Protect your valuable microcomputer with this inexpensive, easy to build alarm.

MICROS are now very popular in schools, offices and homes. When used in a classroom or office there are obviously occasions when the micro will be left unattended and extremely vulnerable to sneak thieves. At home, when the owner is out, some kind of alarm system specifically for the micro will provide peace of mind. After video recorders, home micros are an obvious target for thieves.
According to psychologists, the average thief entering a house is in a tense and anxious state. The main purpose of an alarm system is to increase the level of panic in the opportunist thief to such an extent that he abandons his loot and beats a hasty retreat.
This alarm system is placed inside the micro where it is inaccessible unless the lid is removed. Obviously this will take time which the average thief will feel he does not have. The alarm is triggered by disconnecting a jack plug from a firmly attached socket on the computer trolley. Replacement of the plug is necessary before the alarm can be reset by also reconnecting the micro to the mains supply and switching on. The micro, therefore, cannot be removed from its normal position without triggering the alarm.

CIRCUIT DESCRIPTION

When SK1 and SK2 are linked (Fig. 1), the input pins of gate 2 (IC1) are held at logic 0 . Gates 3 and 4 form a SET-RESET bistable, the output of which (pin 11) is normally at logic 0 . Transistor TR1 is off and, therefore, alarm WD1 is also off, this is true whether the power supply of the micro is on or off.
If the wire joining SK1 and SK2 is broken or pulled out, the input pins of gate 2 rise to logic 1. The input to the SET-RESET bistable on pin 13 goes to logic 0 making its output switch to logic 1. Current flows through R3 into the base of TR1 turning it on and producing a loud noise from WD1. The alarm will remain on even when SK1 and SK2 are once again joined.
Provided SK1 and SK2 are joined, a pulse on pin 8 of gate 4 may be used to reset the SET-RESET bistable which will turn off the alarm. The reset pulse is generated by turning off the power to the micro at its main switch and then turning it back on again.
The +5 volt micro power supply is connected to the inputs of gate 7 through C2 and R6 which form a differentiating circuit. The rising voltage of the power supply as it is turned on produces a positive going pulse on

Fig. 1. Circuit diagram of the Micro Alarm.

Table 2.2. Resistor Letter Codes

Letter	Represents
R	Units
k	Thousands
M	Millions
G	Thousands of
	millions
T	Millions of
	millions

passing through the resistor in a given time.

The physical size of the resistor is usually an indication of the power rating (the bigger the resistor the higher the wattage) but, to be certain about it, consult the supplier's catalogue or the packet in which it was despatched. If the wattage rating of a particular resistor is not specified on the circuit diagram it usually means that it expends less energy than the smallest resistor one can buy; in which case any convenient one of the correct resistance may be used.

Capacitors

The physical appearance of a particular capacitor depends on its method of construction and the type of material used in its manufacture. Some capacitors are polarised (you will recall that polarised components must be correctly orientated when placed in a circuit) and some are not. Also, like resistors, capacitors may be fixed or variable. Fig. 2.7 illustrates some polarised (a), non-polarised (b), and variable (c) capacitors. Capacitor circuit symbols are given in Fig. 2.7d.

Capacitor Colour Coding

Although capacitor coding conventions vary from manufacturer to manufacturer, they usually follow a similar coding arrangement to that of resistors for the capacitance value. Table 2.1 shows the coding for Mullard C280 Series capacitors.

The basic unit of capacitance is the Farad (symbol F), but this is a very large value-a one Farad capacitor is far too large for most practical applications, so capacitor values are expressed in microFarad (symbol μ), nanoFarad (symbol $n F$), and picoFarad (symbol pF):

$$
\begin{aligned}
& 1 \mu \mathrm{~F}=0.000001 \mathrm{~F}=10^{-6} \\
& 1 \mathrm{nF}=0.000000001 \mathrm{~F}=10^{-9} \\
& 1 \mathrm{pF}=0.000000000001 \mathrm{~F}=10^{-12}
\end{aligned}
$$

These are the most common symbols used for representing very small values of capacitance. The whole range of symbols for large and small values of any kind is given in Table 2.4.

Voltage Rating

Capacitors have a working voltage rating. This rating is the greatest voltage that the capacitor can withstand without physically breaking down and failing to operate. There are only two working voltage variations in the C280 series, these are 250 V (this means any voltage up to 250 volts) and (up to) 400 V , as shown in the table.

Capacitor tolerance values are expressed as a percentage of the component value in exactly the same way as resistor tolerances, although they do seem to be coded somewhat arbitrarily which doesn't make it easy to memorise. It helps, though, that $1 \%, 2 \%$ and 5% are according to the standard colour code.

Fig. 2.8 gives an example of the use of Table 2.1 in evaluating a $0.47 \mu \mathrm{~F}$ capacitor. The top two bands (tens and units), yellow (4) and violet (7), mean that the capacitance value is 47 multiplied by the value represented by the yellow third band $(10,000 \mathrm{pF})$ in the "multiplier" column of the table. $47 \times 10,000$ evaluates to $470,000 \mathrm{pF}$ which is $0.47 \mu \mathrm{~F}$ (by shifting the decimal point six places to the left). This capacitor has a 20 per cent (black fourth band) tolerance and a maxi-

Table 2.3. Examples

Colour Code				$\begin{array}{c}\text { Resistance } \\ \text { Letter } \\ \text { Code }\end{array}$
in ohms				

mum working voltage of 250 V represented by the red fifth band.

If you have had any difficulty in understanding the number representations above (e.g. 10^{-6}), the following passage and the one on scientific notation should help.

Powers of Ten

Very large numbers (say, greater than 1000) and very small numbers (say, less than 0.001) are very common in electronics and become an annoyance to write and use because of all the zeros. There is a particularly tidy way of abbreviating such large and small quantities; for example, 1000000 may be abbreviated to 10^{6} (pronounced ten to the power of six or just ten to the sixth) and 0.000001 may be abbreviated to 10^{-6} (pronounced ten to the power of minus six or just ten to the minus six).

Fig. 2.8. Example of capacitor colour coding.

There is nothing special about this shorthand notation, it simply expresses the quantity as a power of ten, meaning a representation which states how many times ten is multiplied by itself:
$1000000=$
$10 \times 10 \times 10 \times 10 \times 10 \times 10=10^{6}$.

Here is a range of numbers showing equivalent power of ten representations:

1	$=1 \times 10^{0}$		
10	$=10^{1}$	0.1	$=10^{-1}$
100	$=10^{2}$	0.01	$=10^{-2}$
1000	$=10^{3}$	0.001	$=10^{-3}$
10000	$=10^{4}$	0.0001	$=10^{-4}$
100000	$=10^{5}$	0.00001	$=10^{-5}$
1000000	$=10^{6}$	0.000001	$=10^{-6}$

Multiplication and division of large and small numbers can be done much more quickly using power

Fig. 2. P.C.B. layout and wiring diagram.
the inputs to gate 7. A brief logic 0 pulse appears on the output of gate 7 and, after passing through gates 6 and 5 . resets the SEIRESET bistable. To ensure that the alarm is not set off when the 9 volt supply is connected, pin 13 of gate 6 has R4 and C1 connected to it to generate an automatic reset pulse. The circuit takes virtually no current from the micro's power supply.
Gates 1 and 8 are spare and so have their inputs connected through resistors R1 and R5 to the positive power supply rail. This enseres that the power consumption of the circuit is virtually zero provided that the alarm has not been triggered, thus giving long battery life in normal use. Diode D1 protects the circuit in the event of the battery being wrongly connected. Capacitor C3 decouples the power rail and removes any spikes.

CONSTRUCTION

The circuit may be constructed most easily on a printed circuit board, the layout of which is shown in Fig. 2. The resistors may be mounted first on the board followed by the capacitors, diode and transistor. Notice that Cl is an electrolytic type and must be inserted with the correct polarity. The audible warning device specified must also be connected the correct way around. Sockets are recommended for IC1 and IC2 which are CMOS types. As a result, it is essential that suitable precautions are taken to prevent damage from static electricity

Socket SK1 (Fig. 3) is a short circuited 2.5 mm jack socket which must be securely fitted at a suitable location on the computer desk. SK2 should be mounted on the rear of the micro in a convenient position. If you do

F- IXING controls, sockets, etc. on to the case of a project seems like a very straightforward task, and I suppose that in most respects there is little that can go wrong when carrying out this part of project construction. On the other hand, there are a few points which should be borne in mind when dealing with this aspect of construction.

GENTLY DOES IT

Perhaps the most important point to remember is that electronic components are not, in the main, particularly tough People who are experienced in something like car servicing tend to tighten everything just as tight as they can. When this approach is applied to electronics it is usually disastrous!

It seems to be increasingly common for switches, potentiometers, etc. to have plastic mounting bushes. While the plastic used in the construction of these components is very tough, it does not seem to equal steel in this respect. The mounting nuts can be screwed down quite tightly, and can certainly be tightened sufficiently to hold the components firmly in place. If you really give it everything you have got, the chances are that the screw-thread will be sheared rather than the component being fixed more firmly in position.
It is not only components with plastic mounting bushes where you need to exercise a certain amount of care. I have found that some sub-miniature switches (especially the smallest size of toggle switch) are easily damaged. The problem here is presumably one of making something as small as that, really tough at an affordable price. Anyway, with these it is best to tighten the mounting nut no more than is absolutely necessary in order to keep the component securely in place. Overtigh tening can in some cases result in the front part of the switch snapping away from the main body of the component.
If this should happen, then the component is a complete write-off. If a screw-thread shears you may find that the component can still be fixed in place with the help of some adhesive on its mounting nut and bush. An epoxy resin type or some other high quality gap-filling adhesive is required. This should hold the component in place, but if you ever need to remove it again this could prove to be very difficult.

LOCATING LUG

On virtually ali potentiometers, plus a few other front panel mounting components, you will find a locating lug (Fig. 1), The idea here is to have a hole for this lug

Fig. 1. Locating lug on a potentiometer.
in the panel on which the potentiometer is mounted. This helps to resist any tendency for the component to rotate when its control knob is adjusted, and helps to make construction just that bit tougher and more reliable.
This lug is something that works better in ready-made equipment than it does in most home constructor designs. With the former it is normal to have a main panel on which the controls are mounted, and then a dummy panel fitted over this, as in Fig. 2. This dummy panel hides the mounting nuts for the controls, as well as the holes in the front panel for the locating lugs.
While it is quite possible to emulate this method of construciton when building electronic projects, and I have done so on a number of occasions, it is not greatly used in practice. It might be worthwile for some larger projects, but it is not generally very practical for the smaller types.
This method of construction works best with cases that are designed to have a dummy panel, but few ready-made cases fall into this category. There is a useful variation on this technique where the controls are fitted on some form of mounting bracket which fits just behind the front
panel. In effect, the real front panel becomes the dummy panel, and is devoid of mounting nuts.
With a large case that gives easy acoess to its interior it is usually quite easy ta provide a suitable mounting bracket. Something as basic as a large "L" shaped aluminium bracket fixed on the base panel of the case will usually suffice. With small cases this system is usually inpractical.

DIRECT MOUNTING

It is more usual to mount components direct on the front panel of a project, and to use "recessed" control knobs that cover the mounting nuts. These knobs are not normally very deeply recessed though, and will only cover the mounting nut if there is very little of the mounting bush protruding beyond the nut.

This normally necessitates the use of some form of spacer to reduce the penetration of the mounting bush through the front panel. In other words, an extra mounting nut or some washers must be used over the mounting bush, as in Fig. 3. The use of an extra mounting nut is the better method, as it avoids having any stress on the body of the component.

When using extra washers, the mounting bush and body of the component are pushed apart with considerable force when the mounting nut is tightened, and as explained previously, this can be disastrous with some miniature controls.
Unfortunately, potentiometers and many switches are only supplied with a single mounting nut, and extra mounting nuts for components seem to be very difficult to obtain. In fact I do not know of any current source of supply. Perhaps we should all write and complain to the main component manufacturers in an attempt to rectify this situation? In the meantime, there may be no alternative to using extra washers.

BUSH SIZES

It is worth pointing out that there are currently two common bush sizes for rotary potentiometers and similar components. Most types now have the metric 10 millimetre diameter threads, but there are still plenty of components which have the old $3 / 8$ inch threads. Mounting nuts for one type will not fit the other ($3 / 8$ inch is only about 9.5 millimetres).
With either method of spacing, it is quite possible that the locating lug will be left just short of the front panel, so that it can just be ignored. If it should still reach

the panel, I would not advise making a hole for it in the panel. Unless you are going to use large control knobs, the knobs will fail to cover over the protruding locating lugs, giving a rather unsightly appearance to the finished project.

There is usually no difficulty in using a pair of pliers to either bend the lugs sideways and out of the way, or to simply snap them off. If neither of these methods are successful, then it should be possible to file down the lugs slightly.

SPINDLE TRIMMING

The spindles of most controls are very generous in length, and are often around 50 to 100 miliimetres long. With the controls mounted direct on the front panel of a case it is not normally necessary to have the spindles more than about 10 mil limetres in length.
Even slightly over-length spindles are undesirable as they prevent the control knobs from fitting reasonably flush against the front panel. This could result in the mounting nuts being left uncovered, giving the front panel a rather scrappy appearance. On the other hand, you must be careful not to trim spindles fractionally too short, or you might find that the control knobs cannot be fixed in place properly.

The standard advice is to grip the spindle in a vice when cutting it to length, do not fit the body of the component in the vice. The main reason for doing things this way is that it avoids the risk of damaging the component. Merely gripping the body of a component in a vice could potentially cause it serious damage. Then going on to saw the spindle would put a further strain on the component. Being realistic about it, gripping the body of the component leaves the spindle free to rotate, making it extremely difficult to saw through it anyway.

At one time it was not easy to grip the
spindles in a vice, as the spindles were virtually all of the round variety. These seem to be pretty rare these days, and most have a "flat" on the spindle. These can be held securely in the vice without any difficulty.
If you do encounter a component with an "all-rounder" spindle, it requires a vice with " V " cuts in the jaws in order to hold it really firmly. Without such a vice, grip the shaft as tightly as you can in an ordinary vice and proceed very carefully.

CUTTING

Whether the spindle is made from metal or plastic, it should be easy to cut through it using a hacksaw or a junior hacksaw. In the case of the plastic type, these seem to be made from quite a soft plastic that is very easily cut. In fact it is possible to cut through them using large wire clippers, or any large, heavy duty "scissor type" cutting tool.

The ideal length for the spindle depends on the particular control knobs used. About 8 or 9 millimetres is suitable for most control knobs. However, if you want to get the length absolutely perfect for the knobs you are using, push a spindle as far into one of the knobs as it will go, and then mark the spindle at the point where it enters the knob. The distance from this mark to the end of the spindle then gives you the optimum spindle length.

It is worth noting that not all control knobs have the mounting nut recess. Unless you are going to use the dummy panel method of construction it is advisable to avoid knobs that do not have this recess, as they provide far less neat looking results.

FLAT FILING

Most component retailers only supply knobs that are for standard 0.25 inch or 6 millimetre spindles, and have grubscrew fixing. Be careful if you buy any "bargain" control knobs, as these might be for some
non-standard shaft diameter. Cheap control knobs are often of the push-on type, and I am not too keen on this type of knob for home constructor use. Their advantage is that the lack of any fixing screw helps to give the project a neater appearance. Their drawback is that if the flat on the spindle is a bit too deep the knobs may be inclined to keep falling off. If the flat is absent, the knobs will not fit at all.

Where the flat is absent it is not usually too difficult to add one using a small flat file, but getting it just right might be more difficult. It should ideally be done before the shaft is cut to length. You can then hold the component by trapping the end of the spindle in a vice, and file the flat on the section of the shaft next to the mounting bush. Comparison with a component that has a standard flat will help you to gauge how much to file away. When the filing has been completed, trim the shaft to length in the normal way.

This is one of those tasks that seems perfectly simple and straightforward, but which can easily go wrong. File away too little and the knob will probably not fit file away too much and it will not stay in place. It is best to deliberately file away too little, and to then do some "fine tuning" until the knob fits. However, this "fine tuning" must be done after the spindle has been trimmed to length, and it is then not very easy to grip the spindle in the vice and work on it.

You will often have to hold the component as best you can in one hand, and gently file away at the shaft using the file in the other hand. The softness of plastic shafts means that this is not too difficult or time consuming. With metal shafts you must take things slowly and have patience. Do not try to force push-on knobs onto a spindle. Many of these knobs are not made from particularly tough plastics, and could simply split open.

EECROSSWORD 7

CLUES ACROSS

1 and 17 This device keeps colours untainted. $(6,6)$
4 Type of circuit that recovers the G-Y signal. (6)
9 Adjustment required for a "wobbly" head. (12)
11 Part of the chroma that carries the R-Y information. (7)

12 Viennese oscillator? (4)
13 The d.c. resistance. (5)
18 Method of tuning to increase bandwidth. (7)
20 Transmitting authority. $(1,1,1)$
21 Type of transistor construction. (9)
22 A conductor, atomic number 50. (3)
23 Current that does not change direction. $(1,1)$
24 Test generator used to adjust convergence. (3)

DOWN

1 Engineers adjustment. (6)
2 Conversion of a.c. to d.c. (13)
3 Get this correct or skew error will occur in a vtr. (7)
5 Code used for digial information. (1.1.1.1.1.)
6 Ability to remain magnetised. (11)
7 Two dimensional plotter. $(1,1)$
8 Type of delay causing phase distortion in LC tuned circuits. (5)
10 Myriametric waves. $(1,1,1)$
14 An oscillator using a tapped coil. (7)
15 This ratio is $4: 3$. (6)

16 These bands are no longer used in video recorders. (5)
17 See 1
19 The visual result of poor reception. (5)

For fun only-answers on page 673

NEW UK AMATEUR LICENCE

THE DTI has completed a major review of the amateur radio licence and a new licence will be introduced on 1st January,1989. There are a number of important changes, the significance of which will be examined in later columns. In a new Information Sheet, No. 7 New Amateur Radio Licences, the DTI highlights some of these, namely:
-conformity with the requirements of the The European Conference of Postal and Telecommunications Administrations (CEPT) Recommendation T/R 61 01, which will enable UK amateurs, and those from other CEPT countries also observing the recommendation, to operate amateur stations in each other's countries under the authority of their existing licence. (See "European Common Licence" this column, June 1988).
-relaxation of restrictions on operations by the Radio Amateur Emergency Network (RAYNET);
-amateur maritime mobile operation without the need for a separate licence;
-operation using digital communications (including packet radio, although mailbox operation will need a separate authority);
-relaxation of restrictions on message handling;

- unattended operation of beacons and low power devices;
-simplification of identification requirements when operating;
-log keeping permitted on magnetic disc or tape;
-operation of radioteletype (RTTY) equipment on $1850-2000 \mathrm{kHz}$.

NOVICE LICENCE

The two main types of licence will remain, Class A (all bands) and Class B (all bands including and above 50 MHz). These will be equivalent to CEPT licence classes 1 and 2 respectively.
Regarding a possible Student or Novice Licence, the Information Sheet comments that now the review of the main licence is completed consideration can be given to the RSGB's proposals for a licence category that might encourage more people into amateur radio, 'without, of course, allowing any diminution of standards".

NEW SYLLABUS

A new City and Guilds of London Radio Amateur's Examination syllabus will be examined for the first time in May 1989. For those studying to sit the examination under the new syllabus, a new edition of the free DTI booklet, How to become a radio amateur, can be obtained from:

Radio Amateur Licensing Unit, Post Office Counters Ltd., Chetwynd House, Chesterfield, S49 1PF. This contains the full text of the new licence and a summary of the examination syllabus.
Students sitting the December 1988 examination will be examined on the old licence conditions, but are strongly recommended to carefully review the new licence once they have taken the examination. From December, such candidates can obtain booklet BR 68 from the Licensing Unit, which contains the full text of the new licence.

THE VOICE OF THE ANDES

International broadcasting station HCJB, located in Quito, Ecuador, has some interesting links with amateur radio. It originally started with a 200 watt transmitter in 1931 as a missionary station broadcasting to Ecuador, at a time when there were only a handful of radio receivers in the whole of that country! The day before it was due to go on the air a valve in the transmitter failed and a 120 mile dash across country was made to Ecuador's only radio amateur, who loaned the new station a valve from his own equipment to enable the first broadcast to take place.
As time went on the station obtained larger transmitters which covered the whole of South America. Using an amateur station, however, Clarence Jones, who was running HCJB, discovered that with short-waves he could communicate with the world and thus the idea of broadcasting HCJB around the clock to all parts of the globe, was born.
In 1940, a new 10 kW short-wave transmitter came into use on the 25 metre band. Although reception was better everywhere, it was noted at night that a round, ball-like, glow was visible on the ends of the new rotary beam antenna elements, which were literally burning away in the rarefied mountain atmosphere.

NEW ANTENNA DESIGN

Clarence Moore, the engineer who constructed the new transmitter, and who also happened to be a radio amateur, studied the problem and eventually concluded that in this particular location an antenna element should have no ends to burn away, but should bend round to meet each other to form a square-shaped radiator. An experimental version was constructed and the corona effect disappeared.
Because of its shape it became known as the "quad" antenna and later a parasitic relector was added to improve its beaming qualities. This version, known as the "cubical quad", used at HCJB until 1953, became, and remains to this day a popular amateur antenna. For his radio work in Ecuador, the government honoured Moore with a special amateur radio call-sign for life-HC1JB.

The low radiation angle of the quad gives good long-distance (DX) performance with high gain and a good front-toback ratio. With its compact dimensions compared to other antennas (half the width of a conventional dipole for the same frequency) it is relatively easy and inexpensive to make up as a "homebrew" project. I have one, for instance, for the two metre band which measures approximately 500 mm (20 inches) square with the elements 200 mm (9 inches) apart. This is located in a room at the top of the house and with just 2 watts of power (in "lift" conditions). I have worked with this into parts of Europe over 600 miles away-an extremely good achievement for such a small indoor antenna

HAM RADIO TODAY

On Wednesdays, at 0800 GMT (on 9610 and 11835 kHz) and 2130 GMT (on 15270 and 17790 kHz) HCJB's Ham Radio Today programme, presented by John Beck, HC1OH, covers the world of amateur radio for both amateurs and interested nonamateurs.
A recent programme | listened to included an amateur radio news bulletin; a discussion on how Morse code signals should be reported over the air; an ongoing series about the propagation of radio waves; an explanation of the NCDXF beacon system on the 20 m band; details of amateur radio books available in the UK; an interview with a member of the Federal Communications Commission, discussing amateur radio regulations in the USA; the pros anf cons of buying new or used equipment; and letters from listeners. It is a programme well worth listening to.

ANTENNA LEAFLET

For shortwave listeners, an English programme schedule can be obtained from HCJB, PO Box 691, Quito, Ecuador. They also have a useful Short Wave Antenna leaflet which gives informationonmaking four different types of receiving antenna, including a multi-band cubical quad, and an antenna tuning unit.
As mentioned earlier, HCJB is a missionary station. It was set up in the mountains close to the Equator at a time when conventional radio experts pronounced such a site to be the last place on earth to establish an effective radio station. Years later opinion changed and now HCJB is considered to be sited most favourably to achieve world-wide coverage of its broadcasts. With its background and purpose, it is not surprising that HCJB feels there was some special inspiration when the original decision to locate a station at Quito was made. the story of Clarence Jones and HCJB is told in a fascinating book, Come Up To This Mountain, by Lois Neely, and published by Tyndale House Publishers, Wheaton, Illincis.

POWER CONDITIONER
FEATURED IN ETI
JANUARY 1988

The ulturate mans

 purtier intended manly toor and improving the analy:crar qualites of

The massive fifter section contains tiniteen capaciors and two current balanced inductors, trogther win \vdots Oank of 5 six VDRs. to remove every last trace od impulswe and FF
interierence. A ten LED logaritmic display gives a second by Herierence. A ten LED logarithmic dispiag gives a second by Our apporved pants set consists of case, PCE , all Our apporoved pants set consists of case, PCB, all
components including high permezbilly toroda cores. ICs transistors class X and Y suppression capacilors, VDRs etc.) and tull instructuon
PARTS SET $£ 28.50$ + VAT

$\mathrm{SAE}+$ C1 ior Itsts clrect
(tree with patts self

THE DREAM MACHINE

FEATURED IN ET DECEMBER 1987

Adjust the controls to suit your mood and let the gente. re axing sound drit over you Ad lirst you might hear soft ram sea suff. or the wind thiough distrant trees Almost hyphotic. the sound draws you Iresistaciy mito a peacelul releshing
seep For many the thought of waking refreshed and alert from in itself. For more adventurous souls there are strange and myslerious dream experiences wating Take lucid dreams. tor instance Imagine being in control of your dreams and able io change them at will to act out your wishes and fantasies With the Dream Machine it's easy
The approved parts set consiss of PCB , all components. controls, loudspeaker, knobs, lamp. fuseholders, luse, mains PARTS SET £ 16.50 + VAT
AVALLABLE WITHOUT CASE FOR ONLY $£ 11.90$ +VAT

MAINS

 CONDITIONERFEATURED IN ETI
SEPTEMBER 1986
Cleans up mans pollution easily and eftectively

diference in your Hi F , F , V , video, and all other sensitive equipment.

PARTS SET $£ 4.90$ + Vat RUGGED PLASTIC CASE E1. 65 + VAT

POWERFUL AIR IONISERS
 lons. the miraculous vitamins of the all. have been created have been created with almost magica

powers,
They are sad to mprove concentraton recuce bood plesssure
hein you seep teter and even to alise you lo Although some
help you seep beter and even to alse you 10 Although some oit the dams may be exaggerated theres no doubt that oniseo as is cleaner, purer and more inv gorathg than dead air. Anyone who has owned an oniser woud never again want to wthout one
The Direct-lon caused a sensation when it appearect as a propect n ETI Two years later in October 1988 the Mistral was unvened Which wall you go tor - the compact. powertul. valu Ior money Drect lon or the so
Mistral? The chace is yous

MISTRAL IONISER PARTS SET $£ \mathbf{2 4 . 8 0}$ - VAT DIRECT-ION PARTS SET (BLACK CASE) $£ 11.50$-VAT DIRECT•ION PARTS SET (WH TE CASE) $\mathbf{1 1 1 . 8 0 - V A T}$

RAINY DAY PROJECTS
All can be built in an afternoon! JUMPIN' JACK FLASH IETI March 1938)
Spectacuiar rock stage and dscol ighting effect CREDIT CARD CASINO EFI March 1987

KNIGHTRADEER

FEATURED IN ETI JULY 1987

Lor any otrer cas tor tram matitet Pcclure tils eight powertul ights in tashocart conchi dox ano a pan of ing moves lazily form ief to
 The Knger framee can be theo to :ny cas (tit makes an excellent tog

 LupsnithenPARTS SE E1290-VTThe wicked pocker gambung machine
MAINS CONTROLLER (EII January 1987) Isoated loge to mains interface MATCHBOX AMPLIFIERS teti April 1986 Listen. 50 of of Hifl oower tion an amp small
enough to it in a matchbort Matenbox Amplitier (20w) Matchbax Brdge Ampititer
TACHO/DWELL METER (ET January 198) HI-FI POWER METER (ETIMay 1987) Measures hi-FI output power up to 100 W

- includes PCB. componenis. meters Mono power meter
§3.90-yAX

These baaliul oot matrix LCDs were originally ordered forn Hitachi by a top tight vebe hay en manutacture: Unitotunately their new product -a portable 'scope - was ditched actranlluathably
The chace bum a hionh noracoy any good. Because of their bad management, you now have Hath setburs will charge $£ 312$ each for these displays. Find fraction of the normal price. 5285 (

The LWCOF darray module has a $91 / 2 \times 4$ " display area made up of 640×200 pixels. Since semper can ve zocessed individually, the display is equally at home as a scope screen, a To thaneser
The teestax of al lispay mounted on the back is a control board with 20 LSI ICS 2-atine mares.

Tousthe thpley. You will need to be farity self-sufficient: inlogic design - you must know how to wh he rodvency wid all you need sial datat transter. Apart from these basics, the data supplied

LM2917
 EXPERIMENTER SET

Conssticef wegric isscial prmed circuit board and potals iv oul: Can se sed ic expernment with the circuits

LEDs Green rectangular LED 50 for $£ 3.50 \quad 500$ for $£ 25$ 100 for $£ 6 \quad 1000$ for $£ 45$ DIGITAL AND AUDIO EQUIPMENTLEDS Assorted 3 mm LEDs: red green, y

Specialist

SALES DEPT, ROOM 111, FOUNDERS HOUSE, REDBROOK, MONMOUTH, GWENT.

ARMSTRONG 75W AMPLIFIER
FEATURED IN PE JULY 1988

A.J. Armstrong's exc

new audio amplifler

Delvering a cool 75 W (conservatively rated - youill get nearer 100W), this MOSFET design embodes the finest minimalist design techniques, resulting in a clean. uncluttered circuitio which every component makes a precisely defined contribution to the overall sound. You can read all about it in the duly issue of $P E$, but why bother with words when your ears will tell you so much bother
more?
Parts s
Parts set includes top grade PCB and al components. SPECIAL INTRODUCTORY PRICE FOR FULLY UPGRADED MODULES.
$\begin{aligned} & \text { SINGLE PARTS SET } £ 14.90+\mathrm{VA} \\ & \text { STEREO PAIR } £ 25.90+\mathrm{VAT}\end{aligned}$
STEREO PAIR £25.90 + VAT

BIO.

FEEDBACK
FEATURED IN ETI DECEMBER 1986
Bio-teedback comes of age with this highiy respo
self-balancing skin

response monition The
powerful crrcuit has found application in clinical situations as well as on the bio-feedback scene it will open your eyes to what GSR techniques are really all about The complete parts set includes case, PCB, all The complete parts set includes case, PCB, and instructions.
PARTS SET £13.95 + VAT
BiC-FEEDBACK BOOK $£ 3.95$ (no VAT)

Please note the book. by Sterm and hay is an aultorised guide io the polential of bor-teedback lectniques. 't it nats
and will only pe ol interest to nite ligent aduls.

BRAINWAVE MONTTOR

 -2 The most antonishing proect ever io The most antonishing project ever to have appeared in an electronics magazine. Simiarin in principle to a medica: EEG machine inis propect aliows you to hear the characteristic be selected for study and the thriee artcles give masses of infiomation on ther meterpetation and powersIn conjunction with Dr. Lewis 5 Alpha Pian the monitor can be used to overcome shyness. to nelp you teei coniddent in stressiulu stiuatons, ando train yoursel wexcel at hings youte
no good at Our aporov
Our approved parts set contanns case two PCBs, screening can tor bo-amplitier, alic compenents Including hree PMI pre
amplifies ss, leads, brass electrodes and full instuctions. PARTS SET $£ 36.90$ + VAT ALPHA PLAN BOOK $£ \mathbf{2 . 5 0}$ SILVER SOLUTION IOC Dang Pe:varess $\mathbf{~} \mathbf{3} .60+$ VAT

BASIC ELECTRONICS REVIEW

Education and Training for Change is the distinctive motto adopted by the East Devon College of Further Education. This neatly and succinctly exemplifies the role of "further education" in today's changing technological climate and is particularly appropriate as we progress into a new era in which Open Learning is expected to play an incteasingly important role in providing a flexible means to retraining and industrial up-dating.
Open Learning is a solution to the ever-pressing need to keep abreast of modern technology. Indeed, the readers of Everyday Electronics would almost certainly make ideal candidates for an Open Learning course, as witnessed by the popularity of several recent series including Teach-In and Introducing Microprocessors.

Basic Electronics and Microelectronics is the title of an Open Learning package produced by the Microelectronics Open Learning Unit based at East Devon College of Further Education. The course was produced under the Manpower Services Commission Open Tech Project. This initiative has been instrumental in vastly increasing the range and variety of Open Learning packages currently available. The producer of a package (in this case the Microelectronics Open Learning Unit of East Devon College) enters into a contract with the Manpower Services Commission and the result is a learning package which is made available for purchase by educational establishments, industry, and individuals.

PRACTICAL KIT

The heart of the Basic Electronics and Microelectronics package is a practical kit which provides "hands-on" learning, using real components and working circuits. The philosophy is simple; familiarity with components is developed through frequent handling. This, in turn, aids the learning process by relating electronic theory to the practice of assembling components and devices into a variety of working circuits
The practical kit is extremely comprehensive and is based on a circuit breadboard having its own power supply on which a wide range of circuits are built and tested. Newcomers will doubtless be pleased to note that no soldering is required since the breadboard accepts standard component leads which are simply pushed into contact strips.
Approximately 120 components are supplied (these are all neatly labelled) together with a basic analogue multimeter, tools, calculator, notepad and pencil. The kit is packed in a large box and contains everything that a student would require in order to complete the study programme. Indeed, the kit is so complete that it also includes a calculator, notepad and pencil!

MODULES

The written component of the Basic Electronics and Microelectronics package consists of a series of texts (the Microelectronics Open Learning Unit calls these Modules of Learning). Modules have been designed and written by qualified electronic engineers who have wide industrial and teaching experience. The Phase 1 kit offers a choice of five packages. four of which consist of a Foundation Pack containing the main hardware plus a Course Pack of associated written learning materials and electronic components.
A total of 20 to 25 hours is required to complete each module. The rate at which students progress is, however, completely flexible though, as with all Open Learning schemes, students are well advised to develop a study plan in which periods of time are reserved for study on a regular basis. Without such a structure, study is likely to be haphazard and students can all too easily "get behind". As a guide, a routine of two evenings' study (each of no more than two hours) per week should allow students to progress at a sensible rate without greatly disrupting the normal domestic routine.
Few people can effectively cope with protracted periods of intensive study and the initial temptation to "cram" the course into a very short period should be avoided at all costs. In any event, progression through an Open Learning package should be steady, with a series of defined goals and plenty of time allowed for review and consolidation. It is heartening to note that the Microelectronics Open Learning Unit can supply students with tutorial support via a Technical Counsellor who is able to give help and guidance by telephone.

This review is confined to the first six modules of Basic Electronics and Microelectronics (from Use of Equipment and Electric circuits to Transistors and Circuits). Each module is presented in spiral bound A4-format and the largest (Module 6 B) contains 176 pages. The text is liberally interspersed with examples and practical exercises. The quality of presentation is consistently good, the text is suecinct, and the diagrams are excellent.

I particularly liked the way in which circuits are presented together with matching wiring layouts (necessitating large fold-out pages in the later modules). This technique will undoubtedly simplify the process of converting circuit diagrams into working breadboard circuits and greatly minimise the frustration which newcomers often experience when laying out circuits for the first time.

MODULE 1

Module 1 deals with using the multimeter and the breadboard "Circuit Designer". The breadboard connecting
arrangement is particularly well explained. This module should be completed in a single evening session and should be tackled after watching the accompanying video (more of this later).

MODULE 2

Module 2 introduces students to some essential basic electronic theory. Series and parallel circuits are discussed and open and short-circuit faults are considered. Sections are included on power and power ratings and the effect of temperature on resistance is explained. Measurement errors are introduced and the module ends with a discussion of voltage and current division and a "Simple Resistance Bridge Circuit"

The module contains several very useful appendices including a list of specific learning objectives presented in standard BTEC format. It was, perhaps, a pity that other modules do not contain similar listings which can be extremely useful for lecturers and teachers planning college-devised BTEC units!
(Note these listings are now available for all modules on request - Ed.)

MODULES 3 to 6

Modules 3 and 4 deal respectively with "Capacitors in D.C. Circuits" and "Coils in D.C. Circuits". All of the usual theory is covered and some well thought out practical exercises have been included. Semiconductor diodes are introduced in Module 5. This module covers diode characteristics and rectification and also contains sections on l.e d. and Zener diodes.

The real "meat" of the course is contained in Module 6 which, by virtue of its considerable breadth, is presented in three separate parts. The first part deals with an introduction to transistors (including symbols, identification and the concept of current and voltage gain). The second part deals with input and output resistance, the emitter follower, and transistor applications (including a wide variety of oscillator circuits).

The last instalment, Module $6(c)$, deals with astable and monostable multivibrators, field effect transistors and an f.e.t. liquid level control circuit. Power ratings of transistors are also discussed and simple resistive tests for transistors are introduced.
My only reservation concerning Module 6 is that the practical content would have been even better if an oscilloscope was provided as part of the Phase 1 Kit! The use of an oscilloscope is almost essential when investigating the large majority of circuits introduced in this module but this has almost certainly been ruled out on the grounds of expense.

VIDEO

The VHS-format video supplied with the Basic Electronics and Microelectronics package provides a brief introduction to the practical kit. The major part of the video is concerned with using the tools and mutimeter supplied with the package and preparing components for use with the circuit breadboard. It was, therefore, a pity that the quality of the video was not good enough to show some of the finer detail and a printed sheet of straightforward line drawings would have been a good deal better. The video also deals with the Phase 2 Microcomputer Kit and this, of course, is not relevant to Basic Electronics and Microelectronics course.

COST

Unfortunately, Open Learning is a rather costly business. The "value added" content of an Open Learning course is considerable and, in order to assess the extent to which a course is "value for money" one should not fall into the trap of merely counting the cost of the hardware items provided in the practical kit. Furthermore, the cost of a conventional course of part-time day or evening study cannot be meaningfully equated with the cost of an "equivalent" Open Learning package.

The flexibility of Open Learning is undoutedly its major selling point. The course can be made available "off-theshelf" and the practical kit replenished for use by a succession
of students. Since the selling price of an Open Learning package will be very much dependent on the size of the print run and the quantity of practical kits produced, costs will inevitably be rather high unless a very high production run can be envisaged.
The cost of purchasing a comprehensive Open Learning package outright will thus usually be prohibitive as far as individuals are concerned. Educational establishments and employers, on the other hand, are much more likely to invest in such packages, making them available to students or staff at a modest charge.
The Basic Electronics and Microelectronics Foundation Pack costs $£ 245$ whilst the Basic Electronic pack (comprising modules 1 to 6 and including a video cassette) is priced at $£ 255$. A basic electronics course would thus cost $£ 500$ (i.e. $£ 245$ plus £255). The remaining course packs (AC Current and Power Control, Microelectronics and Linear Integrated Circuits, and Digital Electronics) are priced at $£ 112, £ 70$ and $£ 167$ respectively. An additional package, Transducers and Sensors, does not have a complementary practical package and thus costs a more modest $£ 40$.

The Microelectronics Open Learning Unit offers a discount of $£ 20$ on the purchase of the AC Current and Power Control, Microelectronics and Linear Integrated Circuits, and Digital Electronics packages for those already in possession of the Basic Electronics Pack. A complete package is also available which comprises all five course pack ages, plus the Foundation Package and this is priced at $£ 835$.

Prices of Open Learning packages do vary quite widely and it is not always easy to compare "like with like". Bearing in mind the comprehensive nature and quality of the package, the cost of the Microelectronics Open Learning Unit package is not at all excessive.

OVERALL REACTIONS

The Basic Electronics and Microelectronics course is both beautifully presented and extremely comprehensive. The Basic Electronics Pack can be very highly recommended as a well thought out introduction to electronics which will provide the student with a thorough grounding in the principles and practice of basic electronic circuits.

It is a shame that individuals will almost certainly not be able to afford to invest in such a pack age. This need not, however, deter them approaching their employer, local Further Education College, or ITEC to see if the package is available within an existing Open Learning provision. If it is, readers can rest assured that they have access to one of the best of today's Open Learning packages!.

The Microelectronics Open Learning Unit may be contacted at Twyford House, Kennedy Way, Tiverton, Devon EX16 6RZ. © Tiverton (0884) 255625.

By Mike Tooley

OSCILLOSCOPES, HOW TO USE THEM (2nd Edition)

Author Price
Size
Publisher
ISBN
Ian Hickman
£5.50 Hard Cover
124 pages
Newnes
0-600-33373-6

SINCE this book was first published in 1986 many changes have taken place and few would disagree with the statement that nothing changes as fast as electronic technology. This makes an up dated version of Oscilloscopes and how to use them, all the more welcome.

The oscilloscope is used when ever a visual representation of what is occurring in an electrical circuit is essential. It's users are many and varied, a valued piece of equipment that has been used for many years, by design engineers, research students, trouble shooters and more and more as a diagnostic tool by the medical profession. All those mentioned in the above categories, as well as hobbyists will greatly benefit from acquiring this book. There are chapters on basic oscilloscopes and advanced real time oscilloscopes as well as a generous amount of text devoted to accessories such as calibrators, cameras, hoods, probes and special graticules. Chapter six is particularly useful, as the author explains why it is important to choose the right model for certain applications and what is most helpful, quotes makes and model numbers. I am not certain why the author has saved "How oscilloscopes work" for the last two chapters but Ian Hickman is a master of his subject, and I am sure his reasons are good ones. Their position in the book is quite apparent from the list of contents, and many readers may not need to read them but to all those who use oscilloscopes or would like to learn how to use them, I strongly advise you to buy a copy of this excellent book.

See

Sた (RT)UM川\|
Page 674

A TV-DXERS HANDBOOK

Author	R. Bunney
Price	£5.95
Size	96 pages (large format)
Publisher	Bernard Babani (Publishing) Ltd
ISBN	085934150 X

[^0]This is not really the case, however, with subsequent sections on
receiver requirements, tuners i.f. strips, and the various video stages of a TV receiver. For someone already familiar with TV circuitry, these chapters identify the more demanding requirements of long distance, as opposed to domestic reception. They go on to discuss how best to meet these requirements, by selection of a recejver with particular features, by modifying existing sets, or adding external units.

Opinions apparently differ as to whether reception of satellite TV signals is real TV-DXing. By exploring propagation phenomena, receiver and aerial techniques. and experience, long distance signals can be received direct from a distant transmitter. By contrast, long distance signals relayed from a satellite in line of sight above the horizon can usually be received without the need for skill on the part of the operator. All that is needed is a dish antenna, appropriate hardware, and a specialised receiver, to have the signals come romping in

The coming decade will see dramatic changes in the broadcasting field, with such installations becoming commonplace in the domestic situation. But the acquired skills and consequent satisfaction achieved from direct reception seem to suggest there will always be enthusiasts wanting to do things the hard way!

There is a good treatment of acrials, ranging from a simple wideband dipole to multi-element specialised types with very high gain. There is information on a number which can be home constructed, together with a wide range of low-noise aerial amplifiers capable of boosting weak signals to a usable level.

Overall, the book performs better as a source of reference for the established enthusiast" than as a "practical guide for the beginner", indeed it is difficult to see how it could satisfactorily meet both claims. For the existing practitioner, it has useful rables, international transmission standards, channel and cable allocations, a variety of circuits, satellite frequency lists, glossaries of terms. advice on coping with interference from strong adjacent stations. and so on.

There is advice for the absolute beginner if you search for it in the book's information packed pages. This tells us that signals of high strength can be received "over quite considerable distances and with the very basic of aerial systems-a wideband dipole feeding into a v.h.f. Band 1 receiver . . ." This will give "hopefully speciacular" results, encouraging the viewer to go on to acquire greater skills, improved hardware, and a "greater dedication to the hobby"
Details of how to make the aerial are given, but it is not too clear how one obtains a suitable receiver. I am almost converted to the idea of trying TV-DXing myself, but what I would really like to see is another book. written specially for beginners, explaining how to get started, what results to expect, and how to achieve them.

This present book may not be for raw beginners, but once you get started on TV-DXing it must surely be a useful addition to your bookshelf, becoming increasingly helpful the deeper you get into this intriguing hobby.

TS.

KEY TECHNIQUES FOR CIRCUIT DESIGN

Author
Price
Size Publisher
ISBN
G. C. Loveday
£6.75
128 pages, paperback
The Benchmark Book Company. 1871047005

DESIGNING an electronic circuit from firsi principles may seem a daunting prospect to many amateur constructors or even professionals working in electronics. I imagine that in the event of needing such a circuit, most people will search around to find one that comes as near as possible to modify it if necessary - and if they are able.
In his book, Key Techniques For Cinouit Design, G. C. Loveday shows that you don't have to be a boffin to castom design a circuit. Basic electrical and electronic theory is all that is required. And the first all important factor is a logical approach to the task. For this, the opening sequence is one that would apply in any area of design, not just electronics; namely to define the task, prepare a design specification, list the possible options and choose a method. To get the feel of it, a number of design tasks have been set with solutions provided at the end of the book.

To help those whose theory may be a bit rusty, there are two revision chapters, one dealing with passive components viz. resistors, capacitors and inductors and the oiher covering the characteristics of the various types of semiconductors. There is even a section dealing with the more complex problem of choosing i.c.s.

All in all, this would seem to be a useful little book and certainly will make those of us who think that circuit design is beyond our capabilities, think again.

Paul Gabriel

NEW BOOKS ON ELECTRONIC DESIGN

KEY TECNIQUES FOR CIRCUIT DESIGN

Deals with designing electronic circuits from scratch covering concepts such as target specifications, component selection (passives, discretes and ICs), the design cycle, derating etc. Numerous design examples are given and several reader exercises all with fully worked solutions. The approach is essentially nonmathematical.
IBSN 1871047005 Pbk 128pp Price $16.95+60 p$ p\&p DESIGNING DC POWER SUPPLIES G C LOVEDAY
Covers all aspects of the design of regulated power units, using discretes, IC regulators and switched units. It also covers protection circuits and reference supplies. Many design examples and exercises all with fully worked solutions are given.
IBSN 1871047013 Pbk 136pp Price $£ 6.95+60$ p p\&p Order direct from:

THE BENCHMARK BOOK COMPANY
 59 Waylands, Swanley, Kent BR8 8TN

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX•031 6672611

The supplier to use if you're looking for
\star A WIDE RANGE of components aimed at the hobbyist \star \star competitive VAT inclusive prices * mail order - generally by return of post \star \star fast, friendly service \star
-by mail order, telephone order or personal call NEW CATALQGUE NOW AVAILABLE Send 2×18 p stamps for a copy we do try to keep the goods we list in stock. Whether you phone, write or call in we'll do our best to help you.

BE POSITIVE !!

Positive working photoresist coated printed circuit boards, with full instructions, at a positively low price. All panels are $1 / 16^{\prime \prime}$ fibreglass, 102 . copper, single-sided.

panel size (approx, in mm)	coated stock		uncoated stock	
	FR4	CMER(blue)	FR4	CMER(blue)
200×220	E4. 20	£3.65	£2.60	£2.05
100×160	£1.68	£1.60	£1.05	¢0.97
A number of panels (blue uncoated) approx $130 \times 100 \mathrm{~mm}$ are also available - $£ 0.60$				
Prices are per panel. and include Vat.				
Charges for post and pac	order value up io $£ 5.00$-please add $£ 100$ over $£ 5.00$ \& up to $£ 20.00$ - pease add $£ 2.50$ over $£ 20.00$ - please add $£ 5.00$			

Settlement terms: cheque with order
ADVANCED CIRCUITS LIMITED
Clarendon Road, Blackburn, Lancashire BB1 9SS (Tel 0254 680156)

19" RACK MOUNTING EQUIPMENT CASES

This range of 19" rack equipment cases have been designed with economy and versatility as their objective. These cases are supplied as a flat pack kit with assembly instructions The * NEW IMPPOVED DESIGN * now features a black powder coat $16 S W G$ (1.5 mm) All units are $10^{\prime}(254 \mathrm{~mm})$ dear box constructed from .9 mm PVC coated steel. mm) deep and are available in the following popular sizes:

JOLN UP WILE: THEFSOTD

Professional Soldering Equipment at Special Mail-Ordar Prices.

Stainless steel element shafts. Screw- model, $12 \mathrm{w}, 2.4 \mathrm{~mm}$ bit. LC 18 Model, connected elements. Slip-on bits available from 1.6 to 4.7 mm . LA12 $18 \mathrm{w}, 3.2 \mathrm{~mm}$ bit. 240 v Std -12 v available. Presentation wallet.
 Designed specially for LITESOLD irons. Heavy, solid-plastic base with non-slip pads. Won't tip over, holds iron safely. With wiping sponge and location for spare (hot) bits. No 5 stand for EC5O iron № 4 stand for ADAMIN miniature Iron No 3 stand for LA12 and LC18 Irons.

Replacement Bits
For all above irons. Non-stick designs, machined from special copper alloy, with Inconel retaining rings. Two types - Chromium plated with copper face for economy and ease of use) and Iron plated with Yellow $\mathbf{£ 1 . 3 8}$ Green $\mathbf{£ 1 . 4 4}$

Blue f 1.50 per Reel
De-Solder Pumps $£ 7.71$
High Quality version of increasingly popular type of tool. Precision made anodised afuminium body, plunger guard and high-seal piston. Easy

Pre-tinned face (Long Life). State tip size, iron and type.

EC50 EF		Copper
Adamin 12 and		
LA12		$\mathbf{£ 1 . 9 2}$
LC18	$\mathbf{£ 1 . 0 6}$	$\mathbf{£ 1 . 9 0}$
L1.20	$\mathbf{£ 2 . 0 9}$	

For simple, safe and effective de-soldering of all types of joint, using a standard soldering iron. Handy colour-coded packs of 1.5 metres in 3 widths: Yellow - 1.5 mm , Green - 2 mm , Blue - 3 mm .

thumb operation. Automatic solder ejection. Conductive PTFE nozzle no static problems.

Top quality Japanese metric hardened and tempered tools. Swivel-top chrome plated brass handles. Fitted plastic cases. 113 set -6 miniature
screwdrivers 0.9 to $3.5 \mathrm{~mm} £ 3.60$ 305 set 2 crosspoint and 3 hex wrenches 1.5 to $2.5 \mathrm{~mm} £ 2.56$ 228 set 20 piece combination: 5 open, 5 skt spanners, 2 crosspoint, 3 hex and 3 plain drivers, scriber, handle/holder $£ 8.46$

Microcutters. $\mathbf{£ 5} \mathbf{5 9}$ Light weight hardened and precision ground. Flush cutting. Screw joint, return spring, cushion-grip handles. Safety wire-retaining clip.

Set of $\mathbf{3} £ 4.22$
Scraper/Knife, Hook/Probe, Brush/Fork. 3 useful double-ended aids to soldering/desoldering/ assembly. In plastic wallet.

ADAMIN Electric Stylus. $\mathbf{E 1 6 . 7 1}$ Writes like a ballpoint in Gold, Silver, Copper or 6 colours, on card, plastics, leather etc. Personalise wallets, bags, albums, books, models . . Operates at 4.5 v from its own plugl transformer - totally safe. Supplied with coloured foils.

SEND FOR OUR ORDER FORM TODAY

AND JOIN UP WITH THE PROFESSIONALS

ACTIVE FILTERS

Active filters are all the rage nowadays. For the experimenter, however, there's a bit of a problem. The texts about them seem to come in two varieties, neither of which is very helpful.
One is full of highbrow maths and short on component values. The other gives component values, but for filters which never seem to be quite what one needs.

PRACTICALCASE

It so happened that I needed a decent low-pass audio filter recently. I'd been working on a simple short-wave reciever. The r.f. front end part of the design was finished and I now needed an audio section.

Short-wave broadcast stations are packed like sardines, often only 5 kHz apart. Reception is often noisy. Simple receivers of the direct conversion or synchrodyne kinds (mine is both) convert adjacent-channel signals into noise, mostly high pitched.
A good low-pass audio filter is needed to reduce this "sideband splash". Ideally, the filter should have a variable cutoff frequency so that it can be adjusted to suit the reception conditions of the moment. None of my books and magazines had a ready-made answer. I was stuck.

AN UNUSUAL COMPONENT

At this point, chance came to my aid. One day I called at J \& N Bulls' shop in Hove, to buy an isolation transformer which had appeared in one of their familiar advertisements on the inside front cover of $E E$.

While I was there they gave me their current bargain list. Browsing through this I later found an unusual component: a quad (four-gang) 50 kilohm potentiometer. Dual (two-gang) pots for stereo are common enough. Quad pots, presumably for quadraphonics, are rare.

I figured that with a quad pot I could make a four-section variable cut-off lowpass $R C$ filter (Fig. 1). With R variable I should get at least a ten-to-one range of cut-off frequency, more than enough for speech and music and maybe of some use for CW.

So next time I visited Bulls' | bought some "quad pots". They turned out to be neat little Japanese jobs. Ohmmeter tests showed that they were log law, and actually about 45 k max.

Would they do the job? I assembled the filter on a plug-in breadboard, using 4n7 capacitors for C. Why $4 n 7$? Well, I happened to have plenty of that value, but 1 did make a quick check with a nomogram which showed me that $4 n 7$ has a reactance of 45 k at about 760 Hz .
The $-3 d B$ cutoff frequency of a single $R C$ section falls at the point where the reactance of C equals R. With four sections it would be lower in frequency, but at least I was in the right area. With the pot set near minimum resistance the cutoff would be at least ten times higher, at 7.6 kHz , which was about as much as I needed.

The next job was to hitch my audio generator to the filter input and set R to give a practical cutoff frequency. I chose 3 kHz , which is the sort of cutoff you need when interference is bad.
The response turned out to be as shown in curve A. Not bad, but a bit droopy. Could it be made flatter in the pass-band and steeper beyond it?

PHASE SHIFT OSCILLATOR

I've always found oscillator circuits interesting, and I knew of one which can use exactly this sort of $R C$ lowpass network for tuning. The circuit block diagram is shown in Fig. 2. Note that the amplifier is inverting, as indicated by the minus sign in front of the gain symbol, A.

At frequencies well below cutoff the feedback through the $R C$ network is negative. At d.c., all the amplifier output is fed back negatively to the input and the gain is effectively one.
As the frequency is raised, the effect of C becomes significant. From Fig. 1, ourve A, it's clear that C produces attenuation. But it also produces phase shift This means that the feedback isn't quite so negative, so the gain isn't reduced as much as might be expected.
At one frequency, the phase shift is -180°. That is, the phase is inverted by the network. So there are now two phase inversions (one in the amplifier one in the network), which means that the overall feedback becomes positive. If the gain $(-A)$ is high enough, the circuit oscitlates.

Using a double-beam ascilloscope to compare input and output signals it was easy to adjust the frequency of my audio generator to get a shift of 180° from my RC lowpass. I found that the output signal was then about one sixteenth of the input.
This meant that in Fig. 2 if the amplifier gain exceeds 16, the circuit will oscillate. For gains a bit short of 16 it won't, but a peak will appear in the response. Clearly, the peak will get sharper as the gain is raised towards the oscillation point and less sharp as it's reduced.
There seemed to be a fair chance of finding a gain at which the response is reasonably level, up to a frequency somewhere near the 180° one. Beyond it the gain must drop sharply, for two reasons. First, the attenuation of the network increases faster than the amplifier can compensate. Secondly, beyond the 180° frequency the feedback becomes less positive.

At very high frequencies each section must have a phase shift of nearly 90°, giving a total network phase shift of 360°. The feedback is then negative.

BENCH TEST

Theorising is all very well, but does it work? Next step: try it and see
The "circuit" in Fig. 2 is just an aid to understanding. It has no provision for applying input signals.

After a good deal of doodling I arrived at the practical test circuit of Fig. 3. Here, transistor TR1 is just an emitter-follower input buffer. The voltage gain comes from transistor TR2 and is about 8. TR3 is an output buffer.

EE16486]

Fig. 1. Four-section RC low-pass network. Curve A shows the response of the network alone for values of R and C which produce a $-3 d B$ point at 3 kHz . Curve B is for an active filter with a similar network.

EE16 69 C]

Fig. 2. When an RC lowpass with three or more sections is connected as a feedback path in an inverting amplifier the frequency response becomes very dependent on the gain when the phase shift of the network is close to 180°.

Adding the input signal to the feedback is arranged for by resistors R1 and R2. At very low frequencies the gain is mainly defined by these resistances, which form a negative feedback network.

If transistor TR2 had infinite gain then the effective very-low frequency gain would be R2/R1=1.5. But since the actual gain of TR2 is low the real l.f. gain is less than 1.5. In fact, resistor R2 was selected by trial and error to set the gain as close to one as possible using.E12 resistances. (It's a little over one in fact.)"

At higher frequencies, where the RC phase shift makes the feedback more positive the gain of TR2 has much more influence. To adjust it I used various values for resistor R4 until I found one (82k) that gave the flattest response, plotted in Fig. 1 as curve B. To make this comparable with A, the network resistances R were adjusted to give the same $-3 d B$ point, 3 kHz . The improvement is obvious. m Having produced a useful-looking 3 kHz lowpass filter, the next step was to vary R and confirm that the response keeps the same general shape but with different cutoff frequencies. The lowest obtainable cutoff (-3 dB) proved to be 560 Hz . The highest I checked was 10 kHz : beyond that was of no interest to me.

In all cases the response was like curve B: fairly level in the pass band and fairly steep in the stop band. Very satisfactory, considering that l'd done no maths and, used no unusual or close tolerance component values (the $4 n 7$ capacitors were 10 per cent).

Also, the filter has equal values of C and equal values of R. My search through the literature turned up designs where if the Rs were equal the Cs were not, and vice versa.

I was beginning to get quite smug about it when I ran a test which showed

Fig. 3. Circuit diagram for a practical lowpass active filter embodying a four-section RC network with equal C and equal R.
that one of my tacit assumptions was quite wrong: the response at the 180° frequency was well down. l'd assumed that the 180° frequency would lie in the passband, not outside it.

FIXED FILTERS

If you want to use fixed values of R and C and don't want to resort to cut-and-try you need more information. How much? The essentials seem to be C, R and -3 dB frequency for one filter. From these it should be possible to estimate the values for other filters.
I set up my circuit using fixed close tolerance components: $R=10 \mathrm{k}, C=10 \mathrm{n}$. These gave a -3 dB response at exactly 1 kHz .

Very convenient. If either C or R is increased the cutoff frequency is decreased. The response, then, is inversely proportional to C times R.
My 1 kHz filter has $C R=100$, if C is in nF and R in $k \Omega$. This suggests a simple design formula: $C R=100 / f_{c}$, where f_{c} is
the -3 dB frequency in kHz, C is in nF and R is in $k \Omega$.
Thus for a 4 kHz filter $C R$ would be 25 . If you happen to have plenty of one nanoFarad capacitators then R needs to be 25 kilohms. If you use $22 k$ the bandwidth will be a bit more than 4 kHz ; with 27 k it will be a bit less.
This is all you need to design your own "active" lowpass filter. Well, not quite. You have to make sure that the filter impedence is compatible with the circuit in which you connect it.

The network should be driven from a source whose impedance is much less than R. It should be terminated by an impedance much greater than R.

My circuit should work for most practical values, provided that it is driven from a source impedance small compared with resistor R1 (if not, reduce R1 to keep it, plus the actual source impedance equal to 100 k approx.). Also, the load connected to the output (capacitator C2 and ground) should be at least 10k.

Any high gain audio transistors will do.

MARKET PLACE

ASSORTED components, resistors, capacitors, semiconductors. They need testing, some not used. Offers over £5. Leslie Creer, 12 Banbury Drive, West Timperley, Altrincham, Cheshire WA1H 5DB.
HOBBYIST clearing unused semiconductors, d.i.l.s, solder, l.e.d.s, displays. i.c. skts, any reasonable offers accepted. Send SAE Mr P. Morgan, 98 Turberville Road, Mt. Pleasant, Porth, Rhondda, Mid Glam. Tel 0443681886.
WANTED Tandy TRS-80 pocket computer zip case. Reasonable price paid for reasonable condition. 061-973 3559.
WANTED quench tube 200 joules 650 V for flashgun or address of source of supply. James Strachan. Tel 0875340150. GOLDRING G101 deck plinth, M55E cart £10, P\&P f5.BSR McDonald MP60 cart. £5, P\&P $£ 2$. BSR deck pluscart.f5, P\&P $£ 2$. L. T. Hill, 29 Stead Lane, Bedlington, Northumberland.
POCKET computer Casio PB110, printer, cassette interface, expansion module, tape recorder, software, manuals $£ 150$ ono. Andrew Curtis, Tel 0734730874.
WANTED Babani's Walkie Talkie Projects BP186. Mohamed Lud, Nuclear Energy Unit, Bangi, 43000 Kajang, Selangor, Malaysia.

WANTED project for v.l.f. transmitter which appeared in Hobby Electronics or equivalent. M. J. McArdle, Bigash, Knockbridge, Dundalk, Ireland.
WANTED Enterprise 64 hardware and software also any contacts. Ian Jones, 21 dene Street, Pallion, Sunderland, Tyne and Wear SR4 6JB.
WANTED supplier of electronic components. Payment in Naira. Contact R. Cocker, PO Box 3532, Lagos, Nigeria.
LEVELL broadband voltmeter type TN6B. transistor decade oscillator type TG66A offers. Will exchange for d/trace 'scope. Mr D. D. Rees, The Old Rectory, Thurlbear, Taunton, Somerset TA3 5BW.
ONE Maplin's DMO2T as seen in catalogue plus one TBA810S-both on p.c.b.s plus data only $£ 25$. Phone Paul on Deepcut (0752) 837496.
WANTED Lernakit electronic lessons and manuals by BNRES, or loan of same, for nominal sum. James Gilmour, Nart, Swanns Cross, Co. Monaghan, Eire. Tel 042-44944.
FREE $250 \quad 1 / 2 \mathrm{~W} 2 \%$ resistors. 50 valves plus 40 poly caps. Nagging wife forces clearout. Send $£ 1$ coin/PO to D. M. Evans, Pentre-Gwyn, Tyn-Y-Cefn, Corwen, Clwydd LL21 0ER.

EE CROSSWORD 7 ANSWERS

ACROSS
1 and 17 PURITY MAGNET
4 MATRIX
9 ECCENTRICITY
11 USIGNAL
12 WIEN
13 OHMIC
18 STAGGER
20 IBA
21 EPITAXIAL
22 TIN
23 D.C.
26 DOT
DOWN
1 PRESET
2 RECTIFICATION
3 TENSION
5 ASCII
6 RETENTIVITY
7 X.Y.
8 GROUP
10 V.L.F.
14 HARTLY
15 ASPECT
16 GUARD
17 see 1
19 GRAIN

PROJECT CONSTRUCTION

HOW TO GET YOUR
 ELECTRONIC PROJECTS WORKING

R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for many of the common faults that can occur when building up projects
96 pages Order code BP110
£2.50
HOW TO DESIGN AND MAKE

YOUR OWN P.C.B.s

R. A. Penfoid

Deals with the simple methods of copying printed circuit
ELECTRONIC PROJECTS
RLECTRONIC orm of simp books. Also includ

The books listed have been selected as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.
board designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s.
80 pages
Order code BP121

BEGINNER'S GUIDE TO BUILDING

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in
magazines and books. Also includes examples in the 112 pages \quad Order code No. 227 £1.95

CIRCUITS AND DESIGN

ELECTRONICS SIMPLIFIED

CRYSTAL SET CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M

Especially written for those who wish to participate in the intricacies of electronics more through practical conages upwards from the day one can read intelligently and handle simple tools
80 pages Order Code BP92 £1.75

MICRO INTERFACING CIRCUITS-BOOK
MICRO INTERFACING CIRCUITS-BOOK 2
R. A. Penfold

Both books include practical circuits together with details of the crrcuit operation and useful background informaion. Any special constructional points are covered but toon are not included
Book 1 is mainly concerned with getting signals in and out of the computer; Book 2 deals primarily with circuits
for practical applications.
Book 1112 pages Order code BP130 £2.25 Book 2112 pages Order code BP131

50 CIRCUITS USING GERMANIUM SILICON AND ZENER DIODES R. N. Soar

Contains 50 interesting and useful circuits and applica tions, covering many different branches of electronics, using one of the most simple and inexpensive of cormponents-the diode. nimes ectifier diodes and Zener diodes, etc. Order Code BP36 64 pages

Order Code BP36
11.50

50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful circuits and applica tions, covering many different branches of electronics, components-the light-emitting diode freely available components-the light-emitting diode (LED). Also includes circuits for the 707 common anode display
64 pages
Order Code BP42 BOOK 250 more l.e.d. circuits Order code BP87 $\quad \underset{ }{\mathbf{E} 1.35}$
a Practical Introduction to Microprocessors

A MICROPROCESSOR PRIMER
E. A. Parr, B.SC., C.Eng., M.I.E.E
tarts by designing a small computer which, because of a be easily learnt and understood. The shortcomings are then discussed and the reader is shown how these can be overcome by changes and additions to the instruction set In this way. such ideas as relative addressing, index egisters, etc., are developed.
96 pages \quad Order code BP72 75

A PRACTICAL INTRODUCTION TO
MICROPROCESSORS
R. A. Penfold

Provides an introduction which includes a very simple microprocessor circuit which can be constructed so that he reader can experment and gain practical experience. 96 pages

Temporarily out of print

How To Use OpAmps

HOW TO USE OP-AMPS
E. A. Parr
This book
his book has been written as a designer's guide source book of circuits and a reference book for design calculations. The approach has been made as nonmathematical as possible. 160 pages Order code BP88

[^1]

PRACTICAL ELECTRONIC
BUILDING BLOCKS -BOOK
RACTICAL ELECIRONIC
BUILDING BLOCKS-BOOK 2

P A Penfold

These books sre tesignad to and electronic enthusiasts who like to ex erimens wion creuts and produce their own projects nerthe that sumc'y following published project des gns

BOOK 1 contans Orollators-s mevave, triangular squarewave, savmoath and pulas wavetorm generators operating at audis lineturnobe Timers--simpi mono Miscellaneous us tors and triggeis, etc.
BOOK 2 conia ins: A toll Tars how livel isore:e and op-amp circuits, vo tage and hu-r andlilers inclid ng d.c. types. Also low per octave types. M Mcslameovs 4,5 pown- ampliters,

BOOK 1128 pagcs Order code BP:17 f1.95 (112pages O-der code BP118 f1.95

EIECTRONIC CIRCUITS HANDEOOK

Michael Tooley BA
This book aims to exploce twe popular - -ixdoneptions ton
 many years of experienco shoult andatate bircui; ses gn and that the process rel es in incring nombliouc, melther of these poputarly hetd belie's strue.
Specifically, this book aims to prounte the radar win a unique collection of practical woring eifuts ageme. with supporting information so that croits an be producsd in he shortest possible time an whoul ecourse to treor Furthermo
Furthermore, information nss bear inclatud so that the circuits can readily be mooffed and entengind br reacers to meet their own individua neets netartation the lex. (and also in the index) so that readers ate axare of entich ofircuits can be readily connecied toguther 10 bumm more complex systems. As far as possidis a comman range of supply voitages, signal levels and impefarsal hasbear ajopted. As a bonus, ten test gear projects hese been ind uded These not only serve to listate the tech-ipyes deseribed but also provide a range 277 pages

Ordet code NEOS £14.95

How to Design Electronic Projects

HOW TO DESIGN ELECTRONIC

PROJECTS
The ain af this book is lo hets me reader to put together prolects from stentant orcul biocks with a minimum of trial and eror, but whout cesorting to any advanced $\begin{array}{lll}\text { your speess nequiramis are also provided. } \\ 128 \text { ozpes } & \text { Order code BP127 } & \\ \end{array}$

POPULAR ELECTRONIC CIRCUITS -BOOK 1
POPULAR ELECTRONIC CIRCUITS
BOOK 2
R. An Penfold tronic enthus asts who are capable of producing working projects from just a circuit diagram without the aid of detaled construction information. Any special setting-up procedures are described
BOOK 2160 pages
Order code BP80 $£ 1.95$
$£ 2.25$

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF

 MODEL RAIL WAYSR.A. Penfold

Home computers may easily be applied to the control of model raitways and really quite sophisticated control, which achieve. The main problem lies in interfacing the computer to the layout, but fortunately it is not too difficult or expensive to build suitable interfaces, and this book shows you
how. a high quality pulse type, as well as circuits for train position sensing, signal and electric points control etc. The use of computers does not have to be restricted to massive layouts. Something as simple as an oval of track with a single siding cand be give fun can be had from these relatively simple set ups. 88 pages Order code SP180 £2.95

MODERN OPTO DEVICE PROJECTS

R.A. Penfold

In recent years, the range of opto devices avallable to the home constructor has expanded and changed radicafly. These devices now represent modern electronics for se hobbyist to experiment in, and many of these devices nare useful practical applications as wefl. This book provides a number of practical
designs which utilize a range of modern opto-electric devices, including such things as fibre optics, ultra bright e.d.s and passive iR detectors eic

Whiegory, they should be within the in the "dead simple with a reasonable amount of experience in electronics construction and some of the more simple designs are suitable for beginners.
104 pages Order code BP194
$£ 2.95$

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF
ROBOTS
Robert Penfold
Robots and robotics offer one of the most interesting area for the electronics hobbyist to experiment in. Today the mechanical side of robots is not too difficult, as there are robotics kits and a wide range of mechanical components available. The micro controller is not too much of a problem either, since the software need not be terribly complex and many inexpensive home computers are well suited to the task.
The main stumbling block for most would-be robot builders is the electronics to interface the computer to the motors and the sensors which provide feedback from the robot to the computer. The purpose of this book is to explain and bridge this gap
92 pages Order code BP179
DATA AND REFERENCE

ELECTRONICS TEACHIN
Michael Tooley BA and David Whitfield MA MSc CEng MIEE (published by Everyday Electronics)
This value for money EE jook provides a comprehensive background to modelt escctronics including test gear projects. A complete course in basic electronics; designed for the complete nevicomer it will however also be of value to those with some previous experience of electronics Wherever possible the course is related to "real life" working circuits and each part includes a set of detailed practical assignments. Includes details of eight items of related test gearg ving fit constructional information and diagrams for eacn one. They are: Safe Power Supply Universal LCR Bridge; Diode Transistor Tester; Audio Signal Tracer, , udio Signal Generator; RF Signa Generator; FET Voltmeter; Pulse Generator. An excellen companion for enyone interested in electronics an invaluable for those taking G.C.S.E. and BTEC electronics courses.
104 pages (A4 sizel Order code EE/T-I £1.95
PRACTICAL ELECTRONICS
CALCULATIONS AND FORMULAE
F. A. Wilson, C.G.I.A., C.Eng. F.I.E.E., F.I.E.R.E F.B.I.M.

Bridges the gap between complicated technical theory and cut-and-tried" methoas which may bring success in design but leave the expermenter unfulfilled. A strong been avoided where possibie and mathernatics have included.
The book is divided into $s \times$ basic sections: Units and Constants. Direct-current Circuits, Passive Components, Alternating-current Circuits, Networks and Theo rems, Measurements
256 pages Order Code BP53
£2.95

ESSENTIAL THEORY FOR THE ELECTRONICS HOBBYIST
G. T. Rubaroe, T.Eng (C.E.I.), Assoc.I.E.R.E. The object of this book is to supply the hobbyist with a background knowiedge tailored to meet his or her specific requirements and the author has brought to gether the relevant material and presented it in a readable manner with minimum recourse to mathematics.
128 pages \quad Order Code 228

[^2]
ELECTRONIC HOBBYISTS HANDBOOK

R.A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics enthusiast is likely to need for the day-to-day pursuance of this fascinating hobby. Covers common component colour codes. Details the characteristics and pinouts of many popular semiconductor devices, including various types of logic ICs, operationa amplifers, tansistors, FET , unijunctions, diodes, rectifiers, SCRs, dacs, triacs, regulators and SMDs, etc. Iliustrates many useful types of circuits, such as timers and oscillators, audio amplifiers and filters, as well as including a separate section on power supplies. Order code BP233
88 pages \quad Order code BP233 $£ 4.95$ AUDIO
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.i.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are fol owed by a study of the mechanism of hearing and examination of the various sounds we hear. A look at room acoustics with a subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio systems-amplifiers, oscillators, $\begin{array}{lll}\text { disc and magnetic recording and electronic music } \\ 320 \text { pages } & \text { Order Code BP111 } & \mathbf{5 3 . 5 0}\end{array}$

HOW TO IDENTIFY UNMARKED ICS

K. H. Recorr

Shows the reader how, with just a test-meter, to go about recording the particular signature of an unmarked i.c. which should enable the i.c. 10 then be identified with reference to manufacturers or other data. An i.c. signature is a specially plotted chart produced ty mea $\begin{array}{ll}\text { Chart } & \text { Order code BP101 }\end{array}$

RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
B. B. Babani

Although this chart was first published in 1971 it provides basic information on many colour codes in use hroughout the world, for most radio and electronic components. includes resistors, capacitors, transformers, field coils, fuses, battery leads, speakers, etc. It is
particularly useful for finding the values of old Chart Order code BP7 \quad £0.95

CHART OF RADIO, ELECTRONIC,
SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Banani, B.Sc.(Eng.)
liustrates the common, and many of the not-so-common, radio, electronic, semiconductor and logic symbols hat are used in books, magazines and instruction Chart
Order Code BP27

Electronic Circuits for the

Modern Opto Device Projects computer controlo

Robots

RECOMMENDED READING

FOR INTRODUCING

 DIGITAL ELECTRONICS
ELECTRONICS-A'MADE SIMPLE" BOO

G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics series and will be of interest to everyone studying electronics. The subject is simply exlane and wowlo 330 pages

Order code NE10

PRACTICAL DIGITAL ELECTRONICS HANDBOOK Mike Tooley (Published in association with Everyday Electronics)
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handbook aims to provide readers with a practically based introduction to this subject. The book
will prove invaluable to anyone involved with the design, will prove invaluable to anyone involved with the design, those wishing to update their knowledge of modern digital devices and techniques. Contents: Introduction to integrated circuits; basic logic gates; monostable and integrated circuits; basic logic gates, momories; input and output devices; interfaces; microprocessor buses. Appendix 1: Data. Appendix 2: Digital test gear projects: tools and test equipment; regulated bench power supply; logic probe; logic pulser; versatile pulse generator; digital IC tester; current tracer; audio logic tracer; RS-232C breakout box; versatile digital counter/frequency meter Appendix 3: The oscilloscope. Appendix 4: Suggested reading. Appendix 5: Further study
208 pages Order code PC100
E6. 6

Begmers Cuide to
Miturnpxotessort
EA far

BEGINNERS GUIDE TO MICROPROCESSORS

E.A. Parr

An excellent grounding in microprocessors, this book is broadly relevent to the whole of our introducing Microprocessors course. It is easy to read and welf illustrated.
illustrated. Order code Ne03 fages 95

MICROELECTRONIC SYSTEMS 2 CHECKBOOK

. Vears of this book is to provide a foundation in microcomputer hardware, software and interfacing techniques. Each topic is presented in a way that assumes oniy an elementary knowiedge of microelectronic systems and logic functions. The book concentrates on 6502, Z80 and 6800 microprocessors and contains 60 tested programs, 160 worked problems and 250 further problems. 194 pages Order code NEO4 End

OSCILLOSCOPES: HOW TO USE THEM-HOW THEY WORK lan Mickman
Oscilloscopes are essential tools for checking circuit oper ation and diagnosing faults, and an enormous range of mod els is avaitable. But which is the right scope for a particula application? Which features are essential, which not so get the best out of the lan Hickma
ian Hickman, experienced in both professional and hobbyist oscilloscope usersised this well-established book to help all 133 pages Order code NE09

GETHNG TH

This book is primarily aimed at beginners and those of imited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the rela tive merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors subjects being discussed
In the main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects

PRACTICAL

an Sinclair

lan Sinclair has now revised this useful and carefully selecdesign data for professional engineers, students and enthusiasts involved in radio and electronics. Covering pass ive and active components, discrete component circuits (such as amplifiers, filters and oscillators) and linear and digital i.c.s, the book includes many items which are not etsewhere avainable in a single handy volume. The operation matics is limited to that necessary for deciding componen values for any application This revised edition cont nicroprocessors and has more details on computers and 199
199 pages Order Code NE06
£7.95

BEGINNER'S GUIDE TO HI-FI

lan Sinclair
The Beginner's Guide to Hi-Fi will appeal to the audio enthusiast, whether newly won over by advances in techdate equipment. The book deals with the sound from its sources in the studio to its ultimate end in your ears, and shows what sound is, how it is recorded and how it is reproduced.
Every aspect of $\mathrm{Hi}-\mathrm{Fi}$, from pickup cartridges to loudspeakrs, has been covered, and the emphasis has been on explaining design aims. Cassette systems have been given considerable prominence, including the more modern Dolby and dbx noise reduction systems. The CD record has been overed in detail so that you can ind out just why this 194 pages Order Code NE07
$£ 4.95$

ELECTRONHCS-BUILD AND LEARN

R. A. Penfold

The first chapter gives full constructional details of a circuit demonstrator unit that is used in subsequent chapters to ors, transformers, diodes, transistors, thyristors, fets and op amps. Later chapters go on to describe how these compo nents are built up into useful circuits, oscillators, multivibraors, bistables and logic circuits.
At every stage in the book there are practical tests a d experiments that you can carry out on the demonstrator unit to investigate the points described and to help you understand the principles involved. You will soon be able to go on oo more complex circuits and tackle fault finding logically in 120 pages

Order Code PC103

COMMUNICATION
. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.

A look at the electronic fundamentals over the whole of the communication scene. This book aims to teach the mportant elements of each branch of the subject in a style as interesting and practical as possible. While not getting involved in the more complicated theory and techniques are examined including line microwave submarine, satellite and digital multiplex systems, radio and telegraphy. To assist in understanding these more thoroughly, chapters on signal processing, the electromagnetic wave, networks and transmissions assess ment are included, finally a short chapter on optical ransmission
256 pages

ECTRONIC CDLDU

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE
A. Michaels

Helps the reader to find possible substitutes for a popular selection of European, American and Japanese transistors. Also shows material type, polarity, manufacture 320 pages

Order code BP85
£2.95

INTRODUCTION TO DIGITAL AUDIO

lan Sinclair

Digital recording methods have existed for many years and have become familiar to the professional recording engindigital audio methods into the home. The next step is the appearance of digital audio tape (DAT) equipment.
All this development has involved methods and circuits that are totally alien to the technician or keen amateur who has previously worked with audio circuits. The principles and practices of digital audio owe little or nothing to the trad tional linear circuits of the past, and are much more compre hensible to today's computer engineer than the olde generation of audio engineers.
the technician and enthusiast the gap of understanding fo the technician and enthusiast. The principles and method is avoided other than to state the end product 128 pages Order code PC102

TRANSISTOR RADIO FAULT-FINDING CHART C. E. Miller

Used properly, should enable the reabor wh liabl - st common faults reasonably quickly. Auross the tap of the chart will be found four rectanges contaning blef description of these faults, vis-sound abar mur whas.
 and following the arrows, carries out the sury=tred $\begin{array}{ll}\text { checks in sequence until the fault is cleared. } \\ \text { Order code BP70 } \\ \text { Chart } & £ 0.95\end{array}$

DIGITAL IC EQUIVALENTS
 AND PIN CONNECTIONS

A. Michaels

Shows equivalents and pin connections of a popula. selection of European, American and Japarese - $z=3$ i.c.s. Also includes details of packaging, sa- $=5$
tions, manufacturer and country of orig-

LINEAR IC EQUIVALENTS

AND PIN CONNECTIONS
A. Michaels

Shows equivalents and pin connections of a porbula selection of European, American ano Jana-sel linez c.s. Also includes de 320 pages arigin \quad Order code BP 149

E4. 95

INTERNATIONAL DIODE
 EQUIVALENTS GUIDE A. Michaels
 A. Michaels

Designed to help the user in finding posstble subst ates for a large selection of the many differsni r, res ol - olibe that are available. Besides simple re-t Far 1000 as als tors, OCls, photo and display diodes. 144 pages Order code BP108
≈ 225

NEWNES ELECTRONICS

POCKET BOOK

E. A. Parr

Newnes Electronics Pocket Book has bean in gh-: Soover twenty years and has coverec the δ evelor-m-t a electronics from valve 10 semiconductor sa-hnoloty a-d
 worid of electronics to date with the rapu, 0 ,
 changes and includes materia sugyestet th, meaters of previous editions. New descrip:ors of of $\equiv \rightarrow \mathrm{m}$ act ita tions and the design of digital crocirs hevebean ester along with a totally new chapte: on con-lity shes 315 pages (hard cover)

TRANSISTOR SELECTOR GUIDE

This unique guide offers a range of salaction tities compiled so as to te of maximum engineers, designers and hobby sts
Section 1: Covers componert matings qouliegs and standards, as well as explaining the s.mbols used. Section 2: Tabulates in 3lpna-numeric solouenoe the comprehensive specifications of c.e. iad de.ices. Section 3: Tabulates the devices t , case r,pc Section 4: Considers particular limits to the electica parameters when compling the tallos
Section 5: Illustrates package ourlines and leadou is
Section 6: Consists of a surace mounting te.lce markngs conversion list.
192 pages Order code BP234

RADIOTTELEVISION

AN ANTRODUCTION TO RADIO DXING

Anyone can switch on a shor wave receiver and play the controls until they pick up something, but to find receive it as clearly, country or type of broadcast and to and knowledearly as possible requires a little more skill eader to do ust that which in thisence is the fascinating hobby of radio DXin
12 pages Order code BPg1
£1.95 INTERNATIONAL RADIO STATIONS GUIDE
P. Shore
rovides the casua! listener, amateur radio DXer and the professiona radio monitor with an essential reference work designed to guide hiw or her around the ever more complex nd rewritten and incorporat much completely revised which is divided into the followis much more information which is divided into the following sections
wide Short Wave Radio Stations; European Codes; WorldNorth African Long Wave Radio Stations: European, Near East and North African Medium Wave Radio Stations: Canadian Medium Wave Radio Stations; USA Medium Wave Radio Stations; Broadcasts in English; Programmes for DXers and Short Wave Listeners; UK FM Radio Stations; Time differences from GMT; Abbreviations; Wavelength/F 320 pages

Order code BP255

BEGINNER'S GUDE TO AMATEUR RADHO
F.G. Rayer Second edition revised by Gordon King G4VFV Whether you are new to radio, or have become interested by appetite and put you in good stead, will further whet you Amateur's Examination and becoming a ticensed radio ama teur.
188 pages Temporarily out of print

AN INTRODUCTION TO SATELLITE TELEVISION
F.A. Wilson

As a definitive introduction to the subject this book is presented on two levels. For the absolute beginner or anyone hinking about purchasing or hiring a satellite TV system, the cory is told as simply as such a complex one can be in the
or the professional engineer, electronics enthusiast, stuent or others with technical backgrounds, there are numerus appendices backing up the main text with additional echnical and scientific detail formulae, calculations, tables There
There is also plenty for the D|Y enthusiast with practical dvice on choosing and installing the most problematic part 104 pages Order code BP 195

GETTING THE MOST FROM YOUR PRINTER
GETTING TH

Details how to

Details how to use all the features provided on most dot sor packages like programs and popular word proces Shows ages like Wordwise, Visawrite and Quill, etc Sffows exactly what must be typed in to achieve a given $\begin{array}{lll}\text { effect. } \\ 96 \text { pages } & \text { Order Code BP181 } & \mathbf{E 2 . 9 5}\end{array}$

A 280 WORKSHOP MANUAL
E. A. Parr, B.Sc., C.Eng., M.I.E.E

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming 192 pages \quad Order Code BP112 $\quad £ 3.50$

AN INTRODUCTION TO 68000 ASSEMBLY

LANGUAGE
R. A. \& J. W. Penfold

Obtain a vast increase in running speed by wrling programs for 68000 based micros such as the Cormonodore Amiga, Atari ST range or Apple Macintosh range etc, in assembly language. It is not as difficut as one 112 pages

THE ART OF PROGRAMMING THE ZX

SPECTRUM

M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to wse all the Spectrum's commands and functions, but a $\mathrm{v} \equiv \mathrm{m}_{\mathrm{n}} \mathrm{c} f \in r-$ ent one to be able to combine them into programs that do exactly what you want them to. This is fus . + her this book is all about-teaching you the art of effective 144 pages Ordercode BP

AN INTRODUCTION TO PROGRAMMING THE COMMODORE $16 \&$ PLUS 4
R. A. Penfold

Helps you to learn to use and program these two Commodore machines with the minimum of $d^{\text {theselty }}$ tw expanding and complementing the informacion suopled 128 the manufacturer's own manuals.
28 pages Order code BP158
£2.50

AN INTRODUCTION TO PROGRAMMING THE

 BBC MODEL B MICROWritten for . A. Penfold
gramming and how to make to learn more about oro powerful model B's versatile features. Most aspects o the BBC micro are covered, the omissions being where little could usefully be added to the information provided 144 pages \quad Order manual.

THE PRE-BASIC BOOK

F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E., F.I.E.R.E.

F.B.i.M

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers floundering but instead concentrates on introducing the technique by looking in depth at the most frequently used and more easily understood computer instructions. For all new and potential micro users

Order co
AN INTRODUCTION TO
COMPUTER PERIPHERALS
J. W. Penfold

Covers such items as monitors printers, disc drives cassette recorders, modems, etc explaining what the are, how to use them and the various types and standards. Helps you to make sure that the peripherals you buy will work with your computer.
80 pages Order code BP170
£2.50

COMPUTER TERMINOLOGY EXPLAINED

D. Poole

Explains a wide range of terms that form the computer jargon used by enthusiasts. Includes a reference guide to $\begin{array}{ll}96 \text { pages } & \text { Order code BP148 } \\ \text { the }\end{array}$

AN INTRODUCTION TO PROGRAMMING THE ACORN ELECTRON
A. A. \& J. W. Penfold

Designed to help the reader learn more about programming and to make best use of the Electron's many supplied in the manufacturer's the information already 144 pages \quad Order code BP142 $\quad \mathbf{E 1 . 9 5}$

AN INTRODUCTION TO PROGRAMMING THE

ATARI 600/800 XL
 \section*{A. A. \& J. W. Penfold}

Especially written to supplement the manufacturer's own handbook. The information supplied will help the reade o master BASIC programming and to make best use of 28 Atari's many powerful features.

AN INTRODUCTION TO PROGRAMMING THE AMSTRAD CPC 464 AND 664
A. A. \& J. W. Penfold

BASIC makes an extremely 664 running with Locomotive and this book is designed to help the reader get the mos from this powerful combination. Written to complemen rather than duplicate the information already given in the manufacturer's own manual. Also applicable to the CPC 6128.

Order Code BP153
£2.50
AN INTRODUCTION TO PROGRAMMING THE

SINCLAIR QL

Helps the reader to make best use of the fantastic Sinclair QL's almost unlimited range of features. Designed to 112 pages the manufacturer's handbook.
complement
Order code BP150

AN INTRODUCTION TO 280 MACHINE CODE

R. A. \& J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous know ledge of these being assumed. The $Z 80$ is used in many popular home computers and simple programming ex amples are given for Z80-based machines including the Strad CPC 464 . Also applicable to the Amstrad CPC Am and 6128. 144 pages Order code BP152 £2.75

AN INTRODUCTION TO 6502 MACHINE CODE

 R. A. \& J. W. PenfoldNo previous knowledge of microprocessors or machine code is assumed. Topics covered are: assembly language and assemblers, the register set and memory binary and hexadecimal numbering systems, addressing modes and the instruction set, and also mixing machine are given for 6502 -based home computming examples 20. ORIC-1/ATMOs ELC $\begin{array}{ll}\text { dore } 64 \\ 112 \text { pages } & \text { Order code BP147 }\end{array}$

HOW TO GET YOUR COMPUTER PROGRAMS RUNNING
J. W. Penfold

Have you ever written your own programs only to find which shows you how to is now at hand with this book errors and helps you to avoid the common bugs and pitfals of program writing. Applicable to all dialects of 144 pages language.

AN INTRODUCTION TO COMPUTER
CCMMUNICATIONS
R. A. Penfold

Provides details of the various types of modem and their sitability for specific applications, pius details of conhe telephone system Also information an coms to nerworking systems and RTTY 96 pages Order code BP177 £2.95

THE PRE-COMPUTER BOOK
 F. A. Wilson

Aimed at the absolute beginner with no knowledge o computing. An entirely non-technical discussion of com 96 pages Order code BP115

NEWNES COMPUTER ENGINEER'S
POCKETBOOK
Michael Toole
An invaluable compendium of facts, figures, circuits and data, indispensable to the designer, student, servic engineer and all those interested in computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of software engineers". This first edition covers a vas range of subjects at a practical fevel, with the necessary explanatory text. The data is presented in a succinct an rapidly accessibe form so that the book can become part 205 pages (hard cover) Order code NE01 $\mathbf{£ 8 . 9 5}$

> DIRECT BOOK SERVICE

(A Division of Wimborne Publishing Ltd.)

TO ORDER

Please state the order code clearly, print your name and address and add the required postage to the total order.

Add 75p to your total order for postage (overseas readers add $£ 1.50$, surface mail postage) and send a PO, cheque or international money order ($£$ sterling only) made payable to Direct Book Service (quoting the order code and quantities required) to DIRECT BOOK SERVICE, 33 GRAVEL HILL MERLEY, WIMBORNE, DOR-
SET, BH21 1RW (mail order only).

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability
 before ordering from old lists.

Note-our postage charge is the same for one book or one hundred books!

Printed circuit boards for certain constructional projects (up to two years old) are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics Editorial Offices, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics (Payment in $£$ sterling only.)

Respdera are advised to check with prices appearing in the current issue betore ordering.

WOTE: Boards for older projects-not listed here-can often be obtained from Magenta Electronics, 135 Hunter St., Burton-on-Trent, Staffs DE14 2ST. Tel: 028365435 or Lake Electronics, 7 Middleton Close, Nuthall, Nottingham NG16 1BX. Tel: 0602382509.

NOTE: please allow 28 days for delivery. We can only supply boards listed in the latest issue. Boards can only be supplied by mail order and on a payment with order basis.

PROJECT TITLE	Order Code	Cost
Car Timer - SEPT '86.	538	£2.53
Freezer Failure Alarm	534	£2.38
Infra Red Beam Alarm (Trans)	536	£4.16
Infra Red Beam Alarm (Rec)	537	£4.16
Scratch Blanker	539	f6.80
OCT '86- 10W Audio Amp (Power Amp)	543	
(Pre-Amp) £4.78 Pair	544	$\begin{aligned} & £ 3.23 \\ & £ 3.97 \end{aligned}$
Light Rider-Lapel Badge	540 \& 541	£2.97
-Disco Lights	542	£5.12
-Chaser Light	546	£4.04
Modem Tone Decoder - NOV '86-	547	£3.46
200MHz Digital Frequency Meter	548	£5.14
- DEC '86-		
Dual Reading Thermometer	549	£7.34
Automatic Car Alarm	550	£2.93
BBC 16K Sideways RAM	551	£2.97
(Software Cassette)	551S	£3.88
Random Light Unit - JAN '87-	552	f5.88
Car Voltage Monitor - FEB 87 -	553	£2.48
Mini Amp	554 \& 555	£5.68
Video Guard	556	£3.80
Spectrum I/O	557	£4.35
Spectrum Speech Synthesiser		£4.86
$\text { - MAR - } 87$ Computer Buffer/Interface	560	£3.32
Infra Red Alarm : Sensor Head	561	¢4.19
PSU/Relay Driver	562	£4.50
Alarm Thermometer - APR 87.	559	£2.60
Experimental Speech Recognition	563	£4.75
Bulb Life Extender	564	£2.48
Fridge Alarm - MAY '87-		
EE Equaliser-Ioniser	566	£4.10
Mini Disco Light - JUNE '87-	567	
Visual Guitar/Instrument Tuner	568	£3.97
Fermostat - JULY '87-		£3.34
EE Buccaneer Metal Detector	570	£4.10
Monomix		£4.75
-AUG '87 -		
Super Sound Adaptor Main Board	572	£4.21
PSU Board	573	£3.32
Simple Shortwave Radio, Tuner	575	£3.15
Amplifier	576	£2.84
Noise Gate - SEPT '87-	577	£4.41
Burst Fire Mains Controller	578	£3.31
Electronic Analogue/Digital Multimeter	579	f6.40
Transtest - OCT '87-	580	£3.32
Video Controller	581	£4.83

Accented Metronome - NOV ‘87 Acoustic Probe BBC Sideways RAM/ROM	$\begin{aligned} & 582 \\ & 584 \\ & 585 \end{aligned}$	$\begin{aligned} & £ 3.77 \\ & £ 2.78 \\ & £ 4.10 \end{aligned}$
Pseudo Echo Unit - DEC '87 . Dual Mains Light Flasher Twinkling Star Audio Sine Wave Generator	$\begin{aligned} & 586 \\ & 587 \\ & 588 \\ & 589 \end{aligned}$	$\begin{aligned} & £ 4.60 \\ & £ 3.66 \\ & £ 2.61 \\ & £ 3.03 \end{aligned}$
Capacitance Meter - JAN '88 - Bench Amplifier Transistor Curve Tracer	$\begin{aligned} & 590 \\ & 591 \\ & 592 \end{aligned}$	$\begin{aligned} & £ 4.10 \\ & £ 5.51 \\ & £ 2.84 \end{aligned}$
Bench Power Supply Unit Game Timer	593	$\begin{aligned} & £ 4.01 \\ & £ 3.55 \end{aligned}$
Semiconductor Tester - MAR '88 * SOS Alert Guitar/Keyboard Envelope Shaper	$\begin{aligned} & 594 \\ & 595 \\ & 596 \end{aligned}$	$\begin{aligned} & £ 3.19 \\ & £ 2.78 \\ & £ 4.23 \end{aligned}$
Stereo Noise Gate - APR ${ }^{\prime} 88$ Pipe \& Cable Locator Inductive Proximity Detector	$\begin{array}{r} 597 \\ 598 \\ 574 \end{array}$	$\begin{aligned} & £ 6.65 \\ & £ 2.72 \\ & £ 2.97 \end{aligned}$
$\text { - MAY ' } 88$ Multi-Channel Remote Light Dimmer Transmitter Receiver Door Sentinel Function Generator-Main Board Function Generator-Power Supply Super Sound Effects Generator	599 600 605 606 607 608	$\begin{aligned} & £ 2.78 \\ & £ 3.07 \\ & £ 2.60 \\ & £ 5.91 \\ & £ 4.19 \\ & £ 4.78 \end{aligned}$
- JUNE '88 - Multi-Channel Remote Light Dimmer Relay/Decoder Dimmer Board Power Supply Mother Board Headight Reminder	601 602 603 604 611	$\begin{aligned} & £ 4.86 \\ & £ 3.07 \\ & £ 2.72 \\ & £ 7.76 \\ & £ 2.78 \end{aligned}$
Video Wiper - JULY '88 Isolink	$\begin{aligned} & 612 \\ & 613 \end{aligned}$	$\begin{aligned} & £ 6.75 \\ & £ 4.21 \end{aligned}$
Tea Tune - AUG '88 - Time Switch Suntan Timer Car Alarm	$\begin{aligned} & 609 \\ & 614 \\ & 610 \\ & 615 \end{aligned}$	$\begin{aligned} & £ 2.56 \\ & £ 4.84 \\ & £ 3.07 \\ & £ 3.12 \end{aligned}$
Doorbell Delay - SEPT '88Breaking Glass Alarm Amstrad PIO	$\begin{aligned} & 616 \\ & 617 \\ & 618 \end{aligned}$	$\begin{aligned} & £ 3.55 \\ & £ 4.27 \\ & £ 6.77 \end{aligned}$
- OCT '88 Eprom Eraser	620	£4.07
	616 621	$\begin{aligned} & £ 3.56 \\ & £ 3.12 \end{aligned}$
Infra-Red Object Counter	$\begin{aligned} & 622 \\ & 623 \\ & 624 \\ & 625 \end{aligned}$	£4.61 E3. 23 £3. 05 £4.84

NATIONAL COMPONENT CLUB	
SPGOLAL OFFERS＊SPECLAL OFFERS	
5	555 TIMER（IC＇s）［c5］
5	741 OP－AMPS［［5］
572	LED＇s（5mm red or green）［5］
25	GENERAL PURPOSE TRANSISTORS（BC $548, \mathrm{BC} 182 \mathrm{etc})$ 近］
515	BATTERY CLIPS（PP3）［i］
25	ASSORTED POTS \＆PRESETS［近］
70	ASSORTED CAPACITORS （Picofarads－2200uf）
25	$\begin{aligned} & \text { ELECTROLYTIC CAPACITORS } \\ & \text { (1uf-2200uf) } \end{aligned}$
300	MIXED RESISTORS（6R2－9M1）［近］
$?$	MYSTERY PACK［近］
710	CROCODILE CLIPS （ 5 red and 5 black）
5	gOdb PIEZO SOUNDER
$\begin{aligned} & 4 N \\ & A N \end{aligned}$	SIX PACKS FOR A FIVER ！ TWELVE FOR A IENNER ！
P．O．or Cheque to：NATIONAL COMPONENT CLUB，DEPT．EE， HIGHER ANSFORD，CASTLE CARY，SOMERSET BA7 7JG． Please add E 1 P \＆ P but do not add VAT．	

by Mike Tooley ba

A silk purse from a sow's ear?

MR. A. J. HARPER has sent me a long and very entertaining account of his attempts to customise his Spectrum. Mr. Harper writes:

After the rush of enthusiasm which followed the construction of the Z80-PIO, Speech Synthesiser, and Joystick Interface in early 1987, the configuration of my Spectrum rapidly became a mass of tangled wires and badly connected p.c.b.s which was a nightmare to modify and very vulnerable to damage by children who for some reason (perhaps because THEY own most of the software) felt that they had at least equal claim on the machine.

The general mess was also falling foul of the domestic authority who offered some rather radical solutions inconsistent with the normal treatment of computer equipment.

Following the formation of a "Computer Users' Sub-committee", the following major shortcomings were identified:
(a) Poor keyboard (the old rubber one with "sticky" down key action)
(b) Insufficient sound output
(c) Poor display (based on an outdated black and white TV)
(d) Configuration of add-ons unacceptable (multiple p.c.b.s attached, some requiring hard-wiring)

Solution

The solution to points (a), (b), and (c) are simply 'buy a keyboard kit, make an amplifier, and purchase a good colour TV' (take a deep breath and forget the overdraft!). Unfortunately, these solutions only serve to exacerbate the "spaghetti junction' problem.
Mr. Harper's solution to this problem (which must surely be shared by a great number of Spectrum enthusiasts) is that of rebuilding the Spectrum into a larger enclosure (containing the tape recorder, power supply, audio "beep" amplifier, and "Spectrum p.c.b. together with expansion "motherboard"). Mr. Harper continues:
The configuration, both external and internal, of a typical industrial PC (e.g. an IBM-XT) has much to commend it. The two main features are a solid "box" on which a display is placed, and an internal hardware
configuration which permits easy expansion by the addition of extra p.c.b.s to a motherboard

The nub of the problem is the motherboard. Here is an area in which Everyday Electronics could help. I could find no product designed specifically for the Spectrum. In fact this single obstacle nearly foundered the whole project. The most obvious connectors to use are the 2×32-way DIN 41612 indirect edge connectors (available from component suppliers). These will accomodate the 2×28-way expansion bus of the Spectrum edge connector with a small spare capacity. However, standard Veroboard will not be suitable for use as a motherboard without an unwieldy amount of cuts and wiring. The task of a home-made p.c.b. was somewhat daunting; I can do the odd 'through pin track"' but with 32 per connector times 6 connectors on the board-I know my limits!

Amstrad Board!

My solution involved using an Amstrad Motherboard (purchased from Maplin) which can accommodate six of the previously mentioned DIN connectors. However, there are still some problems. The board terminates in a 2×25-way p.c.b. edge and a matching 2×25-way IDC socket at the other end to allow the board to be extended. Two of the 2×25 way tracks are power rails and are connected to pairs of pins. This is also true of one pair of the 2×32-way tracks which are not connected to the 2×25-way terminal connections.
By suitably placing the standard 2×28-way connector at the "tongue" edge of the board, the majority of the Spectrum connections may be made directly to the fingers of the tongue. By sacrificing the redundant negative power lines and transferring the $0 V$ and $5 V$ connections to the 2×25-way power positions, the five missing positions to the left of the slot can be relocated.
Fun though this was, a ready made board with a standard 2×28-way connector attached would, I am sure, appeal to readers. So, come on E.E., such a board could unscramble the backplane into a data bus, address bus, and control bus to aid the wiring of subsequent plug-in p.c.b.s.

Colour Monitor

Much to my surprise, the cheapest way to acquire a colour monitor is to buy a colour
television with a composite video input. After some research, I bought the Philips 15 CE1210 14 inch colour TV with flatishscreen and sharp corners. This set has both composite video and $R G B$ inputs. The composite video can either enter through the video input on the front or via the SCART socket at the rear.
Initially, I connected a video cable to pins $15 B$ and $14 B$ of the edge connector. The picture was of worse quality than through the Spectrum's modulator! A hard look at the Spectrum's p.c.b. indicates that the video signal runs a considerable distance round the p.c.b. totally unshielded accompanied by n MHz signals in profusion. This surely cannot be a good interference free environment for the video path?

Fortunately, the video chip (the LM1889N) at the left of the Spectrum p.c.b., provides its composite video output in the form of a single wire which enters the modulator. It is not too difficult to attach the inner conductor of the co-ax to this point. The outer (earth) shielding can be connected close by (I used the earth on the modulator, though other positions are possible). The result, much to my relief, was a much improved picture. I subsequently compared the composite video and modulator pictures for several games. Incidentally, the Psion Chess programme provides a good test card as the pieces and board colour can be "user selected"
Finally, I completely disconnected the modulator from the video input and its power supply. This further improved the picture quality. (The capacity of the modulator for mischief can perhaps best be illustrated by the fact that I can receive a fuzzy picture of the Sinclair copyright message even when there is no connection to the TV!).

Audio

The audio "beep" amplifier is based on the LM380N. Some care is needed with the layout and shielding of wires. At one point I had quite good reception of a French radio station.

The power is taken from the Spectrum's raw 9V supply. A three way switch provides for LOAD/SAVE/LOUDSPEAKER. Provision is also made to switch off the loudspeaker since there are occasions when the whole house does not want to be deafened by crashing space invaders.
"A silk purse from a sow's ear?" was the question posed in the title of this report. To a

Fig. 1. General arrangement of the improved Spectrum "workstation".

Fig. 3 (above). Details of suggested keyboard interface.
Fig. 2 (left). Outline arrangement of motherboard (*=features to be added).
considerable degree I believe that the project has succeeded though I might suggest that a Spectrum is really "a silk purse disguised as a sow's ear"; it is up to the owner to take off the disguise. Essentially it is Clive Sinclatr's "small is beautiful" philosophy which is it fault. To some extent, this has been corrected on later machines which at least have a buillin disk drive (but see last Sepiember's On Spec . . .) however, I don't think that the addon situation is catered for any beiter. It will selll become a spaghetti junction which is unsuitable for use in the home enviromment.

Mr. Harper has raised many interesting points. I am well aware that a number of regular readers have adapted/rebuilt the basic Spectrum for their own use and wonder whether any would care to offer some details of their own trials and tribulations? Furthermore, if anyone else can offer a solution to the motherboard problem, I would be extremely grateful to hear from them. Subject to the response, I would be more than happy to suggest a compromise backplane arrangement and provide some p.c.b. artwork which represents the
considered thinking of a number of Spectrum devotees.

Next Month: we shall be tackling another On Spec Project in the form of a Simple EPROM Programmer. In the meantime, if you would like a copy of our "On Spec Update", please drop me a line enclosing a large $(250 \mathrm{~mm} \times 300 \mathrm{~mm})$ adequately stamped addressed envelope. Mike Tooley, Depart ment of Technology, Brooklands Technical College, Heath Road, Weybridge, Surrey, KT13 8TT

EPROM PROGRAMMER (PE) SET277
 £25.25

Computer controlled unit tor 4 K Eproms.
EVENT COUNTER (PE) SET278 £31.50 4-dgin display counting for any logic source. MICRO-CHAT (PE) SET276 Computer controlled speech synthesiser MICRO-SCOPE (PE) SET247 $£ 64.50$ $£ 44.50$
Tums a computer into an oscilloscope.
MICRO-TUNER (PE) SET257 computer controlied, tuning aid and freq counter. MORSE DECODER (EE) SET269 £22.16 Computer controlled morse codedecoder.
POLYWHATSIT! (PE) SET252 £122.69 Amazing effects unit, ecro, revert, double tracking, phasing, flanging, looping, pitch change, REVERSE tracking! 8 BK memory
REVERB (EE) SET232
$£ 27.35$
Mano, with revert to 4 secs, echo to 60 ms .
RING MODULATOR (PE) SET231 £45.58 Fabulous effects generation, with ALC and VCO. STORMS! (PE)
$£ 29.50$ each unit Raw nature under panel contro!! Wind \& Rain SET250W Thunder \& Lightning SET250T

\star COMPUTER KITS

The sotware listing published with the computer kit projects are tor use with C64, PET and BBC computers.
MANY MORE KITS IN CATALOGUE
KITS inciude PCBs and instructions. Further details in catalogue. PCBs also available separately

VOICE SCRAMBLER (PE) SET287 £42.22
32 switchable channels to keep your communications confidential.
WEATHER CENTRE (PE)
Keep the Met Office in check and monitor the wind speed and direction, rain, temperature, soil moisture and sunny days.
Six detector circuits - KIT 275.1 \quad £18.07 Automatic metered control monitor circuit - KIT 275.2 £40.95 Optional computer control circuit - KIT $275.3 \quad$ £14.20 ELECTRONIC BAROMETER

(PE) SET285

£35.55 Computer controlled unit for monitoring atmospheric pressure.
GEIGER COUNTER (PE) SET264 £59.50 A nuclear radiation detector for environmental and geological monitoring. With built in speaker, meter and digital output. This project was demonstrated on BBC TV

DUAL-BEAM 'SCOPE KIT DETAILS IN CATALOGUE

Send $9 " x 4^{" ~ S A E ~ f o r ~ d e t a l l e d ~ c a r k i l o g u e, ~ a n d ~ w h i t ~ a l l ~ e n q u i r i e s ~}$ (overseas send f1.00 or 5 I.R.C.'s). Add 15\% VAT. Add P\&P Sets over $£ 50$ add $£ 2.50$. Others add $£ 1.50$. Overseas PAP in Sets over $£ 50$ add $£ 2.50$. Others add $£ 1.50$. Overseas PEP in
catalocue. Text photocoples - Gelver $204 \mathrm{£1.50}$, ohere 50 , catalogue. Text photocopies - Geiger 204 \& 1.50 , GuLE pus 50 p post or large SAE. Inaurtence 50p per E50. MAM. ORDER,
CWO, CHO, PO, ACCESS VSA. Telephone orders: Mon-Fr, 9 em CWO, CHQ, PO, ACCESS VSA. Telephone ordors:
$-6 p m .0689$ 37821. (Jounly answerng mechine).

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ (plus VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 30 pence (plus VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.

Electronic Components

WALTONS OF WOLVERHAMPTON

Established since 1947 - offering a complete range - I.C.s, transformers, switches, pots, capacitors, resistors, kits, speakers, test equipment, books and lots, lots more!
COME AND SEE US AT: MON-SAT 9.600 pm EOA WORCESTER STREET WOLVERHAMPTON

TEL:0902 2039

INTRRODUCING DIGITAL

FLFCTRONICS
The National Component Club can supply all the components required for the first six parts of this course (except battery) for just £12.

You will also receive free membership details, plus a special introductory pack of components worth over £5. Postal order or cheque to National Components Club, Dept. EE, Higher Ansford, Castle Cary, Somerset BA7 7 JG
Floswe add \&1 p\&p but do not add VAT.

Miscellaneous

CALIBRATION	
Noed not cost a fortune. For a free qoute on your D.M.M., oscilloscope or frequency counter. Send type of instrument, Make and Model details to:-	
31/2 DIGIT D.M.M. FROM $\mathbf{E 5 . 0 0}$ (calibrator to BS5750)	Callibration Division, Blueharrow Limited, Brookside Cottage, Main Road, Briphstone, I.O.W. PO304DJ
Tell $0983 \mathbf{7 4 0 8 4 5}$	

TRANSMITTER CIRCUIT DIAGRAMS-medium, shortwave, f.m., c.b. includes crystal controlled. Minimum 17 circuits. Cheques $£ 4.25$. A. Davies, 33 Gwaelodygarth, Merthyr Tydfil, CF47 8 YU .

VHF MICROTRANSMITTER KIT

 tuneable $88-115 \mathrm{MHz}^{2} 500$ metre range, sensitive electret microphone, size $25 \mathrm{~mm} \times 20 \mathrm{~mm}$. SPEClAL OFFER complete kit ONLY £3.95 POST FREE Access orders telephone 021-411 1821 (24 hrs) Cheques/P.O. s payable to. QUANTEK ELECTRONCS LTD (Dept EE), 45a Station Road, Northfield, Birmingham B31 3TE
REPAIR YOUR OWN

HI-FI SPEAKERS
send large stamped addressed envelope for catalogue of replacement drive units from stock to:

RTVCLTD.

21 High Street, Acton, London W3 6NG Tel: 01-992 8430 and 323 Édgware Road, London W2. Tol: 01-723 8432

PRINTED CIRCUIT BOARDS made to own requirements. For details send sae to Mr. B. M. Ansbro, 38 Poynings Drive. Hove Sussex BN3 8GR.

D.I.Y. COMPUTER/WORK STATION from wood. Plans $£ 2.75$. Direct Data. 31 Shaftesbury Street, Fordingbridge, Hants SP6 1JF

PRINTER BUFFER P.C.B. $£ 9.00$ and EPROM $£ 8.00$ (E.E. Feb. '87). Abandoned project. K. Phelan, 11 St. Lukes Road, Dundee.

76 Church St., Larkhall, Lanarkshire MLQ 1HE Phome acpe-8en5s5 Mon-Fri y-5 any other bime oese es333, FOR FAST QUOTES where. Prices range from only $£ 4.50$-large sas an whill wish on to buy such publishers as Henremann, Newnes, TV Tent combination E 350 plus Lsae; any other single item mx . BARGAHSS-FPEE S/Sht as arailethe se f9.50. Complete Repair \& Service Manuals-M 10. Video E19.50. Complete Repair Data with circur-wour ritz 50, Video E 10.50 plus LSAE BRINGS THE ONLY COMPREHENSIVE SERYCE SHEE? MANUALS. CATALOGUES ples free CHASSIS GUDE and in in vOUCHERS	

CIRCUIT DIAGRAMS
Most Makes, Models. Types, Audio, Must Symen Colour, Mono Televisions. Amateur Rund The Equipment, Vintage etc. $£ 3.50$ plas 154 State Make/Model/Type with onder.
Full Workshop Manual prices on request wull $L+5$
MAURITRON (EE), 8 Cherry Tree Raad. Chinnor, Oxfordshire OX 94 QY

TURN YOUR SPECTRUM with an ADC intho an oscilloscope for just $£ 9.95$. Timebase-10 and triggering program supplied on tape Mr. I. R. Curtis, 45 Kingsway, Dunstable, Beds LU U5 HE.

MONEY FROM YOUR COMPUTER: sae for free details. Feedback Books, 6 Alma Terrace. Selby, North Yorkshire YO8 0JY

Kits

NEW FEATURES! GTI CAR COMPUTER (EE JAN. '88). Now kpl, km, litres, kph or mpen spoed. fuel etc. $£ 64.50$ full kits only. Red tipless (greea £1.50 extra). MSE, 11 Church Gtoen Rood. Bletchley, Milton Keynes. U.K. Tel. (24 hrs) 00 s 641548.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Everyday Electronics for Insertions. I enclose Cheque/P. . For f...Cheques and Postal Orders should be made payable to Everyday Electronics) The advertisement must include an address, box number, or phone number as part of the paid wordage. Please remember to add VAT.

HEADING REQUIRED:

NAME
ADDRESS

EVERYDAY ELECTRONICS

Classified Advertisement Dept
6 Church Street, Wimborne, Dorset BH21 1JH
Telephone (0202) 881749
RATE: 30 p per word. minimum 12 words. VAT MUST BE ADOED

ELECTRONICS TECHNICIAN FULL-TIME TRAINING
 (FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL)
 2 YEAR
 BTEC National Diploma (OND) ELECTRONIC \& COMMUNICATIONS ENGINEERING (E) ectronics, Computing, Television, Video. Testing \& Fault Diagnosis) 1 YEAR
 BTEC National Certificate (ONC)
 ELECTRONIC ENGINEERING
 1 - INFORMATION TECHNOLOGY
 (Electronics, Sateilite TV. CD. Networks. Telecomms)
 2-ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis!
 3 -SOFTWARE ENGINEERING
 (Electronics, Assembler, BASIC, PASCAL CADCAM)
 4 - COMPUTING TECHNOLOGY
 (Electronics. Computing Sotware/Hardware, Microelectronic Testing Methods)
 10 MONTHS
 BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
 (Microprocessor Based Systems, Fault Diagnosss ATE, Robotics)
 THESE COURSES INCLUDE A HIGH PERCENTA GE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS NO ADDITIONAL FEES FOR OVERSEAS STUDENTS
 SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPLICANTS WITH PREVIOUS ELECTRONICS KNOWLEDGE
 O.N.C. 19th September 1988
 FULL PROSPECTUS FROM
 LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-3738721

NCT Ltd.

BE SUCCESSFUL WITH YOUR ELECTRONICS TRAINING

From as little as $£ 30.00$ you can be on the road to success and you may qualify for a career development loan! Our services and facilities for training use Open Learning techniques which enable you to study at home. We supply all the necessary workbooks, PCB, audio tapes, meters and components that enable you to update your skills in your chosen subject. Each Open Learning course is based upon interesting practical student centred assignments, so de successful and make a start. For more information on digital, analogue, fibre-optics, tutor service, career development loans, multiskill training and BTEC certification:

Telephone (0296) 613067 or write to NCT Ltd Bicester Hall, 5 London Road Bicester, Oxon 0X6 7BU

GE INO ELECTRONCS
PaSSTHOSE EXAMS mex ${ }^{3}$ MAX: THATPROUSC ${ }^{*}$ GOFPURHER, DOBBTITR DESIG AND BUID WTH PRPDE

* $\overline{\text { SAFE, }}$, NO SOLDERING, BATTERY POWERED. (Battery replacing power supply-price 10.00, P\&P 1.00
-Regulated -5 volts, 300 mA

THE ELEMENTARY LEARNING PACKAGE

THE SCHOOLS AND PROJECT CONSTRUCTORS

10 BOOKS
$1000+$ NEW COMPONENTS (25 CHIPS)
1 VERY HIGH QUALITY TESTMETER

1 RESISTOR COLOUR CODECALCULATOR

THE ADVANCED CONSTRUCTORS PACKAGE +P\&P 10.00

 12 BOOKS$2000+$ NEW COMPONENTS (50 ICs) 2 PROFESSIONAL TEST INSTRUMENTS $20+$ HIGH QUALITY TOOLS (+SOLDERING IRON) 1 REGULATED POWER SUPPLY

-PACKAGE

OVER 1300 PARTS PRICE 95.00

OVER 2100 PARTS PRICE 160.00 +P\&P 15.00

THE COMPLETE CONSTRUCTORS PACKAGE

15 BOOKS
$3000+$ NEW COMPONENTS (100 I C 's)
$3000+$ NEW COMPONENTS (100 I.C.'s)
2 PROFESSIONALTEST INSTRUMENTS PRICE 260.00
$20+$ HIGH QUALITY TOOLS (+SOLDERING IRON) +P\&P 20.00

[^3]-PRICE 65.00, P\&P 10.00
-PRICE 160.00, P\&P 15.00
ELECTRONICS SUCCESS

MAKE YOUR INTERESTS PAY！

More than 8 militon students throughout the world have found it worth their while！An ICS home－study course can help you get a better job，make more money and have more fun out of lifel ICS has over 90 vears experlence in home－study courses and is the largest correspondence school in the world．You leam at your own pace，when and where you want under the guidance of expert personal tutors．Find out how we can help you． irick one box only！

Electronics	\square	Radio，Audio and TV Servicing	\square
Basic Electronic Engineering（City \＆Guilds）	\square	Radio Amateur Licence Exam（City \＆Guilds）	\square
Electrical Engineering	\square	Car Mechanics	\square
Electrical Contracting／ Installation	\square	Computer Programming	\square
GCE over 40＇0＇and＇A＇level subjects	\square		

ILS

 Address International Correspondence Schools，Dept．ECSA9， $312 / 314$ High St， International Correspondence Schools，Dept．ECSA9，Sution，Surrey SM1 1PR．Tet： 016439568 or 0412212926 （24 hrs）

ADVERTISERS INDEX

ADVANCED CIRCUITS ．．．．． 671 MAGENTA ELECTRONICS 626 ADVANCED CIRCUITS BENCHMARK BOOK COMPANY

BICC－VERO ELECTRONICS ．．． 649 BIPAK 624 BK ELECTRONICS ．．．．．．Cover（iii） BULL，J．N．．Cover（ii） CIRKIT DISTRIBUTION ．．．．． 657 C SCOPE INTERNATIONAL ． 624 ELECTRONICS SUCCESS ．．． 683 ELTRAC ELECTRONICS 661 EVERETT WORKSHOP ACCESS
GREENWELD ELECTRONICS ．． 622 HART ELECTRONIC KITS ICS JAYTEE ELEC．SERVICES ．．．．． 682 LIGHT SOLDERING DEVELOP－ MENTS
LONDON ELECTRONICS COLLEGE

MAP MAPLINELECTRONICS Cover（IV MARCO TRADING NATIONALCOL TECH 679 NATIONAL COL．TECH．．．．．．． 683 ．．．．．．．．．．．．．．．．．．．．． 79
OMEGA ELECTRONICS ．．．．． 68
OMNI ELECTRONICS ．．．．．．．．． 671
PHONOSONICS
RACKZ PRODUCIS ．．．．．．．．．．．．． 67 RISCOMP …．．．．．．．．．．．．．．．． 679 SPECIALIST SEMICONDUCTORS

STEWART OF READING STAN WILLETTS
SUMA DESIGNS
TANDY
TK ELECTRONICS
ZENITHELECTRONIC
. .67
657

661

661
639
628
684
624

TUOQUT MICROELECTRONICS TUTORS

OP AMP TUTOR OT1

A versatile teaching aid for Operational Amplifier fundamentals．Includes socketed 741，Mode Control Switch，Two Potentiometers and close tolerance components．Will solve simple Differential Equations and generate waveforms etc

Op Amp Tutor OT1（Kit）$£ 27.50$ plus vat

TRTUTORKIT PRODUCTS
（Div．of Limrose Electronics Ltd．）， Llay Industrial Estate，Wrexham，
Clwyd，LL12 0TU，UK
Tel： 0978832285

252A HIGH STREET，HARLESDEN，LONDON NW10 4TD
 L TEL：01－965 5748
 TELEX： 265871 MONREF G Quoting 72：MAG31197

SPECIAL STOCK CLEARANCE SALE

－E M ORICES 4116（THOMI 0.40
41464 （NEC） 41464 （NEC） 2.56
6116 （HIT） LINEAR De VICES LM3177VVK
LM37VK
LM317T
 デ으응

䓵䓂䱈
4 HCCMO

[^4]OMP POWER AMPLIFIER MODULES
tation for quality, reliability and performance at a realistic price. Four models available to suit the needs of the professional and hobby market, i.e. Industry, Leisure, Instrumental and Hi-Fi ett. When comparing
prices, NOTE all models include Toroidal power supply, Integral heat sink, Glass fibre P.C.B. and Drive Supplied ready built and tested.

OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms. Frequency response 15 Hz $30 \mathrm{KHz}-$-3dB, T.H.D. 0.01%, S.N.R. -118 dB , Sens. for Max. output 500 mV at 10 K . Size PRICE 533 . 9 +

OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response 1 Hz R.M.S. into 4 ohms, Frequency Response $100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80 . Slew Rate $45 \mathrm{~V} / \mathrm{uS}, \mathrm{T} . \mathrm{H} . \mathrm{D}$. Typical $0,002 \%$, Input Sensitivity 45 V uS, T.H.D. Typical 0.002%, nput Sensitivit PRICE $£ 39.99+£ 3.00 \mathrm{P} \& \mathrm{P}$

OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response 1 Hz $100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rat $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.001%, Input Sensitivit SRICE, S.N.R. -130 dB . Size $300 \times 150 \times 100 \mathrm{~mm}$ PRICE $\mathbf{£ 6 2 . 9 9 + £ 3 . 5 0}$ P\&P

OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency Response 1 Hz $100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350. Slew Rate 60V/uS, T.H.D. Typical 0.0008%, Input Sensitivity 500 mV . S.N.R. -130 dB . Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE $£ 79.99+£ 4.50$ P\&P

NOTE: Mos-Feis are supplied as standard (100 KHz bandwidth \& Input Sensitivity 500 mV).

Vu METER Compatible witj our four amplifiers detailed above. A very accurate visual display employing 11 L.F.D. diodes 17 green, 4 red) plus an additional onloff indicator. Sophisticated logic control circuits for very fast rise and decay times. Tough mouldec plastic case, with tinted
acrylic front Size $84 \times 27 \times 45 \mathrm{~mm}$. acrylic front. Size 84×27
PRICE $\mathbf{f 8 . 5 0}+50 \mathrm{p}$ P\&P.

LOUDSPEAKERS $5^{\prime \prime}$ to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details

power range

 92dB. PRICE $£ 10.99$ Available with black grille $£ 1199$ P\&P $£ 150 \geqslant \mathrm{~A}$ $12{ }^{\prime \prime} 100$ WATt R.M.S. Hi-Fi/Disco
5002 magnet, $2^{\prime \prime}$ ally voce coil. Ground ally fixing escritcheon.
25 Hz Freq. resp. to 4 KHz . Sens 95 GB . PRICE $\mathrm{F} 28.60+£ 3.00$ P\&P eã.

Merenzle

M2KENZE
$2^{2} 85$ WATT R.M.S. C1285GP Lead Guitar/Keyboard/Disco.
$2^{\prime \prime}$ ally voice coil. Ally centre dome. Res. Freq. 45 Hz . Freq. Resp. to 6.5 KHz Sencs. 98 dE . PRiCE $£ 34.57+£ 3.00$

Res Freq. 45 Hz Freq. Resp. to 14 KHz . PRICE
$15^{\prime \prime} 150$ WATT R.M.S. C15 Bass Guitar/Disco
3"ally voice coil. Die-cast chassis. Res. Freq. 40 Hz Freq. Resp. to 4 KHz . PRECE f66. 39 - E 4.00 P \& P ea
$10^{\prime \prime} 60$ WATT R.M.S. 1060 GP Gen. Purpose/Lead Guitar/Kerber
$10^{\prime \prime} 60$ WATT R.M.S. 1060 GP Gen. Purpose/Lead Guitar/Keyboard/Mid. PA
$2^{\prime \prime}$ voice coil. Res. Freq. 75 Hz Freq. Resp. to 7.5 Kz Sens 99 dB . PRICE $£ 23$ 27- $£ 2.00$ P\&P.
$2^{\prime \prime}$ voice coil. Res. Freq. 75 Hz Freq. Resp. to 7.5 KHz Sens
$\mathbf{1 0}^{\prime \prime} 200$ WATI R.M.S. $\mathbf{C 1 0 2 0 0 G P}$ Guitar/Keyboard/Disco.

$15^{\prime \prime} 200$ WATR R.M.S. C C15200 High Power Bass.
Res. Freq. 40 Hz . Freq. Resp to 5 KHz . Sens 101dB. PRICE $£ 73.26+\mathrm{E} 4.00 \mathrm{P} \& \mathrm{~F}$
Res, Freq. 40 Hz . Freq. Resp to 5 KHz . Sens 101 dB . PRICE
$55^{\circ} 400$ WATH. M. C15400 High Power Bass.
Res Freq. 40 Hz . Sens. 102 dB . PRICE $£ 94.12+\mathrm{f} 4.00$ P\&P.

WEM

5" 70 WATT R.M.S. Multiple Array Disco eto
$1^{\prime \prime}$ voice coil. Res. Freq. 52 Hz . Freq. resp. to 5 KHz . Sens. 89 dB . PRICE $£ 22.00-\mathrm{E} 1.50 \mathrm{P} \& \mathrm{P}$ ea
150 WATT R.M.S. Multiple Array Disco etc.
voice coil. Res. Freq. 48 Hz . Freq. resp. to 5 KHz Sens. 92 dB . PRICE $£ 32.00-\mathrm{El} .50 \mathrm{P} \mathrm{\& P}$ ea

$2^{\prime \prime} 300$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens. 92 dB . PRICE $£ 36.00+£ 2.00 \mathrm{P} \&$; ee
$1^{\prime \prime} / 2^{\prime \prime}$ voice coil. Res. freq. 35 Hz Freq. resp. to 4 KHz . Sens. 94 dB PRICE $£ 47.00+£ 3.00 \mathrm{P} \& \mathrm{P}$ ea.
SOUNDLAB (Full Range Twin Cone)
5" 60 WATR R.M.S. Hi-Fi/Multiple Array Disco etc

o^{v} voice coil. Res. Freq. 56 Hz . Freq. Resp. to 20 KHz . Sens. 89 dB . PRICE $£ 10.99+£ 1.50 \mathrm{P} \& \mathrm{Pe}$ e
$8^{\prime} 60$ WATT R.M.S. Hi.FF/Mutiple Array Disco etc.
$1^{1 / 4^{\prime \prime}}$ voice coil. Res. Freq. 38 Hz . Freq. resp. to 20 K
$11 / 4^{\prime \prime}$ voice coil. Res. Freq. 38 Hz . Freq. resp. to 20 KHz . Sens 89 dB PRICE $\mathrm{f} 12.99+£ 7.50 \mathrm{P} \& \mathrm{Pea}$
$1 / 4^{\prime \prime}$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 15 KHz Sens 89 dB . PRICE $£ 16.49+£ 2.00 \mathrm{P} \& \mathrm{Pe}$

2010OOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt). Price $\mathbf{f 8 . 6 2 + 7 5 p}$ 3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 volt) Price $£ 14.49+75$ p P\&
SIMGLE CHANNEL RADIO CONTROLLED TRANSMITTER/RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}$ ($9 / 12$ volt). Price $\mathbf{E 1 7 . 8 2}$. Transmitter $80 \times 50+15 \mathrm{~mm}$ ($9 / 12$ volt). Price $\mathbf{£ 1 1 . 2 9 + 7 5 p}$ P\&P each. SAE for complete

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L \& R graphic equatisers and twin 10 segment LED Vu meters. Many providing a useful combination of the following. 3 Turntables (Mag), 3 Mics, 4 Line plus Mic with talk
over switch. Headphone monitor, Pan Pot $L \& R$ Masover switch. Hea
ter Output c
$360 \times 280 \times 90 \mathrm{~mm}$
$360 \times 280 \times 90 \mathrm{~mm}$ controls. Output

B. K. ELEGTROTIOS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA ESSEX. SS2 6TR TEL: 0702-527572

[^0]: THIs book is an enlarged and updated version of an earlier work, Long Distance Television Reception. It claims to be a "practical guide for the beginner and a source of reference for the established enthusiast", so I decided to review it mainly from the beginners point of view. Reception of signals from distant TV broadcast stations, especially in other countries, is not normally possible with domestic aerials and receivers. This book explains why this is so, how they can be received, and how such signals can be identified.

 Reception of DX (long distance) signals is greatly affected by the state of the Troposphere and/or the Ionosphere, as well as by such factors as meteor showers, auroral conditions, lightning, and even flying aircraft. A chapter on propagation covers all these in an interesting and not too complicated way for beginners.

[^1]: COIL DESIGN AND CONSTRUCTION MANUAL B. B. Babani

 A complete book for the home constructor on "how to transformers. Practically every possible type is dis cussed and calculations necessary are given and ex plained in detail. Although this book is now rather old, with the exception of torroids and pulse transformers $\begin{array}{ll}\text { little has changed in coil design since it was written } \\ 96 \text { pages } & \text { Order Code } 160\end{array}$

[^2]: MICROPROCESSING SYSTEMS AND CIRCUITS F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.IM

 A truly comprehensive guide to the elements of micro processing systems which really starts at the beginning Teaches the reader the essential fundamentals that are $\begin{array}{ll}\text { so important for a sound understanding of the subect } \\ 256 \text { pages } & \mathbf{E r d e r} \mathbf{C o d e} \mathbf{~ B P 7 7 5}\end{array}$

[^3]: - CONSTRUCTORS SOLDERING PACKAGE-TEMPERATURE CONTROLLED IRON, SOLDER, 6 SOLDERING TOOLS
 - PROFESSIONAL SOLDERING PACKAGE-PROFESSIONAL TEMPERATURE CONTROLLED IRON, ANTISTATIC MAT. -.-1/2kg SOLDER, 10 PROFESSIONAL SOLDERING TOOLS
 - CONSTRUCTORS TOOLS PACKAGE -OVER 50 HIGH QUALITY ELECTRONICS TOOLS

 PROFESSIONAL TOOLS PACKAGE-OVER 100 PROFESSIONAL ELECTRONICS TOOLS

[^4]: Published on approximately the first Friday of each month by Wimborne Publishing Ltd．， 6 Church Street，Wimborne，Dorset BH2I IJH．Princed in Engiand bs Benham \＆Co．Limited，Coichester Subscriptions INLAND f14．50 and OVERSEAS f17．50 payable to＂Everyday Electronics＂Subscription Department， 6 Church Sreet，Wimborne Dorset BHII IJH．EVERYDAY ELECTRONICS is sold subject to the following conditions，namely that it shall not，without the written consent of the Publishers first having been given，be lent，resold，hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover，and that it shall not be lent，resold，hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising，literary or pictorial matter whatsoever．

