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Compression and Expansion of Programme Time 

IN broadcasting, it sometimes happens that 
the length of an item does not precisely fit 
the time allocated to it in a programme. A 

speech, for example, may run naturally for 17 

minutes, but there may be only 15 minutes 
available for it, or it may be required to accom- 
modate the length of run of background music 
to the main item. It is then desired to compress 
an item in time, or sometimes expand it. 

\Vith recording, there are several possible ways 
of doing this, apart from the obvious one of editing 
the tape or disk to delete unimportant material. 
The medium can be run at a different speed in 
reproducing than the one used for recording, but 
there is the serious objection to this of an inevitable 
change of pitch. 

Magnetic recording might provide another 
method, with interesting possibilities, by which 
the signal is compressed in time by having, as it 
were, small segments punched out of it at regular 
intervals and the resulting gaps closed up. In 
principle, one might cut the tape into a large 
number of bits all the same length, snit; a small 
piece off each, and then join them together. The 
complete tape would obviously be shorter and, 
when run at its normal speed, would occupy less 
time. When an expansion, instead of a com- 
pression, in time is wanted, the bits of tape could 
be joined by new bits repeating the adjacent 
information, so that the whole tape is lengthened. 

Similar effects to these can be obtained without 
actually cutting the tape by using a special 
reproducing system.. One of the first, if not 
the first, applications of this idea was to the 
reproduction of recorded telegraph signals, so 

that they could be slowed up without alteration 
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of pitch. The German Tonschreiher B' operated 
on this principle. More recently, it has been 
applied to speech and the method employed is 
quite ingenious. In the reproducer, the magnetic 
tape runs past a series of reproducing heads 
which are carried by a rotating drum and con- 
nected in turn to the output by a commutator. 

The arrangement is 
sketched in the figure 
in which a drum is 
shown carrying four 
heads A-I ). The sam- 
pling is carried out 
by these rotating 
heads which are 
switched into circuit 
by the commutator 
for the interval that 
the particular head is in contact with the tape. 

Head \ is in contact with the tape from 
9 o'clock to 6 o'clock, during which period the 
commutator selects the output of head A. 
Head B then comes into the 9 o'clock position and 
in contact with the tape and the commutator 
then disconnects A and connects B, and so on. 

Providing the relative speed of the tape past 
the heads is the same as the recording speed, then 
the reproduced pitch is the same as the recorded 
pitch, but if the heads are moving in the direction 
shown, the actual speed of the tape can be 
greater than the recorded speed and the time of 
playing the tape is reduced. Thus if the original 
recording tape speed is vi'r, the reproducing tape 
speed is vT , and the proportion of playing time 
saved compared with the original playing tinte is 

(v7.2 - 1'T1)177.,. 
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If the relative velocity past the heads is to be 
maintained at vT1 then vi -2- vH = v 7T1 where vH 
is the peripheral speed of the head, and the 
proportional time saved is vH/vT 2 or vi//(v7-1 + vH). 
\Vhen vH is zero no time is saved; when vH is 
equal to vT2 there is 100% compression. 

Consideration of the figure will show how this 
sampling process is achieved. The time taken for 
a head to move through d is d/vH and in this time 
the tape moves v7-2 x (gyn. After this period 
the commutator switch will take the output 
of head B and thus length d of the tape will 
be unscanned. Thus in a total tape length of 
d(1 vT2/vH) a length d of tape remains un - 
scanned. The time interval of information lost 
is d/vT1 and is independent of the speeds vT2 and 
vH involved in reproduction. 

In attempting to judge the suitability of this 
method for programme compression, two im- 
portant criteria impose a limiting value on the 
period d/v7.1. First, all essential characteristics 
contributing to fidelity must be retained, and 
secondly, the change in signal value during that 
period must be sufficiently small to avoid a 
rhythmic discontinuity which would give rise to 
flutter. Although work has been clone to deter- 
mine the minimum sampling time necessary to 
preserve intelligibility, so far as we are aware 
little is known about the effect on fidelity. 

Gabor s states that if there is simultaneous pick 
up from heads located at a distance corresponding 
to 25 milliseconds difference of time, then the 
observer is not disturbed, but his ear adapts 
itself to an echo condition. In the present case, 
the heads are switched progressively and, without 
detailed tests, it is not possible to give a maximum 
delay defining the boundary between acceptable 
and unacceptable coloration. The change in mag- 
nitude of a programme signal during the unscanncd 
period might easily amount to 1 db per 10 
milliseconds, and the reproduced reverberation 
characteristic will be in a series of steps. This 
stepped signal is similar to that produced by the 
reverberation machine described by Axon, Gifford 
and Shorter' although with this no gap occurs 
between the steps. These discontinuities are 
rhythmic and if sufficient they give rise to flutter, 
but for lesser values a coloration in the signal may 
occur. In assessing the importance of these 
effects it must he remembered that a distance 
between the reproducing heads d equal to 1 in. 
corresponds to a time period of 67 milliseconds 
if the recording were made at 15 in. per second. 
It would seem that this interval is too long and a 
much closer spacing of heads is desirable. If the 
tape were recorded specially for compression a 
higher recording speed could be used but, if the 
method is to be applied to ordinary records, then 
standard speeds must be assumed. :Although 
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no definite limits can be laid down, the evidence 
indicates that the time gap should be limited 
to about 10-15 milliseconds, which would limit 
the head spacing to under in. The frequency 
of this discontinuity is given by wijd and for 
small amounts of compression vii is low. For 
example, for 5% compression on a normal tape 
recorded at 15 in. per second, vH is less than 1 in. 
per second and, if it were possible to locate the 
heads on the reproducer in. apart, the discon- 
tinuity would occur four times a second. Schiessc r 
in his article mentions an element length of 2 cm 
corresponding to 26.6 milliseconds recording in- 
terval for a recording speed of 75 cm/sec. He 
says that the distortion is not noticeable under 
these conditions. 

As the compression ratio increases OH increases 
and less and less of the tape is scanned, and more 
elements of information that are required to 
maintain fidelity are lost. 

The same relative speed could be achieved if 
vH - vT2 = vT1 but, as the relative velocity 
between tape and head is now reversed, the tape 
would be scanned backwards. Although at 
first sight this condition appears worthless, under 
some circumstances it might be of interest. 
Referring again to the figure, it is evident that it 
vH is greater than vT.,, then while a head is moving 
from A to B the tape will move d X vT2/vu, 
and the length of tape scanned will be d - 
dvT2/vH and the length unscanned dvT2/vH. 
If the degree of compression is small then vT_ 

v71 and vH 2vT2, and the length of the 
unscanned tape is about d/2, but the length of 
scanned tape is also only about d/2. The 
periodicity of the discontinuities is still given by 
vH/d, but for 5% compression vi -i is now about 
31 in. per sec instead of 1 in. per sec and for 

in. spacing the periodicity of the discontinuities 
is about 124 per second instead of four per second. 
If d could be made sufficiently small, and therefore 
the time length of the sample sufficiently small, 
the much higher periodicity of the discontinuities 
might prove an advantage. 

The case of compression has been considered 
but expansion is equally possible and to be desired. 
Referring back to the figure, the heads must 
rotate in a direction opposite to the tape and the 
tape speed slowed clown for expansion. Using 
the same symbols, if the pitch is to remain 
constant vT2 - vu = VT,. The proportional 
increase of playing time is (vi -1 - v-2)/vJ2 which 
is equal, as before, to vH/vi-2. As before, the 
mechanism of the expansion can be seen by 
considering the relative motion of the heads and 
tape. The time taken for head to move through 
d is d/vH and the tape moves during this period 
v7 2 x d/vH. In this case the movements are in 
opposite directions and therefore in a tape length 
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d(1 + vT2/vH) a length of tape d is scanned twice. 
As before, the time interval of information 
duplicated is independent of the reproduction 
speeds vT2 and vH and Is equal to d/vT1. In tins 
case there is no loss of information but the 
conditions regarding discontinuities still persist, 
and the repetition rate of the discontinuities 
remains at vH/d. 

The success of this method for the purpose 
discussed depends, as might be expected, on the 
sampling rate, which in turn, depends on the 
spacing of the heads that can be arranged con- 
veniently on a drum. Further work will have to 
be done to determine the limiting value of spacing, 
but it appears to represent a severe mechanical 

problem. The ability, to increase or shorten the 
length of a programme by up to 10% would be of 
considerable value, if it could be done without 
editing, change of pitch or the introduction of 
unwanted coloration. A. N. A. 1Z. 
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OPTIMUM SHAPE COILS 
For Producing Magnetic Fields 

By L. Lewin 
(Standard Tefecaan vnrnieation Laboratories, Enfield, Middlesex) 

1. Introduction 
THE problem has arisen of providing a 

magnetic field at the centre of a given 
cylinder with a minimum expenditure of 

power. The solution to this problem does not 
appear to be available in the literature and it 
seemed worth while to record the present analysis 
which led to an appropriate formula. 

2. General Formula 
Fig. 1 shows a coil wound on a cylinder of radius 

a (cm). At radius y the length of the coil is 
2af(y/a) where f is a function which determines 
the shape of the coil. The coil is wound with wire 
of radius r and resistivity p (ohm -cm). It is 
assumed that the wires are wound in contact 
within a layer, and with layers exactly above 
each other, to give a packing factor 7rr2/4r2 = 0.79. 
Then the magnetic field H at the centre of the 
coil axis is 

irla 

J 

f(Y) dY 
H = lOr2 [Y2 7 f2(Y)]1 oersteds (I) 

Here I (amps) is the current in the coil, and 
Y = y/a is a dimensionless variable of integra- 
tion. Yo is the value of Y at the greatest radius. 

The power P (watts) supplied to the coil is 
P = 121? where the resistance R is given by 

pa3 
R = 

J 
Y f(Y) dY ohms. (2) 

I 

Eliminating I and r from equation (1) gives 
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H 10 ñ1' P 

where 

(3) 

J}' f(Y) dY ' { 

1 [12 +f2(y')]f [jI', 

I f( ) Y dY1 

F is a form factor, and depends only on the shape 
of the coil, as determined by f(Y). Apart from the 
variation due to F, 
equation (3) shows 
that H is propor- 
tional to the square 
root of the available 
power, an t l inversely 
to the root of the 
inner coil radius. 

3. Optimum coil 
In the appendix 

it is shown that F 
has a maximum 
value of 0.512 when 
the function f has 
the form 

OPTIMUM 
RECTANGULAR COIL 

OPTIMUM 
COIL 

7a 

Fig. 1. Op/irrttun coils. 

f(Y) = [4.905 17223 - Y2]1 (4) 

Y0, the maximum value of Y, is 3.292. 
The shape of this optimum coil is shown in Fig. 1. 

4. Rectangular Coil 
In general, a rectangular shaped coil is to be 

preferred to that given by equation (4). What 

177 

B 



is the best shape, and how much does F drop 
below its maximum value ? 

When 1(Y) is constant the integration in (3) gives 

- 2)f 0 ( 
)4 

CY D 

e 1 log Y1++(-1170:.±f--2- 
2, 

This function has a maximum value of 0.505 
when Yo = 3.10 and f = 1.86. This 
optimum rectangular coil is also shown 
in Fig. 1. The magnetic field is only 
1%, below its maximum as given by (4). 

5. Sub -Optimal Rectangular Coils 
It may happen that further require- 

ments are put on the desired magnetic 
field, such as an extension of the region 
in which it should maintain its value. 
In this case it may be necessary to 
depart from the optimum size; and 
equation (5) shows how the field will 
drop. 

hig. 2. shows the form factor E 
plotted against the length/internal 
diameter ratio, f, for a series of values 
of the external/internal diameter ratio, 
Y0. The fall from the optimum value 
can be easily seen from these curves. 

The use of a sub -optimal coil is some- 
times a convenient way of meeting, in 
part, the impedance requirements of a 
given power supply. 

hig. 2. .Sub -optimal rectangular coils. 

(5) 
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for the optimum [(Y) depend only on Yo. Putting the 
first equal to } 2312 times the second (this form is chosen 
for convenience only) it is found that 

I 

{a312 7 - Z} Sf(Z) dZ = 0. ¡72 +IZ(7)]3I2 
Since Sf (7) is arbitrary we must have the remaining 
factor in the integrand zero, whence 

I(7) _ [aZ2I3 -72]1 

/ Yo=:.S 

_ a 

p' ° 

S 

MIL 

o 

á% 
Or 

-4-_ 
0 

Ya=EXTERNAL INTERNAL DIAMETER 

APPENDIX 

PutA fdY 8= IYfdY 

Then F2 = A2/B, and SF2 = 2A 8'' SA -.428-2 88 
Hence F is optimal when SF = 0, or 288A = A SB. 
Introducing a double integral notation, so that products 
of integrals are expressed as double integrals, it is found 
that 

r I 

2 S f(Z) 2f2V) SI(7) 
J J 

YI(Y) 
[[72 +I2(7)]í [72 +f'(7)]si2, 

f(Y) ZSI( Z)} dYdZ = o 
[Y2 +Iz(lip 

Carrying out the Y integrations involves 
.30 

Y f(Y) dY 

f(Y) dY 
I 

and 
J [yx . The values of these two integrals, 
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f= /2a= LENGTH INTERNAL DIAMETER 

3.5 

It remains to determine a, which is given, from its 
definition, by 

Y[aY2I3 - Y'-]idY = Y 113[aY2I3 - Y2]1dY 

Y° is given by the greatest value of Y for which the 
length of the coil is a real quantity; i.e., by aY02'a y2 
= 0, or I' = 231^. The integrals can he evaluated in 
terms of elliptic functions. Putting a = sec's the 
equation becomes, after some reduction 

cos 356l\\ 
13 =10 cos' \ I_ cos'l = = F() (6) 

3 J L J 

mod h = sin 45° 
In terms of (b, the form factor is 

= 2 cos30(1 cos .A)3I' 

Equation (6) has the solutionY' el, = 47.8°, whence F = 
0.512, and the optimum coil shape is 

I(Y) = [4.905 Y_Ii - Y2]1. 
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TRANSIENT RESPONSE CALCULATION 
Appro.vinlfaltr 4'Ieihof /or lijoinu i Phase -Shift Networks 

By Dharmajit Gupta Sarma, M.se. 

(Institute of Radio Physics & Electronics, Colt alto Unitersily) 

SUMMARY.-The iell-known method of linear segments for the calculation of zero -pole locations 
of the transfer function corresponding to a given attenuation characteristic is extended by allowing 
the zeros and the poles to assume complex instead of only real values. The extension removes some 
of the limitations of the method and thus enlarges its range of applicability; at the same time it yields 
results which are more accurate. The extended method has been applied for calculating the transient 
response of minimum phase -shift type networks from the attenuation versus frequency characteristic. 

1. Introduction 
THE transient response of a system may, 

in principle, be calculated from the Fourier 
Integral equation 

f(1) = 
J 

11r(w) cos [(0/ - ci(w)1 (1w .. (I) 
71. 

where [(t) is the response of the system to 1)irac's 
8 function input, 
is the steady-state attenuation charac- 
teristic of the system as a function of 2. Linear Segment Method and its Limitations 
frequency, The complex transfer function of a network may 
is the steady-state phase shift charac- be written 
teristic of the system as a 

o(w) 

0(w) 

function of frequency. 
This direct method of calculating 

the transient response is generally 

as explained in the next section. The method, 
however, suffers from certain limitations regarding 
the choice of the lengths of the segments as also 
their slopes with reference to the frequency axis. 
In the present paper an extension of the method 
is discussed. The extension enlarges to a great 
extent the scope of applicability of the method 
by removing the limitations and, at the same 
time, yields more accurate results. 

H(r+Irt)(r+a.,) ... (P a(?) . .. (P+11) , 7(fi)= (ñ+ht)r+h2).-(r+h,n)- (r+l,.) () 

lengthy and cumbersome. It is, however, 
not so for the large class of networks known 
as minimum phase -shift networks. This is 
because in such networks the attenuation and 
phase -shift characteristics are not independent 
of one another; if one is known, the other is 
deducible from it. Generally the attenuation 
characteristic is given and the phase -shift 
characteristic is calculated therefrom to obtain 
the transient response. Even this calculation 
can be avoided and the transient response 
obtained directly, if the zero and pole locations of 
the transfer function of the system are found 
from the attenuation characteristic. Approxi- 
mate methods have been developed for such 
calculations of the zero -pole locations, and 
are usually resorted to in the design of attenuation 
equalizers. Of these various methods the semi - 
graphical method of linear segments is probably 
the simplest in application. 

The object of the linear segment method is to 
find an arrangement of zeros and poles of a transfer 
function which represents approximately the 
given attenuation characteristic. This is done by 
approximating the given characteristic by a num- 
ber of straight-line segments in a suitable manner, 
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where p is the complex frequency and the roots 
of the numerator and the denominator are the 
zeros and poles respectively of the transfer 
function 7(p). The roots may be real or con- 
jugate complex and, as a result of the minimum 
phase -shift condition, may lie anywhere in the 
complex frequency plane to the left of the 
imaginary axis. 

The attenuation-frequency characteristic of 
the network is obtained by replacing the complex 
variable p by jw, so that the magnitude of the 
resulting complex function giY es the output -to - 
input voltage ratio for the network as a function 
of the angular frequency w. The attenuation 
due to the network for frequency w is then given 
b\ 
A (w) = 10 log, 0e. loge ' Z (jw) '' decibels (3) 

It is to be noted that the attenuation due to the 
network is the sum of a number of logarithms, 
each of which corresponds to one of the factors of 
the transfer function. 

Simple Real Zero or Pole 
To understand the application of the method 

of linear segments in its simplest form we consider 
first one of the factors (r + a) of the transfer 
function 7(p). This factor of the transfer function 
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can be represented by a simple real zero placed at 
a distance a from the origin of the complex plane 
as depicted in Fig. 1(a). The attenuation 
characteristic corresponding to this zero is given 
by 

A I(w) = 10 loglo (a2 +, w2) 

= 101ogto a2 + 10 log (1 + w2/a2) (4) 

f~ ¢ 

IMAGINARY 
AXIS 

A REAL AXIS 

0 

ACTUAL 
ATTENUATION CURVE 

20 LOCK, a 

(a) 

APPROXIMATING 
I SEGMENTS 

01 I 10 

ca)/Q.- 

(b) 
Fig. I. (a) Simple real zero on the negative real axis and 
(b) attenuation characteristic and approximating segments 
corresponding to the real zero of (a). The angular fre- 
quency w is normalized with respect to 'a', the distance of 

the zero from the origin. 

Fig. 1(b) shows the plot of this attenuation 
characteristic on a logarithmic frequency scale. 
Inspection of the expression for the attenuation 
characteristic shows that for large values of w, 
the graph will tend to approximate a straight 
line, the equation of which is 

A = 10 log w2 .. .. (5) 

The slope of this straight line on the logarithmic 
plot is approximately six decibels per octave for, 
if the frequency is doubled, the value of the above 
expression changes by 6.02. The whole graph 
may, therefore, be approximately represented by 
its asymptotic segments which consist of two 
straight lines, one horizontal, extending from very 
low values of frequency up to a point w = a and 
the other inclined to the same and extending from 
the point w = a up to infinite frequency. This 
latter segment has been termed a semi -infinite 
slope. If instead of taking a simple zero a 
multiple zero were taken, the slope of the graph 
at a large value of w would have been multiplied 
by n, n being the multiplicity of the zero. 

For the case of a pole instead of a zero we get 
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similar segments, the only difference being that 
the slope is negative instead of positive. 

With the above, we may now proceed to approxi- 
mate a given attenuation characteristic by 
placing a number of straight line segments, 
horizontal or inclined, running close to the given 
characteristic in such a way that the slopes of 
the inclined ones are either 6 db/octave or some 
multiple of it. Each of the segment junctions 
then gives the location of a zero or a pole on the 
real axis in the complex frequency plane. (Zero 
for the junction for which the slope of the pre- 
ceding segment is smaller than that of the 
following, and vice versa.) Hence the straight- 
line segment representation of the given attenua- 
tion characteristic gives the zeros and poles of a 
transfer function, the attenuation characteristic 
corresponding to which resembles approximately 
the given attenuation characteristic. 

It is e\ ident, however, that the above method 
is applicable only to cases in which the attenuation 
characteristic may be represented closely by 
segments the slopes of which are restricted to 
values 6 db/octave or some multiple of the same. 
As this is not always the case, the method is 
evidently one of very restricted use. 

Zero -Pole Pair 
Bresler3 has, however, shown that it is possible 

to approximate any slope by taking a zero -pole 
pair instead of a zero or a pole alone, placed 

o ZERO 
x POLE 

oe d 

NEGATIVE 
REAL AXIS 

ju>=jtd 
I IMAGINARY 

AXIS 

o (a) 

ATTENUATION 
CURVE , 

(b) 
Fig. 2. (a) liresler's zero -pole pair and (b) attenuation 
characteristic and approximating segments corresponding 
to the zero -pole pair of (a); f is the frequency normalized 
with respect to the distance 'd' between the poles and zero 

(f = w/d). 

LOG f 

APPROXIMATING 
SEGMENTS 
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suitably along the negative real axis of the com- 
plex frequency plane as shown in Fig. 2(a). 
The attenuation characteristic corresponding to 
these singularities may then be approximated 

o= ZERO 

x = POLE 

NEGATIVE 
REAL AXIS 

e= stn-Ik 

¡OCo=(o(- 
z) d cos e 

/moo=(oe- 2) d sin e 

/o[,=(oc+ 
2) d cos e 

=(cci 2) d sin e 

(a) 
Fig. 3. (a) Zero -pole pair on a line inclined to the real 
the value of h; and (c) typical attenuation characteristic with 

by three linear segments as shown in Fig. 2(b). 
Unfortunately, the method suffers from a limita- 
tion regarding the choice of the length of the 
middle segment (which is the one to be fitted to 
the given characteristic). The length must be 
such that the ratio of the frequencies correspond- 
ing to the ends of this segment is eight; i.e., each 
of the segments chosen must cover a frequency 
range of three octaves, approximately. This 
means that variations in attenuation occurring 
within a frequency range of three octaves cannot 
be simulated by this method 

} juI=Jfd 
I IMAGINARY 

AXIS 

3. Extension of the Linear -Segment Method 
The limitation mentioned above, namely, that 

the length of the middle segment must cover a 
frequency range of approximately three octaves, 
can be removed to a great extent if a zero -pole 
pair is taken on a line inclined to the real axis, 
the line passing through the origin and lying in 
the left half of the complex -frequency plane. 
By changing the slope of this line in the complex - 
frequency plane, the ratio of the end frequencies 
may be adjusted over a range of values, the limits 
of which depend on the slope of the portion of the 
attenuation characteristic to be approximated. 
The applicability of the zero -pole arrangement 
is thus greatly extended. 

Consider a zero -pole pair placed, as shown in 

Fig. 3(a), on a line inclined at an angle O to the 
real axis and lying in the left half of the complex - 
frequency plane. The distances in this diagram 
are normalized by dividing by d, the distance 

LOG f 
tZ fy' 

APPROXIMATING 
SEGMENTS 

axis; (b) variation of the attenuation characteristic with 
approximating segments, corresponding to (a) with h < 11 V/2. 

between the pole and the zero. This normaliza- 
tion greatly simplifies the expressions. 

By referring to Fig. 3(a) the expression for the 
corresponding transfer function may now be 
written as 

Z(p) = H ( + yo + iPO)(p -r 'o - /PQo) (6) (P+1+i 1)(?+J1-WN1) 
It may be noted that any network which has 
the same singularities as shown in Fig. 3(a) has a 
transfer function which differs from (6) by a 
constant multiplier only. Since this constant 
multiplier can he introduced very easily and, 
since it does not affect the nature of the attenua- 
tion function, but simply moves it bodily upwards 
or downwards, the constant will henceforth be 
omitted. 

The attenuation characteristic corresponding 
to Z(p) is at once written down from (6) as 

12(x,) = 10 logo U 
Uz (x r $)92 4f2k2 + )2 

.. .. .. .. (7) 

Plots of this function on a logarithmic frequency 
scale are shown in Fig. 3(b) for different values 
of k. It is seen that all the curves start from the 
same level on the low -frequency end and reach 
the same final level at the high -frequency end. 
In the intermediate region the attenuation 
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characteristic follows a path that depends on the 
value of k (= sin B). If we draw a tangent to 
any of the graphs at its point of inflexion (which 
point may be shown to be the point where the 
attenuation is midway between the initial and 
the final values), and produce it in either direction 
so that it crosses the initial and the final levels, 
the resulting straight-line segment, together with 
the horizontal portions at the low- and high - 
frequency ends, approximate the attenuation 
characteristic corresponding to the zero -pole pair 
taken. [See Fig. 3(c)]. We thus obtain a set 
of three straight-line segments in the form of a 
framework, so to say, to represent the attenuation 
characteristic corresponding to the complex 
zero -pole pair being studied. It is our object 
to use such frameworks, as convenient units, 
for approximating any given attenuation 
characteristic. 

As in the case of Bresler's zero -pole pair, the 
attenuation characteristic is again representable 
by three straight-line segments; but here the 
restriction that the end frequency ratio of the 
central inclined segment is to be nearly eight no 
longer exists. There appears, however, another 
restriction. The attenuation characteristics of 
the form shown in Fig. 3(b)- with which we 
intend to represent approximately the different 
portions of a given characteristic develop humps 
when the value of k is greater than about 1/ \'2. 
Obviously, curves with such humps are unsuited 
for our approximation purpose. To avoid curves 
with humps the allowable inclination of the line 
on which the zero -pole pair lies has to be so 
restricted that B is less than sin -'(1, \ 2). 
This, in other words, means that the zero -pole 
pair chosen should lie on a line with inclination 
to the real axis limited between 0° and about 45°. 
Phis limitation in the value of k necessarily sets 
certain limits to the admissible values of the end 
frequency ratio p of the central segment and, 
also the slope S of the same. These limits are as 
follows: 

Pi < P < Pt. 

( 1 s2 =[ 
6 

.5; / 
where Pi (36 1 1 

-2 

(8) 

(9) 

and P z = c=5/72 (10) 

also, S G 12 decibels/octave .. .. (11) 
The limiting values of p are plotted in Fig. 6. 
(Proofs of the derivation of these limits are given 
in the Appendix.) 

In approximating a given attenuation charac- 
teristic by means of straight-line segments, the 
given curve is divided into a number of sections 
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in a suitable manner, and for each of these 
sections one linear segment is taken. It may so 
happen that some of the segments will not have 
their slopes or end frequency ratios within the 
limits specified above. If the end frequency 
ratio is greater than the maximum allowed value 
for the slope to be approximated, the section may 
be broken up into smaller ones. If, on the other 
hand, the value of p falls below the minimum 
allowable t alue for the given slope, the section 
may be considered as composed of two sections 
with opposite slopes, placed suitabl\ along the 
frequency axis. In order to avoid such complica- 
tions, a straightforward method of adjustment 
of the segments is adopted. This is given in 
Section 5, and illustrated in Section 7. 

It is important to remember that in the 
calculation of the transient response from the 
transfer function, the evaluation of the residues 
corresponding to the assumed poles is necessary. 
For the case of multiple poles this requires the 
differentiation of the transfer function with 
respect to p. This may make the actual com- 
putation lengthy, specially if the number of 
singularities is large. For the simple pole, 
however, the calculation of the residue is easy. 
It is desirable therefore, that the assumption of 
multiple poles be avoided so far as practicable. 
Thus if a slope greater than 12 decibels per octave 
is to be approximated, the slope is divided into 
a number of unequal parts the sum of which is 
equal to the given slope. Evidently, the zero - 
pole pairs obtained in this way are all simple. 

4. Attenuation Error 
Before the calculation of the location of the 

zeros and poles corresponding to the assumed 
segments is undertaken, the approximate attenua- 
tion characteristic should be compared with the 
gi\ en characteristic to estimate what may be 
called the 'attenuation error'; i.e., the departure 
of the assumed attenuation characteristic (the 
one represented by the linear segments) from the 
characteristic to be simulated. 

It is clear from Fig. 3(c) that the departure of 
a point on an approximating linear segment from 
the corresponding point on the attenuation 
characteristic represented by the segment is a 
maximum at the ends of the segment. It is 
therefore enough to compare these end departures 
(= E) with the actual departures of the ends of 
the segments from the given characteristic to 
get an idea of the attenuation error. In order to 
facilitate the comparison, graphs of e are plotted 
for different values of p and S. (Fig. 7.) For any 
tentative choice of the segments the attenuation - 
error values at the ends of the segments are 
noted from the plot. If the error at any point is 
found to be very large, one or two of the segments 
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arc adjusted suitably (with the help of the 
graphs in Fig. 7) to minimize the error. 

5. Choice and Adjustment of the Linear 
Segments 

The attenuation-frequency characteristic for 
any actual network has a constant limiting slope 
at its two ends; that is, both for very high and 
for very low frequencies. It can be slr)wn that 
this limiting slope must be either zero or some 
multiple of six decibels, approximately, per octave. 
The limiting slopes may, therefore, be approxi- 
mated by real zeros or poles, simple or multiple. 
The value of e for a simple zero is + 3 db, and 
that for a simple pole is - 3 db; for a zero or 
pole of multiplicity u, these are + 32! db and 
-3n db respectively. For zero -pole pairs, e is 
positive at the low -frequency end and negative 
at the high -frequency end for a segment with 
positive slope and, vice versa. Thee values for 
zero -pole pairs are plotted in Fig. 7. 

12 

10 

z 

ND%\__ó \.7 i 
1111110P,"nw 

,1 1` 
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p 

Fig. -t. l'lot of S against p for different values o¡ x. 

20 50 100 

The straight-line segments are chosen in such a 
way that they are approximately tangential 
to the given characteristic. 'l'he segment lengths 
are adjusted successively so that the suns of the 
e values of the adjacent segments equals the 
distance of the junction of the segments from 
the given characteristic. This means that the 
attenuation errors at the segment ends are zero. 
(The procedure is explained in detail in an illus- 
trative example to follow.) 

The closeness of approximation of the attenua- 
tion characteristic determines the closeness with 
which all the other characteristics are approxi- 
mated. This is so, because, as has already been 
pointed out, for one attenuation characteristic 
realized in minimum phase -shift form, there 
exists one and only one phase -shift characteristic. 
Hence, in working out an actual problem, it is 
helpful to remember that the larger the number 
of segments taken and the smaller the attenuation 
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errors at the ends of the segments, the better is 
the approximation. 

6. Calculation of Transient Response: 
Location of Singularities 

Once the choice of the segments is completed, 
the locations of the singularities corresponding 
to these segments are found with the help of the 
graphs in Figs. 4 and 5, or by direct calculation 
from the relations (16), (20) and (21) given in the 
Appendix. When the graphs are used, x is found 
from S and p in Fig. 4, and k from x and S in 
Fig. 5. Knowing w1, the geometric mean angular 
frequency of the segment, d is calculated from 
relation (16) given in the Appendix. The com- 
plex transfer function approximately representing 
the given attenuation characteristic is then 
written down at once, without the constant H, 
which is still to be evaluated. For calculating 
H we write out the expression 

(fi + xo_+ j(/3o)(hL + 7'0 o) . 

(P + xl + jN,)(P 11 - - j131) 

Here xo, So, etc. are the real and imaginary 
components of the calculated zero locations, and 
x1, N1, etc. are the same quantities for the pole 
locations. The function (12) corresponds to the 
given attenuation characteristic with only the 
constant H missing. This means that, if the 
magnitude of the function (12) is plotted against 
a logarithmic frequency scale, the resulting 
curve will differ from the given attenuation 
characteristic at all points by a constant gain or 
loss of value H. To obtain H, therefore, h in 
expression (12) is given a pure imaginary value 
jw and the magnitude of the expression calculated. 

:4 

.. (12) 

3 0 4 0'5 0'6 0 7 0 8 

k= sin 9 

Fig. 5. Plot o% S against k for different values of x. 

The ratio of the magnitude of the given plot of 
.1(w) to this calculated magnitude at the same 
frequency is the required factor H. For the 
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special cases in which the initial or the final value 
of the slope of the given attenuation characteristic 
is zero, the calculations are obviously simplified 
if p is taken to be equal to zero and infinity 
respectively. 

After H is obtained, the approximate transfer 
function is known completely, and the transient 
response is calculated by the operational method. 
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7. Example 
To illustrate the method of linear segments as 

extended by us we shall consider a system of 
which the attenuation characteristic and the 
corresponding transfer function are known. The 
curve in Fig. 8, is a plot of the attenuation 
characteristic of a system whose transfer function 
is 

Z(p) = 8.33 - (p + 1)(p + 20) 
.. (13) 

(p+3.33)(p+5)(p+ 10) 

The attenuation characteristic shown in Fig. 8 
is thus a plot of 

A (w) = 10 loglo 
(1-H.02/11.1)(1 +0J2/25) (1+ w2/100) 

. .. (14) 

We shall calculate the response of this system to 
Dirac's S function, first, from the attenuation 
characteristic in Fig. 8 by the linear segment 
method, and then, directly from (13) by the 
conventional operational method. The two 
results will then be compared to judge the 
accuracy of the method. 

(1 +0)9(1+ w2/400) 

Calculation by the Method of Linear Segments 
The first step is to select the straight-line 

segments to represent approximately the graph 

B C 

A 

E 
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of A (w) as shown in Fig. 8. The selections are 
made as follows:- 

First, the initial (i.e., low -frequency) slope is 
drawn. This, in the example chosen, is the 
frequency axis itself; i.e., the slope S = 0. 
The point A on the frequency axis from which 
the second segment is drawn, is next chosen. The 
choice is somewhat arbitrary, it being only 
observed that the point is not too far from the 
corresponding point on the given characteristic. 
Thus, the e value of the first segment being zero 
(since S = 0), that of the second segment alone 
is to be made equal to the distance of the point A 
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from the given characteristic, in order that the 
attenuation error at the point A may he zero; 
the point A is accordingly chosen such that the 
slope of the tangent drawn from it to the given 
characteristic allows a value of E larger than the 
distance of A from the given characteristic. 

As actually chosen, the distance of A from the 
given characteristic is about 1 db, while the slope 
of the tangent AB is 3 db/octave which, from 
Fig. 7, allows a maximum value of E equal to 
1.05 db nearly. To fix the length AB we note 
from Fig. 7 that for the slope S = 3 db/octave and 
e = 1 db, the ratio p of the frequencies at B and 
A should be 467 nearly. Hence, the point B is 
so chosen that the frequency there is 4.67 times 
that at A. We note that the distance of the 
point B from the corresponding point on the 
graph is very nearly 1 db. Hence, the attenuation 
error at B would be zero if the next segment from 
B were horizontal. (This is a mere coincidence. 
As a matter of fact, if the point A were chosen at 
some higher or lower frequency, the third segment 
would not have been horizontal. Horizontal 
segments are, however, always preferable to 
sloping segments, for such segments may be given 
any end frequency ratio conveniently.) The third 
horizontal segment is then drawn and its length 
(that is, the point C) is chosen in a manner 
similar to that for the case of the point -1. The 
fourth segment CD, drawn tangent to the given 
characteristic, is found to have a slope of 7.38 
db/octave nearly. This allows 
a maximum value of E equal 
to 2.8 db, and the departure 
of C from the given charac- 
teristic ( = 2.25 db) is less 
than this. The end point D 
of the tangent CD is fixed 
by noting, from Fig. 7, that 
for a slope S=7.38 db/octave 
and for e = 2.25 db, the 
required value of p is 5.17, 
so that D is taken at a point 
where the frequency is 5.17 
times that at C. The length 
of the fourth segment drawn 
from C is thus fixed and 
the point D is obtained. The 
fifth segment DE is drawn 
as a tangent to the given 
characteristic from D. The 
slope is measured to be 6 
db/octave. Now, the E value 
for CD is 2.25 db and the 
distance of D from the 
characteristic is - 0.25 db; 
hence, the e value for DE 
must be equal to the sum of 
the two; i.e., equal to 2 db. 
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This is obtained approximately by taking the p 

value for DE as 7.0. This fixes the point E. The 
final slope being 6 dh/octave, a simple real pole is 
introduced at E. The E value for this real pole 
is -3 db. As the distance of the point from 
the curve is only about 0.5 db, the attenuation 
error at E is (3 - 25 _) 0 5 db nearly. This 
may be tolerated, because at E the attenuation is 
already rather large, and a small difference in 
this region, or at still higher frequencies, would 
not affect the transient response materially. 
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Fig. 9. Exact and approximated response to 8 -function 
input. 

TABLE 1 

-66 

Segment 
1 S 
(db/oct) p 

Geometric 
mean freq. of 
segment ends 
(radians/sec) 

a 4 d 
Nature and 
Location of 
calculated 

Zeros and Poles 

AB 3-00 4.67 1.3 2.63.0500 0504 Poles at - 1.367 ± 10.69 
Zeros at - 0928 ± j0.536 

CD 7.38 5.17 

7.0 

13.8 1.07 0.557 14.51 Poles at - 6.9 ±14.625 
Zeros at - 18.94 ±112.7 

DE 6.0 81.0 1.11 0.354 81.8 Poles at 
-46.6íj17.65 

Zeros at - 123.2 ± j46.6 

E to 6.0 Pole at 
00 - 217 ±10 
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In order to calculate II, the point p = 0 is 
chosen since the initial slope of the characteristic 
is zero. H is then found to be equal to 8.85. 

The calculated singularities are shown in the 
table and the transient response curve of thesystem 
having these singularities is shown by the broken 
line curve in Fig. 9. The exact response curve of 
the system as calculated directly from the 
singularities in the expression (13) is shown by 
the solid -line curve. The agreement between 
the two is surprisingly good. 

8. Conclusion 
The extension of the linear -segment method, 

by the utilization of zero -pole pairs lying on a 
line inclined to the real axis, is found to be quite 
suited for practical calculations. The whole 
improvement depends on the fact that the lengths 
and the slopes of the approximating segments 
are less restricted. This is to be expected, 
because, in the previous methods mentioned in 
the text the singularities are restricted to lie on a 
single line in the complex plane, while in the 
method described here there is much greater 
freedom in the location of the zeros and the 
poles. 

An obvious generalization of the method would 
be to place a zero and a pole on two separate lines 
passing through the origin in the left half of the 
complex plane, and having different slopes. 
But a study of this arrangement shows that it 
makes the calculations more complicated and 
the fitting more difficult. 
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APPENDIX 
To find the slope (3) of the attenuation characteristic 

corresponding to a chosen zero -pole pair at the point of 
inflexion we first note that this point is given by the 
equation 

z 

A 2(W) = 10 logto a- 2 

and hence, solving the equation, 
I W it-1fx -á- d 

. 

.. (15) 

(16) 

S is then obtained by differentiating expression (7) with 

respect to log f, and substituting the value of ft in the 
resulting expression. Thus 

S = 20 a 
db/log f 

x2 k2 (22_ 
4) 

6a 
tlh octave. -k2 

S is plotted against k for different values of a in Fig. 5. 
The end frequency ratio (p) is now calculated as the 

frequency ratio required to produce a change in the 
attenuation of 

20 lo 
a 

112 
b a decibels for a slope S. 

This conies out to he 

fa = [a ;- n12/s 
x - ' .12P 

(17) 

(IS) 

S is plotted against p for different values of a in Fig. 4. 
From Fig. 3(c) it is also clear that the relation 

ft2 = /z'fa .. .. .. .. .. (19) 
holds. 

Equations (17) and (18) may be solved for a and /1: the solutions are: 
pS/12 -I- 1 

a = J ' - . - ps/l - 1 

= f Sae - 6e 
11 

LS (a2 
Now, in order that the values of p and S taken may 

correspond to a zero -pole pair king within 0° and 45°, 
the condition 

.. (20) 

.. (21) 

0</t (22) 

must be satisfied. The condition restricting the complex 
zero -pole pair to lie within the region between 0° 
ami 45° in the left -half plane, imposes a corresponding restriction on the maximum allowable value of the 
slope of the middle segment, and also restricts the fre- 
quency ratio p within certain limits, these limits depend- 
ing on the value of S. From (21) and (22) we obtain: 

6 6 36 I '12 S<a- Cs=-- 23 

Again, from (20) and (23) we may write 
Pt< p<P2 .. (8) 

where 

and 

Pi = f 
6/5 (36/S2 - l) `-I- a 1121S 

HIS - (36/S2 - 1) `- I 

h -{- S/2 12/S 
P2 = [ _ S/2] 

From the relation (23) it is also clear that S must be 
less than 12 decibels per octate. 

(9) 

(10) 
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AUTOMATIC SLIDE -BACK VOLTMETER 
Peak Kencl i nr on I'osi f i ire Pulses 

By Herbert J. Fraser, A.M.LE.E. 
(Amalgamated less Valve Co. Ply. Ltd.,Sydner,Auslralin) 

SUMMARY.-.\n automatic slide -hack voltmeter designed to indicate directly the peak voltage 
of recurring positive pulses is described. The voltage to he measured is applied to a diode detector 
which is automatically biased so that the difference between the input voltage and the slide -back bias 
is small. The slide --back bias is obtained by integrating the output pulses of a multivibrator which is trig- 
gered by this difference voltage. The voltmeter can be calibrated from a d.c. source. 

Experimental results are given which cover the range of pulse widths 0.5 - 50 µsec and pulse 
repetition Kates 10 - 20,0(1(1 c,s. The maximum error is ± 2 volts over the range 0 - 100 volts. 

1. Introduction 
\I)IO valves are tested under recurring 
pulse conditions to obtain emission and 
static characteristics under conditions 

of class C or pulse operation, while keeping the 
average power dissipated in the valves within 
rated limits. The large quantities of different 
types of valves handled in production require a 
direct -reading instrument to measure the ampli- 
tudes of the voltage and current pulses over a 
wide range of pulse duty. cycles. Such an instru- 
ment suitable for incorporation in a production 
test set is described. Several types of direct - 
reading instruments were considered and rejected 
for the following reasons. 

The diode peak -reading voltmeter with d.c. 
amplifier is unsatisfactory at \ ery low duty cycles 
because of the extremely high values of resistance 
needed in the diode load and amplifier input 
circuit. 

Pulses are commonly measured on a cathode- 
ray oscilloscope calibrated by d.c. shift, but this 
method is considered too expensive and too 
complex for a production test set where servicing 
time must be minimized. 

The automatic slide -back voltmeter described 
by Crevcling and Mautner' is satisfactory for the 
purpose but it requires a cathode-ray oscilloscope 
for calibration and its operation is restricted to 
the duty cycle range of approximately 10 3 to 4%. 

The voltmeter to be described is an automatic 
slide -back type which can be calibrated from a 
d.c. source. It is a direct -reading instrument 
which covers the duty cycle range of 5 x 10-4 to 
100% and it has the further advantage that, 
because no high -gain amplifiers are used, the 
problems of hum pickup and instability are 
avo.ded. 

2. Description of Basic Circuit 
The voltmeter is represented by the simplified 

circuit of Fig. 1. \Vhen the input voltage Ei,c 
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exceeds the feedback bias E the diode V, conducts 
and a voltage is developed across the diode load 
resistor R1. This voltage triggers a multi - 
vibrator which gives an output pulse of essentially 
constant width and amplitude each time it is 
triggered. The output pulses are integrated to 
obtain a steady unidirectional voltage which is 
fed back as bias to the diode in the correct 
direction to reduce its conduction. Tite feedback 
bias automatically increases Wit input voltage 
to maintain the multivibrator near its trig- 
gering level E( and it is therefore a direct 
measure of input voltage minus El. The necessary 
variation in feedback bias required over the 

range of input voltage 
E;,, to be measured is ob- 

C 
taiued by automatic 
variation of the trigger- 
ing rate of the multi - 
vibrator. 

PULSE 

1111 
TRIGGERED , INTEGRATOR 

MULTIVISR ATGR AND D.C. 
AMPLIFIER 

o 
FEEDBACK BIAS 

Fig. I. Gene; al urrnrtgeumeul of the 
slide -back volt /der. 

Factors which affect the reading of the volt- 
meter are: 

(a) Voltage directly fed through the anode -to - 
cathode capacitance C,( of the diode. 

(b) Voltage required to trigger the multi - 
vibrator. 

(e) Diode contact potential. 
(d) Voltage drop across the diode. 
(e) Input pulse width and repetition rate. 
(f) Needle flicker in the meter due to irregularity 

or ripple in the feedback bias. 
These factors will be discussed in this order. 
The shunt capacitance C,, is added to reduce 

the voltage fed through the diode capacitance 
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Cd to 
Cd jolts. Lin 

Cs Cd 
Provided this voltage is below the triggering level 
of the multivibrator it results in an error equal 
only to its own magnitude. In order to keep C3 
small and so obtain low capacitive input loading 
the multivibrator is biased one volt below its 
triggering level. Cs is made 100 times greater 

D.C. 

RESTORER 

Fig. 2. Circuit 
diagram of 
voltmeter. 

DIODE 
DETECTOR MULTIVIBRATOR 

\Vith high duty cycles the voltage developed 
across R1Cs does not decay completely between 
pulses but, because the d.c. component across 
R1Cs is an effective part of the triggering voltage, 
no error results. 

The amount of needle flicker in the meter 
due to ripple in the feedback bias can be reduced 
by design at the expense of response time. 
This problem is discussed in the next section. 

FEEDBACK BIAS 

than Cd and therefore the instrument can measure 
input voltages up to 100 volts before capacitive 
feed through Cd is sufficient to trigger the multi - 
vibrator. The error due to Cd is thus reduced 
by Cs to + 1% and because the multivibrator 
is biased one volt below its triggering level it is 
inherently stable and insensitive to extraneously 
induced voltages. The error due to this bias on 
the multivibrator can be eliminated by a constant 
additive correction of + one volt. 

Diode contact potential, which is usually of 
the order of 0.7 volt, can be completely cancelled 
by suitably biasing the diode although this has 
not been clone in the present instrument. 

The voltage drop across the diode anode 
resistance Ta is equal to Et ra/R1 volts, which can 
be neglected as R1 > 500 r3. 

Provided that the input pulses 
are sufficiently wide to trigger the 
multivibrator, the limit to low 
duty -cycle measurements occurs 
at low pulse -repetition rates 
because the integrator and d.c. amplifier cannot 
maintain sufficient feedback bias if the multivi- 
brator is not triggered often enough. This design 
problem is discussed later. 

PULSE D.C. 
INTEGRATOR AMPLIFIER 

3. Complete Circuit and Experimental 
Results 

The circuit of the voltmeter in its final form is 
shown in Fig. 2. 

The diode \ 2 operates as a d.c. restorer so that 
any capacitance in series with the input source 
which is charged by conduction of V1 will be 
discharged by V2 between pulses and will not 
affect the accuracy of the measurement. 

Diode V3 in conjunction with the resistor R2 
limits the input pulse amplitude to the multi - 
vibrator grid to four volts as it was found by ex- 
periment that triggering would not occur for an 
input greater than eight volts. In normal opera- 
tion (V3 non -conducting) the voltage drop which 
occurs across R2 results in an error of 

R2 + R3 - Et R3 

188 

1 _ t R, 14) 
1 - exp. 

R., Ci R3 

1 volts 

where Cin = input capacitance of V3 and V4a 
t = pulse -width (seconds) 

C1, R4, R;, are neglected as their impedances are 
much less than R3. This error is equal to - 0.2 

WIRELESS ENGINEER, JULY 1955 



volt at large pulse width and increases to - 0'26 
volt for an input pulse width of 0.5 µsec. If the 
pulse generator coupled to the voltmeter has 
sufficient internal impedance R2 may be zero 
and this error eliminated. 

The multivibrator circuit has two feedback 
paths. Because the common 
cathode resistor Rs must be rela- 
tively small to satisfy other design 
requirements, a second feedback path is obtained 
through R3C1 connected from the output anode 
to the input grid to ensure that reliable self - 
oscillation of the multivibrator can be obtained. 

The -method of setting the multivibrator one volt 
below its triggering level is to decrease Rs until 
self -oscillation is detected by the neon indicator 
and then switch one v olt bias obtained from a 
regulated supply into the circuit by the switch SWV1. 

Experimental work has shown that the self - 
oscillating condition reached in the above way 
corresponds to the triggering point to within 
+ 0.1 volt. 

The d.c. amplifier Vs allows measurement of 
the feedback bias on a 1,000 -ohms per volt meter. 
In the absence of any input signal V, is biased to 
cut-off. An input signal produces multivibrator 
pulses which are integrated into the capacitor 
C3 to raise V9 above cut-off to supply the correct 
feedback bias. 

In order to explain the action of the integrating 
circuit let the duration of the multivibrator 
output pulse be I second and its amplitude 
E volts. The capacitor C4 is charged by each 

I- C. w 
ó 

7510 
100 1,000 

QE: = 
C4 

PULSE REPETITION RATE (c/s) 
pulse to a peak value of EC2/(C2 d- C4) volts 
and then C4 discharges through R7 into C3 

(C3 i C4) thus increasing the voltage across 
C3 for each pulse by the amount 

+ dEc3 = E C2 
C'-L. volts 

C4 C, Ca 
The discharge through 14 can be neglected as 
R9 i R7 and the charge entering C3 during the 
pulse time tp is negligible as /p < R7C3. Between 
pulses C3 discharges through R8 by the amount 

d - Ec3 = (E0 + Er) [1 - exp. (c1volts 

,. 
=O'Sf.tSEC. PULSE WIDTH 

x 10 

o = 50 
- D.C. 

o 1.---4P-------2-1- o 

x x 
x 

x x x íYc 

10,000 30,000 

where 12 = time between multivibrator output 
pulses 

E9 = Voltage on C3, which is approximately 
equal to the feedback voltage 

E5 = Bias supply for Vs 
The net voltage gained by C3 per pulse is then 

+C C; 
2 

(E0 -b Er) [1 - exp. (R8 C3)J 
volts 

The circuit is designed so that the maximum 
value of ED (100 volts) is obtained for the value 
of t, (0.1 sec) corresponding to the minimum 
pulse rate (10 c/s). If E, E0, C2 and I2 are fixed 
it can he seen that C4/C3 and RAC, must be 
sufficiently large to obtain a net voltage increase 
on C3 per pulse and so allow the feedback bias to 
rise. If dEc3 is large, the response time is small 
but the ripple in the feedback bias is large. The 
time Is required fully to establish the feedback 
bias E at a pulse rate of u cis is given by 

c 

E 
3(av) Is = ,l . A 

seconds 

where dEc3(at,) is the average value of dEc3 
over the time Is. In the present circuit JEC3(av) 
= two volts, hence a time of five seconds is re- 
quired to establish 100 volts feedback bias at the 
lowest input pulse repetition rate of 10 c/'s. The 
percentage ripple in the feedback bias equals 
100 dEc3/ED. As dEc3 is fixed this becomes more 
serious for low values of E0. This ripple can be 
reduced at low voltage by obtaining the feedback 
bias across part of the cathode load on V6 by 
switching the feedback bias line from X to Y of 

2 but this also pro- 
portionately decreases the 
.amplitude range of the 
voltmeter. 

Experimental results 
obtained with the circuit 
of Fig. 2 are shown in 
Fig. 3. 

Pulse amplitudes were 
checked to ± 2% by a 
pulse c.r.o. calibrated by 
d.c. shift. 

Fig. 3. _Measured performance for various kinds of input. 
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MATRIX ALGEBRA 
Special Applications to Four -Poles 

By John J. Karakash 
SUMMARY.-Matrix algebra has been applied to electrical -circuit theory with considerable 

success. Impedance and admittance matrices are frequently employed to formalize general solutions 
of some network problems: similarly, the scattering matrix formalizes solutions of problems in terms 
of reflection coefficients in microwave multi -terminal structures. This paper* deals with special pro- 
cedures and applications involving the general parameter matrix of passive four -poles with bilateral 
circuit elements. 

1. General Parameter Matrix 
IT is known that the general parameter matrix 

w'itli elements A, B, C, D, relates the external 
conditions of four -poles (Fig. I) in the 

manner 

[EL Is] 
= 

CC Di C I L] (1) 

the linear relations being written in algebraic 
form 

Es=AEL+BIL 
Is=CEL ID11. 

The elements of the square matrix in (1) can be 
determined through open -circuit or short-circuit 
measurements or in terms of the internal mesh 
determinant of the four -pole. Referring to a 
four -pole with a mesh determinant of the nth 
order, a pair of input terminals (1 - 1) and a pair 
of output terminals (u - u), the elements of the 
square matrix in (1) are given by 

A = M,,, /M,n; B = D4.VI1; 
C = M1inn/Mi; D = RI1I:11 

. (3) 
where D,1 is the mesh impedance determinant of 
the four -pole and the M terms the appropriate 
co -factors. Thus, if the four -pole has n meshes 
and consists of passive, linear circuit elements, 

= 

Z11 Z12 -- 
Z21 Z22 - 

I I 

I I 

I I 

z 1 - - - z,+,,, _1 

zln 
z>,t 

(2) 

and tl e co -factors are obtained by deleting the 
rows and columns as indicated by the subscripts, 
and assigning the proper signs. Thus, 

elements of the matrix which is a consequence 
of reciprocity: 

AD-BC-1.11- ,¡.,, -_M,, 1D,¡= 
M21,í 

Furthermore, if the four -pole is symmetrical or 
reversible, the driving -point impedance must be 
the same irrespective of whether the four -pole is 
excited at the terminals 1 - 1 of mesh 1 or at 
terminals u - u of mesh a. Hence D/111,,,, = 
D/M,,, and therefore M11 = .1I,/,t or A = D. 

Is 

So 

Esl 

10 

Ic 

on 

1 E1 
on 

Fig. I. General representation of four -hole network 

2. Applications of the General Parameter 
Matrix 

The particular types of problems to which the 
general parameter matrix adapts itself are those in- 
volving inter -connection of four -poles in cascade. 
When four -poles are so connected the input-out- 
put relations of the chain are written in terms of 
the elements of the matrix resulting from multipli- 
cation of the general parameter matrices of the 
individual four -poles in the order of cascading. 
Assuming for the moment that the 'overall' or 
'equivalent' matrix of the entire chain is obtained 
after such a multiplication, then its elements 
A, B, C, D define the following circuit relations, 
as is obvious from (2) ; 

A is the input-output voltage ratio when out- 
put terminals are open; A = E5/Ej. I i,,a 

x11 - - - - Z2, u_1 

Zn_1,1 - - Zn_1,7t_1 

zu 1 - - - 
Applying (3) and utilizing elementary determinant 
algebra one may now obtain a relation among the 

vlS accepted by the Editor, July 1954 

?VI,,t (=;f1,h,) = (- 1)' .I 

190 

and M119, = 

Z22 - - - -- x2,7/_1 

zn_1,2 - - -z,t_1,,,_, 

This Iuap be regarded as a sequel to the article on Four -terminal 
Networks by 0. I'. D. Cut/,ridge in 11/fireless Engineer, March 1953, 

p. SI. 
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B is the input voltage required to yield a current 
of 1 ampere through short-circuited output 
terminals; B = Es Il. I l , 

C is the transfer admittance; C = is/ELI /L=0 
I) is the short-circuit current ratio; Is/IL) l{,= 

TYPICAL SECTION 

-1 tI- 
Fig. 2. Coaxial line with dielectric heads supparting the 
centre conductor; Z = 138 log r,/r.Q, Z' = /./\/e, 

fi = w/3 X 101 radlcn,, p' 

In dealing with distributed parameter networks, 
analysis of discontinuity effects is often carried 
out through use of the general parameter matrix. 
Consider for instance a loss -less coaxial line 
employing uniformly spaced dielectric beads, 
Fig. 2. As a first approximation the effect of the 
heads can be analysed by replacing each bead by a 
capacitive susceptance jwC', 

where C' = E¡ farads, and Z is the 
Z0 x 3 x 1010 

characteristic impedance in ohms of the simple line. 
This approximation becomes increasingly valid as 
the electrical length IT/ of each bead decreases. 
However, the approximation fails completely as 
19'I ir/2 radians in which instance the bead acts 
like a quarter -wavelength transformer. A more 
adequate means of analysing the effect of the 
beads is to derive the matrix of an entire beaded 
section which, on the basis of symbols show n in 
Fig. 2, is clone as follows: 

.-f B cos /31 

Lc D = sin [31 j -, 
jZ sin ,8l 

cos /31 

of a identical beaded sections; a typical section 
ís shown in Fig. 2. The most direct means of 
accomplishing this is to derive the matrix 
representing a identical sections, namely, a 
matrix representing the original matrix raised 
to the nth power: 

[C' D'] - [C Di 
At first sight the operation defined here may 
appear cumbersome. particularly if a is large. 
However, one may apply Sylvester's Theorem' 
and obtain the results required. Let (6) be 
written more compactly in the form 

[Q'] = [Ql - 
. .. .. (7) 

At this point it is pertinent to introduce the 
characteristic function f(A) of matrix [Q], which 
is actually the determinant f(A) = I Q - Al , 

and then define the characteristic equation of 
matrix [Q] as follows: 

Q-A/I=0 .. .. (8) 
where the solutions A1, 1,, ... are the latent roots 
of [Q] (at times referred to as the characteristic 
numbers of [Q]). In the case under consideration 
[Q] is of the second order and hence there will be 
two latent roots aL and A,. Returning to (8) and 
substituting 

.-1 -A B =0 
C D - A 

then, in view of (4), one obtains 
A2-(A+D)r1+1 =0 .. .. (10) 

Sylvester's "theorem provides that 

[Q'] = [Q]"= Ar". 
r 

where n is the number of sections interconnected 

. (6) 

(9) 

cos /3'1 jZ' sin /3't 

sin /3't j-- Z 
The actual multiplication of (5) is of no special 
interest here and will not he carried out. How- 
ever, it should be noted that the matrix repre- 
senting the head may assume forms which imply 
no interference (it reduces to the unit matrix 
[1] which has elements equal to unity along the 
main diagonal, all other elements being zero) or, 
at the other extreme, impedance inversion (main 
diagonal elements zero, secondary diagonal ele- 
ments reciprocals). For this reason approximations 
should be resorted to only after an examination 
of prevailing conditions, particularly frequency 
range. 

3. Raising a Matrix to a High Power 
Let it be required now to derive a general 

expression for the terminal -to -terminal response 
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cos /3'1 

.. (11) 

cos 131 

j sin /31 
- 

jZ sin /3l 

cos 137 

.. (5) 

in cascade, ni is the number of late' t roots, and 
[Zr] is a matrix given by 

[Q - ,v.si] 

[7.] _ r (12) fl (A, - As) 
r 

Referring to (12) the denominator (A,- - As) 
S # Y 

designates the product of m - 1 factors of the 
type (Ár -- As) with s assuming all values other 
than r. However, in the instance under con- 
sideration there are only two latent roots 
(ni = 2) so that the denominator of [Zr] consists 
of only one factor. \Vhen r = 1 the denomi- 
nator becomes (A, - A2) and similarly when y = 2 
it becomes (A - Al). The numerator of [Zr] in 
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(12) calls for the product of mt - 1 matrices of 
the form [Q - A5I] with s assuming all values 
other than r. Again, since rat = 2 the numerator 
of [Zr] consists of one matrix only. Letting Al 
and a2 be the latent roots of [Q], equation (11) 
is written as follows: 

[Q1 = [On = Ai" [ZI] + 21211 [Z2] 
Ai" [Q-a12I]+A?[Q-x111] 

(13) 
(1 - A2) (A2 

It is observed here that n appears only as an 
exponent of latent roots A and a2 and not 
elsewhere. Furthermore, if the four -pole repre- 
sented by [Q] is symmetrical, A = D, and 
(10) becomes 

A2-2Aa 1=0 (14) 
and the two roots are 

Ai, A2=A± /A2 - 1 =e+,, 
where y = cosh -1A = propagation constant of a 
symmetrical four -pole. 

4. Illustrative Examples 
A simple and obvious case can be cited here to 

illustrate the method. Let a loss -less line of 

[Q/] = [Q]3 = 

the latent roots are obtained by substituting 
(15) in (10). They are 

11 = eie; 
A2 

e -i9 

Upon substitution in (11) the result is 

cos n0 

[Q1=[Q]"= . sin n0 
.7 

as expected. A less obvious case is that related 
to the coupled -line band-pass filter network of 
Fig. 3. It has been shown'- that for this structure 

- 
h 

cos O - jZ0(1 - k2) sin O 

[Q]= 
cos O (cos20 - k2) 

Z0(1 - k2)k 

and the latent roots become 

A1, A2=-kcos0 
1 - 1 

ck0 
For a 3 -section filter, applying (13) 

jZ0 sin n0 

cos n0 

- 
k3 

(4 cosa 0 - 3k2 cos 0) 

cosec 0(cos20 - k2) 
(4 cos20 - k2) 

k3Z0(1 - k2) 

electrical length 0 and impedance Z0 be represented 
by a matrix and the latter raised to the nth 
power. As in equation (5) 

cos 0 jZ0 sin 

[Q] sin 0 
cos 0 

o 

(b) 

Fig. 3. Coupled -line band-pass filters. Single -section 
parallel -wire form (a) and three -section screened -pair 

form (b). 

SHORTING SCREWS 

.. (15) 

(a) 

Z,,, / Zo = k 

úi///j 
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S = CONDUCTING PLATES 

j/. 0(1- k2) sin O 

1 -jcos0 

k3 
(4 cos20 - k2) 

- hs (4 cos30 - 3k2 cos 0) 

As n increases the advantage of using this 
procedure becomes increasingly evident. Another 
set of expressions for the elements of matrix 
[Q']-tliough not quite as useful-involves 
hyperbolic and inverse hyperbolic functions, 
namely: 

A' = D cosh (n cosh -1 D); 

B' = ¡C sink (n cosh-1VAD) ; 

D'=/71,A'. 

5. Bartlett's Bisection Theorem and the 
General Parameter Matrix 

The usefulness of Bartlett's Bisection Theorem3 
has been demonstrated in many phases of net- 
work analysis. At times, of course, bisection in 
the structural sense cannot be achieved. Thus, 
in a structural sense, a symmetrical ladder -type 
structure, or a bridge -T, can be split into two 
`halves', whereas a lattice does not allow of this 
type of bisection, although bisection in the 
electrical sense is achieved by imposing pertinent 
electrical conditions4. It is of interest to general- 
ize the bisection process by manipulating matrix 
[Q] of a four -pole in such a manner as to obtain 
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the elements of the matrices representing the two 
'halves'. This process is completely algebraic 
and ignores structural aspects. Since the matrices 
obtained are of the second order, the 'halves' are 
four -poles, irrespective of the fact that there 
may be more than two bisection terminals, as in 
t he case of the bridge - f which has three. 

Z=b 

ZI = b 

o -0 
Fig. 4. L -structures and their mtrices. 

A-i 

Fig. 5. 

(a) 

(b) 

ZA+ZB 24 Ze 

2 Za +Ze 

Lattice network and its Imatrl.-. 

Let it be assumed that a four -pole defined by 
matrix [Q] is bisected. The two 'halves' are 
defined by matrices [Q1] and [Q2] such that 

[Q] = [Q 1] [Q21 .. .. .. (16) 
the relation of [Q1] to [Q2] being that associated 
with back-to-back connection. Thus if 

ra 
[Q1] Lc d 

it is not difficult to show that 
d 

[Q21 Lc al 
so that, if, A, B, C and D denote the elements 
of the original matrix [Q], (16) requires that the 
elements of the matrices representing the original 
structure and the two 'halves' must be related in 
the manner 

A=D=2ad-11 
B=tab .. .. (19) 
C = 2cd 

. (17) 

(18) 

it being understood that the reciprocity condition 
ad - be = 1 restricts the elements of the matrices 
[Q1] and [Q2] as implied in (4). 
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Upon examination of the relations in (19) it is 
noted that the number of unknown constants 
exceeds the number of avai-able relations by one. 
Thus if a = 1 one obtains two 'halves' of the 
mid -shunt L -type connected back-to-back [Fig. 
4(a)], or if d = 1 one obtains two mid -series type 
L structures [Fig. 4(b)]. 

Applying (19) to a lattice (Fig. 5) and noting 
that for the latter the matrix elements are 

=ZB+Z.-1 =D; B - 2ZAZB 

B-/. ZB-ZA 

C=is - ZA 

the bisection relations stipulate that if a = 1: 

I; l,= - / /B - '' Z li - /A 

= 
1 A ± I /B 

/i 
d= -z.a 

or, ifd= I: 
.-{ -}- I Z /i 

a = 2_ ZB- "/..a 

=:1+1=/,l 
C 1 

.. (20) 

(2la) 

(21 b) 

C = , _ 
If now (21a) and (21b) are compared with data 
shown with Fig. 4(a) and (b) it is obvious that two 
possible bisection schemes for the lattice are 
those of Fig. 6(a) and (b). 

B _ Za z4 
2 4-4 

B 
A-i 

[Qi] 

(a) 

Fig. 6. The two simplest forms of bisected lattice nelwm k. 
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6. Back -to -Back Connection 
When n identical but dissymmetrical four -poles 

are cascaded, impedance matching is achieved by 
connecting the networks on the image basis, 
back-to-back. In such a case the matrices of 
alternate networks are identical whereas the 
matrices of adjacent networks differ only to the 
extent that positions of the two elements along 

CC D] 

matrix is made zero. This becomes evident by 
writing 

ES=AEL -BIL 
and noting that EL = 0 (since ZL = 0) and hence 
for Es = 0, B must be zero since IL O. 

Carrying this out, the matrix of the composite 
structure ís written in accordance with notation 
shown in Fig. 8, 

cos X111 1ZDI sin X111 1 cos /3212 jZo2 sin /3212 

;sin1li 
Z01 

cos /3 111 j 
sin /3.,12 

cos 13212 
(28) 

-02 

the main diagonal are interchanged. Referring 
to Fig. 7, the terminal -to -terminal relations of 
the entire chain are 

Es=AEL+B11. 

I`= CEL +DIi. 
Is 

Es t 2 ) 

Fig. 7. Cascade of identical dissymmetrical four -poles. 

where for the Sack -to -back connection 

LC D] Lc d] Lc a] Lc d] L I L] 
If the number of sections t is even (u = 2m) the 
two image impedances of the chain are identical 

Zis =Z/L= 
and (23) becomes 

AB bird b "' 1+2bc 
[C D] c d c a] - L 2dc 

ab 
cd 

(23) 

(24) 

2ab ! 
1 + 2bc] 
.. (25) 

whereas if x is odd (n = 2m + 1) 

-1 B11 + 2hc 2ab Tura b 

LC D _ L 2dc 1 + 2bc] [c d] . 

and t i Wage 
distinct 

/Ís= 

(2(3) 

impedances of the chain are 

ab 
dc 

bd 
ZIL = ' 

ac (27) 

7. Microwave Structures 
In many microwave structures resonance or 

anti -resonance is achieved through use of short- 
circuited coaxial line or waveguide sections, 
although from the theoretical standpoint open - 
circuited sections serve equally well. Consider a 
composite coaxial structure such as shown in 
Fig. 8. Operating as a loss -less cavity in the 
TEM mode the structure of Fig. 8 will resonate 
(ZS = 0) provided element B of the overall 
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zs 

Fig. 8. Composite coaxial structure. 

Zz=O 

and hence setting B = 0 one obtains 
Z02 tan /3512+ Z01 tan /3 ll = 0 .. (29) 

If on the other hand the cavity of Fig. 8 is to 
become anti -resonant (Zs = oo), then Is= 0, so 
that relation 

Is = CEL -r DIL .. .. .. (30) 
stipulates that D = O. From (28) this yields 

-Z01 cot /3111+Z02 tan ,8212=0 .. (31) 
Cavities closed at both ends are handled in a 
similar manner. Referring to Fig. 9, the three - 
section cavity will resonate when element B of 
the overall matrix becomes zero. Assuming loss - 
less sections and noting that [3' =,E/3 and that 
Zoe = Z01/VE the resulting relation is 

DIELECTRIC (E ) 

( Zoz 

%/A 

Fig. 9. Three -section cavity. 

--1 t If -I t 1_- 

zp A 
E -- 0 

dI 
m n 

Fig. 10. Beaded line. 
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cot V E pi' = 8 [tanpi -(ii) cot,8/J (32) 

This relation may be utilized to determine per- 
mittivity if a variable frequency source is 
employed. 

An additional application of the general 
parameter matrix deals with impedance matching. 
Consider the beaded line shown in Fig. 10. The 
paired beads introduce reflections and if suppres- 
sion or reduction of the latter is required it is 
necessary to determine the pertinent relations 
among variables E, t, d specified in Fig. 10. To 
achieve this result one obtains the matrix for the 
line segment In-n, and denoting the elements of 
the latter by A', B', C', D', one sets 

C' 
.. (33) 

where Zo is the characteristic impedance of the 
uniform line. Carrying this out and substituting 
in (33) symbols shown in Fig. 10 the result is 

tan 13d = 2 +E cot E 8t .. .. (34) 
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CORRESPONDENCE 
Letters to the Editor on technical subjects are always welcome. In publishing such communications 
the Editors do not necessarily endorse any technical or general statements which they may contain. 

Differential -Amplifier Design 
SIR,-In his article in the March 1955 issue, Mr. A. M. 

Andre \\ comes to the conclus'on that there are practical 
disadvantages which make it difficult to build a differential 
amplifier that maintains good in -phase rejection without 
a balancing control. The difficulties appear to be 
multiplied if operation to z.f. is required. 

Possibly it was not known to Mr. \ndrew that there 
already exists a reference in the British literature to a 
method which avoids many of these difficulties'. The 
basic idea of this work is to feed an in -phase error signal 
derived from the differential outputs back to the grid of 
the valve in series with the cathodes of the differential 
amplifier valves. This inverse feedback of the active - 
error type2 tends to reduce the output error proportionate 
to the gain of the feedback loop. By making this gain 
sufficiently large, rejection ratios of the order of 10° 
may be obtained over a wide frequency range. Such 
ratios are almost independent of valve variations, so no 
balancing control is required. An amplifier making 
use of two improved versions of this circuit in series has 
been described'. It achieves a composite rejection ratio 
of the order of 108 over a band from 1 c/s to over 100 kc/s 
and could readily be modified for z.f. operation as well. 

J. Ross MACDONALD 
Texas Instruments Inc., 

6000 Lemmon Avenue, 
Dallas 9, Texas, U.S.A. 

4th May 1955. 
E.M.I. Laboratories, '' Balanced Output Amplifiers of Highly 

Stable and Accurate Balance", Electronic Engineering, 1946, Vol. 18, 
p. 189. 

2 J. R. Macdonald, "Active -Error Feedback and its Application to a 
Specific Driver Circuit", Proc. Inst. Radio Engrs, 1955, Vol. 43; to be 
published. 

J. R. Macdonald, "A Multi -loop, Self -Balancing power Amplifier", 
Trans. Inst. Radio Engrs, Vol. AU -3, Audio, 1955; to be published. 

Field -Strength Calculation 
SIR, -1 have read with interest the article "Field 

Strength Calculation" by Kiyohisa Suda in your 
September 1954 issue. This method necessarily assumes 
a knowledge of conductivities of ground over mixed 
paths. While it is true that direct methods have been 
developed for determining the conductivity of the soil, 
these methods have certain inherent limitations in their 
experimental set-ups. Primarily, difficulties have 
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arisen on account of stray pick-up on the measuring 
receiver. An accurately calibrated and well-balanced 
dipole has been tried with some success. The idea' of 
equivalent conductivity put forth by Kiyohisa Sucia 
could perhaps be extended by making measurements in 
the so-called critical propagation zone for obtaining the 
conductivities of mixed paths. It would perhaps also 
be possible by this method to get an idea of stratification 
of ground in these paths. I believe field strength 
obtainable is also affected by this factor. 
New Delhi, K. L. RAo 

India. 
15th May 1955. 

Multiloop Feedback Amplifiers 
SIR,-I should like to add a remark in reply to B. D. 

Ralovich's letter appearing in the May issue concerning 
Mr. Cutteridge's paper (November 1954) and my letter 
(February 1955). Referring to the use of the inverse 
loop amplification function for establishing stability I 
wrote the characteristic equation in the form 

1 

1.42(-133)=0 .. 
where Át.9 2 

(1 - A113t)(1 - A2132) 
It is not proposed to use the entire 1.h.s. of this equation 
as a plotting function, for, as B. D. Rakovich says, this 
in no way differs from the characteristic function 
1 -A1131-A2132±Atoa13í132-AlA2133 proposed by 
Mr. Cutteridge. What can be said, however, is that, if 
A1, A2, 13, are stable minimum -phase functions by them- 
selves, then A 1A 2133 has neither zeros nor poles in the 
r.h. plane and it follows from (1) therefore that 1+(Y133) - I may be taken as the function which must have no 
zeros in the r.h. plane to ensure stability of the system. 
The point I wished to make is that 1/ Y13, has the advantage 
of having no poles in the r.h. plane whereas the loop 
amplification function Y133 may have poles in that region 
and the number of these must be previously determined. 

I quite agree with the remainder of B. D. Rakovich's 
letter. A. J. O. CRUICKSHANK 
Department of Electrical Engineering, 

Queen's College, 
Dundee. 

19th May 1955. 

. (I) 
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Transistor Circuit Analysis 
SIR,-The following results for the small -signal low - 

frequency equivalent circuit of a transistor seem to he 
useful, and so far as the writer is aware, they have not 
previously been pointed out. 

. lnput Resistance of an Earthed -Rase .AurpliJier 
ri = re 

I (I - --1 i)rb 
where A; is the current gain of the transistor working 
into whatever load impedance may be connected. The 
result is immediately obvious from the equivalent 
circuit shown in Fig. 1. 

2. Input Resistance of an Earthed -Emitter A'upliJier 
ri=r1 1 (11-Ai)r. 

This result ma\ he derived in the same way as the p e- 
VIonS one. 

These formulae are useful because in designing an 
amplifier it is normally necessary to calculate both .4, and r and t he standar<I formulae for rf ; are simpler t han t hose 
for r;. The formulae apply to junction transistors and at 
least furmally to point -contact ones, and are exact, 
apart from the effects of any approximations made in 
calculating A. if an external impedance is connected in 
series with the base or emitter, the formulae still hold if 
re or re is increased by the value of the impedance, and 
if the additional impedance is taken into account in 
calculating A. Shea' gives, as an approximation, an 
expression similar to result (I) but with a instead of A 

3. Earthed -Base or Earthed -Emitter Amplifier Output 
Resistance 

An equivalent circuit is shown in Fig. 2, where R,, 
Re include any impedances, such as source impedances 
or bias or degenerative impedances connected between 
emitter or base and earth. 

Rb 
pa = - i` ' Rh -f I?, 

Hence 

ro=(/I,II Rb) -I-r 1 -« Rb 

where (R, II Rb) denotes the parallel combination of R, 
and R5. 

This form shows the output impedance as the com- 
bination of a passive part r, in series with the parallel 
combination of R, and Rb, and an active part. It also 
shows that the output impedance is dependent on the 
ratio of the emitter- and base -circuit impedances, and is 
essentially the same for earthed -base and earthed - 
emitter connections. 

\n alternative form is 
r 

ro = (I , II R1) t' 
b 

r= 111 b. 
I 111 

where b = a.((I - a). 

Fig. 2 
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Fig. 1 

4. Equivalent Circuit of Earthed -Collector . l urplifier 
("Emitter Follower") 

The standard equivalent circuit for a transistor 
connected as an earthed -collector amplifier working into 
a load r1 may be arranged as shown in Fig. 3(a). The 
portion to the right of the line N-N is equivalent, so far 
as its effect on the portion to the left of that line is 
concerned, to an impedance (re + ri)I(1 - a), or (b -} I) 
(e, -f r,). Thus the emitter resistance and the load 
impedance may be referred to the input side of the 
transistor by multiplying by (b + 1), giving the equiva- 
lent circuit shown in Fig. 3(b). The voltage across the 

X 
I 

)1e 
1 

to re 

(a,) 

INPUT 

(b+i )re 

(b+I )r1 

INPUT OUTPUT 

I 

X 

r 

ry rb 

b+i b+I re 

(b) (c) 
Fig. 3 

transformed load impedance in this circuit is equal to the 
voltage across the actual load impedance in the circuit 
of Fig. 3(a). Alternatively the generator, base and 
collector impedances may be referred to the output side 
of the amplifier by dividing by (b -I 1), giving the 
equivalent circuit of Fig. 3(c). These transformations 
are analogous to the factor (is + 1) which may he used 
to refer impedances from the cathode to the anode 
circuit of a thermionic valve. 

13. MILLAR 
Research Laboratory, 

Associated Electrical Industries I.td., 
Aldermaston, 

Berkshire. 
18th May 1955. 

'Shea," H. F. Principles of Transistor Circuits," Wiley, 1953. 

The Teaching of Electromagnetism 
SIR,-On reading the discussion in the issue of January 

1955 by Professor Cullwick and Professor Howe of the 
question whether the e.m.f. in a 'unipolar' induction 
experiment is induced in the moving magnet or the 
stationary external circuit, it seemed to us simpler to 
discuss pure translation. This often yields straight- 
forward useful results, as in the case treated by Professor 
Cullwick in his hook "The Fundamentals of Electro- 
magnetism" (Cambridge 1949) and taken further both by 
ourselves and by him to illustrate the secondary nature of 
the concept of the magnetic field. (Brit../. Appi. Physics, 
Vol. 2, p. 330, 1951.) 

Consider a long bar magnet which moves at right 
angles to its axis. To a stationary observer, it acquires a 
relativistic electric moment normal both to its axis and 

WIRELESS ENGINEER, JULY 1955 



its direction of motion. It should be possible, one would 
think, to produce from such an electric dipole a current 
in a stationary circuit by means of two sliding contacts. 
A current does indeed appear if the stationary circuit 
passes in front of a pole -face but is absent if the circuit is 
confined to a region remote from the pole -faces. Ex- 
positors of the 'bristle' theory and of induction in 
circuit elements naturally take this case to support their 
views. Equally, on the other hand, it can be stated that 
a stationary observer in front of the pole -face perceives 
an electric field but the stationary observer remote from 
the pole -face does not. 1 his shows that although the 
electric dipole is associated with the magnet the inter- 
pretation of the concept needs care. The advantage of 
the magnetic field concept, though secondary, is that it 
enables one to deal with a complete circuit in usually, 
but not always, a fairly simple way without studying 
what different observers may perceive and, thence, to 
deduce what electrons or other charged particles may 
experience in their vicinity. 

The rotating magnet introduces a more complicated 
kind of motion. Sometimes rotation can be studied by 
applying principles appertaining to translation, but not 
always. R. Oppenheimer has given an example (in- 
adequately* discussed - by Schiff, Prot. Nat. Acad. 
Washington, Vol. 25, p. 391, 1939) of two concentric 
hollow spheres with equal and opposite surface charges 
uniformly distributed and bound to the surfaces. If they 
rotate about a diameter, a stationary observer perceives 
a magnetic field outside the outer sphere. On the other 
hand if the spheres are at rest and the observer and his 
system rotate about a diameter of the spheres, he will 
perceive no electromagnetic field outside the spheres. 
The relative 'notion is here not interchangeable as it 
would have been for pure translation. 

Although probably most problems of engineering 
interest can be dealt with by principles appertaining to 
translatory motion, including the classical rotating disc 
and rotating magnet of Faraday, yet there is a danger. 
The difficult is that a book dealing rationagv with the 
elements of the relativistic principles of electromagnetism 
i n rotation has yet to be written. Naturally the equations 
of general relativity applied to electrodynamics com- 
prise all the basic theory. A curious result of these 
equations in a rotating system is an additional force on a 
moving charge, proportional and parallel to its velocity 
(rather analogous to a positive or negative resistance) 
which is usually extremely smallt. 

Indeed one is led rather to the view, which Professor 
Howe seems to share, that it would he extremely con- 
fusing to students, not specializing in relativity theory, 
to encourage them to learn and use anything beyond the 
one or two simple examples which clearly and easily 
illustrate the unification of electromagnetic concepts 
which relativity can provide. 

H. PI{L7.ttR 
S. \VttlrstEAu 

The Electrical Research Association, 
Greenford, 

\liildlesex. 
16th Vlav i955. 

Schiff obtains the obviously wrong result that the rotating observer 
(in the second case) would find the field to vanish at ally point. But 
obviously he must find n non -vanishing field in the space between the 
two sFheres. Schiff mentions but fails to use the mixed tensor mentioned 
in the next footnote and so artificially retains the form of Maxwell's 
equations, but in co-ordinates which do not exist. 

t This novel component is possible because in the equation. for 
electromagnetic force [e.g., Tolman, "Relativity Thermodynamics and 
Cosmology", p. 200, equ. (1113.1) or ltddimgton, "Mathematical Theory of 
Relativity" p. 190, equ. (50.1)] occurs the mixed tensor Ftt instead of 
the convari:uu tensor Fir or the contravariatit tensor Fes. 'l'he mixed 
tensor is no longer ant isymmetric rind the diagonal elements do not 
necessarily vanish in a rotating system, whence the force mentioned is 
not necessarily zero as is the case in classical electromagnetic theory or 
in the relativistic theory of translational systems. 
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NEW BOOKS 
Schaltungstheorie and Messtechnik des Dezimeter 
-und Zentimeterw'ellengebietes 

By Dr. ALBERT WEISSFLOCH. Pp. 308 tvitlt 288 
illustrations. Verlag Birlhi user, Basel, Switzerland. 
Price 33.50 Swiss francs. 

This is one of a series of textbooks and monographs 
on the exact sciences. Although the author is German 
by birth and education and has been with Siemens 
Schuckert and Telefunken, he has been in France since 
1947, and is technical director of a French company 
engaged in electronic research and applications. The 
book is divided into four chapters, of which the first of 
about 80 pages deals very fully with the theory of 
four -pole networks, based mainly on linear fractional 
functions and the geometry of the circle. The second 
chapter deals with the theory and measurement of 
uniform transmission lines of various types, with 
special reference to waveguides; here also geometrical 
methods are employed based on circular, elliptical, 
hyperbolic and parabolic sets of curves. The effects of 
various types of discontinuities clue to changes of cross- 
section, bends, insertion of conducting or dielectric 
elements, are fully discussed. 

The third chapter deals with the series connection of 
four -poles and discusses the transformation properties 
of the insertion of dielectric discs and metallic objects in 
waveguides. Six- and eight -pole networks are then 
discussed, the magic tee, Bethe hole coupler, the linking 
of circular and rectangular waveguides, hollow resonators, 
and high -frequency filters. The final chapter deals with 
matching and we must point out that near the beginning 
of the book on page 12 there is a printer's error; it says 
that for maximum output R,, = R1 where R,, is the 
impedance of the load at the generator terminals and 
R; is the internal impedance of the generator; this 
should be R,, = R; where R; is the conjugate of R,. 
After dealing with matching the author discusses the 
application of resonance to measurements, the self- 
excited oscillator and its frequency stability, and 
waveguide transforming and coupling with special 
reference to broad -band operation. 

An interesting detail is that I, and 1' always refer 
to the output and I2 and V2 to the input to the line; the 
author says that he adopts this order because the 
treatment of the problem nearly always begins at the 
output and works back to the input. 

A large number of references are given as footnotes 
throughout the hook. 

This is certainly a book that can be recommended to 
anyone with the necessary knowledge of German. 

G. \\ . O. H. 

Wireless and Electrical Trader Year Book 1955 
2ótit Edition. I'p. 3)14. Trader Publishing Co. Ltd., 

Dorset House, Stamford Street, London, S.E.I. Price 
Its. 611. 

Metal Industry Handbook and Directory 1955 
Pp. 472. Published for Metal Industry by the Louis 

Cassidr Co. Ltd., Dorset House, Stamford Street, 
London, S.E.I. Price I5s. 

National Bureau of Standards Biennial Report 
1953 and 1954 

Pp. 162. National Bureau of Standards Miscellaneous 
Publication 213. Superintendent of Documents, U.S. 
Government Printing Office, Washington 25, U.C., 
U.S.A. Price 60 cents. 
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BRITISH STANDARDS 
Electric Signs and High -Voltage Luminous Dis- 
charge -Tube Installations 

B.S. 559:1955. Price Ss. 

Electronic Valve Bases, Caps and Holders, Sections 
B3G and 4. 

B.S. 448:1955. Price Is. 

Glossary of Acoustical Terms 
B.S.661 : 1955. Price 6s. 

International Electrotechnical Vocabulary 
2nd Edition. No. 50(12) Transductors. Price 7s. 6d. 
Obtainable from British Standards Institution, 

2 Park Street, London, \V.1. 

"MATERIALS HANDLING NEWS" 
The first issue of a new quarterly journal Materials 

Handling News is published on 1st July by Mechanical 
Handling, Dorset House, Stamford Street, London, 
S.E.1. It has a newspaper format and the first issue deals 
with such matters as the reduction of handling costs, 
organizing the loading and unloading of lorries, and the 
gain of mechanization. 

BIRTHDAY HONOURS 
In the Birthday Honours List, a baronetcy is conferred 

upon Sir George Nelson (Head of the English Electric- 
\larconi group of companies). 

Harold Bishop (Director of the B.B.C. Technical 
Services) is appointed a Knight Bachelor. 

Hugh K. Grey (Head of the communications depart- 
ment, Foreign Office), F. N. Sutherland (General Manager, 
Marconi's Wireless Telegraph Company) and J. N. 
-Foothill (General Manager, Ferranti, Ltd.) are appointed 
Commanders of the British Empire. 

Philip H. Spagnoletti (Director and General Manager, 
Roister-Brandes) becomes an Officer of the Order of the 
British Empire. Harold W. Cox (E.M.I. Engineering 
Deve opment), Richard W. Lewis (Chief Chemist, 
Burndept) and Robert J. Parker (Senior telecommunica- 
tions superintendent, Cable and \Vireless (G.P.O.), 
Birmingham) become Members of the Order of the 
British Empire. 

APPOINTMENTS AND AWARDS 
Dr. A. L. Cullen has been appointed to the chair of 

electrical engineering in the University of Sheffield. 
Rudolph Kompfner has been awarded the Durldell 

Medal by the Physical Society in recognition of his work 
in this country on the travelling -wave valve. He first 
described this in 'Viceless World for November 1946 and, 
in more detail, in Wireless Engineer, September 1947. 

The Senate of the University of London has conferred 
the degree of D.Sc. (Engineering) on Dr. A. Rosen, 
Consultant Engineer (Telecommunications) British In- 
sulated Callender's Cables Ltd., for his work in the field 
of telecommunication cables. 

BACK TO NORMAL 
This copy of Wireless Engineer should appear in the 

normal way and at the normal time. Last month's 
issue may have reached some readers late because of 
distribution difficulties, for which it is hoped they will 
blame neither publisher nor newsagent. 
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INSTITUTE OF PHYSICS 
Sir John Cockcroft (Director of the Atonic Energy 

Research Establishment) has been re-elected President 
of the Institute of Physics for the second year in succes- 
sion. Dr. W. H. Taylor has been elected a vice -President; 
Dr. S. Whitehead -and Dr. B. P. Dudding have been 
re-elected Honorary Treasurer and Honorary Secretary 
respectively. 

INSTITUTION OF ELECTRONICS EXHIBITION 
The tenth annual Electronics Exhibition will be held 

at the College of Technology, Manchester, from 14th to 
20th July, except 17th July, from 10 a.m. to 10 p.m. on 
most days. On 16th July the exhibition will close at 
6 p.m. and on 14th July it will open at 2 p.m. 

There will be two sections to the exhibition -scientific 
and industrial research and manufacturers. Tickets are 
obtainable from W. Birtwistle, 78 Shaw Road, Thornham, 
Rochdale, Lancs. 

STANDARD -FREQUENCY TRANSMISSIONS 
(Communication from the National Physical Laboratory) 

Values for May 1955 

Date 
1955 
May 

Frequency deviation from 
nominal: parts in 108 

MSF 60 kc/s 
1429-1530 
G.M.T. 

Droitwich 
200 kc/s 

1030 G.M.T. 

Lead of MSF 
impulses on 
GBR 1000 

G.M.T. time 
signal in 

milliseconds 

I +0.1 +3 NM 
2 +0-1 +4 +25.8 
3 +0.1 +4 +26.4 
4 +0.1 +3 +27.9 
5 +0.1 +4 +281 
6 +0-1 +3 +28.2 
7 -I-0.1 +3 NM 
8 +0.1 +4 NM 
9 0-0 +4 +297 
0 0.0 +4 +29-3 
I 0-0 +4 +31.2 
2 +0.1 +4 +31.9 
3 +0.1 +5 +322 
4 NM +5 NM 
5 +0.1 +5 NM 
6 NM +5 NM 
7 NM +5 NM 
8 0.0 +5 +32.9 
9 0-0 +I +332 

20 0-0 + I +34-4 
21 0.0 +1 NM 
22 0.0 +1 NM 
23 00 + I +35.8 
24 0.0 0 +36.3 
25 +0.1 +1 +37-3 
26 +02 +1 +37.1 
27 NM +1 NM 
28 +0.2 +1 NM 
29 +0.2 +I NM 
30 +02 +1 NM 
31 +0.2 0 +409 

The values are based on astronomical data available on 1st June 1955. 

NM=Not Measured. 
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