (see Fig. 7) must be set. Remember, to be able to enable interrupts at all, the EAL bit (bit 7 in IENO) must be set.

Software by Dr. M. Ohsmann

Some of you may already have noticed that the port bits of Port 1 have a number of additional functions in the 80C535. If one of these port lines is to be used as an input (which includes its use as an interrupt input), the output

![Diagram](image-url)
after a reset, so no extra programming is required. However, if the port was previously used as an output, it is recommended to return the relevant pins to 'input' (1) by explicit programming.

Fig. 6. Interrupts cause certain bits in the IRCON register to be set.

Special Function Register IEN0 (Address 0A8H)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX0</td>
<td>Enables or disables external interrupt 0, if EX0 = 0, the external interrupt 0 is disabled.</td>
</tr>
<tr>
<td>ETO</td>
<td>Enables or disables the timer 0 overflow interrupt, if ETO = 0, the timer 0 interrupt is disabled.</td>
</tr>
<tr>
<td>EX1</td>
<td>Enables or disables the timer 1 overflow interrupt, if EX1 = 0, the timer 1 interrupt is disabled.</td>
</tr>
<tr>
<td>ES0</td>
<td>Enables or disables the serial channel 0 interrupt, if ES0 = 0, the serial channel 0 interrupt is disabled.</td>
</tr>
<tr>
<td>ET2</td>
<td>Enables or disables the timer 2 overflow or external reload interrupt, if ET2 = 0, the timer 2 interrupt is disabled.</td>
</tr>
<tr>
<td>EAL</td>
<td>Enables or disables all interrupts, if EAL = 0, no interrupt will be acknowledged. If EAL = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.</td>
</tr>
</tbody>
</table>

Fig. 7. Registers IENO and IEN1 are used to enable interrupts.

Special Function Register IEN1 (Address 0B8H)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>EADC</td>
<td>Enables or disables the A/D converter interrupt. If EADC = 0, the A/D converter interrupt is enabled.</td>
</tr>
<tr>
<td>EX2</td>
<td>Enables or disables external interrupt 2 capture compare interrupt 4, if EX2 = 0, external interrupt 2 is disabled.</td>
</tr>
<tr>
<td>EX3</td>
<td>Enables or disables external interrupt 3 capture compare interrupt 5, if EX3 = 0, external interrupt 3 is disabled.</td>
</tr>
<tr>
<td>EX4</td>
<td>Enables or disables external interrupt 4 capture compare interrupt 6, if EX4 = 0, external interrupt 4 is disabled.</td>
</tr>
<tr>
<td>EX5</td>
<td>Enables or disables external interrupt 5 capture compare interrupt 7, if EX5 = 0, external interrupt 5 is disabled.</td>
</tr>
<tr>
<td>EX6</td>
<td>Enables or disables external interrupt 6 capture compare interrupt 8, if EX6 = 0, external interrupt 6 is disabled.</td>
</tr>
<tr>
<td>EXEN2</td>
<td>Enables or disables the timer 2 external reload interrupt, EXEN2 = 0 disables the timer 2 external reload interrupt. The external reload function is not affected by EXEN2.</td>
</tr>
</tbody>
</table>

Fig. 8. As with the 80C32, we are faced with a problem: since the monitor EPROM will normally reside at the address vectors for different types of interrupt routine are shown in Fig. 8. You need the following to be able to follow the 80C535 hardware/assembly course:

JOIN THE COURSE!
Interrupt request flags	**Interrupt vector address**	**Interrupt source**
IEO | 0003H | External interrupt 0
TF0 | 0009H | Timer overflow
IE1 | 0013H | External interrupt 1
TF1 | 001BH | Timer 1 overflow
RIO T10 | 0023H | Serial channel 0
TF2 EXF2 | 002BH | Timer 2 overflow ext. reload
IADC | 0043H | A/D converter
IE2 | 004BH | External interrupt 2
IE3 | 0053H | External interrupt 3
IE4 | 005BH | External interrupt 4
IE5 | 0063H | External interrupt 5
IE6 | 006BH | External interrupt 6
RI1 T11 | 0083H | Serial channel 1
CTF | 009BH | Compare timer overflow

Fig. 8. Overview of fixed interrupt vector addresses.

Timer 2: the CCU core

Before we run into a lot of confusion, it should be made clear that the 8052 and 8032 microcontrollers also sport a 'Timer 2'. Timer 2 in the 80C535, however, works in a totally different way, because it is controlled by other bits in other SFRs. The 80C535 is, therefore, not compatible with the 8052 in this respect. It is, however, compatible with the 8051, simply because the latter does not have a Timer 2.

For now, let us concentrate on Timer 2 in the 80C535. This is a 16-bit timer consisting of SFRs TL2 (address OCCH, LS counter byte) and TH2 (address OCDH, MS counter byte). The clock signal for Timer 2 can be derived from different signals. The input circuit is shown in Fig. 9. Figure 10 shows the configuration of the timer in 'reload' mode, while Fig. 11 lists the function of the bits in the T2CON special function register (at address OC8H), which serves to control Timer 2. As can be deduced from Fig. 9, the timer clock signal can be generated in four ways. The selection is made by programming bits 1 (T2I1) and 0 (T2I0) in register T2CON.

1. If both bits are at 0, the counter (timer) stops, since it is no longer supplied with a clock signal.
2. The bit combination '01' selects the so-called timer function, when the internal clock is used to clock the counter. The internal clock is the quartz crystal frequency divided by 12. Since a 12-MHz quartz crystal is used, the internal clock is a 1-MHz signal, but only if the available divide-by-two prescaler is switched off (bit 7= T2PS=0 in T2CON). If the prescaler is switched on (by setting the T2PS bit), the internal clock frequency is lowered to 500 kHz.
3. If bits T2I1 and T2I0 are given the value '10', the so-called counter function is selected, when the signal applied to the P1.7/T2 pin is used as a clock. That allows Timer 2 to be used to count external events. The counter
8051 Programming?

If you've tried this, you'll know what it's like using 8051 assembler. Admittedly, given enough time and effort, even the impossible can be accomplished.

But can your project afford to wait?

Keil C51 is very simple to use and yet yields the fastest and smallest code of any 8051 C compiler. With direct access to the 8051 cpu at a bit/register level in C, assembler programmers feel instantly at home.

C51 Professional Developer's Kit Comprises:
- Full ANSI C implementation for the 8051 family
- Near-assembler code efficiency
- Function-level optimisation
- Extensions for 80C517/80C751
- Small/Compact/Large/Banked memory support
- DScope51+ cpu simulator/debugger
- AS1 macro assembler
- 8051 Real Time Executive
- Support from official C51 User Group
- Free 8051 C Programmer's Handbook

To see how C51 takes the pain out of 8051 programming, call now for our comprehensive information pack including demonstration versions of the compiler and debugger.

Hitex (UK) Ltd
Warwick University
Science Park
Coventry, CV4 7EZ
0203 692066, FAX 0203 692131
Timer 2 in reload mode.

Fig. 10.

is clocked on the negative-going (falling) edge of the external signal. It should be noted, however, that the logic state of pin P1.7 is detected only once during every machine cycle. Consequently, the maximum count rate equals 500 kHz. Also, the ‘low’ and ‘high’ times of the input signal must have a minimum length of one machine cycle, to enable a signal edge to be detected. Remember, a machine cycle equals 12 times the quartz cycle time, i.e., one microsecond at the quartz frequency used on the 80C555 SBC.

4. If T2I1 and T2RO are both at ‘1’, Timer 2 is programmed to function as a ‘gated timer’. In this mode, too, the internal clock (with or without the T2PS prescaler) is used to clock the timer. However, the clock signal only reaches the counter if P1.7 is at ‘1’. This mode may be used, for instance, to determine the pulse/pause ratio of signals. That also concludes the discussion of the different types of signal that may be used to clock Timer 2. The T2CM bit (bit 2 in T2CON) is skipped for the moment, and we turn our attention to bits 3 and 4 in T2CON.

Timer 2 reload

A number of programming options are available to determine the program flow when Timer 2 overflows at its maximum counter state, OFFFFH, or 65535. In any case, this event causes the TF2 bit (bit 6 in the IRCON, see Fig. 6) to be set. What happens next is determined by the state of bit 4 (T2R1) and bit 3 (T2RO), which are both in the T2CON SFR. If T2R1 is at ‘0’, the so-called reload mode is disabled, and the counter simply starts at 0 again. If T2R1 is at ‘1’, Timer 2 is operated in reload mode, in which bit T2RO determines when the counter is reloaded with the value contained in the reload register pair CRCL-CRCH (compare Fig. 10). In mode 0 (T2RO = 0), the counter is loaded after the overflow. The reload value is then contained in the CRCL (LS byte: 0CAH) and CRCH (MS byte: 0CBH) register pair. If the pair contains, for example, the value OFFFFH (4), the counter counts OFFFFH, OFFFFH, OFFFFD, OFFFFE, 0FFFH, 0FFFH, and so on. If the T2R1 bit is at ‘1’, the counter is reloaded any time a negative pulse edge is detected at pin P1.5. This option is particularly useful if you want to synchronize the counter with an external signal. For instance, a phase control circuit may be realized by driving pin P1.5 with a 50-Hz signal derived from the mains. This effectively synchronizes Timer 2 with the mains frequency. At a count rate of 1 MHz (internal clock used without the prescaler), that enables a phase control circuit with a resolution of one microsecond to be realized.

If bit EXEN2 (bit 7 in the IEN1 register, see Fig. 7) is set, each reload signal edge at P1.5 also causes bit EXF2 (bit 7 in IRCON, see Fig. 6) to be set. This can be interrogated by software, while an interrupt may also be generated by enabling the relevant interrupt.

Next time: in next month’s final installment of the course we will conclude the discussion of the CCU and the Timer 2 operation using a couple of programming examples.

ELEKTOR ELECTRONICS MAY 1994
It's small, easy to program, flown in from the States, affordable, based on a RISC processor, and a real block buster when it comes to developing turnkey software in less time than you ever dreamed possible. It's the wonderful stamp-sized computer that runs BASIC. Real cute!

At first glance, the Stamp may seem fairly minimal — and in fact, it is, hence its name. But, with software that fully utilizes all available hardware, the Stamp gives you useful and powerful features — without the cost of hardware.

The Stamp has a size of about 5×2.5 cm (2×1 in.), and consists of two main components. The brain of the Stamp is a PIC16C56 microcontroller running the PBASIC interpreter developed by Parallax Inc. A 256-byte EEPROM holds a tokenized version of your BASIC program, which is read and executed by the interpreter contained in the PIC. The remainder of the Stamp is taken up by a 4-MHz resonator, a 5-V regulator, and a 9-V PP3 battery clip. Also included is a small prototyping area, which provides connection points for the Stamp's eight I/O lines, 5-V supply, unregulated supply, and ground.

The BASIC Stamp is programmed in the simple BASIC language. The language includes familiar instructions such as FOR...NEXT, IF...THEN, and GOTO, as well as SBC-specific instructions such as SERIN (serial input) and BUTTON (button input). Each instruction takes two or three bytes of EEPROM space, resulting in a maximum program size of 80 to 100 instructions. As for execution speed, programs run at the rate of about 2,000 instructions per second.

To write programs for the Stamp, you will need a Development Kit. The kit includes editor software for a PC, a cable to connect the Stamp to the PC, one BASIC Stamp, and a manual. By connecting the Stamp to your PC's parallel port and then running the editor, you can write BASIC programs and then download them to the Stamp. If you are familiar with the BASIC language, it is a matter of minutes before you have your first program running. Furthermore, a number of application notes are available free of charge from Parallax Inc. to help you become acquainted with programming the computer.

It is possible to use the BASIC interpreter developed by Parallax Inc. in your own designs. This can be achieved by purchasing 'bare' interpreter chips from Parallax Inc. at prices ranging from $5 (1,000 off) to $18 (one off). Add to that a 256-EEROM, a 4-MHz resonator and a power supply, and you can start using your own miniature BASIC computer. Applications? What about an LCD user-interface terminal, interfacing an A-D converter, a matrix keypad in/LCD screen out circuit, a servo motor driver, a pulse meter, a morse code generator, an intelligent battery charger, or a serial stepper motor controller? The list can be extended to any length, depending only on your creativity.

Circuit description

Figure 1 shows the circuit diagram of the Stamp board supplied by Parallax Inc. as part of their Development Kit. The component count is, well, low! The component locations on the board are shown in Fig. 2.

The microcontroller used is a PIC16C56XT preloaded with Parallax's PBASIC interpreter. The PIC device also contains an I/O port, a serial interface and a clock oscillator. The program memory is formed by a 93LC56...
Increase your electronics know-how and skills

Practical creativity in electronics
The speed and intensity with which electronics penetrates our daily lives at home, at work, or in our car, tends to make us forget that we can use electronics creatively by building designs with a practical application and having the satisfaction of a successfully finished project. Elektor Electronics, which is distributed all over the world, can help you achieve these goals. Throughout the year, the magazine features original construction projects, informative articles and news on the gamut of electronics, science & technology, book reviews and information on new products.

The value of an annual subscription
If you wish to increase your electronics know-how and skills, take out an annual subscription to Elektor Electronics by filling in the order form on page 71 or writing or telephoning to the address below. You will then not only have the convenience of having the magazine delivered to your home and the peace of mind that you will not miss any issue, but you will also save money compared with buying the magazine from a bookstall: the price of a subscription in Britain for the 11 annually published issues is the same as the average price of 10 issues bought from a bookstall. Rates are shown on page 72.
EEPROM which retains the BASIC program even in the absence of the supply voltage. The EEPROM has a storage capacity of 256 bytes, allowing a program of between 80 and 100 lines of BASIC to be stored.

An on-board low-drop 5-V voltage regulator allows the Stamp to be powered from any d.c source with an output voltage between 6 V and about 15 V. In most cases, a 9-V PP3 size battery will be used to power the Stamp.

The schematic shows a power-down circuit based on one transistor and three resistors. Apart from ensuring a good reset no matter how long the Stamp has been off, the reset circuit also clears the PIC microcontroller chip's reset function to operate. The Stamp offers a clever energy-saving power-down scheme which is controlled by three BASIC instructions: NAP, SLEEP and END. These allow the Stamp to 'sleep' at a current consumption of about 20 µA, while all outputs retain their logic level.

The eight I/O lines may be used for many purposes, even for resistance measurement using the BASIC 'pot' command. Each I/O line is capable of supplying up to about 20 mA. However, the total load on all lines may not exceed 40 mA.

Using the Stamp editor

The diskette in the Stamp Development Kit contains a simple editor which runs on a DOS PC. The editor offers the following functions: Run, Load, Save and Quit. Once you have the editor running, the screen is available to write your BASIC program. If you are ready to test it, download the program to the Stamp using the ALT-R (Run) command. The BASIC program is compiled by the PC, and copied to the Stamp in tokenized form via the PC’s parallel printer (Centronics) port. The progress of the download operation can be viewed as a horizontal bar, which also indicates the amount of EEPROM memory space left in the Stamp.

If the program does not function as expected, return to the editor, and change the BASIC commands as required. Simple word processing commands like cursor movement, copy, cut, paste and search/replace are available for that purpose. The syntax and program formatting rules are explained in detail in the manual that comes with the Stamp Development Kit. To save you a lot of typing, the program disk in the kit also contains 14 programs which belong with application notes published for the Stamp.

PBASIC command set

The PBASIC command set can be subdivided into eleven groups:

1. Branching
2. Looping
3. Numerics
4. Digital in/out
5. Serial in/out
6. Analogue in/out
7. Sound
8. EEPROM access
9. Time
10. Power control
11. Program debugging

In addition to the commands available most BASIC dialects, there are a number of Stamp-specific commands which allow, for instance, an external circuit to generate analogue voltages, or measure resistance values. Additionally, there are commands to generate tones, and to set up serial communication between a chain of Stamps or other ancillary circuits, in other words, a kind of network ‘on a shoestring’.

As regards variables used in the BASIC programs, the following should be observed:

- the variables area is limited to 16 bytes;
- of these, two bytes are required for the I/O lines;
- the remaining 14 bytes may be used as word variables (W0-W6) and byte variables (B0-B13). Of these, B0 and B1 (W0) may be used as bit variables 0-15. Of the two bytes used for the I/O lines, the first indicates the state of the relevant line (high or low), and the second, the direction (input or output). There are several ways of addressing individual lines, for instance, by programming Port.0, Pins.0 or Pin0. Port.8, Dir.0 or Dir0. With the rest of the variables, it should be noted that W6 is used as a software stack whenever GOSUB commands are executed.

The SYMBOL command enables you to assign names different from B0-B13 and W0-W6 to the variables. For instance:

```
symbol switch = pin0
```

Comments can be added to make the program more readable. They begin with an apostrophe (') and continue to the end of the line. The well-known REM command may be used as an alternative.

Very conveniently, labels may be used instead of line numbers to branch within the program. For instance:

```
loop: toggle pin0
goto loop
```

Finally, as regards general formats, the editor is case sensitive, except when processing strings (such as "stamp"). Multiple instructions and labels can be combined on the same line by separating them with colons (:). For instance,

```
dirs = 255 : for b2 = 0 to 100 : pins = b2 : next
```

An example application

The following application note, originally published by Parallax, Inc. as no. 2, presents the hardware and software required to interface an 8-bit serial analogue-to-digital converter to the Parallax BASIC Stamp. The application schematic is shown in Fig. 3.

The BASIC Stamp's instruction 'pot' performs a limited sort of analogue-to-digital conversion. It lets you interface nearly any kind of resistive sensor to the Stamp with a minimum of difficulty. However, many applications call for a true voltage-mode analogue-to-
Interfacing the ADC0831 requires only three input/output lines, and of these, two can be multiplexed with other functions (or additional ADC0831s). Only the chip-select (CS) pin requires a dedicated line. The ADC’s range of input voltages is controlled by the V_{REF} and $V_{IN(-)}$ pins. V_{REF} sets the voltage at which the ADC will return a full-scale output of 255, while $V_{IN(-)}$ sets the voltage that will return 0.

In the example application, $V_{IN(-)}$ is at ground, and V_{REF} is at +5 V; however, these values can be as close together as 1 V without harming the device’s accuracy or linearity. You may use diode voltage references or trim pots to set these values.

The sample program is listed in Fig. 4. It reads the voltage at the ADC’s input pin every two seconds, and reports it to the PC via a 2400-baud serial connection. The subroutine ‘conv’ handles the details of getting data out of the ADC. It enables the ADC by returning CS high. The subroutine returns with the conversion result in the variable ‘data’. The whole process takes about 20 milliseconds.

You can add more ADC0831s to the circuit as follows: connect each additional ADC to the same clock and data lines, but assign it a separate CS pin. Modify the ‘conv’ subroutine to take the appropriate CS pin low when it needs to acquire data from a particular ADC. That’s it!

The program may be downloaded from the Parallax Bulletin Board system in the USA under the file name AD_CONV.BAS. You can reach the BBS at (+1) 916 624-7101.

Who, what, where?

In addition to the BASIC Stamp Development Kit sold by Parallax Inc., Wilke Technology of Germany supply a range of products, including a compiler, an extensive hardware development system, and different types of Stamp SBC. It should be noted that these products are aimed mainly at advanced users, which is reflected by the cost. The hardware development system marketed by Wilke Technology is much more elaborate than the Development Kit supplied by Parallax.

To request information, prices, or order Stamp-related products, contact Parallax Inc., 3805 Atherton Road, #102, Rocklin, CA 95765, U.S.A. Tel. (+1) 916 624-8333. Fax: (+1) 624-8003. BBS: (+1) 916 624-7107 (300-14,400 bps; no parity; 8 data bits; 1 stop bit).

Wilke Technology products are available from Wilke Technology, Postfach 1727, Krefelder Str. 147, D-5100 Aachen, Germany. Tel. (+49) 241 154 071. Fax: (+49) 241 154 875.

In Hungary, contact Humansoft, Ltd., H-1149 Budapest, Angol u. 24/b, Hungary. Tel. (+36) 1163 2879, fax: (+36) 1251 3673.

Further distributor information may be obtained from Parallax Inc.

Note: 1. See also ‘PIC programmer’ in the March 1994 issue of Elektor Electronics.
FIGURING IT OUT

PART 16 – MORE ABOUT FOURIER

By Owen Bishop

This series is intended to help you with the quantitative aspects of electronic design: predicting currents, voltage, waveforms, and other aspects of the behaviour of circuits.

Our aim is to provide more than just a collection of rule-of-thumb formulas.

We will explain the underlying electronic theory and, whenever appropriate, render some insights into the mathematics involved.

Last month we described how the Fourier series is used to represent any periodic waveform. To recapitulate, the series consists of:

- constant (d.c.) term
- cosine terms
- sine terms.

The constant term and the coefficients of the cosine and sine terms are found by integration:

\[
A_0 = \frac{1}{2\pi} \int_0^{2\pi} y(t) \, dt \quad \text{[Eq. 123]}
\]

\[
a_n = \frac{1}{\pi} \int_0^{\pi} y(t) \cos nt \, dt \quad \text{[Eq. 124]}
\]

\[
b_n = \frac{1}{\pi} \int_0^{\pi} y(t) \sin nt \, dt \quad \text{[Eq.125]}
\]

The constant term, which equals the average value of the variable (for example, voltage) during one cycle, can sometimes be found by geometrical means. We are often able to simplify the integrations by using the standard integrals given in Box 2 of Part 15.

A frequent result of simplification is that the series for a given waveform has no cosine terms or no sine terms. Now we will look at some further ways of simplifying the calculations.

Even functions

An even function is one which is symmetrical about the y-axis. It is as if the y-axis acts as a mirror, reflecting the curve of the waveform for positive values of x on to the negative side of the axis. Figure 131 shows some examples of even functions.

Mathematically, we can express this by:

\[f(x) = f(-x). \]

If a waveform is an even function, we can say, without any need for integrations, that:

- it may or may not have a constant term;
- it has cosine terms;
- it has no sine terms.

An obvious example of an even function is the cosine waveform of Fig. 131a, which has a cosine term and no sine terms. Whether or not it has a constant term depends on whether it is superimposed on a constant d.c. level (as, for example, is the waveform of Fig. 131b). If you find that a waveform is symmetrical about the y-axis, you need not waste time by trying to evaluate the integrals of Eq. 125.

Odd functions

These are symmetrical about the origin. If we imagine the curve spun round through 180° around a centre located at the origin, it comes to lie on itself. Figure 132 shows some odd functions. The characteristic features of an odd function are:

- it has no constant term;
- it has no cosine terms;
- it has sine terms.

In short, an odd function has only sine terms. Since it is symmetrical about the origin, it can never have a constant term.

Between them, even and odd functions cover most of the waveforms we are likely to meet in electronics, but there are a few other recognizable types of waveform that yield series with distinctive features. The next two headings deal with these.

Half-wave inversion

In Fig. 133, the waveform between \(t = 0 \) and \(t = \pi \) is repeated, but inverted, between \(t = \pi \) and \(t = 2\pi \). This is known as half-wave inversion. The Fourier series for such a waveform has:

- no constant term;
- no even cosine terms;
- no even sine terms.

The effects of half-wave inversion and the kinds of symmetry are cumulative. The waveform of Fig. 133a has odd symmetry and half-wave inversion. Because it has odd symmetry (and also because it has half-
wave inversion), it has no constant term. Because it has odd symmetry, it has no cosine terms. Because it has half-wave symmetry, it has no even sine terms. We are left with a series that has only odd sine terms. By contrast, the waveform of Fig. 133b has even symmetry and half-wave inversion. It therefore has no constant term and no sine terms. It has only odd cosine terms.

Half-wave repetition

The waveform of Fig. 134 is repeated in the second half of the cycle. For such a waveform, the series has:
- possibly a constant term;
- no odd cosine terms;
- no odd sine terms.

The example here has a constant term. Removing the constant term of this example would shift the curve down, giving it odd symmetry. It therefore has only even sine terms. This rule does not necessarily eliminate the need to calculate all three of $A_0, a_n,$ and $b_n,$ but does at least provide a check that your calculations are correct.

Square waves

The waveforms we have analysed so far have all been continuous within the period 0 to $2\pi.$ Now we will tackle a waveform that has an abrupt change of level during the cycle. Figure 135 is a square wave with a mark:space ratio of 1. We have arbitrarily taken the 'high' level to be 3. This is a piecewise function and, to find the series, we have to deal with each part of the function separately. First of all, the constant term is the sum of two integrals:

$$A_0 = \frac{1}{2\pi} \int_0^{\pi} 3 \, dt + \frac{1}{2\pi} \int_\pi^{2\pi} 1 \, dt$$

In this example, the second integral has zero value:

$$A_0 = \frac{1}{2\pi} \int_0^{\pi} 3 \, dt + \frac{1}{2\pi} \int_\pi^{2\pi} 1 \, dt = \frac{3}{2\pi} [\pi - 0] = 1.5$$

This result could have more readily been obtained by inspecting the graph and noting that the average value of y is 1.5.

For the value of $a_n,$ we again integrate for both parts of the waveform:

$$a_n = \frac{1}{\pi} \int_0^{\pi} 3 \cos nt \, dt + 0$$

$$= \frac{3}{n\pi} \sin n\pi t|_0^\pi$$

$$= \frac{3}{n\pi} [\sin n\pi] = 0.9549 \frac{\sin n\pi}{n}$$

But $\sin n\pi = 0$ if n is an integer, making $a_n = 0.$ This result means that there are no cosine terms. We could have told this at the start because this is essentially an odd function, raised on a d.c. level of 1.5 (compare with Fig. 134). The constant term 1.5 simply raises it above the x-axis. If the constant term is ignored, so that, in effect, it is lowered until it passes through the origin, it becomes an odd function and has only sine terms.

Finally, we calculate b_n:

$$b_n = \frac{1}{\pi} \int_0^{\pi} 3 \sin nt \, dt + 0$$

$$= \frac{3}{n\pi} \cos n\pi t|_0^\pi$$

$$= \frac{3}{n\pi} [\cos n\pi - \cos 0]$$

$$= \frac{3}{n\pi} [\cos n\pi - 1]$$

There are two possibilities to be considered:
- when n is even, $\cos n\pi = 1,$ which makes $b_n = 0$;
- when n is odd, $\cos n\pi = -1,$ in which event $b_n = \frac{6}{n\pi} = 1.9099/n.$

The series has only odd cosine terms. This, too, might have been foreseen: when the waveform is shifted so that it is symmetrical about the x-axis, it has half-wave inversion, resulting in it having no even terms. Writing out the series:

$$y = 1.5 + 1.9099 \sin t + \frac{1}{3} \sin 3t + \frac{1}{5} \sin 5t + \frac{1}{7} \sin 7t + \frac{1}{9} \sin 9t + \ldots$$

Figure 136 shows the graph of the series when taken to the 10th harmonic ($n = 9$).

Frequency spectrum

Another way of looking at a series is to plot its frequency spectrum. This has a vertical line for each frequency, the height of the line being proportional to the amplitude of the frequency. In the series we have just calculated, the amplitude of the fundamental is 1.9099. The amplitude of the 1st harmonic is $1.9099/3 = 0.6366.$ Figure 137 shows the plot of the fundamental
44 GENERAL INTEREST

and first 10 harmonics. The even ones are missing and the amplitude of the odd ones falls away fairly rapidly. Last month we analysed a sawtooth wave before and after passing it through a high-pass filter. Figure 138 shows the frequency spectra of these waveforms; the effect of filtering is obvious.

Pulse waveforms

In Fig. 139 we have a pulse waveform, which is another example of a piecewise function. This is analysed in a similar way to the 1:1 square wave above. If we shift it $\pi/10$ to the left, the pulse begins at $-\pi/10$ and ends at $\pi/10$. It is now an even function, so its Fourier series has no sine terms. By inspection, we can tell that $A_0 = 0.3$.

For the cosine terms:

$$a_n = \frac{1}{\pi} \int_{-\pi/10}^{\pi/10} f(t) \cos n\omega t \, dt$$

If $n = 1$, then $\sin(n\pi/10) = 0.3090$; for $n = 2$ to 9, we obtain 0.5878, 0.6090, and so on to 0.3090. When $n = 10$, $\sin(n\pi/10) = 0$, so there is no 9th harmonic. The sequence of values is repeated for $n = 11$ to 20, except that they are negative. From $n = 21$ onwards the whole sequence repeats, but we are not concerned with harmonics of such a high order.

Written out as far as the 2nd harmonic, the series looks like this:

$$y = 0.3 + 1.9099 (0.3090 \sin t + 0.5878 \frac{\sin 2t}{2} + 0.6090 \frac{\sin 3t}{3} + \ldots)$$

Simplifying the coefficients, by dividing by $n (1, 2, 3, \ldots)$:

$$y = 0.3 + 1.9099 (0.3090 \sin t + 0.2939 \sin 2t + 0.2700 \sin 3t + \ldots)$$

The values of $\sin(n\pi/10)$ increase for the first few terms, so this partly offsets the effect of dividing them successively by 1, 2, 3, ... In consequence, the first few harmonics are almost as strong as the fundamental as shown in Fig. 140. This is plotted as far as the 10th harmonic (there is no 9th). Compared with the square wave of Fig. 135, as shown in Fig. 137, there is much less fall-off in the lower harmonics of this pulse wave. This property of pulse waveforms is made use of in synthesizer circuits. A pulse waveform is a strong source of harmonics which can be filtered (formant filtering) to adjust their proportions until the resultant sound has the timbre of a given musical instrument. Although the amplitude of the higher harmonics falls off more significantly, the limits of audibility are reached around the 8th harmonic. However, there is an increase of amplitude from the 10th to the 14th, which has an amplitude almost equal to that of the 7th harmonic. This illustrates the fact that unexpectedly strong harmonics may be present in pulse signals.

Other periods

The formulae described above all refer to a waveform in which one cycle takes 2π seconds. In other words, the angular velocity is unity. This corresponds to a frequency of 0.159 Hz. This is rather lower than many of the frequencies we meet in electronic circuits and, even though the analysis of different waveforms is independent of the frequency of the fundamental, there are many instances when we want to know the Fourier coefficients for a frequency that is not 0.159 Hz. Adapting the formulae to another frequency is just a matter of altering the time-scale.

The equations relating angular velocity, ω, frequency, f, and period (length of cycle), T, are:

$$\omega = \frac{2\pi}{T}$$

or

$$T = \frac{2\pi}{\omega}$$

The phase angle at any given time t is αt. The Fourier series in these conditions is the same as before, except that we replace t in the cosine and sine terms by αt. Conversely, making $\omega = 1$ restores the terms to their original form.

The formulae for the constant term is:

$$A_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \, dt$$

The formulae for the coefficients are:

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos n\omega t \, dt$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin n\omega t \, dt$$

These show the limits of integration running from 0 to T, but they can also run from $-T/2$ to $T/2$ if this makes the integration any easier.

We will derive the Fourier series for the square wave of Fig. 135, but with a period of...
0.01 s., corresponding to a frequency of 100 Hz. At 100 Hz, $T = 0.001$ and $\omega = 2\pi/0.001 = 628.3$ rad.

The average value of y is not affected by the frequency, so $A_0 = 1.5$ as before. Also, as before, we recognize this to be an odd function, so that $a_n = 0$ and there are no cosine terms. For the sine terms:

$$b_n = \frac{2}{0.01} \int_0^{0.005} \sin n\omega t dt$$

$$= \frac{-3}{0.005\pi} \left(\cos n\pi - 1\right)$$

If n is even, $\cos n\pi = 1$, and $b_n = 0$. There are no even terms. If n is odd, $\cos n\pi = -1$ and $b_n = 6/0.005\pi\omega = 1.9099/n$.

The series is exactly the same as that for the square wave of Fig. 135, except that, instead of $\sin t$, $\sin 3t$, ..., we now have $\sin \omega t$, $\sin 3\omega t$, ... The graph of the series has the same shape, except that the scale on the x-axis runs from 0 to 0.001 s. Thus, all that we have said about waveforms with a period of 2π applies with little modification to periods of other lengths.

By contrast with the slow fall-off of harmonics in pulse waveforms, there are other waveforms in which the rate of fall-off is rapid. An example is shown in Fig. 141. This is the waveform of a half-wave rectified alternating voltage. The coefficients for the cosine terms are given by the equation

$$a_n = \frac{2}{\pi\left(1-n^2\right)}$$

The denominator contains n^2 and successive coefficients (there are even terms only) are: $2/3\pi$, $2/15\pi$, $2/35\pi$, $2/63\pi$, ... The series has only a single sine term, so this has no effect on the rapid fall-off of the harmonics.

At this point we leave the discussion of the Fourier Series, having shown how to analyse many of the most commonly occurring waveforms. Often the integrations are long, and prone to error, especially with the frequent changes in sign that result from integrating functions containing sines and cosines. The rules we have discussed will help by eliminating the need for some of the integrations. When you have arrived at the equation for a series, plotting it with a graphic calculator is a rapid means of checking that it is essentially correct.

Test yourself

1. In what categories do the waveforms of Fig. 142 each belong. In each case state what elements you would expect to find in their Fourier series.

2. A sawtooth waveform with period 2π is defined by these equations:

$$y = 3t \quad 0 < t < \pi$$

$$y = 3t - 3\pi \quad \pi < t < 2\pi$$

Derive its Fourier series.

Answers to Test yourself (Part 15)

$$a_0 = 2\pi; a_n = 0; b_n = -4/n.$$

Series is: $y = 2\pi - 4\sin t - 2\sin 2t - 1.333\sin 3t - \sin 4t ...$

Filtered signal is

$u_{out} = -3.988\sin(t - 0.0608) - 1.975\sin(2t - 0.1608)$

$-1.297\sin(3t - 0.2358)$

$-0.9525\sin(4t - 0.3098)$...
LOW-VOLTAGE MONITOR

Design by J. Ruiters

During experimental work, the power supply is often variable or derived from a mains adaptor. In such cases, it is important to eliminate the risk of damaging ICs through overvoltage. The unit described in this article is intended for monitoring the supply voltage when the standard multimeter is already in use for other purposes.

Although electronic circuits on test should preferably be powered by a supply whose output voltage can be set accurately and is provided with a current limiting facility, in practice this is not always available. If a quickly put together supply is used on the test bench or with experimental work, ideally, two multimeters should be to hand: one for monitoring the supply voltage and the other for carrying out measurements on the circuit. If only one is available, the present monitor may prove useful.

The monitor is suitable for use with voltages in the ranges 2.0-6.0 V, 4.5-5.5 V, 3.0-15.0 V and one set by the user between 0 V and 14 V.

Apart from monitoring direct voltages, the unit may be used to react to sudden changes in voltages. This is, for instance, convenient for checking equipment that has a difficult-to-find, randomly occurring fault. Such equipment may be left operating on the test bench with the monitor attached. If a sudden change in voltage occurs in it, the monitor may indicate this by emitting a squeak from an optional buzzer.

The circuit—see Fig. 1—is based on two comparators: IC1a and IC1b. These measure the input voltage on terminals A and B against accurately known potentials. These reference voltages are provided by variable zener diode D1 and potential dividers R9-P2, R4-P3 and R2-R7. The zener voltage can be set accurately to exactly 2.5 V with P1. Resistor R1 is the standard series resistor that prevents the zener drawing too large a current.

Divider chain R3-R4 provides a number of fixed reference voltages, which are selected by S1.

Dividers R9-P3 and R4-P3 provide the (variable) reference voltage that is determined by the user.

If the voltage on terminals A and B rises above, or falls below, set values, D2 (red) or D3 (green) lights respectively. If the input voltage lies between two set values, the two diodes light simultaneously. It is also possible to use buzzers as indicators, which eliminates the need to keep an eye on the LEDs.

The input voltage is also applied to potential divider R9-R11 (1:6). The (scaled down) input voltage is applied to the non-inverting (+) input of IC1a and to the inverting (-) input of IC1b. When the potential at one terminal of the comparators becomes larger or smaller than that at the other input, the relevant comparator changes state. At that instant, the voltage at terminal A is exactly six times the reference voltage applied to the other terminal of the toggling comparator by S1.

To give a range over which the input voltage may be considered safe, the combi...
TEST and MEASURE with your COMPUTER.

Oscilloscopes

Spectrum

Handyscope

DUAL CHANNEL
BI-POLAR
ACCURACY 0.25%
400V peak-peak

Multimeter

Transient

For more information on the HANDYSCOPE and other data acquisition instruments please contact...

INSTRUTEK (UK)
TEL: (0480) 460028 FAX: (0480) 460340.
Comparator stages are designed in a manner which prevents their toggling at the same input level. This range with S_1 in position 1 is 2.0–6.0 V (HC/HCU ICs); in position 2, 4.5–5.5 V (HCT/TTL ICs); in position 3, 3.0–15.0 V (4xxx ICs); and in position 4 as required by the user between 0 V and 14 V. Note that section S_{lb} provides the upper reference voltages, and S_{la}, the lower ones.

Since the input voltage is applied to different terminals of the comparators, these stages behave in opposite ways. For instance, with high input voltages, the output of IC$_{la}$ is high and that of IC$_{lb}$ is low, whereas with low input voltages, the output of IC$_{lb}$ is low and that of IC$_{la}$ is high.

The divergent behaviour of the comparators affects the operation of indicator networks T_1-D_2 and T_2-D_3. When one of the comparator outputs is high, the associated transistor conducts, whereupon the allied LED lights. This means that if the input voltage is higher than the upper reference voltage D_2 lights and when it is below the lower reference voltage, D_3 lights. When the level of the input voltage lies between the two reference potentials, both LEDs light.

If it is desired to have an audible indication of voltage changes, a 0.1–1 μF capacitor (not electrolytic) must be connected in series with terminal A. The input is then taken from the equipment on test as stated earlier. The buzzer should be connected to the monitor circuit as shown in Fig. 4.

Construction

The monitor is best built on the printed-circuit board shown in Fig. 2 (not available ready made). The completed prototype is shown in Fig. 3.

The monitor may be constructed as a stand-alone unit or be built into an existing equipment. In the former case, the enclosure may be given a front panel as shown in Fig. 5 (not available ready made, but the picture may be photocopied and glued behind a transparent panel).

If a buzzer is used and it is desired that this squeaks when the input voltage is too high, connect its +ve terminal to 'x' in Fig. 4, and its –ve terminal to ground. A second buzzer may be connected to indicate too low input voltages: this should be connected between 'y' and ground. The zener diode in series with the buzzer prevents its squeaking faintly when the relevant transistor conducts.

It is also possible to use only one buzzer, which should be connected via a bridge rectifier to 'x' and 'y'. In this case, the buzzer is silent when the input voltage lies in the safe range, but it squeaks when the input goes outside this range.

It is advisable to use small buzzers that draw a current of not more than 1–3 mA (at 5–12 V).

The monitor may be powered conveniently from a mains adaptor. The supply voltage may be 4.5–15 V. At 9 V, it draws a current of about 30 mA.

When the construction has been completed, adjust P_1 to obtain a voltage of exactly 2.500 V, measured with a digital
New Innovation In Electronic CAD Software

Integrated Analogue Filter Design & Simulation

All Design Calculations Fully Automated

Network Designer Version 1.2

Features:

Filter Design
- Design Both Active & Passive Filters By Using The Filter GUI
- Includes All Popular Filter Realisations (inc Butwth & Cheby)
- Edit Circuits, Round Component Values & Set Tolerances
- Generate SPICE Netlists, Print Circuits & Component Lists

System Modelling
- Design Complex Feedback & Feedforward Systems
- Edit Transfer Function Block Names & Contents
- Implement Systems As Circuits In Seconds
- Calculate System Function Up To 20th Order

Simulation
- Internal Simulation Package Based On Berkeley SPICE
- Carry Out AC, Transient, Sensitivity & Worst Case Analysis
- Up To Four Graphs Shown At The Same Time
- Trace Graphs & Display X-Y Co-ordinates

All Design Calculations Fully Automated

All This For Only £275 !!

Call For Your Free Interactive Demo Disk

SigCad Ltd Tel: 0203 597797

Requires PC 286/386/486 Compatibles And Runs Under DOS
Access, Eurocard, Delta, Mastercard, Visa Welcome
(Price Excludes P&P And VAT)

BADGER BOARDS

Printed Circuit Boards for Amateur Radio Schools Colleges
Short Wave Listeners Clubs Hobbyists & Industry

80C31 / 51 / 535 / 515
Programming and Interfacing with Microcontrollers; This 250+ page book gives a comprehensive hands-on approach to show how microcontrollers are programmed and interfaced to external circuitry to perform useful automation and control functions. A number of routines, including floating-point arithmetics, are included in this book and on the accompanying disk which also includes a crossassembler. (£65)

FLASH: Fuzzy-Logic Applications Software Helper, is a code generator which creates routines and tables in the MCS-51 assembly language to implement Fuzzy-Logic control applications. (£ 120)

Other related products and services are available. For more Information please write to the address below or just send a fax.

KMN Developments, P.O. Box 70, Guildford, Surrey GU2 5ZY United Kingdom
Fax No. +44 (0)483/570722

ELEKTOR ELECTRONICS MAY 1994
NEW BOOKS

INSANELY GREAT
The story of the Macintosh, the computer that changed the life of computer users
By Steven Levy
Price £ 15-00

This fourth and final volume of the Power Electronic Converters series is devoted to DC-AC conversion. DC-AC converters have seen considerable development over recent years, one the one hand because of the difficulties related to filtering and on the other because of the possibilities offered by new semiconductors.

The first chapter of the book describes the principles of inverters and explains the choice and weighing of topics. In the following chapters, the different types of inverter are described in detail with an emphasis on their application in practice.

This book should be of special interest to readers who have constructed the 68HC11 processor board described in the April 1994 issue of Elektor Electronica.

The book addresses the entire scope of using the 68HC11 microprocessor for instrumentation and control systems. Various skills must be mastered before such applications can be made to work as they should. The book shows how these many skills can be organized effectively by employing an engineering design procedure with practical application examples.

The first four chapters of the book are devoted to the MC68HC11 microcontroller and an Evaluation Board system obtained from Motorola. This system runs a monitor program called Buffalo, which stands for Bt User Fast Friendly Aid to Logical Operation. Buffalo offers a number of fairly basic commands like moving blocks of memory, calling addresses, go, input/output, block fill, etc., but also more advanced stuff like an assembler/disassembler, and debug functions like trace and breakpoint.

The second half of the book is concerned with circuit diagrams. The preparation of precise and printable circuit diagrams is a chore that plagues small-scale electronics workshops. In the past, circuit diagrams can be built up.

The example programs are presented in the form of neatly formatted assembly language listings with plenty of comment to assist in understanding the operation. Most of the chapters take the form of a tutorial, closed off with problems and software assignments.

The appendices contain, among others, the complete instruction set and datasheets of the 68HC11, as well as datasheets of some of the transducers used in the projects described elsewhere in the book.

1 Buffalo may be downloaded from the Motorola BBS in Munich, Germany and Austin, Texas, as described in Elektor Electronics April 1994.

LINEAR CIRCUIT ANALYSIS & DRAWING
By Ian Sinclair
ISBN 0 7506 1662 8
Price £ 14-95

This book has many applications in any small development workshop in which costs must be kept down, and any user who has a need to find what a linear circuit is likely to do, and how best to draw the circuit, can make good use of the book.

The book introduces the principles of linear analysis and shows what is required to analyse a variety of common circuits with the use of a large number of examples. The linear analysis program used as an example in this, the first, part of the book is Aciran, one of the best available. Its installation and setting up is fully explained, bearing in mind that readers are likely to know more about electronics than about computing.

The second half of the book is concerned with circuit diagrams. The preparation of precise and printable circuit diagrams is a chore that plagues small-scale electronics workshops. In the past, circuit diagrams can be built up.

The example programs are presented in the form of neatly formatted assembly language listings with plenty of comment to assist in understanding the operation. Most of the chapters take the form of a tutorial, closed off with problems and software assignments.

The appendices contain, among others, the complete instruction set and datasheets of the 68HC11, as well as datasheets of some of the transducers used in the projects described elsewhere in the book.

1 Buffalo may be downloaded from the Motorola BBS in Munich, Germany and Austin, Texas, as described in Elektor Electronics April 1994.

ELEKTOR ELECTRONICS MAY 1994
A SMALL SAMPLE OF OUR RANGE

<table>
<thead>
<tr>
<th>Product</th>
<th>Kit</th>
<th>Module</th>
<th>Prof. Finished</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOM TRANSMITTER RT1</td>
<td>9.95</td>
<td>13.75</td>
<td>18.00</td>
</tr>
<tr>
<td>MAINS TRANSMITTER MT4</td>
<td>12.75</td>
<td>15.70</td>
<td>25.00</td>
</tr>
<tr>
<td>TELEPHONE TRANSMITTER TTS</td>
<td>14.74</td>
<td>-</td>
<td>29.00</td>
</tr>
<tr>
<td>TELEPHONE SOCKET TRANSMITTER TSTS</td>
<td>31.50</td>
<td>45.50</td>
<td>90.00</td>
</tr>
<tr>
<td>AUTOMATIC TELEPHONE RECORDER ATR1</td>
<td>18.90</td>
<td>25.90</td>
<td>39.00</td>
</tr>
<tr>
<td>AUTOMATIC TELEPHONE RECORDER ATR1</td>
<td>34.95</td>
<td>-</td>
<td>59.00</td>
</tr>
<tr>
<td>TELEPHONE TAP ALERT TTA1</td>
<td>69.00</td>
<td>89.00</td>
<td>125.00</td>
</tr>
<tr>
<td>RF DETECTOR RFD1</td>
<td>42.75</td>
<td>69.00</td>
<td>95.00</td>
</tr>
<tr>
<td>CAMERA DETECTOR CDB</td>
<td>69.00</td>
<td>89.00</td>
<td>125.00</td>
</tr>
<tr>
<td>RECORDING BRIEFCASE RBC1</td>
<td>-</td>
<td>-</td>
<td>145.00</td>
</tr>
<tr>
<td>SHOTGUN MICROPHONE AMPLIFIER SMA</td>
<td>24.95</td>
<td>36.00</td>
<td>45.00</td>
</tr>
<tr>
<td>SIGNALING TRANSMITTER SIGT</td>
<td>21.95</td>
<td>34.89</td>
<td>45.00</td>
</tr>
<tr>
<td>TELEPHONE AMPLIFIER TA5</td>
<td>10.96</td>
<td>16.95</td>
<td>19.95</td>
</tr>
<tr>
<td>PROFESSIONAL SOUND TO LIGHT UNIT SK72</td>
<td>21.95</td>
<td>32.49</td>
<td>44.95</td>
</tr>
<tr>
<td>MICRO METAL DETECTOR MMD</td>
<td>9.95</td>
<td>16.95</td>
<td>-</td>
</tr>
</tbody>
</table>

Please mention ELEKTOR ELECTRONICS when contacting advertisers.
USING THE DOUBLE BALANCED MIXER (DBM)

In radio frequency electronics a mixer is a non-linear circuit or device that permits frequency conversion by the process of heterodyning. Mixers are used in the 'front-end' of the most common form of radio, the superheterodyne (regardless of wave band), in certain electronic instruments and in certain measurement schemes (receiver dynamic range, oscillator phase noise, etc). This article looks at a very popular mixer circuit, the double balanced type.

The block diagram for a basic mixer system is shown in Fig. 1; this diagram is generic in form, but also represents the front-end of superheterodyne radio receivers. The mixer has three ports: \(F_1 \) receives a low-level signal, and would correspond to the RF input from the aerial in radio receivers; \(F_2 \) is a high-level signal, and corresponds to the local oscillator (LO) in superhet radios; and \(F_3 \) is the resultant mixer product (corresponding to the intermediate frequency or 'IF' in superhet radios). These frequencies are related by:

\[
F_3 = mF_1 \pm nF_2
\]

Where:

\(F_1, F_2 \) and \(F_3 \) are as described above;
\(m \) and \(n \) are counting numbers (zero plus integers 0, 1, 2, 3, ...).

In any given system, \(m \) and \(n \) can be zero, or any integer, but in practical circuits it is common to consider only the first, second and third order products. For sake of simplicity, let us consider a first-order circuit \((m=n=1) \). Such a mixer would output four frequencies: \(F_1, F_2, F_{3a} = F_1 + F_2, \) and \(F_{3b} = F_1 - F_2 \). In terms of a radio receiver, these frequencies represent the RF input signal, the local oscillator signal, the sum IF and the difference IF. In radios, it is common practice to select either sum or difference IF by filtering, and rejecting all others.

There are a number of different types of mixer circuit, but only a few different classes: single-ended, single balanced (or simply 'balanced') and double balanced. Most low-cost superheterodyne radio receivers use single-ended mixers, although a few of the more costly 'communications receiver' models use singly or double balanced mixers for improved performance. This article focuses on the double balanced mixer (DBM) because it offers superior performance over the other forms, but is not as well known in electronic hobby circles.

One of the advantages of the DBM over the other forms of mixer is that it suppresses \(F_1 \) and \(F_2 \) components of the output signal, passing only the sum and difference signals. In a radio receiver using a DBM, the IF filtering and amplifier would only have to contend with sum and difference IF frequencies, and not bother with the LO and RF signals. This effect is seen in DBM specifications as the port-to-port isolation figure, which can reach 30 to 60 dB depending on DBM model.

A diplexer stage is shown in Fig. 1, and is used to absorb unwanted mixer products, and pass desired frequencies. These frequency selective circuits are discussed below.

A post-amplifier stage is typically used to boost the desired IF signal before further processing.
Diplexer circuits

The RF mixer is like most RF circuits in that it wants to be terminated in its characteristic impedance. Otherwise, a number of different diplexer circuits are known, but two of the most popular are shown in Figs. 2 and 3.

A diplexer has two jobs: 1) it absorbs undesired mixer output signals, so they are not reflected back into the mixer, and 2) it transmits desired signals to the output. In Fig. 2, these goals are met with two different LC networks: a high-pass filter and a low-pass filter. The assumption in this circuit is that the difference IF is desired, so a high-pass filter with a cut-off above the difference IF is used to shunt the sum IF (plus and LO and RF signals that survived the DBM process) to a dummy load (R2). The dummy load shown in Fig. 2 is set to 50 ohms because that is the most common system impedance for RF circuits (in practice, a 51-ohm resistor might be used). The dummy load resistor can be a 1/2-watt unit in most low-level cases, but regardless of power level it must be a noninductive type (e.g. carbon composition or metal film).

The inductor (L1) and capacitor (C1) values in the high pass filter are designed to have a 50-ohm reactance at the IF frequency. These values can be calculated from:

\[L = \frac{2 \pi F_s}{50 \Omega} \]

\[C = \frac{1}{2 \pi F_s (50 \Omega)} \]

Where \(L \) is in henrys, \(C \) is in farads, and \(F_s \) is in hertz.

The low-pass filter transmits the desired difference IF frequency to the output, rejecting everything else. Like the high-pass filter, the L and C elements of this filter are designed to have reactances of 50 \(\Omega \) at the difference IF frequency.

Recently I built a sweep generator to facilitate an high performance AM band (540-1700 kHz) receiver that I am designing. The sweeper circuit is a varactor tuned VCO driven with a 45-Hz sawtooth wave. The swept oscillator is heterodyned against a 14-MHz crystal oscilla-

Because \(C_1 - L_1 \) are shunted across the signal line, it will short out all but the resonant frequency.

The low-pass filter was terminated in a 50-ohm dummy load. The low-frequency audio signals (300 to 3,000 Hz) are passed by a 50-ohm low-pass filter consisting of \(L_1, L_2, R_2 \) and \(C_2 \).

Another popular diplexer circuit is shown in Fig. 3. This circuit consists of a parallel resonant 50-ohm tank circuit (\(C_1 - L_1 \)), and a series resonant 50-ohm tank circuit (\(C_2 - L_2 \)). The series resonant circuit passes its resonant frequency while rejecting all others because its impedance is low at resonance and high at other frequencies. Alternatively, the parallel resonant tank circuit offers a high impedance to its resonant frequency, and a low impedance to all other frequencies.

JFET and MOSFET DBMs

Junction field effect transistors (JFETs) and metal oxide field effect transistors (MOSFETs) can be arranged in a ring circuit that provides good double balanced mixer operation. Figure 5 shows a circuit that is based on JFET devices. Although discrete JFETs such as MPF102 or its equivalents can be used in this circuit with success, performance is generally better if the devices are matched, or are part of a single IC device (e.g., the U350 IC). With due attention to layout and input/output balancing, the circuit is capable of better than 30 dB port-to-port isolation over an octave (2:1) frequency change.

The inputs and output of this circuit are based on broadband RF transformers. These transformers are bifilar and trifilar wound on toroidal cores. The input circuit consists of two bifilar wound impedance transformers (\(T_{R1} \) and \(T_{R2} \)). The LO and output circuits are trifilar wound RF transformers. Part of the output circuit includes a pair of low-pass filters which also serve to transform the 1.5 to 2 k\(\Omega \) impedance of the JFET de-

Fig. 3. Diplexer circuit based on series and parallel resonant circuits.
COMPONENTS

As a result of the needed impedance transformation, the filters must be designed with different R_n and R_{out} characteristics, and that fact complicates the use of look-up tables (which would be permitted if the input and output resistances were equal).

Double balanced diode mixer circuits

One of the most easily realized double balanced circuits, whether homebrew or commercial, is the circuit of Fig. 6. This circuit uses a diode ring mixer and balanced input, output and LO ports. It is capable of 30 to 60 dB of port-to-port isolation, yet is reasonably well-behaved in practical circuits. DBMs such as Fig. 6 have been used by electronic hobbyists and radio amateurs in a wide variety of projects from direct conversion receivers to single sideband transmitters and high-performance shortwave receivers. With proper design, a single DBM can be made to operate over an extremely wide frequency range; several models claim operation from 1 to 500 MHz, with IF outputs from d.c. to 500 MHz.

The diodes (D_1 through D_4) can be ordinary silicon VHF/UHF diodes such as 1N914 or 1N4148. However, superior performance is expected when Schottky hot-carrier diodes, such as 1N5820 through 1N5822 are used instead. Whatever diode is selected, all four devices should be matched. The best matching of silicon diodes is achieved by comparison on a curve tracer, but failing that there should at least be a matched forward/reverse resistance reading. Schottky hot-carrier diodes can be matched by ensuring that the selected diodes have the same forward voltage drop when biased to a forward current of 5 to 10 mA.

Figure 7a shows the internal circuitry for a very popular commercial diode DBM device, the Mini-Circuits SRA-1 and SBL-1 series; a typical SRA/SBL package is shown in **Fig. 7b**.

These devices offer good performance, and are widely available to hobbyists and radio amateur builders. Some parts houses sell them at retail, as does Mini-Circuits [P.O. Box 166, Brooklyn, NY, 11235, USA: phone 714-934-4500]. I do not know the amount of their minimum order, but I have had Mini-Circuits in the USA respond to $25 orders on several occasions ... which is certainly more reasonable than other companies.

The packages for the SRA/SBL devices are similar, being of the order of 20 mm long with 5-mm pin spacing. The principal difference between the packages for SRA and SBL devices is in the height. In these packages, pin no. 1 is denoted by a blue bead insulator around the pin. Other pins are connected to the case or have a green (or other colour) bead insulator. Also, the ‘MCL’ logo on the top can be used to locate pin 1: the ‘M’ of the logo is directly over pin 1.

Table 1 shows the characteristics of several DBMs in the SRA and SBL series, while **Table 2** shows the pin assignments for the same devices.

In the standard series of devices, the RF input can accommodate signals up to +1 dBm (1.26 mW into 50 Ω), while the LO input must see a +7 dBm (5-mW) signal level for proper operation. Given the 50-Ω input impedance of all ports of the SRA/SBL devices, the RF signal level must be kept below 700 mVpp, while the LO wants to see 1400 mVpp. It is essential that the LO level be maintained across the band of interest, or else mixing operation will suffer. Although the device will work down to +5 dBm, a great increase in spurious output and less port-to-port isolation is found. Spectrum analyzer plots of the output signal at low LO drive levels show considerable second and third-order distortion products.

Note the IF output of the SRA/SBL de-
At last, a fully functional upgradeable PCB CAD system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages...

...call now for details.

Board Capture

Schematic Capture Design Tool
- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker

- **BoardMaker1 - Entry level**
 - PCB and schematic drafting
 - Easy and intuitive to use
 - Surface mount and metric support
 - 30, 45 and curved track corners
 - Ground plane fill
 - Copper highlight and clearance checking

- **BoardMaker2 - Advanced level**
 - All the features of BoardMaker1 +
 - Full netlist support - BoardCapture, OrCad, Schrma, Tango, CadStar and others
 - Full Design Rule Checking both mechanical and electrical
 - Top down modification from the schematic
 - Component renumber with back annotation
 - Report generator - Database ASCII, BOM
 - Thermal power plane support with full DRC

Board Router

- Gridless re-entrant autorouter
- Simultaneous multi-layer routing
- SMS and analogue support
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard
- Printers - 9 & 24 pin Dot matrix, HP Laserjet and PostScript
- Penplotters - HP, Grafhtec & Houston
- Photopotters - All Gerber 3X00 and 4X00
- Excellon NC Drill and Annotated drill drawings (BM2)

Call, write or fax for more information or a full evaluation kit
Tsien (UK) Limited
Aylesby House
Wenny Road, Chatteris
Cambridge
PE16 6UT
Tel (0354) 695959
Fax (0354) 695957
COMPONENTS

Fig. 8. Waveforms from a circuit using the Mini-Circuits DBM: (a) improperly terminated; (b) with part of diplexer disconnected; (c) output waveform when diplexer is connected.

Although some models in the series use a single IF output pin, most of these devices use two pins (3 and 4), and these must be connected together externally for the device to work.

As is true with most DBMs, and all diode ring DBM circuits, the SRA/SBL devices are sensitive to the load impedance at the IF output. Good mixing, and freedom from the LO/RF feedthrough problem, occurs when the mixer looks into a low-VSWR load. For this reason, a good diplexer circuit is required at the output. In experiments, I have found that unterminated SBL-1-1 mixers produce nearly linear mixing when not properly terminated...and that is not what is desired in a frequency converter.

Figure 9 shows a typical SRA/SBL circuit: RF drive (+1 dBm) is applied to pin 1, and the +7 dBm LO signal is applied to pin 8. The IF signal is output through pins 3 and 4, which are strapped together. All other pins (2, 5, 6 and 7) are grounded.

The diplexer circuit consists of a high-pass filter (C1-L1) terminated into a 50-Ω dummy load for the unwanted frequencies, and a low-pass filter (L2-L3-C4) for the desired frequencies. All capacitors

Table 1. Main specifications of some commonly found diode double balanced mixers.

<table>
<thead>
<tr>
<th>Type</th>
<th>LO/RF (MHz)</th>
<th>IF (MHz)</th>
<th>Mid-Band Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRA-1</td>
<td>0.5-500</td>
<td>DC-500</td>
<td>5.5-7.0</td>
</tr>
<tr>
<td>SRA-1TX</td>
<td>0.5-500</td>
<td>DC-500</td>
<td>5.5-7.0</td>
</tr>
<tr>
<td>SRA-1W</td>
<td>1-750</td>
<td>DC-750</td>
<td>5.5-7.5</td>
</tr>
<tr>
<td>SRA-1-1</td>
<td>0.1-500</td>
<td>DC-500</td>
<td>5.5-7.5</td>
</tr>
<tr>
<td>SRA-2</td>
<td>1-1000</td>
<td>0.5-500</td>
<td>5.5-7.5</td>
</tr>
<tr>
<td>SBL-1</td>
<td>1-500</td>
<td>DC-500</td>
<td>5.5-7.0</td>
</tr>
<tr>
<td>SBL-1X</td>
<td>10-1000</td>
<td>5-500</td>
<td>6.0-7.5</td>
</tr>
<tr>
<td>SBL-1Z</td>
<td>10-1000</td>
<td>DC-500</td>
<td>6.5-7.5</td>
</tr>
<tr>
<td>SBL-1-1</td>
<td>0.1-400</td>
<td>DC-400</td>
<td>5.5-7.0</td>
</tr>
<tr>
<td>SBL-3</td>
<td>0.025-200</td>
<td>DC-200</td>
<td>5.5-7.5</td>
</tr>
</tbody>
</table>

Table 2. Pin function overview for diode DBMs.
and inductors are selected to have a reactance of 50 Ω at the IF frequency.

Sometimes 1-dB resistor pad attenuators are used at the inputs and the IF output of the DBM. In some cases, the input attenuators are needed to prevent overload of the DBM (overload causes spurious product frequencies to be generated, and may cause destruction of the device). In other cases, the circuit designer is attempting to 'swamp out' the effects of source or load impedance variations. Although this method works, it is better to design the circuit to be insensitive to such fluctuations, rather than to use a swamping attenuator. The reason is that the resistive attenuator causes a signal loss and adds to the noise generated in the circuit (no resistor can be totally noise free). A good alternative is to use a stable amplifier with 50 Ω input and output impedances, and that is not itself sensitive to impedance variation, to isolate the DBM.

Mini-Circuits devices related to the SRA-1 and SBL-1 incorporate MAR-x series MMIC amplifiers internal to the DBM. One series of devices places the amplifier in the LO circuit, so that much lower levels of LO signal will provide proper mixing. Another series places the amplifier in the IF output port. This amplifier accomplishes two things: it makes up for the inherent loss of the mixer and it provides greater freedom from load variations that can affect the regular SRA/SBL devices.

Bipolar transconductance cell DBMs

Active mixers made from bipolar silicon transistors formed into Gilbert transconductance cell circuits are also easily available. Perhaps the two most common devices are the Signetics NE602 device and the LM1496 device (Maplin catalogue no. QH47B, p. 463 in 1993 edition).

The NE602 was discussed extensively in Ref. 1, to which the reader is referred for details on input, output and LO configurations.

The LM1496 device is shown in Figs. 10a, 10b and 10c. Figure 10a shows the internal circuitry, while Figs. 10b and 10c show the DIP and metal can packages, respectively. Pins 7 and 8 form the local oscillator (or 'carrier' in communications terminology) input, while pins 1 and 4 form the RF input. These push-pull inputs are also sometimes labelled 'high level signal' (7 and 8) and 'low level signal' (1 and 4) inputs. D.c. bias (pin 5) and gain adjustment (pins 2 and 3) are also provided.

Figure 11 shows the basic LM1496 mixer circuit in which the RF and carrier inputs are connected in the single-ended configuration. The respective signals are applied to the input pins through d.c. blocking capacitors C1 and C2; the alternate pin inputs in both cases are bypassed to ground through capacitors C3 and C4.

The output network consists of a 9:1 broadband RF transformer that combines the two outputs, and reduces their impedance to 50 Ω. The primary of the transformer is resonated to the IF frequency by capacitor C5.

Figure 12 shows a circuit that uses the LM1496 device to generate double sideband suppressed carrier (DSSC) signals. When followed by a 2.5 to 3-KHz bandpass filter, which is offset from the IF frequency, this circuit will also generate single sideband (SSB) signals. In common practice, a crystal oscillator will generate the carrier signal \(U_c \), while the audio stages produce the modulating signal \(U_m \) from an audio oscillator or microphone input stage. I once saw a circuit that is very similar to this one in a signal generator/test set used to service both amateur radio and marine HF-SSB radio transceivers. It was the signal source to test the receiver sections of the transceivers.
9 MHz, and both lower sideband (LSB) and upper sideband (USB) KVG crystal filters were used to select the desired sideband. An alternate scheme which is cheaper uses a single 9-MHz crystal filter, but two different crystals at frequencies either side of the crystal passband. One crystal would generate the USB signal, while the other would generate the LSB signal.

For single sideband to be useful it has to be demodulated to recover the audio modulation. The circuit of Fig. 13 will do that job nicely. It uses an LM1496 DBM as a product detector. This type of detector works on CW, SSB and DSB signals (all three require a local oscillator injection signal), and produces the audio resultant from heterodyning the local carrier signal against the SSB IF signal in the receiver. All SSB receivers use some form of product detector at the end of the IF chain, and many of them use the LM1496 device in a circuit similar to Fig. 13.

Conclusion

Double balanced mixer circuits work better than most other mixer circuits in radio receivers, SSB transmitters/receivers, instrumentation and measurement situations. They are easy to use in most cases, and if properly designed into a circuit yield good results with minimum effort.

References:

2. In the UK, contact Dale Electronics Ltd., Camberley, Surrey, tel. (025) 28 35094.

Fig. 12. Double sideband suppressed carrier (DSSC) generator circuit using the LM1496.

Fig. 13. Single-sideband/CW product detector for receiver using the LM1496.
"... there is no doubt that running under Windows puts it ahead of the field and makes it a visually attractive package." Electronics World + Wireless World July 1993

High Quality PCB and Schematic Design for Windows 3/3.1 and DOS

- Supports over 150 printers/plotters including 9 or 24 pin dot-matrix, DeskJet, LaserJet, Postscript, and HPGL. Professional Edition imports GERBER files, and exports GERBER and NC-DRILL files.
- Up to 200,000 pads/track nodes depending on memory. Simple auto-router and schematic capture tools with SPICE compatible net-list output.
- Low cost DOS version (reduced features) also available. Ring for full details!

"Quickroute provides a comprehensive and effective introduction to PCB design which is a pleasure to use" Radio Communication May 1993.

Quickroute

POWERware, Dept EK, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.
Contact Tel/Fax 061 449 7101 or write, for a full information pack.
Quickroute is available for Windows 3/3.1 in Professional (£99.00) and Standard (£59.00) editions and for DOS with reduced features (£49.00). All prices inclusive. Add £2 P&P for UK or £5 P&P outside UK

£49

SpiceAge Level 1 is now permanent thanks to you. For just £100 including U.K. postage and VAT, you can have a copy of this remarkable circuit simulator program complete with the full manual on your doorstep tomorrow (80% of orders are currently despatched by return of post). And there is no surcharge for upgrading if you do this within 3 months of purchase. Requires Microsoft Windows 3.1 operating in enhanced mode.

Please send £5 for demonstration kit or SAE for information pack to Those Engineers Ltd, Dept K4, 31 Birkbeck Road, LONDON NW7 4BP or Tel 081-906 0155 or FAX 081 906 0969.
BULL’S BULLETIN BOARD

100MHZ DUAL TRAC OSCILLOSCOPES JUST £259

RING FOR DETAILS

MASSIVE WAREHOUSE CLEARANCE

FANTASTIC £20.00 REDUCTION

REFURBISHED PC BASE UNITS COMPLETE WITH KEYBOARD

FROM ONLY: £29.00

AMSTRAD 1512 BASE UNITS GUARANTEED PERFECT WORKING ORDER.

A LOW COST INTRODUCTION TO THE HOME COMPUTER MARKET.

AMSTRAD 1525D

1525 BASE UNIT, 5.25” FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONITOR AND POWER SUPPLY. WAS £64.00

NOW £29.00

REF: MAG30

AMSTRAD 1526D

1526 BASE UNIT, 3.5” FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONITOR AND POWER SUPPLY WAS £65.00

NOW ONLY: £39.00

REF: MAG31

SOLAR POWER PANELS

3FT X 1FT 10WATT GLASS PANELS

14.5V/700mA

NOW AVAILABLE BY MAIL ORDER

£33.95

PUnlished by ELEKTOR ELECTRONICS

FREE SOFTWARE!

Brand new, UNOPENED top quality format brand licensed software disc. Available in 2.88, 3.5” and 5.25” HD only. You buy the disk and it comes with free BRAND NEW UNUSED SOFTWARE. We are actually selling you a free floppy disc for your own “MEGA CHEAP” storage facilities. If you happen to get software that you would like as well you get a MEGA BARGAIN! You get:

DDED PIC6.09, REF: MAG37

£10.00

REF: MAG16

TOP QUALITY SPEAKERS Made for Hi Fi televisions these speakers are made of round large magnetized. Good quality units at a top price. £2 each REF: MAG24 or 4 for £4 REF: MAG25

TWITTERS 2 diamond good quality tweeters (6p each) for with above speakers 2 for £2 REF: MAG26 or 4 for £3 REF: MAG27

AT KEYBOARD Made by Applon these quality keyboards need just a little more instruction to run on any Atari. They work perfectly but you will have to put up with 1 or 2 foreign keypads! Price £6 REF: MAG99

XT KEYBOARDS Mixed types, some returns, some good, some good etc but all good for spares! Price is £2 each REF: MAG28 or 4 for £8 REF: MAG98

PC CASES Again mixed types so you take a chance next one off the shelf! £2 each REF: MAG50 or 4 for £8 REF: MAG51

COMMODORE MICRODRIVE SYSTEM mini stumble: device for C64 x 4 times faster than disc drives, 10 times faster than tapes. Complete with power leads. £15 REF: MAG52

MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS £3.00 POST PLUS VAT.

**NOTICE ORDERS SUBJECT TO STOCK QUOTATIONS WILLINGLY GIVEN FOR QUANTITY RIGHTS RESERVED TO CHANGE PRICES & SPECIFICATIONS WITHOUT PRIOR OUR CONDITIONS OF SALE AND UNLESS OTHERWISE STATED GUARANTEED FOR 30 MINIMUM GOODS ORDER £500 TRADE ORDERS FROM GOVERNMENT, SCHOOLS, DSDD PKT10 £2.99 REF: MAG37

SCHOOL STRIPPERS We have quite a few of the above units which are “returns as they are quite comprehensive units they are all used for educational purposes. Let us know how many you need at just 50p a unit (minimum 10).

HEATH KENES 15F Made ex Virgin Atlantic. You can have 2 for £8 REF: MAG21

PROXIMITY SENSORS These are small PEC’s with which look like ordinary dipoles but they are made with components of the PCB on the exterior of the PCB. Complete with leads. Price of 5.37 REF: MAG38 or 20 for £80 REF: MAG41

SNOOPER EAR Original idea to clip over the earpiece of telephone to amplify the sound it also works quite well on the cable running along the wall. Price is £35.87 REF: MAG61

DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just £5.89 REF: MAG99 Worth just the very complete manual alone.

DOS PACK Microsoft version 5 Original software but no manuals hence only £3.55 REF: MAG26.50 only

FOREIGN ONS Discs with very good condition but 4 pack and manuals etc 2 pack with manuals £5.25 only REF: MAG29

CIRCUIT COLOURING Made to work with the CPC6404 home computer. Standard RGB input so will work with other machines. Refurbished £58.00 REF: MAG30

PIR DETECTOR Made by famous UK manufacturer these are 4 pairs, long range internal units. £20 operation. £5.99/each REF: MAG10

SURFACE MOUNT STRIPPER Originally made as some form of 1 GHz amplifier (main chip is a TSA5511T 1.3GHz synthesiser) but good stopper value, an excellent way to play with the surface mount components £10 REF: MAG11

MICROWAVE TEMPERER Electronic timer with relay output suitable to make entomber timer etc REF: MAG49

MOBILE CAR PHONE Very cheap complete in car phone excluding the box of electronics normally hidden under seat.

SNOOPERS EAR Originally made to dip over the earpiece of any telephone to amplify the sound - it also works quite well on the cable running along the wall. Price is £35.87 REF: MAG61

FIRE ALARM CONTROL PANEL High quality metal cased display only illuminates when dark. Totally convincing! REF: MAG6P6

REMOTE CONTROL PCB These are receiver boards for garage door opening systems. You may have one or two £4.00 REF: MAG39

**6”X12” AMORPHOUS SOLAR PANEL 12V 155x310mm 130mA. Bargain price just £5.99 REF: MAG51

PORTABLE RADIATION DETECTOR £49.99

A handheld personal Gamma and X-Ray detector. This unit contains two Geiger tubes, has a 4 digit LCD display with a Pezoo speaker, giving an audible indication of radiation levels. Suitable for nuclear industry and research. The energy electromagnetic quanta with an energy from 30KeV to over 1.2M eV and a measuring range of 10-9999 mV. Designed for use in situations where you want to know the levels of radiation present. A compact and portable instrument that is simple to use and read. High sensitivity and accuracy. **FLEXIBLE CABLE BUMPER PACK** 10 metres for £4.99 REF: MAG51 ideal for experiments! 10 metres for £9.99 REF: MAG31.

LOPTX Line output transformers believed to be for a kerosene heater but useful for getting high level from remote control PCB. These are receiver boards for garage door opening systems. You may have one or two £4.00 REF: MAG39

SCHOOL STRIPPERS We have quite a few of the above units which are “returns as they are quite comprehensive units they are all used for educational purposes. Let us know how many you need at just 50p a unit (minimum 10).
PROPAAK AR provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER+ and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

PROPAK AR

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just £250 if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800x600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK

Two Programs for the Price of One

ISIS SUPERSKETCH
A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II
High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded... "At £79 I thought this was an excellent buy."

ISIS ILLUSTRATOR
Schematic Drawing for Windows

Only £79

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard. Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Call us today on 0274 542868 or fax 0274 481078 for a demo pack - state DOS or Windows, Multi-copy and educational discounts available.

Prices exclude p&p (£5 for U.K.) and VAT. All manufacturers' trademarks acknowledged.

Labcenter Electronics

14 Mariner's Drive, Bradford, BD9 4JT.
Although huge monitors are quite common in today’s party bunkers, clubs and discotheques, the idea of using a TV set instead of the more usual set of coloured lamps is quite novel. Here, a circuit is described to produce playful light effects on the telly.

From an idea by B. Willaert

The TV sound-to-light unit described in this article may be driven with a line signal or a signal picked up by a microphone. Depending on the spectral composition of the input signal (bass, mid-range, treble), the circuit sends a signal to the red, green or blue (R, G, B) input on the SCART socket of a TV set. This causes the TV screen to go red, green or blue, or blends of these primary colours if the input signal contains two or three strong components in the respective frequency ranges. This means that the operation of the TV sound-to-light unit is, in principle, identical to that of a ‘conventional’ unit with three lamps. As an unusual feature, however, the present unit enables colours to be mixed.

Television: the basics

Before looking at the design of the TV sound-to-light unit, a brief recap is given of the operation of the TV system. The screen of a colour TV may be compared with a painter’s palette with only the three primary colours on it: red (R), green (G) and blue (B). Any colour can be made by mixing the RGB components at certain ratios.

A TV set obviously does not use paint to mix colours. Instead, the primary colours are mixed using electron beams. The principle is illustrated in Fig. 1. Each primary colour has its own electron gun which ‘fires’ a very narrow beam in the direction of the inside surface of the TV picture. The three beams converge at the so-called shadow mask at the inside of the picture tube. Each beams ‘hits’ its own phosphor type. The phosphor particles light up when ‘bombarded’ with electrons, and so visualize the colours red, green and blue.

Since the three tiny light spots in each pixel are very close together, the viewer perceives a dot with a certain colour blend rather than three individual primary colours. In this way, each picture element (‘pixel’) is provided with the correct colour information, and the entire picture is built up pixel-by-pixel.

The received TV signal contains, among others, information on the mixture ratio of the R, G and B signals. This information is received in compacted form, and decoded inside the TV set to yield the three primary colours. Most modern TV sets have a SCART socket (also called Peritel or Euro A/V), which allows the RGB amplifiers and associated electron guns in the set to be driven with external signals. And that, you guessed it, is exactly what the present circuit does.

Block diagram

The basic structure of the TV sound-to-light unit is shown in Fig. 2. As with an ‘ordinary’ sound-to-light unit, the input signal is obtained either from a ‘line’ connection (say, the mixing console output) or a microphone. The sensitivity of the circuit is adjustable by setting the gain of the input amplifier.

The amplified audio signal is fed to three filter sections: a low-pass filter, a band-pass filter and a high-pass filter. These filters extract the bass, mid-range and treble information from the input signal. The filter output signals
Fig. 2. Most functions of the TV sound-to-light unit may be found in any conventional sound-to-light unit based on lamps. The difference, however, is the TV interface, which consists of RGB driver stages and a synchronisation control circuit.

Fig. 3. The flyback (retrace) beam is quenched to avoid unwanted horizontal and diagonal lines on the TV screen.

Fig. 4. Circuit diagram of the TV sound-to-light unit. The circuit takes its input signal either from a microphone or a line connection. A crystal oscillator is used to ensure the correct picture line length of 64 µs (including the synchronisation pulse).
quenched. As illustrated in Fig. 3, the electron beam makes a scanning movement across the screen. During the retrace period, the beam is quenched (switched off) to avoid unwanted lines, both horizontally and diagonally, being written on to the screen.

Practical circuit

Although the circuit diagram in Fig. 4 looks complex at first glance, the functions of the various sub-circuits are easily recognized from the block diagram discussed above.

The audio signal is picked up by microphone Mic1, and fed to the input of a simple preamplifier stage based on opamp IC2b. Alternatively, the input signal may be applied directly via 'line' socket K1. The amplification of IC2b may be set to a value between 0.02 and 20. The preamplifier output signal is applied to a combined filter, which divides the signal into low, mid-range and high components. The high frequencies leave the filter via pin 1 of IC2a. The mid-range signals are found at pin 14 of IC2b, and the low frequencies, at pin 8 of IC2b.

Next, the three components are applied to three identical drivers, T4, T5 and T6. Each signal is first rectified.

COMPONENTS LIST

Resistors:
- R1, R39 = 2kΩ
- R2 = 220kΩ
- R3, R5, R9, R28, R33 = 10kΩ
- R4, R16, R17, R21, R22, R23 = 56kΩ
- R10, R26, R29, R32, R38 = 390Ω
- R11 = 330kΩ
- R12, R14, R15 = 1kΩ
- R13 = 22kΩ
- R18, R20 = 150kΩ
- R19 = 47kΩ
- R24, R27, R30 = 1MΩ
- R25 = 6.8kΩ
- R31 = 15kΩ
- R34, R37 = 82Ω
- P1 = 470kΩ logarithmic

Capacitors:
- C1 = 33pF
- C2 = 100nF
- C3, C11, C12, C20, C21, C23 = 100nF
- C4, C5, C15 = 470nF
- C6 = 10nF
- C7, C8 = 1nF
- C9, C10, C22 = 100μF 10V radial
- C13 = 1μF MKT
- C14 = 22μF 10V radial
- C16, C18, C24 = 10μF 10V radial
- C17 = 220nF
- C19 = 100μF 40V radial

Semiconductors:
- D1-D11 = 1N4148
- D12 = 1N4001
- D13 = LED 3mm red
- T1, T2 = BC547B
- T3-T6 = BC557B
- IC1 = 4060
- IC2 = TLC274
- IC3 = 7805

Semiconductors:
- K1 = Cinch socket.
- K2 = 21-way SCART socket, PCB mount, angled pins.
- K3 = Mains adapter socket, PCB mount.
- X1 = 4MHz quartz crystal.
- Mic1 = Electret microphone.
- Case: e.g., ESM EM14/03.
- Printed circuit board 936038 (see page 70).
TV SOUND-TO-LIGHT UNIT

65

Fig. 6. Alternative connection schematic for two-wire electret microphones.

and smoothed by two diodes and a capacitor (for instance, D7, D8 and C14), so that each driver is supplied with a clean direct voltage. The resistor across each smoothing capacitor (for instance, R24) enables the capacitor voltage to decrease after a short while after the input signal has disappeared. This is done to give the sound-to-light unit a fairly 'calm' behaviour, avoiding a too fast response to sound changes. The output signal of each driver transistor is sent to the respective RGB input via a current limiting resistor of 82 Ω.

The circuit diagram shows that the RGB driver transistors are supplied via a series transistor, T3, which acts as a switch, and so enables a simple kind of synchronisation to be realized. The switch is closed for 60 μs, which corresponds to the length of a picture line. Each period of 60 μs is headed by a synchronisation pulse of 4 μs, which serves to inform the TV that a new line is about to be written. The synchronisation pulse is sent to the TV set via R34 and the respective pin on the SCART socket. To make sure that each line period has a total length of 64 μs, the switching signals are derived from a crystal oscillator with associated divider, IC1. The 4-MHz quartz clock signal is divided by 256 (28), which gives a line frequency of 15.625 Hz, corresponding to a period of 64 μs.

Finally, the circuit is powered by a mains adaptor with a direct output voltage between 9 V and 12 V. The adaptor output voltage is stepped down to 5 V by regulator IC3.

Construction

The artwork of the printed circuit board designed for the TV sound-to-light unit is given in Fig. 5. This board is available ready-made through the Readers Services.

Start the construction by fitting all wire links, then the IC sockets. Solder carefully to avoid a long fault-finding session later. Next, fit all other parts, keeping the larger ones (for instance, the SCART socket and potentiometer P1) till the last. The SCART socket is first secured to the PCB by inserting its plastic fixing pins into the two holes in the PCB. Next, solder the socket pins.

Resistor R39 is not fitted on to the board, but connected to the electret microphone as a 'flying' part. If the microphone is a type with three terminals, it is connected as shown by the circuit diagram. If you happen to have a two-terminal type, connect it as shown in Fig. 6. If you wish to use the line input only, Mic1 and R39 may, of course, be omitted.

The board is ready for fitting into a suitable enclosure after it has been populated (Fig. 7), and the solder work carefully inspected. The prototype shown in Fig. 8 should give you an impression of how we did the finishing touch to the unit. The design of a front panel for the TV sound-to-light unit may be copied from Fig. 9.

Connect the unit to the mains adapt-
Next, connect the circuit to the TV set via ready-made SCART cable (Fig. 10). The pinning of the SCART plugs on the cable, and that of the socket on the TV, is shown in Fig. 11. Also connect the microphone, or the line input signal.

Switch the TV to external A/V, and adjust the input sensitivity of the sound-to-light unit until the desired visual effect is achieved.

Some experiments

A few suggestions are given for those of you who wish to adapt the circuit to personal requirements. The response of the circuit to changes in the input signal may be speeded up by decreasing the values of capacitors C14, C16 and C18. Note, however, that this causes a slightly blurred picture, and unclear colour transitions. Similarly, the response of the circuit is slowed down by increasing the values of the above capacitors.

The 'low' frequency limit of the filter in the unit may be lowered by changing R18 and R20 into, for instance, 220 kΩ, and R19 into 100 kΩ. This modification causes the circuit to respond stronger to the lowest frequency components, and less to high-frequency components. To achieve a better separation of the low, middle and high components, the value of R19 may be lowered to 22 kΩ, while C6 is changed into 22 nF.
Books from Elektor Electronics (Publishing)

The following books are currently available:

<table>
<thead>
<tr>
<th>Book Title</th>
<th>UK Price (£)</th>
<th>US Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>301 Circuits</td>
<td>£9.95</td>
<td>$14.50</td>
</tr>
<tr>
<td>302 Circuits</td>
<td>£9.95</td>
<td>$14.50</td>
</tr>
<tr>
<td>303 Circuits</td>
<td>£10.95</td>
<td>$17.90</td>
</tr>
<tr>
<td>304 Circuits</td>
<td>£12.95</td>
<td>$23.95</td>
</tr>
<tr>
<td>305 Circuits (published in April 1994)</td>
<td>£14.95</td>
<td>$27.70</td>
</tr>
<tr>
<td>SMT Projects</td>
<td>£9.95</td>
<td>$14.50</td>
</tr>
<tr>
<td>Microprocessor Data Book</td>
<td>£10.95</td>
<td>$19.90</td>
</tr>
<tr>
<td>Data Sheet Book 2</td>
<td>£9.95</td>
<td>$18.50</td>
</tr>
<tr>
<td>Data Book 3: Peripheral Chips</td>
<td>£10.95</td>
<td>$19.95</td>
</tr>
<tr>
<td>Data Book 4: Peripheral Chips</td>
<td>£10.95</td>
<td>$19.95</td>
</tr>
<tr>
<td>Data Book 5: Application Notes</td>
<td>£10.95</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

How to order:

UK and Overseas private customers (NOT in USA and Canada) from:

Elektor Electronics (Publishing)

PO Box 1414

Dorchester, England DT2 8YH

Telephone (0305) 250 995

Fax: (0305) 250 996

USA and Canada ONLY from:

Old Colony Sound – please see order form on page 71 for details

SWITCHBOARD

Switchboard allows all PRIVATE READERS of Elektor Electronics one FREE advertisement of up to 108 characters, including spaces, commas, numerals, etc., per month.

Write the advertisement, which MUST relate to electronics, in the coupon on this page; it MUST INCLUDE a private telephone number or name and address; post office boxes are NOT acceptable.

Elektor Electronics (Publishing) cannot accept responsibility for any correspondence or transaction as a result of a free advertisement or of any inaccuracy in the text of such an advertisement.

Advertisements will be placed in the order in which they are received.

Elektor Electronics (Publishing) reserve the right to refuse advertisements without giving reasons or without returning them.

FOR SALE. Cheap component packs. Send SAE for list to A. Tearle, 5 Springfield Close, Ramsgate, Kent CT11 7BQ.

WANTED. Manuals/information on Zortech C++ compiler/workbench/debugger, etc. Please ring (0255) 473 547.

FOR SALE. Range of components, incl. 8051 micros, steppers, PSUs, etc, at very low cost. Please ring (0533) 537 269.

FOR SALE. Voltage, current monitors; data logging on site or remote; can be used for almost anything. Also remote datalogger 32 inputs; will run off car battery; incl. software £80. Ring Robin on (0276) 524 968.

FOR SALE. Comtronics 1.2 m dish c/w polar mount and stand: £150. Also 90 cm fixed £40. Please call (0276) 833 839.

FOR SALE. All LF150A power amp PCBs complete (cannot faultfind). Any reasonable offer accepted. Ring 091 528 3122.

WANTED. Sage Supermos 1/2 amplifier modules in very good working order. Please phone Jonathan on (0384) 296 823 after 7 p.m.

WANTED. Elektor Formant synthesizer, working or not and boards and front panels, PSU, etc, to complete my project. Please ring (0726) 66715.

WANTED. Coherent CW info & circuits for novice. Please write to Owen Kilgour, ZL3TOW, Okari Road, Westport RD2, New Zealand.

FOR SALE. 5000 Series Tectronix storage scope, dual beam, dual time base, instruction and service manuals, £180. Ring Paul on (0582) 753 809.

**HELP needed to solve problem with Elektor plotter: it will not work with 486 computer but works OK with 386 SX. Kaj Larsen, Gyvelje 33, D-9560 Hadsund, Denmark.

FOR SALE. PicPro PIC programmer, £50 ono. Phone Mike on (0285) 712 570.

VOUCHER

This voucher (original only; no photocopies accepted) entitles the holder to 7½% discount on the purchase price of any Elektor Electronics book listed in the adjacent box. Two vouchers qualify for 15% discount and three for 30%. More vouchers will be published in forthcoming issues of Elektor Electronics.

ELEKTOR ELECTRONICS MAY 1994
Surface mount crystal from IQD
International Quartz Devices (IQD) has available a surface mount version of the popular HC49/4H crystal. Designated the HC49/UHSMX, the new version has a footprint of only 4.9x13.4 mm and is 4.3 mm high.

Embedded controller handbook
Microchip's new Embedded Controller Handbook is packed with ideas and advice for system designers and application programmers. It contains almost a thousand pages of technical reference material and covers the whole range of Microchip's PIC16/17 8-bit microcontrollers and speciality non-volatile memory products.

Statek franchise for ACT
Quartz crystal manufacturer and distributor ACT (Advanced Crystal Technology) has signed a franchise agreement with the specialist quartz crystal firm, Statek Inc. of Orange, California.

Good for Europe?
The Japanese government is about to abandon Japan's analogue high-definition television system, which lags behind America's digital technology despite decades of development. This decision makes it probable that a worldwide HDTV standard based on America's may at last emerge. If so, a sigh of relief will be heard in the larger part of the world — particularly in the corridors of Thomson and Philips, both members of the US association of HDTV manufacturers.

Apple at the top
Dataquest, the influential US analyst firm, has announced that Apple Computer Inc. was the largest PC maker in the USA in 1993, just ahead of rivals IBM and Compaq. Apple gained 14.1% of the market, IBM 13.9% and Compaq 10%.

Eighth North Wales
Radio & Electronics Show
The Eighth North Wales R&E Show will be held on 5 and 6 November 1994 at the Aberconwy Conference Centre & The New Theatre, Llandudno. The Show opens at 10.00 a.m. both days. Entrance fee £1 50; under the age of 14 admission is FREE.

Emulation support for embedded 80386CX/EX
German in-circuit emulator manufacturer Hitex (see advert on p. 36) have announced the first full in-circuit emulators for the new Intel 80386CX/EX embedded microprocessors. Using the existing PC-based T32/386SX emulator as a base, the CX version allows true in-circuit emulation of the CPU up to 20 MHz (25 MHz to special order) in both 100PQFP and MQFP packages. A comprehensive information pack is available from Hitex covering all 80386 family development tools.

Space Age 3 for Windows
V3 of SpaceAge for Windows gives an order of magnitude of speed rise for logic simulation over SpaceAge 2, previously believed to be the fastest analogue simulator of its type available. V3 benchmarks at 9 s on the digital test compared with 120 s on V2. Speed gains are also apparent on some analogue circuits.

New autorouter from ULTImate
ULTImate's new Ripup & Retry Autorouter, the UltiBoard and Ulticap. Both are now 32 bit using a Windows compliant DOS extender.

New from Maplin
A combined clock and thermometer, with an outdoor temperature probe, that can display either °C or °F. The LCD alternates between time and temperature readings at three second intervals. The unit, type-coded BU77J, measures 68x52x16 mm, and is priced at £9.95 (incl. VAT).

Z-Match for Windows
The paper Smith Chart, invented over 50 years ago provides a graphical method for solving impedance matching and transmission line problems. Number One Systems' new Z-Match for Windows program greatly enhances the usefulness and accuracy of Smith Chart techniques, and adds a wide range of valuable Radio Frequency Engineering utilities.

ULTImate Technology (UK) Ltd, 2 Bacchus House, Calleva Park, Aldermaston RG7 4QW, England. Telephone (0734) 812 030. (See inside front cover).
Dear Editor—I have found that the BFX36 used in the '100 W high-end power amplifier' (March 1994) is no longer available. In fact, I was told that production of this device was discontinued in 1991. This does not seem in line with your recently stated policy of trying to only publish designs for which the components are actually available. Would the designer please give advice on component values for the amplifier input stage using more readily available transistors, such as the ZX851, ZX951. I appreciate that the amplifier performance may not be quite as good with discrete transistors, but it would at least allow the design to be built. I have built a number of your projects in the past which I have always found to be very good and I find it annoying that I cannot build this amplifier to go with them.

Simon Platt, Bedford

We are aware of the problems regarding availability of the BFX36. Although the device is obsolescent, stocks are still available here and there, more particularly from one of our advertisers, C-I Electronics, P.O. Box 22089, 6360 AB Nuth, the Netherlands. Fax +31 45 241 877. In fact, the BFX36 and its complement, the 2N2914, are listed in C-I's advert on p. 33 of our March 1994 issue. Our Central Design Department are examining the specifications of several possible replacements for the BFX36/2N2914. When suitable types have been found, the relevant update information will be published in this magazine.

Dear Editor—I have just completed the construction of the 'Digital dial' described in the January 1994 issue. May I relate some quite interesting matters that arose during construction and testing?

My mistake (discovered after two days) was to use a 74HC4060 instead of the specified 4060. I only did this because I happened to have the 74 version and not a 4060. It does not work! I don't know why. They are supposed to be compatible. After the change, the 'dial' worked really well.

I have fitted it to my AR88LF. The display is fitted behind the 'window' on the front panel which should contain an 'S' meter. The rest is in a box resting on the IF transformers. I tried to use the 6.3 V heater supply, as that is available at the dial light, but I could not get a suitable transformer. In the end, I put a mains transformer in the box with the rest of the components.

If any of your readers have in mind making a 'Digital Dial' for their AR88, I can let them have details of an easy way of obtaining the LO feed without any soldering or up-ending the receiver (which must weigh a good 25 kg).

One feature of the 'dial' I should mention is that the three horizontal bars of the first digit in the display do not attain full brilliance. Perhaps this is due to all being fed from the same pin of the 4543? No great disadvantage, but can this be overcome?

On a completely different tack, I was asked the other day what SCART stood for. I do not know — do you? Is it an acronym or what is it (apart from a standard socket for computers)?

C.E.H. Benson, Warrington.

Thanks for your letter, which we feel sure will be of interest to many other readers.

The matter of the brilliance of the first three horizontal bars has been referred to the designer. As soon as his answer is to hand, we will write to you.

SCART is an acronym of Syndicat des Constructeurs d'Appareils Radioélectriques et Téléviseurs, the French association of radio and television manufacturers. This association decided in the early 1980s to terminate various inputs to, and outputs from, TV receivers into a 21-way socket, which has since become a European standard.

Dear Editor—I read with interest your article on the SCMS inhibitor for DAT machines (Copybit Eliminator — February 1994). I would like to make this unit for use between two Sony Portable DATs, i.e., the D3 and D7 machines. A separate box would be required with either coax or fibre optic connectors.

I am a musician, not a technical person, but I can use a soldering iron, so any help you can give me would be gratefully appreciated. I presume any components required can be purchased from Maplin or any other such supplier.

G. Drucquer, Frimley Green.

We are currently working on a stand-alone version, i.e., one that can be inserted between two DAT recorders as you require. We plan to publish the relevant article in our July/August 1994 issue. Briefly, the design will consist of the 'Digital audio enhancer' (February 1993) in slightly modified form, the 'Copybit eliminator', and a small add-on board. All this is, however, tentative and will depend on the tests our design department are currently carrying out proving successful.

Dear Editor—I have sent for the PIC programmer project that appeared in the March 1994 issue of your magazine and in the article eight 499 kΩ 1% resistors are needed. I have looked in various catalogues and TV and electronics magazines and I cannot find a source for such components. Please could you tell me where I could find them.

Why didn't you use presets or if these were not accurate enough, why didn't you use multimeter presets.

Have you ever considered having full kits (incl. all components) for your projects?

M. McCabe, Redcar

Precision 1%, and even 0.1%, resistors are available from specialist audiohi-fi component retailers. You may, for instance, try Viewcom—see pages 8 & 9 of our March and April 1994 issues. Complete kits are available from C-I Electronics—see the advert on p. 33 of our April 1994 issue.

Presets cannot be expected to give anywhere near the same performance as precision resistors, but we have, nevertheless, passed your query to the designer.

As international book/magazine publishers, we cannot go into the specialist electronics trade, but leave this to the experts: our advertisers and other electronic component retailers.

M. McCabe, Redcar

Precision 1%, and even 0.1%, resistors are available from specialist audiohi-fi component retailers. You may, for instance, try Viewcom—see pages 8 & 9 of our March and April 1994 issues. Complete kits are available from C-I Electronics—see the advert on p. 33 of our April 1994 issue.

Presets cannot be expected to give anywhere near the same performance as precision resistors, but we have, nevertheless, passed your query to the designer.

As international book/magazine publishers, we cannot go into the specialist electronics trade, but leave this to the experts: our advertisers and other electronic component retailers.

ELEKTOR ELECTRONICS MAY 1994
Except in the USA and Canada, all orders, except for subscriptions and past issues (for which see below), must be sent by POST to our Dorchester office using the appropriate form opposite. Please note, we cannot deal with PERSONAL CALLERS, as no stock must be sent BY POST to our Dorchester office using subscriptions and past issues (for which see below).

Except in the USA and Canada, all orders, except for subscriptions and past issues (for which see below), must be sent by POST to our Dorchester office using subscriptions and past issues (for which see below).

For book availability, see advertisement on page 67.

For book availability, see advertisement on page 67.

Components for projects appearing in Elektor Electronics are usually available from appropriate advertisers in this magazine. If difficulties in the supply of components are envisaged, a source will normally be given in the article. It should not be assumed, however, that the source(s) given is (are) exclusive — other suppliers may also be able to help.

For printed circuit boards whose number is followed by a * sign are only available in combination with the associated software item, and cannot be supplied separately. The indicated price includes the software.
ORDER FORM

Please supply the following. For PCBs, front panel foils, EPROMs, PALs, GALs, microcontrollers and diskettes, state the part number and description; for books, state the full title; for photocopies of articles, state full name of article and month and year of publication. Please use block capitals.

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Order code</th>
<th>Description</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of payment (see overleaf before ticking as appropriate)

- Bank draft
- Cheque (payable to Elektor Electronics Publishing)
- Giro transfer (our account no. 34 152 3801)
- Postal/money order

![Credit card options]

Sub-total

P&P

Total paid

Signature:

International Subscription Service

Please enter my subscription to *Elektor Electronics* for [] one year [] two years (tick as required) by [] surface mail [] airmail (tick as required).

Method of payment (see overleaf before ticking as appropriate)

- Cheque enclosed (payable to Elektor Electronics Publishing)
- Giro transfer to a/c 34 152 3801

[] Credit card Expiry date: ____________Signature: ______________________________

Name: ______________________________

Address: ______________________________

Postal code: ______________________________

Telephone: ______________________________ Date: ______________________________

Send this form to

Elektor Electronics, World Wide Subscription Service Ltd, Unit 4, Gibbs Reed Farm, Pashley Road, Ticehurst TN5 7HE, England

(Registered in the UK under the Data Protection Act, 1984)
TERMS OF BUSINESS

HOW TO PAY
Unless you have an approved credit account with us, all orders must be accompanied by the full payment, including postage and packing charges as stated on page 70, section 1.

Payment may be made by cheque drawn on a London clearing bank (but see para. 4 below), postal order, VISA, ACCESS, MASTERCARD or EUROCARD (when paying by credit card, the order must go to the cardholder’s address). Do not send cash through the mail. Cheques and postal orders should be crossed and made payable to ‘Elektor Electronics (Publishing)’.

Payment may also be made by direct transfer from a private or business bank account to our Giro Account No. 34 152 3801 by completing and sending to the National Giro Centre, a National Giro postal paid envelope, a National Giro transfer/deposit form. Do not send Giro transfers directly to us, as this will delay your order.

If you live outside the UK, payment may also be made by Bankers’ sterling draft drawn on a London clearing bank, Eurocheque made out in pounds sterling (with holder’s guarantee card number written on the back), or US or Canadian dollar cheque, but such cheques, accepted at the exchange rate prevailing at the time your order is received, must be increased by the equivalent of £15.00 to cover our bankers’ negotiating fee.

If you pay by Bankers’ sterling draft, make clear to the issuing bank that your full name and address must be communicated to the London clearing bank.

Our bankers are National Westminster Bank PLC, 100 High Street, BRENTFORD TW8 8AY, England. Our account number is 4285 0134.

DELIVERY
Although every effort will be made to dispatch your order within 2–3 weeks from receipt of your instructions, we cannot guarantee this time scale for all orders.

RETURNS
Faulty goods or goods sent in error may be returned for replacement or correction, but not before obtaining our consent. All goods returned should be packed securely in a padded bag or box, enclosing a covering letter stating the dispatch note number. If the goods are returned because of a mistake on our part, we will refund the return postage. Goods returned for refund must be in resalable condition and will be subject to a 10% handling charge with a minimum charge of £2.50.

DAMAGED GOODS
Claims for damaged goods must be received at our Dorchester office within 10 days (UK); 14 days (Europe) or 21 days (all other countries) from the date on our “Recorded Delivery” slip.

CANCELLLED ORDERS
All cancelled orders will be subject to a 10% handling charge with a minimum charge of £2.50.

PATENTS
Patent protection may exist in respect of circuits, devices, components, and so on, described in our books or magazines. Elektor Electronics (Publishing) do not accept responsibility or liability for failing to identify such patent or other protection.

COPYRIGHT
All drawings, photographs, articles, printed-circuit boards, screens, and cassettes published in our books or magazines (other than in third-party advertisements) are copyright and may not be reproduced or transmitted in any form or by any means, including photocopying and recording, in whole or in part, without the prior permission of Elektor Electronics (Publishing) in writing. Such written permission must also be obtained before any part of these publications is stored in a retrieval system of any nature.

Notwithstanding the above, printed-circuit boards may be produced for private and personal use without prior permission.

LIMITATION OF LIABILITY
Elektor Electronics (Publishing) shall not be liable in contract, tort, or otherwise, for any loss or damage suffered by the purchaser whatsoever or howsoever arising out of, or in connection with, the supply of goods or services by Elektor Electronics (Publishing) other than to supply goods as described or, at the option of Elektor Electronics (Publishing), to refund the purchaser any money paid in respect of the goods.

LAW
Any question relating to the supply of goods and services by Elektor Electronics (Publishing) shall be determined in all respects by the laws of England.

May 1994

Annual subscription rates (1994)

<table>
<thead>
<tr>
<th>Region</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>£27.00</td>
</tr>
<tr>
<td>Rest of the world (surface mail)</td>
<td>£33.00</td>
</tr>
<tr>
<td>AIRMAIL</td>
<td>£34.00</td>
</tr>
<tr>
<td>Europe & Eire</td>
<td>£43.00</td>
</tr>
<tr>
<td>USA & Canada</td>
<td>£43.00</td>
</tr>
<tr>
<td>Middle East & North Africa</td>
<td>£43.00</td>
</tr>
<tr>
<td>Central & southern Africa</td>
<td>£43.00</td>
</tr>
<tr>
<td>Central & South America</td>
<td>£45.00</td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>£45.00</td>
</tr>
<tr>
<td>Far East & South Pacific regions</td>
<td>£57.00</td>
</tr>
</tbody>
</table>

Payment may be made by cheque in sterling drawn on a London clearing bank (but see below), postal order, VISA, ACCESS, MASTERCARD or EUROCARD (in which case the subscription must be sent to the cardholder’s address) or by direct transfer to our Giro Account No. 34 152 3801. Do not send cash through the mail. Cheques and postal orders should be made payable to ‘Elektor Electronics Publishing’. Giro transfers should be made by completing and sending the appropriate transfer/deposit form to the National Giro Centre (UK) or to your national Giro Centre.

If you live outside the United Kingdom, payment may also be made by Bankers’ sterling draft drawn on a London clearing bank or Eurocheque. Eurocheques should be made out in pounds sterling and have the holder’s guarantee card number written on the back.

US dollar cheques. Subscribers in the USA and Canada only may pay in US dollar cheques.

The standard subscription order period is twelve months.

A permanent change of address during your subscription period means that copies have to be dispatched by a more expensive service, no extra charge will be made.

Similarly, no refund will be made, nor expiry date extended, if a change of address allows the use of a cheaper service.

Student applications, which qualify for a 10% (ten per cent) reduction in current rates, must be supported by evidence of studentship signed by the head of the college, school or university faculty.

Please note that new subscriptions take about four weeks from receipt of order to become effective.

Cancelled subscriptions will be subject to a charge of 25% (twenty-five per cent) of the full subscription price or £7.50, whichever is the higher, plus the cost of any issues already dispatched. Subscriptions cannot be cancelled after they have run for six months or more.

Our bankers are National Westminster Bank PLC, Sorting Code 60-03-23, 100 High Street, Brentford TW8 8AY, England. Our account number is 4285 0134.

May 1994
LOW COST PC SPECIALISTS - ALL EXPANDABLE - ALL PC COMPATIBLE

- **2088 XT - PC99**
 - 4.7 Mhz speed
 - 256k RAM - expandable
 - MS-DOS 4.01
 - Shugart 800/801 SS refurbished & tested
 - Standard SMD interface. Ultra hi speed transfer and access time
 - Dual 8" drives with 2 mbyte capacity housed in a smart case
 - 5.25" EXTRA SPECIAL BRAND NEW Mitsubishi MF501B
 - 3.5" Mitsubishi MF355C-D. 1.4 Meg. Non laptop
 - guarantee and operate from standard voltages and are of stand-
 - are fully tested, aligned and shipped to you with a 90 day
 -ly guarantees on a return to base.
 - 90 day guarantee. 15 x 14 " x 12"...
 - Philips 9CM073 similar (not identical) to above for EGA/CGA
 - £129 (E)

- **286 AT - PC286**
 - 2 meg RAM expanded by s/b/s
 - 12 Mhz hard disk speed
 - 2 serial & 1 parallel ports
 - 360k cache. Expandable to 64k
 - 40 meg hard disk
 - 12.5 meg 1/4-1/2 floppy
 - VGA card included
 - Only £249.00 (F)

- **386 AT - PC386**
 - 440k RAM expandable
 - with standard SMD
 - 12 Mhz hard disk speed
 - 2 serial & 1 parallel ports
 - 4 meg hard disk
 - only £295.00

POWER SUPPLIES

- Power One SPL200-200P 200 watt (250 wpa). Semi open frame give +5v 30a, +12v 4a (8a), -12v 4a (6a) with over voltage protection on the +5v output. AC input selectable for 110v. 220v 50 x 60hz. Completely reconditioned.
 - Only £145.00 (F)

- **SECM**
 - Brand new and boxed!
 - Virtually New, Ultra Smart!
 - CALL FOR PRICING ON NTSC VERSIONS!

- **SUPERB QUALITY 6 FOOT 40U 19" RACK CABINETS**

- **NO BREAK UNINTERRUPTIBLE PSU's**
 - Brand new and boxed!
 - Only £239.95 or 2 for £453 (B)
 - **SPECIAL INTEREST**

- **LOW COST PC SPECIALISTS - ALL EXPANDABLE - ALL PC COMPATIBLE**

LOW COST PC SPECIALISTS - ALL EXPANDABLE - ALL PC COMPATIBLE

- **Power One SPL200-200P 200 watt (250 wpa). Semi open frame give +5v 30a, +12v 4a (8a), -12v 4a (6a) with over voltage protection on the +5v output. AC input selectable for 110v. 220v 50 x 60hz. Completely reconditioned.**
 - Only £145.00 (F)

- **SECM**
 - Brand new and boxed!
 - Virtually New, Ultra Smart!
 - CALL FOR PRICING ON NTSC VERSIONS!

- **SUPERB QUALITY 6 FOOT 40U 19" RACK CABINETS**

- **NO BREAK UNINTERRUPTIBLE PSU's**
 - Brand new and boxed!
 - Only £239.95 or 2 for £453 (B)
 - **SPECIAL INTEREST**

LOW COST PC SPECIALISTS - ALL EXPANDABLE - ALL PC COMPATIBLE

- **Power One SPL200-200P 200 watt (250 wpa). Semi open frame give +5v 30a, +12v 4a (8a), -12v 4a (6a) with over voltage protection on the +5v output. AC input selectable for 110v. 220v 50 x 60hz. Completely reconditioned.**
 - Only £145.00 (F)

- **SECM**
 - Brand new and boxed!
 - Virtually New, Ultra Smart!
 - CALL FOR PRICING ON NTSC VERSIONS!

- **SUPERB QUALITY 6 FOOT 40U 19" RACK CABINETS**

- **NO BREAK UNINTERRUPTIBLE PSU's**
 - Brand new and boxed!
 - Only £239.95 or 2 for £453 (B)
 - **SPECIAL INTEREST**

LOW COST PC SPECIALISTS - ALL EXPANDABLE - ALL PC COMPATIBLE

- **Power One SPL200-200P 200 watt (250 wpa). Semi open frame give +5v 30a, +12v 4a (8a), -12v 4a (6a) with over voltage protection on the +5v output. AC input selectable for 110v. 220v 50 x 60hz. Completely reconditioned.**
 - Only £145.00 (F)

- **SECM**
 - Brand new and boxed!
 - Virtually New, Ultra Smart!
 - CALL FOR PRICING ON NTSC VERSIONS!
ELEKTOR ELECTRONICS is available from, among others:

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway,
London NW2 3ET
Telephone 081 450 0995
Fax 081 208 1441

THE ELECTRONIC SHOP
Electronic components, test equipment, telephone accessories, computer accessories, microphones, disco lighting, speakers, turntables, mixers, meters, stylus.
29 Hanging Ditch,
Manchester M4 3ES,
Telephone 061 894 1185

L.F. HANNEY
Your electronic component specialist for Avon, Wilts & Somerset.
77 Lower Bristol Road, Bath,
Avon, Telephone 0225 424811

D.P. HOBBS (NORWICH) LTD
Electronic component specialists. Amateur radio equipment.
13 St. Benedict Street,
Norwich NR2 4PE,
Telephone 0603 615786

MANCOMP
240 Platt Lane
Manchester M14 7BS
England
Telephone 061 224 1888

OMNI ELECTRONICS
Stock a wide range of electronic components.
174 Dalkeith Road,
Edinburgh EH16 5DX,
Telephone 031 667 2611

AAGE NIELSEN
1 Sortedam Dosseringen
DK-2200 Copenhagen,
Denmark,
Telephone 01 39 30 10
Fax 031 39 05 02

HELMHOLT ELEKTRONIK
Farvevej 2
DK-7600 Struer, Denmark
Telephone 97 85 26 11

RCE ELECTRONIC CENTRE
Boulevarden 34
DK-9000 Aalborg, Denmark
Telephone 98 16 07 10

VEJLE RC ELEKTRONIK
Sdr Brogade 42
P O Box 332
DK-7100 Vejle, Denmark
Telephone 75 83 25 33

BEBEK ELECTRONICS
Hirsimetsäntie 26
SF-15200 Lahti 11
Finland
Telephone (18) 33 99 46

INDEX OF ADVERTISERS

Advertising Standards Authority 36, 51
Badger Boards 49
B K Electronics 15
Bull Electrical 60
Canal Bridge Audio 51
Cirkit Distribution 27
Cricklewood Electronics 45
Display Electronics 73
Elektor Electronics 67, 74
ESR Electronic Components 31
Eurocom International Ltd 51
Hitex (UK) Ltd 36
Instruck (UK) 21
Intar Oy 51
KMN Developments 49
Labcenter 61
Maplin Electronic Supplies Back cover
MicroAmps 27
Number One Systems Ltd 4
Pico Technology Ltd 26
POWERware 59
Robinson Marshall Inside back cover
SigCad 49
Speaker Builder 36
Stewart of Reading 27
Suma Designs 20

Those Engineers 59
Tsiem (UK) Ltd 55
Ultimate Technology Inside front cover
Viewcom Electronics 8, 9

ADVERTISING SPACE
for the June 1994 issue may be reserved
not later than Thursday 14 April 1994 by

Elektor Electronics (Publishing)
Advertisement Office
3 Crescent Terrace
Cheltenham GL50 3PE
England
Telephone (0242) 510 760
Fax (0242) 226 626

to whom all correspondence, copy instructions
and artwork should be addressed.
Design and Verify Circuits. Fast.

Electronics Workbench®

NEW Version 3

Complement Your Test Bench

Here's why Electronics Workbench belongs on your test bench: Wires route themselves. Connections are always perfect. And the simulated components and test instruments work just like the real thing. The instruments are indestructible and the parts bin holds an unlimited supply of each component. The result: thousands of electronics professionals and hobbyists save precious time and money. **Over 90% would recommend it to their friends and colleagues.** Electronics Workbench: the ideal, affordable tool to design and verify your analog and digital circuits before you breadboard.

And now the best is even better - Electronics Workbench Version 3.0 is here. It simulates more and bigger circuits, and sets the standard for ease of use. **Guaranteed!**

NEW Features in Version 3

- New components include JFETs, MOSFETs, voltage-controlled and current-controlled sources and manual, time-delay, voltage-controlled and current-controlled switches
- Real-world models for opamps, BJTs, JFETs, MOSFETs and diodes - over 100 models available
- MS-DOS version now supports up to 16 MB of RAM for simulation of bigger circuits
- New Microsoft® Windows® version available
- Technical support now also available on CompuServe

Electronics Workbench

The electronics lab in a computer™

Call: (0827) 66212

ROBINSON MARSHALL (EUROPE) LTD.
17 Middle Entry, Tamworth, Staffordshire, England B79 7NJ
Fax: (0827) 56553

30-day money-back guarantee.

Shipping charges - UK £4.95. All prices are plus VAT. All trademarks are the property of their respective owners.
Over 700 colour packed pages with hundreds of brand New Products at Super Low Prices, on sale now, only £2.95.

Available from all branches of WHSMITH, selected branches of RSMcCull in Scotland ONLY, and Maplin stores nationwide.

The Maplin Electronics 1994 Catalogue – UNIQUELY DIFFERENT!

Africa customers please contact MAPLIN (SOUTHAFRICA) Tel: (024) 51-5124