A Mighty Micromite In Action
Setting Up A Local Group
The Circuit Inspector

The Attache
One of a growing band of small business machines
He had never seen my computer and he was obviously impressed by the pile of perfectly typed overdue account letters it had just produced.

"How can you possibly afford a computer system in such a small company?" he asked, in that direct way suppliers have when they think that you may be overspending.

I had been anticipating the question. I had seen him glancing enviously at the Cash Flow Forecast, Sales analysis Report, and Back Order Schedule I had been referring to since he arrived.

He had realised that this was the first time ever that I had been able to put my finger on the facts which I need to schedule my next three months deliveries from him.

"I'll buy you lunch if you can get within £1,000 of the cost of the system," I said, generously, because it was his turn to pay today. "And I'll tell you as much about it as you want to know." I added.

"Well I can see it does the job one of those word processing machines does, and it's doing most of your accounting — but what does it actually consist of?"

Here was my chance to impress him with my very limited knowledge of the equipment itself.

"Well — here's the visual display terminal with the keyboard. As you can see it has upper and lower case characters and you use the keyboard like a typewriter. This box here is the computer itself which has 40K of RAM," I said quickly because that's all I know about it and I was hoping to avoid his next question. However, he butted in —

"What does that mean?"

"Er, well it's the amount of memory it's got."

"It couldn't be much in a box that size," he said.

"Well all I know is that it certainly seems to be enough to cope with any of the programs I use," I said defensively, "and besides these disk drives hold over half a million characters of information which the computer can read whenever it needs them."

"What's that in terms of names and addresses for instance?" he asked.

"Assuming 150 characters for each one it's about £3,800. And this is the printer which gives a typewriter quality letter or report."

"What else can it be used for?" he asked.

"Well this system is the top end of the range," I said proudly, "but other cheaper models are used for everything from process control to medical interviewing, from playing games to student instruction, and from statistical analysis to travel booking."

"You'll be telling me it can talk next," he said with a hint of sarcasm in his voice.

"Oh did I forget to mention that?"

"Oh no, you've told me enough already — I know it must be cheaper than I would expect because otherwise you couldn't have afforded it, without being rude, but even so it must have cost at least £10,000."

"Well you're right," I said tantalisingly, "it is cheaper than you would expect. Even with the Speech unit it only cost me £5,673.24 including the Chancellor's 8%."

"How come I always end up buying you lunch?" he said.
Microcomputers from the world's largest full-line manufacturer

The C2-4P Mini Floppy

20K RAM
Basic + Assembler
Personal, Games, Small
Business & Educational Disks
90K Mini Floppy Storage
Printer Interface
OS 65D V30 Operating System
Only £1595.00 Complete + VAT.

Economic expandable systems with good disk based software, available now.
See your nearest dealer for full price list and catalogue.

Other systems available include the C3 OEM with 32K RAM, 512K of disk storage and BASIC as standard. £2950.00 + VAT. (FORTRAN and COBOL available as extras.) All dealer enquiries direct to Abacus Computers Limited.

Abacus Computers Limited
62 New Cavendish Street
London W1 Tel: 01-580 8841

Mutek
Quarry Hill, Box Corsham
Wiltshire SN14 9HT
Tel: 0225-743289

Thames Personal Computers
13 Wilmot Way Camberley
Surrey Tel: 0276-27860

Linn Products
235 Drakemire Drive
Castlemilk Glasgow

G45 95Z Scotland
Tel: 041-634 3860

U Microcomputers
PO Box 24 Northwich
Cheshire CW8 1RS
Tel: 0606-75627
Get the most out of your computer!

Creative Computing

#1 in applications and software!

No computer magazine gives you more applications than we do! Games, Puzzles. Sports simulations. CAI. Computer art. Artificial intelligence. Needlepoint. Music and speech synthesis. Investment analysis. You name it. We’ve got it. And that’s just the beginning!

Whatever your access to computer power—home computer kit, mini, time-sharing terminal—Creative Computing is on your wavelength. Whatever your computer application—recreation, education, business, household management, even building control—Creative Computing speaks your language.

Read through pages of thoroughly documented programs with complete listings and sample runs. All made easy for you to use. Learn about everything from new software to microprocessors to new uses for home computers. And all in simple, understandable terms. And there’s still more. Creative Computing discusses creative programming techniques like sort algorithms, shuffling and string manipulation to make your own programming easier and more efficient.

We can even save you time and money. Our extensive resource section is filled with all kinds of facts plus evaluations of hundreds of items. Including microcomputers, terminals, peripherals, software packages, periodicals, booklets and dealers. We also give you no-nonsense equipment profiles to help you decide which computer is best for you—before you spend money on one that isn’t.

We’ve got fiction too. From the best authors in the field, like Asimov, Pohl and Clarke. Plus timely reviews of computer books, vendor manuals and government pamphlets. And so much more!

Subscribe today and receive your copy direct from America. Avoid disappointment in the event your shop runs out and save time and money by subscribing. Please allow 8 to 12 weeks for subscription to begin.

Back numbers (Volumes 3 and 4) and collected annual volumes (1 and 2) are available; also Basic Computer Games; Microcomputer Edition, the best-selling book of computer games in the world. See coupon for prices.

Available in selected computer shops and by post.
CONTRIBUTORS:

We welcome interesting articles written simply and clearly. You need not be a specialist to write for us. MS should not be more than 3000 words long, lines double spaced, with wide margins. Line drawings and photographs wherever possible. Enclose a stamped self-addressed envelope if you would like your article returned.

Manufacturers, suppliers and dealers are welcome to contribute technical articles, and send product information, but we are pledged to an independent viewpoint and will publish evaluations and reasoned criticism or praise, space permitting. Naturally there will be right of reply. Views expressed in articles are not necessarily those of Personal Computer World.

We may make arrangements to offer our readers products at special prices, for a limited period, in line with the policy outlined above.

Published monthly by Intra Press, 62A Westbourne Grove, London W2. Phone: 01-229 5599. Contents fully protected by copyright. All rights reserved. Subscription rates: Britain £6 for 12 issues. Prices include postage. USA - $10 for six issues, $20 for 12 issues. Continenal and elsewhere E5.60 for twelve issues. Prices include postage.
<table>
<thead>
<tr>
<th>QTY.</th>
<th>DIODES/ZENERS</th>
<th>QTY.</th>
<th>C MOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914</td>
<td>100v 10mA .05</td>
<td>4000</td>
<td>15</td>
</tr>
<tr>
<td>1N4005</td>
<td>600v 1A .08</td>
<td>4001</td>
<td>15</td>
</tr>
<tr>
<td>1N4007</td>
<td>1000v 1A .16</td>
<td>4002</td>
<td>20</td>
</tr>
<tr>
<td>1N4148</td>
<td>75v 10mA .05</td>
<td>4004</td>
<td>3.95</td>
</tr>
<tr>
<td>1N4733</td>
<td>5.1v 1 W Zener .25</td>
<td>4006</td>
<td>95</td>
</tr>
<tr>
<td>1N753A</td>
<td>6.2v 500 mW Zener .25</td>
<td>4008</td>
<td>75</td>
</tr>
<tr>
<td>1N758A</td>
<td>1v 25</td>
<td>4009</td>
<td>35</td>
</tr>
<tr>
<td>1N769A</td>
<td>12v .25</td>
<td>4010</td>
<td>35</td>
</tr>
<tr>
<td>1N5243</td>
<td>13v .25</td>
<td>4011</td>
<td>20</td>
</tr>
<tr>
<td>1N5244B</td>
<td>14v .25</td>
<td>4012</td>
<td>20</td>
</tr>
<tr>
<td>1N5245B</td>
<td>15v .25</td>
<td>4013</td>
<td>40</td>
</tr>
<tr>
<td>4-pin pcB .20 Ww .35</td>
<td>4014</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>14-pin pcB .20 Ww .40</td>
<td>4015</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>19-pin pcB .25 Ww .96</td>
<td>4016</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>20-pin pcB .35 Ww .95</td>
<td>4017</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>22-pin pcB .35 Ww .95</td>
<td>4019</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>24-pin pcB .35 Ww .95</td>
<td>4020</td>
<td>.85</td>
<td></td>
</tr>
<tr>
<td>28-pin pcB .45 Ww 1.25</td>
<td>4021</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>40-pin pcB .50 Ww 1.25</td>
<td>4022</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>2 Amp Bridge 100-pv .95</td>
<td>4023</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>25 Amp Bridge 200-pv 1.50</td>
<td>4024</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QTY.</th>
<th>SOCKETS/BRIDGES</th>
<th></th>
<th>QTY.</th>
<th>TRANSISTORS, LEDs, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pin pcB .20 Ww .35</td>
<td>4025</td>
<td>.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-pin pcB .20 Ww .40</td>
<td>4026</td>
<td>.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-pin pcB .25 Ww .96</td>
<td>4027</td>
<td>2.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-pin pcB .35 Ww .95</td>
<td>4028</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-pin pcB .35 Ww .95</td>
<td>4029</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-pin pcB .35 Ww .95</td>
<td>4030</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molex pins .01 To-3 Sockets .25</td>
<td>4031</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Amp Bridge 100-pv .95</td>
<td>4032</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Amp Bridge 200-pv 1.50</td>
<td>4033</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QTY.</th>
<th>9000 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9301</td>
<td>.85 9322 .65</td>
</tr>
<tr>
<td>9302</td>
<td>9601 .20</td>
</tr>
<tr>
<td>9316</td>
<td>1.10 9102 .45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QTY.</th>
<th>MICRO’S, RAMS, CPU’S, E-PROMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT13</td>
<td>1.50 21078-4 4.95</td>
</tr>
<tr>
<td>BT23</td>
<td>1.50 2114 9.50</td>
</tr>
<tr>
<td>BT27</td>
<td>2.00 2125 6.25</td>
</tr>
<tr>
<td>BT57</td>
<td>1.00 2076 10.50</td>
</tr>
<tr>
<td>741188</td>
<td>3.00 2716 D.S. 34.00</td>
</tr>
<tr>
<td>4085</td>
<td>1.25 2718 (65) 23.95</td>
</tr>
<tr>
<td>1722A</td>
<td>4.50 2042 10.50</td>
</tr>
<tr>
<td>AM9501</td>
<td>4.00 4116 11.95</td>
</tr>
<tr>
<td>6800</td>
<td>1398 1.65</td>
</tr>
<tr>
<td>LM331</td>
<td>3.00 6801 7.95</td>
</tr>
<tr>
<td>MM5312</td>
<td>1000 8080 7.50</td>
</tr>
<tr>
<td>MM5367</td>
<td>3.50 8212 2.75</td>
</tr>
<tr>
<td>MM5389</td>
<td>2.95 8214 2.95</td>
</tr>
<tr>
<td>TR1820</td>
<td>2.05 8216 3.50</td>
</tr>
<tr>
<td>UPD414</td>
<td>4.95 8224 3.25</td>
</tr>
<tr>
<td>Z20A</td>
<td>20.50 8228 6.00</td>
</tr>
<tr>
<td>Z20</td>
<td>7.50 8251 7.50</td>
</tr>
<tr>
<td>Z80</td>
<td>8235 18.50</td>
</tr>
<tr>
<td>Z80P10</td>
<td>10.50 8253 18.50</td>
</tr>
<tr>
<td>2102</td>
<td>1.50 8255 8.50</td>
</tr>
<tr>
<td>2102L</td>
<td>1.75 TMS4409 9.95</td>
</tr>
</tbody>
</table>

LINEARS, REGULATORS, etc.

| QTY. | MCT2 | .95 | LM323K | 5.05 | LM380 (B-14 Pin) | 19 |
|------|------|------|--------|------|----------------|
| 8038 | 3.95 | LM324 | 1.25 | LM708 (B-14 Pin) .35 |
| 8039 | 1.75 | LM336 | .75 | LM7755 |
| 801 | .85 | 74605 (340T6) .95 | LM723 .40 |
| 8038 | 2.85 | 74304T12 .95 | LM726 2.60 |
| LM380H | 1.85 | 74305Y15 .95 | LM719A 2.50 |
| LM309K (340K-5) | 1.50 | 74308T18 .95 | LM741 (B-14) .35 |
| 7430 | .85 | 74302T24 .95 | LM742 1.10 |
| 7410 | .75 | 74306K15 .25 | LM1307 1.40 |
| 7418 | 1.75 | 74306K15 .25 | LM1468 .65 |
| 74306XH | .79 | 74306K12 .25 | LM1468.65 |
| LM2030XH | .79 | LM2030XH | .25 |
| 7406X24 | .79 | LM2030X24 | .25 |
| 7406 | .79 | LM2030X24 | .25 |

SPECIAL DISCOUNTS

- **Total Order**
 - **Deduct**
 - $25-$59 10%
 - $100-$300 15%
 - $301-$1000 20%

- **HOURS:**
 - 9:00 A.M. - 6:00 P.M., Mon. thru Sun.

INTEGRATED CIRCUITS UNLIMITED

7889 Clairmont Mesa Blvd. ♦ San Diego, California 92111 U.S.A.

NO MINIMUM

COMMERCIAL AND MANUFACTURING ACCOUNTS INVITED

ALL PRICES IN U.S. DOLLARS. PLEASE ADD POSTAGE TO COVER METHOD OF SHIPING.

ORDERS OVER $100 (U.S.) WILL BE SHIPPED AIR NO CHARGE.

PAYMENT SUBMITTED WITH ORDER SHOULD BE IN U.S. DOLLARS.

ALL ICS PRIME/GUARANTEED. ALL ORDERS SHIPPED SAME DAY RECEIVED.

CREDIT CARDS ACCEPTED:

- Phone (714) 278-4394
- BarclayCard / Access / American Express / BankAmericard / Visa / MasterCharge

TELEX #:

CABLE ADDRESS: ICUSD

TELEX #:

- **HOURS:** 9 A.M. - 6 P.M., Mon. thru Sun.
Editorial

Young People

Back in the days when I was a committed chess player I once graciously sat down to give a twelve year old boy a lesson, or perhaps two, in chess. Three games and three defeats later I staggered from my chair wondering what had hit me.

Duncan Willis (see photo) exhibited his 77-68 at our show. He built the whole thing himself, making only one call to Tim Moore at Newbear.

Mark Colton (see “Punchlines”) was seventeen at the time he wrote his articles for PCW.

I’m delighted. I sincerely think that the word “world” in PCW is all important — it means accommodating (though not necessarily endorsing) varied interests, opinions, levels of knowledge and age groups. (I have an article by a seventy-eight year old coming up.)

My only anxiety (and that’s not too strong a word) is that we will not receive articles by women. I would like to issue a strong invitation to women readers to contribute to PCW.

Duncan Willis shows off his 77-68 Micro at the PCW Show. Photo: Nobby Clark, The Observer

Publisher’s Letter

Dear Reader,

This is our anniversary issue, I would like to thank everyone, readers and advertisers, for their support.

Acquaintances of mine in the publishing business wonder how we get such interesting readers’ letters. I reply, “because we have interesting readers”.

We’re both praised and criticised by readers — but every single letter is a letter from a friend.

I have some great news. We have a stand at the Microsystems 79 exhibition at the West Centre Hotel, Lillie Road, London, SW6 — the same exhibition at which we launched PCW last February. We’re going to use this occasion to launch yet another publication — Computertrader. It will be full of trade news and information, and will be a monthly.

And in mid-March, if all goes well, there will be a third string to our bow. This will be a bimonthly magazine, Computers And Small Business Applications. No coincidence that its acronym is CASBA!

SUBSCRIPTIONS

When PCW started publication, we had a special six-issue offer. When these subscriptions expired, we sent out reminders.

The renewal rate was 70%!

PCW reader loyalty is becoming a byword in publishing. If you’re having difficulty in obtaining PCW at your newsagent, take our subscription. You can find the details at the foot of P.3.

AN ADDITIONAL ADVERTISING REPRESENTATIVE REQUIRED FOR PCW

More and more companies are taking advantage of PCW as the advertising medium for small computers in Europe.

This means expanding our service to advertisers.

Our top priority is therefore an advertising representative with some experience and a flair for working on his own initiative.

Write to the Publisher,

PCW, 62a Westbourne Grove, London, W2

with details of yourself and to arrange an interview.

REQUEST TO READERS

Personal Computer World, for its future publishing projects, is now compiling a comprehensive list of magazines, periodicals and books on personal computers and microprocessor applications, as well as manufacturers, dealers and suppliers.

Any reader living in Europe who is able to help — please send your information to

PCW (Information Publications)

62A Westbourne Grove, London W2

England
THE RESEARCH MACHINES 380Z COMPUTER SYSTEM

THE RESEARCH MACHINES 380Z
A UNIQUE TOOL FOR RESEARCH AND EDUCATION

Microcomputers are extremely good value. The outright purchase price of a 380Z installation with dual mini floppy disk drives, digital I/O and a real-time clock, is about the same as the annual maintenance cost of a typical laboratory minicomputer. It is worth thinking about!

The RESEARCH MACHINES 380Z is an excellent microcomputer for on-line data logging and control. In university departments in general, it is also a very attractive alternative to a central mainframe. Having your own 380Z means an end to fighting the central operating system, immediate feedback of program bugs, no more queuing and a virtually unlimited computing budget. You can program in interactive BASIC or, using our unique Text Editor, run very large programs with a 380Z FORTRAN Compiler. If you already have a minicomputer, you can use your 380Z with a floppy disk system for data capture.

What about Schools and Colleges? You can purchase a 380Z for your Computer Science or Computer Studies department at about the same cost as a terminal. A 380Z has a performance equal to many minicomputers and is ideal for teaching BASIC and Cestil. For A Level machine language instruction, the 380Z has the best software front panel of any computer. This enables a teacher to single-step through programs and observe the effects on registers and memory, using a single keystroke.

WHAT OTHER FEATURES SET THE 380Z APART?
The 380Z with its professional keyboard is a robust, hardwearing piece of equipment that will endure continual handling for years. It has an integral VDU interface — you only have to plug a black and white television into the system in order to provide a display unit — you do not need to buy a separate terminal. The integral VDU interface gives you upper and lower case characters and low resolution graphics. Text and graphics can be mixed anywhere on the screen. The 380Z has an integral cassette interface, software and hardware, which uses named cassette files for both program and data storage. This means that it is easy to store more than one program per cassette.

Owners of a 380Z microcomputer can upgrade their system to include floppy (standard or mini) disk storage and take full advantage of a unique occurrence in the history of computing — the CP/M™ industry standard disk operating system. The 380Z uses an 8080 family microprocessor — the Z80 — and this has enabled us to use CP/M. This means that the 380Z user has access to a growing body of CP/M based software, supplied from many independent sources.

380Z mini floppy disk systems are available with the drives mounted in the computer case itself, presenting a compact and tidy installation. The FDS-2 standard floppy disk system uses double-sided disk drives, providing 1 Megabyte of on-line storage.

Versions of BASIC are available with the 380Z which automatically provide controlled cassette data files, allow programs to be loaded from paper tape, mark sense card readers or from a mainframe. A disk BASIC is also available with serial and random access to disk files. Most BASICS are available in erasable ROM which will allow for periodic updating.

If you already have a teletype, the 380Z can use this for hard copy or for paper tape input. Alternatively, you can purchase a low cost 380Z compatible printer for under £300, or choose from a range of higher performance printers.

380Z/32K complete with SINGLE MINI FLOPPY DISK SYSTEM MDS-1
£1787.00

380Z/16K System with Keyboard
£965.00

RESEARCH MACHINES Computer Systems are distributed through SINTEL, P.O. Box 75, Chapel Street, Oxford. Telephone: OXFORD (0865) 49791. Please contact SINTEL for the 380Z Information Leaflet. Prices do not include VAT @ 8% or Carriage.
Letters

PUZZLE DAZZLE — No. 2

I enclose a small puzzle for those of your readers that own MK14 micro's. I hope you can find room in your magazine for it.
P.S. Anyone for a MK14 Users' Club?

MK14 Puzzle

A program occupies memory locations OF12 to OFF0. A programmer decides to make the program loop back to OF12. He cannot use the registers P1, P2 or P3, and the program must jump directly from OFF0 to OF12.

What coding must he write?

Geoff Phillips,
6 Fooford Road,
London NW6 6HP

PCW £5 goes to Geoff Phillips for setting the puzzle, and £5 each to first three correct solutions received. PCW

Catch them young

As a teacher of Mathematical Sciences I am finding that pupils aged 14-15 with only a few weeks' experience of computing are more enthusiastic than those older who work on larger machines. This is not to suggest that a pupil's approach to computing is anything but superficial, but it does point to the question of what age should be the right age for computer-based education.

Pupils aged 14-15 with only a few weeks' experience of computing are more enthusiastic than those older who work on larger machines.

The pupils are then asked to write a short one that they can experiment with - computer art, Pet puppets, and so on.

A short one that they can experiment with.

I feel that although many of the articles are meaningless to them, there is great potential for them, and for education in general in this area. However, it is important that students should be given an opportunity to gain a sense of satisfaction from their achievements.

The point of this letter is that with the rank beginner in computing - keep up the good work with the programs.

D. Adams, (Ellis Guilford Comprehensive School)
387 Spring Lane, Mapperley Plains, Nottingham.

Vintage Whine

I have subscribed to PCW before I ever dreamed of actually owning a computer. Now that I do and I have tasted the joys and the frustrations of all that go with being awakened to this new and exciting world, I have something to say.

I don't think I should complain too much about the fact that the companies involved in marketing personal computers are pathetic in their lack of available peripherals. This is the fact that the British do business. They just happen to be fortunate to have caught a highly successful bandwagon. In the States these great entrepreneurs would last about 31/2 minutes!

I don't really want to complain about the fact that there is a rip-off market going on in software that is over-priced, full of errors and mechanically faulty.

But what I do want to complain about are the snide remarks and the negative attitude that cropped out when I mention that I bought my personal computer from Lasky's.

Until dealers realise the reality that there are thousands of prospective customers who cannot afford to blow hundreds of pounds in cash, they are going to have to be satisfied with a small, one-sided market.

Ron Singer,
07 Nelson House, Dolphin Square, London SW1V 3MY

PCW A glance through the magazine shows that recently the situation has improved PCW

Mid lobated Title?

The article on computing in geography by J. D. and T. C. Lee in your November issue cannot be allowed to pass without comment. There would have been no objection if it was called 'Rote learning with a computer' and 'Program to test general knowledge'.

Only in a few schools is the type of geography described still taught and even the pupils who are taught how to look up information of that sort, should they ever need it, and the majority of school geography is spent in a study of the way in which society interacts with its environment in various parts of the world. Pupils are introduced to such varied topics as North Sea oil, its origin, extent, exploitation, and impact; to the problems of declining industries, third world agriculture, and the growing range of urban and rural planning problems. (Computers are used as a teaching aid in all these topics).

The content of geography and the skills taught within geography now produce students able to understand major political and social issues without prejudice. It is a rapidly developing subject, and as such there is a need to maintain the high standards of teaching set by those who teach geography.

If it doesn't make any sense, try verbalizing what's on the
screen. If that doesn't help, check your program lines very carefully. Your PET is trying to tell you something!

Inconvenient? 'HOW TO CONTROL YOUR BASIC FUNCTIONS', Christopher Smith, (PCW November 1978) has taken a sledgehammer to crack an egg, with the suggested method for avoiding PET retuning to command mode when the RETURN key is pushed in response to an Input request.

10 INPUT "ENTER YOUR AGE [2 RIGHT]" [3 LEFT]" ;
20 G$ = VAL(G$) ; IF G$ = 0 THEN PRINT " [2 UP] " ; GOTO 10

This line uses the program listing convention for PET from the American magazine People's Computers.

Whenever square brackets appear in the listing, neither the brackets nor the text enclosed should be typed literally. Instead, the text between the brackets should be translated to keystrokes. For example, [2 RIGHT] means press the second CRSR key twice.

John Collins, 90 Charing Cross Road, London WC2H OJE

Programmed Profits

I can only conclude from the somewhat erratic delivery of my copy of PCW, and the complete failure of the November issue to arrive at all, that your computerised system for handling subscriber lists (surely you must have one, with a name like PCW) has not been introduced to software quality assessment techniques. Or was it that the programmer found that he could save the company a lot of money by issuing only 90% of the copies, and blaming the rest on software errors. This opens a whole new field of business economics!

May I congratulate you on your sortie into the problems of Assembler writing, though I would have liked to have seen an introductory article covering the general principles of syntax decoding. Also, how about an occasional page or two of useful routines (e.g. 16-bit or floating point multiply etc.), along the lines of the technical tips featured in most electronics magazines?

J. R. Keeneally, 31 St. Helens Road, Weymouth, Dorset DT4 9DY

PCW This ingenious approach to increased profits hadn't occurred to us, but now....., PCW

A PET tip

Here is a tip for PET 2001/8 users who find themselves inputting a null string to an input statement. PET recognises the keyboard as device number 0. The screen as device number 3.

10 OPEN 1.0,0
20 INPUT #1, A$
30 IF A$ = "END" THEN 100 (OR, IF A$ = " THEN 20; INSTEAD OF IF A$ = "END")
40 INSTRUCTIONS FOR WHAT TO DO WITH A$ GO HERE THEN HAVE A GOTO 20 TO RETURN TO LINE 20
50
60
70
80
90
100 CLOSE 1
(Line 30 allows you out of loop.)

No question mark will appear for the input statement, but as long as a string variable is used a null input will not cause the program to return to command level.

Thomas Turnbull (Petrof Consultants), 49 x 9th Row, Ashington Northumberland NE63 8JY

Correction to a correction... infinite regression?

Re Personal Computer World, November 1978, p. 39 — your corrections to July Punchlines are wrong in one diagram. The rectifier circuit as given would be extremely inefficient if it worked at all — it should be:

AC INPUT

Most constructors would know this but someone who did not would find the rectifier getting very hot and the output unsuitable.

W. G. C. Austin, 33 Slingsby Gardens, Cochrane Park, Newcastle-upon-Tyne NE7 7RX

PCW The editor is at the moment in a monastery, being scourged

READERS

Using a SORCERER, IMSAI, MITS800, HORIZON, VECTOR MZ..... or any other small system? Write to us.

PCW

Zeal for the Z80

You must ask Mike Dennis to stop making vague promises to "get around" to designing a Z80 based system! Z80 architects are conspicuous by their absence; having half-volunteered for the task, perhaps he should be sponsored by PCW to produce the best Z80 based home system to date.

Looking at other projects from the early growth-period of British personal computing we can learn from the experience and criticism which they have raised.

The first point is: that anyone choosing a 6800 or 8080 as the heart of a system is patently "chickenning-out" of the use of the slightly-more-daunting Z80. Regardless of the claimed comparative ease of using the other devices, it must be obvious that the 158 - Instruction-Set Z80 offers greater ultimate versatility and the possibility of tighter programming — particularly in its efficiency when applied to compilers, interpreters and assemblers, and probably also in operating systems.

Before Mike Dennis crawls into his den for a lengthy stint at his self-imposed task, could I start the ball rolling by 'chipping-in' with a skeletal basis of the system I envisage, and hope for comment from other readers which can further assist our design as he settles to his monastic task?

The circuit should — unlike some — provide for full use of the whole Z80 Instruction Set. Circuitry should be chosen for cost effectiveness, and need not be restricted to the Z80 'family' of chips. Whether or not to use a 'conventional' bus-structure is a moot point; ribbon connectors can, in many applications, prove both more convenient and reliable, and cheaper than a bus-and-board structure. 'Chassis-bashing', in the earlier days of electronics, was reasonably cheap and effective, and present indications are that it still is.

The power unit should be generous in capacity.

Memory should be at the choice of the user: either static or dynamic-with-refresh, as alternatives. This should also take into account a reasonably generous amount for ROM (for a good (and efficient) BASIC, providing three levels of mathematics: integer, fixed-digit and some larger number of digits; six digits can be common to both the integer and a simple floating point system, while other system should leave no-one critical of the machine as a number-cruncher.

An efficient monitor, editing capacity and operating system should be provided; CP/M is rapidly taking over as a standard, and can hardly be left out of this system.

A full keyboard, with the proper feel, should be provided. It should provide all 128 characters, and could have additional 'shift' for graphics if desired. There should be provision for a numeric key-pad for anyone wishing to add it as an extra, as should additional keys for some of the more frequently used functions.

Screen display should be either VDU or TV-modulated, and should provide 80 characters per line for the very practical reason that this is the width of an A4 page; A4 can be very useful in print-out, either in single sheet form, or in 210mm rolls; in office applications it lends itself readily to copying and filing systems and is a business standard which cannot be overlooked.

Regardless of noise to the contrary, a good modulator can quite capably support an 80 character line with good definition. Effectively good TV's are now available on the second-hand market at £8 to £12, and good modulators of adequate bandwidth are not expensive — too good an opportunity to miss.

As a teaching aid, the system should provide both an LED-based single-step-and-examine facility, and also single-step screen display as in G. J. Flanagan's September article: "The Soft Faceade". One could hardly conceive of a better de-bugging facility or instruction method.

Using the 80 c.p.s. display, an early program for Word Processing should be made available. This should be modular, insofar as it should support an automatic correction and edit facility, but in its simplest form this should be a single page program; the exotic multi-page version could be added later. Reason for asking for this facility is to provide a sophisticated standard typewriter capability; many wives are competent typists, and as their financial support is essential to many young men, it is only fair that they should be given a crack at the apparatus. It is also a good advertising gimmick with which cap-in-hand husbands could obtain their hearts' desire.

Commercially, a tie-up with a major electronics company would be sensible: it leads to lower first cost and better back-up facilities. The larger the company, the better the prospect.

B. A. Martin, 98 Northdown Road, Stollthub, West Midlands B91 3ND

PCW We would not undertake a PCW system unless we were sure of guaranteed quality and an absolutely cast iron back-up service.

PERSONAL COMPUTER WORLD

FEBRUARY 1979
Universal interface unit for IBM Selectric

ESCON announces the development of a universal interface unit for its IBM Selectric typewriter conversion system. The present unit allows any microcomputer with an S-100 bus to output to an IBM Selectric typewriter. The new unit will interface to any RS-232, IEEE-488 or parallel port. A microprocessor is included on the circuit board for data flow control, formatting and character set selection. The unit allows for interfacing to a wide range of computers such as the TRS-80, Apple and Sorcerer.

The installation on the Selectric is easy, takes only several hours, and does not affect normal typewriter operation. For those who do not want to convert their own typewriter ESCON provides factory installation service or can recommend local qualified computer stores throughout the U.S. Selectric typewriters with conversion systems installed in accordance with factory instructions are still eligible for IBM warranty and service provisions.

The addition of the universal interface capability greatly expands the number of computers for which Selectrics may be used as output printers; for example, TRS-80, Apple, Sorcerer, etc.

For further information contact:
ESCON Products, Inc.,
171 Mayhew Way, Suite 204,
Pleasant Hill, California, 94596.
Telephone: (415) 985 4590

MICRO-BASED CONTAINER HANDLING SYSTEM

Software Architects has obtained a contract with Multiterminals (Rotterdam) b.v. for the computerisation of its container handling system located in Rotterdam Harbour. The system, when completed, will enable all eleven of Unitcentre’s 200 metre high cranes to be positioned within 10 metres of each other under the direct control of a centralised Siemens computer.

Within each crane will be a Zilog MCZ microcomputer which will process sense-data to obtain the crane’s position and thence pass it to the Siemens computer via a high speed serial communications link. In addition the MCZ will also control a display in the crane driver’s cab showing the exact position of the crane and the identification number of the container which is to be moved.

For further information contact:
Software Architects,
7 Bone Lane, Newbury, Berks. RG14 5SH.
Telephone: (0635) 49223

Another Newbear Fact

A VDU, Model 700, from Newbear is low cost, offering: upper case ASCII; 64 Ch x 16 lines; scrolling; full cursor control; RS232C/V24; 110 Baud, 300 - 1200 Baud; 12" display; separate keyboard; full duplex or half duplex. Price is £295.

Further details and demonstrations from nearest Newbear Store or write: 7 Bone Lane, Newbury, Berks. RG14 5SH.
Telephone: (0635) 49223

Price Breakthrough

The KIM 1

KIM 1 is now £99.95. Fully assembled, 6502 microprocessor, 2K bytes of ROM, 1K of RAM, Keyboard, 6-digit LED display. Full documentation. Expandable. Marketed by the innovative G. R. Electronics of Newport, Gwent; and Marshall’s the well known electronics distributors with shops in London, Glasgow and Bristol.

G. R. Electronics also offer a £475 IBM ‘golfball’ based printer for PET.

The KIM 1

Microdigital of 25 Brunswick Street, Liverpool now claims to have the biggest and most comprehensive list of “readware” — books on personal computing. Also its own brand of coding pads and high quality cassettes. Details from Bruce Everiss.

LTT Electronics, a mail order only outfit, can offer some of the famous Godbout computer products, including the best selling Economoram (TM) range of memory boards. For details of range and prices, write to 37 Orlando Road, London S.W.4.

Brian Reffin Smith (see PCW Vol. 1, No. 8) can offer his “Intelligent Programs” — art/conversational programs on tape for the Research Machines and Pet. He can also give advice on Graphics, and Basic listings of programs he has created. Write to him for full details and catalogue at 32 Kensington Park Gardens, London, W.2.

Petite, the Plessey Microsystems 24K byte add-on memory that expands a PET personal computer to its full addressing capacity. Available from TORBUS, 500 Chesham House, 150 Regent Street, London W.1. Telephone: 01 734 5361

Microdigital of 25 Brunswick Street, Liverpool now claims to have the biggest and most comprehensive list of “readware” — books on personal computing. Also its own brand of coding pads and high quality cassettes. Details from Bruce Everiss.

LTT Electronics, a mail order only outfit, can offer some of the famous Godbout computer products, including the best selling Economoram (TM) range of memory boards. For details of range and prices, write to 37 Orlando Road, London S.W.4.

Brian Reffin Smith (see PCW Vol. 1, No. 8) can offer his “Intelligent Programs” — art/conversational programs on tape for the Research Machines and Pet. He can also give advice on Graphics, and Basic listings of programs he has created. Write to him for full details and catalogue at 32 Kensington Park Gardens, London, W.2.

Petite, the Plessey Microsystems 24K byte add-on memory that expands a PET personal computer to its full addressing capacity. Available from TORBUS, 500 Chesham House, 150 Regent Street, London W.1. Telephone: 01 734 5361

MICROBASED CONTAINER HANDLING SYSTEM

Software Architects has obtained a contract with Multiterminals (Rotterdam) b.v. for the computerisation of its container handling system located in Rotterdam Harbour. The system, when completed, will enable all eleven of Unitcentre’s 200 metre high cranes to be positioned within 10 metres of each other under the direct control of a centralised Siemens computer.

Within each crane will be a Zilog MCZ microcomputer which will process sense-data to obtain the crane’s position and thence pass it to the Siemens computer via a high speed serial communications link. In addition the MCZ will also control a display in the crane driver’s cab showing the exact position of the crane and the identification number of the container which is to be moved.

For further information contact:
Software Architects,
34-35 Dean Street, London W1V 5AP

Price Breakthrough

The KIM 1

KIM 1 is now £99.95. Fully assembled, 6502 microprocessor, 2K bytes of ROM, 1K of RAM, Keyboard, 6-digit LED display. Full documentation. Expandable. Marketed by the innovative G. R. Electronics of Newport, Gwent; and Marshall’s the well known electronics distributors with shops in London, Glasgow and Bristol.

G. R. Electronics also offer a £475 IBM ‘golfball’ based printer for PET.

Home in on the Texas range and Fly with OSI.

Abacus Computers of 62 New Cavendish Street, London, announce that Texas Electronic Instruments have appointed them worldwide distributors for their range of microcomputers.

Abacus are also sole distributors of Ohio Scientific Instruments’ range of computers, including the Superboard II. Dealer and general enquiries to Derek Rose at above address.

NASCOMlatable

JWM Electronics, 60 Balcombe Street, London N.W.1 (01-262 2936 or 01-402 9244) has jumped on the NASCOM bandwagon with three kits. KIT 1 is for Alphanumerics, Graphics; KIT 2 is a Graphics RAM with colour decoding, R.F. modulation; KIT 3 a programmable sound F/X Generator. Write or ring for details.
The ICL Gambit
International Computers Ltd., has rescued the famous Hastings International Chess Congress from oblivion.
This public spirited move means that a vital event in the chess world will continue to foster new talent.
The Almarc of Quality
Almarc Data Systems Ltd., have introduced time sharing on the Vector Graphics 280A microcomputer, and state that as a result the system is ideal for schools. The computer uses the S100 bus standard and so can accommodate a vast range of add-ons such as video graphics boards, music synthesiser, voice recognition, and a real time clock. Free advice and a brochure from 29 Chesterfield Drive, Burton Joyce, Nottingham. Telephone: 0602 248565.
TRITON makes Waves
The Triton hobby microcomputer, designed by Mike Hughes, now has over 400 users. This single board system is expandable to 64K, and has BASIC, 56 key ASCII keyboard, 256 I/O ports among its features.
Full details from:
TRANSAM Components Ltd.,
12 Chapel Street, London.
Telephone: 01 -402 8137
Or write for a catalogue, with s.a.e.

New from Philips
Phillips' new M-DCR series of Mini-Digital Cassette Recorders provides 128 kbytes of serial memory, recorded on two tracks of interchangeable certified digital Mini-cassettes.
Contact:
V. L. Drayton, M.E.L.,
Manor Royal,
Crawley, West Sussex RH10 2PZ
Telephone: 0293 32850

Pelco (Electronics) Ltd. draws attention to the Rockwell R6500 — a family of 10 software - compatible CPUs, eight I/O, ROM, RAM and one-chip memory — I/O - timer circuits operating at 1MHz or 2MHz speeds with a single 5V power supply.

New American Micro Magazine: A monthly publication devoted to the Motorola 6800, '68' Micro Magazine is intended to be objective, giving equal space to criticism and rebuttals.
Details from:
Hamilton Publishing Inc.,
3018 Hamill Road,
Hixson, Tn., U.S.A.

A new Source of software
Source is a new software company started by two ex-employees of Southwest Technical products (UK).
In the future it will be providing considerable support for the leading microcomputers in the form of powerful software system.
It will also contract to write systems and applications programs for whoever might require them, and interface peripherals which haven't already been connected.
Contact:
Source, 12 Vivian Road, Welwyn Borough, Northants.
Telephone: (0933) 224040

Philips' new M-DCR series of Mini-Digital Cassette Recorders provides 128 kbytes of serial memory, recorded on two tracks of interchangeable certified digital Mini-cassettes.
Contact:
V. L. Drayton, M.E.L.,
Manor Royal,
Crawley, West Sussex RH10 2PZ
Telephone: 0293 32850

Pelco (Electronics) Ltd. are marketing a plug-in “Suppressor’’ for systems. Combats mains-borne interference and helps safeguard data integrity. Comes complete with 66 cm lead, 13 amp plug (fused for 7 amp) for £17.00.
Details from:
Pelco (Electronics) Ltd.,
Windmills Road, Sunbury, Middx.
NEW PRODUCT — MADE IN THE U.K.

MICROSPEECH is a microprocessor peripheral that produces synthetic speech. The card containing all the electronics plugs into the standard SS50 bus on the SWP TC and MSI 6800 microcomputers. The software translator program (MSP2) converts phonetic code (which is similar to normal spelling) into sets of data that control the speech synthesizer. The data, when decoded, produces nine control parameters which determine pitch, amplitudes, and resonant frequencies in the speech model. What goes in are phonetically spelled phrases, and what comes out is synthetic speech.

Microspeech: A British synthetic speech board.

The speech model is a three format synthesizer with separate nasal and fricative branches. A digital noise source and a voltage controlled oscillator produce the signals that drive the unit. Alternatively an external signal may be fed in and articulated, making speaking musical sounds readily attainable.

MICROSPEECH is for the microcomputer owner, and a useful tool for those involved in speech research, education and system design.

As well as the standard phoneme translator package, a disc based BASIC interpreter with speech output is available as a software option.

The software is available on floppy disc or cassette.

Contact:
Costronics Electronics,
13 Field Heath Avenue, Hillingdon, Middx; or
Tim Orr, 55 Drive Mansions, Fulham Road, London, S.W.6

Crystal Clear
Torquay has had for some time, a Micro-computer and Components shop - CC/Crystal Electronics - run by a team of hardware and software engineers, headed by Trevor F. Brownen.

Among their main computer products are the Apple II, the Nascom I, the Newbear 77/68 System and the Atari Video Computer System, and they are at present evaluating many other products.

The shop is open every day from 9.30 a.m. to 6.00 p.m. except Wednesdays and Sundays.

For advice or help telephone: 0803 22699.

TRS-80 Software is now available from A. J. Harding of Bexhill. This includes all types of programmes for the TRS-80, ranging from games to business software. Mr Harding, the U.K. director of J. & J. Electronics Ltd., Canadian mail order semiconductor distributors, has available both programs imported from the U.S.A. and programs from English authors. Having been involved with Microprocessors from their inception in North America and being one of the earlier purchasers of TRS-80 equipment, Mr Harding is in a good position to bring to this country a good assortment of software. An SAE will bring you his list:

A. J. Harding, 28 Collington Avenue, Bexhill-on-Sea, E. Sussex.
Telephone: (0424) 220391

EXPANDING YOUR HORIZON

Users who have felt that the maximum disc storage of 270KB, i.e. three minifloppy Shugart drives of 90KB each, was insufficient for their needs will now be pleased to know that the North Star Horizon, marketed by Equinox Computer Systems, now supports four double density drives in place of the former three single density drives.

Both the powerful BASIC and DOS have been upgraded to accommodate the increased capacity. Application software will continue to operate with little or no change. Release 5 of the North Star Basic is being issued at the same time.

Further information from:
Mike Kusmirk,
Equinox Computer Systems Ltd.,
32/35 Featherstone Street,
London EC1Y 8GX
Telephone: 01-253 3781/9837

Payroll package "boosts TI personal-computer sales"

A payroll package developed for the Texas Instruments SR60A personal-computer/calculator by a Nottingham business equipment firm, Betos Systems Ltd., has enabled the company to sell 50 of the machines to local businesses during its first year of operation. Betos believes that the SR60A, with its combination of printout, display and ease of operation, coupled with the payroll package, provides a versatile tool for management of small to medium-sized businesses.

Contact:
Leonard Gelblum or Norman Burley,
155 Mansfield Road, Nottingham.
77-68
The Best Supported Hobbyist 6800 System in the U.K.

Available as Bearbags or as Individual Components.

Each Bearbag contains all the Components necessary to build a vital part of a microcomputer system. Each part is backed with the support necessary for such a complex project.

BEARBAG 1:
- 77-68 CPU PCB and Components
- £45.00

BEARBAG 2:
- 77-68 LED's and Switches
- £14.95

BEARBAG 3:
- 77-68 Power Supply
- £17.95

BEARBAG 4:
- 77-68 4K RAM PCB and Backplane
- £27.70

BEARBAG 5:
- 77-68 4K RAM PCB
- £75.00

BEARBAG 6:
- 77-68 Mon 1 PCB and Components
- £50.70

BEARBAG 12:
- 77-68 VDU PCB and Components
- £69.50

BEARBAG 13:
- 77-68 Mon 2 PCB and Components
- £b.s.

BEARBAG 16:
- 77-68 EPROM Board and Components
- £b.s.

BEARBAG 17:
- 77-68 Interface Board (P) and Components
- £b.s.

OTHER BEARBAGS AVAILABLE:

BEARBAG 7:
- 4K RAM PCB and Components (Ex-Component Complete)
- £71.50

BEARBAG 8:
- 8K RAM PCB and Components (Ex-Component Complete)
- £16.00

BEARBAG 9:
- Prototyped VDU Kit, V724/RS232 interface.
- 64 Characters by 16 lines. Requires +5 – 12 power supply. ASCII encoded. Keyboard, Video monitor of UHF Modulator (Bearbag 11)
- £85.00

BEARBAG 10:
- Kansas City Cassette Interface
- £18.95

BEARBAG 11:
- UHF Modulator
- 12½% VAT £ 4.50

BEARBAG 14:
- 2708 PROM Programmer Kit (6800)
- £25.00

BEARBAG 15:
- Promwriter, Mikbug to 2708
- £ 8.50

BEARBAG 18:
- Cotre Blandford Cassette Interface
- £17.25

BEARBAG 19:
- TRS80 Level II 4K to 16K Byte Conversion
- £85.00

BEARBAG 20:
- TRS80 Level 4K to 16K Byte Conversion
- £85.00

BEARBAG 21:
- Lovers Care Kit for Prototived
- £10.50

Postage and Packing: 50p
*Postage and Packing: £1.00
Add 8% VAT to all prices unless otherwise stated.

BEARBAGS ARE AVAILABLE FROM:—

NEWBEAR COMPUTING STORE
Bone Lane, NEwbury, Berks. 0635 49223

MICRODIGITAL
25 Brunswick Street, LIVERPOOL. Tel: 051-236 070

MICROBITS
34b London Road, Blackwater, CAMBERLEY, Surrey. Tel: CAMBERLEY 34044

CRYSTAL ELECTRONICS
40 Magdalen Road, TORQUAY. Tel: 0803 2699

THE BYTE SHOP
420A/4A Cranbrook Road, Gants Hill, ILFORD, Essex. Tel: 01-554 2177

NEW BEAR COMMERCE STORE
7 Bone Lane, Newbury.

TOUCH KEYBOARD
- Full ASCII
- Assembled & Tested
- One Year Guarantee
- Comprehensive Handbook
- Touch Sensitivity Control

£37.50 inc. VAT and P&P

FLOPPY DISC DRIVES

NASCOM-1

The Z80-Based Microcomputer Kit.
Ex. Stock. £197.50

SYM-1

(formerly VM-1)

The new 6502 Micro from Synertek. Fully assembled and tested.
Ex. Stock. £199.00

+8% VAT, carriage £1.00

Send for our New Winter Catalogue

BOOKS

- 77-68 Design Manual
 - £7.50

- Introduction to Microcomputers
 - £5.95

- Volume II: The Beginners Book
 - £7.50

- Volume II: Basic Concepts
 - £5.95

- Volume 2: Some Real Products June 77 rev.
 - £7.50

- 6800 Assembly Language Programming
 - £6.95

- Some Common Basic Programmes
 - £5.95

- 6800 Programming for Logic Design
 - £5.95

- 8080 Programming for Logic Design
 - £5.95

- Payroll with Cost Accounting in Basic
 - £9.95

- Understanding Microcomputers and Small Computer Systems
 - £7.45

- Sceiba 6800 Software Gourmet Guide and Cookbook
 - £7.35

- Scelbi 8080 Software Gourmet Guide and Cookbook
 - £7.95

- The Scelbi Byte Primer
 - £9.50

- The 8080 Programmers Pocket Guide
 - £2.35

- Microprocessors Z801
 - £8.00

- Microprocessor Interfacing Techniques
 - £8.00

- Guide to SC/MP Programming
 - £3.75

- SC/MP Assembly Language Programming Manual
 - £3.75

- SC/MP Microprocessor Applications Handbook
 - £3.75

- Micro – The 6902 Journal
 - £1.70

- Sym Reference Manual
 - £7.50

- Sym Programming Manual
 - £7.50

- First Book of Kim
 - £7.50

- Kim 1 User Manual
 - £7.50

- 6500 Hardware Manual
 - £7.50

- 6500 Programming Manual
 - £7.50

- 101 Basic Computer Games
 - £5.50

- Games, Tricks and Puzzles for a Hand Calculator
 - £4.95

- Games with Pocket Calculators
 - £1.75

- Star Ship Simulation
 - £5.10

- Beginning Basic
 - £2.95

- Introduction to Basic
 - £1.95

- Some Common Basic Programmes
 - £5.95

- Payroll with Cost Accounting in Basic
 - £9.95

- Instead Freeze and Zipped Programming in Basic
 - £4.95

- My Computer Likes me When I speak in Basic
 - £7.45

- Computer Programmes that Work
 - £2.45

- What you do After You Hit Return
 - £7.00

- 6800 System Design Data
 - £2.00

- Beginning Basic
 - £4.95

- Learning Basic Fast
 - £6.30

- 8080A Microprocessor Family Quick Reference
 - £1.50

ALL MAIL ORDERS TO NEWBURY PLEASE

SOROC IQ 120
A 24 line by 80 character format on a 12” antiglare screen makes the Soroc a performance terminal at a keen price. Features include XY addressing, printer option, protected fields, tabbing and a 10 key numeric pad for fast data entry. RS232 interface at up to 19,200 Baud in either full or half duplex modes. £699.00

MIME 1
A 24 line by 80 character format with full professional facilities including protected fields, XY addressing, display control codes, print line or screen to serial printer point, full cursor positioning etc. The real trick of this terminal is its ability to emulate other terminals, DEC VT52, 1500, ADM-3A, and a limited graphics character set making exceptionally good value £500.00.

ELBIT DS 1920
The features of the Elbit are all that you would expect from a quality terminal. A 15 inch screen with 64, 96 or 128 character sets in upper and lower case is complemented by a keyboard which has 9 special function keys and a 10 key pad. Baud rates up to 9600 with current loop option makes the Elbit a quality VDU for only £850.00.

ACT 1
Our lowest priced terminal giving 16 lines of 64 characters display. Upper and lower case as standard with scrolling. Data rates up to 19,200 Baud with a current loop option and video output for monitor with UHF option for domestic TV. Priced £260.00 UHF option £10.00, Sanyo Monitor £125.00.

Further details of these terminals and compatible 6800 microprocessor equipment from:

STRUMECH ENGINEERING ELECTRONICS DIVISION
Portland House Coppice Side Brownhills 4321
With the continuing downward trend in the cost of computer hardware, many people are now taking their first serious look at computers. But confronted with RAM and ROM, BYTE and BASIC they simply do not know where to start. There is a danger that some will be so intimidated by the difficulties before them that they will give up, which would be a pity. This article sets out to show the complete beginner the outline of computing, leaving him to fill in the details himself.

Using a conceptual model, the operation of the computer is explained and a program is devised to read in, add together and print the sum of, two numbers.

The Computer
A computer consists of five main units. Three of these; store, arithmetic unit and control unit, together form the central processing unit (C.P.U.). The fourth, is an input device - which for our purpose could most conveniently be a keyboard, similar to that on an electric typewriter. The last is an output device - which could be a printer, but on a personal computer is more likely to be a television screen.

The Program
A computer program is a list of instructions which cause a computer to carry out some task. Possibly to guide a space craft to the moon, but more likely to perform some rather mundane clerical job.

As an illustration of what programming involves we will show you how to write a program to add two numbers together. We will assume for the moment that the two numbers are already in store - which, you may remember, we visualize as a set of pigeon holes. In order to add the two numbers, they must be transferred to the arithmetic unit.

The program consists of just three instructions. The first transfers one of the numbers from store to the arithmetic unit. The second transfers the other number to the arithmetic unit, adding it to the first. The last instruction transfers the sum of the numbers back to store. This can be rather confusing at first but it should become clearer when we describe how the program is executed.

The three line program is shown below:

LOAD 103
ADD 127
STORE 107

The three numbers refer to three locations in store. 103 and 127 hold the numbers that are to be added and 107 will be used to store the result. The locations used are quite arbitrary and any others could be used, providing we first load into them the numbers we wish to add.

Be sure that you understand that it is the contents of store locations 103 and 127 that are added, not the numbers 103 and 127 themselves.

Execution of the Program
Before we can run the program we must enter it, together with the data, into store. This can be done by typing it on the keyboard. We will put the three lines into locations 001, 002 and 003. The program adds together the contents of storage locations 103 and 127, so we must enter into these locations the numbers, or data, that we wish to add. Say, 5 into 103 and 9 into 127.

The function of the input and output devices should be self-evident. The arithmetic unit, as its name suggests, performs the arithmetic and is quite similar to an electronic calculator. Store - which can be imagined as a set of numbered pigeon-holes - is used to store both the data and the program. The fifth unit, control, controls the overall operation of the computer and ensures that the program is executed one step at a time.

Rather surprisingly, this incredibly simple model will allow you to understand how the most complex programs are run.
Although this program is very simple it does illustrate how data is held in store and how it can be transferred to the arithmetic unit to be added, multiplied etc.

Machine Language
The above program is written in assembly language and a special program, called an assembler, is used to translate it into a form that the computer can recognize, called machine language. For engineering reasons computers use binary arithmetic, which is a kind of arithmetic employing just two symbols: 0 and 1. Machine language instructions consist of groups of eight binary digits, for example, the ADD instruction for one computer we know of is 00000010.

A binary digit is called a bit and eight bits together form a byte. Personal computers use a word length of one byte.

Machine language can be quite confusing to the beginner. But don’t let this put you off, as your first attempts at programming will almost certainly be in a language called BASIC which we will describe shortly and you should find this much easier. Actually, machine language is not so difficult as it looks and you may get to quite like it later.

High Level Language
You may have been surprised at the amount of work involved in adding a couple of numbers together and, in fact, there is an easier way. High level languages allow instructions to be written in a form quite close to English. The three line program used above can be condensed to a single line in BASIC — which is the most widely used language for personal computers.

The BASIC instruction is shown below:

LET C = A + B

The biggest advantage of using a high level language is that it is no longer necessary to keep track of the store locations used. A program called a compiler, or interpreter, translates each BASIC instruction into machine language and also allocates storage locations to each of the letters A, B and C — called variables — which hold the numbers to be added.

We did not show the input or the print instructions in the assembly language program, but we show them below using BASIC.

INPUT A, B
LET C = A + B
PRINT C

When the three line BASIC program has been entered through the keyboard it can be executed by typing the command RUN. (This may be slightly different on some small computers). The computer will print a question mark or display it on the screen — and the user enters a value for A, it prints a second question mark and a value is entered for B. Almost instantly, the value of C will be printed.

It should be clear by now that BASIC makes programming very much easier.

Micro Programming
It is possible on some computers to go down to an even lower level than machine language, called micro programming. Although we described the C.P.U. as being made up of three units, it is more accurately described as three groups of units. Micro programming can be used to open and close doors — metaphorically speaking — and cause a series of 1s and 0s to pass between the various units to achieve the operations required. As you might imagine, it is a fairly complicated process and is not much used. But for some purposes it does result in extremely efficient programs.

Backling Store
Even on the largest computers the main store is rarely large enough to hold all the data that the user needs to store. For this reason, magnetic tape and magnetic discs — called backing store — are used to provide extra storage capacity.

Most people will be familiar with computer tape units, as whenever a computer is shown in a T.V. play, the tape units are most prominent.

Data is stored serially on magnetic tape, which means that if data has to be read from several locations, the tape will have to be continually rewound. Consequently, the time taken to locate and read a particular piece of data — the access time — is quite long.

Magnetic discs store information randomly; that is, any piece of data can be accessed immediately, in contrast to tape which often has to be wound through most of its length to locate some item. The disc spins at high speed and the read/write head can be moved from the edge to the centre, to locate a particular piece of data, in much the same way that you can choose to play a particular track of an L.P. gramophone record. As a result, the access time for discs is much faster than for tape. But both are much slower than the computers main store.

Discs are almost never used with personal computers due to their cost but tape is, usually in the form of cassettes.

RAM and ROM
The letters RAM stand for random access memory. Random, is not used in its usual sense, but rather, it means that any location can be accessed as required. The computer main store is constructed from RAM and each location is identified by a number, referred to as its address.

ROM stands for read only memory. The interpreter of a personal computer is held in ROM because, as we said above, discs are too expensive.

When a computer is switched off the main store is emptied but ROM retains data even without the power on, so the compiler will still be there next time you want to use it.

If you have a lively mind, this article will have raised many more questions than it has answered. But by now you should have a pretty good idea of the framework of computing and thus find it considerably easier to fill in the details.

Finally, do not allow your present lack of knowledge to deter you from pursuing computing, either as a hobby or for business purposes. You will find that learning about the subject is easier and more interesting than you ever imagined.

PCW An extract from a letter the author wrote: "I have always taken the view that several hundred people with O levels are of more use to Society than one Ph.D. in a sea of illiterates".PCW

PCW

NEWSLETTERS...STROBE...STROB

Newsletters We’ve been receiving samples of newsletters such as The Nascom MC News, The Pet Newsletter, Liverpool University Computer Laboratory’s Microswop, Southampton University’s Benchmark. Our reaction — grassroots computing is in a terrifically healthy state. Liverpool University’s Microswop has interesting articles such as “Microprocessors aid the blind”, and the Nascom newsletter is written in the style of a letter to friends; the same goes for the others. Of course, one has to mention the ACC newsletter which has been so ably edited by Mike Lord.
IF YOU CAN'T BEAT THEM :-

VECTOR GRAPHIC INC

VECTOR V18A slot Motherchassis accepts the wide range of Vector S100 cards and makes an ideal base to build a microcomputer system. Computing power is available to perform a wide range of tasks from industrial control to small business.

£350
PR2 12K PROM/RAM card holds a comprehensive monitor program for system testing and configuration. Normal operation is in conjunction with a serial terminal via I/O card.

£160
FLASHWRITER, memory mapped VDU with graphics, allows a system to be built without a terminal or I/O card. Specify version EV of monitor program.

£150
I/O, Switchable 110 to 9600 baud serial interface plus two 8-bit parallel I/O ports.

£125
High resolution graphics interface bit-maps 8K of RAM to 256 x 256 points, or 128 x 128 with 16 level grey-scale.

£108
Z80 Processor card
£140
8080 Processor card £120

£140
8K Static RAM 4MHZ
£300
16K Static RAM 4MHZ

£70
Analogue Interface
£260
Precision analogue interface

£150
Z80 Computer System £895

MICROPOLIS

Micropolis disk drives employ higher standards of engineering to pack either 143K or 315K bytes per diskette, formatted. Supplied complete with controller card, cables, manual and software they plug directly into the S100 bus: 8080 or Z80.

£439
Extended disc BASIC, mnemonic editor and assembler are provided, to run under the powerful MDOS operating system.

£279
Add on units are supplied to extend the system to four drives and one drive per system may be powered from the S100 bus.

£499
143K System Mains powered
£649
315K System Mains powered

£279
143K System 5100 powered
£349
315K System 5100 powered

£339
143K Add-on 5100 powered
£399
315K Add-on Mains powered

£399
143K Add-on Mains powered
£859
315K Add-on Mains powered

£1159
Twin drive System 630K
£859
Twin drive Add-on 630K

£2300
VECTOR MZ configuration includes:
Twin disk 630K minifloppy.
Full Micropolis disk software.
Z80 4MHZ 32K processor.
1 Serial port, 2 Parallel ports.
12K PROM RAM card with extended monitor.

£14
100 bus regulator
£24
Diskettes per five

£225
Unmounted drives available from

£2300
VECTOR MZ

Combining the best features of the VECTOR GRAPHIC computer and twin MICROPOLIS 315K byte drives. The Vector MZ produces, in one package a powerhouse of Microcomputer ability.

The VECTOR PROM monitor bootstraps directly to either MDOS, for housekeeping and Assembly language operation, or to BASIC to run high-level user programs. Provision is made to immediately attach a printer, for example one of the extensive range from Centronics sold by Sintrom, enabling use of the powerful printer-related features in the MICROPOLIS Software.

Applications Software for the VECTOR MZ now in preparation will perform a wide variety of business functions; stock control, invoicing, ledger and mailing lists. Further applications exist as a microcomputer development system, and low cost replacement for minicomputer control and instrumentation.

SINTROM GROUP

PRICES EXCLUDE VAT
ALL EQUIPMENT FULLY ASSEMBLED AND TESTED
OEM AND DEALER ENQUIRIES WELCOME
DEMONSTRATIONS IN OUR SHOWROOM

Sintrom Microshop
14, Arkwright Road,
Reading, Berks. RG2 0LS
Tel: Reading (0734) 84322
TELEX: 847395
CABLES: SINTROM READING
A single-wire alarm system using the COSMAC microtutor

A microprocessor-controlled single-wire burglar alarm system gives the user the benefits of standard multiwire systems, but has additional flexibility and is simpler to install. Multiwire alarm systems can easily identify the entry point in a burglar alarm system, but they are expensive and installation is complex. Conventional single-wire systems, while inexpensive and simple to install, cannot pinpoint exactly where the break-up has occurred. However, by using a series string of resistors around the perimeter that is being protected, and taking advantage of the voltage divisions present in such an arrangement, it is possible to detect the exact entry point while retaining the ease of installation inherent in single-wire systems.

![Diagram of a simple resistor-switch loop system](image)

Legend

- **Component**
 - K, L - 4042
 - J - 4001
 - A, B - 4006
 - C - 4054
 - D, E, F - 4514
 - G - 474
 - H - 4233
 - Diodes - 1N914
 - Q1, Q2 - 2N6387

- **Manufacturer**
 - RCA
 - Burr-Brown
 - Fairchild
 - ITT
 - 10V REGULATOR

Fig. 1. Simple resistor-switch loop system with only an analogue/digital converter works as a single-wire system but with limited flexibility.

Fig. 2. Schematic of alarm interface board shows Microtutor data bus connections B0-B7, input/output signals N0, N1, N2, and timing control signals MRD and TPB available at the external device connector of the COSMAC Microtutor. In a multiloop system, only resistor switches S1-S30, the constant-current generator and 10V regulator would need to be duplicated for each loop.

Hardware

Fig. 1 shows a basic alarm circuit which combines ease of installation with the ability to locate the entry point. Although it is a single-wire system, the analogue/digital (A/D) converter can identify the exact location where an intrusion takes place. This arrangement uses a resistor/switch combination at every door and window being protected. A different value resistor is placed across each switch in a series arrangement of switches. When a switch is activated, a unique voltage is read across the sensing resistor R_s, which is shown returned to ground. However, this simple arrangement works for only about four entry points, i.e. four resistor-switch sensors, before the system breaks down. In practice, the string of resistors must be fed by a constant-current generator. By holding the source vol-
mage and current to constant values, and by varying the resistance alone, the error voltage is developed across the constant-current source. Now we have a system that will cover a multitude of entry points, albeit one that lacks flexibility. For example, entry points intentionally left open cannot be ignored in this system. By adding a microprocessor to the A/D system, this flexibility can be achieved with software. For example, the microprocessor program could be written to disregard a window intentionally left open for ventilation, or perhaps, for a door under repair.

The circuit shown in Fig. 2 interfaces directly with a COSMAC Microtutor and will protect about 30 entry points. It consists of a 26 mA constant-current loop monitored by an 8-bit A/D converter. The output of the A/D is latched for input to the central processing unit. The output portion consists of a warning buzzer and alarm-bell circuit. The diodes and capacitors in this section are needed for coil suppression. The circuit uses one input and four output strobes decoded by the CD4514. Another application for this circuit is for use as a keyboard. (In the simplest form of the circuit, the microprocessor could be replaced by hard-wired logic; again, however, the flexibility of the system would be lost.)

![Fig. 3. Single-wire alarm system with A/D converter plus microprocessor can be expanded easily to a multiloop system by having the microprocessor poll each loop.](image)

An expansion of the system organization for protecting larger areas is shown in Fig. 3. In this multiloop scheme, the microprocessor sequentially polls several lower-resolution loops. This system will cost less, because the resistor at each entry point can have a wider tolerance, and will also have improved reliability because cutting one wire will not incapacitate the entire system.

Software

Fig. 4 is a flowchart of the COSMAC microtutor program for the burglar-alarm system. The circuit is reset immediately upon starting and, after a 20-second delay (to enable one to exit), the program reads the A/D latch. To provide a usable margin between adjacent readings, the input byte is shifted three times to the right. To protect against random noise spikes, the program requires 15 consecutive nonzero readings before it advances to the output mode. In the output mode, the entrance number is displayed in hex notation on the Microtutor and the warning buzzer is activated for 20 seconds. If the ‘in’ switch is not pressed within 20 seconds, the alarm bell is activated. Pressing ‘in’ resets the alarm and restarts the program after a 20-second delay.

The program activates the warning buzzer to alert the user to reset the alarm before the bell goes off (if one is entering) or to indicate to an intruder that a circuit has been tripped before entry has been fully gained. Hopefully, this initial alarm will scare off the intruder.

The bell will reset and re-arm automatically one hour after going off, so that if the user is away for an extended period, the bell will not ring continuously until he returns. (A notice to this effect should be posted conspicuously for the police.)

![Fig. 4. Flowchart for single-wire alarm system; program steps are detailed in Table 2.](image)

The software for implementing this program is shown in Tables I and II. The software was written to accommodate both the CDP1801 and the CDP1802 versions of the microtutor. If the CDP1801 version is used, change the 64 instructions at M(0038) and M(0049) to 60.

The code 00 is the normal closed-loop reading. Any other reading indicates a breach of the system. The unique code 1F indicates that the system wire has been cut.
Table IIb

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>0001</td>
</tr>
<tr>
<td>Reset bell & buzzer</td>
<td>0002</td>
</tr>
<tr>
<td>20-second delay</td>
<td>0004</td>
</tr>
<tr>
<td>Initialize</td>
<td>0012</td>
</tr>
<tr>
<td>Start conversion</td>
<td>0022</td>
</tr>
<tr>
<td>Read A/D</td>
<td>0026</td>
</tr>
<tr>
<td>Shift right 3 times</td>
<td>0028</td>
</tr>
<tr>
<td>Store</td>
<td>002B</td>
</tr>
<tr>
<td>$= 00?</td>
<td>002C</td>
</tr>
<tr>
<td>If yes, read again, fix pointer</td>
<td>002D</td>
</tr>
<tr>
<td>If no, check loop flag</td>
<td>002E</td>
</tr>
<tr>
<td>$= 00?</td>
<td>002F</td>
</tr>
<tr>
<td>If yes, go to output mode</td>
<td>0030</td>
</tr>
<tr>
<td>If no, increment flag, read again</td>
<td>0031</td>
</tr>
<tr>
<td>Output mode</td>
<td>0034</td>
</tr>
<tr>
<td>Start warning buzzer</td>
<td>0035</td>
</tr>
<tr>
<td>Output code</td>
<td>0037</td>
</tr>
<tr>
<td>Delay 20 seconds</td>
<td>003A</td>
</tr>
<tr>
<td>Reset?</td>
<td>0041</td>
</tr>
<tr>
<td>If yes, go to top</td>
<td>0042</td>
</tr>
<tr>
<td>If no, continue delay</td>
<td>0043</td>
</tr>
<tr>
<td>Start bell</td>
<td>0046</td>
</tr>
<tr>
<td>Go to long delay</td>
<td>0047</td>
</tr>
<tr>
<td>Output code</td>
<td>0049</td>
</tr>
<tr>
<td>Go to read again</td>
<td>004B</td>
</tr>
<tr>
<td>Long delay</td>
<td>004D</td>
</tr>
<tr>
<td>Set up counters</td>
<td>004E</td>
</tr>
<tr>
<td>Change value at M004E</td>
<td>0050</td>
</tr>
<tr>
<td>To vary alarm time</td>
<td>00b1</td>
</tr>
<tr>
<td>1-hour delay</td>
<td>0054</td>
</tr>
<tr>
<td>Decrement counter</td>
<td>005B</td>
</tr>
<tr>
<td>Reset?</td>
<td>005C</td>
</tr>
<tr>
<td>If yes, go to top</td>
<td>005D</td>
</tr>
<tr>
<td>If no, continue</td>
<td>005E</td>
</tr>
<tr>
<td>Decrement counter</td>
<td>0061</td>
</tr>
<tr>
<td>Done?</td>
<td>0063</td>
</tr>
<tr>
<td>If no, count again</td>
<td>0064</td>
</tr>
<tr>
<td>If yes, go to top</td>
<td>0065</td>
</tr>
</tbody>
</table>

Construction hints

The ±15V power supplies to the A/D converter should be bypassed as close to the package as possible, and the µA 7805 regulators should be installed with a small heat sink. If magnetic switches are used, they should be of the type which are normally open (contacts apart). Using the resistance values shown in Table II, the unit will monitor 30 doors and windows, a combination covering most houses. All values in Table III were determined using standard 5% resistors. Fig. 5 shows a typical installation of switches throughout a house.

Table III

<table>
<thead>
<tr>
<th>Resistance value (ohms)</th>
<th>Entry point number (hex readout)</th>
<th>Resistance value (ohms)</th>
<th>Entry point number (hex readout)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>01</td>
<td>390</td>
<td>10</td>
</tr>
<tr>
<td>47</td>
<td>02</td>
<td>420</td>
<td>11</td>
</tr>
<tr>
<td>75</td>
<td>03</td>
<td>440</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>04</td>
<td>470</td>
<td>13</td>
</tr>
<tr>
<td>120</td>
<td>05</td>
<td>500</td>
<td>14</td>
</tr>
<tr>
<td>150</td>
<td>06</td>
<td>530</td>
<td>15</td>
</tr>
<tr>
<td>160</td>
<td>07</td>
<td>550</td>
<td>16</td>
</tr>
<tr>
<td>200</td>
<td>08</td>
<td>570</td>
<td>17</td>
</tr>
<tr>
<td>220</td>
<td>09</td>
<td>600</td>
<td>18</td>
</tr>
<tr>
<td>240</td>
<td>0A</td>
<td>630</td>
<td>19</td>
</tr>
<tr>
<td>270</td>
<td>0B</td>
<td>660</td>
<td>1A</td>
</tr>
<tr>
<td>290</td>
<td>0C</td>
<td>680</td>
<td>1B</td>
</tr>
<tr>
<td>310</td>
<td>0D</td>
<td>710</td>
<td>1C</td>
</tr>
<tr>
<td>340</td>
<td>0E</td>
<td>750</td>
<td>1D</td>
</tr>
<tr>
<td>370</td>
<td>0F</td>
<td>820</td>
<td>1E</td>
</tr>
</tbody>
</table>

Fig. 5. Typical installation of resistor switches throughout a house in a single-wire alarm system.
Britain is a nation of PET lovers

Hobbyist
Commercial
Scientist
Education

for the first time user and the professional check out the PET, the world's most popular personal computer

* CAPABLE - just like a traditional computer.

* UNDERSTANDABLE - fast, comprehensive and powerful - BASIC is one of the easiest computer languages to learn, understand and use. Machine language accessibility for the professionals.

* PERSONAL - easily portable and operated - just "plug in" and go. Unique graphics make fascinating displays.

* EXPANDABLE - built in IEEE-488 output, 8K RAM expandable to 32K, parallel user port 2nd. Cassette interface.

* SERVICEABLE - easily serviced - only 3p.c. boards all readily accessible.

Features of PETS extended BASIC include

- Integer, floating point and string variables; A full set of scientific functions, Logical operators, Multi-statement lines. String functions, Left $, Right $, Mid $, Chr $, Val, Str $, Peek, Poke, Ustr, Sys, to interface to memory and machine language subroutines. Time of day variable.

- Future Commodore developments * FLOPPY DISC * PRINTER * MEMORY EXPANSION * MODEM

Extensive software readily available.

Contact your nearest PET dealer, call today for a demonstration

In case of difficulty call COMMODORE SYSTEMS DIVISION
360 Euston Road, London. Tel. 01-388-5702
Peter Mather is a computer officer at the Computer Centre, University of Birmingham, and is completing a Ph.D in Psychology there. This ingenious little article was arranged when he met the editor at the PCW Show last September.

A major problem with the PET computer has been the difficulty of obtaining hard copy. Although firms are advertising printer interfaces, the waiting lists for these units are normally unreasonably long. This program (diagram 1) was written with the intention of very simply getting round the problem of connecting a PET to a standard printer, such as an ASR33 TTY.

Statements 10 - 120 poke into the second cassette buffer a machine code subroutine which outputs, on bit 0 of the I/O port, the argument of the USR routine as a serial string, complete with one start and two stop bits. Statements 130 and 140 set the baud rate for transmission, and may be omitted for 110 baud.

After the I/O port has been set up and the start address of the USR routine input (Statements 150 - 180), the program reads data off the PET's cassette and sends it to the teletype, allowing 72 characters/line and appropriate line feeds and carriage returns. Upon encountering an "end of file" the program terminates (Statement 220).

This program will directly read and print data off the cassette. However, in order to get a program listing, the full source must be stored on cassette using:

```
OPEN 1,1,1
CMD 1
LIST
CLOSE 1
```

as the "saved" program is not a standard listing.

A circuit for connection of the PET to a typical 20ma current loop TTY is given in diagram 2. It should be noted that current is flowing when the teletype is waiting for input and R1 should be adjusted to give the 20ma current in this state. A value of 500Ω will be about right with a 12 volt supply. The motor servo is left continuously in circuit across the supply.

Diagram 1

```
10 DATA 32, 167, 208, 120, 165, 180, 141, 81
20 DATA 3, 32, 140, 3, 169, 0, 141, 79, 232
30 DATA 32, 140, 3, 160, 8, 78, 81, 3, 176
40 DATA 5, 169, 0, 76, 116, 3, 169, 1, 141, 79
50 DATA 232, 32, 140, 3, 136, 208, 235, 169
60 DATA 1, 141, 79, 232, 32, 140, 3, 32, 140
70 DATA 3, 88, 76, 120, 210, 162, 35, 173
80 DATA 73, 232, 205, 73, 232, 240, 251, 202
90 DATA 208, 245, 96
100 FOR I=850 TO 921
110 READ N:POKE I,N
120 NEXT I
130 INPUT "BAUD RATE": B9
140 POKE 909, INT(3900/B9)
150 POKE 1,82
160 POKE 2,3
170 POKE 59459, 255
180 POKE 59471, 255
190 OPEN 1,1,0
195 K=0
200 GET ?IIT, M$:IF M$="" THEN 200
201 K=X+1
202 IF K>7 THEN 208
210 PRINT M$,8
220 IF ST=64 THEN CLOSE 1:END
230 T=ASC(M$)
240 B=USR(T):IF T=13 THEN 260
250 GOTO 200
260 F=USR(10):K=0:GOTO 200
300 K=0:IF=USR(13):F=USR(10):RETURN
```

Diagram 2

```
Vcc
10KΩ
2N3704(npn)
500Ω (1/4 WATT)
TTY signal
TTY motor
ground
I/O port
pin C
pin A
```

After you've been chased by rhinos and have met the hangman, it's time to learn a thing or two...

One lesson you'll have to learn on your own - how to tear yourself away from your computer in the early hours. Infoguide provides you with a new concept in recreational, educational and business software.

You'll probably start in the Playgroup.

Or Rhino - a progressively harder chase through the jungle, where you're never sure what's going to happen next.

Insert other Compusettes, and...

Middle School

could see you taking your computer on at Mastermind.

Or Go!

High School

sees you and your computer working on statistical programmes. Conversion. Financial management. Forecasting. These - and many other functional programs - are on Compusette.

At Degree Level,

why not simulate an enzyme reaction? Change any one (or more) of six parameters and see what happens? Maybe discover, when playing chess, that your computer is a Grand Master? A Compusette will supply each of the necessary programs.

An interesting variety of Compusettes are being made available for PET, Apple II and TRS 80. Each is accompanied by a fully detailed booklet with listings of the programs - there are up to three on each tape.

You will find that most dealers handling personal computers will be stocking the Compusette range. Ask your dealer now.

For as little as £2.70 per program* - that's value!

COMPUSETTES

Compusettes are produced by Infoguide Ltd, 142 Wardour Street, London W1. 120 El Camino Drive, Suite 108, Beverley Hills, Cal 90212 USA

* Based on three programs on an £8.00 Compusette.
More on the 8086

T. M. Dixon, Peterhouse, Cambridge

PCW Readers should refer to Bill Davy’s article in the September issue. PCW

I am one of the many people who have been watching the journals keenly for news of the next generation of 16-bit microprocessors. Inspired by the enthusiasm of PCW (September 1978) for Intel’s new 8086, I set out to find some further information. What follows is a quick trip around what I feel to be the more important features of the chip for assembler-level programmers.

The two biggest headaches of assembly programming for most small machines are, to my mind at least, the lack of multiply/divide facilities and the considerations necessary to produce easily relocatable code for frequently used subroutines. We have not yet reached the era of on-chip floating-point arithmetic, but the impressive instruction set of the 8086 points along this road. To my knowledge, the 8086 is also the first microcomputer CPU to use a set of registers to contain dynamic base addresses and thus permit not only much simplified and more rapid program-loading, but also dynamic relocation (try that with a SC/MP). A quick overview of the 8086 architecture will help to explain this.

The 8086 chip consists of two distinct blocks, the Bus Interface Unit (BIU) and the Execution/Control (EU). The BIU has the task of locating the next instruction for the EU and placing it in an instruction stream queue six bytes long. Keeping the queue full increases the processor throughput as memory fetches can occur while the previous instruction is being completed. To access the 1 MB memory, the BIU takes the IP register (Instruction Pointer) which is 16 bits long, and adds one of the segment registers (extended to 20 bits with 4 low-order zeroes) to produce a 20-bit address. To access operands, the Effective Address (EA) so produced may optionally include a base and/or index address taken from the registers of the EU, and a displacement.

The EU holds the general registers (A, B, C, D) which are each 16-bits long. These may be used as word-registers or as eight-byte registers. The A-register is in some cases used as an accumulator, and the other registers have dedicated uses. All registers can be used interchangeably for many instructions. In addition, four 16-
bit registers are available as 'Pointer and Index' registers. These may be used to permit based and indexed addresses; one register is a dedicated Stack Pointer. The EU also holds a set of flags indicating the processor status. The register sets are more or less logical extensions of the 8080 registers.

The organisation of the instruction set appears to be the greatest weakness of the 8086. Presumably in order to reduce the redundancy of information in the instruction, many instructions which do not require the explicit provision of a full address use shortened forms. The instruction to POP a register from the stack is shown in Fig. 2. Whilst this form of instruction is economical on storage, it does eat up eight possible op-codes, one for each register. Most op-codes contain a flag to indicate the length (byte or word) of the operands and possibly further flags. The set of op-codes thus runs out quite quickly, with strange results. Signed and unsigned multiply and divide instructions all have the same op-code and are distinguished only by a sub-code in the register field of the second byte of the instruction. This effectively precludes the use of registers other than the accumulator as the target of these instructions and would seem to prevent the design of upward compatible chips with extended features in the future. The rules which govern the permissible combinations of registers to produce an address seem over-complicated, "and the availability of two-levels of indexing seems over generous. I do not like the use of instruction prefixes for any task and in particular would like to see a segment register field in the instruction or some other addressing scheme which perhaps could treat all registers as equal and use only one level of indexing, but perhaps I am too used to IBM 370 machines.

Fig. 1. 8086 Instruction Format (usual).

The instruction set of the 8086 is also an extension of that of the 8080. All 8080 instructions have an equivalent operation on the 8086, but the mnemonics for the instructions are frequently different and the object-code is not compatible. It is thus necessary to re-assemble 8080 code to run on the 8086; and, to obtain the claimed order of magnitude performance increase, it will probably be necessary to rewrite at least the more critical code. The standard clock speed of 5MHz is probably faster than most 8080 systems.

The more or less standard set of load/store/push/pop instructions is provided, with of course far more addressing modes, and the same is true of the logical and call/jump/return instructions. I/O instructions are allowed to fixed or variable ports (i.e. immediate or register-contained port address), and memory-mapped I/O can be used should these facilities not be adequate. The advanced features are the extended set of arithmetic functions, extended addressing modes and genuine string-handling instructions.

Addressing Modes

There are many possible variations of the basic instruction set. According to Intel, there are 19 variations of the MOVE instruction. I have not tried to check this, but it illustrates that an assembler is really necessary for any but the smallest programs. The basis of all addressing is the set of segment registers. One of these always contains the logical origin of the program, the others point to data and the stack. The register used as a segment address is implicit, but may be over-ridden by an instruction prefix in some cases. The address of operands in memory may require the addition of one of the base or index registers and a one-or two-byte displacement from the instruction stream. Immediate operands are also permitted. As immediate data and displacement addresses may be one- or two-byte values, and as the shortest instruction is only one byte long, the processor must be able to recognise instructions of between one and six bytes in length. The instruction length may be determined from the op-code but for the full range of addressing modes, an eight-bit code follows the instruction to indicate the addressing type. The format is shown in Fig. 1.

Arithmetic Instructions

Despite my comments about the multiply/divide instructions, the facility is very well worth having and apart from the register limitations, is quite comprehensive. Half- and full-word binary quantities may be multiplied with or without sign to give respectively word and double-word results. Instructions are available to extend the sign-bit of half- and full-word operands to double their length. The divide instruction operates on a double length quantity to produce a single length (8- or 16-bit) quotient and a single length remainder. Adjustment instructions allow division of unpacked (single byte) decimal quantities giving an unpacked decimal result. Corresponding facilities allow unpacked decimal numbers to be added, subtracted and multiplied. Packed decimal operands may be converted for the addition and subtraction instructions.

String Instructions

String-handling functions are extremely useful to the interactive programmer and feature in most data-handling problems. The problem is that as the string to which they are applied may be very long, it is desirable that interrupts be accepted during the course of a repetition to prevent undue delay. The string functions are basically load and compare instructions which make assumptions about their operands, reducing the number of memory-fetches needed to execute the function. To cause a repeated operation along a string, a REPetition prefix must come before the instruction. When the prefix is supplied, the operation is repeated while the C-register is non-zero. The address may be incremented or decremented after each iteration. An early termination is caused if the zero-flag becomes unequal to a bit set in the prefix. A disadvantage of the prefixed instruction is that the instruction will not complete properly if the REPeteat prefix follows any other prefix. This is an unfortunate result of the design of the instruction set, but does not impose any real limitation on the programmer. Most string searches, translates and moves are greatly facilitated by the instructions.

Too complicated to go into here, but the limitations seem a little arbitrary.
Control Instructions

A number of control instructions are provided to facilitate the use of many devices on one bus system. The WAIT instruction causes the processor to wait for an external signal on pin 23 before continuing; the LOCK instruction (another of those prefixes) causes a signal to appear indicating that the processor is demanding control of the bus. The most interesting instruction is ESCape. This is effectively a no-op, but places the effective address (computed using the standard 8086 addressing modes) of the operand on the data bus to allow other processors to make use of the addressing features of the 8086 and access data in relocatable storage. Various control signals which are also available, externally, may be used depending on the system configuration.

Peripheral Devices

Two devices which are not strictly peripherals are the 8284 clock generator, which can be used with a crystal to provide the necessary clock signals and generate a suitable RESET signal, and the 8288 Bus Controller. The 8286 is used only in larger systems to fully decode the control lines. The 8259A Interrupt Controller sorts out priorities and interfaces to the 8086 vectored interrupt system. Some new peripheral chips which are also available, externally, may be used depending on the system configuration.

Some new peripheral chips which are not also available, external, may be used depending on the system configuration.

Applications

Applications are the 8271 Floppy Disk Controller, the 8273 HDLC/SDLC controller which will support the newer line protocols and the 8291 interface to the IEEE488 Bus. Other planned devices range from dot-matrix printer controllers to encryption chips.

The sad fact is that these many facilities are only likely to be in the reach of most of us if the price of the 8086 and its support devices drops quite considerably. There are two Intel-developed kits which could conceivably be within the reach of the hobbyist, a Component Evaluation Kit, and a System Design Kit (SDK-86). The former, I am informed, consists only of the integrated circuits necessary to develop a minimum system, and costs about £250. The latter is a hex-keyboard/seven segment display kit with a simple monitor, 2K memory and TTY support. I have been quoted prices ranging from £400 to £700, but no-one was very confident about their estimate. On the face of it there would seem little to justify the high cost when one considers that the 8085 System Design Kit (SDK-85) costs only about £160. Intel claim that the small die-size of the 8086 chip will lead to reduced cost as production experience (and presumably demand) grows. When one considers the amount of hardware and software needed to make really effective use of such a powerful tool, it would seem that the 8086 is still a device of the future for the hobbyist.

Note

Most of the information in this article is drawn from the Intel MCS-86 Preliminary User’s Manual. Both Intel and Rapid Recall Ltd. were both of great help in obtaining information. Information taken from the MCS-86 manual may be subject to change and may be protected by copyright.

PCW Next issue: The Motorola 6809 MPU.

Introducing the personal computer you've waited for.

The Exidy Sorcerer.

£760

£359

LOOK AT THESE FEATURES

- WORD PROCESSING, COBOL, FORTRAN etc
- PLUG IN ROM CARTRIDGES
- WORKS WITH NORMAL TV
- S100 EXPANSION UNIT
- CASSETTE INTERFACE
- Z80 CPU
- 32K RAM ON BOARD
- A REAL BUSINESS MACHINE

The Sorcerer Computer is a completely assembled and tested computer system ready to plug in and use. The standard configuration includes 63 key typewriter-style keyboard and 16 key numeric pad dual cassettes I/O, with remote computer control at 100 and 1200 baud data rates, RS232 serial I/O for communication, parallel port for direct Centronics printer attachment, 280 processor, 4K ROM operating system, 8K Micros BASIC in separate plug-in Ram Pac™ cartridge, composite video of 64 lines × 30 lines, 128 upper/lower case ASCII character set and a 128 user-defined graphic symbols, up to 32K on-board RAM memory, operators manual, BASIC programming manual and cassette/video cables, connection to S100 bus expansion unit giving access to the spectrum of exciting and useful peripheral devices, such as Floppy disk drives, video recognition/printlines battery backup board in case of power failure, additional memory boards, EPROM cards give the facility to program and re-program your own ROM memories etc. etc. This is the most versatile and flexible system that’s now available to the home and business user at such a low price.

Supplied by - Factor One Computers
SUMLOCK BONDAIN
SALES SOFTWARE EMINARS

Complete Facilities for Implementation of Mini-Computers.

COMMODORE 'PET'
NORTH STAR HORIZON
COMPUCORP
EQUINOX 300

Personal Computers to 10 mb Hard Disk Systems.

Evening & Day Courses on 'Basic' Programming at our City premises.

SUMLOCK ANITA HOUSE
CLERKENWELL CLOSE,
LONDON. E.C.1.
Phone: 01-253 2447

224 ARTICLES
Kilobaud has more articles than any other microcomputer magazine. During 1977, for instance, there were 224 articles in Kilobaud—880 pages of articles—that's like a very large encyclopedia of microcomputing. There will be even more articles in 1978.

FOR THE BEGINNER
Though Kilobaud covers both the technical and programming sides of microcomputers, it was written with the beginner in mind. No other magazine makes it as easy to understand microcomputers.

THE BEST PROGRAMS
Only Kilobaud offers programmers both the publication of their programs in the magazine plus a large royalty for the program if it's issued on cassettes. It is not an wonder that all of the really good programs are being published in Kilobaud. You'll find the best in games, diagnostics, teaching, music, busines.... etc., programs in Kilobaud. We're very heavy on programs.

HOBBY OR BUSINESS?
Both businessmen and hobbyists want the same thing: to understand microcomputers. This is the purpose of Kilobaud.

THE PUBLISHER
Kilobaud is published by the same people who put out the Amateur Radio magazine.

MONTHLY COLUMNS
Keep up with the latest developments and comments through the letters column, a KIM column, a column on the TRS-80, a column on BASIC, etc. The editors will keep you up to date on money-making ideas, the progress of the industry and more. The New Products column is particularly useful, including the results of tests of the latest equipment in the Kilobaud microcomputer laboratory—the most complete in the industry.

SUBSCRIBE TO KILOBAUD
You can get Kilobaud fast. Copies are flown to Europe immediately upon publication and mailed directly from the United Kingdom, so your copies are current. Send subscription orders for United Kingdom and Europe, £20 sterling per year, to:

L. P. Enterprises
313 Kingston Road, Ilford, Essex. 01-553 1001
Barclay Card, VISA, Diner's Club and American Express, Access Card honored.

If you only read ONE American computer magazine... it should be Kilobaud.

28 ARTICLES
Kilobaud has more articles than any other microcomputer magazine. During 1977, for instance, there were 224 articles in Kilobaud—880 pages of articles—that's like a very large encyclopedia of microcomputing. There will be even more articles in 1978.

FOR THE BEGINNER
Though Kilobaud covers both the technical and programming sides of microcomputers, it was written with the beginner in mind. No other magazine makes it as easy to understand microcomputers.

THE BEST PROGRAMS
Only Kilobaud offers programmers both the publication of their programs in the magazine plus a large royalty for the program if it's issued on cassettes. It is not a wonder that all of the really good programs are being published in Kilobaud. You'll find the best in games, diagnostics, teaching, music, business.... etc., programs in Kilobaud. We're very heavy on programs.

HOBBY OR BUSINESS?
Both businessmen and hobbyists want the same thing: to understand microcomputers. This is the purpose of Kilobaud.

THE PUBLISHER
Kilobaud is published by the same people who put out the Amateur Radio magazine.

MONTHLY COLUMNS
Keep up with the latest developments and comments through the letters column, a KIM column, a column on the TRS-80, a column on BASIC, etc. The editors will keep you up to date on money-making ideas, the progress of the industry and more. The New Products column is particularly useful, including the results of tests of the latest equipment in the Kilobaud microcomputer laboratory—the most complete in the industry.

SUBSCRIBE TO KILOBAUD
You can get Kilobaud fast. Copies are flown to Europe immediately upon publication and mailed directly from the United Kingdom, so your copies are current. Send subscription orders for United Kingdom and Europe, £20 sterling per year, to:

L. P. Enterprises
313 Kingston Road, Ilford, Essex. 01-553 1001
Barclay Card, VISA, Diner’s Club and American Express, Access Card honored.

MATROX FROM SHELTON

1. ALT-256**2E 256 x 256 S100 graphics card £284.00
2. ALT-2480E 24 lines of 80 characters S100 £213.00
3. MTX-816 Big characters 8 rows £128.00
16 characters per line
4. MTX-1632 Very clear characters 32 characters £162.00
16 lines (SL version can be synchronised to TV picture)
5. MTX-A1/MTX-B1 Keyboard scanners and LED driver £28.00
Single chips direct connection to any CPU bus

SHELTON INSTRUMENTS LTD.
22/24 Copenhagen Street, London N1 OJD Tel: 01-278 6273
1. INTRODUCTION
It is a true reflection of the maturing state of the microcomputer industry that we have a new product line from an existing manufacturer. In fact, the ATTACHE is the latest product from the original personal computer company, the makers of the ALTAIR, now under the wing of leading U.S. peripheral manufacturer PERTEC. PERTEC Computer Corporation Microsystems Division markets under two product names in the U.S.A., MITS and iCOM, the ATTACHE appearing to come from the latter stable.

In practice, the ATTACHE is a re-packaging of the ALTAIR components, utilising quite naturally the S100 bus structure. Thus, while there are some new cards, many well tried and tested components are incorporated.

The major new feature of the hardware is in the packaging, which follows the concept of the Apple by embodying the keyboard in the computer “box” with a video output socket to drive a stand-alone monitor. The ATTACHE however is not aimed at the low cost hobbyist market. Bulk data stores are incorporated in separate stand-alone boxes and although a cassette tape interface is available, the ATTACHE is really intended as a floppy disc system. As such it uses MITS BASIC, with disc handling, as its normal user interface.

Unlike the ALTAIR, the ATTACHE is marketed by MONCOLAND, the leading light of which is Derek Moon. This is a further reflection of growing maturity and commercial interests since he has his roots in commerce and retail marketing and not in computing or amateur enthusiasts. Thus while the ATTACHE has some appeal as a personal computer it is as a small business computer that it will really be marketed. MONCOLAND are actively encouraging marketing through standard (electrical) retail outlets; they are totally committed to providing applications software packages and organised maintenance.

2. HARDWARE
The ATTACHE is, as only to be expected, a pleasantly packaged machine. Good simple aesthetic appeal is of course important if the machine is to sell to business users. The in-built keyboard is a 64 Key unit with a good “feel” and a conventional lay-
out (thank goodness!). It is a "stepped" keyboard and as such will be quite acceptable to an unskilled operator, helped by the QWERTY layout. The importance of a quality keyboard in commercial systems cannot be overstressed.

The box contains the power supply and a fan with a motherboard with slots for 10 S100 bus cards. A noise suppression A.C. line filter is incorporated. The system I tested had the usual problem child of a 220 volt transformer, but I am assured that all units are being shipped with proper 50Hz, 240 volt transformers. In all fairness the machine ran quite cool even with the 220 volt transformer. Being an S100 bus machine the power supplies provided only smoothed D.C. (+8,+18, and -18 volt), employing voltage regulators as required on each board. I personally feel that this technique has avoided a lot of potential problems with instability on all S100 bus systems. However it also excludes the use of switching power supplies, a feature of the APPLE which results in reduced weight and heat dissipation.

The CPU card is the standard ALTAIR card featuring a 2 MHz 8080A, with an 8224 clock generator but standard TTL logic for system control, latches and drivers rather than the 8228 (was the 8228 available when this board was designed?). It is surprising now to see a whole board dedicated to a CPU but all MITS boards use low density chip packing with the resulting minimisation of faults and debugging problems.

Both a static and a dynamic 16Kb RAM board are offered. The static board is quoted with an access time of 215 nanoseconds and the dynamic (or synchronous as the literature calls it) 350 nanosecond. The latter relies on timing signals from the CPU and therefore presumably inserts wait states for memory refresh cycles. The system tested had only static boards and so I was unable to make performance comparisons. Both would appear plenty fast enough for the 2MHz 8080A, in which case the cheaper dynamic memory would be attractive. The static boards supplied are the same as those I have used for a long time in an ALTAIR and can be well recommended. The addresses are of course switch selectable on 16Kb boundaries. 4Kb boards are mentioned in the literature, but these are not being supplied in the U.K.

The system employs a board for basic functions called a Turnkey Monitor Board. This supports 1Kb of RAM and sockets for 4 1702 (256 Byte) PROM's, used for optional monitors and bootstrap loaders. Auto start circuitry is initialsed by depressing a toggle switch mounted on the back of the ATTACHE, which causes an interrupt to start the monitor or bootstrap routine. The ROM address is switch selectable and is set to use the last 1K of the address space, the monitor starting at FC004, followed by the disc bootstrap loader. An alternative multi-boot loader (MBL) is available for booting from cassette. The 1K RAM is situated immediately prior to the ROM, (Figure 1) and is used as a stack by the monitor. It is not at all clear how a

![Figure 1: Memory map for the Attache with BASIC](image-url)

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RESTARTS</td>
</tr>
<tr>
<td>64</td>
<td>INTERPRETER</td>
</tr>
<tr>
<td>11928</td>
<td>MATHS ROUTINES</td>
</tr>
<tr>
<td>16277</td>
<td>DISK MANAGER</td>
</tr>
<tr>
<td>20851</td>
<td>I/O</td>
</tr>
<tr>
<td>21564</td>
<td>LINE PRINTER</td>
</tr>
<tr>
<td>22127</td>
<td>FILE BUFFERS</td>
</tr>
<tr>
<td></td>
<td>Variable</td>
</tr>
<tr>
<td></td>
<td>BASIC PROGRAM</td>
</tr>
<tr>
<td></td>
<td>62K</td>
</tr>
<tr>
<td></td>
<td>STACK</td>
</tr>
<tr>
<td></td>
<td>STRING POOL</td>
</tr>
<tr>
<td></td>
<td>63K</td>
</tr>
<tr>
<td></td>
<td>MONITOR</td>
</tr>
<tr>
<td></td>
<td>STACK RAM</td>
</tr>
<tr>
<td></td>
<td>BLANK</td>
</tr>
<tr>
<td></td>
<td>MONITOR ROM</td>
</tr>
<tr>
<td></td>
<td>CASSETTE LOADER</td>
</tr>
<tr>
<td></td>
<td>DISC LOADER</td>
</tr>
</tbody>
</table>

Variable: Top of installed memory
clash of physical address space is avoided when a 16Kb RAM card is selected to the top quarter of the address space; presumably there is logic on the monitor board to gain priority for the top 2Kb. The circuits are provided but time has not yet been found to decipher these.

Also included on the Turnkey board is a UART for a serial I/O port, using ports 16 and 17. An RS232 (V24) standard outlet is provided on the front edge of the card. The board is factory set to 9600 Baud; but jumpers are provided for other speeds.

The I/O from the Turnkey board is directly coupled by a short cable to the Video board. The Video board is in fact a double board (piggy-back), screwed together with only one S100 connector. Since it is thus effectively double width it is plugged into a socket at one end of the motherboard to avoid covering up another socket. The video board has a UART for connecting to the monitor board plus a parallel port for the output from the keyboard. The actual keyboard electronics are mounted on a separate PCB under the key pad, and generate ASCII code. Thus keyboard output is routed in parallel to the video board, in serial to the Turnkey board and thence is parallel to the S100 bus, a rather round about route. The video board also supports a 1Kb RAM which is used to generate composite video signals for a 64 character x 16 line display. This RAM is loaded by the control logic for interpreting cabinet commands, etc., is included on the board together with the video refresh logic. The board tested had been modified to 50 Hz standards, generating composite video signals via coax sockets on the rear panel of the box, suitable for a monitor. An external modulator would be required to use a TV set but the lower quality is not suitable for commercial applications anyway.

The combination of Turnkey and Video boards is rather surprising as the short 9600 baud link could have been faster implemented by a parallel link. Alternatively the I/O port could have been directly serviced on the Video board from the S100 bus. As it is the Video board only picks up power from the computer bus, further there should be no need for a double board if some of the newer components were employed. On the credit side, however, the board generates a good quality display, provided a proper video monitor is employed. 64 x 16 is rather limiting for commercial applications and even though upper and lower case are supported there are no cursor controls. As already stressed the keyboard is of good standard, it also supports 5 LED's to indicate system status.

A parallel I/O board is supported, specifically for interfacing a Centronics printer or equivalent. This board is directly supported by the BASIC LPRINT statement.

Mass storage is provided by a choice of either cassette tape or floppy disc. Since this is a PERTEC product there can be little doubt that a hard disc will soon be added to the system. The cassette system is of little interest with the commercial orientation of this machine but for the record the standard ALTAIR 88-U10 single board Kansas City (300 baud) interface is available, with appropriate version of the Bootstrap PROM for the Turnkey board. The floppy disc system is far more interesting. It comes in a separate metal box, attractively finished to match the processor. It houses two 8" PERTEC drives with separate status indicator lights and its own (240 volt!) power supply. The disc controller comprises two S100 bus boards utilising TTL logic rather than single chip controllers which are virtually (probably exactly) the units supplied with the older ALTAIR.

The disc drive (and the printer for that matter) are connected by multi-core flat ribbon cables to in line sockets at the rear of the ATTACHE. The floppy disc drives currently supplied are standard 8" single sided, single density PERTEC FD512 with 360 RPM, 400 millisecond average access time and a data transfer rate of approximately 32KByte/sec. The discettes are hard sectored, 32 sectors/track, 77 tracks; note that this is not the standard soft sectored IBM format. Using 32 rather than 26 sectors per track gives a total capacity per discette of 310 Kb, 620 Kb for the dual drive system. A dual density version is promised soon.

A number of other ALTAIR cards are offered, e.g. serial I/O, process control I/O, etc. However for a full commercial system with CPU, Video, Turnkey, 4 x 16Kb RAMs, printer and 2 x disc controller, all 10 slots are used.

3. SYSTEM SOFTWARE

The ATTACHE is supplied with ICOM software, largely based around the MITS BASIC. In fact the versions of BASIC are available, a simple 8K version, a 16K version which is available on a single ROM board as an option, and the disc extended version, referred to as MITS300-5A. This is the only one of interest for commercial programming. Figure 2 is a summary of characteristics. The system I tested used the Version 5 BASIC which must be the best BASIC available on microcomputers for commercial work. This version of BASIC has strong overtones of DEC's BASIC-PLUS, the Rolls Royce of BASIC (written by the way by MICROSOFT Corp. and available under CP/M and other operating systems on other microcomputers) and BASIC-PLUS would make interesting reading - suffice it to say that the standard is more than we dare have hoped for in such a short span of microcomputer development. MITS BASIC includes sequential and random access to disc files. An ISAM package is also available which gives access to files by key names, an im-

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>8K</th>
<th>16K</th>
<th>24K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Memory Requirement</td>
<td>8K</td>
<td>16K</td>
<td>24K</td>
</tr>
<tr>
<td>Numeric Types</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Single Precision</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Double Precision</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Integer</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Strings</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PEEK and POKE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>INP and OUT</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Arrays = any size or dimensionality</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>IF...THEN...ELSE</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PRINT USING for formatted output</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>EDIT command</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Automatic line numbering</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Error trapping</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Trace</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Disc files for programs and data</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Functions</td>
<td>11</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Intrinsic</td>
<td>*</td>
<td>Y</td>
<td>y</td>
</tr>
<tr>
<td>User-defined</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Machine language subroutines</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

*In 8K BASIC, functions must be defined on one line and may have only one argument.

Figure 2: Summary of characteristics of the three versions of BASIC offered. MITS300-5A is, in fact, M-BASIC.
important feature for a commercial system. The system I tested was fitted with a Bootstrap ROM so that toggling the Reset button automatically loaded BASIC. There is a short dialogue to identify memory size, number of disc drives and file limits and printer type and you are away. For commercial applications a new loader is being developed to give instant access to a MENU for program selection.

The BASIC incorporates a useful edit facility. The PRINT USING and ERROR TRAPPING features are most desirable in commercial applications. Machine code functions can also be supported but must be loaded by using the POKE command, after translating binary code to decimal. There is no direct Assembler support so that this feature is of little interest here.

The literature describes an alternative discette-based software system to the BASIC supplied called FDOS III. This is also an icOM product of unknown origin, but it looks like a useful Assembler language program development facility.

From the literature, remembering that I haven't had the opportunity to try it yet, FDOS III utilises a memory resident system monitor, which I presume is booted down by the DBL PROM on start-up, rather than the simple ROM monitor which is bypassed by the bootstrap anyway. The system includes a text editor with a paging command to allow page at a time in memory so that large programs can be edited — remember that the source code for a 10Kb object program will exceed 64Kb. The Assembler generates relocatable code so that a linking loader is also provided to resolve global symbol references and to create complete programs from disc resident modules. There is no mention of Macros or conditional assembly.

There is also a Debug module which allows insertion of break-points and display of register contents, etc.

The BASIC system includes a few utility programs, in particular a file transfer package called PIP. This is of course essential for making archival copies of data files in commercial applications.

4. RETAIL PRICES

The retail price list provided by MONCOLAND follows. Note that the list as published does not cover the options such as process control interfaces. Nor does it include video monitors or Centronic printers. There is no price either for the FDOS III or the 8K BASIC. All this reflects MONCOLAND's policy of stressing commercial data processing systems.

<table>
<thead>
<tr>
<th>Basic System</th>
<th>Case + CPU + Turnkey monitor</th>
<th>£1,466</th>
</tr>
</thead>
<tbody>
<tr>
<td>board + 16K RAM</td>
<td>Video board</td>
<td>£ 271</td>
</tr>
<tr>
<td>16Kb Static RAM</td>
<td>Printer interface card</td>
<td>£ 208</td>
</tr>
<tr>
<td>Floppy disc sub system</td>
<td>2 x 310 Kb discettes + controller + box, etc.</td>
<td>£1,701</td>
</tr>
<tr>
<td>Basic interpreter (on floppy disc)</td>
<td>£ 41</td>
<td></td>
</tr>
</tbody>
</table>

Also offered are the ROM BASIC on a single 16Kb board at £261 and the Kansas City standard cassette tape interface at £251. All prices are exclusive of VAT.

From this list a simple personal computer configuration with 16Kb and cassette interface would cost £2,000, guessing at a small allowance for 8K BASIC, excluding video monitor and cassette recorder. A full business compusy system application would be 64Kb, twin discettes and printer interface comes out at £4,728, to which must be added a good quality video monitor at about £150 and a Centronics printer, costing around £1,400, is essential for commercial work, else pre-printed stationary cannot be used.

A working system will therefore cost about £6,300.

5. MAINTENANCE

In keeping with the commercial orientation of the ATTACHE, MONCOLAND has arranged a maintenance agreement with Computer Field Maintenance (CFM) for business users. The price for maintenance is broken down into units but comes out to £522 per annum for a full system plus printer and video monitor maintenance at about £350 per annum. This is a reasonable charge from a reputable nationwide independent maintenance organisation which compares well with the rates for VRC's and other small business computers. Maintenance for the business man is an extremely important course; he cannot rely on amateur "fix it".

6. APPLICATIONS SOFTWARE

This is a real sign of the times! Already the U.S. predictions suggest that the importance of microcomputers in commercial applications will outweigh the home market. Here we have proof of the pudding in a U.K. company. MONCOLAND have invested real money in developing applications programs which are to be marketed at the quite amazing price of between £30 - £40 a module. I was provided with a pre-release of the Order Processing System which comprised four modules, Order Entry, Stock Control, Customer File Maintenance, and Invoicing. At a total cost of around £160 this represents remarkable value for money. The draft documentation looks perfectly organised to suit the non-computer specialist business man. The full system is due for release by mid December. Other suites for Sales Ledger, Purchase Ledger, Nominal Ledger and VAT and Payroll are under development and will be progressively released during the early part of 1979.

I am personally convinced that provided applications programs are designed on the 80/20 principle, then by utilising potential bulk sales, software can be successfully marketed at low prices — the "Woolworth's principle". The 80/20 principle implies that the programs are designed to do 80% of the job, which is common to most users. The 20% extra will cost considerably more to provide than the basic program. I believe that for any realistic small business it makes sense to cover the bulk of the accounting requirements at minimal cost rather than get too involved with complex computing.

7. CONCLUSIONS

The outstanding feature of the ATTACHE is the high quality of the product. It is not really a product for the home enthusiast, but a properly configured small computer. The standard of construction of the boards, and the keyboard in particular, leave nothing to be desired compared to most accounting computers. It would probably be more attractive if the screen was built into the keyboard box rather than a separate 16 x 24 is desirable although a standard VDU could be used as an alternative to the video board — at a cost.

Frankly, as a personal computer "toy" the ATTACHE doesn't rank alongside the APPLE. The latter offers a colour graphic capability with BASIC programming commands and switching-mode power supplies at a lower cost, admittedly employing the slower 6502 CPU. However with a full 10 slot S100 bus motherboard, the ATTACHE is much more versatile. Fully figured with memory, text and disc stores, plus the high performance BASIC, well suited to commercial applications programming, backed by details like ISAM packages it is a very good product indeed. I shall be very surprised if MONCOLAND with their applications programs and organised commercial standard maintenance don't succeed in taking a big share of the growing small business systems market. Throw your Visible Record Computer (VRC) away as soon as possible and look at these types of machines — the time has arrived!
2. Telecommunications Futures

In the first article in this series, I wrote about the symbiosis of computers, communications and broadcasting leading to telecommuting and Marshal McLuhan's far-sighted concept of the Global Village. The emphasis on the symbiosis is important: it is the combination of advanced computer and communications technology which is the key.

Unquestionably, the pace of computer development is much faster than that of telecommunications. There are many reasons for this but two of the major ones are that (1) telecommunications networks are much more complex and widespread than the average computer system and (2) the telephone network is dealing with analogue input and output. I shall come back to these points later.

The British telephone system is, on the whole, crude, inefficient and unreliable. The switching of lines uses the Strowger System which is an electromechanical arrangement. The basic principles of this were first devised over 100 years ago by an undertaker (the original Mr. Strowger) in the American Mid-West, who was losing business because his competitor had 'nobbled' the operator of the small-town's manual exchange. Modern exchanges use computer-controlled switching and it is no coincidence that one of Europe's most successful private branch exchanges is made by IBM (the 3750).

The Post Office has no computer-based switches installed. In the USA, AT & T have been commissioning them for well over ten years. The Post Office project to develop a new standard exchange for the future; it is called System X and looks very exciting on paper. Unfortunately, the project seems to be fraught with technical, managerial and political difficulties.

Switching is just one aspect of telecommunications; transmission technology is another. As I mentioned before, the fundamentally analogue nature of speech makes it difficult for the Post Office (or any telecommunications administration) to benefit from recent advances in microelectronics as the computer industry has. In simple terms, speech is transmitted as an electrical analogy of the sound waves made by the voice.

These signals need to be periodically reamplified; a process which does nothing to improve the signal-to-noise ratio. If speech could first be digitized then regenerative repeaters could be used instead of the amplifiers. This has two benefits; firstly the noise problem is significantly eased and, secondly, they can be made from LSI digital components. (This problem of handling analogue signals is illustrated by the fact that a standard pocket calculator can have as many as ten times more components than a colour television set).

The Post Office have been at the forefront of developments in the area of speech digitization, notably with Pulse-Code Modulation (PCM). But the performance of any telecommunications system is measured by the quality of the service received and the size of your telephone bill. Whereas advances in electronics can be readily and speedily implemented in small, autonomous units such as personal computers, the very widespread and complex structure of the telephone system makes such a change in technology a massive and costly undertaking. Almost everything has to be changed before the subscriber sees much benefit and no-one should expect to see any massive improvements before 1990.

What about the much-vaunted age of the communications satellite? As far as Europe is concerned the problem of managing the scarce resource of the available frequency bandwidth will probably restrict their use to long-haul international links (e.g. Italy-Scandanavia, UK-Greece). The future more probably lies in the use of very high capacity cables of the co-axial, waveguide and/or optical types.

Once higher transmission capacities and improved switching techniques do become available, then a whole new range of services may be possible. Getting these new services, especially electronic mail, off the ground is going to be difficult within the present Post Office structure. I think the only way it can work is if the telecommunications departments are split off to form a separate corporation.

The present management/union infrastructure at the Post Office is just not geared up to handle major technical advances. Look what happened to a very minor technical advance; the Post Code. For years the Post Office has been exhorting us to use the Post Code but hardly does so itself. The number of letters which are routed source-to-destination by code only is very small indeed.

If the Post Office in its present form cannot handle a relatively simple thing like the post code, there is no chance for electronic mail. Clearly, major changes are needed.

Next Month: How PCW Readers can tune their own computers to the telephone network.
From Alpha to Omega

WORD PROCESSING

Charles Sweeten

There are now many offices and small businesses that are considering some form of word processing. Prices for the usual systems range from 3500 pounds to 65,000 pounds, with a worthwhile system for the small user, with one station and disk backing, working out at about 6000 pounds minimum. IBM offer a system at around 12,000 pounds which attracts many people, and the Rank Xerox system comes out at about 7500 pounds.

These are high prices to pay, and in addition, these same concerns may well wish to have some form of computer accounting or stock control. I want to describe a word processing system costing around 4000 pounds which will also provide computing power for the smaller office or company.

The South West Technical Products (SWTP) computer has now established itself as a useful computing tool in the business field I believe, but it seems to be less well known as a Word Processor. Indeed it is surprising that such a company as Computer Workshop who market SWTP in this country have not had a greater response from the business community to this feature of the SWTP system. Let me say that I have no connection with this company, and that I have used their system along with several others from other manufacturers, and that I look forward to the day when they all have Word Processing.

What is a Word Processor?

Quite simply, a Word Processing machine is one that separates the process of typing from that of printing. What is typed is displayed, and can be corrected, modified, moved around, and recorded in machine readable form. The final version or versions may then be typed out in a wide variety of ways which are governed by a set of Processing commands. Such a machine would in other circumstances be called a computer with a program in it. SWTP sell a Text Processing System which is just such a program. Naturally it only runs on their computer. The process of entering words (Text) and manipulating them is carried out by a Text Editor. These two programs are called off the system disk as required, and operate on any file that is held on a working disk.

However, before describing the operation of this system in detail, let me give you some facts.

The average typist spends one third of her typing time on correcting errors. She spends a further quarter of her time in making author’s corrections.

A typist in a conveyancing office may spend 90 per cent of her time in typing standard clauses.

A golfball machine types at 30 characters per second.

A dot matrix printer prints at 50 characters per second.

A dot matrix printer can print at 200 characters per second.

A keyboard and screen display can cost as little as 500 pounds and as much as 2000 pounds.

THE EQUIPMENT

In order to do Word Processing on the SWTP system you will need:

1 MP-6B.2 Computer System; 2 MP-8 8K Memory Boards; 1 MP-L Parallel Interface.

Options: MP-8 more 8K Memory Boards; 1 CT-64 VDU Terminal or any other VDU such as SOROC, LYME, HAZELTINE; 1 MF-88 Minifloppy Disk System or DMAF-1 Large Floppy Disk System; 1 RICHIO Printer (daisy wheel) or QUME Printer (daisy wheel) or CENTRONICS Printer (dot matrix) or DIABLO Printer (daisy wheel) or any other Printer with full column width and with proper lower case letters.

The extra memory is useful for handling quantities of text in the region of more than five pages of A4 at a time, but is not by any means essential.

The difference between VDU’s lies in what they will do, how much they will display, the quality of the keyboard, and the quality of the casing. The last two have a direct relation to price, but the first two do not except within one retailer’s product range.

The mini floppy disks hold 80,000 characters on each side and the large ones currently hold 300,000 characters.

The choice between printers lies between quality of print and speed of printing. Daisy wheel printers operate at between 40 and 55 characters per second, and provide a choice of good quality print fonts. Some of them offer the ability to produce proportionally spaced output, though, at the time of writing, the Word Processor does not support this feature and would have to be extensively rewritten. Proportional spacing means that letters such as ‘i’ take up less room than letters such as ‘w’. Dot matrix printers operate at speeds from 30 to 240 characters per second, and though the quality of print can be quite high, it does not compare with that from a daisy wheel printer. A further option is to use a modified IBM golfball typewriter. This has the advantages of cheapness, and a choice of IBM type fonts, but the speed is only 30 characters per second. An IBM service contract can be arranged to cover the typewriter, but with its dependence on many mechanical parts, it has not proved to be robust enough to stand up to heavy computer use. To be fair, we did not have a maintenance contract.

Entering the text

Text is entered under the operation of ‘Text Editor’. This is a comprehensive editor that has a great many options and commands, but it is quite possible to use it and use only a limited range of these commands. I am not going to describe the operation of the whole computer system as a computer, so we shall have to accept that the machine is running and ready for use by a sec...
The first thing you do is summon Text Editor, from the disk by typing: EDIT LEGAL1, where LEGAL1 is the name of the document being created. I am going to take the example of a Conveyance of property as this represents a rather complex document, and gives me the opportunity to show some of the special features of this system. You should not imagine therefore that the system is designed for solicitors; it could be of use in any office. The secretary then begins to type, and let us suppose that you type the following:

1.00=LEGAL1
2.00=
3.00=THIS CONVEYANCE is made the
4.00=Fourth day of November
5.00=One thousand nine hundred and seventy eight
6.00=BETWEEN
7.00=CHARLES SWEETEN
8.00=of 18 South Road Oundle Peterborough
9.00=hereinafter called "the Vendor")
10.00=of the one part and
11.00=ARTHUR BELVEDERE CRUNCH
12.00=of 27 Shingles Way Cambridge
13.00=hereinafter called "the Purchasers"
14.00=of the other part
15.00=WHEREAS the Vendor is seized of the property
16.00=hereinafter described for an estate in
17.00=fee simple free from incumbrances subject
18.00=only as hereinafter mentioned and has agreed
19.00=with the Purchaser for the sale to him
20.00=of the said property at the price of
21.00=twenty five thousand pounds
22.00=NOW THIS DEED WITNESSETH as follows:—

... and so on, until you are done, when you will type # at the beginning of the line. This brings you out of the entry mode and into the editing mode.

While you are typing, you will make mistakes, and you will correct these by backspacing and retyping. But there will be later corrections and amendments. For example you may wish to alter something in line 15. To do this there is a Change command

15C/seiz/sies/ where '/ is used as a separator, and '15' indicates that the command should operate on line 15.

In order to inspect the text it is only necessary to type a command such as: 10P15, which will cause 15 lines to be typed, starting at line 10.

You will notice that the lines are of uneven length, and a solicitor would also tell you that the final document must be typed without leaving spaces. The ability to cope with this automatically is one of the attractions of this system which will be described later under 'Word Processor'.

In documents such as these there are a number of paragraphs (clauses) that are to some extent standard. These can be called from the disk file system and, if any modification is needed, they can be modified. For example:

READ you ask to load
TAPE OR DISK (T-D) ? D you reply D for disk file
FILE NAME? CL184 you supply the name of the clause you want

The clause will now be at the bottom of the file. A typical clause that might be wanted quite frequently is:

The Purchasers so as to bind the property hereby conveyed and every part thereof jointly and severally COVENANT with the Vendor that the Purchasers and their successors in title will at all times hereafter observe and perform the covenants contained in the Second Schedule to the said Conveyance dated the

One thousand nine hundred and seventy eight

It is easy to insert the correct date into the appropriate blank line.

What I am suggesting is that complicated documents such as a Conveyance, can well be put together from a bank of clauses held on disk files, leaving only the on-off clauses to be typed.

Suppose now that you decide that the 12 lines which make up clause 3, starting at line 103, should be deleted. This is easily done by: 103D 12

And suppose that the 22 lines starting at line 214 should be moved down by 31 lines. This is easily done by: 214MO 31 22

You now wish to 'Save' this typing on the disk, and this is done by typing S. This will result in a file being created on the floppy disk which will be called LEGAL1. The disk can be labelled and filed, and as part of the operating system of the computer, a catalogue of the contents of the disk can be printed out automatically to go in the manual filing system.

You may then Edit another file or the same one again. If you Edit the same one, the machine will automatically set aside a copy of the file as it then exists. Each time you Edit the same file, the machine will delete the previous backup file and replace it with the current file.

Suppose at some later stage the whole transaction gets postponed from the 5th November to the 16th of December; or it might be that you wanted a similar document for another house on the same housing estate. The date might perhaps occur at several points, and you wish to change them all. Obviously you could go through changing each occurrence as you found it under the operation of the Text Editor; but as a small example of how the full range of commands make the task of editing simpler, this is all you need to type to change all occurrences:—

C/Fifth day of November/Ninth day of December/

Yes, I agree it looks complicated, but it is doing something quite complicated, and you don't need to use it. Many businessmen have been surprised to find that their secretaries are often exceedingly intelligent, and if they care to demonstrate the simple use of the machine, and then leave the manual in a handy place, they might well find their secretaries becoming more proficient than themselves!

In order to obtain a printed copy of the file you will merely type: P LIST LEGAL1 and switch on the printer. This is in itself a form of word processing as described so far, in that it enables typed material to be stored, edited, amended, and typed as often as desired.

This paragraph should be skipped by those who are unfamiliar with Editors. TSC Text Editor (which is what I have been describing) is a pretty good editor, but it does have its failings in that it lacks some features to be found on others. For example: there is only one edit buffer; no macro can be defined (this is the most serious defect; there are several facilities that are desirable, for example looping, and conditional termination of loop); there are no character orientated commands — like 'move 3 positions' — 'insert CRLF'. The lack of the latter is quite infuriating at times. However it does have features which are not always found elsewhere. For example: the <line > directive <target > structure which allows a command to take effect over a specified range; line overlays; settable tabbing; definable special characters; and of course, the one that I regard as indispensable, the move command. Recently, a much more powerful Editor has been developed by SOURCE, which is a new software house started by ex-pupils of Oundle School. This Editor has most of the desirable features referred to above.

It would not be worth considering such a system as I have outlined for what has been described so far, though there is no doubt that your secretary would thank you.

One feature of this system which is good is that having started the machine on printing out a finished file, you may then start to edit the next file while the printing is still going on. But the major attraction comes
when you examine the options offered by the part of the system known as 'Text Processor'.

Printing the text

The 'Text Processor' is a very complex program which gives the user a staggering degree of control over the exact layout of the printed output from this system. It works on the principle that there is a default mode of operation unless the user specifies otherwise. This means that you do not have to know anything about it at all. However, in this case, a little knowledge is a useful thing.

What can be done with Text Processor? You may specify the exact fitting of the page; this means that you can decide on the margins, and the length of text on each line and on each page. You can do automatic numbering of the pages and put in page titles and text headings. You can perform left and right justification of the text, so that both the left and right margins are straight. You can centre text lines automatically. You can define new commands into the text itself. They are distinguished by occupying a line of their own, and by indenting the first line 6 spaces. (the receipt of which sum the Vendor hereby agreed to pay by the Purchaser to the Vendor (the purchase of which sum the Vendor hereby acknowledged) the Vendor as beneficial owner HEREBY COVENANTS etc)

In order to get the 'Word Processor' to take special action, for example on titles and page length etc., it is necessary to give commands that refer to particular sections of the text. This is done by inserting the commands into the text itself. They are distinguished from the text by occupying a line of their own, and by marking that line by a full stop in the first character position (it is unlikely that you would want to have a full stop here under any normal circumstances).

So for example, you might decide that the line length of the document given above was to be 60 characters, and that the page length was to be 50 lines. So you would insert two lines at the beginning of your text:

```
.LN 60
.PL 50
```

Please note that the comments on the right are NOT required, but are put in for ease of understanding in this description.

Legal documents that I have seen do have a habit of starting at the top, and continuing to the end without punctuation, paragraphs or pause. This means that no more commands are necessary for the 'Word Processor' which will now be able to output the document with everything in its place, and with both margins straight, and with no gaps in the text. This would output the text shown earlier in the following kind of format. The length of line would default to 60 characters, but I have shortened it to 40 to fit the PCW column.

**THIS CONVEYANCE is made the Fifth day of November One thousand nine hundred and seventy eight BETWEEN CHARLES SWEETEN of 18 South Road Oundle Peterborough (hereinafter called "the Vendor") of the one part and ARTHUR BELVEDERE CRUNCH of 27 Shingles Way Cambridge (hereinafter called "the Purchaser") of the other part WHEREAS the Vendor is seized of the property hereinafter described for an estate in fee simple free from incumbrances subject only as hereinafter mentioned and has agreed with the Purchaser for the sale to him of the said property at the price of twenty five thousand pounds NOW THIS DEED WITNESSETH as follows:-

Those of you who are more ambitious in the way that you write may wish to read on. You will want to centre your title, and under-line it, in the middle of the line. So you insert a command in front of the title, and follow the title with 3 blank lines by inserting another command:

```
.CE 2 centre the next two lines

.SP 3 space down three lines

Now you want to start your paragraphs by leaving two lines blank and by indenting the first line 6 spaces. To avoid putting the commands for this in each time, you define your own composite command (known as a macro) to do what you want. In this case I shall call the macro by the name "PP" and I shall use the command for a single line indent.

```
.DM PP define the name 'PP'
.SP 2 leave 2 lines blank
.SI 6 indent 6 spaces

... end of macro command sequence
```

So in front of your paragraph start you insert your new command like this:

```
.PP
```

1) IN pursuance of the said agreement and in consideration of the sum of TWENTY FIVE THOUSAND POUNDS paid by the Purchaser to the Vendory (the receipt of which sum the Vendor hereby acknowledges) the Vendor as beneficial owner HEREBY COVENANTS etc

Assuming a line length of 40 characters (it has to fit inside a PCW column width!), the output could look like

**CONVEYANCE for SALE OF LAND**

**THIS CONVEYANCE is made the Fifth day of November One thousand nine hundred and seventy eight BETWEEN CHARLES SWEETEN of 18 South Road Oundle Peterborough (hereinafter called "the Vendor") of the one part and ARTHUR BELVEDERE CRUNCH of 27 Shingles Way Cambridge (hereinafter called "the Purchaser") of the other part**
WHEREAS the Vendor is seized of the property hereinafter described for an estate in fee simple free from incumbrances subject only as hereinafter mentioned and has agreed with the Purchaser for the sale to him of the said property at the price of twenty five thousand pounds

NOW THIS DEED WITNESSETH as follows:—

1) IN pursuance of the said agreement and in consideration of the sum of TWENTY FIVE THOUSAND POUNDS paid by the Purchaser to the Vendor (the receipt of which sum the Vendor hereby acknowledges) the Vendor as beneficial owner HEREBY COVENANTS

The manual that describes the 58 different commands and the 26 registers and the 7 special characters has been written with a degree of conciseness that does not make things easy. Each command gets an average of four lines of description, and you have to look elsewhere for the all too rare examples. However they have provided a 'standard set' of commands to deal with footnotes, two column output, and form letters.

If you intend to do something else which is not very simple indeed, then you would be wise to obtain help, or expect to take some time in mastering the difficulties. It is worth quoting the authors, Technical Systems Consultants, on the subject. "The TSC Text Processor is the most complex program released by TSC to date. Do not expect to master the system with one reading of the manual. The entire document should be read lightly the first time through, followed by more rigorous reading. Many results may occur which are contrary to the user’s intentions. If strange output is encountered, reread the manual." And most software distributors go out of their way to tell you how easy it is to use! Fortunately the difficulties only start when you try to be clever, and so far I have yet to meet anyone who has not finally realised that the Processor does exactly what it is told to do.

Conclusion

The cost of the programs 'Text Editor' and 'Word Processor' is 25 pounds each—not expensive. The cost of a mini-disk computer system is about 1900 pounds plus processor. The computer and the programs are available from Computer Workshop who in turn have a number of agents in the UK. The printers can be bought from any source which offers a good price, though there is something to be said for the original manufacturer.

The system works well, and offers considerable scope for the computer to help in other areas of a business. But I regard the keyboard/terminal as supplied from SWTP as sub-standard and only to be tolerated if you cannot afford a better one. Replacing it with say, a LYMNE would raise the price by 200 pounds. I have only seen the system with a RICOH daisy wheel printer attached, and so unless the retailer can demonstrate another daisy wheel actually in use on the system, I would recommend that. Dot matrix printers are fairly simple to connect, but again I would recommend seeing them attached before placing an order.

This must represent outstanding value for money as a Word Processing system. I understand though that there will be a similar type of system which operates on those machines which have the SC/M operating system. As is usual then, I must advise anyone contemplating a purchase that they would be well advised to wait for a year. At which time I will again advise them to wait for a year. And so on.
INTRODUCTION

For the first time the progress of technology makes it possible to enjoy the benefits of a computer in a small business environment for less than five thousand pounds. Or is that really true? The answer is "yes, but ..." The purpose of this article is to justify the "yes" and to describe the "but".

Can a low-cost microcomputer system provide true business computing capabilities? Yes.

Is there any one system presently available that does? No.

It will be seen that the essential deficiency of actual microcomputer systems is not at the hardware level but at the software level. This has always been the case, ever since computers were introduced, and history has consistently repeated itself every time a new generation of hardware was introduced. It will be seen that the necessary hardware to process efficiently a number of business applications can indeed be purchased for £5,000 to £20,000. However, software is just beginning to become available. Naturally many trade-offs exist in function of the capabilities one wishes to acquire, and these will be studied.

Therefore, the classical applications of computers in business will first be reviewed, in order to define the processing capabilities required to achieve specific business goals. In order for the businessman to make a reasonable choice of a computer system, it is imperative that he understands the trade-offs between the various solutions available today as there is no "best". The choice can be somewhat compared to the selection of a new car or of a new complex machine in function of a specific intended application. There is no general-purpose choice fit for all applications.

Understanding the hardware required and the hardware available is a relatively simple matter. The more complex and difficult problem is understanding the software capabilities required. This is where a large majority of persons purchasing a business system make mistakes. These mistakes are generally more costly than hardware ones. Typically software investment in a system will quickly become the dominant one.

An inadequate system will limit the possible growth of the capabilities of the system, and possibly of the business. A transition to a different system might be costly and disruptive. For these reasons, the reader is strongly encouraged to study and understand the software concepts as well as the hardware ones that will be presented.

Applications of Computers in Business

Every business needs primarily to maintain a number of files. The best known files are: accounts receivable, accounts payable, inventory, general ledger. Additional files which are usually desirable are: personnel, customers list, mailing list, back-orders lists, sales list, vendors list, cash situation, company property, and more.

These lists are managed either by hand (typically by a bookkeeper), or with the help of electro-mechanical devices, or by computer, or by a combination of the above.

In addition to maintaining files, every business applies specific processing techniques to each of them. For example, a payroll program will process the personnel file and generate payroll reports, as well as print cheques. A tax program will process the sales reports and the personnel files to produce the required tax reports. A transaction procedure program will manage updates of specific files, and changes, or entry, of new data. A typical example is a new sale: the transaction program will utilize the inventory file, supplier file, customer file, and perhaps others. It will update them, and print reports.

Similarly an incoming shipment procedure will handle shipments coming in and will enter them in the inventory file, check for back orders, and add entries to the accounts payable list.

Any payment received will update the accounts receivable list and the cash situation list.

In addition to the main programs a number of additional programs must be available in order to produce useful reports. These additional facilities required will be described in more detail in the text following.

It is important to note that the principle is quite simple:

1. Files must be created and maintained.
2. Programs should be available to provide the interface between the user and the files, and supply the required processing functions.

Unfortunately in a real business system, this is only part of the processing required. In fact, in most businesses, the direct maintenance of a single file is reasonably simple. The bulk of the processing required is due to the simultaneous cross-referencing and automatic updating of multiple files.

Let us look at an example. An order is received by mail. It will be processed by the transaction manager program. The sale will be entered in the sales file for the day. A complex sequence of events now unfolds. As a result of this entry, the name of the customer will be added to the custo-
mers list automatically. In addition his name will probably be coded in function of the purchase he has made or of the amount of the purchase, or of his job position. In addition, his name will be checked for credit information before the order is processed. Provided the sale is not "vetoed" by the credit manager program, the next step is to honour the order. The saleable inventory file will now be checked for the availability of the items ordered. In this example three items are ordered: A, B and C. A and B are in stock. C is not.

As a result, an invoice to the customer is generated, a shipping list and a back order are generated. The back order is added to the back order list. In our example, item B is available in stock. The inventory list is structured with a special field which specified the re-order level. The re-order level of item B is four. As a further result of this transaction, a back-order or re-order will also be generated for item B for a standard quantity of 25 items (the number 25 was specified in the inventory file). The address of the vendor is obtained from the vendors file by using the vendor number as an index to the list.

This simple sales transaction has required the use of five files within our system and of several processing programs. For specific businesses, it might even be necessary to update, check, or modify additional files, or perform additional processing functions. It should be clear from this example that, in order to be truly useful, a business system must provide ways to access, modify and process conveniently a variety of files. In addition it must provide a mechanism for performing all the required functions automatically, not manually.

Unfortunately, it will be seen that the majority of so-called business systems available today, using microcomputers, do not perform such a complete service. They provide usually single file management and do not automate completely the complete transaction process. Much has to be done "by hand".

**Word Processing**

"Word processing" refers to computerized typewriter operation, where the user can easily change, modify, or format text. It requires an "editor" program, a standard facility of traditional computers. The cost of the processor has become so small that it can be dedicated to a function such as word processing so that "stand-alone" word processors are multiplying. The majority use a Selectric or similar typewriter. By contrast, business systems offer the option of displays or multi-terminals.

**Using a Computerized Business System**

Let us use now an in-house microcomputer for a simple transaction. We will specify the type of program, and our choices in response to choices or questions appearing on the screen of the CRT terminal.

Initially, the system displays a "menu". A "menu" is simply a multiple-choice question. The question asked by the system is stressed by one or more "prompt characters" (here, "..."), designed to indicate that the microcomputer is waiting for an answer.

![Fig. 1](image1)

**The "business" menu**

The "business program" has been selected. The system should load it automatically from the disk. A directory of options appears again.

![Fig. 2](image2)

We specify the "accounts receivable". At this point, the system may request that a new diskette be inserted. Let us assume not, and proceed.

![Fig. 3](image3)

**The accounts receivable file**

We specify a new sale, and the system will request all data needed to record the transaction, generate an invoice, and later update all related files such as bank, accounts receivable, inventory, customer list. The dialogue becomes now highly interactive with the system requesting all necessary data.

![Fig. 4](image4)

**Fig. 4**

**Entering a new sale**

![Fig. 5](image5)

**Fig. 5**

**Sale entry, continued**

![Fig. 6](image6)

**Fig. 6**

**Sale entry, end**

The transaction is now completed. The mode of interaction with the system should now be clear. The program asks all necessary questions, enforcing a discipline. In addition, we will see that it should also check the validity of data being entered (no gross errors). Finally it should automatically print invoices, and later update all related files. Let us now examine in more detail the actual requirements.

**The Requirements of a Business System**

The requirements of a business sys-
Science of Cambridge
MK 14
This Kit is the least expensive complete home computer. Usually ex-stock, but ring to confirm. £
MK 14 Kit ............................................. 43.15
Socket Set ............................................. 3.89
256 x 4 RAM (2 needed) ......................... 3.19
INS 6154 RAM I/O .............................. 8.82
Power Supply ...................................... 5.75
Cassette Interface ................................ 6.34
Revised Monitor in ROM ......................... 8.59
Prom Blower ........................................ 10.75
VDU with character generator ................. TBA
VDU without character generator ............ TBA

BOOKS
A guide to SC/MP Programming .................. 4.00
A guide to KITBUG ................................ 1.00

Read the reviews and the other advertisements for this remarkable computer. Our price includes:
16K of RAM, 8K of Microsoft BASIC, International 240V U.K. Power Supply
_UHF Modulated Video Output_ ........................................... £820.80

APPLE II
Apple is a developed product with unmatched flexibility and versatility. Made to the highest professional standards; Apple brings commercial computer quality at the price of a good Hi-Fi system.
Simply the best
16K APPLE ........................................... £1063.80

AIM 65
Ring for availability of this superlative device.

ALL PRICES INCLUDE VAT & CARRIAGE

New uprated kits include Aztec
modulator, keyboard ribbon cable, keyboard case, improved software notes + FREE from us 10 C15
adores, coding pad and keyboard
bleep kit.

Join the microcomputer revolution now with a nascom 1. A complete computer on one board, connects to your domestic TV and cassette recorder. Unrivalled value for money: 256 full professional quality QWERTY keyboard, powerful 1K Monitor, 2K
RAM, good documentation and an active users club. Tried, tested and proven, in excess of 4,000 delivered.
Kits and built up ex stock
Expand your Nascom with extra RAM and ROM, high level languages and graphics. Floppy disks and I/O boards to come.

Nascom 1 Kit ........................................ 213.30
2.2 Amp power supply built .................... 26.46
Buffer Board Kit .................................... 27.00
8K RAM Kit .......................................... 91.00
16K RAM Kit ......................................... 151.20
32K RAM Kit ......................................... 216.00
Tiny BASIC in EPROM ............................ 27.00
Super Tiny Basic in Eprom ....................... 37.80
Graphics Card ...................................... 102.60
Mother Board ........................................ 10.26
Mini Mother Board ................................ 31.13
19" Racking System .............................. 31.86
I/O Board .......................................... 37.80

BOOKS
Nascom Hardware Manual ....................... 1.50
Nascom Software Manual ....................... 1.50
Seminar Notes .................................... 1.50
280 Programming Manual ...................... 4.50
The 280 Microcomputer Handbook .......... 7.95
280 Programming for Logic Design ........... 5.95

SERVICE
Kits built, tested, burnt in and guarated .. 54.00
Standard Repair Charge ...................... 27.00

BITS & PIECES
UHF Modulator with full instructions ....... 2.70
Keyboard Bleeper Kit ............................ 3.00
Keyboard ribbon cable, with plugs ........... 4.00

TIL 311 - dot format hexadecimal display, fits 14 pin DIL socket, incorporates TTL compatible four bit latch, decoder and display driver. ........... £6.75

BOOKWORM
Microdigital are worth a visit for just the books. The best selection of microcomputer literature in the country, our titles are added to our stock almost daily. The following are a small sample to whet your appetite.

CHIP SHOP
A selection from our range of semiconductor devices:

280 CPU ........................................ £16.20
SC/MP II CPU .................................. £9.72
8080 CPU ........................................ £9.72
6800 CPU ........................................ £9.27
6502 CPU ........................................ £16.12
6802 CPU ........................................ £10.80
6850 ACIA .......................................... £7.78
6402 UART ......................................... £5.94
3891 PIO .......................................... £8.64
3882 CTC .......................................... £8.64
5204 UVEPROM ................................... £7.55
2708 UVEPROM ................................... £10.80
8114 RAM I/O ..................................... £8.82
2111 RAM .......................................... £3.19
1103 DRAM ......................................... £1.19
4116 DRAM ......................................... £3.50
96364 VDU ......................................... £12.69
6820 PIO .......................................... £4.59
6821 PIO .......................................... £4.59

Newbear
We are stockists for Bearbags containing the 6800 based 7768 system and for the new Panda integrated unit microcomputer with superb VDU and Basic in ROM.

VDU — model 700 upper case ASCII 64x16 lines scrolling. Full cursor control RS 232C/V24 110" Baud, 1200 Baud 12 inch display separate
keyboard. Full or Half Duplex Quality Professional keyboard (Hi-Tek mechanism).
British designed and built £332.92
MICRODIGITAL LTD.
25 BRUNSWICK STREET
LIVERPOOL L2 0BJ
Tel: 051-236 0707

OPENING HOURS:
9-5.30 Monday to Saturday.
Friendly, expert staff always on hand!

BOOKWORM GAMES

What to do after you hit return. £7.00
Game playing with BASIC £5.56
Starship simulation £5.10
Chess and Computers £7.16
Chess skill in man and machine £11.84
Game playing with computers £13.56
8080 Galaxy Game £7.95

8080 Supervumps

BASIC
Interactive BASIC £1.90
Basic £6.36
Advanced Basic £4.95
Instant BASIC £7.12
Beginning BASIC £6.50
Introduction to BASIC £2.75
Basic in Chemistry £6.36
Basic A hands on method £8.40
Applications Guided tour of computer programming in Basic £4.16
Basic and the personal computer £10.36

GENERAL
How to build a computer-controlled Robot £6.36
T.V. Typewriter Cookbook £7.50
Best of Byte Vol 1 £6.95
Best of creative computing Vol 1 £6.95
Best of creative computing Vol 2 £6.95

PASCAL
Pascal user manual and report £5.52
Microcomputer Problem Solving using PASCAL £7.84
Programming in PASCAL £5.50
An introduction to programming and problem solving using PASCAL £10.36

INTRODUCTORY
Understanding Microcomputers £7.95
Microcomputer Primer £6.35
Your Home Computer £4.95
Getting Acquainted with Microcomputers £7.95
An Introduction to Personal and Business Computing £6.75

The Home computer £2.75
Home Computers Vol 1 £5.95
Hardware Home Computers Vol 2 £5.95
Software £6.50
Understanding Computers £5.95
Osborne Vol 0 £5.95
Osborne Vol 1 £5.95
Getting involved with your own computer £5.95
How to Buy and use Minis and Micros £5.95
Computer Lib £5.95

MONITEL
Digital desk clock and telephone £7.95
charge calculator £5.95
U.K. model £4.75
10 Quality C15 cassettes with library cases and special labels £28.08

CODING FORMS
We have designed and printed a versatile universal microprocessor coding form. £120.00
Pads, approximately 100 sheets £2.38
1 pad £20.00
100 Pads £185.00

Prices all include V.A.T. and Carriage

Phone in your Access/Barclaycard Number on 051-236-0707
or complete this order form

PLEASE SEND ME:

I ENCLOSE:
CHEQUE/POSTAL ORDER NO.
BARCLAYCARD NO.
ACCESS CARD NO.
NAME
ADDRESS

COMPLETE AND POST TO THE ADDRESS ABOVE

FEBRUARY 1979
Accounts Receivable
This is essentially the file which contains a copy of all invoices generated by the system. Naturally the file does not contain the actual copy, but the minimum amount of information that it is possible to store, which allows the system to actually generate a complete invoice. Typically, it will store the date of the transaction, the name and address of the customer, shipment point, sales information such as salesman, how shipped, when shipped, and specific details of the items sold. It may not be necessary to store all the information which appears in a usual invoice within this accounts receivable file. If a sales file exists, all this information is probably there, and one needs to be accessed frequently and which needs to be processed efficiently.

Efficient information processing by any computer requires that all elements within a file be of equal length. For this reason, all files which are processed often, or by complex programs, use fixed length entries or "blocks". An accounts receivable file can be structured in that manner. Fixed fields can be allocated to essential information such as date, name, amount due, transaction or customer code, invoice number. The presence of the invoice number allows the user of the system to access the remainder of this information in the sales list or in the invoice file. In computer jargon, the presence of a number used to access information stored elsewhere is called a pointer. The invoice number is a pointer to the actual invoice. In business jargon, this is part of the audit trail.

The accounts receivable file must be distinguished from the accounts receivable program. The accounts receivable file is simply the list of accounts. The advantages or disadvantages of its format are easy to evaluate by the business user. A typical requirement is that it contain, in an easily accessible way, all the fields that the business user requires frequently.

The accounts receivable program is responsible for manipulating this file, updating it, and generating the required report. It must also generate specialised reports such as the printing of accounts older than 30, 45, 60 or 90 days (this is called "aging"). This program can be even responsible for generating automatically reminder notices. However, the reminder notification program may be a separate program. In this case the accounts receivable program would be used for generating a file of overdue accounts. This file would then be used in turn by the reminder notice program in order to generate personalised reminders to all customers listed in the overdue file. Whether to separate functions into individual programs or integrate them within a single program has little impact on the value of this system. It is largely a matter of programming convention for the system designer. The important point is that all the facilities be available.

Accounts Payable
The accounts payable file is essentially a list of all bills or invoices received by the business. Typically, whenever an "OK to pay" order has been entered, the accounts payable manager program will automatically print payment cheques for the goods received. Typically, the cheque will be printed either at a specified date, or else at a programmed date such as thirty days after receipt of invoice. (A good cheque printing program should also check that the cash balance in the bank account is sufficient to cover the expenditures!)

Inventory
There is no optimal inventory file, as inventory information is different depending on specific business needs. For this reason, most general purpose inventories files will carry a large number of categories. Not all categories will be used by the business. The unavailability of some categories can be felt to be a drawback by some users. The availability of too many categories on the other hand, means that a significant amount of space is wasted in the system. This translates into a relatively smaller number of items that may be entered in the inventory. However, with the ever decreasing costs of memory, the clear trade-off now is to provide as many categories as possible, for most types of businesses, even if some of them are never going to be used. It should be remembered that the size of the inventory file is limited by the physical storage available, such as the size of a diskette.

Typical information which may be included in an inventory file is the following:

- CODE - ITEM NO.
- ITEM DESCRIPTION - STORAGE LOCATION
- NUMBER AVAILABLE - VENDOR NUMBER
- PRICE - PURCHASE PRICE - LAST SALE DATE
- MINIMUM QUANTITY

Typically 64 to 128 bytes at a minimum must be provided for such an entry. Using such a format, 1800 to 3600 items may be stored in a typical diskette.

The inventory control program must provide many functions. It must provide generalised inventory management facilities:

- complete inventory maintenance, including automatic updates of any category of information within the file.
- sales order entry
- purchase order entry
- sales history
- automated backorders
- list of quantity, class, cost, vendor, item no., date of sale
- minimum quantity search
- selective update
- automatic reports
- inventory lists in functions of combinations of criteria.

As a rough indication, a minimal inventory management, written in BASIC will require 10K words of memory (for all practical purposes a "word" is a "byte" here, in the case of 8-bit microprocessors). A more general program will easily require 90K or more. Since the central memory of a microprocessor is never larger than 64K, an overlay technique is used, so that such large BASIC programs can be run on a smaller main memory. An overlay consists in executing one part of the program, then bringing in the memory an additional part of the program and overwriting a no-longer-required segment of the previous one which had been installed in the main memory, and so on. The complete BASIC program is therefore never completely resident in the memory in one piece. Pieces of it are brought into the central memory as needed. Naturally this reduces the efficiency of the processing. However, if the overlays are cleverly written, the impact on efficiency is reasonably small.

Update
It is important to note once more, that, technically, update on an inventory file can all be performed by hand. The user can examine the list of items in the inventory and modify any of the entries such as the unit cost. However the real value of the computer system is in automating the updating of identical information in many files. Therefore a comprehensive business system should automatically update the inventory file, whenever relevant information is changed somewhere else. For example, should the unit cost of the product be changed, it should be updated automatically in the inventory file as well as in any other file where it might reside.

PET Preening

One interesting feature of the PET is the real time clock which runs continually all the time the PET is switched on. The time is easily obtained via the Basic programming language by accessing the variable T1$.

The following program allows the PET to behave as a timing device with specific tasks being undertaken automatically at specified times of the day. The times at which events are to occur are read into the program from a DATA statement and stored in array A$ (a rogue value of 9999 is used to terminate the data). The real time clock is then accessed and the time obtained is compared to the times stored in the array A$. If a match is found then a given subroutine will be performed and control returned so the time comparisons can continue. The program shown is given as a basic skeleton which readers can modify for their own purposes by writing their own subroutines and entering them at the appropriate locations in the program.

I believe most readers will have their own ideas regarding what they would like to do within the subroutines rather than the more obvious ones of printing messages on the screen or turning external devices on or off via the user port.

Finally, before running the program, the programmer must remember of course to initialise the real time clock with the correct time as described in the PET handbook.

[Readers of my article in the October issue please note that there should be two brackets, viz. ] after RND (3).]

```
10 DIM A$(10)
20 DATA 1600, 1601, 1602, 1603, 1604, 1605, 9999
30 X = X + 1
40 READ A$(X)
50 IF A$(X) <> "9999" THEN 30
60 B$ = LEFT$(1-1$, 4)
70 FOR Y = 1 TO X
80 IF B$ <> A$(Y) THEN 100
90 Z = Y
95 A$(Y) = "0000"
100 NEXT Y
105 IF Z = 0 THEN 60
110 ON Z GOSUB 200, 400, 600, 1200
115 Z = 0
120 GO TO 60
200 GOSUB 1400
210 RETURN
400 GOSUB 1400
405 RETURN
600 GOSUB 1400
610 RETURN
800 GOSUB 1400
810 RETURN
1200 GOSUB 1400
1210 RETURN
1400 PRINT "TIME = "; B$
1410 RETURN
```

PCW The author may be reached at 55 Belvedere Road, Hessle, North Humberside PCW.
Taking the sweat out of Computer Graphics

A. O. Ellefsen

The following very short and simple program (see listing) was written on the Tandy TRS 80 Level Two 4K Micro Computer whilst working on a major printed circuit design project.

It will give the kids something to play with (not to mention the mums and dads) and does form the basis for more serious work.

The object of the exercise is to provide a means of drawing pictures on the VDU using the "INKEY$" statement which enables your program to be manipulated whilst executing.

T = Trace (draw a line on the screen)
C = Cursor (move a cursor about on the screen)
L = Move one increment left
R = Move one increment right
U = Move one increment up
D = Move one increment down
M = Reproduce pattern from memory
W = Wash out current pattern
E = Erase screen
Z = Zero memory

The size and complexity of patterns that can be stored are determined by the amount of memory available and is fixed in line 4. A running check of how much room is available is printed out continuously in the bottom right hand corner of the screen prefixed by 'N', also the current cursor/trace position prefixed respectively by 'X' and 'Y'. To give an absolute check on memory location, G(N) for Z(N) in 5000 lists the coordinates for any given pattern. After one or two experiments performed in this manner one realises that it gets rather boring when one is constantly retyping the same line again and again. A fairly obvious solution is to write new lines between routine 8000 - make sure the I increment of 10.

Once you start experimenting you can reach for the sky. For example, try the following. But make sure if you're using a 4K system, that you have sufficient memory available. A certain amount of trimming in line 4 helps.

On first running the program one enters the Trace module. If cursor control is required hit 'C' but on first time round also hit any key other than 'Break', or any of the command keys to ensure that when you move the cursor away from the centre of the screen, a spot does not remain illuminated in the centre of the VDU field.

After producing a pattern on the screen it is important to remember that when reproducing this pattern its starting point will be from the current cursor position. Therefore, it is advisable to go into the cursor mode before hitting "M". Check that the cursor position is known by moving it in the appropriate direction to avoid erasing any of the existing pattern. If, accidentally, any of the existing pattern is erased, restore the cursor to its original position and hit "M".

Hitting break and entering, in the instantaneous mode:

FOR N = 1 TO (C-1): PRINT Z(N);W(N): NEXT

enables one to inspect the X,Y coordinates of the current pattern. After one or two experiments performed in this manner one realises that it gets rather boring when one is constantly retyping the same line again and again. A fairly obvious solution is to write new lines between say 1045 and 1055 such as, for example:

1046 IF A$ = "5" THEN 5000 .... then adding the punch line .... 5000 CLS: FOR N = 1 TO (M-1): PRINT Z(N); W(N); NEXT

I have a feeling that this would be useful if you need to do any debugging or, more importantly, if you are using a machine other than the TRS80 which may have a different Basic dialect.

It will be quickly seen that for any given pattern the coordinate listing remains constant wherever the pattern is generated on the screen. Substituting F(N) for W(N) and G(N) for Z(N) in 5000 lists the coordinates for specific placements on the screen.

Once you start experimenting you can reach for the sky. For example, try the following. But make sure, if you're using a 4K system, that you have sufficient memory available. A certain amount of trimming in line 4 helps.

6000 FOR N = 1 TO (C-1): SET (Z(N))/2,W(N)/2): NEXT: GOTO 1019

When my daughter saw 6000 being executed she exclaimed "Ooo .... I look, it's having a baby". Hence routine 6000 - make sure your patterns don't exceed the I increment of 18.

8000 FOR N = 1 TO (C-1): IF (F(N)+I) >127 THEN 8020
8005 SET (F(N)+I,G(N))
8010 NEXT
80101 = 10: GOTO 6000
8020 I = 0: GOTO 1019
When running this always hit "M" when in the cursor mode before "8". It takes little imagination to extend this proliferation into the Y axis. Who said computers were sexless!

By this time your finger will almost be dropping off with pushing the cursor around the screen, so try this one:

```
9000 PRINT @ 0, "ENTER X,Y COORDINATES";
9010 INPUT X,Y
9020 GOTO 19
```

One could go on and on. Don’t forget your entries:

```
1047 IF A = "6" THEN 6000
1049 IF A = "8" THEN 8000
1050 IF A = "9" THEN 9000
```

I hope you will excuse my liberal extension into high line numbers. This is engendered by the fact that the level 2 TRS80 allows up to 65,529 of them; but, as a final thought, keep a few available for subroutines such as a large alphabet. Use the INKEY$ command and all the letters A to Z but enter them into the program whilst holding down the shift key so as not to confuse them with the existing commands. You will require some form of incrementing as listed under 8000 and further incrementing in the Y direction at the end of each line at the same time setting I to zero. For each letter generated you will need to substitute variable names for W(N) and Z(N) but this is no problem as Level two has plenty of these — in the neighbourhood of 900.

---

Of all the micro-computer systems now available, the Commodore PET is the one best supported by software. The widest range of programs is offered by one company — PETSOFT.

You will find a hundred programs in the new 12-page catalogue, covering Business applications, Programming Aids, and some superb Games. Here are just a few examples:

- **VAT £17.50** A package for small businesses. Consultancy Service available.
- **PAYROLL £25.00** A four program package providing an easy method of pay computation and access to month-end and year end data. Update service available.
- **STOCK CONTROL £12.00** Stores per tape file for rapid recall and amendment.
- **PERCENTAGE COSTING £49.50** A powerful method of handling cost information, facilitating the study of percentage changes in total due to individual changes.
- **MICROCHESS £14.00** Play against latest version of our famous chess program. Excellent graphics.
- **ASSEMBLER/EDITOR £25.00** Translates assembly language programs into machine code for direct execution.
- **DATA FILE HANDLER £12.00** Provides a working file handling structure to be used when writing your own programs.
- **MICRO TEXT EDITOR £15.00** Line oriented text editor for word processing applications etc.
- **BRIDGE CHALLENGER £10.00** You and dummy play four person Contract Bridge against the computer.
- **PET BASIC TUTORIAL £15.00** Let your PET teach you to program in Basic with our best-selling tutorial suite.
- **PET WORKBOOKS £15.00** Set of five professionally written workbooks covering all aspects of the PET.

For further details of these and the other ninety programs in our free catalogue, call or write to us today.

We also accept credit card orders over the telephone.
Mike Banahan

Getting It Together

Build your own assembler — listing (concluded)

Mike Banahan

1 ADD HL, DE
2 ...
PCW May we remind contributors that listings must be bold and clear. We apologize for the quality of reproduction of this series. We cannot emphasize too strongly that listings which are not of good quality cannot be considered for publication, PCW.
MICRO TRADE-IN

Does Your Micro Meet Your Needs?

If it does not or you simply want to change it, drop us a line.

We buy or allow trade-in on good factory-built microcomputers.

Write to:

Micro Trade-In
FREEPOST,
WELWYN GARDEN CITY, HERTS.

MICROCOMPUTERS ETC.

PET* 2001 8K RAM £595.00
Beeper for PET* or TRS80* £ 25.00
TRS80* Level I 4K RAM £425.00
TRS80* Level II 16K RAM £685.00
UHF Modulator for TRS80* (encased, incl. PSU) £ 24.00
16K RAM upgrade for TRS80* Fitted £145.00
Apple* II 12K RAM £895.00
SORCERER* 32K RAM including VDU £950.00
SORCERER* S100 Interface/motherboard £200.00
Mini Floppy disk drives £350.00
RS232C/S100 Interfaces From £ 90.00
Mini floppy disks (min 10) Each £ 3.00
Expander* Black Box Printer £350.00
Screen Printer (for TRS80*) £425.00
National Panasonic* VCR £690.00

All prices incl. VAT, excl. P&P

T & V JOHNSON (MICROCOMPUTERS ETC) LTD.
78 Park Street, Camberley, Surrey, GU15 3PF
Hours 9.30 a.m. to 5.30 p.m. Monday to Saturday
 callees by appointment
Phone 0276 28333
(answering machine evenings/weekends)
Evenings 0256 24757 Roy King
0252 721094 Steven Johnson

*Registered Trade Marks

Announce the expandable system for the NASCOM 1* V.D.U.

Kit 1 provides 64 graphics pre-programmed on a 2708 EPROM. Other features include inverse video (black characters on white background) and flash (adjustable flash rate). Available now. Price £32.50.

Kit 2 when used in conjunction with kit 1 provides 1Kb of programmable colour graphics. Also included is a colour/audio R.F modulator enabling direct connection to a colour TV aerial socket (NTSC or PAL). Available April. Price £52.20.

Kit 3 is a programmable sound effects generator which can be used by itself or with kit 2 to provide audio from a TV loudspeaker. The generator can provide "bell" sounds for keyboard etc. Available April. Price £18.96.

Conversion boards will shortly become available for other systems.

Keep your Programs in order! Use our Machine Code Programming Sheets. A4 size available now in pads of 100 sheets. Suitable for any micro being programmed in machine code. Price £1.75 each.

All kits supplied include fibreglass PCB, all components and full documentation. Ready made kits available at £2 extra. Please add 8% VAT and 50p postage/packing.


TEL: 01-262 2936
01-402 9244

48
6800 MICRO-ASSEMBLER

Any serious user of a microprocessor is going to get involved in assembly-language programming sooner or later. BASIC is fine for computer-type applications, but operations on a bit level, controlling relays, or squeezing the utmost performance out of the machine require the user to understand and control the detailed operation of the processor in a way that high-level languages are either not suited to or are designed to make unnecessary (as long as you stick to number-crunching). Many users, of course, either cannot afford the luxury of sufficient memory to run a decent version of BASIC, or are perhaps writing programs to run in ROM, which effectively bars the use of interpreters (although not compilers).

An assembler, then, is high on the software shopping list, unless you are the sort of freak that can think in two’s complement hexadecimal and remember a couple of hundred op-codes. Most assemblers either require around 8K of RAM to run in or need a separate editor to create the source program. In either case you spend most of your time loading programs from tape; and if that’s not enough, you often require two cassette drives, at least one with remote control facilities.

There are many occasions when the program you wish to try out is only a dozen or so lines long. A conventional assembler is inconvenient to use under these circumstances, and indeed you may be trying to patch a program that occupies the same area as your assembler. The micro-assembler that I am about to describe is written for the 6800. It is designed to run in ROM, and is therefore always available. It requires the use of no editor or mass-storage device, since its function is to translate typed mnemonics directly into machine code, for immediate execution or for later use.

Upon starting up, the micro-assembler requests the address at which the assembled code is to be saved. It then accepts three characters from the terminal and checks that they constitute a valid mnemonic. All of the 6800 mnemonics are catered for, together with a few useful extras, viz—

- BHS (Branch if Higher or Same) = BCC
- BLO (Branch if LOwer) = BCS
- SK1 (Skip one byte)
- SK2 (skip two bytes)

NOTE: the last two generate $61 (CMPA) and $8C (CPX) respectively. Do not use them unless you understand the implications as regards the condition code register.

The assembler pseudo-instructions FCC and FCB allow the direct insertion of text and hex digits into memory. The former is terminated by Control D ($04), which is saved as the last character of the text, and the latter is terminated by any non-hex character.

Once the mnemonic has been accepted, the assembler outputs a space. At this point, some instructions are complete, e.g. INX, CLC, TBA, etc. In that case, the corresponding machine instruction is displayed and written to memory. (The micro-assembler will always check that there is RAM to accept object code.) If the instruction is not complete, further input is required. This may be simply A or B, in the case of accumulator inherent addressing. Multiple-byte instructions must indicate the mode of addressing, i.e. Immediate (I), Direct (D), Indexed (X) or Extended (E). Relative (branch) instructions require no identifier. Lastly the operand must be supplied, in hexadecimal characters representing either 8 or 16 bits (the assembler will always know which). A typical sequence might be:

ADDRESS - 0100
0100 - LDA A 101 86 01
0102 - ABA 18
0103 - STA A *** ERROR *** (store immediate is illegal)
0103 - STA A 031 97 31
0105 - LDX E 013F FE 013F
0108 - TST X 00 6D 00
010A - BRA 0102 20 F6
010C - FCC THIS IS TEXT DIRECTLY INSERTED INTO MEMORY
0137 - FCB 04 FF 6A B8 33 89 <CR>
013D -<CR>

ADDRESS - E000
E000 - NOP
E000 -<CR>

ADDRESS - <CR>
* (Back in MIKBUG)

Note in particular the use of the BRA instruction. The operand is calculated by the assembler and an error will result if the range is too great. Note also that a carriage-return is used to exit the assembler or to start assembly at a new address. In the above example, all spaces were inserted by the assembler— all the user types is the mnemonics and the operands (in hex only).

The listing shows the assembler to have its origin at $1000, which will locate it at the top of an 8K system, but since it is fully relocatable, it may be run at any convenient address. I am prepared to make available copies of the micro-assembler, either on CUTS cassette or in a 2708 EPROM. In the former case I will also include a routine that will enable the user to move the assembler to any desired RAM position. Anyone interested should contact me at the following address: G. J. Trott, 99 Mill Lane, Felixstowe, Suffolk IP11 8LN.
### 6800 Micro - Assembler

#### S5B Mnemonic Assembler

- 6800 Micro - Assembler IS
- RELLOCATE
- ROM - ABLE
- INTERPRETABLE
- AND OCCUPIED LESS THAN 1024 BYTES
- IT IS ASSEMBLED TO LOAD AT THE TOP
- OF AN 8-K SYSTEM (STARTING AT $8000)
- BUT CAN BE MOVED AND RUN ANYWHERE.

#### The Following WIDIX M6800 - Must Be Present, Any WIDIX -
- COMPATIBLE M6800 WILL BE SUITABLE.

```
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR</td>
<td>Branch Return</td>
</tr>
<tr>
<td>JSR</td>
<td>Jump Return</td>
</tr>
<tr>
<td>LDA</td>
<td>Load A</td>
</tr>
<tr>
<td>STA</td>
<td>Store A</td>
</tr>
<tr>
<td>BNE</td>
<td>Branch If Not Equal</td>
</tr>
<tr>
<td>BCF</td>
<td>Branch If Carry</td>
</tr>
<tr>
<td>IPL</td>
<td>Interrupt</td>
</tr>
<tr>
<td>ESC</td>
<td>Escape</td>
</tr>
<tr>
<td>CMP</td>
<td>Compare</td>
</tr>
<tr>
<td>SBC</td>
<td>Subtract</td>
</tr>
<tr>
<td>TST</td>
<td>Test</td>
</tr>
<tr>
<td>ADC</td>
<td>Add</td>
</tr>
</tbody>
</table>
```

#### To Enable the Assemblers to be Relocatable,
- * This Subroutine Adjusts Table Addresses.

```
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0C</td>
<td>Outch E0C</td>
</tr>
<tr>
<td>E0F</td>
<td>Outch E0F</td>
</tr>
<tr>
<td>E10</td>
<td>Outch E10</td>
</tr>
<tr>
<td>E17</td>
<td>Outch E17</td>
</tr>
<tr>
<td>E88</td>
<td>Outch E88</td>
</tr>
<tr>
<td>E89</td>
<td>Outch E89</td>
</tr>
<tr>
<td>E7A</td>
<td>Outch E7A</td>
</tr>
<tr>
<td>E8E</td>
<td>Outch E8E</td>
</tr>
</tbody>
</table>
```

#### escape?
- 1115 26 BA

#### Services
- The following services are available:

```
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCAPE?</td>
<td>Escape</td>
</tr>
<tr>
<td>INCH</td>
<td>Inch</td>
</tr>
<tr>
<td>BNE</td>
<td>Branch If Not Equal</td>
</tr>
<tr>
<td>BCF</td>
<td>Branch If Carry</td>
</tr>
<tr>
<td>IPL</td>
<td>Interrupt</td>
</tr>
<tr>
<td>ESC</td>
<td>Escape</td>
</tr>
<tr>
<td>CMP</td>
<td>Compare</td>
</tr>
<tr>
<td>SBC</td>
<td>Subtract</td>
</tr>
<tr>
<td>TST</td>
<td>Test</td>
</tr>
<tr>
<td>ADC</td>
<td>Add</td>
</tr>
</tbody>
</table>
```

#### Branch Operations
- Branch to Label
- Branch to Immediate
- Branch to Relative Address
- Branch on Carry
- Branch on Overflow
- Branch on Zero

#### Accumulator Operations
- Add to Accumulator
- Subtract from Accumulator
- Multiply Accumulator
- Divide Accumulator

#### Call Services
- Call Service
- Call Service with Accumulator
- Call Service with Index

#### Error Handling
- Error - Invalid Character
- Error - Illegal Address
- Error - Illegal Command

#### Debugging
- Debug Output
- Debug Input
- Debug Breakpoint
Some Evaluations or User Reports you can look forward to

The HORIZON
The EQUINOX 300
The SORCERER
The OSI SUPERBOARD II (and others)
The SYM by SYNERTEK
The PET (Re-evaluation)
The MSI
The ERA Microtutor
The LIMROSE Microtutor
The VECTOR MZ
The IMSAI
The SWTPC 6800
And more . . .

The Faces Behind the Places

Some reports on computer suppliers you can look forward to

The BYTE SHOP
MICRODIGITAL OF LIVERPOOL
BELVEDERE
JADE
COMMODORE BUSINESS SYSTEMS
NEWBEAR
SEED
PERSONAL COMPUTERS LTD
L.P. ENTERPRISES
NASCOM MICROCOMPUTERS
RESEARCH MACHINES LTD
SINTROM MICROSHOP
COMPUTER WORKSHOP
COMP COMPUTER COMPONENTS
TANDY
THE GHOST

9685 9683 INPUT
9650 DIM C:0,02,1310
9640 SET 1110=1:6ETN20.1:GETN20
9620 FIELD 1120,06,1=6
9600 OPEN 410, STATFL1 FOR INPUT
9420 IF 11228 THEN7"TOO HIGH";:00009410
9410 F :INPUT"
9380
9360 INPUT
3600 FOR I.1105:70129):NEXTI:RETURN
3590 NEXT J:
3580 1 1(091,": 101;
3570 IF 0') THEN7111291,'.";: 60703590
3560 IF 1131J)>=0601 THEN7N(29)07"%;: 60703590
3550
3530 A6.1144 -A51/12
3520 A6.A4/12: 00103540
3500
3490 FOR 1.110A:IFB31I)105 THENA5.113(I)
3480 NEXT
3470 A6.1144 -A51/12
3460 FOR I.110A:A4.A47C(1,B21
3450 GOSUB 9380:71(29),"PROGRESSIVE AVERAGE FOR COLUMN N 6
3440 IF B2(1 THENRETURN
3430 GOSUB 9400:64.0

REM PROGRESSIVE AVERAGE CALCULATION
1260 CHAIN STAT1
1240 IF A1."Y.THEN1180
1220 60SUB 9310: LINE.132
1210 IF LEFT$1A$0)."1"THEN1260
1190 60SUB 9360:A4.0:A5.0:A6.0:A7.0
1160
1150 GOSH 9600

PROGRESSIVE AVERAGE CHART

ITEM VALUE

YOUR ARRAY IS SET AT
STATPACK END": END

PROGRESSIVE AVERAGE FOR COLUMN N 6

ITEM VALUE TOTAL AVERAGE
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

ENTER 'Y' FOR CHART, 'N' FOR NONE

EQUINOX 300

A powerful multi-user
multi-tasking
multi-language

16-bit microcomputer time-sharing system
supporting
* BASIC
* LISP
* PASCAL
* Floppy discs
* Hard discs

including a powerful Text Formatter,
Assembly Language Development System
and disc-based Sort utilities.

Priced from under £5,000

Write or phone for further information

EQUINOX COMPUTER SYSTEMS LTD
32-35 Featherstone Street,
London EC1Y 8QX.
(Tel: 01-253 3781/9837)
BASIC for YOUR NASCOM!

GET THE EASE AND SIMPLICITY OF PROGRAMMING IN BASIC WITH....

TINY BASIC LEVEL A
- No extra memory needed on any NASCOM!
- Fitted in 2 minutes in place of your existing PROM(s)
- Integer arithmetic +, -, x, ÷
- Random number generation
- Keyboard pause and interrupt
- Abbreviated commands allow economical use of your memory and include...
  LET; PRINT; IF; GOSUB; RETURN; REM;
  STOP; RND; GOTO; INPUT; RAM; SAVE;
  LIST; NEW; RUN

TINY BASIC LEVEL B with enhanced features runs on systems with extra memory and has all the commands above PLUS...
- PEEK; POKE; CALL; LOAD; DUMP; FOR;
- NEXT; ABS; IN; OUT for complete machine code capability

LEVEL A or B in two 2708 PROMS £21.50 inc.
LEVEL B only on cassette B BUG format £7.50
Documentation included

C C SOFT
83 Longfield St., London SW18
Tel: 01-870 4891

ITT 2020 Micro Computer

8 - 48 K RAM.
Colour graphics.
ITT floppy disc drives.
ITT serial printers.

SOUTH EASTERN DISTRIBUTORS:
Tor Business Systems Ltd.,
83 Timberbank,
Vigo Village,
Meopham, KENT
Tel: 0732 822956
01 - 734 5351
Dealer enquiries also welcome

XITAN

SOUTHERN STOCKISTS
Stockist for professional quality microcomputers.

CROMEMCO SYSTEMS
and S100 Boards
NORTH STAR HORIZON
PROCESSOR TECHNOLOGY SOL
COMART MICROBOX S100 CHASSIS
DYNABYTE MEMORY
LEAR SIEGLER VDU'S
DECRWRITER II
INFO 2000 DISK SUBSYSTEM CP/M
for NORTH STAR, SOL and CROMEMCO SYSTEMS

Now in New Showrooms at: 23 Cumberland Place, Southampton SO1 2BB
Tel No: Southampton (0703) 38740 Hours 9.30 - 5.30 Tues - Sat.
If the idea of a book, a fairly hefty volume too, containing nothing but a million "random" numbers seems absurd to you then so should the idea of your computer or pocket calculator producing random digits, e.g., 1 to 6, for your computer games. The whole idea of randomness seems to be against the act of filling a book with random numbers. The fact that one could look at the same page more than once to find out what was coming wipes out the usual element of surprise that the word random contains! It is perhaps less obvious that computer generated random numbers are just as repeatable — and hence expected. In fact, some applications demand that a sequence of random numbers is repeatable. Where does all this madness take us? In short, what is random about "random" numbers?

Randomness v. pseudo-randomness

We all have a clear idea about randomness. The flip of a coin. The fall of a dice. These events are random. Their outcome is not predictable and not repeatable (at will). If we wanted to build an electronic dice into a computer, to enable us to play games say, then a direct solution would be to take some electronic device which behaved randomly, for example, the output of a Zener diode or a saline cell. We could use the device to determine the state of a memory location in our computer and bingo! we have our random number generator. This is the way ERNIE, your friendly premium bond selecting machine works. This is a very good technique for generating random numbers that nobody can ever guess at — it is the lack of repeatability which is important here. However, even though fair and right for the job, machines such as ERNIE are very expensive things to construct well and for a lot of applications a much simpler solution will do.

Let us think about the properties we would like a computer-simulated dice to have.
1) Each digit should come up, on average, as often as any other.
2) By observing which digits have come up already it should not be possible to predict the next digit.

Condition one concerns the fairness of the dice and condition two concerns the independence of consecutive throws. Fairness is not a difficult condition to satisfy. It is the second condition which causes all the problems. First, we should notice that there is nothing in our two conditions which says that these digits should be produced randomly in the sense of coin tossing. I could have a list of numbers in which every number occurred about equally often and in which knowledge of any set of numbers would not help me to guess the next. These would satisfy our conditions and if I read them from the list one after the other you could not tell if I was tossing a dice or reading a list. Such numbers are called pseudo-random numbers because they are not produced by a random mechanism and because they are, in principle, repeatable.

The requirement of not being able to predict the next random number in the sequence, given knowledge of the rest, is a problem because, if the numbers are generated by a non-random method, i.e. they are repeatable, then there must exist a method of predicting them! (This is, of course, using another copy of the program or list which gave rise to them in the first place.) So it seems that we cannot meet the second requirement. On closer examination it is obvious that we are asking too much of our random numbers — all we need is that they are not predictable in the circumstance that we are using them in. For example, if the method of prediction is either too obscure to be deduced or too difficult to be used by a human then our random numbers are O.K. for game playing on a computer. (For most applications we usually settle for successive numbers being uncorrelated with one another).

Generating random numbers

One of the first computer (pseudo) random number generators, the mid-square method, was suggested by Von Neumann in 1951. It is easy to use but generates fairly low quality random numbers — it has a tendency to produce numbers like 0DXY and XY00 periodically, but it is easy to understand:
1) Specify the number of digits to be generated — say four. 2) Choose any starting value — 5069. 3) Square the starting value — 25694761. 4) The next random number is in the middle four digits — 6947. 5) Steps 3 and 4 are repeated with the new random number.

A short BASIC program for the mid-square method is given below and the reader might have some fun experimenting with it.

**Mid-square**

```
10 INPUT "STARTING VALUE", A
20 L = LEN(STR$(A))
30 P = 10^L INT(L/2)
40 Q = 10^L L
50 A = INT(A*A/P)
60 A = A - INT(A/Q)*Q
70 PRINT A
80 GO TO 50
```

The most popular type of random number generator in use today is the so-called congruential generator. It is not as easy to understand as the mid-square method but it does give high quality numbers with known properties. A typical generator is given below as a BASIC program. (This particular generator is also of historic interest as it was first used on ENIAC.)
The general congruential generator works by multiplying the old random number by a constant and then expressing it modulo some other constant to get the new random number, i.e.

\[ A_{n+1} = \left[A_n \times K\right] \mod P \]

Expressing a number modulo \( P \) is simply done by finding the remainder after dividing by \( P \). In our example \( K = 23 \) and \( P = 100000001 \). A further refinement is to divide \( A_n \) by \( P \) to give a random number between 0 and 1 (U in our example). Congruential generators repeat themselves eventually but this can take a long time and depends on the choice of \( K \), \( P \) and \( A_1 \). (Our example can generate 5,682,352 numbers before repeating.) Constructing a very good congruential generator is difficult, but our example will do for most applications.

Monte Carlo

Random numbers can be used to solve some types of mathematical problems as well as in computer game playing. For example, suppose we are about to design a garage and we want to decide how many petrol pumps to install. Too many and some will stand idle and we could have saved our capital. Too few and we will lose customers as the queues get longer. Putting this another way, what we need to know is the average length of the queue for various numbers of pumps. The answer to this problem depends on the number of customers per second and the time it takes to serve them. It is not easy to get the answer by the usual mathematical methods.

A method of solving the problem is to simulate it using a random number generator. By writing a program in which customers arrive and are served with the right probabilities, we could obtain answers simply by running the program and keeping a count of the number of customers served and turned away.

The collection of methods based on using random numbers to solve mathematical problems is generally called the Monte Carlo method. The previous simulation example is easy to understand and the role of the random numbers is obvious. However, random numbers can be used to solve problems which seem to have nothing to do with randomness.

For example, suppose we wish to evaluate

\[ \theta = \int_0^1 x^2 \, dx \]

In other words, find the area below the graph of \( x^2 \) in the interval 0 to 1 (Fig. 1). We could use the usual methods of numerical integration, i.e. Simpson's Rule, or even solve the problem directly by \( x^2 = \frac{1}{3} x^3 \). But suppose we instead generate two random numbers \( U_1 \) and \( U_2 \) which define a point in the unit square, i.e. they are both positive and less than one (see Fig. 1). If \( U_1 \) and \( U_2 \) are evenly distributed then the probability of the random point being below the curve is exactly equal to the area beneath the curve. Thus if we generate \( N \) random points, the area under the curve is estimated by the probability \( H/N \) where \( H \) is the number of points below the curve. A BASIC program to carry out this method for \( x^2 \) is given below.

```basi
10 INPUT "STARTING VALUE", A
20 A = A/100000001
30 A = A - INT(A/1000000001)
40 U = A/100000001
50 PRINT U
60 GO TO 20
```

### Fig. 1

Integration program

10 \( H = 0 \)
20 \( N = 0 \)
30 DEF FNA(X) = X*X
40 U1 = RND
50 U2 = RND
60 IF U2 < FNA(U1) THEN \( H = H + 1 \)
70 \( N = N + 1 \)
80 PRINT "AREA ESTIMATE = ", H/N, "\, \, N = "; N
90 GO TO 40

It is easy to find any one-dimensional integral over 0-1 by changing the function (FNA) statement. A quick look at the program shows that the method is simple when compared with other methods. However, a little experimentation will soon reveal its disadvantage — you have to do a lot of work to get a reasonable answer. For example, at \( N = 100 \) the estimate was 0.435 and even at 1000 it was only 0.361. (The correct value is 0.333.) This would seem to make Monte Carlo integration of little use, but with a few improvements it is one of the best techniques we have for high-dimensional integrals. It is rarely used for one-dimensional integrations, i.e. finding areas, but it is nearly always preferred for two-dimensional cases, i.e. finding volumes.

There are other examples of turning a non-random problem into a random one and then solving by simulation but the reader is referred to the suggested reading at the end of this article for more details.

Testing random number generators

Whenever you use a random number generator you should always satisfy yourself that it is good enough for your purpose. This can be done either by statistical tests or, for the least exacting work, simply by examining a histogram of the output.

For game playing most random number generators are good enough. For the various Monte Carlo techniques it is advisable to conduct statistical tests before relying on the results. (Details of these tests can be found in the further reading.) I have tested a number of random number generators supplied with various versions of BASIC and found them all reasonable — none of them have been as bad as the mid-square method! One annoying feature of some BASIC random number generators is their randomisation. By starting the generator off with a new starting value, obtained from some arbitrary memory location, we lose the repeatability of pseudo-random numbers. This is excellent for game playing — otherwise you'd play the same game every time — but for Monte Carlo methods this is a nuisance. It is impossible to say how good such a randomised generator is because its properties depend on the starting value used.

### Conclusion

Random numbers play an important part in the personal computer revolution. For game playing the random number generator supplied with BASIC (or some other high-level language) is usually good enough. Monte Carlo simulation techniques increase the usefulness of random numbers but also require better generators. A good Monte Carlo simulation is simple, effective and can be fun — after all a computer game is usually nothing more than a Monte Carlo simulation of some "real" game.

### Reference


### Further Reading

Software

Incomplete Record Accounting
Mailing & Addressing
Information Retrieval
Word Processor
Chequebook
Shape-Create
Co-Resident Assembler
Matrix Inversion
Also available is a full range of scientific software.

For further information and details of Apple II, CONTACT:

Keen Computers Ltd.,
as from 2nd January 1979, we will be trading from:

5 The Poultry,
Nottingham
Tele: 585254/56

millhouse designs limited

now DISPLAYING and DEMONSTRATING

the PET 2001-8 computer

in our new Camberley showrooms

All Commodore and Petsoft programmes
available for instant running and evaluation

Engineering and Programming experts
at hand to discuss your precise requirements

Centronics line-printers in stock
with PET interfaces

for full details
MILLHOUSE DESIGNS LTD.
185 LONDON ROAD, CAMBERLEY.
Telephone Camberley 23581

EQUINOX 300

A powerful multi-user
multi-tasking
multi-language
16-bit microcomputer time-sharing system

supporting
* BASIC
* LISP
* PASCAL
* Floppy discs
* Hard discs

including a powerful Text Formatter,
Assembly Language Development System
and disc-based Sort utilities.

Priced from under £5,000

Write or phone for further information

EQUINOX COMPUTER SYSTEMS LTD
32-35 Featherstone Street,
London EC1Y 8QX.
(Tel: 01-253 3781/9837)

Written for the Nascom

Among the programs written to run on the Nascom-1
and available now are:

**ICL Dataskil Letter Editor**
This software provides a comprehensive set of data operations. Text can be input, displayed, edited, stored on tape, retrieved and further amended. Control functions include cursor, character, word, line, scrolling, tabbing, tape store and retrieve, text printing. All in less than 2K byte plus workspace for up to almost two full screens. Price on cassette £70 plus VAT.

**TINY BASIC**


An extended version of the above is our TINY BASIC PLUS which has all the TINY BASIC functions plus increased operator manipulation in all sub-routines. Price in 3x2708 EPROM £35 plus VAT

**ZEAP**
An editor assemblor which runs under NASBUG and provides the powerful advantages of writing programs in Z80 assembly language instead of directly in machine code. Uses less than 3K bytes of memory and is supplied on cassette priced £30 plus VAT.

121 High Street,
Berkmashsted,
Herts.
Tel: (04427) 74343

Nascom Microcomputers
LOCAL INTERESTS

The Merseyside Microcomputer Group is now flourishing to such an extent that even bigger rooms are having to be booked for their monthly meetings. Special interest groups are being formed to cater for NASCOM, PET and Z-80 devotees, and for people interested in the uses of computers in education, while to keep everyone informed of the group's activities, MMG are now producing a group newsletter. Potential new members are invited to contact the chairman, Martin Beer, at the Computer Laboratory, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, telephone 051-709 8022 ext. 2967.

Another university based group has now started in Oxford. Although it is called the 'St. John's College Microcomputer Society', membership is open to all in the Oxford area who care to get in touch with the society's secretary Rupert Steele at St. John's College, Oxford.

Despite atrocious weather, the North Kent ACC had a successful inaugural meeting at Biggin Hill in mid November, and have now established a regular series of meetings. Amateur computing enthusiasts living in the area should contact Barry Biddies, 3 Acer Road, Biggin Hill, Kent, telephone 71742.

Twenty people and two computers turned up at the Cross Hands, Beechwood, Newport, where, in convivial surroundings, they agreed to form the Gwent Group and to arrange talks and visits to places of computing interest such as the Llanwern steelworks. Pete Hesketh has all the details for anyone who cares to ring him on Shirenewton (02917) 596.

Recent meetings of the Exeter and District ACC have been attended by more than 50 people, and details of future meetings may be obtained from David Carne of 44 George Street, Exmouth (telephone Exmouth 74479). After some experimentation they have now settled on a format for the meetings consisting of a talk on a particular processor or piece of equipment followed by 'RAM-Time'. This is a question and answer forum at which any member may answer. This seems to be an idea which could usefully be adopted by other groups.

Pete Harris of 119 Carpenter Way, Potters Bar, Herts telephone 01-248 8000 ext. 7065, reports that although he has had an encouraging response to the mention in this column a few months ago, he feels that there must be more readers who would like to join a 'personal' PDP/LS11 User Group to promote the interchange of ideas and expertise on these classic machines.

A new group has been formed in the East End of London by Jim Turner of 63 Millais Road, London E11, and will be holding meetings on the 20th February and the 20th March in the Meeting Room of the Harrow Green Library, from 7 to 10 p.m. The Library is at the Leytonstone Road end of Cathall Road in Leytonstone.

Readers living near or visiting Hamburg are invited to meetings of the Hamburg CC, which meets on the first Wednesday of each month. Ring Pete Bendall on (04191) 65358 and he'll put you in touch with the club.

Closer to PCW headquarters, a South East London Group has been formed by Roy Mitchell of 58 Kenilworth Gardens, Shooters Hill, London SE18 3JB (01-856 2436).

The Newcastle Personal Computer Society is holding meetings on the first Tuesday of each month, usually comprising a lecture, informal discussion, and the demonstration of a particular microprocessor system. For further details ring Dr. W. G. Allen on 0632 851526.

NATIONAL INTEREST

In the September issue of PCW, this column raised the question of a new standard for cassette tape recordings — on the basis that the de-facto standard: CUTS, is agonisingly slow and there are a host of later developments now available for comparison. Readers will recall that Alan Secker volunteered to compare proposals and organise a debate on the subject.

Inevitably, issues such as this take a while to resolve; however an interim report from Alan indicates that there appear to be two designs which meet the original requirements of simplicity, reliability and acceptability, and these are the 'Tarbell' system of a new standard for cassette tape recordings, and the de-facto standard: CUTS, which uses the same frequencies but less cycles per bit, as described by Bob Cottis and Mike Blandford in the December issue of PCW. The investigation continues.

CLEAR TO SEND

If you want the world to know of your local group, SIG, or any other activity of interest to the amateur computing enthusiast, just drop a line to Mike Lord, 7 Dordells, Basildon, Essex.
To do this there are several methods:

(i) write to be mentioned in the newsletter and magazines such as Practical Electronics, Personal Computer World etc.

When the replies start pouring in, the next job is to decide where to hold your first meeting. The size of the place required will depend on the number of people who replied. A suitable place would be a Public House, which would provide refreshments for all concerned. Although, it's surprising how many people can be accommodated in the lounge of a house for a first meeting.

If you are going to form a club, you will need officers to run it, these being a Chairman, Secretary and a Treasurer. At the beginning and especially if the number of possible members is small, all that is needed is someone who could be loosely called Secretary, to call meetings and indicate when to have them. The Chairman and Treasurer really come into their own when the Club is large enough to justify a constitution, and the Secretary is being over-burdened with work. When this occurs, the following personnel will be required: Chairman, Secretary, Treasurer, as officers; and usually three to five others as a Committee to assist the three officers.

It is important not to have too large a committee as the committee meetings can take too long and very little is decided owing to conflicting opinions. If this happens, reduce the size of the committee. If, however, the reverse happens you can always co-opt another member on to the committee to reduce the burden of work.

On choosing the meeting place, there are two main considerations to be determined. One is to try and choose some place central for the majority of those who are members, and secondly it all depends on what meeting places are available to hold meetings in. The problem of meeting places will arise quite often as the club grows.

The secretary's duties are reasonably simple but can be hard work. He is normally responsible for:

(i) calling committee meetings and providing agendas,
(ii) attending meetings and distributing them if necessary,
(iii) ensuring that the speaker gets to the general meeting on time and that any equipment requested is available,
(iv) recording the minutes and announcing any other notices he has to hand, (sometimes the Chairman does this),
(v) ensuring that the Chairman is kept up to date with any correspondence etc., likely to affect the club,
(vi) co-ordinating the activities of the committee members.

The Chairman has a job which, if the secretary is up to his/her job, is fairly easy but it does require qualities which are not present in any other job. It is his job to ensure that at committee meetings the agenda is adhered to, that conflicting arguments are not allowed to get out of hand and away from the subject under discussion. It is sometimes necessary to point out that the person speaking is wandering away from the subject (usually because he tries to make things too complicated). It is also necessary for the chairman to think ahead and to attempt to foresee if the club is heading in the correct direction bearing in mind the membership who are usually of varying experience from expert (small number) to beginner (large number). There is little use having speakers who give talks which are over the heads of most of the members present.

He should also give some thought to his secretary and who he could get in his place if anything happened to him. The lack of a secretary for even one month could cause a lot of unnecessary confusion and upset. It is also his responsibility to periodically examine the treasurer's accounts with the treasurer to ensure that all is well. It also keeps the treasurer on his toes.

The treasurer's function is to control the club's finances. To this end the club has a bank account from which money can be drawn, usually on the chairman's and treasurer's signatures. He should be able to provide at each committee meeting a brief on the finances of the club with an explanation of the drawings and deposits. He should also be able to analyse the finances so that he can give warning in advance that the club is running into a cash flow crisis. This gives the committee time to take action to correct the problem.

At the Annual General Meeting (A.G.M.) he should provide a financial and an audited balance sheet for the meeting along with his recommendations for the future.

Wherever possible a small surplus should be planned every year which will allow future committees greater freedom of action. Periodically he should present his accounts to the chairman for vetting.

A constitution will be needed to provide a basis on which the running of the Club depends.

The subjects the constitution cover are:

(i) aims of the club,
(ii) officers and committee — election of
(iii) necessary qualifications (if any) for those joining
(iv) fees, both annual and if necessary per meeting to pay for the meeting room,
(v) limits of action of the officers and committee
(vi) rules for the AGM and EGM
(vii) any others considered required.

The Annual General Meeting (AGM) is held at the end of the club year. A typical agenda would be:

1. Chairman welcomes members to the AGM. 2. Chairman reads out the minutes of the last AGM and has them accepted. 3. Points arising. 4. Chairman's report. 5. Secretary's report. 6. Treasurer's report and accounts. This has to be proposed and accepted. 7. Election of Chairman — previous chairman carries on, the Secretary and Treasurer standing down until new Chairman takes over. 8. Election of Secretary and Treasurer. 9. Election of new committee. 10. Any business to be discussed, proposed and accepted or noted on. 11. Any other business (AOB).

On the running of the general meeting there is little concrete advice one can give as most clubs run it differently.

The most common procedure seems to be:

a) Welcome the Members to the meeting. b) Make any announcements to be made. c) Obtain reports on any activities which have taken place since the last meeting. d) Announce the speaker. e) Thank the speaker after the talk and question time. f) Close the meeting.

On the subject of speakers, amateur computing is still too new in Britain for a group of speakers to have built up, thus most clubs will have to depend on their own resources.

If a speaker is available it is usual to meet him after travelling, give him dinner, and pay his travelling expenses and hotel bill if necessary.

It is hoped that the information given in this article will be of assistance to anyone thinking of starting a club in his area. It should be pointed out, however, that the information given can be only a guide, as each club seems to be unique.

---

PCW Open Page Service for Amateurs
The POP Service

Buy, sell, exchange. Entries are free, limited (in future) to not more than 50 words. The POP Service is on p. 69.
One year, three seminars and 12,000 kits later, Nascom presents
APPLICATIONS 79
Two one day seminars to be held in London in the Spring of 1979.
Day one will be on small business applications. Day two will be specifically aimed at the personal user.
Write for further details now.

Nascom Microcomputers
121 High Street,
Berkhamsted,
Herts.
Tel: (04427) 74343

The world's best-selling personal computer
APPLE II
*New powerful BASIC and new graphics on Rom. £75 card.
*Talk to Apple with voice recognition, speaker trained, 32 word vocabulary. £165 card.
*Colour Graphics. High resolution 280h x 192v, 6 colours, easy-to-use. Low resolution 40h x 48v, 16 colours, very powerful.
*Apple's disks. Powerful DOS. 116K bytes capacity, multiple drives, fast access. £395.
*Use Apple as a computer terminal 110 or 300 BAUD. Full or half duplex or use with a Dec-writer. £95 card.
*Use any 8 bit parallel printer with Apple II. Print up to 3,700 lines per minute. 255 character lines, upper and lower case. £100 card.

Personal Computers Limited
DISTRIBUTOR
18-19 Fish Street Hill, London E.C.3.
Tel. 01-283 3391
New address from August 21st

SIRTON PRODUCTS (SP)
We specialise in the S.100 Bus System with 8080 or Z.80 CPU'S.

MAINFRAME
Desk Top, with power supply, motherboard & fan etc. £187.00
SIRTON VDU Self Contained Unit
16 lines 64 characters, 1K RAM, case, power supply and UHF modulator, with Reverse Video and Flash etc. £ 79.00
Serial Interface 110 Baud Crystal Controlled £ 16.75
Serial Interface 75-1200 Baud Crystal Controlled £ 26.75
SIRTON DATA ENTRY ...NEW !!!
Self Contained Data Entry/Store/Editor & Display with 2K store, RS232 Serial Output/input & Integral Keyboard
Apply for Data Sheet

KEYBOARDS
56 key — George Risk Tri-mode ASCII output (without case) — built £ 49.90
56 Key — George Risk Tri-mode ASCII output (built into SIRTON case) £ 74.90
SIRTON touch-type ASCII output, with case — kit £ 38.00
SIRTON touch-type ASCII output, with additional features £ 50.00
Keyboard case, without cut out (SIRTON case) £ 19.95

BOARD KITS
Z80 CPU Board 2MHz, 2708 Monitor, power-on-jump £ 94.50
Z80 CPU Board 4MHz, 2708 Monitor, power-on-jump £ 99.50
8080 CPU Board with Vector Interrupt Circuit £ 72.50
8080 CPU Board with jump-on-reset £ 95.50
8K RAM Board low power 450 n Sec. (21L02-1) £ 94.50
8K RAM Board low power 250 n Sec. (21L01-1) £119.50
2708 EPROM (16K) for 2708 or 2716 EPROMS £ 47.00
2708 EPROM (16K) with 8 EPROMS (2708's) £ 92.50
2708 EPROM Board with programmer (8K) £ 96.50
8K EPROM/1K RAM, with RAM £ 75.50
Serial/Parallel I/O Board, 2 Serial/1 Parallel ‘Kansas City’ Interface £ 94.50

Apply for prices of ready-built and tested items. Please add 8% VAT.

SIRTON PRODUCTS
13 Warwick Road, Coulsdon, Surrey CR3 2EF.
Tel: 01-660 5617
Post & Packing
Keyboards: £1.00 each Kits: 80p per kit
Transformer: £1.00 each Hardware/IC’s: 30p per order

PERSONAL COMPUTER WORLD
FEBRUARY 1979
VERY PERSONAL OPINIONS

A. J. Aylward

D. GRIES - COMPILE CONSTRUCTION FOR DIGITAL COMPUTERS
Wiley. £7.50 (Less than £7)
The most basic text on constructing compilers, interpreters or assemblers. A must for anyone who wishes to do such work.

Buy yourself a good set of data books. It may cost a bit, but it will pay dividends. Five pounds for the TEXAS TTL 'bible', another £3 for the Intel data book and the master manuals for your own processor are essential.

Adam Osborne has written some very good books; on the whole they are worth buying, perhaps more so than any other books on micros.

Make up your mind what you want, a toy, a status symbol or a computer. If you want the latter, try IBM or one of the other well established firms. For Dragon Hill, build one for yourself. You will learn an awful lot that way. If you just want a toy or a status symbol, there are plenty of people who are willing to take your money off you.

Anything you get for free is worth what you paid for it. Two great fallacies: S-100 and BASIC. Neither are universal, standard or even much use.

Murphy's Law: "If a thing can go wrong, it will". "If in doubt, leave it out". "If you want it to work, it won't work".

Remember the Dinosaurs. To them mammals were small, slow and over-specialised. Where are the dinosaurs now?

O'Toole's Law: "Murphy's an optimist". Jenkinson's Law: "It won't work".

"Yes, but my program works, yours doesn't".

People won't learn even by experience. Never underestimate the power of Human Stupidity. "The better a program is, the fewer variables it possesses". Write programs that you can understand, then they will have a chance of working.

"You can't estimate the power of Human Stupidity. "The better a program is, the fewer variables it possesses". Write programs that you can understand, then they will have a chance of working."

"My program takes half the space of yours and runs three times as fast". "If in doubt, leave it out".

If fifty thousand people believe a foolish thing it is a foolish thing. (The S-100 ?)

Standards are there to help you. They mean that you can borrow your equipment and know for sure that it will work in your rig. It means that you don't have to keep on re-inventing the wheel, you can copy someone else's. Only make sure your standard is standard.

If in doubt, leave it out!

I recommend the following books; they cover various ranges and various degrees of expertise. I own them all and would not recommend a book I do not or have not owned.

D. E. KNUTH - FUNDAMENTAL ALGORITHMS
Addison Wesley. £7.50
This book is just what its title suggests. It is a gentle introduction to the art of computer programming. Though it contains much maths, do not let this put you off, little of it is needed for the bulk of the work covered.

PETER WEIGNER - PROGRAMMING LANGUAGES, INFORMATION STRUCTURES AND MACHINE ORGANISATION
McGraw Hill. £3.75
An easy, though by no means a layman's introduction to a variety of aspects of computing, both software and hardware. A good primer for anyone past the Adam Osborne stage.

B. W. KERNIGHAN & P. J. PLAUGER - SOFTWARE TOOLS
Addison Wesley. £7.70
A fundamental text on good programming. Quite apart from being a collection of tried and tested programs, which figure amongst the most useful I have ever come across, this book serves to illustrate the best elements of programming style. Essential for anyone who thinks he will ever want to write software.

J. J. DONOVAN - SYSTEMS PROGRAMMING
McGraw Hill. £6.55
A 'Noddy's Guide' to the writing of assemblers, linkers, loaders, macro-processors and the kernel of an operating system. This contains most of the basic theory of computing and is very readable. Its examples gently lead the reader into writing all the essential blocks of what has been termed 'system software'.

D. LEWIN - THEORY & DESIGN OF DIGITAL COMPUTERS & LOGICAL DESIGN OF SWITCHING CIRCUITS
Harvester Press. £4.95
The 'bible' of hardware design. A tremendously well researched book with a fantastic bibliography. Very readable.

J. B. PEATMAN - THE DESIGN OF DIGITAL SYSTEMS
Academic Press. £5.40
A how to implement ALGOL 60 book. Contains all the algorithms and flowcharts necessary to implement ALGOL on an 8, 16 or 24 bit machine.

PCW We don't regard personal computers as toys. We don't think it's all that foolish. We don't . . . . but there's room in this world for dissent. Isn't there? PCW.
The great RAM sale

The Nascom system offers major expansion at sale prices. To give you as much choice as possible we offer RAM boards in three configurations to accommodate up to 16 memory ICs of either MK4027 or MK4116, all socketed.

The memory board kit options are:

- 8K £85.00
- 16K £140.00
- 32K £200.00

Boards will also accommodate up to four EPROMS of type 2708 at £10.50 plus VAT each. And if you wish to upgrade 16K to 32K it will only cost you an additional £70.

Memory boards plug straight into a NASBUS and an edge connector is included for this. All boards must be used in conjunction with the buffer board which, like the memory boards, is available in kit form ex-stock from approved Nascom distributors.

121 High Street, Berkhamsted, Herts. Tel: (04427) 74343

Nascom Microcomputers

---

TEI COMMODORE

COMPUCOLOR

OHIO SCIENTIFIC

PERIPHERALS FOR PET

DAMS JOYSTICK (including software) £25
DAMS 625 VIDEO ADAPTOR (for TV or monitor) £25
DAMS PAGE PRINTER INTERFACE (for 20ma loop) £25
PET 8K £625.52 COMPUCOLOR 2 8K £1331.93
2ND CASSETTE £ 50.00 OHIO SCIENTIFIC
APPLE 16K £985.00 SUPERBOARD 2 £ 285.00
APPLE DISK £425.00 KIM 1 £ 99.95

Send for our comprehensive software and hardware catalogue. We supply all Petsoft, CBM & DAMS software.

NEW SOFTWARE

DAMS BINARY RENUMBER (mic code routine renumbers GOTOs & GOSUBs) £5
T.I.M. 1.5 (vastly improved Terminal Interface Monitor) £4
DOUBLE DENSITY (4000pt. plot, 80 x 50 on Pet) £4
POLAR PLOT (an example of dynamic reprogramming, ingenious) £4

GAMES

TREASURE DIVE — excellently written, good graphic control £4
SWAT — a good chance game, double density graphics £4
DEFLECTION — a TV type ball game completely variable £4

This is only a selection from a very large range. Phone Graham Knott or Jeff Orr for details of any of our stock. ADD 8% VAT TO ALL PRICES. POSTAGE & PACKING 50p PER ORDER.

D.A.M.S. (Office Equipment) Ltd., 30/36 Dale Street, Liverpool L2 5SF. Phone: 051 227 3301 (10 lines).
Interactive Computer Aided Design (CAD) of electronic circuits has in the last decade become an established engineering technique. The simulation of circuit performance allows designers to refine the operation of their circuits before constructing and testing a circuit on the bench. The availability of microcomputers, with a BASIC language interpreter, offers the home user the opportunity to experiment with circuit analysis programs which were previously only available to engineers who had access to a large computer.

Provided a CAD analysis program is carefully written with a modular structure, the owner of a very modest computer can get started in this area of personal computing. The minimum configuration that is needed to run a small analysis program is a system which will support a BASIC interpreter, with a floating point package, and 4k of user random access memory.

MICRODC is an interactive BASIC program which can be used as a circuit design aid. The program is capable of analysing d.c. circuit performance to determine component voltages, currents and power dissipations. Circuits for analysis can include transistors. In MICRODC, transistors are modelled using d.c. networks which represent the device circuit function.

To use the program, answers to questions displayed on a VDU are entered from the VDU keyboard. These questions include requests for data describing the circuit components and their connection, commands for the d.c. analysis of circuit performance, commands to increment component values and commands to modify component values. The increment option is mainly used to observe the effects of component charges on circuit performance.

Obviously, to use MICRODC successfully a working knowledge of basic electronics is essential. To use the program, simply respond to the questions asked by the computer.

Many readers are probably asking the question: what exactly does MICRODC do?

The best way to answer this question is to consider an example. Shown in figure 1 is a simple circuit consisting of a battery and three resistors. The battery is represented in the diagram as a one volt source with an internal resistance of 0.01 ohm. For this circuit it is a simple calculation, using Ohm’s law, to determine the voltage developed across each of the resistors and the current flowing in the circuit components.

However, if we were to add to the circuit series and parallel components, d.c. analysis would become more difficult and often time consuming. Given the information contained in a circuit diagram, MICRODC will automatically compute the component voltages, currents and power dissipations. The two essential pieces of information needed for these calculations are 1. the connection of the circuit components, and 2. the type and value of the components which form the circuit. The MK/1 version of MICRODC allows the following types of component:

1. Independent current generators
2. Resistors
3. Current controlled current sources

The end of the data list is terminated with the code E for end. Each of the resistor and independent current sources are described by the following data format:

- Type code number
- Node number from which the component current is assumed to flow
- Node number to which the component current is assumed to flow
- Component value

The program first displays the heading MICRODC MK/1 Followed by ## COMMAND ## ?

The direction of assumed current flow is given by the arrows. Resistor Rc may be any circuit resistor. To specify where a component is connected in the circuit, the component interconnection points are numbered starting with zero for the earth or reference connection. The connection points are called nodes. For convenience, each type of component is also numbered but starting from one this time. Figure 2 illustrates this process using the example introduced in figure 1. In figure 2a the nodes and circuit components are shown numbered. In figure 2b since batteries are not understood by MICRODC the battery V1 has been replaced by a current generator in parallel with R1. Assumed current directions are indicated by the arrows. Using figure 2b as a guide the following data list is prepared.

<table>
<thead>
<tr>
<th>Type code</th>
<th>Component number</th>
<th>Node number from which the component current is assumed to flow</th>
<th>Node number to which the component current is assumed to flow</th>
<th>Component value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1,1,0,0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>2,1,2,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>3,1,0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1,0,1,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1,1,0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1,1,0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1,1,0,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1,1,0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The program first displays the heading MICRODC MK/1 Followed by ## COMMAND ## ?

63
To enter circuit data, type DATA followed by a carriage return. In the following text, to help readers understand the computer output, keyboard response are underlined. After entering DATA the program responds with

NODES = ? 2
NO-R = ? 3
NO-I = ? 1
NO-B = ? 0
TYPE ? R
? 1, 1, 0, 0.01
TYPE ? R
? 2, 2, 2, 1
TYPE ? R
? 3, 1, 0, 1
Type ? I
? 1, 0, 1, 10
TYPE ? E

The end of the data list is communicated to the program by typing the letter E followed by a carriage return. MICRODC then responds with a request for a further command.

# # COMMAND # # ?

Responding with LIST and a carriage return will display the stored data. After the circuit data has been displayed on the VDU, MICRODC will again request a further command. A d.c. analysis of the stored circuit data is carried out by responding with DC and a carriage return. MICRODC then displays

NODE NO  NODE VOLTAGE
1  0.995024874
2  0.497512439

This output tells the user the voltage at each circuit node with respect to the earth or reference node.

On completion of each task MICRODC will request the input of a new command. The full range of options available are:

1. DATA  Enter circuit data (only used to enter data at the start of a program).
2. LIST   List stored circuit data.
3. DC     Undertake a d.c. analysis of the stored circuit data.
4. POWER  Display component voltages, currents and power dissipations.
5. MOD    Modify component values.
6. INC    Increment component values and display the node voltages for two circuit nodes.
7. FINISH  End circuit simulation.
The data describing the current controlled current generator is entered from the VDU keyboard with the format:

<table>
<thead>
<tr>
<th>Type code</th>
<th>Component number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

node number, current, gain to which the controlled current generator current is assumed to flow

When a voltage or current is displayed as a negative number this often implies that the original assumption for the direction of current flow through a component is incorrect. If during the calculations the program finds that the current flow is in the opposite direction to that assumed in the data list, the program displays this fact as a negative number. Normally the INC command will display the node voltages for the two highest numbered nodes. However, other node voltages can be displayed by entering the code N when the INC command responds to change the component value but also the position in which the component is connected. However, extra components cannot be added to the circuit. If you try to do this an array subscript error will result.

The BASIC listing for MICRODC MK/1 is given in Table 1. The program was developed on a SWTPC 6800 system using the 8k 2.0 BASIC interpreter. MICRODC will operate with other interpreters provided they are similar, with for example full floating point arithmetic, numerical mathematics. However, for those readers interested in writing their own analysis programs the following brief notes and the listing may help to unravel the coding.

At the start of the program, lines 12 to 101, a specific option is selected and the program branches to the relevant section of the code. When a DC analysis is requested, the circuit data stored in the dimensioned arrays is used to form a set of simultaneous linear equations which relate the node voltages, independent current generators and the component values. These equations are generated by the subroutine starting at line 1500. At lines 1900 and 1901 subroutines 9000 and 9300 are entered. These two subroutines solve the simultaneous equations to determine the node voltages. Finally subroutine 2000 is used to print the results of a DC analysis. Often with a large analysis task the size of the computer memory is not large enough to store the circuit data. Also the user may not need to use the full range of analysis options. Options may be removed to create space in memory for circuit data. To remove options the following program lines should be deleted.

As the majority of 8k BASIC interpreters are equipped with instructions for storing BASIC programs on cassette or disk, the analysis package can be split into a number of sections corresponding to the main routines and options. One or more of the options can then be merged with the main routines by using the BASIC APPEND instruction.

Although MICRODC MK/1 is limited in its capabilities I hope that it will encourage electronics enthusiasts to experiment with circuit simulations. A second version of the program is planned for the future. MICRODC MK/2 will again be modular with extra analysis options and an extended range of components.
TRUMPET, VOLUNTARY
Responding to TIDBITS information or an advertisement?
Say you saw it in PCW
Blow your own trumpet.
Mention your magazine.
SINCLAIRLY
YOURS

W. McIvor

MPU - Calculator Interface

Winning a Sinclair Programmable Calculator in the PCW competition in issue one presented me with a problem. What do I do with two Sinclair Programmables? I bought one shortly after they were announced. My solution was to interface one of them to my MPU system.

I was faced with two basic problems. Firstly, level conversion between the 9 volt calculator levels and the 5 volt MPU levels; and secondly getting the timing right.

Although based on a MPU with on-board ROM and RAM the Sinclair Programmable can be regarded as an ordinary calculator with segment and digit lines and keyboard input lines as shown in Fig. 1. Input to the calculator consists of taking one of the keyboard input lines to 0 volts when a selected digit line goes low. This is usually achieved by pressing a key which simply connects one of the digit lines to one of the keyboard input lines. Output consists of reading the segment lines when the selected digit line goes low. The calculator does this by using a multiplexed display.

These input and output methods give the block diagram of the interface shown in Fig. 2. The block 'data detect' is used to detect when the display is turned on. The Sinclair Programmable blanks the display while it is performing an operation and so when the display turns on we know that the calculator is ready to receive another instruction.

Digit Select

Figure 3 shows the circuit used to select the required digit line for input and output operations. CMOS is used here for two reasons. Firstly to avoid loading of the calculator circuit, and secondly to avoid the need to convert all 9 digit lines to 5 volt TTL levels.

A 4051 is used to select digit lines 0 to 7. The 4051 is an analogue multiplexer but it is cheaper and just as effective as the digital equivalent the

Fig. 1.

Fig. 2.
4049 buffer. The buffers in a 4049 converted to 5 volt levels by using a 4051 NAND gate which has 81 LS98 provides tri-state control for connection to the MPU data bus and also reinverts the segment data. When the display is blanked all inputs to the 4068 are logic '1' so the data ready signal is at logic '0'. Whenever any segment is turned on at least one input to the 4068 goes low and the data ready therefore goes high. Although this output is never continuously at logic '1', because segment data only appears for part of the digit period, it can still be used to indicate the end of an operation.

Read/Write Logic
Figure 6A shows the simple read/write logic. W and R are the negative read and write strobes from the MPU and PE is an enable signal from an address decoder. In the prototype the write signal extended beyond the time when the data on the data bus is valid because of the combined delays in the CPU circuits and the calculator interface. If this problem occurs the circuit of Figure 6B will solve it. The circuit provides a short pulse at the beginning of the write strobe.

Connections
Figure 7 shows the PCB of the Sinclair Programmable. The easiest way to make the connections to the digit and keyboard lines is to remove the keyboard, drill holes in the appropriate pads on the PCB, solder vero-pins into these holes and make connections to the vero-pins. The three digit lines not taken to the keyboard can be taken to spare pads isolated by cutting the tracks leading to them.

The segment lines are best accessed at the current limiting resistors behind the display as shown in Figure 7B. If required, the connections to the digit lines could be made at the display, and the keyboard input lines at the main IC, taking care not to bridge tracks or overheat components. If this is done the keyboard can still be used, with zero written into the digit lines could be made at the display, and the keyboard input lines

Software – Input
To simulate a key entry an 8 bit word is written to the interface. The lower 4 bits are a BCD number corresponding to the digit period required. The upper 4 bits have one bit at logic '1' corresponding to the keyboard input line required. Table 1 gives the codes required for each key.
The complete input sequence is:
1) Send 8 bit key code.
2) Wait for calculator debounce time.
3) Send hex 00. (Key release).
4) Wait for calculator debounce time.
5) Wait for data ready to go high.
6) Send next instruction.

Output
Getting the 7-segment data is more tricky. The 8 bit word has the upper 4 bits all zero and the lower 4 bits specifying the required digit. When digit ready goes high the segment data is ready a specific time later.

This time should be constant if a stabilised 9 volt supply is used, but as the main IC has no stable external clock it may vary for each calculator.

The output sequence therefore is:
1) Write digit required.
2) Wait for digit ready to go low.
3) Wait for digit ready to go high.
4) Wait for segment data set up time.
5) Read segment data.
6) Read next digit.

Step 2 is in case we request data in the middle of the required digit period. The delay in step 4 was 148µs in the prototype circuit though some experimenting may be required.

Also it should be noted that the data ready signal cannot be used for step 4 because we may be reading a blank digit which contains no segment data and does not cause data ready to go high.

Other Software Considerations
The calculator is very slow compared with the MPU and so where possible the data ready signal should be used to interrupt the MPU. This allows other processing to take place while the MPU is waiting for a result.

Input and output are not compatible with each other or with any normal representation used with MPU’s (i.e. ASCII, BCD, Binary) and so if the calculator is to be used, for example, in a Basic interpreter, conversion routines will be required.

A simple interpreter can be written to take a list of key codes similar to table 1 but modified to allow single and double shift functions to be specified in one byte. Special functions such as request input, display output and halt delay is necessary. When used with a simple keyboard and display connected to the MPU, or with the calculator keyboard and display directly, the result is a system similar to the Sinclair Programmable but with the number of program steps limited only by the MPU memory. This also gives the system access to over 600 pieces of software in the form of the Program Library available for the Sinclair Programmable.

It is also possible to write a program into the calculator program memory allowing it to run a long iterative calculation while the MPU performs other tasks.

Finally, if the interface is used with any other calculator the data ready signal cannot be used. In this case a software delay is necessary to allow the operation to be completed before sending the next key entry code.

### Table 1

<table>
<thead>
<tr>
<th>Hex Code</th>
<th>Key</th>
<th>Hex Code</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>26</td>
<td>/EE/</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>42</td>
<td>/A/</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>43</td>
<td>C/CE</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>44</td>
<td>RUN</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>86</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 bits all zero and the lower 4 bits specifying the required digit. When digit ready goes high the segment data is ready a specific time later.

This time should be constant if a stabilised 9 volt supply is used, but as the main IC has no stable external clock it may vary for each calculator.

The output sequence therefore is:
1) Write digit required.
2) Wait for digit ready to go low.
3) Wait for digit ready to go high.
4) Wait for segment data set up time.
5) Read segment data.
6) Read next digit.

Step 2 is in case we request data in the middle of the required digit period. The delay in step 4 was 148µs in the prototype circuit though some experimenting may be required.

Also it should be noted that the data ready signal cannot be used for step 4 because we may be reading a blank digit which contains no segment data and does not cause data ready to go high.

Other Software Considerations
The calculator is very slow compared with the MPU and so where possible the data ready signal should be used to interrupt the MPU. This allows other processing to take place while the MPU is waiting for a result.

Input and output are not compatible with each other or with any normal representation used with MPU’s (i.e. ASCII, BCD, Binary) and so if the calculator is to be used, for example, in a Basic interpreter, conversion routines will be required.

A simple interpreter can be written to take a list of key codes similar to table 1 but modified to allow single and double shift functions to be specified in one byte. Special functions such as request input, display output and halt delay is necessary. When used with a simple keyboard and display connected to the MPU, or with the calculator keyboard and display directly, the result is a system similar to the Sinclair Programmable but with the number of program steps limited only by the MPU memory. This also gives the system access to over 600 pieces of software in the form of the Program Library available for the Sinclair Programmable.

It is also possible to write a program into the calculator program memory allowing it to run a long iterative calculation while the MPU performs other tasks.

Finally, if the interface is used with any other calculator the data ready signal cannot be used. In this case a software delay is necessary to allow the operation to be completed before sending the next key entry code.

### Table 1

<table>
<thead>
<tr>
<th>Hex Code</th>
<th>Key</th>
<th>Hex Code</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>26</td>
<td>/EE/</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>42</td>
<td>/A/</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>43</td>
<td>C/CE</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>44</td>
<td>RUN</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>86</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Buzzwords exist to aid concise communication in an area where new ideas are emerging at an unprecedented rate, but people do occasionally use terms imprecisely, by error or intent, and sometimes the new meaning overtakes the old. That much overworked latter K, for example, stands for kilo or thousand which is often equated with 1024, the nearest round number in the binary progression which goes 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536.... So a memory with 65536 elements may be called 64k or 65k, but that is not the end of the confusion because the size of each element has not been specified. Most probably bytes of eight bits, they might equally be the bits themselves or even words of some other bit-length, such as 4, 12, 16, 24 or 32 bits. Good practice will avoid ambiguity by writing 4k x 8 bit or 4k8.

Still another ambiguity arises when old hands refer to memory as core, which is what they used to be made of, much as any domestic vacuum cleaner may be called a hoover.

So be on your guard.

E (1) Symbol for voltage, as in the equation E = IR (voltage equals current in amperes multiplied by resistance in ohms).

(2) Symbol for exponential notation, where for example 1.23 x 10^3 means 1.23 multiplied by 10^3, or 0.00123.

e Symbol for the exponential constant, used as the base for natural logarithms.

E.13.B. A standard font for magnetic ink characters capable of interpretation by MICR reading devices.

EAROM. Electrically Alterable Read Only Memory — a form of ROM wherein the contents stored may be altered by an appropriate electrical current.

Earth. A path to earth for an electric current. It is generally necessary for a computer, in common with other electrical and electronic apparatus, to carry a connection to earth. With powerful equipment it is important that this connection be made with care in order to avoid interference with, or pickup of random signals caused, by other apparatus. (Compare the noise which may be heard on a car radio if the various parts of the motor car are not effectively suppressed and earthed by bonding to one another.) Synonymous with ground.

Earth Fault. An electrical fault either —
1) making a connection to earth where none should exist, or
2) in the quality of a designed earth connection, e.g. high resistance.

Earth Loop. Provision of more than one route to earth from a point in an electronic circuit. In some cases this can cause spurious signals to be picked up, like mains hum in an audio amplifier, which is most undesirable in a computer!

Earth Spike (for Spikey Earth). A transient high voltage appearing on an earth connection, normally from some external source.

Earthly (end). The conductor or connection in a set whose potential is closest to zero or that of earth, even if it is not directly connected to earth.

EBCDIC. Extended Binary Coded Decimal Interchange Code. A code, something like ASCII, used for data transmission.

Echo Check. A system of checking the accuracy of data transmission by causing the apparatus at the receiving end to send it back to the transmitter. The echo is compared with the data originally sent, and if they do not coincide some other procedure is brought into use, such as automatic re-transmission of the suspect data or an alarm signal to the operator.

ECL. Emitter-Coupled Logic.

ECMA 'B'. The font of natural typeface, readable by both man and machine, adopted by the European Computer Manufacturers' Association. The same as OCR-B.

Edge Card. A circuit board (or card) with contact strips along one edge, designed to mate with an edge connector.

Edge Connector. An electrical socket, slot-shaped, whereby a circuit card may be attached to a mother-board or chassis.

Edge Cutter/Trimmer. A device for removing the sprocketed margin from continuous stationery.

Edge Punched. Edge punched cards may be similar in size to conventional punch cards or a little smaller. Data is punched along the bottom edge of the card in paper tape code. This leaves the greater part of the card to be written upon freely. Edge-punched cards are normally provided in tinfold pack joined to each other by the short edge.

Editing Run. In batch processing the editing program will check the data for obtainable validity e.g. test that dates and numbers fall within the expected ranges, compare totals with separately entered batch or hash totals and prove check digits and identify any errors for correction and re-submission.

Editor. Computer software to make it easy to review and alter a file or program interactively. For example one editing command might locate and display the first occurrence of a given string of characters; a second command might delete or change those characters wherever they occur.

EDP. Electronic Data Processing — generally synonymous with computing.

EDS. Exchangeable Disc Store.

EH. Extremely High Tension — a voltage likely to give a severe shock even to a person not directly connected to earth.

Electronic. Pertaining to the flow of electricity through semiconductors, valves and filters, by contrast with the free flow of current through simple conductors. The essence of computer technology is the selective use and combination of electronic apparatus whereby current can be allowed to flow or be halted by electronic switches working at very high speed.

Emitter-Coupled Logic. Form of connecting transistors in computer circuitry (integrated or discrete), generally allowing faster and better operation.

Electronic Data Processing. A synonym for computing originally adopted to distinguish the activity from automatic data processing, using mechanical rather than electronic equipment. The acronym EDP is still popular because it is short.

Electrode. One of a set of two or more points in a device between which an electric current may flow. For example electrodes are found in batteries, in electroplating or may be applied to the human body for the measurement of voltages or skin-resistance.
Electrolyte. A liquid designed to conduct electric currents, as in a car battery.

Electrolytic. Using an electrolyte as for example in electrolytic condenser, a form of capacitor in which one plate is a metal surface and the other plate is electrolytic liquid, which deposits a very thin layer of insulating dielectric on the metal surface.

Electro-Mechanical (device). Using electrical signals to trigger physical movements, for instance in an electric typewriter where touching a key closes a switch which makes the chosen letter hit the paper.

Electro-Sensitive (paper). Printer paper with a thin coating of conductive material, such as aluminium. Print becomes visible with a thin coating of conductive material, paper.

which makes the chosen letter for rical signals to trigger physical movements, Electro-Mechanical surface.

surface and the other plate is electrolytic of capacitor in which one plate is a metal Electrolytic. Using an electrolyte as for

PERSONAL COMPUTER WORLD

values in machine language.

to an expression change values expressed in decimal figures Encode. To apply a code to computer of disable.

facility so that it can operate; the opposite has been completed.

desirable grams for conversion(almost invariably machine before re-writing of the old pro-

ed by software. The facility may be useful when a computer is replaced by a new machine before re-writing of the old pro-

grams for conversion(almost invariably desirable for commercial routines) has been completed.

Enable. To switch a computer device or facility so that it can operate; the opposite of disable.

Encode. To apply a code to computer data or instructions, for example, to change values expressed in decimal figures to an expression in excess-3 code, or from assembler mnemonics to hexadecimal values in machine language.

Encoder. A device which produces machine-readable output, for example, paper tape, either from manual keyboard depressions or from data already recorded in some other code.

Encrypt. To make data unintelligible to those not entitled to read it by an ordered arrangement of transpositions etc., that can be restored to clarity by a device suitably programmed but difficult to manage otherwise.

End Mark/Word. Coded signal used to identify the finish of some piece of data in a variable length store.

Entry Point. A particular instruction in a program sequence at which the work may be taken up. This need not always be at the beginning and a program can have more than one entry point. There is a parallel in the programs of some washing machines which allow the user to start at an intermediate 'rinse' or 'spin dry' operation without going through the whole wash cycle.

Environment. In computing context this is more likely to refer to the mode of operation — e.g. 'in a timesharing environment' than to physical conditions of temperature, humidity etc. But either kind of environment may affect operational efficiency.

EOF. End of File.

EOT. End of Transmission: a term from Telex usage.

EPROM. Electrically Programmable Read Only Memory. The bit content of each location may be changed from 0 to 1 by a current pulse strong enough to break a fuseable link.

Equivalence Element. A circuit which produces a signal if, and only if, two items of inputs are identical.

Error. Deviation from true value. See also absolute error, balanced error and biased error. Syntax error however means only that the rules of a programming language have been broken.

Error Code. An error message displayed by a computer in the form of a number whose significance the operator must look up in a book.

Error Detection Routine. A routine designed to detect whether or not any error has occurred in processing or operating. Detects but does not necessarily locate errors.

Computer standard

3A PSU

Computers require a reliable and even power supply. The redesigned and uprated Nascom 3A PSU meets these requirements. Its output voltages are +5V 3A, +12V 1A, −12V 1A, −5V 1A. And are sufficient to drive the Nascom—1, buffer board and up to 128K of RAM. It has LED displays on all the outputs and will fit into the Nascom frame to be announced soon. Price of PSU kit—£24.50 plus VAT.

A buffer board kit with edge connectors suitable for the NASBUS and with edge connectors and inter-connectors to attach directly to the Nascom—1 is available at £25.00 plus VAT.

nm

Nascom Microcomputers

121 High Street,
Berkhamsted,
Herts.
Tel: (04427) 74343

71
Error Message. A computer message, generated by its operating system or other software, to advise the operator when a fault condition is detected and (generally) to indicate how to locate and correct it.

Escape. A keyboard character (generally non-printable) which, like shift or control, translates the following character to a different characteristic.

Etcaching. The process that produces a printed circuit board from a suitably masked sheet of copper laminate.

Euro-Card. A dimensional standard (one of several choices) for a circuit board used in small processors.

Even Parity. The convention for checking data after transmission which expects an even number of ones in each group of bits transmitted.

Excess-3 Code. A system of binary numbering in which each binary equivalent is three greater than it normally would be. For example:

<table>
<thead>
<tr>
<th>Decimal Digit</th>
<th>Excess-3 Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0011</td>
</tr>
<tr>
<td>1</td>
<td>0100</td>
</tr>
<tr>
<td>2</td>
<td>0101</td>
</tr>
<tr>
<td>3</td>
<td>0110</td>
</tr>
<tr>
<td>4</td>
<td>0111</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>1001</td>
</tr>
<tr>
<td>7</td>
<td>1010</td>
</tr>
<tr>
<td>8</td>
<td>1011</td>
</tr>
<tr>
<td>9</td>
<td>1100</td>
</tr>
</tbody>
</table>

When numbers expressed in the excess-3 code are added together, "carry" digits arise at the same times as when the decimal equivalents are added; for this reason the excess-3 code is favoured in binary coded decimal. Another feature of excess-3 code numbers is that the code can express three negative values, viz -1, 0101; -2, 0001; 3, 0000. This can be of value in certain "compare" operations.

Exchange/Sort. A system of sorting in which the key digits of two blocks of data are compared, and if they are not initially in proper sequence they are returned to store and their original locations transposed.

Exclusive "OR" Operator. A logical operator (Boolean algebra) which has the property that, if P and Q are two statements, the statement P*Q (where the asterisk is the exclusive OR operator) is true if either P or Q, but not both, is true and is false if P and Q are both false or both true, according to the following table. (Figure 1 indicates a binary digit or truth):

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P*Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that the exclusive OR is the same as the inclusive OR except that with both statements true there is no output; that is, P*Q is true if either P or Q is true but not if both are true.

Execute. Decode a machine instruction to effect the required computer operation.

Executive (program). Generally synonymous with operating system.

Execution Time. The elapsed time taken by a computer to perform an instruction, such as an add.

Exit. The last obeyed instruction of a routine, or the address of this instruction.

Exponent. The power to which a number is raised. Thus in 10^4 (meaning one million) the exponent is 4.

Expression. A mathematical quantity of several elements, e.g. 'SQR(A/B)', rather than a single element such as 'B' or '17'.

Extended BASIC. A version of the original Dartmouth BASIC programming language which has been enhanced by adding extra commands or facilities, e.g. to perform matrix arithmetic or to evaluate the trigonometric functions.

Extract. To take out part only of some data held in a storage area; for example, the area might hold 15 digits and the extract be confined to, say, the 8th, 9th and 10th digits.

**BINDERS for PCW**

We anticipate a very large demand for PCW binders. Full details will be given in the March 1979 issue. In the meanwhile, to ensure your order has priority, write in now. Don't send any money.


TRUMPET, VOLUNTARY

Responding to TIDBITS information or an advertisement?

Say you saw it in PCW

Blow your own trumpet.

Mention your magazine.

---

**The NORTH STAR HORIZON Computer**

HORIZON — a complete high performance microcomputer system with integrated floppy disk memory.

HORIZON is attractive, professionally engineered deal for business, educational and personal applications.

To begin programming in EXTENDED BASIC, merely add a CRT, teletype or other hard-copy terminal. HORIZON includes a Z-80A processor, 16K RAM, mini floppy disk and 12.5 dot S-100 motherboard with serial terminal interface, all standard equipment.

and software, too!

HORIZON includes the North Star disk operating system and full EXTENDED BASIC from diskette ready at power-on.

This Basic, now in widespread use, has virtually everything desired in a Basic, including sequential and random disk files, formatted output, a powerful line editor, strings, machine language call and more.

OPTIONAL software (under CP/M) include — C-Basic Compiler/Interpreter Basic, Microsoft Disk Extended Basic, MAC Macro Assembler, Microsoft COBOL—80 and FORTRAN—80, and more.

QUALITY AT THE RIGHT PRICE:

HORIZON Z-80A processor board, RAM FPB, and micro disk system can be bought separately for either 280 or 8080 S-100 bus systems.

NEW LOW PRICES

<table>
<thead>
<tr>
<th>HORIZON-1—16K</th>
<th>£1265</th>
<th>£1995 kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZON-1—24K</td>
<td>£1375</td>
<td>£2090 kit</td>
</tr>
<tr>
<td>HORIZON-2—16K</td>
<td>£1575</td>
<td>£2195 kit</td>
</tr>
<tr>
<td>HORIZON-2—24K</td>
<td>£1695</td>
<td>£2395 kit</td>
</tr>
</tbody>
</table>

All prices are exclusive of VAT and carriage. Subject to change.

Full details: PCW, Interam Computer Systems Ltd., 59 Moreton Street, Victoria, London SW1V 2NY, Tel: 01-834 0261/7233

---

**THE TOTAL SOLUTION FROM ALMARC**

OF COURSE!

Now Almarg & Vector Graphic offer the complete solution to your computing needs for £2300.00*. The Vector M2 offers the following features as standard:

- S-100 bus
- 4MHz Z80 processor
- 168 instructions
- two quad density -Micropolis floppy's — over—
- 630K bytes on line
- serial port
- two parallel ports
- 32K static ram
- 12K prom/ram board with extended monitor
- Extended BASIC

Simply connect your peripherals (Elbit V.D.us & Centronics printers are available from Almarg) and you're up and running and, because the M2 uses the S-100 bus, you can plug in a massive range of add on units.

Ring or Write for a demonstration to:

Almarg Data Systems Ltd.,
29 Chesterfield Drive, Burton Joyce, Nottingham.
Telephone 0602 248565

*Discount terms available.
PET Peripherals
Get your PET up to 32K with PME — MEMORY EXPANSION

- Mounts easily inside your PET chassis
- Uses your PET’s transformer without degradation of your system
- Full 6 month limited warranty
- Full manual with graphic display memory test that shows chip layout.

NOTE: Peripherals listed are NOT Commodore products.

(All Fully Assembled)

1) a. OneWay Serial Interface Allows you to obtain hard copy printouts using any standard RS-232 serial printer (IBM, Diablo, Teletype, GE, etc). Specify printer and baud rate needed!
2) b. TwoWay Serial Interface Allows your PET to communicate both ways with any RS-232 Terminal. Baud rate set on board from 75 to 9600 bps. From 5 to 8 character bits with mark, odd or even parity! Complete with all necessary cables, connectors and case.
3) c. Two-Way/Two Channel Same as above, plus ability to daisy chain another peripheral on same board.
4) d. Modem Auto Originals/Answer (Software Selected/enabled). Baud rate of 75 to 600 bps. Directly compatible with “CBT” type equipment available from phone company. For “CBS” type equipment, add £10. Complete with cable and case.
5) e. S-100 1-Slot Expansion Interface/Motherboard Allows the use of any S-100 board to be interfaced to PET. Requires power supply.
6) f. S-100 4-Slot Expansion Interface/Motherboard Allows the use of up to four S-100 boards. Requires power supply.
7) g. MUSIC/SOUND BOX—Add sound and/or music to your program enjoyment with our music/sound box. Complete with documentation and cassette tape, fits the PET Perfectly.

Contact:
Roger Moon
Assistant Vice President
Justwise Computer Systems Limited,
1-11 Hay Hill, London. W1. Tel: 01-493 7875

ATTENTION SMALL BUSINESSES — Systems expert with programming experience and Apple II computer offers help/advice to small firms in the MANCHESTER area on a part time basis. Please write Box PCW 9.

WEST COUNTRY DEVON

CRYSTAL ELECTRONICS

crystal electronics

FOR THE BEST IN SMALL COMPUTERS
ADVICE AND FULL BACK UP ON
APPLEII NASCOM I ATARI NEW BEAR
BOOKS (OVER 150 TITLES),
COMPONENTS, ADD ONE ETC.

SOFTWARE FOR:
Apple 2 Stock Control (Disk & Printer) for 10,000 Items Plus £100 + full update for six months exc. VAT
Nascom Tape, Containing 6 Games etc. £6.00 + VAT

All Products are stocked on Advice from our Engineers as to Quality, Value for Money and Reliability.

Shop Open 09.30 – 18.00
Except Wed/Sun
40 MAGDALENE ROAD
TORQUAY, DEVON
Tel: 0803 22699

TELETYPE 33ASR's
Used TTY's available capable of 20MA or RS232 working.
Each machine has 30 Day Return to Depot Warrantee.
Large Stocks Available to Trade Enquirers.
£250 each, collected London.
01-637 1355 Derek Lade
0772 686010 Ken Pickford

PET FLOPPY DISC
Single £800 + 8% VAT + £2.50 p.+ p.
Twin £1300.

PET MEMORY
PME1-16 16K BYTES £328 + 8% VAT
PME1-24 24K BYTES £388 + 8% VAT
PME1-32 32K BYTES £438 + 8% VAT
Inc. P.+P.

We regret that owing to the High Demand, orders can only be accepted on a cash with order Basis — first come first served! Catalogue of Hardware/Software available (including Printing/Non Print Payroll/Stock Control)

INTEX DATALOG LTD
EAGLESCLIFFE IND. EST
EAGLESCLIFFE
CLEVELAND, TS16 OPN
Tel: 0642 781193

VERO S100 Universal Microprocessor prototyping board — gold-plated fingers; full details see PCW September. £13.50 each inc. Discount for quantity, please send S.A.E. for details.

COMPUTEK
10 Marl Hurst, Edenbridge, Kent

SOFTWARE FOR:
Apple 2 Stock Control (Disk & Printer) for 10,000 Items Plus £100 + full update for six months exc. VAT
Nascom Tape, Containing 6 Games etc. £6.00 + VAT

All Products are stocked on Advice from our Engineers as to Quality, Value for Money and Reliability.

Shop Open 09.30 – 18.00
Except Wed/Sun
40 MAGDALENE ROAD
TORQUAY, DEVON
Tel: 0803 22699
A FAST INTRODUCTION TO COMPUTING

This excellent book explains computing clearly and concisely, making extensive use of diagrams. Written for use in Industry, it also provides the ideal introduction for those interested in personal computing. £3.95.

Order from your local bookshop or post free from:

FOR SALE

TRS80 — Level II (16K RAM)
— as new and boxed —
£600 ono
Phone Nick Harvey on 01-741 2156

CESIL PSEUDO-INTERPRETER for inter-active use on 9K BASIC (7K available RAM).
Cassettes, suitable for RML 380Z micro:
£10.00
Listing, suitable for any micro:
£10.00
(15 the two)
Full instructions:
C. Thomas, Rедefield School, Blackbird, Leys, Oxford.

GODBOUT
Computer Products
Altair/ImsaI/Cromemco/Polyorphic Etc.
S — 100 Bus Computer Compatible Products

LTT ELECTRONICS has one of the largest stocks of Godbout computer products in the U.K. Only by bulk purchasing and minimising sales overheads can we afford to sell at what amounts to trade prices.

For example:

<table>
<thead>
<tr>
<th>Kit</th>
<th>Ass.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econoram II, 2MHz 8K bytes static memory board:</td>
<td>£85</td>
</tr>
<tr>
<td>Econoram IV, 4MHz 16K bytes static memory board:</td>
<td>£175</td>
</tr>
<tr>
<td>Econoram VII, 4MHz 24K bytes static memory board:</td>
<td>£255</td>
</tr>
</tbody>
</table>

All prices include postage and insurance (overseas add £10) — Just add 8% VAT. Further 5% Discount for cash with order. Also Education/OEM discounts on application. Send 25p (overseas: £1) for full details.

MAIL ORDER ONLY.

LTT ELECTRONICS
37 Orlando Road, London S.W.4
Telephone: 01-828 1785

SPECIAL INTRODUCTORY OFFER £275 Inc. VAT & p+p

OHIO SUPERBOARD II Computer On A Board
- 8K BASIC IN ROM
- MACHINE CODE MONITOR IN ROM
- 4K USER RAM PLUS 1K DISPLAY RAM
- UPPER/LOWER CASE PLUS GAMING CHARACTERS
- GRAPHICS K.C. CASSERLITE INTERFACE MODIFIED FOR U.K. T.V. STANDARD
- QWERTY KEYBOARD
- 8K VERSION £315 Inc.

AVAILABLE EXTRA — 24K RAM, MINI FLOPPY INTERFACE, OUTPUT PORTS, BUS EXTENSIONS, ASS/EDITOR Etc.

C.T.S. 1 HIGHER CALDERBROOK, LITTLEBOROUGH, LANCs, OL15 9NL
Tel: Littleborough (0706) 79332 Anytime.

THE OPEN UNIVERSITY
FACULTY OF MATHEMATICS
RE-ADVERTISEMENT

Lectureship in Computer Studies

Applications are invited for a lectureship in computer studies to be filled either as a permanent tenured post or as a secondment (two years). Appointment to a tenured post will be made at a suitable point on the lecturer scale (£3,883 — £7,754 — under review); for appointment to the post on secondment the University pays the secondee's employer for the costs of existing salary.

Successful applicants will be involved in the writing of a second level computing course to replace the Faculty's two existing courses PM 951 "Computing and Computers" and M251 "An Algorithmic Approach to Computing".

Application forms and further particulars are available from The Recruitment Office (MB234/3), The Open University, P.O. Box 75, Walton Hall, Milton Keynes, MK7 6AL, or telephone Milton Keynes 63406: there is a 24 hour answering service on 63866.


TANDY TRS-80 programmes brand new unused:

- STATISTICAL ANALYSIS, LEVEL I BASIC COURSE
- MATHEMATICS, IN-MEMORY INFORMATION, QUICK WATSON, Total cost over £60, will accept £40. Flames, 33 Hartopp Road, Sutton Coldfield B74 2QR 021-747 6670 (day) 021-308 0627 (evenings).

PROGRAMS FOR 380Z
Please specify listing or cassette
£5 each
STARTREK
PONTON
ROULETTE
MASTERMIND I
MASTERMIND II
PLATO
POLYNOMIAL FIT
£2 each
DARTS
3D NOUGHTS & CROSSES
ROBOT CHASE
HANGMAN
KING
SIMULT. EQN.

£2 each
PATTERN
AWAR I
NOUGHTS & CROSSES
BLANK Cassettes C60 50p each guaranteed good for micro use, Post & packing
1-9 cassettes 20p
10-20 cassettes 25p
21+ cassettes free
F. DONOVAN 114, BEECH ROAD
ST. ALBANS, HERTS AL3 5AU

ING. W. HOFACKER
U.K. Distributor needed for our Software and Peripheral Kits

ING. W. HOFACKER GMBH
8 MUNCHEN 75
POSTFACH 437
Tel: 08024/7331
From the representatives in Europe...for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!

Reading maketh a full man....Francis Bacon (1561 - 1626)
**This Is The Famous**

**ELF 11 Computer**

**£99.95**

PLUS 8% V.A.T.

Keep reading about computers and get your hands on one with ELF 11 and our Short Course by Tom Pittman, you can master computers in no time at all. ELF 11 demonstrates all 1802's capabilities. ELF 11's video output lets you display an alphanumeric readout or graphics on any T.V. screen or video monitor and enjoy the latest T.V. games.

But that's not all, once you've mastered computer fundamentals, ELF 11 can give you POWER with add-ons that are among the most advanced board anywhere. An IBM Clone Plexus plus Slew of add-ons and major capabilities have given ELF 11 the edge to introduce their own countries to personal computer computing.

**Learn The Skill That May Soon Be Far Over**

The ability to use a computer may soon be as common as earning power than college degree. Without a knowledge of computers you are always at the mercy of others when it comes to solving highly complex business, engineering, industrial and scientific problems. People who understand computers can command MONEY and be in control of your own actions, they can get out of the action, they must command computers. Otherwise you will be left behind.

**ELF 11 Is The Fastest Way To Learn**

Regardless of how minimal your computer background may now, you can learn to programme a computer in minutes, not hours or months by following these few simple steps to the bottom of the page. That's because Netronics has developed a special Training Course on Microprocessor And Computer Programming. It's a non-technical language that leads you through every one of the RCA COSMAC 1802 capabilities so you understand every bit of ELF 11 can do and how to get it to do it. All 91 commands that are 1802 out-exist are explained to you, step by step. The lesson is written by Netronics and Tom Pittman is a tremendous value over even other programming books on the market.

Learn specifically to the ELF 11 is loaded with bonus illustrations. When you're finished, ELF 11 11 and you will be able to handle any application you can think up. ELF II Tiny BASIC on cassette tape gives you the chance to become a complete computer. ELF 11 low price is backed by such advanced research and development programmes.

The ELF Bug Monitor is an extremely recent breakthrough that lets you debug programmes with lightning speed because the key to debugging is to know what's going on the registers of the microprocessor and instead of single stepping through your programme, the ELF Bug Monitor, utilizing break points, lets you display the entire contents of the register on your T.V. screen at any point in your programme. You find out immediately what's going on and can make any necessary changes. Programming is further simplified by its debuggers, 24 States of the art in diagnostic. Being able to introduce the ELF 11 can do graphics and sound system - more breakthroughs that ELF owners will be making available in the near future.

**NOW BASIC MAKES PROGRAMMING**

**ELF 11 EVEN EASIER!**

Like all computers, ELF 11 understands only 'machine language' - the language computers use to talk to each other, but to make the computer you will have developed an ELF 11 Tiny BASIC. It takes in machine language for you, so you can programme ELF 11 with simple words that can be typed out on a keyboard such as PRINT and LOAD.

**“ASK NOT WHAT YOUR COMPUTER CAN DO...**

But what it can do for you. ELF 11 is a microprocessor which can do... but what it can do for you.

Don't be fooled into buying a microcomputer merely because you can afford it and its big. ELF 11 is a microcomputer which can do... but what it can do for you. ELF 11 has been developed for use with T.V. computers that cost a lot more money than other small computers anywhere near ELF 11's low price is backed by such extensive research and development programmes.

**SPECIFICATIONS**

The £99.95 ELF II computer features an RCA COSMAC MOS 1802 8-bit microprocessor addressable to 64k bytes with DMA, interrupt, 16 registers, A.U. 256 bytes, professional hex keyboard fully decoded so there's no need to waste memory with keyboard scanning circuits, multithread power regulator, 5 slot plug-in expansion but (less connectors), stable crystal clock for timing purposes and a doublefaced, plated-through PCB board plus RCA 1802 80-pin IC to display any segment of memory on a video monitor or S.V. screen and with all the logic and support circuitry you need to learn every one of the RCA 1802's capabilities.

**ELF 11 EXPLODES INTO A GIANT!**

Thanks to programs help by RCA and Netronics, ELF 11 adds are among the most advanced anywhere. Plug-in the GIANT board and you can extend and play back programmes, code and debug programmes, communicate with remote devices and move things happen in the outside world. Add a Hub Board to ELF 11 to solve special problems such as operating a more computer slave or system or controlling a printing press. Add a RAM Board and you can write an entire programme.

Expanded ELF 11 is perfect for engineering, business, industrial, scientific and personal finance and T.V. systems. ELF II Tiny BASIC on cassette tape gives you the chance to become a complete computer. ELF 11 low price is backed by such advanced research and development programmes.

**ELF Bug Monitor**

is an extremely recent breakthrough that lets you debug programmes with lightning speed because the key to debugging is to know what's going on the registers of the microprocessor and instead of single stepping through your programme, the ELF Bug Monitor, utilizing break points, lets you display the entire contents of the register on your T.V. screen at any point in your programme. You find out immediately what's going on and can make any necessary changes. Programming is further simplified by its debuggers, 24 States of the art in diagnostic. Being able to introduce the ELF 11 can do graphics and sound system — more breakthroughs that ELF owners will be making available in the near future.

**NEW ORLEANS TELECOM COMPUTER CENTRE LTD**

128 CANAL ROAD
LONDON E2 8BY

TEL: 01-329 1922

PDQ 15: V.A.T.

**NOW AVAILABLE FOR ELF 11**

- Tom Pittman's Short Course on Microprocessor & Computer Programming teaches you just about everything there is to know about ELF 11 or any RCA 1802 Computer. Written in non-technical language, it's a learning breakthrough for engineers and game since 19.95 post paid!
- Deluxe metal cabinet with plastic front cover for ELF 112 99 plus 10.00 post paid. ELF II is now £45.00 plus 10.00 post paid.
- GIANT BOARD kit with cassette 1.00 RS 222 84 140.00 decoders for 14 separate I.O. 14 separate addressable 1 86 00 plus 10.00 post paid.
- SLUGS (personal board) available at 86 00 plus 10.00 post paid.
- Hub Board (cost of cassette included) available at 125.00 plus 10.00 post paid.
- RF board, Hub, Interface board, all with cassette included at 149.95 plus 10.00 post paid.
- Professional ASCII Keyboard with 128 ASCII upper/lower case set, 96 printable characters, alphanumeric, regular, data selection and Service of Handshaking signals to mate with almost any computer: ELF II is post paid.
- Deluxe metal cabinet for ASCII Keyboard £19.95 plus 10.00 post paid.
- ELF II BASIC on cassette tape. Commands include SAVE LOAD. PEEK POKE COMIX fully documented and includes alphanumeric generator required to display alphanumeric on T.V. screen directly on your T.V. screen without additional hardware. Also included on a full new drawing game that uses ELF II's twice as a computer keyboard as a joystick. 44 memory required £24.95 plus 10.00 post paid.
- ELF II BASIC on cassette tape. Commands include SAVE LOAD. PEEK POKE COMIX fully documented and includes alphanumeric generator required to display alphanumeric on T.V. screen directly on your T.V. screen without additional hardware. Also included on a full new drawing game that uses ELF II's twice as a computer keyboard as a joystick. 44 memory required £24.95 plus 10.00 post paid.
- ELF II BASIC on cassette tape. Commands include SAVE LOAD. PEEK POKE COMIX fully documented and includes alphanumeric generator required to display alphanumeric on T.V. screen directly on your T.V. screen without additional hardware. Also included on a full new drawing game that uses ELF II's twice as a computer keyboard as a joystick. 44 memory required £24.95 plus 10.00 post paid.

**ELF II BASIC**

is the F-A-S-T Way to Learn

ELF II Tiny BASIC on cassette tape Commands include SAVE LOAD.

**“AS OF NOW BASIC MAKES PROGRAMMING**

**ELF 11 EVEN EASIER!**

Like all computers, ELF II understands only 'machine language' — the language computers use to talk to each other, but to make the computer you will have developed an ELF II Tiny BASIC. It takes in machine language for you, so you can programme ELF II with simple words that can be typed out on a keyboard such as PRINT and LOAD.
When we designed our new small business computers, we meant business.

As basic as that seems, it is unique. Just about every other microcomputer being sold as a small business system today was originally designed as a kit for hobbyists.

Every design decision was made with quality and reliability in mind. The result is dependable performance and a solid appearance for business, professional and scientific applications.

**FIRST SMALL SYSTEM WITH BIG SYSTEM STORAGE**

Many applications handle large quantities of information, so the DB8/2 uses two quad density 5-inch disk drives with our exclusive Dual Density Disk Controller for up to 1.2 megabytes of formatted storage. That's more capacity than two single density 8-inch drives.

If you need more storage, our DB8/4 has two 8-inch drives with up to 2 megabytes capacity, more than any other dual floppy disk system on the market.

**OUR SOFTWARE IS BIG ON BUSINESS**

Dynabyte helps you get down to business immediately. The DB8/2 is the first microcomputer to offer enough storage capacity on 5-inch drives to fully utilize CP/M,* the most widely accepted disk operating system. We also supply and support BASIC, FORTRAN and COBOL programming languages. Our applications packages include general ledger, accounts receivable, word processing and many other CP/M compatible programs.

Reliability is a big consideration in buying a business computer, so we built it in. Our edge connectors meet military specifications, the toughest electronics manufacturing standard. Our regulated power supply is designed to meet U.L. standards, which means the entire system runs cool and dependable. And our cast aluminum enclosures are rugged as well as attractive.

**AND THE BIGGEST THING OF ALL**

Customer support. Our support starts at the factory with testing and burn-in programs that assure the entire integrated system is reliable prior to shipment. Our completely modular design allows continuing support in the field. After the 1st Qtr of 1979 we shall maintain a stock of all subsystem modules, which means we can deliver replacements almost immediately throughout Europe & UK.

Dynabyte built in little things, too. Like a fully-populated 12-slot backplane, switched AC outlets for accessories, an option for European power, quiet whisper fans with long-life metal construction, lighted indicator switches for Power On and Halt, a shielded enclosure to protect disk drives from electro-mechanical interference, and a fully enclosed power supply for operator safety.

Since we didn't cut corners in design, the price/performance ratios of our systems make good business sense.

**THE INSIDE FACTS**

The DB8/2 Computer System includes two 5-inch disk drives either single or double sided for up to 1.2 megabytes of mass storage; a 4MHz Z-80 processing module with one parallel and two serial ports, an EPROM programmer and up to 4k ROM; 32k of RAM, a 12-slot fully populated backplane; our exclusive Dual Density Disk Controller, and CP/M.

The DB8/1 Computer includes a 4MHz Z-80 processor with one parallel and two serial I/O ports, an EPROM programmer and up to 4k of ROM; 32k RAM, and a 12-slot fully populated backplane.

The DB8/4 Disk System, designed to be the mass storage companion to the DB8/1, includes two 8-inch floppy disk drives in either single or double sided configuration for up to 2 megabytes of mass storage, our Dual Density Disk Controller, and CP/M.

All three units will be available in rack mount models.

For a descriptive brochure and price list, call or write Dynabyte UK & Europe, Cartsbrooke, Grovenor Road, Scarborough, Yorks, England. Phone 0723-65559.

Or better yet, see your local dealer.
BUT COMPUTERS DON'T
Come and see for yourself at

the
BYTE
SHOP Ltd

Stockists of the largest range of micro computers in the U.K.

Take the opportunity to experiment with and get to know any of the vast range of micro computers always in stock at The Byte Shop.

Whether you want a micro computer for your home, your business, for industry, for education - or if you'd just like to find out which model you get on with best - you'll find a visit to The Byte Shop a new and invaluable experience.

Call in at The Byte Shop any time from Monday to Saturday. It's right by Gants Hill tube station.

The Byte Shop 426/428 Cranbrook Rd., Gants Hill, Ilford, Essex. Telex 897311
Telephone 01-554 2177
THE SORCERER HAS ARRIVED

Introducing the personal computer you've waited for.

The Exidy Sorcerer.

I didn't buy my personal computer until I found the one that had all the features I was looking for. The Exidy Sorcerer does everything I wanted to do and a few things I never dreamed of.

It isn't magic. Exidy started with the best features of other computers, added some tricks of their own, and put it all together with more flexibility than ever before available. Presto! My reasons for waiting just disappeared.

I wanted pre-packed programs. Software on inexpensive cassette tapes for the Sorcerer is available from Exidy and many other software makers.

I wanted user programmability. The Sorcerer's unique plug-in ROM PACT™ Cartridges contain programming languages such as Standard (Altair 8k*) BASIC, Assembler and Editor (so I can develop system software), operating systems such as DOS (so I can also use FORTRAN and COBOL) and applications packages such as Word Processor.

I wanted Graphics, and the Sorcerer is superb. Its 256 character set — more than any other personal computer — includes 128 graphic symbols that I can define.

I wanted high resolution video. With 122,880 points in a 512 x 240 format, I get the most detailed illustrations.

I wanted to display more information. The Sorcerer displays 1920 characters in 30 lines of 64 characters — equal to a double-spaced typed page.

I wanted memory. The 12k of ROM holds a Power-On Monitor and Standard BASIC; 32k of RAM is supplied on board.

I wanted expandability. Serial and parallel I/Os are built in, and the optional 6-slot S-100 expansion unit lets my system grow.

I wanted a computer that's easy enough for children to use. I just connect my Sorcerer to a video display and a cassette tape recorder, and if I have any questions the easy-to-understand Operation and BASIC Programming manuals have the answers.

I wanted to buy from an experienced Manufacturer. In five years Exidy has become the third largest producer of microprocessor-based video arcade games.

I wanted to spend less than £1,000. (This is where COMP. does a little magic). My Sorcerer cost me £950!

Now, what are you waiting for?

Call COMP. on 01-441 2922 or write to

COMP COMPUTER COMPONENTS
14 Station Road, New Barnet, Herts. EN5 1QW.

(Price shown ex. VAT)

DEALER ENQUIRIES INVITED, A LIMITED NUMBER OF DEALERSHIPS STILL AVAILABLE.
HORIZON

THE PROFESSIONAL COMPUTER
For Business, Scientific and Educational Uses.

PROFESSIONAL HARDWARE

Use of the North Star Horizon for a short period will enable you to appreciate the professionalism in the product. There's a solid well-built chassis, a good power supply, a quiet fan and an attractive wooden case. There's a Z80A processor running at 4MHz with the 250ns static RAM boards.

There are dual integral Shugart minifloppy drives (capacity of about 360 KB on line, with an option for a further two drives), enabling easy and quick handling and copying of programs and data files.

And of course, there's the 12 slot S-100 bus which enables you to plug in many types of peripheral boards, including a hardware floating point board for increased "number crunching" performance.

PROFESSIONAL SOFTWARE

North Star Computers built their professional reputation around their powerful, but simple, Disc Operating System and Disc Extended BASIC interpreter.

The latter contains, in addition to the usual BASIC commands, random and sequential access disc files, strings, string operators, multiple dimensioned arrays, formatted output, machine language CALL, memory EXAMine and FILL, line editor, program chaining and more.

The CP/M operating system is also available as an option and provides access to a Macro Assembler, C BASIC Compiler and FORTRAN-80 and COBOL-80 Compilers. A standard UCSD PASCAL has now been implemented.

TYPICAL APPLICATIONS SOFTWARE

- Financial
- Mathematical
- Statistical
- Educational
- Games
- Sales Ledger
- Purchase Ledger
- Stock Control
- Payroll
- General Ledger
- Estate Agents Package
- Incomplete Records
- Employment Agents


COMPLETE HORIZON BUSINESS SYSTEM (hardware) with 24K RAM, dual mini-floppy drives, VDU and 30cps printer — £3616; 32K RAM, dual mini-floppy drives, VDU and 150cps printer £4658.

Prices exclude VAT and carriage.

Dealer, OEM and Educational Discounts available.

EQUINOX
COMPUTER SYSTEMS LTD.
32-35 FEATHERSTONE STREET
LONDON EC1Y 8QX
01-253 3781/9837