- 」 - the MÁplin magazine

Rewiring Your House

 NHAT TO BUY \& MHAT TO DO RS232 INIERFAGE FOR SPECTRUM \& DRACON
A LOOK AT THE NEW ATARI'S

ELECTRONIC LOCK for car or home
 SYNCHIME SOUND EFFECTS BOX

DID YOU MISS THESE ISSUES?

Copies of issue 1

are now sold out, but a reprint of the projects from issue 1 is available and contains:

Universal Timer. A comprehensive programmable controller for up to 4 mains appliances. There is storage for up to 18 program times, ons or offs and relay outputs. Complete construction details.
Combo Amplifier. Superb 120 W MOSFET power amp with low-noise BI-FET pre-amp having built-in flanger, inputs for guitars, keyboards or microphones, and five step equaliser. Complete construction details.
Temperature Gauge. Coloured LED indication of $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Complete construction details.
Pass The Bomb! Low-cost easy to build electronic version of pass-the-parcel - keeps the kids amused for hours!
Plus six easy to build projects on Veroboard: Car Battery Monitor - Colour Snap Game - CMOS Logic Probe - Peak Level Indicator - Games Timer - Multi-Colour Pendant.
All this for just 70p. Order As XA01B (Maplin Project Book Volume 1 No. 1). Price 70p NV

Copies of issue 3 are now sold out, but a reprint of the projects from issue 3 is available and contains:
ZX81 Keyboard. A full size, full travel 43-key keyboard with the electronics to make graphic symbols, function mode and shift lock, single key selections. The two-colour legend for the keys is the same as the ZX 81 keyboard The keyboard plugs directly into the sockets in the ZX81 and a special adaptor is supplied to run the keyboard from the ZX81
 power supply, so there's no soldering in the ZX81 at all. This full-size keyboard gives you fast, reliable entry - use it once and you won't be able to do without it again!
Stereo 25W MOSFET Amp. Supplied as a complete kit including wooden cabinet and printed and punched chassis, this superb 25W rms per channel amplifier has inputs for magnetic pick-up. tape deck, tuner and auxilliary. The kit is extremely easy to build, all but 5 components mounting directly on the pcb. There are only 7 interconnecting wires in all and when completed, no setting-up is required. With its superb frequency response, low noise, low distortion and the grandeur of MOSFET-sound, the amplifier is second-to-none at the price.
Radar Doppler Intruder Detector. Home Office type-approved microwave unit gives coverage adjustable from about 2 m to 20 m . May be used on its own, or with our Home Security System.
Model Train Controller Remote Control Facilities. Full details of infra-red, radio or wired remote control units for our Digital Multi-Train Controller.
All this for just 70p. Order As XA03D (Maplin Project Book Volume 1 No. 3). Price 70p NV

Copes of issue 2 are now sold out, but a reprint of the projects from issue 2 is available and contains:

Digital Multi-Train Controller. Our superb digital train controller can control up to 14 locomotives individually on the same track. Any four loco's an be controlled simultaneously. The unit has automatic short-circuit protection and because it uses digital control a DC supply is present all the time for carriage light etc.
The locomotive modules will fit in most modern 00 -scale engines. Complete construction details.
Home Security System. Full construction details of our new home security system offering a high degree of protection for domestic or commercial premises coupled with excellent long. term reliability. The unit's features are: six independent channels, 2 -wire or 4 -wire operation, detects open or short circuit or just resistance change, tamper-proof main cabinet and external cabinet. The external cabinet has its own protection as well. There are presettable entry and exit delay timers. With the extra peripherals being added each issue, this is a really veratile system.
Digital M.P.G. Meter. An easy to build device that will help you to make your motoring more economical. The unit has a large easy to read LED display. Complete construction details.
All this for just 70p. Order As XA02C (Maplin Project Book Volume 1 No. 2). Price 70p NV

Copies of issue 4 are now sold out, but a reprint of the projects from issue 4 is available and contains:

Telephone Exchange. A complete telephone exchange with up to 32 extensions on 2 -wire lines. Ideal for the home, office, or small factory. Save $£ £ £$'s on rental charges. Full construction details for up to 16 lines in this book.
Remote Control for Amplifier. Adjust volume, balance, and tone whilst you sit back and relax with our infra-red remote control. Designed for use with our 25W MOSFET Amp, but can be fitted to most amplifiers.
Frequency Counter. This superb, easy-to-use, low-cost, 8 -digit frequency counter with superior specification covers the 10 Hz to 6000 MHz band. Incorporates full push-button control, electronic switching, and one input for the whole range.
Ultrasonic Intruder Detector. This easy-to-build ultrasonic receiver covers up to 400 square feet; though more than one can be used for larger areas. The unit automatically adjusts itself to transmit at the frequency where the transducers give their maximum output. Up to three of these units may be connected to our home security system.
All this for just 70p. Order As XA04E (Maplin Project Book Volume 1 No. 4). Price 70p NV

TWO NEW SHOPS THIS AUTUMN

Coinciding with the publication of this issue of "Electronics" is the opening of our first new store this year. Doors open at 9 a.m. on Tuesday, 16 th August, at 8 Oxford Road, Manchester (Tel. 061-2360281), and we'll be open from 9 to 5.30 Tuesdays to Saturdays from then on. We're easy to find too; right opposite the BBC between Piccadilly and the University complex, just a few steps from Manchester's Oxford Road Station and about five minutes walk from the city centre. There is excellent parking on meters in the adjacent side roads and we're about five minutes drive straight in from junction 10 on the M63 at the start of the M56.
The big difference with this store is that part of the sales area will be self-service, where you can browse around and choose the parts you want. Counter service will be available as well and upstairs you'll find our computer demonstration area along with hundreds and hundreds of different software packages for Atari, BBC, Commodore 64, Dragon, Sord M5, Spectrum and VIC20.
Our second new store this year takes us to the other end of the country. On November 1st we'll be opening in South. ampton, to give us a base in the South of the country. You'll find us at $46-48$ Bevois Valley Road (Tel. 0703 25831). The shop has sold electronic components for many years and will start to stock the Maplin range from midAugust, but the full range will not be available until November.
As always, of course, the big event of the year for us is the publication of our new catalogue, and this year it's a massive 480 page book with tons of additional data and pictures. The new catalogue will be on sale at the Electronic Hobbies Fair for just $£ 1$, so make sure you get along there as it promises to be a super show. In the pleasant, relaxed atmosphere of the Alexandra Pavilion from October 27th to 30th, we'll be demonstrating lots of our projects and kits and you can see some of the large range of Heathkit products, including the incredible microprocessor controlled robot, Hero 1 . We look forward to meeting you there.
The one major difference in the new catalogue is that now you will find everything with its price on the page. And that means in the next issue of this magazine we'll have an extra eleven pages of projects and features. See you then!
Cover illustration by Tony Worsfold

Mail Order

P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: (0702) 552911

Shops at:

159.161 King Street, Hammersmith, London W6
Telephone: (01) 7480926
8 Oxford Road, Manchester
Telephone: (061) 2360281

September to November 1983 Vol. 2 No. 8 CONTENTS

Projects
Codelock 12
An electronic key to give extra security
Doorbell For The Deaf 42
Soundlessly attracts your attention Dragon 32 I/O Ports
23
23
Versatile 1/O ports accessible from BASIC
Dragon 32 RS232/Modem Interface 54
Simply plugs into ROM expansion socket
Logic Probe 48
Instantly understandable 7 -segment readout at low cost Minilab Power Supply 16
All the voltages you need for your test bench Synchime 2
Bell and gong sounds to complement the Syntom and Synwave ZX Spectrum RS232/Modem Interface 60.
With self-contained operating system
Features
First Base 46
Continuing our guide to digital techniques for beginners
Heathkit 14
More fascinating kits for cars, education and the test bench Interfacing the BBC Micro 20
How to program the user port for control or measurement
Machine Code Programming with the 6502 51
Part 2 of this series that lets you get right into your micro Rewiring Your House 6
First part of two giving you the lowdown on the electrician's secrets Say It With Satellites
40
40
More news of those orbits in the sky Using The Commodore 64 58
Get to grips with the sprites in your machine
News
Atari: The Next Generation 5
Classified Advertisements 39
Coming Shortly 38
Corrigenda
38
38
Exhibition News 39
Maplin News
38
38
Maplin 1984 Catalogue 64
Modem News
59
59
New Books 45
Price List of Catalogue Items 27
Price List of Items in this Issue 38
Price List of Items Since Catalogue 37
Software From Atari 15
Subscriptions 64
Top Twenty Books 38

[^0]Lynton Square, Perry Barr, Birmingham
Telephone: (021) 3567292
284 London Road, Westcliff, Essex Telephone: (0702) 554000
46.48 Bevois Valley Rd, Southampton

Telephone: (0703) 25831
All shops closed Mondays

Editorial \& Production Published by

Editor Doug Simmons

Production Manager Technical Editors

Art Editor
Technical Artists

Doug Simmons
Sue Clark Dave Goodm Pet Blackman Blackmore Roy Smith John Dudley

Maplin Electronic Supplies Limited P.O. Box 3, Rayleigh, Essex Eden Fisher (Southend) Ltd Quillset Typesetting y Spotlight Magazine Distribution Limited 1.11 Benwell Road, London N 7

Complements the Syntom and Synwave projects. Makes a metallic chiming sound, similar to bells, gongs etc. \star Delay variable from 50 ms to 5 s .

by Robert Penfold

The popular Maplin "Syntom" and "Synwave" projects are capable of synthesising a wide range of percussive sounds, such as drum and hand-clap sounds. The only obvious gap in their "repertoire" is metallic chiming sounds similar to bells, gongs, etc. The "Synchime" unit has been designed to fill this gap, and it has also been designed to match the "Syntom" and "Synwave" units. It can be triggered by tapping the case (or striking a drum on which the unit is mounted) or using a 5 volt positive trigger signal. The envelope shaper has a fast attack time and a decay time which can be varied from about 50 milliseconds to approximately 5 seconds. The other three controls are a straight forward combined volume and on/off type, plus separate frequency controls for the two oscillators. The latter give a wide operating range of about 100 Hz to 7 kHz so that a wide range of effects can be obtained. The output signal level is up to about 5 volts peak to peak from a low impedance source, which is more than adequate to drive any normal power amplifier.

Block Diagram

A ring modulator and two audio oscillators are used to generate the basic sound signal, as can be seen from the block diagram of Figure 1. A ring modulator is a form of mixer, but it is more like the mixer circuits used in superhet radio receivers than a normal audio mixer. In other words, it heterodynes the two sets of input frequencies to produce sum and difference frequencies at the output. For example, a lkHz signal at one input
 $6 \mathrm{kHz}(5 \mathrm{kHz}+1 \mathrm{kHz})$.

A ring modulator is a double balanced mixer, which simply means that both of the input signals are balanced or phased out at the output so that only the sum and difference frequencies appear at the output. In practice there is some breakthrough of the input signals at the output, but this is not really of any great significance. The important thing is that the new frequencies generated by the mixing action should be the dominant part of the output signal.

With most instruments the pitch of the sound produced is determined largely by a single dimension, such as the length of a string or a tube. This gives an output spectrum which consists of a fundamental signal plus harmonics of this signal. Instruments which use metal resonators are often two dimensional (plate-like) or three dimensional (bell-like) objects which consequently have more than one fundamental frequency, and mechanically produce a sort of heterodyne effect. A ring modulator fed by two
oscillators therefore gives a good electrical analogy of a metallic instrument, and this system generates the desired types of sound.

In order to obtain a realistic percussive sound it is essential to have suitable envelope shaping. A simple fast attack, plus relatively slow decay time is adequate, and this is obtained using an amplifier driving a rectifier and smoothing circuit. When the amplifier receives either a trigger pulse or pulses from the microphone, due to its low output impedance it rapidly charges the capacitor in the smoothing circuit. The discharge rate is controlled by a variable resistor, and this has a value which enables a very long discharge time to be achieved if desired. The output of smoothing circuit is fed to the control input of a V.C.A. which is used to process the output of the ring modulator before it is fed to the output socket.

The Circuit

Figure 2 shows the complete circuit diagram of the "Synchime" unit.

Figure 2. Synchime circuit diagram.

The two audio oscillators are based on the two sections of IC3, and a well known oscillator configuration is used here. The output is a roughly square waveform, and this seems to give good results in the present application due to the strong harmonics which produce a complex signal at the output of the ring modulator.

IC2b is one section of an LM13700N dual transconductance amplifier, and this is the main component of the ring modulator. The output of IC3D is coupled to the amplifier bias input of IC2b via R15. The latter is needed because it is the bias current fed to IC2b that determines its gain, and not

the control voltage. Adding R15 in series with the amplifier bias input gives a bias current that is roughly proportional to the applied voltage, and gives the required voltage controlled operation.

Figure 3. PCB layout.
September 1983 Maplin Magazine

The output of IC3a is fed to the noninverting input of IC2b, and it is amplitude modulated by the signal from IC3b to give the heterodyne action and generate the new frequencies at the output. There is little breakthrough of the signal fed to the amplifier bias input and there is no need to add any components to phase out this signal. The same is not true of the signar fed to the inverting input of the modulator, and this does need to be balanced out. This is achieved by including R14 which feeds some of the input signal to the output of the transconductance amplifier. As the signal is inverted through the amplifier this gives the required cancelling, and the value of R14 is chosen to give a high degree of attenuation with the input to $R 15$ at its average level.

Of course, the signal from 1C3a is not totally blocked from the output. When the signal to the amplifier bias input is higher than its average level the gain of the transconductance amplifier increases and its output impedance reduces. This increases the signal from the amplifier and decreases the signal obtained via R14 so that the circuit is unbalanced. Similarly, if the signal to the amplifier bias input falls below its average level, the gain of the amplifier reduces, its output impedance rises and the signal obtained by way of R14 increases so that the circuit is again unbalanced. This provides a proper ring modulator action with a signal applied to just one input producing no significant output, but the mixed signal being produced if both inputs are fed with a signal.

R16 is the discrete load resistor for the emitter follower buffer stage at the output of IC2b. From here the signal is coupled by R13 to the input of the V.C.A. This uses the other section of IC2 as a straight forward V.C.A. which has its

Figure 4. Case drilling details.
output coupled to output socket SK2 through volume control RV2.

ICla is used as the input amplifier and it has Micl directly coupled to its inverting input. This is acceptable as the microphone is a crystal type, and it is actually a crystal earphone which is inexpensive but adequate for this application. R2 has been made quite high in value to give good sensitivity, but if necessary the value of this component could be changed to match the sensitivity of the unit to that of a Syntom or Synwave unit.

R1 biases the non-inverting input of ICla to the negative supply rail so that the output also assumes this level under quiescent conditions. Negative input half cycles from the microphone drive the output of ICla positive, but negative half cycles have no effect. The trigger signal is applied to the noninverting input via C 1 , and a positive input pulse therefore gives the required positive output from ICla. Cl is included so that long input pulses are effectively shortened and dn not hold the envelope shaper "open".

D2 enables IC1A to charge smoothing capacitor C2, but prevents C2 from discharging into ICla . It can only discharge through R3 and RV1, and RV1 therefore controls the discharge (decay) time of the circuit. R4 and C3 prevent the circuit from having an excessively fast attack time which would cause a loud "click" each time the unit was triggered. IC1b is the buffer amplifier which ensures that the smoothing circuit feeds into a suitably high input impedance. Note that the CA3240E device used in the ICl position has a class A output stage which enables its output to go within a few millivolts of the negative supply rail so that the V.C.A. is cut off under quiescent conditions.

Other dual operational amplifiers such as the 1458 C and LF353 cannot produce a low enough output voltage and will not operate properly in this circuit.

Construction

Details of the printed circuit and wiring are shown in Figure 3. The layout of the board is such that crowding of the components occurs in several places, but this is inevitable given the number of components and the size of the board. However, construction of the board is not difficult provided the specified types of capacitor are used and the small components are fitted into place first. ICI has a PMOS input stage and it should therefore be fitted in an 8 pin DIL socket. The normal MOS handling precautions should be observed when dealing with this device. Veropins are fitted to the board at points where connections to the microphone, battery, and other off-board com-
ponents will be made. When the board is installed in the case there is insufficient room to take wires over or under the board, and connections from the off-board components have to be made to the underside of the board. Either double sided pins must be used, or single sided pins inserted from the component side of the board must be fitted.

There is only just enough space for all the components inside the case, and the layout is very critical. Figure 4 shows the correct positions for the controls, sockets, and microphone, and it is advisable to follow this as closely and accurately as possible. The microphone, as explained earlier, is actually a crystal earphone. The transparent section of this is unscrewed from the main section and discarded. The screw at the rear of the unit is removed together with the rear cover which will come away with this screw. This screw is then used

Continued on page 11

A superb new range of high quality computers from Atari at very competitive prices. The range comprises three new computers similar to the existing 400 and 800 , but with the following additional features:

- 24 K ROM operating system and BASIC either or both of which may be software switched out.

Help key to give background information on selected programs.

- 4 special function keys.
- International character set.
- Software compatible with al most all existing software for Atari.
- 11 graphics modes.
- 5 text modes.
- External processor bus for
future peripherals including : a Z80 CP/M module running CP/ M2. 2 with its own 64K RAM. $\because 256$ colours - up to 128 displayable at one time

Just to set to rest once and for all the popular misconception that Atari computers are just games machines, an expander box will be available in the new year with two RS232C interfaces,
a parallel Centronics interface and slots for eight expansion boards. These will include an IBM interface, $Z 80$ interface; 128K RAM disk, Winchester disk controller, modem, 80-column card, real-time clock, voice recognition card and several others. Now let's take a look at this world-beating new range, line by line.

Atari 1010 Program Recorder

Replacing the Atari 410 is the newly styled 1010. It maintains the dual format of the previous recorder, permitting data on one stereo track and audio on the other. An automatic volume control assures perfect record and playback levels and the topmounted control buttons have a positive touch. Data transmission rate is 600 bits per second giving a capacity of about 100 K
 bytes on a C60 cassette
*Order As AF808 (Atari 1010 Recorder) Price $£ 49.95$

Atari 1050 Disk Drive

This is the new replacement for the 810 , and has an improved positive-feel loading mechanism. All new 1050 drives will be supplied with DOS III which permits a higher data packing density so that you can store up to 127 K bytes on each side of a disk. You can of course still call a single-density mode which is fully compatible with disks recorded or pre-programmed for the 810 , or convert single-density data to the new format. In addition you can of course plug up to 4 of these drives directly onto any Atari computer giving

you over half a Megabyte of online storage! The attractively designed, sleek new model is about half the height of the 810 .
*†Order As AF81C (Atari 1050 Disk Drive) Price £299.95

Atari 1027 Letter-
Quality Printer

This new printer represents a low-cost technological breakthrough in letter-quality printers. It contains a five-wheel printhead that creates fully-formed characters like a daisy-wheel, but at a fraction of the cost. It's ideal for use with a word processor like Atariwriter for example. It prints 12 characters
per inch in Prestige Elite 12 face at a speed of 20 characters per second. The printer accepts single sheets of paper and features bi-directional printing and 80 column. There is also an underlining facility.

* + Order As AF82D (1027 Letter

Printer) Price £299.95
** \dagger BK82D (Replacement Ink Roller For 1027) Price TBA plete with programs that let you draw on the screen and plot on paper directly, using a joystick and any Atari computer. In standard format mode the printer prints 10 characters per inch at a speed of 10 characters per second. The four-colour print head prints and plots vertically and horizontally and 2 sets of colour pens (red, blue, green and black) are provided.

* \dagger Order As AF83E (1020 Colour Printer) Price $£ 199.95$
**†BK808 (Paper for 1020)
Price TBA
** \dagger BK81C (Rainbow Pen Pack) Price TBA

The new Atari product line is swelled by a whole range of new products due for release in Nov. ember ' 83 and January '84. They include Atari's new flagship computer, the 1450XLD which in addition to all the features on the 800XL includes 4 programmable keys with 12 preprogrammed functions, and a double-sided dual-density disk drive offering 254 K bytes capacity. The price should be under $£ 500$!

Also coming soon are a Light

More New Products

Pen, a Graphics Tablet, a new Joystick, an 80 -column matrix Printer and a super new TrakBall controller that may sell for as little as $£ 30$! In addition to all this is the Expansion Box and its range of plug-in cards and the CP/M module described above. We'll have all the latest details in our next issue or for a more detailed specification of this brilliant new range get a copy of our new 1984 catalogue on sale from October 30th.

* Prices are tentative, please check with us before ordering.
** Prices not known at time of going to press.
\dagger Available from mid-September 1983.
$\dagger \dagger$ Available from mid-October 1983.

Please note: The above represents the very latest information from Atari (UK) at the time of going to press, but please check any specific point with us before ordering.

Recotuthe

by Geoffrey Burdett

The modern home electrical installation consists of a number of circuits of various current ratings to meet the required total expected load in kilowatts. The current rating of each circuit is the maximum likely load demand which in aggregate gives the total maximum current demand on the installation. Most circuits originate at a combined mainswitch and fuse distribution board, termed a consumer unit.

The fuse distribution section of the consumer unit comprises a number of fuseways, one for each circuit. Although traditionally termed fuseways, in many instances miniature circuit breakers (mcb's) are fitted into the fuseways instead of fuse units, these generally being superior to the fuses they replace.

Although there are, or should be initially, at least the number of fuseways in the unit to meet circuit requirements plus others to add circuits as they are needed over the years this is often not the case.

Where only one circuit is added, it is common practice to fit what is termed a mainswitch and fuse unit, or switchfuse unit which is really a one-way consumer unit.

Such practice lacks foresight, and although only one circuit is added at the time it is better to allow for at least another circuit which means fitting a multi-way consumer unit. Whether a switchfuse unit or a multi-way consumer unit, this, with the existing consumer unit, is connected sep. arately to the mains by the electricity board, usually-via a service connector box.

Some installations have yet another consumer unit, for off-peak storage heating and water heating, time controlled by a time switch so that the circuits and appliances are energised only during the off peak period eg. about 7 hours overnight when electricity is supplied at about half price. See tariffs.

Circuit cables

Most houses are now wired in pve flat sheathed cable. The cable termed twin and earth has two insulated current carrying conductors, one red, the other black, and an uninsulated copper earth conductor now called the circuit protective conductor ($c p c$) and formerly the earth continuity conductor (ecc), because it is electrically continuous throughout the installation and terminated at the central earthing point, the earth electrode. In some parts of an installation 3 core plus earth flat pvc sheathed cable is used, usually in switching circuits containing more than one switch for the one light or for different lights in the same area. eg 2-gang, 3 -gang assembly etc.

The core colours of 3 -core and earth cable are red, yellow, and blue respectively plus the uninsulated earth conductor. The colours have no significance in home wiring but represent the three colours of the phases of a 3 -phase electricity supply system. When used on single phase circuits

Figure 1. Arrangement at mains supply.

REWIRING YOUR HOUSE

in the home for single pole switching the conductor ends should be enclosed in red sleeving or insulation tape as they are all live conductors.

- Circuit cables are sold normally in 50 m and 100 m reels though they can be bought in shorter cut lengths where a limited mount only is required, this usually being the case with 3 -core and earth cable and all the larger sizes of cables used in the home installation. Some homes are wired
* throughout in plastic conduit using nonsheathed pvc insulated cables in various colours. The cables are single-core and the colours are red, black and green/yellow striped, respectively.
The red is used for the live conductors, the black mainly for the neutral but is sometimes used as a live, suitably identified
** with red sleeving. The green/yellow con-- *ductor is the earth conductor.

Plastic conduit is also used in some twin \& earth and 3 -core \& earth wiring, but as the cables are sheathed the conduit does not have to be continuous. It is used at switch drops and other vertical drops as well as in horizontal cable runs. Another form of "enclosure for sheathed cables is plastic mini-trunking run vertically or horizontally son walls and ceilings

Sizes of cables

* The size of a cable is given as the cross *section area in mm^{2} of its current carrying conductor, the earth conductor in such composite cables usually being smaller since it carries current only to clear a fault Earth conductors run independently are sized according to their cross section area in mm ${ }^{2}$.

Circuit cables each have a specific size of current carrying conductor, the size determining the maximum current it is designed to carry without further rise in temperature. Possible voltage drop on long runs is also a factor considered when choosing a cable. The cable sizes used in home wiring circuits range from $1 \mathrm{~mm}^{2}$ to $10 \mathrm{~mm}^{2}$, with larger sizes for the connection of the consumer unit to the meter, these being termed meter leads or meter bights.

The $1.0 \mathrm{~mm}^{2}$ cable is used for lighting circuits, the $10 \mathrm{~mm}^{2}$ cable for cooker circuit cables. The intermediate sizes of cables forother circuits. See table 1 for the current ratings.

Circuit wiring accessories

In addition to the cables there are various components used in circuit wiring. The mounting box is among the most important wiring accessories, though often omitted. It is used for mounting socket outlets switches, fused connection units and a host of other accessories, these having open backs. The function of the box, in addition to being a ready mount for the accessory, is to enclose the unsheathed ends of cables, flex and connectors where used, in a noncombustible chamber.

There are two principal types of mounting box: moulded plastic and metal. The moulded plastic box is for mounting the accessory on surfaces and the metal box is for flush mounting the accessory, the box being sunk into the plaster or wall.

The boxes are of various sizes and depths. The most used box is the one-gang for mounting a single one-gang accessory. It is square in shape, approximately $87 x$ 87 mm , the faceplate of the switch or other accessory being the same size. The metal box is slightly smaller at $86 \times 86 \mathrm{~mm}$ so that the accessory faceplate overlaps the box and covers the gap in the plaster.

Figure 2. Sequence in fixing a flush lighting switch.

Figure 3. Ring circuit.

Depth of boxes

The boxes for lighting switches are plaster depth 16 mm deep, and the plastic box 17 mm .

For socket outlets the standard box has a depth of 25 mm and deeper boxes where needed depending upon the accessory and the room needed in the box for cable connections. All have two or more screwed lugs for fixing the accessory, these being tapped M3.5 metric. Some lugs are adjustable for levelling the accessory after the box is fixed.

Socket outlets and plateswitches are actually flush fitting components, although surface mounted or flush mounted according to the type of box. Surface sockets are entirely different. They are self contained, and usually have an enclosed back for direct mounting on a suitable surface, the sheathed cable passing right into the accessory. Some versions are, however, mounted on a slim pattress block. There are also surface type switches, these usually being metalclad and sold complete with metal surface boxes. Whatever the type of box or accessory it is essential that the pvc

Figure 4. Fixing and connecting a ring socket outlet on the wall above a skirting board.

Figure 5. Lighting circuit wired on the loop-in system.
cable sheathing terminates within the accessory or its box.

The modern ceiling rose has no box and does not need one. It has an integral backplate, enabling it to be fixed direct to the surface of the ceiling. Thin plastic sections are knocked out of the backplate into which the sheathed cables are passed. Some batten lampholders and other ceiling fittings have an integral backplate, and need no box. However, most of the special pendant fittings do require a mounting box. This is a circular conduit box termed a BESA box, having a back outlet and fitted flush into the ceiling to support the ceiling plate and the fitting. Two screwed lugs are M4 metric. The box can be plastic, but where it is to support a fitting in excess of 3 kg a metal box is necessary. The box is fixed to timber between joists, with a hole drilled to take the box outlet.

Most wall lights, as well as spotlights, aiso need to be mounted on boxes, to join the circuit wires to the flex wires and to contain the cable connector.

Lighting switches

The modern lighting switches are termed plate switches because of their faceplate, usually moulded plastic but sometimes metal. Most fit a one-gang slim or plaster depth box. The switch assembly can be a single switch, either 1-way, 2-way or intermediate, or it can comprise two or three switches in the one gang, these would all be 2-way switches which can be used for either one-way or two-way. Where four, five or six switches are required in the one position, a 2-gang faceplate and a 2-gang box are used.

Other switches

There is a whole range of switches used for other circuits including 20A double-pole, these requiring a deeper box. Cord operated switches used in the bathroom and bedroom are also made in one-way, two-way and double pole versions with and without neon indicator.

Socket outlets

The modern socket outlet used in the home installation is the 13A with fused plug having square pins, and has largely replaced the old round-pin 2- and 3-pin plugs and sockets of 15A, 5A and 2A current rating. As already explained, most sockets are of the flush type, either switched or non-switched, with or without neon indicator, in single and double versions.

Junction boxes

Junction or joint boxes used in home wiring systems are plastic, usually circular and have three or four terminals or banks of terminals. They are made in current ratings of $5 \mathrm{~A}, 20 \mathrm{~A}$ and 30A.

Figure 6. Connections at a ceiling rose on the loop-in system.

The ring circuit

A ring circuit, or ring final circuit to give it its official title, consists of a pvc flat sheathed cable starting at a 30A fuseway or mcb in the consumer unit, and runs throughout the various rooms, finally returning to the same fuseway terminals, forming a complete loop or ring, the connections being made at either the terminals of a ring socket or at a joint box.

Why a ring?

The ring circuit was designed in 1943/ 44 as a post war measure to enable dwell. ings to be equipped with an ample supply of socket outlets with the minimum of cable, when copper was in short supply. Before the advent of the ring a 15A socket outlet had to be supplied from a separate circuit, which meant 6 circuits for $615 A$ socket outlets. However, abuse of the system over the years meant that sockets had been added to the original circuits, with subsequent danger

Figure 7. Lighting circuit wired on joint box system.
from overload on the old wiring.
Therefore a circuit was designed to allow a number of power sockets to be supplied from a single circuit, which would save cable and require only one fuseway in the consumer unit, or fuseboard. The alternative was a radial circuit, which to supply a number of 13 A socket outlets would mean a very heavy and costly cable. The cable would have to be of 30A current rating and its conductors would be too large for looping in and out of terminals of socket outlets. Ultimately the circuit in the form of a ring was devised using cable half the current rating at 15 Amps . For about the same cost the cable supplying the ring would be nearly twice the length, cover a wider area, and be able to supply more socket outlets than a single run of cable.

Since each socket outlet connected to the ring cable would in effect be supplied by two cables (outgoing and incoming), this gave the circuit a current rating of 30A to match the circuit fuse or mcb. The size of the circuit cable was $7 / .029$ imperial which had a current rating of 15 amps , but was uprated to 21 amps , as is its metric equivalent $2.5 \mathrm{~mm}^{2}$ now used to wire ring circuits.

Local fusing at each outlet was made necessary because the circuit fuse is 30A and requires anything up to 60 amps to blow. The local fuse is in the plug, so that it protects the appliance and flex connected to it against short circuit current. The current rating (maximum) of a plug fuse is 13A which is the equivalent of a little over 3000 watts. The rectangular shape of the plug pins was chosen so that it could not be plugged into any other existing socket nor could any other plug be plugged into the 13A socket outlet.

The number of 13A outlets (sockets and fused connection units) which may be supplied from any one ring circuit is unlimited but the area in which the outlets are fixed must nox exceed $100 \mathrm{~m}^{2}$. The logic is that adding sockets within a given area does not itself increase the load or current demand but to increase the area is likely to, so far as space heaters are concerned.

Spurs

As mentioned, a spur is a cable branching off the ring cable at a convenient point, which can be the terminals of a ring socket or a 30A joint box inserted into the ring cable. Its principal purpose is to supply a socket outlet or a fixed appliance via a fused connection unit off the main route of the ring cable. This arrangement saves cable, but as it is a single length of $2.5 \mathrm{~mm}^{2}$ having a current rating of only 21 amps it may supply only one outlet. This can be either a single or a double socket or a fused connection unit. The number of spurs on a ring circuit must

REWIRING YOUR HOUSE
not exceed the number of socket outlets connected to the ring cable. Chiefly, spurs should be limited mainly for future extensions rather than to install initially, except where significant saving in cable can result.

Lighting circuits

A lighting circuit is a radial circuit, which means that the circuit cable terminates at the last light on the circuit and does not return to the fuseway to form a ring.

A ring is not necessary, since the cable is smaller, and can extend throughout the house if necessary, and the number of lighting points will still be consistent with the current rating of the circuit fuse or mcb.

There are two principal methods of wiring lighting circuits, or rather lighting points, and either or both methods can be used on any one circuit. These are the loopin and the joint box methods.

Loop-in method

With the loop-in method the lighting circuit cable is run from a 5A fuseway in the consumer unit to each of the lighting points, starting at the nearest, looping out to the next, and so on until the last on the circuit, where the cable terminates.

Then, from each lighting point, a length of the same cable is run to the respective switch position, usually on the wall of the same room or area, eg hall or landing, and in some instances, such as in the bathroom, to a ceiling switch next to the access door. All the cable joints are made in the ceiling rose which also serves as a joint box with ready access in the same room.

Figure 8. Joint box system.

Joint box method

With the joint box method the lighting circuit cable is run from the 5A fuseway to a series of 4-terminal 15A joint boxes, one for each light, and its switch situated in a convenient position between each light and its switch.

Then from a joint box two additional cables are run, one to the light the other to the switch, making a total of four cables, two feed cables plus the light and switch cables, except at the last joint box where there is only one feed cable. All joints are made in the joint boxes, which being situated in the ceiling voids or roof space are comparatively inaccessible, which is the main disadvantage of the joint box method. The main advantage is that less cable is normally used.

Mixed method

Although there are two methods, both

Figure 9. Fixing a ceiling rose.
can be applied to any one circuit, some lights being wired on the loop-in system, usually where ceiling roses are used. On other lights with no loop-in facilities, such as wall lights and some ceiling fittings and pendants, the joint box system is used with only one cable going to the light.

In rewiring the loop-in system is usually employed, since the new cables are run under the floorboards with the minimum disturbance and there is no need to allow for the fixing of joint boxes. Where the circuit cables are run in the roof space for the upstairs lighting the joint box method is often used, with the joint boxes fixed between joists.

Figure 10. Fixing a light pendant fitting other than a ceiling rose.

Number of lights per circuit

A lighting circuit of 5 A is on a 240 V electricity supply equal to 1200 watts. This is the maximum which should be connected to the circuit. However regulations stipulate that a light containing a tungsten filament bulb is assessed at 100 Watts for any bulb, up to and including 100 Watts. Bulbs of higher wattage are assessed at the actual wattage. 12 bulbs at 100 watts each total 1200 watts, which is the maximum permitted. This means that the circuit may serve twelve lampholders, provided none contain bulbs of higher wattage than 100 W . Where there are higher wattage bulbs the number of lampholders are reduced proportionately. With one or more 2 - and 3 -light fittings plus higher wattage bulbs the number of lights on a circuit should definitely not exceed eight, and preferably no more than six, sothat the area affected by a fuse blowing is limited; this also allows for future additions of one or more lights on a circuit. A house of 3 - or 4 -bedrooms usually requires two lighting circuits but where wall lights and spotlights are included the number will be more.

Figure 11. Mounting wall lights.
Fixed lighting, especially spotlights, can be supplied from a ring circuit via a fused connection unit fitted with a 3A fuse. Cable used for a lighting circuit is, as already explained, $1.0 \mathrm{~mm}^{2}$ twin \& earth pvc sheathed with some sections wired in 3 -core and earth pvc sheathed cable.

Installing lighting fittings

The simplest lighting fitting is the plain pendant comprising ceiling rose, flex and pendant lampholder. The ceiling rose of the wired pendant is connected to the circuit cables and fitted direct to the ceiling, with wood fixing between the joists to support it. See figure 9 for connections. Batten lampholders and some enclosed lighting fittings are similarly connected, but as already explained a special pendant having a ceiling plate is connected to a circular box fixed flush with the ceiling. The circuit wires are connected to the flex using cable connectors housed in the box. See figure 10 .

Wall lights are fixed either to a round box or are mounted over an architrave switch box and fixed direct to the wall. See figure 11.

Fixing switches

A wall switch is fixed to a box mounted on the wall at a height of about 1.4 m above floor level. For surface mounting a plastic box is used. This is fixed to the wall by two No. 8 wood screws in holes drilled and plugged in the wall. A section of thin plastic is knocked out of the edge of the box and the cable threaded through. The end of the sheathing within the box is stripped off, and about 10 mm of insulation from the end of each of the two insulated conductors. A piece of red sleeving or red pvc insulation tape is fitted over the end of the black wire, and the two conductors are connected to the two terminals of the one-way switch. The bared end of the earth conductor is enclosed in green yellow striped pvc sleeving and the conductor is connected to the earth terminal of the box. If a 2 -way switch is used one conductor is connected to the common terminal of the switch, the other to the L2 terminal, and the switch fixed to the box with the Top on the faceplate at the top so that the rocker will be down to switch the light on.

REWIRING YOUR HOUSE

For flush mounting the plastic box is fitted into a plaster depth chase cut into the plaster and, using No. 8 wood screws, fixed to the wall in the two drilled and plugged fixing holes. For a cord operated ceiling switch the cable is passed through a removed section of thin plastic in the backplate, the ends prepared and the black conductor with red sleeving connected to the switch terminals and the sleeved earth terminal connected to the earth terminal on the backplate.

Figure 12. Two way switching circuit with hall and landing wiring.

Two-way switching

Where a light is to be controlled by twa switches in different positions a 3 -core and earth cable is run from the first switch position to the second switch position and a 2 -way switch fixed at each. The connections at each switch are shown in figure 12.

Intermediate switching

Where a light is to be controlled by three or more switches in different positions intermediate switching is used. This is a 2 way switching circuit with a 2 -way switch at each end and one or more switches fixed in intermediate positions between the two 2 way switches. One intermediate switch is needed for each extra switch position. An intermediate switch is an ordinary plate switch of the rocker type, but has four terminals instead of the two of a 1 -way switch and three of a 2 -way switch.

The 3 -core and earth cable running

Figure 13. Intermediate switching.
between the two 2 -way switches is cut at each intermediate switch and the yellow and blue wires connected to the terminals as shown in figure 13. The red wire running from the common terminal of one 2 -way switch to the common terminal of the other 2 -way switch is not connected to an intermediate switch, but because the cable is cut the conductor is jointed in the mounting box of the intermediate switch so that it is continuous from one 2-way switch to the other.

Dimmer switches

Where a light is to be controlled by a dimmer switch instead of a rocker switch the dimmer switch replaces the rocker switch without any need for modification in the wiring. Most dimmer switches fit the shallow or plaster depth switch. They are made in one and two-gang assemblies, to fit a onegang box and control more than one light.

Where the light is fluorescent a dimmer switch cannot be used,though there are special dimmers and fluorescent fittings that can be used, but an extra switch wire has to be run from the switch to the fluorescent lighting fitting.

Figure 14. Laying horizontal cables.

In a roof space where polystyrene granules are used for heat insulation pvc sheathed cables must be situated where they do not come into contact with them, as the pvc is adversely affected by it. If it is not possible to avoid the insulation the cables should be enclosed in plastic conduit. Generally cables in the roof space should be situated away from walkways and the cold water storage cistern where they are likely to be disturbed.

Running circuit cables

The various circuit cables are normally run in the void between the ceiling and floorboards above the ground floor of a 2 -
storey house. These cables serve the lighting points and switches in the room below. Ring circuit cables supply socket outlets in the first floor rooms, and cables to an immersion heater and other apparatus are also run in this void. In the roof space are mainly lighting cables feeding the lights and switches in the rooms below, though the cable to the shower in the bathroom is sometimes run in the roofspace to a ceiling switch in the bathroom.

Figure 15. Fixing cables.
On the ground floor cables are run in the void below the floorboards where it is a suspension floor, but if the floor is solid cables may be run in conduits before the screed is laid, otherwise they are run behind skirting bcards. PVC sheathed cable may in fact be run anywhere along the house structure, fixed to the surface or buried in the plaster without the need for protection from the risk of mechanical damage.

Cables clipped to the surface must have fixings not more than 250 mm apart for horizontal runs and not more than 400 mm apart for vertical runs. Where cables are buried in the wall they should as far as practicable be run vertically exactly above or below the switch or socket outlet they feed so that anyone later fixing shelves will know where to expect them. Where horizontal buried cables cannot be avoided they should be run in a band 150 mm from the ceiling or between 150 mm and 300 mm above floor level. Where cables are run under floors and cross joists they must be threaded through holes drilled in the joists not less than 50 mm below the tops of the joists.

It is neither necessary nor desirable to enclose pvc sheathed cables in conduit where buried in the wall since they are unaffected by plaster, and the extra chopping away can damage the wall structure. In houses under construction it is usual to enclose them so they stay in place and are not damaged by the plasterer's float during plastering.

Permission to wire

No permission is required in Britain to ${ }^{+}$ carry out home electrical installation work, though where the house is rented permission may be necessary from the owner. Neither electricity boards nor local authorities or any other official body has any jurisdiction in respect of wiring. The work should however conform to the IEE Wiring Regulations published by the Institution of Electrical Engineers and recognised as a code of good wiring practice by all official bodies, including electricity boards and government departments. The regulations,

REWIRING YOUR HOUSE

contrary to popular belief, are not statutory, and an electricity board has no powers to refuse connection to its mains of an instal lation, or parts of it, which do not strictls conform to the current IEE wiring regula tions, but a board can and will refuse connection to its mains of any installation which is dangerous and as such does not conform to the Electricity Supply Regula. tions. These are statutory and are quoted in the application form signed by a consumer when requiring a supply of electricity.

An installation conforming to IEE Wiring Regulations is deemed to satisfy the requirements of the Electricity Supply Re. gulations and the electricity board must connect it to the mains. In these circumstances the board must connect the installation, whether carried out by a recognised contractor or by the householder himself.

From a contractor the board requires a test certificate, and may waive its own test and inspection. The householder who is unable to complete a test certificate can expect the board to test the installation through they are not obliged to do so. The test is at the option of the electricity board and is mainly to satisfy them that the installation will not adversely affect the supply to other consumers. It is important to note that good workmanship using correct material is necessary to conform to the regulations.

Electricity tariffs

A tariff is the means by which an electricity board calculate the amount to charge a consumer for electricity and the service provided. Basically, all tariffs consist
of a fixed quarterly charge plus a charge for each unit of electricity consumed. Most domestic tariffs are of this type, though where a lot of electricity is consumed during off-peak times the charge for the electricity may be reduced, or even halved. A popular off-peak domestic tariff is the Economy 7 which provides electricity over a 7 -hour night period at a cheaper rate

Electricity consumed is registered on a 2 . rate meter, and all electricity consumed during the 7 -hour period is cheaper, whereas in some former off-peak tariffs only the electricity consumed by storage heaters qualified for the cheaper rate.

Even though the cheap rate now applies to all electricity consumed during the off peak period it is not usually finaricially beneficial to adopt the tariff, because the day time rate is higher than the standard rate per unit on the ordinary tariff. It is therefore advisable to have the tariff temp. orarily for at least two quarters (one summer
the other winter) so that a comparison may be made.
*These current ratings apply where the cables are clipped direct to the surface Ratings are lower for enclosed cables and some other situations, but are all suitable for the circuits specified.

Circuits	Fuses	Colours
Lighting	5 A	White
Ring	30 A	Red
Immersion heater	15 A	Blue
Storage heater and	20 A	Yellow
20A Radial Circuit		

Current ratings of house wiring cables

The various cables used in house wiring with their sizes, current ratings, and the principal circuits in which they are used are as follows:
$\left.\left.\begin{array}{ccc}\begin{array}{c}\text { Cable size } \\ m m^{2}\end{array} & \begin{array}{c}\text { Current rating* } \\ \text { amps }\end{array} & \text { circuits } \\ 1.0 & 16\end{array} \quad \begin{array}{c}\text { lighting }\end{array}\right\} \begin{array}{cc}\text { lighting and 15A } \\ 1.5 & 20\end{array} \quad \begin{array}{c}\text { single socket circuits } \\ \text { ring circuits and 20A } \\ \text { radial circuits }\end{array}\right\}$

SYNCHIME Continued from page 4

to mount the microphone inside the case.

The printed circuit board fits into the top set of horizontal mounting rails in the case with the component side facing upwards. it will probably be necessary to angle C7 slightly inwards so that it fits under one of the corner mounting pillars of the case. Before finally fitting the board in place complete all the point-to-point style wiring. There is space for the PP3 size battery to fit between the sockets and the microphone, and a piece of foam material can be used to wedge this firmly in place.

Testing

With SK2 coupled to an amplifier and
the volume control advanced, tapping the unit should give an output, and using RV1 it should be possible to control the duration of each burst of output signal. The two pitch controls can be a little confusing at first, and it has to be remembered that the main output signals are the sum and difference signals produced by the fundamental frequencies of the two oscillators. The fundamental frequencies themselves appear at the output at a very low level, and might not be apparent at all.

In practice this means that quite a low pitch can be obtained if both pitch controls are set for a high output frequency, since the difference fre-
quency might then be just a few tens of Hertz. With a little experimentation you should soon discover the types of sound that are produced at various control settings. At most settings of the pitch controls the output sounds quite discordant, but with the two oscillators set some musical interval apart, normal chime type sounds will be obtained. Good effects can be obtained with the two oscillators just fractionally off-tune, so that a low frequency beat not is obtained. At most settings of the frequency controls the output signal contains a wide range of frequencies, and filtering the output signal can expand the range of effects that can be obtained.

SYNCHIME PARTS LIST

R1. 14	10k	2 off	(M10K)
R2, 4	1 M	2 off	(M1M)
R3	22k		(M22K)
R5.8	15k	2 off	(M15K)
R6, 16	5 k 6	2 off	(M5K6)
R7	220R		(M220R)
R9. 10	4 k 7	20 ff	(M4K7)
R11	1 k		(M1K)
R12	27k		(M27K)
R13	18k		(M18K)
R15	6 k 8		(M6K8)
R17.21	120k	2 off	(M120K)
R18,22	12k	2 off	(M12K)
R19,20	56k	2 off	(M56K)
RV1	2M2 lin pot		(FWO9K)
RV2	10k switched log pot		(FW63T)
RV3,4	1 M lin pot	2 off	(FW08.)
Capacitors			
C1,3	4 n 7 ceramic	2 off	(WX76H)
C2	14 F 63 V axial elect		(FB12N)
C4	4 l 763 V P.C. elect		(FFO3D)
C5	100 F F 10 V axial elect		(FB48C)

With the current accent on home security, there have been many designs appearing recently for circuits to protect electrically operated doors or to add to the security of an existing alarm system, by using a code, known only to the owner, that will only disable the associated circuitry when correctly entered on an appropriate keyboard.

Fully programmáble units have rarely been included due to their tendency to be costly, consequently extensive use of dummy switches, to fool the unauthorised persons, has been made. This normally means that a soldering iron is the only means of changing the code should it be required (and it frequently is).

The system shown here is fully programmable. A four digit code is used which can be stored and changed at any time simply by switching between read and write mode (All the external components, plus the PCB but excluding the keypad, should be mounted in a case that is also protected by this device, to prevent access to the read/write switch or any other part of the unit that could render it inoperative).

Circuit Description

The keypad is anotated in exactly the same way as a push-button telephone, with digits 0-9, a hash key and an asterisk key. The hash key is used to arm the system, i.e. take the active high output 'high' and the active low output 'low'. The asterisk key is used to reset the system. This causes the memory address pointer and the number of correct entries counter to be reset to zero. (This also happens on every fourth keystroke). The keys 0.9 are used to enter the code. The four transistors TRI. IR 4 are included to ${ }^{*}$. allow the use of an SPST type keypad. When a key is pressed, the encoder chip IC2 converts the row/column

by Nigel Fawcett
\star Fully programmable \star Will work with Maplin Home Security System *Has a wide range of applications

matrix into a binary code. If either the hash or asterisk symbols are pressed then the system performs a reset or an arm function respectively. If a number key is pressed then operation depends on the state of S1. In write mode, the code is written into the current memory location of the $4 * 4$ bit register chip IC3. The address pointer is stepped onto the next location.

In read mode, the code is sent to the 4063 4-bit comparator IC4; this is then compared with the contents of the current memory location of IC3. If both codes match, then the number of correct entries counter is incremented. In either place the memory pointer is stepped on. If after four consecutive entries bit 2 of the counter is set, then the system will be disarmed, otherwise a reset is performed. Half of IC5 is used as the memory pointer, the other half being the output counter. Half of ICl is wired as an astable multivibrator to generate the 16 kHz clock for IC2, whilst half of IC7 is configured as a flipflop to provide the active high and active low outputs. The remaining gates are used to decode the arm and reset conditions and to provide the correct polarity for certain data signals.

Construction

Insert all the wire links and resistors. Mount the four transistors and all the IC sockets. The three PCB mounted edge sockets should now be fitted and S1 wired to the appropriate plug. When the PCB has been thoroughly checked for bad joints or short circuits the IC's can be inserted into their sockets.

There are no special setting up procedures

A five volt power supply is required and the connections for this as well as the wiring to the circuit being protected, are made to SK3. The keypad and S1. should now be connected to SK1 and SK2.

Figure 1. Codelock circuit diagram.

Figure 2. Pinouts.

This month: Car projects, more training courses, more test gear.

FASCINATING CAR PROJECTS

Exhaust Gas Analyser

Possibly the best way to guarantee your engine is running at maximum potential and emitting as few pollutants as possible is by testing it with this easy-tobuild kit. By measuring thermal conductivity of your exhaust gases, it can show the air-to-fuel ratio, overall combustion efficiency and percentage of carbon mnoxide present. From these you can determine if a car's fuel mixture is unnecessarily too rich or weak for best economy.

The easy-to-read 114 mm colour-coded meter is designed to hang on a partly open window or stand upright without marring paint finishes. The removable sensor/probe assembly uses a flexible stainless steel tube for safe conduction of all gaseous
material. The instrument is housed in á rugged carrying case with foldaway handle for easy portability and storage.

Specification

3 meter scales: Air to fuel ratio: 11.5 to 15.0 .

Combustion efficiency: 70\% to 90\%.
Carbon monoxide: 0 to 8% Exhaust type: From 4 -stroke petrol engines (cannot be used with catalytic converters). Meter: $114 \mathrm{~mm}, 100-0-100 \mathrm{u}$ A. Accessories supplied: 2.13 m battery cord; 6.4 m sensor cord; 762 mm exhaust flexible tube Power requirement: 6 V or 12 V car battery at 150 mA .
Order As HK31J (Exhaust
Analyser) Price £119.95

Low-Cost Charging System Tester

This easy-to-use, lightweight, portable instrument will checkout your car's charging system components with three quick tests. The tester will show you if the battery has sufficient charge to start the engine, if the battery is being charged by the alternator, if the voltage regulator is 14
faulty and if the alternator stator windings and rectifier diodes are functioning properly. The tester may be used with cars with a negative chassis, 12 V charging system that has an alternator or any 12 V , negative ground charging system that employs a 3 phase alternator using six rectifier diodes. Size $140 \times 64 \times$ 19 mm .
Order As HK29G (Charge System
Tester) Price £24.95

Professional Ignition Analyser

Designed for the hobbyist yet perfect for the professional garage, this superb kit assures you of a precision tune-up every time. Rock steady parade patterns are made possible by the latest design in inductive pickup circuitry and switch selection of 4,6 or 8 cylinders. Dwell measurements are indicated on the big 200 mm (8in.) meter.

The unit has two voltage ranges, 0 to 2 V for corroded connections and points measurements and 0 to 20 V for battery condition and general distribution checks. Cylinder selection buttons can be pushed in multiple numbers so that
banks of cylinders can be shorted for carburettor balance and for display of one or more cylinders. Both parade and superimposed displays of primary or secondary waveforms with $10: 1$ and $2: 1$ trace expansion are available on the 305 mm (12in.) display.

Rugged high-temperature oil and petrol resistant neoprene cables provide easy, positive connections to engine. For use with 4,6 or 8 cylinder 4 -stroke or 2-rotor Wankel engines and standard, transistorised or CD ignition systems
Order As HK3OH (Prof Ignition Analyser) Price £549.95

MORE HEATHKIT QUALITY TRAINING COURSES

BASIC ELECTRICITY COURSE

No technical background is required for this course which uses audio-visual teaching methods to introduce you to electricity. A programmed-instruction text, enhanced by clear visuals and two audio cassettes, teaches you each concept in an easy to follow sequence to build a solid foundation. A specially written workbook reinforces the learning process.

When you complete the course you will know the basics: Ohm's law, series and parallel circuits, electromagnetism, direct and alternating current, generators, motors and basic meter operation. This course serves as a valuable introduction to the Heathkit Basic Electronics series (described in our last issue).
Order As HK32K (Basic
Electricity) Price $£ 34.95$

HEATHKIT

An Introduction To
 Microprocessors EC6800

This course requires no previous knowledge and shows you how microprocessors operate number systems and codes and computer arithmetic and micro processor programming. The course is divided into six concise self-instruction units with detailed illustrations.

A typical microprocessor is described in the final units and programming experiments placed throughout the text assist

Soldering Course

With 95% of all returned kits found to be faulty due t poor soldering, here's a course that could benefit many hobbyists. Using the proven programmed instruction format, the step-bystep text begins with mechanical connection and progresses through tinning, temperature control, different types of solder etc. A practice kit complete with circuit board, components and solder is provided for construction of a two transistor light oscillator. Soldering iron and tools are not included.
Order As HK33L (Soldering Course) Price £19.95

Order As HK36P (Intro To Micros) Price £34.95

Trainer For Intro to Micros Course

For use with the course des cribed above, this trainer, a min digital computer has an 8-bit parallel NMOS bus-orientated central processing unit. You can access memory locations, enter programs, single-step through programs and alter memory. Order As HK37S (Trainer For

EC6800) Price $£ 99.95$

TWO SUPERB TEST GEAR KITS

RCL Bridge

A very useful power source for the test-bench. The unit has a continuously variable output voltage from IV to 15 V DC at up to 500 mA and features 500 mV line and 50 mV load regulation The "floating ground" system enables the supply to furnish positive or negative output voltages.

The programming terminals on the rear of the cabinet enable you to use an AC or DC voltage from another source to control the output voltage of this power

supply. The unit has fully adjustable current limiting. Size 146 x $140 \times 110 \mathrm{~mm}$.
Order As HK35Q (15V Regulated
Supply) Price $£ 49.95$

1V to 15V Regulated Power Supply

This quality kit allows you to measure capacitance from 10pF to 10 uF , inductance from 10 uH to 10 H and resistance from 10 to 10 M . Oscillator frequencies of $1 \mathrm{kHz}, 10 \mathrm{kHz}$ and 100 kHz (or
external source) are provided. Provided with a rugged moylded cabinet and component clips. Require two 9 V batteries Order As HK34M (RCL Bridge) Price $£ 54.95$

NEW SOFTWARE FROM ATARI

Available now:

KF16S Qix (16 K Cart) £29.95
KF19V E.T. Phone Home (16 K Cart) $£ 29.95$
KT22Y Donkey Kong (16K Cart) £29.95
KF18U Atariwriter (16K Cart) $£ 59.95$ KT23A Biorhythm (8K Cass) $£ 14.95$ KT24B Timewise (32K Disk) £22.95 KF10L Defender (16K Cart) £29.95 KF11M Galaxian (16K Cart) $£ 29.95$
KF52G Home Filing Manager (16K Disk) £34.95 Due for release in August:
KT25C Eastern Front - 1941 (16K Cart) $£ 29.95$
KF47B Juggles Rainbow (16K Cass) £22.95
KF48C Juggles Rainbow (16K Disk) £22.95
KF49D Juggles House (16K Cass) £22.95
KF50E Juggles House (16 K Disk) £22.95
KF51F Speed Reading (16 K Cass) $£ 59.95$
KT26D Mickey In The Great Outdoors (16K Cass) £22.95
KT27E Mickey In The Great Outdoors (32K Disk) £22.95
KT28F Ms. Pac-Man (16K Cart) £29.95
KT29G Tennis (16K Cart) £29.95
KT30H Logo (16K Cart) $£ 59.95$
KT31J Family Finances (32 K Disk) £TBA

Due for release in September: $\begin{array}{ll}\text { KT32K } & \text { Microsoft BASIC II (16K Cart) £TBA } \\ \text { KT33L } & \text { Donkey Kong Jr. (16K Cart) £29.95 }\end{array}$ KT34M Pengo (16 K Cart) £29.95
KT35Q Pole Position (16K Cart) £29.95
KT36P Robotron (16K Cart) £29.95 KT37S Peter Pan (16 K Cass) $£ 22.95$ KT38R Peter Pan (32 K Disk) £22. 95 KT39N Atari Music I (16K Cass) £TBA KT40T Atari Music I (32K Disk) £TBA Due for release in October.
KT41U Atari Music II (16K Cass) £TBA KT42V Atari Music II (32K Disk) £TBA KT43W Joust (16 K Cart) £29.95
KT44X The Learning Co. (48K Disk) £TBA KT45Y Alice In Wonderiand (16K Cass) £22.95 KT46A Alice in Wonderland (32 K Disk) £22.95 Due for release in November.
KT47B Soccer (16 K Cart) £29:95
KT48C Millipede (16 K Cart) $£ 29.95$
Please note that the above represents the best information we have available from Atari (UK) Ltd. at the time of going to press, but delivery dates and prices may change, so please check with us before ordering.

Figure 3. Circuit board details.

cedure for IC2-IC5 in turn until you have all the supplies working; for IC5 you will have to hook up temporary connections to the 10 k pot. If all is well you can test the transistor switches Q1 to Q8 by temporarily fitting an LED from each of R6.13 to +5 V in turn and each time, using an insulated wire link, touching +5 V onto the socket side of each of the base resistors to check whether the LED lights or not.

Concerning the hardware, a standard Verobox is suggested in which there is ample room for the transformer, heatsink and circuit board. The transformer is mounted at the extreme right hand end of the box, long axis vertical and with the mains tappings adjacent to the mains switch. The heatsink (Figure 4) is mounted vertically on the free end of the transformer with four screws, nuts and washers. The heatsink must be spaced off from the transformer frame to prevent the screws which mount ICl and IC5 from touching the transformer laminations; this is easily done with a small tubular spacer or simply an extra nut behind the heatsink. These two ICs must be mounted on the heatsink by means of a TO220 mounting kit for each (mica washer and plastic bush) to insulate them from each other and from the heatsink itself (N.B. these mounting kits are termed 'TO66 plastic' in the Maplin catalogue and the appropriate part number is given in the parts list). The circuit board can be mounted at the rear of the box using a small angle bracket at each end. The redundant holes in ROW 1 can be opened up where required and there should be no risk of short circuits to any components on ROW 2 if the brackets are fitted right at the ends of the board. If the components face forward the board can sit quite close to the back panel and wiring from the board to the front panel can be carried out without any undue difficulty. Naturally these wires (all identified in Figure 3) are connected to the circuit board before it is mounted in place; estimate a little more for the length of

PARTS LIST FOR MINILAB
Resistors - All $1 / 2 \mathrm{~W} 5 \%$ carbon unless specified $\begin{array}{ll}R 1,2,3,30 & 4 \mathrm{k} 7 \\ R 4\end{array}$ R4

(3W wirewound) 1R	
R5	820 R
R6-13	270R
R14-21	330 k
R22-29,31,33.34	1 kO
R32 (metal	
film 0.4W)	75k
RV1	10k linear pot.

Capacitors	
C1	2200uF 40
C2	1000 uF 2
C3,5,11,13	220 nF pol
C4.6,12	470 nF pol
C7,8	100 nF pol
C9,10,16	10 uF 25 V
C14,15	10 nF poly
Semiconductors	
Q1-Q8	8C108
IC1	7805
IC2	78.12
IC3	4195
IC4	79.05

Figure 4. Heatsink, rear panel drilling and pin-outs.

Figure 5. Front panel drilling.

4 off	(S4K7)	IC5 IC6 IC7 BR1 LP1. 8	$\begin{aligned} & 1200 \\ & 555 \\ & 7400 \\ & \text { WO1 } \\ & \text { LED } \end{aligned}$	8 off	$\begin{aligned} & (Y Y 74 R) \\ & (Q H 66 W) \\ & (Q \times 37 S) \\ & \text { (QL38R) } \\ & \text { (WL27E) } \\ & (Y Y 40 T) \end{aligned}$
			Clip for above	8 off	
	$\begin{aligned} & \text { (S820R) } \\ & \text { (S270R) } \end{aligned}$	$\mathrm{T} 1$	Transformer 0-17V;0-17V@2A		(WB22Y)
8 off	(S330K)		Case (Verobox)		(LLOPH)
11 off	(S1K)	S1.8,10	Sub. min. toggle switch	9 off	(FHOOA)
			Mains switch DPST (with neon)		(YR70M)
	$\begin{aligned} & \text { (M75K) } \\ & \text { (FWO2C) } \end{aligned}$	S11	Min. push-button switch SPDT		(BK68Y)
			10 mm cap green		(BK71N)
		SK1-8 SK9. 16 SK17,18,19,23	4 mm socket - green	8 off	(HF72P)
			4 mm socket - brown	8 off	(HF71N)
	(FB91Y)		4 mm terminal - red	4 off	(HF07H)
4 off	(BX78K)	SK20.22	4 mm terminal - blue	2 off	(HF03D)
		SK21	4 mm terminal - black		(HF02C)
3 off	(BX808)	SK24	4 mm socket - yellow		(HF75S)
	(BX76H)	SK25,26	4 mm socket - white	2 off	(HF74R)
$\begin{aligned} & 3 \mathrm{off} \\ & 2 \mathrm{off} \end{aligned}$	$\begin{aligned} & \text { (FB22Y) } \\ & \text { (BX70M) } \end{aligned}$		DIL socket 8 -pin	2 off	(BL17T)
			DIL socket 14-pin		(8L18U)
			Mounting kit TO220	2 off	(WR23A)
8 oft	$\begin{aligned} & \text { (QB32K) } \\ & (0131) \end{aligned}$(QL31J)	F1	Fuseholder 20 mm		(RX96E)
			1 A antisurge fuse		(WR19V)
			Veroboard 10347		(FL09K)
	$\begin{gathered} (W Q 77 J) \\ (X \times 02 C) \\ (W Q 85 J) \end{gathered}$	A complete kit of all parts, excluding the case, is available for this project. Order As LK09K (Minilab kit). Price £32.50.			

each wire than is actually needed. As a tip to make life that bit easier, the two wires to the pot. are best wired to the pot. first and then to the circuit board, since the pot. tends to be obscured by the transformer once the front panel has been dropped into place.

There is little comment to make on the front panel wiring except to point out the bus-bars used to common the anodes of the LEDs (and taken to the +5 V terminal SK17) and a similar busbar on switches S1-S8, which is taken to the OV terminal SK21. Figure 6 shows all of these details amd identifies the position of all front panel components. The front panel drilling details appear on Figure 5.

The rear panel has only two holes (details in Figure 4), which are for the mains cable clamp or grommet and the fuseholder. This is best drilled and put aside until all else is finished. This simply means wiring from the circuit board to the front panel, dropping the rear panel into place, completing the mains wiring via fuse $F 1$ and testing the complete 'Minilab' to see that the following facilities exist:
$+5 \mathrm{~V} @ 1 \mathrm{~A}$ Eight TTL outputs
$\pm 5 \mathrm{~V} @ 100 \mathrm{~mA}$ Eight TTL inputs $+12 \mathrm{~V} @ 100 \mathrm{~mA} 1 \mathrm{~Hz} / \mathrm{lkHz}$ TTL oscillator
+15V @ 50mA One bounce-free, TTL pair of complementary outputs (Q and $\overline{\text { Q }}$)

Busbars shown are 22 s.w.g. T.CW

Figure 6. Front panel rear view - component identification.

CODELOCK Continued from page 13

Application

The applications for a circuit such as this are many and varied, making it difficult to list all of the possibilities, however here are some suggestions.

First and foremost, any form of burglar alarm is an obvious candidate. Here the usual key that would be used to Arm or Disarm the system could be replaced by a Codelock, or as an even more security conscious suggestion, it could be inserted in parallel with the keyswitch, which would mean that both the key and the secret code would be required before the alarm could be deactivated.

The second most obvious application would be to use the Codelock in conjunction with a commercially available electric door lock. This would give

tremendous security to, say a computer room, photographic darkroom, office or any number of places where unwelcome visitors would rather be kept out.

Lastly, any device that is normally operated by means of ant ordinary switch, could have a Codelock to replace the said switch, barring the devices use from those other than yourself or those to whom you have disclosed the code. In this, and indeed most applications, the output from the Codelock would have to drive a relay or some form of servo or triac to act as the mechanical part of the switch. It is because of the number of different ways in which the Codelock could be utilised, that no final drive circuitry has been included, as this would depend on how it is to be used.

PARTS LIST CODE LOCK

The BBC model B microcomputer seems to be popular with those who are interested in using a computer for control or measurement applications, and it is well suited to this type of use. It seems to have more input and output sockets than any other microcomputer currently available, including a four channel 12 bit analogue to digital converter, serial and parallel printer interfaces, an 8 bit (plus handshaking lines) user port, and the 1 MHz Bus which enables additional input and output ports to be easily added. It also has a fast version of BASIC plus a builtin assembler which makes it relatively easy to use machine code when very high speed operation is essential

A certain amount of information about interfacing the BBC micro is given in the "User Guide" provided with the machine, but some of this can be a little difficult to understand unless you are already familiar with the techniques and interface devices
used. In this article topics such as program ming the user port, using the handshaking lines, and adding extra ports to the 1 MHz Bus will be covered, filling in some of the detail which is absent from the "User Guide."

User Port

Both the parallel printer and user ports are provided by a 6522 VIA (Versatile Interface Adaptor) device, and this is also used to provide the machine with its Basic "TIME" function. The two timer/counters of the 6522 are available to the user, but these can only be used in machine code programs and would not normally be used directly. In most applications the Basic "Time" command is adequate, and the direct use of the timer/ counters will not therefore be considered here.

The two 8 bit ports of the 6522 (called the
by Robert Penfold
" A " and " B " ports) are very similar, and each bit of both ports is individually programmable as an input or an output. However, an imporfant point to bear in mind is that the " A " port is used to drive the parallel print output via a 74LS244 buffer. This is a tri-state buffer, but it is permanently enabled so that it operates as a straightforward TTL buffer. The printer port can therefore be used in much the same way as the user port, but only if output lines are required. The data lines of the paraliel printer port cannot be used as inputs.

Writing to the appropriate register of the 6522 determines whether each data line of the " B " port is designated as an input or an output. This is called the "data direction register" and is at hex address FE62. Writing a 1 in a bit of this register causes the corresponding data line to operate as an output, and a 0 causes the corresponding data line to act as an input. For example, sending 15 (00001111 in binary) to the data direction register sets the four higher data

lines (PB4 to PB7) as inputs, and the four lower lines (PBO to PB3) as outputs.

With BBC BASIC the usual PEEK and commands are replaced by a question mark (?) which denotes that the number which follows is an address. Thus, in order to write 15 to hex address FE62 the program line would read:-
? \& FE62 = 15
The " $\&$ " before the address is needed to inform the computer that the address number is in hex and not in decimal.

It is important to note that address \&FE62 is the location of the data direction register and this is not the address used when reading from or writing to the user port. The relevant address for this is \&FE60. As a safety measure the data direction register is set to zero at switch on so that there can be no problems if a peripheral device is feeding an input signal to the user port. If you type:PRINT ?\&FE\&O RETURN
into the computer, 255 should be printed on the screen, since pull-up resistors take the user port inputs to logic 1 if they are simply left floating. Wiring some of the lines to OV pins of the port should give a suitably modified result if the command is retyped.

If you remove the shorting wires and try typing:-
?\&FE62 = 255 RETURN
?\&FE60 = 15 RETURN
the data lines of the user port are all set as outputs by the first line, and the second sets PB0 to PB3 high and PB4 to PB7 low. The outputs latch, and the appropriate output states can be confirmed using a logic probe or multimeter

In some applications it is necessary to read just one bit of the user port, or to read several bits one at a time. Strictly speaking this is not possible, but using the logic AND function it is possible to mask all but one bit. For example, suppose we wish to know if PB4 is low or high. If it is at logic 1 this line adds 16 to the number returned from the user port, and it is therefore ANDed with the number 16 . For the sake of this example we will assume that the number returned from the user port is 255 . The two numbers are logic ANDed bit by bit, as shown below, giving a logic 1 in the binary result only if that particular column has a 1 in both the figures being ANDed (i.e. in both the first number AND the second).

25511111111 user port

1600010000 number used to mask all $1600010000 \begin{aligned} & \text { but PB4 } \\ & \text { answer }\end{aligned}$

If PB4 was low and the number returned from the user port was (say) 239 this would give the following result:
23911101111 user port
1600010000 number used to mask all

- 00000000 answer

If you try typing into the computer:-
PRINT ? \&FE60 AND 16 RETURN
the number returned should be 16 . Taking PB4 and any of the other input lines to OV should return to 0 if the command is repeated.

By using the appropriate mask number it is possible to effectively read any one bit or selected bits of the user port.

Handshake Lines

When a computer is sending data to or receiving data from a peripheral device it is often necessary to have some form of synchronisation so that data transfers are only attempted when both pieces of equipable to deal with them. It is for this purpose that handshaking lines CB1 and CB2 are

provided on the user port. CB2 can be used as an input or an output, but CB1 can only be used as an input.

Some of the ways in which these lines are used are quite complex and go beyond the scope of this article, but there are some relatively simple but useful ways in which they can be used. CB1 and CB2 are made to operate in the required manner by writing the appropriate number to the Peripheral Control Register which is at address \&FE6C. An input from one of these lines gives a change in one bit of the Interrupt Flag Register which is located at address \&FE6D. When CB1 is activated it sets bit 4 of the Interrupt Flag Register high, and when used as an input CB2 sets bit 3 of this register high. In other words the number returned from ?\&FE6D is raised by 16 and 8 (in decimal) respectively.

CB1 is the more simple of the two handshaking lines since it only has two modes of operation, and it is controlled by one bit of the Peripheral Control Register (bit 4). CB2 has four input modes and four output modes and is controlled by three bits of this register (bits 5 to 7). The table given below summarizes the modes of CB1 and CB2.
Binary/
$\begin{array}{ll}\text { Decimal No. } & \begin{array}{l}\text { Mode of Operation } \\ \text { CB1 high to low handshake } \\ \text { input }\end{array} \\ 1 / 16 & \begin{array}{l}\text { CB1 low to high handshake } \\ \text { input }\end{array} \\ 000 / 0 & \begin{array}{l}\text { CB2 high to low handshake } \\ \text { input }\end{array}\end{array}$
001/32 CB2 high to low independent
010/64 CB2 low to high handshake input 011/96 CB2 low to high independent input
100/128 CB2 high to low handshake
101/160 CB2 high to low pulse output 110/192 CB2 constant low output
$111 / 224$ CB2 constant high output
When dealing with CB1 it is simply a matter of selecting a high to low or low to high transition to set the interrupt flag. With CB2 there are the same two options, plus the two independent modes. When using the handshake modes the relevant bits of the Interrupt Flag Register can be reset by reading from or writing to the user port, or by writing a 1 to the appropriate bit or bits of the Interrupt Flag Register (i.e. use ?\&FE6D $=16$ to reset the CB1 flag, ?\&FE6D $=8$ to reset the CB2 flag, or ? \&RE6D $=24$ to reset either of them). With the independent modes this second method is the only way of resetting the flags.

The simple program given below can be used to try out the CB1 and CB2 inputs.
10 ? \&FE6C = 0
20 CLS
30 PRINT ?\&FE6D
40 ? \&FE6D $=24$
50 TIME $=0$
60 REPEAT UNTIL TIME $=100$

This simply prints the value of ?\&FE6D and updates the reading at roughly one second intervals (the delay time set by lines 50 and 60). Line 10 sets all the control registers at zero so that both CB1 and CB2 set their respective interrupt flag registers during a transition from the high state to the low one, and they are both used in the handshake mode. By taking CB1 and (or) CB2 low the initial reading of 0 should change to 8,16 , or 24, as appropriate. However, line 40 resets the interrupt flags and the reading should soon return to zero. As the handshake mode is used, reading from the user port (by putting X $=$?\&FE60 at line 40, for example) should also reset the flags. By changing the number at line 10 the other input modes can be tried using this program.

The CB2 output modes are quite straight forward. In the two constant modes CB2 is set high or low as required, and is independent of the other user port lines. In the pulse mode it provides a lus negative pulse each time data is sent to the user port, and in the handshake mode it goes low when data is sent to the user port. It can then only be reset to the high state by an active transition on CB1

The lower four bits of the Peripheral Control Register function in the same way as bits 4 to 7, but they control lines CA1 and CA2 of the printer port. The printer port is at ?\&FE61 and its Data Direction Register is at ?\&FE63. The interrupt flags for CA1 and CA2 are bits 1 and 0 respectively of ?\&FE6D. IMHz Bus

An 8 bit user port is obviously very useful, but you may well find that more inputs or outputs are required. The most simple solution to the problem is to use the parallel printer port, but this only provides another 8 lines plus handshaking lines and the 8 data lines (as explained earlier) can only be used as outputs. The 1 MHz Bus offers great scope for expansion, and some simple hardware is all that is needed to provide one or two extra input or output ports.

The circuit diagram on page 503 of the "User Guide" shows the various inputs/ outputs available on the 1 MHz Bus, and this includes the data bus (DO to D7) and the lower 8 address bus lines (DO to D7). Only the lower 8 address lines are needed as the upper 8 lines are decoded and provided in the form of lines NPGFC and NPGFD. The former pulses negative when any address in page FC is addressed, and the latter similarly pulses low for any page FD address. Thisgives a generous quota of 512 addresses for user hardware from ?\&FC00 to ?\&FDFF, although Acorn only recommend ? \&FCCO to ? \&FCFE for user applications. The other addresses are allocated to such things as an extra 64k of memory, a Teletext Unit, and a Prestel Unit. However, if you do not intend to add equipment of this type to the 1 MHz Bus, and just require a simple input or output port, it is very easy to make these additions.

Figure 1 shows how an 8 bit input port can be added. This circuit is based on a 74LS244 octal tri-state buffer, and this . must be enabled (by taking pins 1 and 19 low) each time there is a read operation to the port. The most simple way of achieving this is to simply connect these pins to NPGFC or NPGFD, but a drawback of this system is that an accidental write operation to the port would result in the MPU and the port simultaneously placing an output on to the data bus. This possibility can be eliminated by gating the read/write line and NPGFC or NPGFD so that ICI can only be enabled during read operations (when the read/write line is high). In this circuit the necessary gating is provided by three of the 2 input NOR gates of IC2.

```
70 GOTO 20
```


Figure 1. Adding an input port to the 1 MHz Bus.
A simple output port can be added using the circuit of Figure 2. This is justa 74LS273 octal D type flip/flop which is fed from the data lines and is latched by the negative pulse from the NPGFC or NPGFD line each time a write operation is performed. As the port cannot place an output onto the data bus there is no need to gate the read/write line with the NPGFC or NPGFD line.

With both of these circuits the port will respond to any address from \&FCOO to \&FCFF if the NPGFC line is used, or from \&FDOO to \&FDFF if the NPGFD line is used. This permits only one piece of hardware per line to be used, and it is therefore better to use a more sophisticated system if further expansion is contemplated. Another limitation of these simple circuits is that they do not provide handshake lines, and there is just a negative pulse from the NPGFC or NPGFD line each time a port is written to or read from.

6821 PIA

A more elegant solution to additional input/output ports is to use a 6821 PIA (Peripheral Interface Adaptor) plus full decoding of AO to A7 address lines, as shown

igure 2. A simple output port for the 1 MHz Bus.
in the circuit of Figure 3. This gives two 8 bit ports with each line individually program mable as an input or output. There are also two handshake lines per port

IC1 is a 74154 (or 74LS154) 4 to 16 line decoder, and this has 16 outputs, one of which will be in the low state if the device is enabled. Which output this is depends on the binary number fed to the four address inputs of the device (AO to A3). These inputs are fed with the A4 to A7 lines of the 1 MHz Bus, and output 12 (C in hex) of $\mathrm{IC1}$ is the only one which is used in this case.

IC1 has two enable inputs which must be taken low in order to permit normal operation of the device, and these are fed from the A2 and A3 lines of the 1 MHz Bus. The remaining two address lines (A0 and A1) are fed to the Register Select inputs of IC2 and determine the operating mode of this device.

D1, D2, and R1 form a simple gate which gives a negative signal to the negative chip select input of IC2 when the NPGFC tine is activated, and the A2 to A7 lines of the 1 MHz Bus are at the correct states to operate IC1. This places IC2 at the four addresses from \&FCCO to \&FCC3, which is within the range of addresses that Acorn recommend for user applications. This leaves all the other 508 addresses in pages \&FD and \&FC available for use.

The reset input of IC2 is fed from the NRST line so that the device is reset at switch-on or when the BREAK key is operated. The read/write input of IC2 is fed from the corresponding line of the 1 MHz Bus so that IC2 is automatically set to the appropriate mode. The enable (E) input of the 6821 has a slightly misleading name, and this must be fed with the clock signal so that the computer and the PIA are correctly synchronised. Although the BBC micro has a 2 MHz clock, this is divided by 2 to give a 1 MHz clock frequency for peripheral devices, including the internal 6522 VIA, incidentally. Thus a standard 6821 can be used for IC2, and it is not necessary to employ the faster 68B21. The two interrupt request outputs of IC2 have open drain driver transistors so that they can be wired together to give an OR function. They can be connected to the interrupt request line of the 1 MHz Bus, but it is only worthwhile doing this if you fully understand the use of interrupts, and actualiy intend to use them. Otherwise it is better to leave these outputs unconnected, so that the possibility of producing an unintentional interrupt and "crashing" the computer is eliminated

Using the Ports

There are six registers in the 6821; the data direction register (DDR) for port A, the port A peripheral register, the port A control register, and the equivalent three registers for port B. With the circuit only occupying four addresses it is obviously not possible to gain direct access to all six of these. It is only possible to directly access the port A and port B control registers at ?\&FCC1 and ?\&FCC3 respectively. These registers control access to the other four registers, control the handshake lines of their respective ports, and receive inputs from these lines.

In order to gain access to a DDR, bit 2 of the corresponding control register must be set to zero. As all the registers are reset to zero at switch-on this initially gives direct access to the port A and port B DDRs at ? \& FCC0 and ? \& FCC2 respectively. Use of the DDRs is much the same as for the 6522 , with bits being set at 0 or 1 to set the corresponding port data lines and inputs or outputs. The reset at switch on sets all the

Figure 3. Two 8 -bit in/out ports using a 6821 PIA. data lines as inputs initially.

Read and write operations to the ports are performed via the peripheral registers, and bit 2 of the correct control register is set at 1 (e.g. ?\&FCC1 or ?\&FCC3 = 4) to give access to the A and B peripheral registers at ?\&FCCO and ?\&FCC2 respectively. In other words there is both a peripheral register and a DDR at each of these addresses, and whichever of these is required is selected by setting bit 2 of the appropriate control register at 1 or 0. For example, to send the value 65 to port A the following program could be used:-
10 ? $\& F C C 1=0$ (if required, gives access to DDRA)
20 ? $\& F C C O=255$ (Sets port A lines as outputs)
30 ? $\& F C C 1=4 \quad$ (gives access to periphe. ral register A)
40 ? \&FCCO $=65$ (writes 65 to port A
The table shown in Figure 4 should be helpful when writing programs which use the two 6821 ports. Port A and port B are slightly different, and port A , for instance, has pullup resistors when it acts as an input, whereas port B does not. In practice there is unlikely to be any problem in using either port with TTL ICs to drive transistor switches etc., but if in doubt the 6821 data sheet gives a substantial amount of information about the output drive capability and input require. ments.

Continued on page 26
Maplin Magazine September 1983

Dragon 32
 Input/Dutput Ports

* Two 8 bit ports with TTL and tri-state bus compatibility * Four norm/inv latched ports * Two opto and two relay switched ports * Module plugs into cartridge socket * Fully programmable from BASIC using PEEK and POKE

by Dave Goodman

0ur port interface module allows the Dragon 32 to communicate with external devices such as micros, domestic electrical systems, i.e. central heating and security control, or peripheral control of the computer.

Input/Output ports consist of eight terminals, each of which can access the computer data bus. Information is passed along the bus, to or from the Central Processing Unit (CPU), by enabling the port with appropriate control signals. POKEing data in decimal form (9 to 255) will result in an eight bit binary code being written to the port, whilst PEEKing will read presented information and take action according to program requirements

Circuit Description

The four address codes 49152 to 49155 are used to control IC2, using R2 enable signals. Port B, PBØ to PB7 are TTL compatible with normally low outputs, while port A, PAØ to PA7 are tristate bus compatible outputs. Port C is selected, along with port B, by enabling IC3 with IC1c. Input or output signals present at port B will operate RLA, RLB via IC3 A,B; the dual opto isolator IC5 via IC3c,d, and enable the four bit latch IC4.

PC4 to PC7 Q outputs are normally high, and \bar{Q} are normally low (OV). Dl to D8 buffer port C from port B, making it write only and accessible either from the CPU or externally with +5 V to OV signal levels.

Construction

Insert 32 track pins from side two, through the holes marked with a circle Solder these to both sides of the PCB. Bend all the leads of the 18 resistors, September 1983 Maplin Magazine

and insert them into the board. Refer to the parts list for values, and if using 5 band 1% resistors note that colour coding begins at the end opposite to that of the solitary brown band. Fit D1 to D8. These diodes are usually blue in colour, with a black band at one end. This band must be aligned with the white band legend on the PCB. Fit diodes D9 and D10. Although they are larger in size and black in colour the band rule still applies. Capacitors Cl to C 4 may now be inserted. Cl and 2 are tantalum types with a + sign printed on the body. Fit the lead closest to this through the hole marked + on the PCB. C4 has a - sign, not a + sign. Take this into consideration before you fit it. All 5 IC sockets can now be fitted, along with TR1 and TR2.

It is advisable, at this stage, to solder all fitted components and remove excess leads before continuing further. Insert both relays. They will only fit one
way round, and bend the flexible leads over each pad to secure. LEDs 1 and 2 are the larger LEDs, and 3 and 4 the smaller ones. These can all now be fitted. Each cathode (k) is recognised either by the shorter of the leads, or by a flat section on the body skirting.

Place 6 of the three way terminals in positions PAD to PA7 and PBØ to PB7. The remaining 2 three way terminals to relay port PCD and PCl . The four way terminal is fitted to PC2,3 position. Check each terminal faces the outside edge of the PCB before soldering, then insert the 8 vero pins in positions PC4 to PC7. Solder, trim, and inspect your work, then fit all 5 ICs.

Two rubber feet, bolts and nuts can be fitted to side 1 of the PCB, through the 4BA holes drilled for this purpose. They have been included to prevent wobble and excess strain on the edge connector, which could result in lost data or worse. Provided that all instruc.

tions have been carefully followed and the module has been correctly built, plug it into the cartridge socket, with component side 2 upwards.

Testing

With a voltmeter set to read 5V DC, connect the negative lead to one of the OV terminals on port A or B, and the positive lead to pin 14 of IC1. Switch on the Dragon, and a reading of +5 V should show that the supplies are correct. Wait a few seconds for the display to appear and confirm that all is well so far. If this does not happen, switch off immediately and remove the module, check that the computer is functioning correctly.

Type POKE 49155, 48 ENTER and LED 2 will operate. Type POKE 49153, 32 ENTER and LED 1 will operate, POKE either of these addresses with \emptyset to extinguish the LEDs. With all four LEDs off, type POKE 49155,52:POKE49154,1 ENTER. LEDs 2 and 3 willoperate, along with RLA

Type POKE-49154,2 ENTER. LED 3 will go out and LED 4 will operate, RLA release and RLBoperate. To check that both relays are working, use a meter set to ohms $\times 1$ between COMM and NO or NC on port C, PCD and PC1. RLA contacts are at PC and RLB contacts at PC1

Figure 2. PCB tayqut:

TRBLE 1．PORT C

DATA CODE	$\begin{aligned} & \text { PCO } \\ & \text { RLA } \end{aligned}$	$\begin{aligned} & \text { PCI } \\ & \text { RLB } \end{aligned}$	$\begin{aligned} & \text { PCZ } \\ & \text { OPT } \end{aligned}$	$\begin{aligned} & \text { PC3 } \\ & \text { OPT } \end{aligned}$		$\begin{gathered} P C 4 \\ \text { Q1 } \end{gathered}$	Q^{P}	${ }^{\circ} \mathrm{C} 5$	$Q^{\text {P }}$	$\begin{gathered} \text { PC } \\ \text { Q1 } \end{gathered}$	Q^{P}	$\begin{gathered} { }^{C} 7 \\ Q_{1} \end{gathered}$
0	0	0	0	0	1	0	1	0	1	0	1	0
1	1	0	0	0	1	0	1	0	1	9	1	0
2	0	1	0	0	1	0	1	0	1	0	1	0
4	0	0	1	0	1	0	1	0	1	0	1	0
8	0	0	0	1	1	－	1	0	1	0	1	0
16	0	0	0	0	0	1	1	0	1	9	1	0
32	0	0	0	0	1	0	\square	1	1	0	1	0
54	0	0	0	0	1	0	1	0	0	1	1	0
128	0	0	0	0	1	0	1	0	1	0	0	1

PROGRAM 1.

1 CLS
2 PRINTES，＂DRAGON I 10 PORT TEST＂：PRINT
3 INPUT＂ENTER PORT 《A，B OR C）＂IP出
4 IFP年〈＂R＂OR P事〉＂C＂THEN3
5 INPUT＂ENTER MODE（IN OR OUT）＂，M
6 IFM年＝＂IN＂AND P $\$=$＂C＂THEN5
7 IFM急＝＂IN＂OR Mo＝＂OUT＂THENE ELSES

3 REM PORT CODES
10 IFP事 $=$＂ R^{14} THENP $=49153$ ： $\mathrm{N}=36$
11 IFPक＝＂ B ＂THENP $=491.55: \mathrm{N}=4$
12 IFP事 $=$＂C＂THENP $=49155$ i $N=52$
13 IFM\％＝＂IN＂THEN20
1.4 REM PORT R－C O／P

15 POKE P， 0 ：POKE P－1， 255 ：POKE P，M
16 GOSUB2？
17 PRINTO32，＂＂：INPUT＂ENTER DRTR（0－25．5）＂；D＊
18 IFD解二＂P＂THEN POKE P－1，Q：POKE P，0：「OTO1
19 D＝VAL（D出）：PDKE P－1，D：GOTO1T
29 REM PORT R，B I／P
21 POKE P，D：POKE P－1，B
22 POKE P，4：POKE P－1，0
23 PRINTE20．＂DATA＝＂
24 Gosubz？
25 cosubes
26 GOTOI
27．PRINTE448，＂＊＊＊＊ENTER P TO RE－SELECT＊＊＊＊＂：RETURN
 23 RETURN

Figure 3．Dragon cartridge socket pinouts．

Opto ports PC2 and PC3 are checked by connecting an ohmmeter across the In ／Out terminals of PC2 and typing POKE 49154，4．The In terminal is the positive input to the opto isolator， so connect the negative lead of your ohmmeter to this terminal and the positive lead to the Out terminal．This may appear to be contradictory，but is necessary because on most multimeter ohm ranges the internal battery posi－ tive appears at the negative terminal， due to switching arrangements．Fulf on resistance is about 200 ohms．Type POKE 49154，8 to turn PC2 off and PC3 on．Repeat the meter check to PC3． Maximum off resistance is extremely high，and may be considered to－be open circuit．POKE 49154 with \varnothing to turn off PCO－3．

When using opto－isolators，note that they function as a low current switch and can only handle up to 20 V at 8 ma ． Higher currents，up to 25 mA at 5 V can be switched providing that the load does not exceed 150 mW ．

Both relays can switch up to 1 A at 100 V or 24 V DC，but will not handle mains voltages

Port C，PC4 to PC7，when enabled will follow PB4－7 on the Q outputs and their inverse on the $\overline{\mathrm{Q}}$ outputs．If port C is disabled the outputs will remain latched until reaccessed．Outputs are TTL levels，OV to 4 V approximately．

Table 1 lists the various options available at port C and the data codes（ \varnothing to 255 ）used for operating them．

To keep the operation of IC2 as simple as possible a list of routines used for accessing each port appears at the end of this article．For further information，comprehensive data
sheets for the 6821 are available, but are really only for technically minded constructors.

Type in Program 1 to continue testing the port, RUN and ENTER. The program asks for a port to be entered, so enter A. Enter OUT mode. Connect the voltmeter to $\mathrm{PA} \emptyset$ and $O \mathrm{~V}$, then enter 1 . This should give a reading of +4.5 V . Repeat this on pins PA1 to 7 , entering data codes $2,4,8,16,32,64$, and 128. Only one PA output should be high, the others should be at OV. Obviously, any decimal code from \emptyset to 255 could be entered, and the binary coded output calculated, then checked with the meter on port A.

Enter the program again, this time selecting port A, IN. The display is slightly different and input data is required, to be read and printed after

RCCESS ROUTINES	
PORT A	
POKE 49153, 9	(CONTROL REGISTER)
POKE 49152,N	(DATA DIRECTION REGISTER)
POKE 49153,4	(RCCESS OUTPUT REGISTEP.
POKE 49152, DATA	(0-255 1 WR ITE)
OR PEEK (49152)	(0-255:READ)
PORT B	
POKE 49155,0	(CONTROL REGISTER)
POKE 49154,N	(DATR DIRECTION REGISTER)
POKE 49155,4	(RCCESS OUTPUT REGISTERY
POKE 49154, DATA	(0-255: WRITE)
OR PEEK(49153)	($0-255 \cdot \mathrm{RERD}$)
PORT ' $C\left(\begin{array}{ll}\text { RND } \\ \text {) }\end{array}\right.$	
POKE 19154,255	(OUTPUT MODE)
POKE 49155.52	(ENRBLE PORT C)
POKE 49154, DRTA	(0-255)
N=BITS : TO 8 ON(1) FOR OUTPUT MODE OR BITS 1 TO E OFF (B) FOR INPUT MODE	
LED 1 (PPORT AS	
POKE 49153.32	
LED 2 (PORT BrC)	
POKE 49155,49	

DATA $=$. Because port A is tri-state, a no input reading of 255 (PA $\emptyset-7=$ high $)$ is shown. Connect PAØ to OV and data will be 254, or 255-1 Remove OV from PAØ and reconnect to PA1. This time DATA= 253 or 255-2. Repeat tests on PA2 to PA7 in turn and check DATA $=251,247$, 239, 223, 191 and 127.

Type P, followed by B,IN and ENTER. Unlike port A, these inputs are normally low so connect PBØ to +5 V for DATA $=1$. Repeat on PB1 to 7 for DATA $=$ $2,4,6,8,16,32,64$ and 128, or try different combinations as before.

By now, the module should be working correctly and be ready for use. If not, there may be edge connector problems, or the PCB may require further support. Fault-finding may be performed with the aid of a voltmeter and the access routines.

PARTS LIST DRAGON I/O PORT
Resistors - All 0.4W 1\% metal film unless specified.

R1.15.16	10k	3 oft	(M10K)
R2. 10	4 k 7	9 oft	(M4K7)
R11,12	470R	2 off	(M470R)
R13,14	270R	2 off	(M270R)
R17,18	2kO	2 off	(M2KO)
Capacitors			
Cl	10 uF 16 V Tantalum		(WW68Y)
C2	1uF 35V Tantalurn		(WW60Q)
C3	100 nF Disc		(BX03D)
C4	100uF 25 V axial electrolytic		(FB49D)
Semiconductors			
01.8	IN4148	8 off	(QL80B)
D9,10	1N4001	2 off	(QL730)
TR1,2	BC338	20 ff	(QB69A)
Cl 1	74LS00		(YFOOA)
1 C 2	6821 P		(WQ46A)
1 C 3	74LS08		(YF06G)

1 C 4	74LS75		(YF32K)
1 C 5	Dual opto		(YY62S)
LEd1.2	Red LED	2 off	(WL27E)
LED3.4	Mini Red LED	2 off	(WL.32K)
Miscellaneous			
RL A,B	P.C. board		(G837S)
	Relay ultra min SPDT	2 off	(YX94C)
	3-way PC. terminal	8 off	(RK72P)
	4.way P.C terminal		(RK730)
	D.IL socket 40 pin		(HQ38R)
	D.I.L. socket 16 pin		(BL19V)
	D.IL socket 14 pin	2 off	(BLI8U)
	D.I.L socket 8 pin		(BL17T)
	Trackpin	1 pht	(FL820)
	Veropin 2145	1 pht	(FL.248)
	Feet cab	1 pkt	(FW19V)
	Bolt 4BA $1 / 4$ "	1 pht	(BFO2C)
	Nut 4BA	1 pkt	(BF171)
A complete kit	all parts is avaitable. O	U Pric	13.95

Interfacing the BBC Micro Continued from Page 22

Handshake Lines

The two handshake lines of each port provide similar facilities to those of the user port, but there is no independent input mode, and there are differences in the way in which they are set up and used. As inputs, the handshake lines can either set their respective interrupt outputs low on an active transition, or they can be used with these outputs disabled. We will only consider the A port, but the B port is used in the same way. CAI is controlled by bits 0 and 1 of control register A, and its output is at bit 7 of this register. CA2 is controlled by bits 3 to 5 and gives an output at bit 6. The logic AND facility of the computer can be used in the way described earlier to test the state of the just bit 6 or bit 7 of the control register. Table 1

Binary/	
Decimal No.	Mode Of Operation CA1 high to low, interrupt disabled
00/0	
01/1	CAl high to low, interrupt
	enabled
10/2	CA1 low to high, interrupt
	disabled
11/3	CAI low to high, interrupt enabled
000/0	CA2 high to low, interrupt
	disabled
001/8	CA2 high to low, interrupt
	enabled
010/16	CA2 low to high, interrupt
	enabled
011/24	CA2 low to high, interrupt

Table 1

Table 2 shows the various ways in which CA2 can be used as an output.

Binary)

Decimal No. Mode of Operation 100/32

101/40
110/48 111/56 set high by activating CA1. low by read operation the port.

Often both handshake lines will be used, and then the number written to ? \&FCCl or ?\&FCC3 is the sum of the two decimal numbers in the above tables which give the desired operating modes. Remember to add a further 4 to this figure if access to the port (rather than the DDR) is needed.

In this article it has been assumed that the input and output devices will be directly addressed, but Acorn recommend the alternative method of using OSBYTE calls. This is simply because directly addressing peripheral devices will not work if one of the second processors is added to the Tube. It is possible to write to an output port using a*FX command (*FX151,96,255 writes 255 to the user port DDR for example), but it is not possible to send a numeric variable in this way, or to read from a peripheral device. It is
details the way in which the various input modes are obtained.

Note that CB2 is different to CA2 when it is used as an output in that in the first mode it is reset by a write operation, and in the pulse mode the pulse is produced when writing to

Table 2

possible to read from an input port using a machine code routine, as described in the "User Manual" (but note that this stores the answer in the Y register and not in the accumulator). It is much easier to directly address peripheral devices, and is probably not worthwhile using the OSBYTE calls unless it is essential to do so.

The 12 bit analogue to digital converter of the BBC micro is very useful for application where a fast sampling rate is not needed. It is quite simple to use and is fully described in the "User Guide"

ADDRESS	RS1	RSO	CONTROL REGISTER REGISTER SELECTED BIT2	
\&FCC0	Low	Low	High	
\&FCC0	Low	Low	Low	Peripheral Register A
\&FCC1	Low	High	Irrelevant	DDRA
\&FCC2	High	Low	High	Control Register A
\&FCC2	High	Low	Low	Peripheral Register B
\&FCC3	High	High	Irrelevant	DDRB

Figure 4. 6821 addresses.

PRICE LIST

All prices shown in this price list are valid from 15th August 1983 to 12th November 1983 Please note new telephone number for Sales Only (0702) 552911

Prices shown in this list include VAT at 15\% where applicable. Items marked NV are rated at 0% and the price shown applies both to inland and export orders. Overseas customers should add up the total cost of all items except those marked NV and deduct 13\% to arrive at the total price excluding VAT. Alternatively multiplying the total price (except NV items) by 0.87 will give the total price excluding VAT. Please add extra for carriage on all overseas orders. Carriage will be charged at cost

Although postage charges to customers living in the Republic of Ireland and in the UK, but not on the UK mainland, are the same as to mainland addresses we regret that we must levy an additional charge of $£ 5$ on each order containing any items marked "Delivery by Carrier"

Will customers from the Republic of Ireland please add 40p and then 35% to the cost of their order now that the Irish pound is not equivalent to sterling, to cover the rate difference and negotiation fees. We will refund any difference; please state cheque or credit note. Alternatively if you pay by bank draft drawn in pounds sterling on a London bank, then you need add nothing extra. Bank drafts drawn in pounds sterling on a London bank should be readily available from your local bank.

All prices are for the unit quantity shown in the catalogue (unless shown otherwise on this list) i.e. each, per pack, per metre etc. All prices include postage and packing. There is a 50 p hand ling charge which must be paid on all orders having a total value of under $£ 5.00$

The price list is intended for use with our 1983 catalogue and applies to all mail orders. Prices in our shop are generally lower on heavy items as mail order prices include postage and packing costs

Copies of manufacturers' data sheets are available for most IC's price 40p each.

NYA	Not yet available
NA	Not available
DIS	Discontinued
TEMP	Temporarily out of stock
OOP	Out of print
FEB	Out of stock, new stock expected in month shown
\dagger	While stocks last
NV	Indicates that item is zero rated for VAT purposes
\#	See Amendments to Catalogue
$\$$	Please add £6 carriage if your order contains one or more
	items marked thus

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity. Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.
Most items in the price list have a letter in brackets after the price which indicates the trade quantity as follows:

(A)	Trade quantity	5
(B)	Trade quantity	10
(C)	Trade quantity	25
(D)	Trade quantity	50
(E)	Trade quantity	100
(F)	Trade quantity	250
(G)	Trade quantity	500
(H)	Trade quantity	1000

Prices charged will be those ruling on the day of despatch

1983 Catalo Page		$\begin{gathered} \text { VAT } \\ \text { inclusive } \\ \text { PRICE } \end{gathered}$	1983 Catalogu Page No		$\begin{gathered} \text { VAT } \\ \text { inclusive } \\ \text { PRICE } \end{gathered}$	$\begin{aligned} & 1983 \\ & \text { Catalogue } \\ & \text { Page No. } \end{aligned}$		$\begin{gathered} \text { VAT } \\ \text { inclusive } \\ \text { PRICE } \end{gathered}$	$\begin{aligned} & 1983 \\ & \text { Catal } \\ & \text { Page } \end{aligned}$		$\begin{gathered} \text { VAT } \\ \text { Inclusive } \\ \text { PRICE } \end{gathered}$	$\begin{aligned} & 1983 \\ & \text { Catalo } \\ & \text { Page i } \end{aligned}$		$\begin{gathered} \text { VAT } \\ \text { inclussive } \\ \text { PRICE } \end{gathered}$												
Page 15			X053H Mast Bracket Type 3 X034J Mast Bracket Type 8 BW45Y Lon Bracket EM4. $\square$$\qquad$ E4.75 (C$\qquad$$\square$ £2.65 (C)			Page25			BOOKS			Page 32														
¢	Pirate Artack Poster Maptin Poster								Page29			вн631 Rftol	Hook nizo9 Book nizas													
			BW45Y $\times \mathbf{x} 555$										Book NB 188	${ }^{68}$												
AErials			$\begin{aligned} & \text { X055K } \\ & \text { K056 } \\ & \text { K507M } \\ & 00568 \end{aligned}$										NV													
Page20											${ }^{58} 53 \mathrm{NV}_{\mathrm{DiS}}$	WA24B		Undrsidng Communctrs												
			+ $\times 10600$							RL31J RO2YRRO2C	Book NB 157Book NB 152 Book NB245Book NB200		${ }_{\text {RH11 }}^{\text {RG3OH }}$													
2Y	Mushkliler EM224,	$16.50{ }^{\text {A }}$ (${ }^{\text {a }}$		Mast ${ }_{\text {mast }}^{\text {G }}$		BATTERIES							Towers Transistor Bk	-												
248			${ }_{\text {BW }}{ }^{\text {a }}$ A	masthead upi iöoiv	¢11.84 (A)	me			RL34M R066Y																	
$\times 027 \mathrm{E}$	Mushkilier FM264T		${ }_{\text {BW }} \mathrm{BW} 49 \mathrm{D}$																							
	Mushkiller FM284T Trucolour TC10 Grp	ois				Pageso																				
\times x 315	Trucolour Cl 10 Gr		Page23						wrezr Ni	PCB Mountio 3.6 VV Bat .$\mathrm{Ni}-\mathrm{Cad}$ Charger	7.95 (B)	W31」 Book mm639e1.95 NV(0)														
\times X23	Trucolour TC 10 Gro	94	Y×730	Amp \times		+ RH6SV																				
$\times \mathrm{x} 032 \mathrm{~K}$	Trucolour TC13 Grp A	${ }_{1}^{122.24}{ }^{\text {a }}$)	BKO6G	Prx	${ }_{\varepsilon 17}^{16}$				Page 27			R0248	${ }_{\text {Book }}^{\text {BP41 }}$													
	Irucobur		${ }^{\text {AWW51F }}$	Pupaze									\%k													
$\times 03$	Trucolour Tc 18 Grp	ع13.85(A)	BW	Spinter CS 1000			Pp3 Nicad Craser			Book Ne093		xW5	Bookf103	N												
${ }^{\times 10375}$				Spriter SB200	\%35.98							RL25	Book NB135	${ }_{66.35}^{56}$ NV												
Page21			H×870	Surface Co-Ax Outiet					$\begin{gathered} \text { RHOSF } \\ \begin{array}{c} \text { RROL } \\ + \text { RHOOUN } \end{array} \end{gathered}$	$\begin{aligned} & \text { Book per } \\ & \text { Book } \\ & \text { Book } \\ & \text { BPF } \end{aligned}$		HL323Wallm	Book N1616													
									TiVothage Regula																	
${ }^{\times 103001}$			Page24			Yasoo	3V Ban Box 4. 5 Ban Bo........						TliLineer													
X041U $\times 042 \mathrm{~V}$	Extratan \times X88 Grect			Sice Dble Co-Ax Ott Flush Co - Ax OutletFish Dbi Co - Ax Outli TV/FM Outien						Pege 31			WAISO	ITLData..............E11.85 ${ }^{\text {d }}$												
			8W56L BW58N																							
								R023A Book bpse \ldots............... $E 3.20 \mathrm{NV}$																		
											Paga34															
										Tl Dio																
	Super-Set Top Toptenna Caratenna Ca7																									
																RLIOWAOOW xwbal WG11M										
Page 22 BWazv Univ Clamp Type 1. BW43W Mast Bracket ype 2			$\begin{aligned} & \text { YG21 } \\ & \text { KG2V } \\ & \text { CGI2 } \\ & \text { LE12N } \end{aligned}$																							
		${ }_{\text {¢ }} 81.95$ (0)																								

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum trade quantity. For details please see page 27

Page No.	clusive PRICE	$\begin{aligned} & 1983 \\ & \text { Catasue } \\ & \text { Page No. } \end{aligned}$	$\begin{gathered} \text { inclcusive } \\ \text { VRive } \\ \text { Vick } \end{gathered}$		Catalogue VAT Page No. incluse PRICE	$\begin{aligned} & 1983 \\ & \text { Catal } \\ & \text { Cage } \end{aligned}$		
dere 106		${ }_{\text {B6a }}^{\text {B62 }}$ (20.64	Page		Hosen Scrow Cap phono Roo........ 120 (G)		
YC4Ax Converstion				AF57M BC311 Orapon 32 Compler Orapon Gassente Cab 				
				Page 1				
Slase						HH02C Phono Socke Sinil12p (16)		
Kids	c1							
	${ }_{81}$							
nuto ${ }_{\text {Po }}$				${ }_{\text {BC3 }}^{\text {BC3K }}$ Berserk				
M		Pa						
Isp		Un			Pagol35			
				AFSEN Commocoit mia		Mrfobic		
Pag				Page 123				
		001		AF561 Commmotre 64 Computr 5229	age 136 		nee Sop	
Page 107								
Soun		${ }_{86296}^{8689}$		Pag		(eat		
		Fit matariacor iois						
		${ }_{8677}$						
		Pagel 15						
		3 M						
为								
108								
				${ }_{\text {actiche }}$				
				Acas	AC690	Hutues		
Sta Marmo ilisk		deat						
voyaer fisk		$B_{\text {Biak }}$ Guns for		${ }_{\text {achob }}$				
				Page 127	$\underset{\text { acter }}{\text { Ac7 }}$			
whirses	${ }_{\text {¢20 }}^{\text {¢21.79 }}$					${ }_{\text {Ory }}$		
Page 109				Ros				
coocco				${ }_{\text {acher }}^{\text {achic }}$	CONNECTORS			
Biose		Stock						
dia A dshaic								
Temple Afshay		bozow cypher				BY84F UHF Socket Round....................499		
硅		${ }_{\text {B045 }}$						
		Page 117						
${ }_{866980}$					Termina Pos	Page 145		
${ }^{\text {Baza3L }}$ Anat			1495					
					${ }_{4}$			
10					a	5		
			${ }^{\text {clit.955 }}$					
				BCO1B VIC ${ }^{\text {Bra }}$				
Stranee Oom		Hanom			Press			
boinc Mysem		$\substack{\text { kbsouk } \\ \text { Kbol }}$		ECl2N	dass			
bobay		,						
			${ }_{19} 95$					
	-	Pagel 18			NLS7M 1 mm Plug Black \qquad ${ }^{2020}{ }^{20}$ (6)	ak79L Min Mic SR ConnectorDis Page 146		
knocom								
EG65s Spaze shunk Ma	${ }_{¢ 28}^{818} 95$							
Pagel11								
					hatalw 2 mmm Pug Yeliow			
			${ }_{\text {ct }}^{59}$	BCO7H Arthmet		нк6аU	Nrugs-anc.	
Naf convor hadee							-in ...	
		Papol 19						
une						D		
Nuke Bomber O	\%15.							
12		¢	[877.19		+tatisi	Hhty		
					Page 130			
	${ }_{\text {c\% }} 9.95$	coick						
Iout Gaxy								
				Page131		Pago 147		
		Pa						
k-ray shoot in								

1983 Catalogue Page No．	inclusive PRICE	1983 VAT Catalogue inclusive Page No． PRICE	1983 Catalogu Page No．	VAT inclusive PRICE	1983 Catalogu Page No		inclusive PRICE	1983 Catalcgue Page No．		$\begin{aligned} & \text { inclusive } \\ & \text { PRICE } \end{aligned}$											
		Shiol knoob F																			
		Ye90			Hand wroel Bon	33p（f）															
Page 14								FW11M FW13P	Spode 484．．．．．．．．．．．．．．．．．．．．2p 20.16												
${ }_{\text {Flige }}$	Edge Con 108 ．．．．．．．．．．．． 52.	HL46 Mans Min mins	YB340	Studing 4 tiA																	
${ }_{\text {FLibsi }}$	Eode Conn 124．．．．．．．．．．．．．1．z9	Mains Socker SN2404．．．．． 940 （E）		Sur Pan 29mm Sngl		Studadino 684		Page169													
		HL27E Mans Plup SA2190．																			
flely	Edgo Conn Fowt	HL4300 Mains So		Ceving Swor 1	$\begin{aligned} & \text { FW3K } \\ & \text { FW33L } \end{aligned}$		${ }_{35} 5$														
${ }_{\text {F }}$	Edoe Conn Foit					68A Spacer 1／2	380（19	R×31J	S Buan．	290）											
${ }^{\text {frisinf }}$				Eamonotio			320	${ }_{81730}^{8 \times 130}$	Orive Cord	H）											
Yessen	Edge Conn End bkt．．．．．．．．．260		${ }_{\text {Foort }}$	sarter 80W	LR710	88a spacor 1／4in．	60	${ }^{\text {RxP }}$	Drum												
${ }^{3} 344$	Wulticon Plug	HL39\％Mans Puop P51．．．．．．．．．． $\mathbf{E 2} 297$（C）	Yeigy	Inme Swich．	LR72P	Throed Sper 68a ．．．．．．．．．．．．．64p（		Heasy	dumunium diai	${ }^{80}$（8）											
${ }_{7}$	Muticon Plug $15-$ way ．．．．．．． 3 3p	Page154	Page 161		Page164			¢													
Yx33s		Mains						Rx39N													
－	Multicon sith ${ }^{\text {a }}$－wy		¢					axalu ver	Vernor Diat Larea．．．．．．．．．．．z3．34												
Yx414					LRO30				Mme Pointer												
$yyyyy$	Municon Sid 15－way …．．．56p	RK84F Video Lead 1．．．．．．．．．．．．．．．．52．9（5）				Grommet Small		HB48C HB4S0	${ }^{\text {no }}$ Sheorum．												
${ }^{1} 464$	Muntico	RK7		HARDWARE		SR Gromme			Spring Long．．．．．．．．．．．．．．．．．．．9p（H）												
		RK68U Vineo Lean			LR4960	SR Gromme															
Page149			Puge162		LR50E BL74R BL75	SR Grommet 7K－2．．．．．．．．．．．26p（F）		MICROPHONES													
					Ffexiorommel ${ }^{\text {a }}$		Page170														
	octa Ch Skt.		$\begin{aligned} & 8 F 00 A \\ & 8 F F 18 \\ & 8 \end{aligned}$																		
${ }_{\text {H2030 }}$	8－way fockiei			8on 48a 1／4in．．．．．．．．．．．．．．．．．．．．250 25	FW36P FW37S H822Y H821																
			${ }_{\text {Lrabe }}^{\text {Lrab }}$	Boh 48 1．1／2in．．．．．．．．．							Ye36	apor Mic．．．．．．．ix．									
Cx96，		${ }_{+ \text {Rwo } 30}$ Addaptor D ．．．．．．．．．．．．．．．．．．． 38																			
	mincon		LR53H		Page165																
RK66W	Municon Latch P1 10w ．．．．．．．32p（E）	RWoon Adaptor A．．．．．．．．．．．．．．．．．．．．． 380 D																			
	Lica	${ }_{\text {Rwoze }}$						P													
			LR55K BFIOL																		
Fryiy		RWOTC Adatio																			
	ralch	Adaptor R Adaptor P						Power Mic DM311P ．．．．．．													
HW199	RaLch Minicn P1 12w．．．．．．． 74		BF140 LR75S BFI6S	panel Scraw．．．．．．．．．．．．．．．．．3p（H） 1 （1）				Xr72P Ba	lase Slation Mic．．．．												
8x97\％								Pagoit2													
\％166	Mncon Luth Hsin 5－way．．． 12 12 （								lase Str												
${ }_{\text {¢ }}^{\text {Presy }}$				nut sea－in ．．．．．．．．．－．．．．．．．120（G）						ase Stin Mcr BSAbion											
	Mncn Lern Hsng 10								mic												
	Mncn Luch Heng 17way	Dinpak 27																			
	mincoon Sta 3	W1sA Dinpak B－．．．．．．．．．．．．．．cr 51.55			KNOBS			Pageit3													
								M	Elocret Muc 0												
w3	Mincon Skt $12-w y$ ．．．．．．．．．65p（E）		18	Shake 8BA ．．．．．．．．．．．．．．．．．．．．．ip ip																	
${ }_{W}{ }_{W}$	Polarcon 0.1 in			Tra 204																	
Wroso									Unisnd Dym DM－												
W	10c con 6 －way		OH	6 mm				Page1													
\％	10c Con 8－way，－．．．．．．．．．．．68p（E）	Oinpak		Pozi Scrwe ${ }^{\text {a }} 12 \mathrm{~mm}$ ，					Screen S15：												
		RW17T Dinpak D．．．．．．．．．．．．．．．．．． 81.42		Poxis			1.5		mu												
		\＆1．35						18330	wo Wmashmot												
Pagels			${ }_{8} 8359$	Pazi Screw $\mathrm{M}_{3} \mathrm{emm}$ ．．．．．．． 20					choweor												
HLLOSE	Watercon Plue 3－pin	Augaak	B_{85}		${ }_{\text {ax }} \times 100$	Knoom Mai Knob 82															
${ }_{\text {HLOSG }}$	Watercon Pho 8－pin			Pozi Scrow m 4 40m				Gs	Gsmeet Mce Smd 19in												
HLOOU	Watercon Plug 12－prn．．．．．．．． 290 （f）	Aw350 Pugpak HD Guilar－．．．．．．．．¢¢			Pag				Plastic Gsmeccik Base												
HLOM	Watercon Sta 3－wy			Pozi Scruew ${ }^{M 2}$ Smm		nnob															
HL1	Watercon Star 6－way	57M Plud	BFt		Rx011	Knob AK2		WW6H Ex		（b）											
${ }_{\text {HLL }}$	Watercon Sht 8－way．．．．．．．．．． 175				－$\times 1018$	6 k7A．	280（ ）														
H140	Watercon Terminal．				$\underset{\substack{\text { Yx02 } \\ \times 1030}}{ }$	Knob K78．															
${ }_{\text {RKk }}$	Poarcon 0.2 an－				${ }^{\text {Yxo30 }}$				Table－Top Mic Stand												
пкзз					нвгэ¢	Knob	$3{ }^{2}$														
RK74R					¢707\％	Knob R76．		USI	\＆EFFECT												
${ }_{\text {rraze }}$		Page157	7		HR38		${ }_{960}$														
dro	CT Pn White ．．．．．．．．．．．．．．Eis6（b）	$1{ }^{\text {P }}$ Terminal	${ }_{8}^{\text {Br558N }}$		Vabtu	Knob kes．	${ }^{139}$	Pagoif6													
$\underset{\text { remed }}{\text { rrem }}$	AlPin Black	56k Termins Block Conn ．．．．．．．E1．19				Knob ksi．			Pre－Amp E02S．．．												
			8	Isowasher																	
				lisowns	RK91\％	knob kioc			seoreomixer	．90（A）											
			Lebio	so	¢8344	Knob	70	Page17													
	a	HL61R Fibx Connector．．．．．．．．．．．．．．．．c． 51.40 （d）	${ }^{\text {Bra }}$	－		Knob		Afs00 Gr	Graphat Equive Gez												
600	Ste Power Pho 2．1．．．．．．．．．．．．140（G）	HL62S Mans Aapotor 2－way ．．．．．c2． 20 （C）	限4．4x		${ }_{\text {H }}^{10369}$	Knob	88p		Gernhic Eq．Gfgo												
	Long Pur Pug 2．1．．．．．．． 160 Std Power Plug 2.5 150		LRE1R	soostake w^{2} ．．．．．．．．．．．．．．．．．．．． 9_{p}	838R	Kno	780			dis											
	Lonnopur Plo 2．5．．．．．．．．${ }^{15}$	Page158	Page1		Pagel 18																
		SV Junctio		1 sotag M 5	Hagen	Knoor															
H1370	Cassetto Sht Mrivico ．．．．．．．．．．．． 45	HL67X Junction Box Rim	Lrem	5ote	${ }^{1 / 4}$			хөz34 Vill	Vibra												
		HL68Y Single Sht Unswiched ．．．．．．E． 14 （D）	${ }_{\text {LRCW }}$	sotas M2	W	15 mm Colit Cap eim	${ }_{50}$	xe334													
HL189		Singot Sw Sock				15 mmm Come $\mathrm{Cap}_{\text {ap }}$			Echo chamber rape												
Page 15			65v	St－Tpr No． 4×3 3／8in ．．．．．．．．．15p（G）	W． 500	15 mm Coner		Page179													
						15 mm Colle Port		YRAOT ${ }^{\text {Y }}$	Cry Gutur Pic												
			lir		＋＋\％			YLLO	Irom												
			昆7\％		W55k	15 mm Comer Put hod	50（H）	Yoth Pb	Praup Smith												
	${ }^{\text {Euroconn Lasd }}$	Page159	72P					${ }_{4}^{189806}$	stre Eumon	${ }^{619} \times$											
			${ }^{\text {ar }}$																		
			${ }^{\text {877784 }}$		Rx21x	15 mm Como Sutor	240 （f）	O													
		HLEgow	${ }^{\text {Br77 } 71}$	${ }^{\text {mosama }}$ ，																	
		HLSox Lion Smor Disin	97909		YG40																
	Cas Lead Smir	4 H 92			18	LC Cro Buty			Mes man hatr	18 （8）											
	cas leas sony．．．．．．．．．．．．．．．．op		${ }^{\text {graber }}$		${ }^{\text {areac }}$		（\％）														
＋rxe2S	eral Leso OS	xx350 Remota Control Dmmr ．．． 229.951	际析	Washer bea ．．．．．．．．．．．．．．． 180	OYO	ccos rod		Rx600	Holoor Mes cmom												

trade quantities
The letter in brackets after the price indicates the minimum trade quantity. For details please see page 27

TRADE QUANTITIES
The letter in brackets after the price indicates the minimum trade quantity. For details please see page 27.

and
and

NEW ITEMS PRICE LIST

The following is a list of all items introduced prior to this price list but since publication of our 1983 catalogue.
BATTERIES
BK45Y HPII Single Box Price 19p books \& magazines
WK05F Mastering Visicalc by Douglas
Prica $£ 12.95 \mathrm{NV}$ Hergert
wnot's Hart's Dictionary of BASIC by WKO7H The spectrum Price 66.95 NV WK07H The Spectrum Pocketbook by
Trevor Toms wx081 The Spectrum Games Companion by Bob Maunder Price £5.95NV Whosk Mastering CP/M by Alan Miller
Price £14.50 NV WK10L Adventures With Digital Electronics by Tom Duncan Price 24.25 NV WK11m Assembly Language Programming for the BBC Micro by lan Bimbaum WK12N VIC Innovative Computing by WK13P Understanding Your Spectrum by Dr lan Logan Price $£ 7.95 \mathrm{NV}$ WK140 Practical Design of Digital Circuits by lan Kampel Price £11.20NV WK15R Programming the BBC Micro by
P. Williams Price $£ 7.35 \mathrm{NV}$ P. Williams Proming Languages for
wK16S Programming Micros by G. Marsha Mice 86.75 NV With Pascal by M. Beer Price £7.70N WK18U Over the Spectrum
WK19V Introducing Spectrum Machine Code by lan Sinclair Price $£ 8.95 \mathrm{NV}$ WK20W Programming With Graphics by WK21X Machine Intelligent Programs fo the 16 K ZX81 by Charlton, Harrison Jones $2 x 81$ by Chariton, Harrison wkzzY Games ZX Computers Play by Tim
Price $\mathbf{~} 3.25 \mathrm{NV}$
Hartnell
WK23A Book of BASIC Adventures
WK24B Ouick Reference Chart WK25C Book of Hints Price E1.99NV WK26D The Dragon 32 Book $\begin{gathered}\text { Price } 66.95 \mathrm{NV}\end{gathered}$ WK27E The Art of Programming the ZX WRectrum $\begin{aligned} & \text { Price } £ 2.50 \mathrm{~N}\end{aligned}$ Book Price £2.50NV WK29G Simple Interfacing Projects WK30H Programming the 6809
WK31J Mastering the VIC20 $£ 13.95 \mathrm{NV}$ WK32K The Working Dragon 32 E7.45NV W32K The Working Dragon 32 Price $£ 7.25 \mathrm{NV}$ 6502 Machine Language
HK34M The Oric-1 \quad Price £6.95NV WK35Q 35 Dragon Programs wK36P Zap! Pow! Boom! Price £5.65NV WK37S VIC20 for Children
w338R The Working Spece P7.45NV ice 27.25 NV K39N 40 Best Machine Code Routine WK40T Spectrum Machine code for the Absolute Beginner Price £6.95N WK41U Games BBC Computers Play WK42V Load and Go with your Dragon WK43W BBC Creative Graphics Price £9.95NV WK44X Atari BASIC Exercises
WK45Y Understanding Price £11.99NV tronics \quad Price $£ 5.20 \mathrm{NV}$ WK46A The Working Commodore 64 Price $£ 7.20 \mathrm{NV}$ WK47B Commodore 64 Computing XA05F Maplin Magazine Vol 2 No 5 xa06G Maplin Magazine Vol 2 No 6 30XE
HY25C Display Box Price $£ 1.25$ COMPUTERS
A.E. 10-48K-KF26D Price $£ 27.50$ Adventureland with Graphics
1D-48K-K F95D Alien Garden 1E-8K-KFOOA Price $£ 27.45$ Andromeda Conquest 1C-32K-KH19V Andromeda Conquest 10 -40K-KH2 Prin Ant Eater 1E-16K-KF5\%N Price $£ 17.45$ Ant Eater 1E-16K-KF58N Pric
Anti-Sub Patrol IC-16K-KF66w
Anti-Sub Patrol 1D-32K-KF67X Anti-Sub Patrol 1D-32K-KF67X $£ 24.50$ Apple Panic 1C-16K-KB92A Arcade Machine 10-48K-KF28F

Armour Assault 1D-40K-KB99+ Astro Chase $\mathbf{1 E}-16 \mathrm{~K}-\mathrm{KF} 65 \mathrm{~V}$ Price $£ 27.45$ Atarwriter 1E-16K-KF18U Price $\begin{aligned} & £ 29.95 \\ & £ 59.95\end{aligned}$ Attack At Ep-Cyg-4 1E-16K-KF5
$\begin{array}{ll}\text { Baia Buggies } 1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB74R} & £ 29.95 \\ £ 22.95\end{array}$ $\begin{array}{lll}\text { Baja Buggies } 1 \mathrm{D} & -16 \mathrm{~K}-\mathrm{KB} 75 \mathrm{~S} & \mathrm{E} 22.95 \\ \mathrm{E} 22.95\end{array}$ $\begin{array}{ll}\text { BASIC Compile } 10-48 K-K F 25 C & \varepsilon 75.00 \\ \text { Basic Routines } 1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB84F} \\ \mathbf{E 1 7} 99\end{array}$ Basic Routines $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB84F}$
Basic Routines $1 \mathrm{E}-32 \mathrm{~K}-\mathrm{KB85G}$
$£ 17.99$ Basic Routines 1D-32K-KB85G $E 17.99$
Battle For Normandy $1 \mathrm{C}-32 \mathrm{~K}-\mathrm{KB} 38 \mathrm{R}$ Battle for Normandy $10-40 \mathrm{~K}-\mathrm{KB} 39 \mathrm{~N}$ Beauty \& Beast 1E-16K-KF64U $£ 29.95$ Boulders \& Bombs 1E-16K-KF44X 95
Brainbogglers 1C-16K-KF82D $£ 12.50$ Brainbogglers 10-32K-KF83E Bug Off 1C-16K-K861R Bug Off 1D-32K-KB62S Candy Factory 10-32K-KF53H Character Graphics 10-24K-KF7 Chicken 1E-16K-KB91Y Choplifter 1E-16K-KB87U Claim Jumper $1 \mathrm{E}-16 \mathrm{~K}-\mathrm{KB} 67 \mathrm{X}$
Clowns \& Balloons $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB} 7$ Clowns \& Balloons 1D-16K-KB808 Controller 1C-16K-KH16S $\quad £ 23.50$ Controller 1C-16K-KH16S Controlier 10-40K-KH177 Crypt of The Undead 10-40K-KB Curse of Crowley Manor 1C-16KCytron Masters $1 \mathrm{C}-32 \mathrm{~K}-\mathrm{KB} 41 \mathrm{U}$ Cytron Masters
Danger In Drindisti (Part 2) Danger in Drind
isti (Part 2) 10-32K-KFOSF \qquad David's Midnight Magic 1C-48K-KB95D David's Midnight Magic 1D-48K-KB78K Defender 1E-16K-KF1OL Deluxe Invaders $1 \mathrm{EF}-16 \mathrm{~K}-\mathrm{KB89}$ Disk Uilities 1D-32K-KF69A Diskey 10-32K-KB86T Dragon's Eye $10-40 \mathrm{~K}-\mathrm{KB} 32 \mathrm{~K}$ Draw Poker $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KH} 15 \mathrm{R}$ Drelbs $1 \mathrm{E}-16 \mathrm{~K}-\mathrm{KF} 39 \mathrm{~N}$ Earthquake - San Francisco 1906 1C-16K-KH09K Eliminator 1E-16K-KF61R $£ 17.95$

Escape From Vulcans Isle $£ 20.75$ Escape From Traam 16-16K-KH08
 Firebird $1 E-8 \mathrm{~K}-\mathrm{KB} 70 \mathrm{M}$ Fort Apocalypse 1E-16K-KF 40 T Fortune Hunter 1E-16K-KF57M Frogger 1C-16K-K868Y GFS Sorceress $1 \mathrm{C}-48 \mathrm{~K}-\mathrm{KB260}$ GTIA Graphics 9 to 11 IC-16 GTIA Graphics 9 to 11 1D-24K Galactic Gladiators 10-48K-KFO
Galactic Trader 1C-32K-K825C Galaxian 1E-16K-KF11 Genetic Drift $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB65V}$
Genetic Drift $10-32 \mathrm{~K}-\mathrm{KB66W}$ Ghost Town with Graphics 1D-48K-KH03D Goiden Voyage with Graphics Golf Challenge 1C-16K-KB82D Gorf $1 E-16 K-K B 44 X$ Graphic Master 10.48K-KF34M Graphics Machine 1D-48K-KF88 Guess What's Coming To Dinner Hellfire Warrior (Part 1) 1C-32K-KF02C Hellfire Warrior (Part 1) 1D-32K-KFO.3D Home Filing Manager 2D-16K-KF52G Instedit 1C-16K-KF89w stedit Journey To The Planets $10-32 \mathrm{~K}$ Juggles House 1C-16K-KF49D Juggles Rainbow 1C-16K-KF47B
Juggles Rainbow 1D-16K-KF48C Jump Man 1D-32K-KF68Y

Kids 3 (4 programs) 1C-16K-KF78k Kids 3 (4 programs) 10-32K-KF79L Kids 4 (4 programs($1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KF80B}$ 81 Kids 4 (4 programs) 1D-32K-KF81 King Arthur's Heir $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB} 97 \mathrm{~F}$ King Arthur's Heir 1D-40K-KB3 $\frac{1}{\text { ¢ }}$
Knockout 1C-16K-KB81C Labyrinth 1C-16K-KB71N Labyrinth 10-32K-KB72P
Mama Mia 1E-16K-KF63T Memory Map Tutorial 1C-16 Memory Map Tutorial 1D-24K-K Mission Impossible with Graphic 1D-48K-KF97F Monster Maze 1E-8K-XF01B Moon Patrol $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KH} 23 \mathrm{~A}$ Moon Shutle 10-16K-KF23 Morloc's Tower IC-32K-KF1 Morloc's Tower 1C-32K-KF149 Mountain King 1E-16K-KF45Y Music Lessons \& Player Piano 1C-16K-KF42V Music Lessons \& Player Piano
$10-32 K-K F 43 W$ 10-32K-KF43W
Music Major 1C-32K-KF86T Music Major 1C-32K-KF86T
Music Major 1D-32K-KF87U Mysic Major 10-32K-KF87U

Mystery Fun House with Graphics
$10-48 \mathrm{~K}-\mathrm{KHO1B}$ Necromancer 1E-16K-KF37S Nitro 1E-16K-KF59P Number Stumper 1C-16K-KF93B Number Stumper 10-16K-KF94 O'Riley's Mine 10-16K-KF32K
O'Ritey's Mine 1C-16K-KF31J Page $61 D-24 K-K 8248$ Pignic Paranoia 1E-16K-KF13P
Pirate Adventure with Graphics 1D-48K-KF96E Plattermania 1E-8K-KF12N Princess \& Frog 1E-16K-KF55K Prototype's Adventures 1

Prototype's Adventures 10-32K
Pyramid of Doom with Graphics Oix 1E-16K-KF16S
Qix $1 E-16 K-K F 16 S$
Rear Guard $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB} 47 \mathrm{~B}$ Rear Guard 1D-24K-KB48C Rosen's Brigade 1C-16K-KF29G Rosen's Brigade 1C-16K-KF29G
Rosen's Brigade 1D-16K-KF30H S.A.G.E. Pack also contains 48 K
on Disk 1C-32K-XH12N Savage Island I with Graphics 1D-48K-KH04E Savage Island II with Graphics
1D-48K-KH05F Sea Dragon 1C-16K-KB58N Sea Fox 1D-48K-KB57M Serpentine 1E-8K-KB60 Shadow World 1E-16K-K 36 P Shamus E-16K-KB90X Slamball 1E-16K-KF38R Slime 1E-16K-KB98G Sound Effects 1C-16K-KF74R Sound Effects 10-24K-KF75S Space Games 1C-32K-K8551 Speed Reading 5C-16K-KF51F Star Blazer 10-48K-KF27E Starcross $10-32 \mathrm{~K}-\mathrm{KB} 37 \mathrm{~S}$ Stellar Shuttle 1C-16K-KB45Y Stellar Shuttle 1D-32K-KB46A

Strange Odyssey with Graphics Strange Odysse Stratos 1C-16K-KB53H Stratos 1D-32K-KB54 Syn Assembler 10-48K-KB83E TT Racer 1C-16K-KB730
Tank Arcade 1C-16K-KH180 Tank Arcade 1C-16K-KH180 Telengard 1C-48K-KH21X Time Trials 1E-16K-KF46A The Count with Graphics 1D-48K The Cosmic Balance 1D-48K-KF
The Eliminator 1C-16K-KH13P The Eliminator 1D-32K-KH140 The Keys Of AC
1C-32K-KFOGG
The Keys Of Acheron (Pt 3) The Nightmare 1D-40K-KB35 The Sands Of Egypt 10-16K-KF2 30 Tic-Tac-Toe $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KH} 11 \mathrm{M}$
Treasure Quest $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB} 36 \mathrm{P}$ Treasure Quest 1C-16K-KB
Tutti Frutti 1C-16K-KB63T Tutti Frutti 1C-16K-KB63 Typo 1E-16K-KF56L Typo 1E-16K-KF56 VC 1D-40K-KH25C Voodoo Castle with Graphics
$10-48 K-K F 98 G$ War 10-32K-KB40

Whiz Kid 1E-16K-KF62S
Wizard Of Wor 1E-16K-KB94C zaxxon 1C-16K-XF20w ${ }^{229.95}$ Zaxxon 1D-16K-KF21X Zork III 1D-32K-KB31J ${ }^{\text {t20.95 }}$ Cormmodore 64
Crush, Crumble \& Chomp 1D-BC51R
Curse of Ra 1D-BC59P ump Man 10-8C62S 20.75 Sword of Fargoal 1D-BC600 Temple of Apshai 1D-BC5 $\%$ Upper Reaches of Apshai $1 \mathrm{D}-\mathrm{BC} 58 \mathrm{~N}$
E 13.80

Drayon

Alcatraz II 1C-BC63T $£ 8.00$ | Astroblast 1E-BC77J | |
| :--- | ---: |
| Black Sanctum 1C-BC78K | $£ 19.95$ |
| 7.95 | | Breakout/Middle Kingdom 1C-BC81C

Calixto I sland 1C-BC72P
Chess 1E-BC76H Deadwood 1C-BC87U
Defense 1C-BC67X
Defense 1C-8C67X
Dragon Mountain 1C-BC75S
Dragon Trek 1C-BC820
Escape 1C-BC74R
Flipper 1C-BC65V
Galax Attax 1E-BC79L
Games Compendium 1C-BC86T
Golf 1C-BC84F
Mansion Adventure I 1C-BC64U
Planet Invasion 1C-BC66W Rail Runner 1E-BC80.
Space Monopoly 1C-BC68Y
Space War 1C-6C71N

Wizard War 1C-BC83E
AF62S Microwriter
$\begin{array}{ll}\text { AF62S Microwriter } & \mathbf{x 5 5 7 . 7 5} \\ \text { Af66W TV/Monitor Interface } & \end{array}$ AF67X RS232C Cable male to $£ 189.75$ AF68Y RS232C cable male to female Sord M5
AF64U Sord M5 Computer $£ 149.95$ AF65V Sord Joypads $£ 24.95$ per pai KSOOA Falc Cartridge (Visicalc-type xsolB BASIC G (An BASIC with ex tended and very powerful graphics commands)
\dagger KSO2C BASIC
(a very powerful floating
$£ 34.9$ point BASIC)
Games Cartidges
KSO3D Tank Battalion
$\mathbf{K 2 3 . 9 5}$
KSO4E Step Up
$\mathrm{KS05F}$ Word Maze
$\mathrm{KS06G}$ Super Baseb
S06G Super Baseball
S08. Bkiing
K so9k Tennis
$\mathbf{2} 23.95$
$\mathbf{2} 23.95$
$\mathbf{8} 23.95$

Somes Cassett
523.95
$\$ 23.95$

KS10L Smokey \& Barrier Attack $\mathbf{8 . 9 5}$
K S11M Jogging \& Sidewinder $£ 8.95$ KS12N Solitaire \& Tower of Hanoi $£ 8.95$ KSI3P Three Circles \& Number Search KS140 Black Jack \& Slot Machine£8.95 Price 88.95
Trek
KS16S Congenial Biorhythm \& Music Price $£ 8.95$ KS17T Cowboy \& Barricade

Price 88.95
Spectrum
Meteor Storm 1C-BC91Y $£ 4.95$
Space Intruders 1C-BC90X
$\begin{array}{r}£ 4.95 \\ £ 4.95 \\ \hline\end{array}$
The Chess Player (48K) 1C-BC92A
$\begin{array}{lr}\text { The Hobbit (48k) 1C-BC88V } \\ \text { Timegate (48K) 1C-BC89W } & £ 6.95\end{array}$ VIC20
 Crush, Crumble \& Chomp (+16K)
1C-KK10L Datestones of Ryn (+16 £20.75
1C-KK13P $\quad \mathrm{E13.8}$ Hopper 1C-KK05F
Innovative Cassette I 1C-BC94C
Invasion Orion $(+16 \mathrm{~K})$

Junior Maths: Birds \& Apple Tree ($+3 \mathrm{3K}$
1C-BC98G 1C-BC98G: Engineshed (+3 K) $\mathrm{f4.9}$
Junior Maths:
1C-8C99H 1C-8C99H Junior Maths: Sub-Traction \& Lighthouse
$(+3$ K) 1C-KK00A
£4.99 Martian Raider 1C-BC Monster Maze 1E-KK11M $£ 27.45$ Multisound Synthesiser 1C-BC97F

Myriad (+3K) 1C-KK02C Night Crawler 1C-KK04E

 Night Crawler 1C-KK04EPlattermania 1E-KK140 Plattermania 1E-KK140
Princess \& Frog 1E-KK16S Rescue At Rigel (+16K) 1C-KK08J

Ricochet (+8K) 1C-KK15R	£13.8
Shark Attack 1C-BC950	$£ 9.9$
Skramble 1C-KK01B	$£ 9.9$
Space Phreeks 1C-KK06G	$\mathbf{8 9 . 9}$

Space Phreeks 1C-KK06G
Space Storm 1C-KK03D

MAMPLINONEWS MLAPLINONELNS

COMING SHORTLY

* An ORIC Talkback
* Personal Stereo Dynamic Noise Limiter
* Syndrum Interface
* Microphone Pre-amp/Limiter
* Pseudo Stereo AM Radio
* NiCad Charger Timer
* Spectrum I/O Port
* TTURS232 Converter
* 1K ZX81 RAM Extension
* Part 2 of the Telephone Exchange
* VIC Extendiboard with 3K RAM Pack
* Logic Pulser
* Frequency Meter Adaptor
* An Auto-Waa pedal
* A Spectrum Keyboard
* Part 2 of the House Wiring Article

CORRIGENDA

Vol. 2 No. 5

Modem: R4b should be 12k.
Vol. 2 No. 7
VIC20 RS232 INTERFACE: Since this project was published, a few improvements have been made.

R4,8,12 and 16 are now 4 k 7 .
Four extra resistors (R33-36 inc.) value 4 k 7 , have been added to each of the input lines Sin, DCD, CTS and DSR.

The power supply section of the circuit has been redesigned, see sketch below. C3 is a 100 uF Reversolytic, R37 is a $47 \mathrm{R} 1 / 2 \mathrm{~W}$ Standard resistor and D5 to 7 are IN4001

Note: The PCB (GB28F) has been modified to accept these new components and the kit (LK11M) has the new parts supplied.

SIMPLE SWEEP OSCILLATOR: Some components in the PARTS LIST have been changed.

C4,6,7,8 are now l00uF $25 V$ P.C. Electrolytics (FF11M).
$\mathrm{Cl1}$ is 220 nF polyester ($\mathrm{B} \times 78 \mathrm{~K}$)
4 DIL sockets 8 pin (BL17T) are required, and 2 DIL sockets 16 pin (BL19V) are needed.

Note: The Kit (LK06G) contains these parts.

CMOS CRYSTAL CALIBRATOR: In the PARTS LIST, TR2 should be BC108 not EC108.

ENLARGER TIMER: In Figure 4, the pin out designated 2N6073 should be UA 78L12AWC and vice versa.

Price list of new items in this issue		
BK68Y	SPCO Nonlock Switch	¢1.99
BK71N	10 mm Cap Green	6p
BK72P	Membrane Switch	£9.64
BK73Q	Fiat Flex Connector	
	7-way	62p
BK77J	Synchime Front Panel	£1.25
BK79L	$0.156^{\prime \prime} 2 \times 22$ Way P.C.	
	Edgecon	£3.50
FG23A	2×28-Way P.C. Edgecon	
B20W	Doorbell P.C.B.	£1.92
GB25C	Code Lock P.C.B.	£2.92
GB29G	Dragon RS232 Interface	
	P.C.B.	£3.62
GB30H	Probe Upper P.C.B.	98p
GB31J	Probe Lower P.C.B.	98p
GB37S	Dragon I/O Port P.C.B.	£2.95
GB38R	Synchime P.C.B.	£1.20
GB42V	Spectrum RS232 Interface P.C.B.	£3.95
LK09K	Mini-lab Kit	£32.50
LK12N	Dragon RS232 Interface	
	Kit	£13.75
LK13P	Logic Probe Kit	£9.95
LK14Q	Code Lock Kit	$£ 19.98$
LK15R	Synchime Kit	£10.90
LK18V	Dragon 1/O Port Kit	£13.95
LK21X	Spectrum RS232 Interface Kit	£17.95
QY54J	Low Current Display	£2.89
QY55K	MC 14419	£3.86
QV57M	2716/M7	¢8.50

1. (3) De Re Atari (WG56L) (cat. P62)
2. (2) Games for the Atari by S. Roberts (WA47B) (cat. P62)
3. (1) Audio Circuits and Projects by Graham Bishop (XW46A) (cat. P41)
4. (4) Cost Effective Projects Around the Home by John Watson (XW30H) (cat P41)
5. (6) Projects for the Car and Garage by Graham Bishop (XW31J) (cat. P30)
6. (11) Remote Control Projects by Owen Bishop (XW39N) (cat. P43)
7. (-) Understanding Telephone Electronics by George L. Fike and George E. Friend (WK45Y) (see note)
8. (5) Master Memory Map (XH57M) (cat. P62)
9. (10) Electronic Security Devices by R. A. Penfold (RL43W) (cat. P40)
10. (8) The 6809 Companion by M. James (WG88V) (cat. P63)
11. (16) The TTL Data Book (WA14Q) (cat. P33))
12. (17) Programming the 6502 by Rodnay Zaks (XW80B) (cat. P54)
13. (7) VIC Programmers Reference Guide (WA33L) (cat. P63)
14. (19) How to Use Op-Amps by E. A Parr (WA29G) (cat. P35)
15. (13) Atari BASIC Learning by Using by Thomas E. Rowley (WG55K) (cat. P62)
16. (-) Radio and Electronics Colour Codes and Data Chart (RHO5F) (cat. P30)
17. (15) Electronic Synthesiser Projects by M. K. Berry (XW68Y) (cat. P50)
18. (12) Power Supply Projects by R. A. Penfold (XW52G) (cat. P38)
19. (9) The BBC Micro - An Expert Guide by Mike James (WKO4E) (cat. P63)
20. (-) VIC Revealed by Nick Hampshire (WA32K) (cat. P63)

These are our top twenty best selling books based on mail order and shop sales during April, May and June 1983. Our own publications and magazines are not included. We stock over 500 different books to do with electronics and computing and the full range is shown on pages 29 to 65 of the 1983 catalogue, page 15 of issue 6 , pages 60 and 61 of issue 7 , and of course the new books section of this magazine.
Note: For full details of WK45Y please see page 60 of issue 7 of this magazine.

NEW ITEMS PRICE LIST Continued from page 37

Sword of Fargoal (+16 K) 1C-Kko9k

Tank Arcade 1C-KH18U	$£ 20.75$
Typo 1E-KK18U	$\mathbf{£ 1 . 9 5}$
CONNECTORS	
BK74R 0.156in 2×12 way PC Edgcon	
	Price $£ 2.36$

HKO1B Digitai Digital Alarm Clock
HK02C Informer Alarm Price $£ 69.95$ HK03D Infra-Red Alarm Price £149.95 HK04E Electronics for Hobbyists
HK05F DC Electronics Course
KH06G AC Electronics Course
HK07H Semiconductor Price $\mathbf{2 5 4 . 9 5}$ HK07H Semiconductor Electronics HK08J Electronic Circuits Electronic HK09K Te (20) Equipment Course $\begin{gathered}\text { Price } \\ \text { £64.95 }\end{gathered}$ HK10L Experimenter Trainer $£ 74.95$ HK11M Assembled Trainer

Price $£ 159.95$ HK12N Digital Techniques Course

HK13P Digital Techniques Trainer HK14Q Assembled Digital Techniques
Trainer Price $£ 169.95$
KH15R Microprocessor Course KH15R Microprocessor Course \quad Price $£ 99.95$ HK16S Interfacing Micros Course HK17T Advanced Micro Course $\begin{gathered}\text { Price } £ 99.95\end{gathered}$ HK18U Microprocessor Trainer $\mathbf{~} 99.95$ HK19V Assembled Microprocessor $\begin{array}{ll}\text { Trainer } \\ \text { HK20W Hero Robot } & \mathbf{£ 3 2 9 . 9 5}\end{array}$ HK21X Robotics course Price $£ 99.95$ HK22Y Practice Oscillator Price £24.95 HK23A Dip Meter Price £79.95 HK24B Cantenna Dummy Load
HK25C Antenna Coax Switch Price £29.95
HK26D RF Oscillator
HK27E Audio Generator Price $£ 145.95$ HK28F Capacitance MeterPrice £ 139.95
MUSICAL \& EFFECTS
XG30H Echo Machine EM-006 $\quad £ 55.00$ PROJECTS AND KITS
BK66W Modulator UM1286

BK67X Moisture Scale GA16S Panic Button PCB Price 80.20 GA16S Panic Button PCB Price $£ 1.25$
GA17T MOS-Amp Bridge PCB GA96A Programmable Timer PCB G809K Modem Main PCB Price $£ 1.49$ GB10L Modem PSU PCB Price £1.75 GB11M Sound Generator PCB
G812N Inverter PCB Price $£ 2.25$ G812N Inverter PCB \quad Price $£ 1.99$ GB140 2×81 TV Sound/Inverse Video GB140
PCB PCB
GB17T VIC20 Taclkback PCB
Price $£ 3.36$ GB18U 2×81 Talkback PCB Price $\mathbf{£ 2 . 4 5}$ GB19V DX'ers Audio Processor PCB
G821X CMOS Crystal Calibrator PCB
G822Y Sweep Oscillator PCBPrice $£ 3.25$ G822Y Sweep Oscillator PCBPrice $£ 3.25$
G823A G2
 GB28F VIC2C RS232 Interface PCB
LK00A VIC20 Talkback Kit Price $£ 2.90$ LK018 ZX81 Talkback Kit Price $£ 24.95$ LK02C ZX81 TV Sound Kit Price $£ 19.95$ Kit 2×81 TV Sound and Inverse Video

CLASSIFIED

VARIOUS

MAPLIN STEREO cassette deck kit (P. 234 in catalogue). PCB's assembled, otherwise unbuilt, vgc, including all packing and accessories, cost $£ 40$. Sell $£ 25$. Tel. Bristol (0272) 772965) 100 ELECTRONICS magazines for sale, consisting 62 Practical Electronics, 31 Practical Wireless, 7 Elektors. Offers invited. Phone Pete (Formby 79388)
A.S.R. 33 TELETYPE with papertape, £50 ono, cormoisseur BD2 turntable M75ED2, vgc, £30; Lowrey TG1 organ, immaculate, $£ 400$. Caterham 47784 after 7 p.m. SX 200 scanning monitor receiver 12 v input, complete with brackets for mobile use, set top antenna, large scale circuit diagrams incl. modification and instruction booklet, £125. 069531614.
538A KIKUSUI 5 MHz oscilloscope, hardly ever been used, still in box. Interests changed to computing. Swap for 16 K Spectrum or offers. M. Swanson, High Street, Spilsby, Lincs.
FOR SALE, Practical Wireless, April 1972 to April 1981, £25 ono. Can deliver locally. Tel. Fence Houses (Durham STD) 854734.

MUSICAL FOR SALE

MIXER FRONT panel, Allen \& Heath 16 into 4 into 2 studio mixer, fully punched \& legended; $£ 20$.

Canvey 694900

MAPLIN S600S synthesiser, professionally built, cash needed so only $£ 100$ more than component value. £700 ono. 02644850 (Andover).
KORG MS10 synthesiser, as new, with guarantee, £200; swop for BBC A/B micro in good condition, 16 K ZX81. Lots of hardware, $£ 100$. 36 Sunningdale Avenue, Lowestoft, Suffolk. Tel. (0502) 64729.

If you would like to place an advertisement in this section then here's your chance to tel Maplin's 180,000 customers what you want to buy or sell, absolutely free of charge. We will publish as many
advertisements as we have space for. To give everyone a fair share of the limited space, we will print 30 words free of charge. Thereafter the charge is $10 p$ per word.
Please note that only private individuals will be permitted

MAPLIN 5600 synth. kit, complete order without components and cabinet, PCB's, mounting brackets, front-rear panels, hinges, book, still unpacked. Catalogue price $£ 68$. Sell $£ 30$. Phone 01.8404336. ,CRUMAR STAGE piano, 60 note, 3 voice, sustain pedal, case and stand ideal for group, home or studio. £150 ono. Banbury 720056. FOR SALE electronic organ, Casio 403, plays 25 different instruments, 16 rhythms, plus much more. Still under guarantee £200 ono. Tel. 01-891 3079.
ALAN DOUGLAS electronic organ (dismantled), 2.6in manuals, all coils, chassis, generators, valves, frame, room wanted, buyer collects. £30. Tel. 0617612952.

COMPUTERS FOR SALE

MZ80K 48K 48k, with Basic and Pascal, manuals and software, $£ 300$ ono. 15 Stramane Close, Brant Road, Lincoln. Lincoln 42036.
VDU-FERRANTI with green display, ideal as monitor and keyboard. Documentation supplied. Includes high current psu 5 v and \#12V, $£ 50$ ono. Tel. Orpington 71317
to advertise. Commercial or trade advertising is strictly prohibited in the Maplin Magazine.
Please print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send your advertisement with any payment necessary to: Classifieds. Maplin Mag, P.O. Box 3 , Rayleigh, Essex SS6 8LR.
For the next issue your
advertisement must be in our hands by 5th October 1983.

ZX81 \#16K with sounder, + Zonix prog. Sound generator + manual/ books/tapes all nearly new, £89 Peter Cunningham, 11 Berwyn Ave., Penyffordd, near Chester Tel. Caergwrle 760172. ATARI 400 16K program recorder. basic cartridge, many books, magazines, manuals. Four game cartridges. Lots of extras including joysticks. Cost $£ 450+$, sell for $£ 350$ ono. Tel. 0375672077.
NASCOM 2 with NAS-SYS 1, 16K memory, wooden box, two available at $£ 150$ each. Foulds, 42 Cotswold Avenue, Ipswich. Tel. 214004. MAPLIN ZX81 Talk-Back
unassembled for sale or exchange with ZX81 or ZX80 assembled or unassembled. Offers. Hamid Reza Taizadeh, 4th Floor, No. 11 Street, No. 3, Noarmack Tehran 16479, Iran.

CLUB DETAILS

ALWAYS WELCOME, new members to help support free enterprise in space, promote space exploration and oppose the moon treaty. For further information write to Free

Space and Space Settlers Society(MM), c/o Christ Forrest, 8 Barton Bridge Close, Raglan, Gwent
UNIQUE non-commercial scheme helps with the purchase, sale and exchange of Atari VCS cartridges. Pilot scheme by Atari enthusiasts for all Atari users. S.A.E. for details to The Secretary, V.G.E.S., 25 Rona Road, London, NW3 2 HY

WANTED

WANTED URGENTLY manual/circuit any data (or loan for copy and return), postage refunded. For Furzeehill Oscilloscope type 0100 (1956). P Merriman, 41 Wattleton Road, Beaconsfield, Bucks, HP9 1SD. WANTED CIRCUIT diagram of a single channel on/off radio control system to operate on any frequency. Mr. D. Corder, Low Weasdale, Newbiggin-on-Lune, Kirkby Stephen; Cumbria.
FIELD TELEPHONES, pair wanted, any type, including handset, bell and hand-generator. Preferably USA type EE8 in leather case. Phone 023467729 (Sundays).
TRANSCENDENT 2000 required, must be in good condition, unfinished kits considered. £56. Mr. C. Fyson, 17 Kitchener Road, Hampton Park, Southampton, Hampshire S02 3SF. WANTED audio pre-amp I.C. (number Nikko G0003) and circuit diagram/ service manual for Nikko TRM 30 amplifier. Would consider complete amplifier
Contact Andy Bryson 26 South Crescent, Ardrossan, Ayrshire (0294-63829).
WANTED: INFORMATION on I.C. No. A-Y-1224A (Digital Clock), am having very great difficulty in obtaining this particular chip Contact S, R Jefferies, 47, Nutfield Road, Coulsdon, Surrey CR33JP. 01-668 2833.

Maplin are pleased to announce that they will be exhibiting at no less than three different shows over the next few months. In addition to all our normal displays of computers and software we will have, on show for the first time, our new robot, Hero 1. Hero can see, speak, detect moving and stationary objects and determine their distance, pick up small objects, move in any direction, and learn from your instructions. He will be meeting the public at selected times throughout the shows, and would be very pleased to make your acquaintance.

The Maplin Modem will also be working, together with a demonstration of Maptel and Cashtel, the Maplin shopping. by-computer system that points the way to the future, allowing you to buy goods and access information 24 hours a day.

A representative of the Atari User Group will be on hand to answer questions at all three
shows, and the latest issue of the User Group magazine will be on sale.

The Great Home Entertainment Spectacular is the first of the shows, and printed on this page you will find a voucher worth £1 off the
normal price of your entrance ticket. The show organisers have planned a series of competitions and games, treasure hunts, live performances, product demonstration, and computer games, so there should be something for everyone. The

show is open from 11.30 am to 9.00 pm every day except Monday, when it will open at 5.00 pm , and it runs from the 17 th to the 25th of September at Olympia, London. Tickets are £3 adults, £2 children.

From the 29th of September to the $2 n d$ of October we have the second in our series of shows, the 6th Personal Computer World Show, at the Barbican, London. Opening hours are from 10.00 am to 7.00 pm every day except Sunday, when the show closes at 5.00 pm . Tickets are priced at $£ 3$ for adults, $£ 2$ for children.

Finally, we have the Electronic Hobbies Fair at Alexandra Palace, London, from October the 27th to the 30th. The show is open from 10.00 am to 6.00 pm every day except Sunday, when closing time is at 5.00 pm . Tickets are priced at $£ 2.00$ for adults, $£ 1.00$ for children.

We look forward to seeing you.
September 1983 Maplin Magazine

Ups and Downs

It is usually only the more interesting space shots which attract the attention of the news media. This often gives the impression that satellite launches are few and far between, with perhaps the odd Space Shuttle launch now and then. Nothing could be further from the truth, for there are many launches of all manner of craft throughout the year. Most of these are put up by the Big Two, America and Russia, but quite a few launches are made by countries such as Japan, India and, of course, Britain. Some indication of the numbers involved may be obtained from the following; in December of last year the Russians launched seven satellites of various types, and of the total of 121 launches during 1982, 101 were Russian, 18 from the USA, 1 from Japan and 1 from China.

Most of the Soviet satellites were military in nature, ranging from the surveillance devices mentioned in a previous issue to communications satellites. Such activity is not an unusual event, for during January of this year, the Russians launched another four rockets; one of these is particularly interesting, since it carried aloft a batch of no less than eight small military communica. tions satellites.

It should be no surprise to find the Japanese active in the business of satellites, and doubtless they see it as another area to exploit with their usual acumen. The first Japanese satellite launched in 1983 was a communications satellite, launched from the Tanegashima Space Centre near Takazaki on the 4th February. This was followed by an astronomical satellite, Astro-2, launched on the 20th February from the Kagoshima Space Centre. This last satellite will be used for detecting and monitoring celestial X-ray sources

With all these satellites going up it is not surprising that there are many that come down. Some of these come down of their own accord, due to the decay of a relatively low orbit, whilst some are brought down deliberately. These, of course, are the military surveillance satellites which are recovered in order to retrieve the information they contain without divulging the contents by transmitting it over a radio link. During December 1982 and January and February 1983, fourteen space-craft were recovered or re-entered, most of them of Russian origin.

Amateur Satellites

Many radio Hams will be waiting with anticipation for the launch of the latest amateur satellite, the so-called Phase 3.8, aboard the Arlane launch vehicle. Some readers may recall that the last attempt to use this launcher to put a payload aloft ended with the whole lot splashing down in the Atlantic. This was attributed to a breakdown in the third stage turbo-pump. As a consequence, the launch of the next mission has been put back while this component is rigorously checked over in order ensure that there is no repetition of such an expensive failure. The amateur satellite will agailn be going as a 'piggy-back' payload', the main satellite in this case being the European communications satellite, ECS-1.

If this launch ppoves to be successful, and by the time you read this it should have gone, then another satellite will be available for amateur use, which will then be known as OSCAR 10.

The prior satellite to this one, OSCAR 9, is still not completely out of the woods. This 'bird' is rather different from other amateur satellites, in that it carries scientific experiments and no transponders. A transponder. is a sort of space repeater, used for retransmitting radio signals over large dis: 40
tances. Uriforiunately. complete control has not been regained since it came back on the air, and it must be feared that its orbit will decay beyond the point of no return before it is able to realize its full potential

Space Astronomy

The number of satellites dedicated to research from the vantage point of space continues to increase. During May this year a satellite was launched by the European Space Agency, ESA, to study distant X-ray sources. Called EXOSAT, its two-year mis sion will be to observe some of the most unusual and violent events in the known Universe. For example, it is intended to be used to examine the disappearance of matter into 'black holes' as well as the massive out-pouring of X-rays from some of the remote radio galaxies. One particular feature of this craft is its a bility to be pointed at these sources to an accuracy of one thousandth of a degree of arc. which is claimed to be some fifty times better than hitherto achieved.

Another similar space-craft, but one which is observing a completely different part of the electro:magnetic spectrum. is the Infra Red Astronomica! Satellite. IRAS. A
recent achievement of this craft was the detection of a comet. which eventually became visible to the naked eye: in recognition of this the comet was named IRAS. Araki Alcock. This craft was mentioned in a previous article, and the supply of liquid helium used to cool the infra-red sensors seems to be holding up well and it has provided a great deal of information to astronomers on this part of the spectrum.

Space Shuttle

The next scheduled flight of the American Space Shuttle will be in the autumn this year. The primary aim of this flight will be to carry the joint U.S. European Spacelab aloft. One of the interesting aspects of this flight is that NASA has given the go-ahead for one of the crew. Dr. Owen Garriott. to take an amateur 2 -metre band transceiver with him. Thus it will be possible for radio amateurs all over the world to make contact with the call "CQ from W5LFL aboard the Space Shuttle". for WSLFL is Dr. Garriott's amateur call-sign Exactly how successful this proves to be only time will tell, and certainly one of NASA's stipulations is that any transmissions must not interfere in any way with the planned mission of the Space Shuttle

Maplin Magazine September 1983

ECS
 5

DBS-the continuing story

Finally, a few words on the latest develop ments in Direct Broadcasting by Satellite. This service is the one which is already enjoyed on a somewhat limited basis in some parts of the world, and which is intended to be available in Europe by the end of 1986. The satellite which will carry the TV signals is Olympus (previously L.Sat) presently being built by the British Aerospace Corporation. The U.K. has been allocated five d.b.s. channels in the 12 GHz band and the first two of these will be made available for two new BBC programme services. The three remaining U.K. d.b.S. channels will, no doubt, be allocated in future years. The channel bandwidth available with this sys. tem is around 10 MHz , which is appreciably larger than the 5.5 MHz offered by terrestrial

Attracts attention with or without noise

For the hard of hearing or the deaf a doorbell is obviously useless. This circuit is an attempt to increase the chance of getting the attention of a deaf person by flashing a light or lights on and off several times in the deaf person's room(s). Also the bell can be made to ring several times for the benefit of anyone who is only hard of hearing and also for the person who pushed the bell switch.

Circuit Description

Figure 1 shows a typical doorbell system. Figure 2 shows the circuit for the doorbell for the deaf which uses all of the existing hardware. There are two 7555 timers, the first of which is in monostable mode with a period of about 2-20 seconds determined by RV1, R2 \& C2. When the push switch is pressed, the output of IC1 goes high for 10 seconds and this enables IC2 to work in a stable mode (i.e. oscillate) at a rate of once every two seconds set by C3, R3, R4 \& RV2. IC2 turns the relays on and off which in turn switches the bell and lights on and off about 5 or 6 times. A 5A fuse is included in the lighting circuit for safety. S2 disengages the bell relay if, for example, children are sleeping. S1 disengages the light relay if it is necessary that the lights don't flash, e.g. for a photograph. also this allows normal doorbell operation simply by turning S1 off and setting RV1 to give one ring per push. D1 prevents large back EMFs from the relays destroying the rest of the circuit.

Note that the 7555 timer has been used instead of the 555 timer, because of the long time constants involved and for the lower power consumption in standby mode (useful if the circuit is battery operated).

The P.S.U. is the easiest part of the circuit but may need the most careful looking at, depending on the existing doorbell. If you have no doorbell at present or if your doorbell power supply is not suitable (see below) then the circuit for the power supply in figure 3 will work. BR1 rectifies the 8V A.C. and

Figure 1

this is then smoothed by C1. IC3, C4 \& C5 provide extra smoothing and voltage dropping if required. D2, if fitted, prevents wrong connection by a D.C. supply. With the Maplin transformer the regulator is not used and a wire link is used in the position marked for D2 (Figure 4b).

A suitable supply is:
a) D.C. $9-15 \mathrm{~V}$ - In this case BR1, C1 and the optional regulator should not be fitted. D2 should be fitted as in figure 4b. Also links should be fitted in place of BR1 as shown in figure 4c. (Note that batteries will run down every 6 months or sO_{3} and therefore a transformer may be a better long term solution).
b) A.C. 8-12V - From a Bell Transformer (as this is built for the job). The power supply is built as if using the Maplin transformer; but make sure that

Figure 1a

[^1]

Figure 3. Power supply.

the connections to the bell (via relay B) come from the pair of transformer windings that the bell was originally connected to.
c) A.C. $12-20 \mathrm{~V}$ - From a Bell Transformer. The power supply is built as for the Maplif transformer but uses the optional regulator section. Also connections to the bell (via relay B) should come from the pair of transformer tappings that the bell was originally connected to.

Constructional Details

The P.C.B. should be built up as in figure 6 by soldering in components in order of increasing height, inserting veropins into the low voltage output holes. Remember that you will only need to use some of the components listed for your type of power supply.

Check the P.C.B. after completion, especially for solder blobs, dry joints and correct polarity of devices; an electrolytic capacitor connected the wrong way round makes a nasty mess when it blows up. The unit is now ready for testing. Temporarily short across each of the two sets of contacts going to the switches S1 and S2.

Put RV1 and RV2 in their midpositions and temporarily connect the input to the P.S.U. Give a trial push of the doorbell by shorting the two veropins for the bell push together. Both relays should click on and off several times. RV1 adjusts the total length of time the doorbell operates for after a bell push. RV2 adjusts the length of time between individual flashes of the lights (should these need frequent alteration then potentiometers can be used).

If the unit does not work there are 3 main things to check:

1) Is the voltage across IC1 pins 1 and 8 between 9 and 16 V ? If not then the power supply is at fault.
2) If the output of ICl does not go high for 2.20 seconds when the bell is pushed, then ICl or an associated component are at fault.
3) If the output of IC2 does not oscillate between positive and negative supply when IC1 output goes high, then IC2 or an associated component is at fault.
The P.C.B. will now be ready to be fitted into a case. For a functional unit an AB13 case can be used, but for a

- Figure 4.

more attractive finished product a type 215 Verocase should look better. A suggested set of drilling details for an AB 13 case are shown in figure 5 .

When drilling is complete, fit grommets and the fuse holder where marked and insert the mains wires coming from
outside the unit.
Solder these wires directly to the P.C.B., along with an extra earth lead, connected to a solder tag which should be attached to the case with a 4BA bolt and shakeproof washer.

Then fix the P.C.B. down to the case

Figure 5. Drilling instructions.
with the 3 P.C.B. stand-offs, or 4BA bolts and metal spacers.

Finally the switches on the front panel and low voltage connections to bell, P.S.U. and bell push can be connected to the P.C.B.

One final point: remember that connections to relay A are at mains voltages, so do not have the mains connected when the case is open for adjustments. Hopefully the unit will now be ready for use.

Good luck!

Figure 6. PCB layout and overlay.

DOORBELL FOR THE DEAF PARTS LIST

Resistors - All 0.4 W 1\% Metal Film			
R1	10k		(M1OK)
R2	100 K		(M100K)
R3	22k		(M22K)
R4	68k		(M68K)
RV1	1M Hor-sub min Preset		(WR64U)
RV2	100K Hor-sub min Preset		(WR61R)
Capacitors			
C1	1000uf 25V Axial Electrolytic		(FB83E)
C3	10uF 25 V Tantalum		(WW69A)
${ }^{\text {c C4,5 }}$	100 nF Polyester	2 oft	(BX76H)
C2	22uF 16V PC Electrolytic		(FF06G)
Semiconductors			
D1	1N5406		(QL85G)
-02	1 N 4001		(QL73Q)
IC1, 2	ICM7555	2 off	(1H63T)
*IC3	UA7812UC		(QL32K)

Practical Electronic Building

Blocks Book

by R. A. Penfold
Virtually any circuit will be found to consist of a number of distinct stages when analysed. Some circuits are specialised, but in most cases they are built up from building blocks of standard types. This book is designed to aid electronics enthusiasts who like to experiment with circuits and produce their own projects, and gives the circuits and produce their own projects, and gives the circuits for a number of useful building blocks with details of how to change the parameters of each circuit to suit individual requirements where relevant.
1983. 110 pages. $180 \times 110 \mathrm{~mm}$.

Order As WK51F (Book BP117)
Price £1.95 NV
Practical Electronic Building Blocks Book 2
by R. A. Penfold
This is the sequel to Book 1, and follows much the same pattern using different circuits. The two books do not overlap, and have been specifically written to complement each other, Book 1 dealing mainly with circuits to generate signals and Book 2 with circuits that process them.
1983. 94 pages. $180 \times 110 \mathrm{~mm}$ Order As WK52G (Book BP118)

Price £1.95NV

The Pre-Computer Book

by F. A. Wilson
Aimed at the absolute beginner with no knowledge of computing, this entirely non-technical discussion of computer bits and pieces and programming is written mainly for those who do not possess a microcomputer but intend either to one day own one or simply wish to know something about them. Also highly recommended for the new computer owner who may be beset with uncertainties and, also, the person who cannot understand the jargon and technical terms used by most manufacturers in their sales leaflets.
1983. 78 pages. $180 \times 110 \mathrm{~mm}$.

Order As WK50E (Book BP 115)
Price £1.95NV

Mastering the Colour Genie

by lan Sinclair
This book covers the BASIC of the Colour Genie, including the use of the colour graphics and sound, as well as the very comprehensive set of data filing/handling instructions. A whole host of programs are illustrated for you to enjoy as you become more proficient and able. You are shown how to write your own programs so that you are soon in command of this powerful machine
1983. 148 pages. $234 \times 155 \mathrm{~mm}$. Order As WK54J (Master the Colour Genie)

Assembly Language Assembled for the Sinclair 2X81
by Anthony Woods
The ZX81 does not allow you to enter assembly language programs direcfly, they have to be translated into machine code before they will run. There is, however, a software solution. One company has produced the ZXAS assembler and ZXDS disassembler programs which can be used to translate assembly language automatically to and from machine code, using standard Zilog mnemonics. This book has been designed especially for use with these programs. At the same time, it is structured in such a way that the reader can learn to program in assembly language just as easily as they earnt BASIC.
1983. 154 pages. $234 \times 153 \mathrm{~mm}$ Order As WK60Q (ZX81
Assembly Language)
Price $£ 7.65 \mathrm{NV}$
The Complete Spectrum ROM Disassembly
by Dr Ian Logan \& Dr Frank O'Hara
Every routine in the ROM has full comments on what its function is and how it relates to the other functions in theROM. Overall, the 16 K ROM program offers an extremely wide range of BASIC functions and commands, and this book makes all the functions and entry points available for use in your own programs or for modifications into special routines.
1983. 232 pages. $214 \times 141 \mathrm{~mm}$.

Order As WK57M (Spectrum ROM Disassembly)

Price £9.95NV
The Dragon 32 Games Master by Keith \& Steven Brain
This book shows you how to write your own top class games, taking you line-by-line from the first principles of writing the simplest games right through to the design, construction and testing od adventure games whirh can rival commercial software in complexity and presentation.
1983. 200 pages. $239 \times 152 \mathrm{~mm}$.

Order As WK58N (Dragon,
Games Master) Price £7.40NV

Lynx Computing
by Ian Sinclair
Aimed at all users, this book starts at the very beginning with how to set up the machine. It then goes on to guide you step-by-step until you become sufficiently expert to write your own programs and start using your machine creatively. Many useful programs are included and you will continue to find the book useful as a handy reference even after you have mastered all the techniques. 1983. 148 pages. $234 \times 155 \mathrm{~mm}$. Order As WK55K (Lynx Computing)

Price $£ 7.85 N V$

Discovering BBC Micro Machine Code
by A. P. Stephenson
You can unlock your micro's latent powers with machine code, generate fast-moving graphics, make more effective use of peripherals and ancillary equipment, save precious memory and get to know your machine better. This book will show you how to get started. using many short programs and routines.
1983. 148 pages. $234 \times 155 \mathrm{~mm}$. Order As WK56L (BBC Machine Code)

Price f 7.85 NV
Advanced Programming for the 16K ZX81
by Mike Costello
A description of the techniques that can be applied to the ZX81 in order to overcome some of its inherent limitations. This involves some investigation of the ZX81's operating system, discussion of BASIC subroutines, as well as details of the application of Artificial Intelligence techniques to programming for the $\mathbf{Z X 8 1}$. Later chapters are devoted to the use of assembly language programming techniques, hybrid programming techniques, hybrid programming - mixing BASIC with machine code, and developing utility programs to suit the user's own particular needs.
1983. 126 pages. $234 \times 153 \mathrm{~mm}$. Order As WK59P (Advanced 16K ZX81 Programming)

Price £6.55NV

BASIC and PASCAL in Parallel
by S. J. Wainwright
This book takes the two
languages and develops programs in both
simultaneously. Emphasis is placed on structured programming by the systematic use of control structures; and modular program design is used throughout. Example programs are used to illustrate the program structures as they are introduced, and the reader can earn by example. As the title suggests, the book is intended as a bilingual introduction to programming which can be used to learn both languages simultaneously, and to learn programming techniques which are compatible with both languages
1983. 60 pages. $180 \times 110 \mathrm{~mm}$

Order As WK53H (Book BP126)
Price £1.50NV
Electronics For Technicians
by G. D. Bishop
A comprehensive basic reference text for the fast changing world of electronics The book is designed to cover all the electronics content of the revised T.E.C. Certificate and Diploma programmes, fit a wide range of related courses including C.S.E. and ' O ' level electronics, suit first-year degree courses and those fresh to the world of electronics It includes a number of large clear diagrams supporting the text, together with photos where necessary. The text follows the pattern of the associated T.E.C. unit syllabus, but it has been extended where necessary to create a comprehensive electronics text.
1983. 134 pages. $234 \times 202 \mathrm{~mm}$ Order As WK61R (Electronics for Technicians)

Price £5.95NV
The Commodore 64
Programmers Reference Guide This tells you all you need to know about your Commodore64 The perfect companion to the User Guide, the manual presents detailed information on every thing from graphics and sound to advanced machine language techniques. This book is a must for all CBM 64 owners. Comes complete with circuit diagram 1983. 486 pages. $21.6 \times 135 \mathrm{~mm}$ Order As WK62S (CMB64
Programmers Ref Guide)
Price $£ 13.25 \mathrm{NV}$
How to Design and Make Your Own PCBs
by Robert Penfold
This book should enable you to familiarise yourself with both the simple and more sophisticated methods of producing PCBs. The emphasis is very much on the practical aspects of design and construction, and is highly
recommended to all newcomers to electronics.
1983. 66 pages. $177 \times 110 \mathrm{~mm}$

Order As WK63T (Book BP121)
Price £1.95NV

by Mike Wharton

A Beginner's Guide to Logic Design Part 3

Solution to Problem

If you recall, there was a little problem left for you to sort out in the last section. This was to deduce the Truth Table of an array made up of two-input NAND gates, and the result which you should have arrived at is given in Fig. 1. Comparison of this table with published ones will show it to be that of the Exclusive-OR gate, (EX-OR). The common symbol for this gate, also known as the Difference gate, is shown in Fig. 2a. It is called the Difference gate since a look at its Truth Table will reveal that the output is high only when the inputs are different; the complement of this gate is the ExclusiveNOR gate, (EX-NOR), whose symbol is shown in Fig. 2b. This gate is also known as an Equivalence gate, since its output is high when the inputs are the same, and the Truth Table for this gate is shown in Fig. 3.

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Figure 1. Derived truth table for 2 input Exclusive OR gate.
(l)

Figure 2. Symbols

A	B	C
0	0	1
0	1	0
1	0	0
1	1	1

Figure 3. Truth table for Exclusive NOR gate
It would be possible to produce an EXNOR gate by adding an inverter to the output of the previous EX-OR gate made up from NAND gates, thus using a total of five 2 input NAND gates. This would be quite wasteful of gates, and not surprisingly it is possible to obtain both of these devices in a single package. Thus Fig. 4a. shows the pinout of the 7486, a quad 2-input EX-OR gate package, and Fig. 4 b . gives the pinout of the 74266, the EX-NOR gate package.

This now completes the list of main logic gates, although there are a few others which 46

OR and EX-NOR gates, which are special cases. The other gates have just one value of logic output for a particular set of inputs; for example, in a 2 -input AND gate the output is always low except when both inputs are high. In a 2 -input NAND gate, the output is always high, except when both inputs are high, and this follows on for the 8 -input NAND gate, where the output is always high except when all the inputs are high.

That this is so can be tested by connecting up a 7430 on a bread-board with a

Figure 5. Pinout

Figure 6. Pinout and truth table
Maplin Magazine September 1983

LED wired to the output, as shown in the last issue. If each of the inputs is connected to logic 1 then the output will be found to be at logic 0 , with the LED extinguished. If one of the inputs is now taken to logic 0 , then the L.ED will light up, and will remain alight while any number of inputs are held at logic 0.

Figure 7. Part of counter/decoder circuit
The use of such a device may be demonstrated by referring to the part of a circuit shown in Fig. 7. The problem here was to produce a signal from the output of the 8 input NAND gate after the counter had counted a selectable number of clock pulses. To achieve this action, each of the inputs is connected to logic 1 by a 'pull-up' resistor, thereby ensuring that the output will be logic 0 . The numbers shown by the outputs from the BCD counter are the number of clock pulses which need to be counted before that particular output goes high, assuming a start from zero. Without going into any further detail of how the outputs from the counter would appear, by connecting the appropriate links it is possible to set the circuit to count any value of pulses from 1 to 255 . For example, if it were required to count up to 23 clock pulses before a logic 0 appeared at the output of the NAND gate, then the links for $1,2,4$ and 16 would be made, since $1+2+4+16=23$.

The individual pull-up resistors are needed on the inputs in order to ensure that any unconnected inputs are held at logic 1 ; the value of these resistors is not all that critical, but it must be remembered that the output of the counter will be required to sink the current through them when it goes low. The BCD counter is a rather different type of animal from the ones we have encountered so far, belonging to the breed of sequential logic devices. This is a whole range of beasties which will be dealt with in a lot more detail in a subsequent article.

Arithmetic Logic Units

Any reader who has perused books or articles on the subject of micro-processors or micro-computers, and these days it's hard to avoid them, may well have come across the term Arithmetic Logic Unit, or ALU. This is the part of the micro-processor which is concerned with 'doing sums' and other logical operations. Needless to say, in a real life processor, this section contains a multitude of functional devices, but it is possible to emulate one of its basic building blocks, the Adder. Side-stepping the old jokes about venomous snakes, the digital adder comes in two types, the half-adder and the full-adder. However, before we delve into the workings of these circuits, it may well be a good idea to brush up on some binary arithmetic.

I am sure everyone reading this is fully conversant with denary arithmetic, that is September 1983 Maplin Magazine
working in powers of ten. In binary arithmetic the same rules apply, but in this case we are using the number base of two, with the digits 0 and 1 . When two denary (or decimal) digits are added together there are two possible situations:
a) a third digit, larger than the other two results, but smaller than the base of the number system, eg,

these examples, is called the SUM.
b) the third digit is equal to or larger than the base of the number system,

CARRY SUM CARRY SUM In this case the position of the digits comes into play and the answer consists of two parts, the SUM and the CARRY. The generation of Sum and Carry occurs whatever number base is in use. In binary addition the generation of Carry bits occurs much more often, as there are only two digits.

These examples cover nearly all the possible combinations of binary addition, the only other one being where the 0 and 1 are reversed in the middle example!

Where binary numbers containing more than one digit are to be added, then the process can be broken down into a series of repeated two-digit additions, until the process is complete. For example:-

$$
\begin{array}{rr}
10 & 111 \\
+01 \\
\hline
\end{array}
$$

CARRY 11 SUM $\overline{1001}$ In the second example, the addition of the first (righthand) digits of 0 and 1 gives a Sum of 1 , and no Carry; adding the next two digits, 1 and 1 , produces a Sum of 0 and a Carry of 1 . The next stage is to add together 0,1 and the Carry; as before 0 and 1 give a Partial Sum of 1, and adding the 1 carried over gives a Sum of 0 and a Carry into the next column. The simple rules of binary addition may be summarised in a Truth Table, shown in Figure 8.

A	B	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Figure 8. Binary addition truth table

Looking at this Table it is possible to see that a Sum OR a Carry is the result of a binary addition, never a Sum AND a Carry. To perform this operation with logic gates, it i only necessary to find ones which have the same Truth Table as that for binary addition. The circuit would require two in puts, A and B and two outputs to correspond to the Sum and Carry. This can, in fact, be achieved in several different ways; if you look back at the Truth Table for the EX-OR gate and the AND gate it is apparent that the Sum part is the same as the EX-OR truth table and the Carry part is the same as the AND gate. Actually, this is not quite a full solution, since no account has been taken of the fact that a Carry bit may have been produced by an earlier stage, and hence this is known as the half-adder.

Half-Adder Circuit

A digital half-adder circuit may be made up, on a bread-board, following the diagram given in Figure 9. Here it can be seen that the two gates which are required are the EX-OR
and the AND gates. Possibly the most convenient method of making'up this circtifit is to use single gates from a 7486 and a 7408 , and connect them up as shown. In this's case the two bits to be added are applied to inputs A and B to give the Sum and Carry appear at the corresponding outputs. It is also possible, remember, to make up such gates as these from the common NAND gate. We have already seen how the EX-OR gate may be made up from four 2 -input NAND gates, and so to complete the picture figure 10 shows how the AND gate may be fashioned. It is left as a further exercise for the reader to make up the half-adder circuit from NAND gates and confirm that it is logically identical to the first design.

Figure 9. Circuit for half-adder

Figure 10. AND gate using NAND gates

Full-Adder Design

The half-adder is incomplete in that no provision is made for a 'carry-in' from a previous stage. In the case of the full-adder. not only is account taken of this, but also a provision is made for the possible generation of a 'carry-out' to subsequent stages. Again, the requirements of the full-adder may best be summarised in the form of a Truth Table; this will need to have thiree inputs, A,B and Carry in, with two outputs', Sum and Carry Out, as shown in Figure 11.

A	B	CARRY IN	SUM	CARRY OUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figure 11. Truth table for binary full adder
The full-adder is, in essence, two halfadders connected together to take account of the extra bit carried in. The circuit for the full-adder is given in Figure 12. Again, although this is shown made up fromi discrete gates, it can also be done with NAND gates in the same manner as the halfadder.
If more than two bits are to be summed then the block can be repeated, with the carry out from one stage being connected to the carry in of the next stage. Finally, Figure 13 shows a couple of full-adders being used to add binary 11 and 11, giving 110;-je decimal $3+3=6$.

Address Decoding

Still on the micro-processor scene, another important use of TTL combinational logic designs is in the area of address decoding. The essential problem here is to produce a signal in response to a unique pattern of bits on the micro-processoir address bus. This pattern of bits is of course, the address of the device which is being sought in order to send or receive data along the data bus of the system. Typically, Continued on page 64

Logic Probe
 by Graeme Durant

Detects pulses from around 1 Hz
 \star Instantly recognisable logic states
 \star Low current consumption
 \star Over volts protection

0ver the years, countless designs have appeared in the electronics press for logic probes; ranging from very simple High/Low indicators, to complex pulse stretching probes. The logic probe described here, has a number of features found only on the more complex probes, and as such, lies somewhere between these two extremes. Thus it is perfectly suited today to day fault diagnosis.

As well as detecting High and Low logic states, open circuit (floating input) and pulsing inputs are displayed. Pulse trains from around 1 Hz are detected as a pulsing input, the upperlimit is above that attainable in most common C-MOS logic.

The main difference between this logic probe and all others is that the output is shown on a seven segment LED display, as a letter of the alphabet; Hi for High; L for Low; F for Floating; Pfor Pulsing. In this way, the logic state is instantly recognisable and totally unambiguous, unlike some commercial

Figure 1. Block diagram.
logic displays. The use of a special high efficiency display means that the total current consumption at a supply voltage of 15 v is only 15 mA - quite suited to battery operated circuits. In addition, the probe is protected against overvoltage inputs, and reversed supply.

Block Diagram

The input from the probe goes via a protection network to a window comparator, with switching levels of 70% Vss and $30 \% V_{s s}$; these are the standard CMOS limits. If the upper limit is exceeded, then the probe input is CMOS logic high. Thus, the upper output goes on to the display circuitry for HIGH indication.

If the probe input does not exceed the lower limit, then it is at CMOS logic low. The output of the lower comparator is inverted to give a high level at the display circuitry for LOW indication. If the probe input is between logic levels,

Figure 2. Circuit diagram.

then the upper comparator will be low and the lower comparator high. These two outputs are fed to a.NOR gate, which gives a high level to the display circuitry on FLOAT.,

The HIGH indication also drives a retriggerable monostable. will produce a continuous low output. If this monostable goes low, the display is disabled via a simple gating system. This is to prevent misleading displays, whilst the circuit decides whether the input is indeed pulsing, or whether a low to high transition has taken place (e.g. the probe has just touched a point at logic high). As soon as a low pulse appears at the monostable output, a delay, slightly

longer than the monostable period is initiated. At the end of this time period, if the output of the monostable is still low, i.e. the input is pulsing, the display shows PULSE. Otherwise, the HIGH/FLOAT/LOW display is enabled again.

The display consists of driver transistors, a diode matrix to produce the desired alphabetic displays, and a seven segment LED display.

Circuit Description

The probe input goes via' R1 to a simple window comparator formed around IC1. R2, R3 and R4 determine the, changeover voltage levels. The circuit input is protected from overvoltage by D1, D2 and R1; the input is biased at half supply by R5 and R6 so that if the input is open circuit, the display shows FLOAT. The upper window comparator output is buffered by IC2a and IC2d, and goes to the display switching transistor for HIGH indication, via IC3d, which allows the HIGH display to be disabled.

The low and float displays are similarly connected, using IC2b and IC3b for LOW, and IC2c and IC2c and IC3c for FLOAT.

A simple CMOS monostable wired around IC3a and IC4c, and having a period of around 0.5 seconds senses a pulsing input. Its output, which is normally high, disables the HIGH/ FLOAT/LOW display, and starts a delay, formed around C4 and R9, which is a little over the monostable period. The output of the RC delay is inverted and fed to IC4b, which senses whether the input is still pulsing. If it is, Q1 is switched on, and PULSE is displayed. Otherwise Q2 to 4 are enabled. A diode matrix and seven segment common cathode display decode the signals, so as to give H, F, L and P displays.

'Construction'

Before soldering in any components, solder in wire links on both PCBs, there are eight in all. Fit in all the resistors and capacitors, taking care with polarity on C1 and C4. If you are using IC sockets these may be fitted along with the diodes - again be careful about polarity. Note also, that D4 is fitted vertically on the PCB. Fit the transistors, and finally, the ICs. It is a good idea to use veropins for all the cable to PCB connections, but it is not vital. This only leaves the display, which requires setting at the correct height to fit inside a suitable case.

The PCBs are mounted one on top of the other in the case, with connections between made by solid wire links cropped component leads are ideal. Solder eleven lengths of wire, about 20 mm long, to the underside end connections of the top board, passing the wire through the holes until level with the topside of the PCB. See Figure 5.

Slide on the lower board, until there is a gap of a millimetre or so between the top board and the tallest components

Figure 3. PCB layout.

Figure 4. PCB layout.

on the bottom PCB. Solder the wires to the bottom board and crop as normal.

The circuit now may be fitted into the case, insulated from the case bottom by masking tape and held firmly in position by sticking a strip of thin foam rubber in the lid, with a cutout for the display. A small square of red display filter film may be stuck behind the cutout for the display for easier viewing.

The power cable, a piece of Zip wire terminated in crocodile clips must pass through-the case via grommet. The
probe, made from a sharpened steel rod or knitting needle, is soldered into a Phono plug, and connected to the circuit by a case mounted Phono socket. This provides a firm grip and allows easy storage of the probe when not in use.

Testing and Use

Power the circuit up with a typical CMOS supply voltage. After around half a second, the display should show a letter F. If not, disconnect quickly, and recheck the circuit. If all is well, touch the probe to positive - a letter H should be light after a brief delay. Tap the probe on and off positive a few times a second - a letter P should be displayed after a delay. Then, touch the probe to Ov - a letter Li should light immediately. If all this happens, the probe is working perfectly.

The probe is designed for use with CMOS logic circuitry, and may be used to trace faults on any such logic. All that remains now is to find a suitable circuit to test!

Part Two

Memory Addressing

ittle progress can be made in writing machine-code programs without a reasonable degree of understanding of the addressing modes available. The better the understanding, the better the programs. In a program written by the user, all of the instructions and data will be entered into the RAM area of memory; and running the program will access these instructions and data sequentially. Questions then naturally arise. Whereabouts in the RAM should the program be located? What are the criteria that determine the choice of locations? Given that there are a variety of ways of loading and storing data, how does one decide which method to use? It is the intention of this article, the second of this series, to answer these questions by showing how some of the 6502 addressing modes work. So that it is possible to 'see the wood in spite of the trees', no attempt will be made at this stage to write anything very ambitious in the way of programs. That can come later. But the first 6502 mnemonics and their corresponding op-codes will be met so that addressing can be seen to be used in a meaningful sense.

The Paging Concept

Memory is organised in 'pages', each 256 bytes long. These are known as 'Page 0 ', 'Page 1', 'Page 2'...'Page E', etc. The page number is obtained by writing the memory addresses in numbers of four HEX digits length and examining the two most significant digits:

Thus, Page 0 runs from 0000 to 00FF
Page 1 runs from 0100 to 01FF
Page 2 runs from 0200 to 02FF

Page E runs from OEOO to OEFF

 etc.This idea of pages is more important than might be thought. For one thing, it is possible to write a shorter (and hence faster) program on Page 0 than on others - because of a unique addressing mode that will be explained shortly. Secondly, crossing a page 'boundary' in certain operations incurs a loss of speed.

A pictorial method of illustrating mem: ory is the 'memory map', an example of which is shown in Figure 1. This shows both

Graham Dixey C.Eng., M.I.E.R.E.

Figure 1. Memory map of a typical small microcomputer.
the pages referred to and also the way in which they are allocated. This memory map may be taken to represent a typical small development microcomputer with just 1 K of RAM and 512 bytes of ROM. Whatever computer is concerned, it will be necessary to determine its memory map so as to know (a) which areas of RAM are available for user programs and (b) where the input/output ports are located. The 'stack' is standard on all 6502-based machines, being located on Page 1 - thus this page is not to be used for user programs, except in stack operations. One word of warning - the monitor program, which is stored in ROM and controls the computer operation, may well have a small part of one of the RAM pages (e.g. Page 0) reserved for its own use for what is known as a 'scratch-pad'. User programs should not be written here as strange things will happen!

Assembly Code and Machine Code - the first mnemonics

Assembly and machine codes are both termed 'low-level languages'. Assembly code consists of easily recognisable mnemonics and is the form in which the program is first written. When there is a good chance that the program will work, then it can beput into machine code; this consists of op-codes and data, whose meanings at a glance are much less obvious. It is as well to be disciplined in approching program writing right from the start, since a well laid out program is easier to de-bug than one in which the logical approach is missing. When writing the Assembly Code program space
should be left .alongside for the related machine-code program; then a direct correspondence between the two can always be seen.

Now for a few instructions and their Assembly Code mnemonics:

SED - Set the Decimal mode (for arithmetic operations)
LDA - Load the Accumulator (with the byte of data specified in some way by what follows next)
The bracketted words actually refer to the addressing mode to be used.

CLC - Clear the Carry (flag): sets the carry flag to zero
ADC-Add with Carry (adds the contents of the accumulator - plus the carry flag - to the data specified by what follows next) This operation was illustrated diagramatically in Part One of this series.
STA - Store the accumulator contents (at a location determined by what follows next)
These mnemonics, as listed, actually form a short program that adds together two numbers and stores the result. The only problem that needs them to be solved is how to address the memory, both to fetch the data, i.e. the numbers to be added, and to

MNEMONIC	OP CODE	OPERATION
BRK	00	Break
CLC	18	$0 \rightarrow \mathrm{C}$
CLD	D 8	$0 \longrightarrow \mathrm{D}$
CLI	58	$0-1$
CLV	B 8	$0-\mathrm{V}$
DEX	CA	$x-1-x$
DEY	88	$Y-1-Y$
INX	E 8	$x+1-x$
INY	C 8	$Y+1 \longrightarrow Y$
NOP	E A	No operation
PHA	48	A \longrightarrow Stack
PHP	08	P \longrightarrow Stack
PLA	68	Stack \rightarrow A
PLP	28	Stack $-P$
RTI	40	Return from interrupt
RTS	60	Return from sub-routine
SEC	38	$1-\mathrm{C}$
SED	F 8	$1-\mathrm{D}$
SEI	78	$1-1$
TAX	A A	$A \rightarrow X$
TAY	A 8	$A \rightarrow Y$
TSX	B A	$S \rightarrow X$
TXA	8 A	$x-A$
TXS	9 A	$x-S$
TYA	98	$Y \longrightarrow A$

Table 1. 6502 instructions using inherent addressing.
store the result of the addition. So now to some 6502 addressing modes.

Inherent Addressing (Implied)

There are two instructions in the above program that use this mode. They are SED and CLC. This is the simplest form of addressing since it is complete as it stands; there is no following data byte/s. This is a 'single-byte' instruction which is performing an operation which is totally self-contained within the MPU chip. The complete list of 6502 instructions that use this mode are given in Table 1.

Zero Page Addressing

This mode provides access to all memory locations on Page 0 i.e. the addresses in the range 000 - 00FF. These are "two byte' instructions; the first byte is the instruction itself e.g. LDA; the second byte is the Page 0 address where the data is located. Suppose as an example this address is 0030 ; using zero page addressing this is specified simply by the HEX number 30 . It is a utility of 6502 programming that all Page 0 addresses can be identified by using the low byte of the address only; for all other pages of memory both bytes must in some way be specified. It is for this reason, as mentioned earlier, that programs on Page 0 run faster than those on other pages.

The op-code for LDA on Page 0 is A5 so that the program line in machine code for this operation is:

> A5

30
It should now be appreciated that this represents an instruction to the MPU to load its accumulator with whatever number it finds at memory location 0030 - in a language which it can understand i.e. HEX machine code. Actually that is a half-truth since there also has to be a further translation from HEX into binary, but this is not a worry of the programmer; the machine sorts this out itself.

Immediate Addressing

This is also a 'two-byte' addressing mode but with the following important difference. The second byte is not an actual address for the data but is the 'data itself'. To distinguish it from zero page addressing the \# (hash) is .used in Assembly Code and, of course, the op-code for machine-code is different. This is illustrated by the following example:
Assembly Machine
Code Code Comments
LDA MEMI A5 30 Zero page mode (meaning Load Accumulator with data at address 0030)
LDA \#30 A9 30 Immediate mode (meaning Load Accumulator with the number given i.e. 30)

Notice one point of protocol - in the Assembly Code for zero page the memory location is simply referred to as MEM1, whereas in the corresponding machine code the actual address is specified i.e. $30=0030$. MEMI is called a 'label' and is generally used in writing Assembly Code programs so as to preserve a general approach to program writing. It is later, when the program is encoded into machine code, that the actual memory location to be used can be assig. ned.

Absolute Addressing

Naturally it often happens that access is required to memory locations that are on another page other than Page 0 . One way of achieving this is to use the 'three-byte' mode known as absolute addressing. The first byte

Figure 2. Scheme for headed programming sheet.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{[a]} \& \multicolumn{4}{|c|}{ASSEMBLY CODE} \& \multicolumn{4}{|c|}{MACHINE CODE}

\hline \& LABEL \& MNEMONIC \& DATA \& COMMENTS \& PC \& OP CODE \& DATA/A \& DDRESS

\hline \& \& \& \& \& \& BYTE 1 \& BYTE 2 \& BYTE3

\hline \& \& SED
LDA
CLC
ADC
STA \& MEM1

MEM2
MEM3 \& Sets dec. mode
MEM1 $\rightarrow A$
$0 \longrightarrow C$
$M E M 1+M E M 2 \rightarrow A$

$A \longrightarrow$ MEM3 \& $$
\begin{array}{r}
0020 \\
21 \\
23 \\
24 \\
26
\end{array}
$$ \& F 8

A 5
18
65
85 \& 30
31
32 \&

\hline \& \& \multicolumn{5}{|l|}{MEM1=0030; MEM2 $=0031$; MEM3 $=0032$} \& \&

\hline \multirow[t]{6}{*}{(b)} \& \& CLD \& \& Clears dec.mode \& 0050 \& D 8 \& \&

\hline \& \& LDA \& MEM4 \& MEM4 - A \& 51 \& A 5 \& 60 \&

\hline \& \& SEC \& \& $1-C$ \& 53 \& 38 \& \&

\hline \& \& SBC \& \# 10 \& MEM4-10 - A \& 54 \& E 9 \& OA \&

\hline \& \& STA \& MEM5 \& $A \longrightarrow$ MEM5 \& \& 8 D \& 1 F \& 03

\hline \& \& \multicolumn{3}{|l|}{MEM4 $=0060 ; \mathrm{MEM5}=031 \mathrm{~F}$} \& \& \& \&

\hline
\end{tabular}

Figure 3. Two simple programs: (a) single-byte addition (b) subtraction.

MNEMONIC	OP CODE			OPERATION
	IMM.	ABS.	O Page	
ADC	69	6 D	65	$A+M+C \rightarrow A$
AND	29	2D	25	$A \wedge M \longrightarrow A$
ASL		OE	06	$C \rightarrow \sim 0$
Bit		2 C	24	A^M
CMP	C9	CD	C 5	A-M
CPX	E 0	EC	E 4	X -M
CPY	Co	C C	C 4	Y -M
DEC		CE	C 6	M-1 -M
EOR	49	4 D	45	$A+M \longrightarrow A$
INC		EE	E 6	$M+1 \longrightarrow M$
JMP		4 C		Jump to:
JSR		20		Jump sub
LDA	A 9	AD	A 5	$\mathrm{M} \longrightarrow \mathrm{A}$
LDX	A 2	A	A 6	$M \rightarrow X$
LDY	AO	AC	A 4	$M \rightarrow Y$
LSR		4 E	46	$0-\longrightarrow C$
ORA	Q 9	OD	05	$A \cup M-A$
ROL		2 E	26	$\square \square \rightarrow-\mathrm{c}$
ROR		6 E	66	\square
SBC	E 9	ED	E 5	$A-M-C \rightarrow A$
STA		8 D	85	$A \longrightarrow M$
STX		8 E	86	$\mathrm{X} \longrightarrow \mathrm{M}$
STY		8 C	84	$\mathrm{Y} \longrightarrow \mathrm{M}$

Table 2. 6502 instructions using immediate, zero page or absolute addressing.
is the appropriate op-code followed by the full two bytes of the address. Straightforward enough evidently but note that in machinecode the 'low' byte of the address comes 'first', thus; the op-code for LDA in this mode is $A D$ so that, to load the accumulator from the Page 3 memory location 031A, the program line in machine-code would be - AD 1A 03. Obviously a point to remember.

The instructions that can use the Immediate, Zero Page or Absolute addressing modes are listed in Table 2. together with their op-codes.

Two Simple Machine Code Programs

The list of instructions for a simple 'single-byte' addition program has already

MNEMONIC	OP CODE	OPERATION	
BCC	90	Branch on $C=0$	
BCS	BO
BEQ	FO	.	
BMI	30	.	..
$Z=1$			
BNE	DO
N	$=1$		
BPL	10	.	.
BVC	50	..	.
BVS	70	..	.
BV	$=0$		

Table 3. 6502 instructions using relative addressing.
been given. This program can now be encoded into machine-code in order to illustrate the way in which a written program may be laid out and to clarify, if needed, some of the instructions.

It will be necessary when writing the machine-code program to assign actual memory locations. As already explained, those addresses available will vary from one machine to another. However, rather than get round the problem by putting in a series of $X s$ whenever an address is needed, as it is sometimes done, the memory map of Figure 1. will be used. This approach is much more meaningful in terms of learning how to write programs, and it is only necessary for the individual programmer to remember that he may well have to assign different addresses for his own machine.

A headed programming sheet might look something like that shown in Figure 2. The column headed LABEL is only needed for programs containing 'branches' or 'jumps' but, for a general purpose programming sheet it should be included. PC stands for Program Counter, of course, and it is this register that holds all of the program memory locations, in turn, as the program runs.

Figure 3. shows two of the simplest programs possible - single-byte addition, and subtraction. These are included to illustrate the use of the programming sheet as well as the addressing modes that have beer discussed so far

The addition program starts by selecting the 'decimal' mode i.e. all data is handled as Binary Coded Decimal (BCD); the alternative mode is HEX. The accumulator is then loaded with the contents of the location labelled MEM1 (actual address 0030) and the carry flag is cleared prior to the addition. This step is necessary since the state of the carry flag is quite arbitrary at this instant and the 6502 instruction set has only the one addition instruction, which always includes the carry bit. Next the accumulator contents and the data at MEM2 (0031) are added together, the result being retained in the accumulator. This sum is then stored at MEM3 (0032). The whole program has been carried out on Page 0.

The subtraction program could have been written on very similar lines but has been used, instead, as an illustration of the Immediate and Absolute addressing modes

The program starts by clearing the decimal mode i.e. HEX arithmetic is selected (a choice entirely at the user's whim). The accumulator is loaded with the contents of MEM4 (0060) and the carry flag is 'set'. This must always be done before a subtraction so that 'borrows' can be made as required. The number subtracted from the accumulator contents is the decimal number 10 (imme diate mode), which has to be written in HEX for the machine-code program and then becomes OA. The result of this subtraction is retained in the accumulator, which is then stored on Page 3 (at 031F), which requires absolute addressing.

Unless the above is absolutely crystal clear it would be as well to study these two programs carefully a longside Tables 1 and 2 so tht the op-codes used in them can be related to the addressing modes used. A look at the PC column shows that only the address for the first byte on a program line is given; however, the other addresses have been allowed for, as study of the PC column should make clear. For example, in the addition program there are eight bytes corresponding to the eight memory loca tions 0020 - 0027 respectively. Notice also that the subtracting program is longer at nine bytes because of the absolute mode used for the store operation

Perhaps it might be as well to make it clear now that these two apparently trivial programs are included principally to illustrate the points made so far and to establish a structured approach towards programming. Obviously one does not need a computer just to add or subtract two numbers, but one might do so as part of a much larger and, hence, more complex program. In fact, such operations may need to be repeated many times during the course of a program run. They would then be called as 'sub-routines' each time required. It is intended to familiarise the reader with the whole of the 6502 instruction set and to show how to write programs to perform useful, mainly control-centred functions.

Relative Addressing

This mode is used only with 'branch' instructions, i.e. where a departure is made from the current address to another part of memory, as the result of a decision. This offers alternative courses of action based on the current state of affairs. For example, taking inputs to the computer from trans ducers and testing their values may decide the value of the output to some control element, perhaps a relay, lamp, motor, heater, etc. Flowcharts show clearly the action of branches. For example, Figure 4(a) shows the idea of testing ani input and taking the appropriate action for a computer-controlled furnace, while Figure 4(b) shows the computer making this same type of decision based on the accumulator status. Table 3 lists all of the 6502 instructions that use relative addressing.

Obviously a change in program direction can be either forward or backward, i.e. a branch can be 'positive' or 'negative'. In relative addressing the 'length' of the branch is added to or subtracted from the current contents of the program counter, thus causing the program to branch suddenly from one area of memory to another. The length of the branch is simply the number of steps that must be made through memory to the required new location.

Figure 4. Flowcharts (a) computer-controlled furnace.

(b) decision making based on accumulator status.

Suppose that a positive branch must be made when the accumulator contents are negative and a negative branch is to be made elsewhere if these contents are instead zero, perhaps as the result of a subtraction that has just been performed. Otherwise, if the accumulator contents are positive the program doesn't branch at all but just proceeds to the next step in the program. The program segment might look like this:

LOAD LDA	MEM1	0020	A5 E2
SEC		22	38
SBC	\#20	23	E9 14
BNE	OUT	25	DO OA
BEQ	LOAD	27	FO F7

-1
FO F7

OUT STA PORT B 003B 8D0009
The data for the BNE and BEQ instructions are the branch lengths, which are OA and F7 respectively, computed as follows.
(i) Positive branch: BNE to OUT; the memory location for the latter is seen to be 003B. When the program branches to this location it then finds the instruction to store the accumulator contents at the output port
B. In this way the decision and action is taken to output data from the computer to some peripheral device. The question now is 'from where does the branch start?' The answer is that a branch always starts from the address immediately following the one at which the branch length is to be found - in this case 0027 (the branch length being at 0026). The reason for this is quite simple. The program counter is stepping sequentially through the program instruction and data bytes, each byte being sent in turn to the 6502's instruction register where it is decoded. While this decoding is taking place, the program counter automatically increments to the next address in the sequence, so it is one step ahead when the branch length is in the instruction register. This instruction register, which has not been mentioned before, is for the decoding mentioned only and is not accessible to the programmer

The branch length is therefore the number of steps between 0027 and 003B which is 10 in decimal or OA in HEX. Count them!
(ii) Negative branch: BEQ to LOAD; this time it is necessary to go backwards to 0020 The branch starts at 0029 so, therefore, the branch length is -9 (the - sign indicates a negative branch) and this has to be written as a 'signed HEX number' - not as bad as it sounds.

Method 1.
(i) Write 9 in binary (8 bits)
(ii) Complement it
$=00001001$
(iii) Add ' 1 ' to it
$=11110110$
(iv) Write this as two HEX digits
$=11110111$

Method 2.

Note the following sequence of HEX numbers:

| $F 7$ | $=$ | -9 |
| :--- | :--- | :--- | :--- |
| 1 | | 1 |
| 1 | | |
| $F D$ | $=$ | -3 |
| $F E$ | $=$ | Negative numbers |
| $F F$ | $=$ | -1 |
| 00 | $=$ | zero |
| 01 | $=$ | |
| 02 | $=$ | |
| 03 | $=$ | |
| 03 | | |

Imagine this as a continuous sequence around the surface of a cylinder. Where will the join be between positive and negative numbers? The answer is:
$80=-128$ (highest negative number) $7 F=+127 \quad$ (highest positive number)

This is easy enough to grasp especially if the analogy is taken of a mechanical counter, such as the odometer in a car. If it was set at all zeros i.e. 0000 , what would it read if it was turned back one notch, then two, etc? Easy enough of course 9999,9998 and so on. So it is with HEX that going backwards (i.e. negatively) from zero gives the highest HEX digits first, then reducing by one at each step - FF, FE, etc.

A final point worth, making now. Using relative addressing, the maximum distance that one can branch out through memory is 127 steps forward or 128 steps backward or is it? There must be a way of branching as far as one likes, and this, plus more complex addressing modes will be dealt with in the next article. Also, since quite a bit of useful theory has now been covered in the first two articles, the time has come to start developing more useful and ambitious programs.

Dragon 32/RS232 Modem Interface

RS232 Data Link * Programmable word format Will connect Dragon to the Maplin Modem or other compatible system \star Module plugs into ROM expansion socket

by Dave Goodman

The first in a series of projects forthe Dragon 32 computer is our Serial Communications Interface Adaptor, or SCIA. Although primarily designed for use with the Maplin Modem, the SCIA could connect to any serial RS232 compatible system where data exchange is required. It makes
possible full communication between the Dragon and other computers, and many commercial information services, such as the Maplin Cashtel system.

Construction

Through pins are used to connect tracks on both sides of the PCB. Fit these first, and solder them on both
sides of the board. Resistors and diodes are fitted next, bending each lead before insertion. On the legend a white bar shows the position for aligning the cathode of each diode, which in turn is recognised by a black band printed on the body. Fit RV1, and all the capacitors. C4, 5, and 6 are polarised, with the negative end marked on the body, while C7 is marked with a positive sign. Make

Figure 1. Circuit Diagram

sure they are fitted the correct way round!

Transistors TR1 to TR3 and all four IC sockets should be mounted as shown on the legend. Carefully solder each component in place, remove excess leads, and clean the track. Finally fit and solder SKT1 in place, then insert IC4 only. You should inspect your work before testing, rechecking all components and solder joints for errors.

Circuitry and Testing

Characters are transmitted or received at a particular speed, or Baud rate. The standard telecommunications speed of 300 Baud is used for the SCIA, and, although not critical, RV1 should be set with the centre of its wiper pointing to the arrow on the PCB legend. Insert the module (component side upwards) into the ROM expansion socket on the right hand side of the computer. Switch on the Dragon and wait for the usual display to appear. If vertical lining appears, or nothing at all happens, then switch off immediately and remove the module for inspection.

Using the positive end of C5 as the OV reference point, place a voltmeter between OV and IC4 pin 8, and check

Figure 2. PCB legend and artwork

DRAGON 32 RS232 MODEM INTERFACE

for approx．+10.3 V ．Now check for approx．-9.8 V between OV and pin 5 of SKT1．Remove the module，insert the remaining ICs，and re－fit the module into the Dragon．

IC2 is a CMOS 555 timer，and is used for the clock oscillator．IC3 divides the clock signal to determine the Baud speed for character transfer．With a 4.8 kHz clock and a programmed divide by 16 code，the Baud rate is 300 ．Three divide ratios of 1,16 and 64 are available．

IC4 is a voltage inverter，producing -10 V across C 5 for a +10 V input from TR3．This negative voltage is necessary to produce RS232 compatible levels for signal transmission．Serially coded signals are converted from pin 6 of IC3， IC1，TR1 and TR2 to RS232＋12V，－10V levels at SKT1，pin 5．Input signals on SKT1，pin 1 are chopped and poten－

Figure 3．Plug and socket external connections
tially divided by R8，D2 and R7 to a level suitable for TTL use．

Incoming serially coded signals are decoded by IC3 into eight bit parallel data bus codes．By reading IC3，infor－ mation is obtained from an internal
status register．If correct conditions appear then data is transferred to the computer for processing，etc．Of course，the IC must be synchronised to the incoming data for such conditions as the number of STOP／START bits，a PARITY bit，ODD or EVEN，and the total number of bits expected．All this information is contained in Program 2 and Table 1.

Two addresses are used as ports： PORT A address is 49152，PORT B address is 49153 ．Port A may be read for status checks，or written to for setting internal control conditions．Port B is read for received character data，or written to for transmitting data．By using PEEK and POKE commands，an R2 pulse on pin 14 of IC3 will enable the system，otherwise data would appear permanently on the data bus－with interesting results！

Figure 4．ROM Port

10 REM LIFAGOH MOCEM FROGRAM
11 CLS

13 PRINTE73，＂MODEM PROIFRM＂
14 PRINTE128．＂INSTRUCTIONS FOR USE：－＂
15 PRINTE192，＂1．COHNECT MODIJLE TO MODEM．
15 FPIMTE256：＂2．PROTRRM WORD FORMRT．＂
17 PRIHTE320，＂3．ESTABLISH COMMINICATIOHS LINK． 18 G0sub209
19 PRINTE34，＂THE MODJLE IS PROGRAMMEC B＇Y＂
20 PRINTEGE，＂ENTERING R＇WORD－FORMAT＇COCE＂
21 PRINTE160，＂THERE ARE 8 COLE OPTIONS LISTEC＂
22 FRINT＂OH THE FOLLOWIHI PRGE．＂
2S FRIMTQ2SE，＂SELECT THE REOUIRED WORD－FDPMAT TO EE IISED：＂；
24 PRIHT＂THEN ENTER THE CODE＂
25 FRIHT＂USING KE＇r＇S 1 TO e：～＂
26 gosubeon
27 PRINTEE，＂＂MORD－FORMAT＇TRELE．＂
28 PRINT

31 A虫（3）$=$＂（TBITS SEVEN PARITY＋1STOP BIT．＂
32 F事 4 ）$=$＂くTBITS 0000 FARITY＋1STOF BIT．＂
3.5 F

35 A事？）＂＂（EEITS JEVEN PARITY＇＋1STOP BIT．＂

37 FOR I＝1TOE：PRINTCHR的 $I+48$ ）；
35 FRIHT＂．＂；A蚆 I 〉 ：NEXTI
39 PRINTQ359：＂PRESS KEY＇ 1 TO8！＂
40 GOSUEE01

$42 \mathrm{C}=\mathrm{W}$ AL（Kま）

```
43 PRINTE103,"CUDE SELECTE[=";C
44 PRINTE1E2.A$くC)
45 PRINTO354, "DO YOU WISH TO CHANGE CODES?"
46 FRINT:PRIHTR426."\T'YPE Y恀"
47 rosULE2G1
48 IF K菑="Y"THENQ%
```



```
5 0 ~ P R I N T E 9 , ~ " F R O I S R A M ~ D R T A : - " ~
51 PRIHTRE4: "~"; A⿻⿱口口丨心(C):PRINT
5E PRIHT"- SPEED Q 30日 EAULSS!"
53 FRINTE192, "TO STRRT THE FRDGRAM, FRESS FNY"
5 4 ~ P R I N T " K E Y . T H E ~ S C R E E N ~ W I L L ~ C L E R F ~ L I V I T I L . " '
55 PFIHT"DATA IS RECEIVED!"
S5 PRINTESZQ, "DATR TRANSMISSIOH IS DIRECT FROKN"
5% FRIHTESS2, "THE KEYBDRRD."
58 GOglug201
59 FORI=1 TOC:REAO C
EG HEST I
61 DATA1,5,9,13,17,21,25,29
62 }\textrm{A}=49152:B=4915
100 POKE A, 3: POKE A,C
110 T年=INKEY年
120 IFT&<>"" THEN GOTO 17g
130 X=FEEKK(R): IF X=2 THEP{110
140 IF }X=19\mathrm{ OR }X=126\mathrm{ THEH100
150 PRINTCHP串(PEEK(B));
160 GOTO116
170 POKE B.RSC:T$>
100 GOTO110
200 FRINTQ450, "凸PRESS RNY KEY TO CONTINHE!)"
z01 K$=INKEY$
202 IF K莧=""THENVE01
20.3 CLS:RETIJRN
```

Type in Program 1 and connect pins 1 and 5 on SKT1 together on the module. The idea is to transmit a character into the receive register and print it on the TV display, thus testing the module.

Line 22 first resets the status register and initialises both the receiver and transmitter using data code three (D0 and Dl = Logic 1), and second, a clock divide ratio of 16 is selected with code 1 ($D 0=$ Logic 1) added to a word format code of $20(D 2$ and D4 $=$ Logic 1) or 21 .

The keyboard is scanned to see if a key is being pressed, and, if so, an ASCII code value for the key is POKEd into Port B and transmitted, along with all bit information. Port A is scanned to see if correct data has been received, by looking for $\mathrm{D} \emptyset=$ Logic 1. Dl will normally be at Logic 1 when the transmit data register is empty, so data code three ($D 0$ and $D 1=1$) is required to step the program forward, whereupon Port B is read and data printed on the display.

Run the program and press any key. The character will be printed, showing all is well.

Initial program requirements are for the setting of code 3 (POKE A,3) followed by divide code plus word format code (POKE A + total) 0 to 34.

Generally, code 21 can be used, which breaks down as divide clock by 16 and select word format of 8 bits (no parity) and 1 stop bit. This should suit most user requirements.

The MC6850 has many other control and status conditions associated with it, and a complete article could be written on this IC alone. However, informative data sheets are available from Maplin for those wishing to pursue the subject further. Program 2 gives information for those using the SCIA

Table la
Register Contents (Ports A and B)

Data Bus Port B(Rx)	Port $B(T x)$	Port A (write) D0	Port A (read) Clock divide Rx register full	
D1	Receive	Transmit	Clock divide	Tx register empty
D2	Codes 0-127Codes $0-127$	Word Format	(Carrier Detect)	

Table 1b (Control Register - Port A) Reset/Divide

Data Bus									
Function	DO	D1	D2	D3	D4	D5	D6	D7	Code
Reset	1	1	0	0	0	0	0	0	de
Divide by 64	0	1	0	0	0	0	0	0	2
Divide by 16		0	0	0	0	0	0	0	1
Divide by 1	0	0	0	0		0	0		0

Table 1c. (Control Register - Port A) Word Format

Word Format	D2	D3	D4	D5	D6	D7	Code
7 bits. Even par. +2 stop bits	0	0	0	0	0	0	0
7 bits. Odd par. + 2 stop bits	1	0	0	0	0	0	4
7 bits. Even par + 1 stop bit	0	1	0	0	0	0	8
7 bits. Odd par. 1 stop bit	1	1	0	0	0	0	12
8 bits + 2 stop bits	0	0	1	0	0	0	16
8 bits + 1 stop bit	1	0	1	0	0	0	20
8 bits. Even par. + 1 stop bit	0	1	1	0	0	0	24
8 bits. Odd par. + 1 stop bit	1	1	1	0	0	0	28
D@ and D1 - see table 1b.							

module and sets up the programming data to your requirements. ASCII coded data may be transmitted or received over a suitable link and printed to the display. If there is no 'echo-back' facility on the equipment connected to the module, then the characters transmit-
ted from the Dragon will not be returned and printed. This facility exists for data clarification, so that you know exactly what you are sending out. Save all programs on tape for future use, and don't forget to dial 'CASHTEL' when ready to use the working module.

PARTS LIST FOR DRAGON 32 RS232/MODEM INTERFACE

Resistors - All 0.4W 1\% Metal Film			
R1	100k		M100k
R2	1 M		M1M
R3.7	4k7	2 off	M4K7
R4, 5	10k	2 off	M10K
R6	1 k 5		M1K5
R8			
R9	470 R		M3K9 M470R
R10	1 k		M4IM
R11	33k		M33K
RV1	1M Hor sub-min Preset		WR64U
Capacitors			
Cl	100 pF Siliver Mica		W×13P
C2.3	100 nF Minidise	2 off	YR75S
C4,5,6	100uF 25 V Axial Electrolytic	3 off	FB490
C7	4u7F 35V Tantalum		WW65V

During the course of this and subsequent issues of Electronics I shall be including articles which should be of considerable use to the CBM 64 owner. These articles will cover many of the subjects which are not fully explained, or are merely hinted at in the manual which accompanies the 64. In many instances the 'Programmers Reference Guide' is mentioned and this publication is now available from Maplin, order code WK62S, price $£ 13.25$.

In this issue I shall demonstrate the use of the moveable object blocks or sprites as they have become known

At the heart of the 64's graphics system lies the video interface chip (6567). This IC is responsible for managing the $4 \emptyset$ column by 25 line text display, the 320 by 200 dot high resolution graphics display and the sprites (MOBS). In addition to these functions the 6567 also handles the character sets, split screen, colour modes, scrolling and a host of other graphics related jobs.

When the 64 user wants to write his own games, or even master the theory behind the commercially available arcade type games, it is natural that an understanding of mobs should be attained. The basic concept is that one should be able to define a shape,

by Nigel Fawcett

reasonably recognisable and proportioned for the application, and then be able to place it anywhere on the screen (this also includes those parts of the screen which lie above, below, left or right of the screen edges and which are therefore technically out of

sight). In addition they should be able to move smoothly in any directión desired. Witht he 6567 all this is possible. First, graph paper should be used to design the bit pattern for the sprite. Each sprite is mapped on a grid which is 24 bits wide by 21 bits deep. Every bit which is 'on' will be displayed on the screen in the colour chosen for that sprite. In memory the data for the sprite patterns is arranged in 63 consecutive bytes Continued on page 59


```
100 PRINT CHR$(147)
1000 FOR I=14336 TO 14463
1010 READ A : POKE I,A : NEXT I
1020 VC=53248
1030 PDKE 2046,224
1040 POKE VC+21,64
1050 PDKE VC+39,64
1060 VC+12,0 : POKE VC+13,100
1070 POKE VC+16,64
10B0 FOR I=15360 TO 15400
1090 READ MC : POKE I,MC : NEXT I
1100 SYS 15360 : FOR I=0 TO 31
1110 NEXT I : GOTO 1100
```



```
3010 DATA 0,0,254,0,1,240,0,1,12B,0,1
```


100 PRINT CHR $\$(147)$

1000 FOR I=14336 TO 14463
1010 READ A : POKE I,A : NEXT I
1020 VC=53248
1030 POKE 2046,224
1040 POKE VC+21,64
1050 POKE VC+39,64
1060 VC+12, 0 : POKE VC+13,100
1070 POKE VC+16,64
1080 FOR I=15360 T0 15400
1090 READ MC : POKE I,MC : NEXT I
1100 SYS $15360: F O R I=0$ TO 31

1110 NEXT I : GOTO 1100
3000 DATA $\theta, 0,0,0,0, \theta, \theta, \theta, 112,0,0,208$
3010 DATA $0,0,254,0,1,240,0,1,128,0,1$

3020 DATA $128,0,0,192,0,0,192,1,248,192$
3030 DATA $1,252,96,17,254,96,25,255,96$
3040 DATA $15,255,224,7,255,224,3,255$
3050 DATA $192, \theta, \theta$
3060 DATA $0,0,0,0,0,0,14,0,0,11, \theta, 0,127$
3070 DATA $0,0,15,128,0,1,128,0,1,128,0$
3080 DATA $3,0,0,3,0,0,3,31,128,6,63,128$
3090 DATA 6,127,136,6,255,152,7,255,240
3100 DATA $7,255,224,3,255,192,0,0,0,0,0$
3110 DATA $\theta, \theta, \theta, \theta, \theta, \theta, 0,0$
3500 DATA $173,254,7,201,224,208,11,173$
3510 DATA $12,208,201,36,240,15,238,12$
3520 DATA $208,96,173,12,208,201,0,240$.
3530 DATA $10,206,12,208,96,169,225,141$
3540 DATA $254,7,96,169,224,141,254,7,96$

USER VIEWS

The Maplin Modem, and the CAShTel and Maptel services have been much more successful than anyone anticipated Especially useful to us have been the user comments, a selection of which have been printed below. We are always interested in user comments and suggestions on what you would like to see on the system, e.g. User Group pages, bulletin board services. User groups (any machine) are welcome to get in touch with us, with the information they would like displayed, and we will see what we can do.

1. Terminating the isolating transformer with 600 ohms (across D1) enables correct setting of RV3. System now seems to have high immunity from noise. Stewart Hoare. We agree that 600 ohms should give correct results, but, under practical conditions, the line rarely exhibits a 600 ohm impedance, and therefore the best way of setting up is to -make a call to a friend and get them to leave their phone off the hook whilst you adjust RV3 for minimum crosstalk.
2. I have found it very difficult to get onto your system A. Perhaps it would be worth adding a few more ports? Roger Lee.
It is not extra ports that we need, but extra lines. More will be added in the future, according to demand.
3. If you sent Cointrol N at the start of logon, please don't - it means reverse video to me. Andy Michaei.
We don't.
4. How do I get rid of the double echo? Ian Atkins.
Either you are running in halfduplex instead of fıll duplex, or there is something in your program which is giving a double echo.
5. It would be nice to have column width selectable. S.R.Vann.
It would, we agree, but there are just too many options, and this makes it impracticable at present.
6. Why don't you use both upper and lower case? Roderick McLeod.
We do receive both upper and lower case, but we cannot transmit using lower case bectause of the problems this causes for some micros (notably the Dragon), which will not accept it.
7. A problem occurs with your system not always echoing back my characters. This is only confined to your system and not the others I use. Anon.
Our system should always echo back, and we have not had any other complaints. Any comments from anyone else?

MODEM NEWS

8. When will bulletins become available? J.P Cowell.
During August.
9. I would like to see a good modem program for the BBC that loads to cassette. R.H Gregory.
There is one published in this issue.
10. I am using a Transdata 300 printer terminal and I find that there are two characters missing at the beginning of each line, due (I think) to the slow return of the carriage in between lines. Is there any way of delaying the output from your computer? Michael King.Beer.
Please transmit 3.5 DEL characters after 'CR' 'LF' to allow elderly mechanical term. inals time. Anon.
There is nothing we can do at present, but we are looking into this one. Please bear with us. 11. At 300 Baud Maptel is fairly slow. Are there any plans for other speeds, e.g. 1200/75 and 600? Mike Harvey.
We are looking into the possibility at the moment, and hope to have something fairly soon.
11. Please let us have a CBM 64 group pagé. P.A.Friend.

Would you consider making a page available for Maplin Modem users? Dr N.Robinson. Your wish is our command.
13. Why is there no delete feature on input of messages? Mike Hobbs.
Delete vary too much between different computers. However, we are rethinking this one.
14. I would appreciate it if you would enrol me as a user of your system. I have a Barclaycard number, please advise me of the procedure. Also, I would like to know if the system will eventually be available after 17.30 hours, and if so until what time? P.A.Friend.

You do not need to be 'enrolled' into our system. The only requirement is that you have a customer number, which you can obtain by writing to us, enclosing your name and address, and details will be mailed to you. Alternatively, if you have already placed an order with us, you will have a customer number, and can use that.
The Maptel/Cashtel system is in the process of continuous expansion (as some of you

MODEM BOX
At last! The Maplin Modem has a box available. Custom built for us, the front panel is silk screened with a legend in white on black, and the rest of the box an attractive dark blue. The whole case comes in just two pieces, and will make your modem look completely professional.
All this for the incredibly low price of only £9.95. Order As_YK62S (Modem Box).

5 REK REC VOU FROGRAM R.J.B.K. 83 10 C.S
 20 : FX 7,3
 30 * FX 8,3
 $40 \times F \times 2,2$
 $50 \mathrm{~A}=$ IMKEY(1) : IF $A=-1$ THEN 100
 60 : FX 3,7
 70 UDU A
 80 ※ FX 3,0
 90607040
 $100 \times$ FX 2,1
 110 : FX 3,0
 $120 \mathrm{~A}=$ INKEY(1)
 130 IF A > 31 THEN VDU A AND 127
 140 IF $A=41$ THEN GOSUB 200
 150 IF $A=13$ OR $A=10$ THEN YDU A
 160601040
 $200 \mathrm{~A}=10$: VOU A
 $210 A=13$: VOU A
 220 RETURN

may have noticed!), and we are experiment. ing with a non-interactive order system outside normal working hours atpresent. We hope this will provide a viable alternative, but we will consider making the full service available should the demand prove suf. ficient to justify it.

USING THE COMMODORE 64 Continued from page 58

(21 rows of 3 bytes [3 bytes $=24$ bits]). The basic manual gives this information in greater detail, so refer to the relevant chapter for a fuller description.

Enough waffle - let's have a demonstration!

The following program sets up a sprite. from basic, and then uses a machine code routine to handle the movement. The routine is continually recalled from basic, allowing you to add to the program which could form the basis for a game. A swan is set up using a sprite and swims backwards and forwards across the right hand side of the 'screen. This frees the rest of the screen for more action.

You will notice that two images are set up in memory for the swan, one facing right and one facing left. If I had not done this the poor swan would have had to swim backwards!

The assembly language routine is only shown for reference, the actual data for the machine code is included within the basic program.

SWAN	LDA	2046		CMP	0
	CMP	229		BEQ	RSPAT2
	BNE	RVSWAN		DEC	53260
	LDA	53260		RTS	
	CMP	46	RSPAT 1	LDA	230
	BEQ	RSPAT 1		STA	2046
	INC	53268		RTS	-
	RTS		RSPAT2	LDA	229
RVSWAN	LDA	53260		STA	2046
				RTS	

$2 \times$ SPECTRUM RS232/MODEM INTERFACE

0ur series of computer/modem interfaces continues with one for the Spectrum, which can be operated directly from BASIC, without typ ing or LOADing lengthy program listings. Access to (or exit from) the module may be initiated as, required, either directly from switch-on or during a normal program run, without chang. ing any previous contents of memory except the display file, and does not require RAM space to operate

Interface

For computers to communicate with external sources suitable interfaces must be used. These must have the necessary facilities to enable compatibility with both devices and be under software control.

Transmitted or Received data is formatted as a character containing so many 'bits', and serialised for data transfer in a continuous stream. The speed of transfer is variable, but is usually standardised at 300 Bauds for modem/telephone links; higher Baud rates being required for higher trans mission speeds.

Three wire links are used, one for transmitting data, one for receiving data, and a common OV. Signal levels are to the RS232 standard of +12 V amplitude at up to 20 mA loads

Circuit Description

Within the Spectrum ROM, before the character set, lies an unused area of memory between addresses 14446 and 15615. By disabling the ROM at the correct time this area is freed for use by the EPROM IC7 and ASCIA IC6 (A Syn chronous Communications Interface Adaptor). ICs 1 to 4 perform the decod ing necessary for memory mapping two areas. Addresses 14592 to 15584 are used for printing and operating subroutines, and addresses 15585 to 15615 are reserved for 1/0 scanning, word formatting, and data transfer. R1 and D1 supply the ROM CS disable pulse from IC3, also enabling IC7 during the correct read only address

block. IC6 can be read or written to by the system within the address block determined by A5,6,7 and IC4 pin 11 but only four addresses are used, and these are detailed further on in the article.

IC5 is a fourteen stage ripple counter and clock oscillator running at 2.4576 MHz , with $\mathrm{C} 1, \mathrm{R} 10$ and X 1 determining the fundamental frequency, and this produces four divider outputs, shown in table 1.

Pin	Frequency	Baud	Link
6	19.2 kHz	300	A
4	38.4 kHz	600	B
5	76.8 kHz	1200	C
7	1536 kHz	2400	D

Table 1.
Serial data output is from IC6 pin 6 and inverter IC2, whose normally low output holds TR2 in the 'off' state. TR1 does not conduct, due to lack of base drive current, and its collector sits at -10 V potential, which appears at the RS232 output socket.

Pin 23 of the edge connector is notated -12 V (page 160 of the user manual), when in fact it is derived from an internal oscillator, used for generating +12 V and -5 V supplies for the memory ICs, and takes the form of a 20 kHz pulse waveform at approximately 12 V . By connecting this signal via DC blocking capacitor C 4 and referencing to ground via D4, a level shifted -12 V signal is developed. This is rectified and smoothed by D3 and C5 to give approximately -10 V DC at R5. TR1 switches between +12 V and -10 V dur ing data transmission, producing the required RS232 levels to line. Incoming data is kept to a positive potential by D2, for switching TR3 and as a TTL input to pin 2 of IC6.

Module Operation

The EPROM IC6 holds 746 data bytes, most of which are used to display the MENU and WORD FORMAT options necessary for programming ASCIA IC6. Eight options are available for different Maplin Magazine September 1983

by Dave Goodman ectrum to modems or other computers
 * Connects the Spectru $300 / 2400$ Baud rates
 * RS232 compatible - 300/2 operating system - no programming, * Completely self-cing required! motherboard * Plugs into expansion socket or motherbar

Figure 1. Circuit diagram.
word formats, setting total bits per character, odd, even, or no parity, and 1 or 2 stop bits. Master reset and clock divide ratios are also selected with these codes using data bits D0 to D4.

Within IC6 there are four registers accessible for use. Each register has a specific address and is either read or write in operation. See table 2 for definitions.

After control register has been set, the status register is examined to see if any data has arrived. If not, then the Spectrum keyboard is scanned for a key down. Various routines look for shifted or normal key operations, and also too many keys down before returning to the input status scanning

routine. With the keys, say, 'CAPS SHIFT' and ' A ', depressed, the format-

Address	Register	Use
15612	Control (WR)	Reset, clock, and word format
15613	status (RD)	inspect incoming data
15614	Tx data (WR)	send 'Spectrum' codes to line
15615	Rx data (RD)	incoming data for printing

Table 2. 15615 Rx data (RD)

Use

Reset, clock, and word format send 'Spectrum' codes to line incoming data for printing ted ASCII code ' 65 ' is transmitted once only, but if the key is held down for more than two seconds the character code will be repeatedly transmitted until released.

During repeat time the STATUS register is being scanned so that re-
ceived data has priority over transmitted data. This ensures that characters are not lost when 'echo' is utilised. The STATUS register indicates parity error, overrun, frame error, whether the transmit register is empty, or if receive register is full. Control is directed according to these conditions so that when a character is correctly decoded it will be sent to the receive data register and read by the Spectrum CPU for printing, etc.

Specifications for the MC6850 ASCIAs are available from us if further information is required.

Construction

A double-sided PCB is used which requires 86 track through pins to be fitted. Insert these from side 2 into all holes marked with a circle, and carefully solder each pin to both sides of the board. Close track proximity requires very careful use of the soldering iron, otherwise bridging or shorting will occur, which can be difficult to trace and could result in damage being done to the Spectrum, so keep all soldering to a high standard

This done, refer to the parts list and fit all ten resistors by bending each lead at right angles to the body and inserting in the correct position, flat to the board. Diodes D1 and 2 are fitted in the same way, except that each black band, or cathode, must align with the white band on the legend. Repeat for diodes D3 and D4. These should have a silver band.

Now solder the component leads onto the PCB and cut off the excess wire, before mounting capacitors Cl to 7. Note that C 2 to 5 are electrolytic, and must be orientated for correct polarity; the PCB legend has a positive sign, denoting the lead NOT marked with a negative sign on the component body. Finally, insert Xtal 1 and the three way PC terminal, with the terminals facing outwards. Solder these components in place.

It is recommended that a suitable solvent, such as thinners, is used, together with a stiff paint brush, to remove flux from the PCB after the excess spills have been removed. Doing this will facilitate close inspection of joints and help to show up track shorts more clearly. Remember the importance of good workmanship whilst constructing this project, as, although there are only a few components, mistakes can easily be made which can damage the Spectrum, so check your work thoroughly.

Testing

Connect the module either directly into a motherboard if you have one, or solder a 2×28 way 0.1 in socket to the edge connector (see parts list) and plug into the rear expansion port. For the moment, fit IC3 only. A voltmeter or oscilloscope will be required for making a few checks around the circuit, and the 62

Figure 2. PCB layout

[^2]centre terminal of the RS232 connector socket can be used as an OV reference point

With TV and PSU connected, switch on ảnd check for usual display and keyboard operation. Any problem here will appear either as vertical lining or a permanent black display, in which case you should switch off immediately and remove the module. If all is well, you should check for:

1. +4.5 V between OV and IC 4 pin 16
2. +0.2 V between OV and the junction of D1 and R1
3. +11 to +12 V between V and $\mathrm{R} 3 / T \mathrm{R} 1$ emitter
4. -11 to -12 V between OV and the RS232 output socket
Switch off, remove the module, and fit link A. The remaining six ICs can now be fitted and the module reinserted. Switch on again, and type:
10 POKE 15612,3:POKE 15612,1
20 POKE 15614,85:GOTO 20
Recheck the RS232 output for - 11 V and run the program. Line 20 continually transmits ASCII code 85 , or ' U ' which has an even mark to space ratio. The average output reading will therefore be halfway between -11V and +11 V , i.e. approximately OV. Break the program and check that the reading returns to -11V again. This test proves that address decoding logic, ASCIA, and output converter stages are functioning correctly.

Remove the voltmeter, connect the RS232 output and input terminals together with a short length of wire and type RAND USR 14592, then ENTER, to access the module. A MENU will be displayed listing word format codes a to h and instructions showing how to return either to BASIC or. MENU. All entries are direct from the key concerned, without using ENTER, and, for letters only, normal lower case is transmitted. CAPS SHIFT is used for changing from lower to upper case, but will not function with numbers 1 to \emptyset, so that CAPS LOCK, CURSOR, and DELETE are not available. All red shift symbols can be used with the SYMBOL SHIFT

key, as can the ENTER key, remembering that shifted A (stop) will display the MENU. Pressing both CAPS and SYMBOL SHIFT keys allows a return to BASIC, upon which the module is no longer effective until called by the USR instruction.

Press both SHIFT keys to prove that this is so, and the O.K. prompt will appear. Type RAND USR 14592 again for the MENU and select WORD FORMAT code f. You will see that all single keys above H are inoperative and only A to H are recognised. The 'DATA?' prompt is waiting for incoming information for printing, so press the A key. Lower case a will appear at the start of a new line (automatic carriage return), now press CAPS SHIFT and A. Upper case A witl be printed adjacent to the last character. Hold the A key down and printing will repeat, filling the line with 32 characters before auto-scrolling. Clear the screen by holding the ENTER (carriage return) key down, then select STOP to return to MENU.

The Module In Use

The most common word format used is f, or 8 bits per character with one stop bit. The format is applicable to our Maptel A and B systems, but other
systems could require different format codes. If data is being received before the module is selected the characters may be unsynchronised, and garbage will be printed, so have the module functioning before data arrives, to avoid this occurring. Baud speeds up to 2.4KB are selected by fitting a link in the appropriate position.

Connected for 300 Bauds, which is the CCITT standard for use over telephone lines, it will match Maptel and also our Modem

In normal use, transmitted data will not be displayed unless peripheral equipment connected to the interface has an 'echo' facility, which sends data back on receipt of incoming data. Shorting both transmit and receive lines to simulate echo may cause problems when using modem systems, and is recommended for test purposes only. Finally, the EPROM IC7 has 256 spare bytes available at the end of the instruction set which have been left high or FF. Additional instructions can be placed here and called as a machine code routine, providing you have the necessary equipment for doing this.

The first spare address is: Spectrum - 15338 EPROM - 1002

ZX SPECTRUM RS232/MODEM INTERFACE PARTS LIST

Resistors - All $0.4 \mathrm{~W} 1 \%$ metal film unless specified.

TR2,3	8C548	2 off	(Q8730)
1 Cl	74LS10		(YF08J)
IC2	74LS02		(YFO2C)
IC3	74.S20		(YF140)
IC4	74LS138		(YF53H)
IC5 1	4060BE		(QW40T)
IC6	MC6850 ${ }^{\text {P }}$		(WQ48C)
IC7	2716/M7		(QY57M)
Miscellaneous			
XTLI	MP crystal 2.4576 MHz		(FY81C)
	P.C. Board		(G842V)
	3 way P.C. terminal		(RK72P)
	Trackpins	2 pkts	(FL82D)
	D.IL. socket 24 pin	2 off	(BL20W)
	D.I.L. socket 16 pin	2 off	(BL19V)
	D.I.L socket 14 pin	3 off	(BL18U)
Optional part			
	0.1 in 2×28 PC Edgecon		(FG23A)

Figure 12. Full adder design
there may be 16 address lines, each of which is set to either 1 or 0 according to the specific address which the micro-processor wishes to access. The address is set in response to the requirements of the controlling program or soft-ware, and the logic must ensure that only one device is enabled if data bus contention is not to arise. With 16 address lines there are 65,536 possible unique addresses, corresponding to the locations in the memory map of the system. There are a number of logic devices which have been specially devised for address decoding, but we will consider a smaller problem using devices already described.

In some systems, the lower eight address lines are used by the micro-processor for a special purpose, that of addressing input or output devices which allow information to be fed between the processor and the 'outside world'. With only eight lines the number of possible addresses is reduced to 256 , which helps to bring the problem down to more manageable proportions. What is needed, then, is a logical 'black box' into which may be sent the eight address lines along with

Figure 13. Full-Adders cascaded.

Figure 14.
signals to set a certain address, and from which emerges one line carrying the logic signal to select the particular device being addressed.

One solution to this problem is given in Figure 14 and again this may be breadboarded to see how it works. One input of the EX-NOR gates is connected to the address bus, and the other used to select the address of the device. The output of each EX-NOR gate is then NANDed, so that the final output goes low when the appropriate address appears on the address bus. This low signal could be connected to the 'chip select', (CS) pin of the chosen device or combined with other control bus signals for further decoding. Suppose the address of the input/ output device corresponds to the following bit pattern:-
Most Significant Bit Least Significant Bit (MSB) 11010011 (LSB)
If this pattern is set on the inputs to the EX. NOR gates then all the outputs from them will go high when the two bit patterns coincide. This in turn will set the inputs to the 8 -input NAND gate all high, which is the only condition for the output to go low.

The required address may be fixed in a practical application by 'hard-wiring' the selecting inputs to the desired pattern; alternatively, the inputs may be connected via DIP switches, so that the address may be changed by altering the position of the switches.

A more convenient way of describing a bit pattern, such as the one in the above example, is to use the hexadecimal system. We shall be looking at this in more detail next time for any readers who are not familiar with the system. It will also be useful when dealing with the other main group of TTL devices, viz. those concerned with Sequential logic, which we shall also start to have a look at in the next article in the series.

SUBSCRIBE NOW!

For just $£ 2.80$ a year we'll deliver every issue of the Maplin Magazine to your door.
We've got dozens of exciting projects and features coming in the next four issues. Plus lots of amazing special offers and a complete update to our catalogue each quarter.

ALL THIS FOR JUST £2.80 A YEAR! (Overseas: surface mail $£ 3.24$, airmail $£ 6.84$) Don't delay - send your cheque or postal order now!! P.S. Don't forget to renew your subscription, either! ISSUE NINE ON SALE 11th NOVEMBER 1983

Send this coupon with your cheque/PO to:
Maplin Magazine Subscriptions Dept.,
Maplin Electronic Supplies Ltd.,
P.O. Box 3, Rayleigh, Essex SS6 8LR

I enclose $£ 2.80$ (plus post overseas) for 1 year's subscription to the Maplin Magazine.
Please start from Issue No.
Customer No. (if known)
Name
Address
...Post Code

NEW 1984 MAPLIN CATALOGUE

Now with prices on the paged
The new Maplin Catalogue for 1984 is 20\% bigger a massive 480 pages packed with data, circuits and pictures. Take a look at the completely revised Semiconductor section, the new Heathkit section with lots of brand new and original kits, the
 Computer section with lots more software for Atari, BBC, Commodore 64, Dragon, Sord, Spectrum and VIC20, and the hundreds of fascinating new products spread through the catalogue.
As always, the Maplin Catalogue is tremendous value for money and now has prices on the page!
Pick up a copy at any branch of W.H. Smith or in one of our shops for just $£ 1.35$ or send $£ 1.65$ incl. postage to our Rayleigh address. On sale from 1st November 1983.
Better still - pick up a copy at the Electronic Hobbies Fair for just $£ 1$ - see back cover for details.

Overseas Prices

Europe surface mail	$£ 2.20$
Europe air mail	$£ 3.40$
Outside Europe surface mail	$£ 2.20$

Outside Europe surface mail
£.
Outside Europe air mail
(depending on distance) $£ 4.75 / £ 6.25 / £ 7.25$
For surface mail anywhere in the world you may send 11 Intemational Reply Coupons.

DID YOU MISS THESE ISSUES?

Copies of issue 5 are still available for just 60 p , and include the following projects:

Modem. With this low-cost, high quality modem, transmission speeds of 300 baud are obtainable over ordinary telephone lines. Send data to your friends anywhere in Europe, or talk to our computer.

Inverter. Ideal for camping or caravanning, this inverter uses MOFSET transistors for the ultimate in reliability. During emergency power cuts, use the inverter to keep your central heating going.
ZX81 Sound Generator. Here's a really noisy project for microcomputer enthusiasts. It plugs straight in to our ZX81 extension board and is really easy to make. Your ZX81 will have full BASIC control over three tone generators, with single address access.
Central Heating Controller. Four our more experienced constructors, this project will give your central heating system optimum performance and could save you a lot of money this winter.
Panic Button. A useful add-on for our Home Security System that will give many of our older citizens peace of mind. Issue five also included features on the Compact Digital Disc, Interfacing Microprocessors, and choosing the right wires for projects, and the last part of the Starting Point series, along with Basically Basic, Say it with Satellites, and Working with Op-Amps.
All this for just 60p. Order As XA05F (Maplin Magazine Volume 2 Issue 5). Price 60p NV

Copies of issue 6 are still available for just 70p, and include the following projects:

Bridging Module. This will turn two of our 75 W amps into one 400W amp, and also gives you loudspeaker protection.
Four Simple Circuits. These easy to-build circuits are a portable stereo amplifier, a sinewave generator, a headphone enhancer, and a stylus organ.

Moisture Meter. This low cost project allows you to check walls and floors for damp. It could save you thousands in costly house repairs.
Scratch Filter. Something to make all those scratched old records playable again.
VIC 20 and ZX81 Talkbacks. Allow your microcomputer the freedom of speech, and make games much more realistic. This could be just what your micro has always wanted.
ZX81 TV Sound and Normal/Inverse Video. Your ZX81 can now give you sound directly on to your TV set, and gives an optional video reversing switch, too!
Issue six also included features on the Sord M5 computer, Allophone Speech Synthesis, getting the best out of your oscilloscope, and the first part of a new beginners' series, First Base. Working With Op-Amps, Say it With Satellites, and the final part of the Basically Basic series were also in this issue.
All this for just 70p. Order As XA06G (Maplin Magazine Volume 2 No. 6). Price 70p NV

Copies of issue 7 are still available for just 70p, and include the following projects:

CMOS Crystal Calibrator. A radio amateur project to allow calibration of receivers and checking of the position of the edges of amateur band allocations.
DXers Audio Processor. Will improve the performance of many communications receivers without the need for modifications. Enlarger Timer/Controller. An accurate timer with a display that enables it to be used in colour printing, it will also control the switching on and off of the enlarger.
Sweep Oscillator. A useful, easy-to-build, piece of equipment to complement your fault-finding test gear.
VIC20/RS232 and ZX81 Interfaces will allow you to connect to modems, printers, VDUs, or any other RS232 compatible device. It will even let you use Maptel and Cashtel!
Issue 7 also included features on Heathkit, programming the Commodore 64, and the start of a new series on machine code programming with the 6502 . First Base, Working with Op-Amps, Say it with Satellites, and all our usual news and reviews were also in this issue.
All this for just 70p. Order As XA07H (Maplin Magazine Volume 2 Issue 7). Price 70p NV

This superb new edition of the Mapsoft catalogue is now available from all good computer retailers price 85p. Full details are given in the catalogue of all the best and newest software for the Atari, Commodore 64, Dragon 32, Sinclair Spectrum and VIC20 and includes descriptions and colour pictures of lots of hardware as well.
Don't delay - get a copy now. It's fun to read and is an invaluable guide to what's available.
In case of difficulty send $£ 1$ to the address below and we will include the address of your nearest retailer with your copy of the catalogue. All products shown in the catalogue are available from your local dealer.

FULL DESCRIPTIONS OF OVER 600 DIFFERENT TITLES OF SOFTWARE

Worthmare than just aloak in

1982 saw the first Electronic Hobbies Fair and immediately established itself as the foremost consumer electronics exhibition - the biggest attendance and the largest number of exhibitors.
The 1983 Fair will be bigger and even more exciting - offering visitors everything from resistors, ic's to home computers, transmitting and receiving units, and peripheral equipment, video games, musical instruments, radio control models. . . In fact, whatever your particular electronic hobby you'll find this show will have something to excite you.

There will be plenty of other attractions too including radio and TV transmission, robotics,

radio controlled models and demonstrations by local and national organisations. Again British Rail will be offering cheap-rate rail fares from all major stations in the country direct to the Alexandra Palace - a special bus will be waiting to ferry you direct to the show. Your ticket also includes admission to the Exhibition. Alternatively, for those wishing to travel independently ticket prices at the door are $£ 2.00$ for Adults, $£ 1.00$ for children. Party rates are available on request (minimum 20 people).

For more information contact the Exhibition Manager, Electronic Hobbies Fair, Reed Exhibitions, Surrey House, $\square 1$ Throwley Way, Sutton, Surrey SM1 4QQ.

Tel: 01-643 8040.

Sponsored by Practical Electronics, Everyday Electronics and Practical Wireless

[^0]: Copyright: All material is subject to world wide Copyright protection, and reproduction or imitation in whole or part is expressly forbidden. All reasonable care is taken to ensure accuracy in preparation of the magazine but Maplin Electronic Supplies Lid cannot be held legally responsible for its contents. Where errors occur corrections will be publishied as soon as possible afterwards. Permission to reproduce printed circuit board layouts commercially or marketing of kits must be sought from the Publisher.' c Copyright 1983 Maplin Electronic Supplies Ltd.
 September 1983 Maplin Magazine

[^1]: Figure 2. Circuit diagram.

[^2]: Figure 3. Pinfunctions.

