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Radio-Astronomy

S a direct outcome of the spectacular ad-
vances made in radio technique during the
1939-45 war, there has been created and

developed in the past decade a new science which
has now received the well-established name of
radio-astronomy. In this science, radio-frequency
reception technique is used to explore radiation
emanating from various sources in the universe.
While it was regarded initially, perhaps, as a
supplementary aid to astronomy hy normal optical
means, the advances and discoveries which have
already been made are so spectacular as to leave
no doubt of the fact that radio astronomy is now
firmly established as a science in its own right.
It has long been an accepted fact that the
electromagnetic radiation from a so-called ‘black’
body would extend over a very wide range of
frequencies or wavelengths, the amount and
distribution of radiation depending upon the
temperature of the source and the absorbing
characteristics of the medium through which it
travels towards the receiver. More than fifty
vears ago, Professor S. P. Langley measured the
energy of the sun’s radiation through the visible
spectrum and to a considerable distance on either
side. After various unsuccessful attempts to ex-
tend this measurement into the radio-frequency
spectrum, the reception of ‘cosmic noise’ on a
wavelength of 187 em (frequency 160 Mc,s) was
reported by G. Reber in 1940, and later established
as emanating from the sun; while some nine vears
earlier K. G. Jansky had discovered radiation
coming from the direction of the Miiky Way on
frequencies in the range 10-20 Mc/s.  Also
British radio amateurs, notably D. W. Heightman,
had noticed the existence of a curious hiss in
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their receivers on  wavelengths of about 10
metres; they found this to occur in the daytime
only and to be associated with periods of solar
activity. In 1945, G. C. Southworth described
the measurement of radiation from the sun on
wavelengths between 1 and 10 ¢m (frequencies
between 3 and 30 Ge/s*); and he showed that
the power flux received, which was of the order
of 1072 watts per square metre per cycle per
second, was consistent with the Rayleigh-Jeans
relationship for the distribution of radiation
from a sun at a temperature of about 20,000° K,
or about three times the optically-observed
temperature.

During the war years, radiation from the sun
was observed as a source of interference in the
operation of British Army radar sets on wave-
lengths between 4 and 6 metres; and Sir Edward
Appleton and J. S. Hey des(nl)cd lll 1946, the
considerable increase in solar ‘moise’ on these
wavelengths which accompanied the passage of
sunspots over the sun’s visible hemisphere. At
about the same time, similar observations on the
sun were being made by J. L. Pawsey and his
colleagues at Svdney, Australia, using a wave-
length of 1-35 metres (200 Mc/s).

IFrom this starting point centres of research in
radio-astronomy have been cstablished at Cam-
bridge and Manchester Universities in this country,
in Australia, and in the United States of America,
Canada, France and Belgium. The results of the
work already achieved have not only added
considerably to our knowledge of the universe
and the various sources of radiation in it, but
thcy are also of considerable pnutual 11]][)()I‘tdl]LC

T 1 Gels - 1 Gigacyele por sccond = | KMefs — 1000 Mc/s.
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in many instances. The radio astronomer has,
for example, provided a mecans of exploring the
characteristics of the ionosphere by nsing
radiation coming to us from outside the earth’s
atmosphere, in contrast with the usnal method
of sounding the ijonosphere by emitting and
receiving pulses of radio waves at the carth’s
surface. A tremendous advance has also been
made in the study of meteors which can now be
detected by day or night under all weather
conditions, and on a scale which could never be
approached in optical observations. Such dis-
coveries, together with the advances in apparatus
technique, which have made them possible, are
of considerable importance in the future of
radio communications.

The Radio Telescope

The first major advance made in this new
science was the development of the ‘radio tele-
scope’ as an instrument which could be used
to determine the direction of arrival of these
radio waves which originate outside the ter-
restrial atmosphere.  The simplest type of
telescope consists of a concave mirror with a
receiving aerial at its focus; but bearing in mind
that the wavelength of light is of the order of
5 x 103 em, it will be appreciated that to have
the same directional resolving power as an astro-
nomical telescope, the corresponding radio instru-
ment would need to be a million times the
diameter, for a wavelength of 50 cm. In spite of
this limitation, a great deal of useful work has
been done already in various countries with the
steerable paraboloid type of aerial with diameters
up to 75 ft. The greatest advance in this direction
has been achieved at the Jodrell Bank Experi-
mental Station of the University of Manchester,
by a team of scientists under the leadership of
Professor A. C. B. Lovell. After gaining experi-
ence with a semi-fixed telescope of 220-ft aperture,
which is normally directed vertically upwards, but
can be displaced 414° from the central position,
a completely steerable radio telescope, with a
paraboloidal reflector 250 ft in diameter, is now
in an advanced stage of construction.

An alternative technique has been adopted,
notably at Cambridge in this country and at
Sydney in Australia, in which an array of aerials
with appropriate reflectors is installed along a
fixed base-line forming a linear type of inter-
ferometer with a narrow scanning beam in cither
vertical or horizontal direction as may be required.
The rotation of the earth is used to sweep this
beam across the skv while the radiation from
active sources is received and recorded. Such
interferometers have been constructed and used
by M. Ryle at Cambridge for certain frequencies
in the range 80 to 200 Mc/s, while W. N.
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Christiansen in Anstralia has developed and con-
structed an array of 32 parabolic reflectors along
a base-line of nearly 720 feet, to provide a resolu-
tion of about one minute of arc on a wavelength
of 21 centimetres (1,420 Mc/s). More recently,
B. Y. Mills and his associates have constructed a
combination of two arrays, of an overall length of
1,500 ft and which cross at right angles, giving a
cone of reception of about 45 minutes of arc at a
wavelength of 3-5m (86 Mc's).

Concurrently with this devclopment of aerial
systems, various novel receiving devices have been
produced which enable the wanted radiation to be
detected and recorded in the presence of a general
background of noise radiation from extra-terres-
trial sources. It has so far usually been possible
by a judicious choice of frequencies and direction
of observation to avoid serious interference from
man-made radio sources, including those used for
communication and navigation purposes: but a
constant watch is necessary in order to secure the
preservation of suitable spaces in the radio-
frequency spectrum, for the radio astronomer to
continue the good work that he has already
accomplished.

Radio Observations on the Sun

The amount of radiation received from the sun
at radio frequencies has already been found to
vary markedly with the actual frequency or wave-
length used and also with the state of quietness or
disturbed conditions on the sun itself. At centi-
metre wavelengths, the radio energy received from
the sun in a quiet condition is found to correspond
to an apparent temperature of two or three times
that corresponding to the value for optical
measurements. As the wavelength is increased,
however, the radiation corresponds to a rapidly
increasing apparent temperature of the sun’s disk.
For example, at wavelengths of one metre or
above (300 M¢ss or below) the flux of cnergy
received corresponds to an apparent solar tem-
peraturc of ahout one million degrees absolute;
furthermore, it is found that the ‘radio’ sun is
somewhat larger than the ‘optical’ sun and that,
unlike the optical radiation, the emission at radio
frequencies falls off gradually near the edge.
These observations are consistent with the assump-
tion that the main source of radiation at the lower
radio frequencies is the solar corona which, from
other reasoning, is snpposed to have a temperature
of the order of one million degrees and to be
completely ionized. Radio-astronomy has thus
provided us with a new and powerful tool for
studying solar corona; and it has already demon-
strated that even under undisturbed conditions
the temperature over the area of the sun’s disk
is by no means uniform.

While we thus have a reasonably good theory
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for the emission of radio waves from the quiet
sun, it is to be noted that there is no correspond-
ingly simple explanation of the greatly enhanced
radiation that accompanies the presence of sun-
spots travelling across the sun’s disk. Increases
in the ‘noise’ level of the sun’s radiation by a
factor of one thousard over that of the quiet sun
have already been observed. More than one type
of such increase in radiation has been recognized,
and while these outbursts are generally associated
with visible sunspots, the presence of the latter
is not always accompanied by solar noise storms.

This phase of radio-astronomy is of great im-
portance to the radio scientist and engineer, in
view of the established close connection between
sunspots and the ionospheric conditions which
determine the efficiency of radio communication
over great distances. It is possible that future
research may establish a radio-noise index of solar
activity, which will be found more useful and
reliable in the long-term forecasting of high-
frequency radio transmission conditions involving
the ionosphere.

Radio Stars

In a different application, the development of
radio-astronomy has already indicated the exis-
tence of a large number of discrete sources of
radiation distributed throughout the sky, and the
emission of which is superimposed on a relatively
continuous background radiation. The distribu-
tion of intensity in this background follows closely
the contours of the galaxy or Milky Way. In this
field, the interferometer has proved invaluable in
locating the discrete sources or radio stars as they
are termed; and the most striking fact discovered
so far is that very few of the conspicuous stars
and nebulae of our Milky Way system are among
the recognized objects in the radio sky. Con-
versely many of the radio stars, of which nearly
2,000 have now been identified and catalogued,
have no obvious and easily-recognized counterpart
in the optical astronomers’ observations. The
strongest observed radio star, in the constellation
of Cassiopeia, has a position in the sky which is
far from conspicuous on the best optical astro-
nomical phofographs; although the intensity at
metre wavelengths corresponds to a flux of about
1022 watts/m?2 per cycle per second, or about one
per cent of that received from the quiet sun at
centimetre wavelengths.

This example serves to illustrate the difficulty
in accounting for the existence and nature of these
radio stars. It has been estimated, for example,
that if all the visible stars emitted radio waves
like the quiet sun, the total radiation would only

be about 10-8 of that observed from the galaxy.
If they all emitted like the sun when it is most
disturbed, the total radiation would still be less
than one per cent of that recorded by the radio
astronomer. This experience of the intense
emission received from the radio stars forms a
surprising inversion of the familiar ratio of
sunlight to starlight, and emphasizes our lack of
understanding of the fundamental mechanism
of the emission of radiation from the galaxy itself.
While no firm theory has yet been advanced
to explain the observations, this work is of direct
practical application to ratdio communication. For
example, the second most intense source in the
sky is the radio star in Cygnus, which at times
gives a very steady radiation and at other times
displays fluctuations of intensity or ‘twinkling’.
This twinkling is due to irregular diffraction of
the incoming radiation in passing through the
upper regions of the ionosphere. By the simul-
taneous observation of these irregularities at
three receivers, the direction and speed of move-
ments or ‘winds’ in the F region of the ionosphere
have been determined.

The 21-cm Line of Neutral Hydrogen

This review may be concluded by a brief account
of what is probably the most spectacular achieve-
ment of radio-astronomy—the discovery in the
radio spectrum of the neutral hydrogen line at a
wavelength of 21 cm (about 1,420 Mc/s). At a
wartime astronomical colloquium held in Holland
in 1944, H. C. van der Hulst predicted that it
might be possible to detect the 21-cm radiation
originating in the clouds of neutral hydrogen in
our galaxy. Seven years later—in March 1951—
H. E. Ewen and E. M. Purcell of Harvard Uni-
versity announced their discovery of thisradiation,
and this was quickly confirmed by radio groups
in Holland and Australia. The radiation results
from the transition of the neutral hydrogen atom
between two energy levels and provides an entirely
new means of research on the nature and structure
of the Milky Way and of other galaxies outside
our own. One great and fortunate circumstance
is that the dense interstellar dust clouds in our
own galaxy which obscure our optical view of the
more distant elements of its spiral structure,
transmit unabsorbed the 21-cm radiation reaching
us from great distances. This is one example of
the manner in which radio-astronomy has provided
a means of observing farther into the universe
than has hitherto been possible by the largest and
most expensive of optical telescopes. The outlook
for the future is vast indeed.

R.L.S-R.
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MEASUREMENTS IN
TRAVELLING-WAVE STRUCTURES

Use of Resonant-Cavity and Perturbation Methods

By A. W. Aikin, M.A. PhD. AM.LEE.

(Research Department, Motropolitun-1ickers Electrical Co. Lid.)

SUMMARY.—The measurements of resonant frequency and  of a resonant cavity are well-tried
methods needing little introduction.  Less well known, but extremely useful, is the method of measuring
the field distribution within a resonant cavity by introducing a small perturbing object. .\ combination
of these methods is of great value in determining the characteristics of a travelling-wave structure,
and in particular has been used to obtain information and design data on the corrugated waveguide

structures used in lincar clectron accelerators.

1. Perturbation Methods

HE principle of perturbation methods

I depends upon the fact that if a small

perturbing object, c.g., a small metallic
sphere, is introduced into a resonant cavity, a
change in resonant frequency takes place which
may be used to cevaluate the field strength at the
point of perturbation. Slater! has given a general
theorem which states that if the walls of a cavity
are pushed in at a point of high magnetic field,
the resonant frequency is increased, while if
pushed in at a point of high electric field the
resonant frequency is decreased. He also derives
the quantitative relationship given below. A
rigorous proof of the general perturbation theory
is both lengthy and tedious and has been attempted
by several authors?*.  The most satisfactory
proof known to the author is that of Casimir2.
No attempt will be made to reproduce such a
proof here but the following derivation due to
J. Brown (unpublished) and based upon lumped
circuit concepts is a novel and instructive
llustration of the concepts involved.

We can consider our cavity in terms of a
series-tuned circuit with elements L, C such
that 1/1.C = w,?, where wq is the angular resonant
frequency of the cavity. One other condition
must be satisfied, namely, that the average
stored magnetic and electric energies in the
inductance L and capacitance C shall be the same
as the corresponding magnetic and electric
energies in the cavity. This condition is

1, ., 1 ) .

21‘]‘ = zfvyflztl'r=l"\1 .. .. (N
and _

VoQr V0 g e ‘

Z.C—ZJVEL dr=1p .. .. (2)

where /, ¢ are the r.ms. current and charge in
the tuned circuit, £, H the r.m.s. electric and
magnetic field strengths in the cavity, e, p the
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dielectric constant and magnetic permeability,
and I, 'y the average stored electric and
magnetic energies, the integrals being evaluated
over clements dr of the volume V' of the cavity.
Also @ = Ijwy and Iy = I3y = I at resonance.

If the cavity is assumed to be divided into two
regions V', 1", where the region V' is very much
smaller than 17", containing stored cnergies
81y, 81y, then we can define an inductance L’
and capacitance C’ such that

| . .
E L'I? = 8§y .. .. .. (3)
and
1 2 i
) o=k 4)

The amended circuit may be drawn as in Fig. 1,
where the clements L', C’ correspond to the
volume I of the cavity, and L”, C” correspond

ru

to the volume 17",

1‘} l// V”

Fig. 1. lquivalent civcuit of resonator.

This circuit must be the same as the simple
tuned circuit with L, € and hence

L'+L"=L .. .. .. @3
1 1 1 .

I now a perturbation is introduced into the
cavity which removes the small volume 7, then
L’, C' are small, and the fields in V' remain
substantially unchanged. The perturbed cavity
resonates at a frequency w given by w? = 1/L"C”",
which, from equations (1) to (6) gives

w* LC 1 —=C/C" 1 =3l

wy? —LC" T 1 — L'jL 1= S ar]l ar
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Since 8/, 817y, and dw = w — w, are all
small, and since I = I'g; = I3y we mayv write
this as

28w S8l7p — Bk
= 2 (7)
Wy
This is the form of the general perturbation
formula which is usually written as

Sw | 5‘{[7 (nH? — eF?) dr .
w, 2 ‘ wH? dr )
J

The significance of this formula may be seen as
follows:

When a perturbation is introduced into a
cavity, changes occur in the current and charge
distributions in the walls, and currents and
charges are also induced in the perturbing object.
Changes thus occur in the stored magnetic and
electric energies associated with these currents
and charges, and it is these energy changes,
expressed interms of the changes in field distri-
bution, which are represented by the quantities
,1)5 “,U.H2d'r and ; 5f ekE%dr.
4 Jr i
between these (uantitics represents an un-
balance of the average stored magnetic and
electric energies, and since at resonance these
must be equal, a change of resonant frequency
occurs which restores the equality, the amount
of the change 8w being related to the energy
unbalance introduced by the perturbation by
formula (8).

The difierence

2. Types of Perturbation

If the perturbing element takes the form of a
small metallic sphere, introduced in a region of
dielectric constant e, the boundary conditions
for the electric field in the clectromagnetic case
are the same as those in the electrostatic case
provided the sphere is sufficiently small, and we
may use the well-known solution® of the problem
of a perfectly conducting sphere of radius ry in a
uniform field £, The charges induced on the
sphere produce outside it an additional field
which is the same as that of a dipole of moment
Amel g, at the centre of the sphere. The energy
involved in separating these induced charges is
loosely known as the “energy of the sphere’ in the
field. Using the formula® for the energy of a dipole
in a uniform field this energy is 4mef 2ry?
= 3¢l ,2V, where 17 is the volume of the sphere.

This is identified as the quantity & l,slf2 dr of

formula (8), where /¢ now represents the peak
and not the r.m.s. value of field strength at
the point where the sphere is introduced.

A similar approach may be used to obtain the
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magnetic energy, but in this case it is necessary
to substitute the boundary conditions for the
electromagnetic case since these differ from those
in the magnetostatic case because of induced
currents. Consider a potential

< -'1 ml)m(ﬁ)
b=- Hyrcos @ +
0 2

pin+l

where 17, is the Legendre Polynomial of order m.
Then

o A 244, cos 8
H'=_2r=H°C050_ r20_ lr3 +
_ Aml208) . (1 + 1)
- Cpmr2
_ (oY _ Ry
Hy = r(br = — Hysin 8 + B sin @ 4- . ..

The boundary equations in this case are obtained
from Maxwell’s equations, viz:

r =0 when r=r, whence
Horg¥2, 4, = 0 (m # 1).

The form of the induced potential in this case
is the same as that of a dipole of moment 4mu
H yro*/2 at the centre of the spherc.

Thus the currents induced in the sphere by the
electromagnetic field have associated with them
a stored energy 3/2 uH %l

Substituting [l_ pH? dr = 3;2 pH2l" and

d,=0, 4,=

8 ‘V el dr = 3ek 1, equation (8) becomes
dw _ 3V (S pH? — eky?)

= - )
| . nH2dr

—wo 2

where H,, E, are the unperturbed peak fields at
the point where the sphere was introduced.

In the case of a dielectric sphere of dielectric
constant ¢,, inserted in a region of dielectric
constant e,, the electrostatic solution gives the

3({1 — &)
€+ 2¢,

E,217 while in this case the magnetic field is

energy in a uniform field /£ to be

-continuous across the boundary and so there is no

first-order contribution to the magnetic energy.
The perturbation formula in this case becomes

€ — €3

78(.0 . 3" . 517+ 253 1’40“ (l())
“o 2 ‘[, pH2dr

Other types of perturbation have also been
used, ec.g., ncedle-shaped objects which are
sensitive largely to that component of electric
field which is oriented in the direction of the
needles, and button type perturbations’ which
are particularly suited to measurements at the
walls on an axis of symmetry of the cavity.
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3. Travelling-Wave Problem

The above formulac relate the perturbation of
the resonant frequency of the cavity to the peak
field strengths at the point of perturbation and
the total stored energy in the cavity. In a
travelling-wave structure we wish to relate the
peak field strength to the power flow down the
structure. To do this we first take a section of
the structure and convert it into a resonant cavity
by the introduction of suitable reflecting termina-
tions. We may thus consider the oscillations in
this cavity as composed of two waves, each of
amplitude E, travelling in opposite directions.

Let S be the cnergy stored per unit length for
each of the two waves and W the associated
power flow. The cavity will have a length
nAg/2 at the resonant frequency, where Ag is the
guide wavelength in the structure at that
frequency and #» is an integer. The total stored
energy will then be 25 . #nAg/2 = Snl,.

Now suppose that a small perturbing object,
e.g., a small dielectric sphere, has been intro-
duced at a point of maximum E field in the cavity
and the change in resonance frequency measured.
Then, using formula (10) a quantity can be
calculated which we shall term « and which is
defined by the equation

(11)

Then Ey = 2E and since

the stored energy in the cavity = 25#A; we have
Snd; = 22k (12)
Now by definition, the energy velocity v, in a
structure is given by v, = W/S and it can be
shown®® that the energy velocity and group
velocity v are equal for a lossless structure.

V‘LLHz dr = twice

w 2¢E?
So—=8=
vg KHAg
whence
E?  «knig
W= 2€—vg (13)

Thus, provided the group velocity wg can be
measured, the field strength E in the travelling-
wave structure may be evaluated in terms of
the power flow W by a perturbation method.
The fields in the other parts of the structure may
be evaluated by comparison methods; eg., by a
plot of variation of resonant frequency with
position of the perturbing object.

4. Measurement of Group Velocity

The length of the resonant cavity is always
some integral multiple # of half the guide
wavelength A;. There will be a number of different
resonant frequencies corresponding to different
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values of # and Ag for any given length of cavity.
By measuring a number of such resonances a plot
of several points on the curve of Ag against A,
(the free-space wavelength) can be made. Also
by choosing several different cavity lengths the
number of points on this curve may be increased
so as to enable a complete dispersion curve to be
plotted.

The group velocity at any point may then be
evaluated from the formula!®

1’_8_<'k *dh,
¢ \Ag

dAg
where dAy/dAg is derived from the slope of the
dispersion curve, and ¢ is the velocity of light.
The phase velocity » of the wave at any point
is of course given by vjc = Ag[A,.

(14)

5. Measurement of Attenuation

It is also possible to obtain the attenuation
constant « of the travelling-wave structure, by
measuring the Q of such a cavity. The derivation
only applies when the attenuation is sufficiently
small that the group and energy velocities may
be regarded as equal, but this is substantially
true in most practical cases.

Neglecting for the moment any loss in the
reflecting planes inserted to form the cavity, the
loss in the structure per unit length for a power
flow W is 2«W per unit time, and so for two equal
and opposite travelling-waves the total loss will
be 4o per unit time.

2n X energy stored in the cavity
energy dissipated in thewallsinonecycle

27r.2SL___ f sinc VK—'U
TL AWl w05 T e
where fis the resonant frequency and L the length
of the cavity. Hence

_ 7Tf _ w
T Qug 20vg
gives the attenuation constant in terms of
quantities which can be obtained by cavity
measurements.

This formula only applies when the loss in the
reflecting planes may be neglected and this is
not always the case. If the loss is reasonably
small, however, we can make two cavities of
lengths L and 2L using the same shorting planes.
If T is the loss in the reflecting planes in one
cycle for a stored energy S per unit length and R
the loss per unit length in the walls in one cycle,
and if the cavity of length L has a Q-value Q,
and that of length 2L a value Q,, then

_ 2+ SL __27r5_<1_T>
Q“RL+T‘7{ RL

WIRELESS ENGINEER, SEPTEMBER 1955

Now Q =

o (135)
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if T is small compared with RL.

Similarly
27S
O =—5 < 2RL>
2
and Q = —”5 = 20,- 0, (16)

is the value wlnch would have been measured had
the reflecting planes been entirely lossless.

6. Application to Linear Accelerator
Structures

The corrugated waveguide structures used in
linear accelerators have been described by several
authorst!-13. The type of most interest is that in
which a circular waveguide is loaded by equally
spaced discs having a central hole. With such a
waveguide it is possible to propagate a wave which
is axially symmetrical and has a strong axial
component of electric field, and which has a phase
velocity lower than the velocity of light. Such
a wave may be used for accelerating electrons by
a technique somewhat analogous to ‘suri-riding’.

Fig. 2 shows the way in which a section of such
corrugated waveguide may be turned into a
resonant cavity. In such a cavity the axial
component of electric field is a maximum at the
ends of the cavity and has # nodes, where
nAg/2 is the length of the cavity, and to a first
approximation, the field may be considered to
vary sinusoidally along the length of the cavity.
In order that the reflecting end planes shall not
disturb the field configuration in the cavity, they
must be placed at a plane about which the wave-
guide would be symmetrical. This means that
we must place conducting planes either in the
centre of an iris, or in the middle of a corrugation.
The cavity length must therefo1e be chosen asan
integral multiple of half the corrugation pitch D.

7. Cavity Construction

The cavities were formed from a number of
interlocking sections each corresponding to one
corrugation together with an adjacent iris.
Several different types of end sections were
constructed so as to terminate the cavity either
in the middle of a corrugation, or in the middle of
an iris. Fig. 2 shows a typical cavity with a
termination of each type at the ends. Any
cavity whose length was an integral multiple of
half the corrugation pitch could be constructed by
clamping together an appropriate number of
sections.

8. Measurements

A feed-through miethod of measuring cavity
response was used. The cavity was fed by means
of a small loop from a low-power oscillator and
the response measured by a second loop and

WIRELESS ENGINEER, SEPTEMBER 1955

crystal detector. The coupling of the loops was
so small as not to perturb the cavity frequency
nor appreciably affect the cavity Q. Dispersion
measurements were made on a guide of 2-cm
pitch using a series of cavities varying in length
from 5cm to 13 cm in steps of 1 cm. Taking
several values of the mode number »n for each
cavity a dispersion curve could be drawn. Fig. 3
shows a typical curve and the group-velocity
curve deduced from it. The results of these
measurements agree with those made by standing-
wave methods!! on long sections of guide, to
better than 1 part in 2,000 in the worst case
comparcd.

TERMINATION IN
MIDDLE OF CORRUGATION

INPUT
COUPLING
LooP

OQUTPUT LOOP
& CRYSTAL
DETECTOR

TERMINATION IN
MIDDLE OF AN IRIS

Vig. 2. Typical cavity showing: Two different types
of end-plate terminations; 2 Method of suspension of
perturbing bead; and 3. Methods of coupling and detection.

PERTURBING BEAD
& SUSPERSION

For the perturbation measurements of field
strength a small metallic sphere was used. This
consisted of a small phosphor-bronze ball bearing,
drilled and threaded on to a fine strand of silk
which passed through small holes in the reflecting
end planes (see Fig. 2). The bead could be
adjusted externally to any position on the axis
of the cavity. Here the magnetic field component
is zero and so for a sufficiently small bead the
term juH? of formula (9) is negligible. By
comparing the results obtained using both }-in.
diameter and §-in. diameter spheres, it was shown
that this term could in fact be neglected. The
field strength was only evaluated at its maximum
(or maxima) in the cavity so as to obtain the
maximum E-field in the travelling-wave case.
Elsewhere the field has approximately a sinusoidal
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variation which would complicate the measure-
ment. Using a sphere, no measurements can be
made near the reflecting walls since the energy
of the sphere in the field is modified by its
reflection in these walls, and the perturbation
effect is approximately doubled. At these walls,
however, a button-type piston method” was used
which has not this defect, and the results obtained
agreed to within 2%, with those obtained by the
bead method. '
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Yig. 3. Twpical dispersion and group-velocity curves.

One complication which arises in these measure-
ments is that where the structure is periodic
rather than uniform the axial field distribution
is also non-uniform and varies across a corrugation.
As a result, the field measured in a cavity in
which the maximum occurs in the plane of an iris
gives a value slightly different from that measured
m a cavity in which the maximum occurs in the
middle of a corrugation. This discrepancy
becomes more marked as the hole diameter in
the iris is decreased. By using both sorts of
cavity and taking a mean value, however, the
mean axial field in the travelling-wave case could
be found, and it is this value which is of interest
for the design of linear accelerators. In all, it is
estimated that an error not exceeding 3%, is

obtained in most cases, rising possibly to 3%, in
the casc of small hole diameters.

As aresult of these measurements it was shown
experimentally that the formula® £ = Afna®
v (480W) for the axial field strength in a guide
of iris radius a with a power flow W is not
sufficiently accurate for most purposes. The
error involved may Dbe as high as 30Y%, and for
accurate calculation the more detailed theory!
must be used, taking into account the power
flow associated with the higher-order space
harmonics.

Measurements of attenuation have also been
made by the ¢-method described and the results
obtained agree quite well with measurements
made on long sections of guide. The measured
values of Q also agreed with theoretical values,
provided that account was taken of the increase
in surface resistivity due to surface finish.

9. Conclusion

Cavity methods have been used extensively to
obtain design data on a wide range of corrugated
waveguides for use in linear accelerators and, in
particular, perturbation methods have been used
to measure field strengths. The detailed results
of these measurements are to be published
separately.
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LOSS AND PHASE OF SIMPLE
EQUALIZERS

By H. J. Orchard, m.sec., AM.LE.E.

SUMMARY.—An approximate method of computing the loss and phase of certain simple
cqualizers is obtained by using the first one or two terms of a rapidly-convergent pawer-series expansion.
The saving in computation which is achieved is greatest when the amount of equalization is small and
when many points on the characteristic are required.

1. Introduction

HIS paper is concerned with the loss

and phase characteristics which ean be

obtained from the constant-impedance
networks shown in Fig. 1. The principal use of
these networks is in simulating or equalizing
smoothly-varying loss characteristics such as
are given, for example, by unloaded cables. In
simple cases one network alone may suffice, but
where a more precise match is needed over a
frequency band many octaves wide, it is usually
necessary to employ a tandem connection of
several networks, each with different charac-
teristics.

Although the constant-impedance form is most
convenient when several networks have to be
connected in tandem, the characteristics of a
single network can he obtained from one or other
of the circuits shown in Figs. 2 and 3, and when

frequency at which the network loss is equal to 8
nepers; 1.e., one half the limiting value. Plotted
on a logarithmic scale of frequency the loss and
phase have the general form shown in Fig. 4;
around f = f, the loss is an odd function and the
phase an even function.

The network of Fig. 1(b) has a loss and phase
given by

+ wy?! .
£+ ::,(;" )

with w, and 8 having the same significance as
before except that 26 is now the limiting value of
the loss as w tends to zero. A tandem connection
of this network and one of the previous type, both
having the same values for f,, 8 and R, would give
a constant loss of 28 nepers and no phase shift.
This can be seen by adding equations (2) and (3)
and cancelling identical factors.

« -+ JB = log.

operation between valve @
stages is called for it is 2L, sinn @ ol
often possible to use these
circuits by combining Ry sinh 20
them with the coupling = i o
components. s k
Ry o /?ocmhe

Fig. 1.  Constant-impedance < T |/|1
networks with image imped- L :l A
ance R, and In which \:?‘,’ 2C,sinh @ ' o)

wol.y == Ry = (wyCo)" | I T o I.._.c

(2) (b)

Taking the loss o, in nepers, and the phase 8,
in radians, as given by

« + 78 = loge(}V74/Vs) .. .. .. (1)
with V', and 17, defined as in the figures, then,
for the network of IFig. 1(a), we have

. wgy + pef

% - =log. ° .. .. 2

z -+ jB = log wq 4 pe b (2)
where p = jw = j2af.
26 is the image attenuation, in nepers, oi the pad
formed by the three resistances and is the

limiting value of the loss of the network as w
tends to infinity, while wy (= 2n7fy) is the angular

MS accepted by the Editor, November 1954

WIRELESS KNGINEER, SEPTEMBER 1955

Hence, if we calculate the loss and phase for
a network of Fig. 1(a) having specific values of f
and 6, then we can obtain the loss and phase for
the corresponding network of Fig. 1(b) simply by
subtracting the loss from 28 and by reversing the
sign of the phase.

In the practical design of equalizers of this
kind it is customary! to prepare curves of the
loss for a variety of values of § and then, by
curve-matching techniques, to determine approxi-
mately the correct values of f;, and 6 to use.
Following this the loss of the chosen equalizer is
computed accurately and from a study of the
residual error in the equalization (or simulation
as the case may be) a decision is made as to
whether or not a small change in the parameters
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will improve the situation. Then follows a certain
amount of ‘cut and try’ to make the equalizing
as precise as possible. Finally, when the loss is
correctly adjusted, the associated phase charac-
teristic may be required.

All this involves a fair quantity of computing,
particularly if the complete equalizer comprises
many sections. It is the purpose of the paper to
show how this computing may sometimes be
simplified and speeded up. The simplification is
achieved by expanding the loss and phase into a
rapidly-convergent power series of which the first
one or two terms provide an adequate approxima-
tion to the sum when the pad loss is not too large.

2Lgsinh U

ATt

2sinh 0

()

Fig. 2. Networks having the same loss and phase charac-
tevistics as those of Fig. 1.

2. Power Series Expansion

Consider first the right-hand-side of cquation
(2). It is an odd function of @ which, for real
values of w, is analytic in the complex 6-plane
inside a circle round the origin whose radius is at
least 7. Thus we may cxpand it into a power
series as follows

wy + pef
e"-’o T pev

05
5!

log

+ ...
. _ .. a0 (Y]
which will converge for | 8| < }= nepers (i.e.,
13-6 dB). To find the ¢, as functions of p and w,
we differentiate equation (4) with respect to 6;
a little rearrangement then gives

2p% 4 2wop cosh 6 =

2
{(wo® 4 P2+ 2wgp cosh 8) (c, + ¢, % + ¢

g3
=c,0+c3§! + ¢

g4
ot J)
_ . . )
By equating the coefficients of corresponding
powers of & we derive the recurrence relation

gy = 200D I;“’Q:Jb_ 211>c _<2n>c .
T P2 lwe+p N2/ )T

together with the value of c,.

Explicitly, the
first three terms are

_ %

Cl—(w0+ ) 5 o .o (7
_ wop ("-’oAf f’) p

"= (wp + 2 7.2
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o = g‘f’o.t_’ (wp — P) (wy? - 10 wop +_Pi)
’ (wo + £)°

The importance of this power-series expansion
lies in the rapidity with which it converges.
For values of 6 less than about 0-5 neper (i.e.,
4-3 dB) the contributions from the terms in the
serics die away so quickly that the crror due to
truncating the series is given fairly accurately by
the value of the first term which is neglected.

When this condition holds, the first term of the
series by itself provides quite a useful approxima-
tion to the loss and phase. The maximum value
of | ¢3| is unity so that the maximum error due
to using only the first term will be of the order of
63/3! nepers or radians; at most frequencies it
will be considerably less than this. If greater
accuracy is required then the first two terms can
be used. As |[¢;| <5 the error will then not
exceed 56%/5! = 65/4! nepers or radians.

Slightly better estimates of the errors involved
are given by using the maximum moduli of
the real and imaginary parts of ¢, and ¢;: the
derivation is straightforward although laborious.
The results have been summarized for refer-
encc in the curves of Fig. 5 which show the
maximum contributions made to the loss and
phase by the second and third terms, expressed as
a function of the pad loss 26.

(7.3)

G

2sinh 0

(a3

(b)

Alternative networks having the same loss and
phase characteristics as those of Fig. 1.

Fig. 3.

3. Computation

Explicit formulae suitable for computing are
found by splitting equations (7.1) and (7.2) into
their real and imaginary parts and substituting
into equation (4)

o =a,20 + a, ;g'- + ... nepers (8.1)
6 .
B=10,20+ b, 37 + ... radians (8.2)
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where
_oxt ho— X
T e 155 e
8x% (1 — x?) 2x (1 — 622 4 x%)
A L N R
_/
T

Plotted on a logarithmic scale of x the co-
efficients in (8.1) and (8.2) are odd and even
functions respectively about the point x = 1.

Practical computation could conveniently
proceed as follows. One will be given 8, f, and a
series of values of f at which the loss and phase
are required. The first step is to find the values
of x = f|fy corresponding to the prescribed
frequencies; these can be read from a slide rule.
Next, one must decide whether one or two terms
in the series are to be used, basing the decision
upon estimates, found from Fig. 5 (a) and (b), for
the maximum error committed in each case.
If one term is adequate then it may be sufficient
to read off the values of a, and 6, from accurately
drawn curves and to multiply them on a slide
rule by 26. Alternatively, if greater precision is
required, a slide rule or desk calculating machine
can be used to find the entire term. When two
terms are to be used, the first term cannot be

the use of slide rule or calculating machine is
essential. The contribution of the second term,
however, is so small in comparison that it need
not be known to the same percentage accuracy and
can be found quite easily via a curve of a; or b;.

Table 1 gives the values to four decimal places
of ay, by, a; and b, for selected values of x; these
are adequate for the purpose of drawing the
required curves.

of
(2)
6
|
7o 10 t 107,
(b) p
—————— arc sin (tanh 6)
- | .~
’n/IO % 1%

. Fig. 4. General form of the Irss and phase charvacteristics
found accurately enough from a single curve and of the networks of Figs. 1(a), 2(a) and 3(a).
TABLE 1
X ay by as bs X a, by as b
X 1C-4 < 104 ~ 104 £ 10-4 %104 x 104 <104 - 104
0-05 24 498 198 977 1-0 5000 5000 0 — 10000
0-07 48 696 384 1339 11 5475 4977 — 1883 —9774
0-10 99 990 768 1824 1-2 5901 4918 —3489 — 9196
0-12 141 1182 1087 2101 1-3 6282 4832 — 4792 -8393
0-14 192 1373 1450 2331 1-4 6621 4729 -—-5804 —7469
016 249 1560 1849 2512 -5 6923 4615 — 6554 — 6499
0-18 313 1743 2279 2639 1-6 7191 4494 -7081 —5536
0-20 384 1923 2730 2708 1-7 7429 4370 - 7423 —4613
0-22 461 2098 3197 2718 -8 7641 4245 —~7617 -3751
0-24 544 2269 3670 2668 1-9 7830 4121 --7693 —2958
7026 633 2435 4143 2559 2.0 8000 4000 - 7680 - 2240
0-28 727 2596 4609 2392 22 8287 3767 —7464 — 1019
0-30 825 2752 5059 2168 2:4 8520 3550 7100 - 59
0-35 1091 3118 6080 1385 26 8711 3350 - 6666 682
0-40 1379 3448 6888 336 28 8868 3167 - 6210 1250
0-45 1683 3742 7430 — 900 30 9000 3000 - 5760 1680
0-50 2000 4000 7680 —2240 35 9245 2641 -—4739 2334
0-55 2322 4222 7638 —3601 4-0 9411 2352 - 3907 2621
0-60 2647 4411 7327 —4915 45 9529 2117 —3249 2715
0-65 2970 4569 6781 —6126 5-0 9615 1923 —2730 2708
0-70 3288 4697 6043 —7194 6-0 9729 1621 — 1990 2560
0-75 3600 4800 5160 —8094 7-0 9800 1400 — 1505 2360
0-80 3902 4878 4178 --8815 8-0 9846 1230 — 174 2163
0-85 4194 4934 3138 —9357 9-0 9878 1097 — 940 1983
0-90 4475 4972 2076 —9725 10-0 9900 990 - 768 1824
0-95 4743 4993 1022 —9934 15-0 9955 663 — 349 1280
1-00 5000 5000 0 — 10000 20-0 9975 498 --198 977
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If 8 is specified in decibels rather than nepers,
and if o and B are required in decibels and degrees,
then equation (8) can be rearranged into

o =a,.P + azg 0-276(P[10)3 + . . . decibels (9.1)
B =10,.659P 4 by 1-82 (I’/10)® + . . . degrees

5% .92
where I’ is the value of 26 expressed in decibels.

point can be evaluated in a few tens of seconds.

When the contribution of the second term must
be included, computing time increases, but as the
correction involved is small it is sufficient to obtain
it graphically and it can be added mentally to
the value found for the first term.

The error due to neglecting the third and higher
terms increases, initially, with the fifth power of
the pad loss, and this sets

01 o
(a) - - (b) a fairly sharp barrier,
o a = around 10 dB, to the range
— 005 w oS .
@ i & i over which the first two
e N g L terms are a useful approxi-
g / - mation. Anyattempt touse
o 002 ";’ 02 more than two terms, so as
= o Cs - toincrease thisrange, would
=] x, o § =
= & Z = & & probably take longer than
> 0ol Iy — =z (] ~ fud : P
z o e S S - 7 - evaluating the original
- - ~, 3 = [ A, =3
z ", > =
=1 r = -
S 0008 g o
2z i £ oos
> o =
x © . - . Q
= x - Vig. 5. Maxinmum contribu-
: H tion of the second and third
0002 % 00 terins of the sevies in equation
o = - (4) to the loss (a), and the
phase ().
0001 1 1 I} I 1 00l ! 1 L1y 1

| 2 s 10 20 '
PaD LOSS (dB)

Equations (8) and (9) are applicable as they
stand to the network of Ifig. 1(a). The corre-
sponding formulae for the other network are
found simply by reversing the sign associated
with a4, b, and b, and by replacing a, with

(1 —a;) = (1 4+ 231

4. Discussion on Application

The advantage of using the formulae is naturally
greatest when only the first term of the series is
necessary to give the required accuracy. This
will hold in practical cases for pad losses up to
about 3 or 4 dB. In such cases the computation
of loss and phase is particularly simple and quick;
with an automatic desk calculating machine each

2 5 10 20
PAD LOSS (dB)

exact expression and hence would defeat the
object. This sets a limit to the practical appli-
cation of the expansion.
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SOME

ASPECTS OF STANDING-WAVE

PATTERNS

By C. P. Allen, B.Sc.(Eng.), A.C.G.I, AM.LE.E. and P. A. Lindsay, Ph.n., D.LC., A.C.G.L

(Commumication from the Stajf of the Research Laloralories of 'he General Electric Company Limiled, Wemtley, FEngland)

problems and are met in most branches of

physical sciences. Since oblique projection
of a three-dimensional representation of mathe-
matical functions is often helpful in providing a
visual aid to the understanding of their behaviour?,
it is thought that some useful purpose might be
served in presenting such a picture of standing
waves, in spite of the fact that the basic equations
are already established.

As is well known, a standing wave is given by
the sum of two progressive waves travelling in
opposite directions; the one being a [lorward-
travelling wave, and the other a backward-
travelling one, for example, arising from the
reflection of the forward-travelling wave at some
discontinuity in the system.

It is obvious that a function of » independent
variables will require »n + 1 dimensions to
represent it pictorially. Since, in general, a wave
function depends upon three space co-ordinates
and one time co-ordinate, it is only possible to
represent in the form of a three-dimensional
model a wave function which depends upon one
space co-ordinate (distance), the other co-
ordinate being time. An example of such a
wave function is given by the displacement on a
stretched string, or voltage or current variations
along a transmission line.

In a loss-free medium, a one-dimensional wave
disturbance is fully described by the second-order
partial differential equation, generally known as
the wave equation,

0kw(l, z) 1 dfe(l, 2) i
i T ke o . (M
in which #(/, z) = a function of the independent
variables, ¢ and z, describing
the disturbance in the loss-free
medium,

k = constant coefficient having the

dimensions of velocity.

Equation (1) is one of the few partial differential
equations for which a general solution is known,

its form 1is
w(t,z) =g < >+h< [+ )

L Juhuke m(l I°. ’I(‘uhII“l 1938.
MS accepted by the Editor, August 1954

E ; TANDING waves occur in many engineering

Emde: “Tables of Fonctions

WiRELESS IINGINEER, SEPTEMBER 1955

where g and /i are arbitrary functions of the in-
dependent variables ¢ and z

Since the phase velocity of a wave is defined as
the velocity of a constant phase, {--z/k, relative to
a stationary frame of reference, one gets from

Equ. (2)
t[t< > =Y

d
(\bl+z’zbz/]<, ) =0
| — -k =
Ly = @)

Similarly, for the point ( + zk = const. the
velocity of a fixed point on the wave is given by
v, = — k . .. 4)

which is equal but 0])})Oblte to the velocity for
t — z/k = const.  To stress this fact it is now
convenient to put £ = v, where v is the magnitude
of the phase velocity of the waves g and £ for
non-dispersive media.

Further, since both g and /i will satisfy LLqu. (2),
it is clear that the function w(/, z) describes
either a forward-travelling wave, or a backward-
travelling wave or the sum of both, neither of
which need, in general, be periodic in ¢ or z.
However, in practice any wave can be expressed
as the sum of a series of trigonometrical functions
by applving the methods of FFourier analysis to it
and, furthermore, most physical and engineering
problems concerning wave motion are usually
formulated in terms of trigonometrical functions
of space and time co-ordinates. It will he more
convenient, therefore, without any loss of gener-
ality (except for the boundary conditions) to
express in the usual exponential form both
arbitrary functions g and /i and in what follows to
consider only the fundamental TFourier com-
ponent of the wave.

Equation (2) then takes the form
W(t, z) = Aexp.juw ( —z )} Bexp. jo (f -z 7)

= W, (t, 2) + Wy, 2
= W,exp. jX, (¢, 2) 4 W ,(‘\p 71X, (L, 2)
. (5)
which is itself a solution ()f LLqu. ( ) and where
A and B are arbitrary complex constants to be
determined by the boundary conditions, and w
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is the fundamental angular frequency of oscilla-
tion of the disturbance, w of Equ. (2) being either
the real or the iraaginary part of W, whichever
happens to be more convenient.

1, (w?,2) Bz
A

¢

/ 7
L]

L

(=]

=/ > ,4.’,
LA
3 .. y

8
e

constant but depends on the distance z.

It is now necessary to determine the value of
the complex constant of integration A. Suppose
that the initial conditions define magnitude and

[ >

\
N\

IFig. 1. Three-dimensional representation of

In Equ. (5) W, and W, are the magnitudes of
W, and W, and are constant, whereas X, and X,,
the arguments of W, and W,, are functions of ¢
and z.

Since the second term W, on the right-hand
side of Equ. (5) is the backward-travelling wave
arising, for example, from the reflection at some
discontinuity met by the forward-travelling one
in its progression along the system, it is con-
venient to introduce a new complex quantity,
P = pexp. (j¢) = BJ/A, which is called the re-
flection coefficient of magnitude p and phase
angle ¢, and is simply the ratio of the complex
amplitude of the backward to that of the
forward-travelling wave. Hence lqu. (3) can
be written as

W(, 2) = A {exp. jo (—z/v)+p exp. jo (t+z/v)}
= A {exp.j [w(t—z/v) + 4] +
pexp.glw (t + 2fv) + ¢ + 41} (6)
where - is the modulus of A, and ¢ its phase
angle. In terms of magnitude and phase angle
of W one can derive from Equ. (8)

W(t, z) = A{1 + p® + 2pcos (2wz/v + ¢}

exp. 7 tan!

cos {w(t — zfv) + ¢} + p cos {w(t +
W(z) exp. 7 X (t, 2) (7)

It is to be noted here that contrary to
W, and W, the magnitude of W is no longer

240

sin {wft — 2/o) + ¥} + p_sin {wlt + 2J0) + ¢ + §)

the function f, (wl, Bz) = sin (wl — Bz).

phase angle of the standing-wave function W
of Equ. (7) at a point ¢ = ¢, z = z,, thus
Wi(to, 20)= W(zo) exp. j X (£, zo) (8)
Then for the particular case of a matched system,
that is when p = 0, one can show from Equ. (7)
that
A = W (now independent of z,) (9a)
and
tan X cos w(t, — zo/v) — sin w(ty — 2,/v)
T tan X sin w(ty — z4fv) + cos w(ty — z,/v)
(9b)
Equ. (9b) simplifies to tan ¢ = tan X for ¢, = 0,
zg = 0, that is, when the point of observation
(the point at which the boundary conditions are
noted) coincides with the origin { =0, z = 0.
It is possible to write Equ. (9b) also in the form
tan {w(fy — 2,/v) + ¢} = tan X (10)
This shows that for p =0 the same value
(for a given X) will be obtained for any point of
observation along the lines
w(ty — zofv) = (X —¢) £ um
in the ¢,z plane. This is entirely the consequence
of the functional properties
(existence of periodicity and
zv) + ¢ + 4} phase velocity) of a progress-
ive undamped sinusoidal
wave as shown in Fig. 1.
For p # 0, Equs. (9) are no longer true. In
this case, the magnitude and phase angle of the

tan ¢
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constant of integration, A, can be derived from
different expressions, again in terms of the
magnitude and phase constant of the wave func-
tion W(tz) at the point of observation, that
is, in terms of the boundary conditions,

A = Wizy) {1 + p% + 2 p cos (2wzyfr + ¢)}-}
oo .. .. (l1a)
tan ¢ =

The main object of interest of this note is the
standing-wave pattern given by taking the real or
imaginary parts of Equs. (6) and (7). The imagin-
ary part of Equ. (6) divided by A is

A1 Im W(t, z) = sin {w! — wz;v + ¥} +
psin {w! + wz/v + ¢ + ¢} . (13)
One can see from Equ. (13) that the phase angle ¢

tan X {cos w(ty — 2o/v) + p cos [w(ly + 20/v) + S} — sin w(ty — 2o/v) — psin [w(ty + 249) + ¢.

tan X {sin w(ty, — zo/v) 4 psin [w(ty + 2/v) + B1} + cos w(ty — 2ofv) + p €08 [w(ty + 2o/v) + ¢]

They are valid for the most general case of p £ 0
and ¢4 # 0, z, = 0. For the more common case of
to =0, zy = 0 Equs. (11) simplify to

A=WO){1 + p?>+ 2 pcos ¢}t
tan X {l — pcos¢} — psin¢
{1 4+ pcos¢} -+ ptan X sin ¢

It is worth noting at this point that even in the
most general case A4 does not depend on the
phase angle X, which the standing-wave function
W(t,z) will have at the point of observation
ty, 2. This is also clear from Equ. (7), where it
can be seen that any change in X will merely
require a new value of ¢, leaving 1 unaltered.
Conversely, changes in W do not affect .
Furthermore, once the integration constant
A exp. i has been calculated from the boundary
conditions W (z4) exp. jX (25, 2,) at a point ¢, # 0,
zy # 0, it is always possible to express these
boundary conditions in terms of the boundary
conditions W (0) exp. 7X (0, 0) which hold at the
origin and lead to the same value of the integration
constant A.

(12a)

tan ¢ = (12b)

% (wt.A2) Bz=¢

(11b)

of the constant of integration mercly displaces
the whole function along the wt axis. It is
therefore always possible to express the function
of Equ. (13) in terms of suitably chosen co-
ordinates which each time would make ¢ = 0,
without any loss of generality.

Now fory = 0 and - # 0, p # 0, and putting
B = w/v, the following set of functions is obtained
from Equs. (5) and (13),

Si{wt, Bz) = A1 Im W (¢, 2)

= sin (w! — Bz) )
Solwt, Bz) = A7 Im W,(¢, 2)
= sin {wf 4+ B2) (14b)
foleot, Bz; p, ¢) = A Tm W(t, 2)
= sin (wt — Bz) +
psin (wt + Bz + ¢) .. (l4c)

fi. fo and f; being normalized with respect to
amplitude. In what follows wt and Bz will quite
often be put equal to 7 and { respectively, the
functions being thus wvalid for any angular
frequency w.

Fig. 2. Three-dimensional representation of the function

folwt, Bz) = sin (w! + B2).

"II' wl=T
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Expressing functions f,, f, and f, in terms of
the two independent variables 7 = w! and
{ = Bz one obtains in three dimensions a surface
for each function f. Their perspective drawings
arc shown in the figures.

fy(wt.BZ:1,0)
I

Fig. 3.

For this particular angle of rotation the function
f1 becomes independent of one of the independent
variables; it also acquires this property for
0 =+ nwn/t

Ifig. 2 shows a one-dimensional backward-

Threc-dimensional representation of the function
Jalwt. Bz: L, 0} = 2 cos Bz cos ol

I Fig. 1 is shown the forward-travelling wave
sin {(w! — Bz). The figure represents a sample of
an infinite wave train set up in the system at a
point z - — o, { > — o (to avoid reflections
and transients). IFrom the figurc one can see that
the curves of constant displacement (height) are
straight lines parallel to the crests and troughs
of the surface f,. By definition they are the lines
of constant phase velocity v of the wave. Thus,
for example, proceeding along a crest of the sur-
face from the bottom left-hand corner to the top
right-hand corner of the diagram is equivalent
to riding with the wave at velocity v along the
whole length of the system.

It is perhaps of some interest at this juncture to
point out that, if the co-ordinate axes = and { are
rotated by an arbitrary angle 6, Equ. (14a)
changes to

f1le', U) = sin (79, — ['6,) (15)
where ®, = cos § — sin 8, @, = cos § + sin 6.
Thus it can be deduced from the form of Equ. (15)
that the cross-section by a vertical plane of the
surface shown in Fig. 1 is always a sine wave (of
zero amplitude in the limiting case) irrespective of
the direction of the planc. (This is fairly obvious
in the case of Figs. 1 and 2, but is of interest in
connection with Figs. 3 and 4, to which it also

applies on the strength of Equ. (l4c). For
6 = =/4, Equ. (15) reduces to
fil7", T) = —sin /2 (16)

242

travelling wave given by the function fy(wf, Bz).
As before, the figure 1s a represcutation of a
sample of an infinite wave train set up in the
system at a point z — o0 and at a time { - — o0.
The lines of constant phase velocity are seen from
the figure to lie again along the lines of crests and
troughs. The slope of these lines is negative in
the ¢z plane, since the figure represents a
backward-travelling wave. Thus, proceeding
along a crest of the surface from the top left-hand
corner down towards the bottom right-hand
corner is equivalent to riding on the wave along
the system with a velocity equal to — 2.

The function fy(wt, Bz; p, ¢), Equ. (14c), pre-
sents a standing wave for various values of p,
and is more complicated than ecither f, or f,.
First of all, it can be found from writing f5 in the
form

Jr. G ) =sin 7 = D+ psin (7 + L+ )
that the effect of the phase angle of the reflec-
tion coefficient, ¢, is merely to shift the whole
pattern in the directionn of v. Thus by putting
=14+ ¢/2, 0 =" + /2, Equ. (17) now
becomes
fa7" 8" p,d) =sin (" — L") + psin (v7 4 )

.. .. .. (18)
Hence, it is seen that, in general, by a suitable
choice of the origin, it is always possible to
eliminate the phase angle ¢, in discussing the form
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of the standing-wave pattern f;. Thus without
any loss of generality IYigs. 3-8 have been drawn
for the sake of simplicity for the casc of ¢ = 0.
Putting ¢ = 0, f, reduces to f, for p = 0, which
of course it must do, since this is the case of an
infinite system or in practice a reflectionless load
at the end of & transmission line.
For p=1, Equ. (17) gives
Sfa(r, §;1,0) =2sinrcos § .. (19)

which is shown in IFig. 3. It can be scen from the
figure that in this case, the nodal lines given by
f3 = 0 (lines of cross-section of the surface and
the 7, { plane) form a square grid. This means
physically that zero displacement occurs cither
(1) for any value of ¢ at points z = 1/ (21 + 1) /2
or (2) at all points z (that is along the whole of
the system) for given values of { = (ljw)nn.
Furthermore, it is seen from Fig. 3 that if one
travels along the systein with an arbitrary
velocity 0 < | dzdt | < oo, onc can never
experience a constant displacement as is the case
for an observer travelling with the phase velocity
v of a progressive wave shown in Figs. T and 2.

In Iig. 4. is shown the case 0 < p < 1, which
reduces to Figs. 1 and 3 respectively in the limiting
cases of p=0and p=1. Thecase 0 < p < 1
is characterized by the nodal pattern of Fig. 5
which is intermediate between the straight lines
of Fig. 1 and the square grid of Fig. 3. The
expression for nodal curves can he obtained from
Equ. (14¢) by cquating it to zero. This then
gives

1y (wt.3z,06,0)

{ = tzm"{l L tan 1} (20a)
I —0p
or
_sin{f — 7)
Pm =g € + 7) (20b)
or in dashed co-ordinates of Equ. (16)
1 1
= sin ' psin — 7' (21a)
V2 \/2 ‘
or
Ve l) ’
ol 1y = SNV2E (21h)

siny/2 7'
As can be scen from Fig. 5 for 0 < p < 1 the
curves of 12qu. (20a) take the form of wavy lines
sloping in general at #/4. In Fig. 6 is shown the
whole family of the nodal curves as expressed by
Equ. (20b) for different values of the parameter p.
They form a surface with 7 and £ placed horizon-
tally and p vertically. As a visual help the
p = p(r, {) surface has drawn upon it the
horizontal contours for p =00, 0’1, 0-2, . ..
1-0, and the lines of steepest descent for every 30°.
It should be added that Fig. 6 represents only a
slice 0 < p < 1 of the surface given by Equ. (20b),
which in spite of its simple algebraic form is fairly
complicated. Fig. 8 gives the function already
shown in Fig. 6 for the complete range of values
— o0 < p < . Since pis the magnitude of the
coefficient of reflection, only positive values of the
function have a physical significance. The
function shown in Fig. 8 has saddle points, lines of

Fig. 4.
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Three-dimensional representation of the function fy(wl, Bz; 0-8,0) = 16 sin of cos Bz — 0-4 cos wt sin fz.
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p=t
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~ls
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37
2

~

Fig. 5. Nodal patiern for O - p < 1, the intermediate

L. . !
condition between Figs. 1 and 3; § = tan-! {i T tun + } R
—p

since by definition p can only be infinite for A = 0
B #0.

Returning to Fig. 4 (0 < p < 1), one can see
that the surface shown lies between the limiting
cases of Fig. 1 (p = 0) and Fig. 3 (p = 1). Thus
from the figures and Equs. (14a), (17) (for ¢ = 0)
and (19), for a fixed position along the system,
{ constant, = variable, one experiences: (a) for
p = 0, sinusoidal displacement always between
1 and —1 for any fixed {, (b) for p = 1, at the
worst sinusoidal displacement between 2 and — 2,
for { = nn, at the best zero displacement at the
nodes of the standing-wave pattern
{=(2n 4+ 1)7/2, (c) for 0 < p < 1, at the worst
displacement Dbetween 1 4+ p and — (1 + p)
{maximum of the standing-wave envelope { = nr),
at the best variations between 1 — p and

5 Bz=(
(T 0) W )
A
7 ¥ -
|
” [ — L
/‘/ 1
L — ol
—
l | em
) 1 1 -
|t 1 2
/'/ L1
.// "1 ”
05 | |
) - 24
L~ 2
0 : 3 5 0 »wl="T
ki 2 21
0 —2— m ? 2 2
. sinf— 7
Fig. e). N P = =
ig. 6 (above). Nodal pattern for p (v, §) iy il 7ot

Fig. 7 (right). Saddle points, lines of discontinuily and lines
culting the =, [-plane corvesponding to Fig. 8.

discontinuity and lines along which it cuts the
7, {-plane. For convenience they are shown
separately in Fig. 7. For the sake of clarity, the
p = 4 1 contours are shown in Figs. 7 and 8.
It is of some interest to note that the planes of
discontinuity of p (see Fig. 8) cut the =, (-
plane along the nodal lines f, = 0 of the backward-
travelling wave of Fig. 2. This corresponds
physically to a system feeding power in the
reverse direction with no forward-travelling wave,
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— (1 — p) (minimam of the standing-wave
envelope) { = (2n + 1) 7/2.

Alternatively, using the same equations and
keeping time fixed, one has for the displacement

at any point along the system, 7 constant,

Bz=(

o(r.()
L

~nN
h

\\“
—

A

s

i ?/“”//- my Q)
n %/\ i Z/”’

2

o

)

|
~

Vig. 8. Nodual pattern for p = -

{ variable: (a) for p =0, always a sinusoidal
wave of amplitude 1, (b) for p = 1, at the worst a
sinusoidal wave of amplitude 2 for 7 = (2n 4 1) #/2,
at the best no displacement anywhere along the
system for 7 = nm, (c) for 0 < p < 1, at the worst
a sinusoidal wave of amplitude 14 p for
T = (2n 4 1) #/2, at the best a sinusoidal wave of
amplitude 1 — p for = = nm.

In order to comsider what happens if one
travels along the system with the phase velocity v,
it is most convenient to rotate the co-ordinates by
7/4 and express Equ. (17) in terms of the dashed
co-ordinates 7', {’, hence obtaining

fa(7, U p, 0) = — sin /20 4 psin /27" (22)
Thus if one travels in the new co-ordinate system

with the phase velocity v ({’ constant, 7'
variable), then (a) for p = 0, one stays at the

e
AN

7,

)

same point of the wave (that is, one experiences
the same displacement) all the time, (b) for p = 1,
one varies one’s position following a sinusoidal
path of amplitude 1, whatever the value of (',
(c) for 0 << p <1, one varies one’s position again,

e

e

\\\\\/ »
N

0
4 ?\\\\\\\\44‘ oter
4
%

e

{

sin ({ — 1)

sin ({ — 1)°

following a sine curve but of amplitude p,
whatever the value of {'.

Thus there are two extreme cases of (1) constant
displacement when travelling along the system
and (2) no displacement, either at point { during
the whole time interval considered, or along the
whole system for a given value of 7. They can
only occur for the limiting values of p = 0 and
p =1 respectively. In the general case of
0 < p < 1 the cross-sections of f; with 7 = con-
stant or { = constant planes alwaysgive according
to Equ. (17) sine waves, which vary in amplitude
and phase but whose mean value remains zero.
On the other hand, it can be seen from Equ. (22),
that the cross-sections of f; with 7' = constant,
{' = constant planes give sine waves of constant
amplitude for a given p, but whose mean value
varies.
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STABILITY OF OSCILLATION IN
VALVE GENERATORS

By A. S. Gladwin, Ph.p., D.Sc.

(Ustiversity of Sheffield)

(Continued from p. 214, August issue)

7. Criteria for Stability

r I YHE oscillation is stable if all the roots of
the equation (6.5) have negative real parts,
for this ensures that the amplitude of any

transient decreases with time. In general, a

direct solution of the equation is not feasible:

only in certain special cases, some of which are
considered later, can the expression for D(p) be
sufficiently  simplified to permit the dircct
calculation of p. However, a complete solution
is unnecessary since all that need be known is
whether or not the real parts of all the roots are
negative, and this information can be obtained
without actually solving the equation. Two
methods will be discussed. The first is an
application of the Routh-Hurwitz stability rules.

It is known from electric circuit theory?? that

any impedance fanction 7 (p) associated with a

lincar network having lumped parameters is a

rcal rational function of p; i.c., the quotient of

two polynomials with real coefficients. Functions
like Z (p + jnw,) will also be rational functions

of p but with complex coefficients. Since D (p)

consists of sums, products, and quotients of such

functions it is also a rational function. It
remains to find the nature of the coefficients.
Now for any real impedance® Z (p* 4 juw,)
=7Z* (p — jnwy). Inspection of the expressions
for a,, etc., shows that if p* is substituted for p the
following transformations take place.
ay =c % by > b ¥ ¢ >a*)
ag = co*, by = by*, o = ap*
a., = o* by = b* ., —a* |

Then from (6.4), D (p*) = D* (p) and from this

it follows that the coefficients of the polynomials

arc real. It can also be shown by using (4.11),

(4.12), (4.15), and (4.17) that when p = 0

(7.1)

ay =1¢y, Qy=2Cy d.y=2¢, .o (7.2)
Hence D (0) =0, and D (p) can thercfore be
written as D (p) = pI’, (p),, (p), in which P, (p)
and I’y (p) arc real polynomials. The root
P = 0 corresponds to an oscillation of constant
amplitude and frequency w,; i.e., the steady
state.  All other roots of D (p) = 0 arc the same
as the roots of P, (p) = 0. Routh?, and later
Hurwitz®, investigated the conditions for all the
roots of such equations to have negative real
parts. The Routh-Hurwitz stability criteria take
the form of a number of inequalities between
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the coefficients of the polynomial.  The details
are given in later Sections where the method is
applied to particular problems.

The second method originates alfo in the work
of Routh??, and is based on a theorem of Cauchy?
(Routh also made usc of the theorem in deriving
the first method). Onec way of stating the thcorem
is as follows: “If D (p) =u + jv is analvtic
except for a finite number of poles mnside and on a
closed contour, then the number of times which
the locus of D {p) encircles the origin when
moves once round the contour is N — I’, where N’
is the number of zeros and I’ the number of poles
of D (p) inside the contour.”

In Routh’s application the contour of p was
the imaginary axis from — joo to joo and a semi-
circle of infinite radius, centred on the origin,
lying in the right-hand half-plane. This contour
encloses all values of p having positive real parts.
As the functions considered by Routh had no
poles (except at co) the stability criterion was
that the locus of D (p) should not enclose the
origin. \What Routh i fact considered was the
number of times which the ratio u'v passed
through 0 and changed in sign from positive to
negative and vice versa, but this is simply
another way of specifying the number of encircle-
ments. Bode? reached the same conclusion also
by way of Cauchy’s theorem, and Nyquist® had
previously obtained a similar result by another
method. :

The Routh-Nyquist criterion, as it may
properly be named, is more general than the
Routh-Hurwitz in so far as it applies to any
analytical function and not merely to polynomials
with real coefficients, but the criterion fails if
the function has any poles within the contour.
This difficulty can be overcome by using a
slightly more sophisticated definition®' of ‘en-
circlement’, bhut for the present purposc this
refinement is unnecessary. The impedances 7,
Zo, and Z; are those of a passive network and so
can have no poles in the right-hand half-plane,
(for otherwise an exponentially-increasing voltage
would appear spontancously across the network
terminals), but Z;, being a transfer function, may
have zeros there. Since Z; occurs in the de-
nominators of some terms in the expressions for
a,, etc., these terms will have poles where Z; has
zeros. It can be shown, however, that all such
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terms cancel in the final result.  Hence D (p)
has no poles in the right-hand half-plane.

Two difficulties prevent the Routh-Nyquist
criterion from being applied directly to oscillators.
IFirst D (0) = 0: i.e., the locus of D (p) passes
through the origin. This can be avoided by
indenting the p-planc contour with a small
semi-circle about the origin in the right-hand
half-planc. The sccond point, which was discussed
in Section 3, is that the domain of p must be
restricted so that its imaginary part lies between
— lwy and dw,.  Instead of the Routh-Nyquist
contour, the contour shown in Fig. 7 must
therefore be used. For convenience the contour
is described in the clockwise direction. The
stability criterion can then be stated as:

[
L L e -
7 /Wo

[
T Wy —~——— —

I'ig. 7. p-plane contour.

“The oscillation is stable if the locus of D (p)
does not enclose the origin when p describes the

1,0

Some general features of the locus arc now
considered.  Earlier it was shown that D (p*)
= D*(p). This means that the locus has mirror
symmetry with respect to the real axis. Also,
for very large values of p all the network imped-
ances vanish becanse of the shunting effect of
stray capacitances. Then a,=0b,=c, =1,
and all the other coefficients are (. Hence
D(p) ~1asp - w + $jwy. In most oscillators
D (p) =1 when p = + 4jw,, so only imaginary
values of p (ie., real frequencies) need be
considered.

Fig. 8 shows loci corresponding to (a) stability
(b) instability-—one zero, and (c) instability—two
zeros. When p is small D (p) = D (0) 4 pD’(0)
= pD'(0) and because of symmetry D'(0) is a
real number. As p traverses the small semicircle
near the origin D (p) also describes a semicircle,
and this lies in the right-hand half-plane if
D’(0) is positive, and in the left-hand half-plane
if D'(0} is negative. These remarks, together
with obvious topological considerations, lead to
the following conclusions:

(1) If D(0) is positive the locus of D (p)
encircles the origin an even number of
times or not at all.

(2) If D'(0) is negative D (p) makes an odd
number of encirclements.

It follows that

(3) The oscillation can Dbe stable only if

0y > 0.

contour of Fig. 7. Any encirclement—indicating
instability—will be n the clockwise direction.
criterion is more usually
expressed in terms  of
encirclement of the point

1,0. With this convention

the oscillation is stable

il the locus of 1 — D (p)

does mnot encircle the

point 1,0. Inthe language

theory D (p) corresponds (a)

to the ‘return difference’ and 1 — D (p) to the
‘loop transmission’, although there is no physical
loop in the oscillater corresponding to this func-
tion. In the present application it is more
convenient to adhere to the expression of the
criterion in terms of D (p).

Although stability can be discussed completcly
Routh-Nyquist critcria it is advantagecous to use
both. The Routh-Nyquist locus diagram is
valuable in illustrating points which are not
immediately obvious from the Routh-Hurwitz
criteria, and in deriving numerical relations for
the simpler types of instability. With the more
complicated forms of instability the Routh-
Hurwitz rules arc the only practicable method

The  Routh - Nyquist
)
\__/
of feedback-amplifier
in terms of cither the Routh-Hurwitz or the
of obtaining numerical results.
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Yig. 8. Loci of D(p) or I(p).

The possibility that D(0) = 0 is excluded, for
this would imply that D (p) had a double zero
at the origin and this would correspond to a
transient of frequency w, with linearly increasing
amplitude. Condition (3) therefore covers all
possibilities. Double or multiple zeros can exist
only in theory. They represent a critical adjust-
ment of the network and amplifier parameters
which cannot be achieved in practice. This
remark applies also to any zero, simple or multiple,
occurring at any other point on the contour.

The stability criteria derived here indicate
only whether a given possible steady state is
stable or unstable with respect to small disturb-
ances. They cannot be used to predict whether
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the given state, if stable, will in fact be realized,
nor can they be made to reveal what course the
oscillation will take when it departs from an
unstable steady state.

Corresponding to a given sct of paramecters,
an oscillator may have two or more stable steady
states, and which of these is realized depends on
the history of the oscillator. A disturbance of
sufficient magnitude may change the oscillation
from one stable mode to another. Each possible
steady state has associated with it a different set
of transient normal modes, and although the
constants of the network and amplifier may
remain unchanged, yet each steady state represents
in effect a different system, and requires its own
characteristic equation to describe stability.

8. Symmetrical Networks

Symmetrical networks are special cases of
general (asymmetrical) networks and the reason
for considering the particular before the general
is one of convenience. Because of the great
simplification resulting from symmetry, the
analysis of symmetrical networks can be carried
out more easily and in greater detail than is
feasible for the general type. Also the feedback
networks of many practical oscillators are
symmetrical.

An impedance is symmetrical with respect to a
frequency w, if the real part has even symmetry,
and the imaginary part odd symmetry, about the
line ]b = jwg in the p plane. Thus

Z(p* + juy) = Z*(p + Jw,)
No real impedance can be symmetrical about a
frequency other than 0, but some networks
such as high-Q resonant circuits have approxi-
mate symmetry over a limited range of . For
practical purposes a symmetrical impedance is
therefore defined as one for which | Z (p* + jew,)
—Z*¥(p 4 jwg) | is negligible compared with the
maximum value of [Z (p 4 jwy)| over the
appropriate range of 4. Since for all real impcd-
ances, Z (p* + jw,y) = Z*(p — jw,), it follows
that for symmetrical impedances |Z (p + jw,)
— Z (p — Jwy) | is also negligible.

If the impedances of an oscillator feedback
network are symmetrical with respect to w, then
Zim = Zi(p — Jwo) = 7(7) + jwy) = Zi*, with
similar expressions for Z,*, etc. It follows that
the modified im])e(lanccs Zit, ete., are also
symmetrical. When p =0, 7;, etc., are resist-
ances, and so from (4.17) § = 0 and ¢ = exp. 50
= 1.

Inspection of expressions (6.3) then shows that
by="0by, ¢,=ua_, ay=cp The
determinant for D (p) becomes, from (6.4)

a, b ¢
ag by a,

a, = c.y,

248

This can be factorized as follows:

D(p) = F(p)A(p) S (8)
I(p) = ay — ¢
.-1(?) = bolay + ¢;) — 2agh, } (8.2)

D (p) is zero if cither F°(p) or A(p) is zcro and
the numbér of encirclements of the origin made
by the locus of D (p) is the sum of the encircle-
ments by F(p) and A(p). Since neither of thesc
factors has a pale within the contour of p any
encirclement must be clockwise.  Hence the
Routh-Nyquist stability criterion is that the
locus of neither /(p) nor .4(p) should enclose the
origin.

To see the pliysical significance of these two
conditions, the transient grid voltage, which is
the real part of (5.2), is added to the steady state
voltage (4.1). The high-frequency part of the
total voltage is

Ve{l 4+ m, exp. at cos (wat + ¢,)}

X €0 {wgl -+ My exp. at cos (wal + $5)} ..  (8.3)

where m, exp. jé, = (1, + u_,) | ,1/1 0 }(8 1)
My eXP. js = — j 1y — 1) VafV ey

(8.3) is the expression for a wave modulated
in both amplitude and phase (or frequency).
The two modulations have the same complex
frequency p = @ + jwa, and the coefficients of
modulation may be taken as the complex
amplitudes (8.4).

Using expression (8.2), the equations (6.2
11, can be transformed to the equivalent set

(y —u )l (p) =0 l

(i + 0y)dtp) =0

() + v )ag = — bguy )
Suppose that for some particular value, p,,
I(p,) =0 but A(py) = 0. Then wu, + 2, =0
and from (8.4) m; = 0. Also u, = 0, so there are
no voltages or currents of frequency p. (8.3)
shows that the transient disturbance takes the
form of a frequency modulation of the steady-
state oscillation. Hence if [7(p) encircles the
origin, p, has a positive real part and the oscilla-
tion frequency is unstable.

Similarly if A(p,) =0 but I7(p,) *+ 0 then
1y — u_y =0 and m, = This corresponds to
amplitude modulation of the steady-state oscilla-
tion, and if . (p) encircles the origin the amplitude
is unstable. The third equation in (8.5) shows
that therc is now a low-frequency component in
the total voltage; i.e., the grid-bias voltage is
also modulated.

Thus in a symmetrical-network oscillator the
transient takes the general form of independent
modulations of frequency and amplitude, the
characteristic modulation frequencies being the
roots of I'(p) =0 and A(p) = 0 respectively.
This independence holds only for small disturb-
ances. If the frequency is unstable the disturbance

where

) for

(8.5)
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will eventually become large enough to produce
a sensible change of amplitude. On the other
hand large changes of amplitude can take place
without affecting the frequency.

In the previous Section it was pointed out that
a; =¢, when p =1. Hence and from (8.2),
F(0) = 0. It can also be shown that 77(p) — |

encirclement would indicate a combination of
periodic and aperiodic instabilities, and so on for
more complicated loci.

Similarly the frequency has aperiodic instability
if F'(0) <0, and periodic instability if 17(p)

\

Loci of A(p).

and A(p) -1 when p - oo + djw, The loci
of I/(p) have the same general form as those of
IFig. 8 and, using the same argument as for
D (p), the frequency can be stable only if I7(0)
> 0. Typical loci for A(p) are shown in 17ig. 9.
A(0) is either positive or negative, for the condi-
tion 4 (0) = 0 would require a critical adjustment
of parameters. Inspection of Fig. 9 shows that
the amplitude can be stable only if 4(0) > 0.
The locus then encircles the origin an even
number of times or not at all.  Similarly if
A0) < 0 4(p) makes an odd number of encircle-
ments.

In terms of D (p), D'(0) = I""(0) A(0). D'(0) is
positive if £7°(0) and A (0) have the same sign and it
15 clear that this must be positive, for otherwise
both amplitude and frequency would be unstable
and D (p) would make at least two encirclements.

The various forms of instability may con-
veniently be classified according to the signs of
F'(0) and A(0). Starting with .1(0), the simplest
type of instability oceurs when 4(0) < 0 and the
locus makes a single encirclement. This means
that the equation A(p) = 0 has one real positive
root and the disturbance therefore takes the
form of a unidirectional movement of the
amplitude away from the steady-state value.
Instability of this type will be described as
‘aperiodic’.

The next simplest kind of instability occurs
when A(0) >0 and the locus makes two
encirclements. The equation .1(p) = 0 has now
two real positive roots or two complex conjugate
roots with positive real parts. In the latter case
the amplitude is modnlated by an exponentially-
expanding sine wave, and in the former the
aiaplitude changes have the highly non-sinusoidal
form typical of relaxation oscillations. In both
cases the instability is ‘periodic’. A triple

(b)
Fig. 9.
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makes two encirclements.

Aperiodic instability results in the various
of which were studied
by van der Pol and
others. The various
forms of frequency
and

_) stability which may
occur in symmetrical-
network oscillators are

: now studied in some

hysteresis effects some
;‘3 L0 amplitude  in-
(c) detail.

9. Frequency Stability
The frequency stability function F(p) = a, —
¢, may be written in terms of the network and
amplifier parameters by substituting in expressions
(6.3) for S, — S, aceording to (3.3), for Z;*, etc.,
after the manner of (4.11), and for G4 — G,
according to (5.14). This gives
F(p) = {1 + (Zy* — hZ*)Irg(d — Zi*[RE)
. . . 9.1)
where Zp* = (Zrt + Zrtwj(1 — RZ1*[rg)
The low-frequency impedances Z°, etc., do not
appear. This is to be expected since if only the
frequency is modulated there are no voltages or
currents of frequency p. Also the only parameters
of the amplifier which appear are &, p and the
constants which help to determine 7. It would
seem that frequency stability is independent of
the non-linear amplifier characteristic. How-
ever, in deriving these results it was assumed that
the amplifier currents were single-valued functions
of the voltages, and the conclusions will therefore
be valid only for such types of amplifier.
From (9.1), I'(0) = — {1 + (Ry — ERi)/rg}
ZE'[RE,
and since R; and Ry are negative the criterion
for aperiodic stability is Zr" > 0. This can be
expressed in terms of real frequencies as follows:
Zrpt = Kpt + jXg*, but the components are
not themselves functions of p. However, as Zg*
is analytic it follows from the Cauchy-Riemann
definition that at any point on the real frequency
axis,
(@/dp) Zg (p + jwy) = (didjwd) RE (jwo + jewu)
+ (d/djwd) jXE (Jwo + jwd)
Since Zp:* is symmetrical, RE* is an even function
of wq and its derivative at wg = 0 1s therefore 0.
Hence Zg' = X' and
F)y = — {1 + (Ry — kRi)/rg} XE'IRE 9.2)
where Nz’ denotes the derivative of X with
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respect to wg at wg=0. The criterion for

aperiodic stability is then
— XE'/JRE>00r N >0 ..
Another useful form is I(0) = Lim FF(p)/p
P>

Inspection of Fig. 8(b) shows that the simplest
type of network showing aperiodic instability has
a transmission characteristic with two peaks of
maximum response and a minimum at the
oscillation frequency. It can be shown that there
are three possible steady states, the frequencies
of the other two corresponding to the point ‘f’
and that these are stable. (See Section 14.) When
the oscillation frequency departs from the unstable
value wy it finally settles down at one of these
points.

The double encirclement of Tig. 8(c) represents
a new type of instability. Assuming the corre-
sponding roots of F(p) =0 to be complex
conjugate, the oscillation frequency is modulated
by an exponentially-expanding sine wave. The
transmission characteristic has three maxima
the smallest being at wy. There are five possible
steady-state frequencies but only the stability
of the central frequency can be discussed here,
since it is only with respect to this frequency that
the network is symmetrical. Of the other
frequencies it can be shown that the two corre-
sponding to the point ‘h’ are unstable, and the
two corresponding to ‘g’ are stable.

Under suitable conditions a sustained periodic
frequency modulation of small magnitude can be
produced. When the parameters are adjusted to
well beyond the critical values the inevitable
slight asymmetry favours one or other of the
component frequencies wy 4+ wg, and the oscilla-
tion eventually settles down at one of the stable
points ‘g’.

The network of I'ig. 10, though not representing
any practical oscillator, is the simplest in which
the two forms of instability can be demonstrated.
The central circuit resonates.at w, and has a
shunt resistance #R; the other two resonate at
wy + wmand have a resistance R.  For simplicity
it is assumed that the coils have the same (-
factor, that the coefficient of coupling between
the two coils in each of the three pairs is 1, and

Jthat the voltage transformation ratio 7 is the same
for each pair. No grid bias arrangement is shown
as the result is independent of the particular way
in which the bias voltage is obtained. Then

2t = Zitr, 2yt = Zit|rt, 2yt = 0

(9.3)
9.4)

Let T = 2Q/wg and ¢ = Twpy (9.3)
Then
Zit _ (2_+ Q(l + PT)2 + nc? (96)

R~ (0 +pD{Q F pT)>F %)

This is an approximation valid for large values of
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Q. Substituting for Z;", ctc., according to (9.5)
and (9.6)
IF(py =1 — Z;* Ry
_ PTUPT® 4 2pT(1 —be¥) + 1+ (1 — 40)c?)
B (1 + T + pT)* + %
.. . . .. (99)
where 1/b =2 4 n + nc2
The simplest oscillator in which aperiodic
instability can exist has a two-circnit feedback
network obtained by eliminating the central
coil in Fig. 10. This is equivalent to putting
n = (0. Then from (9.4},
'Oy =70 — ¢ (1 + ¢%.
For aperiodic stability
ct<1; e, 20wpfw, < 1 (9.8)
Similarly for the triple-circuit network the
criterion for aperiodic stability is 1 + (1 — 4b)c?
> 0. This is more conveniently expressed as a
criterion for instability by substituting for b,
thus
22— DU+ 1P >n > — 2/ + 1) (9.9)
A negative value of u could be realized by
reversing the leads to the central coil but,
when this is done, the equations remain valid
only if u and rg are very large.

Wy ~Wwmnm

I'ig. 10, Circuit for frequency instability.

Since the numerator of (9.7) is a quadratic it
is not difficult to find the conditions for the roots
of I'(p) = 0 to have negative real parts. More
directly, the Routh-Hurwitz stability criteria
are: 1 + (1 —45)c2>0and 1 — b2 > 0. The
first is simply the condition for aperiodic stability,
the second is the condition for periodic stability.
Substituting for b and using (9.9) this can be
more easily written as a criterion for periodic
instability:

(€2 — (2 + 1) >n > 22— 1),(c2+ 1)

N (9.10)
Periodic instahility can exist only if the left-hand
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side of this inequality is greater than the right-
hand side, and this requires that ¢ > /3.

Further examination of (9.7) reveals the nature
of . these unstable states. If n > (¢2 4 1)7% —
(¢ + 1)7! the roots of F(p) =0 are complex
conjugates, and for smaller values of » both roots
are real.

When n < — 2/(¢? + 1) it can be shown that
Ry is positive and no oscillation is then possible.
From (9.9) and (9.10) the stability criterion is
therefore

n> (=2 )2+ 1) if ¢c>4/3..
and 2 > 2(c2 — 1)/(e2 4+ 1)2 ¢ < v3
All other possible values of # correspond to cither
periodic or aperiodic instability.

9.11)

10. Amplitude Stability—Hysteresis

In Section 8 it was shown that the condition
for the amplitude to have aperiodic stability is
A4(0) > 0. The behaviour of the oscillator is
investigated by writing 4(0) in terms of the
network and amplifier parameters. It is first
supposed that the grid-bias voltage is derived
entirely from the flow of grid current, so that

S,, etc., may be substituted according to (5.5).
Using also (4.11), (5.14), (6.3) and (8.2), A(0)
becomes

A(0) = 2(1 4 SeR(1 + Ryre)[(Rr + Rijp)
{(19 + ((; (12 — (J )I(a/}l.}
A GIR (I — AR JuR N1 gf/dV g))]
— (1 4 SeRM1 + Rofre)(Veyfre)(drgidly,)
N1 + GoRafp)(Ro — kR7)/rg +
{Gy 4 Go)(1 + GyRa'p) — >(,, R(, W RN Rp[urg]
.. (10.1)

The network Clements appearmg in this ex-
pression are all resistances. Time constants have
no influence on aperiodic stability: their sole
effect is to limit the speed with which the amplitude
moves away from an unstable value.

A(0) has been written in this form in order to
show that an important factor in stability is the
manner in which the grid-bias voltage and grid
input resistance vary with oscillation amplitude.
The derivatives dVg/dV,, and drg/dV g, are
strictly defined only when 17, changes infinitely
slowly, but this does not mean that the criterion
is valid only for slow changes. The derivatives
appear because they are related to S,, S,, and
S, through the equations defining the steady-state
values of Vg and rg, and it is these relations
which have been used in (10.1).

In many oscillators the grid-current charact-
eristic is such that when Vg, is moderately large,
Ve is almost proportional to Vg, and 7 is
almost constant. Then dVg/dVg, = V[V, and
drgldV g, = 0.

Substituting for A according to (4.18), and for
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Rr and then Ry from (4.14) and (4.11) gives

AQ0) = — 2(1 + SeR{l 4 (R, — kRi)[rg} R
XA{KG, — Gy + (G% — GGy — RKG [Rg)Rafu}
.. .. (10.2)

Since Rf is negative the criterion for stability is
KGy — Gy + (G2 — Gofry — RKGL R Rafp > 0
.. (10.3)

If Ry is small or p large thls reduces to

I\(Il — (12 > .) (104)

This criterion can be interpreted in terms of
the slope of the graph of Y plotted against N of
which the curves of IFig. 3 are particular examples.
By differentiating equations (4.8) and (4.13) with
respect to Y, keeping K and V., constant, and
using also (5.10) and (5.14), it can be shown that

INPRY = 2N3KG, — G,)/gY

Since g is positive, ON/dY has the same sign as
KG, — G, and so for stability, INQY > 0.
In deriving this result it was assumed that Vg is
independent if 17,, but this is true only if
Ra = 0 or u = oo, for otherwise a change in Vg,
would change the mean anode current which
would change the mean anode voltage which in
turn would change V;. A straightforward, but
tedious calculation shows that when V., varies,
ON/dY has the same sign as the L.h.s. of the more
general criterion (10.3).

These results are independent of the form of
the amplifier characteristic provided only V¢/Vg,
is constant. IFor a three-halves-law amplifier &,
and G, can be expressed in terms of a parameter
H=1—K+4 K|Y. As (, is now positive
(10.4) can be written G,/G, < K, and the
corresponding value of H obtained from Fig. 6.
A more direct method is to substitute for G,/G,
according to (5.17) and to reverse the series thus
obtained. (10.4) then becomes
1Y >{1 4+ (1 — K)9+ ..}l — K)/[3K (10.5)
Since ) cannot be negative the amplitude is
stable for all values of ¥ when K > 1. When
K < 1 the stable values of Y are less than the
critical value given by turning the inequality
(10.5) into an equation.

In terms of the graphs of Y against N, the
greatest stable amplitude occurs when dNOY =0;
i.e., where N is also a maximum. It can be shown
that this value is

Nouax = (27/32)} (1 - K -3"{1 + (1 —K)6+ ..}

(10.6)
These tendencies are suggested in the graphs of
Fig. 3 and shown clearly in Fig. 11{(a). The full
line is the theoretical value of Y for K = 0-6.
Once Y has passed the critical point ‘b’ there is
nothing in the theory to prevent its increasing
indefinitely.  Actually the amplitude is then
limited by the diversion of anode current to the
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grid or screen.  The broken line shows a possible
form of ¥ due to this effect. In most oscillators
this limitation occurs before the critical value of
Y is reached.

A hysteresis effect exists in the region ‘abed’.
As N is varied Y moves round the boundary in
the direction shown, the portions ‘bc’ and ‘da’
being irreversible. The second critical point ‘d’
does not lie on the theoretical curve and the
calculation of the second critical amplitude is
beyond the scope of the present analysis.
Although points on both branches ‘ab’ and ‘cd’
represent stable states it is obvious that an
impressed force of sufficient magnitude could
shift the operating point from one branch to
another.

A second kind of hysteresis
effect can exist when 7, and
Vg/Vg, vary considerably _with
“change of V. This variation is
most marked for small values of ,
Vgy; 1e., near to the threshold
of oscillation. Fig. 11(b) shows
the effect of varying a parameter
of the feedback network; e.g.,
the mutual inductance M between

Since f > 0 the stability criterion is b 4 ¢ 4 d
> (). Substituting for m and »n from (3.8) this
becomes

1= kRapRy + (1 — 3R, uRE)(1 + RppRy)?
(1= Pl o) (Vo Ve)/4(1/Y — 1)

— (1 4 /T ) (1Y — 1)1 — RypRe){RE

(k = Ro/R1) + Ryip}/(1 + RifuRy)rg > 0 (10.8)
The values of the parameters are those at the
threshold of oscillation. In many oscillators
Ry is negligible. If also u is large, then on sub-
stituting for Ky according to (5.16) the criterion
simplifies to

1+ (l - V&' Vo)(Vo/r.‘.')2 HLY - 1)

+ (B — Ro RT)(1 + Vg 1)1 — Y)Y r, >0

anode and grid circuits. Oscillation
begins when M is increased to N
the critical point ‘b’, but small

amplitudes are unstable and V,, immediatecly
moves to the point ‘c’. When M is reduced a
second critical point ‘d” is reached at which 17,
suddenly falls to zero. The effect is due mainly
to the variation of 7g. If this increases with 17,
the loop gain of the amplifier and feedback
network, measured at the oscillation frequency,
may also increase and become sufficient to
maintain an oscillation of large amplitude for a
value of M less than that needed to initiate
oscillation.

The condition for avoiding this kind of hysteresis
cffect is that vanishingly small amplitudes
should be stable. It is sufficient to consider the
particular case of a three-halves-law amplifier
(4.21) with an exponential grid-current character-
istic (4.23). The values of G,, for small values of
Vg, are given by (5.16), and the derivatives of
Ve and vy by (5.8). Substituting these into
(10.1), using also (4.18) and (5.14), and neglecting
powers of V,, higher than the square gives

A0) = (b + c 4+ d)f
(I — 3Ra/pRE) (1 + RyjuR7)?
32 (1Y = 1)
¢ = n(l — kRoJuRe)/4(1]Y — 1)
d = m(l — RajuRp){RE(k — Re/R7T)
+RN}/(1 + RijpR7)rg
[ =2Vl V*(1 + SeRe){1 + (Ry—kRi)[rg}

(10.7)

where b =

(=]
Al
[3=]

(10.9)
c_
\\\ (g
b Vo
d
a b
(a) (b)

Fig. 11, Admplitude hysteresis.

In this expression Ry is negative, Y is small and
positive, and g and 1 — 17/}7, are also positive.
It follows that instability can exist only if 1 4
Ve/17y < 0. Referring to (5.8) it is seen that this
is also the condition that r, should increase with
V.
In (10.9), &, 1"y and g are constants of the valve,
and 1’g, Y and r,, which are given by (4.23) and
Fig. 4, depend only on R, and the valve constants.
Hence the only two independently adjustable
parameters are Ry and the ratio Re/R7. In most
practical situations 1 + Vg/Vy < 0. Stability
is then assisted by making Re/Ry small. This
can be achieved by placing the oscillatory circuit
in the anode lead and using a small grid-coupling
coil.  The effect of varying Ry is less easy to follew
but it can be seen that stability is obtained with
all sufficiently large values of R,, for ', changes
much less rapidly than rg and so the Lhs. of
(10.9) can be made to approach 1. The damping
due to grid current is then a negligible fraction
of the total. Stability is also assured for values
of Ky small enough to make 1 4 I74/I7y >0
(Fig. 4). This form of instability has been studied
experimentally by Zepler32

In the next type of oscillator to be considered
the grid-bias voltage is fixed and large enough to
stop grid current. The stability criterion follows

WIRELESS LINGINEER, SEPTEMBER 19535




at once from (10.1) by putting dl,/dl g,
= drgidl’g, = 0, and is (since K is negative)

— Gy + (62 — Gols ) Ralp > 0 (10.10)
If Rq 1s small or g large this reduces to

Gy < ) (10.11)
Now for a three-halves-law amplifier .2 —
Golry > 0 (from (5.18)). Hence whatever the
value of R,, stability is assured if (10.11} is
satisfied, and whatever the value of (7, (10.10)
can be satisfied by choosing a sufficiently large
value of Rg. .

Criterion {10.11) can be interpreted in terms of
the graphs of N plotted as a function of ¥ and K.
Since Rufu = 0, Vg is constant, and as Vg has
been assumed constant Y is also constant.
By differentiating (4.8) and using (5.10) and
(5.14) it can be shown that ANJOK = 2N2G,/gK.
Since g and K are positive IN/OK has the same
sign as G, If Rafu + 0, V¢ varies with Vi,
(i.e., with K) and a more lengthy calculation then
shows that — dN/OK has the same sign as the
Lh.s. of (10.10).

From Fig. 3 it would seem that for the three-
halves-law amplifier dN/OK is always positive
and all amplitudes therefore unstable. However,
for small values of Y and N the graphs cross one
another and IN/QK becomes negative. This
cannot be shown in Fig. 3 because the graphs
would be too close to be distinguished.

Returning to (10.11), Fig. 6 shows that , < 0
when H=1— N4+ KJY > 142, Since K is
positive this inequality can be satisfied only if
YV < 1l ie., the grid-bias voltage must not

exceed the cut-off value 1°;. Hence for stability
K > 042Y/(1 — Y), and the corresponding stable
amplitudes are

gy < (g — Vea)/042 (1 + RyjuRT)  (10.12)
All oscillations of stable amplitude will also be
self-starting, for if this inequality is satisfied for
the steady-state value it is satisfied for all smaller
values of Fg,. A second restriction is imposed by
the requirement that no grid current should flow.
With the semi-linear form of grid characteristic
(4.19) this means that
V< Veg — g (10.13)
Finally, the amplifier may operate with a
fixed grid-bias voltage insufficient to prevent
the flow of grid current. This mode of operation,
like the previous one, is little used in practice but
it is of theoretical importance in connection with
periodic instability. If the bias voltage is to be
independent of Vg then Rg = 0. A(0) can be
obtained from (10.1) by substituting for d17g/d1",,
and drgdl g, according to (5.5) and then letting
Rg — 0. For the present purpose it is sufficient to
consider the simplified case where Ry = Ry = 0.
Then
AO) = 2{G, (R + Rine) = S, (Ry — kRy)}
. . (10.14)
Using (5.14) the stability criterion can be expressed
as

GoRE 4+ (Sary 4 GuRE)Ry — RRy) rg> 0 (10.15)

=5

(Tu be continued)

CORRESPONDENCE

Letters to the Editor on technical subjects ave always welcome. In publishing sucl conmunications
the Editors de not necessarily endorse any lechnical or general statements which they may conlain.

Multiloop Feedback Amplifiers

SIR,—I1 was very interested to see the correspondence
following my papers “Nyquist’s Criterion’ and ““Multi-
loop Feedback Amplifiers” in Wirveless [ngineer for
October and  November, respectively, of last year.
Perhaps 1 should explain that my object in writing these
papers was:—

(i) To develop a proof of the Nyquist stability
criterion for single-loop amplifiers from first princi-
ples and without using contour integratbon in the
complex plane.

(ii) To point out that an alternative formulation of
Nyquist's criterion exists;  viz., the ‘minimum-
phase criterion’.

(iii) To show that the same reasoning can be applied to
derive an unambiguous stability criterion for
multiloop amplifiers.  (This criterion can, of
course, also be formulated as a "minimum-phase
criterion’.)

With regard to (i), 1 stilt feel that the simplest deriva-
tion is provided by working from the gain-with-feedback
expressions, A [(1 — 4Bl ete., rather than by introducing
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the characteristic equation and then having to link up
the zeros of the denominators of these expressions with
the roots of the characteristic equation.  Of course, any
criterion for the stability of a linear system can be linked
up with the zeros of 4 or 4" (the mesh or nodal deter-
minants of the system) since the absence of these zeros
from the right-half p-plane is the necessary and sufficient
condition for stability. 1 agree with most of B. D.
Rakovich’'s remarks reganding  the  Routh-Hurwitz
determinant method, but it was not the purpose of my
papers to compare the Nvyquist and Routh-Hurwitz
criteria.  However, it should be pointed out that criteria
based directly on the characteristic equation, such as the
Routh-Hurwitz, cannot be used with experimentally-
determined loop-gain characteristics.

1 cannot agree with B. D. Rakovich that his function
(1) appropriate to my Fig. 1(c) (November 1954, Wireless
Engineer), viz., | —A4B, — A 4,83 — ABy + A 4:8,8.
is exactly the same as the characteristic function of the
system, d, since function (1) is in general a ratio of two
polynom:als in p whereas, excluding a possible pole at
the origin, 4 is a polvnomial in p. For a full evaluation
of the significance of a Nyquist plot of function (1) the
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possible positions of its poles must first be determined,
as was done in my paper.

The connection between the functions obtained by the
analysis of feedback amplifiers on a mesh or nodal basis
on the one hand and by the block diagram method with
A and B terms on the other may be found by comparing
expressions for the same network function in the two
systems. Thus, for example, the return difference* for
a valve in the A, section of the amplifier of my Fig. 1(c} is

l;‘ilﬁl *7‘471’1 ofs — 4 2@2 + 1];’ 2B1B2 ()

1 — A8 ’

in terms of the o/ and B terms and 4/4° in terins of the

determinant of the mesh equations 4. Both 4 and d°are

polynomials in p (ignoring for brevity a possible pole

at the origin) and both the numerator and denominator

in expression (a) are each ratios of two polynomials in p.

However, as the poles of 1 — 4,8, are also poles of

1 — 4,8, — A By — A8, 4 4,4, BB, the zeros of

1 — A8, — A, 4,8, — 4,8, + 4,88, and the zeros
of 4 coincide.

0. P.

Department of Electrical Engineering,

I'aculty of Technology,

University of Manchester,
Manchester.
4th July 1955.

* H. W. Bode, ““ Network Analysis and Feedback Amplifier Design®,
pp. 46-49 (. Van Nostrand, 1945).

D. CUTTERIDGE

High-Stability Oscillators

Sir,—In a letter to Wireless Engineer (May 19335),
W. B. Bernard criticizes the statement in Gourilet’s and
in Clapp's papers concerning the influence of the L/C
ratio upon the frequency instability caused by nonlinear
cffects in oscillators; the oscillator under consideration
has large grid and anode capacitances C, and C, and
a series-resonance circuit L,CoR, between grid and
anode.

As 1 am very interested in high-stability oscillators
and as my last paper (now in printing) deals with the
above-mentioned series-resonance oscillator in a non-
linear state of operation, 1 would like to make one or
two remarks on this subject.

With respect to the incorrectness of the division of the
circuit elements between the maintaining circuit and the
frequency-determining circuit, I am not far from sharing
Mr. Bernard’s doubts.

However, 1 cannot agree with his further reasoning
as to the equivalence of the series-resonance oscillator
and the ordinary Colpitts’ oscillator with regard to the
nonlinearity effects caused by the driving valve. | have
no doubt that the former oscillator has distinct advantages
over the latter, not only because of the more suitable
values of components used, but owing to its essential
superiority in respect of {requency stability: the
attenuation effect for the higher harmonic currents,
occurring in the L,CoC, limbh of the series-resonance
oscillator, is considerably stronger than that in the
1.C, limb of the Colpitts” oscillator. The ratio of the
;,rul voltage of harmonic ¥y to the anode voltage of
harmonic V. (k being the order of harmonics f()r hoth
circuits) can be expressed as folows:—

For LyC, series-resonance circuit, lig: 1

|
By 7 hac,
v
J ("“'"" ~kwC, ~ ka,)
G i
e

P k2 LoCo — O — 1

C,
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If Cy < C,, w?LyCy ~
we obtain

1, and for sufficiently high &

| V,kl Cy 1

IV C k2
For (()lpltt.s circuit, I'ig. 2,

o1
Ve _ 7 kaC, B 1
Vs . 1 kRwilC, —
J (kwL - ch—y ’

Since w?l.C, ~ 1, again for sufficiently high 4 we have

P! 1
. l.ak I ~ kg .
When comparing both results, it is scen that the reduction

factor of grid voltage harmonics for the series-resonance
circuit is CofC,.

a === a =T ==
lc | I
0 1 |
1 1
" ] L i
g 4, oL
r.T,Ca :‘:.Ca
9 : g l
1
¢ ! ¢ !
f<_.I___.._J ,4_-1....__.1
Fig. 1 Fig. 2

The analysis based on the principle of the reactive
power bhalance of harmonics enables one to establish in
a series-resonance circuit oscillator an accurate formula
for the frequency instability due to various factors.
The partial instability caused’ by the nonline arity of the
anode-current cha.ra.ctcnstm is given by the expression

(Aw) _ Cy Rj2e?*C,C,
w /g 1 C:o Co C, = Ca

-t i !
C, C

Ang
< j (' _"c" /f-‘-1><ul:‘>'

The nonlinearity eﬁect is expressed here by the content
of anode-current harmonics n; = {,//,, (p = amplifica-
tion factor of the valve, R, = resistance of series
L4CyR, circuit, w/2n = fundamental frequenu)

On the assumption that C,~C,=C, pu> 1,
Co <€ C, 4 < k< puCylC, the formula can be simplified :

Aw Ad] .,C,, Any
(40, - o & 30 uk)
Any
- ()“ Z k- (n,,)'

(), being the quality factor of the I.OC R circuit.
The analogmal expression for an or(lmar\ Colpitts’

oscillator is
dwN 1 e (An,,)
( > - Q2 9 k2 ny '
Q) being the quallty factor of the LC,C, circuit.

It is seen from these formulae that the instability of
the series-resonance circuit can be made smaller
because y > Q and C, € C; it diminishes with the
third power of C, (for R,, w and C constant).

Radio Institute, Janusz GROSZKOWSKI
Warsaw Technical University, Poland.
22nd May 1955.
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SiIR,—Mr. W. B. Bernard’s letter in your May 1955
issue is unconvincing. [ submit that the true reason for
the dependence of frequency stability on 1./C ratio is as
follows:—

When in a condition of stable oscillation, the sum of
the reactances and resistances shown in Fig. 1(b) of
Mr. Bernard’s letter must be zero. Both C, and R, are
dependent on the frequency as well as on the amplitude
of oscillation, the amplitude dependence arising from
valve nonlincarity. I, Ry and C, are completely
independent of amplitude and to a first order of approxi-
mation, of frequency also.

At any given amplitude and frequency (w/2%), C, and
R, are specified by the values of C,, C, [Fig. 1 (a)]and the
valve parameters.  For ooperation at the Irequency
w{27, the series combination of L, and C, must present
a total reactance wly — 1jwCy = 1/wC,.

If, due to a change in operating conditions, a change
occurs in the effective value of C,, the reactance balance
around the circuit must be restored by a change in
frequency. A change in w of dw produces a change in
reactance of the L, C, combination of [Ly | 1/wy2C,)
X dw so that the larger the value of L, and hence of the
1o{Cy ratio, the smaller is the frequency change necessary
to restore the reactance balance. Hence the greater
frequency stability.
Farnborough,

Hants.

12th July 1955.

DG RED

Compression and Expansion of Programme Time
SiR,—The Editorial in the July issue of Wireless
Engineer reminded me that some years ago | suggested*
an clectronic analogue of Gabor's film-and-slit method
of frequency compression or expansion.  Briefly, the idea
was that the signal should be sent down a delay line, the
velocity in which corresponds to the velocity of the tape
or film in the mechanical methods.  Attached to this line
there would be a number of sampling devices, eg.,
valves, at regular intervals and these would be activated
by a scanning signal which progressed at a rate differing
from that of the signal.  While cach sampling device was
actuated it would reproduce unchanged the section of
signal passing it, but transfer of the action to the next
sampling unit would either repeat or omit part of the
signal, according to the sense of the relative velocity of
signal and sampling «ontrol.  Since the device is
electronic and contains no mechanical parts, the durations
of successive samples could be made as short as desired.
The sampling devices could also be made to fade in and
out gradually if desired tcf. the use of graded slits in the
optical method), so as to minimize discontinuitiesin the
output.
The University,
Birmingham.
13th July 1955.
*British Patent No. 640015

. AL BELL

V.H,F.-F.M. Broadcasting

Si1R,- =Your Editorial in the June issue says that “'good
f.m. reception is possible with lower field strengths than
are necessary for good television pictures and so the
need for an efficient aerial system is less’".

This statement needs some qualification. It is probably
true that a lower signal input to the receiver is necessary
for the satisfactory reception of sound broadcasting in
Band II using frequency modulation than for television
broadcasting in Band 1; many listeners will, therefore,
be content with a simpler aerial for Band 11 than they
would use for television in Band 1. On the other hand,
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experience has shown that a field strength of 100 pV/m
corresponding with peak white is generally acceptable for
vision in Band I, wherecas the B.B.C. regards 250 pV/m
as the limit of the normal service area for Band I1. This
does not scem to be in accord with your statement as
quoted above and some explanation may therefore be
necessary.

Various factors enterinto the situation, some technical,
some psychological. The television service offers to the
public a means of entertainment additional to the well-
cstablished sound broadcasting service and this no doubt
accounts for the willingness of large numbers of viewers
to purchase and install television reccivers in areas in
which the field strength is comparatively low and where
appreciable interference and, possibly, fading are ex-
perienced.  In fact, about three per cent of television
licence holders in this country are receiving a field
strength of less than 100 pV/m,

V.H.F. sound in Band 11 is, however, intended by the
B.B.C. to provide a higher standard of reception, with
almost complete freedom from interference, than that
now provided by the existing long- and medium-wave
sound-broadcasting services, A high standard is neces-
sary since experience shows that ignition interference,
for example, 1s much more disturbing in sound alone
than when the viewing of a picture serves to distract the
listener’s attention from the sound. 1t is also intended
that listeners, whenever practicable, shall be able to
obtain good reception using simple indoor acrials,

Hence it is considered that, notwithstanding the
considerable advantage of frequency modulation over
amplitude modulation, 230 pV/m is necessary for a fully
satisfactory sound service in Band I1.

Perhaps a further qualification is necessary.  Although
good v.h.2. sound reception is possible with indoor aerials
(or even with acrials built into the receiver) in areas
where the ficld strength is reasonably high, efficient
outdoor aerials are strongly to be recommended necar the
fringes of the service area amd in built-up arcas where
ignition :nterference and multi-path cffects can be
troublesome.

1L L. E. PawLEy
British Broadcasting Corporation,
Broadcasting House,
London, W.1.
14th July 1955.

[While it is true that the picture does distract the
listener’s attention from defects in television sound,
ignition interference usually has a much greater nuisance
value on vision than on sound. We still feel, therefore,
that television calls for a good deal higher field strength
than f.m. sound for an equally good performance in the
two cases.

It may well be that a field strength of 250 wV/m is
necessary for fam. sound in order that a worth-while
improvement over the medium- and long-wave trans-
missions may be obtained.  Undoubtedly, the results are
then good, but we should not class television reception
with a fiekl strength of only 100 wV/m as the same order
of goodness, even if it is “generally acceptable”.—W.T.C |

Linear Phase Modulator

Sir,—A simple method of phase modulation has been
devised by using the variation of phase of the output
voltage of a feedback amplifier which occurs when the
mutual conductance g, of the valve is varied. It is
found that when a large capacitance is connected
between the grid and anode of an amplificr valve, the
output phase varies linearly with g, over a considerable
range, thus giving a suitable means of phase modulating
a signal.
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If Z, be the anode-grid impedance and Z, be the
anode load, then the output voltage is given by (Fig. 1)
(1 — gnZ1)2Z,

Zy+ Zy
provided Z, Z, € (Z, 4- Z,)r, which is always the casce
in a multigrid valve.

We shall consider the simplest case, when Z, = 1/jwC,
and Z, = R,. The phase of the output voltage is given
by

Ey=E,

&m + 1/R,
. - m T i . .. I
tan 8 wC, = gujaC, R, (1)
Fig. 1
M R +0

Fig. 2

Fig. 2 shows the variation of 8 with g, for the three
cases, viz. (i) wC,> 1[/R,, () wC, = 1[/R,. (ii))wC, < 1/R,
at a carrier frequency of 160 kcfs. It is seen that in
case (i), 8 varies linearly with g, for about 30° (about
0-5 radian). Asitis possible to vary the g, of a pentagrid

converter valve (e.g., 6SA7) linearly with the oscillator,

grid bias, a linear phase modulation of 0-25 radian on
either side may be easily produced by this method.
Incidentally, it is half the amount of modulation produced
in a conventional Armstrong modulator.

The method is much simpler than that of Armstrong
and, employing two stages in cascade, it will give the
same amount of modulation with crystal frequency
stability.

The magnitude of the gain A
given by

of the amplifier is

8n® + wiC,? L@
1/R,® + w?C,?
and is plotted in Fig. 3.

ld =

256

It is seen that for case (i) the change in | A ' with g,
is negligibly small and the consequent amplitude moduia-
tion may be eliminated easily.

The reflected input impedance duc to the grid-
V4 =l __Z/szcl,
T e+ R,
magnitude of which is plotted in Vig. 4 for all the three
cases. In order to prevent the variation of input loading
with g, and the consequent production of amplitude
modulation, the source impedance should be made low,
for example, by using a cathode follower. The phase of

anode coupling is given by the

R,=25¢0)

1”2
"n
|4l

al-

sl

o

He @, =2x10" (>> 7'?;)
L;-;fL-J_."ka . PR S
0 o7 62 0% 064 05 06 c7 ‘08 Ge )

g- (=2 )

1Zp12 107

the input remains practically constant with g,. TFor
R, = 25 kQ, wC| =2 x 10-30 and the source impedance
= 1 k2, the input phasc varies from zero to — 34’
only, for a variation in g, from 0 to 1 mA/V,

It has been found that the addition of a few tens of
pl’ of capacitance in parallel with the anode load has
practically no effect on 8 or | 4 |. The change in input
phase is reduced still further. Thus the use of a capaci-
tive resistance in the plate load (which happens always
in practice) will not alter the situation as shown above.

G. S. SaNvaL
B. CHATTERJEE
Indian Institute of Technology,
Kharagpur, India.
26th May 1955.
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Rectifier-Filter Characteristics

Sir,—I should like to add a few remarks to the excellent
article on rectifiers by Mr. Heymann in your June issue.
Mr. Heymann states correctly that a constant direct
voltage across the filter capacitor is a reasonable assump-
tion for 2afCR > 25 (half-wave rectifier) or 2afCR > 10
(full-wave rectifier). It seems, however, that the nse of
this qualification in his approximate solution is over-
restrictive in many cases and theoretically is not the
most convenient one to ase.

From Fig. 3 in Schade* the approximate solution is
good in the following examples:

r|R 2afCR

1 2 v I¢ is the ratio of effective
1/2 4 rectifier resistance

1/5 10 to load resistance

I'rom theoretical considerations the condition for the
source voltage 17 to be in phase with the diode current ¢,
as shown in Mr. Hevmaun's Iig. 2, is that the reactance
of the capacitor be negligible in comparison to the diode
resistance in series with it.  Thus, a restriction on the
approximate solution is:

2afCr > | thalf-wave)

4n/Cr > | (Tull-wave).
where the towest frequency is 2f in the full-wave case.
Since normally R > r, the condition N8 > 1 will then
also be satisfied (constant direct voltage).

I‘rom Schade, Figs. 3 and 4, a very mild inequality is
required for accuracy consistent with the aims of this
article:

2afCr > 2 (half-wave)

2afCr > 1 (full-wave).
This requires that 2afCr vary from > 2 for r, R = | to
> 20 for /R = 1/10 in the half-wave case.

I should also like to point out that Mr. Hevmann’s
methods of approximation may be applied to the case of
valve-voltmeter rectifier efficiency considered by Mr,
Scroggie in vour February 1955 issuc.  An approximate
solution to Mr, Scroggice’s equation (1) is

113
9= <31r II‘;'
o 21
and =l | =1 -2 (fe)

for the series-diode circuit.  With Ry replacing X2, the
above is a solution to his equation (4) for the shunt diode
circuit, where @ is the conduction angle in radians, R,
the diode plus source resistance, Ry the source resistance,
1", the direct output voltage, and .. the peak source
voltage, all in Mr. Scroggie’s notation.

This approximate equation for rectification efficiency,
n, agrees with Mr. Scroggice's Iig. 7 to as closely as can be
read on his graph. It agrees with his Iig. 6 to within 19,
of y for RJR < 0-01 and deteriorates in accuracy as 8
and R./R increase.

Mavrice V. Jovee
PPolytechnic Institute of Brooklvn,
Brooklyn, New York, U.S.A.
12th July 1955,

*O. H. Schade, Proc. Inst. Ra—:;i;) Engrs, 1943, Vol. 31, pp. 341-361.

Differential- Amplifier Design

SirR,—1} should like to reply to the letter by Mr. J.
Ross Macdonald which appeared in your issue for July
1955, commenting on my article in the March 1955 issue.

It can be shown that the type of circuit described in
reference 1 of Mr. Macdonald’s letter (E.M.1. Laberatories,
1946) cannot be relicd upon to have a transmission
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factor (as defined by Parnum, and in my article) greater
than u%/4u, where 4u is the difference between the
amplifcation factors of the upper two valves in the
circuit. Also, Mr. Macdonald is incorrect in supposing
that the rejection ratio of two amplifier stages in cascade
is the product of their separate rejection ratios.  The
calculation of the rejection ratio of a multi-stage ampli-
fier, from the properties of the separate stages, has been
treated by Parnum!.

Mr. Macdonald and | have now cxchanged some
correspondence on this subject, and have agreed that his
comments would be appropriate if rejection ratio were
taken, as he took it, to mean the ratio of in-phase inpat
signal to in-phasc output signal. This ratio is important
when a balanced output is required, and an accurately
balanced output was the chief aim in the work described
in Mr. Macdonald’s references 2 and 3. The purpose of
the circuits of my article was ditferent, however.

AL ML ANDREW
Massachusetts Institute of Technology,
Cambridge,
Mass., U.S.A.
8th August 1955,
REFERENCE

' D. H. Parnum, * Trausimission Factor of Differential Amplifiers™.
Wireless Engineer, 1950, Vol. 27, p. 123,

NEW BOOKS

Magnetic Amplifiers
By H. F. StorM. Pp. 545 + xix.
Ltd., 37 Essex Street, London, W.C.2.

Chapman & Hall
Price 108s.

Mathematics of Engineering Systems

By DeEReK IF. LawbEN, MLA. Pp. 380 + viii. Methuen
& Co. Ltd., 36 Essex Street, London, W.C.2. Price 30s.

P.H. Brans Radio-Tube Vade Mecum. 12th Edition.

Pp. 381 + xxvi. 2. H. Brans, Antwerp.  Agents:
Bailey Bros. & Swinfen Ltd., 46 St. Giles High Street,
London, W.C.2. Price 27s. 6d.

Photo-Electric Handbook

By G. A. G. lve. Pp. 152 4 vii. George Newnes Ltd.,
Southampton Street, Strand, London, W.C.2. Price
17s. 6d.

Eine Anlage fiir Impuls-Code-Modulation

By Dr. Camillo Margna. Pp. 83. Verlag Leeman,
Zurich. Price Fr. 8.30.

Second Thoughts on Radio Theory

By “CATHODE Ravy’’. Pp. 409, Dublished for Wireless
World by lliffe & Sons Ltd., Dorset House, Stamford
Street, London, S.E.l. Price 25s.

WirelessWorld F. M. Tuner

By S. W, Amos, B.Sc.(Hons), ADMLEE. and G, G.
Jounsroxg, B.Sc.(Hons)). Pp. 14, Published for
Wireless World by lliffe & Sons Ltd., Dorset House,
Stamford Street, London, 8.1, Price 2s.

Thermionic Valves 1904—1954: The First Fifty

Years

Pp. 69. Institution of Electrical Engincers, Savoy
lace, London, W.C.2. Drice 4s. (members), Ys. (non-
members).
The A.R.R.L. Antenna Book

Pp. 411. American Radio Relay League, West
Hartford 7, Connecticut, U.S.A. DPrice $2.25.

257




Television, A World Survey

Pp. 51, Published for UNESCO by H.M. Stationery
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CORRECTION
In " Radiation from Acrials’”’ in the August issuc, an
crror occurred in Equ. (23) on p. 225, This equation shoutd
rcad > = P* In Equ. (21) the symbol 1,, was omitted
from the second term on the right-band side.

BRIT.LR.E. MEETING
28th September.  'Extending the Limits of Resistance
Measurement using Electronic Techniques™, by G. |I.
Hitchcox, to be held at 6.30 at the London School of
Hygiene and Tropical Medicine, Keppel Street, Gower
Street, London, W.C.1.

STANDARD-FREQUENCY TRANSMISSIONS

(Communication from the National Physical Laboratory)

Values for July 1955

Frequency deviation from
nominal: parts in 108 Lead of MSF
Date impulses on
1955 GBR 1000
July MSF 60 kc/s Droitwich G.M.T. time
1429-1530 200 ke/fs signal in
G.M.T. 1030 G.M.T. milliseconds
| —0-1 +2 +10-1
2 NM -2 NM
3 NM +2 NM
4 0-0 +2 -+ 97
S +0.1 +2 + 96
6 -0.0 - 4 8-4
7 0-0 -1 -8
8 0-0 - NM
9 NM -2 NM
10 NM £33 NM
1 - 01 -3 + 85
12 401 2 - 83
13 +0-1 -2 + 82
14 +041 -2 4- 82
15 -+ 01 +2 -+ 86
16 NM L NM
17 NM NM NM
18 01 3 + 88
19 -+02 42 + 89
20 -+0-2 -3 L92
21 402 -3 NM
22 402 +3 494
23 03 -3 NM
24 4 03 -3 NM
25 -4-0-2 43 -+ 10-4
26 +-0:2 -4 NM
27 +-0-2 +3 NM
28 +0-2 +4 -4-10-0
29 +0-3 +4 +12:2
30 +0-3 +3 NM
3i +03 +4 NM

The values are based on astronomical data available on Ist August 1955,
NM = Not Measured.
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