Practical Electronics

FREE INSIDE

2 BLUEPRINTS

ULTRASONIC REMOTE CONTROL
FIG. 1 — THE CIRCUIT DIAGRAM
FIG. 6 — KEY TO TRANSISTOR AND DIODE CONNECTIONS

FIG. 7 — CHASSIS LAYOUT AND INTERBOARD WIRING

COMPONENTS LIST

Resistors
- R1 4.7MΩ R9 470kΩ 1W 5% R17 4.7kΩ
- R2 27kΩ R10 2.7kΩ R18 4.7kΩ
- R3 100kΩ R11 680kΩ 1W 5% R19 680kΩ 1W 5%
- R4 470kΩ R12 470kΩ R20 2.2kΩ
- R5 4.7kΩ R13 100kΩ R21 27kΩ
- R6 27kΩ R14 470kΩ R22 2.2kΩ
- R7 4.7kΩ R15 4.7kΩ R23 1MΩ
- R8 4.7kΩ R16 27kΩ

All carbon ±1% unless otherwise stated.

Potentiometers
- VR1 500kΩ ±20%
- VR2 10kΩ ±5%
- VR3 500kΩ ±20%
- VR4 10kΩ ±5%

All miniature carbon, preset, linear.

Capacitors
- C1 0.5µF paper C5 500µF electrolytic 6V
- C2 500µF electrolytic 6V C6 10µF electrolytic 12V
- C3 500µF electrolytic 12V C7 100µF electrolytic 12V
- C4 2.0µF electrolytic 12V

Diodes and Transistors
- D1 Z8-6-8 7V Zener diode
- D2 Z8-6-8 7V Zener diode
- D3 Z8-6-2 6V Zener diode Brush Crystal Co:
- TR1 OC443 silicon
- TR2 OC443 silicon
- TR3 OC303 germanium
- TR4 OC443 silicon
- TR5 OC443 silicon
- TR6 OC303 germanium
- TR7 OC303 germanium

Miscellaneous
- BY1 9V battery Ever Ready PP9 or equivalent, and connector
- PL1 Coaxial socket, chassis mounting
- PL2 Coaxial socket, chassis mounting
- S1 Rotary switch 3 pole, 3 way and pointer knob
- SK1 Chassis mounting socket for VB1 (VB3066)
- SK2 Chassis mounting socket for VB2 (VB3064)
- VB1 Veroboard Plug-in type, 16 conductor strips, 21 holes per strip, 0.15in hole spacing, 2.5in wide, 3-in long. Gold-plated plug-in conductor-stripe ends (VB3503)
- VB2 As VB1 Hand swl for separating conductor strips into sections (VB3011)
- Suitable aluminium case, measuring approximately 5in x 8in x 2½in deep, with lid.
EAGLE PRODUCTS

SOFTWARE AMPLIFIER

MICROPHONE STANDS

Horn Tweeter CTE10

10-Watts, 18-18,000 C.P.S., 16 ohms, High Sensitivity, Amazing Value 27/-.

HORN TWEETER CTE10

10-Watts, 18-18,000 C.P.S., 16 ohms, High Sensitivity, Amazing Value 27/-.

WIDER RANGE AMPLIFIER

DA. 39. Two Separate Inputs, Rumble Filter, Selector, Tuner, Transistor, 4-ohm Loudspeaker, Select Switch, Bass-Treble Balance Volume Controls, Very Low Frequency, £11.10. 0.

ULTRA LOW FREQUENCY AMPLIFIER

DA. 119. Two Inputs, Separate Inputs, Equalisation, Shock Absorber, Dampers, Overall Volume Control, £10.5. 0.

MICROPHONE STANDS

SUPER AMPLIFIER

INTEGRATED TONE CONTROLS

40-WATT TRANSISTOR STEREO

Integrated Tone Controls, Five Inputs. £18.15. 0.

WIDE RANGE AMPLIFIER

DA. 87. Two Inputs, Separate Inputs, Equalisation, Shock Absorber, Dampers, Overall Volume Control, £10.5. 0.

MULTI-METERS

HORN TWEETER CTE10

10-Watts, 18-18,000 C.P.S., 16 ohms, High Sensitivity, Amazing Value 27/-.

ULTRA LOW FREQUENCY AMPLIFIER

DA. 119. Two Inputs, Separate Inputs, Equalisation, Shock Absorber, Dampers, Overall Volume Control, £10.5. 0.

MICROPHONE STANDS

SUPER AMPLIFIER

INTEGRATED TONE CONTROLS

40-WATT TRANSISTOR STEREO

Integrated Tone Controls, Five Inputs. £18.15. 0.

WIDE RANGE AMPLIFIER

DA. 87. Two Inputs, Separate Inputs, Equalisation, Shock Absorber, Dampers, Overall Volume Control, £10.5. 0.
Be first to own the only amplifier of its kind in the world

GIVES FANTASTICALLY GOOD REPRODUCTION

THE SINCLAIR X-10 is a high fidelity integrated power amplifier and pre-amp using 11 transistors and having a transformerless output of 10 watts for feeding into a 15 ohm loudspeaker system. It requires only the addition of tone and volume controls plus a twelve volt D.C. power supply to make it a complete mono high fidelity assembly of exceptional quality. Stereo is achieved by using two X-10 amplifiers and ganged or separate controls. Input sensitivity is sufficient for all crystal or magnetic pick-ups and the manual supplied with the X-10 gives detailed instructions for connecting the controls and for using the amplifier in a wide variety of applications.

This radically new transistor amplifier (patents applied for) is the first to be marketed anywhere in the world using the Pulse Width Modulation principle (P.W.M.).

This technique permits an enormous reduction in the power dissipation in the output transistors of an amplifier; and in the case of the Sinclair X-10, the output efficiency is about 95% as compared with about 60% for conventional class B output stages. Thus the dissipation is only 1/4th or less of that occurring in all other amplifiers. That is why no heat sink is used and why the X-10 will operate from two 4f/ batteries with normal use for about 3 months.

NEW DESIGN PRINCIPLES PERFORMANCE!

- Number of transistors 11
- Overall size 6" x 3" x 1.5"
- Input Sensitivity 1mV
- Total harmonic distortion < 0.1%
- Output power 10 watts
- Frequency response 5-20,000 c/s ± 0.5dB
- Speaker impedance 15Ω
- Damping factor Greater than 100
- Quiescent consumption 75mA
- Supply voltage 12 to 15 volts

SINCLAIR X-10 COMBINED 10 WATT AMPLIFIER & PRE-AMP

Guarantee

If you are not completely satisfied with your purchase (we are confident you will be delighted) your full purchase price will be refunded instantly and without question.

FULL SERVICE FACILITIES ALWAYS AVAILABLE TO SINCLAIR CUSTOMERS

Build it for £5-19-6

Inclusive of all parts and instructions manual

READY BUILT AND TESTED £6-19-6

Including instructions manual

ANOTHER WINNING DESIGN FROM SINCLAIR RADIONIC
THE SINCLAIR X-10 is the only amplifier in the world to give you the unique benefits of Pulse Width Modulation. Briefly, with this system, the audio signal from pick-up, radio, microphone or tape head modulates a high-frequency square wave "carrier" by varying the mark-space ratio. These variations are converted to energy in the output stage. Being independent of the transfer characteristics of the output transistors, the output is an exact replica of the input signal. The improvement in the quality of reproduction from the loudspeaker is instantly apparent. Transient response is much clearer, there is no falling off in the higher audio-frequencies, no intermodulation distortion and the response curve so flat you could draw it with a ruler! A new type of output stage and P.W.M. plus many other circuit refinements result in an amplifier which is compact, rugged, stable and does not require a heat sink—and it costs so little. The X-10 may be used with low-input pick-ups such as Decca Deram, Ortofon, etc., as well as with tape playback heads. Used in pairs the X-10 brings new depths to stereo listening and there are no channel matching problems.

SINCLAIR X-10 MANUAL

supplied with every every X-10, built or in parts, this 12 page manual explains how the amplifier functions and how you can add the correct tone and volume control system to suit your requirements. A variety of systems is shown for mono and stereo use, none of which will add more than a few shillings to the original cost of your Sinclair X-10 amplifiers.

FREE WITH AMPLIFIER. AVAILABLE SEPARATELY, PRICE 1/-
It’s easy to build the SMALLEST RADIO IN THE WORLD

THE SINCLAIR MICRO-6 is an entirely British design which remains unchallenged as the most remarkable receiver of its kind ever made available to the public anywhere in the world. It has special 6-stage circuitry and is, at the same time, the smallest set on earth. Everything except the lightweight earpiece is contained in the smart, minute white, gold and black case which is appreciably smaller than a matchbox, as the illustration shows. With vernier-type tuning control, bandspread over the higher frequency end of the medium waveband and powerful A.G.C. to ensure fade-free reception of the most distant stations, the Micro-6 provides remarkable standards of performance. Quality of reproduction is outstandingly good and, again and again, the set is reported to give excellent results where other sets cannot be used at all.

The Micro-6 cannot be too highly recommended, both as an intriguing design to build, and a most practical radio to use. Over 9,000 have been built and are in daily use throughout the world.

SINCLAIR MICRO-6
SIX-STAGE POCKET RECEIVER
Build it in an evening!

Building is simple and straightforward when the meticulously detailed instructions are followed. All parts including MAT transistors, diodes, printed circuit board, lightweight earpiece, case and dial, and 8-page instruction manual come to 'TRANSBISTA' black nylon wrist strap for wearing the Micro-6 like a wrist watch (see illustration opposite) and packed with instructions: 7/6

SINCLAIR RADIONICS LTD., COMBERTON, CAMBRIDGE
Telephone: COMBERTON 682
WEAR IT LIKE A WRIST WATCH
A novel and convenient way to use the Micro-6 is to fix it on to the "Transistor" Wrist Strap and wear it like a watch. Particularly useful for sportsmen, travellers, etc.

SPORTS EVENTS

MOTORING

TRAVELLING

SINCLAIR SLIMLINE
The extra-easy-to-build 4-stage pocket receiver

Particularly recommended for newcomers to transistor set building. Measures 2⅛" x 1⅛" x ⅜". Everything is contained within the gold-trimmed royal blue case, including standard PP5 battery and ferrite-rod aerial. Uses vernier-type tuning to cover the medium waveband with reception of many British and Continental stations. Listening is by means of the featherweight earpiece which switches the set on when plugged in. The building instructions make success assured, even if you have never built a set in your life. Operates from a standard PP5 battery, obtainable anywhere.

All parts inc. case, transistors, earpiece and instructions come to 49/6

If you do not wish to cut the coupon from this page, please mention "Practical Electronics," December, when ordering.

To SINCLAIR RADIONICS LTD., COMBERTON, CAMBRIDGE

Please send items detailed below:— £ s. d.

NAME

ADDRESS

TOTAL £

For which I enclose CASH/CHEQUE/MONEY ORDER
Amazing performance and specification! Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS.

Covers Medium and Long Waves, Trawler Band and two Short Waves to approx. 15 metres.
Push-pull output for room filling volume from rich toned heavy duty 5in. speaker. Air spaced, Ferrite rod aerial for M & L Waves and teleseopic aerial for S Waves. Real leather-look case with gilt trim and shoulder and hand straps. Size 6 x 4 x 2¼in. approx. The perfect portable and the ideal car radio. (Uses PP7 battery available anywhere).

Total cost of all 4 sachets now only £19.6 P. & P. Parts Price List and easy build plans 3/-.

PHILCO MADT (Micro Alloy Type 2N1727)
- Frequency of oscillation 150 Mc/s...
- 5 stages—7 transistors and 2 diodes
- Fully tunnable over Medium and Long Waves and Trawler Band. Incorporates Ferrite rod aerial, tuning condenser, volume control, new type fine tone super dynamic 3½in. speaker etc.
- Attractive case. Size 6 x 4½ x 2¼in.

Total cost of all XO 10 sachets now only £7 P. & P. Parts Price List and easy build plans 3/-

ROAMER SEVEN Mk III
- Covers Medium and Long Waves, Trawler Band and two Short Waves to approx. 15 metres.
- Push-pull transformers for ample power.
- Ferrite rod aerial. Many stations heard in the car.
- Includes speaker grille and supplied with hand and shoulder straps.

Total cost of all CO sachets now only £19.6 P. & P. Parts Price List and easy build plans 3/-

MELODY SIX
- 6 stages—6 transistors and 2 diodes
- Handsome leather-look pocket size case, only 6 x 3½ x 2¼in. approx. with gift speaker grille and supplied with hand and shoulder straps.

Total cost of all easy build plans 3½in. parts now only £39.6 P. & P. 3/-

SUPER SEVEN
- 9 stages—7 transistors and 2 diodes
- Has really come up to my expectations.
- S.G., Stockton-on-Tees.

Total cost of all parts now only £319.6 P. & P. 3½in. Parts Price List and easy build plans 3/-

TRANSOMA FIVE
- 7 stages—5 transistors and 2 diodes
- Fully tunnable over Medium and Long Waves. Incorporates Ferrite rod aerial, tuning condenser, volume control, new type fine tone super dynamic 3½in. speaker etc.
- Attractive case. Size 6 x 4½ x 2¼in.

Total cost of all parts now only 426 P. & P. Parts Price List and easy build plans 3/-

TRANSOMA SIX
- 6 stages—6 transistors and 2 diodes
- This is a top performance receiver covering full Medium and Long Waves and Trawler Band. Incorporates pre-tagged circuit board, 3½in. heavy duty speaker, top grade transistors, volume control, tuning condenser, wave change slide switch, sensitive 6½in. Ferrite rod aerial. Push-pull output. Wonderful reception of B.B.C. Home and Light.

Total cost of all parts now only 596 P. & P. Parts Price List and easy build plans 3½in. 2/-

ROAMER SIX NEW!!
- 6 WAVEBAND!!
- 6 stages—6 transistors and 2 diodes
- Listen to stations half a world away with this 6 waveband portable. Tunable on Medium and Long Waves. Ferrite rod aerial and teleseopic aerial for short waves. Top grade transistors, 1-inch speaker, hardwearing case with gilt Ridings. Size 7½ x 3½ x 2½in.
- Extra band for easier tuning of LUX, etc.

Total cost of all parts now only £319.6 P. & P. 3½in. (Carrying Strap 2½in. extra.)

COMPONENT BARGAINS
- ALL POST FREE

TRANSISTORS
- PHILCO MADT Type 2N1727
- Maximum frequency of oscillation 150 Mc/s...
- Maximum frequency of oscillation 150 Mc/s...
- PHILCO MADT Type 2N1727
- PHILCO MADT (Micro Alloy Type 2N303)
- Maximum frequency of oscillation 150 Mc/s...

DIALS AND KNOBS
- 3½in. dial with polished brass insert and M/L calibrated disc
- 3½in. cream knobs with polished brass insert and rim
- 1½in. cases

RESISTANCES
- 60 ohms approx.
- 60 ohms approx.

HEADPHONES
- Ex-G.P.O. Suitable as sound powered headphones. Resistance of coil 60 ohms approx. 3½in. U-shaped magnet

BELLPHONES
- G. P. Durham 4 9 stages—7 transistors and 2 diodes
- Incorporates pre-tagged circuit board, din-
- Real leather-look case in chestnut

CASES
- Real leather-look case in chestnut
- Plastic cases in grey polystyrene
- Plastic cases in grey polystyrene

HEADPHONES
- Real leather-look case in chestnut
- Plastic cases in grey polystyrene

MELODY SIX
- Top grade transistors, Ferrite rod aerial, telescopic aerial
- Incorporates pre-tagged circuit board, din-
- Hard leather-look case in chestnut

SUPER SEVEN
- 9 stages—7 transistors and 2 diodes
- Has really come up to my expectations.
- S.G., Stockton-on-Tees.

Total cost of all parts now only £319.6 P. & P. 3½in. Parts Price List and easy build plans 3/-

PORTABLE TRANSISTOR RADIOS...
- BACKED BY OUR SUPER AFTER SALES SERVICE

RADIO EXCHANGE Ltd.
61a, HIGH STREET, BEDFORD. Phone: 2367

Why

NOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...

Callers side entrance
Barratts Shoe Shop
Open 9—5.30 p.m.
Sats. 10—12.30 p.m.

86
CLOSED-CIRCUIT T.V. CAMERAS

Ideal for...

2-WAY VISUAL PHONE LINK

EXCELLENT for Information Booths, Buyers' Offices, Hotel Reception, Paging, Holiday Camps, Hospitals, Night Clubs, Personnel Officers, etc.

STUDIO DESK FOR MASS INSTRUCTION

Your own private C.C.T.V. System for Overflow Audiences, Dramatic Groups, Film Societies, Exhibitions, Demonstrations, Meetings, and a MUST for Technical Colleges, etc.

TRAFFIC CONTROL

Security, Time and Study, Building Sites, Gate Control, Bus/ Railway Terminals, Sales Promotion, etc.

HORNTONS ELECTRONICS

LOMBARD HOUSE, GT. CHARLES STREET (Next to Pan American Airways) BIRMINGHAM 3 Phone: Cen 6283 or Mid 0972

ONLY £25

FULLY TRANSISTORIZED, 100% RELIABLE

£9.19.6

F.M.I. VIDICON TUBES and 1" FL-15 LENSES for above (Each)

C.G.I. VIDICON TUBES and 1" FL-15 LENSES for above (Each)

Manufacturers' Discontinued
Line— BRAND NEW AND READY ASSEMBLED
(But not Tested)

£28-

LES VIDICON TUBE AND LENS

87
SOLDER WITH PRIMAX and PRIMAXA SUPER EFFICIENT SPOTLIGHT SOLDERING GUNS

-Instant Heat- 6 Seconds

Distributors: S. KEMPNER LTD., LONDON, W.1
29 PADDINGTON STREET, Tel.: HUNter 0755

SOLD BY THE ‘PACKFIX’ FOR CELLOPHANE AND POLYTHENE BAGS.

Flt cellophane and polythene bag sealer. Foot operated or magneto electrically driven. Seals bags up to 15½" width. From £10.

Hot plates thermostatically controlled. Small and large sizes for cellophane, polythene and shrinking foils. From £12.

LET US SOLVE YOUR SEALING PROBLEMS. WRITE FOR COMPLETE ILLUSTRATED LISTS TO DISTRIBUTORS:

S. KEMPNER LTD., 29 PADDINGTON ST., LONDON, W.1
TEL.: HUNTER 0755

THE NEW PICTURE-BOOK WAY OF LEARNING

- **BASIC ELECTRICITY (5 VOLS.)**
- **BASIC ELECTRONICS (6 VOLS.)**

You'll find it easy to learn with this outstandingly successful new pictorial method—the essential facts are explained in the simplest language, one at a time; and each is illustrated by an accurate, cartoon-type drawing.

The books are based on the latest research into simplified learning techniques. This has proved that the Pictorial Approach to learning is the quickest and soundest way of gaining mastery over these subjects.

WHAT READERS SAY

"After reading section on Filter Circuits once, I understood more about them than in a whole year from the obscurities of other manuals." L.G. West Wickham.

"I must say they are the best books on the subject as they explain in simple language what other books make hard going of." C.B. Hartlepools.

"They have a wonderful system of imparting the subject to the beginner." H.C.L. Leicester.

"What a contrast to the many text books I have attempted to struggle through." J.G. Rugby.

POST NOW FOR THIS OFFER!!

Yours free for 7 days**

The New Picture-Book way of learning

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

To Selray Book Co.

60 Hayes Hill, Hayes, Bromley, Kent

- Please send me Without Obligation to Purchase, Basic Electricity/Basic Electronics on 7 Days' Free Trial. I will either return set, carriage paid, in good condition within 8 days or send down payment of £15 (Basic Electricity) followed by 6 fortnightly payments of £10. Down payment of £15 (Basic Electronics) followed by 6 fortnightly payments of £12.6. Alternatively, I will send 65/- (Basic Electricity—5 parts). 81/- (Basic Electronics—6 parts) post free. This offer applies to United Kingdom only.

- Tick against set required (only one set allowed on free trial).

- BASIC ELECTRICITY □ BASIC ELECTRONICS □

- Signature __________________________

- Name __________________________

- (If under 21, signature of parent or guardian)

- BLOCK LETTERS BELOW

- FULL POSTAL

- P.E.1

Address __________________________
SURBITON PARK RADIO LTD.

ALL ORDERS DESPATCHED SAME DAY • WE PAY POSTAGE AND INSURANCE
SATISFACTION OR MONEY REFUND GUARANTEE

LEADING STOCKISTS OF MARTIN RECORDAKITS AND AUDIOKITS

MARTIN RECORDAKITS

TAPE AMPLIFIER FOR STUDIO DECK, with ready wired printed circuit, control and input panels, major and output transformers, knobs, plugs, screws etc. £19.5
Coffe House Studio Deck, very latest model, 3 speeds, 3 motors, 3-ion, sounds mixer, £10.19.6
Complete Kit with tape and microphone... £29.19.6

MARTIN AUDIOKITS

The new Martin All Transistor Ten Watt Amplifier kits represent excellent value for money. Each unit is complete, requiring only to be connected to the mains. We show only the popular units here. Others available including stereo. The following would make up a TRANSISTORIZED AMPLIFIER 15 ohms MODEL

UNIT 1—FIVE INPUT SELECTOR. Size 3 1/2 x 3in. £71.76
UNIT 4—PRE-AMPLIFIER AND CONTROL. Size 6 x 3 1/2in. Volume on/off, base and treble control. £2.28
UNIT 7—MAIN AMPLIFIER, 10 watts transistor, transformerless Push Pull output. Mounted on heat sink, L.S. amp. 15 ohms £6.12.6
UNIT 8—POWER SUPPLY. Gives 18 & 40 watts. Heavy duty transformer, rectifier and smoothing £15.08.0
CONTROL PANEL for Units 1 and 4......... 10.6

ALL ABOVE FOUR UNITS WITH PANEL. 15 ohms £23.15.0 39/- 12 26/4
TRANSISTORIZED AMPLIFIER 3 MODEL 5 MAIN AMPLIFIER, as Unit 7 but 9 volts, £5.15.6
UNIT 6 & POWER SUPPLY, as Unit 8 but 18-24 Volts £2.12.0
ALL FOUR UNITS WITH PANEL 3 ohms £14.5.0
SEND FOR LEAFLET OF COMPLETE RANGE

ARMSTRONG AMPLIFIERS AND TUNERS

• ORDERS FOR CASH, C O D OR TERMS
• HOURS 9 a.m. to 6 p.m. (1 p.m. Wednesday)
• Easily reached by frequent trains Waterloo to Surbiton

SURBITON PARK RADIO LTD.
48A SURBITON ROAD, KINGSTON-UPON-THAMES
SURRY

Phone: KIN 3569
THE WORLD-RENOWNED KIT—SETS ANYONE CAN BUILD WITHOUT PREVIOUS EXPERIENCE

THE PRACTICAL WAY to
ENJOY ELECTRONICS

A WIDE RANGE OF WELL DESIGNED KIT-SETS TO CHOOSE FROM

YOU CAN SAVE ££££ BY BUILDING ANY HEATHKIT MODEL

Daystrom Ltd.
Dept. P.M. 12, Gloucester, England
World's Largest Selling Electronic Kitsets

Send for FREE British Catalogue of Heathkit Range of Models

Prices quoted include postage U.K.

50w PUBLIC ADDRESS AMPLIFIER, Model NA-1. A multi-purpose unit, suitable for vocal and instrumental groups. 4 inputs for guitars, microphones, 2 heavy duty speakers, variable treble, modern cabinet. Kit £34.15.0. Assembled £44.10.0.

150W POWER AMPLIFIER, Model MA-50. Ideal for sound reinforcing systems, etc. Kit £19.18.0. Assembled £27.18.0.

80-10m AMATEUR TRANSMITTER, Model DX-40U. Crystal controlled. Power input 25W, c.w., 60w. peak controlled carrier phone. Output 40w. Kit £43.19.0. Assembled £54.10.0.
include among their customers many who call personally from all over the country, because of the stocks and service in TAPE AND HI-FI EQUIPMENT to be found there. With so many shops to choose from, there must be excellent reasons why people prefer to buy from Francis. Perhaps you would care to find out by calling or writing to us about your requirements.

★ VERY LARGE STOCKS OF TAPE AND HI-FI EQUIPMENT
★ NO EXTRA FOR CREDIT UP TO 18 MONTHS
★ OWN SERVICE DEPARTMENT
★ FREE SERVICE DURING GUARANTEE PERIOD

FRANCIS OF STREATHAM
169-173 STREATHAM HIGH ROAD, LONDON, S.W.16
Between St. Leonards Church and Streatham Station
Open all day Saturday
Phone STR 0192 0466
BASS-MAJOR 30 WATT GUITAR AMPLIFIER

R.S.C. G5 GUITAR AMPLIFIER

- 5-watt high quality output.
- Incorporates high flux 12A7 tube, 12/000 turn loudspeaker, sensitivity 1%.12.
- High impedance jack input. Handle strongly made cabinet (11 x 9 x 15 in.) has a finished in combination silvered finish.
- Complete catalogue of testing Tuesdays, 12-000 to 12-006 A.C. makes.

£9.19.6

LINEAR TREMOLO/PRE AMP. UNIT

- Designed for introducing the Tremolo effect to any amplifier which is fitted with a treble power supply point for simultaneous use. Using 12/000 A.C. makes. Controls are made for treble frequencies and response controls for bass levels of response.

- Only 19.6 Gns.

R.S.C. 30-WATT ULTRA LINEAR HIGH FIDELITY AMPLIFIER A10

- A highly sensitive Push-Pull high output unit with self-contained Pre-Amp. Tube quality and exceptionally high performance figures compared equally with most expensive amplifiers available. Has level 76 dB down closed.

- Heavy duty with specially designed wound linear transformer with 8 volt output. All components are chosen for reliability. Make valves are used: 12/000, 12/006, 12/008, 12/012, and 12/015. Heavy duty and Treble Controls are provided. Minimum input required for full output is only 12 millivolts so that any kind of MICROPHONE or PICK-UP is SUITABLE. The unit is designed for中 HALLS or OUTDOOR FUNCTIONS, etc. For use with instruments such as STRING BASE, GUITAR, BASS, etc. in conjunction with PA systems. For standard or non-linear speakers. OUTPUT SOCKET PROVIDES A.L. contact with any amplifier unit. An extra input with matched vol. control is provided so that two separate inputs can be used. "Get it." A.L. mains and output has been set for a 12 and 30 watt speakers. Controls are set for fully balanced chasises and multiple-output devices. This amplifier can be supplied.

- Only 11 Gns.

- Carried fitted with 311 line extra output and 30 volt speaker for 15. Send S.A.E. for details.

R.S.C. 12/14 WATT ULTRA LINEAR HIGH FIDELITY AMPLIFIER B11

- Push-Pull ultra linear output "BUILT-IN" TONE CONTROL PRE-Amp STAGES

- Two input socket with associated controls all mechin of "space" and volume, in A.f. High sensitivity, faith-filled, no ERP, RADIANT, or 12/14. High quality, exceptionally high performance figures compared equally with the most expensive amplifiers available. Extreme low input transducers with specially designed for Univ. Iberian operation and pushbutton is the key to est. INDOOR CONTROLS for BASS AND TREBLE "Lift" and "Cut." For input small to medium of current conditions. Input level 76 dB down closed. Only 22 millivolt INPUT cannot be heard. Noise margin of 20 millivolts peak to peak. Suitable for use with all makes and required for full OUTPUT. Suitability with the very best designs for STANDARD or LONG PLAYING RECORDS.

- Only 29.5 Gns.

R.S.C. SENIOR 15 WATT LEAD OR RHYTHM GUITAR AMP.

- A highly efficient unit incorporating a master and high treble booster specially constructed to withstand high output amplifiers. Rated at 50 watts. High treble boost and treble control.

- Only 19.5 Gns.

R.S.C. B20 BASS GUITAR AMPLIFIER

- A high quality unit incorporating a massive 120/000 turn loudspeaker specially constructed to withstand high output amplifiers. Rated at 250 watts. High treble boost and treble control.

- Only 12.3 Gns.

High Fidelity 12-14 Watt Amplifier Type AII

- Push-Pull Ultra Linear Output "Built-In" Tone Control Pre-Amp Stages

- Two input socket with associated controls all mechanical of "space" and volume, in A.f. High sensitivity, faith-filled, no ERP, RADIANT, or 12/14. High quality, exceptionally high performance figures compared equally with the most expensive amplifiers available. Extreme low input transducers with specially designed for Univ. Iberian operation and pushbutton is the key to est. INDOOR CONTROLS for BASS AND TREBLE "Lift" and "Cut." For input small to medium of current conditions. Input level 76 dB down closed. Only 22 millivolt INPUT cannot be heard. Noise margin of 20 millivolts peak to peak. Suitable for use with all makes and required for full OUTPUT. Suitability with the very best designs for STANDARD or LONG PLAYING RECORDS.

- Only 19.5 Gns.

- Send S.A.E. for details. Or Deposit 12.00 and 12 monthly payments of £4.9. Carr., 17.5.

R.S.C. GUITAR AMPLIFIER

5-watt high quality output. Incorporating high flux 12A7, 12/000 turn loudspeaker, sensitivity 1%. High impedance jack input. Handle strongly made cabinets (11 x 9 x 15 in.) finished in combination silvered finish.

- Complete catalogue of testing Tuesdays, 12-000 to 12-006 A.C. makes.

- £9.19.6

FANE HEAVY DUTY HI-FI SPEAKERS

- For 100-250 V., 50 c.p.s., A.C. mains operation.

- Only 19.5 Gns.

F.A.N.E. CONSOLE CABINETS

- Walnut veneer finish, meaning doslyn.

- Only 19.5 Gns.

Hi-Fi Speakers

2718 in. for 8 or K.H.U. 11 x bin. for X :< Shu or 1" <

- Only 19.5 Gns.

- Set of legs with brass fettletts. 19/6.

- Or Deposit 43/- and 12 monthly payments of 34/-.

- Only 12.00 and 12 monthly payments of £4.9.

- Send S.A.E. for details. Or Deposit 12.00 and 12 monthly payments of £4.9. Carr., 17.5.

- Only 19.5 Gns.

- Send S.A.E. for brochures.

- Or, Deposit 12.00 and 12 monthly payments of 34/-.

- Only 12.00 and 12 monthly payments of £4.9. Carr., 17.5.

- Only 19.5 Gns.

- Send S.A.E. for brochures.

- Or Deposit 12.00 and 12 monthly payments of £4.9. Carr., 17.5.

- Only 19.5 Gns.

- Send S.A.E. for brochures.

- Or Deposit 12.00 and 12 monthly payments of £4.9. Carr., 17.5.

- Only 19.5 Gns.

- Send S.A.E. for brochures.

- Or Deposit 12.00 and 12 monthly payments of £4.9. Carr., 17.5.
The NEW Stern-Clyne ELECTRONIC CONCERT ORGAN
TO BUILD YOURSELF

DESIGNED —
— For the Electronic amateur seeking the most fascinating project.
— For the discriminating organist seeking an instrument which DOES sound like a pipe organ.

NEW —
— Constructional methods introducing "sectional complete instrument" building.
— Extended range of tone colours. Without unrealistic "Gimmick" effects.

THE MOST COMPREHENSIVE KIT OF PARTS AVAILABLE IN THIS COUNTRY

START BUILDING FOR AS LITTLE AS £68.10.0 approx. (H.P. Terms Available)

Write today for brochure (enclosing 6d, stamp) to: Electronic Organ Dept., 18 TOTTENHAM COURT ROAD, LONDON, W.C.1, or call at your nearest branch.

VISIT OUR SHOWROOM AT 18 TOTTENHAM COURT RD., LONDON, W.1
and hear this fabulous new Electronic Concert Organ demonstrated.

HERE'S WHY THOUSANDS OF ELECTRONICS ENTHUSIASTS BUY WITH CONFIDENCE FROM STERN-CLYNE —

● A wide range of exclusive equipment available including our own speciality — MULLARD DESIGNS — for the home constructor or ready assembled.

● The finest selection of Hi-Fi and Audio equipment by all leading manufacturers.

● A comprehensive range of electronic components for the build it yourself enthusiast available at all branches.

● Retail shops, showrooms and demonstration rooms throughout London and the provinces all carry extensive stocks.

● Finest Mail Order Service geared to give prompt and efficient attention.

● Hire Purchase facilities available on orders of £11 10.0 and over.

● Hi-Fi advisory service to help you in choosing the right equipment.

● After sales service — complete satisfaction guaranteed.

STERN-CLYNE
GREAT BRITAIN'S GREATEST ELECTRONIC HOBBIES ORGANISATION

VISIT YOUR NEAREST STERN-CLYNE ELECTRONICS CENTRE

LONDON
18 Tottenham Court Rd., W.1. MUSEum 5939-0095. Half Day Sat.
309 Edgware Rd., W.2. PADDington 6963.
109 Fleet St., E.C.4. FLEet St. 5813-3. Half Day Sat.
162 Holloway Road, N.7. NORth 7941.
9 Camberwell Church St., S.E.5. RODney 2875. Half Day Thurs.

CROYDON
12 Suffolk House, George St. MUNicpal 3350. Half Day Wed.

BRISTOL
26 Merchant Street, Bristol 1. Bristol 20361. Now open 6 days a week.

LIVERPOOL
52 Lord Street, Liverpool. Royal 7450.

MANCHESTER
20-22 Withy Grove, Manchester 4. BLAckfriars 5378. Open 6 days a week.

SHEFFIELD
125 Thg Moor, Sheffield. Sheffield 29993.

MAIL ORDERS AND ENQUIRIES TO:
SPECIAL OFFER TO READERS OF PRACTICAL ELECTRONICS!

FREE to every purchaser of our fabulous Resistor Pack—one Home Radio Colour Code Calculator. Our Resistor Pack contains 60 brand new ERIE TYPE resistors ½ and 1 watt, all preferred values between 33 ohms and 1 megohm. (Not more than 2 of any one value in each pack.)

- 60 Resistors, approximate value............. 20/-
- 1 Colour Code Calculator.................... 1/6

All this for 7/6, including postage and packing!

Don’t delay, stocks are not unlimited!!

When you have read this copy of Practical Electronics we feel sure you will be itching to seize your soldering iron and start constructing. Then arises the problem—where to obtain all the parts? The Home Radio Catalogue provides the answer! It contains over 5,000 items, 800 of them illustrated, carefully indexed with extensive cross references, which make it particularly easy to use. Order forms are enclosed, and this is backed by the fastest Mail Order Service.

The catalogue costs 5/- plus 1/- postage, but five 1/- coupons are given with each catalogue, and each time you send an order valued £1 or over you enclose a coupon and deduct 1/- from the money you send. There is no time limit so if you purchase £5 worth of components from us—even though spread over several years—you’re catalogue will have cost you nothing!

AVOID DELAY—fill in the Coupon and send for your Catalogue TODAY

NAME

ADDRESS

HOME RADIO LTD., Dept. PE, 187 London Rd., Mitcham, Surrey
Opportunities Abound

We are all, nowadays, electronics conscious. Yes, even the layman, while not conversant with the technicalities involved, has a general appreciation of the vital part played by this young but exuberant branch of electrical engineering in the complex world of today... and this is but the beginning.

As we step over the threshold into a new exciting technological age, our dependence upon electronics is all too apparent: terrestrial developments centre around automation, with electronics providing the brain and guiding hand for power-operated machinery; extraterrestrial exploration relies utterly upon electronics for remote control, communications and telemetering services.

These grand scale developments have an impact on the entire field of electronics, for in their wake come new components, new circuits, new methods and, of course, new applications.

Without a doubt the amateur enthusiast will be eager to reap his share of these benefits of technological progress, as he has been indeed in the past. For it is true that amateurs have been conducting experiments and building electronic equipment since the earliest days of radio communication; even before the thermionic valve drove the crystal diode into (temporary) oblivion, and long before the very term “electronics” entered into general use.

But, in more recent times, the technical revolution triggered off by the invention of the crystal triode or transistor some 16 years ago has quite dramatically transformed the situation to the advantage of the home constructor.

Thanks to the transistor, gone largely is the need for a metal chassis and the tedious metal work this often entailed. Much transistorised equipment can be assembled satisfactorily on a piece of plastics board or even on an offcut of hardboard. A small battery replaces a bulky and heavy power pack and so demolishes what was undoubtedly a psychological barrier for some would-be constructors and experimenters—apprehension of high voltage supplies. With miniature components and simplified assembly methods, construction can indeed be a kitchen table operation nowadays.

Yes, truly can we say that in the realm of electronics a new emphasis has been given to the word practical.
ULTRASONICS IN NATURE

In the year 1793 Lazzaro Spallanzani established after a long series of experiments that the common bat could navigate and detect its prey without being able to see. After establishing that any loss of acuteness in the bat's hearing resulted in a loss of ability to navigate, he put forward the hypothesis that they were able to navigate and detect their prey by emitting and receiving a vibration of the same nature as that of sound but with such high frequency that it was inaudible to the human ear.

The scientific minds of the day rejected this suggestion, and Spallanzani joined the ranks of those scientists whose reward for systematic investigation and logical thought was ridiculed.

It is now quite firmly established that these ideas were correct and that other creatures, including the porpoise are able to use ultrasonic emission and reception for various means.

The definition of an ultrasonic wave is very simple, being a pressure wave whose frequency is higher than that to which the human ear will respond. It is generally accepted that 20kHz is the lowest usable ultrasonic frequency, although in fact human audibility does not reach this high level.

The properties of an ultrasonic vibration are, since they are fundamentally the same as sound vibrations, identical with the properties of sound. They may be propagated in gas, fluid or solid, may be absorbed by soft surfaces, reflected by hard surfaces and refracted by changes in temperature and pressure of the medium in which they are propagated.

PRODUCTION AND DETECTION OF ULTRASONIC VIBRATIONS

There are three main techniques by which ultrasonic vibrations may be produced.

1. Magnetostrictive methods.
2. Piezo-electric methods.
3. Oscillation of air or fluid jets.

The first of these methods uses the fact that certain materials when subjected to a varying magnetic field undergo very slight changes in dimensions. A nickel rod is usually used as the core of a coil through which a high frequency current is flowing. The result of this is that the nickel rod is subject to a slight length change with the same frequency as the current through the coil.

The second method relies on the fact that certain naturally occurring materials such as Rochelle Salt or Quartz and certain man-made materials such as ceramics, including Barium Titanate and Lead Zirconate Titanate, are subject to a change in dimensions with a directly applied voltage.

If an oscillatory voltage is applied to the opposite faces of such a slab of material the material will execute vibrations at twice the frequency of the applied voltage.

The reason for the frequency doubling effect is that the domains, i.e. groups of molecules, which are normally random in their orientation change direction according to the polarity of the applied electric field. Hence both the positive and negative peaks of the applied voltage will cause the corresponding expansion or contraction which results in the frequency doubling effects.

If the material is originally polarised, i.e. all the domains are arranged to lie in approximately one direction by means of application of a large electric field in the early stages of manufacture, then the fact...
that these domains are not completely free results in the piezoelectric vibration being of the same frequency as the applied oscillatory voltage.

The third method of production is only of interest where very high power is required, usually for emulsification of suspensions, and relies on the principle of a high powered jet of gas or fluid impinging on a blade. Under these conditions the blade will execute ultrasonic vibrations, assuming due care has been given to the dimensions of the blade, which will be transmitted through the gas or fluid.

APPLICATIONS OF ULTRASONIC VIBRATIONS

Among the first fully developed applications of ultrasonics were the fields of cleaning, drilling, welding and soldering. In each of these cases the ultrasonic techniques have certain advantages over conventional techniques.

The advantage of cleaning, by immersing the object concerned into a tank of fluid in which ultrasonic vibrations are produced, is twofold: firstly, the tremendous reduction in time when compared with manual cleaning; secondly, the advantage that very delicate and complex assemblies, such as internal parts for valves or components, may be cleaned without the risk of physical damage which is present when using conventional cleaning methods.

By using an ultrasonic vibration in a solid rod one can drill through materials for which standard drilling methods are not very satisfactory, examples being crystals or glass, or other such brittle material. A second advantage when using this method for drilling is that one has dispensed with the necessity for a rotating bit, hence one can drill holes of any desired shape.

In the case of welding and soldering, the obvious advantage is that the tremendous production of heat which can destroy or impair the efficiency of delicate assemblies is avoided, and in the case of soldering the use of any form of flux becomes unnecessary. A further advantage to the soldering technique is that it can be used to solder materials not solderable by previous methods, for instance aluminium.

The third method of producing ultrasonic energy, the jet method, is used in the textile and food industries among others; a characteristic example of products which require a process of emulsification being peanut butter.

MEASUREMENT BY ULTRASONICS

Apart from applications involved in the field of production or manufacturing, such as those previously described, ultrasonic vibrations may be used for performing scientific measurements.

Examples of these are ultrasonic thickness gauges and flow meters.

If an ultrasonic vibration is propagated through a solid material, any change in the nature of the material will result in some reflection. By measuring the attenuation or the time taken for an ultrasonic wave to cover the total journey it is possible to estimate very accurately the thickness of the material. One example of the use of ultrasonics in this respect is the measurement of the thickness of fat on certain animals, such as pigs, and in this context has an obvious superiority over any other methods which might be devised.

By launching an ultrasonic vibration into a moving fluid and using the Doppler effect, i.e. apparent change in frequency with velocity, it is possible to measure the flow rate of the fluid concerned. Although there are simpler methods for flow rate measurement, this technique has the advantage that it may be used with either corrosive or very dangerous fluids.

An example of the use of this technique lies in the measurement of the flow rate of molten sodium which is used for heat transfer in certain atomic reactors.

Although it is not a scientific measurement, the similar technique to that for thickness may be used to detect flaws in factory-made products without the necessity of destroying the product in the process of inspection. An ultrasonic vibration introduced at one face of perhaps a complicated plastics moulding will be reflected by any small voids or cracks in the material. These reflections may be compared with the pattern which is the result of a flawless product, hence inspection may be carried out very rapidly and without any destruction of the items concerned.

Probably the most dramatic use of ultrasonic energy is in the field of echo sounding. This is an extension of the thickness measurement technique by which a ship may launch an ultrasonic wave and establish the time taken for reflection from the ocean bed. This is a direct and continuous indication of depth.

Apart from indicating depth this technique may, of course, also be used to detect the presence and position of either ships or shoals of fish.

ULTRASONICS IN AIR

There are a number of ways in which the properties of an ultrasonic wave in air may be used to perform useful tasks. Probably the four main applications are in object detection, distance measurement, remote control and communications.

The property of reflection may be used in air, as it is in water, to measure the distance to a given object.
A similar system may be used for remote control or communication, but in this case the ultrasonic wave is directly controlled at the transmitter.

Since a pressure wave of this sort may be modulated in much the same way as a radio wave, with sufficiently sophisticated electronic equipment the transmitted ultrasonic wave may be either amplitude modulated, frequency modulated or pulse code modulated in order to transmit information or instructions over short distances.

Concerning the remote control of model boats, it must however be noted that control may be effected over much longer distances if the wave is transmitted through the water, since the attenuation of ultrasonic waves is considerably less in a liquid medium than in air.

The transmission of ultrasonic waves in air is a field which is very suitable for the experimenter as suitable transducers for transmitting and receiving are available commercially at comparatively low prices. Although the range of control is a little limited, something of the order of 100 to 300ft being the maximum practical at the moment, an ultrasonic system for remote control has certain advantages over radio control. The most obvious of these being the fact that the ancillary amplifiers are usually cheaper to make and considerably more simple. There is, of course, the added advantage that a transmitting licence is not required, as in the case of radio wave propagation.

ULTRASONIC TRANSDUCERS

When transmitting ultrasonic energy through air the direct use of a vibrating crystal is not the most satisfactory method since, although great power is available from such a crystal, the dimensions of the change in size are so small that the range would be very limited.

In order to improve this range a technique is used whereby the movement of the crystal is mechanically amplified to get a greater degree of movement from the transmitting element.

Fig. 1 shows the technique which is used to achieve this mechanical amplification. A thin crystal is cemented to a small thin round plate mounted on a central stem. As the crystal is energised it attempts to change its dimensions in the plane of its two parallel faces. Since it is securely cemented to the metal plate the latter is forced to bend with the movement of the crystal, and this results in an oscillatory bending movement of the metal plate at the frequency of the applied voltage—hence the transmission of a pressure wave into the air.

Correspondingly, a pressure wave impinging on the plate will cause very small movement of the plate which is sufficient to generate across the crystal a signal corresponding to the frequency of the incoming pressure wave.

Fig. 1. Mechanical amplification of the transducer crystal is achieved by use of a small metal plate

THE EXPERIMENTAL APPLICATIONS OF ULTRASONIC ENERGY

Most amateurs, or indeed small industrial users, are limited to the application of ultrasonics directly in air, as this is the only application for which the general purpose transducers are available on the market.

There are a number of aspects of ultrasonics which are certain to capture the imagination of the enthusiastic amateur, especially in the field of remote control and voice communication.

The fact that in this medium the experimenter is free from the necessity to acquire transmitting licences is a major attraction of these techniques.

In the case of amateurs or small industrial users who feel sufficiently confident to manufacture their own transducers from fundamental ceramic materials which are freely obtainable, the field of underwater transmission could be particularly exciting. This has the previously mentioned advantage of considerably greater range and would offer at least one immediate application, this being the facility of direct voice communication between aqualung divers.
Designed to suit the experimenter and amateur constructor, this stabilised power supply is ideal for supplying transistor circuits with 0—14 volts d.c. at up to 4 amperes. It eliminates the need for expensive battery replacements when working on the test bench.

The circuit (see Fig. 1 on blueprint) consists of a step down battery charger transformer $T1$ feeding into a bridge rectifier consisting of $D1$—$D4$, the output of which is smoothed by the $2,500\mu F$ capacitor $C1$ at about 22 volts off load.

The two Zener diodes $D5$ and $D6$ in series stabilise the base of $TR1$ to about 14 volts, thus maintaining the voltage at the top end of $VR1$ in the emitter circuit of $TR1$ at the same—since the gain of a grounded collector (or emitter follower) transistor is virtually unity.

Variation of the output voltage is carried out by "potting down" the variable resistance $VR1$, the slider of which feeds into the base of another grounded collector transistor $TR2$.

The output from across the $TR2$ emitter load is then fed into the bases of $TR3$ and $TR4$ connected in parallel, again in grounded collector configuration, the emitter load for these two transistors being the device to be supplied with power.

SEMICONDUCTOR DETAILS

When constructing the power supply, various precautions should be taken. Before mounting the transistors $TR1$—$TR4$ and bridge rectifier diodes $D1$—$D4$ ensure there are no burrs around the drilled holes in the chassis otherwise the insulating washers will be punctured and expensive smoke could be generated!

Also, prevent damage occurring to the face of the chassis where the transistors, diodes and heatsinks are to be mounted, since good thermal conductivity is essential for the long life of the semiconductors.

A smear of silicon grease on the chassis and semiconductor mating faces will assist heat conduction and maintain the insulation.

The insulating sleeves for diodes $D1$—$D4$ inclusive were cut from the outer casing of some old television coaxial cable; however, any form of insulating sleeving will do provided it functions properly.

Continued on page 101
Construction of the intercom unit is simple • its finished appearance will enhance any desk or table in home and office • installation is easy, requiring only a two-cored cable between a pair of units.

The circuit of the amplifier which is the heart of the equipment is shown in Fig. 1 of the blueprint. It is a simple two-stage common-emitter transistor amplifier using germanium alloy junction transistors. It will be seen that there is no d.c. path shown for the collector current of the output transistor. This is because the collector current of this transistor goes down one of the line conductors to the loudspeaker in the other unit returning via the other conductor. The 0.1 μF capacitor C4 which is connected from the collector to the negative supply reduces the impedance of the collector load at the higher audio frequencies thus lowering the effective gain of this stage at these frequencies. This overcomes a tendency to high frequency oscillation. The 32 μF capacitor C6 connected across the supply lines was found to be necessary to prevent low frequency oscillation ("motor-boating") occurring when the battery runs down.

In Fig. 2 is shown the circuit of the rest of the unit. A four-pole three-position switch S1 selects the various functions. This switch is biased to its centre position ("LISTEN") and in this position only the loudspeaker/microphone is connected to line. When the switch is thrown to the "SPEAK" position, the loudspeaker/microphone is connected to the input of the amplifier and the line to the output (as described above). The other switch position is "CALL", and when the switch is held in this position the line is connected to the output of the amplifier and a 0.1 μF capacitor C7 is connected from the output of the amplifier to its input terminal. This causes the amplifier to oscillate violently at about 500c/s and results in a loud tone being emitted by the loudspeaker in the other unit.

CONSTRUCTION AND COMPONENTS
An attractive cabinet constructed of wood with an aluminium facia panel is shown in detail in Fig. 4.
VARIABLE LOW VOLTAGE D.C. SUPPLY UNIT continued from page 99

The faces of heatsinks for TR3 and TR4 can be painted with a black paint which has a matt finish and must be heat resistant capable of withstanding temperatures of at least 100°C. The heatsinks (and transistors) should be painted after assembly since the mating faces must be clean of paint for good heat conduction.

The usual precautions of using heat shunts such as pliers and not applying heat for longer than is necessary should be taken when soldering.

CHASSIS DETAILS

The blueprint shows the chassis construction full size and from these drawings any dimensions can be taken off.

The chassis itself is a proprietary item that can be purchased from any dealer, and the cover was made from expanded metal and is fixed to the main chassis with self-tapping screws and washers.

When fixing the fuse holder for FS1 an insulating sheet is required between the chassis and holder otherwise a short circuit will occur.

Before fixing transformer T1 the fixing brackets were removed to facilitate “drop through” mounting to the chassis.

TESTING

Check for continuity and correctness of wiring and ensure polarity of connection of C1 is correct.

Check insulation of diodes D1–D4 and transistors TR1–TR4 between cases and chassis. Don’t use a high voltage megohmmeter, the ohms x 100 range is sufficient on an AVO model 8.

Once satisfied with the wiring, rotate potentiometer VR1 knob fully anticlockwise, connect the mains power to the unit and switch on.

When VR1 is rotated clockwise the indication on M1 should rise from zero to 14V d.c. in the fully clockwise position. Should the response be different to above switch off immediately and ascertain fault.

Next connect a 4 to 5 ohm resistor of at least 20 watts rating to the output terminals and adjust VR1 until 14 volts is reached on M1.

The ammeter M2 reading should remain steady at about 3 to 4 amperes depending on the value of load.

Transistors TR3 and TR4 will get very hot and TR1 and TR2 quite warm. This is normal.

OPERATION

The fuse rating in FS2 position will depend upon the application. For example, an average transistor radio may take up to 100mA and a medium power inverter may take up to the maximum rating of 4A.

Currents of 5 amperes and more can be handled intermittently but for good transistor life 4 amperes should not be exceeded.

Ambient conditions are important, too. Allow plenty of air-space around the unit and avoid operating it in places or near to objects of relatively high temperatures.

Regulation is very good, the change in voltage from no load to 4 amperes at 6 volts is less than 0.25 volt and at 12 volts less than 0.5 volt.

SINCLAIR X-10 AMPLIFIER

With reference to our New Products feature last month, it has been brought to our notice that Technical Suppliers Ltd. are wholesale distributors only. All individual retail enquiries concerning this amplifier should be addressed to the manufacturers: Sinclair Radionics Ltd., Comberton, Cambridge.
Curtain Up

To half a million enthusiasts in 200 countries practical electronics means the art of radio communication—and half a million is the approximate number of actual or would-be transmitting amateurs scattered all over the world. Collectively, licensed amateur stations far outnumber all the broadcast, point-to-point and other professional service stations put together—and note that word "service". The amateur movement is a "service" and is designated as such in the International Telecommunications Union regulations agreed at Geneva in 1959. These half-million members of the Amateur Service are truly at the service of the communities in which they live. They contribute know-how in practical electronics—that all-pervasive phrase again! They contribute even their stations when emergency communications are needed. They intercommunicate in the universal language of "radio English" (more about this another month) on six world-spanning frequency bands and three more local v.h.f. ones, by morse, speech, teletype and video. They are at once diverse yet homogeneous.

It is about these people that the present feature will talk. The Editor's brief to the writer is that this feature should address itself primarily to readers who are at an early stage in amateur radio rather than those that have been in it for many years. This does not mean that we shall be writing "a beginner's guide" to the art of amateur radio: there are plenty of those to be had from various sources at various prices. Rather, we shall aim to help as much as we can by discussing the type of questions that baffle enthusiasts with feet on a lowish rung of the amateur radio ladder hesitant to hoist them on to the next one up—questions such as "What type of receiver should I buy—or should I try to make one?"

Or again: "Which are the best bands to listen on and at what times—and what am I likely to hear on them?"

Recognising, too, that nearly every short wave listener aspires to acquire in time that coveted transmitting licence we will help as far as we can with advice on this most important point.

What of aerials? Or v.h.f.? Or "sideband"? Amateur radio's very diversity means that there is going to be much to discuss in The 73 Page, and we cannot promise to get round to covering all possible topics at short order. It will take time to deal with even a few of the subjects which currently occupy the attention of the amateur service.

However, we will try—and your comments will be welcome for discussion here. Did you feel inclined to write in on any aspect of this specialised part of practical electronics that interests you.

Meaningful Number

Before one proceeds further a word or two about the running title to this feature may be to the point, for this title will headline it each time it appears (nice recognisability!).

Why The 73 Page? Because 73 is the most meaningful set of digits in amateur radio. It is the last thing a transmitting amateur says before he signs off a contact with a colleague.

It means Best Wishes. It is sought after as a motor car number, even as a house number. The Radio Society of Great Britain has it as its telephone number.

Its origin, lost in the mists of the early days of the electric telegraph, is believed to stem from abbreviations invented by the pioneers of the American railroad for quick communication between lonely signal cabins strung out across the prairies.

Today it is the most venerated phrase in amateur radio. We feel that none more appropriate could head this column.

Heart of "The Shack"—the Receiver

So much by way of introduction. Leaving generalities—now, and coming down to brass-tack practicalities, there is one question above all others that must be answered by every aspirant to amateur radio listening which will be examined on The 73 Page later on, and the destinations to which they lead explored. A number of them suggest methods of approach that offer the delights of h.f. reception at remarkably little cost, coupled with the fulfilment that comes from building equipment yourself.
Part Two

Having chosen the machine that suits both pocket and purpose, it is necessary to make the best use of it; not merely to tape the budgie and baby's first words, then relegate the recorder to the niche beneath the stairs. Like the car fanatic or the photography fiend, the tape recording enthusiast will soon be casting around for ways to improve upon his investment, and to obtain the best possible use from his machine.

First let us consider the microphone. If a microphone is supplied with the machine, it may be assumed that this suitably matches the input circuit of the recorder. But it may be required for an additional microphone to be used; there may indeed be a requirement for several microphones, plus a gramophone or radio input, to record a "programme", such as the commentary to a ciné film. Some care is necessary in selecting both microphones and that vital piece of equipment which is used to combine their outputs, i.e. a mixer.

Mixers

There are two types of mixer, the passive and the active. The former type consists simply of a selection of sockets, with matching resistors and perhaps variable attenuators acting as level controls for the various inputs. The output from this device is plugged into the tape recorder so that the combined signal modulates the tape in the same way that a single microphone would. But such a device has severe limitations; there is bound to be an insertion loss, and it may not be possible to adjust the level controls to give sufficient combined output to modulate the tape correctly.

The answer to this problem is to use an active mixer, or mixer/pre-amplifier. There are many different types on the market, the simplest being a transistorised, single-stage amplifier to boost the low level signals to an acceptable voltage for the "radio/pick-up" input of the tape recorder, while mixing the microphone signals as before, and providing attenuation of the latter to match the inputs.

More comprehensive models use several separate pre-amplifiers for the different inputs, with individual gain controls, and perhaps a magic eye type of modulation level indicator. This type of device is intended to apply a signal to the high level input of the tape recorder, and will give better quality recordings because of the better signal-to-noise ratio.

The electronic mixer will have inputs for different types of microphone and other sources and should, properly, have a cathode follower output so that it may be used at a distance from the main machine, the signal transfer then being at low impedance.

For serious recording, a good mixer unit is indispensable. Fortunately, this is not a difficult item to construct; and circuits for suitable types will no doubt appear in future issues of Practical Electronics.

Modulation Level

Mention has already been made of the need for applying a signal of adequate strength to modulate the tape. The correct modulation level makes all the difference between a recording that is acceptable, and one that is either weak and hissy or overloading into distortion on peaks of sound.

It is worth while spending some time experimenting with one's tape recorder to find the correct modulation level for a known input.

If a magic eye is fitted, the leaves or bar of the eye should nearly meet on peaks, but not overlap, and the input gain should be adjusted for this optimum. If a weak input is used, the replay will have to be turned up more to compensate for this and the upshot will be a higher level of amplifier noise as well as the required signal.

The dynamic range of the individual machine will have to be determined by trial and error. At the lower level the hiss of tape noise will outweigh the recorded signal when this is played back. At the upper level the amplified signal will overload the machine and cause distortion.

Where a meter is used for signal level indication, or modulation level readings, it is possible to assess the optimum recording level more accurately. But the type of meter, and the associated circuit, needs some
There are various methods of obtaining indications, changes and give a mean level indication. Some circuits deliberately designed to average out the sound of a moving coil meter, compared with the quicker consideration. Apart from the inherent sluggishness and again, information concerning the conversion of a "domestic" tape recorder to more professional standards with meter indication in place of, or in addition to, the magic eye, will probably follow in due course. It is a subject worthy of some attention.

Whether a meter or magic eye is used, the aim is to record at a level which approaches the maximum modulation level. If the machine is correctly adjusted, this should give the best signal-to-noise ratio. But exceeding this value will bring about distortion, due to a clipping of peak voltages in the amplifier circuit. When using a meter, the correct level, if not indicated, must be assessed by trial and error. With a magic eye indicator, the illuminated "leaves" or "column" should approach one another, but not overlap.

The correctly modulated tape is then played back, and the controls adjusted for comfortable listening level. Control of tone is also carried out during playback. The circuits are intended to produce a "tailored response" during recording so that the replayed output follows the equalised response curve exactly. Tone modification can then be made to taste.

TEST SIGNAL

To test the correct setting of the modulation level indicator, a steady signal, as pure as possible, is required. We have a ready-made test source in the television test signal that precedes a programme and is also broadcast several times during the test card periods of the morning on both BBC and ITV. This is a steady tone, a sine wave, and, provided the television receiver is in good order, the output should be level and unvarying.

The reason for the angled cut is to avoid a click as the splice passes the head on replay. For the same reason, a clean splice is required, with no gap between the ends. The duration of a splice passing the head gap is quite insignificant for ordinary work and, if properly done, should be unnoticeable.

EDITING

Far too many tape recorders are purchased and then wasted. The tape that was supplied with the machine is used over and over again and there is an almost psychopathic abhorrence of editing.

Considering that the average tape of a radio programme has at least five cuts, and a playlet, for example, may require fifty splices of tape, there is certainly nothing to be lost be editing. Indeed, the experienced tape user will realise how much is gained by the excision of those agonising "ums and aahs" and the general tightening up of a script or programme.

TAPE SPlicing

There are many tape splicers on the market, varying from the simple slot in a block to the elaborate devices with clamps and clips and measuring scales. Whatever method is used, the technique is to make a cut which matches the angle of the joining piece of tape (which is why a splicer is a better idea than a kitchen knife on the corner of the table). The ends are laid together and a piece of jointing adhesive fixed across the back of the joint; that is, on the shiny side, not the duller, oxidised side, of the tape.
This is a useful capacitor which takes up a minimum of space. The body and nut have 2BA threads and are silver plated. The ceramic tube is sealed into the body with an appropriate resin material under vacuum to withstand arduous climatic conditions.

Nominal Values
- LT 1000-1000 pF.
- LT 470-470 pF.
- LT 47-47 pF.

Tolerance
- ±10% or ±20%

Working Voltage
350V D.C.

Write for technical details of these or any other Oxley products:

OXLEY DEVELOPMENTS CO. LTD.
ULVERSTON, LANCASHIRE. Tel: Ulverston 2567

Housing Hi-Fi?

The three Nordyk Units illustrated comprises Speaker Enclosure (left) for 8" hi-fi speakers 7 gns., Record Cabinet (centre) takes 150 records £5.17.6d., and Equipment Cabinet (right) for turntables and amplifiers 7 gns.

Available in teak, walnut or mahogany.

Send for illustrated catalogue of 20 different models.

Free! Colour Brochure

This wonderful new, attractively illustrated FREE brochure brings you full details of the tremendous range of tape recorders and many unique features that we as BRITAIN S LARGEST TAPE RECORDER SPECIALISTS offer you.

Full details of recorders we particularly recommend, and a comprehensive list of all models available today are contained in the brochure, together with our unique FREE TRAVEL VOUCHER entitling you as a customer to full refund of your travelling expenses to and from any of our showrooms. Send for your FREE copy today, or call into any of our showrooms to see, hear and compare our fantastic selection of recorders.

5 Star Features

★ FREE TRAVEL TO AND FROM OUR SHOWROOMS
★ FREE DEMONSTRATIONS IN YOUR OWN HOME
★ OVER 300 MODELS FROM 15-243 GNS.
★ FREE ONE-YEAR SERVICING
★ FREE TECHNICAL ADVICE

Please send me your FREE BROCHURE (P.E.2)

Name:___

Address:___

City & Essex Tape Recorder Centres Ltd.

Record Housing

(Dept. P.E.12), Brook Road, London, N22

Telephone: BOWes Park 7487/8

City & Essex

Tape Recorder Centres

242/4 Penlonville Rd., N1 (150 yds. from Kings Cross Station) TER 8200
228 Bishopsgate, E.C.2 (Opposite Liverpool St. Station) BIS 2609
2 Maryland Point Station, Stratford, E15 (Adj. Station) MAR 3879
205 High St. North, E.6 (Opposite East Ham Station) GRA 6543
232 E. India Dock Rd., Poplar, E14 (Adj. Blackwall Tunnel) EIS 9978

NOTE: Bishopsgate Showrooms open Mon.-Fri. 9 a.m.—6 p.m., Saturday 9.30 a.m.—2 p.m., Closed Sat. Other Showrooms open Mon-Sat. 9 a.m.—6 p.m. Thursday to 1 p.m.
Cordially invite Practical Electronics readers To try our unsurpassed VALVE MAIL ORDER SERVICE

Vast quantities of modern and obsolete fully guaranteed valves available from stock at very moderate prices. Send S.A.E. for Full lists

SPECIAL 24 HOUR EXPRESS MAIL ORDER SERVICE

Callers welcome

AN EXAMPLE OF THE VALUE YOU GET from RST

BRAND NEW TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC35</td>
<td>10 each</td>
<td>£0.25</td>
</tr>
<tr>
<td>OC42</td>
<td>5 sets</td>
<td>£0.75</td>
</tr>
<tr>
<td>OC44</td>
<td>3 sets</td>
<td>£1.15</td>
</tr>
<tr>
<td>OC45</td>
<td>5 sets</td>
<td>£1.50</td>
</tr>
<tr>
<td>OC71</td>
<td>3 sets</td>
<td>£1.75</td>
</tr>
</tbody>
</table>

SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 volts 350 mA</td>
<td>480 each</td>
<td>£6.00</td>
</tr>
<tr>
<td>400 volts 250 mA</td>
<td>480 each</td>
<td>£5.00</td>
</tr>
</tbody>
</table>

METAL RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 volts 300 mA</td>
<td>250 each</td>
<td>£1.25</td>
</tr>
<tr>
<td>600 volts 250 mA</td>
<td>250 each</td>
<td>£1.10</td>
</tr>
</tbody>
</table>

TERMS OF BUSINESS C.W.O. or C.O.D.

4/2 PACKING CHARGE ON ALL C.O.D.

ORDERS, POSTAGE 6d. per VALVE

RST VALVE MAIL ORDER CO.

21a, STREATHAM ROAD, MITCHAM, SURREY

Telephone: MITcham 6202 & 6771

Mon. - Sat. 9 a.m. - 5.45 p.m.
Wednesday 9 a.m. - 1 p.m.
Lunch 1.30 - 2.30

GLADSTONE RADIO

66 ELM'S ROAD, ALDERSHOT, Hants.

(CLOSED at 5 pm)

(2 mins. from Station and Buses)
This article sets out to discuss some of the important practical questions involved in the design of a universal pre-amplifier with transistors, capable of both audio and metric applications. A complete design is given as well, detailed drawings appearing on the blueprint included in this issue of Practical Electronics. This pre-amplifier was developed and built by the author primarily for use between the probe and Y-amplifier input of an oscilloscope and for use with a transistorised tape recorder for various laboratory experimental purposes. Obviously many further applications exist.

GENERAL CIRCUIT DETAILS

Fig. 1 on the blueprint shows the complete circuit diagram of the prototype. This comprises two separate circuit cards, each having a gain of exactly 10. A central switch S1 connects either one or both of these cards between the input and output terminals, giving gains of exactly 10 or 100 respectively, or, in its third position, it switches the unit off.

The left hand circuit card VB1 contains three cascade transistors TR1-TR3 and a d.c. peak bypass input circuit to the base of TR1. The latter is an essential feature in a universal unit of this nature, to prevent destruction of the transistors due to d.c. charging surges of anything up to several hundred volts when connecting the input to the anode circuits of valve equipment.

It may seem strange to use three transistors for a gain of only 10, but this is necessary to achieve the required high constancy. When properly built and adjusted, this circuit shows no perceptible change of gain (as displayed on an oscilloscope or meter) over temperatures from the freezing point up to over 50°C. (over 122°F), or for battery voltage variations between 6V and 11V.

The pre-amplifier design here described should be suitable for tropical temperatures when shielded from the direct rays of the sun, or for European summers, outdoors in full sunshine. Even considerable heating indoors, due to standing the unit on top of valve operated items of equipment of high power dissipation, should give no gain fluctuations or other troubles.

With the assurance that the gain really is rock steady throughout all working conditions likely to be met, it was convenient to make it exactly 10 per circuit card, wherewith the complete unit is a decimal-step pre-amplifier. The great advantage thereof is that, when used in conjunction with calibrated oscilloscopes, or with a.c. voltmeters, the existing scales can still be read-off and mentally multiplied or divided by powers of 10, i.e. a mere shift of the decimal point is required.

The right hand circuit card VB2 contains another identical cascade of three transistors TR4-TR6, giving a gain of 10 once again. The only difference compared to the first card is that the d.c. peak bypass circuit is here omitted, because the input signal is always applied to VB1. The right hand circuit card VB2 also contains the emitter follower output stage TR7.

The circuit of VB1 is always operative, in both the gain 10 and gain 100 settings of the complete pre-amplifier. In the gain 10 setting, TR7 is switched directly onto the output of TR3 in VB1 and TR4-TR6 idle with C4 shorting the base of TR4 for a.c. to prevent parasitic instability. C4 is connected up to the negative supply line (and not to chassis) for this purpose, to prevent application of d.c. voltages of incorrect polarity; either connection would be just as good for pure a.c. signal considerations.
In the gain 100 setting, the output of VB1 is connected through to the input of VB2, via C4, and the output at TR6 is connected through to TR7.

IMPEDANCE

If the pre-amplifier is to be used for metric purposes between the probe and the input socket of an oscilloscope or valve voltmeter, the input impedance must be equal to that of the instrument in question.

In the published design the input impedance at PL1 has been adjusted to exactly 135 kilohms to match the Y-amplifier input impedance of the author's oscilloscope. Adjustment of the input impedance to other values will be fully discussed later. But, in brief, it should be explained that this will involve a change of values for R3, R4, R6, R8, R9, VR1, and VR2, also possibly the replacement of TR3 by an OC304.

The output impedance at PL2 is very low, as given by the setting of VR2 or VR4 (the respective base feeds for TR7 in the gain 10 and gain 100 settings) divided by the current gain of TR7 (about 20); it is, in fact, about 500 ohms. The purpose of this low output impedance is to permit arbitrary lengths of uncompensated coaxial cable between the output and the oscilloscope Y-amplifier input without loss of bandwidth due to cable stray capacity.

As far as audio uses are concerned, the low output impedance gives satisfactory performance on 4,000 ohm headphones, or even on ones of somewhat lower impedance, and long runs of screened cable are permissible from the output to a remote main amplifier without loss of treble when using the unit as a microphone head pre-amplifier.

PERFORMANCE

The bandwidth of the pre-amplifier as described in this article extends from 2c/s at the low frequency end on either gain setting to about 100kc/s at gain 100 or about 150kc/s at gain 10 at the high frequency end. These figures refer to the so-called 3dB-down points, i.e. the gain has dropped to one-half of that at midband frequencies at these limits. The response is substantially flat over the entire "hi fi" audio frequency range from 20c/s to 20kc/s and some way beyond either end.

Harmonic distortion is extremely low up to drives giving an output of 1 volt r.m.s.; it is not visible as deformation of a sinewave on an oscilloscope up to this signal level, a fairly sensitive visual test. Phase-shift is negligible, so that pulse and transient responses are excellent.

The unit is thus equally satisfactory for both high fidelity audio work and for waveform display on an oscilloscope.

APPLICATIONS

Fig. 8 shows the manner in which the pre-amplifier may be connected to increase the Y-deflection sensitivity of an oscilloscope. The input impedance of the pre-amplifier must of course be adjusted to match the oscilloscope.

Fig. 9 sketches the arrangement to be adopted when using the pre-amplifier to increase the sensitivity of any a.c. valve voltmeter. The impedance matching requirements are here the same as for oscilloscopes if one desires to use the existing probe of the valve voltmeter at the input of the pre-amplifier while maintaining exact decimal step sensitivity increases.

If a simple diode peak rectifier circuit is interposed between the pre-amplifier output and the meter input, d.c. valve voltmeters or high resistance multimeters...
on low d.c. ranges may therewith be converted to sensitive a.c. “valve” (transistor) voltmeters. There are no impedance matching conditions to be observed in this case, provided that the meter and rectifier circuit impedance is much greater than the output impedance (500 ohms) of the pre-amplifier. Multimeters having a resistance of 4,000 ohms per volt and upwards on the d.c. ranges can thus be operated from the pre-amplifier output.

Fig. 10 shows a suitable rectifier circuit to make the meter indicate peak volts of one polarity. Reversing the diode and the connections to the meter makes it indicate peak volts of the other polarity. In the case of arbitrary non-sinewave signals applied to the input of the pre-amplifier, where the peak voltages on negative and positive half cycles may differ, corresponding different readings will be obtained.

Taking the Caby Model B20 multimeter as a typical example, we have a lowest d.c. voltage range of 0-5V f.s.d., 2,000 ohms impedance, available on the meter. This is satisfactory in every way for connecting to the output of the pre-amplifier via the rectifier circuit of Fig. 10 which may be built into the coaxial connecting cable fitting PL2 on the pre-amplifier at one end and the multimeter terminals at the other end. The multimeter is therewith an a.c. voltmeter giving full scale deflection for 50mV peak or 5mV peak (gain 10 or gain 100 settings respectively) applied to the pre-amplifier input, an excellent sensitivity. Moreover, the arrangement is usable not only at power mains frequency, but at any frequency over the entire hi fi audio range. If measuring positive and negative half cycles separately where these differ, it is important to remember that the pre-amplifier inverts the signal in the gain 10 setting, but not in the gain 100 setting.

Table 1 lists some typical audio applications of the pre-amplifier. These certainly do not require the accurate decimal step and stabilised gain, but it is, in the interests of universality, necessary to point out that the pre-amplifier is in every way suitable for such applications as well.

THE VEROBORD SYSTEM

Although orthodox printed circuit panels would be used in commercial systems of this nature wherever the production numbers are at all high, the Veroboard System is more suitable for small production numbers and especially for amateur and experimental equipment.

The VB2503 panel is made of plastics card drilled over its entire surface with a square grid of holes having 0.15in spacing, 16 holes across the width and 21 holes along the length. The rear side only is fitted with 16 parallel strips of copper, each respectively running along one row of 21 holes along the length of the panel. These strips are thickened and gold-plated at one end, where the whole card plugs into a linear 16-contact socket.

Components are arranged on the front side (Fig. 2 and Fig. 4), where there are no copper strips; the wire ends are pushed through holes at respectively convenient positions, soldered with a spot of solder at the rear where they pass through the copper strip, and then cut off close.

If alterations are subsequently required, melt the solder by applying an iron at the rear while pulling the component wire with pliers from the front. Then jab a piece of bare tinned copper wire through the hole
THE ELECTRONICS
OF LIGHT-OPERATED SWITCHES

Described by G. J. KING

Our heading illustration shows the Mullard ORP cadmium sulphide photoconductive cell. The sensitive element is contained in a glass dish 14mm in diameter and 8mm deep.

There are hosts of applications for a device capable of switching electrical contacts on or off automatically when its light-sensitive control element is subjected to changes in level of illumination. A typical application is for switching on a car parking light at dusk and switching it off again at dawn without human control.

A similar application is for switching on house, shop, office, factory or street lights when the ambient illumination drops below a predetermined level, and for switching them on again when it rises. This does away with the old-type time-switch. This application is also useful to discourage unwanted visitors when the house is left unoccupied for any lengthy period, such as during holidays and so forth.

Other applications include the automatic opening of the doors of a garage when the light-sensitive element picks up the rays of the headlamps of the oncoming car, the counting of articles as they drop through and thus interrupt a ray of light which is directed onto the light-sensitive element, a smoke alarm, for use in smokeless zones, where a ray of light is interrupted by the presence of excess smoke in a chimney flue or stack, this reducing the intensity of light falling upon the light-sensitive element . . . and so on.

The basic functions of light-operated switches are the production of a potential, the change in a potential or the change in characteristics—such as resistance—of the light-sensitive control element. Such effects can be utilised to energise or de-energise a relay, thereby opening or closing a pair or more of electrical contacts, which in turn operate a light, bell or other alarm device, or an electric motor often in a form of servo arrangement.

BASIC CONTROL

In cases where the control current is very high, a secondary relay with a heavier set of contacts than those of the primary relay is controlled by the contacts of the primary relay. The basic controlling features are shown in Fig. 1.

![Fig 1. Basic control circuits for light-operated switches. At (a) a relay switches a lamp on and off, at (b) an alarm bell is controlled via a mains power unit, and at (c) a secondary relay switches power to a motor.](image-url)
At (a) we have the straightforward case, such as may be used to switch a parking light on and off. Here the battery could be the car accumulator (6 or 12V). This battery, being a d.c. supply, could both operate the relay by way of the light-sensitive element and work the bulb in the parking light.

The idea is that during the day the light-sensitive element in conjunction with its control circuit would pass insufficient current to energise the relay. The contacts thus remain open and the bulb extinguished. At lighting up time, however, the light-sensitive element and associated control produces an increase in current from the battery through the winding of the relay. This energises the relay, closes the relay contacts and thus passes battery current through the bulb which then lights.

At this juncture it should be noted that the arrangement could be reversed. That is, the relay could be energised during the daylight hours, under which condition the contacts would be open, and then de-energised during the night time, when the contacts would be closed to pass battery current through the bulb. It is just a matter of choosing the required light-sensitive element controlling circuit and relay.

At (b) we have a little more complicated arrangement, where a mains power unit is employed both to operate the alarm bell and the relay, the latter via the light-sensitive element and its associated circuit.

At (c) is shown an arrangement which features two relays. Here the primary relay is operated by a battery in the light-sensitive control circuit. When the contacts of this relay close, power from the mains supply is caused to pass through the winding of the secondary relay, which is a mains-operated type. The heavy contacts of this relay then close and pass mains power to the drive motor, which may work a garage door or some other mechanical device.

It is possible, of course, to make the whole control unit mains-operated to avoid the battery for the primary relay. This could be accomplished by an extension of (b), where a mains power unit supplies a d.c. voltage for the relay and light-sensitive control circuit, or by using a mains-operated primary relay.

So much, then, for the basic control and relay circuits, but what about the light sensitive element itself?

LIGHT-SENSITIVE DEVICES

An early light-sensitive element was the photoelectric cell. This was used extensively not only for controlling switching circuits by light but also for the replay of sound tracks on cine films. The photoelectric cell is, in fact, still used for the latter application, but other light-sensitive elements are better suited for control work. The photo-electric cell is a device which delivers a small amount of electricity (potential) when light is directed upon it. The greater the light intensity, the greater the potential, within limits, of course.

Recent innovations include the phototransistor and the photoconductive cell, the latter being illustrated in our heading, and it is mainly about these that this article will be concerned.

Let us first look at the phototransistor. This works in a similar way to a normal transistor into which light is allowed to enter. A transistor is, in fact, a light-sensitive device, but its usual opaque coating prevents it from responding to changes in level of illumination.

PHOTOTRANSISTOR

However, the phototransistor is a transistor designed to fully exploit the inherent photo-electric properties. It can be considered as a light-sensitive semiconductor junction diode (photodiode) in which the light current is amplified by the normal transistor action.

The forward current in any semiconductor diode is caused by a uniform interchange of current carriers across the junction. These can be electrons moving in one direction and positive holes moving in the opposite direction.

This unhindered flow across the junction, giving rise to the normal flow of electricity, results because the potential applied across the junction is in opposition to and outweighs the so-called "potential barrier" which is formed across the junction when it is manufactured, due to the initial diffusion of current carriers.
The potential barrier is thus broken down by the applied forward potential.

Now, when the diode is biased in the reverse sense, the inherent potential barrier is effectively reinforced. This means that normal current flow is prevented because the barrier prevents the interchange of current carriers. Thus, we have the normal rectifier action where current can flow freely in one direction and is virtually prevented from flowing in the opposite direction. The same effect is exhibited by a diode valve, of course.

However, with a junction diode there is some difference. With a thermionic valve diode, if the anode is negative with respect to the cathode, no current whatsoever will be passed. But with a semiconductor diode, a "leakage current" results under this reverse-biased condition. This is because of a flow of "minority carriers" (these being positive holes in n-type material and electrons in p-type material).

In effect, the minority carriers tend to multiply when light is allowed to fall on the junction. The leakage current then rises, and as the light intensity increases, so does the leakage current increase. The normally low leakage current when no light is falling on the junction is called the "dark current", and the higher value of leakage current when the junction is illuminated is called the "light current".

The light-to-dark current ratio is enhanced considerably by amplification due to the normal transistor action of the device, and with a well designed circuit this ratio can be made as high as 480 at a temperature of 25°C. Temperature comes into it because the minority carriers also tend to multiply as the junction temperature increases. Thus, at 45°C the ratio may drop to around 20.

Under normal operating temperatures the sensitivity of the device is remarkable. For example, if a 2½V pea lamp is barely lit from a 1½V source, and the resulting small illumination is focused by a simple lens on to the sensitive area of the phototransistor over a distance of a few centimetres the amplified current rises from the order of microamperes (the dark current) to in excess of 5 milliamperes! Thus, the usefulness of the phototransistor as a light-sensitive element can be appreciated.

SWITCHING CIRCUITS

Fig. 2 shows a simple switching circuit using the Mullard OCP71 phototransistor. Extra sensitivity and temperature compensation is given by the use of a transistor d.c. amplifier following the phototransistor, as shown in Fig. 3. Both of these circuits lend themselves to considerable experimentation to suit specific applications. The base resistor can give a degree of temperature compensation if of the negative temperature coefficient type. The actual value is best determined experimentally to suit both the conditions of maximum temperature and the light level. However, a component in the order of 5 kilohms is suitable for most applications.

The relay should have a coil of about 5 kilohms and it should pull-in at a power of about 5mW for reliable operation.

PHOTOCONDUCTIVE CELL

The photoconductive cell is essentially a resistive element made of cadmium sulphide which has the property of decreasing greatly in resistance when subjected to illumination. In complete darkness the resistance is in the order of 10 megohms and this can drop to as low as 75 ohms when the cell is fully illuminated. This very large dark-to-light resistance ratio means that the cell is extremely sensitive. More so, in fact, than the phototransistor.

The cell, which is often called a light-sensitive resistor (l.d.r., for short), is made by Mullard in three versions. There is the ORP12, which has maximum response in the red region and is intended for general purpose industrial applications and automatic contrast and brightness control in television receivers. This has a maximum limit of power dissipation of 200mW up to 40°C. At higher temperatures the allowable dissipation reduces progressively to zero at 60°C.

The RPY15 (formerly called the ORP15) has a maximum power dissipation of 400mW at 25°C and is thus more suitable for applications where power is an important factor.

A low power unit is the RPY14. This has a maximum dissipation of 20mW at 25°C and is designed essentially for exposure meters and automatic camera applications.

![Fig. 4. A photoconductive cell (light-dependent resistor) can be arranged in this simple circuit to provide an effective light-operated switching action](image-url)

The l.d.r. has several advantages over the phototransistor for certain applications. For one thing, the sensitivity that it can convey to a control circuit is greater than that of the phototransistor. The larger versions can dissipate a greater power than the phototransistor, the collector dissipation of the OCP71, for instance, being limited to 100mW at 25°C (50mW at 45°C). Moreover, the l.d.r. can operate over a wider range of potentials than the phototransistor including operation at a.c., and polarity is not important. It can be arranged in a simple series circuit, as shown in Fig. 4.

SIMPLE L.D.R. CONTROL CIRCUIT

Here the l.d.r. is shown connected in series with a 5 kilohm relay coil and a 12V d.c. supply. If the relay is adjusted to pull-in at about 12mW (e.g. at a current of a little over 1·5mA), a very sensitive light-operated switching device can be evolved from the simple circuit. For reliable results, however, a sensitive relay is desirable.

A more robust Post Office type relay can be utilised by following the simple l.d.r. circuit with a transistor d.c. amplifier, as shown in Fig. 5. Here the l.d.r. is caused to change the base bias of the OC72 transistor and thus give an increase in collector current (and hence, relay current) when the resistance of the l.d.r. drops under the influence of illumination.
THE WHARFEDALE
Super Range

Each loudspeaker in this range is fitted with roll
surround for low resonance and double diaphragm
assembly for extended HF response.

SUPER 8 RS-DD
Impedance 10/15 ohms.
Ceramic Magnet.
Flux density 14,500 oersteds.
Total flux 60,000 maxwells.
Aluminium Voice Coil.
Max. input 6 watts rms
or 12 watts peak.
Frequency range 40-20,000 c/s.
Bass resonance 30/60 c/s.
Price: 134/- inc. P.T.

SUPER 10 RS/DD
Impedance 10/15 ohms.
Flux density 16,000 oersteds.
Max. input 10 watts rms
or 20 watts peak.
Frequency range 30-20,000 c/s.
Aluminium Voice Coil.
Bass resonance 38/43 c/s.
Price: 218/- inc. P.T.

SUPER 12 RS/DD
Impedance 12/15 ohms.
Flux density 17,000 oersteds.
Total flux 190,000 maxwells.
Aluminium Voice Coil.
Max. input 20 watts rms
or 40 watts peak.
Frequency range 25-20,000 c/s.
Bass resonance 26/32 c/s.
Price: 350/- (no tax).

Write for informative and fully illustrated 12 page booklet

WHARFEDALE WIRELESS WORKS LTD
IDLE BRADFORD YORKSHIRE
Telephone: Idle 1235/6
If you’re thinking in terms of tape recording, then the Brenell deck and complete recorders should be uppermost in your mind. The reliability, the versatility and the quality of manufacture are seldom equalled in other tape recorders (even in those costing much more).

How many can equal or better this specification?

- 4 record/playback speeds (1/2, 3/4, 7 1/2 and 15 ips)
- 3 motors (capstan motor-hysteresis synchronous)
- Very low 'wow and flutter' content (0.05% at 15 ips, 0.1% at 7 1/2 ips, 0.15% at 3 1/2 ips and 0.25% at 1 7/8 ips)
- Double-gapped ferrite erase head to minimise erase noise
- Narrow-gapped record/playback head to give extended frequency response
- Pause control
- Superimpose control
- 8" dia. reels (to take 10" dia. N.A.B. reels at extra cost)
- Fast rewind
- Digital rev. counter.

Mark 5 Series 2 Deck

For full details of the specially designed amplifier for use with the above deck and the range of mono and stereo recorders, write or telephone the sole manufacturers:

Brenell

Please Note Our New Address:

Brenell Engineering Co. Ltd.
231-5 Liverpool Road, London, N.1
Telephone: NOrth 8271 (5 lines)

Protect Your Tape Recorder

WITH A STRONG, SMART COVER

Smart waterproof cover to give complete protection to your tape recorder. Made from rubberised canvas in navy blue, grey and bottle green with white contrast piping, reinforced base, handy zip microphone pocket and name panel.

Mark 5 Series 2 Deck

For full details of the specially designed amplifier for use with the above deck and the range of mono and stereo recorders, write or telephone the sole manufacturers:

Brenell

Please Note Our New Address:

Brenell Engineering Co. Ltd.
231-5 Liverpool Road, London, N.1
Telephone: NOrth 8271 (5 lines)

Protect Your Tape Recorder

WITH A STRONG, SMART COVER

Smart waterproof cover to give complete protection to your tape recorder. Made from rubberised canvas in navy blue, grey and bottle green with white contrast piping, reinforced base, handy zip microphone pocket and name panel.

Mark 5 Series 2 Deck

For full details of the specially designed amplifier for use with the above deck and the range of mono and stereo recorders, write or telephone the sole manufacturers:

Brenell

Please Note Our New Address:

Brenell Engineering Co. Ltd.
231-5 Liverpool Road, London, N.1
Telephone: NOrth 8271 (5 lines)

'SUPER SIX'

Long & Med. Wave Transistor Radio Kit

NOW ONLY £4.17.6

(post 5/-)

Owing to a fortunate bulk component contract the price of this model is now reduced to £4.17.6. Purchasers who have already paid the previous higher price will have the difference refunded on application.

- All new parts.
- 6 transistors and diode.
- 350mW output.
- Superhet circuit, ferrite rod aerial.
- Weymouth Radio printed circuit board.
- Component positions and references printed on back of board.
- Nicely styled wooden cabinet, 11 x 7 x 5".
- Vinyl covered in various colours.
- 6 x 4" speaker giving good bass and treble response.
- Full instruction booklet 2/- Free with kit.
- L.F. frequency 470 kc/s.

Lining up service if required.

All parts supplied separately. Write for list. S.A.E. please.

Set can be supplied fully built for £6.17.6 tax and carriage paid.

9V battery required. VS9 or P.P.9 (3/9 with kit).

"MINOR" Record Player with "MAJOR" Performance

Packed of 3 coded RF transistors (equivalent of OC44/5) 7/6 post paid. A set of 6 transistors and diode with circuit diagram. Nicely packed in foam-lined box; useful for presentation. 1/5 post paid.

TRANSISTORS

ELECTRONICS (Gamberley) Ltd.
15 Victoria Avenue, Gamberley, Surrey.
(Closed Saturday)
Fig. 5. A d.c. transistor amplifier following the l.d.r. allows the use of a more robust relay and provides a facility for sensitivity adjustment

The 5 kilohm potentiometer is used to adjust the base bias to give the required light/dark sensitivity conditions. Note that the diode across the relay winding in Figs. 2, 3 and 5 is to suppress the voltage surges which are otherwise likely to develop across the coil and damage the transistor during the switching cycle.

Several light-operated switches of the nature of those described in this article have been built by the author, and one application which has not yet been mentioned is for the measurement of speed.

This application is useful at race meetings of all types. At the finishing post a beam of light is arranged to cross the track and hold-on a relay of a light-operated switch. Now, when this beam is broken by the winner passing the finishing post, the relay switch changes over and operates a mechanical arrangement which stops a timing watch or other type of timer. Thus, provided the timing device is started when the race commences (this can be arranged automatically as well if needed) the winner himself stops the timing, and the actual time taken can be read off the dial in the ordinary way.

The experimenter in electronics will almost certainly find many other applications for the circuits described in this article.

PRACTICAL ELECTRONICS BINDERS

EASI-BINDERS specially designed to hold twelve issues of PRACTICAL ELECTRONICS are now available.

These binders are finished in maroon waterproof and greaseproof cloth and are embossed with gold lettering on the spine.

Order your binder from:
Binding Department,
George Newnes Ltd.,
Tower House,
Southampton Street,

The price, per binder, is 13s. 6d., inclusive of postage.

PRE-AMPLIFIER continued from page 109

PRECISION DECIMAL STEP

rapily while again applying the iron, to clear the hole of solder before inserting the new component.

It is advisable to use a miniature pencil-bit iron, e.g. of the 6 volt 10 watt variety. The copper strips on the cards take solder extremely rapidly and readily, so that it is possible to work quickly enough to prevent damage to transistors.

In the diagrams, Figs. 2, 3, 4, and 5, the rear copper strips have been numbered 1 to 16 from left to right as viewed from the front (components side) of the cards, and the 21 holes along any strip have been lettered A to U commencing from the socket end. Any hole can thus be specified by the corresponding number and letter combination.

The copper strips are to be interrupted at all the specified holes on the rear side of each card. Messrs. Vero Electronics sell a special hand awl, Cat. No. VB3011, for this purpose. This consists of a wooden tool handle carrying a small drill shaft of somewhat greater diameter than the width of the copper strips.

The copper strip away at the desired point.

Drill is therewith held central while it scrapes the copper strip away at the desired point.

The two circuit cards, together with their associated sockets, can be accommodated quite conveniently in a box measuring approximately 5in by 5in and 23in deep. Fig. 7 shows the arrangement of the items inside the box and also details the interboard wiring.

Next month: the concluding part of this article will discuss some of the principles involved in the design of the pre-amplifier; factors which determine the input impedance will be explained and practical information given for adjusting this to some other value.

Contributed Articles

The Editor will be pleased to consider for publication articles of a theoretical or practical nature. Constructational articles are particularly welcome, and the projects described should be of proven design, feasible for amateur constructors and use currently available components.

Intending contributors are requested to observe the style in our published articles with regard to component references on circuit diagrams and the arrangement of the components list.

The text should be written on one side of the paper only with double spacing between lines. If the manuscript is handwritten, ruled paper should be used, and care taken to ensure clarity, especially where figures and signs are concerned.

Diagrams should be drawn on separate sheets and not incorporated in the text. Photographic prints should be of a high quality suitable for reproduction; but wherever possible, negatives should be forwarded.

The Editor cannot hold himself responsible for manuscripts, but every effort will be made to return them if a stamped and addressed envelope is enclosed.
REMOTE control of apparatus is possible over distances upwards to 20 feet with this simple transmitting and receiving equipment.

The transmitter is housed in a popular type of torch case and is indeed as simple to operate as a normal electric torch. Just point the transmitter at the receiver, switch on and the ultrasonic beam radiated will be picked up by the receiving transducer, converted into electrical energy, and applied to operate a relay.

Unlike radio wave transmission, this "wired" control system does not require a G.P.O. licence or other official sanction before it can be used.

APPLICATIONS

Apart from the obvious novelty value this ultrasonic equipment has certain very practical applications. We can only mention a few, but other applications will occur to many readers.

Remote channel selection on television receivers is possible if an electrically operated channel selector switch is fitted in the receiver. This switch would move one position for each pulse sent out by the transmitter. Radio receivers with preset tuning could be similarly controlled.

The control system does not require a G.P.O. licence or other official sanction before it can be used.

Any mains powered equipment could be brought into operation from a distance. For example, garage doors could be operated from inside a car, if the necessary electro-mechanical equipment is installed in the garage.

Although the effective range of the equipment as described in this article is 20ft maximum, some hints are given for increasing this upwards to 100ft for those who may wish to experiment further with ultrasonic remote control.

TRANSUDCERS

Two identical Gulton type 1404 ultrasonic transducers are used in this equipment. One functions as a transmitter—radiating pressure waves at a frequency of 40kc/s. The other transducer operates in the reverse manner converting the pressure waves back to electrical energy. The two units may be freely interchanged between the transmitter and the receiver.

Transducers should be bought as a pair, since it is important that their nominal frequencies be the same within ± 500c/s.

TRANSMITTER CIRCUIT

A pair of OC71 transistors are used in a feedback oscillatory circuit, this is shown in Fig. 4. The transducer X1 is connected in the feedback loop and provides a high Q circuit with a resonant frequency of 40kc/s.

Power for the transmitter is obtained from a miniature 9V battery (P3 or DT3). The current consumption is 4mA.

RECEIVER CIRCUIT

A transducer of identical type to that used in the transmitter is incorporated in the receiver, see Fig. 1. A voltage is developed across this transducer X2 when it is subjected to pressure waves. This voltage is applied to the base of the first amplifying stage TR3.

The collector of this transistor is directly coupled to the base of TR4 and the gain of these two stages is stabilised by means of overall negative feedback.

The signal is passed on via C2 to another two-stage directly coupled amplifier consisting of TR5 and TR6. Negative feedback is used here also to maintain constant gain. A tuned transformer T1 couples TR6 collector to the output stage TR7. This transformer is tuned to 40kc/s and ensures optimum sensitivity as well as providing rejection of other ultrasonic signals.

A relay RLA is connected in the collector circuit of TR7, and this becomes energised when TR7 is switched on by a signal passed on from the preceding stages of the receiver. The single-pole, make-break contacts of RLA can be used to switch power supplies or to operate other circuits in the apparatus it is intended to remotely control.

A 9V battery supplies the receiver. The consumption is 6mA.

RECEIVER CONSTRUCTION

All components for the receiver are accommodated quite easily on a laminated plastics board measuring 4in x 4½in. The prototype model described and illustrated here was built on, a piece of Veroboard. It is not essential of course to use this particular material and if preferred a similarly sized piece of laminated plastics or even hardboard could be employed.

In such a case the components could be secured to terminal posts consisting of short pieces of 18 s.w.g. tinned copper wire inserted through holes drilled in appropriate positions (see Fig. 3). Use a drill slightly smaller than the wire to ensure a tight fit. Push the wire through the board until about ½in emerges then cut off leaving a similar length protruding at the other side. Wire up the posts on one side of the board to agree with the diagram in Fig. 2 before mounting the components on the other side.

If the Veroboard is being used, remember to break the copper strips where indicated (see Fig. 2).

The relay coil is held in position by two loops of wire which pass through holes in the board.

INSTALLING THE RECEIVER

Mounting or housing arrangements for the receiver assembly will depend upon the application requirements or personal choice.

Generally speaking, it will be convenient to mount the receiver unit adjacent to the apparatus being controlled, or even within the same cabinet as for example in the case of a radio or television receiver. In this way the wiring from the relay to the controlled circuit is kept short.

The transducer must be mounted in such a manner that it will "look" directly towards the transmitter when the latter is brought into operation. If a 0-937in diameter hole is drilled in the front of the cabinet or container, the transducer can then be pushed through so it is flush with the front surface. If the cabinet material is not sufficiently thick to permit this method being adopted, a hole approximately ½in diameter should be drilled and the transducer secured to the inside surface by means of a clip or bracket.
When wiring up the relay contacts to the controlled apparatus, ensure that these connections are well insulated and isolated from the components and wiring of the ultrasonic receiver.

The relay contacts have the following maximum ratings:

<table>
<thead>
<tr>
<th>Power</th>
<th>15W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>1A</td>
</tr>
<tr>
<td>Voltage</td>
<td>250V</td>
</tr>
</tbody>
</table>

Contact resistance is 0.05 ohm and the actuate time is 2msec.

TRANSMITTER CONSTRUCTION

The transmitter uses few components and the circuit is quite simple. However, due to the compact form of its assembly a certain amount of dexterity is called for during construction.

No insurmountable problems should arise if a torch case of the type and size specified is obtained. A larger torch case could be used if so desired; it would be necessary then to increase the width of the component panels to ensure a good fit in the case.

The first task is to prepare two small pieces of Veroboard as shown in Fig. 5.

Next mount the resistors and transistors in position on each board. The most tricky operation comes next. Solder one end of C1 to the (inner) side of panel A, at the point indicated in Fig. 5. Carefully manipulate the other lead on this capacitor to allow this to be soldered to panel B as indicated. Finally, secure this sandwich assembly by inserting short lengths of 20 s.w.g. tinned copper wire through facing holes in the two panels at the four positions 1A, 4A, 1J and 4J.

Initially solder these four wires to one panel only. Carefully adjust the position of the panels until there is a separation of 3/16 in between their inner surfaces, and then solder the other ends of the four wires to secure.
Fig. 4. Circuit diagram of the transmitter

Connect two insulated flexible leads to the miniature coaxial plug, twist these leads and cut off leaving a 1in length. Solder the free ends, one to panel A and the other to panel B as indicated "to x 1" in Fig. 5.

Connect a lead of about 3in length to the linking wire A1 as indicated in Fig. 5. Use blue covered plastics covered flexible multi-strand wire. Single conductor leads are not at all suitable for this purpose—since their rigidity will inhibit the manoeuvres that are involved in the assembly process, and will probably result in breakages occurring at soldered connections.

Fig. 5 (above, left). The transmitter panels showing the arrangement of components. Panel B is above; Panel A below. Each panel measures 1\(\frac{3}{4}\)in by 1in.

Fig. 7 (above). Modification to the torch switch.

Fig. 8 (below). A sectional view of the torch case with the transducer, transmitter assembly, and battery installed.

TORCH CASE

A "Vesta" plastics torch case available at many multiple stores is used in this design. This particular case is made in a variety of colours, it is 5\(\frac{1}{2}\)in long and has an internal diameter of 1in.

Remove the top cap from the torch case. Take out the glass, bulb, and reflector; these items are discarded.

Examine the switch mechanism. The brass tongue which protrudes towards the top of the case must be cut off as far down as possible. This can be performed with a pair of tin snips. Solder a (red coloured) plastics covered flexible lead to the stub and bring this lead down and out through the bottom of the case. Refer to Fig. 7. A small instrument type iron is essential, and care must be taken not to allow the bit to make contact with the plastics case. Place the transmitter assembly inside the lower portion of the case, but with its end protruding slightly.

Connect the red lead from the switch to point A4. Now gently push the assembly up inside the case until the coaxial plug emerges at the top. Fit the transducer to this connector. Refit the plastics top cap.

Move the assembly back down the case (applying slight pressure on the transducer face at the same time pulling gently on the blue battery wire) until the face of the transducer is level with the top edge of the torch cap.

continued on page 146
Fig. 16. Some typical transistor encapsulations from the Newmarket range

TRANSISTOR DOs AND DON'Ts

DO:
1. Check polarity (npn or pnp).
2. Check battery supply polarity.
3. Identify leads correctly.
4. Ensure correct type.
5. Ensure whether transistors should be insulated from chassis.
6. Ensure contact of the faces of power transistors are smooth and that thermal contact with the heat sink is efficient.

DON'T:
1. Bend leads too close to the seal.
2. Solder leads without heat shunt.
3. Apply heat too long.
4. Mount in or near strong magnetic or electrostatic fields.
5. Operate transistors above maximum ratings.
6. Use “quick heat” gun type soldering irons.

Useful Tips
1. Silicone grease smeared on the surfaces in contact with the heat sink will increase heat conduction.
2. Black matt heat-resistant paint used on heat sinks and transistors helps dissipation of unwanted heat.
3. Long nose pliers, or a crocodile clip with two copper slugs soldered into the jaws, serve as heat shunts, when soldering into position. The heat shunt should be attached to the wire being soldered.
The circuit in Fig. 15 shows the three basic configurations in which transistors are used: emitter-grounded, collector-grounded, and base-grounded.

Fig. 1.-Circuit 1

Fig. 2.-Construction

Fig. 3.-Characteristic curves

Fig. 4.-Circuit 2

Fig. 5.-Circuit 3

The circuit shown in Fig. 5 is practically identical to the circuit shown in Fig. 4 except that the input signal is applied to the base instead of the collector.
Transistor

For the purpose of this booklet, pnp transistors only will be considered but the information given will also apply to npn types except that biasing and h.t. supplies have reverse polarity d.c. voltages applied.

The addition of an extra element to the junction diode, p-type material in the pnp transistor and n-type in the npn transistor produced a device capable of amplification. In practice the n-type material in a pnp transistor is extremely thin. Typical constructions of some transistors are shown in Fig. 14.

Triode

De Forest found that the addition of a third element or electrode (called a grid) to the diode placed close to the cathode relative to the anode enabled a small variation of voltage on the grid to produce a large variation of anode current. This discovery and its development precipitated a technological revolution, the implications of which the world still hasn't fully realised.

Construction

The varieties of triode types are too numerous to be treated fully by this booklet but a typical receiving triode, the construction of which is common to all types, is shown diagrammatically in Fig. 8. The grid can be seen to be a form of spiral wire. The electrons pass from cathode to anode through the spaces between each turn of the coil.

Theory

The characteristic curves given in Fig. 9 of anode current against anode voltage for various values of negative grid voltage are similar to those for the diode except that the grid voltage is the third parameter.

From the characteristics it can be seen that as the grid voltage is made more negative the anode current is eventually reduced to zero. It is this variation of anode current with grid voltage that produces amplification and is known as mutual conductance. The change in voltage across a load resistor, placed in series with the valve anode and h.t. positive rail, is greater than the change in grid voltage that produced it. More detailed information on this principle is given in the centre portion of this Data Booklet to be given with the January issue of Practical Electronics.

Fig. 7. Triode circuit symbol (left)

Fig. 8. Triode construction (below left)

Fig. 9. Triode characteristics (below)
In Fig. 13, and as controlled receiver. Some of their characteristics are shown on page 13. Further development of the function of Fig. 12, with typical circuit shown in Fig. 13, which is described in the region described in the Rocard section is emphasized.

Fig. 11. Period

Fig. 10. Tension

Other Types of Valves

Continued from page 2
Six transistors are employed in the power amplifier, the circuit of which is shown in Fig. 6. The first transistor, TR5, is connected as an emitter follower, the collector being grounded to a.c. by the 32μF capacitor C15. This mode of operation gives high current gain and zero phase shift between input and output, a good match therefore exists for practically any type of input. Stabilisation is achieved by C14 across the bias network.

The output from the emitter of the first stage is directly coupled to the high gain stage TR6. C17 assists in reducing the high frequency rising characteristic of this stage. The collector of this stage is directly coupled to the base of the phase reversing npn transistor TR8 and via D1 to the base of TR7.

TR7 and TR8 operate in the class B Darlington mode to increase current gain. This again has the advantage of push pull emitter follower operation. It will be noted that each stage is directly coupled throughout the amplifier; there is therefore no phase shift or frequency losses due to capacitive coupling.

FORWARD BIAS

The output transistors TR9 and TR10 have a small forward bias to minimise crossover distortion. This bias is set by the voltage drop across the 1 kilohm resistors R26, R27 which are in parallel with their input. Capacitors C18, C19 are connected across these resistors and stabilise the circuit reducing the drive some 70 per cent at 30kc/s.

Transistors TR7 and TR8 are biased for the same reason by the voltage drop across the OA10 diode D1.

FUNCTION OF THE DIODE

A 70 ohm resistor could be used in place of the diode D1 to serve the same function; a resistor would not, however, give any temperature compensation and the bias would be disturbed accordingly. True thermistors could be used to compensate for the...
temperature variation of the emitter base resistance, but their performance is not comparable with the OA10 diode which has characteristics similar to the germanium transistor.

Having explained the reason why the diode is used and its function in the amplifier circuit, it would be well to describe a precaution that must be observed in placing it in the circuit when constructing the amplifier.

The OA10 is a high current, low voltage germanium junction diode. It is important that no alternative diode is used in the amplifier and great care should be taken during construction that it is connected the correct way round in the circuit. The function of D1 is to assist in temperature stabilisation of the circuit and to couple the complementary pair TR9, TR10 in a correct push pull mode.

It is important that the base inputs to the driver transistors are never open circuit with respect to one another at any time. An equivalent condition arises should the OA10 diode be inadvertently reversed. If this happens the base of the driver transistor TR7 becomes more negative while the base of TR8 becomes more positive, moving towards the earth rail. The resulting large bias increase will cause the collector/junction resistance to become extremely low and the output transistors will then draw excessive current through the base in a matter of seconds resulting in collector to emitter short and the ruining of expensive transistors. (This is of course no different from connecting the grid of a thermionic valve to a 400V line.)

To enable the amplifier to be used with low-level sine wave testing, 1 ohm resistors are inserted in the emitter circuits of the output transistors, giving reverse bias and further aid to linearity.

The quiescent current is some 50mA rising to 500mA for full sine wave output.

Fig. 7. Layout of components and wiring

The h.t. is normally 28 volts with 32 volts maximum. The amplifier will perform quite satisfactorily at a reduced output of 300mW when supplied by a 9V battery.

Overall feedback of some 17dB is applied via the 15 kilohm resistor R30 from the amplifier output to the base of TR5.

CONSTRUCTION

Construction is straightforward and follows similar lines to that of the pre-amplifier, as described in last month's article. If larger components than those shown in the layout diagram (Fig. 7) are used, the
circuit board (Fig. 9) may have to be enlarged accordingly, but providing the general layout arrangement is adhered to no difficulties should arise on this account. There is no hum level to worry about and the whole unit is extremely stable.

The construction of the heat sinks is quite simple if the following procedure is adopted. Obtain a piece of hard wood 1in square and 4in in length. From a sheet of 16 s.w.g. aluminium cut two pieces each measuring 44in x 4in. Hold each piece in a vice and bend it round the mandrel to form a C channel heat sink. See Fig. 8.

In the centre section of each heat sink drill the holes for the power transistor fixing screws and the feed-through holes for the base and emitter connections. In the corners of each heat sink drill four holes for fixing the assembly boards into their final positions.

Special care must be observed when connecting the ASY28 npn transistor TR8. The collector looks towards the positive rail and the emitter towards the negative side of the output electrolytic C20. This is, of course, opposite to the connection of the OC72 pnp transistor TR7.

SETTING UP

When the power amplifier panel has been completed, check the connections carefully. A loudspeaker must be connected to the output terminals before power is applied to the amplifier. The output impedance of the amplifier is less than 1 ohm and ensures good loudspeaker damping. Any speaker having an impedance of from 3 to 15 ohms can be used.

If you have any doubts regarding the speaker impedance you propose using, remember a very easy way of finding the impedance is to measure the d.c. resistance and multiply this by √2. The power supply can be derived from either a battery or from a mains power unit giving a d.c. output of 32V.

The improved loudspeaker damping and absence of an output transformer (which is both costly and inefficient) are quite definite steps in the direction of true quality reproduction. Class B amplification has the advantage of low quiescent current and high efficiency at full output, the average current consumption on music being about one-third of that on maximum sine wave output.

BIAS ADJUSTMENT

In principle, the two output transistors should be biased to cut off; however, strict adherence to this condition results in crossover distortion which is most unpleasant to the listener. This serious disadvantage which takes the form of a thin reedy kind of noise, which at low input gives the impression of a displaced loudspeaker cone, can be overcome by applying a small forward bias to each transistor, as stated in the earlier description of the transistor functions stage by stage.

Any slight distortion discernable can be eliminated by careful adjustment of the variable voltage level control VR4 between the base of TR5 and emitter collector junction rail to TR9, TR10. The ease of this adjustment is only apparent when final setting up is taking place at a low volume of a piano recording of, say, Beethoven's "Moonlight Sonata". Once the correct position is set, no further adjustment is necessary.

CAUTIONARY NOTE

Do not attempt to use the amplifier at any time without a speaker or equivalent d.c. resistive load connected between the output capacitor C20 and earth. Always remove the d.c. supply before disconnecting the speaker: very large transient currents are built up in the large electrolytic capacitor and, if undamped by the low resistance of the speaker, will surge through the output transistors and damage them.

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R20 4.7kΩ</td>
<td>C14 220μF ceramic</td>
</tr>
<tr>
<td>R21 47kΩ</td>
<td>C15 32μF 10V</td>
</tr>
<tr>
<td>R22 39kΩ</td>
<td>C16 64μF 10V</td>
</tr>
<tr>
<td>R23 1.5kΩ</td>
<td>C17 1,000μF polyester</td>
</tr>
<tr>
<td>R24 470Ω</td>
<td>C18 4,700μF polyester</td>
</tr>
<tr>
<td>R25 8.2kΩ</td>
<td>C19 4,700μF polyester</td>
</tr>
<tr>
<td>R26 1kΩ</td>
<td>C20 1,250μF 25V</td>
</tr>
<tr>
<td>R27 1kΩ</td>
<td></td>
</tr>
<tr>
<td>R28 1Ω 3W</td>
<td></td>
</tr>
<tr>
<td>R29 1Ω 3W</td>
<td></td>
</tr>
<tr>
<td>R30 15kΩ</td>
<td></td>
</tr>
</tbody>
</table>

All 1W, cracked carbon, high stability 5%, unless otherwise indicated.

Potentiometers
VR4 200kΩ carbon preset (skeleton type)

Transistors
TR5 OC71 TR6 OC72 TR7 OC72 TR8 ASY28 TR9 OC35 TR10 OC35

The next and concluding article will describe a simple mains power supply unit giving 28V from a standard battery-charger transformer. This article will also include some advice on the stereophonic arrangements for those who are interested in stereo reproduction and do not mind the cost of duplicating the amplifier and pre-amplifier.
LECTRONORAMA

HIGHLIGHTS FROM THE CONTEMPORARY SCENE

Valves Still Used Here!

This gigantic device is a new 200kW power transmitting triode, shown by the English Electric Valve Company at the recent British Exhibition in Sydney. The picture shows the structure of the grid and filament.

“Early Bird” with Travelling Waves

The Post Office is installing water-cooled C-band travelling-wave tube amplifiers in the world's first commercial communications satellite system—“Early Bird”. The tubes will give an operating power output of 10kW at 6,301 Mc/s with a tuning range of the r.f. structure of 225 Mc/s and small-signal bandwidth better than 30 Mc/s.

The satellite will be launched into a “stationary” position 22,000 miles above the Atlantic to provide a 24-hour link between North America and Europe. It will be able to transmit live television programmes of provide up to 240 two-way telephone circuits.

Olympic Relay

Syncom III satellite, which was used as a vital link for the transmission of television pictures of the 1964 Olympic Games, held in Tokyo in October, to Point Mugu in California, was not specifically designed for television transmission. The r.f. bandwidth of the satellite circuit, 13 Mc/s, is insufficient to provide adequate bandwidth for a television signal with the high deviation f.m. system used. The video bandwidth of about 2.7 Mc/s cannot be increased by reducing the deviation without degrading the signal/noise ratio. To overcome this problem a helical scan tape recorder was used in Tokyo.

Sound programmes were sent from Tokyo to Hawaii via the recently laid trans-Pacific telephone cable and thence to Vancouver by means of the Commonwealth Pacific telephone cable (COMPAC). Microwave radio links carried the signal across Canada to the Canadian transatlantic telephone cable (CANTAT) for linking to the British trunk telephone system in Scotland.

International Conference on Lasers

New possibilities in the fields of measurement and communication are being found by using lasers. The Conference on Lasers and their Applications, held at the I.E.E. in London in conjunction with the I.E.R.E. and the American I.E.E. in September, revealed some interesting advances in laser techniques.

The laser produces a very intense light beam with many properties, similar to radio waves, which ordinary light does not possess. Laser transmissions can be focused into very narrow beams enabling very long range and a high degree of accuracy to be obtained in rangefinding and communication applications. Laser beams can also be used for precision welding (see last month's issue) and cutting applications. It is envisaged that, due to the very high frequency which lasers provide, there is a possibility for virtually unlimited capacity for telephone and television transmissions.

The picture shows one application of the ruby laser exhibited by the University of Southampton as a bleaching agent for blue dye. When the laser is “pumped”, oscillation first occurs with the dye absorbing. The ruby rod then sees the full reflectivity of the mirrors and Q-switched operation ensues.
Denmark on the Dial!

The first high capacity telephone cable between Britain and Denmark was brought into service on 1 October to increase the number of telephone circuits between Britain and Germany, Denmark, and Holland. The cable, which is laid between Winterton in Norfolk and Esbjerg, will provide 120 high quality speech circuits.

This is the second of five cables planned to be laid across the North Sea by 1966. One of two to Germany was opened earlier this year. Two cables will be laid to improve the facilities to Holland. Twenty-four submerged repeaters are spaced evenly along the 300 nautical miles of cable to boost the speech signals. One of these is shown above giving a layout of the various units.

International subscriber trunk dialling will be introduced from Britain to Denmark in the spring.

Electronics "See" Ten-millionth of an Inch

A research chemist in New York has been using an electron microscope, which is capable of seeing particles one ten-millionth of an inch in size, to study the crystal structure of silver halides during chemical reaction. The enlarged electron micrograph in the picture below shows what is happening to silver bromide crystals in a solution of potassium iodide as seen by the microscope at 30,000 diameters. The crystals are being dissolved by the potassium iodide as silver iodide (small crystals) is formed.

The Shape of Circuits to Come?

A new grade of copper-clad Bakelite laminated sheet has been developed for the preparation of printed circuits. The new grade is made by bonding copper foil to polyester film and may be coiled and folded. It could enable the size of an assembly to be considerably reduced. Processing is achieved in the normal way by etching or printing techniques.

It is expected to find useful applications in automobile wiring, computers, telephone and switchboard wiring, radio and domestic appliances.
Three stages of i.f. amplification (at 10.7 Mc/s) are employed, and these are followed by a ratio detector.

It is worth mentioning at this point that although some hi-fi people would regard this with some surprise, the decision to use a ratio detector is backed by sound principles. Eyebrows may be lowered. The ratio detector is capable of just as linear a response as the Foster-Seeley or the earlier Rond-Travis discriminators; and although the Foster-Seeley has been the "standard" for valve users for a good many years, nowadays more and more designers are using the ratio detector.

For transistor circuits the Foster-Seeley has notable disadvantages unless a relatively low i.f. is used, and the bandwidth needed has to be obtained by a much more critical i.f. amplifier set-up.

The theoretical man will appreciate that the mathematics of either type of discriminator show just the same opportunities for distortion, and that this can be minimised by using an i.f. amplifier whose response curve is "gaussian"—that is, bell-shaped—giving the most linear phase change through resonance points. Any reasonably advanced text book on electric circuit analysis may be consulted on this point, for example M.I.T. Radiation Laboratory Series Vol. 18—Vacuum Tube Amplifier (Valley & Wallman; McGraw-Hill Book Co.).

What is very important is to see that the i.f. amplifier and detector overall response is a smooth curve, rising steadily (though rapidly) to a peak at resonance and dropping off thereafter in an equally steady and rapid way. Any bumps or spikes on this curve are reflected in irregularities of phase-change, and consequent kinks in the phase characteristic. Fig. 13 illustrates a good and a bad type of response curve, with the appropriate phase characteristic.

To ensure that the i.f. amplifier has the proper response fixed neutralisation has been abandoned, and variable neutralising capacitors are used instead, TC3, 4, and 5. These have to be adjusted, when the i.f. amplifier has been built, to get the proper response curve.

CRITICAL WINDDINGS

The construction of the i.f. amplifier transformers is also somewhat critical, especially as regards the gauge of wire used and the spacing between primary and secondary. (Refer to data and Fig. 8 in last month's article.) Coupling has been arranged to be a little less than "critical", except in the detector stage where joint critical coupling is employed.

If any difficulty exists in deciding the spacing, one should err on the generous side, rather than bring the windings even fractionally too close. Also the wire must be wound close, that is, with the adjacent turns touching. Any systematic gap will increase the winding length unacceptably. This is not usually a bother when coils are wound by hand, but if a winder is used the coils should be carefully inspected after construction.

Correct spacing is best obtained by cutting a strip of drawing paper the exact width required, and with it winding a spacer centrally on the former. The windings can then be started from the centre, hard up against the spacer; the latter may be removed later, when the fixing cement is hard and dry, but there is no real need to do this.

With regard to the detector transformer T7, particular care is necessary here, since a number of associated components have to be fitted inside the screening can in addition to the actual transformer assembly. Provided the smallest size of components is used, the "long" can specified will accommodate all items shown inside the dotted line which represents the can in Fig. 11. Details of the assembly of these components on the coil former are given in Fig. 12.

THE ETCHED CIRCUIT BOARD

The etched circuit is set out on a piece of copper clad laminate measuring 2½in by 8in, as shown in Fig. 10. The conductors are relatively few, and may be drawn direct on to the laminate surface with an acid resist. Thinner cellulose paint may be used for this quite successfully, but the vapour is dangerous to inhale and the process should be done in the open—or at the least, in an extremely well-ventilated room.
The best resist the writer has discovered is a proprietary French polish type of fluid known and marketed as "Glitseal", which is obtainable from "do-it-yourself" shops. This has to be diluted with about one-third of its volume of methylated spirit, as it is too thick for accurate small work, and for visibility it is dyed with a few crystals of crystal violet, obtainable from any dispensing chemist.

The conductors may be drawn with this mixture, using a ruling pen preferably as a small brush cannot readily be set against a straight edge. It should be noted that the conductors N, P, Q, and R are the earthing strips for the i.f. transformer cans, and conductor S is the earth point for the coaxial socket output to the i.f. strip. The conductor A is the common "earth" connection, and is best made quite wide as several component leads have to be soldered to it.

When the "conductors" are dry and hard, a careful check should be made to see that all is well. Then the etching process may be carried out, using 30 per cent ferric chloride solution in the usual way—see last month's article.

The theoretical circuit of the i.f. amplifier, detector, and pre-amplifier is given in Fig. 11, and during the wiring-up procedure this diagram should be consulted frequently to ensure that no errors occur. When wiring is complete the circuit board should be given a coating of varnish—the "Glitseal" is excellent for this purpose—to protect the copper laminate against corrosion.

ALIGNMENT OF THE I.F. STAGES

To set up the i.f. amplifier the following method should be followed. This will enable a stable and well-tuned amplifier to be achieved, which is then trimmed for the correct response curve.

A multimeter is needed, and a signal generator capable of supplying a signal of 10-7Mc/s, amplitude modulated or unmodulated at will. The leads from the multimeter should be decoupled at the ends by means of 5 kilohm resistors, and these soldered lightly to tags 3 and 11 (across the stabilising capacitor of the ratio detector). The leads must be arranged to lie well away from the i.f. stages.

Set the multimeter to the 50µA or 100µA range, and the signal generator to high output.

Set the neutralising capacitors TC3, 4, and 5 to minimum. Disconnect the two 1000Ω decoupling resistors R17, R21 from the B—line; this leaves only the ratio detector driver transistor and the pre-amplifier transistor in operation. The battery supply is now connected.

Most likely at this stage the microammeter will show a reading, indicating the stage is oscillating. Rotate the adjustment of TC5. Two positions will be found at which the stage breaks into oscillation, with a space between when no oscillations occur. Obtain the centre setting. Switch on the signal generator and bring the "live" lead near the base of TR6. Rotate both cores of T7 until maximum deflection of the meter is obtained, reducing the signal generator output if necessary. It may well happen that as the transformer is brought into line TC5 will require re-adjustment, but there is no difficulty at all in tuning up this stage and neutralising it.

Next tune the secondary of T5 until maximum meter deflection is reached, once again adjusting TC5 as necessary to recover stability. No contact should be necessary between the signal generator lead and the base of TR6, but if the signal generator output is small the lead may be connected via a small capacitor to the primary of T6 at the collector terminal of TR5.

Next transfer the signal generator lead to the base of TR5, again without physical contact, and re-tune the transformer T6. As the transistor for this stage is not working yet, a small reading only will be obtained unless the signal generator output is increased. Connect up the decoupling resistor of this stage (R21), to bring the stage into operation. Again, oscillation will probably result, and in the absence of an input signal a meter reading will be obtained. Adjust TC4 to stabilise the circuit, and tune the secondary of T5.

Couple in R17, and repeat the above adjustments with T4, T5, and TC3. At this stage it may well be found that very small adjustments of TC4 and TC5 are required to retain overall stability. These will amount only to a fraction of a turn—10 degrees or so of adjustment is usually enough.

Now that the i.f. amplifier is stable and roughly tuned the signal generator output lead should be plugged into the coaxial socket SK2, and the output reduced to a few microamperes r.f. Re-tune the entire receiver for maximum output at the meter. It should
be found that the stages tune quite independently. If not, neutralisation is not exact. Very slight adjustments of all three neutralising capacitors are now needed, with re-tuning of the transformers as necessary, until the transformers tune independently, and a change in the setting of one core does not affect the timing of the next stage.

VISUAL ALIGNMENT

If a wobbulator (i.e. frequency modulated oscillator) and an oscilloscope are available it is possible to align for the best response curve.

For this, deviation is set to the maximum; and the stabilising capacitor C38 temporarily disconnected from points 3 and 11, and the oscilloscope connected to these points. If necessary, one of these points may be earthed temporarily. Extremely slight adjustment of transformer tuning and of the neutralising capacitors will permit a smoothly-rounded curve to be obtained.

THE DETECTOR

The next step is to adjust the ratio detector. Re-attach the stabilising capacitor C38 between points 3 and 11, and connect a pair of headphones (or audio amplifier) to detect the modulated output. Connect the signal generator output to the coaxial input socket SK2. Switch on the modulation in the signal generator. Maximum sound output will not be obtained, but there should be some. Rotate the core of the secondary of the discriminator transformer T7 until zero output is obtained. This will be quite sharp.

Next, if a wobbulator is available set to 25kc/s deviation and connect its r.f. output to the input socket and the oscilloscope between points 5 and earth. While listening to the output, tune the wobbulator gently so that its output frequency slowly reaches the intermediate frequency to which the i.f. amplifier is tuned.

As the wobbulator comes into tune, the harsh-sounding third harmonic should disappear completely, leaving a pure tone. Meanwhile the trace should show a straight line inclined to the X axis. Increasing now the deviation to a large extent will reveal all or part of the phase response curve. If all has gone well, the trace should closely resemble Fig. 9a. If not, very slight further adjustments may be made until the perfect characteristic is approached.

If exceptionally high fidelity is not the aim, the wobbulator test may be omitted, the final check being to tune the signal generator gently through the i.f. with the meter connected across the stabilising capacitor C38 as before, and the amplitude modulation switched on. The output should be monitored aurally.

As resonance is approached the meter reading should rise steadily, in the same way as the amplitude characteristic of Fig. 9a, as the sound output increases. As resonance is approached the sound should die away to zero as the meter approaches maximum. A check should be made that the peaks of the most intense sound are equally spaced about the zero point. Also, by connecting a meter between point 10 or 13 and chassis, check that a zero reading is obtained at the zero sound output point and that equal positive and negative readings are obtained at equal frequencies off resonance.

The conditions necessary for this are that the ratio detector transformer should be absolutely symmetrical, and that it should be matched each side. The 470 ohm and 6.8 kilohm load resistors R29, R30, R31, and R32

Fig. 10. Printed board. The small numerals refer to similarly numbered points on the circuit. The small numbers in brackets are the pin numbers of the coils. See Fig. 11. The common earthing strip on the left-hand side is referred to as “A” in the text.
should therefore be matched as exactly as possible from stock; for "hi fi" results, match should be to 1 per cent or better. In such a case a matched pair of OA79 diodes is useful, and if they differ (as supplied) by more than 10 per cent it may be advisable to increase the 470 ohm resistors to 680 ohms—also carefully matched.

The two 500pF capacitors C36 and C37 should also be close in value, but this is less important. It is better to get a close match between the load resistors than to be very precise about the actual numerical value.

OUTPUT ARRANGEMENTS

The pre-amplifier stage TR7 is arranged for pre-set output. If this receiver is to be used in association with a sensitive power amplifier (such as the 5W Integrated Amplifier currently appearing in our pages) it may be feasible to dispense with the gain of this stage and instead employ the transistor TR7 as an emitter-follower. This is recommended for the highest quality reproduction.

To effect this change, remove VR1 and connect the collector of TR7 direct to the B—rail. Change the value of R35 to 1-8 kilohm, and remove C41. Output at a few ohms impedance is then taken from the emitter of TR7.

If a coupling capacitor is to be used between this and the next audio stage, a 500µF capacitor should be used. It will be preferable however to use direct coupling into the base of the next stage if d.c. conditions can be achieved correctly.

I.F. INTERFERENCE

The author has found that in certain locations interference can be obtained from transmissions on the intermediate frequency of 10-7Mc/s if any r.f. signal finds its way into the i.f. amplifier. Provided the interfering signal is not so strong as to cause cross-modulation with the desired signal, direct r.f. pick-up can be avoided by good screening and by adequate selectivity in the r.f. stages.

However, in this receiver unit construction is employed, and connecting cables may cause a certain amount of pick-up at i.f.; added to which is the possibility of direct pick-up on the circuit wiring of the i.f. amplifier, unless an earthed screening box for the whole unit is made. Usually, however, it is possible to find a quiet spot within a few hundred kc/s of the nominal i.f., and this is the recommended procedure if interference is experienced.

![Fig. 11. Circuit diagram of the i.f. unit](image)

ALIGNMENT OF THE RF. UNIT

Having roughly ascertained that the oscillator is working in the correct frequency band—in the way previously mentioned—all that remains is to effect a careful alignment using a meter. Either phones or a small loudspeaker may be connected between C42 and B—, or an a.f. amplifier may be attached. A test oscillator or signal generator is required capable of giving a modulated output (preferably f.m.) over the range 85-100Mc/s. This is set to 87-5Mc/s, and connected to the aerial socket of the receiver; moderate output will be required, say 10mV. The volume control should be adjusted so that the receiver does not emit too much noise. Set the ganged capacitors to maximum (full interleaved) and rotate the core of the oscillator inductor (L2) until a signal is heard. If too loud reduce the signal generator output. Tune the oscillator for peak signal by means of the core. If the signal can be heard at two settings of the core, select the position corresponding to the smaller value of inductance.

Set the signal generator to 100Mc/s and the ganged capacitor to minimum. Adjust the oscillator trimming capacitance until maximum signal is heard. Next set the gang to the half-way position, and tune the signal generator for maximum output in the receiver. Rotate the core of the aerial coupling inductor and of the r.f. interstage transformer for maximum volume.

During the above procedure it will be found that when exact tuning with the signal generator is achieved the modulation disappears, unless the signal generator...
COMPONENTS . . .

Items marked * are not required if an emitter-follower output stage is employed.

Resistors

- R15 15kΩ
- R16 22kΩ
- R17 100Ω
- R18 2.2kΩ
- R19 22kΩ
- R20 15kΩ
- R21 100Ω
- R22 2.2kΩ
- R23 22kΩ
- R24 15kΩ
- R25 470kΩ
- R26 22kΩ
- R27 47Ω
- R28 1kΩ
- R29 470Ω
- R30 47Ω
- R31 6.8kΩ
- R32 33kΩ
- R33 1kΩ
- R34 1-8kΩ

Capacitors

- C18 1.5KpF
- C19 0-1µF paper
- C20 50pF
- C21 0-1µF paper
- C22 0-1µF paper
- C23 50pF
- C24 50pF
- C25 0-1µF paper
- C26 0-1µF paper
- C27 50pF
- C28 0-1µF paper
- C29 0-1µF paper

Transformers

- T4, T5, T6 I.F. transformers—see text
- T7 Detector transformer—see text

Transistors

- TR4 AF116
- TR5 AF116
- TR6 AF116
- TR7 OC75

Diodes

- D3 OA79
- D4 OA79

Miscellaneous

- SK2 Coaxial socket

OFFICE WORK MADE EASY . . .

Electronics is playing an important part in automation of office methods and it was evident from the Business Efficiency Exhibition, held at Olympia on 5–14 October, that the modern business establishment is finding new ways of speeding up office work and reducing the risk of error.

Among new developments there was the new electronic calculator, on show for the first time by Friden, which displays four rows of numbers and answers, including the decimal point and function signs, on a small c.r.t.

The decimal point can be positioned to give 0, 2, 5, 7, or 11 decimal place working, and any number of calculations can be made instantaneously by operating a simple ten-key keyboard.

The emphasis on quick and simple operation of dictating machines has been further enhanced by automatic tape threading and coupling to the take-up spool by the operation of a simple lever. The operator of one particular model, made by Philips, need not and indeed cannot touch the tape himself once the cassette is on the machine.

Another new dictating machine, developed by Grundig, uses foil, instead of the more conventional oxide coated plastic tape.

This unique museum piece, thought to be the earliest idea of an acoustically operated chain driven dictating machine, was on the Aga stand at the B.E.E. Let us hope it does not cause redundancy among shorthand typists!

Fig. 13. The i.f. amplifier and detector response curve showing good (a) and bad (b) characteristics

is frequency-modulated. However, a slight mistuning one way or the other will bring in the modulation sufficiently well for the output to be estimated. The following procedure, however, should be carried out with an f.m. signal, or failing this with an extremely small input. The latter can be achieved by attaching the aerial to the receiver—using the signal generator as a low-power transmitter. The signals when received should be barely above the noise level, so that the limiting effect of the ratio detector is at its minimum.

Alternatively, the broadcast stations themselves may be used for alignment, but this method is not as accurate and may take more time.

The procedure given in the above paragraphs should now be repeated, except that the aerial π-coupling should not be re-adjusted. Further repetition will give more accurate alignment, but it is seldom necessary to perform the operation more than three times in all.

If a meter is used for the alignment, it should be connected across the capacitor C33. The voltage developed, with an aerial input of 10µV, will be about 1V, but the response is highly non-linear and when the receiver is aligned the BBC transmissions may not give much more than this. Provided the signal generator output is kept as low as will give a reasonable meter deflection there should be no difficulty in achieving correct alignment.

OFFICE WORK MADE EASY . . .

Electronics is playing an important part in automation of office methods and it was evident from the Business Efficiency Exhibition, held at Olympia on 5–14 October, that the modern business establishment is finding new ways of speeding up office work and reducing the risk of error.

Among new developments there was the new electronic calculator, on show for the first time by Friden, which displays four rows of numbers and answers, including the decimal point and function signs, on a small c.r.t.

The decimal point can be positioned to give 0, 2, 5, 7, or 11 decimal place working, and any number of calculations can be made instantaneously by operating a simple ten-key keyboard.

The emphasis on quick and simple operation of dictating machines has been further enhanced by automatic tape threading and coupling to the take-up spool by the operation of a simple lever. The operator of one particular model, made by Philips, need not and indeed cannot touch the tape himself once the cassette is on the machine.

Another new dictating machine, developed by Grundig, uses foil, instead of the more conventional oxide coated plastic tape.
Some Practical Applications of the Geiger-Muller rate-meter are described by J. F. ROWLES

These simple experiments can be performed quite safely by any amateur interested in investigating the nature of radioactivity.

Last month instructions were given for the construction of a simple Geiger-Muller rate-meter. In this article it is proposed to describe a series of basic experiments that will give the user of the rate-meter an introduction to the nature of radioactivity.

Before beginning, it would probably assist if a few basic facts concerning the atomic particles emitted in radioactivity were mentioned. There are many particles that are emitted or can be emitted by an atom under different conditions. Here we are only concerned with natural radioactivity and will only consider alpha, beta and gamma radiation.

ALPHA PARTICLES
Alpha particles have the following properties:
Cause fluorescence; blacken photographic emulsions; produce ionisation in gases. They are easily absorbed by matter; deflected by magnetic and electric fields; and are emitted with large velocities.

The alpha particle has been shown in fact to be a helium nucleus, $^4\text{He}^+$ (a positively charged ion)

BETA PARTICLES
Beta particles have the following properties:
Cause fluorescence, though not as great as alpha particles; blacken photographic emulsions; cause ionisation, but to a lesser extent than alphas. They have much greater penetration than alphas; are deflected by magnetic and electric fields; and have extremely high velocities.

Beta particles, in fact, consist of electrons moving with extremely high velocities. They carry a negative charge.

GAMMA RAYS
Gamma rays were found to have the same properties as X-rays:
Unaffected by electric or magnetic fields; travel with the velocity of light; cause fluorescence; blacken photographic plates; cause a small amount of ionisation. They very easily penetrate matter; can be diffracted; cause interference; and can eject electrons from material.

The gamma rays are electromagnetic waves of shorter wavelength than X-rays. The wavelength of the rays emitted depends on the emitting material.

RANDOMNESS IN RADIOACTIVE DECAY
The randomness of radioactive decay is very easily demonstrated using the ratemeter and a radioactive source such as the luminous face of a clock or watch.

Set up the ratemeter with the luminous dial near to the G-M tube. It will be noted that the rate-meter needle does not give a constant reading but fluctuates to a certain extent, showing that the atoms of the source are not emitting at a constant rate, their emission being quite random.

INVERSE SQUARE LAW OF GAMMA RADIATION
Like light radiation, gamma radiation obeys the inverse square law. This states that the intensity of radiation observed is inversely proportional to the square of the distance from the source.

To verify this is simple, all that is needed is a gamma source and the ratemeter. A suitable gamma source

IMPORTANT NOTICE
R1 and R2 should be 2.7MΩ and not 2.7kΩ as given in last month’s article—pages 30 and 32.

129
is radium shielded by thin aluminium sheet to stop the unwanted beta and alpha rays. A luminous clock or watch face can be used, but it is better to have a more concentrated source such as some of the luminous paint used by watchmakers. This paint can be purchased from a wholesaler in such goods, and is packaged in a small test tube (of the type known as semi-micro test tubes).

The method of testing the inverse square law is to take the count rate at varying distances from the source and to plot a graph of 1/distance squared against the count rate. (See Fig. 1.)

Alternatively, a logarithmic graph can be plotted of log distance against log count rate. Here the relationship is verified more exactly as the assumption of the inverse square law applying is not assumed but the power to which the distance has to be raised to satisfy the equation is arrived at from the graph. (See Fig. 2.)

A typical set of results will now be treated to give the graphs mentioned:

<table>
<thead>
<tr>
<th>Distance (Distance)²</th>
<th>Count Rate</th>
<th>Log Distance</th>
<th>Log Count Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.25</td>
<td>100</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>45</td>
<td>0.48</td>
</tr>
<tr>
<td>4</td>
<td>0.063</td>
<td>25</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.04</td>
<td>15</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>0.03</td>
<td>10</td>
<td>0.78</td>
</tr>
<tr>
<td>7</td>
<td>0.02</td>
<td>8</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>0.0156</td>
<td>6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Mathematically, the inverse square law is expressed as

\[R = \frac{k}{d^2} \]

R = Count rate

\[d = \text{distance} \]

Taking logs,

\[\log R = -2 \log d + \log k \]

Thus the power to which \(d \) must be-raised can be obtained from the log graph as above (data for these graphs were from actual records using the ratemeter described last month).

It can be seen that the power to which the distance had to be raised was not determined exactly as 2, but consideration of the errors involved in the experiment (mainly in taking the reading from the ratemeter) shows the result to be within the range of experimental error.

This may seem to be a high error, but the ratemeter was not designed to give extremely high accuracy, and it must be remembered that the needle of the meter flickers to some extent all the time, presenting a difficulty in determining exactly what the reading should be. Each experimenter will have his own idea of where the arithmetic mean of the flickerings lie.

HALF LIFE AND ITS DETERMINATION

In radioactivity the decay of a substance is exponential, it never being completely annihilated, hence to talk of its total active period is impossible; so the time taken for half the specimen to decay away by radioactivity is taken as a measure of its term of existence, this being called the half life.

Treating this mathematically, suppose a given sample of radioactive compound contains \(N \) radioactive atoms at some time \(t \), and the probability that each of these will decay in any one second is represented by a constant \(a \) (the decay constant).

Then the average number of atoms \(dN \) that decay in a time \(dt \) is given by,

\[dN = -a dt \]

Integrating this over a time \(t = 0 \) to \(t = t \)

\[N = N_0 e^{-at} \]

Where \(N_0 \) is the number of atoms present at time \(t = 0 \). The ratio \(N \) to \(N_0 \) is the fraction of radioactive atoms remaining unchanged after a time \(t \).

The decay constant, \(a \), is the fraction of the total number of atoms that decay in unit time (provided unit time is small enough). The units of the decay constant are reciprocal time, it usually being expressed as reciprocal seconds. Its value is constant and specific for a given nucleus.

Practically, this decay constant is not used, but half life, mentioned above.

At a time \(t = \frac{1}{2} t \), the number of atoms remaining, \(N \), equals \(\frac{1}{2} N_0 \). Substituting in the integral formula,

\[\frac{1}{2} = e^{-at} \]

or

\[\log e^{\frac{1}{2}} = -at \]

then,

\[t \frac{1}{2} = \log e^{\frac{1}{2}} \]

or

\[\log e^{\frac{1}{2}} = \frac{t}{2} \]

or

\[\log e = \frac{t}{2} \]

or

\[t = \log e \frac{1}{2} \]

Fig. 1 (below). This graph shows \(1/\text{distance squared} \) plotted against count rate

Fig. 2 (right). A logarithmic graph of log distance against log count rate
LEARN ELECTRONICS — AS YOU BUILD

over 25 CIRCUITS—
EXPERIMENTS — MODELS and
TEST EQUIPMENT — including:

- Valve Experiments
- Transistor Experiments
- Electro-magnetic Experiments
- Basic Amplifier
- Basic Oscillator
- Basic Rectifier
- Signal Tracer
- Simple Counter
- Time Delay Circuits
- CATHODE RAY OSCILLOSCOPE
- Square Wave generator
- Morse Code Oscillator
- Simple Transmitter
- Electronic Switch
- Photo-electric circuit
- Basic Computer Circuit
- Basic transistorised radio receiver using printed circuit
- A.C. Experiments
- D.C. Experiments

The full equipment supplied comprises: valves, transistors, photo-tube, modern type chassis board; printed circuit board; full range resistors, capacitors and inductors; transformers; potentiometers; switches; transistors; valves; all hardware, wiring and every detail required for all practical work plus CATHODE RAY OSCILLOSCOPE for demonstrating results of all experiments carried out. All practical work fully described in comprehensive PRACTICAL MANUALS. Tutor service and advice if needed.

This complete practical course will teach you all the basic principles of electronics by carrying out experiments and building operational apparatus. You will learn how to recognise and handle all types of modern components; their symbols and how to read a completed circuit or schematic diagram. The course then shows how all the basic electronic circuits are constructed and used, and HOW THEY ACTUALLY WORK BY USING THE OSCILLOSCOPE PROVIDED. An application is given in all the main fields of electronics, i.e. Radio; control circuits; computers and automation; photo-electrics; counters, etc., and rules and procedure for fault finding and servicing of all types of electronic equipment.

- NO PREVIOUS KNOWLEDGE NEEDED
- SENT IN ATTRACTIVE BOX
- NO MATHS USED OR NEEDED
- COMPLETE ADVICE SERVICE
- REASONABLE FEE—NO EXTRAS REQUIRED
- EVERYTHING REMAINS YOUR OWN PROPERTY

A completely NEW up-to-date home study experimental course by BRITISH NATIONAL RADIO SCHOOL — Britain’s Leading Electronic Training Organisation.

POST NOW FOR FREE BROCHURE

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKSHIRE. Please send free Brochure, without obligation, to:

NAME
ADDRESS

Block Capitals Please

PE 12.64.
The actual rate of decay of a specimen is equivalent to the rate of emission of photons or particles, since each atom gives rise to a particle and/or a photon of radiation. This rate of emission is therefore the same as the absolute rate of decay, represented by:
\[\frac{-dN}{dt} \]

It is very difficult, however, to detect and record every single particle emitted from a radioactive mass, although it is possible to measure a constant fraction of that decay. This distinguishes between the count rate registered on the G-M ratemeter and the true rate of decay. The relationship between the two can be given as follows,

\[C = K \left(\frac{-dN}{dt} \right) \]

Where K represents the overall efficiency of the detection.

The numerical value C may replace the true rate of decay in the integrated decay equation,

\[C = C_0 e^{-\lambda t} \]

Hence,

\[\log_{10} C = -0.4343 \lambda t + \log_{10} C_0 \]

The logarithm of the measured count rate, C, plotted against the time, yields a straight line graph of slope 0.4343λ, from which λ and hence t½ can be found. In practice it is easier to plot count rate on semi-logarithmic graph paper against the time, and read off t½ directly. (See Fig. 3.)

It can be seen from the above description and the graph, that to obtain a value for the half life of a substance, a graph from which the slope can be easily determined or from which the half life is directly obtainable, is essential. This means that this method can only be employed for the determination of the half lives of substances in which that period is practicably short (say, up to one year). Thus the substances that the amateur normally deals with (uranium and radium mainly) whose half lives are extremely long (1,000 years at least) cannot easily be treated in this manner to obtain values for the half life period.

For the determination of the long half lives a special technique is employed. Here the rate of decay and the number of atoms present in the specimen are determined separately, these together with knowledge of the Avogadro number for the specimen (the number of molecules in one gram molecule of a substance). The value of the Avogadro number is \(6.02 \times 10^{23} \) molecules per mole. In the actual determination of the half life the quantities required are the decay rate, the weight of substance under examination (accurately in grams), the gram molecular weight (from tables), and the Avogadro number.

It must be remembered that the count rate recorded by the ratemeter is not the decay rate but a fraction of it, and before any determinations of half lives can be undertaken this relationship must be established.

A SIMPLE PIECE OF APPARATUS

It will be of great use if the following simple piece of apparatus is constructed and used when determining half lives. It consists of a short length of wood with mounts for the G-M tube and the source holder. No dimensions have been given as these depend on the size of G-M tube available. The tube is mounted through holes drilled in blocks of wood which are mounted in the positions shown in Fig. 4.

Once the relationship between count rate and decay rate has been determined for the apparatus it can easily be used for future determinations of half lives. The relationship can be determined in two ways: by consideration of the geometry of the arrangement and by experiment, assuming the half life of a substance.

Considering the geometry of the system, the source can be considered as a point source as the quantities used by the amateur are small. Referring to Fig. 5, the following measurements must be made:

1. The distance from the centre of the source to the G-M tube—"d".
2. The width of the G-M tube—"a".

Hence from the geometry of the figure,

\[\tan \Theta = \frac{a}{d} \]

hence Θ can be found in degrees.

The constant relating count rate to decay rate is then 360/Θ, assuming that the specimen radiates equally in all directions.

Having determined the constant for the apparatus it can now be used to find half lives. The method is as follows.

The first consideration is the fraction of radioactive material in the specimen under examination. Consider a radioactive element, M, existing in a compound, MX, which is under examination. The fraction of M present is then the ratio of M to M - - X. A practical examination will now be given. In the compound radium chloride, the fraction of radium present is found as follows

Molecular weight of Ra Cl₂ = 226 + (35.5)2 = 297
MINIATURE
METALLIZED
POLYESTER
CAPACITORS

These small moulded metallized polyester capacitors are ideally suited to the applications to printed wiring panels and transistorised circuits. The use of the new dielectric material and unique construction combine the advantages of small physical size and superior electrical characteristics which meet the requirements of H.S DEF. 5011 Specification.

CONSTRUCTION
The windings are virtually non-inductive and the wire terminations are soldered direct to the metal electrodes eliminating contact resistance and ensuring the minimum possible inductance.

Cap. Tolerance: ±20%
Voltage Rating: Peak ripple voltage and D.C. voltage must not exceed rated D.C. voltage.
Power Factor: ≤0.01 at 1 Kc's, at + 20°C.
Temperature Rating: Suitable for working at ± 85°C. without derating.

THE TELEGRAPH CONDENSER CO. LTD.
Electronics Division - North Acton - London-W.3. - Tel. ACom 0061 - Telex: 26133 (also at) CHESSINGTON, SURREY & BATHGATE, SCOTLAND

L.K. ELECTRONICS (VICTORIA) LTD.
ARE NOW SOLE NATIONAL CONCESSIONAIRES FOR THE

SIOUX 60 WATT GUITAR AMPLIFIER

Incorporating
Ten High Duty Speakers in two columns of five designed to handle efficiently the full output of Amplifier at frequencies down to 25 c.p.s. ★ Heavily made Cabinet in two tone Vynair ★ For 200-250 v. to 50 c.p.s. A.C. Mains operation ★ Four jack socket inputs and two independent volume controls for simultaneous connection of up to four instrument pick-ups or microphones ★ Level frequency response throughout the Audible Range ★ Speakers, microphone, stand and leads included.

OUR PRICE ONLY 35 GNS

Please send S.A.E. for details to:

L.K. ELECTRONICS (VICTORIA) LTD.
17 GILLINGHAM ROW, LONDON, S.W.1
NOW ANYONE CAN AFFORD TO TRAIN TO BE AN EXPERT IN RADIO, TV, AND ELECTRONICS

Anyone can afford these running courses—anyone can understand this practical training with no complicated mathematics to hold you back—so old and fresh-faced, so believed to be useful to everyone.

The lessons are CRYSTAL CLEAR. PRACTICAL, EASY TO MASTER AND USE—treaty terms, for example, can make fundamentals clear even to the beginner, while other lessons will give you the practice you need to master an expert.

Courses are finely designed with some courses costing very much more! By creating a master-teacher through three volumes and eliminating individual letter writing we are able to offer these savings directly to you.

Each course is printed on extra large sized sheets and bound into one manual to simplify handling and distribution.

Please select the course most suitable for your requirements from the following:

Therefore the fraction of radium present is
\[
\frac{226}{297} = 0.761
\]

A weighed specimen of the substance under examination is then taken and the weight of radioactive material present is found. The count rate observed from the specimen in the above apparatus is noted. The half life is then found as follows.

Let the count rate be \(C \), the constant of the apparatus be \(360/A \), the weight of specimen taken \(W \), the fraction of radioactive material present \(1/f \), and the Avogadro number \(L \). Let the molecular weight of the specimen be \(M \). Then,

\[
\text{Weight of radioactive substance present} = \frac{W}{1} \times \frac{L}{f} \times M
\]

True decay rate = \(\frac{360C}{A} \)

Number of atoms present in the radioactive specimen
\[
= \frac{W \times L}{1 \times M}
\]

The decay constant “\(a \)” therefore equals,
\[
a = \frac{360CfM}{AWL}
\]

\[\text{Fig. 5. Critical measurements in half life experiment set-up}\]

A PRACTICAL EXAMPLE

A practical example from the author's own records will now be given.

Source to tube distance = 10cm
Weight of radium taken = \(5 \times 10^{-8} \) grammes
Diameter of G-M tube = 2cm
Count rate = 570/sec
Angle of acceptance = \(\tan^{-1} \frac{2}{10} = 11.3^\circ \)

Therefore,

\[
\text{Decay rate} = \frac{570 \times 360}{11.3} = 18,150 \text{ counts/sec.}
\]

Hence,
\[
a = \frac{18,150 \times 226 \text{ (M.W. of radium)}}{6.02 \times 10^{23} \times 5 \times 10^{-6}}
\]

The weight of radium taken was \(5 \times 10^{-8} \) grammes

Hence,
\[
\log_{e} 2 \times 6.02 \times 10^{23} \times 5 \times 10^{-6}
\]

\[
t = \frac{18,150 \times 226 \times 60 \times 24 \times 365}{11.3 \times 6.02 \times 10^{23}}
\]

\[
= 0.593 \text{ grammes.}
\]

Hence, assay of material is 0.593 per cent of uranium 235.

EXAMINATION OF RAIN WATER

Readers will no doubt remember the consternation that was caused a few years ago by the discovery of radioactive iodine (I\(_{131}\)) in milk. The half life of this isotope is eight days so its presence can be easily detected by the first of the two methods described for determination of half lives. The iodine entered the milk via rain which fell on the pastures of cattle. The concentration of the isotope in the rain would be very small.

Investigation of radioactive material in rain first necessitates the concentration of the rain water. For this a special kettle reserved for the purpose should be used. About a gallon of rain water is collected. The kettle is filled with this water and boiled almost to dryness; it is then refilled and the process repeated until all the rain water collected has been concentrated (a gallon is the minimum for usable results).

The concentrate should be of the order of 50 to 100cc. This is then transferred to a conical flask of 250cc capacity where final concentration is carried out. The final volume should occupy about a half of one of the semi-micro test tubes.

The radioactivity of the specimen is observed over a period of time and a graph of count rate against time is plotted. One reading a day at the same time each day will be sufficient. If the graph adopts an exponential form, the half life of the radioactive material present can be found. Since the half life is peculiar to a particular nucleus, the substance present can be identified.

The specimen of rain water for concentration must be concentrated as soon as possible after it has fallen.

The above article by no means exhausts the possibilities of the use of the ratemeter, but it is hoped that it will serve as an introduction to radioactivity enabling the individual to devise his own experiments and lines of research.
IMPORTANT DATE

Perhaps it is not altogether irrelevant for me to mention the General Election. After all this did take place on the same day that Practical Electronics made its debut (yes, 15 October 1964 was certainly a date of importance!). Furthermore, electronics played a notable part in the election proceedings, both during the campaign as candidates vied with one another to appear the more foresighted in technological matters—the words electronics and automation are now very much part of the politician's stock-in-trade—as well as after the poll when some of the largest and fastest computers in the country were mobilised by the BBC, ITV, and the Press to analyse the results.

But was it lethargy on the part of the Elliott 803 in the BBC studio or inefficiency of the humans feeding this robot which produced the state of affairs where one commentator was able to obtain the answer on his slide rule in much shorter time than previously?

A BIASED VIEW?

It is not, I trust, insularity on my part that makes me favour our term "valve" as opposed to the trans-Atlantic "tube". The latter word has always seemed to me a pretty inapt title for this important electronic device. All the more surprising that it was adopted by the Americans who generally have a gift for concocting imaginative and colourful terminology.

Actually I seem to remember reading sometime ago an admission by an American writer that the English term valve was a more appropriate choice than tube. The reason put forward in support of our word was rather odd though. It was suggested firstly that "valve" is synonymous with "amplifier", and secondly that all valves (or tubes) are amplifying devices.

What does this word valve in its general sense suggest to you? Do you think of, for example, a small lever or screw device controlling a large flow of liquid in a pipe line—if so then this is in truth an amplifier.

Or do you visualise an object which is essentially a one-way device—such as the pneumatic tyre valve? Coming back to the electronic valve, the one-way interpretation fits the envelope perfectly. On the other hand, the amplifier idea is logical all right when applied to triodes and upwards, but unfortunately excludes the humble diode.

SWEET AND LOW

Have you noticed how widespread the use of built-in background music is becoming? I really do mean "have you noticed". The sound that is nowadays being disseminated in many public places, shops, and restaurants is indeed of a very subtle character. It is far, far removed from the brash and forthright "music while you work" variety.

This background music is played more or less continuously and is designed not to intrude, but to be just audible. One may be hardly aware of the music—but sure enough it is doing its stuff on our subconscious mind!

Maybe it is all good therapeutic treatment, inducing calm into worried minds, and so aiding our digestive processes as we imbibe. Stores and supermarkets presumably find it commercially rewarding. The casual shopper, without realising exactly what is going on, finds himself loath to depart from the comforting relaxing atmosphere, but lingers among the wares.

A WEIGHTY MATTER

According to the theory put forward by an archaeologist, Stonehenge—that monumental array of stone circles on Salisbury Plain—is a neolithic age computer, and was probably used to calculate the movements of the Sun.

Solid state, without a doubt.

EXTRACTING THE FI

You may have your own ideas regarding the ethical or artistic aspects of this form of sound distribution. At any rate we can admire the technical expertise that has been applied to the planning and recording of programme material.

Musical items are carefully selected—strident sounds or heavily accented rhythms are out. During the recording session amplitude compression is introduced, for it is essential that the sound level should remain constant throughout.

I suppose the engineers responsible for these recordings have their own particular problems and have no doubt evolved some ingenious circuits for their purpose. Perhaps it would be a trifle unfair to describe their end product as no fi.

But why employ all those musicians and then pass their recorded performance through an electronic mangle? Far more sensible to give the job to a computer, since this is an obvious case for synthesised music.

J.V. PREDICTS

Fashions do change, of course, and already I can see the next step: "Instal 'NOVOX' Ultrasonic Background System for that tranquil atmosphere . . . your clients will appreciate this aid to concentration when contemplating the menu or pondering over that special purchase . . . " etc., etc.

Ridiculous? I am not so sure.

He's a wizard at miniaturisation
Famous Manufacturers' Surplus Bargain
Ferguson Quality Amplifier 4 Watts

BLANK ALUMINIUM CHASSIS. 3½ x 6 in., 4½ x 6 in., 5½ x 6 in. 7½ x 6 in. 9½ x 6 in. 11½ x 6 in. 13½ x 6 in. 15½ x 6 in. 17½ x 6 in. 19½ x 6 in. ALUMINIUM PANELS. 18 in. x 12 in., 18 in. x 14 in., 18 in. x 16 in., 18 in. x 18 in., 18 in. x 20 in., 18 in. x 22 in., 18 in. x 24 in., 20 in. x 22 in., 20 in. x 24 in., 20 in. x 26 in.

STANDARD TRANSFORMERS. 200-250 AC Post 2½ each

THE CUTTER consists of four parts: a die, a punch, an Allen Int. Oct. X, -. MORSE KEY 4½6; BUZZER 4½6. ohms. 0-100 sh. etc., 49½. 0-150 mA Pocket size Sin. scale.

CHARGER TRANSFORMERS. Tapped input 200/250 v.

Written guarantee with every purchase.

RADIO COMPONENT SPECIALISTS

BUILD YOUR OWN RECORD PLAYER

1. Speed Autochord 2. Tone Cabinet 17½.

3. Volume and Tone controls. All items 5½6. together perfectly. BZX3 6½6. 8½6. 10½6. enable assembly in 30 minutes, only 2 weeks to join. 12 months' written guarantee.

AUTOCHANGE KITS

Complete—see above.

B.T.H. TAPE MOTORS 115 v A.C.

2x 12½ pair, for 200 250 v. (in series)

For—Immediate— Despatch— Phone—Us—Today

Bakers

"Sellarhurst"

Loupe speaekers

The Connoisseur's Choice

Hi-Fi. JUNIOR Special 4 w. 17900 lines.

Books (List S.A.E.)

"W.W." Radio Valve Data 7½

High Fidelity Speaker Enclosures 5½.

Valves, Transistors, C.T.I. Equivalents 1½

A.C./D.C. Valve Data Book 3½

TV Fault Finding 5½.

Mullard Audio Amplifier Manual 8½.

Radio Valve Valve Guide 1½, 2½, or 4½.

Practical Radio Inside Out 6½.

Master Colour Code 6½.

Coil Design and Construction Manual 5½.

Radio, TV and Electronics Data Book 3½.

Boys' Book of Crystal Sets 2½.

Stroboscopic Disc 33, 45, 78 r.p.m. 1½.

Flow to Receive Foreign TV 5½.

WAVE CHARGE SWITCHES

3½ 5½ 8½ 11½ 14½ 17½ 20½ 23½ 26½ 29½ 32½ 35½

20 in. 4-way, or 1 2-way, long spindles

5½ 8½ 11½ 14½ 17½ 20½ 23½ 26½ 29½ 32½ 35½

4-way, or 1 2-way, long spindles

5½ 8½ 11½ 14½ 17½ 20½ 23½ 26½ 29½ 32½ 35½

2-way, short spindles

5½ 8½ 11½ 14½ 17½ 20½ 23½ 26½ 29½ 32½ 35½

2½ 3½ 4½ 5½ 6½ 7½ 8½ 9½ 10½ 11½ 12½ 13½ 14½ 15½ 16½ 17½ 18½ 19½ 20½ 21½ 22½ 23½ 24½ 25½

Transistor 4 CHANNEL MIXER

4 TRANSISTOR PUSH-PULL AUDIO AMPLIFIER

Size

Price

S.P.

8½ 3½

4½ 3½

2½ 3½

1½ 3½

1½ 3½

The "INSTANT" BULK TAPE ERASER and RECORDING HEAD DEMAGNETIZER

12 watts 15 to 20,000 c.p.s. 5 valves A.C. mains isolated. 12 in. x 5 in. x 6 in. high. Built-in Mini-motor and Assembled. Appropriate to all Electric. Cabinet with handle, 4½. extra.

TRIPLETON-HI-MAJORE

£15.18.9

Book

137
The most successful hi-fi plan ever offered to constructors

IT'S MONEY SAVING, TOO!

You save pounds by building with MARTIN AUDIOKITS - and there are so many units to choose from that it is a simple matter to select just the units to suit you best.

MARTIN AUDIOKITS comprise a cleverly designed range of prefabricated transistorised units from which you can build from a single pre-amp stage to an integrated 20 watt series hi-fi assembly suitable for use with today's finest accessories. Assembling these tested and guaranteed units could hardly be simpler, but the final results appear thoroughly professional. Quality is superb; attractive knobs and escutcheons are available. As new units come along, they can be added to your assembly stage by stage so that Audiokits are never outdated.

FROM A PRE-AMP TO A 20 WATT STEREO ASSEMBLY

MARTIN AUDIOKITS

MARTIN ELECTRONICS LTD., 154/5 HIGH ST., BRENTFORD, MIDDLESEX

Phone: ISLeworth 1167/2

Z & I AERO SERVICES LTD.

Head Office and Warehouse: 44A WESTBOURNE GROVE, LONDON, W.2.

Tel.: PARK 3641/2

All our valves carry three months guarantee. Any faulty item replaced free of charge.

Write for full catalogue of Valves and Tubes.

Please add 2/6 in & 1/2 per postase. Minimum charge 1/6.

Please address all correspondence to the Head Office.

138
FREE INSIDE NEXT MONTH’S Practical Electronics

2 DOUBLE SIDED BLUEPRINTS TO BUILD

1. HIGH IMPEDANCE VOLTMETER * * *
2. PHOTOTIMER * * *
3. ELECTRONIC GUITAR

PLUS

4 MORE PAGES OF ELECTRONIC DATA

Other Outstanding Features including
Loudspeaker
Enclosures for Transistor Amplifiers

ORDER YOUR COPY NOW!

FILL IN AND HAND TO YOUR NEWSAGENT

TO _______________________________ (Name of Newsagent)

Please send/reserve* PRACTICAL ELECTRONICS (2/6) every month, commencing with the January issue, on sale December 17th.

NAME __

ADDRESS __

NEW PRODUCTS

Miniature Insulators

Oxley Developments Company Ltd., Priory Park, Ulverston, Lanes.

It is easy for the amateur to purchase transistors, resistors and capacitors of miniature size. But try purchasing miniature accessories such as plugs, sockets and insulators for small work! Our photograph shows various types of miniature insulators, available to the amateur as well as professional, which are ideal for printed boards and perforated boards. The same firm also manufacture miniature plugs, sockets and trimmers.

Communications Receiver

Stratton & Co. Ltd., Eddystone Works, Alvechurch Road, Birmingham 31.

A fully transistorised communications receiver which is in big demand is the Eddystone EC10. It has excellent performance throughout the 550kc/s to 30Mc/s range. Powered by six U2 type cells the current drain depends on the audio output, being 36mA quiescent, 77mA at 50 milliwatts output, and 180mA at 500 milliwatts. Independent r.f. and a.f. gain controls enable the gain to be balanced to suit strong or weak signals. As our photograph shows some of the controls are push button type. The b.f.o. pitch control has marked settings for reception of upper and lower sideband signals. The tuning control is flywheel-loaded and operates a gear drive with a reduction ratio of 110 to 1; frequencies are clearly marked on the large scale to a calibrated accuracy of within 1 per cent. Also, to allow dial settings to be recorded an auxiliary vernier and logging scale are incorporated in the tuning system.

The receiver is listed at £48 0s. 0d. in the U.K.

Recorded Lessons

F. C. Judd (Sound Recording) Ltd., 174 Maybank Road, South Woodford, E.18.

Since language courses on records have proved such a success to people who cannot spare the time for regular study F. C. Judd (Sound Recording) Ltd., are now producing a 10in L.P. record, in conjunction with Rapid Recording Ltd., entitled "Learn To Play The Guitar" by Johnny Bennett, price 25/-.

The record comes complete with modern chord guides, practice and tuning charts.
2 and 3 Valve Pre-amp. Mullard Stereo, Mullard Mixer.

GRAMOPHONE EQUIPMENT, AMPLIFIERS. Any will be sent free upon request. Illustrated lists are available on LOUDSPEAKERS, TAPE DECKS, TEST GEAR, and styli. List £9/6. Our price 23/6. Post free.

Illustrated Lists

Amplifier Kits

We have full stocks of all components for the Mullard S10, Mullard 3-3, Mullard Ronnete 105 Stereo. Mono Cartridge, Complete with fixing bracket.

Instruction Manual; All Mullard Audio Circuits in "Circuits for Audio Amplifiers." We have full stocks of all components for the Mullard SIO, Mullard 3-3, Mullard Ronnete 105 Stereo. Mono Cartridge, Complete with fixing bracket.

TAPE DECKS

- Two track, Bradmatic Heads £2,3.6 12 of £15/4
- T.M.K. TP 10 £3.19.6
- AVO Model 7 Mark II £22,5.0

Latest Test Meters

- AVO Model 8 Mark III
- AVO Model 7 Mark II
- AVO Melotuner Mark 4
- T.M.K. TP 70
- T.M.K. TP 75
- T.M.K. Model 600

Latest Test Meters

- AVO Model 8 Mark III
- AVO Model 7 Mark II
- AVO Melotuner Mark 4
- T.M.K. TP 70
- T.M.K. TP 75
- T.M.K. Model 600

TAPE DECKS

- Two track, Bradmatic Heads £2,3.6 12 of £15/4
- T.M.K. TP 10 £3.19.6
- AVO Model 7 Mark II £22,5.0

TAPE DECKS

- Two track, Bradmatic Heads £2,3.6 12 of £15/4
- T.M.K. TP 10 £3.19.6
- AVO Model 7 Mark II £22,5.0

TAPE DECKS

- Two track, Bradmatic Heads £2,3.6 12 of £15/4
- T.M.K. TP 10 £3.19.6
- AVO Model 7 Mark II £22,5.0

TAPE DECKS

- Two track, Bradmatic Heads £2,3.6 12 of £15/4
- T.M.K. TP 10 £3.19.6
- AVO Model 7 Mark II £22,5.0
FOR AUDIO

HIGH SENSITIVITY
MAXIMUM RELIABILITY

We regret to announce that after maintaining our prices for seven years (with the exception of one unit) we are reluctantly announcing a revised price list.

L.50, 50 watt Amplifier approximately 14 x 10 x 8 in. Sensitivity 25 mV. output for 3 and 15 ohm Speakers. Retail price 22 guineas.

CONCORD. 30 watt Hi-Fi Amplifier with two separately controlled inputs. Retail price 17 guineas.

L.10, 10 watt Hi-Fi Amplifier with separate pre-amp. Retail price 16 guineas.

L.I/10. 10 watt Hi-Fi amplifier with integral pre-amp. Retail price 13½ guineas.

DIATOMIC. 10/14 watt Hi-Fi Amplifier with integral pre-amp. Retail price 12½ guineas.

L/5. Stereo phonic Amplifier. Output 5 watts each channel. Retail price 12½ guineas.

L.P.1 Tape Pre-Amplifier. As above but less power pack facilities. Retail price 9½ guineas.

L.45A. 4/5 watt Amplifier. Retail price 6 guineas.

L.G. 34. 2¼ watt Amplifier. Shelf mounting type for gram use. Retail price £5.10.0.

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKISTS
of British and American Technical Books

19-21 PRAED STREET
LONDON, W.2

Phone: PADdington 4185
Open 6 days 9-6 p.m.
A word or two now about practical resistors as used in electronic equipment. Last month we mentioned that wire wound resistors are not usually made in values greater than 100,000 ohms. In fact, the kind of resistor most commonly encountered in electronics is of the carbon fixed value variety.

Wire wound resistors have rather limited and specialised applications: they are used whenever a precise value of resistance is required; also as "voltage droppers" in power supply circuits, where high currents and voltages are involved. And of course, wire wound resistors suit our requirements perfectly in the present series of experiments.

One important thing to remember. All the basic laws that we are demonstrating for ourselves in this series of experiments hold good for all types of resistors — no matter whether they be made of wire, or of carbon or any other substance.

Last month we showed a group of typical wire wound resistors. This month our photograph shows a selection of carbon fixed-value resistors. These are the kind of components you will constantly be handling as you become involved in building electronic devices. A word or two about their characteristics — physical and electrical — will not be out of place at this stage.

There are two main types; carbon composition and carbon film.

Carbon composition resistors consist of a rod of carbon black or graphite. Connecting wires are wrapped around the ends of the rod and the latter is given a protective coating of paint. This type is known as non-insulated.

There are also insulated composition resistors. These are made by enclosing the rod of resistive material in a plastic moulding or ceramic tube. The connecting wires emerge straight out from the ends of the tube.

The film type of resistor is made by depositing a thin film of a carbon mixture upon a glass or ceramic tube or rod. The rod is encased in moulded plastics or in a ceramic tube. Outwardly, these resistors resemble the insulated composition type.

Most carbon resistors are colour coded. This colour code indicates the value in ohms and sometimes provides additional information. You will find the Practical Electronics Colour Code Calculator (presented with our first number) an extremely useful tool. If you have access to an assortment of resistors, it is a good idea to practice reading off the colours of a randomly selected component. Take our word for it — this will be to your benefit in the future.

RESISTORS IN PARALLEL

Our next exercise is to find out what happens when we connect resistors in parallel, that is, side by side instead of end to end. To do this you will need to connect the "shorting wire" of the last experiment to points A and C of the resistor and the slider contact to point B (see Fig. 2.1). You will find that the slider can be moved along the resistor from end to end and the bulb will now light all the time. Why is this so?

To enable you to understand quite clearly the present circuit arrangement, we have drawn an "intermediate" diagram: imagine the end A of the resistor bent back so that it nearly touches end C (Fig. 2.2), as you move the slider from the central position towards one end you are reducing the resistance of that branch and so increasing the current flow. The circuit is shown in its final and conventional form in Fig. 2.3.

As the bulb lights now at all positions along the resistor, it follows that the total resistance must be much less than the original short section (11cm) measured in the first experiment. Once again, we can calculate the value of the total resistance using a formula:

$$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Your resistance element has an approximate value of 75-80 ohms and hence you can mark the baseboard into divisions of, say, 5 ohms each. By setting the slider at any random point you can now read off the value of resistance either side of it. If the slider is set at 20 ohms (R1), the remaining resistance (R2) will be 60 ohms. Substituting these values in the above formula we get

$$\frac{1}{R_{\text{total}}} = \frac{1}{20} + \frac{1}{60} = \frac{3}{60} = \frac{4}{60} = \frac{1}{15}$$

$$R_{\text{total}} = 1/\frac{15}{1} = 15 \text{ ohms.}$$

We would like you to work out half a dozen calculations (one has already been done for you!) taking the value of R1 as 5 ohms, 10 ohms, 15 ohms, etc. and make a small list showing the values of R total, R1 and R2. You should find that the value of R total goes from 17\frac{1}{2} ohms down to nearly 1 ohm.

You will see from this list that, when R1 is much smaller than R2, the total resistance or equivalent
resistance is nearer R1 in value than R2. This can be very important in electronic circuits when you have a component with a resistance of perhaps 1,000 ohms in parallel with another component of 1 megohm.

Let's do another calculation to show why:

\[
\frac{1}{R_{\text{total}}} = \frac{1}{1,000} + \frac{1}{1,000,000} = \frac{1,001}{1,000,000}
\]

Thus

\[
R_{\text{total}} = \frac{1,000,000}{1,001} = 1,000 \text{ ohms approximately.}
\]

You can see then that if the value of one resistance is very high you can ignore it and consider only the value of the small one.

SECOND RESISTANCE ELEMENT

Now it is necessary to add the second resistance element to our apparatus. Here we use a 1,000 watt (1 kilowatt, or kW) fire element. Push the spare plastics knitting needle through the vacant hole in one of the wooden support pieces, thread it through the coiled element and insert in the hole provided in the second support. Ensure that the turns of wire are evenly spaced along the length of the needle.

You may be wondering at this moment: what is meant by a kilowatt?

The basic unit of a watt is the unit of power that is the rate of doing work. To calculate the power in an electrical circuit you must multiply the voltage by the current; this is shown by the formula:

\[W = V \times I \]

where \(W \) stands for watts, \(V \) for volts, and \(I \) for current in amperes.

If you are unable to measure the voltage but know the resistance then you can use a second formula, which is

\[W = I^2 \times R \quad \text{(or } W = I \times I \times R) \]

A third form of the equation is

\[W = \frac{V^2}{R} \quad \text{(or } W = \frac{V \times V}{R}) \]

If you look at the list of components in other articles in PRACTICAL ELECTRONICS, you will notice that resistors are quoted at \(\frac{1}{4} \text{W}, \frac{1}{2} \text{W}, 1 \text{W}, \text{etc.} \) This is as important in electronic circuits as having the correct value of resistance (in ohms). Say, for example, you had a resistance of 100 kilohms and a voltage of 300V, then the current flowing through it would be

\[\frac{300}{100,000} = 0.003 \text{ amperes or 3mA.} \]

Working out the power as above \((W = V \times I)\) would give

\[300V \times 0.003A = 0.9W \]

You would thus need a resistor rated at 1 watt and if you used one of perhaps \(\frac{1}{2} \) watt or \(\frac{1}{4} \) watt then it would quickly overheat and break down. This heat is caused by the current flowing through the resistor and we use this to our advantage in electric fires, water heaters and electric light bulbs.

The higher the wattage rating of a carbon resistor, the larger its physical size. Refer to the photograph: the two smallest sized resistors are \(\frac{1}{4} \text{W} \) types, the next pair are \(\frac{1}{2} \text{W} \), and the other two \(1 \text{W} \) and \(2 \text{W} \) respectively.

Now to return to the experiments. If you have the two fire elements or coils wound on the needles you can experiment on your own by connecting them in different ways, shorting out sections of them and calculating the value of resistance in circuit. The 1kW coil will have a resistance between 50 and 55 ohms

so you can mark out the base board in equal sections and measure off the resistance values direct.

You may also like to see the effect of increasing and decreasing the voltage to 6 volts and 3 volts respectively by substituting other batteries for the present 4½V supply. If you increase the voltage you will need more of the resistance in circuit to get the bulb just glimmering as compared with the amount needed with the 4½V supply. Obviously then you will have less resistance in circuit when a 3V battery is used.

We have used a bulb to indicate that current is flowing through the circuit and our next project is to make a simple type of meter that also tells us current is flowing. Many of you may have seen and used meters at school and know that there are many different types to measure voltage, current, resistance, etc. Next month we will show you how to make a simple meter that you can set up with your battery and use for approximate measurements in later experiments.

SHOPPING LIST

<table>
<thead>
<tr>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>One 1,000 watt electric fire replacement element.</td>
</tr>
</tbody>
</table>
EXCLUSIVE OFFER TO ALL OUR READERS!

Special Edition of

DICTIONARY OF ELECTRONICS

by HARLEY CARTER, A.M.I.E.E.

AT THE AMAZING PRIVILEGE PRICE

OF ONLY 10/6

(Normal Edition sells at 35s.)

COMPLETE UNABRIDGED

★ 416 PAGES ★
WITH EXTENSIVE CROSS-INDEXING
★ 265 DRAWINGS ★
& CIRCUIT DIAGRAMS

This comprehensive Dictionary contains concise, explanatory definitions of all facts and terms related to Radio, Television, Communications, Radar, Industrial Electronics, Instrumentation and other branches of Electronics. Also sections on Units and Abbreviations; Greek Letters used in Electronics; List of Symbols; Graphical Tables; The Electro Magnetic Spectrum; Frequency Wave-Length Conversion; Valve Bases; Rationalised M.K.S. Units. This unique work will be of continual use to all whose work or interest requires them to understand modern electronic terminology.

COMPLETE AND SEND ORDER FORM OVERLEAF!
ULTRASONIC REMOTE CONTROL continued from page 118

Pack the space between the transducer and the wall of the top cap with foam rubber. A piece of \(\frac{1}{8} \)in thick material, cut into a strip measuring approximately \(\frac{1}{8} \)in \(\times 4 \)in should serve this purpose adequately. Other similar material may be used, the important factor being to wedge the transducer firmly and centrally within the case.

Returning now to the bottom end of the case, first check that the battery can be accommodated inside, and recessed at least \(\frac{3}{4} \)in from the bottom edge. If not, the transmitter assembly must be pushed gently upwards, but without, if possible, disturbing the transducer.

Solder a \(\frac{1}{2} \)in long lead (red coloured sleeving) to the metal strip which makes contact with the metal rim of the case. Fit the battery, base foremost, inside, ensuring that the blue and red leads are not trapped. These two battery leads should extend about \(\frac{1}{2} \)in from the bottom of the case; cut off any surplus and solder these leads to the battery press stud connectors observing the correct polarity, i.e. red for positive, blue for negative.

Fit the connectors to the battery terminals and carefully push down the looped ends of the leads.

From a piece of stout cardboard, cut out a disc approximately \(\frac{1}{4} \)in diameter. Place this disc over the battery before screwing on the end cap. This cardboard insulating disc is essential, since the spiral spring connector in the end cap will be connected to the positive side of the battery when the cap is screwed home. The insulating disc prevents the spring coming into contact with the negative battery terminal—this should happen the battery will be shorted.

SETTING UP

Place the transmitter so that its transducer is looking directly at the receiver transducer, and the two are not more than a couple of feet apart.

Connect an ohmmeter to the relay contacts, and connect the receiver battery.

Switch on the transmitter. Rotate the core of T1 until the relay operates, as indicated by zero reading on the ohmmeter. Withdraw the transmitter further from the receiver while making adjustments to T1 in order to obtain the optimum tuning point.

When the receiver is correctly adjusted, the relay should pull in at a current not exceeding 5mA with a d.c. supply of 4.5V.

The receiver should respond at a distance of at least 20ft from the transmitter. This range can, however, be increased upwards to 100ft if OC44 transistors are used in the first three stages of the receiver (TR3-TR5) and simple cones are placed over the transducers. Paper cones tapering out to about \(\frac{1}{4} \)in are quite effective for this purpose.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 8.2kΩ</td>
</tr>
<tr>
<td>R2 1kΩ</td>
</tr>
<tr>
<td>R3 5.6kΩ</td>
</tr>
<tr>
<td>R4 22kΩ</td>
</tr>
<tr>
<td>R5 1kΩ</td>
</tr>
<tr>
<td>R6 2.2kΩ</td>
</tr>
<tr>
<td>R7 5.6kΩ</td>
</tr>
<tr>
<td>All 3W carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 3,300μF silver mica</td>
</tr>
<tr>
<td>C2 0.015μF disc ceramic</td>
</tr>
<tr>
<td>C3 0.1μF disc ceramic</td>
</tr>
<tr>
<td>C4 22μF elect. 25V</td>
</tr>
<tr>
<td>All 3W carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1-17 OC71 (7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL Relay: 400Ω 5mA</td>
</tr>
<tr>
<td>T1 H.F. transformer (Osmor type QHF9)</td>
</tr>
<tr>
<td>XI, 2 Transducer (Gulton type 1404)</td>
</tr>
<tr>
<td>BY1 9V battery, Ever Ready PP3 or Exide DT3</td>
</tr>
<tr>
<td>BY2 9V battery</td>
</tr>
<tr>
<td>Two miniature coaxial plugs</td>
</tr>
<tr>
<td>Veroboard : one piece (\frac{4}{8})in (\times \frac{4}{8})in; two pieces (\frac{1}{4})in (\times \frac{1}{4})in</td>
</tr>
</tbody>
</table>

Note: The Gulton transducers, the reed relay, and other essential components can be obtained from:

DTV Group, 126 Hamilton Road, West Norwood, London S.E.27

DICTIONARY OF ELECTRONICS

Please send me DICTIONARY OF ELECTRONICS. I enclose remittance for 10s. 6d.

NAME

ADDRESS

I have/have not* reserved a copy on the Reservation Form in last month’s "Practical Electronics".

* Delete as applicable
Famous Autochanger or Single Player Units supplied with brand new, two-tone, deluxe portable cabinets, 17 x 15 x 8 3/4 in. Strong carrying handle, gift finish clips and hinges are used by famous make for 22-gn. model. Ready cut out motor board, 14 x 13 in. Front baffle 7 x 4 in. High flux loudspeaker and 3 watt amplifier. Amplifier ready built on metal chassis with output transformer, volume and tone controls. All items fit together perfectly. Assembly in 30 minutes. Only 5 wires to join. 12 months’ written guarantee. Available separately or package deals as below. Our NEW MK II Superb Kits are now being dispatched.

L.K. PRICES FOR COMPLETE KITS:

Autochanger Kits as above
B.S.R. U.A. 14, T.C. 8 Mono
$10.17.6 P.P. 5/6
Garrard AutoSlim, Mono
$11.7.6 P.P. 5/6

Single Player Kits as above
Garrard S.R.P. 10, Mono
$10.12.6 P.P. 5/6
E.M.I. Separate Pick-up
$10.17.6 P.P. 5/6

Individual Prices for those who wish to purchase separately.

Record Player Cabinet with Cut-out Board
$2.15.0 P.P. 3/6
Amplifier with 7 x 4 in. speaker
$2.10.0 P.P. 2/6

SCOOP! Garrard A.T.S. Wired for stereo, inclusive of head and mono cartridge (A.T.S is an auto transcriptor). The finest of them all. OUR price, brand new and boxed, £7.10.0 only. P.P. 5/6.

SCOOP! E.M.I. Autostop, Mono
$9.16.6 P.P. 5/6
Garrard Autoslim, Mono
$11.7.6 P.P. 5/6
Garrard Autoslim, Mono
$14.10.0 P.P. 5/6

Brand new, complete range of Brittamer Chassis and Amplifiers. "Brittamer"—quotes prices—the keenest in the Trade. We are Main Agents for the national manufacturer—we cannot mention name. 45-13,000 c.p.s.. 3 or 8 ohm voice coils, response 45-13,000 c.p.s.. 3 or 8 ohm voice coils, response 45-13,000 c.p.s.. IS ohm voice coils, response 45-13,000 c.p.s.. Brand new, boxed, guaranteed. OUR price £4.4.0 only. P.P. 2/6.

SCOOP! Hi-Fi loudspeaker and 3 watt amplifier. Amplifier ready built on metal chassis with output transformer, volume and tone controls. All items fit together perfectly. Assembly in 30 minutes. Only 5 wires to join. 12 months’ written guarantee. Available separately or package deals as below. Our NEW MK II Superb Kits are now being dispatched.

S. K. PRICES FOR COMPLETE KITS:

Autochanger Kits as above
B.S.R. U.A. 14, T.C. 8 Mono
$10.17.6 P.P. 5/6
Garrard AutoSlim, Mono
$11.7.6 P.P. 5/6

Single Player Kits as above
Garrard S.R.P. 10, Mono
$10.12.6 P.P. 5/6
E.M.I. Separate Pick-up
$10.17.6 P.P. 5/6

Individual Prices for those who wish to purchase separately.

Record Player Cabinet with Cut-out Board
$2.15.0 P.P. 3/6
Amplifier with 7 x 4 in. speaker
$2.10.0 P.P. 2/6

SCOOP! Garrard A.T.S. Wired for stereo, inclusive of head and mono cartridge (A.T.S is an auto transcriptor). The finest of them all. OUR price, brand new and boxed, £7.10.0 only. P.P. 5/6. Latest model.

SCOOP! E.M.I. Autostop, Mono
$9.16.6 P.P. 5/6
Garrard Autoslim, Mono
$11.7.6 P.P. 5/6
Garrard S.R.P. 10, Mono
$5.5.0 P.P. 4/6

Brand new, complete range of Brittamer Chassis and Amplifiers. "Brittamer"—quotes prices—the keenest in the Trade. We are Main Agents for the national manufacturer—we cannot mention name. 45-13,000 c.p.s.. 3 or 8 ohm voice coils, response 45-13,000 c.p.s.. 3 or 8 ohm voice coils, response 45-13,000 c.p.s.. IS ohm voice coils, response 45-13,000 c.p.s.. Brand new, boxed, guaranteed. OUR price £4.4.0 only. P.P. 2/6.

SCOOP! Hi-Fi loudspeaker and 3 watt amplifier. Amplifier ready built on metal chassis with output transformer, volume and tone controls. All items fit together perfectly. Assembly in 30 minutes. Only 5 wires to join. 12 months’ written guarantee. Available separately or package deals as below. Our NEW MK II Superb Kits are now being dispatched.

L.K. ELECTRONICS (Victoria) LTD.
17 GILLINGHAM ROW, WILTON ROAD, LONDON, S.W.I.
The pre-paid rate for classified advertisements is 1/- per word (minimum order 12/-), box number 1/6 extra. Semi-displayed setting £3.50 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.

SERVICE SHEETS

<table>
<thead>
<tr>
<th>GENUINE SERVICE SHEETS, Radio/TV/TV</th>
<th>TAPE RECORDERS, TAPES, ETC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorders. S.A.E. with enquiries: REDWATT ELECTRICAL, 41, Denmark Street, Wakefield, Yorks.</td>
<td>TAPE TO DISC RECORDING. 10in LP. 45/-; 12in LP. 48/-; 7in 1P. 21/-, S.A.E.</td>
</tr>
<tr>
<td>SERVICE SHEETS, Radio, TV, etc.: List 1/-, S.A.E. Enquiries: TELRAV, Maudland Bank, Preston.</td>
<td>FOR QUALITY consult our sixty-page (photographically illustrated) latest Hi-Fi equipment catalogue (4 6d.). Unbiased advice, preferential terms to members. LPs from your precious tapes.</td>
</tr>
<tr>
<td>STATE MODEL NO. Radio 2/-, TV 2/6, S.A.E. DARWIN, 10, George Street, St. Helens, Lancs.</td>
<td>AUDIO SUPPLY, 10 Clifford Street, London W.1.</td>
</tr>
<tr>
<td>SERVICE SHEETS for all makes of Radio and TV 1925-1964. Prices from 1/- with free fault-finding guide. S.A.E. inquires. Catalogue of 6,000 models, 18, Valves, modern and obsolete, Radio/TV Books. S.A.E. lists, HAMILTON RADIO, Western Road, St. Leonards, Sussex.</td>
<td>MISCELLANEOUS</td>
</tr>
</tbody>
</table>

SERVICE SHEETS

4/- each, plus postage. We have the largest display of Service Sheets for all makes and types of Radios, Televisions, Tape Recorders, etc. in the country, and can supply by return of post. To obtain the Service Sheet you require, please complete the attached coupon:

- **From:**
- **Name:**
- **Address:**

To: S.P. DISTRIBUTORS

44 Old Bond St., London, W.1

Please supply Service Sheets for the following:

- **Make:**
- **Model No.**

MAIL ORDERS ONLY

EDUCATIONAL

<table>
<thead>
<tr>
<th>STUDY RADIO, TELEVISION AND ELECTRONICS with the world’s largest home study organisation. I.E.K.E., City & Guilds, R.T.E., etc. Also Practical Courses with equipment. All books supplied. Write for FREE Prospectus stating subject to I.C.S. (Dept. 577), Intertext House, Parkgate Road, London, S.W.11.</th>
<th>RADIO TECHNICIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A number of suitably qualified candidates will be required for training, leading to permanent and pensionable employment. (Normally at Cheltenham but with opportunities for service abroad or appointment to other U.K. stations).</td>
<td>SITUATIONS VACANT</td>
</tr>
<tr>
<td>Applicants must be 19 or over and be familiar with the use of Test Gear and have had Radio/Electronic workshop experience. They must offer at least "O" level GCE passes in English Language, Maths and Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.</td>
<td></td>
</tr>
<tr>
<td>Pay according to age, e.g. at 19 £722, at 25 £929 (highest pay on entry) rising by four increments to £1,067.</td>
<td></td>
</tr>
<tr>
<td>Prospects of promotion to grades in salary range £997—£1,634.</td>
<td></td>
</tr>
<tr>
<td>Annual leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days.</td>
<td></td>
</tr>
<tr>
<td>Normal Civil Service sick leave regulations apply.</td>
<td></td>
</tr>
</tbody>
</table>

- **Home Study Courses in Practical Electronics. Free brochure without obligation from:** BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.
FOR SALE

TESTED TRANSISTORS

- **All new, few equivalent.**
 - OA202
 - 1½ each, Red or White Spots.
 - 2½ each, XA101, XA102, XB103, OA90, OC430, XA112, XA111.
 - 3½ each, OC44, OC45, OC70, OC71, OC81, OC81D, OC200, GET16.
 - 4½ each, AF114, AF115, AF117, OC170, OC171, SX658, UX611.
 - 5½ each, OC72, OC139, OC140, OC204, ORP60, BY100, GET8.
 - 10½ each, OC35, OC26, OC28, GET57, 2S013. All new, few equivalent.

ZENER DIODES

- 4½ v to 33 volt. ½ watt, 3½ each. 1½ watt, 5½ each. 7½ watt, 6½ each.

Send 3d. stamp for Full Price List and Free Equivalent Chart.

RECEIVERS AND COMPONENTS

- **R. & R. RADIO & TV SERVICE**
 44 Market Street, BACUP. Tel. 465

SAVAGE VALVES

- **ANGLE VALVES**
 - 6F1 1/-, 10P14 ½, 100R5 ½, 26F10 ½.
 - 6L6 1/-, 300B 1½, 26F10 ½.

RECEIVERS AND COMPONENTS

- **FOR SALE**
 - 3½ each, OC44, OC45, OC70, OC71, OC81, OC81D, OC200, GET16.
 - 4½ each, AF114, AF115, AF117, OC170, OC171, SX658, UX611.
 - 5½ each, OC72, OC139, OC140, OC204, ORP60, BY100, GET8.
 - 10½ each, OC35, OC26, OC28, GET57, 2S013. All new, few equivalent.

Send 3d. stamp for Full Price List and Free Equivalent Chart.

TELEVISION TUBE SHOP

FOR

- **Unused, Guaranteed Tubes**
 OVER 2,000 IN STOCK

All prices from 50% to 75% of List Price

All tubes tested before despatch and Guaranteed for 12 months

CARRIAGE

- 10/- via B.R.S. or 15/- via passenger train

TERMS £2 down (plus carriage) and £1 per month

See our advertisement in PRACTICAL TELEVISION for exact prices, or write for details

TELEVISION TUBE SHOP

48 BATTERSEA BRIDGE ROAD
LONDON, S.W.I I.
BAY 6659
OPEN ALL WEEK AND SATS. UNTIL 4 p.m.
PARMEKO NEPTUNE TRANSFORMERS

115 volt or mains input, Output 450-0-450 at 250 ma; 750-0-750 at 45 ma; 2 volt at 30 ma; 30 volt at 60 ma; 6 volt at 45 amp; 6 volt at 1 amp; 5 volt at 6 amp. These are all filled, packed in own drum, 70/- each.

PARMEKO NEPTUNE CHOKES OIL FILLED

10 henry at 260 ma, 22/-; 15 henry at 45 ma, 12/-; 6 henry at 20 ma, 6/-

PAPER BULK CONDENSERS

<table>
<thead>
<tr>
<th>MFD</th>
<th>Volts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>500</td>
<td>1/-</td>
</tr>
<tr>
<td>1.00</td>
<td>1,000</td>
<td>1/6</td>
</tr>
<tr>
<td>1.00</td>
<td>2,000</td>
<td>2/-</td>
</tr>
<tr>
<td>1.00</td>
<td>3,000</td>
<td>4/-</td>
</tr>
<tr>
<td>2.20</td>
<td>500</td>
<td>5/-</td>
</tr>
<tr>
<td>2.20</td>
<td>1,000</td>
<td>6/-</td>
</tr>
<tr>
<td>2.20</td>
<td>2,000</td>
<td>7/-</td>
</tr>
<tr>
<td>2.20</td>
<td>3,000</td>
<td>8/-</td>
</tr>
<tr>
<td>2.20</td>
<td>4,000</td>
<td>9/-</td>
</tr>
<tr>
<td>2.20</td>
<td>5,000</td>
<td>10/-</td>
</tr>
<tr>
<td>2.20</td>
<td>6,000</td>
<td>11/-</td>
</tr>
<tr>
<td>2.20</td>
<td>7,000</td>
<td>12/-</td>
</tr>
<tr>
<td>2.20</td>
<td>8,000</td>
<td>13/-</td>
</tr>
<tr>
<td>2.20</td>
<td>9,000</td>
<td>14/-</td>
</tr>
<tr>
<td>2.20</td>
<td>10,000</td>
<td>15/-</td>
</tr>
</tbody>
</table>

ON ALL ORDERS UNDER 20/- PLEASE ADD 2/- POST AND PACKING

SUPER BREAKDOWN UNIT

Remote Control Unit Type A. New in sealed cartons, containing P.O. Relay 2,000 ohms Resistance, 100 volt Plessey Hand Generator, Telephone Ringer Bell A.C. 8 amp Moso Key on base, 2 P.D. T.P. Key Switches, Double Phone Jack, mounted, 4 position 6 pole Vaxy Switch, Induction Coil tapped 17-23 ma, 7 Brass Screw Terminals on panel, plus Resistors, Condensers, Pointer Knobs. All in a handy metal box with hinged lid and side fasteners. Also web carry strap. Size 10 x 10 x 7 in. Post Paid. Or Items may be purchased separately. Relay 8/-, Hand Generator 7/-, Bell 5/-, Morse Key 4/-, Key Switches 6/- pair, Double Phone Jack 2/-, Vaxy Switch 2/-, Ind Coil 2/-, Terminals 7 for 2/-, all post free.

Also available Key Switches, 4 pole 2 throw 3/8 end or 3 position D.P. plus D.P. centre off 5/- or rotary switch 8 pole 3 way 3/-. U.K. ONLY

Speakers, 3 ohm P.M. Sin. 5/-, 6/-; 7 x 4 in. 7/-, 8 in. 8/-, 10 in. 12/-.

F. R. NICHOLLS

Mail Order and Retail Shop:

46 LOWFIELD ROAD off SHAW HEATH

STOCKPORT, CHESHIRE
THE SKYROVER AND SKYROVER DE LUXE

LONG WAVEBAND COVERAGE IS NOW AVAILABLE FOR THE SKYROVER AND SKYROVER DE LUXE.

A single additional circuit provides coverage of the 1570–1620 kHz band (including 1590 kHz Light Programme). This is in addition to the usual long, medium and short waves.

All necessary components with construction data. Only £10 extra Post Free.

The conversion is suitable for Skyrider and Skyrider De Luxe receivers that have already been constructed.

GENERAL SPECIFICATION

- Transistor: X 10 to the watt power amplifier fitted with integrated pre-amplifier. Requires one 12 volt, 6.3 volt, or 3.5 volt battery. Frequency response is flat from 30 to 20,000 cycles @ 20 µV.
- Power requirement: One 12 volt, one 6.3 volt, or one 3.5 volt battery. Complete with all parts and full instructions. Universal shock proof case.
- Size: 10 x 10 x 7½ in.
- Weight: 5 oz. Built on a printed circuit.

P R I C E

LASKY’S PRICE £5.19.6. P. & P. Free. 4/6 endowed if all parts are returned.

SPECIAL INTEREST ITEMS

THE SIXTEEN Multirange Meter Kit

This coin-operated meter was featured at Practical Wireless in the June '74 issue. Lasky’s are now able to offer the complete kit of parts as specified by the designer.

SPECIFICATION

- D.C. volts: 0–2, 2–5, 5–20, 20–50, 50–150, 150–300 @ 0.5 mA.
- A.C. volts: 0–30, 30–60, 60–120, 120–240 @ 0.5 mA. (C.T. needed for 0–120.
- D.C. current: 0–0.2, 0.2–0.5, 0.5–1.0 amp.
- Resistance: 0–10, 0–100, 0–200, 0–2000 ohms.
- Frequency: 0–0.001, 0–0.01, 0–0.1 Hz, 0–1 kHz.
- Battery: Nine 1½ volt cells or two 12 volt cells.
- Dimensions: 3½ x 5 x 1½ in.

BUILD A HIGH QUALITY TAPE RECORDER

Using the famous Colano “STUDIO” deck and MARTIN pre-amplifiers, you can build a 3-track model.

COLLARO STUDIO TAPE DECK

New model 2.9, 3.5, twin head, 2 track, (160 mm) tape. Priced complete with speaker £5/5/-. Original price £6/9/-.

MARTIN TAPE RECORDER AMPS.

Designed for use with Collaro Studio Tape Deck. In each amplifier, 6 transistors using the famous Colano “STUDIO” head, and Martin pre-amplifiers. Complete with Colano “STUDIO” tape deck and Martin pre-amplifiers. Priced complete each £3/3/-. Original price £4/15/-.}

NEW! ANOTHER SINCLAIR SUPER MINIATURE

THE X10 10 watt power amplifier fitted with integrated pre-amplifier. Requires one 12 volt, one 6.3 volt, or one 3.5 volt battery. Frequency response is flat from 30 to 20,000 cycles @ 20 µV. Size only 2½ x 2½ x 2½ in. Weight: 3½ oz. Built on a printed circuit.

P R I C E

LASKY’S PRICE £5.19.6. P. & P. Free. 4/6 endowed if all parts are returned.

AVAILABLE READY BUILT, TESTED AND GUARANTEED.

3. Track £19.10.6 Post Free. 3 pots, for 2 track, £1.2.6. for 4 track power transistors.

LASKY’S PRICE 28/- p. & p.

TRANSISTORS

ALL BRAND NEW AND GUARANTEED

GEC 81, GEC 82, GEC 28, 26, STA, 74P 38, GOO 67, GOO 144, GOO 44, GOO 22, GOO 115, GOO 65, GOO 65, GOO 135, GOO 159, GOO 22, GOO 42, GOO 43, GOO 37, GOO 278, GOO 261, GOO 261, GOO 159.

FOR THE FINEST VALUE AND SERVICE TO THE HOME CONSTRUCTOR AND THE ELECTRONICS ENTHUSIAST

We consider our construction parcels to be the finest value on the home constructor market. If you recall you feel I am not competent to build the set, you may return it as received within 7 days, when the same will be refunded less postage.
MULLARD "3–3" HI-FI AMPLIFIER 3 VALVES 3 WATT

3 ohm and 16 ohm output. A really first-class Amplifier giving HI-FI quality at a reasonable cost. Mullard's latest circuit. Valve Type: RE65, EL43, E921. Extra H.L.T. and R.T. available for Tower Unit solution. This is the ideal companion Amplifier for FM tuner units.

TECHNICAL SPECIFICATION—Freq. Response: ±1dB, 40 khz-20 khz. Tone controls provide normal treble out 12dB at 1 khz. Max. Bass Boost 14dB at 80 cm audiobitity. 100VOLT for 3W output. Output Power (at 400 cm): 3W at 1%, total harmonic distortion. Hum and Noise Level: At least 70dB below 3W.

COMPLETE KIT (inc. valves, all components, wiring diagram and special quality sectional Output Transformers). BARGAIN PRICE £35.95 extra. Kit price £46.20. Comes wired and tested, 8 gns. Wired power O/P socket and additional smoothing for Tower Unit, 10/- extra.

ULDINGHAM COPPER WIRE—40 g multitude, 3/8 ft. Width of Multicore, 1/6 in. Diameter cut. 1/6 ft., 4/- yd. TIKKED COPPER WIRE, 18-28 g., 2/8 lb. ERSIN MULTICORE SOLDER. 50/50 8d. per yard. Cartons 2/8, etc.

CO-AX 80 ohm CABLE
High grade low loss Coaxial Air Spaced Polythene—12 in. diam. Stranded Cored.
Now only 6d. yard
BARGAIN PRICES—SPECIAL LENGTHS
50 yds. 71/2 ft., 10/-; 10/-, B.S. 923. 40 year. 2/-, 5/-, 4/-, 10/-, 20/-, 4/-, 10/-, 20/-. 50 yds. 6, 10/-, 20/-. 60 yds. 6, 10/-, 20/-. 100 yds. 10/-, 20/-. 150 yds. 12/-. 200 yds. 15/-. 250 yds. 18/-.

RADIO COMPONENT SPECIALISTS
29 Britannia Rd., Thornton Heath, Surrey. Tel. 2pm., 1, 3 p.m. Wed. TR2 1198. Terms C.P.O. or C.O.D. Post and Packing up to 10/-; 1/5/-; 3/-. 1/-; 2/-; 4/-; 5/-; 6/-.

PARKER'S SHEET METAL FOLDING MACHINES
NEW BENCH MODEL
Capacity 36in. wide x 18-gauge mild steel. Forms channels and angles down to 45 deg., which can be flattened to give safe edge. Depth of fold according to height of bench. Will form flanges. Weight approx. 2 cwt.
Price £23.10.0, cash. Also the well-known vice models of:
36in. x 18-gauge capacity ... £11 10 0 | Carriage 24in. x 18-gauge capacity ... £19 16 0
18in. x 16-gauge capacity ... £5 15 0 | Free
One year's guarantee: money refunded without question if not satisfied. Send for details:
A. B. PARKER, Wheatcroft Works
WELLSINGTON STREET, BAILEY, YORKS.

HIGH QUALITY TAPE AMPLIFIER KIT
Suitable for use with tape decks having

Capacity 36in. wide x 18-gauge mild steel. Forms channels and angles down to 45 deg., which can be flattened to give safe edge. Depth of fold according to height of bench. Will form flanges.

Weight approx. 2 cwt.

Price £23.10.0, cash. Also the well-known vice models of:
36in. x 18-gauge capacity ... £11 10 0 | Carriage 24in. x 18-gauge capacity ... £19 16 0

18in. x 16-gauge capacity ... £5 15 0 | Free
One year's guarantee: money refunded without question if not satisfied. Send for details:
A. B. PARKER, Wheatcroft Works
WELLSINGTON STREET, BAILEY, YORKS.

Kits Price £7.10.0

Ready Built £9.17.6
p & p £3/6

ELECTROSURE LTD., Fore Street, Exeter
NEW LAFAYETTE COMMUNICATION RECEIVER

MODEL HA-65...

PRICE £27.10.0

- 7 valves plus metal rectifiers • 4 bands covering 550 kc/s to 31 mc/s. • Illuminated meter • 2 stage Sensitivity • Electrical bandwidth

FULL RANGE OF OTHER LAFAYETTE RECEIVERS IN STOCK

MODEL HE-40...

PRICE £19.19.0

MODEL DA-i TRANSISTORISED FULLY AUTOMATIC ELECTRONIC KEYER

PRICE s 16/6

Large plastic main unit, simple operation, D.C. volts up to 1,000 A.C. volts up to 1,000. Resistance up to 1 megohm. Loop up to 250 ma. Sensitivity 0.001 µv. 600 p.p.m. 15 x 8 x 10. Setups with batteries and instructions.

MODEL 2507...

PRICE s 11/5

For prices contact...
HEAVY DUTY SHROUDED AUTOMOBILE TRANSFORMERS, 140-110 V. Fitted with 2 pin American sockets or terminal blocks. State which type, Brand new and Guaranteed. 1,000 watts, £15.50, carr. 3/6; 500 watts, £10.50, carr. 3/4; 300 watts, £7.75, carr. 3/6 15/16 oz. £6.15, carr. 3/6 2 K.V., metal case, with handle, 2 American sockets outputs, 60/10. Carr. 7/6.

WE HAVE LONDON'S LARGEST SELECTION OF LOW TENSION TRANSFORMERS, VARIABLE TRANSFORMERS, 5 pin m/c. Chokes, Capacitors, Sifters, Resistors, Low Tension DC Supply Units. Send for lists now, or visit our walk-in rooms. We have thousands of genuine electronics bargains. Send for list now.

SAMSON'S ELECTRONICS LTD.
750 CHAPEL STREET LONDON, N.W.1.
Tel. PAD 7851
Tel. AMB 5125

AN EXTRA ROOM IN YOUR LOFT

ONLY £12-19-6 carr. paid

Handrails 25/- each extra ALL TYPES OF LADDERS SOLD

Write now for illustrated brochure, floor strengthening details and terms—all best price.

BENSON (LOFT) LADDERS
(Dept. P.E.), Pentonfract Ave., Pontefract Lane, York Road, Leeds 9
Tel. 34018 (2 lines)

PRACTICAL ELECTRONICS — CONSTRUCTIONAL DESIGNS

All specified 1st grade Components, complete Measwork, full range of tests, engraved Panel Cases, Auxiliary Equipment and Assembled Units. Comprehensive list available for each "P.E." Constructional Article.

Please send 6d in stamps for each design.

MALVYN ENGINEERING WORKS

Experts in the Radio and Electronics Industries

7 CURRIE STREET, HERTFORD, HERTS

TELEPHONE: HERTFORD 5254

T.V. TUBES

17 in. — 35/-
14 in. — 15/-

SEND FOR LIST NOW

DUKE & CO. (LONDON) LTD.
621/3 Romford M., Manor Park E.12 IIFord 6001-2-3

FOOTBALL POOL COMPUTER

NEWNES

Editors: J. P. Hawker and J. A. Reddighous

FULLY COVERS

Only 2ls. FROM ALL BOOKSELLERS

or, in case of difficulty 22s. 3d. by post from George Newnes Ltd., Tower House, Southwark St., London, WC.2.

AN EXTRA ROOM IN YOUR LOFT

ONLY £12-19-6 carr. paid

Handrails 25/- each extra ALL TYPES OF LADDERS SOLD

Write now for illustrated brochure, floor strengthening details and terms—all best price.

BENSON (LOFT) LADDERS
(Dept. P.E.), Pentonfract Ave., Pontefract Lane, York Road, Leeds 9
Tel. 34018 (2 lines)

PRACTICAL ELECTRONICS — CONSTRUCTIONAL DESIGNS

All specified 1st grade Components, complete Measwork, full range of tests, engraved Panel Cases, Auxiliary Equipment and Assembled Units. Comprehensive list available for each "P.E." Constructional Article.

Please send 6d in stamps for each design.

MALVYN ENGINEERING WORKS

Experts in the Radio and Electronics Industries

7 CURRIE STREET, HERTFORD, HERTS

TELEPHONE: HERTFORD 5254

T.V. TUBES

17 in. — 35/-
14 in. — 15/-

SEND FOR LIST NOW

DUKE & CO. (LONDON) LTD.
621/3 Romford M., Manor Park E.12 IIFord 6001-2-3

FOOTBALL POOL COMPUTER

NEWNES
EVERYTHING YOU NEED...

The DTV Group hold the largest stocks of the widest range of rectifiers, valves, test equipment, transformers, components and accessories of all kinds. Send s.a.e. for free lists.

Terms of Business: C.W.O. or C.O.D.

TRANSDUCERS
As specified for use in the Ultrasonic Control System featured in this issue.

Gulton Transducers can be used for simple remote control without cables or electronic links, two units only being required. The Transducers are suitable for transmission and receiving. Ideally suited for the experimentalist and designer for remote control systems or for all kinds of free TX/RX circuit with each order.

55/- for £5

Possible use with the Transducers:
- QHPF Transformer: 4/- each
- Low current reed relay: 24/- each (2v,9mA)

MICRO-MOTORS
This new Sleyride Motor is precision made and prototype tested by RAE Farnborough. Only 1 in. dia., 2 in. long and weighs only 1.3 oz. Rated 1/1,000 h.p., normal running speed 5,000 r.p.m. Spindle dia. 3/32 in., length 11/32 in. For 13, 6 or 12 v. Reversible.

25/- each

plus 1/6 p. & p.

ALPHA RADIOr SUPPLY CO.
103 LEEDS TERRACE
WINTON STREET
LEEDS 7

MICROPHONES
- MEC 2091: £2.6
- MEC 90: £2.6
- MEC 45 D.K: £2.6
- Foster DPF Dynamic 100 DB: £2.6

TRANSISTOR TESTER
The Unique
D.909

Tests Alpha + Gain (A.C. Gain) and Beta Gain (D.C. Gain) with transistors in place. Facilities also provided for testing leakage between Collector and Emitter and Collector Base. Exclusive Variable Voltage Smoothed D.C. Power Supply, continuously variable from 0.25 v. up to 25mA. Output voltage can be used as centre-tapped voltage supply enabling modern transistorised receivers to be tested.

Send S.A.E. for detailed leaflet

CATALOGUE
Our latest 1964/65 Catalogue is now available. Copies have been sent to many of our regular customers. If you have not received your copy please drop us a card, Please send 1/- in stamps.

TERMS: Cash with Order or C.O.D. Postage and Packing Charges extra. Single volume, 9d. Minimum Parcel Post charges 2/6. Please include sufficient postage with your order. Minimum C.O.D. fees and postage 3/6. Unless otherwise notified apply to U.K. only. For full terms of business see inside of catalogue. Personal shoppers 9 a.m. to 5 p.m. Mon. to Friday, Saturday 10 a.m. to 1 p.m.

MULTI-RANGE TESTERS

<table>
<thead>
<tr>
<th>Micropower</th>
<th>Multi-range Testers</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD.1941</td>
<td>Microphone</td>
</tr>
<tr>
<td>£16.16</td>
<td>£12.12</td>
</tr>
</tbody>
</table>

MICROPHONE S african 200 people, 2 x GCH. U.S. Models matching pair GCH 25/6.

CARTY A100+

103 LEEDS TERRACE
WINTON STREET
LEEDS 7

MICROPHONES
- MEC 2091: £2.6
- MEC 90: £2.6
- MEC 45 D.K: £2.6
- Foster DPF Dynamic 100 DB: £2.6

TRANSISTOR TESTER
The Unique
D.909

Tests Alpha + Gain (A.C. Gain) and Beta Gain (D.C. Gain) with transistors in place. Facilities also provided for testing leakage between Collector and Emitter and Collector Base. Exclusive Variable Voltage Smoothed D.C. Power Supply, continuously variable from 0.25 v. up to 25mA. Output voltage can be used as centre-tapped voltage supply enabling modern transistorised receivers to be tested.

Send S.A.E. for detailed leaflet

CATALOGUE
Our latest 1964/65 Catalogue is now available. Copies have been sent to many of our regular customers. If you have not received your copy please drop us a card, Please send 1/- in stamps.

TERMS: Cash with Order or C.O.D. Postage and Packing Charges extra. Single volume, 9d. Minimum Parcel Post charges 2/6. Please include sufficient postage with your order. Minimum C.O.D. fees and postage 3/6. Unless otherwise notified apply to U.K. only. For full terms of business see inside of catalogue. Personal shoppers 9 a.m. to 5 p.m. Mon. to Friday, Saturday 10 a.m. to 1 p.m.

MULTI-RANGE TESTERS

<table>
<thead>
<tr>
<th>Micropower</th>
<th>Multi-range Testers</th>
</tr>
</thead>
<tbody>
<tr>
<td>UD.1941</td>
<td>Microphone</td>
</tr>
<tr>
<td>£16.16</td>
<td>£12.12</td>
</tr>
</tbody>
</table>

MICROPHONE S african 200 people, 2 x GCH. U.S. Models matching pair GCH 25/6.

CARTY A100+

103 LEEDS TERRACE
WINTON STREET
LEEDS 7

MICROPHONES
- MEC 2091: £2.6
- MEC 90: £2.6
- MEC 45 D.K: £2.6
- Foster DPF Dynamic 100 DB: £2.6

TRANSISTOR TESTER
The Unique
D.909

Tests Alpha + Gain (A.C. Gain) and Beta Gain (D.C. Gain) with transistors in place. Facilities also provided for testing leakage between Collector and Emitter and Collector Base. Exclusive Variable Voltage Smoothed D.C. Power Supply, continuously variable from 0.25 v. up to 25mA. Output voltage can be used as centre-tapped voltage supply enabling modern transistorised receivers to be tested.

Send S.A.E. for detailed leaflet

CATALOGUE
Our latest 1964/65 Catalogue is now available. Copies have been sent to many of our regular customers. If you have not received your copy please drop us a card, Please send 1/- in stamps.

TERMS: Cash with Order or C.O.D. Postage and Packing Charges extra. Single volume, 9d. Minimum Parcel Post charges 2/6. Please include sufficient postage with your order. Minimum C.O.D. fees and postage 3/6. Unless otherwise notified apply to U.K. only. For full terms of business see inside of catalogue. Personal shoppers 9 a.m. to 5 p.m. Mon. to Friday, Saturday 10 a.m. to 1 p.m.
CLEARANCE SALE

MAKE 5 DIFFERENT TRANSISTOR RADIOS for 35/-.

Amazing Radio Construction Set! Become a radio engineer and build your own home radio. A complete Home Radio Course. No experience needed. Parts include instructions for each design. Simple to assemble. Free K8 page oscilloscope book will be included. All Transistors, loudspeaker, personal phone, knobs, screws, etc., all you need. Box size 14" x 10" x 2". (C.O.D.) Originally £6. NOW 35/- plus 1/2 & P & P. (C.O.D. only.)

ASTONISHING CIGARETTE

RADIO 18/6

Yes, a perfectly portable lightweight cigarette!—but watch your friends astonishment on hearing it flash in station after station, loud and clear! It still holds 10 cigarettes—yet cleverly conceals highly sensitive, fully transistorised circuits (including tiny battery). Even a young boy can assemble it in under 2 hours. No complicated theory or mathematics. Down-to-earth, practical circuit diagrams and "how to" and examine moving parts as stationary. We supply a new battery with each unit, and if you order a second unit we guarantee 5 amp. type, 35/- each, plus 1/- P. & P.

FREE ELECTRONIC DATA HANDBOOK WITH EVERY ORDER

IRONCLAD GUARANTEE

This book must be able to earn you more than its cost within two weeks at a 15/- guaranteed saving. Free 38 page oscilloscope book will be included if you send cash with order.

FREE TRIAL OFFER!

TERMS ONLY 9/- PER WEEK

To SIM-TECH TECHNICAL BOOKS' Dept. ETV2

West End, Southampton, Hants.

TAKES HEADACHES OUT OF ALL SERVICING PROBLEMS

SOLENOID. Overall length 30cm, stroke 1cm. Maximum pull 8 oz. 12-24V. D.C. operation. Transistors 80p. each, plus 1/- P. & P. 1/8.

TRANSISTORISED FULLY AUTOMATIC ELECTRIC GENERATOR, fitted with Motor drive for 230V, A.C. giving a smooth, steady 50,000 watts. Supplied absolutely complete, including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstration. Price £26/6, plus 6/9 P. & P.

BUILD AN EFFICIENT STROBE UNIT FOR ONLY 37/6

The ideal instrument for workshop, lab, or factory. This simple circuit does everything. Build your own strobe and examine moving parts as stationary. We supply a simple circuit diagram, all Transistorised parts incuding the NPS2 Strobe tube which will enable you to easily and quickly construct it for your infinite variety of speeds, from 1 flash in several seconds to 1 flash per second or many modified circuits being price down to 37/6 plus 1/6 P. & P.

SIMESSE SEALING HIGH SPEED RELAYS

2400A, 5, 8, 12, 20, 373, 10, 50, 300 ohm. 1500V. 1000-1500 ohms. £30-50. 500 volt, 500 megohms. Price £18, carriage paid.

14-DAY CLOCKWORK TIME SWITCHES

A.C. AMMETERS

0-5 amp. P.R. 2/- D1a. 0-15 amp. P.R. 2/- D1a. 0-20 amp. P.R. 2/- D1a. 0-50 amp. P.R. 2/- D1a. All at 4/- each.

VANDEGRAAFF ELECTRIC CATTLE GENERATOR, fitted with Motor drive for 230V. A.C. giving a smooth, steady 50,000 watts. Supplied absolutely complete, including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstration. Price £26/6, plus 4/- P. & P.

LIGHT SENSITIVE SWITCH

Kit of parts, including Cadmium Sulphide Photocell, Relay, Transistor and Circuit, etc. price 35/- plus 1/6 P. & P. 1/- each.

BLANK CHASSIS

Precision made in our own works from commercial quality Sheet Steel Abalume. Two, three or four sided. SAME DAY SERVICE of over 90 different forms made up to YOUR SIZE.

ORDER EXACT size you require to nearest 1/10" minimum height 3". All parts you deal with proprietary. BENDS FOR ILLUSTRATED LEAFLET in order straight away, working out local area of material required and referring to table below, which is for four-sided chassises in 19 x 29 cm. (For 16 x 29 cm. add 3/4)

46 sq. in. A-170 sq. cm. 8/- 300 sq. cm. 12/-
20 sq. in. A-100 sq. cm. 6/- 200 sq. cm. 10/-
10 sq. in. A-50 sq. cm. 3/- 100 sq. cm. 6/-
5 sq. in. A-25 sq. cm. 1/- 50 sq. cm. 2/-
14 sq. in. A-70 sq. cm. 3/- 70 sq. cm. 5/-
14 sq. in. A-70 sq. cm. 3/- 70 sq. cm. 5/-

FLEXINGES ("L", "l", or "1") 6d. per bend.

STRENGTHENED CORNERS 1/- each.

PAWLS: The same material can be supplied for panels, enclosures, etc., at 4/6 sq. ft. (16 x 29 cm. 5/6) plus P. & P. (over 42 post free)

H. L. SMITH & CO. LTD.

257-268 EADleys ROAD, LONDON, WI

ULTRA VIOLET BULBS

Easy to use source of UV for dozeg of practical and experimental uses. A.C. 12 volt 60 watt AC/DC SBC 8/- each. P. & P. 1/-.

SERVICE TRADING CO.

All Mail Orders also callers

9 Little Newport Street, London, WC2
(off Leicester Square) Tel: GILESbrand 0576

INSULATION TESTERS (New)

500 volt, 500 megohms. Price £2, carriage paid. 1,000 volts, 1,000 megohms, £3, carriage paid.

STANDARD ELECTRICALS LTD.

44-49 High Street, Kingston on Thames, Streatham 9450

PERSONAL CARDS only callers
FREE INSIDE
2 BLUEPRINTS

ULTRASONIC REMOTE CONTROL