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The Intrinsic Impedance of Space

N the Revue Générale de I'Electricité of March

(p. 120), there is a strange account of a note

by L. Brylinski presented to the Academie des
Sciences by Louis de Broglie. According to this
note one obtains two different values for the
intrinsic impedance of space or of any medium,
depending on the system of units employed. If
expressed in the unrationalized m.k.s. system the
value is stated to be Z, = 30, but if expressed
in the rationalized system the value becomes
Zy = 4778, The author of the note says that
this duality is a source of confusion and cannot
be accepted; he then gives a very peculiar
calculation in support of the 30- () value. Although
the value 477} occurs several times throughout
the note we feel sure that if MM. de Broglie and
Brylinski were to get together and go into the
matter more thoroughly
they would agree that
47 X 301s 377 and not 477.
As they rightly say, the
value of the impedance
cannot really depend on the
system of units employed,
d and whether one bases the
intrinsic impedance on the
ratio of voltage to current
or on the ratio &/H one
must obtain the same result if the units arc
properly employed.

Probably the simplest way of approaching
the problem is to consider a long line consisting
of two parallel flat strips of considerable width &
and separated by a small distance d* (Fig. 1).

Neglecting fringing, the inductance per metre
length is (47/107)d/b henry, and the capacitance

[PEE ]
Fig. 1.

per metre length (b/47d)/(9 ¥ 10%) farad. Then
for a long line

vV L d
Zy a \/C 1207 X bohms.

Putting & = 1"/d volts per metre and H = /b
amperes per metre we have &/H = 1207 ohms
for the intrinsic impedance of the medium. In
this example both & and H are uniform fields;
it is immaterial whether they are expressed per
metre or per cm. The intrinsic impedance is the
impedance of a column of cross-section 1 X I,
whatever the units. It is important to note,
however, that if & is in volts per cm and H in
oersteds the latter must be converted into amperes
per cm if the quotient is to be in ohms, and we
then have 47/10 X &/H = 1207 ohms.

An interesting application of this intrinsic
impedance of space is the calculation of the radia-
tion resistance of the inverted cone transmission
line which simulates the radiation from an
aerial.f.  We showed that the angle « in Fig. 2
is about 35°, depending somewhat on the type of
aerial which is to be simulated. In radians « is
about 0.6. At a distance r from the transmitter
V =& X ar and I = H X 277 because the length
d of the path of the electric field is a7 and the

* Electrical Review, Septetnber 26, 1913.
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length b of the path of the magnetic field is 2#7.
& is in volts per unit length and H in amperes per
unit length. We can neglect the small differences
in the value of & and in the length of the magnetic
path at different points between the earth and the

cone ; for this small value of « these only amount
to a few per cent. Hence
Vv & or o
= — = 120 600 — 3062
2 H  2nr ™ 27 * 3

In Wireless Engineer of April 1945 we showed
that the radiation resistance of a quarter-wave
earthed vertical acrial is 36.6 ohms.

Having thus illustrated an application of the
intrinsic impedance of the transmitting medium,
we return to the Irench note in which the
authors consider a bifilar line of which the con-
ductors have a radius a and unit permeability.
They then say ‘ In order not to be confused by
the fact that the two currents flow in opposite
directions, we consider a circuit composed of
only one of them and a ncutral fictitious wire
half way between them, which can be verv fine
as it carries no current and produces no magnetic
field. If b is the shortest distance between this
neutral wire and the surface of the actual con-
ductor, the expression for the inductance will be
L = py(0.5 + 2log.(a + »)/a). Now we can
reduce & to a very small value (0.001 cm for
example) and let a increase indefinitely, so that
log,(a + 0)/a = log,(x + h/a) — bja—0 and one
will have Z, = p,/2.  As the conductor only
occupies half the space it will be necessary to
double this value and this gives for Z;, the
intrinsic impedance of space, the value u,c.” They
say that this gives a result in favour of the value
Z,—=308. This is obviously obtained by
putting ¢ = 30 X 107 m/sec and p, = 1077 In
accordance with the unrationalized m k.s. system,
but what all the above has to do with the intrinsic
impedance of space is beyond our comprehension.

Even if two parallel conductors are made so
large that they almost touch, the combined
inductance will be (1 + 4log,24a/a) and that of
each considered separately (0.5 + 2log,2). A
fictitious fine wire placed between them cannot
be made an excusc for stopping the integration
half way, and then merely doubling the result.
It would also appear that they have filled the
space, the intrinsic impedance of which is to be
determined, with a conductor. But apart from
this the authors appear to have a wrong idea of
what is usually understood by the term °the
intrinsic impedance * of space or of a medium, a
term that we believe was first employed and
clearly defined by Schelkunoff in 1938.7 This
trouble goes back a long way, for in Heaviside’s

1 Bell Sys?.chlT, 7., January 1938,
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“ Electrical Papers,” Vol. II, p. 377, we read
“Since the line integral of H is electric current
and the line integral of & is electromotive force,
the ratio of & to H is the resistance-operator of
an infinitely long tube of unit arca; a constant
measurable in ohms, being 60 ohnis in vacuum, or
30 ohms on each side. Why it is a constant is
simply because the waves cannot return, as there
is no reflecting barrier in the infinite dielectric.’

P

Fig. 3

He was considering ‘ a plane of sheet impressed
force in a non-conducting dielectric ;—the
disturbance is then propagated both ways un-
distorted at the speed of v = (ux)t.’ If the
transmission {from the source is in both directions,
they are in parallel, and if the resistance on cach
side is 30 ohms, the combined resistance will be
15 and not 60 ohms. A few pages earlier (p. 369)
Heaviside shows that for a distortionless tele-
graph circuit
Z = Lv where v = 1/4/LC

He then says Lv = L. X 30 ohms = the impedance
of the circuit at A. With reference to this Dr.
G. A. Campbell in a memorandum written in
1932 savs ‘ Apparently Heaviside’s 30 ohms was
in ordinary ohms and not in Heaviside’s own
units, as Nichols quite naturally assumed. The
correct explanation of the 30 ohms seems to be
that Heaviside’s ‘resistance-operator of an
infinitely long tube of unit area’ was not intended
to be the characteristic impedance as I define it.’
It certainly looks as if Heaviside’s resistance-
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operator is to blame for the 30-ohms muddle in
which Brylinski and de Broglie have become
entangled.

It is easily scen that 30 ohms is the characteris-
tic impedance of a line having unit inductance
per unit length (that is, 1 ¢.g.s. unit of inductance
per cm of length) since if L =1, 1/CL = ¢* =
g X 10® and C = 1/g X 10% c.m. units. Hence
for such a line Zy=+4/L/C =3 X 10" cgs.
units = 30 ohms, and for any line Z,= 30L
ohms where L is the inductance per cm in c.g.s.
units. The dielectric is, of course, assumed to
be space.

Having disposed of the 30 ohms, we shall now
apply the 377-ohms intrinsic impedance to an
inverted cone in which the angle o is so large
that the approximation made in considering
Fig. 2z is no longer permissible. In I'ig. 3 the
angle o is 60 degrees. The electric-field lines are
drawn at the radius » for each 10° of the cir-
cumference ; the magnetic-field lines are circles
drawn at such distances apart that the spherical
surface is divided up into squares; that is, as
the electric lines converge on approaching the
cone, the magnetic lines are drawn closer to-
gether, H and & being equal at every point.
Since the latitudinal distance between adjacent
electric lines varies as cos f, the longitudinal
distance between the magnetic lines must vary
in the same way and the number of squares per

unit angle must vary as I/cosf. The total

number of squares in angle o will be
-3
6 % —3-Ja’0c050 —Ijloge tan (%4 7)
7 J, T 2 1

= (18/m) X 1.315
in which & = 60°. This gives 7.53 squares betwcen
the ground and the cone. As each square sub-
tends 10 degrecs horizontally, each horizontal
layer contains 36 squares. Each squarc is a
cross-section of a pyramid extending from the
apex of the cone out into space with an intrinsic
impedance of 377 ohms. As in Iig. 1, we deter-
mine the characteristic impedance of the conical
line by multiplying the intrinsic impedance by
the number of squares in the direction d of the
electric field, and dividing by the number of
squares in the direction b of the mugnetic ficld.

Hence
_ 7-53
Zo=377 X 35
which agrees with the value calculated by the
accurate formula (see Wireless Engineer, July
1044) viz.

Z, = 60 log, tan <2 Z—) 79 ohms.

79 ohms

We trust that this has removed any uncertainty
as to the exact meaning of intrinsic impedance
and as to its value. G. W.O. H.

CONSTANT PHASE-SHIFT NETWORKS

By R. O. Rowlands, B.Se.

(B.B.C. Engineering Training Department)

SUMMARY.

Tt is shown that for every phase-shiit network therc can be found a corresponding

attenuation network whose attenuation is dircctly related to the phase shift of the former network.
The technique of designing attenuation networks is more straightforward than that of designing
phase-shilt networks, and so the requirements of the phase-shift network are tirst translated into thosc
of an attenuation network. This network is then designed and from its parameters, the parameters of

the phase-shift network are calculated.

Introduction

N a passive linear network made up of positive
inductors and capacitors the phase shift
is an increasing function of frequency and

so a network of this type cannot be used to
produce a substantially constant shift over a
given range of frequencies. A nctwork made up
wholly of negative inductors and capacitors
will have a phase characteristic which is a
decreasing function of frequency. By using both
these types of sections in building up a composite

MS accepted by the Editor, December 19438
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network it is possible to obtain a phase shift
which is oscillating about the required constant
value over a given frequency range. The amount
by which the phase deviates from the constant
value depends upon the number of sections used.

Theory

The problem of designing =/2 phase-shift net-
works will be considered first ; and afterwards,
the modifications necessary to produce a phase
shift other than /2.

Consider the network shown in I'ig. 1.
impedance of the network is given by

The
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Z = «/(jul)|(joC) = V/(L]C)
and is therefore constant at all frequencies.
The propagation function of this network is
imaginary at all frequencies and is given by

8 — log, L+ VoL - jul)
v =B =108 0L )
where 81s the phase shift in radians.

Ify/LC =K
. I+ jwK

Then j8 = log, N

It is possible to plot the graph of 8 against w
for varying values of K and to select thosc
curves whose sum meets the requirements of a
substantially-constant phase shift. This method
is tedious and difficult compared with the problem
of designing attenuation networks where usually
it is only necessary to secure a certain minimum
attenuation over a given frequency range ; for
whereas in the former problem we have to be
within a maximum and a minimum limit, in the
latter problem we are working to a minimum limit
only. This suggests that if the phase-shift net-
work can be linked to an allied attenuation
network the problem will be greatly simplified.

If a number of basic sections are connected
in tandem the phase shift of the composite net-
work will be the sum of the phase shifts of the
individual sections ;

oo 10Ky 1k,
= logeI —]wK1+10geITu)1{2 I° o of® a
I+ jwK,
+ IOg”It;'ZK

g (gl (14 joky) (1 + juK,)
T JeR) (1 — jwky) L (T — jwK,)
I4-jwS; F2wS, + .. ..+ "w"S,

g S T WS, — . (— j) S,
(1)

where S; = K, + K, +.... + K,
S,=K,Ky+KK;+....+K, K,

Now ¢ = cos 8 + 7sin B
Le., 78 = log, (cos B + jsin B)
i =", |
j ;= log,j — log,j g — i))
= log, i—+—5 = log, Zi_—;z—

The condition that 8 = /2 then is that equation
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(1) takes the above form. It may be seen by

inspection that the real part of the numerator is

equal to the real part of the denominator and the

imaginary part of the numerator is the negative

of the imaginary part of the denominator. The

remaining condition is that the real and imag-

inary parts of the numerator are numerically

equal ;

ie,that 1 — @25, + S, =wS; —

W3S, + S, ... L. SR (7)

This is & polynomial of

N L 7 degree n in w, and mayv

@ c be solved for # frequen-

cies at which the phase

shift is =/z. At inter-

mediate frequencies the

L . 4

—.0220000 phase shift deviates from

Fig. 1. Hasic section. 7/2. In order to deter-
mine the values to be

assigned to the cocflficients S,—where » takes
the values 1 to #—so that the deviation of the
phase shift from =/2 at these intermediate fre-
quencies is a minimum, we shall endeavour to
relate them to other coefficients whose values
may be determined by using the theory of
attenuation networks.

Consider then an allied network the physical
configuration of which is immaterial and whose
propagation function is real and is given by

o2 I+ hw
Y= 08 T T,

In this expression 4 is a factor determing the
frequency at which the attenuation becomes
infinite ;

Le., if w_ corresponds to this frequency

I —hw, =0
orh = Ijw,

The propagation function of n sections of this
network is given by

N I+ hJ‘f) g I+ hyw
O T WL Sy oy
I+ hyw
g e
o I+ le—{—thf)z—%—,..,—}—Rnw"
T8 R F Re® — ... (—1)°R,e"

where Ry =/h; +hy+hy+....+h,
Ry=hyhyg +lyhg+ . ...+ h(,_))h,
R,=hhh,.... h,
« is infinite when the denominator is zero ;
Le., when I — Ryw + Ryw? + . ...
(— 1)" R,w™ =0
or1 + w?R, +wlR, + .. ..
=wR1+w3R3+w5R5..,. 5o (3)
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[fwemake R, =S,; Ry,= —S,; Ry=—53;
Ry=35,; Ry=55; Rg = — 5; etc. (4)
then equations (2) and (3) are identical and may

be solved for = frequencies at which the phase
shift of the first network becomes =/2 and the

+ ho

o = log, i 2 tanh ! hw

) 0.
1.0.,tanh;‘ - hw

and log, tanh g = log, hw

attenuation of the second network becomes

By choosing a log scale for frequency

N T T LL:—“ I B and a log-tanh scale for attenuation
N -*JF T * , i # % T T '—{‘7“ ] -) the graph for this type of section will
ST \ T 7 [ 1 | be a pair of straight lines as shown in
g \;4 T —l—v—* —~+ 1+ Fig. 3.* The effect of varying A is to
g T ‘\ﬂ—*—‘— = l‘ - — shift the graph laterally. It isa com-
g % S i—{ f - —+ - paratively simple matter, therefore, by
2 8 —4 3 — | ! 1 -~ plotting graphs and adding the attenu-
e ! | R e e ] T || ations of individual sections, to deter-
& ¢ ! L U VRO S N S | | | mine the number of sections and their
= i [ | N | } I I % values necessary to give the re-
o _ \LT\ |- I 1L quired performance. The values of R,
2 | ™~ | _1 to R, are then determined. The K
"y | | ~~ Pl | values of the scctions of the corres-
I T TT T L1 | i‘f\\\‘\_: ponding phase-shift network are the

HEEREEE T11 ] || 1| | [ | rootsof the polynomial

8 20 22 24 26 28 30 32 34 36 38 40 Kr — S K" 14 S,K" 2 S,K" 3
ATTENUATION (db) 4 S,K" 4 e — 0

Fig. 2. Relation between phase-shift of one network and attenii- or K" — 1‘)11\"1 b= 1‘)21{" ® -+ R31\"”3
ation of the devived nelwork. F R — ... =0

infinite. Again if the left-hand sides of equations
(2) and (3) are designated x and the right-hand
sides y then the phase shift of the first network
is given by

8 — log, " 197 — zjtan-1?
B = logex e 2j tan . (5)
and the attenuation of the sccond network by
xty v
— 1 < — anh 1<
o oggx*y 2 tanh " (6)
and so
Y tang — tanh (7)
2 2

This means that there is an exact relationship
between the phase shift of the first network and
the attenuation of the second. This relation
is shown in graphical form in Fig. 2.

Design Procedure

So far the S coefficients of the phase-shift
network have been related to R coefficients of
an attenuation network. Again the phase-shift
requirements of the former network may now
be translated into attenuation requirements
of the latter network. To obtain the values of
the R coefficients which satisfy these require-
ments consider the attenuation function of a
single section of this network given by
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Some of these roots are positive and
some are negative. The positive roots correspond
to sections with positive components and the

e = ]
o —— =]
St —— e —— S ——
CHANGE OF SCALE ]
10 \ /
I
12 \ /
5 /
sz /
S 14
5 s
1
2
£ \ /
<17
I8 /
19 /
20
22 NHH,
24 /
27 i
30
#
03 04 05 06 0708091 2 3 4
MULTIPLES OF w)
Fig. 3. Network attenuation relation in terins of w,.

negative roots to sections with negative com-
ponents.

* The discontinnity in the lines is entirely due to the change in the
attenuation scale.
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Phase Shifts other than #/2

In certain applications it may be necessary
to produce a phase shift other than =/2. In such
a case the requirements may be related to those
of a network producing a phase shift of =/2
and the design equations modified in the following
manner. I‘rom equation (5)

By
X

tan -
2

As B oscillates about the value /2 so y/x oscillates
about the value 1, and the angle g defined by

tani — ”—?—} oscillates about the value @
f
where tzmE =m .. - - o (8)

For any particular value of y/x let 8 become
m/2 — eand " become § — §

0 —8 my
tan 2 » x T €\
then == Y tan [ o - )
6 x 4 2
tan — m
2
7}
‘can——’tam8 I— tani
2 2 2

R L A
tan- (1 tan - tan - I tan -
1112< - wm 2) -+ an2

6 3
Let t=tan-; d = tan -~ ; and e — tanf; then
2 2 2

I—dft _1—¢

I-+di 1I-+e
whence e{2 +d (¢t — 1/t)} = d(t + 1/8)
If ¢ and e are small we may replace them by
3

€ g g 9
b and > and also ignore the terms involving

their product.

\We have then e — (t;m—g -+ cot z)z . {9)

The procedure is then to evaluate the R terms
in the manner described above for a network with
an attenuation corresponding to a deviation e
and then evaluate the K terms corresponding
to the equation my/x = 1 ;
viz.,, K* — mS K" 1+ S,K*% — S, Kn 3 &
e =10 (10)

Example

Suppose that it is desired to design a network
giving a phase shift of 60 4- 10° over the frequency
range 300 c/s to 1200c/s. If we call the geo-
metrical mid-band frequency w, then the range
will extend from }w, to 2w, Putting 8 = 60°
and 8§ = 10°, in cquation (g) we have that
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e = (tan 30” -~ cot 30°) X 5
= (0.5774 + 1.7321) X 5
2.3 X 5§ = II.5§

Referring to Iig. 2 we see that a deviation of
11.5° corresponds to a minimum attenuation of
20db. I'rom Fig. 3 we see that a single section
of the attenuation network will give an attenua-
tion of just over g db at the extremities of the
frequency range and so it looks as if two sections
will be adequate. The requirements can easily
be met but the optimum performance is obtained
from the arrangement shown in I7ig. 4, where
the minimum attenuation at the midband is
made equal to that at the extremities of the band
and is of the order of 25 db. With this arrange-
ment the values of w4 come to 0.625 and 1.6.
From equations (4) we have that

woR, = 0.625 + 1.6 — 2.225 — S w,

and w?yR, = 0.625 X 1.6 = 1 = — S,w?,

Again from (8) m = tan 30° = 0.5774

pl I T —

5 S |

Z? —r = e i

S Sm— ———riogn g e e S ey S — —— - —— -
'\cHANGE 0F SCALE | K 7

TN/ [
\L LN/
\

o~ 13—
S Vo /
2 —==| I
] 15— ‘\ [\ E 7/
= [ | |
Eee e
\
\

! y

20 71’ — ==
2 \ A\
—— \-—/ \/ N
7 | \ AN \L /A |
30 | .y //
36 | \ NW/2 —- i
4‘( — v Ad \V/4
& L o A - Y

03 04 05 06 07 0809 2 3 3

HUTLIPLFS OF ¢,
Fig. 4. Two sections in tandemn with peaks at

0.625 wg and 1.6 wqy (solid lines) give the response
shown dolted.

So equation (10) becomes K2 — m S|K - S, — o

e, K2— 3K X _o
Wy Wo
or K, L5 AV L,C,
Wy
and K, o545 \VL,C,
Wy

Knowing the impedance of the circuit the values
of L,, C;, L, and C, may be worked out. In
consequence of K, being negative, minus signs
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have to be assigned to L, and C,. The realization
of these negative components is discussed in
the next section.

Oy o
I A+ B- 0 (a)
o— -
o —— ——o
I A+ B- 0 B+ P
—o
B+ Q
(b)
—o
I A+ P
—o
|—o
B+ Q
(c)
Fig. 5. Sections having posiiive and negative elements

are grouped as ai (a). The addition of two B

networks (b) leaves the phase difference belween

P and Q unaltered. The B+ and B— networks
cancel to give (c).

Alternative Circuit

We have derived a method of designing a net-
work which produces a constant phase shift
between its input and output terminals. Such
a network however will have negative components
in those sections corresponding to negative
values of KA. In most practical applications,
however, such as in a single-sideband modulator
the requirements are two pairs of terminals with
a constant phase difference between them.
An arrangement satisfying this condition can
be built up entirely of positive components,
as will be shown.

The network designed as above consists of
the tandem connection of a number of sections
corresponding to the various values of K. If
the sections corresponding to positive values of
K are segregated to one end of the network and
the ones corresponding to negative values are
segregated to the other end, then the network
will be as shown in Iiig. 5(a), where the former
sections are represented by the block A + and

\WIRELLSS ENGINEER, SEPTEMBER 1949

the latter by the block B —. If now two similar
networks B -, whose components are equal
and opposite in sign to those in the B — sections
are inserted, one in tandem with the output
terminals and the other in parallel with the input
terminals as shown in Lig. 5(b), the phase
difference between the output terminals of the
two B L networks still meets the required
performance.

The phase shift between terminals I and O
will be substantially =/2.

Let the phase shift in B -+ be ¢

Then the phase shift from I to P

And the phase shift from [to Q = ¢

So the phase difference between I’ and Q
w2 ¢ p=m2

The B — and B - sections in tandem,
however, cancel each other out as is shown 1in
the Appendix. The network may therefore
be realized as the sections A + and B -+ in
parallel as shown in Iig. 5(c).

w2z + ¢
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APPENDIX

Let two networks be connected in tandem, the net-
works being identical except for the components in one
being the negative of those in the other. Let them be
expauded in the form of a ladder. This is always possible
so long as we admit of ncgative components. The net-
works will then be as shown in Fig. 6. First, the
impedances Z; and — Zp in series at the junction of

v =
Fig. 6. This diagram illustrates how positive and
negative nelworks in tandemn cancel oul.

the two networks cancel each other out. This leaves
the admittances Y, and — ¥ in parallel, but these
now cancel cach other. Proceeding along the networks
in a similar manner we find eventually that there is
conmplete cancellation of the two networks.

287



ELECTRICAL PROPERTIES OF WATER

Reflection Characteristics of Water Surfaces at V.H.F.
By J. A. Saxton, Ph.D., B.Sc., AM.LE.E.

{Communication from the National Physical Laboraiory)

SUMMARY.— The variation of the dielectric properties of water as a consequence of anomalous
dispersion is discussed. It is shown that this dispersion occurs mainly between the frequencies of
108 and 10% Mc/s, over which interval the permittivity of water falls from 8o to 5.5. The ionic
conductivity of fresh water is of importance only for frequencics less than 103 Mc/s, and in sca water the
ionic conductivity loses its significance when the frequency exceeds z x 1ot Mc/s. The results are
given of some calculations which illustrate the effect of the anomalous dispersion on the reflection
coefficient of fresh water surfaces for radio waves.

1. Introduection

IN the consideration of the propagation of very
short radio waves a knowledge of the reflection
coefficient of the earth’s surface is necessary.
Further, at wavelengths less than 10cm the
scuttering and absorption of radio waves by water
drops in the atmosphere is of importance. Since
water Is an important constituent of the carth’s
surface, and in view of the increasing use of very
short-wave radiation in radio communication and
navigation, it has been suggested that a review
is desirable of the existing data, both experi-
mental and theoretical, relating to the dielectric
properties of water at these very-short wave-
lengths.  This paper presents such a review.

It has usually been the practice to regard water
as a reasonably good conductor for clectro-
magnetic waves longer than a certain value of
the order of 10 or 20 metres, say, for sea water,
and about 3,000 metres for fresh water. [t has
further been common to consider fresh water as
behaving mainly as a diclectric at wavelengths
less than about 1 mectre, but this is by no means
true except in a very restricted range of wave-
length. The latter qualification arises since the
water molecule is electrically polar, as a result
of which water exhibits anomalous dispersion,
and the region of the radio-frequency spectrum
in which this dispersion is manifest is principally
between the wavelengths of roem and T mm
(frequencies 3,000 to 300,000 Mc/s). Sea water,
in which the ionic conductivity is much greater
than in fresh water, cannot be regarded as even
a moderately good dielectric at any wavelength
in the radio-frequency spectrum.

Now although the major part of the anomalous
dispersion occurs between the wavelengths  of
10cm and 1 mm, some small variation of the
permittivity exists up to a wavclength of 30 cm,
while a variation in the absorption coefficient

MS accepted by the Editc;r, §ép;r;be; ;948
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exists up to even slightly longer wavelengths.
Above the wavelength of 30 cm the refractive
index is given adcquatcly by the square root of
the low-frequency relative permittivity, which is
8o at 20° C, but even at a wavelength of 1 metre
the effective dipolar conductivity, with which
the dispersion is associated, is rather greater than
the ionic conductivity produced in ordinary
fresh  water by the normally occurring
amounts of dissolved salts. A rcasonable average
value for the ionic conductivity of fresh water is
about 108 e.s.u. or I.I X 1072mho'm. It will be
seen later that there is no appreciable difference
between the electrical characteristics of pure and
fresh water for wavelengths less than about
30 cm (frequencies greater than 1,000 Mc/s). In
sea water the ionic conductivity may be taken as
about 4 X 10'%¢.s.u., and it will be seen that the
dielectric properties of sea water differ noticeably
from those of pure water at wavelengths greater
than 3 cm (frequencies less than ro,000 Mc/s).

2. Dieleetriec Properties of Pure Waler

Extensive measurements have recently been
made by Saxton and Lane'® of the dielectric
properties of water at wavelengths of 1.24 and
1.58 cm, and as a function of temperature in the
range 0° C to 40° C. The results of this work
have since been substantially confirmed by Collie,
Hasted and Ritson?

An examination'™ of this experimental data
in the light of the theory of anomalous dispersion
in polar liquids has shown that from it the
dielectric properties of water may be predicted
satisfactorily over the wavelength range 1 to
10cm. The present work gives an extension of
the theoretical calculations to longer wavelengths,
and shows that the predictions are in good
agreement with the known data.

2.1.  Theoretical basis of calculations

The original theory of dispersion in polar
liquids is due to Debye?, and in its original form

WIRELESS LENGINEER, SEPTEMBER 1949



it accounts satisfactorilv for the observed
behaviour of many simple solutions of polar
substances in non-polar solvents. It has been
necessary, however, to modify the theory some-
what in the consideration of pure polar liquids
such as, for example, water, becausc of the
strong interaction fields between the molecular
dipoles in such liquids which are neglected in the
Debye theory. Nevertheless, for any theory in
which the internal field in the dielectric is assumed
to be a linear function of the polarization, the
form of the dependence of the complex per-
mittivity on frequency remains the same. The
actual expression used for the internal field
determines the value of the dipole relaxation
time, an important parameter in the theory.

been shown to be the case in water'®:2 since
€, in fact should represent the effects of both
electronic and atomic polarizations. Thus ¢ for
water has been found to be 5.5—as compared
with 1.8 on the basis of the electronic polarization
only.

The assumptions underlying equation (1) are
justified in the case of water’®, and the behaviour
of water may be described in terms of a single
relaxation time at any given temperature, the
relaxation time being a function of temperature
and decreasing as the temperature increases. €q 1S
assumed not to vary appreciably with tempera-
ture, and the variation of €, with temperature is
well known.

There are several quantities in terms of which
the eclectrical properties of a
lossy dielectric may be described,

n K I / .
\ \\ and the expressions relating
\ -
\ o these quantitics may be con-
\ N 212 o o o _lolo) 10} __ . .
90 %3 [ | Saa $gogtgo 20 veniently summarized thus :—
8 ié YR E -
K N } 700_:%_' ;ﬁ-g—g—---ls—--- 4 PR Al 3 i PR €« — ¢ _]61 — .
N T T —ajolf = (0 — B2 (2)
\ . J .
85 N s where o is the conductivity in
NN THEORETICAL CURVES
2 o
) : k\\ N - 'SOE K Fig. 1. Dieleciric properties of
10| ) 1 S N ggoc water in the wavelength vange
80 2 9\\ 10 tcom to 1. key to experi-
O\l e mental observations — i
NS X 12 Abadie 15°C; 2. LEsau &
z‘; 40 Baz 19°C,; 3. Conmer &
g AR Smvth 25" C, 4. Cocper
R~ bs —0s 22°C,; 5. Sceberger 165 C
SHIS iy 6. V. Ardenne 18°C; A
~. ~. 0 o o 5 7
2 \'\:‘\ 1 Echert 15°—20°C; 8. Kuerr
[ ~\.°_\__ 4 22°C; 9. Weichimann 17°C ;
70 90% 09 — 10 Fraikenburger 17°C
| 0 . f g 7 ;
3 A el CONIRC 60 80 100 11. Saxton 20°, 25°C ., 12.
WAVELENGTH (cm) V. Hippel 20°C.
If Onsager’s! treatment of the internal field is  esu., # is the refractive index and « the

accepted, a procedure supported by the work of

Frohlich and Sack® in the case of low viscosity

liquids like water, then we find that the complex

permittivity, e may be expressed thus -—

€0 + (e, — €o)/(T 4 jor) (1)

static permittivity

— permittivity at the high frequency end
of the region of dipolar dispersion

+ = relaxation time

2#f, f being the frequency in c/s.

It has been usual to regard e, as being equal
to the square of the optical refractive index,
which amounts to saying that it arises from that
part of the total polarization due only to the
electronic polarization. This approximation 1is
not satisfactory if the atomic polarization, which
arises from atomic vibrations in the infra-red
region of the spectrum, is relatively large, as has

= 6’ o j(”

where ¢,

€9

w —
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absorption coefficient.
From equations (1) and (z) we may then derive
the following relations —

2
e 3)
R “

where x = w7

and also 2n? = [ + €%t 4+ € (5)
2 = [e? + " — ¢ (6)
wk = off = €"/2 (7)

It may be noted that equations (3) and (4) are
identical in form with those derived originally by
Debye except that according to his theory

. € + 2
=21 —) wr.
(60 +2> “
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2.2. Comparison between Theory and Experiment

As a consequence of the mechanism involved in
dipolar dispersion the dielectric properties of
water vary with temperature as well as with
wavelength.  Early observers were more con-
cerned with variations of the properties with
wavelength, and the importance of the tempera-
ture factor was perhaps not sufficiently
appreciated.  The majority of experimental
results obtained before the last few years refer
to water at about room temperatures, and the
various observations of refractive index (1) and
absorption coefficient («) 815 given in Fig. 1 are

80’—

60

d |
10 10 10’ 10 10’ 10°
FREQUENCY (Mc/s)

Fig. 2. Components ¢ and ¢ of the complex dielec-
tric constant of puve waler, & — je', at a
temperature of 20°C.

confined to the temperature range 15°C to
25° C. Three theoretical curves for temperatures
of 15, 20 and 25° C, calculated as indicated above,
and based on relaxation times determined by the
author™ are shown for comparison with the
experimental data. It is apparent that the
theoretical curves agree well with the experi-
mental observations from centimetre wavelengths
up to Imetre. When the effect of varying
temperature is taken into account, the variations
amongst the experimental results would certainly
not justify any important shift in the theoretical
curves.

3. Complete Region of Dipolar Dispersion
in Water

The agreement between theory and experiment
shown in FFig. 1 makes it reasonable to calculate

TABLE I
Temperature € i r X 1012

(“C) (sec)

o 88 19.05

5 86 14.60
10 84 11.85
15 82 9.60
20 8o | 8.10
25 78.2 6.80
30 76.4 ; 5.95
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the electrical characteristics of water over an
even wider range of wavelengths. The values of
e, and = given in Table I, together with equations
(3) to (7) enable one to calculate the dielectric
properties of pure water at any frequency, and
also at any temperature in the range 0°C to
30° C, though for the remainder of this work we
shall confine our attention to water at 20° C.

The values of ¢ and ¢’ from 20° C calculated
in this manner as a function of frequency from
10 to 10°® Mc/s are shown in Fig. 2. This frequency
range contains the entirc region of dipolar
dispersion in water, in fact almost the whole of
the dispersion takes place in the range 103 to
108 Mc/s. € still has substantially its static
value at 10°% Mc/s, but ¢ continues to vary a
little as the frequency is reduced from 10% to
102 Mc/s.

Although the mechanism of energy absorption
in the liquid arising from dipole relaxation is
somewhat different from that concerned in the
case of ionic conductivity, we may consider the
dipolar loss as being due to an effective con-
ductivity which is calculable from equations (4)
and (7). This effective conductivity is shown as
o, 1n I1g. 30 it is of the order of 107 e.s.u. at a
frequency of 100 Mc/s, it rises to nearly 102 ¢.s.u.
at 10° Mc/s and then changes little up to 10% Mc/s.

1ot
) Oprs
— | %1 __ ] —7
3 gl v
(1]
K Opr
C: =
5 108 = //
crp/
106 2 5 4 ] 8
10 10 10 10 10 10
FREQUENCY (Mcys)
Fig. 3. Conductivities o,, op and o, of pure, fresh

and sea water ; lemperalire 20° C.

4. Effect of lonie Con(luclivily

Dissolved salts in water lead to ionic con-
ductivity, and it might at first be thought that
this ionic conductivity should simply be added to
the dipolar conductivity ¢, in order to obtain
the total effective conductivity. To a first
approximation this is in fact true®, and especially
so if the salt concentration is very low as, for
example, in fresh water. It is knownie: s
however, that the presence of appreciable
quantities of an electrolyte in water causes a
change in the dipole relaxation time, and in
strong solutions this is a factor which cannot be
neglected. Although this factor is just beginning
to be of importance for the concentration of
ordinary salt (about 4%) occurring in sea water,
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its significance is not such that any great error
results if the total effective conductivity of sea
water is also ecstimated simply by adding
arithmetically the ionic and dipolar contribu-
tions—at any rate for wavelengths greater than
a few centimetres. We shall therefore neglect
the influence of salt on the dipole relaxation
time in the few calculations relating to sea water
made in the present section.

I-0

08}

0-6

IR

0-4

02

Lo
0 30 60 90
6 (DEGREES)

Fig. 4. Modulus of reflection coefficient |R| of fresh
water for vavious waveleugths as a Jfunction of
angle of incidence (6) ) temperalure = 20 C.
Curves a, b and d are for wavelengihs of 1 muon,
1 ¢ and 6 m vespectively - —— — —- polarization
perpendicular to plane of incidence (Iy), -

polarization pavallel to plane of incidence (Ry).
Note. The valies of |R| for a wavelength of 10cm
differ only slightly from those of a wavzlength of 6 m
and could not easily be distinguished from the laiter

on the scale of Fig. 4.

If we take 108 e.s.u. as an average value for the
ionic conductivity of fresh water and combine
it with the dipolar conductivity we obtain a total
conductivity for fresh water o, as indicated in
Fig. 3. It will be seen that for frequencies less
than 100 Mc/s the ionic conductivity is the only
term which matters, while for frequencies
exceeding 1,000 Mc/s only the dipolar con-
ductivity term is significant.

TABLE 11

Frequency —

(Mc/s) Fresh Water |  Sea Water
I 80 — 20071 | 80— 80,0007

10 * 80 —207 [ 80— 8,0005

102 . 8027 80— Zoog

10® 79—47 79— 805

10t 65— 307 65 —40]

10% ‘ 8—157 i 8157

In sea water, on the other hand, where we may
take the ionic conductivity to be about 4 X 10'°
e.s.., it is apparent from curve oy, Fig. 3, that
this is the significant term up to frequencies in
the region of 2,000 Mc/s, and that it is not until
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the frequency is as high as 20,000 Mc/s that the
dipolar term is completely predominant. Table 11
gives a comparison of the complex diclectric
constants of fresh water and sca water as a
function of frequency.

These values show quite clearly that only in
the range of radio frequencies 50 to 1,000 Mc/s
(wavelengths 6 metres to 30 cm) is it rcasonable
to regard fresh water as behaving mainly like a
dielectric, while sea water never behaves so at
any point in the radio spectrum. For frequencies
less than 0.1 Mc/s (wavelengths greater than
3,000 metres) fresh water has chiefly the char-
acteristics of a conductor, though not a very
good one, whereas sea water bchaves mainly as a
conductor at frequencies less than 30 Mc/s
(wavelengths greater than 10 metres). The same
value of ¢ has been assigned to sea water as to
fresh (and pure) water in Table II but, although
this is not strictly correct'®- 16, it is a satisfactory
approximation for the present comparison.

5. Reflection Coefficients of Waler Surfaces
at V.ILF.

The reflection coefficients calculated in this
section are for plane waves incident at plane
surfaces of fresh water. It is apparent from the
foregoing discussion that the reflection coefficient
of sea water will not be greatly different from
that of fresh water when the frequency exceeds
10% Mc/s, so that the manner in which dipolar
dispersion influences the reflection coefficient
may be largely seen from a consideration of
fresh-water surfaces only.

IBOF

135 L.

90 //
g /
as -

— 1 . )
0% 75 80 85 %0
0 (DEGREES)

@y (DEGREES)

Fig. 5. DPhase retardation, ¢y, on reflection at a
fresh-water surface of waves polarized in the plane
of incidence as a function of amgle of incidence a9,
temperature 20° C. Curves a, b, ¢ and d are for
wavelengths of 1 wim, 1 cin, 10 cin and 6 m respectively.

The reflection coefficient is not only a function
of the complex dielectric constant of the water,
and of the angle of incidence, but is also
dependent upon the polarization of the incident
waves. We shall denote by R, and Ry the

291



reflection coefficients for waves polarized with
the electric vector in, and perpendicular to, the
plane of incidence respectively.  When  the
dielectric constant of the reflecting medium is
complex the Fresnel reflection coefficients are also
complex, and in general waves sufier a change
in phase or reflection different from the normal
values of either o or 7 which obtain when &
is zero. Thus in general R, and R, are of the
form |R,[e/v and |R,,|ei#n, wherce #, and ¢, are
the phase changes on reflection for the two types
ol polarization.

200 —————qy
lgof—— Fig. 6. Phase retarda-
tion on reflectron at a
fresh-water surface ;
D 135 temperature 20 C.
2’ Curves a and b are
3 a tor  wavelengths f
< g Lo and 1 cm
© rvespectively.
b polarization peypen-
45 dicular (o plane of in-
cidence (¢dy),
1 polarization parallel
P e - L to plane of incidence
0 30 60 90 (dv).

8 (pecReEs)

The Fresnel formulae in the form given by
McPetrie!” have been used to caleulate Ry, |Ry|,
éy and @, for wavelengths of 6 metres, 10 cm,
ITcm and 1 mm, (frequencies 50, 3,000, 3 X 10%
and 3 X 10° Mc/s) as a function of 4, the angle of
incidence, and the results are shown graphically
in Iigs. 4, 5 and 6. The modulus of the reflection
coefficient is given in Fig. 4, while Figs. 5 and 6
illustrate the phase change on reflection.

It is well known that for a pure diclectric the
reflection cocfficient R, falls to zero at the
Brewster angle of incidence given by =tan 14/,
and further that the phase change on reflection,
by, 1s zero for § < tan *y/e and = for § >tan Ly/e.
It will be seen from Iig. 4 that as the wavelength
1s reduced (in the range under consideration) and
the term e” increases in importance, so the
Brewster angle becomes less well defined, and
that in fact |Ry| never falls to zero but only
rcaches a certain minimum value depending
upon the relative values of ¢ and €. Also, as
shown in Figs. 5 and 6, although the phase
retardation on reflection does change rapidly
through the region of this pseudo Brewster
angle, it does so continuously, and in fact passes
through the value #/2 close to the point where
|Ry| has its minimum value. It may be noted
that for 6<70° the values of ¢, arc less than
1° and 3° for the wavelengths of 6 metres and
10 cm respectively.  Ifurther, for the wavclength
of 6 metres ¢y varies from 180.5° at § = 0 to
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180° at 8 = 9o ; and for the wavelength of
Iocm the corresponding range of by is 181°
to 180°

6. Conclusion

The anomalous dispersion of water, arising
from the permanent electric polarity of the water
molecule, is of major importance in the frequency
range 10% to 108 Mc/s. The value of the complex
dielectric constant has been calculated over the
frequency range 10 to 108 Mc/s, and the effects
of the small ionic conductivity of fresh water and
the much larger ionic conductivity of sea water
are discussed. The behaviour of fresh water is
similar to that of pure water for frequencics
greater than 10% Mc/s, whereas this condition
does not obtain for sea water until the frequency
exceeds 2 X 10* Mc/s. The reflection coefticient
of fresh water surfaces has been calculated as a
function of angle of incidence for frequencies of
50, 3 % 103 3 X 10* and 3 X 10° Mc/s, (wave-
lengths of 6 metres, o cm, 1 cm and 1 mm) and it
1S shown how the Brewster Angle becomes ill-
defined in the region of dipolar dispersion.
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HIGH-POWER CATHODE-RAY TUBES

For Fixed Station P.P.. Display
By Hilary Moss, Ph.D., B.Se., AM.LE.E., M.Brit.I.LR.E.

(Electronic Tubes, Ltd.)

SUMMARY. —This paper gives a preliminary survey of the design of large-screen cathode-ray
tubes suitable for direct-viewing purposes. The tubes in question have screen diameters of the order
ol 30 inches. It is shown that the design is critically dependent on the form of the relation which is
assumed to exist between the response of cascade screens and the beam voltage. Two distinct calcula-
tions are made -one assuming a linear response to voltage and the second a square-law responsc.
Solutions in these two cases difier widely and this fact indicates the necessity for carcful investigation
of phosphor response as a function of beam voltage before further progress can be made. In particular,
information is required on aiterglow behaviour for which no data appcars to be available over the
voltage ranges concerned. Nevertheless, the paper is a guide to the probable form and operating
conditions of these large-screen tubes. The dithculties of mnechanical design are largely ignored, but
a few notes on this matter are included in an appendix.

Introduclion

HE problemm of producing a large-screen

p.p.i. display has been of interest for

many vears, but so far no very satis-
factory solution has been found. The work has
been almost entirely conducted on projection
systems, which have the familiar drawbacks of
indifferent brightness and contrast so well known
to television engineers. This paper investigates
the alternative approach, namely that of con-
structing large direct-viewing tubes. It s
appreciated that these present considerable
mechanical difficulties, but the investigation is
felt to be worthwhile, since it is almost certain
that their performance can be made much higher
than that of any projection system.

The methods employed for the deduction of the
operating conditions and tube dimensions belong
to the province of scaling theory which the
author has trcated in a previous paper!. Familiar-
ity on the part of the reader with that paper
will be assumed, and the underlying theory will
not be recapitulated here.

Statement of the Problem

The problem is to design a cathode-ray tube
with « screen diameter of approximately 30 inches
and intended for p.p.i. working. The natural
approach is to consider some suitable prototype
tube with which a considerable amount of
experience has been gained and perform on it a
simple scaling operation ; Fig. 1 indicates the
essential beam dimensions of such a prototype.
For the moment we are concerned with the
general method and we do not therefore introduce
at this stage any numerical values. The derived
tube is to have a screcn diameter % times that of
the prototype. We shall also postulate that both
the central and deflected spot sizes of the derived

~ MS accepted by the IZditor, November 1948
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LIST OF SYMBOLS

I beam current

15 anocde voltage

k constant of scale

Vo size of spot

u crossover to focusing lens distance
screen to locusing lens distance

B beam width in plane of focusing lens

o scaling constant for triode only

S screen diameter -

Primed syvmbols refer to the derived tube, and
unprimed symbols to the prototype.

tube are the same as those of the prototype. In
addition, since the spot writing speed in both
radial and circumferential directions on the
derived tube will be each % times as large as on
the prototype, it can be shown that the screen
excitation of the derived tube needs to be A2
times that on the prototype. More precisely, this
statcment has the following meaning. Consider
a portion of the screen of the prototype tube of
area 85. In time T the beam energy delivered
over it will be £IT and the mean energy per unit
area will be E17/8S. Now on the derived tube
the corresponding area scanned in time T° will
be %8S and the mean encrgy per unit arca will
be E'['T/k?8S.
Hence for equality of excitation per unit area
(that is equality of surface brightness) we have
E'l" = REI .. . - e (T

The considerations neccessary to preserve
equality of the spot sizes at the screen centre and
at the screen edge are essentially distinct and
must be treated separately. (Ref. 1, Section 1.3).

Conditlions for Equal Deflection Defocusing

Since the exact relationship between the degree
of deflection defocusing and the scanning angle
is complicated, it is generally advisable to keep
this angle constant when using scaling theory.
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The most direct method, therefore, of deriving
from Fig. 1 a tube having a screen diameter of
kS is merely to multiply every dimension on
[ig. 1 by k. This obviously will result in a tube
in which the degree of deflection defocusing (that
is, difference in spot sizes at screen edge and
centre) is also multiplied by 2 Now it can also

anode voltage.t  Since the magnification in the
derived tube of I'ig. 2 is & times as great as the
prototype of I7ig. 1, it follows that

vy = ky, A/ EE .. . . (3)
Substituting from (2) into (3) immediately gives
Yo =¥,

be shown that the deflection defocusing is so that the condition for constant central-spot
proportional to the beam width in the deflectors.*  size is automatically satisfied in this case.
Sl SCREEN LENS’: kX =kt —
W DIAMETER S PLANE | % UEFég,CLTSO“
7.
. B8 2 SCREEN
= CROSSOVER ¢ DIAMETER kS
| 77, | B L .
v + v ; | :
Fig. 1 (above). Essential beamn ‘ T ] I
dimensions of protolype tube. | | Z /
% |
Fig. 2 (right). Beawm dimensions ’ ‘
of the devived tube. e U } ky— ]

Hence if, after the scaling operation on Fig. 1
alrcady referred to, we subscquently reduce the
beam width to 1/& (i.c., beam width kept constant
as in Fig. 1) the deflection defocusing will be held
constant. Furthermore, the deflection defocusing
is quite independent of conditions on the left-
hand side of the focusing lens, with the result that
we may keep the distance u constant. Fig. 2
now shows the essential beam dimensions of the
derived tube, which will have an unchanged
performance so far as deflection defocusing is
concerned. It will be noted that the scale of the
deflectors has heen multiplicd by % and that at
all corresponding points in the deflector fields
of the derived and prototype tubes, the beam
widths are equal.

Conditions for Constant Size of Central Spot

For the moment, the possible perturbations
due to space charge will be ignored. These are
subject to later investigation. The central-spot
size is a function of the operating voltage of the
tube and since the latter quantity will be defined
by considerations of screen brightness, we have
to commence by making reasonable postulates
as to the way in which screen brightness is related
to the beam voltage and current.

Assumption 1. Screen brightness and afterglow
proportional to beam current and proportional to
heam wvoltage. In this case, postulating that the
beam currents in the two tubes shall be the same,
it immediately follows from equation (1) that

ERI=VEEE o o (2)
Again, spot size in a cathode-ray tube of constant
geometry varies inversely as the root of the final

* This is probably only an approximation valid over restricted ranges.
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In order to preserve constancy of modulation
characteristic on the derived tube, it can be
shown that it is necessary and sufficient for its
cathode-to-grid spacing to be adjusted to preserve
constancy of cut-off voltage, although the anode
voltage is multiplied by 42, (Ref. 2, Section 2.2.3).
This may be achicved merely by multiplying the
cathode-to-grid spacing on the derived tube
by &2.%

Table I summarizes the relative proportions
and operating conditious of the derived tube
for any scale factor change. The numerical
values in brackets are the special case, based
on the prototype VCR 516 and assuming a scale
factor of £ = 3. A peak beam current of 150 pA
has been assumed, which is the order of current
employcd in the VCR 316.

Assumption 2. Screen brightness and after-
glow proportional to heam current and proportional
lo beam voltage squared. Again we shall postulate
constancy of beam current in the two tubes,
whence 1t immediately follows that

E? — i2E? o EE X 2 d (4)
so that E"=kE. In contradistinction to
Assumption 1, this last equation obviously

means that a further change has to be effected
in order to preserve constancy of central-spot
size in the derived system of Fig. 2. This is
most easily brought about by multiplying all
dimensions of the triode by «. Then
¥¢ = hayy V EIE
and substituting from (4) for v/E/E’, then gives
¥ = ]?‘Xyz/ \/k .
so that the condition y, =y, requires that

_T In a multi-anode tube, \\E:EaSS\lrlling that the anode voltage ratios
are held constant; i.e., all anode voltages are multiplied by &.
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o« = 1/4/k.  This defines the factor by which
the triode of the derived tube must be scaled in
order to produce constancy of central-spot size.

Again, constancy of modulation characteristic
requires constancy of cut-off voltage, so that the
cathode-to-grid spacing of the derived tube
after the triode has been scaled must be further
multiplied by % to allow for the increased anode
voltage. As compared with the prototype tube,
therefore, the cathode-to-grid spacing of the
derived tube is multiplied by 4/k. Table II
summarizes the parameters and operating con-
ditions of the derived tube. The numerical
values in brackets again give parameters in
terms of the VCR 516 with a scaling factor £ = 3.

These solutions postulate constant beam cur-
rent, the cathode loading being allowed to look
after itself. In the solution of Table I the cathode
loading remains unchanged. In the second
solution it is multiplied by the reciprocal of the
change in cathode area; i.e., by 4.

IFor the treatment where the cathode loading
is held constant and the beamn current allowed to
vary, the reader is referred to another paper.®

TABLE I

Characteristics of Derived Tube. Assuming phosphor
response linearly proportional to beam voltage.

. |
Screen diameter .. k ‘ 600 mm
Lens to-screen dis-
tance " . < k | 930 mm
S _ == [~ -
Scanmng angle - 1| 26

Crossox er-to-lens dis-
tance £ .. X1 150 MM approx.

Beam diameter in
lens plane 4.5 mm

Beam width at cor-
responding points X1
Scale of deflector coils
and neck diameter Xk

Neck diameter 105
mm

Spot size at all points 1 mm diameter ap-

1
7 xr | pr0\
Beam current ac I X1 ‘ 150 pA
Anode voltage < k2 | 45 kV
Scanmmr powor X k2
— — | —n
Cathode to-grid Depends on triode
spacing .. o X k2 design
Cut-off voltage and Cut-oti — 50 tdrget
grid drive. . 3 X I Grid drive approx.
\ 35 V max.
Triode dimensions . . %1 | Grid hole diameter 1

mm

Numerical values refer to derived tube based on

VCR 516 with scale factor £ = 3.
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Space-Charge Perturbation

The foregoing reasoning has ignored possible
deviations due to space-charge repulsions at the
screen. Accordingly, Iig. 3 gives space-charge-
limited trajectories, calculated by the method
of Thompson and Hecadrick®*. These curves
are plotted for the worse case (i.e., that based on
Assumption 2) where the beam voltage is lower
and where space-charge effects are therefore
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Fig. 3. Calculated spuce-charge-limited trajeclovies
for E =15 RV, I = 150 pd and a beam diameter in
the focusing lens of 4 mni.

more severe. [t will be seen from Vig. 3 that the
limiting spot size due to space charge is very
small in comparison with that to be expected
from the usual considerations of thermal-emission
spread and lens aberrations. Hence, we are
entitled to assume that space charge at the
screen will not vitiate the previous working.

It is unnecessary to consider space-charge
at the crossover, since the anode voltage has
been raised three times and we can, therefore,
be certain that the space-charge influence in that
region in the derived tube will be smaller than
that in the prototype. (It is proved in Ref. 1,
Appendix z, that scaling the triode by the factor
« causes the crossover size also to scale by factor
o even in the presence of space-charge.)

Hence, we conclude that the results of Tables I
and IT are not upset by space-charge.

TABLE II

Characteristics of Derived Tube. Assuming phosphor
response proportional to beam voltage squared. g

Anode voitage ac Xk | 15 kV
Scanning power .. Xk
Cathode to  grid Depends on triode
spacing .. oF k design*
Triode dimensions U (’”d oy imease
o VE approx. 0.6 mm
Numerical values refer to derived tube based on

VCR 516 with scale factor # = 3. Only characteristics
which difter from those of Table 1 are included.

* Adjustment made additionally to change in whole-scale of triode.
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APPENDIX
Notes on Mechanical Design

The major problem is to achieve a design which will
withstand the very high atmospheric pressure on the
screen face and the bulb generally. It is probably not
impossible to attain this end by the use of a conventional
glass envelope, but apart from the obvious difficulties
of weight, this would inevitably involve a very thick
screen which in turn would cause severe parallax errors.

For these reasons, it is felt that a morc promising
approach would be to employ a glass-metal construction
with continuous evacuation. Fig. 4 gives a diagrammatic
sketch of a possible construction. The conical portion
of the cathode-ray tube is shown at A and is made of
brass, tin-plated to ensure vacuum tightness. (In order
to avoid having to fabricate the large cone in brass, an
alternative would be to make this portion of the bulb
of a series of cylinders of decreasing diameter, these
cylinders being linked together by soldering them into
suitably machined diameter-reducing flanges.) The
end of the bulb terminates with an accurately ground
flat surface T, on to which the scrcen plate P of glass
is waxed. Reduction of the stress in the glass plate P
due to atmospheric pressure is brought about by the use
of two internal metal spiders shown at B and C. These
spiders are disposed at right-angles to each other and
are both diameters of the screen end. They are ground
on the outer surface so as to be exactly level with the

DIAMETRAL SPIDERS

B C P T
WAXED
\ A \\ JOINT
AR
A
WAXED
N{: :} JOINT
DEFLECTOR T0
comns — PUMPS
GLASS
|~ NECK
M

Shetch showing possible construction of a

Fig 4.
metal-glass tube.

ground flange T. Their inevitable defect of obstructing
a portion of the screen area is reduced by making them
thin, say I to 2 mm wide, in the direction of the screen
surface, while the mechanical strength is ensured by
making them deep in the direction of the beam. It is
apparent that some experiments would be necessary to

determine the degree of strengthening brought about by
these spiders. For a 27-in diameter screen it is probable
that a glass thickness of about § in would be suitable.
On account of obstruction of the screen area, the use
of such support spiders might not be admissible. In
that event the screen thickness for an overall screen
diameter of about 30 in, would need to be approximately
2in. This result follows from a simple formula illustrated
by Fig. 5. Here the circular disc P, of thickness ¢ and
and diameter 4, is freely supported round its periphery.

p lb/in

Iy

000000 AR/ /"%'7 727
A 4 JA
d
Fig. 5. Calculation of scveen thickness.

It is supposed to be subjected to a uniform pressure of
¢ 1b/in? over its surface. Then the maximum stress
induced in the disc can be shown to vary as d2/¢2. This
equation is homogeneous in 4 and ¢ whence we deduce
that the maximum stresses in all discs of the same form
(i.e., same d/i ratio) arc the same. We infer that the
fracture point is uniquely defined by the maximum
stress. Experience has shown that a disc §-in thick and
of 6-in diameter will withstand atmospheric pressure.
Thus for a 30-in diameter the required thickness appears
to be just under 2in. This argument postulates that the
elastic properties of the larger disc can be made the same
as for the smaller one—in particular in respect of homo-
gencity. Doubtless thisis a postulate easier to state than
to achieve, but the answer gives us a guide.

Reverting to Fig. 4, the neck of the bulb is made of
glass and is terminated in a flange joint at N and a
cone joint at M. Any of the standard waxed or rubber
gasket joints may be made at N. The joint at M would
preferably be made non-permanent, using vacuum
grease, to permit ready interchange of electron guns.

It will be noted from Tables 1 and II that the neck
diameter of the derived tubes is quite large, so that the
use of an clectrostatically - focused gun would seem
attractive, employing that system of construction where
the neck forms the final part of the two-cylinder lens.
With such large neck diameters, voltage insulation is
quite easy. and lenses of low aberration can be readily
made. Ion burn, thus concentrated at the screen centre,
is of no account on a centred p.p.i. system.

Aluminization of the screen would be necessary to
avoid ‘ piling.” Apart from the difficulties associated
with the size of the area to be covered, this technique
should be relatively easy, since the screen is merely a
flat disc, immediately detachable.

The general conclusion is that the constructional
problems are almost wholly economic. Given proper
facilities few scientific difficulties would seem likely.
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FEEDBACK AMPLIFIER DESIGN

Conditions for Flat Response

By Hans Mayr

SUMMARY.—It is usual to treat the performance of feedback amplifiers inside the original pass-
band in terms of linearization, outside of it in terms of stability ; in this paper, the performance of
such amplifiers is treated in the whole frequency band from zero to infinity in terms of frequency

response.

After deriving a simple general equation, which gives the frequency response of the complete
amplifier as a function of the response of the amplifier without feedback and of the frequency
characteristics of the feedback network, a complete treatment is given for the special case of amplifiers
with up to four stages of resistance-capacitance or tuned-circuit coupling, with constant feedback and

equal centre frequencies for all stages.

Design formulae are given which make it possible to determine the characteristics and the values
of the component parts of such amplifiers with definite pre-selected frequency response.

Introduction

HE advantages of negative feedback are

well known : decreased frequency distor-

tion, decreased harmonic distortion, de-
creased background noise and increased stability,
inasmuch as the amplification is much less
dependent on valve characteristics and supply
voltages. Its drawbacks are the loss of amplifica-
tion and a certain instability at very high or very
low frequencies, which may lead even to self-
oscillation.

Now the loss of amplification, inherent in the
system of negative feedback, is the price we
must pay for its other advantages ; but since the
available output power is not diminished, it is
generally quite easy to provide for the necessary
additional amplification.

On the other hand, the instability at extreme
frequencies is not at all an inevitable character-
istic of negative feedback, but merely a conse-
quence of the unsuitable design method ordinarily
employed. In fact the usual procedure is, first,
to design an amplifier with somewhat poor
performance, but with a gain in excess of the
desired one by the amount of the expected feed-
back; secondly, to apply to this amplifier
negative feedback until the desired amplification
is reached ; thirdly, if instability occurs, to apply
some stabilizing means and to adjust it by cut
and try methods until the whole device becomes
sufficiently stable. What really happens is this :
the application of negative feedback to the
amplifier enlarges its original pass-band; the
central part of the response curve is straightened,
but in the neighbourhood of its limits there may
appear peaks ; if these peaks reach infinite gain,
self-oscillation occurs. Stabilization requires the
response curve of the original amplifier to be
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modified so as to lower the resulting peaks.

Using a correct design method it is not only
possible to obtain perfectly stable amplifiers, but
even to realize any pre-selected response curve
and bandwidth compatible with the type of
amplifier in question. Such a design method
should start with the choice of the desired
response curve, then determine the characteristics
of the amplifier and feedback network necessary
to obtain this response and at last give the values
of the component parts needed for these
characteristics. Obviously it is first necessary to
know all the response curves that can be realized
with the particular type of amplifier in question,
as functions of some suitable parameters; then,
to know the relation existing between these
parameters and the characteristics of the ampli-
fier ; finally, to determine the values that the
various parts of the amplifier must have in order
to obtain the desired characteristics.

In the following we shall at first derive a
general equation which gives the response curve
of a feedback amplifier if the response of the
amplifier without feedback and the frequency
attenuation of the feedback network are known.
Then we shall treat in detail the special case of
an amplifier with up to four stages of resistance-
capacitance or tuned-circuit coupling, with
constant feedback ; all stages are supposed to be
tuned to the same frequency. The amplifier will
be designed to give the most uniform amplifica-
tion possible. Though apparently a very special
case, it is probably applicable to the majority of
practical problems, especially in the field of
measurements.

Response of Feedback Amplifiers
Denoting by V,, V,, I, I, respectively the

input voltage, the output voltage, the input

current and the output current of an amplifier,
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its amplification may be expressed in terms of
any one of the following four ratios :

V,/ V... voltage gain
I,/I; . . . current gain
V,/I,. .. mutual impedance
1,/V;. . . mutual admittance.

Of these four expressions the first two are
generally complex numbers, while the others are,
as indicated, a complex impedance and a complex
admittance.

In the following we shall use the term
“amplification ’ indifferently for any one of the
four ratios; by ‘input’ and ‘ output ’ we denote
the corresponding quantities. For instance,
whenever ‘amplification’ is intended to mean
the mutual impedance, ‘input’ means input
current and ‘ output ’ means output voltage.

Negative feedback consists in feeding a
fraction of the output through a suitable network
back to the input terminals, so as to oppose the
action of the input. In order to maintain the
original output level, the input must now be
increased by an amount equal to the fraction of
the output which has been fed back. Denoting
by « the amplification without feedback, by A
the amplification with feedback and by g the
fraction of the output fed back to the input
terminals, we obtain the well known equation

A=—— o 25 8 (D

Since « as well as B are functions of frequency,
equation (I) gives not onlv the change in the
value of the amplification, but in its frequency
characteristic, too. By choosing a suitable set
of reference values o, By, A, corresponding to
the same reference frequency wg/zm=, the two
effects may be separated ; we find

Ag=—20
14 aeB @)
A o T+ agfy

Now, the reference value of amplification with
feedback 4, is reduced with respect to the value
of amplification without feedback o, by the
factor I + «48, We call this factor the degree
of negative feedback and denote it by »n; it is
generally a complex constant.

Introducing this constant in the equations (2)
and (3) we obtain after a simple transformation

Defining as frequency response the frequency
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characteristic of amplification referred to some
arbitrary reference value, and defining further as
frequency attenuation the reciprocal of the
frequency response, we see that equation (5)
gives directly the frequency attenuation of the
amplifier with feedback, if the frequency attenua-
tion of the amplifier without feedback and the
frequency attenuation of the feedback network
are known.

For the mathematical treatment, it is preferable
to use the frequency attenuation instead of the
frequency response, because it avoids the cumber-
some fractions; but, the response being a more
immediate expression for the performance of an
amplifier, as is readily recognized by observing
the graphical representation, it is advisable to
express the results in terms of response.

An inspection of equation (5) reveals immedi-
ately two well known relations : the influence of

0

the term - — 1, due to the amplifier proper, is
o

reduced » times, indicating the degree of stabiliza-
tion obtained by the feedback ; furthermore, if 7
approaches infinity, equation (5) reduces to
4, B \
indicating that in the limit the performance of
the amplifier is determined by the feedback net-
work only and completely independent of the
characteristics of the amplifier itself.

-0

o

Fig. 1. Tuned wmplifier stage.

Amplifiers with Constant Feedback

An amplifier is usually intended to give uniform
response within its pass-band. As equation (5a)
shows, this condition is approached, at least for
the higher degrees of feedback, by making the
feedback constant and independent of frequency.
In this case equation (5) simplifies to
A, I /% \

A I+ n "got .

In order to determine the frequency attenua-
tion of the amplifier with feedback it is now
sufficient to know the frequency attenuation of
the amplifier without feedback and the degree
of feedback applied.

(6
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Frequency Attenuation of Amplifier Stage

I'ig. 1 gives the schematic diagram of a one-
stage amplifier with tuned-circuit coupling. The
resistance R is supposed to lump the load, the
anode resistance of the valve and the losses of the
tuned circuit.

The frequency attenuation of this stage may
be expressed by

gnVe 1.0+ L
v, -R+]wc +ij oF N 4]
Introducing the abbreviations
Vi, c D
we obtain the following simple expressions :
Xy = ng (Qa)
%o oL Yo
= 1 +50 (2 —2o) (9b)

The two parameters of equation(g), w, and Q, are
theoretically unlimited.

Fig. 2.

RC-coupled amplifier stage.

I'ig. 2 gives the schematic diagram of a one-
stage amplifier with resistance-capacitance coup-
Ling. Here the anode resistance of the valve is
lumped with R,.

The frequency attenuation is given by

ngi__L/l Q] . I Ca
= r () ITy(I+C_c>+

a

. c.C I
C L =s a> .
]‘“<C”+ v, )t acRR,

Introducing the following set of abbreviations

R —/R,R,;
C=VCL T CL+Clu; wy= s
R, C C,
b—’A/R‘u; d="7; k==, (xx)
Ca b
p=7F: Q- 2
b+ B) + 3 (p+ )
we have
g =kQ .o, R. . (r2a)
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Yo _ oY %o
% I‘*‘]Q\\ )

Wy w

. (12b)

Between the quantities d, &, p exists the relation
dk - dp +kp =1 (13)
Of the two parameters of equation(12), w, is still
theoretically unlimited ; but Q is confined to
values lower than 1/2, as may easily be verified
by differentiating the expression for @ with
respect to its variables and equating to zero.
The interesting result is that the frequency
attenuation of the tuned-circuit amplifier and the
resistance - capacitance coupled amplifier are
identical and completely determined by only two
parameters, wy and Q.

Frequency Attenuation of
Amplifiers with Feedback

The frequency attenuation of a multi-stage
amplifier is found by simply multiplying the
attenuation characteristics of its single stages.
The result is particularly simple if the various

Multi-stage

stages have the same resonant frequency :Q

™
Introducing the result in equation (6) we find the
frequency attenuation of a multi-stage amplifier
with constant feedback. We obtain for amplifiers
with up to four stages

%’ =1+5.0(> - ©o) - (14a)
Z-itierel(s-2)
00 (2 -2 (14b)
20+ 0+ (2 —2)
— 00+ 005+ 0:0a(2 — 2
5,002 -2 g

T 0t st 0I(2 )
— 2040 + 0105 + 0,05 + 0405
0.0, + 02 — %)

~ 2010405 + 0:0,04 + 010404

+0:0,00 (2 —21)’
+ 50100042 —20)" (e

239



For practical applications it is better to pass

for four stages:

to polar co-ordinates and determine the modulus A, _
and phase angle of attenuation separately. Using = VI ax® 4 at + agp® + 4 (18a)
an appropriate set of abbreviations it is possible box — b’
to express these quantitics in quite a simple ¢ = — tan-1 ﬁ—‘q ~ . (18b)
manner. We find, in fact, the following equa- I byt x
tions : A/010293@4 < _£o> . (18¢)
e Wy w
E A _ Q) + Q2 + 05 + 0, — 2(n — 1) (Qigz + QIQ_3 + 0104 + 0:05 + 050, + 050,) (18d)
L ~/1%0,0,0:0,
i a., — 012022 + 012032 + QI2Q42 + QZZQSZ + Q?ZQ42 + 032042 + 2(” _ I)QIQZQZ*IQQ (186)
! 2 — .
7 01050504
for one stage : ! 0:202205* + 0,°0,°0,° + 0,°05°04" + 0,°05°0,°
g {ag = e — .. (18f)
A4, : \/”913923@33@4
L=vITR.. . (5) |
‘ Q1+ Qs+ Q3 + 04
= —tan tx .. . (15b) ! = " - (18g)
’ Q /w w bt i ' “4/”3@1@2@3@4
S i
e n ‘wo w> - (15¢) E ) Q1Qz + 0,05 + 0.0, + Q205 + 0404 + 030, . (x8h)
for two stages: i ' V010,040,
A = i
L =Vitaxt+xt . (16a) | 010403 + 010204 + 01040, + 020504 .
(b= ——— . (18i)
bx i ~/10,%0,°05°0,°
¢ = —tan! 2 (16by .
=% Since for acoustical reproduction the phase
. QIQ2<w 7 w0> (16¢) characteristic is of less importance than the
n \wy, w amplitude characteristic, we base our considera-
+ _ _ tions on the latter.
_ 004 ) an D@.0s (16d) The amplitude characteristics of the multi-
L stage amplifiers may be expressed by one common
b, _ 0 t0 (16e) general formula ; indeed, equations (152), (16a),
\/anQ2 SR (17a) and (18a) may all be expressed by
‘E lA‘_\/I—{—a 22t axt + .. Fa, 2D ¥ {19)

for three stages:

A
L =A/1+ ax® + ax*  x° (17a)
bix — x3
= — -171
¢ tan S (17b)
R—
. QleQs @ _‘U0>
x ~/ = “To —) - . (17¢0)

Ql + 0.2+ 08 —2(n— 1) (0.0, +

where 7 is the number of stages.

Since equation (1g) is an even function of x,
all the characteristics are symmetrical with
respect to x =0 or w = w,. In order to find
further details of the shape of the attenuation
characteristics, we determine the maximum
and minimum values of (19). This is done by
differcntiating equation (19) with respect to x
——— - and equating to

N/”4Q 202202

_ 04%0,% + 0.°05° + 0,°05°
“ Tn0,%0,0; R
0,1 +0.+ 0
by = — i i, :
! \3/"2@1@203 a7
b 000400

N/nQ 20,50

300

i zero. We get
Qle s Q2Q3 (I7d) g Y — o g (20)
_______ i and
a, +z2a, x>+ ...+ —1)a, ;5D
4 rx2-b — o (21)

The roots of (21) correspond to the maximum or
minimum values of (19). Expressing (21) as the
productofitsroot factors, wemay write the identity

a, +2ax®+ ...+ (r—I)a, 2% |
rae-b=y (x2 — %) (x® —x, ) A= A
(2% — %, 9 2 = . (22)
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from which we get immediately

¥
-1 = —

(2 + 22+ ...+ %2 )

iz : (23)

Equation (23) shows that there exists at least
one pair of complex roots, if a,_ , is positive.
But from equations (16) to (18) we learn that
with the exception of a,, which may be either
positive, zero or negative, all other coefficients
are always positive. Since in the case of four
stages equation (21) is of the sixth degree, it
has a total of six roots, of which at least two are
complex and consequently not more than four
real ; in addition we have the real root at x = o.
Now, between two consecutive maximum values
there must be a minimum value and therefore
of the five possible real roots three at most may
correspond to maximum values of the response
curve ; in this case we have a peak at the centre
frequency and two other peaks near the limits
of the pass band, one at a very low and the other
at a very high frequency.

In the same way it may be shown that for
three and two stages there cannot exist more than
two peaks ncar the limits of the pass band, one
at a very low and the other at a very high fre-
quency ; for one stage, there exists only onc peak
at the centre frequency. We may therefore
conclude that for amplifiers with up to four
stages, the response curve cannot have more
than two peaks near the limits of the pass band,
one ncar the upper and the other near the lower
limit.

We have seen that, with the exception of ay,
all coefficients of equation (21) are positive.
If a, is also positive, or zero, equation (21) has
no real roots at all and the response curve has
no peaks except that at the centre frequency.

The behaviour of the response curve near the
centre of the pass-band may be shown by ex-
panding equation (Ig) in a power series. Ex-
panding first in binomial series and then in
Maclaurin’s series we find :

ry —Ix

|£‘X ITF e Fag ...
=1 4 fax® — (a2 — qa)xt + . ..
a* |4 I d* A,
— 1 Z |20 2 e bl 4
R e R +24dx4‘A'x SN,
. . (24)
Consequently we obtain for
d® |4,
a, =0 Ral=° - .. (253)
at A
4, =a,=0 -, |7°: 0 (25b)
and so on.
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The result is that the more coefficients of
equation (1g) vanish, the flatter becomes the
response curve near the centre of the pass band.
But as we have already scen, only a, can be made
to vanish, while all other cocfficients are always
positive. In order to obtain the flattest response
curve possible, it is therefore necessary to make
these other coefficients as small as possible.

In conclusion we may say that by making
zero and the other coefficients as small as possible
we obtain perfectly smooth response curves
without any spurious peaks; since these curves
are very flat in the neighbourhood of the centre
frequency and rather steep ncar the limits of the
band, they represent a very good approximation
to the rectangular response curve usually con-
sidered ideal. Iurthermore, it is evident that
amplifiers with such a response are perfectly
stable in the whole frequency band from zero to
infinity.

Feedback Amplifiers with Flat Response

Applying these principles to amplifiers with
one stage, we see at once from equation (15a)
that there are no arbitrary coefficients at all and
that therefore the response curve when expressed
as a function of the variable x is the same for
any onc-stage amplifier.

In the case of two-stage amplifiers, we learn
from equation (16a) that there is but one arbitrary
constant, a,. According to (16d) this may be
made to vanish, if the following relation is
satisfied :

&2’}1—~I i\/n(n- 2)

Q2
Equation (26) is valid only if » is larger than 2,
since it is of course physically impossible to
realize complex values of Q.

For threc-stage amplifiers, we have according
to equation (17a) two coefficients a; and a,.
With the aid of equation (17d), ¢, may be made
to vanish, yielding

(26)

I +g—iz + 8—12 —2(n — 1)
Q- e Q; L Qa0
(ot 6e) &
Tor a, we find from equation (17e)
20202 (., 0, 0
= Sl (4 Qs+ o) .

which is always positive. We sec that a, is a
function of two variable parameters, (,/Q, and
Q3/Q,. By means of equation (27) ¢3/Q, may
be expressed as a function of Q,/Q, and so there
remains but one independent variable, Q,/Q;.
In order to find the smallest value that a, can
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assume, the ordinary procedure would be to
differentiate (28) with respect to the variable
Q2/Q, and then to cquate to zero. This would
give the value of Q,/Q,; inserting this in (27)
would then give Q,/Q,.

However, in this special case there is a much
simpler way of finding the answer.

Putting Q,/Q, = ¢ and Q4/Q, = n we may
write for equation (27)

W(€n) — o0 (272)
and for equation (28)
ay = F(¢n) (28a)

where ¥ and F are symmetrical in € and ». We
introduce now a new co-ordinate system with
the straight line ¢ =y as #-axis and with the
v-axis normal to it. We get

F(ém) = d(uw) (29)

F(ém) = flu) (30)
The necessary, though not sufficient, conditions
for a minimum value of a, are now

o Y du

P + S a2 (31)
The rclation ¢(u, v) = o represents, because of its
symmetry in ¢ and %, a curve which is sym-
metrical about the u-axis. At its intersection
with this axis therefore the first-order derivative,
taken in a direction normal to the axis vanishes.
This yields

(&), =o 52)

The cxpression f = F(¢, u) represents in the
coordinate system F, &, 5 a surface which is
symmetrical to the plane ¢ = 7 ; therefore the
expression f(u, v) is symmetrical about the
plane v = o. In this plane thercfore the first
order derivative taken in a direction normal to
the plane vanishes and we get

df

<bv>v, o (33)
From (32) and (33) it follows that equation (31)
1s fulfilled for v = o, so that f(«, v) is a minimum.
Therefore F(¢, ) is a minimum for ¢ = % and,
finally, a, is a minimum for Q, = Q,.

The strict proof that the value found by this
method is truly a minimum and not a maximum,
or flexure point, would be rather laborious :
but since all sections of a, parallel either to ¢ or
to » possess a minimum value, but no maximum
or flexure point, it is quite evident that our
value i1s 2 minimum.

Putting in equation (27) Q; = Q, we find the
following relation :

O _

@_z(n—I)—i—\/zn(T—?,) (34)
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The procedure for four-stage amplifiers is
analogous to that used for three-stage amplificrs.
Of the three coefficients present in equation
(18a) a, can be made to vanish, while a, and a,
are always positive, as is evident from equations
(18¢) and (18f); the latter two cocfficients
assume simultancous minimum values if Q, —
Os = Q4 This may be proved following the
same lines as in the case of three stages, with the
difference that recourse to four dimensional
geometry is necessary.

Inserting @, = Q3 = @, in equation (18d)
and equating to zero yiclds

1

o= (n — 1) + V3030 — 4) (35)

We have thus found the conditions necessary
to obtain the flattest possible response curves
for amplifiers with one, two, three and four
stages ; applying these results to equations (15)
to (18) we obtain the following formulae ;

for one stage :

% —VIF R (36a)
¢ = —tan lx (36b)
TR (36c)

for two stages:

]%o — VIl (372)
¢ — —tan! -}é—z—; (37Db)
x =0, n%z(:’o ‘%> (37¢)
81 — (n — 1) + \/n(n——z) (37d)

for three stages:

)% = VIt ap" + % (38a)
¢ = — tan-1! Zl)lx__b:c: (38b)

3

v =0, 32 -2) B
T (Y, P02 8d
a2‘~3/;n,2( W+2 @) (38d)
L ed 0, 8
bli:/n—zk Q?—}—z Q~1) (38e)
I (e, , e 8f
b, n( %+ 2 02) (381)

% =2(n — 1) +4/2n (21 — 3) (35¢)
0: = Qs (35h)
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for four stages:

‘éﬂ =1 + axt + azx® + 18 (392)
$=—tan 'l blxb_xzbfg%; (39P)
X =Q, A/ %)L Gy

a, :——h[z(n - I) Ql + 38 :] (39d)
]
b= J ors 8 Q?] 390
— Ql + 3
b= /n [ 92 0 3%
b3~~/‘ +3A/Q (39h)
82 =30 — 1) + 303" — 4) (391)
Qe =0s=10, (39))

From equations (36) and (37) we see that the
frequency response of one-stage and two-stage
amplifiers as a function of x 1s independent of
the degree of negative feedback, #. It is therefore
possible to represent the modulus as well as the
phase angle of response, for these cases, cach
by a single curve. This has been done in Figs.
3and 4. For three and four stages, however, the
response curves are different for different values
of feedback. Since the influence of the degree
of feedback on the shape of the response curve
is not very great, it is sufficient to give these
curves for the limit values of # ; these limits are,
for three stages, » =3/2 and »n = oo ; for four
stages, n = 4/3 and n = oo. These curves are
given in I'igs. 5 to 8.

The expressions for the modulus of the fre-
quency response are cven functions of x and
therefore symmetrical about the axis x = o.
The figures reproduce only the right half of the
curves, for positive values of x. The response
values for the symmetrical left half of the curve,
corresponding to negative values of x, are obtained
by simply changing the sign of the abscissae.

The expressions for the phase angle of the
frequency response are odd functions of x and
therefore symmetrical about the origin x = o,
¢ = o. The figures reproduce likewise only the
right half of the curves, for positive values of x.
The phase angle values for the left half of the
curve, corresponding to negative values of x,
are obtained by changing the sign of the abscissae
as well as of the ordinate. The phase angles of
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the frequency response for negative values of x
are therefore always positive.

Design of Feedback Amplifiers with given

Response

With the cquations (36) to (39) and the curves
of I'igs. 3 to 8 we have attained our first object,
namely to determine the flattest frequency res-
ponse curves that can be realized with amplifiers
with up to four stages of resistance-capacitance
or tuncd-circuit coupling, using constant feed-
back and having all the stages tuned to the same
frequeney. The parameters used are: the
degree of negative feedback, n; the Qs of the
various stages; and the common centre fre-
quency, wg/zm.

The next step is to find the numerical values of
these parameters corresponding to a definite
amplifier with a {requency response selected
among the possible curves given above. This
may be done with the aid of equations (36) to
(39), as follows :

We choose the number of stages, r, the degree
of negative feedback, =, and the response
(modulus or phase angle) corresponding to two
arbitrary frequencies, w/27 and w,/2m, one near
the lower and the other near the upper frequency
limit. Then we read from the curves the values
%, and x, corresponding to the two chosen
response values; the value of x; corresponding
to the lower frequency is, of course, negative.

Now we compute the centre frequency from

Xowy — X Wy

Xawy — Xy, (40)
and the ratio @,/Q, from equations (37d), (38g)
or (39i) according to the number of stages.

The Qs of the various stages are then given by :
one stage :

2
g wwy

X1

Q= "zl o, (41)
w, W
two stages :
n x
0.~ [ _f1_i0 0,9 . ()

Q1 wy %y Q-

three stages:

Q= Q= Ql L Qs
wy W, (43)
four stages: P

— _ Qe
Qr=0a=0u= [ s
wWo w;y

0= 0,2 (44)
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The above design formulae show that these
amplifiers are made up of one rather selective
stage, corresponding to Q,, and a number of
equal broadly tuned stages, corresponding to
With increasing feedback, the
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