EVEBYDAY JULY 1991
 $=:=910016$

ULTRASONIC PROXIMITY METER
 12V NICAD CHARGER

SIMPLE MODEL SERIES' PROJECT 1POLICECAR MuSTI WHIRRI! R1 EET

The No. 1 Magazine for Electronics \& Computer Projects

HIGH POWER AMPLAFER For your car, it has 150 watts outout Frequency response 20 HZ to 20 KHZ and a signal to noise ratio better than 60db. Has builtin short circuit protection and adjustable input level to suit youe existing car stereo, so needs no pre-amp Wiks into speakers 1 . 57.00 Orde

HIGH POWER CAR SPEAKERS. Stereo pair output 100 w each. 40 hm impedance and consisting of $61 / 2^{\prime \prime}$ woofer $2^{\prime \prime}$ mid range and 1"tweeter. Ideal to work with the amplifier described above. Price per pair £30.00 Order ret 30 P7
PERSONAL STEREOS Cuatomer returis but complete with a pair of stereo headphones very good vakue at $£ 3.00$ ref 3 P83. 2KV 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a spare for a microwave oven etc. 250v AC input. MICROWAVE
MICROWAVE CONTROL PANEL. Mains operated, with touch switches. Complete with 4 digit display, digital clock, and 2 relay outputs one for power and one for pulsed power (programmable). deal for all sor p Pre FBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five metre length E 7.00 ref 7 P 29
12V SOLAR CELL 200 mA output ideal for trickle charging etc. 300 PASSIVE INFRA-RED MOTION SE
ASSIVE INFRA-RED MOTION SENSOR. Complete with daylight sensor, adjustable lights
on fimer (8 secs -15 mins), 50^{\prime} range with a 90 deg coverage. Manual overide facility. Comdeg coverage. Manual overide facility. Com-
plete with wall brackets, bulb holders etc. Brand plete with wall brackets, bulb holders etc, new and guaranteed. $£ 25.00$ ref 25 P 24
Pack of two PAR38 bulbs for above unit $£ 12.00$ ret $12 P_{43}$
VIDEO SENDER UNIT Transmit both audio
 and video signats from ether a video camera video recorder or computer to any standard TV set within a 100° range! (tune TV to a spare channel). 12v DC op. £15.00 ref 15P39 Suitable mains adaptor $£ 5.00$ ret 5P 191
FM TRANSMITTER housed in a standard working 13A adapter bug is mains driven). $¥ 26.00$ ref 26 P 2
MINATURE RADIO TRANSCEIVERS A pair of walkie talkies with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. FM CORDIESS MCROPHONE S
Unit with a 500^{\prime} range! 2 transmit power levels reqs PP3 battery. Tuneable to any FM receiver. Our price $£ 15$ ref
15P42A
10 BAND COMMUNICATIONS RECEIVER. 7 shor bands, FM, AM and LW DXMocal switch, tuning 'eye' mains NOW ONLY £19.001! REF 19P14.

WHISPER 2000 LISTENING AID.Enebles you to hear sounds that would otherwise be inaudibie! Complete with headphones. Cased. £5.00 ref 5P179
CAR STEREO AND FM RADIOLow cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45db, wow and flutter less than 35% Neg earth. £25.00 ref 25P21.
LOW COST WAUKIE TALKIES. Pair of battery operated units with a
£8.00 a pair ref BP50 £8.00 a pair ref 8P50
7 CHANNEL GRAP
7 CHANNEL GRAPHIC EQUALZERlus a 60 watt power amp! 20-21KHZ 4-8R 12-14V DC negative earth Cased. £25 ref 25P14
NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ ret 4P44. $2 \times \mathrm{C}$'s $£ 4.00$ ref 4 P73, $4 \times$ D's $£ 9.00$ ref 9P12, $1 \times$ PP3 $£ 6.00$ TOA 6P35 TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book. Latest edition $£ 20.00$ ref 20P32.
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $400 £ 3.00$ ref
3P104. Bumper pack of 1,000 ties $£ 14.00$

VIDEO AND AUDIO MONITORING SYSTEM

Brand new units consisting of a camera, 14 cm monitor, 70 metros of cable, AC adapter, mounting bracket and owners manual. 240 v AC or $12 v$ CC operation complete with builtin 2 way intercom. $£ 99.00$ ref 99 P

1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A $6^{\prime \prime} X 9^{\prime \prime}$ SAE FOR A FREE COPY.

GEIGER COUNTER KIT.Complete with tube, PCB and all components to build a battery operated geiger counter. £39.00 ref 39P1 FM BUG KIT.New design with PCB embedded coil. Transmits to any FM radio. $9 v$ battery req'd. $£ 5.00$ ref 5P158
FM BUG Built and tested superior 9 v operation £14.00 ref 14P3 COMPOSITE VIDEO KITS. These convert composite video into eparate H sync, V sync and video. $12 v D C$. $£ 8.00$ rel $8 P 39$.
SINCLAIR C5 MOTORS 12 v 29 A (full load) 3300 rom 6"x4" $^{\prime \prime} 14^{\prime \prime}$ O/P shaft. New. E 20.00 rel 20 P 22.
As above but with fitted 4 to 1 inline reduction box (800 mm) and oothed nylon bell drive cog $£ 40.00$ ret 40P8
SINCLAIR C5 WHEELS $13^{\prime \prime}$ or $16^{\prime \prime}$ dia including treaded tyre and inner tube. Wheels are black, spoked one piece po
ELECTRONIC SPEED CONTROL KITfor e5 motor
PCB and all components to build a speed controller (O 95% of speed). Uses pulse widt modulation E17 00

17P3.

SOLAR POWERED NICAD CHARGERCharges 4 AA nicads in
8 hours. Brand new and cased $£ 6.00$ ref 6 P3
MOSFETS FOR POWER AMPLIFIERS ETC. 100 watt mostet pair 2SJ99 and 2SK343E4.00 a pair with pin out info rel 4P51. Also avaliable is a $2 S K 413$ and a $2 S . \sqrt{118}$ at $£ 4.00$ ret $4 P 42$.
10 MEMORY PUSH BUTTON TELEPHONES.These are 'customer retums' so they may need slight atention. BT approved. $£ 6.00$ each ref 6P1 6 or 2 for $£ 10.00$ ret 10 P77.
12 VOLT BRUSHLESS FANA $1 / 2^{\prime \prime}$ square brand new ideal for boat, car, caravan etc. $£ 5.00$ ref $5 \rho 206$.
ACORN DATA RECORDER ALF503
ACORN DATA RECORDER ALF503 Made for BBC computer, but suitable for others. Includes mains adapter, leads and book £ 15.00 ref $15 P 43$
VIDEO TAPES. Three hour superior quality tapes made under licence from the famous JV company. Pack of 10 tapes $£ 20.00$ nef 20P20.
ELECTRONIC SPACESHIP ELECTRONIC SPACESHIP. Sound and im-
 reverses when it hits anything. Kit with complete assembly instructions $£ 10.00$ ref 10P81.
PHILIPS LASER. 2MW HEUUM NEON LASER TUBE. BRAND NEW FULL SPEC $£ 40.00$ REF 40P10. MAINS POWER SUPPLY KIT 520.00 REF 20P33 READY BUIL AND TESTED LASER IN ONE CASE £75.00 REF 75 P 4.

SOLDER 22SWG resin cored solder on a $1 / 2 \mathrm{~kg}$ reel. Top quality

 £4.00 a reel ret 4P70.600 WA TT HEATERS ideal for air or liquid, will not corrode, lasts for years. coil type construction 3 " $\times 2$ " mounted on a 4" dia metal plate for easy fixing. $£ 3.00$ ea ref 3 P78 or 4 for $£ 10.00$ ref 10P76.
TIME AND TEMPERATURE MODULE A clock, digital thermometer (Celcius and Farenheit ($0-160$ deg F) programmable too hot and too cold alarms. Runs for at least a year on one AA battery $\$ 9.00$ ref 9P5.
Remote temperature probe for above unit $£ 3.00$ ref 3 P60
GEARBOX KITS Ideal for models etc. Contains 18 gears (2 of each size) $4 \times 50 \mathrm{~mm}$ axles and a powerful $9-12 \mathrm{v}$ motor. All the gears etc are push fit. $£ 3.00$ for complete kit ref 3P93
ELECTRONIC TICKET MACHINES These units contain a magnetic card reader, two matrix printers, motors, sensors and hoads of electronic components etc. (12 " $\times 12^{\prime \prime} \times 7^{\prime \prime}$) Good vaiue at £12.00 ref 12P28.
JOYSTICKS. Brand new with 2 fire buttons and suction feet these units can be modified for most computers by changing the connector etc. Price is 2 for $£ 5.00$ ref 5P174.
GAS POWERED SOLDERING IRON AND BLOW TORCH Top quality 1001 with interchangeable heads and metal body. Fully adjustablo, nuns cn ligt:ter gac. 510.00 ret iop:30
SMOKE ALARMS lonization type 5 year warranty complete with battery only $£ 5.00$ ref 5Pz06
ANSWER MACHINES BTapproved remote message playback, intergral push button phone, power supply and tape. Exceptional value at $£ 45.00$ ref 45 P 2
CAR IONIZER KIT Improve the air in your car! clears smoke and heips to reduce fatigue. Case required. $£ 12.00$ ref 12 P 8.
6V 10AH LEAD ACIDsealed battery by yuasha ex equipment but in excellent condition now only 2 for $£ 10.00$ ref 10Pg5
12 TO 220V INVERTER KITAs supplied it will handle up to about 15 wat 220 v but with a larger transformer it will handle 80 watts. Basic kit $£ 12.00$ ref 12P17. Larger transformer $£ 12.00$ ref 12P41.
VERO EASI WIRE PROTOTYPING SYSTEMIdeal for design* ing projects on etc. Complete with tools, wire and reusable board. Our price $£ 6.00$ ref 6P33.
MICROWAVE TURNTABLE MOTORS. Ideal for window dis-
plays etc. E5.00 ret 5P165
STC SWITCHED MODE POWER SUPPLY220v or 110 v input giving $5 v$ at $2 A_{,}+24 v$ at $0.25 A_{1}+12 v$ at 0.95 A and +90 v at $0.4 \mathrm{~A} £ 6.00$ ref 6P59
TELEPHONE AUTODIALLERS. These units. when triggered will automatically dial any telephone number. Originally made for alarm panels. BT approved. $£ 12.00$ ret 12 PP 23 (please state telephone no req'd).
25 WATT STEREO AMPLIFIERc. STK043. With the addition of can build a 25 watt amplifier. £4.00 ref 4P69 (Circuit dia included).
LINEAR POWER SUPPLY Brand new 220v input +5 at 3A, +12 at $1 \mathrm{~A},-12$ at 1 A . Short circuit protected. $£ 12.00$ ref 12 P 21 .
MAINS FANS Snail type construction. Approx 4 " $\times 5$ " mounted on a metal plate for easy fixing. New $£ 5.00$ 5P166.
POWERFUL IONIZER KIT. Generates 10 times more ions than commercial units! Complete kit including case $£ 18.00$ ref $18 P 2$. MIN RADIO MODULE Only 2 " square with ferrite aerial and tuner. Superhet. Req's PP3 battery. $£ 1.00$ ret BD716.
HIGH RESOLUTION MONITOR. 9 " black and white Phillhps tube in chassis made
E20,00 ret 20 P 26

BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF £4.00 REF 4P92, PACK OF $100 £ 30.00$ REF 30P16

CB CONVERTORS.Converts a car radio into an $A M C B$ receiver Cased with circuit diagram. $£ 4.00$ ref 4 P 4 B
FLOPPY DISCS. Pack of $1531 / 2^{\prime \prime}$ DSDD $£ 10.00$ ref 10P88. Pack of $1051 / 4^{\prime \prime}$ DSDD $£ 5.00$ ref 5 P1 68
SONIC CONTROLLED MOTOR One click to start, two click to 3 click to stop $£ 3.00$ ach ref 3 P137.
FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref BO827

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 5OT TELEPHONE 0273203500 MAIL ORDER TERMS: CASH PO OR CHEOUE WITH ORDER PLUS E2.50 POST PLUS VAT. PLEASE ALLOW IOTH DAYS FOR DELIVERY

LCD DISPLAY. $41 / 2$ digits supplied with conñection data $£ 3.00$ ref 3P77 or 5 for $£ 10.00$ ref 10P78
ALARM TRANSMITTERS. No data avaliable but nic
complex transmitters 9 v operation. E4.00 each ref 4P81.
100M REEL OF WHITE BELL WIREfigure 8 pattern ideal for intercoms, door bells etc $£ 3.00$ a reel ref 3P107.
TRANSMTTER RECEIVER SYSTEMoriginally made for nurse call systems they consist of a pendant style transmiter and a receiver with telescopic aerial 12 v . 80 different channeis. $£ 12.00$ ref
$12 P 26$ 12 P 26
CLAN UGHT. This device wrns on a laimp at a finger 'snap' etc. nicely cased with built in battery operated light. Ideal bedside hight etc £4.00 each rel 4P82
ELECTRONIC DIPSTICK KIT.Contains all you need to build an electronic device to give a 10 tevel liquid indicator. $£ 5.00$ (ex case) ref 5P1g4
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads. Holds up to 5 batteries at once. New and cased, mains Operated. 26.00 ref 6P36.
ONE THOUSAND CABLE TIES $175 \mathrm{~mm} \times 2.4 \mathrm{~mm}$ white nylon cable ties only $£ 5.00$ ref 5 P181
PC MODEMS 120075 Dau
PC MODEMS $1200 / 75$ baud moderns designed to plug into a PC complete with manual but no software $£ 18.00$ ref 18 BP 12 ASTEC SWITCHED MODE POWER SUPPLY80 $\mathrm{mm} \times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 \mathrm{~A},+12$ at $1.5 \mathrm{~A},-12$ at 0.4 A . Brand new £12.00 ref 12P39.
VENTILATED CASE FOR ABOVE PSUwith IEC fittered socket and power switch. 55.00 ret 5P190.
IN CAR POWER SUPPLY. Plugs into cigar socket and gives 3.4.5.6.7.5.9, and 12 v outputs at 800 mA . Complete with universal spider plug. 55.00 ref 5P167.
CUSTOMER RETURNED switched mode power supplies. Mixed type, good for spares or repair. $£ 2.00$ each ref 2 P292.
DRILL OPERATED PUMP. Fits any drill and is self priming. $£ 3.00$ ref 3P140.
FERSONAL ATTACK ALARM.Complete with built in tonch and vanity mirror. Pocket sized, req's 3 AA batteries. $£ 3.00$ ref 3 P 135 vanity mirror. Pocket sized, req's 3 AM bateries. $£ 3.00$ ref $\mathbf{~ P O W E R F U L ~ S O L A R ~ C E L L ~}$ TAMP . 45 VOLTbnly $£ 5.00$ ref 5P192 (other sizes avaliable in catalogue).
SOLAR PROJECT KIT. Consists of a solar cell, special DC motor. plastic fan and turntabies etc plus a 20 page book on solar energy! Price is $£ 8.00$ ref 8 P51
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2% metal film. £5.00 ref 5P170.
CAPACITOR PACK 1.100 assorted non electrolytic capacitors £2.00 ref 2P286.
CAPACITOR PACK 2. 40 assorted electrolytic capacitors $£ 2.00$ ref 2P287.
QUICK CUPPA? 12 v immersion heater with lead and cigar lighter

LED PACK .50 red leds, 50 green leds and 50 yeliow leds all 5 mm E8.00 ref 8P5?
FERRARI TESTAROSSA. A true 2 channel radio controlled car with forward, neverse, 2 gears plus turbo. Working headights with forward, 22 ref
ULTRASONIC WIRELESS ALARM SYSTEMJ wo units, one a sensor which plugs into a 13A socket in the area you wish to protect. The other, a central alarm unit plugs into any other socket protect. The other, a central alarm unit plugs in a angere in the building. When the sensor is trigered (by body
elsewer elsewere in thement etc) the alarm sounds. Adjustable sensitivity. Price per pair $£ 20.00$ ref 20P34. Additional sensors (max 5 per alamm unit) £11.00 ref 11 P6.
TOP QUALITY MICROPHONE. Unidirectional electret condenser mic 600 ohm sensitivity $16-18 \mathrm{khz}$ built in chime complete with magnetic microphone stand and mic clip. $£ 12.00$ ref 12 P 42 . WASHING MACHINE PUMP.Mains operated new pump. Not self
priming $£ 5.00$ ref 5P18.
IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. E5 00 ref 5P186
COPPER CLAD STRIP BOARD 17 " $\times 4$ " of 1 " pitch "vero" board £4.00 a sheet ref 4P62 or 2 sheets for $£ 7.00$ ref 7 7P22.
STRIP BOARD CUTTING TOOL. 2.00 ret 2P352.
$31 / 2$ disc drive. 720K capacity made by NEC $£ 60.00$ ret 60P2
$31 / 2^{2}$ disc drive. 720 K capacity made by NEC $£ 60.00$ ret 60 P 2
TV LOUDSPEAKERS. 5 watt magnetically screened 4 ohm $55 \times$ $125 \mathrm{~mm} . £ 3.00$ a pair ref $3 P 109$.
TV LOUDSPEAKERS. 3 watt 8 ohm magnetically screened $70 x$ TV LOUDSPEAKERS. 3 wat
50 mm . £3.00 a pair ref $3 P 108$.
50 mm . £3.00 a pair ref 3P108.
BBC TRACKBALLS Once again in stock only $£ 4,00$ ref 4 P86
CROSS OVER NETWORKS 8 ohm 3 way Japanese made units CROSS OVER NETWORKS 8 ohm 3 way Japanese made
Excellent units avaliable at only $£ 2.00$ for a pairl ref 2P363
SPEAKER GRILLS set of 3 matching grills of different diameters. SPEAKER GRILLS set of 3 matchin
2 packs for $£ 2.00$ (6 grilis) ref $2 P 364$
50 METRES OF MAINS CABLE $\{3.002$ core black precut in convenient 2 m lengths. Ideal for repairs and projects. ref 3P91
4 CORE SCREENED AUDIO CABLE 24 METRES $£ 2.00$ Precut into convenient 1.2 m lengths. Rei 2P365
TWEETERS $21 / 4$ DIA 8 ohm moumed on a smar metal plate for easy fixing $£ 2.00$ ret 2P 366
COMPUTER MICE Originally made for Future PC's but can be adapted for other machines. Swiss made $£ 8.00$ ref 8P57. Atan ST conversion kit $£ 2.00$ ref $2 P 362$.
$61 / 2^{\prime \prime} 20$ WATT SPEAKER Built in tweeter 4 ohm $£ 5.00$ ret 5 P 205 $5^{\prime \prime} \times 3^{\prime \prime} 16$ OHM SPEAKER 3 for $£ 1,00!$ re CD 213
ADJUSTABLE SPEAKER BRACKETS Ideal for mounting
speakers on internal or extemal corners, uneven surfaces etc. 2 for
5.00 ret 5P207 £5.00 ret 5P207
PIR LIGHT SWITCH Replaces a stand ard light switch in seconds light operates when anybody comes within detection range $(4 \mathrm{~m})$ and stays on for an adjustable time (15 secs to 15 mins). Complete with daylight sensor. Unit also functions as a dimmer switch! 200 watt max. Not suitable for flourescents. $£ 14.00$ ref 14 P10
2 MEG DISC DRIVES $31 / 2^{\prime \prime}$ disc drives made by Sony housed in a $51 / 4^{\prime \prime}$ frame 1.2 meg formatted. $£ 66.00$ ref 66 P 1 .
$360 \mathrm{~K} 31 / 2^{\prime \prime}$ DISC DRIVES $1 / 2$ height $£ 25.00$ re
$360 K 31 / 2^{\prime \prime}$ DISC DRIVES $1 / 2$ height $£ 25.00$ ref 25P26
40 CHANNEL TRANSCEIVER 4 WATT OUTPUT 40 CHANNEL TRANSCEIVER 4 WATT OUTPUT, HANDHELD SQUELCH CONTROL ETC $£ 70.00$ EACH REF 7OP 1
OR AVALIABLE AS A PAIR WITH NICAD BATTERY PACKS FOR $£ 150.00$ REF 150P1 Hlluminated channel display, 10 section aerial, Hi-Low power switch, external aenial socket,
DC charger socket, 12v DC power socket, DC charger socket, $12 v \mathrm{DC}$ power
carrying strap and owners manual.

[^0]ULTRASONIC PROXIMITY METER by Chris Walker 420 Know your distance and keep your distance with this multiple use design
DISCO LIGHTS CONTROLLER by Mike Tooley
A sophisticated three channel sound triggered system the latest Teach-In '91 project
SIMPLE MODEL SERIES-POLICE CAR by Owen Bishop 439
Flashing indicators and beacon, plus a siren, add realism to this
1/20 scale model
12V NICAD CHARGER by T. R. de Vaux Balbirnie 454
Charging 12 V NiCads from a 12 V supply or car battery
MODULAR DISCO LIGHTING SYSTEM by Chris Bowes 464
Customise your own light show.
Part Three: The Masterlink Module

INTERFACE by Robert Penfold 436
The spot for all computer enthusiasts - PC prototyping cards
TEACH-IN'91 -
DESIGN YOUR OWN CIRCUITS by Mike Tooley Part Eight: Power Control
AMATE UR RADIO by Tony Smith G4FA1 463

Novice Licence Course; Young Amateur of the Year;

Amateur Radio and the Gulf

Features

EDITORIAL 419
FROM FISH TO CHIPS by James Fowkes 426
Electronics from the Trojan wars to Photonics
SHOPTALK with David Barrington 428
Component buying for EE projects
SIMPLEMODELS SERIES SPECIAL EASIWIRE OFFER 438
FOR YOUR ENTERTAINMENT by Barry Fox 452
Faxing Yourself; Digital Copyright; Overpowered
ROBOT ROUNDUP by Nigel Clark 458
News from the world of robotics
DIRECT BOOK SERVICE 460
Selected technical books and all the EE books by mail order
PRINTED CIRCUIT BOARD SERVICE 468
P.C.B.s for EE projects, past and presentADVERT/SER'S INDEX472

JUST A SMALL SELECTION FROM OUR RANGEOF OVER 120 KITS

No: DESCRIPTION
PRICE
£(EA)
0.2 WATTFM TRANSMITER 4.25

800 WATT MUSIC TO LIGHT.
1 WATT FM TRANSMITTER 5.53

AM-FM-VHF RECEIVER................................... 13.62
1014 3X700 WATT WIRELESS MUSIC-TO-LIGHT... 11.06
1018 GUITAR TREMELO
022 METAL DETECTOR... 4.25
1026 RUNNING LIGHTS.. 8.51
1028 4 WATT FM TRANSMITTER............................. 14.46
1034 CAR BATTERY CHECKER................................. 2.98
1036 TRANSISTOR TESTER ... 3.83
1037 DISCO STROBO LIGHT...................................... 11.49
1038 AM-FM AERIAL AMPLIFIER 2.98
1049 ULTRASONIC RADAR....................................... 15.31
1055 FM RECEIVER USING TDA 7000..................... 12.76
1059 TELEPHONE AMPLIFIER................................. 8.51
1065 INVERTOR 12V D.C. TO 12V A.C..................... 21.27
1069 I2V D.C. FLOURESCENT TUBE UNIT............ 5.53
1073 V O X... 6.38
1075 ELECTRONIC DICE WITH L.E.D.S................. 6.80
1111 LOGIC PROBE
1114 ELECTRONIC LOCK ... 7.66
1119 TELEPHONE LINE RECORDING.................... 4.25
1125 TELEPHONE LOCK .. 6.80
1129 NEGATIVE ION GENERATOR.......................... 14.46
130 TELEPHONE "BUG" DETECTOR 3.41
1203 MINIFM TRANSMITTER WITH MIC
(SUPPLIED READY ASSEMBLED)..
All kits contain a Silk Screened high quality P.C.B. components, solder, wire and FULL instruction sheet.

SPECIAL OFFER
 60 MEG TAPE STREAMER
 DC600-5.25" TRAY
 SUITABLE FOR ALL IBM COMPATIBLES
 PRICE: £188.00

FLOPPY DISC DRIVES

	FOR		
$3.5^{\prime \prime}$	1.44 M	INTERNAL	$£ 48.00$
$3.5^{\prime \prime}$	720 K	INTERNAL	$£ 40.00$
$5.25^{\prime \prime}$	1.2 M	INTERNAL	$£ 48.00$
$5.25^{\prime \prime}$	1.2 M	EXTERNAL	$£ 51.00$
$5.25^{\prime \prime}$	360 K	EXTERNAL	$£ 27.00$

ACCESSORIES

5.25" ADAPTOR KIT FOR 3.5" F D D £8. $£ 0$
5.25" TRAY FOR 3.5" F D D ... 5.50

POWER LEAD FOR $3.5^{\prime \prime}$ F D D
£3.50
IDC PIN TO EDGE CONNECTOR PCB e3. 50

CONTROLLER CABLE FOR F D D $£ 4.50$

POWER SPLITTER
£4.50
HARD DRIVECABLES $£ 6.00$
MICRO 'T'SWITCH - RS232 .. £7.45

END OF LINES

MODEMS - V22 BIS - 2400 BPS
AUTO DIAL - AUTO ANSWER - FULL DUPLEX AUTO REDIAL - TONE \& PULSE DIALLING
BT APPROVAL - BABT APPROVAL
SUPPLIED WITH EAZILINK COMMS PACKAGE
MC2400-INTERNAL
PC2400 - EXTERNAL $£ 85.00$
3.5" ${ }^{\prime \prime}$ 720K EXT FLOPPY DISC DRIVE

NEW - GREY CASE - BY WELL KNOWN OEM
SPECIAL OFFER PRICE
£26.00
5.25" - 360K INT FLOPPY DISC DRIVE

NEW - GREY OR BLACK - WELL KNOWN OEM
SPECIAL OFFER PRICE
$£ 24.00$

JUST ARRIVED

$12^{\prime \prime}$ VGA PAPER WHITE MONITOR TILT \& SWIVEL BASE	. 1115.00
WITH 8 BIT VGA CARD	£160.00
GRAPHICS CARDS	
OAK 8 BIT VGA	£56.00
CGA - F/LCARD	£15.00

HARD DISC DRIVE

20 MEG - XT ONLY - $3.5^{\prime \prime} \mathrm{H} / \mathrm{H}$
WITH CONTROL CARD. $\mathbf{£ 1 2 0 . 0 0}$

20 MEG - MFM - XT/AT
$5.25^{\prime \prime} \mathrm{H} / \mathrm{H}$ $£ 125.00$

MOTHERBOARDS

8 SLOTS HEADLAND CHIP SET
AMI BIOS - SUPPORTS EMS 4.0 \& SHADOW RAM
286-12 L/S 16 MHz ..
286-16 L/S 21 MHz .
£116.00

DRAM MEMORY - SIMM

$256 \mathrm{~K} \times 980 \mathrm{mS}$
. 14.00
1 MEG x 980 mS

NEW PRODUCTS ARRIVE DAILY - PLEASE CALL

ALL PRICES
 INCLUDE VAT \star

UK Orders:
ADD $£ 2.00$ carriage
Europe \& Eire:
Deduct 17.5\% VAT (divide price by 1.175)
ADD $£ 5.00$ carriage
Outside Europe:
Deduct 17.5\% VAT (divide price by 1.175)
ADD $£ 10.00$ carriage

HOBBYKTT LTD CREDIT CARD HOTLINE 응 081-205 7485

UNIT 19
CAPITOL INDUSTRIAL PARK CAPITOL WAY LONDON NW9 0EQ FAX No: 081-205 0603

For a comprehensive guide covering our Computer products, Kits Test Equipment, Tools and other miscellaneous items please send a stamped A4 envelope or loose stamps to the value of:

UK
$£ 0.45$
Europe \& Eire £1.00
Outside Europe £2.75

PEDOMETER
A pedometer measures the number of paces walked, giving a rough idea of the actual distance. Since this figure can only ever be approximate, this low cost project should give quite acceptable results.

The unit clips onto the side of the walker's shoe with I.e.d.s showing the number of paces in 500 s . This gives a maximum reading of 15,500 paces around 13 miles.

PORTABLE PET SCARER

A hand held, improved output version of the very popular Pet Scarer design we published back in May ' 89 .

OPTICAL COMMUNICATIONS LINK

Another outstanding design that ties up with our Teach-In '91 series Design Your Own Circuits. This fascinating use of opto-electronics will provide many hours of experiment.

[^1]

ELELTRDINITS

NOTHING STOPS FOR CRICKLEWOOD

- one of the largest ranges of components in the uk FAST AND EFFICIENT SAME DAY PERSONAL SERVICE VERY COMPETITIVE PRICES, QUANTITY DISCOUNTS AVAILABLE - NO MINIMUM ORDER

Over 13,000 different components from all over the world

19" RACK CASES

\star Suitable for instruments, high quality amplifiers and many other applications that demand strength and professional finish * New improved construction and finish \star Black anodised aluminium front panels \star Separate front mounting plate, no fixing screws visible of the front and the side of the enclosure t Heavy gauge front panel is of brushed aluminium flinish enhanced with two professional handles + With ventilation slits and plastic feet + Rear box manufactured and 1.1 mm steel finished in black. Rack from 1.1 mm steel finished in black. Rack mounting or free standing. Comes in quick assembly flat package.

| Order Code | Panel Size | Rear Box | Weight | Price |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | WH (inch) | W H D | | \mathcal{E} |
| U112 | 19×1.75 | $17 \times 1.5 \times 12$ | 2.5 kg | 24.95 |
| U212 | 19×3.5 | $17 \times 3.0 \times 12$ | 3.3 kg | 29.75 |
| U312 | 19×5.25 | $17 \times 5.0 \times 12$ | 4.0 kg | 31.95 |
| U412 | 19×7.0 | $17 \times 6.5 \times 12$ | 4.6 kg | 34.95 | Please add $£ 3.00 \mathrm{P} \& \mathrm{P}$ for the first item and $£ 1.50$ for each additlonal item Please add VAT to above prices

CRICKLEWOOD ELECTRONICS LTD

40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET TEL: 081-450 0995/452 0161

FAX: 081-208 1441 TELEX 914977 VISA

Whether your requirement for surveillance equipment Is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried tested and proven and come complete with full instructions circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX Ultra-miniature room transmitter. Smallest room transmitter kit in $£ 16.45$ MTX Micro-miniature room transmitter. Best selling micro-miniature room transmitter. Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range
f13.45
STX High-performance room transmitter. High performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} x$ 22 mm including mic. $6-12 \mathrm{~V}$ operation. 1500 m range excellent range and performance. Size $20 \mathrm{~mm} \times 40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. Range VXT Voice activated room transmitter. Trigeers only when sounds are detected. Very low standby current variable sensitivity and delay with led indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation, 1000 m range.
$f 19.45$
QTX180 Crystal controlled room transmitter. Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}, 9 \mathrm{~V}$ operation, 1000 m range.
£40.95
SCRX Subcarrier scrambled room transmitter. Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}, 9 \mathrm{~V}$ operation, 1000 m range........................f22.95 SCDM Subcarrier decoder unit for SCRX. Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$, 9-12V operation.
HV 400 Mains powered room transmitter, Connects directly 10240 V supply for long term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range.......... $\mathbf{~} 19.45$ ATR2 Micro size telephone recording interface. Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from

ine
f13.45

UTLX Ultra-miniature telephone transmitter. Smallest telephone trans mitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$. Connects to line (any where) and switches on and off with phone use. All conversations transmitted Powered from line, 500 m range.. transmitter Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to mitter. Best seling telephone rans (any

STLX High-performance telephone transmitter. High power telephone transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches automatically with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~m}$. 1500 m range
¢16.45
TKX900 Signalling/tracking transmitter. Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output gives range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
£22.95
CD600 Professional bug detector/locator. Multicolour bargraph readout of signal strength with variable rate bleeper and variable sensitivity used to defect and locate hidden transmitters. Switch to AUDIO CONFIRM mode to such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}, 9 \mathrm{~V}$ operation...... $£ 50.95$

$\star \rightarrow$ SPECIAL $\leqslant \leqslant$

DLTX/LRX Radio control switch. Remote control anything around your home or garden, outside lights, alarms, paging systems etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate. 8way di.I. switches on both boards set your unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$, RX size $35 \mathrm{~mm} \times 90 \mathrm{~mm}$. Both operation. Range up to $200 \mathrm{~m} \quad$ Complete system (2 kits) $\mathbf{5} 50.95$ ndividual transmitter OLTX Individual receiver DLRX
£ 37.95
A build-up service is available on all of our kits if required.
UK customers please send cheques. PO's or registered cash. Please add $£ 1.50$ per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcome on 0827714476

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW
SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS
SUMA DESIGNS
THE WORKSHOPS
95 MAIN ROAD
0827
BAXTERLEY, Nr ATHERSTONE
WAFWICKSHIRE CV9 2LE

RTVC HAVE DONE IT AGAIN

Whave secured all stocks of nearly new factory rurbished units with manufacturer approval, at anrepeatable prices. We also offer a 6 month guarantee with all units (this only applies to products marked \star on this page.

Alba digital auto reverse push button AM/FM LW car stereo with separate bass/treble contro APPSS on tape. 25 watts per channel output with line output for car components use
$\star £ 79.40+£ 2.30 \mathrm{pp}$

Sparkomatic Phoenix Digital auto reverse AM/FM/LW car stereo, with tape volume and
balance control 9 watts output per channel balance control. 9 watts output per channe
$\star £ 52.40+£ 2.80 \mathrm{pp}$
AM/FM CAR RADIO CASSETTE PLAYER In-dash titting controls for volume, tunting, fast forward output 10 watts. Size $178(\mathrm{~W}) \times 124(\mathrm{D}) \times 43(\mathrm{H}) \mathrm{min}$ (Supplied with instructions $\mathbf{f 1 6 . 9 0}+\mathbf{£ 2 . 6 0} \mathbf{~ p p}$
and circuit diagram).
Solar Po
Calculator
Eight Dig
Display
Imperial
Metric
Convers
Tables

filofax.

PERSONAL ORGANISER
RADIOICALCULATOR
Solar Powe
Eight Digit
Display
Imperial,
Metric
Tables
Battery Powered AM Radio
High/Low Volume Control
Earphone provided
Punched with 6 holes to fit tite all personal organisers
Listed price $\mathbf{£ 1 9 . 9 5}$ OUR PRICE $\mathbf{£ 8} .95$ plus 75 p P p
genuine fILOFAX. compleee
with 91 calender, A to Z index and address section.
£5.95 plus 75p p\&p
MULTIBAND RADIO MHF $54-176 \mathrm{MHz}$ + AM CB BANDS 1.80 Listen to: AIR TRAFFIC CONTROL,
£17.95 AIRCRAFT, RADAR, POSTAGE RADIO AMATEURS ANO MANY MANY MORE
$\mathbf{~ S O U E L C H ~ C O N T R O L ~}$ RUBBER DUCK AERIAL"

ROSS PUSH BUTTON RADIO

Mains and battery operate
High quality VFF/FM
High quality VHF/FM,
6 push bution selected
preset stations.
Fully retractable telescopic
aerial
Headphone/earphone
jack socket
Size $230 \mathrm{H} \times 150 \mathrm{~W} \times 65 \mathrm{D}$
Ref. 2EE-5500
Brand new.
Listed price over $£ 30.00$
OFFER £13.50
$+\mathrm{f} 2.80 \mathrm{pp}$

$30+30$ WATT AMPLIFIER KIT

An easy to build amplifier with a good specification. All the components are mounted on the single PCB which is already punched and back. single
printed.

- 30W $\times 2$ (DIN 4 ohm)
- CD/Aux, tape I, tape II, tuner and phono inputs.
- Separate treble and bass
- Headphone jack

Size (H.W.D.) $74 \times 400 \times 195 \mathrm{~mm}$
Kit enclosed: case. PCB, all components, scale and knobs
$\mathbf{£ 3 6 . 8 0}+\mathfrak{£} 3.50$ pp
(Featured project in Evervday Electronics, April 1989 issue). Reprint Free with kit

MAIL ORDER £1 BARGAIN PACKS BUY 20 GET 1 FREE
 Please state pack(s) required

Pilis: $\mathrm{BP}(115 \mathrm{~B}$
$\mathrm{BP}(1) 17$ BP()19 BP(1) BP(O)2 4 Tuning capacitors, 2 gang dielectric a.m. type Brasition, 8 tag slide switch 3 amp rated 125 V

B

BPOP?
Push-button switches, push on push oft, 2 pole changeover. PC mount JAPAN made 2 pole 2 way rotary switch
2 Right angle. PCB mounting notary switch. 4 LIN. 3 way rolary switch UK made by LOR. 3 pole. 3 extra positlon off (open frame YAXLEY type) 4 pole. 2 way rotary switch UK rade by LORLIN
BP() 26
BPO 26
BPO2 27

BP BP BP

BP
BP

B
$B P$
$B P$
Stereo rotary potentiometers
10k wire wound double precision poten Uiometers UK made
UHF varicap tuner heads, unboxed and untested UK made by PHILIPS
FM stereo decoder modules with diagram UK made by PHILIPS
$6^{4} x^{3 \mathrm{~B}^{3}}$ " High grade Ferite rod UK made
MADE modules with diagram PHILIPS UK
AM-FM tuner head modules. UK made by Mul
Hi- Fi stereo pre-amp module inputs for CD, uner, tape, magnetic cartridge with dlagram UK made by MULLARD
B
3 BP
BP
BP
PP BPII36 6 Fuse holders. panel mounting 20 Fuse holders. panel mounting 20 mm type
5 pin din. 180° chassis sockel
Double phono sockets. Paxolin mounted 2.8 m lenghts of 3 core $5 \mathrm{amp} r$ ains 4 L Large VU meters JAPAN made Sonotone stereo crystal cartridge with 78 and L
Styli JAPAN made
Mono Cassette Record and pley heads
606 Mains transformers. PCB mounting. Size $25 \times 3 \times 33 \times 35$
25 V DC 150 mA mains adappor in black plastic case with flying input anc output leads new turer. Size $80 \times 55 \times 47$
1949 OC44 transistors. Remov becomes a photo-ele
made by MULLARD

BPIS

BP 15.3
BPOLS
BP05S

BPUSG

BPOM
BPO
BPI
BPass
BPys.
3P061
8P0es?
BPOent
bpins Low signal transistors
paint from to
tric cell (ORP

for AD161
 sette and ncoldmayir molors
Digital DVM meter I.C. made ty asdess ta

Powe 第 MC7818CT IC \& bridge rectifier: Size $4^{\prime \prime}$ $2^{3{ }^{3}}$
6.35 mm Mono jack plugs
6.35 mm stereo switched jack sockets

3mtr Euro-mains lead with chassis socke
Postage $£ 3$ per order

28.0.28V 4 AMP MAINS TRANSFORMER

With a 5.5 V at 0.5 A mains input $110-240$. Size $90 \times 105 \times$ 75 fitted with copper screening band; made for famous Hifi Co. £6.50 each. Postage $£ 2$.
$\mathbf{2}$ for $£ 14$ POST PAID
KOSS STEREO HEADPHONES
High quality lightweight stereo headphones fitted 3.5 mm jack with adaptor to 6.4 mm jack. Ideal use HiFi or personal stereos. Made to sell
$\mathbf{f 4 . 2 5}$ postage 60 p.

Hi-Fi stereo cassette deck transport mechanisim. complete with 3 digit rev counter and tape heads. 12 V d.c. operation.
$\mathbf{£ 6 . 2 0}+2.50$ P\&P 2 for $\mathbf{f 1 0 . 0 0}+3.50$ P\&P
BSR STEREO RECORD PLAYER DECK Manual auto operation, 3 speed ($78,45,33^{\prime} 3$), 240V opera 10n. Unused but store soiled

RADIO AND TV COMPONENTS ACTON LTD
21 HIGH STREET, ACTON, LONDON W3 6NG
MAIL ORDER TERMS. POSTAL ORDERS and or CHEQUES with orders Net tmonthly accounts 10 Schools. Colleges and PLC onty
ACCESS-VISA. Phone orders belween 90.12 mm please Overseas readers

Phone 0717238432 or 0819928430 Calles. 323 Ed.jware Roas. London W2 Closed Sun

AMPHONIC 125 +125 POWER AMPLIFIER

125 watt per channel stereo power amplifier with independent volume controls, professional $19^{\prime \prime}$ rack mount and silent running cooling fan for extra reliability.
Output power......................125W RMS max. per channe!
Output impedance.
(max pow 41016 ohms
Sensitivity
Protection
Power........
Electionic shot 450 V at 22 K ohms $220-240 \mathrm{~V}$ a.c. 50 Hz $435 \times 125 \times 280 \mathrm{~mm}$ $\mathbf{4} 142+£ 7.00 \mathrm{pp}$

SPECIAL OFFER

 DTMF TONE DIALLERSuitable for remote contro
of telephone answering
machines, videos, appliances
E8.95 etc. requiring DTMF signals over telephone lines.

VIDEO SENDER

With this handy unit you can transmit the out put of your home videc, video camera or satel ite equipment over-the-air to a receiving televi sion within a range of 100 ft . Simply connect the video and audio output of your equipment into this unit and a 10.13 .8 V dc power Supply extra
£3.75 size $122 \times 70 \times 21 \mathrm{~mm}$
SALE OFFER £11.50 + £2 pp
VHF RADIO TRANSMITTERS
100 mW mini bug. Buitt on a neat little fibre glass pcb with condensenmiof Fully tunable over the FM band 9VDC \quad E5.75 + £0.90 pp 2 Werttransmitier kis supplied with fibre glass diagrams, ready for you to
$\mathbf{£ 7 . 5 0}+\mathbf{£ 0 . 7 0 p p}$
 FM band. Khtank ises double sided pcb dia-
$\mathbf{f 6 7}+\mathrm{f} 1 \mathrm{pp}$

HIFI WOOFERS

ind 100 watt Goodmans Hifi woofer 2 coil, paper imp 8 !
$\mathbf{8}^{\prime \prime}$ round 100 watt Audax Hifi $\mathbf{£ 1 7 . 5 0 + \mathbf { £ 2 . 8 0 } \mathbf { p p }}$ fitted phaseplug. Hiteck TPX polimar cone with rubber surround $44^{\prime \prime}$ magnet. cie cast chassis, size $94^{\prime \prime} 8 \Omega^{2}$ $\operatorname{limp}_{8.1} \quad \mathbf{~} \mathbf{3 4 . 9 0} \mathbf{+ 4} \mathbf{~} \mathbf{p p}$ $8^{\prime \prime}$ square 80 watt Audax Hifi woofer, $11 / /^{\prime \prime}$ coil. polypiopylene cone, rubber surround, $31 / 4$ magnet. chassis size $8^{3} \mathrm{~g}^{\prime \prime}$ square 8 s imp $\mathbf{~} 19.70+\mathbf{£ 2 . 5 0} \mathbf{~ p r}$ $8^{\prime \prime}$ round 70 watt Peerless Hifi woofer $1^{\prime \prime}$ coil, treatec paper cone, foam rubber surround, $31 / 4$ magnet, 88 imp $5 \%^{\prime \prime} 35$ watt Goodmans Hifi woofer, 1.50 coil. treated paper cone rubber surround, $3 / \mathrm{K}^{\circ}$. $\mathrm{imp}_{41 / 2 "}$ square 35 watt Audax Hifi $\mathbf{£ 7 . 2 0 + £ 2 . 5 0 \mathrm { pp }}$ \% 2 squal 35 . ${ }^{3}$. pp

HIFI TWEETER AND MID RANGE 4^{3} square 100 watt Goodmans sealed back mid
range. 1^{1} coil, treated paper cone, $2^{7} e^{*}$ magnet, 80
 ${ }^{4}$ square 75 watt Audax sealed back mid range ${ }^{3_{4} "}$ co $8 \Omega \mathrm{imp}$
4^{*} round 130 watt Peerless i. $\mathbf{£ 7} \mathbf{7 . 9 5}$ + $\mathbf{£ 1} \mathbf{~ p p}$ iweeter, 1^{\cdots} cofl, $2^{34}{ }^{\circ}$ magnet, rec. metal dome Hifi $3 \mathrm{KHz} \quad \mathbf{£ 1 5 . 9 0} \mathbf{~} \mathbf{~} 1$.
 cooled ${ }^{3_{4}}$ voice coll rec crossover. freq 4.5 KHz , Ferrofluid but with $3^{5}{ }^{\text {B }}$ " face plate
$\mathbf{f 6 . 9 0}+\mathbf{~ C 1 . 3 0 ~ p p}$
$701 / 2 \times 41 / 4120 \mathrm{~W}$ Jamo horn tweeter $8 \Omega \mathrm{imp}$ crossover freq
7 KHz
p crossover freq
$\mathbf{£ 9 . 9 5 + £ 2 p p}$

MOTOROLA PIZO CERAMIC TWEETERS

Convert electrical energy into sound without the use of voice coils and magnet assemblies. No moving mass, high efficiency levels as they and low distortion with sounds. No crossovers are required
$31 / 2^{-1}$ square 50 watt Pizo super hor
SALE OFFER $\mathbf{£ 3 . 9 5 + 7 5 p p}$
$3^{3^{\prime \prime}}$ round, 50 watt Pizo horn tweeter $\mathbf{£ 5 . 7 5 + 7 5 \mathrm { pp }}$
$2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion 400 watt Pizo h
$\mathbf{E 1 1 . 9 5 + \varepsilon 1}$ pp

WE BUY MANUFACTURER'S SURPLUS STOCK HENCE

 THESE LOW PRICES FOR PRIME COMPONENTSETRIFAN - $240 \mathrm{~V} .14 \mathrm{~W} .-120 \mathrm{~mm}^{2} 38 \mathrm{~mm}$ deep
RELAY - SIEMENS - 12 V 2 pole c/o. Low Profile. Gold contact, high quality
 250 V
TORROID TRANSFORMER + complete wiring diag. -240 V in Outputs $12 \mathrm{~V}, 4 \mathrm{~A}, 12 \mathrm{~V}, \ldots 0.4 \mathrm{~A}, 12-0-12 \ldots 1 \mathrm{~A}+2 \mathrm{~A}, 9 \cdot 0-92 \mathrm{~A}$ $£ 4.00$ THERMAL PRINTER PAPER-Rolls 80 mm wide 25 m long Box of 40 rolls
BARGAIN PACKS - Approx 3 lbs . of quality NEW mixed components. No rubbish! We deal mainly in bulk to the trade. All smaller qty. parts go in the packs regardless of value. HEAT SHRINK TUBING - Pack approx 15×16 inch lengths. Different diameters \& colours
HARDWARE PACKS - Same quality \& quantity as the packs we do at all the major radio rallies - small nuts \& bolts
. small self tapping screws
ring \& spade crimp terminals - insulated
3M STICKY PROTECTIVE FEET - grey rubber - sheet of 56 B.T. PHONE LEADS - Modern jack to jack/grey/3 mtrs

COPPER CLAD P.C. BOARD - double sided $18^{\prime \prime} \times 10.5^{\prime \prime}$ sheet easy to cut - on thin and flexible fibre glass
DISC DRIVE LEADS - ribbon cable; signal lead 34 W card edge to 34 W DIL, suit $B B C$ etc.

RESETABLE COUNTERS - 6 digit panel mount inc. catalogue data 12 VDC .
XI CMOS SAFE CONTINUITY PROBE - detects \& locates short circuits with variable audio tone, easy to use S. T. C. price $£ 22.00$
.Our Price $£ 9.00$ Needs PP3 battery (state if required)

POSTAL CHARGES: Orders up to $£ 10-£ 1.50$; $£ 20-£ 3.00$; $£ 30-£ 4.50$ LARGER ORDERS RING FOR CARRIAGE COST PLEASE ADD $17 \frac{1}{2} \%$ VAT TO TOTAL COST

SEND TODAY - YOU'LL BE BACK FOR MORE

RICH ELECTRONICS

The Warehouse, Windsor Place.

PHONE
Senghenydd
0222831547
S. Wales CF8 2GD

FAX 0222830022

BIPOLAR AND MOSFET MODULES
The unique range of encapsulated amplifier modules with integral heatsink.
 HY60 30 W Bipolar amp E 12.62 HY364 180 W Bipolar amp (4 ohm) $£ 42.86$ HY6060 30W Stereo Bipolar amp $£ 26.46$ HY368 180 W Bipolar amp (8 ohm) $£ 42.86$ HY124 60W Bipolar amp (4 ohm) $£ 20.69$ MOS128 60W Mosiet amp $£ 44.04$ HY128 60W Bipolar amp (8 ohm) $£ 20.69$ MOS248 120W Mostet amp HY244 120W Bipolar amp (4 ohm) $£ 27,38$ MOS364 180W Mostet amp

PLATE AMPLIFIERS

Bipolar and Mosfet modules with the same electronics as above amplifiers housed in a
different extrusion without heatsink.
HY6060P 30 W Stereo Bipoiar amp $£ 21.76$ HY364P 180 W Bipolar amp (4 ohm) $£ 28.35$ HY124P $60 W$ Bipolar amp (4 ohm) $\{16.14$ HY368P 180 W Bipolar amp (8 ohm) $£ 28.35$ HY 128P 60 W Bipolar amp (8 ohm) $£ 16.14$ MOS128P 60 W Mosiet amp $£ 39.69$ HY244P 120W Bipolar amp (4 ohm) £21.91 MOS248P 120W Mostet amp £43.37 HY248P 120W Bipolar amp (8 ohm) $£ 21.91$ - MOS364P 180W Mostet amp $£ 72.44$ Note: These modules require additional heatsinks

POWER SUPPLIES

Comprising toroidal transformer and DC board to power the ILP amplifier modules.
£11.80 PSU542 H1248 PSU412 HY6060 HY124, 1 or 2 HY60 $£ 23.65$ PSU712 HY244(2) PSU422 HYt28, ESTM PSU722 HY24812 PSU732 HY364 PSU512 HY244, HY 128 (2) PSU522 HY124(2) E28.81 PSU742 HY368 PSU532 MOS128(2)
£28.81 PSU752 MOS364, MOS248(2)
£35.51

PRE-AMPLIFIER MODULES

These encapsulated modules are now supplied with $0.1^{\prime \prime}$ pin connectors for direct mounting into pcb/veroboard
HY6-1 Mono pre-amplifiter
HY66-1 Stereo pre-amplifier
HY83-1 Guitar pre-ampififier with overdrive and revert
§10.01

POWER SLAVES

These cased amplifiers are supplied assembled and tested in 60 and 120 watt Bipolar or Mosfet versions.

$\begin{aligned} & \text { US12 } \\ & \text { US22 } \end{aligned}$	60 watt Bipolar (4 ohm) 120 watt Bipolar (4 ohm)	$\begin{aligned} & £ 83.73 \\ & £ 92.93 \end{aligned}$	US32 60 watt Mosiet US42 120 watt Mostet	$\begin{array}{r} £ 114.39 \\ \mathfrak{£} 125.62 \end{array}$
Prices include VAT at the new rate of 17.5% and carriage			MSA	

Quantity prices available on request

Write or phone for free Data Pack

Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 Fax: 0227365104

MAGENTA

All prices include VAT at $17 \frac{1}{2} \%$	
Shop open $9-5$ Mon- $\mathrm{Fri} ;$	Add $£ 2$
9-2 Saturday	p\&p to
Official orders welcome	all orders

DIGITAL LCD THERMOSTAT

EE MAY '91

A versatile thermostat with LCD read out MAX/MIN temperature reccording, clock and individually settable upper and lower switching points. Covers -10 to 110 degres Celsius. accurate to within 0.1 degrees. Submersible probe on 3 metre lead. Kit includes punched and printed case. Save on energy bills by improved control of your hot water system. Also ideal for greenhouse, soil temperature and aquarium control. Complete kit includes thermostat and probe, mains power supply and relay output. PCB's and punched and printed case

KIT PRICE $£ 29.95$

D.C. MOTOR GEARBOXES

Ideal for Robots and Buggies. A miniature plastic reduction gearbox coupled with a $1 \cdot 5-4.5$ Voit mini motor. Variable gearbox reduction ratios are obtained by fitting from 1 to 6 gearwheels (supplied). Two types available:
SMALL UNIT TYPE MGS
£4.08
Speed range $3-2200 \mathrm{rpm}$. Size $37 \times 43 \times 25 \mathrm{~mm}$
LARGE UNIT TYPE MGL
£4.65
Speed range $2-1150 \mathrm{rpm}$. Size $57 \times 43 \times 29 \mathrm{~mm}$

> Supplying Electronics for Education, Robotics, Music, Computing and much, much more! 1991 CATALOGUE AVAILABLE PRICE £1.00 INC. P\&P

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques.
ID36 PERMANENT MAGNET MOTOR48 steps per rev
£16.86 MD200 HYBRID MOTOR£17.10 200 steps per rev
MD35 $1 / 4$ PERMANENT MAGNET MO 48 steps per rev.
MD38 PERMANENT MAGNET MOTOR
48 steps per rev.
12,98

EVERYDAY ELECTRONICS KIT PROJECTS

ALL KITS HERE HAVE BEEN FEATURED IN EE AND ARE SUPPLIED WITH MAGAZINE ARTICLE REPRINTS. SEPARATE REPRINTS ALSO AVAILABLE PRICE 80p EACH INCLUSIVE P\&P. KITS INCLUDE CASES. PCB's HARDWARE AND ALL COMPONENTS (UNLESS STATED OTHERWISE) CASES ARE NOT DRILLED OR LABELS SUPPLIED UNLESS STATED.

Ref

DIGITAL LCD THERMOSTAT May 91 with punched and printed case DIGITAL COMBINATION LOCK Mar 91 with drilled case

Price £29.95

ANALOGIC TEST PROBE Jan 91
838 MICROCONTROLLER LIGHT SEOUENCER Dec 90 . With drilled and labelled case
55 SUPERHET BROADCAST RECEIVER Mar 90 With drilled panels and dial 834 QUICK CAP TESTER Feb 90 833 EE 4 CHANNEL LIGHT CHASER Jan 90 815 EE TREASURE HUNTER Aug 89 814 BAT DETECTOR June 89
12 ULTRASONIC PET SCARER May 89 800 SPECTRUM EPROM PROGRAMMER Dec 88 796 SEASHELL SYNTHESISER Nov 88 790 EPROM ERASER Dct 88
69 VARIABLE 25V-2A BENCH POWER SUPPLY Feb 88
4 VIDEO CONTROLLER Oct 87
40 ACOUSTIC PROBE Nov 87 39 ACCENTED BEAT METRONOME NOV 87
734 AUTOMATIC PORCH LIGHT OCI 87 BURST-FIRE MAINS CONTROLLER Sep 87
28 PERSONAL STEREO AMP Sep 87
24 SUPER SOUND ADAPTOR Aug 87 22 FERMOSTAT July 87
719 BUCCANEERI.B. METAL DETECTOR july 87
3-BAND 1.6-30MHz RADIO Aug 87
715 MINI DISCO LIGHTS June 87
07 EQUALIZER (IONISER) May 87
00 ACTIVE I/R BURGLAR ALARM Mar 87
84 SPECTRUM SPEECH SYNTH (no case) Feb 87
581 VIDEO GUARD Feb 87

Ref
578 SPECTRUM I/O PDRT less case Feb 87 569 CAR ALARM Dec 86
563200 MHz DIG. FREQUENCY METER Nov 86 561 LIGHT RIDER LAPEL BADGE Oct 86 560 LIGHT RIDER DISCO VERSION Oct 86 559 LIGHT RIDER 16 LED VERSION Oct 86 556 INFRA-RED BEAM ALARM Sep 86 544 TILT ALARM July 86
542 PERSONAL RADIO June 86 528 PA AMPLIFIER May 86 523 STEREO REVERB ApI 86 513 BBC MIDIINTERFACE Mar 86 512 MAINS TESTER \& FUSE FINDER Mar 86 497 MUSICAL OOOR BELL Jan 86 493 OIGITAL CAPACITANCE METER Dec 85 493 DIGITAL CAPACITANCE METER Dec 85 464 STEPPER MOTOR INTERFACE FOR THE BBC COMPUTER less case Aug 85 DPTIONAL POWER SUPPLY PARTS 461 CDNTINUITY TESTER July 85 455 ELECTRONIC DOORBELL June 85 453 GRAPHIC EQUALISER JUne 85 444 INSULATION TESTER Apr 85 392 BBC MICRO AUDIO STORAGE SCOPE BBC MICRO AUDIO
INTERFACE NOY 84 INTERFACE Nov 84 387 MAINS CABLE DETECTOR Oct 84 386 DRILL SPEED CONTROLLER OCI 84 362 VARICAP AM RADIO May 84 337 BIDLOGICAL AMPLIFIER Jan 84 263 BUZZ OFF Mar 83
242 INTERCOM no case July 82
240 EGG TIMER June 82
108 IN SITU TRANSISTOR TESTER June 78 106 WIERD SOUND EFFECTS GEN Mar 78
101 ELECTRONIC DICE Mar 77

Price

£10.78
f14.24
$£ 71.47$
£ 11.65
ع 11.65
f22.41
£22.41
£15.58
£ 32.39
c8.94
£13.17
$£ 30.60$
f30.21
$£ 31.93$
£10.07
E21.41 $£ 49.95$ $\mathbf{f 6 . 2 5}$
£9.60
$\mathbf{f} 9.15$
$\mathbf{f} 5.86$
$£ 5.86$
$£ 7.08$
£8.63
£ 30.63
£22.37
£40.82
C 40.82
f6.31
£9.91
f15.02
$£ 27.59$
f6.49
L6.49
f 7.85
£10.76
£8.94

HAMEG HM 203-7 OSCILLOSCOPE
New model just arrived. High quality reliable instrument made in W. Germany. Outstanding performance. Full two year parts and labour wartanty. $20 \mathrm{MHz}-2$ channels 1 mV sensitivity f338 Easy to operate and high performance E59.15 VAT Next Day Delivery 610.00 (cheques must be cleared)

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURES WITH ELECTRONICS

The ciassic Easy to Follow book suitable for all ages. Idea for beginners. No soldering, uses an S-DEC breadboard. Gives clear instructions with lots of pictures. 16 projects including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S.DEC breadboard and all the components for the series. ADVENTURES WITH ELECTRONICS COMPONENT PACK (less book)

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist series - An enjoyable introduction to electronics. Full of very clear full colour pictures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full colour pages cover all aspects - soldering - fault finding - components lidentification \& how they work). Also full details of how to build 6 projects - burglar alarm, radio, game, etc. Requires soldering -4 pages clearly show you how.
The components supplied in our pack allows all the projects to be built and kept. The book is available separately.
FUN WITH ELECTRONICS Book
$€ 2.95$
COMPONENT PACK (less book)

30 SOLDERLESS BREADBOARD PROJECTS

A book of projects by R. A. Penfold covering a wide range of interests. All projects are built on a Verobloc breadboard. Full layout drawings and component identification diagrams enable the projects to be built by beginners. Each circuit can be dismantled and rebuilt several times using the same components. The component pack allows all projects in the book to be built one at a time.
Projects covered include amplifiers, light actuated switches, timers, metronome, touch switch, sound activated switch, moisture detector, M.W. Radio, Fuzz unit, etc.

30 SOLDERLESS BREADBOARD

PROJECTS BOok 1
£2.95

ENJOYING ELECTRONICS

A more advanced book which introduces some arithmetic and calculations to electronic circuits. 48 chapters covering elements of electronics such as current, transistor switches, flip-flops, oscillators, charge, pulses, etc. An excellent follow-up to Teach-in or any other of our series. Extremely well explained by Owen Bishop who has written many excellent beginners' articles in numerous electronics magazines.

ENJOYING ELECTRONICS Book
COMPONENT PACK
Note - A simple multimeter is needed to fully follow this book. The M102 BZ is ideal.
£13.98

A FIRST ELECTRONICS COURSE

A copiously illustrated book that explains the principles of electronics by relating them to everyday objects. At the end of each chapter a set of questions and word puzzles allow progress to be checked in an entertaining way. An S-DEC breadboard is used for this series - soldering is not required.

A FIRST ELECTRONIC COURSE BOOK
PACK
£4.99
£22.83

INSULATION TESTER

EE.APRIL 85

A reliable electronic tester which checks insulation resistance of wiring appliances etc., at 500 volts. The unit is battery powered simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. One of our own designs and extremely popular. KIT REF 444
£22.37

3 BAND
 SHORT WAVE RADIO

EE AUG 87
Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker, Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.
KIT REF 718
130.30

DIGITAL FREQUENCY 200 MHz METER
 \section*{EE NOV 86}

An 8 digit meter reading from AF up to 200 MHz in two ranges. Large 0.5^{n} Red LED display. Ideal for AF and RF measurements. Amateur and C.B. frequencies.
KIT REF 563

EE
 EQUALISER
 EE MAY '87

671.47

A mains powered ioniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB.
KIT REF 707

LIGHT RIDERS

EE OCT '86
Three projects under one title-all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling over 500 watts.
KIT REF 559 CHASER LIGHT $£ 15.58$ KIT REF 560 DISCO LIGHTS £22.41 KIT REF 561 LAPEL BADGE £11.65

PET

SCARER
EE MAY 89
Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered (9V-12V or via Mains Adaptor) KIT REF 812
Mains Adaptor $£ 2.02$

DIGITAL COMBINATION LOCK

EE MAR '91

Digital combination lock with a 12 key keypad. 4 digit code operates 250 V - 96 A SPCO relay. A special anti-tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security. Can be operated in many modes (latching/unlatching, manual/automatic setting, continuous/momentary output, etc.). Article describes operation as Vehicle Immobilising securit, system. Low current drain Kit includes drilled case
KIT REF 840

ACOUSTIC PROBE

EE NOV '87
A very popular project which picks up vibrations by means of a contact probe and passes them on to a pair of headphones cr an

amplifier. Souncs from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
£20.01

MICROCONTROLLER LIGHT SEQUENCER

EE DEC '90
A superb kit with pre-drilled painted and silk screer printed case for a really professional finish. This kit uses a microcor troller I.C. to generate 8 -channel light sequences.. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also available. 1000 watts per channel, zero volt
switching, inductive load capability. Opto-isolated for total safety. Many other features Complete kit in=ludes case, PCBs, all components and hardware.

KIT REF 838

EE TREASURE HUNTER
 \section*{EE AUG '89}

A sensitive pulse induction Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground effect". Can be used with search-head underwater. Easy to use and build, kit

includes search-head, handle, case, PCB and al parts as shown.
KIT REF 815
Including headphones

DIGITAL

 CAPACITANCE METEREE DEC 85
Simple and accurate (1%) measurement of capacitors from a few pF up to $1,000 \mu$ F. Clear 5 -digit LED display indicates exact value. Three ranges - pF, nF, and $\mu \mathrm{F}$. Just connect the capacitor, press the button and read the value. KIT REF 493

MOSFET
 VARIABLE BENCH 25V 2.5A POWER SUPPLY

EE FEB 88

A superb design giving 0.25 V and $0-2.5 \mathrm{~A}$. Twin panel meters indicate Voltage and Current. Voltage is variable from zero to 25 V . A Toroidal transformer MOSFET power output device, and Quad op-amp 1 C design give excellent performance.
KIT REF 769

4 CHANNEL LIGHT CHASER

EE Jan '90

A 1000 W per channel chaser with zero volt switching, hard drive, inductive load capability, mic sound sensor and sophisticated beat' detector. Chase steps to music or auto when quiet. Variable speed and mic. sens. LED mimic on front panel. Switchable for 3 or 4 channels. P552 output. Ideal for rope lights, pir spots, disco and display lighting.
KIT REF 833
£32.13

EPROM ERASER

EE OCT '88

Safe low-cost urit capable of erasing up to fou EPROM's simultaneously in less than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.
KIT REF 790
£28.51

SUPERHET BROADCAST RECEIVER

EE MAR '90

At last, an easy to build SUPERHET A.M. radio kit . Covers Long and medium Wave bands. built in loudspeaker with \uparrow watt output. Excellent sensitivity and selectivity provided by ceramic I.F. filter. Simple alignment and tuning without special equipment. Kit available less case, or with pre-cut and drilled transparent plastic panels and dial for a striking see-through effect.
KIT REF 835 -
f17.16

E.E. TREASURE HUNTER P. I. METAL DETECTOR

A highly developed and acclaimed Magenta design giving excellent performance and reliability. Quartz crystal controlled circuit with MOSFET coil drive and high slew-rate DC coupled amplification. Detects a 10 p coin at 20 cm and larger objects much deeper. Full kit includes ALL components, drilled and tinned PCB, search head, handle, case and all plastic parts. Some simple drilling is required.

- Efficient CMOS design with low battery drain.
- Single winding search coil needs no sensitive adjustments.
- No 'ground effect' - works normally with search head immersed in sea water.
- Variable pitch audio output to lightweight headphones.
- Simple operation using single one-touch control.
- Powerful coil drive.
- Detects Ferrous and nonferrous metal - Gold, Silver, Copper etc.
- 190 mm diameter search coil gives large area coverage.
Kit includes headphones.
KIT REF. 815 £45.95

DIGITAL CAPACITANCE METER

A wonderfully easy to use instrument giving direct read-out of capacitors from 1 pF to 1000uF. Quick and accurate to use even by absolute beginners. 1\% accuracy circuit using close tolerance charging resistors and quartz crystal timing.

- Kit includes punched and printed case, PCB, and all components.
- Large bright 5 Digit LED display.
- Direct read-out in uF, pF, nF.
- Calibration not required.

KIT REF. $493 . . £ 49.95$

MAIL ORDER AND SHOP

EE104
 MAGENTA
 135 Hunter Street Burton-on-Trent Staffs, DE14 2ST Tel: 028365435 Fax: 028346932

EVERYDAY
ELECTRONICS

INCORPORATING ELECTRONICS MONTHLY

The No. 1 Magazine for Electronic \& Computer Projects VOL. 21 No. 7 JULY '91

Editorial Offices:

EVERYDAY ELECTRONICS EDITORIAL
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1 JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692 . DX: Wimborne 45314
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:

EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO 13 OJS.
Phone (0255) 850596

SPECIAL MODELS SERIES

This month we start a new series of projects that are, as far as we are aware, unique in their form of construction and presentation. The electronics involved in these projects have been specifically designed to fit inside cardboard models for which we also provide constructional details. The series thus provides two areas of hobby interest, electronics combined with the construcion of simple models.
Because of this unique approach - one which we hope will interest many "new" readers to have a go and build up their electronic projects - we decided to use the Vero Easiwire solderless wiring system as a means of constructing the circuitry. This system has a number of advantages for those who are inexperienced in project building, namely that we can supply printed component layouts on cardboard and (obviously!) no soldering is required.
Unfortunately the series very nearly floundered when we discovered that BICC-Vero Electronics Ltd., had decided to discontinue Easiwire. Fortunately, we have subsequently found two suppliers who have good stocks of Easiwire and who have combined with us to provide a Simple Models Series Special Offer. This enables you to purchase an Easiwire at well below the original price - or even to get one Free if you buy enough of the inexpensive project kits for the series, see page 438 for all the details.
We hope this unusual series will inspire a number of new recruits to build some electronics for their models (whatever the models are) or even some electronics hobbyists to venture into the world of model making. The two hobbies do seem to complement each other very well.

COMING SOON

Our other regular series Teach-In '9 1-Design Your Own Circuits has attracted considerable interest, this type of theory series seem to be more and more popular with EE readers. With this in mind and to assist with learning/teaching of science, in line with recent innovations in education, we will be running a series of articles entitled Information Technology' and ATI2 commencing in the November ' 91 issue.
This series will again be of interest to everyone who wants to learn about electronics, but it has been specifically designed to follow the structure of Attainment Target 12 (AT12) in the Science National Curriculum. If you have any interest in this area, please make sure you do not miss Part One. You have been warned!

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 17.00$. Overseas: $£ 21.00$ ($£ 39$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept.. 6 Church Street, Wimborne. Dorset BH21 1 JH. Tel: 0202 881749 . Subscriptions start with the next

available issue. We accept Access (MasterCard) or Visa payments, minimum order $£ 5$.

BACK ISSUES

Certain back issues of EVERYDAY ELECTRONICS are available price $\mathbf{£ 1 . 7 0}$ ($£ 2.20$ overseas surface mail) inclusive of postage and packing per copy - $£$ sterling only please, Visa and Access (MasterCard) accepted, minimum order $£ 5$. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1 JH Tel: 0202881749 . In the event of non-availability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Jan, Feb, Mar, Apr, June, Oct, \& Dec. 88, Mar 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.95$ ($£ 6.95$ to European countries and $£ 9.00$ to other countries, surface mail) inclusive of post and packing. Normally sent within seven days but please allow 28 days for delivery.
Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted. minimum order ff. Tel: 0202881749

Editor: MIKE KENWARD

Secretary: PAMELA BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorportion or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and international reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertigers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactore. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe would like to advise readers that centain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country; overseas readers should check local laws.

Constructional Project

ULTRASONIC PROXIMITY METER

CHRIS WALKER

Experimentalproject that can be customised to individuals own requirements. Applications inc/ude personnelproximity detector and motorist's parking aid.

ELECTRONIC distance measuring devices using an ultrasonic sound beam are readily available at di.i. stores these days. Featuring a digital readout in a choice of metric or imperial units. they claim to make measuring a cinch by eliminating the need for a helper to hold the other end of the tape.
In the authors experience. these ultrasonic measurers are a contrivance of limited practical use. They can only measure to a relatively large soundreflecting object and the user can never be sure that the reading displayed corresponds to the object in question. Reflections from "foreign" objects are quite common. Many people end up fetching out the old stee tape to check the digital reading!
Ultrasonic distance measurers do, however, have plenty of application in other fields. The Ultrasonic Proximity Meter des-
cribed here consists of a sensor unit and a display unit linked by a cable which can be several metres long. The display is made up of a row of eight light emitting diodes forming a "dot" bargraph which shows the distance between the sensor unit and any sound-reflecting" surface.
The maximum range, i.e. the distance at which the eighth l.e.d. lights up, is adjustable from about 2 in down to 0.1 m (the shorter range giving higher display resolution). In addition to a visual display, the unit can be made to act as a proximity switch to sound an alarm or operate a relay when one particular l.e.d. switches on.

APPLICATIONS

The Ultrasonic Proximity Meter is designed as an open-ended project to be customised to readers own requirements.

Applications are numerous and include: Fluid level measurement. In this use the sensor would be mounted at the top of a tank. directed downwards so that the ultrasound is reflected off the surface of the liquid. The display would directly show the fluid level and could also warn of overflow or low-level conditions.
Personnel proximity detector. For detecting people standing near to a door or shop counter etc.

Proximity detector for rohoric systems.

Parking aid for the motorist. With the sensor unit mounted low on the garage wall, this device should allow the driver to position the car close to the wall without modifying the smooth contours of the bodywork!

REVERSING METER

This project actually started its life as a reversing meter for the motorist. It was intended to mount the sensor unit on the vehicle's rear bumper so that the display would indicate the distance to an object behind when reversing. Like so many other

Fig. 1. System block diagram for the Ultrasonic Proximity Meter.

designs. however, this one worked great on the bench but when installed on the car, two major problems arose.
Most significantly, it was going to prove very difficult to protect the ultrasonic transducers from the onslaught of water. mud and salt spray experienced at the rear of the vehicle. Regular car washing added to the need for robust environmental protection. The designer dabbled with several ideas for aerodynamically shaped housings and solenoid operated waterproof hatches to protect the transducers.
However, in addition to the dirt problem, it was discovered that the transducers do not operate very satisfactorily in freezing winter temperatures. Constructors who may like to use the Proximity Meter on the outside of the car will have to overcome these problems.

HOW IT WORKS

The block diagram of the complete system is shown in Fig.1. Basically, the unit relies on the fact that sound waves travel at a speed of about $330 \mathrm{~m} / \mathrm{s}$ through air.
and filtering, this pulse resefs the flip-flon which causes the counter to freeze and display its current state on one of the eight display l.e.d's. This output is displayed until the next pulse from the monostable once again resets the counter and initiates the next timing sequence.

The Johnson counter has ten outputs (although only eight are used for the display) which go "high" in sequence on every clock pulse. Since the distance from the transducers to target determines the time taken for the reflected pulse to be received, this distance also determines how many clock pulses are used to increment the counter which, in turn, decides which l.e.d. in the bargraph becomes illuminated at the end of every cycle.

CIRCUIT DESCRIPTION

The circuit diagram of the display unit is shown in Fig.2. One half of the dual oscillator ICl employs resistors RI and R 2. preset potentiometer VRI and capacitor
trimmed to match the resonant frequency of the transducer
The other half of ICl , along with resistors R3 and R4, preset VR2 and capacitor C2 generates the system oscillator signal at pin 9 which is adjustable using VR2 from about 700 Hz to 13 kHz . This signal is fed into the clock input of IC2 (pin 10), a 14-stage ripple counter

The output from the tenth stage (pin 14) of IS2 is connected to capacitor C3. Every time pin 14 goes high, the voltage at the junction of C 3 and resistor R 7 rises to a logic 1 level but rapidly drops as C3 charges up via R7. With the values given the voltage stays "high" for about 0.2 ms .

This pulse is used to pass the 40 kHz carrier signal through NAND gate IC3a and an inverted version of the carrier signal through gate IC3b. The antiphase outputs from these two gates "push and pull" current through the ultrasonic transducer X I which is mounted in the sensor unit. Connection to this unit is made via socket SK1.

The 0.2 ms pulse is also used to reset the Johnson counter IC5 (pin 15) and, after

Fig. 2. Circuit diagram of the proximity meter Display Unit

By timing how long it takes a pulse of ultrasonic sound waves to travel from the transmitter, reflect off the target object and return to the receiver, the circuit can calculate how far away the target is.

By using high frequency sound at 40 kHz (which is above the human range of hearing), the system is less likely to suffer interference from everyday noises. Also, ultrasound is fairly directional and thus ideally suited to this kind of application.

The frequency of the system oscillator is adjustable and this has the effect of varying the usable detection range as mentioned earlier. This frequency is divided by 210 and, on every rising edge of the resultant signal, the monostable section generates a pulse which feeds a 0.2 ms burst of 40 kHz signal to the ultrasonic transmitter.

At the same instant, the monostable output pulse resets the Johnson counter and sets the flip-flop. The flip-flop output goes high and enables the counter which then proceeds to count upwards. clocked by the system oscillator.

The counter continues to increment until the ultrasound pulse arrives back at the receiver transducer. After amplification

Cl to generate the 40 kHz carrier frequency at pin 5 for the ultrasonic transmitter. VRI allows the actual frequency to be
inversion through gate IC3c. the pulse acts to set the bistable flip-flop created by NAND gates IC4a and IC4b. When set,

the output at pin 4 IC4b goes "low" and this allows the INHIBIT pin on IC5 (pin 13) to relax to 0 V through pull-down resistor R9.

The counter IC5 can now start to increment, receiving clock pulses at pin 14. Note that transistor TRI is used to invert the system clock signal before it is fed to IC5. This is necessary because IC5 features a rising edge triggered clock, whilst the frequency divider IC2 is falling edge triggered. Inverting the clock ensures that the whole system stays synchronised.

COUNTER AND DISPLAY

After the first clock pulse at pin 14 IC5 l.e.d. D4 lights, after the second pulse l.e.d. D5 and so on up to l.e.d. D 11 which lights after the eighth pulse. If no target object is detected after this time, the ninth clock pulse will cause the counter to inc rement to its final state where pin 11 IC5 goes high. This pulls the INHIBIT pin (pin 13 IC5) high via diode D3 which stops the counter, preventing it from overflowing back to zero.
The counter can be stopped at any time prior to this by the returning ultrasound
pulse. After amplification in the Sensor Unit, the 40 kHz signal is presented to SKI pin 5 . The positive half cycles of the signal pass through diode DI and cause capacitor C4 to charge up so that the voltage at pin 13 IC4d rises to a logic 1 level.

When the 40 kHz signal stops, capacitor C4 discharges via resistor R8 and pin 13 1 C 4 d drops to 0 V . Providing pin 12 IC 4 d is high, the presence of received ultrasound will cause pin 11 IC4d to go low and reset the flip-flop, causing pin 4 IC4b to go high and inhibit counter IC5.

Pin 12 IC4d stays low whilst the zeroth stage output from the counter (pin 3 IC5) is high. This means that any ultrasound received betore the first increment of the counter will be ignored. This is important. otherwise sound picked up by the receiver transducer directly from the transmitter without first being reflected off the target would cause the flip-tlop to be immediately reset.

Capacitors C5 to C7 decouple the power supply lines and help to remove the glitches which occur as the ultrasonic pulse is transmitted and as the display l.e.d's turn on and off. C5 is placed near the flip-flop and C6 and C7 close to the counter chip.

Current consumption is between 25 mA and 40 mA depending on whether the l.e.d’s are illuminated. For intermittent use, a 9 V PP3 battery is adequate, but continuous use will dictate the need for a larger battery or mains derived power supply. The circuit will operate down to 5 V but the supply should not exceed 10 V .
No current limiting resistors are used for the l.e.d's D4 to DII, This is because the outputs from the 4017 CMOS counter cannot supply more than a few milliamps for each l.e.d. The use of high brightness l.e.d's is, therefore, recommended.

REMOTE SENSOR

The circuit diagram of the Sensor Unit is shown in Fig.3. IC6 is a low noise. f.e.t. input, quad operational amplifier package. Section IC6e is not used.
Op.amp section IC6d is wired as a voltage follower. It provides no voltage gain but it buffers the input signal from the receiver transducer X2. Op. amp IC6a, resistors R11 and RI2 and capacitor C8 act as a high-pass filter/amplifier, providing a gain of 100 above a frequency of about 34 kHz .

$601 / 0$	Approx cost guidance only
Resistors	Semiconductors
R1, R3 1k (2 off)	D1, D2,
R2 15k	D3, D12.
R4, R5 4k7 (2 off)	D13 1N4148 silicon diode (5 off)
R6 12k See	D4-D11 High brightness light
$\begin{array}{lll}R 7 & \text { 33k } \\ R 8 & 100 k & \text { Sel } \\ \text { R }\end{array}$	TR1 Emitting diode (8 off)
$\begin{array}{ll} \text { R8 } & \text { 100k } \\ \text { R9, R11 } & 10 \mathrm{k}(2 \end{array}$	transistor
R10 68k	TR2 TIP122 npn power
R 12 1M Page	Darlington transistor
R13 3k9	IC1 TLC556 dual CMOS timer
R14 180k	IC2 4020BE ripple counter
*R15, R16 2k2 (2 off)	IC3 4011 BE quad NAND
All $0.6 \mathrm{~W} 1 \%$ metal film or$0.25 \mathrm{~W} 5 \%$ carbon film	IC4 4093BE quad NAND Schmitt
	IC5 $\quad 4017 \mathrm{trigger} 10$-stage counter
Potentiometers	IC6 TL074 quad f.e.t-input op-amp
VR1 4 k 7 min . preset, horiz.	IC7 ICL7660 voltage converter
VR2 100k min. preset, horiz.	Miscellaneous
Capacitors C1 C4	X1, X2 40 kHz .Ultrasonic transducer transmitter/receiver pair
	S1 Single-pole toggle switch
C9 1 n polyester layer (3 off)	PL1 5-pin DIN plug
C2, C3 10 n polyester layer (2 off) C5, C6 47n metallised polyester film	SK1 $\begin{gathered}\text { 5-pin panel-mounting DIN } \\ \text { socket }\end{gathered}$
(2 off) C7 22μ axial elect., 25 V	Plastic cases, size $116 \mathrm{~mm} \times 78 \mathrm{~mm} \times$ 36 mm and $72 \mathrm{~mm} \times 50 \mathrm{~mm} \times 25 \mathrm{~mm}: 8$-pin
C8 470 p polystyrene	d.i.I socket; 14 -pin d.i.l. socket (4 off);
C10 100μ axial elect., 35 V	16-pin di.i. socket (2 off); 4-core individually
C11 22μ radial elect., 25 V	screened cable; battery clip; 9V battery (see
C12 10μ radial elect., 63 V	text); flexible multi-coloured connecting wire;
C13 $4 \mu 7$ axial/radial elect., 25 V	solder pins; solder etc.
Printed circuit boards available from EE PCB Service, codes EE753 and EE754. - Optional components for external add-on driver circuit, see Fig.6.	

Fig. 3. Circuit diagram for the Sensor Unit.

Resistors R13 and R14, IC6b and capacitor C9 provide another stage of amplification for ultrasonic signals, resulting in a further gain of 50 . The output from this stage (pin 7 IC6) is fed via a screened cable to plug PLI which connects to socket SKI in the Display Unit.
A negative supply generator IC7 creates a -9 V rail for the op-amps. Diode D12 and capacitor C12 are used by this chip. Capacitors C10 and Cll provide further decoupling and smoothing in the vicinity of the amplifier circuits.

CONSTAUCTION

The Ultrasonic Proximity Meter is built on two printed circuit boards (p.c.b.s). These boards are available from the EE PCB Service, codes EE753 and EE754

The component layouts and full size copper foil master patterns are shown in Fig. 4 and Fig.5. Note that the widths of both p.c.b.s are identical, so they can be manufactured as a single board and carefully cut using a hacksaw after etching.

Start construction by assembling the larger. Display Unit p.c.b., referring to Fig.4. Take care when soldering as very thin tracks pass between the i.c. pads in two places on this board and it is easy to bridge across these

If you do make a mistake, excess solder can be removed either by holding the

board horizontal with the track side downwards and applying the clean soldering iron bit so that solder runs off the track down the iron, or you can use a soldersucker. Do not, however. rely too often on either method. The copper tracks are only bonded to the fibreglass board with adhesive and they will soon lift off if excess heat is applied
Some over-enthusiastic solder-suckers also have a habit of devouring the tracks! The solder-sucker is a useful but rather harsh tool and it is best not to make mistakes in the first place.
Insert the two wire links onto the display p.c.b. and then solder in five d.i.l. sockets for IC1 to IC5. These sockets occupy most holes on the p.c.b. and help the constructor to orientate himself more easily on the board and reduce the risk of putting the other components in the wrong places.
All the other components can now be added in any convenient order. The electrolytic capacitor C7 has + and leads which must be located as shown.
Diodes D1 to D3 must also be inserted the correct way around. The cathode (k) lead is marked by a thin band around the diode body. These components are sensitive to excess heat when soldering so avoid frying them by keeping the iron on the joint for no more than about three seconds. This advice also applies to transistor TRI and this component also has to be orientated correctly with the flat side on its case adjacent to resistor R9.
When soldering the two preset potentiometers VRI and VR2 you may find that it is difficult to prevent solder running through the holes in the p.c.b. and up the legs of the presets. The designer finds it best to solder these devices in two stages.
First apply just enough solder to hold the preset in place. allow the joints to cool and then re-apply the iron and solder to "fill
out" the solder joint. Do not leave the iron on for long or the solder will run up the preset's leg.

FL YING LEADS

Sixteen off-board flexible lead connections have to be made to various other components. It will be found most convenient, at this stage, if terminal pins are inserted into the p.c.b. for this purpose.
The flying leads are later soldered to these pins on the component side of the board. Alternatively, you can solder about 10 cm lengths of wire directly to the solder pads but, using this technique. the wires tend to break off if they are manipulated

Fig. 5. Printed circuit board component layout and full size (top right) copper foil master pattern. The connections to the screened link cable DIN plug are also shown.
"near" (minimum range) l.e.d. and DII is the "far" (maximum range) indicator Like other semiconductors. l.e.d's can be damaged with too much heat during soldering.

The five i.c.s can now be inserted into their sockets. All of them are CMOS devices and. although they are quite robust. they are susceptible to damage from static electricity. Discharge your body by touching an "earthed" object before handling the chips and then try not to touch their pins.

On new i.c.s the two rows of pins are usually splayed out too wide to fit in the sockets and they require gentle bending by pressing the entire row on a hard, flat surface. All five devices lie in the same direc-
Layout of components inside Display

(right) The completed circuit board mounted in a small plastic case. The ultrasonic transducers are glued to one side panel and the screened lead is held in the recess by the lid.

tion on the circuit board with their identification notches positioned as shown.

In the prototype the battery was held in place inside the box with a doubledsided sticky pad. The p.c.b. was sufficiently anchored by its own flying leads.

SENSOR UNIT

Assemble the Sensor Unit p.c.b. according to Fig.5. Use d.i.l. sockets for the two i.c.s and carefully ensure that the three electrolytic capacitors. C10 to C12, are orientated correctly along with the diode DI2.
The prototype sensor is housed in a plastic case measuring $72 \mathrm{~mm} \times 50 \mathrm{~mm} \times 25 \mathrm{~mm}$. The ultrasonic transducers XI and X2 are glued onto the outside of this case with their leads protruding through small holes drilled in the side panel. The centres of the transducers should be positioned between 4 cm and 5 cm apart

It is important to identify which transducer is the transmitter and which is the receiver as they are electrically different. Your component supplier should be able to tell you which one is which.

The receiver, X 2 , is linked to the sensor p.c.b. by two very short lengths of wire no more than 3 cm long. The "earth" connection of the transducer (that is the one connected to its metal case) goes to 0 V on the circuit board.

SCREENED CABLE

A 4-core individually screened cable links the display and sensor units. Altach a 5 -pin DIN plug to one end of the cable. The screen in the cable connects to the metal body of the plug by trapping it
under the cable grip and squeezing the jaws of the cable grip around the screen and cable using pliers. The four cores are connected to the plug as shown in Fig. 5.
At the other end of the cable. two of the cores connect directly to XI, the transmitter transducer. Polarity of this transducer is not important. The remaining two cores and the screen connect to the p.c.b. as shown. Insert the two i.c‘s into their sockets at the end of assembly

TESTING and ADJUSTMENTS

To test that the Ulirasonic Proximity Meter is working correctly, plug the sensor cable into the DIN socket, connect a battery and switch SI on. Turn the two display presets VR1. VR2 to about midposition and point the Sensor Unit away from any close objects.
It should be possible to see all eight l.e.d.s briefly flash about once every second each time an ultrasonic pulse is transmitted. If nothing happens go back and check all your work; soldering, component location and interwiring.

If l.e.d. D4 stays on even when the Sensor is far from any object then it is possible that ultrasound from XI is pass ing directly to X2 and causing the latter to resonate for a short time after the 0.2 ms pulse is transmitted. This problem can usually be solved by wrapping XI in sound absorbing foam rubber. Selfadhesive draught-excluding strip is usefu for this purpose. For some reason, although I am not sure why, this difficulty seems more acute at very low temperatures.

Front panel layout of the Display Unit.

Fig. 6. External output driver circuit diagram.

Now turn VR2 fully anticlockwise and place the Sensor about 2 m in front of a large reflecting surface such as a wall. VRI should be adjusted to bring the transducers into resonance so that the Proximity Meter reliably detects the wall at its maximum range. VRI needs no further adjustment. but VR2 can now be set to give the required operating range/display resolution.
Target detection is most efficient when the surface of the object is perpendicular to the sensors, and hard surfaces are more reflective than soft ones: a liquid surface is an excellent reflector. As mentioned towards the beginning of this article, the transducers are not waterproof so unsheltered outdoor operation of the sensors is not recommended.

OUTPUTDRIVEF

Any one or more outputs from the Johnson counter IC5 can be used to operate a relay or warning device etc. For example, if the Ultrasonic Proximity Meter is used to monitor the level of water in a tank then one output can be used to switch on a solenoid water valve to replenish the tank contents if the level drops too low. In addition. another output can be made to sound an alarm if the level becomes too high.
An add-on circuit used to drive an output device is shown in Fig.6. Note that the relevant l.e.d. must be disconnected and replaced by this circuit.
Transistor TR2 is a Darlington device which provides the very high gain neces-
sary to boost the low current sourcing ability of the CMOS output from IC5. Capacitor C13 smooths out the brief "drop-outs" which occur every time the ultrasound pulse is transmitted and diode DI3 removes any high-voltage back e.m.f. which could be generated when inductive loads (e.g. relay coils) are switched off.
The transistor can safely switch load voltages up to about 24 V d.c. at a maximum current of 5A. Since, in use, the transistor is either switched off or fully on. it should not dissipate much power, but heatsinking may be necessary if the device is run close to its limits.

Readers wishing to control higher currents/voltages or a.c. loads should use this circuit to drive a relay coil and then use the relay contacts to switch the load.

DIGITAL SIMULATION

PULSAR £195

- At last! A full featured Digital Circuit Simulator for less than $£ 1000$!
- Pulsar allows you to test your designs without the need for expensive test equipment.
- Catch glitches down to a pico second per week!
- Superbly easy to learn and use.
- Runs on PC/XT/AT/286/386/486 with EGA or VGA. - Not Copy protected.

For full info' Phone, Fax or Write to:
Number One Systems Itd.
REF: EVD, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND. Telephone: 048061778 (7 lines) Fax: 0480494042 International: +44-480-61778 Fax: + 44-480-494042

PCB and SCHEMATIC C.A.D.

EASY-PC
$£ 98$

- Runs on PC/XT/AT/286/386 with Herc, CGA, EGA or VGA.
- Design Single sided, Double sided and Multilayer boards.
- Provides Surface Mount support.
Standard output includes Dot Matrix / Laser / Inkjet printers, Pen Plotters, Photo-plotters and NC Drill.
- Award winning EASY-PC is in use in over 8000 installations in 50 Countries World-Wide.
- Superbly Easy to use. - Not Copy Protected.

Options - 1000 piece symbol library - £38.00
Gerber Import facility $\mathbf{\Sigma 9 8 . 0 0}$

FROM FISH TO CHIPS

James F. Fowkes

WHEN the Trojan wars were being fought in Greece, long before the rise of the Roman empire, shocks from "torpedo" fish (which belong to the skate family) were being used to cure gout and rheumatism. These fish generate electric shocks from an organ in their heads to defend themselves.
But the first example of a "man-made" electric shock must surely be in the Old Testament of the Holy Bible. Three thousand years ago. just after the period we now call the Bronze Age. in the second book of Samuel, 6, 7:.". Uz-zah put forth his hand to the ark of God and took hold of it (to steady it) when the oxen shook it. And God smote him for his error; and there he died
The Old Testament defines an Ark as a wooden chest. and in Exodus 25, 10, and 37. 1, it even details its construction. It would appear to be a very efficient, if primitive means of storing electricity.
And it describes the construction of clothing for the priests who carried the ark, too. In Exodus 39. 3- there is a remarkable resemblance to that worn by modern-day linesmen/electricians working on extra high voltage lines, and to that worn by atomic power station employees working in "hot" areas, even to the earthing chains

ELECTRA

But what we know now of the science of electricity really started in 585 BC , not long after the first of the Olympic Games began from the Temple of Zeus, in Greece.
A man named Thales who lived in a town called Miletus became known as "one of the seven wise men" after he discovered that amber would attract other materials when it was rubbed. The name given to amber and other bright minerals in those days was Elektra - or "electron"
Only a hundred years later a Roman scholar named Leucippus tried to describe how the Universe was held logether. And two hundred years after that Democritus. who became known as the "Father of physics". was teaching atomic theory. ("Atoma" is Greek for indivisible).
Nothing really exciting happened then
until about the middle of the 15th century. when Shakespeare was producing his great works, and Drake sailed the Spanish Main - and defeated the Armada.

At Colchester, in Essex, a Doctor William Gilbert was made Court Physician to Queen Elizabeth, and given the task of investigating those early Greek experiments. He was able to electrify many more materials and coined the word "electricity".

FRANKLIN

By the 17 th century Benjamin Franklin. who was a philosopher and a journalist as well as a statesman. had shown how electricity could be collected from a kite flown in clouds during a storm.

Soon balloons were used instead of a kite. and even fishing rods held from upstairs windows in vain attempts to collect electricity; the more ignorant even collecting rain-water in jam-jars.

People learned to be more careful in these experiments after a Professor Riehmann, of St. Petersburg, was killed by a bolt of lighting. Then spark-gaps were fitted - closer to the point of discharge than to the observers.
In 1886 the Abbe Nollet is reported to have discharged a Leyden jar through an entire regiment of 1,500 men linking hands, who "all received a violent shock in the arms and shoulders".
John Dalton developed the atomic theory in about 1803. He reasoned that the smallest particle cannot be further subdivided without changing the element.
In 1837 Charles Wheatstone, at King's College in London's Strand, developed the line telegraph. It utilised the famous code consisting of dots and dashes invented by Samuel Morse

WIRELESS

Before the end of the century experiments were being conducted in wireless telegraphy using a telephone coherer (soon discarded for a galena crystal and catswhisker) to receive signals from a spark transmitter.
In 1908 Lord Rutherford established the electrical structure of matter and was
awarded the Nobel prize, and Niels Bohr extended his work so far as to evolve the "Quantum Theory" several years later.
Not long afterwards the famous author, J. B. Priestley (b. 1894), explained how he killed rats with batteries constructed from seven square feet of coated surface - and cats. with a four and a half square yard coating.
Sugar, eggs, fruit, etc., become luminous in the dark, when given an electrostatic charge.
After the first world war, in the East End of London and other big cities, stalls were being erected outside shops. On them traders constructed radio receivers (called wireless sets then) to demonstrate their simplicity to an enthusiastic public

VALVES

Before very long thermionic valves had superseded crystal sets, and the weekly ritual to the "electric shop" to get one's batteries charged became commonplace.
In the RAF museum at Cranwell, the first Services radio receiver was preserved; it was a crystal receiver.
Components were fitted with terminals in those days and screwed to a "breadboard". connection being made with 16 gauge copper wire. This was inevitably bulky and soon became superseded by soldered joints, which introduced a new technique to the enthusiastic amateur, who soon became adept with clumsy soldering irons, tins of tlux. and plumbers solder.
By 1937 the crystal was almost forgotten. Many complex thermionic valves had been invented for specific purposes - and could be bought new from as little as four (old) pence only two new pence.
In the German "People's set" four valves were incorporated in one glass envelope, but it was found expensive to replace.
Then came war. Higher frequencies (shorter wavelengths) were used to economise in airspace and made way for microwave Radar. But the interelectrode capacitance of thermionic valves was limiting high frequency performance and the crystal - now silicon came back into its own as a microwave demodulator diode.

TAANEISTOF

The Bell Telephone Laboratories added a second catswhisker to the diode in 1946 to introduce the trans(fer)-(res)istor.
Most retailers would only supply these primitive semiconductors to order because of their high cost. By 1950 a simple germanium audio transistor (an OC70, or "red spot") cost between $£ 2-£ 3$ (about half of an average week’s wage), and amateur societies like the RSGB were providing information to enable members to construct their own crude devices.
In similar fashion to the thermionic valve several transistors were amalgamated into one envelope; the "integrated circuit" - soon to be lovingly nicknamed "the chip" - had arrived.

Now we can incorporate more than ten million components onto a single "chip" using lithographic techniques. Gold "wire", used to join them, may he only several atoms thick and less than thousandths of an inch wide
But the silicon microchip has almost reached its limits of minaturisation. Investigations into gallium arsenide began in the midSo's, and it was found to be much faster (capable of higher frequencies) than silicon, and able to work at temperatures more than 80 degrees C. above that at which silicon breaks down.
In 1983, a contract from Defense Advanced Research Projects Agency enabled the Rock-

An early static electricity experiment is shown utilising a coil and two Leyden jars (one jar has been removed to show "static collector"). Inset reveals the lead coating, both inside and outside of the jar, which forms a capacitor. Other components shown are a switch (to earth the aerial when not in use); a microwave valve; coils and capacitors (the tiny dots behind the phones are latter-day capacitors); a Morse key; an early "Solon" soldering iron - and a tin of "Fluxite"
well Corporation to investigate gallium arsenide integrated circuits. Within three years they were producing 6K gate arrays $(6000$ transistors connected to each other to store digital information).
In 1985 Honeywell (a subsidiary of Rockwell) claimed to have produced the fastest ever transistor, using gallium arsenide. Taking measurements from a ring-oscillator at roomtemperature, each stage was switched in 11.6 trillionths of a second (11.6 picoseconds).

GaA devices recover from high-energy radiation breakdown much quicker than silicon, and will detect (and generate) light: making them very useful for telephone, medical. and other fibre-optic devices.

MOLECULAR ELECTRONICS

Molecular electronics. involving organic chemistry, was conceived in the mid $700^{\circ} \mathrm{s}$. It utilises biochemistry to design molecules for the basic elements of a computer system, and involves switching them by modulated laser beams. The optical connec
tions would have to be aligned exactly so that they focus onto the correct input and output molecules.
Since the molecular computer involves a three-dimensional structure, both ROM and RAM can be assembled to a very high density. permitting memories of a gigabyte or more. This opens up a whole new field of uses, from medically implanted monitors (that will immediately diagnose and treat any infection or emergency) to environmental monitoring.
But now those 6 K gates of the ' 80 's have led to the development of Gallium Arsenide optical switching elements arranged in clusters, and are each capable of processing $1,000,000,000$ (one billion) pieces of information every second.
(Light emilting diodes l.e.d's, can be seen in many applications; but laser diodes generate a more concentrated radiation of uniform wavelength. Photodiodes, using a similar method of manufacture. can be tuned to detect that same wavelength).

PHOTONICS

Scientists working for the Bell Laboratories in America have developed a computer which uses laser beams to carry its information through optical switching clusters. This permits it to run at up to 1.000 times faster than silicon-based electronic computers; it is only limited by the speed of light.
Capable of processing multiple instructions instantaneously. "clock" chip speeds (bit speeds) will be replaced by photons (light particles) - travelling at 186,300 miles per second - equivalent to more than one hundred million instructions per second. The computer will incorporate lasers, prisms, diffraction gratings and lenses which will accelerate, concentrate and focus the photon beam. This new technology has been called "photonics". Recent advances made in super conductivity - at near-ambient temperatures - may soon eliminate the 'time constant' from our equations.
We have reached the stage where we need computers to design computers. The atomic theories of the ancients have been replaced with twentieth century quantum mechanics. This involves the merge of microelectronics with biochemistry.
It was recently reported that the American Navy was experimenting with the idea of using dolphins in warfare.
Nobody has proved yet whether dolphins are related to skate.

*Historical Note:

Sir Oliver Lodge's coherer

If a glass tube have wo platinum wires sealed into its ends, and be filled with merallic filings, the electrical resistance beween the wires is. in the normal state of the tuhe, very great. If, however. electromagnetic radiation is falling on the whe. the resistance is much diminished, and a current will pass through a relay circuit including a batter:, a galvanometer, and the colverer. If the colverer be kept constantly tapped, so as to shake the filings, it returns to its initial state of high resistance when the siaves cease, and the current through it is stopped.
(From: The Theory of Experimental Electricity: by W. Whetham MA FRS Fellow of Trinty College, Cambridge: Published by University Press. 1905)

An early thermionic "bright-emitter" triode valve, circa 1907; a galena crystal and catswhisker (point-contact shown in inset); and a miscellany of more modern diodes, l.e.d.s and transistors; some integrated circuits and an EPROM.

This selection of thermionic valves spans nearly sixty years of valve technology. A "semi-shrouded" mains transformer is shown in the background which was used to supply power to these valves. This (typical) one can supply 300-0-300V at $100 \mathrm{~mA}, 6.3-0-6.3 \mathrm{~V}$ at 6A, and 4 V at 3 A .

ЕНОP
 din
 TALK

with David Barrington

Police Car - Simple Model Series
The new "model making" series commencing this month will have a wide appeal across a broad spectrum of our readers and it combines two interesting hobbies in one - namely electronics and models. There will be whimsical models and realistic scale models. So if you have some model makers amongst your friends who would like an easy "hands-on" introduction to electronics - pass the word around!
Assembly and wiring of the electronics is by the use of the Easiwire wire-wrapping system, which means no soldering. The models and circuits are built up on printed card, which can be obtained from the Editorial Offices for the sum of $£ 2$ (including postage) for the Police Car (other models prices to be announced as each one is published). You can, of course, photostat the published diagrams on to your own card.

To help with assembly, Greenweld Electronic Components (家 0703 236363) and Bull Electrical (s) 0273 203500) are putting together complete kits of parts, including printed cards, as each model appears. The first in the series is the Police Car, with siren, flashing beacon and indicators, and a kit will cost $£ 5.95$ plus $£ 1$ postage. - See Special Offer page 438
The above mentioned companies have large stocks of Easiwire solderless wiring packs and have agreed to make these available to EE readers who order kits from them. If you purchase any one single kit an Easiwire pack will set you back just f 5 . However, if you are prepared to order four or more of the kits listed they will supply a Easiwire kit FREE. When the wire-wrap kit was first introduced to the UK market by BICC-Vero they were advertised at $£ 15$, including postage

For those readers who wish to go their own way, all the components for the Police Car appear to be standard off-the shelf items, with the exception of the high intensity light emitting diode (l.e.d.). The only source we have been able to locate, apart from above, which lists a Yellow l.e.d with the correct specification (30mcd) is Electromail (0536 204555), the mail order arm of RS Components. This is quoted as stock code 587-844

It may be possible to use an Ultrabright or Superbright l.e.d., but they have NOT been tried in the model. These seem to have a higher rating, but only Red versions appear to be stocked by advertisers

It is quite possible that in some areas, the LM3909 le.d. flasher/oscillator chip, which
drives the siren, flashing beacon and indicators, may prove difficult to locate. If this is the case then Maplin can supply, code WO39N (LM3909 LED Flash/Osc.), and it is also currently listed by Cirkit, Greenweld and Omni to name but a few.
Disco Lighting System Modular
We do not expect any component buying problems to be encountered by constructors of the Masterlink, this month's Disco Lighting System module.

The metal instrument case for this module is the same for all modules in the series and is the Maplin Blue case 233, code XY84C. Other cases can be used but they must be of the same dimensions or greater and be METAL. It is also essential that the case be "earthed

The printed circuit board is available from the EE PCB Service, code EE752

12V NiCad Charger

The adjustable voltage regulator type L200 called for in the 12 V NiCad Charger appears in most components catalogues and should not be difficult to locate locally Be careful when mounting the heatsinks on the regulators as the metal "tabs" are also connected to the ground pin 3.

The combination of battery holder(s) for the NiCads will depend on battery size used and will have to be adapted and soldered ogether as required. The one in the model takes ten AA size in two groups of five one above the other, and is listed as a 12 V NiCad Battery Box.

It is most important, for safety considerations, that 3 A minimum rating cable be used where indicated Also, to avoid any possibility short circuits across the copper tracks, the circuit board should be mounted using nylon fixings and have insulating material, such as cardboard, taped to the bottom of the metal case below the board

Ultrasonic

Proximity Meter
We can not foresee any component problems when shopping for parts for the Ulitrasonic

LYS ELECTRONIC COMPONENTS

We have one of the largest ranges of used test equipment inc: Scopes, Analysers, Multimeters, Signal Generators, AF Bridges etc All by leading manufacturers. E.G. Philips PM3217 50 MHz Scope $£ 300$ For details on any of the above contac
LYS Electranic Components, 10 Westbrook Road, Portchester, Hants P016 9NS Tel: (0705) 386550 Tel:/Fax: (0705) 388303 (24 hrs)

Build or Upgrade your own I.B.M Compatible

	Cases Flip Top case with PSU. $£ 65.00$ De-Luxe AT case with speed display and PSU. \qquad $£ 92.50$ De Luxe Mini tower case with speed display and PSU. $£ 97.50$ (flip top cose accepts baby boards only, all others accept any board.)
	5.25' 1.2 Mb Floppy drive .. 550.00 $3.5^{\circ} 1.44 \mathrm{Mb}$ Floppy drive .. 550.00
	CA
	ONITORS
	Samsung 14' mono VGA ¢95.00
	Tystar 14' SVGA colour .. 5250.0 (1024×708)

This is just a small sample of our range. We have many other parts and books available, including modems, network cards, software, printers etc... Complete machines also supplied. Full detalis in our catalogue, write or call for your copy now. All our parts come with a one year warranty and are fully tested before despatich.

All prices Plus VAT

DIScollahts controuler

MIKE TOOLEY BA

> This companion project to our circuit design series features a three-chanmel Disco Lights Controller. As withall of our practical projects, a number of modifications are suggested so that the more intrepid constructor cancustomise the unit to his or her own particular requirements.

0UR Disco Lights Controller provides a means of controlling three separate light channels (each rated at up to 300 W) and is thus ideal for party and small-function use. The circuit can derive its input from one of several sources including the "auxiliary" output on the main amplifier, the loudspeaker output from the main amplifier, or from a microphone placed in close proximity to the loudspeaker system itself. The Disco Lights Controller has been designed for
safe and reliable operation and uses readily available components
Important Note: This project involves components which operate directly from the a.c. mains. It is essential that constructors adopt safe working practices when testing and operating this unit. In particular, it is important to ensure that the metal panels of the case are properly earthed and that all live connections are adequately insulated. Constructors should not attempt to make any connections to the unit nor should they
work on the filter/triac boards when the unit is "live" and connected to the mains supply.

CIRCLIT DESCRIPTION

The simplified block schematic for the Disco Lights Controller is shown in Fig. I. In most applications. the Disco Lights Controller will derive its input either from an "auxiliary" output on the main amplifier or directly from one (or both) of the loudspeaker outputs (see "Modifications" for details of a stereo loudspeaker signal combiner). In some other applications it may not be possible to make a direct connection to the audio equipment and thus a separate low-level "microphone" input is provided.
After preamplification (if required) the audio signal is fed to three active filters based on operational amplifiers. These filters separate the audio signal into three separate bands corresponding to "low" (20 Hz to 400 Hz approx.) "middle" $(400 \mathrm{~Hz}$ to 1.2 kHz approx.) and "high" $(1.2 \mathrm{kHz}$ to 20 kHz), as shown in Fig. 2.
The output of each filter stage is rectified and passed to a C-R "hold" circuit with a decay time constant of approximately 50 ms . The output from the hold circuit is

Specifications

Frequency response:

Aux. input impedance:
Aux. sensitivity:
Mic. input impedance:
Mic. sensitivity:
Max. load (per channel):
300W
Max. load (total):
Supply:
1 kW
"Low" channel, 20 Hz to 400 Hz (approx.) "Mid" channel, 400 Hz to 1.2 kHz (approx.) "High"' channel, 1.2 kHz to 20 kHz (approx.)

Okilohm (approx.) at 1 kHz
100 mV r.m.s. (typical)
50 kilohm (approx.) at 1 kHz
5 mV r.m.s. (typical)

220 V to 240 V a.c. mains (at 5 A maximum)
fed to the input of a comparator stage (with adjustable threshold). The output of the comparator drives an optically coupled triac (featuring zero-axis crossing triggering). This triac then drives a high-power mains triac which switches current in the external tungsten filament lamp loads for each channel.
In the complete circuit diagram (Fig. 3)
components are numbered on the following basis:
1 to 99 chassis, front and rear panel mounted components
100 to 199 "low" channel filter/triac
200 to 299
p.c.b
"mid" channel filter/triac p.c. b

The low-level "microphone" :-put from SK2 is applied to a conventional inverting operational amplifier stage (IC401a) which provides a voltage gain of approximately five and an input impedance of approximately 50 k . The output of this slage is then applied to an adjustable gain amplifier stage (IC40 lb) which provides a maximum voltage gain of approximately 50 . The resulting signal level at the output of IC401b is then typically in the range 200 to 500 mV r.m.s.
The three filter stages IC10I. IC20I and IC301 (for the "low". "mid" and "high" frequency ranges respectively) are each based on a single-stage operational amplifier. The output from each stage is fed to a voltage doubler rectifier arrangement (D101/D102, D201/D202 and D301/D302). The output of each rectifier arrangement is fed to a parallel C-R "hold" circuit (R105/C106. R205/C206 and R305/C306). The resulting voltage is applied to the input of a comparator stage (IC102. IC202 and IC302), the reference input of which is made adjustable (by means of VR101, VR201 and VR301 respectively).
When the rectified voltage produced by each rectifier/hold arrangement exceeds the pre-set threshold voltage. the output of the respective comparator (pin-7) goes low. This causes a current of approximately 19 mA to flow in the series connected channel indicator and opto-isolator l.e.d associated with the channel in question.
The triac output of the opto-isolator has an internal zero-axis crossing detector which is instrumental in minimising transient disturbances and noise generated on the a.c. supply rail. The triac is triggered into conduction no more than 10 ms after the signal at the output of its respective comparator stage is taken low
The low-power triac within each opto-isolator is connected so that it, in turn, provides a triggering current pulse to the power triac associated with the channel in question (CSRI01, CSR201 and CSR202). A "snubber" circuit (R110/C109, R210/C209 and R310/C309) is connected across the a.c. switching terminals associated with each triac. This C-R arrangement helps to reduce the rise time of the fast switching transients produced by the triacs and thus can help to reduce radiated noise and radio frequency interference (RFI).
A simple dual-rail power supply/bridge rectifier arrangement (TI, D401 to 404, C404 and C405) provides the necessary unregulated d.c. supply rails required by the operational amplifiers and com-

COMPONEVIS

Low channel filter/triac p.c.b.	
Resistors	
R101	10k
R102	10k
R103	not fitted
R104	22 k
R105	4 k 7
R106	4 k 7
R107	470
R108	56
R109	$3300.5 \mathrm{~W} 5 \%$
R110	$10000 \mathrm{WW} 5 \%$
All	

All $0.25 \mathrm{~W} \pm 5 \%$ unless otherwise stated

Potentiometers

VR101 1 k miniature horizonta pre-set

Capacitors

C101 10 n polyester
C102 not fitted
C103 not fitted
C104 10 n polyester
C105 $\quad 1 \mu$ polyester layer
C106 10 1 radial elect 16 V
C107 $\quad 100 \mu$ radial elect. 16 V
C108 $\quad 100 \mu 16 \mathrm{~V}$ radial elect. 16 V
C109 22n 1000 V polypropylene
(rated for 350 V con-
tinuous a.c. operation)
Semiconductors

D101	OA91
D102	OA91
IC101	TL071
IC102	LM311
IC103	MOC3041
CSR101	BTA08-600B

Miscellaneous
PL101, PL102
3-way straight p.c.b. header (0.1 inch pitch)
PL104 5-way straight p.c.b. header (0.1 inch pitch)
PL103
2-way p.c.b mounting screw terminal
Printed circuit board available from the EE PCB Service, order code EE756; TO220 clip-on heatsink ($24 \mathrm{deg} . \mathrm{C} / \mathrm{W}$); 6 -pin low-profile d.i.l. socket (1 off); 8 -pin low-profile d.i.l. sockets (2 off)

Mid channel filter/triac p.c.b.

Resistors	
R201	not fitted
R202	$22 k$
R203	not fitted
R204	$22 k$
R205	$4 k 7$
R206	$4 k 7$
R207	470
R208	$560.5 W 5 \%$
R209	$3300.5 W 5 \%$
R210	$1000.5 W 5 \%$

All $0.15 \mathrm{~W} \pm 5 \%$ unless otherwise stated
Potentiometers
VR201 1k miniature horizontal preset

Capacitors
C201 not fitted
C202 10 n polyester
C203 not fitted
C204 10 n polyester
C205 $\quad 1 \mu$ polyester layer
C206 10μ radial elect. 16 V

C207 $\quad 100 \mu$ radial elect. 16 V

C208 100μ radial elect. 16 V

C209
22 n 1000 V polypropylene (rated for 350 V continuous a.c. operation)

Semiconductors		
D2011	OA91	
D202	OA91	
IC201	TL071	
IC202	LM311	
IC203	MOC3041	
CSR01	BTA08-600B	

Miscellaneous

PL201, PL202
3-way straight p.c.b header (0.1 inch pitch)
PL204 5-way straight p.c.b header (0.1 inch pitch)
PL203
2-way p.c.b. mount ing screw terminal
Printed circuit board available from the EE PCB Service, order code EE756 TO220 clip-on heatsink (24 deg.C/W) 6 -pin low-profile d.i.l. socket (1 off) 8 -pin low-profile d.i.l. sockets (2 off)

High channel filter/triac p.c.b.

Resistors	
R301	not fitted
R302	not fitted
R303	$22 k$
R304	$22 k$
R305	4 k 7
R306	4 k 7
R307	470
R308	$560.5 W 5 \%$
R309	$3300.5 W 5 \%$
R310	$1000.5 W 5 \%$

All $0.25 \mathrm{~W} \pm 5 \%$ unless otherwise stated

Potentiometers	
VR301	1 k miniature horizontal preset
Capacitors	
C301	not fitted
C302	10 n polyester
C303	10 n polyester
C304	not fitted
C305	1μ polyester layer
C306	10μ radial elect. 16 V
C307	100μ radial elect. 16 V
C308	100μ radial elect. 16 V
C309	22 n 1000 V polypropylene
-1	(rated for 350 V con-

VR301 1 k min

ature horizontal pre fitted
C302 10 n polyeste
C303 $10 n$ polyester
not fitted
1 μ polyester layer
C307
C308 $\quad 100 \mu$ radial elect. 16 V
C309 22n 1000V polypropylene rated for 350 V con tinuous a.c. operation)

Off-board components

Miscellaneous
D1 Red panel mounting l.e.d. (with bezel)
D2 Green panel mounting l.e.d. (with bezel) Green panel mounting l.e.d. (with bezel) D.P.D.T. mains rocker switch (illuminated) D.P.S.T. miniature toggle switch

See

 and two secondary windings each rated at $9 \vee 0.6 \mathrm{~A}$10 k log. potentiometer and pointer knob
SK1. SK2 Chassis mounting phono sockets (2 off)
SK3 8-way non-reversible mains socket (and matching plug)
0.25 inch push-on blade receptacles (and covers) (11 off); Enclosure (to suit individual constructor's preference - but see text); 10 mm plastic p.c.b. fixing pillars with self-tapping No. 6 fixing crews (8 off): 3 -way straight 0.1 inch pitch p.c.b. "free" connectors (7 off); 5 -way straight 0.1 inch pitch p.c.b. "free" connectors (5 off); IEC 6 A chassis plug (with filter and fuseholder - see note); 5A 20 mm quick-blow mains fuse; Mounting nuts and bolts, transformer frame earthing tag and front and rear panel (3 off);
(Note: Whilst not essential, the use of an IEC 6A chassis filter plug (FL1) with integral fuseholder is strongly recommended for use with this project.)

Fig. 4. Preamplifier/ power supply p.c.b. copper foil and component layout.

Fig. 6(a). "Low"range filter/triac p.c.b. layout.

Fig. 6(b). "Mid" range filter/triac p.c.b. layout.

Fig. 6(c). "High"range filter/triac p.c.b. laybout.
parators. In order to further minimise noise and RFI (which may otherwise be fed back into the mains supply) a low-pass mains filter (FL.1) is incorporated.

CONSTRUCTION

Construction of the Disco Lights Controller is relatively straightforward. With the exception of the front and rear panel mounted components and the mains transformer, all of the components are assembled on four single-sided printed circuit boards. One of these boards is used for the power supply and pre-amplifier whilst the remainder contain the active filters, comparators. opto-isolators and triacs associated with each of the three channels.

The copper foil and component layout of the preamplifier/power supply printed circuit board is shown in Fig. 4. Fig. 5 shows the copper foil layout of each of the filter/triac printed circuit boards. Note that the same copper foil layout is used for all three channels.

The component side layout for each of the filter/triac boards is shown in Fig. 6a, b and c. Note that, by virtue of the different filter arrangements employed, not all of the components are fitted on each channel.

Components should be assembled on the four printed circuit boards in the following sequence; p.c.b. headers, p.c.b. screw terminals (if required), di.i.l. sockets, preset resistors, resistors, capacitors, and triacs. As with all of our projects, it is vitally important to ensure that all of the components are correctly located. Furthermore; in the case of the polarised components (such as the electrolytic capacitors. integrated circuits and triac) it is absolutely essential to ensure that each component is correctly orientated.
When construction of the printed circuit boards has \ddagger been completed (and before inserting the integrated circuits into their respective sockets) it is well worth carrying out a careful visual check of both the upper and lower sides of the board. The upper (component) side of the printed circuit board should be extamined to ensure that the components have been correctly located whilst the lower (copper track) side of the board should be checked to ensure that there are no dry joints or solder bridges between adjacent tracks. This simple precaution will only take a few minutes to carry out but can be instrumental in preventing much heartache at a later stage!

When assembly of the printed circuit boards has been completed, the integrated circuits should be inserted into their holders (taking care to observe the correct orientation in each case).

Fig. 7. Recommended front panel layout.

Fig. 8. Recommended rear panal layout.

CASE

The Disco Lights Controller should be housed in an ABS enclosure with aluminium front and rear panels. The enclosure used for the prototype unit measured approximately $220 \times 230 \times 70 \mathrm{~mm}$ and was fitted with detachable front and rear aluminium panels. In practice, the precise dimensions of the enclosure are unimportant provided adequate room is made available to accommodate all four of the printed circuit boards along with the mains transformer.
The front and rear panels should be carefully marked out before drilling and cutting takes place. As usual, there is nothing particularly critical about the layout of the unit and constructors may wish to experiment with the location of the front panel controls and l.e.d. channel indicators. Figs 7 and 8 show the front and rear panel layouts and markings used in the prototype.
Once the front and rear panels have been drilled to accommodate the controls, indicators and sockets, the four printed circuit boards can be mounted by means of four plastic snap-fit p.c.b. mounting pillars secured to the base of the enclosure
Connections to the printed circuit boards are made using various 0.1 inch pitch printed circuit board headers and p.c.b. mounting screw terminals, as follows:

C	pe	Function reference
PL101	3-way	Signal input to "low" channel filter/triac board
PL201	3-way	Signal input to "mid" channel filter/triac board
PL301	3-way	Signal input to "high" channel filter/triac board
PL102	3-way	L.E.D. indicator outpuf from "low" channel filter/triac board

PL202	3-way	L.E.D. indicator
		output from "middle" channel
		filter/triac board
PL302	3-way	L.E.D. indicator ouput
		from "high" channel
		filter/triac board
PL103	2-wa	Triac output from
		"low" channel from
PL203,	2-way	Triac output from
PL303	2-way	Triac output from
		"high" channel
PL104	5-way	Power supply input to
		"low channel
PL204	5-way	Power supply inp
		mid channel
		filter/triac board
PL304	5-way	Power supply input to "high" channel
		filter/triac board
PL.401	5-way	Pre-amplifier signal
		input/output
PL402	5 -way	Power supply output (to filter/triac boards)
PL403	5 -way	Power supply output
		(spare)
PL404	5 -way	Power supply output (spare)

The recommended method of terminating the female connectors which mate with the headers was described in the first of our constructional projects which appeared in the December 1990 issue of Everyclay Electronics.
Coloured stranded 0.1 inch pitch ribbon cable is used to make connections to the front panel. The following colour coding is recommended

PL101, PL201, PL301 (commoned)

Pin	Colour	Connection to:
1	Brown	VR 1 (slider)
2	Red	VR1 (common end)
3	Orange	VR1 (body/front panel)

PL102

Pin	Colour	Connection to:
1	Green	D1 (anode) 2
3	Blue	D1 (cathode)
n.c.		

PL401

Pin Colour Connection to:
Yellow S2 (mic)
Coax. SK2 (signal) inner
n.c.
n.c.

Coax. SK2 (common) screen

PL402

Pin Colour Connection to:

1	Brown	PL104, PL204, PL304 1
2	Red	PL104, PL204, PL304 2
3	Orange	PL104, PL204, PL304 3
4	Yellow	PL104, PL204, PL304 4
5	Green	PL104, PL204, PL304 5

The internal wiring of the Disco Lights Controller is shown in Fig. 9.

TESTING

Before testing the Disco Lights Controller, it is important to carefully check the wiring of the printed circuit boards, mains transformer, and front and rear panel mounted components. A 5A quick-blow

fuse should be fitted in the fuseholder but the initial testing should be carried out without connecting the disco lights to the unit.
The variable gain control (VR1) should be set to maximum-position whilst all three pre-set variable resistors should be set to mid-position. Connect the mains supply and switch the unit "on". The mains indicator (integral within the mains rocker switch) should be illuminated whilst all three of the channel indicator l.e.d.s (DI. D2 and D3) should be extinguished. If this is not the case, check SI, Tl (primary), FLI and associated wiring.
Now measure the d.c. voltage across C404 and C405 (on the preamplifier/power supply p.c.b.). These voltages should be in the range +12 V to +13.5 V and -12 V to -13.5 V . respectively. If this is not the case, check TI (secondary). PL5 and associated wiring before checking PL104, PL204, PL304 and each filter/triac p.c.b. in turn.

With no signal present, the settings of the three preset resistors should be advanced (turned clockwise) until each respective channel indicator l.e.d. becomes iiluminated. Once this position has been found, the respective control should be backed-off slightly (anti-clockwise) until the l.e.d. in question just becomes extinguished. If one (or more) l.e.d.s fail to become illuminated, leave the preset control in question at its most extreme clockwise setting.
Having checked the I.e.d. indicators and adjusted the preset controls for maximum sensitivity, a signal should now be connected via the "auxiliary" input (SKI). For test purposes, the signal can be derived directly from the loudspeaker of a small portable radio or cassette player (leaving the speaker connected so that the signal can be heard). The input selector switch should be placed in the "aux" position and VR1 set to the minimum position.
Adjust the signal in the loudspeaker for moderate volume and advance the setting of VR1, noting the point at which each of the three channel indicator l.e.d.s become illuminated. Carefully adjust the three pre-
set controls until the all three l.e.d.s flash in sympathy with the music at the same setting of VRI (some experimentation may be necessary here in order io find the optimum setting depending upon the signal source used).

In order to test the microphone (lowlevel) input facility, disconnect the signal from the "auxiliary" input, switch the input selector to the "mic" position, and connect a dynamic microphone (of between 5 k and 50 k impedance) to the "microphone" input (SK2). Place the microphone close to the loudspeaker and adjust VR401 until the channel indicator l.e.d.s produce a satisfactory indication of the signal.

Finally, connect the disco lights to the unit and check that the lamps flash in sympathy with the music (and the channel indicator l.e.d.s). The disco lights should be wired as follows:

Pin Connection

2 Channel I lamp(s) (neutral connection)
3 Channel 2 lamp(s) (neutral connection)
4 Channel $3 \mathrm{lamp}(\mathrm{s})$ (neutral connection)
7 Common (line) connection to all lamps 8 Earth
(NB: The total load on any channel should not exceed 300W)

MODIFICATIONS

A number of modifications can be made in order to enhance the performance of the basic Disco Lights Controller. As always, the suggestions made here are provided as "food for thought" and should make a starting point for further development. Constructors are invited to report their own modifications to be incorporated in the Readers` Feedback which will appear in the final part of our Design series.

Sterea Dperation

The Disco Lights Controller can be very easily adapted for stereo operation by simply duplicating the circuit for left and right hand channels. A single mains transformer can be used (rated at 20VA) whilst S1 and VRI should be replaced
by double-pole and stereo-ganged components respectively.

Additional channels

The Disco Lights Controller can also be very easily modified to provide additional channels by simply adding additional filter/triac cards based on the mid-range filter network. As an example, the recommended configuration for a fourth channel ("upper-mid" frequency range) involves:

C502 4n7
C504 4n7
R502 27k
R504 27k
All other components remain the same.

Sterealoudspeaker signal combiner

In many practical applications it is convenient to drive the Disco Lights Controller directly from a loudspeaker output rather than from anywhere else. Unfortunately, such an arrangement can pose problems where the amplifier output is stereo (i.e. there are two separate lousspeaker channels) and the Disco Lights Controller is only configured for monooperation.
A stree loudspeaker coupler that can be used to combine the "left" and "right" channel\%oudspeaker outputs in order to provide 畩 composite (left/right) signal which can he fed to the auxiliary input of the the Disco Lights Controller is shown in Fig. 10.

Fig. 10. Stereo loudspeaker signal combiner.

INTER FACE

Robert Penfold

ALTHOUCH it is not long ago that several Interface articles were devoted to the IBM PCs and compatibles, we are returning to these computers this month, and for the next two or three months. This may seem a bit unfair on users of other computers, but the PCs seem to generate much more feedback than any other computer at present.
In fact they probably generate more feedback from readers than all the other computers put together. This is perhaps not surprising in view of the large number of PCs in use today, and the relatively small amount of published information on interfacing to them.

On The Cards

In this months article we will consider the subject of PC prototyping cards. These vary from simple circuit boards that have no electronics at all until you add some, through to complex systems that have multi-output address decoding, buffering, and the ability to take several plug-in prototyping "daughter" boards. Here we will only be concerned with simple "passive" boards, but next month we will delve into active boards which have built-on address decoding.

If you look through some of the larger American computing magazines you are likely to find several advertisements for PC prototype cards, including some passive types at quite modest prices. Unfortunately, most of these cards are not imported into the U.K., and those that are mostly seem to cost substantially more in this country than in the USA. I may have overlooked something, but the only reasonably inexpensive PC prototyping cards I have been able to locate are the ones sold by Maplin.

There are three types in the range, which are a half length 8 -bit type, plus 8 - and 16 bit full length cards. The half length card at 216 millimetres long is actually about two thirds length (the full size cards are 333 rillimetres long). All three cards are full haght at about 100 millimetres or so excluding the edge connector.
Each terminal of the edge connector is brought out to an individual paa, and the pads are in two rows immediately above the connector. At the rear end of the card there is provision for right-angled 25 -way DIN connector, plus some holes on a 0.1 in . pitch for a connector block etc This provides a convenient means of comecting prototype cards to the outside world.

No fixing brackets are supplied with these cards, but prototype cards are not usually bolted in place. Continually bolting them in place and unscrewing them again is time consuming, and over a period of time could seriously wear the computer's mounting frame.
The main part of each card is covered with a matrix of one millimetre diameter through-plated holes on a 0.1 in. pitch. Apart from power buses around the perimeter of the board, these holes are not joined together in stripboard fashion. The idea is presumably to use wire-wrapping techniques when building prototype circuits, or to simply wire them up using thin insulated wire.
At around $£ 19$ to $£ 25$ per board including VAT, these cards might not seem to be very reasonably priced. However, it is not realistic to expect them to cost about the same as a piece of stripboard having a similar area. These are tough fibreglass boards, not thin s.r.b.p. types.
Furthermore, they are doubled-sided with

The two Maplin 8-bit PC Prototype cards.

expensive through-plated holes, and are an irregular shape due to the edge connector. It would be totally unrealistic to expect this type of product to sell at stripboard prices.

Remember that these boards are not really intended as the basis for a final unit, but are merely intended as a means of permitting prototype circuits to be tested. Having perfected a circuit it is then transferred to a custom printed circuit board, and the prototype card can then be reused. Of course, if you wish to avoid the complication of custom printed circuit boards, and are prepared to pay the cost of these boards, they could be used for the finished product.
I have not had a chance to make extensive use of these cards yet, but they seem to be good practical products. They are of excellent quality, and enable projects such as PIO ports to be easily tested out and perfected. However, even with quite simple circuits the end result is likely to be something of a "birds nest", but the aim is to check and perfect circuits, not to produce neat results.
It is easy to recommend these cards due to a lack of any obvious competition! About the only way of obtaining a reasonable PC prototype card system at a much lower cost is to take the do-it-yourself approach.

DIY Protocards

Over the past year or so I have experimented with a number of ideas for home constructed PC prototype cards. The obvious route is to produce something similar to the commercial prototype cards. This is difficult though, since the board would have to be very intricate in the area where the connections to the edge connector are made. Also, drilling all those thousands of holes could take an hour a day for weeks, and wear out numerous drill bits!
In order to be really practical for home construction a somewhat simpler form of card is required. One obvious simplification is to reduce the number of connections to the two by 31 -way edge connector to the bare minimum.

Although there are 62 terminals on the edge connector, most of these do not connect to functions on the expansion bus that you will ever need. All that is required for most projects are the lower ten address lines, three control bus lines, the data bus, and the supply lines.

This simplifies things to the point where this area of the board presents no real problems, provided you are prepared to face up to a double-sided board. The board must be double-sided because the supply lines and two lines of the control bus are on the opposite side of the connector to the rest of the lines.

On the main part of the board there is no need for a complete matrix of holes. Some d.i.l. clusters connected to some pads are sufficient to accommodate TTL chips, a PIA chip, or whatever. A small area of pads and copper strips will accommodate transistor oscillators, amplifiers, etc. Provision for a 25 -way D-connector for input/output lines is more than a little helpful.
This basic scheme of things enables quite a simple but effective PC prototyping card to be produced, such as the design in Fig. 1 and Fig.2. The on-board legends help to identify the pads which connect to the edge connector, and should reduce mistakes when wiring up the card. A complete list of these connections, working from left to right as viewed in Fig. 1, is as follows: A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, (gap) IOR, IOW, $-12 \mathrm{~V}, \mathrm{AEN},+12 \mathrm{~V}, \mathrm{D} 0, \mathrm{D} 1, \mathrm{D} 2$, $\mathrm{D} 3, \mathrm{D} 4, \mathrm{D} 5, \mathrm{D} 6, \mathrm{D} 7,0 \mathrm{~V},+5 \mathrm{~V}$, and -5 V .
It is advisable to fit the di.l. clusters with holders. Bear in mind that the 40 -way cluster will also accept 24 - or 28 -pin devices Also, the 20 -pin clusters for instance, will accommodate 8 -, $14-16$-, or 18 -pin di.l. devices. This makes the board at little more versatile than it might at first appear.

Single-side pins are fitted to the board at the pads which connect to the edge connector, and these are soldered on both sides of the board. Solder pins are also fitted to the pads that connect to the di.i. clusters, and these provide an easy means of wiring up prototype circuits using thin, multi-strand insulated wire. Of course, wire-wrapping methods can be used if preferred.

Decoupling Pads

You will notice that there are pairs of pads above most of the di.i.l. clusters. These will take 100 n ceramic decoupling capacitors, which are likely to be a necessity when using TTL devices on the board. In most cases the pads will be found to connect to the right pins of the cluster, but in some cases a bit of hard-wiring and (possibly) track cutting will be needed
This prototyping board is really only offered as a starting point. It should actually suit most PC prototyping quite well, but if you are making your own boards there should be little difficulty in modifying it to suit your precise requirements. You might prefer to have an extra 40 -pin socket and fewer smaller sockets for example.

Strip-O-Board

My initial approach to PC prototype cards was to produce an edge connector plus pads, much like that in Fig. 1 and Fig.2, but with only a small area of board above this. The basic idea was to boit a piece of stripboard (or similar) to the edge connector. The prototype circuit would then be built on the stripboard, and wired up to the edge connector.
Although basically a good idea, it failed dismally in practice. The problem is that stripboard is not particularly strong. It is made from a thin s.r.b.p. material, and not from heavy grade fibreglass. Fitting and removing the card tends to break the stripboard away from the edge connector.
A more successful approach is to make a

card like the one in Fig. 1 and Fig.2, but to leave the main area of the board blank except for the 25 -way D-connector pads. A hole is then carefully drilled in each corner of a suitable piece of stripboard.

Matching holes are then drilled in the PC card so that the stripboard can be bolted in place on the card. Use an extra nut on each mounting bolt to act as a short spacer between the card and the stripboard.

The advantages of this method are that the board is more securely held in place, and there is no need to hold the stripboard at all when fitting and removing the card. Provided you do not go at things in a "buill in a china shop" fashion, the stripboard should survive intact until the circuit has
been perfected and thoroughly tested. A new stripboard can then be prepared and fitted to the card, which can be reused many times.
One useful refinement, but one which has not yet been tried, would be to cut a "window" in the card behind the piece of stripboard. The point of this is that it would facilitate changes to the circuit board without having to keep removing and refitting it to the card.

This would greatly speed things up, and would make the card much more convenient to use. Also; provided the stripboard and "window" are not made too large, this method should not weaken the card to the point where it is in danger of being broken in normal use.

GIMPLEMODEL SERIES GPECIAL EAGIWIREOFFAR

FREE EASIWIREIF YOU BUY ANY FOUR MODEL KITS OR EASIWIRE FOR E5 WHEN YOU PURCHASE A PROJECT KIT．
 The two companies mentioned below

 have large stocks of Easiwire solder－ less wire wrapping systems，as used to build all our Simple Model Series projects．They have agreed to make these available to EE readers who purchase complete kits of com－ ponents for the projects，INCLUDING printed cards to cut out and assemble for each model．If you are prepared to buy any four of the six model kits that kick off the series then you can get your Easiwire FREE．If you buy any one model kit you can purchase an Easiwire kit for just $\mathbf{E} 5$ ． ［Thesekits were previously advertised by bicc－Vero at $£ 15$ ，including p\＆p］．To get your kit and Easiwire simply fill in the appropriate coupon and send it with your cheque cor credit card details）to either of the companies．
The six projects that kick off the series are：Police Car（July 91）；Fairground Roundabout［Aug 91）；Micro Micro－a dolls house microcomputer（Sept 91）；Cen－ turion Tank（Dct 91）；Mini Microwave－dolls house microwave oven（Nov 91）；Christmas Novelty Decoration（Dec 91）．These models all play tunes or make noises or flash lights etc．They will each cost about EB or less to build，the prices charged will be as given by
 EE in the＂approximate cost box．
All the kits will be available seperately as the projects are published and the ES Easiwire offer will be available with each kit when each project is published．
Please fill in the appropriate coupon below，tick the relevent boxes and send your cheque／Pロ／credit card number with one of the coupons to：

BULL ELECTRICAL 25ロPロRTLAND RDAD， HOVE，SUSSEX BN3 50T Tel：ロ273203500

 Fax：ロこ7323ロフ7OR
GREENWELD ELECTRONIC COMPONENTS 27PARKROAD，
SOUTHAMPTON SO13TB
Tel： 0703 2З6363
Fax：0703236307

FREEEASIWIRE

Please send me my FREE Easiwire kit．I understand that I must buy four model kits at the price given by EE－ I enclose a cheque／Pロ for $£ 2 \square$ for the Police Car，and as a deposit on further kits
Please debit my credit card as each kit is sent CardNo

Ex．Date．．．．．．．．．．．．．．．．．．．Signature
\rightarrow
\qquad

The kits I require are Tick four ormore boxes．	Police Car（July＇91）
	Fairground Roundabout（Aug＇91］．．．．．．．．．．．．．．．plus £1p\＆p
	Micro Micro（Sept＇91）．．．．．．．．．．．．．．．．．．．．．．．plus $£ 1$ p\＆p
	Centurion Tank（Dct＇91］．．．．．．．．${ }_{\text {a }}$
	Mini Microwave（Nov＇91）．．．．．．．．．．．．．．．．．．．．．．．．．ius £ 1 p

[^2]
E5 EASIWIRE

I Please supply the Police Car Kit on I its own at E5． 95 plus E1p\＆p
1 Please supply an Easiwire at

I ES with the above kit

I Overseas readers please add €ヨ to cover the I extra postage charge．
I lenclose a cheque／Pロ for E （E6．95 or E11．95）\square
Please charge my credit card－
ICardNo．
IExDate．．
Signature ．．．
I Name
Address

Simple Model Series EFII .
FILSII!

POLICE CAR

OWEN BISHOP

PROJECT 1

A novel series which combines two hobbies in one - electronics and model-making. Simple electronics circuits combined with easy-to-assemble models will cover a wide range of interests. There will be whimsical models and realistic scale models. There will be models for the railway enthusiast, miniature furniture for the doll's house, and toys for allages. The models that form the first six parts of the series are; Police Car; Musical
Roundabout; Micro Micro;
Centurion Tank; MiniMicrowave; Christmas Novelty.
The first six models of the series. To give an idea of scale the police car is approximately 215 mm long.

In this series we use integrated circuits as much as possible to keep the wiring simple and to cut down on the size of the circuit boards. Assembly by the Vero Easiwire wire-wrapping system means that model-makers need not worry about soldering.

Circuit-boards made of card are provided by us. They show where all the components should go, so there should be no problems with getting everything to work first time. All projects are batterypowered for safety.
Models are made of easily handled materials such as cardboard, plastic, modelling compound and other inexpensive items that can be obtained from any modelling shop. You will also need some adhesives and paints or crayons.
Few tools are required other than a pair of scissors, a steel ruler and a craft knife.

THIS 1:20 scale model is based on the Vauxhall Cavalier SRi, which has a 2-litre 4 -cylinder engine giving a top speed of 125 mph , and an acceleration from 0 to 60 in 8.9 seconds. The design shows the car trimmed in a general police livery but you can eaily substitute that of your local police force. The electronics provides the car with four flashing yellow indicator lamps, a blue llashing rool beacon, and a siren sound.

ASSEMBLING THE MロロEL

You can either photostat the layout for the car shown onto thin $400 \mathrm{~g} / \mathrm{m}^{2}$ card or send for the printed card - see components box. Shop Talk and the Special Offer page. Cut out the two sides and the bonnet/roof/boot (BRB). Score (see box) along the FF lines. Fold the sides slightly along the FF line. Fold the flaps fully inward at either end of the BRB and stick them to the inside of the bumper area. This is to give extra strength to these ends. Fold the flaps along one side of the BRB at right-angles and glue these to one side of the car, folding the BRB where necessary. When the glue is dry, attach the other side in the same way
It is preferable for the wheels to be made of thicker card, if you wish you can stick the wheel designs to another piece of card (about $400 \mathrm{~g} / \mathrm{m}^{2}$) first to double the thickness. Cut out and score the wheels. Fold the double-flaps at right-angles and stick

REAR BUMPER

FRONT BUMPER

REAR BATTERY BOX SUPPORT

to the inside of the wings. Cut out the bumpers: fold the central flap back and stick it to the inner surface of the bumper. Bend the ends of the bumper gently to curve around the body. Then use a dab of glue on the central flap and the ends of the bumpers to hold them in place on the body.
Cut out the rear registration plate and colour its background using a yellow highlighting pen. Stick the plate to the rear panel of the body. Finally cut out and stick the external rear view mirrors in position on the front doors.
This completes the construction of the model except for some internal fittings and the lights. Before attempting these, we need 10 assemble the electronics.

HOWIT WORKS

The indicator lamps and siren are driven by a binary counter. The i.c. has an integral oscillator circuit. With the component values shown in Fig. I the clock frequency is 20 kHz . This frequency is divided repeatedly by two in a chain of flip-flops in the i.c. The lower frequencies used in the circuit are:

Stage	Frequency
4	1.25 kHz
5	625 Hz
13	2 Hz
14	1 Hz

Stages 4 and 5 give the two notes of the siren's warble. The frequency of the warble is under the control of stage 14 . The output from stage 14 is inverted by gate 1 (IC2a). The 1.25 k Hz signal goes to gate 2 (IC2b) and the 625 Hz signal goes to gate 3 (IC2c) At any instant either pin 9 or pin 13 is high and the signal passes through one of the gates. At the same instant the output of the other gate is a steady high. Thus gate 4 (IC2d) receives a high on one of its inputs and an oscillating signal (1.25 kHz or 625 Hz) on the other.
The frequency changes as the output of stage 14 changes, alternating between high and low frequency once a second. The signal reaches the piezo-electric crystal which produces the two-tone sound.
Stage 13 output goes high for 0.25 s. then low for 0.25 s , repeating. When it is high, current flows to the base of TR1, turning it on. Current flows through the lightemitting diodes, making them turn on. in this way the l.e.d.s flash on and off twice a second.
The beacon flasher (Fig. 2) employs an i.c. specially intended as a lamp flasher. With the resistor and capacitor values shown, the lamp flashes on very briefly about once a second. The circuit operates on 6 V , hut it has been found possible to use a 3.5 V lamp as the "on" period is very short. The result is the short high-intensity flash typical of such beacons.

MAIN CIRCUIT CARD

To commence construction of the circuit boards first cut out the board and, using the pointed tool in the Easiwire kit, punch through the holes where indicated. This is best done with the card laying flat on a thick piece of scrap cardboard

The main circuit board (Fig. 3) holds the circuit for the flashing indicator lamps and the siren. The lamps are high-intensity light-emitting diodes. The siren noise comes from a piezo-electric sounder. The type of sounder used in the prototype had a metal housing with three lugs. Cut a piece

SCORING

Scoring makes it easier to bend the card neatly and sharply along a straight line. Place a ruler along the line and either run a blunt knife along the line to squeeze the card thinner. or run a sharp craft knife very carefully along the line to cut the card for about one quarter of its thickness. The second technique gives the sharper edge. but there is the risk of cutting too deeply and weakening the card at the fold. Practise on a scrap of card first.

EE31660

Fig. 1. Circuit diagram of the hazard flashers and siren section.

Fig. 2. Circuit for the flashing blue light beacon.
of card 30 mm square and make slits for the lugs. Push the lugs through the holes and bend them firmly against the other side of the card.
If the sounder is unmounted leave it attached at present and attach it directly to the inside of the car body later. Push the twin leads from the sounder through the circuit card. Twist the leads from the battery clip around the +6 V and 0 V staples. Around the same staples twist leads of flexible wire about 80 mm long. These are to conduct the power supply to the beacon board.
Mount the components on the circuit card and make the connections between the components, including the leads from the sounder, and from the battery clip. The 1.e.d.s are connected in parallel to the card (at the staples) by a pair of flexible leads.

Fig. 4. Method of using staples to fix the flying lead connections.

The main circuit card removed from its mounting under the car. The final board layout differs slightly from this prototype.

Fig. 5. Connection and wiring of the l.e.d.s.
make sure that they are connected the right way round. Allow enough wire between the i.e.d.s to run between the corners of the car where the l.e.d.s will be mounted. Fig. 5. The figure shows how the connections may be made secure.
Power is provided by 4 AA cells in a "long" battery box, which fits into the space provided for it in the car. When the battery clip is pushed on to the terminals of the battery box. the l.e.d.s begin to flash and the sounder emits a two-tone "dee-dar-dee-dar . ." wail. The volume of sound will be greater when the sounder is mounted in the car.

INSTALLING THE MAINCARD

Remove the battery, but leave the I.e.d.s and sounder attached to the card. Cut holes in the car body where the indicator l.e.d.s are to go. These holes should be a

Fig. 6. Beacon circuit card construction.
tight fit. Place a dab of clear adhesive on each l.e.d. and push it through its hole from the inside.
Stick the card bearing the sounder or the sounder itself to the inside of the side of the car about level with the driver's door. Cut out the two battery box supports and stick them in position. Cut out the support for mounting the card. fold its flaps and stick them to the inside of the sides of the car. across from one side to the other. The support pulls the two sides of the car together at the bottom, giving the car a bulging outline when seen head-on.

BEACONCARD

Make holes in the beacon card for the component leads and i.c. pins (Fig.6). Connect two leads of flexible wire about 60 mm long to the lamp holder screw terminals. and push their other ends through the holes in the card. Make the connections by wire-wrapping, as before. Twist the power leads from the main board around the staples. When the battery is connected to the battery clip the lamp flashes very brightly about once a second.
Cut out the beacon card support and glue this under the bonnet. Cut a hole about 10 mm in diameter in the centre of the roof of the car and push the lamp

Fig. 7. Mounting the beacon light cover.
holder up through this. Fix the holder in place by gluing the beacon support underneath it.
The beacon consists of a transparent plastic dome of suitable size and shape. The prototype used a cover taken from a domestic polish spray. This was of clear plastic. A thick waterproof marker pen. bright blue in colour, was used to coat the inside of the cover. Glue the rim of the dome to a square of thick card, painted black, with a hole in its centre (Fig. 7). Two lugs glued to the underside of the square are pushed through slits in the roof of the car. This allows the dome to be removed if necessary to change the bulb.
Rest the beacon card on its support, connect the battery and the police car is ready for patrol.

OTHEAMODELS

The two circuits operate independently. so you can instal either one in the model. if you prefer not to have both. These circuits are also applicable to other models such as a fire-engine or an ambulance. You could fit them in a ready-made model.

OUT NOW!

SUMMER 1991 CATALOGUE

Available from most large newsagents or directly from Cirkit

Cirkit

Park Lane - Broxbourne - Hertfordshire • EN10 7NQ
Telephone (0992) 444111 . Fax (0992) 464457

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART KITS give you the opportunity to build the very best engineered hifi equipment there is, designed by the leaders in their field, using the best components that are available. With a han kir you not anly get more periormance fo on experience of modern electronic assembly. The HART combination of innovative circuit techniques, sound engineering design and professional grade components is your recipe for success in the quest for affordable ultimate audio fidelity.
Telephone or write for your FREE LISTS giving full details of all our Kits, components and special offers. Featured this month is the:
AUDIO DESIGN 80 WATT POWER AMPLIFIER

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ul timate hifi system. This kit is your way to get $£ K$ performance at bargain basement prices. Unique design features such as fully FET stabilised power supplies give this amplifier World Class performance with starting clarity and transparency of sound, allied to the famous HART quality of components and ease of construction.
Useful options are a stereo LED power meter and a versatile passive front end giving switched inputs,
sion, low-noise volume and balance controls.
Construction is very simple and enjoyable with all the difficull work done for you, even the wiring is pre-terminated, ready for instant use! Complete details of the different versions are in our free lists
Our free lists.
RLH10 Reprints of latest 'Audio Design Amplifier articles. K1100CM HART Consucrion Manual with full parts $\quad \mathbf{E} 2.70$ lists .. Why not buy the reprints and canstruction manual to see The FULL cost can be credited against your subsequent kit

LINSLEY HOOD 'SHUNT FEEDBACK' R.I.A.A. MOVING COIL \& MOVING MAGNET PICKUP PREAMPLIFIER

This new circuit by John Linsley Hood uses latest generation integrated circuits in the sonically preferred shunt feedback configuration to give an accurate and musical sound, with the ability to use moving magnet and moving coil carridges. The HART kit for this unit is exceptionally easy to build with all the specially selecter conn primedit board Even the gold plated roller tinned fibreglass printed circuit board
Kit complete with fully machined case and a 1 metre length of miniature power supply cable is HART ref K1500. £69.23. ALPS PRECISION LOW-NOISE STEREO POTS.

All in 2 -gang stereo format, with 20 mm long 6 nemt
shafts. Now you can throw out thoserthous
 tively in the woy too figy of worio ,ngs aphlifiers,
provement giving betts ton lence betwern charingls and tock solid image stability
Values avaitable or 10 K and 400 K Log .100 K lin and 1 K Spe-
cial Balance.

 2-Gang 20 K Lig (valun) (ntrol) MOTORISED $\mathbf{£ 1 9 . 2 0}$ 2-Gang 10K S eciablaínce, MOTORISED, zero crasstalk and $^{1} 10 \%$ centre loss

Teach-In '91

 DESIGN YOUR

 DESIGN YOUR OWN CIRCUITS

> This eighth part deals with pöwer control. Our design problem is based on a CMOS logic interface whilst our companion project deals with the construction of a Disco Lights Controller.

MANY applications of electronics involve the control of appreciable levels of voltage and/or current. Typical examples in the domestic world are the motor speed controllers found in washing machines and the lamp dimmers which allow us to control the levels of illumination in our homes. Both of these applications are made mere childs' play with the use of a range of sophisticated solid-state power control devices.
This eighth part of our series introduces the devices in question and shows how they can be used in a variety of applications.

Amplification versus power
 control

The concept of amplification was dealt with in Part 2. In this part we showed how a relatively small voltage or current present at the input of an amplifier could be magnified using transistors and/or integrated circuits to produce a corresponding but much larger voltage or current at the output. This principle can be extended to provide a means of driving loads (rather than just loudspeakers) with appreciable levels of direct and/or alternating current.
Unfortunately, using a high quality (linear) power amplifier to drive loads such as solenoids and actuators is not a very cost-effective solution to the problem. Furthermore, many types of load, for a variety of reasons (not the least of which is safety!) have to be electrically isolated from the circuit which is controlling them.

Powerswitching devices

The switching device employed in a power control circuit is crucial to the successful operation of the circuit. The basic requirements for the device are:
\star There should be minimal power dis-
sipation within the switching device (it should exhibit a very low resistance in the on/conducting state and a very high resistance in the off/non-conducting state)
\star The switching device should only require a very small input current in order to control a very much larger current (flowing through the load)
\star The switching device should operate very rapidly (i.e. the time between "on" and "off" states should be negligible)
\star During conduction, the switching device should be capable of continuously carrying the rated load current. It should also be capable of handling momentary surge currents (which may be an order of mag. nitude greater than the continuously rated load current).
\star In the non-conducting state, the switching device should be capable of continuously sustaining the peak value of rated supply voltage. It should also be capable of coping with momentary surge voltages (which may exceed the normal peak supply voltage by a factor of two, or more).

Relays

The traditional method of switching current through a load which requires isolation from the controlling circuit involves the use of an electromechanical relay. Such devices offer a simple, low cost solution to the problem of maintaining adequate isolation between the controlling circuit and the potentially lethal voltages associated with an a.c. mains supply.
Relays do, in fact, offer many of the desirable characteristics of an "ideal" switching device (notably a very low "on" resistance and virtually infinite "off" resistance coupled with a coil to contact breakdown voltage which is usually in excess of several kV). Unfortunately, the humble relay has a number of very serious disadvantages which mitigate against its use in a range of applications.

Paramount amongst the disadvantages of simple electromechanical relays are an inherently low switching speed coupled with the "contact bounce" which occurs during the transitory state which exists between the true "on" and "off" conditions. Furthermore, electromechanical relays are, by virtue of their moving parts and open contact sets, somewhat prone to failure when compared with their more modern solid-state counterparts.

Relay ratings

An important consideration when using relays (particularly at high d.c. voltages) is the arc which may form between the contacts when the contacts break. Arcing (ionisation breakdown of the air in the proximity the contacts) results in the generation of heat (which may literally burn out the contact surfaces) and radio frequency interference (RFI) which may be radiated over a wide area unless special precautions are taken. Readers should note that, because of susceptibility to arcing, a relay which is rated for, say, 250 V a.c. operation will generally only be rated for d.c. operation at up to about 50 V .
A typical electromechanical relay may be rated for around $1,000,000$ operations. or more. To put this into context, if operated once every minute, the contact set on such a relay can be expected to give satisfactory operation for a period of about two years. It is important to note, however, that electromechanical relays are prone to both mechanical and electrical failure (the latter being more prevalent if the device is operated at, or near, its maximum rating).
Having said all this, in simple low-speed "on/off" switching applications, the conventional electromechanical relay can provide a highly cost-effective solution to controlling currents of up to about 10 A , or more, at voltages of up to 250 V a.c. and 100 V d.c. Furthermore (unlike solid-state switching devices) relays are available with a variety of different contact sets, including single-pole (s.p.) on/off switching, single-pole chanegover (s.p.c.o.), doublepole chanegover (d.p.c.o.), and four-pole changeover (4p.c.o.).
The coils which provide the necessary magnetic flux to operate a relay are a vailable for operation on a variety of voltages between 5 V and 115 V d.c. and 12 V to 250 V a.c. at currents of between 5 mA and 100 mA . A typical specification for a low-

Fig. 8.1. A simple relay driver circuit.
voltage relay suitable for switching a mains connected load are as follows:
Contact rating: $\quad 5 \mathrm{~A}, 30 \mathrm{~V}$ d.c. $/ 250 \mathrm{~V}$ a.c.

Coil rating:
Coil resistance:
Electrical life:
Mechanical life:
$12 \mathrm{~V}(10.9 \mathrm{~V}$ to 19.5 V$)$
205 ohm
200,000 operations (at
full rated load)
Relay driver circuits
In many applications. a relay will require some form of interface to the circuit to which it is connected. Often such an interface need consist of nothing more than a single transistor, as shown in Fig. 8.1
Almost any $n p n$ transistor with a current gain of 50 , or more, can be used in the circuit of Fig. 8.1 however it is important to ensure that it is operated within its maximum collector current (IC(MAX)) rating. The following devices are recommended:

Coil resistance	TRI
300 ohm to 500 ohm 500 om to 1.2 k ohm	BC 142 (or equivalent)
BC 108 (or equivalent)	

The circuit of Fig. 8.1 requires an input current of about 0.5 mA when operated from a 5 V source. In some applications it may be desirable to increase the sensitivity of the circuit in which case a Darlington driver stage can be used (see Fig. 8.2). The silicon diode. D1, is fitted in order to provide a current path which will absorb the back e.m.f. generated when the magnetic flux in the relay suddenly collapses when the transistor ceases to conduct.
A Darlington driver based on two (discrete) $n p n$ devices and which requires a current of only a mere $40 \mu \mathrm{~A}$ at 5 V in order to operate the relay is shown in Fig. 8.2. Fig. 8.3 shows an equivalent arrangement based on a plastic npn Darlington transistor. This circuit can be used with relays having coil resistances as low as about 200 ohm and will also operate reliably with an input current of as little as $40 \mu \mathrm{~A}$.
Question 1: If the circuit of Fig. 8.1 is to be operated from a CMOS logic circuit which operates from a +12 V supply rail and can produce no more than about $500 \mu \mathrm{~A}$ of drive current at 8 V , specify the required value for R !
Question 2: If, in Question 1, the relay coil has a resistance of 200 ohm, determine the minimum acceptable value of current gain for the transistor.

Fig. 8.2. Relay driver circuit based on a discrete Darlington arrangement.

Thyristors

Thyristors provide an alternative means of switching a high voltage/high current load from a much smaller triggering current source. Thyristors (or "silicon controlled rectifiers" as they are sometimes called) are three-terminal devices which can switch very rapidly from a conducting to a non-conducting state. In the "off" state. the thyristor exhibits negligible leakage current whilst, in the "on" state the device exhibits very low resistance. This results in very little power loss within the thyristor even when appreciable power levels are being controlled.
Once switched into the conducting state. the thyristor will remain conducting (i.e. it is latched in the "on" state) until the forward current is removed from the device. It is important to note that. in d.c. ap-

Fig. 8.3. Relay driver based on a plastic Darlington transistor.
plications this necessitates the interruption (or disconnection) of the supply before the device can be reset into its non-conducting state. However, where a thyristor is used with an alternating supply, the device will automatically become reset whenever the mains supply reverses. The device can then be triggered on the next half-cycle having correct polarity to permit conduction
Like their conventional silicon diode counterparts. thyristors have anode and cathode connections (see Fig. 8.4). Control is applied by means of a gate terminal and the device is triggered into the conducting ("on" state) by applying a current pulse of sufficient magnitude (and rise time) to this terminal.
The following table summarises the characteristics of a variety of popular thyristors:
$\left.\begin{array}{llllll}\text { Type } & & & \\ \text { FIAV }\end{array}\right)$

Fig. 8.4. Thyristor symbol.

Fig. 8.5. Triac symbol.

Triggering requirements

When designing circuits based on thyristors as power control elements, trigger pulses should have the fastest possible rise times. Thyristors will turn on faster (and power dissipation within the device will be minimised) as gate current is increased. Signals with slow rise times or poorly defined edges are generally unsatisfactory for triggering purposes.
It is also important to ensure that sufficient gate current is made available to ensure effective triggering. This will normally require the designer to minimise the resistance/impedance of the gate driver circuitry as far as possible. At the same time. care should be taken to ensure that the peak value of gate voltage does not exceed the rated value for the device. Similarly, the pulse width of the trigger pulse applied to the gate of a thyristor must be kept short in order to minimise the gate power dissipation. Negative gate voltages should also be avoided in order to prevent power loss.
In a.c. applications, the thyristor triggering circuit should be designed so that it will provide effective triggering over a sufficiently wide angle of the applied a.c. supply voltage. Failure to observe this rule will generally result in an inadequate range of control.

Triacs

Triacs are a refinement of the thyristor which, when triggered, conduct on both positive and negative half-cycles of the applied voltage. Triacs have three terminals; main-terminal one (MT1), main terminal two (MT2) and gate (G), as shown in Fig. 8.5. Triacs can be triggered by both positive and negative voltages applied between G and MTI with positive and negative voltages present at MT2 respectively. These modes are summarised in the following table:

Trigger mode	Conditions (w.r.t. MT1)
I+	MT2 + ve, G +ve
I-	MT2 + ve, G-ve
III +	MT2 -ve, G +ve
III-	MT2-ve, G -ve

By virtue of the symmetry in triggering, triacs thus provide a means of controlling a.c. voltages over both positive and negative half-cycles. Thyristors, on the other hand, can only provide control on one, or other, of the half-cycles.

Diacs

In order to simplify the design of triggering circuits, a triac is often used in conjunction with a diac. This device is somewhat similar to a Zener diode having bi-directional properties. A typical diac conducts heavily when the applied voltage exceeds approximately $\pm 32 \mathrm{~V}$. Once in the conducting state, the resistance of the diac falls to a very low value and thus a large value of current will flow (sufficient to trigger the triac to which it is connected).

Triac data

The following table summarises' the characteristics of a variety of pốnular triacs:

Noise and radio frequency
 interference (FF/]

Thyristors and triacs switch on and off very rapidly. In a.c. power control applications, this rapid switching can result in transients which may be conveyed some distance via the a.c. mains wiring. To minimise such effects and prevent radiation of noise, an L-C filter should be fitted in close proximity to the power control device, as shown in Fig. 8.6.

Variable a.c. power cantral

Triacs make exceilent variable a.c. power control devices. Fig. 8.7 shows a circuit for a lamp dimmer capable of handling a resistive (tungsten filament lamp) load of up to 1 kW . At higher power levels (i.e. exceeding 150W) the triac will require a heatsink and the designer should consult the representative characteristic curves shown in Figs. 8.8

Type	$\mathrm{I}_{\text {(} \text { (RMS) }}$	$\mathrm{V}_{\text {RRM }}$	V_{GT}	$\mathrm{I}_{\text {GT(TYP) }}$	Case style
BT139	15A	600 V	1.5 V	5 mA	TO220
BTA08-600B	8A	600 V	1.5 V	50 mA	TO220*
BTA16-600B	16A	600 V	1.5 V	50 mA	TO220*
BTA26-600B	25A	600 V	1.5 V	50 mA	TO220*
TIC206M	4A	600 V	2 V	5 mA	TO220
TIC216M	6A	600 V	3 V	5 mA	TO220
TIC225M	8A	600 V	2 V	20 mA	TO220
TIC226M	8 A	600 V	2 V	50 mA	TO220
TIC236M	12A	600 V	2 V	50 mA	TO220
TIC246M	16A	600 V	2 V	50 mA	TO220
TICP206D	1.5A	400 V	2.5 V	2.5 mA	TO92
TICP206M	1.5A	600 V	2.5 V	2.5 mA	TO92
TRI800-8	8A	800 V	2.5 V	20 mA	TO220

Fig. 8.6. Typical RFI filter.

* = isolated tab (such devices do not require insulating washers and can be mounted directly onto a grounded heatsink)
and 8.9 in order to determine the rating for such a device.
As an example, assume that we require a circuit to control a lamp rated at 500 W on a 250 V a.c. supply and that we do not wish the case temperature of the triac to exceed 60 deg.C (here we do not need apply the de-rating curve shown in Fig. 8.9). The following steps are required:

1. Determine the load current to be controlled.

Fig. 8.7. Triac a.c. power controller for up to 1 kW of tungsten filament lighting.

Fig. 8.8. Characteristic showing total power dissipation plotted against load current for a typical $8 A$ triac.

Fig. 8.9. Derating characteristic for typical 84 and 16 A triacs.

CASE TEMPERATURE

${ }^{\text {t CASE }} 1^{\circ} \mathrm{Cl}$

EE31806
$\mathrm{I}_{\mathrm{L}}=\mathrm{P}_{\mathrm{L}} / \mathrm{V}_{\mathrm{L}}$ thus $\mathrm{I}_{\mathrm{L}}=500 \mathrm{~W} / 250 \mathrm{~V}=2 \mathrm{~A}$
2. Determine the power dissipation within the triac (from Fig. 8.8):
The power dissipated will be approximately 2 W .
3. Estimate the maximum ambient temperature for the unit.
In most cases, we can assume that this will be about 35 deg.C (allowing for the effect of localised heating).
4. Determine the difference between the maximum allowable case temperature and the maximum ambient temperature.
 $=60-35=25 \mathrm{deg} . \mathrm{C}$
5. Determine the rating (thermal resistance) of the heatsink required:
$\mathrm{R}_{\mathrm{TH}}={ }_{\mathrm{DIFF}} / \mathrm{P}_{\mathrm{TOT}}=25 / 2=12.5 \mathrm{deg} . \mathrm{C} / \mathrm{W}$
Hence, we require a heatsink with a rating of 12.5 deg.C/W. or less. It is important to note that we have ignored a number of factors in this example (such as the thermal resistance of the insulating washers, if fitted). Despite this, the method shown will prove to be sufficiently accurate for most applications.
Question 3: A BTA08-600B triac is to be used to control 1 kW of tungsten filament stage lighting which operates from a 240 V a.c. mains supply. Assuming that the case temperature of the triac is not to exceed 50 deg.C. determine the necessary heatsink rating.

Optical isolation

One of the most useful components to support the high power switching devices employed in modern power control circuits is the optically coupled triac and optically coupled thyristor (see Fig. 8.10 and Fig. 8.11). These devices provide a very high degree of electrical isolation between the controlling circuit and the load and comprise an encapsulated light emitting diode together with a light sensitive triac or thyristor. When the l.e.d. is illuminated, the triac or thyristor (as appropriate) is triggered into conduction.
Some of the most recent optically coupled triacs (such as the MOC3041) also contain a "zero axis crossing" detector. This circuit ensures that the triac is triggered at the most favourable point on the a.c. cycle, just as the voltage swings through the zero point. This arrangement greatly reduces the noise and radio frequency interference which would otherwise occur if the device were to be
suddenly switched into conduction at. or near, the positive or negative peak of the a.c. cycle.

Solid-state switches

In recent years. there has been an increasing need to interface digital logic circuits and microprocessor I/O ports to mains operated loads. In order to meet this requirement, solid-state switches (or "solid-state relays") have been developed. These devices usually contain a triac, snubber network and opto- isolated driver (often incorporating zero-axis crossing trigger circuits).
Solid-state relays are available as encapsulated film circuits (rather than true integrated circuits) and typically have the following specification:

Input voltage:
Input current: Maximu current:
Isolation voltage:
3 V to 24 V
2 mA to 16 mA
2.5A r.m.s. continuous 4 kV (minimum)

EE31810

Fig. 8.10. Optically coupled thyristor.

EE31826

Fig. 8.11. Optically coupled triac.

Salid-State Switch Module

When used in conjunction with a power triac, an optically coupled triac can form the basis of a simple yet highly effective solid-state switch. Fig. 8.12 shows the complete circuit of a Solid-State Switch Module which can be used to control loads of up to 1 kW . IC1 is an optically coupled triac which incorporates a zero-axis crossing detector. CSR 1 is a power triac rated at 8A maximum load current.
The device specified uses a conventional TO220 encapsulation but. unlike many earlier devices, benefits from an isolated metal tab. This makes mounting to a heatsink more straightforward (there is no need for insulating washers and bushes) and the circuit is also inherently more safe as there is less likelihood of contact with a live metal surface.
Resistor R1 limits the current through the input of the opto-isolator whilst DI provides a visual indication of the state of the circuit (useful when testing without a load connected). R5 and C1 constitute a snubber network and slow down the rate of switching (change of voltage with time) to an acceptable value. In order to increase the sensitivity of the circuit, an optional transistor driver stage ($\mathrm{R} 2 / \mathrm{TR} 1$) is incorporated.
The copper foil and component p.c.b. layout of the Solid-State Switch Module is shown in Fig. 8.13. Connections to the Solid-State Switch Module are via a fiveway header (PLI) for the input and d.c. supply and a two-way p.c.b. mounting screw terminal block (BTI) for the mains neutral and load connections.
Connections to PLI are as follows:

Pin number	Function
1	+V supply (+5 V to
2	+12 V)
	Collector (ground to 3 switch) 4 Base input (IV to switch) 5 Ground (0V) Ground (0V)

Connections to BTI are as follows:
Pin number Function

1	Load
2	Neutral

Fig. 8.12. Complete circuit diagram for the Solid-State Switch Module

Fig. 8.13. P.C.B. track and component layout for the Solid-State Switch Module.
Values of RI should be selected from the following table:

Supply voltage	R1
4 V to 6 V	220
6 V to 9 V	390
9 V to 12 V	560
12 V to 18 V	1 k

Finally, Fig. 8.14 shows two operating configurations for the Solid-State Switch Module. Note that, in applications where the load to be switched exceeds about 150 W , it will be necessary to fit a heatsink to CSRI. The rating of the heatsink can, however, be determined using the steps given previously.

Design Problem

This month's design problem (as with all of the design problems presented in this series) is designed for readers who would welcome the opportunity of tackling a little "homework". The exercise may be tackled purely "on paper" or may be used as the basis of a complete constructional project.
This month's problem involves designing an interface circuit:
A CMOS logic circuit operates from a +15 V supply rail. One of the ouputs is to drive a relay having a coil resistance of 700 ohm whilst another is to control an 240V a.c.

[EE31656]
Fig. 8.14. Operating configurations for the Solid-State Switch Module (a) basic Solid-State Switch (R1 and TR1 not fitted) (b) sensitive Solid-State Switch (R1 and TR1 fitted).
lamp load of 60W. Assuming that the maximum current available from the logic is $50 \mu \mathrm{~A}$ a 10 V . design a suitahle interface circuit.

Answers to questions in Part Eight

Question 1: 15 kilohm
Question 2: 120.
Question 3: $3.75 \mathrm{deg} . \mathrm{C} / \mathrm{W}$ (or less)

Answer to last month's design problem:

A simple medium-wave a.m. tuner (for use with the Bench Amplifier/Signal Tracer which we described in Part 3) is to have the following specification:
Tuning Range $\quad 700 \mathrm{k} \cdot \mathrm{Hz}$ to $2 \mathrm{MH}=$ (specify the coil and capacitance required to cover this range.)
Aerial input: \quad Separate inputs for high and lon-impedance aerials.
Audio output
100 mV (typical) into 5 kilohm (the unit should incorporate an audio amplifier stage)
Supply
Single 9V battery (PP3).
One solution to last month's design problem is shown in Fig. 8.15.

Cumulative index to modules

Title
Dual output power supply module

supply module

1 Dual $\pm 5 \mathrm{~V} . \pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ regulated

723 variable power \quad Single variable output of +2 V to +37 V at up to 5 A max. supply module

Output voltage and current limit are set by means of preset controls.

L200 variable power supply module

Single variable output of +2.7 V to +35 V at up to 2 A max. Inutput voltage and current limit are set by means of variable controls.

General purpose transistor 2 amplifier module

General purpose operational amplifier module

High-quality power
3 amplifier module

TBA820 i.c. amplifier

Sine wave oscillator

8038 waveform generator

Digital counter module

General purpose
timer module

RF amplifier module

Solid-State switch module

Pre-defined voltage gain and frequency response. Low/ medium input impedance, low output impedance. Requires a single 9 V d.c. supply at 2 mA nominal.

2 Pre-defined voltage gain and frequency response. Two stages may be used independently (e.g. for stereo operation) or connected in tandem. Requires a dual supply of between $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ at 10 mA nominal.

Fixed gain medium/high power class $A B$ audio amplifier capable of operating with very low distortion. Recommended load impedance $80 h m$. Requires a dual supply of between $\pm 12 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$ at up to 2 A .

Versatile i.c. low/medium power for general purpose applications. Requires a single supply rail of between +5 V and +15 V .

4 Low distortion sine wave oscillator capable of providing outputs over the range 50 Hz to 50 kHz . Frequency and amplitude adjustable. Requires +12 V to +15 V supply at 10 mA (nominal).

4 Provides sine, square and triangle outputs adjustable the range 0.01 Hz to 20 kHz . Requires $\pm 9 \mathrm{~V}$ supply at 10 mA .

Single stage decade counter with seven-segment l.e.d. display. Standard TTL input levels. Requires +5 V supply at 90 mA .
6 Astable or monostable mode timer circuit configured by wire links. Extenal trigger (both a.c. and d.c.) and reset inputs. Output up to 12 V at 200 mA . Requires a single supply rail of between +5 V and +15 V .
7 High gain r.f. amplifier module which can be used in a variety of applications, including receivers (both TRF and superhet) and test equipment. Requires a single supply rail of +9 V .

8 Solid-state switch capable of controlling a.c. mains loads rated at 240 V 1 kW maximum. The switch operates from an input of less than $100 \mu \mathrm{~A}$ and requires a supply of between 5 V and 24 V .

Fig. 8.15. Answer to last month's Design Problem.

Next Month: Next month's instalment deals with the fascinating world of optoelectronics. Our design problem features an automatic porth light whilst our accompanying constructional project features an optical communications link.

TEACH-IN BOOKS

The following books have been reprinted from various Teach-In Series and will be of particular interest to many readers of this series. See our Direct Book Service pages for full ordering details.

ELECTRONICS TEACH-IN 88/89-

INTRODUCING MICROPROCESSORS Mike Tooley BA (published by Everyday Electronics)
A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors (726/303). The book contains everything you need to know including full details on registering for assessment, etc.

Sections cover Microcomputer Systems. Micro-processors. Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eight Data Pages covering the most popular microprocessor chips!
An excellent introduction to the subject even for those who do not wish to take the City and Guilds assessment.
80 pages (A 4 size) Order code TI-88/89 £2.45
ELECTRONICS TEACH-IN No. 3 -
EXPLORING ELECTRONICS (published by Everyday Electronics)
Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. The book does not contain masses of theory or formulae but straightforward explanations and circuits to build and experiment with.

Exploring Electronics contains more than 25 useful projects, assumes no previous knowledge of electronics and is split into 28 easily digestible sections.
88 pages (44 size) \quad Order code TI3 $\quad \mathbf{2 . 4 5}$
ELECTRONICS TEACH-IN No. 4
INTRODUCING DIGITAL ELECTRONICS (published by Everyday Electronics)
Michael J. Cockcroft
Although this book is primarily a City \& Guilds Introductory level course (726/301). approximately 80% of the information forms a very basic introduction to electronics in general, it therefore provides an excellent introductory text for beginners and a course and reference book for GCSE students.
Full details on registering for C\&G assessment, details of assessment centres, components required and information on the course in general are given.

The City \& Guilds introduction to module 726/301 reads: "A candidate who satisfactorily completes this module will have a competence to identify basic components and digital integrated circuits and connect them together to form simple working circuits and logic units." This provides an excellent introduction to the book.
122 pages (A4 size) \quad Order code TI4 $\mathbf{£ 2 . 9 5}$

See Direct Book Service pages for ordering details.

FOR YOUR ENTERTAANMENT by Barry Fox

Faxing Yourself

Over the years I have carted various portable computers and modems round the world on press trips, with the intention of sending back articles as electronic text by telephone line. But it is never as easy as it sounds.

So I bought myself a portable printer and started sending back text by fax. I would write the story, print it out in my room and ask the hotel office to fax it back to the UK.
But the printer is quite heavy. So last year I bought myself a new portable. modem, the Discovery 2448P. This costs around $£ 200$ and comes with software which lets it send faxes as well as electronic mail. The software converts word-processed text into fax code and squirts it down the telephone line to any conventional office fax machine back home.

But that still left me without any hard copy of my own text, and on several occasions I found I needed this. So I started carrying the printer as well as computer and modem.
In the USA recently 1 found a simple way round the problem. I had written a report which I had to pass on to a business contact, but I had not brought my printer. So I phoned the hotel reception from my bedroom and asked for the hotel's fax number. I then used the Discovery modem to fax my report to the hotel office, with a note on the front addressing it to me.
Soon afterwards a messenger knocked on my hotel door carrying my fax. So I ended up with a hard copy print-out without ever using a printer.

Digital Copyright

Few people realise that since CD was launched, in 1983, the record and music industry has been missing out on a significant hidden benefit which was built into the format from day one.

When radio stations play records on the air, they must fill in copyright forms so that the artists and composers get the royalties due to them. The BBC pays up to 70 pounds in copyright fees on each record broadcast and each week staff spend 2,500 hours typing out 15,000 copyright forms.

Some TV stations and smaller radio stations write them in ink, with zeros indistinguishable from Os. The PPL and MCPS have to deal with over a thousand record companies (owning 3000 record labels). They have recently had to try and pay royalties on "Away in a Manager" and pieces of music identified only as "Overture", "The Rolling Stones track" and "The Who track".
The technology to automate copyright
payment, by using inaudible identification codes buried in digital recordings, has been available for nearly ten years but never been used. The BBC has taken the intitiative and warned that if the technology is not used now, it will forever lie The
The CD standard, as laid down by Philips and Sony, defines eight channels in the digital bit stream, called subcodes, which carry information related to the music. The P and Q channels carry timing codes which control the CD player, telling it when musical selections begin and end. The Q channel can also carry copyright information. Digital tape formats can carry similar codes.

In 1986, after fifteen years discussion, the International Standards Organisation agreed a code format which is applicable to any digital recording medium. ISO 3901-1986 defines the International Standard Recording Code. Twelve alphanumeric characters can unambiguously identify a recording by date, name and company owner. A modified CD player in a broadcast studio will strip this code out of the bit stream and deliver it to a computer. The computer's internal clock will log when the recording was played and for how long.
The radio station will then give a copy of the \log to all the copyright bodies (Phonographic Performance Ltd, the Performing Rights Society and Mechanical Copyright Protection Society), which then match the identifying number with their own database record to calculate what royalties the performers and composers should be paid.
It would all be so easy, accurate and fast. Everyone would gain. But most CDs now have a string of zeros where the code should be because record companies do not give the pressing plant an ISRC number to insert.
Without coded records, there has been no incentive for radio and TV stations to modify CD players and connect them to computers. Only one CD player, a Revox machine made by Studer, is already designed to strip out the code. It costs $£ 1.800$. So broadcaters continue to prepare copyright returns by hand.

Nimbus presses CDs for many companies and cannot remember ever being asked to include the code. Nor can Tape
One, a finishing studid One, a finishing studio which prepares several hundred digital master tapes for pressing every month. Both say the cost of adding the code would be negligible, or nothing at all.
Says Tony Churcher, head of broadcasting administration at the Performing Rights Society, one of three copyright "If we don't make a start nowical artists, "If we don't make a start now, we will

Overpowered!

1 was in Cannes recently for the MIDEM music industry Conference and Festival. One day I heard the sound of deafeningly loud music from the street, stopping and starting every minute or so. It sounded like someone turning a mobile discotheque on and off.
The source turned out to be a small Renault car, with the entire back seat area made over to mount a batch of enormous loudspeakers. These churned out thunderous bass. But only while the car was moving and its alternator was generating enough power to drive the amplifier. Every time the car slowed down in traffic, the amplifier drew so much power from the battery, that the sound system tripped into silence and the engine stalled.
If the driver had turned down the wick a little he could have kept the engine and sound system running. But no. He was far happier to hear snatches of music in between re-starting the engine.

BTECELECTRONICS TECHNICIAN FULL-TIME TRAINING

2 YEAR
BTEC National Diploma (OND) ELECTRONIC
COMIMUNICATIONS ENGINEERING purting, Television, Video, Testing \&

Fautidiagnosis) 1 YEAR
BTEC National Certificate (ONC) ELECTRONIC ENGNEERNG 1-INFORMATION TECHNOLOGY
(Electronics, Satellite TV. Networks, Telecomms)
2-ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV
Testing and Fault Diagnosis)
3-SOFTWARE ENGINEERING
(Electronics, Assembler, BASIC, Pascal, CADCAM)
4-COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronics)
BTECHigher National Ces
COMPUTNG TECHNOL Certificate (HNC)
(Microprocessor Based Systems, Control, Robotics)
These courses inctude a high percentage of colliges bused priciaw wort to enhence hiture employment prospects Mo additional fees for oversees studimits epplicarte with prom to 6 months can be arranged for
E ELIGIBLE CAN APP Y FOR E THOSE ELIGIBLE CAN APPLY FOR E.T. GRANT SUPPORT EQUAL OPPORTUNITIES PROGRAMME O.N.C. and O.N.D. Next Course Commences Monday 16 th September, 1991

FULL PROSPECTUS FROM

12V

 NiCad CHARGER
T. R. de VAUX-BALBIRNIE

Charge 12V battery packs froma 12V supply

TCIRCUIT will charge a 12 V nickel cadmium battery pack from a car battery or other nominal 12 V d.c. supply. This could have numerous uses where Ni-Cad batteries need to be charged and no mains supply is available.
Applications include models, video cameras, audio equipment. lights, boat and caravan back-up supplies, power tools, etc. Note that it is the ability of this circuit to charge 12 V batteries from a 12 V supply which is the point of the present design. A simpler circuit could be used to charge batteries having a lower nominal voltage.
It will charge " $A A A$ ", "AA", "C" and "D" size cells in approximately 24 hours and some in five hours as an option. The batteries and charging circuit are built into an aluminium box to make a self-contained unit.
is only suitable for "negative earth" systems. This is of little consequence since practically all cars in use today have this polarity.
This charger is really designed to charge a home-made battery pack made up from individual nickel-cadmium cells. It may be possible to modify an existing battery pack but the reader would need to make the necessary investigation. This is because it is necessary to "split" it into two separate 6 V sections.
A special feature of this circuit is to reduce the current as charging proceeds. At the end point. the current is just a fraction - 25 per cent approximately - of the original value. This is good for the batteries and saves power when they are left on charge for long periods - or even continuously.
than 13 V , the excess voltage over that of the cells would be absorbed by losses (voltage dropout) of typically 2 V in the charging circuit.

To overcome this problem, the charger arranges for the cells to be placed in two equal groups of 6 V each. By means of twoway switching, these sets are connected in parallel (where the total terminal voltage is 6 V) for charging and in series (where the total terminal voltage is 12 V) for discharging - see Fig. Ib and Fig. Ic.

By using a separate controlled current circuit for each 6 V section the correct charge rate is maintained for the type of cell being used. Taking into account the voltage dropout and the possibility of the car battery voltage falling below 11 V . an excess voltage will still remain to drive current through the cells and so charge them.

Providing the supply battery is in good condition to begin with, the amount ofenergy needed to charge even high-

FDig. 1a. The charging battery cannot charge the NiCad cells because the two voltages are equal and opposite. No current therefore flows in the circuit.

CHARGE/ DISCHARGE

A rotary-type charge/discharge switch and l.e.d charge indicator are mounted on one side of the case. A socket for connecting the input lead and a flying lead output are also provided. The input lead will have an appropriate connector - possibly a cigarette lighter type plug - on the end.

The maximum current which may be drawn from the unit is 3 A which will be found sufficient for most purposes. Note that the case is connected to the negative terminal of the charging battery (and the negative output wire) so if used in a car, it

Fig. 1b. The voltage across the two groups of cells is only 6 V so the 12 V charging battery can drive current through them.

PARALLEL CHARGING

When charging nickel-cadmium cells, a controlled current source is needed. This delivers the correct current for the type of cell being used.

Attempting to charge 12 V batteries from a 12 V supply using a conventional circuit. would be unsuccessful because the two similar voltages would be opposed and so unable to drive current through the cells see Fig. Ia. (Fig. 1 shows simplified arrangements which would not make practical circuits). Even if the car battery were fully charged and had a terminal voltage greater

Fig. 1c. The two groups of cells are now connected in series for discharging. 12 V appears between the output terminals.
capacity cells will cause only a small drain. If the batteries are to be charged repeatedly then it will need to be recharged every so often but if fitted to a car, normal running will do this.

CIRCUIT DESCRIPTION

The complete circuit for the $12 \mathrm{~V} \mathrm{Ni-Cad}$ Charger is shown in Fig.2. This is based on two identical integrated circuits. 1 Cl and IC2. These are combination voltage and current regulators each being responsible for charging one 6 V half-set of cells B) and B2 respectively.

Switch S1 is a 4-pole 3-position rotary switch. The poles and moving contacts (wipers) are labelled A, B and C, position D being unused. The fixed contacts are labelled I, 2, 3 (for pole A), 4, 5,6 (for pole B) and so on.

CHARGE

With SI set to Charge - that is, at either extreme position, a feed is established from supply battery, B3, positive terminal through fuse. FS2. and SIc contact 7 or 9. This is applied to pin 1 of IC 1 and IC2 through diodes D4 and D5 respectively.
These diodes isolate the i.c. inputs. They also protect the circuit if B3 is connected with incorrect polarity since they would then be reverse biased and block current flow. At the same time, red I.e.d. Charge indicator. D3, operates through diode D5 and current-limiting resistor, R7
Resistors. R1 and R2 set the output current flowing from pin 5 of each i.c. and are chosen to suit the particular cells being charged (see Tables 1 and 2). The value of R1/R2 shown in Fig. 2 is appropriate to standard charging of " AA " size batteries.
While in charge mode, Sla contact 2 is open and prevents current being drawn from the output - this could otherwise cause problems. Also, the two sections of the battery pack, B1 and B2 are connected through diodes, D1 and D2, to the appropriate i.c. output. These diodes isolate the regulator outputs and prevent current from the charged batteries possibly flowing back into the outputs when the supply is disconnected. SIb contact 4 or 6 completes the circuit to BI by connecting the negative end to supply negative.

DISCHARGE

With S 1 in the centre (Discharge) position. SIc contact 8 disconnects the positive supply feed battery. Diode D3 (Charge) then goes off. Slb contact 5 connects the negative terminal of battery BI to the positive terminal of B 2 ; the batteries now appear in series. Sla contact 2 establishes the output circuit and allows the combined total voltage (nominally 12 V) to appear at the output via fuse, FSI

Table 1: Standard Charging

Type of cell	Nominal Charge Current (mA)	Value of R1/R2 (ohms)	Fuse (FS2) Value (mA)
AAA	15	27	50
AA	45	10	125
C or D (1.2Ah commercial)	110	3.9	250
C (2.0Ah industrial)	180	2.7	400
D (4.0Ah industrial)	360	1.2	800

Table 2: Rapid Charging

Type of cell	Nominal Charge Current (mA)	Value of R1/R2 (ohms)	Fuse (FS2) Value (mA)
AAA	45	10	125
AA	140	3.3	400
C or D (1.2Ah commercial)	360	1.2	800

(Other types of battery not applicable)

Resistors R3/R5 (for IC1) and R4/R6 (for IC2) set each i.c. output to 7.8 V approximately. Taking into account the voltage drop of approximately 0.7 V across diodes DI/D2, there will be 7.IV available to charge the cells. This corresponds to 1.42 V per cell and means that as charging proceeds. the voltage of the cells approaches that of the supply and the current falls.
The output fuse. FSI, will normally have a value of 3 A . If a lower current is to be drawn, it could be reduced in value accordingly. The input fuse FS2 will have a value a little higher than the total maximum charging current being drawn - that is, rather more than twice the charging current for one set of cells (see Tables I and 2).

CONSTAUCTION

Readers wishing to use rapid charging should have available a multi-tester or milliammeter to check the charge rates. Nickel-cadmium cells will be damaged by overcharging.
Note that the specified case is correct for "AA" size cells. For "AAA" cells a smaller

Fig. 2. Complete circuit diagram for the 12 V NiCad Charger.

one could possibly be used but a larger box will be needed where "C" and "D" size cells are to be charged.

Construction of the 12 V Ni -Cad Charger is based on a circuit panel made from a piece of 0.1 in . matrix stripboard, size 9 strips x 26 holes. The board component

COMPONEVIS

Resistors

Capacitors
C1, C2 220 ceramic (2 off)
C3, C4 100 n ceramic (2 off)

Semiconductors

D1, D2.
D4, D'5 1N4001 1A 50V rec. diode (4 off)
D3 Red I.e.d indicator
IC1, IC2 L200CV Adjustable voltage/current regulator, 2A max. (2 off)

Miscellanous

S1 4-pole 3-position rotary switch, break-before-make
FS1 20 mm 3 A quick-blow fuse and chassis fuseholder
FS2 20 mm quick -blow fuse and chasis fuseholder, for value see Table $1 / 2$
B1, B2 Holder for 10 cells (see text) and 10 nickel-cadmium cells to fit - see text
PL1/SK1 2.1 mm power-in plug and matching chassis socket Car cigarette lighter type plug or other connector for car battery
Stripboard 0.1 in. matrix, size 9 strips x 26 holes; aluminium box, size $133 \mathrm{~mm} \times$ $102 \mathrm{~mm} \times 38 \mathrm{~mm}$ (see text); strain relief bush or rubber grommet; multi-coloured stranded wire; connecting wire; solder; battery holder connector; small nylon fixings: 20 mm aluminium squares (2 off for heatsinks)

Fig. 3. Stripboard component layout and details of breaks required in the underside copper tracks.
layout and details of breaks required in the underside copper tracks is shown in Fig. 3.
Cut the stripboard to size, drill the two mounting holes and make all track breaks as indicated. Follow with the soldered on-board components taking care over the orientation of the four diodes. Mount ICl and $\mathrm{IC2}$ by gently straightening and spreading the pins to fit the 0.1 in. stripboard matrix.
To select the correct value of R1 and R2 refer to Tables 1 and 2. If these resistors are mounted on short stalks (made from discarded resistor ends) as in the prototype unit, it will be easy to replace them with alternative values if ever the need arises. Solder 10 cm pieces of light-duty stranded connecting wire to the copper strips A, D, E and G on the lelt-hand side and to strip H on the right-hand side as indicated.

Attach heatsinks to ICI and IC2. These consist of pieces of thin sheet aluminium 20 mm square approximately and bent as shown in the photograph. No mounting kit is needed - the heatsinks are attached direct to the i.c. bodies using small fixings

BATTERY PACK

The battery pack is made from two sections containing five cells each. Holders for this number are not readily available but. for "AA" size at least, holders for 10 cells may be obtained.
For the prototype unit. it was an easy matter to cut the interconnecting wire at the mid-point and make soldered connections to the free ends. Alternatively, a holder for 4 cells and a holder for I cell could be used in each group.

The finished
charger. Size of case depends on batteries used.

Make a hole in the case to accommodate the strain relief bush or rubber grommet used for the output lead. Drill holes for the power input socket. I.e.d, indicator, switch, fuseholders, battery holder (depending on the type) and for circuit panel mounting.

Refering to Fig.4. mount all internal components - but not the circuit panel and complete the interwiring. Work carefully using different coloured wires; this will guard against errors which could be difficult to find later.
For clarity. some wires are letter-coded. Wiring shown in bold print should be of 3A rating minimum.
The negative terminal of SKI is the meeting point for several wires denoted by the letter X and care must be taken over the quality of the soldered joint here. When soldering diode D3, use minimum heat from the soldering iron since this component is easily damaged. Also, take care over the polarity or it will not work.
Mount the circuit panel clear of the case to prevent short-circuits between the cop-

Fig. 4. Interwiring between all off-board components. The thick wires must be rated at 3 A minimum.

The completed circuit board. Small 20 mm square aluminium heatsinks should be bolted to the two i.c. tabs - see photograph below.
per strip side and the metalwork. In the prototype. a piece of cardboard was placed on the bottom of the box and the circuit panel separated from this using adhesive fixing pads.
Use nylon (non-conducting) fixings. This will prevent the possibility of a short circuit between strip G and the case. Note that all components are mounted on the base section of the box - this causes least strain on the numerous interconnecting wires.
With Sl switched to Charge, insert the batteries into their holders. The battery holders may be secured by using small fixings, adhesive fixing pads or a small bracket depending on the type. Take care that no battery holder connections can touch the case and cause a short-circuit. Insulate with cardboard if necessary.

If rapid charging is contemplated, it may be necessary to mount the battery holder with a 5 mm clearance between itself and the base of the case so that holes may be drilled below to provide ventilation. In this case, do not secure the battery holder until tests have been made.
Drill a matrix of ventilation holes in the lid of the case corresponding to the position of IC1 and IC2 also above the battery holder if rapid charging is to be used. This is not necessary for charging "AAA" or standard charging of " AA " cells as was the case with the prototype.

Make the input and output leads. These consist of pieces of twin-stranded wire of 3 A rating minimum with suitable connectors on the ends. The input lead will have a power-in plug on one end and perhaps a car cigarette lighter type plug on the other.
Measure the correct amount of output wire needed inside the case and fit it through the stratin relief bush or rubber grommet. If using a rubber grommet, apply some strain relief - for example, tie a piece of string firmly around the wire on the inside. Make the internal connections and insert the fuses making sure that the fuseholders are correctly identified.

TESTING

Testing should be carried out with discharged batteries. If they are charged, connect a 12 V lamp to the output, set S 1 to Discharge and wait until the lamp goes out.
Now plug the input lead into the powerin socket and connect the other end to the car battery. Switch SI to Charge and check that the l.e.d. indicator D3 lights.
Place the lid in position and leave the unit on charge for an hour checking the temperature of the cells and heatsinks periodically. Note that the heatsinks will become warm and at high charging currents they will become quite hot. If the temperature rise is excessive (too hot to touch). increase their size.
If the battery cells become more than just slightly warm, provide additional ventila-
to roll off at the end of the charging cycle as it should. This could also happen in a hot environment. Connect a 12 V lamp to the output, switch S1 to Discharge and check that the charger has done its job.

Readers having access to a multi-tester (multimeter) may check the charging current in the following way. Using rapid charging, such checking is essential.
With the batteries discharged and with the supply battery disconnected, unsolder the positive connection from each section in turn. With the meter set to an appropriate current range connect the negative meter probe to the battery positive terminal and the positive one to the free wire. Reconnect the supply - the meter reading should not exceed the figure given in Table 1 or Table 2 for the type of cell being charged. Repeat the procedure with the other battery set.
The charge rate should be similarly checked near the end point. With rapid charging, this must fall below the rate for standard charging (Table 1) within five hours and may then remain at this figure indefinitely. For example, fully discharged "AA" size cells may be charged at up to 140 mA for five hours, after this time the current must not exceed 45 mA .
If it falls below this figure in a shorter time. the charging time is simply increased. If it remains high for longer than 5 hours. and the cells are remaining cool, increase R5 and R6 slightly. Alternatively, simply remember to switch off promptly.
If all is well, re-solder the connections to the battery holders. There should be no need to alter the initial charging rates but they may be reduced by increasing the value of $R 1$ and $R 2$ and vice-versa.
Replace the lid of the box checking for trapped wires and short circuits, especially at Si contacts. Check particularly that the self-tapping screws used to fix the two sections of the case together cannot cause a short-circuit to any part of the battery holder.
It only remains to attach plastic feet to prevent the unit scratching surfaces. The 12 V Ni -Cad charger may then be put into service.

ROBOTROUNDUP Nigel Clark

INNOVATION

Developing the new technologies is seen by many as the recipe for future prosperity in the UK. If we can take advantage of our natural ability at innovation, so the argument goes, then we have nothing to fear in 1992, with the single European market, from Japan or any developing country.

With many instances of British inventions which were developed aboard, the computer and the jet engine being two popular examples, it is thought that all we have to do is invent something and then ensure that we get the benefits to guarantee our future

There is one major problem with this approach. Whereas there are many new products being invented only a few will prove to be successful and create or expand industries. Picking the winners from the losers is not easy. History is the only basis on which decisions can be taken but that, in terms of both existing products and a person's past ability at spotting winners, is a notoriously insecure foundation.

Sir Clive Sinclair is a good example. He created a market for home computers from almost nothing, with very little historical precedent on which to work. His judgement then let him down with his now infamous electric car.

However there is a growing belief that there is a much more fundamental obstacle in the way of a new technologybased future. And it is thought to be the result of something deep in our culture.

The British are said to be inventive, highly specialised and do not give proper recognition to practical abilities. This is manifested by the ability of British scientists to make great advances in a wide range of areas and find their efforts rewarded with status and awards. However the people who put these ideas to work in industry are given little recognition, thus encouraging people to go into research rather than industry.

At university engineers are put down by being called spannermen and having a reputation for heavy drinking and playing rugby. The future leaders of society are busy taking social sciences, history or English Even within industry itself it is more often the accountants who reach the top positions rather than engineers or scientists.

These thoughts were brought to mind by two recent events, a colloquium on Advanced Robotic Initiatives in the UK at the Institution of Electrical Engineers in London and a fact finding mission to Japan looking at its advanced robotic technology.

COLLOQUIUM

Prof. John Gray, of the National Advanced Robotics Research Centre at Salford University, chaired the colloquium. He said that what concerned him was not the level of research being carried out in this country, although like any scientist he would always like there to be more, but the likelihood that the results would not be implemented properly.

He emphasised the cultural problems of getting people into what are seen as the less glamourous areas of industry. There is a large amount of work being done with enthusiasm on research under the Department of Trade and Industry's Advanced Robotics Initiative but he is not sure that this would result in new products and industries with in this country.

He pointed to areas where change was necessary if the UK was to make the best use of the research being undertaken. He picked out the lack of cross disciplinary co-operation beginning at school and continuing into the professional bodies. The different bodies for different branches of engineering were given as an example of the way in which the disciplines have tended to stay apart.
There are some moves towards more co-operation with the amalgamation of some of the professional bodies, and universities beginning to offer interdisciplinary studies within engineering. However progress is slow and the tertiary education system is still dominated by traditional single discipline departments.

In a recent article in the IEE's Computing and Control Engineering Journal Prof. Gray outlined the depth of the problem faced in making use of robotics developments. There is a requirement, he wrote, "for personnel with broad interdisciplinary skills, encompassing nearly all the traditional engineering aspects as well as artificial intelligence and computer science."

JAPANESE EXPERIENCE

These problems compare with the experience of Japan. The visit to Japan was undertaken with the backing of the Department of Trade and Industry and the British Robot Association. It visited the '91 International Symposium on Advanced Robot Technologies and exhibition of research and findings being held in Tokyo this year and visited a number of Japanese companies.

The visitors found that in a number of areas Japanese researchers were ahead of the UK A spokesman for the DTI said that they were at the stage of building advanced prototypes in areas such as nuclear environments, security and fire fighting. Research is totally government funded in Japan, compared with an initial 100 per cent for feasibility studies in the UK, decreasing through 50 per cent for the prototype stage to nil for further development. However the major difference noted by others on the visit was not the funding and level of research but the way that research was conducted and what happened to the results.

It is felt that Japan is a country where making things is just as important as inventing
them. And despite the fact that, of the nine products identified by the DTI Advanced Robot Initiative six have been taken up by industry, there seemed to be a greater co-operation between industry and research in Japan. The products identified by the DTI were in industries such as construction, underwater, medical and fire fighting.
In addition Japanese research is often more limited. Rather than aim immediately for the most sophisticated solution to a problem they find one solution and then seek to improve on that step by step. It is a similar approach to that discovered by the organisers of the Micro Mouse competition where the aim is to get an electronic mouse to the centre of a maze as quickly as possible. Unlike the UK contestants who were always searching for the most interesting way to solve the problem the Japanese took one design and concentrated on perfecting that. The success of this approach led to the rules being changed

Many seem to recognise the problem of the gap between research and development into saleable products. The DTI says that it is taking action to try to bridge the gap by promoting cooperation between the academics and industry. However if industry does not have sufficient people who have the knowledge to spot the possibilities or who can be trained to make use of the resulting products then such links will prove of little use.

HILDA 2 and HILDA 3. These robots are the result of work being done by Technology Applications Group but will it lead to a saleable product?

LOW COST UHF RADIO SWITCHING

AS USED BY THE PROFESSIONAL SECURITY MARKET
Incorporating the latest Surface Acoustic Wave technology, the system consists of a small "zero-power". UHF transmitter with digital encoder and a UHF receiver unit with digital decoder and 3 relay outputs, 2 alternate and 1 momentary.
8 -way DIL switches on both boards set the unique security code. Many applications including lighting, alarms, the "automatic home", etc.

Size:	$T \times 45 \times 30 \mathrm{~mm}$	$R \times 55 \times 65 \mathrm{~mm}$
Supply:	$T \times 3-12 \mathrm{~V}$	$R \times 5-12 \mathrm{~V}$
Range	Up to 200 m	

Complete System (2 kits) .£29.99
Individual Transmitter. .£15.99
Individual Receiver
£19.99
Please allow 28 days for delivery
Cheques/POs to:
BLB Electronics
341 Darwen Road, Bromley Cross, Bolton BL7 9BY

VELLEMAN KITS

 Over 100 Project Kits in stock Send 50p for NEW 1991 Catalogue + Price List RETAILERS WANTED Why not be one of our many retailers who carry our top range of high quality kits (Discounts to be arranged) Send Details and Letterhead to:
HIGH-Q-ELECTRONICS PO BOX 1481 LONDON NW7 4RF

 теL: 0707263562

FAX: 081-2091231
SCHOOLS AND COLLEGES WELCOME

WANT TO LEARN ABOUT COMPUTING? WANT TO TRY INTERFACING?

This is the computer for you:

- Enhanced Microsoft BASIC
- 80 character 8 line LCD display ($480^{*} 64$ dots)
- Two RS232 ports
- Microcassette data/programme storage
- Two analogue to digital ports included
- Battery backed
- 15 K available for BASIC or machine code programmes
- Full bus interfacing possible, input/output board available to connect your computer to the outside world
- In-house programming advice included for first 3 months
- Full technical manuals and specifications available
- 30 day money-back guarantee

At $£ 275$ + VAT (the screen and keyboard alone are worth more than that) this could be the cheapest interfacing computer you're ever likely to find.
$\star £ 100$ off if you order before 14th June *

E. P. Electronics

35 Mall Road, London W6 9DG
Tel: 0817480052 Fax: 0817411135
\longrightarrow AUTONA LTD ourruoruste MODULES ${ }^{\text {nuumbratrome }}$ SUPPLIED

** AUDIO **

AL 12580-125W AMPLIFIER

A rugged, high powered module that is ideal for use in discos \& P.A. Systems where powers of up to $125 \mathrm{~W}, 4$ ohms are required. The heavy duty output transistors ensure stable and reliable performance. It is currently supplied to a large pertormance. It is currently supplied to a larg
number of equipment manufacturers where number of equipment manuiacturers wher
reliability and performance are the main reliability and performance are the main
considerations, whilst for others its low price is the major factor. Operating from a supply voltage of 40-80V into loads from $4-16$ ohms.

AL 2550-COMPACT LOW-COST 25W AMPLIFIER
One of our most popular audio modules with tens of thousands installed. Ideal for domestic applications thousands installed. Ideal for domestic app
where low distortion and compact size are where low distortion and compact size are
the prime requirements. Used with supply ralls of $20 \mathrm{~V}-50 \mathrm{~V}$ into loads of $8-15 \mathrm{ohms}$.
MM 100-BUDGET 3-INPUT MIXER
With a host of features including 3 individual level controls, a master volume and separate bass and treble control, it provides for inputs for microphone, magnetic pick-up and tape, or second pick-up (selectable), and yet costs considerably less than competitive units. This module is ideal for discos and public address units and operates from $45 \mathrm{~V}-70 \mathrm{~V}$
£17.49
MM 100G
As MM 100 with two guitar +1 microphone
$E 17.49$
input intended for guitar amplifier applications.
VAT

SECURITY $\boldsymbol{*} \star$

DIGITAL ULTRASONIC DETECTOR-US 5063
2. Crystal controlled movement detection module operating at 50 kHz with an effective range up to 20 ft

$£ 14.93$

 Suitable for operation in household or vehicle security systems. 12 V operation and VATbuilt-in timing

ADVANCED CONTROL UNIT-CA 1382
Automation Loop Test \& Switch On * Automatic Siren Re-Set \#Audible Entry/Exit Warning Buzzer *Two Separate Loop inputs +24 -hr Circuits * Easily installed. Full Instructions Supplied
This advanced control panel provides effective and reliable control for all security installations, yet its operation is sheer simplicity for all members of the
£44.95 tamily, and is supplied with two keys. Housed in a stee
. VAT
with units cont panel. it compares
LOW-COST CONTROL UNIT-CA 1250
This tried and tested control unit provides the finest value for money in control systems, with many thousands protecting houses all over the country A suitable steel enclosure is available separately.

50FT INFRA-RED BEAM-IR1470

The IR1470 consists of a separate transmitter
$E 25.61$ and receiver providing a beam of up to 50 ft
which, when interrupted, operates a relay in the receiver which in furn may be used to control external equipment. The system requires only 65 mA from a 12 V supply. Size: (each unit) $82 \times 52 \times 57 \mathrm{~mm}$

FULL RANGE OF SECURITY ACCESSORIES STOCKED PROVIDING EVERYTHING YOU NEED TO PROTECT YOUR HOME

SEND OR TELEPHONE FOR FREE LITERATURE

Dept EE7, 51 POPPY ROAD PRINCES RISBOROUGH BUCKS HP17 9DB
TEL: (084 44) 6326 FAX: (084 44) 7102
Add VAT + $£ 1.50$ p\&p on all orders. Export add 10%

Callers by appointment only | only |
| :---: |
| +i.n |
| VSA |

SPECIALEVERYDAYELECTRONICSEDOKS
 EMcirionm

A comi
Gith Ceriticate chic WrRobucil DICIAL

ELECTRONK

Poctronic.
PROECTS $1=$

ELECTRONICS TEACH-IN $88 / 89$
INTRODUCING MICROPROCESSORS
Mike Tooley BA (published by Everydar
Electronics)
A complete course that can lead successful readers to the Microprocessors and Guilds Certificate in Introductory thing you need to know including full details on register ing for assessment. etc.
Sections
processors, Mer Microcomputer Systems. Microprocessors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and sor chips.
An exceilent introduction to the subject even for those
who do not wish to take the City and Guilds assessment.
80 pages (A4 size)

ELECTRONIC PROJECTS BOOK 1
Published by Evervdey Electronics in assoclation with Magenta Electronics.
Contains twenty of the best projects from previous issues of EE each backed with a kit of components. The projects are Seashell Sea Synthesiser, EE Treasure Hunter, Mini Strobe Dightal Capacitance Meter, Three Channel Sound to Light,
BBC 16 K sideways Ram, Simple Shor Wan BBC 16K sideways Ram. Simple Shor Wave Radio, InsulaDigital Frequency Meter, Infra Red Alarm EE, Equaliser Ioniser, Bat Detector, Acoustic Probe. Mainstester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light). Musical Doorbell, Function Generator, Tilt Alarm, 10 W Audio Amplifier. EE Buccaneer Induction Balance Metal Detector, BBC Midi Interface, Variable Bench Power 128 pages (A4 size) Audio Signal Generator

ELECTRONICS TEACH-IN No. 3 - EXPLORIN ELECTRONICS (published by Everyday Electronics) Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings in experimenting with masses of theory or formulae but straightoes not contal fions and circuits to build and experiment with Exploring Electronics contains mere tha projects, assumes no previous knowledge of electronics and s split into 28 easily digestible sections. 88 pages (A4 size) Order code TI3
£2.45
ELECTRONICS TEACH-IN No. 4
NTRODUCING DIGITAL ELECTRONICS (published by Everyday Electronics)
Although this book is primarily a City \& Guilds Introductor level course ($726 / 301$), approximately 80% of the informa tion forms a very basic introduction to electronics in genera it therefore provides an excellent introductory text for begin ners and a course and reference book for GCSE students. Full details on registering for C\&G assessment, details o assessment centres, components required and information on the course in general are given.
A candidate who satisfactorily completes this mod reads have a competence to io identify basic compones module will integrated circuits and connect them together to form simple working circuits and lagic units." This provides an excellen introduction to the boak.
112 pages (A4 size) Order code IT4
£2.95

EVERDAY ELECTRONICS DATA BOOK

Mike Tooley BA
(published by EE in association with PC Publishing) relevance in the world of electronics it contains everyday sections which deal with the essential theory of electronic circuits, but it also deals with a wide range of practical electronic applications.
If is ideal for the hobbyist, student. technician and en-
gineer. The information gineer. The information is presented in the form of a basic how theory can be pirn intes showing commonly available "industry standard" companents and devices
A must
256 pages $\begin{aligned} & \text { Order code DAFA! }\end{aligned}$

DIRECT BOOK SER VICE

The books listed have been selected by Everyday Electronics editorial staff as being of special interest to evervone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page. For another selection of books see next month's issue

TESTING, THEORY AND REFERENCE

ELECTRONIC TEST EQUIPMENT HANDBOOK

Steve Money

The principles of operation of the various types of test instrument are explained in simple terms with a minimum of mathematical analysis. The book covers anatogue and digital meters, bridges, oscitloscopes, signal generators. counters, timers and frequency measurement. cal uses of the instruments are also examined.
measurements (and a whole lot more) to wavetorm \& L erators and testing Zeners. A truly comprehensive bor the hobbyist, student, technician and engineer. Technician and engineer
Order code PCiog
£8.95
HOW TO TEST ALMOST EVERYTHING
ELECTRONIC - 2nd EDITION
Describes electronic tests and

make them with all kinds of test measurements - how to interpret the results. New sections in this edition how to logic probes, frequency counters, capacitance meters, and | more, (An American book.) | | |
| :--- | :--- | :--- |
| 190 pages | Or(ler code 2925 | |

GETTING THE MOST FROM YOUR MULTIMETER R. A. Penfold

This book is primarily aimed at beginners and those of basics of analogue and digital multimeters, discussing the elative merits and the limitations of the two types. In Chapter 2 various methods of component checking. In described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and解
is assumed. Using these simple componge or experience esting techniques the reader should be abent and circui ckle servicing of most 96 pages

Order code 8P239
£2.95
MORE ADVANCED USES OF THE MULTIMETER R. A. Penfold
(see book is primarily intended as a follow-up to BP239 already understands the basics of value to anyone who simple component testing. By using the techniques described in chapter 1 you can test and analyse the performance of a range of components with just a multimeter (plus a very few inexpensive components in some cases) While a multimeter is supremely versatile covered.
extended the capabilities of ans described in chapter more useful. The add-ons described include make it even probe, a high resistance probe, an a.c. sensitivity booster and a current racer unit
84 pages
Order code BP265
£2.95

THE ILLUSTRATED DICTIONARY OF
 ELECTRONICS - 4th EDITION

Rufus P. Turner and Stan Gibilisco
With more than 27,000 terms
With more than 27,000 terms used in electronics today this collection is THE most comprehensive dictionary terms, it is as up-to-date as the latest advances in the field itself! Tables and data on subjects most often consulted for projects and experiments are included. Other conversion ables include English/metric and metric/English con versions for units of energy, power and volume, and Fahrenheit/Celsius temperature conversion charts.
Setting this edition apart from other electronic dic ionaries is its emphasis on illustration. Featuring more han complete definitions, this fourth edition includes ove 50 detailed drawings and diagrams.
All entries are listed in alphabetical order. Abbreviations arms of more than one word are treated whole words. All American book) 648 pages

Order code 12900
 £23.65

ELECTRONICS - A "MADE SIMPLE" BOOK

G.H. Olsen

Introducing provides excelient background reading for our to everyone studying ectronics series and will be of interes plained and well illustrated and the book assumes only a very basic knowledge of electricity
330 pages
330 pages \quad Order codenelo] 4.95
 \section*{\section*{PRACTICAL
 \section*{\section*{PRACTICAL

 FORMULAE}} Brages the gap between complicated technical i.I.M and cut-and-tried methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias - tedious and higher mathematics have been avoided where possible and many tables have been in-
The
Constants, is divided into six basic sections: Units and Constants, Direct-current Circuits. Passive Components. Measurements. 256 pages

MICROELECTRON N2 CHECKBOOK

R. Vears

The aim of this book is to provide a foundation in microcomputer hardware, software and interfacing techniques. Each topic is presented in a way that assumes only an elementary knowledge of microelectronics systems and
logic functions. The book concentrates on 6502,780 and 6800 microprocessors and concentrates on 6502, $Z 80$ and 60 worked problems and 250 further pobled programs, 256 pages \quad Order code NE04N. 8.95

PRACTICAL DIGITAL ELECTRONICS

 HANDBOOKMike Tooley (Published in association with Everydar Electronics)
heavily on the application of electronic systems rely Practical Digital Electronics Higital electronics, and the readers with a practically based introduction provide subject. The book will prove invaluable to anyone involved with the design, manufacture or servicing of digital circuitry, as well as to those wishing to update their knowledge of modern digital devices and tech niques. Contents: Introduction to integrated circuits; basic logic gates; monostable and bistable devices timers; microprocessors; memories; input and output
devices; interfaces; microprocessor buses Appendix 1 , Devices, interfaces; microprocessor buses. Appendix 1 : test equipment: regulated bench power supply; logic probe; logic pulser; versatile pulse generator; digital IC tester, current tracer; audio logic tracer; RS-232C breakout boxi; versatile digital counter/frequency meter Appendix 3: The oscilloscope. Appendix 4 : Suggested 208 pages
lorder code paluo
€6.95

ELECTRONICS-BUILD AND LEÁRN

R. A. Penfold

The first chapter gives full constructional details of a circuit demonstrator unit that is used in subsequent chapters to introduce common electronic components - resistors, capacitors, transformers, diodes, transistors, thyristors, fets and op amps. Later chapters go on to describe how these multivibrators, bistables and logic circuits. At every stage in the book the circuits
experiments that you can carry out on the demonstrato unit to investigate the points described and to help you understand the principles involved. You will soon be able to go on to more complex circuits and tackle fault finding

120 pages
Orater codelpci03

£5.95

MAKE MONEY FROM HOME RECORDING

Clive Brooks
Now that you ve spent a fortune on all that recording gear, Well here's the book to show you how
It's packed with money making ideas, any one of which will recoup the price of the book many times over. Whether you have a fully fledged recording studio at home, or jus a couple of stereo cassette recorders and a microphone you'll be able to put the ideas in this book into practice and 105 pages

Order code PCT04
£5.95

INTRODUCTION TO DIGITAL AUDIO

an Sinclair
Digital recording methods have existed for many years and have become familiar to the professional recording engineer, but the compact disc (CD) was the first device to bring digital audio methods into the home. The next step is the appearance of digital audio tape (DAT) equipment All this development has involved methods and circuits

AUDIO AND MUSIC

that are totally alien to the technician or keen amateur who has previously worked with audio circuits. The principle and practices of digital audio owe little or cothing to the traditional linear circuits of the past, and are much mor comprehensible to today's computer engineer than the older generation of audio engineers.
This book is intended to bridge the gap of understand ing for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory is avo 128 pages

Order codePCito2 $£ 5.95$
SYNTHESIZERS FOR MUSICIANS
A. A. Penfold

Modern synthesizers are extremely complex, but they unders:and. If you want to go beyond using the factory presets or the random poking of buttons, this is the book for you.
It covers the principles of modern syrthesis - linear

Yamaha's frequency modulation, and sampling - and produce various types of sound - strings, brass, percussion, etc. The theoretical side of synthesis is treated in an easy to understand way - the technicat information being restricted to what you need to know to use your instrument effectively. 168 pages

Order code PC105
AUDIO
A. Wilson, C. G.I. A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

Analysis of the sound wave and an explanation of acoustistudy of the mechanism of hearing and examination of the various sounds we hear. A look at room acoustics with a subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio systems amplfiers. oscillators, disc and magnetic recording and lectronic music.

Order code BPIITI
$£ 3.95$

CIRCUITS AND DESIGN

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF MODEL RAILWAYS
R. A. Penfold
tome computers may easily be applied to the control of model railways and really quite sophisticated control. which needs only simple programming, is not too difficult to achieve. The main problem lies in interfacing the computer to the layout, but fortunately it is not too difficult or expensive to build suitable interfaces, and this book shows you how.
The project consists of various types of controller, inluding a high quality pulse type, as well as circuits for train position sensing, signal and electric points control massive layouts. Something as simple as an oval of track with a single siding can be given a new dimension by adding computer control and much fun can be had from hese relatively simple set-ups.
88 pages \quad Order code BPI80] 2.95
REMOTE CONTROL HANDBOOK
Owen Bishop
Remote control systems lend themselves to a modular pproach. This makes it possible for a wide range of yilt up, from the simplest to the most complex, to be The author has tried to ensure that, as far as possible, he circuit modules in this book are compatible with one another. They can be linked together in many diferent configurations to produce remote control systems ailored to switch is table lamp on and off. or to operate in industrial robot, this book should provide the circuit 226 pages

Order code BP240
£3.95

OIL DESIGN AND CONSTRUCTION MANUAL

 B. B. BabaniA complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and transormers. Practically every possible type is discussed and calculations necessary are given and explained in detail. Although this book is now rather old, with the exception of orroids and pulse transformers littie has changed in coil 96 pages

Order code 160
£2.50

30 SOLDERLESS B READBOARD PROJECTS -
BOOK 1
R. A. Penfold

Each project, which is designed to be built on a "Verobloc." breadboard, is presented in a similar fashion with a diagram, components list and diagram, component layout use where necessary. Whenever possible, the components used are common to several projects, hence with only a modest number of reasonably inexpensive components, it is possible to build in turn, every project shown. Recommended by BICC-Vero. 160 pages

Order code BPIO7
£2.95

BOOK 2-
All projects use CMOS i.c.s. but the items on component
entification etc., are not repeated from Book
£2.25

ELECTRONIC CIRCUITS HANDBOOK

Michael Tooley BA
This book aims to explode two popular misconceptions concerning the design of electronic circuits: that only those with many years of experience should undertake standing of advanced mathematics. Provided one is not oo ambitious, neither of these popularly held beliefs is true.
Specifically, this book aims to provide the reader with unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without Fourse to theoretical texts.
Furthermore, information has been included so that the circuits can readily be modified and extended by readers to meet their own individual needs. Related circuits have ext (and also in the index) so that readers are aware of which circuits can be readily connected together to form more complex systems. As far as possible, a common range of supply voltages, signal levels and impedances has been adopted.
As a bonus, ten test gear projects have been included. These not only serve to illustrate the techniques described but also provide a range of test equipment which is useful 277 pages

Order code NE05
£16.95

AUDIO IC CIRCUITS MANUAL
R. M. Marston

A vast range of audio and audio-associated i.c.s. are readiy available for use by amateur and professional design engineers and technicians. This manual is a guide to the most popular and userul of these devices, with over 240 diagrams. It dears with i.cs. such as low power amplifiers, charge coupled device delay lines, bar-graph display drivers, and power supply regulators, and shows how to use these devices in circuits rang ing from simple signal conditioners and filters to com plex graphic equalizers. stereo amplif er systems, and
168 pages \quad O12.95
HOW TO DESIGN ELECTRONIC PROJECTS

R. A. Penfold

The aim of this book is to help the reader to put togetrer projects from standard circuit blocks with a minimun of trial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to $\begin{array}{ll}\text { meet your special requirements are also provided. } \\ 128 \text { pages } & \text { Order code BPI27] }\end{array}$

50 CIRCUITS USING GERMANIUM SILICON AND ZENER DIODES
R. N. Soar
Contains 50 interesting and useful circuits and applications, covering many different branctres of electronics using one of the most simple and inexpensive of com ponents - the diode. Includes the use of germanium and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc.

Order code BP36 £1.50

KEY TECHNIQUES FOR CIRCUIT DESIGN
C. G. Loveday C.Eng MIERE

Deals with designing electronic circuits from scratch covering concepts such as target specifications, component selection (passive, discretes and i.c.s), the design cycle, derating and so on. Numerous design examples are given and soveral reader exercises all with fully worked 128 pages

DESIGNING WITH LINEARICs

G. C. Loveday

A book that deals with the design of the vital area of analog circuitry covering design with modern linear inlegrated circuit devices. The first chapter introduces the eader to important design techniques. test strategies, layout, and protection and also includes a section on the use of a typical CAD tool. There are separate chapters that each with detailed design examples and reader exercises. A final chapter brings all the previous work together in a A final chapter brings all the previous work together in a solutions. The text is essentially non-mathematical and is supported by,many diagrams.
$\$ 80$ pages \quad Order code BMM

TIMER/GENERATOR CIRCUITS MANUAL

R. M. Marston

This manual is concerned mainly with waveform generator techniques and circuits. Waveform generators are used somewhere or other in most types of electronic equipment. and thus form one of the most widely used classes of ine, square may be designed to produce outputs with sine, square, triangle, remp, pulse, staircase, or a variety of
other forms. The generators may produce modulated or
multiple form Waveform generator circuits may be built using transis "flinction"" generator ICs
The manual generator iCs. ver 300 practical circuits diagrams and tables. The sen cts covered include: Basic principles: Sine wave sub jects covered include: Basic principles; Sine wave gene "Timer IC"' generator circuits; Triangle and sawtooth ger rators; Multi-waveform generation; Waveform synthesizer Cs: Special waveform generators; Phaselocked loop cir cuits. Miscellaneous " 555 " circuits.
267 pages \quad OrdercodeNE18 8.50

OPTOELECTRONICS CIRCUITS MANUAL

R. M. Marston

A useful single-volume guide to the optoelectronics device user, specifically aimed at the practical desiç engineer, technician, and the experimenter, as well as the electronics student and amateur. It deals with the subjec in an easy-to-read, dow - to-earth, and non-matrematical yet comprehensive manner, explaining the basic principlas and. characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the i.c.s. and other devices used are inexpensive and readily available types, with univer 182 pages

POPULAR ELECTRONIC CIRCUITS - BOOK 1
POPULAR ELECTRONIC CIRCUITS - BOOK 2 R. A. Penfold

Each book provides a wide range of designs for electronic enthusiasts who are capable of producing working projects from just a circuit diagram without the aid of detailed construction information. Any special setting-up procedures are described
$\begin{array}{ll}\text { BOOK } 2160 \text { pages } & \text { Order code BP80 } \\ \text { Order code BP98 }\end{array}$
$£ 2.95$
$£ 2.95$

CMOS CIRCUITS MANUAL

R. M. Marston

Written for the professional engineer, student or en thusiast. It describes the basic principles and chara
tics of these devices and includes over 200 circuits.
ics of these devices and includes over 200 circuits
All the circuits have been designed, built and fully evaluated by 187 pages \quad Order codenE12] 12.95

OPTOEEECTRONICS CRCDHES MANUAL

而。

PROJECT CONSTRUCTION

R. A. Pentold

Deals with the simple methods of copying printed circuir board designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s. 80 pages Order code BP121 $£ 2.50$

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for up projects.
96 pages

ELECTRONIC SCIENCE PROJECTS

O. 8 ishop

These projects range in complexity from a simple colour temperature meter to an infra-red laser. There are novelties such as an electronic clock regulated by a resonating spring, and an oscilloscope with solid-state display. There and an electro-cardiometer. All projects have a strong scientific flavour. The way they work, and how to build and use them are fully explained.
144 pages
Order code BPT04
$£ 2.95$

BEGINNER'S GUIDE TO BUILDING ELECTRONICS PROJECTS
R. A. Penfold
Shows the complete beginner how to tackle the pract cal side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in
of simpes and books. Also includes examples in the form 112 pages

TEST EQUIPMENT CONSTRUCTION

R. A. Penfold

This boak describes in detail how to construct some simple and inexpensive but extremely useful, pieces of test equip. ment. Stripboard layouts are provided for all designs, together with wiring diagr
The following designs are included:- AF Generator, Capacitance Meter, Test Bench Amplifier, AF Frequency Meter, Audio Mitlivoltmeter, Analogue Probe, High Resis tance Voltmeter, CMOS Probe, Transistor Tester. TTL Probe. The designs are suitable for both newcomers and 104 pages

Order code BP248 £2.95

DATA AND COMPONENT IDENTIFICATION

RONIC, SEMICONOUCTOR \& LOGIC SYMBOL

SEMICONDUCTOR AND LOGIC SYMBOLS

 M. H. Banani B.Sc.(Eng.)Illustrates the common, and many of the not-so-common radio, electronic, semiconductor and logic symbols that are used in books, magazines and instruction manuals.
etc, in most countries throughout the world.
Chart
Order code $8 P 27$

INTER GUIDE

A. Michaets

Helps the reader to find possible substitutes for a popular selection of European. American and Japanese transistors. Also shows material type, polarity, manufac turer and use.

RADIO, TV, SATELLITE

this country on the subject. Includes many units and devices which have been designed and used by acthought have gone into the development of such units to overcome individual problems. A practical and authorita128 pages

Urder code BPIlf
£5.95

EXPERIMENTAL ANTENNA TOPICS

H. C. Wright

Although nearly a century has passed since Marconi's first search and search and experiment to be carried out in the field of The aim of the experimenter will be to make a measurement or confirm a principle, and this can be done with relatively fragile, short-life apparatus. Because of this. devices described in this book make liberal use of These materials are foil, plastic bottles, cat food tins, etc. worked with simple tools, encouraging the trial-and-error philosophy which leads to innovation and discovery.

COMPUTING

The subjects covered include: PC overview; Memory upgrades: Adding a hard disk drive; Adding a floppy disk drive: Display adaptors and monitors; Fitting a math co-processor; Keyboards; Ports; Mice and digitisers; Repairs and the increasingly popular subject of d. iy PCs 156 pages lorder code SPP211 $\quad \mathbf{E 4 . 9 5}$

AN INTRODUCTION TO PROGRAMMING THE BBC MODEL B MICRO
Written for readers wanting to learn more about programming and how to make best use of the incredibly powerflu model B's versatile features. Most aspects of the BBC Micro are covered. the omissions being where little could usefully be added to the information provided by the manufacturer's own manual.
144 pages \quad Order code BP139] $\mathbf{£ 1 . 9 5}$
AN INTRODUCTION TO 6502 MACHINE CODE R. A. \& J. W. Penfold

Although primarily a practical book with text closely supponed by diagrams, some formulae which can be used by straightforward substitution and some simple graphs have also been included
72 pages Oraer code BP278
£3.50

NEWNES SHORTWAVE LISTENING
 HANDBOOK

Joe Pritchard G1UOW
Pari One covers the "science" side of the subject, going brief treatment or radio transmission methods to simple receivers. The emphasis is on practical receiver designs and how to build and modify them, with several circuits in the book
Pant Two covers the use of sets, what can be heard the various bands, propagation, identification of stations, sources of information, QSLing of stations and listening o amateurs. Some computer techniques, such as computer morse decoding and radio teletype decoding are also 224 pages
machine code is assumed. Topics covered are assembly language and assemblers, the registet se and reemory, binary and hexadecimal numbering systems, addressing modes and the instruction sel and also mixing machine code with BASIC. Some simple programming examples are given fo ORIC-1/Atmos, Electron, BBC and also ih Commodore 64.

Ordercode BPY4 £ 2.95

The PRE-BASIC BOOK
F. A. Wilson.C.G.I.A
C.ENG., F.I.E.E

Another book on BASIC but with a difference. This one does not skip through the whole of the grammers floundering but instead would-be pro ntroducing the technique by looking in depth at the most frequently used and more easily understood computer instructions. For all new and potential micro 192 pages

Order code BPT4G
£2.95

DIREOROOK GERVIGE ORDARING DETAILS

 TO ORDER

 TO ORDER}

Please state the title and order code clearly, print your name and address and add the required postage to the total order.

Add 75p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.00$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or credit card details, Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK

SERVICE, 33 GRAVEL HILL, WIMBORNE, DORSET BH21 1RW (mail order only).

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers al low extra time for surface mail post.
Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists
Note - our postage charge is the same for one book or one hundred books!

REPORTING AMMATEUR RADIO Tony Smith G4FAI

NOVICE LICENCE COURSE

As reported last month, RSGB courses in preparation for the new amateur radio Novice licence examination are now becoming available. They will cover the syllabus in approximately 30 hours, with extra time to learn the Morse code when required. Courses will comprise no more than four students and will have a strong practical emphasis.

Examples of some of the subjects covered by individual sessions, and how they are approached, are as follows:

Demonstrating the main controls of a receiver on the h.f. bands: Tuning through single sideband (SSB) signals, switching between upper and lower sidebands, band switching, function of audio frequency and radio frequency gain controls, frequency indication - analogue or digital, separation of bands into different sections for different modes, and demonstration of the different types of signal to be heard.

Soldering: Safety precautions, tinning, function of flux, need for correct size bits, appeârance of good joints.

Components: Identification of different types, colour codes, periodic questioning during the course to confirm familiarity.

Multimeters: Setting for major modes of operation, difference between a.c. and d.c. voltage and current, importance of polarity, different scales on analogue instruments, importance of leaving the meter switched off when not in use.

WORKSHEETS

Linked with the individual sessions are worksheets which provide detailed information for students working with the instructor or revising at home. Apart from the above, these include a simple circuit/experiment to observe Ohm's law; codes and abbreviations used over the air; how to make a contact over the air; log-keeping and QSL cards; power of a circuit; propagation conditions on" the amateur bands; alternating current; tuned circuits; receiver and transmitter block diagrams; harmonics; learning and using Morse code; aerials; EMC (electromagnetic compatibility), i.e., avoiding interference; power supplies; and more.

The course covers basic radio theory and practice in easily digestible "bites" each lasting about 30 minutes; and a great deal of work has gone into meeting the needs of the total beginner to the hobby. As part of Project YEAR (Youth into Electronics via Amateur Radio) the new licence is clearly aimed at the young, but candidates of all ages can become Novice operators and the course represents an excellent way of learning about the subject at "ground level". If any readers of $E E$ enrol for one of the early courses I shall be delighted to receive and report their reactions to it.

STUDENT REQUIREMENTS

Students need to have the Novice Licence Student's Notebook, obtainable from the RSGB. A useful book of sample examination questions is also available. Also needed is an approved audio frequency amplifier kit, with other components, required to construct a basic radio receiver. Details will be provided by the instructor.

There is no course fee although the volunteer instructor may ask for assistance with modest incidental expenses. On successful completion of the course the RSGB will issue a Course Completion Slip, and an optional completion certificate will be available for $£ 2.50$.

Successful students may then apply to take the Novice Radio Amateurs Examination (Subject No. 773), to be held at local City \& Guilds examination centres four times a year. The examination fee is $£ 8.95$, plus a centre examination fee. The C\&G hope to publish results four weeks after each examination.

MORSE TEST

For those seeking the Novice A licence, which permits operation on selected h.f. frequencies (as opposed to the v.h.f. only B licence which does not require a knowledge of Morse code), the final hurdle is the RSGB 5w.p.m. Morse test which will become available in June or July this year. There are existing test centres in most counties, etc, where Novice tests will be held every two months, while candidates prepared to travel to adjacent areas will usually be able to arrange a test within a few weeks.

To help learners, the RSGB has a Morse code training tape, Morse code A Stage 1, using a well-tried system which sends letters at $12 \mathrm{w} . \mathrm{p} . \mathrm{m}$. while leaving longer than usual spaces between symbols and words to reduce the overall speed to five words per minute. Full details on all aspects of the Novice licence can be obtained from the Radio Society of Great Britain, Lambda House, Cranborne Road, Potters Bar EN6 3JE.

YOUNG AMATEUR OF THE YEAR

The DTI's Radio Communications Agency has announced its sponsorship for the 1991 Young Amateur of the Year Award as part of its continuing support for Project YEAR. This is for the most outstanding achievement by an amateur radio enthusiast under the age of 18 during the period 1st August 1990 to 31st July 1991. The winner will get a cash prize of $£ 250$ and every entrant will receive a copy of the RSGB's amateur radio log book. The winner and runners up will be invited to spend a day at the 'Agency's Radio Monitoring Station at Baldock, Herts. Additional prizes will be donated by the radiocommunications industry.

Achievement in any field of amateur radio will be considered, such as an interest in di.i.y. construction; operating interests and skills, especially teamwork in club contests; using the hobby to help the community, e.g., RAYNET, St John's Ambulance, the disabled and housebound; encouragement of other young people into the hobby through presentations in schools and clubs; or involvement in amateur radio as part of a school project.

The closing date for applications is 31 st July 1991. Candidates may enter directly or be nominated by an adult. Notes for entrants can be obtained from The Secretary of the RSGB, address as above.

AMATEUR RADIO AND THE GULF

As this is being written, the Gulf War has thankfully ended and stories are beginning to emerge of activities by radio amateurs which have assisted those affected by the hostilities. Soon after the Iraqi invasion, for instance, when news from Kuwait was minimal, a Russian amateur there sent a teletype (AMTOR) message, received by an Australian station, describing conditions under the occupation which received nationwide media coverage in Australia. American and Israeli amateurs sent and received messages on behalf of worried families after the Scud attacks on Israel, when telephone lines to Israel were hopelessly jammed by similar enquiries.

Radio amateurs in the American armed forces passed messages between serving personnel and their families at home and elsewhere, via US based stations, until a general radio silence was imposed at the commencement of hostilities. Many of these operations were on MARS frequencies, non-amateur frequencies permanently allocated for relaying messages, and phone-patching, between military personnel and their families worldwide. S.W.L. readers have no doubt heard the phone patching, i.e., connection of radio links into the public telephone system, which takes place regularly on the 20 metre amateur band.

Passing messages by radio amateurs on behalf of non-amateurs is permitted in some countries and not others, and international links are permitted only by formal agreement between the countries concerned. In the USA this facility is seen as a form of public service, and linking agreements exist with Australia, Israel and many other countries. In the UK, however, the radio regulations do not permit such "third party traffic" except in certain defined situations so, unlike their American colleagues, British forces in the Gulf were unable to send messages home via amateur radio.

Constructional Project

MODULARDISCO L/GHTING SYSTEM

Part Three: MASTERLINK SYNCHRONIZER MODULE

CHRIS BOWES

Light up your party or disco road show with these easy-build effects modules.

THIS MODULE is the first of the system control modules, which do not, in themselves, provide an output pattern to control a lighting display. The purpose of this module is to synchronise any of the other modules within the systern, which have been switched to Masterlink control, so all of the modules so selected are driven in synchronism, see Fig. I.
Essentially the Masterlink module contains the pulse generating and auxiliary function controls contained in most of the other modules The outputs from the Masterlink Module are buffered and made available at the connection sockets so that they can then be "bussed" to all of the more complex modules in the system.

CIRCUIT DESCRIPTION

The full circuit diagram for the Masterlink Module is shown in Fig. 2. The power to drive the module is obtained from the power input connections on the 7 -pin DIN sockets SK 1/SK2.
There are two such sockets. wired in parallel, on each Masterlink compatible module so that the Masterlink connections can be easily bussed through a stack of system control and/or effects modules, irrespective of the order in which they may be arranged. These sockets also serve to buss the external pulse line, which enables any of the pattern generating modules in the system to be operated by pulse outputs originating from any of the sound operated modules.

POWEA SUPPLY

The positive power supplies from each of the connected modules are combined. through 1 N4001 diodes installed in each of the Masterlink compatible modules. The positive power supply voltages appearing on pin I of the DIN sockets and the common 0 volt supplies appearing on pin 2 of the DIN sockets. The latter connections are commoned through the printed circuit board.

In order to avoid problems which might be caused by an inadvertent reversal of the power supply polarities for any reason, DI, another IN400। diode. is also included in the positive power supply rail. FSI is a

100 mA fuse which is included to protect the circuitry of the module in the event of a fault arising within this module.
Capacitor Cl is a tantalum type, which is used to decouple the logic circuits within the module. The red light emitting diode (l.e.d.) D4 and it's associated series resistor R1 is used to provide an indication that power is available to the module.

CLDCK CIRCUIT

Clock pulses to drive the system are obtained from three sources. The most usual source being the clock pulse generator which is made up of ICI, R3, VRI, R4 and C2. This operates in an identical manner to the generators in the rest of the modules.

(102030

Fig. 1. Using Masterlink to synchronize any number of effects modules.

The 555 timer $I \mathrm{Cl}$ is configured in the astable mode and the frequency of the output pulse produced at pin 3, is governed by the values of R3, VRI, R4 and C2. As the output pulse from pin 3 is predominantly in the Logic 1 state this is connected to an inverter formed by IC2a, a two input NAND gate.
This ensures that the positive going pulses are of a relatively short duration. This precaution is necessary because the other pulses in the system are also positive going (switching from Logic 0 to Logic 1 when activating the counter) and any long duration Logic 1 state at the input to the counter will block any other pulse from activating the counter.

Switch S2 is included to select the pulses proceeding to the rest of the circuit between those produced by the internal clock pulse generator and pulses generated by external sound activated modules, the signals from which are commoned through the Masterlink connections appearing at SK 1 pin 7. These pulses are fed via S2, diode D2 and resistor R7 to the base of transistor TR2.

ONE-SHOT CIRCUIT

The third source of clock pulses is the "One-Shot", push-to-changeover switch. S3. Any switch of this type will produce a number of high speed pulses when operated because of the bouncing effect of the switch contacts as they close.
In order to overcome this problem and to give a single shot output pulse for each operation of S3 it is connected to a debouncing circuit. formed by R5. R6. IC2b and IC2c. When switch S3 is operated it effectively shorts resistor R6 100 V this changes the input state of pin 9 of IC2c. This produces a Logic 0 state at the output ($\operatorname{pin} 10$).
The same switch action removes the short to ground of resistor R5 and allows the input to pin 13 of 1 C 2 b to rise to a Logic I state. The cross linking of IC2b and IC2c causes the output at Pin 11 to remain in the Logic I state until the states at pins 8 and 12 are reversed.
The one-shot pulse created at the output of IC2b is fed, via diode D3, to the junction with resistor R7. Diodes D2 and D3 form a simple OR gate which allows clock pulses from S3 to be added to those from the remainder of the circuit without causing interference.
When the base of TR2 is energised, by the presence of the Logic 1 state at the junction of D2, D3 with R7. the transistor conducts, causing current to flow through the pull-up resistor R8. This causes the state at this point to change from Logic 1 to Logic 0 . This is inverted by IC2d and fed both to resistor R20 and transistor TR6, via another inverter (IC5b), and also to pin 13 of the Johnson counter IC3 and the indicator l.e.d. (D5), via its series resistor R9.

ONE-IN-FIVE CIRCUIT

The 4017 decade counter IC3 is used to provide a special output pulse, for use in certain modules, which occurs every fifth pulse of the Masterlink primary output pulse. Pin 14 of IC3 is held in the Logic 1
stafe by its pull up resistor, R10, and thus IC3 counts forward by one step for each negative going pulse fed to pin 13.
This required pulse is obtained from pin $10\left(0_{4}\right)$ of the 4017, and the counter is reset to zero, with the unconnected output 0_{0} being forced to Logic 1 by the connection of output 0_{5} (pin 1) of the i.c. to the MR (reset) input (pin 15). When output 0_{4} goes to the Logic 1 state the counter is reset to 0 , counts up once more and hence produces the required pulse on every fifth count.
The output from output 0_{4} is inverted viai IC5a and fed through resistor R12 to the base of transistor TR3, which is used to provide a buffer output at pin 4 of the DIN sockets. As long as a Logic 1 output is available at the output of IC5a, TR3 is made to conduct and effectively shorts out resistor R13, causing a Logic 0 state to be present at the output pin 4 of the DIN sockets.
This state is the normal one but when the required output pulse is created as a Logic 1 state at pin 10 of IC3 it is inverted by IC5a causing a Logic 0 state to exist at the input of the buffer circuit comprising R12. TR 3 and R13. TR 3 ceases to conduct and current is no longer drawn through resistor R13 which causes the output at pin 4 of the DIN sockets (SK1/SK2) to rise to the Logic I state. Transistor TR3. in common with the other output transistors TR4, TR5 and TR6. forms a simple output buffer which

COMPONENTS

Resistors

R1, R9, R11, R14, R15 R2
R3

1 k (5 off)
470
R3 5k 6 3k

See
sul
TALK Page
R13, R17
R19, R21
R7, R12, R16,
10 k (8 off)
R18, R20
82k (5 off)
All $0.25 \mathrm{~W} 5 \%$ carbon film

Potentiometer

VR1 250 k rotary, lin

Capacitors

C1 $2 \mu 2$ tantalum, 25 V
C2 47μ elect., 25 V

Semiconductors

D1 1 N4001 1A50V rec. diode
D2, D3 1 N4148 signal diode (2 off)
D4 Standard Red I.e.d.
D5-D8 Standard Green I.e.d.s (4 off)
TR1-TR6 ZTX300 npn silicon (6 off)
IC1 555 CMOS timer
IC2, IC5 4011 Quad 2-input NAND gate (2 off
IC3 4017 Johnson counter
IC4 4520 Dual binary counter

Miscellaneous

S1, S2 S.P.D.T. min. toggle switch (2 off)
S3 S.P.D.T. pushbutton changeover switch
SK1, SK2 7 -pin DIN chassis socket (2 off)
FS 1100 mA 20 mm fuse and p.c.b. fuse clips
Aluminium instrument case (Maplin "Blue Case 233", size $250 \mathrm{~mm} \times 150 \mathrm{~mm} \times 75 \mathrm{~mm} ; 8$-pin di.i. socket; 14 -pin di.i. socket (2 off); 16 -pin d.i.l. socket (2 off); plastic knobs for VR1 and S3; p.c.b. stand-off pillars; connecting wire solder pins; 1.e.d. clips (5 sets); nuts and bolts for socket fittings; solder etc.

Printed circuit board available from EE PCB Service, code EE752.

Approx cost guidance only

219
plus case

,
enables a large number of modules to be driven by the Masterlink module.
A 4520 dual binary counter. IC4 is connected to form a 256 stage binary counter The pulses generated by ICl are fed to the $\overline{C P}_{1 A}$ input (pin 2) of IC4 and, with the $\mathrm{CP}_{0 \mathrm{~A}}$ input held at Logic 0 , the counter advances by one step with every pulse

Output 0_{3} (pin 6) of the first half of the 4520 counter is connected to the Enable B $\overline{\mathrm{CP}}_{1 B}$ input (pin 10) of the other half of the counter, with it's Clock B (pin 9) input similarly being held at Logic 0 . This counter thus advances at every sixteenth transition of the input pulse to the first half of IC4.
Outputs $\mathrm{O}_{2} \mathrm{~B}$ and $\mathrm{O}_{3} \mathrm{~B}$ of IC4 are taken both to their indicator circuits, comprising R14 and D7 and R15 and D8 respectively. and to the inverters IC5c and IC5d. The outputs of these two inverters are fed via resistors to the bases of transistors TR4 and TR5.
Together with the pull up resistors R17 and R19. these transistors form output buffers, in the same way as described earlier. The buffered outputs of all of the Masterlink signals are made available to all compatible modules via pins 3, 4, 5 and 6 of the DIN sockets SKI. SK2.

SPRINT CIRCLIT

Transistor TR1 and resistor R2 are used to provide a sprint or "Speed" facility. When output $0, \mathrm{~B}$ (pin 12) of the second half of the 4520 counter (IC4) goes to the Logic 1 state this voltage is made available. via switch S1. through the base protection resistor (R2) and to the base of TR1.
When the base voltage of the transistor rises above the emitter voltage the transistor saturates and effectively shorts out the Speed control VR1. This causes the output pulses from IC1 to increase in frequency to that set by R3, R4 and C2 alone.

CONSTAUCTION

The Masterlink circuit is built on a single-sided printed circuit board (p.c.b.), the full size copper foil pattern and component layout of which is shown in Fig. 3. The foil pattern should be transferred to a suitable board which is then etched and drilled in the usual way. (A ready-tinned and drilled board is available from the $E E$ PCB Service, code EE752).

After drilling the board the components can be inserted into the board and soldered in place. Although this process can be carried out in any convenient order you will find that it is easier to perform this task if the components are inserted in ascending order of size.
All the components of a particular size should be soldered into position before yoing onto a larger size of components. Care should be taken to ensure that all of the polarity sensitive components are connected into the circuit board with the correct polarity
The i.c.s are best accommodated in sockets which are soldered in place along with the other components. The i.c.s should be inserted as the last task before testing out the unit. Care should also be taken with these components to ensure correct polarity.

CASE

All of the modules in this series have been designed to fit into the case detailed in the components list and you are advised to ensure that the case specified, or a metal one with at least the minimum of internal

space, is used since some of the modules are very tightly packed into the specified case.

Similarly the panel designs for all of the modules have been designed in a coordinated scheme so it is advisable to either follow the layouts given in the photographs or to design your own coordinated scheme. Whichever case is used it is most important that they are properly "Earthed".

WIRING-UP

Before commencing to install the case mounted components it is recommended that the case shoukd be drilled and lettered. The p.c.b. is best not wired up to the case mounted components until all the components. except for the i.c.s, have been inserted and soldered.
The connections between the p.c.b. and the case mounted components are best made with flexible wires cut to a size which allows the board to remain connected to the control panel when removed for fault finding etc. There are a number of connections to be made and the use of as many colours of wire as are available will reduce the risk of confusion at this stage. The ends
(above) Wiring to front panel components, completed board and (left) interwiring to the rear DIN sockets.
must be prepared by tinning before the cable is inserted info the appropriate holes on the board and then soldered into place.

TESTING

Once all the connections have been made the p.c.b. should firstly be carefully checked for broken tracks, solder blobs and incorrectly placed components before attempting to insert the i.c.s and test the unit. The i.c.s should then be inserted into the correct sockets, taking care to ensure that they are the correct way round.

In order to test the Masterlink module it will be necessary to connect it, via a fivepin DIN cable, to the Masterlink socket of a compatible module and connect that module to an Output Module. As soon as the Output Module is switched on l.e.d. D4 on the Masterlink module should glow and D5 to D8 should illuminate in a sequence such that D6 illuminates briefly after every fourth illumination of D5 whilst I.e.d.s D7 and D8 are illuminated in a binary pattern after a considerable number of illuminations of DS.

The Effects Module should be switched so that the Masterlink connection is activated (by setting the Masterlink switch to the down, or ON position) and the reverse and pattern controls should be switched to their AUTO positions. You should now see that the effects control functions now respond to that of the Masterlink

IN USE

The Masterlink unit operates in the same way as the effects modules, in so far that the pulse and other functions are controlled by potentiometer VR1 and the Auto-Sprint circuitry which can be engaged via switch SI. The best method of connecting the unit into a stack of effects modules is to "daisy
chain" the inputs up and down the stack by using five-pin DIN leads plugged into the Masterlink sockets.
Each module, including the Masterlink nodule, is equipped with two DIN sockets so that they may be "daisy chained" by simply plugging each module into the next module up or down in the stack. It does not matter in which order any modules are stacked.
When the Masterlink module is in use any or all of the compatible module can be switched on to Masterlink control in which case they will be pulsed by the output pulses from the Masterlink module.

The frequency of these pulses is selected by the setting of VR1, with the "sprint" facility being engaged by the operation of switch SI.
If the auto functions for direction and/or pattern are selected on any modue where the Masterlink function has also been selected then control of that function will be passed to the outputs of the equivalent functions on the Masterlink modules. This means, that in use, all of the Masterlink compatible modules within the system can be made to pulse. change direction and change pattern it the same time.

They can. of course, be disconnected from the Masterlink module either by selecting a permanent function on the direction and pattern selectors or by turning the modules Masterlink switch to the off position. The Masterlink compatible modules are designed to be connected together in a stack by means of a simple seven-way cable which is terminated at each end in a cable mounting 7-pin DIN plug. These connectors are connected pin to pin for all of the pins.

Next Month: Random Pattern Module.

pCB SERVICEPrinted circuit boards for certain constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add f 1 per board for overseas airmail. Remittances should be sent to The PCB Service, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics (Payment in $\mathbf{£}$ sterling only)
We do have some older boards in stock - please enquire.
NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery-overseas readers allow extra if ordered by surface mail. Please check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

A DOT MATRIX PRINTER FOR ONLY £19.95?

Yes! I have obtained the remaining production line parts for the amazing AMBER 4000 PRINTER and can supply them to you as a kit complete with assembly instructions. A few small parts will have to be supplied from your own spares box, but all the major items including the case are included. Send me a SAE for full details.

This superb 40 column printer boasts many features and can be driven from both parallel and serial signals. The SAE will tell all, or send a cheque for $£ 22.95$ (inc. $£ 3$ P\&P) for immediate dispatch.

I only have 150 kits so to avoid disappointment contact me now at:

CHIPLINK

10 Hardys Field, Kingsclere Newbury Berks. RG15 8EU

ESSENTIAL
 - Building your own PC XT or AT? READING FOR
 - Upgrading an existing PC? PC HARDWARE
 - Want to know what makes them tick? ENTHUSIASTS
 - vou weeo
 "PC-DIY"

Summary of contents:
The book contains a wealth of information about PC hardware and gives practicél advice for PC builders and upgraders. Written in a lighthearted style. it is suitable reading for beginners but includes information for the more experienced too.

There are eight chapters; the first is a brief introduction. The second chapter gives a potted history of the PC range, and details some of the characteristics of each model. Chapter three will be of particular interest to those who are undecided about which type of PC to build. It gives the pros and cons of all the usual combinations of cases, boards and display types.

The fourth chapter is where the real work of assembling the parts is described. It includes many practical tips not published elsewhere. If the beast won't go when you have built it you need to read chapter 5 !

If you already have a PC, but it has failed in some way. chapter six may help. whereas chapter seven deals with upgrades. to existing machines. Software is briefly discussed in chapter eight and there are Appendices with useful data. The book has 112 pages and is in paperback format.

ELECTRONIOS

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is f 8 (+VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+ VAT) per word (minimum 12 words)

NEW VHF MICROTRANSMITTER KIT Tuneable $80-135 \mathrm{MHz}, 500$ metre range, sensitive
etectret microphone, high quality PCB. SPECIAL OFFER complete kit ONLY £5.95 Assembled and ready to use $£ 9.95$ post free QUANTEK FIECTR Cheques/P.O.s payable to Kits Dept. (EE), 45a Station Road Northfield, Birmingham B31 3TE

SERVICE MANUALS

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appliances, etc.
Equipment from the 1930's to the present.

Over $\mathbf{1 0 0 , 0 0 0}$ models stocked,

 originals \& photostats.FREE Catalogue Repair \& Data Guides with all orders

MAURITRON TECHNICAL SERVICES (EE)

8 Cherry Tree Road, Chinnor,

 Oxfordshire OX9 4QYTel: (0844) 51694
Fax: (0844) 52554

ELECTRONIC COMPONENTS

EVERYTHING FOR YOUR NEXT PROJECT
THE BIGGEST DISPLAY IN THE SOUTH IS AT

FRASER ELECTRONICS

42 ELM GROVE \star SOUTHSEA * HANTS

N. R. BARDWELL LTD (EE)

Rectitier Dtodes 1N4001
Rectifier Dlodes 1N4003
Rethfier Olodes iN4007
Rectlfier Dlodes iN540
NE555 Timeri.c.s.
7410 Op Amplic.
7410 PAmp A.c.s.
C 10601400 V 6 am
BFY51 Transisiors.
BC478 Transistors.
BC478 Transistors..
MPSA92 Transistors
Asstd. high brightness I.e.d.
Axial i.e.d.s (Diode package)
Rectangular red I.e.d.s
Minlature axial l.e.d.s super bright red
Miniature red l.e.d.s 3 mm dia.
43° Com, anode seven segment displays
22 NF 100 V radial illm capacitors
22NF 100 V radial film capacitors
33NF 50 V radial film
33NF 50V radial film capacitors..
Asstd, disc ceramic capacitors.
4 U 76 V Radial electrolytics
$4 \mathrm{U7} 63 \mathrm{~V}$ Radial electrolytics.
10UF 16 V Radial electrotytics
10UF 16 V Radial electrolytics.
10UF 50 V Radial electrolytics

33UF 16 V Radiai eiectrolytics.
47 UF 16 V Radial electrolytics.
47 UF 50 V Radial electrolytics
100UF 25 V Radlal electrolytucs
220 UF 16 V Radial electrolytics.
470 VF 10 V Radal electrolytics.
470UF 10 V Radlal electrolytics.
1000UF 10 V Radial electrolytics
Asstd. if transformers.
Asstd. coll tormers.
Asstd. RF chokes
Asstd. RF chokes.
Asstd dil sockets
Assid. dil sockets up to 40 pin.
Assorted sockevconns/edge-dil-sil-etc
1 inch Glass reed switches
4P $3 W$ MBE min. rotary swit
Min SP/CO slide switches
Magnetic ear plps plus le
Petter effect heat pump.
10 watt Stereo amplifier, 4 controls plus data.
Omm Ultra bright I.e.d. red 300 MCD

288 Abbeydale Road, Sheffield S7 1FL
Phone (0742) 552886. Fax (0742) 500689

Special offers for unusual sizes only while stocks last. Please heck availability before ordering		
Quantity		
with	£3.95	
dla		
mm 4.8	£3. 5	

All 1 to 99 prices include VAT
Please add 95 p postage \& packing per order
ctronics
Road, Chesterfield S40 2BH

250V AC CAPACITORS

250 V ac class X mains rated capacitors for power regulation and lamp dimming. 0.1uF £0.30: 0.22uF £0.40; 0.47uF £0.70; 1uF £1.10; 1.5uF £1.45; 2uF £1.70; 2.2uF £1.80; $3 \mathrm{uF} £ 2.95 ; 3.3 \mathrm{uF} £ 3.20$ Chemlluminescent $4^{\text {" }}$ light sticks - fascinating chemical Ilght source: red, blue or green $£ 1.10$ each Advanced BASIC Scientific Subroutines - Macmillan Book of maths, statistical and engineering subroutines written In BASIC - £9.50; optional IBM 5.25' disk - § 25.00

All prices include VAT, P\&P\&1 per order
Lilco Ltd
23 Middlewood Park, Livingston EH54 8AZ

BURGLAR ALARM

Beter to be Alarmed than territied Thandar's tamous 'Minder' Burglar Alarm System. Superior microwave princlple. Supplied as three units, complete with interconnection Control Unit - Houses milcrowave radar unil, rang. Control Unit - Houses mlcrowave radar unil, range up to 15 metres adjustable by sensitivily control. Three position key
operated facia switch - ot1 - test - armed, 30 second exit and
entry delay.
Outoor alarm - Electronic swept freq. siren. 104 dB output.
Outdoor alarm - Electronic swept ireq. siren, 98 dB output
Housed in a tamper-prool heavy duty metal case
$\mathbf{\Sigma 6 . 0 0}+\mathbf{E 4 . 0 0} \mathbf{P \& P}$ Cheques, POs to
S. WOODHEAD

9ST. LUKES TERRACE, CLECKHEATON BD196AB

- I-LIIE TIDE

ELECTRONICS FOR THE HOBBYIST is a 90 minute video-cassette using computer-graphic simulations to enable the hobbyist or student to understand the way in which common electronic components work and is available directly from us at only £ 19.95 inc. P\&P.
Other titles available. S.A.E. for list. Allow 14 days
for delivery. Send Cheques/P.O. payable to:
On-Line Video Marketing (Dept EV-2)
The Cottage, Tredown Farm, Bradstone,
Milton Abbot, Tavistock, Devon PL19 00 T

KITS, PLANS, ETC for surveillance, protection (sonic, HV), "007" gear. Send $2 \times 22 \mathrm{p}$ stamps for list. ACE(EE). 53 Woodland Way, Burntwood. Staffs. G.C.S.E ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS. 70 Oxford Road. Clacton COI 53 TE.
FREE MEMBERSHIP and introductory pack of components worth over $£ 10$. Send $£ 1.50$ P\&P to. National Component Club. Higher Ansford. Castle Cary, Somersel BA 7 7JG.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B.M.A. Circuits, 38 Poynings Drive. Sussex BN3 8GR. or phone Brighton 720203.

TRANSMITTER CIRCUIT DIAGRAMS. F.M. Medium, Shortwave, C.B. - Full instructions. Minimum seventeen circuits. Cheques /P.O's $£ 4.25$ to: D. Davies, 33 Gwaelodygarth. Merthyr Tydfil CF478YU.
BRAND NEW unused i.c.s. 74LS00, 74LSO2. 74LSI0. 74LS27, 74LS37, uA74IC, 10p. 74LS157, 74LS374, 20p. 4116 16K DRAM, LM386 amp. 50p. AY-3-8910/12. £2. SP0256. £3. M108B single chip organ. £4. P/P £I. G. Steen. 9 Buckingham Road, Tuebrook, Liverpool LI3 8AY
ELECTRONIC ORGAN drawbars. strings, pianos, defective amplifiers. hundreds i.c.s.. Leslie speakers inc. 12 in. $£ 60$ ono. Smith 0803858542 (Devon).
MIXED RESISTORS 12 values 600 total $£ 5.00$, excellent hobby value. Send cheque PO to C.E.S.. 64 Central Avenue. Canvey Island. Essex SS8 9 QR .
COMPONENTS SALE. Rs. Ds, C, Leds. Wire and Audio Products. Send SAE for free list to C.E.S., 64 Central Avenue. Canvey Istand, Essex SS89QR.
19IN RACK MOUNT project cases. also consoies. cabinets. blanking panels. pre-machined socket panels (XLR, jacks, etc). All sizes (IU, 2U, etc). Installation racks and fight cases up to 30U. Call (0253) 300690 .

SHERWOOD ELECTRONIC COMPONENTS 45 Rutland Streefi5 Mansfield, Notts NC18 4AO

Carbon Film resistors $1 / 4 \mathrm{~W} 5 \%$ E24 series 0.51 R to 10 MO 100 off per value -75 p. even hundreds per value totalling 1000 Metal Film resistors 1/W 10R to 1 MO 5\% E12 series - 2p. 1\% E24 series Mixed metal/carbon film resistors $1 / 2 W$ W 24 series 1 RO to 10 MO 1 watt mixed metal/Carbon Film 5\% E12 series 4R7 to 10 Megohms Linear Carbon pre-sets 100 mW and $1 / 8 \mathrm{~W}$ 100R to 4M7 E6 series Miniature polyster capacitors 250 V working for vertical mounting 015, 022,033.04. 068 . 5p. 12, 0.1. 0.22 6p. 0.47 - 8p. 0.68 - 8p. 1.0-12p 1000 p to $8200 \mathrm{p}-3 \mathrm{p} 01$ to $068.4 \mathrm{p} 0.1-5 \mathrm{p} .512015 .0 .22-6 \mathrm{p}$. $0.47 / 50 \mathrm{~V}$. Submin ceramic plate capacitors 100 V wkg vertical mountings. E12 series $2 \% 1.8 \mathrm{pf}$ to $47 \mathrm{pf}-3 \mathrm{p} .2 \% 56 \mathrm{pf}$ to $330 \mathrm{pf}-4 \mathrm{p} .10 \% 390 \mathrm{p}-4700 \mathrm{p}$.
Disc/plate ceramics 50V E1 2 series 1PO to 1000 P . E6 Series 1500 P to 47000 P Polystyrene capacitors 63 V working E12 series long axial wires 10 pf to 820pf - 4p. 1000pf to 10,000 pf - 5p. 12,000pf
741 Op Amp - 20p. 555 Timer
cmos $4001-20 p .4011-22 p .4017$
cmos $4001-20$ p. 4011 - 22 p. 4017 (Mfds/Volts)
ALUMINIUM ELECTROLYTICS (Mfds/
ALUMINIUM ELECTROLYYTCS (Mfds/Vol
$1 / 50,2.2 / 50,4.7: 50,10 / 25,10 / 50 \ldots \ldots . .$.
1/50, 2.2/50, 4.7/50, 10/25, 10/50
$22 / 16.22 / 25.22 / 50,47 / 16,47 / 25,47 / 50$
22/16. 22/25.22.50, 47/16,47/25,4//50
$100 / 16.100 / 25$ ip; $100 / 5012 \mathrm{p}: 100 / 100$
$220 / 168 \mathrm{p}$ 220/25, 220/50 10p; $470 / 16.470,25$
$1000 / 2525$ p; 1000/35, 2200/25 35p; 4700/25
Submin, tantalum bead electrolyics (Mfds/Volts)
$0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
33/10, 47/6, 22/16 30p; 47/10 35p; $47 / 1660 p ; 47 / 35$
VOLTAGEREGULATORS
$1 \mathrm{~A}+\mathrm{or}-5 \mathrm{~V}, 8 \%, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V}$ \& 24V-55p.100mA 5.8,12.15. $\mathrm{V}+\ldots \ldots \ldots30 \mathrm{p}$
$75 / 25 \mathrm{~mA}$ 1 N41 48 2p. $800 / 1$ A 1 N4006 41/2p. $400 / 3$ A 1 N5404 14p. $115 / 15 \mathrm{~mA} 0$ A91 100/1A 1 N4002 31/2p. $1000 / 1$ A 1 N 40075 p. $60 / 1.5$ A S 1 M1 5p. $100 / 1$ A bridge 400/1A 1 N4004 4p. $1250 / 1$ A BY 12710 p. 3C/15A OA47
Zener diodes E24 series $3 \vee 3$ to 33 V 400 mW - Bp. 1 watt.
Battery snaps for PP3-6p for PPS
L.E.D.'s 3 mm . \& 5 mm . Red, Green, Yellow - 10p. Grommets $3 \mathrm{~mm}-2 \mathrm{p} .5 \mathrm{~mm}$ Red flashing L.E.D.'s require 9-12V supply only
Mains indicator neons with 220 k resistor
20 mm fuses 10 CmA to 5 A . O. blow 5 p .A/surge 8 p . Holders, chassis, mounting High speed pc dill $0.8,1.0 .1 .3,1.5,2.0 \mathrm{~mm}-30 \mathrm{p}$. Machines 12 V dc HALHP7 NANDS 6 balijims and 2 croc chips to hola awnar Glass reed switches with single pole make contacts - 80 . Magnets $0.1^{\prime \prime}$ Stripboard $21_{2 \prime \prime}^{\prime \prime} \times 1^{\prime \prime} 9$ rows 25 holes -25 p. $3^{3} 4 \times 21 /{ }^{\prime \prime} 24$ rows 37 holes Jack plugs 2.583 .5 m
Sockets Panel Mtg. $2.5 \& 3.5 \mathrm{~m}$
TRANSISTORS C107/8/9-12p BC547/8/9-8p. BC557/8/9-8p. BC182, 182L, BC183, 183L BC327, 337, 337L-12p. BC727, 737-12p. BD135/6/7/8/9-25p. BCY70-15p. BFY50/51/52-20p.
BFX88-15p. 2N3055-50p. TIP31, 32-30p, TIP41, 42 - 40p, BU208A - £1.20, BF195, 197 $\mathrm{BFX88}$
12 p

All prices are inclusive of VAT. Postage 30 p (free over $£ 5$). Lists Free.

THE CR SUPPLY CO

127 Chesterfield Rd. Sheffield S8 ORN
Tel: 0742557771
Return posting

PROCOM Electronics

Sy Ty PSU $+12 \mathrm{~V} .+5 \mathrm{~V}$ 40 watts output (see picture) Ideal for home built x.t. s etc. $\mathbf{£ 1 0 . 9 9 + £ 2 . 0 0 p \& p}$

Stepper Motor $7^{\circ} 30^{\prime}$ (Dia. 33mm) £4.99 10 for $£ 30.00$
C. C. 7 segment displays, Red $0.5^{\prime \prime}$ 85p 10 for $£ 7.00$
L.E.D. Clock Module, $12 / 24 \mathrm{hrs}$ facility, c/w Data (mains transformer not supplied)

12 Volt Soleniods,
($\operatorname{Dim} 20 \mathrm{~mm} \times 20 \mathrm{~mm}$) 95 p 10 for $\mathrm{E8.0}$
10A Thermal Cutout Rocker
switches
£1.00
Ferrite rings $\mathbf{2 3 m m}$ Dia. 3 for $£ 1.00$
12 Volt fans, Dia. $60 \mathrm{~mm} \mathbf{£ 7 . 9 9}$
12 Volt fans, Dia. 90 mm $£ 7.99$
One Zone Alarm Panel with
entry/exi1 delay P.A. built
into a standard light switch
C/W Data
£8.99
Philips 9"Colour Monitor (no
postage, collect from shop),
Scart Socket, (R.G.B. comp.
video input) $\mathbf{£ 1 1 0 . 0 0 ~ S / H ~}$
ALL PRICES VAT INCLUSIVE
ALL POSTAGE \& PACKING £1.00 (unless shown otherwise)

13 Clarence Arcade Stamford Street
 Ashton Under Lyne
 Lancashire OL6 7PT

Shop Hours:
Mon-Sat: $9.30 \mathrm{am}-6.00 \mathrm{pm}$
(closed Tues morning)
Telephone 061-343 2782

OMNI ELECTRONICS

174 Dalkeith Road，Edinburgh EH16 5DX 0316672611 A COMPREHENSIVE RANGE WITH （

```
Please send me a copy of the 1990/91 OMNI catalogue
            Payment of }{1.50\mathrm{ enclosed
NAME.
| ADDRESS
|
I TELEPHONE.
```


ㄴーーーーーーニーーーーーーーーーーーーーーーーーー」

Typefit The Typesetting Bureau Ltd
 PC page make－up software and typesetter output bureau

ADVERTISERS INDEX

AUTONA
N．R．BARDWELL BK ELECTRONICS BLB ELECTRONICS BULL ELECTRICAL． CAMBRIDGE COMP．SCIENCE CHIPLINK
CIRKIT DISTRIBUTION． CRICKLEWOOD ELECTRONICS CR SUPPLY COMPANY ELECTRONIZE DESIGN． E．P．ELECTRONICS GESTRONIC GREENWELD ELECTRONICS HART ELECTRONIC KITS HIGH－Q．ELECTRONICS： HOBBYKIT． ICS．．． JAYTEE ELECTRONIC SERV＇S JPG ELECTRONICS KNOWLES \＆ASSOCIATES LONDON ELECTRONICS COLLEGE LYSELECTRONIC COMP． MAGENTA ELECTRONICS MAPLIN ELECTRONICS MARAPET．
MARCO TRADING MAURITRON TECH．SERV S nUMBER ONE SYSTEMS OMNI ELECTRONICS．．． PANRIX ELECTRONICS． PARK GATE PUBLISHING． PROCOM ELECTRONICS． RADIO \＆TV COMPONENTS RICH ELECTRONICS SHERWOOD ELEC．COMP STEWART OF READING SUMA DESIGNS． TK ELECTRONICS TYPESETTING BUREAU

YOUR PERSONAL EAVESDROPPER！

££££ SAVING TOP QUALITY DTP PROGRAM

Now anyone can use their PC to produce professional quality typesetting for just £185（plus VAT）．The Typesetting Bureau＇s＂Typefit＂WYSIWYG on screen page make－up software gives access to over 200 fonts （all from 1 pt to $1,000 \mathrm{pt}$ ）plus output at 2,000 d．p．i．，for just $£ 3.30$（or less）per foot of 12 inch wide bromide．

At these prices anyone can afford professional quality for every job．The Bureau operates on a 24 hour turnaround and is now fully on stream with modem， Datalinx and $3^{\frac{1}{2}}$ or $5^{\frac{1}{4}}$ disks．Typefit has already proved popular with many small companies and four national magazines（including Everyday Electronics）are presently using it to produce every issue．

The system is based on software that normally retails at $£ 1,200$（without fonts），it has been modified for bureau use and is thus available to everyone at this low price． Typefit is designed to run on IBM PCs and compatibles having at least 640 K of RAM and 20 M of hard disc．

Proofing of output can be achieved on any dot matrix printer or，with a laser driver（ $£ 30$ extra），on

HPII or HPIII compatible laser printers（this output is not suitable for use as artwork）．Even for small users who only produce the odd leaflet or price list Typefit can make sure the presentation is totally professional，

For our information pack and font chart give us a ring or send in the coupon．
We provide the expensive output equipment and typefaces，you SAVE on typesetting costs

EVD
POWER AMPLIFIER MODULES－TURNTABLES－DIMMERS LOUDSPEAKERS－19 INCH STEREO RACK AMPLIFIERS OMP POWER AMPLIFIER MODULES

Supplied ready built and tested

OMP POWER AMPLIFIER MODULES
enjoy a world－wide repulation for quality，relabilty and pertormance at a realistic price Four models avalable to sut the needs of the professional and hoboy market ．e．．Industry．
Leisure．Instrumental and Mi－Fi etc．When comparing prices，NOTE all models include Toroda power supoly integral heat sink． THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP100 Mk 11 Bi－Polar Output power 110 watts R．M．S．into 4 ohms，Frequency Response 15 Hz $30 \mathrm{KHz}-3 \mathrm{~dB}$ ，T．H．D． 0.01% ，S．N．R．-118 dB ，Sens．for Max output 500 mV at 10 K ，Size $355 \times 115 \times 65 \mathrm{~mm}$ ． PRICE $£ 33.99+£ 3.00$ P\＆P．

NEW SERIES II MOS－FET MODULES

OMP／MF 100 Mos－Fet Output power 110 watts R．M．S into 4 ohms，Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KH}$ -3 dB ．Damping Factor，>300 ，Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ T．H．D．Typical 0.002% ，Input Sensitivity 500 mV ，S．N．R -1 ．
PRICE $£ 39.99+£ 3.00$ P\＆P．
OMP／MF200 Mos－Fet Output power 200 watts R．M．S into 4 ohms，Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB ，Damping Factor >300 ，Slew Rate $50 \mathrm{~V} / \mathrm{us}$ T．H．D．Typical 0.001% ，Input Sensitivity 500 mV, S．N．R -130 dB ．Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE $£ 62.99+£ 3.50 \mathrm{P} \& \mathrm{P}$

OMP／MF300 Mos－Fet Output power 300 watts R．M．S nto 4 ohms，Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KH}$ -3 dB ，Damping Factor >300 ，Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T．H．D．Typical 0.0008% ，Input Sensitivity 500 mV S．N．R．-130 dB ．Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE $£ 79.99+£ 4.50$ P\＆P

 Vu METER Compatible with our four amplifiers detaled above A very accurate visua Vu METER Compatible with our four amplifiers detaled above．A very accurate visua
display employing 11 L．E．diodes（ 7 green， 4 red）plus an additional on of indicator Sophisticated logic control circuits for very fast rise and decay times．Tough moulded plastic case，with tinted acrylic tront．Size $84 \times 27 \times 45 \mathrm{~mm}$ PRICE $\mathbf{8 8 . 5 0}+50 \mathrm{p}$ P\＆P．

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE，INCLUDING CABINET FITTINGS，SPEAKER GRILLES，CROSS－OVERS AND HIGH POWER，HIGH FRE－ QUENCY BULLETS AND HORNS，LARGE S．A．E．（30p STAMPED）FOR COMPLETE LIST

McKENEIE：－INSTRUMENTS，P．A．，DISCO，ETC．

ALL MCKENZIE UNITS 8 OHMS IMPEDENCE
$8^{\prime \prime} 100$ WATT CB100GPM GEN PURPOSE，LEAD GUITA
RES．FREQ，BOHz FREO，RESP．TO 14 KHz SENS ， 99 dB
 IO 100 WATT C10100GP GUITAR，VOICE．ORGAN，KEYBOARD，DISCO．EXCEL ENT MID RES， $\mathrm{FREQ}, 70 \mathrm{~Hz}$ FREQ，RESP，TO 6 KHz ．SENS， 100 dB ．
10 ＇ 200 WATT C 10200 GP GUITAR，KEYBOARD．DISCO，EXCLLENT RES，FREQ， 45 Hz ．FREQ．RESP TO 7 KHz ．SENS． 103 dB ， 12 ， 100 WATT C12100GP HIGH POWER GEN PURPO
RES，FREO， 45 Hz FREO RESP TO 7KHZ SENS $98 d B$ RES，FREQ，45Hz．FREO RESP TO 7KHz．SENS， 980 BB 12,100 WATT C12100TC TWHN CONEE HE HE POWER WIDE RES RES，FREQ． 45 Hz FREQ．RESP．TO 14 KHz SENS 100 dB ．
$12^{\prime} 200$ WATT C 12200 B HIGH POWER BASS KE 12200 WATT C12200日 HIGH POWER BASS，KEYBOARDS．DISCO．PA
RES．FREQ 4OHz FREQ．RESPP TO 7KHz．SENS． 100 dB
12 ． $12^{\prime} 300$ WATT C12300GP HIGH POW POR BASS LEAD GU
RES，FREQ 45HZ FREO．RESP TO $5 K H z$ SENS RES，FREO， 45 HZ FREO，RESP TO 5 KHZ SENS 100 dB GITAR，KEYBOA 15100 WATT C15100日S BASS GUITHZ SENS． 100 CB
RES．FREQ． 40 Hz FREQ RESP．TO 5 KHz SENS REQUEN RES，FREQ． 40 Hz ．FREQ．RESP，TO 5 KHz SENS， 98 dB ．
$15^{\prime \prime} 200 ~ W A T T ~ C 15200 B S ~ V E R Y ~ H I G H ~ P O W E R ~ B A S S ~$ RES FREQ， 40 Hz ．FREQ，RESP，TO 4 KHZ SENS， 99 dB ．
$15^{\prime} 250$ WAT C15250BS VERY HIGH POWFR BASS $15^{\circ} 250$ WATT C15250BS VERY HIGH POWER BASS
RES FREO 40 Hz FREQ RESP TO 4 KHz SENS RES，FREQ， 40 Hz ．FREQ RESP，TO 4 KHz ．SENS， 99 dB ．
$15^{\circ} 400$ WATT C 15400 BS VERY HIGH POWER $15^{\circ} 400$ WATT C15400BS VERY HIGH POWER．LOW FREQUENCY BAS
RES FREQ． 40 Hz ．FREQ RESP，TO 4 KHz ．SENS， 102 dB RES，FREQ． 40 Hz ．FREQ RESP，TO 4 KHz ，SENS， 102 dB
18 H 400 WATT C18404BS EXTREMELY HIGH POWER．

EARBENDERS：－HI－FI，STUDIO，IN－CAR，ETC．

ALL EARBENDER UNITS 8 OHMS

BASS，SINGLE CONE，HIGH COMPLIANCE，ROLLED FOAM SURROUND
$8^{\prime \prime} 50$ WATT EB8－50 DUAL IMPEDENCE．TAPPED $4 / 8$ OHM BASS．HI－FI．
RES．FREQ， 40 Hz ．FREQ，RESP，TO 7KHz．SENS， 97 dB
$10^{\circ} 50$ WATT EB10－50 DUAL IMPEDENCE，TAPPED 48 OHM BASS， RES，FREQ 40 HZ FREQ RESP TO 5 KHZ ．SENS 990 $10^{\prime \prime} 100$ WATT EB10－100 BASS，HI－FII．STUDIO 12 60 WATT EB12－60 BASS，Hi－FI，STUDIO RES．FREQ，28Hz．FREQ，RESP，TO $3 K H z$ SENS， 92 dB ，
12 ＇ 100 WATT EB $12 \cdot 100$ BASS，STUDIO，HI－FI，EXCE 12＇ 100 WATT EB12．100 BASS，STUDIO，HENSI．EXCELLENT DISCO FULL RANGE TWIN CONE，HIGH COMPLIANCE，ROLLED SURRO 5% ． 60 WATT EB5－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ETC $5 \% " 60$ WATT EB5－60TC（TWN TONE）HI－FI，
RES FREQ．63Hz．FREQ．RESP TO ZOKHZ SENS $92 d B$
$51 / 2^{\prime \prime} 50$ WATT EB6－50TC TWI CONE HI－FI MULTI－ARRAY DISCO ET $6^{1 / 2 \prime \prime} 60$ WATT EB6－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO ET
RES，FREQ， 38 Hz ．FREQ，RESP．TO 20KHz．SENS， $94 d \mathrm{~dB}$ $8^{\prime \prime} 60$ WATT EBB－60TC（TWIN CONE）HI－FI，MULTI－ARRAY DISCO EIC
RES，FREQ， 40 Hz ．FREQ，RESP，TO 18 KHz ．SENS， 89 dB $10^{\circ} 60$ WATT EB10－60TC（TWIN CONE）HI－FI．MULTI－ARRAY DISCO ET
RES FREQ 35 HZ FREQ RESP TO 12 KHZ SENS 86 dB

TRANSMITTER HOBBY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPO
COMPLETE WITH CIRCUIT AND INSTRUCTIONS

3W FM TRANSMITTEA $80-108$ MHz，VARICAP CONTROLLED PROFESSIONAL PER FORMANCE，RANGE UP TO 3 MLLES SIZE $38 \times 123 \mathrm{~mm}$ ，SUPPLY 12 V （a 0.5 AMP FW MICRO TRANSMITTE VERY SENS FET MIC，RANGE $100-300 \mathrm{~m}$ SIZE $56 \times 46 \mathrm{Tm}$ ，SUPPLY SV BATT PRICE

3 watt FM
Transmitter

POSTAL CHARGES PER ORDER 11.00 MINMUM．OFFICIAL ORDERS WELCOME FROM VISA ACCESS ACCEPTED BY POST PHONE OR FAX
＊PRICES INCLUDE V．A．T．＊PROMPT DELIVERIES＊FRIENDLY SERVICE OMP VARISPEED TURNTABLE CHASSIS，

\＃MANUAL ARM \star STEEL CHASSIS \star ELECTRONIC SPEED CON． TROL $33845 \star$ VAR PTICH CONTRO HIGH TORCUE SERV DRIVENOC MOTOR \star TRANSTISCRENS 12 DIE CAST PLATEA NEEN STAOBE © CAL LRATEE EAL WEIGHT \star REMOVABLE HEAD SHELL \downarrow Y゙ CARTRIDGE FIXINGS \star CUELEVER \star POWER 220 240V
$5060 \mathrm{~Hz} \star 390 \times 305 \mathrm{~mm} \star$ SUPPI IED WITH MOUNTNG CUTOUT $5060 \mathrm{~Hz} \star 390 \times 305 \mathrm{~mm}$＊SUPPLIED WITH MOUNTING CUTTOU PRICE $559.99+£ 3.50$ P\＆P

OPTIONAL MAGNETICLCARTRIDCES

STANTON AL500	GOLORING G850
PRICE $£ 16.99-50 \mathrm{D}$ P\＆P	PRICE $66.99+50 \mathrm{p}$

OMP MOS－FET POWER AMPLIFIERS，THOUSANDS PURCHASED HIGH POWER，TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

NEW MXF SERIES OF POWER AMPLIFIERS THREE MODELS：－MXF200（100w＋100w） MXF400（200w＋200w）MXF600（300w＋300w）

$$
\text { All power ratings R.M.S. into } 4 \text { ohms }
$$

FEATURES：\star Independent power supplies with two Toroidal Transformers \star Twin L．E．D．Vu meters \star Rotary
 crecuit prool \star Latest Mos－Fets for stress tree power delivery into virtually any load $\$$ High slew rate $*$ Very low distortion \downarrow Aumnium cases $\$$ MXF600 Fan Cooled with D．C．Loudspeaker and Thermal Protection USED THE WORLD OVER IN CLUBS，PUBS，CINEMAS，DISCOS ETC． SIZES：－MXF 200 W $19^{\prime \prime} \times \mathrm{H}^{1 / 2 /^{\prime \prime}}(2 \mathrm{U}) \times \mathrm{D} 11$
 PRICES：MXF200 $£ 171.35$ MXF400 $£ 228.85$ MXF400 $£ 228.85$ SECURICOR DELIVERY $£ 12.00 \mathrm{EACH}$ OMP LINNET LOUDSPEAKERS

verybestin quality and value
MADE ESPECIALLY ALLY TO SU
DOA COM
H HIGH OUTP
S FINISHED PACTNE
SOUND
HARDWE WITH PROTECTIVE CORNERSE
GRILLE AND CARRYING HANDLE GRILLE AND CARRYING HANDLEE
NCORPORATES 12^{\prime} DRIVER PLUS
HIGH FREO HIGH FREQ HORN FOR FULL
FREO RANGE $45 \mathrm{~Hz}-20 \mathrm{KH}$ B BOTH FREO RANGE． $45 \mathrm{~Hz}-20 \mathrm{KHz}$ BOTH
MODELS 8 OHM．SIZE H18 $\times{ }^{\prime} \times 15^{\prime}$

CHOICE OF TWO MODELS
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12－100（100W 100dB）PRICE £159．99 PER PAIR OMP 12－200（200W 102dB）PRICE £209．99 PER PAIR SECURICOR DEL．：－$£ 12.00$ PER PAIR

IN CAR STEREO BOOSTER AMPLIFIER

PIEZO ELECTRIC TWEETERS－MOTOROLA

PIEZO ELECTRIC TWEETERS－MOTOROLA
doin the Piezo revolution．The low dynamic mass（no voice coil）of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters．As a crossover is not required these units can
be added to existing speaker systems of up to 100 watts（more if 2 put in series）．FREE EXP ANATORY LEAFLETS be added to existing speaker systems
SUPPLIED WITH EACH TWEETER．

TYPE＇A＇（KSN2036A） 3 round with protective wire mesh，ideal for bookshelf and medium sized Hi－fi speakers．Price $£ 4.90$ each +50 p P\＆P
TYPE＇B＇（KSN1005A） $31 / 2$＇super horn．For general purpose speakers，disco and P．A．systems etc．Price 55．99 each＋50p P\＆P
a lity quality H_{i}－fi systems and quality discos etc．Price E 6.99 TYPE＇D＇（KSN1025A）
Upper frequency response retained extending down to mid range（ 2 KHz ）．Suitable for high quality Hi－fi systems and quality discos．Price $£ 9.99$ each +50 p P\＆P． TYPE＇E＇（KSN1038A）3 3／4＂horn tweeter with attractive silver finish trim．Suitable tor Hi －fi monitor systems etc． Price $£ 5.99$ each +50 p P8P
LEVEL CONTROL Combines on a recessed mounting plate，level control and cabinel input jack socket
$85 \times 85 \mathrm{~mm}$ ．Price $£ 3.99+50 \mathrm{P} \& \mathrm{P}$ ．

STEREO DISCO MDXER

STEREO DISCO MIXER with 2×5 band L \＆R graphic equalisers and twin 10 segment L．E．D． Vu Meters．Many outstanding features 5 inputs with individual faders providing a useful com－ bination of the following：－
3 Turntables（Mag） 3 Mic
3 Turntables（Mag）． 3 Mics 4 Line including CD plus Mic with talk over Switch Headphone Moni
tor．Pan Pot L．\＆R．Master Output controls Output 775 mV ．Size $360 \times 280 \times 90 \mathrm{~mm}$ ．Supply 220－240v．

[^0]: © Wimborne Publishing Litd 1991. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

[^1]: Hitimoncs AUGUST ISSUE ON SALE FRIDAY JULY 5, 1991

[^2]: Name．
 Address．

