Resistors	i total	Capacitors	Semiconductors
R1, R2 R3, R4 R5, 14, 22, 23, 37 R6, 38 R11, 17, 33 R9 R10 R12 R24 R7, 8, 18, 21, 34 R15, 29, 30 R19 R20 R26, 35, R27, 28 R31 R32 R39, 40 R13, 36	47R 1W 3R3 330k 1k 4k7 10k 56R 100k 22k 27R 100R 1k5 18R 150R 220R 4R7 330R 2k2 10R 390R	C1,C4,C31 to 36,C38 to 49 1nF C2 2p2 (for 3W drive) 8p2 (for ½W drive) C3 10uF/15V tantatalum C5, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23 10nF C9,15,19,24 2u2/15V tant C25,C27 220p C26 330p C28,30 68p C29 150p CX 2p2 TC1,2 2 to 22p trimmer VC1 250 or 500p variable C37 6p8	TR1 BC238, BC239 TR2 BFY51 TR3,4 BC327, BC328 TR5 3N204 or 35K45/51 TR6, 10, 11 BSX20, 2N2369 TR7 2N3553 TR8,9 2N4427 D1, 2, 3, 4, 5, 7, 9, 10, 11 11 1N4148 D6 1N4001 D8 10V1 Zener diode Miscellaneous 65MHz · (20m) HC18/u crystal 61.5MHz (15m) HC18/u crystal 58MHz (10m) HC18/u crystal RLY1 to 6 1150-060-19V
RX 22k (mounted u across L4	nderside	RFchokes	T1 to 5 10mm block ferrite cores (J Birkett)
RY (mounted underside text) VR1 50k preset,	L5-see 4k7 vertical	RFC1 4u7 RFC2, 3, 4, 6, 7 Sturns 30swg through ferrite bead REC5 10.	6 off T50-6 Amidon toroids TMP Electronics, Ambit SBL-1 balanced mixer SW1 2 pole 3 way
NOTE: L3 and L4 may be replaced with TOKO pre-wound coils type 301-KU-0800. There are extra holes and			

OTE: L3 and L4 may be replaced with TOKO pre-wound coils type 301-KU-0800. There are extra holes and pads shown in the oscillator board PCB artwork to accomodate them.

The components of one oscillator section only have been included in this parts list. If operation on all three bands is required then the extra components associated with two further oscillator strips will be required.

lator circuits, differing only in the fundamental frequency of the crystals. Taking the 20 metre conversion system as an example; if we have an IF of 144MHz, and wish to tune 14MHz, a local oscillator injection of 130MHz is required at the mixer. Here the sum (144 + 130 =274MHz) and the difference (144 - 130 =14MHz) frequencies are generated and suitably filtered by the tuned circuits in the preselector. It will be noted that the conversion crystals are within a few MHz of each other, which greatly simplifies the construction of the injection oscillators. The stabilised overtone circuit around TR10, tuned by L3 produces a signal half that required at the output. The small inductance L4 in series with the crystal allows precise frequency control. Resistor RX mounted underside across L4 reduces any possibility of the stage self-oscillating. This signal is lightly coupled into the next stage TR11 operating in a grounded base mode which acts as a doubler. The resultant frequency appears across L5, tuned by TC1. L6 and TC2 form the second section of the band-pass filter which is sharply tuned at the output frequency. The output from each oscillator is connected to

the same point via diode D9, thus eliminating manual switching at RF. As HT is applied to each oscillator, D9 conducts through R37 and R38, allowing low impedance injection into the mixer. At the same time the other output diodes are reverse biased, and so effectively isolate the signal from the other tuned circuits.

The required mixing product is selected by a twin-section torroidal filter (active both on transmit and receive)' tuned by a twin-section 250pF variable capacitor. Low impedance transformation is achieved by the link-windings on the input and output. Originally, inductive coupling between the toroids was used, but later abandoned as the capacitive coupling between the preselector components proved to give very satisfactory performance.

Transmit and receive signals are directed through relay RLY3. On receive the incoming signal passes through the low-pass filter and appears at the receive side of relay RLY4 (point 'A'). This must be connected to RLY3 (point 'A') via a short length of coaxial cable. Depending on the VHF source in use, it is possible to add a wide-band receive pre-amplifier at a later stage, particularly if the unit is modified for higher output frequencies. In the author's case, signals were so strong that a switched attenuator was envisaged to prevent over-loading the prime-mover! On transmit, the low level signal is amplified by the broad-band class 'A' amplifiers producing an output of around 3 watts into a 500hm load. No originality whatsoever is claimed for the design. The information is readily available to anyone who has a copy of the 'constructors bible', Solid State Design for the Radio Amgteur.

It appears that Frank, our illustrious Editor, and myself were thinking along the same lines when he described the broadband transmit pre-amplifier chain in an earlier edition of this magazine. In fact, I thank him most sincerely for the information on the wide-band transformers which are used at each stage. TR5 acts as an impedance matching device. Any attempt to self-oscillate is halted by R9 across the input. To further reduce the possibilities of self-oscillation, the tantalum capacitors provide the necessary LF decoupling. The high gain VHF devices used for TR6 and TR7 increase the signal sufficiently to drive the push-pull amplifier TR8 and TR9