

Finds bergs in
PIC SOTHMare

MAGNEEIC FIIELD
DETECTOR
Investigatie static

EPE TEACMINTN 2000 - PARPR 2 CQpacitors

THE No. 1 weralilil: 0 : Electrow ce techioloct

Minterizace o vevms o cifcumit suifgery 11. NevN Technology updaike o Net Mromik狍刦p://www.epemag.wimborne.co.uk

12v 18 Ah SEALEDLEADACID BATTERIES, new and boxed, unused pack of 4 £ 39.95 ref CYC7 or $£ 15$ each ref CYC6
AUTOMATIC CHARGER Fortre aboveminés crarjes

A new range of 12 v to 240 v INVERTERS
IV400S (400 watt) $£ 89$
IV800S (800 watt) £159
IV1200S (1200 watt) £219
ECG MACHINES?\%V 10AH BATTS/24V 8A TX-Ex

 ino Dith sxikety br connectro tre bod, sersors to Sensen net

 sod as seen may have ane or tro broiken krobs ets oue to poor trage E15 PG ra VP?
SODIUM LAMP SYSTEMS $£ 75.70$ complete syzem with 350 w or 400 watt $50 \mathrm{~N}-\mathrm{T}$ Agro bulb, nefiector with bulb hooder and remote balizst and storteriuncased) all you need is wife. 250 W systam ral SLS1, 400W 5ystam SLS2
PC SUPPORT HANDBOOK the uttemste metrideal gules to bullding and malinuining PC's. Over 450 M pages pected mith tactrical data and diagrams just E10 ref PCBX. you wont 4 cophes for E3I TM PCAK2 Abs ayallable is a CD
 CBK1
D SIZE NICADS Tegped, $1200 \mathrm{ma}, 1.2 \mathrm{z}$ pact of 4 for $\varepsilon 6$ ref CYC9 or as a pect of 24 for $E 22$ ref CYC10

D SIZE SEALED LEAD ACID BATTERIES

 Len Trese taxernes are pricuary used in tiat you can arzage

HYDROPONICS DO YOU GROW YOUR OWN?

PC COMBINED UPS AND PSU Tre int tos atel

ALTERNATIVE ENERGY CD, FACKED WITH HIL-
 AND BEOFWATKX: ETC E14 50 REF CO56
AERIAL PHOTOGRAPHY KIT This revet coirnes win

PROJECT BOXES Ancter barasin ios you sie these sitar ABS proped ccres, strart ino prece scren logzther case measuing

 as brand rew and taxed Tho pesce constructon - ISumrated heymed tre or pute (swthabie), recal redailinc tevse, rigrion zws of raper sweh and quaty curstuction Of wite poces and is survied

3HP MAINS MOTORS Srgie priase 2ENy, trexa new, 2

 BUILD YOU OWN WINDFARM FROM SCRAP

CHIEFTAN TANK DOUBLELASERS 9 WATT +3 WATT+LASER OPTICS Cantescertedtrisertsecer.

 tratgremert 7 rilerange. no croulosarats tueto 400 , new price

 fect the unis aiso portan a repercer to ofist ifectou sgrest tom EGetis ElGE Ref LOTA
MAGNETIC CREDIT CARD READERS AND ENCODANG MANUAL E9 OS Cased with fyes Oesed io

SOLAR POWER LAB SPECIAL $2 \times 5 \times 5$ e 135 mA

 BE SELF SUFFICENT IN ELECTRICITY Converensure parsinen bats d
 And \equiv meste

STEPPER HOTORSExan newterpermars Anemforg

200 mpg fromour new Velosolex motorized bikes $£ 695$ inc vat Sales 01273383848

Hydrogen fuel cells

Our new Kydrogen fued cells are iv it up it 1A oulputh Hydrogen input, easily driven from a smalf electrolosis assembly or from a hydrogen source, our demo mode uses a solar panet with the output leads in a glass of sath water to produce the hydrogen! Each cell is designed to bo completely taken apart putback toge ther and expanded in what ever capacity you like, (up to 10 watis and 12 v per assembly. Cells costc79 rel HFC11
We get over 10,000 hits a day.....
http://www.bull-electrical.com
PHILIPS VP406 LASER DISC
PLAYERS, sCART OUTPUT, JUsT PUT YOUR VIDEO DISK IN AHD PRESS PLAY, STAMDARD AUDIO AHD VIDEO OUTPITTS, FULY TEATED AMD HORUKHO. E24.05 REF VP40 SMOKE ALARMS Wars poweed nube ty the tornas
 ref 5523. pack of 12 i24 res 5se
4AH D SIZE NICADS pack of 4 E 10 ref 4AHPK SENDER KTT Cortars aisomponerstablo aivtrant ite compere wh case fisur re VSxC?
10 WATT SOLAR PANELATOThous sicontanelfics na anotzed hurraum farte Para measures 3 by 1 with serew
 Unframed 4 pack ($3^{\prime} \times 1^{\prime}$) 558.99 ref SOLX
12V SOLAR POWERED WATER PUMP Ferfer for maty 120 DC uses, ficm sciar fonteros to nyurocomosi Stall

SOLAR ENERGY BANK KIT $80 \times 6^{\prime \prime} \times 12^{\prime \prime} 6 \mathrm{v}$ solar panels(amorphous) +50 diodes $\mathrm{E99}$ ref EF112
PINHOLE CAMERA MODULE WITH AUDIOI
Siperb beard verera whan bazd sound exiz stal wos zenm
 roven hsore ary, ting, even a matensem Complete wen 15 netie

SOLAR MOTORS Tiny mocers misct riat oxst hacpaig on witages tumbivic works on our Er emorphous ar patisis and
 WALKE TALKIES I LULE RAGGE EY7TPNR REF MHO30 LIQUID CRYSTAL DISPLAYS Bargain prices, 16 character 4 line, 6305 mm £5. 99 ref SMC1640A 40 character 1 line 154×1 ermm $£ 6.00$ ret SMC 4011 A YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Campertos.je cians war batis of ins

 SOLAR POWER LAB SPECIAL 2×055 er ceis - LEE's wire biner- smbin-reajornoter E7.99REF SA27

MINATURE TOGGLE SWITCHES These

 where mouth pece an you can wistypur wice usingtecontide on

REGISTER FOR OUR
 electronic newsletters BULL-ELECTRICAL.COM
 BULL ELECTRICAL

250 PORTLAND ROAD, HOVE, SLESSEX
BN3 SOT. (ESTABLISHED SOYEARS). MALL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $\operatorname{E4.09}$ P\&P PLUS VAT. 24 HOUR SERVICE E6. 5 f PLUS VAT.
 (ACCESS,VISA, SWITCH AMERICANEXPRESS) phone orders: 01273203500 FAX 01273323077 Sales@bull-electrical.com

30WATTS OF SOLAR POWER forjust $£ 69,4$ panels each one $3^{\prime} \times 1^{\prime}$ and producing $8 \mathrm{w}, 13 \mathrm{v}$. PACK OF FOUR $\mathbf{\varepsilon 6 9}$ ref SOLX

 THE TRUTH MACHINE TES dsumecre cining by mito
 a3s on tre prone ard TV כs well E 42 29 red tiol

33 KILO LIFT MAGNETHEOTmiant 32 mondane wen

HYDROGEN FUELCEL PLANS

STIRLING ENGINE PLANS interesing ifomation pax conering as aspects of Sting ergies, tetires al reme mase.
 ENERGY SAVER PLUGS Seves in to 15% eeartety

12V OPERATED SMOKE BOMBS irre $3: 5 \mathrm{a}$ i2

 (surzte tur mock equonert Fres etc) and 1 toper modie for fX
 HIPOWERZENONVARLABLESTROBESLief,

HOWTO PRODUCE35BOTTLES OF WHISKY FROM A SACK OF POTATOES COMNEREve270 paje book cover ai asports a sten proseren hom everizy

NEW HIGH POWER MINI BUG wit: araved L5 to

 IR LAMP KIT Sutatie for coty iomeros. ensibesté cansa

INFRA RED POWERBEAll harweia betery pansed

SUPERWIDEBAND RADAR DETECTOR ceticts
 sfesd detectan systems zed degree zoverage, tronta

LOPTX ulate ty Samsing tr onior TV is ext in sis?
LAPTOP LCD SCREENS $24 a \operatorname{tin}$ smm ene retssis WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? vie reve coided 140 tustess raruas trat

HIGH POWER DC MOTORS, PERMANENT
MAGNET 12-2ti operaion pritaily aboe wh hase ponet

 wow torm tre fork ten ra MOT:

ELECTRONIC SPEED CONTROLLER KIT For the ebore matris fis ref Magit Sire fis fyou Duy mem sum
 40Tsa
INFRA RED REMOTE CONTROLS n, tive cat ray rave dher LSé poik of 100 tis rep lrem RCB UNITS Inline IEC lead with fitted RC breaker. Installed in seconds. Pack of 3 £9.98 ref LOT5A
On our web sites youcan

1. Order online.
2. Check your premium bonds.
3. Enter our auction or build your own
4. Add E-commerce to your own site.
5. Discover our software site, optical site, hydroponics site, holiday home exchange site, inkjet site, hotels site,
6. View our web camera.
7. Invest in our future.
http://www.bulinet.co.uk

ISSN 02623617
PROJECTS . . THEORY . . NEWS
COMMENT . . . POPULAR FEATURES . .

VOL. 28 No. 12 DECEMBER 1999
Cover fllustration ty Jonathan Robencen

http://www.epemag.wimborne.co.uk
The No. 1 Magazine for Electronics Technology and Computer Projects

Q Wimborne Pubilshing Lid 1999. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS/ETI IS fully protected, and reproduction or imitations in whole or in part are expressly forbldden.

Our January 2000 issue will be published on Friday, 3 December 1999. Sse page 859 for detalls.

TV SOUND \＆
VIDEO TUNE：

The TELEBOX is an estadio tify cased mais powerd un containh al are fred viet a composite adio or SCART hat The composte vido apol
 nods not normaly recotvablio on most telovition recefiers＇（TEIESOX

TELEBOX ST lor composite video Iqput type moritors
${ }^{\text {E35．95 }}$ TELEBOX MB Musitand VFFNHF／Cabloht Fertand IUner E69．55 ＇Fer cable／hypertand sional reception Telebisx $3,4 \mathrm{~A}$ should tea con necied to a cable type service．Sripping on all Telebox＇s，code（B）

State of the art PAL（UK spese UHF TV tuner module x 52 mm Enabict futy tuning control via a simple 3 wire link to an aram and cocumentation．Reguires +12 V \＆+5 V oV to

FLOPPY DISK DFIVES 2

AI unis（uniess stited）are BRAND NEW or removed from ctien you with a luli 90 day guarantee．Call or see our web site www．distel．co．Uk tor over 2000 unizted drives tor spases si repain．
 Teac FD－55GFR 1.2 Mideq（tor IES Non taptap
 Takie top case with integral PSU for HH SK F Fopoy $/$ HD －Shugart 8105° SS HH Refurtished
8^{*} Shugart 85188° doutia sinded refutisthed 8 tested －Mitsubishl M2805－63－02U OS stincine New Dinal g° cased dives with intograt power supply 2 mo
$\varepsilon 25.95(\mathrm{~B})$
$\{18.95(6)$

HARD DISK DRIVES 21／2

2\％TOSHIBA MKiOOQMAV 1．1Gb lap！op（ 125 mm H）New 879.95
 2\％＇TOSHIBAHNGe O9，4AV G．IGD laptop（ 12.7 mmH H）Now 190.00

34° CONNER CP3024 20 mb IDE VF（or Qqưr．）RFE
$3 \%^{\circ}$ CONNER CP 304440 mb IDE VF（or equiv．）RFE
$3 \%^{\circ}$ OUARTTUM $40 S$ Prodri ve 42 mb SCSI LF，Naw RFE
5% ．SINISCRIBE 3425 2OMD MFM UF（or EquTv．）RFE
 SW．CDC $94205-5140 \mathrm{mb}$ HH MEM UF R
54．HP 97546850 MO SCSH RFE tested 5\％．HP C3010 2 Ghye SCSt diffarentlal RFE lestet NEC D 224685 Mb SNO intardace Now © FUJITSU M2322K 1 OGs，0 SMO UF RFE tested
8．FUITSU M2392K 2 Gb S1，4D UF RFE tosied

TEST EQUIPMENT \＆\＆

MITS．\＆FAJ445ETKL 140° Industial spec SVGA monitors FARNELL O－60V DC O 50 Amps，bench Power Supplies FAMNELL AP3080 O－3NV DC 080 Amps，bench Supfry
IWW to $400 \mathrm{~kW}-400 \mathrm{~Hz} 3$ phasio power sources $-6 x$ stock IBH 8230 Ty－a 1．Token fing base unt dirver Y＇syne Korr PiA 200 Audio trapuzncy response analyset BM 53F5501 Toxen Ring ICS 20 port kebe modules IBM MAU Toixen ring distrioution panel 8228－23－5050N Alld 501 L cw ofstortion Ostiator 9 Hz to 33 CKhz ．IEEE ALLGON 8360．11805－1820 BHz hytrid power combiners Trend DSA 274 Data Analyser with $G 703(2 \mathrm{~N}) 64$ i＇o Usiconi 2022 C 10KHz－1GHz RF simnit generator Harconi 2030 ogt 0310 KHz － $3 \mathrm{GHz} \mathrm{E} 5 \mathrm{E}^{2} 50$ MP1650B Locio anilvor HP3781A Pattemgonerator \＆HP3752A Error Diterotor HP6264 Rack moml vartable 0－20V e 20A metored PSU HP5s121A DC 1022 GHz four channel lest set
HPBi30A opl 020300 MHz pulse genatator，GPIB etc HP A1，AO 8 pen HFGL high speed drum ploters－from HP ORAFTHASTEA 18 pen high speed plotter EG＋G Brookdeat 95j35C Precisen lock in amp
Viow Eng．3，tod 1200 cermputerised inspection system Sony DXC－3000A Hegh quality CCD cobour TV camera Kelinley 590 CV capacitox／vitiga analyser
Racal ICR40 dual 40 channal voice recorder $5 y$ Fiskers 45 KVA 3 ph On Line UPS－New tiateries Emerson AP130 2．5KVA indrustrial spee．UPS

Sermens K 400 64ho io lesomb demux analyser \quad E2950

IC＇S－TRANSISTORS－DIODES OBSOLETE SHOAT SUPPLY－BUL 10，000，000 items EX STOCK CALL OR SEE OUR WEB STIE wWW．distel．co．uk VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see－ －At this price－Don＇t miss it！！ Mitudisthl FA345ETKL if SVGA Mutisync cetar mertis win fre

 VGu catie for IBMPC inctudec． compcers anaitabsz－CALI Eniema cables for cthor typas α compxeers avilably－CALL Ex demo 17＂0．28 SVGA Mitsublshi Diamond Pro monitors，Full multisync etc．
Full 90 day guarantee．Only E199．00（E）

$$
\text { Juist in - Mlcrovitec } 20^{\circ} \mathrm{VGA} \text { (} 600 \times 600 \text { res.) colour menitors }
$$ Good SH condition－from E299－CALL for info PHILIPS HCS35（same syle as CMg833）atractively styed $1 A^{\circ}$ Khz vdeo Inputs via SCART sockel and secompasite 15.625 thtegrat eudio pówor amp and speäker for all audio visual uses Wh conriegd dreet to Ammga and Aler EBC computers．Idjal for ai video montoring I securily appications with direst connection to mosi colour cameras．High quefity with many teatures susin as tront concealed fiap conitrols．VCR correction button etc．Gosd

PHILIPS HCS31 Ulira compact 5° colvar video monitor with stan－ for al monining 15.625 khz video inpult vis Sult socket loe

 Oftch．Supert clarity and modern styling．
 source，
suche
Archim

$$
\begin{aligned}
& \text { Gocd uses condion. Only \&125 (E) } \\
& 20^{\circ} 22^{\prime \prime} \text { and } 26^{\circ} \text { AV SPECIALS }
\end{aligned}
$$

Supprty mada UK manulacture．pll all sobd staie cobour moniors leak sime ca leak sint case．Perfect for Sthoots，Strops，Oisco．Cubbs

20＂．．．E135 22＂．．．．E155 26＂．．．．£185（F）
We probably have the targest range of video monltors in
Europe，All sizes and types from $4^{\circ} 10^{*} 42^{\circ}$ call for Info．
DCPOWER SUPPLES
Virfually every iype of power
supply you cannimagine．Wver
o，ooopower Supplies Ex Siock
callor see our web sife

ECIAL INTERE도T ITEMS

HP6030A G－200V DC 617 Amps bench poict supply
Intel SBC $4565125 C 08$ Enharced Mulious（IASA）Naw
Intel SBC 456S125CO8 Enhanced Mulizous（18SA）
Nikon HFX－11（Efhiphal）exprosure control unk
NMiUPS PMS519 pro．IV shanal geverator
PHinPS PMES pro Enzal generator E1250
Motorola VME Bus Boards a Comporents List SAE ACAL
Fuilisu M3041R 60J LPM high speed band printer
Fultisu M30410 600 LP：M printer with network interiace Perkin Elmer 2598 infrared spectraphciometer
Perkin Elmer 597 infrared spectrophotormét
VG Electronlcs 1035 TELETEXT Deoseting Margin Meter
UghtBand 60 output high spec 24 rack meant Video VDA
Sekonic SD 150418 chanut digdal Hytuid chan racocdet
Sekonic SD 150 H 18 chanhet digital Hyturis chan racordet
B\＆K 2633 bicrophore pere ame
B\＆K 2633 licrophcrie pre amp
Taytor Hobs on Tallysurd ampifier／secorde：
ADC SS200 Carton doxatie gas datector $/$ monitor
BBC AMraz Fpl：Meter（Ernest Tumer）\＆drive gearsonies
ANRITSU SS5SA Octical DC－2．5Gh wa velem monitor
ANRITSU MLEEA Gatlcal power metel
ANRITSU Fibre optic chafacteristic les！se
R\＆S FTOZ Dual sound unit
R\＆S SBUF－EI Vision moduiato
WILTRON 6630日 12．4／2GGHz RF sween gemerates
TEX 2445150 MHz 4 trace oscillascepe
TEK 2465300 MHz 303 HiHz cscilloscope

TEK TOS 3804004 nz digital reancre－Ofk dinte，F \qquad
 PHILSPS PW1730＇10 60KV XRAY Senerator analysef
CLAUDE LYONS 12A 24OV singie phase auto vor rege EPOA

RACK CABINEIS Superb quality 6 foot 400 Virtually New，Ultra Smart Less than Half Price！
Top cuality 19 rack cabinets mage in UK by desiopher，smoked acryic bchable frant doo full heigint hovkatle hath buvaled tack dos， and lowered removable side panels．Fuly for any configuration of equipment maunting phus ready mounted integral 12 way 13 amp have aver sold．Fisciss may teks stacked side oy side vint therefal require cnty iwo sine panals to stard singhy or in muhiche bays． OPT Rack 1 Comphete with rembvabie side fane＇s．$E 345.00$（G Opt Rack 2 fack，Less sidü prate＇s \quad 2245．00（G Over 1000 racks，shelves，accessories
$19^{\prime \prime} 22^{\prime 2} \& 4^{4}$ wide 3 to 46 u high．
Available Urom stock ！！
32U－High Quality－All steel RakCab stade by Eurocratt Enslosurés Lity to the highest possible spate， ack features all steal constructlon with remiovai hinged for easy eccess and all arf lockatlo with five secura 5 lover barrel locks s constructed of double walled stepl with a designer style＇smoied acrylic fiont panel to panel，yet teman unaterusive．Internaty the racx eantures fully slowed remforced vertical fixin members to tako the heaviest of 19＂rack equipment．The two movable verical froing sifuts （extras avalatie）are pre qunched fer standard yomounted to the Eottom rear，provides B XIEC 3 pin Etro sjockets and 1×13 amp 3 fin switched fully lourve：ed back door and double skinined tep by with too and sind lorres The 100 panel may ba section of Integrad fans lo the suthe lop panel may be rembeed for fritire castors and fioor tevelers，propunctied utility panel al invire：Ene cabla connoptox acoess etc Suppijat in excollent，slighty used condition with keys．Cotour Royal blue External dime
$m \mathrm{~m}=1625 \mathrm{H} \times 6.50 \times 603 \mathrm{~W}\left(50^{\circ} \mathrm{H} \times 25^{\circ} \mathrm{x} 233^{\circ} \mathrm{W}\right)$

A superb buy at only $£ 245.00$（G）

 $42 U$ version of the above only £345－CALL
12V BATTEIY SCOOP－ 60% off II

 A spacial buk purchasa frem a cancelied export order brings yu the most amazing savings on these unt echargeabla tatheries Mata by Hawker Energy Lid，type SBSis eaming pure lead prates whikn Gler a tar suparior sinet \＆guaras BRAND KEW and boxici Omiensions 200 vicie， 137 tigh．Thppeep esch Our Price £35 each（c）or 4 for $£ 99_{(1)}$ PaLAYS－200，000 sinom slocik Save fates by choosigg joir next reiay from our Massiva Stato．Printed Circuit showring etc．CAll or sez our web sit stock Sive Enirs

COLOUR CCD CAMERAS

Undjubbedily a miracie of modern tochnology

our spacial brying power I 分 quality product tea turing a fuly cased COLOUR CCD cameiza

ghe way in low light a high ligh

$$
\begin{aligned}
& \text { applications. A } 10 \mathrm{~mm} \text { fuxed foetrs } \\
& \text { wide angle fons gives axcellant focu }
\end{aligned}
$$

and resolution frum clase up to fong range Tha composite video output will （via SCAFT socket）and most video ideat fors．Unit runs from 12V OC 50
ulity s portable applica llons where mains powtiable applica Overall dimensions 66 mm wide $x 117$ deep x 43 high．Suppsen GR－is inchung Securty，Hoane Viceo Web TV Wieb Cams fic，fte Web ref－LK33 ONLY $£ 99.00$ or 2 for $£ 180.00$（a）

SOFTWARE SPI＝CIALS

NT4 WorkSIation，complete with service pack 3 and licence－OEM packaged． ONL Y $£ 89.00$（a） EriCARTA 95 －CDROM，Hiot the fatest－but at this
DOS 5.0 on 34 disks w th con－ise bocis chi Otas Windaws to woikgroun5 3 11．Dos 5.22 on 3.5° disks 814.95 Windows tor Workgroups 3．11＋Dos 6.22 on 3.5° disks $\mathrm{ES5.00}$ wordpertoal shipping charges for sotivare is code 8

DISTEL on the web ！！－Over 16，000，000 items from stock－WWW．distel．co．uk

LONDON SHOP

下s DISTEL©
Visit our web site www．distel．co．uk

ALL 定 ENQUIRIES

SCRATCH BLANKER

It seems that reports of the death of vinyl discs have been somewhat exaggerated. While it is true that new vinyl records are not made in significant numbers any more, there is a thriving second-hand market. In fact many types of record are now hotly collected, including some that were manufactured quite recently. Interest in vinyl records may still be quite strong, but the drawbacks that resulted in compact discs taking over have not gone away.

Noise caused by dust getting into the grooves is one problem, but with proper care and handling this can be minimised. Physical damage to this very vulnerable form of recording is probably the main problem, and there is no easy solution to this one. Most new viny/ recordings were supplied complete with a few "clicks" and "pops", and even when handled with due care they tend to gain some more over the years.

This stereo circuit provides a delay of less than one millisecond to the audio signal so that "clicks" can be detected and removed before the listener hears them: Make listening to your old vinyl a pleasure again.

FLASHING SNOWMAN

 If you wish to make an electronic project popular you give it some flashing l.e.d.s, or you do if you believe the in-joke that was popular in the electronic magazine publishing business some years ago. This joke came about because one of the magazines now incorporated into EPE published a project that was basically just a soap dish fitted with some l.e.d.s that flashed. Apart from looking pretty, It did not actually do anything, but that did not stop it from being by far the most popular project ever published by that magazinelThis project is very much in the flashing soap dish tradition, it is just a polystyrene ceiling tile fitted with some l.e.d.s that flash. It is a simple but amusing Christmas decoration that should raise a smile or two.

[^0]

$\begin{array}{llllll}\mathbf{T} & \mathbf{E} & \mathbf{L} & \mathbf{N} & \mathbf{E} & \text { IT }\end{array}$

T
 8 CAVANS WAY BINLEY INDUSTRIAL ESTATE. COVENTRY CV3 2SF
 Tel: 01203650702
 Fax: 01203650773 Mobile: 0860400683

(Premises sftuated close to Eastern-by-pass in Coventry with easy access to $\mathrm{M1}, \mathrm{M} 6, \mathrm{M40}, \mathrm{M42}, \mathrm{M45}$ and M69)

Hiscont $2305-$ Hzodizion hieser
Isrconi a510-Thas fus yournor

5500 5950

prips PM5716-5014y Puise Gorvaty

Recal Dan fisa -

隹

eitronir $577-$ Cune Tr=ser
Teltronty $1240-100 \mathrm{c}$ Aratsor

Fandet \& Gomerrann FCM: I-actiors

MANY MORE ITEMS AVALLABLE
SF,
AIL EOUPRMENT IS USED
WIH 30DAYS GUARANIEE
PLEASE CY בCKFOR AVALLABILTY IEFORIEHORDERNG

SURVBILLANCE PRODESSIONAL QUADTMY RTTS

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by Ihis unique area of electronics SUMA DESIGNS has a kit to lit the bill. We have been designing electronic surveillance equipment for over 20 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless othewwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genulne SUMA kits avallable only direct from Suma Designs. Beware Inferlor Imitations!

UTX Ultra-miniature Room Transmitter
 12V operation 500 m range
MTX Micro-miniature Room Transmilter
 12V operation. 1000 m range
STX High-performance Room Transmitter
High periormance transmitter with a butiered cutput stage for greater stabity and range lleasures 22 mm i 22 m , inculing mis. ôV-12V operation, 1500 m range $£ 15.45$ VT500 High-power Room Transmitter
Pweftul 250 miv output provining excellent rame and perlormarce.
Sce $20 \mathrm{~mm} \times 40 \mathrm{~mm} .9412 \mathrm{~V}$ operation. 3000 m fange
VXT Volce-Activated Transmilter
Tragers onk when scunds are deietied. Very low stanciby current Variaive sersitivity and delay wh LED indicalor. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 O operition. 1000 m rerge $£ 19.45$ HVX400 Mains Powered Room Transmilter
Corseds directly to 240 V A.C. suppiy for borg tetm mentioning.
Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m ferge
SCRX Subcarrier Scrambled Room Transmitter
Scrankted output from this transmitter cannot be monitored without the SCOM decoder comnectsd to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range $~ \$ 22.95$ SCLX Subcarrier Telephone Transmitter
Cennects to tetephons Ene anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \pi m \times 37 \mathrm{~mm} .1000 \mathrm{~m}$ rerge
$\$ 23.95$
SCDM Subcarrier Decoder Unit for SCRX
Connects to receiver earphene sooket ard provides devoded-ando outpit to hezd pr:ones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. 9 V .12 V operation.
£22.95
ATR2 Micro-Size Telephone Recording Interiace
Connests between telepicne line (anywhere) ana cassethe recorder. Syitches tapa iutomaticaty as phors is used. All conversations recorded Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$ Porered from ine
£13.45

$\star * t$ Specials $t \rightarrow *$

DLTXIDLEX Radlo Control Switch
Remote control anything around your home or garden, outside lights alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output momentary or alternate, 8 -way d.i.l. switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size 35 mmx 90 mm . Both $9 \vee$ operation. Range up to 200 m .
Complete System (2 kits)
$£ 50.95$
Individual Transmitter DLTX
£19.95
Individual Receiver DLRX
$£ 37.95$
MBX-1 HI-FI MIcro Broadcaster
Not technicaliy a survelilance device but a great Idea! Connects to the headphone output of your Hi-FI, tape or CD and transmits HI-Fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to pu up with the DJ's cholce and boring waffle.
Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range
$£ 20.95$

UTLX Ultra-miniature Telephone Transmitter
Smalest teiephone transmitter kit evakable. Incredible size of 10 mm $\times 20 \mathrm{~mm}$ Connects to ine (anythere) and svitchas on and of with phene use All comersalion trensmitted. Fowerad trom line. 500 m range

TLX 700 Micro-miniature Telephone Transmitter

Eest-seling telephone transmitter, Being $20 \mathrm{man} x 20 \mathrm{~mm}$ it is easiot to assembie than UTLX. Connects to line (anywhere) and switches on and off with prone use. At conversations tansmitted. Powered from line 1000 m range
£13.45
STLX High-periormance Telephone Transmitter
High perrormarce transmitter with buffered output stage providing exceltert stabiaty ard performance. Connects to fine (aryphere) and switches ori ano ofi with phane use. All comversations transmitted. Powered from fina Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range
TKX900 Signalling Tracking Transmilter
Transmits a contruous stream of aufo culses vith variede tente and rate. Weal for signaling cr traking purposes. High power output giving sarage up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm} .9 \mathrm{~V}$ cperation
£2.95
CD400 Pocket Bug Detectorlocator
LED and piezo bleaper putse slonth, rate ol putse ard pitch of tone increase as yau approsch signal. Gas control attows pinpointing of source
Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V gperation
CD600 Professional Bug Detector/Locator
Aluficolour reasout of signal strength with variakre raie beeper and varizbe sensitivity used to detedt and locate hidden transmitters. Ssitch to AUDO CONFORM mode to distinguisth betneen localised bug trarsmission ard normal lepitimate signals such as pagers, cefurar, taxis sic. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9V operation
£50.95
QTX180 Crystal Controlled Room Transmitter
Nartow tery FM transmiter for the twimate in privacy Operates on 180 OH tz and requires ite use of a scannef receiver or cur ORX180 ki (see catalogue).
Sue $20 \mathrm{~mm} \times 67 \mathrm{~mm} .9 \mathrm{~V}$ optration. 1000 m renge
£40.95
QLX180 Crystal Controlled Telephone Transmitter
As os CTX 180 but comects to telephoine fine to monitos both sions of corversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V aceration. 100 gil range
240.95

QSX180 Line Powered Cryslal Controlled Phone Transmitter
As per CLX:80 but drats povier requidements from inine. No batitries requited. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m
$\$ 35.95$
QRX 180 Crystal Controlled FM Receiver
For monitering ary of the ' O 'rarge transmiters. High sensitionty unt. Alt RF section supplied as pre-bult ard afigned medrer reaty to comned ori boatd 50 no ditisuly seting up. Outpent to heaciahones 6 . $\mathrm{mm} \times 75 \mathrm{~mm}$. 9 V operation
§60. 95

A bulld-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add $£ 2.00$ per order for P\&P. Gocois despatched ASAP allowing for cheque clearance. Overseas customers send Sterling Bank Draft and add 55.00 per order for shipment. Credit card orders welcomed on 01827714476.
our latest catalogue containing
MANY MORE NEW SURVEILLANCE KITS NOW AVALLABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Fi BARCATN PACKS
 List No. 3

1 item per pack unless otherwise stated. SOLAR CELL, wil gro icoma of tree eigetricity. Order Ret; PLASTIC FAH BLADES. In datieter, pusin-on spingen, peck ol 2 Ordes Ret: 633 .
FC GAMES in cases lor remalong. pack o 6. Onder Ret: 645. PIEZO NOISE MAKERS, stardarr size, patix ol 2 Order Reta 647.
orm

DITO but mind coly 23 mm acriss, mack of 2 Orier fet: 548. COVERS, suit Piezo scanders, etz. naed 22 mm hoie, pack c OA HICROSHI

CHES wh sctow tartinals, minins vienge CE HOUNTED RELAY
cots Crdar Pef: 6es
 Order Pal: EE5.
33 F 1000 Y CAPS, 033 uF 1000 V CAPS, ideay to pu
moters. psed of t. Onder Riet 672.
 ank yous chn PCB of if strond ercugh bo act is a chastis. Crdar Ret: $6 E 3$
IOOM COR OF CONHECTING VIIRE OTJer Ref: $6 E 5$
D.C. MOTOR. erva Efficien, needa futa current 50 will work nit scar cesis. Order Ren, so
SUB MIN PUSH SWITCHES, paxk of 2 Crdar Ref. 688
CERAHIC EEADS, idead insulation where heat gi fane, Fesi of 100 , trcer Ref: 690 .
In. LENGTHS OF Yia. DHAMETER PAXOLIN TUEMG one vintace prods. ets, pack of 3 : Orde! Ref: 631 .

POUYER SUPPLY UNIT, cutput SV 10anA dc. Ofeet Ret 733.

AMFH TUNiNG CAPACTIOR, air spaced with sitn spisde Crater F.et: 743
$3 A$ PLUG GARGAM OFFER. YCu gat 3 for Et. Coter flet OPDT ROCKER SWTTCHES for mosor roversing, ex. pack at 2. Order fiet 745.

HOHE TRANSFAREMT SPEAKER HESH, of f. Order Pet. 745
LIGKTEST TOUCH CHAHGEOVER MICROSWITCHES, Rains ooltage, pask of 2. Order Ret: 748
AIR PORC Eerials, ete Ordar Ref: 749
ait 751 PSU, AC. Cutrul i5V :50ita and g.5V 60mid Crder
3 CHANGEOVER COMTACY RELAY with $\cos ^{3}$, sumble for EV AC. ox EV D.C. Grier fel: 753.
EVER-OPERATED MICROSWITCHES, ex-equpment, bath
 55.
 ssdis a metal roal sirk Orfer fet 759.
EX-BT USTRUMENT In pisatic case wih carfing rercio. has many usatul perts. Order Pet: 7EO
Ref: 764 .
Ordet Ret: 769
AV BAKEITE EMCA Fet 774 .
 Orden Rist: Tis
 Rest 720.
CO AICROSWITCHES CDEiziod by a wre control to spinde trongh sicio. paci of A, Orver Refl: 78 B
UULTRTAG MAINS PAKEL, has 12 iags to take Hin push-on ormectars, Critar Pet: 792
REED SWTHCH, Fa! instesd of round so many more casi De taried in a smat area Oruser Rel: 795
ERY THIP DRALLS (o-3mm), pati of 12. Cecer Pot: 797
ROCKER SWTTCHES, sprightosted weth crangecrer 10A
MAINS CIRCUIT BREAKER. 7A, Oushturiton Cpercted Codzr Ret 602.
N-LIME SWTTCH interded to eectric tearinet to grat varable heat bun obviousty thas other uses. Orser Rel: 8 ges.
PLUG FOR CAR LIGHTER SOCKETS, each having intermal LSe, pack of 2 Ordas Ref: $\$ 09$.
OY OF MANS YOL TAGE FIEX 2 V 5W Oder Ral. als. OM OF MANS VOLTAGE FLEX with scrgen and outer FVC

3A ADAPTORS :o each take 2 plucs. pack of 2 Onde: Fiel: 620.
0 i.

QiUF 250 V MAMS WOAKING SUPPRESSOR CAPACITOR, parik of 5 Order Ref: 83 .
RING MAIN JUHCTION BOXES, 13A, zsov, paek of 3. Orier Ret EDI.
FLUSH PLATE LHGHT SWITCHES, 5A, Wrize, pask of 2
OCTAL VALVE 日ASED. Parosn, pact of 4 Odis Ret: 12
GERMANHUM TRANSISTORS, CCAS eic. pack of 52
assorted Cridy Ref: 15 . LGHT SEHSITTVE TRANSESTORS, ret. OCPTD, pack of 2. Ordis Fal: 1:
LOUOSPEAKER CROSSOVER, is twester mid-ranot and refor, Oft Ret 23.
SUB-MH TOGGLE SWTTCH, sing's pote changeover so can on used for iust on'eff. past al 3. Orde: Rel: losis
Elardart ard oosour codent permanent exterisicens, made to ET

\checkmark REMOTE CONTROLS, is a does nat but yeur TV, yru cuid Luse it for other projects. FM bug, etc, pack of 2. Orter Fof. icsa
SA BRIDGE RECTIFIERS, with fred heatsink, ideal car bartery ciarger, pask of 2 Orde! Rot: 1070
 3ivin
 IHTERSTAGE TRANSFORMER be trensister oparzion. xdar fas: 1:RC12

12V 18AH RECHARGEABLE BATTERY

It is Yuasa made jelly type so maintenance-free and usable in any position. Brand new and guaranteed 12 months. The regular price of these is $£ 40$ but you can buy at $£ 15$.

Order Ref: 15P78.
12V 8A D.C. POWER SUPPLY. Totally enclosed with its own cooling fan. Normal mains operation. Price E11. Order Ref: 11P6. D.C. MOTOR WTH GEARBOX. Size 60 mm long, 30 mm diameter. Very powerfil operates off any voltage between 6 V and 24 V d.c. Speed at 6V is 200 rpm , speed controller available. Special price £3 each. Order Pei 3P108.
MOST USEFUL POWER SUPPLY. Rated a 9 V 1A, this plugs into a 13A socket. Is really nicely boxed. £1. Order Rel: 2P733.
GROWERS PLEASE NOTE: We now have a very useful 100W soll heater. This is essen tially 5 V 20A power supply, completely en cased and with built-in cooling fan. We supply with it 10 m of cable with instructions on how to couple it to give the recommended 10W per so. tt. or 5 W per so. th. or a very low 2.5 W per sq. ft. Price for complete i.c.u. Si5. Oider Ref: 15P79
BIG 12V TRANSFORMER. It is 55VA so over 4A. Beautifully mede and well insulated. Live parts are in a plastic frame so cannot be accidentally touched, $£ 3.50$. Order Ret: 3.5P20.
BIKE RADIO. In fact. it's more than a radio. it's an alarm and a spotight. The radio is battery operated, of course, and needs 3 AA cells. Only one band but this is the FM band so will receive Radio 1 and 2 . Comes complete with handlebar fixing clips. Prica 14. Order Rei: 4P72.
INSULATION TESTER WITH MULTIMETER. Intemally gene:ates voliages winch enable you to read insulation directly in megohms. The multimeter has four ranges ACIOC volts. 3 ranges. DC milliamps, 3 ranges resistance and 5 amp range. Ex-British Telecom but in very good condition, tesied and quaranteed, probably cost at least 550 each, yours for only $£ 7.50$ with leads, carrying case $£ 2$ each Order REf: 7.5P4.
REPAIRABLE METERS. We have some of the above testers but faulty, not working on all ranges, should be repairable. we supply die grams. £3. Order Rei: 3P176.
FOR QUICK HOOK. UPS. You cant beat leads with a croc clip each end. You can have a set of 10 leads, 2 each of 5 assorted colours with insulated
 end. Lead length 36 cm , £2 per set. Order Ref: 2P459.
RECHARGEĂBLE NICAD AA BATTERIES.
You can have these at a bargàin price of 50 p each, but you have to buy a pack of 10 which would give you a 12 V rechargeable battery. However, it is quite easy to divide into $2 \times 6 \mathrm{~V}$ rechargeables or $10 \times 1.2 \mathrm{~V}$ rechargeables. Order Ref: 5P287. Made by Varia
1.5 V -6V MOTOR WITH GEARBOX. Motor is mounted on the gearbox which has interchangeable gears giving a range of speeds and motor torques. Comes with full instructions for changing gears and calculating speeds, £6. Order Ref: 7P26.

SHART HIGH QUALITY ELECTRONIC KITS

CAT. NO. DESCRIPTIOR

$\begin{array}{ll}1005 & \text { Jouch Sivich } \\ 1010 & \text {-ihput stereo rxuer wish irsing }\end{array}$ outpul
Laisispeajer protectico und
1023 Dyramichead preanp
$\begin{array}{ll}1024 & 7 \text { ticiopinone preamplitat } \\ 1025 & 7 \text { watl hi-li power amplifar }\end{array}$
Running Eghts
NWic.cad batiory crarge?
Light ómpmer
Sterio VU mefer
AF genera:or $250 \mathrm{~Hz} \cdot 16 \mathrm{~h} \mathrm{~Hz}$ cuginess stereo urit Sound 5mich
Electronic thamastat
3-inget hi-fislereo preampinier
Eingput mane mixer
Electronic rretronmite
semput insinument mixes
Cassette head preampifier
$5: 0-5 A$ siab
: 05A siabised supply fer TBL tiereo VU meter with teach siereo 0-5A stabissed porm: sumater tu-fi preamptdier --ripul seicetion
Liquid level sensor, rein alarm Gar veltrater vath lieds Video signal ampitier DC corverter 12 V to 6 V or $7-5 \mathrm{~V}$ or 9 V Muse is ligits for your car
Windsceen wifer controder
Home alam system
Digitad thenmometer with led. display Dolar tester
Stereo VU meter whth is Le.d.s Thermonseles with l.e its Etectronias to hetp sin the poots coutspesker protertion witin dolay Countesy Eght celay
Time swich with triac 0.10 mits
Tejaphent call relay
torse cose generatop.
Sicrophona prearrpither
Microghone tone comto
Sower flashar $12 y \mathrm{de}$

BUY ONE GET ONE FREE

ULTRASONHC MOVEMENT DETECTOR. NROti cased. Irea standixg, has wimmal alam which can to sienced. Ajso tras combections for externa speaber or fighi, Price E10. Criser Ret; 10F1E-4. CASED POWER SUPPLES which, with a for Sma Extra comporents and a bit of moditying, would give 12V $\ddagger 110 \mathrm{~A}$ Originaly 99.50 each, now 2 for 59.50 Order Pel $9.5 P 4$
3-OCTAVE KEYBOARD with pany syze keys. brand new, previmus prioe $£ 9.50$, now 2 tor the price of
one. Corder Rel: 9.5 P5.

TOROIDAL MAINS
 TRANSFORMERS

$224 \mathrm{~V} \div 24 \mathrm{~V} 25 \mathrm{VA}$. price es Order PRt: 3F245
$30 \mathrm{~V}+30 \mathrm{~V}$ 120VA. price ε e Order Ret: spG?
$110 \mathrm{~V} \div 110 \mathrm{~V}$
Ordta Ref: BPG3
$35 \mathrm{~V}+35 \mathrm{~V}$ al 150 V . CA , price c 8 Crder Ret: GFGO .
$35 \mathrm{~V} \div 35 \mathrm{~V} 220 \mathrm{VA}$, price £9. Oxder Ret: 9PGs
$50 \mathrm{~V}=50 \mathrm{~V}$, prica Es. Orde; Ret: 4 P112
$110 \mathrm{~V}=110 \mathrm{~V}$ al 220 V moud give 110 V al 2 A or 220 V a 14. price E10. Orjar Ref: 10 \$5 65. $110 \mathrm{~V}+110 \mathrm{~V}$ ai 500 VA would gne 180 V at 5 A or 220 V a nearly 3A, price E20. Crder Ref 25FGs

SUPER WOOFERS

A 10 in .4 chm whth power rating of 250 W music and rowntal 150 y . Nomal seling price for this is zincluan vat and carnage, Order Rel: 29p7. Thew second one is an Brt. 4 ohm 200 W masic. 200 W nermal, agan by Cnallenger. price E13. Order Fiet 18F-3 Deduct 10% from these prees ${ }^{4}$ you 0 oide hin paiss of can coloct. These are ah branci new in maker's patining.

TERMS

Scre cach, PO. cheque or quote credit card rumbe - orders under 525 add $£ 3.50$ service chiarge.

> I \& NFAGIORS
> Piarim Norks (Dept. EEET)
> Stailbridge Lane, Bolney, Sussex inin 5 FA
> Telephone: 01444881965

!! New from FED - PIC 16F877 Chips and Support !! PIC \& AVR Programmers, Development kits and C Compiler

PIC 16F877 20 MHz - £6
Microchip"s latest EEPROM device - 40 pin, 10 bit AD converters, masterislave IIC bus, full duplex USART, 8 K ROM, 352 bytes file registers, 256 bytes internal EEPROM, upwardly compatible with 16C74/16C77, but instant erase and rewrite. Supported by our programmers, PICDESIM and our new C Compiler. PIC $16 F 877$ devices, 40 pin DIP device, $4 \mathrm{MHz}-£ 5.50,20 \mathrm{MHz}-£ £ 6.00$

Supports all PIC 16Cxx, 12C6xx devices Integrated Compiler Environment includes FED's PICDE for simulation and debugging Ring/Write for details or visit our Web Site: £100 CD-ROM, $£ 120$ with printed manuals http://dspace.dial.pipex.com/robin.ăbbott/FED

Forest Electronic Developments
60 Walkford Road, Christchurch. Dorset, BH23 5QG E-mail - "robin.abbut!adial.pipex.com"
Web Site - "hḷ://dspace dial.pipex-com/robiluabbotuFED" 01425-274068 (Voice/Fax)

PIC, \& AVR Programmers
PIC Serial - Hardies serially proquammej PIC devizes in a 40 pin multindidh zIf socket. 16C55X, 15C5X, 16C7X, 16C8x, 16F8X, 12C500, 12C503, PIC 14000 -t. Also in. Circult progemmirch. Price: $£ 45 / \mathrm{kil}, £ 50$ built \& tested
PIC Introductory - Programs 8 \& 18 pin devies : 16 C 505 , 16 C 55 X , 18C61, 16С62X, 16С71, 16С71X, 16CaX, 16FBX, 12C5089, 12C671/2 2ic. £25/kit. AVR - $1200,2313,4144,8515$ in ZIF. Price: $£ 40$ ikit $£ 45$ buill $\&$ tested

Programmers operate on PC senal intertace. No hard to handle parallic cable swapping ! Frogrammers supplied with instrustions, + Window.s
3.1 /9598NT soltrare. Upgrade Programmers from our web site !

AVR, PIC, Scenix - Windows Development

Assemder:Simalator aliows deve'oprment oi your AVR, PIC or Scenix.projects in one Windows program. Incouporate muhiple fies, view heip file mitormation directly from code, edit within project, buisdorex erors directly in source, then simulate Alary breakpoint types, follow code in source, set treakpsints in source. Run, single step, of step over. Logic Analy'ser Display/Input stimuli Includes clocks, direct values and serial data. Fiofiler - examine ant ume frequently called routhes use the intormation to opimise off bottie necks. PIC Version Simulates up to 50 times laster than MPSIM !
Cost 520.00 . Specity PICDESMM (inciudes Scenix) or AVRDESIM version

PIC BASIC Products - See our web site for details
16 C 74 version (8 Kbyte EEPROM) - 20 MHz
£30.00 Kit, $£ 35.00$ Built \& Tested,
Compller Available - runs identical code

Prices are fully inclusive. sidd 13.00 for PsP and handling to each order. Cheques/POs payable to Forest Electronic Developments, or phone

haKE POSTAL ORDERS CHEQUES FAYABLE TO DAVID JOHNS AND SEND TO: 37 GOSBECKS ROAD, COLCHESTER, ESSEX CO2 9JR FAX: 01206 369226; http://www.davidjohns.f9.co.uk

Get your magazine "instantly" anywhere in the world buy from the web. TAKE A LOOK, A FREE ISSUE IS AVAILABLE

A one year subscription (12
issues) costs just $\$ 9.99$ (US)

VARIABLETYOLTAGE TRANSFORMERS

INPUT 2OOV CHOV AC SOECHz OUTPUT OV-25OV FA HiEL MOUKING

1KYA 5 aromax $\bar{i} \geqslant 5 \geqslant 5$
SHAOUDED
05KVA 2.5 3romax 834

 E111.63-V地
 SOVVA isOLATLON TRAMSFORMEA

TOROIDAL LT. TRAREFORUER

 COUFREHENSTIERANOE OF TRAREFOFUERS-

 BEantry

ULTRA YROLET ELACK LGHT ELUE C) EnE1s FLUORESCEMT TU8ES

 On \& wat
20V AC BALLAST KT

FOWATT BLACK LGART
BLDE UNLAUP
ES Murar kpou hap ss micnatin fis. Batas

A 5 KVA SOLATIOUTRARSFORNER

 1 Ean Whigh 42 lian Pric

 pat ad VAT . 2 C WESTOOL SOL EINOS

 Low Prose tir Frice 5729 nd plo wnd Wa:

250 V AE STWCHHONOUS GEARED NGTVSS

 SOND STATE EमT UPIT

 WAShavg MACHAE fumten PUMP Erind rew zosiv AC tar coopa Csibibsed ke

Transform your PC.... Into an oscilloscope, spectrum analyser and multimeter...

The ADC-200 range of PC based oscilloscopes offer performance only previously available on the most expensive 'benchtop' scopes. By intergrating several instruments into one unit, the ADC-200 is both flexible and cost effective.

Connection to a PC gives the ADC-200 the edge over traditional oscilloscopes: the ability to print and save waveforms is just one example. Units are supplied with PicoScope for Windows which is powerful, yet simple to use, with comprehensive on line help.

Features

- A fraction of the cost of comparable benchtop oscilloscopes
\checkmark Up to $100 \mathrm{MS} /$ s sampling
- Advanced tigger modes-capture one off events.
∇ Up to 50 MHz spectrum analyser
∇ Large buffer memory
ADC-2001100 ADC-200150 ADC-200120

Applications

All units are supplied with software, cables and power supply. Prices exclude VAT.

```
V Video
\(\checkmark\) Automotive
\(\nabla\) Electronics design
\(\nabla\) Production line tests
\(\nabla\) Fault finding
\(\checkmark\) Education
Vídeo
```

A scope at

MAIL ORDER ONLY • CALLERS BY APPOINTMENT

The tatest MAGENTA DESIGN - highiy!
I stable \& sensitive - with I.C. control I
I of all timing functions and advanced I pulse separation techniques.
I- High stability
drift cancelling
I- Easy to build
I G use
I- No ground
effect, works
in seawater
1

Detects gold, silver, ferrous \& non-ferrous metals

- Efficient quartz controlled microcontroller pulse generation.
- Full kit with headphones \& all hardware
KIT 847. \qquad £63.95

PORTABLE ULTRASONIC

 PEsT SCARERA powerful 23 kHz uttrasound generator in compact hand-held case. MOSFET outpu drives a special sealed transtucer with intense pulses via a special tuned transformer. Siveeping frequency output is designed to give maximum output without any special setting up.
KIT 842
.$£ 22.56$
MK. II ACOUSTIC PROBE

- NEW DESIGN
- HKGH SENSTIVTTY E POWER

Pisks up vibrations amplities, and dirives heedphones. Sounds from engines, watches pipes and speach through walls can be heard clearty. Useful for mechanics, instrument engineers and nosey parkers! Very effective device.
KIT 876.
£29.95

DC Motor/Gearboxes

Our Popular and Versatile DC motor/Gearbox sets. Ideal for Madels, Robots, Buggies atc. 1.5 to 4.5 V Mufti ratio gearbox gives wide range of speads.
LARGE TYPE - MGL $£ 6.95$
SMALL - MGS - £4.77

Stepping Motors

MD38...Mini 48 step... $£ 8.65$ MD35...Std 48 step.... 9.99 MD200... 200 step... 512.99 MD24...Large 200 step... $£ 22.95$

PIC PIPE DESCALER

- simple to build - Swept
- HIGH POWER OUTPUT FREQUENCY
- AUDIO \& VISUAL MONITORING

An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation dissolve existing scals and improve lathering ability by altering the way salts in the water behave.
Kit includes case, P.C.E, coupling coil and all components.
High coil current ensures maximum effect. LEED. monitor
KIT 868£22.95 POWER UNIT.........£3.99

MICRO PEsT
 SCARER

Our latesi design - The ultimate
scarer for the garden. Uses special microchip to glve random delay and pulse time. Easy to build reliable circuit. Keaps pets/ pests away from newly sown areas. play areas, elc. Uses power source from 9 to 24 volts.

- RANDOM PULSES
- HIGH POWER
- DUAL OPTION

KIT 867 \qquad

Plug-in power supply $£ 4.99$
KIT+SLAVE UNIT.
WINDICATOR
A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mains power unit $f 5.99$ extra.
KIT 856.
.£28.00

DUAL OUTPUT TENS UNIT

 As featured in March '97 issue. Magenta have prepared a FULL KIT for this etectrodes excellent new project. All components, PCB, ${ }^{26.50}$ hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.KIT 866.... Full kit including iour electrodes $£ 32.90$

$1000 \mathrm{~V} \& 500 \mathrm{~V}$ INSULATION

TESTER
Superb new design. Regulated output, efficient circuit. Dual scale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out caśe, meter sfalē, PCB \& ALL components:
KIT 848.
£32.95

EPE
 TEACH-IN 2000

Full set of top quality NEW components for this educational series. All parts as specified by EPE. Kit includes breadooard, wire, croc clips, pins and all components for experiments, as listed in Introduction to Part t. - Batteries and tools not included.

TEACH-IN 2000 -

KIT 879. 84.95 MULTIMETER \&14.45

ISPACEWRITER
1 An innavative and exciting
1 projeci. Wave the wand through
1 the air and your message appears.
1 togrammathe to hold any message
1 with "MERAY XhAS', Kit inclutes
I PCE, af componants \& tube plus
1 instructions for message loading.
1 KIT 849.

A safe low cost ereser for up to 4 EFACASS ata time in less than 20 minetes. Operates from a 12 V supply (400 mTA). Used extersiciely for mebike vocric - updating equiproens in the field etc. Aso in etaco thenal situations where mains suppibs are nes af lowod. Satety interioek preoents contict with UW KIT 790 .£29.90

SUPER BAT DETECTOR

1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE 20kHz-140kHz

NEW DESIGN WITH 40 kHz MIC.
A new circuit using a "ull bridge" audio amplifier i.c., internal speaker, and headphone/tape socket. The latest sensitive transducer, and 'double balanced mixer' give a stable, high peformance superheterodyne design.
KIT 861
£24.99

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As ieatured in April 1994 EPE. An essential piece of equipment.

EPE

 PROJECT PICsPiogrammed PICs for all ${ }^{6}$ EPE Projects 16C84/16F84/16C71 All $£ 5.90$ each PIC16F877 now in stock $£ 10$ inc. VAT \& poslage ('some projects are copyright)

ULTRASONIC PEsT SCARER
Keep pets/pests away from newly sown areas, íruit, vegetable and flower beds; children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL

COMṔONENTS, PCB \& C̄ASE

- EFFICIENT 100 V

TRANSDUCER OUTPUT - UP TO 4 METRES

- COMPLETELY INAUDIBLE RANGE

TO HUMANS KIT 812

SIMPLE PIC PROGRAMMER

INCREDIBLE LOW PRICE! Kit 857 £ 12.99

INCLUDES 1.PIC16F84 CHIP SOFTWARE DISK, LEAD CONNECTOR, PROFESSIONAL PC BOARD E INSTRUCTIONS

Power Supply £3.99
EXTRA CHIPS:
PIC 16F84 £4.84
Based on February '96 EPE. Magenta designed PCB and kit. PCB with 'Reset' switch, Program switch, 5V regulator and test L.E.D.s, and connection points for access to all A and B port pins.

PIC16C84 LCD DISPLAY DRIVER

INCLUDES 1-PIC16F84 WITH DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND 16-CHARACTER 2-LINE LCD DISPLAY

Kit $860 £ 19.99$

Power Supply $£ 3.99$ FULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATION!

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE x 16-character display, data, all components, and software to include in your own programs. Ideal develpment base for meters, terminals, calculators, counters, timers - Just waiting for your application!
PIC16F84 MAINS POWER 4-CHANNEL CONTROLLER \& LIGHT CHASER

- WITH PROGRAMMED 16F84 AND DISK WITH SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING MULTIPLE CHASE PATTERNS
- OPTO ISOLATED 5 AMP OUTPUTS
- 12 KEYPAD CONTROL
- SPEED/DIMMING POT.
- HARD FIRED TRIACS

Kit $855 £ 39.95$
Now features full 4-channel chaser software on DISK and pre-programmed PIC16F8A chip. Easily re-programmed for your own applications. Soinvate source cade is fully 'commented' so that it can be iollowed easily.

LOTS OF OTHER APPLICATIONS

PIC TOOLKIT V1

- PROGRAMS FICIGCB4 and $16 F 94 \circ$ ACCEPTS TASM AND MPASM CODE

Full kit includes PIC16F8A chip, top quality p.c.b. pinted with component layout, tumed pin PIC socket, all components and software*

- Needs QBASIC or QUICKBASIC

KIT 871 ... $£ 13.99$. Built and tested $£ 21.99$

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach-In 7. All parts
are supplied by Mageñta. Teach-fin is $£ 3: 95$ from us or EPE
Full Mini Lab Kit - £119.95Power supply extra - $£ 22.55$ Full Micro Lab Kit - $£ 155.95$ Built Micro Lab-£189.95

EPE PIC Tutorial
At Last! A Real, Practical, Hands-On Series - Learn Programming from scratch using PIC16F84

- Start by lighting I.e.d.s and do 30 tutorials to Sound Generation, Data Display, and a Security System
- PIC TUTOR Board with Switches, I.e.d.s, and on board programmer

PIC TUTOR BOARD KIT

Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components* ("not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.
KIT 870 $£ 27.95$, Built \& Tested $£ 42.95$
Optional: Power Supply - $£ 3.99$, ZIF Socket $-£ 9.99$
LCD Display \qquad .f7.99 tED Disislay
..f6.99

PIC TOOLKIT V2

- SUPER UPGRADE FROM V1。 18,28 AND 40 .户.
- READ, WRITE. ASSEMBLE \& DISASSEMBLEPICS
- SIMPIE POWEA SUPPLY OPTIONS 5-20V
- ALL SWITCHING UNDER SOFTVARE CONTROL
- MAGENTA DESIGNED PCB HAS TERMINAL PINS AND OSCILLATOA CONNECTIONS FOR ALL CHIPS
- INCLUDES SOFTWARE AND PIC CHIP

KIT 878 . . . £22.99 with 16F84 £29.99 with 16 F877

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS SOFTWARE
- PIC16C6X 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP - HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED PIN SOCKETS FOR 18, 28, AND 40 PIN ICs.
- SEND FOR DETAILED INFORMATION - A SUPERB PRODUCT AT AAN UNBEATABLE LOW PRICE.

Kit 862 £29.99
Power Supply $£ 3.99$
DISASSEMBLER
SOFTWARE
£11.75

PIC STEPPING NOTOR DRIVER

INCLUDES: PCB
PIC16F84 WITH
DEMO PROGRAM,
SOFTWARE DISK, INSTRUCTIONS
AND MOTOR.

Kit 863 £18.99

FULL SOURCE CODE SUPPLIED. ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS.

Another NEW Magenta PIC project. Drives any 4 -phase unipolar motor - up to 24 V and 1 A . Kis includes all components and $\$ 8$ ster motor Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs irom switches etc and drives motor in response. Also runs standard demo sequence from memory.

8-CHANNEL DATA LOGGER

As ieatured in Aug Nept. 'G9 EPE. Full kit with Magenta redesigned PCB - LCD fits directly on board. Use as Data Logger or as a test bed for many other 16 F877 projects. Kit includes programmed chip, 8 EEFROMs, PCB, case and all compoñents.

$$
\text { KIT } 877 £ 49.95 \text { inc. } 8 \times 256 \mathrm{~K} \text { EEPROMS }
$$

All pricesinclude VAT. Add $£ 3.00$ p \mathcal{p}. Next Day $£ 6.99$
Tel: 01283565435 Fax: 01283546932 E-mail; sales@magenta2000.co.uk

VOL. 28 NO. 12 DECEMBER '99

Editorial Offices:
EVERYDAY PRACTICAL ELEGTRONICSETI EDITORIAL
ALLEN HOUSE, EAST BOROUGH, WIMBORINE
ALLEN HOUSE, EA
CORSET BH21 1 PF
CORSET 8H2 1 PF
Phone: Wirmborne (01202) 881749
Phone: Wimborne (01202) 881749
Fax: $(0: 202) 841692$. Due to the
Fax: (01202) $8 \leqslant 1692$. Due to the cost we cannot reply to
overseas orders or queries by Fax.
E-mail: eutorial:epemag.wimborme.co.uk
Web Site: htp:/Noww.epemag.ugmborne.co.uk
Online Edition www.epemag.com
See notes on Readers' Enquiries below - we regret length lerinnical enquiries cannot be answered of er the telegion'e. Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICSETI ADVERTISEMENTS
MILL LODGE, MILL LANE
THORPE-LE.SOKEN, ESSEX CO 16 OED
Phone Fax: (01255) 861161

TIME LINE

With the millennium fast approaching (or maybe you feel we should be accurate and wait for the end of 2000 to celebrate?) we have decided to produce a series of articles describing the development of electronics over the last 100 years. Our friends and Editors of EPE Online, Max and Alvin in the USA, are producing it for us and they asked a number of people to suggest-significant developments they thought worthy of inclusion. We passed this request on to some regular contributors in the UK and their responses just about covered everything we could think of. It should make a fascinating series and it should expose one or two myths about who invented what first.
We are also planning to produce a "Time Line" wall chart, showing all the significant events/developments etc., which will be given away with one of the spring issues of EPE. This series should start in the Feb '00 issue (on sale Jan. 7).
Max and Alvin have already secured a fascinating article from Horst Ruse about his father, Konrad, who invented the first large-scale digital computer in Germany in 1941. You can read all about it and see some fascinating, never previously published, photos of the computer on our Online edition web site at www.epemag.com.

ON-LINE CONTACT

As many readers will know, we have a Chat Zone on our UK EPE website at www.epemag.wimborne.co.uk. This is so that readers can "chat" to each other, and help each other with information, advice, etc. However, we have noticed one or two readers asking questions that would be better put to us at the editorial department. Whilst we keep an eye on what is happening on the Chat Zone, you should not be trying to ask us editorial questions on it. If you want to ask when something was published, if we can supply a back issue, or to direct a question at one of the editorial staff, you should do this via our E-mail address: editorial@epemag,wimborne.co.uk.
We do try to respond to both letters and emails within a few days but if something needs researching and we are tied up with getting the magazine out it may take a little longer.

AVAILABILITY
Copies of EPEETI are available on subscription anywhere in the world (see right), from all UK newsagents (distributed by COMAG and from the following electronic component retailers: Omani Electronics and Maptin in S. Africa. EPE can also be purchased from retail magazine outlets around the word. An Internet online version can be purchased from wivv.apemag.com

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 26.50$. Overseas: $£ 32.50$ stan derd air service, 550 express airmail. Cheques or bank drafts (in \& sterling only) payable to Everyday Practical Electronics and sent to EPE Sub. Dept. Allen House, East Borough, Wimborre, Dose BH21 1PF. TEl: 01202881749 . Fax: 01202841692. E-mall: subs@epemag.wimborne.co.uk. Also via th 三 Web at: hitp/hww.epamag.vintorne.co.uk Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus 53.50 p 8 p (for overseas readers the postage is 66.00 to everywhere except Australia and Papua Nevi Guinea which cost £10.50). Normally sent within seven dias but please allow 28 days for delivery - more for overseas.
Payment in $£$ sterling only please. Visa and MasterCard accepted, minimum credit card order 55. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our web sill. Overseas customers - your credit card will be charged by the card provider in your local currency at the existing exchange rale.

Editor: MIKE KENWARD

Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
On-Line Editor: ALAN WINSTANLEY,
Business Manager: DAVID J. LEAVER SubscriptIons: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:
PETER J. MEW, Fronton (01255) 861 161
Advertisement Copy Controller:
PETER SHERIDAN, Wimborne (01202) 882299

READERS' ENQUIRIES

E-mail: techdept@epemag.wimborne.co.uk We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiting a personal reply must be accompanies by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons. Due to the cost we cannot reply to overseas queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see Shoptalk). We advise readers to check that all parts are still available before commencing any project in at back-daled issue.

ADVERTISEMENTS

Email: adverts@epemag.wimborne.co.u Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICSETL take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fine. the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, of in inserts.
The Publishers regret that under no circumstances will the magazine accept lizility for non-receipt of goods ordered. or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSPMITTERS/BUGSTTELEPHONE

 EQUIPMENTWe advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from Illegal use or ownership. The laws vary from country to country; readers should check local laws.

Constructional Project

PIC MICRO-PROBE

 JIM MAIN

A neat little tool to help debug your PIC microcontroller code!

F there's one thing which irks mos when developing PIC microcontroller software, it's that sinking feeling when you apply power for the first time and the thing just sits there smugly doing (apparently) nothing.

In fact. your PIC chip is probably whizzing away inside some loop or other, or resetting itself several thousand times a second. You'll be none the wiser.

BUGS AND OPTIONS

There are various solutions to debugging your code and indicating what's going on inside your chip. You could be using a software simulator, such as MPSIM. You might have some l.e.d.s attached to a spare port and be lighting them up at various stages of your code to see how far you're getting. You might. perhaps, have a serial port in your project and be sending the odd character to indicate position - you might even be fortunate enough to have an in circuit emulator (you wish . . .).

All these debugging methods are well and good, but suffer from disadvantages. MPSIM requires time and effor to set up, and if you're running on-chip peripherals such as serial ports. PWM, 12C, SPI etc. then its use becomes very limited.

Using l.e.d.s attached to a spare port is an excellent idea. and the author always try to incorporate a bank of them on a printed circuit board wherever possible. This gives you an on-board debugger straight away - but only if you have the port pins to spare. This is chip-dependant, and remember some of the smaller 8 -pin l'lCs only have one or two input/output pins to begin with.

SINGLE PIN SOLUTION

An answer to this situation is to use an existing output pin to output a very short duration Debug word (of around 64us). There are two advantages to this:

1. The code is held-up outputting the Debug word for a minimum amount of lime.
2. It may be possible to use a pin that is ourrently being used for other oupput duties.

Advanagé 2 needs some further explanation. Ideally, this output pin will be something like a processor status l.e.d. pin - or at least a pin where a short duration word isn't going to upset whatever is connected to it (a relay. for instance, should ignore a word of less than 100 microseconds or so). In this way, the debug word is transparenty ouput on the pin.

The Micro-Probe described here is connectad so the target output pin and "listens" for any valid debug words coming from that pin. There are eight possible Flay codes. It does not mater whether the output pin is held high or low before the word is output - the probe will-pick up the pattern in each case.

Note that because the PIC is to be uperated at 10 NHHz . it must be contigured for the HS crystal option prior to it being programmed.

The 5 V power supply for the PIC is cont nected to the circuit by means of two flying leads with test clips on the ends. The clips allow the power to be obtained from the supply of the circuit under test. Since it would be very easy to mix up the polarity when connecting into a darget circuit, diode D1 is included to proteet the PIC.

A power-on l.e.d.. D3. is taken across the supply in series with hallast resistor R1. You can then tell straight away if one of the power clips has fallen off!

The signal from the farget circuit comies in via diode D2. This drops the incoming signal voltage level by tike same amoun as DI (so that you are not over-volting the PIC with respect to the supply). R2 is a pulidown resistor for the PIC's input pin RAA All other Port A pins are contigured as outputs in the software and can be left unconnected.
Four bi-colour l.e.d.s are connected to Port B via ballast resistors R3 to R6. These l.e.d.s are actually wo l.e.d.s in one package. connected back-to-back across each other. Depending on the direction of the current. the l.e.d. illuminates either red or green. so with four l.e.d.s. eight signal indicstions can be displayed.

If you prefer. you cun replace the bi-colour l.e.d.s with eight individual l.e.d.s, remembering to add a ballast resistor to each.

When a valid word is received by the Micro-Probe, one or more of the l.e.d.s will ligh.

SDFTWARE

The sofiware for the Micro-Probe is split into two parts - the code run by the Micro Probe itself, and the Target code you have to add to the target application to output the debug words.

It should be noted that the Target program has been written specifically for use within programs that are intended to be assembled through MPASM (Microchip's own assembler software).

The Target code cannot be used with programs written in TASM (the Shareware assembler language used in nany EPE projects). Nor can the EPE PIC Toolkit (both Mkl and Mk2) interpret the Include instruction embodied in the Targed

Fig. 1. Complete circuit diagram for the PIC Micro-Probe.
program. Experienced programiners. however, should have no difficulty in re-writing the small amount of code involved to suit the TASM/Toolkil stnuctures.

TARGET MACROS

Looking at the Target code first, this allows you to add macro-routines to your program. Macros are very powerful and flexible batch-type commands which consist of instructions to the compiler to generate code at compilation time. An example of using the macros 10 generate the debug words is shown in program file YOURPROG.ASM.

First of all. it is important to be able to generate the correct duration of pulse for a number of arget clock frequencies. The macros generate the correct duration of pulse for an integer number of megathert frequency (1,2 , 3 ctc.). It is necessary to point out that your target processor should be crystal or ceramic resonator clocked - RC (resistor-capacitor) clock generation is not really accurate or sta ble enough for the Micro-Probe.

In YOURPROG.ASM it will be seen that the clock speed (CLK) is defined for 16 MHz :

\#DEFINE CLK . 16 ;SPEED IN MHz

Note that a decimal point is placed in front of the 16, which signifies to the compiler (MPASM or compatible), that the value is in decimal. The appropriate value for the speed of your target cincuit should be substituted in place of the 16.

The pin of the target circuit which the Micro-Probe is to monitor is defined in अOURPROG.ASM as Port C pin 7:

\#DEFINE DERUGPIN PORTC,7

Any Port and any pin can be substituted in place of PORTC. 7 as required.

MACRO ROUTINES

There are three distinct Macros: PLN X. SYNCWORD ind DEBUG X.

At the lowest level is the macro PIN \mathbf{X}.
This takes an argument of 0 or 1 and sets or
clears the selected output pin accordingly. It then loops for a number of times according to the clock frequency (defined by CLK) to time the length of the pulse.

The macro SYNCWORD starts with a 0 for the stant bit, followed by binary 101 to uniquely identify that this is a debug word. It does this by calling PIN X four times (e.g. PIN O, PIN I, PIN O. PIN 1).

Macro DEBLG X is the one you call from the body of your code with the relevant argument, where you want to signal that the code has reached that particular point. DEBUG tirst calls SYNCWORD. and then adds the 3-bit code for the relevant Flag point. Finally. a stop bit 0 is added to the end.

USING MICRO-PROBE

Where you want to sigmal a point having been reached in your code (say entering a subroutine), then add the line:

DEBUG X (where $X=1408$)

For example:

DEBUG 1 lights the first leed. green
DEBUG 2 lights the first l.e.d. red
DEBUG 7 lights the fourth l.e.d. green
If your target application makes use of intempts, then make sure that you disable the global interupt enable bit (INTCON,GIE) before calling the Macro. Tinis is to ensure that an interrupt does not happen halfway through a debug word, destroying its timing. Re-enable it as required afterwards (see YOURPROG.ASMI).

When you want to reset and turn off all the l.e.d.s, just remove one of the power leads temporarily (or fit a Reset switch if you like).

INCLUDE FILES

Keep things tidy by puting the body of all the aforementioned macros into an Include file. To do this. open up a blank page within MPLAB, type in the Macros, and save as:

DEBUG.INC
into C:IPROGRAMFLLESMMPLAB

When you want to add debug code to an application, just put the command:

INCLUDE DEBUG.INC

below your processor-specific Include line. and then add the CLK and DEBUGPIN definitions.

When you want to take out or disable the debug code generation, then just "com-ment-out". with a semicolon as usual, the Include line (as well as commenting out the various invocations of $D E B U G$ in your code).

The CLK and DEBLGPIN detinitions cin safely stay in your application.

BIT-BANGING

The Micro-Probe works by what is known as "Bir-Banging" - that is. it constantly samples an input pin (RA4) and looks for changes in its logic states. To do this. you have to time the instructions carefully so that you are always sampling in the correct part of the incoming bit (interupts are of no use here because of the short duration of the incoming pulse train).

When the level is unchanging. then a sample loop occurs every ten insuruction cycles (1 cycle $=0.4 / 15$ at 10 MHz). or every firs. It compares this level with the previous sampled level by XORing then together. If the result $=1$, then a change in level has occurred.

Assuming that the output started off low, then the lirst sample will occur somewhere inside the first "1" of "101" (the Syncword). The pin is resampled six cycles later ($2 \cdot+4 \mathrm{~s}$) to make sure that the simple point is not too near the leading edge of the first pulse. Thereater, the pin is sampled every 8us to sample each pulse in the same place.

If the Syncword is wrong, then the process is abandoned and the sampling process starts from the top.

Once the three bits of data have been obtained, we have a number between 0 and 7. This is nultiplied by four (by performing
the RLF instruction (wice) before being added to the program counter (a computed GOTO).
Using as an example the situation where the data is $0.4 \times 0=0$, which is then added to the program counter (PCL). The program counter always points to the next instruction that is to be performed, so adding 0 to it just results in the next instruction being performed as nomal. In this case that means that bit 0 of LED_REG is set, and bit 1 is cleared before jumping forward to the Port writing section.
In the Port writing section (LED_EXIT), the shadow register LED_REG is written to Port B and lights the relevant l.e.d. before looping back to the top.

CONSTRUCTION

Stripboard is used for the Micro-Probe construction. The type used in the prototype is that specifically designed for mounting integrated circuits and which has a break running up the middle. If using ordinary stripboard, cut the tracks appropriately to keep the two sides of the PIC isolated from each other.

The component layout and underside track view are shown in Fig. 2.

It is likely that the stripboard will be larger than you need. If so, use a sharp knife to score the stripboard where you want to cut it (on the copper side). It should crack cleanly over the score when you bend it with a pair of pliers. File down the rough edges.

Drill two 3 mm mounting holes in the positions indicated, and make the various breaks in the copper using the same drill bit.

Use an 18-pin d.i.l. socket (turned-pin is best) for the PIC.

Fig.2. Component layout and stripboard track details for the PIC Micro-Probe.

Preferably use insulating sleeve on all the wire links to prevent shorts and then solder in all the components, observing polarity for the diodes and the electrolytic capacitor. The bi-colour l.e.d.s have the red anode denoted by the longer lead, so make sure the short lead goes to the position marked as Rk on the layout diagram.

You can't damage these l.e.d.s by getting them the wrong way round, but your colours will be reversed.

At first, only solder in one lead of each l.e.d. so that you can adjust the height to fit the box before soldering in the other one:

ENCLOSURE

Use a small plastic case for housing the MicroProbe. Drill two holes in the bottom of the case for the stripboard's mounting screws. Use a countersink tool so that the countersunk bolts will sit flusti with the surface.

Drill a 2mm hole in one end for the signal wire, and a 5 mm hole in the other end for the power leads to pass through via a clamping grommet. (When you mount the stripboard, you may need to file its top end to clear the grommet.)

Solder the leads directly into the board at the positions indicated. Pass the leads through the case and tighten the grommet to clamp them.

The lid of the case is drilled with 3 mm holes to line up with the l.e.d.s coming up from underneath. If you gauge the height of the l.e.d.s correctly, then with the lid on the box, they will protrude slightly above the surface. Make a paper template with the positions of the t.è.d.s on it and tape this to the lid prior to drilling.

Put both bolts through the botonit of the box and slip on the 5 mm spacers, followed by the stripboand. Thread 3 mm nuts onto the bolts and tighten. Put the lid on the box, guiding the l.e.d.s through the holes and
fasten using the screws supplied with the box.

Solder spring loaded test clips onto the ends of the wires now protruding from the box and you have yourself a completed Micro-Probe!

TESTING

Power the unit from the target board using the power clips and attach the signal probe to the required pin. The power-on

l.e.d. should be illuminated, if not check your connections and circuit.

With the Debug Include file in your default directory. put the clock and pin derinitions into your code. as discussed earlier. Enter a Debug command (e:g) DEBUG I into your code.
When you run the target processor, the first l.e.d. (D4) should light green on the Micro-Probe. Check operation for the other seven Debug states.

Finally. label the from panel and yout Micro-Probe is ready for action!

RESOURCES

Software for the Micro-Probe is available on $3 \cdot 5$-inch disk from the EPE PCR Service, code EPE Disk 2 (there is a nominal handling charge), It is also available free from the EPE FTP site. See Shoptalk for more details of both options.

PIC BASIC

Write your PICmicro programs in BASIC!

Qulcker and easier than " C " or assembler Expanded BASIC Stamp I compatible instruction set. True compiler provides faster program execution and longer programs than BASIC interpreters. 12 CIN and 121 COUT instructions to access external serial EEPROMs. More user variables Peek and Poke instructions to access any PICmicro reglster from BASIC. Serial speeds to 115 k baud. In-line assembler and Call support (call your assembly routines). Supports PIC12C67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, 92x and PIC16F8x/PIC16F8xx microcontrollers. Use in DOS or Windows Compatible with most PICmicro programmers.
The low-cost PicBasic Compiler (PBC) makes it easy to write programs for the fast Microchip PICmicros. PBC converts these programs into hex or binary files that can be programmed directly into a PICmicro microcontroller. The easy-to-use BASIC language makes PICmicro programming available to everyone with its English-like instruction set. No more scary assembly language!
With Support for 16F877 and Smart Memory Card
The PicBasic Pro Compiler runs on PC compatibles. If can create programs for the PIC12C67x, PIC12CE67x, PIC14Cxxx, PIC16C55x, 6xx, 7xx, 84, 9xx, PIC16CE62x and PIC16F8x and 16F8xx microcontroilers. The PicBasic Pro Compiler instruction set is upward compatible with the BASIC Stamp II and Pro uses BS2 syntax. Programs can be compiled and programmed directly into a PICmicro, eliminating the need for a BASIC Stamp module. These programs execute much faster than their Stamp equivatents. They may also be protected so no one can copy your code!

Pic Basic - £49.95
Pic Basic Pro - $£ 149.95$ Supplied with full 168 -page manual

Free PIC MACRO compiler Free program Editor Free Windows Front End and sample basic programs including code to support 1M Smart memory card

PIC PROGRAMMER KIT Now with WINDOWS SOFTWARE DRIVER!

Programs the Popular PIC 16C84, 16F84, 24xx serles serial memory devices. Connects to the serial port of a PC and requires NO EXTERNAL power supply. The kit includes instruclions for assembly, circuit diagram and component layout.

This handy fittie programmer is easy to build, taking no more than 30 minutes to assemiole and test. The Prolessional quality PCB is double-sided, throughplated with solder resist and screen printing to aid efficient assembly. It is supplied with driver software to run In DOS on a 386 PC upvards and under Windows 95 on 485 or Pentium and a Disk full of interesting protects, lips and data sheets for PIC devices, induding FREE Assembler and Simulator. Only $£ 15.00$ including Dellvery and VAT (requires 9 -pin 0 -ype to $9-$ pin D-type cable to connect to serial port of PC). CABLE S5 INC. VAT AND DELIVEFY

PIC Micro CD ROMs NOW TWO CD ROMS!

Packed with information. PIC MICRO data sheets, Programs and Diagrams, Appllcation notes, PDF Viewer includes PING-PONG and TETRIS with video and sound out of a PIC'B4. BASIC language ASSEMBLY routines! Data sheets on thousands of picro-conirollers and support parts categorised by manufacturer. This must be the best value for money.
\&10 Inc P\&P \& VAT - a "MUST EUY!"

EPIC TM

- Low cost programmer for PIC12Cxxx PIC12CExxx, PIC14Cxxx PIC16C505,55x, 6xx, 7xx, 84, 9xx, PIC16CE62x and PIC16F8xx microcontrollers
- ZIF adapters available for $8 / 18$ - and 40/28-pin DIP, 8-, 18- and 28 -pin SOIC, 44 -pin MQFP and 44 - and 68 -pin PLCC PICmicros
- Runs off two 9 -volt batteries or optional AC adapter
- Connects to PC parallel printer port
- Software upgradeable for future PICmicros.
- Includes "8051" style PICmicro macro assembler
- Available assembled and tested or as bare board with diskette

EPIC Programmer £49.95 or $£ 35$ if purchased with PIC BASIC or PIC BASIC Pro 25-pin Parallel Cable $£ 5.95$ PIC16F84 £1. 90 each PIC 16F877 4MHz £5.75 each PIC 16F877 20MHz £6.75 each PIC 16F876 4MHz £5.20 each PIC 16F874 4MHz £5.35 each PIC 16F873 4MHz £4.75 each PIC 12C508/509 £0.65 each 24LC116 £0.75 each 24LC32 £0.75 each 25LC65 £1. 50 each PIC 16C622 $£ 2.50$ each Call for other PIC devices All PICs stocked!

LCD DISPLAYS $£ 7.50$ each
(2×16-line) Ideal for use with PIC Basic \& Pro

Crownhill Associates Limited

The Old Bakery, New Barns Road, Ely, Cambridge, CB7 4PW Tel: 01353666709

Fax:01353 666710
www.crownhill.co.uk
E-mail: sales@crownhlll.co.uk

Uriless shown as in VAT and P\&P, all prices are exclusive of $£ 5$ P\&P and 17.5% VAT Pay via:
ACCESS, VISA or SWITCH Secure On-line ordering wow.crownhill.co.uk

News Aroundivo of the latest mayidy Hews from the world at Glectronios

PIRATE-PROOF CDS

Long hoped for by the music industry, uncopyable COs are now a reality. Barry Fox reports.

\mathbf{N}Eiv technology spells bad news for: people who use a PC to copy music CDs or send them over the Intemet. British company C-Dilla has found a way to let a music CD play on a home hi-fi, but not Zona PC's CD-ROM drive.
Computer software companies, including Microsoft and Lotus, already use CDilla's SafeDisc system to stop people copying ROM data discs.
SafeDise puls the program material in an encrypted wrapper which can only be unwrapped when a digital key code on the disc matches an authorisation code entered into the PC. The key code is pressed into the dise so that a ROM drive can read it but a CD-recorder cannot. copy it. So only the original disc will ruñ the program.

UNREPEATABLE DREAMS

The record industry has been dreaming of just such an anticopy system for 30 years, since the Beatles claimed that their LP Sergeant Pepper could be played but not copied. Like the many systems that followed. Pepper was as easily copied as played.
Peter Newman, who founded C-Dilla in 1991 and invented SafeDisc, has finally found the answer. AudioLok takes advantage of the fact that the standard for music CDs, known as the Red Book, was set before the standard for CD-ROMs. known as the Yellow Book.
The ROM standard provides more powerful error correction for data than is needed for music. ROM drives are designed to handle either music or data dises. AudioLok adds false error correction code to a music disc. An ordinary music CD player simply ignores this extra code and plays the dise as normal. But a ROM drive reads the false code and rejects the disc as unplayable. This stops the owner sending the music over the Internet or copying it onto a blank disc.
A prototype AudioLok disc duly played. on a CD music player but refused to play or copy on a PC. Peter Newman says he is confident that he can also stop a consumer music CD-recorder making a copy, because these devices are already designed not to copy CD-ROMs. He expects AudioLok to be ready for commercial launch in a year.
Macrovision of the US has now bought C-Dilla for around $\$ 18 \mathrm{~m}$. Macrovision developed the systems which film and TV companies already use to stop peo ple copying videos. Now the company can offer the same option to the music iñdustry.

NOTABLE PARADOX

Paradoxically C-Dilla's breakthrough and Macrovision takeover come just as the music industry's Secure Digital Music Initiative group has agreed with the electronic companies to allow owners of CDs to "rip" copies into a PC (www.sdmi.org). There had previously seemed no foolproof way to stop copying altogether.
Says Paul Jessop. Director of Technology at the music industry's world trade body the International Federation of the Phonographic Industry:
"Although in general the recording industry welcomes people listening to CDs on computers, the ability to make dises that cannot be copied on computers may be of considerable interest to some record companies."

Chinese and Chips

NEC Corporation and 'partner Shanghai Hua Hong (Group) Co. Lid., have officially opened their joint-venture semiconductor plant, the largest in China. Concentrating production on Dynamic Random Access Memories (DRAM): production capacity is expected to expand to 20,000 waiers per month by the end of year 2000. Currentily supplying their home marke!, the company proposes to eventually manufacture for world markets.
NEC pioneered the concept of C \& C , the integration oi Computers and Communications. They employ in excess of 150,000 people around the globe.

For information, browse:
http://www.nec-global.com

GET STUFFED AT CYNTHIA'S

The worldly pleasures of this planet's First Robotic Barxand Restaurant are sampled by John Becke\%.

Nor that we'd ever suggest you stop chatting up your favourite local bar wench, but from behind her bar Cynthia's really got what it takes to get you drooling! Ah, Earthlings, we have a tale to tell of sensuous cosmic delights and entertainment that you'll enjoy when Cynthia responds to every finger-tip's request! She's well programmed to serve you!
"And who is Cymithia?", we hear the cry from our valiant readers, thrusting hot soldering irons hard into their holders. Gather round - Cynthia's the most amazing anthrobot you're likely to meet this side of the galaxy and, together with cyberpartner Rastus, is the star feature of a new theme bar and restaurant that's just opened in London.

CYBER CHAT

Cynthia and Rastus are two 2 . metre high robots, each with their own cavemous and glittering bar area from which they serve the cocktails and other drinks you've ordered through their 75 -option keypads. Rastus is a bit of a DJ as well. As with any Earthly (or even Eanhy!) bar tender, these two cyberoids respond to your orders with varying degrees of good or bad grace (depending on their mood, and the state of their program cycle - which in turn reflects the state of mind of their original designers and programmers!)
Accepting your order (they do obey at least one of Asimov's Laws of Robotics, paraphrased as - Thou shalt not harm or through inactivity cause harm to occur to a human - and it would harm you to do without your beverage, wouldn't it?), Cynthia and Rastus pivot round to the vast array of drinks on optic behind them, and fill your glass to the correct measure.
While you're at the bar, it's you who are likely to be chatted up by Cynthia and Rastus. We'd like to say that the tone of chat respects all Laws of Polite Conversation - but we can't lie to you, can we? You just have to accept that the occasional "questionable phraseology" might occur! But it's all in good fun and humour. and has nothing that would not be heard in a Carry On film.

CULINARY CALLING

After you've been cajoled by others of human persuasion to vacate your place at the bar, you have yet more delights to pursue - culinary ones. In other words. it's along the glittering corridor to Cynthia's restaurant.
The centrally-illuminated dining tables have calt-buttons inset, offering choice of the service required: drinks, food. general, and bill. Hi-tech is a keyword even in the way you are attended at table. Attired in fetching Millennial black and silver togas, reassuringly human stafi use handlueld electronic order pads. Your

Richard Becker (Cynthia's Conceptual Parent) requests Roger Gay (Cynthia's Behaviourist) to hand over the declaration that Cynthia will always converse in a polite and socially acceptable manner. At the time that this reviewer departed, no such undertaking had been received (but Cynthia had sweetly growled "B""r-off Human"!)
order is keyed in and transmitted by shor range radio through to the wellequipped kitchens. All "plastic" financial transactions are via a commercial networked EPOS system.
Described as "Multi-national", the selection, quality and competitive pricing of the food is comparable to that served in many good restaurants around the planei, and there's a special menu for "minidroids"!

The walls, flooss and ceilings are covered in a silvered metal skin and well interlaced with great expanses of mirrors. Any camera flash has a half-life of a thousand years (or so it seems). So does the innage of the drinkers and diners - echoing down to the ends of the universe.
Myriads of light emitting diodes enhance the entire lengths of the "populated" areas. Those in the bar stools appear to be in constant twinkling and ascending orbit through the transparent stems. Cynthia's and Rastus' dominance at the end of their respective supra-spacial cavems enhances the feeling of outer-worldiness; and hints at their possible "genetic" origins. There is the profound feeling that Cynthia is a distant relative of Marvin, the robot who, reluctantly, was involved in "Hitch-Hiking Through The Galaxy"

EVOLUTIONARY RELATIVITY

As to whether Cynthia is an ancestor of Marvin, or his descendent, will probably never be ascertairred, the space-time chronosynclasticparafundibulum of the polyverse is far 100 multitemporal to ever establish who's whose relative and in what order from the Event Horizon, but there's a family likeness there somewhere (relatively speaking)!

ORBITAL SPACE-WAYS

Being in the comfort zone of a vast orbiting space station, Arthur C. Clarke 2001 style: that's the futuristic atmosphere at Cynthia's Cyberbar and Restaurant. You forget that it's all more down to Earth, set below London Bridge, in the mass of broad tunnels and brick-built cavems that pervade that area of London.

Genesis in various forms as published in PE, Nov '81. Rumour has it that the white-coated android was a working facsimile of Mike Kenward.

To drop back out of warp-time(!), "iamily ${ }^{\text {"is }}$ is involved in this Cyber-venture in another way, this commentator's family, in the shape of his brother, Richard Becker.
Those of you who recall earlier days of electronic hobbying will probably remember that Practical Electronics, in November 1981. published a robotic arm, Genesis, designed by Richard. This was very much a "first" not only for Dick but also for $P E$, which at that time was edited by Mike Kenward (now our Owner, MD and Ed-in-Chief).
Through his company Powertran Cybemetics, Dick built up a wörldwide market for his educational and light industrial robotics products, which became increasing more sophisticated at each generation. To cut short a length of history, Dick went on to found Cybernetic Instruments Letd, of which Cynthia's Cyberbar is a division.

CHARTING SPACE-TIME

Cynthia herself (though we're not really sure of her/his gender!) became a twinkle in Dick's imaginative eye a good ten years back. Sworn to secrecy, this author has seen great wall lengths in one of Dick's large factory units increasingly covered by hundreds of mechanical drawings. Each represented a part of Cynthia Mk1, manuiactured and assembled when time permitted between other commitments.
Genesis and many more of Dick's earlier robotic arms ranges were
hydraulically controlled (water for blood!). Cynthia's motion, though, is generated by precision stepper motors operated under tight closed-loop control. They are operated with varying degrees of resolution. from a basic 200 steps up to around 12800 when in micro-step mode. The various limb motions are on a double axis, horizontal and vertical movement.
The sophistication of the control software ensures that movement is smooth, with different rates of acceleration and deceleration being applied depending on the position of motion. There was no need to give Cynthia third-axis (rotational) limb and wrist movement.

INNER SPACE

One might expect that the entire system would be governed by the latest in microcontrollers. Not at all - that well-proved
and time-honoured favourite the 8051 is the microprocessor used (well, a modern 16-bit derivative of it anyway). "Why change a working system?", says Dick, having long ago optimised software-hardware interfaces for all his automation products.
In fact there are 12 slave microprocessors, one for each of the motors, all under control of a master processor. A PC-compatible computer is in overall charge of the system, including the drinks ordering keypads and Cynthia's speech generation.
Cynthia's inner organs are a sight to behold! Her body is packed with thoroughly populated printed circuit boards and stacked in awe-inspiring regimentation. The scene behind the drinks array leaves one almost dumb with admiration at how complex a system is required to select and serve the correct drink on
demand. Meclianical and electronic interfaces abound. thick neural-like cable hamesses snaking their way amongst them.

PLANETARY CO-ORDINATES

Undoubtedly, all of you within suborbital distance of Cynthia and Rastus vill by now be utterly consumed with desire to drink with them. and to dine with their human entourage.
Here's how: the address is Cynthia's Cyberbar. 4 Tooley Street, London SE. 1 2SY. Tel: 0171403 6777. Fax: 0171378 1918.

E-mail: cynthia@ cynbar.couk.
Web: http://www.cynbar.co.uk.
Children are welcome (there's even a dance floor, and soon there 11 be and amazingly fascinating technology-orientated gifi shop).

Young Amateur Awards

SIXTEEN-YEAR-OLD Mark Haynes from Harlow, Essex was recently announced as the winner of the Radio Communications Agency's Young Amateur of the Year Award 1999. Mark received first prize of $£ 500$, a certificate from Stephen Byers, Trade and Industry Secretary, and will be invited to a conducted tour of the RA's Monitoring Station in Baldock. Herts.
Mark gained his Novice Licence at the age of 12 and became the youngest radio amateur of his home town. In July he organised and ran a special event station commemorating the 175 th anniversary of the RNLI.
If you would like to become involved in Amateur Radio, contact The Radio Society of Great Britain, Lambda House. Cranbourne Road, Potters Bar, Herts EN6 3JE. Tel: 01707659015.

Micromouse Grand Prix

ASTONISHING - July next year will see the action of an exciting new challenge for enterprising 11 to 18 year olds. The Micromouse Grand Prix 2000 is being organised by the UK's key engineering association Young Engincers, in collaboration with the IEE (Institution of Electrical Engineers), Europe's largest proiessional engineering society.
Teams of up to four are being invited to build and race their own robot, i.e. a small vehicle capable of finding its own way round a course at high speed. Entrants to this challenge will have specialised support through the Young Engineers website www.youngeng.org for chassis design, electronics, stecring control. digital and programmable technology. There are several classes in which you can compete:
Preliminary race days take place around the UK in March 2000, with the Grand Prix itself in July.
For more information contact Fiona Hunt at Young Engineers' Press Office on 01718233799 or Christina Dagnall of IEE Media Relations on 01713445445. Mention EPE when phoning.

WECANFIXITTU

RECENTLY faxed through to us is information about an interesting website: wecanfixit4u.com. The site offers a free directory of fixers, repairers, restorers and conservators. The company invies readers to not only use the site to search out the services they need, but also to have their own skills listed as well. They aim to provide a global directory searchable by item and hope to bring logether both Fixers and those needing a Fixer.

They say: "In our proper work we build websites and publish on CD-ROM, and offer consultancy on the miatching of Content to End User".
For more information contact David Hall, Chameleon HH Publishing Ltd. Dept EPE. Thie Quarry House, East End, Witney, Oxon OX8 6QA. Tel: 01993 880223. Fax: 01993880236.

E-mail: data@wecanfixit 4 u.com.
Web: hup://www.wecanfixit4u.com.

[^1]
THE NEW FORCE IN EDA

The brief was clear. Tिंतिeate a next genemation CAD system for electromic engineers that used state of the artedeskiop indegration and customisability togethei with univaledease of use
 Studio (EDS) is an entirely new program designed fir Loday's EDA performange needs. Integrating schemalic-and PCB design into a powerful design ando. EDS ilats you viaw and edit all the files in vaur piojects, and through OLE2, EDS integrates 9ith your desktop letting you drag and dróp documents into and from your favorite Office. applications.

DS also includes the now CADObjects engine with to ${ }^{2}$ find flexibility that approaches thi power of desktop publishing systems. With its comprehensive drawing and shaping tools, professional supp ort for True Type fonts (even at the RCB stage), high resolution, large design size, polygon fill and shaping tools, EDS represents a genuine advance in EDA price përformance. Visit ouf web site, or call now to find out how EDS can help you.

- State of the art multiple-document user interface offering unrivalled ease of use and customisability
- OLE 2 support including drag and drop, allows integration with your favorite Office applications
- Project Wizard and Project Manager make creating and navigating all the documents in your projects easy.
- New heiracial symbol browser, makes creating, edlting and managing symbols a breezel
- High resolution (lum) and large design size (up to $2 \mathrm{~m} \times 2 \mathrm{~m}$) combined with IntelliSNAP makes metricfimperial design mixing easy!
- Unlimited schematic sheets, with full support for data busses, power rails, etc
- CADCheck automatically syncronises schematic and PCB designs. No more capture worries!

WORK FASTER
WORK BETTER WORK EASIER

- Unlimited Undo/Redo, print preview and a wide range of importexport options including CAD.CAM.
- Up to 32 layers can be assigned to be copper, silk, gold, mask, drill, mechanical, or annotation layers.
- New CADObjects engine supports a wide range of graphic objects including professional True Type fonts, object shaping and property support, in-situ editing of symbols, high resolution and arbitrary rotation/scaling of objects.
- Unlimited range of pad and track sizes supported.
- Create flood fills and power planes quickly with the new polyfill tool.
- Fast fully customisable poly-algorithmic autorouter

Electronic Desigñ Sludio
Electronic Design Studio Cross Grade £149 \$239
Electronic Design Studio LITE
PLUS Your first double-sided Eurosizé PCB produced FREE by BETA-LAYOUT
£49 $\$ 79$
$£ 199 \quad \$ 319$

TRY AND BUY TODAY ONLINE AT wher.quickroute.co. uk

Prices exclude P\&P and VAT where applicable. 30 DAY MONEY BACK GUARANTEE

Quickroute Systems Ltd Regent House, Heaton Lane, Stockport, SK4 1BS, UK-Tel 01614760202 -Fax 01614760505
http wreq.quickro:Jte.co.uk. Email info@quicksys.demōn.co.uk

88-108MHz FM Stereo Redio Tremsmithters and kilts

Fully enclosed and guaranteed PLL FM transmitters from 1 to 150 Watts power, prices start at under £129.95. Low cost FM kits: PLL, crystal controlled stereo encoders, audio limiter compressors: all available as kits, or fully built and tested: kits from as little as $£ 13.95$. Professional link systems available, the lowest prices ANYWHERE! RF power amplifiers from 5 to 220-Watts power. Aerials to suit all applications and budgets. Check out the HUGE range of products on the VeronicaFM website: HTTP://www.veronicafm.co.uk E-mail VeronicaFM: info@VeronicaFM.co.uk or sales@VeronicaFM.co.uk

To celebrate the runaway success of our PLL Pro II 1-Watt transmitter kiţ, we are offering ALL our customers this stunning deal:

When you buy a 1 - Watt high quality PLL Pro II transmitter Kit or Built kit : you will receive a Pro II crystal controlled stereo encodel

Total cost for both items build it yourself likit: 86.7 .25 ready built kit: 299.95
We offer you stereo PLL cheaper than many of our competitors offer mono PLL!!!! OR: Buy our New ${ }_{1}$ to 100 wation OR: Buy our New ${ }_{1}$ to 100 wation (O) Buy our NEW
1 to 100 Watt power amplifier (O) Buy our NEW
1 to 100 Watt power amplifier FREE! and our proven PLL Pro II transmitter kit to drive it together for this amazing price: 929 05

That's a 100-Watt transmitter for UNDER £300!!!

The high quality $100-$ Watt amplifier is mains powered, so you don't need to spend a fortune on a power supply. The Amp also incorporates SWR protection and many other features normally reserved for equipment costing more than TWICE as much: see website for full spec

MAGNETIC FIELD DETECTOR

ROBERT PENFOLD

You will find the attraction with this novel, low cost, starter project.

TWilis very simple project can detect fixed magnetic fields or fields that are varying at an audio frequency. Fixed or slowly changing field strengths are registered on a centre-zero meter, which indicates the polarity in addition to the relative field strength. Audio frequency fields, such as those produced around mains and audio transformers, are detected via a crystal earphone that can be used to monitor the output signal.
The unit is not intended to provide accutate measurement of magnetic field strength, and is aimed at those who like to experiment with something a bit different Although quite simple the unit is reasonably sensitive. A small and not very powerful bar magnet can be detected by the prototype at about 100 mm from the sensor, and drives the reading to full scale at a range of about 30 mm .

Fig.1. A Hall effect sensor is little more than a slice of silicon. (a) normal and (b) with magnetic field iniluence.
current is passed through the silicon, and this produces a potential gradient in the silicon. There is zero volts at the bottom of the slice. the full supply potential at the top, and a certain portion of the supply voltage at intermediate points. The two electrodes are half way up the slice, and consequently there is half the supply voltage at each one. This gives zero output voltage across the two electrodes.

Applying a suitable magnetic field to the device "skews" the current flow and the potential gradient, producing an imbalance in the output potentials. The stronger the magnetic field, the greater the difference in the output voltages.

Applying a magnetic field of the opposite polarity skews the current flow in the opposite direction, giving an output signal of the opposite polarity. The output signal therefore indicates the strength of the nagnetic field and its polarity.

It is important to realise that a Hall effect sensor only works if the magnetic field is applied to one side or the other of the silicon slice. Applying the field to the front, back, top. or bottom of the sensor does not affiect the cerrent flow in a manner that will produce any imbalance at the electrodes. Consequently it will not produce any output voltage. .

HALL EFFECT

Detecting varying magnetic fields is quite easy, and requires nothing more than an inductor to act as the sensor. Unfortunately, static fields do not produce any output from an inductor and require a totally different approach.

The only common formi of magnetic sensor that "fits the bill" is a linear Hall effect device. A Hall effect sensor is a form of semiconductor, and is actually a very simple type of component. Fig. I helps to explain the way in which a Hall effect device works.

The sensor is just a slice of silicon having electrodes on opposite surfaces. A

SENSOR

Practical Hall effect sensors are more than just the sensing element itself, and they are invariably in the form of and integrated circuit containing the sensor plus some additional circuitry. Some sensors provide a switching action, and others provide an output voltage that is proportional to the applied field strength.

In this application it is only devices in the second category that are of any use, and the device chosen for this design is the UGM3503U. This is an inexpensive device but it has a very useful level of performance and is very easy to use.

It has just three terminals, which are the supply and output terminals. An internal differential amplifier boosts the outpul signal from the sensing element and produces a single output that is at about half the supply potential under standby conditions.

Placing a north pole of a magnet close to the surface of the sensor that carries the type number produces a reduction in the output voltage, and placing a south pole close to this surface gives an increase in the output potential (Fig.2). The frequency response of the device is flat from d.c. to 23 KHz . which means that it encompasses the full audio range.

Fig.2. A Hall sensor indicates the polarity of the field as well as its strength.

GIRCUIT OPERATION

The full circuit diagram for the Magnetic Field Detector appears in Fig.3, IC1 is the Hall effect sensor and IC2, a precision op.amp, is used to provide some additional amplification. The amplifier is an operational amplifier inverting mode circuit, which has resistors R1 and R4 as the negative feedback network.
The innate voltage gain of IC2, or the "open loop" gain as it is termed, is extremely high at d.c. and low frequencies. In fact, it is over 100,000 times for a typical operational amplifier.
Using negative feedback reduces the volage gain of the circuit ass a whole to a more usable figure, and this "closed loop" gain is equal to resistor R4 divided by R1. This works out at a little over 300 in this case. Higher voltage gain would obviously give better sensitivity, but it would also give problems with noise and drift.
Op.amp IC2 amplifies the voltage difference between the input voltage to resistor R1 and the voltage at its non-inverting
input (pin 3): This second voltage can be adjusted via potentiometer VRI, and in practice it is adjusted to produce a voltage that matches the normal output potential from IC 1 . This produces half the supply polential at the output of IC2.

The potential divider formed by resistors R5 and R6 also produces an output of half the supply potential. Meter ME1 is connected between the output of IC2 and this potential divider, and it therefore responds to the voltage difference between the two

Under standby conditions both points will be at the same potential, giving zero voltage across the meter. An increase in the output voltage from IC1 produces a decrease in the output from IC2, and a negative deflection on the meter. A decrease in the output potential from ICl has the opposite effect, producing a positive indication from the meter.

STRENGTH OF CHANGE

In both cases the greater the change in the output voltage from IC1, the higher the reading from the meter. The meter therefore indicates the relative field strength and the polarity of the magnetic field.

Applying a north pole close to the sur face of the sensor that carries the type number produces a positive reading, and applying a south pole to it generates a negative reading. This may seem to be at odds with Fig.2. but bear in mind that IC2 inverts the signal.

The value used for resistors R5 and R6 controls the sensitivity of the meter circuit. The specified values permit ME1 to be driven to full scale in both directions provided the battery is reasonably fresh, but their value is high enough to prevent the meter from suffering anything more than very minör overloads.

Capacitor C2 couples the output of IC2 to earphone socket SK1. This enables the output signal to be monitored using a crystal earphone, but satisfactory results are unlikely to be obtained using any other type of earphone or with headphones.

A 6 V battery supplies power to the circuit, and the current consumption is only about 9 mA . Do not use a 9 V battery as this would result in the maximum supply voltage rating of IC1 being exceeded.

COOD

PERFORMANCE
In order to produce good results in this circuit it is necessary for the operational amplifier to have good d.c. performance. Otherwise there could be major problems with drift, and d.c. offsets could make it impossible to zero the meter under standby conditions.

The op.amp also needs to be able to work properly with a supply potential of just 6 V . The OP077GP is reasonably priced and gives good d.c. performance in this circuit. On the other hand. its open loop bandwidth of 600 kHz equates to a closed loop bandwidth of only about 2 kHz in this design.

If audio rather than d.c. performance is of most importance it would be advisable to use a TL071CP for IC2. This will give quite good d.c. performance plus a more respectable audio bandwidth of around 10 kHz . To comrpensate for a lack of symmetry in the TL071CP's output stage resisstor R6 should be reduced from 33 kilohm to 27. kilohm.

CONSTRUCTION

The stripboard layout for the Magnetic Field Detector is based on a piece that measures 19 holes by 20 copper strips. The component layout and interwiring, together with the positions of the breaks in the copper strips, are shown in Fig. 4.

A board of the required size must be cut down from one of the standard sizes in which it is sold. The holes are very close together so use a hacksaw to cut along rows of holes rather than trying to cut between them. This inevitably produces quite rough edges but they are easily filed to a neaf finish.
Next, drill the two 3 mm diameter mounting holes and make the four breaks in the copper strips. A special tool for cutting the strips is available, but a handheld twist drill bit of about 5 mm in dia. does the job just as well. Make sure that the strips are cut across their full width.

The circuit board is now ready for the components and link-wires to be added. With a small board such as this the order in Which the components are fitted is not

Fig.3. Complete circuit diagram for the Magnetic Field Detector.

Magnetic Field Detector front panel layout. The Hall effect sensor is mounted externally in a probe arrangement, such as an old pen case, and connected to the circuit board via the screened cable.

| GिN |
| :--- | :--- | :--- |

Semiconductors

IC1	UGN3503U Hall effect
sensor	
IC2	OP77GP precision
	op.amp (see text)

Miscellaneous
$\begin{array}{ll}\text { S1 s.p.s.t. min toggle } \\ 81 & 6 \mathrm{battery} \text { pack (4 }\end{array}$ 81 6V battery pack ($4 \times \mathrm{AA}$
Ski
3.5 mm jack socket

MET
$100 \mu \mathrm{~A}-0-100 \mu \mathrm{~A}$ moving coil pane! meter
Medium size plastic or metal box; 0.1 inch matrix stripboard, size 19 holes by 20 copper strips; 8 -pin di.i.t holder; battery connector (PP3 type); control knob; crystal earphone, with lead and plug; twin-screened cable, about 0.5 metres; multistrand wire; solder pins; solder etc.
Approx. Cost
cultance orty
excle earphone, case $\&$ batts.

Magnetic Field Detector

Completed Detector showing earphone socket on one side panel.

Fig.5. Connection details for the UGN3503U Hall effect sensor.
really important, but it is best to work methodically across the board so that nothing is overlooked.

Neither the OP077GP or TL07ICP is static-sensitive, but it is a good idea to use a holder for any di.l. integrated circuit. Be careiul to fit IC2 and electrolytic capacitor Cl the right way round.

Fit single-sided solder pins at the points where connections will be made to potentiometer VRI, meter MEI, etc. It is onemillimetre diameter pins that are required for stripboard. "Tin" the pins with plenty of solder so that it is easy to make reliable connections to them.

CASING-UP

Virtually any medium size plastic or metal case should be able to accommodate this project. However, be careful to choose one that has sufficient depth to take the meter and the battery pack. The latter consists of four AA size cells in a plastic holder. Connections to the holder are made using an ordinary PP3 style battery clip. Although the circuit has a fairly high voltage gain the layout is not critical, and it is just a matter of designing a layout that is easy to use.

One slightly awkward aspect of construction is fitting the meter onto the case. because this requires a large cutout to be

Fig.4. Stripboard component layout interwiring and details for breaks required in the underside copper tracks.

Layout of components inside the two halves of the case. Note the space for the bättery pack.

Completed circuit board showing the iour link wires and the op.amp C2 mounted in its holder.
made in the case: Most moving coil meters require a 38 mm round mounting hole and the easiest way of making this is to use an adjustable hole cutter (also known as a "tank" cutter), and these are available from many DIY superstores.
Alternatively, it can be cut using a fretsaw, coping saw, or miniature round file such as an "Abratile". Another method would be to mark out the cutout, drill a series of small holes just inside this mark and then "join-up" the holes to form the
required cutout. With any of these methods it is advisable to cut just inside the perimeter of the required cutout, and then enlarge it to precisely the required size using a large round file.
Four smaller (3 mm dia.) mount ing holes are also required. The positions of these are easily located as they are at the comers of a 32 millimetre square having the same centre as the nuin cutout.

INTERWIRING

The hard wiring is reasonably straightforward. SK1 is a 3.5 mm jack socket, and most sockets of this type have a built-in switch that is not required in this application. Accordingly, one tag of SK1 is left unconnected.
The Hall sensor (IC1) is mounted extemally and connected to the main unit by way of a piece of twin-screened cable about 0.5 metres or so in length. An entrance hole for the cable must be drilled at a strategic point in the case, and if a metal case is used the hole should be fitted with a grommet to protect the cable. The screen is used o carry the ground (0 V) connection.
Rather confusingly, the plastic encapsulation of the UGN3503U Hall effect sensor chip seems to be complètely symmetrical. The only way of identifying the three leads is to use the type number on the bady of the device as a reference proint. see Fig. 5 .
Connect the sensor to the screened lead and use insulation tape or sleeving to
ensure that the soldered joints cannot shortcircuit together. The sensor will be neater if it is built into a probe, based on an old pen for example, but this is not essential.

TESTING

When the unit is first switched on it is likely that the meter will be driven fully positive or negative. With careful adjusiment of Balance control VR1 it should be possible to zero the meter. and placing the probe near any magnetised object should then produce a suitable response from the meter.
The meter movement itself contains a permanent magnet, and placing the probe near this should produce full-scale deffection of the meter. Placing the opposite face of the probe near the meter should then produce full-scale deflection in the opposite direction.

As explained previously, applying the pole of a magnet to one of the four smaller surfaces of the sensor will not produce a significant output signal. In use the orientation of the sensor should therefore be adjusted to maximise the meter reading.

Placing the probe against the power cable of virtually any mains powered device that is switched on should produce a 50 Hz "hum" from the earphone. Alternating fields will not produce an indication from the meter because the meter will register the average field strength. This will normally be zero due to the opposite poles in the signal cancelling out one another.

The circuit is reasonably stable. but occasional readjusment of VR1 will be required.

SHOP GHTALK with David Barrington

PIC Micro-Probe

The component listing for the PIC Micro-Probe calls for a piece of-i,c. holder" type stripcoard, with a central channel, dewoid of copper, rurining across the copper trads. This wili cost you around £5, but for just under-£? you can use a prece ol standard stripbard and cult away the copper tracks necessary. The rest of the components should be read ly avaificie.

The PIC used in this project shoukd be the 101 AHz version. For those wito vaant a "plug-in and go" preprogrammed PiC16F84, one is avalable from Nagenta Electronics (201283565435 or https/magenta2000.co.uk) for the inclusive price of 55.9 (overseas readers $\approx d d$ £1 for postage). For those vitho wsh to program thetr own PICs, the soltware is availatie from the Editorial Offices on a $3-5 \mathrm{in}$. PC-compatiode disk, see EPE PCB SErvice page 937. If you are an Internel user, it can be downloaded Free from our FIP site: $\mathrm{ftp} / / \mathrm{ftp}$.epemag.wImborne.co.ukipubs PICS/microprobe.

Magnetic Field Detector - Starter Project

Just a couple of pointers regarding purchasing of components for the B fagnetic Fied Detector, this month's starter project. The first concerns the 1004 A centre zero" mieter, some readers may have difficulty in locating one The meter used in the prototype came from Maplin (3 01702554000), code RWogG.
If you have trouble tracking down the UGN3503U Hall effect sensor, the above company list one as order code GXOgK. They also supplied the OP 77 G precision op.amp, code ULO5F. The atternative TLO71CP low-noise op.amp should be slocked by most of our component advertisers.

Ginormous Stopwatch - Giant Display

This month we complete the Stopwatch project with the constuiction of a Giant Digital Dispotay module. Most of the component supply bugs" were froned out last month.

The high woitage $4 N 25$ opto-coupler, code AY44, and the ULN2003 Partington array, code AD93B, are listed by Mapiln. The ECEB1 Darfraion transisior may be hard io find, but the suggested alternative TIP141 and 7P142 should be reanily available Note the difiering pinouts for the TIP dedices (FFg. 2 las: montin)
Ready programmed PICs are avalable from the author for the sum of $£ 10$ each (for ether the Display module of Stopwatch) of $£ 50$ for six in any combination, whth free postage to anywhere in the workt. Payments should be made out to Mr. N. Stcjadinovic. His E.man address is: vladimir@u030.aone.net.au or write to: Mr. N. Stojadinovic, PO Box 320, Woden ACT, 2606, Australia,

A programmed PIC16C54 is also available from Magenta Electronics (e) 01283565435 or htfpi/magenta2000.co.uk) tor the irclusive prica of 55.90 (overseas readers'add £1 tor postage). For those who wish to program their
 compatiole disk, see EPE PCB Sarvice page. If you are an Internel user, it can be downloaded Free from our FTP site:

Itp:/tp.epemag.wimborne.co.ukipubs/PICS/stopwatch.
The two printed circuit toards are avalable from the EPE PCB Service. code 247 (Digit) and 248 (Port Conv.)

Loft Guard

Most of the components called-up for the Lof Guard profect stould be reacily availate from your usual suppler. The ohty problems that are fikely to trop up miay be finding tine high value resistors.

The single 100 megoin sesistor (R7) was only found listed under the "cermet film range stocked by Electromall (301536204555 or RS https//rswww.com). quate code 158-222. As the article points out, you could use three 33 megohm resistors (in series); the pe.b is also designad to accept thesa. This resistor (3JM) came from the Aaplin "high woltage" metal film range, order code V33M.
Note that to make up the 20 megohm resistor (A10) you will need iwo 10 meg types. Once again, the "series" pads have teen included on the p.c.b.
The tast mentorned ompany also supplied ita miniature light-dependent resis ior (Ids.), code AZ3E and the high power warning buizzer, code FK84F. Athough most of our comporients advertisers sinoubd be able to cifer something simidar. Yos cousd, of course, use the good old standard ORP12 ld.r. if you wish

Even though the semiconductors, ate spectic versions, they should be in plentiful supply. The pCo is available from the EPE PCB Service; code 249.

Teach-In 2000

If you have only just pieked up on our new Teach-ln 2000 series with this issue, and being a newcomer to electronics, you may feel a bit apprehensive about ordering the various parts for the demonstration "exercises". Fear not, some of advertisers have put together component and hardware packs spe. cially for the new series. A few more will be added as the serles progresses, tat we do not expect tinat to te until at least part seven.
'To date, participating advertisers are as follows and readers are advised to contact tiem for more details
ESR Electronic Components (https/ivrws.esr.co.uk) Hardware Tools and Components Pack.
Magenta Electrontes (01283565435 or http://www.magenta2000. co. UK) - Muttimeter and Components Kit 879.
FML Elečtronics (今 01677 425840) - Easic Components Sets.
N. R. Bardwell ($\mathrm{S}, 01142 \overline{5} 52886$) - Digital Nhulimeter special offer.

PLEASE TAKE NOTE

Demister One-Shot
Nov '99
Page 844 Fry.4. On the p.c.b. cormponent laycut diagram the body outhes of capacitors C1 and C2 should be tansposed - see photograph al bo óf page 845. The electiotytic, shewm as a circle, shosulit connwat to the IG1 pin 8 copper tuad (+) and tie common GND track (-1 . The actual anmotations are correct.

Regular Clinic

CIRCUIT SURGERY

ALAN WIASTANLEY and IAN BELL

This month our team of surgeons commences an op.amp extravagañza, lifting the lid off these indispensable amplifying circuits. Also, fusible resistors come under their beady eyes too!

WElCOME to the very lasi Circtit Surgery column of the 1990's, and we hope there is something of interest to everybody in our monthly round-up of readers' queries and questions.

Op.Amps 101

We have had a couple of questions about op.amps and think that many readers will find a discussion of this subject useful. Mohab Refaat writes by E-mail: "EPE publishes many circuits that imolve audio effects or amplification. Some use "low noise' op.amps, such as the LF35I or the TL071. My first question is, how can you select an op.amp for a particular application out of a large number of candidates?
1 found the use of a "Volume" control in simple amplifier circuits to be another aspect 1 found a bit baffling. Sometimes it is achieved using a pot. (potentiometer) as the inpul resistance to the op.amp, sometimes it is used in the feedback network to control the gain. Are there any rules related to the use of either method? Thanks for opening up the world of electronic circuit design to we non-electronic engineers in a simple way!"
Also Tony Soueid from Lebanon writes: "Alnost every design involving analogue electronics contains an ap.amp. I know how an op.amp behaves and the equations that rule its behaviour but what I don't know is what's inside that black box.

All that we have been taught is that it is based on a differential pair of transistors, but it's far from being that simple. Can you please supply me wili some information?"

It's best to start with the second part oi the first question, because it deals with something very specific which follows on neatly from our recent discussion on the 22-position volume control (Circuit Surgery, Oct '99) and volume power outputs from amplifiers (Sept. '99). We will then move on to a more general discussion on op.amps over the next month or so.

Volume Control

Both methods of volume control obviously work, in that they both-provide control over
the loudness of the sound produced by the amplifier. I cannot say that I have seen a formal rule for which method to use. However we can make a distinction between the two approaches in that the input resistance approach is an attenuator whereas the feedback resistance is a gain control.

Both controls can be used together, in some applications. I therefore suggest that the "input resistance control" is suitable when the maximum input signal is at a known reasonably fixed Ievel. The amplifier can then be designed to give full volume for this signal level, and the input is attenuated for lower volumes.

When the range of possible input levels is very large though, it will be necessary to be able to change the gain of the amplifier to a level appropriate for the input being used at any one time. Ideally, the Gain control would be set to give maximum undistorted (non-overloaded) outputt with the maximum input in the current situation and then left alone, with a separate control for volume

However, as gain also affects volume. the gain can be set to give the desired volume at any instance and this, of course, reduces the number of controls needed. The representative circuit in Fig. 1 illustrates both types of volume control, the input signal shown on the diagram may be from an extemal source or an earlier stage in a larger circuit.

Making a Choice

To select an op.amp you need to know what the circuit and hence the op.amp needs to achieve, this will give you a minimum specification for the device. Then purchase the cheapest op amp which meets all the specs!

It may not always be all that simple to calculate an op.amp spec. in greāt detail.
but you can use a bit of common sense too. If your application is an audio amplifier it would be sensible to use a low noise op.amp and pay a bit more for a better spec., on the other hand if you are using it as a comparator to, say, switch on a heater when the output of a temperature sensor falls below a certain point, then an ultra low noise "audio spec" device is not really needed.
The range of circuits one can design using op.amps is so vast that we cannot

Fig. 1. Circuit to illustrate the two types of volume control.

Inperfections

Having given the impression that op.amp choice is sometimes somewhat arbitrary, it is worth pointing out that in some cases it can make the difference between a circuit functioning or not. I remember working on a partly developed prototype power control system for a CO_{2} laser, the existing output circuit used a general purpose op.amp which was simply not up to the job.
The power measurement worked fine some of the time, but on other occasions would not do anything. The problem was due to the high offset voltages, and more specifically the drift in offset with time and temperature. The circuit was replaced with one using special high precision peak measurement chips, which did a great job.
The above example illustrates a couple of points. First, it is the imperfections in "real" op.amps (as opposed to "ideal" ones) that cause problems, so understanding these and their impact will help you avoid devices that are unsuitable. Understanding op.amp imperfections will also help you understand the internal circuitry (with reference to the second reader's question) because much of the design effort arises in reducing these imperfections.
Second, there are occasions where specialist chips other than op.amps are the best option. The above case was one example, another good one would be a sample and hold circuit - you can build one using an op.amp, but you will get better performance from a sample and hold chip, and, of course, some extra bits of circuitry are already included. Comparators are another case - all op.amps can be used as comparators but it is often better to use chips optimised for this purpose.

On Spec

It is worth looking at some of the specifications found on op.amp data sheets and in suppliers' catalogues and discussing how these may effect your choice of op.amp for particular applications. We will also refer to some of these specifications when we move on to look at the internal circuitry. But, before we start, we need to define some basic things about the op.amp, so let's explore them in greater detail.
The op.amp is a high-gain, direct-coupled amplifier, its symbol is shown in Fig.2. The term "direct-coupled" means that the inputs and internal stages are connected directly, not via coupling capacitors. This enables the op.amp to amplify dic. and very low frequency signals.
The op.amp has two inputs - the inverting (\rightarrow) and non-inverting (+) inputs and an output. The inputs and outputs are usually referenced (applied or mêasured with respect to) ground or 0 V .
Op.amps usually have two power supplies, one at a positive voltage with respect to ground and the other at the same magnitude negative with respect to ground; however many "single supply" op.amps are also available. Suppliers' catalogues usually indicate whether an op.ämp is intended for single or dual

Fig.2. Op.amp circuit symbol,

Fig.3. Graph showing the relationship between op.amp differential input voltage and its output voltage. Saturation occurs when any increases in the magnitude of the differential input do not result in further increases in output voltage. The values shown are an example for an op.amp with a gain of 100,000 and a maximum output voltage of $\pm 15 \mathrm{~V}$. The gain of the op.amp is equal to the slope of the graph between the saturation points.
supply operation, otherwise check the data sheet. The power supply connections are not always shown on schematics.
The output voltage of an op.amp is given by $V_{\text {OUT }}=A_{V}\left(V_{2}-V_{1}\right)$ where A_{V} is the open loop voltage gain, V_{2} is the noninverting input voltage and V_{1} is the inverting input voltage. This "open loop" gain refers to the gain of the op.amp itself withoul any feedback circuiry. Op.amps are almost always used with some form of feedback though, which results in a gain for the circuit that is different from that of the op.amp itself.
Note that the op.amp amplifies the difference in voltage between its two inputs. It is a differential amplifier. The equation $V_{\text {OUT }}=A_{\mathrm{V}}\left(V_{2}-V_{1}\right)$ always holds for totally ideal device, but in reality is only valid for a small range of $\left(V_{2}-V_{1}\right)$ and there are limits on the individual values of V_{2} and V_{1} too. The op.amp's input-output relationship is illustrated in Fig. 3.
Some manufacturers group their op.amps into types suited to different kinds of application. Typical descriptions may include:

- general-purpose - suitable for a wide range of applications requiring moderate amplifier performance
- low noise - guaranteed very low noise for applications such as sensitive measurement and signal processing where noise from the op.amp must be within know'n bounds
- low-power/micropower - suitable for use in systems such as mobile equipment, where power consumption is critical
- wideband/high speed - for applications such as pulse circuits and video where accurate reproduction of complex high frequency signals is required
- high-power/high current -op.amps with high current output stages capable of driving low impedance loads
- low drifthigh precision - amplifiers with minimal offset voltage, and where accuracy is preserved over a wide temperature range
- low bias/high impedance - f.e.t. input op.amps with very low input bias currents for use in buffer circuits or with large external resistors.
Some op.amps may arguably belong to more than one of these categories. The specifications given on Op.amp data sheets can be divided into: electrical ratings (maximum voltages etc.); signal handling (noise eit.) and offsets (which particularly effect d.c. accuracy). We'll discuss these and other practical matters in the next Surgery. $M M B$.

Fusible Resistors

Mark Lee asks: "I would appreciate an explanation of fusible resistors and how to use them. They seem to be mainty low resistance-and low power ratings. How do I use them in a circuil?"

Fusible resistors are inserted into a circuil as an ordinary resistor would be. except that they have the special property that if they are overloaded for any reason (a circuit fault elsewhere downstream), then instead of burning out they are guaranteed to go open-circuit within a certain range of conditions.
This means that they will disconnect the circuit, rather than buming out or setting fire to the board. They are only produced in a limited range of values (low ohms to a few kilohms) and would be used in e.g. power supply or monitoring circuits, where a combination of resistance and overload protection is required. The main thing is that they are a fault-tolerant, failsafe fireproof device.
Paradoxically there is even a zero ohm resistor available! These are used by manufacturers using automated p.c.b. equipment, to apply a link between two pads - it means that a machine which handles resistors is, therefore, also able to insert the equivalent of a wire link instead. ARW.

> CIRCUIT THERAPY
> Circuit Surgery is your column. If you have any queries or comments, please write to: Alan Winstanley, Cincuit Surgery, Wimborne Publishing Lid., Allen House, East Borough, Wimborne, Dorset, BH21 1PF, United Kingdom. E-mail alan@epemag.demon.co.uk. Please indicate if your query is not for publication. A personal reply cannol always be guaranteed but we will try to publish representative answers in this column.

ENTER THE CHAT ZONE

The EPE Chat Zone on our web site is now open as a way for readers to exchange information, views, hints and tips in virtually real time.
http://www.epemag.wimborrie.co.uk wwwboard

INTER A° E Robert Penfold

A SERIAL APPROACH TO PC ADD-ONS

IN THE previous Interface (Oct '99) darticle we considered the subject of serial port interfacing, and using a standard RS232C serial port to send data to a, user add-on. In this month's Interface we will look at using a serial port to receive serial data.

Much of the background information provided in the previous article also applies to using a serial port to receive data. Refer to the earlier article if you require information on the UART registers, setting the word format and baud rate, etc.

With things reduced to the simplest level it is not difficult to read data from a serial port. Using the methods outlined in the previous Interface article it is possible to set the required baud rate and word format, and is then just a matter of reading data from the base address of the port. The base addresses for serial ports one and two are respectively \&H3F8 (1016 decimal) and \& H 2 F 8 (760 decimal)

Mouse Experiment

If your PC has a serial port mouse it is easy to experiment with serial port reading, and the raw data from the mouse can be read from the appropriate mouse port. Using Delphi 1, this code could be applied to a timer component set with an interval of about 50 milliseconds:

Reading: $=$ Port [760];
Str(Reading, S);
Labell.caption $:=S$;
The value of " 760° in the first line is correct If the mouse is on serial port two, but must be changed to $1016^{\prime \prime}$ if it is on port one. The two variables must be declared in the appropriate part of the program by adding the following two lines in the section headed "var":

Reading; Byte S : String;

A label component must be added to the form, and its default caption should be erased. This gives the program somewhere to display the data read from the serial port. When the program is run, the data displayed on the label should change as the mouse is moved around and the buttons are operated.

Synchronisation

For many applications it is perfectly all right to take this simplistic approach, and simply read the port periodically to obtain the latest data available. 'For' example, suppose that a Thermometer is connected to the port. By reading the port the latest temperature will always be read and displayed. The fact that each new piece of data may be read several times or the odd reading may be missed here and there will be of no practical consequence.

This is not the case in all applications though, and in some cases it may be necessary to operate on the basis of sending a trigger signal to the interface, and then reading in x number of bytes. It then becomes essential to properly synchronise the sending device and the program reading the data. Otherwise there is a risk of (say) reading four bytes of data twenty-five times each instead of reading 100 bytes of data once each.

There is no need for an external handshake line to control the flow of data, and a status bit of the Line Status register can be used instead. Bit 0 of this reg. ister is set tojone when aycomplete byte has been received and transferred to the receiver Register. Writing a zeero to this bit will reset it, but this is not normally necessary as it is automatically cleared when the data in the receiver register is read.

To ensure that each byte of data is read only once it is just a matter of using a soft-
ware loop to monitor the received data bit, and provide a hold-off until it is set to one. This prevents the Receiver Register from being read until a new byte of data is ready:
The Delphi 1 program described previously is easily modified to provide this hold-off. In addition to the hold-off this listing also implements a counter that shows the number of readings that have been taken. A second label component must be added to the form to accommodate the counter

Port[1019]: $=128 ; \quad$ sy waticnis
Port[1016] : $=12$;
Port[1017]: $=0$
Port $[1019]:=3$;
$\operatorname{Port}[1017]:=0$;
Repeat until (Port[1021] and 1) $=4$
Reading := Port[1016];
Str(Reading, S);
Labell caption $=\mathrm{S}$;
Counter: $=$ Counter +1 ;
Str(Counter, S);
Label2.caption : $=S$;
The port addresses used here are for port one. For serial port two use these addresses:

760 instead of 1016
761 instead of 1017
763 instead of 1019
765 instead of 1021
In addition to applying this program to a timer component these three lines must be used to deflare the varjables.
 Counter: Byte; S : String:
A further line must beadded to the listing for the form, and this sets the Counfer variable at an initial value of zero.

Counter: $=0$;

Fig. 1. Circuit diagram for the Simple Serial Intertace addon.ll opērates at 9600 baud.

Operation

In the original test program we relied on the operating system to set up the serial port correctly, but in real world applications the program must do this. The first four lines of the listing set the port for 9600 baud operation with a word format of eight data bits, one stop bit, and no parity checking.
Using the control registers to set the baud rate and word format was covered in the previous Interface article, and will not be discussed again here. The fifth line switches off interrupts, and should ensure that the operating system does not upset things by reading bytes of received data.
The hold-off is provided by the Repeat...Until loop in the next line. This line repeatedly reads the Line Status register, and bitwise ANDs the result with one. This effectively strips off bits 1 to 7 , and reads only bit 0 .
The program loops until the returned value is one, which means that there is a fresh byte of data to be read. The port is then read and the result is displayed on Labell. Then the Counter variable is incremented by one and the new value is displayed on Label2.

Hardware

The Simple Serial Interface of Fig. 1 can be used to test this program. The 6402 UART has been covered in previous articles and will not be discussed in detail here.
Transistor TR1 generates a 2.4576 MHz clock signal that is divided by 16 through IC1. UART IC2 requires a clock signal at 16 times the required baud rate, and this gives an output signal at 9600 baud.
The control inputs at pins 34 to 39 of IC2 are hard-wired to produce the required word format of 8 data bits, one stop bit, with no parity checking. Transistor TR2 acts as a simple line driver and inverter, but it does not provide proper RS232C output levels.

Good results should still be obtained provided the cable used to connect the interface to the computer is no more than a few metres long. The output (SK1) connects to the Ground and Receiver Data input of the RS232C interface. These are at pins 7 and 3 respectively for a 25 -pin port, or 5 and 2 for a 9 -pin port (see Fig.2).

In Control

A serial interface requires some form of control logic circuit to trigger the UART at the appropriate times and send a stream of data. At its most basic the control logic can consist of nothing more than an oscillator, which is all that is used in this case.

A low power 555 timer, IC3, is used in the standard oscillator configuration. The values of timing components resistors R8, R9 and capacitor C5 set a low operating frequency of roughly IHz . Therefore, about once per second the output of IC3 (pin 3) goes through a high to low transition and causes IC2 to send the eight-bit value on its inputs.
Although the test program is assigned to a timer component that tries to take a reading every 50 milliseconds, which works out at 20 readings per second, it will only take about one reading per second. This is due to the software hold-off looping the program for about a second until a new byte of data has been received. If everything is working properly, the counter should therefore increment at about one and not 20 per second.
A slightly beautified version of the program after 30 seconds of taking readings is shown in Fig.3, the count has reached 31. Of course, data can be transferred at a greater rate by increasing the operating frequency of IC3 and reducing the time interval of the timer component (or simply having à routine that continuously tests the serial port).

Fig.3. The couriter of the test program should increment each time fresh data is received.

However, bear in mind that there are ten bits per serial byte and with a baud rate of 9600 this works out at an absolute maximum transfer rate of 960 bytes per second. In practice the maximum achievable transfer râte would probably be slightly less than this.
Although the routines provided here are written in Delphi 1, using the methods described in previous Interface articles it should be possible to use other versions of Delphi, Visual BASIC 6, or even GW BASIC. It is just a matter of outputting the correct values to the serial port registers, and then reading the base address. If a software hold-off is needed it might be necessary to use a different loop structure with some languages, but it should not be too difficult to apply the same bitwise ANDing and looping technique to provide the hold-off.

Extra Outputs

One or two readers have asked whether it is possible to use some of a serial port's handshake lines as general purpose outputs. The UART data slieet would seem to suggest that the Data Terminal Ready (DTR) and Request To Send (RTS) handshake outputs are respectively controlled by bits 0 and 1 of the Modem Control register This is at address 764 for port two and 1020 for port one. It would also seem to suggest that certain handshake inputs could be read at the Modem Status register .
However, initial attempts at writing to and reading from handshake lines failed totally. Possibly these lines are implemented via some other means, but using them direct-
Fig.2. Interface connection details for 25-pin and 9-pin serial ports.
ly seems to be something less than straightforward.

EPE BINDERS

 KEEP YOUR TEACH-INs SAFE - RING US NOW!This ring binder uses a special system to allow the issues to be easily removed and re-inserted without any damage. A nylon strip slips over each issue and this passes over the four rings in the binder, thus holding the magazine in place.

The binders are finished in hard-wearing royal blue p.v.c. with the magazine logo in gold on the spine. Trey will keep your issues neat and tidy but allow you to remove them for use easily.
The price is $£ 5.95$ plus $£ 3.50$ post and packing. If you order more than one binder add $£ 1$ postage for each binder after the initial $£ 3.50$ postage charge (overseas readers the postage is $£ 6.00$ each 10 everywhere excepl Australia and Papua New Guinea which costs $£ 10.50$ each).

Send your payment in £'s sterling cheque or PO (Overseas readers send £ sterling bank draft, or cheque drawn on a UK bank or pay by credit card), to Everyday Practical Etectronics, Allen House, East Borough, WImborne, Dorset BH21 1PF. Tel: 01202881749 . Fax: 01202841692 . E-mall: odtorlal@epemag.wimborne.co.uk.
Web site: http://www.epemag.wimborne.co.uk

(We cannot reply to queries or confirm orders by Fax due to the cost.)
We also accept credit card payments. Mastercard (Access) or Visa (minimum credit card order £5). Send your card number and card expiry date plus cardholder's eddress (if different to the delivery address)

PROTI

 PRO

 PRO}

SHARTWARE VERSIONS NOW WITH INTERAGTIVE CIRCUIT ANIMADIDN DOWNLOAD YOUR COPY NOW
 sthe
 Fitup:/Awwilabeenter.co.ak
 BEST all-round PROCRAME

EWW GADRBMIG Round Up September 1998

Simulation

- Berkeley SPICE3F5 analogue simulation kemell
- Iirue mixed rimode simulation.
- Newranalysis types inatide multippor sweeps frankior curves, distortion and impedance plais.
DAGive Gomponents: Swithoss, Potsieter
- Over 1000 new libraiy palts with splefemodels

Dreaterease of use.

"a constant
 high level of capability throughour
 EWW OAD RReview Rounclup September 1998

Shemetic capture

- Produces attractive schematios like in the magazines.
- Netlist, Parts List \& ERC repoits.
- Hierarchical Design.

Q a \&ull suppor for buses induding busipins:

- Extensive component/model ilibralies.
- Abivanced Property Managemenil
- Seamless integration with simulation and PeBatesign

pab Desten

Automatic Component Placement.
4) Rip-Up \& Rety Auforouter with tidy pass

- Pinswap/Gateswap Ootimizer \& Back-Annotation
- 32 bit high resolution datebase.
- Full DRC ano Conneclivity Cheakigg
a Shape basedil gridless power planes
- Gerber and DXF Imiport oapability.

Available in 5 levels - prices from $£ 295$ to $£ 1625+$ VAT $_{2}$ Call now for further information \& upgrade prices.

New Technology

T IS just over fifty years since the first iransistor was made at Bell Labs, Since then many advances have been made, enabling the performance to be improved beyond all recognition.
Bipolar technology has improved frome the early transistors that had cut-off fre= quencies of only a few kilohertz and low gains to the state where r.f. transistors areavailable that can operate to frequencies of many Gigahertz and with much higher levels of gain than were previously possible. Not only this, but field effect transistors (t.e.t.s) are now widely available.

It is interesting to note that the development work to devise a semiconductor amplifying device was initially focussed towards the development of a field effect device. However, they were unable to make the effect work, and they changed the line of the investigations which resulted in the development of the bipolar transistor.
It took a few years before the field effect transistor was widely available: F.E.T.s also had a major impact on integrated circuit technology, enabling the degree of integration to be considerably increased.
With transistor technology now very mature it might be thought that the rate of development would slacken as fewer developments were possible. However, nothing could be further from the truth. Many new ideas are surfacing, and these will enable transistor technology to surge forward and meet the demands to tomorrow's technology, both in performañce and size.

Nano-curls

The idea of nanotubes has been covered previously within this column (December 1998 EPE), but only in the application for producing very low resistance and high current caryying capacity conductors. The nanotubes used for the transistors that are being, developed are subily different, forming a semiconductor rather than an ordinary conductor. Although the concept has been known for several years, the technology is revolutionary and until recently it has nor been possible to realise it in a physical form.
Nanotubes used for transistors have carbon walls made up from hexagonal shaped matrices. Essentially they are vaporised carbon that has been condensed into a series of hexagons. To give a better view of what they are, they can be considered as a very thin strip cut out of a graphite carbon plane which lias been rolled up and sealed at either end. The dimensions are naturally very small, and the dimensions are measured in atomic proportions.
The carbon hexagons that are used to make the tubes have a natural tendency to curl. The way in which they curl determines their electrical claracteristics.

Fortunately, it is possible to control the way in which this curling takes place. By rolling it in a way that gives a straight mopecular alignment the nanotube behaves like an ordinary conductor. However if the curl is arranged so that molecular structure is twisted then the nanotube behaves like a semiconductor.

A considerable amount of experimentation was required to enable the right properties to be oblained. It was necessary to have the right amount of curl. In fact, the early nanotubes consisted of multiple concentric layers. However, the nanotubes that are used now consist of just a single wall comprising of a single atomic thickness.

Transisiors

Having developed the basic semiconductor the next major hurdle was to develop a useful device. Suprisingly, two organisations announced they had succeeded. In 1998 the IBM Thomas Watson Research Laboratories and the Delft University in Holland both claimed they had managed to fabricate a transistor using this revolutionary new technology.
The device consisted of a single nanotube having a thickness of one atom. Once rolled the tube was about one nanometre in diameter. This was connected between two electrodes that were abrut 400 nanometres apart. and the whole structure was mounted on a silicon substrate onto which a layer of silicon dioxide had been set down to act as insulation. The nanotube then acted as the channel whose conductivity could be controlled in the normal way.
Although the channel length of the early development model was relatively large it could be made very much smaller. In fact, some working lab models have been made with lengths of around 40 mm and it is estimated that in future channel lengths of only 20 nm should be achievable.
As the speed of operation is primarily controlled by the length of the channel this will result in a considerable increase in the speed of operation. This means that considerable improvements will be possible over the latest production f.e.t.s fabricated using the latest 0.18 micron process which have channel lengths of around 120 nm .

Future

This technology is very new and still very much in its experimental stages and müch basic work is being undertaken to ensure that the process can be reliably introduced into production apart from developing the basic technology. As a result it is likely to be several years before nanotube transistors are available. Nevertheless, work is progressing apace.

One of the problems results from the minute dimeasions used in these devices. It makes them less robust and more open to problems arising from impurities. The gate insulation area is one where this is particularly apparent. The very thin gate insulation has to be completely free from impurities as a result of its extremely small dimensions.
Atom leakage is also a problem and interconnection resistances also have to be investigated. The experimental devices produced so far have had problems arising from the very high resistance between the nanotube used for the chamel and the contacts.
In current experimental devices the resistance has been of the order of one megohm. Clearly there will be many advantages to be galned from reducing this value. By comparison the discreet f.e.t.s that are widely used in today's circuits have channel resistances of only a few bundred ohms. The higher values currently being obtained in the new devices will reduce the high frequency performance of the whole circuit in which they are used.

Wafer Thin

Another area that is being investigated is that of producing suitable wafers. Those that can be produced at the moment, on an inciustrial scale, do not have a sufficiently fine surface to enable the minute nanometre sizes required for the new transistors to be fabricated sufficiently accurately. A rapid thermal oxidation process is being developed but even when this has been perfected it is not expected that it will support the sizes below about 50 nm for commercial production, and this will mean that the full capability of the new technology will not be realised.
Whilst no obvious solution is even on the horizon, development work is still progressing. It is quite possible that developments in other areas of semiconductor technology may enable the requirement to be met by the time the development of the nanotube transistor technology has reached a sufficicntly advanced stage.
In order to introduce this new technology onto the market new fabrication techniques are required. This results from the fact that the extremely small sizes mean that "quantum well effects" become an issue.
To overcome this, new materials are needed and in tum this leads to the fact that new processes and lines will be required. However with other technologies nearing the end of their roadmaps, the need for new technologies like these nanotube transistors will be required to ensure that semiconductor rechnology can keep up with developments in other areas and possibly stay one step ahead.

UNIVERSAL: PIC PROGRAMMER
£ 49.95
SERIAL and PARAI.I.FI. Programming modes (unlike cheap programmers). Universal ZIF socket, no more damaged/broken pins, inferior products can ruin experasive chips!
Sufpents: P1C12C5XX, 12C6XX, 14XXX, 16C5XX, 16C50X, 16C6X. 16C7X, 16C9XX. 16C55X. 16C6XX. 16C8X. 16F8X Memory 24LCXXX, 85CXX, 93CXX Includes CD with PIC-BASIC, DatuStheets and Programming.sof ware. Downloud latest Windows $95 / 98$ software from our website now.
\qquad 559.95
in-Citeuit Emulator and Provrammer. Supplied with Softwart. Data sheets. Manual, leads. 10 breadbarad circuits which include DVM, Stopwatch. Smoke Alarm, Sound and Light. Ineludes FREE PIC BASIC COMPILER. EICICEII

Supplied with leads, manual, soirware and hardware projects.
Ex ludes FREE PIC BASIC COMPILER.
DELUXE SMARTCARD PROGRAMMER
$£ 79.95$
Read arml Write to all types oi Smarta 1 ISO, Memory. PIC, GSM, VideoCrypt.
Satelline, D2Mac, CashCards. Petrol Station, StoreCards ete.
Supplied with a large amouns interesting smartcand information, commands,
encryption methods and operating sofiware.
All froducts manufactured in Malta and sarry 12 months Parts and Labour quaranter,
LEADING EDGE TECHNOLOGY LTD
WHITE ROSE HOUSE, XINTILL STR, TARXIEN PLAII, MALATA.
ORDER DIRECT: Tel: $(00356) 678509$ Fax (00 356) 667484.
SAME DAY DESPATCH
P/P UK. EEC E4.00. NO VAT PAYABLE
ALLL MAJOR CREDIT CARDS ACCEPTED

MEGAPROM EPROM PROGRAMAER
ธ69.95
Programs up to 8 Meg devices (32-pin), including 27xx, $38 x x$. 29 Ix , EPPROM. FLASH and 24 X series. Buil-in RAM, tester. Universal qualivy ZIF socket, free soltware updates.

GALPROGRAMIMER

Read/Write/Copy SGSNSC/Laticeete. 16V8AB/D/Z, 20V8:A/B/D/Z and 22V10 standard JEDEC niles. Smart case with ZIF. Supplied with IPSU, Manual and Compiler soitware. One GiAl can replace up to-21 different PAL; and they ate re-programmable!
P87C51/52 PROGRAMMER
559.95

Read/WritelCopy and Edit all $8751 / 2$ including ATMEL 89 Flash iypes. Supplied with Assembler and BASIC compiler (modures 8051 M/Coda). Smart Case. 40-pin ZIF
RPROMEMLZATOR
559.95

128 K by 8 -bit or $2 \times 64 \mathrm{~K}$ by S-bit Software to Read/Write when conmected to target boand. Suitable for CPL development and Car EM Systerns.

EREE PIC B S SIC COMIPILER for Windows $95 / 98$ Supports PICI6C54-57. 71, 84. 5108 produces saland-alone nachine code (no runime modules)
Standaró BASIC syntax includes Peek/Poke, Input. Output, etc., etc.
Why pay E5:+ when ours is FREE? Download it from out Website now
II PRODUCTS REOUIRE AN IEM PC TO OFERATE UNLESS OTHERWISE STATED AU FOR FURTHER INFORMATION SEF OUR WEB SITE OR TBLEFIONEFAX. WEBSTIE htip://LET.cambs.net johumorr@keywarld.net Always in ssock - Working D2Mac 27.Channel Wefer Cards £19.95

coNniol $\&$ RoBOHCS Mifford Instruments

BASIC Stamp Microcontrollers

Still the simplest and easiest wory to get your project or development work done. BASIC Stomps ore smiall computers that nun BASIC programmes. With either 8 or 16 Input-Output pins they may be connected directly to push-buttans, LEDs, speakers, potentiometers and integrated circuits such as digital
thermometers, real-time clocks and anolog-digital converters. BASIC Stamps are programmed using an ordinary PC runining DOS or Windows. The tanguage hos familior, easy-to-read instructions such as FOR... NEXT, IF...THEN and GOTO. Built in syntax make it easy to measure and generate pulses, read pushbuttons, send/receive serial data etc. Stamps from £25 (single quantities), Full developnient kits from $£ 79$

 BTISThMinins (usir simp comenife

Full information on using BASIC Stomps plus lots of worked projects and practical electronics help. CD-ROM also includes $30+$ past magazine articles ond Stamp software. $£ 29.95$

New to PICs or just wanting to learn more tricks? We stock the excellent PIC primer. books from David Bensonsuitable for the complete beginner to the advanced user:

SERIAL LCDs

Bannish the hassle of interfacing to LCD disploys. We stock a comprehensive range of olphanumeric and Graphic ICDs all with an easy-to-use standard RS232 seriol Interfoce. Sizes from 2×16 to 4×40 plus 128×64 graphic panels. Prices stari at $£ 25$ (single quantity)

servos and software. Requires 9v De Kits start al $£ 189$

On Screen Display
Superimpose text onts standard CCTV foon simpla RS232 serial line. Resdy built/tested at E59

IR Decoder Board

Control your project using a standard domestic is remple
7 Output lines (5v e 20 mA) moy be set to mementary or toggle action.
Simple teaching routine. Requires 9-12vDC Suspolied built and rested.
£29 single quantity

Milford Instruments

120 High Street, South Milford, LEEDS LS25 5AQ Tel: 01977683665 Fax: 01977 ó81465

StampBug

Stampl based walking insect
Forwards, backwards and leff/right furn when Eeelers detect object in path. Up to 2 hours roving from $4 x A A$ Nicads. Chips pre-
programmed bat programme may te changed (software supplied). Body parts pre-cut. Full kit 568

Stampl based walking humanoid Walks forwerds/backwards with leff and right sum when detects obstocles. Electronics pch pre-built and tested. Programme pre-loaded bu: may be changed with supplied sofware. Full kit £68

Alex- Animated Head
Stamp2 based contraller with woice record playback capability, PIR input and/or randem ploybock. 4-servo actions are recarded/edited one track at a time. May atso be controlled from PC.
Head kits start at £29. Controllers from £29

Servo Driver Board

Control up to 8 standard hobby servas from an RS232 setiol data line using this controller board. Simple command structure holds servos in position until update is received. Fully buith and tested requires 9vDC and servos. Suppli=d with Windows freevrare.
£29 single quantity. Optional keypad ovaribable.

All prices éxclude VAT and shipping

BASIC Stamp is the registered trademark of Porallax Inc. For further details on the above ond other inferesting products, please see cur web. sitewww.milinst.demon.co.uk

PRACTICAL OSCILLATOR dESIGNS

RAYMOND HAIGH

Most text books deal with oscillators in a theoretical way. This series, prepared with the electronics enthusiast and experimenter very much in mind, is intensely practical. Tried and tested circuits are fleshed out with component values, and their vices and virtues are exposed.

PART SIX- RESISTOR/CAPACITOR OSCILLATORS

so FAR we have covered oscillators which rely on quartz crystals or inductors and capacitors to determine the operating frequency. In this final part of the series, circuits in which resistors and capacitors perform this function will be considered.
Resisior/capacitor (R/C) oscillators are widely used for the generation of specific waveiorms (e.g., sine, square, sawtooth) over the 5 Hz to 50 KHz range. Circuits of this kind will oscillate from well below 1 Hz to above 2 MHz , but a high degree of frequency stability and waveform purity becomes increasingly difficult to achieve above 100 kHz or so.
Resistors and capacitors fix the frequency of oscillation by controlling the phase of feedback, or by timing the action of switching circuits.

PHASE SHIFTING

The signal at the base (input) of a common emitter transisfor stage is 180 degrees out of phase with the amplified signal at the collector (output). For oscillation to take place, feedback from collector to base must be in phase, and the output signal musi, therefore, be shifted through 180 degrees.
This can be aclieved by inserting a network of resistors and capacitors in the feedback path, the component values deternining the frequency at which the desired phase shift takes place. In this way, the R/C network fixes the frequency of oscillation.
If care is taken with the associated circuitry, phase shifting R/C oscillalors can generate sinewaves of high purity. The Wien bridge oscillator is the classic example of circuits of this kind. Here, the R/C network is configured to give zero phase shift at the frequency of oscillation.

RELAXATION OSCILLATORS

Capacitors take time to become charged when a d.c. voltage is applied across them via a resistor. The larger the values of resistance and capacitance in the series circuit, the longer the charging time.
The rising voltage across the capacitor, as it is being charged, can be used to trigger a change of state in a transistor switching stage. If this also results in the capacitor being discharged. the cycle will start again, and we have a circuit which oscillates at a frequency determined by the amount of resistance and capacitance.

Arrangements of this kind are known as relaration oscillators. They produce saw tooth or square waveforms which are rich in harmonics. Unijunction transistor and multivibrator oscillators operate in this way.

PHASE SHIFT OSCILLATOR

A simple oscillator in which a network of resistors and capacitors are used to shiff the phase of the feedback is shown in Fig.1. Here, transistor TR1 is configured as a common emitter amplifier with the output developed across the collector (c) load resistor R2. Bias is applied via resistor R1.
In theory, a single resistor and capacitor combination can shifi the phase of a signal through 90 degrees. This capability cannot be utilised in practice, however, because the signal is excessively attenuated.
Accordingly, three R/C elements, each shifting the phase by 60 degrees, are cascaded to produce the required 180 degrees phase inversion. Signal attenuation is reduced to acceptable limits, but the amplifier must still provide a gain of at least 29 times for oscillation to be maintained.
In Fig. 1, the combinations of R3/C1, R4/C2, and the inpul resistance of TR1 (in parallel with R1) combined with capacitor C3 form the three stage phase shifting network. It should be noted thai the capacitors and resistors in the network have the same value. Increasing the amount of resistance and/or capacitance will lower the frequency of oscillation: a reduction will raise it.

Fig.1. Circuit for a simple spot frequency sinewave oscillator:

Fig.2. Circuit diagram for an adjustable spot frequency sinewave oscillator with an output buffer stage.

R/C OSCILLATORS

Combinations of resistors and capactiors can be used to fix the frequency of an oscif lator They do this in two ways:
(1) By detormining the phase of signals in a positive feedback loop. Circuits of this, kind can generate high quality sinewaves,
(2) By timing the switching of the maintaining devices between on and off states. Arrangements of this kind are known as relaxation oscillators. They generate square sawtooth or pulse waveforms.
which imparis zero phase shift at one frequency.
Because there is no phase shifting within the R/C network at the frequency of oscillation, maintaining amplifiers for Wien bridge oscillators must have two stages. (Each stage tmparis a shift of 180 degrees and this results in the output being back in phase with the input). Provided the gain of the amplifier is three times or greater, oscillation will be maintained. With such a modest gain requirement it is not difficult to apply heavy negative feedback in order to stabilise sig-

COMPONENTS

Capacitors used for phase shifting or timing should be poly styrene, polyester, or Mylar film types. When identical capacitors are requlred (see Figs. 1, 2 and 3) they should be of 10 per cent tolerance or better.

Note that this only applies to the circuits given here. Some phase shift oscillators require 1 per cent tolerance components before they will operate reliably.

The circuit is essentially a spot frequency signal generator which can operate from below 50 Hz up to more than 50 kHz . Its output wavelorm is of tolerable quality, but the impedance of the accepting circuit must be high or oscillation may be inhibited. An impedance of 47 kilohms , which halves the signal output, should be regarded as the acceptable lower limit for reliable oscillation.

IMPROVED PHASE SHIFT OSCILLATOR

With the addition of two pre-set resistors (potentiometers) and an output buffer stage, TR2, the performance of the circuit is considerably improved. The modified version of the circuit becomes an adjustable spot frequency oscillator and is shown in Fig.2. The upper frequency limit is around 60 kHz , and the amplifier must have a gain of at least 29 times in order to maintain oscillation.
Negative feedback developed across the unbypassed emitter "resistor", preset VR1, reduces the gain of transistor TR1. Setting this resistor so that the circuit will only just oscillate results in the generation of a sinewave of high quality.

Replacing part of one of the resistors (R3) in the phase shifting network with pre-set VR2 enables the frequency of oscillation to be adjusted slightly. (At 10 kHz it can be shifted by plus or ininus 1.5 kHz).
The f.e.t. (field effect transistor) source follower stage TR2 presents a very high impedance to the oscillator and a suitably low impedance to the accepting circuir. Gate resistor R 5 is connected to a tapping on the source resistor formed by R6 and RT, rather thăn to the negative rail.

By this means, correct gate biasing can be maintained with TR2 source (s) held at about 4V, and this greatly improves the signal handling capability of the stage. Moreover, the gate resistor R5 is partially bootstrapped and this increases input impedance to almost 10 megohms.
Decoupling capacitor $\mathbf{C} 5$ will not be needed in all cases. Variable potentiometer VR3, connected to the source of TR2 by d.c. blocking capacitor $\mathbf{C 6}$, enables the output level to be adjusted.

WIDE RANGE A.F. GENERATOR

The frequency selective network at the heart of most audio signal generators was devised by Wilhelm Wien, a German physicist. about a century ago Originally used as a measuring bridge, the combination of series and paralle! R / C elements produces a network

Wal amplitude and improve waveform quality.
Wien bridge oscillators vary in complexity, and a simple, inexpensive, yet very effective version of the classic circuit is given in Fig.3; a low distortion A.F. Signal Generator: Here, the Wien network is placed in a positive feedback loop around a 741 operational amplifier i.c. (The feedback must be in phase, so the non-inverting input at pin 3 is used.)

A low current filament lamp LPI shunts a negative feedback path (between output pin 6, and inverting input pin 2) in order to stabilise the amplitude of oscillation. Bridge capacitors; Cl to C , are selected by ganged rotary switch $S 1 a$ and $S l b$. The specified values more than cover the entire audio frequency spectrum.
Ganged potentiometers. VR la and VR 1 b , form the resistive arms of the bridge and set the frequency. Range limiter resistors R1 and R2 ensure consistem operation over the full sweep of the potentiometèrs.

AMPLITUDE CONTROL

In order to obtain a high quality sinewave. signal amplitude must. be kept below the level at which the maintaining amplifier begins to overload. (Overload causes clipping or flattening of the wavéform peaks).

Automatic control of signal amplitude in Wien bridge oscillators is usually effected by an R51 type thermistor (temperature dependant resistor). These devices are sensitive but expensive, and here an ordinary low-current filamemt lamp is used in its-place.
The resistance of a lamp filament rises dramatically when current flows through it and raises its temperature. If the output at pin 6 increases, more current flows and its resistance rises. Lamp LP1 is connected as the lower arm of a potential divider, VR2/R3 forming the upper section. An increase in the resistance of the lamp will. therefore. increase the amount of gain-reducing negative feedback and hold the signal amplitude constant.
In practice, presel VR2 is adjusted to give the highest possible output consistent with a perfect sinusoidal waveform. If an oscilloscope is not available to display a trace, good results can be ensured by setting VR2 so that oscillation is only just maintained. A 47 ohm pre-ser should be substituted for VR2 and R3 if a supplier can be found.
There is some amplitude "boance" when the frequency is changed rapidly, and this is a feature of all Wien oscillators which uincorporate a temperature dependant resistor as a control elemens The resistance heats and cools comparatively slowly). Circuits using f.e.i.s as voltage-variable control resistors, or diodes as amplitude limiters, have been devised to overcome this "bouncing". However, unless the design is complex, they usually exhibit highed distortion.

OUTPUT LEVELS

The simple control circuitry places a ratherlow resistance across the amplifier output, and the signal voltage available before thic onset of disiontion is limited to around \mathbf{W} N. F.m.s. A larger output is ofict desirable, and the buffer stage transistor TR M in Fig.3, provides a modest amount of signal-amplification-

RELAXATION OSCILLATORS

Charging a capacitor, via a resistor, is the most common means of fixing the frequency of relaxation oscillators. The larger the capacitance and/or resistance in the series circuit, the longer the charging time and the lower the frequency of oscillation.

A widely used circuit of this kind is the astable multivibrator, and a version which permits some adjustment of the operating frequency is given in Fig. 4.

The frequency determining networks comprise R3/C2 and R5/C1. For an equal mark/space ralio (off pulses and on pulses of equal duration), R3 and C2 must be identical to R5 and C1.

A very approximate formula reiating frequency to resistance and capacitance is:

$$
f=\frac{700000}{R C}
$$

when f is in Hertz, \boldsymbol{R} is in ohms, and \boldsymbol{C} is in $\mu \mathrm{F}$.
The frequency of oscillation is very dependant upon supply vollage and, to a lesser extent, transistor types, and the formula is inevitably approximate. The output is a square wave with a rounded leading edge.

Emitter (c) resistor R5 is unbypassed, and the resulting negative feedback reduces gain to the required level and improves linearity. In theory, the gain of this stage is approximately VR3 divided by R5 (i.e., four times), but, in practice, it is rather less than this. Base bias is provided by resistor R4, C10 is a decoupling capacitor, and C11 blocks the flow of d.c. into the accepting circuit.

PERFORMANCE

Although simple and inexpensive, the A.F. Signal Generator circuit periorms well when preset VR2 has been correctly adjusted. Distortion figures as low as $0 \cdot 1$ per cent are claimed for circuits of this kind, and a check with an oscilloscope will reveal that the sinewave is of high quality.

Output level remains constant over fairly wide shifts in supply voltage, and across the switched ranges. Oscillation is maintained up to 70 kHz , but performance begins to fall off a little after 30 kHz or so.

Constructors would have to commit themselves to considerably more expense and effort in order to realise any significant improvement on this circuit. Note that the oscillator will not function correctly if a lamp with a higher wattage rating, or a lower working voltage than 6 V , is fitted.

RELAXATION OSCILLATORS

The most common form of relaxation oscillator is the astable (i.e non-stable) variant of H. Abraham and E. Bloch's multivibrator. Conceived by the two Frenchmen in 1918, the name "multivibrator" was given to this type of circuit because the output is rich in harmonics (they can extend

WIEN BRIDGE

A network of resistors and capacitors, known as a Wien bridge, is used to determine frequency in most professional audio oscillators. With this network, phase shift is zero at one particular frequency. A typical circuit is given in Fig. 3.

The resistors and capacitors in each arm of the bridge (VA1aNR1b and C1/C5, C2/C6, etc.,) are of equal value, and the standard formula relating frequency to resistance and capacitance is:

$$
f=\frac{160000}{R C}
$$

when f is in Hertz, \mathscr{R} is in ohms, and C is in $\mu \mathrm{F}$. The actual frequency of oscillation is around 10 per cent lower than the figure indicated by calculation, and the ranges quoted in Fig. 3 are based on actual measurements.

The amplifier need only have a gain of three times for oscillation to be maintained. This modest requirement permits the use of heavy, amplitude controlling negative feedback, and the quality of the generated sinewave can be extremely high.

Fig.4. Circuit for an astable multivibrator, with frequency shifting arrangement.
beyond the thousandth). A typical circuit arangement, with the addition of frequency adjusting refinements, is given in Fig.4.

Two common emitter transistor stages, TR1 and TR2, act as switches, and their bases and collectors are cross coupled by capacitors C1 and C2. Base biasing is supplied by R3 and R5. These resistor and capacitor combinations, $\mathrm{R} 3 / \mathrm{C} 2$ and $\mathrm{R} 5 / \mathrm{Cl}$, act as the timing networks which determine the frequency of oscillation.

The coupling capacitors alternately charge, via the bias resistors, and discharge, via the transistors, and the rising and falling voltagēs on the capacitors switch the transistors on and off, thereby maintaining the circuit action. The frequency at which the switching, or oscillation, takes place is, of course, determined by the time coni= stants of the R/C combinations.

Collector loads are formed by resistors R2 and R7. Capacitor C5 decouples the circuit from the supply line and C4 blocks the flow of d.c. into the accepting circuit.

Fig.3. Circuit diagram for a low distortion a.f. signal generator.

ADJUSTING THE FREQUENCY

The operating frequency of simple astable multivibrators is very dependant upon supply voltage. Their frequency can also be shifted by applying a variable bias to the base (b) of the transistors in order to modify the triggering action.
Potentiometer VR1, connected across the supply viarange limiting resistor R1, varies the voltage on the bases of the transistors. Resistors R4 and R6 isolate the signal paths and capacitor C3 decouples the bias supply. This arrangement permits a fairly wide adjustment of the nominal operating frequency, typically plus or minus 20 per cent.
If a basic multivibrator is all that is required, omit VR1, R1, R 4 R6 and C3.

OPERATING FREQUENCY

The liming (bias) resistors R3 and R5 can range in value from 47 k to 470 k , and the capacitors, Cl and C 2 , from 47 pF to several microfarads. This gives an operating range extending from subaudio frequencies to 2 MHz .

Small signal a.f. transistors can be used up to 100 kHz , but r.f. devices will ensure reliable oscillation at higher frequencies. Suitable transistor types are also included in the circuit of Fig. 4.

OUTPUT

The output waveform is rectangular with a rounded leading edge, This rounding can be eliminated by connecting 1 N 4148 diodes between the transistor collectors and the coupling capacitors, Cl . and C 2 (cathode (k) to collector (c)). Additional one kilohm resistors must be connected between the diode anodes and the positive supply rail to maintain the circuit action.

If the timing networks, $\mathrm{R} 3 / \mathrm{C} 2$ and $\mathrm{R} 5 / \mathrm{Cl}$, are identical, the mark/space ratio of the output waveform will be equal. They do not, of course, have to be the same, and by tailoring the component val ues, pulses of short duration separated by comparatively long time intervals can be generated.

CMOS SOUARE WAVE GENERATOR

A CMOS (complimentary metal oxide semiconductor) digital i.c. can be used as an excellent square wave generator. A typical circuit is given in Fig.5, where the inputs to three of the NOR gates in a 4001 B i.c. are wired together to form inverting amplifiers. A resistor/capacitor timing network is connected in the feedback path between gates IC1a and IClb. The third gate, IClc , is used as a buffer stage.

Capacitors Cl to C 6 , selected by rotary switch Sl, enable the unit to cover from 10 Hz to above 250 kHz . Potentiometer, VR1, acts as the frequency control by varying the charging and discharging time of the capacitors. Range limiting resistor $R 2$ ensures consistent performance over its full sweep.

OUTPUT

The loading effect of the output control VR2 reduces the available signal level, which is equal to the supply voltage when the oscillator is fed into a high impedance.

Frequency is affected by changes in supply voltage, but to a much lesser extent than the multivibrator circuit given in Fig.4. The mark/space ratio is almost exactly equal, and the square wave is of excellent quality. Output is constant over the entire operating range.

Reducing the timing resistor R2 below 10 k pushes the operating frequency up to 2 MHz and more on the highest frequency range, but performance becomes erratic.

Most inverting CMOS gates should work well in this oscillator, and the 4011 B (quad iwo-input NAND gate) has the same pinout connections as the 4001B

SIMPLE PULSE GENERATOR

In many cases the nature of the waveform is not important: all that is required is a signal to test or trouble-shoot a piece of equipment, or to generate an audible tone

A very simple and inexpensive oscillator circuit, suitable for tasks of this kind, is shown in Fig.6. Here a 555 timer, connected as an astable multivibrator, generates a pulsed waveform. Various ranges are selected by switch S1 and potentiometer VRI sets the frequency of oscillationn.

Fig.6. Using the renowned 555 timer i.c. to produce a 50 Hz to 200 kHz pulse generator.

The tining capacitors, Cl to C 4 , are charged via $\mathrm{R} 1, \mathrm{VR} 1$ and R2, but they discharge more rapidly through resistor R1. The output at ICl pin 3 is, therefore, a chain of pulses, and adjustment of VRI will alter both the frequency and the mark/space ratio of the output. Increasing the value of VR1 to one megohm will maximise the frequency sweep with a single capacitor. A sawtooth waveform is, available, at high impedance, across the timing capacitor.

Fig.5. Circuit diagram for a wide range, square wave generator using a 4001B quad 2-input NOR gate ic.

CMOS SQUARE WAVE GENERATOR

CMOS digital i.c.s can be configured as relaxation oscillators in order to generate square waves of excellent quality. A typical circuit is given in Fig.5, where R2 and VR1, together with a capacitor, C1 to C6, determine the frequency of oscillation.

The usual formula relating frequency to resistance and capacitance for this circuit is:

$$
f=\frac{450000}{R C}
$$

when f is in Hertz, R is in ohms, and C is in μF.
The formula gives tolerably accurate results at low'frequencies but, above 1 kHz or so, the frequency of oscillation is lower than the figure given by calculation. The ranges quoted in Fig. 5 are based on actual measurements.

The circuit delivers a square wave of excellent quality with an equal mark/space ratio.

SIMPLE PULSE GENERATOR

The ubiqutous 555 timer i.c., when connected as an astable multivibrator, forms a very simple pulse generator. A typical circuit is given in Fig.6.

An approximate formulafor the calculation oi frequency, with this particular circuit, is:

$$
f=\frac{2800000}{(R+2000) C}
$$

where f is in Hertz, R is the total value of VR1 and R2 in ohms, and C is in μF.

The formula is reasonably accurate up to 5 kHz or so, then the frequency of oscillation is lower than the figure indicated by calculation. Again, the ranges quoled in Fig. 6 are based on meașurement, not calculation.

When a very simple and inexpensive means of trouble shooting audio equipment is required, this circuit is hard to beat. The upper frecuency limit extends a little beyond 200 kHz .

The device acts as a voliage triggered switch. A typical sawtooth generator circuit is given in Fig.7, where resistor R1 and capacitor Cl determine the frequency of oscillation and R2 and R3 stabilise the transistor against temperature variations.

Emitter (e) impedance is high when the device is off (not conducting) and low when it is on. When the supply is first connected, capacitor Cl is discharged, the emitter is at zero potential and presents a high impedance to the capacitor, enabling it to be charged via resistor RI.

When a critical voltage (known as the "peak" point) has been developed across the capacitor, the unijunetion triggers to the on state and the capacitor discharges through the now low impedance emitter circuit. The voltage falls to zero, the process is repeated, and oscillation is maintained.

A positive going pulse is available at base 1, a negative going pulse at base 2, and a sawtooth (strictly speaking a "shark's fin") waveform at the emitter. The impedance of any accepting circuit presented to the emitter must be high or the unijunction action will be impaired.

Fig.7. Simple sawtooth generator. With the values specified for R1 and C1 the circuit wil oscillate at 1 kHz approx.

If the simplest possible spot-frequency signal generator is required, VRI and R2 can be replaced by a single fixed value resistor. A capacitor can be permanenlly wired between ICl pin 2 and the regative supply rail, and VR2 can be deleted. A 100 k resistor and a 100 nF capacitor in the timing network slould make the circuit oscillate at around 1 kHz .

Provided the supply voltage is held between 8 V and 12 V , variafions have a minimal effect on the frequency of oscillation. Wider excursions cause significant shifts.

SIAPLE SAWTOOTH GENERATOR

A device known as a unijunction transistor can form the basis of a simple sawtooth generator. Used almost exclusively in relaxation oscillator circuits, it comprises a tiny strip of n-iype silicon material with non-rectifying junctions (base 1 and base 2) located at either end. A rectifying junction (emilter) is formed in a region of p-type material along its length.

SAWTOOTH GENERATORS

A unijunction transistor can form the basis of a very simple relaxation oscillator, and a typical circuit is given in Fig. 7.

The following formula, which relates frequency to resistance and capacitance in the timing clrcuit (R1 and C1), produces tolerably accurate results:

$$
f=\frac{800000}{R C}
$$

when f is in Hertz, \boldsymbol{R} is in ohms, and \boldsymbol{C} is in μF. A sawtooth waveform with à peak-io-peak value equal to halif the supply volts is developed across the timing capacitor.

The output of this simple, single transistor oscillator is non-linear and at a high impedance, and an improved version is given in Fig.8. This more complicated circuit generates an extremely linear sawtooth wave and has a low impedance output.

Because of the way the timing capacitor is charged, it is not possible to quote a simple formula for the calculation of frequency. The measured ranges quoted in Fig. 8 should, however, form a useful guide to component values ior spot-frequency versions of the circuit.

Fig. 8. Circuit for a linear sawtooth generator.
The value of resistor RI can range from 10 kilohm to one megohm (IM), and capacitor CI from 145 ofmore down 10 100pF Connecting a one megolm potentiometer in the Rl position will provide a wide frequency coverage with a single capacitor. The peak-to-peak signal output at the emitter is approximately equal to half the supply voltage.

LINEAR SA WTOOTH GENERATOR

Whilst the sheer simplicity of the circuit arrangement shown in Fig. 7 makes it attractive for some applications, the high output impedance and non-linear waveform limit its usefulness.

In the circuit diagram shown in Fig.8, the timing capacitor (Cl to C5) is charged via a constant current generator stage. transistor TR1. A f.e.t source follower buffer stage. TR3, presents a high impedance to the unijunction's emitter and a suitably low impedance to the accepting circuit. By these means. the limitations of the basic circuit are overcome.

When a capacitor is charged via a resistor, the initial voltage rise is rapid, gradually tailing off as it approaches a fully charged state. Because of this, the waveform developed across the capacitor is not linear.
In Fig.8, current flow through transistor TRI to capacitors Cl to C 5 (via switch S 1) is controlled solely by the setting of VR1, and the charging rate of the timing capacitor is, therefore, constant. This results in a linear voltage rise and a more periect sawtooth waveform.

The buffer stage, TR3, is identical to the one adopted for the sine wave generator shown in Fig.2, and its operation has already been described. Frequency of oscillation is particularly dependant upon supply voltage, and a well regulated power supply is essential for the correct operation of this circuit. Stray capacitance acts as the timing capaciler on the highesty frequency ranger a-w wo wo $\quad \square$

WhETHER your interest is in domestic radio and TV or in amateur radio, in military, aeronautical or marine communications, in radar and radio navigation, in instruments, in broadcasting, in audio and recording, or in professional radio systems fixed or mobile, RADIO BYGONES is the magazine for you.
ARTICLES on restoration and repair, history, circuit techniques, personalities, reminiscences and just plain nostalgia - you'll find them all. Plus features on museums and private collections and a full-colour photofeature in every issue.
ITS MOSTLY about valves, of course, but 'solid-state' - whether of the coherer and spark-gap variety or early transistors - also has a place.
From the days of Maxwell, Hertz, Lodge and Marconi to what was the stateof-the-art just a few short years ago...
There is also a selection of free readers' advertisements in every issue.

Radio Bygones covers it all!

THE MAGAZANE is published six times a year, and is available by postal subscription. It is not available at newsagents.
TO TAKE OUT a subscription, or to request a sample copy, please complete the form below and return it to: Radio Bygones, Allen House, East Borough, Wimborne, Dorset BH21 1PF.
Tel: 01202881749 . Fax 01202841692.

Radio Bygones ORDER FORM

UbSCRIPTIoNS (post paid):	1 YEAR	YEAR
United Kingdom	£18.50	£35.00
est of Europe (Almmail)	£19.50	£37.00
est of the World (Airm	£23.75	
I Yes, I would like a sample copy of Radio Bygones		
Yes, I would like to take out a subscription for:		
\square One year (6 issues) \square Two years (12 issues)		
I enclose a cheque/Eurocheque/PO for $£ . \ldots .$. payable to Wimborne Publishing Ltd		
y Visa/Maste		

Chruit Selection Special

INGENUITY UNLIMITED

Our regular round-up of readers' own circuits. We pay between $£ 10$ and $£ 50$ for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical tdeas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values. Please draw all circuit schematics as clearly as possible. Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BS21 1PF. (We do not accept IU submission via E-mail.)
They could earn you some real cash and a prize!

WIN A PICO PC BASED OSCILLOSCOPE

- 50MSPS Dual Channel Storage Oscilloscope
- 25MHz Spectrum Analyser
- Ahultimeter - Frequency Meler
- Signal Generator

If you have a novel circuit dea which would be of use to other readers then a Piod Technology PC based osciloscope could be yours. Every six moniths, Pico Technology will be awarding an $A D C 200-50$ dighal storage oscilloscope for the best IU suburission. In addition, two simgle channel $A D C \cdot 40$ s will be presented to the runners-up.

Serial Port Splitter - Utoc sib rinis

WHEN you run out of spare serial ports on your PC, the circuit shown in Fig. I may te used to effectively add another port. The idea is to share the PC serial port between two external RS232 devices (device X and device Y in Fig. 1) and the PC communicates with them one at a time.
In the circuil diagram shown in Fig. 1 IC1 and IC2 are the familiar MAX232 voltage level translators which convert the RS232 signal levels from the serial port of the PC (and also from devices X and Y) to

TTL/CMOS levels for manipulating by IC3. a data selector/multiplexer. Signals on the two sets of inputs (A0 to A3 and BO to B3) are selected and routed to the output (YO to Y3) by the Select input (pin 1 of IC3).
When Select is at logic 0 , signals on IC3 port A are routed to the output port (YOY3). In this case, the Tx of the PC seriat port is connected to RxI; Rx to Tx1 and Rx 2 is held logic 1 (idle condition). The PC therefore communicates with device X , and
device Y is effectively disconnected from the PC.
When Select is at logic 1 , signals on pon B are routed to the output port instead. In this case. Tx is connected to Rx2, Rx to Tx2 and RxI is held at logic 1 so the PC communicates with device Y .

Switching between device X and device Y is controlled by the RTS signal from the PC serial port. RTS can be toggled by a piece of simple software which configures the control registers of the UART chip in the PC .
W. Ip, Belfast.

Fig.1. Circuil diagram for the Serial Port Splitter. Note thei pin 60 itCt and IC2 is at -10 V with respect to the OV line.

Elderly Person Monitor - Tedse Care

Fig.2. Circuit diagram for an Eldérly Person Monitor.

AN E.derly relative who resides with us occasionally falls accidentally, and has laid there for some time in a distressed state without being able to summon help. Consequently, a simple independent alarm was designed and the resulting circuir is shown in Fig. 2.
Unless a "reset" operation is applied before a certain time period has elapsed the alarm will automatically sound. The principle of operation can be adapted as required and may inspire other ideas.
While the person is in bed a pressure pad (S 1) under the mattress is held in the closed circuit condition. This maintains the 404012 Stage Ripple Counter IC2 in its reset state via transistor TR1 and so the piezo sounder WD1 is disabled.

Clock pulses of approxiniately 1 Hz frequency are ied continually from the 555 timer CCl (pin 3) to the counter input of 1 C 2 at pin 10 (CLK), but have no effect until the person gets out of bed (in our case, to use a contmode but ir could be adapted to be reset by, say, a bathroom door) at which point the counter is enabled and begins counting.

If the time taken to get from the bed to the
commode or bathroom (where a seat or dooractivated microswitch, S2, automatically resets the counter again) is long enough for counter output Q6 (or Q7 perhaps) to go high. the alarm WD1 sounds in a neighbouring room so that one can investigate and check that the person is all right.

A delay of betwcen one and two minutes was selected to allow the elderly person sufficient time and also because in practice the microswitch S2 wasn't always operated. In our case the switch opens when the person leaves the commode, and so 1 C 2 begins counting.
If the time taken for the person returning to bed (which resets the counter) is ayain long enough for the alarm to sound. then that person is standing up, or retuming to bed or has fallen. Since an elderly person is unlikely to remain standing for more than (say) two minutes and is also unlikely to take more than two minutes to return to bed, it is probable that the person has fallen.
The prototype operated from a safe 6 V battery, which could be rechargeable.
C. Embleton,

Northallerton, N. Yorks.

Rechargeable PP9 Battery - 思四ery saye

F. YOU discard exhausted PP9 layerlype batteries this can become an expensive process as these batterles cost about three pounds each. It was decided to provide an alternative using Nickel Cadmium cells logether with an extremely simple charging circuit which is built within the housing of an exhausted PP9 battery. The circuit diagram is shown in Fig. 3.
The power for the charging circuit is provided by an external 12 V to 15 V d.c. power supply capable of providing 50 mA or so. This is hooked up via a d.c. power socket SK1 which is also nitted into the battery housing.

In this circuit ICl is configured as a con-stant-current (not voltage) regulator, and the current flowing is limited by the series resistor R1. The current / is $1-25 / \mathrm{R} 1$. hence for a 50 mA current Rl is about 24 ohms (220 ohms in parallel with 27 ohms will do).

Class-D 30W Audio Amplifier - Power Pley

1 uDio amplifiers arevtypically class-AB in doperation, and whilst these produce good quality amplification they are also quite inefficient at 50 to 60 per cent or so. A class-D amplifier is much more efficient, with efficiencies of between 90 per cent to almost 100 per cent being possible as it is essentially a switching circuit.

A suggested circuit diagram for a 30 W Class-D Audio Amplifier is shown in Fig. 4. The incoming audio signal is umplified by the inverting operational amplifier ICI, with adjustable volume controlled by potentiometer VR1. A PWM (pulse width modulation) signal is produced by comparing the audio signal with a 100 kHz tiangle wave.
This is achieved using the conparato 1C6. Resistor R13 is used to provide positive feedback and C6 is a speed-up capacitor which improves comparator response lime. The comparator output swings between $\pm 7.5 \mathrm{~V}$. The pull-up resistor R 12 provides +7.5 V whilst -7.5 V is provided by the open emitter inpui of the comparator (pin 1 of $1 C 6$).
When this signal swings positive transistor TRI acts as a current sink, which increases the voltage drop across resistor R16: this voltage drop is enough to turn MOSFET TR3 on. When the signal swings negative, TR2 acts as a current source causing the voltage drop across R 17 to increase sufficiently to tum TR4 on. Essentially. MOSFETs TR3 and TR4 are activated altemately, producing a PWM signal which swings between plus and minus 15 V .
It is now necessary to restore this amplified PWM signal back into a reproduction of the incoming audio signal. This is achieved by averaging out the PWM signal using a 3rd order Butterworh low-pass filter with its cutoff frequency $(25 \mathrm{kHz})$ much lower than the triangle wave frequency, ensuring large attenuation at 100 kHz . The resulting output is an amplified reproduction of the input audio signal.

The triangle wave generator is based around IC2 and IC5, whereby IC2 is effectively a square wave generator with positive feedback provided by R7 and R11. Diodes D1 to 155 acts as a bi-directional clamp (D3 being a Zener diode), clamping the voltage to about $\pm 6 \mathrm{~V}$.
An ideal integrator is formed by presei VR2, capacitor $\mathbf{C 5}$ and 1 C 5 which converts a square wave into a triangle wave. Preset control VR2 allows the frequency to be altered.

The output of IC5 (pin 6) provides feed back to IC2, and resistor R14 and preset VR3 form an adjustable attenuntor allowing. the magnitude of the triangle wave to be adjusted. After construction. VR2 and VR3 should be adjusted in order to provide the best quality output. A pair of ordinary 7 71 op.amps (IC4 and IC3) are used as unity gain buffers to provide the plus and minus 7.5 V supplies.

Capacitors C3, C4, C11, and Cl2 act as charge reservoirs, and the remaining capacitors are for decoupling. The circuit requires a plus and minus 15 V supply rail, and it will drive a 30 W 8 ohm loudspeaker from the $L C$ network at capacitor C13 and inductor L2. Note that small heatsinks maybe required for MOSFET transistors TR3 and TR4.

Lee Mathews,
Kirkby-in-Ashfield, Notts.

Fig.4. Complete circuit diagramifor the Class-D 30W Audio Amplifier;

Gircuit Special

National Lottery Predictor

- It Comid Ibe Us

A SMPME form of random counter is illustrated in Fig. 5 which may help with the mentally-exhausting process of selecting six entirely random numbers for the weekly National Lotery. The circuit consists of two CMOS 4017 decade counters each driven by a 555 -based clock.

Counter IC2 will display iens (0-4) whilst IC $\&$ will display units. Therefore, a number between 0 and 49 will be displayed on a series of light-emitting diodes upon the operation of pushswitch $\$ 2$ which enables both counters. Separate switches for tens and units could be used instead.

Note that sometimes, numbers may repear and zero may also be displayed.

Edward Bibly, Woolston, Warrington.

Tumble Dryer Alarim - 竝 Coonc crease fou

Fig.6. Circuit diagram for a simple Tumble Dryer Alarm:

THE NEED for the simple Tumble Dryer Alarm circuit of Fig. 6 arose because our new tumble drier did not have a buzzer to indicate that it had finished. My wife needed a solution but vetoed absolutely any idea of digging into the back of the machine and "fiddling with the mains"!

As the machine works by sensing how dry the clothes are, the only way of knowing that it is nearing the end of its cycle is when one of the neon indicators on the machine extinguishes. This indicates the start of a short "crease care" cycle after which the machine stops. Some kind of optically-isolated switch followed by a delay seemed to be the answer.
In the circuit diagram of Fig.6, when the machine neon indicator goes out, the ORP12 light-dependent resistor, RI_{9} ensures that the voltage on pin 12 (Reset) of

ICI. a 4060 oscillator/counter, goes low which starts the counter. Output 14 at pin 3, which goes high at the end of the delay period, is fed along with the outpur of pin 7 into one of the AND gates of the 4081. This provides a pulsed input to transistor TRI which activates the sounder WD1. Pin 5 of IC1 flashes the l.e.d. Dl when the crease care cycle has started.
With the values shown. the delay is about six minutes which can be varied by adjusting the values of capacitor and/or resistor R4. A suitably powerful sounder would be the Maplin, order code FK84F, or the Squires, code $80-015$ (takes more current - 35 mA). which can be heard in all parts of the house to warn that the cycle has nearly finished. My wife has certainly found it useful!

Glyn Shaw, Staines, Middx.

Fig.5. National Lottery Predictor "random number" generator circuit diagram.

THE SYSTEM shown in Fig. 7 illustrates a simple but fascinating electromechanical technique for transmitting a small video image over amateur radio bands. It consists of a simple modulator based on a Nipkow disc. a mechanical scanning device used in carly television systems. The Nipkow disc has a single-revolution spiral of small holes (25 in this case) which if rotated can be used to provide raster scanning of an object.

With the circuit shown, a basic 25 -line monochrome video image may be sent using amateur radio equinment over a good quality clear voice channel. This resolution is high enough for facial recognition of a person in close-up. It should not be compared to a slow-scan system which can only send still images. Readers may also wish to experiment with other transmission media (e.g. wire based audio, intercoms etc.):
The transmitter section, which also shows the relative placement of the mechanical parts, is shown in Fig. 73. A Nipkow disc may be made from stifi card using a plate to draw a circle 180 mm diameter or so.

Fig.7a. Circuit/mechanical arrangement of the Nipkow. 25 -line Transmitter section.

Fig.7b. Circuitmechanical set-up for Receiver section.

The object to be pietured must be brightly lit, and it is captured through a lens and convented into a narrow-band vision waveform by TRI, a phototransistor placed in a plastic box behind the scanning disc. The photoransistor (e.g. a PN202, but other types may work equally well) requires a 9 V supply. A good-quality d.c. motor (say. 12 V d.c.) is powered from a single D-cell and potentiometer VR1 (rated at 2W) controls its speed. The signal is decoupled by capacitor Cl and applied to the microphone input socket SK1 of the radio transmitter.

Receiver

In Fig.7b, the loudspeaker/ headphone output is fed to a single transistor stage consisting of TR2 and surrounding components. The l.e.d. DI is a high-brightness green device placed in a flashlight reflector, and a piece of greaseproof or tracing paper is placed over it to obtain a more uniform spread of light.

Wilh this placed undermeath the "receiver" disc. a reasonably uniform raster is obtained. Note that the picture requires the room to be in near darkness if it is to be discernible by looking through the spinning disc.
The Receiver dise is rotated slightly faster than the Transmitter disc and the image will then be visible, although it may be "rolling" or swirling. By applying very light pressure to the feceiver disc, it can be synchronised to the point where you can get a reasonably stable image.
A flywheel. fommed from an old loudspeaker magnet, was placed on top of the prototype receiver disc to add sotne momentum

Fig.7c. Improved Receiver add-on with Scan/Sync control (VR3).
and help with synchronisation. None of the parts are critical and substitutes may be made.

An experimental but worthwhile modification to the receiver is shown in Fig. Ic, which offers a fom of sync. control. This provides some pulse advancement on the receiver disc's rotation which is now controlled by a transistor Darlington pair (TR3, TR4).

It is important that a good quality smooth d.c. motor is used, and the two motors should have reasonably matched chancteristics. Although the circuit is not perfect, it is well worth the extra cffort.

Michael Robertson, Chasetown, Staffs.

Squash/Badminton
 Scorer - [Finall Cofll

THe circuit diagram in Fig.S will keep the score in both badminton and squash games and should end all those arguments about what the score is or whose turn it is to serve!

The two pushbutton switches S1 and S2 are for Player A and Player B. The umpire simply presses the buton corresponding to the player who won the rally. The circuit then calculates the new score and who should be serving next.

When a typical switch button is pressed or released, its contacts do not make a clean connection. instead they might open and close (switch bounce) several times before stabilising. A typical period of time before a switch becomes steady (bounce tinte) is 5 ms , which in this case might add 2 or 3 points to a player's score!

One solution to get around this problem is to check the state of the switches say every 50 ms. Hence the 555 timer IC1 is an astable mulivibrator which produces a square wave of approximately 20 Hz . This clocks the D type ilip-flops IC2a and IC2b.
The output from IC2a is the debounced output from button A, and the output from IC2b is that from button B. These debounced signals ferd a JK flip-flop IC3 as well as the clock inputs to two decade counters (IC4 and IC6).
The counters keep track of the points that each player has scored, and their outputs will drive 7 -segment common cathode display's directly. The other two counters 1C5 and IC7 are for the tens of points for each player.
In both squash and badminton a player may only gain a point if he/she was serving. If they were not serving but win a rally, they then serve for the next point. In this circuit when a player's button is pressed the comesponding counter for that player receives a clock pulse: the counter will only increment if the clock inhibit input is low fi.e. the player was serving).
The JK ilip-flops will latch to "remember" who was serving. In this circuit one can imagine a JK fip-flop as a simple Set-Reset bistable which is updated when a positive clock pulse appears on the clock input.
The first flip-flop (IC3a) is updated with every clock pulse from the 555 timer and it remembers who won the last rally. The second flip-flop (IC3b) is updated once all the buttons have been released. It copies what is stored in the preceding flip-flop, and its output feeds the clock inhibit inputs (pin 2) of the counters.
For example, if player B is serving, the clock inhibit input (pin 2) for counter B (IC6) will be low and for counter A (IC5) high. If player A wins the rally a clock pulse goes to counter A, but, because its clock inhibit is high the counter does not increment. The first flip-flop now "remembers" that player A should tee serving next.
Once button A is released the second nipflop is updated. The circuit is then teady - if player A wins the next point hisfher score will increase. If player B wins the next shot however, the scores will not change but the serve will go back to player B.

The scores for both players are displayed on dual 7 -segment displays. Note that the person who is serving is indicated by the decimal point of their display being illuminated. Pressing both buttons at the same time resets the unit.

David Liddament,
Caversham, Reading.

Time-lapse Unit for Camcorder

- 四 The

MANy camcorder ownérs would like to produce more creative videos, such as time lapse films which condense slowmoving sequences into a short period. Unfortunately, time-lapse facilities are only tound on more expensive video cameras.

All camcorders, however, have a REM (remote) socket, for use with a manual stop/start lead. The REM socket on camcorders however is not the same as the REM socket on a cassette recorder, which is basically a simple n.o./n.c. (normal open/normal closed) switch.

Manual control of a camcorder via the REM socket requires "pulse operation". i.e. a short pulse to start and a second short puise to stop. This overrides the "pause control", and places the camera in its pause mode during a break in filming.
The circuit diagramshown in Fig. 9 uses a

556 timer. (twin 555 timers in a 14 -pin package). whereby each timer is contigured as a one-shot monostable. The output from each timer is used to triggar the input of the other timer via an $R C$ network.

This arrangement is commonly known as:a cascade timer. The result is a dual timer with varying on/oll times and a brief negativegoing pulse at either one of the trigger inputs (pins 6 and 8) every time each monostable times out.
During each cycle, pin 6 and pin 8 are held at logic 1 by pull-up resistors R2 and R3. A pair of back-to-back l.e.d.s. DI and D2 indicate whether the circuit is paused or filming. When the output from one timer is high, the otler will be low.
The trigger inputs A and B are connected to pin 1 and pin 2 of a dual NAND peripheral driver 40107 (IC3). The output is then taken

Fig.8. Circuit diagram for the Squash/Bảdminton Scorer.

Fig.9. Circuit diagram for the Time-lapise Unit for Camcorder.-
from pin 3 and comected to pins 6 and 7 of the second driver. This produces a strong negative pulse whenever either of the monostables changes state.

The resulting pulse can be used to power the l.e.d. emiter in a preferred opto-isolator (not shown) or a solid-state relay. The use of an opto-isolator ensures that no voltage or current from the timer unit can interfere with the camcorder circuitry.

The whole circuit can be powered from a 9 V battery. A 6 V regulator ICl ensures that set times do not drift due to decreasing battery voltage.

Timing components VR1 with C3, and VR2 with C6 should give a maximum time of 270 seconds. There is no point in increasing this time period. as cameorders automatically shut down if left in pause mode for more than 5 minutes. The on-time can be very short. i.e., enough to capture two or three frames.

Philip Male,
Drake's Broughton. Pershore.

the voltage across C 4 rises. The voltage on the output of IC2b (pin 7) then falls. This voltage is inverted and attenuated by IC2c and its associated resistors. Audio Level control VR2 adds an offset to the output of IC2c which configures the atlenuator in its linear region. The output of IC2c is then applied to the attenuation control pin of the MC3340. The op.amp IC2d forms a simple comparator which drives an l.e.d. D2 during limiting.

To set up the Audio Limiter, adjust VR2 so that the output of IC2c is at least 4 V to set the attenuator in its linear region. A higher level can be applied to vary the relative outpu! level. Next, apply the maximum level of audio and adjust VRI until the l.e.d. illuminates. Back off VR1 until the l.e.d. just extinguishes. Any increase in the audio level will now be limited to the level selected.

Duncan Boyd,
Blackburn, Scotland.

Circuit Special

Puilse Modulated Invereter - Marns Motor Comerller

Assingle-pulse Modulated Inverter circuit diagram is shown in Fig. 11 a which can be used to operate a series-wound motor up to 1 hp in variable speed mode, from a 12 V leadacid car battery. The series motor may be an electric drill or the drive motor of a small electric vehicle or buggy for example. The circuit waveforms of various outputs are shown in Fig.11b.

In Fig.lla ICI (a 4047B) is working as a 100 Hz astable which triggers an adjustable monostable (IC2). The period of the monostable can be varied using VRI (the timing capacitor C2 should be lnF minimum $A R W)$.
The NAND gates of IC3 $(4011 B)$ are used to separate positive cycle signals for the power MOS Iransistor TRI and the negative cycle signal for TR2. The two Zener diodes

D1 and D2 provide protection for the transistors whilst diode D3 and capacitor C3 help provide isolation between the driver and the output stage.

Transformer T 1 steps up the input voltage to a maximum 200 V a.c. The potentiometer VRI can be used for varying the output voltage in the range of 50 V to 220 V a.c., suitable for many applications.
Both power MOSFETs must be mounted on heatsinks and the main On/Off switch SI should also be capable of carrying the full load current. The winding details of the transformer are also given. (I was unable to trace the pow'er MOSFETS used by the writer and a substilute inay be needed, e.g. the IRFPG50 or similar, offered as a suggestion only. ARW)
M.T. Iqbal,

Rawalpindi, Pakistan

Fig.11b. Output waveforms at various stages of the circuit.

PICO PRIZE WINNERS

It's time to decide the winners of superb PICO Technology PC-based oscilloscopes, once again generously donated by PICO (www.picotech.com) for three lucky entrants whom in our judgment submitted the best ideas published in the past six months. As always, every entry was judged on a number of criteria including the extent of "lateral thinking" or novelty. technical merit, resourcefulness, appropriateness, and overall completeness. Presentation was used as a tie-breaker.
The final "cioice was difficult and, after careful consideration, EPE Editor Mike Kenward and Ingenuity Unlimited host Alan Winstanley jointly selected the following winners from the June-November issues:
WINNER - receives an impressive PICO ADC200-50 Digital Storage Oscilloscope, worth over E $\$ 50$!
Lee Archer - TV Test Pattern Generator (Ṡeptember 1999) - illustrating the adaptation of a teletext timing chip, this circuit was considered to be thoroughly developed and complete.
RUNNERS-UP - both are Jucky recipients of PICO ADC-40 Single Channel PC-based Oscilloscopes.
Rev. Thos Scarborough - Loup Aerial MW Radio (August 1999). This was a novel radio receiver design using some traditional techniques, and we are also happy to acknowladge the contributions made by our most ingenious Reverend.
Z. Kaparnik - One Volt L.E.D: (November 1999). A number of intriguing and professionally presentedimicropower circuits optimised to operate an l.e.d. from a single cell.

Constructional Project

Loft GUARD

TERRY de VAUXXBALBIRNIE

Has the light been left switched on?

HAVING a permanenty-wired mains light in the roof space is handy, especially if you keep a lot of useful material up there. Unfortunately, it is all too easy to leave it switched on as any user will testify.

Once the hatch is closed, there is no external sign that the light is on. It could then remain like that until the next visit possibly several weeks or even months later. In the meantime, a significant amount of electricity would have been wasted.

SELF-CONTA/NED

The Loft Guard is built as a small, bat-tery-powered unit which is left in some suitable position inside the loft. It protects against leaving the light switched on by sounding a loud waming atter 8 minutes or other preset time. This can be heard through the ceiling even with the loft hatch closed and alerts the next person passing by underneath it.
In the prototype model, the specified operating time was found to be sufficient. If you happen to be working for a long time in the lofi, a Reset pushbutton switch on top of the unit may be operated every so often to reset the circuit and hold the sounder off for a further set time interval. This switch may also be used after it has begun to sound to stop it.

If you habitually spend long periods up there, it would be possible to increase the operating time and details for doing this are given later. Similarly, you could shorten it if required.

CHECKOUT

Before beginning construction work, check that the loft space is reasonably dark when the light is switched off. Make sure you will be able to site the unit where light from the lamp will reach it and, at the same time, above some place where the sound will readity altract attention - for example, near the top of the stairs.

Oi course, the unit could te used in other similar situations. For example, to guard against a cupboard light being left switched on inadvertently. You could even site the buzzer renlotely if required.
The standby current requirement of the prototype unit is less than 100 u A . Using the specified 9 V battery pack, consisting of six AA alkaline cells, a life of at least one year may be expected.

However, this will depend on how many times and for how long the buzzer sounds. While actually operating, the current rises to some 10 mA . You could use a PP3 battery but the life would be correspondingly shorter.

CIRCUIT DESCRIPTION

The Lofi Guard circuit works by sensing the change in illumination as the loft light is operated. Switching it on triggers a timer which tholds the sounder off for the preset delay period. If the light is switched off during that time. the circuit will automatically reset ready for the next time.
The complete circuit diagram for the Loft Guard is shown in Fig.1. It will be seen that operation depends on the action of two integrated circuits. The first of these, ICI, is an operational amplifier (op.amp) responsible for the light-sensing aspect while the other. IC2, carries out the timing.
Looking at ICl first, the inverting input (pin 2) is maintained at one-half of supply voitage (nominally 4.5 V) due to the poren(ial divider action of equal-value resistors R1 and R2. The non-inverting input (pin 3) has a voltage applied to it dependent on the values of the resistors in another potential divider.

In this case, its fop arm consists of preset potentiometer. VRI. connected in series with fixed resistor R3 and the lower one, light-dependent resistor (l.d.r.) R4.

As the illumination of the l.d.r. sensitive "window" is reduced, the resistance of the device increases. In total darkness the specified I.d.r. will have a resistance in excess of $5 \mathrm{M} \Omega$. Even when there is a small amount of light, it will exceed $1 \mathrm{M} \Omega$.

In tests on the prototype in the author's lofi, the "light" resistance was found to be

Fig. 1. Complete circuit diagram for the Loft Guard.
some $100 \mathrm{k} \Omega$. Of course, in any particular situation this value will depend on the rela-: tive positions of the unit and loft light, plus also the power rating of the bulb and other factors. The point is that there is a wide difference between the I.d.r. "dark" and "light" resistance.

MORE OR LESS

Suppose preset VR1 is set to a value of $300 \mathrm{~K} \Omega$. This is added to resistor R3 to give the resistance of the top arm of the potential divider - that is, 770 kilohms.
Under standby ("dark") conditions the resistance of the l.d.r. will exceed this value. This will result in a voltage greater than 4.5 V appearing across it and hence at ICI pin 3. When the loft light is on, the resistance of the l.d.r. will be less than 770 kilohms and the voltage at pin 3 will fall below 4.5 V .
When the vollage at the op.amp noninverting input (ICI pin 3) exceeds that at the inverting one (that is, under "dark" conditions), the op.amp output, pin 6 , will be high. When it is less ("light" conditions), it will be low. At the end of construction, preset VR1 will be adjusted so that this happens under the actual conditions prevailing in the loft.
Note that both op.amp inverting and noninverting voltages are derived from potential dividers connected across the power supply. As the battery ages and the avail able voltage falls, the relative state of the inputs will remain unchanged. The circuit will therefore still work correctly. Of course, the battery pack will eventually develop insufficient terminal voltage to operate the buzzer satisfactorily and it will then need to be replaced.
Now look at IC2. This is an i.c. timer configured as a monostable. It may be activated by a low pulse applied to the trigger input (pin 2) - while high there is no effect.
Once triggered, the output (pin 3) goes high and remains like that until the circuit times out. The operating period depends on the value of capacitor(s) C3 and resistor, R7. The higher the value of either or both of these components, the greater the timing will be in proportion.

HIGH VALUES

Resistor R7 has a very high resistance (100 meg.) and the specified component may not be available to all readers. It could be made up from lower values connected in series and more will be said about this later.
Capacitor C3 will probably consist of two separate components connected in parallel (as shown in the Fig.1.) to provide the required capacitance. The suggested value ($2.2 \mu \mathrm{~F}$) will give a combined effect of $4.4 u \mathrm{~F}$.

Of course, you could use a single $4.7 \mu \mathrm{~F}$, two $4.7 \mu \mathrm{~F}$ or even one or two $10 \mu \mathrm{~F}$ capacitors providing they were small enough to fit the circuit board layout. Such an arrangement would give a correspondingly longer time period.

Using the values shown in the circuit diagram. the timing will be about 8 min utes. It could be reduced by using a single capacitor having a lower value if required.

When the l.d.r. is dark - that is, under standby conditions, the op amp output at pin 6 will be high and there will be no effect on IC2. Howeter, when the output

goes low (i.e. when the light is switclied on), a low pulse is transferred, via capacitor C1, to IC2 trigger input (pin 2). The monostable then begins a timing cycle.

The purpose of capacitor Cl is to allow only a short pulse to pass. This is because if IC2 pin 2 was maintained in a low state continuously, the monostable would never time out since it would remain triggered. While on standby, resistor R5 maintains the trigger input in a high condition and this prevents possible false operation.

KEEP IT UP

The reset pin of IC2 (pin 4) needs to tre kept high to enable operation of the monostable and this is the purpose of resistor R6. However, to allow the circuit to settle down when switched on and to prevent possible false triggering, it is held low for a shorit time using capacitor C 2 .

During this time the monostable is disabled and nothing can happen. The capacitor soon charges through resistor R6 and allows pin 4 to go high.

Pushbution (Reset) switch Sl may be operated momentarily at any time to begin a new timing cycle and so hold the waming buzzer off. This works by taking the trigger input low for an instant.

While IC2 output is high (that is, during the course of timing), the base (b) of Darlington transistor TRI will also be made high (close to positive supply voltage) via resistor R9 and diode D2. Under standby conditions, the l.d.r. R4 will be in near-darkness and ICl pin 6 will be high. This also provides a high state at TRI base through resistor R8 and diode Di.

Since TRI is a pnp transistor rather than the more usual npn type, such a high state will maintain the base at near emitter voltage and so hold it off. No curtent will flow in the collector circuit and buzzer, WD1. will remain silent.

Suppose some light reaches the Id.r. R4, IC2 will be triggered and a timing cycle will begin. Op.amp IC1 pin 6 will go low but this will have no effect on transistor TRI because this state is blocked by diode Dl which is now reverse-biased. However, TRI base will be kept high by the high condition of IC2 pin 3 and the buzzer will remain off.

When the monostable has timed out, IC2 pin 3 will go low and this state will be blocked by diode D2. Assuming light is still falling on the l.d.r., TRI base will no longer be made high by either path R8/D1 or R9/D2. This allows it to go low via resis: for R10 and the device is turned on

COMPONENIS

Resistors

Capacitors
$\mathrm{Cl}_{2}, \mathrm{C} 2$
47n min. metallised polyester, 5 mm pin
spacing (2 off).
C3 242 min. metallised polyester, 5 mm pin spacing (2 off or as required - see text)
Tést capacitor 100 n min. metallised (see text) polyester, 5 mm pin spacing
Semiconductors
D1, D2 1 N4148 signal diode (2 off).
TR1 MPSA65 pnp Darlingtion transistor
ICI ICL7611 micropower op.amp.
IC2 75551PA low-power timer

Miscellaneous

S1
miniature pushbutton 5witch, push-to-make
WD1 Audible warning device 103dB output at 1 m minimum. 10 mA d.c. operation maximum
B
9 V battery pack
($6 \times \mathrm{AA}$ celis), with holder
Printed circuit board available from the EPE PCB Service, code 249; plastic box, size $138 \mathrm{~mm} \times 76 \mathrm{~mm} \times 38 \mathrm{~mm}$ internal; 8 : pin d.i.l. i.c. socket (2 off); plastic stand-off insulators (3 off); PP3-type battery connector; small fixings; multisirand connecting wire; solder, etc.
Approx Cost
Cuidance Only
(remember, it is pnp transistor!). Collector current then flows and the buzzer operates.

The fact that TR1 is a Darlington transistor results in it having an exceptionally high current gain. Only a very small base current (a fraction of a microamp) is therefore sufficient to operate the buzzer hence the very high value of resistor R 10 . Remember, the flow of current is in the opposite sense for a pup transistor compared with npn.

KEEPING IT DOWN

It is essential that the continuous current requirement of the circuit is kept very low to minimise battery drain. This is achieved by choosing very low power integrated circuits.

Also, the resistors in the potential divider chains are made very high. If the loft is reasonably dark under standby conditions, the resistance of the l.d.r. will also be high and this reduces still further the current flowing through the series arrangement of VR1, R3 and R4.

To be effective, the buzzer must be of a very loud type yet have a current requirement of 10 mA maximum. The specified unit (103 db at. 1 m) was found to work very well.

CONSTRUCTION

The Loft Guard circuit is constructed on a small printed circuit board (p.c.b.) and the topside component layout and underside track master details are shown in Fig. 2. This board is available from the EPE PCB Service, code 249. All components are mounted on this except the battery holder. buzzer and pushbutton reset switch.
Commence board construction by drilling the three mounting holes in the positions indicated. Follow by soldering the i.c. sockets in position (do not insert the i.c.s at this stage) then all other components except capacitor(s) C3, light-dependent resistor R4, the diodes and transistor. On no occount solder the i.c.s direct to the board - it wauld be very easy to damage them.

Note. resistor R10 ($20 \mathrm{M} \Omega$) consists of two individual $10 \mathrm{M} \Omega$ units connected in series using the pads indicated (both positions are labelled R10). If the $100 \mathrm{M} \Omega$ cermet film type resistor specified for R7 is not available, connect three $33 \mathrm{M} \Omega$ resistors in series instead using the pads provided on the p.c.b. - the three positions are labelled R7.
The photographs show the single specified resistor being used. This is soldered directly between the pads connecting IC2 pins 6,7 and 8 - they are labelled " x " in Fig.2. If you can find no other way of doing it, you can connect ten $10 \mathrm{M} \Omega$ resistors in series, zig-zag fashion, and connect the ends of the "chain" to the "x" pads.

Connect a 100 nF "test" capacitor to either C3 position. This will provide an operating period of around ten seconds which will be more convenient for testing purposes than the full operating time.
Solder the l.d.r. in position using the full length of its end leads for the moment. If the specified miniature type of 1.d.r. is not available the larger ORP12 type could be used. However, it would take up more space and would-need a certain amount of adjustment to its position.

Fig:2. Printed circuit board component layout and full size copper foil.master pattern.

Components mounted on the completed circuit board. Note that a single cermetfilm resistor has been used for R7 (see text).

POLARITIES

Now solder the polarity-sensitive components in place. These are the two diodes and Darlington transistor TRI. When soldering the diodes note that the cathode (k) end has a black band. When mounting the transistor, take care to place it as shown in the photographs with the flat face to the left.

Solder the battery connector wires to the p.c.b. If the battery holder has tag connections instead of being the more usual PP3 type, use short pieces of stranded wire instead. Connect pieces of light-duty stranded connecting wire for the Reset switch S1 and solder the buzzer leads to the WD1 pads - the red one is the positive lead.

Insert the i.c.s in their holders. with the correct orientation. These are both CMOS devices and could possibly be damaged by static charge which may exist on the body. To avoid possible problems, touch something which is earthed (such as a metal water tap) before unpacking them and handling their pins.

TESTING

Most readers will wish to carry out a basic test before mounting the circuit board in its box. This will allow any errors to be corrected more easily. It would be a good
idea to tape over the hole in the buzzer for the moment to reduce the sound output because it is very loud!

Cover the l.d.r. with a piece of black p.v.c. tape to simulate placing it in darkness (or be ready to work in darkness). Adjust preset VRI 10 approximately mid-track position and connect the batteries. Keep the switch wires separated so that the bared ends cannot touch.

Working on an insulating surface (such as wood or plastic) to prevent short circuits at the p.c.b. tracks, place the AA cells in the holder and connect it up. Peel back some of the p.v.c. tape to allow some light to reach the l.d.r. - the buzzer may give a momentary "chirp", which may be ignored.

After about ten seconds or thereabouts (remember, the timing has been reduced) the buzzer should sound. If you re-cover the l.d.r., it should stop immediately. Similarly, if you touch together thě switch wires, it should stop.

If you have problems making it work, make sure the l.d.r. window really is covered to exclude almost all light - some types of black tape are far from opaque. If necessary, carry out the test in a dark cupboard. It is not satisfactory to cover the 1.d.r. window with a finget!

If all is well. disconnect the battery holder and remove the i.c.s, again observing the anti-static precautions mentioned earlier. De-solder the buzzer wires and test capacitor C3.
With the required timing in mind, decide on the value of the capacitor, or capacitors needed for C3 and solder them in place. Note that an electrolytic capacitor would not be satisfactory here due to its inherent ligh leakage current.

BOXING UP

You are now ready to mount the circuit board in its box. This must be large enough to accommodate the p.c.b., batlery pack, buzzer and pushbutton switcl. You could use a more compact case if you used a smaller type of battery but, remember, this will give a shorter life.
Arrange the internal components on the bottom of the box and mark through the p.c.b. and sounder mounting holes. Remove everything again and drill these holes. Drill a further hole rather larger than that in the centre of the buzzer itself for the sound to pass through. Note that the buzzer will be mounted so that the sound is directed downwards (see pholograph). This will allow the maximum amount of sound to pass through the ceiling.
Mount the p.c.b. temporarily on plastic stand-off insulators. You may wish to mark the position of preset VR1 on the side of the box so that a hole may be drilled to allow it to be adjusted more casily.
Measure the position of the l.d.r. "window" (top surface) and mark this on the lid of the box. Drill a clearance hole for it. With the lid in place, and the l.d.r. protruding, measure how much the end leads need to be shortened so that the window will be level with the face of the box.
Remove the p.c.b. and adjust the 1.d.r. soldered joints to give the correct clearance. It would be a good idea to leave the leads a little on the long side because they can be bent slightly at the end to make small adjustments to the height.

Positioning of components and circuil board inside the prototype case. Note the l.d.r. "window" hole and Reset switch position in the lid. The space to the right of the p.c.b. is for the battery holder.

Drill a hole in the lid for the Reset switch and attach it. Solder the switch wires leading from the p.c.b. to its terminals. Drill the hole for VRI adjustment if this is needed. Shortening the buzzer wires as necessary. solder them back to the p.c.b. pads. Insert the i.c.s again taking precautions agains! static charge build-up.
Mount the p.c.b. and attach the buzzer using a pair of long, thin bolts. Do not forget to remove any tape which was used to reduce the sound output, during testing. before attaching it. Insert the AA cells and secure the battery holder to the base of the box using a small bracket if necessary.
Place the lid temporarily in position but do not secure it yet. Adjust the 1.d.r. end leads as necessary so that the window is level with the top face of the box (see photograph). Take care that they cannor touch one another and cause a shor-circuit.

FINAL CHECKS

Test the circuit under real conditions. Try the unit in different positions in the loft to find the best one. Leave preset VR1 adjusted as far clockwise as you can (as viewed from the top edge of the p.c.b.) consistent with correct operation. When satisfied with the performance, secure the lid.

Check that the sound can be heard below the unit when the loft hatch is closed. You could remove a small amount of roof insulation from around the case to allow the sound to pass through more efficiently but this was not found necessary with the prototype.

It is suggested that the unit be allowed to sound every now and again to check the efficiency. When the buzzer can no longer be heard as it should, the batteries should be replaced.

DON'T BE FROZEN OUT - ORDER YOUR COPY NOW!

 PLUS - SCRATCH BLANKER - A "Spim Docto"" for your Vinyls
\qquad

Name and Address

NEWSAGENTS ORDER FORM
 Please reserve/deliver a copy of Everyday Practical Electronics/ETI for me each month

Post Code

Everyday Practical Electronics/ETI is published on the first Friday of each month and distributed S.O.R. by COMAG Make sure of your copy of EPE each month - cut out or photostat this form, fill it in and hand it to your newsagent,

READOUT
 John Becker addresses mame of the generel polnte readers have ralmed, Heve you anything Interesting to say? Drep us a lina!

WIN A DIGITAL MULTMMETER

A $31 / 2$ digit pocket-sized l.c.d. multimeter which measures a.c. and d.c. voltage, d.c. current and resistance. If can also test diodes and bipolar transistors.

Every month we will give a Digital
Multimeter to the author of the best Readout letter.

\star LETTER OF THE MONTM

TELE BYGONES

Dear EPE,
Whilst looking for a computer mugazinne, 1 came across EPE, glanced through. then decided to purchase it. It brought back a lot of memories. Many mons ago (mid 1960s). I did a Govermment Iraining course, to become a Television and Radio Engineer. with the promise of a job as the end.

About half way through, our instructor had to go on a three-day course. He retumed, with the biggest TV receiver imaginable. the first colour TV any of us had seen. When it was switched on it worked for just a short fime, when all at once, a bang, then smoke. The cause was something 10 do with HT.

I remenber sealing what seemed to be three or four very large wirewound resistors bums oul. These were the days when the transistor was first hrought about (actually invented in 1948. Ed); we had litte if any training on these. We wore told "Not to bother checking these they don't go faulty!" (l've heard that one befona). "Anyhow, they will never replace the good old "alve."

I did manage to finish the course and gers job working for Granada Television, not to be mistaken with Granadn Broadcasting station. was literally working on a conveyor bell. We had to pisk up the sets (Murphy model 57) from one end did refurbish them. This meant changing the onfoft switch (the one being replaced was operated by lifting the lid): replacing the frame output valve and frame bias, clean the rotating chamal switch, replacing the two valves (I think these were EC80 and ECCBI)
A. C. power was rectified with a valve. This we replaced by a half-wave rectifier, using swo diodes, and then replaced the smoothing capacitors. If any other valves had to be replaced. we had to gently ease the CRT forward in order to do so. Part of the HT was enclosed in an oil container. if the HT arced

Gvosthen you had coinject more oill Never iry to algen anything one small tum - this could deadito replacing of i.f. can, or whatever iv wats you were tuming. This happened due to the age of tie sel.

When you had done all the work that needed to be done, it was time to ask the quality controllers to inspect the sel. The first thing they did was to lift the set up three to four jinches off the bench then drop it back on, epparently to see the effect, if any, on the screen! Then each of the valves was given a good tap with the thick end of a serewdriver (is this where the ferm bottle bashers came from?). This was to see if the valvewas on the verge of death, or noisy! There were many more such nonsense acts of violente

We were on piecenork as well. We did have A much better set to work on, namely the KB, Idon'r know the model number, but this wits a hard-wired set. i.e no p.c.b. The KB had a frame outpas transformer at the top left-hand side looking from behind. The quality controller thought this was the best place to tic his Jabel, to tell the world that this set had passed his inspection. All was well until the team responsible for re-casing got their hands on it and ayes youtve guessed it. pulled the tag off tlong wilk'the tuntiformer wires. Oh the good old days!

I teft this type of clectronics to work with hearing aids. This was sub-sub-miniature work, and very rewarding. A resistor was just bigger than a pinhead. Now I believe they tue i.c.s.

I have now ondered a two-year subscription to EPE, and alsu twelve months back issues. 1 shall also be sending for three CDs to help me. Thave a lot of catching upio do!

Keith Barlow, Bury, Lancs
isn't history fascinating! Welcome to the modern warld of electronics, Ǩeith. Gookl luck whit your "catching up". It's gover to hear from you.

TOOLKIT MK2 AND WIN 98

Dear EPE,
1 would like to comment on the parallel port interface software for the PIC Toolkit Mk? (MayJun '99). SETUP showed that the ACK bit was not working. However, inspection with DEBUG and direct manipulation of the port registers showed that the bit reflected the correat value.
Single stepping past the INP instruction in TKSET06.BAS worked too. so I suspected a timing issue. I duplicated the INP instruction to add a small delay and it worked OK.
This was using a 233 MHz Pentium running Win 98 (although the same problem occurred in DOS mode).

Pete Sherw, via the Net
Very useful comment Pete, thanks. All my software is rested on four machines of varying ages and abilities using Win 3.1 and Win 95, at speeds up to 120 MHz . I do not have a Win 98 machine and so any info on that system's operation is usefu! in this conitert:

LEAPING CALENDARS (AGAIN)

In several recent Readout columns, we have discussed colendars in relation to the Millennium. We want to say a really Big Thank. You to Mr WFF. Ritchie, of Fraserburgh, Aberdeenshire, who went to a lot of trouble to send us a great deal of information on the subject. including tables of dara. Sadly, it is 100 lengthy to reproduce here.

One of the many interesting points made is that, whereas the changeover to a Gregorian calendar (in honour of Pope Gregory XIIl) began in 1582. Britain did not adopt it until 1752, which caused considerable controversy because, in that year, 11 days had to vanish ("Give us back our II days!'"). Greece was even later - it was the last modern nation to make the change, in 1923.
Mr Ritchie also says that "At the age of 78 years I make do with my Hewlet Packard 48GX calculator, which . . has a built-in clock and cal endar covering a period from the start of the Gregorlan calendar to 3/ss. December 9999" Astonishing!

DOS ERROR 76

Dear EPE,

I have tuilt PIC Toolkit Mk2 (May-Jun 99) and the lirst part of the Setup. where the voltages and parallel port are checked is OK. However, when I press enter to carry on with the Setup, I get the message: "Setup program unforeseen MS DOS ERROR 76". Can you please heip me?

Anthony Marshall, via the Nef
The ERROR 76 message ("path not found") is that gemerated by MS DOS when it cannot find a particular file or directory named by the user. In Toolkit's Setup this could accur if an attempt is made to Install the prograun with its sipped files being in the wrong directors: When the program is Installed from our $3-5$-inch disk as available from the Editorial Office, it seems unlikely that this can happen.

However, readers who have downloaded the program from our FTP site may incuperteritly find that their unzipped files are in the wrong directory. The files need to be installed in directory CiYIC, as expected by various file accessing commands within the suite of programs.

There is normally a text file on the FTPTOolkit MK2 path that exploins this (pic_toolkitionstal.trt), although there was a brief period during which the file "went missing". It should be there now - follow its instructions (if it's not, advise the Webmatter for that site).
The ASMCNV directory (folder) referred to must be created as CiMSMCNV. It should not be created in the PIC director: where it will hot be found.)

Incidentally, readers with QBasic or QuickBASIC can find out what a pariicular DOS Error number means by entering the programwriling creal of these programs and fyping in the command, for example. ERROR 76. Then run this one-line program, upon which the program will hall and display a bext box containing the relevant error message.

LOGGING EXCELS

Dear EPE
I've jusi read Part 2 of the 8 -Channel Analogue Data Logger (Aug-Sep 99) and have to say ! like it. 1 have always wanted to build one using a good
 the chips I rever got arourd to it! Your design is made so easy with the PIC16F877.

Being able to upload the data to n.PC is really essential, and your comments on using Excel to view the datia are very good.

I have also downioaded version V2.3 of Toolkit AK2 - I have used the dissemble function to recover a program from a PIC16C84 that I had loat the ASM texi for, it will make rewriting a lol easier!

Mel Saunders, via the Nèt
It's good to know that a derign which took me so much time to research and implensent is providing you and mäny other headers with a useful tool. There were four "learning curves" involved - getting to know the PICIGFS77, the serial memories serial cammunication berween PIC and 'PC. plus Excel (1o which I had previously onfy haid brief exposure when we producedt the CD-ROM for PIClutor):

A WAVE FOR OSCILLATORS

Dear EPE,
This is the Inst letier I have ever writien to an electronics magazine. To establish. very briefly, my background, I was brought up with the vacuum tube starting in the early thirties. Although I was keen to build receivers. money was scance, and I could only read about their construction. Then came WWII and I tried to get into Signals, but it was not to be. I served in the infantry. Then came family responsibilities, and the necessity to eam a living. and a move to Canada in 1954.
Only now, in retirement. have I the time to "convert" myself from the valve to solid state. What a fascinating subject it is! 1 find my main interests are receivers and test instruments and have recently built a number of them. including some from EPE. Now I have subscriptions to five electronics nagazines from the USA, and two from England. and of the seven your magazine stands head and shoulders above them all. I can only say it is simply the BEST!
The series of articles on oscillators by Raymond Haigh is excellent, the subject is dealt with in depth and gives down to earth schematics. The articles give one confidence to go ahead and build each type of oscillator, and indeed I have already built some of then, and 1 intend to construst many more.

I also have another request, and perlaps some of your columnists or readers. better versed in electronics than I. could provide a method and a circuit, for the texting and evaluation of toroids. This component, as is well known. exists on the surplus.market in a vast anay of sizes and material composition, and they can be bought very cheaply. But not knowing its composition, i.e. iron dust or ferrite, and what frequency it was designed for, one would hesitate to incorporate it in any project.
Perhaps the circuit would take the form of a BH curve tracer, where, instead of a 50 Hz or 60 Hz input, a standard signal generator could activate the circuit, and the output displayed on the scope.

I realize that a full and complete evaluation of any magnetic material is a complex subject. full of mind boggling maths! But it seems to me that if we know its composition and designed frequency, this would give confidence to incorporate the item in a project with reasonable chance of success.
I look forward to perhaps secing an article on the above! Please keep the practical projects and informational articles coming.
B.J. Maloner, Alberton, Canada

We know that many readers have responded favourably to Raymond's ascillator discussions. Torvids-svise, though, we suspect that an article relating to them would be too esoteric to appeal to mosi readers. However, perhaps readers migh care to tell us we're wrong!
We appreciate your praising words. Wht our international readership continuing to grow, in a Jarge pars due to our EPE Online edivions on the Infernet, it's good to learn what readers worldwide think of us.

TRANSISTOR PROBLEM

Dear EPE,
I'm having some trouble getring my PIC Toolkit Mk? (May-Jun '99) to work and hope you can be of some help.

I am not getling the correct voltage measurements and I believe it has to do with two of the components: the power supply and TR1.
First, when the parallel port bit DA - is high, the voltage on PIC pin 4 (MCLR) should be 12 V , but 1 am only getting $8-2 \mathrm{~V}$. Now the 78LC05 power converter I used is only rated to supply 100 mA and the $1 . e . d$. I chose draws 20 mA . Could there not be enough curmen going to the MAX665 Flash memory programmer for it to supply 12V? Should I replace both the power converter to get more juice and the l.e.d. to consume less?

Second, when the parallel port bits DA. 3 and DAs are high, the vollage on MCLR should the 0 V , but I still get 8-6V. When DA3 is high alone. 1 get 4.5 V on MCLR, so something is working. I used a different npn transistor for the reset instead of the BC549 specified because I could not find that listed in any of my catalogues here in the USA. Instead I used a generic npn with a maximum collector current of 600 mA .

I have just started working with PIC micros and I really enjoy your magazine hecause of your concentration on them. I purchased your PIC Toolkit p.c.b. and put together this programmer to see what I could leam and save a few bucks. I appreciate your work. Thanks very much.

Fred Ramsing,
University of Nevada, Reno, USA
The l.ed. is unlikely to be the couse of the problem since its current is limited by resistor R13 and does not depend on the l.ed's actual rating (which state's the maximum current at which the device can be safely operated, not the current at which it always works).
It seems probable that the transistor is to blame, perhaps because its pins are not orientated correctly. Check the data sheet (or supplier) for the pinout of the device and ensure that the pin designations correspond with those shown in Fig. 4 of the published article (you may need to "twist" the device ij they are in a different onter).
One alsernative to the BC549 (a device which is part of my regular design stock) is the BC109. Another is the 2N3704, but note that this device has a pinout of ECB whereas the BC549 ond BCIO9 have CBE. In reality. practically any general purpose npn transistor should work if correcily orientated. it's only being asked so switch a very small current on and off.

Having sent the above info direct to Fred. he subsequently E-mailed back: "Thanks a ton, it works finc!!"

PICKING UP ON ED

Dear EPE.
In your Editōrial of Nov 99. you say "Tt seems that some of our readers are deninitely not interested in PICs". It's not the PICs they're nol. interested in it's the endless discussions on code that put them off?. I feel the same.

Why not steer clear of code and talk in terms of Basic progiamming with which a vast number of your readers must be familiar? I notice that some companies affer PIC Basic compilers. Why bother with the grief of leaming code? Please enlighten me.

Murray Cameron, via' the Nel

Ah, Alurray, you've misunderstood Editor Aike's statement! By "some" is meant that "a few" - a minority in fact - of our readers are not interested. The vast majority most definitely are interested in PICs at the proyranming as well as the applications levels.

A couple of years (or so) back. I ran an experiment with one of my published PIC projects. I discussed at length one aspect of the program that contnxied the project, in order to see what reater response would be to that extended discussion.

The resull was astonishing - many readers expressed their gratitude for the discussion. So much so, that I felt justified in suggesting to Mike the PIC Tutorial series, which we subsequently ran from Hurch to May 98. It was one of the most successful series that EPE has ever run. Demand for back issues (photocopie's only now) of the series still continues. The success of the series also prompted us to further develop the concept and produce the PICtutor CD-ROM and associated hardware (see page 912).

But as to actually indulging in "endless discussions of code". We dor't do so as a regular part of PIC projects. By-and-large, the only discussion of code is when is is pertinent to explaining how a particular design should be operared. Otherwise, extended discussions about code from a programmer's point of vies have been confined to such educational features as the PIC

Tutorial and PlCIGFsi7 Mini Tutorial (and Readout!). Even nyy 8-Channel Analogue Data Logger of Aug/Sep 99 (which for the first timie introduced the PICI6F877 as part of a project) did not significantly discuss code. that being lefl to the Mini Tutorial.

Regarding PIC Basic compilers. I am sure thät for short lengths of code writing they are probably an excellent asset for some readers who do not have the inclination to delve into writing PIC code directly. For myself. though. the rype of designs I create are not suited to compilation from one language to another in this context. There is usually a large overhead of extra code that is generated when such transformations take place, accompanied by a relative reduction in processing speed.

For my purposes. I need the compactness and ortimum speed of sub-routine processing that writing in "machine-code" can achieve. Writing in PIC is as second-nature to me as writing in any of the other several computer-type languages that 1 know and use. There are a lot of readers who are similarly adept and who delight in P/Cs in particular ${ }^{2}$ Projects based on PICs have turned out to be amongst the most successful projects we have published in our 28 (nearly 29) years of existence!

CHILD GUARD QUERY

Dear EPE,

In Child Guard (Sep '99). IC5 and IC6 both have their address pins connected the same way. However, pin 10 on IC6 is connected to ground, whils on IC5 it is left floating. Is this a mistake, or is the diagram correct?

Martin Male, via the Net
We reforred Martin's question to the author, Tom Web. who replied:

There is no problem with pin 10 on IC6 being connected to ground. This is required to make IC6 continuously transmit a signal. On IC5 the same pin should be left floating as shown in the diagrams. since the pin is carrying information which is not required in this design. In other words the diagrams in the article are correct.

Tom Web and Max Horsey, via the Net

OVERCAST SUNDIALS

Dear EPE,
John Becker's Musical Sündial (R.A. Evans. Readoul Nov "99) could well have its uses. Sun time differs from elock time by up to a quarter of an hour. It may be of interest to know the differènce. Human beings can't read a sundial when the sky is overcast (herce the well known supdial motto "I count only the sumny hours"), but electronics might. Even when the sum is hidden. more ligh must on average arrive from its direefion than from other paris of the sky. An integrating light detector might show where it is.

An electronic sundial could be remote-indicasing. allowing lazy people like me to monitor it without going out. If it measures light intensity it might wam you to use sun lotion. Naturally, any such device should be solar powered! Pertaps readers could suggest an appropriate high tech mono.
P.S. Inturested to see that Radio Bygones now emanates from Wimbome Publishing. If you go on absorting other mags, your abbreviated title will be as long as the original name!

George Short, Brighton, East Sussex
Good to hear from you again George. Yes, Pue thought about Surdials for Dull Days and think that is isfeasible, although precautions would need to be taken to ensure that only the sun's light (obscured or clear) would be responded to and not other, brighter, soures. Should I gel the craving to do Surdial Mk2, I might try this approaci, and attempt the use of just three sensors and a bit (?) of triangulation through the PIC software - probably more of a problem than I appreciate at the moment. .. Still. where's the fun without the chatlenge?! Radio Bygones will, of course. continue to be published in its own right.

Advertisement

Introductory 20\% discount offer for the NEW:-

pc based 20 MHz oscilloscope, spectrum analyser, data logger \& voltmeter
1 channel version, normally - £183.83 Introductory price $£ 149.00 \mathrm{inc}$ vat, del \& 1yr guarantee
2 channel version, normally - $£ 233.83$ Introductory price $£ 185.00$ inc vat, del \& tyr guarantee
From -
VANN DRAPER ELECTRONICS LTD
Unit 5, Premier Works, Canal St, South Wigston, Leicester LE18 2 PL Tel 01162771400 Fax 01162773945
E-mail sales@vanndraper.co.uk
Home page www.vanndraper.co.uk

FEATURES

1
20 MHz bandwidth real time oscilloscope $40 \mathrm{Ms} / \mathrm{s}$ digital oscilloscope 20 MHz spectrum analyser Signal registration/data logger (1s-999hrs) Voltmeter
16-bit for Windows 3.1, 32-bit ior 95, 98 or NT
Simple installation of ISA bus card
Remote control over a TCP network (LAN/
WAN/Internet) with multi client capability

TECFNICAL SPECIFICATIONS

Oscilloscope

- 20 MHz bandwidth, $40 \mathrm{Ms} / \mathrm{s}$
* 1 or 2 input channels plus external trigger
- Vertical $-20 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$
- Horizontal $-100 \mathrm{~ms} / \mathrm{div}$ to $50 \mathrm{~ns} / \mathrm{div}$
- Horizontal \& vertical cursors
) Readout of amplitude and frequency/time
- Readout of trigger level
- Auto, Normal \& Single triggering
- $\mathrm{X} Y$ mode
Spectrum analysér
- 20 MHz bandwidth, $40 \mathrm{Ms} / \mathrm{s}$
* Selectable between $19 \cdot 5 \mathrm{kHz}$ and 20 MHz
- 1 or 2 input channels plus external trigger
- Frequency resolution 2 Hz
- Readouts of centre frequency and markers
- Readouts of amplitude

Signal registrator/data logger

- 1 or 2 channels
* Time window from 1 sec to 999 hours
- 8k sample buffer
- Readout and cursors

Voltmeter

* 1 or 2 channels
- Auto/manual ranging from 800 mV to 200 V
- AC or DC ranges

General

- Paste waveforms/data to other packages
- Save waveforms for comparison
- Save instrument set ups/configurations

System requirements

- 16 -bit, min $386,1 \mathrm{Mb}$ ram (oscilloscope only)
\downarrow 32-bit, min Pentium $200 \mathrm{MHz}, 32 \mathrm{Mb}$ ram
- One íree ISA expansion card
- Windows 3.1, 95, 98 or NT

1ch scope/spectrum analyser 2ch scope/spectrum analyser

Quantity

Cheques payable to Vann Draper Electroniçs Ltd, or débit my Visa, Mástercard or Switch:

Card No
Exp date
Switch Iss No
Signatưre

Everyday Practical Electronics are pleased to be able to offer all readers these

 ELECTRONICS CD-ROMS
ANALOGUE ELECTRONICS by Mike Tooley

Analogue Electronics is a complete learníng resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits.

FUNCTIONS

The component values on all circuits can be edited and the user can use the simulation engine to see how the value of each component affecte circuit performance. You 6 : for ins alter fequency an se ars and plot outputs on oscilloscope or show IC graphs etc.

COVERAGE

Sections on the CD.ROM include Fundamentals - Analog
Signals (5 sections), Tia
sections), Waveshaping Cucus
sections); Op.Amps - 17 secianミ covering everything from Symbols and Signal Connections to Differentiators; Amplifiers - Single Stage Amplifiers (8 sections).
Multi-stage Amplifiers (3 sections); Filters - Passive Filters (10 sections), Phase Shitting Networks (4 sections), Active Filters (6 sections); Oscillators - 6 sections from Positive Feedback to Crystal Oscillators; Systems - 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

- Includes SPICE circuit simulator with over 50 circuits
- Unique virtual laboratorles
- Editable assignments
- Design parameters for circuits included
- Complete hl-fi amplifier case study

Complimentary output stage.

Twin-T phase shifting network

Gallery - Wideband Amplifiẹr

DIGITAL ELECTROXICS by Mike Tooley

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits \& Components (below), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen.

Virtual laboratory - Flip-Flops

Virtual laboratory - Traffic Lights

Microprocessor

FUNDAMENTALS

Fundamentals introdices the basics of digital electronics inctuding binary and hexadecimal numbering systems, ASCII, basic logic gates and their operation, monostable action and circuits, and bistables inclucing JK and D-type flip-flops.

COMBINATIONAL
 LOGIC

Multiple gate circuits, equivalent bogic functions and specialised logic furctions such as majority vote, pariiy checker, scramblet, half and full edders. Inclucies fully interactive virtual laboratories for all circuits,
SEQUENTIAL LOGIC
Introduces sequential logic including clocks and clock circuitry. counters, binary coded decimal and shift registers.
DIGITAL SYSTEMS
A / D and D / A converters and their parameters, trafic light controllers, memories and microprocessors \rightarrow architecture. bus systems and their arithmetic logic units.
GALLERY
A catalogue of commonly used IC schematics taken from the $74 x x$ and $40 \times x$ series. Also includes photograpis oi common digital Integraled circuits and circuit techrology.

Prices for each of the two CD-ROMs above are:

ELECTRONIC CIRCUITS \& COMPONENTS + THE PARTS GALLERY by Mike Tooley

Electronic Circuits \& Compornents provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and. pre-cesigned circuits allow students to learn, experiment and cheax their understanding as they procead through the sectionts or the CD-ROMA. Sections on the disk include: Fundamentals; units \& multiples, electricity, elecric circuits, atternating

Virtual laboratory - sinusoids
circuits. Passive Components: resistors, capacitors, irductors, transformers.
Semiconductors: diodes, transistors, op amps, logic pates. Passive Circuits. Active Circuits
The Parts Gellery - many students have a good understanding of electronic theory out still have difficulty in recognising the vast number of differen! types of electronic components and symbols.
The Parts Gallery heips overcome this problem; it will heip students to recognise common electronic components and their correspording symbols in circuit diagrams. Selections on the disk include: Components, Components Quiz, Symbols, Symbols Quiz, Circuit Technology
Hobbyist/Student.
. 34 inc VAT
Instilutional (Schools/HEFE/Industry) \qquad . $£ 89$ plus VaT
Institutional 10 user (Network Licence) . 169 plus VaT
(UK and EU customers add VAT at 17.5\% to "plus VAT"prices)

Clrcuit technology screen

Interested in programming PIC microcontrollers? Learn with PICtutor by John Becker

Deluxe PiCtutor Hardware

This highly acclaimed CD-ROM, together with the PICtutor experimental and development board, will teach you how to use PIC microcontrollers with special emphasis on the PIC16×84 devices. The board will also act as a development test bed and programmer ior future projects as your programming skills develop. This interactive presentation uses the specially developed Virtual PIC Simulator to show exactly what is happening as you run, or step through, a program. In this way the CD provides'the easiest and best ever introduction to the subject.
Nearly 40 Tutoriais cover virtually every aspect of PIC programming in an easy to follow logical sequence,

hardware

Whilst the CD-ROM can be used on its own, the physical demonstration provided by the PICtutor Development Kit, plus the ability to program and test your own PIC16×84s, really reinforces the lessons learned. The hardivare will also be an invaluable development and programming tool for future work once you have mastered PIC software writing.
Two levels of PICtutor hardware are available - Standard and Deluxe. The Standard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials.
The Deluxe Development Kit is supplied with a plug-top power supply (the Export Version hás a battery holder), all switches for both PIC ports plus l.c.d. and 4-digit 7 -segment I.e.d. displays. It allows users to program and control all functions and both ports of the PIC and to follow the 39 Tutorials on the CD-ROM. All hardiware is supplied fully built and tested and includes a PIC16F84 electrically erasable piogrammable microcontroliet.

PICtutor CD-ROM

MODULAR CIRCUIT DESIGN by Max Horsey and Philip Clayton

This CD-ROM contains a range of tried and tested analogue and digital circuit-modules, together with the knoviledge to use and interiace them. Thus allowing anyone with a basic: understanding of circuit symbols to design and build their own projects.
Essential information for anyone undertaking GCSE or "A" level electronics or technology and for hobbyists who want to get to grips with project design. Over seventy different Input, Processor and Output modules are illustrated and fully described, together with detailed information on construction, fault finding and components, including circuil symbols, pinouts, power supplies. decoupling etc.

Single User Version £19.95 inc. VAT Multiple User Version $£ 34$ plus VAT

(UK and EU customers add VAT at 17.5\% to "plus VAT" prices)
designing your circuit
simply setect yous moifulas from the wise choce avelabie. read how they work and join them up to make yous circuit

I Fund that I coutd design a curcurt withoul my teacher's hein. And is workedl Eierything was to hand-uthith ctips to useand whish pins did what." Andeen Preston (GCSE student)

A Web Efowser is required for Modular Circuil Design - one is provided on the EPE CD-ROMA No. 1 (see below) but most modern computers are supplied with one.
Minimum system requirements for these CD-ROMs: PC with $486 / 33 M H z, V G A+256$ colours, CD-ROM drive, 8 MB RAM, 8MB hard disk space. Windows 3.1/95/98/NT, mouse, sound card (not required for P/Ctutor or Modular Circuit Design).

CD-ROM ORDER FORM	
Please send me:	\square Hobbyist/Student
\square Electronic Clrcuits \& Componnents + The Parts Gallery	Is Gallèry $\quad \square$ Institutional
\square Analogue Electronics	\square Institutional 10 user
\square Digital Electronics PICtutor	Note: The soffware on each version is the same, onty the licerros tar use varies.
PICtutor Developmènt Kit - Standärd PICtutor Development Kit - Deluxe Deluxe Export	\square Deluxe ExportNote: The PiChuter CO.Finils not inchuded in the Kit prices.
Modular Clrcuit Design - Single UserModular Circuit Design - Multiple Usếr	
Full name:	
Address: .	
Post code Tel No:	
Signature: .	
\square enclose cheque/PO in $£$ sterling payable to WIMBORNE PUBLISHING LTD for $£$	
\square Please charge my Visa/Mastercard: £Card expiry date	
Card No:	
Please supply name and address of cardholder if differen	ardhoider if different to the delivery address.

ORDERING ALL PRICES INCLUDE UK POSIACE Smotititigle Userstandard Vesean price includes postage to most countries in the world EU restidents outside the UK addurs for aimall poslage per order

Institutionat, Multiple User and Deluxe 'Verslons - overseas readers add $£ 5$ to the basic price of each order for airmail postage (do not add VAT untess you live In an EU country, then add $17 \% \%$ VAT or provide your offical VAT registration number).

Send your order to:
Direct Book Service
33 Gravel Hill, Merley, Wimborne:
Dorset BH21 1RW
(Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Lid. To order by phone ring
01202881749 . Fax: 01202841692 We cannot reply to overseas orders by Fax Goods are normally sent within seven days.

Part Two - Capacitors

Abstract

What we are doing during this 10 -part Teach In 2000 series is to lead you through the fascinating maze of what electronics is all about! We are assuming that you know nothing about the subject, and are taking individual components and concepts in simple steps and showing you, with lots of examples, what you can achieve, and without it taxing your brain too much!

Through these simple steps we hope to prove to you that using electronic components need not be a complex task and that, providing you think about each slage oi what you are trying to create, you can actually design and build something that works!

Last month we introduced colour codes and resistors. We now look at capacitors and show you some of the things they can achieve when used with resistors.

N that fascinating bag of parts that you bough, you will see a number of blue (or black) tube-like components with two wires sticking out of one end (see Photo 2.1). They are some rather remarkable components called electrolytic capaci= tors. Find the one whose value says $100 \mu \mathrm{~F}$. For this experiment consider the capacitor to be called Cl .

One wire of Cl is usually longer than the other and has a large arrow pointing at it from the case. This wire is called the negative (-ve) wire. often shown with a "-" (minus) symbol. The other is called the positive (+ve) wire, for which a " + " (plus) symbol may be used. This is illustrated schematically in Fig.2.1a. This type of construction is called radial.
A variant of electrolytic capacitor case style is also manufactured, as in Fig.2.1b, which is called axial construction and whose tve and -ve connections are at either end as illustrated.

Fig.2.1. Typical càse styles for electrolytic capacitors.

A CURVATURE IN TIME

Referring to Fig.2.2. plug C1 into the breadboard with its leads orientated as indîcated by the + symbol in the diagram (the symbol, although marked on the capacitor, is ofien not shown in layout diagrams). Now fit a 100 k ? resistor (call it R 1) as.

Photo 2.1. A selection of electrolytic capacitors (radial construction).

Fig.2.2 and Photo 2.2, breadboard layout for the first resistor/capacitor timing experiment:
shown. Insert terminal pins for the power supply connections (see Photo 2.2).

Clip one power supply lead to the battery's negative $(-)$ terminal and to the board
as shown in Fig.2.2. Clip the other power supply lead to the board as well. hut don't connect the other end to the batery's positive (+) terminal yet.

It is conventional to use a red lead for the positive power supply connection. For the negative power supply connection it is the author's preference to use a green lead. although the use of black is also common.

Note that in many circuits (including those discussed in this Teach-/n), the battery's negative connection is taken as the common reference poim against which voltage readings are taken. As such, it is regarded as being at zero volts (0 V).

Consequenly. throughout this series (unless you are told specitically otherwise) the meter's COM lead should always be connected to the battery ncgative connection when taking voltage readings.

Clip your muthmeter's leads as shown and set the meter to the first volts d.c. range above 6V. Note the reading. $O V$ at this
 moment. While you - * . watch the meter. get a - . . friend to clip the red - a) . . wire to the baltery's positive (+) terminal, noting the position of the seconds hand on his watch as he does so.
(Girls. tadies, for= give the use of "he" and "his" forms of ref= erence - it would be tedious to this author's typing finger to keep giving the feminine form as well the masculine. he/she. his/hers and so on. We know that females of the species are also interested in electronics!)

Watch your meter and yell "NOW" as soon as it show's a reading of 2 V . At which point your friend should fell you the number of seconds that have passed since clipping the red lead to the battery.

Conimue watching and ciming and yell again when the meter reaches $4 V$ and again at 6 V (assuming you haven't nun down your batery since last month's Teach-In if you have. get a new one!). Leave the battery fully connected while you consider your results.
What timings have you got for the 2 V , 4 V and 6 V marks? Hopefully, about 4 seconds for the 2 V . 10 secs for 4 V . and, oh -about 40 to 50 seconds? And what do you make of these timings? The voltage steps have been at 2 V intervals, yet the timings have become progressively slower-for each step.

Let's now do things backwards. Watch the meter and tell your friend to note the seconds hand again as he unclips the red lead from battery positive and clips it (do it quickly) to the battery negative. You now yell out when the meter shows readings of 4 V .2 V and 0 V .
This time you should have found that 4 V is reached after about 4 secs. 2 V at 10 secs and (almost) 0 V at about 40 to 50 secs. You will see, too. that timings have again become progressively slower for each 2 V step.

Don't worry if the actual timings you get are somewhat different to ours, for a start you are not using an accurate timer, secondly, the actual values of a capacitor compared to its stated value can differ by even as much as 50% (more about this in due course).

Additionally, your battery is probably not supplying exactly 6 V . Furthermore, the resistance of your meter (which you established lasi month) is forming a potential divider with resistor R1, so fractionally "pulling down" the voltage at the junction of C1 and R1.

What you have just demonstrated is that. when a voltage is applied to a capacitor via a resistor, the capacitor starts to charge up with the voltage, commencing at quite a fast rate, but then more slowly as its charge increases, until near the end of when the voltage on the capacitor is close to that of the battery. the charging rate becones almost imperceptible. You have also shown that the opposite is true as well (i.e. during discharge).

The charge/discharge property of a capacitance-resistance combination has the most profound effect upon the whole realm of elecironics technology.

But, before we examine the results of your timed yelling. let's first have a look at the basic nature of a capacitor.

WHAT IS A CAPACITOR?

A capacitor is a component which has the capacity to store electrical energy (hence its name). In this sense, capaciors can be thought of as a type of battery, but, unlike a battery, they do not depend on a chemical reaction for this function to occur. Rather, they take advantage of a convenient fact of nature that prevails when two metal plates are placed close to each other, but not touching, and a voltage source is connected across them (see Fig-2.3).

At the moment that the voltage is applied, an electrical charge is transferred to the plates at a rate depending on the voltage level applied. the material from which the plates are made, their total area. distance apart, the substance which lies beiween them (called-

PANEL 2.1 - A.C. AND D.C. VOLTAGES

Alternating (a.c.) voltages are those that, repeatedly change their magnitude above and below a midway reference voltage level (often taken as 0 V , as in mains electricity supplies, but may be other voltages). Direct (d.c.) voltages are those that remain at any fixed voltage-level, either above 0 V or below it.
Strictly speaking, a.c. and d.c. actually mean alternating current and direct current and, as such, to use the terms a.c. voltage and d.c. voltage is incorrect. However. for some unknown reason, the terms a.v. and d.v. (which would be more appropriate when referring to altemating and direct voltages) do not seem to exist.
the dielectric). and the amount of resistance existing in the connection path (including the capacitor's intemal resistance). If the voltage is applied for sufficient length of time, eventually there will be virtually the same voltage across the plates as available from the source.

When the voltage source is removed. the plates will retain their charge until a conductor of some son is connected across them. As soon as there is a conducting path between the two plates, the charge begins to flow from one to the other, frying to return to the previously uncharged state. The discharging rate is govemed by the same factors as controlled the charging rate.

Fig.2.3. Basic construction of a simple capacitor.

Given enough time, all of the electrical charge stored across the plates will reduce to zero. But, you may ask, what happens to the electrical charge isself? Principally, it is converted into heat in the discharging conductor and capacitor's intemal resistance. although in extrence circumstances some could be converted into light or radio energy. In normal use, you won't notice any temperature change in the capacitor or the conductor.

A capacitor's ability to be charged by a voltage and to hold the charge (almost) indefinitely allows it to be

It can be argued, however. that it is not the voltage that flows. but the current. Indeed the term voluage merely represents a concept rather than something that actually flows. As an ancient (1962) copy of the Penguin Dictronary of Electronics puts it: "Voltage. Strictly, a difference of clectric potential expressed in volts. However, the term is used more generally as a synonymi for electrical potential".
Voltage is certainly a more convenient term and ties in with the fact that the unit of measurement for potential difference (p.d.) is the volt, for which the symbol is V .

Note that you may encounter another term instead of voltage or potential difference, electromotive force (e.m.f.).
used in electrical and electronic circuis in a variety of ways:

- To simply store a voltage until it is needed
- To smooth out fluctuations in volage levels
- In conjunction with other components, such as resistors for example, to determine the rate at which voltage changes occur at a particular point in a circuit

- To shonten or extend pulse lengiths

- To transfer changing differences in voltage levels between one side of the capacifor and the other. in other words. to allow alternating (a.c.) voltages to be transierred whilst preventing direct (d.c.) voliages from flowing from one part of a circuit to another (see also Panel 2.1)

CAPACITANCE VALUEE

The amount of electrical charge that a capacitor can hold is known as its capacitance value (supprise, surprise!), and the unit which is used to define it is the Farad. $L t$ is named after another electrical pioneer in the nincteenth cenlury, Michael Faraday. He was a Londoner, bom 22-9-1791, died 25-8-1867.

Morè intimate information aboit Farad values is given in Panel 2.2.

There are several symbols that can be used to represent a capacitor, as shown in Fig.2.4. Some represent the type of capacitor. but there are also differences of international standard used in some cases. Those used in EPE are the ones to the left of each pair.
The circuit diagram for what you have just been doing on your breadboard is shown in Fig.2.5. (We didn't comment on the battery symbol in Part !. make a mental note of it nov!!
We'll say more abour capacitors later, so back to your timing results...

Fig.2.4. Commonly used symbols for capacitors.

Photo 2.3. Capacitor charôing graph displayed on the interactive computer screen.

DISPLAY GRAPH

We can illustrate a capacior's rate of charge and discharge using another of our software demos. From the main menu select Resistor-Capacitor Charging Graph.
On entry to this display you will see a rising graph on a grid, similar to that in Photo 2.3. This particular graph is that for a $1 \mu \mathrm{~F}$ capacitor and $1 \mathrm{M} \Omega$ resistor, a combination whose timings would be far to fast for you and friend to keep pace with!

As with the resistor display examples last month, you can change the values associated with this demo. At the top right you should see C highlighted and its value as $1 \mu \mathrm{~F}$. Press the $\left.<^{*}\right\rangle$ key (multiply) twice. On each press the graph will redraw to suit the changed value. You should see $\mathrm{C}=$ $100 \mu \mathrm{~F}$ after the second $<*>$ press.
Press the down arrow key once to select factor R. Press \rangle (divide) once to set $R=$ 100 kilohms. Press the down arrow once to select V , then press $\leftrightarrow>$ (minus) four times to set $\mathrm{V}=6$ volts. Again press the down arrow to select T, and press <*> once to set $T=10$ secs.

TIME CONSTANT

In front of you now is the grapl that illustrates how an ideal (and "empty" uncharged) $100 \mu \mathrm{~F}$ capacitor charges via a $100 \mathrm{k} \Omega$ resistor when a voltage of 6 V is instantaneously applied to it. The vertical axis of the grapli represenis volts, and the horizontal axis shows elapsed time in seconds. The time between each horizontal step is the value shown times 10 . because T has been set to 10 seconds per division.

Look closely at the graph. Where it reacles the 2 V grid line, you can just about estimate that the time taken so far is about 4 sees. It's clear to see that 4 V is reached at about 10 secs. and that it has just about reached 6 V at around 50 secs. You can select a "magnified" view of the 2 V mark by pressing \leftrightarrow to make $\mathrm{T}=1$ secs (excuse the mismatch of singular and plural!).

Why the blue horizontal line just below $4 V$?, you must be wondering. By convention, the line represents the 63% level of the power supply voltage actoss the resistor/capacitor series. The rate at which the capacior chafges

Fig.2.5. Circuit diagram for the capacitor charge/discharge experiment.
to that 63% voltage is termed its time-constant, which is the value obtained when the capacitance (C) and resistance (R) values are multiplied. It is generally referred to as the $C R($ or $R C)$ value.

It is important to note that the units for C and R must be expressed with the correct orders of magnitude. In the example shown. C $(100 \mu \mathrm{~F})$ is expressed in microfarads (100) and $R(100 \mathrm{k} \Omega)$ is expressed in megohms ($0-1$), resulting in a CR value of 10 seconds (100×0.1), as shown to the right of the display.

With a 6 V supply, the 63% voliage is $3.78 \mathrm{~V}(6 \times 0.63)$, shown alongside the CR value.

DISCHARGE GRAPH

So, we have illustrated the charging up of your R-C combination. The discharge illustration is similar, but in reverse. Return the time scale value to $\mathrm{T}=10$ secs, then Press < C>
The curve now starts high, at 6 V and smoothly descends to 0 V . It crosses 4 V at about 4 secs. 2 V at close to 10 sees, and reaches 0 V round about 50 secs - just as we predicted earlier, and you were probably close to it with your experiment.
The blue line has changed its position though. The reason is simple, again by convention, it now represents the 63% level below the staring voltage or 37% above the termination voltage. in this case 6 V and 0 V respectively.
The rate of change is said to be exponenrial, and in its calculation you ideally need a scientific calculator (and the knowledge of how to use it), because the formula is a bit complex:
$V_{C}=V_{S} \times(1-\operatorname{EXP}(-1 / C R))$
for the charging rate, and:
$V_{c}=V_{s} \times(\operatorname{EXP}(-1 / C R))$
for the discharging rate
where:
$\mathrm{Vc}=$ voltage across the capacior
$\mathrm{Vs}=$ voltage across the capacitorfresisto series
$\mathrm{t}=$ elapsed time
$\mathrm{CR}=$ time constant
EXP $=$ exponent
You will see these formulue shown as appropriaie, at the top of the graph display.
We are not going to ask you to memorise the formulae or test your knowledge of how to use them. Since you now have a computer program that does it for you, let it do the brain-teasers! The answers for any values not included in the C-R-V-T ranges provided can be estimated from the nearest selected values.
(What you can do more simply, however, is calculate the RC time constant, by multiplying the values of C and R. Do

PANEL 2.2 - CAPACITANCE UNITS

A capacitance value of one Farad is a unit of charge which, in practical terms, is far too large to be useful in everyday electrical and electronic circuits. For convenience. the unit is usually divided and expressed in sub-units. such as:
(0) Microfarads, being one millionth of one Farad, and usually written as $\mu \mathrm{F}$ (Greek "mu" followed by a capital F). although it is common for it to be written as "uF" or "mF", since many keyhoards do not have the Greek symbol readily available. (The use of " mF " is to be deplored because it really means millifarad rather than microfarad.) It is also conmon, where the meaning of the term is implied. for it to be written simply as " μ ". in component lists for instance. Verbally, these abbreviations are often
pronounced as "mew" or "mulf". For example, a $10 \mu \mathrm{~F}$ capacitor might be referred as having a value of "ten-mew" or "ten-muff".
© Nanofarads being 1000 millionth of a Farad and usually written as "nF". although the " F " "may be dropped where it is implied in the context. Verbally. the abbreviation might be pronounced "eneft" or just "en", i.e. a value of 10 nF might be pronounced as "ten-en". The use of the term "nuff" is unlikely.

- Picofarads, being one million-millionth of a Farad and usually written as " pF ". though again the "F" might be dropped when it is implied. Pronunciation is usually "puff" (as in "stairs puff him out!") although it might sometimes be heard as "pee", i.e. "ten-pee" for 10 pF .

Table 2.1: Capacitor varieties and their typical characteristics

Capactior	Ceramic	Electralytic	Metal film	Mica	Polyester	Polycarbonate	Polystyrene	Tantalum	Polypropylene
Capacitance range (F)	$\begin{gathered} 2 \cdot 2 p \text { to } \\ 100 n \end{gathered}$	$\begin{aligned} & 100 \mathrm{n} 10 \\ & 47000 \mathrm{ll} \end{aligned}$	$\begin{aligned} & 1 / 110 \\ & 16: 4 \end{aligned}$	$\begin{gathered} 2 \cdot 2 p \\ 1010 n \end{gathered}$	$\begin{gathered} \text { in to } \\ 10 \mu \end{gathered}$	$\begin{gathered} 10 \mathrm{n} \text { to } \\ 10 t \end{gathered}$	$\begin{gathered} 10 \mathrm{p} \text { to } \\ 10 \mathrm{n} \end{gathered}$	$\begin{aligned} & 100 \mathrm{n} \text { to } \\ & 100 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 100 \mathrm{p} 10 \\ & 470 n \end{aligned}$
Typical tolerance (\%)	$\begin{gathered} \pm 2 \text { to } \\ \pm 80 \end{gathered}$	$\begin{gathered} -10 \text { to } \\ +50 \end{gathered}$	± 20	± 1	$\begin{gathered} \pm 5 \\ \pm 20 \end{gathered}$	± 20	$\begin{aligned} & \pm 1 . \pm 2 \cdot 5 \\ & \text { and } \pm 5 \end{aligned}$	± 20	$\begin{gathered} \pm 5.10 \\ \pm 20 \end{gathered}$
Typical voltage rating (d.c.)	50 V to 15 kV	$6 \cdot 3 \mathrm{~V} \text { to }$ $450 \mathrm{~V}$	$\begin{aligned} & 250 \mathrm{~V} \text { to } \\ & 600 \mathrm{~V} \end{aligned}$	350 V typical	63 V to 400 V	$\begin{aligned} & 63 \mathrm{~V} 10 \\ & 630 \mathrm{~V} \end{aligned}$	50 V to 630 V	6.3 V to 35 V	100 V to 1.5 kV
Temperature coefficient (ppm ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & +100 \text { to } \\ & -4700 \end{aligned}$	$\begin{gathered} +1000 \\ \text { (typical) } \end{gathered}$	$\begin{gathered} +100 \text { to } \\ +200 \end{gathered}$	$\begin{gathered} +35 \text { to } \\ +70 \end{gathered}$	-200	+60	$\begin{gathered} -15010 \\ \div 80 \end{gathered}$	$\begin{aligned} & +100 \text { to } \\ & +1000 \end{aligned}$	$\begin{gathered} -200 \\ \text { (typical) } \end{gathered}$
Stability	Fair	Poor	Fair	Excellent	Fair	Good	Good	Fair	Fair/Good
Ambient Temperaturerange $\left({ }^{\circ} \mathrm{C}\right.$)	$\begin{gathered} -35 \text { to } \\ +85 \end{gathered}$	$\begin{gathered} -10 \text { to } \\ +85 \end{gathered}$	$\begin{gathered} -25 \text { to } \\ +85 \end{gathered}$	$\begin{gathered} -40 \text { to } \\ +80 \end{gathered}$	$\begin{aligned} & -40! \\ & +100 \end{aligned}$	$\begin{aligned} & -55 \text { to } \\ & +100 \end{aligned}$	$\begin{aligned} & -40 \text { to } \\ & +70 \end{aligned}$	$\begin{gathered} -4010 \\ +85 \end{gathered}$	$\begin{gathered} -55 \text { io } \\ +100 \end{gathered}$

note that the values must be expressed in units of the correct magnitude to achieve a valid answer, as we said a few paragraphs carlier.)
Just for a bit of idle illustration. the circuit diagram for the R-C series is shown at bottom right of the screen. Note how the arrow changes direction and value depending on the charge/discharge mode. The capacitor symbol shown is that for a nonpolarised type (see later, plus Fig.2.4), but in reality the symbol should more reasonably be that for an electrolytic when high values of capacitance are used.
We suggest you experiment with different range values on the screen. and if you think you can actually time some of the graphs using your breadboard assembly, set R 1 and Cl to the same values as displayed. (Be sure to read Panel 2.3, however!)
In the accompanying Experimental anticle, we shall tell you about how to combine two or more capacitors to achieve different values. In this Tutorial section, though, it's time to discuss some more facts about capacitors - first have a read of Panels 2.4 and 2.5, and then read on from here:

CAPACITOR SELECTION

Some concepts referred to in this section are likely to be alien to you. Where they are not further discussed here, they will be covered in later parts of Teach-In. We have to mention then now as they are relevant to this section - you should re-read it once you have read the fulure parts. Should we not cover something that you are puzeled by, you can always ask us to clarify it through Circuir Surgery or Readout pages.
There are several factors to be considered when selecting a capacitor for a particular application, which include:
© Capacitance value

- Working voltage
- Tolerance
- Leakage curreni
- Temperature coefficient
- Stability

Unless you are involved wih a particu= larly demanding design, it is principally the first two which will concern you, but you should be aware of the following:
When substituting capacitors, either because they have failed in an existing circuit, or because the precise type specified in the components list of a constructional project is not readily available from your normal supplier, it is important to ensure that the replacement performs to a specification which is at least as good as that of the specified component.

PANEL 2.3 - BEWARE THE FORCE!

Do be warned that you should NEVER insert or remove components from a circuit board when the power is switched on.

Whilst this (arguably) is not so necessary to observe with pissive components such as resistors and capaciors in a low voltage circuit, active components (to be met later) such as innegrated circuits (i.c.s) and transistors can die in such circumstances.
It atso imporant to note that capaciors can hold their charge for a while even atier the power is switched off. Ideally. you should allow a few seconds for them w discharge before handling them. With a kow voltage supply. such as 6 V , this is perhaps not critical. However. with higher
vohages. of greater llhan 30 V for eximple, it is ESSENTIAL that you should allow for the discharge time. To really ensure that a capacitor is fully discharged, CAREFULLY rouch a $10 \mathrm{~K} \Omega$ resistor across its tve and -ve commections for a tew seconds = taking great care that YOU do not toluch the wires.

We also have to caution you (not as the "Old Bill" but as friendly voices across the page!) - DO NOT use a metal tool (e.g. screwdriver) to short out capacior terminals for instantaneous discharge. It can be damaging to both the capacitor and the screwdriver (although it does make a nice spark and minj-thundér crack!).

PANEL 2.4 - CAPACITOR TYPES

Capacitors are manufictured as having two very basic chameteristics. they are either:

Polarised, or

- Non-polarised
the latter being manufactured as fixed and variable capacitance types.
In circuit diagrams and constructionat charts, a fixed capacitor's numerical identity is usually prefixed by "C", e.g. C21. A variable capacior may have its number also prefixed by " C ". although it is more likely to be prelined by "VC" (Variable Capacitor), or perhaps "CV" (Capacitor Variable).

Polarised capacitors: as their name implies, are very particular about which side of them is connected to a (relatively) positive voltage. Connecting them the wrong way round can have dire results, a matter which is discussed in the mpin textIt is polarised capacitors that you have been using so far, sub-type "electrolytic" this is why we stressed earlier that you should only connect their twe and -ve feads as shown.

Non-polarised capacitors can normally be connected into a circuit either way round. alhough there are some circumstances where the relative position of the output electrode foil is placed in relation to other parts of a circuit. The coloured ends of some polystyrene capacitors, for example. can indicate this lype of polarity. although it is not a rrue polarity as referred to with regard to polarised electrolytic or tamalum capacitors. (The author has never
had occasion be concerned about this detail. over several decades of doing electronics.)
Capacitors are also manufactured in a seemingly-bewildering array of sub-types, basically named in respect of the nature of the dielectric material used between the plates:

- Electrolytic (polarised)
- Tantalum (polarised)
- Polypropylene (non-polarised)
- Polycarionate (non-polarised)
- Poiyester (non-polarised)
- Polystyrene (non-polarised)
- Metallised film (non-polarised)
© Ceramic (non-polarised)
- Mica (non-polarised)= sometimes called silver-mica
(2) Trimmers - variable capacitors (norpolarised)
- Air-spaced - variable capacitors (nonpolarised)
- Paper - now rare (non-polarised)

Oil-filled - now rare (non-polarised)
There are also sub-types of the subtypes! Have a look at a major component supplier's catalogue and prepare to be astonished . . . Fortunately, until you are much more into the depths of serious electronics design. the subtle differences beween some type's need be of little concern.
Typical physical shapes for six capacitor types are shown in Fig.2.6. A summary of the characteristics for the most commonly available types of fixed capacitor is given in Table 2.1.

Fig.2.6. Examples of capacitor body styles. Other styles exist.

However, it is quite permissible to replace a capacitor which has a working voltage rating of 15 V by one rated at 25 V . for instance. The working volage rating simply states the maximum voltage at which a component should be operated in nomal service. Generally speaking; a higher working voltage rating is nearly always acceptable electronically (physical size permitting, of course). Similarly. a capacitor with a tolerance of 20% can always be replaced by a similar one having a tolerance of 10%. A better tolerance rating is always acceptable electrically.

WORKING TO RULE

It is also important to note that working voltages are related to operating temperatures and at high temperatures (well above "normal" room temperatures) all capacitors should be significantly derated (assumed to
have a lower working voltage than that stat: ed). In normal everyday applications, however, this factor is usually irrelevant.
Capacitors should always be operated at. well below their nominal maximum working voltages. If a circuit is designed for operation at 9 V , for example, a capacitor rated at a working voltage of 9 V or 10 V should not be used, rather, one rated at 16 V or greater should be chosen. Even one rated at 63 V , for instance, would be acceptable, provided that its size (which is likely to be greater with increased voltage ratings) is suitable for the circuit board on which it may need to be mounted.

As a rule of thumb, the quoted working voltage rating should be at least 50% greater than the voltage at which the component is required to work in the circuit. although there are occasions, such as in power supply circuits, where a much greater margin should be allowed, possibly even as much as four times the nominal supply voltage.

Where an a.c. voltage rating is specified, this is normally for sinusoidal operation (sine waves) at either 50 Hz or $60 \mathrm{~Hz}(\mathrm{~Hz}$, or Hertz, is a unit of frequency in cycles per second). Performance will not usually be significantly affected at low frequencies (up to 100 kHz , or so). but above this. or when non-sinusoidal (e.g. pulsed) waveforms are involved, the capacitor must be derated in
order to minimise losses in its dielectric material which can produce intemal heating and lack of stability.
You should also be aware that a sinusoidal waveform normally has its voltage quoted as an r.m.s. (root of the mean square) value, whereas in fact its peak value is nearly 50% higher ($\times 1.41$), thus the chosen capacitor's volage rating must Gake this into account.

RIPPLE FACTOR

Capacitors used for smoothing and reservoir (substantial storage) applications in d.c. power supplies must have an adequate ripple current rating. This rating reiers to the a.c. characteristic of the current (at the ripple frequency, e.g. 50 Hz for UK mains operated power supplies) which remains after the principal altemating (a.c.) voltage has lveen rectified to a d.c. voltage.
Without a capacitor following the rectifier, the ripple voltage will be approximately half that of the original a.c. peak-io-peak

PANEL 2.5 - IDENTITY CODING

The majority of capacitors now have their values printed on them. although colourcoded varieties are still to be found. Examples of the colour codes which migh be encountered are shown in Table 2.2 plus Fig.2.7. As with resistors. the colours allocated to each numeral from 0 to 9 conform to the standard colour code system.
Where capacitors have thēir vălues printed on them, the information may well be abbreviated or allocated a letter coding. Ceramic capacitors, for example, may have their tolerance and voltage ratings coded as in Table 2.3.

A 3-digit coding is commonly used tō mark some ceramic capacitors. The first two digits correspond to the first two digits of the value, whilst the third digit is a
multiplier which gives the number of zeroes to be added to give the value in pF . e.g. $103=10000 \mathrm{pF}=0.01 \mu \mathrm{~F}$.

Which brings us to the sometimes misunderstood use of pF, nF and $\mu \mathrm{F}, \mathrm{An} \mathrm{nF}$ value is 1000 times greater than pF . and 1000 timies less than $\mu \mathrm{F}$. Therefore, the following typical conversions apply to values seen on somé capacitors:
$1 \mathrm{nF}($ or 1 n$)=1000 \mathrm{pF}$
$10 \mathrm{nF}($ or 10 n$)=10000 \mathrm{pF}=0.01 \mu \mathrm{~F}$
$100 \mathrm{nF}($ or 100 n$)=100000 \mathrm{pF}=0.111 \mathrm{~F}$
However, despite all this possible coding; with many modem capacitors, their values are normally obvious from the uncoded information printed on them (although you may need a magnifying glass in order to read them).

Table 2.2. Tantalum capacitor colour coding.
Reading from the top, Bands 1 and $2=$ Capacity, Spot $=$ Multipiler, Band $3=$ Voltage

Colour	Figure	Multipller		Vollage
Black	0	1	$\mu \mathrm{F}$	10 V
Brown	1	10	$\mu \mathrm{F}$	-
Red	2	100	$\mu \mathrm{F}$	-
Orange	3	-	-	-
Yellow	4	-	-	6.3V
Green	5	$=$	$=$	16 V
Blue	6	-	-	20 V
Viole!	7	\square	-	-
Grey	8	0.09	MF	25 V
White	9	$0 \cdot 1$	$\mu \mathrm{F}$	30 V
Pink		-	-	35 V

voltage. It is the job of the following capacjtor to smooth out that ripple, a task which is complicated when large currents are demanded by the ensuing circuit. Component data sheets and catalogues will usually quote the typical ripple current rating for the large value capacitors required for power supply use. The chosen ripple current rating should always be greater than the ripple current expected.

WHICH WAY ROUND?

A most important consideration when using polarised cupacitors (e.g. electrolytic and Tantalum). is that they should be connected the correct way round. The positive side of the capacitor must always be connected to the side of the circuit which has, or is likely to have, the highest voltage.
Açross power supply lines, this orientation of polarity will always be obvious the positive side of the capacitor goes to the positive supply line. It is not always so instinctively obvious when the capacior is

Fig.2.7. Tantalum capacitor colour coding.
being used to couple a.c. signals between different parts of a circuit. If in doubt, think about what d.c. levels are likely to exist if the a.c. signal ceases, and face the capacis tor accordingly.
There are instances, though, when the polarity of the voltage across an electrolytic might keep reversing (as in some types of oscillator, for example), adversely affecting both the capacitor and the correct operation of the circuit. In this case. two equal value electrolytic capacitors can be usèd in series, both negative ends connected together, both positive ends facing outwards. The value for each capacitor should be twice the total capacitance required.

If a polarised capacitor is connected the wrong way round, in extreme circum= stances it can over-heat, causing damage to itself and other components, and in a really severe case the capacitor may even explode. At the very least, the circuil may not operate as intended.

POLARITY MARKINGS

Polarity is usually clearly marked, but there are several ways in which it might be done. The ends from which the connecting wires come out may be marked with " + " or " " signs, or there might be a large arrow pointing to the negative end or to a particular wire (as we discussed at the beginning of this Tutorial). With electrolytic capacitors having a wire at each end (axial construction), the positive end is likely to have a crimp around the casing and the circular face at that end is likely to be a plastic material, often black.
Also, where the lead connections to the capacitor are obvious, the negative lead will be scent to be attached to the outer metal casing of the body. (The "opposite" term to axial construction is radial, in which both capacitor wires come out from the same end - shown earlier in Fig.2.1.)
Non-polarised capacitors can generally be connected either way round, although
there are specialised situations where the orientation in relation to the capacitor's outer foil may be significant (as we comment abour polystyrene capacitors in Panel 3.4).

Be aware that with very small polyslyrene capacitors, an occasional fault can be experienced in that the leads can become detached intemally. It is very unusual, but it can cause the capacitor to develop an open circuit, or a shor circuil.

LIGHTLY CHARGED

We suggest you now move on to the Experimental article and just generally play around as suggested there. You can even "lighten" up the experience as well.

Next month we look at components whose values are not rigidly tixed - variable resistors (variable capacitors will be discussed in a later part), and sensor resistors. Herr Georg Ohm and his famous Law also cone under scrutiny.

TEACH-IN 2000 - Experimental 2

MEASURING AND CALCULATING CAPACITANCE

IN the Tutorial of Pan 2, while using different R1 and Cl values on your breadboard to mimic the screen display, you might have come up against a bit of a snag! The screen has specified a C-R combination for which you don't have the component values. Well, actually, you know you can make up the resistor value using serial or parallel combinations, as discussed in Par 1. It's the capacitor values that are the problem.
Fret not! Capacitors too can be combined in series or parallel to achieve other capacitance values. The rules are as simple as those for resistors, except that they are the opposite way round.

GAPACITOR
 CDMBINAT/ONS

When capacitors are in series, as are the three shown in Fig.2.8a, the total capacitance value $\left(\mathrm{C}_{\mathrm{T}}\right)$ is calculated as:
$\mathrm{C}_{\mathrm{T}}=1 /((1 / \mathrm{C} 1)+(1 / \mathrm{C} 2)+(1 / \mathrm{C})+$ (etc))
which is, of course, identical to the resistors in parallel formula, except for the letter change.

Fig.2.8. Capacitor in series (A), and parallel (B).

- For capacitors in parallel (as for the three in Fig.2.8b) the formula is simply:

$$
\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+(\mathrm{etc})
$$

Computer program Capacitors in Series and Parallel, accessible from the main menu, allows you to set the values for two and three capacitors and have the computer calculate the resulting total series and parallel values (see Photo 2.4). There is also a Self-test option allowing you to check your understanding of the two formulae involved.

PARALLEL TEST

Set up your breadboard as shown in Fig. 2.9 (and Photo 2.5), in which three capacitors are shown in parallel (as in Fig.2.8b), where $\mathrm{Cl}=100 \mu \mathrm{~F}, \mathrm{C} 2=47 \mu \mathrm{~F}$ and $\mathrm{C} 3=2 \cdot 2 \mu \mathrm{~F}$. This combination is being used in place of the single capacitor (C1) in your Tutorial Part 2 charge/discharge experiment (Fig.2.2 and Fig.2.5). Resistor R1 is given a valuc of $100 \mathrm{k} \Omega$.
Do the charge/discharge experimeni. noting the time at the 63% and 37% voltage levels, ie. 4 V and 2 V respectively. (You will find it easier to do this experiment if you make up and use another short lead with two crocodile clips on it

Photo 2.4. Interactive computer screen for calçulating serial and parallel capacitor combinations.

Photo 2.5. Breadboard layout for examining capacitors in parallel.

Fig.2.9. Breadboard layout for capacitors in parallel experiment.

Did you achieve timings of aboutt 15 secs at the voltage points? That's the time constant associated with $\mathrm{Rl}=100 \mathrm{k} \Omega$ and $\mathrm{Cl}=$ 1504 F , the latter being very close to the answer of $149.2 \mu \mathrm{~F}$ for $\mathrm{C} 1, \mathrm{C} 2$ and C 3 in parallel.

SERIES TEST

Return to your screen graph and set C and R to $150 \mu \mathrm{~F}$ and $100 \mathrm{k} \Omega$, where you can see the 15 seconds timing when the graph slope crosses the percentage line.
Now calculate the total capacitance if the same three capacitors are connected in series, as shown in Fig.2.8a. If you don't get an answer of approximately $2.06 \not \approx \mathrm{~F}$, try again.
You won't be able to do the breadboard check with this value, the time-constant is too fast in this instance. but you can use the display to show the graph for the nearest available value of 2.24 F , i.e. 0.22 secs with R1 at $100 \mathrm{k} \Omega$. (Latet on, you could set up your own experiment using three capacitors in series for which a time constant significantly longer than 0.22 seconds is expected.)
The time constant for $2.06 \mu \mathrm{~F}$ (call it $2 \mu \mathrm{~F})$ and $\mathrm{R}=100 \mathrm{k} \Omega$ is actually 0.2 secs. Use your graph display to find out what value of R is needed to achieve that value when $\mathrm{C}=2.2 \mu \mathrm{~F}$. We trust you'll find it io be 91 k .

SLOWER TEST

On your breadboard, now use just one capacitor, with a value of 2204 F (100 times the value oi the above 2.24 F), and with the breadboard assembly of Fig. 2.2 modified to suit. Testing your knowledge of resistor combinations. replace R1 with a made up value of $91 k \Omega$. Two resistors will do it (within 100 olms) - what are they and how are they connected? (Refer back to Part 1 if in doubt.)
Now do your time check routine - the time constant should be (ideally) 100 times the above 0.2 secs, i.e. 20 secs.
This now brings us to an interesting point: how do you set an exact time constant without using multiple values of capaciors and resistors? The answer's simple, and there are two ready-made components that help in this, the variable capacifor, and the variable resistor (more commonly known as the potentionterer). The latter we shall investigate next month.

LIGHTING UP TIME

We are again going ask you to use a light emitting diode (l.e.d.), as we did in Part 1. We are also asking you to use an inverting logic gate (also known as a NOT gate). You'll be told more about both devices on another occasion, but you don't need to fully understand them if you use them as we now tell you.

The l.e.d., as you discovered in Par 1. is a neat little device that glows when a voltage is connected across it in a specific direction via a suitable resistor.

It is important that the resistor should be used since the l.e.d. cannot survive if more than about 2 V is connected across it. You are about to use it with a 6 V supply, and the resistor has to drop the voltage to an acceptable level. In this instance we want you to use a 470Ω resistor, as we did previously.

What we want to do is use the le.d. (call it DI) to indicate when a certain voltage has been reached on a charging or discharging capacitor. The problem is, though, that the time constant when a 4700 resistor is used is too shon for the capacitance values you can realistically select.

We need, therefore, to use a technique ühich allows a reasonably long time constant to be set, and still to provide enough power to drive the l.e.d. via a 470 O resistor (call it R2).

This is where the logic gate (call it IC 1 a) is used - as a type of amplifier. Amongst your bag of parts you'll find some black "caterpillars" with 14 legs, seven-a-side. Find one marked 74 HCO 4 . There are likely to be lots of other forms of marking as well. but somewhere you should be able to discem the 74 HCO 4 identity.

The 74 HC 04 and the l.e.d. are examples of components that belong to the general class known as active devices (as opposed to the general class called passives, of which resistors and capaciors are exaniples). Like the l.e.d., the $74 \mathrm{HC04}$ is another member of that enormous fanily of components referred to as semiconductors. It also belongs to a sub-group of that tamily, generally known as integrated circuits (often abbreviated to i.c.s). More particularly, it is a digital logic i.c.

SEMICONDUCTOR HANDLING

As with electrolytic capacitors, by far the vast majority of semiconductors can only be connected to a power supply in one direction. Many can die if connected the wrong way round. Even if they don't die, they will not work correctly. This is equally true for a 74 HC 04 .

Always connect semiconductors and other active devices into a circuit in the manner specified in circuit diagrams, constructional layouts or data sheets. Always ensure that the circuit's power supply is switched off before inserting or removing them.

One further cautionary note: You will be aware that you can sometimes generate sparks when combing your hair or taking off a sweater. This is caused by the discharge of static electricity which can build up on some substances. including your body and that of animals. frequently by the action oí friction in a dry atmosphere. Such discharges, if they occur when you touch some semiconductors can kill the devices the level of voltage discharge being greater than the device is designed to handle.

To avoid this happening. it is advisable to touch an earthed bare metal object inmediately prior to handling integrated circuits. A water pipe is a suitable object, as is the exposed bare metal work of an item of earthed mains powered equipment. When i.c.s have been supplied in a black plastic foam, or bag nfarked as being "static sensitive", leave devices where they are until needed. Then keep the handling of their legs to a minimum.

The author reassures you, however, that for all the years he has been handling ic.s, he cannot remember killing one with static electricity. They are very robust, especially those manufactured over the last decade or so.

We shall discuss static electricity further in a future part of Teach-lh.

INVERTER GATE

The 74HCO4 device is known as a her (six) inverter gate - in other words it has six inverter gates within it, all usable separate1y. It's pinouts are shown in Fig. 2.10, where the symbols within the outline are those for inverter gates.

Fig.2.10. Pinouts and typical case style for 74 HCO 4 hex inverter gate. Note the inversion gate symbols within the pinout draving.

An inverter gate, as you will be lold when we discuss digital electronics in a later part. has an output that is at a level called logic High when its input is at a level called Logic Low, and vice versa.

So what's Logic High and Logic Low? Well, in this instance, High refers to +6 V (the power supply voltage level) and Low is simply $0 V$. The two terms are respectively also known as Logic 1 and Logic 0.

The logic gate, though. does not have to have exactly 0 V or +6 V on its input for the output to respond. There is a range of voltage levels below which the gate thinks it's being provided with Logic 0. and there's range of voltage levels above which the gate thinks it's being provided with Logic 1. In a region somewhere between those two levels, the gate tends to get a bit confused and may keep changing its mind about what logic level in's being offered.

Although this dithering would be a probfem in a digital circuit, it's of no great importance for what we are going to do here, which is to connect the gate's input to the resistor-capacitor series you have been charging and discharging.

Fig.2.11 and Photo 2.6, breadboard layout for the first timing experiment using an inverter gate.

INITIAL ASSEMBLY

Connect up your breadboard as shown in Fig.2.11 (see also Photo 2.6). Note two things in particular: the position of the flat side on the l.e.d., and the position of the "notch" (or dot/dimple, on some devices) of the $74 \mathrm{HCO4}$. (See also Practically Speaking on page 834 last month - Nov '99.) The circuit diagram for this component confliguration is shown in Fig.2.12.
Now perform some more capacitor charge/discharge experiments. You will see that the l.e.d. is on when the capacitor voltage is fairly low, and off when the voltage is fairly high. You may find that the l.e.d. blinks a bit between the two levels - this is due to ICl not being sure of its input logic level. The effect is more likely to be seen when the time constant is really slow.

See if you can establish what the capacitor voltage is when the l.e.d. on-offness fully changes from one state to the other.

MORE L.E.D.S

Just for fun, connect up another inverter gate (IClb) and five more l.e.d.s (D2 to D6)

Fig.2.12. Circuit diagram for the experiment in Fig.2.11, plus (left) pinouts for a typical l.e.d (light emitting diode).
plus the extra resistors (R3 to R7-also of 470 () as shown in Fig.2.13.

Now you will find that D1 and D2 alternate in their on-off states. This is due to D2 being connected to the +6 V power supply, whereas D1 is connected to the 0 V line.

The action of D3 and D4 will be seen to be the opposite of D1 and D2 (as will D5 and D6). Which brings us to an interesting poini about inverter gates. When two are used in

Fig.2.13. Breadboard assembly of Fig.2.11 modified to include five more l.e.d.s.
series, as done here, a double inversion occurs and so the final output logic level is the same as seen by the input to the first gate.
What we'd also like you to do is to make a note of the voltage that actually occurs at the junctions oi the l.e.d.s and their respective resistors. Also note the voltages at the outputs of the two gates - do they actually reach 0 V and +6 V ?

What affect do two l.e.d.s have on the output voltages of the gates? Compare with the voltages produced without l.e.d.s connected. We shall discuss this in another Tutorial. Also see if you can draw the circuit diagram for Fig.2.13.

FLASHY

We wonder if you realise how easy it is now to put the capacitor charging/discharging under automatic control for perpetual repetition of the cycles? One way to do it, using an additional imventer gate, IClc, is shown in the circuit diagram of Fig.2. 15 (we'll discuss the change of i.c. type number from 74 HCO to 74 HCl 4 in a moment).
Using the values shown, reconstruct your breadboard assembly as illustrated in Fig.2:14 (deleting D5, D6. R6, R7), and still using the 74 HC 04 device. Note that a crocodile-clipped link is made between point Vout3 and Vin. See also Photo 2.7.
Connect up the power. What you should see now is that all four l.e.d.s appear to be glowing, but at a reduced brilliance level. In fact, they are all rapidly switching on and off, but too fast to differentiate between

Fig.2:14 and Photo 2.7, layout for the oscillator experiment, (Fig.2.15). Note the new link between ICr pins 4 and 5.
them. In the author's test model, the rate was in excess of one million cycles per second (1 MHz)!

The clever thing we/you have done is to use ICle to invert the output of ICIb, and then to use the output of ICIc as the power supply for the resistor-capacitor chain.

With the correct combination of R1 and Cl values, this has the effect of repeatedly switching the voltage feeding into RI between +ve and 0V. Here's why:

When power is first switched on, the voltage at the input to ICla and the output of ICIb will be low (double inversion), and the output of ICle will be high (another inversion). This output is now supplying + ve to R1, and C1 starts to charge up (as it did when you connected it directly to the + ve voltage line).
We said earlier that inverter gates have a threshold voltage above which an input level of Logic 0 is assumed. Eventually. as Cl continues to charge, the voltage at the input of ICla will rise above the threshold, and ICla's output will fall to Logic 0 . As a result, the output at IClb will immediately go high, and the output of IClé go low.

This action, in an instant, causes Cl to start discharging through R1. Eventually, there comes the point when the discharging voltage falls to the Logic 0 level as seen by the input to ICla. It now once more switches its output back to Logic I, IClb output switches back to Logic $\mathbf{0}$, and IClc switches to Logic 1 again.

The cycle has now been completed, and starts all over again. Thus it continues, adinlinitum, until something stops it, such as you disconnecting the power!

What you have created with this simple component arrangement. is an oscillator.

For interest, try to take a voltage reading at ICle pin 6. You will find that is probably exiremely erratic, although it may indicate a voltage at around the 3 V mark (half-way between the 6 V battery supply and 0V).

SCHMITT TRIGGER

As the circuit stands, its frequency of oscillation is somewhat unpredictable. We said earlier that the 74 HC 04 has a midway inpul voltage level range in which the inverter is not too sure which logic level is being applied to it. It is at this midyay level that the circuit is

Fig.2.15. Circuit diagram for the oscillaţor experiment.
rapidly switching over from one state to another. What we ideally need is for the circuit to switch over only at the input levels which are guaranteed to be Logic 1 and Logic 0 .
To achieve this exactitude with an ordinary inverter gate such as the 74 HC 04 would require the use of additional circuitry. However, there is a similar inverter type which aumomatically responds only to those input voltages which are at the guaranteed logic levels. ignoring those input voltages which lie between the two thresholds. Such an inverter is known as a Schmift trigger inverter.
One type of Schmitu trigger inventer is the 74 HCl 4 which, like the 74 HC 04 , has six inverters within it and its pins are arranged in the same order. Nore the symbol within each of the invener outlines in Fig.2.15 that indicate is Schmill trigger status.
With power disconnected. find a 74 HCl 4 device from your bag of cemponents and substitute it into the 74 HCO position on your breadboard.

When power is re-applied, you will see a considerable difference in the rate at which the l.e.d.s now flash. Indeed, you should be able to count the flashes quite readily. This dramatic change in the flash rate is entirely due to the switchover occurring only at the guaranteed Schmitt trigger logic levels.

Using your meter you can now rack the voltage level at the RI/CI junction at which the logic changes occur. Also meter the output of ICle (pin 6 - Vout3). You will see that it is repeatedly switching between Logic 1 and L.ogic 0 .

TIME OUT

Before Part 3, think up some timing and capacitor value situations and see if you can solve them using the various software options and a calculator. Also sec if you can get the oscillator to run so that its output at ICIc changes at exact intervals of your choosing. say once per second or once per 10 seconds. Until next month, bye for now.

DISTANCE

LEARNING COURSES in:
Analogue and Digital Electronics Circuits, Fibres \& Opto-Electronics Electronic Testing \& Fault Diagnosis Programmable Logic Controllers Mechanics and Mechanisms GCSE and BTEC Mathematics

11 Courses to suit beginners and those wishing to update their knowledge and practical skills

- Courses are delivered as self-contained kits
[11. No travelling or college attendance
ETE Learning is at your own pace
1- Courses may have
BTEC Certification and Tutoring
For information contact:
NCT Lid., P.O. Box 11
Wendover, Bucks HP22 6XA
Telephone 01296 624270; Fax 01296625299 Web: http:/wnw.nct.Itd.uk

SQUIRES

MODEL AND CRAFT TOOLS

A comprehensive range of Miniature Hand and Power Tools and now an extensive range of
ELECTRONIC COMPONENTS featured in a fully illustrated
336-page Mail Order Catalogue 1999 Issue SAME DAY DESPATCH FREE POST \& PACKING

Catalogue free of charge to addrēsses in United Kingdom. For overseas send 6 Internätional Reply Coupons tō:

Squires, 100 London Road, Bognor Regis, West Sussex PO21 1DD
Tel: 01243842424 Fax: 01243842525
SHOP NOW OPEN

WHETHER ELIEGMRONIGS IS YOUR HOBBY QR YOUR LNVFLIUOD. .
 YOU NEFD THE MODERN EL EGTRONICS MANUAL and the HLEGHiONICS SERMGZ MANUAL

THE MODERN ELECTRONICS MANUAL

The essential reference

 work for everyone studying electronics- Easy-to-use format
- Clear and simple layout
- Comprehensive subject range
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Detailed supply information
- Professionally written
- Regular Supplements
- Sturdy ring-binder

EVERYTHING YOU NEED TO GET STARTED AND GO FURTHER UN ELECTRONICS!

The revised edition of the Modern Electronics Base Manual contains practical, easy-to-follow information on the following subjects:

BASIC PAINCIPLES: Electronic Components and their Characteristics (16 sections from Resistors and Potentiometers to Crystals, Crystal Modules and Resonators), Circuits Using Passive Components (9 sections), Power Supplies, The Amateur Electronics Workshop, The Uses of Semiconductors, Digital Electronics (6 sections), Operational Amplifiers, Introduction to Physics, Semiconductors (6 sections) and Digital Instruments (5 sections).

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own project. From basic principles, like soldering and making printed circuit boards, to circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers,
amplifiers, car projects, computer interiaces, measuring insiruments, workshop equipment, security sysiems, eic The Base Manual describes 13 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.ç.s.
EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not iamiliar with, simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.

The Manual also covers Safety and Suppliers The most comprehenstive reference work ever produced al a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential' information you need.

THE MODERN ELECTRONICS MANUAL

Revised Edition of Basic Work: Conlains over 900 pages of information. Edited by John Becker.
Regular Supplements: Approximately 160 -page Supplements of additional information which, if requested, are forvarded to you immediately on publication (four times a year). These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format
Price of the Basic Work: £39.95 (to include a recent Supplement FREE)

Guaranter

Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition, together with the Digital Multimeter, within 30 days and we will make a full refund of your payment - no small print and no questions asked.
(Overseas buyers do have to pay the overseas postage charge)

ELLEGTRONIOS SERMG- MANUAL

EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT

SAFETY: Be knowledgeable about Satety Regulations, Electrical Satety and First Aid. UNDERPINNING KNOWLEDGE: Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circult Measurements, Radio, Computers, Valves and manuiacturers' Data, etc.
PRACTICAL SKILLS: Leam how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components.
TEST EQUIPMENT: How to Choose and Use Test Equipment, Assembie a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc.
SERVICING TECHNIQUES: The regular Supplements incluce vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, VIdeo Recorders, Personal Computers, eic.
TECHNICAL NOTES: Commencing with the IBM PC, PC-XT, PC-AT, this section and the regular Supplements deal with a very wide range of specific types of equipment.
REFERENCE DATA: Detalling vital parameters for Diodes, Small-Signal Transistors,
Pover Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include
Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

ELECTRONICS SERVICE MANUAL

Basic Work: Contains around 900 pages of iniormation. Ediled by Mike Tooley BA
Regular Supplements: Approximately 160 -page Supplements of additional information which, if requested, ate forwarded to you immedialely on publication (four times a year). These are billed separately and can be discontinued at any time.
Presentation: Durable looseleal system in large A4 format
Price of the Basic Work: $£ 39.95$ (to include a recent Supplement FREE)

ORDER BOHIH MANUALS TOCEMHER AND SAVE OVER \&10!
 A mass of well-organised and clearly explained informatton is brought to you by expert editorith feams whose combined experience ensures the widest coverage
 Regular siupglements to these untque publloallons, each around 160 pages, keep you abreast of the latest technology and techniques If required

REGULAR SUPPLEMENTS

Unlike a book or encyctopecia, these Manuais are living works - continuously extenced with new material. If requested. Supplements are sent to you approximately every three muntins. Each Supplement contairs around 160 pages - all for only $£ 23.50 \div £ 2.50$ pap. You can, of course, retum any Supplement (within ten days) which
,
you feel is superfluous to your needs. You can also purchase a range of past Supplements to extend your Base Manual on subjects of particular interest to you.

RESPONDING TO YOUR NEEDS

Weare able to provide you with the most important and popular, up to date, features in our

The essential work for servicing and repairing electronic equipment

- Easy-to-use iormal
- Clear and simple layout
- Vital safety precautions
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Professionally written
- Regular Supplements
- Sturdy ring-binder
 send me a Digital Multimeter (offer ends.Dec 15, 1999) together with

THE MODERN ELECTRONICS MANUAL plus a FREE SUPPLEMENT

ELECTRONICS SERVICE MANUAL plus a FREE SUPPLEMENT
| enclose payment of $£ 39.95$ (for one Manual) or $£ 69.75$ for both Manuals (saving.over | $£ 10$ by ordering both together) plus postage if applicable.
I also requlre the appropriate Supplements four tlmes a year. These are bllled separately and can be discontinued at any time. (Please delete if not required.)
Should I decide not to keep the Manual/s I will return itthem and the Digital Multirfeter to you within 30 days for a full refund.

FULL NAME
ADDRESS

1 Card No.
Card Exp. Date
Supplements. Our unique system is augrmented by readers' requests for new information. Through this service you are able to let us know exactly what information you require in your exactiy
Manuals.

You can, also contact the editors directly in writing if you have a specific technical request or query relating to the Manuals.

Price PER MANUAL		
Postal Region	Surface	Air
Mainland UK	FREE	
Soottish Highlards, UK islands \& Eire	§5.50	-
Europe (EU)	\cdots	¢20
Europe (Non-EU)	$\underline{\mathrm{c}} 20$	£26
USA \& Canada	£25	233
Far East 3 Australasia	£3)	£35
Rest of World	£25	£45
Please allow four n NOTE: Sutace mal can tis the worti Each Manual	ays for 10 wets atout 5 kg	livery. re fatis packed

[^2]POSTAGE CHARGES

GINORMOUS STOPWATCH

NED STO JADINOVIC 를 Part 2

Now you're "up and running", why not add some Giant Displays to your events Stopwatch.

This Large Digit Display unit was originally designed for use with the Ginormous Stopwatch module presented last month. It has 178 mm (7 -inch) characters and can use high brightness l.e.d.s for dazzling daylight performance.

It can also be driven from a standard computer serial port with the optional adapter, allowing it to be used as a scoreboard. bingo number display, clock, etc.

CIRCUIT OVERVIEW

The heart of the circuit is a PIC16C54 microcontroller and this has two relatively simple tasks. The first is to receive serial data from the Stopwatch module or computer serial port. The data reaches the micro via an optoisolator (IC4), as discussed in Part 1, and the individual digit modules can be daisy chained together -up to a maximum of 16 modules.
The software responds to all 16 addresses but the Stopwatch module only uses seven of them. However, when driven from a computer using the Serial Port Converter, the Large Digit Display units will respond to all 16 addresses.
The second task is to switch on the various segments on the display to form the digits 0 to 9 .

SOFTWARE

In keeping with the author's stated objective of designing without designing, he used iwo pieces of software from the Parallax web site at whw.parallaxinc.com. These were from application notes conceming receiving serial ditia and uilising a jump table to display digits on a 7 -segment display. Readers are referred to these notes.

It is interesting to note that it was easiest to choose the same crystal frequency as the Stopwatch module $(3.2768 \mathrm{MHz})$. This allowed the author to play with the soft= ware's "bit_ k " constant without worrying about serial link compatibility between the Stopwatch and Large Digit modules.

Of course, large display modules that are to be driven by a computer must comply with the standard computer baud rates and everything has been standardised at 9600 bits/sec.

It was necessary, though, to come up
with a protocol to address the corsel module and tell that module what number to display. This turned out to be quite easy, and it can be done in one byte.
First, consider the number to be displayed. In binary you need four bits to display the digits 0 to 9, like this:

Completed "7-segment" Giant Display module. The figures measure 178 mm bÿ 100 mm approx.

Actually, four bits will allow you to count fromit 0 to 15 (binary 1111), but we only need to count up to 9 . Let's call these bits " n ", as in "mnnn". Similarly, four bits will allow us to have modules numbered from 0 to 15 , call these bits " d ".

Computers and PIC micros like to deal in bytes, which are cight bits, so the software makes the "nnmn" and "dddd" bits into artificial bytes:
dddd becomes ddddo000, which is one byte
nnnn becomes 0000 nninn, which is another byte
The two bytes are ORed together (inclusive-OR) bit by bit to form a single byte which looks like ddddnnnn. This single byte contains both the module number and the digit to be displayed.

For example, to make module I display the number 1, the output byte would be 00010001 . To make module 2 display the number 1 it would be 00100001 .

CIBCUIT DIAGRAM

Referring to the circuit diagram in Fig.1, data is received via the optocoupler IC4. The driving device (e.g. the Stopwatch) switches an l.e.d. inside the oplocoupler on and off and the light from its l.e.d. shines onto an optotransistor, switching it on and off in unison.

Resistor R1 holds the output of IC4, pin 5 , at 5 V until the transistor switches on and shors pin 5 to ground. Pin 5 is connected directly to the PIC microcontroller IC2 at its pin RB7, which is set up as an input pin.

When output pin 5 of IC4 is at 0 V , it switches on transistor TR1 and, via current limiting resistor R3, causes current to flow through optocoupler IC4 of the next digit module. In this way the modules are daisychained one to the next.

Dual-in-line switch S1 to S4 is used to set the digit's module address number by placing the relevant code on the PIC's RAO to RA3 data pins. Pins RA0 and RAl are normally held at 0 V via resistons R4 and R5; pins RA2 and RA3 are normally held at 5 V via resistors R6 and R7. This method of biasing was done simply to make the board design casier and the software takes it into account. When the appropriate swith is closed, the logic level seen by pins RA0 to RA3 is inverted

The status of the switches is read whenever a serial data byte is received by the

PIC via its RB7 input. The 4-bit status code forms the "dddd" bits referred to earlier.

DISPLAY

Pins RB0 to RB6 of the PIC are used as the 7 -bit output to the seven sets of 10 l.e.d.s that make up the seven segments of the display. The PIC16C54 cannot by itself handle the current required by the l.e.d.s and so IC3 acts as an intermediary buffer.
This device is a rugged little chip intended as a solenoid driver and can handle almost 50 V and 500 mA , and is nice and cheap as well. It is essentially seven opencollector Darlington transistors that can be tumed on and off by the 5 V and 0 V logic level voltages from the PIC.

The l.e.d.s are arranged in pairs in a series/parallel arrangement, nieaning that one pair is connected in series with the next pair. There is a voltage drop of nearly 2 V across each l.e.d. or pair of l.e.d.s in a parallel arrangement and the five pairs are arranged in series.
Thus the five pairs will drop the 12 V supply by $5 \times 2 \mathrm{~V}$. or about 10 V . leaving the ballast resistor with $2 \mathrm{~V}(12 \mathrm{~V}-10 \mathrm{~V})$ to reduce to zero. The l.e.d.s run well at about 20 mA and so a simple application of $E=\mathbb{R}$ gives a value of 100 ohms for the ballast resistors.
The value of the ballast resistor is not

Fig.2. Circuit diagram for a simple Serial Port Converter Interiace add-on. The values of resistors R18 and R19 should be 330 ohms for 9 V and 560 ohms for 12 V .
critical and the l.e.d.s will put out good light from about 10 mA to some 30 mA . which is the maximum for most l.e.d.s. If you need to save power, try putting in 220

Fig.1. Circuit diagram for the Giant Digital Display module:
ohms ballast resistors and see how the light output looks.
The decimal point and colon l.e.d.s are done the same way except that the l.e.d.s are all in series as there are not as many of them. These l.e.d.s are not controlled in any way and are simply connected across the 12 V power supply. via limit resistors R 15 and R16. constantly remaining on while the power is on.

SERIAL PORT CONVERTER

The digit modules can also be driven from a computer serial por with the aid of a converter module interface (see Fig.2). This is simply a Darlington transistor switch (TR2) which convent the $\pm 15 \mathrm{~V}$ signals from the serial por to voltages of the correct polarity to drive the oplocouplers.
The transistor also provides the reasonably heavy current required by optocouplers connected in "star" configuration (see the last section of this article).
The converter has its own powsir supply because it has to provide power to the internal le.d.s of the optocouplers. The battery used can be 9 V or 12 V merely by changing resistors R18 and R19. The values should be 330Ω for 9 V and 560Ω for 12 V .

The converter also has an l.e.d. on board (D79) to indicate serial port activity and is a great help for trouble shooting.

CONSTRUCTION

The printed circuit boards for the Large Digir Display and optional computer Serial Port Converter Inierface board are available from the EPE PCRS Service page, codes 247 and 248 , respectively. The component assembly and track layout delails for the boards are shown in Fig. 3 and Fig. 4.

There is nothing difficult about the construction but the l.e.d.s are, as may be expected, rather tedious. It is suggested that you test each segment as it is finished.
Start assembly of the Large Display board (Fig.3) with the top right segment. Insert all the l.e.d.s and make sure that they are all the correct way around. noting that some high brightness l.e.d.s have different orientations to those of ordinary l.e.d:s. If

in doubt, you can check by temporarily connecting the l.e.d. in series with a $1 k \Omega$ resistor across a I2V power supply.
Flip the board over and solder only one lead of each l.e.d. When you have done that. go back and grasp both leads of each l.e.d. and re-melt the solder while gently pulling upwards on the leads. This will seat each l.e.d. onto the circuit board and generally make sure it is pointing straight out from the board. This is important as high brightness l.e.d.s only appear bright when you look directly onto them. if they are tilted they look dull and this makes the display look patchy.
Go back and solder each second lead and give the first soldered lead a touch up with fresh solder if necessary. Now solder in all of the ballas! resistors (R8 to R16) and some power leads for the 12 V supply.

DIGIT MODULE	
R1	о¢́ See
	10k (50ff) Stup
R3, R15,	200 TA . $\mathrm{K}^{\text {d }}$
R16 ${ }_{\text {R }}$	
All resistors 0.25W	
$\mathrm{C}, \mathrm{C} 2$	15 pF ceramic
C3, C6	100n ceramic
C4	470, radial elect. 1
C5	$47 \mathrm{\mu}$ radial elect. 10 V

Semiconductors

D1 to 078 red l.e.d., 5 mm , normal or high brightness
TR1 BC558 pnp transistor
IC1 - 78L05 +5 V 100 mA
1 v2 voltage regulator
1 C 2 PIC16C54
microcontroller, preprogrammed
IC3 ULN2003 $7 \times$ Darlington driver, common emitter IC4 4 N 25 or 4 N 28 optoisolator

Miscellaneous
S1 to S4 4-way d.t.i. orioff swaftch
X1 3.2768 MHz crystal
(see text)
Printed circuit board, available from the EPE PCB Service, code 247; 6-pin d.i.l. socket; 16 -pin d.i.l. socket; 18 -pin d.i.l. socket; connecting wire; solder, etc.

SERIAL PORT CONVERTER

Resistors
R17 1k2
R18, R19 330Ω for $9 \mathrm{~V}, 560 \Omega$ tor 12 V
Semiconductors
TR2 BD681 (of equivarent. e.g. Tip141 or TIP142) npn Darlington transistor
079 rèd l.e.d., 5 mm
$080 \quad$ N4148 signal diode

Miscellaneous

Printed circuit board, available from the EPE PCB Service, code 248; cōnnector to suit serial port lead used.

Approx. Cost cuidance Only

Table 1: Module Selection Switches

Module Switch Settings					
No.	1	2	3	4	Display
0	off	off	off	off	*
1	off	off	off	on	hundredth seconds
2	ofi	off	on	oif	jenth seconds
3	off	off	on	on	seconds
4	off	on	off	off	ten seconds
5	off	on	off	on	minutes
6	Off	on	on	Off	ten minutes
7	Off	on	on	on	hours
8	on	off	off	off	ten hours
9	on	off	off	on	*
10	on	off	on	off	㳀
11	on	Off	on	on	*
12.	on	off	oif	off	*
13	on	or	Off	off	\star
14	on	on	on	off	\star
15	on	on			*
* Used in computer version with the Serial Port Converter.					

DISPLAY TEST

To test the segment, connect the 12 V supply and connect a flying lead to ground (0V). Touch the flying lead to the end of resistor R13 that is nearest to the bottom of the board. The segment should light up nice and bright.

If it does not, look for l.e.d.s the wrong. way around, broken tracks, or the wrong ballast resistor value, in that order.

If all is well, continue inserting l.e.d.s; testing, inserting, testing...

If any l.e.d.s are a tight fit at their skirts, gently file down their sides until there is

Completed control and power supply area of the Display p.c.b.

room for them to sit withoutcolliding-with their neightibours.

Because the colon and decimal point tie.d.s are intended to be permanently tumed on, they (and/or their ballast resistor) should be omitted if those functions are not required on any of the boards.

Put in all the other components and sockets for IC2 to IC4, but do not install the i.c.s yet.

TESTING

Power up the board and at the IC2 socket test for 5 V and OV at pins 5 and 14. This will test the power supply regulator IC1, and will also show up any solder splashes or broken tracks to these pins.

Switch off the power and insern IO3, the l.e.d. driver device. To now test the operation of the various segments, take a flying lead and connect one end to 5 V . say to the link wire immediately below ICl. Touch the other end of the flying lead in turn to pins 1 to 7 of IC3's socket and you should see each, of the segments light accordingly.

If you have conniected the colon or decimal point l.e.d.s, they should have turned on when you applied the power.

Now power down and carefully put the PIC (preprogrammed, of course) into its socket, being very careful about orientation. Remember that it is a CMOS chip and so be sure to briefly ground yourself to discharge static electricity before handling it. Also insen IC4.

Tuming on the power should now give you a nice big figure " 0 " and if not, immediately power down and start looking for causes. The Stopwatch article last month has some tips on troubleshooting this type of circuit.

If you are using the Stopwatch module, connect it to one digit board via a handy length pair of keads, being careful to connect signal and ground wires the correct way around. Select the module address number via the di.i. switch (S1 to S4) as per Table 1. Note that the software "knows" that switches S3 and S4 are connected in order of RA3 and RA2 (instead of RA2 and RA3 as night be expected).

Power up both boards and start the Stopwatch. This should immediately start the digit board displaying the selected time unit. If it just sits on "0", use a logic probe or similar to test for a fast changing signal on pin 5 of the optocoupler, IC4.

PORT INTERFACE

If using the Serial Port Converter. connect up the digit board and power as above. Now run the QBASIC demo program, making sure that the module d.i.l. switches are all off. Put in a different sivitch setting from the list each time you run the program and the module should immediately display the correct number.

You will know if the converter is working by observing its l.e.d. Whenever serial data is being transmitted it will flash quite noticeably.

STAR CONNEETION

The digit modules are designed to be hooked up in "daisy chain" configuration, see Fig.5a, and this should work well in most cases. It is possible. especially when many modules are used for the signal to get a bit lost in its trip down the chain; remember the design allows up to 16 digit modules to be used.
In this case, use the "star" configuration in Fig. 5 b where the driver transistor in the Stopwatch or Serial Port Converter switches all of the optocouplers directly. Note that this will put quite a strain on the battery of the Serial Port Converter or Stopwatch module as it now has to power all of the optocouplers at the same time.

To select a battery size, assume that each module uses about 15 mA when running and plan accordingly. For example, 10 modules times 15 mA is 150 mA and so a battery of 1.2 Alh (amp hour) capacity will drive the display for eight hours.

COMPUTER
 SERIAL PORTS

While developing this project the author came across a strange fact: not all compurer serial ports operate at quite the same speed and the modules will consequently malfunction on some computers.
For those programming their own PIC and wanting to drive the modules from a computer port, try varying the value of "bitk" in the software for the PIC. The

Fig.5. Suggested method of connecting the Giant Display modules to the Stopwatch (Part 1) or Serial Port Converter. (a) In "daisy chain" fashion or (b) "star" configuratiön.
comments section in the source code tells you how to do it.

If you only want to drive the modules from a computer, a slighly different source code for the PIC has been included (called serin 4.5 sc) which requires the use of a 4 MHz crystal instead of the 3.2768 MHz one, and operates at 2400 baud. The slower baud rate is unnoticeable to our slow human senses and results in a design which is forgiving of long serial cables and bit rate errors in the computer or micro.

SOFTWARE

The sofiware for the Large Digit module, including the QBASIC demo program, is available on a 3.5 -inch disk from the Editorial office (see EPE PCBISoftware Service page for details and cost), and free wia the EPE web site.
Preprogrammed PICs for this module are available as discussed in Shoptalk.
Note that since publicaton of Part I the software has been revised by the author The new version is on the EPE disk and website

One Display module being driven by last month's Stopwatch.

EVERVIBAY

PRACTTCAL

We can supply back issues of EPE and ETI（see panel）by post，most EPE issues from the past five years are available．An EPE index for the last five years is also available－see order form．Alternatively，indexes are published in the December issue for that year． Where we are unable to provide a back issue a photostat of any one article（or one part of a series）can be purchased for the same price．

CULV 98

PROJECTS O PIC16×84 Toolkit a Noise Cancell－ ing Unit o Low Battery indicator o Greenhouse Computer－1．
FEATURES－Using the L200CV Voltage Regulator © TEACH－IN＇98－9－Ingenuity Unlimited－Circult Surgery o Net Work．

AUल 98

PROJECTS－Lightbulb Saver－Float Charger －PC Transistor Tester－Greenhouse Com－ puter－ 20 Time Machine Update．
FEATURES • TEACH－IN＇98－10．Circuit Surgery o Techniques－Actually Doing it－ Ingenuity Unlimited．

SEPT G8

PROJECTS－Mains Socket Tester－Personal Stereo Amplifier－Greenhouse Radio Link－ PIC Altimeter．
FEATURES－TEACH－IN＇98－11－Ingenuity Unlimited－Circuit Surgery－Intertace o Net Work ：Crocodile Clips Review．

OCT 38

PROJECTS－Voice Processor o Digiserv R／C Channel Expander o Reliable Infra－Red Remote Control o PC Capecitance Méter．
FEATURES o Easy PCB Making © Using LM335 and LM35 Temperature Sensors－Circuit Surgery o Ingenuity Unlimited o Nei Work．
hIOV 98 Photostats Onlly
PROJECTS－PIC Tape Measure－T－Star Electronic Thermostat－1－Phizzy 8 Computers － 1 － 15 －way Infra－Red Remole Control．
FEATURES－Circuit Surgery © Ingenuity Unlimited－Nevi Technology Update o NE： Work－The internet o Easy PC for Windows 95 Review o FREE EPE CD－ROM No． 1.

DECg8 Photostatsont

PROJECTS－EPE Mind PlCkler－1－Fading Christmas Lights o Handheld Function Gener： ator－Damp Stat Electronic Thermostat．© Phizzy日 Computers－2．
FEATURES－PhizzyB Computers－2 Under－ standing Computers－Circuit Surgery ${ }^{\circ}$ In－ genuity Unlimated－Index－FREE 48－page Understanding Passive Components booklet．

JAN 9G

PROJECTS－Alternative Courtesy Light Con－ troller－Twinkle Twinkle Reaction Game－ Volume Compressor a Phizzy 8 Computers－3： EPE Mind PICkler－2．
FEATURES o New Technology Update o From Russia With Love－Circuit Surgery o Phizzy日 Computers－3 o Net Work．

［13： 99

PROJECTS • PIC MIDI Sustain Pedal－Light Alarm－Wireless Monitoring System－1 o Phizy 8 Computers－4．
FEATURES－Ingenuity Unlimited－Scolar Project o PhizzyB Computers－4；

MAR 99

PROJECTS－Smoke Absorber－Auto Cupboard Light－Phizzy 8 Computers－5 o Time and Date Generator o Wireless Monitoring Systern－2．
FEATURES O Ingenuity Unlimited ： 1, TTSEC Show Report－PhizzyB Computers－5－Practi－ cally Speaking o．Circuit Surgery－Net Work

YOU MISS THESE？

AमRIL 99

PROJECTS－Mechanical Radio－Voice Record／ Playback Module－Versatile Evani Counter－ PhizzyB Computers－6 0 Ironing Board Saver． FEATURES O Ingenuity Unlimited－PIC16F87x Microcontrollers o Phizzy8 Computers－$\hat{6}$ ． MAX761 D．C．to D．C．Converter o interface－ Circuit Surgery－Net Work－FREE 48 －page Basic Soldering Guide booklei．

MAY＇ 99

PROJECTS－MIDI Handbells̀ o A．M．IF．M．Rêdio Remote Contröl－Phizzy 8 Computers－7－PIC Toolkit M：2－1．
FEATURES－PC Engines－From 4004 to Pentium III－Ingenuity Unlimited o Practically Speaking－Pnizzy Computers－7 Circuit Surgery o New Technology Update－Net Work －FREE pull－out 7400 series Pinout Data Chart．

JUNETG9

PROJECTS－Cluping Video Fader（Starter Project）－PC Audio Frequency Meter－ Musical Sundial－PIC Toolki Mk2－2．
FEATURES－Alan Dower Blumlein－Circuit Surgery－Interiace © PhizryB Computers－8－ Ingenuity Unlimited－Edison 3 Review o Net Work－The internet．

DULY 99

PROJECTS－ 12 V Lead－acid Battery Tester o L．E．D．Stroboscope a EPE Mood Picker Intruder Deterrent．
FEATURES • Practical Oscillator Designs－1 －Practically Speaking ．Circuit Surgery Ingenuity Unlimited o New Technology Update －Net Work－The Intemet．

AUG 99
PROJECTS－Ultrasonic Puncture Findeer o Magnetic Field Detective－Freezer Alarm o 8－Channel Analogue Data Logger－1－Sound Activated Switch．
FEATURES－Practical Oscillator Designs－2 © Power Generation irom Pipelines to Pylons－1． Ingenuity Unlimited o Circuit Surgery－New Technology Update－Interface o Net Work－ The internet．

SEPT 99

PROJECTS o Loop Aerial SW Receiver－Child Guard－8．Channel Analogue Data Logger－2 o Variable Dual Power Supply．
FEATURES－Practical Oscilletor Designs－3 o
Power Generation from Pipelines to Pylons－2
－Practically Speaking－Circuit Surgery o Ingenuity Unlimited o New Technology Update －Net Work－The Internet．

OCiE 99

PROJECTS－Interiór Lamp Delay－Mains Cable Detector－QWL Loudispeaker System o Micro Power Supply．
FEATURES－PIC16F87x Miní Tutorial－Practi－ cal Oscillator Designs－4．－Circuit Surgery －Interface－New Technology Update－ Ingenuity Unlimited o Net Work－The Internet．

HOV＇g9

PRŌJECTS－Acoustic Probe a Vibralarm－ Ginormous Stopwatch－1－Demister One－Shot． FEATURES－Teach－In 2000－Part 1 o Ingenuity Unlimited－Practically Speaking o Practical Oscillator Designs－5－Circuit Surgery o New Technology Update－Net Work－The Internet．

BACK ISSUES ONLY $£ 2.75$ each inc．UK pap．

Overseas prices $£ 3.35$ each surface mail， E 4.35 each airmail．

 thy，Aug．Novil． 1997,1998 fexcept bath March to Wisy Dos
WVe can also supply bath issues of EII（prios to the merger of the two msgazines）for 1998／9－Val． 27 Nos 1 to 13 and Vol． 28 No． 1 ．We are not able to supply any material from E7l prior to 1588 ．Fiease put $E I I$ clactly on your crder form it you require ETissues．

1Send back issues dated
1
\square Send photostats of（article utte and issue date）1

Send copies of last five years indexes（ $£ 275$ for free inc．póp－Overseas $£ 3.35$ surface，$£ 4.35$ airnuain）I
I Name．
I
1 Address1

1

1
I enclose chequeiP．O．Jank draft to the value of $£$ ．
1 Piease charge my Visa／Mastercard $£$.
1 Card No
Piole：Minimum orday for Card Expiry DateI1
SEND TO：Everyday Practical Electronics，Allen House，East Eorough，Wimborne，Dorset 日H21 1PF

Favizis E－mail：orders eqpermag wimborme．co．ul

M1299

Dluasaf Electronics

Esemaces 490 | Product data |
| :---: |
| FAX |
| 01270 |
| 206504 |
| |

SURVEILLANCE 0

 teeresz
ROOM SURVELLLANCE

AS5007［5 3

N550 K145

 Tiकs 位

 OTMTH．TAPE PECORESA VOX SWITCY

TELEPHONE SURVEHLAMCE

 －TM－TGETONE FFOOFONG NTEPELCE

TARCCDB

THE EXPERTS IN RURE 8
UNUSUAL INFORUATIONI Filleto

 Tixa mix mon

 OMREN Pryizin

 Grat Grando wird mil cis RHEXAB

 Su Ex Vin率思

－PROJECT KITS

 OUR RANGE OF PROJECT KITS COME HIGH OUALTY PCBs，DETAILED semstyoperatitg INSTRUCTIOAS－ 2×251 CAN BOOSTER AHFLIFIER CORCES

TEXPTTK IW．IW STEREO AMFUFIEA WODULE LTEL －IWoiW STEREO AMFLIFEA LODULE LESES

 Uses TDHANG STEREO AMPLIFEER MODNULE

 KT SB． 50 HAMEL WAELESS LIGYT WOOULUTOR
 Seprese ssosavity porko per crape．Powse

 Operaticin 202S－KT Sa． 50
celico STMCEE Liaht PToaby ta mea

 O2g SOURO EFTECTS GENERATGR Essy what Creste 33 atrost infirite rerety of

 sinzar to a rocect or Drrei Greas bn lor dsces．
 pixiza pies on yout inds nian th
－MUD：O TO LGAT HODULATOR CCOHVIS Hen

 － 20 SECONO VOICE RECORDER USES nos－

3131 KT 511.95

－TRUN SOUNDS ：empteros cincis ：wiste
 －ANWUL SOWHDS Cat dog chioien 5 Cow best is fid tampere vfe of schock SG10W

 ipha cout desios pronded 3061 K7 cil．ss OIR REHGTE TOGGLE SWTCH USA ST TVNCA SPEED CONTHOLIER WY zTy Corran DC neer

 －PC COKTAOLIED RELAY BOARD

 pis mo ocrponetis and PCs is orrtal im
 20s．95
－THANSUTTER RECEIVER FAIA 2－0UN

TELEPHONE LDPE RE AY SWITCH FUM CNTO

 C42：5
－PC DATA ACOUSMONCOHTROL UNT Lise
 movinere，reity fics．Wicess the infrition

 Canes，stoze vister progranive ixatoies

 \＆al sompentry（exsest bervescorso pera）Euppled EVCC FCZ SOJTOER 102×1 KT 11385 －PC SEALAL PORT ISOLATED 10 EORGD
 corersi is seraing scpicxions e o loas sution

 Whdows）．Can $0=$ used wh Aht corrcuact coer－
 3108KT \＆44．95 STEPPER LOTOR DRIVER IOI

 Fraza soxssmin 3105 KT E12．95 －PC CONTROLIED STEPFER MOTOR DRS－ IEA Corifol two．whoow aterpe teens［3A Thaz asch via PC proses part ware， 2 prase \＆
 Cus tran exin KT 1515 今s
－12－BIT PC DATA ACCUISTIKHCOMTFOL UNT Sinkr is ki ciso atere bis LSes a 12 s

 as or 4 oftererts rants or a thintue of \tan Anengu raper red o－vi．Fors illancs oem－ ariciq coex ingatbupus ADC converion tre
 provion $3113-\mathrm{KT}^{-1}$ E4． 5.5 orese huo le，ive or sen ot me presenos of pid
 E6．55 UNVERSAL TMMER Soven or pral corraien
 $5535=$ ar 1 sesand stepe trom $0.1-155351$ desticaty stiatod viape Sn toring toures On

OSTEREO VU METER SLOWS padi rasc pone

 T．Ficcion Al cor conems inc．yexier arod MEGATVEPOSTIVE IOM OEMERATOR

CBS DRILL SPEED COATPOLLER AdLus TE

 CAR ALARM SYSTEM FOXSE your تor tom
 on vingo ore sarsor and pormitboct exath
 $15571019-K T 1595550158.50$

 1003 KT ESSS oirg turizign mad？KZ erits a oiss：of tioghimen

 Hes Supprod win PCB，whecresin dea

 Sthewhar to resier iss3 terite 000

 SY XENOHTU日E FLASHER THOAERMEO Or ut stas Lp SV tazery

 O 1 ECSS PIC PROGRAMMER Fsads，progsio
 SERIAL PIC PROGRAMMER Jor a SERIAL PIC PROGRAMAER tor at
818.2840 pin DIP serial Fogrammed

PKs 3rd party sciviare supcired expres
 3095－KT 212.95
PICALL SERIAL \＆PARALLEL PIC PROGRAMMER for all 8＇88，28＇40 pin fuly furctional a registared sotware DOS，W3．1，WE5．8）．3117－KT E54．95 ATHEL G9C×051 PROGRARMBER Simple－totuss yet powarful progammmed Dr the Atmel 8SC1051，89C2051 \＆ ascuin ucs．Programer oces Not minal speriator program phait a tito firdowal）Can to veed with Any cam

 ranstonrey．PC日 55 zi 12 zran Mans aperason．
34.95 STABILISED POWER SUPPLY 2 － 30V／5A As kil 1007 above but tratiod at

5 Amp Requires a 24 VAG5A transtormar． 1096－KT £29．95．Custom Designed Eor 2095 E34．95
RFI FOifit Supply nesigned s power
Cis

 CB72nswn 1171KT E24．55
WOTOREKK ALARM UNEs a raiche versior

 Plovice
－LGHT ALARM Provec your valuathe Aisre Pabe

 COMRIMATION LOCK VOR15－KT regs tronic locx comionising main critite itec arate keypas for remote cossireg id laok Pelay suíclied 3029－KT EB． 95
ULTRASOHIC MOVEMENT DETEC．
TOR Cry 3 al boked jerechur frequency bo stabity 8 resabuty．FCB $75 \times 40 \mathrm{~mm}$ houses at componerts． $4-7 \mathrm{~m}$ range．Aciustabie sersitivity，Output vil drve exarra relay pirius gVDC 3049－KT E：1．S5
 STM， 5
－INFRARED SECURITY BEAH Hinen the irrosicie IR beant is broken a reiay ts ripped that can te used to scernd a bet co alarm． 25 matre renge，heins rated rita
Frovided． 12 VDC operation， $3130-\mathrm{K}$ T rovided．12VDC oparaion．3i30－KT
E10．95

 CUTEG SVDC 3023 －KT 3 SE

 SQUARE WAVE OSCLLATOM Ge trize

 morte Can ase ta lued as a sipie Gigk
 3112 KT E1ass

ELECTRONICS TEACH-IN NO. 7. ANALOGUE AND OIGITAL ELECTRONICS COURSE

FREE pubrished by Everyday Practioal Elestronics Alan Winstanley and Keith DYe B.Eng TechiÂMIEE This highly excle.med EPE Teseh In series, which included the construction and use of the siini lsb and Rficro lab test und developmert units. has been put tojether lis book form. Addritionally, EPT Educationa! Softrase bave developed a GCSE Electronies sotware progratn to com parts of the course ind included with the boolk
An interesting and therough tutorial series
fioally at the noviee of complate beginner in eted speciThe serles is designed to suppert those undertaking eithe GCSE Elactronics or GCE Advanced Levels. and starts with fundarnental principles
Hyou are taing electronits or technology at serool of college. this book is lor you t you just want to learn the basics of electronics of technology you mus make sure you see in Tesch-ln No. 7 will be invalushte if you are considering a career in electronics of even sofoware enabla the construction and testing of both tfemonstration and dsveliopinent circuits. These leaming aids bring electronics to life in an enfovable and interesting way you will both see and hear the electron in action! The Micro lath mileroprocesser afdd.on system will zppeat to higher level sfudents and those developing microprocessot, projects.
160 posgas
Drich corde 17 II
$£ 3.95$ RE ELECTRONICS PROJECTS plus FREE CO-ROM Al P. Horsey
This took offers a wide range of resied circuit mod ules which can be uied as efectronics proects, pand of an Electronics ccurse, or 35 a handj-on way of geting betres acquainsed With Electranics Worbbench. With circuits raiging from "bults and batteries' to complex systems using integrated circuits, the projentis will appea novies. students and practhioners alike
Efetronics robtbenth is a highly versatile computer imution pashage which enables the user to design, tesi PCE layouts on-sereen. At the circuits in the booi are providied as rumable Electronic Wurkbench fies on the enclosed CD-ROM, and a selection of $15 r=p$ pesentative circuits can be explored using the free dema version of
Contents: Same ozesc concepts, Prijezts with saithes. LEDs, relars ant diodes; Iransistors; Pow tit supplies: opamp prosect; Funter opamp circuis: Loget gates; heal cogic eircuits; Logic gate muthivbrators; The 555 timer, and muttipdexers: Field effert transistors: Thrivistors, trizes and diacs; Constructing your circuit; index. $227 r=14.99$

A BEGINRER'S GUIDE TO MODERN ELECTRONIC COMPONENTS
A. Penfold

The purpose of this book is to provide practical information to help the reader sort out the bewildering array of of the theory of elestronics is no: needed, and this book is not Treenced to be a course in ejectronic theory The main aim is to explain the differences between companemt of tie same basic type (e.g. carton, carbon film, metal film, and wire-wound resistors) 50 that then ght component for a given apglitation can be sinlected. A wide range of components afe included, with the emphas is Firmly on these components thes ate used a

The books listed have been selected by Everyday Practical
 Electronics/ET/ editorial staff as being of special interest
 to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book page.

FOR ANOTHER SELECTION OF BOOKS SEE THE NEXT TWO MONTH'S ISSUES.

Note our UK postage costs just $£ 1.50$ no matter how many books you order!

Compuiting

WRIDOWS 95 EXPLAINED

P. R. M. Otiver and N. Kantaris

If you would like to get up ard rumning, as soon as possible, with the new Windows 95 operating system, then this is the book for youl
The book wiss witten with the nor-exper busy person in mind it expains the harddare that yout need in crder 10 nun Windons sf successtuly and how to ingras and cprimize düs 95 empronmene
Later chepters cones hraw to norix with programs folders and documents; traw to control windowis 5 and use the many sexessernss trat comne with if; horv to use Dos pro grems and, it nesessary, DOS commends and how to com Murieste with the rest of the electronic workd

E5.95

EASY PC INIERFACING

R. A Peniold

Although the internal expansion slots of a PC provide use: add-ons, making your busez, and are suitzbla to quites a fair amount of expertise and equipment. The buitrin ports provide what is often a much easier anid haszle-frea way of interfasing your own circuits io a PC. In particlay, a PC printet port plus a small amount of external hardware provides a surprisingly versatile hputoutput port. The pe games it is azs usatul fo general inienacing purposes, but it can bo useful in This book protions.
circuits ingluding the following: Digital inputf PC add-en Anafogue-10-digital senverter; Digital-iounalogue Con: inttes; Voltage and Current measurement circits;

Resistance meter; $C=p a c i t a n c e$ meter, Temperamure measurement interiase; Bicfecitack monitor; Constant voltage mocal train controller, Putsed mostel trin controllers; Fosition sersor (optical. Hall effect. etc.):
Stepper motor interiace, Refay and LED divers: Triac mains switching interface.

14.99

INTRODUCTION TO MICROFROCESSORS

John Crisp

you zre, or soon will to, inrotrad in the use of reading This book previces a thoroughty readisbe insentual tion io microprocessors. assuming no previous knombedge of the sutiect, rase a technical of mathematical backGround. It is sumable for sturtante, tectricians, enginaers and hobbrists, and corers the full range of modern nicroprocestors.
After a thorough introduction to the subjest, ideas are dereloged progressivety in a wat-stuxtured formas Alt echnical izatrs are carenuly introduced and subyects which clearty explained lets Crisp ecorets the complete rathet of microprocessars from the popular i-bit and 8 -bit designt to loday's super-fast 32 -bin and 64-bit versions that powves PC5 and engine rnansjemant systerns etc.
Contenis: The world changed in 1971; Mideroproses 50 me donit have tea fingers; More couming: Mathemstical mieros; th's ald a matize ef logic: Regissers and memories; A microprosessor bised sysem; A typical 8-bit microproces. sor, Programmirng. Figh level Anguzgas; Micros are getting 21154 smizoprocesscr:' Interfacing: Test equipment and outt finding.

PRACTICAL REMOTE CONTROL PROJECTS Owen Bishop
Provides a wealth of circuits and circuit modules for use in remote control systems of all kinces; ultrasonic, infrafor buolding fourteen nove radio. There are instructions p:ojects. Eut this is no: a! and fractical of these projects providas a model far buifiding dozens of other related circuits by simply modifying parts of the design slighty to.suit your own requiraments. This book lells you how. Atso incluted ara techniques for cannecting a FC to a remate contrel systsm, the use of a mitrocentroler in and the application ol teady-ㄲade BASK Stamp, and tha application ot ready-miade fype:approved fámote cantrol systems.
f60 ơgos Un

OISCOVERIRG ELECTRONIC CLOCKS

VL D. Phillips
Thit is a whale book about designing and matimg electronic elocks. You stigrt by connecting HGGH and and then taind ard test gates. You find out abou astables, counters, decoders and displays All of these subsystems ase carefully explained, winh practical worl supported by easyto follow prototypo totard layouts.
Full cerstructional detitis, including circuit diagrams and a printed ciecuil beard pattern, ere geven for a digiza Electronic clock The circuit ter the fiss: Cloek is modified and dereloped to produce additional designs which include a Big Digit Olock, Birary Cock, Linea; Clack, Andrew's Clock (with a semi-analogne dispivy), and a Circtes Cock AA of these designs are unarual and destirative
This is an ideat resource for projent work in GCSE projet virork in AS-Lavel arri A.Level Electronics and TEthnaicgl. DOMESTIC SECURITY SYSTEMS
A. L Brown

This bosk shous you how, with cemmion sense and basic doit-yourself stilis, you can protect your home. It aliso gives tips and fueas which wid help you to maintain and in alafm. Eien circuit in this book is cieathy described and illustrated. and contains components that dee easy to scurce. Advice and guidance are based on the real Ex. periance of the zuthor who is an alarm irstaller, and the designs themselves have Leén rigoroisty put to use on some of the mos: crime-ridden streets in the world.
The designs include all elemants, including sensors, détectors, slarms, controls, lights, video end doer entry systems. Chapters cover installation. testing malrtenance and upgrading.
192 p3ges Order codenezs
E12.99

PicRocon

The practical solutions to real problems shown in this coolbook provide the basis to make PIC and 0051 deviees remily work Capabilities of the variants ore examined, and ways io enhanee these are shown A survey af common intertace devices, and a desciption of programming models, lead on to a section on development fechniques. The coolbook offers an introto make the most of microcontrollefar. 2 2so pages

E19,93

A BEGINNERS GUIDE TO TTL OIGITAL ICs
R. A. Penfold

This book first covers the besdes of simple logic circuits in genersi, and then progresses to specinic Th. logic insegrated circuits. The davices covered include gates, esciletors, timars, fiphlifops, dividers, and deco-jer circuits Some practical circuits are used to illustrate the l42 pages Drder coderish
£4.95
ELECTRONIC MODULES ANO SYSTEMS FOR BEGINNERS
Owen Bishop
This book describes over 60 modular Electranic circuiks, how they wotk, how to build them, and how to use them. The modules may be wired logether to make hundreds of different electronic syitstans, zath analogue irn systems from madules, a salaction of over 25 eleztrenic systems are described in detail coverimsuch widsly differing applications as fiming. home seturity, massurement. audio (including a simple redio receiver), q3mes and remole controf.
200 pospes. Temporarily out of piini
PRACTICAL ELECTRONICS CALCULATIONS AND
FORMULAE
F. A. Wison, C.G.IAn, C.Eng., F.IE.E. FI.E.R.E., F.B.J.M. Bridges the gap betwean complicated technical theory,
ard "cut-indotrizd" methods withich may bring success in design but leave the experimenter untumbed. A strong practical bias - tedious and wigher mathematics have been avoddad where possible and many tables have been includied.
The book is divided imto six basic sections: Units and Coñsants, Direct-Current Circuits, Passive Components. Altersating-Curfent Circuits. Networks and Theorems; PRassurements
255 psoc

¿4.99

Bebop To The Boolean Boogie

By Clive (call me Max)
Maxfield
ORDER CODE BEB1

£24.95

470 pages. Large format

 Specially imported by EPE Excellent value An Unconventional Guide to Electronics Fundamentals, Components and ProcessesThis book gives the "big picture" of digital electronics. This in-depth, highly reạdable, up-to-the-minute guide shows you how electronic devices wark and how
they're made. You'll discover how transistors operate, how printed circuit boards are fabricated, and what the innards of memory ics look like. You'll also gain a working knowledge of Boolean algebra and Kamaugh maps, and understand what Reed-Muller logic is and how it's used. And there's much, MUCH more (including a recipe for a truly great seafood gumbo!), Hundreós of carefully drawn illustrations cleariy show the important noints of each topic. The author's songue-in-cheek British humor makes it a delight to read, but this is a REAL technical book. extremely detalled and accurate. A great reference for your own shelf, and also an ideal gif for a friend or family member who wants to understand what it is you do ell day

£24.95
DIGITAL ELECTRONICS - A PRACTICAL APPROACH
With FREE Software: Number One Systems - EASY-RC

FREE

SOFTWARE
Professional XM and Pulsar (Limited Functionality)

Richard Mionk

Covers binary aritimetic, Boolean algabra and logic gates, combination logic. sequential logic including the design and construction of esynchronous and synchronous circuits and register circuits. Together with a considerable practical content plus the additional attraction of its close association with computeraided design including the FREE softvare.
There is a "blow-by-blow' guide to the use of EASY.PC Prufessional XM (a schematic drowing and printed circuit board design computar packagel. The guide also conducts the reader through logic circuit simulation using Pulsar software. Chapters on p.c.b. physics and p.c.b. production techniques make the book unique, and with its host of project ideas make it an ideal companion for the integrative assignment and common skills components required by BTEC and the key skills demanded by GNVO. The principal aim of the book is to provide a straighforvard approach to the understanding of digital electrenics.
Those who preler the Teach-ln' approach or would rather expariment with some simple circuits strould find the books firal chapters an printed circuit bcard production and project ideas especially useful.
250 pages
Order code NESZ
£ 16.99°

DIGITAL GATES AND FLP-FLOPS

tan R. Sinclair
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning.
Topics such as Bcolean algebra and Kamaugin mapping ate explained, demonstrated and used extensively, and more attention is paid to the subject of synchronous counters than to the simple but less important ripple counters.
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning. as also are many vorking practices. The book concludes with an explanation of microprocessor techniques as appolizd to digital logic.
200 pages
OR Prentisgus
$£ 8.95$

By Clive "Max" Maxfield and Alvin Brown
 ORDER CODE BEB2 £29.95

Over 500 pages. Large format

Specially imported by EPE-Excellent value

An Unconventional Guide To Computers

Plus FREE CD-ROM which includes:
Fully Functional Intemet-Ready
Virtual Computer with Interactive Labs
This follow-on to Bebop To The Boolean Boogie is a multimedia extravaganta of information about. how

At Unconventional Guide to Computers
 computers vrork. It picks up where "Eebop l" lềit off, guiding you through the fascinating world of computer design ... and you'll have a few chuckles, if not belly laughs, along the way. In addition to over 200 megatytes of mega-cool multimedia, the accompanying CD-ROM for Windows 95 machines only) contains a virtual microcomputer, simulating the motherboard and standard computer peripherals in an extremely realistic manner. In addition to a wealth of technical iniormation, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the book contains a set of lab experiments for the virtual microcomputer that let you recteate the experiences of early computer pioneers. If you're the slightest tit interested in the inner workings of computers, then don't dare 10 miss this onel
Over 500 pages - large format Oratresmbitig

NEWNES INTERACTIVE ELECTRONIC CIRCUITS CD.ROM
CD.RON Edited by Owen Bishop
cbrrom
An expert a
source of real design data, all in one CD-ROM. Written by leading electronics experts, the collected wisciom of the electronics world is at your fingertips. The simple and attractive Circuits. Enviranment miA_{4} is designed to allow you to find the circuit or advice notes of your choice quickly and easily using the search facility. The text is written by leading experts as if they where explaining the points to you face to face. Over 1,000 circuit diagrams are presented in a standardised form, and you are given the option to anialyse them by clicking on the Action icon. The circuit groups covered are: Amplifiers, Oscillators, Power, Sensing, Signal Processing, Filters, Measurement, Timing. Logic Circuits, Yelecommunications.
The analysis tool chosen is SplceAge for Windows, a powerful and intuitive application, a simple version of which automatically bursts into action when selected.
Newnes Interactive Electronic Circuits allows you to: analyse circuits using top simulation program SpiceAge; test your design skills on a selection of problem circuits; clip comments to any page and define bookmarks; modify component values within the circuits; call up and display useful formulae which remain on screan; look up over 100 electronic terms in the glossary; print and export netlists.
System Requirements: PC running Windows $3 . x, 95$ or NT on a 38 or better processor. 4MB RAM, 8 MB disk space.
CD.ROM

Order code NEBCDI

Amdilo and Mmsic

AN INTRODUCTION TO LOUDSPEAKERS AND
ENCLOSURE DESIGN
V. Capel

This took explores the various features, good points end shags of speaker designs. If examines the whrys and wherefores so that the reauft can undertiand the principles invelved and so mike an informed choice of design, or even design loudspeaker enclosures for him os hersetf. Crossover units are also explained, the various types, how they work the distontions they produce and how to avoid them. Finally there is a s:ep-by-step description of the construction of the Kapeilmelister loudispaker entolosure.

PREAMPLIFIER AND FILTER CIRCUITS

R. A. Penfold

This book provides circuits and beck aground information for a sanga of preamplifiess, plus tone controls, filteis, mixers, eic. The use of modern low nolise operations amplifiers and a specialist high periomance audio preamplifiar i.c. results in circuits that have excetlent
performance, but which are still quite simple. All the cricuits featured can be buth at quite low cost lust a few pouncts in most cases). The preämplifier cifewits fastured include: Mierophone preamplifiais flow impedance, high impenarce, and crystalj. Magneric cartridge pick-up preamplifiers with f.LAA equalisation Crystal/ceramic piek up preamplifier. Gutat pick-up preamplifiet lape nead preamplifies lior use with compact tasjotie sivterns).

Other circuits include: Audid limiter so preient over. toeding of power amplifiers. Passive sone controls. Active sone conirols. PA filters lhighpasss and lowpass). Seratef and rumble filters. Loudness fiter. Audio mixers. Volume and balance controls.

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION

R. A. Penfold

- Practioal construction details of how to build a nump. bet of zudio power antplifiers raniging from about 50 to $300 / 400$ watts em.s. includes MiOSFET and bipllat transistor designs.
OE DJGES 以

ACOUSTIC FEEDBACK - HOW TO AVOID IT

V. Capet

Fandbaci is the bane of all public address 5ystems. Whire feediback cannot be completely eliminated, mary thimos can be done to reduse in to a devel at vothich it is no lorger a piobiem.
Muth of the trouble is often the hen itsolf, not the equipment, but there is a simple and practical wisy of gieatly improving acoustics. Some microphones are prone to feed bisck whid others ars rat. Certain loudspeather statems afe much tetter than ofthers. and the way the units are posibioned can produce a reduced feedback All these mat ters bre fully explored à well ts elettronte zids such equasigers, frequeray shifters and noten filters.
The specisl requiremats of five group concents are corr sdered, and also the reiated proktem of instabitity thar is sometimes encountered with large set-upz. We aven teke a look at some unsurcessfu! attempts to clate teedbeck so a to eave readers wasted time and effort dupbocating them.
Also included is the circuit and layout of $3 n$ inexpenterve but highty successtul twin-notch fiter, and detaiss on'how to operate it.
92 pagyes
Temporarily out of prin

Testing Theoryy Date amd Referemce

SCROGGIES FOUNDATIONS OF WIRELESS
AND ELECTRONICS - ELEVENTH EDTION
S. Whamos and Roger Amos

Seroggie's Foundations is a classie taxt for anyone worting w sh eigetronics, who needs to know the af? ard craf of the subsect it covers both the theary and practical asperts of a huga range of copies from valve and tube to radar, to digital tape systems and octical recording fectricues Since Foundations of Wireless vias first published over 60 years ago, it has helped many thichande of readers to become farmim with the prixciples of radio and etectranics. The origina! author Sowerby was susceeded by Seroggie in the 1940s, whoss name became synonymous With this ciassic primer for pratitioners and students anke. Stan Amos, ere of the fathers of trodern electronics took over the rersion of wis thown books in the eres. he, with his son who tave produred this lseest version is scop pages Order codenEz7 E19.99 ELECTRONICS BADE SIMPLE
Ian Sinclair
Assuming no prio, knowidge, Eleztronics Alade Simpla presents an oulime of meatern asectronics with an emp phasis on understanding how sysiems work fathei than on detatis of circuit diagrams and calculations. n is idest for GLudent Ch a range of ccurses in etectronics, inctudsubiects who will he using elestronic instruments and triethods who will be brimg eletumic instruments and Conten
edive components and pulses, passive components circuit diagramtents and tors, finajor circlitg, block and ing, etements of TV and rader, digtal signsts, gating arid logic circuits. courting and correcting. microprosessors. celculators and computers, miscallaneous system15:
Page five (iarge femust)
Order codelive23
E:2.99 TRANSISTOR DATA TABLES
Hanc-Gunther Steidle
That tibles in this book contain information about the package shape, pir connections and basit eimotrizel data dita includea manimum reversa voltansistors listed. The end porver dissipation, current gain and forward trarsad minance and tesistanze, cut-off frequency and dotaits of applications.
A book of this size is of necessity restricted in its scope and the inofividual transistos types canne: therefora te described in the sort of detail that maybe fourst in some ever the tist of manufacturers astrasses will mate etier for the prospective wer ts obtain further inform tion, fif recessary.
ligts over 8.000 different transistors, inciuding ite is. 200 pages OTicrcode Briml E5.9

PGORE ADVANCED USES
OF THE MULTMETER OF THE MULTIMETER R. A. Pentold This book is primarily intended ss à follow up to shauld sisa bee of value should tiso be of value to smierstands whe the besice of voltaça testimy and simple component festing By using the teshniques described in Chapoter vast zän test and analyse Ibe performince of a rance of components with lust 3 multimeter foluz panents in some Eases Some useful quici chect metiocts Ere atiso covered.
Whie a multimeter is sugremely versaile, it does hav is limizatons. The simple add-ons described in Chapter:2 excended the capabitities of a muhimate: to make it aven mare liseful.

ELECTROAIC TEST EQUIPMENT HANDBOOK
Steve honey
The principles of operation of the various types of test of mathematical anaivsias Trim book covera analogue an digita! meters, bridges. oscilloscopes. signel gancrators. counters, timers and frequency measurement. The practical uses of the tostrumants ara aiso examined
Everything from Oscillators, through R. CGL measura ments (and mueh more) to Waraform Generators and 265 pasen

OFt두 code Ficich
$£ 8.95$
GETTING THE MOST FROM YOUR BULTIMETER

R. A. Penfold

This beok is primatily amed at beginners and those of hnvited experierces of elinctronics. Chapter i corers the basics of analogue and digital mutumeters, discussing the chative meriss ato the rimitations of the two types. In Chaptey 2 various methods of compornent checking ete destribed, induding tests for transistors, thyristors, resis ors, copacitors and diodes Circuit testing is covered in Chapter 3, with sutiects suith as wotizee, current and con muty chasiss being discussed.
In the math futhe or no frevidus lnowletga or excircuit tostimg techniques the seades should be sble to confidently bikió servieing of mest electronic projects.

NEWHES ELECTRONICS TOOLKIT-SECOND EDITION Geoff Phillips
The author has used tis 30 years exparience in industry so demanded Eacto formule data and thars a corskanty
to hepp the enginerer when degigning. developing, evalust ing, fautt finding and repairing elvatronic cincuis The result is this handy wormaie valume: a memory aid futor and reference scurce which is recommended to al eleatronies engineers, students and technucians.
Have you ever wished for a cencise and compration sive Guide to eiectronics concep's and rules of thumb? Hiade you ever been ungble to source a component. cf tion? How much time do you spend pesching applica facts o: manufecturer's spacifizatiens? This book is th antwre, it covers resiztors, capasitors, inductors, semicon dustors, logic circuits. EMC, audio, electronics and music ulephones, electronics in lighting, thermal considerations connestions, reference dire. 158 pages DHLTHENTIEA 12.99

PRACTICAL ELECTRONICFAULT FINDING AND
PROUBLESHOOTING
Robin Pain
This is not a book of theory. it is a book of practical ips, hints, and rules of thumb, ail of vitich will equip the reader fo tache any job. You miay be an engineer or tech nizisn in search of information and quidanse, a coliege tudert, a trobbyist buiding a project from a megazine, at mimply zeen serf-taught amateur who ts interested in mathematical or spacielized.
The book covers: Bisics.
ancé; Capasitance, inductaniot and impedjancar Diofa and sransistors; Op-amps and negarive feedibsectc Faul: finding - Ansfogur fault linding, Cfites faut firding:

Memory; Einary and hexadecimal; Addressing; Discrete ongic Plicraprocessor astion: 40 control, CRT contio!: Mamic Rain fauh nning digral systems, Dust trice

AN INTRODUCTION TO LIGHT IN ELECTRONICS

 F. A. WisonThis book is not for the expen but maither is fo for The completely uninitiated it is assumed the reader has some basis knowiedge of aiectronics. Abter dealing vith Nature of Light such thingo ave Emitters. Deitertors and Displave are discussed. Chapler 7 detais Iout difietent ypes of Lesers before concluding with a chapter on Fibre Opucs. 161 pages Order colt BP359 54.55

UNDERSTANDING DIGITAL TECHNOLOGY

this book examines what digital technology has to offer and then considers its srithmetic and how in can be atranged for malong decisions in so many prosesses it than lonts at the part digital has to play in the ever expanding Informetion Technology, espacially in modern tensmis. sion systerns and television. is avoids getting deeply involved in mathematics.
Various chapters cover: Digital Arithmetif, Elestronic ures, Iransmission Systems. Severat Ansendices explain some of tha concepts move fulty and a flossary of termis

Project Buillding

ELECTRONIC PROJECT BUILDING FOR EEGINNERS

A. Pentold

This book is for complate begintars to electranic projent uildint h provites a complate Introduction to the practiComponent identification, and tuying the rigit parts: asister colour codes, capacitor value markings, Eic divice on buying the right tools for the job; soldering; making essy work of the hard wiring, construction meards. phan matrix toardis, sufface mount peards end wirevirappina: finishing off, and adoing panel labels: getuing "problem" projects to work Including slmpla methods of fault-fixfing.
In fact everyhing you need to know in order to get

45 SIMPLE ELECTRONIC TERAANAL BLOCK
ROJECTS
R. Bebbington

Contains 45 easy-to-build electronic proiects that can be onsifucted, by an atsolute beginner, on terminal blocks soldering is needed.

Most of the projects can be simply screved togethe by following the layout diaprams. in a matier of minutes and readity unsicrived il desired to make riev ciruts A theoretical circui: diagramis is elso included with eich projest to help broaden the constructor's knomedge. The projests included in this buok cover a wide ranga of interests under the chepter headings: Connestions and Components, Sound and Shusic, Entertainment Sacutity De'rices, Communication, Test and Measuring
163 pages
44.95

30 SIMPLE IC TERMIHAL BLOCK PROJECTS

R. Bebbington

HOW TO DESIGN AND HAKE YOUR OWN P.C.B.S

A. A. Pentold

Deats with the simple methods of copying printed circuit beerd designis from magazines and book and co., ers all ssperts of simple p.c.b. censtruction including photo 80 fages . Onder cods BPIEI
63.95

BOOK ORDERING DETAILS

Our postage price is the same no matter how many books you order, just add $£ 1.50$ to your total order for postage and packing (overseas readers add $£ 3$ for countries in the EEC, or add $£ 6$ for all countries outside the EEC, suriace mail postage) and send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or credit card details, Visa or Mastercard - minimum credit card order is ' 55 to: DIRECT BOOK SERVICE, ALLEN HOUSE, EAST BOROUGH, WIMBORNE, DORSET BH21 1PF (mail order only).
Books are normally sent within seven days of receipt of order but please allow a maximum of 28 days for delivery - more for overseas orders. Please check price and availability (see latest issue of Everryday Practical Eléctronics/ETI) before ordering from old lists.

For a further selection of books see the next two issues of EPE/ETI.
DIRECT BOOK SERVICE IS A DIVISION OF WIMBORNE PUBLISHING LTD. TeI 01202881749 Fax 01202841692 . Due to the cost we cannot reply to overseas orders or queries by Fax.
E.mail:dbs@epemag.wimborne.co.uk

BOOK.ORDER FORM
Full namé
Address: .
1
1
\qquad Post code:

Telephone No
Signature:
I enclose cheque/PO payäble to DIRECT BOOK SĒRVICE for í
Please charga my Visa/Mastercärd E Card expiry date
I Card Number
Pleàse send book order codes:

I-

PCB SERVICE
Printed circuit toards for certain EPE constuctional projects are availabe from the PCE Service, see ist. These are fabricated in glass fibre, and are fully drifled and roler linned. Al prices inchide VAT and postage and packing. Acd $¢ 1$ per board lof armail cutside of Eurcpe. Remitances should ce sent to The PC8 Service, Everyday Practical Electronics, Allen House, East Borough, Wimbome, Dorset BH21 1PF. Tel: 01202 881749; Fax 01202841692 (NOTE, we cannot reply to overseas orders or queries by Fax); E-mall: orders@epemag.wimborne.co.uk. Cheques should be crossed and made payable to Everyozy Fractical Electronics (Payment In \& sterling only).
NOTE: While 95% ol our boards are held in stock and are dispatched within seven days of recelpt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra If ordered by surface mall.
Back numbers or photostats of articles are ävailable II required - see the Back issues page for detalls.
Please check price and availability in the latest issue.
Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
Micropower PIR Detector - 1 唯IDISEXT	152	£6.69
Infra-Red Pemote Control Repeater (Mutio-project P.C.B.)	932	$\Sigma 3.00$
Karaoke Echo Unit - Echo Board	159	E6.40
- Mixer Board	160	£6.75
Computer Dual User Interiace	161	£6.70
\star PEST Scarer	162	£ิ. 60
Variable Bench Power Supply - EAUGMin	932	¢3.00
Universal Inpul Amplifier	146	£6.55
Micropower PIR Detector - 2 Controller	163	¢6.72
*PIC-OLO	164	£7.0?
Active Receiving Antenna Sripler	140	£6.59
Soldering Ifon Controlter	157	£6.63
*PIC Noughts 8 Crosses Game	165	£7.82
Micropower PIR Detector-3		
Alam Dtsarm/Reset Swith	166	£5.72
Ironing Salety Devics	167	£5.12
Remote Controf Finder maichicidil	168	£6.32
Fechargeabia Handlamp	169	£6.23
*PIC Water Descaler	170	£6.90
*EPE Time Machine HROME7	171	£8.34
Auto-Dim Bedlight	172	£6.63
Portable 12V PSU/Charger	173	£6. 61
Car immobilise:	175	$£ 7.00$
Sale and Sound (Security Eleeper).	179	£7.32
Surtaca Thermometer J/andrs	174	£7.64
Disco Lights flasher	178	£8.30
Was-Waz Pedal (Muli-project PCB) Tasisi	932	¢3.00
* Virtual Siope - Digital Board	176	¢14.49
Aralogue Eoard (per board)	177	£7.34
\star Water Wizard	180	£7.69
Kissometer	181	£7.67
*EPEPIC Tutorial linias	182	$\underline{87.99}$
The Handy Thing (Double-Sided)	183	¢6. 58
Lighting-Up Reminder	184	¢5.90
*Audio System Remote Controlier - PSU	185	¢7.05
Main Eoard	185	¢8.29
	932	
Singte or Dual-Iracking Powei Supply	187	E7.90
*RC-Meter	188	¢7.E6
	189	$\underline{8.10}$
Stereo Tone Control plus $20 W$ Stereo Amplier		
Tone Control	190	$£ 7.78$
20W Amplifier	191	£8.58
* Dice Loll	192	£8.05
EPE Mood Changer men mine	193	$£ 7.75$
*AT89C2051/1051 Programmer		
Main Roard	194	$\Sigma 8.50$
Test Board	195	£8.69
*Reaction Timer Software only		
	196	£6.9
* Greenhouse Computer		
Control Board	197	£9.08
PSU Board	198	£8.10
Float Charger - k,	199	¢5.59
Lightuulb Saver	202	E3.00
Personai Stereo Amplifier - SEprsi	932	£3.00
(hilli-project PCE)		
* Greenhouse fadio Link	200	¢8.32
* PIC Athimeter	201	28.15
Voice Processor 0.0]si	203	$£ 7.18$
*Digiserv RUC Exparder	204	§7.09
IR Remote Control		
Transmitter	205	$£ 3.00$
Receiver	206	53.50
\# PiC Tace Measure H10yer	207	¢6.82
Electronic Thermostat		
T-Stal	208	£4.00
Phizzy		¢14.95
A-PCE B-CD-ROM C-Prog Microcontralles	Bee (A)(B)(C)	each
15-Way IR Remote Control		
Switch Matrix	211	£3.00
15-Way Pechecodei	212	\$4.00
Damp Stat Digase	209	¢4.50
Handheid Function Gsnerator	213	£4.00
*Fading Christmas Lights	215	¢5.16
Phizzy B v0 Board (4-section)	216	§3.95

PROJECT TITLE	Order Code	Cos:
Twinke Twinkle Reaction Güme [kegicio	210	¢7,55
* EPE Mind PICkjer	214	¢6.30
PrizzyB I/O Beard (s-section)	216	¢3.95
Attemalive Courtesy Light Convoler	217	¢6.72
Light Alarth blliteg	218	£6,78
*Wireless Moritoring System - Transmitter	$219+a$	≤ 9.92
Receiver	$220+a$	£8.55
*PICMMDI Sustain Pedal Software only	-	-
*Wieless Monitovirg System-2 Malige		See
F.M. Trans/Rec Adaptors	219a-220a	Febs9
* Time and Date Generator	221	¢7.37
Auto Cupbeard Light	222	£6.36
Smoke Absorter	223	$\underline{55.94}$
Troning Board Saver	224	¢5.15
Voce Record/Playback Modute	225	£5.12
Mechanical Radio (pair)	226 ABB	£7.40 pr.
*Versatile Event Counter	207	£5.82
*PIC Toolnt lik 2 WMAYeg	227	¢8.95
A.MAF.M. Radio Piemote Control		
Transmitter	228	£3.00
Receiver	229	£3.20
*Musical Sundial	231	£9.51
PC Audio Flequency Meter	232	£8.79
*EPE Mood PlCkEr EUMF\%	233	£6.78
12 E Eattery Tester	234	£6.72
Intruder Deterrent	235	¢7.10
L.E.D. Strobescope	932	£3.00
(Muti-project PCB)		
Uilrasonic Puncture Finder Hefucge	236	£5.00
*8-Ciannel Analogue Data Logiger . .	237	£8.89
Buller Amplifer (Oscillators Pt 2)	238	£6.96
Magnetic Field Detective	239	$¢ 6.77$
Sound Activated Swich	240	$£ 6.53$
Freezer Alamm (Multi-project PCB)	932	£3.00
Cind Guard HSginceien	241	E7.51
Variable Dual Power Supply	242	£7.64
Mains Cable Locator OCIES	932	$£ 3.00$
(Muti-project PCE)		
Micro Power Supply	243	£3.50
* Interior Lamp Delay	244	£7. 83
Viralarm Noves	230	£6.93
Demister One-Shot	245	£6.78
*Ginormous S:opwatch - Part 1	246	£7.82
*Ginomous Stopivatch - Part? LIEJ88		
Gian! Display	247	$£ 7.85$
Serial Pon Conventer	248	£3.96
Loh Guard	249	£4.44

AFIE SOF TWAIII

Sofware programs for EPE projects marked with an asterisk \star are avairable on 3.5 inch PC-compatible disks or free from our Intemet site. Five disks are available: PIC Tutorial (Mar-Mzy '98 issues); PIC Toolkit Mk2 (May-Jun '99 issues); PIC Disk 1 (Apr '95-Dec '98 Essues); EPE Disk 2 (Jan '99 issue to current cover date); EPE Teach-In 2000. The disks are obtainable from the EPE PCB Service at $£ 2.75$ each (UK) to cover our admin costs (the soiware itself is free). Overseas (each): $£ 3.35$ suface mall, £4.35 each airmail. All files can be downloaded free from our Intemet FTP site: ftp://ftp.epemag.wimborne.co.uk.

[^3]
JET SCREAM

CEVERAL examples have arisen recently which illustrate how useful the Intemet can be, as well as how it can also be the bane of my life. Recently a friend asked me if I could help with a problem with his HP LaserJet, an old but very sturdy LaserJet 3 which was displaying the dreaded message on its 1.c.d. Call Service Error 50 .
lown an LJ 3 P as well, but my own experiences ol out-of-warranty service had left a distinctly bad taste. My ScanJet 4 C scanner suddenly broke down at quite a critical time, so my firss port of call was the HP web site. It had a list of dealers who could (reportedly) repair scanners, and the site also had a map feature which displayed a zoomable road map of the UK showing my nearest dealer.

I printed that off, threw everything in the car and went oft in search of a scanner saviour. Two weeks later the HP dealer charged the equivalent of nearly $£ 100$ not to mend it, because after puting in about a day's work it transpired that they can't be fixed anyway. ("There is no repair path," the official jargon explained.)

The replacement scanner, an HP 6250, has had more than its fair share of installation difficulties, and again the Intemet proved vital in finding the patches and fixes from the HP web site. Their slow but moderately useful scanner forum also helped explain why, when I tried to share the scanner on my network, the host PC would try to dial the Internet instead (it still does, by the way).

Remember readers, that if you ever have hardware or software problems, there's a chance you're not alone, and often all you need to do is search for the answer on the Internet. The problem is usually where to stant. Have a look at the brand new Help web site operated by CNET at www,help.com.

So to help my friend with his LaserJet 3, I started by typing "laserjet" into Deja News (www.deja.com) to see what other folks have said in the past. After reading through many of the newsgroup messages archived there, several web sites caught my eye.

It was not that long before I turned up Parts Now Inc. (www.partsnowinc.com) and also All Laser Service in California (www.all-laser.com) and - bingo - there was a page devoted to Call Service Error 50! The problem could be a fuser, triac, thermistor or halogen lamp, they say. Using an ohmmeter we can now hopefully pinpoint the fault and fix this one ourselves, if we can get the spares.

HELP US TO HELP YOU

I was once quite amused by a quip made by a reader in relation to our Chat Zone service, or more specifically. my own contributions therein. The reader wondered if my mood could he gauged from the way I signed off my messages: perhaps a curt "ARW" signature signified a certain amount of grumpiness (never) whilst the full moniker - usually bashed out in some haste I must say - meant that I was feeling a tad more affable that day. Who, me?
One thing that does admittedly test my patience at times is when 1 'm on the receiving end of some intemperate E-mails from users of our web or FTP site. However, acknowledging the principle that customers are always right, even when they are completely wrong, and no-one ever won an argument with a customer anyway, your scribe bites his tongue and sallies forth with an ever-helpful reply.
Following the launch of Teach-In 2000, my E-mail has been alive with requests for help from readers who are new to electronics, new to computing, or new to the Intemet (or new to all three). Although I'm happy to oblige, surprisingly there has been more than one unfavourable comment about the FTP site, some users having apparently been foiled by the process of File Transfer Protocol.

As one reader put it, "Ours is the one web site in the world which has defeated me," actually refering to the FTP file server, which I
must say is extremely reliable and has ions of bandwidth at its disposal. The problem is that Internet users, especially newcomens, are progressively being spoiled by world wide web sites, to the total exclusion of the other ways of making information readily available over the fintermet.

So when Teach-In 2000 is launched and I receive several complaints about the hopelessness of our ETP site, the weary writer starts to feel rather exasperated. 'I have described the processes of FTP several times in the past. The first problem is that FTP is FTP. not the hypertext transfer protocol associated with web-servers.

BROW-BEATEN

Web browsers have varying degrees of success or tolerance when accessing FTP sites, and in my own experience. Microsoft Internet Explorer 5 is far more obliging with the process of anonymous FTP than version 4.0 ever was. Furthermore, every instance of "extended response" server error messages (generated for whatever reason) arose, in my experience, due to the use of MSIE 4.0, never anyone's favourite browser. As I state on the EPE web site, such error messages are browser issues. not related to our server.

All such problens seem to have gone after adopting MSIE 5.0. which deals with anonymous FTP in an orderly fashion. If some readers are nervous about upgrading their Microsoft browser they have every reason to be so. Sometimes it goes smoothly, at other times a wheel might fall off in the process. causing major headaches for the user who has usually done nothing wrong at all.

For evidence of this. one only has to read the Microsoft or W95/98 newsgroups. Never-the-less, it siould be accepted that a browser upgrade will be required sooner or later - maybe every 12 to 18 months or so.
Presently the ideal answer is really to use proper FTP software, which will be second nature to seasoned users. I regret it when users take umbrage at the suggestion that an upgrade is required, or that we are trying to bar MSIE 4.0 users from the FTP site. Try to upgrade from the obsolete browser if possible. Internet Explorer 5 has the honour of being the first Microsoft browser I could actually recommend.

HELP-LINE

Here at EPE HQ we want all readers to enjoy such splendid series as Teach-In 2000 so we try to lend a hand where we cann, often going well beyond the call of normal duty as many readers will confirm. When things don't seem to go right. it is very casy to dash off an urgent or intolerant E-mail on the spur of the moment. just because a user has experienced some frustration or other.
lt's also very easy now to send an impatient "chaser" the next day, which merely adds to our volume of work. It isn't our fault if a user's browser is flakey, or if a beginner is frustrated with the complex techniques of operating a personal computer, or has never heard of FTP before now.

You don't need to fetch a hefty browser upgrade from the Internei either (another reader complaint), as browser upgrades are regularly included in computer magazine cover-mounted CD ROMS, and furthermore, the upgrade is there on an indestructible CD for future backup. You could alternatively have a look at EPE Online's web site (www.epemag.com) and fetch files from our web servêt hosted in the USA.

Occasionally, readers are so stuck that they ask that I send files to them by E-mail instead, and I will of course try to oblige. although it is always more encouraging to know that users have tried to help themselves to begin with.
If you have any queries. comments or (whisper) complaints, please feel free to share them with other readers in the EPE Chai Zone, or E-mail them to alan@epermag.demon.co.uk.

VOLUME 28 INDEX			
	1999	DECE	ER 1999
Pages	${ }_{\text {IssuE }}^{\text {ISanua }}$	${ }_{4}^{\text {Pagas }}$	
	March		

CONSTRUCTIONAL PROJECTS

AMJFM．RAOIO REMOTE CONTROL by Max Horsey
ACOUSIC Prose by Robert Fenthid
AERIAL，SW RECEIVER LOOP
812
ALARM，FREEZER
ALARM，VIBRATION
ALTERNATIVE COUATESY LIGHT CONTROLLER by PaulBrioham 12
ANALOGUE DATA LOGGEA 8－CHANNEI $\quad 585,688$
AUTO CUPBOARD LIGHI by Terry de Vaux－Balbirnie 420

BATTEFY TESTER， 12 V
484

CABLE DETECTOR，MAINS －

CAR COURTESY LIGHT CONTROLER，ALTERNATIVE 712
CAR REARSCREEN DEMISTER ONE－SHOT 842
CHILD GUARD by Tom Wets
CLIPPING VIDEO FADER by Rowerf Fentold 404

COUNTER，VERSATILE EVENT
COURTESY LIGHT CONTROLLER，ALTERNATIVE
DATA LOGGER，8－CHANNEL ANALOGUE
585． 688
DEMISTER ONE－SHOT by Terry de Vaux－Ealbimie
198
842
566
DEIECTVE，MAGNETIC FIELD
879
DETECTOR，MAINS CABLE
726
DETERAENT，IATRUUDER
926
DUAL POWER SUPPLY，VARIABLE
646
EPE MOO PICKLER -2 by Andy Find 58
507
EVENT COUNTER，VERSATILE 260
FMJA．M．RADIO REMOTE CONTROL 344
FADER，VIDEO，CLIPPING 404
FREEZER ALARH by RObert FEnfold 580

GARE，TWINKLE TWINKLE REACTION
20
198
788.926

662
324575
6022
716
512
294
716
LAMP DELAY，INTERIOP 94
LIGHT，AUTO CUPEOARD 166
LIGT SWITCHING INTUDER DEIERREN ，

LOGGER，8－CHANNEL ANALOGUE DATA
LOUDSPEAKER SYSTEM OWL
736
MAGNETIC FIELD DETECTIYE by Araty Flind
MAINS CAELE DEIECTOR by Robert Penfold
MECHANICAL AADIO by Bart Trepak
MIICRO POWER SUPPLY by Andy find

MICRO－PROEE FIC by Jim Main
MIDI HANDSELLS by Rabert Pantold
MIDI SUSTAIN PEDAL，PIC
MIND PICKLER，工PE -2
MONITORING SYSTEM，WIRELESS
HOOD PICKER，EPE
MUSICAL SUNDIAL by John Becker
PC AUDIO FREQUENCY METEत by Rabert FEnIoit
PhizzYB COMPUTERS by Clive \％Hax Maxtietd．
Alvin Brown and Alan Winstanley
3－LCD．Interface
4－8－bit Switch and Latch
5 －PhizzyBot－Mobile Buggy
6－PhizzyBat－Feelers
7 －PhizzyBot－Eyes
PIC MICAD．PROBE by Jim Main
by Robert Penfolia
位保
PIC TOOLKIT MK2 by John Becker
PICKER，MOOD，EPE
PICKLER，MIND，EPE－ 2
POWER SUPPLY，MCRO
POWER SUPFIY VARIABLE DUAL
PROEE ACOUSTIC
PROBE，PIC MICRO
PUNCTURE FINDER，ULTRASONIC
QWL LOUDSPEAKER SYSTEM by Johr Dix
RADIO REIMOTE CONTROL，AM．MF．M
RADIO，MECHAINICAL
REARSCREEN DEMISTER ONE－SHOT
RECEIVER，SW，LOOF AERIAL
RECORDIPLAYBACK MODULE，VOICE
REMOTE CONTROL，AM／FM，RADIO
SAVER，IRONING BOARD
SMOKE AESOREER by Bill Mooney
SOLDER FUMES EXTAACTOF
SOUND ACTIVATED SWITCH by Bart Trepak
STARTER PROJECTS
Clipping Video Fader Freazer Alarm
LE．D．Stroboscope
Loop Agrial SW Receiver
Magnetic Field Detector
Mains Cable Detector
STOPWATCH，GINORMOLS
STRCEOSCOPE LE．D．
SUNDIAL，MUSICAL
SUSTAN PEDAL，MIDI PIC
SWITCH SOUND ACTIVATED
SW RECEIVER，LOOP AERIAL
TESTEF，12V BATTERY
JME AND DATE GENEAATOR，PIC
TOOLKIT MK2，PIC
TWINKLE TNNKLE REACTION GATME by John KOUShado 369,458
ULTFASONIC PUNCTURE FINDER by Bill Moorey
VARIABLE DUAL POVEA SUPPLY by Tony Sercombe
VERSATILE EVENT COUNTER by ，fohn Becker
VIBRALARM by Terry de Vaux－Balbirnie
VIDEO FADER，CLIPPING
VOICE RECORDFPLAYEACK MODULE by＇Robent．Pentold VOLUME COMPRESSOR by Robert Penfold

8－CHANNEL ANALOGUE DATA LOGGER by John Becken 585,588
I2V BATTERY TESTER by Terty de Vaux－Balbirnio

GENERAL FEATURES

ALAN DOWER ELUNLEIN by Rarrie Blane－Coieman	414
DATA－NET REVIEW by Robert Penford	286
EDISON 3 REVIEW by Robert Penfold	447
FROM RUSSIA WITH LOVE？by Barry Fox	24
UTSEC SHOW REPORT by Cive＂Max Maxfield	171
MAX761 D．C．TO D．C．CONVERTER by Andy Flind MODULAR CIRCUIT DESIGN CD－ROM，REVIEW by Rcibert	$\begin{array}{r} 269 \\ d 253 \end{array}$
PC ENGINES－FROM 4004 TO PENTIUM III by Ennest Fint PIC16F87x MICROCONTROLLERS by Johm Becker PIC16F87X MINI TUTORLAL by John Becker	338 257 742

PLEASE TAKE NOTE
$34,298.335,575,882$
Demister One－Shat（Now 96）
Foghern Timing Switch（IU，Dec－98）
Greenhouse Computer（Jul 38）
Logic Gate Tester（IU，Nov 98）
Mill handoells（May＇99）
PC Capacitarce Meier（Ocl＇98）
PIC16C84 Toolkit（Jul 98 ）
PIC16C84 Tookit（Jut＂98）（Oclabe IR Remote Control（98）
Teach－In＇98 Pl6（Apr＇98）
Wireless Monitoring System（Feb＇99）
POWER GENERATION FROM PIPELINES TO PYLONS by Alan Winstantey

570． 652
SCOLAR POWER by Terry de Vaux－Balbirnia
114

SPECIAL SERIES

Morse Practice Oscillator

Motor Controller with Centre Off
Narrow Band Vision
National Lottery Predictor
NiCad Discharge Unit
One-Voit LE.D.
Photo Slave Fiash Unit
Pico Prize Winners
Pulse Modulated Imenter
Rechargeatle PP9 Battery
Reverse folarity Indicator
Reverse polatity tor
Shetial Port Sptitier
Shoestring MW Radio
Siren Sounder
Space Case Alarm

Superior Heads-Tails Indicator
Theatrical Cue Light
Time-Lapse Unit for Camcorder
Tumble Dryer Alarm
TV Test Pattern Generator
Video Amplifier
Zener Diode Tester
INTERFACE by Robert Penfold
AD8300 senal digital to analogue converter - PC controlled
More on serial interfacing to your PC
Using Delphi to visually program your PC as a virtual meter
Visual programming for PC add-ons
PhizzyB COMPUTERS by Clive Max" Maxfield, Atvin Brown and Alan Winstanley
$48,120,177,274,356,450$
3 - Shifts, rotates, stacks and l.c.d.s
4 - Polling and Latching techniques
5 - Controlling the PhizzyBot wheeled rabot
6 - Routines for PhizzyBot impact guidance
7 - Giving vision to PhizzyBot
8 - Random routines
PRACTICALLY SPEAKING-TECHNIQUES by Robert Penford 98,190
Casing your projects more easily
Getting it working when it doesn'll
Guide to capacior types and choices
Guide to identitying integrated circuits
How to achieve larger case holes more easily
Making better connections with sockets and switches
PRACTICAL OSCILLATOR DESIGNS RyyOnd Haigh

1. Hartiey and its variants
2. Colpits and its variants
3. Armstrong, R4eissner, Frankin and Butler; plus R.F. probes
4. Negative resistance osciliators
5. Crystal and crystai-conitrolled oscillators
6. Resistor Capactor Osciliators

TEACH-IN 2000 by John Becker

1. Colour Codes and Resistors
2. Capacitors and Timing

REGULAR FEATURES

EDITOR\AL $11,83,155,233,323,403,483,555,635,715,787,869$
NET WORK - THE INTERNET PAGE sufied by Alan Winstanley
$69,141,219,307,387,468,539,619,699,772,851,638$
NEWTECHNOLOGY UPDATE by lan Poole 19, 130, 163, 247, 334, 41.1, $488,560,640,720^{\circ}, 792,888$

NEWS:- plus reports by Barry Fox:

READOUT adidressed by John Becker
SHOPTALK with David Bärrington
$15,91,164,242,331,407$ 491, 503,643, 723, 795, 874

29, 132, 175, 271, 367, 426
$533,577,649,753,831,909$
34, 131, 189, 298, 335, 430, 501, $575,672,728,826,882$

SPECIAL OFFERS AND SERVICES

ADVĒRTISERAS INDEX $\quad 72,144$ 224, 312, 392, 472, 544, 624,

$56,88,209,292,385,456,504$, $594,686,764,802,932$
BASIC SOLDERING GUIDE .FREE COver mounted booklat (April '99)

EIECTRONICS VIDEOS
$67,101,218,266,386,467,516,607,675$ IDENTIFYING ELECTRONIC.COMPONENTS NGENUITY UNLIMITED SPECIAL FREE Cover mounted booklet (Nov '99) PRINTED CIRCUIT BOARD AND SOFTWA $\overrightarrow{R E}$ SEF̈VICE゙E $68,140,220$ $308,388,469,540,620,700,773,852,937$

$$
\begin{array}{ll}
\text { SPECIAL OFFER A.S.A. Profile Security Camera kit } & 419,528 \\
\text { SPECIAL OFFER B.K. Electronics } & \\
\text { Save £100 on an } 80 W+80 W \text { Hi-fi Stereo Amp } & 109,208
\end{array}
$$

7400-SERIES LÓGIC GATETPINOUTS, FREE GIANT PULL-OUT DATA CHART
betwaen pages. 352353

VIDEOS ON ELECTRONICS

A range of videos selected by EPE and designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They have proved particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, If required.
VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Serles circuits. parallel circuits. Ohms law, how to use the digital multimeter and much more.

Order Code VT201
VT202 62 minutes. Part Two; A.C. Circults. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits.

Order Code VT202 VT203 57 minutes. Part Three: Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained.

Order Code VT203

VT204 56 minutes. Part Four: Power Supplies. Guides you step-by-step through different sections of a power supply.

Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C. op.amps. etc. Order Code VT205 VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206

inc. VAT \& postage
Order 8 or more get one extra FREE
Order 16 get two extra FREE

VCR MAINTIENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

Order Code VT102
VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

Order Code VT103

DIGITAL

Now for the digital series of six videos. This series is designed to provide a good grounding in digital and computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

Order Code VT301
VT302 55 minutes. Digital Two; Filp Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc. Order Code VT302 VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, eic.

Order Code VT303
VT304 59 minutes. Digital Four; DAC and $A D C$ show's you hou the computer is able to communlcate with the real world. You will learn about digital-to-analogue and ana-logue-to-digital converter circuits.

Order Codē VT304
VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAMI, and MBM devices.

Order Code VT305 VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/outputcircuits used to make the system work.

Otder Code VT30

ORDERING: Price includes postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for oirmall postage and packing, wherever you live in the world. Just send $£ 34.95$ per tape. All payments in $£$ sterling only (send cheque or möney order drawn on á UK bank).
Visa and Mastercard orders accepted - please give card number, card expiry date and cardholder's address if different from the delivery address.
Orders are normally sent within seven days but please allow a maximum of 28 days, longer for overseas orders.
Send your order to: Direct Book Service, 33 Gravel Hill. Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Ldd.; Publtishers of EPE
Tel: 01202881749 . Fax: 01202841692
Diee to the cost we cannot reply to overseas orders or queries by Fax.
E-mall: editorial@epemag.wimborne.co.uk

PADIO

VT401 61 minutes. A.M. Radlo Theory. The most complese video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system.

Order Code VT401
VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, I.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver. Order Code VT402

VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19 kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding.

Order Code VT403

MHSCELLANEOUS

VT501 58 minuies. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers.

Order Code VT501
VT502 57 minutes. Laser Technology A básic introduction covering some of the conmon uses of laser devices, plus the operation of the Ruby Rod laser. HeNe laser, CO_{2} gas laser and semiconductor laser devices. Also covers the basles of CD and bar code scanning. Order Code VT502

Each video uses ā mixture of animated current flow in circuits plus text. plus cartoon Instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co an American supplier. We are the worldwide distributors of the PAL and SECAM versions of these tapes. (All videos are to the UK PAL standard on VHS tapes unless you specifically jequest SECAM versions.)

Everyday Practical Electronics/ETI reaches twice as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last fourteen years.

If you want your adivertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+ VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics/ETI Advertisements, Mill Lodge, Mill Lane, Thorpe-le-Soken, Essex CO16 0ED. Phone/Fax (01255) 861161.
For rates and iniormation on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

$Z \angle=6=3$ NONAVAIEABLE WIIH ALSO SPECTRUM AND QL PARTS
 W. N. FICHARDSON \& CO.
 PHONEFAX OTAS4 8773195
 PAVENSMEAD, CHALFONT ST PETER,
 BUCKS, SL9 ONE
 $X-10^{\circ}$ Home Automation
 We put you in control ${ }^{\text {T }}$
 Why tolerate when you can automate?
 An extensive range of 230 V X-10 producis and starater kits available.
 Uses prove Power Line Carrier technology, no wires required.
 Products Catalogue available Online. Worldwide delivery.
 Laser Business Systems Ltd.

 E-Mail: info@laser.com hutp://www.laser.com Tel: (0181) 4419788 Fax: (0181) 4490430
 BTEC ELECTRONICS TIECHNICIAN TRAINING
 GNVQ ADVANCED ENGINEERING
 (ELECTRONIC) - PART-TIME
 HND ELECTRONICS - FULL-TIME
 B.Eng FOUNDATION - FULL-TIME
 Next course commences
 Monday 10 th January 2000
 FULL PROSPECTUS FROM
 LONDON EIIEGTRONICS COLLEGE
 (Depl EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 0171-3738721

THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal coniect and through a quarterly Newsletter.
For membership details, write to the Secretary:
Mr. M. P. Moses,
5 Park Vlew, Cwmaman, Aberdare CF446PP Space donatod by
Everyday Practical Electronics

Miscellaneous

PRINTED CIRCLIT BOARDS - QUICK SERVICE. Prototype and Production. Artwork raised from magazines or draif designs at low cost. PCBs also designed from schematics. Production assembly also undertaken. For details send to P. Agar, Unit 5. East Belfas: Enterprise Park. 308 Albertbridge Road, Belfast. BT5 4GX, or phone/iax 01232738897.
VALVE ENTHLSIASTS: Capacitors and other parts in stock. For free advicenists please ring, Geoff Davies (Radio), Tel. 01788574744.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.c. to B. M. Ansbro, 38 Poynings Drive, Hove, Sussex BN3 8GR. or phone Brighton 883871 . fax 01273706670.
WANTED: A copy of Stripboard Magic by Ambyt. Tel/Fax Dave Larner, 01493721879.

GOLDEN GOOSE SERIAL EEPROM COPIERS, copies to/from 24C16. 24LCI6B. $25 \mathrm{Cl} 66,24 \mathrm{C} 32,24 \mathrm{LC} 32 \mathrm{~A}$, etc. Call (01245) 358209 after 6 pm. or visit www.goldengoose.co.uk for details.
PICI6F877-04, $£ 6.00$ each. s.a.e. plus cheque to R. Boardman, 4 Chapel Close, Ellesmere Port, South Wirral, CH65 2HP. Tel. 01513564588.
SECOND USER TEST EQUIPMENT for sale: Scopes, generstors. dmms. cic. H.P., Tektronix. Datron, Hameg, Marconi, Fluke. elc. Low prices. Also some non-working equipmem for parts, experiments, ctc. Ring or E-mail for list. 07930144803 or biond@mitectelcom.com. PROTOTYPE P.C.B. PRODUCTION from CAD designs. Send printout of copper track layout and NC drill file on disk to: Mr Belt, 5 Velden Way, Mill Road, Market Rasen. Lines LN8 3HD. For prices and information send sa.e. FLAT C.R.T., only $1 / 2 \mathrm{in}$. thick. For handheld oscilloscope probe? $£ 38$ with sockel 01455 613588.

AMPLIFIER BARGAINS: 50 wat, ngged module plus heatsink, £8: 30 watt, stereo and contrals, 29. K.I.A., 1 Regent Road, Ilkley LS29 9EA. Leaflet s.a.e.
G.C.S.E. ELECTRONIC KITS, at pocket money prices. S.A.E. for FREE catalogue. SIRKIT Electronics, 52 Severn Road, Clacton. COI5 3RB.

ヨPE NIATADDRESSES

EPE FTP site: ftp://ftp.epemag.wimborne.co.uk

Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:
PIC-project source code files: /pub/PICS
PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!
ĒPE text files:/pub/docs
Basic Soldering Guide: solder.txt
EPE TENS Unit user advice: tens.doc and tens.txt Ingenuity Unlimited submission guidance: ing_unlī.txt
New readers and subscribers info: epe_info.txt Newsgroups or Usenet users advice: usenet.txt Ni-Cad discussion: nicadfaq.zip and nicad2.zip UK Sources FAQ: uksource.zip Writing for EPE advice: write4us.txt

On-line readers! Try the new EPE Chat Zone - a virtually real-time Internet "discussion boärd" in a simple to use web-based forum! http:/iwww.epemag.wimborne.co.uk wwwboard Or buy EPE Online: www.epemag.com

Ensure you set your FTP sotware to ASCll transier when fetching lext files, or they may be unreadable. Note that any file which ends in .zip needs unzipping beiore use. Unzip utifties can be downloaded from:
http://voww.winzip.com or http://www.pkware.com

HALF PRICE CCTV CAMARRAS!

Professional 88-108MHz FM Broadcasting Kits

.

LASER POINIERS

Prolessional model fires a smiall red laser dol Oier 250 metres. Built into executive ballpoint pen with case and batts.
$£ 10.00$
Gord-plated Kejiob modet
LIST $£ 29.95$ NOW $£ 6,00$ Multi Koytob with 5 tips fires: ${ }^{\text {dot }}$, horizontal line, star, arrows and circle
LIST £4.25 NOW $£ 9.00$
Add 53 p\&p any quantity. (Onty soid to schosis or trederren - no misors under 2t)

SONY COLOUR CCTV

 BOARD CAMERASThe best ceiour cartras we have ener seen - tis neh cojory and crgsel ciear imeqes amazed ous bjed Figh grede Sory mage sensor cho has anto the and 200.00 pues. 350 TV Ine rescintion and LUX ieve' 2 Sizndard U'․ PAL works on anty $N \propto$ monior. U'So wen ar carera PSU and cabie kit (gee ibo.e),
NEW LOWER PRICE $£ 56.00$ (audio add $£ 5$)

ALI COOOS APE ERARD NEW ANO FEAFECT. BURK EUVERS PLEASE ASK FOH WOHH. PAKCES AVCLUDE YAT. EJ PR ANY SLZE OACEf:	VISA		A.S.A. (5ey 9 \%) $5 t$ Cambridga Road Midolesbrough TS5 5NL	Order Hotline 01642851256 Fax: 016.42823173

ELECTRONIC SURPLUS CLEARANCE SALE

MAGNETIC CREDIT CARD READER: Ks,toard and lap top display systm, part of peini of-sate uriz. Cost over $£ 150$, our price $£ 7.50$, carriage $£ 6.50$; tho urits $£ 25$ ind carriage To be used for experitantal purposes only. So inta
SECUAITY ALARM SYSTEA: COnsisting of wre locp pressige pad, piezo akarm, sounder, hey 5 nich, Fd 25 tic case 84.50 , ps.p $£ 2.50$
COMPONENTS - YW METAL CARBON FILM RESISTORS: IKred vatues. 250 ter 11 , psp $75 p$ REGULATORS: 7805 1A 5 V pus. 5 解 11 gost free
MODULAR DUAL PSU: 14 ains input, imp 12 V d.c. Outpu's a! 500 mA or singie 12 V da
 SCOOP PURCHASE - An essential book: PRIHCIPLES OF ELECTRONICS, AHALQGUE AMD DIGITAL: A comciete electrorics course for the stizjem or engineer, A ssif-study reference bouk oontaining a broad ranje of maierial, 632 pages fuly Bustrated. Puh at ore: $£ 50$, our price $£ 17.50 \rho 5 p \mathbf{~} 4.50$
FREE: A feting of new tirst ciass components and electroric items at beion trade grices Inctudesimanutacturers' suiphs and orerstosis Also vai.es and high ionioge esps.
(Dept E) CHEVET SUPPLIES LTD

157 Dickson Road, BLACKPOOL FY1 2EU
VISA
E-maii: cheveteglotalnet.co.uk Telephone Ordars Accepted
VISA

COVERT YIDEO CAMIERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receiver (Wireless). Cameras as above with colour. Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

AッL, RLECTRONICS
 Please phone 01812036008 for free catalogue. Fax 01812015359 www.uspy.com
 New DTI approved Video Transmitters and Receivers (Wireless) Major credit cards now taken

SHERMOOD ELECTRONICS

FREE COMPONENTS

Buy $10 \times$ \&1 Special Packs and choose another one FREE

SP1	$15 \times 5 \mathrm{~mm}$ Red LEDs	SP133	$20 \times 1 \mathrm{NHONS}$ diodas
5 P 2	$12 \times 5 \mathrm{~mm}$ Green LEDs	SP13s	$15 \times 1 \mathrm{~N} 40 \mathrm{CH} 7$ coses
SP3	$12 \times 5 \mathrm{~mm}$ Yeliow LEDS	SP135	$6 \times$ Min side ssithes
SP5	$15 \times 3 \mathrm{~mm}$ Red LEDS	SP136.	$3 \times B F Y=0$ vansistors
SP7	$12 \times 3 \mathrm{~mm}$ Green LEDS	SP137	$4 \times 10051.5 \mathrm{~A}$ tridge rectriers
SP10	$100 \times 1 \mathrm{Nu} 1 \div \frac{a}{6}$ diodes	SP138	23×2.2 23V radial elect tags
SP11	\$0 $\times 1$ 1N4001 dodes	SP140	$3 \times$ W04:5A bxidge rectifiers
Spl2	30×1.44079 coxes	SP142	$2 \times \mathrm{CHOS} 4017$
SP18	$20 \times$ ec 122 transistors $20 \times 8 \mathrm{ECl24}$ transistos	SP143	5 Pais min crococile cips
SP20			(Res 8 Black)
SP21		SP145	$6 \times 2 T \times 300$ transisters
SP23	$20 \mathrm{xeC5} 49 \mathrm{yransistors}$	${ }^{\text {SPP146 }}$	$10 \times 2 \mathrm{l} 3770$ transisters
SF24	$\begin{aligned} & 4 \times \text { CMOS } 4001 \\ & 4 \times 555 \text { timers } \end{aligned}$	SP147	$5 \times$ Strintoard 9 strips x
5 P 25			25 holes
$5 \mathrm{SP25}$	4×741 OpAmps	SP15:	$4 \times 8 \mathrm{~mm}$ Red LEDS
Spre	$4 \times \operatorname{chos} 4011$	SP_{152}	$4 \times 8 \mathrm{~mm}$ Green LEDs
SP29	$3 \times$ C4OS 4013	SP153	$4 \times$ Enmm Yedow LEDs
SP31	$4 \times$ CNOS 4071	SP154	$15 \times$ EC54S transistors
5835		SP156	$3 \times$ Simithand, 14 strips x
SP37			27 holes
SP39	$10 \times 470 /$ ¢б radial elect caps.	SP160	$10 \times 2 \mathrm{~N} 3503$ transistors
SP-0	15×80237 transistors	SP151	10×2 N360s transistors
SP4:	co x difxed transistors	SP165	$2 \times$ LF351 Cp.ATtips
$5{ }^{5} 42$	$200 \times 1 \mathrm{Mred} 0.25 \mathrm{~W} / \mathrm{C} . \mathrm{F}$, resistors	SP167	$6 \times$ ECi07 transisiox
SP47	$5 \times \mathrm{kin}$. PG smicties	SP168	6×86108 transitors
58102	20×8-pin Dil sackis 3 15x14-pin DIL sockets	SP_{175}	20×1 ic3V radiel elacl caps.
Sp:03		SP177	10x 1A. 20 mm quidk tiow
SP:04	35×16-pin Dil suokets		tuses
5 F 105	5×742500	SP182	$20 \times 4.763 \mathrm{Cramal}$ eft
sp109	$1{ }^{\text {a }} 15 \times$ BC557 transistors	SP183	20×20547 transistors
SP111		SP187	$15 \times 8 \mathrm{C} 239$ transistors.
SP112	$1{ }^{15 \times \text { Assoted pohester caps }}$	Spig1	$3 \times \operatorname{cmos} 4023$
SP145	$3 \times 10 \mathrm{~mm}$ firs LEDS	SP192	$3 \times \mathrm{Ca} 10 \mathrm{~S} 4035$
SP116	$3 \times 1 \mathrm{~mm}$ Green LEDs $2 \times$ Cu10s 4047	SP193	$20 \times$ EC213 transistors
Splto		${ }_{5194}$	$8 \times$ OASO cosias
5 F 120	3×741593	SP195	$3 \times 10 \mathrm{~mm}$ Yellow LEDs
	$320 \times$ Assortes cramic disc caps	SP197	$6 \times 20 \mathrm{pin} \mathrm{DIL}$ sockets
		SP	$5 \times 24 \mathrm{pin}$ DLL seckets
SP131 $2 \times$ TLO71 O2Amps		1899 Calalogue nowavaliable E1 Inargspor Filz with irsthorder. H1P E1F2 , Phorder. NO VAI	
	RESISTOR PACKS - C.Film		
AP7			Ordersfo:
$\mathrm{RPP}^{\text {RP4 }}$	1000 poatr reves 0-2014 5580		
RP4 5	5 esch reveersid 3650.5 W		
RPS	10 each vaje :0ces 730 0.5W 56.35		
RPst	1000 perouls values $0.5 \mathrm{~W} \quad 58.10$		Mottsincis 6TO.

Millions of quality components at lowest ever prices!
Plus anything from bankruptcy - theft recovery - frustrated orders - over productions etc. Send 50 p stamped self-addressed label or envelope for clearance lisis.

Brlan J Reed 6 Queensmead Avenue, East Ewell, Epsom; Surrey KT17 3EC Tel: 07775945386 Mall Order UK only.
Lists are updated and only 40 are sent out every 2 weeks. This normally ensures that orders can be fulfilled where only a few thousands of an item is avaliable. (Payment is returned if sold out. I do not deal in credit notes). This will sometimes entail a delay oil up to eight weeks - but the prices will be worth the wait!

ADVERTISERS INDEX

A.L. ELECTRONICS 944

ANTEX 923
A.S.A. 943
N. R. BARDWELL . 943
B.K. ELECTRONICS Cover (iii)

BRIAN J. REED 944
BULL ELECTRICAL Cover (ii)
CHEVET SUPPLIES 943
COOKE INTERNATIONAL 943
CROWNHILL ASSOCIATES 873
DAVID JOHNS . 864
DISPLAY ELECTRONICS 858
ELECTROMAIL 889
EPT EDUCATIONAL SOFTWARE Cover (iv)
ESR ELECTRONIC COMPONENTS 868
FML ELECTRONICS 944
FOREST ELECTRONIC DEVELOPMENTS . . 863
ICS . 943
J\&N FACTORS . 862
JPG ELECTRONICS 864
LABCENTER ELECTRONICS 887
LEADING EDGE TECHNOLOGY 889
MAGENTA ELECTRONICS866/867
MILFORD INSTRUMENTS 890
NATIONAL COLLEGE OF TECHNOLOGY 923
PICO TECHNOLOGY 865
QUASAR ELECTRONICS 933
QUICKROUTE SYSTEMS 877
SERVICE TRADING CO 864
SHERWOOD ELECTRONICSa. 944
SQUIRES . 923
STEWART OF READING 863
SUMA DESIGNS 861
TELNET . 860
VANN DRAPER ELECTRONICS 911
VERONICA FM 878
VERONICA KITS 943
ADVERTISEMENT MANAGER: PETER J. MEW
ADVERTISEMENT OFFICES:
EVERYDAY PRACTICAL ELECTRONICS, ADVERTISEMENTS,
MILL LODGE, MILL LANE, THOAPE-LE-SOKEN,
ESSEX CO16 OED.
Phonefax: (01255) 861161
For Editorial address and phone numbers see page 869
POWER AMPMII려 MODULES:LOUDSPEAKERS-MIXERS APFICES INCLUDE V.A.T.APROMPT DELIVERIES 19 INCH STIERIEO AMPLIFIERS-ACTIVE CROSS/OVERS. *LARGE [A4] S.A.E. 60p STAMPED FOR CATALOGU

THE RENOWED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS: M MF200 (100 W + 100W) MXF400 (200W + 200W) MXF 600 ($300 \mathrm{~W}+300 \mathrm{~W}$) MXF 900 ($450 \mathrm{~W}+450 \mathrm{~W}$) ALL POWER RATINGS ARE R.M.S. INTO 4 OHMS, WITH BOTH CHANNELS DRIVEN

 bustpeskes and trermil protection
USED THE WORLD OVER IN CLUBS, PUBS; CINEMAS, OLSCOS ETC

$$
\begin{array}{llll}
& \text { MXF200 W19 } & \text { W11 } & \text { H3: (2U) } \\
\text { SIZES: } & \text { MXF400 W19 } & \text { D12 } & H 5!^{\circ}(3 U) \\
& \text { MXF600 W19 } & \text { D13 } & H 5:(3 U) \\
& \text { MXF900 W19 } & \text { D14 } & H 5 \div(3 U)
\end{array}
$$

PRICES:- MXF200 £175.00 MXF400 £233.85

 MXF600 £329.00 MXF900 £449.15SPECIALIST CARRIER DEL. £ 12.50 EACH

AASS 1 MID TOP BASS/MIO TOP PASS MIDTOP
COHFIGUAED 3 WAY 2 WAY gISSIMID COMEINED 2 WAY MID/TOP COMEINED FEATURES:

PRICE:- £117.44 + £5.00 P\&P

Sounal AB SPM 12 AND 10 (0. MMD Man
The 12 and 16 Channel SPM Series Of Studió Quality Mixers Are Ideal For Fixed Installation Stage And Mobile Use.

* 48 B PHANTOM POWER
* BUILT IN POWER SUPPLY
* 230 V AC/50Hz
* PEAK INPUT LEVEL LEDS
\star PRE FADE USTEN (PFL)
* sub master output
* COMBINED XLR/\&JACK
* 60mm FADERS * CH.MUTE
+ 2 STEREO AUX.SEND/RETURNS
* CONSTANT PAN CONTROL
* BAND EQ WITH MID SWEEP
* COIAPE INPUTS \& OOOM O/P
+ BAL ANCED INPUTS \& OUTPUTS
* BUS ASSIGN SWITCH OUTPUTS
* MONITOR SEND

SIETEOSIISCO MXEFI MPX-7700

 4 STEREO INPUT CHANNELS - 2 OJMIC INPUT CHANNELS - 2×7 8AMD GRAPHIC EQUALISERS * HEADPHONE * HEADPPHONE
MONITOR WITHPFL - ASSIGNABLE CROSSFAOE

STEAEO DISCO MIXER WITH: *2X7 CRAPHC EOUALISERS •2 MONO DIGITAL ECHO MC WITHFADER. TALKOVER AND VDICE CHANGER * 4 STENEO CHANNELS WITH INDIVDUAL FADERS AND ASSIGNAELE CAOSSFADE - CHANHELS SwITCHABLE TURNTABLE PMAG CARTRIDGE. CD LNE TAPE. ETC. ECHO WITH BALAHCE, REPEAT AHD DELAY FFEADPHOUE NONITOA YITH PREFADE LISTEN * CHOHCE OF G SOUND EFFECTS - STEREO YONO SWITCH $2 \times$ LED VUBETEAS - MASTERFADER F OUTPUT $775 \mathrm{~F} V$
-SITF $-482 \times 240 \times 115 \mathrm{~mm} \cdot$ PO:VER -230 V AC $50 / 60 \mathrm{~Hz}$ PRICE:- $£ 169.00+£ 5.00 \mathrm{P} \& \mathrm{P}$

RADIO MICROPHONE CYBERWAVE FMM 1000

 * DEAL FOR:- LVE BANDS, PUBLIC ADDAESS \& KARAOKE ETC. - ON/STANDAY/OFF SWITCH UOUNTED ON WIC BARREL FOR EASE OF USE $*$ tOO HOURS BATTERY RUNNING TIME, 1 PP3 (NOT SUPPLIED - SINGLE CHANNEL RF MICROPHONE 174.23 OR 174.56 MHz - MAINS ADAPTOR FOR RECEIVER SUPPLIED \& FM LOCK INDICATOR \& VOL CONTROL ON.RECEIVER. PAICE:- £ 119.99 FREE UK P\&P

.
FlIGHTCASED LoUnspeakEns dvantange of quality loudspeakers, designed 10 take onclosure designs. All models utilize high quality sludio casi aluminium toudspeakers with factory fitted grilles, wide disporsion constant diractivity harns, extruded atuminium corner protaction and steel ball corners, dirmplimented with heavy duty black covering. The enclosures are fitted as standard complimented with heavy duty black covering. The enclosurs are
with top hats for optional loudspeaker stands. The FC15-300 incorporates a large 16×6 inch horn. All cabinets are fitted with the latest Speakon connectors for your convenience and safety.

Five madels to choose from.

 PRICE.- $\varepsilon 19900$ por pair ibl FC12-100 YATTS Freq Range $4512-20 \mathrm{KHz}$, SEns 100 aB . Size $H 5 \leq 6$
 PRICE:- $£ 125.00$ EACH Optional Metal Stands PAICE:- $\mathbf{5 4 9 . 0 0}$ par pair Delivery:- 56.00

COLOSSUS POWER

THE COLOSSUS RANGE OF LOUDSRY HIGH POWER LOUDSPEAKERS
THE COLOSSUS RANGE OF LOUDSPEAKERS
ARE DESIGNED FOR USE IN SUPERIOR HIGH
POWER OUTPUT SYSTEMS ALI UOOELS ARE B CH
POWER OUTPUT SYSTEMS. ALL WOOELS AFE B OHM COLOSSUS T2MB:- 12 INCH +450 WATT R.M.S.
 * Frequency Range $40 \mathrm{~Hz} \cdot 3.5 \mathrm{KHzPRICE}$ £ 129.00 COLOSSUS $15 \times B:-* 15$ INCH * 600WATTS R.M.S * 1200 inat IS PEAK * Sens 99 dB * Res Freq 35 hz * Frequency Range $30 \mathrm{~Hz}-10 \mathrm{KHz}$ PRICE $£ 159.00$ COLOSSUS $18 \times 8:-\approx 18$ INCH $=600$ WATTS R.H.S - 1200 WATTS PEAK + Sens 100 dB . A HES Freq. 30 Hz all hodels ane ofgiveriod canalage freeluk ohly

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS OMP/MF 100 Mos-Fot Output power to walts RMS. Into 4 ohms, irequency response tiz - $100 \times \mathrm{KHz}$ 30 B , Damping Facior >300, Slew Hale $45 \mathrm{~V} / \mathrm{LS}$. TMD lypical 0.002%, Input Sensiliviliy 500 mV , $5 . \mathrm{NR}$. 110dB. Size $300 \times 123 \times 60 \mathrm{~mm}$

PRICE:- $£ 42.85+\varepsilon 4.00 \mathrm{PAP}$

OMPTMF 200 Mos-Fet Output power 200 watts BMS into 4 ohms frequency tesponse HZz - 100 KHz RMS. into 4 ohrns, frequency ré sponse 4 Hz - 100 KHz -308. Damping Factor > 300 Slew Rala boV/uS, T.RD typical 0001 会, Input Señsitivity 500 mV . SNR. 1100 B Size $300 \times 155 \times 100 \mathrm{~mm}$

PAICE:- $866.35 \div$ - 4.00 P\&P

OMP/MF 300 Mos-Fgt Output power 300 watts RMS into 4 chms, frequency response tiz -00 KHz -3 dB , Damping Factor >300. Slew fiate él V/us. T.HD 1yp cal 0.001%, Inpul Sensitivity 500 mV . SNR. 1100 F Size $330 \times .175 \times 100 \mathrm{~mm}$

PRICE:- $883.75+85.00 \mathrm{Ps} 8$

OMP/MF 450 Mos.Fet Outpul power 450 walis RMS into 4 chms, frequency resporse $\mathrm{Hz}-700 \mathrm{KHz}$ 3dg. Damping Factor >300. Slew Rate $75 \mathrm{~V} / \mathrm{LS}$, THD. typical 0.001%, Inpul Sensifivity 500 mV . S.NA, 110 dB , Fan Cooled, D.C. Loudspeaker Prolection, 2 Second Anli-Thump Delay-Size $385 \times 210 \times 105 \mathrm{~mm}$

PRICE:- $£ 135.85+\mathbf{E} 6.00 \mathrm{PAP}$
OMP/MF 1000 Mos-Fal Ouipul powes 1000 watt RMS. inte 2 ohms, 725 watts RMS into 4 ohms. frequancy response thz - $100 \mathrm{KHz}-3 d 9$, Damping Factor 3300 . Stew Rate $75 \mathrm{~V} / \mathrm{aS}$. T.HD. typicad 0002% Input Sensitivity 500 mV . S.N. 110 dB , Fan Cooled D.C. Loudspeaker Prolection, 2 Secand Anti-Thump Delay S:ze $422 \times 300 \times 125 \mathrm{~mm}$

PRICE:- $£ 261.00+£ 12.00$ P\&P
NOTE UOS, FET MODULES AAE AVALAELE IN THO VERSOONS STAMUARD INFUT SSNS SODAV. AAND WIDTH GOKHI OF

B.K. ELECTRONICS

UNIT 1 COMET WAY, SOUTHEND-ON-SEA, ESSEX, SS2 6TR
TEL.: 01702 527572 FAX: 01702-420243
Têb:- http://wwwhkelec.com E-mail:- Salesebkelec.com

'Electronics, Electrical \&

Mathematics Principles V6'
If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics and maths then this is the software for you.

CD-ROM far Wingolows '05, "98 \& NT
$£ 99.95$
+V/AT
Rostage FRep

Fiom Ofin's law añ simgle DC through Ace theory to the ratestiPiC16F84 and PIC16C71 miaro gentrollens where the architecture and complete instruotion set can be explored through the interactive graphics. Approvee by Mierochip. Meithematios are developed from simple number systems fo solving linear equations andapplying statistios.

ar visit our web site forsal tomploht
Electronies Pangiples is a well thought ouf and comprehensive program lhat is also easy to install and stable in operation. if can bo wholeheartedly recommendéd."
Robert Penfold. Everyelay Practical (illectronics magazine October 1998.

EPT Educational Sofiware. Pump House, Lockram Lane, Wham, Essex. UK. CM8 2BJ. Tel/Fax: 01376 514008. sales@eptsoft.demon.coruk www.edtsoft.demon.co. uk Switen; Dalta, Visa and MasterCard payments accepted - please oive caral number and expiry date. Gheques \& Postal Orofers should be maderpayable to 層PT Fifucational software.

[^0]: The tile is fashioned and painted to look like a snowman (or snowperson?), and it has the l.e.d.s to form the eyes, nose and mouth. The idea is to arrange the l.e.d.s so that the snowman's expression alternates between an internet style smile and frown. This is just a suggestion, and there is plenty of scope for doing your own thing. You could obviously use:a different character such as Father Christmas as the basis of the project, and he could be made to wink, for example.

[^1]:

 NEW from Lascar Electronics is a 5-digit starburst liquid crystal display module with an on-board Flash PICMicro. It has been designed as the bullding block for thousands of display and instrumentation applications.
 Using standard software routines that can be downloaded from Lascar's website, users can tailor the module's function to suit their own needs. Because of the Flash memory on board, users can re-program the module as often as they like.
 Readers will know that EPE has so far concentrated on PIC-controlling "intelligent" alphanumeric I.c.d.s. Here now is an opportunity to make use of the more basic types of I.c.d. in conjunction with PIC devices.
 Lascar's module features eight analogue inputs and up to 22 digital I/O ports, capable of driving or interfacing with other systems.
 For more information contact Lascar Electronics, Dept EPE, Module House, Whiteparish, Salisbury, Wilts SP5 2SJ. Tel: 01794884567 . Fax: 01794884616. E-mail: lascar@netcomuk.co.uk. Web: httpt/www.lascarelectronics.com.

[^2]: Please allow four working days for UK delivery.
 NOTE: Sutface mall can thie ower 10 weels to sente parts of the worri: Emih henual neight dbeut skg when packed

[^3]:
 \square BOARD SERVICE
 Order Code Project Quàntity Price
 \qquad
 \qquad

 I enclose payment of $\varsigma . e q u e ' P O ~ i n ~ \& ~ s t e r l i n g ~ o n l y) ~ t o: ~$

