

CONTENTS

Page
Novel Sundial - . . 193
Rustic Trec Seat - - 195 Miniature G.S. L.orry - 196
Cord Hygrometer - 197
Draught Excluder - 198
Child's Swing - - - 199
Replies of Interest - 200
Don Pedro Novelty - 200
Component Testing - 201
Don Pedro Pattern - 203
SUPPLEMENT DESIGN
SHEET FOR
HANDKERCHIEF BOX

July 27th, 1949
Price Threepence
Vol. 108 No. 2804

THIS pattern of sundial is quite a novelty in the garden to those used to the more conventional form. It is made entirely of metal, and is easy to construct if the instructions are carefully followed out. For preference the metal used should be brass, but some of the aluminlum alloy now obtainable. would serve if not too thin. Considering the design, a sheet metal of $1 / 16 \mathrm{in}$. to fin. should be employed, certainly nothing thinner, as it would likely be distorted too easily W struck or bumped against.

The parts required are grouped together under Flg. 1. The dial, A, should be cut from the metal to the

length given, plus a little extra for trimming, and is marked off while flat and afterwards bent to a semi-clrcie of 4 ins. radius.

For accuracy in bending, a wood shape should be marked out and cut, as

In Flg. 2. Do not waste good wood for this, any piece of common box wood will do for it, but the sawn edge, curved part, must be cut square across, and the whole true to size.

Strip Marking

It would be a good plan to cut this first, then to lay a strip of paper round the edge, marking the exact distance, and so obtain an accurate length for the brass dial. Down the centre of the metal dlal strip scratch two lines, $\frac{1}{2}$ in. apart, deeply. This job could be done with an ordinary marking gauge, being repcated several times until the lines are deep enough.

Find the centre of the strlp, and there drill a hole for a small screw bolt for subsequent fixing. Across here scratch in two lines, the thickness of the metal apart, and each side of these divide the remainder into six equal divisions and scratch these across. These scratched lines must be deep. and a good tool to employ for the purpose is the tang end of a file, using as a gulde to straightness, a steel rule

Hour Numerals

The hour numerals can then be put in, Roman figures being best as these, consisting of straight lines, are easier to scratch in than other figures. Of course, readers able to do a little simple engraving, wlll be able to do this work with proper engraving tools and make a better fob, doubtless. The markings can also be etched in with acid, If preferred.

The metal is then most carefully bent to a semi-circle round the wooden former, until it fits the curve closely. If
an accurate measurement as to length was obtained, the metal should be an accurate fit round the curve, but should any stick up above the flat edge, file it off level.

The Base

The base portion, to which the dial Is to be fixed, is shown in the flat at B, and should be marked on the sheet metal, and cut out. A satisfactory method here, at least to the amateur not particularly experienced in scribing a pattern on
ends to a point and drill holes for fixing scrows in them. Having progressed so far, bend up the side projections. Now try the dial in place, fitting it across with the small brass bolt and nut referred to.

Here a little flling of the raised up projections may be required, as they should only be high enough to make a snug fit to the curve of the dial strip, as shown at E, in Fig. 3. This being satis-

factory, mark out and cut from the metal the gnomon, C_{1} in Fig. 1.
This might be scribed direct on the metal, as the shape is a simple one. Cut the metal to the height of the 4 ins. given, plus tin. at the bottom for the fixing extensions. These are $\frac{1}{3} \mathrm{In}$. long.

The gnomon should then be placed over the centre of the dial, and where the bottom extension pleces touch the base part scribe round carefully. These
metal, is to draw it on thin paper and gum it down to the sheet brass; after cutting out. the paper can be easily removed with hot water.

Referring back again to the pattern, B, In the centre of the 4 ln . portion drill a hole for the screw bolt to go through which secures the dial to !t. The side projections shown in the diagram, are slightly less than inin. Ignore the two small slots for the moment. Trim the

Flg. 2-The wooden former

One of Our Loyal Readers

A

 TRIBUTE to the walo of hobbles generally and Hobbias. We hly in pardicmiar was paid recently by tornebody who thould be able to appreclate them. EI io Mr. W. Sutton, of Eraing" ton, Birminghem, who ha folloued Hobbias from its uery start and had becorre more and more enthastastic as yeare aduanced, Hild cheery lutier and years aduanced, Hid chevry intier end which er grateforly recelved by thome who endeacour to hefp other, in proe wdinn proctical parifimes with which to hopp hond end mind asefally employed. Among other thinga Mr. Sutton remerkit, "It is at time ithe thaes that men Ihe myedy feel wery thandiaf that ue, in our yoanger days, took to hounn a hobby, Truly, Alesed if the man who hath an habby, let it be whot it will. If only the mind and thought could be urrested into hirher aime In IIfe, I think sorne would realiae the joy: we oid hobbylter hod, may, fifty yeara aro. Certalnly thare whe not the lelampe as there ie today, but amid tt ail we had contentment:In the Chrtetmar No. 1848 of Hobbiea Weekly it wes very intipiring to read of the Thankegiving Seruice; it goes to prope the inapiretion of those in aratharity. They enterinly do not put the proaperity and pro tection down to their oun pouery, but reaite that one greater then man uad behind Thelr efiorte.

One canmot halp but notice the trind of the time by the dendgrn given from time to time. Modal and tay mohing aeem to be very prominent today. It it because any wood will do, or ta it that thit preennt generation hooe no dealre
for art? Euen chtp carving has gone. It's a grent pity that these old artio and crafla should have to take a second place inamodern warid. alit
I wloh I had the sbility and means to teach the youth of coday, and help them to raalie every moment if precloes. Al we reach the three ecore yeara and ton one connot help but realioe the coantien bleaing um, in our jounger daya enfoyed.
We are aluay plecodd to hear from por readerg, end dilighted with the friencily epirit of most letterin. The remarke of Mr. Sutton may not meet the approval of some of our other readers, but at leat we can rieppect and ace hnowiedge their obvious aincerity. There is not the alighteat dombt idie hande and mind are apt to breed aife. content and boredom, and full hoppined can be beat found by haung fomething to do, and dolng it with intereet, enthwatam and eblity.
should be cut out, and the gnomon should fit in them closely, and no side play, also they must be exactly centralmake no mistake about thls.

Central and Vertical

In fact, no mistake is likely if the slots are truly in line with the fixing screw in the centre. Now remove both dial and ghomon temporarily, while the base part is bent to shape.

As a sure guide here, draw the shape shown at D, Fig. 3, the back part being erect and the front part at an angle-the angle of latitude of the Town the reader resides in. In London, thls is $51 \frac{1}{y}$ degrees,

Fig. 4-Gulde for vertical gnemen
other places can be got from an atlas. Bend carefully, and compare with the drawing until the angle is correct. When right, refix the dial, and slip the gnomon In place. The latter is now to be permanently fitted in with solder.

As the gnomon must not only be In the centre of the dial, but truly vertical, a guide should be made to ensure it. This is shown in diagram Fig. 4, being a strlp of spare wood, about 1 in . wide and fin. thick. Lay the ends of the dlal on this strip of wood, and mark their position on it. At the places marked make saw kerfs across, or narrow grooves, according to the thickness of metal, to fit the ends closely in. A depth of about $\left.\frac{1}{d} \right\rvert\, n$. wlll be deep enough. Exactly in the middle of these grooves make a third to recelve the top edge of the gnomon.

A Soldered Jolnt

Fit in, as in Fig. 4, and turn over. The heip of a friend will be necessary here to hold all firm while the soldering is being done. Clean the metal projections of the gnomon, appearing through the underside of the base part, and solder round. Be generous with the solder, putting enough on to form a solid fillet all round. Thls should make a sufficiently firm Joint. Clean the Joint and turn the sundial right side up.

Lay a straightedge across the tlps of the dial, and see if the top edge of the gnomon is level with them. If not, trim or file off any surplus. Clean up the metal, and to make the numerals and hour lines clearer, rub in a paste of white lead and boiled linseed oll, or a littie thick white paint if available. Clean off the surplus, enough should still remain in the lines to render them particularly legible.

The sundial is now screwed to a suitable pillar, the dial facing S., and the back of the base part pointling $N_{\text {. }}$, of course. Sufficient accuracy can be obtalned from a compass here, and if a line, true N. and S. Is drawn across the top of the pillar, the base part can be screwed over It, and accuracy reasonably ensured.

Usefulness and attractiveness are combined in this RUSTIC TREE-SEAT

AREADER writes, telling us he has a tree at the side of his lawn round which he wants to make a seat. He asks for general dimensions and details of construction of either an octagonal shaped seat, or a plain foursided or square one. He does not mention the diameter of the trunk of the tree, but the construction should, nevertheless, not be influenced greatly, providing the tree is not too small, and providing always the lower branches are 6ft. or 7 ft . above ground level.

While an octagonal seat is much to be preferred in appearance to a square one, the latter, we think, is simpler in construction as it does not contain any irregular mitre cutting as an octagonal one does. There may be others interested in the same suggestion so we here describe a seat round a tree of about 12 ins. diameter.

Sultable Timber

The construction of this tree-seat allows for the free growth of the tree, and, it will be noted from the sectional view, Fig. 1, that no upright seat supports are driven into the ground near the roots of the tree. The back supports rest on a sole-plate of squared wood frame which is just let-in the surface of the soil.

Rough-sawn timber may be used throughout for the general seat formation, branch wood fairly straight and about 3 ins. to 4 ins . in diameter being chosen for the main support pieces. Thinner branch wood is suitable for the seat and its back support. Regarding the latter, it is not at all compulsory to Include this, but it does, however, add greatly to the appearance and to the restfulness of the seat.

Seat Plan

Fig. 2 gives a plan, of the seat, the right-hand side of which is looking down upon the seat itself, and showing one section only of the sloping back. The left-hand half of the plan gives the seat supports and uprights.

Fig, 1-Section of tree and seate

The first part to construct will be the sole plate, and the overall size of this is determined by first measuring the trunk of the tree at ground level and allowing 11 n . Inside all round for level clearance. Stuff about 3 ins. by $1 \frac{1}{2}$ ins. in section would answer well and the ends of the four pieces must be halved down, as shown in the detall, Fig. 3, to make a flat and level plate. The pieces should be creosoted of painted over with some wood preservative before they are nailed together.

Upon this frame, at each corner of it, and also in the centre of each piece, erect a back supporting post of round timber (if this wood is to hand) about 15 ins . long. One end of each piece must be sawn off square, while the other end is cut to form a siotted halving joint ready to receive the end of the cross bearer, as seen in Fig. 4.

When the slots have been cut, nall the eight uprights to the sole plate with long and wide cut iron nails. These nails should be driven in on the slope, and it is found an advantage to bore holes for the nails for about 1 in . or so deep. It is thus possible to get the correct amount of slope for the nail to fix both post and plate securely together.

Joints

From the left-hand plan, Fig. 2, note how the slots must be arranged before actually nailing the posts to the plate. Let the slots of the corner posts lie at 45 degrees and the slots of the intermediate posts lie at right angles, all slots being in line ready to link up with those on the outer ring of posts which are also slotted at the top (see Fig. 4). These outer posts, again eight in number, are about 21 ins . long, and similar in diameter to the Inner ones. They must be pointed at the lower ends for driving

Prg. 2-Pinn of eeating

Fig. ${ }^{3}$ - The flat
into the ground to a depth of about bins.

Post Fitting

Prepare holes for these posts and drive them in, keeping them always upright and lodging a piece of wood on the top of each while using the mallet so as not to damage the slotred top. It will, of course, be understood that before the outer ring of posts can be put in, the proper position for them will be carefully set out on the ground.

The seat bearers are next prepared. These are of round timber, but with a "flat" planed off on each to form a wide bearing for the seat slats, shown in the top diagram in Fig. 4. The ends of the bearers are cut to a tenon to fit the uprights and each is secured either by nailing or by first borlng and then driving In hard wood dowel pins.
In preparing the bearers, those coming at the angles of the seat will be longer than the intermediate ones. If the seat
(Continued foot of page 198)

For an addition to your earlier models you should make this MINIATURE G.S. LORRY

THE general service lorry explained here is in keeping with other types suggested in prevlous articles, for miniature models easy to make from thin card, odd wire, etc. This lorry, like the others, is suitable for use on a railway lay-out, aerodrome or any large model. It is designed so all parts could be miss produced if you wished to make them in a series. The writer has worked this scheme out for an Exhibition lay-out and it was quite successful. Full size layout of certain parts and their positions are given below.

Chassis

Chassis framework is exactly as we had in the first vehicle of this serics. It is made from obechi strlpwood size $3 / 16 \mathrm{in}$. by $\frac{1}{8} \mathrm{in}$. and length is $4 \frac{1}{2}$ ins. with the ends sloped off. Follow carefully the drawings at Fig. 1 where drawings are full size. Cross braces can be of similar wood and measure $11 / 16 \mathrm{in}$. wide. Balsa cement is a good adhesive but if you force in small "Lil" pins as well and snip off the tops, this will bind the framework better.

To take the base of van make six bearers $1 \frac{1}{3} \mathrm{Ins}$. wide and $3 / 16 \mathrm{in}$. by tin.

Space out as shown in Fig. 2, and fix on the narrowest way up. These should be spaced out to a distance of 3ins. and slightly rounded off at the ends.

Van Floor

The base of the van, measuring 3 ins. by $1 \frac{7}{8}$ Ins., can be made from
 stiff card or thin plywood, but as it is well reinforced with the sides, card will do admirably. Now cut the two long sides which will be 3 ins. long by 步in. high. A good thickness for this is about $1 / 16 \mathrm{in}$. Some vans have a higher side but this is up to the builder. Most lorrles have some form of struts up the side as shown in Fig. 3 and you can add these before assembly.

You will now require two short ends from the same type of wood, and these will be sing. high and $1 \frac{1}{2}$ ins. wids. Check the measurement before cutting to see that the part fits. If you use a different width on the sides this will alter this measurement. Assemble all parts, sec that these are correct, and then mount on the bearers.

Now for the cabin. Again using $1 / 16 \mathrm{in}$. wood you can make the floor $1 \frac{1}{6}$ ins. wide by $1 \frac{3}{16}$ ins. Next make the back size 1 itins. by $1 \frac{3}{18}$ ins. wide with a small window, shown in Fig. 4. Two sides can now be cut size $\frac{1}{4}$ ins. high by $1 \frac{1}{4}$ ins. deep and from a point $\frac{3}{4}$ in. from base this is sloped off to provide a staggered driving mirror. Note the suggested cut-out of the window, seen in Fig. 5.

The front is made in two sections to allow for slope. The base lower portion is $1 \frac{1}{4}$ ins. by $\frac{1}{4} \mathrm{in}$., as in Fig. 6, up to the dotred line. Carefully check the measurements and then make the upper front panel (from Fig. 6), with the driving window cut out to measure
(Continued foot of page 201)

For weather forecasting a handyman can easily make A CORD HYGROMETER

THIS novelty is a useful article, as It helps a lot to forecast : the weather. It might be best described as a poor man's barometer. Actually it is an hygrometer, as it depends on the humidity of the atmosphere to function,

In the hygrometer, the subject of this article, the contraction or expansion of a twine causes a spindle to turn and through the pointer attached to it register the molsture in the alr, with the posslbillty of rain or fine weather.

Framework

The frame, Fig. 1, can be marked out direct to a board of wood the size given in the diagram. The thlckness of the wood can be from $\begin{aligned} & \text { an } \\ & \text {. to } \\ & 7\end{aligned}$ lower half of the wood strike the two circles shown. The upper half should be divided into 1 in . squares, and the shape copied. Get both sides allke to look symmetrical. Now cut out.

From a piece of the same thickness board cut part A (Fig. 2). Lay across the frame at $1 \frac{1}{2}$ ins. from the top, and mark with a pencil where it crosses. Here cut the wood out to half lts thickness. Do the same with A so that it can fit across level. Mark the centre of it and on the left of the line and touching it cut out a slot $\frac{1}{2} \mathrm{in}$. long and $\frac{1}{4} \mathrm{in}$. wide. In this slot a small metal pulley is inserted using as a spindie for it to revolve on, a thin wire nail driven through. The pulley can be taken from one of those metal runners, sketched at C, used for hanging window curtalns, and to be bought for a few pence at any stores.

At a distance of $\frac{1}{4}$ in. to the right of the centre line across A, drill a small hole for the twine or cord to enter. From pattern B, cut two in sheet brass or other metal. Drill these in their centres, the holes being just right to suit the spindle to which the pointer will be
attached. This can well be a $1 \frac{1}{2}$ Ins. wire nall. Drill both at their ends also for fixing across the frame lower down, as shown by the dotted lines. These parts should be recessed in the wood quite level.

Take the nail, intended for the spindle, file off tts head and try It In the bearing holes in parts B. See it can turn smoothly. On one end, the rear one, fix on as a tight fit, a $\frac{1}{2} \mathrm{in}$. disc of thin fretwood. Push the spindle in; the disc will prevent it riding out, at least backwards.

Pointer

The pointer, D, is cut to the shape shown from $\frac{1}{\mathrm{E}} \mathrm{in}$. fretwood like the disc. Bore a small hole for it to be a tight fit on the spindle and interpose a thin washer between it and brass bearing strip, B, to lessen any friction. Detall sketch, Fig. 3, will help to make the above details clear. This also shows the cord or twine which operates the movement, wound round two or three times on the spindle.

A thin twine or cord will serve nicely for this instrument. Take a sufficient length, say about 3 ft . and at one end tie a small hook, bent up from stiff wire, such as you can get from a safety pin of the larger size. The diagram, Fig. 4, should now be referred to for the following details.
The twine goes from the spindle to the top A^{\prime} pulley, that in part A, thence round it and down again to a second
 pulley below the spindle, then across to a B

Fig. I-Framework third pulley and up to part A again, being wedged in the hole bored therein for the purpose.

Before this arrangement can be carried out, three holes for the twine to pass through must be bored through the frame, directly over the spindle. These holes should be the right distance apart to allow the twines to be parallel, also they should be at least $\frac{3}{16} \ln$, to $\frac{\mathrm{f}}{\mathrm{i}} \mathrm{in}$. for enough freedom.

The second and third pulleys mentioned above are similar in pattern to
that at the top. They are fixed just below the spindle with a staple each, and are kept the right distance apart by means of a slip of wood, as at E. This slip is fixed in position with a screw hook, the hook being directly below the middle twine, the one with the hook tied to It. All belng correctly arranged the twine is carried round the pulleys in the direction indicated by the arrows.

Connect the hooks together with a rubber band as seen in Fig. 4, draw the twine through the hole in A and when at a slight tension, wedge it in with a pointed matchstick. To the back of the frame, where shown in Flg. 4 by a dotted oblong at top and a clrcle at the bottom, glue tin. thick blocks of wood to keep the instrument clear of the wall when hung up. To the top block screw a brass wall plate for hanging purposes.

The woodwork can now be stalned and varnished or enamelled as preferred. A simple dial, a suggestion of which is shown in the finished view of the instrument, can be neatly printed In indian Ink on white paper and be glued on where shown. As the direction In which the cord is wound on the spindle determines the movement of the pointer, it should be wound clockwise if the indication WET is to the left.

Now hang the Instrument either In the hall or passage, or near a door somewhere. The hall is about the best place and let it settie itself. Some time may be saved If, before arranging the twine, it is thoroughly dried. Then the pointer

Fig. 4-Back vlew showing pulloy: can be fixed against DRY straight away. Otherwise, If reference can be made to a nearby barometer, the pointer can be set to that part of the scale likely to correspond most to the scale on the professional instrument. But let the hygrometer settle in its place for a few days first.

Always tap the instrument before consulting it, to overcome the natural inertia of the pulleys and note which way, whether towards WET or DRY, the pointer jerks.

A simple method of fitting a door with
 A DRAUGHT EXCLUDER

ALTHOUGH at present we may not notice the draught that blows under the door, we may be sure it will still be there next winter if we do not do something about it. The period during the summer months is surely the time to take the matter In hand and here is a simple and inexpensive method of preventing the legs and feet being chilled by the draught blowing from under the door as we sit by the fireside.

From Odds and Ends

At very small cost, comfort can be yours if you are worthy of the name of handyman. All the materlals needed for a most efficlent draught excluder, are those shown in the panel all of which are easy and cheap to obtaln.

Fig. I-The gadget fitted to the door
Look at Fig. 1 before you start; it gives an idea of what the gadget looks like when completed and attached to the door.

Make a start by sawing off the strip of orangc-box wood so that it is fin. narrower than the width of the bottom of the door frame. Do the same with the 1 in . by $\frac{1}{2} \mathrm{in}$. piece of wood. Keep the bit you saw off it, to make the buffer-stops shown in Fig. 2.

Plane a bevelled edge along one side of both pieces, then fasten the strip of felt or leather, whichever you are using, along the other side of
the plece of orange-box. Use a little glue, and then tack it on with panel pins spaced about 1 in. apart.

Now tack and glue the strong cloth or American cloth, to both pieces of wood. This makes a sort of tapered hinge, as you see in Fig. 3. Continue by drilling two holes in the 1 in . by $\frac{1}{2} \mathrm{in}$. wood, about, a third of the length from each end. The holes should be just large enough to admit

MATERIALS

A.strip of wood from the side of an orange box (usually bbout 3ine. wide and about fin. thick).
A plece of wood lin. by $\frac{1}{2}$ in., about 3f. Iong-
A strip of strong cloth, or ${ }_{4}^{*}$ American cloth 21 ns. wide.
A narrow strip of felt. leather, or even a nat leather bootlace.
Six wood scraws 1 tins. long.
6ins, of springy wire and a few tin. panel ping.

Fig. 3 Section thowing parts in place
two of the woodscrews. Countersink the holes if necessary.

Close the door, and, allowing the plece of orange-box wood to come to about 1 in . from the front of the doorframc (see Fig. 1), mark through the holes you have drilled, make a "start" there for your screws, and screw the article lightly into position.

Spring Clips

Snip the plece of wirc Into two, and make the springs to the shape shown in Fig. 4. Remove the work from the door now, and sllp the eyes of the springs over the ends of the

screws, as shown in the same detail. Screw the job firmly into place.

You must now make the bufferstops to suit, following the Idea shown in Fig. 2. Be careful to keep the excluder firmly pressed down on the floor whilst you fit them in position on the door frame. You will, of course, have drilled two holes In the buffer-stops to take the screws. Secure them to the door frame as you see pictured in Fig. 1.

You will find that, on opening the door, the lower part of the excluder lifts clear of the floor to allow it to pass over carpet or uneven floor.

Tree Seat-(Continued from page 195) should be made to the dimensions shawn here, then the angle bearers will be about 20 ins . long and the shorter ones about 14 ins . long. Both measurements are overall and allow for the tenons at both ends.

The seat consists of varying lengths of sawn branch wood from rather more than 2 in . diameter stuff. Choose sound straight lengths, and let each piece meet the angle bearer half-way across its "flat" top, as seen in the right-hand plan, Fig. 2. There should be six lengths to each of the four seat layers. They fit together as evenly as possible and are nailed with either copper or galvanized nails.
The underside, or cut side of the layers should be creosoted before being
nalled on, and the tops of the bearers should also be similarly treated. A covering edging layer should be added as A, in Fig. 1, nailed securely to the posts and to the top front layer.
The front posts are next fitted with cross bracing pieces, seen in Fig. 5. Careful measurement must be made for these, and the ends shaped to fit into vee shaped recesses cut in the uprights. They are securely nailed in place and the smaller, more or less decorative pieces, cut in and nailed to make a symmetrical panel.
It now remains to form the backrests to the seat, and the diagram, Fig. 6 , shows how they may be made. No hard and fast measurements need be given for the panels, of which there are eight.

The figures given in the diagram should be well sulted for the tree-seat under discussion. Wood about 2 ins . In diameter answers well for the back panels and cross pieces. Vee joints are the best and strongest here with secure nailing.

Each upright of the panels should come directly to the back layer of the seat, and immediately over the upright posts below. The lower extremities of the panel uprights also should be cut hollow, as it were, to fit over the seat pieces to get a secure flxing.

> HANDKERCHIEFBOX The complete kit (No. 2804) for making this week's destign lis supplied from Hobbies Bronches for for or rent posit free for 419 from Hobbies Led., Dereham, Norfolk.

For outdoor or inside use you can make this portable CHILD'S SWING

MOST kiddies find enjoyment in swinging, usually in the garden, but as this can only be indulged in In fine weather, it becomes a seasonal pleasure, and occasions some disappointment when the weather is not suitable. The swing, illustrated, has no such drawback, as it can be easily conveyed indoors anytime and be used in the house.

Deal can be used for making it, good sound timber free from any large knots being necessary, to stand up to the strain. Parts of the swing are grouped rogether in Fig. 1. Make a start with the top cross-bar, A.

Framework

Get out a piece of the timber to the dimensions given, and on the sides pencil across the sloping lines at each end. These are at an angle of 10 degrees from the vertical and 2 ins. apart. Square these across the edges, top and bottom. On both edges gauge a pair of lines down the middle, and $\frac{1}{2}$ in. apart. Between these, and 12 ins . apart, bore holes to fit the swing hooks.

Purchase a pair of these hooks flrst so the correct size holes can be measured. As they will have to go through 4 ins . of wood, they will need to be long ones, and should be about 8ins. or more. Owing to the length of the holes it will be advisable to bore these from both sides to better ensure them being square with the top surface of the cross-bar, and in the centre.

Crossbar

The bar has now to be cut tapering in section, as in detail, B, a job best done with the handsaw. leaving the top edge just $\frac{1}{2} \mathrm{in}$. wide, the width of the pair of lines already gauged across.

Finish the bar by sawing the ends to the 10 degrees angle of the lines, to sult

Fig. $1-$ The main parts
the slope or splay of the legs. The lines will, of course, be now sawn away, so the inner ones should be re-pencilled across, as they act as guldes to fitting the logs at their correct slope.
The four legs (not drawn separately), are lengths of $1 \frac{1}{2}$ ins. by 2 ins. timber, just 6 ft . long each. These are joined across in pairs at the bottom ends by cross-bars,
C. Cut these bars from 1 in . thick wood, to length given. They should be grooved across, $\frac{3}{8} \mathrm{in}$. deep and 2 ins. wide, at a distance of 1 jn . from each end, to admit the legs in as a close fit. The angle of these grooves is the same as that at the ends of the top cross-bar, i.e., 10 degrees from the vertical.
Try the legs in . and if the grooves are sawn out at the angle given, the top ends of them should be the same distance across as the length of the bar, A. Likely error here can be avoided. if the legs are temporarily fastened to the bar, A, and lower bar, C_{1} laid across the legs at the bottom, and their angle pencilled across by drawing the pencil along the legs as they lie on the bar.
Having got these details satisfactory, serew bars, C, firmly to the legs, then, screw one pair of legs to the top cross-bar. The other pair are to be hinged to it. to enable them to fold in for carrying.
Take this second pair of legs, and across them, at 4 ins . down from the tops, fit a wood bar, as at D1, in Fig. 2. This can be 1 in. thick and not more than $1 \frac{1}{2}$ ins. wide. it is halved into the legs at each end.. The second pair of legs are now hinged to the cross-bar, as shown in Fig. 2, D, using 'a pair of $1 \frac{1}{2} \mathrm{in}$. iron backflap hinges for the purpose. Note, these hinges are screwed to bar, D1, not to the legs, and should be clear of the hooks in the bar, A. The rear legs should now be able to fold Inwards.

Preventing Wobble

At the back of the top cross-bar, and butting up against the legs, as at $E 1$, in
employed on a pair of household steps, as shown in the view of the completed swing. The whole should now stand quite flrm, either in the garden or indoors.

For the seat, cut a board of stout wood to the size given at FIg. 3. At 1 in . from each corner bore a hole of the size to admit the swing ropes. The edges of these holes should be slightly rounded off to avoid fraying the ropes unduly, during the action of swinging. Also round off the edges of the board, and glasspaper it to smoothness. It is just as well to glasspaper the whole woodwork of the swing, too, to get rid of any rouginess, and possible splinters.

The Ropes

A good strong rope should be purchased for this swing, $\frac{3}{3} \mathrm{in}$. to $\frac{1}{2} \mathrm{in}$. diameter. Cut into two sufficiently long

Fig. 2-Details of top fartening
Fig. 2, a plece of hardwood, as thick as the legs, is screwed to ease the top strain here when the swing is in actlon.

To keep the legs from any possible tendency to wobble inwards, a pair of metal turn-buttons are added, In the position seen at E and E1, in Fig. 2. It may be as well, too, to fit across, at the bottom, stay ropes similar to those
lengths, fold at the centres, then Insert a metal thimble and lash the ropes together under it, as in the detall, F, In Fig. 3.

Now thread the ends of the ropes through the holes In the seat board and

there
e make them secure underneath. Take particular care to get the ropes the same lengthyou will want the board to swing level, not tilted up.

Finish this part of the job by bringing each pair of ropes together, abour 12 ins. to 15 ins . above the board, and there lashing them securely with fine cord. Do not set the board too high.

Glass-Topped Table

IAM going to make a table with a glass top, but do not know where to get the top from, or how it will fasten to the frame. (J.L.-Wortley).

GLASS for a table top can generally Tbe supplied by any good builders' merchants, who would cut it to size and If desired, have the edges ground and polished for you. Usually a top of thls kind is secured by means of four triangular shaped metal elips which cover the corners of the glass and are screwed to the edges of the table. Such fittings are generally to be had from any good Ironmonger.

Ink, Stains

WHAT is the best method of removing printing ink from a grey warehouse coat? I have tried several methods, and none of them hos been very successful. (L.B.-Headington).

A S printers ink is often blended with Aresinous and other gums, we suggest you try placing the material between layers of clean blotting paper and pressing with a moderately hot iron which should by the heat, soften the resin and allow it to be absorbed by the paper. Bleaching with Parazone or oxallc acld can be tried if the heat treatment fails, but there may be risk of making the stains worse.

Lighting Extension

PLEASE tell me the easiest method to fix up a light in my workshop, constructed of wood and situated over 14 yds . away from the house. (P.B.-Epsom).
DRESUMABLY you have electric current on, in which case it is quite easy to carry an extension to the workshop. Purchase a lamp fitting from the stores, and fit up in the workshop, adding also a switch. From there, attach a sultable length of rubber or lead covered twin electric cable to the nearest lighting point in the house supply, and connect to that with a plug fitred to the ends of the cable. If you have no electric current available, about the best light to use is a Tilley lamp which you can buy at any hardware stores.

Riveting China

$\stackrel{A}{\mathrm{~T}}$RE you oble to recommend an apparatus 1 for riveting china? (J.B.-Taunton).
HE tools required are a small archimedean drill, some glass hard diamond pointed drills, some diamond dust or coarse Carborundum, and some soft copper wire about 20 gauge. The work to be drilled has to be firmiy supported on a sandbag or a bed made of plasticine or modelling paste, or the
like. The positions for the rivet holes are marked opposite each other on each side of the fracture, holes are drilled using a drill point lubricated with turpentine or a little diamond dust, or

HERE are the remaining instructions for building the quaint novelty shown. Full size patterns for the figure and the cactus tree are given on page 203, ready for tracing on to odd pieces of wood.
First. cut out the body. As this is in $\frac{1}{2}$ in. wood, It can be cut with a fretsaw, but it is so shaped that it can also easily be cut out with straight cuts from a tenon saw. If the wood is held in a vice, this should be a simple enough job. "
Two tin. diameter holes have to be drilled with a twist drill for the dowel legs. When this has been done, the edges are bevelled both sides where shown, i.e., all round except at the head part and between the legs. This is done with a chisel for preference, putting the wood in a vice so you can keep both hands behind the chisel. It is the wood you have to cut, not your hands.

Limbs

The head part is rounded. Note that the top of the head is cut on the slant. On this the hat brim is glued and nalled, and then the crown.
The arms are then cut, possibly both rogether, from $\frac{1}{n} \mathrm{in}$. plywood, with the outside grain going the long way. These are eventually screwed on with roundheaded screws. The screw-heads are thus used decoratively, but first, the rest of the model is made and painted.
The legs are of tin. dowel, though pleces of pencll will serve. The feet are whittled from pieces of wood. The best way is first to take a plece of wood much larger than needed, and bore a $\frac{1}{\mathrm{i}} \mathrm{in}$. hole in it. Glue the wood to the end of the dowel.
When the glue is quite dry, whittle the feet. Obviously, if the feet were whittled first, it would be very difficult to drill the hole afterwards. When fitting the feet, take care that they do not project too far inwards so that they foul the saddle.
Bore a small hole where the nose is to come and force in a piece of match. stick. Cut it off so about tin . projects.

Paint the whole of the head pink, and the whole of the body green. The arms, at this stage not fixed, are also painted green. When dry, paint in a red V on

Carborundum can be applied to the start of the hole, and the latter "ground" out. When all the holes have been drilled, the parts are assembled-piece by plece and a short piece of the copper wire inserted from the front and down through the hole; the upper part is bent over and the other end put through the opposite hole and the whole drawn tight. Some practice on unwanted pieces of china is desirable, to acquire the needful knack and dexterity before attempting any important repair to a valuable plece of china.

Final details for constructing the

DON PEDRO NOVELTY

the man's front (most of it will be covered by the bow, afterwards), and a red stripe down the outside of the arm pleces, also round the thickness of the breeches. Paint the whole of the hat black, including the underside, and paint, likewise black the legs and boots. Put in the eyes, moustaches and hair (do not forget the 'sideboards') also in black.
 The tip of the nose is painted bright red.

When all is dry, paint on the bow in bright blue, and use blue to paint a ribbon on the hat. All around the rim of the hat (i.e., on the tin. thickness). put a series of red dots, and when these are dry, put a spot of white in the centre of each. Now screw on the arms.

The Base

For the base, a rough slab of wood is best. It should have, of course, a flat base, but the outline should be irregular and the upper surface wavy. A search through the firewood pile might yield what is needed. Of course, a piece of wood could be sawn to an irregular edge and the upper surface roughened with a gouge.
Place the horse on this, and mark the position of the feet. Scoop holes for them, and let the feet sink in and then neaten the holes with plastic wood. This can be moulded into hoof shapes if desired.
The cactus plant gives a qualnt effect and is easily made by first cutting a wooden shape and then modelling up with plastic wood. The base, of course, is left as a tenon, which fits into a sultable slot prepared for it in the base.
The base is palnted a sandy yellow and the cactus a dark green.

|N some ways resistances and condensers may appear puzzling components to test. A condenser must not pass direct current; if it does, then It is out of order. This being so, someone may well ask how such a part is to be tested? Especially as it may still be out of order if it does not pass current.
And with the resistances used in radio sets some difficulity is also present. They may range from a few thousand ohms up to several megohms (millions of ohms) and normal methods of con-

Fig. I-How resistances are measured
tinulty testing fail. Then there is the problem of determining how many ohms value an unknown or unmarked resistor is.

Testing with Phones

Phones click when extremely small currents pass, and they can, therefore, be used with a small dry battery to show whether a resistor is able to pass current. The lower the value of the resistor, the louder the cllck will be, but even so this method is not wholly satisfactory as no indication of the actual value is obtalned. But it is a possible standby.
With a few trials it is even possible to get some idea of the resistance value by judging the volume of the click as contact is made.

Meter Testing

For exact indication of resistance value a meter is necessary, and this is connected as shown in Fig. 1. When the leads marked "To Resistance" are short circuited the variable resistance is adjusted until the meter shows exactly full-scale.

Now when any resistor is connected to these leads the pointer will fall back by an amount depending upon the resistance value, which can be read off the meter scale. This is the method used in radio testers, and the battery,
etc., is included in the case of the instrument. The cost of such an arrangement Is only a few shillings.

As meters show the current flowing it is necessary to use Ohm's Law to find out the resistance. The resistance in ohms equals the voltage used divided by the current flowing.

Adjustment

An average meter gives a full-scale reading on 1 mA (milliamp.). Suppose this is used in Fig. 1 with a 4.5 volt dry battery. To make the meter read 1 mmA the variable resistance will need to be set to 4,500 ohms. By adjusting the resistance untll the meter shows 1 mA we know the former is set to 4,500 ohms. As you know, 1,000 milliamps equal 1 amp. So suppose a resistance is corinected and the meter shows 5 mA that is 0005 amp . Dividing 4.5 volts by .0005 we get 9.000 the value in ohms of the resistance in circuit.

By working out ten or fifteen sums an "Ohms" scale can be prepared to compare with the meter scale. The value of any resistance can then be read easily.

Alternatively. it can be remembered the current passing is halved each time the resistance is doubled. 5 mA therefore equals 9,000 ohms: 25 mA equals 18,000 ohms; 125 mA equals 36,000 ohms, and so on.

Testing Condensers

Since actual measurement of these requires alternating current and the calculations become difficult for ordinary purposes simpler methods prove sufficient.

Condensers of from about 5 mfd . upwards can be tested with the meter connected as in Fig. 1. When the two leads are applied to the condenser the meter pointer should move up, then return to zero, showing the condenser has charged. The larger the capacity, the farger this momentary movement will be.

If no such movement is obtained with large condensers, then they are internally open-circulted and useless. If the pointer moves completely over, they are internally short-circulted and should also be discarded.

Any leakage will be shown by the meter, as for ohms. Good condensers should not leak, unless they are electro-
lytic ones, where this is necessary to obtain polarisation. Such condensers will be known as the polarity is marked on them and a leak is usual here, not a sign that the condenser is beginning to break down, as it is with the other condensers.

Smali condensers can be tested for short-circuit in the same way.

Buzzer Test

Fig. 2 shows a simple open-circuit test at " A ". If the condenser is in order the volume in the phones will increase when it is connected to the

Fig. 2-Testing condensers
leads. If a condenser is connected in serles with a battery and phones there will be a cllck (faint) on making contact. showing it is charging. If there is also a click on disconnecting, the condenser leaks slightly. if there is a loud click both times, the condenser is shorted Internally. Because of the method of construction, internal leaks and shorts are not rare in condensers.

Spark Test

An excellent test for condensers of about .5 mfd . upwards is to connect them momentarily to a high tenston battery. Upon bringing the leads together, as shown at " B ", a good spark should be produced. The larger the capacity of the condenser, the bigger the spark.

A good condenser will spark even after being disconnected for eight or ten seconds from the battery. With a leaky condenser no spark will be obtained after a second or so as the charge will have leaked away inside.

After testing for shorts with phones, very small condensers (0001 to .001) may be tested for open circuit with the buzzer, or by connecting in series with a receiver aerial lead. If the programme disappears, the condenser is Internally open-circuited.

Miniature Lorry-(Continued from page 196) exactly, complete with backward stagger. Assembie up to this point, putting in a seat $\frac{3}{4} i n$. by $\frac{3}{4} i n$ covered in passe partout. Stain the inslde of cabin.

Make the roof in soft clean wood, as in Flg .7 , and well round off as shown, to a nice smooth curve by finishing with a fine grade of glass paper.

The model maker can choose any type
of bonnet for his model, but the one shown at Flg. 8 is probably the most popular. A rough measurement for this would be a block of wood sin. wide at front base, $\frac{7}{4} \mathrm{in}$. long and $9 / 16 \mathrm{in}$. high, sloping up and outwards slightly towards the cabin.

There are many additions one can make. Strapping from strips of thin
card and a radiator from thicker card. Small lamps from pin-tops and. fin. dowel. The screen edge can be improved with thin silver paper as most of these are chromium plated. Number plates can be made on black paper and using white ink with a mapping pen. Mudguards and wheels can all be fitted as in previous models.

制

 ENGINEEIR"

 ENGINEEIR"

 EXHIBITION

 EXHIBITION

 AUGUST 17th-27th

 AUGUST 17th-27th
 1919

Special attractions include":

Enlarged competition section showing the year's best models • Fully-equipped workshop carrying out a daily programme of work - Model cars, boats, and aircraft in action on the circular track • Radio controlled models • Working model railways with full scenic effects. Steam traction engines of all types operated under working conditions , Two passenger-carrying model railways.

NEW IBYYAL HORTICUHTURAL MALA

WESTMINSTER, IONDON

Admisaion 2/3 (ine. tax) Children under 14 1/Weekdaym 11 a.m. (12 a,m. on Aug. 17th) ${ }^{9}$ p.m.

Secrional Cantra Poles. All accessorles. Clre. $44 \mathrm{ft}, \mathrm{HL}$ 9 ft .6 in .6515 s . complete. carr. pd. Marquee. 30 fc . \times $20 \mathrm{ft}, \times 14$ fe, high. 638 l 15 m. Complece. Largersizes.
GENUINE EX-RAILWAY AND SHIP HEAVYWEIGHT

TARPAULINS

Guaranteed Waterproof
$70 \mathrm{sq}, \mathrm{ft}, \mathbf{2 0 / - ,} 2$ for 39/-, 4 for 77/6. 140 sq . ft. Q2 10s. 280 sq. ft. E5. approx 360 sq. fe. ©6. approx. 720 sq . fe. 612. Medium or lightweight if deslred. All include carriage. CAMPING EQUIPMENT, in Stock. Send Id. for list. Compser. 7 oz. Cryscal-clear lonses. Ideal holiday.sporting evenes, 40 s .6 d . W.D. model, full-sıze. in case. leather slings. $£ 3$ 10s. Very special 6-Icns achromatic modal, 45 19s. 6d., complece in case, ete. All post is.
TELESCOPES AND BINOCULARS. H.P. zerms can be arranged.
HEADQUARTER \& GENERAL SUPPLIES LTD., H.O.B.
196-200 Coldharbour Lane, Loughborough lunce.. London S.E.5.

AMATEUR
 CARPENTERS \& ELECTRICIANS
 urgently required by well-known
 AMATEUR REPERTORY COMPANY

for see building, stage lighting, prop making. etc. All club facilities.
Write for particulara to:-
ROBERT BECKLEY ESQ., STAGE DIRECTOR, HORNSEY LITTLE THEATRE, 104 CROUCH HILL, HORNSEY, N. 8

Indispensable to all interested in motor cars.

The two popular Car books

"WHERE'S THAT CAR FROM?" "POPULAR CARS ILLUSTRATED" 6d. each
from all Stotioners and Booksellers or from RALEIGH PRESS, EXMOUTH

TOYMAKERS AND MODELLERS SUPPLIES

Pressed Matal Wheels. Ono dozen each $\frac{1}{*}^{*}, 1^{*}, 1 \frac{1}{4}^{\circ}$ and 2^{*}
... ... 4f, © Hardwood Wheels, Recessed ... 1/6 dozen, $7 / 6$ half-gross, $13 /-$ zrom. ร1"
 Pight grass Butc Hinges Toy \& Modelmakers Catalogues and Lises, I/. JASONS, 135 Nags Head Rd., Ponders End, Middlesex

KITS for ()LID TIME SHIPS

Hobbics range of Ship Models includes Elizabeth Jonas, Cutcy Sark,
Vietory, Mayflower, etc. Complete kit of wood, sail material, guns, pulleys, cord, etc.. with full size pattern of parts and planed wood ready to cut out, shape and conseruct. A fascinating pastime.

Kits for models 12 ins. long and upwards.
Ask for frec tllustrated lists at Hobbies Branches or from Hobbie* Limited, Dcreham, Norfolk.

FRETSAW BLADES

The world.famous blades of Hobbies are atlll obtainable, for handirame or machine. In eeveral grades for wood toy or mecal cutting. Rellable quality steel only in their manufacture. Look for the colour label to

BLUE LABEL $-\quad 1 / 3$
YELLOW LABEL $-1 / 5$
HEAVY SAWS
METAL CUTTING $\quad 2 / 7 \frac{1}{2}$
METAL CUTTING $1 / 7 \frac{1}{2}$
Please atate fine, medium or coarse in ordering.
Obtainable from Hobbies Ltd, Dereham. Norfolk or Branches and ironmongers everywhere, Postage $2{ }_{2}^{\mathrm{L}}$ d, extra.

She might be YOUR ship

MOTOR TORPEDO BOAT

Travelling at over 40 knots, armed with two torpedoes, these "Little ships' pack a punch to K.O. an opponent many titnes thelr size. If you're in M.T.B.'s you're in for high speed, excitement and thrills aplenty.

Yes, you'll get excitement in the Royal Navy, you'll get interest too, and a worthwhile job with good pay and fine prospects.

If you are between the wyes of 15 and 28, call er any Combined Recruring Centre or writc to Director of Nsval Recratina Depr. AX/I48, Admiralty. Loadon, S.W.I.

Make the

ROYAL NAVY

your career

JOIN the thousands of enthusiasts that follow the modern hobby for modern youth-building and flying ther own model aeroplanes. This is how so many famous designers started their eareers-such as Whittle. Camm, Mirchell. Roe, Handley Page and many others! Tostart you in this fascinating hobby that anyone Interested in woodwork and tools should find within his power we will send you absolutely free of charge a copy of our 64-page illustrated magazine the AEROMODELLER, It comes out every month and gives help and guidance to beginners as well as information and assistance to the more expert. Packed with pictures, plans and tips. Send coupon for your FREE COPY now!
To The Aerodrome (Dept. HWI), BilHngton Road, Stanbridge, Nr. Leighton Buzzard, Beds.
I enclose $2 \frac{1}{d} \mathrm{~d}$. scamp, please send me FREE COPY of the AEROMODELLER as offered.
Name
Address

HOUSES • SHIPS • ASHTRAYS - BOOKENDS SIGNAL CABINS • RAILWAY STATIONS AIRPORTS DOCKS•RELIEF MAPS• PLAQUES MODEL FURNITURE - INKSTANDS • PAPER WEIGHTS. MODEL FIGURES \& ANIMALS etc. SIMPLE TO HANDLE - INEXPENSIVE The Instruction Book illustrated sell. you low t.. wax . .uc" amoc la "s above, without special tools or skill, in Sankey's "Fyruma" Plastic Cement. This material, modelled while plastic. dries cs bikes to stone-hardness, ready for painting according to inatructions. Obtain. abie af local ironmongers, hobbies shops and art material dealers. Get Instruction Book by smading dd. in stamps to the oddress bolow

Dept. 3

D. inshntoreson.zie

ILFORD
Est. 1857
ESSEX

REMARKABLE HOLDING POWER

- Plastic expansion sives tremendous holding power ;
- Resists water, weather, heat and acids;
- High tensite and impact strength; shock and vibration proof;
- For use in any materjal, indoors or ourside;

In seven diameter sizes and four lenglts. Made in Great Britain and patented in all countries throughout the world.
Screw it - with HEWIT
HEWIT WALL PLUGS LTD.
4, Curzon Place, Park Lane, London. W.I
Tel, : GROsvenor 2423 (10 lines)

[^0]

OVERLAY ON LID.

LID. CUT ONE TO OUTLINE

$(5,-4)$

Instructions for making a

HANDKERCHIEF

THE Handkerchlef Box shown can be made from the patterns provided, quite simply. If you prefer a plain article you can, of course, omit the fretted work in the sides and even in the lid. At the same time, a little ornamentation makes the article much more attractive, and is certainly worth the work involved.

The patterns can be pasted to, the wood except where they are plain rectangles, when they can be marked out with ruler and pencil. The wood throughout is $\frac{2}{1} \mathrm{in}$, thick, cut with the fretsaw in the usual way.
The construction is of plain box formation, built on the piece forming the floor. The two sides and the front are fretted, but the back is a plain part. The sides are glued between the back and front, the whole framework standing $\$ \mathrm{ln}$. Inwards from the edges of the floor. Get thls box frame rigid and strong, and if necessary, drive some pins through from the underside of the floor Into the edges of the uprights to stiffion the whole thing. Littie angle pieces can also be glued to the Inner corners If needed.

The Lid

The lid is a plain plece of wood befins. square. On the top of this is the fretted ovarlay. The complete unit is hinged to the upper edge of the box. For this purpose, a stiffening fillet is glued along the top of the back Inside, so the lid may rest upon it. A detall of this is given in the sectional drawing on the sheet, and you will notice that the upper edge of the stiffening fillet has to be
chamfered along with 2 plane to bring it in line with the chamfered edge of the back itself.

Hinge Strength

The fin. hinges are screwed to the upper edge of the back with the knuckle outwards, and If necessary, a small recess must be made to allow the flanges to lie flat and flush. Notice in the detail, too, as well as on the pattern of the lid, that this back edge must be slightly chamfered off. It is shown by the shaded section and this angle must be maintained along the whole length. thus when the lid is open, it will slope slightly backwards.

To prevent undue strain on the hinges, it will be as well perhaps to add a small length of fancy ribbon or cord. or even chain, between the lid and the inside of the box. It can be firted to two eyelets, one on the inside front of the box. and the other near the front edge underneath the lid.

Corner Feet

Finally, four Zin. square feet are glued beneath each corner, being set back din. inwards from the outside. It is as well to line the inside of the box behind the fretted sides and front. If you have some thin plywood or similar material, this will serve the purpose, glued behind the fretted portions. Falling that, a linen or imitation leather material can be used.

Remember, in any case, if you are going to stain and polish the finished article, this should be undertaken before the lining is put in.

[^0]: Temple House, Tallin Street, E.C.4. Sole Agents for Autralia and New Zomland Gordon \& Gotch (A pia)

