Easy to build projects for everyone everyday ${ }^{\operatorname{man}}$ electronics

Miper Debay

ALsO INEIDE...
Electronic Stop Clock
Plus... Gareers: Trition

Stirling COST-CONSCIOUS CONSTRUCTORS

STIRLING SOUND policy is to ensure customer satisfaction by designing and making their products jn their own factory in Essex and selling direct. Production control-checked throughout. All QV Modules are compatible within the range and with much other equipment.

PRE-AMP AND CONTROL UNITS UNIT ONE PRE-AMP/CONTROL
Combined pre-amp with active tone-control circuits. 15 dB at 10 kHz treble and 30 Hz bass. Stereo. Vol./batance/treble/bass
200 mV out for 50 mV in. Operates 10.16 V . 200 mV out for 50 mV in. Operates 10.16 V . $\quad £ 7 \cdot 10$ SS100 Aclive tone confrol stereo. \therefore t5dB on bass and on
treble SS101 Pre-amp for ceramic cartridges, radio, tape. Stereo. Passive tone control circuit shown in dala supplied. \quad al

*THE BUILT-IN QV FACTOR

A member of the Bi-Pre-Pak group
220-224 WEST RD., WESTCLIFFE-ON-SEA, ESSEX SS0 9DF
Telephone Southend (0702) 46344
callers welcome

SS102 Stereo pie-amp for low output magnetic P.U.S R.I.A.A. corrected. Linear feedback facilify.
c. $2 \cdot 5$

SPECIAL CAPACITOR KITS

C2to KIf-PC Mounting polyeater 250V 5 of each value: $0.01,0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ of 0.47 , $1 \mu \mathrm{~F}, \mathrm{E1} \cdot \mathrm{ot}$ net
C290 Kit-Tubular polyester, $400 \mathrm{~V}, 5$ of each value $0.01,0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ of $0.47 \mu \mathrm{~F}, £ 2.67$

DIGITAL MULTIMETER KIT'

SPECIAL RESIBTOR KITS (CARBON FILM 5\% (Prices Jnclude post a packing) 10E12 - W or $\$ W$ KIT; 10 of each E12 value, 22 ohmis- 1 M , atot

B. H. COMPONENT FACTORS LTD.

MULTIMETER U4323

22 Ranges plus AFJIF Osciliator $20,000 \Omega / \mathrm{Volt}$. Vdc- $0.5-1000 \mathrm{~V}$ in 7 ranges lac- $-2 \cdot 5-1000 \mathrm{~V}$ in 6 ranges Resistance $-5 \Omega-1 \mathrm{M} \Omega$ in 4 ranges.
Accuracy- 5% of F.S.D.
OSCILLATOR- KHz and
$465 \mathrm{KHz}(\mathrm{A}, \mathrm{M}$.$) at approx. 1$ Volt
Slzo- $100 \times 97 \times 40 \mathrm{~mm}$.
Supplied
Supplied complete with carrying
Case, test leads and battery.
PRICE f.13-M

"DOING IT DIGITALLY"

DIGITAL TEACHING KIT TKI Complete Parts as specifled In October E.E (Including case),
(Deduct £2.73 it case not required)

MULTIMETER U43I3

33 ranges. Knlie edge with mirror acale. Vdc Vac- $1.5-600 \mathrm{~V}$ in 9 ranges. Idc-60- 120 microamps in 2. lde $=0-6-1500 \mathrm{~mA}$ in 6 renges. $\mathrm{lac}-0.6-1500 \mathrm{~mA}$ in 6 ranges. Resistance- db sale -10 to +12 db . 4 ranges. Abscale- 10 to +12 db . Accuracy-dc- 11%, ac- 21%. Complete with carrying tesi leads and battery.
PRICE \&1s.90 net

(E.E.), LEIGHTON

 ELECTRONICS CENTRE59 North Street, Lelghton Buzzard, LU7 7EG. Tei.: Lelghton Buzzard 2310 (Std. Code 05253)

DENCO (CLACTON) LIMITED Dept. E.E.

 357-8-9 OLD RD. CLACTON-ON-SEA ESSEX CO15 3RHOur components are chosen by technical authors and constructors throughout the world for their performance and reliability, every coil being inspected twice plus a final test and near spot-on alignment.
General Catalogue showing fuil product range 32p. Overseas Customers 70p, Air-Mail Post Paid.

U.K. \& OVERSEAS MANU-
 FACTURERS/STOCKISTS ENQUIRIES WELCOME

Australian Readers Please NoteOur Complete Range of Coils are available from Hobipak, Box 224, South Cariton, 3053, Victoria, Australia and Watkin Wynne Pty. Ltd., 32, Faicon Street, CROWS NEST, 2065, AUSTRALIA. P.O. Box 392.

4. STATION INTERCOM

Solve your commualea. Bolve Four commanica.
toon problems with thia 4-Station Trangistor Intercom system (2 master and 8-8tation in robust piastic emblaets for desk or wall mounting. Call/talk/listen from Master to 8 obs and Subs to Master. Ideally sultable for Bubiness, Sar gery, sctools, Honjplata and Office. Operates
on one 9 V battery. On/of swltch. Volume control Complete with 3 connecting wires each 66it. and
other accessorien. P. \& P.85p.

MAINS INTERCOM NEW MODEL Wo batteries-no wires. Just plug in the maian ior inetant two-way, loud and clear communication per pair P. \& P. R5p

Latest Tratisistorised Telephone Amplifer with detached plug-in speaker. Placlng the receiver on to the cradle activates a switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency In office, shop, workshop. Perfect for "conference" calls: leaves the uger's hands iree to make notes, consult ties. No long waiting, baves time with long-distance calls. On/OR1 8witch. volume. Direct tape recording model at $214.96+$ VAT
P . \& P . $75 \mathrm{p}, 10$-day price refund guarantee.

WEST LOMDON DIRECT SUPPLIES EE/2
169 EEHSTHGTON HIGE 8TREET, LONDON, Wg

PRINTED CIRCUIT KIT E4.25*
Make your own printerd clrcults. Contalns etching dleh, 100 ta ins of pc board, itb ferric chloride, dalo pen, drill bit, laminate cutter.
JC12 AMPLIFIER
with ic audlo amp
printod circult \&2.25
DELUXE KIT FOR JC12

Contains exira parts except JC12 needed to complete the amp Including balance, volume bass and treble controls. Mono Ez . 3s. Sterec | \&5 25. |
| :--- |
| JCl |

JCIR POWER KIT
Supplle 25 V 1 Amp c3. as
JCI2 PREAMP KITs
Tyde 1 for mapnetic
Type 1 for magnetic plckups, mics and tunera. Mono \& - se. Stereo ex- M. Type 2 for ceramic o

SINCLAIR IC20
C20 10W +10 W stereo Integrated circult ampfiner kut with free printed circult + data C4. 55.
PZ20 Power supply kit for above es-es.
VP20 Volume, tone-control and preamp kit Et-5s.
JC4 AMPLIFIER
New integrated clrcuit 20 W amplifiar kit complete with chip, printed circuit and data £4'45.
FERRANTI ZN414
fi radio Chip $£ 1-44$. Extra parte and peb for radio 2.45. Case 21. Send sae for free data.

BATTERY ELIMI

5 Transistor hlohly stablilzed power units. Switched 1 to 30 V in 0.1 V teps. Send sae for frae leaflet. 1 Amp kit £.12-45. 2 Amp kit £14-s5. Case c2-95 extra.
RADIO MODEL8
50 mA with press-etud battery connectors.9V es. 45. $6 \mathrm{~V} £ 3 \cdot \mathbf{4 5} .9 \mathrm{~V}+9 \mathrm{~V} £ 5 \cdot 45.6 \mathrm{~V}+6 \mathrm{~V} £ 5 \cdot 45.41 \mathrm{~V}+4 \mathrm{i} \mathrm{V}$ cas.
CASSETTE MAINS UNITS
7 V with 5 pin din plug. 150 mA E3- th_{5}
With switched output and 4 -way multi-jack connector. Type $1: 3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ at 100 mA f3.20 Type 2: $6 / 71 / 9 \mathrm{~V}$ at 150 mA \&s. 36.
FULLY STABILISED MODEL 55 -45*
Switched output of $3 / 6 / 7 \mathrm{I} / 9 \mathrm{~V}$ stabllized at 400 mA
CAR CONVERTERS
Input 12V DC. Output 6/7i/9VDC 1Amp stabllized
BATTERY ELIMINATOR KIT8
Send sae for free leaflet on range.
cemm radio types with probeb-ntud battery itV $£ 2.80 .6 \mathrm{~V}+6 \mathrm{~V}$ \&2. $2 . .9 \mathrm{~V}+9 \mathrm{~V} £ 2 \cdot 20$. fooma cassette type $7 \hat{i} V$ with 5 pin din plug E2.14.
Transistor stabllized t-way type for low hum. $3 / 4 / 6 / 71 / 9 / 12 / 15 / 18 \mathrm{~V}, 100 \mathrm{~mA}$ E3. 5 . 1 Amp \&i 50 Heavy duty 13-way types $41 / 6 / 7 / 8 / 111 / 13 / 14 / 17 /$ 21/25/28/34/42V. 1 Amp model A.4-35. 2 Amp model
\&. 7.95 . C. 7.

Car convertor kit Input 12V DC. Output 8/71/9V fabilized E1.
$0-0-8 V 100 \mathrm{~mA} £ 1.9-0-9 \mathrm{~V} 75 \mathrm{~mA} £ 1$. 18V 1A $£ 1$ - 5 $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 1 \mathrm{~A}$ E4•30. 12-0-12V $50 \mathrm{~mA} £ 1$ $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 2 \mathrm{~A}$ £5.95. 20V 21 A E2. 85.

S-DECS AND T.DECS•
S-DeC £2.21.
H-DeCA E4.45.
4 -DeCB \&7.45.
IC carriert with
sockets:-
£1-s.
SINCLAIR CALCULATORS
AND WATCHES*
Cambrldge Memon E5. 95. Cambridge Scientlfic cifle with free malns unit £19.95 Mains aclenfific with free mains unit $£ 18 \cdot 95$. Mains adaptors Grey Watch with tree stalnles steel bracelot E10-45. White watch E13. 5 .
SINCLAIR PROJECT 80 AUDIO MODULES PZ5 \&4-95. PZ6 £8-70. Z40 55-75. Project 8050 E18. 5
S450 tuner $£ 20.05$ MODULES. 160 PA100 £14. 5 MK60 audlo kit $£ 31 \cdot 85$. Teak 60 £12. S. Stereo 30 £18's5. SPM80 £3'95. BMT $80 £ 3 \cdot 70$. Send sae for
free data. SA1208 £20.50. SA1204 £14. SA 608 £13. SA 604 £12. PM1201/8 £12. PM1202/8 £19. PM1201/4 PM1202/4 £1. PM601/8 \&12 PM601/4

SWANLEY ELECTRONICS Dept E.E. PO BOX 68, 32, GOLDSEL ROAD,

SWANLEY, KENT BR88TQ.
Send sae for free leaflets on all kits. Post 30p on orders under $£ 2 \cdot 23$, otherwlse fiee. Prices Include VAT, Overseas customers deduct 7% on Items marked *, otherwise 11%. Officlal orders welcome.

CONTROL
 DRILI
 SPEEDS

 DRIL CONTROLLER Electronfally changee speed from approxi mately 10 revs to maximum. Full power at speed by fingertip control, KIt Includes all parts, case. 3. 45 includlag poost \& VAT Made up model $81-00$ extra.

MAINS TRANSISTOR PACK
Designed to operate transistor sets and unplifters. Adjustable output $6 \mathrm{v}^{2} ., 9 \mathrm{v} ., 12$ rolts for up to of the rollowing jatteries: PP1, PP3, PP4, PP6, PP7, PP9 and others. Kit comprises: main transformer rectifier, suicothing and load resintor condensers and lnstructions. Real snip at only \$1-50 VAT \& Postage 50p.

RADIO STETHOSCOPE

 Easiest way* to fault fibd, tracen signal from aerial to speaker, whensignal stops you've found the frult. Use it on Radio. TY amplifer, aything. Complote kit
-omprimes swo specisl tranelstors and all parts including probe tube
and crystal earand crystal earpiece, set instead of $\begin{aligned} & \text { earpiece. } \pm 100 \\ & \text { VAT add poatige }\end{aligned}$ incl. add
MICRO SWITCH BARGAINS
Rated at 5 amps 250 volts, deal to niake 4 awitch pant of other applications. of other applications.

MOTORISED DISCO SWITCHES

With slx 10 amp changeover switches. Mult

 djustable switches are rated at 10 nusp each so a total of $2000 \mathrm{w}^{\circ} \mathrm{s}$ can be controlled and this would provide a naagnificent display. For maine H.95 Post d VAT Pald. DITTO BUTT 18 SWITCH 85.75 PORT \& VAT PAID.

AMMETERS
ldeal for chargers etc. $2^{\prime \prime} \mathrm{sa}$. Sull vislot 8 amp 95 p .
aump $55 \mathrm{~m}, 3 \mathrm{mmp} 85 \mathrm{p}$.

MAINS OPERATED SOLENOIDS
Model 772 -small but powerful 11n. pull-approx. aize 11×1 x $14 \mathrm{tm} ., 81.00$
Model 4001

$3 \times 2 t \times 24 \mathrm{n}, 59.50$
Prices include VAT $\&$ postage.

SOUND TO LIGHT UNIT

Add colour or white light to your lamps (maximum 450W). Unit In box all ready to work. 27.95 plus 05 VAT \& Postage

RELAY BARGAIN
Type fi00 relay with twin 500 ohm colls which way be jolned in serles or parailel thus relny will operate of voltages between 5 and 30 volts DC Price 44 p each, 10 for 24 post uad VAT paid.
BATTERY CONDITION TESTER
 uitable for all batterie miade by Ever Ready and others, most of which are zinc carbon types but also mercury mangunese-nicad
-alver oxide nud alkaline - ilver oxide and alkaline The tester puts a dummy vad on the battery and the ineter scale indicates the condition jepending upor which sect win the pulnter rests. The section read complete in its case. size $3 y^{\prime \prime} \times 6 j^{\prime \prime} \times 2^{\prime \prime}$ with lead
and prorl. 84.50 post $\$$ VTT patil.

BATTERY CHARGER
Famous Atlas in metal cas with meter, output lead terminsted by crocodile clips.
For 6 cr 12 V oharging almply by changing plug on fromt by changing plug on front panel. Ready bullt new and

HONEYWELL PUSH BUTTON PANEL MOUNTING MICRO SWITCH

1-2-3 Bank, each Bank sonsisting of the changeover milcro
 olts. Through panel fixing by "tock nuts complete with black diameter knob. Prices:bank 70p.

MULLARD UNILEX

A insinn operated $4+1$ etereo ayntem. Rated one of the finest performers in the atereo feld this In ersy-to-assemble modular form and complete with it puitr of Celestion speakers normally 88 Thls should nell at about e30-but due to spectal bulk buy and as an incentire for you to buy this fuonth wo ofler the syitem complete at only 217 Including VAT and postage.

TANGENTIAL HEATER UNIT

 Thls heater unit is most efficient, and quiet runuing. Is as fitted in Hoover and blower hemters costing $£ 15$ and more. Comprises motor, impelier. 2 KW element and ix wement allowing awitching Can be fitted into any metal fine case or cabidet. Only needs control ewitch. 45.83 plus VAT \& post $\mathrm{\kappa 1}$. 2 kW Model as above 44.25 plas VAT ${ }^{4}$ post ${ }^{75 p}$. Don't miss this. Control Switch 44p.P. $\&$ P. 40 p .
ISA ELECTRICAL PROGRAMMER

Learn in your sleep: Have radlo playing and kettle bolling as you wake-switch on Ughty to ward of intruders-have a warm house to come home to. All these and many other things you can do if you Inrest In an electrleal programmer. Clock by famous maker with 15 amp. on/ol switch. Switch-on time can be set uaywhere to stay on up to 6 hours. Inde-
ory jogger. A beautiful unit. Price $2 \mathrm{P} \cdot 5, \mathrm{~F}, \mathrm{VAT} \&$ Postnge peludent tul himute methory jogger. A beautiful unit.

ROOM THERMOSTAT

Fanllous 8atchwell. elegant deslgn, Intended for wall mounting Wllinuitch up to 20 amps at maina voltage, covers the range $0.90^{\circ} \mathrm{C}$
Bpecial snlp this month 28.50 , poet and VAT pald.

SMITHS CENTRAL HEAT\&NG CONTROLLER Price 57.50 including VAT and postage.
RANDALL CENTRAL HEATING CONTROLLER
Frice 88.80 includjng VAT and postage.

8 POWERFUL BATTERY MOTORS

For molels, Meccano"N, ilrills, remote control

ROTARY PUMP
Belf priming, portable fits dribl or testin pumps up to 200 gnllons per hour depending upon reva. Mirtuady uncorruduble, use wock water, oll, petrol. fertilizer, chenicals, ungthing liquid. Hose
coppectors each end. $\$ 2-00$ Pout Pald.

MAINS RELAYS

Wjth trjple 10 unp changeover contacte-operating coll wound for 230 volte AC, chamsls mounting, one post and VAT paid.
HORSTMANN 24-HOUR TIME SWITCH With 6 position programmer. When fltted to hot water systenas thls could programme as follows:

$$
\begin{gathered}
\text { Programme } \\
0
\end{gathered}
$$

Of
 Twice Day
 All Day

Centrul Heating
Of
Df
Of
Twice Daily
All Dey
Continuouly

suitable, of course, to programme other than central heating aud hut water, for Instance, programine upstairs and downatatrs electric heating or heating and this Programmer, Mains operated. $81 z e \operatorname{3in} \times 3 i n \times 2 i n$ deep. Price 8680.80 D this Programmer, Mains operated. Bize 3 ,
Poat und VAT, as illustrated but less care

SHORTWAVE CRYSTAL SET

Although this unen no battery it gives really amazing results. You will recelve an amazing assortment of otations nver the $19,25,31,29$ metre band. Kit containa chawadr frunt panel and all the parts $31 \cdot 90$-crystal earphour 55p inefuding VAT and postage.

PAPST MOTOR

West German make, these fine motors are noted for their rerforinance and relinbility. Special features are the rotating heavy outer which acts as a fly
Hutter and switchabie reversiog.
We have four types in stock, all 1350 revs, inciuding starting
Her capacitor.

(1) Keferesce No. KLZ $20.50-4,230$ volte 50 Hz , price $25-50$
(2) Reference No. $\mathrm{KLZ} 32.60-4,230$ volta 50 HZ , price $\$ 6-50$
(3) Reference same us above, 115 rolte 80 HZ , price 88.50
(4) Reterence same as above, 110 volt 60 Hz , price $\$ 2-50$

CENTRIFUGAL BLOWER
Minlature mains driven blower centrifugal type
blower unit by woods. Powerful but specially built for quick running-driven by cusbloned induction motor with specially built low noine bearings. Overall size $41^{\prime \prime} \times 4 t^{\prime \prime} \times 4^{\prime \prime}$. When mounted by flange, rir is blown into the equipnient, but to suck it out, mount trom centre using clamp. Idenl for cooling electrical
equipment or fitting into a cooker hood, film drying, equipment or fteing into a cooker hood, fint drying, cabinet or for removing fux smoke when soider
etc. A reml bargain at $\$ 3 \cdot 30$. Bop pust $\&$ VAT.

TER218: Whors order ta under 26 plase add 50 p sarcharge to of net paoldar expensel

J. BULL (ELECTRICAL) LTD.
 (Dept. E.E.), 103 TAMWORTH ROAD, CROYDON CR9 ISG.

ITS FREE!

Our monthly Advance. Adyortieing Bargains List givas datalis of bargine which sull out bafore our advertisement can mppear-lts an interesting llst and its free-just sand S.A.E. Balow are a fow of the Bargeins still available from provious lists.
ARE WE GONG TO RAYE A EARD WITREBP We have already had sons cold spelis and by he law of averages a cold winter in due, so we take this opportunity to give you brief detaila of he heater and elementa which wo have avallabie. Trbolar Eeators, 12tt. 720 watter nominal foading made by C.E.C., deas for greenhouses, store heds and other places where 4 low level of heating spretul over n long distinnce in required. These are green enameiled tubes $3^{\prime \prime}$ dia. approx. The element runs ing fow through them and the not to burn you if you touch them, ilrollarly they will not scorch paper or ras wo wre not a Are riak even though curtating, etc., may touch. They are supplied complete with mounting brackets. Price $85 \cdot 50+44$ esch. Carrtage $22 \cdot 60+20$ ench Heating Rods, contour following, mineral nlled metal clad, very plable. 2000w approx. nt 240 v Toun element length 6 ft., supplied in the torn. of a double \mathbb{C}, but thls in compietely mouldable abd may be suralghtened or bent to at alanost any to replace the element in un old convector, or to wrap around a pipe or cyllinder or hang over the side luto a tank, and genernlly to fit into piaces where strulght elenients will not go. Bend
it as you put it la. Price $81.65+13 \mathrm{p}$. Post
 Post $50 \mathrm{p}+4 \mathrm{p}$. Inta $\cdot \mathrm{TV}^{\prime}$. hampe. Ideni for convector or back heat Into 'ry' shupe. Ideni for convector or
radiator. $\mathbf{~ 1 1} \cdot 60+12 \mathrm{p}$. Poet $75 \mathrm{p}+6 \mathrm{p}$.
80w Tubralar Elements, brass-encased with bemded flex ends. Standurd replacement in mozens of other uses. Price $85 \mathrm{p}+7 \mathrm{p}$. Post 20 p +2 p . holder and terry cllpa for aecuring tube. Internally mirrored. suitable for spit cooking or for genera use or also useful under benches to prevent
cold feet und legs. Price $33.30+26$. Post el
1000 F
Fine spiral, replacement in muany fires Also useful for dozene of other applications where Nichrome resistance
 Kettle, this mueasures $0^{\prime \prime}$ long, $2 \mathbf{t}^{\prime \prime}$ "wide nnd t about $i^{\prime \prime}$ thick-very useful for contuct heating. Price $50 \mathrm{p}+4 \mathrm{p}$. Poet $10 \mathrm{p}+1 \mathrm{p}$.
$4 \times 1 \mathrm{EW}$ Element Bink, a versmille bank of heaters. Relatively siluple switching gives 8 heat outputs ranging from 250 w to 4000 w . The $4 \times$ Iron plate. The heat part is through an an square iron plate. The heat part is atmaneral Allied nicke Contuct is male by standard push on tag. Price e2-20 $+18 p$. Post $21+8 p$.
Roplacement Elemente, this is the old type 1 KW splral wire in ciay refructory, bowed and olze mpprox. $11^{\prime \prime}$ long and $3^{\prime \prime}$ wide. 8tandard replace mient in many oid type radlant heat ares. Price $1205+16 \mathrm{p}$. Post $40 \mathrm{p}+3 \mathrm{p}$.
400 m Wire sptrala in clay retructories, held in metal jucket, overall alze $18^{*} \times \mathrm{K}^{*}$. 1 'robubly replacement for some old type Jackson cookers. Price $81.25+16 \mathrm{p}$ Pot $400+3 p$.
Flexible hest; you have probably from time to time wanted to warin something by actually oow for we have in stock dexible eleneats com prising glanafibre tape nppror. in wide, approx $1 / 16^{\prime \prime}$ thick, 18 ft . long. The element is embedded Into this, and fully insulated from the outedde. The ends can be tuken directly into : 13 , mmp plug or plastic junction box which we can aupply at $30 \mathrm{p}+2 \mathrm{p}$ extra. These ure rated at 100 wath but you can reduce thls is you wish by Jointing Post $35 \mathrm{p}+3 \mathrm{p}$.
Cookar Elements, belleve originully for the Baby $1350 \mathrm{w} .230-240 \mathrm{v}$. Price $90 \mathrm{p}+7 \mathrm{p}$. Pout $40 \mathrm{p}+8 \mathrm{p}$ Cooler Bings, radiant type ne atted to Tricity and airnilar cookers, 2000 w . Ring aize $8 \mathrm{f}^{\prime \prime}$, Price Wi. $85+15 \mathrm{p}$. Pont $40 \mathrm{p}+3 \mathrm{p}$.
Waterprool heathy aloment. This is blanket wire but other umea include, winding round Water plpes to prevent ireezlag, under weed boxes to asilat germination, In gloves or boot 30 watt at 230 v ., hum self-regulnting vempermture control. Price $750+8 \mathrm{p}$. Poet $10 \mathrm{p}+1 \mathrm{p}$. AI/IT Tuner with scmle alow motion drive and pointer, Japanese mude, six transistor, AN frequency $880-1600 \mathrm{KHZ}$, size approximately $5^{51.25} \times 5^{\prime \prime}$ for 12 volt operation. Price 110.25 21.25. Poet 400 .

FI Tuner with nice clear scale and pointer, 8 M drive six transintor 12 volt operation. Pric Decodar designed
Docodar designed for use with FM tuner but also 12 volto, price $98.50+81$. Pont 40 p unles oruered with the nbove tuner.
Equaliear for amplitying the outpat of magnetic cartridges tape hend. low output hulcrophones etc. Eived $2 \cdot 6 \mathrm{y}$ output with 30 mv Input. Price
$\mathrm{c}+25 \rho$. Stereo Equalieer similar to the mbove but with two separate inputs and outputs. Price st.50 +58 p .

NO LICENSE EXAMS NEEDED

To operate this miniature, solid

 state Transmitter-Receiver Kit. Only £8-25 plus 20p P\&P.'Brain-Freeze' 'em with a MINI. STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $£ 3 \cdot 80$ plus 20 P P\&P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multifunction modules. $£ 5 \cdot 00$ each plus 20 p P\&P.
LOTS MORE! Send 20p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh Ewell, Surrey. (E.E.)
COPPER CLAD PC BOARDS $5 t^{\prime \prime} \times 5 t^{\prime \prime}$
 slugged colts, 3 silde switches $11{ }^{2} \mathrm{WWC128}$ pots. ${ }^{3}$. 3 Carbon prosets, 2 ferrite chokes etc $£ 1$. (50p) NEONS 20HP (20D)
C 2H P OLYESTER CAPS 100-E1 (15p)
THREE TRANSISTOR AUDIO
THREE TRANSISTOR AUDIO AMPS

J. W.B. RADIO
2 Earnhoid Crozeent, sale Cheshire M33 iNL

ZNIOGOE \& Digit Count/Display IC. 1040E(R) Unmarked reject of above counts Olsplayedresets OK
 7489 of blt read/write memory fully func-tlonal-speed fallures DL707 litranics CA 7
 O44 BCD 7 SEG Decod Diaplay 744 BCD -7 SEG D Soldercon plns $/ 100$
 Soldercon pins 1100
 Data sheels 10p each SAE (Mall order only) GJD Electronics, Ies Harper fold Road,

Enamelled Copper Wire 32 to 38 swg ip it. Plug-in Relays 12 V OC dp c/o ssp. Basas 14 p . itp ea. BC107/8/0, BC147/8/8 isp ea. OC71/81 2p ea. Large Red LEDS 20p, for $\mathrm{K1}$. OOV Neons ${ }^{8 p}$. Croc Cilps Red/Black 7p, Siren 6V DC E1.23. Maina Relay DP c/o sep. Small Reed Switch tep. Magnatis Bp, Realistors IW $10 \Omega-10 \mathrm{M}$ 2p ea.

Include VAT. Add 45D Post.
GRIMSBY ELECTRONICS
Pots Tennyson Red., Clestharpee, Humberside. Pots, Veroboard etc. at our Lambert Road Com-
Donents Shop (opan Saturdays) Bargain ponente Shop (open Saturday) Bargaine List ep

SERVICE SHEETS

BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. 75p plus SAE, Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road Harrogate, N. Yorkshire. Tel: 042355885.

SERVICE SHEETS, Radio, TV etc. $50 p$ and SAE. Catalogue 200 and SAE. Hamilton Radio, 47 Bohemía Road, St. Leonards, Sussex.

SMALL ADS
The prepaid rate for classified advertisements is 14 pence per word (minimum 12 words), box number 40p extra. Semi-display setting $£ 9.00$ per single column inch (2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-2615918).

BOOKS and PUBLICATIONS

Start your own business printing pound notes

Printing pound notes? Well not quito-but "Stert your own buainees rewinding electrle motore ${ }^{\text {" }}$ could easily be your ileence to make money in 1876.

Lavishly Hisulrated, this unique Instruction manual shows step by atep how to rewind motors, working part of full time, without experience. Everything you need to know easilly explained, including where to obtain materlalis, how to get all the work you need, elc. etc.
A goldmine of information and knowledge. Only EJ - plut 26 p P \& P from:
mAgnum publications, Dept Eis, Brinksway Trading Estate, Brinkeway, Brinkway SK3 ©BZ.

EDUCATIONAL

COURSES - RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your G8 Licence, with an RRC Home Study Course. For details of this, and other Courses (GCE, Professional Examinations etc.), write or phone:Dept. JRI Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for a prospectus only ring $01-9461102$ (24 hr recording service).
HOLIDAYS FOR BOYS-14-16 years, July/August 1977. Tuition and practical work in Electronics, Radio Production and Tape Recordings, Engineering (Karting) and Photography. 10 Days in Norfolk. $£ 30$. Write for free brochure INTERSCHOOL CHRISTIAN FELLOWSEIP, c/o Ashcroft, Old Bolingbroke, Spilsby, Lincolnshire.

FOR SALE

NEW ISSUES OF 'EVERYDAY ELECTRONICS' available from April 1974 up to date, cover price plus 15p postage per copy-BELL's TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

WANTED

TEACH-IN circuit deck, kit or assembled. Colburn, 53 Twelve Acre, Farnborough, Hants.

MISCELLANEOUS

STYLI. CARTRIDGES \& AUDIO LEADS ETC. For the best at keenest prices send SAE for free illustrated fist to: FELSTEAD ELECTRONICS, (EE), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

CONDITONS OF ACCEPTANCE OF CLASSIFED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement. 3. Although every care is taken, the Publishers shall not be llable for clerical or printers' errors or their consequences.

GLA88 FIBRE P.C.B.'
From your own tape flim or Ink master.
Send S.A.E. for quotalion.
EVERYDAY ELECTRONICE P.C.E.'e in glase fibre tinned and drliled. Dec. ${ }^{\circ} 78$. Minl organ siz $4{ }^{4}$.
PRACTICAL ELECTRONIC8 P.C.B.'e
Send S.A.E. for Itst. C.W.O. please.
PROTO DESIGN, 4 Highclifi Way, Wickiond, ERacx \$8II ILA.

NEW!
From H.M. ELECTRONICS A BASIC D.I.Y. CASE

* One piece aluminium chassis
* Whitewood Ply end cheeks, that can be painted, stained, etc. * Simulated black leathergrain lid.

RECHARGEABLE NICAD BATTERIES
 (HP11)-£2.38. 'D' (HP2)-£2.92. PP3£4.98. Matching chargers, respectively, £4:48, $24 \cdot 48$, $24,25 \cdot 24,23 \cdot 98$. A prices include VAT add 10% Post Package. SAE for full list, 1 plus, if wanted, 50 p for 'Nickel Cadmium Power' Booklet. Sandwell Plant Ltd. 1 Denholm Road, Sutton Coldfield West Midlands B73 6PP. Tel. 021354 9764.

MAGENTA
 electronics Itd.
 EE1, 61 Newton Leys, Burton on Trent, Staffs. DE15 0DW

COMPONENTS \& HARDWARE

LATEST CATALOGUE contains NEW PRODUCTS
(S.A.E, for new products sheet only).

25p VOUCHER INCLUDED.
Send for your copy now-25p.

BUILD THESE PROJECTS!

EXPERIMENTERS' POWER SUPPLY.
TRANSISTOR TESTER.
TEST METER RANGE EXTENDER.
Circults \& detalls-send 20p per Hem-refunded when all parts are ordered. Or send sae for further Information.

Careers and Hobbies in Electronics.

Enrol in the BNR \& E School and you'Il have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

BOOKS

 Electronics Enthusiasts

[^0]
COMING SOON-Begin-

 ner's Guide to Radio8th Edition - Gordon J. King. Completely updated and rewritten it surveys the whole field of radio.Summer 77. 260 pages

SPECIAL SERIES FEATURE

CMaster Books

Authoritative yet easily understood by those with no technical knowledge whatsoever, the texts are supplemented by many highly informative illustrations. Each book is written by an expert in his own special field.

MASTER ELECTRONICS IN MUSIC

T.D. Towers

Contents: Creating Musical Sounds by Electricity. Making Musical Instruments Louder. Musical Special Effects by Electronics. Electronic Keyboard Instruments. Electric Guitars. Magnetic Tape Music. The Robot Drummer. Music Synthesisers. Music by Computer. Index.
130 pages. £2.50

MASTER HI-FI INSTALLATION

Gordon J. King
Contents: How it Works. The Amplifier. Programme Signal Sources. Importance of a Good F.M. Signal. The Loudspeaker. Mono, Stereo \& Quadrophonic Sound. Fourchannei Techniques. Room Effects. Best Use of Controls. Terminology. Index.
150 pages. $£ 2.50$
MASTER STEREO CASSETTE RECORDING
I.R. Sinclair

Contents: Stereo Systems. Signal Sources. Controls and Facilities. Making the Recording. Replaying and Monitoring. Essential Maintenance. Aids to Better Recording. Noise Reduction Systems. Cassette Recorder and Hi-Fi. 140 pages. $£ 2.50$

STANDARD WORKS

FOUNDATIONS OF WIRELESS AND ELECTRONICS 9th Edition. M.G. Scroggie. 552 pages. $£ 3.75$
RADIO VALVE AND SEMICONDUCTOR DATA 10th Edition. A.M. Ball. 240 pages. $£ 2.00$

Technician Student Apprenticeships in Electronics and Engineering

If you are leaving school in 1977 and are interested in starting a worthwhile career, we can provide you with the, training and education to fulfill your ambitions.
We are one of Britain's major electronics companies whose products include communication systems, TV cameras, telephone switching systems and mobile radio equipment.
Apprentices will study for the new Technicians Education Certificate or various degree courses. All training is undertaken at Chelmsford in Essex and accommodation is available during the first year of the apprenticeships.
Please write for details, quoting type of apprenticeship, to: MrJ. A. Poole, Chief Training Officer, Marconi Commiunication Systems Lid., New Street, Chelmsford, Essex CMI IPL

An Audio Signal Generator for only $£ 14.95$!

STAR FEATURES:

- $15 \mathrm{~Hz}-150 \mathrm{KHz}$
- Sine/Square Wave Output Variable $0-3 V$ PkPk
- Very Low Current Consumption, 9V Btty
- One IC Plus 4 Transistor Circuit
- Smart ABS Case, drilled and screen printed
- KIT includes all Components, Drilled PCB, Controls, etc.
- Unbeatable Value:

KIT ONLY £14.95p (pp70p)
READY BUILT $£ 19.70$ (pp 70p)
CWO To/
WELLTEX MFG. CO. 9 SIRDAR STRAND, GRAVESEND DA12 4LP
(C.O.D. orders accepted)

RETURN OF POST MAIL-ORDER SERVICE
R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE CHASSIS
 Four Inputa. Four way mizink, master volume, troble and amplifer chasis la iuitable for all proups, disco, P.A., where tigh quality power is required. 5 spesirer ontputs. A/C mains operated. Slave output. Produced by demand for a auslity vive amplifer, sead for detalla 8 altable carrylag cabinet $£ 14$. Price $\mathbf{E 8 5}$ carr, $£ 2.50$

ANOTHER R.C.S. BARGAIN !
 ELAC $9+5 i n$. HI-FI SPEAKER TYPE 59RM This famoun unit now availabio, 10 watts, 8 obm. Price $£ 3 \cdot \mathbf{2 5}$ Pot 400

10in round 65.50.

8" ELAC HI-FI SPEAKER

Dual cone plasticised roll surround, Large ceramic marnet. 35 cps. $8{ }^{50-18,000}$ ohm resonance $\begin{array}{ll}10 \text { wati, } \\ \text { Post } 40 . & £ 4.45\end{array}$

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A", $20 \times 13 \times 12 i n$,
 Illastrated
MODEL "B".
For $13 \times$ \&in. or $£ 7 \cdot 50 \quad \begin{aligned} & \text { Post } \\ & 75 \mathrm{p}\end{aligned}$ R.C.S. ROSEWOOD

SPEAKERS
Size 12 lin. 50 最 5 inin.
Response 50 to 14.000 cps
watts rms 3 or 8 or 16 ohms.
fl2 pair ${ }_{750}^{\text {Post }}$
loudspeaker cabinet

LOODSPEAKER CABINET
GOODMANS CONE TWEETER 34 in . dimm. 18.000 C.P.S. 25 WATTS $8 \Omega \quad € 3 \cdot 25$
8 inch wooter 15 watts 86.75 .
bargain 4 channel tranBIISTOR MONO MIXER. Add muales! bighlightr and sound Merophone, records, tape and funer with ioparato confrole into ungile output. of volt
battery opersted.
≤ 5.75 stereo version of above ef. 50 .

BARGAIN 3 WATT AMPLIEIER. 4 Transistor
Push-Pull Resdy built with volume, treble and $\mathbf{~} \mathbf{~ 3 . 9 5}$ bent controls. 18 volt battery operated. Mains Supply $\mathbf{8 2 . 9 5}$.

THE "INSTANT" BOLK TAPE
ERABER \& HEAD DEMAGNETISER aitable lor cassettes, and all sizes
tape reols. A.C. msins $200 / 240 \mathrm{~V}$. Lestiet S.A.E
€4. 25

WAFER HEATING ELEMENTS

OFFERING 1001 USES for every type of heating and diying applicationa in the home, karage, greenhouse, factory (available in manufacturing quantities), Approz.
 250 watt appros. Printed circait olement enclosed in providing safo Black beat. British-made for use in photocopiors and print drying equipment.
Idaal for home bandymen and experimenters. Suitable for Hoating Pbds. Food Warmers, Convector Heaters, ete. Munt be clamped between two sheets of metal or asbestos. otc.. to make sfficient clothes dryers, towel rails - ideal for aring cupboards. Idesi for anti-Irost device for the garage Droventine rozen radistors or acting as oil sump hester. Use in rreenhouse for seed rsising and plant protection. he usert in aid lor bird houses, incubators, etc., etc. Can beat applications. ONLY 40p

ALL POST PAID - Discounts for guantity.
 JOR 12" 14.95 $30-14.500 \mathrm{c} / \mathrm{g}, 12 \mathrm{in}$. domble cone, woofer and tweetor con ogetber with BAKER coramic magnet assembly baving a fing density of 14,000 gauas and a total Eur of 145,000 Maxwelle. Bass $\begin{array}{llll}\text { resonsace } & 40 & \text { c/s rated } & 25 \\ \text { watts. NOTE: } & 3 & \text { or } 8 & \text { or }\end{array}$ 15 ohmi must be atated.

Module kit. $30-17.000 \mathrm{c} / \mathrm{s}$ fith tweeter, crossover, bam

Please etate 3 or 8 or 15 ohms. Post 91.80

BAKER SPEAKERS "BIG SOUND"

Robustly constructed to niand up to
long periods of slectronic power.
As used by leading groups.
Jaselul rosponse 30-13.000 CDs Bani resonance $\$ 5 \mathrm{cpa}$
GROUP 25^{*}
2 in 30 watt
. or 15 ohm

£11.95

Postil
GROUP " 35 "
3.8 or 15 ohma
£ 13.95
Port ε_{1} Group "50012" $£ 20.95$ 12 in 60 watt professional model. 8 ohms or 15 obms. Post $£ 1$ - 80 GROUP " $50 / 15$ " $15 i n 75$ watt $£ 24.95$ post $£ 1 \cdot 80$

BAKER 150 WATT
QUALITY
TRANSISTOR MIXER/AMPLIFIER
Prolessional amplifier using advanced circuit design. Ideal or digco. aroups, P.A. or musical instruments. 4 inputs 4 way mizing. Master treble, bass and volume controls. 3 speaker output sockets to suit rarious combinations of perkers. 4 to 18 ohm. Slave output. A/C mains. Guaranteed. Detain S.A.E. 150w SLAVE $£ 60$
Latest 50 watt Model $£ 49$
100 WATT DISCO AMPLIFIER CHASSIS MADE BY JENMINGS MDSICAL INSTROMENTS $\quad 652$

B.S.R. SINGLE PLAYER DECK

3 speed. Plass all size records. Stereo Cartridige. $£ 13.50$
Cueine. Ideal Disco Decek
QUALITY LOUDSPEAKER

ENCLOSURE

Teak veneered IIn thick wood cabinet.
Size 18 in $\times 18$ in 8 ina. Weight 3lb. This cabinet features a wide compartment for mounting Tweeters or Mid-Range Horn. The fully gealed or mid-Renge Eorn. The iully sealed
$8 \frac{1 n}{}$. Woofer $£ 5.95$, Rosewood Version $£ 8 \cdot 95$, Carr. $£ 160$ Bafile could be cut for larger speaker.
P.W. SOUND TO LIGHT DISPLAY Complate kit of parta with R.C.S. printed circuit. Three channels. 600 to 1,000 watts each. As featured in Practical Wireless. Price $\mathbf{1 2 . 5 0}$
Cabinet extra \&3.
8 inch PHILIPS LOUDSPEAKER
4 ohm. $\$$ watt. ceramic magnet
£ 1.95
General purpose replacement uni
MAINS TRANSFORMERS ${ }^{\text {Post }} 5$

30 VOLT 5AMP. AND 34 VOLT 2AMP C.T. £3.45 20 VOLT AMP. £1-75 1 AMP, $22-00$ AMP. £2. 20 40 VOLT 2 AMP. $£ 2 \cdot 95$. $0-20-40-80$ VOLT 1 AMP. £3-50 E.M.I. TAPE MOTOR
 meter. 75 v . Fersion \&1
E.M.I. GRAM MOTOR

240 V a.c. 2.400 rpm
2-pole. Size $2 \vdots 2!$ nn.
Collaro kram motor 120 v .75 p.

61.85 Post 450
£1. 25
Post 35 D

BAKER DISCO SPEAKERS HIGH QUALITY-BRITISH MADE
$2 \times 12^{\prime \prime}$ CABINETS
Tor Disco or PA all fitted with carrying handlen and coraera.
Black finish. Oiber cabinets in stock. SAE For loaflet

$1 \times 15^{\prime \prime}+1 \times 12^{\prime \prime} 100$ WATT CABINET Size $36^{\prime \prime} \times 24^{\prime \prime} \times 15^{\prime \prime} £ 75 \cdot 00$. Carr. $£ 5$ Ideal for Disco, Ogran or PA work. High quality.

Full range.

"SUPERB HI-FI"

I2in 25 watts A bigh quality loudspeaker. its remarksble low cone resonance ensures clear reproduction of the deopent asss. Fitted with a special copper drive and concentric
weeter cone resulting in full weeter cone resulting in lul remarkable efflelency in the upper rexister.
Base Resomence 25 cps FluzDensity $\quad 16,500$ gaus Uselul response $20-17,000 \mathrm{cp}$ 8 or 15 ohems models

E21.95 POst EP .60
 "AUDITORIUM"

I2in. 35 watts full range reproducer for high power. Electric Guitars, gablic eddress. multi-speake yatems, electric organs dea! for $\mathrm{Hi}-\mathrm{Fi}$ and
biacotheques.
 Osplul response $\quad 25-16,000 \mathrm{cps}$ 8 or 15 ohms models.

$£ 20.95$ pon

"AUDITORIUM"

I5in. 45 watts
A high wattage loudspeaker erceptional quality with lovel response to above 8.000 cps . Ideal for Public Address, Discotheques, Elec ronic instruments and the bome $\mathrm{Hi}-\mathrm{Fi}$.
Bass-Resonance 35 cps Flur Density $\quad 15,000 \mathrm{ga}$ us or 15 response $20-14,000 \mathrm{cpa}$

$$
10
$$

$£ 24.95$
Post
$£ 1.60$

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR

Shop: 284, London Road, Westcliff-on-Sea, Essex (Closed on Monday) Telephone: Southend (O7O2) 47379

Uniquefull-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8-digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\% VAT, P\&P). And for that, you get not only a highcalibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a \% key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory. All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch inits normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys...
2. and hold it to the right to use the functions to the right above the keys. The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.

Contents
Case and display window.
Strap.
Printed circuit board. Switches.
Special direct-drive chip
(no interface chip needed).
Display.
Batteries.
Everything is packaged in a neat plastic box, and is accompanied by fultinstructions.
The only thing you need is a fine-point soldering iron.
All components are fully guaranteed, and any which are damaged during assembly will be replaced free.
The wrist-calculator kit is available only direct from Sinclair Instrument. Take advantage of this $\mathbf{1 0}$-day moneyback undertaking.
Send the coupon today.

To: Sinclair Instrument Ltd,
6 Kings Parade, Cambridge, Cambs., CB2 1SN.

- Please send me ... (qty) Sinclair Instrument wrist-calculator kits at $£ 9.95$ plus 80 p VAT plus 25 p P\&P (Totat $£ 11$).
- I enclose cheque/PO/money order for E.....................
- Complete as applicable.

Name \qquad
Address

(Please print)

I understand that you will refund my money in full if I return the kit undamaged within 10 days of receipt.

Incredible Value in Precision Test Meters avallable from selected stockists, write or phone for list
 MICROTEST $\mathbf{8 0}$-I.C.E $\mathbf{2 0 , 0 0 0} \mathbf{O h m s} /$ Volt 40 RANGES
 $20,000 \mathrm{Ohms} / \mathrm{Volt}$, (d.c.) $4,000 \mathrm{Ohms} / \mathrm{Volt}$ (a.c.) 2% accuracy, V d.c. 100 mV to 1 kV (6 Ranges). I d.c. $50 \mu \mathrm{~A}$ to 5 A (6 Ranges). V a.c. $1-5 \mathrm{~V}$ to 1 kV (5 Ranges) I a.c. $250 \mu \mathrm{~A}$ to $2 \cdot 5 \mathrm{~A}$ (5 Ranges). Resistance, Low Ohms; Ohms $\times 1$, Ohms $\times 10$, Ohms $\times 100$. Output Level Measurements $1 \cdot 5 \mathrm{~V}$ to 1000 V (5 Ranges) +6 dB to +62 dB (5 Ranges). Capacitance $25 \mu \mathrm{~F}$ to $25,000 \mu \mathrm{~F}$ (4 Ranges). 1000 times overload protection (on Resistance ranges). Meter movement diode protection. Size (without case) $90 \times$ $70 \times 18 \mathrm{~mm}$. Automatic zero, non-parallax mirror scale. Unbreakable carrying case and probes supplied. Full After Sales Service available. Price $£ 15,66$ inc. VAT a comprehensive range of accessories: shunts, transformers, specialised probes, transistor-tester etc. I.C.E. High-Voltage d.c. Probe, Model 18. Input Impedance: 500 M Ohm, nominal (Other values available to order). The Model 18 d.c. Probe consists of a highly insulated moulded ic body, fitted with a hand guard-ring, containing a stable, precision 500 M Ohm resistor, which may be used to extend the d.c. voltage measuring capability of analogue multi-neters or electronic voltmeters, to a maximum value of 25 kV . The probe is fitted with a prod-tip for connection to the valtage source to be measured and a connecting ead terminating in a 2 mm plug for insercoltage input socket. (4 mm plug available to order). 26.42 inc. VAT

A. Marshall (London) Lid Dept: EE

40-42 Cricklewood Broadway London NW2 3ET Tel:01-4520161/2 Telex:21492 \& 85 West Regent St Glasgow G2 2QD Tel: 041-332 4133
\& 1 Straits Parade Fishponds Bristol BS16 2LX Tel: 0272-654201/2
\& 27 Rue Danton Issy Les Moulineaux Paris 92
168 page Catalogue price 55 p
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat (40p to callers)
Trade and export enquiries welcome
Please enqulre for types not Ilsted

GUTH 500 NEW LINES-ONLY 55p POST PAID OR 40p TO CALLERS.

POPULAR SEMICONDUCTORS

Bring 'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing:

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

TBulld an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscapel This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand circult diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and count less other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Perhaps we can help you turn that old wish into reality

As all electronics constructors know, one of the secrets of happiness is to spend leisure time on work that is both interesting and constructive. Unfortunately, one's enjoyment of the hobby is soon spoilt if you can't obtain the right components. That's where Home Radio Components come in, and if you're a regular reader of

these advertisements you'll know exactly what we three 'typical customers' recommend. Here it is-the first step is to invest in a Home Radio Components catalogue. This will enable you to locate quickly and easily the parts you need for the project you have in mind. Then, to buy the components you have a choice of three methods. 1, You can visit Home Radio's shop in Mitcham, above Tesco's almost opposite Mitcham Baths. 2, You can send a cheque or P.O. for the items you need, in the normal Mail Order way. 3, You can join Home Radio's Credit Schame and settle your account monthly. Fuil details of this popular scheme are given in the catalogue.
Whichever method you use, you will enjoy the prompt; personal service Home Radio Components always strive to give. So, back to the first step, send off the coupon with $£ 1 \cdot 40$ for your copy of the catalogue-it's a superb production!

YES SIR Ist class post TONIGMT! We specialise in high spec components with express service for phone customers

ORCHARD ELECTRONICS
 FLIT HOUSE, HIGH STREET, WALLINGFORD, OXON, OXIO ODE Tejephone 0491 3.529.
$\square \square$
밈
$\rightarrow \square \square \square$ "O"d do әnbəys '0申. 17 47!M
NOdNOS SIH1 1 SOd

HOME RADIO (Componemts) LTD. Dept. EE.,. 234 -240 Londm Road. Mitcham.CR4 3HO Phone 01-648 8422

\rightarrow ••・ー

CRESCENT RADIO LTD.

164-166 HIGH ROAD LONDON N22 6Ed
(also) 13 SOUTH MALL, Edmonton, N. 9
MAIL ORDER DEPT. 1 St Michaels Terrace Wood Green London N22 4SJ Phone 8883206 \& MAIL ORDER 888-4474

> POWER PACES

PP1 Bwitched 3_{1} it, $6,7 t, 9$ and 12 Bwitched 3 , $4,6,7$, 9 and 12
volt (a) $800 \mathrm{~m} / \mathrm{a}$, with on/of switch and pllot Heht.
Bize $=130 \mathrm{mmx} \times \mathrm{KB}$ man $\times 75 \mathrm{~mm}$ OILI $=\$ 5.50+8 \%$
CA8sETTE HICROPEOAE
On/Ot switch for Remote Control. Bplit Lead with 2.5 mm sad 3.5 mm pluge, 8tandard Cassette Mics to sult all types. Complete rith Desk Rest. Plesse state whlch Impedance required 2000hm/50K.ohm.

PRICE $81 \cdot 60+12 \% \%$ VAT.

P.O. ETCHIMG EIT

This kit containg all that the constructor will need to etch the clrcuits of him own design.
Contents-Plastic etching dish. Sample copper clad board, Lamplate Cutter. Gpoon. Etch Realat Pen. Fuil Etching Instractlons. Resiat Ped. Full Etching Complete and Big Kit Value at $84 \cdot 25 p$ $+8 \%$ VAT.
FERRIC CRIORIDE eealed one poand Poly packs.
OUR PRICE $-65 p+\mathrm{PP}+8 \%$ per lb .

ABandy boxes fortic Botes Mondy boxes for construction projects. chalded extrusion rails for P.C. or chassis panela. Fitted with 1 mm tront
$1005=105 \mathrm{~mm} \times 73 \mathrm{~mm} \times 45 \mathrm{~mm}=60 \mathrm{p}$ $1006=150 \mathrm{~mm} \times 7 \mathrm{~mm} \times 47 \mathrm{~mm}=80 \mathrm{p}$ $1007=185 \mathrm{~mm} \times 124 \mathrm{~mm} \times 60 \mathrm{~mm}=81.80$ (aloplag troni) Plus 8% Vat "C100" 100 WATT AMPLIFIER All buift and tested, mounted on a plain aluminium chassis whioh messures $18^{\prime \prime} \times 9{ }^{\prime \prime}$ I $4^{\prime \prime}$ and which yon can mount tato a cablnet of your cholce. ume, Treble, Middle and Bass Controls. s/C protected output. 100 watt Clean Into 8 ohm L/B. Ideal for Disco, Muaic Groups. PA and Clubs.
A Bergain at $\mathrm{g}_{42}+21 \mathrm{carr} .+8 \%$ VAT.
T1 MOLTI-IETMR
Ideal tester for everybody interested in electronics. Weighing less than 100 gramumes and only $60 \mathrm{~mm} \times 24 \mathrm{~mm} x$
Ranges: $A C$ volts: $0.10 \mathrm{v}, 50 \mathrm{v}, 250 \mathrm{v}$, $1,000 \mathrm{v}$, DC volts: $0.10 \mathrm{v}, 50 \mathrm{v}, 260 \mathrm{v}$, $1,000 \mathrm{v}$. DC current: $0.1 \mathrm{~m} / \mathrm{s}, 0.100 \mathrm{~m} / \mathrm{a}$. Reshatance.

PRICE A4.75 + VAT 8\%

3E'WATTS PSYCERDELIO LIGHT CONTROL URTT		Manl Lotbspearers
Three Channei Basam,		$24^{*} 80 \mathrm{ohm} 90 \mathrm{p}$) $+121 \%$
Middle, Treble. Each		
channel has its own seasitivity control.		2t' 8 obm 90 g) Vat
Just connect the in.		BARGATH PROJEOT BOX
put of this unlt to		A plastlo box with moulded
the loudspeaker ter-		extruston rails for PC or
minals of an amplifet und	ect three 250 V up to	Chassis panels with metal
3000W lamps to the output	Inals of the unit, and	front plate fitted whin four
you produce a faccinating	d-light diaplay. (All	screws (all supplied).
guaranteed). 48	135p P. \& R. $+8 \%$	OUR PRICE $50 \mathrm{p}+8 \%$
U.K. CARR.	All prices	uding VAT. Please
50p unless otherwise stated	add to each it dicated	the VAT rate in-

BH-PA
 PO BOX 6 WARE HERTS SEMICONDUCTORS

POSTAGE \& PACKING Please add 25p. Overseas add extra for airmail Minimum order

74 SERIES TTL IC's

SALE!
 GREAT WINTER

IC SOCKETS
BPS8 8 pin Order No. $1611{ }^{\text {gp }}$ BPS1414 pin 1612 10p BPS16 18 pin

1612 10p

TRIACS

$$
\begin{array}{ll}
2 A / 400 \\
\text { TO5 } & \text { TR12A/400 50p } \\
\text { 10A/400P } & \text { TR110A/400P 80p } \\
\text { Plasilc } & \text { TR1 }
\end{array}
$$

ZENER PAKS

400 mW
PAK No. Containing $203 \mathrm{~V}-10 \mathrm{~V}$ 2 Containing $2011 \mathrm{~V}-33 \mathrm{~V}$ E1 per PAK ${ }^{-}$
DIACS

CAPACITOR PAKS

1620118 Electrolytics $47 \mu \mathrm{~F}-10 \mu \mathrm{~F}$ 1620218 Electrolytics $10 \mu \mathrm{~F}-100 \mu \mathrm{~F}$ 1620318 Electrolytles $100 \mu \mathrm{~F}-680 \mu \mathrm{~F}$

BUY ONE OF EACH Special Price $£ 1.20^{*}$ the 3

1616024 Ceramic Caps 22 pi-82pf 1616124 Ceramic Caps 100pl-390pf 1616224 Ceramic Caps 470pi-3300pi 1616321 Ceramic Caps 4700pl-0.047uF

BUY ONE OF EACH

Special Price $£ 1.60^{*}$ the 4

RESISTOR PAKS

16213 1/8th $1000 \mathrm{hm}-8200 \mathrm{hm}$
16214 1/8th $9 \mathrm{~K}-82 \mathrm{~K}$
16216 1/81h $10 \mathrm{~K}-82 \mathrm{~K}$
BUY ONE OF EACH
Special Price $£ 1.60^{*}$ the 4

$\begin{aligned} & A C 128 \\ & A C 153 K \end{aligned}$	$\begin{aligned} & \text { 10p } \\ & \text { 18p } \end{aligned}$	$\begin{aligned} & \text { OC } 44 \\ & \text { OC } 45 \end{aligned}$	$\begin{aligned} & \text { 12p } \\ & \text { 12p } \end{aligned}$
AC 176	19p	OC 71	9p
AC 176K	22p	OC 72	14p
AC 187K	22p	OC 81	14p
AC 188	12p	ZTX 107	-9p
AC 188K	22p	ZTX 108	${ }^{6} \mathrm{p}$
BC 107	8p	ZTX 109	${ }^{60}$
BC 108	6p	ZTX 300	7p
BC 109	6p	ZTX 301	$7{ }^{7}$
BC 118	-10p	ZTX 302	9 P
BC 154	*1p	Z7X 500	${ }^{18}$
BC 147	${ }^{8} \mathrm{p}$	ZTX 501	-10p
BC 148	- ${ }^{\text {p }}$	ZTX 502	-12p
BC 149	\%p	2 N 696	10 D
BC 157	-10p	2 N 697	110
BC 158 BC 159	$10 p$ $\cdot 10 p$	2 N 706	7p
$\begin{aligned} & \mathrm{BC} 159 \\ & \mathrm{BC} 169 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 90p } \\ & \text {-10p } \end{aligned}$	2N 706A	3 p
BC 170	*p	2N 708	${ }^{3} \mathrm{p}$
BC 171	* 60	2N 1613	15p
BC 172	${ }^{6}$	2N 1711	$15 p$
BC 177	12p	2N 1893	18 p
BC 178	$12 p$	2N 2217	18 p
BC 179	12p	2N 2218	15p
BC 182L	-9p	2N 2218 A	18 D
BC 183	-9p	2N 2219	$15 p$
BC 184	-9p	2 N 2219 A	18 p
BC 212 L	-10p	2N 2221	15p
BC 213	10p	2N 2221 A	160
BC 214	-10p	2N 2222	$15 p$
BC 251	*p	2N 2222A	16p
BC 327	-12p	2N 2369	12p
BC 328	-12p	2N 2369A	12p
BC 337	*11p	2N 2904	14 p
BC 338	-11p	2N 2904 A	15p
BF 115	10p	2N 2905	14p
BF 167	10p	2N 2905 A	15p
BF 173	10p	2N 2906	12p
BF 194	-9p	2N 2906A	14p
BF 195	*9p	2N 2907	12p
BF 196	*12p	2N 2907A	13p
BF 197	*12p	2N 2926G	-8
BF 198	-12p	2N 2926 Y	-7p
BF 199	-12p	2N 3053	$14 p$
BF 257	26p	2N 3055	38 p
BF 258	29p	2N 3702	7p
BF 259	34p	2N 3703	7p
BFX 29	18p	2N 3704	-6p
BFX 84	15p	2N 3705	${ }^{6} \mathrm{p}$
BFX 85	20p	2N 3708	7p
BFX 86	20p	2N 3903	*11p
BFY 50	12p	2N 3904	*11p
BFY 51	12p	2N 3905	*11p
BFY 52	12p	2N 3906	*11p
BFY 53	12p	2N 5172	9p

D.I.Y. PRINTED CIRCUIT KIT
NORMAL CONTAINS 6 PRICE Pieces copper laminate, box of etchant powder and measure tweezers, marker pen, high quality pump drill, Stanley knife \& blades. 6 inch metal rule FULL Easy to fol low instructions.

DIODES
 OA 47 OA 81 OA 85 OA 91 OA $200 / \mathrm{BAX} 13$ OA $202 / \mathrm{BAX} 16$ IN914 IN4 48 IN4001 IN4002 IN4003 IN 4004
 IN4005 iN4006
 IN4006 IN4007
 IN4007 IN5400 IN5401
 IN5400 IN5401 IN5402
 IN5402 IN5403
 IN5403 IN5404
 IN5405 IN5406 IN5407
 iN5407 iN5408 VOLTAGE REGS

V.A.T. Add 8%
Add $12 \frac{1}{2} \%$ to items

MVR 7805	$85 p$
MVR 7812	$85 p$
MVR 7815	$5 p$

OPTOELECTRONICS
L.E.D. Displays

DL $7070.3^{\prime \prime}$
DL 7470.6
L.E.D.'s
TIL 209 Red $\cdot 125^{\prime \prime}$
FLV 117 Red ${ }^{\prime \prime}$
Photo Devices

ORP 12 OCP 71

Order
1510
1511
\qquad

OCP 71
1515
1520
THYRISTORS
TO
IA/5
$1 A$
$1 A$
TO
$5 A$
$5 A$
$5 A$
TO
16
16 A/400 PIV

UNIJUNCTION
 UT48/TIS 43

F.E.T.

2n3819
ORDERING
Please word your
orders exactly as
printed not
forgetting to
include our part
number

OTHMitamk Capacitive discharge electronic ignition kit

VOTED BEST OF SSYSTEMS OF TESTED BY POPULAR MOTORING MAGAZIME

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Up to 20% better fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge. electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing it the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old. or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a shori circuit protected inverter which eliminates the broblems of SCR lock on and. therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignision and up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matl black epoxy resin. ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors. printed circuit board nut bolts, silicon grease, full instrucfrons to make the kit negative or positive earth, and 10 page installation instructions.
OPTIONAL EXTRAS
Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and witl also switch the ignition off completely as a security device. Includes switch connectors, mounting Dracket and instructions. Cables excluded. Also available:RPMlimiting control for dashboard mounting (fited in cose on ready built unit).
CALLERS WELCOME. For Crypton tuning and fikting service "phone (0922) 33008
PRICES INCLUDE VAT, POST AND PACKING
Improve performance \&economy NOW
Note:- vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachomeler pulse slave unit. Price £3-35 Inc. Vat post \& packing.

POST TODAY!

Quick installation
No engine modification required

Electronics Design Associates, DEPT`EE/2 82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652
\qquad
Address ..

I enclose cheque/PO:

 for 8 Cheque No.Send SAE if brochure only.required. STEREGHEADHONESO STEREO ANDIO $\overbrace{\text { Un }}$

Solent Mark II Stereo Tuner Amplifler chassis with AM/FM radio covering long, medium, short and stereo FM wayebands.
Separate Bass and Treble controls. 30 watts total power output (frequency response $25-20,000 \mathrm{~Hz}$) AFC Switching. Dimensions $18 \frac{1^{\prime \prime}}{} \times 9^{\prime \prime} \times 3 \frac{1}{\prime \prime}_{\prime \prime}$. The very latest BSR automatic record deck with cue and pause control. Two matching elliptical speaker units. Order early limited stocks avall. able cash price $\mathbf{6 9} 69$. Credit Sale $\mathbf{£ 5} \cdot 00$ deposit 9
 P. \& P. £4.00. Send $£ 9 \cdot 00$ today.

Chassis only avallable for cash at $£ 49 \cdot 00+$ p. \& p. £3.00 Full 12 months Guarantee.
Access and Barclaycard Orders Accepted by Telephone CALLERS WELCOME
LEWIS radio EE/2/77, 100 Chase side southgate LONDÓN NI4 5PL Telephone: 01-882-1644

PHILIPS

The top sellers for home assembly in Europe - now available in the U.K.
Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN

B. BAMBER ELECTRONICS

Dapt. ee, 5 Station road. litileport, cambs., cbg 10e Telephone: ELY (0353) 860185 (2 lines) Tuasday to Saturday

Terms of Business: CASH WITH DRDER. MINIMUM ORDER $£ 2$. All PAICES INCLUDE POST \& PACKING IUK
ALU-SOL ALUMINIUN SOLDER Imta by Mutabrass steel, nickel of tinplate. 16 or copoor. multicore flux, with instructions. Appron I mette coil 30p pack. Lerge reel £2.75.
VARICAP TUNERS Mullard TYpe ELC1043/05. Brand New, $\& 4.40+12 \%$ VAT.
I.C. B some coded, 14 DIL rype, untested, mixed 20 for 25p.
Mobila Convertars, 24 V DC input 13.8 V an approx $3.4 A \mathrm{DC}$ output, fully stabilised. $£ 3.50$ each
fideal for running 12 V car radio from 24 V lorry bettery).
We now stock Spiralux Tooli for the electronic enthusiast. Screwdrivers, Nut Spanners, BA
Miniature earphones with min. jack plug. 2 for 500 $+12 \frac{1}{2} \%$ VAT.

\% Var.

TWIN I.F. CANS, appron. 1 im , $\neq 1 \mathrm{in} . x 1 \mathrm{in}$. high, 1 around $3.5-5 \mathrm{MH}$, 2 parate tramstormers in
Dubilier Electrolytics. $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p . Dubilier Elactrolytics. $50 \mu \mathrm{~F}, 4,275 \mathrm{~V}, 2$ for 80 p .
 TCC Electrolytics. $1000 \mu \mathrm{~F}, 30 \mathrm{~V}, 3$ for 80 p .
Plessey Electrolytics, $1000 \mu \mathrm{~F}, 180 \mathrm{~V}, 40 \mathrm{p}$ each Plessey, Electrolytics, $1000 \mathrm{NF}, 180 \mathrm{~V}, 40 \mathrm{p}$ e
$(3$ for $£ 1$).
 Dubilier Electrolvics, 5000 HFF , 50 V , 60 p esch. ITT Electrolytics. $6800 \mu \mathrm{~F}$, 25 V , high gred terminsls, with moumting clips, 50p oach. Plessey Electrolytics. $10,000 \mu \mathrm{~F}$ at $63 \mathrm{~V}, 75 \mathrm{p}$ each.
Plessey Cathodray Ca pacitors, 0-0-4, at $12-5 \mathrm{kV}$ OC. Screw terminals. C1.50 aach.
PLEASEADO 124% VAT TOALL CAPACITORS.
TVPLUGSAND SOCKETS
TV Plugs (matal type), 5 for 50 p .
W Live Connecrors beck-to-beck sockets), 4 for 50 p .

A LAROE RANGE OF CAPACITORS AVALLABLE AT BARGAIN PRICES, SAE, FOR LIST.

PLUGS AND SOCKETS
N-Type Plugs 50 onm. 60 p each, 3 for 21.50 .
PL259 Plugs (PTFEt, brand new, packed with reducers. 60 p or 5 for ES
rype), 60 e each or 5 for $\mathbf{e z} 25$ new (4-hole fixing typel. COp each or 5 for $\mathrm{Ez} \cdot 25$.
25 -way ISEP Plugs and Socke
+1 Way SEP Plugs and Sockets, 40p sat 11 plug
Plugs and sockets sold separately at 25 p each.
BNC PLUC $\$$ (ex-equip), 5 for $\$ 1.50$
WELLER SOLDERINQIRONS
EXPERT. Buitt-in-spotlight Murninates work. Pistol grip widh tip. EXPERT SOLDER GUN. C6.80 + VAT (54p).
EXPERT SOLDER GUN KIT (spase bits cas EXPERT SOLDER GUN KIT (spare bits case 9tc). Cs-80 + VAT (78p).
MARESMAN SOLDERIMGIRON. SP15D 15W $53+\operatorname{VAT}(24 p)$.
SP250 25 W E3 $+\mathrm{VAT}(24 \mathrm{p})$.
SP250 $25 W$ E3 + VAT (24p).
SP250K $25 \mathrm{~W}+$ bits, etc., kit $23.85+\operatorname{VAT}(31 \mathrm{p})$ SP250K $25 \mathrm{~W}+$ bits, etc. kit $23.85+$ VAT (31p).
SP4OD 40 OW 53.44 + VAT (28p).
BENCH STAND with spring Marksman Irons. $82.22+$ VAT (18p).
\$PARE BITS
MTE for $15 W, 48 p+$ VAT (4p)
MT4 for $25 \mathrm{WW}, 38 \mathrm{~s}$ + VAT (3p).
TCPI TEMPERATURE CONTROLLEDIRON. Temperatura controlied iron and PSU. $£ 20+$ VAT
(£1.60). SPARETIPS
Type CC single fiat, Type K double flat fine tip Type P, very fine tip. c1 each + VAT (8p).
MOST'SPAAES AVAILABLE.

MULTICORE SOLOER
Size 5 Savbit is s.w.g. in alloy dispenser, 32 p
 Size 12 SAVBIT 18 s.w.g. on plastic reel ci.80
$\frac{1}{2}$ (ko (1 1 lb$) 60 / 40.20$ s.w.g. on plastic grilia Es .

LOW, LOW PRICES ON BRANDED COMPONENTS.

 Terms - cwo, aod 8\% MT on Cos/Mos and 12\%\% WT on Transistors. Diodes etc. plus 15 p postage and packing. Rosebank Parade, Plough Road, Yateley, Camberley, Surrey. Tel: 0252871388.

TECHNICAL TRAINING IN ELECTRONICS RND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to you.. Study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successtul.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET. TH TO: International Correspondence Schools
Dept. 710 C Intertext House, London
SW8 4UJ or telephone 6229911
Subject of Interest.
Name
Address

DOMESTIC AFFAIRS

Odd though it may seem, we want to start this month rather out of character for a technical magazine and talk about an important human problem. The subject is harmony in the home: a constantly occurring problem where accommodation is limited, as many will be bound to agree.

First of all, let us admit the root cause of some of today's domestic difficulties can be laid fairly and squarely at the door of electronics. (This is no indictment of do-it-yourself electronics, we hasten to make clear.)

Standing proudly in lounge or sitting room, the greatest gift electronics has given to man and his mate reigns supreme in most homes, dictating the family life style to a considerable degree. In the presence of the illuminated screen all other activities have to be curtailed or pursued in a subdued fashion. Where other rooms are available for non-viewers to carry on their various activities, there is no problem, save, maybe, a little inconvenience for the fugitive from the TV. But where no suitable alternative accommodation exists the situation can become critical-even explosive.

ACCOMPANIMENT

Suppose we digress for a moment, and consider another very remarkable social success of electronics-its leading part in the develop-
ment of modern pop music. Which brings us to the ubiquitous electric guitar. The electric guitar is perhaps the most democratic of musical instruments, for more than any other it has brought the performance of live music within the reach of ordinary people. And naturally all these folk need to practise somewhere, sometime.

So, in relation to our main subject, have we reached an impasse?
Not really. The budding Mike Oldfield does not have to be banished entirely from the family viewing circle to do his practice on the electric guitar, regardless. One of the advantages of this instrument is that it is itself all-but mute, relying upon electronic amplification. This is where the solution is to be found. A simple low power amplifier feeding an earpiece gives the player all the sound he requires-and nought at all to anyone else.

Believe it or not, domestic bliss might well hang on this simple device. Could Marje Proops do better, in the circumstances, to keep a couple or a family harmoniously together?

Our March issue will be published on Friday, February 18. See page 85 for detalls.

EDITOR F. E. Bennett - ASSISTANT EDITOR M. Kenward TECHNICAL EDITOR B. W. Terrell B.Sc.

ART EDITOR 1. D. Pountney - P. A. Loates - K. A. Woodruff
ADVERTISEMENT MANAGER D. W. B. Tilleard P. Mew

[^1]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. 6 NO. 2FEBRUARY1977
CONSTRUCTIONAL PROJECTS
WIPER DELAY for most car wipers by Andrew Yeomans 58
GUITAR PRACTICE AMPLIFIER Easy to construct miniạture device by M. Feeney 64
TRANSISTOR CHECKER A quick test for transistors and diodes by A.J. Flind 82
ELECTRONIC STOP CLOCK Simple, unusual design by R. A. Penfold 86
GENERAL FEATURES
EDITORIAL 56
JACK PLUG AND FAMILY Cartoon 62
SHOP TALK News and component buying by Mike Kenward 63
please take note 63
FOR YOUR REFERENCE Abbreviations 66
FOR YOUR ENTERTAINMENT Free Charge and Design Features by Adrian Hope 67
DOING IT DIGITALLY Part 5 Flip Flops and Trigger Circuits O. N. Bishop 68
ELECTRONICS IN MEDICINE by S. McClelland 74
YOUR CAREER IN ELECTRONICS Radio Communications by Peter Venwig 78
COUNTER INTELLIGENCE A retailer's comments by Paul Young 81
LET'S FIGURE IT OUT Take the sting out of maths Part 3 by Phil Alcock 91
PHYSICS IS FUN Calibrating a Meter by Derrick Daines 93
PROFESSOR ERNEST EVERSURE The Extroordinary Experiments of. by Anthany J. Bassett 94
BOOK REVIEWS A selection of recent book releases 96
DOWN TO EARTH Theory and Practice by George Hylton 98

BACK NUMBERS,

LETTERS AND BINDERS

[^2]When driving through light rain or drizzle, one quickly realises that it would be desirable to have a unit which turned the windscreen-wipers on for a single sweep, then waited a while before turning them on again.

This design provides the necessary system and will suit all cars with self-parking wipers. It will work on cars with either fieldcoil wiper motors, or permanentmagnet motors as used on many modern cars. It will also work with both negative and positive earth cars.
The type of motor used can usually be determined by looking at the car's wiring diagram. However a quick check can be made by looking at the wiring. Cars with two wires going to the windscreen wiper switch have a fieldcoil motor, cars with three wires going to the switch have a per-manent-magnet motor (or in the case of a two-speed motor, a fieldcoil motor), and four wires are used with a two-speed permanent magnet motor.

BASIC DELAY UNIT

The circuit of the delay unit used with a field-coil motor on a car with negative earth is given in Fig. 1. The unit is connected in parallel across the existing wiper switch. If Lucas car connectors are used for this purpose, the unit can be disconnected if it should go wrong, or for use in another car.

When the delay unit is turned on by Sl (which is ganged with VR1), capacitor C1 begins to charge through the motor. R1 and

VR1 in series. As soon as the voltage across C1 reaches approximately half the supply voltage, the unijunction transistor TR1 will be triggered. The time taken for this to happen is determined by the resistance in series with Cl ; with the values as shown this time can be varied from about one to two seconds to about 30 seconds.

The equivalent circuit of a unijunction transistor is given in Fig. 2. Before it has been triggered, diode D is reverse biased, and R_{A} and R_{B} are both

high in value, so little current can flow between bases bl and b2, and emitter e. However as the voltage across Cl increases, D will eventually become forward biased, and then R_{A} suddenly drops in value. At that point Cl discharges through e, bl, and R3. The voltage pulse developed across R3 triggers thyristor CSR1 into conduction, and current flows through the windscreen-wiper
motor and CSR1, the surge current being limited by R4 to a safe value.

When the wipers have moved a short distance, the parking switch (which is mechanically operated by the motor) will close, thus shorting out CSR1 which returns to the non-conducting state, and also allows the motor to continue running until it reaches the parking position again, when the parking switch opens. The circuit is now in its original state, and the cycle repeats.

For use in cars with a positive earth, the same delay-unit circuit is used, however the leads marked positive and negative are reversed as in Fig. 3. No further changes are necessary.

GENERAL

If a potentiometer with only a single-pole switch is used, Slb may be omitted and the corresponding connections wired permanently together.

If the original windscreen-wiper switch is operated, it will override the delay unit.

A number of cars today are fitted with permanent magnet motors. This type of motor has to be short-circuited when it is switched off, to ensure that it stops quickly. This makes it difficult to design a reliable solidstate delay unit, since the shortcircuit must be removed before the motor is operated, otherwise the car battery will be shorted out, and the short-circuiting path must be able to carry current in both directions, and do so when

Fig. 1. (above). Basic circuit of the unit for field coil motors.

Fig. 3. (left). Positive earth connection of Fig. I.

Fig. 5. Negative earth version of Fig. 4.

Capacitor C2 is included to suppress sparking at the relay contact, which could cause radiofrequency interference. Resistor R5 allows enough current to flow to hold the thyristor on until the parking switch operates; for lowresistance relay coils (less than about 100 ohms), the value of R 5 may be increased or omitted, provider that the combined resistance of RLA and R5 in parallel is less than about 60 ohms.

CONSTRUCTION

Layout is not critical, however care should be taken to make strong soldered joints which can withstand the vibration of a car. A Veroboard layout is given in Fig. 6. The connections to the thyristor and the wires to the existing wiper switch must be capable of withstanding the motor current. For the field-coil version, wire of at least 3 A rating should be used, and for the permanent magnet version, wire of at least 6A and preferably 10A rating should be used, as this has to be capable of carrying the full motor current continuously. It is best to terminate the cables with Lucas push-on insulated connectors, which are almost standard, as then the unit can be very quickly attached or removed.

They are obtained from most garages or accessory shops.

A suitable box can be made of plywood and softwood, the exact dimensions will depend upon the size of the relay used and that of the potentiometer. This may then be screwed under the dashboard, or mounted by the potentiometer spindle through a hole drilled in the dashboard.

TWO-SPEED MOTORS

Cars fitted with two-speed motors may have the delay-unit fitted to the lower speed connection; typical connections are given in Fig. 8. For positive earth versions, reverse the positive and negative wires as was done in Figs. 1/3 and 4/5.

6-VOLT CARS

The circuit will work for cais with 6 V batteries, as the timedelay is almost independent of supply voltage. If a relay is used, R5 will need altering to 33 ohms, 1W.

CONNECTION OF UNIT

Before connecting the unit the existing wiring of the car should be studied, preferably in conjunction with the car's wiring diagram (though these are sometimes incorrect, particularly if the type of motor used has been altered during production), to determine the existing connections and polarity of the switch wires. If in doubt, with a field-coil motor connect a voltmeter across the windscreen wiper switch after this has been turned off and the ignition turned on. This will then identify the polarity of the switch wires. The positive lead of the delay unit should be connected to the positive terminal of the switch, and the negative lead to the negative terminal.

Resistors

Resistors	
RI	$10 \mathrm{k} \Omega$
R2	100Ω
R3	100Ω
R4	0.5Ω
R5	56Ω

Capacitors
$\mathrm{Cl} 100 \mu \mathrm{~F}$ elect. 25 V
C2 240 nF 500 V
Semiconductors
TRI 2N2646 unijunction
CSRI BTY84 or similar thyristor

Miscelianeous

VRI $250 \mathrm{k} \Omega \log$. pot. with d.p.d.t. switch
RLA1 12 V relay with changeover contacts rated at 10 A or more (see text). Veroboard 0.15 inch matrix 16 holes by 8 strips; connecting wire; 20 s.w.g. aluminium $65 \times 30 \mathrm{~mm}$; Lucas car type connectors; materials for case (see text).

Fig. 6. Construction and wiring of the basic unit. For permanent magnet motors the relay of Fig. 7 is also required, Resistor R4 and the two breaks at 6C and 6D can be omitted when the relay is used (see text).

Wiper

Fig. 7. Relay wiring for permanent magnet motors.

Fig. 8a. Wiring for a two speed field coil motor.

With permanent magnet motors, test the wiper switch with an ohmmeter with the ignition turned off. The lead to the nor-mally-connected (off) switch terminal should then be disconnected and the green wire from the delay unit connected to the switch. The black delay-unit wire

Fig. 8b. Wiring for a two speed permanent magnet motor system.
should then be connected to the wire just removed from the switch, and the red delay-unit wire connected to the normallyopen (on) switch terminal.

Care should be taken in cars with a combined windscreen wiper/washer switch to identify the correct terminals.

If the ignition is now turned
on and the delay unit potentiometer rotated until it just clicks on, the windscreen wipers should begin to operate, with a delay of about one to two seconds between sweeps. If the control is rotated further, the delay period should increase to a maximum of about $20-30$ seconds at the most clockwise position.

JIEN PIDE \& FhThly.

OBVIOUSLY, THE SCRABBLE TIMER, SINCE IT RESTRICTS PROTRACTED COGITATION, is a device favouring the player of ACUTE MENTAL AGILITY...

By Mike Kenward
New products and component buying for constructional projects.

WE often receive enquiries from readers asking where they can buy parts for our projects. Many of them say that their local small shop can supply some parts but not the full range. It all comes back to mail order and the firms that advertise in our pages.

Obviously it is not possible for people to list everything they sell in a small advert-some sell over 8,000 items-so they either adyertise their catalogue or a few of the more popular items they sell. So, if you cannot get what you want locally, we would suggest you get in touch with one of the mail order firms or better still get a few catalogues.
As an extra aid for readers we are hoping to publish an Electronic Components Buyers Guide which will list all the firms who have advertised in our pages recently and cover the general range of components-about 200 categories. In this way every reader will be able to find a supplier for a particular range of items. However this guide will not replace anyone's catalogue because no prices or type numbers will be quoted-it will simply be a guide as to where to buy. Anyway that's a few months away yet so let's look at the catalogues we have received recently.
to the fullest extent. B. H. are at 59 North St., Leighton Buzzard, Bedfordshire, LU7 7EG.
A new edition of the Arrow Electronics catalogue has recently become available. It is well reproduced on quite good paper with a good general range of components well spaced out through its 41 pages. Size is $208 \times$ 150 mm price 40 p , available from Arrow at Leader House Coptfold Rd., Brentwood, Essex.
Perhaps the best produced catalogue available is that from Home Radio it measures $275 \times 200 \mathrm{~mm}$ and has 192 pages, almost every one with excellent photos or line drawings of various items. Perhaps the only items it does not list in great quantity are semiconductors, including i.c.s.-everything else is well catered for including test gear. However you must pay for this quality and the cost is $\mathrm{E!}$ plus 40 p postage and packing (that gives some idea of the size and weight of the catalogue). Home Radio are regular advertisers in our pages and you will find ordering details in their ad.

Tandy have produced a new catalogue -we did not realise the range they cover, particularly in the component area $(2,000+$ exclusive lines they claim). The best thing for us to do is tell you to get it and see for yourselves, catalogues are free from any of the 160 Tandy Stores.

Burglar Alarm

Another burglar alarm kit has been introduced recently, this one from Copydex.

The House Guard system includes a panic button which can be placed by the bedside or front door and can be used to set off the alarm if the homeowner is frightened, and a delay timing device for the entrylexit door. The system also contains an outside alarm bell with indicator light in steel housing, a control panel with a test light, two pressure alarm mats, five sets of magnetic contacts for doors or windows, an internal audible alarm, sufficient cable for the average home, all necessary fittings and a step-by-step instruction book.

The control unit is operated by a keyed switch, and the test light is provided for checking the circuit. The alarm is powered by a 6 volt battery,
so as to be independent of the mains, and the entire kit offers professional standards by providing high quality components. Recommended retail price is $£ 76$ including VAT. Copydex Ltd., are at I Torquay Street, Harrow Road, London W2 5EL.

We also have news from another kit supplier-Josty. They have supplied us with a small kit, which is very professionally presented with an excellent p.c. board and good instructions, and with a list of their kits. The list entitled Electronic Construction Kits 1976/77 is available free from them or from component suppliers that sell the kits. Most of the kits should be easy to construct, work first time and represent good value for money.

Projects

Having said all that about catalogues we come down to buying for the projects in this issue and the first name to come forward is Maplin Electronics Supplies, reminding us that we are still waiting for a sight of their long expected new catalogue. The item that brought their name forward was the MC3360P i.c. amplifier of which we believe they are at present the only stockist in this country.

This item has replaced the MFC 4000 which was discontinued some time ago by the manufacturers Motorola. The i.c. can be obtained by sending 99p to Maplin, this includes V.A.T. and postage, you will find their ad. on the back of this issue.

Having looked through the components listed for the other constructional projects we can not forsee many buying problems and most items should be readily available if not from your local shop then from one of the mail order suppliers.

The meters used in the Transistor Tester and the Electronic Stop Clock are the two most expensive single items and you should watch the price when buying. There is no reason why surplus types of the correct sensitivity should not be employed. There are a few edgewise types, as used in the stop clock, available from some of the larger suppliers-in particular Henrys Radio and Doram-although they tend to be more expensive than the normal meters.

Catalogues

The latest catalogue from B. H. Components consists of 64 pages covering just about the whole range of items, most of which are illustrated with neat line drawings or rather poorly reproduced photographs. However, at 20p, and it includes two 10p vouchers which can be used against El minimum orders, you won't hear any complaints from us. Especially as we know only too well how the cost of paper rises with the falling pound. Size is $200 \times 141 \mathrm{~mm}$ and space is used

TEACH-IN 76
It has been brought to our attention that an error occurred in Teach-in 76, section 12.2. "Example Suppose resonant conditions are $R=10$ ohms, $X_{L}=$ 100 ohms". . . should read $X_{L}=1000$ ohms.
It has been pointed out to us by Doram that the relay specified for the Light Flasher December ' 76 is not designed to switch the load required. The use of a relay with contacts rated at IOA would ensure longer life. Open style type $12 \mathrm{~V}(10 \Omega)$ is recommended.

Acolleague requested a tiny practice amplifier for an electric guitar; we agreed that the smallest commercial guitar amplifiers are 10 or 5 watt "combo's" with built-in loudspeakers, still too large for many situations. It was decided to build a unit based on an i.c. general purpose amplifier which would offer the following facilities:
(i) 1_{4} watt practice amplifier, ideal for budding stars still living at home.
(ii) Headphone listening for late night sessions or tuning up in noisy situations.
(iii) Pre-amp, with fuzz facility, with very low impedance output to reduce hum, drive long leads etc.

CIRCUIT

The circuit uses an MC3360P integrated circuit with a simple one transistor pre-amp., Fig. 1.

There is some leeway in component values depending on requirements. The input socket was used to switch the negative power on, a switch may be used if preferred, but the author found that this often leads to flat batteries through forgetfulness or inadvertent knocks moving the switch! Capacitors C 1 and C 2 determine the bass response, in practice the 50 mm diameter speaker used has very little response below upper middle, but $10 \mu \mathrm{~F}$ for each gives a solid sound through 'phones.

Any simple transistor pre-amp could be used before C2 and some quality guitars may not require one at all. Capacitor C3 must be at least $0 \cdot 02 \mu \mathrm{~F}$. This can
be raised if the reproduction through 'phones is too brilliant, $2 \mu \mathrm{~F}$ should mute the treble sufficiently. Capacitor C4 also affects the bass response, a value of $10 \mu \mathrm{~F}$ produced a very "light" sound in 'phones but later a $50 \mu \mathrm{~F}$ was used to restore some body to the bass strings. Resistor R4 is only necessary if an 8Ω speaker is used. A 16Ω speaker is optimum and 25 or 30Ω speakers could be used with slight loss of volume.

The prototypes were built into old Japanese intercom cases which still contained loudspeakers. This permitted true pocket portability. Pocket transistor radio cases should be equally suitable; the larger and

Components =

RI $2.2 \mathrm{M} \Omega \frac{1}{8} \mathrm{~W}$
R2 $10 \mathrm{k} \Omega \frac{1}{8} \mathrm{~W}$
R3 $10 \mathrm{k} \Omega \frac{1}{8} \mathrm{~W}$
R4 $8 \cdot 2 \Omega \frac{1}{4} W$?
RS $\left.100 \Omega \frac{1}{4} W\right\}$ see text
Capacitors

CI $0.1 \mu \mathrm{~F}$ plastic or ceramic
C2 $10 \mu \mathrm{~F} 10 \mathrm{~V}$
C3 $0.1 \mu \mathrm{~F}$ plastic or ceramic C4 $10 \mu \mathrm{~F} 10 \mathrm{~V}$
Semiconductors
TRI BCIO8 npn silicon
ICI MC 3360 P 250 mW audio amplifier
Miscellaneous
LSI 8Ω miniature loudspeaker
SKI Standard jack socket with I set normally open contacts
SK2 Stereo jack socket with 2 sets normally closed contacts BI PP3 9V
Stripboard 0.1 inch matrix 7 strips $\times 14$ holes; Case to suit; battery connector: Screened cable.

Fig. I. Complete circuit diagram of the Guitar Practice Amplifier.
stronger the case, the better the tonal quality.
There are no controls in this circuit for the sake of simplicity and most guitars already have tone and volume controls. All the electronics were accommodated on a piece of 0.1 inch matrix Veroboard.
The layout used is as Fig. 2. Layout is somewhat critical due to the high gain employed, several versions of the layout began ultrasonic oscillations, audible as reduced volume output with a definite "fizz" to the sound. So long as output leads are kept short and well away from the input, all should be straight forward. Veroboard and battery were secured with doublesided adhesive tape.
A simple version needs no output jack, being a "pocket combo" that gives sufficient volume, albeit distorted, to allow an electric guitar to compete with acoustic instruments. The addition of a stereo jack gives the extra
features mentioned above. This jack is wired in an unconventional manner, see Fig. 3., so that a stereo headphone plug will connect such that the two earpieces are series wired; while a mono jack will still make conventional contact. An optional resistor R5 may be added if 'phones reproduction is too loud.

The prototypes gave around 90dB sound level with ordinary hi-fi headphones!

A standard guitar lead will allow the output to be fed into a larger guitar amplifier but will produce severe clipping (fuzz) on all but the minimum settings of guitar and amp. volume controls. The output may also be taken via

Fig. 2. Layout and wiring of the circuit board of the amplifier.

OUTPUT EARTH
FROM BOARD

Fig. 3. Wiring of the output socket of the amplifier.
a mono jack to a hi-fil loudspeaker or even a 100 watt stage stack and will produce enough volume to practice by.

One of these circuits can also be inserted into the body of an electric guitar. There is usually sufficient room between pick-ups to accommodate a $50 \mathrm{~mm} 8 \Omega$ loudspeaker. Some of the wood behind the scratch plate being carefully chiselled away and the scratch plate drilled to provide a grille for the speaker. Power from a PP3 battery in this case can be separately switched by a changeover switch that also feeds the output from the pickups to either the output or the amplifier.

This idea is given as "food for thought" because each guitar will be radically different and there are problems with feedback: layout is very important and there is some tendency to straight forward mechanical feedback through the strings. However, the author is very pleased with the resulting electronic (as opposed
to electric) guitar and any roadie worth his soldering iron should be able to make successful modifications!

Obviously the amplifier could be installed together with battery in the guitar body and connected via a second outlet jack to headphones. Thus providing an integral "tune up" or practice amplifier.

...For Your Reference

a.c.	alternating current
a.f.	audio frequency
a.f.c.	automatic frequency control
a.g.c.	automatic gain control
a.m.	amplitude modulation
BA	British Association (nut and bolt sizes)
cm	centimetre
d.c.	direct current
d.p.d.t.	double-pole double-throw
elect.	electrolytic
e.h.t.	extra high tension
e.m.f.	electromotive force
f.e.t.	field effect transistor
f.s.d.	full scale deflection
f.m.	frequency modulation
g.	gram
h.t.	high tension
i.c.	integrated circuit
l.e.d.	light emitting diode
l.d.r.	light dependent resistor
lin.	linear
log.	logarithmic
m	metre (measurement of length)
mm	millimetre
m.w.	medium wave
$n p n$	
$p n p$	transistor structure
(two types)	

oz ounces (avoirdupois)
p.i.v. peak inverse voltage
p.v.c. polyvinyl chloride
r.f.
r.m.s. root mean square
s.p.s.t. single-pole single-throw (switch)
s.r.b.p. synthetic resin bonded paper
s.w.g. standard wire gauge
t.r.f. tuned radio frequency
u.h.f. ultra high frequency
u.j.t. unijunction transistor
v.h.f. very high frequency
$\%$ per cent
\mathbf{X} reactance
\mathbf{Z} impedance
A ampere (amp)
dB decibel
F farad
H henry
Hz hertz (cycles per second)
$\Omega \quad$ ohm
V volt
W watt
p pico ($\div 1,000,000,000,000)$
$\mu \quad$ micro ($\div 1,000,000$)
$\mathrm{m} \quad$ milli $(\div 1,000)$
k \quad kilo ($\times 1,000$)
$\mathrm{M} \quad \operatorname{Mega}(\times 1,000,000)$

By ADRIAN HOPE

YoOUNG people with an interest in electronics today really don't know how lucky and how safe they are. A decade or so ago, virtually all electronic gadgetry (be it audio, visual or motive) available to the home experimenter relied on valves, relays and rheostats, and required a mains or heavy duty battery power supply. Through blissful ignorance, my own parents let me play around with horrifyingly lethal mains powered gadgetry, even including water dimmers, and i was more than a little lucky to survive in one piece.

But nowadays almost everything electronic is available in solid state form, often needing only a couple of cells to power it. As a result, younger and younger enthusiasts can play safely with quite complicated electronics.

Free Charge

Recently a reader, still at primary school, came up with an interesting idea which might well trigger other thoughts in older brains. The schoolboy had recently bought a digital wristwatch and, like everyone who buys these fascinating gadgets, soon realised how expensive they can be to run. So his mind turned to the possibility of making an electrical wristwatch self-charging.

My initial suggestion would have been to build in a tiny mechanical generator with a pendulum operated by the natural movements of the wearer in the manner of a self-winding watch.

But the schoolboy's idea was an aerial to pick up off-air radio power, rectify it, and use it to charge the battery. Essentially it sounded a sound scheme.

There have long been apocryphal stories of farmers living near BBC radio and television transmitters (some of which pump out literally hundreds of kilowatts of power) and using massive grid aerials to pull in enough off-air
power to light and heat their cowsheds. The snag, of course, is that the signal strength is only that strong in the close vicinity of a transmitter, and efficient power reception in most of the wavebands used for entertainment transmission would require an aerial several metres long. This would make a wristwatch somewhat clumsy!
But microwave transmissions up in the Gigahertz band, as used for radar. have wavelengths in the order of centimetres, so a dipole could fit neatly into the body or strap of a wristwatch. The snag here, of course, is that such radiations are directional and usually only found at high strength near radar transmitters or inside microwave ovens. Also, as witnessed by the safety interlocks which have to be provided on microwave ovens, these radiations can be hazardous to health.

Red Hot

The idea of powering wristwatches from off-air microwave radiation may sound rather fanciful, but if I am not very much surprised something very similar is in fact already being done!

Poris Match recently carried an article explaining how the American Embassy in Moscow had suddenly realised that it was saturated in Gigahertz frequencies.

The level varied during each day, but was often so high that the Ambassador had enough cause for concern to call his Embassy staff together and tell them that they had in fact been living in the equivalent of a low-power microwave oven for a matter of years. It turned out that radomes for radiating microwaves were strategically placed all round the Embassy.

The Americans are still reputedly scratching their heads on why the Russians should have soaked the Embassy and its staff in microwave radiation: but my guess is that they were using the power to recharge
batteries in espionage equipment permanently installed in the very fabric of the Embassy building. Or do our readers have any other ideas for an explanation?

Design Features

I'll bet every reader has his own pet example of an Alice-in-Wonderland design feature.

I often wonder whether the people who design functional equipment ever actually use it. There is a small travelling "overnight" case with latch releases carefully positioned so that they automatically release and open the case every time it is rested in a railway luggage rack.

A friend bought a battery-powered photographic exposure meter with a zip case but found that closing the zip also closed the switch for the meter and thus drained the batteries. The otherwise excellent Ronson rechargeable razor does likewise. The on/off switch is on the side of the razor casing and tends to get a little loose and over-easy to switch after a while.

From a manufacturing point of view, it would be just as easy to have the switch move one way into the "on" position as the other; and for the user it is obvious that it makes sense to have the switch move into the "off" position as the razor is pushed home into the case. But no-the designer has constructed the razor so that when you push it home into the protective case the switch tends to turn itself on and when you pull the razor out of the case to use it the switch tends to turn itself off.

Incidentally | took the trouble to raise this point with the Ronson stand at the HEDA trade and press show in Birmingham, I was thanked for my interest and promised a considered comment the next week. But nothing has been heard-it will however be interesting to see if future Ronson shavers have the switches modified.

"This electronic machine says 'yes' at regular intervals, saving you the cost of a yes man."

IT is very complicated to wire up a chain of flip-flops but fortunately there is an integrated circuit, type 7493, with four flipflops already wired into a counting chain.

The pin connections to the i.c. are shown in Fig. 5.1 and it will be noticed that the first flip-flop is not connected to the others although it shares a common clear line. This flip-flop can be used separately for counting two's with the other three counting eights or the four may be used together for counting to 16. (There may be some confusion here as the maximum count of the i.c. is binary 1111 or 15 but if the zero state 0000 is included there are indeed 16 unique states.)

Follow the working of the counter by wiring it up as shown in Fig. 5.2. The clock input should come from the i.c. clock circuit as previously.
In the wiring diagrams of Fig. 5.2 output A has been wired to input B so that all four flip-flops are in series giving a count of 16 .

Fig. 5.2. Connecting the 7493 as a four bit counter. The lamps are used to indicate the states of the four stages.

Fig. 5.1. The internal connections of the 7493 integrated four bit counter.

There are two reset inputs connected through a nand gate. One of these is held high by being connected to 6 V and the other is connected to ground when counting normally or 6 V if reset is requiredreset produces the 0000 state.
Check the counting sequence using the slowest clock rate and compare with Table 5.1.

HIGH SPEED COUNTING

To check out the counter at high speed, connect the $0 \cdot 1 \mu \mathrm{~F}$ capacitors in the clock circuit and

Table 5.1: Count sequence of the 7493

Count	Outputs			
	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	,	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8		0	0	0
9	।	0	0	1
10	1	0	,	0
11	1	0	1	1
12	1	1	0	0
13	!	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0
		etc		

use the earphone or loudspeaker unit to monitor the output from each stage.

Starting at the clock frequency itself, each succeeding stage will produce a note of half the frequency (an octave lower), so if the clock runs at, say, 240 Hz (just below middle C) the outputs will be:

```
Clock A B C D 240 Hz 120 Hz 60 Hz 30 Hz 15 Hz
```

Because the frequencies from stages C and D are so low, there may be a noticeable flicker of the lamps connected to these outputs.

The note from output C will be a very low frequency buzz-about the same frequency as the mains hum on some radios and amplifiers. The sound from stage D will be more a series of clicks.

What can this counting circuit be used for? It can be used to count up to 15 people passing through the door as described in connection with the two-stage counter earlier and even more if another 7493 were connected in series with the first!

If the light sensitive switch were connected across the lanes of a model racing car set the counter could be used to record the laps. Other uses include digital dice, reaction timers and digital thermometers.

INTERFACE

For digital circuits to become more than just electronic curiosities they must communicate with the real world. Somehow a way must be found of translating physical phenomena such as heat
light and sound into a form which can be handled digitally. We call these circuits "interface" circuits.

LIGHT OPERATED SWITCHES

Light operated switches are designed to give an output which will operate integrated circuits so that they can be used to trigger all sorts of devices.
Two types of switch are described here: the first uses a "photo-transistor" and is very similar to the transistor switch which was described earlier; the second uses a light dependent resistor.

PHOTO-TRANSISTOR SWITCH

A photo-transistor is constructed like an ordinary transistor except that the top of the case is made of glass. When light falls on the transistor, a very small current is generated which is added to any currents already flowing through the transistor from the battery. If things are adjusted correctly this extra lightgenerated current will be enough to turn on the transistor.

The basic circuit is shown in Fig. 5.3. With a ten megohm resistor (R1) connected to the base, the transistor will turn on and off at the light levels encountered at twilight, so if the circuit is intended to switch on at dusk this is the best value to use.

With a $3 \cdot 3$ megohm resistor in the base circuit it will switch at a slightly brighter light and with 100 kilohms it will switch at
higher light intensities such as a well lit room or bright sunlight. Try the circuit with various resistors noting the different switching levels.

Before setting up the circuit, work out what the output will be for bright light and dim light (output high or low), then check by connecting the output to one of the lamps on the experimental board.

The output from the phototransistor can also be connected to the input of nand or nor gates. If it works the wrong way for the required purpose the output can be passed through an inverter first.

The photo-transistor is a very fast aoting device, capable of responding to very short flashes of light or very brief shadows. It can, for example, detect the brief flash of a photographic flash bulb and is capable of being switched on and off several thousand times a second.

It is also a very interesting device to look at, for the tiny transistor chip can be seen through the glass. The drawback of the photo-transistor is its price and the following light operated switch can be made for about half the price.

Fig. 5.3. A light operated switch using a photo-transistor as the light detector.

PHOTO-RESISTOR SWITCH

The second light-operated switch uses a special type of resistor (type ORP12) the resistance of which changes according to the amount of light falling on it. In the circuit of Fig. 5.4 the voltage at point A will be high (almost 6 V) when the photocell (R1) is brightly lit, for then it will have a low resistance. In dim light or darkness the resistance will be very great and the voltage at point A will be near 0 V .

Fig. 5.4. A light detector using a light dependent resistor.

The voltage at point A cannot be used to operate an i.c. gate because an i.c. gate does not simply require a low voltage input, it requires an easy path of current to flow out of the input of the gate to ground.

In the circuit of Fig. 5.4, the voltage at point A is used to operate a transistor switch, the output of which can operate an i.c. gate, since it is easy for the current to flow to ground through the turned on transistor.

The circuit using the photoresistor is a little more complicated to build than that using the photo-transistor though it works out cheaper. The ORP12 does not respond as quickly as the phototransistor so it will miss sudden flashes or quick shadows but it is suitable for most purposes and has the advantage that it will switch at low light intensities. By using a five kilohm resistor (R2) in series with the ORP12 it will respond to light from a match struck in darkness or the headlights of a passing car.

It may be required to vary the level at which the switch will trigger and this can be achieved in both types of switch by replacing the fixed resistor by a variable one. For the photo-transistor it should have a value of one or two megohms and for the light dependent resistor the variable resistor should be about five kilohms.

It may be that the constructor wishes to make the light operated switch into a permanent unit and this can easily be done by placing the components on a small piece of circuit board inside a plastic box.

If one is interested in detecting the interruption of beams of light the photo-transistor or l.d.r. is best placed at the end of a cardboard tube (Fig. 5.5a). If

Fig. 5.5. Methods of mounting the light operated switches; (a) for interrupted beam devices, (b) for general light levels.
one merely requires the detection of general light levels the device can be mounted on top of the box.

It is sometimes easier to mount the device inside the box on the circuit board and if the box is one of those semi-transparent food containers, the amount of light getting through the lid will be more than enough to operate the switch. A rough idea of the construction is given in Fig. 5.5b.

POWER SWITCH

A power switch is a different type of interface circuit from the light operated switch since it enables the output of an i.c. gate to operate other devices such as a bulb, a relay or a low voltage motor.

The circuit is based on the transistor switch and the chief difference is that it uses a transistor which is capable of carry-

Fig. 5.6. Two types of power switch. The transistor should be selected according to the current consumed by the load; (a) "high-on" (b) "low on".
ing a much greater current than the $2 \mathrm{~N} 2926, \mathrm{BC107}$ or ZTX300.

There are two types of circuit as shown in Fig. 5.6a and b. The first. Fig. 5.6a, switches on when its input is high and the second switches on when its input is low. The "high on" switch is simpler to make, the "low on" having an extra (inverting) transistor before the switching transistor.

The load to be switched is connected across the two terminals marked "load". The switching transistor can be either a BD131 which can switch up to four amps or the BFY52 which can switch about one amp. Other transistors can be used providing the load that is to be switched does not take more than the maximum current rating (I_{0} max) of the transistor.

The switch can operate with voltage levels higher than the 6 V logic supply voltage so things

Fig. 5.7. Illustrates how the power switch can be used to control a load.

Light Operated Switches Type A
RI see text
R2 $270 \mathrm{k} \Omega$
TRI BPX 25 photo-transistor
Power Switches
High on
R1 $1 \mathrm{k} \Omega$
TRI BFY52 or BDI3I (see text)
Dual Function Power Switch
R10, R2 I k $\Omega 2$ off
Low on
R| $\mathrm{k} \Omega$
R2 560Ω
TRI 2N2926 (see text)
\(\begin{array}{ll}R3 \& 560 \Omega
DI \& 1 N 4148\end{array}\)
TRI BC107
TR2 BFY52 or BDI3I (see text)
0.15 in matrix stripboard, 9 strips $\times 12$ holes, metal box

like transistor radios with 9 V or 12 V supplies could be controlled (Fig. 5.7). Do not use the switches with any equipment that is connected to the mains.

For most applications including 6 V 40 mA lamp switching, small radios and tape recorders and model train motors, the BFY52 transistor will be perfectly adequate at voltage levels up to 20 V . (Note that a BC107 or a ZTX300 and not a 2 N 2926 must be used in the circuit of Fig. 5.6b if a supply voltage of more than 18 V is used.)

These switches can be made up permanently if they are to be used often and they can be wired into any larger unit as necessary. The main point to consider is overheating. If a large current is passed through the transistor it will get hot and too great a temperature can destroy the transistor.

To get rid of the excess heat a heatsink is used. Clip-on heatsinks are readily obtainable for

Fig. 5.8 (a) commercially available, (b) home-made transistor heatsink.
the BFY52 (Fig. 5.8a) but they are easily constructed from scraps of aluminium or copper sheet (Fig. 5.8b). Make sure that the metal is in good contact with the can of the transistor but note that the can of the transistor is internally connected to the collector so do not allow the heatsink to touch any other part of the circuit.

The BD131 and similar high power transistors are bolted to the heatsink using the hole in the transistor. This may consist of
a piece of aluminium sheet or a specially constructed finned type.

As well as the heatsink it is also necessary to allow the air to flow freely, so it is a good idea to put holes in the box which houses the current carrying transistor.

If only low power is being switched, or high power for only short periods, then a heatsink may not be necessary. If, during use, the transistor becomes too hot to touch then fit a heatsink which reduces the temperature.

DUAL FUNCTION SWITCH

If preferred, a dual function switch can be built i.e. one that has a "high on" and a "low on" input. The circuit is just a little more complicated than the previous two and can be seen in Fig. 5.9a.

Basically, it is the "low on" circuit with an extra input to the base of the BFY52 or BD131 transistor to give the "high on" input.

To stop this input affecting the previous stage the diode is fitted, though this does not affect the operation of the "low on" circuit.

One further point about this circuit: when used as a "high on" switch, the "low on" input must be connected to the positive supply.

If the switch is to be made up as a permanent unit then a suitable layout is shown in Fig. 5.9b. The power transistor is bolted to the lid of the metal box to act as a heatsink.

If heavy currents are to be used for fairly long periods then it is

Fig. 5.9. (a) The circuit diagram and (b) shipboard layout of a dual function switch.

wise to make some ventilation holes in the box.

No wires or other contacts must touch the metal box since the metal plate of the BD131 is connected to the collector.

DESIGNING SYSTEMS

This series began by showing how components could be joined together to make gates. Then we saw how gates could be joined to make logic circuits. To make this simpler we used gates in i.c.s. instead of making them from individual components.

Various input devices such as a clock and light operated switch have also been described as well as output circuits such as loudspeaker units and power switches. We will now consider how some of these units can be joined to make systems able to perform quite complicated operations.

COMPATIBILITY

The circuits described in this series have all been designed to make the combining of such units a simple matter: they all operate on a 6 V power supply line and all inputs and outputs are compatible. All outputs can be fed into i.c.s and all i.c. outputs can operate the output devices.

Some of the input devices can be connected directly to output devices if required, e.g. the clock can be coupled to the loudspeaker unit without any i.c. between. Thus the problem of designing systems is mainly that of deciding what the system is required to do.

DAWN SWITCH

As an example of a system here is a design for a unit which will make a noise when it gets light each morning. (It will also sound during the night if the house catches fire!)

The block diagram of Fig. 5.10 shows that the system consists of four sections: a light detector, a power switch, a clock to

Fig. 5.11. By adding a bistable the power switch will stay on even when the light is removed.
generate the alarm signal and a loudspeaker so that the signal can be heard.
If the units have already been constructed then try connecting them as shown.

When the clock is switched on its oscillations are heard through the loudspeaker unit. The clock is to be triggered by the light operated switch, which is turned on as the light reaches a given brightness. Since this is a slow light change, the switch using the light dependent resistor rather than the photo-transistor would be most apt.

This gives a low output in the light, and a high output in the dark but the output of the switch is only capable of operating an i.c. gate. This output could be used to operate a gate in the clock circuit-it could be connected to one of the gates comprising the clock. This would cause the clock to operate in darkness and cease in light which is the wrong way round for our purpose.

One of the unused gates in the 7400 could be used as an INVERTER to overcome this problem but this approach is not a sound one for it means the clock and the loudspeaker unit would be consuming power all night, even when they were not producing any sound. It would be better if they could be switched on only when required. Hence we use a power switch after the light

Fig. 5.10. Block diagram showing how simple units can be combined to form an alarm which sounds at dawn.

operated switch to switch the supply of the clock and the loudspeaker unit.

The switch only needs to be of the medium power, "low on" variety.

LATCHING ACTION

For some applications of this circuit it might be useful if, once triggered, the alarm kept sounding. For instance, it could then be used to detect the flash of a burglar's torch.

We have already met a circuit which stays in one state after being triggered and this is the bistable. The bistable would be triggered by the light operated switch whose output would go to the power station.

The bistable can be made from nand gates which will change states when the input goes low, that is when the light operated switch is illuminated. The two gates of the bistable can be wired up on the experimental board and connected into the system as shown in Fig. 5.11. If the system is to be built as a permanent unit then the two spare gates in the clock i.c. could be used.

REMOTE CONTROL

Another example of a system which can be built using the units so far covered is a light operated remote control system. Using such a system the light from a torch can be used to switch on a piece of electrical apparatus such as a radio, model car or tape recorder.

The distance from which the control can be effective depends on the power of the torch. Car headlights from a car turning into a drive could be made to switch on a warning alarm in the house or a torch could be used to switch on a radio without getting out of bed.

To detect the light, a light
operated switch is needed and to control the load we need a power switch. There are several ways in which these can be joined together and the best thing to do is to build the system on the experimental board and when it performs correctly to make it into a permanent unit.

The photo-transistor light operated switch is best for this type of system: it needs a fairly high level of illumination to operate it so can be arranged not to respond to normal lighting but only to the extra light from a torch or lamp.

For a device which is to be triggered by a light shone on it at night use the ORP12.

The outputs from the light operated switches are not sufficient to power anything other than an i.c. input or the input to a transistor switch so some sort of circuit must come between the light operated switch and the load to be switched. There are many ways of doing this:

Direct operation

The output of the light operated switch goes direct to the power switch. The photo-transistor type goes low when illuminated so the "low on" power switch is necessary if the load is to be switched on when. the torch is shone. The reverse effect can be obtained by using the "high on" power switch.

The ORP12 switch goes high when illuminated so for "light on = load on" the "high on" switch is needed, and for "light on $=$ load off" the "low on" variety must be used.

In some cases the output from the photo-transistor switch will not go high enough to operate the power switch. This is because the amount of current available from its output is small. It is enough to operate an i.c. gate but is not quite enough to operate the power switch. If this happens try adding a pull up resistor as shown in Fig. 5.12. This raises the voltage level of the output up to the point at which it begins to operate the power switch. The value of the resistor used should be somewhere between 1.8 and 4.7 kilohms.

In fact, the added resistor is in parallel with the resistor in the light operated switch. Since the 270 kilohm resistor is so high compared with the pull up resistor, in a permanent unit the lower value resistor alone can be used.

For operating i.c. gates use only the 270 kilohm resistor, as the lower value will mean that the output will never go low enough to operate the i.c. input.

Using a bistable

The light operated switch is used to trigger a bistable as shown in Fig. 5.13. The effect of this is that the device will continue to operate even when the torch is no longer shining on the light detector. A reset button is necessary for switching off.
If the photo-transistor light operated switch is used, make the bistable from nand gates so that it will be triggered from a low input from the light operated switch (Fig. 5.13a). With the ORP12 type use Nor gates which

Fig. 5.12. Adding a pull-up resistor.
will be triggered by a high input (Fig. 5.13b).

Using a flip-flop

A 7473 (or more cheaply a 7472) i.c. can be used as a flip-flop. The output from the light operated switch is connected to the clock input and the J and K inputs are connected to 6 V . With this wiring the flip-flop will change state whenever its clock input goes low. The simplest light operated switch to use is the photo-transistor type as this goes low when illuminated. If an ORPl2 type is used an INVERTER will be necessary.

The effect of the flip-flop is that when the torch is shone for the first time the load will be turned on and will stay on until the torch is shone again when it will turn off. The advantage of this is that when you are in bed listening to the remote controlled radio, you do not have to keep the torch shining on the light detector. The circuit is shown in Fig. 5.14.

To be continued

Fig. 5.13. Remote control using a light operated switch. The bistable causes the power switch to latch on. (a) Using a phototransistor, (b) a light dependent resistor.

Figs 5.14. By placing a 7472 or 7473 flip-flop between light operated s witch and power switch, the light can be used to alternately turn the load on and off.

By S. McCLELLAND
measure the activity of a given organ or tissue in the body and to compare these activities with normal, healthy tissues.

A schematic diagram for a diagnostic medical electronics system designed to measure tissue activities in the patient is shown in Fig. 1.

First, whatever the system is designed to measure-the electrical triggering of the heart, the pressure in the arterial blood supply, the pulse rate-some sort of transducer will always be needed. This is the "business end" of the equipment, the part the patient sees, and it will convert these various biological measurements into electrical impulses the system can handle.

These electrical signals will be fed straight into the second stage of the system, the amplifier. It should be both sensitive enough to record biological signals which are in general very weak and also as noise-free as possible to discriminate the true measurement from spurious signals which may find their way into the equipment.

The third main stage of the equipment is usually some sort of display or recording device: per-
haps just a meter, or a c.r.t. display, or where a permanent record is wanted, a chart or magnetic tape recorder.

SYSTEM TRENDS

Looking at the system as a whole we generally find most problems are at the transducer end. Getting the transducer into the correct position, and making sure it stays there can sometimes be difficult. In some perverse way, biological environments seem to resent electrical prying!

In fact, the trend today is to make the actual information sampling as quick, convenient and painless as possible, for often hard-pressed non-technical staff may have to administer it. This has resulted in a reduction in the surgery, which is very timeconsuming, necessary to implant the transducer.

Similar comments can be made on the display of diagonstic information. It must be presented as conscisely and unambiguously as possible-in a matter of life and death a nurse has no time to squint at an electrocardiogram display and ponder on what it means!

Fig. I. Schematic diagram of a medical electronics system.

We can illustrate these features by discussing briefly some of the diagnostic equipment available. As we are electronics enthusiasts it might be appropriate to look first at how we measure the body's own electrical activitybioelectricity, and start at the measurement which is, quite literally, closest to our hearts, the electrocardiogram.

BIOELECTRIC
 MEASUREMENTS

Most people will have heard of the two main bioelectric measurements; the electrocardiogram or E.C.G., which measures the heart's activity and electroencephalogram or E.E.G. which measures the brain's activity.

The E.C.G. arises directly from the pumping action of the heart. The human heart is basically a small, mechanical pump of four chambers. When pairs of these chambers contract in sequence, they squeeze blood into each other and round the body. Proper timing of these contractions is no fess important in the heart than in the internal combustion engine and is in fact controlled by an electrical excitatory wave which sweeps across the heart in all directions about 70 times a minute. It is this electrical impulse which stimulates the muscular heart tissue into contraction.

THE E.C.G. MACHINE

The electrocradiograph-E.C.G. machine-picks up these electrical imoulses using electrodes mounted outside the body on the skin. At this point thev are only about 1 mV in amplitude.
Since the E.C.G. pulses spread out across the heart tissue in an essentially 3 -dimensional manner, these electrodes must be placed at different places on the patient's bodv so that a full picture of the E.C.G. can be built up. In practice, 3 E.C.G. amplifiers are used in parallel to get this picture with the capability to switch between several groups of electrodes. An electrode mounted on the right leg is normally used as a reference.

Most E.C.G. designs now employ some form of high impedance input, differential amplifier. The high impedance input cuts down the effects of the high (and variable) resistance of the E.C.G.

The Cardiocascular Instruments' electromagnetic flowmeter for measuring blood flow.
electrode-skin boundary (moistening the skin with special lotions also helps to do this).

Differential amplifiers are preferred over single-input ones because they are designed to reject common mode spurious signals picked up from the mains by the E.C.G. leads or even by the patient.

Since the output must be of the order of volts to drive the display equipment, the total E.C.G. amplifier must have a voltage gain, of about 1,000 , with a bandwidth of about 100 Hz to give the accurate detail of the E.C.G.

E.C.G. INTERPRETATION

Having recorded an E.C.G., what can we deduce from it? The form of one E.C.G. signal (this corresponds to one complete heartbeat) can clearly indicate electrical activity. The E.C.G. trace peaks, which are associated with the heartchambers being electrically excited and then recovering their normal state, are assigned letters to ease identification (Fig. 2).

Fig. 2. Typical E.C.G. associated with one heartbeat.

As with most measurements, interest centres rather on abnormal E.C.G.s than normal ones, and they can often give an immediate indication of the patient's complaint. One of the first things
which is studied, for example, is heart rate. For example, the pacemaker tissues of the heart may be driving it too quickly (tachycardia) or too slowly (bradycardia), both of which will be evident from the E.C.G.

RECORDING BRAIN WAVES

Both the electrical activity of the heart and that of the brain are, of course, bioelectric potentials, but the characteristics of each are very different.
To start with, if we measure the brain's electrical activity using electrodes taped to the head connected to an electroencephalograph or E.E.G., we find the amplitude is very small, about $50 \mu \mathrm{~V}$. E.E.G. activity is also far more complicated than, for example, E.C.G. activity-so complicated that the full significance of E.E.G. activity-dubbed "brain waves"-has yet to be understood. This is hardly surprising when we realise that the human brain contains some $10,000,000,000$ nerve cells all capable of contributing to the electrical activity of the brain!

However the E.E.G. is still a very valuable instrument in medi-cine--for example it can indicate the presence of nervous diseases such as epilepsy which can cause highly irregular E.E.G. patterns.
E.E.G. analysis also reveals that depending on conditions one of four main frequency bands will be present. These bands aredesignated alpha, beta, theta and delta respectively. Alpha rhythmwith a frequency between 8 Hz and 14 Hz -is the major one and is associated with relaxation, which has led to the development of equipment designed to feedback alpha rhythm to a subject in order to induce relaxation (Fig. 3).

Fig. 3. Impression of one recorded E.E.G. channel showing signal irregularity and dominant frequency of about 11 Hz (α rhythm) which rapidly subsided at point " A " when subject opened his eyes and stopped relaxing.

If we return to the actual instrumentation used in E.E.G. work we can see that because of the characteristics of the signals, high quality, noise-free equipment must be used.

We can take as an example of this the "Beckmann Accutrace 16" E.E.G. As in the E.C.G. measurements, building up a complete picture of E.E.G. activity requires several electrodes and the Beckman Accutrace has 16 instrumentation channels (8 channel models are also avail. able). A chart recorder output provides a display area some 75 cm wide for these channels.

Since after all we are dealing with the amplification of low level signals, sensitive amplifiers are needed. This instrument has a maximum sensitivity of $0.5 \mu \mathrm{~V} /$ mm and buffered differential amplifiers are again used to eliminate spurious signal pickup.
blood is a moving, electrically conducting liquid. This means that in the presence of a localised magnetic field, a small measurable voltage will be induced across the bloodstream which is proportional to its rate of flow. A plastic clip arrangement which fits round the blood vessel concerned carries both the pair of electrodes which detects this voltage, and the electromagnet used to produce the field.

OTHER MEASUREMENTS

Other physiological measurements which can be made include pulse rate, body temperature, and respiration.

Pulse rate is usually measured by attaching a photocell-lamp transducer to the patient's finger, toe, or ear-lobe, in such a way that the light from the lamp passes through the monitored
blood vessel before reaching the photocell. The electrical output of the photocell varies with the blood pumping rate ie. pulse rate.

Body temperature is relatively easy to measure-the transducers used in this case being low thermal capacity thermistor probes which are small enough to be mounted anywhere on the patient.

Direct measurement of breathing (respiration) is obviously also very valuable. It can be measured rather ingeniously as the electrical impedance changes in a person's chest which acoompany his breathing in and out. To detect these changes a small a.c. voltage of about 100 kHz is applied to the chest, and the resulting current flow measured.

PATIENT MONITORING

Many of the various pieces of equipment previously discussed are often combined into a general patient monitoring system designed to continuously watch over the patient and inform the medical personnel if an emergency does develop.

The advantages are obvious: only an electronic system remains vigilant round the clock and is subject to none of the fatigue, to which even the best human personnel are prone. Also the

BLOOD MEASUREMENTS

Apart from the E.C.G. and E.E.G., blood measurements (particularly pressure and and flow rate) are also important.

The pressure of the blood in our arteries varies through a minimum to a maximum over one heart beat cycle. It is measured usually by introducing a tube, filled with saline, into the blood vessel concerned. Blood pressure variations are transmitted through the saline medium to a transducer mounted externally on the tube. The transducer correspondingly modulates a carrier signal. After amplification and demodulation, the fluctuations can be displayed either as whole cycles or separated as maximum (systolic) and minimum (diastolic) blood pressure variations.

Blood flow rate, on the other hand, can now be measured without injecting anything into the blood vessel. This is achieved by using electromagnetic flow meters which depend on the fact that

The Beckmann Accutrace-a modern electroencephalograph.

Fig. 4. A schematic diagram of a bedside monitoring system.
automatic monitoring system is probably in a better position anyway to specify "routine" abnormalities ie. those for which it is programmed, quickly.

In general, patient monitoring systems are of two types: bedside monitoring systems for intensive care units, and surgical monitoring systems for use in the operating theatre.

BEDSIDE MONITORING

The concept of bedside monitoring is quite simple: in an intensive care unit the system is arranged so that there are usually six to twelve patients in each section. The physiological parameters (for example E.C.G., pulse rate, temperature, blood pressure) of each patient are continuously checked by a bedside monitor next to him. The monitor contains these items of diagnostic equipment in one housing but each is often in a modular package making for maximum flexibility. The "Sirecust" system developed by Siemens Ltd. exemplifies this.

Each bedside unit is also connected to a permanently-manned central monitoring unit. The unit permits more detailed analysis of any one patient's condition (it has the capability to select individual bedside units) and usually has substantial facilities available to record it (Fig. 4).

The feature all bedside monitoring systems share is the provision of alarms-physiological parameters which cross preset values on each item of equipment will alert the medical personnel and automatically select the patient concerned for monitoring at the central unit.

RECORDING

In some units this alarm capability is further enhanced by the addition of a magnetic tape loop recorder to each bedside system. The tape loop is long enough so that one continuous revolution of it takes up to 1 minute and recording normally takes place continuously. In the event of an emergency, the loop is immediately played back through a chart recorder. In this way the physician is informed of the patient's physiological condition from 1 minute before the alarm was triggered and the development of the emergency.

Sometimes a normal, continuous recording is wanted, but hand in hand with its undoubted usefulness goes the problem of how to analyse effectively the enormous quantities of output which are produced.

One low cost convenient solution to this is the provision of a time compression magnetic recording system (for example, developed by Siemens Ltd.). By speeding playback time, one hour recording time takes one minute to analyse, naturally making for quick overall interpretation. In fact a compatible portable analogue recorder is available so that the subject doesn't even need to be inside the hospital while the E.C.G. recording takes place but can be leading a near-normal life.

SURGICAL MONITORING

In general, monitoring techniques in the operating theatre are very similar to bedside monitoring techniques: indeed the differences lie not so much with the electronic circuitry as
with the external design of the system.

Often the medical electronics system will be in a modular form -built in a particular arrangement to suit the operating theatre layout and to minimise hindrance to personnel movement.

Of course, there is usually slightly more of an emphasis on speed of data processing and display so that everyone concerned can see the state of the patient's health at a glance. This kind of factor is often reflected in even larger screen c.r.t. displays than normal or slave c.r.t. displays scattered round the theatre.

COMPUTERS

This need for urgency has also spurred on the applications of that seemingly ubiquitous device -the computer. It is proving very useful in the operating theatre where E.C.G. information, for example, can be sent directly from the patient down a telephone line in analogue f.m. form to a remote computer centre, processed and sent back to the surgeon in the theatre.

No less are the applications to bedside monitoring-where data handling of this type (though in batch-input form) often takes place. In both applications, a computer system can be a valuable adjunct to the doctor in providing diagnosis. The trend obviously suggests that one day a completely electronic "doctor" will be developed. While this is probably possible in theory, at least, it is doubtful that it would ever be practicable without considerable technological advances. Whether it is at all desirable is, of course, another question.

However, the use of computers isn't restricted to purely diagnostic applications. A hospital based data-processing system is capable of making an extremely efficient match between patients requiring treatment and hard-pressed medical resources-both human and machine-so called "organisation optimisation". So in the future we can look forward to the computer extending more and more into every sphere of hospital activity - with the patient's every step from admission to eventual discharge being somehow involved with it.

Your Career in Electronics

by Peter Verwig

RADIO COMMUNICATIONS

WHEN thinking about a career the sensible approach is to seek a growth situation. An expanding industry will clearly provide more opportunities for career development than one which is stagnant or declining. Opportunities for promotion in a stagnant industry are stunted by the need to wait to step into "dead men's shoes", whereas in an expanding industry new jobs and therefore new job opportunities are being created all the time.

Electronics, as a whole, is in a growth situation but the growth is not uniform throughout all its specialist sectors. Domestic radio, for example, has suffered an enormous decline in recent years in the U.K. and other highly industrialised countries, not because people buy less radios but because production has been moved to the Far East where labour costs and other factors allow them to be manufactured very cheaply.

The same applies to items like cassette recorders and hif equipment and, increasingly, to television receivers. There is a similar decline in home manufacture of low-cost electronic components. So, unless you want to be a service engineer, consumer electronics tends to be less attractive than many other industry sectors.
The young job hunter would do much better to concentrate his mind on getting employment in the professional and capital goods sectors where, because of the
much higher level of technology involved, the design and production is in the U.K. and where companies with a good export performance are well-cushioned against trade recession in the home market.

One sector where exports are buoyant and look like staying so for many years to come is radio communications. This is the oldest sector of electronics stretching back to the beginning of the century when Marconi was conducting his early experiments and, until the 1930's, was virtually the whole of the electronics industry if we include public broadcasting. For sheer size it has long been displaced in economic importance by electronic data processing which has made such impressive growth in the past 20 years.

Nevertheless, radio communications is still an important and permanent sector of the electronics industry and, moreover, a sector in which Britain has always enjoyed a fine reputation for innovation and technical excellence.

A good guide to what the rest of the world thinks about a particular product sector is to look at the trade balance of imports and exports.

In the first nine months of 1976 we find that Britain imported £16.6 million worth of radio communications equipment but that exports of home produced equipment to other countries was $£ 62 \cdot 7$ million, giving a surplus of $£ 46$ million. Exports showed a growth in those nine months of over 50 per cent compared with the same period in 1975. And if we look at
the companies working in the field of radio communications quite a few export over 50 per cent of their total production and in some cases as much as 80 per cent.

Perhaps the most surprising aspect of radio communications over the past few years is that the h.f. band of the frequency spectrum, that between 2 MHz and 30 MHz , is still so active in medium and long distance communications. In theory the h.f. band should be slowly emptying as more and more long-distance traffic is absorbed by satellite communications and high capacity submarine cables. Especially so as the last two are inherently more reliable being completely free from the vagaries of the ionosphere and the restrictions of the present sun-spot minimum.

MICROWAVES

For short-haul work there has been tremendous growth in the use of v.h.f. and u.h.f. for both fixed point-to-point and mobile use, and terrestrial microwave links are now commonplace for high capacity trunk routes, a recent example being the completion of the microwave system in the Caribbean extending over 800 miles with a capacity of 960 voice channels.

Microwave technology has now advanced so much that it is a separate discipline embracing radar and a number of navigational systems as well as communications. This month we shall confine our remarks to what is
often referred to by those working on super high frequencies as "steam radio", the implication being that communications systems operating at the lower frequencies are very old fashioned.

It is certainly true that the very first practical radio communications systems were on long waves, then medium waves and, by the 1920's, it was discovered that very long distances could be covered on remarkably low powers on short waves. Amateur radio experimenters were responsible for discovering that short waves were of real value. Hobbyists, like yourselves, but of an earlier generation, and they had been banished to what were then thought as being useless wavebands. But once the amateurs had demonstrated that, given suitable propagation conditions, they could communicate with each other over vast distances with only a handful of watts of radiated power the professionals, previously scornful, moved in.

IMPROVEMENT

So, in the sense of exploitation of the short waves, i.e. the frequency spectrum 2 to 30 MHz generally known as the h.f. band, the basic system may be called old-fashioned. But so is farming. And while modern technology has transformed farming through the years and improved efficiency enormously, so has technology transformed the use of h.f. Just as the modern farmer gets a far greater yield of produce per acre
today compared with 50 years ago, so do h.f. communicators squeeze more out of the available communications channels in the spectrum 2 to 30 HMz .

The improvement has come from greatly improved frequency stability, far more selective receivers, far more use of directional beam antennas, and new methods of modulation, particularly single sideband suppressed carrier (s.s.b.) which doubles the number of voice transmissions for a given frequency occupancy. For Morse and other forms of data transmission there are highspeed keyers which means more traffic in a given time.

If we look to v.h.f. we again find that improved frequency stablity of transmitters and receivers has allowed channel spacing to be progressively reduced from 50 kHz to 25 kHz to $12 \cdot 5 \mathrm{kHz}$ allowing more and more stations to operate in a given band of frequencies without mutual interference.

There are other great improvements. For example, selective calling systems by which a mobile station may be alerted to the fact that it alone is being called. And, of course, the advent of solid state technology and microminiaturisation have brought about the widespread use of the pocket radiotelephone for police, firemen and other public servants on v.h.f. and u.h.f. Even on h.f. where there is a physical limitation in reducing the size of inductances and certain other components it is possible to squeeze a 100 watt radiotelephone into a car dashboard. In the old days
such a set would be housed in a six feet high equipment rack of considerable weight.

REDIFON

Regular readers of this series will recall that to illustrate career prospects I have frequently selected a company as a practical example. To illustrate radio communications I have chosen Redifon Telecommunications Ltd. I might have chosen Marconi who have been in the business for 75 years, or the much younger Racal Group who are performing so brilliantly year after year, or Pye Telecommunications Ltd., who have set such a cracking pace in mobile radio. Any of these companies can provide good opportunities for keen technicians and engineers interested in radio.

Of course you don't need to work for a manufacturer to be in radio communications. There are similar opportunities in the Post Office, all three armed services, air lines, shipping companies, in companies like Cable \& Wireless and International Aeradio in the electricity and gas supply industries, and a host of other user organisations.

But Redifon Telecommunica. tions is currently of interest because it is working hard on expansion in total business activities and is broadening its product range. The company is a subsidiary of Rediffusion Ltd., well known for Cable TV, radio relay systems and TV rentals as well as for its stake in TV and sound broadcasting at home and overseas.

Bench testing a Powerpage transmitter as used by the Post Office for wide area radio paging.

Adjusting an HFA 125 100W solid state HF amplifier, an example of third-generation solid state equipment designed for the military and naval markets.

Redifon has its headquarters at Wandsworth where there are also production facilities, but main production has been gradually transferring to a new manufacturing plant at Cwmbran, Gwent, opened in June 1974. The present production area is $52,000 \mathrm{sq}$. ft . and there is provision for further expansion to double in size and also introduce research , and development on the site.

MARINE EQUIPMENT

The company has a complete range of marine radio communications equipment in the catalogue and can not only supply all the requirements for a fully equipped ship's main radio station but can also supply sea-going operators.

A typical marine radio package will include a bench-mounted operator's console with main and reserve receivers, v.h.f. radiotelephone, two watch receivers for monitoring distress frequencies, a reserve transmitter, interface with the ship's telephone exchange, auto-keying unit for sending distress signals, radio selector panel, and loud speaker panels. The accompanying main ship's transmitter is floor-standing and capable of putting 1.5 kW into the antenna.

All ship radio equipment has to be approved in facilities and quality by licensing authorities and Redifon claim to hold type approvals from more countries than any competing manufacturer. This, of course, helps enormously in selling on a worldwide basis and quite recently Redifon has had additional export successes with Japanese shipbuilders, with Red China and with shipping companies in India, supporting the existing trade with Europe in such countries as Germany, France, Norway, Greece and Italy, not to mention a special fit in a luxury yacht owned by a rich oil prince.

A year or so ago Redifon was hit by the world shipping recession. There was a big reduction in order intake but marine business is now reviving. The second half of 1976 showed a 34 per cent increase in orders over the same period in 1975, a good sign.

Wise companies try to overcome ups and downs of this nature by broadening their product lines. In marine communications this is done by selling to
navies and by selling communica-tions-related products, Redifon has important naval contracts and has recently achieved enormous success with the Omega navigator which uses a world-wide network of ground stations to provide a "fix" for any Omega-equipped ship. Nearly 1,000 systems have been sold which is far more than any other manufacturer.

Redifon also build satellite navigation systems which will give a "fix" anywhere in the world to within 400 ft , compared with Omega's one or two miles. Yet another product is a radio beacon suitable for marine or aviation use.

RADIOTELEPHONE

The overall product lines are further broadened by land communications. Redifon is building a new business with the Routemaster v.h.f. radiotelephone specially designed to be fitted on buses. This product is a direct result of vandalism. If there is a disturbance on the bus the driver can be instantly in touch with a headquarters station by speech or automatically, in which case the transmission not only gives the alarm but also vehicle identification. The system also includes provision for fitting additional services at a future date for automatic data transmission of vehicle status and location.
C.E.R.E.S.

Last June Redifon announced entry into high level radio monitoring with a system called CERES (Computer Enhanced Radio Emission Surveillance). CERES came about through a British Government requirement. Monitoring stations are used by organisations such as the BBC and news agencies.

Less publicised are the secret monitoring services where transmissions are monitored on a regular or intermittent basis as part of a country's intelligence service, and especially to identify unauthorised transmissions, their operating frequencies and message content. As such transmissions are likely to be encrypted in secret code which will need to be broken, perhaps taking hours or days by experts even with the aid of computerised codesmashers, such transmissions are invariably recorded.

Two or more monitoring stations at different locations will also co-operate in a directionfinding exercise to pin-point the location of the unauthorised transmitter.

This work, 24 hours a day, seven days a week, has traditionally required a great number of highly skilled operators. CERES is a modern system in which, with computer assistance, a single operator can control up to four

Checking out units of a ship's main radio console.

receivers at a time with automatic search over the tuning ranges and automatic recording of one or more suspect transmissions while still searching for others. Six operators can thus control 24 receivers in a typical radio monitoring centre.

The computer is programmed to control many of the routine tasks which previously needed a separate operator. It can, for example, tune to spot-frequencies at pre-determined times, or maintain continuous watch, or continuous search ignoring all signals which have previously been established as legitimate.

This year Redifon will be extending its activities in the mobile radio market with new u.h.f. vehicle-mounted and personalportable transceivers and is in the running for personal paging contracts from the Post Office. There is a suggestion that Redifon will enter the Citizen's Band market should CB be allowed in the UK.

It should now be clear that although I have not mentioned anywhere near all of Redifon's
radio communications products, there is a great spread of activity including high technology systems, the sort that cannot be easily made in Hong Koilg or Singapore or Taiwan. The products are also sold world-wide. In fact 80 per cent of production goes overseas.

In short, Redifon Telecommunications and similar companies offer a good career structure and a secure future. In Redifon's case there is also the prospect of rapid expansion, another desirable feature.

LOW ANNUAL INTAKE

As Redifon is still comparatively small the craft apprentice intake is proportionally low, currently running at 6 a year but, as expansion proceeds, there will be vacancies in all technical grades both inside the factories and laboratories and outside on commissioning new installations, and in servicing.

If you already have qualfications or are keen and willing to
do on-the-job training with a view to qualifying and really getting ahead, then companies like Redifon will always give you a fair hearing.

A short final word on apprenticeship. Don't look down your noses at this method of getting a good start in life. Sir Raymond Brown, now managing director of Muirhead, started life as a Redifon apprentice. Bob Munton, operations manager at Redifon Telecommunications and responsible for all manufacturing activities, systems engineering and quality assurance, started life as a sheet metal apprentice with de Havilland. On the way up he obtained a degree in Business Studies and is a member of both the British and American Institutes of Management.

There are dozens of other examples of apprentices who got to the top, especially in electronics where brainpower and enthusiasm are the name of the game rather than the circumstances in which you may have been born.

THE long hot summer which is now a distant memory, had the effect of completely dis-orientating me. Let me explain, every year the thought is always at the back of my mind that come September, the weather gets colder, the days get shorter and there is bound to be a big influx of new recruits to our fascinating hobby. It is therefore old uncle Paul's pleasant duty to advise these novices on such things as buying their components.

Well you may be saying, that seems simple enough. Yes and so it is, but my copy has to be on the editor's desk about three months before it is published. In effect I should have it ready about June.

However on the principle of, "better late than never", here are a few of my well tried and trusted tips.

To-day we retailers all have to specialise in certain areas of electronics and so the first point is, you are not going to get all your parts from one source. I would reckon you will, on
the average, have to deal with at least four suppliers, and since, the "high street component shop" has disappeared from most towns, you will have to order the goods by moil order.

The second point is that most mail order houses are operating with very depleted staff for economic reasons so try and make it easy for them. For a start fill in their forms clearly using block capitals, (especially your name and address). Do not chase them if your goods do not appear in under a week (it will take longer than this even if they manage an immediate turn round).

I am always baffled by the customer (and fortunately they are a very small minority) who telephone to tell me that their order was a fortnight in coming and they consider it disgraceful. I usually tell them that on the few occasions I order goods by mail order, I usually wait two months before I see my parcel. These same people usually tell us we should acknowledge each
order, without stopping to think what it would cost in labour and postage. The real answer to this problem is to plan well ahead.
If you are a real enthusiast (and I am sure you are at least one in the making) you are going to tackle more than one project, and therefore start ordering the parts for your second project while you are still busy on your first.

Lastly 1 must touch on a very real problem, one that is a nightmare for the retailer. "inflation".

Everyday Electronics does a splendid job, in trying to give guidance on the cost of a project. I naturally check my prices against their forecast prices, and I regret to say I can seldom match them. The two or three months gap between the forecast and the appearance of the article would easily account for it. To keep up with inflation, our prices (not all of them of course) are changing daily. You may tell me I ought to hold my prices if only for a month, but dear reader, suppose you offered me an article at $£ 1.00$ and just as I was handing you the money. you learned that the next time you are going to buy the self same article it will cost you $£ 1.50$. What would you do?
So to my final point, when you have totalled your order add on 10 per cent. for inflation. It will be much appreciated by your suppliers, and rest assured he will refund it if it is not required! To sum up:
\star Write clearly and use the suppliers order form, \& Be Patient. \& Plan ahead. * Make due allowance for inflation.

There must be many constructors who, like the author, have accumulated a large number of assorted transistors of somewhat dubious origin. Some work, some don't, but a far greater difficulty is posed by those that "half" work, i.e. they function but have reduced gain, high leakage, etc.

There have been designs for testers which will give a comprehensive check to almost any type of semiconductor, but the instrument which would be of most use in the average workshop is one that will provide, in a few seconds, a simple functional check on the transistor or diode about to be used, together with a rough idea of gain. In addition such an instrument can be invaluable for trouble-shooting purposes on existing equipment.

The tester in this article is inexpensive to construct since it has been designed to use a surplus lmA meter, which many constructors will already have in the "junk box". Meters of lower current rating can of course be used if a suitable shunt is fitted, but a scale calibrated in decade steps is to be preferred since it simplifies the reading of gain.

Instead of the more usual transistor holders mounted on the case the author has chosen to have three small crocodile clips hanging from the panel on short leads; holders are more expensive, prone to failure since they
are not designed for continuous use and are in any case useless for components taken from equipment or "breadboards". The clips are cheap, robust and will accommodate practically any. thing.

CIRCUIT ACTION

The principle of operation is about as simple as possible, as can be seen from the circuit diagram of Fig. 1. Switch Sl selects off, PNP, or NPN; the circuit is the same in both cases but the battery and meter polarities are reversed. In the off position a short is applied across the meter terminals, always a good practice where possible as it provides heavy damping to the movement and thus helps to prevent damage in transit.

Switch S2 in position 1 connects the meter as a voltmeter in the collector circuit and leaves the base open circuit. Thus if the transistor under test is short circuit, a high reading will be obtained, but leakages up to $200 \mu \mathrm{~A}$ or so can be read without too much loss of sensitivity due to the series resistance. Small transistors with a leakage higher than this will normally be useless.

Diodes can be checked in this position by connecting them between the E and C leads; $S 1$ can then be used to apply forward and reverse current tests. In addition shorting E to C checks
the internal battery voltage, though it should be noted that there is no appreciable load on the battery whilst this is being done.

Switching S2 to either test position connects the meter as a collector current monitor and applies a bias current to the base connection of approximately $10 \mu \mathrm{~A}$. The common emitter current gain (h_{FE}) of a transistor is given by its collector current divided by its base bias current, so a transistor with a gain of, say, 400 would give a collector current 10×400
of $\frac{}{1000} \mathrm{~mA},=4 \mathrm{~mA}$ which can easily be read in the high gain position, where the meter is shunted to read 10 mA full scale.

For a gain of less than 100, S2 should be moved to the low gain

Fig. I. Circuit diagram of the Transistor Checker.
position, where a full scale deflection of 1 mA thus reads gains of 0 to 100. The capacitor Cl is included to prevent noise or stray hum fields, etc., causing errors in readings.

CONSTRUCTION

The unit is based on two 4-pole 3 -way "wavechange" switches, only 3 poles of $S 2$ being used. A 10 -way tagstrip provides mounting for the two presets and anchorage for the three connector leads, see Fig. 2. Actual layout in the case will depend on the components available, particularly the meter, but should present no problems to the constructor. The prototype was built into a homemade aluminium box, approximate size $200 \times 90 \times 45 \mathrm{~mm}$, the front panel layout is given as a guide in Fig. 2. The wiring, particularly of the switches, can be a little tricky and the use of several different coloured wires is
recommended. Tick off the wires on the diagram of Fig. 2 as they are connected.

SETTING UP

Potentiometer VR1 has to be adjusted to give meter full scale on the available battery voltage. Switch S1 to either "on" position, S2 to position 1, short leads E and
C together and adjust VR1 for full scale.

Potentiometer VR2 is the 10 mA shunt adjustment. Using the test arrangement shown in Fig. 3, switch S1 to PNP, S2 to position 2, adjust the 1 kilohm potentiometer to give a current flow of 10 mA from E to C, and adjust VR2 for full scale on the meter. If the

Fig. 2. Layout and wiring of the Transistor Checker.
Fig. 3 (Right). Test arrangement.

adjustment proves tricky an increase in the value of R3 may prove helpful.

Finally the value for the bias resistor R1 has to be selected. The current through this should ideally be $10 \mu \mathrm{~A}$, but is dependent upon the voltage across it, which consists of the battery voltage less the base-emitter voltage drop of the transistor being tested. The latter differs a little according to the type of transistor, in particular whether it is a silicon or germanium variety, so the actual value of resistance used must necessarily be something of a compromise.
If a meter capable of reading $10 \mu \mathrm{~A}$ with reasonable accuracy is
available, it should be connected in series with the base connector lead and the optimum value of R1 found by trial and error, using silicon and germanium transistors and aiming for an approximately equal crror.

In the prototype R1 was composed of three resistors in series (to yield $10 \mu \mathrm{~A}$); tests were carried out with a BC109 and an OC44 and the final error was only about $0.5 \mu \mathrm{~A}$ in each case (or 5 per cent). If such a meter is not available, however, a 910 kilohm resistor (E 24 range) of 1 or 2 per cent tolerance should be used. This should give an error of not more than 10 to 15 per cent.

USING THE INSTRUMENT

TO TEST A TRANSISTOR
Ensure S 1 is off, S 2 at leakage, connect up the transistor, ensuring no clips are shorting, and then switch S1 to PNP or NPN as appropriate. Note the leakage. If it exceeds 20 per cent of scale ($200, \mathrm{~A}$) do not proceed. Many silicon transistors do not leak at all. If all is well switch S2 to high gain for a gain reading on the $0-1000$ scale. If the gain is less than 100 , switch to low gain for a reading on the $0-100$ scale. Return S1 to off and S2 to leakage before removing the transistor.

TO CHECK A DIODE

Connect cathode to E, anode to C and ensure S2 is set to diode. S1 at PNP then applies forward bias and should give a fairly high reading; S1 at NPN gives a reverse leakage test.

The battery can be checked by switching S2 to battery and S1 to either on position, the meter should read full scale.

Care must be taken to avoid shorting the E and C leads in either gain position as this could lead to damage to the meter.

This unit will test most small transistors and silicon power types, although the low collector currents used may lead to inaccurate gain readings with the latter. Early germanium power types such as the OC36 often have leakage currents in excess of 1 mA and so cannot be checked.

Finally, purists may observe that to test an NPN transistor one has to pass the switch through the PNP position and thus subject it to a reversed supply; a separate supply switch could be used to avoid this if desired.

THERE are many sports, scientific experiments in schools, and other fields of interest where a simple stopclock can prove to be extremely useful. It is possible to produce an electronic equivalent of either conventional analogue or digital timing devices, admittedly digital circuits do offer greater resolution than simple analogue ones; however, this article describes a simple analogue stopclock.

For the beginner this type of unit has several advantages. The main ones are that digital circuits tend to be very easily damaged during construction, and they tend to be far more complicated and expensive even when using modern technology and components. The unit described here is based on a couple of very rugged and inexpensive operational amplifier integrated circuits, and a few discrete components.

Three ranges are covered, and these are 0 to 10,25 , and 100
seconds. The unit is completely portable with power being obtained from a couple of internal 9 volt batteries. These have an extremely long life as current consumption is only about 2 to 3 milli-amps. A battery check circuit is incorporated in the design.

OPERATING PRINCIPLE

The circuit operates on the simple principle that if a capacitor is fed from a voltage source via a resistor, it will store the current that flows into it and the voltage across it will gradually increase. This basic set-up is shown in Fig. 1 (a).

If the voltage across the capacitor was to rise at a linear rate, by using a meter to measure the voltage across the capacitor, and calibrating the meter in seconds, a simple stopclock could be produced. Unfortunately the voltage across the capacitor does not rise in a linear fashion, but gives what is termed an exponential curve if voltage is plotted against time on
a graph. This is shown in Fig. 1 (b)

This means that a stopclock based on this simple idea would have a non-linear scale, and each time division of the scale would have to be located and marked by the constructor. This is virtually an impossible task in practise.

The reason that the voltage across the capacitor does not rise linearly is that as the voltage across the capacitor increases, the remaining supply volts that are developed across the resistor decrease. Therefore as time passes the voltage across the resistor decreases, and so does the charge current to the capacitor in consequence. For the system to function properly some means of maintaining a steady voltage

(a)

Fig. Ia. Basic circuit. (b) Exponential charge curve.

HOW IT WORKS

While switch S is closed a constant current is fed to a capacitor. The current is stored by the capacitor and in consequence the voltage across the capacitor increases as time elapses. The charge voltage is read by a high impedance voltmeter, and there is a linear relationship between elapsed time and charge voltage.

If the voltmeter is adjusted so that, for instance, S has to be closed for 10 seconds to produce full scale deflection of the meter, half f.s.d. will be reached after 5 seconds. The meter can thus be given a linear scale calibrated in seconds, and an electronic stopclock with a range of $0-10$ seconds is produced.

across the feed resistor is required, so that the capacitor charge current remains constant and a linear scale is obtained.

OPERATIONAL AMPLIFIER

An operational amplifier can be used to provide the basis of a precision constant current generator, and the basic configuration for this is shown in the circuit of Fig. 2 (a).

An operational amplifier has two inputs, an inverting one (-) and a non-inverting one (+). It also has a very high voltage gain, this being typically 200,000 for the 741C devices used here. The output voltage is equal to the voltage between the inputs multiplied by the voltage gain of the i.c. Obviously only a minute voltage difference is required at the inputs in order to send the output fully positive or negative.

When the non-inverting input is positive of the inverting input the output goes positive of the OV rail, and when it is negative of the inverting input the output is also negative. For those who are unfamiliar with op. amp. circuits it is perhaps worthwhile mentioning here that the device is powered from equal positive and negative supplies, and that the output can have either polarity with respect to the OV supply line.

Resistor R_{Z} and D_{Z} form a Zener shunt rgeulator and a positive stabilised voltage is fed from the junction of these to the inverting input of the op. amp. The non-inverting input is connected to the OV line, and so this input is negative. With respect to the inverting one. This causes the output to swing negative of the OV rail, and a current will flow via R_{B}. This has the effect of counteracting the current flow via R_{A}, and brings the voltage at the inverting input to fractionally above the OV rail potential. The circuit will always try to balance with the inverting input at virtually the same potential as the non-inverting input, or at earth potential in other words. What is known as a virtual earth is formed at the inverting input, and this is encountered frequently in contemporary circuits.

A constant current is generated through R_{B} as, if its value is made small, the output will only be slightly negative of earth in order to balance the current

Fig. 2(b). Circuit configuration to obtain a linear ramp.
through R_{A}. If it is given a large value a higher output voltage will be produced in order to maintain a balance. The level of the current through R_{B} is set by the values given to R_{A} and the Zener, and is in fact equal to the current flow through R_{A}.

RAMP GENERATOR

By inserting a capacitor between the virtual earth and R_{B}, a linear negative ramp output is obtained. This idea is shown in Fig. 2 (b). Here the output voltage will initially balance the circuit exactly as before, but as the voltage across C_{T} begins to build up, the voltage at the amplifier output will swing more negative in order to maintain a constant current through R_{B}. A linear ramp is thus produced across C_{T}.

PRACTICAL CIRCUIT

The circuit diagram of the stopclock is shown in Fig. 3. Components R1, R2, R3, and TR1 form a simple but highly effective regulator circuit that has an output voltage of approx. $3 \cdot 6 \mathrm{~V}$. This voltage is fed to the i.c. by way of

one of the switched resistors, R4 to R6. These are the equivalent of R_{A} of Fig. 2, and R7 to R9 are the equivalents of $R_{\mathbf{B}}$. These give the unit its three timing ranges by producing three levels of charge current.

When S 3 is in the right hand position, Cl is charging, and when it is in the opposite position one of the resistors R7 to R9 maintain the virtual earth at the inverting input. Switch $S 4$ can be used to discharge the capacitor so that the charging process can be started from the beginning once again.

It is extremely important that the voltmeter takes a negligible current from Cl , as otherwise it would noticeably discharge $\mathbf{C l}$ and a steady reading would not be obtained at the end of the timing period.

Meter ME1 and one of the presets VR1 to VR3 form the voltmeter, a different preset is used on each range so that the unit can be separately calibrated on each range. Amplifier IC2 is wired as a unity gain buffer amplifier and is interposed between the output of the ramp generator and the input of the voltmeter in order to boost the input impedance of the voltmeter to an extremely high level.

Switch S2 is the function switch; in position 1 the unit is off, in position 2 it is on, and in position 3 the meter is connected to the positive supply line through R10. This last position enables the positive supply voltage to be measured as R10 converts the meter to a $0-10$ voltmeter.

COMPONENT PANEL

Some of the components are wired up on a 0.1 inch matrix

Fig. 3. Circuit diagram of the Electronic Stop Clock.

Veroboard panel. This has 34 holes by 18 strips, and Fig. 4 shows full details of the panel which must be cut down from a larger piece of board using a hacksaw. Then the two 6BA clearance mounting holes are drilled using a $3 \cdot 2 \mathrm{~mm}$ twist drill. There are 16 breaks in the copper strips which are made using the special tool or a small (about 4 mm) hand held drill. Next the components and link wires are soldered in, starting with the link wires and leaving the i.c.s and transistors until last. Be careful not to bridge any of the copper strips with excess solder when soldering in the components, especially when working on the i.c.s.

CASE

A $205 \times 140 \times 75 \mathrm{~mm}$ Verobox makes a very neat and attractive housing for the unit, but any case of about the same size can be used. The general layout of the unit can be seen by refering to the accompanying photographs; the layout is not critical. An edgwise meter is used on the prototype and this gives a long

Resistors

Resistors		
RI	$4.7 \mathrm{k} \Omega$	R7 $10 \mathrm{k} \Omega$
R2	$1 \mathrm{k} \Omega$	R8 $27 \mathrm{k} \Omega$
R3	$3.9 \mathrm{k} \Omega$	R9 $100 \mathrm{k} \Omega$
R4	$100 \mathrm{k} \Omega$	R10 $10 \mathrm{k} \Omega$
R5	$270 \mathrm{k} \Omega$	All 1 W Carbon $\pm 5 \%$
R6	$1 \mathrm{M} \Omega$	

Potentiometers

VR1	$4.7 \mathrm{k} \Omega$ skeleton preset
$\mathrm{VR2}$	$4.7 \mathrm{k} \Omega$ skeleton preset
VR3	$4.7 \mathrm{k} \Omega$ skeleton preset

Capacitors

$\mathrm{Cl} \quad 100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.

Semiconductors

TRI
TR1 \quad BCIO9 silicon npn
IC1 741 differential op-amp 8 pin d.i.1.
IC2
741 differential op-amp 8 pin d.i,l.

Miscellaneous

MEI	ImA d.c. moving coil edgwise panel meter
SI	3 pole-3 way rotary switch
S2	4 pole-3 way rotary switch
S3	miniature s.p.d.t. toggle
	push-to-make release to break push button type
BI, 2	9 V type PP3 (2 off)
Stripbo (205 x	ard 0.1 inch matrix size 18 strips $\times 34$ holes: V $140 \times 75 \mathrm{~mm}$); control knobs (2 off)

ELECTRONIC STOP CLOCK

Fig. 4. Layout and wiring of the component board.

Fig. 5. Interwiring of the complete unit.

scale for the amount of panel space occupied by the meter. However, any 1mA moving coil meter can be used.

Veroboxes have a rather hard and thick front panel, and probably the easiest way of making the cutout for the meter is to drill a series of small closely spaced holes (about 3 mm dia.) around the periphery of the required hole, just inside the line marking the border of the cutout. These holes are then joined up using a miniature round file, and finally a flat file is used to smooth and enlarge the edges of the hole, as required.

WIRING

Several of the components are mounted on the controls, and the wiring to these is shown in Fig. 5. This is all quite straight forward and should present no problems provided the ends of the leadouts and tags are well tinned with solder prior to attempting to complete a joint. Ensure that the leads to the component panel are long enough to enable it to be mounted in its intended position.

The component panel is mounted on the base of the case using two 25 mm 6 BA bolts with nuts. It is advisable to use a couple of short (6 mm) spacers to hold the panel a little way clear of the case in order to prevent possible damage to the board as the mounting nuts are tightened. If a metal case is used these spacers are obviously essential.
The two PP3 batteries are placed vertically on a piece of
foam rubber or a similar material, so that they are held firmly in place when the lid of the case is screwed on.

CALIBRATION

Before turning the unit on, give the wiring a thorough check and adjust the preset resistors to insert maximum resistance into circuit (turned fully clockwise).

A clock with a seconds hand is required for calibration, and with the unit turned on and switched to Range 1, S3 is put in the on position for 10 seconds, VR3 is then adjusted for precisely full scale deflection of the meter. Always press S 4 to ensure that the meter is electronically zeroed be-
fore starting the unit. Some initial adjustment of the mechanical zero set screw may also be required.
Ranges 2 and 3 are adjusted in much the same way as Range 1, except that S 3 is held in the on position for periods of 25 and 100 seconds, and VR2 and VR1 respectively are adjusted for f.s.d. of the meter. Carry out the calibration process as precisely as possible, as the care taken here largely determines the accuracy of the finished unit.
A $0-25$ scale can be added to the meter if desired, but this is by no means essential as it is quite easy to convert the obtained reading into seconds, since most 1 mA meters have 25 scale divisions. If a new scale is to be added, take great care not to harm the delicate meter movement during this process.

Make a mental note of the battery voltage initially indicated by ME1 with S2 in the check position. The battery should be replaced when the indicated supply voltage has fallen about a volt or so below this figure.

Note that in some applications it is possible to operate the unit automatically via a microswitch or a photoelectric circuit/high speed relay combination: these being connected in place of S3. There is plenty of scope here for those who like to experiment.

Also the unit can be modified to operate over a quite short timing range. For instance, with R4 at 10 kilohms and R7 at 1 kilohm, Range 1 would cover 0 to 1 second f.s.d.

| ET us use some of the ideas presented and see if we can figure out a few problems.

TOLERANCE

A capacitor is checked on a component bridge and the value of $0.2 \mu \mathrm{~F}$ is obtained. The capacitor is marked $0 \cdot 22 \mu \mathrm{~F} \pm 20 \%$. Is the component within the specified tolerance?

Answer

Yes. The tolerance of $\pm 20 \%$ means that the capacitor can be high or low by one fifth of the nominal value (20% equals "twenty hundredths" which is one fifth). The value should lie in the range $0.22 \mu \mathrm{~F} \pm 0.044 \mu \mathrm{~F}$, and so our component is well within the specified tolerance. We are assuming in this question that the result of the bridge test is sufficiently accurate for our purposes. A good bridge will usually give a result which is within about 1 per cent of the true component value. This degree of uncertainty in the component value is small compared to the tolerance being investigated.

PARALLEL RESISTORS

How can I work out the value of a resistor, to go in parallel with a given resistor, so that I get a particular value of effective resistance from the combination?

Answer

This is an interesting question and gives us a chance to use a simple equation. [Now then, don't run away-we have done all the work already.] First we work out the equation to use, so let us consider the circuit in Fig. 3.1.

Let R1 represent the existing resistor (value known). Let R2

Fig. 3.I. Resistors in parallel.
represent the resistor whose value is to be found. Let R_{e} represent the effective value of R1 and R2 in parallel. If a battery is connected to A and B (positive to A, negative to B) current will flow as shown in Fig. 3.1. Using Ohm's Law and calling the voltage, between A and $B, V_{A B}$, we may write

$$
\begin{gathered}
I_{1}=\frac{V_{\mathrm{AB}}}{R 1}\left(\text { Current }=\frac{\text { Voltage }}{\text { Resistance }}\right) \\
I_{2}=\frac{V_{\mathrm{AB}}}{R^{2}}
\end{gathered}
$$

Total current $I_{\mathrm{e}}=I_{1}+I_{2}$

$$
\begin{equation*}
\text { or } \quad I_{\mathrm{e}}=\frac{V_{\mathrm{AB}}}{R 1}+\frac{V_{\mathrm{AB}}}{R 2} \tag{1}
\end{equation*}
$$

Since the current I_{θ} must also represent the current that would flow in the effective resistance of $R 1$ and $R 2$ in parallel, which we are calling R_{e}, we may write

$$
\begin{equation*}
I_{\mathrm{e}}=\frac{V_{\mathrm{AB}}}{R_{\mathrm{e}}} \tag{2}
\end{equation*}
$$

Comparing equations (1) and (2) which are identical on the left hand sides (both I_{e}) we see that

$$
\begin{equation*}
\frac{V_{\mathrm{AB}}}{R_{\mathrm{e}}}=\frac{V_{\mathrm{AB}}}{R 1}+\frac{V_{\mathrm{AB}}}{R 2} \tag{3}
\end{equation*}
$$

Every term on both sides of equation (3) can be divided by $V_{A B}$ without changing the "balance" of the equation. This simplifies the equation by cancelling $V_{A B}$ which is common to every term and gives

$$
\begin{equation*}
\frac{1}{R_{e}}=\frac{1}{R l}+\frac{1}{R 2} \tag{4}
\end{equation*}
$$

Equation (4) is the equation we require, since it relates the values of $R 1, R 2$ and R_{e}. An example will illustrate its use. Let us assume we require a resistance (R_{e}) of $5 \mathrm{k} \Omega$ and $R 1$ is known to be $15 \mathrm{k} \Omega$.

From (4), with all values expressed in $\mathrm{k} \Omega$ units

$$
\begin{equation*}
\frac{1}{5}=\frac{1}{15}+\frac{1}{R 2} \tag{5}
\end{equation*}
$$

Multiply both sides of (5) by 15 to "remove" the fractions
$15 \times \frac{1}{5}=15 \times \frac{1}{15}+15 \times \frac{1}{R 2}$
OR, more simply

$$
\begin{equation*}
3=1+\frac{15}{R 2} \tag{6}
\end{equation*}
$$

Subtract 1 from each side to give

$$
2=\frac{15}{R 2}
$$

Multiply both sides by $R 2$ to give

$$
2(R 2)=15
$$

Divide each side by 2 to get the required answer

$$
\begin{equation*}
R 2=\frac{15}{2}=7 \cdot 5 \mathrm{k} \Omega \tag{7}
\end{equation*}
$$

The steps above have been listed, one at a time, to show the various ways in which an equation can be manipulated. We could have done the manipulation first and then put in the known values of R_{e} and $R 1$ at the end. Doing it this way we get the same answer (hopefully) as follows.

Subtract the quantity $1 / R 1$ from both sides to give

$$
\frac{1}{R_{e}}-\frac{1}{R I}=\frac{1}{R_{2}}
$$

Multiply both sides by R_{e} and then R1 (two steps) to get, first

$$
\begin{array}{r}
1-\frac{R_{\mathrm{e}}}{R 1}=\frac{R_{\mathrm{e}}}{R 2} \\
\text { then } R 1-R_{\mathrm{e}}=\frac{R 1 \times R_{\mathrm{e}}}{R 2}
\end{array}
$$

Multiply by $R 2$ on both sides

$$
R 2\left(R 1-R_{\mathrm{e}}\right)=R 1 \times R_{\mathrm{e}}
$$

Divide both sides by ($R 1-R_{0}$)

$$
R 2=\frac{R I \times R_{e}}{\left(R I-R_{e}\right)}
$$

This last equation gives a "formula" for solving this kind of problem since it gives us the required $R 2$ value in terms of the known values of $R 1$ and $R_{\text {e }}$. Putting in the figures (all in $\mathrm{k} \Omega$ as before)

$$
R 2=\frac{15 \times 5}{(15-5)}=\frac{75}{10}=7 \cdot 5 \mathrm{k} \Omega
$$

With practice these steps in manipulating an equation will become easier. Do not forget to think of the equation as a "balance." Practice with simple figures at first so that you do not confuse the issue with (doubtful) arithmetic.

POWER DISSIPATION

How can the power dissipation in a transistor be calculated?

Answer

The method may depend on the circuit arrangement. Let us consider the arrangement shown in Fig. 3.2.

With this kind of circuit (if it has been well designed) it is usually possible to assume that (a) the base-emitter voltage is steady at 0.6 volt (for a silicon transistor)

Fig. 3.2. Transistor arrangement devised for discussion on power dissipation.
and (b) the base current is negligibly small, since modern transistors usually have a gain of 50 or more. A gain of 50 would mean that the base current was about 2 per cent of the total emitter current.

Studying the circuit we see that the emitter current will produce a voltage drop V_{1} across the $1 \mathrm{k} \Omega$ resistor, and if we neglect the base current we can write:-

$$
\left(\frac{22}{100+22}\right) 12=V_{B E}+V_{1}
$$

The term in the brackets on the left hand side, is the current flowing in the $100 \mathrm{k} \Omega$ and $22 \mathrm{k} \Omega$ series combination due to the 12 volt supply voltage and will be in milliamps, since the resistance values are in kilohms. Multiplying this current by 22 gives the voltage across the $22 \mathrm{k} \Omega$ resistor and this must always be equal to the sum of $V_{B E}$ and V_{1}.

Using our "rule of thumb" value for $V_{B E}$ and writing $V_{1}=$ ($1 \times I_{e}$) volts, where I_{e} is in mA , we get

$$
\frac{12 \times 22}{122}=0.6+I_{e}
$$

Multiplying both sides by 122 gives

$$
264=73 \cdot 2+122 I_{e}
$$

Subtract $73 \cdot 2$ from both sides and then divide by 122 to give

$$
\frac{190 \cdot 8}{122}=I_{\mathrm{e}} \bumpeq 1.56 \mathrm{~mA}
$$

The voltage across the $4 \cdot 7 \mathrm{k} \Omega$ collector resistor is given by
$1.56(\mathrm{~mA}) \times 4.7(\mathrm{k} \Omega) \bumpeq 7.35$ volts.
We can now work out the voltage "left" between collector and emitter.

$$
\begin{aligned}
V_{\mathrm{CE}} & =10-7.35-1.56 \\
& =1.09 \text { volts }
\end{aligned}
$$

The transistor power dissipation is given by the product of $V_{C E} \times I_{e}$ and is approximately 1.7 mW . With power transistors much higher values of dissipation will be obtained since current levels of several amperes are oftén involved.

RADIO COIL

A coil of wire is wound on a ferrite rod for a radio aerial circuit. How can the coil resistance be calculated?

Answer

To solve this problem we must know the size of wire, so that the resistance of a specific length can be obtained from wire tables, and the actual wire length. The wire length can be calculated by multiplying the length of one turn by the number of turns. Since the length of one turn is approximately $\pi \times$ rod diameter, if the wire is thin, we can write
coil resistance $=$ (coil wire length in metres) \times (wire resistance for 1 metre).

To make the problem more interesting we will assume that our information comes from various sources and the units are mixed up!

Wire (old stock) 38 SWG, 283 omhs per $1,000 \mathrm{ft}$

Ferrite Rod Diameter $=10 \mathrm{~mm}$
Number of turns equals 300
The wire length is

$$
\left[300 \times \frac{22}{7} \times 10\right]=\frac{66,000}{7} \mathrm{~mm}
$$

The resistance of the wire will be

$$
\frac{283}{1,000}=0.283 \text { ohms per } \mathrm{ft}
$$

But lft equals (12×25.4 mm. To change the length of wire from millimetres to feet we must divide by ($12 \times 25 \cdot 4$).
Hence length of wire

$$
=\frac{66,000}{7 \times 12 \times 25.4} \mathrm{ft}
$$

and the coil resistance is therefore given by
resistance $=\frac{66,000 \times 0.283}{7 \times 12 \times 25.4} \mathrm{ohms}$

$$
\simeq 8.75 \mathrm{ohms}
$$

In subsequent articles it may be possible to cover some other useful topics.

Physics is FUN!

Calibrating a Meter

SO ONE day you're sitting there, staring at an unknown meter. Does it work? Can it be used? Perhaps it has some sort of calibration scale on it already, perhaps it has the maker's name and incomprehensible hieroglyphs, or perhaps it has no markings. Can you use it as the basis of an inexpensive multi-test meter? Take heart. If it works at all it can be used. Just read on ...

One thing is sure-the meter itself is going to tell you nothing, no matter how long you stare at it. You must winkle out all its little secrets for yourself and the first one to be winkled out is the internal resistance of the meter.
There are various ways of doing this, but probably the best way is illustrated in Fig. I.

It does not show a particular voltage for the battery supply because it is not important. Any voltage will do from (say) $2 \cdot 5$ vults to 50 volts.

Fig. 1. Circuit for finding the internal resistance of a meter movement.

Wire up the circuit omitting VR2 altogether and wind up VRI to maximum resistance before switching on. Now slowly turn VRI down until the meter shows full-scale deflection (or f.s.d. for short). Do not touch VRI again. Put VR2 into circuit and adjust it until the meter shows exactly half f.s.d. Switch off the battery supply. The resistance of VR2 can now be measured and it will be exactly equal to the internal resistance of the meter. Make a careful note.

Some readers may not have facilities for measuring the value of VR2 and indeed may be setting out to make a
multi-test meter to do exactly that. Do not despair. Instead of VR2 we take a handful of 5 per cent resistors, substituting one at a time until we find one that gives us the requisite half f.s.d.

Now we know the internal resistance of the meter and the only other thing we need to know is the current consumed by the meter at f.s.d. A battery source of a known voltage is required and it is suggested that a fresh 9 volt battery is used. Wire up the circuit shown in Fig. 2. Start with VRI at maximum and slowly wind it down until the meter shows f.s.d. Switch off and measure the resistance of VRI (or use fixed resistors as before). Now comes the nasty bit-the arithmetic. Actually, it's not very difficult to do on paper, easier if you've got a pocket calculator and simplicity itself is there's a tame teacher hovering about!

The current used in the little circuit depends upon (a) the supply voltage, E (known), (b) the overall resistance,

Fig. 2. Circuit for finding the sensitivity of the meter movement.
and that includes the resistance of the meter itself. So, add together the measured or known resistance (Rs) and the known resistance of the meter ($R \mathrm{~m}$). Divide this total into the known supply voltage, giving the required current consumption of the meter at f.s.d.
Thus $\frac{E}{R_{5}+R_{m}}=1$. Looks familiar? It should!

If possible, repeat the experiment and calculations with different supply voltages.

Theoretically, all the results should
be identical, but errors creep in at various places, which illustrates the advantage of repeating the work with different supply voltages, and the mean value taken.

Currents in excess of f.s.d.

Now we know all there is to know about the meter and we can consider what to do with it. Suppose we wish to use the meter to show current consumption. As long as the requirement is not greater than the meter is capable of carrying then all is well, but if I wish to measure larger currents I must have recourse to shunt resistors (Fig. 3), where some or most of the current is shunted through the resistor. The choice of resistor is another simple bit of arithmetic. First divide the required f.s.d. current by the actual f.s.d. current -this gives us the multiplier needed.

Suppose we have a $140 \mu \mathrm{~A} 700$ ohm meter and wish the meter to show-001

Fig. 3. Wiring of a shunt resistor to alter the sensitivity of the unit.
amp (ImA) at f.s.d., then 0.001 divided by 0.00014 gives $7 \cdot 142$. That is to say, we must somehow multiply the current consumption by that figure. The shunt resistor required is obtained by dividing the internal resistance of the meter by the multiplier less one, i.e.
$R_{\text {shunt }}=\frac{R_{m}}{(N-1)}$ where N is the derived multiplying factor. In the example $(7.142-1)$ is 6.142 and if this is divided into the 700 ohm resistance of the meter, a shunt resistor value of 113.9 ohms (or 114 ohms) is derived.

The Extra ordinar Experí ments OI Proiess Ernest Eversure by Anthony John Bassett
 The Prof. is being visited in his
 is something else we had a pro-
 the Prof. could help in any way.

Laboratory by Tom and Maurice who have been asked to help organise a charity event. Bob has just helped the Prof. and the boys to assemble a loudspeaker impedance-converter in order to solve problems they were having with the soundsystem, and the Prof. instructed his amazing electronic Robot to do some of the routine assembly work, so that now they have time for one or two more projects before the event opens.

GAME OF SKILL

From under the fiap of Tom's large satchel projected about 100 mm of wooden object, and as Tom opened the satchel, and removed this item, which had been crammed in with great difficulty, and proceeded to bend back into shape a piece of thick metal wire which followed an uneven zigzag course from one end of the wood to the other.

Bob exclaimed, 'I know what that is, it's a try your skill game. You try to thread a small metal ring along the zigging wire from one end to the other without making contact. If you do make contact, this completes a circuit, and a bell rings and a lamp lights!"
"Yes," replied Tom, "and this
blem with at the last Charity Fair. First we tried making one with a thick copper wire, but because the copper wire was soft, it did not keep its shape, and soon began to sag. Then we tried using brazing-rod, which was better than the copper because it is harder, but it has a tendency to snap easily after it has been bent. Now this one is made of 1.5 mm mild-steel rod (available from a pet-shop, which sells it for the purpose of making birdcages).
"It amazes me that such a simple project should present such problems and require so much effort to solve them. I really admire the scientists who persist with great determination on much more difficult problems, and the technologists whose efforts and skills makes these inventions and designs into practical working projects which can be of great benefit to mankind.
"But would you believe, having tried copper wire, aluminium wire, which I could not solder, brass and various other metallic wires, although the steel bird-cage-wire is the best so far, there is still a problem with it which I am trying to solve. I don't really suppose it could possibly be solved by electronics means, I thought I'd ask to see whether
"You see, Prof., although this wire keeps its shape quite well and does not snap as easily as the brass, the problem is that, unlike the copper and brass wire, it makes large yellow sparks when the ring touches the wire and completes the circuit. Although the sparks are harmless, they are frightening to some people who would otherwise use the test your skill in aid of our charity.
"I was thinking of electrolytically copper-plating the wire to solve this problem, but I doubt if I could easily put on a layer of copper sufficiently thick to last for very long. I wonder whether you have any ideas which would help?"
"Yes, Tom. Because you are using both a bell and a lamp, this means that there is quite a heavy current through the wire, which is the cause of the sparking. The electrical energy released at the points of contact breaks away microscopic pieces of steel whidh burn up in a moment to produce yellow sparks.
"Bob and I have recently been discussing ways of using transistors to reduce current through electrical contact points to prevent sparking, sticking and burning of the contacts, and I think a
similar type of circuit could be used with your Steady Hand Tester game."

TIME DELAY

The Prof. quickly thumbed his way through a notebook until he came to the circuit diagram shown in Fig. 1.
"This diagram shows a circuit which I tried about a year ago and it was quite successful. When the ring touches the wire, $\mathbf{C l}$ charges rapidly through R1 and VR1, and when the voltage across $\mathbf{C l}$ reaches about 1 volt the transistors conduct, the lamp lights and the bell rings for a period which is dependent upon the charge on Cl and its time constant together with the value of resistor R2.
"By increasing the resistance of VR1, the time delay before the bell rings is increased, which gives a handicap advantage according to the setting of VR1.

Fig. 1. The Prof's. circuit diagram for the Steady Hand Tester.
"But I am thinking of adding a couple more transistors to the circuit to give it 'hair trigger' sensitivity."

The Prof began to sketch a
small additional circuit which used a BCl08 and a BC478 transistor.

To be continued

\square

Booklililikelifws

ILLUSTRATED TEACH YOURSELF: RADIO

Author David Gibson
Price $£ 1 \cdot 60$
Size $204 \times 150 \mathrm{~mm}, 96$ pages, paperback
Publisher Hodder and Stoughton
ISBN 0340196084

UNASHAMEDLY aimed at the school boy (and girl), and one must look at it with that in mind. Having said that I must add that there is plenty of solid information in this that anyone just getting interested in the subject would find useful.

Well laid out with excellent illustrations and a few colour pages. If you want to start with radio and go on to be a ham, this book starts you off with com-ponents-takes you through basic transistor operation to crystal set operation and detailed construction. Includes four other radio circuits and construction details and finishes with a chapter on aerials and one on short wave listening.

Not too deep or too fast for the beginner and fulfills its obvious aim and title in every way. m.к.

110 COSMOS DIGITAL IC PROJECTS FOR THE HOME CONSTRUCTOR
Author R. M. Marston
Price 12.75
Size $215 \times 135 \mathrm{~mm} 115$ pages
Publisher Newnes-Butterworths
ISBN 0408002166

MAny readers will be familiar with the author's name as this is his seventh electronics book intended for the amateur electronic constructor, student and engineer.

There is a shortage of literature available to the amateur on the subject of смоs (cosmos) and this book is a welcome arrival.

The first chapter introduces the reader to the basic building block of cmos devices and explains simple arrangements of these blocks to form Nor and NAND gates and compares their performance with the tTl family. This is followed by a chapter on inverter, gate, and logic circuits (15 in all) and shows the derivation of the five basic logic functions used in digital circuitry using NAND and NOR gates.

Multivibrator Circuits are the subject of Chapter three where 25 different circuits are described including a detailed account of a car Tachometer. There are 10 d.c. Lamp Control Circuits in Chapter four including such devices as lamp dimmerssuitable for dimming instrument panel or courtesy
lights in cars-time controlled auto-turn off circuits, and lamp flashers.

Many Relay Switching Circuits (20 in fact) are discussed in the following chapter including time delay types and other activated by temperature, light and water.

The final two chapters are headed Sound Generator And Alarm Circuits, and Counting And Dividing Circuits, the latter containing details of a divide-by N counter where N can be any integer.

Sensible applications are provided for almost all the circuits in the book. One important point to note is that there are no construction details such as layout of the components on stripboard or p.c.b. or wiring up details (this is left to the constructor)hardly surprising for a book of this size containing so many projects.

All of the projects in the book have been designed by the author, and have been built and tested by him.

There is a useful Appendix detailing semiconductor and i.c. pin identifications for those used throughout the book, six i.c.s and three transistors.
B.W.T.

THE OSCILLOSCOPE IN USE

Author lan R. Sinclair
Price $£ 2 \cdot 50$ (U.K. only)
Size $215 \times 140 \mathrm{~mm}, 129$ pages
Publisher Fountain Press
ISBN $085242471 \times$

THe aim of the author is to show how an oscilloscope works, and how it may be used in electronic measurement, and he does this very well. It will prove invaluable to the amateur constructor of electronics projects and should be on the shelves of college and school electronics laboratories.

The informative, concise text is supported by many excellent, generously captioned diagrams and photographs of equipment and more important, photographs of oscilloscope traces which forms part of the practical approach.

The book is split into ten approximately equal chapters each subdivided by use of bold sideheadings producing a neat and orderly layout.

The first two chapters are really intended for the newcomer and show how the oscilloscope worksbasics only-and explains the use of the controls relating to simple measurements of voltage and time. Chapter three includes various measurements of phase difference (single and dual beam methods), frequency determination by Lissajou's Figures and input and output resistance measurements.

Gain, Power Output, Distortion, Frequency Response, and Equalisation measurements are among the headings of Chapter four, Testing Audio Amplifiers.
R.F. Testing, Power Supply Testing, and Pulse \& Timebase Circuits are dealt with separately in Chapters five, six and seven respectively.

Chapter 10 is devoted to T.V. waveforms and is strongly supported by photographs of oscilloscope traces of these waveforms.

The final two Chapters are concerned with diagnosing faults on the oscilloscope itself, and 'scope accessories such as attenuating probe (construction details), calibration circuits and wobbulators. B.w.t.

```
HAND TOOLS FOR THE ELECTRONIC
WORKSHOP
Author Harry T. Kitchen
Price {2.25
Size 216 < 138mm, 115 pages, soft linen finished cover
Publisher Angus Books
ISBN O }85242472
```

A^{N}N excellent book by this respected author who covers the whole range from the basic minimum of tools and how to use them through micrometers, vernier protractors to drills, taps and dies. All the items are well covered and there are many excellent photographs for illustration.

After this comes a section on soldering which would be of assistance not only to any beginner but to many experienced constructors whose work one sometimes comes across. This takes us through a further 30 pages and once again carries some well reproduced photographs which, on this subject say more than words.
The final two chapters cover Miscellaneous Tools (such as pop-riveters, hammers, glue and aerosols of various types), and Tool Boxes and Work Benches.
In my opinion all electronics books are rather highly priced when compared with similar ones-for instance in cookery-however one must say that this book is value for money and it carries much that will be of interest not just to the newcomer but to everyone involved in the hobby.

SIMPLE CIRCUIT BUILDIREG

Author P. C. Graham
Price $£ 1.99$
Size $215 \times 135 \mathrm{~mm}, 112$ pages (plus adverts), paperback Publisher Newnes-Butterworth
ISBN 040800230

ONE of the Newnes Constructors Guide series and one of the few books I have come across that carries advertisements from suppliers and even Practical Electronics our companion magazine (the others in the series do too). Not an aptly named book and perhaps "Basic Circuits" or something similar would be a better guide to its contents.

This is in no way a practical guide to circuit con-struction-more a guide to application circuits with brief notes on how to wire some of them up. None of the recognised circuit boards are shown or used, a few printed circuit type layouts are given. Readers are referred to another book in the series for guidance on circuit board construction.

Useful if you want to learn a bit more about the actual circuits and how they work, not if you want to learn how to construct useful items. We wonder why P. C. Services get a mention as component suppliers when there are many many other firms who can supply parts and none are mentioned; not even advertisers.

No doubt the ads. help to reduce the cost of the book but I don't think I would buy this one-most of the circuits can be found in reference books or manufacturers literature.
M.K.

A PRACTICAL ELECTRONICS PUBLICATION

A SPECIAL SELECTION OF MUSICAL PROJECTS FROM PE
 THE MINISONIC MK2 SOUND SYNTHESISER

An up-dated version of the published Mk 1, the Mk 2 has an integral keyboard, two

250 mW monitoring channels and loudspeakers, and facilities for amplitude, frequency and harmonic modulation.

THE JOANNA ELECTRONIC PIANO

has realistic piano effect with touch-sensitive keyboard and additional choice of harpsichord or honky-tonk voicing.

THE ORION STEREO AMPLIFIER

A hi-fi amplifier with output of over
$20+20$ watts. Compact and complete in one unit, it measures only $14^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$. PLUS
Some great sound effects units for guitars, keyboard instruments and general recording.

Available Now

(Please allow at least 2 weeks for delivery)
If you do not wish to mutilate your copy of the magazine, please send your order on a separate sheet.

POST PAID
IPC Magazines Ltd., Receiving Cashiers Dept., King's Reach Tower, Stamford Street, London SE1 9LS

Please send me..........copy (ies) of
"Sound Design". I enclose a Postal Order/Cheque for $£ 1.20$ (post paid) or (state amount for more than one copy)...........(غ) 2.35 post paid for 2 copies)
PLEASE WRITE IN BLOCK LETTERS
Name
Address

Post code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mall as required. Payable by International Money Order only. EE. 1510
Companvregistered in England. Regd. No. 53626. A subsidiary of Reed International Limited.

GEORGE HYLTON dew down
 Theory and Practice,

0NE lesson which experience teaches is that there are times when theory is indispensible and times when a bit of experiment gets results faster. The question is, how do you know which is going to be better, in a particular case?

How do you answer the question: should I build a circuit to see if my idea will work or should I first try to prove the idea on paper? There's no simple answer. But the more experimenting and circuit building you do, the more you develop an "instinct" for making the right approach. It usually turns out that the best approach is to make sure, on paper, that what you are going to construct will do the job, but to optimise your circuit by experiment.

A simple example will illustrate this. Suppose you intend to build a simple radio receiver, to your own design, and you want to use a crystal earpiece to listen to the programmes. The first thing you need to know is: how much audio voltage has to be applied in order to produce adequate volume? Unless you know the answer to this question you are working in the
dark, and running the risk of constructing equipment that won't do the job properly.

Suppose you check this with an oscillator and find that it is 2 V r.m.s. The corresponding peak voltage is 2.8 V and it swings both positively and negatively. So the voltage from the amplifier must, for undistorted signals, be able to swing up by $2 \cdot 8 \mathrm{~V}$ and down by $2 \cdot 8 \mathrm{~V}$. In the kind of amplifier in Fig. 1, the collector sits at some steady voltage $V_{\text {or }}$. Positive audio signals make the transistor take more collector current, producing a greater voltage drop in R2. Negative inputs have the opposite effect. This varying drop in $R 2$ is the audio output and is applied to the crystal earpiece. (For the time

R1 should be $h_{\text {PE }}$ times R2, where $h_{\text {PE }}$ is the d.c. amplification factor of the transistor. A particular type of transistor may have h_{FE} $=100-300$. Do you take the average (200) and risk an error or find the correct value by trial and error? Trial and error must give the best results here, since it tailors the circuit to suit the particular specimen of the transistor type which you are using.

Theory gives a good guide to where to start trying. For example, you may know or discover by tests that your crystal earpiece causes no significant loss of trèble for values of R2 up to 10 kilohms. (A crystal earpieqe, being a capacitor, bypasses R2 at high frequencies, causing treble cut). If h_{FE} is about 200 and R2

Fig. I. The experimental amplifier circuit.
being we'll assume that the impedance of the earpiece is infinite, so that its presence does not affect the voltage.)

Now, it follows from the way this circuit works that $V_{\text {cc }}$ must be at least $5 \cdot 8 \mathrm{~V}$. This is because the peak-to-peak (positive to negative) voltage swing in this circuit cannot exceed $V_{\text {cc }}$. In practice, the undistorted output is rather less, because of the imperfections of the transistor.

The nearest standard battery voltage is 6 V but you will probably want to use 9 V , which is all right. When the 9 V battery runs down, say to 6 V , the output should still be somewhere near 3 V peak, if the circuit is properly designed.

Amplification Factor

The books tell you that for maximum output voltage swing
is 10 kilohms then Rl should be about $200 \times 10 \mathrm{k}=2$ megohms and you can start by trying a standard value such as 1.8 or 2.2 megohms.

Since there is a danger of inadequate volume with a flat battery you may decide to optimise R1 for a 6 V supply rather than the full 9 V . With a 9 V supply the circuit will not be quite optimised, but will still give more output than at 6 V . So if it works at 6 V it also works at 9 V .

Tweaking

Looking back you can see how in this design, theory has been used to give some of the answers and trial and error for the others. In general, electronic engineers rely on theory to give a basis for a design and then use trial and error (sometimes called "tweaking") to get the optimum results.

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28-pin chip.

This ali-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP 11 type batteries (not supplied).

The Videomaster Superscore kit costs only $£ 24.95$ including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

Videomaster Ltd 14/20 Headfort Place, London SW1X 7HN

\qquad Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK) or $£ 23.10+£ 4.00$ for P\&P overseas)
I enclose my cheque/money order* for £..................
VHF modulator required
YES/NO*
EE96
NAME \qquad
ADDRESS \qquad

[^0]: COMING SOON-Radio, TV \& Audio Technical Reference Book - S.W, Amos. The complete reference book compiled by 31 experts in all aspects of radio, TV \& audio.
 Spring 77. 1,200 pages

[^1]: 5. IPC Magazines Limited 1977. Copyrighe in all drawings, photographs, and articles published in EVERYOAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are oxpressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are roliable. We cannor, however, zuarantee it, and we cannot accopt legal responsibility for it. Prices quoted are chose current as we go to press.

 Editorial Department: Everyday Electronics, Fleetway House, Farringdon Street, London EC4 4AD. Phone 01-634 4452.
 Advortisement Departments: Everyday Electronics Advertisements, Fleetway House, Farringdon Street, London ECA 4AD. Phone 01-634 4504. Everyday Electronics Classified Advertisements, Kings Reach Tower, Stamford St., London SEI 9LS.

[^2]: Wo are unabio to supply back coples of Everyday Electronics or reprints of articles and cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipmont or subjecti not published by us. An s.a.e. should be enclosed for a personal reply. Letters concerning published articles should be addressed to: The Edior, those concerning advertisements to: The Advertisement Manager, at the address shown opposite.

 Binders for volumes 1 to 6 (nfate which) are avallable for $£ 2 \cdot 10$ i including postage, from Post Sales Departmont, Lavinuton House, 25 Lavington St., London SEI OPF

