
EE CIRCUIT CARD

aNFRa RED CONTROL Tx
8

CARD INPRA RED CONTROL Rs

4) 1) 1 |

DECEMBER 1988

No. 1 LIST BAKERS DOZEN PACKS All packs are $\mathrm{f1}$ each, if you order 12 then you are entiited to another free. Please stac whe pack want. Note the figure on the exis the quantity of items in the pack, finally a short description.

BD1 $\quad 513 A$ junction boxes for adding extra points to your ring main circuit.
$513 A$ spurs provide a fused outlet to a ring main where devices such as a clock must not be switched off.
In flex switches with neon on/off lights, saves leaving things switched on.
6V 1A mains transformers upright mounting with fixed clamps.
$61 / \mathrm{zin}$ speaker cabinet ideal for extensions, takes our speaker. Ref BD137
BD13 1230 watt reed switches, it's surprising what you can make with these-burglar alarms, secret switches, elay, etc., etc.
225 watt loudspeaker two unit crossovers B.D.A.C. stereo unit is wonderful value.

Nicad constant cufrent chargers adapt to charge almost any nicad battery
Humidity switches, as the air becomes damper the membrane stretches and operates a microswitch. 82 meter length of connecting wire all colour coded. 5 13A rocker switch three tags so on/off, or change 24 hr time centre of.
24 hr time switch, ex-Electricity Board, automatically adjust for lengthening and shortening day original cost $\mathbf{~} 40$ each.
BD49 10 Neon valves, with series resistor, the se make good night lights.
BD56 I Mini uniselector, one use is for an electric jigsaw puzzle, we give circuit diagram for this. Dne pulse into motor, moves switch through one pole
2 Flat solenoids-you could make your multi-tester read AC amps with this.
Suck or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water tanks
BD91 2 Mains operated motors with gearbox. Final speed 16 rpm, 2 watt rated.
BDI03A 16 V 750 mA power supply, nicely cased with mains input and 6 V output leads.
BD120 2 Stripper boards, each contains a 400V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc.
BD122 10 m Twin screened flex with white pve cover.
BD128 10 Very fine drills for pcb boards etc. Normal cost about 80p each.
BD132 2 Plastic boxes approx 3 in cube with square hole through top so ideal for interrupted beam switch.
BDI34 10 Motors for model aeroplanes, spin to start so needs no switch.
BD139 6 Microphone inserts-magnetic 400 ohm also act as speakers.
BDI48 4 Reed relay kits, you get 16 reed switches and 4 coil sets with notes on making c/o relays and other gadgets.
BD149 6 Satety cover for 13A sockets - prevent those inquisitive litrle fingers getting nasty shocks. 6 Neon indicators in panel mounting holders with 65 amp 3 pin flush mounting sockets make a low cost disco panel.
1 in flex simmerstat-keeps your soldering iron etc. always at the ready.
Mains solenoid, very powerful, has lin pull or could push if modified.
8 Keyboard switches - made for computers but have many other applications.
Transistors type 2N3055, probably the most useful power transistor.
Electric clock, mains operated, put this in a box and you need never be late.
512 V alarms, make a noise about as loud as a car horn. Slightly soiled but DK.
2 in $\times 4 \mathrm{n}$ speakers, 4 ohm made from Radiomobile so very good quality
2 Tacho generators, generate one volt per 100 revs. 1 Panostat, controls output of boiling ring from simmer up bail.
50 Leads with push-on 1/in tags-a must for hook. ups-mains connections etc.
Oblong push switches for bell or chimes, these can mains up to 5
into partess.
BD268 I Mini I watt amp for record player. Will also change speed of record player motor
Guitar mic - clip-on type suits most amps
BO283 3 Mild steel boxes approx 3 in $\times \operatorname{3in} \times$ lin deep - stan dard electrical.
BD293 50 Mixed silicon diodes.
BD296 3 Car plugs with lead, fit into lighter socket
BD305 I Tubular dynamic mic with optional table rest
Most other packs still available and you can choose any as your
free one.
VERY POWERFUL 12 VOLT MOTORS-1/3rd HORSEPOWER Made to
drive the Sinclair C5 electric car but equally adapable to power a $90-$
cart. a mower, a rall car, model railway, etc. Brand new. Price $£ 15.00$
plus 52.00 opstage. Ourret. 1 P58

OVER 400 GIFTS

YOU CAN CHOOSE FROM

There is a total of over 400 packs in our Baker's
Dozen range and you become entitled to a tree git
Oozen range and you be
with each dozen packs.
Wiassitied list of thes
Aclassitied list of these packs and our latest "News
Lenter" will be enclosed with your goods, and you
will automatically receive our next news letter.

ATARI 65XE COMPUTER AE 64K this is most powerful and suitable for home and business. Brand new, complete with PSU. TV lead, owner's manual and six games. Can be yours for only £45 plus $£ 3$ insured delivery.

DATA RECORDERS ACORN for Acorn Electron, etc., reference number ALF03, with TV lead, manual and PSU. Brand new. Price £ 10 plus £1.50 post. Order ref 10P44.
ATARI XC12 for all their home computers. With leads and handbook. Brand new. Price £ 10 plus E 2 post. Order ref 10P53.
JOYSTICK FOR ATARI OR COMMODORE for all Atari and Commodore 64 and Vic20. New. Price $\mathbf{5 5}$. Order ref 5P126.
EXTRA SPECIAL OFFER We will supply the Atari 65XE, data recorder $\mathbf{X C 1 2}$, joystick and six games for $\mathbf{£ 5 7 . 5 0}$ plus $£ 4$ insured delivery.
SUB-MIN TOGGLE SWITCH Body size $8 \mathrm{~mm} \times 4 \mathrm{~mm} \times 7 \mathrm{~mm}$ SBOT with chrome dolly fixing nuts. 4 for $\mathbf{\text { El }}$. Order Ret. BO649.
Ex GPO MULTI-RANGE TEST METER 12C1 Complete in real leather case with carrying handle-this is a $20,000 \mathrm{OPU}$ instrument, with 19 ranges including $A C$ and $D C$ volts-dc current 5 mA io 1 A 3 ohms ranges up to 20 meg - the low ohms range is panticularly useful, you will be able to read right down to one ohm and below. Not new but are in first
class condition-tested and guaranteed. Price is $£ 7.00$. order ref 7 P5.

re.chargeable nicaos o' SIze

These are tagged for easy joining togather but tags, being spot welded, are easy to remove. Virfually unused, tested and guaranteed $£ 2.00$ ref 2 P141 or 6 wired together for $£ 10.00$ ref 10 P 47 .
RECORD PLAYER DECK BRS, 12 volt operated, belt driven with an 1 lin turntable, stereo carridge. It will play $7 \mathrm{in}-10 \mathrm{in}$ or 12 in individually at either 45 r pm or 33 rmp . Fitted speed selector and pick-up cueing lever Price $£ 12$ plus $£ 3$ postage. Order ref 12P4.
2.5 kw TABGENTIAL BLOW HEATER has an approximate width of 8 in (plus motor), elements made up of two 1.2 kw sections so with switch (plus motor), elements made you can have $2.5 \mathrm{kw}, 1.2 \mathrm{kw}$ or cold blow. Over-heat cutout eliminates fire risk should fan stop or air flow be impeded. Fan blades are metal. Price $£ 5$ plus $£ 2.50$ post. Our ref 5P62. Switch 50p.
alba twin cassette recorder and player with stereo RADIO This is a mains battery pontable made to sell, we understand, at about $£ 50$ but the ones we have are line rejects. They are brand new still in the manufacturers' boxes but have a slight defect associated with the cassette section. The radio and amplifier section, both mono and stereo, is perfectly OK. If you are handy at mending things then this should be for you. Price $\mathbf{E} 20$ or iwo for $\mathbf{£ 3 8}$ plus $\mathbf{£ 3}$ insured post, either package. Our ref 20P7 or $2 \times 20 \mathrm{P} 7$.

LASER TUBE

Made by Philips Electrical. New and unused. This is heliumneon and has a typical power rating of 1.6 mW . It emits random polarised light and is completely sate provided you do result. DDN T MISS THIS SPECIAL BARGAIN! Price $£ 29.95$ plus $\mathbf{5 3}$ insured delivery.

POWER SUPPLY FOR PHILIPS LASER is now available in kit form. Price $£ 13$ plus $£ 2$ postage, of make-up ready-to-use at $£ 18$ plus
$£ 2.50$ postage. Our ref 13 P1 for the kit and $18 P 1$ for the made-up £2.50 pos
version.

PAPST AXIAL FAN-MANUFACTURERS REF NO. TYP458ON.
This is mains operated. 15 watt rating and in a metal frame with metal blades so OK in high temperatures. Body size approx. 43/4" square x $15 \beta^{\prime \prime}$ thick. 6.00 each, plus $£ 1.00$ postage. Our ref 6 P6
VERY POWERFUL MAGNETS Atthough only less than $1^{\prime \prime}$ long and not much thicker than a pencil these are very dificut io pull apart. Could be used to operate embeddedred c1.00. Ref BD642

ORGAN MASTER is a three octave musical keyboard. It is beautifully made, has gold plated contacts and is complete with ribbon cable and edge connector. Brand new, only f 15 plus f3 postage. Order ref 15P15.

MUSIC FROM YOUR SPECTRUM 128 We offer the Organ Master three octave keyboard, complete with leads and the intertace which plugs into your 128. You can them compuse, play, record, store, etc., your own music. Price $£ 28$ plus $£ 3$ special packing and postage. Order ref $28 P 2$.
20A DOUBLE POLE RELAY WITH izV COIL complete with mounting brackets. made by the Japanese Omron Company. Price f 2 each. Our Ret. 2Pi73A.
TORROIOAL MAINS TRANSFORMER with twin outputs. 6.3V 2 A and 12 V 600 mA , so ideal tor FOD power supply. Price $£ 5$. Our Ref. $5 P 122$. OOUBLE MICRO CASSETTE DECK made by the Japanese ABS company. This takes wo micro cassettes and is complete with motors, solenoids to select the deck to use and record and playback heads Price $£ 10$. Dur Ret, 10 P49.
QuICK FIX MAINS CONNECTOR A must for your workshop. Saves putting on plugs as you just push the wires under the spring clips Automatically off when lid is up. Price $£ 7.50$. Our Ref. 7 P5/ $/ 1$
BT HANOSET with curly lead terminating with Hat BT plug. Colour cream. Price f5. Our Ref. 5P123.

J\&N BULL ELECTRICAL Oept. E.E., 250 PORTLAND ROAD, HOYE BRIGHTON, SUSSEX 8N3 50T

man Oroer terms: Cash, PO or cheque with order. Orders under

 f 20 add $£ 1.50$ service charge. Monthly account orders accepted from schools and public companies. Access and B/Card orders accepted Brighton ($\mathbf{2} 77$) 73644 or 203500Some of the many items described in our current list which you will receive if you request it
31/2in FOO CHINON 80 track 500 k . Shugart compatible interface. Stan dard connections, interchangeable with most other $31 / 2$ in and $51 / \mathrm{ain}$ dnves. Brand new. $£ 28.50$ plus $£ 3$ insured post.
CASE NOW AVAILABLE FOR THE CHINON F353 This is the 80 track single sided one which we have been selling at $£ 28.50$. The case is sheet metal, finished in hammer-beige with ample ventilation and rubber feet. Overall size $41 / 4$ in $\times 7$ in $\times 1 / 2$ in approx. Designed to take the ribbon cable and 3 core power lead. Price $\mathbf{f 8}$. Our ref 8P21.
3in FDO hitachi hfosissxa Shugart compatible interface. 500k on 3in disc. Recommended for many Amstrads but interchangeable with most drives. $£ 29.50$ plus $£ 3$ insured post
fDO CASE ANO POWEh SUPPLY KIT tor the 3 in or $31 / 2 n$, E11.00. Ret 11P2 for the Chinon, 11P3 for the Hitachi
In MONTTOR made for ICL, uses Phillips black and white tube. Brand new and complete but uncased. $\mathbf{£ 1 6 . 0 0}$ plus $£ 5.00$ post.
acorn computer oata recorder ref alf03 Made tor the Electron or BBC computers but suitable for most others. Complete with mains adaptor, leads and handbook. $\mathbf{F 1 0 . 0 0 \text { . Ref } 1 0 \text { P44. }}$
POWERFUL IONISER Uses mains transformer. Generates approx. 10 POWERFUL IONISER Uses mains rans/rmer. Generates approx.
times more ions than the normal diode/cap ladder circuits. Complete times more ions than the
kit f 11.50 plus f 3.00 post.
FREE POWER! Can be yours it you use our solar cells-sturdily made modules with new system bubble magnifiers to concentrate the light and so eliminate the need for actual sunshine-they work just as well in bright light. Voltage input is 45 -you join in series to get desired c1 Dur ref B0631. Module C gives 400 mA Price f 2 Our ref 2 P190 Module 0 gives 700 mA , Price $£ 3$. Our ref. 3P42.
solar powereo ni-cad charger 4 Ni-Cad batteries aA (HP7) charged in eight hours or two in only 4 hours. It is a complete, boxed ready to use unit. Price $\mathbf{f 6}$. Our ref. 6P3.
50V 20A TRANSFORMER 'C" Core construction so quite easy to adapt for other ounspors-tapeed mains input. Only fas but very heavy so for other outputs-tapped mains input. Only
please add 55 if not collecting. Order Ref. 25 P4.
SWITCH AC LOAOS WITH YOUR COMPUTER This is easy and reliable if you use our solid state relay. This has no moving pants. has high input resistance and acts as a noise barrier and provides between 3 and 30 V internal resistance is about 1 K ohm. AC loads up to 10A can be switched. Price is E2 each. Ref. 2P183.
mETAL PROJECT BOX Ideal size tor battery charger, power supply etc.: sprayed grey, size $\sin \times 4 / 4 i n \times 4$ in high, ends are louvred for BIG SMOOTHING CAPACITOR. Sprague powerlytic 39,000 uF at 50 V . E . Dur ref. 3P41.
4-CORE FLEX CABLE. Cores separately insulated and grey PVC covered overall. Each copper core size 70.2 mm . Ideal for long telephone runs or similar applications even at mains voltage. 20 metres f 2 . Our ref.2P196 or to0 metres coil f8. Order ref. 8P19.
6-CORE FLEX CABLE. Oescription same as the 4 -core above. Price 15 metres for $\mathbf{f 2}$. Our ref. 2 P 197 or 100 metres 59. Our ref. 9P1.
IWIN GANG TUNING CAPACITOR. Each section is .ODO5uF with trimmers and good length $1 / \mathrm{in}$ spindle. Old but unuse3d and ill very good condition, E 1 each. Our ref. BD630.
13A PLUGS Good British make complete with fuse, parcel of 5 for $\mathbf{f} 2$. Order ref. 2P185.
13A AOAPTERS Takes 2 I3A plugs, packet of 3 for $£ 2$. Order ret. $2 P 187$. $20 Y-0-20 Y$ Mains transformers $21 / 2$ amp (100 watt) loading, tapped primary. 200-245 upright mountings $£ 4$. Order ret. 4 P24.

BURGLAR ALARM BELL $-6^{\prime \prime}$ gong OK for outside use if protected from rain. 12V battery ope rated. Price EB_{8}. Ref. 8 PP .
24 HOUR TIME SWITCH-16A changeover contacts, up to 6 on/offs per day. Nicely cased, intebnded for wall mounting. Price f8. Ref. 8P6 CAPACITOR BARGAIN-axial ended, $4700 \mu \mathrm{~F}$ at 25 V . Jap made, normally 500 each, you get 4 for $£ 1$. Our ref. 613 .
Piezo electric fan - An unusual tan, more like the one used by Madame Butterfly than the conventional type, it does not rotate. The air movement is caused by two vibrating arms. It is American made, mains operated, very economical and causes no interference, so is B0598. SPRING LOADEO TEST PROOS-Heaw duty, made by the famous Bulgin company. very good quality. Price 4 for E 1 . Ref. BO597
ASTEC P.S.U. - Switch mode type. tnput set for +230 V . Output 3.5 amps at +5 V , 1.5 amps at +12 V , and 3 amps at +5 V . Should be OK for floppy dise drives. Regular price $£ 30$. Our price only $£ 10$. Ref. 10734. Brand new and unused.
APPLIANCE THERMOSTATS - Spindle adjust type suitable for convec. tor heaters or similar. Price 2 tor $£ 1$. Ref. BD5B2.
3-CORE FLEX BARGAIN No. 1-Core size 5 mm so ideal for long extension leads carrying up to 5 amps or shor leads up to 10 amps . 15 mm
for M2. rel. 2 P189.
-CORE FLEX BARGAIN No. 2-Core size 1.25 mm so suitable for long extension leads carrying up to 13 amps, or shon leads up to 25 A .10 m t- Me. 2
ALPHA-NUMERIC KEYBOARO - This keyboard has 73 keys giving trouble tree lite and no contact bounce. The keys are arranged in two groups, the main area is a QWERTY array and on the right is a 15 ke number pad, board size is approx.
only a fraction of its cost, namely ES , plus f 1 post. Ref. 3P27.

WIRE BARGAIN -500 metres 0.7 mm solid copper tinned and p.v.c covered. Only $\mathfrak{£ 3}$ plus $£ 1$ post. Ref. $3 P 31$-that's well under 10 pe
metre, and this wire is ideal for push on connections.
INTERRUPTEO BEAM KIT-This kit enables you to make a switch that will trigger when a steady beam of infra-red or ordinary light is broken. Main components-relay, photo tran sistor, resistors and caps, etc Circuin diagram but no case. Price £2. Ref. 2P15.
1/8th HORSEPOWER 12 VOLT MOTOR Made by Smiths, the body length of this is approximately 3 in , the diameter 3 in and the spindle 5 16 th of an inch diameter. It has a centre flange for fixing or can be fixed from the end by means of 2 nuts. A very powertu so if you have any
revs at $3,000 \mathrm{rom}$. We have a large quantity of them projects in mind then you could rely on supplies for at least two years. Price $\mathbf{f 6}$. Our ref $6 p 1$, discount for quantities of 10 or more.
\square

INCORPORATING ELECTRONICS MONTHLY

The Magazine for Electronic \& Computer Projects

ISSN 0262-3617

PROJECTS . . . THEORY . . . NEWS . . .
COMMENT . . . POPULAR FEATURES . . .

© Wimborne Publishing Lid 1988. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Projects

PHASOR by Andy Flind 694
Trip the light fantastic with this unusual project
IR REMOTE CONTROL by Robert Penfold698
Simple solderless project using the Free Circuit Cards
DOWNBEAT METRONOME by Andy Flind716
An accented beat metronome with sound and light output EPROM PROGRAMMER 720
An On-Spec project for the SpectrumPERSONAL CASSETTE AMPLIFIER by Richard Powell724
Inexpensive in-car entertainment
REACTION TIMER by Paul Harding732
A digital readout of your reaction time
Series
INTRODUCING DIGITAL ELECTRONICS
by Michael Cockcroft704
City and Guilds 723/301 Certificate Course Part Three: Materials and Tools
ACTUALLY DOING IT by Robert Penfold 712
Getting going with electronic construction
ROBOT ROUNDUP by Nigel Clark 714
Investigating the world of robotsON SPEC by Mike Tooley BA720
Readers' Sinclair Spectrum page
AMATEUR RADIO by Tony Smith G4FA1 728
To the South, PICPRO, Golden Jubilee, Nets 730
BBC MICRO by R. A. \& J. W. Penfold
Regular spot for BEEB fanatics
Features
EDITORIAL 693
SHOPTALK by David Barrington 702
Product news and component buying
USING THE FREE CIRCUIT CARDS 703
EASIWIRE OFFER TO READERS 703
pLEASE TAKE NOTE 713
Seashell Sea Synthesiser
FOR YOUR ENTERTAINMENT by Barry Fox 726
Encryptology, Piracy Epidemic, Illegal Broadcasting
SPECIAL 'SCOPE OFFER 729
Two oscilloscopes at special discount prices 736
Special service to $E E$ readers
PRINTED CIRCUIT BOARD SERVICE 740
INDEX 741
Complete index for Volume 17 (1988)748
FREE

1989 CATALOGUE

$\star 100$ pages of components and equipment
\star Low, low prices
*Fast 'by return' service
\star Discount Vouchers
$\star 28$ pages of Surplus Bargains \star Only $£ 1$ - send for yours now!

Introducing DIGITAL ELECTRONICS

This exciting new series can lead to a worthwile qualification-and we can supply all the components you need the booklet given free with EE Just $£ 12.95$!

Low cost tool kit:
25 Watt mains soldering iron, screwdriver, cutters, snipe nose pliers, wire strippers.

All for $£ 9.95$

*STAR BUY *

GREEN SCREEN HI-RES 12^{\prime} MONITOR

 CHASSISBrand new and complete except for case, the super high definition (1000 lines at centre) makes this monitor ideal for computer applications. Operates from $12 \mathrm{~V} D C$ at 1.1A. Supplied complete with circuit dia* glus connecting instructions Standard input from IBM machines, slight mod (details included) for other computers. Only $£ \mathbf{£ 4 . 9 5 + £ 3} \mathbf{c}$
MONITOR INTERFACE KIT
Enables our hi-res monitor (above) \& most others to be used with virtually any
computer. PCB Complete set of regulator \& hersink Suitable transformer 89.95 above monitor $\mathbf{£ 5 . 3 1}$

28837 DUAL SHEET FEEDER. Brand new breakdown unit. Contains $3 \times 12 \mathrm{~V}$ stepper motors (48 step) plus driver panel with $4 \times$ solenoids, buzzer. microswitches, control panel, 2 optocouplers plus lots of gears and mechanical bits. $£ 24.95+£ 3$ carr.

2345 OPTICAL SHAFT ENCODER. Similar to RS631-632, but $\mathbf{8 0 \%}$ cheaper! $\mathbf{£ 8 . 5 0}$

NEW THIS MONTH

LCD DISPLAY

24115 digit 12.7 mm high LCD by Data Image. 14 segment, so letters as well as digits can be formed. List £15+ Our price $\mathbf{£ 4 . 5 0}$ 24117 Special low price switch mode PSU. 50W unit on PCB $160 \times 100 \mathrm{~mm}$. Mains input, outputs 5 V at $5 \mathrm{~A}:+12 \mathrm{~V}$ at $1 \mathrm{~A} ;-12 \mathrm{~V}$ at 1 A

List £40+

Our price $£ 9.50$
24113 BBC Computer PSU (early models) Steel case $158 \times 72 \times 55 \mathrm{~mm}, 2 \mathrm{~m}$ long mains lead, rocker switch, fused. Outputs: +5 V 24112 Á 24112 Another switch mode PSU. Same
size as $\mathrm{Z4117}$. Outputs 24 V at 1.7 A . 2 V at size as 24117 . Outputs 24 V at 1.7A; 12 V at
0.8 A

KEYBOARDS

28848 Alpha numeric plus seperate numeric keyboard. 104 keys plus 11 chips. $442 \times 175 \mathrm{~mm} \quad \mathrm{E} 12.00$ 2411624 way (Bx3) membrane keypad. Large ($200 \times 90 \mathrm{~mm}$) area - they were used in a teaching aid. Overlay template and pinout supplied. $£ 3.00$

Z80 PANEL

2494 Newbrain Motherboard. Microp. rocessor panel $265 \times 155 \mathrm{~mm}$. Complete chips altogether plus other associated components, plugs, sockets, etc. Brand $\begin{array}{ll}\text { new in original packing } & \mathbf{f 5 . 5 0}\end{array}$

SOLDER SPECIAL!!

* 15W 240V ac soldering iron * High power desolder pump * Large tube solder

ALL FOR
£7.95

FLASH UNITS
24100 Brand new, made for Hanimex, $56 x$ $30 \times 18 \mathrm{~mm}$. Apart from xenon tube and driver circuitry, there is a sub-min 3 V relay.
$\mathbf{£ 2 . 7 5}$ $3 V$ supply. Data supplied. $£ 2.70$

TELETEXT PANEL
$2037265 \times 145 \mathrm{~mm}$ by GEC. Uses 8085 A 8155, 8255A, 8251, 8212 all by Intel. $2 \times$ $2114,2 \times$ TC5501 + custom chips +10
others. Nicad back up. New
$\mathbf{~} 9.90$

NOTICE TO RETAILERS

Greenweld Electronics Ltd. have been appointed Official Wholesalers of Verobloc, Veroboard, Easiwire \& Accessories by Vero. We will be only too happy to supply all your Veroboard requirements at Trade Price. Ring, write or fax us for full information and prices.

All prices include VAT; just add £1.00 P\&P; Min Access $£ 5$ invoice charge $£ 10.00$. Our shop has enormous stocks components and is open 9-5 Mon- Sat. Come and see us! HOW TO CONTACTUS:
By post using the address below; by phane (0703)772501 or (07031787555. by EM out of business hours); by FAX Tolex 265871 MONREF G quoting 72:MAG36026

443D MILLBROOK ROAD, SOUTHAMPTON SO1 OHX

C. VNYTEE

The UK Distributor for the complete ILP Audio Range

BIPOLAR AND MOSFET MODULES
The unique range of encapsulated amplifier modules with integral heatsink.
HY30 15W 8upolaramp. $\quad £ 11.30$ HY248 120W 8ipolar amp (8ohm) £24.15 HY60 30W Bipolaramp $£ 11.30$ HY364 180W Bipolar amp (40hm) £36.00 HY6060 30W Stereo Bipolar amp £23.65 HY368 180W 8ipolar amp (8ohm) £37.55
 HY244 120W Bipolar amp (40hm) £24.15 MOS364 180W Mosfetamp $£ 75.75$
POWER SUPPLIES
Comprising toroidal transformer and DC board to power the ILP amplifier modules.

	Application		PSU532 MOS 128 (2)	¢25.40
PSU30	Pre-amplifier	£ 9.75	PSU542 HY248	£25.40
PSU212	1 or 2 HY 30	£17.70	PSU552 MOS248	£27.45
PSU412	HY6060, HY124, lor 2 HY6	¢19.95	PSU712 HY244 (2)	£29.20
PSU422	HY128	£22.00	PSU722 HY248 (2)	£30.20
PSU432	MOS128	£23.00	PSU732 HY364	£30.20
PSU512	HY244, HY 128 (2)	¢24.40	PSU742 HY368	£32.20
	128	¢24.40	PSU752	£32.20

PRE-AMP and MIXER MODULES
These encapsulated modules are supplied with in-line connectors but require potentiometers, switches etc. Individual data sheets on request.
HY6 Mono pre amp with bass \& treble
$\begin{array}{ll}\text { HY7 } & \text { Mono mixer } 8 \text { channel } \\ \text { HY8 } & \text { Stereo moxer } 5 \text { channel }\end{array}$
HY9 Stereo pre-amp
HYll Mono mixer 5 channel with bass \& treble
HY12 Mono pre-amp 4 channel with bass, mid \& treble
HY13 Mono VU meter driver
HY66 Stereo pre-amp with bass \& treble
HY67 Stereo headphone driver
HY69 Mono pre-amp 2 channet with bass \& treble
HY71 Duat pre-amp
HY73 Guitar pre-amp with bass \& treble
HY74 Stereo mixer 5 channel with bass \& treble
HY75 Stereo pre:amp with bass, mid \& treble
$\begin{array}{ll}\text { HY76 } & \text { Stereo switch matrix } \\ \text { HY77 } & \text { Stereo VUT meter driver }\end{array}$
HY77 Stereo VU meter driver
HY78 Stereo preamp
HY83 Guitar pre-amp with special effects
$\begin{array}{ll}\text { B6 } & \text { Mounting board } \\ \text { B66 } & \text { Mounting board }\end{array}$
LOUDSPEAKERS

3128	350 W
$12^{\prime \prime}$	
312 WB	Bass loudspeaker

POWER SLAVES
These cased amplifiers are supplied assembled and tested in 60 and 120 watt Bipolar or Mosfet versions.

Prices include VAT and carriage hsa
Quantity prices available on request
Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge.Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 Fax: 0227365104

SPECTRUM PARALLEL PRINTER INTERFACE

A very simple interface-costing around $£ 20$ to build-that can link a Spectrum, Spectrum Plus or Spectrum 128 Plus 2 (in 48 K mode) to most parallel printers. The article includes descriptions of parallel and serial systems, the functioning and timing of a parallel printer plus some user friendly software.

SATELLITE TELEVISION

Next year, small receiving dishes will begin to sprout on walls and roofs all over Europe to collect television programmes from space. Ian Graham reports on the technical progress and commercial competition in this new market-place. Has the dream of a single European system become a nightmare? Will the programmes be scrambled? Will Astra start and finish the race first?

JANUARY'89 ISSUE ON SALE DECEMBER 2

FOR POWER CONTROL

P.C. 101 A.C. POWER CONTROLLER 1.5kW

Full phase control mains plug and socket kit that uses the Plessey TDA 2086A I.C. power controller ideal for universal motor control, heaters, lighting etc.
f16.90
P.C. 102 A.C. POWER CONTROLLER 750W
Full kit that uses a 3 pin plug replacement module for phase control of mood lighting, heaters, universal motor control etc.
$\mathbf{£ 1 1 . 9 5}$
M.P.C. 01 A.C. SOLID STATE RELAY 1.5kW

Full kit for simple on/off control of mains loads from a logic signal (microcomputer output port etc.) optically isolated for maximum safety.
£9.80
M.P.C. 02 A.C. (phase control) S.S.R. 1.5kW

Full kit for phase control of mains loads from the printer/output port of a micro computer as P.C. 101 with additional p.c.b. circuitry.
£26.90

- ALL EITS ARE A VAHLABLE READY BULLT. PLEASE

SEND S.A.E. FOR FURTEER DETAISS.

- MLL ETSS CONTANEULL INSTRUCTIONS AND CIRCUTT DLAGRAME.
- HLSO EIGE QUALITY P.C.B.'s AND COMPONENTS.

OFFICLAL SCHOOL AND COLLEGE ORDERS WELCOME.

- PLEASE ADD $11.50 \mathrm{p}+\mathrm{p}$ AND 15\% V.A.T. TO ORDER TOTAL.
P.O. OR CHEOUES MADE PAYABLE TO:-
"MUTEX"
PO Bох 25
BILLINGHAM, CLEVELAND TS23 3FY
TELEPHONE (0642) 561181 (24 HOUR ANSWER SERVICE)

...NONE GREAT KIT!

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.
THE KIT - simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly covered in a detailed 36 page manual.
THE DETECTOR - features Analytical Discrimination \& Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector manufacturer.
A comprehensive instruction book is available @ $£ 5$ (deductable from order). Ask at your tocal Hobby/Electronics shop or contact C-Scope for a copy of a published Field Test Report.
$\bigcirc \bigcirc \cap(1)$ C-Scope International Ltd., Dept. EE86, Wotton Road, Ashford, Kent TN23 2LN. Telephone: 023329181.

HREBAGESEROUALCONI

20k $/ \mathrm{V}$ a.c. \& d.c. COOLPROF 40 RANGES - FOOL PROM Accuracy:d.c.c. rangegs and ohms 2.5% a.c.C.

 10 mA .30 mA
$100 \mathrm{kS}, 30$
ranges.
dinensions: SUPER 20 A中

BIRMINGHAM (SUPERTRONics), 65 Hurst Strove (021) 6668504
WOLVERHAMPTON (WALTONS), 55A Worcester Street (0902) 22039 WEM (MARCO), The Mattings, High Stroef (0939) 32763

PLEASE ADD
85p P\&P
+15\% VAT TO ALL ORDERS
unless otherwise stated.

Tel (0939) 32763
Telex 35565
FAX: 093933800

PROJECT KITS

Magenta supply Full Kits: Including PCB's (or Stripboard), Hardware, Components, and Cases (unless stated). Please state Kit Reference Number, Kit Title, and Price, when ordering. REPRINTS: If you do not have the issue of E.E. which includes the project, you will need to order the instruction reprint as an extra: 80 p each. Reprints are also available separately-Send f1 in stamps.

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	KT-TMLE	PRICE	$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	KTTTME	PRICE
797	MICRO ALARMNov 88	58.81	54	CARAVAN BATTENY MDNITOR July 86	E17.17
796	SEASHEL SYNTHESISER Nov 88	$\underline{24.99}$	541	SOUEEKE COWTNuITY TESTER July 86	83.59
795	LR. OBJECT COUNTER Nov 88	$\underline{29.63}$	504	ELECTRONIC SCARECROW July 86	0.0
794	REAR SCREEN ONE-SHOT Nov 88	$£ 11.92$	540	PERCUSSION SYMTH June 86	6903
793	DOOREELL DELAY Nov 88	¢10.28	54	PEESOMAL Madio June 86	E11. 53
88	SOLOERING IRON TEMPERATURE		54	Watchdog June 86	68.24
	CONTROUER OC: 88	69.50	5	MINI STRDBE May 86	¢13.85
790	EPROM ERASER Oct 88	924.66	52	PA AMPUAFER May 86	E25.95
79	breaking glass alarm Sept 88	¢17.51	523	STEREO REVERB Apr 86	E25.4.4
\%	amsthad Plo Sept 88	179.94	524	VERSATILE PSU Apr 86 FREELOADEA Apr 86	${ }^{624.60}$
7	TMEE SWITCH Aug 88	f17.51	515	Preeloader Apr 86 BBC Midi interace Mar 86	E8.49
77	\$PHEATER July 88 CHINERSA MICAD CHARGER July 88	f6.59	514	INTERVAL TMER Mar 86	E1187
76	UMIVEASAL MICAD CHARGER July 88 ISOUNK July 88	$\underline{86.59}$	515	STEREO HI-A PAE-AMP	[49.19
7	VDE 0 WIPER July 88	533.58	512	MAINS TESTER \& FUSE FIMDER Mat 86	6.10
73	HEADUGKT REMMINDER June 88	87.58	503	FUNCTION GENERATOR FED	98.84
72	DSOR SENTINEL May 88	E12.81	504	POWER SUPPLY FOR ABOVE MUSICAL DOOR BEU Jan 86	67.62
\%	SUPER SOUND EFPECTS GENERATOR May 88 CABLE \& PIPE LOCATOR APril 88	¢12.93	453	DIGTAL CAPACTIAMCE METER Oec 85	E41.55
\% 71	CABLE \& PIFE LOCATOR APTI 88 STERED NDISE GATE April 88	f25:38	4	SOLDERING IRON CONTROLER OCt 85	E5.47
mit	WUDUCTIVE PROXMMTY DET. April 88	fe.c3	473	RIIAA PRE-AMP Sept 85	E15.74
m	LOW PVEL ALERT April 88	55.43	464	STEPPER MOTOR INTERFACE FOR THE BBC	
m	SEMICOMDUCTOA TESTER Mar 88	673.51		COMPUTER less case Aug 85	${ }^{611.68}$
75	LE DETECTOR Mar 88	¢110		1035 STEPPER MDIDR EXTMA	514.50
75	ENMELOPE SHAPER Mar 88	E14.90		OPTIONAL POWER SUPPLY PARTS	E5.14
74	SOS ALERT Mar 88	69.36	461	CDNTNUITY TESTER July 85	56.20
70	VARAABLE 25V-2A BENCH		68	AMSTEAD USER PORT July 85	17.67
	POWER SUPPLY Feb b	c49.73	55	ELICTROMIC, Doorbelu June 85	77.56
	CAR LAMP CHECXING SYST. Feb 88	67.10	453	GRAPHIC EQUALISER June 85	576.90
74	GAME TMER Feb 88	¢14.32	44	TNSULATION TESTER Apr 85	E19.50
75	OURCMASTER Jon 88	f18.56	132	GAMES TMER Jan 85	E. 11
57	TRANSISTOR CUTVE TMACER (BBC)	f14.36	430	SPECTRUM AMPLFIER Jan 85	65.91
π	AUDHO SIGMAL GENERATOR Dec 87	f13.64	117	DOOR CH1WE Oec 84	[18.7
74	DUAA MAMS UGNTS RLASHER Dec 87	220.50	398	BBC MiCRO AUDID STDRAGE SCDPE	
73	ACCEMTED BEAT METRONOME Nov 87	270.5		InTERFACE NOV 84 Proximity ALARM Nov 84	$\begin{aligned} & 83.25 \\ & 67.56 \end{aligned}$
7 \%	ACOUSTIC PROBE Nov 87 (less boht \& probe)	[16.26	337	Mains Cable detector oct 84	E5.53
741	bBC Sideways ramumom Nov 87	07.53	336	DRILU SPEED CONTROLLER Oct 84	${ }^{68.68}$
74	noed comtrouer oct 87	28.14	31	GIITAA HEAD PHONE AMPLFIER Sept 84	679
78	TRUNSTEST OCt 87	59.70	358	VARICAP AM RADIO May 84	[13.15
73	AUTOMATIC PORCH LGGT Oct 87	617.17	353	EXPERIMENTAL POWER SUPPLY May 84	C73.51
78	CARAVAN fRIDGE ALERT Oct 87	E5.4	384	SIMPLE LOOP BURGLAR ALARM May 84 FUSESIDDE CHECXER ADI 84	$\begin{array}{r}17.16 \\ \hline 4.35\end{array}$
73	STATC MONITOR OCT 87	61.66	3515	FUSESIODE CHECKERAPr QUASI STERED ADAPTOR Apr	6435
m	ELECTROMIC MULTMMETER Sept 87	[46.96	354	SiGNAL TRACER Feb 84 Apr	c13. n
12	MOISE GATE Sept 87	823.25	347	Blologicai AMPUFIER Jan 84	$\underline{184.14}$
re	PERSDMAL STEREO AMP Sept 87	814.31	337	CONTINUTTY TESTER Dec 83	[12.59
13	Bunst-frre manns Controler Sept 87	${ }_{613} 13.57$	330	CHILDREN'S DISCD LIGHTS Dec 83	110.40
717	SUPER SOUND ADAPTDR Aug 87 3 BAYD $15-300 \mathrm{H}_{2}$ RADHO Aug 87	${ }_{683} 83.53$	333	movel egg tmer Oec 83 inc. case	512.50
719	BUCCANEER I.8. METAL DETECTOR inc. coils rod casa, leas handle and hartware July 87	$\underline{26.45}$	301	STORAGE 'SCOPE INTERFACE FOR SBC MICRDAug 83 less sottware	[19.30
re	OIGITAL COUMTERTFREO METER (1OMHz) inc.cose July 87	E57.07	250	HIGH POWER INTERFACE BDARD Aug 83 no case	[12.s
71	MONOMIX July 87	$\underline{21.00}$	282	USER PORT VD BDAAD	
72	FEnMDSTAT July 87	612.14		Less cabie +plug	13
71	VSUAL GUTTAR TUMER Jun 87	f2\% 9	233	USER PORT CDNTROL BOARD July 83	
715	Manl disco Light Jun 87	£12.59		less cable + plug +case	
7	WmDSCREEN WASHER WARNIMG May 87	$\underline{56.12}$	27	MOISTURE DETECTDR May 83	E6.81
70	fridge alama May 87	69.8	271	MOVELTY EGG TMER April 83less case	${ }^{26.91}$
71	EOUNILER (IOMISEN) May 87	E15.53	270	BUEZ DFF March 83	E5.elt
75	BULB LIFE EXTEMDER April 87 (less case)	65.24	268	PUSH BIKE ALARM FED 83	f14.7
78	EXP. SPEECH RECOGNITION April 87	E20.58	285	DL TAPE CONTROL Nov 82	fe. 5
70	active in burglan alarm Mar 87	E35.65	242	2. WAY INTERCOM July 82 no case	E5.69
51	VDED GUAAD Fab 87	$6 \mathrm{ERO}_{49}$	243	REFEX TESTER July 82	
53	CaR vohtage monitor feb 87	512.58	243	RERAEX TESTER July 82 EGG TMER June 82	E6.9
59	SPECTRUM SPEECH SYMTH. (no es Frab ${ }^{\text {b }}$)	520.58	240	EGG TMER June 828 les case. May 82	E4.00
571	SPECTHUM vo PORT leas case. Feb 87	¢9.4	237	CAR LED VOLTMETER loss case. May 82 CAMERA OR FLASH GUM TRIGGER	64.00
573	STEPPMGG MDTOR BDOSTER (for above)fed 87 STEPP髙G MOTOR MD200 Feb 87	$\begin{array}{r} \text { E5.45 } \\ \text { £16. } \mathbf{8} \end{array}$	225	CAMERA OR FLASH GUM TRIGGER Mar 82 less tripod bushes	51120
575	HANDS-DFF INTERCDM (per station) isc. case Jan 87	[10.49	205	SUSTAN UNIT Oct 81 TAPE MOISE LMITER Oct 81	¢17.63 56.976 .27
50	Car Alaran Oec 86	$[12.47$	207	heads and tails gane oct 81	¢3.47
57	Randodm number generator Dec 86	[15.72	208	PHDTD RASH SLAVE Oct 81	[4.79
58	BBC IEX SIDEWAYS RAM Oec 85	[12.97	211	Fuzz BDX Oct 81	510.05
54	CAR RASHER WARMING Nov 86	69.37	197	0.12V POWER SUPPIY Sept 81	C24.58
501	20mulk DIG. FREOUENCY METER Nov 86	[52.90	11	SOLL MOISTURE INDICATDR E.E. May 81	55.65
59	10 WATT AUDIO AMPUFER Oct 86	E35.70	149	gUITAA PRACTICE AMPUFIER Nov 80	E2. 55
561	Lugit rioer lapel badge oct 86	¢10.20		SOUMD TD LGitt Nov 803 channel	f29 37
500	UGIT RIDER DISCD VERSION	E19.c2	124	SPRING LIME REVERB UNIT Jan 80	[4, 27
[50	LGGT RIDER IS LED VERSION	E13.64	12	Uniboand bumglar alarm oec 79	68.3
55	SCRATCH BLANKER Sept 86	555.0	111	DARKRDOM TIMER JUly 79	14.03
55	MPra-RED BEAM ALARM Sedt 86	[28.35	113	WICROCHIME DOORBELU FEb 79	[2108
555	FREEZER FAILURE ALARM Sept 86	¢15.50	111	SDUND TO UGETI Sept 78	f10.90
554	CAR TIMER Sept 86	ct. 12	108	IN SITU TRANSISTDR TESTDR Jun 78	65.2
553	BATTEAY TESTER Aug 86	67.19	106	WEIRD SOUND EFFECTS GEN Mar 78	7.88
54	THT ALARM July 86	77.28	101	ELECTRDMIC DICE Mar 17	56.3

MAGENTA ELECTRONICS LTD. SHOP NOW OPEN

\%

[^0]SHOP HOURS: 9-5 MON-FRI
ADD 11 P\&P TO ALL ORDERS PRICES INCLUDE VAT
SAE ALL ENQUIRIES.
OFFICIAL ORDERS WELCOME
OVERSEAS: Payment must be sterling IRISH REPUBLIC and BFPO, UK PRICES EUROPE: UK PRICES plus 10\%. ELSEWHERE: write for quote.

028365435

FROM MAGENTA

A SELECTION OF OUR BEST PROJECT KITS

As usual these kits come complete with printed circuit boards, cases, all components, nuts, screws, wire etc. All have been tested by our engineers (many of them are our own designs) to ensure that you get excellent results

INSULATION TESTER

An electronic High Voltage tester for mains appliances and wiring. An inverter circuit produces 500 volts from a PP3 battery and applies it to the circuit under test. Reads insulation up to 100 Megohms. Completely safe in use
OUR KIT REF 444 £19.58

DIGITAL CAPACITANCE METER

Simple and accurate (1%) measurements of capacitors from a few pF up to 1,000 uF. Clear 5 digit LED display indicates exact value. Three ranges $-\mathrm{pF}, \mathrm{nF}$ and uF. Just connect the capacitor, press the button and read the value.

£41.55
 OUR KIT
 REF 493

3 BAND SHORTWAVE RADIO
Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker Advanced design gives excellent stability, sensitivity and selectivity Simple to build
OUR KIT REF $718 \mathbf{£ 2 6 . 5 3}$

DIGITAL FREQUENCY METER

 200 MHzAn 8 digit meter reading from A.F up to 200 MHz in two ranges. Large $0.5^{\prime \prime}$ Red LED display. Ideal for AF and RF measurements, Amateur and C.B. frequencies.

KIT REF 563 £62.98

'EQUALISER' IONISER

A mains powered loniser that produces a breeze of negative ions in the air. A compact, safe, simple unit that uses a negligible amount of electricity.
KIT REF $707 £ 15.53$

SUPER SOUND--EFFECTS GENERATOR

A wide range SN76477 sound effects board giving: Bird Chirps, Sirens, Helicopters, Explosions, Phaser Guns, Steam Train sounds, and more. Supplied without a case.
KIT REF $781 £ 12.99$

TEACH-IN 88/89 BOOK £2.45

* NOW AVAILABLE \downarrow A complete City and Guilds Certificate Course for 726/303 Introductory Microprocessors

Written by Mike Tooley B.A. this course can lead successful readers to a City and Guilds Certificate. Everything you need to know is included-even Pre-test papers, etc. Make sure of your copy, send in order with payment now.

Send to Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW.

TEACH-IN 88/89—_INTRODUCING MICROPROCESSORS, ORDER FORM
NAME
ADDRESS
Please send me copies of Teach-In 88/89-Introducing Microprocessors; enclose cheque/PO $£$ sterling only for $£$........ (overseas readers add $£ 1$ postage) made payable to Direct Book Service.

000K - This v								

ELECTRONICS
INCORPORATING ELECTRONICS MONTHLY

The Magazine for Electronic \& Computer Projects VOL. 17 No. 12 December '88

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL, 6 CHURCH STREET, WIMBORNE,
DORSET BH21 1JH
Phone: Wimborne (0202) 881749
FAX: (0202) 841692
See notes on Readers' Enquiries below-we regret that lengthy technical enquiries cannot be answered over the telephone
Advertisement Offices
EVERYDAY ELECTRONICS ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 0JS. Clayton (0255) 850596

CIRCUIT CARDS

EVERY SO often a new constructional method comes along which changes the face of hobbyist projects. I well remember as an apprentice back in the early sixties when Veroboard came out. It revolutionised the hobby almost overnight. For the first time hobbyists could produce projects using a form of printed circuit board-actual p.c.b.s for hobbyists did not appear until many years later.

Now we have a solderless method of construction-again from Verso. Easiwire and various projects using this system are catching on fast-particularly in education where the absence of soldering is a particular advantage. Over the next few months we will bring you a range of eight projects designed to be built with the Easiwire system. You could of course build them up on plain matrix board with soldered connections if you so wish.

Obviously these projects will appeal particularly to those with little constructional experience since they eliminate one of the areas which can cause problems. We hope that our Free Circuit Cards will make construcion of these projects virtually foolproof. To help a little further we have arranged a $£ 1$ off the Easiwire Kit from BICC-Vero-see page 703.

OFFERS

While on the subject of Special Offers to EE readers don't miss this month's 'Scope Offer (page 729). We know this type of equipment is rather expensive but this offer represents a good saving on the normal price and, of course, the 'Scope is one of the most useful and versatile items of equipment anyone interested in electronics could wish to own.

These Hameg 'Scopes are guaranteed for two years and should provide many, many years of reliable service to both hobbyists and professionals alike.

SUBSCRIPTIONS
Annual subscriptions for delivery direct to any address in the UK: $£ 14.50$. Overseas: $£ 17.50$ ($£ 34$ airmail). Cheques or bank drafts (in

£ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1JH. Subscriptions can only start with the next available issue. For back numbers see below.

BACK ISSUES

Certain back issues of EVERYDAY ELEC. TRONICS are available price $£ 1.50$ ($£ 2.00$) overseas surface mail-£ sterling only please) incluside of postage and packing per copy. Enquiries with remittance, made payable to Everyday with remittance, made payable to Everyday
Electronics, should be sent to Post Sales DepartElectronics, should be sent to Post Sales Depart-
ment, Everyday Electronics, 6 Church Street, Tent, Everyday Electronics, 6 Church Street,
Wimborne, Dorset BH21 1JH. In the event of non-availibility remittance will be returned. Please allow 28 days for delivery. We have sold out of Sept., Oct., \& Wove. 85, April, May \& Dec 86, Jan., Feb., April, May, Nov. 87, Jan., March \& April 88).

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 4.95$ (59.00 overseas surface mail) inclusive of p\&p. Please allow 28 days for delivery.
Payment in f sterling only please.

Editor MIKE KENWARD
Secretary PAMELA BROWN
Deputy Editor
DAVID HARRINGTON
Editorial Assistant
COLETTE McKENZIE
Editorial: WIMBORNE (0202) 881749
Advertisement Manager
PETER J. MEW Clacton (0255) 850596

Classified Advertisements

Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporadion or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however guarantee it and we cannot accept legal responsibility for it.
COMPONENT SUPPLIES
We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDÅY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered. or for late delivery, or for faults in manufac ture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or a solicitor.

TRANSMITTERS

We would like to advise readers that certain items of radio transmitting equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use.

The law relating to this subject varies from country to country; overseas readers should check local laws.

ANDY FLIND

A light effects unit (up to 100W) with a difference. Suitable for parties, games, meditation or just plain relaxing.Ideal companion for the "Seashell Sea Synthesiser" described last month.

0VER the last few months, the author has spent much time experimenting with electronic lighting effects. Up to four channels of coloured lights have been tried in various arrangements, operated by signal generators and filtered sound. During this work, it emerged that one of the most attractive effects consisted of a single bulb. either coloured or plain, placed inside one of those white translucent globes so often seen suspened from ceilings. The effect obtained is very pleasant and has so many possible uses that a special project especially for it seemed worthwhile.
With this project the globe is taken from its original fitting and placed "upside down" on a base, and the lamp is driven by a circuit that causes its brilliance to rise and fall slowly and continuously, at speeds from once every two seconds to once in twenty seconds or so. The speed of the effect, its depth and the overalt brightness are all independently adjustable for a wide variety of possible effects. Apart from the attraction of the lamp itself, much fun can be had from simply playing with the controls.

BLOCK DIAGRAM

As the circuit is quite complex, the description will begin with a block diagram. Fig. 1,
which shows the general principle of operation. The well-known "phase-angle" power control method is used, similar to most dimmer switches, but it is voltage-controlled. A zero-crossing detector provides a short pulse each time the mains voltage crosses zero, and this resets a ramp generator. The ramp output is compared to the internally generated control signal, and the comparator controls the load through a triac.

As phase-angle dimmers produce a fair amount of r.f. noise, suppression is fitted to keep this from entering the mains wiring. Low-voltage power for the electronics is supplied from a capacitive "dropper" circuit. The control signal is a slow, approximately sine-shaped voltage as this gives the best effect. Whilst a triangular waveform is easier to generate, the "corners" are clearly visible in the light output and spoil the smoothness of the effect.

WAVEFORMS

The internal waveforms of the circuit are shown in Fig. 2. Diagram (a) shows the waveform of the 50 Hz a.c. mains supply, (b) is the output from the zero crossing detector, though in practice the pulses are much shorter than shown. Note how they "straddle" the zero crossings so that drive to the triac is

Fig. 1. Block diagram for the Phasor light effects "globe".

removed just before zero, allowing it to turn off reliably. The ramp waveform appears at (c), and again at (d), this time together with a steady signal voltage, these two being the inputs to the comparator stage.

The outputs from comparator and triac are shown in (e) and (f). In this example the input signal at (d) and corresponding output power to the load at (f) are both about fifty percent of their range.

Like most really effective circuits, this one is fairly complex. None of the parts are particularly expensive though, and the completed board is fairly compact. A detailed description of the full circuit, Fig. 3, follows.

CIRCUIT

To begin with, a source of regulated power for the low-voltage electronics is necessary. The triac to be used, a C206D device, has been found by the author to trigger more reliably when operated with negative gate drive. Since this must be delivered with respect to the neutral side of the mains, a single negative supply rail is used instead of the more usual positive one.

The low voltage is obtained from the live side of the mains, using the reactance of Cl to limit current flow. Positive half-cycles pass through D1 to neutral, negative ones flow through D2 into C3. At about 12 volts, Zener D3 conducts, returning further current to neutral. The unused current in this type of "dropper" circuit is almost purely reactive; it doesn't cause heat as a resistor would, and should not increase the electricity bill.

IC1 is a 5 volt negative voltage regulator feeding decoupler C4. This is the power supply section of the circuit, providing negative supplies of about 12 volts with crude regulation for the output stage and a well-regulated 5 volts for everything else.

ZERO CROSSING

The zero-crossing detection is carried out by TR1 and IC2, a CMOS 4011 B . A small current flows directly from live through R 3 with a slight forward phase shift introduced by C2. During negative half-cycles it flows to neutral through the base-emitter junction of TR1, turning it on, during positive half cycles it flows through D4 and the transistor is turned off. The collector of this transistor is thus alternatively high and low, the changeovers
occurring just before the mains zero crossings. This signal drives IC2, a quad "NAND" gate device.

Gate "a" buffers (and inverts) the signal, gate " b " inverts it again. Each drives an input of gate " c " through a differentiator. The inputs of " c " are normally high, but each time the collector of TR1 changes state one of them is pulled briefly low, causing a short positive pulse to appear at the " c " output. This is inverted again by "d", giving a similar but negative-going pulse. With the component values shown the output pulses are theoretically about $400 \mu \mathrm{~S}$ long and almost centred over the zero crossings.

These pulses turn on TR2, which charges C9. R8 discharges C9 by about a volt during the 10 mS of each mains half-cycle. As this is only a small part of the C9/R8 time constant, the resulting ramp waveform is fairly linear. C10, R10, and RII correct the d.c. voltage so that the average level of the ramp is half the supply voltage.

CONTROL SIGNAL

Ramp generation forms one side of the circuit, whilst the other is concerned with control signal generation. This is based around IC3, a TL064 quad op-amp. This particular device sports both low current consumption and high input impedance, both useful in this design. The first amplifier, "a", provides a low impedance mid-rail reference. "b" is an integrator, giving an output which ramps at a speed and direction depending on the input voltage to R17. It drives IC4, a "Schmitt trigger" with hysteresis of about 2 volts. The 3130 is used here instead of a TL064 amp because its output switches all the way to both supply rails.

Input for the integrator is taken from the 3130 through VR1, giving frequency adjustment from about one cycle per second to about one in every twenty seconds. The control is practically linear, making it easy to adjust. Output from this stage is a triangle wave but, as mentioned earlier, a sinewave is better for this application. IC3 "c" shapes the triangle, through non-linear feedback from diodes D5 and D6, into something similar to a sinewave in appearance, of about a volt peak to peak.

Fig. 2. Waveforms in Phasor circuit, at about half power.

The last of the four TL064 amps, IC3 "d", sets up the signal to the comparator. The "sinewave" input arrives via "depth" control VR3, allowing the fading effect to be varied from zero to overdrive, where the lamp virtually flashes instead of fading. An adjustable constant d.c. input from VR2 controls overall lamp brilliance. The outputs of this stage and the ramp generator go to comparator IC5 which drives the triac CSRI. IC5 is another 3130, they make excellent comparators. It is supplied directly from the 12 volt rail to improve the triac drive.

Suppresion is supplied by choke LI and capacitor C13 to keep r.f. radiation to a minimum, and a transient suppressor VDR1 is included to protect the triac from any high voltage spikes in the mains supply.

Fig. 3. Complete circuit diagram for the Phasor lamp driver.

Fig. 4. Printed circuit board component layout and (below full size copper foil master pattern for the Phasor.

Fig. 5. Interwiring from the circuit board to the "effects" controls.

Resistors

Resistors	
R1	3901 W
R2	1 M 1 W
R3	100 k 1 W
R4	1 M
R5, R9, R12 to	
R14, R16, R18	10 k (7 off)
R6 to R8	39 k (3 off)
R10, R11, R17	2 M 2 (3 off)
R15, R20	47 k (2 off)
R19	15 k
R21	270 k
R22	100 k
R23	$1 \mathrm{k5}$
All 0.6 watt 1% except R1, R2, R3	

Potentiometers

VR1 100k carbon lin. rotary
VR2 10k carbon lin. rotary
VR3 10k carbon lin. rotary
All plastic mounting
bush and plastic
spindle type

See page 702

Capacitors

C1	$0.47 \mu 250 \mathrm{~V}$ mains suppression type
C2	470 n polyester layer C3
	470μ axial lead elect. 25 V
C4	100μ axial lead elect.
	10 V
C5, C6,	
C10	100 n polyester layer (3 off)
C7, C8	10 n polyester layer (2 off)
C9, C11	1μ polyester layer (3 off)
C12,	$0.22 \mu 250 \mathrm{~V}$ mains C13
	suppression type

Semiconductors

D1, D2. 1N4007 silicon diode

D4	(3 off)
D3	BZX61C12 12V 1.3W
	Zener

D5, D6 1 N4148 silicon diode (2 off)
TR1. BC214L pno silicon
TR2 transistor (2 off)
CSR1 C206D 3A 400V triac
IC1 $\mu \mathrm{A} 99 \mathrm{LO5}$-5V 100mA regulator
IC2 4011 B CMOS Quad 2-input NAND gate
IC3 TLO64 Quad BI-FET op-amp
IC4 CA3130E CMOS
IC5 Op-amp (2 off)

Miscellaneous

VDR1 mains transient suppressor; suppressor choke, 3A; Printed circuit board available from the $E E$ PCB Service, order code EE631; d.i.l. sockets 8 -pin (2 off); d.i.l. sockets 14-pin (2 off); plastic control knobs (3 off)

CONSTRUCTION

Construction of this project is quite straightforward and should cause no special problems. Fig. 4 shows the component layout. The usual "height order" of component assembly is recommended, i.e. the tallest components go in last, simply because it makes things easier. Sockets should be used for all i.c.s except the regulator. Do not fit IC2 to IC5 or the triac at this stage. These will be fitted during testing.

Do PLEASE note that the i.c.s at the bottom of the board, that is numbers 3,4 and 5 , are positioned "head down", with pin one at the bottom. It's very easy to forget this when plugging them in later. Check the completed board carefully for errors, solder bridges etc. especially around the track that will carry mains live along the top.

TESTING

The following test procedure is strongly recommended. The infamous "Murphy's Law" often seems to be most active in the home constructor's workshop, so anything that helps thwart it should not be overlooked In the prototype, the following checks revealed a faulty triac and incorrectly fitted TR2; even designers are not immune from Murphy!

Useful testing can be carried out safely with a low-voltage supply, but some checks must be made with the project connected to the mains. When the mains supply is on, the whole must be treated with the greatest of care, all parts being treated as though they are LIVE. It is best to connect the test meter before plugging in.

Testing should begin without i.c.'s (except regulator ICl) or the triac fitted. The transistors, however, should be in place, especially TR1. With no mains connection a 9 volt supply, such as a PP3 battery, can be connected across the $470 \mu \mathrm{~F}$ capacitor C 3 . At this voltage Zener D3 should not conduct, so after a brief initial surge the drain should settle to about 2.5 mA . Check the voltage across C 6 , which will be 5 V if the regulator is working. If so disconnect the battery and connect the mains supply and (with care!) check the voltages across C 3 and C 4 , about 11.5 V and 5 V respectively.

This completes the power supply tests, though a further useful check (again with care) whilst connected to mains is the voltage across R5, which should average 2.5 V since this transistor is "on" half the time. Remember that the loading of your meter may have some effect, though.

With the board disconnected from the mains connect up the control pots as shown in Fig. 5 and plug in IC3 and IC4, the TL064 and the upper 3130. Note that these, and IC5, are orientated "upside-down". Reconnect the 9 volt battery supply to C3, and note the drain, which should now be about 3.5 mA . If so, test between the negative side of C 4 and pin 2 of IC5's empty socket, (second one up, righthand side) with a meter on the 10 volt range. Turn the "depth" control VR3 right down (anti-clockwise), and observe the effect of "level" control VR2. This should allow adjustment of the voltage between about 1.5 and 3.5 V . Set it to 2.5 V , set the "speed" control VR1 somewhere near the top of its range, and advance the "depth" control VR3. The output should swing symmetrically about the original point, to a maximum of about 0.75 V either way.

If all seems well disconnect the battery and fit the remaining two i.c.s (remember, the 3130 head down, the 4011 right way up), sol-
der in the triac, attach a suitable load, such as a 100W light bulb, and with care try the completed board. If all is well it will be possible to adjust the pots-do not touch any metal parts of the circuit or the pots as they must be treated as live at all times-to obtain various speeds and depths of auto-fading action.

FAULT FINDING

Some tests that may help if it doesn't work follow. In the author's experience, triacs usually blow short circuit, so if the light will not dim this may be the problem. IC2 "a" and "b" should be switching in time with the signal from TR1, so their outputs, pins 4 and 3 respectively, can be checked for an average of 2.5 V against the negative end of C 4 .

The output of " c " is a series of very short pulses, so it will measure only a fraction of a volt above negative. Output " d " is its inverse, and should, therefore, be a fraction below 5 V . The voltage across C 9 will be just below 4.5 V . If these checks have to be made, take care as all parts of this circuit must be treated a "live" whilst connected to the mains.

At this point you will have, hopefully, a working Phasor circuit board. The maximum load should not exceed about 100 W , resistive of course, such as a lightbulb, though the limit is set mainly by the lack of a heatsink for the triac. If this is moved off the board and fitted with a heatsink the specified device should be able to handle up to 500 W with ease.

Applications for the board are limited only by imagination. It can be either boxed on its own with a socket outlet or incorporated into a lamp as an integrated unit.

It is essential that the unit is completely encased in a plastic or other fully insulated case and that the specified plastic style potentio meters and fixings are used. No part of the circuit should be exposed in any way.
(above) The circuit board removed from the base of the "globe".

IN USE

The prototype has a wooden base containing the board and controls, with a white globe on top as mentioned earlier. The effects obtainable range from a simple table lamp with dimmer control ("depth" turned right down) to something that appears straight out of "Dr. Who", enhancing the constructor's reputation as a "Mad Professsor"! Sound effects help here, such as the stereo "wave sounds" of another of the author's projects (published last month).
For those who practise meditation, the slowly pulsating light can be very relaxing, and at the opposite end of this scale it could be used in eye-catching advertising displays. Parties might benefit from it as a form of simple disco lighting, in fact it might even find a use in commercial discos if the triac is mounted off-board with suitable heat sinking.

As a final suggestion, the author recently wandered into an exhibition of palm-readers, fortune-tellers and the like. Almost all of these worthies were equipped with desk lights consisting of small white globes, of the kind described here, in china mounts shaped either as hands or snakes. At the time this project was under development and the effect it could have added was easy to imagine. The possible uses for this project really are almost un limited.

Circuit Card Project

I.R. REMOTE CONTROL

 ROBERT PENFOLD

The first two projects in a set of eight that will use the Free Circuit Cards and BICCVero Easiwire solderless connection system.

AFEw years ago remote control systems were almost invariably of the ultrasonic variety, but these days infra-red systems are probably more common. They are generally less vulnerable to spurious triggering, and are less likely to annoy your pets! They can also carry quite complex forms of modulation. Their only real drawback when compared to ultrasonic systems is that the range is usually somewhat less, although for many applications a range of only a few metres is required. This is easily achieved using an infra-red system.

EASIWIRE

This infra-red remote control system has been kept as simple as possible so that it can easily be built using the BICC Vero Easiwire system (and the Free EE Circuit Cards supplied with this issue) by complete begin-
ners to electronics contruction (see page 703 for information on using the Circuit Cards).

If you are not familiar with the Easiwire method of construction, its main claim to fame is that it is totally solderless. Despite the lack of any "proper" joints, it nevertheless provides neat and strong results that are suitable for most purposes. Refer to the June 1988 issue of Everyday Electronics for a full review of the Easiwire system.

CONTROL SYSTEM

The range of this control system depends on the emitter device used in the transmitter. and is around two to three metres using a wide-angle device, or about four to five metres using a narrow beam type. Although a narrow beam device gives better range, the aim of the transmitter must be quite accurate.
especially when the system is operated close to its maximum range.

The unit provides a basic on/off action, where opening and closing a switch on the transmitter results in the contacts of a relay in the receiver switching on and off in sympathy. The system is suitable for simple remote control applications such as control of a small model car or boat. The equipment could also be used as a broken-beam type sensor for a burglar alarm system.

THE SYSTEM

In theory it is possible to have a d.c. system, where the signal from the transmitter is detected by a photocell at the receiver, and the photocell drives an amplifier which in turn drives the relay. In practice such a system is unusable as it provides a totally inadequate range. Boosting the sensitivity to improve range simply results in frequent spurious operations of the system.

The main problem is that of a certain amount of background infra-red signal. This background level could easily be strong enough to swamp the signal from the transmitter. There is also a problem with the inevitable drift that occurs in high gain d.c. amplifiers. An inordinate amount of readjustment could be needed with a sensitive d.c. coupled circuit.

Infra-red remote control systems normally use some form of pulse signal, and this one is no exception. The block diagram of Fig. 1 shows the basic arrangement of the system.

TRANSMITTER

The basic transitter signal is generated by an audio frequency oscillator. The exact operating frequency is not important, and anywhere in the upper regions of the audio range will suffice. Higher frequencies are less than ideal as the photocells and other parts of the unit will operate at less than optimum efficiency at these frequencies. Lower frequencies could make the equipment a bit sluggish in operation, and would make it relatively difficult to combat the background infra-red noise.

An l.e.d. converts the electrical pulses from the oscillator into pulses of infra-red radiation. This component is very much the same as the l.e.d.s used in clock displays etc., but its
output is just outside the visible-red part of the spectrum and into the infra-red zone. It provides no significant visible light output, and does not noticeably glow when activated. In order to give an adequate output level the l.e.d. must be driven at a high current, and it is, therefore, driven from the oscillator via a buffer amplifier.

RECEIVER

The photocell at the receiver is a photodiode. This is a type designed specifically for applications such as remote control systems. It has a spectral response that matches the output wavelengths of the l.e.d. at the trans-

Fig. 1. Block diagram to show the operation of the IR Remote Control.
mitter, and it is a large area device that provides good sensitivity. At least, it provides good sensitivity by photo-diode standards.

It still only provides an extremely low level output signal which must be amplified by a considerable amount in order to give sufficient drive to operate a relay. Most of this gain is provided while the signal is still in pulse form, and it is provided by two high gain amplifier stages.

Under most circumstances the background infra-red noise level is not a problem. Reasonably constant infra-red signals will not affect the unit. It is only those that, like the signal from the transmitter, are amplitude modulated that will interfere with the unit by holding the receiver in the activated state.
The only likely source of such a signal is the 100 Hertz modulated signal produced by mains powered filament bulbs. As this is at a much lower frequericy than the signal from the transmitter, some simple highpass filtering is all that is needed to remove any mains "hum" picked up by the photo-diode.
The output from the second high gain amplifier is fed to a rectifier and smoothing circuit. With a suitable input signal present, the output from rectifier circuit is a series of positive pulses. These are smoothed to produce a reasonably steady positive d.c. signal that can drive the relay.
The relay is controlled via an electronic switch that also provides a large amount of d.c. amplification. This enables the relatively weak output signal from the smoothing circuit to drive virtually any relay having a suitable coil voltage. A relay is merely a switch that is operated by an electromagnet, and its switch contacts are connected in one of the supply leads of the equipment which is to be control led by the system.

Of course, in the absence of any signal from the transmitter, the output from the second amplifier is only a low level noise signal, and the d.c. output from the smoothing circuit is inadequate to drive the electronic switch properly. Consequently, the relay (and the controlled equipment) are only switched on when the transmitter is activated.

TRANSMITTER CIRCUIT

The transmitter circuit is shown in Fig. 2, and as will be apparent from this, it uses very few components. It is based on the indispensible 555 timer integrated circuit. In this case it is operated in the standard astable (oscillator) configuration, and its output frequency is controlled by timing components R1, R2 and C 2 . They give an output signal with a markspace ratio of roughly $1: 1$. In other words, the "on" periods of the l.e.d. (D1) are roughly equal to the "off" periods.

Fig. 2. IR Transmitter circuit.

Resistor R3 controls the output current to D1, and it sets this current at a little under 100 milliamps. However, as D1 is switched off for about 50 per cent of the time the average

COMDPDNEVITS
 TRANSMITTER
 Resistors
 R1 3k9
 R2 47k
 R3 68

All 0.25W 5\% carbon except
R3 (0.5W)

Capacitors

C1 100μ axial elect. 10 V
C2 $4 n 7$ polyester (7.5 mm pitch)

Semiconductors

IC1 NE555P timer
D1 LD242 high power IR I.e.d.

Miscellaneous

S1 s.p.s.t. sub-min toggle or push to make type (see text)
B1 9 volt (PP3 size)
Battery connector; 8 pin d.i.I. i.c. holder; case (see text); EE Circuit Card or Easiwire board; wire; Easiwire connectors; etc.

Approx. cost
Guidance only
120
plus case

Fig. 3. IR Receiver circuit.
I.e.d. current is just under 50 milliamps. IC1 has a built-in output stage that enables these relatively high currents to be handled without the need for any external amplification.

RECEIVER CIRCUIT

The full circuit diagram for the receiver section of the system is shown in Fig. 3. D1 is the photo-diode, and it is used here in the reverse bias mode. R1 provides the reverse bias, and normally the current flow through D1 is only a minute leakage current. However, when it

COMPONENTS

RECEIVER

Resistors
R1 22k
R2 1M8
R3 6k8
R4 1 k
R5 1M
R6 4 k 7
All 0.25W 5\% carbon film

Capacitors

C1,C6 100μ axial elect. 10 V (2 off)
C2, C3 22 n polyester 7.5 mm pitch (2 off)
C4 $\quad 1 \mu$ radial elect. 63 V
C5 $\quad 2 \mu 2$ radial elect. 63 V
Semiconductors
TR1,TR3 BC549 silicon n.p.n. (2 off)
TR2 BC559 silicon p.n.p. D1 TIL100IR photo-diode D2, D3 OA91 germanium signal diodes (2 off) 1N4148 silicon signal diode

Miscellaneous

RLA1 6 volt relay with a coil resistance of 200 ohms or more, and contacts as required (see text)
S1 s.p.s.t. sub-min toggle switch
B1 9 volt battery (six HP7 size cells in plastic holder)
Battery connector; case (see text); EE Circuit Card or Easiwire board; wire; Easiwire connectors; otc.
plus case
receives each pulse of infra-red radiation from the transmitter a pulse of increased current flows through the circuit. This generates small voltage pulses at the junction of R1 and D1, and these are coupled to the input of the first amplifier by C2.

Transistors TR1 and TR2 act as the basis of the two high gain amplifiers, and these are both common emitter stages. They are a.c. coupled and use the same basic configuration, but the first amplifier uses an n.p.n. device whereas the second is based on a p.n.p. type. They each provide a voltage gain of more than 40 dB (one hundred times). The highpass filtering is obtained by using fairly low values for coupling capacitors C2 and C3. This gives simple two pole filtering, which is adequate for present purposes.

Diodes D2 and D3 are the rectifier circuit, and C5 is the smoothing capacitor. The output of this circuit drives a common emitter switch (TR3) which has the relay coil as its collector load.

When the relay is de-energised a high reverse voltage can be generated across the coil. D4 effectively short circuits this voltage spike and prevents it from damaging any of the components in the unit. C1, R4, and C6 are a supply decoupling network. These prevent low frequency instability due to feedback through the supply lines.

CONSTRUCTION

Details of the transmitter board and small amount of hard wiring are shown in Fig. 4.

Equivalent details for the receiver unit are provided in Fig. 5. If the circuits are to be built on the $E E$ Circuit Cards supplied with this issue rather than on pieces of the standard plastic Easiwire matrix board, then construction is much easier because the Cards are marked with component positions and the underside wiring. This makes it relatively difficult to make careless errors when constructing the boards. Despite this, you must still take reasonable care when fitting the components onto the boards. Make sure you read page 703 Using The EE Circuit Cards before starting const ruction.

Start with the transmitter board which is the more simple of the two. With Easiwire construction all the components are fitted onto the board and then they are wired up. Take care to fit C 1 the right way round.

With the axial (horizontal mounting) electrolytics the correct orientation is shown by an identation around the body of the component (which indicates the "+" terminal). The shorter leadout of D1 in the transmitter is its cathode ("k") terminal.

The LD242 gives optimum range but it is quite directional. Reduced range but a wider beam are obtained using an LD241 or a TIL38. Incidentally, some component suppliers sell these l.e.d.s simply as something like "high power infra-red l.e.d.s" rather than by type number.

An indentation at one end of ICl's body enables its orientation to be set correctly. Obviously there is no need to fit IC1 in a socket as there is no risk of heat damage with this method of construction. On the other hand, connections to it will be easier if they are made via a holder which has quite long pins.

Easiwire spring-like connectors are fitted to the board at the two points where connections to off-board components will be made. These connectors have their leads ready trimmed to length, but apart from IC1 the other components must have their leadouts cut so that only about three or four millimetres protrudes on the underside of the board.

WIRING UP

The wire which carries the negative supply rail must be routed around IC1. One way of keeping this wire in place is to fit a piece of the double-sided adhesive backing material onto the board. As only a single angle in the wire is needed, in this case an easier solution is to add a printed circuit pin to the board at the point

Fig. 4. Transmitter layout and wiring.

indicated on the layout diagram/Card. In fact it does not even need to be a proper printed circuit pin, and a piece of wire trimmed from a resistor leadout is quite adequate.

Another minor complication to the underside wiring is that two wires must cross over one another. These are between IC1's two rows of pins. To avoid them short circuiting, add one wire, then cover it over with a piece of insulation tape, and then add the second wire.

The basic method of wiring up using the Easiwire "pen" is to first hold the end of the wire close to initial connection point. Then wind five or six turns of wire around the leadout, reasonably tightly, starting at the bottom and working upwards. Then repeat ths process working from the top downwards. This process is repeated at subsequent connection points until a complete line of joints has been completed. It is important to keep the connecting wire quite taut. Otherwise there is a risk of short circuits and a greater risk of wires becoming broken.
The blade built into the "pen" tool is used to cut the wire close to the final connectionpoint. It is a good idea to go back to the initial connection and trim off any excess wire . Leaving these "tails" of wire could lead to accidental short circuits.
There are a number of small plastic boxes that can accommodate the circuit board and battery, and an inexpensive 114 by 76 by 38 millimetre type should suffice. The component board is mounted on the base panel using M3 or 6BA fixings, including short spacers. Without these the components will be forced off the board as the mounting nuts are tightened. A window for D1 to "look" through must be made at a suitable position in one end of the case.

CONNECTIONS

The connections to the two connectors are made via the special Easiwire plugs. These are "crimped" onto the leads using a pair of pliers, and then they simply push into the onboard connectors. The connections to S1 can be soldered or made via miniature crocodile clips. A third option, and the one I favour, is to use the Easiwire "pen" to bind the bare ends of the leads to S1's tags. If the unit is to be used in an application where $S 1$ will need to be closed for much of the time a minature toggle switch is the best type to use. Otherwise, a push to make release to break pushbutton type is better.

A high power PP3 battery is adequate if the transmitter will only be used in short bursts. If it will be used for long periods a higher capacity battery such as six HP7 size cells in a plastic holder is preferable. These holders use a standard PP3 style connector incidentally. Note that the use of a high capacity battery might necessitate the use of a larger case.

RECEIVER CONSTRUCTION

A lot of the notes on transmitter construction apply equally well to the receiver, and will not be repeated here. Some of the electrolytic capacitors are radial (vertical mounting) types. The polarity of these is usually marked by "+" and "-" signs on the bodies of the components. D1 is mounted with the large surface that carries the type number (and possibly other markings) facing towards R1. Note that its sensitive surface is the one opposite this, and that the output from the transmitter must be directed towards this side of the device. A window must be made in the case adjacent to D1.

Make sure the other diodes are also fitted the right way round. A band at one end of the body indicates the cathode leadout, but these days some diodes have three or four bands. In this case, one band should be broader than the others and positioned right at one end of the diode's body. This is the one that indicates the cathode leadout wire.

The relay can be any type that has a coil resistance of about 200 ohms or more, will operate reliably on a six volt supply, and has contacts of adequate rating for the equipment that the unit will control
A 6 volt, 410 ohm coil, printed circuit mounting relay is a good choice. Its relatively high coil resistance helps to keep down the current consumption and give good battery life. Unfortunately, it is slightly too large to fit onto the circuit board. It can easily be fixed inside the case though, using its metal top plate as a base plate for mounting purposes. It can either be glued in place using a good quality general purpose adhesive, or small bolts will fit into the holes ready-drilled in the metal plate.

The tags of this relay are large and well spread out, making it easy to complete wirewrap connections to them using the Easiwire "pen". Connection details for this relay are

Fig. 6. Connections to the relay.
shown in Fig. 6. The two contacts are connected in place of the on/off switch in the controlled equipment. If you use a different type you will need to consult the retailers catalogue to determine the function of each tag, and the correct method of connection. For beginners it is probably better to use the specified relay. This has contacts that are rated at 50 watts for d.c. loads, and 1100 watts for a.c. loads.

Although the relay is capable of handling mains powered equipment, the unit should only be used in this way if it is built and installed in a fashion that is entirely safe. Those of
limited experience should only use the Remote Control with low voltage battery powered equipment.

IN USE

As with any projects, give the wiring a final and thorough check before switching on and testing the system. Try the system at close range initially. It can be tested even without having the relay contacts connected to the main item of equipment, as most relays produce a "click" sound as they switch on or off. The maximum range depends on the type of l.e.d. used, but should be at least a few metres.
If good range is important, use the high gain "C" suffice devices for TR1, TR2 and TR3. A simple infra-red system of this type is strictly a line of sight system, and anything opaque between the transmitter and the receiver will almost certainly prevent the system from working. This is put to good effect in broken beam intruder alarm systems. With the transmitter and receiver spaced a couple of metres or so apart, anyone passing between the two will briefly block the infra-red signal from the receiver. This will result in the relay contacts opening momentarily, which can be used to activate a burglar alarm system.

Phasor

If any readers have difficulty in locating a source for the mains transient suppressor (VDR1), required for the Phasor project, this was purchased from Maplin, code HW13P. They also supplied the high current r.f. interference suppressor choke, code HW06G (RF Supp Choke 3A).
High voltage mains interference suppressor capacitors may prove troublesome to locate locally but most of our advertisers seem to stock "high voltage caps" that will do the job. However, if in doubt the ones used in the designer's model came from Maplin, code FF57M and FF58N.
The only people we have found who list a potentiometer with an all plastic mounting bush, body and spindle is Verospeed 8 (0800 272555). This is entered under their type 16P and 16PS range, however, the fixing nut and washer are both of metal construction.
Provided ALL plastic control knobs are used, with well recessed fixing grub screws, we can see no reason why the more common "plastic" spindle potentiometers cannot be used here. The Phasor printed circuit board is available from the EE PCB Service, code 631.
In view of the presence of mains voltages, do NOT work on the unit with it connected to the mains unless absolutely necessary. Even then, take extreme care to touch only those points you wish to test.

Reaction Timer

One or two components called for in the Reaction Timer could cause local sourcing problems and may prove difficult to purchase.
The p.c.b. connectors and ribbon cable should be available from most component suppliers. However, any readers who do experience troubles locating these connectors, the ones used in the prototype model were purchased from Maplin and are listed under their "Minicon" range.
The only source we have been able to locate for the Celdis combined switch and I.e.d. and the 3 -digit multiplexed common cathode display (IC7) is from Silicon Sound, Dept. EE, 61 Ide Lane, Exeter, Devon, EX2 8UT. Other types of combined switch/l.e.d. may be used but the display p.c.b. may have to be adapted. You can, of course, use a separate rocker switch and a l.e.d. (TIL209) in place of S1/D1.

The crystal X1 should be available generally, such as Cirkit, and the semiconductors all appear to be "off-the-shelf" devices, except, of course, the display mentioned previously. The red plastic filter material should not cause any buying problems.
The printed circuit boards for the Reaction Timer are available through the EE PCB Service, codes EE626 and EE627. The case is left to individual choice; the one used in the prototype was purchased from Maplin, code LH90X.

Personal Cassette Amplifier

When purchasing components for the Personal Cassette Amplifier, be sure to specify the 14 -pin version of the LM380 audio power amp i.c. This is usually designated LM380N-14 and is capable of 2.5 W output. The eight pin version is only rated at about 0.6 W output.
The volume control should be of the "Log. law" type and the size of speaker used is left to individual choice. The size of loudspeaker, will, of course, also govern the size of case and mounting position if used in a car.

Metronome

It is not essential to use the sub-miniature enclosed preset potentiometers specified in the Downbeat Metronome you can, of course, use standard sub-miniature skeleton types. The enclosed types were purchased from Maplin and come from their CITEC range.
When buying the BC184L transistor, it is important to purchase one with the suffix L as pin connections for this device vary. The printed circuit board is available from the EE PCB Service, code 629.

EPROM Programmer

Most of our larger component suppliers carry stocks of the EPROMs and interface chip required for the EPROM Program-mer-this month's On Spec subject. They are currently being listed by Cirkit, Maplin, Omni and Greenweld Electronics.
The printed circuit board may be obtained through the EE PCB Service, code 630 (see page 740).

I.R. Remote Contorl

We cannot foresee any component buying problems for the I.R. Remote Control project. The BICC-Vero "Easiwire" kit is now stocked by many of our advertisers,
The two circuit cards for the transmitter and receiver are attached to the front cover of this issue. Two new circuit cards will be given away with next month's issue-Why not place an order with your NEWSAGENT now!

USING YOUR CIRCUIT CARDS

TE CIRCUIT CARDS attached to the front cover of this issue have been specially designed for easy, solderless construction of projects using the BICC-Vero Easiwire system.

HOLE PUNCHING

Carefully remove your Circuit Cards from the cover taking care not to damage them, then cut them in half along the heavy line. Next, using the pointed end of the Easiwire unwrap tool, make holes through the board for the component leads. This is best done by placing the Circuit Card, component side up on a piece of thick cardboard or a pad of scrap paper then push the point through the Circuit Card at all the points marked with a " \bullet ".

Once all the holes are made you can use the Circuit Card, as described in the special articles in this issue, to build your projects. If you do not have a BICC-Vero Easiwire kit see the special offer below.

EASIWIRE SPECCIAL OFFER

FOR EE READERS

The BICC-Vero Easiwire kit allows you to build projects with a simple solderless wire wrapping system that is becoming very popular with hobbyists and in education. The system allows re-use of the components and it is easy to correct wiring mistakes with the special unwrap tool provided.

The kit contains a high quality wiring pen with spool of wire and a built-in spring loaded wire cutter, a doubleended unwrapping tool, a universal punched flexible injection moulded wiring board, plus a pack of spring loaded terminals, a spare spool of wire (approx. 40 m long), instruction booklet and two sheets of self adhesive material to hold the wiring in place.

The system was reviewed by Robert Penfold in our June 1988 issue and has now been used as the construction medium for a range of eight projects for which Circuit Cards will be presented over the next few months.

To take advantage of our " $\mathbf{£ 1}$ off offer to EE readers" you must send the coupon (correctly filled in) together with your payment of $£ 14$ (including VAT and postage) to: BICC-Vero Electronics Ltd., (EE Special Offer Dept.) Flanders Road, Hedge End, Southampton, SO3 3LG.

yis?
 City and Guilds

Part 3: Materials and Tools

By Michael J. Cockcroft Training Manager, Peterborough ITeC

> This series of twelve articles has been designed as a complete course for the City and Guilds Introductory Digital Electronics syllabus (726 301). Full details on registering for C\&G assessment, details of assessment centres, and information on the course in general were given in a booklet provided free with the October issue.

This month we investigate the raw materials and tools used for the purpose of assembling electronic systems. You will also learn how to make permanent electrical joints using a variety of connecting methods including soldering and crimping; and how to use the tools listed in the Introducing Digital Electronics Booklet given free with the October issue. Here are the City and Guilds objectives for this part of the course:

1.2 Materials

1.2.1 Identify at least six cable and wire styles selected from Appendix B of the Resource Document.
1.2.2 Identify at least six commonly available cable connectors and fuseholders selected from Appendix C of the Resource Document.
1.3 Tools.
1.3.1 Identify at least ten of the common hand tools listed in Appendix E of the Resource Document.
1.3.2 Demonstrate the correct use, care, and storage of at least ten of the hand tools listed in Appendix E of the Resource Document.
1.3.3 Select, for a given application, appropriate tools and use suppliers catalogues to determine costs.
Table 3.1 lists the wires, cables, and wiring accessories from Appendix B of the City and Guilds Resource Document.

Wires

Most wire used in electronic systems consists of one (solid conductor) or more (multi-stranded) copper conductors sleeved in rubber or plastic insulation. The two p.v.c. insulated wires in Fig. 3.1 are taken from the table; the one in Fig. 3.1a has an identification code of $1 / 0.6$ which is interpreted as single conductor (solid) of 0.6 mm diameter; similarly, the wire of Fig. 3.1b (code 7/0.2) is interpreted as having seven conductors each 0.2 mm in diameter.

When selecting wire for a particular purpose care must be taken not to exceed its current rating, some example wires and respective current carrying limitations are:
$\begin{array}{rr}7 / 0.2 & 1 \text { Amp. } \\ 10 / 0.2 & 3 \text { Amp. } \\ 24 / 0.2 & 5 \text { Amp. } \\ 32 / 0.2 & 10 \text { Amp. }\end{array}$

We must also choose according to how liable the wire is to be continually flexed and how susceptible the wire is to flexing. Solid conductor wire should never be used in applications where the wire will be bent back and forth, as this may fracture the conductor and cause it to break. Multi-stranded wire is able to bend more often without breaking and should be used in cases where the wire will be frequently flexed and moved. The more conductors in a wire the more bending it can withstand; a wire with a large number of small diameter strands (for example, $55 / 0.1$) is obviously made to be moved and flexed.

The ideal application for the solid conductor wire is chassis and p.c.b. work; it can easily be shaped for neat positioning but, once in place, it will no longer be flexed.

Solid conductor wire is also available without an insulating sleeve; this is called tinned copper wire. Tinned copper wire is pre-coated with solder and supplied in sizes of the Standard Wire Gauge (s.w.g.). Table 3.2 shows the s.w.g. sizes and corresponding diameters for tinned copper wire.

Tinned copper wire is ideal for making wire links on stripboard (in places where there is no danger of touching other bare wires or component leads which should not be connected-the term used to describe superfluous connections like this is "shorting") since time is saved by not needing to strip insulation from the wire.

Another type of solid conductor, with a more specialised application, is enamelled copper wire. This is also supplied in s.w.g. sizes and Table 3.2 shows the corresponding diameters

in millimetres. Enamelled copper wire is usually used for winding

TABLE 3.2

Standard Wire Gauge	Tinned Copper Wire	Copper Wire
16	1.62	1.73
18	1.22	1.31
20	0.91	1.01
22	0.71	0.73
24	0.56	0.63
26 (s.w.g.)	0.46 Dia. (mm) 0.53 Dia. (mm)	

transformers, chokes, etc.; the enamel coating provides insulation to prevent adjacent windings from shorting out on one another and must be scraped off with a knife (rather than stripped with wire strippers) to make an electrical connection.

Cables

Cables have a varying number of wires called cores; the cable attached to an electrical appliance, for example, is identified as two or three core mains cable. Signal cables, often called multicore cables, can contain fifty or more wires. A small selection from

Fig. 3.1 Two different types of p.v.c.insulated wire.

a wide variety of cable types are given in Table 3.1.

Wires, whether parts of cables or not, are usually soldered or screwed to terminals, plugs and sockets, p.c.b.'s etc. There are, however, tools available which use special techniques on special cables to speed up the process of connecting cables to connectors. Ribbon cable is one such special cable. A 40 core ribbon cable can be joined to a connector by a technique, called "insulation displacement" , in seconds.

A coaxial cable is the type used to connect a television set to its aerial. It has a conductor sleeved in a polythene insulator, surrounded by an outer braided (plaited) conductor. The braided conductor is called a "screen" and, when connected appropriately, protects the inner conductor from outside interference.

Ordinary multicore cable may also be screened, the cable cores (wires) may be individually screened or collectively screened depending on the application. Screened cable is used in cases where there is a possibility of one circuit picking up signals from another circuit.

Wiring Accessories

A number of wiring accessories are listed in Table 3.1. These are various accessories for retaining wires and cables together in neat cable-forms. Lacing cord is the cheapest to buy but time consuming to apply; sleeves, wraps, and ties are all time saving alternatives to lacing.

Sleeving

Sleeves come in various shapes and sizes. In addition to the straight sleeves in the table, there are "T" junctions and multi-way junctions available. There are also small individual sleeves for covering plug and socket pins.

Heat shrink sleeving, in use, is slightly larger in diameter than the cable-form and when heated (by a powerful hairdryer or heat gun) the sleeve shrinks and grips the cableform. Rubber sleeving, on the other hand, is selected to be smaller than the cable-form in order that it may be stretched over it using an application tool.

Spiral Wrapping

Spiral wrapping is a pre-formed plastic spiral which is wrapped around wires and/or cables by hand. The wrapping expands as it is applied, this exerts pressure on the wires to keep them in place.

Grommets

Grommets are used for safety and neatness where wires or cables pass through holes in equipment housings.

Table 3.3

Connectors

Multipin connectors are used to interconnect items of equipment in cases where permanent connections are not wanted. Table 3.3 lists the connectors and fuseholders from Appendix C of the Resource Document.

There are different instructions for connecting cables and wires to each of the plugs and sockets in the table, and such detail is beyond the scope of this introductory course lyou do, however, need to be able to identify all of these connectors by sight).

Suffice it to say, most of these connectors require soldered connections and it is advisable to insert a mating component during soldering (insert a plug/socket into the socket/plug being soldered) so that the heat of the soldering iron does not distort the shape of the connector. Also, don't let the joints get too hot so that the insulation on the wires melts.

Soldering

Soldering is the process of applying a material called solder to a mechanical joint between components, wires, or other metal parts. The solder is heated and melted over the join using a soldering iron.
Even firm mechanical wire-to-wire connections need the solder to make the joint permanent. This is because copper reacts with air after a time-a chemical reaction called oxidationand prevents a good electrical path for current flow at the join (when cop-
per oxidises an insulating coat forms on its surface). Solder protects the join from oxidation.

Solder

Solder is a soft metal alloy of tin and lead and comes in reels as shown in Fig. 3.2a or dispensers as in 3.2b. The combination of tin and lead in the solder is usually about 60% tin to 40% lead to give it a low melting point and lessen the risk of damage to sensitive components like transistors and l.e.d.'s; however, the actual proportions vary in solders for different applications. Sometimes very small quantities of other elements like Arsenic, Bismuth, and Sulphur are also added to the alloy to alter the solders characteristics for particular applications.

Applying heat to a join causes it to very quickly oxidise and so it is necessary to use a flux (an oxide remover), such as rosin, when making electrical solder joints. Although solder and flux may be purchased separately, most solder (such as that provided by Multicore) conveniently contains the rosin flux. Care should be taken not to buy solder containing corrosive flux.

Solder should be of a diameter appropriate to the particular task: it should be as thin as possible, without using too much length too quickly, and thick enough to solder the joint in a second or so. The 22 s.w.g. rosin cored type is ideal for stripboard work and any of the experiments in this course.

Soldering Iron

A typical soldering iron for professional use is shown in Fig 3.3a, this one is designed to have a long life (hence replacement parts-Fig 3.3b) and to be used for all applications.
In industry it is often economical to buy expensive irons, like this one, since they are suitable for most applications. The temperature control allows the iron to match the melting point of the solder to the application,

(b)

Fig. 3.4. A range of soldering tips or bits.
and a range of tips (Fig. 3.4) makes the iron suitable for tasks from intricate p.c.b. work to heavy solder tags and large components.
A variety of soldering irons are available. There are cordless soldering irons (gas or battery operated) for service engineers and other field professionals who may not have access to mains electricity, there are types which automatically feed solder wire, there are even special miniature irons for the purpose of soldering surface mount devices (s.m.d.'s) by hand

You should choose one according to your budget and how serious you are about project work now and in the future. Because of the cost of an iron like the one of Fig. 3.3a, only a professional or serious hobbyist would consider buying one with similar features. A low cost miniature 15 or 25 watt mains soldering iron with a 2 mm or 3 mm bit wili be adequate for this course.

Desoldering

Often it is necessary to remove a soldered component or wire from a printed circuit board or solder tag and there are tools-desoldering toolsavailable to allow an easy job of removing the solder. Desoldering is the process of removing solder from a joint. This can be done by sucking away the solder with a "solder sucker" (Fig. 3.5a) after first melting it with a soldering iron, or using the capillary action of desolder braid (Fig. 3.5b) when it is placed over the joint and heated with an iron. The solder sucker can be a bit harsh on fine p.c.b. tracks and care should be taken in this respect. Copper braid is much gentler on the p.c.b., but will very often damage sensitive components by overheating them; only use the braid on heat sensitive components if you are going to throw away the component after desoldering it.

Desoldering stations like the one in Fig. 3.6a are much used in industry, they have hollow bits connected to a solder collector and compressed air

-

Fig. 3.5a. (above) A solder sucker-when the plunger is released it springs back and sucks the molten solder away from the join.
Fig. 3.5b. (left) Desoldering braid soaks up the molten solder when applied with the iron.
line. As shown in Fig. 3.6b, the bit is placed onto the joint to melt the solder, when melted the tip is moved in a circular motion (to prevent the component lead from sticking to the board while it cools) while the sucking action is activated (usually by a footswitch). As the solder is drawn into the glass collector the area about the joint is cooled.

Tools

For any kind of practical construction work, a number of tools are required. A minimal tool kit comprises a soldering iron, wire strippers, wire cutters, snipe nose pliers, and a small screwdriver (about 3 mm with 50 mm to 100 mm long insulated blade). A more comprehensive set of tools is given in Table 3.4 (taken from Appendix E of the Resource Document). Readers must make sure that they can identify all of these tools and know how to use them all.

Making Connections

In order to solder (or otherwise join) wires or components together, there must be a good conductor-toconductor contact to permit current flow. For this reason care should be taken that all insulation is removed from the parts to be joined and that the area be free from any grease, oil, or other foreign matter.

Stripping Wire

Wire stripping is the name given to the process of removing a length of insulation from a wire and is properly done with the aid of a pair of wire strippers such as those shown in Fig. 3.7.

Wire strippers like those of Fig. 3.7a are adjusted such that the jaws close enough to cut part way through the

Fig. 3.6a. (below) A professional desoldering station. 3.6b. (right) desoldering process.

TABLE 3.4

NTRODUCTORY LEVEL TOOL SET

ALLEN KEYS: AF $1.27 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}, 8 \mathrm{~mm}$.
CUTTERS AND PLIERS: Wire Cutters, Wire Strippers, Pliers Plain, Pliers Pointed Nose, Pliers Combination, Crimping Tools.
FILES: Set Switch Files, 200 mm Hand (fine cut); 6 mm Round (fine cut).
CLAMP AND GRIPS: Pair G Clamps (50 mm), Toolmakers Clamps, Mole Grips.
STEEL RULE: 300 mm and 12 inch.
HACKSAWS: Junior Type 150 mm Blade.
HAMMERS: 4 oz. (Ball Pein), Soft Faced (hide/plastic).
HAND DRILL: 8 mm Chuck
SCREWDRIVERS: Plain Instrument Set, Plain 2mm, Plain 3mm, Plain 4mm, Plain 5mm, Phillips Small, Medium and Large. Pozidrive Small and Medium. Screw Hold Clips.
SOLDERING IRONS: Small Electrical Instrument, Large Instrument-Suction Desoldering Tool or Brain.
SPANNERS: One Small Metric Set, One Small BSF, One Small BA Set, Ring and Box-Selection, Two Adjustable-Small and Medium.
TWIST DRILLS: H.S.S. P.C.B. Set and $1 / 16$ in. to $1 / 4$ or Metric equivalent.

insulation without cutting the conductor. When the tool is properly adjusted, tighten the locking nut.

To strip the wire place it between the jaws, inserting just enough to strip the right length of insulation, squeeze the handies firmly and pull. The strippers of Fig. 3.7b exemplify those professional tools in industry which automatically adjust to wire sizes within a range; the wire is placed between the jaws, the handles squeezed, and the insulation is removed without pulling on the part of the operator.

Connecting Wires to Terminals

Wire cutters and snipe nose pliers similar to those in Fig. 3.8 are essential to the electronics constructor. Cutters are used for cutting wire and trimming component leads, and snipe nose pliers are used to bend and shape wires and component leads when assembling p.c.b.'s and making terminal connections.

Although a joint needs solder to make it permanent (solder adds strength to the joint and prevents oxidation) the mechanical connection should provide sufficient contact for current to flow without solder. Here is how to connect a wire to a terminal prior to soldering:

Step 1. Remove 10 to 20 mm of insulation from the the end of the wire depending on the size of the terminal. If the wire is dull or discoloured, it is probably oxidised. The oxidised film must be removed by scraping it off with a knife or sandpaper. The terminal must also be clean and shiny.
Step 2. Insert the bare conductor of the wire into the terminal as shown in Fig. 3.9a. Notice that the wire is positioned with the insulated part close to the terminal.
Step 3. Using snipe nose pliers, wrap the conductor round the terminal as directed in Fig. 3.9b and snip off the free end.
Step 4. Compress the conductor to the terminal with the pliers as shown in Fig. 3.9c. The terminal is now ready for soldering.

Screw Terminations

Some terminals do not require soldering. Even people lacking the

Fig. 3.11. Various screwdrivers.

(c)

Fig. 3.13. A crimping tool, various crimp tags and the effect of various types of crimping.
ductor in half before insertion (Fig. 3.12a). Another way is to coat the end of the conductor with solder after twisting the strands together, a process called tinning the wire (Fig. 3.12b). A third method involves the use of a flat pin crimp tag (Fig. 3.12c).

Crimping

Crimping is the process of joining crimp connectors to wires using a crimping tool. A crimping tool which incorporates a wire cutting and stripping facility is depicted in Fig. 3.13a, and various crimp connectors (tag, pin \& socket, and splice) are given in Fig. 3.13b.

Pin and socket connectors provide a neat termination to multi-stranded wires and are useful in applications where wires often need to be removed and replaced; terminal tag connectors provide a neat termination in the same way but are usually applied when the connection is expected to be more permanent; and splices make a neat permanent connection between wires.

A crimped joint is made by physically crushing connector to conductor using a crimping tool; Fig. 3.13c depicts the crushing effect at the join using various crimping tools. There are a number of specifications for

Fig. 3.14. Using a crimping tool.
Fig. 3.12. Preparing a wire for a screw terminal.

TWIST CONDUCTOR STRANCS INTO TIGHT SPIRAL. THEN BEND IN HALF.	TIN THE WIRE (COAT CONDUCTOR WITH A LAYER OF SOLDER)	CRIMP FLAT PIN TAG TO the wire
$\text { EETi110 } \quad \text { (a) }$	(b)	(c)

Fig. 3.15. Tinning the iron and the wire.

(a)

EE19170

(b)

(c)

(d)

(9)

Fig. 3.16. Making a soldered joint.
crimping but, in general, after the wire is stripped, the bare conductor is inserted into the connector (Fig. 3.14a), placed between the jaws of the crimping tool (Fig. 3.14b), and crimped by squeezing the tool handles (Fig. 3.14c). There must be no loose strands of wire-these are a common cause of short circuits.

Making Soldered Joints

Soldering, like all manual skills, needs to be learned by actually doing it. The following exercise is designed to give you practice in soldering and in the use of hand tools:
Step 1. Strip 25 mm of insulation from the end of a length of wire (Fig. 3.15a).

Step 2. Twist the strands of the bare conductor into a tight spiral (Fig. 3.15b).

Step 3. Dab the iron tip on a damp sponge to clean it (Fig. 3.15c).
Step 4. Touch rosin cored solder wire to the soldering iron tip very briefly to give it a thin coat of molten
solder as shown in Fig. 3.15d. This is called "tinning the iron".

Step 5. Touch the iron tip against the conductor to heat it up (Fig. 3.15 e). The conductor must get hot enough to melt solder when it is applied.

Step 6. Apply solder to the conductor (not to the iron) until it has an even coat of shiny solder (Fig. 3.15f).

Always remove the iron after the solder when done. The wire is now "tinned".

Repeat this exercise a few times until you are able to tin a wire nicely at every attempt, then practice soldering the ends of a wire together by following the steps given in Fig. 3.16. There is more to be said about soldering when we begin assembling circuits in Part 5.

Questions

1. State the purpose of insulation on wires.
2. How many strands are contained in 32/0.2 wire?
3. State the overall diameter of $7 / 0.2$ wire (not the diameter of each strand-you will need to consult a suppliers catalogue).
4. Identify the following plug and socket type.

5. Which of the following does not represent a true " D " type connector?

$$
\begin{aligned}
& 9 \text { way } \\
& 15 \text { way } \\
& 20 \text { way } \\
& 25 \text { way } \\
& 37 \text { way }
\end{aligned}
$$

6. Use a suppliers catalogue to help name the "DIN" connectors shown below

NEXT MONTH-Answers to the questions above plus Measurement and Testing.

PLEASE NOTE

Answers to lasts months questions are given on page 713

ASSESSMENT CENTERS

We have been contacted by a number of Assessment Centers and will publish a list with details next month.

EC50 Mains Electronic Iron. £29.99	proportional electronic temperature control inside the handle. Adjustable 280° to $400^{\circ} \mathrm{C}$. Burn-proof 3 -wire mains lead. Fitted 3.2 mm Long Life
Features spike•free, solid state	bit. $1.6,2.4$ and 4.7 mm available. 240 v a.c.
SK18 Soldering Kit. $\mathbf{£ 1 6 . 7 0}$ Build or repair any electronic project. LC18 240w 18 w iron with 3.2, 2.4, and 1.6 mm bits. Pack of 18 swg flux-cored 60140 solder. Tweezers. 3 soldering aids. Reel of De-Solder braid. In PVC presentation wallet.	
ADAMIN Miniature Iron $£ 7.69$ Possibly smallest mains iron in the world. Ideal for fine work. Slim	nylon handle with finger grip. Interchangeable bits available 1.2. $1.6,2.4,3.4$ and 4.7 mm . Fitted with 2.4 mm . 240v 12 w (12v available). Presentation wallet.
'L' Series Lightweight Irons. 12w High efficiency irons for all electronic hobby work. Non-roll handles with finger guards. Stainless steel element shafts. Screw connected elements. Slip-on bits available from 1.6 to 4.7 mm . LA12	£7.68 4 18w £7.74 model, $12 \mathrm{w}, 2.4 \mathrm{~mm}$ bit. LC 18 Model, $18 \mathrm{w}, 3.2 \mathrm{~mm}$ bit. 240 v Std -12 v available. Presentation wallet.
Soldering Iron Stands $3 \& 4$ £6.06 Ho. 5 £6.28	signed specially for LITESOLD irons. avy, solid-plastic base with non-slip pads. n't tip over, holds iron safely. With wiping onge and location for spare (hot) bits. No 5 stand for EC50 iron No 4 stand for ADAMIN miniature lron No 3 stand for LA12 and LC18 irons.
Replacement Bits For all above irons. Non-stick designs, machined from special copper alloy, with Inconel retaining rings. Two types - Chromium plated with copper face for economy and ease of use) and Iron plated with	Pre-tinned face (Long Life). State tip size, iron and type.
Yellow $\mathrm{£1.38}$ Green $£ 1.44$	For simple, safe and effective de-soldering of all types of joint, using a standard soldering iron. Handy colour-coded packs of 1.5 metres in 3 widths: Yellow -1.5 mm , Green - 2 mm , Blue - 3 mm .

> De.Solder Pumps $£ 7.71$ High Quality version of increasingly popular type of tool. Precision made anodised aluminium body, plunger \quad ejection. Conductive PTFE nozzle - guard and high-seal piston. Easy

Microcutters. $\mathbf{£ 5 . 3 9 \text { Light weight hardened and }}$ precision ground. Flush cutting. Screw joint, return spring, cushion-grip handles. Safety wire-retaining clip.

Set of $3 £ 4.22$

Scraper/Knite, HookiProbe, Brush/Fork. 3 useful double-ended aids to soldering/desoldering/ assembly. In plastic wallet.

ADAMIN Electric Stylus. $\mathbf{f 1 6 . 7 1}$
Writes like a ballpoint in Gold, Silver, Copper or 6 colours, on card, plastics, leather etc. Personalise wallets, bags, albums, books,
models . . . Dperates at 4.5 v from its own plug transformer - totally safe. Supplied with coloured foils.
SEND FOR OUR ORDER FORM TODAY
AND JOIN UP WITH THE PROFESSIONALS

CPU 9000 SELF-CONTAINED ALARM SYSTEM Immediate Security without Installation For homes storerooms, clubhouses, caravans etc.. - Detects intruders up to 30 ft - Penetrating 103db Siren with auto reset. - Compact size only
$203 \times 180 \times 78 \mathrm{~mm}$. Easily extended for coverage of additional rooms or large areas. Operates from
 240 V ac and 12 V dc. Priced E67.72 +VAT

Send a stamped addressed envelope or up to 50p in coins to cover handling to: BI-PAK CATALOGUE,
P.O. BOX 33, ROYSTON, HERTS. SG8 5DF

Please do not send cheques

ALThOUGH it is a hot and humid day in June as I write this piece, I would guess that by the time it gets into print a new electronics season will be well under way. Electronics construction is (of course) an all year round activity, but being primarily an indoor "sport" it tends to be pursued more vigorously in the nonsummer months. The autumn is a time when most experienced electronics hobbyists start planning ahead for a busy winter of construction, and there are generally a lot of prospective newcomers to the hobby.

THE COMPONENTS

I suppose that I am stating the obvious when I say that electronics is a technical hobby. Even if you are only interested in the construction of projects and are not too bothered about how they work, the technicalities are not totally avoidable. Probably the best advice for those thinking about taking up electronics as a hobby is not to be put off by the intricacies.
The construction information in Everyday Electronics is very clear, but there are still likely to be points that you do not understand when reading through articles. Do not let this put you off. The types of project featured in Everyday Electronics are very diverse, as are the components they use. If you take the plunge and get underway with a project, the points that had you puzzled will almost certainly all become quite obvious once you have a complete set of |bits.
If you are hesitating about electronics construction, do give it a try. It is a very interesting and rewarding hobby, and one that need not cost a great deal of money. You should start with a very simple project; not so that you are limiting your liability if things go wrong, but because this will give you a good chance of initial success. I mentioned previously that most problems will solve themselves once you have a complete set of components, but your first problem will be getting the right parts.

COMPONENT BUYING

When I first started electronics (the early 1960s) it was quite possible to take a trip to the local electronics shop and get all the components for practically any published project. The same is not true these days, even though my local electronics shop is now a Maplin's store and stocks many thousands of different components.
There is a vast range of electronic components now available, and it is unlikely that one store could hold stocks of all of them. There are a lot of specialised components that are only stocked by a few
suppliers, and it is surprising how many projects (even simple ones) require at least one unusual component.
The solution to the components problem is to obtain as many of the mail order catalogues as you can get. Some of these are free, or cost very little. Others will cost a pound or two, although some or all of this may be redeemable when an order is placed. Although it may seem that money would be better spent on components and tools than on component catalogues, this is a myopic attitute.

Apart from making it easy for you to locate the components you require, the beginner can glean a great deal of useful information from the larger component catalogues. There is often information on component colour coding and useful details of various semiconductors. Also of great heip to the beginner are the photographs and drawings of components. This information, plus the article describing the project, will help you to order the right components, and to sort them out properly when they are delivered. A project stands little chance of working if you muddle-up, the components!

If all else fails you can contact the publisher of the project for help in locating a hard to find component. However, before you do this take a good look at the article concerned, the components list, and advertisements in the magazine. In the case of Everyday Electronics projects you should also consult the Shop Talk feature which will give advice on sources of supply for any unusual components.

It is not unknown for enquiries to be received from irate readers claiming that components are unobtainable when sources of supply are named in the magazine, or the component concerned is advertised in the same issue as the one in which the project appears! Please read the magazine carefully before enquiring.

A RECENT PROJECT

As your first project choose one from a recent issue. Some people get hooked on electronics when they are given some electronics magazines from a few years ago. Possibly a lot more people who are given old magazines get put-off electronics for life. Getting all the components for a project which is more than just a few years old can be very difficult, or even impossible.
While many of the components in use today have been in existence in much the
same form for a long time, new components are always coming along while others become obsolete. In particular, many semiconductors that were popular five to fifteen years ago are no longer manufactured. The only chance of obtaining these is to look through the catalogues of retailers who deal in surplus components.
I still get the occasional enquiry on projects published ten to twenty years ago! It is unreasonable to expect much help with projects more than a few years old. Even if the relevant issue of the right magazine can be located, coming up with sensible answers to anything more than the most mundane of queries can be difficult.

You can, however, learn a great deal from old electronics magazines, and there should be no problem in building simple projects from them if all the components are still current items. Make sure that all the components can be obtained before ordering any of them, and start with some recent projects before attempting any older ones.

TOOLS OF THE TRADE

Many of the tools used in electronics construction are the type of thing that can be found in most households. Pliers and screwdrivers are the sort of general purpose tools that are needed for electronics work. You may need to buy some addjtional screwdrivers as you will often need very small types for electronics work. These are not to be found in every household, but generally cost a matter of pence and should not involve any major expenditure. Be sure to have at least one miniature cross point type. I have several pairs of pliers. Perhaps not surprisingly, the only pair I use to any extent are 'electricians" pliers (i.e. the short nosed, square ended type).
The main tool of the electronics constructor is the soldering iron, and this needs to be a small electric iron (about 15 to 25 watts) fitted with a miniature bit of about two to three millimetres in diameter. There is no need to go to great expense buying a temperature controlied type. A simple but good quality iron should only cost about $£ 7$ and this will be quite sufficient.
To go with the iron you will need a matching stand. A soldering iron stand should only cost about $£ 2$ to $£ 3$, and they usually include a sponge (which must be kept wet) on which excess flux and solder can be cleaned from the bit of the iron. You will also need some solder, and this should be a 60% tin $/ 40 \%$ lead type having a multi-core non-corrosive flux. The 22 s.w.g. size is best for most electronic work, but it is handy to have some other thicker 18 s.w.g. solder for larger joints.

SOLDERING

Learning to solder is something you should do before you start your first project, rather than expecting to pick it up as you go along. The ability to produce good soldered joints is something that comes with experience, but you need to be reasonably competent before you start soldering in earnest. This is an important subject that we will return to next month.
A very important tool for the electronics hobbyist is a good pair of wire strippers and cutters. In fact this can be a combination tool or two separate tools. For many
years I used a combination cutter/stripper tool, and found this to be the most convenient way of doing things. In recent years I have used separate tools because the combination tools I obtained did not seem able to cut thin wires (they just put kinks in them). If at all possible I would recommend the use of good quality separates, but a good combination type should suffice if funds are limited.
Even a cheap combination tool is much better than trying to improvise using scissors, knives, etc. Apart from possibly being a bit dangerous, these other methods are not likely to be very effective.

When trimming wires on the underside of a circuit board you need something that will cut the wires close to the board. When stripping sleeving from wires you need a tool that will cut the sleeving but which will not nick the wire (which would leave it vulnerable to breaking at that point). The proper tool or tools are the only ones that are likely to do these jobs really well.

This is basically all you need for the electrical side of project construction. There are other tools which will make life much easier, such as a magnifying glass for inspecting circuit boards when searching for solder splashes. A good desoldering tool is also a decided asset. Some components are virtually impossible to remove from a circuit board without the aid of one of these.

You will also need some tools for the purely mechanical side of project construction. These are the types of tool that you will probably have already, such as a power or hand drill, a range of drill bits, a hacksaw or junior hacksaw, a modelling knife, a small hammer, and a centrepunch. Something you will probably have to buy and which is worth having right from the start is a set of miniature files. They will mostly be used on plastics and aluminium, neither of which are particularly hard. An inexpensive set of files should, therefore, be perfectly adequate.

ODDS AND ENDS

There are a few odds and ends which you are bound to need sooner or later, and it is probably best to obtain them at an early stage. Probably the most important of these is wire. For wiring up projects you will need some p.v.c. insulated connecting wire, and for general use the multi-strand type is the best. $7 / 0.2$ wire (i.e. seven cores of 0.2 millimetre diameter wire) is suitable for most wiring. A heavier duty wire such as $16 / 0.2$ or even 32/0.2 is needed for high current wiring, but initially you are unlikely to build any projects that merit either of these.

Tinned copper wire (which is not insulated) is useful for link wires on circuit
boards and short point-to-point style wiring. Either 22 or 24 s.w.g. wire should be suitable. Where a number of wires must run side by side it is generally easier to use ribbon cable than to tie several separate wires together. A couple of metres of 10 way multi-ribbon cable will be more than a little useful.

It is also helpful to have some p.v.c. sleeving. You are unlikely to use this very much, and a metre of 2 millimetre bore sleeving will probably last a few years. A roll of p.v.c. insulation tape is also worth having around.

A selection of M3 or 6BA nuts, bolts and spacers are needed for mounting circuit boards. You can buy these as you need them, but most constructors prefer to have a stock of these items. It can be very frustrating if you have a project that is complete apart from a few "out of stock" nuts and bolts! For the same reason it can be worthwhile laying in a small stock of resistors. I would estimate that two resistors of each value would only cost around $£ 2$, but could save a lot of frustration.

Last but by no means least, it is a good idea to have some grommets of various sizes. These are a sort of p.v.c. or rubber washer that fits into a hole drilled in a panel. It is advisable to always use grommets in holes that cables are threaded through, but with a metal panel and a mains cable they are mandatory.

Introducing DIGITAL ELECTRONICS

ANSWERS TO PART 2 QUESTIONS

1. $\pm 5 \%$
2. The package is a 14 pin d.i.l. and the pin numbering of this quad 2-input NAND gate chip is:

3. Yes.
4. $68 \mathrm{k} \pm 10 \%$.
5. Green, blue, black, black, yellow (reading from top to bottom).
6. 250 V .
7. It would be written on the body of the resistor e.g. " $2 k 2$ ". 8. 0.1A.
8. (1)

(5)
(2)
(3)

(6)

These are the basic symbols-there are of course variations to some of them).
10. A potentiometer is a variable resistor.
11. $4.7 \mu \mathrm{~F}(4 \mu 7) 35 \mathrm{~V}$ (working voltage). The " + " indicates the + ve leadout
12. (a) $1 \Omega \pm 5 \%$ (b) $22 k \pm 5 \%$ (c) $47 k \pm 2 \%$ (d) $33 k \pm 20 \%$.
13. dual-in-line.
14. Pin 3.
15. 47nF.

PLEASE TAKE NOTE

SEASHELL

(November 1988)
The gremlins, and the postal strike joined forces to create a few errors in the Seashell project published last month. Regular readers will know that we do not normally have this problem and we apologise for it-by the way we can normally spell capacitors unaided!

In the main circuit R30 (10k) is marked R38, C5 should be 470n (not 470k). There is a drawing error around D10/C24/R43/ R45-this network should be similar to the channel above; the p.c.b. is correct.

The second paragraph under SOUND WAVES should read:
"Each output pulse discharges C3 and C4 through diodes D1 and D2. These capacitors charge again through R4 and R5,
taking about four seconds to reach half supply voltage where IC2a and IC2b switch, their outputs going low. These are differentiated by C5, R6 and C6, R7 so that the outputs from IC2c and IC2d each go high for about two seconds."
Below heading CONSTRUCTION, para. 4, 3rd sentence, should read "In particular, all the polyester capacitors are the miniature layer type, not the larger film variety." Same heading, para. 5, change C11 to C38. Same heading, last para., last sentence but one, should read "If the board is not cut, the power rails are completed by copper tracks so two of the connections shown will be unnecessary."
Basically all the construction details are correct as published so constructors should not have problems.

Reoloor

Rовот ping pong has entered a new phase. It has left the low cost, high ingenuity area of the British and passed into the high cost, high powered area of the rest of Europe.

At the European finais in Zurich this year the deciding game saw a rally of four shots. That was a long way from the previous year's event which was decided by which machine was most likely to hit the ball on a service. This year the organisers were able to bring in more of the rules of human table tennis to decide the best machine.
The contrast between the winners in 1987 and 1988 could not have been greater. Last year John Knight's Charlie from Britain won with a system powered by an old Dragon computer, the software for which was stored on cassette. Charlie had a home-made vision system using a spinning mirror and phototransistors. The whole device cost less than $£ 100$. This year the Swiss entry, Toughy, by contrast was controlled by a MicroVax and a number of 68020 chips. The arm, operating around a central pillar, could move from point to point in a fraction of a second. Its total cost was far greater than that of Charlie.

This year's British entry (Charlie) was further hampered by being in the middle of a redesign. Last year the vertical movement of the bat on an X-Y frame was a problem and Knight's efforts to correct it were not complete, resulting in accurate horizontal movement but erratic vertical movement. However, the final score was relatively close at 21-13.
Regular followers of the ping pong contest over the years will be impressed that it has progressed to this relatively advanced state even if much of the scoring is still the result of failure by the server rather than positive action.

SCORING

The scoring follows that of table tennis in that a set is played until one player reaches 21 and is two points clear of the opponent. A player holds serve for five points when it automatically passes to the opponent.
In robot ping pong the ball is delivered by a mechanism attached to the top of the frame placed at the net and the server must hit it through a $1 / 2$ metre square at the opponent's end of the table. The server has two attempts after which, if both are failures, a point goes to the receiver. If having made a successful shot the receiver fails to return it the server wins a point.
The two other contestants were from Sweden and Finland. The Finns' Byrokrat was driven to Zurich to prevent a repeat of the previous year when the finals were held in Venice. Unfortunately, they were then unable to get the machine through airport customs in time for the contest.
Both entries followed the high-powered path. Byrokrat used two 68008 micros, c.c.d. cameras and d.c. motors of up to 433
watts. The Swedes' GIRL had two interfaced cameras and "home-grown" 24-bit computers.
However, when they came face to face they both had an off day and neither was capable of making a scoring serve. The scoring reverted to that of previous contests with a touch being worth one point, two for a net clearance and five for a proper serve. On that basis the Finns took a 9-1 lead and the Swedes conceded.
The Finns then took on Knight's Charlie. Unfortunately for the British, Byrokrat was in better form and despite a few impressive serves from Charlie, Knight conceded when the score was 13-7.
GIRL also improved and was leading Toughy after a good start. However, the Swiss at last found the correct settings, coming back to win 21-16 and a place in the final against the Finns.
Byrokrat began the better with five good services from its first ten against five failures by the Swiss to lead $10-5$ when the Swiss began their second set of serves. At that point Toughy began to get services in, but Byrokrat managed to return them, generating the first simple rallies seen since the contest began four years ago. At 6-10 the four hit rally occurred.

The Finns stayed in control and were leading at 17-12 but then the Swiss came back to draw level at 18-18 followed by three good serves to take the match. Next year the contestants are being invited to a practice match in Edinburgh in the spring.
All the events were witnessed by John Billingsley who thought up the contest and devised the rules between lecturing duties at Portsmouth Polytechnic. He has also been writing a book on control technology, Controlling With Computers, which is coming out soon, published by McGraw-Hill.

EDUCATION

Meanwhile British companies are still
trying to find the best way to service demand for robotics in education. The developers of the Robotech 1 arm kit, described in EE June 1988 have been making major changes to their product. The original kit included electronic and mechanical parts which, with the addition of wooden structural parts for which templates were included, an arm could be produced.

An interface for the BBC series is now almost ready. Tests are being carried out and it should be available by the end of the year. The arm has also been given sensors.

However, the original kit is being phased out to be replaced by three kits. George Walker, one of the Robotech creators, said that in response to reactions to Robotech 1 they were offering the series to give a range of options to teachers.

The first one contains plans for the robot arm, a mechanically indexed turntable and a wiring diagram for the BBC interface, all for about $£ 80$. The turntable is another new addition to the set, and works at a pre-set rate so that the arm has to be programmed to synchonise with it.

The second kit is the one nearest to the Robotech 1 with hardware suitable for building the plan in the first kit as well as photographs and notes showing how the items provided can be put together for other models. As with Robotech 1 the wooden structure still has to be provided by the builder. The final kit provides all the items, including the wooden parts and costs about $£ 250$.
Walker said that teachers notes were included with each pack so that they could decide how much of the available information could be given to students, allowing them to develop their own courses. He added that the plans were to build the Robotech 1 as there had not yet been time to make any alterations. However, a new design was being developed.

The Robotech 1 robot working with the mechanically indexed table.

SOLDERLESS WIRING EASIWIRE

Construct your electronic circuits the new, quick and easy-to-learn way, WITHOUT solder: with Circuigraph Easiwire from BICC-VERO

With Easiwire all you do is wind the circuit wire tightly around the component pins. No soldering, no chemicals, no extras, simplicity itself. Circuits can be changed easily, and components re-used

Easiwire comes in kit form. It contains all you need to construct circuits: a high-quality wiring pen with integral wire cutter, 2 reels of wire, a tool for component positioning and removal, a flexible injection moulded wiring board, double-sided adhesive sheets, spring-loaded terminals and jacks for power connections and an instruction book. Of course, all these components are available separately 100

To take advantage of the special introductory offer, complete the coupon on the right and send it to:

BICC-VERO ELECTRONICS LIMITED,
Flanders Road,
Hedge End,
Southampton, SO3 3LG

VERO
BICC ELECTRONICS

Please rush me..............Easiwire kits, retail price $£ 18$.

 special introductory offer $£ 15 \cdots$. (includes p \& p and VAT)I enclose cheque/postal order for BICC-VERO Electronics Limited

Please debit my credit card as follows
made payable to

Card Number

Expiry Date
Name
Address

Signature

or phone 0489288774 now with your credit card number (24-hour answering service).

\title{

Constructional Project

 ANDY FLIND

 ANDY FLIND

\section*{Master the art of good "time-keeping".

Master the art of good "time-keeping". Build and practice with the aid of this pocketsized low-cost, accented beat metronome and you should always be on cue.

ALL BUDDING musicians eventually face a common problem; learning to keep time. A good teacher can help, but lessons are expensive and a great deal of practice can be needed to acquire the knack. A metronome provides a cheap and effective solution to this difficulty, giving a steady loud ticking to set the beat.
Better still is an "accented" metronome, with a "ping" every few beats to indicate the start of each bar. These are rather expensive to buy, but one may be built very cheaply from readily obtainable components. This one is also pocket-sized, so if your instrument is portable you can take it with you and practice anywhere.

BLOCK DIAGRAM

The heart of this project is a stable, slowrunning oscillator built with an inverting integrator and a Schmitt trigger as shown in block diagram, Fig. 1. The integrator is the standard op-amp arrangement. Its reference is set to half the supply, so when the input to " R " is higher than this the output ramps downwards, when lower it ramps up. When it reaches the Schmitt threshold in either direction this rapidly changes state and the ramping direction is reversed.

The output of the op-amp is thus a triangle wave, with amplitude fixed by the Schmitt hysteresis, whilst complementary squarewave outputs are available from the Schmitt circuit used in this design. The frequency is determined by the values of R, C, the Schmitt threshold, and the voltage applied to R in each state.

To vary the tempo, one of the above parameters must be variable. C can be ruled out immediately, as suitable variable capacitors just don't exist. The frequency is inversely proportional to R and the threshold, so varying these results in an awkward nonlinear scale on the control. It is directly related to the applied voltage, however, so if this is made adjustable the control will have evenly spaced calibrations. This was the reason for the choice of this oscillator circuit, which offers a considerable improvement over many earlier designs.

CIRCUIT

In the full circuit, Fig. 2, the oscillator consists of integrator IC1 with a Schmitt circuit formed by two NAND gates, IC2a and IC2b. VR3 offers adjustable attenuation of the Schmitt output before it is fed back to IC1.

The pulse needs current boosting, this being done by transistors TR1, TR2 and TR3. More "steam" is required in the positive direction than the negative, so two transistors are used here. This part of the circuit now produces a loud, steady ticking and a flashing light for the main beat.

The oscillator also drives the counter IC3. A minor problem was encountered here due to the slowly rising input to gate IC2a. The switching point is approached slowly and,

Fig. 1. Block diagram for the metronome oscillator.

The overall operating point is set by R1 and R2 to half the supply. As the whole circuit operates around this point, and the Schmitt output switches from rail to rail, the frequency is independent of the actual supply voltage, making regulation unnecessary.

The circuit in fact maintains excellent stability to below 5 volts, and is also very insensitive to changes in temperature. Most metronomes are required to produce 40 to 200 beats per minute, so the lower and upper limits are adjustable to these values with VR1 and VR2 respectively.

The Schmitt output is a squarewave which is differentiated by C4, R10 and C5, R9 and buffered by IC2c and d to produce positivegoing pulses of suitable duration. From IC2c a pulse of about 33 mS drives I.e.d. D1 to give a clearly visible flash. No series resistor is needed as the gate's internal resistance is sufficient to limit the l.e.d. current. Miniature loudspeakers produce loud clicks from pulses as short as $100 \mu \mathrm{~S}$, so the $330 \mu \mathrm{~S}$ drive from IC2d is in fact rather generous.
despite the positive feedback from the following gate, it was still obviously managing a few output "glitches" as it changed, as the counter output was practically random. These pulses must have been very short, as the introduction of a luS time constant with R8 and C3 completely eliminated the problem. In fact it works with R8 alone, using the counter's input capacitance, but C3 ensures complete reliability.

IC3 can divide by zero up to ten, depending on which of its outputs is returned to "reset". It's a simple matter to select the appropriate one with a switch, and if reset is left high, with pull-up resistor R12, counting ceases altogether. The output is taken from pin 2 and pulses IC4 through a 47 mS time constant set by C6 and R13.
Two of the gates flash the l.e.d. D2 for this period. The other two form an oscillator with a frequency of about 3 kHz , which is enabled for the duration of the pulse. The output of this goes to the output along with the "tick", resulting in a short "ping" sound.

Resistors

R1, R2, R6, R8, R11, R16 10k (6 off)

R3	270 k
R4, R5	$2 \mathrm{k} 2(2$ off
R7	47 k
R9	330 k
R10	33 k
R12, R14	$100 \mathrm{k}(2$ off)
R13	470 k
R15	18 k

All 0.6W 1\% metal film type

Potentiometers

VR1	4 k 7 hor. preset
VR2	220 k hor. preset
VR3	10 k rotary carbon, liI

Capacitors

C1 inceramicplate
C2 $\quad 1 \mu$ polylayer
C3 100p ceramic plate
C4, C9 10n poly layer (2 off)
C5, C6 100 n poly layer (2 off)
C7 100μ axial elect. 10 V
C8 470μ axial elect. 10 V

Semiconductors

D1, D2	L.E.D., High-brightness 3 mm , red (20ff)
D3	1 N4001
TR1	BC184L
TR2, TR3	BC214L (2 off)
IC1	3130 CMOS op-amp
IC2, IC4	4011BCMOS quad NAND gate
IC3	4017B CMOS divide-by-N

Miscellaneous

S1, rotary 2-pole 6-way,
break-before-make.
S2, 1-pole 3-position
slide-switch.
LS1 Speaker, 45 mm 8-ohm.
Case, ABS plastic, $120 \times 65 x$ 40 mm ; knobs (2 off); PP3 battery connector; 8 pin d.i.l. socket; 14 pin d.i.l. sockets (2 off); 16 pin d.i.l. socket; p.c.b. available from the EE PCB Service, order code EE629.

SOUND AND LIGHT

There may be occasions when the lights are required without sound so this is arranged through D3, with a 3 -position switch in the negative battery supply. When set to "sound and light" negative goes directly to the circuit
rail and everything runs whilst D3 is reverse biased and has no effect.

When just lights are required, the supply is connected to the other end of D3, which also happens to be the input for the output stage This holds the output low regardless of drive

through R11 or R16, so there is no sound. The negative rail is powered through D3 however, so the lights still operate. At first sight this may seem a strange arrangement, but it works well and keeps the switch wiring simple.

Fig. 2. Complete circuit diagram for the Downbeat Metronome.

CONSTRUCTION

Earlier, it was stated that this project would be pocket-sized. Although it's not too tightly packed into the case, some care is necessary in construction and a fine-tipped soldering iron should be used. The choice of components is also of some importance. The "polyester layer" capacitors are the miniature, silver-coloured layer type, whilst the two ceramics, Cl and C 3 are also miniature.
The switch is a standard plastic rotary type, which will fit directly to the board. The loudspeaker especially should be of the correct size; the prototype was fitted with one measuring 45 mm diameter and 16 mm deep.

Preparation of the printed circuit board should be complete before construction commences. If necessary the corner cutouts (to clear pillars in the box) and the hole for VR3's bush should be cut, and the holes for SI terminals may need enlarging. The terminals are wire "stalks" about 5 mm long, topped with "eyes" which should be cut off leaving the stalks as long as possible. After component fitting they are pushed through the holes and soldered. The holes will need to be about 1.5 mm diameter, and it would be as well to check the switch fits.

Also, check that the board fits the case! Before construction it can be used as a template to mark the case for SI and VR3. Note that whilst SI's bush passes through the case, VR3 is fitted to the board so clearance should be for the shaft only. This done, component assembly can be carried out as shown in Fig. 3. Everything except VRI and VR2 can be fitted, though sockets are adviseable for the i.c. points. Take care to place D3 correctly, with the marked (cathode) end connecting to the transistors.

The two presets are soldered to the copper side of the board. This leaves space for $\mathbf{S} 2$ on the component side, and allows adjustment when the project is complete. Miniature horizontal presets usually have legs which are thick near the body and narrower below, to create a gap when fitted to a board. These can be bent out at right angles and cut short, after which it will be easy to solder them to the tracks with a small-tipped iron, as shown in Fig. 4. Set them initially to half-scale.

After component assembly Sl can be fitted as described above, pushed fully home and soldered. The p.c.b. is secured by this switch; on the prototype a single thin washer between its body and the case produced the correct spacing, allowing the board to rest flat on top of the speaker, with the battery pressing it down from the other side for extra rigidity. It would be as well to check the fit with switch and speaker in position before finally soldering, though

The completed circuit board showing the rotary "time" switch mounted on the component side and the "tempo" control VR3 spindle and bush protruding through from the copper side.

EET0990
Fig. 3. Printed circuit board component layout, interwiring and full size copper foil master pattern.

Fig. 4. Mounting the presets on the copper side of board.

Fig. 5. Location and wiring of VR3.
VR3 is fitted to the copper side of the board and connected with short wires as shown in Fig. 5 , a washer will give extra clearance between the body and the soldered joints if needed. Care should be taken to see that no metal parts short to the copper tracks. Leads can now be fitted to all external connection points, with the two 1.e.d.'s D1 and D2 soldered to the ends of theirs, ensuring correct polarity.

The completed unit showing

 positioning of presets and control VR3 on the track side of the printed circuit board. A washer should be inserted between the board and VR3 to give clearance from the soldered joints.

TESTING

As an initial test, power can be applied before any of the four i.c.'s are inserted into their sockets. After the capacitor charging surge, the current drain should settle to about 5 mA . If it takes much more than this, switch off and recheck the construction carefully. If all seems well, fit IC1, IC2 and temporarily connect the speaker. Power up again; D1 should flash and the speaker should tick. Adjustment of VR3 should alter the tempo.

If this works, switch off, fit IC3 and IC4 and try again. This time, providing the switch is not set to position 1, there should be a "ping" with every so many ticks, accompanied by a flash from D2.

Check that the switch selects the correct number of beats, every two in position 2, every three in 3 , and so on up to six. The switch has an adjustment (at the base of the bush) to select the number of available positions, so check this is in the correct stop. The final task on the p.c.b. is to ensure the solder joints for the lower ends of C7 and C8 are low and smooth, so that they won't short against the case of the battery. If they have any sharp or projecting bits, file them down and run over them once more with the soldering iron.

The battery is insulated from the board by a small piece of foam plastic, which will also hold it firmly in place and press the p.c.b. down against the speaker. The battery connec tor should be soldered to the copper side of the board.

FINISHING

Switch $\mathbf{S} 2$ is fitted to the top of the case, as close to the front as possible, to clear the p.c.b. A hole is drilled to each side of it to take the l.e.d.'s, which are secured with a drop of
glue. The speaker is placed centrally at the very bottom of the case, where it will clear the board components around it; a pattern of holes makes a neat "grille". It is glued into place with "Evostik" or a smilar adhesive.

Switch connections are made as shown, and the board secured in place by S1. This is spaced from the case with a plain washer wide enough to rest against its plastic body as pressure on the position adjuster may interfere with the action. Check none of the connecting wires are trapped before finally tightening the nut.

Calibration consists of adjusting VR2, with VR3 at its highest position, for 200 beats per minute, and VR1 with VR3 low, for 40 beats per minute. Make the adjustments in this order as VR2 alters the entire range, whilst VR1 alters only settings below maximum. VR3 can be scaled with patience and a stopwatch, but should prove to be more or less linear, depending on pot accuracy. Some pots seem to have "dead" areas at the ends of their scales.

Musical speeds, should these be needed on the scale, are "largo", below about 60 beats per minute, "Larghetto", 60 to 65 , "Adagio", 65 to 75 , "Andante", 75 to 105, "Moderato", 105 to 120 , "Allegro" (nothing to do with BL cars!) 120 to 170 , "Presto", 170 to 190, and "Prestissimo", above 190.

Practice with this simple device should improve the timekeeping of any musician, and it will be found invaluable by those who have to learn, for some of the time, alone. Beginners may also find it helpful in deciphering the timing of some written pieces, which can be extraordinarily difficult for those not used to sight reading.

Finished metronome with circuit board removed showing the loudspeaker glued to the "bottom" of the case and wiring to the slide switch S2, mounted in the "top" of the the case.

by Mike Tooley ba

THIS month we shall be devoting the bulk of On Spec to another major project for Spectrum hardware enthusiasts. We begin, however, by attempting to provide a solution to a problem which is often raised by Spectrum programmers.

Disabling BREAK

Adrian Thomas, a regular reader of this column, complains that there is no obvious way of disabling the Spectrunt's BREAK key. Adrian is developing some educational
software and he is anxious that the user is not able to exit from the program by means of the BREAK key.

The solution to this particular shortcoming of ZX-BASIC involves a straightforward POKE which should be added to the beginning of the program (e.g. line 1). The following line of BASIC will do the trick:

1 POKE 23613, (PEEK 23730)-5
To re-instate the BREAK key, the following line of code should be added at the end of the program:

9999 POKE 23613, (PEEK 23730)-3
Note that, in the event of an abnormal return to BASIC (i.e. one that does not involve the program executing line 9999), the BREAK key will be inoperative and the POKE should be entered in immediate mode directly from the keyboard (omitting, of course, the line number!).

EPROM programmer

In the past few months I have received an increasing number of requests for an EPROM programmer for use with the Spectrum. It was, therefore, particularly pleasing to learn that Trevor Brown (well known in amateur television circles) has produced just such a project for his own use and that this unit has been duplicated by several British Amateur Television Club (BATC) members.

Trevor's original design has appeared in the club's magazine, CQ TV, but I have taken the liberty of extending Trevor's basic design by adding a regulated 21 V d.c. supply to provide the necessary EPROM programming voltage. Trevor writes;

Like it or not, EPROMs are becoming part of our everyday lives and the ability to look at the stored data, make backup copies, and in some cases store your own code in one is now
an every day need. This simple little unit can be made in a single evening.

A simple menu-driven program then provides the user with a variety of options, including loading data into memory from an EPROM (so that it can be examined) or copying data from memory into a blank (previously erased) EPROM. The unit has been designed to function with two of the most popular EPROM devices; the 2764 (8 K byte) and 27128 (16K byte).

The programmer works well with Hisoft's Devpac assembler with the source code organised to run at any address and SAVEd to tape or Microdrive for later transfer to $E P R O M$. When programmed, the EPROM can be removed and installed into a microcomputer or microcontroller for testing and evaluation.

Circuit description

The complete circuit of the EPROM programmer is shown in Fig. I. Trevor's design makes use of the 8255 PPI (Programmable Parallel Interface). This device was featured in an earlier On Spec and thus will need no further introduction to our regular readers. IC2, a 2764 or 27 I28, is the EPROM to be programmed. The unit will also program the low-power versions (27C64 and 27128A) in which case D3 should be omitted and replaced with a shorting link.

IC3a, IC3b and IC3d provide partial I/O address decoding such that ICl is enabled whenever A7 goes low during an I/O read or write operation. IC3c simply inverts the Spectrum's $\overline{\text { RESET }}$ line to satisfy the active-high RESET input on IC2. The two inverters of IC4 are somewhat unusual and are used to activate the output enable $(\overline{\mathrm{OE}})$ and program (PGM) inputs of the EPROM.

Fig. 1. Complete circuit of the EPROM programmer

All three of IC1's ports default to inputs on power-up and hence the inputs of IC4a and IC4c are pulled-down by R3 and R2 to ensure that the EPROM's $\overline{\mathrm{OE}}$ and $\overline{\mathrm{PGM}}$ inputs both default to the inactive (high) state. Trevor's letter continues with this theme

The PIO is often re-initialised by the programming part of the software in order to reverse the direction of the A-port between programming and reading. This change of direction will default the address carried by the B and C ports to zero and, if it was not for the inverters (IC4a and IC4c), the output enable would also be low which would cause a data clash along with a program pulse at address zero.
The machine code program will soon move things out of this undesirable default state but the inverters ensure that the EPROM data bus is in a tristate condition. The EPROM programmer's port assignment is as follows:
Port

A	31
B	95
C	63
Control	127

Construction

The EPROM programmer is assembled on a p.c.b. measuring approximately $120 \mathrm{~mm} \times 135 \mathrm{~mm}$, the copper foil layout for which is shown (actual size) in Fig. 2. The p.c.b. is fitted with a 28 -way double sided edge connector which mates directly with the expansion bus connector at the rear of the Spectrum.
The component layout on the upper (forward facing) side of the p.c.b. is shown in Fig.
3. Note that a total of six links are required on the upper (forward facing) surface of the p.c.b. The recommended sequence of locating and soldering components to the p.c.b. is as follows: edge connector, links, i.c. sockets. resistors, capacitors, diode, bridge rectifier. l.e.d. and regulator. Furthermore, constructors are advised to carefully check the orientation of all polarised components (including electrolytic capacitors. diode, bridge rectifier, l.e.d. and regulator).

When the p.c.b. wiring is complete, a careful visual inspection should be carried out, paying attention to checking for dry joints, inadvertent short-circuits between tracks and i.c. pins, and solder splashes. A few moments devoted to this task can often save many hours of frustration at a later stage!

After confirming that all is as it should be, the integrated circuits can be inserted into their sockets (taking care to ensure correct orientation) and the unit connected to the rear of the Spectrum, after first disconnecting the power supply. This latter precaution is essential since permanent damage can result if external circuitry of ANY sort is connected to, or disconnected from the Spectrum's expansion bus whilst power is applied.
When power is re-connected, the usual copyright message should be generated on the display. If this is not the case, disconnect the power, remove the EPROM programmer p.c.b. and carefully check again!

Software

Trevor's machine code program for the EPROM programmer is too long to reproduce in On Spec. However, to assist readers (and also to avoid the usual problems that can

Fig. 2. P.C.B. foil layout for the EPROM programmer

result from simple typing errors), Trevor has kindly agreed to make the software available to constructors at a modest cost; $£ 2$ for readers in the U.K. and $£ 4$ for overseas readers. Both prices include cassette, postage and packing. Trevor Brown can be contacted at Tall Trees, 14 Stairfoot Close, Adel, Leeds, LS16 8JR.

The program provides the following five options

1. Load an EPROM into memory
2. Blow a 2764 EPROM
3. Blow a 27128 EPROM
4. Examine memory
5. Enter BASIC

Trevor makes the following comments on the EPROM programmer software:

Option I will load either a 2764 or a 27128 into memory so that data can be examined using Option 4. 16 K of data is moved so if a 2764 is loaded the data will repeat after lFFF. This is not a problem and helps keep the program simple and small (less than IK of code). When the program is first loaded, the memory is filled with FF (i.e. all bits are logic l). This is useful for checking that an EPROM is erased.
Insert the EPROM and select Option 2 or 3 but do not switch the programming voltage ($V_{p p \text {) "on". This "verify mode" compares the }}$ EPROM with the contents of memory; if all is well, the user will be returned to the menu, alternutively a failure messuge will be generated along with the address at which an error is derecred. By this means, it only takes a few seconds to check an EPROM for erasure.

COWPONFNIS

Resistors,
$\begin{array}{ll}\text { R1 } & 390 \\ \text { R2-R4 } & 2 \mathrm{k} 2 \text { (3 off) } \\ \text { lll } & 0.25 \mathrm{~W} \\ 5 \% & \text { carbon }\end{array}$
All 0.25W 5\% carbon
Capacitors

C1	10μ p.c. elect. 16 V
C2	220 p polystyrene
C3. C5. C6	100 n polyester (3 off)
C4	100μ p.c. elect. 50 V
C7	220μ p.c. elect. 50 V

Semiconductors

IC1	8255 PPI
IC2	2764 or 27128EPROM
IC3	$74 L S 00$
IC4	$74 L S 04$
IC5	781212 V 1 A regulator
D1	1 N4148
D2	redl.e.d.
D3	BZY88
C9V1 Zener	
D4-D7 WO1 (50V 1A	
bridge rectifier) See Page 702	

Miscellaneous

S1 s.p.s.t. miniature toggle switch.
28-pin zero insertion force (ZIF) socket; 40-way low-profile d.i.l. socket; 14-pin low-profile d.i.I. socket (2 off); printed circuit board-available from the EE PCB Service, order code 630; 20 mm fuse holders (2 off); 20 mm 1 A quick-blow fuses (2 off).
T1 12 or 20VA mains transformer with $2 \times 12 \mathrm{~V}$ secondary windings; enclosure for transformer and fuses; mains connector; 28-way open end double-sided 2.54 mm (0.1 inch) pitch edge connector (e.g. Vero part number 838-24826A).

Approx. cost
Guidance only
829

Depending upon program size, programming may take up to 15 minutes. No short cut algorithms are used, but each byte is first read and the "blow" operation is skipped if not required.
Option 5 puts users into BASIC so that data resident in memory may be SAVEd to, or LOADed from tape or Microdrive. The required syntax for a cassette tape SAVE is:

SA VE "filename"CODE, 28000,8192 for a 2764 or

SAVE "filename"CODE,28000,16384 for a 27128

A microdrive SAVE requires the extra syntax of:
SAVE * "m"; 1;"‘filename"CODE,28000,8192 or
SAVE *"m"; 1"filename"CODE,28000,16384 for 2764 and 27128 EPROM devices respectively.
Files may be loaded into memory for programming by using the commands:
LOAD "Tilename"CODE,28000 or
LOAD * "m"; 1 ;"‘filename"CODE,28000
(Note that the load address, 28000, may be omitted if a previous SAVE specified this address as a deflault).
Not all our readers will be familiar with the techniques used for data storage in an EPROM and Trevor has provided a few gen-
eral hints together with a warning which all constructors should carefully observe. Trevor continues:
For those who are not familiar with this means of data storage, the EPROM programmer can only change a logic 1 to a logic 0. An EPROM can be erased by exposure to ultraviolet light of about 2537 Angstrom. Exposure to a small 8W tube at a few inches for about 20 minutes will be required to erase a previously stored program. This process will fill the EPROM with logic I's (or a byte of FFH at each address). Erasure can be checked by loading the EPROM into memory (using Menu Option 1) and then examining it (using Option 4).
WARNING: Ultra-violet light is dangerous to the eyes and skin and some form of opaque shielding should be used. Furthermore, Ozone can be produced and inhalation may cause respiratory irritation.

Clearly, there are a few important precautions to observe when erasing an EPROM. The best solution is with the aid of a specialised EPROM eraser in which the ultraviolet tubes are contained in a light-proof enclosure fitted with a timer. Such devices are available from several suppliers but they can be rather expensive. Since low-power ultraviolet tubes can be obtained quite cheaply, a possible alternative is that of building one's
own eraser, full details for such a unit were given in the October ' 88 issue of EE.

Finally, my own crude but quick method for erasing EPROMs involves nothing more than a common-or-garden sun-ray lamp! The particular unit in question will erase an EPROM in approximately 10 minutes when the EPROM is placed at a distance of 200 mm from the lamp.
It is important to note, however, that overexposure may effectively reduce the number of programming cycles that can be performed so exposure should be kept to the minimum that will ensure that all cells revert to logic 1. Furthermore, with a high-power ultra-violet source it is ABSOLUTELY ESSENTIAL to observe the precautions mentioned earlier, carefully following the recommendations of the sun-ray lamp manufacturer concerning skin exposure and eye protection.

Next month: we shall be tackling a seasonal On Spec Project in the form of a Christmas lights controller. In the meantime, if you would like a copy of our "On Spec Update", please drop me a line enclosing a large ($250 \mathrm{~mm} \times 300 \mathrm{~mm}$) adequately stamped addressed envalope. Mike Tooley, Department of Technology, Brooklands Technical College, Heath Road, Weybridge, Surrey, KT13 8TT.

Fig. 3. P.C.B. component layout for the EPROM programmer

Fig. 4. Connections for the regulator and l.e.d.

Fig. 5. Pin connections for 2764 and 27128 EPROM

TRANSFORMERS

MAINS ISOLATORS Pri $120 \mathrm{~V} \times 2$ or $220 / 240 \mathrm{~V}$ or $415 / 40 \mathrm{~V}$ ．Sec 40 or 240 V or 110 V Centre Tapped Secs		
20VA	£ 7.58	2.28
60	12.37	2.45
100	14.43	2.65
200	20.45	3.20
250	24.73	3.30
500	38.10	3.85
1000	69.10	4.85
1500	89.13	5.95
2000	107.24	5.95
3000	150.38	0／A
6000	321.20	0／A

$50 / 25 \mathrm{~V}$ or $25-0-25 \mathrm{~V}$

 $2 \times 25 \mathrm{~V}$ Tapped Secs volis avaiiable： $5,7,8,10$$17,20,25,33,40,50 \mathrm{~V}$ or $20-0.20 \mathrm{~V}$ or $25-0-25 \mathrm{~V}$

Sine－Wave or Square W TRANSFORMER
WINDING SERVICE 3VA to 18KVA

CONSTANT VOLTAGE
transformers
for Spike－free Stable Mains Also Valve M UNIT 211，
STRATFORD WORKSHOPS BURFORD ROAD，
LONDON E15 2SP

30／15V or 15－0－15V $2 \times 15 \mathrm{~V}$ Tapped Se			
Vohts avaliable： $\mathbf{3 , 4 , 5 , 6 , 8}$ ． $9,10,15,18,20,27$ or 30 V			
30 V	15 V	£	P8P
0.5	1	4.14	1.65
	2	5.63	． 2.80
A	4	9.10	2.00
	6	10.55	2.2
	8	12.59	2.3
	10	16.11	2.4
	12	17.65	2.65
8	16	23.59	，
10	20	27.22	2.95
12	24	30.39	305
15	30	34.03	

$60 / 30 \mathrm{~V}$ or $30-0-30 \mathrm{~V}$ $2 \times 30 \mathrm{~V}$ Tapped Secs Votis evalieble：18．18， 36 Voltz avaliable：18．18， 36,
$40,60,24-0.24$ or $30-0.30 \mathrm{~V}$ $\begin{array}{llll}40,60,24-0.24 & \text { or } 30-0.30 \mathrm{~V} \\ 60 \mathrm{~V} & 30 \mathrm{~V} & \mathrm{f} & \mathrm{P} 8 \mathrm{P} \\ 0.5 & 1 & 6.11 & 1.90 \\ 1 & 2 & 9.32 & 2.00\end{array}$

$$
\begin{aligned}
& \text { AUTOS } \\
& 105,115,220,230,240 \mathrm{~V}
\end{aligned}
$$ For $115,220,230,240$

80VA	£6．29 P\＆P	1.75
150	9.12	1.90
250	11.14	2.10
500	17.32	2.80
1000	30.94	3.35
1500	36.73	3.80
2000	54.92	4.65
3000	93.39	5.75
4000	121.23	$0 / \mathrm{A}$
5000	141.17	$0 / \mathrm{A}$
7500	217.91	$0 / \mathrm{A}$
10WVA	257.49	$0 / \mathrm{A}$

$$
20 \mathrm{VA} \quad £ 8.96 \text { P\&P } 1.85
$$

\qquad POWER SYSTEMS

$$
\begin{array}{lll}
\text { 20VA } & \text { £8.96 P\&P } 1.85 \\
80 & 12.17 & 1.95 \\
150 & 15.77 & 2.30 \\
200 & 1021 & 2.35
\end{array}
$$ AUTO CHARGERS，

FREE
BATTERIES．
PLUS U．P．S． SYSTEMS
Stock items by return Stock items by
 PROFESSIONAL
SURVEILLANCE
EQUIPMENT KITS

- mTX
- VT500
 incrediole 17 mm ． 17 mm including on．boerd mic．Supar zensitive Fully
luntable over FM band．gV operation with renge up 101000 m ．．．．．．．．．．．．．．© 10.06 High gower version of the MTX with on－board PA stage providing 2somw of RF Massures，
- VOX75

Vorce－aclivatad transminer variable sannitivity trigger level switches trangmititer on when lounds ale delacted Siays on for lume delay variable
betwoen $1-20$ sec fully funesole output coversall FM oind Very sensitive and low standoy current itrough CMOS eircuity OV operalion．range up 101000 m Sub－carrier scrambind uransmitter Audic is double modulated providing very necure transmisnions Any unsuthorisod hatener will not be sble io demodulale
angnal withoui OSX900 Oecoder unil Varisble modulation on－board Fully iune able outpul covering FM Dand gV operstion，range up to tovom．Messures Demmxtemm．． descramble signal from CTXPOO Montor using small spenker or hesdophone
 Microasize telaphone transmitter Connects onto line at any point and requitas
no batteries Clearly trensmits both alina of convorsationi on boit incoming no batiories Clearly transmits both adoas of conversationi on both incoming covering FM DSnd．Range up to 1000 m ．Me asures just $20 \mathrm{~mm} x 20 \mathrm{~mm}$. Ce．es Micro $31 z e$ telephone recording unit Connacte onto line at any boint and
connects into ANY normal cassette recorder．Btandard or micro having MiC and AEM sockets Requires no balleries Switchas racordar on iliently when phone

XMLOOO RF Bug Detector／locator Wide band input circuitry datecis presence of RF
finid and trogers lianhing LED and pieso bleepar Varisble sensifivity enabins source of tranamiasion to oe pinpointed so within 8 inches Max sensilivity will derect MTX or simitar transmitter at around $85-20$ feat． 9 V operation．Mensurea
SSmm $5 S \mathrm{~mm}$ All hats come fultr amcumentant with concigo navambly and setting－uo ingtructions．Mioh quatity plesse add fi so to cover PAP Orders over 53000 posit tree Please state requirements clearly and

Phone orders on ACCESS or AMEX accepted．Tel 0827714476
NOTE：It is illegal 10 onperate a transmitter in the UK without a licence Send 9×4 SAE for full catalogue of these and other surveillance kits

SUMA designs（Dept．EE），THE WORKSHOPS， 95 MAIN ROAD BAXTERLEY，Nr ATHERSTINE，WARKS CV9 2LE．TEL． 0827714476

－WE STOCK AN UNRIVALLED RANGE
－ALL OUR COMPONENTS ARE FIRST CLASS BRANDED ITEMS
－WE OFFER A SAME DAY SERVICE ON ALL STOCK ITEMS
－NO MINIMUM ORDER－IF YOU NEED ONE COMPONENT WE CAN SUPPLY ONE COMPONENT
－WE HAVE ADOPTED A NEW LOWER PRICING POLICY＋ QUANTTTY DISCOUNTS
－FREE VOUCHERS WITH YOUR CATALOGUE－ORDER ONE NOW！．．．
JUST FILL IN THE COUPON OPPOSTTE AND POST IT WITH YOUR § 1 PAYMENT TO THE ADDRESS BELOW．YOU WILL RECEIVE NOT ONLY OUR SUPERB 100 PAGE CATALOGUE，BUT ALSO FREE VOUCHERS WHICH YOU CAN USE ON YOUR NEXT COMPONENTS ORDER．

[^1]
OUT $\sqrt{\text { EIETTMOMNITE }}$

 1 Q8O 100 PAGE COMPONENTSEND OFF FOR YOUR COPY TODAY．．

FREE VOUCHERS！
 SEND OFF FOR YOUR CATALOGUE AND VOUCHERS TODAY

I WOULI）LIKE TO RECEIVE．．

（OPY（COPIES）OF THE 1989 （RICKIEW（）O）EIE（TRONICS COMPONENT CATALOGUE．I EN（COSE S．
PLEASE EN（1．）SE MY FREE VoUCHERS

NAME
ADIDRESS：

Tape your \＆l coin here，or send a cheque or postal order for SI．（K）for order for S 1.0 for
every catalogue you require．

Constructional Project

\section*{PERSONAL CASSETTE AMPLIFIER
 R. S. POWELL

\section*{Budget-priced solution to providing in-car music, with

Budget-priced solution to providing in-car music, with the added advantage that personal cassettes are less the added advantage that personal cassettes are less renowned for damaging tapes than some cheap car players. Provides just over 2W output.

MANY car owners like to listen to music of some form whilst driving. be it from a car radio or cassette. Unfortunately car cassette players are either expensive or unreliable and tend to attract thieves. This article describes the construction of a simple little amplifier which may be used with a personal cassette player to enable tapes to be played in the car.
An amplifier of this type can be easily hidden. and the cassette player may be removed when one leaves the car. This simple system offers a low cost solution to providing in-car music with the added advantage that personal cassette units are less renowned for damaging tapes than cheap car players.
The amplifier can of course be used in a wide variety of other applications.

The Amplifier

The basic circuit for the amplifier is shown in Fig. I. This may be used in either of two ways:
(1) The circuit may be used with two resistors connected to the amplifier in-put-one to each channel of the stereo output from the player, as shown in Fig. I.
alternatively:
(2) Two of the circuits may be used to provide stereo by omitting RI from each amplifier and connecting one circuit to each output channel. A dual-gang potentiometer should then be used for the volume control.

Circuit

The LM380 will deliver about 2 Watts into an eight ohm speaker. which is perfectly adequate for reasonable volume levels, even at motorway speeds. The actual circuit is very simple; R1, R2 and R3 constitute a passive mixer, forming a single signal from the left and right channels. As the headphone output usually matches impedances between 32 ohms and 11 kilohms, values of 100 have been chosen for R1 to R3. The signal developed across R3 is amplified by the LM380. VR1 varies how much signal is sent to the inverting input and hence determines the gain. The output is fed to the speaker via capacitor $\mathbf{C} 3$.

One should note C2 and R4 which are different from values usually used with the LM380. R4 helps prevent distortion and replaces the usual Zobel network, whilst C2 has been increased to 10μ for the same reason.
Capacitor C4 is a decoupling capacitor and should be 1000μ or more to stabilize the supply for the amplifier. The circuit will run from the car battery (or any other d.c. supply of 12 to 18 V at about 500 mA) and an l.c.d. indicates when the circuit is turned on. A short
length of screened cable should be used to link the amplifier input to a jack plug for the headphone socket on the cassette unit.

Construction

The unit is easily constructed on Veroboard as shown in Fig. 2. Note that pins 3, 4, 5, 7. 10 . 11 and 12 of the LM380 are all earthed to help form a heatsink for this i.c. For stereo, two such boards may be produced omitting R1 from each. Take care to solder the capacitors the correct way around. and for the inexperienced constructor the use of an i.c. socket is recommended.

Fig. 1. Complete circuit diagram for the Personal Cassette Amplifier and below pinning details for the LM380 amplifier i.c.

A reasonable length of screened cable should be connected to the amplifier and terminated in a stereo 3.5 mm plug suitable for the cassette unit in use. The only controls are the on/off switch and volume control, along with the "on" indicator l.e.d. if this is required. Remember the circuit should be powered via an in-line fuse as with all electrical circuits in the car. A two amp fuse as normally used with a car radio will suffice.

When fitting the unit into the car take care to check if the speaker/s are earthed and if so which lead. The unit may be mounted in a plastic box or, for example, in a console unit within the car. The author's unit is mounted behind the car-radio blanking cover along with an l.c.d. clock unit. From the outside there is no visual indication of any "audio" apparatus within the car which is ideal in helping prevent would be thieves from even attempting to enter the car.

GOMPONENTS

Resistors

R1, (see text)
R2. R3 100
All $1 / 4 \mathrm{~W}$ carbon

Page 702

Potentiometer

VR1 220klog. (seetext)
Capacitors

C1	1μ tantalum
C2	10μ elect. 25 V
C3. C4	$1,000 \mu$ elect. 25 V
	(2 off)

Semiconductors

D1	TIL201 l.e.d. (or similar) LM380 amplifier
IC1	LM

Miscellaneous

JP1	3.5m stereo jack plug
FS1	2A inline fuse
	and holder
LS1	8 ohm 5 W speaker

Veroboard 16 strips by 28 holes, screened stereo lead, connecting wire etc.

Approx. cost Guidance only
 197
 inc. spk.

Using the Amplifier

Once the amplifer bas been fitted into the car a small bracket to hold the cassette unit can be made by bending the end of a short length of metal rod and screwing this against a flat surface in the car. The author's unit mounts nicely on the car console.

Fig. 2. Stripboard component layout and details of breaks required in the underside copper strips.

The cassette player may be powered by ordinary batteries but a good alternative is to use rechargable nickel cadmium cells available from many high-street stores. These rechargable batteries are quite sufficient for even long journeys. If one is concerned at the
idea of the batteries running flat in the middle of a tape a simple circuit may be built to power the unit from the car battery using an LM317M. Details of such a circuit are readily available-most suppliers catalogues give details

Encryptology

The satellite encryption system used in the US is called VideoCipher. The scrambler at the transmission end strips out the sync pulses which keep the pictures steady on screen, inverts the video signal by converting black to white, and alters the level of the burst signal used as a reference for colour information.
In addition, the sound is converted into digital code and slotted into the ends of the picture lines. The sound code is then encrypted by rearranging the digits-just as text messages are encrypted for security.

A set decoder, costing about $\$ 400$, generates digital sync pulses, decodes the digital audio and restructures the picture. But it can only do this when a code word burned into the decoder firmware matches a code word transmitted along with the signal. Otherwise the screen goes completely blank.

The transmitted codes are labelled so that they address only those decoders for which subscriptions, or pay-per-view payments, have been made. This technique is called "conditional access"

Pirates can't "hack" the codes controlling de-encryption because they follow the US Government's DES (Data Encryption Standard) which takes even the smartest computer a decade to unravel by trial and error. So the pirates buy a batch of legitimate decoders from Gl's appointed manufacturers and pay a subscription on one of them.

So this one decoder gets an authorised code word burned into its firmware. The pirates then hack out the code and burn it into all the other decoders they have bought. So one subscription pays for viewing on dozens, or hundreds, of decoders.

EuroCipher

The system which Gl is developing for BSB is called EuroCipher. The digital sound which accompanies the MAC picture signal is encrypted with DES codes. Also each line of the MAC picture is cut up into segments and the segments juggled so that each line ends up as a jumbled combination of several others.

De-encryption is under control of DES codes and an identifying word burned into the firmware, as in the US system. This will control subscription viewing.
For pay-per-view the set-top decoder will be connected to a central billing point by telephone line. For this an extra "sidecar" with telephone modem will be needed, at an unspecified extra price.
There is a widespread problem in the US over piracy admits GI, with a total of 950,000 decoder units shipped to manufacturers, but only around 650,000 accounted for, i.e. owned by people who are paying subscriptions. Trade estimates in the US are that at least one-third, and perhaps as many as two-thirds, of all VideoCipher decoders sold so far are receiving television programmes for which they are not authorised.

Piracy Epidemic

So will there be a piracy epidemic here too?

They admit that the piracy boom in the US is the result of mistakes made in the original VideoCipher hardware design. The chips which store the user's personal identification number were too easily accessed by computer buffs who then produced replica chips for fitting in unauthorised decoders.

Even existing VideoCipher units in the US are prey to hackers, because signals running between four separate chips can be tapped. The next stage is to integrate all the electronics in a single chip.

But even this will not prevent hackers with access to an electron microscope, e.g. in a University lab, from shaving down the firmware chip and reading out the codes. To stop that, GI will have to use chips which are sealed in inert gas, rather than a plastics casing. They will then selfdestruct when opened.

But all this puts up the price and reinforces doubts on BSB's $£ 250$ tag, they are paying GI f 100 million up front to develop the system, in addition to £M50 to ITT for four million D-MAC chip sets.

Says Dr. Mark Medress of Gl. "EuroCipher is based on the lessons we have learned with VideoCipher over the last two and a half years since encryption began in the US. We now know how the pirates work and think."

Hair-Raising

The electronics industry moans about British safety regulations, and it is true that the bureaucracy is cumbersome. However, the Spanish way is much worse.

Hotels all round Europe have standardized on a neat hairdryer made in Switzerland. The Aliseo is designed for mounting on the wall of a bathroom. The motor and heating element are sealed
inside a plastic body, which connects with a hand-held air vent via a flexible plastic tube.
The user never needs to touch anything that is carrying an electric current. All that comes down the hand held tube is hot air; all electrical connections are hard wired inside the plastic casing.

In Barcelona recently I stayed at a posh hotel which had Aliseo's on the bathroom walls. But with wonderful naivety, the Spaniards had provided an open, unshuttered two-pin mains socket alongside the hair dryer and next to the bath and washbasin. To run the hair dryer a guest with wet hands and bare feet has to push a bare, two-pin plug into the bare socketthereby negating all the careful safety features built into the hair dryer.

Sound Track

People in North London were combing the streets this last summer, looking for the source of odd sounds like rolling, rhythmic thunder - and wrongly accusing neighbours of playing their hi-fi's 100 loud.

If you were one, look no further. It was the sound of new hi-tech sound equipment being used this year for concerts at Wembley stadium.

Brent council licences pop concerts at Wembley and has set a sound level limit of 98 decibels inside the stadium to keep Wembley residents happy. But this year Brent has been getting complaints from far further afield.

At first the council's health officers couldn't work it out. Now they have twigged. The concert promoters at Wembley have been using new sub-bass woofer loudspeakers which reproduce the full 98 dB sound level right down to 20 Hz .

These frequencies are so low that they roll around the whole of North London, cutting through walls like butter. At this pitch the human ear is non-directional so no-one knows where the sound is coming from.

On the Bank Holiday weekend the bass sound of Michael Jackson came close to drowning out the open air classical concert at Kenwood, a full 6 miles away even though (and not a lot of people know this) the live sound from the Kenwood orchestra is always boosted by speakers hidden in the trees.

Illegal Broadcasting

Anyone watching ITV's Telethon fund raising event in June may have stumbled on an odd page of teletext; P169 on ITV contained lists of cryptic text and numbers. You will probably see the same page used during future ITV network marathon events.

There are already pages of teletext which carry coded secret messages which only "closed user group" recipients can read with special decoding equipment. They are used by large retail chains, to send price information round the country. Each branch has a modified TV set.

In doing this both the BBC and ITV are sailing very close to the wind legally. By law they are only allowed to broadcast - not carry private messages like British Telecom, Mercury or the Post

Office. But more of this when, as sure as night follows day, someone complains that closed user group teletext is by definition not broadcasting.

The Telethon page was not coded and not a Closed User Group. The plain English abbreviations identified regional ITV companies, like TyneTees, Anglia, Central, London Weekend and so on. The numbers were times.

The page was being used to help regional producers slot their programmes together, following a precise timetable that could be instantly updated over the air. Once in a while they used it for messages too, for instance explaining that one producer's studio control link had gone wrong, so that he could hear incoming messages, but not say anything in reply!

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX•031 6672611
The supplier to use if you're looking for
\star A WIDE RANGE of components aimed at the hobbyist \star
\star competitive VAT inclusive prices * mail order - generally by return of post * \star fast, friendly service \star

- by mail order, telephone order or personal call NEW CATALQGUE NOW AVAILABLE

Send $2 \times 19 p$ stamps for a copy-
we do try to keep the goods we list in stock. Whether you phone, write or call in we'll do our best to help you.

Open: Monday-Friday 9.00-6.00 | Saturday $9.00-5.00$ |
| :---: |

CIRCUITBOARDASSEMBLY/REPAIR JIG It May Be A Little 'Lo-Tech'-But It's Incredibly Handy

Adjustable, rotating heads hold p.c.b.'s firmly but safely for easy assembly or repair. Insert components and simply flip over to solder leaves both hands free for a better job. Supplied with earthing lead for use with CMOS.
Interchangeable heads for holding many other items available.

Each jig hand made for a lifetime of use.

Mini-jig
takes any board

Mini-jig-
£21.50 inc. p \& p. Standard jig- to $145 \mathrm{~mm} \times 85 \mathrm{~mm}$. $£ 24.50$ inc. p \& p. Cheque or P.O. only please:

EVERETT WORKSHOP ACCESSORIES 5Railway Terrace, Henllan, Llandyssul, Dyfed, SA44 5TH, Wales

THE
 Cirkit winter '88.89 CATALOGUE IS OUT NOW!

and features many new products:

Books - 12 Latest Titles
Navico $2 m$ Transceiver
Miniature Mains Rocker Switches
8 Channel Logic Analyser
Collet Knobs and Caps
2.4GHz Frequency Meter
10.7 MHz Ceramic Filters
Broadcast Band FM Tunersets
RF Dip Meter
IEC Mains Connectors
Scanning Receivers - New Models
1OOMHz 3 Ch Oscilloscope
RF and AF Signal Generators
Pyropen - Cordless Gas Iron
High Temp Elec Capacitors
Miniature Analogue Multimeter

Plus discount vouchers, easy to enter competition and feature project. Available from your newsagent or directly from Cirkit.

TO THE SOUTH

I previously mentioned the Northern California DX Foundation, which provides substantial financial assistance for DXpeditions. These expeditions set up temporary amateur stations for extensive ,operating activity in unusual locations.

An example of such activity was the operation of stations 3 Y1EE and 3 Y2GV from Peter 1 Island in the Antarctic last year. The Norwegian Polar institute chartered a ship for a government sponsored mapping and research expedition to the island, and agreed that two radio amateurs, members of the LA(Norwe-gian)-DX-Group, could go as well provided they paid their own way.

A large sum of money was required for this purpose and contributions and support came from amateur radio groups and organisations interested in DX activities in a number of countries. Transceivers, amplifiers, antennas, tuners, rotors, and a generator, were provided by companies and individuals, and all were shipped to New Zealand for the start of the expedition.

NCDXF made the largest single grant in its history, $\$ 30,000$. They guaranteed $\$ 10,000$ for the trip, promising to pay that sum even if the amateurs were unable to get ashore and make any contacts. The full $\$ 30,000$ would be paid if they did get ashore and made over 15,000 OSOs (contacts on the air), which was the DXpedition's target

In the event they made well over 16,000 OSOs during a period of 10 days, giving operators around the world the first ever opportunity of working this uninhabited, ice covered, volcanic island which, although first sighted in 1821, was not landed on until 1929.

Financial support for the DXpedition was so good that the LA-DX-Group have now been able to return \$10,000 to NCDXF as "seed money" for future expeditions to other rare locations. This was an outstanding example of yet another of the many facets of amateur radio. DXpeditions, some equally ambitious, others more modest, are taking place all the time, visiting other islands, deserts, mountains, or places which have little or no normal amateur radio activity. Wherever there is some isolated or exotic spot on the globe, you can be sure that if radio amateurs haven't got there yet it's only a question of time before someone mounts a DXpedition to reach it!

PICPRO

A recent article in CQ Magazine, in the USA, described a new aspect of packet radio communication (see this column, March 1987). This is PICPRO, a PICture PROgram for the PC and compatibles, written by Bob Slomka, WD4MNT, which displays a picture in colour as it is received via packet radio. This is automatically saved to disc and can be displayed later or be printed by a graphics printer.

The article, by Buck Rogers, K4ABT, claims that the process is so different and spectacular that it ushers in a totally new era in packet and data communications. PICPRO functions as a terminal program operating in conjunction with the Kantronics MAXFAX weather facsimile receiving system. K4ABT says he developed a packet picture passing technique a few years ago but the new technique could well have passed into oblivion but for its final evolution via the Kantronics system.

He claims that colour packet pictures are not subject to the noise and streaking found on slow-scan t.v. and that they are, as in the nature of packet itself, error free. "Since frame checking is an integral part of the packet picture, just like standard text packet, the same error checking is performed as the picture is transmitted and received. This presents the receiving station with a picture identical to the picture at the transmitting station.

Despite its success so far PICPRO is in a constant state of improvement, with WD4MNT re-writing and adding new features in the light of on-the-air trials between dedicated experimenters. It is an interesting area of activity, bringing together computer and radio interests, and this is the combination which many national radio societies see as the formula for continuing growth, attracting new entrants to amateur radio.

GOLDEN JUBILEE

The Royal Air Force Amateur Radio Society (RAFARS) celebrates its Golden Jubilee this year. The story was told, in QRV, (journal of RAFARS), winter 1947 issue, that although the Society was founded in 1938, amateur radio began in the RAF in 1924 when Flt. Lt. Durrant designed a 30 metres CW (Morse) transmitter. He sent constructional details to RAF Signals stations at Malta, Cairo, Jerusalem, Baghdad, Mosul and Delhi and suggested they keep a listening watch every evening for his own station at RAF Gosport.

He was quickly in communication with all these stations. Contacts with other amateur stations soon followed and the RAF overseas amateur network, operating from exotic locations, was in great demand.
An historic moment came when an urgent official message could not get through from Mesopotamia (now 1 raq) on the regular long wave inter-Command network, on 4,800 metres, and was relayed through the amateur stations instead. As a direct result of this the amateur Gosport to Hong Kong network became the official RAF short-wave W/T Inter-Command network!

In 1936 the Cranwell Amateur Radio Transmitting Society came into being, having its own callsign, G8FC, and in 1938 it published a CARTS journal, titled ORV.

As personnel were posted from Cranwell they wanted to keep in touch with the Society and soon there were members around the world. By 1938 it was realised that CARTS was, in effect, an RAF-wide organisation so in that year, with Air Ministry blessing, the Royal Air Force Amateur Radio Society, with headquarters at Cranwell, came into existence.

In 1951, headquarters were moved to No. 1 Radio School, RAF Locking, where it remains to this day, still producing QRV and operating G8FC. Its members are radio amateurs or short-wave listeners serving in, or retired from, the RAF or who have close connections with the Service. It has activities throughout the year.

Apart from G8FC, it can be heard with a number of other call-signs, all containing the suffix RAF. There is a daily UK "net" on 3.710 MHz , at 1830 hrs , controlled by G2FIX, and a number of local weekly nets serving specific areas, where RAFARS members can meet on the air. Enquiries about membership of RAFARS should be made to the Admin Secretary, RAFARS, RAF Locking, Weston-super-Mare, BS24 7AA.

NETS

Mention of amateur "nets" calls for some explanation. The word is an abbreviation of "network", and a net is a group of amateurs, all transmitting and receiving on the same frequency. A "controller" is in charge to ensure net discipline, making a note of stations joining the net, calling them in turn to transmit and ensuring that no-one monopolises the proceedings. Listeners can hear all that is going on by tuning to a single frequency.

Some amateurs love nets and others can't abide them. If there are more than a few stations participating then each operator will only have the opportunity to transmit for a few minutes during the period of the net, which can be frustrating for some. On the other hand, regular participation in nets enables one to make and keep in touch with a number of friends and be up-to-date with the news of the organisation running the net.

In Australia, a group of Morse enthusiasts have been trying a different sort of net based on the American "traffic nets". In these nets, stations are paired off onto other frequencies for the purpose of passing greetings messages for the general public, coming back to the control frequency for fresh instructions when they have finished.

The Australians have adapted this system for chat nets so that the control frequency becomes a meeting point for stations to call in, with the controller then pairing them off using the same procedures and disciplines as in the traffic nets. The Aussies doing this think it is an improvement over the traditional net system, but I don't know if this idea has been tried in the UK.

SPECIAL SCOPE OFFER

£547 incl. VAT and carriage (Securicor)
Digital Storage Oscilloscope HM205-2
Analog: 2 channels d.c.-20MHz, max. $2 \mathrm{mV} /$ div, Comp.tester.
Timebase $0.2 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$, Trigger d.c.- 40 MHz .
Digital: Max. sampling rate $2 \times 5 \mathrm{MHz}$, Memory $2 \times 1024 \times 8$ bit.
Timebase $5 \mathrm{~s}-2 \mu \mathrm{~s} / \mathrm{div}$, Dot-Joiner.
With a digitizing rate of $\max .5 \mathrm{MHz}$, signal events between 0.05 Hz and several 100 kHz can be captured and displayed in a visually useful manner. Operating the storage functions is exceptionally easy. By simply pressing the "STORE" button, all signals at the 'scope input will be digitized and stored. In "Refresh" mode, the memory contents will be updated with every sweep. One-time events can be captured in the "Single" mode. Pressing one of the "Hold" buttons will "freeze" the respective memory contents for evaluation or output to a computer printer or X-Y plotter via optional interfaces.

The HM205-2 is equally feature-packed for realtime applications, including excellent transient response to above 20 MHz , single button operated component tester, variable trigger hold off, and active TV-sync-separator. Send coupon and payment to:
BK Electronics (EE' 'Scope Offer), Unit 5, Comet Way, Southend-on-Sea, Essex, SS2 6TR. Tel. 0702-527572

EE'SCOPE OFFER
Please supply one
HM205-2 at £547 HM203-6 at £333
(please tick box)
Send 'scope to:

I enclose cheque/bank draft for $£$ (make cheques payable to BK Electronics) OFFER CLOSES JAN. 131989

Once again EE is pleased to be able to offer all readers the chance to buy an oscilloscope at a discount price. We have joined forces with BK Electronics to offer two different oscilloscopes at exceptional prices.
As many readers will be aware a 'scope is one of the most versatile items of test gear and a digital storage oscilloscope can be particularly useful. These 'scopes come with a two year warranty which includes the c.r.t.--they are made in West Germany and can be serviced by Hameg in the U.K., should the need ever arise.

Each 'scope is supplied with two switchable (10:1 and 1:1) probes, a trimming tool for the probes and d.c. balance, plus a mains cable and an excellent manual, which includes detailed operating instructions and circuit diagrams etc.

Overseas readers please contact BK Electronics for an insured airparcel quote.

OFFER CLOSES JANUARY 13, '89.

20MHz Two Channel Oscilloscope HM203-6

Two channels d.c. to 20 MHz , max. sensitivity $2 \mathrm{mV} /$ div., Component tester.
Timebase: $0.2 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{div}$. incl. Mag. $\times 10$, Variable holdoff.
Triggering d.c. to 40 MHz , TV-sync-separator, Triggerl.e.d.

The HM203-6 has been specifically designed for general production line and service applications. The many display modes, easy-to-learn front panel and operational simplicity also make it an ideal training 'scope for educational purposes.
For practical troubleshooting the built-in component tester enables quick characteristics tests of semiconductors and other components, in-circuit or discrete.
£333
HM203-6
incl. VAT and carriage (Securicor)

-•• Random Number Generation

1N THE BEEB Micro series we like to look at a mixture of serious applications for the BBC microcomputers and more lighthearted matters. This month we will be considering one of the less serious aspects of computingrandom numbers. The RND function in BBC BASIC is used to generate random numbers. This function is mostly used in games, but it can also be used for other purposes, in particular to generate random data to test programs (for example, random numbers to test the efficiency of a sorting routine).

Random Number Generator

The numbers generated are not, in fact, truly random, being generated by a mathematical function. The series of numbers generated is, however, so long and so convoluted that the numbers may be considered random for all practical purposes. They are, however, more correctly termed pseudorandom

If you turn on the computer and start generating random numbers, the series will always be the same. To avoid this, it is possible to "seed" the random number generator, giving it a starting value other than that provided by default. In some versions of BASIC there is a special statement to do this, usually RANDOMISE (or RAND), but in BBC BASIC the RND function is used, with a negative argument.

If the same argument is used each time, the same series will be produced, but it will be different to the default series. To produce a different series each time, an unpredictable seed value must be used.

The most common way of doing this is to use the BASIC TIME function. As this changes every $1 / 100$ second, it is most unlikely that the RND function would execute twice when the TIME function returns exactly the same value. Even a difference of 1 in the seed will produce a totally different series of numbers. RND is a function, so it must always be on the right of an equals sign, or follow a PRINT statement, for example
dummy = RND (- TIME)
PRINT RND(-1)
The dummy variable will take the value of the argument to RND. In the second exam-ple-1 will be printed.

The ability to produce the same sequence of random numbers several times by using a constant seed can be useful, especially in testing the relative speeds of sort routines. However, you should always perform several comparative tests, using different data for each comparison, in case any one series of random numbers should favour one routine over the others.
If no argument to RND is given (e.g. $\mathbf{X}=\mathbf{R N D}$), it will generate random numbers betwen -2147483648 and +2147483647 . Giving a positive argument causes some processing of the random number generated so that it comes within a specific range.

$\mathbf{X}=\mathbf{R N D}$ (1)

will cause X to take a value between 0 and 0.999999 . If you need non-integer numbers larger than 1 , you must use RND(1) and multiply the result by a suitable factor. For example

$\mathbf{X}=$ RND (1)* 10

will yield numbers between 0 and 9.99999 . RND(0) will repeat the last number generated by RND(1).

If a value larger than 1 is given as the argument, random integers between 1 and the argument (inclusive of these values) will be generated. For example, to generate numbers from I to 6 for a dice simulation, you would use

X = RND(6)

If you need to generate a series of integers which could include 0 , you must use an integer one more than the highest value you want to generate, and subtract 1 from the result returned by RND. For example, to generate digits from 0 to 9 you would use

$\mathbf{X}=$ RND $(10)-1$

A similar technique can be used to obtain starting values higher than 1 . To generate random ASCII codes for capital letters, you could use

code $=$ RND $(26)+64$

there being 26 letters in the alphabet, and the ASCII code for A being $65(1+64)$.

Alternative Randomness

Probably most BBC micro programmers who require a random number turn to the RND function without giving a second thought to alternative methods. If you are programming in some other language there may well be no equivalent to the BBC BASIC RND function, and an alternative means then has to be sought.

Questions about methods of producing random numbers when programming in assembler or some other non-BASIC language seem to be quite commonplace in the letters pages of computer magazines. It is something that seems to be quite simple until you actually try to sit down and work nut a method that will really work properly in practice.
There are solutions to the problem that only use software, but a hardware or semihardware solution is an equally valid way of doing things. As explained previously, a common ploy is to seed the BBC BASIC RND function from the timer so that a different set of numbers is obtained each time a program is run. Taking things a stage further, it is possible to use a timer as a form of random number generator.

The 6522 of the BBC computer that provides the printer and user ports includes two 16 bit timer counters. These are both available for user applications, and would seem to offer good scope for random number generation.

In order to use one of the timer/counters in this way it must be made to continuously count down at high speed. Reading the timer/ counter then provides a number of between 0 and 65535. At least, it does if both the high and low bytes are read. For most purposes simply reading the low byte would probably suffice. This would give a number from 0 to 255 inclusive.

With the counter driven at high speed there is no way to predetermine what value will be read from it, and there is no obvious way in which there could be a bias towards any par-
ticular number or range of numbers. It is debatable as to just what constitutes a genuine random number and what is really a pseudo random number, but for most purposes the number read from the timer should be random enough.

Using Timer 2

Either of the two timer/counters are suitable for this application, but the more simple of the two (timer 2) is probably the best choice. This has only two modes of operation-the one where it is fed with the internal 1 MHz clock signal and the one where it is driven from a clock signal fed to PB 6 of the user port. These two modes are selected by writing a value of 0 (internal clock) or 32 (external clock) to $? \& F E 6 B$. For most purposes the internal clock signal should suffice.

The timer 2 registers are at addresses \&FE68 (low byte) and \&FE69 (high byte). Try this simple program which sets timer 2 for operation with the internal clock, and then reads the low byte and prints the value on the screen each time a key is pressed.

10 CLS
20 ? \&FE6B=0
$30 \mathrm{X}=\mathrm{GET}$
40PRINTTAB $(10,10) ? \& F E 68$

50 GOTO 30

Obviously it is unlikely that an application will require a random number in the 0 to 255 range provided by the low byte of timer 2 , or the 0 to 65535 range provided by both bytes. However, some simple mathematics will normally be sufficient to convert the returned number to one that is suitable for a practical application.

As a simple example, assume that we wish to use the low byte of timer 2 to provide a number in the range 1 to 6 to act as a die for a games program. This short program demonstrates how this can be achieved. It merely prints a number from 1 to 6 on the screen each time a key is pressed.
10 CLS
20 ? \&FE6B = 0
$30 \mathrm{X}=\mathbf{G E T}$
40 DIE=?\&FE68
50 IF DIE >251 THEN GOTO 40
60 DIE = DIE DIV 42
70 DIE = DIE + 1
80 PRINTTAB $(10,10)$ DIE
90 GOTO 30
At line 40 the value in the low byte of timer 2 is placed in variable "DIE". For our present purpose we require a maximum number that provides an integer when divided by six, and 255 does not fit the bill. Line 50 effectively reduces the maximum figure for "DIE" from 255 to 251 . If a value of more than 251 is placed in this variable, the program goes back and tries again, and keeps on doing so until an in-range value is obtained.
Although 251 does not provide an integer when divided by six, you have to bear in mind that the minimum number from the timer is 0 and not 1. Accordingly, there are 252 different values, and 252 divided by 6 is 42 . Line 60 divides the value of "DIE" by 42 and discards any remainder. This gives a random number from 0 to 5 , but 1 is added to this at line 70 so
as to give the required 1 to 6 range. Line 80 prints the value on screen and line 90 loops the program indefinitely.
When manipulating the numbers returned from the timer in order to obtain the desired range a certain amount of care needs to be exercised, as it is very easy to introduce a bias to certain numbers. Also, bear in mind that you cannot have more possible values in the final number range than the timer can produce.

If more than 256 different values are required, then both bytes of the timer must be used. BASIC is possibly a bit slow to read the timer properly, as it is likely that the count will move on in the time between the first and second bytes being read. As in this case it is not precise times we are after, but simply random numbers, this is not necessarily significant.

Using both bytes of timer 2 there are 65536 different values, which should be adequate for most purposes. However, if necessary timer 1 could be used as well, with the two values being added together to give a single large value, or multiple reads of timer 2 could be used to give much the same effect.

Improved Randomness

One way in which this means of random number generation could lack true randomness is that if the timer is read several times in rapid succession it will produce what is really a form of mathematical progression, rather than a series of truly random numbers. In practice it may well be read too infrequently for this to be noticeable, as it takes only about a fifteenth of a second for one complete down count of timer 2. Also, although it might seem that the timer was being read at regular inter-

Fig. 1. The random clock generator circuit diagram
vals, interrupts would tend to slightly randomise the times between readings.
It is possible to totally avoid problems with multiple reads of the timer by ensuring a relatively long delay between one reading and the next (say a second or more) and using a noise signal as the clock source. With the timer counting at a random rate, reading it at regular intervals will not provide a mathematical progression. Fig. 1 shows the circuit diagram for a simple random clock generator.

Noise Source

The noise source is a reverse biased baseemitter junction (TR1). The bias voltage is high enough to cause the junction to avalanche, like a Zener diode. Also like a Zener diode, it produces noise spikes, but most silicon transistors used in this mode provide a very much stronger output than a Zener diode. However, a Zener diode having an operating voltage of about 4.3 to 7.5 volts would probably work quite well in this circuit.

If a transistor is used, note that no connection is made to the collector terminal

Whichever noise source is used, the output signal will still be quite low, and a large amount of amplification will be required in order to give a logic compatible output signal. This amplification is provided by two common emitter amplifiers. These drive a CMOS NOR gate (connected to act as an inverter) followed by a common emitter switch. The latter merely acts as a level shifter which gives an output at standard 5 volt logic levels.

The +5 volt and 0 volt supplies are taken from the user port. and the output of the unit connects to PB6 of this port. Remember to set ? \&FE6B to a value of 32 to enable operation of timer 2 with a clock signal on PB6. 5 volts is insufficient to operate much of the circuit properly, and so a 9 to 12 volt supply is needed. This could be provided by a 9 volt battery, or the +12 volt output of the computer's power port could be used. The current consumption of the circuit is only a few milliamps from this supply.

The Archer Z80 8BC

The SDS ARCHER - The $Z 80$ based single board computer chosen by professionals and OEM users.

* Top quality board with 4 parallel and 2 serial ports. counter-timers. power-fail interrupt. watchdog timer. EPROM \& battery backed RAM
* OPTIONS: on board power supply. smart case. ROMable BASIC. Debug Monitor. wide range of IO \& memory extension cards.

The Bowman 68000 sBC
The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM. EPROM. 2 countertimers, watchdog timer. powerfail interrupt. \& an optional zero wait state half megabyte D-RAM.

* Extended width versions with on board power supply and case.

Sherwood House, The Avenue, Farnham Common, Slough SL, 2 3JX. Tel. 02814-5067

Constructional Project

REACT tIMER

PAUL HARDING

Just how good do you think your reactions are? Build this pocket size, cheat proof unit and find out!

R
EACTION timers have long been popular as "party" type games; often a row of lights are used and these indicate the subject's reaction time, albeit in a rather crude fashion. The circuit presented here is a rather more sophisticated design; it features a digital display with a resolution of 1 ms , and a crystal controlled oscillator, which removes any need for calibration-the prototype's oscillator has an accuracy of better than 0.1 per cent.

In use, the front panel pushbutton is pressed, an l.e.d. flashes to indicate the "set" state, and, a pseudo-random time later (ensuring that the circuit cannot be pre-empted) the display illuminates and starts incrementing. Pressing the pushbutton again will freeze the display, indicating the subject's reaction time. The display automatically blanks about five seconds later to conserve the battery.
Pressing the pushbutton before the display illuminates will return the circuit to its quiescent state. It is not possible to obtain an apparently very fast reaction time by holding the
pushbutton down after the initial press since the circuit is edge-and not level-sensitive. The display freezes at 999 , and so, again, it is not possible to obtain a fast time by pressing the pushbutton on the counter's "second time around".

CIRCUIT DESCRIPTON

The overall block diagram for the Reaction Timer is shown in Fig. 1. The 1 kHz oscillator constantly sends pulses to the counter, a three digit BCD multiplexed type. In the circuit's quiescent state, the counter is held Reset by the flip-flop, via the pulse delay/stretch element. While the counter is in this state its on-chip multiplex system is inhibited and no display results.

When the pushbutton is pressed, the debounced signal obtained causes the $\overline{\mathbb{Q}}$ output of the toggle to go low, removing the Reset condition from the flip-flop. Sometime later the output from the eight seconds (8s) oscillator goes high and Sets the flip-flop. The pulse delay/stretch is triggered, and about two seconds later the Reset on the counter is

Fig. 1. Block diagram for the Reaction Timer

removed. The display illuminates and starts counting upwards.

Pressing the pushbutton again returns $\overline{\mathbf{Q}}$ on the toggle high, which Resets the flip-flop, taking the counter's Latch EN input high, freezing the count, and hence displays the user's reaction time. This positive going edge on Latch EN is delayed by the pulse delay/stretch, to enable the reading to be seen before the counter is reset and the circuit returns to its quiescent state.

If the pushbutton is not pressed again the Overflow output of the counter will reset the toggle which then initiates the same sequence of events as described above, with the display showing 999. The l.e.d. is driven from the ANDed outputs of the 4 Hz oscillator and the toggle, and indicates when the circuit is in its "Set" state.
Since the eight second (8s) oscillator runs continuously, it is almost impossible to predict when its output will next go high and so a degree of randomness in the switch on, of the counter is obtained.

CLOCK/COUNTER

Looking now at the complete circuit diagram for the Reaction Timer, Fig. 2, the 1 kHz oscillator is configured around $\mathrm{IC1}$, a 4060. This chip was specifically designed for use in crystal or R/C oscillators/dividers. In this application, the crystal frequency of 4.096 MHz is divided by 2^{12} (i.e. 4096) to give 1 kHz . This signal is further divided to give 250 Hz , which is then fed to another binary divider, IC2, to generate the 4 Hz and 8 s clocks.
Resistor R3, capacitor C1, and 1C4b act as the debounce circuit, driving the toggle element, IC3a, a D-type flip flop. Every press of switch of S1 rapdily discharges Cl , which then takes a very much longer time to recharge via R3. IC4b "cleans up" the pulse's slowly ramping trailing edge.
When the circuit is in its quiescent state, pin 5 and pin 2 of IC3a are high, holding IC3b RESet (pin 10), and so the latter's complementary output, pin 12 , is also high. IC4c's output is low and capacitor C2 is discharged. IC5, the counter, is held RESet.

If S 1 is pressed pin 2 of IC3a swings low, and when, sometime later, pin 155_{2} IC2 (the 8s oscillator's output) goes high, $\overline{\mathrm{Q}}$ of IC3b is forced low. IC4c's output swings high and capacitor C2 starts to charge via D4 and R6. The LE (latch enable) signal on pin 10 is
removed from IC5, but at this point it is still in its RESet state.

When the voltage across capacitor C2 crosses IC4d's upper input threshold, the latter's output goes low and the RESet on the counter is removed. The display, IC7, is illuminated, and IC5 starts counting.
Pressing S1 again RESets IC3b via IC3a causing the instantaneous count in IC5 to be latched on the display. Capacitor C2 starts to discharge, via the now low output of IC4c, through R5 and when the voltage across it falls below IC4d's lower input threshold, IC5 is RESet and the display blanks ready for the next attempt. The BCD data from IC5 is decoded by IC6 to a seven segment format suitable for displaying on the display module IC7.

DISPLAY

Moving on to the display stage of the circuit diagram, Fig. 2. The BCD counter IC5 also provides digit select outputs, and these drive the pnp emitter follower transistors, TR1 to TR3, to illluminate each digit at the correct time. Resistors R7 to R13 limit the drive current to IC7 to approximately 10 mA to 12 mA per segment.

The "set" l.e.d. (D1) is driven by the NOR gate resistor R4, diodes D2. D3. and IC4a. which, because of the logic used in the circuit, is functionally equivalent to the AND type shown in the block diagram. Capacitor C 4 is a supply decoupling component and C 3 sets the frequency of IC5's multiplex oscillator, its value is not critical.

Although only IC4b and IC4d are required to be Schmitt types, for reasons of space and cost efficiency all the NAND gates are in fact of this nature. This has no detrimental effect on circuit performance.

CONSTRUCTION

The component layout and full size copper foil master patterns for the Reaction Timer are shown in Fig. 3 and Fig. 4 respectively. These boards are available through $E E$ PCB Service, codes EE626 and EE627.

COMPONENTS

Resistors

R1	10 M
R2	820
R3, R4	100 k (2 off)
R5	1 M 8
R6	220 k
R7-13	560 (7 off)

All 0.25W 5\% carbon

Capacitors

C1 $\quad 0.47 \mu$ radial elec. 16 V
C2 $\quad 10 \mu$ radial elec. 16 V
C3 1n Mylar
C4 $\quad 47 \mu$ radial elec. 16 V

Semiconductors

D1 See switch S1 (orTIL209)
D2-4 IN4148
TR1-TR3 BC309 pno (3 off)
ICI 4060B oscillator/divider
IC2 4040B binary divider
IC3 4013B dual D-type flip flop
IC4 4093B quad Schmitt NAND
IC5 4553B 3 digit BCD counter
IC6 4511B BCD-7 segment decoder
IC7 6203RVL red, 3 digit multiplexed, common cathode display

See page 702

Miscellaneous

X1 4.096 MHz crystal, HC18/U case style
S1/D1 B3J2 2100 combined switch and l.e.d.
S2 Ultra miniature slide switch

Minicon connectors:
8 -way cable shell (1 off)
6-way cable shell (1 off) terminals (13 off)
8 -way right angle header (1 off)
6-way right angle header (1 off)
Printed circuit boards, available from EE PCB Service, codes EE626 and EE627; plastic case, $65 \mathrm{~mm} \times$ $35 \mathrm{~mm} \times 120 \mathrm{~mm}$; 200 mm ribbon cable, 7 -way or greater; 14 -pin i.c. sockets (2 off); 16-pin i.c. sockets (4 off); red filter plastic; PP3 battery and clips; p.c.b. guides; wire; solder; etc.

Approx. cost
Guidance only

526

Fig. 2. Complete circuit diagram for the Reaction Timer. Switch S1 and I.e.d. (D1) are mounted on the Display board.

Fig. 3. Main printed circuit board component layout and full size copper foil master pattern.

Fig. 4. Component layout and full size copper foil master pattern for the Display board.

Referring to the main circuit board component layout, Fig. 3, insert and solder the wire links (noting that four of the links, shown dashed, are under the board). The link adjacent to capacitor C 3 may require insulating.

Next, insert and solder the resistors, diodes, i.c. sockets, capacitors and crystal, in that order. Ensure that the orientation of the diodes (cathode (k) shown as a black band on the overlay) and the polarised capacitors are correct.

It is preferable to use p.t.f.e. insulated wire for the underboard links because p.t.f.e. does not melt at normal soldering temperatures, thus reducing the risk of shorts. Note that capacitor C 4 must have a lead pitch of 2.5 mm or 0.1 in ., so check before ordering. Do not insert the i.c.s yet.

Prepare two lengths of ribbon cable approximately $90 \mathrm{~mm} / 3.5$ inches long, one 6 way and the other 7-way, as per Fig. 5. Be

The completed display board showing the 7 segment display and the combined switch and l.e.d.

careful not to put too much solder onto the joints of the terminals as this can prevent them from deflecting properly when they are plugged onto the p.c.b. header. Strip and tin the other end of the ribbon cables and solder them to the main p.c.b.
Since, 7-way p.c.b. headers and sockets are not available, 8 -way parts need to be converted by cutting off the extra pole. This

Fig. 5. Interwiring details for interconnecting the p.c.b.s.

is best done with a sharp craft knife. Similarly, the ribbon cable will require any additional wires to be stripped off.

Solder a length of thin insulated wire from the switched positive point on the p.c.b. to the centre pole of the On/Off slide switch, S2, and the red lead of the battery clip to one of its outside poles. The battery clip's black lead should be soldered directly to the negative point on the p.c.b.

The i.c.s can now be inserted into their sockets, taking care to observe the usual CMOS static precautions. Do not remove them from their conductive packaging until just before insertion, and do not touch their pins.

DISPLAY BOARD

Display p.c.b. construction: The same notes as above apply here, using Fig. 4 as the overlay diagram. When inserting the resistors, take care not to overstress their leads. Most 0.25 W types will fit without too much difficulty.

Ensure that the transistors are mounted as close to the board as possible. This means bending the centre (base) lead quite sharply back along the transistor package. Solder the leads quickly to avoid heat damaging them. Also make sure that the display is inserted correctly.

Lastly, insert and solder the combined switch and l.e.d. if used, and solder the 6 and 7-way p.c.b. headers, with their pins pointing inwards, onto the back (copper side) of the display board. Connect the two p.c.b.'s together with the ribbon cables, connect a PP3 battery, and give the unit a functional check.

CASE

Cut out the required holes in the case's front panel for the display and the switch. This can be done by chain drilling a series of, say, 1 mm diameter holes around the required cutout, and then filing its edges smooth.

A piece of filter plastic can be glued across the display's aperture. Alternatively, cut a piece of filter plastic to the same size as the front panel, and use it as a replacement for the latter, this saves cutting a hole for the display and gives the front panel a more flush appearance. However, in practice it was found best to use the original front panel and glue the filter in place with an ABS solvent (used for "welding" plastic plumbing pipes).

The display board can be mounted by glueing short p.c.b. guides to the front panel. This needs to be done with the board inserted into the guides because the switch must protrude through its hole.

Cut a hole in the side of the case for the switch, ensuring that it will not foul any of the components on the main board. The main p.c.b. can be secured in the case with a couple of adhesive coated foam pads.

Completed timer showing the main printed circuit board, battery compartment and wiring to the on/off switch

FAULT FINDING

If the circuit does not work when it is tested, the circuit description should give some help as to where to look for the fault. Correct operation of the toggle, flip-flop, 8s and 4 Hz oscillators, AND gate, and the output of the pulse delay/stretch can be checked with an ordinary voltmeter. The other sections of the circuit will probably need an oscilloscope for checking, although an audio signal tracer could be used on, say, the 1 kHz clock.

Before taking any extensive circuit measurements, it is worth ensuring that all the i.c.s are receiving a supply voltage. Looking at the i.c. package with its pin one identi-
fication mark uppermost, the positive supply should be present on the top right hand pin, with respect to the "negative" (0 V) supply at the bottom left hand pin.

The most common faults are incorrectly placed or orientated components, dry joints and solder splashes. In tracing the fault, look at the problem logically in conjunction with the block and circuit diagrams. For instance, if only one digit illuminates, the fault will probably be with the multiplex capacitor, C3, the driver transistors TR1 to TR3, or the latters' connecting leads.

Since the circuit is essentially clock driven, failure of the main oscillator (e.g. a dry joint on the crystal) will cause the entire circuit to appear dead.

PROJECT KITS

* BE CREATIVE traISE YOUR SKILLStGET KITTED!

BURGLAR ALARM CONTROLLERS DETECTORS DETER DELLNQUENTS

MULTIZONE CONTROL

(PE) SET280

$£ 22.77$
Two entry-zones, anti-tamper loop, personal attack, entry-exit timing, timed duration, automatic resetting. latching LED monitors.
SINGLE ZONE CONTROL
(PE) SET279
$£ 9.32$
With timed duration control and latching LED monitor.
Both units can be used with any standard detection devices, such as contact or magnetic swithes, pressure pads, tremblers, ultrasonics, infrared etc, and will activate standard bells, strobes or sirens.

CHIP TESTER (PE) SET258F $£ 39.30$ Computer controlled logic and chip analyser
CHORUS-FLANGER (PE) SET235 £59.99 Mono-stereo. Supert dual-mode effects.
CYBERVOX (EE) SET228 £44.76
Amazing robot type voice unit, with ring-modulator and revert.
DISCO-LIGHTS (PE) SET245F
$£ 62.50$
3 chan sound to light, chasers, auto level.
£57. 66
switchable
ECHO-REVERB (PE) SET218
Mono-stereo. 200 ms echo, lengthy rev multitracking.

EPROM PROGRAMMER
(PE) SET277
$\mathbf{\Sigma 2 5 . 2 5}$
Computer controlled unin for 4 K Eproms.
EVENT COUNTER (PE) SET278
$£ 31.50$ 4-dight display counting for any logic source.
MICRO-CHAT (PE) SET276
Compuler controlled speech synthesiser. MICRO-SCOPE (PE) SET247
$\mathbf{5 6 4 . 5 0}$
$£ 44.50$
Turns a computer into an oscilloscope.
MICRO-TUNER (PE) SET257
$£ 55.32$
Computer controlled, tuning aid and freq counter.
MORSE DECODER (EE) SET269 $£ 22.16$ Computer controlled morse code-decoder.
POLYWHATSIT! (PE) SET252 £122.69 Amazing effects unit, echo, reverb, double tracking, phasing, flanging, looping, pitch change, REVERSE tracking! BK memory.
REVERB (EE) SET232 $£ 27.35$
Mono, with revert to 4 secs, echo to 60 ms .
RING MODULATOR (PE) SET231 £45.58 Fabulous effects generation, with ALC and VCO.

STORMS! (PE)

£29.50 each unit
Raw nature under panel controll Wind \& Rain SET250W. Thunder \& Lightning SET250T.

\star COMPUTER KITS

The software listing published with the computer kit projects are for use with C64, PET and BBC computers.
MANY MORE KITS IN CATALOGUE
KITS include PCBs and instructions. Further details in catalogue. PCBs also availabte separately.

DUAL BEAM OSCILLOSCOPS (PE)

 focus controls. Indepen
catalogue - See below.
VOICE SCRAMBLER (PE) SET287 £42.22
32 switchable chamnels to keep your communications confidential.
WEATHER CENTRE (PE)
Keep the Met Office in check and monitor the wind speed and direction, rain, temperature, soil molsture and sunny days.
Six detector circuits - KIT 275.1 £18.07 Automatic metered control monitor circuit - KIT $275.2 £ 40.95$ Optional computer control circuit - KIT $275.3 \quad £ 14.20$

ELECTRONIC BAROMETER

(PE) SET285
E35.55
Computer controlied unit for monitoring atmospheric pressure.
GEIGER COUNTER (PE) SET264 £59.50 A nuclear radiation detector for environmental and geological moritoring. With buitt in speaker, meter and dighal output. This project was demonstrated on BBC TV.

MANY MORE KITS IN CATALOGUE

Send 9"xam SAE for detaliod catiogue, and whit all enquitex (overseas and \$1.00 or 5 L.R.C.'s). Add 15% VAT. Add PLP Sets over $£ 50$ add $\mathbf{2 . 5 0}$. Others edd $£ 1.50$. Overtees PMP in cathogue. Text photocopios - Cadger $284 \mathrm{E1.50}$, cthers 50 p plus 50 p poet or hres SAE, heurance 50 p per \&50. MMLOPDER, CWO, CHO, PO, ACCESS VSA. Telephone orders: Mon-Fi, iem - 6pm. 068937821 . (Ueunty minwering mechina).

The books listed have been selected as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.

PROJECT CONSTRUCTION

HOW TO GET YOUR
 ELECTRONIC PROJECTS WORKING R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking
for many of the common faults that can occur when for many of the common faults that can occur when bulding up projects
96 pages Order code 8 ep 110
HOW TO DESIGN AND MAKE
YOUR OWN P.C.B.s
R. A. Penfold

Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers all aspects of simple p.c.b. Construction including photo8o poges Order code BP121 $\quad \mathbf{1 . 9 5}$

GEGINNER'S GUIDE TO BUILDING

ELECTRONIC PROJECTS
R. A. Penfold

Shows the complete beginner how 10 tackle the pracical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in magazines and books. Also includes examples in the 112 peges Order code No. 227 £1.95

CIRCUITS AND DESIGN

ELECTRONICS SIMPLIFIED
CRYSTAL SET CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.

Especially writen for those who wish to participate in the intricacies of electronics more through practical construction than by theoretical study. It is designed for all ages upwards from the day one can read intelligently and
80 pages
Order Code BP92
E1.75
MICRO INTERFACING CIRCUITS-BOOK 1
MICRO INTERFACING CIRCUITS-BOOK 2
R. A. Penfold

Both books include practical circuits together with detais tion Any special constructional points around informa and constructronal points are covered bu p.e. layouts and other detanled constructional informa

Book 9 is mainly concerned with geting signals in and out of the computer: Book 2 deals primarily with circuits for practical applications.
$\begin{array}{lll}\text { Book } 1112 \text { pages } & \text { Order code BP130 } \\ \text { Book } 2112 \text { pages } & \text { Order code BP131 }\end{array}$ Book 2112 pages Order code BP131 E .25
$\mathrm{E2.75}$

50 CIRCUITS USING GERMANIUM SILICON AND ZENER DIODES R. N. Soar

Contains 50 interesing and useful circuits and applica tuons, covering many different branches of electronics using one of the most simple and inexpensive of and silicon signal diodes, includes the use of germanium and silicon signal 64 pages

50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful crrcuits and applica tions, covering many different branches of electronics. using one of the mosi inexpensive and freely available components the light emiting diode (LED) Also in 64 pages 6 $\begin{array}{lll}\text { 64 pages Order Code BP42 } & \text { E1.95 } \\ \text { BOOK } 250 \text { more l.e.d. circuits Order code Bpa7 } & \text { E1.35 }\end{array}$

A Practical Introduction to Microprocessors

A MICROPROCESSOR PRIMER
E. A. Parr, B.SC., C.Eng., M.I.E.E.

Starts by designing a small computer which. because of its simplicity and logical structure, enables the language to be easily learnt and understood The shoricomings are then discussed and the reader is shown how these can be overcome In this way such ideas as relative to the instruction reyisters, etc. are developed 96 peges \quad Order code BP72 75

A PRACTICAL INTRODUCTION TO
MICROPROCESSORS
R. A. Penfold

Provides an introduction which includes a verv simple the reader can circuriment wind can benstructed so that

COL DESIGN AND CONSTRUCTION MANUAL B. B. Babani

A complete book for the home consiructor on "how to transiormers Practically power coils. chokes and cussed and calculations necessary are given and ex plained in detail Although this book is now rather old with the exception of torroids and pulse transformers linte has changed in corl design since it was witten 96 pages Order Code 160 was withen

Coil Design and Construction Manual

З॥乏

96 pages \quad Tomporarily out of print

HOW TO USE OP-AMPS

E. A. Parr

This book has been written as a designer's guide coverngy many operational amplifers. Serving both as a calculations the approach has beten niade ds non mathematical as possitble 160 pages Order code BP88 £2.95

PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 1
RACTICAL ELECTRONIC
A. A. Penfold
R. A. Penfold
These books are designed to and electronic enthusiast These books are designed to aid electronic enthusiasts
who like to experiment with circuits and produce their own projects. rather than simply following published project designs

BOOK 1 contains Oscillators-sinewave, Iriangular squarewave. Sawiooth, and pulse waveform generators stable circuits using ic s. the 555 and 7555 devices, eic Miscellaneous-noise generators, rectifiers, compara ors and iriggers. etc
BOOK 2 contains Amplifiers-low level discrete and op-amp circuits. voltage and bulfer amplifiers including a c types Also low-noise audio and voltage controlled ampifiers Filters-high-pass, low-pass, 6 , 12 , and 24 dB mixers. voltage and current regulators, etc
BOOK $1 \quad 128$ pages Order code BP117 £1.95 BOOK 2112 pages Order code BP118 £1.95

ELECTRONIC CIRCUITS HANDBOOK

Michael Tooley BA
This book aims to explode two popular misconceptions concerning the design of electronic circuits: that only those with many years of experience should undertake circuit design anathematics. Prossided one is understanding of advanced mathematics. Provided one is nol too ambitious, neither of Specitically this book ams inue.
Specifically, this book ams to provide the reader with a unique collection of pracucal working circuits together with
supporting information so that circuits can be produced in the shortest possible time and withoul recourse to theor
eticat texis.
Furthermore, information has been included so that the circuils call readily be modified and extended by readers to nueet their own individual needs. Related circuits have been grouped together and cross-referenced within the text (and also in the index) so that readers are aware of which circuits can be readny connected logether to form more complex sysilages signal avels and impertances has tange of supply As a bonus, len lest gear projects have been included. These not only serve to illustrate the techniques described but also provide a range of test eqpuipment which is useful in
277 pages Order code NE05 £14.95

How to Design
Electronic
Projects

HOW TO DESIGN ELECTRONIC
PROJECTS
PROJECTS
R. A. Penfoid

That ditr if this book is to help the reader to put together prejects from standard tircult blocks with a minimum of
trial and e:rror, but without resorting to any advanced thathenlatics Hists un designingy circuit blocks to meet

POPULAR ELECTRONIC CIRCUITS
-8OOK 1
-BOOK 2
R. A. Penfold
fatib beok provides a wide range of designs for eleciromu enthustasis who are capable of producing working propests frolit just an circual dagram without the and of procedures dife defscriteed $\begin{array}{llll}\text { BOOK } 1160 \text { pages } & \text { Order code BP80 } & £ 1.95 \\ \text { BOOK } 2160 \text { pages } & \text { Order code BP98 } & \mathbf{£ 2 . 2 5}\end{array}$

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF MOOEL RAILWAYS
R.A. Penford

Home computers may easily be applied to the control of model railways and really quite sophisticated control, which achieve. The main problem lies in interfacing the computer o the layout, but fortunately it is not too difficult or expens ve to build suitable interfaces, and this book shows you

The projects consist of various types of controller, including a high quality pulse type, as well as circuits for train position sensing, signal and electric points control etc. The use of computers does not have to be restricted to massive layouts Something as simple as an oval or rack with a single siding an be given a new dimension by adding computer control and much 88

MODERN OPTO DEVICE PROJECTS

R.A. Penfold
in recent years, the range of opto devices available to the home constructor has expanded and changed radically These devices now represent one of the more interesting areas of modern electronics for the hobbyist to experiment , ans as well This bouk provides a number of practical
designs which utilize a range of modern opto-electri devices, including such things as fibre optics, ultra brigh e.d.s and passive IR detectors etc.

White many of these designs are not in the "dead simple" category, they should be within the capabilites of anyone struction and some of the more simple designs are suitable fruction and 104 pages Order code 8P194

ELECTRONHC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS
Robert Penfold
Robots and robotics offer one of the most interesting areas for the electronics hobbyist to experiment in. Taday the robotics kits and a wide range of mechanical components available. The micro controller is not too much of a problem either, since the software need not be terribly complex and many inexpensive home computers are well suited to the task.
The main stumbling block for most would-be robot builders is the electronics to interface the computer to the motors, and the sensors which provide feedback from the robot to he computer. The purpose of bride soma bridge this gap
$£ 2.95$

Electronic Circuits for the computer Control of Robots

DATA AND REFERENCE

ELECTRONICS TEACH-IN
Michael Tooley BA and David Whitfield MA MSC CEng MIEE (published by Everyday Electronics)
This value for money $E E$ book provides a comprehensive background to modern electronics including test gea projects. A complete course in basic electronics; designed for the complete newcomer it will however also be of value to those with some previous experience of electronics Wherever possible the course is retated to "real life" working circuits and each part includes a set of detailed practical assignments. Includes details of eight items of related test gear giving full constructional information and diagrams for each one. They are: Safe Power Supply: Universal LCR Bridge, Diode/Transistor Tester; Audio Signal Tracer: Audio Signal Generator; RF Signal Generator; FET Voltmeter; Pulse Generator. An excellen companion for anyone interested in electronics and invaluable for those taking G.C.S.E. and BTEC electronics courses.
104 pages (A4 size) Order code EE/T-1 \quad E1.95
PRACTICAL ELECTRONICS
CALCULATIONS AND FORMULAE
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.i.m.

Bridges the gap between complicated technical theory. and "cut-and-tred" methods which may bring success in design but leave the experimenter unfulfililed A strong practical bias tedious and higher inathematics have included included
The book is divided into six basic sections Units nents, Alternatung-current Circuits, Networks and Theorems, Measurements
256 pages \quad Order Code BP53
$£ 2.95$

ESSENTIAL THEORY FOR THE

ELECTRONICS HOBBYIST
G. T. Rubaroe, T.Eng (C.E.I.), Assoc.I.E.R.E he object of this book is to supply the hobbyist with a background knowledge talored to meet his or her speciric requirements and the author has brought 10 -
gether the relevant material and presented it in a readable manner with minimum recourse to mathematics

MICROPROCESSING SYSTEMS AND CIRCUITS F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M

A truly comprehensive guide to the elements of mucroprocessing systems which peally starts at the beginning
Teaches the reader the essental fundamentals that are so important for a sound understanding of the subject

ELECTRONIC HOBBYISTS HANDBOOK

R.A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics enthusiast is likely to need for the day-to-day pursuance of this fascinating hobby. Covers common component colour codes. Details the characteristics and pinouts of many populap semiconductor devices, including various types of logic ICs, operational amplifiers, transistors, FETs, unijunctions, diodes, rectifiers, SCRs, diacs, triacs, regulators and SMDs, etc. Illustrates many useful types of circuits, such as timers and oscitlators, audio amplifiers and fitters, as well as including a separate section on power supplies.
$\begin{array}{ll}\text { Also contains a multitude of other usefuldata. } \\ 88 \text { pages } & \text { Order code BP233 }\end{array}$
AUDIO
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., Analysis
Analysis of the sound wave and an explanation of acoustical quantittes prepare the way. These are fol lowed by a study of the mechanism of hearing and
examination of the various sounds we hear. A look at room acoustics with a subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio systems-amplifiers, oscillators disc and magnetic recording and electionic music
320 pages Order Code BP111 320 pages Order Code BP111
$£ 3.50$
HOW TO IDENTIFY UNMARKED ICS
K. H. Recorr

Shows the reader how, with just a test-meter, to go about recording the particular signature of an unmarked r.c. Which should enabie the ic to then be identified with signature to manufacturers or other data An I.C suring the resistances between all terminal pars of an ic Chart Order code BP101 £0.95

RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
Although this chart was first published in 1971 it Although this chart was firs1 published in 1971 il throughout the world, for most radio and electronic components Includes resistors, capacitors, transfor mers, field colls, fuses, battery leads, speakers, etc It is particularly useful for finding the values of old components
Chart
Order code BP7
£0.95

CHART OF RADIO, ELECTRONIC

SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Banani, B.Sc.(Eng.)
lllustrates the common, and many of the not-so.com mon, radio, electronic, semiconductor and logic symbols that are used in books, magazines and instruction manuals, etC, in most countries throughout the world
Order Code BP27
£0.95

ELECTRONICS - A "MADE SIMPLE" BOOK
G. H. Oisen

This book provides excellent background reading for our Introducing Digital Electronics series and will be of interest to everyone studying electronics. The subject is simply exvery basic knowledge of electricity.
330 pages \quad Order code NE10 95

RECOMMENDED READING FOR INTRODUCING MICROPROCESSORS

PRACTICAL DIGITAL ELECTRONICS HANDBOOK Mike Tooley (Published in association with Everyday Elec. tronics)
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handbook aims to provide readers with a practically based introduction to this subject. The book will prove invaluable to anyone involved with the design, manufacture or servicing of digital circuitry, as well as to those wishing to update their knowledge of modern digita devices and techniques. Contents: Introduction to integrated circuits; basic logic gates; monostable and bistable devices; timers; microprocessors; memories; inpu and output devices. interfaces; microprocessor buses Appendix 1: Data. Appendix 2: Digital test gear projects: tools and test equipment; regulated bench power supply toosic probe logic pulser: versatile pulse generator: digital logic probe; logic pulser; versatile pulse generator; digita breakout box. versatile digital counter/frequency meter Appendix 3. The oscilloscope Appendix 4. Suggested Appendix 3. The oscilloscope. Appendix 4: Suggested 208 pages Order code PC100

BEGINNERS GUIDE TO MICROPROCESSORS
 E.A. Parr

An excellent grounding in microprocessors, this book is broadly relevent to the whole of our Introducing illustrated
224 pages Order code NE03 E4.95

MICROELECTRONIC SYSTEMS 2 CHECKBOOK

R. Vears

The aim of this book is to provide a foundation in microcomputer hardware, software and interfacing techniques Each topic is presented in a way that assumes only an elementary knowledge of microelectronic systems and logic functions. The book concentrates on 6502, 280 and 6800 microprocessors and contains 60 tested programs, 160 worked problems and 250 further problems Now replaced by Microelectronic Systems N2 Checkbook Order code NEO3N

DATA AND REFERENCE

OSCULOSCOPES: HOW TO USE THEM-HOW THEY WORK Oscilloscopes
Oscilloscopes are essential tools for checking circuit operation and diagnosing laults, and an enormous range of modeis is available. But which is the right 'scope for aparticular important? What techniquas will get the best out of so instrument?
lan Hickman, experiencad in both professional and hobbyist electronics, has revised this well-established book to help all oscilloscope users - and potential users.
133 poges
Order code MEOS
65.95

GETTNGG THE MOST FHOM YOUR MULTMETEA

R.A. Peorlold

This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discusssing the relative merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, in-
cluding tesis for transistors, thyristors, resistors, capacito and diodes. Circuit testing is covered in Chapter 3 with subjects such as voltage, current and continuity checks being discussed.
In the main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects.
96 pages
Order code BP239

PRACTICAL ELECTROMCS MMOPOOK
en Sinclat
an Sinclair has now revised this useful and carefully selec design data for professional engineers-of-thumb, and enthusiasts involved in radio and electronics. Covering and ve and active components, discrete component circuits (such as amplifiers, filters and oscillators) and linear and digital i.c.s, the book includes many items which are no dsewhere available in a single handy volume. The operation and functions of typical circuits are described, while math ematics is limited to that necessary for deciding componen alues for any application.
This revised edition contains more details on computers and nicroprocessors and has been brought up to date through 199 pages Order Code NEOG

BEGINNER'S GUIDE TO HW-A

on Sinclair
The Beginner's Guide to Hi-Fi will appeal to the audio enthusiast, whether newly won over by advances in techdate equipmell established and wondering whether to up sources in the studio to its ultimate end in your ears, and shows what sound is, how it is recorded and how it is repro uced.
Every aspect of Hi-Fi, from pickup cartridges to toudspeak ers, has been covered, and the emphasis has been on ox plaining design aims. Cassette systems have been given C and dbx noise reduction systems. The CD record has been covered in detail so that you can find out just why thi ystem of sound reproduction is so superior. 194 pages Order Code NE07

ELECTRONICS-BUILD AND LEARN

A. A. Penfold

The first chapter gives full constructional details of a circui demonstrator unit that is used in subsequent chapters to ors, transformers, diodes, transistors, thyristors, fets and op mps. Later chapters go on to describe how these compo nents are built up into useful circuits, oscillators, multivibra
ors, bistables and logic circuits.
At every stage in the book there are practical tests a o experimants that you can carry out on the demonstrator unit to investigate the points described and to help you undersand the principles involved. You will soon be able to go on omore complex circuits and tackle fautt finding logically in 20 pages
Onder Code PC103
E5.95

COMMUNICATION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

A look at the electronic fundamentals over the whole of the communication scene. This book aims to teach the important elements of each branch of the subject in a sivle as interesting and practical as possible. While not getting involved in the more complicated theory and mathematics. most of the modern iransmission system submarine, satellite and digital multiplex systems, radio and telegraphy. To assist in understanding these more thoroughly, chapters on signal processing, the electromagnetic wave, networks and transmissions assessment are included, finally a short chapter on optical
transmission
256 pages
PRACTICAL MDD HANDBOO
R.A. Penfold

The Musical Instrument Digital Interface (MIDI) is surthe user manuals that accompany MIDI equipment many of incomprehensible to the reader. The Practical MIDI Handbook is aimed primarily at musicians, enthusiasts and techniciens who want to exploit he vast capabilities of MIDI, but who have no previous book is devoted to an explanation of what MIDI can do and how to exploit it to the full, with practical advice on connecting up a MIDI system and getting it to work, as well as deciphering the technical information in those equipment 128 pages

E5.95

WITRODUCTION TO DIGITAL AUDHO

Imen Sinctaír

Digital recording methods have existed for many years and have become familiar to the professional recording engindigital audio methet disc (CD) was the first device to bring ppearance of digital audio tape (DAT) equipment.
All this development has involved methods and circuits that are totally alien to the technician or keen amateur who has previously worked with audio circuits. The principles and practices of digital audio owe little or nothing to the tradiional linear circuits of the past, and are much more comprehensible to today's computer engineer than the older generation of audio engineers.
the technician and enthusiast. The principles and mathods he technician and enthusiast. The principles and methods ave explained, other than to state the end product 128 pages Order coda PC102
65.95

TRANSISTOR RAOIO FAULT-FINOING CHART
 C. E. Miller

Used properly, should enable the reader to trace most common faults reasonably quickly. Across the rop of the descriptil be found four rectangles containing brief torteci set of these faults, vis-sound weak but undisnoises. Set dead, sound low or distorted and back ground and following the arrows, carries out the suggested checks in sequence until the fault is cleared Chart Order code BP70
$\mathbf{E} 0.95$

OIGITAL IC EQUIVALENTS
 ANO PIN CONNECTIONS

A. Michaels

Shows equivalents and pin connections of a popular selection of European. American and Japanese digital c.s. Also includes details of packaging, families, func
$\begin{array}{ll}\text { tons, manufacturer and country of origin. } \\ 256 \text { pages } & \text { Order code BP140 }\end{array}$

256 pages
$\mathbf{4 . 9 5}$

LINEARIC EQUIVALENTS
 ANO PIN CONNECTIONS

A. Michaels

Shows equivalents and pin connections of a popular selection of European, American and Japanese linear i.c.s. Also includes details of functions, manufacture and country of origin. Order code BP141

INTERNATIONAL OIOOE EQUIVALENTS GUIOE
 EQUIVALE

Designed to help the user in finding possible substitutes or a large selection of the many different types of diode hat are available. Besides simple rectifier diodes, als ncluded are Zener diodes, l.e.d.s, diacs, triacs, thyris 144 pages Order code BP108
£2.25

NEWNES ELECTRONICS
 POCKET BOOK
 E. A. Parr

Newnes Electronics Pocket Book has been in print fo over twenty years and has covered the development o electronics from valve to semiconductor technology and processors. To keep up to date with the rapidly changing world of electronics, continuous revision has been necessary. This new Fifth Edition takes account of recen changes and includes materia! suggested by readers of previous editions. New descriptions of op.amp. applications and the design of digital circuits have been added. along with a totally new chapter on computing. plus 315 pages (hard cover)
315 pages (hard cover) Order Code NEO2 99.95

TRANSISTOR SELECTOR GUIDE

This unique guide offers a range of selection tables compiled so as to be of maximum use to all electronics engineers, designers and hobbyists.
Section 1: Covers component markings, codings and standards, as well as explaining the symbols used
Section 2: Tabulates in alpha-numeric sequence the comprehensive specifications of over 1400 devices
Section 3: Tabulates the devices by case type. Section 4: Considers particular limits to the electrical parameters when compiling the tables
Section 5: Illustrates package outlines and leadouts. Section 6: Consists of a surface mounting device markings conversion list.
192 pages
Order code BP234
$\mathbf{5 4 . 8 6}$

RADIO/TELEVISION

AN INTRODUCTION TO RADIO DXINC

A. A. Penfold

Anyone can switch on a short wave receiver and play with the controls until they pick up something, but to find a particular station, country or type of broadcast and to and knowledge. The object of this book is to help the reader to do just that, which in essence is the fascinating hobby of radio DXing

112 pages Order code BP91

$£ 1.95$
INTERNATIONAL RADHO STATIONS GUIDE
P. Shore

Provides the casual listener, amateur radio DXer and the professional radio monitor with an essential reference work designed to guide him or her around the ever more complex and rewnds. This new edition has been completely revition which is divided into the following sections:
istening to Short Wave Radio; ITU Country Codes; Worldwide Short Wave Radio Stations; European. Middle East and North African Long Wave Radio Stations; European. Near East and North Alrican Medium Wave Radio Stations: CanaRadio Stations: 8roadcasts in English; Programmes for Radio Stations; 8roadcasts in English; Programmes for Time differences from GMT: Abbreviations: Wayelength/F. TMe ency Conversion 320 pages

BEGMMER'S GUNOE TO AMATEUR RADIO
G. Rayer Second edrion revied by Gorton king G4VFY Whether you are new to radio, or have become interested by way of C8, it is hoped that this book, will further whet your ppetite and put you in good stead for passing the Radio eur.
188 peges Temporevily ourt of print

AN INTRODUCTION TOSATELITTE TELEVISION

A. Witson

As a definitive introduction to the subject this book is presented on two levels. For the absolute beginner or anyone hinking about purchasing or hiring a satellite TV system, the main text
For the professional engineer, electronics enthusiast, student or others with technical backgrounds, there are numerous appendices backing up the main text with additional technical and scientific detail formulae, calculations, tables etc.
There is also plenty for the DIY enthusiast with practical advice on choosing and installing the most problematic part
104 pages Order code BP 195

COMPUTING

getting the most from your printer

 J. W. PanfoldDetails how to use all the features provided on most dotmatrix printers from programs and popular word processor packages like Wordwise. Visawrite and Quill, etc. Shows exactly what must be typed in to achieve a given
effect. 96 .

Order Code BP181
$£ 2.95$

A 280 WORKSHOP MANUAL
E. A. Parr, B.Sc., C.Eng., M.I.E.E.

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming, or need hardware details of a 280 based computer.
192 pages
Order Code BP112
$\mathbf{1 3 . 5 0}$

AN INTRODUCTION TO 68000 ASSEMBLY
LANGUAGE
A. A. Z J. W. Penfold

Obtain a vast increase in running speed by writing programs for 68000 based micros such as the Commo-
dore Amiga. Atari ST range or Apple Macintosh range dore Amiga. Atari St range or Apple Macintosh range might think and this book covers the fundamentals. 112 pagas \quad Order code BP184
the art of programming the $\mathbf{Z X}$
SPECTRUM
M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to use all the Spectrum's commands and functions. but a very different one to be able to combine them into programs that do exactly what you want them to. This is just what this book is all about-teaching you the art of effective programming with Order code BP

AN INTRODUCTION TO PROGRAMMING THE COMMODORE 16 \& PLUS 4

R. A. Penfold

Helps you to learn to use and program these two Commodore machines with the minimum of difficulty by expanding and complementing the information supplied in the manufacturer's own manuals.
128 pages Order code BP 158 £2.50
AN INTRODUCTION TO PROGRAMMING THE BBC MODEL B MICRO
R. A. \& J. W. Ponfold

Written for readers wanting to learn more about programming and how to make best use of the incredibly powerrul model B s versatie features. Most aspects of little could usefully be added to the information provided $\begin{array}{ll}\text { by the manufacturer's own manual. } \\ 144 \text { pages } & \text { Order code BP } 139\end{array}$ 144 pages

THE PRE-BASIC BOOK
F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E., F.I.E.R.E. F.B.I.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and but instead concentrates on introducing the technique by looking in depth at the most frequently used and more easily understood computer instructions. For all new and
192 pages \quad Order code BP146 $\mathbf{1 2 . 9 5}$
AN INTRODUCTION TO
COMPUTER PERIPHERALS
J. W. Penfold

Covers such items as monitors, ppinters, disc drives, cassette recorders, modems, etc., explaining what they standards. Helps you to make sure that the peripherals you buy will work with your computer. 80 pages Order code BP170
$\mathbf{£ 2 . 5 0}$

COMPUTER TERMINOLOGY EXPLAINED

D. Poole

Explans a wide range of terms that form the computer jargon used by enthusiasts Includes a reference guide to | the more commonly used BASIC commands. | |
| :--- | :--- |
| 96 pages | $\mathbf{O r d e r}$ code BP148 |
| 1.95 | |

AN INTRODUCTION TO PROGRAMMINE THE ACORN ELECTRON
R. A. 8. J. W. Penfold
Designed to help the reader learn more about programDesigned to help the reader learn more about program-
ming and to make best use of the Electron's many features. Adds considerably to the information already supplied in the manufacturer's own instruction manual. 144 pages Order code BP142 E1.95

AN INTRODUCTION TO PROGRAMMING THE ATARI $600 / 800 \times L$
R. A. \& J. W. Penfold

Especially written to supplement the manufacturer's own handbook. The information supplied will help the reader to master BASIC programming and to make best use of the Atari's many powerful features.
128 peges
Order code BP
128 poges Order code BP143 £1.95
AN INTRODUCTION TO PROGRAMMING THE AMSTRAO CPC 464 AND 664
R. A. 8 J. W. Penfold

The Amstrad CPC 464 or 664 running with Locomotive BASIC makes an extremely potent and versatile machine and this book is designed to help the reader get the mos rather than duplicate the information already given in the manufacturer's own manual. Also applicable to the CPC 6128.

144 pages Order Code BP153 £2.50

AN INTRODUCTION TO PROGRAMMINO THE

 SINCLAIR OLR. A. B_{1} J. W. Penfold

Helps the reader to make best use of the fantastic Sinclair QL's almost unlimited range of features. Designed to 112 pages the manufacturers handiok. £1.95

AN INTRODUCTION TO 280 MACHINE COOE

 A. A. \& J. W. PenfoldTakes the reader through the basics of microprocessors and machine code programming with no previous know ledge of these being assumed. The 280 is used in many opular home computers and simple programming ex amples are given for Z80-based machines including the trad CPC 464. Also applicable to the Amstrad CPC 664 and 6128.
144 pages Order code 8P152 £2.75

AN INTRODUCTION TO 6502 MACHINE CODE

 R. A. B. J. W. PenfoldNo previous knowledge of microprocessors or machine code is assumed. Topics covered are: assembly language and assemblers, the register set and memory. binary and hexadecimal numbering systems, addressing code with BASIC. Some simple programming examples are given for 6502-based home computers like the VIC20. ORIC-1/Atmos. Electron, BCC and also the Commodore 64 .
112 pages Order code BP147 £2.50
HOW TO GET YOUR COMPUTER PROGRAMS RUNNING
J. W. Penfold have you ever written Hour ow por workl Help is now ath wis boo which shows you how to go about looking for you which shows and helps you to avoid the common bugs and pitfalls of program writing. Applicable to all dialects of the BASIC language
144 pages \quad Order code BP169 50

AN INTRODUCTION TO COMPUTER

COMMUNICATIONS
 A. A. Penfold

Provides detals of the various types of modem and their sutrability for specific applications, plus details of connecting various computers to modems, and modems to networking systems and RTTY. $8 \mathbf{8 2 . 9 5}$ 96 pages Order code BP177 £2.95

THE PRE-COMPUTER BOOK

F. A. Wilson

Aimed at the absolute beginner with no knowledge of computing. An enturely non-technical discussion of computer bits and pieces and programming.
$£ 1.95$

NEWNES COMPUTER ENGINEER'S
POCKETBOOK
An invaluable compendium of facts, figures, circuits and data, indispensable to the designer, student, service data, indispensable and all those interesied in computer and microcomputer systems it will appeal equally to the hardware or software spectalist and to the new band of "software engineers" This first edition covers a vast range of subjects at a practical level, with the necessary explanatory text The data is presented in a succinct and rapidly accessible form so that the book can become part of an everyday toolkıt
205 pages (hard cover) Order code NE01 $\mathbf{8 . 9 5}$

DIRECT BOOK SERVICE
 (A Division of Wimborne Publishing Ltd.)
 TO ORDER
 Please state the order code clearly, print your name and address and add the required postage to the total order.

Add 75p to your total order for postage (overseas readers add $£ 1.50$, surface mail postage) and send a PO, cheque or international money order ($£$ sterling only) made payable to Direct Book Service quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY, WIMBORNE, DORSET, BH21 1RW (mail order only).

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists.
Note-our postage charge is the same for one book or one hundred books!

Capacitance Meter - JAN '88 Bench Amplifier Transistor Curve Tracer	$\begin{aligned} & 590 \\ & 591 \\ & 592 \end{aligned}$	$\begin{aligned} & £ 4.10 \\ & £ 5.51 \\ & £ 2.84 \end{aligned}$
Bench Power Supply Unit Game Timer	$\begin{gathered} 593 \\ 583 \end{gathered}$	$\begin{aligned} & £ 4.01 \\ & £ 3.55 \end{aligned}$
Semiconductor Tester - MAR '88 SOS Alert Guitar/Keyboard Envelope Shaper	$\begin{aligned} & 594 \\ & 595 \\ & 596 \end{aligned}$	$\begin{aligned} & £ 3.19 \\ & £ 4.78 \\ & £ 4.23 \end{aligned}$
Stereo Noise Gate - APR '88 Pipe \& Cable Locator Inductive Proximity Detector	$\begin{aligned} & 597 \\ & 598 \\ & 574 \end{aligned}$	$\begin{aligned} & £ 6.65 \\ & £ 2.72 \\ & £ 2.97 \end{aligned}$
- MAY '88 - Multi-Channel Remote Light Dimmer Transmitter Receiver Door Sentinel Function Generator-Main Board Function Generator-Power Supply Super Sound Effects Generator	$\begin{aligned} & 599 \\ & 600 \\ & 605 \\ & 606 \\ & 607 \\ & 608 \end{aligned}$	$\begin{aligned} & £ 2.78 \\ & £ 3.07 \\ & £ 2.60 \\ & £ 5.91 \\ & £ 4.19 \\ & £ 4.78 \end{aligned}$
- JUNE '88 - Multi-Channel Remote Light Dimmer Relay/Decoder Dimmer Board Power Supply Mother Board Headlight Reminder	$\begin{aligned} & 601 \\ & 602 \\ & 603 \\ & 604 \\ & 611 \end{aligned}$	$\begin{aligned} & £ 4.86 \\ & £ 3.07 \\ & £ 2.72 \\ & £ 7.76 \\ & £ 2.78 \end{aligned}$
Video Wiper - JULY'88 Isolink	$\begin{aligned} & 612 \\ & 613 \end{aligned}$	$\begin{aligned} & \mathbf{£ 6 . 7 5} \\ & \mathbf{£ 4 . 2 1} \end{aligned}$
Tes Tune - AUG ${ }^{\prime} 88$. Time Switch Suntan Timer Car Alarm	$\begin{aligned} & 609 \\ & 614 \\ & 610 \\ & 615 \end{aligned}$	$\begin{aligned} & £ 2.56 \\ & £ 4.84 \\ & £ 3.07 \\ & £ 3.12 \end{aligned}$
Doorbell Delay - SEPT '88 Breaking Glass Alarm Amstrad P1O	$\begin{aligned} & 616 \\ & 617 \\ & 618 \end{aligned}$	$\begin{aligned} & £ 3.55 \\ & £ 4.27 \\ & £ 6.77 \end{aligned}$
Eprom Eraser - OCT'88 -	620	¢4.07
	616 621 622 623 624 625	£3.56 £3.12 $£ 4.61$ E3.23 E3.05 E 4.84
- DEC '88 - Reaction Timer Main Board Display board Downbeat Metronome EPROM Programmer (On Spec) Phasor	$\begin{aligned} & 626 \\ & 627 \\ & 629 \\ & 630 \\ & 631 \end{aligned}$	$\begin{aligned} & \mathbf{£ 3 . 4 6} \\ & \mathbf{£ 4 . 6 7} \\ & \mathbf{£ 4 . 8 4} \\ & \mathbf{8 5 . 2 9} \\ & \mathbf{£ 5 . 6 4} \end{aligned}$

JANUARY 1988 TO DECEMBER 1988

The Magazine for Electronic \& Computer Projects VOLUME 17 INDEX

CONSTRUCTIONAL PROJECTS

ADDER, SIMPLE
ALARM, BREAKING GLASS
ALARM, CAR
ALARM, DOOR SENTINEL
ALARM, INFRA-RED BEAM
ALARM, LIGHT-TRIGGERED
ALARM, MICRO
ALERT, LOW FUEL
ALERT, SOS
AMPLIFIER, BENCH
AMPLIFIER, PERSONAL CASSETTE
AMSTRAD PIO
A. H. Robson 302,360
AUDIO MINI-BRICKS John Becker 320,406,470,536,589,501
AUTO POWER-OFF by T. R. de Vaux-Balbirnie 242
AUTO-WAGGLE JOYSTICK by Richard Clark 180
BATTERY TESTER by T. R. de Vaux-Balbirnie 606
BBC ECG MONITORING INTERFACE 658
BBC HEART RATE MONITOR INTERFACE 508
BBC SOUND-TO-LIGHT by M. P. Horsey 357
BBC TRANSISTOR CURVE TRACER INTERFACE 42
BENCH AMPLIFIER by Andy Flind
BREAKING GLASS ALARM by Robert Penfold
504
CABLE AND PIPE LOCATOR
CAPACITANCE METER by Andy Flind 36
200
CAR ALARM by I. Coughlan 480
CAR COMPUTER, GTi
CAR CONTROLLER, MODEL
CAR HEADLIGHT REMINDER
CAR LAMP CHECKING SYSTEM by T. R. de Vaux-Balbirnie
CAR HEATED REAR SCREEN ONE-SHOT 632
COMPUTER, GTi CAR
CONTINUITY TESTER
COUNTER, INFRA RED OBJECT
25
DAC, SPECTRUM DUAL 404
DATA LOGGER by J. Phelan 448, 501
DELAY MODULE
, 589
DETECTOR, LIE
589
DIGITAL-TO-ANALOGUE CONVERTER 280
DIMMER,MULTICHANNEL REMOTE LIGHT 268, 342
DIODE/CAPACITOR LADDER 488
DIODE PUMP 434
$\begin{array}{ll}\text { DIODE PUMP } & 434 \\ \text { DISCO LIGHT SEQUENCER by Geoff Phillips } & 100\end{array}$
$\begin{array}{ll}\text { DISCO LIGHT SEQUENCER by Geoff Phillips } \\ \text { DOORBELL DELAY by Steven Holland } & 630\end{array}$
DOOR SENTINEL by A. R. Winstanley
284, 360
DOWNBEAT METRONOME by Andy Flind
716
EASI-TRANSISTOR TESTER by Robert Penfold 333
ECG MONITORING INTERFACE 658
EMERGENCY LIGHTING SYSTEM by T. R. de Vaux-Balbirnie
ENVELOPE SHAPER by R. G. Payne 160
ENVELOPE SHAPER 470,501
EPROM ERASER by Mark Stuart 562
EPROM PROGRAMMER, SPECTRUM 720
FET TOUCH SWITCH 510
FREQUENCY DOUBLER
FREQUENCY-TO-VOLTAGE CONVERTER
FUEL ALERT, LOW
470
FUNCTION GENERATOR by Mike Feather FUZZ
208
470
GAME TIMER by S. Niewiadomski 122
GENERATOR, FUNCTION
GENERATOR, SUPER SOUND EFFECTS
GTi CAR COMPUTER by Steven Cousins
292, 360
HALF ADDER
106
HEADLIGHT REMINDER by Paul Harding
504
480,501
284,360
530
368
662 08 68

HEADS OR TAILS
HEART RATE MONITOR INTERFACE, BBC
596

- 508

HEATED REAR SCREEN ONE-SHOT 632
HEAT SENSOR 458
HOME SECURITY by Owen N. Bishop 350,390,458,530

I.C. RADIO	230
INDUCTIVE PROXIMITY DETECTOR by B. J. Frost	216
INFRA-RED BEAM ALARM	530
INFRA-RED OBJECT COUNTER by Roger Parsell	635
INTERFACE, BBC ECG MONIIORING	658
INTERFACE, BBC HEART RATE MONITOR	508
INTERFACE, BBC TRANSISTOR CURVE TRACER	42
I.R. REMOTE CONTROL	698
ISOLINK by Andy Flind	416
JOYSTICK, AUTO-WAGGLE	180
LAMP CHECKING SYSTEM, CAR	108
LIE DETECTOR by T. R. de Vaux-Balbirnie	140
LIGHT DIMMER, MULTI-CHANNEL REMOTE	268,342
LIGHT EFFECTS UNIT	694
LIGHT SEQUENCER DISCO	100
LIGHT UP, SQUEAK UP, SHUT UP by D. King	52
LIGHTING SYSTEM, EMERGENCY	76
LOW FUEL ALERT by T. R. de Vaux-Balbirnie	208
MAINS SUPPRESSOR	394
METRONOME, DOWNBEAT	716
METER, CAPACITANCE	36
MICRO ALARM by John Lewis	662
MIXER, 3-INPUT	320
MOCKSTEREO	406
MODELCAR CONTROLLER	580
MONITOR, UNIVERSAL	236
MULTI-CHANNELREMOTE LIGHT DIMMER	
	268,342
Ni Cad CHARGER/POWER SUPPLY	
NOISE ATE, STEREO	422
OBJECT COUNTER, INFRA-RED	222
ONE VALVE RADIO by P. E. Roberts	
PERSONAL CASSETTE AMPLIFIER by Richard Powell	724
PHASING	406
PHASING by Andy FIInd	694

PHASING by Andy Flind

406

PIO FOR THE AMSTRAD by M. Snook 518
PIPE AND CABLE LOCATOR by Robert Penfold 200
POWER CONTROLLER by A. R. Winstanley 524
POWER-OFF, AUTO
POWER SUPPLY
242
-422
PROXIMITY DETECTOR, INDUCTIVE 216
QUAD CAR CONTROLLER by Chris Walker 580
QUAD-WAVEFORM VCO 320
QUIZMASTER by W. Hunter 12
RADIO, I.C. 230
RADIO, ONE VALVE 92
REACTION TIMER 46
REACTION TIMER by Paul Harding 732
REAR SCREEN ONE SHOT 632
REVERB
RING MODULATOR 406
SAMPLE AND HOLD 536
SEASHELL SEA SYNTHESISER by Andy Flind 651,713
SEMICONDUCTOR TESTER by Andy Flind 136
SMOKE DETECTOR 458
SMOOTHNESS TESTER, AUDIBLE
302

SPECIAL OFFERS AND SERVICES

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ (plus VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 30 pence (plus VAT) per word (minimum 12 words)
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.

Electronic Components

HUNDREDS of unusual items cheap! Send $80 p$ for interesting samples and list. Grimsby Electronics, Lambert Road, Grimsby.

WALTONS OF WOLVERHAMPTON

Established since 1947 - offering a complete range - I.C.s, transformers, switches, pots, capacitors, resistors, kits, speakers, test equipment, books and lots, lots more!
COME AND SEE US AT: MON-SAT 96.00 pm 5 SA WORCESTER STREET, WOLVEAHAMPTON

TEL: ONO 22009

ELECTRONIC COMPONENTS

EVERYTHING FOR YOUR NEXT PROJECT
THE BIGGEST DISPLAYIN THE SOUTH IS AT
FRASER ELECTRONICS
42 ELM GROVE * SOUTHSEA * HANTS
Telephone 0705-815584

TOP QUALITY INEXPENSIVE - ELECTRONIC .
 COMPONENTS ano TOOLS

A \& G ELECTRONICS LTD.

If you are buying Electronic Components elsewhere you are almost certainly paying too much! Write to us for a free 1988 catalogue and start saving money.
P.O. Box 443 London E15 6JU Tel:01-519-6149

Miscellaneous

VHF MICROTRANSMITTER KIT tuneable $88-115 \mathrm{MHz}, 500$ metre range, sensitive eloctret microphone, size $25 \mathrm{~mm} \times 20 \mathrm{~mm}$. SPECLAL Access orders telephone 021-411 1821 (24 hrs).

Cheques/P.O.s payable to:
QUANTEK ELECTRONCS LTD
(Dept EE), 45a Station Road, Northfield, Birmingham B31 3TE

REPAIR YOUR OWN HI-FI SPEAKERS

send large stamped addressed envelope for catalogue of replacement drive units from stock to:

RTVCLTD.

21 M Werceet, Acton, London W3 6NG Tal: 0T-992 si30 and 323 Edpware Road, London W2. Tal: 01.7238432

PRINTED CIRCUIT HOARDS made to own requirements. For details send sae to Mr. B. M Ansbro, 38 Poynings Drive, Hove, Sussex BN3 8 GR .

1 to 24 vothe up $201 / 2$ amp. 1 to 20 volts up to 1 amp. 1 to 16 yits up to $11 /$ amps A.C. Fully subutised Twin panel meters for instant voltage and current resdings. Overiosd protection

Operates from
240 VAC Compact Unit $\sin 9 \times 51 / 2 \times 3$ in

RADIO COMPONENT SPECIALISTS

377 WHITEHORSE ROAD, CROYDON CtankTE SURREY, U.K. Tel: 01-694 16e5

CIRCUIT DIAGRAMS
Must Makes, Models. Types, Audio. Music Systems Colour. Mono Televisions. Amateur Radio. Test Equipment. Vintage etc. $\mathbf{8 3 . 5 1}$ plus LSAE State Make/Model/ Type with order

Fiull Workshop Manual prices on request with LSAE
MAURITRON (EE.), 8 Cherry Tree Road, Chinnor, Oxfordshire $0 X 9$ 4QY

CIRCUIT BOARDS made to your design. 5p per square centimetre single sided. 10p per square cen timetre double sided. All fibreglass boards. C notet Q.E.B. 6, Totternhoe Road, Dunstatile, Be.Js LU6 2 AG .

WANTED: Microprocessor Trainer and course books. Mr. Winfield, Glebe Cottage, Winsor Road Winsor, Southampton SO 4 2HJ

SINCLAIR SPECTRUM 32K Eprom Card etc. $£ 25$ Circuit diagram $£ 2.20$ including suftware. To: D Avery, 10 Alpha Place, Appledore, Bidetord EX39 $10 Y$.
P.C.B's $35 p$ sq in $s /$ sided. 10° o discount for 10 off plus. Please add 75 p p\&p. Please send photocopy o oil pattern and cheque or P.O.toD.T. Whitfield, 38 Patricia Avenue, Wolvemampton WV4 SAO

Kits

GCSE Physics, Technology, Electronics kits S.A.E. for details. Sir-kit Electronics, 70 Oxford Road, Clacton, Essex. CO15 3TE

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Everyday Electronics for
Insertions. I enclose Cheque/P.O. for f
(Cheques and Postal Orders should be made payable to Everyday Electronics)
The advertisement must include an address, box number, or phone number as part of the paid wordage. Please remember to add VAT.

NAME
ADDRESS

EVERYDAY ELECTRONICS

Classified Advertisement Dapt.
6 Church Street, Wimborne, Dorset BH21 1JH.
Telephone (0202) 881749
ATE: 30 p per word, minimum 12 words. VAT MUST EE ADDED

POWER CONDITIONER

JANUARY 1988

The u mate m_{d} ns 2
aurfer Intendeo manhy
'or gwer ng the nose or ower ng the nose and yica quatles of

The massive titer section contans ininteen capac lois and Iwo eurfent Da anced induciors togethet winh a bank ol six le tiven: A teo LED logarithme disolis ay gives a AF a nv ma won ot the amount of niente ence removed Curamparpart set cons sis of case PCB all trans s'ors eass x ang Y supprestion cacaotors vDfs PARTSSET 228.50 -
HATS SET 28.50 + VAT

THE DREAM MACHINE FEATURED INETI DECEMBER 1987

agust tre connris to sua your mood and ree the genile sea sult of the ennd through ol stamt frees A most thypnoin the so nd crams you res stably ino a peacelu refleshing seep
 Centapstipe sil ruy restu seep in yeats sexoting enoug -werous dream erperiences watling Take surad dreams - osisnce imagne being n contro of your dreams and ab

Tne dirwu parts sel conssists ol PCB all cemponents contris lexspeaker knobs lamp lusenolders luse
puwer sudpy presige case and lu linstuoctions FARTS SET $£ 16.50$ + VAT
AMLABLE WITHOUTCASE FOR ONLY $£ 11.90$ + VAT

MAINS

CONDITIONER
FEATURED IN ETI
pans up ma ns poilu' in
-ds y and ellectively rou hardy belleve the

 mo

SARTS SET $£ 4.90+\mathrm{VA}$
ZUGGEOPLASTIC CASE 1.65 + VAT

KNIGHT RAIDER
featured in eti july 1987
The wit male in ighung ettects tor your Lamtorghm, Maserail BMW ine atong the front and enght along ine rear You fich a fermich on the
 'gomiear ng a cocmets sail betind it Fhp the swich again ano the anng ine foum Press zgain and ly one ot the orner san Danerms An LED oisplay on the control bon tels y you see whal ine rram unghts
are coing are doing
 ocyoe nto a spectacular TV age toy' The pants set cons sists of box PCB and components tor contiot PCB and componentis for sequence boarc and tull instructions PARTS SET $£ 19.90$ + VAT

RAINY DAY PROJECTS
All can be built in an afternoon! JUMPIN' JACK FLASH (ETIM, March T989) Soectiacular rock slage ane alsco linging e flect CAEDIT CAFD CASINO ETIMareh 1987) The a creac poxnel gamel 9 mach ne MAINS CONTROLLER MATCHB OX AMPLIFIE Match Sb ox AMPLIFIERS IEJII Aprii 1936 Rnough to hi na malchnor
Matchoos Buncge Ampult

TACHOIDWELL METEA dinc crestis
 HI.FIPOWEAMETER ETIMAy 1987)
 Mono poser meter Meno poser meler,
Stereo porer meter

BRAP

These beautitul dot matrx $L C D$ s were originally ordered from Hitach by a top tight
mstrumentation manufacture. Unlortunalely ther new product - a pontable a top tight
before before they even had a chance to open the canmonst product - a portable 'scope - was ditched
Butris an ill wnd that blows nobody any good
Hitachinctst to own a high grade graphics display module at ar bad management you now have is £351 The LM236 display modure tas as each pixel can be accessed individually, the display area, made up of 640×200 pixels. Since spectrum analyser display. a graphics monitor or a lext screen at home as a scope screen a To help organse the display mo
This keeps track of all the individual doots and allows the screen board with 20 LSI ICS.
ata-time interace.
To use the display, you will need to be fartly self. sutfic A.
wuth the mirequency duvier and serial data transter Apart from design - you must know how to -

LM2917 EXPERIMENTER SET

Consisss of LM2917 IC special printed circuil board and offalled instructions with data and circuls for eigni cittere in the Next Gre at Litte IC leature (ETI, Oecember 1986) LM291Y EXPERIMENTE R SET $£ 5.80$ + VAT

> Green rectangular LEOS
 OIGITAL ANO AUDIO EOUIPMENTLEOS 25 of each (100 LEDs) lor $\mathbf{~} 6.80$

SALES DEPT.. ROOM 111. FOUNDERS HOUSE, REDBROOK, MONMOUTH, GWENT.

ARMSTRONG 75W AMPLIFIER
featured in pe JULY 1988

A.J. Armatfong's exciting

 new audio ampilitier Detivering a coo 175 W . conservatrvely rated - youll nearer 100 W , this MOSFET orsign embodies the fines munimailist des.gn techniques re suting in a ciean uncluttered circuit in which every component makes precisely defined contmoution to the overall sound roucan read all about it in the July issue of PE, but why more?
Pas ser includes lop grade PCB and all components SPECIAL INTAODUCTORY PRICE FOR FULLY UPGRADED MODULES.

SINGLE PAATS SET $£ 14.90+$ VAT
\qquad

B10. FEEDBACK FEATURED IN ETI Bo.leedoack comes of age wifi mone responsive ser-varaneing sku

powertul circuit has tound applcation in clinical stiuzuons as well as on the bo-teedrack scene It will open your eyes to whal GSA technoques are really all about The complete parts set uncludes ca se. PCB, all components leads electrodes conductive gel and ful

PARTS SET ©13.95 + VAT
BIO-FEEDBACK BOOK £3.95 (no VAT,

Please note the book by Stern and Ray is an authorised gutue lo
he potental il bro teestack lechnmues ilis nolt a hocoy yook

enectonas ming propecl ever to have appeareo in an mach ine this prozect allows you principte to a medical EEG thyinms of your onn mundi The o hea the characieer slic de selected for stucy and the inimee anicres give masses ol inlomation on ther interoceration and Dowers in conuncion with De Lewiss A apha Plan the montior can de used to over come shyness to heip you leel contiden, in stresstul situations and to train your sell to eacel al things Our aporove
Our approvea parts set contams case Iwo PCBs screening can amporiteris) leads ancempsonentis sinclucing inree PMM precision PAATS SET $£ 36.90$ + VAT ALPMA PLAN BOOK $\mathbf{\sum 2 . 5 0}$ SILVER SOLUTON :5:c土esines $£ 3.60$ - VAT

SHERWOOD ELECTRONIC COMPONENTS
 45 Rutland St., Mansfield Notts. NG18 4AP

COMPONENT PACKS

0.25W resistors 10R - 1 M 010 each (610)

25p
0.25 W resistors 10R - 1 MO 5 each (305)
0.25 W resistors 10 R - 1 MO Popular (1000)

Min. Hor. Presets 100R - 1 M0 5 each (60)
Min. vert. Presets 100R - 1M0 5 each (60)
Polyester Caps. Radial 0.01 - 1.5 uf 3 each (42)
$12 \times 5 \mathrm{~mm}$ LESs Red or Green
$12 \times 5 \mathrm{~mm}$ LED Clips
555 Timer $\times 5$
741 op-Amp $\times 5$
I.C. Sockets

8 pin $8 p$ each, 10 off
14 pin 9 each, 10 off
16 pin 10p each, 10 off

Elect. Capacitors radial leads

Elect. Capacitors radial leads								
uf	V		uf	V		uf	\checkmark	
1	50	5 p	47	35	7p	1	63	10p
1.5	50	5 p	100	16	7p	4.7	25	10p
2.2	63	5 p	100	50	8p	10	35	11p
4.7	16	6 p	220	25	10p	47	50	15
4.7	40	6 p	220	63	11p	100	16	18
10	25	6 p	470	16	11p	100	35	20
10	63	6 p	470	50	12p	470	25	25
22	63	7p	1000	16	15p	1000	16	27
47	16	7 p	1000	35	16p			

OSCILLOSCOPES

SPECIAL OFFER AT ONLY E300 ea. EWT DFS IMAIO Amproved version
 TRIO RF SIGNAL GENERATOR TYPE SG4 7) 100: H_{2} - 30M Hz. Unused ... ONLY EAS MC-101, 8 COLOUR BAR GENERATOR rype PAL MC-Teries Complete with battery chargar/mains adaptor Unused.... COLOUR BAR GENERATOR PAL MC321. 8 pattems videa/ sound output. Unused ….............................. Omer £15 (P\&P $\mathbf{7 7}$
 avo itansistor analyser mk 2 (CT 446) Sulcase sivie

OISK ORIVE PSU 240 V in 5 V 1.6 A \& I2V 1.5 A out. size W125mm, H75mm, 0180 mm cased unused
FANHEIL SWTCHED MOOE PSU
$5 V 40 A+1-12 V 5 A$.e.e30 each. P\&P $£ 4$ OTHER SWITCHEO MOOE PSU available, please enquire.
 20uW. 10W. With Manual IP\&P TII, ONLYES3 $\begin{array}{ll}\text { MAACCON } \\ \mathrm{DC}-500 \mathrm{HH} \text {. } & 0.5 \text { to } 25 \text { Wams } 50 \mathrm{Ohm} \text { With Manual } \\ \text { ONLY } \mathrm{E} 55\end{array}$ 1P\&P (7) ONLY £45 MARCONI ATTENUATOR TF 2162 OC 1 MHz 600 ohm, 0.111 dB in 0.1 dB steps (p\&p $£ 7$)........ $£ 35$

NEW EQUIPMENT

HAMEG OSCILLOSCOPE 604 Dual lrace 60 HHz Delsy Sweep Component Tester \& 2 Probes
HAMEG OSCILLOSCOPE 2036 Dual Trace 20MHz Component Tester 62 Probes
All Oiner Models Available

BLACK STAA FREOUENCY COUNTERS PGP E4

$\begin{array}{cc}\text { Meleor } 600 & 600 \mathrm{MHz} \\ \text { Meleor } 1000 & 1 \mathrm{GMz}\end{array}$
BLACK STAR. JUPITOR 500 FUNCTION GENERATOR
 BLACK STAR ORION.
PATTERN GENERATOR
HUNG CHANG OMM 7030 3'3 digit Hand held 28

CARRYING CASE FOR ABOVE
OSCHLIOSCOPES PROBES Swached
Pap f3..

Used equipment - with 30 days guarantee Manuais supplied if possible
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availabitty before
ordering CARRIAGE all units $£ 16$ VAT to be adoed to Total of Gocos \& Carriage

SHERWOOD ELECTRONIC COMPONENTS
Please add £1 P\& P.
NO VAT

STEWART OF READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL
368041 (Fax 351696) Callers welcome 9a.m. -5.30 p.m. Mon-Fri (8p.m. Thurs)

LINSTEV-HOOD SUPER HIGH QUALITY AM/FM TUNER sYSTEM.

HART ELECTRONICS are specialist producer if kils for
desions Dy JOHN IINSLEY-HOOD All kils are APPROVED desions by John

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS

Complete record and replay circuits for very high quality low noise stereo cassetle ecocrder Circults sre optimised tor ou HS 16 Super Qually Sendust Alloy Head Swht hed bias and equalisation to cater for chrome and teric tapes Very easy to
assemble on plug-in PCBs Complete with luill instructions

Complete Stereo Record Play KıI

> Complete Stiero VUMelers 10 sult

Reprints of orrignal Arucles
$860 \times$ Stereo Mic Amplitier
860x Stereo Mic Amplitier

LINSLEY HOOD 300 SERIES AMPLIFIER KITS Superb integraled amplitier
Hoods antricles in Hifi News
Ulitra eatles the most assembly and set-up with sound quality to please The most discerning listener ideal basis for any domestic
sound system it quathy matters to you Buy the kit complete and save pounds oft the individual component price
 ALHA85 Reprints of Original Articles from Hi.Fi News

Our very latest kit for the discerning enthusiast of qualuy sound and an exhic feast tor iovers of des'gns by John tuner and stero decoder described in EELECTRONICS TODAY INTERNATIONAL A.- and the Synchrodyne AM receiver described in "Wireless World" The complete unit is
cased to match our 300 Series amptifiers Novel circuil cased to match our 300 Series ampltifers Novel criccuit tratures in the FM section to incluce ready bulli pre-aligined
front-end phase locked loop demodulator with a response tront-end phase locked 100p demodulatol whith a responser
down to $D C$ and advanced sample and hold stereo decocer logether make a luner which sounds better than the best of the high-priced exotica but thanks to HART engineerting remanis easy to butld The Synchrodyne section with it's selectable bandwidit provides the best possible results from Long and Medium wave inannels so necessary in inese dials listening then this is the tuner for you Since all components are selected by the designer to give the very best sound this runer is not cheap but in terms of it's sound it is incredible value for money To caler for all needs lour versions are avalable with variations up to the top ot the range full AM/FM model with any unit beeng

DIGITAL ELECTRONICS COURSE

Send for your FREE list of the tools and components you will need for this exciting new series.

With every set of course components purchased we give a free $\mathbf{£ 5}$ discount voucher, valid for six months.

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem Fitting one of our replacement heads could restore periorm. ance to better than new' Standard mountongs make fitting easy and our TC1 Test Cassette helps you sel the azımuth spot-on We are the actual importers which means youthother suppliers and see' The following is a list of our most popular heads. all are suilable for use on Dolby machines and are exstock
HC20 Permalloy Stereo Hesd. This is the standard head fitted
 Longer life than Permalloy. higher output than Ferrite, ianrastic trequency response............................. £14.86 HO551 4.Track Mesd for auto-reverse or quadrophonic use Full specffication record and playback head... $£ 14.60$ HX100 Stereo Permalloy R/P head. Special Offer $£ 2.49$ SM166 2/2 Erase Head. Standard mounting, AC type …......................................8.85 SM150 2/2 Erise Head. DC Type........................ HO751E 4/4 Erase Head for Portastudio etcial purpose heads in our lists.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VUlevel. nead azimuth and tape speed invaluable when fitting now heads Only $\mathbf{5 . 6 6}$ plus VAT and 50 p postage
Tape Head De-magnetiser, mandy size mains operated unit prevents build up of residual head magnetisation causing noise on playback
Sena for your free copy of our LISTS Overseas please send 2 IACs to cover surfae Post or 5 IRCs for Alrmall

proese add pert cost of post. pecking and ine

INLAND

Orders up to $£ 10-50 p$
Orders $£ 10$ 10 £49-£1
Orders over $£ 50-\mathbf{\$ 1 . 5 0}$

252A HIGH STREET, HARLESDEN, LONDON NW10 4 TD

RESISTORS 0.2TW 5\% FROM 1.0 OHM- 104 OHM SAME VALUE TOOPCS 50.35.

NOTE THAT THESEITEMS ARE SUBNECT TO STOCK AVALLABILITY ANO WHILE STOCKS LAST, SO HURAY GALL US ON 01-965-5748 TO CHECK ON STOCK LEVELS.

ELECTRONICS TECHNICIAN FULL-TIME TRAINING

IFULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL) 2 YEAR BTEC National Diploma (OND) ELECTRONIC \& COMMUNICATIONS ENGINEERING

1 YEAR

BTEC National Certificate (ONC) ELECTRONIC ENGINEERING 1 - INFORMATION TECHNOLOGY

2-ELECTRONIC EQUIPMENT SERVICING Electronics, Telievision, Video Cassetre Recorders. CCTV, Testing \& Faulit Diagnosis)

3-SOFTWARE ENGINEERING (Electronics, Assembler, BASIC, PASCA, CADCAM)
4- COMPUTING TECHNOLOGY
Electronics, Cemputing Software/HardWare, Microelectronic Tosting Methodsl
10 MONTHS
BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS (Those eligible can apply for ET T
THESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED RACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS NO ADDITIONAL FEES FOR OVERSEAS STUDENTS
SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPLICANTS WITH PREVIOUS ELECTRONICS KNOWLEDGE
O.N.C. Monday 9th Jan. 1989 FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.

MAKE YOUR INTERESTS PAY!

More than 8 muinon students throughout the world have found it worth their while! An ICS home-study course can neip you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest want under the guidance of expert 'personal' tutors. Find out now we can help you. POSt or whone today for vour FREE INFORMATION PACK on the course of your choice. (Tick one bor nniv!)
(Electronics
\qquad

Basic Electronic
Engineering (City \& Cuilds) \square Radio Amateur Licence
Electrical Engineering
Electrical Contracting/
\qquad ar mechanics Computer Installation \square Programming
CCE over $40^{\prime} O^{\prime}$ and 'A' level subjects

Address
International Correspondence Schools, Dept. ECSCB 10,312,314 High St.,
Sutton, Surroy SM 1 1PR. Tei: 016439568 or $0412212926(24 \mathrm{hrs})$

SIR-KIT ELECTRONICS

G.C.S.E. Physics Technology Electronics HOME STUDY KITS AT POCKET MONEY PRICES

First set available NOW
covers simple switching circuits 10 modules from 60 p each COMPLETE SET OF 10 ONLY £10.50 (+70p p\&p)
(builds over 40 circuit variations)

Cheques to:

SIR-KIT ELECTRONICS
70 Oxford Road
Clacton CO15 3TE
or S.A.E. for details

COMPUTER CONTROL

Interspec \& Interbeeb multi-purpose interfaces

These compact cased units both offer the following facilities:
8 channel 8 bit analogue to digital converter (1 mS conversion) - $424 \mathrm{~V} / 1 \mathrm{~A}$ relay outputs

4 switch or sensor inputs $\bigcirc 8$ bit TTL input port - 8 bit TTL output port -DCP BUS expansion system for adding extra accessories - Easily programmed with single BASIC (or machine code) commands ideal for robotics, models, automation, test, research, etc, etc Interspec is designed for connection to any model of Spectrum computer and is powered from the computers power supply.
Special offer price $£ 29.95$ including VAT plus $£ 1.95$ p\&p per order. Interbeeb is designed for use with the Acorn BBC or Master computers \& comes complete with ribbon cable for connection to the micro's 1 MHz Bus socket \& specially designed mains power unit. (Can also be used with an Archimedes if fitted with Acorn I/O Module.)
Special offer price £49.95 including VAT plus £1.95 p\&p per order.
Connector Packs are also available at $£ 2.95$ for use with above:
Connector Pack 1: Three plugs for both TTL ports \& the DCP BUS. Connector Pack 2: Ten 2mm plugs for analogue, switch \& relay.
Remote control Buggy: This battery operated model incorporating twin motors \& gearboxes forms an ideal introduction to computer robotics \& is supplied complete with plugs, cable \& detailed project booklet.
Price $£ 11.95$ inc or special set including Interspec $£ 39.95$ inclusive.
Orders are normally despatched by return (cheques/P.O. payable to 'DCP Microdevelopments Ltd'). Trade \& overseas enquiries welcome. We are established designers \& manufacturers of computer control interfaces for - home, industry and education use. This is just a small section from a large range of products compatible with many personal computers including Acorn, Amstrad, Apple, Commodore, IBM and Sinclair.

For full information please write, telephone or FAX:
DCP Microdevelopments Ltd,

2 Station Close,

Lingwood,
DCP
Norwich, NR13 4AX
micradevelopments

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION
IS YOUR CAR AS GOOD AS IT COULD BE ?
t is it EASY TO START in the cold and damp? Total Energy Discharge will give the most powertul spark and maintain full output even with a near flal battery.

* Is it ECONOMCAL or does it "go off" between services as the ignilion periormance deteriates? Total Energy Discharge gives much more ouput to fire lean tuel mixtures.
\star Has it PEAK PERFORMANCE or is it llat at high and low revs. where ignition output is marginal?Tolal Energy Discharge gives a more powertul spark trom idie to the engines maximum (even with 8 cylinders).
* Is the PERFORMANCE SMOOTH? The more powerful spark of Total Energy Discharge eliminates the near "misfires" whilst an electronic fitter smoothes out the effecis of contact bounce etc.
* Do the PLUGS AND POINTS always need changing to bring the engine back to its best? Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition does not affect the performance either. Larger phug gaps can be used, even wet or badly fouled plugs can be fired winh this system.
\star TOTAL ENERGY DISCHARGE is a unique syslem and the most powertul on The market - 3.5 times the power of induclive syslems -3 times the energy the market - 3.5 times the power ol mouclive syslems. 3 tmes the energy and details
\star ALSO FEATURES
EASY FITING, STANDARDIELECTRONIC CHANGEOVER SWTCH, STATIC TIMING LIGHTand DESIGNED IN RELABBLITY (14 years expertance and a 3 year guarantee)
- In KT FORM it provides a lop perlormance system at less than hall the price of a comparable ready buill uni.T The kit incluoes: pre-dilled libreglass PCB pre. wound and vamished lerite transformer, high quality $2 \mu \mathrm{f}$ discharge capacitor, case, easy to follow instructions, solder and everything you need to build and fif to your car. All you need is a soldering iron and a lew basic tools.
TOTAL ENERGY DISCHARGE KIT $\quad £ 17.95\left\{\begin{array}{l}\text { Proces include VAT } \\ \text { Add } 51.00 \text { P\& P }\end{array}\right.$
ASSE
ALSO AVAILABLE: Other ignition systems and electronic car alarms Order now or send for further details:
EIECTRONIZE DESION
tel 0213085877
2 Hillside Road,Four Oaks, Sutton Coldfield B744DQ

S.P.K ELECTRONICS

Please send large SAE for Comprehensive list of equipment $\&$ components that can be supplied. GOOD Discounts available for schools \& colleges with multiple orders.

Westbury Mill, Westbury, Nr. Brackley, Northants NN13 5JS. Tel 0280-701691 or 0836209923 Telex: 94011054 (=Mill G)
Fax: 0280701228

Ordering: Please add $£ 5$ p\&p. Add 15% VAT to this total. 24 hr Answering Service on orders placed after 6pm.
Cash, P.O. or cheque with order please. Visa, Access, Diners \& American Experess accepted.

ELECTRONIC TEST EQUIPMENT - CALIBRATION CERTIFICATES SUPPLIED AT EXTRA COST PHONE FOR DETAILS

This is just a small sample of our vast range of equipment. If the instrument you require is not listed please give us a call as we can probably help you.

8ECHMAN Digital Multimeter model DM2OL (we recommend this as excellent value for money) $31 / 2$ digit display, 28 RANGES, 20 MHz logic probe built in, transistor gain testing. Direct reading 200-2000Mohm ranges, Continuity Bleeper 10Mohm input impedence, Pocket size. Ideal for the home constructor or experienced engineer, extremely versatile and excep. tionally easy to use.

PRICE $£ 46.00$
THANDAR Oscilloscope model SC110. Bench. Portable, low power, 10Mhz band width, $10 \mathrm{mV}, 10 \mathrm{mV}$ sensitivity, 12 attenuator/voltage settings, 21 time base ranges. Small screen (1 in $\times 1 / 1 / 4 \mathrm{in}$) but very useful instrument operates on batteries or mains. Comes with mains adaptor and x 1 probe.

PRICE E209.95
ROBIN Analogue multimeter model OM20NB. 2000ohmp per volt multimeter DC Voltage to 1000 V AC. Voltage to 500 V DC current to 250 mA . Reisitence to 500 Kohms . PRICE E 10.00

FLOPPY DISKS Double sided, double density, 96 tpi, high quality. Pretested computer disks suitable for Amstrad and any other P.C.'s with 5 //in drives. PRICE per box of 10 disks 57.00 Inclusive of price - FREE labels \& Notch stickers \& the box acts as a stand. Please add $£ 1$ for postage.

HITACHI Oscilloscope model V212. Large clear 6in screen DC to 20MHz Dual channel, max vertical sensitivity $=1 \mathrm{mV} / D I V$, Fastest sweep rate $=100 \mathrm{nS} / \mathrm{DIV}$ Calibrator output. This instrument has in our experience proved to be an exceptional piece of equipment, being very reliable and durable. We were impressed by its bright clear and crisp display making the instrument a pleasure to use.

PRICE inclusive of 2 probes $£ 334.00$

Optional Extras

Hard front cover price $£ 16$.

Soft dust cover price $£ 26$.

ADVERTISERS INDEX		
ADVANCED CIRCUITS 727	GREENWELD ELECTRONICS 686	OMNI ELECTRONICS 727
ALCON INSTRUMENTS 688	HART ELECTRONIC KITS 745	PHONOSONICS 735
ALPHA ELECTRONICS 748	ICS .. 746	RISCOMP ... 711
BARRIE ELECTRONICS 723	JAYTEE ELEC. SERVICES 686	SHERWOOD DATA SYSTEMS 731
BICC-VERO ELECTRONICS 715	LIGHT SOLDERING	SHERWOOD ELECTRONIC
BI-PAK .. 711	DEVELOPMENTS 711	COMPONENTS 745
B K ELECTRONIC Cover (iii)	LONDON ELECTRONICS	SIR-KIT ELECTRONICS 746
BULL, J. N. Cover (ii)	COLLEGE 746	SPECIALIST
CIRKIT DISTRIBUTION 727	MAGENTA ELECTRONICS 690	SEMICONDUCTORS 744
CRICKLEWOOD ELECTRONICS 723	MAPLIN ELECTRONICS Cover (iv)	S.P.K. ELECTRONICS 747
C SCOPE INTERNATIONAL 688	MARCO TRADING 689	STEWART OF READING 745
DCP MICRODEVELOPMENTS 747	MUTEX .. 688	SUMA DESIGNS 723
ELECTRONIZE DESIGN 747	NATIONAL COMPONENT CLUB ... 748	TK ELECTRONICS 692
EVERETT WORKSHOP ACCESS 727	OMEGA ELECTRONICS 746	TUTORKIT PRODUCTS 748

UUOUTL MICROELECTRONICS TUTORS

OP AMP TUTOR OT1

A versatile teaching aid for Operational Amplifier fundamentals. Includes socketed 741, Mode Control Switch, Two Potentiometers and close tolerance components. Will solve simple Differential Equations and generate waveforms etc. Op Amp Tutor OT1 (Kit) $£ 27.50$ plus vat $G<$ TUTORKIT PRODUCTS
(Div. of Limrose Electronics Ltd.), Llay Industrial Estate, Wrexham,
Clwyd, LL12 OTU, UK
Tel: 0978832285

Now enjoy a world.wide repulation lor quallity rehabilly and
Le sure instrumiental and Hi.F. etc When comparing prices NOTE all modets include Toroidal power supply integral heat sink

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP100 Mk 11 Bi-Polar Output power 110 watts R.M. S into 4 ohms. Frequency Response 15 Hz 30 KHz -3dB, T.H.D. 0.01%, S.N.R. - 118 dB Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\&P.

NEW SERIES II MOS-FET MODULES

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KH}$ -3 dB , Damping Factor, >300, Slew Rate 45 V uS T.H.D. Typical 0.002%, Input Sensitvivity 500 mV , S.N.R -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE $£ 39.99+£ 3.00$ P\&P.

OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate 50 V uS T.H.D. Typical 0.001%, Input Sensitivity 500 mV , S.N.R -130 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE $£ 62.99+£ 3.50$ P\&P.
OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB, Damping Factor >300. Slew Rate 60 V uS, T.H.D. Typical 0.0008%, Input Sensitivity 500 mV S.N.R -130 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$. PRICE $\mathbf{£ 7 9 . 9 9 + £ 4 . 5 0} \mathbf{P \& P}$.

Vu METER Comparible with our lour amplifiers detalled above A very accurate visua display employing 11 LE D diodes (7 green. 4 red) plus an additional on off indicator Sophisticated logic conitro Criccult for very fast rise and case, win inted acmyict
PRICE $£ 8.50+50 \mathrm{p}$ P\&

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FRE. QUENCY BULLETS AND HORNS, LARGE S.A.E. (30p STAMPED) FOR COMPLETE LIST.
MCKENZIE:- INSTRUMENTS, P.A., DISCO, ETC.
ALL MCKENZIE UNITS 8 OHMS IMPEDENCE
$8^{*} 100$ WATT C8100GPM GEN PURPOSE. LEAD GUITAR, EXCELLENT MID. DISCO
RES. FREO. 80 Hz FREO. AESP. TO 14 KHz SENS 99 dB . 2.0 PR . 10100 WATT C10100GP GUITAR, VOICE, ORGAN, KE YBOARD, DISCO, EXCELLENT MID RES. FREQ, 70 Hz FREO. RESP. TO 6 KHz SENS. 100 dB . 10 ' 200 WATT C10200GP GUITAR, KEYBOARD. DISCO,
RES. FREO 45 Hz FREO RESP TO 7 KHz SENS 103 dB RES. FREQ, 45 Hz FREO. RESP. TO 7 KHz SENS. 103 dB
12^{2} 100 WATT C12100GP HIGH POWER GEN PURPOSE 12.100 WAT C12100GP HIGH POWER GEN, PURPOSE,
RES. FREO, 45 Hz FREO. RESP. TO 7 KHz SENS, 980 B 12 '100 WATT C12100TC TWIN CONE) HIGH POWER WIDE RESPONSE PRICE $£ 36.66+\ldots 3.50$ P \&P. RES. FREO, 45 Hz FREO. RESP. TO 14 KHz SENS. 100 dB BE RESPONSE. PA. VOICE. DISCO $12^{\prime \prime} 200$ WATT C12200B HIGH POWER BASS. KE YBOARDS. DISCO, PA
RES. FREO, 40 Hz FREO. RESP. TO 7 KHz SENS. 100 dB 12 300 WATT C12300GP HIGH POWER BASS LEAD GUITAR, KEYBOA
RES. FREQ. 45 Hz FREO. RESP TO 5 KHz SENS 100 dB RES. FREQ. 45 Hz FREQ. RESP. TO 5 KHz SENS, 100 dB
$15^{\prime \prime} 100$ WATT C15100BS BASS GUITAR, LOW FREDUENCY. P A DISC RES. FREO. 40 Hz FREO RESP. TO 5 KHz SENS. $98 d \mathrm{~B}$ $15^{\prime \prime} 200$ WAT C15200BS VERY HIGH POWER BASS
RES. FREO, 40 Hz FREO, RESP, TO 4 KHz SENS, 99 dB $15^{\prime \prime} 250$ WATT C15250BS VERY HIGH POWER BASS RES. FREO, 40 Hz FREO RESP, TO 4 KHz SENS, 99 dB
15400 WATT C15400BS VERY HIGH POWER LOW FREOUENCY 15400 WAT C15400BS VERY HIGH POWER. LOW FREOUENCY BA

EARBENDERS: - HI-FI, STUDIO, IN-CAR, ETC.

ALL EARBENDER UNITS 8 OHMS EXCEPT EB8-50 AND EB10-50 DUAL 4 AND 8 OHM BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED FOAM SURROUND
$8^{* *} 50$ WATT EB8-50 DUAL IMPEDENCE. TAPPED 48 OHM BASS. HI-FI. IN-CAR
RES. FREO, 40 Hz FREO. RESP. TO 7KHz SENS, 97 DB
PRICE $88.90+£ 2.00$ P 8 P
$10{ }^{\circ} 50$ WAT EB10-50 DUAL MMPEDENCE, TAPPED 98 OHM BASS. HI-
RES, FREO, 40 HZ FREO. RESP. TO 5 KHz SENS 990 AB 10 100 WATT EB $10-100$ BASS HI-FI, STUDENS 99 dB
RES. FREQ. 35 Hz FREO. RESP. TO 3 KHz SENS, 96 dB
1260 WATT EB12-60 BASS, Hi-FI. STUDIO
12100 WATT EB12-100 BASS. STUDIO. HIFI, EXCELLENT DISCO RES. FREO. 26 Hz FREQ, RESP. TO 3 KHz SENS 93 dB ,
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SUR $51 / /^{\prime \prime} 60$ WATT EB5-G0TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ET
AES. FREQ, 63 Hz FREO. RESP. TO 20 KHz SENS $92 d$. RES. FREQ, 63 Hz FREQ. RESP. TO 20KHz SENS 92 dB
$61 / 20$ WATT EB6.60TC (TWIN CONE) HIFI, MULTIARRAY DISCO ETC RES. FREQ, 38 Hz FREQ, RESP. TO 2OKHZ SENS, 94 dB
$8^{n} 60$ WATT EB8-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC RES. FREQ. 40 Hz FREQ. RESP. TO 18 KHz SENS. 89 dB
10 . 60 WATT EBB10-60TC (TWIN CONE) HI-FI, MULTIIARRAY DISCO E
RES.FREO. 35 Hz FREO, AESP. TO 12 KHz SENS 86 dB
TRANSMITTER HOBZY KITS
PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD ANO HIGH QUALITY COMPONE
COMPLETE WITH CIRCUIT AND INSTRUCTIONS

PRMANCE RAMER $80 \cdot-108 \mathrm{MHz}$. VARICAP CONTROLLED PROFESSIONAL PER PICE $£ 14.49+\$ 1.00$ PbP EEAY SENS FETMIC RANGE 100.300 m SIZE 56 . 46 Tm SUPPIY
$8.62+81.00$ P8P
 PRICE $£ 12.00+\varepsilon 2.50$ P $\&$ P
PRICE $\{27.50+£ 3.50$ P\&P.
PRICE $£ 21.00+£ 3.00$ Ps \mathbf{P}
PRICE $£ 32.00+£ 3.50$ PsP.
PAICE $\mathbf{C} 9.99+\mathbb{C} 1.50$ P\& P PRICE $\mathbb{C} 10.99+\mathbf{~} 1.50$ P8 P. PRICE $12.99+\mathbf{~} 1.50$ P8 F PRICE $£ 16.49+£ 2.00$ Ps \mathbf{P}.

OMP VARISPEED TURNTABLE CHASSIS

\star MANUAL ARM * STEEL CHASSIS * ELECTRONIC SPEEO CON TROL 33 \& 45 * VARI PITCH CONTROL \star HIGM TOROUE SERVO ORIVENDCMOTOR * TRANSIT SCREWS * 12 DIE CASTPLATER * NEON STROBE \# CALIBRATED BAL WEIGHT * REMOVABLE HEAO 5060 Mz * CARTRIDGE FIXINGS \& CUE LEVER * POWER 220240 V TE GOM
TEMPATE PRICE $559.99+£ 3.50$ P\&P.

STANTON AL500	GOLDRING G850
PRICE $£ 16.99+50 \mathrm{p}$ P\&P	

OMP MOS-FET POWER AMPLIFIERS, THOUSANDS PURCHASED HIGH POWER. TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

NEW MXF SERIES OF POWER AMPLIFIERS THREE MODELS:- MXF200 (100w + 100w) MXF400 (200w + 200w) MXF600 (300w + 300w)

All power ratings R.M.S. into 4 ohms

FEATURES: \& Independent power supples wilh wo Toroodal Transtormers *Twin LE D. Vumelers * Rotany indended level controls * llluminated on off switch * XLR connectors * Standard 775 mV inpu's $*$ Open and shor circult proof * Latest Mos-Fels for stress free power delvery into virtually any load * High slew rate * Very low distorion *Aluminum cases *MXF600 Fan Coocled with DC Loudspeaker and Thermal Protection USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC SIZES:- MXF 200 W19 $\times \mathrm{H}^{1 / 2 / 2}(2 \mathrm{U}) \times \mathrm{D} 11$

PRICES: MXF200 £171.35
SECURICOR MXF600 £322.00
OMP LINNET LOUDSPEAKERS

he very best in quality and value
MADE ESPECIALLY TO SUIT
TODAYS NEED FOR COM-
PACTNESS WITH HIGH OUTPUT PACTNESS WITH HIGH OUTPUT
SOUND LEVELS, FINISHED IN
HARDWEARING BLACK WITH PRATECTIVE CORNERS, GRILLE AND CARAYING HANDLE.
INCORPORATES 12 DRIVER PLUS
HIGH FREO HIGH FREQ HORN FOR FULL
REQ RANGE $45 H Z-20 K H Z ~ B O T H$
MODELS 8 OHM, SIZE H18

CHOICE OF TWO MODELS
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12-100 (100W 100dB) PRICE 159.99 PER PAIR OMP 12-200 (200W 102dB) PRICE £209.99 PER PAIR SECURICOR DEL:- E12.00 PER PAIR

PIEZO ELECTRIC TWEETERS-MOTOROLA
PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the piezo revolution The low dy namic mass (no voice coll) of a Piezo tweeter produces an improved fransient response with a lower distortion level than ordinary dynamic tweeters As a crossover is not required these units can
be added to existing speaker systems of up to 100 watts (more il 2 put in series) FRE EXPLANATORY LEAFLETS be added to existing speaker systems of u
SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036A) 3" round with protective wire mesh, ideal for bookshell and medium sized Hiof Speakers. Price $£ 4.90$ each +50 p P\&P. For general
TYPE ' B ' (KSN1005a) $31 /{ }^{\prime \prime}$ super hom. For gen purpose speakers, disco and P.A. systems etc. Price TYPE each +50 p P\& P .
TYPE C' (KSN6016A) 2×5 wide dispersion horn. For quality H_{1}-fil systems and quality discos etc. Price $\mathbf{\Sigma 6 . 9 9}$ TYPE 'D' (KSN102
Upper frequency resp) 2×6 wide dispersion horn mid range (2 KHz) Sunse retained extending down to and quality discos. Price $£ 9.99$ each +50 p P \& P TYPE 'E' (KSN1038A) 33/4" horn tweeter with attractive silver firmsh trim. Suitable for Hı-fı monitor systems etc. Price $\Sigma 5.99$ each +50 p P\&P
LEVEL CONTROL Combines on a recessed mounting plate. ievel control and cabinet in
$85 \times 85 \mathrm{~mm}$. Price $£ 3.99+50 \mathrm{p}$ P P P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L \& R graphic equalisers and twin 10 segment L.E.D. with individual laders providing a usetul com bination of the following:
3 Turntables (Mag). 3 Mics. 4 Line including CD plus Mic with talk over swich Headphone Moni. tor. Pan Pot L. \& R. Master Output controls Output 775 mV Size $360 \times 280 \times 90 \mathrm{~mm}$. Supply
$220 \cdot 240 \mathrm{v}$.

Produced by Everyday Eloctronics in association
with BIC̣C Vero. CC Wimborne Publishing Ltd., 1988.

[^0]: - CALLERS WELCOME EE71, 135 HUNTER STREET, BURTON-ON-TRENT,
 STAFFS, DE14 2ST
 Access/Barclaycard (Visa) by phone or post
 24 hr Answerphone for credit card orders

[^1]: CRICKLEWOOD ELECTRONICS LTD 40 CRICKLEWOOD BRUADWAY LONDYN NW23ET TEL：01－450（6A95／4520161 FAX：01－2081441 TELEX：914977

