INSIDE! DESIGNS FOR SPLENDID WALL CABINET

[ublished by GEO. NEWNES, LTD. 8-11, Southampion Street, Strand, London. W.C.2.

6d. PACKETS OF SIMPLE FRETWORK DESIGNS

A TOY RAILWAY

- cmaplete sit of monlel:. I abterns for toll different pors. - porher can cul them onid cisio

10 Designs for Gd
DESIGNS FOR THE BECINNER.

1 ut of desizns Vith ind sir atwers: for Hebt weflt arel Asple article. "an be molds in odd pinces of xan.
8 Designs for Gd.

These packets of designs are of everyday useful articles and models which can be made in an hour from odd pieces of wood. Tull size patterns with instructions on cutting, printed on strong paper. Real bargain packets at the price.

BRANCEES AND AGENCEES.
Eflow are the addresses where Hoblbes goods call be putchased. In adaition all leading stores and irol mongers stock or can ohtain yonr regnirements in fretwork and woodwork, designs, wood, turned legs,
mouldine, polish, wireless accessories, etc.. tic.
HOBBIES OWN BRANCMFS
LONDON - 65 NEW OXFORD STREET, W.C
LONDON - \quad LONDON NEWITGTISHOPSGATE E.C
GLASGOW 326 ARCYYE STREET
MANCHESTER
MOA PICCADILLE
BIRMINGHAM
9A HIGF STREET
SEEFFIELD 10 OUEST PAUL'S GARADE
LELDS $\operatorname{SOUTEAMPTON10\text {QUERNVICTORIASTREET}}$
SOUTEAMPTON - 25 BERNARD STREET.
CANADA 844° YONGE STEEET, TONONTO.

HOBBIES AGENCIES

 M. Nr 68 H. rueu virus. Bradford - Blackburn. Ar. A
 28. H Hls fonal; Canterbury.-Mr. T. D. (nmotnau, 33 Burum. Kirit and 16 sit Gourge's Nirint; Cardiff. J, Halls (Tonle), I.ru
 Dover.-Ur. P. F. Bntham, Quevat Marinas, Dublio.- Vr.

 Newport, Mon-1, Halls Tomkl Jid., 81. Hugh Nicmot

HEAD OFFICE AND HORKS:

DEREHAM, NORFOLK

LITTLE THINGS THAT COUNT

How many times have you been "hung-up" for a single screw, or just one certain hinge? Don't repeat such an experience, but have a supply at hand. A stock of popular sizes in all three subjects

STRONG BRASS HINGES

These hinges are well made and specially suitable for Boxes, Cabinets, ctc. Although thin, they are strong and are guaranteed to give satisfaction in any service.

$$
21 \frac{1}{4} \text { In } \frac{3}{3},
$$

Prices 4d. 2d. $1 \frac{1}{2} \mathrm{~d}$. id. Id. Id. 1d. per pair

 constry, or from
HOBBIES ITD., DEREHAM, NORFOLK.
is no ill store at any time. The quality can be relied upon and the price is right.

BRASS AND IRON NAILS

These to special froterix aite-very thin but very they are sud quite stsmat. they are supplied in bre-1-ju. long, ani are atin. an $t \rightarrow n$ to ibe fremarber.

6d. per Boz.

Postage 2d. extra.

BRASS AND IRON SCREWS

Hretmontres require swomal inim-shanked sovens

 IRON: 1dd. dozen. $1 / 2$ gross.
 BRASS: 2! H. dozen. $2 / 2$ gross.

Postage I!d.

An Ingenious Spanner.

T HRKl: sems to be no and to the mamber of new spanners produed for thocomeniene of handymen Here is the latest. It will be seen that it is of the set

A sel spanner with interchangeable jave. spanmer variety and its chiof appeal re poses in the fact that only one holder is neressary. The gap in the jaw. it will be sem, takes a number 0 f interchangeable jaws. each of which will suit a particular style of mut. The jaws spring into plater and stay there. A slight pressure on the tail-piece renoves them.

A Practical Chemistry Outfit.

THE correspondence we receive from renders shows that chomisury is a fascinating and popalar hobhy. The famous firm of Lotts Bricks. Ltd., have recently marketed a number of chemistry hoses at prices varying from 3s. ©ol. to 1 (k. Gd. They have twen plamed by a practicalchemist, and earhbox containsagencroussupply of al! those chemicals which can safely be used at honie he young and old alike for the performance of a number of fascinating chemical experiments. By means of these chemical outlits the reader will be abin to perform all of those experiments detailed from time to time by our Cheninistry contribu. tor-experiments such as growing roloured trees. making farres making big erystals, etce. ete. Box No. 1. at Bs. Bul. comains ischemicals, a mumber of accessonic... and an illustrated hand. howt of 4-3 experinents. Box No. ?. at 6e.. hans 22 chemical.. a Bumsen burner. aceressorims. and a buok of sil experiments. Box Nor. 3. at 10s. 6id. has 30 chemionts. a bunten tharner. extra aceessorions. and a book of 131 experiments. The makers supply spares.

A chap "dim and bright" cycle lamp.

A New Gramophone Sound-box.

THE gramophone somul-box how iinustrated. mut fitted with as the "Big licn," costs Ss. 6ol., and in fitted with a stylus bar ruming in miniature ball bearings. It has a metal dia-
phragen of alunuinium and gives fas greater volume than the average sound-hox.

A New Cycle Lamp.

A

VERC powertul (ychor lamp. having a two-way switch. giving a dimand hright light. is shown at the foot of this page. Tive case only costs : in. Gd.. on somplete with two porket lamp hatteries ons if is strongly made.

Safety-First Armlet.

A NMPLF: device. consisting of an elastic armber. frout. has remontly been marketed at $6 d$. (hy post ne in 11 is internded to be used by pedest riangs who have to use dark comatry roads, as well as by hikers and campers. It may easily he carried in the pocket whon not in use.

Making Perfect Joints.

WE are oltun asked which is the most effective means of making satisfartorily stuck joints for models. ete. In our experience the use of an adhestive such as Neccotino gives excellent results. with very little trouble and at listle cost.
seccotine will stick and repair practically everything. It is recom. mended to the readere of Hobmes because we havo knowt and used it for nearly forty vears. It sets hard as a rock and a neat joint is alwas made. It can be obtained everswhere in tuhes tid.. Gd.. and !d. An inter. costing broklet desribing the uaes of Seccotinc can be had from the manufacturer.

The address of the manufacturers of items mentioned on this page can be obtained on application to the Editg.

LIST OF COMPONENTS.

One Antokoil All-Wave Tumer
loxide 2 -volt aecunulator
Tro JR.I. Dux I.F. transfor J.otus).
Ono J.I. Dux L.F. transformers,
Lissen if. 1 bited (Liseen)
One H.F', cloke (lissen).
Ons 0005 aerial tuning condenker (Polar).
One 0003 variable enndenser (Polar).
One 3-1negohn grid leak (Dnlilier)
One fixed condenser .0003 ('I.C.C.)
Ore .01 fixm condenser (T.C.C.)
rerminals: acrial, earth, I.T positive, L, II it negitive, H.T positive $\overline{3}, 11{ }^{\circ} \mathrm{m}$ negative, "Jourl. speaker positivo and negative bias positive, grid bias nogative 1, grid bias negative 2 (Ctix).
One ebonite panel, 14in. by 7 in . baseboard 15 im . by 7in. (American Hard laubber Co.)
Two panel support brackels (Canco). Ore rerminal strip.
Wire for connections.
o correspond with tho letter reierences in the circuit diagram. It will bo seen in the photograph that the Autokoil is mounted vertieally, with the compensating condenser knob at the top, in which position the reaction knob is the central one and the wave-change knob the lowest of the three. In operating the set, therefore, first adjust the lowest knob to the wavelength band on which it is desired to tune, remembering that with the switch arm in the extreme left position (viewed from the panel) the set will receive on the lower wave band, and in the extreme right position tho highest wave band. The Autokoil tunes from 200 to 2,000 metres.

Next, adjust the aerial tuning conclenser until is station is received, then adjust the reaction knob, next the compensuting eondenser knob, and finally the .0003 variablo condenser. It will probably bo found that this set works best with H.T. 1 plugged into about 20 to 30 H.T. volts, and a little experiment with the other tappings will adjust the purity of the reception. Similar adjustments should be carried out with the grid-bias tappings.

The set is simplo to operate and if the eirevit diagram is carefully followed requires a minimum of
adjustment.

W
HEN one considers the amount of time members of the Royal Family have to devote to social duties, one wonlems that they can find time for hoblies, and still more, that many of them harloour the insutiable spirit of the eollector.
The Prince of Wales has probably the largest rango of pastimes, which group themselves muder the two nain headings of sport and music, except for stamp collecting, which taste ho has inherited from his father. When the Prince was up) at ()xford he played soccer for the Magralen 2nd XI, but since then he has developed a keen interest in riding and biggame shooting, and has lately taken tos speed boat racing.

A leaning towards musis is strongly evinced in the Royal Fanity, and tho Prince is an adept with the saxophone and ukulele, and is learning to play the banjo.

Besides thosi instruments ho plays the bagpipes, and has a large collection of gramophone records kept well up to date, and he never travels without the gramophone given to him hy Queen Alexandra.
When Princoss Mary is visiting Yorkshire she does not spend all her time hunting. She gives many hours to pratice at the piano.
Another royal pianist is Prince George, who confines himself to light musie. Ho hets is keen car and sense of rhythm, and can play most, of tho popular tunes by gar. Atan impromptu dances His Royal Highness played jazz while the gramophons was being mended.
The Duchess of York's love of music takes her to tho ohd wiord instruments, and she plays the spinet with considerable ability, and is having lessons on tho harp.

Possibly the voguo for doing tapestry work is due io The Duehess, who amused herself thus when convalescing after inflnenza some time ago. The Duke, however, shows more interest in engineering than music, and has

> ROYAL HOBBIES
the deft hands of a mechanic, which enable him to work at the lathe set up in his study at 145, Piccoadilly. He has also begun a collection of nordel en. gines and has twenty tiny brass replicas of noted locomotives kept in a cabinet, reforred to by Princess Elizabeth as "Duddy's toy eupboard."
In a top room at Buckingham Palace is housed the largest and most perfeet collection of British and Colonial stamps in the world. The King is often incorreetly described as a collector of foreign stamps, but in those two hundred volumes there is not one stamp which was not issuod in the British Empire.

His Majesty has a special interust in his book of errors and emriosities which are, naturally, more valuable than the perfect specimens owing to their rarity. Errors are not, as might bo imagined, presented to the king, for it is the duty of specially-appointed examiners to destroy all stamps which aro printed imperfectly, and all the King's stamps are obtained by means of exchange or through sales and agents. Many times stamp enthusiasts have been commanded to the palace.
Another of the King's hobbies is collecting old wlocks, and he also adds to the collection of music originated by George III and Queen Charlotte.
Curios and antiques occupy the spare time of the Queen, particularly English and Chinese lacquer. The Chinese rom in Buckinglam Palace proved such a suecess that Her Majesty determined to decorate one similarly at Windsor, but Sandringham is her favomrit, residene, where her alpartments are furnished with Chippendale, Hepplewhite, and Sheraton. It is from here that tho Qumen chooses her exquisite pieces for rxhibition and here also that she has her favourito piano and ler collection of miniatures of the Royal Family, when they were children,

Fig. 4.-A revolving lamp shade worled by hot air.

WLi stated in the first article of this series that heat is transinitted in three ways, namely, by compluction. convection and radiation. We have gren examples of conduction and shown how some substances are better conductors than others. Let us now inake some experiments in convection and radiation.

In heating liquids convection plays an important part. For instance, water which is a poor conchetor, would take far longer to the faet that as at the lotton of lieated it rises to
 heat were it not for soon as the water the ressel becomes the top and allows soine of the colder water to take its place. This cold water in turn becomes honted and rises, and so the cuele goes on until all the water is brought to the same temperat ure.
To Show the Con. vection Currents in Liquids.
pill a glass llask or boakor with water and drop in a
fow rrystals of potassium permanganate. Hont the beaker over a small flame. The water above the hented spot becomes warm and ascends. coloned by the permangan. ate. When it reswhes the top it spreads out and then driscemels on the outside as shown by the arrows in lig. 1. Now if wo can arrange to heat the water in such a manner that comsertion camot take place, only lhat part in contact with the source of heat will berome warmed. This is because water, liko most liquids, is a very poor conductor.

To Boil Water in a Tube Containing Ice.

Fill a test tube with water into which has been placed a small piece of ice. If you cannot get ico a piece of candle wax wild sere to demonstrate the point. Now heat the hottom only of the tube. The ice or wax quickly molts and the water boils. rontents of the tube and perform the experiment again, but this time heating the tube near the top of the water as in Fig. -. The water wilt soon hoil at the fop but will remain cold at the bottom, boiling water and ice being present in the tube at the sume time. In the first caso the whole of tho whter becomes heated, due to conveetion. In the seend case. however, comvection does mot take place since the hot water is already at the top and therefore cannot rise any farther. Lagineers are carofnl when clesigning boitres. ladiaturs, and hot

Fig. 1.-Showing the convectio currcnts in liquid.
Throw away the \square

SCIENTIFIC EXPERIMENTS

$\mathbb{B y}$ W. Richardson

Previous articles on this subject appeared in "Hobbies" Nos. 1872, 1875 and 1886.
water systems etc.. to see that full uso is mado of convection. For instance, hoiler tubes aro not mado horizontal, but rise slighty from the furnace end so as to sot up proper cireulation and thus distribute the heat. The hot water from the wator jacket of a motor car ongine is led to the top of the radiator, whers it iweomes cooled and sinks to the hottom. It is then lod back to the bottom of the water jucket to go through the same process again.

Convection ocerrs in gases in much tho same way as in liquids. Hero is a simple experiment:

To Show Convection Currents in Air.

Plaeo a lighted candle in a shallow dish and just cover the hottom with water so as to make an air tight joint with a lamp glass which is now placed over the candle. The candle flame will become smoky and go out (see Fig. 3). Relight the candle and replace the glass but. this tine, before the candle goos out, slide a strip of card down the lamp chmmey. The candle will immediately brighten up and continuo to burn in a normal nanner. The rerson is that. whereas in the first case tho flame is extinguished for the want of air due to the lack of circulation, in tho second ease the hot, air rises up one side of tho card division and frosh air descenis the other side to take its place. If a piece of smoulduring paper is hold as shown in the illustration the smoke from it will pass down one side of the eard and energe from the other, elearly showing the path of the air currents. Here is another interesling experiment.

To Make a Revolving Lamp Shade, Worked by Hot Air.

This is a very cute dovice, sometimes used for advert.ising and is extromely simple to make. It eonsists of a light eard shade which is supported on the "pip" of an electric bulb fitted to a tablo lamp. It is ronstructedas slown in Fig. 4 . and depends for its action on the rising curcents of hot air from the bulb. Thees thive the vimes and so revolvo the shade. Dainty designs may be cut in tho sides of

paper. A couplo of such lamps do much to brighten the table at dinner or at a birthday party.

Before turning our attention to radiation wo aro going to toll you of a rather exciting experiment which is not strictly eoncerned with convection. It is dependent on the rising of coal gas, due to its lightness rather than to its being heated.

The Exploding Tin.

Pierce a hole about $\frac{1}{2}$ in. in diameter in both the lid and the bottom oi a treacle or eustard. powder tin. Turn the tin upside down and, placing a finger over the hole in the bottom, fill it completoly with coal gas hy holding it over a gas jet so that tho burnor enters the hole in the lid (see Fig. 5). Hold it in position for some seconds to expel all the air. Turn off the gas and remove the tin. Hold it upside down still and apply a match to the hole in the bottom. The gas will light and continue to burn steadily but the flame will gradually get smaller and smaller until at last you will think it is going out. Just as it gets to its lowest, however, there is a loud explosion and the lid of the tin flies off on to the Hoor! The explanation is this: The gas, owing to its lightness, graduaily rises and passes out of the hole in the bottom of the tin where it burns steadily. At the same time air enters through the hole in the lid and takes its place. Presently astate is reached where the tin contains not gas only but a highly cxplosive

Fig. 7.-A differential air unwanted black. Now grind up some mercuric iodide, which is mo scarlet powder, with a little gum water and paint the back of the tin-foil with it. Heat a flat piece of iron to redness and hold it about two inches from the front on which you have the outline of the dagger. Gradually you will see a yellow dagger appear on the red side of the tin. On removing the hot iron the dagger will disappear, leaving a plain red surface again. What happens is that the black dagger absorbs more heat from the iron than the bright tin, thus the mercuric iodide opposite the dagger also becomes heated and as it turns yellow on heating a yellow outline of the dagger appears.

A surface which absorbs heat readily also forms a good radiator and a surface which reflects it is a poor radiator. This is why a bright polished teapot does not get cold so quickly as a dark one. It does not radiate the heat so readily. To prove this fill a tin box with hot water. One side of the box is covered with lamp black and the opposite side is bright tin (see Fig. 7). Two glass tubos with bullos at one end are comnected as shown with a " U " tube which contains some coloured water. The bulbs, which are previously blacked, are arranged on either side of the tin box so that one is opposite the black side and the other opposite the bright side. The water in the tube which would naturally be the mixture of gas and air. It is then that the flame "lights back" and explodes the contents. Just a word of caution: Make certain the tin is properly full of gas as, if there is still air present, it is likely to explode directly you hold the match near the hole, possibly very violently at that. We will now turn our attention to RADIATION.

Heat radiations and light are very similar. Both are wave motions in the cther and have the same velocity. The difference lies in the wave length, Light waves are short; violet light having the shortest wave length and red the longest. Longer waves than these are not light but heat, and longer still are wireless wares!

Apart from the fact that heat can he reflected by mirrors and lenses in the same manner as light, one of the most interesting things about it is the way in which some surfaces absorb it and others reject, or rather refeet it. For instance. a black surface absorbs heat readily, thus a black coat gets very hot and uncomfortable on a hot, sumny day. A light or silvered surface, however, reflects it, hence a white garment is more suitahlo in summer.

HOW THE YELLOW ARCGER APPEARS same level in cach limh, will be seen to go down one side and up the other. This is due to the fact that the black surface radiates moro heat than the polished and thercfore heats the bulb opposite to it more than the other one. This causes expansion of the air in the bulb and drives the water down the tube and ups the other side. The apparatus with the bulbs and " U " tube is known as a diffirential air thermometer and is well worth making. It will detect very sinall differences in temperature and is very useful in experiments on radiation. In our next article wo shall conclude our experiments on heat and light and describe some dealing with sound.

[

You may obtain a blucprint showing the wiring of this set for 1' post free from the Publisher, Geo. Newnes, Lid.. 8-11. Soutliampton Street, Strand. W.C. 2
cinted by the enthuaiast, desirone of exploting the full possibilities of the :ot

The Circuit.

'This is quite straightorwart. For tuning and raction I have chosen the best quality pheg-in coils in preference to one of the many dhal-rangecoil units on the market heranse the lather, althonghexeellent in multi-ralse sets, are mostly somewhat too shaply taned for a onc-valver, with consequent loss of signal st rength. Reaction is obtained by means of one coit only. It is so positioned as to be effective on both the medium and long waves. Smooth action is assured by the use of a difterential reaction condenser. Wave changing is acromplished by short cercuiting the long wave coil with a simpleswitch. No coil chompung is necessary! Incilentally. "shoring " this coil brings it at earth potential and being some distance from the tnedium wave coil will not ranse any" dead end "effect whon tuning on the lower band

I'flllik it is no exaggaraton to say that a welldesigned one-valver used with a good pair of phones will give practionlly the same range and generall! far better quality of reproduction than the average loud-speaker "threo": then again. the difference in runting costs is another point which cannot the over. louked.
Tho Hobbus British One. Valver is a quality sel which famsure will mowe than uphold its own amongst the many receivers of this class in existence. It is a receiver which will appeal alike to the novier and experimenter, and in order to make its construction as simplo as possible we have had prepared a full-size bheprint of the lay-ont. With this print. which. by the way, yon can obtain from Hobbies Bluegrint Dept. for a shilling. the problem of assembly is practically solved.

How to Use the Blueprint.

linu simply lay the print on the Inasehoard. place each componcul in its proper position oni the print. start the holes for the holding.down serews with an anl, remove the print and serew the parts in place. In the case of the pancl, you mark where the holes are to bee drilled in just the same way. Quite simple. isu't it?

An All-Purpose Receiver.

I have just stated that this set would appeal booth to the novice and experimenter. You may amge that this is rather a rash statement since the average experimenter serms to juige a set by the number of knobs it has, his idea being that the more adjustments that can he made. the better: On the other hand. the novice. or for that mater. the average listener, likes the controls to be as simple as possible. Wiell now. how have we orercomesuch a difliculty " Simply like this: on the front of the sel there are just the usual two knots and switches. these heing the only controls the average listener need wors ahout. laside. however yon will find two neans of ontrolling colme and selectivity. which will be aprese-

LIST OF COMPONENTS.

One .0005 MFV Polar No. 2 variable condatiser.
 (He Clix 'rye "B" Jow loss valve holder.
One .0003 i, issen fixed condenser.
 Two Jisseri " ulloff" switches. Gne Telsen $11 . \mathrm{F}_{\mathrm{t}}$ elıoke. one panie! gm, by 6 in Gne haselomad Gita, by 7 im . Battory vourds. Fous Clix Dicegrip terminals. Two ierminat nommis. one sema-fixal "Furmodenser" max. .0003 ML'U T"liree Lissen bascboard eoil holders

- Twa Clix fat-all spacle terminals
 Eastick).
(one Etn valse No. ISY゙2010 detector
one Lissen II.'1. Vatter's
one Eside L.'T. accumilator.
Gne pair theadphones. Conk: 1 lewno 60D, 1 'lum
well 60, atml 1200
Wite far cotharetigus. (wiso should you reverse the N coilmiler. the connections will be made the wrong way round. licganding the wiring. it will he noticed that no soldering iw neccsisary. sll wires being taken direct to the terminals on the various components. "lhe battery leads should be seeared to the base by means of a small brass strip as shown. then there will be no chance of arcidemally wrenching them off.

Hating gone over the comections carefully to see that werything is in order. join up your aerial earth. phones and batteries. Now plug in your coils comerting the lead from the pre-cet "Formodenser" to No. "2 tapping on the X roil. The knob on the Fomontenser should be screwed down half way. Lastly. insert the
Eta" detector value and switd on the filament. Thee wave-change switeh should be out for the medium "aves and in for the loug waves.

No. 1 tapping gives grentest selectivits, No. 2 gives mediurn selectivity, and No. "\$ gives greatest volume.

Previous articles appeared in Nos. 1854, 1855, 1856, 1858, 1861, 1866, 1858, and 1873.

CHEMISTRY FOR AMATEURS

By H. Welton

THE SIMPLE PROCESS OF DISTILLATION.

ACHEMICAL process of groat uility and intorest is that of distillation. By its momens, highly purified products are obtained from erude substances. loor instance, modern lubricating oils are distiller from crude petroleum, while "Scotch Shale," subject to the same process, provides us with paraffin (medicinal), patratiln wax and soft parattin (white and yellow. known usually as petrolemm jelly). And thus we might e:ontinue with illustrations, whisky and spirits, raw alcohol, benzene, and a multitude of other rommotitios-all these manufactured by a distillation process.
The operation is simple-it, ansists merely of converting a liquid into its vapour and then recovering it by condensing the vapour against a cool surface.
A fow moments consideration will make it evilent that the distillation process may be employed to separato a liquid from solids dissolvel in it, to sepaxate two liquids of differing boiling points-the alcohol may bo distilled over from a mixture of water and alcohol, leaving the water in the still, or again we may utilise the distillation process to obtain a liquitl the vapour of which is produced by heating somo other substance. Of this last application a good examplo may be seen in the preparation of chloroform, to be described in a later issue of this paper.

There are numerous moditications of the distillation process in common use. Perhaps the amateur chemist has already encountered suoh expressions is " distillation in vacuo," " fractional distillation," and " distillation in steam." A few words on these processe; would not be out of place, porhaps.

Distillation under Reduced Pressure (or In Vacuo).

The temperature at wheh a liguid boils and passes into the gaseous state is dependent on the pressure to whioh it is subject. Water, for instance, uncer normal atmospheric pressure (nearly fifteen pounds pe" nquaro inch) boils at a temperature of 100° Centigraile approximately. Now, if wo reduce the pressuris below that of the atmosphore, the water boils and passes into
vapour boiore a temperaturo of 100^{2} is attaincal This explains why

Eggs Cannot be Boiled on Mountains.

Although the subject of egg boiling seems a iarery from the more technical subject of distillation, it is an admirable illustration of a lowered boiltug point causent by a reduction in pressure and is proved without the use of a thermometer. Egg altumen (the " white") is coagulated at the temperature of boiling water under nommal pressure. Below 100° it is coagulated only with difticulty. The higher we ascend from the earth, the lower becomes the atmospheric pressure. Coupling these two facts you will realiso that on a high mountain boiling water is too low in temperaturo to sucecsefully boil an egg.

Fractional Distillation.

This is a method used in separating two or more mixed liquids whose boiling points lie close together, and eonsists of distilling carefully at the boiling point of the more volatile liquid. This portion of the distillate (known as the first fraction) is set aside and a second iraetion iscollected at a slightly higher temperature. Athird and more frac. tions aro collected until tho rolatilo vapours cease to be evolved. The tirst iractions contain practically all the more volatilo liquid and little of the other, whereas the final fractions contain the reverse. Fach fraction is very carefully redistilled porhaps several timesuntil completas separation is effected. This is a methot used in separating the water from alcohol in the manufacture of the latter. I shall describe shortly in this paper how to make at small quantity of alcohol, and if you have a thermometer you will be able to purify it by fractional distillation,

Distillation in Steam.

Many liquids boil at a lower temperature in contact with water with which they are immiscible. The reason for this is somewhat involved and calls for no explanation here. The operation either consists of heating the liquit and simultancously passing stoam through it, or heating the liguid and water tugether. In cach case the distillate containg both water and the liquid under treat(Continued on page 504.)

AN EFFICIENT AERIAL EARTHING SWITCH

$\mathbb{B y}$ A. J. $\mathbb{B U D D}$

A switch which entirely isolates the receiver from
the acrial and earth.

A(0 M MON practiee with maHy emna. teurs is to use a single-pole swite h_{1} for carthing the aerial when their wireloss set is not in use, the carth terminal of the set being directly commected to earth all the time. A much better arrangement is to use a switeh whinh entiroly isolates the reoniver from the aerial and carlh when pheed in the earth position.
A simple switch, which answers tho purpose very efficiently. is shown in ligus. I to 3. The materials required to make it consist of it piece of 3 in . cbonite, $4 \frac{1}{2} \mathrm{in}$. long hy 3 in. wide, four stout termi. nals with clamping nuts. a strip of sheet brass, $\quad \frac{1}{2} i n$. long by ${ }_{3}{ }^{3} 14$. wille and $\frac{1}{16} \mathrm{in}$. thick, two frase serews Zill. long, and a wooden tobbin.

Constructiona! Details.

Mark out the ebonite as indicated in Fig. 1. and drill six lobles through, the two to take the fixing serews being countersunk.

To nake the switeh arms, cut the brass into two pirees of equal length and set out the ponition of the holes and slots ancording to the dimernsions given in Fig. 5. The slots are mado by first drilling holes in the centro lines and then, with a hack-saw, cutting away the motal wot reguired. Clean ont the slots and round the ends of the arins with a fine-cut file.

Having serewed the four terminals in position, slip on the two arms and soe that the slots congage smoothly with their respectivo terminal stems. Any temoboney to bind man bo put right by slightly filing the inside of the tight slot. A small ebonite or erinoid knob

Fig. 4.-How to mart ' u the ebonite base.
cost bo serowed to the eentre of each arm as shown.
"The supports for the chonite base are made from a woodon bobbin of the kind that instrmment wire is womm on. Select one that is about dbin. long over the ends, and cut it across the centre of the corn with a tenon saw. File the sawn onds squaro, mal proced to screw the base of the switeh in position on the side of the window frame, having previously mate looles in the latter to receive the fixing serews. After passing the serews through the base-piece, the half-bobbins are slipped on tho screws, and on screw. ing home the lattor tightly quite a risid fixture results.

It will readily be seen that the woorlen distanco-piecen provide ample clearanco behind the base fer the terminal stems and connections. In making the conneetions with the various leads. the onds of these can cither be placed between washers and clamped by the end nuts. as shown in Figs. \because nud 8 . or they can bo solifered to the torminal stems before finselly serewing the switch in position.

Operation.

As shown in the photograph (l"ig, 1), the switeh is in the orvthed position. the receiver being completely isolated. When the sot is to low used. each terminal hoad

Fig. 3.-A front elecalion.

Fis. 2.-. 4 side clevation

THF making of a wall cabinet is quite a simplo affair for any owner of fretwork tools if he uses the patterns printed in the contro pages of this issue. These patterns are shown full size und make the work straightforward when they ane pasted down to actual frotwood ready to cut out with the fretsaw in tho ordinary way. They are even more simple because the door is supplied ready mouls. A pieso of work like this looks well in oak, and the parts are all cat from this material, so that they can be stained when it is complete. The framework is cut from tin. boards, tho two overlays are tin. and the plywood back is $\frac{3}{16} \mathrm{in}$.

The Construction.

Actually there is no solid back in the ordinary patterns, but one the same size and shape as tho door is glued in to fill up the aperture. The pattern of the sides hian to be extionled to a completelength of 11 in., whilst the top and floor have to be drawn out on the wood to the dimensions given. 'The two sirles halve into the floor at the joint marked A, and it is essential that tho cutting of this is carried out accurately to mako a rigid framowork. When theso thren pietess ares put together the top can be added. This piere comes flush with the back edge, but projects $\frac{1}{1} \mathrm{in}$. over the sides and iront.

The Outside Frame.

Gluc it and screw it in plawe, taking care that the insido aperture is large enough to hold the door (9in. x 8in.). This rough sase is framed up and strengthened with ornamental sido picees and brackets. 1 reeoss in the floor allows an upright side pieee to be glned and serewnd so that it comes flush with the bark. Tho actual position of the bauk of the shelt is shown by the - lotted lines. In addition to ghas, it short serew can be added through the narrow neck of woot at the top. Bencath the floor and betweon the two projecting sides is put the back shapert rail. This comms between the sides and in auldition to gluing on to threo elges can bo serewed like the former part.

The Fancy Top.

Abowo the top is an ormamontial shaped bark-thes podiment mal-and this stands lovel with thes back edge to set just over $\frac{3}{4} \mathrm{in}$. inwards from eavih side. A small ommmental overlay is required for this part, and this, like tha ono on the cloor, is merely rut from $\frac{1}{s}$ in. piece of wood and glued in the places shown by the

A HANGING WALL CABINET

dotted lines on the design patterns. In front of this pediment rail, and at right angles to it, is the long thin piece which is glued and serewed in the right angle it the joint shown 13. Be careful to get this square, and if necessary drive in a small serew at the front end. The whole framowork of the cabinet is complete, but a back of ifin. plywond is cut to fill the aperture and glued in place up to triangular or squares blocking fillets glued round the inside of the cabinet. The detail at Fig. 1 illustrates this. The fillet must, of course. be put in $\frac{3}{16}$ in. from the edge, level all round, so the plywood rests and is glued elose up to it with tho buck face flush with the rest of the work. The door has a central overlay glued on, is fitted with an ormamental eatch on the left-hand stile, whilst two hinges are serewed on to the right-hand eatge. The other portion of the sciew is fixed on the inner surface of tho sides so that the door will bo set back slightly between tho top and floor.

General Hints.

All the parts should, of course, bo cut first, लleaned up, and then tested in their proper place. Having obtained a good fit, they are glued strongly together, light markings having heen made to show the actual positions. Strengthen up if necessary with blocking pieces inside, and be sure to get the whole cabinet square so the door thay hold properly. Glue the overlays carefully so that the adhesive does not squerze wut over the laekground. If it does, the stain will hot "take" and the white surrouncling patch will show. Tho door-knob is fitted with a cateh behind, and a small niche must be made in the side to acconmodate it when closed.

A HANGING CABINET
Suitable for a small first aid
cupboard-being 13 tin. high,

Planed oak boards of the required thickness, a door ready to hang (600B) and sufficient angle fillet costs $5 /-$ (postage 9d.). A pair of hingos, catch (No. 5383) and two wall hangers, 10d. The whole lot for $6 / 7$ post freo.

 OVERLAY
ON PEDI.
MENT RAIL.

MAKING MODEL ENGINE PARTS FROM SHEET METAL

edges should be filed quite square with the sides and

 edges shouth he flied quitesquare with the sides and
finished with a fine-cut file. finished with a fine-cut file.
the file marks leing after.
wards removed by means of wards removed by means of
a piece of fine emery cloth

Fig. 3.-Connecting-rod for a model locomotive or horizontal engine
Clamp them togethe The chate down at the Clamp them together wontact. can now be tinnecl. The contre part of the rod should be fied do they register correctly, and then sweat theun toget her.

 held in position ly a number of
small brads driven into the wood
and touching the red all moud and touching the rod all round.
so that the tops of the hrads so that the tops of the harads
come just below the level it is desired to file down to. Ohd
gramphone needles answer the gramophone needles answer the
purpase quite well. The hork purpose quite well. The hork
of wood can now be held in the
vice, and the filing down of one vice, and the filing down of one
side of the rod proceeded with. side of the rod proeeceded with.
after finishing one side reversic the rod and file down the other
side in the samo manner. The

AN EXTENDING LADDER

 an outhouse or shed. If it beof fairly simple construction and can easily be taken apprart eaccll part cau be used separately.
thereby serving a number of thereby serving a number of
purposes. The extension laidder described consists of twosepprate
ladders. one of which slides hadders. one of which slides hiside the ohrer. The inner one
being in. narrower than the
inside measinement of the outer inside hemeasirenentit of the outer
ladder to athow for free sliding movement.
The Material.
The Material.
The ladder
cut from prime strasight strathaine bo red deal, planed as struighit as possible. frce from twist and
finisleded 2 gine by lin. A in. by 3in. plank will cut these
economically. Should there bo economically: Should there be
any camber when the pieces are any camber when the pieces are
planed, they should be set out in pains and arranged in such a manner that the sides. when
framed, should tend to pull each ot ther straight if the cdys should
be conver, set out the sides and be convex, set out the sides and
the position of the rungs so the
thes edge fuece the user convex edge fuees the user,
thereby causing the sides to straichiten when in use.
Cutting List.
The wood required for the
outsid ladder is as follows: Two red deal sides. latft., planed as straight as lossible and free
from twist to $2 \overline{2}$ zin. by 11 in
 thick. For the jumide ladder, wo
sides of red deal are recquired

planed as straight as pon
by 1 inn. fourtecer oak o

Setting Out.

Place the ladder sides toget her in 1 mairs,
as shown in the sketch (rig. I) and sel as shown in the sketch (rig. 1) and sel
out rungs for a 10 in. tread or rise. The out rug for a should tread of rise. Whe the inner 1 fit. bin, set the mortive
gauge to a gaug to a Tiin mottise chisel land gatige
the mortises on the upper and convex side of the centre line. Thhe idea of this
bing to cut the mortises on the counb. ing to cut the mortises on the com
pression side of the timber, thereby

$$
\begin{aligned}
& \begin{array}{l}
\text { found for ane extension laddider in } \\
\text { an outhouse or shed. If it be }
\end{array} \\
& \text { yaining strength and substance to carry the wist } \\
& \begin{array}{l}
\text { gaining strength and substance to carry the weight } \\
\text { when in use. If desired. the mortise may be set out in. }
\end{array} \\
& \text { above the eentre-line; this would improve the balance } \\
& \begin{array}{l}
\text { of the ladders. Set out the rungs for the wider and } \\
\text { narrower ladders, as per sketcla (Fig. 2), and gauge for }
\end{array}
\end{aligned}
$$ the tenons.

Construction.

Cut the mortises in the ladder sides and the tenons of the rungs. In cutting the nortises allow for hardwood
wedges. Fit the tenons in the mortises and round off

the corners of the rungs. Clean up the rungs and inne sides, ghae, cramp, test for squareness. and wedge tho
rungs. When the glue is set, clean up and round such

of the corners as are shown in the plan for the iron ctiphanids.
sides.
The Clips.
Sketches aro shown at Fig. 3 of the side and stave Alips. They may be made fronn wrought iron or mild
 are drilled for serews and a bolt which grecfludes the
posibility of an accidtont which night be caused by tho rossibility of an acredent which
strain withdrawing the screws.

Putting Together.

The ladders are fived by theading the ton of The ladders are fixed by threading the top of the Sliding the inner one to the desired height and dropping the shonddered irons on their respective staves
 tol) (see Fig. 4). and at the back of the lower

of size and twu coats of
varnish. All irown smith will make the supfor
clips for yo a quite cheaply

MOS'T people no doubt think that a record is just a black dise which will talk, sing, or play whenever it is placed on the gramophone. But how do they put the music in the grooves? The organiza. tion and equipment required is just as complieated as that needed for the manufacture of muel more imposinglooking things-motor-cars for instuner.

The original recording is the most spectacular but not by any means the most difficult part of the business. It is carriod out on a large wux hlank, about. 14 in . in diameter and lin. thick. To make a single blank takes twent y hours or so, for the wax used has to go through many refining processes before it is moulded into shape and the surface highly finished by a sapphire cutter on a specia! nuachine. There nust not be the tiniest blemish.

In thas recorrling-room this wax blank is set on a turntable that is rotated at exactly serenty-eight revolutions per minute by means of th weight-the only form of driving power that, will remain absolutely constant. A tiny sapphire cutter, attached to a kind of glorified telephone roceiver, is lowered until it cuts a littlo groove in the revolving blank.
By means of gearing. the tumtable is arranged in such a way that besides rotating it gradually moves along bodily under the entter. So the cutter is a shado nearer the centreat the end of each revolution, and forms a spiral of grooves. On a full-time record-a 12in. playing for 4 minutes 40 seconds and a 10 in . for 3 minutes 30 seconds--thore will be no less than ninety-nino grooves to the inch, but there is no need to set them so elosely together in every case.

Recording the Artiste's Voice.

Directly the cutter is started on its jounney the operator in the recording-room gives the "commence" signal to the artistes, who occupy an adjoining studio, 'The sounds from there are picked up, by a inicrophone. which is commeted through suitable amplitiers and controls to the "telephone receiver" aljove the turntable.

The sapphire cutter is thus inate to vibrate sideways in sympathy with these sounds, and in doing so it cuts an irregular groove in the wax blank. Tiny waves are made, the number varying according to the note recorded. For a high note there may be as many as 500 of these waves made over an inch of track; for a low note, only one wavo over 2in. The track is cut at a speed of

TWENTY.FIVE YEARS AGO

Issue dated January 26th, 1907.
IT was in this issue twenty-fire years ago that one of the most popular designs ever produced appeared. This is the Home, Sweet Home Design, No. 589. This is still available to readers, is still mightily popular with a large number of workers, and has had to be reprintel more than half a dozen times since its original appearance. The same issuc giecs an interesting chapter on the arms of Church dioceses, and the carly stages of electricity of those days are well shown by the construction of a small Himhurst machine. The usual jeatures also appcared.

What a remarkable difference is evidenced when we compare these early issucs uith the latest copy!
two miles per hour, and 840 ft. of it is needed for a full lWin. recom.

Tests Made on Wax Blanks.

Before the final recordings are taken one of two tests are made on wax blanks, and played back so that any faulty rendering can be corrected. The principle involved in playing back is exactly the same as with the finislied record. A steel needle, fitted in this case to an electrical pick-up, is run along the track, whose waves set up in it identical vibrations to those cansed by the original sounds. These vibra. tions are amplified, as they would be by an ordinary gramophone, and re. produced through a loud speaker.

The actual master record-a dupli. cate is always taken in case of accidents-cannot be played back, for a steel needle run over the soft wax surface is bound to damage it to a certain extent. So directly they are completed and the machine has cut the final quick spiral into the centre-the one that works the automatic stop on a gramophonethey aro packed off in carcfullypadded boxes to the works.

Turning Out Duplicates,

Having made two records that mustin't bo played, the gramophone people have before them the task of turning out any number like them that can. It is no simple problem, for the surtace impressions of the duplicates must he identical with one of the originals in every respect. Even a variation of a thousandth of an inch, which is considered a fairly fino limit in engineering practice, would bo fatal in this case.

There is plenty of room for troubie, hecause the original was master has to be copied through five stages before the final record is obtained. First it is lhug inside an inmense safe. fitted with massive chains and padlocks. Inside it, tiny particles of pure gold are hulled against the face of the wax by electrical forces. In time they form a thin layer of gold which, when peeled away, gives a faithful negativo copy. The wax is afterwards useless, but it has done its lit.

The gold master, as it is called, is next dropped into an electroplating vat, and covered with a deposit of silver. On separating the two metals, the silvor has a positive face-it exactly matches the original wax. Several silver " mothers" are generally made.
(To be concluded next week.)

CHEMISTRY FOR AMATEURS (continued from page 496).

ment, and as they are imniscible they are readily separated. Many essential oils used in medicine are obtained in this way, the leaves of the plant, which contain the oil, are treated by cither of the abowe methods. The cil passes over with the steam and finally is separated in the distillate from the water upon which it flonts.

And now to the amateur chemist's laboratory, where, laving grasped the theory of clistillation, he will no doubt wish to satisfy himself of its truth.

The apparatus required for distillation eonsists of the still boiler. the condenser and the receiver.

The Still Boiler.-This consists of a glass flask. The capacity is immaterial: if much distillation is to be done, then a larger flask is necessary to avoid constant refilling. A bored cork eloses the month of the ressel.
The Condenser.-For this you will requive about a foot of glass tubing about an

Fig. 2.-The construction of the condenser.
jacket enters tho hung or stopper to the boiling flask.
Three-quarters fill the boiling flask with tap water and arrange the apparatus as shown in Fig. I. The boiling flask or still rests over the bunsen on a wire gauze and tripod and is ronnected to the condenser. The outlet cnd of the laticr passes into the receiving flask. Turn on the heat until the water in the still is boiling vigorously, then turn down the flame, kepping the water steadily boiling. The liberatod stean' will be seen condensing in the fondenser inner tube.

The first portion of the distillate is used to rinse the receiver and is then thrown away. It is not pure distilled water as it comtoins the more volatile impurities and dissolved gases always present in lap water. This preraution having been ubserved, proceed to collert the distillate now coming ower until about two ounces of water only remain in the still boiler. At this point cease to collect the water now coming over as it will contain the less volatile impurities.
The simple type of still employing a Liebig type condenser such as I have deseribed, is not eapable of delivering large volumos of distillate in a few minutes. but, nevertholoss, is quite udequate in output for most small laboratory purposes. On the larger scale, fontinuous forms of still are employed in which the cooling water in the jacket, becoming warmed ber contact with the condenser pipe or "worm." is passed on to the boiler which is automatically kept at a constant level. Some saving in heat is thereby effected, and there is no risk of the still rumning dry.
inch in diameter. Ans good chemist will obtain this for you if he does not actually stock it. You will also need a yard of ordinary thin glass tubing and two lomgs which will fit the ends of the wide tubing. It is unnecessary to deseribe in any detail the construction of the condenser, as it will bequite evident from Fig 2. The glass tubing is cut with a three-cornered file as described in the first article of this series. Two holos are bored in cach bung. Those must aceurately fit the narrow tubing which they house, otherwise the eontraption will not be watertight. In use, the condenser is conneeted to the tap, the overflow pipe returning the water to the sink after it has traversed the water jacket. The inner tube of the

CROSSWORDS む UADI CORRECT SOLUTION

Across. 2. Opposite of 7. Four and onc. 9. The king of biris. 11. Short for naniel. 12. A theatrical entertainment. 13. Female bird. 15. Kub out. 19. Belenging to Eli. 20. The first man. 21. A salver. 23. Slut noisily. 24. Halt of two. 25. Not joung. 26. I'ulls. 28. Apprant. 23. Oppon ite of

Pin litd. Stamip to each coupon used.

Name

Address

YOU MAY SEND ANY NUMBER OF ATTEMPTS

RULES.

1. Attempts must be on coupons
from this or next week's "Hobbies."
2. rostage atanap value 3 gd. must ine
pinned to cach coupon. 3. In the ercent of tier the prize will be cqually divided. 4. Einplosés (or members of thrir familics)
of Crorge Nuwnes, Led., or its associated
compatiex. are nit allowed to compete. 5. The Editor's decision is final in all hititers rejating to this competition.

Can you make LUVEIBLE INK ?

YES, if you have Lut ts Chemistry set.
lon can develop it, too, and grow Chemical trees and big crystals and change the colours of liquids. An change the colours of liqui absorbing lrobby, chenustry.
All the experiments in Lott ${ }^{\text {C }}$ Chemistry have been arranged by a Doctor of Science. You can spend many exciting hours in your own houre "lab" 1.ott's Chenistiy is supplied in 3 boxes : Box 1 with 18 Chemicals, accessories and book of 42 experiments. Price $3 / 6$. Box 2 with :2 Chemicals, Bunsen Burner, accessorips and book of 80 experiments. Price 6/-.
Box 3 with 30 Cheulicals, Bunsen Burner, extra accessories and book of 131 experiments. Priee 10/6. of 131 experiments. Price
Spares supplied. Obtainable from Spares suppliec. Obtamable fron
leading toy dealers and stores. Lott's Chemistry is perfectly safe to handle.
Hox 1, complete with chemicals, Write for descriptive booklet to bitmus, magnesium ribbon, book, descriptive
Dept. 11.2,

(a)

[^0]
GUARANTEED KITS for "HOBBIES" CIRCUITS!

"Autokoil Reinartz Three" kit or

Components exactly as specified.

(Aluy pritt sold separately) CASH PRICE $\mathcal{E} 3-9-4$
 9-Volt (r.B. is. 2-1'olt IT. .Accummator 8s. 6 d. Spenkers from zos. each.

"HOBBIES" " BRITISH ONE-VALVER"

Kit as specifled 22 4 4 Cossor Valici 8s. 6.l. 60-l'oll H.T. 5s. 6d. 2-Volt L.T. 8s. 6d.,

"HOBBIES" (JAN, 23RD) CIRCUITS

Kits of Components Guaranteed as Specified.
"AUTOKOIL ALL-WAVE TWO" . $£ 254$
"BABY GRAND THREE" $£ 3160$
"ROUND THE WORLD THREE" .. £4 72
ľalu's, Batteries and Loudspeakers extra.
APPROVED SUPPLIERS FOR "HOBBIES" KITS

"AUTOKOIL" ALL-WAVE TUNER

200 to 2,000 Metres: No coils to change. Just switch over to desired waveband.
We will quote you for KIT of Components for ANY
set described in "Hobbies."
"KITS" ON EASY TERMS IF DESIRED.
Terms: Carriage Paid on all cash retail orders.
C.O.D. charges paid on all orders over $\mathrm{f}_{\mathrm{I}} \mathrm{I}$. SATISFACTION GUARANTEED.
A. W. HAMBLING, A.M.ı.р.E.

104, HIGH HOLBORN, LONDON:

A WORIKING MODEL HAND LOOM

(C'onlinued from pate 468, Felmary 6ih issuc.)

NbliNT eut the wires at the batck, thas leaving of single wires, all parallel and stretched across the frame. . Screw the frame on to its wooden supporti and fix the hinges on to the busehoarl halfway botween the main frame and the supports for the eloth beam. Thre screw eves are for use as handles.
"Jhe "beains" are mate from four pieces of broomatick $1 \frac{1}{2}$. diameter, as shown in lig. [1. The spindles are made from nails with the heads reut off. You will find it very dificult to get the wood true on the spindle if sou drive the nail in without special preceutions. A grood method is to mark off the centre carefully and drill thole of the same diameter as the nail about lin. deep. Ask an assistant to watch the drill to moke sure you are holding it upright. The drillerd hole then forms an effective -ruide for the nail which should be, driven in about $\frac{1}{2} \mathrm{in}$. further to fix it fimmly.

For the cloth beam drive in eight small brads and cut off the heads leaving $\frac{1}{s}$ in. frojecting, sus shown in Fig.11. This provides a simple form of ratehet arrangemont, the brads engaging a hole in a flat brass spring which can be seen in Fig. 1. 'There is no need to give a drawing of this spring. for the photograph shows all that is reguired. A small bloek of wood holds the bottom end of this spring.

A pince of strong tape 3 zin. wide is tacked along one edge only to the round wood, as shown in Fig. 11.

The warp beam is the same as the cloth beam except that the tape is taeked along the other edge, and, instead of the eight brads, a single round-head serew is fitted.

A rubber band is hooked over the sorew on the warp heam, wrapped onec round the beam and hooked on to a serew eye in the baschoard to provide tension on the
threads; this rubber band ran be seen near the left of Fig. \quad.

The only iten now to fre made is the shattle which is illustruted in leig. Io. Thhis is best cut ont of a pieco of bone about ith. tlumb, though fin. fretwood will da, quite well: all the codges and cornors should be well rounded, smoothed oft and polished, so that the shuttle shows no tendency to eateh ans of the warp threads.

Ordinary darning wool is good material to weave on this loom. 'The warp behm is fixed. temporarily, about a yard behind the machine and the wool is stitehed on to the piece of tape of the eloth bemm. threaded through the reed, then through the rontral cye in one of the. twistod wires of the front heald and stitched on ta the tape of the warp beant. Thu second thread passes through the next space in the reed. but is threaded through an evo in the back heald instead of the front one. Alternate throads go through an ese on the front heald and the thereids between go through an cye on the back heald. The warp threads are then all rolled on to the bean at once and the beam fitterl in to its supports. a small nail being pushed into the $\frac{3}{3}$ in. hole in each support to hold it in place.

The shuttle is wouml in the slots with as much wool as it will carry casily. Press one of the heald levers t " raise and lower the warp and pass the shuttle through the resulting " shed," then pull the reed towards the front to push the weft into position. Now depress the other lever to reverse the position of the healds and pass the shuttle through the shed again in the opposite, direction, press the weft up close to the previous thread: with the roed, and you will find the eloth grow as these operations are repoated.

OUR WIRELESS BLUE PRINT SERVICE

You can now obtain the following blue print wiring diagrams from the lublisher, Hobbifs, George Newnes, Ltd., 8-11, Southampton Street, Strand, W.C.2. Other blue prints are in preparation.

AERIAL EARTHING SWITCH (continued from page 497).

is given a slight turn and the top switch arm moved round, until the end slot. engages with terminal stem (Fig. 3). The lower switch-arm is moved upwards until the slot near the end cengages with terminal stem B, after which the terminal heads are serewed down.

Onc advantage of this type of switch is that a positive contact is maintained, not only when the receiver is in use, but also when the aerial is carthed.

It will be noticed, with reference to

Fig. 3, that different kinds of wire are indicated leading to the swith terminals. The aerial lead-in wive and the lead to the acrial terminal of the receiver are of heary rubber-covered strainded wire. Tho earth wire to the switch is $7 / 22$ copper wire, and the earth lead from the switeh to the recoiver is ordinary twin flex. This a rrangement has been found to work very well in pinctiec, reception being much better. than when smaller gauge wire was used.

REALISTIC TOY LOCOMOTIVES AND HOW TO MAKE THEM-3
By E. W. Twining

Fig. 4.-General arrangement of chassis with propelling sear.
of steel, and so, when the two driving wheels are in the lathe, they must be drilled and bored to larger diamoters; that is to say, to sin., as indicated in Fig. 5, which is an enlarged detail drawing of the eranked axle, one of the coupled axles, and one of the coupling rod crank-pins.
The frames of this chassis ars of nalleable iron and are also heavier than in the simple engine.

FIG. 4 is a general arrangement of the chassis of the propelled model, the motive power being the muscular aretion of the juvenile driver. From the drawing it will be seen that the centre axle is cranked like a full-size locomotive, except that one large-throw erank is provided instead of two. A connecting rod erank is providcd instead of two. A connecting rod from this is carried back to the cab, where the little
end is attached to a double lever, which is operated end is attachod to a double lever, which is operated
by hand, a pushing and pulling motion being applied. thus rovolving the crank and with it the driving and coupled wheels of the engine. Nothing could be nuch more simple than this, either in operation or in construction, for, with regard to the latter, thero are only throe parts (seven with the frumes and coupling They are cast with hosses to form bearings for the axles. In this driven engine larger bearings will obviously be necessary than in the undriven model, in order to reduco wear, especially on the journals (the partis of the axle which run in the bearings).

The Crank Axle.

This will need to be turned in the lathe on the wheel scats and journals, but it should not be necessary to turn the crank-pin on which the connecting rod will work. This can quite well be finished by filing, testing with callipers from time to tine for roundness.

The crank webs need not be touehed unless thero happens to be any abnornal limps and roughness projecting which might foul or interfere with the fros

of the , entu nable sueln disorlers that the great liuropean l'owers decided to act the part of policeman. Tho l'urks wero expelled, aml Creto was granted a measure of independence which was 'only slightly affocted by a nominal 'Turkish suzerainty (without payment of tribute) and the watehful eye of the Powers. I'rince George of Greece was appointed High Commissioner, and the island entered, in 1900, upon a perionl of peaco whieh it had not known for centuries.

Cretan Culture.

It happencel that the more stable government gave particular satisfaction to one of our own rountrymen, the celobrated archmologist tArthur Evans, who har been engaged, since 1894, in' unearthing the relie's of pre-historic Cretan culture, The
urirow hgrib ull umo manners artu havius

FOR THE FIRST TIME

THE IMMORTAL
GILBERT and SULLIVAN
—OPERAS—

WORDS \& MUSIC

IN FORTNIGETEX PARTS

Parc 1 Ready Fcb. 12th 1/3

fearful creature, which had the body of a man and the head of a bull, lived at Knossos, 'and devoured, onco every year, six young men and The Cretan King Minos on six maidens who

were sent from Athens as a sacrifice.
When real history began (rete was a place of little importancea mere province of the Athenians, who had small respect for its inhabitants. Was it not a Greek poet who was responsible for the well-known line which described all Cretans as liars? Was it not, also, a Greek who, at a later dato (tenth century), wrote of "the three accursed $K^{\prime \prime}$'s. the Cretans, the Cappadocians and the Cilicians"?

All applicants for tiny turw ak Packer FREE.
Acceive 15 TURKIRH stamps free. Pitcorial, war, Jubilee, surcharged ctc., usually sold at 1s. 3 d Additional free set to customers givio (Dopt F.2), GO H. WATKINS.

BLUSHING
ree Book, sont prirately under plain caled cover, explains how you can hickly cure Blushing, Nervousness, etc. Write NOW, -STEBBIN
Worry Habit, Weak Will, etc. Write Now. Sōsterbing
TREATMENT; Dept. H.B., 28, Deau Road. London, N.W.2.

A MODERN

PICTURE FRAME

ALIHOU(: H the new-art style does not appeal to everybody, it nevertheless must be said for it that furniture and hangings designed and carried cut in this style always present a very striking appearance, and aro generally very at tractive. 'The sketch shows clearly the character of the frame. which is made, from $\frac{1}{2}$ in. wood. of two site ruils of simple outline, a lower shaped rail. and a wide, decorated pediment rail. Tho whole is decorated with tapering overlays of thin wood. In commencing to make the frame, mark out the two side rails first.

The Principal Dimensions.
On the right-hand half of the diagram (Fig. 1) are the dimensions for marking out the rails. which measure anin. long. lapering in width from 4in. at the top to $2 \frac{1}{2} \mathrm{in}$. at tho bottom. Cut out one side rail and then use this as a templet for marking round for the other side rail. When both rails are cut, smoeth up the edges and round off the onter corners.
The bottom rail measures 17 in . long and $4 \frac{1}{\mathrm{in}}$. wide i. the eentre. Square up the piece to these dimensions and then set down $3 \frac{1}{2} \mathrm{in}$. from one long edge and connect up these points with the centre point. Take care to get the ends of this rail perfectly square. so close joints result after the side rails are fitted. 'The top rail is set ont from the dimensions given, the length heing 17 in . and the width in the centre 6 in. Form the step. like outline by Form the step-like onthene by
following the neasurments at this point, and square up the lines before cutting with the
 fretsaw. Clean up all the rails, find then place them together, temporarity keeping to the interior measurements of 17 in , and l2in. Mark across where the dowels will be put (see Fig. 1).
'Take the frame apart and run the lines of the dowels down aeross the thickness of the rails (see Fig. 2) and bore the lobles ${ }_{8}^{3} \mathrm{in}$. diameter down to a depth of $\frac{1}{2} \mathrm{in}$.

Fig. J.-Dimensions and details for marking out.

Pieces of hardwood rod lin. in length are next pre. pared and driven in the side rails. the ends of the dowels being previously dipped into hot ghe. Care must be exereised to keep the dowels perfectly square and true, so that when the other rails are driven in the whole so that when the other rats are iriven in the whole together and cramp them up until the glue has hardenerl.

If proper metal cramps are not available an inprovised one can bo formed hy stout cord and a wood or metal winder for twisting it. Pass the oord twice round the top and bottom of the frame and insert the winders just within the opening of the frume.

DICTURE The strips which are gluent BACKING FLDAME on form the rebate for the Ef. BACKING LDAME glass. etc. Two strips $18 \frac{1}{2}$ in.

Fig. 3.- A useful section
of the frame. oug he lin. wide, and twostrips l3!in. long by lin. wide are
required. and they should be planed up from pin. thick staff. The ends are mitred to 4. $\boldsymbol{3}$ degren: so they fit aceurately and allow a margin of $\frac{1}{4} \mathrm{in}$. for the support of the glass, ete. In Fig. 3 is shown a section through the frame and the staip with glass and backing board complete.

The Decorative Overiays.

These are very simple in outline and may be drawn from the lin. squared diagrams (Fig. 4). Wood fin. thick wouk be preferable for the overlays. but there is no reason why $\frac{1}{8}$ in. wood shonld not be nsed.

A piece of 210 z . shect glass (17 in . by 12 in .) is held in place by a thin plywood backing board of the same size. It is held in place to the frame by picture-framer"s sprigs or fine headless mails. Cover the whole back finally with stont hrown paper. and serew in a pair of serew-eyes with rings for hanging.

$$
\text { Odd } \varepsilon \text { End }
$$

WHAT a strange assortment of Hobbies there must be in the world. Cigarette cards, stomps, fretworking, etc., are just everyday ones, but what about the odds and ends of pastimes in which some fellows glory. There's the man wo know who collects door knobs-gootnoss knows why. There is the London accountant who has spent twenty years visiting the forty-nine cathedrals in Fingland and Wales. This meant a deal of happy travelling-even to tho cathedral city of St. David's in Wales, where the nearest main line

The hold-ap!
is sixteen miles away. Quite a number eollect covers off matchboxes, and a firm of match makers have thousands of varieties from all parts oi the world.

$$
* \quad * \quad *
$$

MAY we say "Thank you" for the greetings we had from readers at Christmas and the New Year? Our desk was littered with cards of all kinds. littlo gifts of calendars, boxes, etc., as well as a number oi interesting picture annuals from friends overseas. It is nice to have these kindly greetings from unknown readers who think in such practical terms of tho work and effort of their Editor. Thank you very much !

THERE is little nowadays to remind us of valentines except the date. A few shops make a "splash" of gifts for suitable females, and Ceorge, the office boy, has been found writing some stuff which he calls poetry. But ycars ago, of course. Valentine"s Day was a great event, and although it did not carry enough weight to close the schools, it ineant great fun. The idea was to put the present on a doorstep, knock, and run away, so the recipient was unaware who hadl left the present.

But then, some of the naughty lads of those days used to knock and run away without leaving a present. Too had altogether. That is one of the things you must not make a hobby of on February 14th.

WF are wondering who is saying unkind things because he didn't get his competition model back. Really, it's his own fault, becausc although he sent stampsfor its return he altogether forgot to add his own name and address. By the way, those who did not want their
jigsaw competition pictures back may like to know what happencil to them. They were despatehed to a Chiddren's Home in time to arrive with Santa Claus and so provide a little amusement for C'liristmas Day.

* *

HOW many of you can turn ? No, not like Dick Whitington, but turn wood and metal on a lathe. Legs, spindles, rails, all sorts of things are done this way hy the amatour, and those who are expert at turning should get particulars of a competition being held by the Worshipiul Company of Turners of London in April. There are special sections for amateurs, apprentices, scholars and technical students, with money prizes of several pounds each. If you are keen and capable, write for particulars to The Clerk, The Worshipful Company of Turners, Broad Street House, Old Broad Street, London, E.C.2.

AS any reader got a design of the Giant Bracket, No. 38 Special ? That is the one nearly 3 ft. high with Father Time on guard over rabbits, birds, etc., and the months of the year cut out in different parts. Mr. J.' Fox, of Upper Fennor, Oldcastle, County Meath, wants

one rather badly, so perhaps some reader who can spare his copy will sell it to this reader. Thank you.

R^{E}EADERS in the Wolverhampton District should maka a note of a Hobbies Exhbition to be run at the Boys' Club, Mander Street, Wolverhampton, on March 19th Competitions and exhibitions will cover games, toys, models, philately, shetches, etc., so some of you will undoubtedly be interested. Write to the address given for further particulars.

WHO says fretwork designs don't sell ? Listen. A gentleman strolled into the Hobbies Store ind Manchester, and bought different designs to the value of £1.1.9. He had, he said, received a list of these from a Scoutmaster friend of his in Australia who lived near the bush and could not obtain them there. Can you not imagine the delight on the arrival of the designs-the eager anticipation of the hours of enjoy, ment such designs would bring to a lonely fellow way down under? More power to h's elbow, say we. It is astounding how many readers keep in touch with the home country through the medium of Hobbies.

Let Your Editor Help You. Address your letters and queries to The Editor, "Hobbles," Geo. Newnes, Ltu., 8-11, Southampton Strect. Strand. London, W.C.2, enclosing a stanped addressed envelope. All letters and queries must bear the full name and aduress of the sender

New Imperial Competition Result Next Week.

IHAVE almost completed the judging of the modiel New Imperial competition, and the ful! results. with the names and addresses of the prizewinners, will be given next week. Your newsagent. of couree, has your standing order. I know!

Another Special Wireless Number.

O^{U}UR issue dated Feloruary ${ }^{2}$ ith (the weok after next) will he another special wireless feature aumber. Our last wireless number (Janbasy 2 ? 3 rd issur) was such a sucess. particularly as it contaned details of our " Jahy Grame," together with af free gift wiring diagram of it, that readers havo urged me to proluce this second radio number. Make a note of the date: Fehruary 27 th issue.

" Mental Nut" Prize-winners.

T
HE first correct solution to be opened in eonnection with the Mental Nut contest appearing in our Jamuary 23 rat issue bas sent in by 13. Waite. 10 , Newoll's Villas. Misterton. Doncasifer, to whom a book has ireen sent.

Congratulatory Letters.

ICONTINUE to recrive from all parts of the world letters of praise und letters containing constructive "riticism. The change in the style and format which we instituted witle October 4th, 1930. issue ovidently met. with universal approval. for we have multiplied our circulation rather more than fivo times since that event. This is a remarkable achievernent. mand it in a glowing testimony to the happy roader co-operation which the paper has eamed for itself. Новbies to-day is the only paper of its type: it has no compatitors. In spite. however, of this cloistered position. 1.the paper is produced at a competitive price whieh all can affocl. and it gives fill valuo for money. There is also the valuable J'ree Alvice Buteau of which hundreds of readers each week
avail themselves. Our free gifil schemes have exereded in value and number anthing whith has ever been done before. Eath weck the paper is eagerly snapped up. Perhaps that is why so many thousancis of readers have takon my advier and plared a regular order with theit newsagent.
 Full inmodetimss (nh Buahing it
 Model migite apporar in " 2.0. Simple Working This ja in reply to W. Trawes, M1 Haslips Win Süwich.

Weight of Ebonite.

Grid Condenser and Leak Values.

 1 い 5 merohthe. J. ©. (Cork)

Stamped Envelopes Required.

 bearing stanps oif more than one country
Stripping a Film by Heat.
A well-known thethoul of stripquing flof filnt
 in fupregnating the thlu with an alkilitue hardening whotion. irving and then intarersing in an acid solution: the separation of the gelatiue film thern futiows as the rexill of the formation ef carbon dieside muler the thls. The negative is hardened in the fothowing batis: Iormaline 300 t.e.s. ellereritu 40 c.r.a.. and water to make 1 , tou c.c.s. In the
 imanersion will ho sulliciont; if it in dry. :u manarsion what om!
minutes is adrisable.

The Gange of Wire for Aerial and Lead-in. si rannled - we enankel reppler wire is recoth monded for aterial and leadi-ith. II. K. (Darliaglont. Where tho lead-in is linthe to tond earthed bedies 11. T. eable is recommunded. 18.t. current travels on the surface of wires. hot through them. The earth lead shoulit also be stranited wire.

Fixing Crystals.

A cur with a sorw cap is beat for momating
 beine marked in lead foil. We den nat givis. the use of sobler. hat if sull prefer thi-method

Book on Maling Fireworks.

1 recommend sout to blatain a ropy of "The Complete Art of Making Fireworks." mbliohed hoy Chatto mud Wimbles. at is. Probahly Mossrs. W. abd C. Foble will lat routhre is secold-hamd cops. i. 'I'. (rome ioridge).

Lubricant for Prints.

Thas mhrieant is werel when harnishinge print-with a sted roller. M. l: Mandustor,
 Aleohal 10uz. (1.for c.c.s.)

Repairing Cracks in Ebonite.

(ratks in ifmatite or blat'k coumpotitions accumulators. \mathbf{F}. D. (kilkemus). (an low repairod by melting intu the eratk a mixture combuand of \because part: resin and I bart of bimely shredded gatha percha. This componnd wifl set hurd again afler the somere ot heat, prosfrably a piecte of heated sterl rod. is remoned.

Preventing Developer Slain.

Aa a means of proventing stainine of tha tingers with dereloper. K. S. (liremenck) rub . Vaцkuard " Beractholeme into the 1) me.t tips and over the nails hefore ruttimu the
 lit now way harms any smeitive arfact

Make yourself a Ukelele

H.J.M. of An. field. made one
and wrote: and wrote: -."I and it is a zreat success. In facf. f have taken it to the Liverpool Examiner for the Banjo Mandolin Banjo. Mandolin and Guilar. and he aid the tone was as good as any nke"
he has heard."

Why pay a pound for a ukelele when you can make one for yourself for 4 /'- $^{\text {- }}$ Everything is supplied ready for the handyman to complete, and anyone with a few fretwork tools can do it. The design sheet has full-size patterns and cutting instructions, the wood is supplied planed and cut in the boards required, pegs and strings are included in the parcel. Hundreds of these full-size playing instruments have already been made hy delighted readers.

Uhelele Banjo No. 1825. Design 14. 2/9 (postage 6d.). wess and strine $1 / 6$ (post 1 d.).

Ukelele No. 156
Spcial, Design 6d. Parcel of u ood 21. (post 6d.).
tring and pegs $1 / 6$
If oup prefor plied for $1 / 9$. An Anstrealy shoped is sup.
Anstruction bad phed tor ind An instruction handibook
unh how to play, price II. Complcte illus. trated cunstrustion details for either. price $2 d$. (postage 1 c.).
 Birmingham, Shetheld. Leeds, Soulhampluns. Bri hon. Or fram fone usual ironmonery slan.. Scni by post dired jowm Habhies Lid., Dreham. Norfolk

HOBBIES $\mathbb{N E W}$ 1932 CATALOGUE 300 PAGES

There are over 300 pages to interest you showing over a thousand things any fellow can make. Five free designs are given with every copy, and it is a better book of hobbies than anything ever published. Every reader of Hobbies should have a copy. Its pages have been entirely re-written and heaps of new lines added for the handyman.

Buy getting arur capy now you will hind plenty to do as the long cuenings come ulong. Don' 1 wat until Chrisfmas beforc you slail making prexents. This Calalogue shows you all hinds of ways to te happy in your spence time

If you cannot pro. cure a copy locally, send a postal order for 1/. to Hobbies Ltd., Dereham, Norfolk, and one wits come along post paid by return.

Get your copy now From any newsagent, bookstall or ironmonger. With large free designs, price 9d. complete. Or from any branch of Hobbies Ltd. in London, Glasgow, Manchester, Birmingham, Sheffield, Leeds, Southampton, Brighton.

With each copy there are two large free des gns for making a madern All-in Wireless Cabinet and a novel Xylophone type of musical instrument. A guaint new Calendar Pieture in colours. a working model coy and a pipe rack pattern are also given tree. They afons ars worth $2 / 6$.

[^0]: SECCOTINE
 iS BRITISH

