Control System Legal Transmitter/Receiver for a wide range of applications

PIC-Agoras A computer for almost any wheeled vehicle Measures and interprets angular rotation MIDI Matrix Stop swapping leads with this switching unit MPEG 2 Dicital Television
We unravel the technicalities
The No. 1
Magazine For
Electronics Technology \& Computer Projects

RUSSIAN BORDER GUARD BINOCULARS £1799 Probatly the best binoculars in the worldl ring for brochure. VEGA RUSSLAN MUL TIBAND World communications recemer
9 wave bands, (5 short, 1 LW, 1FM, 1 MW) iftemal ferrite and externa 9 wave bands, (5 short, 1 LW, 1FM, 1 MW) intermal ferrite and extemal £45 rel VEGA
NEW LASER POINTERS < $5 \mathrm{~mm}, 75$ metre range, hand held unit runs on iwo AA batteries (supplied) 670 nm . $£ 29$ ref DEC49 MULTIEAND RADIO Compact general purpose radio recener covering air, pb, IV, cb etc. Squetch vol and tuning $£ 24$ ref MB1 DIVINING RODS $£ 3.99$ a pair! ref EF111
MOONSHINE BIBLE 270 page book covering the production of alchohol from potatoes, nce, grains etc Drawings of simple home made stills night through to commercial systerns. $£ 12$ ref MS3 NEW HIGH POWER MINI BUG With a range of 800 metres of more and up to 100 hours 'use from a PP3 this will be pooularl Bug measures less than 1" squarel E28 Rel LOT102
BUILD YOU OWN WINDFARM FROM SCRAP New pubication gives step by step guide to bullding wind generators. Armed with thes publication and a good local scrap yard could make you self sumbient in electricityl $£ 12$ ref LOT81
PC KEYBOARDS PS2 connector, top quality suitable for all 286 $386 / 486$ etc $£ 10$ ref PCKB. 10 for $£ 65$
TRACKING TRANSMITTER range $1.5-5$ miles, 5.000 hours on AA battenes, also transmits info on car direction and motionlWorks with any FM radio. $1.5^{\prime \prime}$ square. $£ 65$ ref LOT101
ELECTRIC DOOR LOCKS Complete lock with both Yale lock and 12 v operated deadlock (keys included) £ 10 ref LOT99 SURVEILLANCE TELESCOPE Superb Russian zoom telescope adjustable from $15 x$ to $60 x \mathrm{x}$ complete with metal inpod (imposible to use without this on the higher seltings) 66 mm lense, leather carrying case £149 ref BAR69
WIRELESS VIDEO BUG KIT Transmits video and audio signats from a minature CCTV camera (included) to any standard televisionl All the components including a PP3 battery will fit into a cigarette packet with the lens requiring a hole about 3 mm diameter Supplied with telescopic aerial but a piece of wire about $4^{\prime \prime}$. long will
still give a range of up to 100 metres. A single PP3 will probably give still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use. 299 REF EP79 (probably not licensablel) GPS SATELLITE NAVIGATION SYSTEM Made by Garmin, the GPS38 is hand hetd, pocket sized, 255 g. position, allitude, graphic compass, map bulder etc $£ 179$ ref GPS1.
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 V 100 mA . auto electronic shutter, 3.6 mm F2 lens, CCIR, 512×492 picets, video output is iv p-p (75 ohm). Works directly into a scart or video input on a tv or video. IR sensitive. $£ 79.95$ ref EF137.
IR LAMP KIT Suitable for the above camera, enables the camera to be used in total dankness1 £6 ref EF138
INFRA RED POWERBEAM Handheld battery powered lamp, 4 inch reflector, krypton bulb, gives out powerful infrared light! 4 D cells required $£ 29$ ref PB1.
MONO VGA MONITORS, Perfect condition, Compeq. 14", 3 months warrarty $£ 29$ rel MVGA
SUPER WIDEBAND RADAR DETECTOR Detects both radar and laser , X K and KA bands, 360 degree coverage, front and rear wave guides, may be illegal to use! $1.1^{\prime \prime} \times 2.7^{\prime \prime} \times 4.6^{\prime} £ 149$ ref RO2
9 WATT CHIEFTAN TANK LASERS Double beam untes designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and molor drwe untts for alignement 7 mile range, no circuit diagrams due to MOD, new price $£ 50,000$? us? £ 199 . Each unit has two gallum Areenide injoction lasers, 1×9 watt, 1×3 watt, 900 mm wavelength, 28 vd , 600 hz pulse frequency The units also cortain an electronic receiver to detect refected egnals from largets $£ 199$ for one Ref LOT4.
TWO WAY MIRROR KIT includes special adhesive film to make two way mıror(s) up to $60^{\circ} 20^{\circ}$ (glass not included) includes full instructions. $£ 12$ ref TW1.
NEW LOW PRICED COMPUTERWORKSHOP/HIFI RCB UNITS Complete protection from faulty equipment for everybody! Inline unit fits in standard IEC lead (extends \hat{t} by 750 mm), fitted in less than 10 seconds, resethest button, 104 rating. $£ 6.99$ each ref LOT5
Or a pack of 10 at $£ 49.90$ ref LOT6. If you want a box of 100 you can Or a pack of 10 at $£$
have one for $£ 250$!
have one for $£ 250!$
WND UP FLYINC
WIND UP FL YING PARROT! Genuine parrot that haps its wings and fies for up to 50 meters $£ 6$ ref EF2
RADIO CONTROLLED CARS FROM $£ 6$ EACHIII All returns from famous manufacturer, single channel (left, inght,forwards, bacikwards) $£ 8$ ref LOT1. Two channel with more features $£ 12$ ref LOT2.
THOUSANDS AVALLABLE RNG/FAX FOR DETALS! MAGNETIC CARD READERS (Swipes) $£ 9.95$ Cased with flylesds, designed to read standard credit cardsl they have 3 wiree coming out of the head so they may write as well? complete with control elctronics PCB. just c9.95 ré BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up offiferent businesses, you peruse these at your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (and sell) the manuals as much as you likel $£ 14$ ref EPT4
COIN OPERATED TIMER KIT Complete with coinsiot mechaniam, adjustable time delay, relay output, put a coinsiot on anything you likel TV, s, videos, fridoes, drinks cupboards. HIFI. ZENITH $900 \times$ MAGNIFICATION MICROSCOPE Zoom. metal construction, built in light, shrimp tarm, group viewing screen, lots of accessories. $£ 29$ ref ANAYLT.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ fef BAR3 NIGHTSIGHTS Model TZS4 with infra red illuminator, nows up to 75 metres in full darkness in infrared mode, 150 m range, 45 mm lens. 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA battenes required. 950 g weight $£ 199$ ref BAR61. 1 years warranty LIQUID CRYSTAL DISPLAYS Bargain pricest, 16 character 2 line, $99 \times 24 \mathrm{~mm}$ £2.99 ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm}$ £3.99 ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} 55.99$ ref SMC1e40A

TAL-1, 110MN NEWTONIAN REFLECTOR TELESCOPE Russian Supert astronomical 'scope, everything you need for some serious star gazingl up to 169x magnification. Send or fax for further information ref TAL-1, £249
SOLAR ENERGY/GENERATOR PLANS For your home, loads of info on designing systems etc $£ 7$ ref PV1
SOLAR COOKERS Comprehensive guide to buildingsolar powered cookers, includes plans, recipes, cooking times etc $£ 7$ rel SeC1

WOLVERHAMPTON
 ELECTRONICS STORE
 NOW OPEN IN WORCESTER ST TEL 0190222039

CENTRAL POINT PC TOOLS Award winnung sofware. 1,300 virus checker, memory optimiser, disc optimiser, file compression, low level formatting, backup scheduler, disk defragmenter, undelete, 4 calculators, D base, disc editor, over 40 viewers, remote computing, password protection, encryption, comprehensive manual supplied etc $£ 8$ ref lot $9735^{\prime \prime}$ disks
COLOUR CCTV
VIDEO CAMERAS,
BRAND NEW AND,
CASED, £119.
PERFECT FOR SURVEILLANCE,
INTERNET,VIDEOCONFERENCING,
SECURITY, DOMESTIC VIDEO
Works with most modern video's, TV's, Composite monitors, videograbber cards etc Pal, iv PP, composite, 75ohm, $1 / 3^{\prime \prime}$ CCD, 4 mm F2.8, 500×582, 12 vdc , mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 10 or more $£ 99$ ea MICRO RADIO Its tiny, just 3/8" thick, auto tunning, complese with headphones. FM $£ 999$ ref EP35
HANDHELD SCANNERS 10 channel, built in charger. LCD display $£ 119$ ref $8110 B, 100$ channel model $£ 229$ ref B110E.
SMOKE MACHINE 42.3 cubic metres a min from this mains operated machine $£ 299$ ref G002B, smoke fiuld $£ 25$ (5 litres) oives about 2.5 hours use rel GOO2A

Check out our WEB SITE

full colour interactive

1997 catalogue

httpa/wwnv.pavilioncouk/bull-eleotrleal
IBM PS2 MODEL $150 Z$ CASE AND POWER SUPPLY
Complete with fan etc and 200 watt power supply. $\mathbf{£ 9 . 9 5 \text { rel EP67 }}$ 1.44 DISC DRVES Standard PC $3.5^{\circ \prime}$ dives but returns so they will need attention SALE PRICE £4.99 ref EP68
1.2 DISC DRIVES Standard $5.25^{\prime \prime}$ drives but returns so they will 1.2 DISC DRIVES Standard $5.25^{\prime \prime}$ drives but returns so
need attention SALE PRICE NOW ONLY $\mathbf{E 3 . 5 0}$ ref EP6s
need attention SALE PRICE NOW ONLY $£ 3.50$ ref EP69
PP3 NICADS Unused but some storage marks. £4.99 ref EP52 GAS HOBS AND OVENS Brand new gas applances, perfect for \&mall flats etc. Basic 3 bumer hob $£ 18$ ref BAR316. Basic small built in oven SALE PRICE E59 ref EP73
ENERGY BANK KIT $1006^{\prime} \times 5^{\circ}$ © 100 mA panels, 100 diodes, connection details etc $£ 99$ ref EF112.
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses, includes wordprocessor, report writer, windowing, notworkable up to 10 stations, mukiple cash books etc. 200 page try before you buyl) SALE PRICE £9.95 ref SA12. SAVE $£ 1201!$ PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with buit in psu, leed and sware. Ideal a basic VGA screen. Complete with built in psu, lead and sware., Ideal
for laptops or a cheap upgrade. Supplied in kit form for home assembly.
YUASHA SEALED LEAD
YUASHA SEALED LEAD ACID BATTERIES Two suzes currently available this month. 12 V 15 AH at $£ 18$ ref LOT8 and 0 V 10 AH at just $\mathrm{E6}$ ref LOT7
ELECTRIC CAR WNDOW DE-HERS Complete with cable,
plug etc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with dode and 3
BULL ELECTRICAL
250.PORTLAND ROAD, HOVE, SUSSEX.

BN3 SQT. (ESTABLISHED 50 YEARS).
MAIL ORDER TERMS: CASH, PO OR CHEQUE
WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT.
24 HOUR SERVICE $£ 4.50$ PLUS VAT.
OVERSEAS ORDERS AT COST PLUS $£ 3.50$
PLEASE ALLOW 7-10 DAYS FOR DELIVERY PHONE ORDERS WELCOME (ACCESS, VISA, SWTTCH, AMLRICAN EXPRESS)

TEL: 01273203500
FAX 01273323077
E-mail bull@pavilion.co.uk
metre lead fitted with a cigar plug 12v 2watt. $\mathbf{\text { E12.99 REF AUG10P3 }}$ PROJECT STRIPPERS Small cased UNITS ideal for stripping. lots of useful goodies including a smart case $120 \times 150 \times 50 \mathrm{~mm}$ with feet etc, and lots of components SALE PRICE JUST E10 FOR FNE REF MD1 or a pack of 20 for $£ 19.95$ ref MD2.
SOLAR POWER LAB SPECIAL You get TWO $6^{\prime \prime} \times 6^{\prime \prime}$ ov 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kt SALE PRICE JUST EA.99 REF SA27
13.8V 1.9A PSU cased with leads. Just £9.99 REF MAG10p3 UNIVERSAL SPEED CONTROLLER KIT Designed by us for the Cs motor but ok for any 12 v motor up to 30 A Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MA017
SOLAR NICAD CHARGERS $4 \times$ AA size 59.99 ref 6P476, $2 \times$ C sire £9.99 ref 6P477
VEWDATA SYSTEMS made by Phillips, complete with internal 120075 modem, keyboard, psu etc RGB and composite outputs, menu driven, autodialler etc SALE PRICE E 12.99 REF SA18 MEGA POWER BINOCULARS Made by Helios, 20 x magnification, precision ground fully coated optics, 60 mm objectives, shock resstant caged priens, case and neck strap. $£ 89$ ref HPH1 GIANT HOT AIR EALLOON KIT Buid a 4.5 m circumfence, 1.8 m high fully functioning balloon, can be launched with home made bumer etc Reusable (until you loose it) $£ 12.50$ ref HA1
AIR RIFLES . 22 As used by the Chinese anmy for training puposes, 80 there is a tot aboutl $£ 39.95$ Ref EF78. 500 pelvets $£ 4.50$ ref EF80. VIDEO SENDER UNIT. Transmits both audio and video signals from either a vdeo camera, video recorder, TV or Computer etc to any standard TV set in a 100 range! (tune TV to a spare channel) 12 vDC op. Price is $£ 25$ REF: MAG15 $12 v$ psu is $£ 5$ extra REF: MAGSP2 *MINATURE RADIO TRANSCEIVERS A par of walke tallioes with a range up to 2 km in open country. Units measure $22252 \times 155 \mathrm{~mm}$. Including cases and earp'ces. $2 \times P \mathrm{P} 3$ req'd. $£ 37.00 \mathrm{pr}$ Rer: Macso *FM TRANSMITTER KIT housed in a standard working 134 adapterl! the bug runs directly off the mains so lasts forevert why pay adapherl the bug runs directiy
E 700 ? or price is $£ 18$ REF: EF62 (kit) Transmits to any FM radio. Built and tested version now available of the above unit at $£ 45$ ref Built and
EXM34
*FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies $9 v$ battery rea'd. $£ 14$ REF: MAG14
GAT AIR PISTOL PACK Complete with pistol, darts and pellets $£ 14.95$ Ref EF82B exra pellets (500) $£ 4.50$ ref EF80.
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA SALE PRICE عA.99 REF SA24.
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P1

MIXED GOODIES BOX OF

MUED COMPONENTS WEIGHING 2 KILOS YOURS FOR JUST £5.99
4×28 TELESCOPAC SIGHTS Sutable for all air rifles, ground lenses, oood light gathenng properties. $£ 24.95 \mathrm{ref} \mathrm{R} / 7$.
GYROSCOPES Remember these? well we have found a company that still manufactures these popular scientific toys, perfect gift or for educational use etc. $£ 6$ ref EP70
HYPOTHERMIA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised foll blanket, reflects more than 90% of body heat. Also suitable for the construction of two way mirrorsl $£ 3.99$ each ref Oh.041.
NICAD CHARGERS AND BATTERIES Standard unversal mains operated charger, takes 4 batts + 1 PP3, £10 ref PO110. Nicads- AA size (4 pack) $£ 4$ ref 4 P44, C sice (2 pack) $£ 4$ ref 4 P73, D
size (4 pack) $£ 9$ ref 9 P12 size (4 pack) £9 ref 9p12.
LENSTATIC RANGER COMPASS Oil filled capsule, strong metal case, large luminous points. Sigth line with magnifying viewer. 50 mm dia, $86 \mathrm{gm} £ 10.99$ re/ O/K604.
RECHARGE ORDINARY BATTERIES UP TO 10 TIMES! With the Battery Wirardl Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D, four to charge ail popular brands of ordinary batteries $A \mathcal{A}, A A, C, D$, four rejects uneuitable celte, complete with mains adaptor. BS approved. Price is £21.95 ref EP31
TALKING WATCH Yes, it actually fells you the time at the press of a bution. Also features a voice alarm that wakes you up and fells you what the time is! Lithium cell included. $£ 7.99$ ref EP26.
RUBBER COATED HELIOS Binocutars, 10×25, fully coated optics. £45 ref RP1, same spec but nitogen filied and waterproof £75 ref RP2
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU
YOUR LICENCE! The new multiband 2000 radar detector can prevent even the most responsible of drivers from losing their licencel Adjustable audible alarm with 8 flashing leds gives instant waming of 'around bends' and 'rear K, and Ka bandis, 3 mie range, over $4.25^{\circ} \times 2.5^{\circ} \times 75^{\prime \prime}$ Can pay for theelt in just one day! $£ 89$ ref EP3.
3" DISCS As used on older Amstrad machines, Spectrum plus3's etc £3 each ref BAR400
STEREO MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, lights, filters etc etc very comprehensme microscope that would normally be around the $£ 700$ mark, our price is just $£ 299$ (hull money back guarantee) full details in catalogue SECOND GENERATION NIGHT SIGHTS FROM E748 RETRON Russian night sight, 1.8 x , infla rad lamp. 10 m -inf, standard M42 lens. 1.1 kg . $£ 349$ ref RET1
LOW COST CORDLESS MIC 500 range, $90-105 \mathrm{mhz}, 115 \mathrm{~g}$, $193 \times 26 \times 39 \mathrm{~mm}$, ov PP3 battery required. $£ 17$ ref MAG15P1

SAE FOR FREE

COLOUR CATALOGUE
-SOME OF OUR PROOUCTS MAY BE UNLICENSABLE IN THE UK

WE BUY SURPLUS STOCK
FOR CASH
SURPLUS STOCK LINE 0802660377

ISSN 02623617
PROJECTS . . THEORY ... NEWS
COMMENT . . . POPULAR FEATURES

VOL. 26 No. 4
APRIL 1997

EUERYBAY

PRAGTICAL

ELECTRONIES
 http:/www.epemag.wimborne.co.uk

The No. 1 Magazine for Electronics, Technology and Computer Projects

(C) Wimborne Publishing Ltd 1997. Copyright in all drawings, photographs and articles published In EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Projects and Circuits

418MHz REMOTE CONTROL SYSTEM by Robert Penfold
You don't need a licence to use this coded radio control system
MIDI MATRIX by Neil Johnson
Banish spaghetti junctions from your MIDI studio!
INTERFACE by Robert Penfold
Frequency synthesising using a p.l.I. and divide-by-N counter
INGENUITY UNLIMITED hosted by Alan Winstanley256
Accurate Minutes Timer; Code Switch; Inquizitor Quiz Master; Fuse TesterPUPPY PUDDLE PROBE by David Smith258

Treasure hunting takes on a new meaning with this easy-build detector
PIC-AGORAS WHEELIE METER by John Becker
Get going with our nearly-ultimate wheeled distance and speed monitor

Series and Features

NEW TECHNOLOGY UPDATE by lan Poole
The F.E.D.s may offer the solution for better VDU materials
CIRCUIT SURGERY by Alan Winstanley
Resistor Puzzle; Redundant Pins Become Static-Prone
DIGITAL TV AND MPEG2 by Mike Rutherford
What on earth (or above) is MPEG2? The answer makes fascinating reading!
EDWin NC SOFTWARE PACKAGE by Robert Penfold
Reviewing a "professional" p.c.b. design package that's now available at
Reviewing a "professional" p.c.b. design package that's now available at
a "hobbyist" price
NET WORK - THE INTERNET PAGE surfed by Alan Winstanley 284
What's New on the EPE Web Site; Y2K and the Year 2000; Interesting Links; Into Stepper Motors?

Regulars and Seroices

EDITORIAL 227
INNOVATIONS 237
Everyday news from the world of electronics
SHOPTALK with John Becker 255
Component buying for EPE projects
READOUT 255
John Becker addresses some of the other points you raise
BACK ISSUES Did you miss these? 262
FAX ON DEMAND 263
Need a recent EPE article now? Dial our "instant" response service!
DIRECT BOOK SERVICE 276
A wide range of technical books available by mail order
ELECTRONICS VIDEOS 280
Our range of educational videos
FOX REPORT by Barry Fox 281
Hearing Aids and Cellphones; Recording Telecoms; Nagging Redialing;Enacting Commonsense Telecoms; Mice, Mats and 3 M
PRINTED CIRCUIT BOARD SERVICE282
PCBs for EPE projects - some at "knockdown" prices! Plus EPE software288
FREEGREENWELD 1997 CATALOGUEbetween pages 252/253
Readers Services • Editorial and Advertisement Departments 227

UMITED QUANTITY only of these 12Mhz HI GRADE 286 systems designed for total reliability. The compact case houses the motherbrive \& integral 40Mb hard disk drive to the front. Real time clock with battery backup is provided as standard. Supplied in good used DOS 4.0
Order as HIGRADE 286 ONLY E 129.00 (E)

LOW COST 486DX-33 SYSTEM

 Fully featured with standard simm connectors 30 \& 72 pin. Supplied untegral 120 Mb IDE drive with single $1.44 \mathrm{Mb} 3.5^{*}$ tloppy disk drive Fully tested and guaranteed Fully expandable Many other options avaliable - call for detalls. $\quad £ 399.00$
FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

 $5 \frac{1}{4}$ " or $31 / 22^{\prime \prime}$ from only $£ 18.95$!
Massive purchases of standard $51 /{ }^{2}$ and $3 / 2^{2}$ dives enables us to present prime product at industry beating low prices! All units (unless

 present prume product at industry beating low prices! All units (unlessstated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you with a 90 day Ize. All are IBM-PC compalble dat 34° suppor and are ${ }^{1 / 2 "}$ " Panasonic $J U 363 / 4720 \mathrm{~K}$ or equivalent RFE Mitsubishi MF355C-L. 1.4 Meg. Laptops only "Teac FD-55GFR 12 Meg (for IBM DC's) RFE "' Teac FD-55F-03-U 720K 40/80 (ifr BBC's
BRANO NEW Mitaubishi MF501B 360K ""Shugart $800 / 8018^{\circ}{ }^{\circ} \mathrm{SS}^{2}$ refurbished \& tested " Shugart 8108° SS HH Brand New
" Shugart 8518° double sided refurbished \& tested
Mitsubishi M2894-63 $8^{\prime \prime}$ double sided NEW
Mitsubishi M2896-63-02U 8^{*} DS simline NEW
$£ 24.95(\mathrm{~B})$
$£ 25.95(\mathrm{~B})$
$\varepsilon 18.95(\mathrm{~B})$
$£ 18.95(\mathrm{~B})$
$£ 29.95(\mathrm{~B})$
$£ 22.95(\mathrm{~B})$
$£ 195.95(\mathrm{~B})$
$\varepsilon 195.00(\mathrm{E})$
$£ 250.00(\mathrm{E})$
$£ 275.00(\mathrm{E})$
$\varepsilon 285.00(\mathrm{E})$
$£ 499.00(\mathrm{E})$

End of line purchase scoop! Brand new NEC D2246 8* 85 Mbyte drive with industry standard SMD Interface, replaces Fujitsu " FUJI FK-309-26 20 mb MFM IF RFE
CONNER CP 302420 mb IDE I/F (or equiv)RF CONNER CP 304440 mb IDE IVF (or equiv.) RFE RODIME RO3057S 45 mb SCSI IIF (Mac \& Acorn)
WESTERN OIGTTAL 850 mb IDE I/F Brand New MINISCRIBE 342520 mb MFM $1 / F$ (or equiv.) RFE MINISCRIBE 342520 mb MFM I/F (or equiv.) CDC $94205-5140 \mathrm{mb}$ HH MFM I/F RFE tested " HP 9754 B 850 Mb SCSI RFE tested

- HP C3010 2 Gbve SCSI differentlal HP C3010 2 Gbye SCSI differential RFE tested
FUJITSU M2322K 160 Mb SMD IF RFE tested FUJITSU M2322K 160 Mb SMD I/F RFE tested

THE AMAZING TELEBOX

Mrrivimindidez $\begin{gathered}\text { VIDEO TUNER } \\ \text { CABLE }\end{gathered}$

 aining all electronics ready to plug inio a host of video monitorsmade by makers such as MICROVITEC, ATARI, SANYO, SONY COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composit video output will also plug directly into most video recorders. allowing eception of TV channeis not normally receivabie on most lelevsion receivers (TELEBOX MB). Push button confrols on the iron channels. TELEBOX MB covers virtually all television frequencies TV operators. A composite video output is located on the rear panel for direct connection to most makes of monitor or desktop computer video sysiems. For complete compatibility - even for monitors with Out sound - an integral 4 watt audio
audio output are provided as standard

$$
\begin{aligned}
& \text { TELEBOX ST for composite video input type monitors } \\
& \text { TELEBOX } \$ T L \text { as } S T \text { but fitted with integral speaker }
\end{aligned}
$$

$£ 36.95$
$£ 3950$ $\begin{array}{lll}\text { TELEBBXX MB Multiband VHF/UHF/Cable/Hyperband tuner } & \text { £39.50 } \\ \text { T69.95 }\end{array}$ For overseas PAL versions state 5.5 or 6 mHz sound specitication.

DC POWER SUPPLIES
 Virtually every type of power

 supply you can imagine. Over10,000 Sower Supplies Ex Stock

IC's -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK 6,000,000 items EX STOCK

or MAJOR savias. CALL For semiconductor hotris

VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see
At this price - Don't miss it!! Mitsabishi FA3415ETKL 14 " SVGA Multisync colour monitor with fine
0.28 dot ptct tube and resolution of 1024×768. A
 0.28 dot pitct tube and resolution of 1024×768. A
variety of imputs allows connection to a host 1 a
 ARCHMMEDES and APPLE. Many features: Etched tacaplate, text switching and LOW RADIATION MPR
specification Fully guaranteed supphed in EXCF
 VGA cable for IIM PC inctudec. External cables for other types of computers CALL

	As New - Used on film set for 1 week only!! $15^{*} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& tilt etc. Full 90 day guarantee. $£ 145.00$ (E)
	Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors. Good SH condition - from £299-CALL for Into
	PHILIPS HCS35 (same style as CM8833) attractively styled 14 colour monitor with both RGB and standard composite 15.625 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all sudio visual uses. Will connect direct to Amiga and Atarl BBC computers. Ideal for all video monitoring / security applications with direct connaction to most colour cameras. High quality with many features such as front concealed flap controls, VCR correction button elc. Good used condition - fully tested - guaranteed Only £95
	PHILIPS HCS31 Ulita compact 9 " colour video monitor with standard composite 15.625 Khz video input via SCART socket. Idea for all monitoring / security applications. High quality, ex-equipment fully tested \& guaranteed (possible minor screen burns). In attractive square black plastic case measuring $\mathrm{W}^{2} 0^{\circ} \times \mathrm{H} 10^{\circ} \times 13^{1 / 2} \mathrm{O}$ 240 V AC mains powered. Only £79.00 (D)
	KME $10^{\prime \prime} 15 \mathrm{M} 10009$ high detinition colour monitors with 0.28 ' dot pitch. Superb clarity and medern styling Operates from any 15.625 khz sync RGB vidoo source, with RGB analog and composite sync such as Atari. Commodore Amiga. Acorn Archimedes \& BBC. Measures only $131 / 2^{\prime \prime} \times 12^{\prime \prime} \times$ $11^{\prime \prime}$. Good used condition. Only £125 (E)

20" $22^{\prime \prime}$ and 26" AV SPECIALS
Superbly made UK manufacture. PIL all solid state colour monitors, eak style case Pertect for Schops, Shops, Disco Clubs. etc

20" 135 22" 155 26"

20"...£135 22"...£155 26"...£185

MITS. $\&^{\circ}$ FA3445ETKL 14" Industrial spec SVGA monitor

 2 KWW to 400 KW - 400 Hz 3 phese power sources - ex stock IBM 8230 Type 1. Token ring base unit drive BM 53F5501 Token Ring ICS 20 port lobe modules AIM 501 Low distortion Oscillator 9 Hz to 330 Khz , IEEE Trend OSA 274 Data Analyser with G703(2M) 64 i/o Marcont 6310 Programmable 21022 GHz sweep generator $£ 550$ HP1650B Logic AnalyserHP3781A Pattem generator \& HP3782A Error Detector £POA
HP APOLLO RX7 80 system units HP APOLLO RX700 system units
HP3081A Industrila workstation clw Barcode swipe reader HP6264 Rack mount varkiable 0-20V © 20 A metered PSU HP54121A DC to 22 GHz four channel test set
HP7580A A1 8 pen HPGL high speed drum plotie HP7580A A1 8 pen HPGL high speed drum plotte
EG+G Brookdeal 95035C Precision lock in amp G+G Brookdeal 95035C Precision lock in amp Ling Dynamics 2 kW programmable vibration test syst Computer controlled $1056 \times 560 \mathrm{~mm} \times$ Y table \& controlle Keithley 590 CV capactior / voltage analyser Racal ICR40 dual 40 channel voice recorder system Fiskars 45KVA 3 ph On Line UPS. New batts Dec. 1995 Cl R5030UV34 Cleanline ultrasonic cleaning Intel SBC 486/133SE Multibus 486 system. 2eta 3220-05 AO 4 pen HPGL fas! drum ploters Ram Nikon HFX-11 (Ephiphot) exposure control unit Motorola VME Bus Boards \& Components LIst. SAE / CA
Trio $0-18$ vdc linear, metered 30 amp bench PSU. New Fulitsu M3041R 600 LPM band printer Fujitsu M3041R 600 LPM band printer Perkin Elmer 2998 Infrared spectrophotomete VG Electronics 1035 TELETEXT Decoding Margin Meter
Andrews LARGE 3 i m Satelite Dish + mount (For Voyag Andrews LARGE 3 m manel digital Hybrid chart recorde Sekonlc SD 150H Sysiem Video 1152 PAL waveform monito
est Lab - 2 mt square quietised acoustic test cabinets
Kenwood 9601 PAL Vectorscope-NEW

Surplus always wanted for cash!

19" RACK CABINETS

 Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top qually $19{ }^{19}$ rack cabinets made in UK byOptima
Enclosures Lid Units faature designer. smoked acryly lickable front door
 and ivavile internal tixing struts. ready punched for any configuration of equipment mounting
plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make these racks some of the mosi versatile we have ever sold. Racks may be stacked side by side and ther
require onty wo side panest to stand singly or in multple bays. Overall dimensions are: $774^{\prime} \mathrm{H} \times 32^{1 / 2}{ }^{\circ} \mathrm{O} \times 22^{\circ} \mathrm{W}$. Order as: OPT Rack 1 Complete with removable side panels. $£ 335.00$ (G)

32U - High Quality - All steel RakCab Made by Eurocraft Enclosures Lid to the hlghest possible spec side, front and back doors. Front and back doors are hinged for easy access and all are lockable with
five secure 5 lever berrel locks. The front door is constructed
designer style' smoked acrylic tront panel 10 panel, yet remain unobtrusive. Internally the rack features fully slotted reinforced vertical fixing
members to take the heaviest of $19^{\prime \prime}$ rack equipment. The two movable vertical fixing struts (extras available) are pre punched for standard
'cage nuts'. A mains distribution panel internally mounted to the bottom rear, provides $8 \times$ IEC
pin Euto sockets and 1×13 amp 3 pin switched tility socket. Overall ventiation is provided

with top and side louvres. The top panel may be removed for fitting of integral fans to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utidity panel an lower tear for cable / connector access etc. Supplied in excellent, slightly used

Sold at LESS than a third of makers price !!
A superb buy at only 2195.00 (G)

Over 1000 racks - 19 " 22 " $\& 24$ " wide 3 to 44 U high. Availible from stock!! Call with your requirements.
 TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology' made by the experts Microtouch - but sold at a price below cost I! System consists o a flat translucent glass laminated panel measuring $29.5 \times 23.5 \mathrm{~cm}$ standard serial RS232 or TTL output which continuously gives simple serial data containing positional $X \& Y$ co-ordinates as 10
where a finger is touching the panel. as the finger moves the data instantly changes. The $X \& Y$ information is given at an incredible size !! A host of available translation software enables direct connection to a PC for a myriad of applications including: control pan-
els, pointing devices. POS systems. controllers for the disabled or computer un-trained etc etc. Imagine using your finger with spplications for this amazing product are only limited oy your Imaginatfon!! Complete system including Controller, Power Supply and bata supplied at an incredible price of only:
Full MICROTOUCH sonware support pack $£ 145.00$ (B)

LOW COST RAM \& CPU'S
INTEL 'ABOVE' Memory Expansion Board. Full length PC-X
and PC-AT compatible card with 2 Mbytes of memory on Doard Card is fully selectable for Expanded or Extended (286 processo and above) memory. Full date and driver disks supplied. RFE
Fully tested and guaranteed. Windows compatible. 59.95 (A1) er 256 k or 512 k in 64 k stops. May also be used to fill in RAM above 640 k DOS limit. Complete with data.
Order as: XT RAM UG. 256 k . £34.95 or 512 k E 39.95 (A1 SIMM SPECIALS
$\begin{array}{llll}1 \text { MB } \times 9 \text { SIMM } 9 \text { chip } 120 \mathrm{~ns} & & \text { Only } & \mathbf{£ 1 6 . 5 0} \text { (A1) } \\ 1 \text { MB } \times 9 & \text { SIMM } 3 \text { chip } 80 \text { ns } £ 19.50 & \text { or } 7 \text { Ons } & £ 22.95 \text { (A1) } \\ 1 \text { MB } \times 9 \text { SIMM } 9 \text { chip } 80 \text { ns } £ 21.50 & \text { or } 70 \mathrm{~ns} & \mathbf{£ 2 3 . 7 5} \text { (A1) }\end{array}$ 1 MB $\times 9$ SINM 9

FANS \& BLOWERS

EPSON DO412 $40 \times 40 \times 20 \mathrm{~mm} 12 \mathrm{VDC}$
PAPST TYPE $61260 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{VDC}$ $£ 7.9510 / £ 65$
£8.95 $10 / £ 75$ MITSUBISHI MMF-O6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{VDC} \mathrm{E4.95} 10 / £ 42$

 EX-EQUIP AC tans. ALL TESTED $120 \times 120 \times 38 \mathrm{~mm}$ specity 110

-ELECTRUNHLCS-

coser

ALL MAIL \& OFFICES Open Mon-Fri 9.00-5:30 Upper Norwood
ONDON SE19 3XF

LONDON SHOP
Opan Mon-Sat 9:00-5:30
215 Whitorors iane
Soun
South Norwood
On 6 B Burout
ind
On GbA But Route Al pnces for UK Manland. UK customers add 17.5% VAT to TOTAL order amount. Mnmum order £10. Bona Fide account oroers accepted from Governmen. Schools,
 Standard Conditons of Sale and uniess stated guaranteed tor 90 days. Al guarantees on a retum to base basis. Al rights reserved to change pnces / spectications without pro

Electronics Principles 3.0

For Windows 3.1, '95 \& NT. If you are looking for an easy and enjoyable way of studying or improving your knowedge of electronics then this is the software for you.

Electronics Principles 3.0 now contains fifty-eight Windows and an extended range of nearly 300 fully interactive analogue and digital electronics topics and is currently used in hundreds of UK and overseas schools \& colleges to support GCSE, Alevel, BTEC, City \& Guilds and university foundation courses. Aso NQ's and GNVQ's where students are required to have an understanding of electronics principles.

Other titles available.

Electronics Toolbox 3.0 £19.95*

Presents commonly used electronics formulae and routines in a way that makes calculations easy. Just select the topic, 'pop' in your values and find the result.
Mathematics Principles 3.0 £49.95*
Study or revise mathematics in what we believe is an interesting and enjoyable way. Nearly two hundred topics, including the GCSE syllabus with interactive, full colour graphics to enable learning through doing'.
Electronics Principles 4.0 £ 99.95 * Contains all of the extended version 3 and many more digital and analogue topics. Plus: Microprocessor \& microcomputer operation, registers, arithmetic and logic unit, ROM, RAM etc. Addressing modes and full instruction set can be executed on the screen.

Inputs \& outputs use electronics symbols.
Scientific notation avoided where possible to make numbers \& calculations meaningrul.
Experiment with standard textbook examples, even check your homework!
Hundreds of electronics formulae available for circuit investigation.
Multi-user site licence for schools \& colleges.
Produce OHP slides \& student handouts.

Complete Package just £49.95*

For more information, upgrades or software by retum. Telephone (01376) 514008.

[^0]

Pracitical Wireless July 96

Schematic capture, Autorouting \& Design Checking for just 8149°

ER 3.6 Designer £149*

Take a look at Quickroute 3.6 Designer and you might be surprised! For just \$149. you get easy to use schemalic design (automatic junction placement, parts-bin, elc), "one cllck" schematic capture, autorouting on 1 or 2 layers, design rule \& connectivily checking and a starter pack of over 260 symbols.
3.6 PRO+ $£ 399^{*}$

For those needing more power \& more fealures there is Quickroute 3.6 PRO+. For just $\$ 399$ you get multi-sheet schematic caphure, 1 to 8 layer autorouting, net-list import/export, links to simulators, CAD/CAM file export, Gerber import/viewing, DXF WMF \& SPICE file export, copper fill, advanced connectivity checking with automatic updating of a PCB from a schematic, the basic set of over 260 symbols and library pack 1 which includes a further 184 symbols. More symbols are available in addilional fibrany packs available separately

Prices are Quickroute 3.6 Designer $\$ 149$, Quickroute 3.6 PRO+ 5399 , SMARTRoute 1.0 \$149.00, Ulbrary Packs $\$ 39$ each. 'Post \& Packing per ifem is 56 (UK), 58 (Europe) and $\$ 12$ (Woild). V.A.T must be added to the total.

NEW PLUG IN AUTOROUTER

SMARTRoute is a new 32-bit autorouter from Quickroute Systems rated in ' category A' by Electronics World (Nov 96). SMARTRoute plugs straight into Quickroute 3.6. automatically updating Quickroute' s menus with new features and tools.

SMARTRoute 1.0 uses an iterative goal seeking algorithm which works hard to find the best route even on single sided PCB' s. SMARTRoute allows you to assign different algorithms, design rules, track \& via sizes, layers used, etc to groups of nets for total flexibility. SMARTRoute 1.0 costs just £149

SURVBIITANCE PROFASSIONAL QUALITY KITS

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only, direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter
Smailest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3 \mathrm{~V}-12 \mathrm{~V}$ operation. 500 m range.
. 16.45
MTX Micro-miniature Room Transmitter
Best-selling micro-miniature Room Transmitter. Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3 \mathrm{~V}-12 \mathrm{~V}$ operation. 1000 m range.
§13.45
STX High-performance Room Transmitter
High perlormance transmitter with a butfered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~m}$, including mic. $6 \mathrm{~V}-12 \mathrm{~V}$ operation, 1500 m range. $£ 15.45$ VT500 High-power Room Transmitter
Powertul 250 mW output providing excellent range and performance.
Size $20 \mathrm{~mm} \times 40 \mathrm{~mm}$. 9 V -12V operation. 3000 m range.
$£ 16.45$
VXT Voice-Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range. $£ 19.45$ HVX400 Mains Powered Room Transmitter
Connects directly 10240 V A.C. supply for long-term monitoring.
Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range....
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range...... $£ 22.95$ SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range.
£23.95
SCDM Subcarrier Decoder Unit for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. 9 V -12V operation.
£22.95
ATR2 Micro-Size Telephone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line..

$\star \star \star$ Specials $\star \star \star$

DLTX/DLRX Radio Control Switch
Remote control anything around your home or garden, outside lights, alarms, paging system eic. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and rolay output, momentary or altemate, 8 -way di.i.l. switches on both boards set your own unique securly code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size 35 mmx 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kits) . 550.95
Individual Transmitter DLTX Individual Receiver DLRX ${ }_{8795}^{219.95}$

MRX-1 MrFl Miero Broadcaster

Not technically a survellance device but a great idea! Connects to the haadphone output of your HIFF, tape or CD and transmits H-FI qualify to a nearby radio. Listen to your farvourte music anywhere around the house, garden, in the bath or in the garage and you don't have to pul up with the DJ's choice and boring waffe.
Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range.
20.95

UTLX Ulira-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$!
Connects to line (anywhere) and switches on and off with phone use.
All conversation transmitted. Powered from line. 500 m range... \qquad
TLX 700 Micro-miniature Telephone Transmitter
Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and of with phone use. All conversations transmitted. Powered from line. 1000 m range.. \qquad £13.45
STLX High-performance Telephone Transmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line.
Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range..
TKX900 Signalling/Tracking Transmitter
Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m .
Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation.
$£ 22.95$
CD400 Pocket Bug Detector/Locator
LED and piezo bleeper pulse slowly, rate of pulse and pitch of tone increase as you approach signal. Gain control allows pinpointing of source.
Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9V operation.

CD600 Professional Bug Detector/Locator

Multicolour readout of signal strength with variabie rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation.
£50.95

QTX180 Crystal Controlled Room Transmitter

Narrow band FM transmitter for the uttimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our ORX 180 kit (see catalogue).
Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
QLX180 Crystal Controlled Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
QSX180 Line Powered Crystal Controlled Phone Transmitter
As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
QRX 180 Crystal Controlled FM Receiver
For monitoring any of the ' O ' range transmitters. High sensitivity unit. All RF section supplied as pre-buitt and aligned module ready to connect on board so no difticulty setting up. Ouput to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation..
£60.95

A build-up service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send Sterling Bank Draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 01827714476.
OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

VISITORS STRICTLY BY APPOINTMENT ONLY

GREENWELD

ELECTRONIC COMPONENTS

Greenveld has been established for 23 years specialising in buying surplus job lot of flectronic Components and Finished Goods

We also keep a wide range of new stook regular lines. Why not request our 1997 Catilogue and latestSupplement - both absolutely FREE!

become a bargain list subscriber to sex whats ON OFFER BEFORE TTS ADVERTISED GENERALLY

Standard Bargain List Subacription

For just $£ 6.00$ a year UK/BFPO ($£ 10.00$ overseas), we'll send you The Greenveld Guardian every month. With this newsletter comes our latest Bargain List giving details of now surplus products available and details of new lines being stocked. Each issue is supplied with a personalised Order. Fom and detais of exclusive offers available to Subscribers only

Gold Bargain List Subscription
For just $£ 12.00$ a year ($£ 20.00$ ovierseas) the GOLD Subscriber category offers the following advantages:
\square The Greenweld Guardian and: latest. Bergin'n List overy month, together with any brochures or liers from our supplieis
\square A REDUCED POSTAGE RATE of $£ 1.50$ (normally $£ 3.00$) for all orders (UK only) and a reply paid envelope
E. 6% DISCOUNT on all reqular Catalogue and. Bargain List items

So-Don'thite Eftit - Subscribe Todayl

1997 CATALOGUE OUT NOW!

Greenweld - 27D Park Road Southampton • SO15 3UQ TELEPHONE: 01703236363 FAX: 01703236307
 WTERNET: http://wwwherald.co.uk/clients/G/ Greenweld/greenweld.html

Our stores (over $10,000 \mathrm{sq}$. ft.) have enormous stocks. We are open 8.00 am - 5.30 pm Monday to Saturday. Come and see us!

Learning and Skills Updating

PIC Microcontrollers: Specifically designed tor diatance learning this syateon comes complete with hardware, software, training and reference manuals, pau. Wade otc. As used in Colleges and Univaraities, now available to the public Only $\mathbf{8 9 9 : 0 0}$ (Other version coming soon' cat for detalls).
Swith Mode Power Supplies: You've heard sbout them, now learn how they work. Gomplete with training and perte/pebs to alow you to consiruct 3 different types, plus a multi compartment storege caee. Only [49:00

Analogue to Digital Convertors: This practicel aystem allows you to understand how AlDs work Also covers DIA conversion. Hhas a computer interface so it can be used to make a PC based oscinoscopeldata logger etc (softwere examples included). Only £29:00

Computer Control Learn how to control and monitor external devices using your computer Complete system includes herdware and shmple, but powerful, programming language ideal for modellers and experimenters. Only £49:00

Logic Treiner: Ideal for kaming bout how logic works, covers all ganes, bistables etc. Complete whi experimenters manuol and sleady hand garne assembly inatructions. Really get ahead whit your College or School work, ideal for National CurriculumiBTEC/GNVAs. Only £19:00

Experimentation and Design tools

Logic Anabyer: Low coat but fast (40mhz cepture). tdey for experienters and hobbytsts. This ba a full spec 8 bt unit and comes complete with hardware, sotware, manuial otc Amazingly low cost of c99:00. Faster, meaner and moodier versions avallable - please cell.

Programmers and amulators: Univeral Eprom. PIC, 54 Series - all full spec, tough professional units with Zifs. Complete with hardwars, softwere, manuala ate. from e99:00.
PIC divelopment syatem. Gel your project going quickly without the usual design tools incompatibility problema. Works with all 16C6x, $16 \mathrm{C7x}$ and 16C8x proceseors. Mrchudes Programmer, prototyping board, development eof were, manuale etc. £99:00

51 Series Development: Very sophtsticted and easy to use. Complete with In Circuil Emulation. Programmer, Dowelopment Software, Manuals etc. E149:00

Power Supply Suitable for all of our systems. This is 015 V e 500 mA , professional unt stringently safety tested and CE marked. Onty £12:00.

Also Avmilable: Teat Systems, "Scopes, Meters, Took, Books, Kits, Chips etc. All il lower prices than you'll find elsowthere. Free catalogus aveilable on request.

Prices do not include Vat or cmrringe (L3 normally, free on orders over E30) All Major Credit Cards Accepted
Kanda Syatems Limited, Unit 11 Gianyravon Enterprise Park, Aberystwyth, SY23 9 ZZ. Tel: 01974282570 (Sales). 01974282670 (Techniçal). Fax: 01974282356.
Email: Sales@Kanda-Systems.com.

BTEC approved
TUTOR supported

DISTANCE
 LEARNING COURSES in:

Analogue and Digital Electronic Circuits, Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms

- Courses to suit beginners and those wishing to update their knowledge and practical skillsCourses are delivered to the student as self-contained kits
. No travelling or college attendance is required
Learning is at your own pace

For information contact:
NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

The Winter 96/97 Edition brings you:
$>$ Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices.

- W/N! a 28,800 Fax Modem in our easy to enter competition.
- 100's of new products including; Books, Connectors, Entertainment, Test Equipment and Tools.
- New Speakers, Mixers and In-Car Amplifiers in the Entertainment section.
- $£ 25$ worth discount vouchers.
- 248 Page main Catalogue, plus 32 Page full Colour Computer Catalogue, incorporating 24 Sections and over 4000 Products from some of the Worlds Finest Manufacturers.
- Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.

Get your copy today!

MAIL ORDER ONLY - CALLERS BY APPOINTMENT

EPEMICROCO-NTROLEET
PI. TREASURE HUNTERI The latest MAGENTA DESIGN - highly I
I stable It sensitive - with MC control I I stable E sensitive - with MC control I I pulse separation techniques.
10 New circuit design 1994
I- High stability

- drift cancelling

I- Easy to build

- \& use
- No ground effect, works in seawater
- Detects gold, silver, ferrous non-ferrous metals

- Efficient quartz controlled

 microcontroller pulse generation. - Full kit with headphones \& all hardwareKIT 847.

DIGITAL LCD THERMOSTAT

 A versatile thermostat using a thermistor probe and having an I.c.d. display. MIN/MAX memories, -10 to 110 degrees Celsius, or can be set to read in Fahrenheit. Individualty settable upper and lower switching temperatures allow close control, or alternativaly allow a wide 'deead band' to be set which can result in substantial energy savings when used with domestic hot water systems. ldeal for greenhouse ventiation or heating control, aquaria, home brewing, etc. Mains powered, 10A SPCO Relay output. Punched and printed case.
KIT 841

PORTABLE ULTRASONIC

PEsT SCARER

A powerful 23 kHz ultrasound generator in a com pact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency output is designed to give maximum output without any special setting up.

KIT 842.

$£ 22.56$
DIGITAL CAPACITANCE

METER

A really professional looking project. Kit is sup plied with a punched and printed front panel case, p.c.b. and all components. Quartz con trolled accuracy of 1%. Large clear 5 -digit display and high speed operation. Ideal for beginners as the $\mu \mathrm{F}, \mathrm{nF}$ and pF ranges give clear unambiguous read out of marked and unmarked capacitors from a few pF up to thousands of $\mu \mathrm{F}$. KIT 493. \qquad
SUPER ACOUSTIC PROBE
Our very populer project - now with ready built probe assembly and diecast box. Picks up vibrations amplifies, and drives headphones. Sounds from engines, watches, and speech through walls can be heard clearly. Useful for mechanics, instrument engineers and nosey parkers! A very useful piece of kit.
KIT 865

WINDICATOR

A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mainspower unit $£ 5.99$ extra.
\qquad £28.00

「SPACEWRITER
An innovative and exciting
I project. Wave the wand through
the air and your message appears.
Programmable to hold any message I up to 16 digits long-. Comes pre-loaded 1 PCB, all components \& qube plus instructions for message loading KIT 849
KII 849 .
\bar{M} ERA

12 V EPROM ERASER

DUAL OUTPUT TENS UNIT

As featured in this issue.
Magenta have prepared a FULL KIT for this excellent new project. All components, PCB, hardware and electrodes are included.
Designed for simple assembly and testing and providing high level dual output drive.
KIT 866.... Full kit including four electrodes $£ 32.90$

1000V \& 500V INSULATION
TESTER
Superb new design. Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848.
$£ 32.95$

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment. KIT 845. \qquad .£64.95

ULTRASONIC PEsT SCARER Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL

COMPONENTS, PCB \& CASE

- EFFICIENT 100 V

TRANSDUCER OUTPUT

- COMPLETELY INAUDIBLE TO HUMANS
KIT $812 .$.

UP TO 4 METRES RANGE

- LOW CURRENT DRAIN

A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12 V supply (400 mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not allowed. Safety interlock prevents contact with UV. KIT 790. \qquad

INSULATION TESTER

A reliable and neat electronic tester which checks insulation resistance of wiring and appliances etc., at 500 Volts. The unit is battery powered, simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. A very popular college project.
KIT 444. \qquad .£22.37

SUPER BAT DETECTOR

NEW DESIGN WITH 40kHz MIC. A new circuit using a 'full bridge' audio amplifier i.c., internal speaker, and headphone/tape socket The latest sensitive transducer, and 'double balanced mixer' give a stable, high peformance superheterodyne design.
KIT 861
£24.99

E.E. TREASURE HUNTER P.I. METAL DETECTOR

 MKIMagenta's highly developed 8 acclaimed design. Quartz crystal controlled circuit MOSFET coil drive. D.C. coupled amplification. Full kit includes Full kit include PCB, handle case $\&$

- KIT INC: HEADPHONES
- EFFICIENT CMOS DESIGN
- POWERFUL COIL DRIVE
- DETECTS FERROUS AND NON-FERROUS METAL - GOLD, SILVER, COPPER ETC.
- 190 mm SEARCH COIL
- NO 'GROUND EFFECT’

KIT 815.

DOLEY PRO-LOGIC DECODER

Experience the delight of SURROUND SOUND in your awn DO Docis Suraouna
home. This project brings full Genuine PRO-LOGIC surmound home. This project brings full Genuine PRO-LOGIC surround
 sound to you at a fantastic price. The circuit meets all "Dollby (6) LOC16 specifications, with "Stereo", "3-Stereo" and "Surround Sound" selections.

For minimum cost the "Short Form Kit" is ideal. This is complete except for the case and power transformer. It includes the switches, sockets, and pots, and is ideal for building into a custom set-up with pre-amp and power-amp modules, where power is available.
The alternative "Full Kit" gives the best value option. With a printed front panel, punched rear panel, power transformer and mains lead and black brushed aluminium knobs. This kit produces a complete stand-alone decoder that can be used with any audio.
'DOLBY and the double-D symbol are trademarks. Kit with case and transformer, Kit Ref: $869 £ 124.99$

DC Motor/Gearboxes

Our Popular and Versatile DC motor/Gearbox sets. Ideal for Models, Robots, Buggies etc. 1.5 to 4.5 V Multi ratio gearbox gives wide range of speeds.
LARGE TYPE - MGL £6.95
SMALL - MGS - £4.77

Stepping Motors

MD38...Mini 48 step... $£ 8.65$
MD35...Std 48 step...£12.98
MD200... 200 step... $£ 16.80$
MD24...Large 200 step...£22.95

SIMPLE PIC PROGRAMMER	
INCREDIBLE LOW PRICE!	Kit 857 £12.99
INCLUDES 1-PIC16C84 CHIP	Power Supply £3.99
SOFTWARE DISK, LEAD CONNECTOR, PROFESSIONAL PCBOARD G NSTRUCTIONS	EXTRA CHIPS: PIC 16 C $84 £ 7.36$
Based on the design in February '96 EPE article, Magenta have made a proper PCB and kit for this project. PCB has 'reset' switch, Program switch, 5V regulator and test L.E.D.s. There are also extra connection points for access to all A and B port pins.	

PIC16C84 LCD DISPLAY DRIVER

INCLUDES 1-PIC16C84 WITH DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND 16-CHARACTER 2-LINE LCD DISPLAY

Kit 860 £17.99

Power Supply £3.99
FULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATION!

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE $\times 16$-character display, data, all components, and software to include in your own programs. Ideal develpment base for meters, terminals, calculators, counters, timers - Just waiting for your application!
\star Chip is pre-programmed with demo display \star

SUPER PIC PROGRAMMER

- READS, PROGRAMS, aND VERIFIES
- WINDOWS ${ }^{\circ i \mathrm{~m}}$ SOFTWARE
- PIC16C6X, 7X, AND 8 X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP - HEX FILES
- optional disassembler software (extra)
- PCB, LEAD, ALL COMPONENTS, TURNED PIN SOCKETS FOR 18, 28, AND 40 PIN ICs.
- SEND FOR DETAILED

INFORMATION - A
SUPERB PRODUCT AT AN
Kit $862 \mathbf{£ 2 9 . 9 9}$
Power Supply £3.99
\square

PIC STEPPING MOTOR DRIVER

INCLUDES: PCB PIC16C84 WITH DEMO PROGRAM, SOFTWARE DISK, INSTRUCTIONS AND MOTOR.

Kit 863 £18.99

FULL SOURCE CODE SUPPLIED ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS.

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor - up to 24 V and 1 A . Kit includes all components and 48 step motor. Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

PIC16C84 MAINS POWER 4-CHANNEL

 CONTROLLER \& LIGHT CHASER- WITH PROGRAMMED 16C84 AND DISK WITH SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING 10 CHASE PATTERNS
- OPTO ISOLATED
- 4×3 KEYPAD CONTROL
- SPEED CONTROL POT.
- HARD FIRED TRIACS
- 4 CHANNELS @5 AMPS

Now features full

Kit 855 ± 39.95

4-channel chaser software on DISK and pre-programmed PIC16C84 chip. Easily re-programmed for your own applications. Software source code is fully 'commented' so that it can be followed easily.

* WITH OPERATING PROGRAMMING, AND CROSS ASSEMBLER SOFTWARE.
RUNS WITH

Kit $853 \mathbf{£ 9 9 . 0 0}$

Power
Supply $£ 8.99$

ANY P.C

SERIAL
PC LEADS 9.WAY $\mathbf{£ 6 . 0 0}$ 25-WAY $£ 7.00$

68000 Develo ioment ano TRAINING KIT

- USED WORLDWIDE IN SCHOOLS COLLEGES \& UNIVERSITIES
- DOUBLE EUROCARD, 2 SERIAL PORTS
- NOW WITH EXPANDED RAM \& ROM
- FULL FEATURED MONITOR \& LINE ASSEMBLER IN ROM
- CROSS-ASSEMBLER AND COMMS SOFTWARE DISK
- FULL 8MHz 68000 16-BIT DATA BUS - EXPANDABLE - PIT OPTION 68230 - FULL MANUAL PLUS DATA - SUPER LOW PRICE:

KIT 601 \qquad £69.95
EXTRAS: 9-way P.C. lead $\mathbf{£ 6 . 9 9}$ 25 -way P.C. lead $£ 6.99$
Case - black bottom, clear lid - $\mathbf{£ 5 . 9 9}$ PSU $+5 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V} £ 12.99$

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach-In 7. All parts are supplied by Magenta. Teach-ln 7 is $£ 3.95$ from us or EPE Full Mini Lab Kit - $£ 119.95$ - Power supply extra - $£ 22.55$ Full Micro Lab Kit - $£ 155.95$ Built Micro Lab - $£ 189.95$

EVERYDAY

PRACTICAL
ELECTRONICS
VOL. 26 No. 4 APRIL '97

Editorial Offices:

EVERYDAY PRACTICAL ELECTRONICS EDITORIAL
ALLEN HOUSE, EAST BOROUGH, WIMBORNE
DORSET BH21 1PF
Phone: Wimborne (01202) 881749
Fax: (01202) 841692. Due to the cost we cannot reply to orders or queries by Fax.
E-mail: editoriak@epemag.wimborne.co.uk
Web Site: http://www.epemag.wimborne.co.uk
See notes on Readers' Enquiries below - we regret lengthy technical enquiries cannot be answered over the telephone. Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS
ADVERTISEMENTS
HOLLAND WOOD HOUSE, CHURCH LANE
GREAT HOLLAND, ESSEX CO 13 OJS
Phone/Fax: (01255) 850596

COMPLEXITY

Everyday news on new high tech. instruments lands on my desk; as equipment gets more and more complex and relies more on large-scale dedicated chips, it seems that there is less that the hobbyist can build. You only need to read the MPEG2 Digital Television feature in this issue to realise how complex such a system will be. There is no way that most modern equipment can be built by the hobbyist for less than the cost of buying the ready-made unit, whether it is hi-fi, TV, video, computers or communications equipment like mobile phones or amateur band transceivers. So how do we continue to pursue our hobby?
There are still plenty of unusual projects that can be built by the hobbyist for less than commercial items - mainly because there is only a small market for them, or because they are new ideas and prices have not yet fallen. This issue is an example of such projects. On the very simple side is the Puppy Puddle Probe - it's easy to build, useful and demonstrates some very simple electronics well. Rather more refined is the Midi Matrix which solves a very real problem, for those with MIDI set-ups, in an elegant way, relatively inexpensively.

TAKE YOUR PIC

The other side of the coin is demonstrated by our PIC-Agoras project. You can buy a bike computer for much less, but PIC-Agoras is very versatile, can be tailored to use with a wide range of wheel sizes and could even be adapted to measure say skateboard speed. While you could compare it with a commercial bike computer it can be used for a variety of tasks which are well outside the capabilities of any commercial product.

If you want a job within the electronics industry - maybe designing some of those highly complex systems I mentioned earlier - then you must start somewhere. Our simple projects, Teach-In series and other educational items have led many a reader into a rewarding career in electronics.

I believe there will always be room for the electronics hobbyist and a need for our type of magazine, even in today's computer dominated world. What could be more satisfying than building your own equipment, just for the sake of it? Maybe it will never compete on price with commercial products but the pleasure, knowledge and satisfaction gained are well worth the effort. Perhaps the word that best describes our hobby is Ingenuity.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 24$. Overseas: $£ 30$ standard air service ($£ 47.50$ express airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday Practical Electronics and sent to EPE Subscriptions Dept., Allen House,

East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749. Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ post and packing (for overseas readers the postage is $£ 6.00$ to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally serit within seven days but please allow 28 days for delivery - more for overseas orders.
Payment in $£$ sterling only please. Visa and MasterCard accepted, minimum credit card order £5. Send or phone your card number and card expiry date with your name, address etc.

Editor: MIKE KENWARD

Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (01255) 850596
Advertisement Copy Controller:
DEREK NEW, Wimborne (01202) 882299

READERS' ENOUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data, or answer queries, on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE
 EOUIPMENT

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check loca! laws.

Constructional Project

 REMOTE CONTROL 5三
 \title{
418MHz
}
 \title{
418MHz
} SYSTIN

ROBERT PENFOLD

> You do not need a licence to use this coded transmission and reception contral system, and it's easy to build using pre-aligned modules.

THE frequency of the 418 MHz Band has been allocated to licence-exempt radio links, and its main use is probably for remotely switching intruder alarms on and off. It is open for use in other applications though, and there must be many potential uses for this type of radio link.
Transmission powers are very low, however, and only simple aerials are permitted at the transmitter. This limits the maximum operating range to about 100 to 200 metres in open terrain, or about 30 metres if the signal has to pass through buildings. While this precludes the use of 418 MHz links in some applications, there are many situations where this sort of range is perfectly adequate.
For example, a camera remote control system is normally used over a range of about five to 100 metres. "Wireless" serial data links for computers also operate over a similar range.
It is not practical for the home constructor to produce 418 MHz radio equipment, as it would not be possible to get the equipment approved by the radio authorities. On the other hand, it is possible to produce systems based on ready-made transmitter and receiver modules which have DTI approval, and meet the relevant standards.
Ready-made 418 MHz modules are not exactly "dirt cheap", but prices have fallen to the point where they are now a practical proposition for the average electronics experimenter. The basic remote control system featured here uses commercially produced 418 MHz transmitter and receiver modules that provide an operating range of up to about 100 metres in open terrain.

The use of ready-built modules means that the completed system requires no setting up or alignment of any kind, and it can be used legally without having to obtain an operating license.

SYSTEM OPERATION

The block diagram of Fig. 1 helps to explain the way in which the system functions. The transmitter is the more simple of the two units, and the transmitter module itself is basically just an oscillator and a lowpass filter to give a "clean'" output signal. The very low power levels involved here do not warrant the use of a power amplifier stage.

Some simple audio processing at the audio input prevents any form of
over-modulation. The type of modulation used is wide band frequency modulation (w.b.f.m.), which is the same type that is used for Band II broadcast transmissions.

On the face of it, the transmitter can consist of nothing more than the transmitter module, a battery, and a pushbutton to provide on/off switching. In reality such a basic system would be vulnerable to frequent spurious operations.

The problem is simply that there is only one channel available. A system that relies on basic switching of the carrier will be activated by the carrier wave from any nearby 418 MHz transmitter. Your remote controlled curtains (or whatever) could operate every time a neighbour switches their car alarm on or off!

The solution to the problem is to transmit a digitally encoded carrier signal, and to have a receiver that will only respond to a correctly coded signal. Special chips to provide the encoding and decoding are readily available. The transmitter chip is fed with a 12 -bit binary code, which gives a choice of 4096 different code combinations. The 12 -bit code is converted to a form of serial signal which is at a low enough baud rate to be handled by the 418 MHz transmitter and receiver modules.

Fig. 1. The 418 MHz Remote Control System block diagram.

At the receiver, the decoder converts the serial signal back into 12 bits of parallel data, and compares the decoded signal with the 12 -bit binary pattern on its inputs. Provided the same 12-bit code is used at the transmitter and the receiver, the two codes will match, and the decoder chip will set its output terminal high.

This technique does not absolutely guarantee that the system will be free from spurious operations, but unwanted activation of the receiver can only be caused by a nearby transmitter using the right one of the 4096 codes, and the same method of serial encoding. This is unlikely to occur in practice, but if necessary the code number can be changed to one that is free from interference.

The receiver module is relatively complex, and it is actually a form of double conversion superhet receiver. Its sensitivity is good, with an input of $0.5 \mu \mathrm{~V}$ giving a 20 dB signal-to-noise ratio. The receiver has three outputs, one of which is an audio output. This is useful for monitoring the transmitter, but is otherwise unused.

The main output is a processed audio signal which provides a "squared"' version of the audio signal that can directly drive the serial input of the decoder chip. When a suitable signal is received, the output of the decoder goes high, switching on a relay via a simple driver circuit. A pair of relay contacts then closes and activates the controlled equipment.

When the signal from the transmitter ceases, the serial decoder no longer receives a valid signal, and its output goes low again. Therefore, the relay is only switched on while the transmitter is switched on.

CONSERVING BATTERIES

Since the receiver module only consumes about 13 milliamps from a 6 V supply, battery operation is possible. As the receiver may be required to operate for very long periods, a lower current consumption would be preferable though. This can be achieved by pulsing the receiver module under standby conditions, rather than having it run continuously. This mode of operation is made possible by the third output of the receiver module, which can operate an external switching transistor when a carrier signal is detected.

The basic idea is to have a low frequency oscillator which controls the power to the receiver module via an electronic switch. The module is switched on and off several times a second, and in this case it is switched at a rate of about 25 times per second. A crucial factor here is that the "on" time is made something under one tenth of the "off" time.

With the receiver module turned off for the majority of the time its current consumption is greatly reduced, and is typically a little over one milliamp. The overall current consumption of the circuit is a little higher at around two milliamps, but this is low enough to give over 1000 hours of continuous operation from each set of four HP7 size batteries.

Of course, this pulsed method of operation only operates properly if the receiver

that requires only one discrete component, which is timing resistor R1. The serial output at pin 17 of ICl can directly drive the modulation input of the transmitter module. The audio input of the transmitter has built-in lowpass filtering, etc. that prevents any out-of-band signals being radiated.
Pin 14 of ICl is taken high to inhibit transmission on the serial output, or low to enable it. In this application, ICl must produce a serial signal whenever the transmitter is switched on, and pin 14 of ICl is therefore permanently connected to the 0 V rail. The required 12 -bit binary code is hard-wired via link wires on the printed circuit board. Each address input must be connected to a high (" H ") or low ("L") terminal on the p.c.b.

Typical current consumption of the transmitter is about 11 milliamps, but it can be as high as 16 to 17 milliamps. A PP3 size battery is adequate to power the circuit despite this relatively high consumption, because the transmitter will normally be used only in very short and intermittent bursts.

REMOTE CONTROL TRANSMITTER

Fig. 2. Circuit diagram for the 418 MHz Transmitter.

TRANSMITTER CONSTRUCTION

Details of the transmitter printed circuit board are provided in Fig. 3. This board is available from the EPE PCB Service, code 142.

Although this board is very simple, there are several points that are worthy of amplification. IC1 is a CMOS device, and accordingly it requires the usual anti-static handling precautions. Use a holder for IC1, and do not fit it into place until the unit is otherwise complete. Try to touch the pins as little as possible when fitting IC1 into place, and keep it well away from any likely sources of static electricity (computer monitors, static-prone carpets, etc.).
The binary code used on the prototype is 000000001111 , and this is the code shown in Fig. 4. Obviously you can use any one of the 4096 available codes, but make sure that every common ("C'") pad is connected to either a high (" H ') or a low ("L") pad. If there are problems with interference from other 418 MHz transmitters once the system is " "up and running", there should be no difficulty in rewiring one of the links to try a new code. Remember to temporarily remove IC1 from the board while the change is made.

Capacitor C 1 must be a high quality component that will work well at high frequencies. It can be either a tantalum capacitor or a high quality radial electrolytic type. A "bog standard" electrolytic might not give good performance in this application.
The transmitter module is mounted on the board vertically, and due to its asymmetric base it will only fit the right way round. Fit four single-sided solder pins to the board at the positions where connections will be made to switch S1 and the battery clip.

AERIAL

To remain within the regulations, the transmitter must only be used with a simple aerial that does not provide gain. This gives a choice of three basic types which are helical, whip, and loop. These each have their advantages and drawbacks, but for most purposes a helical aerial is probably the best choice. It offers reasonable efficiency together with small size. In fact a helical aerial is small enough to be mounted on the p.c.b., just like any other component.

The aerial is home constructed, and it merely consists of 26 turns of $24 \mathrm{~s} . \mathrm{w} . g$.

Fig. 3. Transmitter printed circuit board component layout, interwiring and full size copper foil master.

Fig. 4
(0.56 mm diameter) enamelled copper wire wound on a temporary 3.5 mm diameter former (e.g. the shank of a 3.5 mm twist drill). The coil should be about 25 mm long initially, but once the system is working it can be expanded and contracted in an attempt to find the optimum length.

Leave a few millimetres of excess wire at one end of the coil to form a leadout wire, and scrape the insulation from this lead using a modelling knife or miniature file. "Tin"' the leadout wire with a small amount of solder, and it should then connect easily and reliably to the printed circuit board.

Ideally, the aerial should be mounted where it is well clear of any metal objects, but this is not really possible if the transmitter is to be kept reasonably small. More than adequate performance seems to be obtained even with the aerial in close proximity to printed circuit tracks and other pieces of metal. However, the transmitter will not work with the aerial within a metal case.

CASE

The prototype transmitter is housed in a small plastic box having a built-in compartment for the PP3 size battery. At about $105 \mathrm{~mm} \times 61 \mathrm{~mm} \times 28 \mathrm{~mm}$ this case is somewhat larger than is really necessary, but it is still quite "pocketable". The printed circuit board is mounted on the top half of the case, at the opposite end to the battery compartment, using 6BA or metric M3 nuts and bolts. Use short spacers or extra nuts between the case and the board, or the board might distort and crack as the mounting nuts are tightened.

Switch S1 is mounted on the top panel of the case so that it fits into the vacant area between the battery and the circuit board.

To complete the transmitter, wire the battery clip and S1 to the four solder pins, and fit ICl into its holder. To be within the regulations, the transmitter must have a label affixed to the case which has the wording "MPT 1340 W.T. Licence Exempt" (see Fig. 4). The lettering should be no less than two millimetres high.

Layout of components on completed Transmitter board.

REMOTE CONTROL RECEIVER

The completed Receiver board mounted in the base of the case.

RECEIVER CIRCUIT

The circuit diagram for the 418 MHz Remote Control Receiver appears in Fig. 5. This circuit is based on a Radio-Tech applications circuit for the SILRX-418-A receiver module.

As with the transmitter, the aerial is a simple helical type. On the output side of the receiver module, the demodulated audio signal is fed direct to socket SK2. The audio signal can be monitored using a crystal earphone, but no other type of earphone or headphone should be connected to SK2.

The "squared" audio signal at pin 7 of the module is fed direct to the serial input at pin 14 of ICl , which is the decoder chip, type HT-12F. This has a built-in clock oscillator which requires only one discrete component, which is timing resistor R2.

Like the encoder, the decoder has the 12-bit binary code set via link wires on the p.c.b. Pin 17 of IC1 goes high when the correct code is received, and this turns on the relay via transistor TR1, used as a common emitter switch. Diode D1 is the usual protection diode which suppresses the high reverse voltage spikes which would otherwise be generated across the relay coil each time it switched off.

IC2 pulses the supply to the receiver module via switching transistor TR3, and the decoupling network comprised of resistor R3 and capacitor C2. The output of IC2 is high while capacitor C3 charges via resistors R4 and R5, and low while C3 discharges through R5 and an intemal transistor of IC2. The charge time is therefore about eleven times longer than the discharge time.

Transistor TR3 and the receiver module are switched on during the discharge periods, which gives the required power saving. When a carrier is detected, IC2 latches with its output low, so that TR3 and the receiver module are held switched on. IC2 must be a low power version of the 555 timer, since a standard 555 would consume nearly as much current as it would save!

Transistor TR2 is switched off when a carrier is detected, which results in IC2 latching with its output low due to the coupling through R6 which takes the reset input low. Power is then supplied to the receiver module continuously. Normal standby operation is resumed when the carrier ceases, and TR2 switches off again.

Fig. 5. Complete circuit diagram for the 418 MHz Remote Control Receiver.

RECEIVER CONSTRUCTION

Details of the Receiver printed circuit board are shown in Fig. 6. This board is available from the EPE PCB Service, code 142.

Both 1 Cl and IC2 are CMOS devices, so use sockets with them and observe the standard handling precautions. Note that IC2 has the opposite orientation to IC1.

The aerial is identical to the one used in the transmitter. Capacitor C2 should be a tantalum type or a high quality radial electrolytic. When adding the twelve links to set the code number for ICl , make sure that the code used exactly matches the one used on the transmitter. Fig. 6 shows the link-wires for the 000000001111 code used on the prototype system. Do not overlook the ordinary link-wire just above IC2. The receiver module is mounted vertically on the board, making sure its pins are fully pushed down into the board.

The relay can be mounted on the circuit board in the normal way provided the specified component is used. From the electrical point of view, the receiver should work using any 6 volt relay that has a coil resistance of about 100 ohms or more, plus suitable contacts for its intended application.

However, alternative relays are almost certain to have a different pin configuration, and are mostly much larger than the specified relay. This would make it necessary to mount the relay on the case and hard wire it to the printed circuit board. Unless there is a good reason for using an alternative relay it is definitely advisable to use the specified component. This has changeover contacts rated at 2 A at 24 V d.c. or 240 V a.c. (1 A with an inductive load).

Be careful to fit diode D1 the right way round. Getting this wrong could result in damage to both D1 and TR1. Once all the components and links have been added, complete the board by fitting single-sided solder pins to take the hard wiring. "Tin" the tops of the pins with plenty of solder.

COMPONEVIS

RECEIVER

Resistors

R1	$2 k 7$
R2, R6	56 k (2 off)
R3	10Ω
R4	1 M
R5	100 k
R7	10 k

All 0-25W 5\% carbon film

Capacitors

C1	10μ radial elect., 25 V
C2	10μ high quality radial
elect., or tantalum, 25 V	
C3	47 n polyester (7.5 mm lead
	spacing)

Semiconductors

$\begin{array}{ll}\text { D1 } & \text { 1N4148 signal diode } \\ \text { IC1 } & \text { HT-12F 12-bit serial }\end{array}$ decoder

Approx Cost Guidance Only excluding Batts.

TS555CN low power CMOS 555 timer TR1 BC549 npn transistor TR2, TR3 BC559 pnp transistor (2 off)

Miscellaneous

RX SILRX-418-A 418MHz
receiver module (Radio-Tech)

SK1,

B1
S1
s.p.s.t. min. toggle switc

RLA1 $6 \mathrm{~V} 100 \Omega$ coil, single
changeover contact relay
Printed circuit board, available from the EPE PCB Service, code 143; plastic case about $143 \mathrm{~mm} \times 82 \mathrm{~mm} \times$ $44 \mathrm{~mm}, 8$-pin d.i.l. socket, 18 -pin d.i.l. socket; plastic holder for $4 \times$ HP7 size cells; battery connector (PP3 type); 24 s.w.g. (0.56 mm) enamelled copper wire for aerial; wire; solder, etc.

CASE

Any medium size plastic case should comfortably accommodate the receiver. Do not use a metal case as this would screen the aerial and prevent the unit from
working at all. The printed circuit board is mounted on the rear panel using 6BA or M3 fixings. Fit it well to one side so that there is sufficient space left for the battery pack on the other side. Switch S! and the

Fig. 6. Receiver printed circuit board component layout, interwiring and full size copper foil master pattern (top).
two sockets, SK 1 and SK2, are mounted at any desired places on the front panel, but make sure that they are positioned well clear of the battery pack.

To complete the receiver, add the small amount of hard wiring. This is also shown in Fig. 6. The method of connecting socket SKI to the relay contacts shown in Fig. 6 is correct if normally open operation is required (i.e. the relay contacts are normally open, and they close while switch S1 at the receiver is closed).

If normally closed operation is needed, connect SKl to pin "C"' on the circuit board instead of pin " B ". To complete the unit add the battery connector, which is a standard PP3 type.

Note that in this form the receiver should only be used with battery powered equipment, such as a camera. It should only be used with mains powered equipment if it is constructed and installed by someone with the requisite knowledge and experience, and it must conform to the normal safety standards.

IN USE

As the transmitter and receiver modules are pre-aligned, the completed system should work immediately over a reasonable range. For operation over distances of up to about 10 or 20 metres there will probably be no need to "tweak" the aerials for optimum results.
For operation over longer ranges, it might be necessary to expand/compress the aerials in order to optimise performance. This is really just a matter of using trial and error, but monitoring the audio output signal of the receiver can be

Abstract

Layout of components on the completed Receiver board. Note that the aerial "lead" on the far right is soldered to the p.c.b. at one end only.

helpful. A strong signal gives a "clean" sounding "buzz" having a low background "hiss" level. Weak reception produces a rougher sounding "buzz" with a generally higher background noise level.

For operation at short ranges, the relative orientations of the two aerials seems to be unimportant. At longer operating distances the aerials should both be more-orless vertical.

Remember that the range of the system will be reduced if it is used within buildings, but the signal from the
transmitter seems to be able to penetrate several average internal walls. In this respect a radio control system is far superior to an infra-red type, which cannot operate through anything opaque.

ACKNOWLEDGEMENT

The author thanks Radio-Tech Ltd. for their helpful cooperation with regard to the transmitter and receiver modules used in this design. They are also offering these devices at a specially discounted price to EPE readers, see Shop Talk page.

EAST=PC Schematic and PCB CAD

From Super Schematics

To Perfect PCB's Prices From $£ 75 / \$ 135$ Number One Systems

Please contact us for a demonstration disc and full information
UKEEC: Ref: EVD, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. e-mail: sales@numberone.com
Telephone UK: 01480461778 (7 lines) Fax: 01480494042
USA: Ref: EVD, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (408) 395-0249
http://www.numberone.com

New Technology Upiate As the search for better VDU materials becomes more concentrated, the F.E.D.s seem to have an answer - lan Poole reports.

|N THE field of electronics it is often the case that an idea cannot be fully exploited because there is not a complete understanding of the way in which it works. This may appear surprising in view of the enormous advances which have been made in our knowledge of science in recent years. However, as new developments are made, often new principles are involved and time is required before they are fully understood.

It has been the case many times in the past, that an electronic device has been made to work and fulfil a valuable function without a full understanding of its operation. Thermionic valves represent a very good example.

In the early days of their existence it was thought that valves needed a small amount of gas inside their glass envelope for them to be able to operate correctly. Only when an American named Langmuir proved that these gasses were not needed, were fully evacuated or "hard" valves produced and their performance improved by a considerable degree.

The "cat's whisker" was another fine example of an effect which had been noticed and put to good use. However, it took many years before the physics behind it was understood, and progress could be made on making semiconductor diodes in a much more reliable way.

Phosphor Performance

The same is true today about the understanding we have about the way in which materials like phosphors emit light. Although much is known, there is still a lot we do not understand.

Even though these phosphors are the comerstone upon which the cathode ray tube (c.r.t.) depends, there is still much to be learnt about the mechanics behind this useful phenomenon. Unfortunately, research into material physics is not easy, and can be very costly. Nevertheless it can bring large rewards, especially if new devices can be made in large quantities.

Obviously the limitations in our knowledge of these phosphors has not limited their use in c.r.t.s. Currently, they are still the most widely used type of display, with hundreds of millions of them being manufactured each year.

However, it has brought about a number of problems when they have been used in other applications. In order to make them emit light, large voltages and relatively high powers are needed. Domestic televisions require several kilovolts. The higher the voltage, the brighter the picture can be made.

As most televisions are powered from the mains, this does not present a real problem. However, when small battery powered units are required, this brings far more stringent requirements in terms of power consumption. It is clearly not viable to have a small battery powered unit which consumes the levels of power required by a c.r.t.

L.C.D. Performance

Even though c.r.t.s are not being used in small battery powered pieces of equipment, the new phosphor field emission displays (f.e.d.s) are growing in popularity and are being used increasingly. Although l.c.d.s (liquid crystal displays) can be used in many applications, they have a number of limitations.

They do not perform well in conditions of high ambient light, and sometimes they require the use of a back-light, a factor which itself uses significant amounts of power. They also do not operate at low temperatures, and even at ambient temperatures they have a very slow response time. They are also far too slow for television applications.

Another problem is the small viewing angle. Combined, all of these limitations mean that the l.c.d. is not going to achieve widespread acceptance for applications like television, even though they are used in vast quantities for many other applications, including laptop computers.

However, anyone using a laptop will soon see the shortcomings of the l.c.d., although its low power consumption means that it is the only viable option. If a display with a better performance and lower cost could be devised, the retums on any investment would be vast. Not only would it be used in many computer applications, but if it could be used for televisions this would bring another vast market within its reach.

Investigating F.E.D.S

As a result of the power constraints, it has become more important to investigate methods of improving the efficiency of phosphor f.e.d. displays. As the efficiency of the displays is primarily govemed by that of the light conversion, this has recently come under close scrutiny now that a new development initiative has been launched. Funded by the American Government, Sandia Laboratories in Albuqurque, New Mexico are undertaking the research, and they have started to
make progress and make some interesting discoveries.

When commencing their study, the researchers decided to concentrate on just one material, a zinc oxide based phosphor. This reduced the number of variables, and allowed the basic theories and methods to be tried on just one substance. Any results could be extended to other materials at a later date, as the same basic principles apply.

The studies showed that light is emitted from areas where there are surface defects, such as missing oxygen atoms. This indicated that the light emission is purely a function of the surface.

Previously it had been thought that the thickness or density of the material had an effect, but this is not the case. Working along these lines, the researchers have changed the chemistry of the test material to alter the surface and they have successfully increased the luminescence.

Laser information

Much of the crucial information about the light emission has been gained from an instrument called a photo-thermal deflection spectroscope. Using this, samples of the phosphor have a liquid introduced into them.

As the mixture is heated, the reflection of a laser beam is noted. The degree of deflection for a given amount of heat passed into the mixture enables a measurement of the optical absorption of the material to be made.

This research will pay large dividends with phosphor based f.e.d.s.. Optimising the phosphors will enable them to operate with much lower voltages, possibly down to less than 0.5 kV . This is a considerable reduction when compared to the voltages which were previously required.

It will mean that f.e.d.s will be used in a variety of applications where they may have been too power hungry before. They will be ideal for use in commercial laptop computers. If the f.e.d. can gain a significant foothold in this market it may also start to catch on in other areas as well.

Although there is still more work to be undertaken, the project has already made a valuable contribution to display technology. It is also likely that as different aspects of the phosphors are monitored and investigated, improvements in other areas may be made. Any improvement in our understanding of the way in which these phosphors emit light will enable them to be used more effectively, and give better products for the future.

TRIED \& TRUSTED STRAIGHT FROM GERMANY

Eurocard + Soldermask + Position print

Transform your PC into a digital oscilloscope, spectrum analyser, frequency meter, voltmeter, data logger . . for as little as $£ 49.00$

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

Hardware and software are supplied together as a package - no more worries about incompatibility and no programming required. Pico Technology specialises only in the development of PC based data acquisition instrumentation. We have the product range and experience to help solve your test and measurement problem.

Call for your guide on 'Virtual Instrumentation'.

We are here to help you.

The ADC-10 supplied with PicoScope gives your computer a single channel of analog input. ADC-10£49 with PicoLog $£ 59$

Data Logging

Pico's range of PC based data logging products enable you to easily measure, display and record temperature, pressure and voltage signals.

TC-08 Thermocouple to PC Converter

- Supplied with PicoLog data logging software for advanced temperature processing, min/max detection and alarm.
- 8 Thermocouple inputs
- No power supply required.

TC-08 £199 TC-08 £224 with cal. Cert. complete with serial cable \& adaptor. Thermocouple probes available.

Virtual Instrumentation

Pico's PC based oscilloscopes simply plug into the parallel port turning your PC into a fully featured oscilloscope, spectrum analyser and meter. Windows and DOS software supplied.

- 10 C -100 Dual Channel 12 bit resolution

The ADC-100 offers both a high sampling rate 100 kHz and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.
ADC-100 £199 ADC-100 with PicoLog £219
ADC-200 Digital Storage Oscilloscope

- 50 MSPS Dual Channel Digital Storage Scope
- 25 MHz Spectrum Analyser
- Windows or

DOS environment

- $\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$
- Multimeter
- 20 MSPS also available

ADC 200-20 £359.00 ADC 200-50 £499.00
Both units are supplied with cables, power supply and manuals.

\qquad

Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: + 44 (0)1954 211716 Fax: + 44 (0)1954 211880 E-mail: post@picotech.co.uk Web site: http://www. picotech.co.uk/

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

Alexander, the electronic butler in the IntelliHome automated home control system, can be held responsible for almost everything - by Hazel Cavendish

THE internationaly-famous French architect Le Corbusier was the first man to suggest that a house should be "a machine for living", yet no-one so far has put this concept into totally practical effect. Now an Aberdeen Scot called Charles Davidson and his partner Jack McLaughlin have introduced their electronically-inspired IntelliHome to England in a $£ 1,000,000$ show house in Surrey, due to open to the public soon. This house claims to have the most extensive fully-automated voiceactivated system in the British Isles.

In August last year EPE included Davidson's original "Thinking House" in the Innovations round-up of Marvels for the Millennium. Its success has been taken up by one of England's leading house builders in the South and a similar system is being developed for pubs and shops. Considerable interest is being shown by European builders.

Davidson believes his new system will become standard in new homes throughout Britain in five years, as he has devised a way of manufacturing it so economically that a householder is likely to recover the cost of the system in the first couple of years, through impressive economies in heating and lighting.

BUTLERIAN REVOLUTION

The 1997 IntelliHome is based around an electronic "butler" which Davidson calls Alexander. The basic voice-activated system, with around 60 functions, costs about $£ 1,500$, although the really sophisticated versions for luxury homes with swimming pools and music rooms can cost up to £70,000.

Security is possibly the most important part of the system. Alexander will call the emergency services and a nominated neighbour if there is a break-in, and if someone comes to the door when the owner is away, Alexander transfers the call to the owner's mobile phone, so that he can speak to the visitor over the intercom, giving the impression that he is at home. It is even possible to send a video image of the caller to him if he is abroad, so he can tell Alexander whether or not it is safe to admit the caller.

Alexander's video surveillance system has many unique and highly secure design features. It consists of a video panel to which four cameras are connected. A slave video panel can also be connected to allow up to eight cameras to be controlled. A remarkable economy is achieved through the wiring, which requires no special tools and has been developed to utilise standard burglar alarm wire, making installation costs nominal. It should be possible to fit cameras to wherever wires have been run to detectors.
Alexander keeps a careful eye on the

weather and the thermometer, and can make sure the dimmer switches are used when the house is unoccupied and the heating kept low, with resultant economy saving. One of Alexander's features is that the owner can phone him for confirmation that the heating is turned up to eliminate danger of burst pipes, and that the electric blanket will be on when he recurns!

EVEN THE MENIALS

Even plants and pets are catered for. Plants can be watered in an owner's absence, and dogs and cats be fed automatically from special compartmentalised dishes. There is also an electronic rake which cleans out the cat's litter tray and leaves the detritus sealed in a plastic bag!

In homes having a swimming pool, spacious lawns and elaborate gardens, outside chores can also be assisted. Alexander can be told to maintain the swimming pool, filtering and vacuuming it twice daily, and other such operations. He can also ensure that lawns are watered daily in summer, except when it has rained, and hanging baskets are watered twice in 24 hours.
"As far as I know," says Mr Davidson, "Nobody has ever put so many devices under one roof before. We have created a sophisticated wiring infrastructure as the base of the system. Every room in the house can be wired so that from anywhere the occupants will have access to
video, audio, telephone, computer links, automation control, temperature control, security system and access control.

BUTLERING GRANNY

Three new developments - described. as "stand-alone" products - comprise a unique security lamp called ShadowGuard, which uses a variety of effects to create the illusion of occupancy, a revolutionary digital CCTV system, recording onto a computer hard disk, which includes a neighbourhood watch function, allowing householders to monitor each others' homes, and an "intelligent" wall socket. The latter can be switched on and off from anywhere in the world by touch-tone telephone.

Whilst the full-scale IntelliHome is designed to answer the needs of the very rich, the very busy and the very powerful, in its simpler version it could revolutionise many ordinary lives. Last year, Scottish Homes asked Charles Davidson's company to create a "Granny-friendly home" in a sheltered complex, and a major Sheltered Housing charity has asked for a pilot scheme for disabled people, which, if adopted, should allow many to live on in their own homes with the aid of the most helpful items of the new technology. Such schemes can be programmed according to individual requirements, and by the use of the fool-proof voice-activated system which any user can quickly understand.

What a Picture!

A FAMILIAR scenario for many electronic enthusiasts and small business: you're fedup with trying to do CAD, DTP or graphics work on that 15 -inch monitor, but cannot afford the dosh to get a larger one!

Well, there seems to be light at the end of the tunnel for you - Barry Eudall of BBA Ltd has developed a way of running Sparc Station monitors on a standard 486 or above PC , using any $\mathbf{~} \mathrm{Mb}$ or greater graphics card. Available in 17 -inch and 20 -inch versions, and costing just $£ 225$ and $£ 325$ respectively (plus VAT), these superb second-user monitors come with a three month return-to-base warranty.

Performance-wise, they will reach XVGA level, 0.26 dot pitch, 1024×768 resolution at 70 or 75 cycles in Windows $3.1,95$ or NT (all DOS applications must be run within Windows). It's a serious electronic designer's dream!
Furthermore, there is even a technical hot-line available to help you, should you experience any problems with installation.
So, give BBA a ring on 01664482600 and give your eyesight a rest, with no more tunnel vision. Alternatively, write to BBA at 22 Granville Road, Melton Mowbray, Leicestershire LE13 OSN.

Internet Satellites

"'SATELLITES have the potential to take the information superhighway to every comer of the globe," enthuses Science and Technology minister, Ian Taylor. "In the long run, they could make using the internet faster and cheaper and enable it to be accessed from any point on the planet, no matter how remote."

Mr Taylor was commenting on the announcement of a programme to encourage industry to come up with new ways to deliver multimedia services via satellite. Under the Satellite Multimedia Applications Demonstration Programme (SMADP), which is being sponsored by the British National Space Centre (BNSC), consortia will be invited to put forward proposals on how to provide information technology services more efficiently.
"A frequent complaint from Internet users is how long it takes to locate the information they are looking for." We whole-heartedly agree!

BIDDING-UP DIGITAL TV

IAN TAYLOR, Minister for Science and Technology has welcomed the substantial bids the Independent Television Commission has received for multiplex licences for digital terrestrial TV.
"The receipt of bids", he says, "marks a major step in our development of a new digital environment in the UK. The real commercial interest now evident gives the lie to all Jeremiahs and the prophets of doom who said that DTT would be of no commercial interest."
"It is now up to the ITC to select the winning bids and for the competition authorities to consider any issues arising out of those bids. Whatever the outcome, the future for Digital in the UK is one we can look forward to with confidence."

A new free telephone hot-line to up-date callers with details of information technology opportunities across the UK went live on 1st February. The hot-line - 0800456 567 - is part of the government's IT For All campaign which is intended to take the mystery out of information technology and help banish technophobia in Britain by giving hands-on opportunities to see what IT can do. This commitment to technology is welcomed; all to often the opposite seems to have prevailed.

MINI PIC-CHIP

MICROCHIP'S revolutionary 8-pin microcontroller family - the world's smallest now includes devices with advanced analogue-to-digital features. The PIC12C671 'and PIC12C672 8-bit one-time-programmable (OTP) microcontrollers enable intelligent features to be integrated into mechanical designs. They will compete directly with 4-bit microcontrollers (yes, 4-bit technology still has its place), but offer significantly enhanced performance.

The advanced features include an on-chip ADC and two analogue channels. Respectively, the two chips have 1024 and 2048 words of program memory, plus 128 bytes of user RAM. They also provide six multiplexed I/O pins, 4 MHz on-chip oscillator, 35 single-word instructions, and other usual features that you would expect to find on a PIC.

For more information, contact Arizona Microchip Technology Ltd., Unit 6, The Courtyard, Meadowbank, Furlong Road, Bourne End, Bucks, SI8 5AJ. Tel: 01628851077 . Fax 01628850259.

KANDA MINI-PICS IT

KȦNDA System's Professional Universal PIC programmer will now program the new 8-pin 12C5xx series of microcontrollers. This is in addition to the 16C5x. 16C6x, 16C7x, 16C8x and 17C4x series (18-pin, 28-pin and 40-pin variants).

The intuitive windowed menu system allows access to all the processor features (unlike many low-cost units) and will work with code produced by any standard assembler or compiler, includ-
ing C and Basic, and, Kanda tell us, MPASM and TASM as well.

This programmer normally retails for $£ 169$ but, for EPE readers, it is being offered at only £99 (excl. VAT), and you will be given a free 8-pin processor.

For further information on their range of products, contact Kanda Systems Ltd., Unit 11, Glanyravon Enterprise Park, Aberystwyth, SY23 9ZZ. Tel: 01974 282570. Fax 01974282356 E-mail Sales@Kanda-systems.com.

PROTEUS

The Camplo

Schematic Capture

- Easy to Use Graphical Interface under both DOS and Windows.
- Netist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Shmuletion

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCB Design

- 32 bit high resolution database.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- RIP-UP \& RETRY Autorouter.
- Shape based gridless power planes.
- Output to printers, plotters, Postscript, Gerber, DXF and clipboard.
- Gerber and DXF Import capability.

Call now for your free demo disk or ask about the full evaluation kit. Tel: 01756753440 . Fax: 01756752857. 53-55 Main St, Grassington. BD23 5AA.

EMAIL: info@labcenter.co.uk
WWW: http://www.labcenter.co.uk

CIRCUIT

This month, the Readers' Help Desk manned by our regular 'Surgeon' helps with bizarre CMOS behaviour and takes resistors apart - literally!

Resistor Puzzle

0UR regular round-up of comments, queries and readers' questions starts with a puzzler concerning resistor types. We also get to grips with 4 and 5 band resistor codes. Jonathan Stott of Tamworth, Staffs. asks:

Dear Alan, I am 16 years old and enjoy making some of the projects in EPE. A question recently arose which I hope you can help answer: what is the difference between carbon film and metal film resistors? One seems to be able to buy a wider range of resistances in metal film ranges. Is it all right to use metal film resistors even if carbon film types are specified in the Components List? Thanks for your help!
Well Jonathan, carbon film resistors are the most popular choice because they offer a good balance between cost and performance. They are made by depositing a "carbon film" onto a ceramic body, which is then trimmed to the required ohmic value by cutting a spiral groove. They are a good, cheap and cheerful choice for most projects. Snip one in half and you will see the ceramic centre, coloured white; scrape off the surface paint and with luck you'll reveal the spiral resistance band underneath! Carbon film resistors are typically painted beige or brown and show four colour bands. The four-band code is straightforward and for the benefit of beginners it is shown in Fig. 1.

Black	0	0	1	-
Brown	1	1	10	-
Red	2	2	100	-
Orange	3	3	1 k	-
Yeilow	4	4	10 k	-
Green	5	5	100 k	-
Blue	6	6	1 M	-
Violet	7	7	10 M	-
Grey	8	8	-	-
White	9	9	-	-
Gold	-	-	-	5%
Silver	-	-	-	10%

Fig. 1. Four-band resistor code example: yellow-violet-orange-gold= 47,000 ohms (47k) 5\%.

Fig. 2. Five-band resistor code example: yellow-violet-black-redbrown $=47,000$ (47 k) 1%.

Metal film are superior to carbon types because an alloy film is deposited as the resistive material. This produces a high stability resistor with low "noise" and close tolerance, but this is only important in sensitive circuits and the improvement will not be at all noticeable in most projects. Metal film resistors are typically coloured blue or grey and will have five colour bands to represent the resistor value. The five band code is given in Fig. 2.

See how four bands are used to determine the code whilst a fifth band is the tolerance. Note that Maplin's "Min Res" metal film 0.6 watt resistors are 1% tolerance, but the ordinary four-band code usually applies, they say, and if a fifth (red) band is shown, this may be an indicator of the resistor's temperature coefficient (see later), not the tolerance. Confusing!

Being Tolerant

The tolerance of a resistor is an indication. of its accuracy. A 100 ohm 5% resistor could in practice be anything between 95 to 105 ohms. As far as the resistor values themselves are concemed, these are grouped into preferred values and most EPE constructional projects use the E12 range, the most basic and widely available set of values used. These are based on 1 , $1 \cdot 2,1 \cdot 5,1 \cdot 8,2 \cdot 2,2 \cdot 7,3 \cdot 3,3 \cdot 9,4 \cdot 7,5 \cdot 6,6 \cdot 8$ and 8.2 and their multipliers (100 ohms ,
1.0 kilohms, 10 kilohms, etc.). Sometimes, "unusual" resistor values crop in circuits which are not of the E12 preferred range, and this worries novices who are unaccustomed to such peculiar values. For instance, you may see a 200 ohm resistor rather than a more customary 220 ohm (E12) value.

Fear not. The reason is often that the circuit designer may well be a professional or advanced constructor who simply works with the E24 preferred range! At his disposal he will have the following E24 values: $1,1 \cdot 1,1 \cdot 2,1 \cdot 3,1 \cdot 5,1 \cdot 6,1 \cdot 8,2 \cdot 0$, $2.2,2.4,2.7,3.0,3.3,3.6,3.9,4.3,4.7$, $5 \cdot 1,5 \cdot 6,6 \cdot 2,6.8,7.5,8.2$, and 9.1 . Note the extra values available! So he may well have picked a 200 ohm resistor simply because that's what was around at the time.

In some cases (perhaps it's part of a voltage reference or biasing network), the resistpr value is critical and will have been chosen for a specific reason. Such resistor values may be highlighted by the fact that the designer may specify a close tolerance (metal film) 1% type, so it is then best to stick with that value and not stray from the published design.

As often than not, though, you can substitute a near-value resistor (220 ohms, say) and in many examples this will not make any difference to your circuit. Don't be put off by those "funny" values which you may see from time to time, but check to see if there is a particular reason why such a part was specified in the design.

There are also even wider ranges of resistors available in the E48 (48 values) and E96 (96 values) ranges, which are only of interest to professionals and circuit developers. The far greater number of values available implies that closer tolerances are required, and metal film technology is therefore more appropriate, that's why there are seemingly more metal film than carbon film resistors on sale. For the technically orientated, British Standard BS 2488: 1966 (equivalent to IEC 63) is the Schedule of preferred numbers for the resistance of resistors and the capacitance of capacitors for telecommunications equipment. Yes, the same scheme of preferred values applies to capacitors, too.

Other factors which a designer would sometimes take into account include the "tempco" - temperature co-efficient an indication of how much the value is likely to drift up or down when the temperature changes. This is expressed in terms of parts per million (ppm) per ${ }^{\circ} \mathrm{C}$, and metal film resistors offer superior performance in this respect (50 ppm compared with $200-500 \mathrm{ppm}$ for carbon film types). There is an excellent reference to this and those "E" values in the book Newnes "Electronics Toolkit" by Geoff Phillips (ISBN 0-7506-0929-X), which is a handy source of data.

To answer your final question, there is technically nothing to be gained by using metal film resistors if carbon film are specified in Components Lists. When funds are restricted. I recommend gradually building up a "'resistor kit" - 5\% 0.25W carbon film resistors are perfectly adequate for hobbyists' needs - perhaps purchasing ten or twenty of some of the most popular values each time you place an order. I simply store them in re-sealable poly bags. with a large bag holding each E12 value (as listed earlier), and smaller bags within containing the resistors themselves.

Internet users may be interested in two freeware resistor colour code programs available from our FTP site at ftp://ftp.epemag.wimborne.co.uk/pub/ software. Resistor.zip is a simple, neat 3-colour code display - type in the value to see the colours, or click to select a colour and see the resistance value computed. Rescalc.zip deals with 5 -colour band types. Both programs run under Windows 3.x or Windows 95.

For readers who do not have Internet access, we can provide both these freeware files on an IBM-PC floppy disk for the sum of $£ 2.50$ (UK) which covers copying, mailing, postage and handling.

Redundant Pins
 Become Static-prone

An avid "Ingenuity' Unlimited" contributor, the Rev. Thos. Scarborough of Cape Town. South Africa asks several questions in a recent letter: "Why should unused pins of i.c.s be tied high or lon. and what are the consequences of failing to do so?" And another similar question cropped up in an Intemet newsgroup recently:
"I'm just getting into electronics, and was working on a project when I noticed that my NAND gate (2-input quad 4011 CMOS chip) was not working properly. To test il out. I wired a basic circuit where one input always had power. and the other is connected to power via a pushswitich. The output was connected to an l.e.d. Theoretically, the l.e.d. should stay on unless the button is pressed. It sort of did this, but when I released the button. it remained off. I also noticed it would come back on again if I gently tapped the circuit."

CMOS technology was originally known as COS/MOS (ComplementarySymmetry Metal-Oxide Semiconductor) and was pioneered at the RCA Laboratories in Princeton, New Jersey in the early 1960s. RCA Solid State announced the first commercial COS/MOS series in 1968, nearly thirty years ago.

Fig. 3. A pull-down resistor is essential to prevent the input (pin 2) from "floating".

RCA utilised new on-chip complementary p-channel and n-channel MOS "transistors" in their new COS/MOS gates. These transistors are perhaps better thought of as "capacitors" since they are formed from an extremely thin sandwich of metal oxide and i.c. substrate acting as capacitor "plates", separated by a dielectric of silicon dioxide. The device works by transferring charge between the gate's internal CMOS "capacitors". Unlike a bipolar device, no noticeable input current flows, and instead the gate is purely voltage controlled.

Consequently, the MOS transistors are formed using extremely thin layers of oxide which are highly prone to damage by static electricity discharges. CMOS gates have a very high input impedance (10^{12} ohms or more) and contain an input-protection circuit consisting of a diode network which (one hopes) will shunt away any excess voltages created through the accumulation of static, or the application of excessive signal voltages or noise.

However, it's easy for a human body to acquire a charge of $10-20,000 \mathrm{eV}$ (electron volts) purely by walking on a nylon carpet. and this is sufficient to destroy a CMOS device if you discharge yourself into the chip. Hence we pin our hopes on antistatic precautions (wrist straps, etc.) and we hope that those built-in diodes will catch anything else: in fact the diodes provide protection up to about 4 kV . less on older devices.

When building circuits which contain CMOS logic, it is best to ground any unused pins to $0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{s} s}\right)$. This equally applies to the input pins of unused gates. Failure to do so can force the CMOS transistors to move into their linear region, rather than acting as simple onoff switches. This causes lapger currents to flow and results in faulty or erratic operation of the gate, or possibly the entire chip.

Our anonymous Internet friend also made the subtle mistake of keeping an input pin "floating" or
unconnected to anything. A pull-up or pull-down resistor should always be used on CMOS inputs to prevent the CMOS transistors from partly conducting. In this example, he should hook a pull-down resistor. say 100 k or so, between the pin and $V_{\ldots,}$ remembering that the switch itself is connected to the input pin and positive rail ($+\mathrm{V}_{\mathrm{dd}}$). The resistor biases the pin to one supply rail or the other, see Fig. 3.

The very act of "tapping" the chip with a finger may have contributed to the CMOS gate's bizarre behaviour because he may have introduced further static or helped to shunt some of it away. I have witnessed odd behaviour with a counter chip which would display a seven-segment figure randomly when a finger was placed nearby. The cause was static accomulation on some unused pins of the counter!

With bipolar devices, it perhaps isn't compulsory to use biasing resistors but in many situations it is a wise precaution as it helps the stability of the circuit. The 555 timer shown in Fig. 4 has pull-up resistors on the trigger and reset pins, to prevent erratic operation.

Fig. 4. Pull-up resistors are used to bias the trigger and reset pins to the positive rail.

If you have any questions or comments, please write to Alan Winstanley. Circuit Surgery. Wimborne Publishing Ltd., Allen House. East Borough, Wimborne, Dorset, BH2I 1PF, United Kingdom. E-mail alan@epemag.demon.co.uk. We cannot guarantee a personal reply but will endeavour to offer help where possible.

Constructional Project

MID MATRIX

 NELL JOHNSDN
Eliminate the hassle of constantly replugging your MIDI gear with this six-channel switching unit.

MODERN electronic music systems rely on the Musical Instrument Digital Interface (MIDI) to connect together synthesizers, drum machines and computers. Unfortunately, even the most basic amateur electronic music system requires a reasonable amount of MIDI cabling. Before long, the swapping of MIDI cables between units results in a spaghetti jumble of cables and plugs.

The MIDI Matrix was designed to solve the cable swapping problem, using the "telephone exchange"' principle - lots of signals coming in, lots of signals going out, and just a few switches providing interconnections between the two in any configuration required.

This project is aimed at any electronic musician, amateur or professional, who has even the remotest need to frequently change MIDI cabling arrangements. Once all your MIDI signals are connected to this unit you can forget about rummaging around the back of your synthesizers and modules to change your leads - with a twist of a switch, this unit can alter your MIDI layout instantly.

SYSTEM CONFIGURATION

The MIDI Matrix is built from two basic modules: a MIDI Interface module and a Power Supply Unit (PSU). The block diagram of the basic layout of the MIDI Matrix is shown in Fig. 1.

The MIDI Interface modules provide the interface between the MIDI signals and the internal electronics, transferring the MIDI signal onto one of the internal data channels. The actual signalling system used by MIDI is a type known as a current loop. Data is sent in a serial stream, similar to the common RS-232 system used by computers and terminals, using a current of 5 mA to represent 0 and no current to represent 1 .

The reason for this rather ancient system (current loops originated back in the days of mechanical teletypewriters) is that the standard MIDI Input circuitry must use an opto-isolator to provide electrical isolation
between the transmitter and the receiver, a current of 5 mA being sufficient to drive most common opto-isolators.

The purpose of the opto-isolator is to provide galvanic isolation: no direct electrical connection between the sender and receiver. This feature has two important properties, namely, electrical safety and improved noise immunity.
Of most interest to the musician is the second property - noise. Noise will get into an electrical system any way it can, and one subtle entry route is through an earth loop. As its name suggests, this is a loop of wire which is supposedly at earth potential. However, upon closer inspection you will find that the cable is joined to earth at only two points - its ends (see Fig. 2).

That earth wire loop forms a rather nice inductive loop antenna, liable to pick up all sorts of noise - mains hum, audio signals, radio signals, noisy electric motors which will find its way into the audio signal path and ultimately into the recording equipment.

By placing an electrical barrier at the MIDI Input, we break this earth loop and prevent any induced noise finding its way, via the MIDI Matrix, into a synthesizer or mixer. It would be particularly disastrous, for example, if noise found its way into your mixer, where it would ruin your carefully crafted audio masterpiece.

Another reason for trying to keep out noise is that it could, if sufficiently strong, disrupt the MIDI data. This would cause data errors, interfering with the information between MIDI units. The effect of this would depend on what was happening at the time of the disruption. For instance, you have just waited five minutes for a long sample to download into your sampler; when the transfer process suddenly stops, the sampler says the data is corrupt and would you like to "Try Again (Yes/No/Abort)?"'

Alternatively, you could be centre-stage playing your lead solo when, just as you reach the crescendo, a blip in the MIDI data signals your synthesizer to stop what it is doing and retune itself, leaving you looking like a lemon under the stage lights.

The subject of safety cannot be overstressed, especially when dealing with some musicians who seem to have a very cavalier attitude towards electricity. There are many tales of musicians who have been killed through very dodgy mains earthing circuits - one poor chap did not

Fig. 1. Block diagram for the MIDI Matrix.

Fig. 2. Un-isolated connections between two units can create an undesirable earth loop.
realise his electric guitar was actually at mains voltage until he completed the circuit to earth through an earthed metal microphone body ...RIP

The opto-isolator specified for the MIDI Matrix has an isolation voltage rating of 2500 V r.m.s., more than sufficient to block mains voltage. In the worst case, where one of the MIDI wires found itself at mains potential, the only damage to occur would be to the l.e.d. (light emitting diode) in the opto-isolator - much easier to replace a small lump of plastic than rewire a previously living, breathing musician.

Rotary Selector switches select the data channel routings. Each switch is connected to its own MIDI Out interface and can select any one of the available MIDI Input channels.

Finally, the PSU provides power at +5 volts for the complete system. For design simplicity and safety, a ready-made mains PSU module is used, together with an l.e.d. to provide power indication. No provision has been made for a power switch for two reasons, simplicity and safety (fewer components and no internal wiring at mains potential) since the MIDI Matrix will be required whenever the MIDI system is going to be used. The mains plug, of course, must be fitted with a suitably rated fuse.

Fig. 3. MIDI Interface circuit diagram.

Resistor R3 provides a drain for the leakage current of the light-sensitive transistor, reducing the switching time of the device.
Returning signals are fed into a simple booster amplifier based on two of the inverters, IC2c and IC2d, within the hex Schmitt inverter package of IC2. Resistor R4 pulls the input high when no input signal is present, while resistors R5 and R6 complete the 5 mA current loop.

Assuming a 1.7 volt drop across the receiver l.e.d. within IC 1 , the current flow will be:

$$
I=(5-1.7) /(3 \times 220)=5 \mathrm{~mA}
$$

The third inverter, IC2e, together with resistor R7 and l.e.d. D2, indicate to the user whenever MIDI data passes through the output. This seemingly simple addition can save many a headache while running a MIDI system (thus speaks painful experience!).

As shown in Fig. 4, the Selector switches, Sl to S6, are of the break-before-make rotary type. Although this article describes a unit with only six inputs, it is possible to add more MIDI interface modules. The only practical li
being the

3
number of positions that a rotary switch has; most commonly available single-pole rotary switches have 12 ways, thus setting the upper limit to 12 channels. The switches select one of several channels of data from the MIDI inputs, and pass it to one MIDI output.

Finally, the circuit for the power supply unit is shown in Fig. 5. Connector PLl is an IEC mains plug, similar to those found on the back of computers and most professional electronic equipment. This feeds mains power directly into the PSU module. Indication of power is provided by l.e.d. D3, which is in series with current limiting resistor R8.

CONSTRUCTION

Ease of construction has been a main aim when designing this project. Virtually all of the components are mounted on printed circuit boards (p.c.b.s), with very minimal inter-board wiring. To reduce the

Fig. 4. Details of how the six ports are switched.
number of p.c.b.s and wiring, two complete channels are incorporated on each MIDI interface board. The boards are available from the EPE PCB Service, codes 147 (PSU) and 148 (Interface).

We will start by describing assembly of the PSU board, followed by the MIDI Interface board.

The PSU board is probably the simplest design you will ever come across for a mains PSU, there being only three

COMPONEVTS

Resistors
R1, R5 to R7, R101,
R105 to R107
R2, R102
$\begin{array}{ll}\text { R3, R103 } & \text { 10k (2 off) } \\ \text { R4, R104 } & 4 \mathrm{k} 7 \text { (2 off) }\end{array}$
R8 270』
All 0.25W 5\% carbon or better.

Capacitor C1, C101	$\underset{\substack{\text { 100 } \\(2 \text { off })}}{ } \text { Selyester }$
Semicondu	uctors Page
D1, D101	1N4148 signal diode (2 off)
D2, D102	green I.e.d. (2 off)
	red l.e.d.
IC1, IC101	6N138 or 6N139
IC2	74HCT14 hex Schmitt inverter

Miscellaneous
PL1 IEC mains plug, right-angle, p.c.b. mounting

S1 to S6 1-pole 6-way rotary switch break-before-make (6 off)
SK1, SK2,
SK101,
SK102 5-pin DIN socket, p.c.b. mounting (2 off)
Printed circuit boards, available from the EPE PCB Service, codes 147 (PSU - 1 off), 148 (Interface - 3 off); power supply module, mains powered, 5 V d.c. 1W regulated output (see Shop Talk); case, 19 -inch rack-mounting, $1 / 2 \mathrm{U}$ height; metal bracket; wire; solder, etc.

Approx Cost

 ctidance Onlycomponents mounted on the board itself, as shown in Fig. 6. You only need one copy of this board. Start assembly with resistor R8, plug PL1 and then the PSU module itself. If you are going to use p.c.b. pins for the off-board terminations, they should be inserted after R8.

CAUTION: Hazardous mains voltages are present on the PSU board. Construction and assembly of this part of the project should only be done by experienced constructors. If you are in any doubt about the safety of your circuit, get it checked by a qualified electrician.

Fig. 6. Printed circuit board details for the power supply.

Two mounting holes are included on the board to secure it to the plug PL1 - do not rely on the three solder joints to hold the board to this connector.

Check the solder joints before gluing the cover to the board as shown in Fig. 7. This cover must be made of non-conducting material, such as acrylic (Perspex), SRBP, or fibre-glass sheet, and ensures that there is plenty of isolation distance between parts at mains voltage and the case.

Assembly details for the MIDI Interface board are shown in Fig. 8. You need one of these boards for each pair of Interface circuits, i.e. three for a 6 -channel unit. Start with the d.i.l. (dual-in-line) sockets, then follow with the diodes, resistors and capacitor. Note that component numbers for the second channel, except for Cl and IC2, are prefixed by " 10 "; for example R1 becomes R101, D1 becomes D101, etc.

The group of four DIN sockets (SK1, SK2, SK101 and SK102) are designed to slot together to form one block of connectors. Insert them carefully into the board

Fig. 7. Showing where the insulating cover is used on the power supply module.

Fig. 8. Printed circuit board details for one dual-port control module.

Fig. 9. Details of one of the mounting brackets.
and solder in place, taking care to get the mating grooves properly overlapping.

The last parts to fix to the board are the two mounting brackets at each end. These are small metal brackets with holes suitable for 4BA bolts (or M3.5 if you prefer metric). Dimensions are shown in Fig. 9.

CASE DETA/LS

The last stage of construction is to drill and assemble the case, and connect the boards together.

Simplicity has again been a major influence in the choice of the case. By using a flat-pack 19 -inch rack case, only two panels require holes to be drilled in them - the front and rear panels. The layout details and control legends can be seen in the photographs.

The front panel requires thirteen holes: six for the Selector switches, six for corresponding MIDI indicator l.e.d.s, and one for the power indicator l.e.d. The rear panel is slightly more complicated with 21 holes being required. Drill the holes to allow enough clearance for the l.e.d. clips and switch-mounting nuts.

The four modules - PSU and three MIDI Interface modules - can be mounted on the rear panel using 4BA screws. As stated, the MIDI Interface modules require small metal brackets to attach them perpendicular to the rear panel using 4BA or M3 nuts and bolts as appropriate.

The PSU requires particular attention since there are dangerous mains voltages present. The following assembly details should be followed to ensure your safety.

The practical upshot of most of it is "Earth any metal which you can touch".
Begin by fixing the PSU to the back panel with two M3 screws. Then connect a piece of stout, insulated wire between the earth terminal on the mains connector (PLI) and an earth tag fixed to one of the mounting bolts. Use wire of grade 19/0.2 (19 strands of 0.2 mm diameter) or greater, since in the case of a short-circuit, this wire must carry the full rupture current of the mains fuse.

The mains cable should be terminated at one end in an approved mains plug and an IEC socket at the other end. It is recommended that a ready-made cable with moulded plugs is used, since this obviates the need for any mains wiring at all. The mains plug should be fitted with a 3-amp rated fuse, sufficient to protect the cable.
Proceed with mounting the front panel and the rear panel. On one of the mounting screws place an earth tag between the front panel and the rear panel. Again using insulated stout wire, connect this to the earth terminal on PLI. Make up two more earth straps, one each for the top and bottom panels, long enough to reach the mounting screw holes.

Wiring up of the unit is fairly straightforward, and consists mostly of wires going between the MIDI Interface modules and the front panel. Begin with the wiring from the PSU module, including the front panel indicator, and daisy-chain the power leads from one MIDI Interface module to another.
The wiring of the Selector switches consists of connecting together all the common terminals of the switches. This is best done with short lengths of PVC-covered solid-core wire. This is a slightly tedious job, there being thirty interconnections to be made. However, in practice, the repetitive pattern of interconnections helps identify any wiring errors that may occur.
The final wiring required is that between the MIDI Interface modules and the front panel I.e.d.s and Selector switches. This should be done with lengths of stranded wire, typically $7 / 0.2 \mathrm{~mm}$ (seven strands, 0.2 mm in diameter) or similar. Be careful to connect the l.e.d.s the correct way round. Should you accidentally get your wires crossed no harm will come to the l.e.d., but you could spend ages wondering why no MIDI data seems to be getting through!
The last task is to fit the top and bottom panels of the case. These slide on and are retained by the small screws supplied with the case.

TESTING

The first step in testing is to check the mains PSU. As has been clearly stated above: take care!

After repeating this test for the other inputs and outputs, you should now have a fully working MIDI Matrix. All that remains is to fit the unit into your studio, connect all your MIDI devices to it, and away you go, switching to your heart's desires.

As for setting up, there is none. It's just an excuse to go and have a nice cup of tea; if anyone asks you what you're doing, you can say something along the lines of "waiting for the unit to reach thermal equilibrium" (let the tea brew) before you make adjustments (add milk and sugar) to the main data switching module (get biscuit from tin), oh, and the tea's nice.

IN USE

This is one of those projects that, before you built it, you probably didn't realise

PLUGGING MIDI

Are you aware of some of our previous MIDI projects? Since Feb '95 we have published three other MIDI designs.
Theremin MIDICV Interface (Jan/Feb '97)
MIDI Analyser (May '96)
MIDI Pedal-board (Feb '95)
See our Back Issues page for info on getting hold of the published articles.

Let us know what others you would like to see published.

PIC16C84 and BIM Transceiver Development Platform in one!

A hardware development platform for exploring high speed, PC-PC, half duplex, two way Radio Data Communications !

Radio-Tech LImied CYPHERNET-1M
Measures only $39 \times 59 \mathrm{~mm} \times 17 \mathrm{~mm}$

INCLUDES:-
10MHz PIC16C84
BIM-418-F Transceiver 9-Pin D-Type Connector 2-Wire RS232 Interface Transmitter On LED

Receiver On LED 1/4 Wave Wire Antenna
Supplied with a free firmware driver the Cyphernet transceiver will permit you to link PC's and transfer data using Windows terminal mode. Only $£ 79.95$ each. Combined power and data cable only $£ 6.95$ each.

Dedicated PIC16C84 programming tool for re-programming the internal control firmware, permitting the user to explore and develop applications of ther own. Only 94.95 each.

Unit featured above is Licence Exempt to MPT1340 within the UK Export versions on 43392 MHz to ETS $300 \cdot 220$ avalabie with 1 and 10 mW output

Free Catalogue

PIC DEVELOPMENT

Program/read/verify 16C54/55/56/57/58/61/62/620/621/622/63/ $64 / 71 / 73 / 74 / 84 /$ Serial EEPROMs. Expansion port. Built and Tested Only $£ 52.95$

As above but with In-Circuit Emulation Capability. Built and Tested Only £72.95
Both systems have ZIF sockets already fitted and expansion ports for current and future developments!
Other PIC developments. Leaming pack for beginners, demonstration pack, PIC basic (Tel/write for details).

PIC Real Time In-Circuit Emulation. - Emulation to 20 MHz .

- Step/Skip/Animate/Run etc. - Variable speed selection.

- $8 \mathrm{k} \times 16$ Emulation RAM.
- Target Probes included. - Supports 18/28 pin PIC's. Only $£ 149.95$

Test your code in a

 'TRICE'Please add $£ 2.00$ P\&P and
make cheques payable to LENNARD RESEARCH
29 Lavender Gardens, Jesmond, Newcastle upon Tyne, NE2 3DD. Tel/Fax: (0191) 2818050.
Product pictures/info on our web site: http://www.vex01.demon.co.uk/lennard.html

Established 1990 Eleetronics

Product date FAX back
01279832289 PROJECT KITS COMBMATION LOCK Versatile electronic lock
 LISHT ALARM Protect your valuables. Alarm

 Siren or Just for fun! 6-9VDC. 3015 -KT Ea
LED COUNTEA 3 digit basic event counter cir-
cuit on main board. Count \& heset swithes ib cur
debounce circuit on 2 nd. Cascade 2 or 3 kits for Mort inits Gex bravion ausd Op-Amp oscillator of wave shaper circuit generates sudio range
 LOGIC PROBE tosts CMOS dertects fast pulses. Visual $\&$ audio indication of Rogic sta
ROL
ROLET ROULETIE LED 'Batir spins round the wheol
slowe down 6 drops into i slot. 10 LED's, CMOS
 PELTER JNCTION HEAT PUMP Boil \& freaze Wbter instantly' Use for regulated cooling of
tempergiure sensitive components 6 much more tempergure sensitive components
Heatsink required. $\mathbf{3 0 8 6}-\mathrm{KT}$ f1eso
 stops up gV battery supply to flash the 25 mm long Xenson tube. Adjustable flash rate ($0.25-2$ Sec's)
$3022-\mathrm{kT}$ E70.85 LM322KT AUO.50 AMPLFER Popular module for
 3047-KT AOPES
LED RASHER 5 ultre brigm red LEO's flash in
gequence or randomly. dioal for modet railwars.
$3052-\mathrm{KT}$ faiso
3O52-KT EASO
MUTI SEOUENCE LED FLASHER some as 3052 . $K T$ above but you have 7 patterns to choose from.
$3037-K T E A E S$ LED DCEE Classic intro to electronics of circuit
 DUAL LED DICE PIC 16C54 circuit performa simi lar function to $3003-$ all above but two dice. Goo
intro to micro-controllers. Sotware code supplied
 verifies. Unes amy PC parallel port. All hardware.
 STARFWAY TO HEAVEN TESTS dination. Press switch when green segment of
LED lights 2 climb the steiway- miss of sant

SPEED CONTPOUER for any common DC motor
up to 100 FA . Pulse width modulation pive up to $100 \mathrm{~V} / 5 \mathrm{~A}$. Pulsa width modulation gives max.
imum torque at all speeds. 5 -15VDC. 3067 - KT 517.50
$3 \mathrm{~V} / 1.5 \mathrm{~V}$

3V/1.5V TO OV BATTERY CONVERTER Replace
expersive ov betteries with economic $1.5 V$ botexpersive ov batteries with economic 1.50 bet-
tories. IC based circuit steps up 1 or 2 AA' betterios to pive SN/18mA. 3033 -KT 24.75 AMA RAONO KIT Tuned Radio Froquency front-
end, singlo chip AM radio IC 62 steges end, single chip AM radio IC 622 steges of trovided. PCB $322102 \mathrm{~mm} .3063-\mathrm{KT}$ e8. 05 TRAN SOUNDS 4 selectable sounds whistte blowing, level crossing bell chugging, 6 ' clickety-clock'. Al
componemts inc. speaker supplied SG1 Ca .50
AUO TO
ALOHO TO LIGHT MODULATOR COTVO : of one or more lighta in response to an audio input. Ssefe, modern opto-coupler design. Mairs
 components to mate timers for a fow seconds of up
to 21 yeers Onboerd roley outputs. $3006-k T$ 11920
 TEmote control Unit $3072-\mathrm{KT}$ 24.96
TELEPHONE ACTIVAIED SMTCM TELEPHONE ACTIVARED SWITCH
COntrol 4 reloys from anwwhere
 10W STEREO AMPLUER
HOOULE USES TOAZOO9 AB audio power amp IC designed
 12VDC into 4 W
$3091-\mathrm{KT}$ \&7.95
3091-KT 27.85
STEREO VU METER shows peak music pow using 2 rows of 10 LED's lgroen, vellow,
moving ber display. $0-30 \mathrm{db}$. 3009 KT f 10.85 Movig bar disiacole SWITCH Use any remote control uni
KT DATA ACOUNSTIION UNIT Enables your PC to monitor $\&$ control oxternal ovantis $\&$ your PC

 Laser diode. Altractive plastic case suppliod. 3070

ULTRASONIC MOVEMENT DETECTOR XIA
controlled oscillator, detector circuit \& edge
mounted transducers on a
$75 \times 40 \mathrm{~mm}$ PCB. 4.7 m range
Adjustable sensitivity.
Outputs to drive
retay/circuits gVDC 3049-KT C12 © Our high quatiry proect kuts are suppied with 1 instructions. FREE CATALOGUE with order or send 2×1 st Class stamps (retundable) for detalis of over $100 \mathrm{kJt} \&$ publications Mall order only, Please ADO 12.00 P. \& P. (Europe f3, Rest of Word f4) \& make cheques PO's payable to Quasar Electronics. Goods normally despatch within 5 working days.
Please allow 28 days for delvery. Prkes indude VAT at 175%. For safety send cash by recorded delvery.
Ouasar Electronics Unit 14 Sunnningdale BISHOP'S STORTFORD Herts CM23 2PA c-mail: 10138.3510@compuserv.com
Web site: http://ourworld.compuserve.com/homepeges/CuaserElectronics

/NTER 『ACE Robert Penfold

FREQUENCY SYNTHESISER USING A P.L.L. AND DIVIDE-BY-N COUNTER

Last month's Interface article dealt with precise frequency generation using a crystal oscillator and a programmable divider chain. This method is very simple, but gives non-linear scaling. At the high end of the frequency range the output frequencies are well spread out. At the low frequency end of the range the resolution is much finer
For some applications it is more than a little helpful to have a constant increment from one frequency to the next. This can be achieved using a standard frequency synthesis technique which utilizes a p.l.I. (phase locked loop).
With this method a crystal oscillator and divider chain produce a low frequency clock signal. The divide-by- N and p.l.1. circuits then multiply this frequency by the required factor. For example, using a clock frequency of 1 kHz (kilohertz), divisions of two, three, and four through the divide-by- N counter would give output frequencies of $2 \mathrm{kHz}, 3 \mathrm{kHz}$, and 4 kHz .

Locking Phasers

A p.l.1. is essentially quite simple, and uses the arrangement shown in the upper block diagram of Fig.1. The input signal is fed to one input of a phase comparator, and the output of a v.c.o. (voltage controlled oscillator) is fed to the comparator's other input. The output of the comparator drives the control input of the v.c.o. via a lowpass filter.
The output from the comparator is a pulse signal, but the lowpass filter smooths the pulses to produce a d.c. control voltage for the v.c.o. The d.c. control voltage is equal to the average output voltage from the phase comparator.

If the input frequency is at a lower frequency than the v.c.o., the average
output voltage from the phase comparator is very low, and the v.c.o.'s output frequency is reduced. If the input frequency is higher than the v.c.o.'s frequency, the average output potential from the comparator is high, and the v.c.o.'s operating frequency is increased. This gives a form of negative feedback loop. Provided the input frequency is within the operating range of the v.c.o., the v.c.o. will be maintained at the same frequency as the input signal, and in phase with it.
are not exceeded, the output frequency is equal to the input frequency multiplied by the division rate through the divide-by-N circuit.

Stepping Up

A block diagram for an experimental frequency synthesiser, based on the div-ide-by-N circuit described in last month's Interface, is shown in FIg. 2. A 4 MHz crystal oscillator generates an accurate clock signal which is processed by a div-ide-by-eight counter, and a chain of four

Fig. 2. Block diagram for the basic Frequency Synthesiser.

A basic frequency synthesiser consists of a p.1.1. with a divide-by-N circuit added between the v.c.o. and the phase comparator (see the lower block diagram of Fig.1). This operates in much the same way as an ordinary p.l.1., with the two input signals to the phase comparator being maintained at the same frequency and in-phase.

However, the v.c.o. has to operate at a higher frequency in order to achieve this. If there is a division by ten through the divider circuit, the v.c.o. has to operate at ten times the input frequency. Provided the limits of the v.c.o.

Fig. 1. (a) Block diagram for a p.I.1. (phase locked loop) and (b) the arrangement used in a basic frequency synthesiser.
divide-by- 10 counters. This gives a final clock frequency of 50 Hz , which is fed to the input of the p.l.l.

The divide-by-N counter is connected between the p.l.l.'s v.c.o. output and phase comparator input. The output frequency from the v.c.o. is therefore equal to 50 Hz multiplied by the division rate through the divide-by-N circuit.
The programmable divider must include the divide-by-two stage at its output, because the p.l.I. cannot lock onto the short pulse signal produced by the $74 \mathrm{HC1} 161$ when large division rates are used. The flip/flop produces an accurate squarewave signal that is ideal for the p.l.1., but it does of course increase the minimum division rate from two to four.

The divider therefore covers a range of four to 482, rather than two to 241 . This gives a theoretical output frequency range of $200 \mathrm{~Hz}(50 \mathrm{~Hz} \times 4)$ to 24.1 kHz with a resolution of 100 Hz .
On the face of it, the resolution should be 50 Hz (i.e. equal to the final clock frequency). The reason for the inferior resolution is the divide-by-two flip/flop at the output of the divide-byN counter
Setting division rates of two, three, and four through the main divide-byN circuit gives overall division rates of four, six, and eight. Divisions by odd numbers are not possible, giving a resolution of 100 Hz instead of 50 Hz . On the plus side, the maximum output frequency is doubled, and the inclusion of the flip/flop does not reduce the number of output frequencies available.

Frequency Synthesiser

The circuit diagram for the Divide-byN Counter appears in Fig.3, and this is basically the same programmable divider circuit described previously, but with the oscillator stage omitted. Refer to last month's EPE for a full description of this circuit.
The circuit diagram for the clock and p.l.l. stages of the Frequency Synthesiser is shown in Fig. 4. Transistor TR1 is used in a conventional crystal oscillator which generates a 4 MHz output signal. This is fed to the clock input of a seven stage binary "ripple" counter (IC1). In this circuit only the first three stages of IC1 are used, giving a divide-by-eight action and an output frequency of 500 kHz .
Note that an ordinary $4024 \mathrm{~B}^{\circ}$ is not likely to work properly with a five volt supply and an input frer ency of 4 MHz . Its guaranteed maximum clock frequency with a five volt supply is just 2.5 MHz . IC1 must therefore be a 74HC4024, which will operate at up to 70 MHz .
The output of IC1 drives a series of four identical divide-by- 10 stages. These are based on 4017 BE one-of-ten decoders and decade counters.

Fig. 3. Circuit diagram for the Divide-by-N Counter.
wider range once it has actually locked onto the input signal. Accordingly, the division rate through the divide-by-N counter should be set to a middle value initially so that the p.l.l. can easily lock onto the 50 Hz input signal. It should then be able to track a substantial range of output frequencies.

Home Improvements

As already pointed out, in order to cover a really wide frequency span the circuit must have several operating
steps, and 2 Hz to 50 Hz with 1 Hz resolution. In this way the basic $25: 1$ frequency span of the synthesiser can be boosted to an output frequency range of 25000:1
Modifying the circuit to cover a frequency span of 2 kHz to 50 kHz is not difficult. IC6 must have a 500 Hz clock signal in order to give 1 kHz resolution, and this can be achieved by omitting the last of the divide-by- 10 stages.
Pin 12 of IC4 then connects to pin 14 of IC6. Also capacitor C4 must be made much lower in value at around 470 p , be-

Fig. 4. Circuit diagram for the clock, divider and p.I.I. stages.

In this application only the "carry out" output at pin 12 is required, and the other ten outputs of each device are left unused. The inhibit and reset inputs at pins 13 and 15 serve no useful purpose in this application, and are connected to the zero volt (0 V) rail.
A CMOS 4046BE "micro-power" p.l.l. chip is used for IC6. The only discrete components this requires are timing components capacitor C4 and resistor R3, and filter components R4 and C5. The 4046 BE actually has two phase comparators with a common input terminal (pin 3), but their outputs are available separately at pins 2 and 13. The circuit will work with R4 connected to either of these outputs, but pin 2 seems to provide a slightly wider lock range in this application.
In theory, the divide-by- N counter provides a maximum output frequency that is well over one hundred times higher than the minimum output frequency. In reality the p.1.1. might not lock properly over such a wide frequency span. Some "tweaking" of R3's or C4's value should optimise the lock-in range for a given specimen of the 4046 BE , but if a very wide frequency span is required it will almost certainly be necessary to cover it in two or more ranges.
It is normal for a p.l.l. to have a relatively small initial lock range, but a much
ranges. There is more than one way of tackling this. One approach is to have a relatively high frequency range from the synthesiser, and to then use dividers to provide lower output frequencies.

For example, suppose that the synthesiser operates over a frequency range of 2 kHz to 50 kHz in 1 kHz steps. Feeding the output to a divide-by-10 circuit would give an additional range of 200 Hz to 5 kHz with 100 Hz resolution. Two further divisions by ten would give additional ranges of 20 Hz to 500 Hz in 10 Hz
cause the v.c.o. will operate over a higher frequency range.

The alternative method of obtaining more ranges is to use different clock frequencies, and replace C 4 with several switched capacitors, one for each clock frequency. This is likely to prove more difficult in practice, and is not the approach that would be recommended. There is certainly plenty of scope for experimentation though, and this method should work well enough with the right values for capacitor C4.

Special Review

DIITTAL TV AND MPEGE

MIKE RUTHERFORD

What is Digital TV, why all the fuss, and what on earth is MPEG2? Read on and find out!

wITuin the space of twenty years, it has been said, all analogue forms of Radio and Television transmission could have been phased out in favour of a digital system of communication. The changes are just beginning to take place now. "Digital" is a word that is being bandied about more frequently by broadcasters, and has completely conquered the gramophone record industry in less than ten years.

This article attempts to explain the problems encountered in broadcasting television programmes in digital form, how they are overcome and what advantages accrue from going along the digital TV path.

Digital transmission of cable, satellite and terrestrial TV signals is based on MPEG2 coding, the digital compression standard set by the Motion Picture Experts Group of the International Electrotechnical Commission (IEC), and International Standards Organisation (ISO). Digital transmission of cable, satellite and terrestrial TV signals is based on this standard. Its relevance will become apparent as you read on.

ANALOGUE TO DIGITAL

The analogue system in use at present relies on exact synchronisation between camera and receiver to rewrite the transmitted picture at the point of presentation - the CRT (cathode ray tube) screen 25 times a second. The complete picture is repeated every time, even if it contains no movement. In a digital television system the picture is created in memory and "read out" from there as a computer display reads out a graphics card.

To create a digital representation of an analogue signal requires the signal to be sampled at a high frequency, often two or three times the highest frequency present on the analogue signal. On every sampling cycle the voltage of the analogue signal is measured and turned into binary form. The principle is illustrated in Fig. 1.

For a TV picture, the result is a stream of binary data coming from the sampling process that represents the original picture dot-by-dot from top left to bottom right. A television picture is generally divided into columns and rows called pixels and lines. A pixel is a picture element.

In a 625 -line picture, 576 lines are used for the picture, the remainder are blank or carry teletext data. If the aspect ratio of the picture is five units wide by four units high, you can calculate that, for equal vertical and horizontal definition, there should be $576 \times 5 / 4$ pixels in one line. The result is 720 .
These 720 pixels have to be displayed in the time of one active line period, namely

52 microseconds, so that each pixel occupies a time of 72.2 nanoseconds. Assuming that each pixel alternately is black, then white, the highest frequency reached would be 6.9 MHz . Therefore the lowest sampling frequency one could use for such a picture would be 14 MHz , and, in fact, the luminance signal is sampled at 13.5 MHz for MPEG2.

A colour television picture that was simply converted from its present 625 -line, 25 frames per second, format into a stream of binary digits would require a bandwidth of 108 MHz to transmit its $216 \mathrm{Mbits} / \mathrm{s}$ (megabits per second) serial data stream. 108 MHz could accommodate thirteen analogue channels - so what's the point in going digital?

THE POINT OF DIGITAL

There was very little point in going digital until broadcasting engineers began to study more closely the nature of television pictures, realising that much of the information transmitted in the analogue system was repetitive. The big advantage of the digital way was that memory could be used to store the picture, then only changes in the picture from frame to frame need be transmitted. In the receiver, the information could be used to up-date the original image in memory to make the next

Fig. 1. (a) Typical analogue TV line, (b) analogue to digital conversion by sampling.

Fig. 2. MPEG2 processing stages.
frame! This is one of the bases of MPEG2, the data compression process used to transmit high-quality pictures (and sound) in a small bandwidth.

Since MPEG2 is going to feature largely in our lives in the future, it might be as well to examine its processes as a path to understanding the nature of digital TV. Between the studio console and the transmitter are seven steps of data processing that throw out repetitive data, split up the remainder into packets with identification and timing tags, and multiplex it with other television services all with sound and other data. Fig. 2 shows the seven stages of processing used by MPEG2 to achieve compression ratios of up to $160: 1$.

Very often the amount of redundant information in a television picture can be as high as 95%. Stage one, the analogue to digital conversion stage, samples the luminance and chrominance signals and turns them into streams of binary digits. The luminance signal is sampled at 13.5 MHz and the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ colour difference signals, known as Cr and Cb in their digital form, at 6.75 MHz each. Eight-bit sampling will give 256 shades of grey, but ten-bit samples are more frequent in modern digital studios.

By comparing adjacent frames of a video sequence, the differences from frame to frame can be detected and these sent to the receiver to modify the picture in memory. If a still picture or, more rarely, a test card was transmitted it should be possible to send one frame and then turn the transmitter off! Unfortunately, anyone who turned his receiver on slightly late would
get nothing at all, and for this reason a full frame is sent on a regular basis to allow for people channel-hopping and turning on the TV in the middle of something.

TEMPORAL REDUNDANCY

The process of discarding repetitive picture information from frame to frame is termed Temporal Redundancy and is the second stage shown in Fig. 2. Motion-picture cartoon animators use a similar process on the rostrum camera using overlays on a static background for some scenes as it avoids having to draw the same background repeatedly frame after frame.
Each frame is assembled into blocks of pixels, initially eight pixels by eight lines of luminance, then formed further into groups of four luminance blocks (16 pixels by 16 lines) with two chrominance blocks, one for Cr and the other for Cb . This larger grouping is called a macro-block, and is detailed more fully in Fig. 3.

Inter-frame comparisons are done at macro-block level. A process akin to subtraction is used to determine differences which are forwarded for more processing. The macro-blocks are assembled in sequence in exactly the same way as the original picture was scanned - left to right, top to bottom.
The assemblage of several adjacent macro-blocks into a sequence constructs what is called a "slice" (see Fig. 4). A slice forms a convenient collection of data for error-detection and correction purposes. The "slices" are assembled in sequence to compose one TV frame and a string of frames, usually twelve in

Fig. 3. Temporal redundancy - blocks and macro-blocks.

Fig. 4. A group of pictures.
number, are grouped together with appropriate identification codes and timing marks to form a video sequence. The group is a useful unit around which service identities can be determined and this makes for greater ease of editing and switching.

Next, the similarity of adjacent pixels within a frame is examined and a code sent to denote how many pixels have the same or very similar luminance and chrominance values. If, say, a whole line of picture has a luminance value of $0.6, \mathrm{Cr}$ of 2.2 and Cb of 8.3 , the process will say "Line 78 . Pixel $1, \mathrm{Y}=0 \cdot 6 . \mathrm{Cr}$ $=2 \cdot 2, \mathrm{Cb}=8 \cdot 3$, repeat 719 times'.

SPATIAL REDUNDANCY

The third stage in Fig. 2 is termed Spatial Redundancy and only occurs within the boundaries of an individual frame. It is shown in expanded detail in Fig. 5. The process contributes further to the elimination of repetitive information. Further savings are made by using short codes for frequently-used code sequences and for timing and synchronising signals.

This is like the system used in Morse Code where the most frequently used letters of the alphabet have the shortest codes, for example " E " is simply a dot and " T " is just one dash, whereas " Z " is dah dah dit dit. In addition, large numbers of zeroes or ones can be re-coded, for instance x zeroes followed by y ones can be re-coded as $(x, 0)(y, 1)$.

Large runs of zeroes are found at the end of data runs. and these are given short codes to signify the end of a data run instead. It all saves precious space, and the process is called Statistical Redundancy.

The precise timings involved in television are an advantage when it comes to assessing the motion of a group of pixels which comprise part of a moving picture, for the accurate timing and precise positional information allows predictions to be made about blocks of pixels in motion. Macro-blocks are used for motion prediction, and the speed and direction can be calculated simply and a vector produced that describes the motion. The values of Y, Cr and Cb in macro-blocks in identical positions in successive frames can be compared and the differences used to generate a shorter code.

COSINE TRANSFORMS

Up to this point, the redundancy process is reversible, nothing of value has been lost. The next step in the sequence is a complicated mathematical process known as Discrete Cosine Transform. This is represented by stage four in Fig. 2, and expanded in Fig. 6.

The transformation is performed upon the numbers representing the luminance and chrominance values in the pixels of an 8×8 block. It is a conversion of the values from a time domain to a frequency domain.

It is somewhat akin to saying that a side of a square wave rises in 25 nanoseconds and that. in frequency terms, is 10 megahertz. This delivers a new set of whole numbers which are then quantised. That is to say, the numbers are "rounded up" or "rounded down" to the nearest step in a range of equal steps.
Supposing you have a set of steps that increment by 20 and you have to fit 47 into it. the nearest step is 40 , so 47 is quantised to 40. If the next number in the range is 77 , that is quantised to 80 . The larger the steps (and the fewer), the larger the errors are. With the same numbers and steps of 5,47 would be quantised to 45 and 77 to 75 , so the closer the steps, the smaller the quantisation errors.

The quantisation process further reduces the amount of data that needs to be sent and in the MPEG encoder the quantisation process is a variable one, as will be seen later.

TRIPLE FRAMING

The MPEG process uses three types of frame (see Fig. 7), / for Intraframe, P for predicted frame, and B for bi-directional frame. The 1 frames are reference frames, they are not predicted or interpolated. An I frame is inserted into a group of pictures every twelfth spot, and serves to provide a reference for decoding to commence quickly - just under half a second. They are not subjected to the high degree of compression that \mathbf{B} and P frames undergo.

The I frames allow channel surfers and the casual viewers who dip into and out of

[^0]: EPT Educational Software. Pump House, Lockam Lane, Wtham, Essex. UK. CM8 2BJ. Tel/Fax: 01376514008. E-Mail sales@ eptsoft.demon.co.uk Web pages http://www.octacon.co.uk/ext/ept/software.htm

 * UK Please Add $£ 2$ per order for post \& packing + VAT. Make cheques payable to EPT Educational Software. Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date.
 OVERSEAS ORDERS: Add $£ 2.50$ postage for countries in the EEC. Outside EEC add $£ 3.50$ for airmail postage.

