Looks like Quickroute 4.0 has Got the Lot!

Simulation, Schematic Capture, PCB AutoRouting & CADCAM Support for just £79**

Announcing Quickroute 4.0! Now all versions of Quickroute 4.0 have the full range of great features you've come to expect from Quickroute including a FREE integrated mixed mode simulator, plus a new modern user interface with active buttons, a fast new symbol browser, and dockable tool bars. The only difference now between the various versions of Quickroute is the size of design you can create.

Best of all, you can now try Quickroute 4.0 with complete confidence because all orders are covered with our 30 day money back guarantee*. Simply fill in the coupon and fax, mail (FREEPOST address below) or FREEphone 0800 731 28 24 to place your order.

Yes, I would like to order (please tick box)
- Quickroute 4.0 (max 300 pins) at £99.88 inclusive
- Quickroute 4.0 (max 800 pins) at £182.13 inclusive
- Quickroute 4.0 (full access) at £299.63 inclusive
- Quickroute 4.0 Information Pack (free)

Inclusive price includes U.K. post & packing & V.A.T.

My payment choice (please tick box)
- I enclose a cheque payable in U.K. sterling for £
- Please debit my Visa/Mastercard/American Express/Switch card (please delete)

Delivery Address

FREEphone 0800 731 28 24 Ref 402
Quickroute Systems Ltd FREEPOST NW13136 Stockport SK4 1YR.
FAX 0161 476 0505 FREE Demo on WEB http://www.quickroute.co.uk

Specifications and prices are subject to change without notice. *Price quoted excludes post & packing and V.A.T.
**Refunds are only issued if you contact Quickroute Systems Ltd within 30 days of receiving your copy of Quickroute 4.0.
The Low Cost Controller
That's Easy to Use

Features

The K-307 Module provides the features required for most embedded applications

- 4 Channels in 1 Channel out
- 36 Digital in or out & Timers
- RS-232 or RS-485 plus 12C
- LCD both text and graphics
- Upto X bytes available on board
- Many modes to choose from

Development

The PC Starter Pack provides the quickest method to get your application up & running

Operating System
- Real Time Multi Tasking
Languages
- "C", Modula-2 and Assembler
Expansion
- Easy to expand to a wide range of peripheral cards

Other features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

Units 17 - 18 Zone 'D'
Chelmsford Road Ind Est
Great Dunmow Essex CM6 1XG
E-mail sales@cras.uk.com
Phone 01 371 875 644

See our website: http://www.cms.uk.com
WEB SEARCHER IS A 'WORK OF ART'
A computer program that surfs the Internet has been launched as a work of art and even has the backing from the Arts Council of the United Kingdom.

Three artificiai computer-'whiz-kids', have created the Internet surfing program that they say offers a new perspective on the kids' hobby created the Internet in the United Kingdom.

Rebecca Lloyd, Data Connection Ltd, 100 Church Street, Enfield, United Kingdom EN2 6BQ. Phone +44 (0)181 366 1177. e-mail: recruit@datacon.co.uk
Web site: http://www.christs.com.ac.uk/bio/

STRESS OVERLOADS COMPUTER EXECUTIVES
Technical staff in information technology (IT) departments are becoming overwhelmed with information, leading to stress, according to a recent report.

An 'explosion' of information, from the Internet and other sources, is threatening to overwhelm staff, it warns.

The report from Sequent Computers claims that the very people building the digital revolution - the managers of corporate computer networks - are the ones coming under the most stress.

Among the survey's findings are:
- two thirds of IT directors think new projects are more risky than they used to be;
- 95 per cent think that the amount of information available will double in the near future;
- half believe their computer systems will not be able to cope with so much extra data;
- 65 per cent said increasing stress at work was affecting their private lives; 17 per cent said this was extremely significant.

Sequent Computers, Sequent House, Weybridge Business Park, Addlestone Road, Weybridge, Surrey, United Kingdom KT15 2UF. Phone +44 (0)1932 851 111. e-mail: kalexby@firefly.co.uk

SUPERHIGHWAY PIRATES WARNING FROM WATCHDOG
A British High Court judgement against two businessmen, who bought Internet domain names that were similar to major business trade marks, has been welcomed by the Institute of Trade Mark Agents (ITMA) of the United Kingdom.

In a statement, Mr John Slinn, president of the ITMA, said the ruling in the case backed what his organization had been saying for a long time about domain names. Business should keep monitoring the Internet and checking on possible uses of their trade marks by third parties.

"For a long time we have been warning of superhighway pirates registering domain names and then offering them back, at a price, to the owners of registered trade marks," he said.

"Companies that make the effort to register their trade marks have the right to see that protection extended into new technologies. I am delighted by the court ruling and hope it will dissuade unscrupulous 'dealers' from repeating the practice."

"However, business people should remain on their guard and continue to exercise vigilance in monitoring the Internet for similar infringements."

Recently, his High Court ruled that Richard Conway and Julian Nicholson, of One in a Million Ltd, should assign the domain names they had registered in other trade marks, such as "marksandspencer.com" to the trade mark holder. The court also ordered that the two pay costs of about £60,000 pounds sterling.

ITMA, Canterbury House, 2-6, Sydenham Road, Croydon, Surrey, United Kingdom CR0 9XG. Phone +44 (0)181 686 2052. Web site: http://www.itma.org.uk/

MAKING THE COMPUTER INDUSTRY 'MORE ATTRACTIVE'
School leavers and graduates still see the computing and information technology (IT) industry as one for "nerds", said a senior executive of a United Kingdom computer company recently.

Alan Stevens, chief executive of the computer services company EDS, was speaking on the day he took over the chairmanship of a body dedicated to cultivating training and developing new blood for the IT industry.

"It is up to us to persuade young people that it is not nerdy," he said. "The image of the industry is not good in terms of being an attractive place to work, especially for women."

Mr Stevens took over as chairman of the National Training Organization (NTO), an independent IT body supported by business. NTOs have been established in various industry sectors and they attempt to research the pattern and market and make training to suit it.

"The UK is not strong on things in the area of software development. But we need to attract more good people. It is quite clear that the industry needs to get a grip on this problem and fix it."
Many designers shy away from using JFET transistors although numerous circuits would benefit from using these devices. Whenever very high input impedance, high operating frequency and relatively low noise are paramount design requirements, a JFET may be a good choice. This article aims at removing some of the general hesitation about using JFETs by describing a simple tester that allows you to measure two crucial electrical parameters of these devices.

Although the staggering amount of data you can obtain from a FET's datasheet may cause the odd apoplectic fit with some of you, it can be upheld that there are two absolutely vital selection criteria (or 'electrical parameters') which help to identify an unknown JFET, or find so-called matched devices from a batch of JFETs (more about this further on).

The present tester is only suitable for n-channel small-signal JFETs (junction field-effect transistors). This does not detract from its usefulness however because chances are pretty small that you will ever encounter a p-channel JFET in your lifetime!

MEETING THE JFET
Although most of the background theory relevant to JFETs may be found in any reasonable electronics textbook, it may still be useful to present a brief recap in this article.

The circuit symbol of the n-channel JFET is shown in the basic connection diagram in Figure 1. The in-going arrow at the G (gate) denotes the n-channel version. Although the symbol of a JFET is different from that of a bipolar transistor, it may help you think of the D (drain) electrode as the collector, the S (source) electrode as the emitter, and the G (gate) electrode as the base. Unlike an n-p-n transistor, however, the operating range of the parameter called 'gate-source voltage' (VGS) is negative. In other words, the gate is made negative with respect to the source.

Now, let's first take a moment to explain the notation of the various parameters symbols you will find in the datasheets and this article. The above example, VGS, should be read as follows: 'Voltage (V) between Gate and Source (Gs). Note that the index 'GS' is printed smaller and lower than the capital letter V. Similarly, the symbol ID means 'current (I) in drain (D) channel', and VDS means 'voltage (V) between drain (D) and source (S). Once you are comfortable with the basics of this notation system, you will have little difficulty in unravelling the meaning of the various symbols used.
to describe the electrical parameters of JFETs (and other transistors).

PINCH-OFF VOLTAGE

The first vital JFET parameter is called the *pinch-off voltage*, symbol \(-V_{GS(off)}\) or simply \(V_{p}\). Unfortunately, due to fabrication techniques, this parameter is subject to relatively large tolerance. In other words, the actual \(-V_{GS(off)}\) spec of the JFET you have available may differ considerably from the value specified in the datasheets. The pinch-off voltage is the gate-source voltage at which negligible drain current flows. Hence the name: this voltage pinches off the current in the drain-source channel to virtually nothing. The remaining current is due to leakage, and usually defined as 1 nA, 10 nA or even 100 nA by the manufacturer. The pinch-off voltage is stated assuming that \(V_{DS} = 15\) V. It makes little difference, however, at long as you know that \(V_{p}\) is a constant value, or nearly so.

If the JFET tester described here measures \(-V_{GS} = 5\) V, at \(I_{D} = 10\) nA, and does not use a constant voltage for \(V_{p}\), yes, it can be done! Referring back to the graph in Figure 2, you can see that the \(I_{D}\) vs. \(V_{GS}\) curve for values of \(-V_{GS}\) approaching the \(-V_{GS(off)}\) value (like \(-V_{GS} = 4\) V) runs virtually straight from \(V_{GS} = 2\) V onwards. In other words, \(I_{D}\) remains virtually constant as long as \(V_{DS}\) is between, say, 3 V and 15 V. So, the error caused by the non-constant value of \(V_{GS}\) in the test circuit is negligible, because \(V_{p}\) is always in the range where \(I_{D}\) is virtually constant. That's why JFETs make great constant-current sources!
Pressing S1 causes the source to be connected to the gate, so that VG5 = 0 V. Although the reference voltage at the +input of IC2 remains 100 mV, D3 now drops its normal forward bias voltage of about 0.7 V. Consequently the opamp pulls its output to (practically) the positive supply level. Resistor R5 then carries (12-0.7) V/100 kΩ or a little more than 100 µA. This current also flows through R6, where it is added to the drain saturation current. As this will be in the mA region, the error is, we feel, insignificant for all practical intents and purposes.

Because R6 has a value of 10 Ω, the ID(S5) indication on the DVM is in (mA x 10). Mind you, you are measuring a voltage that indicates a current! True, a value of 15 would have been more logical because then the readout is simply in mA. A higher output voltage is used, however, to enable the DVM to be switched to a higher range with resultant higher accuracy (in general!). Owners of 4.5-digit DVMs may use a 1-Ω resistor in position R6. Whatever DVM you use, the accuracy of the tester will benefit from the use of a 1% (close-tolerance) resistor for R6.

The voltages indicated in the circuit are typical. The first voltage applies when S1 is not pressed, the second, when S1 is pressed. Unless otherwise indicated, measurements are with respect to the ground rail, i.e., the 0 V input of the DVM.

The circuit may be powered by an inexpensive mains adaptor with an output voltage of about 15 VDC. Because the tester will only draw a few tens of mA when S1 is pressed to perform a drain saturation current measurement.

Figure 4. Circuit diagram of the JFET tester.

- A14 Elektor Electronics 2/98
even very low power adaptors may be used. Any small adaptor rated at 12 VDC should be suitable because it will typically supply at least 15 V when only a few milli-amps are drawn. When S1 is not pressed, the current consumption is about 5 mA.

Construction and Adjustment

A ready-made printed circuit board is, unfortunately, not available for this project. The artwork to make your own board is, however, shown in Figure 5. Look carefully at the component overlay to make sure each and every polarized part is fitted the right way around. There are three D.U.T. sockets on the board to accommodate different pin-outs of the JFETs you want to test. Make sure you know the pin-out from a datasheet; else neither measurement will make any sense at all, and you may destroy the device under test.

Preset P1 is adjusted until it drops exactly 100 mV (use a 10-MΩ DMM for this adjustment).

Finally, a suggested front panel layout is shown in Figure 6.

Hints and Kinks

If you want to do some testing on known JFETs, we recommend the BF245 and BF256 series to start with. Another commonly used JFET (particularly outside Europe) is the 2N5486.

The highest drain saturation current that can be measured by the circuit is about 40 mA. If you see anything above this value on your DVM display, the measurement is probably not valid.

Take the internal resistance of your DMM into account when measuring the voltages indicated in the circuit; at some junctions, even 10 MΩ may be a relatively 'heavy' load.

Matching, What's it for?

Some (audio) amplifier stages of the differential type use JFETs which have to be 'matched' for optimum performance. The two elementary tests carried out with the aid of the present tester should enable you to pick two JFETs with almost equal electrical properties from a batch of, say, ten.

Figure 6. Suggested front panel layout for the JFET tester.

Great Sound is a work of art!

If you want to create your own great sounding works of art, *Speaker Builder* can show you how!

The publishers of *Speaker Builder* invite you to use your electronics know-how to explore the world of better sound. To subscribe, simply return this form with your payment or FAX your credit card order and receive 8 issues of *Speaker Builder* for a low introductory rate of $45. That’s a $5 savings off the regular subscription rate. Or, double your savings and subscribe for 16 issues (2 years) at $80 (that’s $10 off).

- $45, 8 issues (1 year) $50, 16 issues (2 years)

- Remit in US $ drawn on a US bank only

PO Box 494 Dept. EMS, Peterborough, NH 03458-0494 USA

Phone: (603) 924-9464 or Fax your order 24 hours a day to (603) 924-9467

Rates subject to change without notice.
We stock Capacitors, Resistors, D & DIN Connectors, Box Headers, LED, LCD & LED Displays, Relays, Switches, Transformers, etc.

VIEWCOM ELECTRONICS
77 UPPERTON ROAD WEST
PLAISTOW, LONDON E13 9LT

PLEASE PHONE/WRITE FOR ITEMS NOT LISTED

Please add £1.20 P & P and then 17.5% VAT. Official orders from Govt. & Educational Establishments are accepted. VAT at 17.5% is chargeable to all orders received from EC Member Countries unless VAT Number is quoted. OVERSEAS orders, postage AIR/SURFACE will be charged at cost. VAT is not applicable for EXPORT orders from Non-EC Member Countries. Stock items by return of post.

N.B. All prices are subject to change without notice & stock availability.

Retail Shop: 139, New City Road, Plaistow, London E13 9PX

Elektor Electronics
Frequency display and VFO stabilizer

eliminates frequency drift in home-brew and 'surplus' HF receivers

By Eamon Skelton, EI9GO

One of the most frequent topics for discussion among the many ‘Home Brewers’ on the amateur bands is the difficulty of building a VFO that is stable enough to be used on all of the HF bands. The relatively simple circuit described here will stabilize the frequency of an HF VFO, and provide a digital frequency display. The display will allow for the different frequency offsets required for USB and LSB, and the fact that the VFO frequency may be above the signal frequency on some bands, and below it on others.

The circuit uses a microcontroller to count the frequency of an HF VFO (variable frequency oscillator), add or subtract the IF (intermediate frequency) offset, and display the signal frequency on a standard Hitachi intelligent LCD display module. The VFO frequency is stabilized by sending a correcting voltage to a varicap diode in the VFO. The circuit is based on a ‘Huff & Puff’ stabilizer that I have been using for several years.

The circuit design philosophy was to keep the hardware as simple as possible, and to use inexpensive and readily available components. This was made possible by using a microcontroller chip which was programmed to take care of most of the complex functions like counting, arithmetic, and driving the LCD display module. Two versions of the unit were built, one using the 8031 microcontroller, and this version using the PIC16C54. I have tested the circuit at various frequencies between 8 MHz and 80 MHz.

CIRCUIT DESCRIPTION

The circuit diagram of the VFO stabilizer is shown in Figure 1. The circuit is basically a Frequency Locked Loop (FLL). As many of you will be aware, the PIC16C54 microcontroller is a complete computer on a chip with 512×12 bits of ROM, 32 bytes of RAM, a clock circuit, 12 I/O pins, a real time clock/counter, and several other useful features. For a full description of the PIC16C54 and its instruction set, see the Microchip data book or Microchip data sheet DS300151.

The RF signal picked up from the VFO is amplified and digitized by TI, then buffered by IC1b. The BSX30 is a fast switching transistor for use up to 200 MHz. The amplified signal is gated by IC1c and IC1d. A 100-ms gate pulse is generated by a software delay loop in the PIC. The square wave pulses from IC1d are counted by IC2 which is configured as an 8-bit counter.

The output of IC2b is connected to the RTCC input of the PIC through a 1.2kΩ resistor (R6). The PIC has a real-time clock/counter (RTCC) which can count pulses applied to the RTCC input (pin 3). The RTCC register is only eight bits wide giving a maximum count of 255. If the PIC’s internal prescaler is set to divide by 256 the
maximum count is 65,535, effectively making a 16-bit counter. With a 1-ms gate time this would allow the counter to count up to 65,535 MHz but the resolution would be 1 kHz which is not good enough for our purposes.

The 74HC393 counter chip increases the count to 24 bits, or 16,777,215. With a 100-ns gate time this will allow a maximum count frequency of 167,777 MHz and a resolution of 10 Hz, that is, if you can find logic chips that are fast enough. One problem with this arrangement is that it is not possible to read the least significant 8 bits directly from the 393.

This problem is overcome by sending pulses to the counter input through gate IC1d. By counting the number of pulses it takes to make the counter overflow it is a simple matter to calculate the value(123,887),(555,918)

The circuit is just acting as a frequency counter and display. At the end of each count-display cycle, the counters are reset and the cycle is repeated again. No attempt is made to control the frequency of the VFO. The control voltage at the output of the integrator is set at about 2.5 volts and remains there until the LOCK/UNLOCK button S1, is pressed.

HOW THE VFO IS CONTROLLED

When you find a frequency that you want to stay on, press the LOCK/UNLOCK button. After the button is pressed there is a 100 ms delay, then the result of the most recent count is stored in three registers in the PIC. The result of all subsequent counts are compared with this value. If the current count is less than the stored value, the VFO has apparently drifted lower in frequency; a positive pulse is sent to the integrator (IC3) to correct the error. If the current count is greater than the stored value then a negative correction pulse is generated.

The width of the correction pulse depends on the degree of VFO drift. If the error is less than 10 Hz then a very short pulse of about 2 ms duration is generated. Greater frequency errors result in longer correcting pulses: 20 Hz = 4 ms, 30 Hz = 6 ms, 40 Hz = 8 ms and so on. This results in much tighter control of the VFO than can be achieved with a conventional 'Huff and Puff' circuit.

When the circuit is in locked mode, the LCD display readout changes: 'MHz' disappears from the display and is replaced by the 10-Hz digit. To the right of this is the error level display which is shown as E0 to E9. E0 means that the error is less than 10 Hz, E1 is an error level of 20 Hz, E9 is an error level of 100 Hz. If the error level is greater than 9, a '9' is still displayed. The last character on the display is the correction direction indicator: '>' indicates a positive pulse, '<' indicates a negative pulse. A low error level indication of 0 or 1 and a continuous rapidly alternat-
The VFO should be arranged so that the maximum frequency change is approximately ±3 kHz. This should be sufficient range to keep a moderately stable VFO locked for hours or even days!

When you need to change frequency, press the LOCK/UNLOCK button again. This puts the device in unlocked mode, the integrator output is set at 2.5 volts and the display changes back to 6 digits followed by MHz. To lock to a new frequency simply press the LOCK/UNLOCK button again.

THE PROGRAM

Various interesting options are available as regards the control software which resides in the PIC microcontroller. To enable you to make your choice, we first tell you what's available for this project, and then make an important statement.

The items available for this project are (1) a ready-programmed PIC (for 10.7 MHz IF), (2) a ready-made PCB and (3) a diskette containing the source code files for the PIC control program. For prices, order numbers and other relevant information, please refer to the Readers Services pages elsewhere in this issue.

And now, a serious note. Although this frequency display/VFO stabilizer is fairly easy to build, you should realize that considerable experience may be required to establish the link with the VFO in your receiver. Before building this project, you should, therefore be positive about the following points.

1. The receiver is a heterodyne (mixer) design. The VFO frequency is between 8 and about 80 MHz.
2. The VFO has varicap control allowing a tuning range of ±3 kHz to be produced by a control voltage swing of 5 V (2.5 V = centre tuning).
3. The VFO signal can be 'tapped' in a safe way (preferably by inductive coupling) and has a level of at least 100 mV pp.

Most experienced radio amateurs (and not only those who actually transmit!) will be able to come to terms with these conditions, if necessary with the help of a fellow ham.

Back to your options! Here's what you can do.

1. I have a receiver with an IF of 10.7 MHz.

Simply order the PCB, the ready-programmed PIC and the source disk supplied through our Readers Services.

2. I have a receiver with an IF other than 10.7 MHz.

Order the PCB (980004-1) and the source code disk (986006-1) as separate items. Purchase a PIC16C54, and get hold of an assembler and a PIC programmer. Edit the source code as explained in the README file, and then program your own PIC.

3. I have a receiver with an IF of 455 kHz or 7.8 MHz.

Do the same as under 2. The necessary files are on the disk.

4. I can make my own PCBs and program my own PICs.

Order the diskette only (986006-1). Make your own PCB using the artwork shown in this article. Burn your own PIC for the IF you require. Tell your friends about it.

A PIC programmer can be built from one of the many published designs, or a commercially made unit can be purchased from one of several companies advertising in this magazine. The source code file on disk may be edited using any ASC II word processor.

Details on modifying the IF offset are also available. Examples are available for 10.7 MHz, 455 kHz and 7.8 MHz.

CONSTRUCTION

If you use the PCB layout shown in Figure 4 and a ready-made board, construction of the circuit is fairly easy. Check the orientation of all polarized components (electrolytic capacitors, diodes, ICS, transistor T1). Use sockets.

Huff and Puff

Although this circuit is generally referred to as the 'huff and puff' stabilizer among English-speaking hams, it should really be called the PAOKSB VFO stabilizer after its inventor, the Dutch radio amateur Klaas Spaargaren, PAOKSB.

The circuit can act as an outboard enhancement with any reasonable VFO, keeping the output frequency stable within a couple of hertz without adding parasites and other whistles to the VFO output. A crystal oscillator, whose output frequency need not be a round value, is followed by a divider cascade which open a gate for, say, 1 second. Next, the second one-shot clocks the 1 or the 0 into the D-bistable. If the output is applied to a D-bistable. If the gate signal drops to 0, the first one-shot is triggered. Next, the second one-shot clocks the 1 or the 0 into the D-bistable. Finally, counter is reset by the third one-shot. If the counter signal was a 0, the 0 output of the bistable goes high, charging the capacitor and so causing the VFO frequency to go up. By contrast, a counter signal of 1 causes the frequency to go down. In this way, the VFO frequency 'puffs' at a rate of a few hertz around the stabilization point at which the counter detects an '8' as the last digit. Over the years, the basic design by PAOKSB was enhanced and followed by several variants using a raster of about 40 Hz, allowing virtually continuous tuning.
for the ICs if you want to experiment with different logic IC families, LS, ALS, HC etc. If you use 74HC or 74ALS series chips for IC1 and IC2 it will not be necessary to have a heat sink on the 5-V regulator. The circuit was tested with HC ICs, and worked reliably up to about 50 MHz. Higher input frequencies should be possible if you use ALS ICs.

The type of opamp used for IC4 is quite critical, the ADOPO7CN gave very good results. If you do not have an ADOPO7CN available, the TL071CN also works quite well.

The Display

Any general-purpose 1-line 16-character display that uses the Hitachi HD44780 chip should be suitable (the author used a type 16166 LCD display module). Some of these displays have LED or electroluminescent backlighting built in. Do not spend large sums of money on these displays, they are often advertised for less than £5.00.

Testing

When the unit is first powered up, adjust preset P1 for best contrast on the LCD display. Connect your VFO to the input (C2), set the ADD/SUB input high to add the IF offset, or low to subtract the IF offset. Set the OFFSET switch for USB (high) or LSB (low). The display should show the approximate frequency of the VFO plus or minus the IF offset.

The best way to calibrate the counter accurately is to tune your receiver to a frequency standard signal or a station of known frequency accuracy, then adjust C5 until the displayed frequency is correct. The capacitor values shown in the circuit diagram worked fine with several 4-MHz crystals from the author’s junkbox. If the crystal you are using requires different capacitor values it may be necessary to change the value of C6.

In the author’s HF transceiver, the circuit was put in a small box made from copper clad glass fibre board, this box was mounted on top of the VFO. The RF input and control output connections were made with miniature (RG174 or similar) coaxial cable. A short length of ribbon cable is used to connect the LCD module to the PCB. The OFFSET select input may be connected to the USB/LSB switch on the front panel of the rig. The ADD/SUBTRACT (+/-) input may be connected to the band switch of the rig using four diodes (see Figure 2). If you only need to subtract the IF offset, you can connect the add/subtract (+/-) input to ground.

Components list

- Resistors:
 - R1 = 100 kΩ
 - R2, R6, R12, R13, R14 = 1 kΩ
 - R3, R4, R5 = 100 kΩ
 - R7, R8 = 22 kΩ
 - R9 = 4 kΩ
 - R10, R11 = 4 kΩ preset

- Capacitors:
 - C1, C3, C4, C12 = 100 nF
 - C2 = 1 nF
 - C6 = 47 pF trimmer
 - C5 = 40 pF trimmer
 - C8 = 100 nF 16 V radial
 - C9 = 100 nF 16 V radial
 - C10, C11 = 100 nF 40 V radial

- Semiconductors:
 - D1, D2 = 1N4148
 - D3, D4 = 1N4001
 - T1 = BSX20
 - IC1 = 74HC00 (see text)
 - IC2 = 74HC393 (see text)
 - IC3 = PIC16C54-XT/P (order code 986502-1)
 - IC4 = TL071CP
 - IC5 = 7805

- Miscellaneous:
 - X1 = 4 MHz quartz crystal
 - S1 = push-button, 1 make contact
 - K1 = 14-way SIL header
 - LCD module 1 x 16 characters
 - PCB only, order code 980004-1
 - Disk only, order code 980006-1
 - PIC only, order code 986502-1
'Pico's PC Converters monitor and record temperature and humidity'.

EnviroMon

Temperature / Humidity Logger & Alarm System

EnviroMon has many applications in:
- food processing - storage and distribution, energy management - waste energy, heating and processing, agriculture - monitoring humidity in greenhouses, and in hospitals - accurate monitoring of temperature sensitive items.
- Monitors up to 30 channels of temperature over a 400 m. distance.
- -55 to 100°C temperature range (typical accuracy ±0.2°C).
- Data can be downloaded to PC.

EnviroMon Starter Kit from £393.00

3 temperature Sensors on 5m lead, 3 channel Converter, Enviromon Logger, cables & fittings. Expandable at any time for around £50 / channel.

TC-08 8 channel Thermocouple to PC Converter

Simple to use thermocouple to PC interface.

- Connects to serial port - no power supply required.
- Supplied with PicoLog data logging software.
- Resolution 0.1°C.

TC-08 £199.00

Supplied with serial cable and adaptor.

TH-03 3 channel Thermistor to PC Converter

- Connects to serial port - no power supply required.
- PicoLog data logging software.
- -55 to 105°C temperature range
- Resolution 0.01°C.

TH-03 £79.00

Supplied with serial cable and adaptor. Thermistor sensors available.

Call for free demo disk or download our web site: http://www.picotech.com

All prices exclusive of VAT.

Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK
Tel: (0)1954 211716 Fax: (0)1954 211880
E-mail: post@picotech.co.uk

ORLY THE ONE AND ONLY MATCHMAKER

WHAT IS THE MEDIA SAYING ABOUT ORLY?

- The Phil Donahue Show
 - "Orly is a unique personal matchmaker..."
- Ron Reagan Show
 - "Orly, born a matchmaker..."
- Sally Jesse Rafael Show
 - "Orly's service is designed for the professionals..."
- AM Los Angeles Show
 - "two of Orly's clients were married live on the show... The wedding of the year"
- Eyewitness News (ABC)
 - "Orly, world renowned matchmaker..."
- KTLA Morning News
 - "Orly, matchmaker in action..."
- Jewish T.V. Network
 - "Orly's ice is designed for the professionals..."
- Montel Williams Show
 - "Orly's clients are the cream de la cream..."
- AM Philadelphia Show
 - "Orly's clients are simply top of the line..."
- Cleveland Tonight Show
 - "Orly, a touch of class..."
- Orange County News Channel
 - "Orly is champagne wishes..."
- AM Northwest Show, Oregon
 - "Orly the one and only matchmaker..."
- Good Evening Seattle Show
 - "Orly is an investment in your future..."
- The Dini Petty Show, Canada
 - "Orly has a sixth sense..."
- National Enquirer
 - "Orly has a dream date for you..."
- Orange County Register
 - "Orly has a match for the sincere singles..."
- The Heritage Weekly
 - "Orly is nationally and internationally known..."
- Los Angeles Times
 - "Orly matches the rich and successful..."
- Dallas Morning Newspaper
 - "Orly made countless introductions..."
- Beverly Hills Today
 - "Orly is the Rolls Royce of matchmaking..."
- KFI Talk Radio
 - "Orly, a matchmaker with a sixth sense..."
- WLAC Nashville Radio
 - "Orly is a celebrity matchmaker..."
Video Surveillance

Pinhole Board Camera (B&W)
12v DC, 0.1 LUX, 380 TV Resolution
Size: 35mm x 35mm
£35.00

Pinhole Board Camera (Color)
12v DC, 0.5 LUX, 420 TV Resolution
2 board foldable
Size: 40mm x 40mm
£190.00

Audio/Video Transmitter Module
12v DC, 4 Channel Selection
900MHz - 1200MHz, FM Modulation
£190.00

4 Channel Receiver + Switcher
12v DC, Composite Audio/Video Output
£150.00

We also stock:
- Time & Date Generator, TFT LCD Color Monitor
- Miniature PIR etc.

Confidential Communications Limited
344 Kilburn Lane, Maida Vale
London W9 3EF
Tel: (44)(0) 181 968 0227 Fax: (44)(0) 181 968 0194
Email: 106075.276@compuserve.com

Price Validity To End Oct 1997 - Ask About Any Types Not On This List

CHELMER VALVE COMPANY

for High Quality Audio Tubes

Everyday in the tube business leaves the the juiciest famous brand names of yesterday like BUMA, GEC, MULLARD, RCA in TELEPHERIC IN RIC etc. are stored and sharpen every perspective.

Although we supply all major brands when worldwide and place in stock our policy is to offer a range of tubes, mostly of current manufacture, the best we can find from manufacturers around the world, which we process specially to suit audio applications. This means CVC PREMIUM BRANDS.

Our special processing includes selection for 50W NOISE, HUM & MICROPHONE and controlled BURN-IN so we offer tubes to improve GAMA/B, and select our tubes with care around the details.

A Selection of CVC Premium Audio Tubes

Table with various tubes and resolutions.

ADC-200 Dual Channel High Speed
- 100, 50 or 20 MS/s sampling.
- 50, 25 or 10 MHz spectrum analysis.
- Advanced trigger modes - capture intermittent one-off events.
- Less than half the cost of a comparable benchtop scope.

ADC-200-100 £499.00
ADC-200-50 £399.00
ADC-200-20 £299.00
Supplied with cables and power supply.

ADC-100 Dual Channel 12 bit resolution
The ADC-100 offers both a high sampling rate 100kS/s and a high resolution. Flexible input ranges (±50mV to ±20V) make the unit ideal for audio, automotive and education use.

ADC-100 with PicoScope software £199.00
with PicoScope & Picolog software £219.00

ADC-40/42 Single Channel - low cost
- 20 kS/s sampling.
- 10 kHz spectrum analysis.
- ±5V Input range.

ADC-40 8 bit resolution £59.00
ADC-42 12 bit resolution £85.00

Call for demo disk or download our web site:
http://www.picotech.com
All prices exclusive of VAT.

Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK
Tel: (0)1954 211716 Fax: (0)1954 211880
E-mail: post@picotech.co.uk
AVC for PCs

limits differences in sound level

An annoying phenomenon (not restricted to PCs) is that each and every programme that produces sound does so at a different level. This means almost constant adjustment of the volume control to ensure audibility of one programme and protection of the ear drums with another one. The control circuit described in this article is designed to obviate this nuisance: it constantly monitors the signal even at the output of the sound card and adjusts it when required. Use of the circuit is not restricted to PCs; it may also be used as a dynamic limiter in existing audio equipment.

Brief specification

- Power output: 1.2 W
- Maximum input: 1 V
- Compression: 10:1
- Supply line: 12 V, 6 VA
- Output load: 8 Ω (LSP); 10 kΩ (line)
- Input sensitivity: 280 mV (gain line in to out = 0 dB; distortion at output = 1%)
- 120 mV (gain line in to out = max; distortion at output = 1%)
- Line in to LSP out (input voltage = 200 mV)
 - THD+N: 0.25% (2 x 0.5 W)
 - Signal-to-noise: 70 dB @ 0.5 W output at maximum gain
 - Channel separation: > 45 dB
- Line in to line out (input voltage = 200 mV, no loudspeaker connected)
 - THD+N: 0.047%
 - Signal-to-noise: 80 dB
 - Channel separation: > 73 dB

Design by T. Giesberts
In general, the signal levels in current audio equipment are equalized and standardized (although there are still some exceptions). Software manufacturers do not seem to know or care about this. Anyone who has ever opened two different sound programs will know of the quite different levels various effects often have. This is obviously an annoying situation and one which makes the constant adjusting of the volume control a necessity.

The present circuit offers a solution to this problem. It consists of a dynamic compressor with a control range of 10:1 which ensures that very loud and very soft sound passages are attenuated or amplified respectively. This results in a much narrower dynamic range of audio signals which makes adjusting the volume control a much less frequent necessity. It proves that something that appears difficult in software can be easily achieved by a small electronic circuit.

DESIGN

The block diagram of the automatic volume control (AVC) circuit is shown in Figure 1. The stereo audio signal at the output of a sound card used in a multimedia PC is applied to the line input. The active part of the circuit consists of two integrated amplifiers that contain a variable preamplifier and a compact output amplifier.

The signal from the output amplifier is freed from any direct voltage and then applied to a discrete rectifier. After the rectified signal has been processed, it is used to control the amplification factor of the preamplifiers. The control circuit is based on a number of discrete operational amplifiers. The design is an OR-type, so that the sound channel (lethand or righthand) with the highest peak signal level determines the amplification factor of

Figure 1. Block diagram of the automatic volume control circuit for PCs.

Figure 2. The diagram of the automatic volume control for PCs shows that the circuit has been kept straightforward.
Parts list

Resistors:
- R1, R8 = 560 kΩ
- R2, R9 = 220 kΩ
- R3, R10, R16, R19, R24, R26 = 10 kΩ
- R4, R11 = 4.7 kΩ
- R5, R12 = 220 kΩ
- R6, R13 = 3.3 kΩ
- R7, R14, R21, R22, R23 = 1 kΩ
- R15, R18 = 20 kΩ
- R17, R25 = 30 kΩ
- R27 = 10 MO
- P1 = 50 kΩ (471Ω preset)

Capacitors:
- C1, C10 = 0.22 µF
- C2, C11 = 0.0027 µF
- C3, C12, C20 = 2.2 µF, metallized polyester (MKT), pitch 5 or 7.5 mm
- C4, C13 = 0.68 µF
- C5, C14 = 0.15 µF
- C6, C15 = 1 µF, 83 V, radial
- C7, C8, C16, C17, C19, C24, C25 = 0.1 µF
- C9, C18 = 470 µF, 25 V, radial
- C19 = 0.39 µF
- C22 = 6.8 µF
- C20 = 100 µF, 25 V, radial
- C26 = 220 µF, 25 V, radial
- C27 = 2200 µF, 25 V, radial

Semiconductors:
- D1, D2 = BAT85
- D3, D4 = 1N4148
- D5 = Zener diode 5.6 V, 400 mW
- D6 = Zener diode 10 V, 1.3 W
- T1 = BF245A
- T2, T3 = BF256B

Integrated circuits:
- IC1, IC2 = TDA1013B
- IC3 = CA3240E
- IC4 = TLC274CN

Miscellaneous:
- K1-K3 = 3.5 mm stereo audio socket for board mounting
- PCB Order no. 980023-1 (see Readers Services towards the end of this issue)

Circuit Description

In the circuit diagram in Figure 2, the preamplifier-output amplifier combination is contained in IC1 and IC2. This type of IC is a compact 4 W audio amplifier with integral voltage-controlled volume control. The range of the logarithmic volume control is 80-90 dB with control voltages between 6.5 V (+5 dB) and 2.0 V (-80 dB).

The control voltage is applied to pin 7 of the IC. The line output is at pin 6, which is linked via a capacitor to pin 5, the input of the output amplifier.

The circuit has three stereo terminals: line in, line out, and power out.

The power output is 2.5 W for a loudspeaker impedance of 8 Ω and a supply line of 18 V, which is sufficient for most applications.

The analogue input signal at the line input, K1, is applied to pin 8 of IC1, raised in the preamplifier and output via pin 6. The transfer between pins 8 and 6 depends on the control voltage at pin 7.

The line signal is attenuated and its level made suitable for inputting to the output amplifier by networks R8-R12 and R10-R11. Assuming a supply line of 12 V, the output amplifier is driven fully (VRMS = about 1.2 W into 8 Ω) by an input signal of 90 mV.

RC networks are provided at the inputs (R1-C1-C2 and R9-C10-C11) and the line outputs (R2-C3 and R7-C12). The output amplifier outputs are provided with large electrolytic capacitors, C9 and C18.

The supply lines are decoupled by C7 and C16. Filters R6-C8 and R13-C17 ensure that the amplifiers remain stable at high frequencies.

Rectification and Regulation

The audio signal to be rectified is taken from the loudspeaker terminals and applied to IC3a and IC3b. The following description is based on IC3a.

Negative signals are inverted by the op amp and amplified by a factor that depends on the ratio R15/R16. In the present circuit, this is 2, that is, attenuation. With positive signals, the op amp is overdriven and its output negative. Diode D2 is then cut off and half the input voltage is available at its cathode [R12/(R15+R16+R17)]. This means that the op amp behaves as a full-wave rectifier/amplifier, whose amplification is the same (0.5) for both the line inputs and outputs.
halves of the input signal.

Operational amplifiers IC4a and IC4b are half-wave rectifiers whose outputs are interlinked by diodes D3 and D4. Because of these diodes, the output with the highest potential determines the extent to which capacitor C17 is charged via resistor R4. Network R23-C19 has been added to ensure that fast signal fluctuations are passed on very rapidly.

Capacitor C36 is discharged slowly via resistor R20, so that the control circuit returns to its default setting when no or a smaller input has been applied for some time. The potential across C36 is buffered by IC4a, while IC4d ensures that the (fixed) default level is added to the signal. The resulting control signal is applied to the control input (pin 7) of IC1 and IC2.

With component values as specified, the compression is 10:1; in other words, a 20 dB change at the input results in a 2 dB change at the output.

The setting of P1 depends on the signal level at the input of the circuit. Since this level varies largely from one sound card to another, the design provides a wide control range.

SUPPLY LINES

As mentioned earlier, the circuit is powered by a standard 12 V mains adaptor, which is applied directly to the output amplifier. All other circuit elements are supplied with a regulated 10 V potential. This voltage is produced with the aid of current source T1-T3 and zener diode D3. The reference voltage of 5.6 V is produced with the aid of current source T3 and zener diode D3.

CONSTRUCTION

The circuit is best built on the printed-circuit board shown in Figure 3 (see Readers Services towards the end of this issue). Start the construction with placing audio sockets K1-K3, the three wire bridges, and all solder pins, and follow these with first the passive components, and then the active ones. Mind the polarity of the electrolytic capacitors, diodes, transistors, and ICs.

After it has been fitted, set the preset to minimum volume (anticlockwise). Solder the output leads from the standard mains adaptor from which power is derived to the relevant pins on the board. If the board is to be housed in an enclosure, a plug-and-socket arrangement should be used for linking the output from the adaptor to the board.

Check that the output voltage of the adaptor does not rise above 18 V with small loads.

When all is connected, the circuit can be tested. Passive loudspeakers may be linked directly to the LSP output terminals, but active ones should be connected to the line output terminals.

Finally, connect a sound source, for instance, the line output of a sound card to another, the design provides a wide control range.

GREAT NEWS FOR YOU!

Over the past 11 years ULTImate Technology supplied more than 20,000 commercial versions, but also thousands of educational versions (without the Gerber Interface), which are not suitable for commercial use, but are otherwise identical to the naturally far more expensive, commercial versions. After a worldwide test on Internet, the ULTlboard Studio evolved, with the same well-considered limitation: at a price at which everybody can afford a professional design system.
SALE PRICE £9.95

VIDEO PROCESSOR UNITS 7/8v 10AM BATT/24V 8A
TX not sure what the function of these units is but they certainly make good speaker! Measures 350x220x123mm, on the front are the controls for speed, scan delay, scan mode, leads of connections on the rear. Inside 2 x 10V/10A sealed lead and battery, polystyrene and BAT? 2% symmetrical transformer (more in), leads as seen, may have one or two broken leads etc due to poor storage. £9.95, ref V02X.

SALE PRICE £2.50

Customer returns, domestic telephone coin boxes, used to convert ordinary phones in to pay phones. Ref CBT1X.

12V FANS, EX EQUIPMENT COMPLETE WITH METAL CASES
PACK OF 10 FOR £9.95

The ultimate enclosure for your projects must be one of these!

VSW made ABS screw-together beige case measuring 120 x 150 x 50mm. Already fitted with rubber feet and front mounted LED inside a pack with other fans and power you may find useful. Sell other as a pack of two for £10 ref M01 or as a pack of 10 for £16 95 ref M02.

Order via our web site at www.bull-electrical.com

SALE PRICE £10

These units must be cleaned at the above price of just £10! You get strips of wax, an extra remote keyboard and receiver, a standard ¥ 1000 unit, a standard 15 screen modern 120/123 and leads of other. A very good deal for just £10, ref BS01.

SALE PRICE £16

Complete accounts system for your PC for just £9.95

Unlimited companies, genuine ledger, multiple cash books, dates and credits, stocks, ordering, purchasing, budgets, audit reports, video, word processor, automated backups, on line help, windows, networkable up to 20 computers, FTA telephone support for 30 days from ASAP computer products 01616788413 for the bargain price of just £9.95 worth £19 for the 200 page manual online: ref LAA 3.5 disk version. £9.95 ref FAS8.

SOLAR PANELS

3" x 1" Amorphous silicon, 7 watt 12-14v output. Unframed. Ref SOLX

SALE PRICE 4 for £59

PC KEYBOARDS

sale price just £2.99

Standard ps2 type connector, 104 keys. ref PCX

BBC selector videocrypt 's' tv tuner with smart card

sale price £9.95

Interesting new item in the videocrypt Selector. Originally made for the BBC to send encrypted video files to your VCR at set time. The project seems to have failed.

Very complex units consisting of a smart card slot in the front plus several switches and an IR receiver. Fully coded and measuring 339 x 250 x 36mm, new and boxed.

On the back of the unit is a 4-pin socket plus a 14-pin input and output. A channel tuning central numbers 28 to 40 and an IR socket, inside is a comprehensive tuner section, smart card and encoder mechanism and decoder electronics plus a power supply section.

These units are sold as spares but we imagine you could use one to convert a monitor into a TV or use the videocrypt side of things for something else. Supplied complete with manual and mains lead. Clearance price just £9.95 ref BS08.

BULL ELECTRICAL

250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QJ (ESTABLISHED 50 YEARS).

MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS £3.50 P&P PLUS VAT.

24 HOUR SERVICE £5.50 PLUS VAT.

OVERSEAS CUSTOMERS AT COST PLUS 10%.

ACCESS, VISA, SWITCH, AMERICAN EXPRESS.

phone orders: 01273 203500

FAX 01273 323077

E-mail bull@pavilion.co.uk

Introducing our mega magnet that lifts 33 kilo's!

Just in time when all those monolithic heavy duty magnets that all been an incredible 33 kilo's each magnet has an incredible 100000 BMT pulling from the rear for easy lifting, 20mm diameter. £15 ref MA033.
SONY RADIOS ARE ON SPECIAL OFFER

YOUR SONY SPECIALIST

All products covered by a total manufacturers guarantee.

NEW FROM SONY

ICF-SW1000 RRP £49.95 ASK price £360.00
ICF-SW771 0.2-29.7MHz with high 100 memories & labelling facility 5 even longer world timer
RRP £399.95 ASK price £320.00
ICF-SW55 RRP £299.95 ASK price £225.00
ICF-SW1000R RRP £140.00
ICF-SW33 RRP £149.95 ASK price £135.00
ICF-SW10 RRP £49.95 ASK price £39.95
ICF-SW40 RRP £119.95 ASK price £84.95
AG11 Active SW antenna
RRP £74.95 ASK price £59.95
AG-71 SW antenna £4.95
AG-100 Active antenna RICF-SW1000 or ICF-SW7000 £49.95
AG-102 Compact active antenna £55.95

GRUNDIG

Yachtboy-500 £129.95

SW Receivers

HF-150 £385.00
KEY PAD £39.95
PR-150 £205.00
IF-160 interface £39.95
HF-250 £700.00

Frequency Guides and Books

UK Scanning Directory 5th edition £16.95
Scanners 3 £9.95
UHF VHF Frequency Guide £12.95
The Shortwave Listeners Hand Book £19.95
Passport to World Band Radio 1997 £9.95
World Radio TV Hand Book 1997 £16.95

YUPITERU

MVT-9000 New wide band rcvr 0.530-2039MHz no gaps £749.95 £340.00
MVT-8000 Mobile/base scanner 0.2-1300MHz no gaps £399.95 £299.95
MVT-7200 VHF wide band 0.100-1650MHz no gaps £399.95 £310.00
MVT-71000 A 7200 but no NAM filters £245.00
MVT-125MKII Air band receiver £230.00
VT-150 Marine band receiver £165.00
VT-225 Military/Glow airband receiver £225.00

UNIONI

UBC-220XL Budget priced no NAM filters £149.95
UBC-3000XL Wide band receiver £215.00
UBC-80XL PRO/SAFE £225.00
UBC-85XL PRO/SAFE £220.00
UBC-9000XL Wide band base scan £279.95

GARMIN

RRP ASK price
GPS-38 £182.95 £125.00
GPS-45XL £324.00 £220.00
GPS-11 £210.00 £155.00
GPS-11XL plus New 12 CH cov £310.00 £220.00
GPS-12 XL New 12 CH cov £310.00 £220.00
GPS-65 Fixed marine £399.95 £215.00
GPS-15 Fixed/portable £399.95 £255.00
GPS-120 Fixed £429.95 £269.95
GPS-175 H/held plotter £754.95 £540.00
GPS-95 Aviation £499.95 £295.00

MAIL ORDERS WELCOME ON THE ABOVE PHONE NUMBERS.

HOW TO INTERPRET FACSIMILE WEATHER MAPS & CHARTS £8.95
WEATHER REPORTS FROM RADIO SOURCES £6.00

Birds/Coastal/ Civil Airband receiver £225.00

ICOM

IC-R10 New wide band rcvr incl SSB £330.00
IC-R8500 Professional base receiver £1490.00

REALISTIC

DX-394 HF receiver £225.95
PRO-28 Wide band receiver £199.95
PRO-2042 Wide band receiver home base £300.00

All products are subject to a posting & packaging charge.

TAX FREE FOR EXPORT.

MAIL ORDER IMMEDIATE DESPATCH.

GOVERNMENT & LOCAL AUTHORITY ORDERS WELCOME

PLEASE MAKE ALL CHEQUES PAYABLE TO: ASK ELECTRONICS AT 248-250 TOTTENHAM COURT ROAD, LONDON W1P 9AD

FOR THE BEST PRICES GIVE US A CALL ON: 0171 637 0353
Faced with the ominous task of having to cajole an existing microcontroller board into managing a control function, many of you will recognize the problem of having to develop a more or less complex interface board. Another problem may be the complexity and general hassle of everything to do with assembly language.

The control computer described in this article may be programmed in MCS-51 BASIC, and has been designed specifically for control purposes.

The 80C32 BASIC control computer consists of two boards which are interconnected via three single-row pinheaders. The smaller of the two boards (10x8 cm) is the actual control computer. The other board is considerably larger at 10x16 cm (Eurocard size), and contains all input/output circuits and 45 solder pins, or, if so desired, screw terminals.

The control computer runs the MCS-51 BASIC interpreter, and has been designed for maximum flexibility and optimum price/performance ratio. It can also be used in stand-alone mode. For this purpose a reset network (R1-C12) is provided, which may only be fitted if the computer is used in stand-alone mode.

Many options are open to those of you wishing to realize their own applications using the present control computer: for instance, the three pinheaders for the inter-board connections are arranged in a 0.01-inch raster which allows a piece of Veroboard or general-purpose stripboard to be used as a carrier.

The control computer was developed with low cost and simple construction in mind. Because of this, the address decoding is handled by a common-or-garden 74HCT logic. The same goes for nearly all I/O functions. With the possible exception of the type AD7002 A/D converter from NEC, the add-on multifunction board does not contain esoteric components either.

The 80C32 Main Computer Board

The design of the 80C32 BASIC control computer follows well-trodden paths. In addition to the microcontroller type 80C32 (IC1) with its low-address latch (IC20) the main board also contains three memory ICs: a 32-kByte static RAM (IC3), an EPROM (IC4) with a capacity of up to 32 kBytes for the 8-kByte BASIC interpreter and your own BASIC extensions, as well as up to 16 kBytes of EPROM (IC5) to hold your BASIC programs. The address decoding for IC5 is handled by a 74HC00 (IC6). No address decoding is required for memories IC3 and IC4 because each of them occupies a block of 32 kBytes in the lower memory range. That enables them to be addressed in a simple manner using address line A15 to control their (active-low) chip select inputs.

Jumper JP1 enables pin 27 of IC4 to be connected to A14 (for a 27256 EPROM), or to +5 V, so that 16 kBytes as well as 8-kByte EPROMs may also be used in this position. Position IC5 can only accommodate 16-kByte or 8-kByte EPROMs, because the upper address range is required for the I/O range, and only 16-kByte EPROMs may be used in any case as the BASIC program memory.
The 80C32 is a ROM-less CMOS version of the 8052 for which the MCS51-BASIC interpreter was originally written (by Intel). This interpreter requires a rather special memory structure, as illustrated in Figure 1.

The main board, of which the global structure is shown in Figure 2, provides a battery backup supply for the RAM chip, IC3. Normally, the +5 V supply line (pin 2 of K2) is connected through to pin 1 (VRM) of K1. This connection, as well as that between IC3 and A15, has to be broken. To make the board go into low-power mode, the C5 input (pin 20 of IC5) also has to be connected to pin 14 of K2. Because the multi-function does not make use of this option, the relevant connections remain intact.

The least noteworthy component on the main board is the MAX223 converter for the watchdog timer (IC7). This chip and the associated 9-way sub-D connector forms the gateway to the PC (or terminal/console) on which you develop your programs for the control computer.

Multifunction Extension Board

The circuit diagram of the multifunction extension board is given in Figure 3. It accommodates the power supply, the address decoding circuits for the I/O range, the watchdog timer, the digital inputs and outputs, as well the analogue inputs and outputs. The operation of each of these sub-circuits is described in the following sections.

Power Supply

The power supply is open to modifications to meet your specific requirements. All that is required really is a smoothed direct voltage of at least +12 V at about 150 mA which has to be applied to terminal block K25. Note that a capacity of 150 mA is only sufficient for the control computer and all LEDs. If IC24 is not connected, driver IC8 (for the digital and analogue outputs) is supplied at just 11 V instead of 24 V. A higher voltage (up to about +30 V) should only be connected to IC24 if higher output voltages are required, for example, to control 24-V relays which are often used in industrial equipment. Diodes D1 and D2 afford protection against reverse polarity.

Watchdog Timer

The watchdog timer consists of a monostable (IC4d) with a period of about 10 s, using R4 and C11 as the timing elements. If no reset signal is available, then C11 will discharge across R4. This can only be prevented by permanent recharging by means of signals from CPU port P1.5, which are transformed into suitable pulses by IC4e and IC4f, using C10 and R1.

The listing of the Background Clock with Watchdog Timer Reset program (available on the project floppy disk) shows how an on-time interrupt may be used to generate watchdog-feed pulses. Diode D4 prevents capacitor C11 from discharging across the output of IC4e. A reset can also be brought about by pressing S1. Fitting jumper JP1 disables the watchdog timer. LED D5 goes out when a reset arrives. Diodes D36 through D43, in combination with resistors R75 and R76, protect the CPU inputs against voltage surges.

Address Decoding

The address decoding of the I/O (input/output) range relies on a 74HC139 (IC5). This simple circuit selects the 8-kByte large address range between 0C000H and 00000H and also supplies four I/O select signals (I0 through IC4). This creates a cluster of 16 I/O addresses between 0C000H and 00000H (see table below). The above address block is repeated from address 0C010H, because 512 mirror images appear in the 8-kByte large I/O range.

16 Digital Inputs

The 16 digital (TTL-compatible) inputs are created with the aid of two 8-bit input drivers type 74HCT541 (IC5 and IC6). Resistors R59 - R74 act as protection devices. The LEDs, D12 - D27, not only indicate the status of the input signals (high/low) but also pull the inputs high via their series resistors R7 to R15. This is useful when nothing is connected to the inputs. Consequently, the inputs are active-low. If you want a particular line to be permanently low, simply tie it to 0 V (ground).

Although this 'inverse logic has been taken into account when you start programming the computer, it has a definite advantage in that no +5 V supply is needed outside the control computer. The example program called DO and DI Test on the project diskette shows how the inputs are interrogated.

8 Digital Outputs

The 8 digital outputs are beeed up by an ULN2803 (IC9), an integrated darlington driver with open-collector outputs capable of switching loads of up to 50 V at 0.5 A. Each output of the ULN2803 has a built-in suppressor diode which allows inductive loads like stepper motors and relay coils to be controlled without problems. If you really want to go up to 50 V with the

Address decoding

<table>
<thead>
<tr>
<th>Address</th>
<th>Read</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000H</td>
<td>digital inputs 1-8</td>
<td>digital outputs 1-8</td>
</tr>
<tr>
<td>00001H</td>
<td>digital inputs 1-8</td>
<td>digital outputs 1-8</td>
</tr>
<tr>
<td>00002H</td>
<td>digital inputs 1-8</td>
<td>digital outputs 1-8</td>
</tr>
<tr>
<td>00003H</td>
<td>digital inputs 1-8</td>
<td>digital outputs 1-8</td>
</tr>
<tr>
<td>00004H</td>
<td>digital inputs 1-8</td>
<td>analoge output 1</td>
</tr>
<tr>
<td>00005H</td>
<td>digital inputs 1-8</td>
<td>analoge output 1</td>
</tr>
<tr>
<td>00006H</td>
<td>digital inputs 1-8</td>
<td>analoge output 1</td>
</tr>
<tr>
<td>00007H</td>
<td>digital inputs 1-8</td>
<td>analoge output 1</td>
</tr>
<tr>
<td>00008H</td>
<td>not used</td>
<td>analoge output 2</td>
</tr>
<tr>
<td>00009H</td>
<td>not used</td>
<td>analoge output 2</td>
</tr>
<tr>
<td>0000AH</td>
<td>not used</td>
<td>analoge output 2</td>
</tr>
<tr>
<td>0000BH</td>
<td>not used</td>
<td>analoge output 2</td>
</tr>
<tr>
<td>0000CH</td>
<td>ADC status register</td>
<td>ADC status register</td>
</tr>
<tr>
<td>0000DH</td>
<td>ADC high data</td>
<td>not used</td>
</tr>
<tr>
<td>0000EH</td>
<td>ADC low data</td>
<td>not used</td>
</tr>
</tbody>
</table>

Visit our Web site at http://ourworld.compuserve.com/homepages/elektor_uk
control voltage, watch the voltage rating of C12, and operate the D-A (digital-analogue) converter at +8 V.

LEDs D28-D35 indicate the logic states of the outputs. The 8-bit output word is written into D-latch IC7 (a 74HT1574).

The clock signal is created by combining the WR and T0 signals in wired-OR gate D6-D7 and NOR gate IC4a.

As with the digital inputs, inverse logic applies to the digital outputs: a logic 1 at the input results in a logic 0 at the associated output. Consequently, load currents are 'sunk', i.e. any loads connected to the digital outputs have to be permanently connected to the positive rail of their supply, the digital outputs of the ULN2803 acting as switches to ground.

4 Analogue inputs
The four analogue inputs on the multifunction extension board are connected to an ADC (analogue-digital converter) type PD7002 (ICI), which uses an internal multiplexer to select one of the four input channels. For simplicity's sake, the 2.5-V reference voltage is derived from the supply voltage by potential divider R18-R19.

The input voltages also arrive at the ADC by way of potential dividers (R10-R17). The values of the resistors in the potential dividers determine the input resistance as well as the ADC range. The following equations apply, for example, to channel 0:

\[R_{in} = R_{10} + R_{14} \]
\[V_{in} = V_{ref} \left(R_{10} + R_{14} \right) / R_{14} \]

As you can see, using 200-kΩ resistors creates an input resistance of 400 kΩ and a measurement range of 5 V.

The EOC (end of conversion) interrupt output of the ADC chip is not used here. If you want to use it anyway, connect it to an interrupt of the 80C32 CPU. By omitting the associated diode (D42 or D43), the INT0 or INT1 interrupt input of the CPU is then exclusively assigned to the ADC's EOC signal.

An A-to-D conversion is launched via the Control Register. The end of it is reported in the Status Register. Next, the value may be read in the Data Registers. In this set-up, the bits have the following meanings (see table below).

The program called D/A and A/D Conversion Test should enable you to examine the behaviour of the A-D converter using plain old BASIC.

<table>
<thead>
<tr>
<th>Control Register (write)</th>
<th>ADC channel address</th>
<th>input flag</th>
<th>8-bit conversion</th>
<th>12-bit conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0, D1</td>
<td>D2</td>
<td>0</td>
<td>12-bit conversion</td>
<td></td>
</tr>
<tr>
<td>D3 = 0</td>
<td>D3 = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status Register (read)</th>
<th>ADC channel address</th>
<th>output flag</th>
<th>8-bit or 12-bit converted</th>
<th>Busy (working on conversion)</th>
<th>EOC (conversion finished)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0, D1</td>
<td>D2</td>
<td>0</td>
<td>8-bit or 12-bit converted</td>
<td>Busy</td>
<td>EOC</td>
</tr>
<tr>
<td>D3 = 0</td>
<td>D6 = 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low-Data Register (read)</th>
<th>High-Data Register (read)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0-D3</td>
<td>D0-D7</td>
</tr>
</tbody>
</table>

Figure 2. Minimum, yet stand-alone, configuration of the 80C32 control computer.
2 analogue outputs

The two analogue outputs work in much the same way as the digital outputs. An 8-bit word is applied to an R-2R network (R20-R35 and R38-R53) rather than an output buffer. Impedance converters IC12a and IC12d buffer the resulting output voltages. Next come adjustable output amplifiers (IC12b and IC12c) which give you accurate control over the output signal levels before they leave the control computer. If necessary, multturn presets may be used where really accurate output level settings are required.

The output amplifier may be supplied with either an internal voltage of +8 V, or an external voltage of +24 V applied by way of terminal block K24.

In the first case, install the short wire link under IC12. The long wire is used if you intend to connect a 24-V external supply.

Figure 3. Circuit diagram of the multifunction extension board.
Tektronix 475/475A - 200MHz/250MHz Dual Channel
Tektronix 465/465A - 100MHz Dual Channel
Tektronix 2225 - 50MHz Dual Channel
Tektronix 2445A - 150MHz 4 Channel
Tektronix 2445 - 150MHz 4 Channel
Heetet Packard 54100A - 1GHz Digitizing Peaker
Hewlet Packard 1130A/180C/1131A/1132C
Gould 245A /250/255/300
Gould 1602 - 20MHz Digital Oscilloscope
Beckman 9020 - 20MHz Dual Channel
Trio CS1022 - 20MHz Dual Channel
Tektronix 7313, 7603, 7613, 7623, 7633 - 100MHz 4 Channels
Tektronix 5403 - 60MHz 2 or 4 Channel
Tektronix 485 - 350MHz 2 Channel
Tektronix 2465 - 350MHz 4 Channel
Tektronix 2215 - 60MHz Dual Channel
Nicolet 3091 - LF Oscilloscope
Thurata 5710/55 5702 - 20MHz
Intern 2020 - 20MHz Digital Storage (HEW)
Hitachi VC6265 - 100MHz Digital Storage
Premises situated close to Eastern by-pass in Coventry with easy access to
Hewlett Packard 1417 + 85528 + 8555A (1GHz)
Hewlett Packard 3585A - 40MHz Storage Analyser
Hewlett Packard 35601A Spectrum Analyser
Eston/Alltech 757 - 10MHz
Tektronix 2213 - 60MHz Dual Channel
Phillips PM3295A - 400MHz Dual Channel
PM 3244/PM 3261/PM 3262/PM 3211/PM 3212/PM 3214
Hewlett Packard 4278A - 60Hz Multiplier
Hewlett Packard 3478A HP - 10MHz Function Generator
Hewlett Packard 3336C - Synthesised Signal Generator 10Hz - 21.61GHz
Hewlett Packard 331A - Distortion Analyser
Hewlett Packard 331A - Distortion Analyser
Farrell DSG-1 - Synthesised Signal Generator
EIP 331 - Frequency Counter 18GHz
Adze 740A - 100KHz - 1.2GHz Synthesised Signal Generator
Meguro MSA 4912 - 1GHz (AS NEW)
Hewlett Packard 3776A - PCM Terminal Test Set
Hewlett Packard 3438A Digital Multimeter
Hewlett Packard 3439A 519MHz Micro-volt link analyser
Hewlett Packard 3776A - PCM Terminal Test Set
Hewlett Packard 3434A 3MHz Frequency Counter
Hewlett Packard 3448A HP - 1kHz Synchronisation generator (Various Plugins available)
Hewlett Packard 3434A - 3MHz Synchronisation generator
Hewlett Packard 3434A Synchronisation Generator (3MHz - 21MHz)
Hewlett Packard 3437A System Voltmeter
Hewlett Packard 3438A Digital Multimeter
Hewlett Packard 3439A Micro-volt link analyser
Hewlett Packard 3776A - PCM Terminal Test Set
Hewlett Packard 3434A 3MHz Frequency Counter
Hewlett Packard 3448A HP - 1kHz Synchronisation generator (Various Plugins available)
Hewlett Packard 3434A - 3MHz Synchronisation generator
Hewlett Packard 3434A Synchronisation Generator (3MHz - 21MHz)
Hewlett Packard 3437A System Voltmeter
Hewlett Packard 3438A Digital Multimeter
Hewlett Packard 3439A Micro-volt link analyser
Hewlett Packard 3776A - PCM Terminal Test Set
Hewlett Packard 3434A 3MHz Frequency Counter
Hewlett Packard 3448A HP - 1kHz Synchronisation generator (Various Plugins available)
Hewlett Packard 3434A - 3MHz Synchronisation generator
Hewlett Packard 3434A Synchronisation Generator (3MHz - 21MHz)
Hewlett Packard 3437A System Voltmeter
Hewlett Packard 3438A Digital Multimeter
Hewlett Packard 3439A Micro-volt link analyser
Hewlett Packard 3776A - PCM Terminal Test Set
Hewlett Packard 3434A 3MHz Frequency Counter
Hewlett Packard 3448A HP - 1kHz Synchronisation generator (Various Plugins available)
Hewlett Packard 3434A - 3MHz Synchronisation generator
Hewlett Packard 3434A Synchronisation Generator (3MHz - 21MHz)
Hewlett Packard 3437A System Voltmeter
Hewlett Packard 3438A Digital Multimeter
Hewlett Packard 3439A Micro-volt link analyser
Hewlett Packard 3776A - PCM Terminal Test Set

simple

electronic metronome

with 440 Hz generator

A metronome is and remains an indispensable tool for musicians, beginners and professionals alike. In addition to the time-honoured triangular mechanical instruments, there are now electronic models on the market. This article describes a simple DIY metronome that may prove useful to beginners in music.

The basic metronome is an apparatus for sounding an adjustable number of beats per minute and therefore for fixing the tempo of a composition. The idea of the clockwork model patented by Maelzel seems to have been appropriated from the Dutch inventor D N Winkel.

The one most commonly used is a pyramidal wooden instrument at the front of which a perpendicular steel strip about 3.5 in long by 0.5 in wide is pivoted. The principle is that of a double pendulum (an oscillating rod weighted at both ends). The upper weight is movable along the steel strip and according to its position on the rod the number of oscillations per minute can be made to vary between 40 and 208. The rod beats (or ticks) as it swings back and forth. Maelzel's graduated scale, fixed to the case, gives speed of oscillation. A composer who wants, say, 78 crotchet (US: quarter-note) beats in a minute will write M.M. (Maelzel metronome) \(\times 78\).

The electronic metronome described here has a useful feature in emphasizing the first beat in a bar. This is done acoustically by increased volume as well as electrically by the lighting of an LED. Another useful feature is the provision of a generator for tuning string instruments.

CIRCUIT DESCRIPTION

Metronome

The generator producing the beats consists of the two halves of a Type 556 CMOS timer, IC1. Section IC1a is configured as an astable multivibrator, whose frequency can be adjusted with \(P_1 \) between 60 and 250 beats per minute. If the lower figure is too fast, the value of \(C_1 \) may be increased slightly. On the other hand, the upper limit of 250 beats may be raised (although this is unlikely to be required for music applications) by reducing the value of \(R_1 \) to about 1 kΩ.

To ensure a regular, stable frequency, \(C_1 \) should preferably be a tantalum capacitor, but if need be, a good-quality electrolytic may be used.

The output of IC1a triggers the other section, IC1b, a monostable multivibrator, via \(C_7 \). The monostable generates pulses of constant width in the rhythm of the clock frequency.

The output if IC1b is split into two: one part is applied to the clock input...
of decade counter IC\textsubscript{3}, and the other to low-frequency output amplifier T\textsubscript{1}-T\textsubscript{2} via R\textsubscript{5}.

Outputs Q\textsubscript{0}-Q\textsubscript{9} of the counter are successively enabled and actuated, that is, in this case, they are changed from logic low to logic high (0 to 1). This is particularly important as registers Q\textsubscript{0} (pin 3), since this is held low for the longest period of time to keep transistor T\textsubscript{3}, which functions as a switch, on.

Potential divider R\textsubscript{5}-R\textsubscript{6} is then actuated, which results in the pulses arriving from IC\textsubscript{1} being applied at only half amplitude. Output Q\textsubscript{0} goes high only at the first beat in a bar, when the potential divider is not actuated, whereupon the relevant pulse arrives at T\textsubscript{1}-T\textsubscript{2} at full strength. Consequently, this beat is rather louder than the others and also sounds a little different. At the same time, the high level at Q\textsubscript{0} causes D\textsubscript{3} to light briefly. This LED also serves as a battery indicator: when the battery voltage drops below about 6 V, zener diode D\textsubscript{3} ensures that the diode remains extinct.

Figure 1. The metronome proper is based on IC\textsubscript{1} and IC\textsubscript{2}, while the Wien bridge oscillator, based on IC\textsubscript{3}, provides the tuning frequency.

and that the value of each beat is a crotchet or quarter note.

Transistors T\textsubscript{1} and T\textsubscript{2} together form a simple push-pull output stage that operates with virtually no quiescent current. The sound level may be adapted to individual taste by changing the value of R\textsubscript{9} between the output stage and the loudspeaker. Note, however, that the sum of this resistor and the ohmic value of the loudspeaker must not drop below 20 Ω to prevent overloading of the transistors.

Power supply
Power is supplied by a 9-V dry battery. Switch S\textsubscript{3} is the on/off selector. Switch section S\textsubscript{2b} arranges power to be supplied to oscillator IC\textsubscript{3} when the unit is switched to 'tuning'.

With average use, the battery will last quite a long time. The metronome circuit draws a current of about 8 mA and the frequency generator one of around 15 mA.

CONSTRUCTION
The metronome/generator is best built on the printed-circuit board shown in Figure 2, which is, however, not available ready made.

Rotary switch S\textsubscript{1} and preset P\textsubscript{1} may be fitted directly on the board.

The space at the right-hand side of the board is intended to house the

440 Hz generator
The push-pull output stage can be switched from the metronome proper to the output of frequency generator IC\textsubscript{3}. This is a classical Wien bridge oscillator whose output level is set with P\textsubscript{2}. The type of op amp used is not important: almost any type, even a 741, will do.

A (≈440 Hz), but may be altered slightly, if desired, with P\textsubscript{3}. The actual frequency-determining components are R\textsubscript{13}, R\textsubscript{14}, C\textsubscript{5}, and C\textsubscript{6}.

The number of beats in a bar (US: measure) is set with S\textsubscript{1}. Depending on the setting of this switch, the counter is
Figure 2. The printed-circuit board for the metronome is designed to accommodate the potentiometer and the rotary switch.

Parts list

Resistors:
- $R_1, R_3 = 1 \, \text{k}\Omega$
- $R_2 = 1.8 \, \text{k}\Omega$
- $R_3, R_4, R_6, R_8 = 10 \, \text{k}\Omega$
- $R_5, R_6, R_7 = 3.3 \, \text{k}\Omega$
- $R_7 = 33 \, \text{k}\Omega$
- $R_9 = 22 \, \text{\Omega}$
- $R_{10} = 220 \, \text{\Omega}$
- $R_{11} = 27 \, \text{\Omega}$
- $R_{12} = 15 \, \text{\Omega}$
- $R_{13} = 39 \, \text{\Omega}$
- $P_1 = 10 \, \text{k}\Omega$, linear
- $P_2, P_3 = 10 \, \text{k}\Omega$ preset

Capacitors:
- $C_1 = 47 \, \mu\text{F}, 25 \, \text{V}$
- $C_2, C_3, C_5 = 0.01 \, \mu\text{F}$
- $C_4 = 220 \, \mu\text{F}, 16 \, \text{V}, \text{radial}$
- $C_5 = 10 \, \mu\text{F}, 16 \, \text{V}, \text{radial}$
- $C_6 = 470 \, \mu\text{F}, 16 \, \text{V}, \text{radial}$

Semiconductors:
- $D_1, D_2 = 1N4148$
- $D_3 = \text{LED}$
- $D_4 = \text{zener diode}, 5.1 \, \text{V}, 400 \, \text{mW}$
- $T_1 = \text{BC337}$
- $T_2 = \text{BC327}$
- $T_3 = \text{BC560}$

Integrated circuits:
- $IC_1 = \text{TLC556}$
- $IC_2 = \text{4017}$
- $IC_3 = \text{LF351}$

Miscellaneous:
- $S_1 = 1\text{-pole}, 12\text{-position rotary switch}$
- $S_2 = \text{double-pole change-over switch}$
- $S_3 = \text{single-pole switch}$
- $BT_1 = 9\,\text{V battery with connecting clips}$
- $LS_1 = \text{loudspeaker, 8 ohm}$
- $\text{Enclosure, 150x80x55 mm}$

Tuning

Tuning the frequency generator with P_3 to 440 Hz is, of course, best done with the aid of a suitable frequency meter. If such an instrument is not available, the A-note struck on a well-tuned piano may be used to compare the generator output with (this needs a critical ear, of course!).

Finally

Bear in mind when selecting a value for R_9 and setting P_3 that the sound from the loudspeaker is much louder in the enclosure than when it lies on the table!
2
a simple PC network
a cable is all you need

6
RS232 interface for 68HC11
with a program loader for small systems

10
USB and FireWire
connecting all digital devices via a single cable

14
light intensity measurement with a PC
no external power supply required
The term 'computer hobbyist' brings to mind the image of a lonely father sitting in a spare bedroom, typing cryptic machine-language code deep into the night. The wife is of course also lonely, which in the course of time results in the computer finding a place in the living room, in spite of its rather hideous appearance.

The space which thus comes free in the bedroom is soon filled, at first with children and after that with a second computer. And with the second computer comes the need for a network.

In addition to allowing communication via e-mail, interconnecting two or more computers has the advantage that files, printers, modems, disk drives, ZIP drives and CD-ROM drives can be shared. With the Internet boom it has become totally 'in' to run 3D games in multiplayer mode. With this option, multiple persons can participate in the game at the same time. They can play together in a three-dimensional maze or fly through space together. Some well-known games which have this option are Doom, Duke Nukem 3D, Quake, Outlaws, X-Wing versus T-Fighter and so on. Some of these run on a central server via the Internet, but they can also be run via a TCP/IP network, an IPX network, a modem or a null-modem link.

The type of link which is most appropriate for interconnecting individual computers depends on the application which we intend to use via the link.

Null-modem cable

A null-modem cable is a good choice when relatively small data volumes need to be transferred. This inexpensive serial link is only suitable for transferring small amounts of data and for playing some multiplayer games. The maximum speed which the RS232 port can achieve with such a cable is 115,200 baud. For serial data transmission with 1 start bit, 8 data bits and 1 stop bit, this results in an effective transfer rate of 10,250 bytes per second (36 MB/hour). For this data rate, both computers must be fast (486 or better) and should preferably be fitted with a type 16550 UART (Universal Asynchronous Receiver/Transmitter).

One can easily check whether such a chip is present by means of the program MSD (provided standard with DOS). When MSD is run, it displays the type of UART present for each COM port: 8250, 16450 or 16550. An 8250 can only manage 9600 baud. Starting with AT machines one finds only the faster types (16450, 82450 and 16550), which can handle up to 115,200 baud. Many 'snoop' programs report the slower 8250 when a 16450 is fitted. Only the 16550 has a
buffer. Modern internal modems and Pentium motherboards have a 16550 as standard. Multitasking operating systems, such as Windows 95, Windows NT and Linux, can experience timing problems if a UART buffer is not present. This shows up as lower data rates, loss of data packets etc.

It's advisable to disable the 16550's FIFO buffer for the port to which the mouse is connected. Problems such as the mouse pointer 'freezing' after a few movements can sometimes be caused by this buffer. In Windows 95 the buffer can be disabled via the Control Panel/System/Device Manager/Ports/COM1 (mouse)/Properties/Settings/Advanced/Use FIFO Buffers. In case of communication problems the FIFO speed can also be somewhat reduced via this route. With Windows 3.11 one must include a line in SYSTEM.INI under the heading [386Pcn]: "COM1:FIFO=0" disables the FIFO buffer for the mouse connected to the COM1 port. Always make a copy of SYSTEM.INI before making any changes!

Now that we've dealt with UART pitfalls, let's return our attention to the null-modem cable. Such a cable provides a link between the serial (R232) ports of two computers. The R232 port was originally intended to be used for interconnecting a DTE (Data Terminal Equipment) and a DCE (Data Communications Equipment). A D25 cable between a computer and a modem is an example of such a DTE/DCE link. A null-modem cable, by contrast, is used for a DTE/DTE link. It requires that certain leads be interchanged between the two connectors. The most important of these are TxD (Transmit Data) and RxD (Receive Data). These two leads plus a ground lead represent the simplest possible 'three-wire' null-modem cable. The only problem with a three-wire link is that there can be no hardware handshaking between the two computers.

In a three-wire cable, the connector pin for the signal which asks whether data can be sent (Request to Send) is connected directly to the pin which is intended to receive the answer from the other computer (Clear to Send). This results in a sort of 'narcissistic' connection: the computer wonders whether it can send data, while 'thinking' that it is talking to a second computer. And like a true narcissist it naturally provides the answer to its own question. In other words, "Can I send? Yes, I can always send and I decide that for myself."

Whenever the two computers do not have the same level of performance, the slower one must be the host machine, since the host machine determines the data transfer rate. If there are communication problems with the link, it's a good idea to check whether data transfers in the reverse direction work well. If this is the case, then there is a timing problem between the two computers. In order to properly solve such a problem we must use a connection with more than three leads, since this is the only way to have hardware handshaking (see Figure 1). Programs which only recognize hardware handshaking will thus not work with a three-wire null-modem cable.

A full null-modem connection consists of 7 leads. A 25-pin or 9-pin sub-D connector is used. A male connector is always used at the back of the computer, so that we must use two female connectors for the cable. Normally the mouse is connected to the COM1 port via a 9-pin connector, so that the 25-pin connector of the COM2 port is usually used for this sort of experiment.

There are several types of null-modem connections. The most expensive solution, which is also the most flexible, consists of two universal modem cables together with a null-modem adapter. A universal modem cable is a 25-lead cable which has a 25-pin male connector at one end and both a 25-pin female connector and a 9-pin female connector at the other end. A null-modem adapter is a small block fitted with two 25-pin female connectors. We connect the adapter between the two cables, using the single 25-pin connectors of the two cables. With this combination we can cope with all D9 and D25 COM ports. With two 1.8-metre cables, such a combination costs approximately £15.

For roughly £10 we can make do with a single universal modem cable and a null-modem adapter. However, the adapter has threaded posts which mate with the fixing screws of the cable connector. These are in the way if the adapter is to be plugged directly into the computer's COM-port connector. It's possible to dismantle the connector and remove these posts on one side of the adapter so that it can be plugged into the COM-port connector. However, this is not a particularly elegant solution, since the modified adapter cannot be secured to the connector.

One can also purchase a D25 serial female/female interconnection cable and modify it oneself according to Figure 1, at least if it does not have moulded-on connectors. The ease of use of a null-modem link is largely determined by the software used. The PC BIOS can (at least could) only manage 19,200 baud. All MS-DOS null-modem software thus accesses the UART registers directly, rather than via the BIOS. This is the only way in which it is possible to achieve a 115,200 baud data rate.

The best-known interconnection software is LapLink, but Norton Commander also has a Link option. From MS-DOS 6.x onwards, Interlink provides a standard means for interconnecting two computers, and Windows 95 has the Direct Cable Connection option. For occasional use I prefer Norton Commander (V4.0). Since this program is anyhow often used to provide a user interface, it is natural to also use it for the link. Version 4.0 has the additional advantage that the contents of multiple directories can be selected concurrently and copied. With a bit of patience it is possible to transfer an entire hard-disk partition in one operation. Of course, at a data rate of 35 MB/hour this does not go particularly fast.

In Norton Commander one selects Menu/Right or Left/Link, by means of which the first computer is configured as the master and the second as the slave. [Pay attention to the selection of the correct COM ports.] The drives of the slave computer then appear at the master as a normal window within

Figure 1. Wiring scheme for a full DTE/DTE null-modem cable.
which one can select, copy and delete items and create subdirectories. Norton Commander V4.0 also can be used with a parallel interconnection cable for a faster link.

An Interlink cable

If we wish to transfer data more quickly, then we will want to use a modified parallel cable. LapLink was the first to introduce this possibility, and Norton later followed suit in Norton Commander starting with Version 4.0. Microsoft adopted this idea starting with MS-DOS 6.x. In the form of Interlink. In Windows 95 this option is called Direct Cable Connection. A disadvantage of the parallel link is the relatively short distance which can be bridged (a few metres). The greatest advantage of a parallel link is its speed. The maximum speed depends on the type of printer port and the sort of cable which is used.

Various types of parallel link cables can be used. First, there are standard 4-bit versions which work with LapLink, Norton Commander and Windows 95. Then there is a modified 8-bit version for Norton Commander. An ECP cable, which is faster, can only be used with ECP/ECP ports. Finally, there is an 'intelligent' Universal Connection Module (UCM) which checks for itself which types of parallel ports are present and configures itself either in standard 4-bit mode or ECP mode. In standard 4-bit mode the transfer rate lies between 40 and 70 kbyte/s. In ECP mode the transfer rate can range up to 400 kbyte/s.

Officially, a Centronics port is bidirectional (data can be transferred in both directions). In practice, a more economical implementation has been used, since for years printers just swallowed data and only protested when they were out of paper. Modern printers are more mature and more inclined to 'talk back', which has resulted in the development of bidirectional parallel interfaces (PS/2, EPP and ECP).

The old-fashioned Centronics interface has 8 data lines which can only be used to send data. There are three registers for controlling the parallel port: an 8-bit data register (read/write), a 5-bit status register (read-only) and a control register (read/write). The status lines are 'misused' by the Interlink cable in order to allow data to also be received. If the incoming 5 status lines are cross-connected to 5 outgoing data lines at the 'other end', a 5-bit parallel link is created. The basic cable results from cross-connecting pins 2 through 6 with pins 11, 10, 12, 13 and 15; pin 25 serves as the ground lead (see Figure 2a). If better screening is desired, then additional ground lines are used (pins 18 and 24). This cable thus allows 5 bits to be transferred in parallel. One of these is used for handshaking, leaving a 4-bit data stream.

The control register contains a bit which allows a bidirectional parallel port to be enabled or disabled. If one were to interconnect the outputs (data lines) of two standard parallel ports, there's a good chance that one set of outputs would not survive the experiment. Moreover, it's not possible to read in data via a standard parallel port: what is read from the data register is not the data presented to the port from an external source, but the data which were last written to the register by the computer itself.

With a true bidirectional port, the output lines are placed in a high-impedance state when the bidirectional mode is enabled (control bit set). Data which are written to the data register remain in a buffer without being transferred to the output data lines. When the data register is read, the current status of the port's data pins is read. From this it is apparent that a bidirectional port does not support duplex operation. The bidirectional control bit serves to make the port act as either an output or an input. By properly using one or more status lines for handshaking, the two interconnected ports can be correctly switched between send and receive modes, so that true 8-bit data communication is possible. In order to use a parallel port in this manner, one must use an 8-bit ECP cable; a standard 4-bit cable cannot be used. An ECP cable interconnects all 8 data lines and cross-connects various status lines (see Figure 3). If such a cable is used with a non-bidirectional port, damage to the outputs (data lines) can result.

Figure 2. Three types of parallel interface cables between two computers: a simple 4-bit cable (a), a 4-bit cable for Windows 95 (b) and an 8-bit cable for Norton Commander (c).
The modern Extended Capabilities Port (ECP) is bidirectional and has an extended control register which (among other things) allows the operating mode (SPP, EPP or ECP) to be configured. The ECP port uses an interrupt (IRQ7 for LPT1, IRQ5 for LPT2) to capture the data stream; it has a FIFO buffer and DMA support, it has a decompression mode and it handles its own handshaking. It is thus better suited for multitasking operating systems and much faster for the Direct Cable Connection. The transfer rate ranges between 200 and 400 kbyte/s. The transfer rate of a normal 4-bit cable is also increased when it is connected between two ECP ports. In order to achieve the highest data rates (200 to 400 kbyte/s) a special ECP or UCM cable must be used.

The way that a UCM cable works can be gleaned from the various information scattered about the Internet. There is software in C++ which is able to recognize whether a specific port is standard or ECP. An electronic switch which is normally in 4-bit mode can be switched to ECP mode via a software-generated status signal.

As soon as a parallel port's ECP mode is enabled (via the BIOS), the port uses an interrupt (7). This frequently results in an interrupt conflict if a sound card is installed. If the ECP mode is to be used, then the sound card must be configured to use a different interrupt (5).

A search via the Internet yielded six different descriptions of standard 4-bit Intellink cables. We have combined two of these plus the Norton Commander cable into a single figure (see Figure 2).

The simple version (Figure 2a) works with LapLink, Fastlynx, Ebox, XILink and MS-DOS 6.x Intellink. The version for Windows 95 (Figure 2b) has two extra leads which interconnect pins 16 and 17. The only connection scheme which supports 8-bit data transfer with standard parallel ports is the Norton Commander Link option (V4.0 and V5.0). Norton Commander uses three additional bits in the control register to allow the remaining 3 data bits to be read. A true 8-bit link results from the added connections (pins 7/1, 9/16, 16/9 8/14 and 14/8) without using bidirectional ports (Figure 2c). In ECP mode, the control register cannot be used to read data. The 8-bit Norton Commander cable thus cannot be used with a parallel port operating in the ECP mode.

An important difference between the Windows 95 cable and the Norton Commander cable relates to pin 16. This can either be interconnected with pin 16 or cross-connected with pin 9. One must chose between an 8-bit cable version which only works with Norton Commander or a 4-bit Norton Commander version which can also be used with Windows 95. The Windows 95 version is the most compatible. Unless you plan to work only with Norton Commander, I would advise you to choose the Windows 95 version.

The ECP cable can only be used with bidirectional ports. For those of you who wish to experiment with an ECP cable, a diagram from Microsoft is included (see Figure 3).

Remember that a standard port can be damaged if an ECP cable is used with it! In a working situation in which two specific computers are always connected to each other via ECP ports, this does not present a problem. On the other hand, something can always go wrong, such as for example if someone just wants to quickly copy a file to his 486 notebook.

In a situation in which various persons work with a variety of computers (including notebooks), use a UCM cable. Such a cable is fast, safe and problem-free in use. With Windows 95, a UCM cable approaches the capabilities of a true network with regard to functionality and speed. There is even ODI software available for such cables, which allows them to be used in a Novell or Fantastick network. The UCM cable is less expensive than a separate network adapter attached to the parallel port of a PCMCIA network adapter. This is also a good option for connecting a notebook to a computer which is itself connected to a network. The notebook then receives a network connection via the UCM cable. For more information refer to the Parallel Technologies Internet site (http://www.lpt.com/). If the flexibility of the UCM cable is not necessary, then the money (£50) can be better invested in a network. A network is significantly faster and can easily be extended.

Figure 3. A special cable is required for bidirectional parallel ports (ECP). Don't forget that this cable must never be used with standard parallel ports!
The Motorola 68HC11 microcontroller is packed with features and consequently requires very few parts to make a minimum system configuration. In principle, such a system does not need an RS232 interface because that is usually only necessary to be able to load programs into the controller's on-chip EEPROM memory. For the actual use of the program, the interface is not required. The RS232 interface described here is therefore built on a separate little board, and may be used at any time for programming and troubleshooting 68HC11 controller applications.

RS232 interface for 68HC11
with a program loader for small systems

An 68HC11 Processor Board was published in the April 1994 issue of Elektor Electronics. The 68HC11 is supplied in a 52-pin PLCC case. It features up to 40 freely programmable input/output lines distributed across five ports, an EEPROM memory with a size of up to 2 kBytes, and a small RAM memory. Because the EEPROM is used as program memory, there is no need to burn EPROMs. The serial interface available on the chip allows ports, RAM or EEPROM cells to be read and written. As illustrated in Figure 1, a minimum system using the 68HC11 requires only eight additional components. Even this small amount of external parts is sufficient to enable interrupt programs to be run and the eight A-D converter inputs to be employed.

The interface described here is built once only on a separate board, and migrated to future 68HC11 applications when and where necessary. It is only connected to the target system (here, the minimum system) for diagnosis and programming jobs.

Circuit and circuit board

The circuit diagram of the interface is given in Figure 2. Actually, it consists of just one IC, the unavoidable MAX232 RS232 driver/level converter which is capable of creating a fully RS232 compliant interface with symmetrical inputs and outputs, all on basis of a single 5-volt supply. Although the output line levels at pins 7 and 14 are at about ±9V only, that is still within the RS232 specification.

The interface is connected to a PC using a cable with 9-pin sub-D sockets at both ends. Wires 2 and 3 in the cable should be crossed, all others travel pin-to-pin. The link to the target system (the 68HC11 processor board) is made via a 5-way cable connected to boxheader K2. This cable also carries the 5-V supply voltage for the interface. Connector K1 is only intended for situations where a 5-V supply is connected to the interface board, and the controller board is powered by the inter-
Figure 1. Apart from the microcontroller, a minimum system based on the 68HC11 requires only eight components.

Figure 2. The RS232 interface is only built once, separate from the microcontroller system, and may then be used with all future experiments and applications of the 68HC11. In general, it is only connected-up for program development or debugging work.

Software

The software you will need to get going with the 68HC11 processor board and the present interface is available free of charge from Motorola. The author used a packed file called ELEKT494.ZIP (66,304 bytes) which was downloaded from the Motorola BBS in Munich, Germany, telephone (+49) 89 92103111. This file may be found in subdirectory /mc68hcxx/m68hc11. The zip file contains, among others, an assembler with documentation, as well as programs for checking (MINIBUG) and programming EEPROMs (EEPROGIX). The list with short descriptions of all files held on the mailbox is called ALLFILES.BBS, and may be found in the directory /info.

How is the software transferred to the microcontroller? For test purposes, the software may be moved to the RAM area starting at address 0. This is done by means of the ORG (originale) statement. 68HC11 versions are available which, like the -E1, have an equal amount of RAM and EEPROM. For program testing in RAM, enter the following:

1. Produce the assembler file using a simple word processor (pure ASCII file with the extension .ASC). Example: TEST.ASC.
2. Launch the assembler
 ASMHC11 TEST.ASC;b=256 (for CPUs with 256 bytes of RAM)
 ASMHC11 TEST.ASC;b=512 (for CPUs with 512 bytes of RAM)
 - Three files are generated with the following extensions:
 TEST.S19 for EEPROM programming
 TESTLSF ASCII documentation file
 TEST.B00 for direct copying into the RAM memory
3. Configure the PC’s serial port in a DOS window (example: COM2)
 MODE COM2:1200,N,8,1
4. Copy the program into the 68HC11 RAM
 COPY TEST.B00/B COM2:
 Once received the program is immediately executed.

Programming the on-chip EEPROM also requires a modification to EEPROGIX, which comes with the Elekt494 file:

1. Modify EEPROGIX as follows:
 LDS #$FF
 LDX #$1000 offset for control regs
 CLR $35,X 1! insert this line!!
 CLR SCCR.X initialize SCI
 for 8 data bits, 9600 bd
 LDD b'#$30
 2. Launch assembler by typing
 ASMHC11 EEPROGIX.ASC;B=256
 Next, program the EEPROM:
 1. Produce the program using Editor, then assemble it.
 2. Configure the PC serial port in DOS window
 MODE COM2:1200,N,8,1
 3. Copy the once modified program into RAM
 COPY EEPROGIX.B00/B COM2:
 4. Close the DOS window, and launch Hyperterminal (Windows95)
 select Direct Cable Connection on COM2
 configure as 9600 bits/s, 8 bits, no parity, 1 stop bit, hard ware hand-shaking protocol
 Do File -> Settings -> ASCII Configuration, and set a character delay of 5, click on OK to leave the menu.
 5. Type an upper-case I in the terminal window (selects internal programming of the
Figure 3. Track layout and component mounting plan of the small interface board.

EEPROM
6. Transmit (upload) the relevant S19 file using Transmit Text File.
Exemplar: TEST.S19.

To be able to start the EEPROM resident program without the interface connected to the HC11 board, fit a jumper on contacts 4, 5 of header K4. The program is then automatically launched when the supply voltage is switched on. Like EEPROMX, the previously mentioned program Minibug is transferred into the controller RAM using the COPY command and a bit rate of 1200/800. Next, the serial connection to the board may be established using Hyperterminal and a bit rate of 9600/9600.

Finally
As already hinted at, the 68HC11 comes in three basic flavours:
MC68HC11A1 (256 bytes RAM, 512 bytes EEPROM)
MC68HC11E1 (512 bytes RAM, 512 bytes EEPROM)
MC68HC11C12 (256 bytes RAM, 2048 bytes EEPROM)

The MC68HC11 is also available from second source Toshiba under the type designation TMP68HC11E1T.

The modifications to the EEPROM program software (EEPROMX) are only necessary if you use the -E versions, because only these have a special protection byte for the EEPROM. An important point to keep in mind for your own applications and experiments is that this byte must be erased before any writing is done to the EEPROM in an -E version.

Component sets to ELEKTOR Electronics

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>970033</td>
<td>Stereo microphone amplifier incl. mains optimizer</td>
<td>£ 65.55</td>
</tr>
<tr>
<td>970007</td>
<td>80-memories recorder</td>
<td>£ 7.99</td>
</tr>
<tr>
<td>970037</td>
<td>Distortion (Bias) unit</td>
<td>£ 24.75</td>
</tr>
<tr>
<td>970039</td>
<td>Analogue measurement</td>
<td>£ 28.62</td>
</tr>
<tr>
<td>970026</td>
<td>DC voltage for oscilloscope incl. PZ 50 500</td>
<td>£ 23.25</td>
</tr>
<tr>
<td>970018</td>
<td>8-way serial spin-per unit</td>
<td>£ 25.33</td>
</tr>
<tr>
<td>970034</td>
<td>ELEC-std. #68HC11E1</td>
<td>£ 26.60</td>
</tr>
<tr>
<td>970039</td>
<td>Enclosure HE 222</td>
<td>£ 26.76</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 35.78</td>
</tr>
<tr>
<td>970037</td>
<td>Serial connectivity liker</td>
<td>£ 37.30</td>
</tr>
<tr>
<td>970033</td>
<td>Electronic code lines</td>
<td>£ 37.58</td>
</tr>
<tr>
<td>970030</td>
<td>Encoderhead programmer w/ ITT-connector</td>
<td>£ 20.64</td>
</tr>
<tr>
<td>970022</td>
<td>RGB video amplifier</td>
<td>£ 38.65</td>
</tr>
<tr>
<td>970024</td>
<td>Switch mode power supply</td>
<td>£ 66.55</td>
</tr>
<tr>
<td>970025</td>
<td>Battery condition monitor</td>
<td>£ 10.00</td>
</tr>
<tr>
<td>970026</td>
<td>Battery motor controller</td>
<td>£ 21.00</td>
</tr>
<tr>
<td>970027</td>
<td>Charging board</td>
<td>£ 21.59</td>
</tr>
<tr>
<td>970028</td>
<td>Power supply</td>
<td>£ 29.88</td>
</tr>
<tr>
<td>970025</td>
<td>Battery condition monitor</td>
<td>£ 11.60</td>
</tr>
<tr>
<td>970026</td>
<td>Extern motor controller</td>
<td>£ 15.70</td>
</tr>
<tr>
<td>970027</td>
<td>Charging booster</td>
<td>£ 17.59</td>
</tr>
<tr>
<td>970028</td>
<td>Data acquisition system</td>
<td>£ 21.59</td>
</tr>
<tr>
<td>970029</td>
<td>Data acquisition system</td>
<td>£ 27.67</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 29.88</td>
</tr>
<tr>
<td>970031</td>
<td>Data acquisition system</td>
<td>£ 34.05</td>
</tr>
<tr>
<td>970027</td>
<td>Data acquisition system</td>
<td>£ 10.35</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 34.05</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 10.35</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 34.05</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 10.35</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 34.05</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 10.35</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 34.05</td>
</tr>
<tr>
<td>970030</td>
<td>Data acquisition system</td>
<td>£ 10.35</td>
</tr>
</tbody>
</table>

For more information and prices please visit our homepage:
http://www.elektor.com/elmagic/
Embedded Development for the 8051 family

ANSI C Compilers for Windows 95/NT4.0 or DOS

Our second generation C compiler for the 8051 family of microcontrollers has features found in no other 8051 C compiler. You'll find smart pointers, common code merging and full cross-module type checking. You can generate ANSI compatible reentrant code or fast and compact non-reentrant code. 64 bit floating point arithmetic comes as standard.

Embedded Development Studio

Your Windows 95/NT4.0 package will also have the Embedded Development Studio. This development environment lets you concentrate on the important task of software creation. The details of setting up a project and keeping it up-to-date are automatically taken care of and you need no longer be concerned with command line options and make files.

Your Choice

At Crossware, we believe in giving you the greatest choice possible. That's why we have designed our products to suit your needs and your budget. Whether it is just one or two memory models you require or support for all 8051 variants, there is a package to match your objectives.

Try it NOW

You can download a fully functional try-before-you-buy compiler for Windows 95/NT4.0 now. Just point your browser at: http://www.crossware.com/evaluate and follow the on-screen instructions.

Crossware Products
St. John's Innovation Centre,
Cowley Road, Cambridge,
CB4 4WS, UK
Tel: +44 (0) 1223 421263
Fax: +44 (0) 1223 421006
E-mail: sales@crossware.com
Web: http://www.crossware.com

Get into PIC Programming with Forest Electronic Developments

PIC Basic Controller Modules - from £27.00
PIC Basic controllers offer a well featured BASIC language running in real time directly on a PIC Microcontroller. The 16C74 variant has 8k EEPROM with up to 2000 lines of BASIC, 27 lines of programmable I/O, a serial interface and a 4MHz clock, 8 x A/D inputs and a PWM output, 3 timers and interrupt support in BASIC, and an interrupt driven serial RS232 interface. 16C57 module kit 8k EEPROM £27.00 Prebuilt £33.00 16C74 module kit 4MHz £38.00 Prebuilt £42.00 16C74 module kit 20MHz £40.00 Prebuilt £46.00 Instructions, development software and documentation on 3.5” disk are included. PIC BASIC Compiler - available for the 16C74 £50.00

PIC Programmers - kit £40.00, pre-built £50.00
Original: Programs 16C5x, 16C55x, 16C6x, 16C7x, 16C84 Serial: Programs 12C50x, 12C55x, 16C5x, 16C6x, 16C7x, 16C84 Both operate over a serial link to a PIC. Includes all components, PCB and programmed PIC, Windows software plus our Windows based development environment. Serial programmer has a ZIF socket PIC Development Environment and Simulator A Windows based PIC Simulator and Development Environment, up to 50 times faster than MPSIM £25 inc. P&P if bought with Programmer, otherwise £30.00 inc. P&P Blank PICs 16F84-04 £6, 16C74-04 £24, 16C57-04 OTP £5.00 12C508-04P £2.20, 12C509-04P £2.70, PIC14000 04P £10.00 Add £3.00 for Postage, Packing and Handling, all orders which are held in stock will be sent by return, first class post. Payment by Visa/Access/Mastercard or cheque/PO payable to: Forest Electronic Developments (R.J. Ashby, G.M. Warner)
10 Holmhurst Avenue, Christchurch, Dorset, BH23 5PQ
Phone/fax: 01425-270191
Visit our web site at http://www.ibmpcug.co.uk/~gmwarner/ed.htm

Your Choice

At Crossware, we believe in giving you the greatest choice possible. That's why we have designed our products to suit your needs and your budget. Whether it is just one or two memory models you require or support for all 8051 variants, there is a package to match your objectives.

Try it NOW

You can download a fully functional try-before-you-buy compiler for Windows 95/NT4.0 now. Just point your browser at: http://www.crossware.com/evaluate and follow the on-screen instructions.
Following the introduction of the USB (Universal Serial Bus) and in its wake FireWire (IEEE 1394), almost all hardware and software vendors in the computer world have ranged themselves behind the serial-bus concept. USB has thus become the standard for connecting peripheral devices to the PC. Thanks to this development, there is finally a single interface standard which allows all computer devices to be connected to each other. In the meantime, manufacturers of consumer electronics have also embraced the new FireWire standard.

USB and FireWire

connecting all digital devices via a single cable

The problem is a familiar one: you purchase a new piece of equipment for the PC, search for matching cables, get all tangled up in the nest of cables behind the PC, and then have to look for a suitable driver. After that the correct interrupt and DMA channels must be assigned. Add to this the fact that every device needs its own mains power connection, and the chaos is complete. Even the computer manufacturers themselves find this all a bit too much.

The Universal Serial Bus shows that a better, and above all more user-friendly approach is possible. The USB offers a completely integrated "Plug & Play" solution for all devices. For the user this means that any given device can be connected to the computer at any arbitrary time (switching off the power is not even necessary!). The operating system scans the USB every few seconds and responds appropriately whenever a new device is detected. Memory is automatically allocated and a suitable interrupt is assigned. A maximum of 127 devices can be connected to the bus, and smaller devices can draw their operating power directly via the bus interface.

In the meantime, Microsoft has announced that Windows 98 will fully support the USB protocol. There are even rumours that a new OEM version of Windows 95 will appear with USB support.

There are two different categories of connection available within USB: one with a maximum data rate of 1.5 Mbit/s and the other with a maximum data rate of 12 Mbit/s. The slower variant relates to relatively slow devices such as mice, barcode readers, card readers and keyboards. The faster variant is intended for data communication with video recorders and audio systems, as well as for use with high-performance peripheral devices such as hard-disk drives.

Cabling

The USB uses a daisy-chain cabling technique. This means that the devices are connected to the cable in sequence, one after the other. Thus in theory the computer need have only one USB interface to allow up to 127 peripheral devices to be connected.

Of course, the USB has its limitations. The maximum extent of the cable is 5 metres. Longer distances can be achieved by using hubs, which are buffer/splitter devices. A hub can be
incorporated in a peripheral device, but it can also be included in a link as a stand-alone buffer and/or splitter. If a device includes a hub, then it is easily possible to incorporate two or more functions in a single enclosure. For example, one could imagine a keyboard with a built-in card reader, touchpad and/or mouse. A USB link can be extended a maximum of seven times, which means that its total length can reach up to roughly 40 metres.

The USB link uses a 4-lead cable (see Figure 1). The two thinner wires are used for data communication, while the two thicker wires provide power to the connected device interfaces. A special, screened version of the cable is available for critical applications. The power leads can supply a total current of up to 500 mA at 5 V. This means that small devices, such as modems and card readers, no longer need to have their own, separate power supplies. The connection to the cable is made via a compact 4-way plug, which measures only 12 mm x 4.5 mm.

Applications for the USB are limited to data streams with a maximum rate of 12 Mbit/s. For many applications related to the PC this is more than adequate. However, there are conceivable applications for which significantly higher data rates are desirable. One example would be the loss-free (uncompressed) distribution of digital television signals. For such applications, a new communication standard has been developed: IEEE 1394, commonly known as FireWire. FireWire is platform-independent, and its performance far outstrips that of other existing interfaces, including even the most advanced SCSI versions. The most important characteristics of the FireWire interface are low cost, ease of use thanks to a compact connector, complete "Plug & Play" capability and especially high performance. The currently-used I/O interfaces (Centronics, RS232, Ethernet, SCSI and so forth) can thus be replaced by a better system, and communications between the computer and a wide variety of peripheral devices, or directly between individual devices, can be considerably simplified. In terms of performance, FireWire lies between USB (maximum 12 Mbit/s) and fibre-optic links (1 Gbit/s). With this level of performance FireWire could displace existing networking standards such as Ethernet (10 Base-T), but in practice FireWire is presently too expensive for this. In addition, Ethernet has emerged from the computer world, while FireWire is clearly destined to play a dominant role in the arena of modern consumer electronics products for digital communications. The configuration shown in Figure 2 clearly illustrates the mutually complementary nature of USB and FireWire and demonstrates how they can be used to extend each other. Each has its own particular region of application. In the illustrated configuration, USB is used for devices directly connected to the PC, while FireWire forms the digital link between a D-VHS recorder, a set-top box and a digital television.

The performance level of FireWire presently lies at around 100 Mbit/s, with speeds of 200 Mbit/s and 400 Mbit/s approaching feasibility. Just as with USB, a simple connector is used which can be attached with a minimum of effort.

The protocol

In a significant departure from existing interfaces, FireWire allows for isochronous data transmission in addition to the existing asynchronous data transmission (what this all means is explained in the following text). In addition, the interface specification allows FireWire to be used in both cable and backplane environments (a backplane provides the internal connections between the various components of a computer). The protocol is thus usable both inside and outside of the computer enclosure. Depending on the specific electronic components used, data rates of 25 to 50 Mbit/s are possible on the backplane, and as much as 400 Mbit/s is possible with cable. A maximum of 16 hubs may be included in the cable system, and the separation between any two hubs can be a maximum of 4.5 metres. The maximum total extent of the cable is thus 72 metres.

Figure 3 illustrates a configuration in which two computers and a number of I/O devices communicate with each other via the IEEE-1394 bus. Note that the serial bus is also used on the backplane.
Since FireWire is based on high data rates, it places unusually severe demands on the cabling material. While USB works with a 4-lead cable, FireWire uses a 6-lead cable. This is illustrated in Figure 4. Two leads are reserved for distributing electrical power. The allowed dc voltage may lie between 8 V and 40 V, with a maximum total current of 1.5 A. The signal lines are implemented as two individually-screened twisted pairs.

The model

The specification of the FireWire protocol is based on three layers: the Transaction Layer, the Link Layer and the Physical Layer. These are depicted in Figure 5.

Transaction Layer

The Transaction Layer manages data transfers between two devices via the Serial Bus. The system recognizes three types of transactions: read (data is transmitted from a device to the main system), write (data is transmitted from the main system to a device) and lock (data is transmitted from a device to the main system, which in turn sends the processed data back to the device). The bus supports the IEEE 1212 standard, which uses 64-bit addressing. The topmost 16 bits of the address are treated as an identification code (node ID) within each device. The 16 bits of the node ID are further divided into a 10-bit bus ID and a 6-bit offset ID. Since the highest possible address (all ones) is reserved for special applications, an actual system configuration can have up to 1023 buses, each of which can have up to 63 independent device connections (nodes).

Link Layer

The Link Layer looks after delivering information packets according to a half-duplex protocol. Each individual packet is sent via a process called a subaction. Two types of subaction are possible:

- **Asynchronous subaction**, in which an arbitrary amount of data plus some Transaction Layer information is sent to a specific node (device address), following which a confirmation (acknowledgement) is returned from the destination device;

- **Isochronous subaction**, in which a variable amount of data is sent at regular intervals, with simplified addressing and without confirmation from the destination device.

Each subaction can have up to three distinct phases:

- **Arbitration sequence**: a device which wants to transmit data sends a bus access request to the Physical Layer. If the device already controls the bus as the result of a just-completed subaction, it receives immediate access to the bus.
- **Data packet transmission**: the source device transmits a data packet containing coded speed, format and transaction information, the addresses of the source and destination devices and the data. Isochronous packets contain a short channel identification code (ID) in place of the addresses of the sender and receiver.

- **Acknowledgement**: a uniquely-addressed destination device will return a confirmation code which indicates that the data was properly received and contains information regarding the action taken on receipt of the data. Isochronous subactions and asynchronous broadcast subactions do not require acknowledgement.

All asynchronous subactions are normally separated from each other by short intervals during which the bus is in an 'idle' state; these are called sub-action gaps. An additional gap occurs in the interval between the completion of the data packet transmission and the receipt of the acknowledgement. The length of this gap depends on the physical system configuration. Figure 6a depicts the organization and timing of asynchronous subactions. Gaps also occur between isochronous transmissions; these are called isochronous gaps and are depicted in Figure 6b.

Physical Layer

The Physical Layer has three functions. First, it translates the logical levels of the Link Layer into electrical signals for the cable, and in the reverse direction it translates signals from the cable back into proper logical levels for the Link Layer. In addition, it determines the actual electrical and mechanical configuration of the connection. Finally, the Physical Layer acts as a sort of referee which grants devices access the bus when they wish to send data.

The future is what counts

USB and FireWire have a lot to offer. Although the first equipment to use these interfaces (both computers and peripheral devices) is already appearing on the market, it's still too early to proclaim that the serial bus interfaces will be a great success. A few years will be necessary before this can be judged. Readers who wish to follow further developments in this area can keep a good eye on them via the Internet. Information about USB can be found at http://www.usb.org, and FireWire has its own site at http://www.firewire.org.
We have reason to believe that this is a unique and novel circuit. It measures ambient light intensity by means of the serial port on your PC, without any kind of external power supply. A Visual BASIC demonstration program is available for the circuit. This program is easily modified to meet personal requirements.

Design by B. Gehlerking

Light intensity measurement with a PC
no external power supply required

Figure 1. Circuit diagram of the light intensity meter. Note that the sensor is a small solar cell.

The operating principle of the circuit shown in Figure 1 is the time it takes for a capacitor to be charged to a certain voltage (threshold level). The capacitor, C1, is supplied by a constant-current source consisting of D2, R2, R1, T1 and a solar cell acting as the sensor. The result is a capacitor charging voltage which rises linearly. The CMOS timer IC type 7555 (whose internal diagram is shown in Figure 2) operates as a comparator, comparing the voltages between pins 2/6 with the supply voltage between pins 4/8. If the voltage between pins 2 and 6 reaches about 2/3 of the supply voltage, the chip output changes from high to low (active).

The crux of the circuit is that it does not require an external power supply. Its supply voltage is 'stolen' from the PC's RS232 port, GND providing the ground level, while the positive supply level is created with the aid of the DTR (data terminal ready) line. The RTS (request to send) line is used to charge the capacitor as the measurement signal travels to the PC via the CTS (clear to send) line. The length of the time interval between discharging and...
charging is inversely proportional to the measured light intensity.

Figure 3 shows the flowchart of a suggested program which measures and evaluates the time interval. Admittedly, a software loop is not an ideal solution since it makes the program dependent on the speed of the computer used. Unfortunately, Visual BASIC offers no alternative when it comes to time measurement at reasonable accuracy. The program you find on the disk with order number 986002-1 (see Readers Services page) is only intended as an example to help you write your own software for the interface.

Because most RS232 interface lines are at ±10 V, diode D1 is needed as a polarity reversal protection. Diode D3 prevents a too negative potential at the base of T2.

Construction of the circuit should be straightforward. The few parts that go into the circuit are easily fitted on a small piece of veroboard or stripboard. The solar cell mentioned in the parts list (450 mV) has two screw connections at the back, which double as mechanical fasteners and electrical contacts. The interface is connected to the PC by way of 2 to 3 metres long 10-way flatcable (of which only four wires are used), which is connected to the circuit using an IDC (clamp-on) connector, and to the PC's RS232 port via a 9-way sub-D socket.

The program offering a test mode in which DTR and RTS may be controlled separately, the hardware may be tested with relatively simple means. The test program also reads the status of the CTS line. The consequences of the different levels of DTR and RTS for the LEDs and the CTS line are listed in Table 1.

![Flowchart of the demo and test program written in Visual BASIC. The full program is available on disk.](image)

![Image of TLC7555 CMOS timer used in the circuit.](image)

<table>
<thead>
<tr>
<th>DTR</th>
<th>RTS</th>
<th>D4</th>
<th>D2</th>
<th>CTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>-10 V</td>
<td>red</td>
<td>green</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
</tr>
</tbody>
</table>

Table 1.

See also the advertisement elsewhere in this issue.

PC-Topics

Elektor Electronics EXTRA

AFFORDABLE BY EVERYONE...

The Studio Lite consists of UltiCap schematic capture, Ultiboard PCB design and Ultiroute GXR autorouter. Both Windows 95 and DOS versions are included in the CD-ROM. Actually you only pay for the 5 manuals (in which, besides tutorials and manuals, even shapes are described) for which you get full software reliability and stability and with sufficient capacity (500 pins). If higher capacity is needed you can order (now or later) for an upgrade to the Studio Unlimited, without capacity limits, for £68 (incl. VAT). There are no further options or hidden extras. The Ultiboard Studio program is complete.
Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board Capture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values
- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

£395

Board Maker

BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

£95

BoardMaker2 - Advanced level

- All the features of BoardMaker1
- Full netlist support- BoardCapture, OrCad, Schema, Tango, CadStar
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator- Database ASCII, BOM
- Thermal power plane support with full DRC

£395

Board Router

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
- Full interrupt, resume, pan and zoom while routing

£200

Output drivers Included as standard

- Printers - 9 & 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec & Houston
- Photoplotters - All Gerber 3X00 and 4X00
- Excellon NC Drill and Annotated drill drawings (BM2)

For further information contact

Tsien (UK) Limited
Aylesby House
Wenny Road, Chatteris
Cambridge, PE16 6UT
Tel 01354 695959
Fax 01354 695957
E-mail Sales@tsien.demon.co.uk
New and very unwelcome on the Internet are traders who secretly collect personal data on web users. The tiniest amount of personal information seems to be sufficient these days to enable these peeping Toms to reach final conclusions about your interests and preferences. Despite massive protests of data protection authorities, there is brisk trade in databases compiled in this way. As a result, the unwitting web user is bombarded with megabytes of unsolicited information (junk mail) from less reputable Internet traders.

Browsing the Internet invariably leaves traces on your own PC as well as on the network server of your ISP (Internet Service Provider). For example, each site you visit is recorded in the History file, and you make your e-mail address known to the server with each download. Along with this address comes a lot of personal data that belongs with your account. Web users will create bookmarks, compile URL lists and 'favourites' folders. An increasingly popular way of collecting data is by means of cookies. These are small files containing individual data, which are stored on the web user's PC for easy retrieval by Internet traders. Mind you, cookies can be very useful, for instance, to keep a permanent record of, say, your client number with a certain supplier, or other salient information. In this way, cookies avoid the hassle of typing personal data over and over again as you come back often to a certain web site.

Unfortunately, this information also lends itself to illegitimate use, and there is a disturbing increase in the number of cases in which this has actually happened. Although all modern web browsers allow users to reject cookies, actually doing so is annoying because the repeated warnings tend to slow you down when time is at a premium (always remember your phone bill). In some cases, it is even impossible to access a web site without accepting a cookie.

Another interesting feature of NSClean and IEClean is the in-built alias function. At the press of a button, you can change your e-mail address into a fictitious one, for as long as the PC is on-line. In this way, you do not (unwittingly) disclose your identity when accessing an ftp site.

The programs are capable of detecting the various targets areas (History folder, URL window, cookies, bookmarks, etc.) allowing targeted bearing or retaining of individual areas (including individual entries).

Another interesting feature of NSClean may be found at http://www.webtronix.co.uk/wsc.htm. The programs are capable of detecting the various targets areas (History folder, URL window, cookies, bookmarks, etc.), allowing targeted bearing or retaining of individual areas (including individual entries).

UK-based Internet provider Webtronix now offers a program called NSClean (for Netscape) or IEClean (for Internet Explorer) which records all access to the various memories (hard disk and cache) as you surf the Internet, and destroys all traces again the moment you log off. The home page of Webtronix may be found at http://www.webtronix.co.uk. The programs are capable of detecting the various targets areas (History folder, URL window, cookies, bookmarks, etc.), allowing targeted bearing or retaining of individual areas (including individual entries).

Another interesting feature of NSClean and IEClean is the in-built alias function. At the press of a button, you can change your e-mail address into a fictitious one, for as long as the PC is on-line. In this way, you do not (unwittingly) disclose your identity when accessing an ftp site.

NSClean and IEClean cost £29.95 for the 16-bit Windows version, or £34.95 for the 32-bit Windows/NT versions. Credit card owners may download the programs straight away. Obtaining this software by ordinary mail is also possible, P&P is then £5.
After last month's brief excursion into sampling, this instalment takes a look at the effects sampling has and then takes the first steps into digital filter technology.

Shannon's sampling theorem (1949) states that, in a pulse-coded system, two samples per cycle will completely characterize a band-limited signal, that is, the sampling rate must be twice the highest-frequency component. In practice, the sampling rate is at least five times the highest frequency.

It will be seen that the theorem is invalidated when the highest frequency is more than half the sampling rate.

Sound Programme

`musict.wav` generates a sound programme of 60 single tones, each separated from the next and preceding one by a semitone. The lowest frequency is 40 Hz and the highest 14 kHz; that is, the programme spans a range of more than five octaves. The tones are sampled by `musict.wav` at a rate of 44.1 kHz. The conditions of the theorem are fulfilled, which is verified by a good audible sound.

Undersampling

If the sound generated in the previous paragraph is sampled at a rate of only 11,025 kHz, that is 1/4 of the original rate, we speak of undersampling (see figure 3). It is executed by `dnwnsmp1.inp = music1.wav out = music2.wav factor = 4 <return>`.

This means that only tones lower than 11,025/2 = 5512.5 Hz can be reconstructed properly. Sampling of the higher-frequency tones results in a phenomenon known as aliasing. This gives rise to a tone erroneously taking on the identity of an entirely different frequency when recovered.

Aliasing Frequencies

Aliasing frequencies are not random; they can be accurately predicted. If, for instance, a sinusoidal signal of frequency \(f_0 \) is sampled at a rate equal to \(f_0 \), definite sample values are obtained. Each signal of frequency \(n(f_0 - f_0) \) or \(m(f_0 + f_0) \), where \(m = 1, 2, 3, \ldots \), generates the same sample values associated with \(f_0 \) — see Figure 4.

After sampling has taken place, these frequencies cannot be distinguished from one another. To prevent aliasing, one can compare it to the phenomenon of a cinematographic or video film when a spoked wheel of a vehicle turns at such a speed that successive samples (frames of the film) catch the wheel at slightly earlier or later positions. Between one frame and the next a spoke turns to almost the same position as formerly occupied by an adjacent spoke. The result is to make the wheel appear to rotate much more slowly or even backwards.
this situation arising, an analogue-to-digital converter (ADC) is usually preceded by a low-pass filter that suppresses the aliasing frequencies.

LOW-PASS FILTER

The low-pass filter used to suppress aliasing frequencies must be a digital type. Digital filtering is completely different from analogue filtering. Analogue filtering processes signals in the frequency domain, whereas digital filtering does so in the time domain. So, if a certain frequency domain response is required, it is necessary to convert this response into the equivalent time domain. So, let us see what happens when we try to use an analogue filter (see Figures 5 and 6).

During a sampling interval \(\Delta T \), the input voltage \(u \) changes but little, but attains the value \(u_k \). The output voltage will not change much either, so that an almost constant current \(i \) flows through resistor \(R \). At the onset of the sampling interval, the potential across the capacitor is \(v_k \). It is charged by \(i \) during the sampling period to attain the potential \(v_{k+1} = v_k + \Delta U/C = v_k + (v_k - v_{k-1})/RC \Delta t \).

If we solve this for \(u_{k+1} \), we obtain

\[
 u_{k+1} = u_k + \Delta U/C = u_k + (v_k - u_k)/RC \Delta t
\]

This is the calculation prescription for the first digital filter. The program is on the CD-ROM under the title PULSE1.EXE; the source code, LPPLPAs, is given in Figure 7.

The example shows that not all programs for digital signal processing need to be long and tedious. It is, of course, admitted that most of the routine work has been done by program library SIGLIB.PAS.

The filter is tested by processing file mus1.wav (also listen to it!) on the CD-ROM. This is done by calling up

```
1pl \( r=0.995 \) \( \text{scale}=10 \) \( \text{inp}=\text{mus1.wav \ out}=\text{tmp.wav \ return}\).
```

Listening to the resulting signal makes the distinction between tmp.wav and the original signal very clear.

Some experiments may be carried out with the filter. For instance, try out several values for \(r \), but note that this should not be greater than unity to prevent the filter becoming unstable.

Just listening to a filter's performance is, of course, not the best test. For a proper test, a couple of test signals are needed to analyse, say, the frequency response in the time and frequency domains. These signals may be derived from a pulse generator.

PULSE GENERATORS

The CD-ROM contains a couple of pulse generators. The first and simpler is indicated by PULSE1.EXE. This generates a very brief pulse that has only one sampling value which is not zero: the value of all others is zero. The position and amplitude of the pulses can be set by relevant parameters. This elementary signal is very important and will be used frequently in experiments later in this series of articles.

Another pulse generator is found under STEP1.EXE. This generates a simple step signal with predefined amplitude and position. For instance, calling up DO XLI_SPP generates the signals shown in Figure 8. That at the top represents the reaction of filter tmp.wav to pulset.wav, and that at the bottom, tmp.wav, the slowly rising response to step1.wav.

As before, this experiment may be repeated with various values of \(r \). For instance, what happens when \(r=-0.9 \)? However, this kind of response does not give a very clear picture of the performance of the low-pass filter. A better one is obtained by the use of a sweep generator, which is also available on the CD-ROM.

When DO XLP2.SPP \(\text{return}\) is called up, a sweep signal of 1-1000 Hz is generated (top of Figure 9) and applied to the low-pass filter. The amplitude of the output signal (at the bottom) drops with rising frequency.

Another possibility is to apply white noise to the filter and view the output signal. But for that purpose, it is necessary to first analyse and examine signal spectra.

Figure 4. Allasing causes equivalent frequencies to be produced from dissimilar samples.

Figure 5. An RC network used as an analogue low-pass filter.

Figure 6. Step response of the digital low-pass filter.
001 program lpl ;
002 uses dos,crt,graph ;
003
004 ($) SIGLIB.PAS)
005
var k:int ;
007 y,scale,r: float ;
008
begin
009 start('simple lowpass') ;
010 scale:=1.0 ; set par real('
scale=',scale) ;
011 r:=0.95 ; set par real('
',r)
012 inp fn:='pulsel.wav' ; set par string('
inp=',inp fn) ;
013 out fn:='tmp.wav' ; set par string('
out=',out fn) ;
014
015 open inp(inp fn) ;
016 open out(out fn) ;
017
018
019 y:=0 ;
020 for k:=1 to nsamples do
021 begin
022 output(scale*y) ;
023 y:=y*r÷(1-Winput ;
024 if (k mod 2000)=0 then write('.')
025 end ;
026 stop ;
027 end.

SPECTRUM ANALYSER
An introduction to DSP would not be of great value without a facility to view, examine and analyse signal spectra. Therefore, the CD-ROM contains program SPECLEXE (source code SPEC1.PAS) which enables the spectra of wave files to be calculated and viewed.

To calculate a spectrum, SPECLEXE uses a discrete Fourier transform (DFT), which derives n/2 amplitudes that are associated with frequencies 0 Hz (d.c) to f/2 from n values In the present program, n=4096. The amplitude levels are shown on a logarithmic scale to obtain a wider range of values.

Experiment XSPEC1APP generates two signals of frequency 193.7988 Hz (tmp1.wav) and 196.4905 Hz (tmp2.wav) respectively from 4096 samples at a rate of 44.100 samples/s. If the DFT is applied to these signals, the spectra shown in Figure 10 are obtained.

It appears as if the first signal (tmp1.wav - top left) consists of only...
one frequency. On the other hand, the second signal (tmp2.wav - top right) has a 20 dB peak, but the spectrum at either side does not drop off very much.

How does the DFT conclude that there are some of a great many frequencies in the signal? The answer lies in Figure 11, which shows that in the case of signal tmp1.wav a whole number of complete cycles fits exactly in the region enclosed by the 4096 sampling points. This is not so in case of the other signal. The value of
Hart Audio kits and factory assembled units use the unique combinations of circuit design, quality components, and careful engineering of the John Linsley Hood, the very best audiophile components, and our own establishing excellence, to give you unparallelable performance and unbelievable value for money.

We have always tried the best for easy home construction to professional standards, even in the smallest projects. So, even when we were using easily assembled printed circuits when Woodstock in America was still using tapeborders. Many years of experience and innovation, going back to the early Dinesart and Batty classics gives us the incomparable design background in the needs of the home constructor. This simply means that building a Hart kit is a real pleasure, resulting in a kit of equipment that not only saves you money but will be proud to own.

Why not buy the replica and construction manual for the kit you are interested in to see how easy it is to build your own equipment the Hart way. The full cost can be credited against your subsequent kit purchase.

"AUDIO DESIGN" 80WAT POWER AMPLIFIER.

SHUNT FEEDBACK PREAMPLIFIER.

The Hart Audio Mail Order division is the full range of our range, and the ideal powerplants for your ultimate high-end system. This kit is your way to get your performance at bargain prices without the usual compromises. Our range of preamplifiers and power supplies give this amplifier World Class performance with the advantage of minimum noise and distortion. How is this? Hart Audio Mail Order division has access to the famous HART quality components, and ease of construction. Standard model comes with a variable positive frame and gives 3 switched inputs. With ALPS precision "Blue Velvet" low-noise volume and balance controls, it needs no external preamplifier.

Construction is very simple and enjoyable with all the usual work done for you, even the wiring is pre-terminated for you, ready for use. All versions are available with Standard components or specially selected Better Audio components and Gold Plated parts. Hart Audio Mail Order division has a full range of factory assembled units.

K100 Complete Standard Stereo Amplifier Kit £149.20
K500 Complete MonoBloc Amplifier Kit £271.20
RL361 Models of latest standard editions £5.80
K100CM Construction Manual with full parts list £6.50

ALPS "Blue Velvet" Precision Audio Controls.

Now you can throw out those noisy 8-matched dollars and replace with the famous Hart exclusive ALPS "Blue Velvet" range controlled volume and balance controls. Very easy to build and suitable for all Hart Audio Mail Order division low power amplifiers. We provide a full range of solutions to meet your needs. Hart Audio Mail Order division has access to a full range of factory assembled units.

MANUAL POTENTIOMETERS
- 2 gang 10K Lin £15.67
- 2 gang 10K OR 102 £16.40
- 2 gang 10K Special Balance, zero offset and zero center £17.16

MOTORISED POTENTIOMETERS
- 2 gang 10K Special Volume £29.28
- 2 gang 10K TD Special Balance, zero offset and less than 1% at center position £35.68

TORKOAL MAINS INPUT TRANSFORMERS
for ESL, 32W VALVE AMPLIFIER

Flatwound canopies of the type used in the actual type by Jeff McCallon.

PRECISION Triple Purpose TEST CASSETTE TCD
Are you sure your tape recorder is set up to give you the best? Our latest triple purpose test cassette checks the three most important tape parameters without test equipment, whilst providing a high quality test signal. A professional quality, digitally mastered test tape allows you to test your tape recorder. £9.99.

Send for Your FREE copy of our LISTS
24 Hr. ORDERLINE 01691 652894
Fax 01691 662564
All Prices include UK/EU VAT.

The Home of Hi-Finesse. It's not what you do, it's HOW you do it that counts.

ROARING SUBWOOFER.

A full revised kit will be available. A complete new approach and imaginative design from Russian Brass (WV Fabric) on the design line. The Kit will use the famous Hi-Fi bass module. Includes Details. The Driver to give even better performance at slightly reduced cost. Factory built and supplied speaker cabinets are available.

SPEAKER DESIGN SOFTWARE.

VISATON "Speaker Designer" is a complete and powerful design program for use on IBM machines. Covena cabinets and crossover design and computer-aided design (CAD) facilities are available for a wide choice of systems.

SPEAKER DIAMOND MATERIALS

Polystyrene Wood and Polystyrene Wood both have optimal damping properties and are pleasant to handle. Standard 2kg bag is sufficient to fill the walls of an average living room.

POSTAGE on all books, unless stated, is only £3 for books up to 400g. It is only charged on any size. Stamped items are heavy books costing £5.25 to send.

Don't forget their mailing at HART. All listed books now normally in stock. Just ring with your Credit Card Number for instant despatch.

OVERSEAS Please Enquire.

Details of all kits are given in our list Free on request.
Figure 11. Signals may fit well or not so well in the window of the spectrum analyser.

this signal at the left is 0, while at the right 18.5 cycles fit in the 4096-point region. Because of this, all possible oscillations are required (and thus shown up by the DFT) to display the signal.

WINDOW FUNCTION

Obviously, the situation in the previous paragraph is not satisfactory, since the DFT should generate a line-shaped spectrum of signal tmp2.wav also. This is obtained when the input signal is multiplied (top of Figure 12) by a window function (at the centre). This signal then undergoes a DFT and results in that displayed at the bottom.

The window function ensures that the signal becomes compatible with the DFT. The spectra of the signals subjected to the window function are shown at the bottom of Figure 10. It will be seen that the spectrum of tmp2.wav is now clearly line-shaped, but that the line produced by tmp1.wav has broadened slightly - this is the price to be paid for the window function. The spectrum analyser on the CD-ROM gives a choice of working with or without the window function. The window function will be met again when filter synthesis will be discussed.

Next month's instalment will continue with the subject of filtering and also deal with the spectrum analysis of some real signals.

Figure 12. Windowing is simply the multiplication of the signal with a window function.

In passing

Chaotic Minds

Working neatly and efficiently is considered by many to be a virtue. Our mums and teachers told us to work neatly and we pass the word on. But does all that order and tidiness really get us anywhere? Do these virtues serve any higher purpose?

I'm not so sure, you know. At least, I have reasons to start doubting. Look at hobby gardeners. The biggest tomatoes and the finest lettuce always seem to grow in chaotic little gardens with a drab little tool shed built from totally unrelated parts. By contrast, you will find that the 'neat' gardener with his built-from-a-kit shed or weather-proof garden box is constantly bogged down by bad luck, bugs and what have you, and he or she can just about manage to grow a decent cabbage.

Similar observations apply to many electronics designers. The most ingenious circuits and original ideas seem to spring from the minds of people whose desk alone presents a view that throws the neat-minded into a fit. Behind such a desk, cluttered with all things real and beyond imagination, sits a designer, peacefully being ingenious. His spectacles are held together by pieces of sticking plaster, and he doesn't seem the slightest bit worried about the fact that he's wearing two different socks.

You should suppress any tendency you may suddenly feel to give him a good talking to about tidiness. It's not only pointless, but even dangerous! I have heard of a case where a sheer genius, after a short absence from his beloved desk, was confronted with a working room cleaned up (or out) by his spouse. He could not bear it. Although about a year long intensive treatment in a psychiatric clinic has made him reasonably communicative again, I doubt he will ever return to his former self.

What sort of person are you? A genius, a clever sloven, or just a sloven? Don't worry about it, you are in good company. Men like Socrates, Mozart, Einstein and Marconi were not exactly famous for tidiness. Still, you can't deny that they had very well-structured thoughts about various things that really matter.
ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! (Editor Ref F/E1A1)
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in hard to get or inaccessible places. Uses wide bandwidth technology to gather distant sounds and focus them into our own microphone system. Plans also show an optional wireless system. Editor Ref F/E1D5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL, AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on 12Vdc, many possible experiments. Editor Ref F/E1F2

COLOUR CCTV VIDEO CAMERAS
BRAND NEW AND CASED, FROM £99
Works with most modern video's, TV's, Composite monitors, video grabber cards etc
Pat, 1980, P. composition, 75cmm. 1/2" CCD, 4mm F2.0, 500x550, 12vdc, mounting bracket, auto shutter, 100x50x180mm. 3 months warranty, 1 off price £119 ref XEF150, 10 or more £99

HELIOS PNB-2 RUSSIAN BORDER GUARD OBSERVATION BINOCULARS £1799
Intended for use on long range observation of air and ground targets and the observation of all other long range objects. These binoculars are a tribute Russian optical ingenuity with a performance that simply has to be seen to be believed. A large objective diameter of 7.3mm provides exceptional light gathering power, while when combined with its high magnification of 25x allows the user to view over vast distances with delightfully bright, crisp high resolution images. Robust and simple in construction incorporating an uncompromised yet thoughtfully designed mechanical layout ensuring ease of operation and quick precise targeting. These binoculars have a wide variety of applications and are suitable for use by conscripts, local enforcement agencies, consorts, farmers etc.
Specifications
x50 magnification, 110mm objective, 6.5 deg angle of view, F/4 at 100mm, 5/6, focusing 40mm d, fully coated prismatic ground optics, orange neutral filters, rubber eye caps, nitrogen filled body, rubber coated moulded eyepiece, image stabilising, complete with case, all carry weights 2145 (15.4 yettnout)

PLACE YOUR ORDER VIA OUR WEBSITE AT BULL-ELECTRIC.COM

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX.
BN3 3QY. (ESTABLISHED 50 YEARS).
MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS £3.50 P&P PLUS VAT.
24 HOUR SERVICE. £5.00 PLUS VAT.
ORDER BY PHONE OR POST.
ACCESS, VISA, SWITCH, AMERICAN EXPRESS
Telephone orders: 01273 203500

FAX 01273 323077
E-mail bull@pavilion.co.uk

WIND GENERATORS 380 WATT
1.44 metre dia blades, carbon fibre blades, 3 year warranty, 24Vdc output, 24V version available, control electronics included, transport wheel, remote control, three year performance warranty, new free roof top installation, start up speed 7mm, max output (30mph) 360W £45 ref A/F1

PLANS
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simplex and simple way to build a home X ray medical treatment device. X ray machine assembly, can be used for experimental purposes. Not a toy or for referrals. Editor Ref F/R1W

TELEKINETIC EMPLANS Mystical and amaze your friends by creating motion with no known apparent means or cause. Uses no electricity or mechanical connections, no special gizmos yet produces a real paranormal effect. Excellent for scientific proof, magic shows, party demonstrations or serious research on development of the paranormal and amazing physical phenomena. £4.99 Ref F/E1K7

ELECTRONIC HYPERSON'S PLANS & DATA The data shows several ways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembled can produce high energy effects. This material can be used cautiously. It is for use as entertainment at parties etc only, by those licensed in its use. £10.95 Ref F/R5C

GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomenon that produces an anti-gravity effect. You can actually build a small model speech made out of simple materials and without any visible means as to how it works. £10.95 Ref F/R5A

WORLDS SMALLEST TESLA COIL/LIGHTNING DISPLAY CLOSE PLANS Produces up to 30,000 volts of discharge, experiment with extraordinary MV effects, "Plasma in a Jar", 8µF Electrikally, Coronis, excellent science project become lightning piece. £5.95 Ref F/I1CH5

COPPER VAPOUR LASER PLANS Produces 100mw of visible green light, high quality and optical quality similar to Argon laser but easier and less costly to build yet far more efficient. This particular design was developed at the Atomic Energy Commission of Heijo (Belgium) and is a 100mw F/1.4 laser. £3.95 Ref F/P13A

VOICE SCRAMBLER PLANS Makes automated intercoms useless, the voice remains clear, cannot be understood without a second matching unit. Use on telephones to prevent third party eavesdropping and taping. £8.95 Ref F/R7V5

PULSED TV JOKER PLANS Long hand held device utilizes pulse techniques that will completely disrupt TV picture and sound works on FM radio D180° Subscription Advised, Editor Ref F/R9T7

BODYTEMP TELESCOPE PLANS Highly sensitive long range device uses recent technology to detect the presence of living human heat sources, hot spots, heat waves etc. Ideal for security, law enforcement, research and development etc. Excellent secret device for very interesting science project. Editor Ref F/G6T1

BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat causing burning and melting materials over a considerable area. The laser cuts the most efficient, convenient 40% output power into useful output. Note only is this a device for use in woodworking and welding, heat processing materials it is also a deadly contraption for energy beam weapon against enemies, aircraft, ground-to-ground, etc. Particle beams may well utilize a laser of this type to build a cannon or the equivalent for a high energy stream of neutrons or other particles. The device is easily applicable to burning and welding wood, plastic, leather etc. £39.95 Ref F/J5C7

DYNOAMO/FLASHLIGHT Interesting concept, batteries needed just once. T superb for instant light and battery output. £39.95 Ref SC05

ULTRASONIC BLASTER PLANS Laboratory source of sounds at frequencies above 20,000Hz, expecially good for animal control and rodents. £45.95 Ref F/I2ST1

ANTI DOG FORCE FIELD PLANS Highly effective device produces powerful pulses of acoustic energy that dogs cannot tolerate. Editor Ref F/5G2

LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds at a premises without gaining access. £14.99 Ref J/L18T

PHASOR BLOW WAVE PISTOL SERIES PLANS High powered heat and battery voltage with external controls. Editor Ref F/R9P84

INFINITY TRANSMITTER PLANS Telephone line grabber./interceptor. The ultimate in insecurity prevention and safety contempt. Use to! Call your home or office phone, push a silent tone on your telephone to access either! On premises sound and voices or! Listening conversation with break habitability for emergency situations. Editor Ref F/R1TELE5PAN

INTERCOM BLUETOOTH PLANS Is that someone getting on your phone? Easy to construct device locates any hidden source of radio energy. Shifts out and finds bugs and other sound sources of bothersome interference. Detects low, high and wide frequency. £39.95 Ref SC18T

ELECTROMAGNETIC GUN PLANS Projects a hot object a considerable distance, requires air upwelling £5 Ref RIH42
SURVEILLANCE
PROFESSIONAL QUALITY KITS

No. 1 for Kits

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only direct from SUMA DESIGNS. Beware inferior imitations!

UTLX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of 10mm x 20mm
Connects to line (anywhere) and switches on and off with phone use. Power supplied from line. 3000m range.

MTX Micro-miniature Room Transmitter
Best-selling microphone Room Transmitter
Just 17mm x 17mm including mic. 3-12V operation. 1000m range.

STX High-performance Room Transmitter
Hi performance transmitter with a buffered output stage for greater stability and range. Measures 22mm x 22mm including mic. 6-12V operation. 1500m range.

VT800 High-power Room Transmitter
Powerful 250mW output providing excellent range and performance. Size 20mm x 40mm. 9-12V operation. 3000m range.

VXT Voice Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size 20mm x 67mm. 9V operation. 1000m range.

HYX400 Melns Powerd Room Transmitter
Connects directly to 240V AC supply for long-term monitoring. Size 30mm x 33mm. 500m range.

SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCOR decoder connected to the receiver. Size 20mm x 67mm. 9V operation. 1000m range.

SDRX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no battle-hill. Output scramble so requires SCOR connected to receiver. Size 32mm x 37mm. 9V operation. 3000m range.

SGCM Subcarrier Decoder Unit for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size 32mm x 70mm. 9-12V operation.

ATRX Micro Size Telephone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size 16mm x 32mm. Powered from line.

Specials

DTX/OLRX Radio Control Switch
Remote control anything around your house or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, monitory or alarm. B-way dsl switches on both boards set your own tunable security code. TX size 45mm x 45mm. RX size 33mm x 90mm. Both 9V operation. Range up to 200m.

Complete System (2 kits)...

Individual Transmitter DTX...

Individual Receiver OLRX...

MBX-1 Hi-Fi Micro Broadcaster
Not technically a surveillance device but a great idea! Connects to the headphone output of your Hi-Fi, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle. Size 27mm x 60mm. 9V operation. 250m range.

SUMA DESIGNS

DEPT. EE
THE WORKSHOPS, 95 MAIN ROAD,
BAXTERLEY, NEAR ANOTHERSTONE,
WARWICKSHIRE CV9 2LE

VISITORS STRICTLY BY APPOINTMENT ONLY

Tel: 01827 714476
Fax: 01827 714476
The U4253BM and U4254BM ICs are integrated AM/FM antenna matching circuits in bi-CMOS* technology. They are intended particularly for car applications and may be used with windshield, roof and bumper antennas. The U4254BM chip has a lower noise figure than the U4253BM and a different AM amplifier stage with two outputs. Apart from the additional AM output (pin 11 which is not connected in the U4253BM), the pinouts of the two devices are identical.

A TEMIC Semiconductor Application Note

The U4253BM and U4254BM impedance matching circuit (see block diagram in Figure 1) compensates for cable losses between the antenna and the car radio which is usually placed far away from the antenna.

The FM amplifier provides excellent noise performance. External components are used to adjust the gain and...
the input-output matching impedance. Therefore, it is possible to adjust the amplifier to various impedances (usually 30, 75, or 150 Ω).

To protect the amplifier against input overload, an Automatic Gain Control (AGC) is included on the chip. The AGC observes the a.c. voltage at the FM amplifier output, rectifies this signal, and delivers direct current to dampen the input antenna signal via an external p-i-n diode.

The threshold for the AGC is adjustable. Simple and temperature-compensated biasing is possible owing to the integrated voltage reference VRef1.

The AM part consists of a buffer amplifier. The voltage gain of this stage is about unity. The input resistance is 470 kΩ and the input capacitance less than 10 pF. The output resistance is 125 Ω. An excellent dynamic range is achieved owing to the CMOS source follower stage.

PIN DESCRIPTION

The pinout is shown in Figure 2. Note that pins 6, 9, 11 (UL253BM only), and 16 are not connected.

FMIN (pin 1) (Figure 3a)

FMIN is the input of the FM amplifier. It is the base of a bipolar transistor. A resistor or coil is connected between FMIN and VRef2.

GND1 (pin 2)

To avoid crosstalk between AM and FM signals, the circuit has two separate ground pins. GND1 is the ground for the FM part.

FMGAIN (pin 3) (Figure 3b)

The direct current of the FM amplifier transistor is adjusted by an external resistor which is connected between FMGAIN and GND1. To influence the a.c. gain of the amplifier, a resistor is connected in series with a capacitor between FMGAIN and GND1. The capacitor has to be a short at frequencies ≥ 100 MHz.

AGC (pin 4)

Direct current flows into the AGC pin at high FM antenna input signals. This current has to be amplified via the current gain of an external p-n-p transistor that feeds a p-i-n diode. This diode dampens the antenna input signal and...
Figure 4. Typical application circuit of the AM/FM antenna impedance matching IC.

Table 1. Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>Pin 14</td>
<td>(V_s)</td>
<td>7.2</td>
<td>8</td>
<td>8.8</td>
<td>V</td>
</tr>
<tr>
<td>Supply currents</td>
<td>Pin 14</td>
<td>(I_s)</td>
<td>4</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Reference voltage 1 output, (I_{12} = 0)</td>
<td>Pin 12</td>
<td>(V_{Ref1})</td>
<td>5.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Reference voltage 2 output, (I_5 = 0)</td>
<td>Pin 5</td>
<td>(V_{Ref2})</td>
<td>2.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Temperature dependence of (V_{Ref2})</td>
<td>Pin 5</td>
<td>(V_{Ref2}\Delta T)</td>
<td>-1</td>
<td></td>
<td></td>
<td>mV/K</td>
</tr>
</tbody>
</table>

AM amplifier

- Input resistance | Pin 8 | \(R_{MIN} \) | 470 | | | kΩ |
- Input capacitance | Pin 8 | \(C_{MIN} \) | 16 | | | pF |
- Output resistance | Pin 10/ Pin 8 | \(R_{OUT} \) | 2000 | 0.85 | | Q |
- Voltage gain | Pin 10, Pin 8 | \(a \) | | | | |
- Output noise voltage (rms value) | Pin 10, pin 8 to ground via 15pF; \(f = 6 \text{kHz} \), 150 kHz to 300 kHz, 500 kHz to 6.5 MHz | \(V_{N1} \), \(V_{N2} \) | | -2 | -6 | dBuV |
- 2nd harmonic | Pin 10, pin 8 to ground via 15pF, \(R_{MIN} = 500 \text{kΩ} \), Output voltage = 110 dBuV | \(-60^{**} \) | | | | dBc |

FM amplifier

- Supply current limit | \(I_{AGC} \), \(I_{AGC_{ADU}} = 0 \text{A} \), Pin 15 | \(I_s \) | 33 | 35 | | mA |
- Input resistance | \(f = 100 \text{MHz} \) Pin 1 | \(R_{MIN} \) | 50 | | | Ω |
- Output resistance | \(f = 100 \text{MHz} \) Pin 15 | \(R_{MOUT} \) | 50 | | | Ω |
- Power gain | \(f = 100 \text{MHz} \) Pin 15/ Pin 1 | \(G \) | 5 | | | dB |
- Output noise voltage | Pin 15, \(f = 100 \text{MHz}, B = 120 \text{kHz} \) | \(V_N \) | | | | dBuV |
- 3rd order output intercept | \(f = 100 \text{MHz} \) Pin 15 | | 132 | | | dBuV |

AGC

- AGC input voltage threshold | \(f = 100 \text{MHz} \) Pin 15, pin 13 grounded; AGC threshold DC current is 10 \(\mu \text{A} \) at Pin 4 | \(V_{g11} \) | | | | dBuV |
- AGC input voltage threshold | \(f = 100 \text{MHz} \) Pin 15, pin 13 not connected; AGC threshold DC current is 10 \(\mu \text{A} \) at Pin 4 | \(V_{g12} \) | | | | dBuV |
- AGC output current | AGC active | \(I_{AGC} \) | 7.2 | | | mA |

* 125Ω for U4254BM
** -65dBc for U4254BM
protects the amplifier input against overload. The maximum current which flows into the AGC pin is about 1 mA. In low-end applications, the AGC function is not necessary and the external components can then be omitted.

VREF2 (pin 5) (Figure 3i)

For the d.c. biasing of the FM amplifier, a second voltage reference circuit is integrated. Because of temperature independence of the collector current, the output voltage has a negative temperature coefficient of about −1 mV K⁻¹. To stabilize this voltage an external capacitor of a few nF to ground is recommended.

GND 2 (pin 7)

This pin is the ground connection for the AM amplifier.

AMIN (pin 8) (Figure 3f)

The AM input has an internal bias voltage. The direct voltage at this pin is V_ref/2. The input resistance is about 470 kΩ and the input capacitance is smaller than 10 pF.

AMOUT (U4253BM only) (pin 10) (Figure 3h)

This pin is the output of the AM amplifier in the U4253BM. The direct voltage at this pin is almost V_ref/2. The output impedance is about 200 Ω. The output capacitance is smaller than 10 pF.

AMOUT and AMOUT1 (U4254BM) (Pins 10 and 11) (Figure 3g)

The buffered AM amplifier consists of a complementary pair of CMOS source followers. The transistor gates are connected to AMIN. Pin 10 is the NMOS transistor’s source, whereas pin 11 is the PMOS transistor’s source. Owing to the two different direct voltage levels at these pins, they have to be connected together via an external capacitor of about 0.1 µF. This technique enables an excellent dynamic range to be achieved.

VREF1 (pin 12) (Figure 3i)

VREF1 is the stabilized voltage for the AM amplifier and the AGC block. To achieve good noise performance at low frequencies, it is recommended that this pin is connected to ground via an external capacitor of about 1 µF.

WBADJ (U4254BM)

AGCADJ (U4253BM) (pin 13) (Figure 3d)

The threshold of the AGC can be adjusted by varying the direct current at this pin. If the pin is connected directly to GND1, the threshold is set to 96 dB µV at the AM amplifier output. If a resistor is connected between this pin and GND1, the threshold is shifted to higher values with increases in resistance. If the pin is open, the threshold is set to 106 dB µV.

VS (pin 14)

This pin is linked to the positive supply voltage (7.2–8.8 V).

FMOUT (pin 15) (Figure 3e)

The FM amplifier output is the open collector of a bipolar r.f. transistor. It should be linked to VS via a coil.

Table 2 - Features

- High dynamic range for AM and FM
- Integrated AGC for FM
- High intercept point 3rd order for FM
- FM amplifier adjustable to various cable impedances
- High intercept point 2nd order for AM
- Low noise output voltage
- Low power consumption

Table 3 - Absolute maximum ratings

Reference point is ground (pin 2 and 7)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_s</td>
<td>8.8</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation, P_diss at T_amb=85 °C</td>
<td>P_diss</td>
<td>460</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_j</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>T_amb</td>
<td>−40 to +85 °C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_stg</td>
<td>−50 to +150 °C</td>
<td></td>
</tr>
<tr>
<td>Electrostatic handling</td>
<td>±V_Esc</td>
<td>2000</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 4 - Cable impedance vs resistor values

<table>
<thead>
<tr>
<th>FM cable impedance (Ω)</th>
<th>R_1 (Ω)</th>
<th>R_2 (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>150</td>
<td>22</td>
</tr>
<tr>
<td>75</td>
<td>270</td>
<td>33</td>
</tr>
<tr>
<td>100</td>
<td>390</td>
<td>51</td>
</tr>
<tr>
<td>125</td>
<td>470</td>
<td>86</td>
</tr>
<tr>
<td>150</td>
<td>620</td>
<td>160</td>
</tr>
</tbody>
</table>

TYPICAL APPLICATION

A typical application circuit is shown in Figure 4. In this, it is assumed that the antennas for reception of long-wave and medium-wave (LW/MW) signals and very-high-frequency (VHF) signals are of different lengths. The antennas are linked to the circuit via a protection circuit.

The antenna impedance is matched to the input impedance of the FM section by resistors R_1 and R_2. The value of these resistors for various antenna impedances is given in Table 4.

For the d.c. biasing of the FM amplifier, a second voltage reference circuit is integrated. The 1 µH choke between VREF2 and the input of the FM section prevents the antenna signal being short-circuited by the 0.0022 µF decoupling capacitor to ground.

The 2.2 µH choke following the 0.1 µF coupling capacitor at the AM output presents a very low impedance to AM signals, but a very high impedance to VHF signals.

TEMIC U.K. Ltd.
Easthampstead Road
Bracknell, Berkshire RG12 1LX
United Kingdom
Tel: 44 1344 707 360
Fax: 44 1344 427 371

Visit our Web site at http://ourworld.compuserve.com/homepages/elektor_uk

Elektor Electronics 2/98
Before the computer age, it required quite a number of assistants to control the stage lighting in a theatre. Today, however, even here the computer has proved its usefulness as a tool. With the DMX512 (Digital MultipleX for 512 units) standard, a computer can control the entire lighting system, including ancillary functions such as the colour filters and dimmers. In this setup, a simple interface cable enables the computer to control up to 512 separate lighting units.

Some of us theatregoers may remember the large theatre lights that were manually operated. Each light required at least a pair of hands—a labour-intensive and therefore costly affair. When electronic control units, and later the computer, became available, many theatres adopted analogue lighting control systems that were much simpler to operate, and therefore more cost-effective.

However, over the past ten years or so, digital control systems controlled by computer have become the norm.

In most smaller theatres, the set of instructions developed for the United States Institute for Theatre Technology (USITT), code-named DMX-512, has been adopted. This is an efficient, yet simple, digital protocol accepted in many parts of the world, which enables all aspects of the stage lighting to be controlled by a computer.

IN TIMES GONE BY...

In the early years of (analogue) electronic control units, an analogue signal was required for each control channel.
that is, each lighting function that had to be controlled. What’s more, a separate cable or pair of wires in such a cable was needed for each of these functions. This cable had to distribute linear control voltages of 0-10 V according to an internationally accepted set of rules. Evidently, although this is a practical setup when there are not all that many lights involved, it becomes cumbersome and costly when many lights are to be controlled, because it results in many or very thick cables. However, for the technicians involved, the use of low voltages means that it is a safe system that can be checked with a simple multimeter.

With the increase of technical facilities whereby modern projectors fulfil more and more functions, the analogue system becomes more and more impracticable. Each piece of equipment needs several channels, which makes the cabling ever more complicated. Today, some lighting units provide 25-30 functions.

In larger theatres, these difficulties with analogue systems led in the early 1980s to the introduction of digital control systems, which in the mid-1980s resulted in the USITT adopting the digital DMX-512 standard. In this system, each pair of wires can control up to 512 functions. In practice, of course, the number is restricted to 32. However, each unit being controlled may use several channels at a time, so that a fair amount of the total available capacity is used.

Although the DMX-512 protocol is not new, it may not be known to many readers. Moreover, a successor is already being developed: the DMX-B. Fortunately, the new set of standards is backwards compatible with the DMX-512, so that older equipment remains usable.

EFFICIENT AND EFFECTIVE

The DMX-512 Standard was last modified and officially laid down as a norm by the USITT in 1990. It is based on the much more widely used RS485 Standard. A basic layout of a DMX-512 link between transmitter and receiver, both of which use the same driver, is shown in Figure 1. Interconnection is via a symmetrically controlled pair of wires.

The data are transmitted asynchronously serially over the wires. The settings are sent sequentially, that is, first the level for dimmer 1, then that for dimmer 2, and so on, until the levels for all connected dimmers (up to 512).

How to make a terminator

Terminators are of great importance to ensure good and reliable communication, but, owing to their small size, are easily misplaced. It is, therefore, useful, to be able to make one at low cost.

Remove the hood from an XLR plug and solder a 120 Ω, 0.25 W resistor between pins 2 and 3, and replace the hood. That’s all!

The photograph shows a completed terminator.
Figure 3. When lines longer than about 1 metre are needed, a bus repeater as shown will be essential.

The reset pulse is followed by a mark signal that indicates the onset of communication. Normally, the mark signal must be at least 8 µs long, but there are systems which are able to recognize a mark-to-break width of 4 µs; these are coded DMX-512/1990 (12 µs).

The onset of a cluster of bytes is marked by a reset signal that is followed by a start byte. This is followed by the brightness data for the first dimmer in the shape of an 8-bit value 0-255, that is, 001-FFH. The relationship of this value with respect to the present brightness setting is a matter for the dimmer itself. For instance, the manufacturer of the dimmer may give it a control curve according to which its brightness increases or decreases. In the case of lamps whose brightness must change rapidly, use may be made of a shutter; the DMX-code then arranges the opening and closing of the shutter.

Each DMX-512 instruction consists of a start bit, eight data bits, and two stop bits (one frame). In the quiescent state, the level on the communication line is high (mark), whereas the active level is low (break or space). The break signal itself is not less than 88 µs wide, a time that corresponds to two frames. The system recognizes the break as a reset signal, whereupon all current operations are dis-continued.

The next step is the transmitting of a number of n + 1 frames, each of which contains the setting of one of the connected dimmers. The first transmitted frame, that is, the start byte, marks the onset of the series of commands and has a fixed value 0011. This indicates that the settings refer to the dimmers. Because of this start code, standards that use a different start code for controlling other types of unit may be added at a later date. For this reason, the connected dimmers must not react when the communication is continued.
TIMING

As mentioned earlier, the DMX-512 standard supports up to 512 dimmers; a minimum is not stipulated. After the data has been transferred to the final dimmer in the chain, the data line returns to the quiescent state (mark). The next reset signal indicates that a new transfer of data is imminent. It is imperative that two sequential setting instructions are separated by an interval (pause) of not less than 1.196 ms.

The data rate in the DMX-512 standard is 250 kbit/s. Since one bit lasts for 4 µs, a complete instruction, including the stop and start bits, takes 4411 s. The timing diagram in Figure 2 shows a complete sequence of 512 bytes, the data stream required for the theoretical maximum of 512 dimmers. When all times are added, the maximum time duration is 22,668 µs, which corresponds to a repetition rate of 44.1 Hz. From this, it is clear that the use of the maximum number of dimmers restricts the speed of operation.

The DMX-connection allows 32 lighting units to be linked to the bus. There is no limitation as to the number of addresses that each of these units can handle.

CABLES AND ALL THAT

The cables carry rectangular-wave signals at a frequency of 250 kHz maximum. Each signal may contain components at frequencies up to 2.5 MHz. This means that in the DMX system cables must be used that are quite different from the ones used in analogue systems. No longer can standard cables with simple connectors be used: specific types of cable with corresponding connectors are imperative.

As mentioned earlier, the system is based on the RS485 interface, which is an improvement of the earlier RS422 system. The improvements make possible more connections to the bus and additional space for more masters. The latter facility is not used in the DMX512 system, but the former enables applications within a network.

Although the RS485 standard limits the length of the cable, exceeding the specified length within reason will not create difficulties: distances of up to 1 metre (3.3 ft) are perfectly usable, provided that the final unit in the chain is terminated correctly into an impedance of 120 Ω. If larger distances need to be spanned, a bus repeater should be used. The circuit of such a repeater is shown in Figure 3. Note that both the input and output are terminated into 120 Ω. The DMX-512 standard does not specify the electrical isolation.

SOME LIMITING VALUES

It is important that the driver can handle signal levels between 1.5 V and 5 V at a common-mode potential between -7 V and +12 V.

The leakage current at the output should not exceed 100 µA during an output signal.

The input impedance of the receiver must be not lower than 12 kΩ, while the output load must not exceed 60 Ω.

Short-circuit currents of 150 mA to earth and 250 mA to the positive supply line are permissible.

This article is based on information available in the relevant Internet information from Soundlight (http://www.soundlight.de/techtips/dmx512/dmx512.htm).

<table>
<thead>
<tr>
<th>Pinout of connectors used</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-way XLR (XLR) plug</td>
</tr>
<tr>
<td>pin function</td>
</tr>
<tr>
<td>1 - earth (screen)</td>
</tr>
<tr>
<td>2 - DMX-</td>
</tr>
<tr>
<td>3 - DMX+</td>
</tr>
<tr>
<td>4 - n.c. (may be linked to DMX-)</td>
</tr>
<tr>
<td>5 - n.c. (may be linked to DMX+)</td>
</tr>
</tbody>
</table>

| 3-way XLR (XLR) plug |
| pin function |
| 1 - earth (screen) |
| 2 - DMX- |
| 3 - DMX+ |

Figure 6. Modern theatre lights may have more than 25 functions. For each of these functions, the light uses a DMX address.
Strictly speaking, a trinket cannot be functional, but the title of this article is apt. It is a kind of miniature VU meter whose LED bar fluctuates in rhythm with ambient sound. Owing to its modest dimensions, it can easily be worn as an adornment which, in a disco or at a party, will no doubt, draw the attention of many.

Nowadays, not many things surprise us any more. In this age of high technology, we are used to all kinds of new discoveries and developments, and technical ingenuity. Mobile telephones, portable CD players, watches with built-in alarm: what is there left to impress us with? Not only satellite TV, but also a radio-controlled vehicle on the planet Mars are accepted as a commonplace.

Of course, this is true not only in the world of science and technology, but also in other spheres of human interest. It is not easy to dream up something really new or innovative — something that draws a spontaneous reaction of “Fancy that” or “How do
they do it?)

The trinket described in this article is designed specially for lovers of music and dance. It is intended to enable constructors to build something that sets them apart from others. It is not exactly hi-tech, but rather a combination of technology and music. It is an adornment that, by means of a moving point of light, reacts to the sound pressure of music to which it is exposed. It may, nevertheless, also fulfill a useful function: when the wearer of the trinket notes that the LED indication is constantly at maximum, it is time to put the ear plugs in, because the sound pressure is then clearly no longer healthy.

DESIGN

The aim of the design is to make variations in detected ambient sound, music or speech, visible by means of a moving LED or bar of LEDs, not unlike the way a VU meter works. At the same time, it has been kept tiny (75 x 20 mm or 3 x 0.8 in) to enable it being worn as a brooch.

Clearly, a microphone is needed, and fortunately electret types are available in very small sizes. Also, tiny LEDs for the display are readily available today. The remainder is some electronics to convert the picked up signals to a step-wise varying direct voltage for driving the LEDs. A final requirement is that the electronics can operate for a long time.

Parts list

Resistors:
- $R_1, R_2 = 10 \, \Omega$
- $R_3 = 220 \, \Omega$
- $R_4, R_5 = 1.8 \, k\Omega$
- $R_6 = 100 \, k\Omega$
- $R_7 = 22 \, k\Omega$
- $R_8 = 100 \, k\Omega$ preset, upright.

Capacitors:
- $C_1 = 0.15 \, \mu F$, pitch 5 mm
- $C_2, C_5 = 100 \, p\mu F$, 10 V, radial
- $C_3 = 220 \, \mu F$, 25 V, radial
- $C_4 = 0.47 \, \mu F$, pitch 5 mm
- $C_6 = 0.1 \, \mu F$, pitch 5 mm

Semiconductors:
- $D_1-D_3 = LED, 3 \, mm$, high efficiency
- $D_{11}-D_{12} = BAT85$
- $T_1 = BF254A$

Integrated circuits:
- $IC_1 = TLC271CP$
- $IC_2 = LM3915N$

Miscellaneous:
- $JP_1 = jumper$
- $S_1 = miniature on/off switch or jumper (see text)$
- $BT_1 = 3 \, V$ lithium battery Type CR2025 or CR2032 with holder for board mounting
- $MIC_1 = electret microphone, dia. \leq 10 \, mm$
- PCB Order no. 980025-1 (see Readers Services towards the end of this issue)
time from a small, low-voltage battery.

The final design is shown in Figure 1. The sound is picked up by a tiny electret microphone M_{1}. It has a diameter of about 10 mm (0.4") and contains an integrated impedance equalizer that also functions as amplifier. The supply line to this amplifier is set by R_{1} to just under half the supply voltage (test point A). The output of the microphone is applied to sensitivity control P_{1} via capacitor C_{1}.

The signal at the wiper of P_{1} is applied to operational amplifier $I_{C_{1}}$. This stage has a twofold function: amplifier and, in conjunction with D_{12} and D_{13}, single-phase rectifier. Its amplification is determined by the ratio $R_{2}:R_{4}$; with values as specified, it amounts to x6. This results in a direct voltage at its output (pin 6) that varies in accordance with the strength of the signal picked up by the microphone. This voltage is averaged to some extent by network $R_{6} - C_{4}$ to prevent very rapid fluctuations, which would lead to an unstable display.

The display is formed by a bar of ten LEDs that are controlled by the well-known Type 1A4.-.9' L5 driver ($I_{C_{2}}$). The driver comprises a voltage reference source, an accurate potential divider and ten comparators, each of which can control an LED directly. The potential difference between two successive LEDs corresponds to a sound pressure difference of 3 dB.

The direct voltage applied to pin 5 of $I_{C_{2}}$ can be converted to a single, wandering LED (dot mode) or to a fluctuating bar display (bar mode) via pin 9. In the dot mode, the contacts of jumper $J_{P_{1}}$ must remain open; in the bar mode, they should be closed.

CONSTRUCTION

The design of the printed-circuit board in Figure 2 is a compromise between small size and ease of construction. This has been accomplished by accommodating $I_{C_{1}}$ and $I_{C_{2}}$ on the track side of the board instead of as normal on the component side. Note that soldering these components requires a small soldering iron with a very fine tip.

The circuit is powered by a 3 V lithium cell that is fitted on to the board with the aid of a specially available holder. Note that the $+$ terminal must point upward.

The microphone is soldered directly to the pins marked with an input arrow.

On/off switch S_{1} may be replaced (as it is in the prototype) by a jumper, which is smaller than a switch.

Note that $D_{2} - D_{10}$ are all placed in the same direction, but D_{1} the other way around.

FINALLY

The completed prototype board is shown in Figure 3. A clip to enable the board to be fastened to a lapel or similar may be soldered or glued at the underside near the battery (if soldered, take care not to cause a short-circuit).

There are, of course, other possibilities of construction: for instance, the LEDs may be clustered together away from the board (which can then be hidden in, say, a breast pocket). The two sections can then be linked by a mini cable. Ingenious readers can, no doubt, think of different constructions.

The LEDs specified have a small outer edge. This edge must be filed or cut away with a sharp knife to enable these diodes to be placed close together on the board.

Although problems are highly unlikely, the voltage level at three test points is given in the circuit diagram to facilitate faultfinding.

Depending on the type of microphone used, it may be necessary to change the value of R_{3} to obtain a voltage of 1 V at test point A. If this is done, it is advisable to check the offset at the output of the op amp across pins 4 and 5 of $I_{C_{2}}$ (without microphone). If this is higher than 100 mV it is advisable to replace $I_{C_{1}}$.

The sensitivity of the circuit with a standard electret microphone and P_{1} set to maximum is arranged to give a full display for a sound pressure input level of 100 dB. Note that a sustained input at this level is dangerous for your hearing. If the sensitivity is considered insufficient, it may be increased by giving R_{3} a value of 1.5 kΩ or even 1.2 kΩ.

BATTERY

The circuit draws a current of about 6 mA with all LEDs out, about 12 mA in the dot mode, and up to 22 mA with all LEDs on in the bar mode. Since a Type CR2025 battery has a capacity of 120 mAh, and a CR2032 one of 170 mAh, the trinket will continue to light even when the party lasts until the early hours - certainly in the dot mode.
Setting up and Trouble-shooting Windows PCs

By Michael Hardeski
ISBN 0 7506 9772 5
448 pages – illustrated
Price £25.00 (Paperback) *(Focal Press)*

Setting up and Troubleshooting Windows PCs will make your life as a Windows user easier and more productive, whether you are using Windows 95 or Windows 3.1. It contains the information you need on Windows applications, multimedia cards, and configuration files so you can detect and fix PC problems fast. It is also a ready source of useful mailing address, phone numbers, BBSs, and CompuServe Forum locations for Microsoft sources where you can obtain additional information.

The book teaches you to: clear up General Protection Faults, check and reset internal parameters, troubleshoot network setups and configurations, optimize your settings to boost PC performance, and safeguard your system from security breaches and viruses.

Customer Service Department
Heinemann Publishers
P O Box 382
Halley Court
Jordon Hill
Oxford OX2 8LU

High Performance Loudspeakers – 5th Edition

By Martin Colloms
478 pages
ISBN 0 471 97089 1
Price £24.95 (Paperback)
ISBN 0 471 97091 3
Price £50.00 (Hardback) *(Wiley)*

For anyone working in, or just interested in, audio engineering with special emphasis on loudspeaker design, this book is an absolute must on the bookshelf. There simply cannot be a better work explaining the intricacies, the theory, and the practical aspects of loudspeakers, certainly not at the price.

In this completely revised and updated 5th edition of the widely acclaimed High Performance Loudspeakers (is it really twenty years ago that the 1st edition appeared?), Martin Colloms, the world renowned audio design engineer, outlines and explains the changes in technology that affect loudspeaker design, and reviews the many new applications and materials that are changing the industry. The book is so up to date that even the recently announced wave panel speaker technology (NXT) is included, as are reverse horn speakers (Nautilus) and Flat Plain speakers.

The book includes an impartial overview of multi-media and Home Theatre, Dolby PROLOGIC®, Dolby AC-3 THX, and multi-channel surround sound.

There is a major section on digital loudspeaker design, optimized digital filters, system requirement, and digital active speakers.

Furthermore, there are profiles on new approaches to short-path, low-order crossover network design, and sections on objective and subjective tests on loudspeakers.

There is a new chapter covering ‘Home Theatre Systems’, taking account of their special acoustic requirements, Dolby PRO-LOGIC, THX, and the more recent AC-3, DTS and MPEG digital, discrete, multi-channel systems. The review of the computer-aided design has been extended, including the new generation of low-cost audio instrumentation.

The theoretical aspects of the subject are complemented by a new section that gives much practical advice for real-world loudspeaker design.

There are several new topics in the chapter on ‘Systems and Crossovers’: 2½ way design, external crossover, d’Appolito types, distortion analysis of inductors, digital active loudspeakers and low-order system design.

A major expansion in the book is the section on sub-woofers, with particular reference to the Home Theatre where, as the author says: "subs are almost mandatory."

Martin Colloms is a leading figure in the international high-fidelity audio industry. In 1973 he co-founded Monitor Audio, where he designed and developed a complete range of high-fidelity loudspeaker systems. With the company successfully established, he left to set up an independent consultancy. Colloms Electroacoustics, specializing in audio equipment evaluation and test technology as well as high-fidelity product design.

In addition to writing a number of books, he has written extensively for audio journals and magazines, including Hi Fi for Pleasure, irfi Choice, Hi Fi News and RR and is a regular contributor to the US journal, Stereophile.

Colloms is a member of the Audio Engineering Society. He also acts as an expert witness in technology and patent law.

John Wiley & Sons Ltd
Bollfins Lane
Chichester
West Sussex
England PO19 1UD

--End--
<table>
<thead>
<tr>
<th>CODE</th>
<th>COMBINATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOE</td>
<td>2773</td>
<td>EOE 2773</td>
</tr>
<tr>
<td>E01</td>
<td>2774</td>
<td>E01 2774</td>
</tr>
<tr>
<td>E02</td>
<td>2775</td>
<td>E02 2775</td>
</tr>
<tr>
<td>E03</td>
<td>2776</td>
<td>E03 2776</td>
</tr>
<tr>
<td>E04</td>
<td>2777</td>
<td>E04 2777</td>
</tr>
<tr>
<td>E05</td>
<td>2778</td>
<td>E05 2778</td>
</tr>
<tr>
<td>E06</td>
<td>2779</td>
<td>E06 2779</td>
</tr>
<tr>
<td>E07</td>
<td>2780</td>
<td>E07 2780</td>
</tr>
<tr>
<td>E08</td>
<td>2781</td>
<td>E08 2781</td>
</tr>
<tr>
<td>E09</td>
<td>2782</td>
<td>E09 2782</td>
</tr>
<tr>
<td>E10</td>
<td>2783</td>
<td>E10 2783</td>
</tr>
<tr>
<td>E11</td>
<td>2784</td>
<td>E11 2784</td>
</tr>
<tr>
<td>E12</td>
<td>2785</td>
<td>E12 2785</td>
</tr>
<tr>
<td>E13</td>
<td>2786</td>
<td>E13 2786</td>
</tr>
<tr>
<td>E14</td>
<td>2787</td>
<td>E14 2787</td>
</tr>
<tr>
<td>E15</td>
<td>2788</td>
<td>E15 2788</td>
</tr>
<tr>
<td>E16</td>
<td>2789</td>
<td>E16 2789</td>
</tr>
<tr>
<td>E17</td>
<td>2790</td>
<td>E17 2790</td>
</tr>
<tr>
<td>E18</td>
<td>2791</td>
<td>E18 2791</td>
</tr>
<tr>
<td>E19</td>
<td>2792</td>
<td>E19 2792</td>
</tr>
<tr>
<td>E20</td>
<td>2793</td>
<td>E20 2793</td>
</tr>
<tr>
<td>E21</td>
<td>2794</td>
<td>E21 2794</td>
</tr>
<tr>
<td>E22</td>
<td>2795</td>
<td>E22 2795</td>
</tr>
<tr>
<td>E23</td>
<td>2796</td>
<td>E23 2796</td>
</tr>
<tr>
<td>E24</td>
<td>2797</td>
<td>E24 2797</td>
</tr>
<tr>
<td>E25</td>
<td>2798</td>
<td>E25 2798</td>
</tr>
<tr>
<td>E26</td>
<td>2799</td>
<td>E26 2799</td>
</tr>
<tr>
<td>E27</td>
<td>2800</td>
<td>E27 2800</td>
</tr>
</tbody>
</table>

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, HA9 0HB ENGLAND

Telephone: 0181 900 2329 Fax: 0181 903 6126

E-Mail: GRANDATA.LTD@BTINTERNET.COM
Please add £1 P&P and VAT at 17.5% to all orders.

All brand new Components.

We accept payment by Access, Switch, Visa, Cheque and Postal order. (Government. College...etc Orders accepted)

Prices quoted are subject to availability and may be changed without prior notice.

CM2300 DIGITAL MULTIMETER

FEATURES:
- 3.5 LCD DISPLAY
- HEIGHT 12mm
- MAX READING 1999
- 10A DC CURRENT TEST
- DC VOLTAGE 200mV / 2V / 20V / 200V / 1000V
- DC CURRENT 200mA
- RESISTANCE 2kΩ / 20kΩ / 200kΩ / 2MΩ
- SUPPLIED WITH TEST PROBES
- TEMPERATURE MEASUREMENT
- CONTINUITY TEST
- DIODE TEST & CONTINUITY CHECK
- ALL RANGES OVERLOAD PROTECTED

ORDER CODE: CM2300
PRICE: 975p

CM2400T DIGITAL MULTIMETER WITH TEMP MEASUREMENT

FEATURES:
- 3.5LCD DISPLAY
- HEIGHT 12mm
- MAXIMUM READING 1999
- 10A DC CURRENT TEST
- DC VOLTAGE 200mV / 2V / 20V / 200V / 1000V
- DC CURRENT 200mA / 2000mA / 20mA / 200mA
- RESISTANCE 200Ω / 2kΩ / 20kΩ / 200kΩ / 2MΩ
- SUPPLIED WITH TEST PROBES
- TEMPERATURE MEASUREMENT
- CONTINUITY TEST
- DIODE TEST & CONTINUITY CHECK
- ALL RANGES OVERLOAD PROTECTED

ORDER CODE: CM2400T
PRICE: 1450p

CM3230 DIGITAL CAPACITANCE METER

FEATURES:
- 3.5 LCD DISPLAY
- HEIGHT 18mm
- MAXIMUM READING 1999
- CAPACITANCE: 9 RANGES FROM 200pF - 2000μF
- MEASURING FROM 1pF - 2000μF
- SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION
- ZERO ADJUST KNOB

ORDER CODE: CM3230
PRICE: 3950p
Special Products

Electro Electronics is the official journal of the Institute of Electrical Engineers of Japan. It covers a wide range of topics in electronics and telecommunication. The journal is available in print and digital formats.

Software: The journal also contains a variety of software and program listings, which are made available for download.

Subscriptions: Subscriptions to the journal can be purchased through the official website or by contacting the institute directly.

Archives: Past issues of the journal are available for archival purposes.

Advertising: Advertisements related to electronics and telecommunication are also included in the journal.

Contact: For further information, please contact the institute's customer service department.
New Combi-Chip for chipcards

The new SLE44R42S Combi-Chip from Siemens is a chipcard IC that combines the technology of contact-based and contactless chipcards. It is set to bring together two applications of the future, electronic ticketing and the electronic purse. Within the next few years, the market segment for contactless chipcards is expected to grow dramatically, so that by the year 2001, they will make up some 15% of the world market for chipcards. About half the volume of these cards will be used in applications in the field of transportation, including, among others, rapid transit systems and ticketing. This is where the major advantage of contactless chipcards as opposed to their contact-based counterparts will really pay off. Because the contactless read procedure avoids the need to insert the card into the reader, research has shown that ten times as many tickets can be handled within a given period. Use in combination with an electronic purse, which is 'topped up' using contact-based bank terminals, benefits the user by allowing him/her to pay for tickets quickly and conveniently, without cash, and to make bookings or reservations. Further applications for the new Combi-Chip include customer identity cards and city cards. The new Combi-Chip combines three main elements; the Siemens SLE44 family security controller core for contact-based data exchange, the interface for contactless data transmission based on MIFARE™ technology, plus a 4-kbyte EEPROM with security logic, featuring access facilities both from the contactless side and the controller.

Siemens AG, PO. Box 80, D-81617 Munich, Germany

FOR SALE Ex hobbyist’s tools, oscilloscope, transformers, many components. Phone Rze Kozary on (01268) 454183.

FOR SALE Schwarz LARU BN6100 inductance WANTED Manual for Rohde & Schwarz.

Details. Phone Paul on (01942) 706769.

FOR SALE Ex hobbyist’s tools, meter (transistor version). P Redway - applications in the field these cards will be used in

FOR SALE Powered subwoofer system. W. Allen, 47 Wavertey, Bracknell, Berks RG12 141-22, Greece.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

WANTED Printer Buffer; stand alone

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Barco large-screen video projector, believed complete but offered 'as seen'. £250. T. Wiltshire, Reading (0118) 9701 163.

FOR SALE Barco large-screen video projector, believed complete but offered 'as seen'. £250. T. Wiltshire, Reading (0118) 9701 163.

WANTED Converter or kit to use USA TV set for UK reception or use of a CCD camera monitor. Can anyone help? T. Tasker, Setby House, Skillington, Grantham, Lincs NG33 5HF. Tel. (01476) 860421.

FOR SALE Tektronix 7904 oscilloscope. 2x dual trace amps. delaying timebase & logic analyzer with manuals. £250. Tel. (01484) 338599, Mr. G. Morgan.

FOR SALE Tektronix 7904 oscilloscope. 2x dual trace amps. delaying timebase & logic analyzer with manuals. £250. Tel. (01484) 338599, Mr. G. Morgan.

FOR SALE Teletronix 7004 oscilloscope; 2x dual trace amps. delaying timebase & logic analyzer with manuals. £250. Tel. (01484) 338599, Mr. G. Morgan.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.

FOR SALE Eprom programmer, GP 240VAC, 0F/P DC ±5V (X2). ±12V, ±5V (power fail). £5 each. Phone Paul on (01942) 706769.
Digital Audio Broadcasting (DAB)

Digital Audio Broadcasting has already started in Canada, the USA and Japan, but is still a (relative) novelty in Europe. DAB, consisting of digital transmissions via terrestrial or satellite transmitters, not only offers high quality sound (similar to that from CDs), but also enables other data, such as traffic information, to be transmitted. The article will discuss the new technology from a European point of view.

Benchtop Power Supply

Admittedly, it's been some time since we last published a simple, robust power supply for the home workshop. The one we have in mind for the March 1998 issue is built from discrete components, and has an output voltage range of 0 to 24 V. The maximum output current depends on the components used, and is either 1 A or 2 A. The supply is short-circuit proof and leaves you the choice of an LCD unit or a pair of moving coil meters for the (optional) voltage/current readout.

Balanced/Unbalanced Converter

The converters described in this article are aimed at audio enthusiasts. Simple to build and based on just one IC, they turn a balanced (symmetrical) audio signal into an unbalanced (asymmetrical) one, and the other way around.

IC Tester

The project which won the International Prize in our 1997 Microprocessor Design Contest has gone through the usual lab testing and PCB design phases, so everyone should now be able to build it from this article scheduled for the March 1998 issue. This IC tester handles most logic ICs from the 74 and 4000 series, and comes with a test vector compiler which allows you to add ICs if necessary.

Index of Advertisers

Advertising Standards Authority 15, Suppl. 9
Ask Electronics 29
B K Electronics 10
Bull Electrical 26, 46
Cambridge Microprocessor Systems - CMS 4
Chelmer Valve 23
Cf Electronics 7
Confidential Communications 23
Crossware Products Suppl. 9
Display Electronics 34
Elektor Electronics 6, 6, 9, 67, 68, 71
Equinox Technologies Inside back cover
Forest Electronic Developments Suppl. 9
Grandata 60-63
Hart Electronic Kits 44
Omas 8
Pineapple Presentations Suppl. 9
Pico Technology 22, 22
Quickroute Systems Inside front cover
Rigel Corporation 5
Smart Communications Outside back cover
Speaker Builder 15
Stewart of Reading 67
Stippler Elektronik Suppl. 8
Suma Designs 47
Telnet 35
Those Engineers 7
Tsien (UK) Ltd Suppl. 16
Ultimate Technology 23, 27, Suppl. 15
Viewcom Electronics 16, 17
VIP Matchmaking 22

ADVERTISING SPACE

For the February 1998 issue may be reserved not later than 10 December 1997 with Elektor Electronics (Publishing) Advertisement Office 3 Crescent Terrace Cheltenham GL50 3PE England Telephone 01242 510 760; Fax 01242 226 626 e-mail: bernardhubbard@msn.com to whom all correspondence, copy instructions and artwork should be addressed.
The Ultimate 8051 Microcontroller Programmer

- Supports Atmel FLASH 89C +89S, Generic 87C51/52/FA/FC microcontroller derivatives
- FLASH & E2 libraries also available as chargeable update

£39.95 Order Code: UISP-V2-SYS

In-System Programming (ISP)

"Now you can program the 8051 or the AVR™ without removing the device from the socket!"

£39.95 Order Code: UISP-V2-SYS

AVR™ Professional Starter System

FEATURES

- Supports Atmel 8051 (AVR)
- RISC microcontroller family
- Supports Parallel Programming mode in ZIF socket
- Supports In-System Programming via ribbon cable (provided)
- Equinox FAST ISP Programming Algorithm
- Equinox Professional Device Programmer
- Equinox AVRTM Assembler
- Equinox AVRTM Basic Lite Compiler (NEW)
- Atmel Databook on CD ROM
- Power Supply
- ISP Ribbon Cable (to target)
- Serial Cable (to host PC)

SYSTEM CONTENTS

- Professional Device Programmer
- Atmel AVRTM Assembler
- AVRTM Basic Lite Compiler (NEW)
- Atmel Databook on CD ROM
- Power Supply
- ISP Ribbon Cable (to target)
- Serial Cable (to host PC)

£199.00 Order Code: AT-89C-2K-ST

Write in BASIC, Run in a FLASH

- Coded BASIC generates tight AVR™ machine code
- Not a Run Time Interpreter, NO code overhead!
- Target speeds comparable with assembler
- Breakable cost barrier for small projects
- Ideal for educational, hobbyist and professional use

£24.95

AVR BASIC

- AVR BASIC Lite only supports the AT90S1200 (512 words code)
- 8K version also available

£49.00 Order Code: SS-89S-ST

Providing the Solutions to Your Problems!

Tel: +44 (0) 1204 491110
Fax: +44 (0) 1204 494883
For product information visit our web site at: www.equinox-tech.com
E-mail: sales@equinox-tech.com
229 Greenmount Lane, Bolton, BL1 5BU UK

Equinox reserves the right to change prices & specifications of any of the above products without prior notice. E&OE. All prices are exclusive of VAT & carriage. AVR™ is a trademark of the Atmel Corporation.
Experts Are Getting Smart...

that's why, at Smart, we have selected only the best products for you

New Windows based Universal Programmer

- For true Windows 3.1x and WIN 95 compatibility
- Programmes devices ranging from 8 pins to over 300 pins
- Supports over 3,000 different ICs – 3 volt and 5 volt variants
- Uses fast approved algorithms
- DOS version also available
- 30 day money-back trial period

Regular price £795.00

SPECIAL INTRODUCTORY PRICE £695.00

PIC Emulator with Real Time Trace

- Supports PIC 12/16/17 Microcontrollers
- Real Time transparent emulation to 33MHz
- 3 and 5 volt support
- Runs under DOS, Win 3.x or WIN 95
- Windows IDE supports your Assembler or Compiler
- External break probe – may be conditional with internal software breakpoints
- 8k by 24 bit real time trace buffer
- Complete system includes emulator, MPASM, software, cables, trace probes, etc...

Complete System from only £583.00

Low Cost Programmers

EMP-10
- Portable
- EPROM, E2PROM and Flash memories to 8 Mbits
- 8051 family including Atmel Flash
- Optional adaptor for serial E2PROM

Only £199.00

EMP-20
- Portable
- Memories to 16Mbits
- 8051's and basic GALs
- Optional family modules for:
 - Serial E2PROMs and PSD's
 - Microcontrollers:
 - Microchip, Zilog, SGS, Intel, Motorola...
 - Programmable Logic:
 - AMD MACH, Xilinx, Altera, Lattice...

Only £350.00

All prices exclude carriage and VAT.

To receive a brochure, register for the introductory offer or if you simply need free advice contact us:
Phone: +44 (0)181 953 9292 • Fax: +44 (0)181 953 9299
E-Mail: Sales@Smartcom.co.uk
Mail: Unit 11 Sterling Industrial Centre, Sterling Way, Borehamwood, Herts, WD6 2BT, England
Web visitors welcome: http://www.Smartcom.co.uk

EMULATORS • SIMULATORS • COMPILERS • ASSEMBLERS • PROGRAMMERS