THE ULTIMATE SCREEN SAVER Save money and proic t parm con ponit: FOOT-OPERATED DRILL CONTROLLER

Keep control of cur per of ill

MFEATURESZ

TRANSFORMERLESS
POWER SUPPLIES
How capacilive st poplies woik
GIRCUITSURGERY
Our surgeon dissectis your problems

LOW COST LASER NIGHT SIGHT just £79: Cheaper version of our $£ 245$ Cyclops model, works ok in low light
levels or in complete darigess wim me bult in Laser. ref $95 / 79$ PC CONTROLLED 4 CHANNEL TIMER
Control (onvofl imes etc) $u p$ to 4 items (8 A 240 V each) with this hit. Complete with Software, reiays. PCB etc. £25.99 Ref 95/26 LOW COST RADAR DETECTOR
Built and tested pocket radar detector, ideal for plcking up speed traps etc. Why pay $£ 70$ or more? ours is just $£ 24.99$ ref $95 / 25$

COMPLETE PC 300 WATT UPS SYSTEM

Top of the range UPS system providing protection for your computer system and valuable sotware against mains power fuctuations and cuts. New and boxed, UK made Provides up to 5 mins rurning time in the event of complete power failure to allow you to run your system down correcty. SALE PRICE juar £ 119.00
SHOP WOBBLERS!
Small assemblies designed to take D size batteries and wobble' signs. cardboard models about in shop windows! £3.99 Ref SEP4P2. RADIO PAGERS
Brandnew, UKmade pocket pagers clearance price is just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bits! Ref SEP5.
BULL TENS UNIT
Fuly buil and tested TENS (Transcutaneous Electrical Nerve Stimulation) urit, complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70% of sufferers. Drugfree pain reie, 3 , andeas etc. £49 Ref TEN/1

STEREO MICROSCOPE

155X195MM, up to 600 mm high, so items up to 10° will fit under lense. Rack and pinion focusing. 6 interchangeable rotating object lenses. interchangeable eye pleces, + scaled eyepiece for accurate measur. ing etc. Powerful bow voltage illumination system with green filter and variable intensity, 100 mm blackwhite + ground glass stage plate. 70 mm swivel mirtor, acuustabe eyepieces (both focus and width). Magnification range 4.6-100.8, field of view 39-2.4mm)

Pnce is $£ 299$ for complete setup. Ref 95/300.

30 35MM CAMERA SYSTEM
Complete hit to convert a standard 35 mm camera into a 3 D version!. enable you to take 3D colour slides with your own camera! Kit contains a prism assembly for the front of your existinglense, a sample 3D silde a 3D shde vewer and 2 different lense mounts 49 mm and 52 mm , is standard slide film. Prom photo shops at about $£ 3$ ea) an you need COMPUTER RS232 TERMINALS. (LIBERTY) Excellent quality modem units, (llke wyse $50 . \mathrm{s}$) $2 \times R \mathrm{R} 232$. 20 function keys, 50 thro to 38.400 baud, menu driven port. screen, cursor, and keyboard setup menus (18 menu's) £29 REF NOV4
OMRON TEMPERATURE CONTROLLERS (E5C2).
Brand new controlers, adustable from -50 deg C to $+1,200 \mathrm{deg} \mathrm{C}$ using graduated dial, 2% accuracy thermocoupte input, long life retay output, 3 A 240 v op contacts Perfectior exactly controling a tempereture, Normal trade $£ 50+$, ours $£ 15$. Ref E5C2.
ELECTRIC MOTOR BONANZA! $110 \times 60 \mathrm{~mm}$.
Brand new precision, cap start (or spin to star), vrually silem ano features a moving outer case that acts as a fly wheel. Because of their unusual design we think that 2 of these in a tube with some homemace fan blades could form the basis for a wind turnel etc. Clearance price is just $£ 4.99$ FOR A PAIR! (note-these will have to be wired in series for 240 N operation Ref NOV1.
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$. Similar to the above motor but more scitable for mounting vertically (ie
turntable etc). Again you will have to wire 2 in series ior 240 V use. Bargain price is just £4.99 FOR A PAIR!! Ref NOV3.
OMRON ELECTRONIC INTERVAL TIMERS
Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S 12vDC adjustable from 0-30 secs. £999 HY1210M, 12vDC adjustable from 0-10 mins. $£ 9.99$ HY $1260 \mathrm{M}, 12 \mathrm{vDC}$ adjustable from 0-60 mins $£ 9.99$ HY2460M, 24vAC adjustable from $0-60$ mins $£ 5.99$ HY241S, 24vAC adjustable from 0-1 secs. £5 99 HY2460S, 24vAC adjustable from $0-60$ secs, $£ 5.99$ HY243H, 24VAC adjustable from: $0-3$ hours. $£ 8.99$ HY2401S, 240 v adjustable from 0.1 secs. 1999 HY2405S, 240 v adjustable from 0.5 secs. $£ 9.99$ HY24060m, 240v adjustable from 0-60 mins. $£ 1299$ PC PAL VGA TO TV CONVERTER Converts a colou TV into a basic VGA screen. Complete with buih in psu, lead and sware £49.95. ideal for laptops or a cheap upgrade
EMERGENCY LIGHTING UNIT Complete unit with 2 doutie butb noodights, built in charger and auto switch. Fully cased 6v BAH ead acid reo'd. (seconthand) £4 ref MAG4P?
GUIDED MISSILE WIRE. 4,200 metre reel of utra thin 4 core insubated cable. 28ios breaking strain, less than 1 mm thick! Ideai olarms, intercoms, fishing, dotts house's etc. £1499 ref MAG 15 P5 300 v PANEL. METER $70 \times 60 \times 50 \mathrm{MM}, \mathrm{AC}, 90$ degree scale. GOOC quality meter. $£ 5.99$ ref MAG 6P14. Ideal for monitoring mains etc. ASTEC SWITCHED MODE PSU BM4 1012 Gives +5 e 3.75A, +1201.5A. 120.4A. 230/110, cased, BM41012. £5.99ref AUG6P3 TORRODIA: TX 30-0-30 480VA. Perfect for Mosfet amplifiers etc. 120 mm dia 55 mm thick. $£ 18.99$ ref APR19
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with doode and 3 metre lead fited with a cigar plug. 12v 2watt. $£ 9.99$ ea rel AUG10P3. FLOPPY DISCS DSDD Top quality $5.25^{\prime \prime}$ discs, these have been witten to ance and are unused. Pack of 20 is $£ 4$ ref AUG4P1.
ECLATRON FLASH TUBEAs used in police car flashinglights etc, full spec supplied, $60-100$ flashes a min $£ 9.99$ rel APR10P5.
24V AC 96WATT Cased power supply. New $£ 13.99$ ref APR14 MILITARY SPEC GEIGER COUNTERS Unused and straignt from Her majesty's forces. $£ 50$ ref MAG 50P3.
STETHOSCOPE Fuly functioning stethoscope, ideal for listening to hearts, pipes, motors etc. $£ 6$ ref MAR6P6
OUTDOOR SOLAR PATH LIGHT Captures sumlight during the day and automatically switches on a builh inlamp at dusk. Complete with sealed lead acid battery etc. $£ 19.99$ ref MAR20P1.
ALARM VERSION of above unit comes with built in alarm and pir

NEW BULL ELECTRONICS STORE IN

WOLVERHAMPTON

55A WORCESTER ST TEL 090222039
to deter intuders. GOod value at just $£ 24.99$ ref MAR25P4
CLOCKMAKER KIT Hours of fun makng your own clock, complete instuctions and everything you need. $£ 7.99$ ref MAR8P2. CARETAKER VOLUMETRIC Alam, will cover the whole of the ground floor against forcred entry. Inctudes mains power supply and if req'd Retail $£ 150+$, ours? $\{49.99$ ref MAR50P1.
TELEPHONE CABLE White 6 core 100 m reel complete with a pack of 100 clips. Ideal phone extns etc. $£ 7.99$ ref MAR8P3 MICRODRIVE STRIPPER Small cased tape atves ideal for stripping, lots of useful goodies including a smart case, and lots of components. \&2 each ref JUN2P3.
SOLAR POWER LAB SPECIAL You get TWO 6"x6" ©v 130 mA solar cells, 4 LED's, wire. buzzer, switch plus 1 relay or motor. Superb value kit just $£ 5.99$ REF: MAG6P8
SOLID STATE RELAYS Will switch 25A mains Input $3.5-26 \mathrm{v}$ DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAG4P 10
3000PI A4 DTP MONITOR Brand new but shop soiled so hence Dargain price! TTLECL inputs, $15^{\prime \prime}$ landscape, 1200×1664 pixel complete with circuit diag to help you interface with your projects. JUST plete with circuit dag to
£14.99. REF JUN15P2.
BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassette complete with headphones. $£ 28.99$ ref MAR29P1. ULTRAMINIBUG MIC $6 m m \times 3.5 \mathrm{~mm}$ made by AKG. 5 - 12 velectret condenser. Cost $£ 12$ ea, Our? four for $£ 9.99$ REF MAG10P2
RGB/CGAEGATTL COLOUR MONITORS $12^{\prime \prime}$ in good conditon. Back anooised metal case. $£ 79$ each REF JUN79
ANSWER PHONES Reums with 2 fauts, we give you the bits for 1 faut, you have to find the other yourseff. BT Response 200's $£ 18$ ea REF MAG18P1. PSU $£ 5$ ref MAG5P12
SWITCHED MODE PSU ex equip, $50 \mathrm{w}+5 \mathrm{v}$-5A, -5ve.5A, +12ve2A.-12ve. 5 A 120R20v cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socket £6.99 REF MAG7P1
PLUG IN PSU 9V 200 MA DC $£ 2.99$ each REF MAG3P9
PLUG IN ACORN PSU 19 v AC 14 w . $£ 2.99$ REF MAG3P10
POWER SUPPLY fly cased with mains and op leads 17 V DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCHIMEDES PSU +5v © 4.4 A on/off sw uncased. selectable mains input. $145 \times 100 \times 45 \mathrm{~mm}$ ह 7 REF MAG7P2 GEIGER COUNTER KIT Low cosi professional twn tube, complete with PCB and components. Now only $£ 19$ REF AUG19.
9V DC POWER SUPPLY standard plug intype 150 ma 9 V DC mth lead and DC power plug price for two is $£ 2.99$ ref AUG3P4.
AA NICAD PACK encapsutated pack of 8 AA ncad batteries AA NICAD PACK encapsuated pack of 8 AA nicad b
(tagged) ex equp. $55 \times 32 \times 32 \mathrm{~mm}$. £3 a peck. REF MAG3P11 13.8V 1.9A psu cased with leads. Just £9.99 REF MAG10p3

PPC MODEM CARDS These are high specpug in cards mace for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Originally made for
hi spec satelite equipment but perfect for all sorts of remote control projects. Our clearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A veryuseful oook forfinding equivalent transistors, leadouts, specs etc £20 REF: MAG20P1
SINCLAIR C5 MOTORS
Spec is 12 V DC 3,300 rpm $£ 30$
200 WATT INVERTER Converts $10-15 \mathrm{~V}$ DC into either 110 v or 240 vAC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy duty power lead. cigar plug. AC outjet socket.Auto overload shutoom, arto short creuit shut down, auto input over voltage shutdown, auto input under voltage shut down (with audible alarm), auto temp control unit shuts down if overheated and sounds audible alarm. Fused reversed polarity protected output frequency within 2%, voltage within 10%. A extremely well built unit ai an excellent pnce. Just $£ 64.99$ rel AUG65
UNIVERSAL SPEED CONTROLLER KIT Designed by usfor the C5 motor but ok for any 12 v motor up to 30 A Comolete with PCB etc. A neat sink mav be required. $£ 17.00$ REF: MAG1?
MAINSCABLE Precutblack 2 core 2 metrelengths ideal for repairs, projects etc. 50 metes for $£ 1.99$ rel AUG2P7.
COMPUTER COMMUNICATIONS PACK Kitcontains 100 m of 6 core cable, 100 cable clips. 2 line drivers with RS232 interfaces and all comectors etc. Ideal low cost method of communicating between PC's over a long distance. Complete kit 8.99
MINI CYCLOPS PIR $52 \times 62 \times 40 \mathrm{~mm}$ runs on PP3 battery complete with strill sounder. Cheap protection at onty $£ 5.99$ ref MAREP 4 ELECTRIC MOTOR KIT Comprenensive educatonaikitincudes all you need to build an electric motor. $£ 9.99$ ref MAR 10P4
VIDEO SENDER UNIT. Transmits both audio and video signals from either a video camera, video recorder. TV or Computer etc to ary standard TV set in a 100 range! (tune TV to a spare chamel) $12 v$ DC op. Prce is $£ 15$ REF: MAG15 $12 v$ pSU is $£ 5$ exta REF: MAG5P2
*FM CORDIESS MICROPHONE Small hand held unit with a *FM CORDLESS MICROPHONE Small hand held unit with a 500 ' range! 2 vansmit power levels Reqs PP3 9v battery Tuneable to
any FM receiver. Price is $£ 15$ REF: MAG15p1 any FM receiver. Price is £15 REF: MAG15P 1
LOW COST WALKIE TALKIES pair of battery operated units with a range of about 200°. Ideal for garden use or as an educational toy. Price is $£ 8$ a pair REF: MAG $8 P 12 \times P P 3$ req'd
-SOME OF OUR PRODUCTS MAY BE UNLICENSABLE NT THE UK

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX
BN3 5 ET
MAIL ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS $£ 3.00$ POST PLUS VAT.

PLEASE ALLOW 7 - 10 DAYS FOR DELIVERY
TELEPHONE ORDERS WELCOME
TEL: 0273203500
FAX: 0273323077
*MINATURE RADIO TRANSCEIVERS A pair of wallje talljes with a range of up to 2 km inopencountry Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Including cases and earp'ces. 2xpp3 req'd $£ 30.00$ pr.REF: MAG30 COMPOSITE VIDEO KIT. Corverts composite video into sepa rate H sync. V sync, and video. 12v DC. £8.00 REF: MAGBP2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies including printhead. stepper motors etc etc in fact everything bar the case and electronics, a good
stripper! \& 5 REF: MAG5P3 or 2 for $£ 8$ REF: MAGBP3 5tripper \& 5 REF: MAG5P3 or 2 for $£ 8$ REF: MAGBP3
LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5PA
UNIVERSAL PC POWER SUPPLY complete with liyleads, switch, fan etc. Two types available 150w at £15 REF:MAG15P2 $(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at $£ 20$ REF: MAG20P3 $(23 \times 23 \times 23 \mathrm{~mm})$ -FM TRANSMITTER housed in a standard working 13A adapter!! the bug runs directly off the mains so lasts forever! why pay $£ 700$? or the bug runs drectry off the mains so lasts forever! Wry
price is $f 26$ REF: MAG26 Transmits to any FM radio.
*FM BUG KIT New design with PCB embedded coll for extra stabift 'FM BUG KIT New design with PCB embedded coll for extra
Works to any FM radio. 9V batiery req'd. £5 REF: MAG5P5
"FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies. 9v battery req'd. $£ 14$ REF: MAG14
TALKING COINBOX STRIPPER orginally made to retail atI79 each, these units are designed to corvent an ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges However they can be adapted for their original use or used for something else?? Price is just $₹ 3$ REF: MAG3P1
TOP QUALITY SPEAKERS Madefor HIFI televisions these are 10 watt 4R Jap made $4^{4 \prime}$ round with large shielded magnets. Good quality. £2 each REF: MAG2P4 or 4 for $£ 6$ REF: MAGBP2
TWEETERS $2^{\prime \prime}$ diameter good quality tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot these quarity keyooards need just a small mod to run on any AT, they work perfectly but you will ha to put lo with 1 or 2 fore
HEADPHONES ExVirgin Allantic. 8 pairs for £2 REF: MAG2P8 SNOOPERS EAR? Original made to clip over the earplece of telephone to amplify the sound it also works quite well on the cable numing along the wall! Price is $£ 5$ REF: MAG5P7
DOS PACKS Microsolf version 3.3 or higher complete with all manuals or price just $£ 5$ REF: MAG5P8 Worth it just for the very comprehensive manual! 5.25 " only
DOS PACK Microsoft version 5 Orignal sotware but no manuals hence only $£ 5.993 .5^{\prime \prime}$ only.
PIR DETECTOR Made by famous UK alarm manufacturer these are hi spec. long range intemal units 12v operatoon. Sight marks on case and unboxed (athough brand new) £8 REF: MAG8P5
WINDUP SOLAR POWERED RADIO AM/FM radio complete with hand charger and solar panel! $£ 17.99 \mathrm{REF}$: 14P200RA
MOBILE CAR PHONE $£ 5.99$ Well almost complete incarphone excluding the box of etectronics normaly hidten under seat. Can be made to illuminate with $\{2 \mathrm{v}$ also has buit in light sensor so display only ilumnates when dark. Totally convneing! REF: MAG6P6
ALARM BEACONS Zenon strobe made to mount on an extermal bell box but could be used for caravans etc. 12voperaton. Justconnect up and it nashes regularty) $£ 5$ REF: MAG5P11
FIRE ALARM CONTROL PANEL High quatity metal cased alarm panel $350 \times 165 \times 80 \mathrm{~mm}$. With key. Comes with electroncs but no alarm panel $350 \times 165 \times 80 \mathrm{~mm}$. Wít key. Come
informaton. sale price 7.99 REF: MAG8P6
informaton. sale price 7.99 REF: MAG8P6
$6^{\prime \prime} \times 12^{\circ}$ AMORPHOUS SOLAR PANEL
130 mA Bargain price just $£ 5.99$ ea REF MAG6P12.
FIBRE OPTIC CABLE BUMPER PACK 10 m ref MAG5P13 ideal for expertmenters! 30 m for $£ 12.99$ rel MAG13P1 HEAT SINKS (fimed) TO220, designed to mount vertically on a pcb $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN1P11. INFRARED LASER NIGHT SCOPES
Image intensifier complete with hand gnp attachment with built in adjustable laser lamp for zero light conditions. Suppled with Pentax 42 mm camera mountand nomal eye piece. 1.6kg. uses 1xPP3,3xAA's
(all supplied)E245+Vat
NEW HIGH POWER LASERS
15 mW , Heliumneon, 3 switchable wave lengths $.63 \mathrm{um}, 1.15 \mathrm{um} 3.39 \mathrm{um}$ (2 of them are infrared) 500:1 potanzer buitin so goodfor holographw. Supolied complete with mains power supply $790 \times 65 \mathrm{~mm}$. Use wit
EXTREME CAUTION AND QUALIFIED GUIDANCE. E $349+V$ V:
WE BUY SURPLUS STOCK FOR CASH
1995100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.
3FT X 1FT 10WATT SOLAR PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
$£ 44.95$
(PLUS RE 00 SPECLAL PACKAGNG CHRAGE)
TOP QUALITY AMORPHOUS SIUCON CELLS HAVE ALMOST A TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSH BLE APPLICATIONS. SOME OF WHICH MAY BE CAR BATTERY CHARGING, FOR USE ON BOATS OR CARAVANS, OR ANY WHERE A PORTABLE IZV SUPPLYIS REQUIRED

PORTABLE RADIATION DETECTOR

 WITH NEW COMPUTER INTERFACE.$£ 59.00$
A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual indication. The unit delects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h or 10-99990 NTh Supplied complete with handbook. Ref. NOV 18.

ISSN 02623617
PROJECTS . . THEORY ... NEWS
COMMENT . . POPULAR FEATURES

VOL. 24 No. 2 FEBRUARY 1995

[^0]

EvERYDAY

WITH PRACTICAL
ELECTRONICS
INCORPORATING ELECTRONICS MONTHLY
The No. 1 Independent Magazine for Electronics, Technology and Computer Projects

Projects

12V 35W PA AMPLIFIER by John Ellis
98
A versatile, take it anywhere, amplifier that can also double-up as a 12 V to 240 V inverter
FOOT-OPERATED DRILL CONTROLLER by Edward Barrow
Keep a foot on the speed of your p.c.b. drill
THE ULTIMATE SCREEN SAVER by Paul Stenning
Automatically shuts down the PC monitor after a predetermined time
MIDI PEDAL BOARD by Tony Geering BSc
A touch sensitive, one octave pedal for use with any musical device having a standard MIDI input
MODEL RAILWAY SIGNALS by Graham Long
Bring true "Railtrack" signalling sequences to your model layout

Series

CIRCUIT SURGERY by Alan Winstanley
Power supplies, heatsinks and a NiCad discharger
INTERFACE by Robert Penfold
The page for computer enthusiasts - Ppinter port interfacing
ELECTRONICS FROM THE GROUND UP-5
by Mike Tooley B.A.
First steps in understanding electronics, with optional computer aided design software. Operational Amplifiers
AMATEUR RADIO by Tony Smith G4FAI
No Change on Morse; RA Annual Report; CB Under Stress; Little Leo;
Stelar Success; Universal Licence; GB25M to continue

Features

EDITORIAL

INNOVATIONS 106
Everyday news from the world of electronics
NEW TECHNOLOGY UPDATE by lan Poole
Multilayer CD gives ten-fold increase in memory storage
TRANSFORMERLESS POWER SUPPLIES by Andy Flind
How capacitive power supplies work
OHM SWEET OHM by Max Fidling
$\begin{array}{ll}\text { The amazing adventures of Max and his devoted companion Piddles } \\ \text { SHOPTALK with David Barrington } & 136\end{array}$
Component buying for EPE projects
FOX REPORT by Barry Fox
Cloning Macs; Dark Horse Games; Plug and Play Standard
ELECTRONICS VIDEOS 139
Our range of educational videos to complement your studies
QUICKROUTE 3.0 REVIEW by Robert Penfold 154

Robert examines the latest p.c.b. design software package from POWERware

BACK ISSUES Did you miss these?

DIRECT BOOK SERVICE 159
A wide range of technical books available by mail order
ELECTRONICS SOFTWARE162

Educational software - Electronics Principles II, Electronics PC Toolbox 2.0,
GCSE Electronics, and GCSE Mathematics

PRINTED CIRCUIT BOARD SERVICE 163

PCBs for EPE projects
ADVERTISERS INDEX
168

Surplus always
 wanted for cash!

 SPECIAL BUY

 SPECIAL BUY
 AT 286
 $40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram
 Lumited ouantir only of these 12Mhz HI GRADE 286 systems designed for total reliability the compact case houses the motherboard. PSU and EGA video card with single $5 \%{ }^{\prime \prime} 1.2 \mathrm{Mb}$ floppy disk drive \& integral 40 Mb hard disk drive to the tront. Real lime clock with batery backup is provided as standard. Supplied in good used Order as HIGRADE 286 ONLY E1\&9.OO (E)

Optional Fitted extras: VGA graphics card 1.4Mb 3 Kk NE2000 Ethermet (thick, thin or Iwisted) network carc	
FLOPPY DISK DRIVES 3.5	

5.25" from £22.95-3.5" from £24.95 Massive purchases of standard 5.25° and 3.5° drives enables us to present prime are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to guarantee and operate from standard voltages and are 3.5* Panasonic JU363/4 720K or equivatent 3.5^{-}Mitsublishl MF355C-D. 1.4 Meg . Non laptop
5.25° BRAND NEW Mitsubishi MF501B 360 K Data cable included in price.
Shugart 800/801 8 8° SS refurbished \& tested Shugart 8518° double sided refurbished \& tested Mitsubishi M2896-63-02U 8" DS slimline NEW

HAFD DISK DRIVES

End of line purchase scoop! Brand new NEC D2246 8* 85 Mbyte of hard disk storage! Full Industry standard SMD Interface. Ulitra hi speed data transter and access time, replaces Fuititsu equivalentmodel. complete with manual. Only$\varepsilon 299.00(\mathrm{E}$	
3.5 ${ }^{\circ}$ FUJI FK-309-26 20 mb	
	¢89.0
$3.5{ }^{\text {a }}$ RODIME RO3057S 45mb SCSI I/F (Mac \& Acorn)	$\underline{89.00}$
25 MINISCRIBE 342520 mb MFM I/F (or equiv.	
25° SEAGATE ST-238	
	¢ 6

\section*{THE AMAZING TELEBOX
 | | $\begin{aligned} & \text { TV SOUND } \\ & \text { \& VIDEO } \\ & \text { TUNERI } \end{aligned}$ |
| :---: | :---: |

The TELEBOX consists of an attractive fully cased mains powered tors made by makers such as MICROVITEC, ATARI, SANYO SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The recorders, allowing reception
ecorders, allowing reception cotour relevision channels.
used by most cable and UHF including the HYPERBAND as located on the rear panel for direct connection to most makes of monitor or desktop video systems. For complete compatibility - even low level Hi Fi audio output are provided as standard.
$\begin{array}{ll}\text { TELEBOX ST for composite video input type monitors } & \mathbf{£ 3 4 . 9 5} \\ \text { TELEBOX STL as ST but with integral speaker } & \mathbf{£ 3 7 . 5 0}\end{array}$ TELEBOX STL as ST but with integral speaker $£ 37.50$

FANS \& BLOWERS

IITSUBISHI MMF-D6D12DL $60 \times 25 \mathrm{~mm} 12 \vee \mathrm{DC} \quad \mathrm{E} 4.9510 / £ 42$ ITSUBISHI MMF-09812D
 PANCAKE
 EX-EQUIP
 MHOF B26 1900

IC's -TRANSISTORS - DIODES

 5,000,000 items EX STOCKPC SCOOP

COLOUR SYSTEM
 ONLY $£ 99.00$

A massiva bulk purchase enables us to bring you a COMPLETE ready to run colour PC system at an unheard of price
The display Electronics PCs9 system comprises of fully com patible and expandable XT PC with 256 k of PAM, $5 \%^{\circ} 360^{\prime} \mathrm{k}$ floppy disk drive, ${ }^{12 "}$ CGA colour monitor, standard 84 kay key-

board, MS DOS and all commecting cables- - Just plug in and go PC's on an ultra low budget. Don't miss this opportunity	Fully guaranteed for $\left.90 \begin{array}{ll}\text { Days. } \\ \text { Order as PC99COL } \\ \text { E99.00 (E) }\end{array}\right)$

Optional Fitted extras: 640k RAM

VIDEO MONITOR SPECIALS

 1024×768. The multi mode input allows direct con CGA, EGA, VGA \& SVGA modes, BBC, COM MODORE (including Amiga 1200), ARCHIMEDES
etc. The H version will also function with the ATARI in all. The H version will also function with the ATARI in text' switching for WP use.(possibite minor screen bums) Syncs down to
15 kHz Supplied in EXCELLENT lithe used condioion with full 90 day Ouarantee. \quad E149.00 (E) All modes as above Order as MTS-9600/S \quad S129.00 (E) ELECTROHOME ECM-1211SBU 12"VGA multisync monitor with resolution 640×480. Mutti input selection; 9 pin CGA EGA
VGA or 5 BNC connectors. 0.31 pitch. Compatible with P. Amiga, Atari and others. In good used condition (possible minor
screen bums) 90 day guarantee.
$£ 99.00$ (E) KME $10^{\prime \prime}$ high definition colour monitors. Nice tight $0.28^{\prime \prime}$ dot pitch
 Measures only $13.5^{\circ} \times 12^{*} \times 11^{*}$. On KME $10^{\prime \prime}$ as above for PC EGA standard $£ 145.00$ NEC CGA 12^{*} colour IBM.PC compatible. High qua ity ex-equipment fully tested with a 90 day guaran-
tee. In an attractive Iwo tone ribbed grey plastic case
measuring $15^{\circ} \mathrm{L} \times 13^{\circ} \mathrm{W} \times 12^{\circ} \mathrm{H}$. The front cosmetic Only $£ 49.00_{\text {(E) }}$
 $20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS Superbly made UK manufacture. PIL ail solid state colour

20"....£135 22"...£155 26"...£185 (F)

 DC POWER SUPPLIES10,000 Power Supplies Ex Stack Power One SPL200-5200p 200 watt (250 w peak). Semi open
ffame giving $+5 v 35 a, \cdot 5 v 1.5 a,+12 v 4 a$ (8a peak). $-12 v 1.5 \mathrm{a},+24$ 4 a (6 a peak). All outputs fully regulated
\qquad
\qquad -12 V 0.1a. $6-1 / 4^{4} \times 4^{4} \times 1-3 / 4^{\circ}$ RFE tested $£ 22.95$ (B semi enclosed. $10^{\circ} \times 5^{\circ} \times 5^{4}$. RFE and fully tested, 859.95 (C) Conver AC130. 130 watt hi-grade VDE spec. Switch mode. +5 v ($)$
$15 \mathrm{a},-5 \mathrm{v}$ © $1 \mathrm{a} .+12 \mathrm{v}$ © $6 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms}$ New Boshert $13090 . S$ witch mode. Ideal for drives \& system. $+5 v \otimes 6 a$ a,
$+12 v e 29.95(B)$

SPECIAL INTEREST

INTEL SBC 486133SE Multibus 486 system. 8mb
3M VDA - Video Distribution Amps. 1 in 32 out
Trio 0-18 vdc bench PSU. 30 amps .
VGElectronics 1035 TELETEXT Decoding Margin Meter Andrews LARGE 3
Tektronix 1L30 Spectrum analyser plug in
Thuriby LA 1608 logic analyser
Brush 2 Kw 400 Hz 3 phase frequency converte
Anton Pillar 75 kW 400 Hz 3 phase frequency converter
Newton Derby 70 KW 400 Hz 3 phase
Nikon PL-2 Projection lens metel/scope
Nikon
Sekonic SD
150 H
18 channel digital Hybrid chan recorder $\begin{aligned} & \text { £ } 750 \\ & £ 1995\end{aligned}$
HP 7580A A1 8 pen HPGL high speed drum plotter $£ 1850$
Kenwood DA-3501 CD tester, laser pickup simulator

SPECIAL OFFER

Computer

 Controlled Laser Video Disk Player
One of the most amazing surs

 you! The Phillps VP410 LaserVision player, in as new condition, disks with startlling visual and audio qually in wo channel stereo or mono. When controfled by a computer, it may also be used as a versatile high quality storage / retrieval medium. It will play back sither LaserVision CAV (active play) or CLV (Long Play) discs Which covers most types of commercially available video discs)Some of the many features of this incredible machine are:
RSB-232 WTERFACE COMPOSTE VIDEO OUTPUT $\begin{array}{ll}\text { BNC+SCART INTERFACE } & \text { PAL/ RGB DECODER } \\ \text { IR + WMRED REMOTE CONTROL. } \\ \text { FAST RANDOM ACCESS }\end{array}$
SPEEIRL PURLHRSE Only $£ 399.00$
 19" RACK CABINETS Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price! Top quality $19^{\text {r }}$ rack cabinets made in UK by
Optima Enclosures Lid. Units feature designer, smoked acrylic lockable front door, full height lockable half louvered back dool and removable side panels. Fully adjustable configuration of equipment mounting plus ready mounted integral 12 way 13 amp socke ver sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in bays Rack 1 Complete with removable side panels. Order as: Rack 1 Complete with removable side panels. \quad E335.00

Over 1000 racks in all sizes 19" 22" \& 24" 3 to 44 U. Available from stock !! Call with your requirements.

TOUCH SCREEN SYSTEM

 MicroTouch obut sold at a price below cost It System consists of a flat translucent glass laminated panel mea\qquad
\qquad given at an incredible matrix resolution of 1024×1024 positions over the screen size !!! 50 , no position, however small fails dele
lion. A host of available translation software enables direct
\qquad instead of a mouse !! (a driver is indeed available !) The applic: tlons for this fmazing product are only limited by your imaginatlon!t Supplied as a complete system including Controlier, Power

LOW COST RAM UPGRADES and PC.AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor used condition fully tested and guaranteed. \quad £59.95(A Half length 8 blt memory upgrade cards for PC AT XT expands in RAM above 640k DOS (
 1 MB $\times 9$ SIMM $\begin{array}{ll} & £ 38.95(\mathrm{~A} 1 \\ \text { only } & £ 19.50(\mathrm{~A}) \\ \text { only } & £ 23.50(\mathrm{~A}) \\ \text { only } & £ 22.50(\mathrm{~A})\end{array}$

NO BREAK UNINTERRUPTIBLE PSU'S

\qquad from system from Densel. Model MUD 1085-AHBH. Complete with sealed lead acid batteries in matching case. Approx time from inter
rupt is 15 minutes. Complete with full manual. $£ 575.00$ (G) EMERSON ACCUCARD UPS, brand new 8 Bit haff length PC
compatible card for all $\{B M$ XT/AT compatibles. Card provides DC power to all internal system components in the event of power supmemory to the hard disk in ine event of loss of power. When power power failed !! The unit features full self diagnostics on boot and is Normally $£ 189.00$ NOW! $£ 69.00$ or 2 for $£ 120$

Issue 13 of $\operatorname{Display}$ Newes now available - send large SAE - PACKED with bargains!

LONDON SHOP
Open Mon Sat s:90.5:5:30
South Norwood

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30 Dept EE. 32 Biggin Wa Upper Norwood
LONDON SE19 3XF
4.6.

VISA $12 \begin{gathered}\text { ESTABLISHED } \\ 25 \text { YEARS }\end{gathered}$ All prices for UK Mainland. UK customers add 17.5\% VAT to TOTAL oder amount. Minimum order $£ 10$. Bona Fide acsount orders accepted from Govermment, Schooks
 Standard Conditions of Sale and uniess stated guaranteed ior 90 days. All guarantees on a retum to base basis. All rights reserved to change prices / specifications without prio
notce. Orders subiect to stock. Disoounts for volume. Top CASH prices paid for surplus goods. All trademarks etc adonowhedged. Display Electronics 1995 . E \& O. $1 / 11$

SURVBIITANCE PREDFESSSIDNAL ODALATY KITKS

N
O I

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter

Smallest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 3-12V operation. 500 m range.
£16.45

MTX Micro-miniature Room Tramemitter

Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. 3-12V operation. 1000 m range........................ $£ 13.45$
STX Migh-performance hoom Trassmitter
Hi performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range $£ 15.45$
VT500 Hightpower Room Transmitter
Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times$ $40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. 3000 m range.. $£ 16.45$

VXT Yolce Activated Transmitter

Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$

HXX400 Malas Powerod Room Iransmittor

Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range.
£19.45
SCRX Subcerrier Scrambled Room Tramsmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range...
... $£ 22.95$
sCuX Sullemerior Tolophone Tramanittor
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver, Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range $£ 23.95$
SCDM Subearrier Dacoder Uait for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. $9-12 \mathrm{~V}$ operation..
. $£ 22.95$

ATR2 Micre Slze Telophome Recording Interface

Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line.
... $£ 13.45$

CRTypurx malle Control Switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and recelver unit with decoder and relay output, momentary or alternate, 8 -way dil switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both 9 V operation. Range up 10200 m .
Complete System (2 kits).
.250 .95
Individual Transmitter DLTX £19.95 Individual Receviver DLRX. ... 237.95

Not technically a surveillance device but a great idea! Connects to the headphone output of your Hi-Fi, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffie. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9V operation. 250 m range
$£ 20.95$

UTLX UItra-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$!
Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500 m range.

TLX700 Micro-miniature Tolophons Trassultter

Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range \qquad .. $£ 13.45$

STLX High-performance Telephone Trunsmitter

High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range. \qquad $£ 16.45$
TKX 000 Signalliay/Tracking Transmitter
Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
..£22. 95

CDANO Pocket Buy Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm} .9 \mathrm{~V}$ operation.
.. $£ 30.95$

CDe00 Professional Buy DetectorLocator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation. \qquad ..$£ 50.95$ QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our ORX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
$£ 40.95$
QLX180 Crystal Controlied Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversattions. $20 \mathrm{~mm} \times 67 \mathrm{~mm} .9 \mathrm{~V}$ operation. 1000 m range..
$£ 40.95$
asX180 Luae Powered Cystal Controlled Phome Transmilter
As per OLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range $500 \mathrm{~m} . .$.
£35.95

QRX180 Crystal Controlled FM Hecelver

For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficuity setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation ...
.£60.95

A build-up service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add §1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.
OUR LATEST CATALOGUE CONTAINIMG MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Dept. eE
The Worishops, 95 Main Road,
Baxterley. Near Atherstone,
Warwickshire CV9 2le
visitors strictly by appointment only

Tel/Fax: 0827714476

Electronic Designs Right First Time?

Integrated Electronics CAD
 Analogue
\& Digital
Simulation Analogue
\& Digital
Simulation Analogue
\& Digital
Simulation

Affordable Electronics CAD

For full information, please write, phone or fax:-

Number One Systems

UKIEEC: Ref. EVD, HARDING WAY, ST.IVES, CAMBS., ENGLAND, PE17 4WR.
Telephone UK: 0480461778 (7 lines) Fax: 0480494042 International $\mathbf{+ 4 4 4 8 0 4 6 1 7 7 8}$
USA: Ref. EVD, 1795 Granger Avenue, Los Altos, CA 94024
Telephone/Fax: (415) 9689306
MASTERCARD, VISA Welcome.

Please Note：Since PCB designer is so easy to use，and to keep costs down，PCB Designer has an On－Line manual，in Windows Help format．A FREE futorial is also supplied．

GREAT PRICES ON BLANK AUDIO \& VIDEO TAPES

Audio

(a) Type I				(b) Type II				(c) Typ			
Ferric	1	10	100	Chrome	1	10	100	Metal	1	10	100
TDK D90	£1.00	8.00	70.00	CDing II 90	£1.20	10.00	90.00	MA90	£2.50	23.00	210.00
Sony FX1-90	£1.00	8.00	70.00	SA90	£1.80	15.00	135.00				
Scotch BXC-90	£1.00	8.00	70.00								

Video

Standard

Standard		10	100	Tapes	1	10	Tapes	1	10
Scotch EG+ 180	£3.00	$27: 00$	240.00	Scotch EC30	$£ 3.00$	27.00	Scotch P5-60	$£ 4.00$	36.00
Scotch EG+ 240	$£ 4.00$	36.00	320.00	Scotch EC45	$£ 4.00$	36.00	Scotch P5-90	$£ 4.50$	39.00
JVC SX 180	$£ 2.20$	18.00	155.00						
JVC SX 240	$£ 3.00$	27.00	240.00						

PSION
 ORGANIZER II

 4x ydo - 3.6010 40.404 4 viga कम゙

25996 Model XP. Small powerful battery operated hand held computer with a high contrast 16×2 LCD. Not sure if these are standard models, as (a) they were cheap and (b) they are marked Alpha POS 200. There are two 'device' slots on the back for memory modules - and when switched on, all you get is an 'insert pack' message. Needless to say we don't have any packs! So, a great bargain - or is it? The list price is 107.60. Our Price

230

信REIESUBSCRIPTION TO 'ThE 'GREENWELD GUARDIAN' (worth £6)
When you buy this Multimeter!

JUST ARRIVED IN LAST FEW WEEKS * Panel Meters from $\varepsilon 3$

* Large Parcel Of New \& Boxed Valves
A Arline Video System
6 CD Headphones For E3.25
* Parcel Of Panels d Rack Mounting Units From Audix/Tandy O Solld Tant Caps
O Heatsinks, Transformers Etc, Etc.
Latest Surplus Lists Freering, write or fax for your copy. 1995 Catalogue - 196 pages crammed full of great products at low, low prices - just $£ 2$

NEW VIDEO CAMERA

ZS9268 There has to be a catch - and there is! Although these are brand new Canon H850A 8 mm Hi-8 stereo camcorders, they've had the tape mechanism removed. So you're left with a plastic case containing the video lens with $8 \times z 00 \mathrm{~m}$, monitor tube and electronics, bu nothing to record on to. No reason whty it couldn't be hooked up to a mains machine. though (There's a IV composine

video outpun). Offered at the sparding price of

ONLY £149

Phone Nos: SALES 01703236363 ; Technical 325999; Accounts 231003; Fax (All depts) 236307; FaxOnDemand 236315* "To obtain latest lists, info elc, just dial 01703236315 from any fax machine and follow instructions. All prices in this advert Include VAT. P\&P £3 per order (£9.50 next
day). Min Crodit Card $£ 12$; Otficial Orders welcome from day). Min Credit Card £12; Otficial Orders welcome from

Education. min invoice charge $£ 15$. Payment accepted by | Education - min invoice charge £15. Payment accepted by |
| :---: |
| cheque, PO, cash, bok tokens, |
| $\begin{array}{l}\text { Access, Visa, Connect. Our stores } \\ \text { (over } 10.000 \text { sq } t \text { t) have enomous }\end{array}$ | (over 10,000 sq tt) have enomnous

stocks. We are open from $8-5.30$ Mon-Sat. Come and see us!
27D Park Road Southampton SO15 3UQ

ع1 BARGAIN PACKS

- List 1

1,000 items appear in our Bargain Packs List request one of these when you next order
$1 \times 12 \mathrm{~V}$ Stepper Motor. 7.5 degree. Order Ref: 910
1×10 pack Screwdrlvers. Order Ref: 909.
2×5 amp Pull Cord Ceiling Switches. Brown. Order Ref: 921
$5 \times$ reels Insulation Tape. Order Ref: 911
$4 \times 14 \mathrm{~mm}$ Bull-races. Order Ref: 912
$2 \times$ Cord Grip Switch Lamp Holders. Order Ref: 913
$1 \times$ DC Voltage Reducer. 12V-6V. Order Ref: 916.
1×10 amp 40V Bridge Rectifier. Order Ref: 889
Lightwelght Stereo Headphones. Moving coil so superior sound. Order Ref: 896
$2 \times 25 \mathrm{~W}$ Crossovers. For 4 ohm loudspeakers. Order Ref: 22.
$2 \times$ NiCad Constant Current Chargers. Easily adaptable to charge almost any NiCad battery. Order Ref; 30.

18V-0-18V 10VA mains transformer. Order Ref: 813
$2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132.
$2 \times$ Reed Relay Kits. You get 8 reed switches and 2 $2 \times$ Reed Relay Kits. You
12V-0-12V 6 VA mains transformer, p.c.b. mounting 12V-0.12V 6 VA
Order Ref: 938.
$1 \times$ Big Pull Solenoid. Mains operated. Has $1 / 2^{\prime \prime}$ pull. Order Ref: 871
$1 \times$ Big Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push. Order Ref: 872
$1 \times$ Mini Mono Amp. $3 W$ into 4 ohm speaker or 1 W into 8 ohm. Order Ref: 495
$1 \times$ Minl Stereo $1 \mathbf{W}$ Amp. Order Ret: 870
15V DC 150mA p.s.u., nicely cased. Order Ref: 942
$1 \mathbf{x} \ln$-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 0-1 \mathrm{~mA}$ Panel Meter. Full vision fact 70 mm square Scaled 0-100. Order Ref: 756
$2 \times$ Lithlum Batterles, 2.5 V penlight size. Order Ref: 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for 'phone extensions, fax, etc. Order Ret: 552
$1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\prime \prime}$ pull or could push if modified. Order Ref: 232
$4 \times \ln$-Flex Switches. With neon on/olf lights, saves leaving things switched on. Order Ref: 7
$2 \times 6 \mathrm{~V}$ 1A Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9
$5 \times 13 A$ Rocker Switch. Three lags so on/off, or changeover with centre off. Order Ref: 42
Mini Cassette Motor, 9 V . Order Ref: 944.
$1 \times$ Suck or Blow-Operated Pressure Swlich. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67.
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A.
$2 \times$ Stripper Boards. Each contains a 400V 2A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc. Order Ref: 120.
12 Very Fine Drills. For PCB boards etc. Normal cost about 80p each. Order Ref: 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
$6 \times$ Microphone Inserts. Magnetic 400 ohm, also act as speakers. Order Ref: 139.
$6 \times$ Neon Indicators. In panel mounting holders with lens. Order Ref: 180.
$1 \times \operatorname{In}$-Flex Simmerstat. Keeps your soldering iron etc always at the ready. Order Rel:196.
$1 \times$ Mains Solenoid. Very Powerful as $1 / 2^{*}$ pull, or could push if modified. Order Ref: 199.
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211.
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221.
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column. Order Ref: 243.
$1 \times$ Panostat. Controls output of boiling ring from 1 x Panostaf. Controls output of
$2 \times$ Oblong Push Switches. For bell or chimes, these $2 \times$ Oblong Push Switches. For bell or chimes, these
can switch mains up to $5 A$ so could be foot switch if can switch mains up to 5A so co
fitted in pattress. Order Ref: 263.
fitted in pattress. Order Ref: 263.
$\mathbf{5 0} \times$ Mixed Silicon Diodes. Order Ref: 293.
1×6 Diglt Mains Operated Counter. Standard size but counts in even numbers. Order Ref: 28.
$2 \times 6 \mathrm{~V}$ Operated Reed Relays. One normally on, other normally closed. Order Ref: 48.
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55.
$61 / 285$ Watt Speaker. Order Ref: 824
$1 \times$ Shaded Pole Mains Molor, ${ }^{1 / 4}$ stack, so quite powerful. Order Ref: 85
2×5 Aluminium Fan Blades. Could be fitted to the above motor. Order Ref: 86.
$1 \times$ Case, $3 \frac{1}{2} \times 21 / 4 \times 1 \frac{3}{4}$ with $13 A$ socket pins. Order Ref: 845.
$2 \times$ Cases. $21 / 2 \times 21 / 4 \times 1 / 4$ with $13 A$ pins. Order Ref: 2×5.
565.
565 . 4 Luminous Rocker Switches. 10A mains. Order Ref: 793.
$4 \times$ Different Standard V3 Micro Swliches. Order Ref: 340 .

MISCELLANEOUS BARGAINS

Almost all of the bargains offered last month are still available. If in doubt, give us a ring (see below).
OV-20V DC PANEL METER. This is a nice size 65 mm sq. It is ideal if you are making a voltage variable instrument or battery charger. Price £3, Order Ref; 3P188.
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price $\mathbf{£ 7 . 5 0}$, Order Ref: 7.5P13.
12V 2A TRANSFORMER. £2, Order Ref: 2P337. ANOTHER $12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}$ TRANSFORMER" is a 50VA and is suitable for dropping through the chassis or as it is fitted with 4 pillars it can be mounted above the chassis. Also should you want a 12 V 4 A transformer, then this one should be quite suitable, you use just one half of the secondary. Price $£ 3.50$, Order Ref: 3.5 P7. HIGH RESOLUTION MONITOR. $9^{"}$ by Philips, in metal frame for easy mounting. Brand new, offered at less than price of tube alone, only £15, Order Ref: 15P1.
15W $8^{\prime \prime} 8$ OHM SPEAKER $3^{\prime \prime}$ TWEETER. Amstrad, made for their high quality music centre, £4 per pair, Order Ref: 4P57.
INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enables you to read insulation directly in megohms. The multimeter has four ranges, $A C / D C$ volts, 3 ranges milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$, yours for only $\mathbf{\Sigma 7 . 5 0}$ with leads, carrying case £2 extra, Order Ref: 7.5P4.
WE HAVE SOME of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply diagram, 23 , Order Ref: 3P176.
250W LIGHT DIMMER. Will fit in place of normal wall switch, only $£ 2.50$ each, Order Ref: 2.5P9. Note these are red, blue, green or yellow but will take emulsion to suit the colour of your room. Please state colour required.
TOUCH DIMMERS. 40 W -250W, no knob to turn, just finger on front plate will give more or less light, or off. Silver plated on white background, right size to replace normal switch, $\mathbf{K 5}$, Order Ref: 5P230
LCD $31 / 2$ DIGIT PANEL METER. This is a multirange voltmeter/ammeter using the A-D converter chip 7106 to provide five ranges each of volts and amps. Supplied with full data sheet. Special snip price of $£ 12$, Order Ref: 12P19.
MULTI TESTER. 19 range, ex-British Telecom, reconditioned. These measure $A C$ and DC volts, DC milliamps and have three resistance ranges made to BT specification and 20,000 opv movement. Complete with test prods, 88.50, Order Ref: 8.5P3. Carrying case with handle $£ 2$ extra.
43rd HORSE POWER 12V MOTOR (Sinclair C5) £29.50, Order Ref: 29.5P1
SPEED CONTROLLER Suitable for the C5 or other DC 12 V motor. Complete kit $£ 18$, Order Ref: 18P8, already made $£ 29.50$, Order Ref: 29.5P2.

CLOCK MODULE. $2^{\prime \prime}$ LCD display, requires 1.5 V battery, goes back to zero when switched off so ideal for timing operations, $£ 2$, Order Ref: 2P307.
MINI BLOW HEATER, 1 kW , ideal under desk. etc. Needs only a simple mounting frame, $\mathbf{5 5}$, Order Ref: 5P23.
MEDICINE CUPBOARD ALARM. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Complete built and neatly cased, requires only a battery, £3, Order Ref: 3P155. DON'T LET IT OVERFLOW! Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the preset level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted, $\mathbf{5 3}$, Order Ref: 3P156.

POWER SUPPLIES - SWITCH MODE

(All 230 V a.c. mains operaled)
Astec Ref. B51052 with outputs $+12 \mathrm{~V} 0.5 \mathrm{~A},-12 \mathrm{~V}$ $0.1 \mathrm{~A}_{i}+5 \mathrm{~V} \mathrm{3A} ;+10 \mathrm{~V} 0.05 \mathrm{~A} ;+5 \mathrm{~V} 0.02 \mathrm{~A}$, unboxed on p.c.b., size $180 \times 130 \mathrm{~mm}, \mathbf{~} 5$, Order Ref: $5 P 188$. Astec Ref. BM41004 with outputs $+5 \mathrm{~V} 31 / 2 \mathrm{~A}$ +12V 1.3A; - 12V 0.2A. £5. Order Ref: 5P199. Astec No. 12530, $+12 \mathrm{~V} 1 \mathrm{~A}_{;}-12 \mathrm{~V} 0 \cdot 1 \mathrm{~A}_{i}+5 \mathrm{~V} 3 \mathrm{~A}_{;}$ uncased on p.c.b., size $160 \times 100 \mathrm{~mm}$. £3, Order Ref: 3P141.
Astec No. BM41001 110W 38V 2.5A 25.1V 3A part metal cased with instrument type main input socket and on/off d.p. rocker switch, size $354 \times$ $118 \times 84 \mathrm{~mm}$. 88.50 , Order Ref: 8.5P2.
Astec Model No. BM135-3302 $+12 \mathrm{~V} 4 \mathrm{~A} ;+5 \mathrm{~V}$ 16A; - $12 \mathrm{~V} \quad 0.5 \mathrm{~A}$ totally encased in plated steel with mains input plug, mains output socket and double-pole on/off switch size $400 \times 130 \times 65 \mathrm{~mm}$. £9.50 Order Ref: 9.5P4.

POWER SUPPLIES - LINEAR

(All cased unless stated)

4.5V d.c. $150 \mathrm{~mA} . £ 1$, Order Ref: 104.

5 V d.c. $21 / 2$ A PSU with filtering and volt regulation, uncased. £4, Order Ref: 4P63.
6V d.c. 700 mA OUTPUT, \&1, Order Ref: 103.
6V d.c. 200 mA output in 13A case, £2. Order Ref: 2P112.
6-12V d.c. for models with switch to vary voltage and reverse polarity, $\mathbf{2}$, Order Ref: 2P3. 9V d.c. 150 mA , 11 . Order Ref: 762
9V 2-1A by Sinclair, E3, Order Ref: 3P151. 9V d.c. $100 \mathrm{~mA}, \mathrm{i} 1$, Order Ref: 733.
12V d.c. $\mathbf{2 0 0 \mathrm { mA }}$ output in 13A case, $\mathbf{\Sigma 2}$, Order Ref: 2P114.
12V 500mA on 13A base, $\mathbf{~ 2 . 5 0 . ~ O r d e r ~ R e f : ~ 2 . 5 P 4 ~}$ 12 V d.c. 1 A filtered and regulated on p.c.b. with relays and piezo sounder, uncased, 23. Order Ref: 3P80.
Amstrad 13.5 V d.c. at 1.8 A or 12 V d.c. at 2A, £6, Order Ref: 6P23.
24 V d.c. with 200 mA twice for stereo amplifiers, £2, Order Ref: 2P4.
$\mathbf{9 . 5 V} 60 \mathrm{~mA}$ a.c. made for BT, $\mathbf{£ 1 . 5 0}$. Order Ref: 1.5P7.

15V 320mA a.c. on 13A base, £2, Order Ref: 2P281 A.C. out 9.8 V (a 60 mA and 15.3 V (a) $150 \mathrm{~mA}, \mathbf{8 1}$, Order Ref: 751.
BT power supply unit 206AS, charges 12 V battery and cuts out should voltage fall below pre-set. £16, Order Ref: 16 P6.
Sinclair Microvision PSU, £5, Order Ref: 5P148.

LASERS AND LASER BITS

2mW Laser, Helium Neon by Philips, full spec. £30, Order Ref: 30P1.
Power supply for this in kit form with case is $\mathbf{\Sigma 1 5}$, Order Ref: :5P16, or in larger case to house tube as well, £18, Order Ref: 18P2.
The larger unit, made up, tested and ready to use, complete with laser tube, $\mathbf{5 6 9}$, Order Ref: 69P1.

SOLAR CELLS AND PROJECTS

100 mA solar cell, \&1, Order Ref: 631.
400mA solar cell, £2, Order Ref: 2P119. 700 mA solar cell, £3, Order Ref: 3P42. 1A solar cell, $\mathbf{8 3 . 5 0}$, Order Ref: 3.5P2. 3V 200 mA solar cell, $£ 2$, Order Ref: $2 P 324$. 15V 200mA solar cell, £15, Order Ref: 15P47 Solar Education Kit with parts to make solar fan, £8, Order Ref: 8P42.
Solar kits - make vintage gramophone, $£ 7.50$, Order Rel: 7.5P3.
Make Hellcopter, $\mathbb{£ 7 . 5 0}$. Order Ref: 7.5P17.
Make Monoplane, $\mathbf{£ 7 . 5 0}$, Order Rel: 7.5P18.

The above prices include VAT but please add £3 towards our packing and carriage if your order is under £25. Send cheque or postal orders or phone and quote credit card number.

M \& B ELECTRICAL SUPPLIES LTD
 Pilgrim Works (Dept. E.E.) Stairbridge Lane, Bolney, Sussex RH175PA
 Telephone: 0444 881965 (Also Fax but phone first) Callers to 12 Boundary Road,
 Hove, Sussex.

Pico Releases PC Potential
 Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.
 Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.

 Call for your Guide on 'Virtual Instrumentation'.

NEW SL_A-16 Logic Analyser
Pocket sized 16 channel Logic Analyser

NEW ADC-100 Virtual Instrument

Dual Channel 12 bit resolution

- Digital Storage Scope
- Spectrum Analyser
- Frequency Meter
- Chart Recorder
- Data Logger
- Voltmeter

The ADC-100 offers both a high sampling rate $(100 \mathrm{kHz})$ and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges $(\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) allows the unit to connect directly to a wide variety of signals. ADC-100 with PicoScope $£ 199$ with PicoScope \& PicoLog $£ 209$

SLA-16
with software, power supply and cables $£ 219$

- Connects to PC serial port.
- High Speed -up to 50 MHz sampling.
- Internal and external clock modes.
- 8K Trace Buffer.
\qquad ADC-11

1 Channel 8 bit

- L.owest cost
- Up to 22 kHz sampling
- 0-5V input range

The ADC-10 gives your computer a single channel of analog input. Simply plug into the parallel port and your ready to go.

ADC-10 with
PicoScope £49
PicoScope \&
PicoLog $£ 59$

11 Channel 10 bit

- Digital output
- Up to 18 kHz sampling
- 0-2.5V input range

The ADC-11 provides 11 channels of analog input in a case slightly larger than a matchbox. It is ideal for portable data logging using a "notebook" computer. ADC- 11 with PicoScope $£ 85$ PicoScope \& PicoLog $£ 95$

Carriage UK free, Overseas $£ 9$
Oscilloscope Probes $(\times 1, \times 10) \quad £ 10$
Existing ADC 10/11/12/100 users can add Picolog for $£ 25$

ADC-12
1 Channel 12 bit

- High resolution
- Up to 17 kHz sampling
- $0-5 \mathrm{~V}$ input range

The ADC-12 is similar to the ADC-10 but offers an improved 12 bit (1 part in 4096) resolution compared to the ADC10's 8 bit (1 part in 256).

ADC-12 with PicoScope $£ 85$

PicoScope \& PicoLog $£ 95$

40C-16
8 Channel 16 bit+sign

- Highest resolution - 2 Hz sampling -16 bit - $\pm 2.5 \mathrm{~V}$ input range

The ADC-16 has the highest resolution of the range, it is capable of detecting signal changes as small as $40 \mu \mathrm{~V}$. Pairs of input channels can be used differentially to reject noise. Connects to serial port.

ADe-16
withPicoLog $£ 115$

ADC-10 Simply plug into
the parallel port and your ready to go.

[^1]Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

SHOP OPEN 9-5 MON-FRI. CLOSED SAT -.- OFFICIAL ORDERS WELCOME

DIGITAL LCD THERMOSTAT A versatile thermostat using a thermistor probe and having an I.c.d. display. MIN/MAX memories, - 10 Fahrenhegrees celsius, or can be set to read in switching temperatures allow close control, or alter natively allow a wide 'dead band' to be set which can result in substantial energy savings when used with domestic hot water systems. Ideal for greenbrewing, etc. Mains powered, 10A SPCO relay out put. Punched and printed case.
KIT 841 \qquad £29.95
PORTABLE ULTRASONIC PEsT SCARER
A powerful 23 kHz ultrasound generator in a com pact hand-held case. MOSFET output drives special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequenc output is designed to give maximum output with
KIT 842 \qquad £22.56

DIGITAL CAPACITANCE
 METER

A really professional looking project. Kit is sup plied with a punched and printed front panel, case p.c.b. and all components. Quartz controlled accuracy of 1\%. Large clear 5 digit display and high speed operation. Ideal for beginners - as the $\mu \mathrm{F}$, hF and pF ranges give clear unambiguous read out of to thousands of $\mu \mathrm{F}$
KIT 493. \qquad
ACOUSTIC PROBE
A very popular project which picks up vibrations by means of a contact probe and passes them on to a pair of headphones or an amplifier. Sounds from engines, watches, and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers, and nosey parkers!
KIT 740
£19.98

1000V \& 500V INSULATION
TESTER
Superb new design. Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms.
Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848
f 32.95

MOSFET MkII VARIABLE BENCH

 POWER SUPPLY 0-25V 2.5ABased on our MkI design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.
KIT 845. \qquad £64.95

ULTRASONIC PEsT SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL

COMPONENTS, PCB \& CASE

- EFFICIENT 100 V

TRANSDUCER OUTPUT

- COMPLETELY INAUDIBLE TO HUMANS
KIT Ref. 812.

COMSTEP' P.C. COMPUTER STEPPING

MOTOR INTERFACE

An exciting project supplied with two 200 step motors, interface board, and easy to use P.C. software.
Allows independent control of both motors - speed, direction, number of steps, and halff full step mode. Co
KIT 846 (with 2 motors)£62.99 (Printer lead $£ 5.00$)

IONISER

A highly efficient mains powered Negative lon Generator that clears the air by neutralising excess positive ions. Many claimed health benefits due to the ionise removing dust and pollen from the air and clearing smoke particles. Costs virtually nothing to run and is completely safe in operation. Uses five point emitrers. KIT 707
f 17.75

BAT DETECTOR

An excellent circuit which reduces ultrasound frequencies berween 20 and 100 kHz to the normal (human) audible range. Operating rather like a radio receiver the circuit allows the listner to tune-in to the ultrasonic frequencies of interest. Listening to Bats is fascinating, and it is possible to identify various different types using this project KIT 814
£21.44

SPACEWRITER
An innovative and exciting
I project. Wave the wand through
the air and your message appears.
Programmable to hold any message
up to 16 digits long. Comes pre-loaded with "MERRY XMAS". Kit includes IPCB, all components \& tube \Varangle 1 KIT 849
£16.99
12 V EPROM ERASER
A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12 V supply (400 mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not al owed. Safety interlock prevents contac
KIT 790.
£28.51

MOSFET 25V 2.5A

POWER SUPPLY

High performance design has made this one of our classic kits. Two panel meters indicate Volts and Amps. Variable from 0.25 Volts and current limit control from $0-2.5 A$. Rugged power MOSFET outKIT 769.
£56.82
INSULATION TESTER
A reliable and neat electronic tester which checks insulation resistance of wiring and appliances etc.. and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. A very popular college project.
KIT 444
£22.37
DIGITAL COMBINATION LOCK Digital lock with 12 key keypad. Entering a four digit code operates a 250 V 16 A relay. A special anti-tamper circuit permits the relay iser operates from 12 V . Drilled case brushed aluminium keypad.
KIT 840.
.£19.86
E.E. TREASURE HUNTER
P.I. METAL DETECTOR MKI
Magenta's highly developed \& acclaimed design. Quartz crystal controlled circuit MOSFET coil drive. D.C. coupled amplification. full kit includes PCB, handle case \& search coil.

- DETECTS FERROUS AND NON-FERROUS METAL-GOLD,
SILVER, COPPER ETC.
- 190mm SEARCH COIL - NO 'GROUND EFFECT' KIT 815.
£45.95

HAMEG HM303 30 MHz
 DUALTRACE OSCILLOSCOPE \& COMPONENT CHECKER

Western Europe's best selling oscilloscope - now improved It now features 30 MHz bandwidth, triggering to 100 MHz and $2 \mathrm{mV} /$ div sensitivity.
Sharp bright display on $8 \times 10 \mathrm{~cm}$ screen with internal graticule. Special component tester built in - allows capacitors, resistors, transistors, diode, and many other components to be checked at a glance.
As with its predecessor, the QUALITY OF THIS INSTRUMENT IS OUTSTANDING. It is supported with a two year warranty covering parts and labour. If you are buying an
oscilloscope, this is the one. It costs a fraction more than some others, but it is far far superior. Supplied with test probes, mains lead, and manual.
£ $392.00+£ 68.60$ VAT Includes free
(Cheoues must be cleared)

EDUCATIONAL BOOKS \& PACKS

ADVENTURES WITH ELECTRONICS
The classic book by Tom Duncan used throughout schools. Very well illustrated, ideal first book for age 10 on. No soldering. Uses an S.DEC breadboard Book \& Components $£ 28.95$, Book only $£ 7.25$

FUN WITH ELECTRONICS

An Usborne book, wonderfully illustrated in colour. Component pack allows 6 projects to be built and kept. Sol help. Book \& Components $£ 20.88$, Book only $£ 295$

30 SOLDERLESS BREADBOARD PROJECTS A more advanced book to follow the others. No soldering Book \& Components $£ 30.69$, Book only $£ 2.95$

C MOTOR/GEARBOXES

Ideal for robots, buggies. and many other mechanical projects. Min plastic gearbox with 1.5-4.5V DC motor. 6 Small type MGS....£4.77

STEPPING MOTORS

For computer control via standard 4 pole unipolar drivers.
MD38 - miniature 48 steps per rev................... $\mathbf{£ 9 . 1 5}$
MD351/4 - standard 48 steps per rev............... 12.99

ALL COMPONENTS TO ASSEMBLE THE EPE MICRO LAB.

A 6502 Microprocessor trainer with many features. Accompanied by an excellent set of tutorial articles and a manual.

Repair/fault-finding help assured when you buy your kit from us.

Full MICRO LAB kit including PC Board, EPROM, PAL, \& Manual. MIC 1
£155.95
(Also available less PCB etc. if required).
Full set of reprints
.$£ 3.95$

BUILT \& TESTED

Full MICRO LAB AS MIC1 (above)
MIC1B.
.£189.95
Professionally assembled, inspected, cleaned and tested. Full back-up service, spares, etc available.

All prices include V.A.T. Add $£ 3.00$ pEp.
Tel: 0283565435 Fax: 0283546932

EVERYDAY

WITH PRACTICAL

Editorial Offices:
EVERYDAY with PRACTICAL ELECTRONICS EDITORIAL ALLEN HOUSE, EAST BOROUGH, WIMBORNE
DORSET BH21 1PF
Phone: Wimborne (01202) 881749
Fax: (01202) 841692 . DX: Wimborne 45314
Due to the cost we cannot reply to orders or queries by Fax.
See notes on Readers' Enquiries below - we regret lengthy technical enquiries cannot be answered over the telephone.
Advertisement Offices:
EVERYDAY with PRACTICAL ELECTRONICS
ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE
GREAT HOLLAND, ESSEX C013 OJS
Phone/Fax: (01255) 850596

SIXTEEN MILLION POUND MAPLIN

I wonder if the two men who started selling transistors by mail order in their spare time ever dreamed that the company they were launching would be worth around $£ 16$ million just 22 years later? They started with a two inch single column advertisement in Practical Electronics in 1972 - sold to them by our present advertisement manager Peter Mew.

The company is Maplin which last year had a turnover of around $£ 30$ million, has 33 shops and made $£ 1.5$ million profit. Maplin's shares have been transferred to Cannon Street Investments Plc, soon to be renamed Saltire. Maplin required extra funding to continue development of the company at a good pace and by linking with a Stock Market listed company this has become available. The main players in the C.S.I. Group are Altai - a company whose name many readers will know - they sell electronic equipment to wholesalers and retailers in Europe; Network - who manufacture TVs and other home appliances in Eastern Europe and Dunnet - who are a computer distributor in Holland
We understand that it's no change at Maplin except that they can now go full steam ahead with new developments and expansions which include opening five or more new shops a year, expanding their present range of products and accelerating expansion of their professional distribution arm M.P.S. Roger Allen, MD, tells us that their present "pamphlet" (the 864-page Maplin catalogue) is just not big enough to cover the proposed product range and there are some areas that Maplin do not yet cover at all. Roger has been negotiating long and hard to achieve the link up with C.S.I. where Maplin will not be swamped as part of a massive conglomerate, but will have the resources required to accelerate their ongoing development.

Maplin's small management team will continue to run things and it looks like good news for everyone involved with the company, including the customer. I wonder how big next year's catalogue will be?

As an interesting aside Roger tells us he remembers offering 2N3055 transistors for 49 p each in their early advertising. They believed by selling this popular power transistor at the lowest price everyone would buy from them - in fact it took them six months to sell the first one. They must, however, have done a few things right in the last 22 years. They still sell 2 N 3055 s and probably more than two a year - but the price has gone up to $£ 1.15$; so that's how they made their profit!

SUBSCRIPTIONS

Annual Subscriptions for delivery direct to any address in the UK: $£ 24$. Overseas: $£ 30$ ($£ 47.50$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday with Practical Electronics and sent to EPE Subscriptions Dept., Allen House, East

Borough, Wimborne, Dorset BH21 IPF Tel: 01202881749 . Subscriptions start with the next available issue. We accept Access (MasterCard) or Visa.

BINDERS

Binders to hold one volume (12 issues) are now available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ post and packing (for overseas readers the postage is £ 6.00 to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally sent within seven days but please allow 28 days for delivery - more for overseas orders.

> Payment in £ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order $£ 5$. Send or phone your card number and card expiry date with your name, address etc.

Editor: MIKE KENWARD

Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749

Advertisement Manager:

PETER J. MEW, Frinton (01255) 850596
Advertisement Copy Controller: DEREK NEW. Wimborne (01202) 882299

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY with PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, of for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

transmitters/bugs/TELEPHONE
 \section*{EQUIPMENT}

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws.

12V, 35W PUBLIC ADDRESS AMPLIFIER

JOHN ELLIS

A versatile discrete design using MOSFETs. Can provide 100 V line and 8Ω outputs and may be used as a 12 V to $240 \mathrm{Vinverter}$.

T
HIS audio power amplifier has been designed to operate from 12 V and provide up to 35 W power r.m.s.. It is a public address amplifier with 100 V line output for loudspeaker distribution systems. An output transformer provides one low impedance winding for direct connection to a loudspeaker and two 100 V secondaries for the line output. These are normally operated in parallel but if connected in series, the unit can provide 240 V to double as a converter. Constructors can wind secondaries for different configura-
tions if required. We suggest that you do not attempt to build this amplifier unless you are reasonably experienced in project construction.

/NPUTS

Four inputs are provided with separate volume controls. Two inputs are amplified for signals from microphones or guitar pick-ups, while the other two are high level inputs suitable for radio or cassette signals. A mixer stage combines all four signals and provides a master volume control.

No input is provided for RIAA dise signals. This is because it is envisaged that the most likely use would be from cassettes or CD players and microphones. (Note that public playing of any recorded, published music will need licensing).
No tone controls are provided. Normally a P.A. amplifier is operated at or near full volume which leaves no headroom for boosting any particular frequency or band over another. If tone controls can't be used, there is no point having them

The output stage uses power MOSFETs in a class- B configuration. The original design used bipolars but was re-designed and modernised - when it was found that typical 8 A rated types such as the 40251 , or its standard equivalent, 2 N 6371 , were uncommon, if not extinct, while MOSFETS with current ratings in the 15 A to 30 A range are now more common and possibly cheaper.

Fig. 1. Pre-amplifier and mixer stages of the 12V, 35W Public Address Amplifier.

The better driver configurations in "trans-
former" amplifiers minimised d.c. bias current in the driver transformer so that no air gap was necessary. This design uses a class-A push-pull
driver stage, similar to one by R.C. Bowes first published in Wireless World in July 1961, which feeds a matched pair of MOSFETs to provide
a relatively simple but powerful design. The a relatively simple but powerful design. The
BUZ 10 MOSFETs are rated at 20 A up to $50^{\circ} \mathrm{C}$ but must be derated to 15A above that tempera-
output stage to prevent transformer saturation. For normal response to 70 Hz Cl 7 should be should instead be 100 nF . Note that this value allows for the power amplifier input impedance

If the amplifier is to be used as a 50 Hz inverter,
If the amplifier is to be used as a 50 Hz inverter,
or if low frequency response is limited at the signal source, C 17 should be $10 \mu \mathrm{~F}$. Two values of Cl 17 can be selected with a slide switch, in this
case 100 nF and $10 \mu \mathrm{~F}$ are recommended, or for critical applications a three-way selector switch

($\varepsilon 1 ว$ č,) filter to decouple ripple from the output stage.

The output stage is shown in Fig. 2. The need for an output transformer is dictated by the d.c. Once this is established, it is fairly easy
 Early transistor amplifiers used this approach
but MOSFETs simplify the design.
$60 \mu \mathrm{~A}$ and TR2 at $600 \mu \mathrm{~A}$ for low noise. BC414 and BC416 low noise types are used. Input filter
R 5 and C3 stop r.f. pickup, while the 33 pF capacitor C5 stabilises the design at high frequencies and limits the bandwidth to 50 kHz . Volume control VR1 is used to set the level of the output signal. The gain of this stage, set by 100 . The input signal should be about 1 mV . The second channel low level amplifier is identical.
The mixer stage uses a low current input tran sistor TR 5 operated at $100 \mu \mathrm{~A}$ with its output buffered by TR6 at 1 mA . The bias is set by a classical potential divider with feedback through R28, and stabilised by R25 and R27. Capacitor C 15 limits the frequency response to 25 kHz for
 signals to be mixed without interference from each other. The output from this stage is taken via capacitor C17 and the Master Volume Con-
trol VR5 to the main amplifier. A similar circuit trol VR5 to the main amplifier. A similar circuit

World, May 1971 . plication intended. It is smaller than normally
$F=F-\square F M / A N C=$
The amplifier signal-to-noise ratio and distortion figures are not the ultimate in hifi standards, be 0.5 per cent, but may worsen near clipping: the signal-to-noise figure is around 60 to 70 dB The low frequency limit can be modified as described later, but the 15 kHz limit is unlikely to be improved without laminations thinner than
the 0.35 mm type used in the output transformer. Given that there is always a balance in transformers between low and high frequency response, this PA amplifier provides acceptable
performance for PA work where horn speakers
may well limit quality. amplifier, discrete designs can perform adequately, are inexpensive and usually more serv-
iceable than designs using i.c.'s.

INVLT 574 GE
The pre-amp circuit is shown in Fig. 1. Tran-
sistor TR1 is biased at mid-rail by resistors R2, R3 and R4. An npn-pnp configuration offers
ture. The transconductance is $8 \mathrm{~A} / \mathrm{V}$ and threshold voltage 4 V maximum. The maximum dissipation is 75 W and operating voltage 50 V .
Though it would seem that only 1 V drive is needed to switch 8 A , at low drain voltages the transistors enter their linear region when the gate drive needs to be increased to compensate. This is probably the biggest distortion mechanism near peak output and requires a larger gate drive to be available. Possibly, the low threshold voltage MOSFETS (e.g. BUK553-60B) could be driven with capacitor coupling, but transformer coupling allows a higher drive voltage swing for the standard types of MOSFET.

The input stage comprises an input transistor TR 102 feeding a long-tail pair TR103 and TR104. The tail current is set by R111, and the base bias voltage of TR 104 , to 100 mA . The bias voltage is obtained from the forward voltage of a red l.e.d. (D103) which is typically 1.6 V and thermally compensates the base voltage drift in TR104. The current of 50 mA in TR103 is set by the bias on TR102. This is adjusted from the bias regulator adjuster VR101, which is in turn stabilised by TR101.
The current in TR104 will automatically adjust to keep the tail current constant. The currents in TR103 and TR104 should be set equal, and around 50 mA . TR103 and TR104 feed the driver transformer TI which is a centre-tapped to centre-tapped $1: 1$ (or $1+1: 1+1$) ratio design.
The tap on the secondary is connected to a bias chain described below. Each output terminal is connected to a 220 ohm resistor (R113 and R114), to provide a low impedance load which improves the speed of the output stage, reduces the effect of winding capacitance on frequency response and most importantly, defines the gain of the driver stage to improve stability. Small 39 ohm resistors are connected in series with the MOSFET gates to suppress high frequency oscillation.
One bias chain is provided for both MOSFETs as, supposedly, they are able to be paralleled even without separate source resistors. But MOSFETs can show threshold voltage variations from 2 V to 4 V , so it is important therefore that matched MOSFETS are used to ensure that their quiescent currents are equal

In practice, as was often the case for bipolars, two devices purchased at the same time will usually be from the same batch and be sufficiently close. In the author's design the quiescent currents, were 110 mA and 140 mA . This is about the limit of tolerable mis-match and lower distortion figures may be possible with a better match.

QUIESCENT CURRENT

The quiescent current is higher than would be used in a bipolar design because MOSFETs become quite non-linear near threshold (or cut-off). Even so, the overal quiescent current is a respectably low 0.4 A .
The quiescent current must be stabilised against battery and temperature variation. MOSFETs exhibit two opposing thermal drifts. At gate voltages just above the threshold, giving low drain currents, the drift in threshold voltage downwards increases the drain current with increasing temperature. At high bias levels the mobility in the MOS channels dominates which reduces the drain current

Fig. 3. Driver transformer winding and assembly.
with temperature. This prevents thermal runaway, but the zero-drift balance point corresponds to quite a high current (about 1 A in the BUZ10).
The quiescent current is therefore stabilised against thermal drift by TR105. This is a conventional bias regulator which happens to match the thermal drift in a MOSFET at least approximately. The bias does depend a little on the setting of VR102. Fine tuning can be achieved by adjusting R116, R117 and R118, but is probably not necessary. TR105 is a pnp instead of the usual npn so that it does not require isolation from the heatsink, thus reducing thermal inertia.
The supply voltage to the bias network is also regulated because a car battery voltage can range from 12 V to 12.5 V when used alone (even when newly charged) to typically 14 V when being charged (as "on the road"). To stabilise the bias (and pre-amp) voltage, a three transistor circuit (TR201 to TR203) is used with a pnp power transistor such as a TIP42 for TR203 in the socalled low dropout configuration. The stabiliser potentiometer VR201 is adjusted to give 11.5 V output.

FRECUENCY RESPONSE

The frequency response of the amplifier is primarily limited by the output and driver transformers as mentioned. In the driver transformer, there is significant in-ter-winding capacitance while in the output transformer the metal laminations are not really up to providing more than the 15 kHz achieved. To squeeze 20 kHz through a transformer either use ferrite material or laminations of 0.05 mm !
The overall gain is set by resistor R123 and input resistor R108 at 100 , which is higher than would be used for a hifi amp. Consequently the distortion is not as low, but sensitivity is more important in PA equipment. The feedback is stabilised against oscillation by R109 and C104. The overall sensitivity is about 100 mV for 6 V r.m.s. into the primary windings rather than 60 mV due to the input filter R106 and C103.

TRANGFORMERS

Both driver and output transformers made specially for this design are available - see Shoptalk. However it is possible for experienced constructors to make their own.
Starting with the transformer equation:
$\mathrm{N} / \mathrm{E}=1 /(4.44 \mathrm{fAB})$
Where N/E is the turns per volt, f the (lowest) operating frequency, A the section of the core (in sq. m) and B the maximum
flux density allowable (in Teslas), a couple of sample designs resulted in a choice of an E42/15 ferrite core or a metal core pattern 18 for the driver. These are 42 and 42.8 mm wide. The ferrite core is 42 mm high while the waste-free iron laminations give a shorter height of 35.7 mm . Bobbins for these fit a 0.1 inch grid with pin spacings of 0.2 inches in rows of five at 1.4 inches and 0.9 inches apart respectively. The board is able to take either.
The ferrite core has a low saturation flux density of 0.35 T and a low relative permeability (mu) of about 1200 to 1500 . It therefore needs a high number of turns to achieve the inductance. This is 140 t.p.v. which gives an inductance of $1 \cdot 1 \mathrm{H}$, and frequency response of 35 Hz . The iron core option was not used in the prototype despite having been used in a bipolar predecessor. The number of turns on each of the four coils is 600 for the ferrite core. The wire gauge, determined from the total number of turns and bobbin winding window, is 36 s.w.g.
Since the turns ratio is $1: 1$ on four windings, the exact number of turns is not too critical if four insulated wires are wound together (quadrafilar) until the bobbin is almost full. Leave room for two layers of masking tape. The resistance of the windings should be 30 ohms per coil.

CONNECTIONS

When soldering the coils it is important to wire the starts and ends of the coils to the bobbin pins expected by the circuit board. Since the coils are all equal and wound side by side which coil is which is immaterial: but the end of one must be wired to the pin corresponding to its start. The circuit board layout assumes that the coil "starts" are taken to pins 1,2,3 and 4 and ends to $10,9,8$ and 7 on the Siemens (ferrite) bobbin.

If you can get four different colours of insulation this helps. Solderable enamel is best, but appears to be supplied only in red or green. so you may have to use a meter to check!
The 36 s.w.g. wire can conduct 50 mA very comfortably at a current density of about $2 \mathrm{~A} / \mathrm{sq} . \mathrm{mm}$. Commercially, wire is used up to $4 \mathrm{~A} / \mathrm{sq} . \mathrm{mm}$ in low power transformers. The ferrite core type E42/15 (Siemens part no. B66325-G0000-X127) and bobbin (B66242-J1000-D001) can be obtained from Electrovalue - see Shoptalk. Note that a single window bobbin is needed for audio transformers. Two E-core halves are needed for one transformer.
Before assembling the cores, short strips of silicone rubber should be inserted into the core to prevent slop after assembly due to the bobbin being marginally larger than the core as shown in Fig. 3. Use a tie-wrap (0.25 by 8 -inch or larger) to keep the core halves together. Pull the tie-wrap tight and snip off the surplus.

QUTPUT TRANSFORMER

The starting point for the output transformer is again the transformer equation but with a core pattern 29 considered. This core is used commercially in a 1 inch stack for 50 W mains transformers. It proved not to be possible to obtain 35 W from it in class B with two primaries at 50 Hz , in an amplifier if the magnetic flux density was kept well away from saturation. In a mains transformer the magnetic flux gets very near saturation to minimise the number of turns required. The solution is to increase the stack height from one inch to 1.5 inches. The turns ratio reduces to 4.6 (actually 5 turns per volt was used) needing 30 turns. Now the two primary coils fit in three layers leaving room for the three secondaries.

Fig. 4. A 50 Hz near-sine wave generator.

The transformer is designed to operate with 6 V r.m.s. into the primary. A peak voltage of 9 V allows 3 V for resistance losses in the primary and MOSFETs. The amplifier is thus able to deliver full power from a 12 V battery off charge, unlike many transistor amplifiers which are designed for 14 V - which is only obtained when the battery is being charged.
The two 100 V secondary windings then need 16.7 times 30 plus 5 per cent or 525 turns, and the low voltage speaker winding 23 turns for 4 V r.m.s. output. This will drive $4 W$ into a 4 ohm load or $2 W$ into an 8 ohm load. It is really for local monitoring purposes.
For home winding enthusiasts, the details are:
100V secondary 1: 525 turns of 34 s.w.g.
Primary: Bifilar 30 turns of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.
Low voltage secondary: 23 turns of three
28s.w.g. wires in one layer
100 V secondary 2 : 525 turns of 34 s.w.g.
It is essential to use the same number of turns exactly as on the first high voltage secondary if the secondaries are to be wired in parallel. All wires should be enamelled copper or "solderable enamel" (polyurethane). Use a layer of paper between each complete winding to provide protection and to prevent coil slip to lower layers. Finish the bobbin by covering the windings in insulating tape, using several layers.

Assemble the E and I core plates alternately in a clean area to keep a good mating surface between the plates. Simple clamps can be fashioned from half-inch, 16s.w.g. aluminium angle (see Fig. 7). After testing, spray the finished core with a waterproof, electrical insulating varnish to prevent the core from rusting.

WINDING CONFIGURATIONS

Other winding configurations are possible instead of the recommended windings if required. The rules for altering the windings are, first, the total winding, including insulation and support layers of paper must fit into a bobbin window of 33 mm by 10 mm . The primaries should remain the same. Secondaries should be wound at 5 turns per volt plus 1 per cent per 6 W loading. Use only enamelled (or "solderable enamel") copper wire.

Examples of other secondaries might be:
For 35 W at 100 V only, wind two 50 V 263 turn coils using 29s.w.g. These windings are connected in series for 100 V .

For 35 W into 8 ohms (and no 100 V line) wind 27 turns in one layer using 19 s.w.g.,
then the primaries, then two layers of 19s.w.g. (27 turns each).

It is important that transformers are not operated "open loop" due to the large possible voltage spikes which may arise as a result. Resistor-capacitor networks R121-C106 and R122-C107 help load the amplifier in the event of it being disconnected from loudspeakers. Zener diodes D104 and D105 are intended to protect the MOSFETs in the event of a large overdrive, and D101 and D102 prevent excessive current drive. A fuse protects the amplifier from sustained current overload This is a 20 mm fuse rated at 6.3 A .

INVERTER

The amplifier can make a good inverter for 240 V . The turns per volt of 5 will enable the flux to be increased to between 1.3 and 1.4T which corresponds to a square wave. This will push the output voltage up from 100 V to 120 V (the amplifier will operate near clipping) to get 240 V from both secondaries in series. A 50 Hz clipped sine wave or square wave at 200 mV to IV should be applied to a high level input and the volume controls adjusted for 240 V output. The coupling capacitor C 17 will need to be increased to $10 \mu \mathrm{~F}$ for a good 50 Hz wave shape as mentioned. Fig. 4 shows a suitable 50 Hz generator circuit.

CONSTAUCTION

The "chassis" designed for this project is actually a simple aluminium box 12 inches
wide by three inches high and seven inches deep. It is folded from 16 s.w.g. aluminium in two sections as shown in Fig. 7, but a commercial box could also be used. It needs an aluminium back panel to allow a good heat transfer from the power transistor mounting bracket to the finned heatsink. Heatsink fins can be made from strips of aluminium three inches by various lengths and folded to provide a $1 \cdot 5$ inch fin. 8 inch wide heatsink at the back left, as shown in Fig. 8. This is probably overkill for a 35 W amplifier and could probably dissipate 50 or 70 W . Again a commercial alternative would be acceptable

The power transistors are mounted on a one-eighth inch thick, one inch aluminium angle which is bolted to the rear aluminium case and heatsink. Two support pillars at the front complete the p.c.b. mounting so that in total four bolts hold the p.c.b. Construction of the p.c.b. is shown in Fig. 5.

The five potentiometers (VRI to VR5) are mounted on the front panel, with four 0.25 inch jack sockets (JK 1 to JK4) and on the right, a power switch (S 1) and indicator l.e.d. (D106). On the rear are three pairs of output sockets for the low voltage and two 100 V outputs, a 20 mm fuseholder (the maximum fuse rating is used of 6.3 A) and an input lead grommet hole.

The output transformer (T2) is mounted on the base while the driver transformer (T1) is mounted on the p.c.b. A high current smoothing capacitor (C 109) of at least $1.000 \mu \mathrm{~F}$ is clamped to the base as well.

HEATSINK BRACKET

Drilling the heatsink angle bracket requires some explanation. Two M3 bolts are used to hold this in place but as they may overlap a copper track, drill the holes larger than the M3 bolt to take a nylon M3/6BA insulator which should be positioned on the copper side before assembly. The two TO126 transistors are mounted also with the insulating bushes, so drill holes large enough for clearance (4.5 mm). The same also applies to the series regulator transistor.

The MOSFETs (TR106 and TR107), however, make contact to the wide tracks through the mounting bolts rather than the drain wires. Holes need to be drilled for M3 clearance in the p.c.b. To align the holes, drill the M3 clearance (3.2 mm) through the aluminium angle and p.c.b., clamped by

Fig. 5. P.C.B. layout and construction for the P.A. Amplifier. The copper foil master is shown full size.

Fig. 6. Power transistor mounting for the "hot bolt" connection.

Fig. 7. (below) Construction of the aluminium case and the output transformer mounting clamps (two per output transformer).

Fig. 8. Case drilling details plus heatsink cutting dimensions and assembly.
the two locating bolts. Then, remove the heatsink and open the holes in it to take an insulating bush using a larger drill. However, a sleeve is required rather than a bush as the transistor must be mounted flush on the heatsink to ensure good thermal contact.
Short lengths of the sleeve can be cut from a couple of bushes and inserted into each hole in the aluminium after remounting the angle bracket on the p.c.b. This will keep the M3 bolt insulated from the bracket while feeding the drain contact to the p.c.b. track underneath. Fig. 6 shows this.
All transistors fixed to the angle bracket should be mounted using heatsink compound and mica insulators except for the bias regulator (TR105). Bend the leads correctly and tighten all bolts using washers and shakeproof washers before soldering the other leads on the copper tracks. Check with a meter that no shorts have occurred after assembly. Zener diodes D104 and D105 are soldered to the copper side of the p.c.b. close to the output transistors with the anodes to ground. Components R121, R122, C106 and C107 are mounted on TI.

/NTERWIRING

The interwiring is straightforward. All preamp controls and inputs are wired using screened leads. Input jacks are connected with the rear lead to the centre wire and the front lead to screen. The connections to the pins are in sequence of each control and in order: potentiometer
dive, potentiometer wiper and earth.
Power leads should be wired with a thick cable (peak currents of 9 A are possible) $32 / 0 \cdot 2$ wire or two $16 / 0 \cdot 2 \mathrm{~s}$ should be used.

Feedback from the output to resistor R123 needs to be phased properly. If you have tracked the starts and ends of the transformer windings properly the "dot" lead or start of the low voltage secondary should be grounded and the other end connected to the " + " output terminal. If you get a horrible noise on switching on, swap the primary leads to the outputtransformer at the p.c.b. or transformer connections.

Ground the " - " side of one of the 100 V secondaries but leave the other floating so that the two outputs can be wired in series or parallel. Normally, the two negatives must be connected together and the two positives to operate in parallel. For series operation, 100 V " A " negative must be connected to 100 V " B " positive: no other series connection will work as coil " B " negative is grounded

The feedback resistor may need to be changed if you have provided any output winding other than 4 V . If you take it to a 100 V output, use a 24 k resistor and for any other voltage use V/4 kilohms. Connect the feedback resistor to a secondary whose other end is grounded!.

SETT/NG UP

After construction and careful checking, connect a meter and low resistance power
resistor in series with the leads (10 ohms 25 W or so would be ideal) since a short circuit from a car battery could wreck most of the p.c.b. and components. Set the MOSFET bias potentiometer VR102 fully anticlockwise for maximum resistance. Switch on and measure the current. If the current is over 200 mA something is wrong. If the amplifier makes a noise in a speaker the feedback could be wrongly phased. If less than 200 mA , switch off, take out the resistor and try again.
The pre-amp voltage should be set first to 11.5 V using the regulator preset control (VR201). Then set the quiescent current to 320 mA to 350 mA by carefully rotating the MOSFET bias control (VR102) clockwise until this current is reached. Individual MOSFET currents can be checked by connecting the meter in place of the corresponding drain to primary coil wire.
The pre-amp current balance is then set by first measuring the voltage across R111 and setting the voltage at the junction of R110 and TR103 to twice this value using VR101. Then all should be ready to go!.

Test the unit with either a 3 ohm to 8 ohm speaker on the low voltage secondary or connect a speaker and a 100 V line matching transformer at the appropriate power taps to the 100 V line. Adequate sound levels should be reached using the microphone inputs and tape or radio inputs on the high level inputs.

Innovations A roundup of the latest Everyday News from the world of electronics

QUANTUM EFFECT ELECTRONICS

Keeping electrons tightly confined could achieve faster and more compact chips - by Hazel Cavendish

RESEARCHERS at the Toshiba Research Centre, working in collaboration with the Cavendish Laboratory at Cambridge University, have developed the world's first process for fabricating practical quantum effect integrated circuits.
This development could open the door to room temperature quantum effect circuits which, in turn, could result in logic circuits many hundreds of times faster, more compact memories, and new opto-electronic devices

Molecular Beam Epitaxy

Although enormous advances have been made in the last 50 years, the optical systems used to define i.c. structures are reaching the limits of resolution, as set by the wavelength of light.

However, two new technologies have emerged from the Cavendish Laboratory which hold the promise of improving the integration process to near the atomic level. The use of Molecular Beam and Vapour Phase Epitaxy allows the building of i.c. structures in an entirely different way. Instead of modifying a layer of silicon or gallium arsenide by implanting or diffusing impurities, it is now possible to grow semiconductor materials by single atomic layers. Simultaneously, impurities can be introduced to modify material characteristics in the process and to form sandwich structures.

Apart from permitting manufacturers to make devices which are smaller, the process can be used to examine new concepts of operation that come into effect at near-atomic dimensions

Many of the new concepts involve quantum phenomena and are based around exploitation of the wave-like properties of the electron. Remarkably, the new fabrication technology allows the composition of the semiconductor to be manipulated over lengths comparable with, or less than, the electron wavelength. Quantum interaction is achieved by trapping electrons in a "potential well" within the semiconductor lattice, comparable to that found in MOS devices.
As the strength of the quantum phenomena increases with greater confinement, one of the team's research aims has been

Toshiba-Cavendish optical laboratory.

MBE (Molecular Beam Epitaxy) equipment in laboratory.
to confine trapped electrons within regions only a few atoms across. The Toshiba-Cavendish achievement has been to develop a process for the fabrication of the various structures that is both easier and more precise.
The most exciting prospect is that of i.c.s. many thousands of times more densely packed than currently possible. Typically, a one square centimetre chip might contain 10^{12} gates or memory cells at least three orders of magnitude more than current memory chips.
Super-fast logic circuits will be able to operate on quantum switching principles, promising speeds up to 1000 gigahertz, 500 times faster than today's i.c.s. Super-capacity logic and memory circuits will work by switching only a few electrons between high and low energy states.
The new technology allows a sandwich of semiconductor materials to be built up on a suitable substrate. The thickness of each layer can be controlled to within one atom, while its electrical properties can be customised by varying the mix of impurities incorporated during growth. A succession of layers can be laid down in one continuous process.

Electron beam lithography is currently used to define the highest resolution in i.c. manufacture, but the process is slow and has practical resolution limits. The research team has overcome this problem by developing a process using optical lithography to define non-critical dimensions, while the critical ones are defined by using the new epitaxial process.

BT'S INTERACTIVE TV TRIALS

British Telecom has announced that it is to start consumer trials of BT Interactive TV, which includes video on demand, in the middle of 1995 with 2500 households in Colchester and Ipswich. This follows the success of its technical trials, held in Kesgrave, near lpswich.

The world-leading new service promises to create a revolution in the home. It brings together the telephone and the television to enable customers to choose a range of services from a menu on an ordinary TV set. The material is then transmitted from a central database over the telephone network to the TV, while not affecting the normal telephone line.

During the trial period, BT aims to offer shopping on demand, a range of educational programming for homes and schools, movies and TV programming (video on demand), a home banking service, a magazine service and a community link providing local information. Additional services will be introduced during the course of the trials.

GIANT SRAM

What is claimed to be the world's largest dual-port SRAM (static random access memory) has been introduced by Integrated Device Technology. IDT"s new IDT 7007 has access times as fast as 25 ns and is a 256 K device which provides the highest possible density of true dual-port SRAM in the smallest possible area of board space. Configured as $32 \mathrm{~K} \times 8$ bits, the SRAM provides four times the memory of IDT's closest competitor at a fraction of the cost.

Because of its extremely small size, the IDT7007 significantly simplifies system design, it also increases bandwidth and is ideal for use in high density situations. It is available in a 14 mm square, 80 -pin TQFP package as well as PLCC and PGA.

For further information contact Integrated Device Technology, Prime House, Barnett Wood Lane, Leatherhead, Surrey, KT22 7DG. Tel: 0372363734

B.A.E.C. CHANGEOVER

We are always pleased to support the work of the British Amateur Electronics Club and to read its quarterly Newsletter. The latest issue, number 114 for December 1994, has just been received. We extend our welcome to its new editor Alf Denison, and send our best wishes to Herbert Howard who has retired from the post after several stalwart years.

In the latest 24-page Newsletter are more circuit ideas which will appeal to electronics hobbyists. Among them are circuits for current to voltage converters, relay control, more on computer interfacing, and "More Ways of Skinning a Cat". Moggies need not fear though: the article is about zero crossing detectors, not electronic taxidermy!

The regular Magart section of the Newsletter comments favourably on several projects recently published in EPE, notably the Universal Digital Code Lock, the Experimental Electronic Pipe Descaler, and the Advanced Tens Unit. We are pleased to learn that the latter has provided pain relief for still more people; it is probably one of our most popular projects ever.

We were, though, surprised to read that the "Electronics from the Ground Up series has come into some criticism because of its use of Computer Aided Design in teaching electronics." We are totally unaware of any such criticism and believe that, judging by the very large sales of the full software package, we are publishing a series of articles which had long been hoped for. Perhaps, Alf, you could kindly tell us what criticism you are aware of?
Readers who would like more information about the B.A.E.C. should write to J.F. Davies, Secretary, B.A.E.C. 70 Ash Road, Cuddington, Northwich, Cheshire, CW8 2PB, mentioning EPE.

PAT VIDEO

The introduction of the Electricity at Work Regulations has highlighted the potential dangers of electricity in the workplace, and the duty of the employer to minimise the risks to all employees.
Clear and simple guidance on how to establish such a maintenance program has become available as a new video from AVO International. The video is called "PAT Video II - Fundamentals of Risk Assessment, Visual Inspection and Test" and lasts for about 30 minutes.

For more information contact Avo International, Archcliffe Road, Dover, Kent, CT17 9EN. Tel: 0304202620.

ESSEX MEETING

The 10th South Essex Amateur Radio Society will be holding its Radio Rally on 5 February 1995, at The Paddocks, Long Road, Canvey Island, Essex. (The Paddocks is situated at the end of the A130.) Doors open 10.30 a.m.

Features include amateur radio, computer and electronic component exhibitors (bring and buy!), R.S.G.B Morse testing on demand (two passport photos required), and home-made refreshments. There is free parking with space outside the main door for disabled visitors. Admission $£ 1,00$.

For further details ring Roger on 01268693786 or Ken on 01268 755350.

ANOTHER NEW PIC

Regular readers will be aware that we have recently been featuring microcontrollers in some of our projects, including Timeout, Universal Digital Code Lock, Spacewriter and the EPE Fruit Machine. Many readers will thus be interested to know about the introduction by Arizona Microchip Technology of their new one-time programmable 8 -bit microcontroller, the PIC16C61.

This chip has a 200 ns instruction cycle, 1024×14-bit program memory and 36 bytes of data RAM, making it ideal for use in a wide range of applications. A low power "sleep" mode for battery operation reduces standby current to less than $1 \mu \mathrm{~A}$. In addition, a wide operating voltage range of 2.5 V to 6.0 V and a very small "footprint" (18 -pin SOIC package) make it suitable for use in many portable applications.
The PIC16C61 is supported by the PICMASTER-16G Universal Develop-

ABOUT TIME TOO!
On February 1 1995, the long-awaited mains-plug legislation comes into effect. This will bring the UK into line with the rest of Europe by making manufacturers and importers fit approved standard plugs to all "white" and "brown" electrical goods. It is a direct result of a successful consumer and media (including $E P E$) safety campaign to reduce the number of accidents caused through badly wired plugs.

Many readers, of course, will now have found that items of electrical equipment are already usually being supplied with moulded-on mains plugs. (A sales manager from a large electrical retailer commented to us that his staff were never allowed to fit plugs on behalf of customers, even if they were obviously incapable of doing it for themselves; a most undesirable situation.)
During the period of 1 st Feb. '95 to 1 st Feb. '96, retailers have to clear their stocks of appliances without fitted plugs. After that time, with certain exceptions, there should not be a single domestic appliance with bare mains wires in any UK store.

One company which has recognised that complying with the new law also implies a responsibility to making sure that its customers are equally well informed is Remploy Manufacturing Services. Remploy provides contract manufacturing and assembly skills for companies in the electronic, electrical, automotive and mechanical sectors. In their autumn issue of Contract Manufacturing, their customer Newsletter, Remploy looks at the implications of the long-awaited plug fitting legislation deadline.

For further information contact Remploy Ltd., Remploy Manufacturing Services, 33 Wales Farm Road, Acton, London W3 6XX. Tel: 01819923007.

Two versions of the PIC16C61.

ment System, a fully integrated programming development and emulation environment, and is available in 4 MHz plastic DIP and SOIC versions.

For more information contact Arizona Microchip Technology Ltd., Unit 6, The Courtyard, Meadowbank, Furlong Road, Bourne End, Bucks, SL8 5AJ. Tel: 01628 851077.

AUDIOPHILES TAKE NOTE!

Graham Nalty, whom many readers will associate with the company Audiokits, has introduced a quarterly newsletter aimed specially at electronics constructors and hifi enthusiasts.
The newsletter, entitled "AP Performance Audio - The Journal of High Performance Audio Construction", will contain the latest news about high performance audio components, new products, cable features, price updates and "bargain bin", latest upgrading techniques for improving your own equipment, new amplifiers, pre-amps and other hifi projects to build, and readers' own feedback.
Copies of the newsletter will be supplied FREE to customers who purchase components from Audiokits valued at over $£ 100$ during the previous year. Other readers can subscribe to five issues up to the end of 1995 for only $£ 5$.

For further information, contact AP Electronics, Derwent Business Centre, Clarke Street, Derby, DE1 2BU. Tel: 01332-674929.

New Technology Update
 Ian Poole takes a look at a new research development project, using existing CD technology, that is expected to give a ten-fold increase in data storage.

THE ADVENT of new and exciting developments associated with the computer industry has increased the demand for convenient forms of storing vast amounts of data. The new idea for the information super-highway along with the increasing size of software applications indicates that within a few years conventional forms of storage will be unable to cope with the demands placed upon them.
At the moment CDs are providing a way of storing large amounts of data in a compact and convenient way. They are finding many uses, particularly in the computer games market.
However, in a few years time it is expected that even these will not be able to provide sufficient storage. With software packages giving more facilities, and containing far more visual and audio effects, the amounts of storage which are needed are poised to increase by orders of magnitude. Another important factor is that any improvements to storage systems must be cost effective and reliable.

Multilayer CD

Now a new development has built on the current CD technology to give a ten-fold increase in data storage for very little increase in cost. This has been achieved by researchers at IBM's Almaden Research Centre at San Jose in California by using a multi-layered CD.
Today's CDs used for audio and data storage consist of a single surface. This has a reflective coating onto which the data is stored as small non-reflective areas. A laser is focused onto the track as the disc rotates

Fig. 1. Structure of the multilayer $C D$.
and the reflected light is detected to give the data which is encoded onto the disc surface.

Many methods of increasing the data density of CDs have been investigated. To achieve this it is either necessary to increase the density of the data. or the area available for storage.

Most solutions have focused on ways of increasing the actual data density on the surface of the disc. This is not particularly easy because it requires much greater levels of accuracy, both in the recording stages and in the system for reading the data. This results in a significant increase in cost of the $C D$ itself and in the drive for reading the data.

It is also estimated that improvements along these lines will only double the storage capacity of these systems. This is not expected to be sufficient to cater for the needs into the foreseeable future and make the system viable for development and marketing.

Many of the other solutions which sought to increase the storage area were not convenient because they had to use a totally new standard for the discs. This was not favoured because the CD format is already well established.

New Approach

Researchers at IBM have adopted a new approach. They have developed a unique design for CDs using several layers of data within the disc. By using this method, the data density on each surface is not increased over the current CDs. This means that standards of quality and reliability are not sacrificed in any way, whilst still maintaining a low cost solution. It also has the advantage of retaining many of the specifications of the existing CD format.

The new disc is largely based on existing technology, but updated to give the additional layers. It consists of individual layers or discs made of plastic which are then bonded together with spacers. In this way a very compact CD stack is formed See Fig. 1

Light from the laser in the disc drive is able to penetrate all of the layers. To achieve this all the discs are made of transparent material, and lack the reflective aluminium coating used for standard CDs.

In view of the absence of this coating, modifications have been made to the optical system to compensate for the different levels of reflected light.

However, the performance of the new system with these changes is equally as good as the original, and very high signal-to-noise ratios have been achieved.
To read or write to a particular layer. the laser beam is accurately focused to the correct distance. This is achieved relatively easily, and it has been found that spurious reflections from the other layers can be reduced to levels where no significant crosstalk is achieved.

Whilst it is possible to produce systems which can read and write, read only systems require only relatively small changes to those designs which already exist. This should make them cheap and easy to manufacture
Drives with write capabilities are more difficult as they require much greater levels of complexity. Despite the problems which exist it has been possible to demonstrate a four layer write-once, multiple-read disc system.

Read only discs up to six layers have been successfully tested, and it is expected that ultimately the number of layers may rise to ten or more. The number is ultimately limited by the power of the laser and the transparency of the material.

Freedom of Choice

The design of the new systems is being undertaken so that the new drives will be able to accept both new and conventional discs. Although it has not reached the stage of manufacture yet, there is widespread interest from industry.

This is hardly surprising because it offers major improvements by employing relatively minor changes to an existing technology. This means that any companies manufacturing current disc systems will be able to start making the new ones with quite small amounts of investment.
It is expected that there will be a large number of uses for the new discs. Obviously computer software publishers will have fewer restrictions on memory. This will give much more freedom when writing new programmes. Games writers will be able to add far more visual and audio effects.

Other uses for the new discs include video recordings because the new discs could conceivably hold a complete film. Alternatively they could be used for storing optical libraries or vast amounts of music.

IBM are looking into more improvements to the system. Further into the future ideas of having a single disc capable of storing 25 Gbytes or more may soon be a reality. As these discs are small and easy to change in the drive, vast amounts of data can be.stored and accessed exceedingly easily.

Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board

Schemailc Capture Design Tool

- Direot nellist tink to BoardMaker
- Fonvard annotation with par values
- Full undofredo faciliy (60 operations)
- Single-sheet, muli-paged and hierarchical desions
- Smooth scrolling
- Intelligent wires (aytomatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensiive editing
- Extensive component-based sower control
- Back annotation from BoaroMaker?

BoardMcrer

BoardMakert - Enty level

- PCE and schematic drating
- Easy and Intulive to use
- Surace mount and metric support
- 90, 45 and curved track camers
- Ground pane fill
- Copper highlight and cleararce checking

BoardMaker2 - Advanced level

- All the features of BoardMaker
- Full netlist support- BoardCapture,

OrCad, Schema Tango, Caustar

- Full Design Rule Checking both mechanical and electical
- Top down modilication from the schematic
- Component renumber with back annotation
- Report generator- Database ASCI, SOM
- Thermal power plane support with full DRC

500101015

Gridess re-entrant autiorouter

- Símultaneous multi-layer routing
- SMD and analogue support

1540

- Full intermpt, resume, pan and zoom while routing
Output driver's - Included as standard
- Printers - 9 \& 24 pin Dot matrix, HPLaseriet and PostScript
- Penplotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and $\mathbf{4 \times 0 0}$
- Excellon NC Drill and Annotated drill drawings (BM2)

tsien

Constructional Project

FOOT-OPERATED DRILL CONTROLLER

 EDWARD BARROW
Don't foot the bill - foot the drill!

THIS PROJECT was designed as an aid to precision drilling work by hand. For example, when drilling p.c.b.s using a 12 V hand-held drill, the author has often experienced problems with the drill bit skating across the surface of the board. This causes off-centre holes, damages the surface of the board and its tracks, and can cause drill bits to break.
The effect is partly due to the high speeds at which such p.c.b. drills operate, typically 15,000 r.p.m. The jerks caused by the large acceleration when the drill starts are not easily tamed when hand-holding the drill. This project offers some relief from the problem.
Firstly, it uses a footswitch to start and stop the drill, thus freeing one hand to help stabilise the drill, or to hold the item being drilled. Secondly, when the footswitch is pressed, the drill speed is gradually allowed to build up to a presettable maximum speed.
Naturally, since there is a direct relationship between drill speed and the voltage applied, in order to provide a smooth startup, the applied voltage should follow an envelope similar to the one shown in Fig.I.
Thus, when the footswitch is pressed, the output voltage should rise slowly from zero, past the " Z " point at which the drill just starts to turn, and upwards to the preset maximum speed. When the footswitch is released, the control voltages should rapidly fall to zero.

HOWIT WORKS

Functionally, the circuit of the drill speed controller can be split into two main

Fig. 1. Drill control voltage envelope.

blocks, the envelope generator and the power output regulator.
The circuit diagram for the envelope shaper is shown in Fig. 2. This circuit has three variable control points, two of which are fed from the voltage reference circuit around Zener diode D1, resistor R1 and capacitor C2. Although the reference voltage is regulated, its actual value is somewhat arbitrary as it only needs to be somewhat less than the supply voltage which feeds the op.amps and bilateral switch i.c.s.
The purpose of the reference voltage is to preset the range of control voltage output to the drill motor. Potentiometer VRI and preset VR3 form a voltage divider chain across the Zener-controlled reference point. Since VR1 and VR3 have nominally the same values, the control voltage range adjustable by VR1 is between the maximum as set by Zener diode D1, and half that level. Preset VR3 is used to set the "Z" point threshold voltage at which the drill will just start to rotate.
The controlling voltage envelope shape is created by the rate at which capacitor C3 is charged and discharged. Normally, when the footswitch is unpressed, the base of transistor TR1 is unbiased and consequently its collector at the junction with resistor R4 is at +12 V . This voltage causes
the analogue switch $I C 2 c$ to be turned on via its control pin 6, internally connecting its pins 8 and 9 . As a result, capacitor C 3 is held discharged at 0 V .

FOOTDOM/N

When footswitch S1 is pressed, transistor TRI is turned on by the current applied to its base via resistor R3, and its collector voltage falls to 0 V , so turning off analogue switch IC2c. Simultaneously, +12 V is applied to IC2a pin 13 and IC 2 b pin 12, so turning on both of these analogue switches. With both switches on, capacitor C3 is allowed to charge via both switched routes

Of immediate interest is the charging route via IC2b. The voltage present at the wiper of preset VR3 is routed to pin 3 of the buffer op.amp ICla. Via diode D2, the output voltage from ICla pin 1 charges capacitor C3 to the same level. Referring back to Fig. 1, this level is the required " Z " point voltage at which the drill will just start to rotate. Diode D2 prevents IC2a from sinking the charging current supplied via potentiometer VR2.

There now follows a slow increase in the rate at which capacitor C3 is charged via the IC2a route. This rate is determined by the resistance value to which potentiometer VR2 has been set. The maximum voltage
level to which C3 will charge is that set by the wiper of potentiometer VRI. Once having been reached, the level will remain steady for as long as the footswitch remains pressed.
When the footswitch is released. analogue switches IC2a and IC2b open. and IC2c closes. Via IC2c, capacitor C3 immediately discharges back to 0 V , and the drill stops turning. Thus the fast envelope release shown in Fig. I has been achieved.

Under normal envelope control conditions, with switch S2 in position 1 as shown in Fig. 2, the envelope voltage is routed to the power amplifier stage. In position 2 of switch S2 the amplifier stage is connected to the wiper of potentiometer VRI. This allows the unit to be used as a manually operated drill speed controller.

DRILL POWERING

Insufficient power is present at the pole of switch S2 to directly supply the drill. It is necessary to increase the current available while still retaining the envelope voltage level. The circuit diagram for the power amplification stage is shown in Fig. 3
The first stage of the amplifier consists of the op.amp buffer ICIb. A MOSFET device was chosen for this purpose as its inputs have a high impedance and so will not adversely load capacitor C3. Additionally, the CA3240 device chosen has an output which operates at near 0 V levels with out the need for a negative supply line. Resistor R10 is included to prevent input pin 5 of the op.amp from becoming open circuit when S 2 is switched between voltage sources.

The gain of the amplifier stage is limited by the amount of feedback set by preset VR4. Nominally, VR4 should be adjusted to set a gain of about 1.33, allowing the maximum 9 VI Zener voltage to be raised at the drill output to about 12 V .

From the output of IClb (pin 7), the amplified voltage is fed to the base of the Darlington pair configured around transistors TR3 and TR4. The latter is a high power device capable of providing a continuous current of about 4 A .

To provide a degree of protection, a current limiter has been included by inserting resistor R 6 into the output path between transistor TR4 and the drill. Across R6 are

Fig. 3. Power output stage circuit diagram.
connected the base and emitter of transistor TR2. In effect, this sub-circuit senses the voltage drop across R 6 which is dependent upon the current drawn by the drill. If the voltage drop exceeds the turnon threshold voltage of TR2, nominally about 0.7 V , the transistor will turn on and divert some of the current supplying the base of transistor TR3. As a result, the output voltage from TR4 will fall, and so too will its output current.
Resistor R5 limits the amount of current which can be drawn from op.amp IClb. The inclusion of capacitors C5, C6 and C8 helps to provide stability to the amplifier stage.

POWERSUPPLY

The power supply circuit diagram is shown in Fig. 4. Mains 240 V a.c. is reduced to 12 V a.c. by transformer T 1 . The secondary voltage is rectified by RECl , and smoothed by capacitor Cl to an unregulated level of about +17 V d.c. This voltage provides power to the drill via the amplifier stage in Fig. 3.
Power for the op.amp is taken from the raw +17 V supply via resistor R 9 . In con-
junction with capacitors C 4 and C 7 , the inclusion of R9 helps to smooth the power supplied to ICl , whilst still allowing it to be powered at nearly the same voltage as is supplied to the drill via transistor TR4

This has been done so that the output of op.amp ICIb can rise as close to the unregulated supply as possible. With the op.amp type chosen, its outputs can only rise to within about 1.5 V of its supply rail. The output voltage is then reduced by about 1.4 V across the base-emitter path of the Darlington transistor configuration of TR3 and TR4
Consequently, a nominal +17 V supply line can only deliver about +14 V at the emitter of transistor TR4. In reality, the actual voltage delivered is likely to be less than this since the load imposed by the drill is likely to reduce the supply voltage to less than 17 V .
The +17 V supply is also regulated down to +12 V by IC3, and provides power to the envelope shaper in Fig. 2. Note, though, that ICla in Fig. 2 is physically housed in the same i.c. package as IClb in Fig. 3 and is thus powered at +17 V .

HEATSINK

Transistor TR4 is likely to get quite hot since it has to supply fairly large currents to the drill. If, for example, TR4 is delivering 12 V at 2 A from a 16 V supply line, about 8 W of power will flow: $2 \mathrm{~A} \times$ (16 V 12 V). To dissipate the resultant heat generated, transistor TR4 needs to be fitted with a heatsink. With the prototype, a heatsink having a rating of $6^{\circ} \mathrm{C} / \mathrm{W}$ was found to be quite satisfactory.

If the heatsink or transistor TR4 are bolted to a metal case, an insulating washer must be used to prevent short-circuits to the case. To ensure good thermal contact with the heatsink, heatsink compound should be used.

TRANSFORMER

Although the transformer used by the author has a 12 V a.c. output, other transformers having a different output may be

Fig. 4. Power supply circuit diagram for the Drill Controller.
substituted to suit the drill used. Ideally, the transformer should be chosen to give the circuit at least 4 V to 5 V d.c. "headroom" above the desired output voltage.

GOMTP0/1/55		
Resistors		Se
	820	
$\begin{gathered} \text { R2, R4, } \\ \text { R8 } \end{gathered}$	10k (3 off)	
R3	100 k	
R5, R7	1k (2 off)	Page
R6	$0 \Omega 22$ 1W	
R9	47	
R10	1M	

where stated
Potentiometers

VR1	$4 \mathrm{k7}$ rotary carbon, log.
VR2	1 M rotary carbon, log.
VR3,	VR4
4k7 min. horiz. preset (2 off)	

Capacitors

C1	4700μ axial elect. 25 V
C2	$2 \mu 2$ tantalum bead 25 V
C3	1μ tantalum bead 25 V
C4, C6	47μ axial elect. 25 V (2 off)
C5	100 p polystyene
C7, C8	100 n polyester (2 off)

Semiconductors

D1 9V1 Zener diode
D2 1 N4148 signal diode
TR1 to
TR3 BC109 (or similar) npn transistor (3 off)
TR4 MJE3055 (or similar) npn power transistor
IC1 CA3240 dual MOSFET op.amp
IC2 4066 quad bilateral switch
IC3 78L1212V100mA
regulator
REC1 50V 3 A bridge rectifier
Miscellaneous

S1	s.p. push to make footswitch
S2	
S3	d.p.d.t. mains toggle switch
SK1	3.5 mm mono jack socket (and plug)
$\begin{aligned} & \text { SK2, } \\ & \text { SK3 } \end{aligned}$	
	4 mm socket (and plug) (2 off);
T1	12 V a.c. mains transform
Printed circuit board available from the EPE PCB Service, code 928; plastic	
box with aluminium top panel, approimately $161 \mathrm{~mm} \times 96 \mathrm{~mm} \times 59 \mathrm{~mm}$:	
atsink for TR4 (see text); 14-pin d.i.l.	
ocket; 8-pin di.i.l. socket; knob (2 off); mins neon 20 mm panel mounting	
(useholder; 20 mm 1 A fuse; mounting	
for capacitor C1; connecting wire;	

Approx cost guidance only

Remember that transformer voltage ratings are, of course, in a.c. and that a bridge-rectified d.c. voltage of about 1.41 times the a.c. rating should be expected The author uses a 12 V d.c. drill drawing about 2 A , and so chose a 12 VA transformer. Drills requiring higher voltages or current will need a differently rated transformer, but be aware that op.amps usually have a supply voltage limit of less than 30 V . If a current of more than 2 A is required, it may be necessary to use a more powerful transistor for TR4, plus a larger heatsink. It may also be necessary to increase the value of smoothing capacitor Cl beyond the 4700μ value quoted here.

CONGTRUCTION

The printed circuit board layout and full size copper foil master track pattern are shown in Fig. 5. The p.c.b. is available from the EPE PCB Service, code 928 .

Assembly of the components onto the p.c.b. is very straightforward and can be carried out in any order as convenient. Ensure that all semiconductors and electrolytic capacitors are correctly orientated. It is preferable to use i.c. sockets for IC1 and IC2. Both i.c.s are CMOS devices and the usual antistatic handling precautions should be observed

For convenience, on the prototype, the large electrolytic capacitor CI is mounted off-board. Connection to the footswitch is via a 3.5 mm mono jack socket and plug. For the drill coupling. 4 mm connectors are used. Other types of connector may be used to suit personal needs.

TESTING

Warning: when working on the unit, beware that mains voltages are present and that they can be lethal. Always taken extreme care! If in any doubt about any aspect of the mains connections, consult a qualified electrician.

Fig. 5. Printed circuit board component layout and full size copper foil master track pattern for the Foot-Operated Drill Controller.

Fig．6．Interwiring of the off－board components．

Before connecting the unit to the drill， press the footswitch and check with a meter that the bilateral switches within IC2 are all performing as they should． If your test meter has a high input im－ pedance，check that capacitor C 3 is charg－ ing correctly．Also check that when vary－ ing both potentiometers VR1 and VR2
the desired results are obtained．Finally check that the output voltage also cor－ responds accordingly．
To correctly adjust preset VR4，first turn VR1 to its maximum setting，and set switch S2 to＂constant＂．Next，while monitoring the output voltage，adjust VR4 so that the desired voltage is present at the output to

Prototype Foot Operated Drill Con－ troller showing relative postitions of components built on strip－board within the case．
the drill．It may be preferable to put a load resistor of about 100 ohms across the out－ put when doing this．
To correctly set preset VR3，connect the drill and set switch S2 to＂envelope＂．Ad－ just VR3 so that the drill starts as soon as the footswitch is pressed（or to whatever setting you feel comfortable with）．Assum－ ing all is well，the drill controller is now ready for use．

LôôKING FOR．．． ICs \star TRANSISTORs \star SEMIs？

 especially those hard to find？ Why not give us a buzz？
WE STOCK A MASSIVE RANGE

We specialise in devices with the following prefix （to name but a few）：
2N 2SA 2SB 2SC 2SD 2SJ 2SK AN BA BC BD BDT BF BFR BFY BFX BU BUK BUT BUV BUW BUZ CA DTA HA IRF LA LB LC LF LM M MC MJ MJE MM MPS MPSA MPSU NE RC SAA SAB SDA SI SL SN STA STK STR TA TBA TC TDA TIP TEA TL UAA ULN UPC XR ZN ZTX．．．plus daily arrival of new numbers．

ALSO

RESISTORS \star CAPACITORS \star CHOKES \star CABLES LEADS \star CONNECTORS \star VIDEO HEADS \star DRIVE BELTS SWITCHES $\star T T L \star$ CMOS \star OP AMPS \star VOLTAGE REGS SPECIAL FUNCTION \star TRANSFORMERS ETC ETC ETC WE SPECIALISE IN PHONE \＆FAX MAIL ORDERS BY CREDIT CARD

䟚品
CRICKLEWOOD ELECTRONICS 40 CRICKLEWOOD BROADWAY，LONDON NW2 3ET TEL： 081.4520161 \＆ 0814500995 FAX： 0812081441 ！！！CATALOGUE DUE OUT AUTUMN 1994 ！！！

A SAMPLING OSCILLOSCOPE AND LOGIC．ANALYSER
 IN AN AFFORDABLE PORTABLE PACKAGE

－ 10 Mega samples per second single channel DSO
－ 1 MHz analogue bandwidth
－ $0.2 \mathrm{~V}-50 \mathrm{~V}$ input range
－Various Triggering options
－ 10 Mega samples per second 8－channel logic analyser
－5V TTL／4．5－15V CMOS logic level inputs
－Crisp，clear LCD screen
－Zoom and Scroll facilities （selected range only）
－Battery or mains adapter powered
－ 12 Months Warranty （Built version only）
－＂Get you working＂service （kits only）

The Miniscope

MINISCOPE KIT $£ 139$

MINISCOPE BUILT £179
MAINS PSUE6 P\＆P£6
PLEASE ADD VAT AT 17.5%

Write or phone for a FREE Information Pack to

$\triangle O D O T 11$ AUDON ELECTRONICS

36 Attenborough Lane，Chilwell，Nottingham NG9 5JW荌 0602259737

TRANSFORMERLESS POWER SUPPLIES

ANDY FLIND

Following recent projects using "transformerless" mains power supplies, several queries have been received asking for further explanation of the operation of this type of supply-here it is.

MOST projects operating from the household mains electricity supply require a means of reducing the 240 volt a.c. to a small d.c. voltage to power the electronics. The usual method employed is a transformer with a rectifier or diode arrangement but in some cases it can be advantageous to use a capacitor instead.
Many small transformers generate heat, and often they also emit noise in the form of "hum", which even at very low levels can be irritating. Capacitors suffer neither of these problems, and in addition are usually smaller, lighter and cheaper.
The use of capacitors as mains voltage droppers is not as inherently safe as that of transformers however, so experimenters wishing to use this method MUST be well acquainted with the potential hazards.
This article aims to provide comprehensive information about the operation of this type of circuit, so that constructors will fully understand it's operation and those experienced enough to avoid the dangers may use it in their own circuits.

BACK TO BASICS

A wide variety of capacitor power supply arrangements is possible but for a thorough understanding of the principles it is best to

Fig. 1a. If a capacitor, correctly rated for continuous mains operation, is placed across the mains supply an a.c. current will flow.

Fig. 1b. Adding diodes to produce a d.c. output voltage.
begin with the basics and proceed in easy stages. If a capacitor of suitable voltage rating is placed across the mains as shown in Fig. la, an a.c. current will flow through it. Because the opposition to the current flow is capacitive, this current leads the voltage by ninety degrees. For part of each half cycle, energy flows into the capacitor, then for the next part it returns to the supply.

HAZARDOUS

By now the inherent hazards of this type of supply should be apparent. To begin with, the circuit is directly connected to mains Neutral, and to "Live" via a capacitor. It must always, therefore, be treated as "Live" and suitable safety precautions MUST be observed whilst

Fig. 2a. Complete circuit diagram for a basic positive low voltage power supply. An alternative output arrangement, saving one diode, is shown in (b).

This is sometimes called "wattless" current because although energy flows back and forth, none is actually used. Because of this, no heat is generated. Due to it's design, your electricity meter should not register it's flow either.
As a matter of interest, a transformer should perform in a similar way when not connected to a load, save that in this case the opposition is inductive so the current should lag the voltage by ninety degrees. The snag is that the resistance of the primary winding also opposes current flow, especially with small, cheap transformers, resulting in the generation of heat.
In Fig. 1b, three diodes have been added to the circuit. If we take "Neutral" as the reference, during each positive half-cycle the capacitor current flows through diode D2 and the Zener diode D3, resulting in the appearance of the "Zener voltage" across this diode.

During negative half-cycles current returns to the capacitor through diode Dl. If a large enough electrolytic capacitor C2 is connected across Zener diode D3, it will maintain the Zener voltage during the negative half-cycle, thus creating a basic power supply.
working on it. The use of test equipment. particularly Earthed items such as oscilloscopes, can be difficult because of this.
Also, the possible consequences of component failure must be considered. A short-circuit capacitor C 1 would allow uninterrupted flow of full mains power, with predictable results. An open-circuit Zener diode D3 would allow C1, D1 and D2 to act as a "voltage doubler" circuit, attempting to produce twice the mains peak voltage (about 700 V) across capacitor C2.
The current from C1 must be regarded as "constant", as any interruption in it's path will result in the immediate appearance of a high voltage. Bearing these hazards in mind, the design and use of a practical circuit can now be considered.

POWER SUPPLY CIRCUIT

A complete power supply circuit diagram is shown in Fig. 2a. Capacitors Cl and C2, with diodes D1, D2 and Zener diode D3 operate as before to provide a positive output of about 12 V with respect to the neutral.

Capacitor CI MUST be rated for continuous operation when placed across the 240 V mains. There are two basic types of capacitor with this rating, known as "class X " and "class Y ". The " Y " type is specified for use where failure might lead to danger of shock, so is obviously preferable for this application.
In view of the problems that might follow diode failure, D1 and D2 should be from the robust 1 N 4000 series. Prices for these are so similar that the author generally uses the 1 N 4007 which has a 1000 volt reverse voltage rating. Zeners, fortunately, generally seem to fail "shortcircuit", but again the use of 1.3 W types in preference to the smaller 500 mW variety is to be preferred. Capacitor C2 is noncritical, as any electrolytic of adequate voltage rating will suffice.

EXTRAS

Some extra components are included to improve safety. The first is the 250 V a.c. transient suppressor VDR1. This clips the brief high-voltage spikes which often occur on the mains supply, providing protection for the capacitor. It is also useful if the circuit being supplied includes a triac, as these also dislike sudden high-voltage pulses.
A fuse is advisable. A small plug-top fuse would do, but a 100 mA fuse in a p.c.b. or panel-mounted holder is better.
Resistor R1 is always included in circuits of this type, the value varying between 47 and 120 ohms. The 100 -ohm shown is a good compromise.
The purpose of this resistor is to limit the instantaneous current if the circuit is connected to the mains at an instant where the cycle happens to be at a high voltage point. However, it sometimes serves as an unofficial fuse too, burning out quickly enough to prevent damage to the rest of the circuit if Cl fails!
Resistor R2 provides a discharge path across Cl when the circuit is disconnected. If it were omitted, and the circuit disconnected at a high-voltage instant of the mains cycle, a high-voltage charge might remain stored in Cl for some time. This could lead to unexpected shocks, possibly from the mains plug if one is used. R2 eliminates this.
Again, values used vary, but for a $0.47 \mu \mathrm{~F}$ capacitor one megohm (1M) is adequate. Two factors must be taken into account when choosing this resistor. The first is that it represents a resistive path and so dissipates heat. For 1 M this is only about a twentieth of a watt however, so is not a problem.
Secondly, it will have the full mains voltage across it, so it MUST be suitably rated for this. It can either be of a type with adequate voltage rating, or two lower-rated types of, say 470 k , can be used in series.
The circuit diagram Fig. 2b shows a method sometimes used to eliminate one of the diodes, using the Zener to perform the function of diode DI as well as regulation. If this is used, the "forward" drop of the diode feeding capacitor C 2 should be taken into account.

QUTPUT CURAENT

The available output current can be calculated by taking the mains voltage, dividing it by the capacitor's reactance, then dividing the result by two as only positive half-cycles end up as usable output, and then derating by about 20 per cent to compensate for miscellaneous other losses.

Fig. 4. Circuit diagram for a Dual-Output Transformerless Power Supply.

Most of the figures involved are constants. so an easier method is to multiply the capacitor value in $\mu \mathrm{F}$ by 30 for a result in mA . Thus a $0.47 \mu \mathrm{~F}$ capacitor circuit as shown can supply about 14 mA enough perhaps for some CMOS, a lowpower op.amp, and for triggering a triac.

Fig. 3a. Using a 15 V Zener and adding a 12 V voltage regulator to provide a stable 12 V output.

Fig. 3b. Ripple suppression circuit using a transistor. Zener diodes D3 and D4 replace D3.

Because the circuit is essentially a halfwave arrangement, the output contains ripple. Where this is a problem various ways exist to reduce it, the most obvious being an increase in the value of capacitor C2. With $470 \mu \mathrm{~F}$ the circuit of Fig. 2a exhibits about 300 mV peak-to-peak ripple at maximum output.
Another way to remove ripple is to start with a higher voltage and regulate down
with one of the popular "78LO", series three-terminal voltage regulator i.c.s. For instance, with Zener diode D3 as 15V, a 78 LO 12 would provide a stable 12 V output. as shown in Fig. 3a.
A minor snag is that these regulators use power themselves, and with so little available to start with this might be a problem. A micro-power regulator could be used. Alternatively, if the output voltage is not too critical, the circuit shown in Fig. 3b was tried and proved very effective at ripple suppression.

DUAL SUPPLIES

The circuit of Fig. 2a provides a positive d.c. output. If the three diodes and C2 are reversed, it will supply a negative output instead. This has sometimes been used in designs because experience has shown that the type of triac, the C206M, often employed with this circuit turns on more reliably when operated with negative gate current. The polarity reversal does make the circuit action harder to follow though.

From reversed polarity, it is a short progression to a dual-rail circuit. Fig. 4 shows how this is done, with just one extra Zener and an electrolytic capacitor. The two output voltages don't even have to be the sàme, $\mathrm{a}+5 \mathrm{~V}$ and -12 V version, for example, could be built by simply using suitable Zeners.

FULL-WAVE

All the circuits so far have been half-wave examples. Although not recommended, it is possible to produce a full-wave single-output version, as shown in Fig. 5. The two Zeners are of equal value. Theoretically this should manage twice the output of the half-wave version, and a smaller capacitor could be used for C 2 .

To aid explanation of the circuit action, it has been redrawn in simplified form in Fig. 6a and Fig. 6b, showing the effective circuits during positive and negative half-

Fig. 5. Circuit diagram for a full-wave version of the "Capacitor" power supply.
cycles respectively. The current paths in each case are shown by the shaded arrows. It can be seen that D1 and D2 act as both Zeners and ordinary forward-biased diodes.
If the voltage of point " X " is taken during a positive half-cycle it can be seen that it is about 0.6 V positive of neutral, due to forward biasing of D2. During the negative half-cycle, it is negative of neutral by about the supply voltage.
Likewise the point " Y " will also be jumping up and down, so there is no stable point which can be taken as a test reference for external equipment. For this reason, coupled with the difficulty of explaining the action, it has never been used by the author.

CONCLUSION

This type of supply is best suited to simple, low-current circuits which are already in contact with the mains at some point, such as those using triacs. The fact that they are unsafe to touch is not then an additional problem. Electronic precision thermostats and lighting effect controllers immediately spring to mind,

Fig. 6a. Current flow for the positive half-cycle in a "Full-wave" version.
although other applications will no doubt occur to many experimenters. Safe interfacing to the outside world can be achieved with opto-isolators, so is not a major problem.

RELIABILITY

With regard to reliability, the author has two of these supplies in thermostats which have been running continuously for several years without trouble. A third, in a version

Fig. 6b. Full-wave version current flow during the negative half-cycle.
of the Visual Doorbell project (March '94), has been operating almost as long.
On one occasion one used in a thermostat by a colleague kept blowing the resistor used for RI (it wasn't fused!). The problem disappeared when capacitor Cl was replaced, so it was suspected that the original capacitor was shorting occasionally, blowing the resistor, then "self-healing" before the cause could be
pinpointed.

Ohm Sweet Ohm
 its services would next be required, such was

Max Fidling

The Terminator

II's amazing how the word gets around that you're the "one who tinkers with electrical stuff'. I've had a plethora of pastit bits of electrical equipment come my way, owners thinking "innocently" that I can make them as good as new with one wave of the soldering iron the equipment I mean. not the owners)

The trouble is, one half of the time I don't have the time, if you see what I mean, and the other half I wish I hadn't bothered, because invariably they want it done for next to nothing - and they also want a lifetime guarantee thrown in! Back they come, weeks or even months later, holding the wretched toaster/electric fire/car radio or whatever, which I had magically transformed from a sorry state back into a fully fledged bit of kit, only this time it's got a different fault - and fingers are pointing in a roundabout sort of way at the workmanship of the carlier attempts of yours truly! What a life, I mutter to myself, as I spend more hours pinning down the latest fault on something which should have been recycled into a can-opener long ago.
Like grappling with plumbing or car maintenance, it's handy to have a certain bit of electronics know-how, though you need a good Degree in Micro-Surgery and Arc Welding (Hons.) to just remove the back panel from most of the modern gear you buy these days. However, repairing stuffis my attempt as a consumer to beat the system and score points over the High Street stores.
Take our old IT"「-KB colour television for example. In a polished wooden cabinet with a sliding "tambour" door, as ITT called it, this gogglebox was a feat of woodworking which would have made old Thomas Chippendale's (wooden?) chest swell with, er, well, something or other. Apprehension, probably. This masterpiece of multimedia entertainment needed approximately a week's written notice of when
the time its throbbing valves took to warm up and gladden our hearts.
One great novelty of its cra was the telly"s touch-sensitive channel selector switches which were actually years ahead of their time. By poking the requisite litte panel with a finger, two touch pads were bridged in resistance-pad fashion and if the trusty old IT"T was feeling in the mood. a change of channel would result, accompanied bl a red indicator lamp sputtering into life. (IT"I spared every expense

Don't push me

As if not satisfied with the finest contributions which British broadcasting could muster, Piddles, the family cat, took great delight in nosing the channel selector when it took its fancy, or maybe it found the moving pattern of red lights more captivating than the offering of the tube. Piddles always did have good taste.)

Things took a turn for the worse one particular day though, when the devil's lantern resolutely failed to respond to the satin silver "ON" button. The blank, murky green screen refused to burst into life. With "Coronation Street" due on the box any minute, the pressure was suddenly on 10 enable the Boss of the houschold to have her weekly dose of soap. Life would be unbearable otherwise! W'orse - no grub for a week!

This wasn't the time to thumb through the Yellow Pages to book a repairman desperate action was needed! This was a job for the multi-purpose screwdriver kit which I'd bought from a mail order catalogue some weeks earlier, and I had been itching for an excuse to use it ever since. This was my moment, an opportunity to demonstrate my electronics prowess and expertise, and I seized it with relish!
Having unplugged the set, quick as a flash, I unscrewed the rear cover of the TV', while Piddles and the Boss looked on anxiously. Poking around in the back of a colour television without some knowledge is definitely not recommended if you want to enjoy life, so I was wary of the extra

high tension voltages lurking around unseen on those old capacitors. Nerves of steel, that's me, I thought, as I stroked my chin, pretending I knew exactly where the fault would lay:

I peered gingerly amongst the glistening silvery-topped valves into the works, assisted by my Fiver Ready plastic torch which I had bought from Woolworth's specially for such catastrophes. Gritting my teeth, I fought my way through those dusty wiring looms and wonderful web-covered valves, in search of anything blindingly obvious which could have caused the downfall of the terminated television, whilst trying not to touch anything remotely HT at the same lime. Ruined resistors? Damaged diodes? Nothing would escape my scrutiny, I decided, confident that I could beat the repairman on this one.

Aha! There it was... a small 20 mm cartridge fuse, resplendent in its paxolin fuscholder, blackened and looking decidedly culprit-like, I reckoned. Wielding my multimeter impressively, a deft resistance check confirmed that the fiendish fuse had indeed caused the premature interruption of our evening's entertainment. Probably just old age, I thought, and rummaging through my biscuit tin of sundry bits, I happened to have one of the same rating (for once) so a quick replacement was made and the back cover was re-fitted with a twirl of my new screwdriver.

Piddles was looking up at the channel selectors, tail swishing expectantly, waiting for his incandescent cue to start switching over. A quick press on the "ON" switch, and the valves throbbed into life once more, and my life was saved. A hero in the making, that's me, I mused.

HART KITS give you the opportunity to build the very best engineered hifi equipment there is. designed by the leaders in their field, using the best components that are available.
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge, giving you guided hands-on experience of modern electronic techniques.
In short HART is your 'friend in the trade' giving you, as a knowledgeable constructor, access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase Our list will give you fuller details of all our Audio Kits, components and special offers.

AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get £K performance for a few tenths of the cost! Featured on the front cover of 'Electronics Today International' this complete stereo power amplifier offers World Class performance allied to the famous HART quality and ease of construction. John Linsley Hood's comments on seeing a complete unit were enthusiastic:- '"The external view is that of a thoroughly professional piece of audio gear, neat elegant and functionat. This impression is greatly reinforced by the internal appearance, which is redolent of quality. both in components and in layout." Options include a stereo LED power meter and a versatile passive front end giving switched inouts using ALPS precision, low-noise volume and balance controls. A new relay switched front end option also gives a tape input and output facility so that for use with tuners, tape and $C D$ players, or indeed any other 'flat' inputs the power amplifier may be used on its own, without the need for any external signal handling stages. 'Slave' and 'monobloc' versions without the passive input stage and power meter are also available. All versions fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 Series Tuner range. ALL six power supply rails are fully stabilised, and the complete power supply, using a toroidal transformer, is contained within a heavy gauge aluminium chassis/heatsink fitted with IEC mains input and output sockets. All the circuitry is on professional grade printed circuit boards with roller tinned finish and green solder resist on the component ident side, the power amplifiers feature an advanced double sided layout for maximum performance. All wiring in this kit is preterminated, ready for instant use!
K1100 Standard Amplifier Kit complete with IEC mains lead and Hart Super Audiograde Silver Solder. Total cost of all parts is over $£ 500$.
Our Special Discount Kit Price............Only £395.21 K1100SA Super Audiophile Version with internal wiring and capacitor upgrade..................... $£ 449.01$ K1100M Monobloc Amplifier Kit
£261.20 A large range of other options is available including factory assembly and test. Full details are in our free lists.

MAINS LEADS AND ACCESSORIES
We keep a large range of IEC cordsets and dis tribution sockets for your HI-FI setup. Send for our lists for full details.

HART AUDIO CABLES

The HART range of cables has been chosen to satisty the most fastidous audiophile taste. We can offer these at extremely competitive prices because we buy large quantities for our export customers all over the World. All are priced per metre. We will cut to any length you require.
780-911 Super Low-Noise Signal Cable. Single core double screened Audiophile signal cable. Features Linear crystal oxygen free high purity copper construction with foamed polyethylene insulation. Screening is by a close lapped screen with conductive thermoplastic sheathing. Overall covered with blue soft matt finish PVC. Dia. 6 mm . Core to screen Capacitance $110 \mathrm{pt} / \mathrm{m}$. Per Metre.
. 18.98
780-803 Speaker Cable. 322 srands 0.1 mm oxygen free copper. Flat Twin. Recommended up to $40 \mathrm{~W} / 5 \mathrm{mtrs}$. Tested \& approved by John Linsley Hood. Mtr..
18.42

780-804 Giant Speaker Cable. 511/0.1. Up to 80W/10mtrs.
$£ 15.90$
RLH11 Reprints of latest articles.
K1100CM HART Construction Manual
$\star \star \star \star \star \star \star$
SPECIAL OFFER
PRECISION Triple Purpose TEST CASSETTE TCID.
Are you sure your tape recorder is set up to give its best? Our latest triple purpose test cassette checks the three most important tape parameters without test equipment. Ideal when fitting new heads. A professional quality, digitally mastered test tape at a price anyone can afford
Test Cassette TC1D
Our price only $£ 10.99$

DISK-COUNT Classical CD's. Many New Titles This Month

Top quality, Full Digital (DDD) Compact Disks of the great classical favourites. Like everyone else we didn't like the idea of paying silly prices for CD's. After a long search we have now located a source of top quality classical recordings at prices that make you suspect the quality - until you try them! Send for our list of titles.

HART PCB SOLDERING PRACTICE KIT

Your chance to learn or try your soldering skills on a real Hart printed circuit board! This ki comes with a range of modern components, a typical Hart quality PCB, a roll of the correct grade of solder and your full learning guide. It enables the enthusiast who is uncertain of his or indeed her, ability to put together and solder a printed circuit to try their hand first at minimum cost.
The instructions explain the right technique and guide even an absolute beginner through the seemingly daunting, but in fact very simple, art of making a good soldered joint.
The Hart Printed Circult Board Soldering Prac lice Kit represents excellent value for money at only £4.99.

Send or 'phone for your copy of our FREE List of these and many other Kits \& Components. Enquiries from Overseas customers are equally welcome but PLEASE send 2 IRCs if you want a list sent surface post, or 5 for Airmail. Ordering is easy. Just write or telephone your requirements to sample the friendly and eflicient HART service. Payment by cheque, cash or credit car
get your order on its wayto you THAT DAY.
get your order on its way to you THAT DAY.
Please add part cost of carriage and insurance as follows:-INLAND Orders up to $£ 20-\mathbf{~} 1.50$
Orders over $£ 20-£ 3.50$. Express Courler, next working day $\{10$.
OVERSEAS - Please see the ordering informatlon with our list

QUALITY
 AUDIO KITS
 24 hr. SALES LINE
 (0691) 652894

ALL PRICES
INCLUDE
UKIEC VAT

TECHNICAL BOOKSHELF

The Following are a Small Selection of the Books we Offer. Full Details are in our Free List.
"THE ART OF LINEAR ELECTRONICS", John Linsley Hood.
Just Out! Hot Off the Press, the definitive electronics and audio book by the renowned John Linsley Hood. This $300+$ page book will give you an unparalleled insight into the workings of all types of audio circuits. Learn how to read circuit diagrams and understand amplifiers and how they are designed to give the best sound. The virfues and vices of passive and active components are examined and there are separate sections covering power supplies and the sources of noise and hum. As one would expect from this writer he history and derivation of audio amplifier circuitry have an entire chapter, as does test and measurement equipment.
Copiously illustrated this book is incredible value for the amount of information it contains on the much neglected field of linear, as opposed to digital, electronics. Indeed it must be destined to become the standard reference for all who work, or are interested in, this field.
SPECIAL OFFER. With each book purchased you may request a FREE extended index, written by the Author exclusively from HART
0-7806-0868-4
£16.95
Don't forget most of our kits have reprints of articles by John Linsley Hood that you can purchase separately

"TOWERS' INTERNATIONAL TRANSISTOR

SELECTOR". This will give you the specification, pin connections, case outline, manufacturer, equivalents and substitutes for over 27,000 European, American and Japanese transistors. Latest update 4 offers over 2,000 new entries plus surface mount cross index 1990432 Pages. 247×173. 0-572-01062-1.
'DIGITAL AUDIO AND COMPACT DISC
TECHNOLOGY" 2nd Edition. Baert, Theunissen and Vergult. (SONY Europe)
A thoroughly well written book covering the whole ield of recording media starting with the Phonograph right through to modern professional PCM digita recording systems with particular and extensive coverage on the compact disc. All aspects of the recording and reproduction processes are explained with separate chapters on such things as compact disc encoding and the use of cross interleave Reed-Soloman error correction code (CIRC). This book is of course essential reading for engineers and sludents involved in the field but its very low prices makes it ideal for the enthusiast of recorded music who wants to know more about the hidden processes going on in his CD player
1992/94 248 Pages. 247×190
0-7506-0614-2
£17.95
INTRODUCING DIGITAL AUDIO CD, DAT AND
SAMPLING 2nd Edition. Ian R. Sinclair.
For enthusiasts technicians and students.
Covers CD and DAT, Philips DCC and Sony Mini Disc the digital techniques involved are explained nonmathematically
Digital audio involves methods and circuits that are totally alien to the technician or keen amateur who has previously worked with audio circuits. This book is intended to bridge the gap of understanding for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory are avoided other than to state the end product. This second edition has been updated to include sections on oversampling methods and bitstream techniques. The opportunity has also been aken to add a glossary of technical terms.
1992168 Pages. 217×138.64 line drawings ISBN 1870775228
$£ 7.95$
"THE ART OF SOLDERING", R. Brewster.
Absolutely essential reading for anyone who ever picks up a soldering iron. Written from knowledge gained in a lifetime in the field, this is the first book ever solely devoted to this essential and neglected skill for all electronic enthusiasts. Covers everything from the correct choice of soldering iron and solder o the correct procedures to tollow with many illustra tions and practical exercises. 0-85935-324-3
"HOW TO USE OSCILLOSCOPES \& OTHER TEST HOUIPMENT" Publ. 1989
BP267 ..
BP267
Esage on Single Bcoks is $£ 1.50$ except for The Art of Linear Electronics, Digital Audio and Compact Disc Technology and The Towers International Transistor Selector which are £3.50
Two, or more, books are only $£ 4.50$, any size, any quantity.

THE ULTIMATE SCREEN SAVER!

PAUL STENNING

Give your PC screena"tea break' and save yourself some money.

MOST laptop computers have sophisticated power management facilities, which shut down the screen and hard disk after a period of inactivity to save battery life. Until recently these facilities have not been available on desktop computers.
Some "Green" PCs are now becoming available, with the aim of reducing power consumption when they are not actually being used. However, if your existing PC is OK, spending over a thousand pounds on a new one just to save a few pounds worth of electricity does not make economic sense!
Software screen savers are available, mostly running under Microsoft Windows, but all these do is prevent a static image burning into the phosphor of the c.r.t. (cathode ray tube). Indeed some of these are sold more on their amusement value than their original purpose!

SCREEN SAVER

The unit described here takes the screen saver idea to its logical conclusion. If the Keyboard and Mouse are not used for a preset period, the Monitor is switched off. As soon as you touch the keyboard or mouse, the monitor is switched back on again.
This not only prevents phosphor burn, but also saves electricity. In addition it will reduce the emission of electromagnetic radiation and positive ions, if these things concern you. Also, it costs no more than a screen saver software package.
If you leave your computer on all the time but only use it for a few hours each day, this unit could save you over $£ 70$ per year in electricity costs alone! (Calculation based on six hours use for five days each week, 125 VA monitor and electricity costing 8 p per unit $=£ 71.76$ saving over 52 weeks.)

The time period before switching off can be anything from 15 seconds to over one hour, selectable by internal d.i.p. switches. The unit is powered by the 5 V supply to the keyboard, consuming just 20 mA . Because of this, it will also power down the monitor when the PC is switched off even if the two units have separate mains feeds.
The monitor is controlled by an opto-isolated triac, which being solidstate should have a longer working life than a relay. The maximum current is 3 A continuous - if your monitor consumes this much there is something wrong with it!

The design as shown is intended for a serial mouse, connected to a COM port on the PC. It is probably possible to use it with a bus mouse, if a suitable signal can be found on the connection to the PC and the appropriate connectors can be obtained. Alternatively you can just use the keyboard.

TAKECARE

SECTIONS OF THIS CIRCUIT OPERATE AT POTENTIALLY LETHAL MAINS VOLT-
AGES. DO NOT BUILDITIFYOU ARE IN ANY DOUBT ABOUT YOUR ABILITY TO DO SO SAFELY. You should seek the advice of a qualified person.
Although this unit removes power from the monitor, it does not provide isolation from the mains. All mains connections must be regarded as live and dangerous, even if this Screen Saver has operated.

CIRCUIT DESCRIPTION

The complete circuit for the Ultimate Screen Saver is shown in Fig. 1. Capacitor Cl , resistor R1 and the 2 -input NAND Schmitt trigger IClc form a simple oscillator, running at (ideally) 1.07 Hz . The frequency is not precise, but it is more than adequate for our purposes.

This oscillator arrangement will only work with logic CMOS gates having Schmitt trigger inputs. The oscillator can be stopped by taking pin 9 of ICIc low.

Fig. 1. Complete circuit diagram for The Ultimate Screen Saver. The numbers against the input and output points on the circuit refer to solder pins on the circuit board.

The clock signal is fed to the clock input of binary counter IC2. The outputs of this will count up in the usual binary pattern. Once 16 clock pulses (approx. 15 seconds) have been received, Q4 will go high.
If the top switch Sl of the di.i.l switches (S1 to S 8) is closed and the others are open, this high level would arrive at the inputs of ICId, via the diode AND gate. The output of ICId will therefore go low, disabling the oscillator, and switching off transistor TR1 and the l.e.d. in the optoisolator IC3.
The MOC3041 opto-isolators contain full zero-crossing circuitry and a triac output stage. They are ideally suited to driving triacs in this manner, since they do all the hard work for you! The l.e.d. current for guaranteed operation is 7 mA max.
Other devices in this useful family include the MOC 3040 which needs a 15 mA input (it is slightly cheaper), and the MOC3020 which does not have the zero crossing circuit.
The triac CSR1 used in the prototype is a BT138 type, however most 600 V TO220 packaged triacs should be suitable, including C $206 \mathrm{M}, \mathrm{C} 225 \mathrm{M}, \mathrm{C} 226 \mathrm{M}$, BT 137 BT139, BTA08-600B etc. Capacitor C4 and resistor R11 form a snubber network to ensure the triac switches off cleanly with an inductive load. C4 MUST be a Class X rated component, suitable for direct connection across the mains

TIMING

The d.i.l. switches in S1 to S8 are binary weighted and give the following times (from top): 15 seconds; 30 seconds; 1 minute; 2 minutes; 4 minutes; 8 minutes; 16 minutes and 32 minutes. The diode AND gate arrangement allows these times to be added if more than one switch is closed - thus to obtain a time of 40
minutes the 32 min . and 8 min . switches would be closed.
The precision of the timer is about $+/-10$ per cent, which is adequate for the intended purpose. Repeatability is better as would be expected, about $+/-2$ per cent.
Binary counter IC2 is reset every time the keyboard or mouse is used. The keyboard sends a burst of serial data on pin 6 whenever a key is pressed. This line is normally high, and pulses low. Since these are normal logic levels, the line is connected directly to IClb , with a series resistor and clamping diodes D4 and D5 to protect against the unknown!
The mouse output is a low level RS232 signal, and requires a little more processing. The output from my cheap-and-nasty Tiwanese rodent is normally at -2.5 V and pulses to +2.5 V whenever it is operated. These levels are actually below the minimum RS232 specification of $+/-3 \mathrm{~V}$, but it works OK. It is assumed that some other breeds will have a larger output, so we have tried to cater for all variants.

Capacitor C2, diode D1 and resistor R2 shift the signal so that the negative level is at about 0 V , and the pulses are positive. This passes to ICla via R3, and if the level is above 5 V peak-to-peak it is clamped by diodes D2 and D3.

CONSTRUCTION

All the components are mounted on a single-sided printed circuit board (p.c.b.), which is available from the EPE PCB Service, code 927. The component topside layout and full size underside copper foil master pattern is shown in Fig. 2.
The i.c.s may be mounted in sockets if desired, but since they are all low cost devices this is not strictly necessary. IC! and IC2 are static sensitive, so should be fitted last and handled with due care.

COMPONEVTS

Resistors		See
R1, R2	100k (2 off)	
R3, R4,	10k (4 off)	TALK
R6	22k	Page
R8	220	
R9,R11	100 (2 off)	
R10	270	

Capacitors

C1, C3 10μ radial elect. 25 V (2 fff)
C2 100 n ceramic (0.2 in . pitch)
C4 $\quad 0.1 \mu$ metallised polypropylene, 250 V a.c. continuous (Class X)

Semiconductors
D1 to
D13 1 N4148 or 1 N914 signal diode (13 off)
CSR1 BT138 600 V 12A triac or similar (see text)
TR1 BC548 npn silicon transistor or similar
IC1 4093 quad 2 -input NAND
Schmitt trigger.
IC2 404012 -stage binary
IC3 MOC3041 optozero-
crossing triac isolator

Miscellaneous

S1 to 88 -pole s.p.s.t. di.i.p. switch SK1/
PL1 5 -pin 180 degree panel DIN socket and cable DIN plug
SK2
.
PL2 9-pin D-connector socket, plug and cover.
Printed circuit board available from EPE PCB Service, code 927; metal case, size approx. $165 \mathrm{~mm} \times 70 \mathrm{~mm} \times 190 \mathrm{~mm}$; IEC (Euro) mains cable plug; IEC (Euro) mains cable socket; 6A 3 -core mains cable; 6-core screened cable; single screw-terminal block; rubber grommets or cable glands (4 off); strain relief clips; coloured multistrand connecting wire; solder pins; p.c.b. stand-off pillars or nuts, bolts and spacers; solder tag (Earth); solder; red l.e.d. for testing

EEt5520

Fig. 2. Printed circuit board component layout and full size copper foil master. The completed board, together with a time setting panel stuck to the base of the case, is shown below.

Solder terminal pins may be used for the off-board connections. Do not forget the four link wires. The triac should be secured to the p.c.b. with an M3 screw and nut.
Take extra care when assembling the high voltage section - that to the right of the dotted line. This dotted line indicates the safety isolation barrier - a band or gap at least 5 mm wide between the high voltage and low voltage sections.
Do not fit IC3 at this stage. Instead, fit a spare l.e.d. temporarily between pins one and two positions on the p.c.b., with the anode (a) to pin one. The l.e.d. will be removed and IC3 fitted once the low voltage sections have been tested.

CASE

The prototype was constructed in a plastic case, however this is not really suitable. A metal case should be used, which MUST be properly Earthed for safety.

The lid must be secured by screws, so that it cannot be removed without the use of a tool. A suitable label should be fixed to the lid, warning of the high voltages inside.

The p.c.b. should be held in place with M3 screws and spacers. Ensure that the triac mounting screw clears the case by at least 5 mm . Suitable cutouts should be made in one end of the case for the Keyboard (normally 5 -pin DIN) and Mouse (9-pin D) connectors.

Four holes are needed in the other end, to accommodate the cables. These should be fitted with grommets or cable clamps, and the cables adequately secured against being pulled out. An additional hole in the base is required for securing an Earth solder tag. The final interwiring between the p.c.b. and all off-board components is shown in Fig. 3.

TESTING

Before making any connections to your PC , switch it off at the mains. If this is not done there is a small possibility of causing damage - it's not worth the risk!

Set d.i.I. switch S1 (top) on, and the rest off. Leave the case cover off for now - since the unit will not be connected to the mains.

Unplug the keyboard and mouse from your PC, and connect them to the sockets on this unit. Connect the leads on this unit to the appropriate sockets on the back of the PC. Do not change the monitor connections at this stage.

Switch the PC back on, and watch the screen carefully as the PC goes through it's power-on self test, and boot up. If any error messages appear or the mouse driver

Fig. 3. Interwiring from and between all oft-board components.
 showing the Keyboard DIN input socket and the Mouse input chassis mounting "plug". Also included in the picture are the other various input/output connectors.
fails to load, switch off immediately and carefully recheck your wiring.
If the "temporary" l.e.d. in the Screen Saver unit did not light when the PC was switched on, it should have come on at some point during the booting up process. If you don't touch the keyboard or mouse for about 15 seconds the l.e.d. should go off.
Operate the keyboard and the l.e.d. should immediately come on again. and extinguish after you have stopped typing for 15 seconds. The same situation should occur with mouse movement. Again, in the event of any problems, check your wiring carefully
Switch S1 off and S2 on. The delay should now be about 30 seconds. You may wish to check some of the longer delays, if you have the patience!
Now switch the PC off. Remove the temporary "test" l.e.d. from the Screen Saver board, and fit the opto-triac IC3. Set the d.i.l. switches to give a delay of one minute, and fit the cover securely.
Disconnect the power lead from the back of your monitor, and connect it via this unit. Switch the PC on, the monitor should also be on by the end of the boot-up. As previously, if you don't operate the keyboard or mouse for about one minute, the monitor should turn off.

SWITCH-DFF DELAY

Once you are happy that the unit works satisfactorily, set the d.i.p. switches S1 to S8 to a suitable delay and tuck the unit tidily behind the PC (do not obstruct any ventilation holes or the fan). Always switch off at the mains before removing the cover to operate the d.i.p. switches.
It is suggested that a delay of about 20 or 30 minutes would be reasonable in most cases. Times of less than about five minutes are probably not practical, and indeed this sort of repeated switching may cause undue stress to the monitor.
If you have a software screen saver you could set this to come in two or three minutes before the Ultimate Screen Saver to act as an early warning.

MODIFICATIONS

The following suggestions are offered for experimentation by experienced constructors only, and have NOT been tested.
As it stands, the Screen Saver may be of limited use to PC game players, since it does not detect joystick activity. However, it should be a relatively simple matter to
replace the mouse 9-pin D-connectors with 15-pin types to suit the joystick.
Solder pin 3 on the p.c.b. would need to be connected to the main "Fire" button connection (probably pin 2 or pin 4). This should work regardless of the fire signal polarity, because of the capacitor coupling (C2) and pull down resistor (R2).
There is no easy method of monitoring the Keyboard, Mouse and Joystick together with the design as it stands. It may be possible to devise an arrangement using diode logic on one of the existing inputs. depending on the polarity of the fire signal from the joystick.

If you have a bus mouse, you will need to replace the 9 -pin D-connectors with types to suit your mouse. You will then need to pick off the connection for the left button or one of the direction signals to connect to solder terminal pin 2 on the p.c.b.
If your keyboard or mouse uses 6-pin miniature DIN (PS2 type) connectors, you will need to obtain these and fit them in
place of the types suggested. For the keyboard you will need to connect through all lines except pin 2. Pin 4 is +5 V , pin 3 is 0 V and pin 1 is Data - these need to connect to the p.c.b.

It has not been possible to establish the PS2 mouse connections, although it is quite possible they are similar to the keyboard since the same type of plug is used. You will need some very thin 6-core cable for these!

ACCESS TIME

If you wish to access the d.i.p. switches S1 to S8, without dismantling the unit, the connections can be extended so that the switch protudes through a cutout in the case. The easiest arrangement would be to mount the switch on the underside of the p.c.b., so that it is accessible through a hole in the base of the case.
The switch body must fit through the hole so that there is no possibility of anything entering the case through the cutout. You may need to use one or two i.c. sockets, possibly wirewrap types, to extend the switch to fit your cutout.

An l.e.d. can be connected in series with resistor R 8 if required, to show the state of the unit. R8 should be reduced to about 150 ohms in this case. This l.e.d. will light when the monitor is on.

You may want a light to indicate that the monitor is off. The easiest way to achieve this is to connect a neon indicator across the triac output pins (5 and 6 on p.c.b.). Sufficient current will be able to pass through the monitor to illuminate this neon, providing the switch on the monitor itself is on.
The timing period is set by resistor R I and capacitor C1. Increasing either of these will increase the delay. If RI is increased to 220 kilohms the delays achieved will be about twice those stated previously - giving a range of 30 seconds to over two hours. A value of 390 kilohms should give about one minute to four hours - although leakage currents may affect this.

Layout of components inside the completed prototype model. For added safety, the plastic case should be replaced by a METAL case which should be Earthed by a bolt and solder tag - see Fig. 3.

CIRCUIT SURGERY

ALAN WINSTANLEY 花

Our monthly column which answers readers' queries and offers useful hints and tips this month investigates regulated power supply design in depth, including a look at heatsinks. Also, a suggestion for a simple camcorder battery discharger, with other possible uses.

Power Supplies

REGULATED power supplies are quite simple and satisfying to construct. Using just one three terminal regulator device, it's possible to assemble a bench power supply which offers a neat and tidy solution to all those power problems - and you can benefit from full overload protection to help nurture your newlycrafted circuits! But they have limitations, especially if you want high current and flexibility across a range of output values.

Mr David Jones of Llanelli starts this month's round-up with the following query:
I'm interested in building a OV to $30 V$ 5A Variable Power Supply. I know that I can use additional transistors to boost the current requirements of ordinary three-terminal fixed voltage regulators. Can I use this type of circuit for variable regulators? Or could I use several regulators in parallel to reduce the power dissipation at low output voltage/high current situations? I have plenty of high current pnp transistors and plenty of LM338s. Any advice would be welcomed.
Mr. Jones drew the suggested circuit diagram shown in Fig. 1. to illustrate the general idea. It uses a fixed $5 \mathrm{~V}, 1 \mathrm{~A}$ regulator type 7805 or similar. The external bipolar transistor TR1 is called a "pass" transistor and in this example is a power $p n p$ type capable of high dissipation (150W) and high collector currents

Fig. 1. Fixed +5 V regulator with exter nal pass transistor.
(15A), though it has low gain (say 10 to 50). It behaves as a current amplifier allowing the power supply to provide higher output currents.

The voltage drop across the resistor R1 forward biases the base whilst the transistor's collector is clamped at 5 V , and its emitter is at the supply input voltage. The transistor itself is not protected against shorts or temperature overloads, but generally it's hoped that its high power ratings can cope with any abuse.

The transistor dissipates $\left(\mathrm{V}_{\text {in }}-5 \mathrm{~V}\right) \times$ I watts. By paralleling several pass transistors, the power dissipation can be spread across several devices, see Fig. 2. Note that low value series resistors are inserted as shown, since each bipolar transistor is likely to have a different gain resulting in uneven distribution of the total current - some transistors work harder than others.
The resistors R each produce a small error voltage when the transistors conduct, which means that the transistors

Fig. 2. Two parallel pass transistors with series error voltage resistors.
share the total power dissipation more evenly and one doesn't try to shunt the others. By the same token, it is possible to use regulators in parallel (again with

Table 1: Adjustable Voltage Regulators

Device Name	Output Current	Output Voltage	Package Type
LM317LZ	100 mA	$+1 \cdot 2-37 \mathrm{~V}$	TO-92
HA723	150 mA	$+2-37 \mathrm{~V}$	14 pin d.i.l.
LM317MP	500 mA	$+1 \cdot 2-37 \mathrm{~V}$	TO-202
LM78G	1 A	$+5-30 \mathrm{~V}$	TO-202/4 pin
LM317T	$1 \cdot 5 \mathrm{~A}$	$+1 \cdot 2-37 \mathrm{~V}$	TO-3
L200CV	2 mA	$+2 \cdot 8-36 \mathrm{~V}$	TO-202/5 pin
LM350T	3 A	$+1 \cdot 2-33 \mathrm{~V}$	TO-202
LM350K	3 A	$+1 \cdot 2-33 \mathrm{~V}$	TO-3
LM338T	5 A	$+1 \cdot 2-32 \mathrm{~V}$	TO-202
LM338K	5 A	$+1 \cdot 2-32 \mathrm{~V}$	TO-3
LM396K	10 A	$+1 \cdot 2-15 \mathrm{~V}$	TO-3

series resistors) to increase the available current and spread the load.
A simple but neat way of constructing a higher current power supply might be to use a variable three terminal regulator such as the LM338 Mr. Jones mentioned. This dispenses with the need to configure separate discrete transistors and greatly simplifies design and construction, although there are still some pitfalls to be avoided. Table I ists a variety of popular regulators: the LM338 seems to fit the bill for a 5A supply, and its Data Sheet claims a guaranteed 5A output current, with 7A peak output (surge) possible.

Indestructible?

The LM338 seems to have the sort of built-in protection which we now take for granted, including short circuit protection and thermal overioad limiting. However, this does not render it indestructible, and there are still a few ways to damage a three terminal regulator in use, especially in the context of a bench power supply. Here's my short list.

1. Exceed the input/output voltage differential - the maximum voltage permitted across the device. A figure of 40 V to 50 V is fairly typical. Surpass this value of input voltage and then short the output to 0 V at your peril. Watch the regulator's input voltage carefully.
2. Reverse the polarity of the regulator. Several subtle ways of doing this include assorted output capacitors (possibly in the load itself) retaining their charges and causing the regulator's output pin to exceed the voltage at its input, should the input voltage dip for any reason. Inductive loads are also troublesome back e.m.f. is not appreciated and it's sometimes worth adding a protective diode.
3. Punish the regulator by forever cycling its remperature between extremes (thermal stress). Decent heatsinking is the best way for reliability, otherwise it may not survive for ever under such stressful conditions. I know the feeling!
Regulators are very simple to use "on paper", they only require a fixed resistor and a potentiometer to provide a complete variable power supply. The formula for the output voltage is derived from that of a potential divider, since

Fig. 4. 30V 5 A power supply which will thermaliy shut down due to excess power dissipation in IC1.
these chips use a 1.25 V reference voltage between the adjustment and output pins.
In Fig. 3, a basic configuration is shown which is good for both the LM317 and LM338, and the output voltage Vo is:

$$
V_{0}=1.25 \times\left(1+\frac{R 2}{R 1}\right)
$$

It's worth including those protection diodes D1 and D2 to shunt out capacitors C 2 and Cl respectively when either the input or output is shorted to ground. Diode D3 is included to protect against back e.m.f. in the load, when applicable. However, referring back to Mr. Jones' request, developing this circuit into a 30 V 5A Variable P.S.U. presents several problems which renders this approach impractical, see Fig. 4.
To be realistic, we are restricted by the availability and cost of components so performance may need to be traded off against price and practicalities. The design looks straightforward on paper but in fact proves to be less feasible after taking extreme operating conditions into account. Here's why.
Starting with the transformer, catalogues quote transformer secondary a.c. current values as r.m.s. figures assuming a simple resistive load. The average currents are higher in this application because we are placing a large smoothing capacitor after the rectifiers.
In the case of a full-wave bridge rectifier arrangement, it is necessary to derate the transformer by "grossing up" its VA rating by a factor of roughly 0.6 , if you want the transformer to handle peak demands safely. A full 5A output implies a transformer secondary current of 8A (5 $\div 0.6$). Hence if you want to design con-

Fig. 3. Variable voltage 54 three terminal regulator with protection diode.
servatively for the worst case, the transformer specification is a mighty 200 VA $(24 \mathrm{~V}$ a.c. $\times 8 \mathrm{~A})$.
A 24 V a.c. secondary winding would be sufficient to develop a 34 V d.c. rail $(24 \mathrm{~V} \times \sqrt{2})$ across the smoothing capacitor, ignoring the transformer's regulation and any voltage drop amongst the rectifiers. It may be several volts higher at lower currents. One may well decide to compromise the finished design by reducing the transformer's VA rating on grounds of cost and size, but this reduces the maximum output current which can safely be drawn from the design. Myself, I would like to live a few more years yet!
The bridge rectifier is a conservative 100 V 10 A device or higher. The switchon surge current through the bridge is determined by the size of the smoothing capacitor plus its effective series resistance (ESR), together with the resistance of the transformer windings. The $4,700 \mu \mathrm{~F}$ (or more) electrolytic smoothing capacitor should be rated at 50 V minimum.

Too Hot to Handle

The main problem surrounds the regulator itself (literally). It's necessary to ensure that it is adequately heatsinked to cope with worst case conditions or the device will simply shut down.
In practice it's more difficult to ensure that the regulator performs reasonably right across the range, because of thermal problems at maximum power dissipation. Since the heatsink arrangement has a direct impact on the performance of the power supply, let's examine the implications of the heatsinking more closely.
The LM338T device arrives in the plastic TO220 package (that's the " T " in LM338T). The first step is to calculate the maximum power in watts which the i.c. is likely to be asked to dissipate. This equates to maximum input voltage, minimum output voltage (assume a short circuit to 0 V for our bench power supply) with maximum current throughput. It equals $\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{o}}\right) \times I_{\text {out }}$ or $(34 \mathrm{~V}-0 \mathrm{~V}) \times 5 \mathrm{~A}-$ an unhealthy 170 watts peak! This really confirms that this initial simple solution is pretty impractical, for general bench use at least, if you examine the following heatsink calculations.
Determine the ambient temperature around the i.c.; this could be say $40^{\circ} \mathrm{C}$ or more though it depends on construction. The Data Sheet for the LM338T specifies a maximum "junction" temperature of $125^{\circ} \mathrm{C}$, so the maximum temperature rise
allowed in the total heatsink system (from chip to ambient) is therefore $85^{\circ} \mathrm{C}$ over and above ambient.
The thermal resistance of a heatsink is measured in units of Degrees Celsius/ Watt, and is a measure of the heat rise generated per watt of power. A better heatsink has a lower thermal resistance so it doesn't rise in temperature as much. per watt dissipated.
The maximum permissible thermal resistance we may allow to get in the way between the regulator's junction and ambient surroundings, is 85 degrees $/ 170$ watts $=0.5^{\circ} \mathrm{C} / \mathrm{W}$. The problem is, the Data Sheet tells us that the thermal resistance from the junction to the package $\left(\theta_{\mathrm{jc}}\right)$ is $4^{\circ} \mathrm{C} /$ Watt alone! The LM338K (TO3 can) version is an improvement - its thermal resistance is $1^{\circ} \mathrm{C} / \mathrm{W}$, but it isn't possible to sink away the temperature sufficiently to prevent the junction from reaching its maximum temperature, and the regulator will thermally shut down at maximum output.

Not so Good

In fact. even using the largest and most expensive heatsinks available (say $0.4^{\circ} \mathrm{C}$ W or better), this design cannot pass a full 5A output at anything other than 30 V output. when the voltage across the i.c. is at lowest value. The lower the output voltage, the more the regulator dissipates and very quickly it will thermally limit and cripple the performance.
It was calculated that for a 5 V load (e.g. a logic circuit), it will only pass about 650 mA before the maximum junction temperature is reached ($=19$ watts over $4 \cdot 4^{\circ} \mathrm{C} / \mathrm{W}$ total thermal resistance at $40^{\circ} \mathrm{C}$ ambient). So it's really back to the drawing board!
We could possibly use several regulators in parallel to distribute the power dissipation and improve the efficiency of the heatsinking. Using several LM338s means that you can forget about 5A total current limiting. so the rest of the circuit isn't protected against current excesses.
It may be better to utilise LM317T regulators in parallel (say four off) but heatsinking becomes awkward and they will still dissipate some 40 watts each, worst case. The final alternatives are to use a pass transistor as explained carlier, or discard the three-terminal design and use discrete circuitry for voltage regulation and selectable current limiting.
If readers are looking for a power supply to construct for general use, you could check out our own MOSFET Variable Bench Power Supply project designed by Mark Stuart which is ideal for the more serious hobbyist. It offers 0 V to 25 V at up to $2 \cdot 5 \mathrm{~A}$ variable. which in my view will meet the needs perfectly of most constructors. See the April 1994 issue or contact regular advertiser Magenta Electronics on 01283565435 they offer a complete kit for this excellent design.

Protected MOSFETS

Mr. P. J. Newton of Liverpool has also been experimenting with power supplies. this time trying to develop a 0 V to 24 V 0 A to 10 A monster! Having experienced various setbacks he kindly
sent me data and drew my attention to the availability of MOSFET transistors which are temperature and overload protected. These "TOPFETs" are manufactured by Philips mainly for the automotive markets but could have other applications . use in linear mode as a fully protected external pass transistor perhaps.
For example, the Philips BUK $100-$ 50GS TOPFET is a 15 A 40 W device, whilst the BUK $106-50 \mathrm{~S}$ is good for no less than 50 amps at 125 Watts! I have only seen these devices listed by Farnell (Sales 0113263 6311) and RS Electromail (01536 204555), who show a selection of these BUK protected f.e.t.s in their catalogues.

A worthwhile Data Book is Philips' Power MOS Transistors (Farnell 171454). Another alternative to investigate would be the "PROFET" range of protected MOSFETs such as the BTS410E or BTS412B. manufactured by Siemens and listed by Farnell. I have a feeling that these devices will catch on.
Mr E.J. Bibhy of Warrington is a regular correspondent to Circuit Surgery
he suggested placing three rectifiers in series with a voltage regulator input in order to "lose" up to 2 V voltage drop. Each rectifier has a 0.7 V forward voltage drop. which could help to avoid exceeding the regulators input-output differential voltage; it also marginally reduces the power dissipation of the regulator. possibly reducing heatsink requirements in lower power applications. Use 1 N5401s for a rating up to 3A.

Ni-Cad Discharger

The charging of nickel-cadmium (NiCad) cells involves the use of a constant current and is a popular subject for our project pages. but how about a NiCad Discharger? Why would you want to deliberately flatten a rechargeable battery? In the past, emphasis seems to have been placed just on the convenience of being able to re-cycle NiCads say 500 to 1.000 times. One problem is that they suffer from a "memory effect" which means that they gradually lose their capacity (literally) to hold their charge if they are not used regularly.
It's said that giving them a heavy discharge once in a while improves their effectiveness and lessens the memory effect. For example. a certain rechargeable electric razor includes advice from the manufacturer which recommends completely discharging the NiCad batteries every six months. but not leaving them in the discharged state for long periods or they might under-perform thereafter.
NiCad Dischargers are now being included with some battery chargers to help maintain their condition. If you own a camcorder, then you will want to preserve those expensive battery packs ready for your next blockbuster home movie. Mr. R. Crawford of Ashford. Kent asks if it's possible to help with a simple discharger.
I'm studying for a Degree in Electrical and Electronic Engineering. I wondered if you could help me with a simple way to discharge camcorder hatteries. I know there are dischargers available on

Fig. 5. Suggested Ni-Cad Discharger.
the market hut I would like to have a go at one myself.

One idea for a NiCad Discharger circuit is shown in Fig. 5, it uses an LM317T regulator i.c. set as a constant current load. In effect, it has no load and its output is shorted to 0 V . The i.c. limits the current at a level determined by resistor R 1: the current is $(1.25 \mathrm{~V}$ RI) amps.

By selecting different values for R 1 , the discharge rate could be adjusted. Possibly select values for $250 \mathrm{~mA}, 500 \mathrm{~mA}$ or 1 A . The resistor dissipates $1 \cdot 56 / \mathrm{R}$ 1 watts.

The current rating for an LM317T is 1.5A peak and it will need approximately $10^{\circ} \mathrm{C} \mathrm{W}$ heatsinking or better. Built into the LM317T is thermal overload and current limit protection which should ensure that your battery pack is never short circuited.

The input to the regulator ICl is actually the NiCad battery pack itself. These could be 6 V or 9.6 V types. Diode DI prevents reverse connection. The regulator requires a minimum input of roughly +2.5 V (the "dropout voltage") to conduct. so the device will automatically stop discharging the NiCad when it has fallen below 3 V or so, including the diode drop.

The optional ammeter could be your multimeter, set to a suitable current range. The biggest problem is probably mechanical in that you have to make a reliable connection to the battery pack contacts. You may have to improvise with brass strip or tinplate. The same circuit could also be used to test d.c. power supplies, acting as a dummy load.

How's Your Ingenuity

Finally this month. don't forget we're still sifting through your circuit ideas for the next Ingenuity Unlimited feature. If you have any circuit suggestions for possible inclusion in this feature, drop us a line at the editorial address. Show all circuit values and diagrams clearly and include a brief circuit description.
We will pay between $£ 10$ to $£ 50$ for items, depending on their merit. So if you have an idea, why not try sending it in? It could earn you some real cash!
Write to me care of editorial address: Alan Winstanley. Wimborne Publishing Lid.. Allen House, East Borough, Wimborne. Dorset, BH21 IPF,

Next time: I'll be checking out heatsinks in general, plus an adaptable design for an Automatic Porchlight Controller to shed some light on your night-time callers.

Analog Module: Tuning an RF front end.

"Electronics Workbench is the best simulator to design and verify circuits."

Gordon MacDonald

Production Engineer Tecbnician

Electronics Workbench is a highly productive bench where you design and verify circuits in a fraction of the time. Connections are always perfect.Wires route themselves. And the simulated components and test instruments work just like the real thing.

Digital Module: Analyzing a logic circuit.
It's faster than building with actual components because you change connections and component values instantly: And since the simulated components are free, you don't need to replace burnt-out parts or keep an extensive inventory. The result: You save precious time and money. Guaranteed!
The standard for simplicity and power for over six years, Electronics Workbench is the most popular tool of its kind. It has gained worldwide acchaim as the ideal complement to any test bench. Fact: Over $\mathbf{9 0} \%$ of our customers recommend it to their friends and colleagues.

Electronics Workbench

The electronics lab in a computer ${ }^{\text {T }}$

Call: 440203233216

Robinson Marshall (Europe) PLC
Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF FAX: (44) 0203233210
*30-day money-back guarantee.
Shipping charges - UK £4.99. All prices are plus VA.T.
**With the purchase of Electronics Workbench. Offer valid until October 15, 1994

THE MODERN ELECTRONICS MANUAL

The essential reference work

- Easy-to-use format
- Clear and simple layout - Comprehensive subject range - Regular Supplements - News of developments - Sturdy ring-binder - Projects to build - Detailed assembly instructions - Ready-to-transfer PCBs - Full components checklists - Extensive data tables - Detailed supply information - Professionally written

EVERYTHING YOU NEED TO KNOW ABOUT ELECTRONICS!

The revised edition of the Modern Electronics Base Manual contains practical, easy-to-follow information on the following subjects:

BASIC PRINCIPLES: Symbols, components and their characteristics, active and passive component circuits, power supplies, acoustics and electroacoustics, the workshop, principles of metrology, measuring instruments, digital electronics, analogue electronics, physics for electronics.

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own project. From basic principles to circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, car projects, computer interfaces, measuring instruments, workshop equipment, security systems, etc.

REPAIRS AND MAINTENANCE: Basic circuit operation for radio, television, audio/hi-fi, telephones, computers.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s, microprocessors.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.

The Manual also covers Safety, Specialist Vocabulary with Abbreviations and Suppliers. The most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL

Revised Edition of Basic Work: Now contains over 1,000 pages of information.
Regular Supplements: Approximately 160 -page Supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Price of the Basic Work: $£ 39.95+£ 5.50$ p\&p (to include a recent Supplement free).

 M Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment - no small print and no questions asked. (Overseas buyers do have to pay the overseas postage charge).	

ELECTRONICS SERVICE MANUAL

EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT:

SAFETY:Be knowledgeable about Safety Regulations, Electrical Safety and First Aid. UNDERPINNING KNOWLEDGE:Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Logic Gates, Computers, Microprocessors, Valves and Manufacturers' Data, etc.
PRACTICAL SKILLS:Learn how to Identify Electronic Components, Avoid Static Hazards, Assemble a Toolkit, Set Up a Workshop, Carry Out Soldering and Wiring, Remove and Replace Components.
TEST EQUIPMENT:How to Choose and Use Test Equipment, and Get the Most out of your Multimeter and Oscilloscope, etc.
SERVICING TECHNIQUES:The regular Supplements will include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.
TECHNICAL NOTES:Commencing with the IBM PC, PC-XT, PC-AT, this section and the regular Supplements will deal with a very wide range of specific types of equipment.
REFERENCE DATA:Detailing vital parameters for Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements will include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc

The essential work for servicing and repairing.

- Easy-to-use format
- Clear and simple layout
- Regular Supplements
- Sturdy ring binder
- Vital safety precautions
- Troubleshooting techniques
- Fundamental principles
- Active and passive components
- Choosing and using test equipment
- Professionally written
- Servicing techniques
- Reference data

ELECTRONICS SERVICE MANUAL

TOTALLY NEW Basic Work: Contains around 900 pages of information. Edited by Mike Tooley BA.
Regular Supplements: Approximately 160-page Supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time - the first Supplement is scheduled for publication in April ' 95.
Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$).
Price of the Basic Work: $£ 39.95$ + £5.50 p\&.p.

ORDER BOTH MANUALS TOCヨTHER AND SAVE OVER \&15!

A mass of of well-organised and cleariy explained information is brought to you by expert editorial teams whose combined experience ensure the widest coverage

Regular Supplements to these unique publications, each around 160 pages, keep you

 abreast of the latest technology
REGULAR SUPPLEMENTS

Unlike a book or encyclopedia, these Manuals are living works - continuously extended with new material. Supplements are sent to you approximately every two to three months. Each Supplement contains around 160 pages - all for only $£ 23.50+$
£2.50 p\&p. You can of course return any Supplement (within ten days) which you feel is superfluous to your needs.

RESPONDING TO YOUR NEEDS

We are able to provide you with the most important and popular, up to date, features
in our Supplements. Our unique system is based on readers requests for new information. Through this service you are able to let us know exactly what information you require in your Manuals. You can also contact the editors directly in writing if you have a specific technical request or query relating to the Manuals.

PLEASE send me

THE MODERN ELECTRONICS MANUAL plus a FREE SUPPLEMENT ELECTRONICS SERVICE MANUAL - Avallable mid January

- I enclose payment of $£ 45.45$ (for one manual) or $£ 75.45$ for both manuals (saving over \| $£ 15$ by ordering both together). I shall also recelve the approprlate Supplements
1 several times a year. These are billed separately and can be discontinued at any time.
Should I decide not to keep the Mianual/s I will return It/them to you within 30 days for I a full refund.

ORDER FORM
Simply complete and return the order form with your payment to the following address:
Wmborne Publishing Ltd, Allen House,
East Borough, Wimborne, Dorset BH21 IPF
We offer a 30 day MONEY BACK GUARANTEE

- If you are not happy with the Manual simply return it to us in good condition within 30 days for a full refund.

FULL NAME
[PLEASE PRINT)
Overseas buyers do have to pay the overseas postage - see below.

1 ADDRESS.
OVERSEAS ORDERS: All overseas orders must be prepald and are supplied under a money-back guarantee of satisfaction. If you are not entirely happy with the Manual return it within a month for a refund of the purchase price (you do have to pay the overseas postage). SEND $£ 39.95$ (or $£ 64.45$ for both manuals) PLUS THE POSTAGE SHOWN BELOW for EACH Manual:
EIRE

EUROPE (E.E.C. Countries) EUROPE (non E.E.C.) U.SA. \& CANADA FAR EAST \& AUSTRALIA REST OF WORLD Note surface mail can take over 10 weeks to some parts of the world. Each manual weighs around 4 kg when packed.
All payments must be made in E's Sterling payable to Wimborne Publishing Ltd. We accept Mastercard (Access) and Visa credit cards.

AIR MALL ONLYEII
IR MAL NL YE20 SURFACE MAIL £20. AIR MALL £26 SURFACE MAL £25, ANR MALL £32 SURFACE MAUL£31, AR MAL £33 SURFACE MALL £25, AJR MALL £44 \square ! 1

SIGNATURE I enclose cheque/PO payable to Wimborne Publishing Ltd. Please charge my Visa/Mastercard (Access)
1
Card No Card Exp. Date
-

INTER『ACE

Robert Penfold

J
UDGING from the readers' letters I have received, there is currently a lot of interest in using the Parallel Ports of PCs as a cheap and easy means of interfacing to user add-ons. This is understandable, since many PCs are supplied with two printer ports as standard, but in most cases only one of these is required for use with a printer.

Even if only one printer port is fitted, an expansion card costing a few pounds is all that is needed in order to add a second parallel port. Interfacing via a printer port is much easier than making up your own expansion cards, and is much cheaper than using ready-made parallel interface adaptor cards.

Using a printer port as a general purpose input/output port is a subject that has been covered in a previous article, although not in any great depth. In this article we will recapitulate to some extent before delving into the ins and outs of PC printer ports in more detail.

Out and Out

It is clear from some of the letters I have received that many PC users are under the impression that the printer port can be used as an eight-bit input or output port, in rather the same way as the user port of a BBC computer. In other words, each data line can be set to operate as an input or an output.

Unfortunately, this is definitely not the case. Inspecting the circuit diagrams of some PC printer cards reveals that the data outputs are provided by devices that can only provide outputs. Using the data outputs to directly act as inputs is simply not possible.

Probably this misconception has arisen because some commercial add-on units that connect to a printer port claim to use high speed bidirectional parallel data transfer. However, the normal way of achieving this seems to be by using the eight data outputs as an eight-bit output port, with some of the handshake lines being used to provide a form of eight-bit input port.

However, there are insufficient input lines to provide a straightforward eight-bit input port. Some simple circuitry and one of the handshake outputs are needed in order to give a form of eight-bit input.

A PC printer port occupies three consecutive addresses in the input/output map. The base addresses are normally $\& \mathrm{H} 378$ for LPT1, and \&H278 for LPT2. We will only consider LPT1 here, but LPT2 is used in exactly the same way. When using LPT2 it is just a matter of using addresses \& H 278 to $\& H 27$ A instead of $\& H 378$ to $\& H 37 A$.

Writing data to the eight data outputs is perfectly straightforward, and it is just a matter of writing the values to the base address (\&H378). The usefulness of a printer port for general interfacing is greatly enhanced by the unusually large number of
handshake lines. These comprise four outputs and five inputs. Strictly speaking these are not all true handshake lines, and some have functions such as indicating error conditions and whether or not an auto linefeed is required.

As some of these input/output lines have minor functions it is not possible to guarantee that they will all be present on every PC printer port, but they seem to be present and correct on all modern PC parallel ports. With older printer port cards it might be as well to check the instruction booklet to determine whether or not a full set of handshake lines are included.

At address \&H379 there are five input lines, and these are at bits 3 to 7 . Bits 0 to 2 are unused. Fig. I shows the ins and outs of the PC printer port. A look at Table 1 will show the normal function of each input, and its pin number on the printer port's 25-way D-connector.

Table 1: Pin function for the Printer Port's D-connector

Bit	Function	Pin No.
3	Error	15
4	Select in	13
5	Paper empty	12
6	Acknowledge	10
7	Busy	$\mathbf{1 1}$

Taking a Nibble

Although there are only five inputs available, it is still possible to input eight-bit bytes of data. Obviously all eight-bits cannot be input simultaneously. Instead, the data must be read as two four-bit nibbles, with an output of the port being used to select the desired nibble.

The obvious way of handling things is to use bits 4 to 7 of the input port, and to read the least significant nibble first. The value returned is then divided by 16 to compensate for the fact that bits 0 to 3 are being read on input lines 4 to 7 .

Next the output line is toggled so that bits 4 to 7 can be read. The value returned from these is then added to the value read from the least significant nibble, and this gives the full value from the eight input lines.
In practice there is a minor problem with this method in that there is an inverter added ahead of the Busy input at pin 11 (bit 7 of the port). This problem could be overcome by adding another inverter ahead of this input, or by using some additional software routines to effectively re-invert this line. It is probably easier to use the error line (bit 3 of the port) instead.

The same basic method of reading the port as two four-bit nibbles is used, but the mathematics is slightly different. The value returned from the least significant nibble is divided by eight instead of 16 in order to produce the correct value. The figure returned from the most significant nibble is multiplied by two before being added to the corrected value from the least significant nibble.

Whichever method is used, it is clearly somewhat slower than simply reading an eight-bit input port. Two read operations are required, plus write operations to the output line, followed by some simple mathematics.

Even using an up-market $P C$, reading megabytes per second is probably out of the question. On the other hand, using machine code routines it would presumably be possible to read many thousands of bytes per

Fig. 1. Connection details for the PC printer ports. There are 12 outputs and five inputs.
second. Even using an interpreted BASIC on an average $P C$ it should be possible to read a few hundred bytes per second, which is more than adequate for many applications.
The four handshake outputs are at bits 0 to 3 of address \&H37A, and are detailed as follows:

Bit	Function	Pin No.
0	Strobe	1
1	Auto linefeed	14
2	Initialise	16
3	Select out	17

Apart from the initialise output at pin 16 of the port, these outputs are inverted. This is not of great importance, since these lines would normally be used individually, and not collectively as a nibble output

Unfortunately, these lines cannot be used in a similar manner to the handshake inputs, with bytes being output in two halves. This is not possible because there is no fifth output to control a four-to-eight line converter.

The printer port is still quite versatile though, and with only a small amount of additional circuitry it can provide an eightbit output port, and an eight-bit input port. This still leaves three outputs and one input for handshake purposes, or for use as general purpose input/output lines.

Two-Into-One Will Go

The circuit diagram for an eight-bit input port, which uses a PC printer port and the techniques outlined previously, is shown in Fig. 2. This is based on a 74LS244 which is generally described as being an eight-bit tristate buffer.

However, it is in fact two independent four-bit tristate buffers. The most significant nibble is fed to one set of buffers, and the least significant nibble is fed to the other.

Pairs of outputs are used to drive the inputs at bits 3 to 6 of the printer port.

The two sets of buffers are controlled using the initialise output, but the control input of one set is driven via an inverter (IC2). This gives the required anti-phase operation with the least significant nibble being fed through to the printer port when the initialise input is low, and the most significant nibble being fed through to the port when the initialise output is high.
It is possible to dispense with the inverter if two of the printer port's output lines are used to control the tristate buffers. If you are not using one of the other handshake outputs for other purposes, I suppose that this would be the most sensible way of handling things.
This simple GW BASIC routine can be used to read the input port and print the returned value on the screen:
$10 \mathrm{OUT} \& \mathrm{H} 37 \mathrm{~A}, 0$
$20 \mathrm{X}=\mathrm{INP}(\& \mathrm{H} 379)$ AND 120
$30 \mathrm{X}=\mathrm{X} / 8$
$40 \mathrm{OUT} \& \mathrm{H} 37 \mathrm{~A}, 4$
$50 \mathrm{Y}=\mathrm{INP}(\& \mathrm{H} 379)$ AND 120
$60 \mathrm{Y}=\mathrm{Y}^{*} 2$
$70 \mathrm{Z}=\mathrm{X}+\mathrm{Y}$
$80 \mathrm{PRINT} Z$

First the initialise output is set low so that the least significant nibble can be read. The

Fig. 2. An 8-bit output port using a PC printer port.
returned value is ANDed with a masking number of 120 to mask bits $1,2,3$, and 7 of the printer port. The value returned from bits 3 to 6 is placed in variable " X ", which is then divided by eight to give the correct value.

Next the initialise output is set high, and the same basic procedure is used to read the most significant nibble and place it into variable " Y ". In this case the returned value is multiplied by two in order to obtain the correct value. Variables " X " and " Y " are then simply added together to give the final answer which is printed on the screen by the final line of the program.
If you have a spare printer port on your PC, this method must represent the simplest and least expensive method of obtaining eight-bit input and output ports, complete with some handshake lines. It should be possible to interface a wide range of user add-ons to this port, which is a topic we shall pursue in future articles.

EVERYDAY WITH PRAGTICAL ELECTRONIES SUBSCRIPTION ORDER FORM

Annual subscription rates (1994/5): UK $£ 24.00$.
Overseas $£ 30$ (surface mail) $£ 47.50$ (airmail)
To: Everyday with Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749. Fax: 01202841692
I enclose payment of $£ \ldots \ldots .$. (cheque/PO in $£$ sterling only),
Payable to Everyday with Practical Electronics
Access or Visa No.

| | VSA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Signature..

Please supply name and address of card-holder if different from the subscription address shown above. Subscriptions can only start with the next available issue. For back numbers see the Editorial page.

```
Card Ex. Date
```

Name.
Address

POWERFUL SCHEMATIC CAPTURE, PCB DESIGN AND AUTOROUTING ALL FOR JUST $\mathbf{E B O F}^{\ldots}$.

PROPAK AR for DOS provides all the features you need to create complex PCB designs quickly and easily. Draw the circuit diagram using the powerful facilities of ISIS DESIGNER+ and then netlist into ARES AUTOROUTE for placement, autorouting and tidy up. Advanced real time design rule checks guarantee that the final PCB will correspond exactly with the schematic thus saving you from costly layout errors and time consuming debugging.

- Attractive, easy to use graphical interface.
- Object oriented schematic editor with automatic wire routing, dot placement and mouse driven place/edit/move/delete.
- Netlist generation for most popular CAD software.
- Bill of Materials and Electrical Rules Check reports.
- Two schemes for hierarchical design.
- Automatic component annotation and packaging.
- Comprehensive device libraries and package libraries including both through hole and SMT parts.
- User definable snap grids (imperial and metric) and Real Time Snap to deal with tricky SMT spacings.
- Manual route editing features include Auto Track Necking, Topological editing and Curved tracks.
- Autorouting for single, double and multi-layer boards.
- Non autorouting PROPAK is available for just $£ 250$ if you do not need or want the router.
- Full connectivity and design rule checking.
- Power plane generator with thermal relief necking.
- Graphics support to 800×600 Super VGA.
- Output to dot matrix and laser printers, HP and Houston plotters, Postscript devices, Gerber and Excellon NC machines plus DXF and other DTP file formats.

CADPAK
 Two Programs for the Price of One

ISIS SUPERSKETCH

A superb schematic drawing program for DOS offering Wire Autorouting, Auto Dot Placement, full component libraries, export to DTP and much more.

Exceptionally easy and quick to use. For example, you can place a wire with just two mouse clicks - the wire autorouter does the rest.

PCB II

High performance yet easy to use manual PCB layout package. Many advanced features including curved tracks, auto track necking, DXF export, Gerber and NC file generation, Gerber viewing and more.

Alan Chadwick writing in ETI (January 94) concluded.. "At $£ 79$ I thought this was an excellent buy."

ISIS ILLUSTRATOR Schematic Drawing for Windows

Running under Windows 3.1, ISIS ILLUSTRATOR lets you create presentation quality schematic drawings like you see in the magazines. Furthermore, when the drawing is done, transferring it to another document is just a matter of pasting it through the Clipboard.

Now used by a number of prominent technical authors to illustrate their latest books and magazine articles.

Constructional Project MIDI PEDA BOARD

TONY GEERING

Take centre stage and make great sounds with this MIDI output pedal - Let your feet do the "talking".

^ Fully Polyphonic * Touch Sensitive ^ One Octave Range 丸 * Standard MIDIInterface Output * Switchable MIDIChannel *

AFTER many fruitless hours searching for an inexpensive add-on pedal board for use with the popular keyboards and synthesisers it was decided a "build-your-own" approach was the only answer. The result is a project that will. it is hoped, appeal to two groups of electronics constructors: those who play the organ and wish to convert a synthesiser into one; and keyboard players who wish to experiment with foot control
This article describes the construction of a one octave pedal board for use with any musical device having a standard MIDI input. For example it can turn a keyboard or synthesiser into a home organ. Also, the pedal unit has been used successfully with a Clavinola, which has some organ sounds.

MIDI PEDAL

The MIDI Pedal Board comprises two sections. One is the mechanical pedal subassembly which is available complete. It has 13 individual pedals, one per semitone.
The other section is the electronic circuit with MIDI output. The circuit is built around the keyboard scanner i.c. type E510. This i.c. is fully Folyphonic, Touch Sensitive and has a selectable MIDI output channel - Channel 1 or Channel 2.

The E510 will scan up to 128 notes by use of a fan-out arrangement of scanning i.c.s 74 HCl 138 , but has been reduced to 13 notes here. (See Fig. 2)
The circuit operates at five volts, so a stabilised power supply is included. (See Fig. 3). This allows a general purpose 9 V to 12 V unregulated power supply to be used.
The unit draws only a small current when in use $(20 \mathrm{~mA})$, so one of the popular bat-tery-eliminator type power supplies giving +9 V to +12 V output is adequate. Alternatively, the unit could be powered from a small +9 V battery inside the box.

CIRCUIT DESCRIPTION

The full circuit diagram for the MIDI Pedal Board is shown in Fig. 2. The E510 keyboard scanner ICI can scan up to 128 keys by means of the 7 -bit address bus A0 to A6 (pins 7 to 1), with a resolution of $256 \mu \mathrm{~S}$. Details of the pinout information for the E510 are given in Fig. 1.
A large address decoder would be required to decode all 128 addresses. The arrangement of IC2. IC3 and IC4 decodes 13 adjacent addresses for scanning the 13 pedal contacts of the one octave pedal
 regulator.
sub-assembly. A two stage decoder i.c. type 74 HCl 38 , using 3 -bit binary to 1 -out-of-8 decoder function, is used for IC2. IC3 and IC4.

ADDRESS DECDDER

The four most significant bits (MSBs) of the address from ICl (A3-A6) are fed to the data inputs of IC2, pins 1 to 4 . See Fig. 1. There are three data leads, plus Enable ($\overline{\mathrm{E} .1}$) lead which acts as a fourth data lead.
The output of IC2 is an active-Low signal on one of the eight output leads, pins 7 9 to 15. These signals are used to select each of the secondary decoder i.c.s in turn (IC3 and IC4). The three least significant bits (LSBs) of the address from IC1 (A0 to A2) are fed directly to the secondary decoders IC3 and IC4.
Links L1 and L2 transfer the Enable signal to IC3 and IC4, see Note Range Table 1. This allows selection of the musical range of the single octave.

IC3 and IC4 decode the three LSBs of the address to allow scanning of eight pedal contacts per i.c. IC3 can therefore scan the first eight contacts of the pedal unit, corresponding to the first eight semi-tones C to G. IC4 scans the next eight semi-tones, but only five are required to complete the octave, namely G\# to C

KEYBDARD OUTPUT

Every time a key is pressed or released, the velocity is calculated by the E510 keyboard scanner (IC1) using a 7 -bit reverse counting timer. At the same time every press and relcase is tested for validity. The key is only recognised if it goes from pin 10 to pin 11 or vice-versa, and thus key bounce is eliminated.
An internal FIFO register (First-In-First Out type of storage device) allows fully polyphonic playing and thus several keys can be pressed simultaneously. The MIDI data output on pin 9 transmits data according to the MIDI specification; key number, key velocity, key ON or OFF, channel number.

$90 / 1 / 9 / 1 / 75$	
Resistor	See
R1	
R2, R3	200 (2 off)
$\begin{gathered} \text { R4, R5, } \\ \text { R6 } \end{gathered}$	$470 \text { (3 off) }$
R7	22 Page
All 0.6 W	1\% metal film
Capacitors	
C1, C2	22p ceramic (2 off)
C3 to C6,	
	$0 \mu 1$ min. disc ceramic (5 off)
C7	220μ radial elect. 16 V
C8	16μ bead tantalum, 16 V
Semiconductors	
D1 to	
D13	1N4148 signal diode (13 off)
D14	3 mm or 5 mm red l.e.d.
D15	1 N4001 rec. diode
IC1	E510 MIDI keyboard scanner
IC2 to	
IC4	74HC138 3-bit binary to 1 -in- 8 decoder (3 off)
1 C 5	$7805+5 \mathrm{~V} 1 \mathrm{~A}$ voltage regulator
Miscellaneous	
X1 4 MHz crystal	
S1, S2 s.p.s.t. min. toggle switc	
SK1 $\begin{gathered}\text { 5-pin } 180 \text { de } \\ \text { socket }\end{gathered}$	
SK2 d.c. power socket, 2.1 mm	
Plastic case, size $176 \mathrm{~mm} \times 120 \mathrm{~mm}$	
$\times 84 \mathrm{~mm}$ approx; 0.1 in . stripboard, 39	
strips $\times 62$ holes; pedal sub-assembly,	
with changeover contacts - see text;	
16 -pin di.i.l. socket (4 off); coloured	
multistrand connecting wire; aluminium	
or wood for legs and pedal cover, cut to fit.	

Approx cost guidance only

Fig. 2. Full circuit diagram, except voltage stabliser, for the MIDI Pedal Board. MIDI: Musical Instrument Digital Interface.

Fig. 3. Circuit diagram for the power supply voltage stabiliser. The unit drains only a small current, about 20 mA , so a 9 V to 12 V battery eliminator or a 9 V battery can be used as the power source.

The completed Pedal Board with the "Scanning" unit mounted on top of the made-up pedal housing.

ELECTROSTATIC PRECAUTIONS

All semiconductor devices can be degraded or even destroyed by the action of electrostatic discharge (ZAP!) from the human body. Much has already been written on this subject, so only brief details
of recommended precautions are given:
Use full ESP kit - conductive bench mat, wrist band, cord. or
Try to prevent high electrostatic charge in the work area. Work on an Earthed metal surface. Do not wear any synthetic materials which cause a buildup of static like rayon and polyester.

CONSTRUCTION

Construction should commence with the circuit board which is a piece of 0.1 in matrix stripboard, size 39 strips by 62 holes. The topside component layout and details of breaks required in the trackside copper strips is shown in Fig 4

First place and solder all the passive

Fig. 4. Stripboard topside component layout and details of breaks required in the underside copper strips. The circled connections on the topside layout represent solder pins.

components - i.c. sockets, resistors. link wires etc. Also, set the two jumper "note" links L1 and L2 for the required note range using Table 1. Then cut the underside tracks as indicated.
Next, fit the trackside decoupling capacitors C3 and C4 to IC1 and IC2 pins is as shown. Fit diodes and crystal, then lastly insert the i.c.s into their holders.
Before fitting i.c.s you could power-up and check with a meter that $+V$ is only on the following pins:

IC1 pins 13 and 16; IC2, IC3 and IC4 pins 6 and 16.
Visually check the board for faults. The board should then be fitted onto the underside of the plastic box lid, the sockets and switches being fitted in the sides of the box. A 16-way cable was brought out of the box to wire to the pedal sub-assembly. See Fig. 5 and photograph.
On the front of the plastic box are the $\mathrm{On} / \mathrm{Off}$ and $\mathrm{CH} / \mathrm{CH} 2$ switches, and the Power On l.e.d. The user may wish to consider placing the switches on one of the

The complete prototype circuit board mounted on the underside of the case lid. The two leads that go from the top left to the right-hand edge are so that all connections to the keyboard come from the same side of the board.

Fig. 5. Interwiring from off-board components to the circuit board
Table 1: Jumper connections for Note Ranges

LinkL1	Link L2	Note Range
IC2/15-IC3/4	IC2/14-IC4/4	C-2 to C-1
IC2/12-IC3/4	IC2/11-IC4/4	C0 to C1
IC2/9-IC3/4	IC2/7-IC4/4	C2 to C3

Note: Some keyboards do not accept the lowest note range, but all should accept the highest range which is the octave just below middle C . (Middle $\mathrm{C}=\mathrm{C} 3$).

Rear view of the Pedal Board showing the MIDI input and the Power-In sockets. Note also the 16 -core cable sleeving, taking the note leads to the pedal sub-assembly.
other faces of the box, to prevent accidentally catching them with the foot when in use. On the back of the box is the MIDI output DIN socket, and the +9 V power input socket.

PEDALASSEMALY

The pedal sub-assembly requires two stabilising legs, one on either side to enable the unit to be free-standing. These should

The completed keyboard scanner unit showing the MIDI Channel select switch and On/Off switch. These switches could be mounted on one of the side panels, away from any "flying feet.
be fashioned from aluminium or wood approximately $356 \mathrm{~mm} \times 25 \mathrm{~mm} \times 12 \mathrm{~mm}$ see Fig. 6. Likewise a cover should be made from sheet aluminium or plywood to cover the contact body.
On the pedal sub-assembly, all the "make" contacts are strapped together, and all the "break" contacts are also strapped together as shown in the circuit diagram Fig. 2. The +5 V supply is connected, via resistors R4 and R5, to the strapped-up contacts. The wire for each pedal from diodes D1 to D13, are connected to the "changeover" contacts. ($\mathrm{Dl}=\mathrm{Low}$ C. $\mathrm{D} 13=$ High C). Once the wiring has been completed, the box containing the electronics should be securely fastened to the body of the sub-assembly

SETTINGUP

Connect the MIDI output to the MIDI input of your keyboard using a MIDI cord. Power-up the Pedal Unit and the Keyboard. Press each pedal and confirm that the correct note is heard. Pressing quickly should give a louder note due to the touch sensitive processing in the E510.
The E510 ICl has an internal scanner which scans each pedal in turn, via IC2, IC3 and IC4, and diodes D1 to D13. The contact transit time, and hence the pedal speed, is measured by IC1 pins 10 and 11 .
Thus the harder you press the pedal, the faster it moves and so the louder will be the note velocity signal generated by the E510. It is important that the contact gaps be all the same so that the volume of each pedal is the same, see Fig 7.
When a pedal is pressed, the E510 sends MIDI NOTE-ON and VELOCITY data for that note on the selected MIDI CHANNEL. The data is then converted into a musical note by the synthesiser in the remote keyboard.

Fig. 6. Suggested method of housing the pedal sub-assembly.

Fig. 7. Pedal switch contacts.

MIDI

СОМРАТАЕ/L/TY
The MIDI Pedal Unit sends data on MIDI Channel 1 or Channel 2, depending upon the setting of Channel Select S1 Many keyboards default to OMNI when first switched on, this means that they will accept MIDI data on any channel. You can usually select which channel you want to receive MIDI data on, consult your keyboard manual for how to do this.

Depending on the type of keyboard or synthesiser. you may be able to control two individual voices: for example the keyboard on Channel 1 playing a solo voice, and the pedal-board on Channel 2 playing a bass voice. Your keyboard manual should explain how to do this.

TROUBLE SHODTING

If you do not hear any sounds on your keyboard when you press the pedals, switch off the power and re-check the circuit board for errors, touching tracks, solder splashes, dry-joints etc. Check pedal wiring.
Check that the jumper links L1 and L2 are appropriate for your keyboard. Check also that your keyboard MIDI receive is set to OMNI or Channel 1 or Channel 2. Check that any other parameters are set correctly on your keyboard to enable data receive, e.g. MIDI REC $=\mathrm{ON}$ - refer to your keyboard manual for further information. $\quad \square$

SHOP ATTALK with David Barrington

12V 35W PA Amplifier

Both the driver and output transformers used in the 12 V 35 W Public Address Amplifier were specially designed for this project. They are available from Tavistock Electronics, Unit 8, Crelake Industrial Estate, Pixon Lane, Tavistock, Devon, PL19 9AZ. (줄 0822617289)

For those who wish to attempt winding their own ferrite driver transformer, the ferrite core type E42/15 (Siemens part B66325-GX127) and bobbin (B66242J1000R1) can be purchased from Electrovalue (0784 442253).

The printed circuit board is available from the EPE PCB Service, code 930 (see page 163).

MIDI Pedal Board

Only the special E510 MIDI keyboard scanning i.c. used in the MIDI Pedal Board project will not be obtainable from your local supplier. This is, of course, apart from the pedal assembly.
The E510 i.c. seems to be only available from Maplin, code KU41U. Currently, their stocks stand at about 50 items. This is an expensive chip at $£ 33.50$ so it makes it even more important to use an i.c. socket with this device.
It is suggested that an inexpensive source for the pedal assembly may
be found by contacting your local organ/keyboard shop, and asking for the address of an organ repair workshop. Such workshops usually have new or reconditioned one-octave units available. Remember to get one with changeover electrical contacts

The Ultimate Screen Saver

We can only find two listings for the MOC3041 "zero-crossing" opto-isolator triac i.c. used in the Ultimate Screen Saver project. These are from Electromail (code 301-628) and Maplin. code RA56L. There does not appear to be an equivalent.

Capacitor C4 MUST be rated for continuous operation when placed across the 240 V a.c. mains. There are two basic types with this rating, known as class X and class Y . The one chosen here is class X . These should be generally available, but in case of difficulty Maplin list it as code JR34M.

The triac used in the model is a BT138 type, however most 600 V TO220 package triacs, such as C206M. C226M and BTA08-600B, should work here. One of these should be stocked by most of our component advertisers.

The Euro connectors and 8 -pole d.i.! switch are items that should be available
from your regular component supplier. The printed circuit board is available from the $E P E P G B$ Service, code 927 (see page 163)

Foot-Operated Drill Controller

Some difficulties may be experienced in finding a 50V 3 A bridge rectifier called up for the Foot-Operated Drill Controller. If this is the case you could use one with a higher rating, such as the BR32 200V 3A bridge listed by Greenweld. Choose one that has wire "legs" as they can easily be splayed out to fit the p.c.b.

Make sure you specify "log" potentiometers when ordering VR1 and VR2. The printed circuit board is available from the EPE PCB Service, code 928.

Model Railway Signals

We do not expect any component buying problems to arise when purchasing parts for the Model Railway Signals project. Quite a few of our components advertisers stock the small glass reed switches and most come with a small magnet.

The printed circuit board is available from the EPE PCB Service, code 929. Note that the p.c.b. is supplied as a threemodule strip and can hold three TwoAspect circuits plus additional parts for three Three-Aspect operation.

The a.c. supply from a model railway transformer must not be used to power this circuit. It may, however, be rectified and stabilised at +5 V d.c. in the conventional fashion and then used as the power source.

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM
Programs 24, 28, 32 pin EPROMS, EE-PROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.

Expandable to cover virtually any programmable part including serial E^{2}, PALS, GALS, EPLD's and microcontrollers from all manufacturers.

DESIGN

Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT

UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK

MQP ELECTRONICS Lid.
Unit 2, Park Road Centre, Malmesbury, Wiltshire, SN16 0BX UK TEL. 0666825146 FAX. 0666825141

GERMANY 089/4602071; NORWAY 0702-17890; ITALY 0292103554 FRANCE (1)69.41.28.01; IRELAND 1-2800395; SWEDEN 08-590-32185; Also from ELECTROSPEED UK

5 watt PPO FM Broadcast (built) Transmitter, 250 mA \qquad
Many types of FM Stereo PLL crystal controlled broadcast equiment available from 5-150 watts, $88-108 \mathrm{MHz}$.
3 watt, $80-108 \mathrm{MHz}$ FM Transmitter Kit, coil tank controlled, 3 mile range, supply 12 V D.C. at 0.5 mps £1 2.50
5 watts as above except $1 \mathrm{amp}, 5$ mile range. £16.50
Video sender unit, transmits picture from your video, computer or satellite to any TV in your house over TV band, UHF........only $£ 17.50$
FM long range bug, built on MIC, $25 \mathrm{~mm} \times 35 \mathrm{~mm}$,
Kit $£ 11.50$; Built $£ 15: 00$
WE BUY ALL TYPES OF SECOND HAND TRANSMITTERS - BEST PRICES PAID.

ALL price include VAT

Please send $£ 1.00$ P\&P payment to:-
NASA Communications, St. Georges House, 31 A, St. Georges Road, Leyton, London ElO 5RH.
Send 2×1 st Class Siamps for our catalogue.

WINTER 1994/5 Catalogue

The Winter '94/95 edition has 280 pages packed with over 4000 products and now with news and features including two full construction projects

- New additions to Cirkits' unique range of kits, including: Infra-red Remote Control System Combustible Gas Detector
Mains Carrier Audio Link Mains Carrier Remote Control Electrical Appliance Watt Meter Breath Tester
TV Audio Video Tuner

- Two feature projects, fully detailed articles for Hi-Fi quality Infra-red Cordless Headphones and 'Chiptester' a logic IC tester with full PC software, with full construction kits available for both
- Many more additions throughout the catalogue including mobile phone batteries and chargers, low cost thermometers, timers, ICs, LEDs, test equipment, books, opto couplers and much more
- 280 pages, 26 sections, over 4000 products from some of the worlds finest manufactures and suppliers

Available at most large newsagents or direct from Cirkit

- Send for your copy today!

Park Lane • Broxbourne • Hertfordshire • EN10 7NQ Telephone (01992) 448899 • Fax (01992) 471314

Cloning Macs

Even before it went into print, my prediction that Apple would have to change its policy on clone Macs, had come true. The company will now start to licence third party manufacturers to use the Mac operating system.
Recently I got my first chance to try an Apple Mac "out of the box". The company has always had the policy of loaning equipment only to bona fide reviewers, with specific review projects in hand. Columnists are expected to make do with demonstrations given by Apple, which is no way to judge how easy it is to plug in a system and start using it.
On this occasion I was helping a glossy magazine write a review of portables and the first two Macs supplied by Apple had been faulty. Apple was very anxious not to be left out, so sent the third direct to me for a weekend.
The first surprise was how heavy and chunky the Apple portable felt, compared to modern DOS/Windows laptops. Apple has fallen literally years behind in the size and weight race. Although Apple subcontracts manufacture of its designs to firms (e.g. Sony and Sharp) in the Far East, licencing Far Eastern clone makers to do their own thing should create Mac laptops that look and feel as compact as DOS/Windows laptops.
Without doubt the Mac operating system is very to easy to use. I got the hang of it within minutes. Five years ago it would have blown the early versions of Windows and DOS out of the water. But after more than ten years of clumsy trial and error by Microsoft, DOS 6 and Windows 3.1 finally work together as something approaching a coherent team that mimics a Mac.
The two last big advantages left to the Mac are speed of operation and plug-and-play set up of software and peripherals. Windows is slow because its graphics capability sits on top of DOS. The Mac operating system grew out of Apple's Lisa project and was thus designed from the ground up to present the user with a graphics interface i.e. pictorial icons to click on instead of a DOS prompt into which the user must key cryptic text commands.

Dark Horse Games

Here, two dark horses enter the picture. One is Microsoft's new operating system, previously known as Chicago and now renamed Windows 95 because it will arrive sometime in the first half of 1995. Windows 95 will effectively get rid of DOS, so speeding everything up. Or at least, that's the theory.

The other dark horse is Intel's plan for hardware modifications to the IBM PC standard, which of course is really just a mess of almost-but-not-quite standards. It is this mess that makes running one piece of PC hardware with another piece of PC software such a hit and miss affair. Intel and Microsoft plan to create plug and play compatibility between new PCs and Windows 95, so that everything works with everything else. This is especially important for CDROM games.
At the Screen Entertainment 2000, New Technology Agenda, conference in London recently, Keith Benjamin, of US analysts Roberston Stephens and Co told delegates:
"The games business is not a fad. As video games players grow up they migrate to PCs, and play games.
'I see a yuppie mass market boom, with people boasting that my drive is bigger than yours.
"The gross margins for PC games are 65%, compared to 35% for video games.
"Top of the top ten games for Christmas will be Doom II. In fact I am flying back early to the States to try and reach the next level"
Trade insiders admit that there are now so many firms producing often inadequate PC ROM games that shops will only stock them on sale-or-return basis. It is often the packaging that sells the game. When customers cannot get a game to work they ask for their money back.

Plug and Play PC Standard

Although Mac ROM games can be relied on to plug in and play, Benjamin discounts the Mac as a games platform because well under 10% of the computer population are Macs. He pins his faith in the Intel/Microsoft plan for a plug-and-play PC standard. "They will be almost idiot-proof" he predicts. "Plug and play turns the PC into something like a stereo. Until now PCs have been for Nerds and Geeks. Some time next year a normal person will find them friendly. People will no longer have to know about autoexec.bat and config.sys files".
By coincidence, Paul Maritz of Microsoft was in London on the very same day. Maritz is one of founder Bill Gates' right hand men.

Ducking any firm launch date for Windows 95 Maritz says it "will not be done until it's done". This is certainly better than launching too early, and leaving users to trap the bugs, as has happened with virtually every version of

DOS and Windows up until the current 6/3.1 pairing.
"It should have been done years ago" says Maritz of plug-and-play, perhaps overlooking the fact that it is a decade of selling PC operating systems that has made Microsoft the largest software company in the world.
One hard fact emerges, however. Users will not get the full benefits of plug-andplay simplicity until they have paired new hardware with new software. It remains to be seen whether PC users stick with what they have got, or are willing to junk it all to buy into the world of plug-andplay. It also remains to be seen whether they will buy into PC plug-and-play or switch to the Mac world. The promise of Mac clones may tip some balances. So may the compatibility bridges which Apple is now building with the DOS world.

Publicity Driving

Once the Windows and Mac operating systems are fully bridged, and the same clone makers are making PCs and Macs, purchase decisions shake down to price, performance and style. The way the companies sell themselves will carry a lot of weight, too. Intel and Microsoft are now gearing up to a publicity drive on the advantages of plug-and-play simplicity.
Perhaps we may now even see an end to Applespeak, the fogging technique by which statements with enough factual content to fill a page are stretched into a multi-page ramble of cotton wool confusion.
Apple's press release on the monumentual decision to licence clone makers is typical.
"Licensing to phased approach focussing first on vendors with complementary strengths" reads the snappy headline of a press release which was sent to those who knew they could have it if they asked for it.
"Broader installed base of Macintosh platforms ... creates new opportunities for ISVs ... reach customers in geographies where Apple has limited presence ... includes initiatives regarding extending the Macintosh platform's price/performance leadership"
One thing could still change all the rules of the game. If Windows 95 is bug-ridden, and fails to deliver plug-and-play simplicity, Apple and its licensed clone-makers get a golden opportunity to pounce on a market which Intel and Microsoft will have primed with their promises and advertising.

VIDEOS ON ELECTRONICS

A range of videos designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They should prove particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.
VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more.

Order Code VT201
VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits. Order Code V1202 VT203 57 minutes. Part Three; Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained.

Order Code VT203
VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sections of a power supply. Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc.

Order Code VT205 VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206
By the time you have completed VT206 you have completed the basic electronics course and should have a good understanding of the operation of basic circuit elements.

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

Order Code VT102
VI103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

Order Code VT103
Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co, an American supplier.
(All videos are to the UK PAL standard on VHS tapes)

Now for the digital series of six videos. This series is designed to provide a good grounding in computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

Order Code VT301 VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc. Order Code VT302 VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in todays digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303
VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will learn about digital-toanalogue and analogue-to-digital converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of todays memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices.

Order Code VT305
VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work. Order Code VT306
By now you should have a good understanding of computer technology and what makes computers work. This series is also invaluable to the computer technician to understand the basics and thus aid troubleshooting.

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Leam how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system.

Order Code VT401
VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver.

Order Code VT402 VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19 kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding. Order Code VT403 VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers. Order Code VT501

ORDERING: Add $£ 1$ p\&p per order for UK orders. OVERSEAS ORDERS: Add $£ 2$ postage for countries in the EEC. Overseas orders outside the EEC countries add $£ 3$ per tape airmail postage (or $£ 5$ per order surface mail postage). All payments in $£$ sterling only (send cheque or money order drawn on a.UK bank).
Visa and Mastercard orders accepted - please give card number, card expiry date and cardholder's address if different from the delivery address.
Orders are normally sent within seven days but please allow a maximum of 28 days - longer for overseas orders.
Send your order to: Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)

Electronics from the Ground Up

Mike Tooley, BA

Part 5

ELECTRONICS from the Ground Up is designed to provide you with a comprehensive and up-to-date introduction to the world of electronics. The series is based on Electronics Workbench, a remarkable new software package that lets you use your PC to build and test a wide range of circuits. Back isues of earlier parts of this series are available - see Back /ssues page.

In this fifth part we introduce operational amplifiers. These handy devices were originally designed for use in analogue computers where they provided a means of performing mathematical operations such as addition, subtraction, integration and differentiation. Today, with the advent of integrated circuits, operational amplifiers have deservedly found their way into almost every field of electronics.

OPERATIONAL AMPLIFIERS

Operational amplifiers (op.amps) can be thought of as universal "gain blocks" to which external components are added in order to define their function within a circuit. By adding two resistors, we can produce an amplifier having a precisely defined gain. Alternatively, with three resistors and two capacitors we can realise a low-pass filter. From this you might begin to suspect that operational amplifiers are really easy to use. The good news is that they are!

The symbol for an op.amp is shown in Fig. 5.1. There are a few things to note about this. The device has two inputs and one output and no common connection. Furthermore, we often don't show the supply connections - it is often clearer to leave them out of the circuit altogether!
In Fig. 5.1, one of the inputs is marked " -" and the other is marked " + ". These polarity markings have nothing to do with the supply connections - they indicate the overall phase shift between each input and the output. The " + " sign indicates zero

Fig. 5.1 Symbol for an op.amp.

-ve supply

Fig. 5.3 A typical op.amp power supply arrangment.

Fig. 5. 2 Op.amp with supply connections.
phase shift whilst the " - " sign indicates 180° phase shift. Since 180° phase shift produces an inverted (i.e., turned upside down) waveform, the " - " input is often referred to as the "inverting input". Similarly, the " + " input is known as the "noninverting" input.

Fig. 5.2 shows how the supply connections would appear if we decided to include them. Note that we usually have two separate supplies: a positive supply and an equal, but opposite, negative supply. The common connection to these two supplies (i.e., the OV rail) acts as the common rail in our circuit. The input and output voltages are usually measured relative to this rail. Fig. 5.3 shows how the supplies are connected.

Terminology

Before we take a look at some of the characteristics of "ideal" and "real" op.amps it is worth introducing some of the terms that we apply to these devices:
(a) Open-loop voltage gain. This is the ratio of output voltage to input voltage measured with no feedback applied. Open-loop voltage gain may thus be thought of as the "internal" voltage gain of the device. In practice, this value is exceptionally high (typically greater than 100,000) but is liable to considerable variation from one device to another.
(b) Closed-loop voltage gain. This is the ratio of output voltage to input voltage measured with a small proportion of the output fed back to the input (i.e., with feedback applied). The effect of providing negative feedback is to reduce the loop voltage gain to a value which is both predictable and manageable. Practical closed-loop voltage gains range from one to several thousand but note that high values of voltage gain may put unacceptable restrictions on bandwidth, see later.
(c) Input resistance. This is the ratio of input voltage to input current expressed in ohms. It is often expedient to assume that the input of an op.amp is purely resistive though this is not the case at high frequencies where shunt capacitive reactance may become significant. The input resistance of op.amps is very much dependent on the semiconductor technology employed. In practice values range from about $2 M \Omega$ for common bipolar types to over $10^{i 2} \Omega$ for FET and CMOS devices.
(d) Output resistance. This is the ratio of open-circuit output voltage to shortcircuit output current expressed in ohms. Typical values of output resistance range from less than 10Ω to around 100Ω depending upon the configuration and amount of feedback employed.
(e) Input offset voltage. An ideal op.amp would provide zero output voltage when $O V$ is applied to its input. In practice, due to imperfect internal balance, there may be some small voltage present at the output. The voltage that must be applied differentially to the op.amp input in order to make the output voltage exactly zero is known as the input offset voltage.

Offset voltage may be minimized by applying relatively large amounts of negative feedback or by using the

Table 5.1 Characteristics of ideal and real op.amps

	Ideal	Real
VoItage gain	Infinite	100,000
Input resistance	Infinite	$100 \mathrm{M} \Omega$
Output resistance	Zero	20Ω
Bandwidth	Inifinite	2 MHz

"offset null" facility provided by a number of op.amp devices. Typical values of input offset voltage range from 1 mV to 15 mV . Where a.c., rather than d.c., coupling is employed, offset voltage is not normally a problem and can be happily ignored.
(f) Full-power bandwidth. This is equivalent to the frequency at which the maximum undistorted peak output voltage swing falls to 0.707 of its low frequency (d.c.) value (the sinusoidal input voltage remaining constant). Typical full-power bandwidths range from 10 kHz to over 1 MHz for some high-speed devices.
(g) Slew rate. This is the rate of change of output voltage with time, when a rectangular step input voltage is applied. Slew rate is measured in V / s (or $\mathrm{V} / \mu \mathrm{s}$) and typical values range from $0.2 \mathrm{~V} / \mu \mathrm{s}$ to over $20 \mathrm{~V} / \mu \mathrm{s}$. Slew rate imposes a limitation on circuits in which large amplitude pulses rather than small amplitude sinusoidal signals are likely to be encountered.
(h) Common-mode rejection ratio. This is the ratio of differential voltage gain to common-mode voltage gain. Com-mon-mode rejection ratio is thus a measure of an op.amp's ability to ignore signals simultaneously present on both inputs (i.e., "common-mode" signals) in preference to signals applied differentially. Common-mode rejection ratio is usually specified in decibels and typical values range from 80 dB to 110 dB .

OP.AMP
 CHARACTERISTICS

The desirable characteristics for an op.amp are summarized as follows:
(a) The open-loop voltage gain should be very high (ideally infinite).
(b) The input resistance should be very high (ideally infinite).
(c) The output resistance should be very low (ideally zero).
(d) Full-power bandwidth should be as wide as possible.
(e) Slew-rate should be as large as possible.
(f) Input offset should be as small as possible.
(g) Common-mode rejection ratio should be as large as possible.

The characteristics of modern i.c. op.amps come very close to those of an "ideal" op.amp, as Table 5.1 will testify.

GAIN AND

BANDWIDTH

It is important to note that, since the product of gain and bandwidth is a constant for any particular device, an increase in gain can only be achieved at the expense of bandwidth. Fig. 5.4 shows the relationship between voltage gain and bandwidth for a typical op.amp (note that axes use logarithmic, rather than linear scales). Typical voltage gains and corresponding bandwidths for an op.amp are shown in Table 5.2.

Fig. 5.4 Gain plotted against bandwidth for a typical op.amp.

Table 5.2 Table showing the relationship between voltage gain and bandwidth

Voltage gain	Bandwidth
1	d.c. to 2 MHz
10	d.c. to 200 kHz
100	d.c. to 20 kHz
1000	d.c. to 2 kHz

OP.AMP CIRCUIT CONFIGURATIONS

The three basic configurations for operational voltage amplifiers are shown in Figs. 5.5, 5.6 and 5.7. Supply rails have been omitted from these diagrams for clarity but are assumed to be symmetrical about OV, as in Fig. 5.3. All three of these basic arrangements are d.c. coupled and their characteristics are summarised in Table 5.3.

Practical assignment 5.1:

Op.amp configurations
In this practical assignment you will investigate the three different circuit configurations used for op.amps (i.e., inverting amplifier, non-inverting amplifier, and differential amplifier).

Table 5.3 Characteristics of the op.amp circuits shown in Fig. 5.5, Fig. 5.6 and Fig. 5.7.

-	Input resistance	Voltage gain	Phase shift
Inverting amplifier (Fig. 5.5)	R1	R2/R1	180°
Non-inverting amplifer (Fig. 5.6)	$\mathrm{R}_{\text {in }} \times \frac{\mathrm{A}_{\mathrm{OL}}{ }^{*}}{1+(\mathrm{R} 2 / R 1)}$	$1+(\mathrm{R} 2 / \mathrm{R} 1)$	0°
Differential amplifier (Fig. 5.7)	2R1	R2/R1	180°

[^2]

Fig. 5.5 Basic inverting amplifier circuit.

Fig. 5.7 Basic differential amplifier circuit.

Fig. 5.6 Basic non-inverting amplifier circuit.

Fig. 5.8 Inverting amplifier circuit (Assignment 5.1).

Table 5.4 Measured values for the inverting amplifier with $R_{F}=1 \mathrm{k} \Omega$.

$V_{\mathbb{N}}$ (V)	1	-1	2	-2	3	-3	4	-4
$V_{\text {OUT }}$ (V)								

Objectives:

5.1.1 To investigate the behaviour of inverting, non-inverting and differential amplifier stages.
5.1.2 To determine the voltage gain of an op.amp stage and to relate this to the component values used.

Instructions:

(a) Inverting amplifier

1. Connect the inverting amplifier circuit shown in Fig. 5.8. Check that the values of input and feedback resistor are both $1 \mathrm{k} \Omega$ and that the input voltage (from the battery) is 1 V .
2. Switch on the power to your circuit and measure the output voltage produced. Note this down in Table 5.4.
3. Reverse the battery connections and again measure the output voltage produced. Note this down in Table 5.4.
4. Repeat steps 1 to 3 using input voltages of $2 \mathrm{~V}, 3 \mathrm{~V}$, and 4 V . Once again, record the output voltages in Table 5.4.
5. Next, increase the value of feedback resistor to $2 \mathrm{k} \Omega$.
6. Repeat stages 1 to 4 , recording values in Table 5.5.
7. Use the results from Tables 5.4 and 5.5

Table 5.5 Measured values for the inverting amplifier with $R_{F}=2 k \Omega$.

$V_{\mathbb{N}}$ (V)	1	-1	2	-2	3	-3	4	-4
$V_{\text {OUT }}$ (V)								

to plot two graphs showing $\mathrm{V}_{\text {out }}$ plotted against $\mathrm{V}_{\mathbb{I N}}$ for input voltages over the range -4 V to +4 V . One graph will be for $R_{F}=1 \mathrm{k} \Omega$ whilst the other will be for $\mathrm{R}_{\mathrm{F}}=2 \mathrm{k} \Omega$ (see Figs. 5.9 and 5.10).
8. Finally, return to the circuit of Fig. 5.8 with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$. Choose a value for R_{F} that will produce an output voltage of 10 V (i.e., a voltage gain of exactly 10). Check that the circuit works and note down the value of R_{F} used.
(b) Non-inverting amplifier

1. Connect the non-inverting amplifier circuit shown in Fig. 5.11. Check that the

Fig. 5.9 Output voltage plotted against input voltage for the inverting amplifer $R_{F}=1 \mathrm{k} \Omega$.

Fig. 5.10 Output voltage plotted against input voltage for the inverting amplifer $R_{F}=2 k \Omega$.

Table 5.6 Measured values for the non-inverting amplifier with $\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$.

$V_{\mathbb{N}}$ (V)	1	-1	2	-2	3	-3	4	-4
$V_{\text {OUT }}$ (V)								

Table 5.7 Measured values for the non-inverting amplifier with $R_{F}=2 \mathrm{k} \Omega$.

$V_{\mathbb{N}}$ (V)	1	-1	2	-2	3	-3	4	-4
$V_{\text {OUT }}$ (V)								

Fig. 5.11 Non-inverting amplifier circuit (Assignment 5.1).

Fig. 5.12 Output voltage plotted against input voltage for the non-inverting amplifier ($R_{F}=1 \mathrm{k} \Omega$).
values of input and feedback resistor are both $1 \mathrm{k} \Omega$ and that the input voltage (from the battery) is 1 V .
2. Switch on the power to your circuit and measure the output voltage produced. Note this down in Table 5.6.
3. Reverse the battery connections and again measure the output voltage produced. Note this down in Table 5.6.
4. Repeat steps 1 to 3 using input voltages of $2 \mathrm{~V}, 3 \mathrm{~V}$, and 4 V . Once again, record the output voltages in Table 5.6.
5. Next, increase the value of feedback resistor to $2 \mathrm{k} \Omega$.
6. Repeat stages 1 to 4 , recording the values in Table 5.7.
7. Use the results from Tables 5.6 and 5.7 to plot two graphs showing $V_{\text {our }}$ plotted against $V_{I N}$ for input voltages over the range -4 V to +4 V . One graph will be for $R_{F}=1 \mathrm{k} \Omega$ whilst the other will be for $\mathrm{R}_{\mathrm{F}}=2 \mathrm{k} \Omega$ (see Figs. 5.12 and 5.13).
8. Finally, return to the circuit of Fig. 5.11 with $\mathrm{V}_{\mathbb{I N}}=1 \mathrm{~V}$. Choose a value for R_{F} that will produce an output voltage of 10 V (i.e., a voltage gain of exactly 10). Check that the circuit works and note down the value of R_{F} used.

Fig. 5.14 Differential amplifier circuit (Assignment 5.1).

Fig. 5.16 Differential amplifier circuit (Assignment 5.1).

Fig. 5.15 Differential amplifier circuit (Assignment 5.1).

Fig. 5.17 Differential amplifier circuit (Assignment 5.1).
(c) Differential amplifier

1. Connect the differential amplifier circuit shown in Fig. 5.14. Check that all resistors are $1 \mathrm{k} \Omega$ and that the batteries are connected in a sense that will produce an input of +1 V at both the inverting and non-inverting inputs.
2. Switch on the power to your circuit and measure the output voltage produced. Note this down in Table 5.8.
3. Reverse one of the battery connections as shown in Fig. 5.15. This connection produces an inverting input of +1 V and a non-inverting input of -1 V . Once again, record the output voltage in Table 5.8.
4. Now reverse the battery connections as shown in Fig. 5.16. This connection produces an inverting input of - 1 V and a non-inverting input of +1 V . Once again, record the output voltage in Table 5.8.
5. Finally, remove both batteries and connect both inputs to common (OV) as shown in Fig. 5.17. Record the output voltage in this condition.

Conclusions:

To what extent have the objectives for this assignment been met? Comment on the shape of the graphs showing output voltage plotted against input voltage for

Table 5.8 Measured values for the differential amplifier (all resistors $=1 \mathrm{k} \Omega$).

Fig. no.	5.14	5.15	5.17	5.17
Inverting input voltage (V)	+1	+1	-1	0
Non-inverting inpuut voltage (V)	+1	-1	+1	0
VOut (V)				

Fig. 5.20 Inverting amplifier with a.c. input coupling.
both the inverting and non-inverting cir cuits. What do you notice that is different about them? Does the measured voltage gain (i.e., the ratio of $\mathrm{V}_{\text {Out }}$ to $\mathrm{V}_{\text {IN }}$) agree with the calculated values (based on the formulae in Table 5.3). Can you suggest an application for the differential circuit?

IMPROVING
 SYMMETRY

To preserve symmetry and minimize offset voltage, a third resistor (R3) is ofter included in series with the non-inverting input (see Fig. 5.18). The value of this resistor should be equivalent to the parallel combination of R1 and R2. Hence:

$$
\mathrm{R} 3=\frac{\mathrm{R} 1 \times \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}
$$

A number of op.amps provide a means of precisely balancing the differential in put stage by means of an external potentiometer (see Fig. 5.19).

Fig. 5.18 Inverting amplifier with improved symmetry.

Fig. 5.21 Effect of C1 on the frequency response of the circuit shown in Fig. 5.20.

Fig. 5.22 Amplifier with tailored frequency response.

-ve supply
Fig. 5.19 Offset null adjustment.

FREQUENCY
 RESPONSE

All of the amplifier circuits described previously have used direct coupling and thus have frequency response characteris-
tics which extend to d.c. This, of course, is undesirable for many applications, particularly where a wanted a.c. signal may be superimposed on an unwanted d.c. voltage level. In such cases a capacitor of appropriate value may be inserted in series with the input, as shown in Fig. 5.20. The value of this capacitor should be chosen so that its reactance is very much smaller than the input resistance at the lower applied input frequency. The effect of the capacitor on an amplifier's frequency response is shown in Fig. 5.21.

We can also use a capacitor to restrict the upper frequency response of an amplifier. This time, the capacitor is connected as part of the feedback path. Indeed, by selecting appropriate values of capacitor, the frequency response of an inverting operational voltage amplifier may
be very easily tailored to suit individual requirements (see Figs. 5.22 and 5.23). The lower cut-off frequency is determined by the value of the input capacitance, C1, and input resistance, R1. The lower cut-off frequency is given by:

$$
\mathrm{f}_{1}=\frac{1}{2 \pi \mathrm{ClR} 1}=\frac{0.159}{\mathrm{C} 1 \mathrm{R} 1} \mathrm{~Hz}
$$

where C 1 is in farads and R 1 is in ohms.
Provided the upper frequency response it not limited by the gain \times bandwidth product, the upper cut-off frequency will be determined by the feedback capacitance, C 2 , and feedback resistance, R2, such that:

$$
\mathrm{f}_{2}=\frac{1}{2 \pi \mathrm{C} 2 \mathrm{R} 2}=\frac{0.159}{\mathrm{C} 2 \mathrm{R} 2} \mathrm{~Hz}
$$

where $C 2$ is in farads and $R 2$ is in ohms.

Fig. 5.24 Circuit for Assignment 5.2.

Fig. 5.23 Frequency resonse of the circuit shown in Fig. 5.22.

Fig. 5.25 Waveform generator and oscilloscope settings for Assignment 5.2.

Practical assignment 5.2:
Amplifier with tailored frequency response
In this practical assignment you will construct and test an amplifier in which the gain and frequency response can be accurately predicted by appropriate choice of component values.

Objectives:

5.2.1 To show how an op.amp can be used in a practical audio frequency amplifier.
5.2.2 To measure the voltage gain, phase change, and frequency response of an amplifier stage.

Table 5.9. Measured values for Assignment 5.2.
(a) $C 1=10 \mu \mathrm{~F}, R 1=1 \mathrm{k} \Omega, C 2=100 \mathrm{pF}, R 2=100 \mathrm{k} \Omega$

Frequency (Hz)	2	4	10	20	40	100	200	400	1 k	2 k	4 k	10 k	20 k	40 k
Input voltage (V pk-pk)														
Output voltage (V pk-pk)														
Voltage gain														

(b) $C 1=1 \mu F, R 1=1 \mathrm{k} \Omega, C 2=1 \mathrm{nF}, R 2=100 \mathrm{k} \Omega$

Frequency (Hz)	10	20	40	100	200	400	1 k	2 k	4 k	10 k	20 k
Input voltage (V pk-pk)											
Output voltage (V pk-pk)											
Voltage gain											

Instructions:

1. Connect the circuit shown in Fig. 5.24 with $\mathrm{Cl}=10 \mu \mathrm{~F}, \mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{C} 2=100 \mathrm{pF}$, and $\mathrm{R} 2=100 \mathrm{k} \Omega$.
2. Switch on the power to your circuit and adjust the function generator and oscilloscope controls as shown in Fig. 5.25.
3. Use the oscilloscope to measure and record the peak-peak input and output voltages and record the results in Table 5.9a.
4. Modify the circuit so that $\mathrm{C} 1=1 \mu \mathrm{~F}$ and $\mathrm{C} 2=1 \mathrm{nF}$ and repeat steps 2 and 3. Once again, record your results in Table 5.9b.
5. Plot frequency response graphs (i.e., voltage gain plotted against frequency) for the two sets of values (you should use log-lin graph paper for this). Use the graphs to determine the mid-band voltage gain, upper and lower cut-off frequencies, and bandwidth.
6. Finally, observe the input and output waveforms at mid-band and hence determine the phase shift at mid-band.

Conclusions:

To what extent have the objectives for this assignment been met? Compare the measured values (voltage gain, upper and lower cut-off frequencies) with the calculated performance using each set of component values. Do the values agree? If not, why not? Comment on the shape of the frequency response graph. Is it what you would expect? Comment on the phase shift. Is it what you would expect?

Fig. 5.26 Solution to last month's Brain Teaser.

BRAIN TEASER

This month's challenge for those of you who are using the full Electronics Workbench package is to design a circuit based on a single op.amp that will perform according to the following specification:
Voltage gain: 20
Frequency response: d.c. to 10 kHz
Input resistance: $10 \mathrm{k} \Omega$
Phase-shift (mid-band): 180°
Test your solution using Electronics Workbench.
Answer to last month's Brain Teaser
Last month's Brain Teaser involved the design of an a.c. coupled class-A common emitter amplifier with the following specifications:
Voltage gain $=2$
Overall phase shift $=180^{\circ}$
Supply voltage $=10 \mathrm{~V}$
Fig. 5.26 shows one solution arrived at using the full version of Electronics Workbench.

K
 Tavistock electronics

We can supply the following items for this month's 12V 35W. Public Address Amplifier Project.

Printed Circuit Board . . . $£ 12.25$
Driver Transformer £5.55
Output Transformer £12.55
All prices include VAT and postage
Cheque or Postal Order only.
Tavistock Electronics, Unit 8, Crelake Industrial Estate, Pixon
Lane, Tavistock, Devon PL19 9AZ. Telephone: 0822617289

CORRECTION

In Electronics from the Ground Up Part 2, page 865, answer Q1(b) should read 3 W , and answer Q 5 should read (a) $16 \cdot 62 \mathrm{k} \Omega$ (b) $90 \mathrm{k} \Omega$.

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for study at home or in an industrial training environment which carry modular BTEC awards leading to a higher BTEC certificate. Study can commence at any time and at any level enabling you to create a study routine to fit around existing commitments. Courses on offer include:

> Analogue Electronics Digital Electronics Fibre/Optoelectronics Mechanics \& Mechanisms Programmable Logic Controllers Electronic Testing \& Fault Diagnosis

Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audio cassette lecturettes, PCB's, instruments, tools, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Ltd., PO Box 11
Wendover, Bucks
Tel: (0296) 624270

AT LAST. A comprehensive, easy to follow guide to building short range transmitters and surveillance devices. Packed with useful information and circuits.

* Only $£ 3.95$ inc p\&p.

Some of the circuits included cannot be used legally in the UK)
Ali kits come with pre-drilled PCBs and high spec components.
MICRO FM TRANSMITTER (a). 1 km range, $80-100 \mathrm{MHz}$ preset inc. mic., very small (2.3 cm)

FM RECEIVER (a). Tiny high quality FM radio. Will drive headphones direct (not inc)
FM RECEIVER (b). As (a) but with 3 watt audio output and tuning LED E13.50
CRYSTAL RADIO. Includes tuner, earphone, ferrite aerial, etc. $\mathbf{~ 7 . 5 0}$
AM RADIO. Single chip radio for headphones (not inc.) $\mathbf{8 . 9 0}$

AUDIO POWER AMPS

- 800 ms kit
nigital Delay KT
oigh Only

224.

GENERAL PURPOSE PREAMP Variable gain $9-25 \mathrm{~V} 40 \mathrm{mV}$ max in ULTRA LOW NOISE. For high quality mixers, mics etc 9-25V ACTIVE TONE. 12dB c/b bass and treble with variable gain 7 BAND EQ. $150 \mathrm{~Hz}-18 \mathrm{kHz}$ for EQ units and tone control, includes on-board preamp and pots. Variable gain NOISE GATE. Dynamic noise reduction system, Variable input and cut off level. Will accept instruments, tape decks etc
MUSIC KITS. Full range of on-board units for quitars and other instrume. 515.9 Tone boosters, active circuits, delay lines, transducers. Send for list Prices include P\&P. Mail Order Only. Make cheques and postal orders payable to:

SEETRAX CAE - RANGER - PCB DESIGN

Ranger1 £100

* Schematic capture linked to PCB
* Parts and wiring list entry
* Outline (footprint) library editor
* Manual board layout
* Full design rule checker
* Back annotation (linked to schematic)
* Power, m „y and signal autorouter - $£ 50$

All systems upward compatible. Trade-in deals available.
Call Seetrax CAE for further information\demo packs.
Tel 0705591037
Fax 0705599036
Seetrax CAE, Hinton Daubnay House, Broadway Lane,
Lovedean, Hampshire, PO8 0SG

Ranger 2559

All the features of Rangerl plus

* Gate \& pin swapping (linked to schematic)
* Track highlighting
* Auto track necking
* Copper flood fill
* Power planes (heat-relief \& anti-pads)
* Rip-up \& retry autorouter

Ranger 3 £3500

All the features of Ranger2 plus

* UNIX or DOS versions
* 1 Micron resolution and angles to $1 / 10$ th degree
* Hierarchical or flat schematic
* Unlimited design size
* Any-shaped pad
* Split power planes
* Optional on-line DRC
* 100% rip-up \& retry, push \& shove autorouter

Outputs to:

* $8 / 9$ and 24 pin dot-matrix printers
* HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
* HP-GL, Houston Instruments plotters
* Gerber photoplotters
* NC Drill Excellon, Sieb \& Meyer
* AutoCAD DXF

MODEL RA/LWA Y SIGNALS

GRAHAM LONG

Boolean logic and BRknow-how combine to create enhanced model railway signalling reality.

AS a technology teacher with a wood and metal-working background, the author had found that the National Curriculum demands for electronics and computer control had caused him some concern.
However, inspired by the 2-Aspect signals design published in EPE September 1992 (Model Railway Automatic Signal by Stuart Dando), he had the idea of using a model railway as an area on which to base projects for his classes. This seemed to provide many types of control problem suitable for both electronic and computer control, as well as being an area for links with the world of work.
When a group of pupils displayed at an open evening the EPE 2-Aspect signals they had built, the interest shown by parents and pupils encouraged him to think further.

HELPFUL BR

Letters from the author published in $E P E$ and elsewhere requesting further information produced many useful replies. In particular, $E P E$ reader Graham Knott, who is both a British Rail man and a railway modeller, was able to give advice through "having done it". Thanks to him. and through a secondment period with BR, the author gained an understanding of railway signalling procedures and some ideas about the type of circuit needed.
The circuit described here has been designed to be used as a single module board which can work either as an independent 2-Aspect (red and green) signal or, with three or more identically-assembled printed circuit boards (p.c.b.s), as an integrated 3-Aspect signalling system controlling red, yellow and green lights. The design allows flexibility for alternative connections.
Train detection is made via reed switches. By connecting capacitors across the switches and using screened cables for all the connections away from the circuit board, all false-signal problems were eliminated from the prototype circuit. The circuit can probably also be used with infra-red or other opto-sensors, or with manual switches.

If an older engine is being used and is causing problems with excessive stray radiated signals, a new suppressing

Fig. 1. 2-Aspect railway signal logic diagram.
capacitor of, say, 470 picofarads (470p) across the motor may help.

SIGNALLING

Keen railway modellers will find this circuit useful for automating signalling on a large model electric railway system, but it is also ideal for use with a "dining room" table layout. An additional suggested circuit design is included to allow small filament bulbs to be powered, which should allow shop-bought model railway signals to be controlled by the circuit.

How the 2-Aspect signal works on an example model railway layout is shown in Fig. 1. This signal could be used on a quiet line, or perhaps on a siding. The control system illustrated in the schematic is: (a) the train has not entered Section I so the signals are all set at green; (b) the train moves into Section 1 and Signal 1 changes to red; (c) the train moves to Section 2, so Signal 2 changes to red and Signal 1 changes back to green as Section 1 is now clear.

The 3-Aspect signal, whose operational system diagram is shown in Fig. 2, could be used for a main line, most suitably with a circular layout. It could also be used on a straight backwards and forwards line with modification to the switching devices. The logic has four stages: (a) the train has not reached Section 1 so all signals show green; (b) the train enters Section 1 and Signal 1 changes to red; (c) the train enters Section 2, Signal 2 changes to red, Signal 1 changes to yellow, this warns that the next signal is red, so prepare to stop; (d) the train enters Section 3, Signal 3 changes to red, Signal 2 changes to yellow, signal 1 changes to green, therefore a train approaching Section 1 has two full sections of clear track in front of it.

2-ASPECT GIGNAL

The circuit diagram for the 2-Aspect signal controller is shown in Fig. 3. It uses two NAND gates, ICla and IClb, configured as a multivibrator, or flip-flop.

Fig. 2. 3-Aspect railway signal logic diagram.

If reed switch S1 is operated (i.e., closed), the input at NAND gate IClb pin 4 will be taken to 0 V . This will result in a logic 1 at the gate's output pin 6. This output is fed to the input at NAND gate ICla pin 2.
When reed switch S2 is open, the input at ICla pin is held high (logic 1) by resistor R2. Consequently, the output of this gate, pin 3 , will be at $0 \mathrm{~V}(\operatorname{logic} 0)$.

The latter output is fed to input pin 5 of the first gate IClb. Thus, even when switch S 1 is released, there is still a logic 0 on this input, and so the gate maintains a logic 1 output level. Any further operation of switch S1 has no effect. When switch S2 is operated, a similar action takes place and both outputs, ICla pin 3 and IClb pin 6 , change their logic states.

Resistors R1 and R2, respectively, are included to hold high the switched inputs of gates ICla and IC1b and prevent them from "floating" (unconnected to either of

Fig. 3. 2-Aspect signal circuit diagram.
the power supply lines) when switches S1 and S2 are open.

Each of the gate outputs, ICla pin 3 and IClb pin 6, controls its own light emitting diode (l.e.d.), D1 and D2. The respective l.e.d. will be turned on when the output of the controlling gate is at logic 1 .

Resistor R3 is used as a common current limiter for both l.e.d.s.

3-ASPECTSIGNAL

The 3-Aspect signal controller is basically an extension to the circuit for the 2-Aspect unit, taking its control signal from the output of the flip-fiop at IClb pin 6. Thus each signal derived from one reed switch (S1 or S 2) is held until the next
switch is operated (S2 or SI as appropriate) The practical circuit implemenation is shown in Fig. 4.

If there is a train in the corresponding track section controlled by the circuit, ICla pin 3 (Fig. 3) will be at logic 1 and ICIb pin 6 will be at logic 0 . The latter output level is inverted by IClc in Fig. 4 and, from IClc pin 11. controls D3, the red l.e.d. So in this instance the 2-Aspect signal shown in Fig. 3 will be set to red.

IClb pin 6 is also taken to NAND gates IC2a (input pin 1) and IC2b (input pin 4). The output from IC2a pin 3 is inverted by IC2c and controls D4, the yellow l.e.d Similarly, the output from IC2b is inverted by ICId and controls D5, the green l.e.d.

The outputs from IC2a pin 3 and IC2b pin 6 are also fed to the NAND gate IC2d. This gate is actually used as though it were an OR gate and it detects if either yellow l.e.d. D4 or green l.e.d. D5 is turned on. The circuit is arranged so that if the red l.e.d., D3, is on, then D4 and D5, the yellow and green l.e.d.s, are turned off

FORWARDLOGIC

However, the signals for this track section can only have a green light showing if the next track section's signals, controlled by an identical circuit, are not on red Therefore a logic level is taken from the next track section's 1 C 2 d pin 8 and fed back to NAND gate IC2b pin 5 of this section which we are currently discussing.

Only if IC2d pin 8 of the next section and the output of flip-flop IClb pin 6 (Fig. 3) are both at logic 1 can green l.c.d. D5 be turned on via IC 2 b and ICId. In this instance, the logic 0 level output from IC2b pin 6 also holds IC2a pin 2 at logic 0 . Consequently, 1C2a output pin 3 will be at logic 1 and so 1C2c output pin 11 will be at logic 0 , thus yellow l.e.d. D4 will be turned off.

If, instead, the signal in the next track section is at red, a logic 0 level will be fed back from that section's IC2d pin 8 to this section's IC2b pin 5 . Consequently, IC 2 b pin 6 will high, ICld pin 8 will be low, and so green l.e.d. DS will be off. The logic 1 output from IC2b pin 6 , though, will allow IC2a output pin 3 to go low if IC2a pin 1 is also high. The inverted output from IC2c pin 11 will thus go high, and so yellow l.e.d. D4 will be turned on

Resistor R3 provides common current limiting for all three l.e.d.s, D3 to D5.

Fig. 4. Circuit diagram for the 3-Aspect signal extension to the circuit of Fig. 3.

Fig. 5. Full size underside copper foil master track pattern for combined three-module p.c.b.

Fig. 6. Component layout for the 2 Aspect signal controller.

2-ASPECT CONSTRUCTION

The full size master foil track layout for the p.c.b. which is common to both the 2-Aspect and 3-Aspect signals controllers is shown in Fig. 5. This board holds three identical circuit assemblies and is available from the EPE PCB Service, code 929.
The component layout for the 2-Aspect signals controller on this p.c.b. is shown in Fig. 6.
For the 2-Aspect circuit, insert the d.i.I. (dual-in-line) chip socket for ICl into its designated position on the board. Ensure that the notch in the socket is orientated as shown, and that the socket is pushed firmly down on the board. Unless you are using a p.c.b. assembly frame, you may find it helpful to solder one pin first and then check that the socket is still fully in position. Then solder the remaining socket pins.
Next insert and solder the resistors, and then trim off their excess lead lengths with a pair of wire cutters. Now solder in the 1.e.d.s, making sure that their flat edges are correctly orientated (facing towards the 0 V tracking on the board).

At this stage it is a good idea to temporarily use link wires in place of reed switches S1 and S2. On the prototype, the wires cut off the resistors were used.

Before connecting to a power supply, thoroughly check the assembly, looking for solder shorts across tracks, especially be tween the pins of the i.c. socket. Now carefully insert ICl , making sure that its legs are not bent under and that pin 1 is in the correct place, as shown.

Finally, a power supply should be connected. Although +5 V d.c. is the ideal supply voltage, in practice four AA type batteries can be used, delivering about +6 V ($4 \times 1.5 \mathrm{~V}$). Rechargeable AA batteries will probably deliver about $+4.8 \mathrm{~V}(4 \times 1.2 \mathrm{~V})$. Do not use a supply which exceeds +6 V d.c.

The a.c. supply from a model railway transformer must not be used to power the circuit directly. It may, however, be rectified and stabilised at +5 V d.c. in the conventional fashion and then used as the power source

2-ASPECT TESTING

To test the signals, simply short together the wires for reed switches S1 and S2 in turn. The two l.e.d.s. DI and D2, should be seen to turn on and off alternately If neither of the l.e.d.s turn on when the power supply is switched on check that they (and IC1) have been inserted the correct way round. If necessary, also recheck your soldering for missed joints and bridged tracks.
If the 2-Aspect signal is to be used on its own without the addition of the 3 -Aspect components, it is necessary to also connect ICl pins 9 and 10 to the 0 V line.

3-ASPECT CONSTRUCTION

Once the 2-Aspect signal controlling section is working, the components for the

3-Aspect section can be added. Basically, this only amounts to adding a socket for IC2, and adding l.e.d.s D3, D4 and D5. However, it is expected that railway modellers will want to use several identical 3-Aspect signal controllers and these should be constructed in the same way as the first one. The p.c.b. component positioning details for the three sections of the 3-Aspect controller are shown in Fig. 7. Once again, make sure that the components are correctly orientated and that the soldering of the connections is satisfactory.

3-ASPECT TESTIVG

For testing the triple series of 3-Aspect controllers it is probably easiest to link the switch connections as shown in Fig. 8.
Connect the power supply and two l.e.d.s should light on each module, one on the 2-Aspect side, and one on the 3-Aspect side, probably all the green l.e.d.s.
Short the left hand Module A point S2 to the battery 0 V line. This should result in one 3-Aspect signal on red, one on yellow, and one on green. Next do the same for point S2 of Module B, and then for point S2 of Module C. The sequence of red, yellow and green should follow the shorting pattern. Do not operate the modules in the wrong order since this will create logical display errors.
It is probable that the complete modular set-up will work first time if the initial 2 Aspect section has first been tested and that component positioning and soldering has been correctly carried out.

If there is an unexpected sequencing of the light displays it is most likely that the link wires have been incorrectly connected.

In the component layout of Fig. 7 are shown resistor R4 and diodes D6 and D7, these components are optional and not shown in the circuit diagram of Fig. 4. They are intended to offer a safety factor to

Fig. 7. Component layout for the complete triple-module 3-Aspect signals controller.

Fig. 8. Details of the wired interconnections between the three modules on one board.
prevent damage to the circuit from inadvertent wrong polarity connection of the power supply, or connection of a power supply in excess of the allowable +6 V . A suggested value for R 4 is 33Ω for a +9 V DC supply, but this value may be changed if necessary, to suit supply sources.

RA/LWAY CONNECTIONS

At this point there are many possibilities for practical circuit connections. It is essential, though, that any wires taken from the circuit to the railway are of sheathed (screened) cable, with the screening connected to the 0 V points of the signals. This applies equally to the reed switch links and to the signal light links. (If the signals are intended to be used with clockwork or plastic push-along trains, then ordinary unscreened cable will be satisfactory.)
The reed switches need to be attached nearby or between the railway tracks. A 10n capacitor should also be soldered across each reed switch. Although the capacitor (C3) could be placed across the connections at the p.c.b. end, with the prototype it was found that the best results were obtained with the capacitor right across the reed switch as shown in Fig. 9. Operation of the reed switches is performed by a small magnet connected in a suitable place on the railway engine.

Fig. 9. Reed switch wiring detail.

Closeup detail showing reed relay, capacitor C3 and screened cable.

It is a matter of personal preference whether the l.e.d.s are left on the p.c.b. as a signal indicator board or mounted on small pieces of strip-board assembled into suitable housings to simulate trackside signal gantries. It is suggested that for "00" gauge railways 3 mm or 5 mm l.e.d.s are used.
The layout for a three module system which will suit many people is shown in Fig. 10. One reed switch per module is required and the logic is that the red signal is only turned on when the train is fully in the section.

Completed triple 3-aspect signal controller board, also showing interwiring as illustrated in Fig. 8.

COMPONFVIS

2-ASPECT MODULE

Resistors

R1, R2	1 M
R3	(2 off)

All $0.25 \mathrm{~W} 5 \%$ carbon film.

Capacitors

C1, C2 10 n ceramic (2 off)
C3 10n ceramic (see text)

Semiconductors

D1 l.e.d. red, 3 mm or 5 mm
D2 I.e.d. green, 3 mm or 5 mm
IC1 $\quad 7400$ quad NAND gate

Miscellaneous

S1, S2 s.p. normally open reed switches (2 off)

Printed circuit board available from the EPE PCB Service, code 929; 14 -pin d.i.I. socket; $4 \times A A$ type battery holder, plus batteries and battery clip; 4-core screened cable (length to suit distance to signal displays); 2-core screened cable (length to suit distance to reed switches).

3-ASPECT MODULE

(In addition to components required for 2-Aspect section)

R4 33 (see text)
Semiconductors
IC2. $\quad 7400$ quad NAND gate
D3 l.e.d. red, 3 mm or 5 mm
$\begin{array}{ll}\text { D4 } & \text { l.e.d. green, } 3 \mathrm{~mm} \text { or } 5 \mathrm{~mm} \\ \text { D5 } & \text { l.e.d. yellow, } 3 \mathrm{~mm} \text { or } 5 \mathrm{~mm}\end{array}$
D6 1 N4001 rectifier diode
D7 (see text)
D7 5V1 Zener diode (see text)

Miscellaneous

14-pin d.i.l. socket
Note that the p.c.b. is supplied as a 3 -module strip and can hold three 2-Aspect circuits plus the additional components for three 3-Aspect circuit sections.

Approx cost
three complete modules

Fig. 10. Positioning of the reed switches to control three 3-Aspect signal light gantries.

In reality, of course, a train will often be in two sections at the same time because of its length. It is better, therefore, if the engine switches the next section to red as soon as it enters that section, while
still leaving the previous section on red to protect the rear coaches. In this case, it will be necessary to remove the wires linking the switches on the p.c.b. and use six reed switches as shown in Fig. 11.

Fig. 11. Using six reed switches to control the signal gantries so that the rear of a train also determines the signalling logic.
With this arrangement one switch is placed just after the signals so that they are set to red when the train enters that section. The second switch in the section is positioned so that it is operated once the rear of the train is safely out of the last section, allowing the previous red signal to be reset to yellow.

FURTHER ADAPTATIONS

Some railway modellers have suggested to the author that I.e.d.s are two big for smaller gauge railways and that they would prefer to use "proper", bought signal units or "grain of wheat" bulbs. These cannot be run directly from the outputs of standard 7400 type chips. There is, though, an interface circuit which can readily be built which will enable the controller board to drive this type of lamp.
The interface circuit is shown in Fig. 12 and simply consists of several individual transistors each of which can drive one or more of the lamps, depending on the transistor's current rating. The circuit should be repeat-assembled for each of the l.e.d.s it replaces, i.e. three assemblies to replace three l.e.d.s.
The driver assemblies could be built on strip-board, as shown in Fig. 13, and then taped to the side of the controller p.c.b.
A smaller assembly could be achieved by using ULN2003 7-stage Darlington drivers, each of which contains seven Darlington transistors, as schematically shown in Fig. 14. No constructional details are offered for this alternative technique.
(It may be possible to use type $74 \mathrm{HC00}$ chips in place of the standard 7400 devices. These are capable of sinking or sourcing about 25 mA at each output pin. The maximum allowable power dissipation of the chip is about 750 mW . Ed.)

IGOLATIONHALT

Another facility suggested to the author by a railway buff is to allow the signal unit to cause a following train to stop at a red signal. For example, if an express train is catching up with a slow train, the express must stop if it meets a red signal. This is fairly easy to achieve by isolating about 150 mm of track just before the red signal. The isolated section is then powered from the ordinary track supply via the normallyclosed contacts of a relay.
The red signal is used to supply current to the base of a transistor which powers the relay coil. Thus, if the red signal is on, the closed contacts would open, so cutting power from that section of the track. In this way, the following train would stop at the red signal until the forward train has cleared the next section, setting the red to yellow and allowing the following train to proceed. Fig. 15 shows an example of how this system could be implemented.

Fig. 12. Interfacing circuit which allows higher-wattage lamps to be switched. trains colliding front to rear.

Fig. 14. Schematic diagram of the ULN2003 7-stage Darlington driver which could be used in place of seven circuits shown in Fig. 12.

Fig. 13. Layout of three circuits as in Fig. 12 assembled on strip-board.

Fig. 15. Suggested circuit which provides track isolation in order to prevent two

EXPRESS COMPONENTS

MAINS IONIZER KIT. Very useful kit that increases the flow of negative ions, helps clear cigarette smoke, dust, pollen etc. Helps reduce stress and respiratory problems. E15. kit, 120 built.
COMBINATION LOCK. Electronic 9 key combination lock suitable for alarms, cars, houses etc, easily programmable. Includes mains 2Arelay o/p. 9 V operation $\mathcal{1} 10$ kit, 114 built.
VARIABLE POWER SUPPLY. Stabiized, short circuit protected. Gives $3-30 \mathrm{vDC}$ at 2.5 A , ideal for workshop or laboratory. $£ 14$ kit, $£ 18$ buill. 24 VAC required.
I.EAD ACID CILARGER. Two auromatic charging rates(fast and slow), visual indication of battery state. Ideal for alarm systems, emergency lighting, battery projects etc. $£ 12$ kil, $£ 16$ built. PIIONE LINERECORDER.Device that connects to the 'phone line and activates a cassette recorder when the handset is lifted. Ideal for recording 'phone conversations etc!. 18 kit, $£ 12$ built.
ROBOT VOICE. Tums your voice into a robot voice! answer the phone with a different voice!. $£ 9 \mathrm{kit}, \mathrm{£13}$ built.
PIIONE BUG DETECTOR. This device will wam you if someboly is eavesdropping on your 'phone line. $£ 6$ kit $£ 9$ built.
PIIONE BUG. Small bug powered by the telephone line. Only transmits when the phone is used. Popular surveillance product. $£ 8$ kit, $£ 12$ buill.

STROBE LIGITT. Bright strobe light with an adjustable frequency of $1-60 \mathrm{hz}$. (a lot faster than conventional strobes!) £16 kit, $£ 20$ built.
4W FMTRANSMITTER 3 RFstages, audio preamp. 12-18vDC. Medium powered bug $£ 20$ kit, $£ 28$ built. 3 CHANNEL LIGIT CHASER. 3x 800w oulput, speed and direction controls, can be used with 12 led's (suppliod) or TRIACS for mains lights (also supplied). $9-15$ vDC. $£ 17 \mathrm{kit}, 123$ builh. 25W FM TRANSMITTER. 4 stage, a preamp will be required. (Our preamp below is suitable) $£ 79$ built.(no kits). SOUND EFFECTS GENERATOR. Produces any thing from bird chips to sirens! add sounds to all sorts of things 59 kit $£ 13$ built.
FM/AM SCANNER. Well not quite, you have to turn the knob yourself but you will hear things on this radio (even TV) that you would not hear on an ordinary sadio! A receiver that covers $50-160 \mathrm{MH} 2 \mathrm{both}$ AM and FM. Built in 5 w amplifier. $115 \mathrm{kit}, \mathrm{E} 20$ builh. CAR ALARM SYSTEM. Works on vibration and/or voltage drop from door etc being opened. Entry and exit delays plus adjustable alarm duration. Low cost protection! $£ 12 \mathrm{kit}, £ 16$ built. 15W FM TRANSMITTER. 4 stage, high power bug. You will need a preamp for this (see our preamp below which is ok) 169 buill. (no kits).
1W FM TRANSMITTER. 2 stage including preamp and mic. Good general purpose bug. 8-30VDC. £12 kit, $£ 16$ built.
$50 \mathrm{I} / \mathrm{C}^{1} \mathrm{~s}$ for $£ 1.50$
Nice mix of chips at a bargain price!
CERAMIC CAPACTTOR PACK Good mixed pack of 100 capacitors for just $£ 1.00$

ELECTROLYTIC PACK 1
100 small mixed electrolytic
capacitors just $£ 1.00$
ELECTROLYTIC PACK 2 50 larger electrolytic mixed capacitors

RESISTOR PACK NO 1
250 low waltage resistors, ideal for most projects etc. Just $£ 1.00$

RESISTOR PACK NO 2
Hi wattage pack, good selection of mixed wattages and values 50 in all,
bargain price just $£ 1: 00$

PRESET PACK

Nice selection of 25 mixed preset pols for just another £1!

RELAY PACK NO 1
6 mixed relays for $\mathcal{L 1}$, thats just $17 p$ each.

CONNECTOR PACK
10 different connectors, again for $£ 1$

FUSE PACK NO 1

40 mixed 20 mm fuses, ideal for repairs etc, or just to stock up the spares box! Just $£ 1.00$

FUSE PACK NO 2
30 mixed $1.25^{\prime \prime}$ fuses again ideal for spares etc. Just $£ 1.00$

WIRE PACK

25 Metres of insulated wire for just f1.00, good for projects etc.

SLEEVING PACK
100 assorted pieces of sleeving for connectors etc. Yours for just $£ 1.00$

DIODE PACK
100 assorted diodes for just $£ 1.00$
LED PACK
20 light emitting diodes for $\$ 1.00$
TRANSISTOR PACK
50 mixed transistors, another bargain
at 1.00
BUZZER PACK
10 things that make a noise for just £1.00!

POT PACK
10 pots for $\mathrm{E1}$, (5 different types) a snip at $£ 1.00$

DISPIAYS
10 seven segment displays for ¢1.00

ORDER 10 PACKS OR MORE AND CIIOOSE ONE FREE

 PACK!!FREE COMPONENT CATALOGUE WITII EVERY ORDERI!

BULK PACKS

PREAMP MIXER. 3 channel input, independent level and tone controls. Ideal for use with the hi power FM transmitters. $£ 15$ kit, $£ 19$ built.
TREMBLER ALARM. Designed for bikes etc, adjustable sensitivity, preset alarm time, auto reset. Could be adapted for all sorts of "borrowable" things $£ 12$ kit, 116 built.
ULTRRASONIC RADAR. A project that can be used as a movement delector in an enclosed space. Range about 10 metres, 12 vDC . Good basis for car, sted, caravan alarm etc. f 14 kit , f 19 buill.
PIIONE CAILL RELAY. Very useful kit that incorporates a relay that operates when the phone rings. Can be used to operate more bells, signalling lights elc. Good for noisy enviroments or if you have your headphones on! $£ 10 \mathrm{kil}$, £14 built.
PORTABLE ALARM SYSTEM. Small 9 v alarm system based on a mercury switch. The alarm contitues to sound until disabled by the owner. Buzzer included. $£ 11$ kit $£ 15$ built.
800W MUSIC TO LIGIIT EFFECT.
Add rhythm to your music with this simplesound to light kit. $£ 8 \mathrm{kit} \mathrm{C} 12$ built.
MOSQUITO REPELLER. Modem
way to keep the midges away! Runs for
about a month on one 1.5 v battery. Frequency is set to drive away mosquitos etc. $\mathbf{1 7} \mathbf{~ k i t}$, E11 buill.
3 CIIANNEL SOUND TO LIGIIT. Can be used any where as no connection is made to hi fi. Separate sensitivity controls for each channel, 1,200Wpowerhandling. Microphone included. 114 kit, \&19 built.
MINI METAL DETECTOR. Detects pipes, wires etc up to 20 cm deep. Useful before you drill those holes! 18 kit, $\AA 12$ buill.
0.5 MINUTE TIMER. Simple time switch adjustable from 0-5 mins, will switch 2A mains load. 12 v op. Ideal for laboratory, photographic projects etc. £7 kit, 111 built.
7 WATT III FI AMPLIFIER. Useful, powerful amplifier 20hz-15hz, 1218 vdc . Good for intercoms, audio systems, car eac. $£ 7 \mathrm{kit} 511$ built.
INCAR SOUND TO IIGIIT. Put some atmosphere in your car with this kit. Each channel has 6 led's that create a beautiful lighting effect! $£ 10 \mathrm{kis}, £ 14$ built.
VOX SWITCII. This is a sound activated switch, ideal for use on transmitters, CB's, tape recorders etc. Adjustable sensitivity, buill in delay. Mic input. $£ 7 \mathrm{kit}, \ldots 11$ built.

LIQUID LEVEL DETECTOR. Useful item, can be used to detoct fluid levels in watertanks, baths, ponds fishtanks etc. Could also be used as rain alarm with an easily constructed sensor. E 5 kit , 19 built
FM TRANSMTTTER. Mini FMIransmitter 2 transistor, comes with FET minature mic and is tuneable from 63 to 130 MHZ . $£ 7 \mathrm{kit}$, 111 built.
FUNCTION GENERATOR. Generales sinusoidal, saw tooth and square waveforms from 20 hz up to 20 klz . Separate level controls for each waveform. 24 vac . 15 kit , 120 buill.
5 WATT SIREN. Powerful siran kit with an impressive 5 watts oulput. Ideal for alarms etc. $£ 6$ kit $£ 10$ builh. TELEPIIONE AMPLIFIER. Very sensitive amplifier which using a 'phone pickup coil (supplied) will let you fol-
low a telephone conversation wilhout holding the handset to your ear! $£ 11 \mathrm{kit}$ C15 built.

SWITCH PACK
10 switches for just $£ 1.00$

12v FL,OURESCENT. A useful kit that will enable you to light large flourescent tubes from your car battery ecc. 9 v mains Iransformer required. $£ 8$ kit, $£ 12$ buill.

KNOU PACK

10 knobs for just $£ 1.00$

REMEMBERI YOUR FREE COIY OF OUR CUT PRICE COMPO NENTS CATALOGUE SENT WITH EVERY ORDERI!!

How to place your order.........

By phone.......... 0273771156 By FAX........... 0273206875
By Post...PO box 517 Hove Sussex BN3 5QZ Payment by ACCESS, VISA, CHEQUE OR POSTAL ORDER. Cheques and postal orders should be payable to Express Components. AILL PRICES ARE SUBJECT TO99p POST AND VAT. Some of our produels may be unlicensable for use in the UK (particularly the FM transmitters.)

QUICKROUTE 3.0 REVIEW

ROBERT PENFOLD

For some time Quickroute has been one of the leading PCBCAD software packages. The latest Windows version is well worth examining.

QUickroute 2.0 Professional Edition was reviewed in the Interface article that appeared in the December 1993 issue of EPE. Quickroute 3.0 in its most advanced version is a direct descendant of the earlier program. Like its predecessor, it is available in somewhat simplified and lower cost forms, but there is no longer a DOS variant. All four of the current versions run under Windows 3.1.
A fairly powerful PC is needed in order to run Quickroute 3.0. The minimum recommended system is an 80386 based PC having two megabytes of memory and at least three megabytes of vacant hard disk space, plus a Windows compatible mouse. A VGA or super VGA colour display plus a maths co-processor are also "strongly recommended". In order to make real use of the program it is necessary to have some means of providing good quality hard copy. Ideally a laser printer would be used, but it should be possible to utilize any Windows supported output device.

GETTING STARTED

Going against the modern trend, this program is supplied on a single $3 \cdot 5$ inch 720 K disk. However, the files are mostly in compressed form, and once installed onto a hard disk they occupy nearly two megabytes. Installation is very simple, and surprisingly fast. The installation program is run from within Windows, and it takes only about three minutes to get the program loaded onto the hard disk.
You have to enter a serial number before the installation will proceed, but there is no other form of copy protection. The program is automatically installed into its own Window's group, and you simply "click" on the appropriate icon in order to run the program.
There is a definite advantage in using the Windows environment in that it avoids the need for lengthy setting up procedures in order to get the program to work with your particular hardware. If your screen, printer, etc. work with Windows, then they should work with Quickroute 3.0. The only problem encountered was when using a high resolution (1024×768) super VGA screen. A band down the right hand side of the screen failed to redraw when using the

vertical scroll-bar. This problem does not seem to occur at lower screen resolutions.
A drawback of using the Windows environment is that it is not particularly fast. Using a 33 MHz 80386 based PC fitted with a maths co-processor gave an acceptable operating speed with small to medium size designs, but results were rather slow with a large design loaded.
The problem is made worse by the program performing complete screen redraws each time even a minor piece of editing is undertaken (deleting a single pad or track for example). This method ensures that the on-screen representation of the design is always up-to-date, but it makes Quickroure 3.0 much slower than most of the competition. The situation can be eased by using the "Turbodraw" option, which speeds up screen redraws by representing pads and tracks in outline form.

IN.USE

The program is "driven" in much the same way as the earlier versions, and the original screen layout is largely retained. There are the usual Windows header and menu bars at the top of the screen, and below these there is a toolbar. The menu options are mainly used for general tasks such as saving and loading files, and switching the on-screen grid on and off.

Most of the drawing and some of the editing is undertaken using the toolbar.

The first three icons in the toolbar give access to three pads of preselected size and shape. To use a pad it is merely necessary to "click" on its icon and then "click" again in the main (drawing) area of the screen at each point a pad is needed.
To alter the selected pad size/shape the right hand mouse button is "clicked" on the icon, which brings up a window showing sixteen alternatives. It is possible to select several further "pages" of sixteen pad sizes and types using arrow icons. Circular, square, and oval pads are available, and each type can be plain or with a centre hole. The size of any pad can be altered by the user, as can the hole size (where appropriate).

Fig. 1. Example of simple p.c.b. created using Quickroute 3.0.

Fig. 2. Quickroute 3.0 pad selection window.

Tracks are selected using the next three "buttons". and these are used in the same basic manner as the pad icons. A wide range of track widths are available. There is a useful "polygon" option available from the menu bar, and this enables an irregular shape to be outlined and then filled.
The next three icons in the toolbar give access to a range of predrawn symbols (transistors, resistors, capacitors, etc.), and the fourth icon is used for d.i.l. integrated circuits having from eight to 28 pins. There is no rotation option for integrated circuits. so each di.i.l integrated circuit symbol is included in vertical and horizontal formats.
The symbols are selected and used in much the same way as tracks and pads, but there are no user selectable characteristics. However, they can be rotated through 90 , 180, or 270 degrees via a sub-menu of the main menu bar. This sub-menu also permits symbols to be mirrored in the X and (or) Y planes, and also permits separate X and Y scaling with a high degree of resolution. Users can generate their own symbols, and edit existing symbols.
Using the eleventh icon it is possible to produce a rectangle, an ellipse, or an arc, or filled versions of these. Icon number twelve provides access to two types of text. One is normal Windows text, and the other is the program's own vector text. The four sizes of vector text are made up from pieces of track. This gives relatively crude results, but it permits the text to be manipulated in ways that are not possible with Window's text. Vector text can also be produced by an output device which does not have a driver that supports Windows fonts.

SCHEMATIC CAPTURE

"Pins" can be inserted into a design when the thirteenth icon button is selected. This button does not actually do anything on the more basic versions of the program. but on the versions that have schematic capture it is used as a means of identifying connection points. Quickroute 3.0 can be used to produce circuit diagrams ("schematics"), and on the more sophisticated versions of the program a list of interconnections can be taken from a schematic and carried on through a printed circuit layout.

This is one of those things that seems quite simple in principle, but which tends to get very involved in practice. Each circuit symbol must be twinned with a physical symbol for use in the printed circuit layout. Every pin of every component must be identified by a pin number. and the pin numbering must be the same for the circuit and physical symbols. The set of interconnections in the circuit will then be carried forward correctly to the printed circuit layout.
The Quickroute 3.0 schematic capture facility is easier to use than the similar facilities I have encountered on other programs. I have not tested it extensively, but on a quick test it seemed to work flawlessly. It is in many ways fairly basic though. and it cannot handle modifications to a circuit and board layout quite as easily as some other schematic capture facilities.
Many professional printed circuit designers favour the use of netlists, which is simply a text file containing a list of the
components in the circuit. plus a list giving details of every interconnection. The more advanced versions of Quickroute 3.0 can export a netlist generated by the program. but there seems to be no netlist import facility. Of course, you do not have to use the schematic capture and netlists. and any version of the program can be used as a sort of electronic drawing board. When dealing with relatively simple designs this is probably the best way of working.

EDITING

The final "button" of the toolbar sets the program into its editing mode. This enables single objects or groups of objects to be selected, and then deleted. moved, copied. etc. Deleting. adding. and moving track nodes is very simple and straightforward. For example, to move a node you simply place the cursor over it, press and hold down the left mouse button, and then move the cursor to the new position for the node. The editing facilities are somewhat improved on the earlier versions of Quickroute, but there still seems to be no block move command that preserves the interconnections between the objects inside and outside the box.
Next to the toolbar there is a text bar that gives details of the "tool" currently selected (track size, pad size. symbol. or whatever). The co-ordinate display which formerly occupied this space is relegated to the status line at the bottom of the screen. This also gives other information, such as the zoom factor and the current layer.

The pop-down menus give access to the usual file utilities, help facility, etc. Several preset $z 00 \mathrm{~m}$ factors are available, or a custom zoom factor can be entered. It is possible to scroll around a design with the aid of the usual scroll bars, or "clicking" the right hand mouse button will cause the screen to be redrawn with the current cursor position being used as the centre of the display. The cursor can be "snapped" to an invisible grid, and a separate grid of onscreen dots can be activated to make it easier to place objects accurately.

AUTO-ROUTER

All versions of "Quickroute" now include an auto-router, but the more expen-

Fig. 3. Quickroute 3.0 symbol selection window.
sive versions have faster and more sophisticated auto-routers. A "rats nest" must first be entered, either manually, or via the schematic capture facility. The "rats nest" is simply a set of interconnections going straight from pin-to-pin, with each net line often crossing several pads and other net lines on the way. The auto-router tries to route each net line so that pads and other tracks are avoided, but in common with other low cost routers. it is not usually successful in routing all the tracks.

The most sophisticated of the Quickroute auto-routers is quite good at finding suitable routes, even when the only available route is a rather tortuous one. It is also reasonably fast. Unusually for a low cost auto-router, it can attempt single-sided boards. and makes a reasonable job of it. The only real shortcoming is that it is apt to "paint itself into a corner", making it necessary to do some manual editing before the last few nets can be routed manually. This problem seems to be a common one amongst inexpensive autorouters.

CONCLUSIONS

The quality of the hard copy is very good provided you have a llindons compatible printer that is up to the task. The scaling of printouts is controlled by the screen zoom factor, making it easy to obtain practically any scaling factor. The program originally submitted for review tended to block up the holes in pads with the ends of tracks (both on-screen and in printouts). The previous version of the program automatically kept holes in pads clear of obstructions.
Fortunately, the latest version of the program now includes a "sort pads" option which clears the holes when the screen is redrawn. Subsequent printouts show the pads correctly, complete with the hole in the middle. The printing speed with an HP compatible laser is impressively fast.
Learning to use the program is quite quick and easy. especially if you are

Fig. 3. Symbols can be rotated, mirrored and scaled via one of the Quickroute 3.0 drop down sub-menus.
familiar with other Windows applications software. The 110 page A5 ring bound manual is perfectly adequate, and includes a useful index
"Designer" is the cheapest version of the program, and it costs $£ 99$ (excluding postage and VAT). This version has an auto-router that is restricted to two layers, and it has no Gerber import or export facilities. Board designs can have up to 10,000 nodes. The version reviewed here is "PRO + ", and it sells at $£ 299$ (again excluding postage and VAT). This has an eight layer fast auto-router, schematic capture. Gerber import and export. and can handle designs with up to 40,000 nodes.
At these prices Quickroute 3.0 is in direct competition with well established printed
circuit design programs such as Easy-PC and Boardmaker. It compares well with the competition, particularly in its cheapest form. I think I could use it quite happily to produce quite large board designs.
However, the best program for the job depends on personal preferences, the type of boards you will be designing, and the hardware you have available. If you have a PC that will run Quickroute 3.0, and you are in the market for this type of software, it is certainly a program you should give a trial (a demo disk is available from the manufacturer)
Quickroute 3.0 is produced by: POWERware. (Dept. EPE), 14 Ley Lane, Marple Bridge, Stockport, SK 6 5DD. Tel Fax 061 4497101.

RING BINDERS FOR EPE

This ring binder uses a special system to allow the issues to be easily removed and reinserted without any damage. A nylon strip slips over each issue and this passes over the four rings, thus holding the magazine in place (see photo).

The binders are finished in hard wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and tidy but allow you to remove them for use easily.
The price is $£ 5.95$ plus $£ 3.50$ post and packing. If you order more than one binder add £1 postage for each binder after the initial $£ 3.50$ postage charge, (for overseas readers the postage is $£ 6.00$ each to everywhere except Australia and Papua New Guinea which costs £10.50 each).

Send your payment in $£$'s sterling cheque or PO (Overseas readers send $£$'s sterling bank draft, or cheque drawn on a UK bank or pay by credit card), to Everyday with Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202881749. Fax: 01202841692 (We cannot reply to overseas queries or confirm orders by fax due to the high costs).

We also accept credit card payments. Mastercard (Access) or Visa (minimum credit card order £5). Send your card number and card expiry date plus cardholders address (if different to the delivery address).

> Protects your valuable issues keeps them together and tidy.

Take the

from

Puickous

buichroute

to successful PCB \& Schematic Design

Design PCBs and Schematics quickly

After schematic capture, components can be re-arranged prior to manual or automatic routing.

DESIGNER

DESIGNER +

PRO

PRO+

2 Standard	None	None	10
2 Medium	None	Export	20
8 Fast	Standard	Export	30
8 Fast	Advanced	Export Import*	40

*PRO+ can import Gerber files

All versions include an auto-router.

Telephone or FAX POWERware on 0614497101

POWERware, 14 Ley Lane, Marple Bridge, Stockport, SK6 5DD, UK.

Quickroute 3.0 for Windowis 3.1
DESIGNER £99.00 DESIGNER $+£ 149.00$
PRO £199.00
PRO+ £299.00
All prices exclude post \& packing, and V.A.T.

We can supply back issues of EPE by post, most issues from the past five years are available. An index for each year is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

DID YOU MISS THESE?

OOT. 98

PROJECTS - Multi-Purpose Audio System, Part $1-$ Magic Socket - Linear Power Supply - Fake Car Alarm - Kettle Alert L.E.D. Sandglass.

FEATURES - Audio Amplifier Design, Engineering or Alchemy, Part 3 - Teach-In '93, Part 12 Becoming a Radio Amateur.

MEV. $9 x$

PROJECTS - Portable Miniguard (PIR alarm) - Tracktronics Projects (Thyristor Latched L.E.D. Display. Night Light, Twin Input Status Indicator) - 20 Metre Direct Conversion Receiver - Inside the Electric Guitar - Multi Purpose Audio System, Part 2. FEATURES - Velleman View - Electronics Principles, Special Software Supplement.

ule. 98

PROJECTS - Three-Way Christmas Tree Lights Flasher • Auto Alarm • 250W/600W Inverter and Uninterruptable Power Supply Part 1 - Multi-Purpose Audio System, Part 3 - Waterproof Delay Switch.

FEATURES • Safety First, Part 1 • Index for Volume 22.
핖. 94
PROJECTS - Autolight (automatic nightlight) - Timer and NiCad Capacity Checker - 250W/600W Inverter and Uninterruptable Power Supply, Part 2 -Multi-Purpose Audio System, Part 4 - Pond Heater Thermostat.
FEATURES • Safety First, Part 2 - Calculation Corner, Part 1 - Electronics Testing and Fault Diagnosis, Course Review.

- = = = . CK

PROJECTS - Whistle Controlled Light Switch - Reviving the Valve Sound (rebuilding the Quad II power amp) Introduction to Microcontrollers - Timeout Battery To Mains Inverter and Uninterruptable Power Supply, Part 3 - Multi-Purpose Audio System, Part 5.
FEATURES - Calculation Corner, Part 2 Safety First, Part 3 - European International Audio \& Video Fair.

PROJECTS - Smart-Key Immobiliser Audio/R.F. Monitor - CCD TV Camera, Part 1 - Visual Doorbell - Three-Phase Generator.
FEATURES • Safety First, Part 4 - Calculation Corner, Part 3 - Free Wall Chart - Electronics Formulae 1.

EMPMIIE CE

PROJECTS - MOSFET Variable Bench Power Supply - EPE Soundac PC sound output board - CCD TV Camera, Part 2/Frame Grab - Impulse Clock Master Unit • Telephone Ring Detector.
FEATURES - Best of British, Part 1 Calculation Corner, Part 4 - Electronics Workbench Review - Free Wall Chart Electronics Formulae 2.

IWAY'94

PROJECTS - Simple TENS Unit (transcutaneous pain relief) Capacitance/Inductance Meter - L.E.D. Matrix Message Display, Part 1 - Stereo Noise Gate • Dual Stepping Motor Driver for PCs.
FEATURES - Calculation Corner, Part 5 Best of British, Part 2.

WHWE ${ }^{\text {Wa }}$

PROJECTS - Microcontroller P.I. Treasure Hunter - Digital Water Meter - Microprocessor Smart Switch - Advanced TENS Unit (transcutaneous pain relief) - L.E.D. Matrix Message Display, Part 2.
FEATURES - Best of British, Part 3 - Calculation Corner, Part 6

PROJECTS - Voxbox Voice Recording Board - Simple NiCad Charger - Watering Wizard (automatic garden watering) Pocket Print Timer - Stereo HiFi Controller, Part 1.
FEATURES - Best of British, Part 4 - Calculation Corner, Part 7.

Fale. 9 y 4

PROJECTS - Experimental Noise Cancelling Unit - Dancing Fountains, Part 1 - Charged-Up (PC battery tip) - 6802 Development Board - TV Camera Update Stereo HiFi Controller, Part 2
FEATURES - Calculation Corner, Part 8 Best of British, Part 5 - $\|^{\prime} l l$ Be Seeing You (multimedia communications)

[SEPT: 94

PROJECTS - Protector Plus Car Alarm Greenhouse Watering System - Experimental

Seismograph, Part 1 - Three-Channel Lamp Controller - Dancing Fountains, Part 2.
FEATURES - Calculation Corner, Part 9 The Invisible Force (magnetic force).
PREI. PROJECTS - Digilogue Clock Visual/Audio Guitar Tuner - Hobby Power Supply - Audio Auxiplexer - Experimental Seismograph, Part 2.
FEATURES - Electronics from the Ground Up, Part 1 with Free PC Software - Calculation Corner, Part 10.

NOV. 94
PROJECTS - $1000 \mathrm{~V} / 500 \mathrm{~V}$ insulation Tester - Video Modules, Part 1 (Simple Fader, Improved Fader, Video Enhancer) Active Guitar Tone Control - Power Controller •TV Off-er.
FEATURES - Electronics from the Ground Up, Part 2 Consumer Electronics Show.

BLer gew
 PROJECTS - Spacewriter Wand - EPE

 Fruit Machine - Universal Digital Code Lock - Video Modules, Part 2 (Horizontal Wiper, Vertical Wiper, Audio Mixer) - Rodent Repeller.FEATURES - Electronics from the Ground Up, Part 3 - Embedded Controllers • Index for volume 23.

THAN. Cb

PROJECTS • Magnetic Field Detector Moving Display Metronome - Model Railway Track Cleaner - Beating the Christmas Lights - EPE Fruit Machine, Part 2 - Video Modules, Part 3 (Dynamic Noise Limiter, System Mains Power Supply)
FEATURES - Electronics from the Ground Up, Part 4 - Electromagnetic Compatibility • Checking Transistors.

BACK ISSUES ONLY £2.30 each inc. UK p\&p.

Overseas prices $£ 3.10$ each surface mail, $£ 4.10$ each airmail.
We can also supply the following issues from earlier years: 1989 (except March, June and Nov), 1990 (except March), 1991 (except Aug. and Sept.), 1992 (except April and Dec.), 1993 (except Jan., Feb. and March). Please note we are not able to supply copies of Practical Electronics prior to the merger of the two magazines in November 1992. Where we do not have an issue a photostat of any one article or one part of a series can be provided at the same price.

DIRECT воок SERVICE

The books listed have been selected by Everyday with Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page. For another selection of books see next month's issue.

ELECTRONIC PROJECTS - BOOK 9

Published by Everyday Electronics in association

with Magenta Electronics
Contains twenty of the best projects from previous issues of EE each backed with a kit of components. The projects are: Seashell Sea Synthesiser, EE Treasure Hunter, Mini to Light, BBC 16K Sideways Ram. Simple Short Wave Radio, Insulation Tester, Stepper Motor interface Eprom Eraser, 200 MHz Digital Frequency Meter, Infra Red Alarm EE Equaliser Ioniser, Bat Detector, Acoustic Probe, Mains Tester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light), Musical Doorbell, Function Generator. Tilt Alarm, 10W Audio Amplifier. EE Buccaneer Induction Balance Metal Detector, 8BC Midi Interface, Variable Bench Power Supply, Pet Scarer, Audio Signal Generator.
128 pages (A4 size) \quad Order code EP7
£2.45

ELECTRONICS TEACH-IN 88/89

INTRODUCING MICROPROCESSOR

Mike Tooley BA (published by Everyday

Eloctronics)

A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory
Microprocessors $(726 / 303)$. The book contains everyMicroprocessors ($726 / 303$). The book contains every-
thing you need to know including full details on registerthing you need to know including full details on registering for assessment, etc. Starting with basic terminology, integrated circuits, logic families and numbering systems the text builds in stages, with revision and assessments
built in, up to programming. languages, flow charts, etc. built in, up to programming. languages, flow charts, etc. 80 pages (A4 size) Order code 11.88 .89 £2.45

Special Everyday Electronics Books

LAST FEW

 ELECTRONICS TEACH-IN NO.5 GUIDE ORDER TO BUILDING ELECTRONIC PROJECTS NOVY Published bY EVERYDAY ELECTRONICS wae to the demand from students, teachers and hobbyisis Everyday Electronics that will assist those involved withthe construction of electronic projects
The book contains the complete Project Development for GCSE series
Contents: Features - First Steps in Project Building Building with Vero; Project Development for GCSE; Get ting your Project Working; Guide to Printed Circuit Boards Choosing and Using Test Equipment - The Multimeter quency Meters, Signal Generators, etc; Data - Circuit quency Meters, Signal Generators, etc; Data - Circuil Symbols; Component Codes; Resistors; Identifying Com
ponents; Capacitors; Actually Doing It - Understand ing the Circuit Diagram, Component Codes, Mounting circuit boards and controls, Understanding Capacitors Projects - Lie Detector; Personal Stereo Amplifier; Digi-
tal Experimentsr's Unit: Quizmaster: Siren Effects Unit tal Experimentsr's Unit: Quizmaster; Siren Effects Unit
UV Exposure Unit; Low-cost Capacitance Meter; Personal UV Exposure Unit: Low-cost Capacitance Meter; Personal
Radio. Radio.
equipment. P.C.B.s for all the modules and projects are available by mail order.
The subjects covered in each chapter of the book are Power Amplifiers: Oscillapplies; Small Signal Amplifiers: Rower Amplifiers; Oscillators; Logic Circuits; Timers: The nine complete constructional projects are: Ver satile Bench Power Supply, Simple Intercom; Bench Amplifier/Signal Tracer; Waveform Generator; Electronic Die; Pulse Generator; Radio Receiver, Disco Lights Con
troller; Optical Communications Link. troller; Optical Communications Link.
136 pages
Order code 176
£3.45

EACH-INNO. 7 plus FRE

NEW

 ELECTRONIC COURSEPublished by Everyday with Practical Electronics) Alan Winstanley and Keith Dye B.Eng(Tech)AMIEE The highly acclaimed Teach. In ' 92 series, which included he construction and use of the Mini Lab and Micro Lab est and development units, has been put together in book form. Additionally EPT Educational Software have developed a GCSE Electronics software program to com pliment the course and a FREE DISC covering the first two parts of the course is included with the book
Acally at the novice or complete beginner in electronics The series is designed to support those undertaking either GCSE Electronics or GCE Advanced Levels, and starts with fundamental principles.
If you are taking electronics or technology at school or college, this book is for you. If you just want to learn the basics of electronics then this book is for you If you are teaching electronics or technology you must make sure you see it. Teach-In No. 7 will be invaluable if you are already training in one. The Mini Lab and software enable already training in one. The Mini Lab and software enable development circuits. These learning aids bring electronics to life in an enjoyable and interesting way: you will both see and hear the electron in action! The Micro Lab microprocessor add-on system will appeal to higher leve students and those developing microprocessor projects.

Computers and Computing

HOW TO CHOOSE A SMALL BUSINESS
COMPUTER SYSTEM
D. Weale
his book is for anyone intending to buy an IBM compatible computer system, whether it is their first system or replacement. There are sections on hardware, application and systems programs and how to actually make your hoice as well as sections on the law, ergonomics and a glossary of common terms.
which could save much useful tips and some warnings
114 pages Order code BP323

UNDERSTANDING PC SPECIFICATIONS

R. A. Penfold

If you require a microcomputer for business applications, or a high quality home computer, an IBM PC or compatible is often the obvious choice. They are competitively priced, and are backed up by an enormous range of applications programs, hardware add-ons, etc. The main difficulty for best suit his or her needs. PCs range from simple systems of limited capabilities up to complex systems that can happily run applications that would have been considered beyond the abilities of a microcomputer not so long ago. It would be very easy to choose a PC system that is inadequate to pun your applications efficiently, or one which goes beyond your needs and consequently represents poor value for money.
This book explains PC specifications in detail, and the subjects covered include the following: Differences berween types of PC (XT, AT, 80386, etc); Maths digitisers): Memory, including both expanded (EMS) and extended RAM: RAM disks and disk caches; Floppy disk drive formets and compatibility; Hard disk drives (including interleave factors and access times): Display adaptors. including all standard PC types (CGA. Hercules, Super VGA, etc); Contains everything you need to know if you 104 pages

Order code 8 P282
$£ 4.95$

AN INTRODUCTION TO 68000 ASSEMBLY

ANGUAGE

R. A. \& J. W. Penfold
Obtain a vast increase in running speed by writing programs for 6800 based micros such as the Commodore Amiga, Atari ST range or Apple Macintosh range etc.., in assembly language. It is not as difficult as one might think $\begin{array}{ll}\text { and this book covers the fundamentals. } & \\ 112 \text { pages } & \text { Order code BPI84 } \\ & \mathbf{E 2 . 9 5}\end{array}$

MULTIMEDIA ON THE PC
 Ian R. Sinclair

In this book, you'll find out what a CD ROM is, how it works, and why it is such a perfect add-on for a PC. allowing you to buy programmes, text, graphics and sound on a and a sound describes the instaltation of a CD ROM dive arise, and card, pointing out the common problems tha plete multimedia presentation that contains text, photos, a soundtrack with your own voice recorded as a commen tary, even animation and edited video footage.

A CONCISE INTRODUCTION TO MS-DOS
 A. CONCISE

This guide is written with the non-expert, busy person in

 mind and, as such, it has an underlying structure based on what you need to know first, appears first'. Nonetheless, the guide is also designed to be circular, which means that you don't have to start at the beginning and go to the end. The more experienced user can start from any section. The guide covers versions 3.0, 3.1 and 3.2 of both PC-DOS and MS-DOS as implemented by IBM and other OOS and MS-DOS as implemented by IBM and other 64 pages

MAKING MS-DOS WORK
FOR YOU (covers version 6.2)
N. Kantanis \& P. R. M. Oliver

This book was written with the busy person in mind and, as such, it has an underlying structure based on "what you need to know first, appears first". Nonetheless, the
book has also been designed to be circular, which means that you don't have 10 start at the beginning and go to the end.
The book explains: How to write customised batch files which allow you to display what you want on you screen, and in the form and order you want it, instead of being forced to use the DOS prompt on a blank screen. How to design and set up a fast interactive and professional looking menu system, so that you or anyone else can run utility applications or commercial software packages easid commands can be used to position the curso on any part of the screen, change the intensity of the on any part of the screen, change the intensity of the
displayed characters or change their colour. How the Edit screen editor or the Edlin line editor can be used to enter ESCape (ANSI.SYS) commands into simple ASCII files to allow control of both your screen display and your printer. How to control the operation of the two main types of printers in use today. Epson compatible dot matrix and HP compatible laser printers How to use several useful routines, such as moving and finding files, protecting files from accidental erasure. a
simplified backup process, a screen saver, and a disc sataloguing system.
The Debug program and how it can be used to create see and change the contents of any file, inctuding those of programs written in assembler code. This includes how to find your way around the names and task
of the CPU registers and the meaning of some simple assembler mnemonics

182 pages Order code BP319
 £4.95

AN INTRODUCTION TO CP/M

R. A. Penfold
in order to run and use programs operating under CP it is not essential to have an understanding of the system, but a reasonable knowledge of the subject can
certainly be of immense help when minor problems occur, and also in fully exploiting the possible potential 84 pages m. This book tells the story 84 pages

Order code BP18
£2.95

Audio and Music

ACOUSTIC FEEDBACK - HOW

TO AVOID IT
Feodback is the bane of all public address systems. While feedback cannot be completely eliminated, many things can e done to reduce it to a level at which it is no tonger a problem
Much of the trouble is often the hall itself, not the equip ment, but there is a simple and practical way of greatly mproving acoustics. Some microphones are prone to feedmuch better than are not. Certain loudspeaker systems ane can produce or reduce feedback. All these matters are fully explored as well as electronic aids such as equalizers, fre-quency-shifters and notch filters.
The special requirements of live group concerts are considered, and also the related problem of instability that is sometimes encountered with large set-ups. We even take a save readers wasted time and effort duplicating them.
Also included is the circuit and layout of an inexpensive but highly successful twin-notch filter, and how to operate it.
92 poges
Order code BP310
$\mathbf{~} 3.95$

PRACTICAL MIDI HANDBOOK

R. A. Penfold

The Musical Instrument Digital Interface (MIDI) is surrounded by a great deal of misunderstanding, and many of the user manuals that accompany MIDI equipment are quite incomprehensible to the reader.
The Practical MIDI Handbook is aimed primarily at musieians, enthusiasts and echnicians who want to exploit knowledge of electronics or computing. The majority of the book is devoted to an explanation of what MIDI can do and how to exploit it to the full, with practical advice on connecting up a MIDI system and getting it to work, as well as deciphering the technical information in those manuals.
128 pages
Order code PC107
$£ 6.95$

PREAMPLIFIER AND FILTER CIRCUITS

R. A. Penfold

This book provides circuits and background information for a range of preamplifiers, plus tone controls, filters, mixers, etc. The use of modern low noise operational amplifiers and a specialist high performance audio preamplifier i.c. results in circuits that have excellent performance, but which are still quite simple. All the circuits featured ca
The preamplifier circuits featured
The preamplifier circuits featured include:- Microphone tal). Magnetic cartridge pick-up preamplifiers with R.I.AA qualisation. Crystal/ceramic pick-up preamplifier. Guitar pick-up preamplifier. Tape head preamplifier (for use with compact cassette systems).
Other circuits include:- Audio limiter to prevent overloading of power amplifiers. Passive tone controls. Active tone controls. PA filters (highpass and lowpass). Scratch and umble filters. Loudness filter. Audio mixers. Volume and 92 pages

Order code BP309 £3.95

AN INTRODUCTION TO LOUDSPEAKERS AND ENCLOSURE DESIGN

V. Capel

This book explores the various features, good points and snags of speaker designs. It examines the whys and wherefores so that the reader can understand the design, or even design loudspeaker enclosures for him or herself. Crossover units are also explained, the various ypes, how they work, the distortions they produce and how to avoid them. Finally there is a step-by-step description of the construction of the Kapellmeister oudspeaker enclosure.

Order code BP256 £2.95

COMPUTERS

Computers are playing an increasingly important part in music was strictly for the fanatical few are long gone.
If you are more used to the black and white keys of a synth keyboard than the QWERTY keyboard of a computer, you may be understandably confused by the jargon and erminology bandied about by computer buffs. But fear not, setting up and using a computer-based music making system is not as difficult as you might think.
This book will help you learn the basics of computing, tem and using the system to good effect, in fact just about everything you need to know about hardware and the programs, with no previous knowledge of computing needed or assumed. This book will help you to choose the right components for a system to suit your personal needs, 174 pages you to exploit that system fully 174 pages

Order code PC107
C8.95

ELECTRONIC

This book contains a collection of guitar effects and some general purpose effects units, many of which are suitable for beginners to project building. An introductory chapter gives guidance on construction.
Each project has an introduction, an explanation of how it works, a circuit diagram, complete instructions on stripboard layout and assembly, as well as notes on setting up and using the units. Contents include: Guitar tuner; Guitar preamplifier; Guitar headphone amplifier; Soft distortion unit fects unit: Noise gate/expander; Treble booster, Dynamic treble booster, Envelope modifier; Tremelo unit: DI box.

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION R. A. Penfold

Practical constructional details of how to build a number of audio power amplifiers ranging from about 50 to 300/400 96 pages Order code BP277 £3.95

Theory and Reference

ELECTRONIC HOBBYISTS HANDBOOK

R. A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics enthis fascinating hobby. Covers common component colour codes. Details the characteristics and pinouts of many popular seimiconductor devices, including various types of logic ICs, operational amplifiers, transistors, FETs, unijunctions, diodes, rectifiers, SCRs, diacs, triacs, regulators and SMDs, etc. Ilustrates many useful ypes of circuits, such as timers and filters, as well as including a separate section on power supplies. Also contains a multitude of other useful data.

88 pages Order code BP233

84.95

FROM ATOMS TO AMPERES

F. A. Wilson

Explains in crystal clear terms the absolute fundamentals behind electricity and electronics. Really helps you to discover and understand the subject, perhaps for the first time ever
Have you ever: Wondered about the true link between electricity and magnetism? Felt you could never underand other early scientists? Just accepted that an electron is like a little black ball? Got mixed up with e.m.f. and p.d.? Thought the idea of holes in semiconductors is a bit much?
Then help is at hand with this inexpensive book, in as simple a way as possible and without too much complex mathematics and formulae.
244 pages
Temporarily out of print
ELECTRONICS - A "MADE SIMPLE" BOOK
G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics Teach-In Book and will be of interest to everyone studying electronics. The subject is simply explained and well instrated and the book assumes
330 pages

Order codenETO
A REFERENCE GUIDE TO PRACTICAL
ELECTRON
Electronic devices surround us on all sides and their numbers are increasing without mercy. Ours is the problem therefore in keeping up with this relentless expansion. unfortunately we cannot know it all and most
of us do not wish to afford the cost of large reference books which explain many concepts in fair derail. Here is an answer, an inexpensive reference guide which exing electronics features of pratical devices, most of which, to a certain extent, control our lives.
This book is in effect more than just a dictionary of practical electronics terms, it goes a stage further in also getting down to fundamentals. Accordingly the number of terms may be limited but the explanations of the many which are included are designed to leave the reader more complicated mathematics which often on first reading can even be confusing.
For those who also wish to get right down to the poot of the matter, there is a second volume entitled A Reference Guide to Basic Electronics Terms (BP286), each
sary.
sary. A reference guide for practically everybody concerned with electronics

432 pages Order code BP287 £5.95

NEWNES ELECTRONICS POCKET BOOK

Newnes Electronics Pocket Book has been in print for over twenty years and has covered the development of electronics from valve to semiconductor technology and from transistors to LSI integrated circuits and micro processors. To keep up to date with the rapidly changing world of electronics, continuous revision has been necessary. This new Fifth Edition takes account of recent changes and includes material suggested by readers of tions and the design of digital circuits have been added along with a totally new chapter on computing, plus other revisions throughout.
315 pages (hard cover) Order code NE02
£12.95 ELECTRONIC MODULES AND SYSTEMS FOR BEGINNERS
Owen Bishop
This book describes over 60 modular electronic circuits This book describes over 60 modular electronic circuits how they work, how to build them, and how to use them. The modules may be wired together to make hundreds of
different electronic systems, both analogue and digital. To different electronic systems, both analogue and digital. To
show the reader how to begin building systems from mod ules, a selection of over 25 electronic systems are described in detail, covering such widely differing applications as timing, home security, measurement, audio (including a 200 pagas receiver), games and remote contro
200 pages OrdercodeBP266

Project Building

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
We have all built projects only to find that they did not We have all built projects only to find that they did not
work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for many of the common faults that can occur when building up projects
96 pages

Order code BP110 £2.95
HOW TO DESIGN AND MAKE YOUR OWN P.C.B. R. A. Penfold

Deals with the simple methods of copving printed cir cuit board designs from magazines and books and covers $\begin{array}{ll}\text { graphic methods and designing your own p.c.b.s. } \\ 80 \text { pages } & \text { Order code BP121 } \\ & \mathbf{E 2 . 5 0}\end{array}$

A BEGINNERS GUIDE TO MODERN ELECTRONIC COMPONENTS

R. A. Penfold

The purpose of this book is to provide practical information to help the reader sort out the bewildering array of comtheory of electronics offer. An advanced knowledge of the intended to be a course in needed, and this book is no is to explain the differences between components of the same basic type (e.g. carbon, carbon film, metal film, and wire-wound resistors) so that the right component for a gonents are included be selected. A wide range of com components that are used a great deal in projects fot the home constructor. Order code BP285 £3.95 BEGINNER'S GUIDE TO BUILDING ELECTRONIC PROJECTS

R. A. Penfold

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can contidently magazines and books. Also include examples in the form 112 of simple projects. f1.95 ELECTRONICS SIMPLIFIED-CRYSTAL SET CONSTAUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M Especially written for those who wish to participate in the intricacies of electronics more through practical construction than by theoretical study. It is designed for al ages upwards from the day one can read intelingently and
80 pages Order code BP92 £1.75
GUIDE TO BUILDING ELECTRONIC PROJECTS
Published by Everyday E/ectronics No. 5 - for full details.

ELECTRONICS PROJECT BOOK
Published by Everyday Electronics in association With Magenta Electronics
See the first page of books or full details.

Testing and Test Gear

HOW TO USE OSCILLOSCOPES AND OTHER TEST EOUIPMENT
R. A. Penfold

This book explains the basic function of an oscilloscope, gives a detailed explanation of all the standard controls, and provides advice on buying. A separate chapter deals and logic circuits. plenty of example waveforms help to illustrate the control functions and the effects of various fault conditions. The function and use of various othe pieces of test equipment are also covered, including signal generators, logic probes, logic pulsers, and crysta
$\begin{array}{ll}\text { calibrators. } \\ 104 \text { pages } & \text { Order code BP267 }\end{array}$
£3.50

Circuits and Design

PRACTICAL ELECTRONIC FILTERS
Owen Bishop
This book deals with the subject in a non-mathematical way. It reviews the main types of filter, explaining in simple terms how each type works and how it is used.
The book also presents a dozen filter-based projects with applications in and around the home or in the constructor's workshop. These include a number of audio projects such as a rythm sequencer and a multi-voiced electronic organ. Concluding the book is a practical step-by-step gurs with circuit diagrams and worked examples. 88 pages

Order code 8 P?

ELECTRONIC ALARM CIRCUITS MANUAL

R. M. Marston

One hundred and forty useful alarm circuits, of a variety of types, are shown in this volume. The operating principle of each one is explained in concise butcompren necessary. and brief construction notes are given where necessary. experimenter, as well as the electronics student and experiment
amateur. 124 pages Order code NE1T $£ 13.95$ OIGITAL LOGIC GATES AND FLIP-FLOPS
Ian R. Sinclair
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning.
Topics such as Boolean algebre and Karnaugh mapping are explained, demonstrated and used extensively, and counters than to the simple but less important ripple counters.
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working practices. The book concludes with an explanation of microprocessor techniques as applied to digital logic.
200 pages
Order code PC100 ELECTRONIC CIRCUITS FOR THE COMPUTER

CONTROL OF ROBOTS

Robert Penfold Robots and robotics offer one of the most interesting areas for the electronics hobbyist to experiment in. Today the mechanical side of robots is not too difficult, as there are robotics kit and a wide range of mechanical components available. The micro controller is not too much of a problem either, since the software need not be terribly complex and many inexpensive home computers are well
suited to the task.
The main stumbling block for most would-be robot builders is the electronics to interiace the computer and the sensors which provide feedback from the
motors, and
obot to the computer. The purpose of this book is to
axplain and provide some relatively simple electronic circuits which bridge this gap.
92 pages \quad Order code BP179 \quad £2.95
ELECTRONIC POWER SUPPLY HANDBOOK
an R. Sinclair
This book covers the often neglected topic of electronic power supplies. All types of supplies that are used for elec tronics purposes are covered in detail, starting with celis and linear stabilisers to modern switch -mode systems, IC switchmode regulators, DC-DC converters and inverters.
The devices, their operating principles and typical circuits are all dealt with in detail. The action of rectifiers and the reservoir capacitor is emphasised, and the subject of stabilisation is covered. The book includes some useful formulae for assessing the likely hum level of a conven-
tional rectifier reservoir supply. 136 pages Order
136 pages Orde
R. N. Soar
£7.95

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics, using one of the most inexpensive and freely available components - the light-emitting diode (LED). Also includes circuits for the 707 common anode display 64 pages Order code BP42
$£ 1.95$
BOOK 250 more l.e.d. circuits Order code BP87 £1.95 CIRCUIT SOURCE BOOK 1
A. Penfold

Written to help you create and experiment with your own electronic designs by combining and using the various standard "building block" circuits provided. Where applicable, advice on how to alter the circuit parameters is given.
The circuits covered in this book are mainly concerned with analogue signal processing and include: Audio amplifiers (op.amp and bipolar transistors); audio power amplifiers; d.c. amplifiers; highpass, lowpass, bandpass
and notch filters; tone controls; voltage controlled amplifiers and filters; triggers and voltage comparators; gates and electronic switching; bargraphs; mixers; phase shifters, current mirrors, hold circuits, etc.
Over 150 circuits are provided, which it is hoped will be useful to all those involved in circuit design and application, be they professionals, students or hobbyists
182 pages
Order code BP321
£4.95

CIRCUIT SOURCE BOOK 2

R. A. Penfold your own electronic designs by combining and using the various standard "building blocks" circuits provided. Where applicable, advice on how to alter the circuit parameters is provided.

Radio, TV, Satellite

PROJECTS FOR RADIO AMATEURS

AND S.W.L.S

This book describes a number of electronic circuits, most of which are quite simple, which can be used to enhance the performance of most short wave radio systems.
The circuits covered include:- An aerial tuning unit; A simple active aerial; An add-on b.f.o. for portable sets; A wavetrap for combat signals on spulious C.W and S.S.B. audio filters; Simple noise limiters; A speech processor; A volume expander
Other useful circuits include a crystal oscillator, and RTTY/C.W. tone decoder, and a RTTY serial to parallel converter. A full range of interesting and usefull circuits for shor wave enthusiasts. 92 pages \quad Order code BP304 3.95

AN INTRODUCTION TO AMATEUR RADIO

. D. Poole
Amateur radio is a unique and fascinating hobby which has attracted thousands of people since it began at the turn
This book gives the newcomer a comprehensive and easy to understand guide through the subject so that the reader can gain the most from the hobby. It then remains an essential reference volume to be used time and again. Topics covered include the basic aspects of the hobby such as operating procedures, jargon and setting up a station. Technical topics covered inciude propagation, 150 pages \quad Order code BP257 3.50

SIMPLE SHORT WAVE RECEIVER CONSTRUCTION

 R. A. PenfoldShort wave radio is a fascinating hobby, but one that seems to be regarded by many as an expensive pastime these days. In fact ir is possible to pursue this hobby for a minimal monetary outlay if you are prepared to undertake a bit of di.i.y, and the receivers described in this book can all be built at low cost. All the sets are easy to construct, ful wiring diagrams etc. are provided, and they are suitable for complete do not need any complex alignment or other difficult setting up procedures.
The topics covered in this book include: The broadcast bands and their characteristics; The amateur bands and their characteristics; The propagation of radio signals; Simple aerials; Making an earth connection; Short wave crystal set; Simple trif. receivers; Single sideband recep tion; Direct conversion receiver.
Contains everything you need to know in order to get 88 pages Order code 8 P275 £3.95

AN INTRODUCTION TO AMATEUR

COMMUNICATIONS SATELLITES

A. Pickford

Communications and broadcast satellites are normally inaccessible to individuals uniess they are actively involved in their technicalities by working for organisations such as British Telecom, the various space agencies or sion receiver system do not participate in the technical aspects of these highly technological systems.
There are a large number of amateur communications satellites in orbit around the world, traversing the globe continuously and they can be tracked and their sig nals received with relatively inexpensive equipment. This equipment can be connected to a home computer such as the BBC Micro or
received signals.
received signals.
This book describes several currently available systems, their connection to an appropriate computer and how they can be operated with suitable software.
can be operated with suitable software.
102 pages \quad Order code BP290

AERIAL PROJECTS

R. A. Penfold

The subject of aerials is vast but in this book the author has considered practical aerial designs, including active. oop and ferrite aerials which give good periormances and plex theory and mathematics of aerial design have been avoided.
Also included are constructional details of a number of aerial accessories including a pre-selector, attenuator, filers and tuning unit.
96 pages [Order code BP105 £2.50
INTERNATIONAL RADIO STATIONS GUIDE
. Shore
Provides the casual listener, amateur radio DXer and the rofessional radio monitor with an essential reference complex radio bands. This new edition has been completely revised and rewritten and incorporates much more information which is divided into the following sections: Listening to Short Wave Radio; Choosing a Short Wave Radio Receiver; How to Use the IRSG; Abbrevia tions; Country Codes; Worldwide Short Wave Radio Sta tions; European, Middle Eastern and African Long Wave Radio Stations; European, Near and Man Medium Wave Radio Siations: Canadian Medium Wave Radio Stations: USA Medium Wave Radio Stations: Broadcasts in English; Programmes for DXers and Short Wave Listeners; UK FM Radio Stations; Time Differences From GMT; Wavelength/Frequency Conversion.
226 pages
Order code BP255

The circuits covered are mainly concerned with signal generation, power supplies, and digital electronics.
The topics covered in this book include: 555 oscillators; sinewave oscillators; function generators: CMOS oscillators; voltage controlled oscilators, 555 monostables; CMOS monostables; TTL monostables; precision long timers; power supply and regulator circuits; negative supply generators and voltage boosters; digital dividers, decoders, etc: counters and display drivers; D/A and A/D converters; opto-isolators, flip/flops, noise
generators, tone decoders, etc.
Over 170 circuits are provided, which it is hoped will be useful to all those involved in circuit design and application, be they professionals, students or hobbyists.
192 pages Order code BP322 £4.95
HOW TO USE OP-AMPS
E. A. Parr

This book has been written as a designer's guide covering of circuits and amplifiers, serving both as a source book The approach has been made as non-mathematical as pos.
sible.
160 pages
Order code BP88
£2.95

A BEGINNERS GUIDE TO TTL DIGITALICs
R. A. Penfold This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates oscillators, timers, flip/flops, dividers, and decoder circuits Some practical circuits are used to illustrate the use of TTL devices in "real world" applications 142 pages Order code BP332
$\mathbf{£ 4 . 9 5}$

DIRECT воок SERVICE

ORDERING DETAILS
Please state the title and order code clearly, print your name and address and add the required postage to the total order.
Add $£ 1$ to your total order for postage and packing (overseas readers add $£ 2$ for countries in Europe, or add $£ 5$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order, ($£$ sterling only) made payable to Direct Book Service or credit card details (including the card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, WIMBORNE, DORSET BH21 1RW (mail order only).
Although books, videos and software are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability (see latest issue of Everyday with Practical Electronics) before ordering from old lists.
Note - our postage charge is the same for one book or one hundred books!
MORE BOOKS NEXT MONTH
Direct Book Service is a division of Wimborne Publishing Ltd
Tel: 0202881749
Fax: 0202841692

ELECTRONICS SOFTWARE

from E.P.T. Educational Software (Tel: 0376 514008)
If you are looking for a means of improving your knowledge of the basics of electronics then this software is for you.

ELECTRONICS PRINCIPLES II

\star Insulators, Conductors, Resistance \star D.C. Circuits
\star Capacitance and Inductance \star A.C. Series Circuits
\star A.C. Parallel Circuits \star Reactance and Impedance
\star A.C. and D.C. Power \star Frequency and Tuned Circuits
\star Using Numbers \star Complex Numbers, Phase Angles
\star P.N. Junction Diode \star Transistors \star Operational Amplifiers \star Logic Gates \star Digital Number Systems \star Combinational Logic \star Flip Flops \star Counters and Shift Registers \star Memory \star Microcomputer operation
Electronics Principles $I I$ is a major revision of the successful original version currently used by electronics hobbyists, schools, colleges, and for training within industry throughout the U.K. and overseas. Some of the modifications are as a result of feedback from teachers, but mostly the changes are due to making greater use of the available improvements in software development technology.

The individual sub-menus are changed to selection buttons, this makes all those topics available within a module, clearly visible to the user. The layout of the calculations is considerably enhanced, firstly by providing the formulae used and secondly by showing the calculation steps, exactly as in a textbook; the advantage here being that you can input your own values.

Having reviewed a dozen, or more, educational software packages designed to "teach" electronics, I was more than a little sceptical when I first heard about Electronics Principles: there seemed to be little that could be done that has not been done elsewhere. When I started to use the package my views changed. Indeed, I was so impressed with it that I quickly came to the conclusion that Everyday with Practical Electronics readers should have an opportunity to try the package out for themselves! - MIKE TOOLEY B.A. Dean of Faculty of Technology, Brooklands Technical College

Over 200 menu driven screens with interactive graphics enabling a learning by doing approach to encourage experimentation.
Complete package Only $£ 49.95$ inc. VaT.

ELECTRONICS PC TOOLBOX VERSION 2.0

An extended and improved version of the popular Toolbox software. Presents commonly used formulae in a way that makes calculations easier thus encouraging experimentation in circuit design.

Covers D.C. Calculations from Ohm's Law to Loading a Potential Divider; Further D.C. Calculations from Power Ratio Decibels to Kirchhoff's Laws; A.C. Calculations from Average Peak Current to Filters and Admittance; Capacitance Calculations from Values to RC Time Constants; Inductance Calculations from Values to Selectivity; Binary Calculations from Addition to 2's Complement; Numbers and Phase Angles from Addition to Polar to Rectangular; Operational Amplifiers from Inverting Op.Amp to Op.Amp Differentiator.

Only $£ 19.95$ inc. vat

GCSE ELECTRONICS

Designed to complement our Teach-In No. 7 publication, which contains a complete electronics course aimed at GCSE and A Level students, this software can also be used as a stand alone learning package for everyone interested in electronics. From simple current flow and Ohm's Law it covers the whole GCSE sylabus from a.c. to semiconductors, op.amps, digital electronics and even a grounding in microprocessors.

An interactive, user friendly medium which assits learning in an enjoyable and interesting way.

Only $£ 24.95$ inc. VAT
Teach-In No 7152 page A4 book $£ 3.95$ including a Special Limited Version of GCSE Electronics software which covers the first two of the 12 parts of the course, thus enabling an assessment of the complete package. Both the book and the software can be used on their own.

GCSE MATHS

A series of programs covering all the major topics required by the school syllabus. Designed to be user friendly enabling you to study or revise in what we believe is an interesting and enjoyable way. There are nearly one hundred and fifty menu driven screens with interactive graphics, enabling a "learning through doing" approach to encourage experimentation. Now being used in many schools throughout the U.K.

Overseas customers or those with general interest in maths order Mathematics Principle - covers the same subjects without reference to GCSE.

Only $£ 49.95$ inc. VAT

These programs require a PC (or fully compatible system) running DOS with an 80286 or better processor and VGA (ideally colour) graphics. In addition you must have 4 Mb of hard disk space, a high density (1.44 Mb) floppy drive and at least 640 K of RAM. We also recommend the use of a mouse. Site licences are available - please enquire.

Distributed by Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset, BH21 1RW. (Mail Order Only).
Add $£ 1$ per order for UK post and packing. Make cheques payable to Direct Book Service.
Direct Book Service is a division of Wimborne Publishing Ltd. publishers of Everyday with Practical Electronics.
Tel: 0202 881749. Fax:0202841692.
Visa and Mastercard orders accepted (minimum credit card order $£ 5$) - please give card number, card expiry date and cardholders address if different from the delivery address. Orders are normally sent within seven days but please allow a maximum of 28 days - longer for overseas orders.
OVERSEAS ORDERS: Add $£ 2$ postage for countries in the E.E.C. Overseas readers, outside the E.E.C. countries add $£ 3$ for airmail

PCB SERVICE

Printed circuit boards for certain EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PC8 Service, Everyday with Practical Electronics, Allen House, East Borough. Wimborne, Dorset BH21 1PF. Cheques should be crossed and made payable to Everyday with Practical Electronics (Payment in f sterling only).
NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.
Back numbers or photostats of articles are available if required - see the Back Numbers page for details.
Please check price and availability in the latest issue.
Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
Electronic Fire APR'93	820	£4.84
Mind Machine MkII - Signal Generator	824	$£ 5.57$
Ventilation Fan Timer	825	£4.70
Universal Data Logger	826	$£ 5.88$
Mind Machine MkII - Magic Lights MAY'93	827	f6.58
Superhet Radio Control Receiver	828	$£ 5.93$
Guitar Preamp and Distortion Unit	829	$£ 5.46$
Linear Clock - Timing Board	830	£8.00
Display Board	831	f 7.00
Universal Alarm Module	9070	¢3.00
Electronic Snooker Scoreboard JUNE'93	832	¢9.17
- Computer Interface	833	£6.39
Xenon Strobe	834	$£ 5.84$
Electronic Gong	835	£7.50
Micro Lab-p.c.b., EPROM, PAL and booklet	MICRO	£35.00
Bike Odometer (pair of boards) AUG'93	836/7	$\underline{\mathrm{C}} .00$
Amstrad PCW A to D Converter (double-sided)	838	£9.85
Experimental Electronic Pipe Descaler	839	¢5.50
Sound Activated Camera Trigger SEP'93	840	¢5.34
Main and Display boards	841/2	¢7.30
Kettle Alert	843	$£ 5.19$
Linear Power Supply (double-sided)	844	£9.77
Multi-Purpose Audio System		
Six Channel Stereo Mixer	845	¢11.98
Multi-Purpose Audio System NOV'93		
Microphone Pre-Amp module	846	£4.88
RIAA Pre-Amp module	847	$£ 5.11$
20 Metre Receiver	848	£6.63
Tone Control and 1W Stereo Amplifier	849	£6.09
Tone Controi	850	£5.12
1W Stereo Amplifier	851	£4.88
Three-Way Christmas Tree Lights Flasher	853	$£ 5.65$
Auto Alarm	854	£5.49
250W/600W Battery to Mains Inverter	855	£13.92
Multi- Purpose Audio System 10W + 10W Stereo Power Amplifier		
Amplifier	852a	$£ 5.65$
Power Supply	852b	£5.49
Pond Heater Thermostat	856	£5.77
Timer/NiCad Capacity Checker	857	£6.30
Balanced Microphone Preamplifier	858	$£ 5.30$
Balanced Microphone Power Supply	859	£5.14
Whistle Controlled Light Switch	860	f5.19
Battery to Mains Inverter - U.P.S. charger board	862	£7.38
Three Phase Generator MAR'94	861	£5.95
Visual Doorbell	863	£5.80
CCD TV Camera - Control Board (double-sided, plated-through-hole)	865	£15.00
Telephone Ring Detector APR'94	864	£4.72
Combined Video, Test \& Ext Plug Boards	866a/e	£11.00
Frame Grab Control	867	f15.00
(double-sided plated-through-hole)		+4.77
EPE Sound DAC PC Sound Board	868	£4.77
MOSFET Variable Bench Power Supply	869	£5.80
L.E.D. Matrix Message Display Unit MAY'94		
Display Board	870	£18.00
CPU Board	879	£7.20
Stereo Noise Gate	873	f6.14
Simple TENS Unit	875	£5.84
Capacitance/Inductance Meter	876	£6.44

PROJECT TITLE	Order Code	Cost
Advanced TENS Unit JUN'94	877	¢6.56
Digital Water Meter - Scaler	878	£11.19
Counter/Display	879	pair
L.E.D. Matrix Message Display Unit		
Keypad	872	£5.19
PC Interface	880	£5.82
Microprocessor Smartswitch	881	£5.61
Microcontroller P.I. Treasure Hunter	882	£6.60
Print Timer JULY'g4	874	£5.82
Watering Wizard	883	£6.60
Simple NiCad Charger	884	£4.98
Voxbox	885	£6.90
Stereo HiFi Controller - 1 Power Supply	886	£5.66
Stereo HiFi Controller - 2 AUG'94		
Main Board	887	£7.39
Expansion/Display Boards (pair)	888	$£ 9.80$
Dancing Fountains - 1		
Preamp	889	£5. 28
Pump Controller	890	£5.41
Filter	891	$£ 5.23$
6802 Microprocessor Development Board	894	£9.15
Dancing Fountains - 2 SEPTM4		
PC-Compatible Interface (double-sided)	892	£10.90
Automatic Greenhouse Watering System	895	$£ 5.33$
Seismograph - 1 Sensor/Filter	896	£6.23
Clock/Mixer	897	£5.87
3-Channel Lamp Controller	899	£8.17
Seismograph - 2 OCT94		
PC-Compatible Interface (double-sided)	898	£10.72
Visual/Audio Guitar Tuner	900	£7.55
Digilogue Clock	901	£12.50
Hobby Power Supply	902	£5.00
Audio Auxiplexer		
Control Board	903	$£ 7.72$
Receiver	904	£6.24
Power Controller NOV'94	905	¢4.99
1000V/500V Insulation Tester	906	£5.78
Active Guitar Tone Control	907	£4.50
TV Off-er (pair)	908/909	£7.25
Video Modules-1 Simple Fader	910	£5.12
Improved Fader	911	£6.37
Video Enhancer	912	£5.15
Rodent Repeller DEC'94	913	£6.26
EPE Fruit Machine	914	f8.14
Video Modules -2 Horizontal Wiper	916	f6. 23
Vertical Wiper	917	£6.35
4-Channel Audio Mixer	918	£6.20
Spacewriter Wand	921	£4.00
Universal Digital Code Lock	922	£6. 25
Video Modules- JAN'95		
3 Dynamic Noise Limiter	919	$£ 5.92$
System Mains Power Supply	920	£4.98
Magnetic Field Detector	923	£5.77
Model Railway Track Cleaner	924	£5.11
Moving Display Metronome	925	£6.24
The Ultimate Screen Saver FEB'95	927	¢5.66
Foot-Operated Drill Controller	928	£5.73
Model Railway Signals	939	£5.96
12V 35W PA Amplifier	930	£12.25

EPE PRINTEDCIRCUIT BOARD SERVICE

Order Code Project Quantity Price

1

IARU NO CHANGE ON MORSE

In a recent issue it was reported that the IARU Administrative Council had appointed a special sub-committee to examine the issues related to the amateur Morse test, and to propose the position the IARU should take on this controversial matter.

Following the AC's meeting in Singapore on 10 to 12 September 1994. a press release included the following statement:
"A resolution concerning the requirements in the Radio Regulations for a demonstration of Morse code ability for operators licensed to use amateur frequencies below 30 MHz was adopted.

Consistent with the views of the member societies as expressed through the regional organisations, the IARU will neither propose nor support a change in the requirement at this time."

RA ANNUAL REPORT

The Annual Report of the Radiocom. munications Agency, 1993/94, shows that as at 31 March 1994 the number of amateur radio licences on issue was 63,033 . This is an increase of 3,790 over 1992/93, more than making up for the reduction of 2,200 recorded in that year.

Compared with 1992/93, there were 593 fewer class A licences, showing a continuing slow decline in this type of licence. There were, however, increases in all other types of licence, i.e., class B +3926 , Novice $A+33$, and Novice $B+425$. The actual figures were: $A-$ 31,817; B - 29,717; Novice A - 139; Novice B-1360.
The Agency reports that it maintains an active dialogue with the Radio Society of Great Britain on a wide variety of issues affecting the amateur radio community, and the national and international arrangements that govern the use of the amateur radio spectrum.

It has continued, it says, to support the efforts of the RSGB and others to promote amateur radio as a rewarding hobby, especially among young people, and continues to give its backing to the Young Amateur of the Year Award.

CB UNDER STRESS

It is also reported that CB licences have continued their downward plunge, dropping a further 3,222 to 50,704 as at 31.3.94. The Agency accepted proposals from the CB community for a relaxa. tion of current antenna restrictions and, says the Report, would be changing the licence rules in the near future.

This change will allow the use of half-wave and $5 / 8$ wavelength antennas which are capable of greatly improved performance compared with the compulsorily attenuated antennas previously permitted. (The change rules came into effect on 2 August 1994 but the RA
stress that beam antennas are still not permitted in CB operation.)

The RA has been monitoring discussions in the European Telecommunications Standards Institute about a specification for $A M / S S B$ CB equipment. Such equipment is not permitted in the UK says the Report, because of the potential for interference, and there are no plans at present for the introduction of an AM/SSB CB service even if the ETSI standard is published.

LITTLE LEO

In the USA, the FCC has granted the first v.h.f. low-earth orbit (LEO) satellite license. The new Non-voice Non-Geostationary (NVNG) Service, is popularly known as Little LEO.

The first licensee, Orbital Communications Corp. (Orbcomm), plans to provide global E-mail, equipment monitoring, position-location and paging services through a network that will eventually grow to 36 satellites.

They will provide one-way and twoway data communications to pocket-size communicators costing as little as $\$ 50$. Orbcomm transceivers will connect to laptop computers for E-mail. Early users of the system will include shipping companies tracking the location of trailers and containers or monitoring conditions such as container temperature, and oil and gas companies monitoring remote pipelines.

At the Orbcomm control room arrays of Unix workstations, running tracking software, monitor and predict spacecraft position and status. The highly automated system can be operated by two controllers, a far cry from the massive Mission Control facilities required by satellites of old.

The NVNG Service is the first fully-commercial descendant of the Amateur Satellite Service pioneered by radio amateurs since the 1960's. (W5YI Report).

STELAR SUCCESS

AMRED (Amateur Radio in Education), journal of STELAR (Science \& Technology through Educational Links with Amateur Radio), reports good results from the Easter '94 crash Radio Amateur Examination course for teachers from schools with no current amateur radio programme. There was 100 per cent success on paper one, and three retakes of paper two were planned for December.
Applications are now invited for next Easter's course (sponsored by Kenwood UK) from teachers from schools with no RAE qualified staff (or where the licensed teacher is about to move on).

Those selected will receive four days of tuition, course materials, meals and hotel accommodation free of charge. Their only financial obligation will be travel to and from Rickmansworth, plus registration and exam fees at their local City \& Guilds examination centre for the May 1995

RAE. There are twenty places available and early application is recommended.
Teachers interested should send a brief letter stating their interest to: Richard Horton G3XWH, Harrogate Ladies College, Clarence Drive, Harrogate, North Yorkshire HG1 2OG. Please mention that you read about STELAR in EPE.

UNIVERSAL LICENCE?

According to the WSYI Report, the United States is considering International Amateur Radio Licensing. There is already an international agreement whereby some 20 countries, including the UK, participating in the Conference of European Postal and Telecommunications Administrations (CEPT), have a Common Amateur Radio Licence arrangement. Last year New Zealand was the first country outside Europe to join in the scheme, and now the State Department is discussing with representatives of the CEPT the possibility of the CEPT Common Licence being recognised by the United States and vice versa.
The FCC, the U.S. licensing authority, is also working on an international amateur radio operating permit for certain countries in North, Central and South America. Unlike the CEPT arrangement, which still requires some formality, the Americas licence would be something like an international driving licence, valid in all participating countries.

The way things are going, perhaps it's not too fanciful to suggest that there will come a time when amateur licences issued nationally will be universally recognised around the world!

GB2SM TO CONTINUE?

Following an announcement by the Science Museum in London that its radio station, GB2SM, was closing on 7 November 1994, amateurs around the world have expressed dismay at the loss of this famous station after nearly forty years of operation.

Happily, the museum has agreed to enter into discussions with the Radio Society of Great Britain with a view to their providing the museum with a state-of-the-art hands-on amateur radio exhibit to replace the old station.

In the meantime, the RSGB is hoping to devise some means of keeping the GB2SM callsign on the air until the replacement exhibit is in place.

CORRECTION!

In the November column, reporting on the new power level for Top Band, it was indicated that this extended across the whole band. In fact, 26 dBW is only permitted over the sub-band 1.810 MHz to 1.850 MHz . For the rest of the band, up to 2.000 MHz , the limit is still 15 dBW .

My thanks to reader Les Caine, G4XVQ. for writing to me about this "slip of the pen" as he so tactfully described it!

COMPAC ELECTRONICS
3L WEYLOND ROAD, DAGENHAM, ESSEX RM8 3AB
Tel: 0819840831

L.O.P.T. TRANSFORMERS WIDE RANGE STOCKED. PHILIPS, FERGUSON etc. Phone with your requirements.

Handsets: Amstrad, Toshiba Ferguson, Philips, VIDEO
PLUS handsets, ex-rental, £20.
Universal Remote Control,
operates TV, Video, satellite.
We repair Philips hand sets, f5.00.
Video carriages - wide range
stocked.
Pinch Rollers.
Video figure eight mains
leads, £1.00.
R.F. Video leads, 50p.

SCART to SCART leads,
£1.75.
SCART to SCART leads, all
pins connected, £2.33.
Aerial R.F. cable, RG62.
30p per mtr.
Aerial R.F. male plugs, 30p each.
TV on/off switches, £1.95,
most types.
Halogen Lamps, 240V, 500W, £2.00.
Miniature Tool Kit,
comprises: side cutters
knife, screwdrivers, $£ 7.00$

Marconi Blue Cap, ex-rental $£ 5$.
Amstrad Compact black cap. LNB £29.95 plus £2, post \& carr.
Satellite dishes, $£ \mathbf{2 8}$ plus $\mathbf{£ 5}$, post \& carr.
Satellite cable, 30p mtr.
F. Connectors, 40 p each.

MASPRO LNB FSS,
1•dB max., £13.33.
NOKIA LNB FSS 1•3, £13.33. NOKIA Feed Horns, for offset antenna, $£ 10.67$.
NOKIA Electromagnetic, Polarizers, £8.00.

High quality loudspeaker cable, 50 p per mtr
Servicing Sprays $£ \mathbf{\$. 0 0}$ most types.

Please add $£ 1.00$ postage \& packing, VAT inclusive.

VARIABLE VOLTAGE TRANSFORMERS		JE OFFER
INPUT 220/240V AC 50/60OUTPUT O-260Price		lent condition Designed primarily to eject a precise controliable amount of fluid from a medical syringe (latter not supplied). Contains the following remov-
0.5 KVA 2.5 amp max	£37.90 £64.53 inc VA	EPa
1 KVA 5 amp max	41.15	
2 KVA 10 amp max		
	(179.78 inc	
3KVA 15 amp max	$88.65 \quad £ 8.50$	quality componemts. Reg Ridiculousty low price:
5 KVA 25 amp max		
WIDE RAMGE OF XEWOW FLLSHTUBES		
		240 V AC CENTRIFUGAL LLOWER Manuf. Surpus Sketon Blower surable for
ULTRA VIOLET BLACK LIGHT FLOURESCENT TUBES		
Z3OV AC BALLAST KIT For either 6 in. 9 in or 12 in fubes $\mathbf{~} \mathbf{6 . 0 5}+\mathrm{f}^{1} .40 \mathrm{pBon}$ (f8 75		
		inch
		Price inc Vara
Oither Wave Lengths of UV. TUBE available please tetephone your enquiries		SOLIO STATE EHT 30/240V AC. OUtPut
Only $\mathbf{C} 38.00+54.00 \mathrm{p} \mathrm{\&}$ ($\mathbf{5} 49.35$ inc VAT) 160 WATT SELF BALLASTED BLACK LIGHTMERCURY BULB Avalable with ES fitting.Price inc VAT \& pap E25.65		
		Eser
12V D.C. BILGE PUMPS 500 GPH 15 h head 3 amp E19.98 1750 GPH 15 h heod 9 amp E 34.55 Also now sualable ${ }^{2}$ N.C. 1350 GPH 15 t head Alld All desioned to be urad submarged. PRICESTNCLUDEPGP VAT		
SUPER HY-LIGHT STROBE KIT Designed for Disco. Theat ricel use etc. Approx 16 joules. Adjustable speed $£ 50.00+£ 3.00$ psp		Pre 15 amp changeovel lever meroswich, nppe S171.
Case and reflector $£ 2400+\mathbf{\$ 3} 00$ p\&p ($£ 31.73 \mathrm{inc}$ VAT). SAE for further details including HY-Light and industrial Strobe Kits.		
SERVICE TRADING CO		
Showroom openMonday/friday	L:	

[^0]: (1) Wimborne Publishing Ltd 1995. Copyright in all drawings, photographs and articles published in EVERYDAY with PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

[^1]: VFA
 Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 70J
 Tel: 01954-211716 Fax: 01954-211880

[^2]: "Where $R_{\text {in }}$ is the input resistance of the op.amp, and $A_{O L}$ is the open loop voltage gain.

