HOW TO MAKE
* ELECTRONIC VIBRATO UNIT
* COMPACT POWER UNIT

NEW SERIES
RADIO CONTROL of MODELS

A MODERN DESIGN...
PORTABLE RATEMETER
For Solid State Radiation Detector And G.M. Tubes
"A" SERIES

STANDARD APPROVED IN ALL LEADING COUNTRIES

BIT SIZES FROM \(\frac{3}{32} \)" TO \(\frac{1}{4} \)" TO CHOICE

ILLUSTRATED IS L64 \(\frac{3}{16} \)" BIT INSTRUMENT

ALL VOLTAGES SUPPLIED

SPECIAL TEMPERATURES AVAILABLE

FULL RANGE OF SUPPORTING ACCESSORIES

FOR SALES & SERVICE APPLY DIRECT TO:

ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W.4

TELEPHONE:
MACAULAY 4272 & 3101

TELEGRAMS:
SOLJOINT, LONDON S.W.4
VALUE IN VALVES

<table>
<thead>
<tr>
<th>Model</th>
<th>Current Rating</th>
<th>Voltage Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>5M7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>5Y7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>5Z7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6AM7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C4</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6A9</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6B4</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>500 mA</td>
<td>250 V</td>
</tr>
</tbody>
</table>

BULK BARGAINS

<table>
<thead>
<tr>
<th>QTY</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>£1.00</td>
</tr>
<tr>
<td>500</td>
<td>£0.90</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Resistance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>220</td>
<td>220 kΩ</td>
</tr>
<tr>
<td>330</td>
<td>330 kΩ</td>
</tr>
<tr>
<td>470</td>
<td>470 kΩ</td>
</tr>
<tr>
<td>680</td>
<td>680 kΩ</td>
</tr>
<tr>
<td>1M</td>
<td>1MΩ</td>
</tr>
</tbody>
</table>

CONDENSERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1μF</td>
</tr>
<tr>
<td>220</td>
<td>220μF</td>
</tr>
<tr>
<td>330</td>
<td>330μF</td>
</tr>
<tr>
<td>470</td>
<td>470μF</td>
</tr>
<tr>
<td>680</td>
<td>680μF</td>
</tr>
<tr>
<td>1M</td>
<td>1μF</td>
</tr>
</tbody>
</table>

TAG STRIPS

<table>
<thead>
<tr>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 cm</td>
<td>5 μF</td>
</tr>
<tr>
<td>20 cm</td>
<td>4 μF</td>
</tr>
</tbody>
</table>

TUBES

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>5M7</td>
<td>250 V</td>
</tr>
<tr>
<td>5Y7</td>
<td>250 V</td>
</tr>
<tr>
<td>5Z7</td>
<td>250 V</td>
</tr>
<tr>
<td>6AM7</td>
<td>250 V</td>
</tr>
<tr>
<td>6C4</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5E</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>250 V</td>
</tr>
<tr>
<td>6A9</td>
<td>250 V</td>
</tr>
<tr>
<td>6B4</td>
<td>250 V</td>
</tr>
<tr>
<td>6C5</td>
<td>250 V</td>
</tr>
<tr>
<td>6C7</td>
<td>250 V</td>
</tr>
</tbody>
</table>

AUTOCHARGERS, etc.

LATEST GARRARD

All Factory Finish, All with cartridge, BRITISH Radio (Single), £12.15.0.

POWERPLANE Mean (Single) Player, £12.15.0.

PHONOPLAY Transcription (Single), £11.10.0.

AUTOMATIC Standard Auto, £5.15.0.

ATX Auto (Limited Number), £8.15.0.

SILENT—such as ATC, £9.15.0.

Compact goodbye record changer, automatically playing up to 8 speeds, £25.0.0.

Model 800—Designed for use with high comparamount cartridge: turntable in arm gives low noise record wear, £5.20.0.

ATC—Automatic or manual operation, has precision arm, bias compensator and heavy duty bearing. £20.00.0.

L-10—for the critical user—offers automatic playing, with pause-platform, and many other features. £35.10.0.

LABO—An outstanding automatic transcription turntable for practical reproduction, £40.00.0.

561—Transcription Heavy Table, £20.00.0.

661—Transcription portable with heavy pin, turntable mechanism, noise eliminator, arm and plug-in head-stock, £25.10.0.

Model 60—Automatic record changer with 75 cm turntable, weight-controlled arm, with plug-in head-stock, £22.15.0.

OULT—Sliding Deck Complete, £4.5.0.0.

UA4 or UA5—Auto Changer, £16.5.0.

PRICES SLASHED

LEAS TAPE RECORDER

Famous make, Direct Current Motor, 4 inputs, designed to take 21 x 74th. Complete with microphone, headphones, variable recorder, timer, level indicator, tone control, spring switch. This machine with the built-in loud speaker is not a toy: Price normally £30.8.0.0. \(25\%\) off £17.10.0.

HITACHI 4 TRACK MODEL TRA-500

This superior of popular recording machine is on a very special limited offer. Two channel recording. Three tone controls, bass, and high, and 250 speed. One track can be listened to on an earphone whilst recording on the second track, and afterwards both tracks played simultaneously through the loudspeaker. Ideal for musicals, songs, recording. Excellent reproduction through Hit-Flash, Electronic speaker, AC erase, perfect for semi-professional use. £35.10.0.

TRANCE/EVERY TYPE BHS. Best. The very latest Silver/Black finish. They sound fantastic performance with reliability, long telephone aerial, crystal control and heavy external frame. £200 is ready to transmit. They compete with much dearer models. £20.5.0.

SWAT GUITAR SPEAKERS. Very heavy duty 12", each sound fantastic, nothing to touch it for power handling and quality. £69.0.0.

BULK BARGAINS

<table>
<thead>
<tr>
<th>QTY</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Resistance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>220</td>
<td>220 kΩ</td>
</tr>
<tr>
<td>330</td>
<td>330 kΩ</td>
</tr>
<tr>
<td>470</td>
<td>470 kΩ</td>
</tr>
<tr>
<td>680</td>
<td>680 kΩ</td>
</tr>
<tr>
<td>1M</td>
<td>1MΩ</td>
</tr>
</tbody>
</table>

CONDENSERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1μF</td>
</tr>
<tr>
<td>220</td>
<td>220μF</td>
</tr>
<tr>
<td>330</td>
<td>330μF</td>
</tr>
<tr>
<td>470</td>
<td>470μF</td>
</tr>
<tr>
<td>680</td>
<td>680μF</td>
</tr>
<tr>
<td>1M</td>
<td>1μF</td>
</tr>
</tbody>
</table>

TAG STRIPS

<table>
<thead>
<tr>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 cm</td>
<td>5 μF</td>
</tr>
<tr>
<td>20 cm</td>
<td>4 μF</td>
</tr>
</tbody>
</table>

BULK BARGAINS

<table>
<thead>
<tr>
<th>QTY</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Resistance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>220</td>
<td>220 kΩ</td>
</tr>
<tr>
<td>330</td>
<td>330 kΩ</td>
</tr>
<tr>
<td>470</td>
<td>470 kΩ</td>
</tr>
<tr>
<td>680</td>
<td>680 kΩ</td>
</tr>
<tr>
<td>1M</td>
<td>1MΩ</td>
</tr>
</tbody>
</table>

CONDENSERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1μF</td>
</tr>
<tr>
<td>220</td>
<td>220μF</td>
</tr>
<tr>
<td>330</td>
<td>330μF</td>
</tr>
<tr>
<td>470</td>
<td>470μF</td>
</tr>
<tr>
<td>680</td>
<td>680μF</td>
</tr>
<tr>
<td>1M</td>
<td>1μF</td>
</tr>
</tbody>
</table>

TAG STRIPS

<table>
<thead>
<tr>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 cm</td>
<td>5 μF</td>
</tr>
<tr>
<td>20 cm</td>
<td>4 μF</td>
</tr>
</tbody>
</table>

POST: 2 line 5/-, 4 lines, 1/-, 8 lines, 4/-, etc (C.D. extra). ALL VALVES LESS 3% AND POST FREE IN DOZENS.

RAXONAL, 81 St. John's Wood, London, W. 4. Tel. 06799. 8350. 10 E. 172. WE SEND ALL MAIL ORDER AND RETAIL DEPT.

TECHNICAL TRADING CO.
LAFAYETTE HA-43 COMMUNICATION RECEIVER
7 valves plus Receiver. 4 Bands, 500 kc/s-5 Mc/s. Superhet Type. Incl. Stand-liquid Tuning. 290/250v, A.C. Brand New

STAR SR-4 COMMUNICATION RECEIVER
4 Bands, 605 kc/s-50 Mc/s. "B" Model—FBD-AU, Stand-up Tuning. 240/250v, A.C. Brand New
$22.6. For. Paid.

OS/B/U OSCILLOSCOPES

CLEAR PLASTIC PANEL METERS

Table 1.
<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mA</td>
<td>500v D.C.</td>
<td>±5%</td>
</tr>
<tr>
<td>50mA</td>
<td>200v A.C.</td>
<td>±2%</td>
</tr>
<tr>
<td>100mA</td>
<td>100v A.C.</td>
<td>±1%</td>
</tr>
<tr>
<td>200mA</td>
<td>50v A.C.</td>
<td>±0.5%</td>
</tr>
<tr>
<td>500mA</td>
<td>20v A.C.</td>
<td>±0.2%</td>
</tr>
<tr>
<td>1000mA</td>
<td>10v A.C.</td>
<td>±0.1%</td>
</tr>
</tbody>
</table>

TELEPHONE GENERATORS

NEW MODEL! LAFAYETTE HA-130 AMATEUR COMMUNICATIONS RECEIVER
100-150 Mc/s, High selectivity and sensitivity, Incorporates 9 RF stages including CROU VFO, 8 tubes for 11 tube performance, solid state power supply, adjustable squelch control, side tuning, built-in c.r.t. speaker and front panel phone jack. 220/240v, A.C. Supplied brand new and guaranteed.

NEW MODEL! LAFAYETTE HA-55 AIR-CRAFT RECEIVER

SEL 2 SINE SQUARE WAVE AUDIO GENERATORS

TRANSMITTED TWO-WAY TELEPHONE INTERCOM.
Operates over amazingly long distances. Separate call and press to talk button. 3-wire connection, 100's of applications. Beautifully finished in ebonay. Replacable components with batteries and wall bracket. $15. G & P. P. & F.

MAGNAVOX 343 TAPE DECKS
New 2-speed tape deck, superseding older models. 2-track $110.90, 4-track $125.00. Carr. Paid.

GARRARD RECORD PLAYERS
Brand new and guaranteed

<table>
<thead>
<tr>
<th>Type</th>
<th>Speed</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEFD Player</td>
<td>24/7</td>
<td>$24</td>
</tr>
<tr>
<td>AUTOCHANGE</td>
<td>24/7</td>
<td>$25</td>
</tr>
<tr>
<td>1999 Change</td>
<td>24/7</td>
<td>$26</td>
</tr>
<tr>
<td>2000 Change</td>
<td>24/7</td>
<td>$27</td>
</tr>
<tr>
<td>2000 Change Ver</td>
<td>24/7</td>
<td>$30</td>
</tr>
<tr>
<td>DSCDIREC</td>
<td>24/7</td>
<td>$31</td>
</tr>
<tr>
<td>DSCALO</td>
<td>24/7</td>
<td>$32</td>
</tr>
<tr>
<td>ELSITE-Mono</td>
<td>24/7</td>
<td>$37</td>
</tr>
<tr>
<td>ELSITE-Transcrip</td>
<td>24/7</td>
<td>$38</td>
</tr>
</tbody>
</table>

MINE DETECTOR No. 4A
Will detect all types of metal, portable, complete with instructions. $35. Carr. 17%. Battery $8 extra.

CALLERS WELCOME!
Open 9 a.m. to 8 p.m. every Monday to Saturday. Trade supplied.

G.W. SMITH & CO.
(RADIO) LIMITED
Phone: GERRARO 8204/9155
Cables: SMITHESLORU.
33-4 Lisle Street, London, W.C.2
THE WORLD'S MOST ADVANCED AMPLIFIER

SIZE: $8\frac{1}{4}'' \times 3\frac{1}{4}'' \times 1''$
OUTPUT: 20WATTS RMS

- 20WATTS R.M.S. OUTPUT INTO 7.5 ohms
- $20-20,000$ c/s ± 1dB
- Constant square wave amplitude 95% conversion efficiency at output
- Input sensitivity 1mV into 5K ohms
- Power requirements 36Vdc at 700 mA

SINCLAIR X-20

THE ONLY AMPLIFIER IN THE WORLD TO USE PULSE WIDTH MODULATION, WHICH, WITH CIRCUITRY DEVELOPED SPECIALLY BY SINCLAIR GIVES POWER AND QUALITY YEARS AHEAD OF ANYTHING IN ITS CLASS. YOU CAN FEED ANY SIGNAL SOURCE INTO THE X-20—INCLUDING MODERN HIGH QUALITY PICK-UP, RADIO TUNER, GUITAR. THE X-20 MANUAL SHOWS CIRCUITS BY WHICH PICK-UPS, ETC. CAN BE MATCHED TO THE INTEGRATED PRE-AMPLIFIER OF THE X-20 BOTH IN MONO AND STEREO. WHEN YOU HAVE BUILT THIS 12-TRANSISTOR AMPLIFIER YOU USE IT IN THE SAME WAY AS ANY OTHER TOP QUALITY HI-FI UNIT EXCEPT THAT IT IS SMALLER, COSTS LESS AND BEHAVES PERFECTLY.

COMPLETE KIT OF PARTS INCLUDING TRANSISTORS AND X-20 MANUAL

BUILT AND TESTED WITH X-20 IN SEALED CARSON

$9.19.6$

$X-20$ POWER PACK SUFFICIENT TO DRIVE TWO X-20'S

$4.19.6$

THE X-20 MANUAL DETAILS TONE AND VOLUME CONTROL SYSTEMS FOR X-20, MONO AND STEREO. FREE WITH EVERY X-20. AVAILABLE SEPARATELY—2/- POST FREE.

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS

SINCLAIR RADIONICS LTD.
COMBERTON, CAMBRIDGE

Telephone: COMBERTON 682
A BRILLIANT NEW TUNER

THE WORLD’S FIRST POCKET-SIZE F.M. TUNER-RECEIVER

SIZE 2½" x 1½" x ¾"
7 TRANSISTORS
2 DIODES
NO ALIGNING
PULSE-COUNTING DISCRIMINATOR
HI FI STANDARDS

SINCLAIR MICRO FM

A joy for anyone to build!

In styling, the Sinclair Micro FM is the most elegant, most professional looking design in miniaturised equipment ever made available to constructors. It is also the most original FM design in years. This high quality FM tuner has one output for feeding to hi-fi amplifier or tape recorder; a second output enables it to be used independently as a self-contained pocket FM receiver for personal listening. Barely half the size of a packet of twenty cigarettes, this fully fledged 7 transistor design incorporates many unique and original design features to achieve fantastically good standards of performance. Thanks to Sinclair designers, you can at last build an FM receiver without alignment problems, so that your Micro FM is ready to use the moment you finish building it. With pulse counting detection for better audio quality, excellent sensitivity and A.F.C. for easy tuning, the set’s own telescopic aerial will suffice for good reception almost everywhere. THE MICRO FM COSTS POUNDS LESS AND MEANS THAT ANYONE CAN ENJOY THE ADVANTAGES OF FM AT ITS BEST TO-DAY.

Use it as—

AN F.M. TUNER FOR YOUR TAPE RECORDER

MONEY SAVING!

AS A TUNER FOR YOUR HI-FI (Space Saving!)

(That only one in the World!)

Seven transistors, two diode FM superhet for use as a tuner and as a self-contained pocket receiver. The R.F. amplifier is followed by a self oscillating mixer. Low I.F. dispenses with the need for alignment. A three stage I.F. amplifier produces a square wave of constant voltage which is fed into the pulse counting discriminator. This is converted into uniform pulses, the average output from which is directly proportional to the signal frequency, reproducing the original modulation exactly. After equalisation, the signal is fed to the audio output socket and to the receiver’s own audio amplifying stage for using the Micro FM as an independent self-contained receiver. A.F.C. "locks" on each station automatically. THE SINCLAIR MICRO FM is self-contained within a neat black plastic case faced by an elegantly designed front panel of brushed and polished aluminium with spun aluminium tuning dial to match.

£ 5.19.6

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS

SINCLAIR RADIONICS LTD., COMBERTON, CAMBRIDGE
Telephone: COMBERTON 6
A BRILLIANT NEW AMPLIFIER

USE IT FOR YOUR HI-FI, FOR YOUR CAR RADIO

QUALITY RADIO (with MICRO FM)

FOR GUITARISTS

WITH YOUR SINCLAIR F.M., FOR MUSIC AND P.A.

SINCLAIR

Z.12 COMBINED 12 WATT HI-FI AMPLIFIER AND PRE-AMP

Greater Power and Versatility

3" x 1 ½" x 1½"

WEIGHS 3 oz.

12 WATTS R.M.S. (24 WATTS PEAK)

SEE IT WITH THE MICRO-6 OR MICRO F.M.

Here is the hi-fi amplifier you have always dreamed of—very small, very powerful and of the highest possible quality. Sinclair's latest design, the Sinclair Z.12 meets all these requirements AND MORE to give you the most versatile, dependable amplifier system ever. In conformity with original Sinclair design, the Z.12 incorporates its own special pre-amplifier to which you add whichever of the tone and volume control circuits shown in the Z.12 manual suits you best. The Z.12 achieves even greater versatility, since it operates efficiently from any power supply between 6 and 20 volts, D.C. This makes it as attractive for use in car radios, guitars, P.A. systems, etc. as for the very best hi-fi it is designed for. In fact, the Z.12 is the ideal amplifier wherever the need is for great power and quality from the smallest possible unit. The Sinclair Z.12 comes to you ready built, tested and guaranteed. The Z.12 manual included makes simple work of installing and using the unit.

Technical Details: B transistor hi-fi amplifier with pre-amp and ultra-linear class B output. Special H.F. transistors are used in original circuitry to achieve laboratory standards of performance. Superb quality is assured by generous negative feedback. FREQUENCY RESPONSE—15-50,000 c/s (± 3dB). OUTPUT—12 watts RMS continuous sine wave (24 watts peak), 15 watts RMS music power (30 watts peak). OUTPUT IMPEDANCE—suitable for 3, 7.5 and 15 ohm speakers. Two 3-ohm speakers can be used in parallel if required. INPUT—+1mV into 2K ohms. POWER SUPPLY—6 to 20V D.C. from power unit available or batteries. SIGNAL TO NOISE RATIO—better than 60dB. QUIESCENT CURRENT CONSUMPTION—only 15mA. IDEAL FOR BATTERY OPERATION.

Z.12 Amplifier and pre-amp ready built, tested and guaranteed

Sinclair Power Pack for above £2.14.0

GUARANTEE ORDER FORM

To: SINCLAIR RADIONICS LTD.
COMBERTON CAMBRIDGE

Please send me the Z.12 manual included with every Sinclair Z.12 integrated 12 watt hi-fi amplifier and pre-amp will be found a number of tone and volume control systems from which you will be able to select one best suited for your requirements. Mono and stereo are shown, and none of these circuits costs more than a few shillings to add.

Order value £ s d

NAME

ADDRESS

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full and at once without question. It is important to quote P.E.26 should you prefer to write your order instead of cutting out this coupon.
EXCEL in ELECTRONICS

3-way Training Method:

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE
To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
- Radio/T.V. Engineering and Servicing, Colour Television, Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.
- NEW! Programmed Course on Electronic Fundamentals

EXPERT COACHING FOR:
- INSTITUTE OF ELECTRONIC AND RADIO ENGINEERS
- CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
- CITY AND GUILDS SUPPLEMENTARY STUDIES
- R.T.E.B. RADIO/T.V. SERVICING CERTIFICATE
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY
- R.F.E.B. RADIO/ T.V. SERVICING CERTIFICATE

And there are practical "learn-as-you-build" radio courses as well.

Member of the Association of British Correspondence Colleges.

FOR FREE HANDBOOK POST THIS COUPON TODAY

I.C.S., DEPT. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11

NAME

ADDRESS

OCCUPATION

AGE

INTERNATIONAL CORRESPONDENCE SCHOOLS

78

ELEGANT SEVEN Mk II

Combined Portable and Car Radio
The radio with the "Site" Feelings
- 7-transistor superhet. Output 300 mW.
- Wooden cabinet, fixed handle with silver-plated fittings, size 12" x 8" x 3" in.
- Horizontal tuning scale, size 11" x 2" in. silver without black lettering.
- All stations clearly marked.
- Ferrite-rod internal aerial.
- Operated from PP9 battery.
- I.F. neutralisation on each stage.
- D.C. coupled output stage with separate A.C. negative feedback.
- All components, transformers and setting assembly mounted on printed board.
- Fully comprehensive instructions and point-to-point wiring diagram.
- Printed circuit board, back-printed with all component values.
- Fully tunable over medium and long wavebands.
- Car socket.

ONLY £4.4.0
Plus 6/6 Post & Packing

POWER SUPPLY KIT
To purchasers of Elegant Seven parts, incorporating mains transformer, etc., A.C. mains 200-250v. Output 9v, 50mA, 7½ extra.

FIRST QUALITY PVC TAPE

<table>
<thead>
<tr>
<th>Width</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/"</td>
<td>Std 800 ft.</td>
<td>9/-</td>
</tr>
<tr>
<td>5/"</td>
<td>L.P. 800 ft.</td>
<td>10/6</td>
</tr>
<tr>
<td>7/"</td>
<td>Std 1200 ft.</td>
<td>11/6</td>
</tr>
<tr>
<td>7/"</td>
<td>T.P. 600 ft.</td>
<td>19/6</td>
</tr>
<tr>
<td>3/"</td>
<td>L.P. 2400 ft.</td>
<td>4/</td>
</tr>
<tr>
<td>3/"</td>
<td>T.P. 1800 ft.</td>
<td>25/6</td>
</tr>
<tr>
<td>5/"</td>
<td>L.P. 12000 ft.</td>
<td>51/6</td>
</tr>
<tr>
<td>7/"</td>
<td>T.P. 3600 ft.</td>
<td>42/6</td>
</tr>
</tbody>
</table>

GEC FLAT HEATER ELEMENT 500 w.
Can be used for wash handers, washing machines, etc. Five or six elements can be used in parallel to give 2500/3000 watts. Sizes 5" x 1½", copper enclosed. 2/6 each, P. & P. 1/6. 4 or more P. & P. plus 5/-.

40w. FLUORESCENT LIGHT KIT

8-watt 5-valve PUSH-PULL AMPLIFIER & METAL RECTIFIER
Size: 9 x 6 x 5". A.C. mains 200-250v. 5 valves. All stations clearly marked. Separate bass and treble lift controls. Two inputs, with controls, for gram. and microphone. Output Transformer tapped for 3 and 15 ohms speech coils. Built and tested. £3.19.6. P. & P. 8/-.

3KW IMMERSION HEATER
OPERATED FROM PP9 Battery.
Ferrite-rod Internal aerial.
All stations clearly marked.
Horizontal tuning scale, size 12½" x 8½" x 3½" in.
350 mw.

RADIO & T.V. COMPONENTS (ACTON) LTD.
2ID, HIGH STREET, ACTON, LONDON, W.3

R & TV

30° to 180°, 20 amp. A.C. and D.C. double pole 20 amp. mains switch. 1½", 2½", 3½" and 3½"."

Complete with Variable Thermostat 90° to 180°F. 20 amp. A.C. and D.C. double pole 20 amp. mains switch. 1½", 2½", 3½" and 3½"."

3 to 4 WATT AMPLIFIER KIT
comprising chassis 8½" x 1½" x 1½", 2 bi-pin holders, starter and starter holder, 17/6. P. & P. 4/6.

460 kc/s. L.F. neutralisation on each stage.

Wide range of courses available include:
- Radio/T.V. Engineering and Servicing, Colour Television, Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.
- NEW! Programmed Course on Electronic Fundamentals

FOR FREE HANDBOOK POST THIS COUPON TODAY

I.C.S., DEPT. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11

NAME

ADDRESS

OCCUPATION

AGE

INTERNATIONAL CORRESPONDENCE SCHOOLS
SELENIUM RECTIFIERS
Includes 72 sq. ins. laminate, fluids, brush and instructions.

Staff required at various branches. Experience unnecessary.

High Fidelity 12-14 Watt Amplifier Type A11
PUSH-PULL ULTRA LINEAR OUTPUT
BUILD YOUR OWN COMPONENT STAGES
Two input sockets with associated controls allowing mixing of "mike" and gram, as in A10. High sensitivity. Includes 6 valves, ECC83, ECC84, 6L6 x 4, sectionally wound. Transformer specially designed for Ultra linear operation and reliable performance. Individual controls for bass and treble "Lift" and "Cut", for output sockets. Suitable for use with all types of pick-ups, microphones and loudspeakers. Comparable with the very best valves and transistors available. Miniature units fully enclosed in wafer board type cabinets. Comparable with most expensive amplifiers available. Hum level 70 dB down.

Frequency response +3dB 30-20,000 c/s. A specially designed sectionally wound output transformer, matched to 8 or 15 watts, 6L6, KT66. 12VA 45/9. 15VA 42/9.

Per known long-playing records. OUTPUT SOCKET PROVIDES U.T. etc. For use with Electronic ORGAN, BASS, LEAD OR RHYTHM GUITAR, STRING BASS, etc. For terminal or point-to-point wiring diagrams supplied. (Or factory built 8/9 extra) Send S.A.E. for leaflet, also speaker. Terms: DEPOSIT 11 Gns. and 9 monthly payments of 24/9 (Total £8.17.6). Carry 8/2.

M.G.M. Tape Recorder
ONLY 16/9 For useful Manual. 150 watts

R.S.C. MAINS TRANSFORMERS (FULLY GUARANTEED)
Includes 72 sq. ins. laminate, fluids, brush and instructions.

Staff required at various branches. Experience unnecessary.

High Fidelity 12-14 Watt Amplifier Type A11
PUSH-PULL ULTRA LINEAR OUTPUT
BUILD YOUR OWN COMPONENT STAGES
Two input sockets with associated controls allowing mixing of "mike" and gram, as in A10. High sensitivity. Includes 6 valves, ECC83, ECC84, 6L6 x 4, sectionally wound. Transformer specially designed for Ultra linear operation and reliable performance. Individual controls for bass and treble "Lift" and "Cut", for output sockets. Suitable for use with all types of pick-ups, microphones and loudspeakers. Comparable with the very best valves and transistors available. Hum level 70 dB down.

Frequency response +3dB 30-20,000 c/s. A specially designed sectionally wound output transformer, matched to 8 or 15 watts, 6L6, KT66. 12VA 45/9. 15VA 42/9.

Per known long-playing records. OUTPUT SOCKET PROVIDES U.T. etc. For use with Electronic ORGAN, BASS, LEAD OR RHYTHM GUITAR, STRING BASS, etc. For terminal or point-to-point wiring diagrams supplied. (Or factory built 8/9 extra) Send S.A.E. for leaflet, also speaker. Terms: DEPOSIT 11 Gns. and 9 monthly payments of 24/9 (Total £8.17.6). Carry 8/2.

M.G.M. Tape Recorder
ONLY 16/9 For useful Manual. 150 watts

R.S.C. MAINS TRANSFORMERS (FULLY GUARANTEED)
Includes 72 sq. ins. laminate, fluids, brush and instructions.

Staff required at various branches. Experience unnecessary.

High Fidelity 12-14 Watt Amplifier Type A11
PUSH-PULL ULTRA LINEAR OUTPUT
BUILD YOUR OWN COMPONENT STAGES
Two input sockets with associated controls allowing mixing of "mike" and gram, as in A10. High sensitivity. Includes 6 valves, ECC83, ECC84, 6L6 x 4, sectionally wound. Transformer specially designed for Ultra linear operation and reliable performance. Individual controls for bass and treble "Lift" and "Cut", for output sockets. Suitable for use with all types of pick-ups, microphones and loudspeakers. Comparable with the very best valves and transistors available. Hum level 70 dB down.

Frequency response +3dB 30-20,000 c/s. A specially designed sectionally wound output transformer, matched to 8 or 15 watts, 6L6, KT66. 12VA 45/9. 15VA 42/9.

Per known long-playing records. OUTPUT SOCKET PROVIDES U.T. etc. For use with Electronic ORGAN, BASS, LEAD OR RHYTHM GUITAR, STRING BASS, etc. For terminal or point-to-point wiring diagrams supplied. (Or factory built 8/9 extra) Send S.A.E. for leaflet, also speaker. Terms: DEPOSIT 11 Gns. and 9 monthly payments of 24/9 (Total £8.17.6). Carry 8/2.

M.G.M. Tape Recorder
ONLY 16/9 For useful Manual. 150 watts

R.S.C. MAINS TRANSFORMERS (FULLY GUARANTEED)
Includes 72 sq. ins. laminate, fluids, brush and instructions.

Staff required at various branches. Experience unnecessary.

High Fidelity 12-14 Watt Amplifier Type A11
PUSH-PULL ULTRA LINEAR OUTPUT
BUILD YOUR OWN COMPONENT STAGES
Two input sockets with associated controls allowing mixing of "mike" and gram, as in A10. High sensitivity. Includes 6 valves, ECC83, ECC84, 6L6 x 4, sectionally wound. Transformer specially designed for Ultra linear operation and reliable performance. Individual controls for bass and treble "Lift" and "Cut", for output sockets. Suitable for use with all types of pick-ups, microphones and loudspeakers. Comparable with the very best valves and transistors available. Hum level 70 dB down.

Frequency response +3dB 30-20,000 c/s. A specially designed sectionally wound output transformer, matched to 8 or 15 watts, 6L6, KT66. 12VA 45/9. 15VA 42/9.

Per known long-playing records. OUTPUT SOCKET PROVIDES U.T. etc. For use with Electronic ORGAN, BASS, LEAD OR RHYTHM GUITAR, STRING BASS, etc. For terminal or point-to-point wiring diagrams supplied. (Or factory built 8/9 extra) Send S.A.E. for leaflet, also speaker. Terms: DEPOSIT 11 Gns. and 9 monthly payments of 24/9 (Total £8.17.6). Carry 8/2.

M.G.M. Tape Recorder
ONLY 16/9 For useful Manual. 150 watts

R.S.C. MAINS TRANSFORMERS (FULLY GUARANTEED)
Includes 72 sq. ins. laminate, fluids, brush and instructions.

Staff required at various branches. Experience unnecessary.

High Fidelity 12-14 Watt Amplifier Type A11
PUSH-PULL ULTRA LINEAR OUTPUT
BUILD YOUR OWN COMPONENT STAGES
Two input sockets with associated controls allowing mixing of "mike" and gram, as in A10. High sensitivity. Includes 6 valves, ECC83, ECC84, 6L6 x 4, sectionally wound. Transformer specially designed for Ultra linear operation and reliable performance. Individual controls for bass and treble "Lift" and "Cut", for output sockets. Suitable for use with all types of pick-ups, microphones and loudspeakers. Comparable with the very best valves and transistors available. Hum level 70 dB down.

Frequency response +3dB 30-20,000 c/s. A specially designed sectionally wound output transformer, matched to 8 or 15 watts, 6L6, KT66. 12VA 45/9. 15VA 42/9.

Per known long-playing records. OUTPUT SOCKET PROVIDES U.T. etc. For use with Electronic ORGAN, BASS, LEAD OR RHYTHM GUITAR, STRING BASS, etc. For terminal or point-to-point wiring diagrams supplied. (Or factory built 8/9 extra) Send S.A.E. for leaflet, also speaker. Terms: DEPOSIT 11 Gns. and 9 monthly payments of 24/9 (Total £8.17.6). Carry 8/2.

M.G.M. Tape Recorder
ONLY 16/9 For useful Manual. 150 watts

R.S.C. MAINS TRANSFORMERS (FULLY GUARANTEED)
Includes 72 sq. ins. laminate, fluids, brush and instructions.

Staff required at various branches. Experience unnecessary.
A TECH-PRESS PUBLICATION

What this month’s enthusiasts say

... You must get endless praise about these works. What a change from the heavy-going snob books which abound today...

B.M., Yorks.

... As an ex-Royal Signals Officer I think I shall always regard these books as providing an excellent foundation for my son... J.B. Nuneaton

... I would just like to thank you for a wonderful set of books; they really are a wonderful bargain... S.S., Oxford

A TECH-PRESS PUBLICATION

Basic Electronics

5 Vols.

Basic Electricity

6 Vols.

To Selray Book Co.
60 Hayes Hill, Hayes, Bromley, Kent

Please send me Without Obligation to Purchase, Basic Electricity (5 Vols.) and Basic Electronics (6 Vols.), by post free. This offer applies to United Kingdom orders only. Postage and packing 6/6 per order.

Name ________________________________

Address __
SNIPERCONE

Famous wartime “shot’s eye” periscope seeing in the dark. This is the ideal periscope for image converter unit with special feature of a tool which lights up (like a floodlight tube) when the electron beam is blocked by infra-red strike. It does not allow any view from ordinary lamp in infra-red these cells will work similarly, remote view, miniaturizing and the hundreds and one other device as will be a single type of control cell. Here is a golden opportunity for keen interested customers, price 8/- each. Post free. Data will be supplied with cells if requested.

INFRA-RED HEATERS

Make up one of these latest type heaters, ideal for bathroom or room heating. They are simple to make from our easy-to-follow instructions and a little enclosed elements designed for the correct infra-red wavelength (3 microns). Price for 750 watt element, all metal mount casing as illustrated, 2/18 plus 3/6 post and insurance. Pull switch 9/-.

SNIP FOR RECORD LOVERS

Acops GP7 Turnover Cartridge for Stereo—LP—and 78 records fitted with two stylp—diamond for Stereo and 1/- ordinary for 78s. Additional cartridge is mounted and is a standard replacement for the most famous record players using Garrard 9-B. Collins, etc. The regular price of this Cartridge is 5/-, we offer these new and perfect for 10/- (less than the cost of one stylus!) plus 2/- post and insurance.

GANGED POTS

Standard Type and size with long head of spindle—made by Morganite. List price is 10/- each but if you act quickly you can have them at 12/- each. (for 1/2 each if less than 25) Following values to stock all “5K—5K 10K 15K 100K 100K 500K 500K 1M 1M plus and Meg all new and unused. Post 2/9 on first dozen, then 1/- per 6 dozen, or more post free.

OUR BARGAIN OF THE YEAR

A complete kit of parts to build this lovely reference receiver plus 78/0 plus 9/8 post and his.

CORONET Mk. II

It converts the medium-wave band and part of the long-wave band to bring in R.B.C. Light. The circuit includes a very efficient slab aerial, 5/6 in. F.M. receiver. Overall size 14x10x3. Supplied complete with carrying case and instructions.

750 mW TRANSISTOR AMPLIFIER

4 transistors included in this push-pull,input for crystal or magnetic microphone or pick-up—feedback loops—sensitivity 5m/s. Price 19/8.

THIS MONTH’S SNIP

Transistor set case with carrying handle size 10” x 8” x 2”

Made from best plywood and covered two-layer fabric—very smart—equally for radio—amplifier extension Speaker, etc.—Originally listed at 5/- but offered this month 1/8 plus 2/- post and insurance. Also given free with it is a printed circuit board to suit it and building instructions for fine two-wave radios. Don’t miss this great offer.

THE “MINY” TAPE RECORDER

Of the many tape recorders to offer at 6/8 or less we have at last found one we can recommend. This instrument, uses two motors, is completely portable and beautifully styled and looks like a good tape recorder.

Among the many good features is a switch on the microphone to stop and start the tapes. A very useful feature for your comparatively low cost and recording, and for your type of microphone you will see recorded—for 49 mins with normal tapes, standard batteries.

Although originally sold at 41/6/0, we are able this month to offer for only 9/12/8 plus 2/- post and insurance. Brand new and complete with microphone, batteries, tape and spool, nothing else to buy.

Don’t miss this FANTASTIC OFFER.

MAINS POWER PACK

MAINS POWER PACK designed to operate transistor sets and amplifiers. Adjustable output 5 to 15 volts. Prices are as follows: 1/- plus 2/- post and insurance.

FIVE CORE CABLE

Ideal for switching circuits, intercoms, F.M. etc., each core for copper with nickel insulation, cores covered overall in tough rubber or F.V.C. 1/2 per yd. or 30 yds. length 15/6 plus 3/- post.

BATTERY ELIMINATOR

With this you can operate your pocket radio from the mains. You can also charge PP3 batteries five per 3/- post and insurance. Will save to its cost in no time.

FINE TUNERS

60 pF with long spindle as illustrated. 1/4 or 23/0, doz.

TURRET TUNERS

By the famous Croxdon or British firm, complete with coil, but less-coil cover, control and handle—all nickel—wonderful bargain at 5/- each plus 2/- post.

FIVE STATION INTERCOM

Will save time and improve efficiency. Complete outfit comprises blisters each and three terminations each of which can call the master and have full two-way working. No wiring, possibilities with 90-100 foot, etc. and they ping into sockets. Also included in pack of equipment—are: 3 sockets, 6 plugs, 6 plates, order to pay £7/18/6 plus 4/- post and insurance.

SPEAKER BARGAIN

12in. High frequency loudspeaker. High frequency magnet type with 100w 8 ohm or 100w 8 ohm speech coil. Will handle up to 10 watts. Brand new by famous maker. Price 20/- plus 3/- post and insurance.

SPOT OR FOG LAMP

Made by Looman, flat or pencil beam, 80 watt. Suitable for car, boat, caravan, etc. with 8 or 12v bulb, flex, cables and all necessary fittings. Price 12/- plus 2/- post.

THERMOSTATS

Type “A” 15 amp for controlling room heaters, greenhouse, air conditioning. Has spindle for pointer knob, quickly adjustable from 50° to 150°, 9/8 plus 1/- post. Suitable for wall mounting 6/8. P. 4. F. 1/.

Type “B” 15 amp. This is a 175w, long red type made by the famous Bovice Co. Spindle adjusts this 20-80w, internal screw allows the setting so this could be adjustable over 30° to 1,000w. Suitable for controlling furnaces, ovens, kiln, immersion heater or to make fluorescent or fire alarm. 8/8 plus 2/- post and insurance.

Type “C” is a small porcelain thermostat as fitted to electric blankets, etc. 1 amp. setting adjustable by screw through side. 2/10. F. P. 6/0.

Type “D” We call this the Ice-spot as it is used in and out of auromotive freezer point, 2/5 amp. Has many uses, one of which would be to keep the heat pipes from freezing if a length of our blanking wire (10 yds.) is wound round the pipes. 7/8. F. P. 1/10.

Type “E” This is a standard refrigerator thermostat. Includes bimetal, normal internal regis- ter temperature, 7/8 plus 1/2 post.

9-WAY PUSH-BUTTON SWITCH

Each way having two single pole change over and one single throw, switch, good length push rods 10/- each, post 9/- each.

Water-proof Heater Wire

16 yds. length 70 watts, self-regulating temperature control. 10/-, post free.

Three Unusual Items

OZONE OUTLET—for removing smells and generally improving any oppressive atmosphere. Kit consists of Phillips Ozone Lamp, special flex 12/9, P. 4. F. 1/6 post plus 5/- postage and insurance.

BLACK LIGHT UNIT—40 watt intensity, completely portable, has 60 inch, 30 watt choke. Only 12/9 plus 6/- carriage, 8/-.

TINKER KIT—Special offer of all components including metal box to make mains operated internal timer for photography, etc. 20/- post plus 5/6 carriage.

Simmerstat Heater Regulator

Suitable to control elements, heater, soldering iron and boiling rings up to 3,000 watt. Complete self-assembly kit, ideal for beginners, single napped size 10’ x 8’ x 3’. Price 12/8 plus 2/- postage and insurance.

Where postage is not definitely stated add 2/- to all orders under 23. Also add 2/6 if you would like our new 100 page list of bargains.

SEED & PLANT RAISING

Soil heating wire and transformer. Suitable for standard germinating frame. 12/8 plus 2/- post and insurance.

TWO-WAY RADIOS

Give communication over a mile. FULLY transistorized—crystal controlled, built-in telescopic antenna—push button operation—PP3 batteries—pair instruments, complete and ready to use 78/0, plus 6/- post and insurance.

FIRE STATION INTERCOM

Will save time and improve efficiency. Complete outfit comprises blaster unit and three terminations each of which can call the master and have full two-way working. No wiring, possibilities with 90-100 foot, etc. and they ping into sockets. Also included in pack of equipment—are: 3 sockets, 6 plugs, 6 plates, order to pay £7/18/6 plus 4/- post and insurance.

13 AMP SOCKETS

Change all those old-fashioned ones to these modern fused types or install a new ring main. Sockets for surface mounting or for letting into wall or skirting boards—best made (0.K.C.). 5/8 with switch or 9/- plastic switches, fits or more post free, otherwise add 2/6.

HEAT AND LIGHT UNIT

Gives 300 watts of heat with appox. 150 watts of light and simple fits in place of lamp. Price 3/- cartridge and insurance.

BATTERY ELIMINATOR

With this you can operate your pocket radio from the mains. You can also charge PP3 batteries five per 3/- post and insurance. Will save to its cost in no time.

FUTURISTIC CABLE

Ideal for switching circuits, intercoms, F.M., etc., each core for copper with nickel insulation, cores covered overall in tough rubber or F.V.C. 6/6 per yd. or 30 yds. length 12/8 plus 3/- post.

MAGNETIC CABLE

Magnetic wire enamelled type (1/16 Ex equlp.) or 1/8 new.
HERE'S ALL YOU NEED FOR SERVICING OVER 1,450 Models (1962—1965)

There is no other publication like Newnes RADIO & TV SERVICING... the greatest time-saver and money-maker you can own! 3 volumes packed with circuits, data and hints for repairing over 1,450 models (1962-65). TV, radio, tape recorders... all the famous makes are here. Plus big section of latest Radio and TV developments. Examine it, USE it for a week FREE. Don't miss this opportunity simply post coupon today.

ALL these makes

3 VOLUMES 1,848 PAGES
Over 2,000 Circuits and Diagrams

Easy no-interest terms if kept after free trial

To: George Newnes Ltd.,
15-17 Long Acre,
London, W.C.2

PLEASE send RADIO & TV SERVICING (3 volumes) without obligation to buy. If you accept this application I will post 10/- deposit 8 days after receipt of books, then 30/- monthly for 8 months, paying 8/- in all—return the books. Cash in 9 days 80 cash.

43/1757

Full Name (Mrs., Mrs., Miss)
Address

Thick V where applicable

Telephone number

Business

Personal

Partners' Name

Telephone Number

Temporary Address

Free Trial applies G.B. Free trial price (refundable if title returned in 8 days).

MINIATURE NIFE CELLS

High grade leak proof nickel iron accumulators, each enclosed in a vicarious enamelled welded container, size over-all 2½ in. x 1 in. x 1½ in. High Cells are rated 1/2 2.5 AH and are almost Indestructible; they will withstand tremendous overloads.. (which may be a useful substitute in a discharged condition for long periods without deterioration. Can be used singly or in multiple units for lamps, motors, controls, bells, burglar alarms, flash equipment, radios, etc. Each cell is unfilled and supplied with dry electrolyte and filling and charging instructions 16/-. (Free)

Make a wonderful range of inexpensive devices

with

DRY REED SWITCHES

Can be actuated by permanent or electromagnets to provide excellent basis for a wide range of inexpensive devices such as burglar alarms, limit switches, door bell switches, etc. Tremendous reliability factors and a working life of about 100 times that of microswitches and the uses to which they can be put is limited only by imagination. Each switch supplied complete with specification, instructions and limited warranty. SUITABLE FOR DIRECT operation DRYREED SWITCHES.

Cadmium Sulphide photocells are photoconductive devices i.e. they act as light sensitive resistors which become more conductive when exposed to light. They combine robust construction with great reliability, and can be readily fitted to operate the triggering devices into a wide range of simple control circuits. Typical uses include automatic light controls for home and car, flashing barricade or breakdown lights, exposure meters, brightness controls. They are not polarity conscious and can be used on AC or DC supplies. Spectral response covers entire visible light range.

TYPE 1 —Plastic encapsulated 1½ in. x 1½ in. x 1 in. Thick. Time response 1 megohm, Resistance 100 Lux 700 to 3,000 ohms. Max. volts 200. Max. current 10/- Post 250 mW.

TYPE 2 —Plastic encapsulated 1 in. diam. x 1 in. thick. Time response 1 megohm, Resistance 200 Lux 700 to 2,000 ohms. Max. volts 150. Max. current 7 mW. Free

TYPE 3 —Glass sealed with M.E.S. base. Glass window 1½ in. diam. x 1 in. thick. Time response 1 megohm, Resistance 100 Lux 5,000 to 10,000 ohms. Max. volts 100. Max. current 5 mW. Free

TYPE 4 —Hermically sealed, glass window 1½ in. diam. x 1 in. thick. Time response 1 megohm, Resistance 100 Lux 5,000 to 10,000 ohms. Max. volts 100. Max. current 5 mW. Post 20 mW.

SELENIUM PHOTOCELLS

Selemium cells are photoconductive, i.e. light energy is converted by the cell into current which can be measured directly by a microammeter or used in conjunction with an amplifier, as the triggering current for alarm and safety devices and photo-electric counting mechanisms. Selenium cells are particularly suitable for use in luminous instruments, exposure meters, photographic colorimeters, fire alarms, etc. Typical available size 1½ in. diam. x 1 in. (dual faced), supplied with a current limiting device to restrict output to 100 mW. Measurement is approximately 200 mA at 3,000 Lux.

DEKATRON TYPE G51E

by Ericsson, sup- plied brand new, boxed and complete with performance and con- nection data, Max. operating speed: 10 kc/s. Annealed voltage: 150 to 200 v, Max. Current: 0.8 mA, Cathode voltage: 35 v. max. Pulsed Amplitude: 120 v. min. Pulsed Frequency: 0 to 15 Hz. Suitable for use in 3/4 in. Fitted with standard 15/- Post duralnic base.

PROOPS BROTHERS LIMITED

52 TOOTING COURT ROAD, LONDON W.5
Home L.F. 6467; M.F. 6947; D.F. 6947. Open All Day or earthen.
NEW ROAMER SEVEN

7 WAVEBAND PORTABLE OR CAR RADIO

FULLY TUNABLE ON ALL WAVEBANDS

- **9 stages—7 transistors and 2 diodes**

Covers Medium and Long Waves, Trawler Band and three Short Waves. Incorporates Ferrite rod aerial for wonderful reception. Top grade transistors, 3-inch speaker, handsome case with gilt fittings. 7½ x 5½ x 3¾in. (Carrying Strap 5/- extra.)

EXTRA BAND FOR EASIER TUNING OF LUX, ETC.

Total cost of all parts now only £3.19.6. Parts Price List and easy build plans 2/-. (Free with kit)

MELODY SIX

- **8 stages—6 transistors and 2 diodes**

Our latest completely portable transistor radio covering Medium and Long Waves. Incorporates pre-taged circuit board. 3½in. speaker makes listening a pleasure. Push-pull output Ferrite rod aerial. Many stations listed in one evening including Luxembourg loud and clear. Designed round a super sensitive Ferrite Rod Aerial and fine tone 2½in. moving coil speaker, built into attractive black case with red speaker grille. Size 9½ x 7½ x 4½in. (Uses 1289 battery available anywhere.)

Total cost of all parts now only £3.9.6. Parts Price List and easy build plans 2/-. (Free with kit)

TRANSANOVA

- **6 stages—6 transistors and 2 diodes**

This is a top performance receiver covering full Medium and Long Waves and Trawler Band. High-grade appraoch. 3½in. speaker makes listening a pleasure. Push-pull output Ferrite rod aerial. Many stations listed in one evening including Luxembourg loud and clear. Attractive case in grey with red grille. Size 6½ x 4½ x 3½in. (Uses PP4 battery available anywhere.)

Total cost of all parts now only 59/6. P. & P., 3/6. Parts Price List and easy build plans 1/6. (Free with kit)

NEW ROAMER SIX

- **8 stages—6 transistors and 2 diodes**

Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS

Sensitve Ferrite rod aerial and telescopic serial for short waves. Top grade transistors, 3-inch speaker, handsome case with gilt fittings. Size 7½ x 5½ x 3¾in. (Carrying Strap 5/- extra.)

EXTRA BAND FOR EASIER TUNING OF LUX, ETC.

Total cost of all parts now only £3.19.6. P. & P., 3/6. Parts Price List and easy build plans 2/-. (Free with kit)

NEW TRANSONA FIVE

- **7 stages—5 transistors and 2 diodes**

"Home, Light, A.F.N. Lux. all at good volume"

G.P., Durham

Fully tunable over Medium and Long Waves and Trawler Band. Incorporates Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3½in. speaker (will drive large speaker). Size 7½ x 5½ x 4½in. (Uses 9v battery, available anywhere.)

Total cost of all parts now only 42/6. P. & P., 3/6. Parts Price List and easy build plans 2/-. (Free with kit)

POCKET FIVE

- **7 stages—5 transistors and 2 diodes**

Covers Medium and Long Waves and Trawler Band. Has built-in Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3½in. speaker (will drive large speaker). Size 7½ x 5½ x 4½in. (Uses PP7 battery available anywhere.)

Total cost of all parts now only 42/6. P. & P., 3/6. Parts Price List and easy build plans 2/-. (Free with kit)

SUPER SEVEN

- **9 stages—7 transistors and 2 diodes**

Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or can be fitted with carrying strap for outdoor use. Completely portable—has built-in Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3½in. speaker (will drive large speaker). Size 7½ x 5½ x 4½in. (Uses PP7 battery available anywhere.)

Total cost of all parts now only £3.19.6. P. & P., 3/6. Parts Price List and easy build plans 2/-. (Free with kit)

HEADPHONES

Boontonite H11.29 High Fidelity Headphones. Made by famous American manufacturers. Approx. 100 ohms impedance for direct mismatching into most transistor circuits. BRAND NEW in original sealed cartons. 3½in. P. & P., 1/6. Matching Transformers for higher impedances 5/- extra.

THE BIG-BEN

A versatile Signal Indicator. Something no constructor should be without. This ingenious device generates an audible signal through the Audio and R.F. ranges. With variable output. Phono- probe. Pocket size also available. 2½in. x 3½ x 2½in. Approx. 2½in. impedance. Complete set of parts with full instructions. 3½in. P. & P. 1/6.

QUICK CHECK TRANSISTOR TESTER

Checks gsplash of R.F. and Audio Transformers. Also checks for noise and shorts. All parts ready to be assembled in attractive grey case with red grills, complete with Dial, Knobs, and 2½in. Speaker. Simple assembly Instructions free with set of parts. 3½in. P. & P. 2/6.

1800W TRANSISTOR AUDIO AMPLIFIER

RELAY RELAYFABRICITY TRANSISTORS

FILM RESISTORS

TUNING CONDENSERS

A 223 AM-FM Tuner, shown above, or a 224 FM Tuner will enable you to take full advantage of the wonderful source of quality sound FM broadcasts offer. Matching any high fidelity amplifier (including our models 221 and 222) they are self powered and only need the simple addition of an Armstrong Multiplex Decoder for stereo broadcast reception. Tuning is by meter with complete freedom from drift, and the units may be built into your own cabinet or housed in our handsome case of teak and vinyl hide (as shown). For full details and technical specifications of all models, plus lists of over 84 stockists, post coupon or write mentioning 2PE66.

Ersin Multicore Solder

Ersin Multicore 5-core solder is easy to use and economical. It contains 5 cores of non-corrosive flux, cleaning instantly heavily oxidised surfaces. No extra flux is required. Ersin Multicore Savidt Alloy considerably reduces the wear of copper soldering iron bits.

Handy Solder Dispenser

- **Savidt alloy in a continuous coil, used direct from free-standing dispenser.**
- **2/6 each**

Low Temperature Solder

- Size 10 pack contains 24 ft. of 60/40 high
- **un quality 22 s.w.g.**
- **2/6 each**

Bib Wire Stripper and Cutter

- Strips insulation, **cuts wire cleanly. Adjusts to any size.**
- **4/- each**

Available from all Electrical and Hardware shops.

If unobtainable write to:

MULTICORE SOLDER LTD.

Multicore Works, Hemel Hempstead, Herts. Hemel Hempstead 3636 M.4/8
IF YOU ARE LOOKING for the UNUSUAL

... you may find it in our Catalogue. The number of times we hear a customer say "I have been searching everywhere for one of these" leads us to believe that many items which to us are quite standard, may be unusual to many of our customers. May we pin-point a few...

THERMISTORS

- R53: £1.1.0
- A15: 12/6
- A25: 12/6
- A54: 12/6
- A55: 12/6
- R24: £1.1.0

Also stocked:

- THERMISTORS
 - R53
 - A15
 - A25
 - A54
 - A55
 - R24

HIGH VOLTAGE RECTIFIERS

- K3/40: 9/-
- K3/15: 6/-
- K3/50: 12/4
- K3/100: £1.0.3
- K3/160: £1.5.6

Also stocked:

- K3/40
- K3/15
- K3/50
- K3/100
- K3/160

S.T.C. F.M. CRYSTALS

- £3.15.0

GANGED STEREO POTS

- 10K Log plus 10K A/Log: 10/-
- 10K plus 10K Log D.P. switch: 12/3

Also stocked:

- Log or Linear 10K, 25K, 50K, 100K, 250K, 500K, 1M, 2M: 10/-
- Log/A Log, 500K, 1M, 2M: 10/-
- Log with D.P. switch 500K, 1M: 12/3

RESISTORS

- 1% 1/2 watt: 2/-

Most values between 22 Ohms and 10 Meg.

VALVES

- TT21: £2.8.6

We stock a very comprehensive range of valves, but the following may be considered unusual:

- EN91: 18/-
- ORP90: 16.6
- VR105/30: 18.6
- VR150/30: 18.6
- 85A1: £2.11.6

TRANSISTORS AND DIODES

- AF186: £1.7.6
- AC107: 14.6
- BYZ13: 11.6
- ASY28: 8.6
- GEX66: 15.
- GET1103: 7/-
- GET1106: 17/-
- GET106: 17/-
- GET111: 12/-
- GET115: 9.6
- GET115: 9.6
- GET116: 17/-
- GET116: 17/-
- OC76: 7/-
- OC77: 12/-
- OC77: 12/-
- OC83: 6/-
- OC84: 8/-
- SVC1: 18/-
- OAZ122: £1.0.6
- OAZ223: 17.6
- OAZ224: 14/-

Well there they are, but if on the other hand you require all the usual items, Resistors, Condensers, Coils, Transformers, etc., they are all in the Catalogue too, clearly indexed and priced.

P.S. We hasten to add that the last two-headed elephant has been sold* but we still have left some excellent catalogues consisting of 210 pages, plus a 21-page supplement, 5800 items (over 900 illustrated). Don't hesitate, send off the coupon and 9/- P.O. or cheque today. Every catalogue contains 5 coupons, each worth a 1/- if used as directed.

* To a politician who wasn't sure which way to go.
THE demarcation between electrics and electronics has never been altogether clear and obvious. Sometimes the distinction is based on quite tenuous grounds. For example, the presence of a solitary rectifier might be considered a valid reason for applying the description "electronic" to a circuit composed otherwise entirely of conventional electrical devices. Whereas this classification might be in order according to the word of the generally accepted definition of electronics, it is arguable whether it is in accord with the spirit of this definition.

Anyhow most of us have an instinctive feeling for what is legitimate electronics, and such border line cases have not caused any undue concern—except maybe to the pedant. Every circuit or piece of apparatus has usually fitted nicely into the electronic or the electric pigeon hole without any bother at all.

But now things are changing, and with that rapidity we are becoming accustomed to in electronic affairs. The encroachment on electric territory by electronics has developed from a surreptitious movement into unconcealed full scale invasion. The vital force behind this offensive is the thyristor, alias the silicon controlled rectifier, known colloquially as s.c.r. This semiconductor device was invented only a few years ago, but already it has caused a minor revolution in electrical power technology. The thyristor is the solid state counterpart of the gas filled triode or thyratron and it is far more versatile and easier to use than this older device. In this vigorous campaign, valuable support has been provided by the new kind of semiconductor rectifiers, which are closely related to the thyristor.

With the aid of these semiconductor electronic devices (and make no mistake, we do claim these as being 100 per cent genuine members of the electronic clan) the smooth and precise control of high voltage and high current circuits has become almost effortless—both in terms of manual exertion by the operator and electrical power consumed in the controlling circuit. Thyristors are also being widely used in static convertors for changing a.c. to d.c., and in inverters where the reverse process takes place.

Lower down the power scale we find the thyristor equally useful and versatile. And here we are getting quite literally nearer home, with a host of interesting possibilities concerning mains operated appliances: lighting, heating, and power tool control—for instance. (Watch these pages!)

With this fusion of electrics and electronics the rather arbitrary and artificial distinction between these two related fields will be harder to maintain in the future. Perhaps British Standards will be called upon one day to redefine these terms for the general convenience of all. So far as this magazine is concerned, our readers may rest assured we will know where to draw the line. It will anyhow be fairly flexible, and we will always be prepared to give or take a diode or two!
Basically this series aims to provide as comprehensive a description as possible of model radio control systems, their scope and the type of circuits and equipment employed. Emphasis will be placed on descriptions of proven circuits rather than original designs since the demands involved are highly specialised.

Certain requirements peculiar to radio control operation, as such, are only properly met by practical development and proving under typical working conditions. By far the greater majority of successful radio control operation, in fact, is done with commercial equipment, which has reached its high degree of reliability through continual practical development.

The majority of circuits to be published can readily be used by the individual constructor, should he so desire. However, demands for home construction are usually best met by commercial kits which are normally based on a printed circuit panel and thus conform to “professional” standards as regards layout, as well as offering proven designs.

Kits are readily available of both single-channel and conventional multi-channel transmitters and receivers, and undoubtedly represent the best starting point for those who do not wish to purchase ready-made commercial equipment. There is also a substantial saving in cost by building from kits, compared with the price of ready-made equipment. The kit price is very little more than a complete set of components and materials for building completely from scratch from a circuit design.

Certain elements, such as pulser, decoders, servomotors, and so on, do lend themselves more readily to individual designs since these are ancillary to the basic requirement of a proven transmitter-receiver combination, and here the home constructor can feel on easier ground. This can also apply where the application can be regarded as “derated” compared with model control requirements, e.g. for simple remote control switching systems.

The description “model radio control” refers specifically to units produced for authorised operation for command signalling only (i.e. not speech), and now widely used for the remote control of model aircraft, boats and other working models. Identical, or similar, units are also employed industrially and com-
mercially, although the basic essence of model control units is simplicity and compactness, with a light duty requirement only in terms of mechanical output.

For mass appeal, too, price is a major factor, resulting in the development of transmitter-receiver combinations retailing at £15-£20, or something like one half this figure in prefabricated kit form for home assembly. At the other end of the scale, however, model radio control units embrace quite sophisticated miniaturised electronics in the form of superhet receivers capable of decoding multi-channel transmitter signals in the form of quadruple-proportional electro-mechanical (servo) outputs. Price for the complete equipment in this category can range as high as £400-£500.

Accordingly the F.C.C. allocated a further five spot frequencies for “Citizens Service” in 1958: 26-995, 27-045, 27-095, 27-145, and 27-195Mc/s. More recently, the subject of additional “spots” has received further review to take advantage of and expand the possibilities of simultaneous superhet operation. Currently the (American) Academy of Aeronautics and the F.C.C. are also negotiating for five additional v.h.f. frequencies: 72-08Mc/s, 72-24Mc/s, 72-40Mc/s, 72-96Mc/s and 75-64Mc/s.

FREQUENCY ALLOCATION

Model radio control, as such, started in the United States in the mid-1930s, utilizing home-built equipment capable of providing a reasonably reliable single-channel signalling system with a carrier frequency of the order of 50Mc/s.

The majority of such designs—and successful designs were relatively few in number—were produced by radio “hams” who were also model aircraft enthusiasts. Despite a considerable growth and development in the immediate post-war years, it was not until early 1950 that the (American) F.C.C. approved “Citizens Service” frequencies, which eliminated written and code tests on these frequencies and put radio control within the reach of thousands of model enthusiasts rather than radio enthusiasts. The permitted frequencies, known as “Citizens” bands, were 465 and 27-255Mc/s, with a maximum of 5 watts input to the final stage of the transmitter.

Apart from the inevitable “crowding” resulting from the use of a single spot frequency (the u.h.f. band being largely neglected because of the consider-

ably greater technical problems involved), the expanding use of 27-255Mc/s by other services in America, notably for street traffic lights, seriously restricted the usefulness of the band from a practical hobby point of view.

Little or no development of model radio control units took place in this country until after the war, but at an early period the British Post Office allocated two wavebands for model work—26-96 to 27-28 Mc/s and 464-465Mc/s (the latter, since January 1963, re-allocated as 468Mc/s) with transmitter output power not to exceed five watts.

A licence for operating any such transmitter is obligatory, but is obtainable simply on application to the Radio Branch, Radio and Accommodations Dept., G.P.O. Headquarters, London, E.C.1. The cost of the licence is £1, covering a period of five years.

While designers and manufacturers were at one period actively concerned with development of equipment for the 465Mc/s band, this has now largely fallen into disuse (and was never at any time particularly popular due to the high cost; the severe limitation imposed by the directional nature of such u.h.f. signals). The so-called 27Mc/s band has, therefore, become the accepted world “standard” for model radio control, leading manufacturing countries in addition to the U.S.A. and Great Britain being Germany and

END VOLTAGE
- Maximum practical (possible) voltage of a battery on discharge, also used to describe minimum useful voltage, although this can be a different value.

ESCAPMENT
- Electromechanical device or actuator embodying an escapement movement, triggered by movement of an armature.

FIELD STRENGTH
- Actual or measured strength of a transmitter signal at a specified distance (range).

FIELD STRENGTH METER
- Circuit with meter capable of tuning to a transmitter signal and measuring the strength of signal received.

FILTER
- Electronic equipment for passing a required tone frequency and blocking all other tones.

GALLOPING GHOST
- Spacing term of simple-simultaneous control (also “Simple-Simult”)

GAP
- Distance between armature and行程 (“make”) contact on a relay, distance between armature and coil core on an escapement, distance between a reed and its fixed contact.

GROUND RANGE
- Range of a transmitter between two ground positions (except the signal range achieved ground to ground with a particular transmitter-receiver combination).

HARD VALVE
- Conventional vacuum thermionic valve.

HARNESS
- Complete wiring system for a transmitter circuit or, more usually, a complete receiver installation.
Miniature single-channel receiver

Japan. Some equipment is still designed to operate on the 50–54Mc/s band in the U.S.A., and on the 40–41Mc/s band in Germany; the circuitry involved is basically the same but can be adapted to 27Mc/s operation, if necessary, by change of component values.

CRYSTAL CONTROL

About the only marked difference between the productions of the various countries is that the United States, with its insistence on “spot” frequencies, has invariably employed crystal-controlled transmitters. The crystal control of transmitters is also obligatory in Germany, but not in this country.

Consequently, the majority of earlier British equipment featured non-crystal controlled transmitters and such types are still produced today, where the saving in the cost of the crystal can represent a favourable selling (or building) price. In the main, however, the advantages offered by freedom of drift with a crystal controlled transmitter are universally recognised, and such a simple method of transmitter carrier frequency control becomes strictly necessary for the operation of a superheterodyne receiver.

From a diversity of early original designs, modern circuits fall into a more or less standard and well established pattern. Apart from seeking greater reliability (i.e. largely better circuit stability and efficiency), the most marked trends have been towards miniaturisation and increasing the functions obtainable from a single carrier frequency.

Miniaturisation has been greatly influenced by the development and availability of suitable transistors, both for valve functions and switching duties (e.g. to replace relays). This is even more desirable with multiple-function signalling when the receiver circuit must be extended to decode pulses or modulated signals.

HOW MANY CHANNELS?

A basic distinction is drawn between a single-channel and a multi-channel system. In the case of simple single-channel radio control a single signal only is transmitted, the receiver decoding this in the form of an on-off switching function. The transmitter signal may be simply the carrier signal (27Mc/s) which is switched on and off; or a lower frequency “tone” signal (usually of the order of 600–1000c/s) which is applied to modulate the carrier. In the latter case the carrier may remain switched on all the time and the tone keyed for signalling, or carrier and tone keyed simultaneously (e.g. to conserve the transmitter batteries). The two methods are known respectively as “carrier (or c.w.)” and “tone”.

With a multi-channel system the usual method is to provide for modulating the carrier by a number of different audio frequency tones which can be keyed separately. The receiver circuit is then so designed to decode each tone modulated signal separately, or distinctively. Provision may also be made to transmit and decode two or more tone-modulated signals simultaneously, in which case the multi-channel transmitter-receiver combination is said to be capable of simultaneous operation.

ACTUATOR CONTROL

As far as the output side of the receiver is concerned, regardless of the number of channels involved, each channel performs an on-off switching function, which is used as a “command” for an actuator circuit. An actuator is, basically, an electro-mechanical device, which translates on-off signalling into mechanical

GLOSSARY OF TERMS CONTINUED

HORN

Fixed lever arm attached to control surfaces, connecting to a pushrod for movement.

IDLING CURRENT

Current drawn by a receiver under “stand-by” or non-operational conditions (i.e. with no transmitter signal present).

KEYING LEAD

Separate switch usually microswitch and lead plugging into a transmitter (usually ground-standing type).

KEY or KEYING SWITCH

The switch or switches on the transmitter controlling on-off switching of the signal.

KICK-UP

Electrical linkage on a compound actuator providing an additional mechanical movement.

27 MEGACYCLES PER SECOND

The nominal frequency for model radio control operation in Great Britain (27 million cycles per second).

MICROSWITCH

Precision on-off switch with light action and extreme sensitivity.

MODULATION

Superimposition of an audio frequency (“tone”) or control signal (e.g. a carrier wave) on a radio frequency carrier.

MODULATOR

Circuit for providing modulation in model radio control work normally an audio oscillator.

M.O.P.A.

Modulated oscillator power amplifier.

Circuit (transmitters).

MULTI-CHANNEL OR “MULTI”

Transmitter or receiver or transmission receiver combination capable of working via separate tone signals.

NOISE

Ensemble of random or periodic signals present in a receiver circuit.

NO-LOAD VOLTAGE

Open-circuit battery voltage (i.e. measured directly with a high resistance voltmeter).

“OP”

Positions on an actuator (e.g. “sp” 2PS N etc.)

PACK

A set of batteries made up to the required voltage or voltages.
output. In its simplest form it could consist merely of a d.c. electric motor. An "on" signal completing the motor circuit would then cause it to drive in a certain direction for as long as the signal was held on; the motor would stop when the signal was released (producing an "off" function). If controlled by two separate servo circuits with opposite battery polarity, each switched by its own signal channel, operation of one signal would cause the motor to drive in one direction; and operation of the other signal would drive the motor in the other direction.

Whilst this may have certain applications, the practical actuator normally operates on a limited movement basis—i.e. on receipt of signal "on" it drives or moves to a limiting position and stops. On release of the signal, the actuator then moves back to its original position or "self-centres". The resulting control movement is thus either full on (on receipt of signal), or neutral, i.e. centred (on release of signal).

This type of control movement is known as "bang-bang" and is characteristic of the greater majority of all model control systems as regards main or critical controls. It is the only simple way of knowing where a control surface is, i.e. it must be either full on or neutral. If the self-centring action of the actuator was removed, the control could be "inched" to intermediate positions according to the amount of time the signal was held on, but the actual position could only be determined indirectly by observing the response.

This is an entirely unsatisfactory action for practical control of a fast moving object, such as a model aeroplane in flight, although it may be quite satisfactory for secondary or "trim" controls. It is, in fact, used in such cases where it is not critically important that the actual position of the control should be known.

Proportional movement can only be obtained accurately by using the actuator on a closed loop system with feedback, coupled with a proportional control signal from the transmitter. This can be accomplished, for example, by pulsing the control signal and varying the mark-space ratio for proportional signalling. The necessary modifications can be applied to standard circuitry, but only at the expense of considerable complication. Attempts to simplify the overall system (for example, by a simplified form of "proportional" actuator operating on an open loop) are not as satisfactory as conventional "bang-bang" controls as a control method, and are generally much less reliable.

Typical radio control transmitter unit
WHICH SYSTEM?

The design and application of the circuit elements and the various systems involved will be discussed in detail under separate headings in subsequent articles. It is important to appreciate that radio control for models is not a single entity but embraces a range of different types of equipment. Equally, its performance as a functional unit is tied both to its "command" scope (i.e. single- or multi-channel) and the mechanical performance of the actuator(s) under command.

The majority of commercial radio control productions, in this country at least, are of the simple single-channel type, principally because this is the least expensive form of radio control and thus enjoys the largest demand. The scope offered by simple single-channel radio control is, however, strictly limited, since if the actuator is designed to produce more than one control movement it can only repeat a particular movement in sequence. This sets a definite limit to the maximum number of separate sequential movements which can be operated on a practical control basis, depending on the speed of the object being controlled.

Multi-channel signalling, on the other hand, offers direct selection and signalling of the same number of control movements as there are signalling channels available. The number of individual channels available is limited only by practical considerations of circuit element design—12 channels being a practical maximum where a reed-relay is used as the decoding element in the receiver, virtually no limit in the case of tone filter decoding, except for the increasing bulk and cost of the receiver.

Ten or twelve channel "multi" is quite adequate coverage for all likely model applications as this will give complete control of a model aircraft, with "bang-bang" control movements for rudder, elevators, and ailerons, and progressive (non-self-centring) controls for engine throttle and elevator trim. The more complex, and considerably more expensive, quadruple-proportional control systems are an advance on this but do not give more control—only smoother control.

Modern circuits achieve a very high degree of reliability, equivalent virtually to that of the domestic radio. Many such sets, in fact, are fully wired and cater for external leads for batteries and servos, and are pretuned, so that they can be installed and operated by modellers with no previous radio experience.

The design and development of model radio control units is highly specialised, requiring more than just a knowledge of electronics. Problems arise which are peculiar to the demands of radio control systems as such, and not just to sound receiver and transmitter design. Such factors are only worked out by practical operating experience.

GLOSSARY OF TERMS CONTINUED

SHORTING PLUG
Two-pin plug with outlets connected (i.e. shorted circuit) to provide a bridge across a two-point socket.

SIMULTANEOUS
Operation of two controls at the same time via two simultaneously keyed transmitter signals.

SINGLE-CHANNEL
Transmitter of receiver, or transmitter-receiver combination operating on a single signal system.

SUPERHET
Type of receiver working on the superheterodyne principle matched to its corresponding transmitter by a central frequency separated by the IF frequency.

SUPER-REGEN
Super-regenerative type of receiver, and the most commonly used type for simple systems.

TONE
Audio frequency superimposed on carrier wave, each tone representing a separate signal.

TONE FILTER
Filter element for decoding tone signals at the receiver end.

TONE RECEIVER
Receiver which responds to a tone modulated signal (single-channel), or a number of separate tone modulated signals (multi-channel).

TONE TRANSMITTER
Transmitter employing an a.f. tone signal superimposed on a carrier for transmitting signal intelligence (single-channel), or a number of separate superimposed tone signals (multi-channel).

TRIM
Basically the adjustment of a model aeroplane for satisfactory flight performance, but also referred to as a progressive control movement (e.g. elevator trim).
SOME PEOPLE find the vibrato or tremolo stop (so frequently used in cinema organs) sufficiently pleasing to want to add it to their sound systems. This article shows how it can be done simply and easily by using modern silicon transistors. No bulky coils or transformers are needed and the power supply can be obtained from the main amplifier. Apart from the power supply, only two connections are needed to insert the vibrato unit into the sound system.

A vibrato circuit is just a device for modulating the amplitude of the audio signals. It is often achieved by inserting into the a.f. amplifier an extra stage of amplification, but in this case a stage whose gain is varied periodically is used to produce the desired effect. Unfortunately, it is hazardous to add an extra stage to a multi-stage amplifier. Doing so carries a risk of unexpected low frequency instability in the form of "motor-boating". The constructor then finds he has two vibrato effects, one of which can be controlled at will and another which cannot be controlled.

The device to be described here adds no extra stage. Instead, it is placed across the path of the audio signals, and modulates them by periodically short-circuiting them. It is called a shunt modulator.

BASIC PRINCIPLE

The principle of operation is shown in Fig. 1a. If switch S is closed, the audio signal is all dissipated in R1, and nothing appears at the output. Periodically opening and closing of the switch at a suitable low frequency (say 10c/s) would produce a vibrato effect. Musicians tend to use the term "vibrato" for deep modulation at low frequencies, and "tremolo" for the fluttering effect produced by shallower modulation at a higher frequency. The unit described here produces both effects.

Of course, the circuit in Fig. 1a is impractical on its own. Real vibrato units use, instead of a mechanical switch, a non-linear impedance controlled by a low-frequency oscillation. Ordinary semiconductor diodes are suitable, and can be connected as shown in Fig. 1b. Here R1 is in practice the source impedance of the a.f. signals, and R2 is the input impedance of the next stage of the main a.f. amplifier.

We have as yet no means of "fading in" the vibrato effect, and Fig. 1c shows how a potentiometer VR1 can be added to make this possible. (It should be a "log. law" component as used for a volume control.)
INSERTION LOSS

Connecting a shunt modulator inevitably attenuates the a.f. signals, and if one is not careful the amount of attenuation can be excessive. It is necessary to select certain component values to suit the particular equipment to which the vibrato unit is to be added. This is quite straightforward. The equivalent circuit of the modulator is given in Fig. 2. Here \(r_d \) is the effective resistance of the two diodes in parallel, and the other resistances are the same as before.

Ideally, \(r_d \) varies between zero and infinity, to produce the required modulation. In practice, it varies between a few hundred ohms and a few hundred-thousand ohms, the exact figures depending on the type of diode used.

The circuit behaves as a potential divider or inverted-L attenuator even when \(r_d \) is infinitive, and thus produces the “insertion loss” of the device. Thus if the value of \(R_3 \) is small compared with that of \(R_1 \) the loss is large, and vice versa. The insertion loss could be eliminated by making \(R_1 \) zero, but this would prevent total modulation; \(R_1 \) is usually there already, and outside the control of the constructor.

A little thought shows that, for small loss, the value of \(R_1 \) should not be larger than that of \(R_2 \) and \(R_3 \) in parallel. A good rule is to make \(R_1 \) equal to \(R_2 \) and \(R_3 \) in parallel. (The insertion loss is then 6dB.) A typical case is shown in Fig. 3, where the vibrato modulator is connected across the grid circuit of one of the amplifier stages. Here the source resistance is virtually equal to the anode load \(R_L \) of the preceding stage, and the load \(R_2 \) is virtually the same as the grid leak resistor \((R_g) \) of the next stage. In this case, \(VR_1 \) can have a value somewhere between that of \(R_1 \) and \(R_2 \). The precise value is not critical, but it should not be too large compared with \(R_1 \), or the vibrato fade-in control will be too “fierce”, that is, the vibrato will come in suddenly when \(VR_1 \) is turned up almost to maximum. In valve amplifiers a typical value for \(VR_1 \) would be about 250 kilohms; in transistor amplifiers it would be about 5 kilohms.

Photograph of the assembled tag strips ready for mounting in the amplifier cabinet or chassis

Fig. 2. Equivalent circuit of the shunt modulator

Fig. 3. One method of connecting the modulator between two stages of an existing valve amplifier

BREAKTHROUGH

One more component must be selected by the user. This is the capacitor \(C \) shown in Fig. 1c and Fig. 3. If it is too small, modulation depth is reduced. If it is too large, unwanted ticking noises will be produced on the loudspeaker. These are simply the audible effects of the vibrato oscillator output, some of which appears at the junction of the two diodes and then gets into the amplifier via \(C \). To reduce this effect, the value of \(C \) is chosen so that its impedance is no smaller than \(R_1 \) at the lowest frequency of interest. If it is equal to \(R_1 \), then \(C = 1/(2\pi f R_1) \). In valve amplifiers \(C \) is usually in the range 0.01 \(\mu F \) to 0.1 \(\mu F \); in transistor amplifiers it would be between about 0.1 \(\mu F \) to 1 \(\mu F \).
Choice of C is invariably a compromise, but by good luck it is made easier by a peculiarity of human hearing. Vibrato effects can be produced without modulating the entire audio band down to the lowest frequency. Modulating the harmonics is enough to create the effect. Thus C can be smaller than at first seems necessary, and breakthrough of the fundamental vibrato frequency is correspondingly reduced.

Vibrato harmonics are attenuated less by C, and they must be reduced by making sure that the vibrato waveform applied to the diodes contains no high harmonics. Perfectionists may say that the vibrato oscillator should generate a pure sine wave. This is difficult to achieve, especially if the vibrato frequency is variable, and even a pure sine wave gets distorted by the diodes, and harmonics are thereby created. The ideal design would ensure that the vibrato wave form which appears at the junction of the diodes was a sine-squared pulse.

In practice, there is always some breakthrough, but good results can be obtained without too much difficulty, partly by selecting C and partly by ensuring that the audio input signals to the vibrato modulator are between approximately 100mV to 1 volt. This is typical of the level of signals at the input to a modern power amplifier. Thus a possible position for the vibrato unit is between the pre-amplifier and the power amplifier. If the pre-amplifier has a low impedance output, e.g. a cathode follower, it will probably be necessary to use an actual physical resistor for R_1—a few thousand ohms. The modulator may also be connected across the audio path at some intermediate stage, say between first and second stages of a pre-amplifier (see Fig. 3). The vibrato circuit should not be connected so that it comes inside a negative feedback loop, or the negative feedback will act against the modulation.

COMPLETE CIRCUIT

Now let us look at the complete circuit (Fig. 4). Two npn silicon planar transistors type 2N2926 are used in a relaxation oscillator type of circuit. The frequency (5-30c/s approx.) is controlled by C_1 and V_{R1}. An inverse-log. potentiometer is best, but if this is not available use an ordinary log.-law volume control, connected so that the resistance increases when the knob is turned clockwise. The frequency then decreases with clockwise movement.

Before being applied to the diodes, the oscillator output is filtered by R_4, C_4, R_5, and C_5, removing some of the harmonic content.

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1 100kΩ</td>
</tr>
<tr>
<td>R_2 3-9kΩ</td>
</tr>
<tr>
<td>R_3 1-8kΩ</td>
</tr>
<tr>
<td>R_4 4-7kΩ</td>
</tr>
<tr>
<td>R_5 4-7kΩ</td>
</tr>
<tr>
<td>R_6 2-7kΩ</td>
</tr>
</tbody>
</table>

All resistors 10% 1 watt carbon.

<table>
<thead>
<tr>
<th>Potentiometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{R1} 500kΩ inverse log. or log. carbon</td>
</tr>
<tr>
<td>V_{R2} 250kΩ or 5kΩ log. carbon (see text) with S_1 ganged switch (Radiospares)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1 0-1μF paper 150V</td>
</tr>
<tr>
<td>C_2 100μF elect. 12V</td>
</tr>
<tr>
<td>C_3 10μF elect. 12V</td>
</tr>
<tr>
<td>C_4 4μF elect. 12V</td>
</tr>
<tr>
<td>C_5 4μF elect. 12V</td>
</tr>
<tr>
<td>C_6 (see text) paper 150V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR_1 2N2926</td>
</tr>
<tr>
<td>TR_2 2N2926 (Obtainable from Amatronix Ltd., 396 Selsdon Road, Croydon, Surrey)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1 OA81 & (Mullard)</td>
</tr>
<tr>
<td>D_2 OA81 &</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H.T. Dropper for 9V supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either</td>
</tr>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>R_7 To be calculated (see Fig. 6a)</td>
</tr>
<tr>
<td>R_8 2-7kΩ Both 10% 1 watt carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_7 1,000μF elect. 12V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_7 (see Fig. 6b) 10% 1W carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_3 OA212 (9 volts) (Mullard)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two 8 way tag strips; P.V.C. wire; Screened wire</td>
</tr>
</tbody>
</table>

continued on page 119
Many of us have, at some time or other, spent considerable time and money on our doors, ensuring that they are quite secure against the threat of the nocturnal prowler. But how many stop to think how easy it is for the would-be thief to slip the catch on a ground floor window.

For less than the price of a good lock, it is possible to ensure the safety of the whole house. The burglar alarm described here can be made up from equipment to be found in most experimenters' spares boxes. Even if all parts had to be purchased, the total cost need not exceed 35s.

OPERATION

The device operates on a simple but most effective principle employing a continuous "loop" of fine enamelled wire, such as found in a.f. chokes and transformers. Since the loop carries only a few microamps of current, its resistance is not likely to affect the operation. If the loop is broken at any point, the cessation of the small flow of current immediately results in the ringing of an alarm bell, which will not be stopped by the subsequent closing of the broken loop. Hence, even if the thin inconspicuous wires are traced and cut, the alarm will still be operated. A switch, conveniently mounted on the main alarm unit, enables the unit to be made inoperative whilst doors and windows are in use during daylight hours.

ALARM POSITIONS

All windows and doors are fitted with simple contacts made from thin brass shim. Stationary contacts are arranged in pairs, secured close together by means of small brads on the closing side of the casement. A moving contact, having bowed ends, is fixed to the door or window such that it bridges the two stationary contacts. A self-cleaning action takes place when the moving contact on the window passes over the fixed contact.

Using the twin wire technique, installation is simplicity itself, since the twin loop is simply run from one pair of contacts to the next, in strict rotation. No short circuit must be allowed across the twisted pair, except by the contact pair at the window end of a run. Any number of individual or collective runs can be joined into the main loop circuit by splicing them into one leg of the existing run.
Amazing Kodak Quadruple Play Tape brings mains recorder playing times to battery portables!

Tiny 3½" reel gives up to 5½ hours playing time

Now—revolutionize your battery tape recorder, add hours of extra playing time and enjoyment with Kodak Quadruple Play Tape, the modern miracle in sound recording. Just one tiny 3½" reel holds 800ft. of tape—enough for up to 5½ hours playing time.* (That's over 100 'pops' with time to spare!). And a 4" reel, holding 1,200 ft. can give you up to 7½ hours playing time. There's a 3" reel, too. Sound recording pleasure has never been extended like this before!

THE SECRET

The secret of these phenomenally long playing times lies in the unique thinness of the tape base. The thinner the base the greater the length that can be wound on to a given reel—and the longer the playing time.

Kodak Quadruple Play Tape, has a base so fantastically thin it's even thinner than the oxide coating on Standard Play Tape!

STRENGTH WITH LENGTH

Microscopically thin as it is, Kodak Quadruple Play Tape is no weakling. The Polyester base has been specially pre-stretched and treated to overcome distortion during use. In fact, it will stand up to every stress likely to be met with under all normal conditions, no matter what the make of your battery tape recorder. And if you exercise a little extra care you can even use Kodak Quadruple Play Tape on mains recorders, too.

TOTAL UNIFORMITY

Advanced techniques of emulsion coating, developed in Kodak's world-famous research laboratories, have been applied to Quadruple Play Tape with the result that its oxide coating is uniform to within millionths of an inch. The combination of smoothness, sensitivity and signal-to-noise ratio that stems from this extreme coating precision cannot be equalled by any other tapes in the world.

PLANNED FOR LOW SPEEDS

Another unique extra! Kodak Quadruple Play Tape is actually planned for low-speed operation and has a boosted high-frequency response at low tape speeds. This means that at the speeds you'll most likely be using with a portable you'll suffer far less of the usual drop in quality. Your battery portable will surprise even you!

What the magazine 'Tape Recorder' said about Kodak Quadruple Play Tape. August 1965.

"My tests show that the sensitivity at optimum bias is higher than normal, that the high-note response is much improved over normal tapes and that the drop-out count and amplitude fluctuation are the lowest of any tape yet tested".

"Test tones and sustained musical notes showed a smoothness seldom heard at this tape speed (3½ l.p.s.)."

Review by Alec Tutchings.

MINIMUM PRINT-THROUGH

Normally, thin tapes are highly susceptible to print-through. But Kodak Quadruple Play Tape has a remarkable resistance to this unwelcome 'echo' effect. In fact, print-through is up by only an inaudible 1-5dB on Standard Play Tape. This feature alone would be enough to set this tape apart!

ACCLAIMED BY THE EXPERTS

Britain's Sound Recording press and many independent experts have been unanimous in praising this and other Kodak Tapes. The BBC and ITV use millions of feet of Kodak tape—and so do professional recording studios the world over. Without a doubt Kodak Tapes have set totally new standards in performance and quality—standards of which you can now take advantage. Fill in the coupon below for full details —then see your Kodak dealer and give your recorder the tape it really deserves!

*4-track 1½ l.p.s.

Kodak Tapes—Standard, Long, Double, Triple and Quadruple Play—are available from Kodak Photo Dealers everywhere.

KODAK SOUND RECORDING TAPES...the best tapes in the world
The

SUPER 6

LONG & MEDIUM WAVE
TRANSISTOR RADIO

A quality radio available in parts or ready built. The sparkling performance and superb finish of the completed receiver give you value equivalent to a £12.12.0 commercial model.

★ All new parts - 6 transistors and diode - 350mW output.
★ Superhet circuit. Ferrite rod aerial.
★ Weymouth Radio printed circuit board. ★ Component positions and references printed on back of printed circuit board.
★ Vinyl covered in various colours.
★ 6 x 4in. speaker giving good bass and treble response. ★ Full instruction booklet 2¼. Free with kit. ★ 6.75. frequency 470 kc/s.
★ Lining up service if required. ★ All parts supplied separately. Write for list. S.A.E. please.
★ 9v. battery required. VT9 or P.P.9. (3/- with kit).

COMPLETE SET OF PARTS ONLY £4.0.0.
PLUS 5/- POST
OR FULLY BUILT £6.17.6 Tox. & Corr. Paid

BRAND NEW AM/FM (V.H.F.) RADIO GRAM
CHASSIS AT £13.13.0 (Carriage Paid)

Chassis size 15 x 6 x 5½in. high. New manufacture. Dial 14 x 4½in. in 2 colours, gold and silver trim. 200-550v. A.C. only.
13 x 4½in. ELLIPTICAL SPEAKER 15/- to purchasers of this chassis.

TERMS: £3.10.0 down and 6 monthly payments of £2.4.0. total £14.10.0.
Room Hepworths for V.H.F. 12/6. Feeder 6d. per yard.

ALTERNATIVE DESIGNS. Similar to above chassis. With addition of short wave 6-17 Mo/s. Price £15.15.0 (Carriage Paid). TERMS: £3.10.0 down and 6 monthly payments of £2.4.0. Total £19.15.0. Circuit diagram 2/6.

BATTERY ELIMINATORS

For 4 low consumption valves (68 range) 9v. 130mA and 1.4v. 125mA, 4/6. (4/- post). 9v. 200-300v. A.C. Also for 9v. 1.4v. and 200-300v. A.C. at same price.

Two units 3½ x 3½ x 1½in. high.

For Transistor Radio requiring 9v. Fully assembled (9600-15000mH) 3½ x 3½ x 1½in. overall. Tapped input for 200/10; 9v/300; 9v/450. Output 9v. at 250mA. Good regulation. Price 26/-. (3/-P. & F.)

SELF-POWERED V.H.F. TUNER CHASSIS.

Covering 88-108 mc/s. 8½ x 6 x 4½in. high. Valves ECC85, EBC80 and 2-EF80's with metal rectifier. Mains transformer. Fully wired and tested. 0.75V. 837.4 (user paid). Room Hepworths 12/6. Feeder 6d. per yard.

V.H.F. Pre-Amplifier (3½ x 3½ x 1½). AP.114 Transistor. F6-100 mA. Gain at least 50. Price 20/6. (3/-P. & F.)

PUSH-PULL O.P. AMPLIFIER

£5.5.0. (6/- Carr.)

Brand new 280-480 A.C. making. Bass, treble and fixed control. With valves EBC80, EBC85 and 2-EF80's giving full 5v. swing. Chassis 12 x 4½ x 3½in. With o.p. span for 2.5cc speaker. Front panel printed circuit board with metal rectifier. May be removed and used as "flying panel".

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.

(2 mins. from Station and Buses.) Aldershot 22240
CLOSED WEDNESDAY AFTERNOON

Customer service unsatisfactory cannot be executed

SHUT YOUR RADIO CONTROL CAREER WITH FLIGHT LINK PROPORTIONAL SMOOTH PRECISE CONTROL SYSTEMS

From £89

 Comprehensive Handbook - 2/6
 D.I.Y. Dept. Circuits - - 5/-
 Servos - - - £6

Technical advice gratis

FLIGHT LINK CONTROL LTD.
26 INWOOD AVENUE, HOUNSLOW
HOU 2777

CRESSET RADIO LTD.
40 MAYES ROAD
WOOD GREEN, N.22

LONDON'S ELECTRONIC COMPONENT CENTRE

BEST QUALITY • KEEN PRICES
VALVES • TRANSISTORS • MIKES • AERIALS
DIODES • CONDENSERS • AMPS • PLUGS
SPEAKERS • RESISTORS • CABLES • SOCKETS
CHASSIS • TRANSFORMERS • TAPES • BOOKS
RECTIFIERS • VALVE HOLDERS • COILS • METERS

Everything you want in a friendly atmosphere

START YOUR RADIO CONTROL CAREER WITH FLIGHT LINK PROPORTIONAL SMOOTH PRECISE CONTROL SYSTEMS

From £89

 Comprehensive Handbook - 2/6
 D.I.Y. Dept. Circuits - - 5/-
 Servos - - - £6

Technical advice gratis

FLIGHT LINK CONTROL LTD.
26 INWOOD AVENUE, HOUNSLOW
HOU 2777
COMPONENTS...

Resistors
- R1 15kΩ
- R2 220Ω
 Both 10%, 1/2 watt carbon

Transistor
- TRI NKT217 (Newmarket)

Diode
- D1 OA81 (Mullard)

Relay
- RLA 150Ω (G.P.O. type 600) with set of change-over contacts (available from G. W. Smith & Co. (Radio) Ltd.)

Switch
- S1 Single-pole on/off toggle switch

Bell
- 3-5 volt bell

Miscellaneous
- Two flat pack 4½ volt batteries
- Chassis 6in × 4in × 2½in (aluminium)
- Eyelet board or laminated wiring board for mounting TRI, D1 and R1
- Enamelled copper wire (about 30 s.w.g.)
- Two-way clip terminal block
- Spring clip (see photograph)
- P.V.C. covered wire, 4 B.A. and 6 B.A. nuts and bolts.

CIRCUIT

With the alarm loop circuit completed the quiescent current drain via R1 is about 300 microamps. Slightly higher quiescent currents may occur if the unit is mounted near a radiator, but this current will never normally build up sufficiently to operate the relay.

Battery economy can be achieved by experimenting with the value of R1, as the current gains of a batch of transistors of the same type can be diverse in value. This can be achieved by replacing R1 by a 50 kilohm potentiometer. The base-emitter circuit is left open and the potentiometer reduced from 50 kilohms until the relay operates. Remove the potentiometer and measure its resistance. Reduce this value by ten per cent as this compensates for battery deterioration, then insert a preferred value resistor approximating to this calculated resistance but not exceeding it. The relay used was a 150 ohm G.P.O. 600 type with two sets of changeover contacts. The unused contacts were removed to improve its sensitivity, the packing spacers being replaced and the securing screws carefully adjusted so as not to damage the bobbin. Other switching transistors may be tried as there is nothing critical in their choice, however the selection of R1 will have to be ascertained for each transistor type as previously described.

Diode D1 prevents the collector current from taking the low resistance bell path and so not actuating the relay. It also acts as a hold-in path for the relay when the contacts close. It can be seen that the bell maintains its glamour even though the loop circuit may be completed.

Testing of the system is just a matter of listening for the bell when the alarm is switched on, and then checking windows and doors to ensure that the contacts are closed. Resistor R2 damps the transient "ringing" spikes that appear across the bell in its action. These induced e.m.f.s. could easily damage the transistor if they were not suppressed.

CONSTRUCTION

The unit was assembled on a chassis 6in × 4in × 2½in. This makes a compact and attractive mounting for the bell. A piece of copper clad wiring board or a tagstrip serves to mount TRI, D1, and R1. The board is fitted to the chassis with a spacer so that it stands clear from the chassis. The board and spacer are fixed with a 6 B.A. nut and bolt. The relay position is not critical provided sufficient space is left for the two 4½ volt batteries which are held by a cut down spring clip. The batteries are wired in parallel, i.e. with positive terminals common and negatives common. The loop circuit from the windows is connected to the unit via the two-way plastics covered terminal block. *
HOW TO MAKE PRINTED CIRCUIT BOARDS

A fully illustrated step-by-step guide, showing you how to make these invaluable all-purpose boards cheaply and easily

PLUS THESE CIRCUITS:
- SIMPLE PRE-AMPLIFIER AND TREBLE BOOSTER
- DRIVE AMPLIFIER
- RADIO TUNER
- GUITAR PRACTICE ADAPTOR

Combine these simple projects with each other—or with further circuits to appear later—to produce a versatile range of equipment.

INEXPENSIVE PRINTED BOARD HOLDER
Guidance on making this practical “third hand” for the electronics workshop.

Also: RADIO CONTROL OF MODELS
Practical circuits and advice on transmitter equipment.

Please send/reserve PRACTICAL ELECTRONICS (2/6) each month, beginning with the March issue, on sale Feb. 17th.

To: ...
 (Name of Newsagent)

NAME

ADDRESS

BIG EXTRA DEMAND! ORDER YOUR COPY NOW!
An earlier article (October, 1965 issue of Practical Electronics), intended as an introduction for the layman interested in experimenting with audio through the medium of disc reproduction, described the main features of mono and stereo discs and provided some guidance on the often misunderstood question of stylus size. The comments offered on that occasion inevitably lead us on to the pick-up—its characteristics and the form it takes.

CHOOSING A CARTRIDGE

The following notes summarise the most important points that the experimenter—and particularly the beginner—will wish to bear in mind when choosing a pick-up. They are of course technical points, but first there is a matter which comes under the heading of common-sense. Plan sensibly; do not get into the situation where too much is spent on electronics and too little is left for the pick-up.

In disc reproduction, disappointment is all too attributable to inadequacies at the pick-up end of the chain. Therefore enough money must be allocated to this component. Of course, sensible planning also means consistency; one does not use a £30 pick-up with a 5-watt breadboard amplifier. But do start the right way; if disc reproduction is to be given pride of place, then the pick-up must head the list of components to be purchased. Much depends on this.

CERAMIC OR MAGNETIC

The next matter to be emphasised is quite a fundamental one, for it affects cost and much else besides. Pick-ups can be divided into two main groups—ceramic and magnetic—and the experimenter must choose according to the cash he has available and the standard of quality he wishes to achieve.

In general, ceramic types cost up to about 6 guineas (in cartridge form), and there are a few models at around £3, including a diamond stylus, for stereo. Crystal cartridges, on the other hand, are quite rare nowadays and are largely superseded by the ceramics.

From the point of view of cost and quality, magnetic pick-ups start approximately where the ceramics leave off. Prices for cartridges range up to about £30, but the most popular price range for stereo models is £10-20. Are magnetics "better" than ceramics, as the prices suggest? Yes, they are; compare the best magnetic with the best ceramic and the conclusion will be that the former gives livelier and cleaner yet more delicate sound.

To develop this theme, the magnetic type offers better transient response and is capable of performing with less distortion. Its construction is generally such that it offers a tinier mass (the armature and stylus assembly) to be moved and accelerated by the modulated groove. This in fact is one of its most important attributes, making for better fidelity of reproduction. But there is a penalty to be paid for such refinement; the magnetic pick-up gives a small output, typically 5mV average from each stereo channel.

We shall have to say a little more about the significance of output voltages. But first we shall return to the ceramic pick-up. Recent examples represent remarkably good value for money, and the experimenter with a limited amount to spend will certainly be attracted to one or other of them. In fact, ceramics are well suited to medium and low-cost stereo outfits—those costing up to about £100, this estimate being based on retail prices of ready-made equipment. The enthusiast intent on assembling a non-compromise system, will almost certainly include a magnetic.

Pick-up playing weight is another relevant point. The best magnetic types track at lower pressures than their ceramic counterparts, and with some examples the figure may be around 1 gramme. This makes for reduced record wear and also means less distortion provided the arm is equal to the task. However, beware of making rules about this. One regularly encounters "difficult" discs which confound theory and complicate practice by refusing to reproduce unless the anticipated pressure is increased. (The answer is: don't buy them; but that is another story.)

The word "cartridge" has been used freely so far, and probably every reader will know that it refers to the ceramic mechanism of the pick-up. The arm in which it is mounted must of course be of suitable quality, and the beginner will find it convenient to get the cartridge and arm from the same manufacturer. (The advanced enthusiast needs no reminding of alternative approaches.)

We should note that in a few cases the two parts are designed as one integral unit. However, the experimenter will want the interchangeability and versatility of separate components, and therefore the other possibilities are excluded from this article.

OUTPUT AND RESPONSE

Now we must return to pick-up characteristics. A data sheet presented with last November's Practical Electronics listed the main operating principles of cartridges, but it is necessary to summarise here some outstanding points about output and response.

As already mentioned, the magnetic pick-up is a low output device. The ceramic gives a higher output,
typically around 70mV average from each channel. In specifications the output is often quoted in relation to recorded velocity, so that a magnetic model might be said to deliver 1mV per cm/sec at some particular frequency. In that case it would be fair to say that the average output was 5mV.

Obviously this question of output affects the choice of amplifier. In the case of the magnetic pick-up just quoted, the amplifier must have a sensitivity of at least 5mV. If a ceramic is to be used, the amplifier can be correspondingly less sensitive. In practice, amplifiers are designed with one or the other of the main types in mind, and sometimes there are facilities for both types. An owner of a low-sensitivity amplifier, wishing to change to a magnetic pick-up, will probably be able to make or buy a transistorised pre-amplifier which will boost the pick-up voltage.

A related matter is that of equalising the output of the cartridge. It consists essentially of raising the level of the bass and reducing that of the treble—accurately and in a controlled way. The means of doing this depends on the type of cartridge and its response to the signal on the record. A ceramic cartridge has built-in equalisation for the recording characteristic as long as the amplifier input presents a load of about 2 megohms. The result, seen as a response curve, is far from precise but is generally thought to be acceptable having regard to the low price of the cartridge. Moreover this useful property of the ceramic does mean that circuit complications are minimised. Connected to its high-impedance load the cartridge gives a signal voltage which does not have too big a departure from a level response in the bass and treble. Not surprisingly, the more costly ceramics do this job most successfully.

Things are quite different with the magnetic pick-up. Its response follows the recording characteristic, exhibiting a drop in the bass and a rise in the treble. An expensive pick-up adheres closely to this characteristic, with departures from it as small as 1 dB. This means that the amplifier input circuits must not only provide high sensitivity but also a very accurate response equalisation.

In fact the circuits must have a response which is the opposite of the recording curve—a mirror image, as it were. The signal, after passing through these circuits, emerges with a practically level response and is passed on for further amplification. The amateur need not worry about the actual circuit details unless he is designing his own amplifier from scratch (if he is doing so, he will hardly need the above explanation).

Of course, in nearly all cases the procedure will be to take a proven circuit and use it as it stands. Thus, if a magnetic cartridge is to be used, the main requirement is to check that the circuit has been designed for the job. It must give adequate sensitivity and the correct response characteristic.

In practice it is the R.I.A.A. characteristic, which is the same as that defined in the British Standard dealing with recording matters. Stereo and mono discs can be regarded the same way as far as response is concerned (provided that the mono discs are not very old ones).

STYLUS LIFE

At the present stage of development of disc reproduction, it is essential to use a diamond stylus. There is little to be said for a sapphire as its life is so short. A diamond lasts at least twenty times as long if treated with care. Even the most moderately priced cartridge has a diamond as standard fitting, though of course this must be checked before purchase.

It is difficult to do more than generalise about stylus life. As a rough guide, a diamond may give 1,500 hours of use, but carelessness over record cleanliness and pick-up adjustment might halve this figure. The figure just quoted is for a lightweight magnetic pick-up, but styli give different lengths of service according to type of pick-up and conditions of use.

Most users realise that dust influences record wear and stylus life. Take precautions to exclude it as far as is practicable. Anti-static and other cleaning preparations which leave a thin deposit in the record groove cannot be recommended without qualification. Indeed, they should not be used at all if the pick-up is of very advanced type tracking at around 1 gramme.
Sparing use of well known and proven preparations is not a bad thing when playing weights are higher. There are, incidentally, cleaning devices which sweep the groove without leaving a film. Microscopic inspection of the stylus for damage and wear is especially important. It is a good plan to find a suitably equipped dealer and to have the stylus inspected at intervals of not more than 500 hours of use. Keep a check on use: you can say that three 1.p. record sides equals one hour of use.

A final word. It is most unwise to flick the stylus to check whether the amplifier is working! Damage can all too easily result. Some users touch the stylus with the intention of cleaning it, but a miniature cleaning brush is safer and more effective. Devices are available for fixing near the turntable and pick-up head.

NEON WARBLER

This simple but unusual circuit has a variety of uses and can be assembled in a few minutes. As an audible alarm indicator or call device its distinctive tone makes it easily recognisable and, by using different values of resistors as indicated, several push-button positions may be easily identified. The larger the series resistor, the slower the warble. When a push-button is operated the neons will flash alternately and the circuit will oscillate by virtue of the small capacitor across one of the neons. Thus the circuit combines a warning warbler with a warning winker.

A small transistor amplifier is adequate for most audio applications as the output from the 1,000pF coupling capacitor (C3) is quite large. If this device is used in conjunction with a valve audio amplifier its supply may be derived from the h.t. line with a suitable series dropping resistor.

For those readers interested in amateur dramatics the sound of the warbler makes it ideal for science fiction sound effects. The flashing neons also provide an effective display particularly in a darkened room. The pitch of the note may be varied by replacing the 1,000pF capacitor (C2) across the neon by a different value capacitor. A smaller value will produce a higher frequency note; a larger value lowers the frequency.

NEON NOVELTIES
How-and where-to Listen

This we said last time was the newly acquired communication set'.
return from the operation of especially amateur communication
cover radio for the first time—and thousands of young people who dis-
priority in 1966. should discuss as a matter of first
question which "The 73 Page" guidance, about how they should
with a view to participating actively
radio—have little idea, and less
radio sets. Some indeed are intrigued
short wave bands on their domestic
ally overhearing an amateur trans-
in it.
approach this exciting new world
received on a maladjusted set, be it
added!). It turns out to belong to
television or broadcast programme
mystery voice on top of the favourite

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

Many come to it through accident-
ally overhearing an amateur trans-
mission while they are tuning the
short wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".

To many more the interest is
triggered off by the casual purchase
of a magazine such as PRACTICAL
ELECTRONICS in which attention is
paid to the world of amateur com-
munication—and it is this purchase
which can mean that you are hooked
for life!

Whatever the initial trigger pulse,
there is no question at all that before
long the urge to explore the short
wave bands on their domestic
radio sets. Some indeed are intrigued
by the sudden breaking in of a
mystery voice on top of the favourite
television or broadcast programme
received on a maladjusted set, be it
added!). It turns out to belong to
"that chap down the road with the
big aerial".
If some people like this:

- Cyril Ornadel
- Antony Hopkins
- Steve Race
- Sir Arthur Bliss

who choose records like these:

- RAY CHARLES
- NAT KING COLE
- SiR ARTHUR BLISS
- everyone who choose records like these

for people like you!

World Record Club releases hundreds of exclusive recordings like these to its members, both as 12” LPs and as pre-recorded tapes. They are superb recordings, chosen for collectors like you who really know music by advisers who are great musicians themselves. Although they cost far less than you would expect, this is only because the huge ‘bulk buying power’ of WRC’s 200,000 members makes enormous savings possible. The quality reaches unsurpassed standards of international hi-fi recording. Each is custom-made for the Club by the famous EMI organisation, and is sold to members only on a hear-before-you-buy basis. So every WRC release is unconditionally guaranteed to be absolutely perfect. See for yourself how WRC brings you the cream of classical, jazz, folk and modern music—and in such an easy and economical way.

Now WRC invites you to TAKE ANY FOUR for only £1

World Record Club releases hundreds of exclusive recordings like these to its members, both as 12” LPs and as pre-recorded tapes. They are superb recordings, chosen for collectors like you who really know music by advisers who are great musicians themselves. Although they cost far less than you would expect, this is only because the huge ‘bulk buying power’ of WRC’s 200,000 members makes enormous savings possible. The quality reaches unsurpassed standards of international hi-fi recording. Each is custom-made for the Club by the famous EMI organisation, and is sold to members only on a hear-before-you-buy basis. So every WRC release is unconditionally guaranteed to be absolutely perfect. See for yourself how WRC brings you the cream of classical, jazz, folk and modern music—and in such an easy and economical way. CHOOSE ANY FOUR of the collector’s gems featured here. Without parting with a penny, listen to them in your own home for 7 days. Then if you’re as delighted with them as we say you will be, send us just £1 and keep all four! But please act quickly! This is a special offer to introduce you to WRC, and it’s only open for a limited period!

Selections available in Stereo, Mono and 3½ ips Tapes

Indicates mono disc only
26½ gns TAPE RECORDER
for
BARGAIN OF THE YEAR! Offer
Cancelled Export Contract
Famous manufacturer's brand new
unused and factory tested 2-speed,
33 and 7½ i.p.s., twin track tape
recorders. 3 Watt output.
Tape position Rev-counter,
fast forward and rewind, takes
7" reels, mike and gram input.
Straight through amplifier facilities.
Output sockets for external speaker,
monitor or external amplifier.
Superimpose switching, magic eye recording
level and mains noise indicators. Volume and tone controls.
7" x 4" speaker. Attractively styled cabinet, with detachable lid, mike
and real storage facilities. AC 200/250-volts operation. Complete
with crystal mike, tape, spare reel and screen lead, etc.

CO-AX 80 ohm CABLE
Only now 6d. yard
BARGAIN PRICES—SPECIAL LENGTHS
20 yds. 8/- corr. 6'/; 40 yds. 12/6 corr. 8'/; 60 yds. 18/6 corr. 10/6. Coax. Flugs 1/-;
Cable & Cu. Cores 1/4.; Coax. Flugs 1/4.}

CARVIC LTD.
(Dept. PE2),
54 Dundonald Road
London, S.W.19
Book reviews

UNDERSTANDING ELECTRONIC CIRCUITS
By Earl J. Waters.
Published by W. Foulsham & Co. Ltd.
160 pages, 8\(\text{\textdollar}\)in. x 5\(\text{\textdollar}\)in. Price 24s.

I have no doubt that many newcomers to electronics have been confused in their search for a primer in this exploding technology by the vast weight of books aimed at them specifically. In this cornucopia of basic electronic texts, it is difficult to find one book that is lucid and succinct in its presentation of commonly used electronic circuits.

In this book, however, these facets are evident. Beginning with an explanation of the circuit essentials such as resistors, capacitors, reactance, impedance, transistor and valve fundamentals, it moves on to the theory and functioning of amplifiers, oscillators, modulators, frequency mixers, converters, limiters, detectors, discriminators, power supplies, pulse generators, a.v.c. and a.f.c. control circuits.

Every component that appears in a circuit has a functional explanation so that a step by step analysis of the whole is obtained, making the grasping of the most complex circuit an easy task.

An additional bonus to would-be students is the list of review questions that appears at the end of each chapter, each of which is fully answered at the end of the book.

G.G.

THE ELECTRON IN ELECTRONICS
By M. G. Scroggie, B.Sc., M.I.E.E.
Published by Iliffe Books Ltd.
276 pages, 8\(\text{\textdollar}\)in. x 5\(\text{\textdollar}\)in. Price 45s

A serious study of electronics is impossible without some knowledge of modern physics. Whereas classical ideas of an easily visualised model of the atom with its planetary electronics may still suffice for an elementary understanding of ordinary electrical currents, they are totally inadequate to explain (for example) how light and heat cause electrons to be emitted from surfaces, how conduction takes place in semiconductor materials, and other electronic phenomena.

A new mental approach is needed when considering the modern ideas of sub-atomic particles. Unless one is a physicist, or versed in higher mathematics, much must be taken on trust in this bewildering world of the quantum theory, wave mechanics and the uncertainty principle.

Mr. Scroggie has undertaken no slight task in interpreting these abstruse ideas for the electronically-minded reader. His book is intended to provide an introduction to the subject; the treatment is largely descriptive and the mathematics involved do not go beyond G.C.E. "A" level. The author's relaxed and entertaining style of writing will no doubt provide encouragement for the inevitably oft perplexed reader to persevere with the task of assimilating these strange and sometimes contradictory notions that form part of modern physics.

J.V.

RADIO AMATEURS' EXAMINATION MANUAL (Fourth Edition)
By B. W. F. Mainprise, B.Sc. G5MP
Published by Radio Society of Great Britain
60 pages, 9\(\text{\textdollar}\)in x 7\(\text{\textdollar}\)in. Price 5s

"All applicants for an amateur transmitting licence must first pass the Radio Amateurs' Examination—no exemptions are allowed by the General Post Office. . . ."

It is well to quote the opening words of the Foreword to this manual, for there is much general misunderstanding concerning the requirements to be met before one can legally operate transmitting equipment. Prospective amateurs will appreciate this book. The subject matter is arranged to correspond closely with the various items of the RAE syllabus. Most of the text is in question-and-answer form. Specimen questions taken from previous years' examination papers are included. The final chapter contains model answers to all the questions set for the 1962 examination. Among the appendices are the Conditions of the Amateur (Sound) Licence A, including changes made in July 1964; and the RAE syllabus.

FUNDAMENTALS OF MODERN SEMI-CONDUCTORS
By Barron Kemp and R. H. McDonald
Published by W. Foulsham & Co. Ltd.
160 pages, 8\(\text{\textdollar}\)in. x 5\(\text{\textdollar}\)in. Price 24s

This book could well be described as a compendium of semiconductor technology. The presentation is entirely qualitative with no recourse to mathematics. It is liberally illustrated with circuit applications, characteristics and physical diagrams indicating individual semiconductor action, which does much to complement what is, in essence, a reference book of semiconductor families.

Commencing with an introductory chapter on solid state physics, it goes on to demonstrate transistor action with typical characteristics. The treatment given to various industrial techniques of junction formations is comprehensive and this lends itself to a fuller understanding of the working principles of multilayer semiconductors in later chapters.

A chapter on diodes and rectifiers deals with the well known Zeners and s.c.r.'s as well as those types with more specialised application to computers, such as bistors.

The transistor family of mesa, planar, epitaxial, field effect, photo types and many others are described adequately but at times rather dryly in terms of chemical synthesis. This is one of my criticisms of an otherwise excellent book. There is a great deal on manufacturing techniques that might have been given to a fuller description of the principles and applications of some of the lesser known devices.

My other criticism is the lack of a glossary which would be in character with a book of reference, for words such as "gigacycles" and "eutectic temperature".

G.G.
PART 11

LAST MONTH we discussed the monostable and bistable members of the multivibrator family, including the binary version of the bistable. This month we shall deal with the applications of this particular circuit.

BINARY SYSTEM

When using numbers for counting, adding, and multiplying, it is common practice to employ the decimal system based on the number 10, i.e. we use ten numerals, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as basic units, and we indicate the magnitude of any complete number by showing the numerals against a power of 10.

To give a specific example, the number 9278 is our shorthand way of saying $9 \times 10^3 + 2 \times 10^2 + 7 \times 10^1 + 8 \times 10^0$. All numbers are based on the power of 10; for example, $100 = 10 \times 10 = 10^2$. Similarly $1000 = 10^3$ and $1 = 10^0$. A number derived from powers of 10 is shown in Table 11.1. This number 9278 is equal to $(9 \times 10^3) + (2 \times 10^2) + (7 \times 10^1) + (8 \times 10^0)$.

<table>
<thead>
<tr>
<th>Powers</th>
<th>Decimal factor</th>
<th>Decimal number</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>10^3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10^2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10^1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10^0</td>
<td>1</td>
</tr>
</tbody>
</table>

Unfortunately, transistors and other electronic devices do not have a convenient way of counting in powers of 10. All that the transistor can offer as the basis of a system of numbers is its alternatives of being either on or off, i.e. a choice of two states. Thus, the basic system that is used in electronics is based on the "power-of-two" or binary system. Table 11.2 gives the equivalent powers-of-two for decimal numbers, and the appropriate binary digits in the last line representing the decimal number 87, expressed in its binary form as 1010111. Note that the "power" table starts with "1" (expressed as 2^0 in the power-of-two series).

<table>
<thead>
<tr>
<th>Powers</th>
<th>Binary factor</th>
<th>Binary number</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>2^6</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>2^5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2^4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2^3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2^2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2^1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2^0</td>
<td>1</td>
</tr>
</tbody>
</table>

In the coded section, a choice of only two numbers, either 0 or 1, are available. Using this table, other numbers may be expressed in binary form as shown by the following examples:

- $109 = 1101101$
- $117 = 1110101$
- $23 = 10111$
- $11 = 1011$

The highest number that can be derived from the above table is 127, i.e. twice the highest number (128) minus 1.

BINARY COUNTER CIRCUITS

The circuit that is generally associated with binary counters and dividers is the binary bistable multivibrator, shown in "block" form in Fig. 11.1a. Here, the elements that are of interest are the two output terminals, taken from the transistor collectors, and the single input terminal. The circuit may be any one of the binary types described in detail last month.

Assume initially that the transistor TR1 is off and TR2 is on; if pnp transistors are used, TR1 output terminal will be at near full negative potential and TR2 output terminal at near zero volts. Thus, if the negative potential is used to indicate a number, TR1 output terminal is indicating that "0" input pulses have been fed to the circuit.

When a positive input trigger pulse is fed to the circuit, the transistors will change state and TR2 output terminal will go negative, indicating that "1" input pulse has been fed to the circuit.

To indicate numbers greater than "1", binary units can be connected in cascade; Fig. 11.1b shows the connection of four such cascade units. The individual blocks are of the type just discussed.

The output at TR2 collector (b) of each block is used to supply the input trigger pulse for the following block: two input pulses are needed to give a single output trigger pulse from each block. Thus, one block divides by 2, two blocks divide by 4, three blocks divide by 8, and so on.

The table included in Fig. 11.1b shows the state of the circuit with succeeding input pulses. On each block, "1" indicates an "off" transistor (near full negative potential output at collector) and "0" indicates the on transistor (output at near earth potential). TR1 output terminals are indicated by (a) and TR2 outputs by (b).

The four block circuits shown give one output pulse for 16 input pulses, i.e. the circuit divides by 16. Note that, on the sixteenth pulse, the circuit reverts to the state as at "0" input pulses; the cycle of events then repeats itself again, and so on ad infinitum.
BINARY "DECIMAL" DIVIDER CIRCUIT

Whilst the binary system is the only one that the electronic circuit can basically work with, man finds it far more useful to use a "scale-of-ten" or decimal system; to be of any real use, therefore, the machine must be made to show results in a decimal form. As far as divider circuits are concerned, this means that the circuits must be made to divide by 10, as opposed to 8 or 16.

The circuit of Fig. 11.1b can be quite easily modified to give decimal operation, and Fig. 11.2 shows the block diagram in modified form.

Here, two feedback loops are included in the circuit, one taking the output from block 1(b) forward to the base of block 4(a), and the other taking the output of 4(b) back to the base of 2(a). A diode is included in the line from 1(b) to 4(a) connected in such a way that only positive going trigger pulses are passed, their purpose being to switch 4(a) off if it is turned on. During most of the working cycle of the circuit, 4(a) is switched off, so positive trigger pulses from 1(a) have no effect on this transistor.

Included in Fig. 11.2 is a table showing the state of the circuit with succeeding input pulses. Comparing this table with that of Fig. 11.1b, it can be seen that, up to and including the ninth pulse, the two circuits operate in an identical manner. In Fig. 11.2 it is the operation of the circuit on the tenth pulse that is of greatest interest. Note that, if the feedback loops were not included, block 2 would again switch on the arrival of this pulse; by including the feedback loops, however, the operation of the circuit is changed at this stage.

Before the arrival of the tenth pulse, block 4 had been switched, so that 4(a) is now on and is vulnerable to positive trigger pulses from 1(b) which will switch if off again; when the tenth pulse arrives, block 1 switches and sends the positive going trigger signal to 4(a), switching 4(a) off and 4(b) on; an output trigger pulse is thus made available at 4(b) output. The trigger signal from 1(b) output is coupled to 2(a) and tends to switch that transistor on; the output of 4(b) is coupled back to 2(a) base, however, and as
Fig. 11.3b. Combination of the four binary bistable circuits and the AND gate decoder

Fig. 11.3a. AND gate with readout facility

Fig. 11.4a. Basic circuit of a transistor NOR gate

Fig. 11.4b. Complete decimal unit and NOR gate decoder
block 4 switches it sends back a signal to 2(a) base which countermands that arriving from 1(b). Thus, 2(a) remains off.

On the arrival of the tenth pulse, the circuit reverts to the condition it was at with no pulses; this condition, referred to as “reset”, can be obtained artificially by applying a positive trigger pulse to TR1 transistors in all blocks simultaneously. This can be achieved by taking the “reset” terminals via a reset switch to a positive potential.

It may be noted that, although the “decimal” system described above is the most widely used type, it is not the only one in use; the feedback paths can be arranged in a number of ways; one manufacturer, for example, prefers to use a system in which the output of 4(a) is fed back to both 2(a) and 3(a) simultaneously. These alternative systems, as is so often the case with electronic circuits that have a wide number of variations, offer little or no advantage over one another.

COUNTING AND DECODING

So far we have considered the binary “decimal” unit purely as a divider, giving a single output pulse for every 10 input pulses; as often as not, however, the circuit is required to “count” the number of pulses fed into it and give a visual indication of that count in the decimal system.

Referring back to the table in Fig. 11.2, it can be seen that each individual input pulse begets its own set of transistor states, unique to itself. A count of three pulses is indicated by 1(b), 2(b), 3(a) and 4(a) outputs all being near full negative volts; this condition of the circuit is unique to the third pulse. This, information is held in coded form in the circuit according to the number of pulses that have been counted. If suitable “decoding” circuits are used, this information can be translated into decimal form.

In principal, such “decoding” circuits are simple, but can be fairly complex in practice. Referring to the above example and to the tables, any given number within the range 0-9 inclusive can be represented by no more than four “bits” of information; for example, when negative potentials are available at 1(b), 2(b), 3(a) and 4(a) simultaneously, the number “3” is indicated.

GATE CIRCUITS

All that is needed, then, to indicate that number, is an electronic “gate” with four input terminals and a single output terminal, the circuit being so arranged that an output is available only when all four inputs are connected. The four input terminals must be connected to the relevant points on the counter unit, and the output terminal taken to a visual read-out device, such as a lamp. Such an electronic gate is known as an AND gate, for the simple reason that input 1 and 2 and 3 etc. must be connected before the output becomes available. Fig. 11.3a shows an example of the AND gate; to be more precise, a negative logic AND gate. The explanation of the gate circuit is a slight over simplification.

The four diodes and the resistor comprise the gate. For simplicity, assume that input signals will be either fully negative or at zero potential, and that the impedance of the resistor is high compared with that of the diodes. The output of the gate is taken from the junction of diodes and resistor.

If any one of the inputs to the gate is at zero potential, current will flow through that diode to the negative rail via the resistor; since the impedance of the diode is low, the output of the gate will be at near zero potential, due to the fact that the diode and resistor act as a potential divider.

Connecting two or more inputs of zero potential will cause little significant change to the output potential of the gate; conversely, connecting one or more of the inputs to a negative signal will make no difference to the gate output, since the zero potential input signal holds the output at near zero potential, and thus reverse biases those diodes that have the negative potential applied to their inputs. It is only when all inputs have negative potentials applied (no inputs at zero) that the output of the gate can rise to a significant negative value.

In Fig. 11.3a this negative output potential is shown as being used to drive a read-out unit (shown within the dotted square), which in this case is simply an emitter follower with a lamp as its emitter load; in practice, it is more likely that the transistor would be Darlington connected with another, to give a reasonably high input impedance.

Fig. 11.3b shows the block diagram of a complete decimal counting unit, and an AND gate decoding system and readout facilities. The basic binary “decimal” unit is the same as that shown in Fig. 11.2 and the table in Fig. 11.2 can be applied to both diagrams. A large collection of diode gates, as shown, is sometimes referred to as a “matrix”.

ALTERNATIVE DECODING UNIT

In the case that we have just considered, the system relies on the negative potentials from the off transistors in the binary “decimal” unit to operate the decoding unit. An alternative system relies on the zero potential of the on transistors to give gate operation and decoding.

In this case the gates also have, say, four inputs and one output, but the negative output only becomes available when no negative inputs (or zero volts to all inputs) are applied. Such a gate is called a NOR gate, since the negative output is available when neither 1 nor 2 nor 3 etc. negative inputs are applied.

Fig. 11.4a shows the gate in basic form, but using transistors as active elements. Here, all transistors share a common collector load.

If a negative signal is applied to one of the inputs, its transistor will be biased hard on and the common collector, which also serves as the output of the gate, will fall to near zero potential.

If another negative input signal is applied to another input, all that will happen is that the current flowing in the common collector resistor will be shared between two transistors and the output of the gate will change by a significant amount. It is only when no negative inputs are applied, i.e. all inputs are at zero potential, that all currents are cut off and a significant negative output potential becomes available at the output of the gate. A number of variations of this gate exist, in some no transistors are used at all.

Fig. 10.4b shows, in “block” form, the connections used when employing the NOR gate decoding system with the binary “decimal” counting unit.

Next month: Counter/timer units, electronic gates, and triggering circuits
The instrument to be described embodies a number of circuits used collectively for the purpose of operating a range of Geiger-Müller (G.M.) counters and silicon surface barrier (s.s.b.) detectors.

The ratemeter in its complete form could represent to the science teacher an ideal means of demonstrating the relative characteristics of the two types of detector with various kinds of radiation. To the amateur it might be a useful and interesting instrument for radioactivity investigation at home or in the field where its self-contained power supplies and low weight allow complete freedom of movement.

GENERAL ARRANGEMENT

The electronics of the ratemeter are divided into five sub-units: G.M. Amplifier; S.S.B. Amplifier; Expander Stage; Ratemeter; and E.H.T. Generator and Power Supplies.

The physical arrangement of the instrument closely follows the same general pattern.

The majority of components comprising each sub-unit are mounted on a separate printed wiring board; four of these boards are installed in the underside portion of the main chassis and the fifth, the power supply board, is mounted on the top decks. The transformers, and certain other components, as well as the dry batteries, are mounted directly onto the chassis. All operating controls and the meter are on the front panel. The loudspeaker unit is fitted inside the metal case.

Fig. 1 provides the key to the whole assembly. All sub-units are shown in block diagrammatic form with key references to inter-unit wiring and also references to appropriate circuit diagrams. All those components not included on the separate boards, but mounted on the chassis, front panel, and case, are shown in detail with all appropriate wiring.

Although the instrument is described in its complete form, capable of operating both types of detector, there is no reason of course, why only one type of detector should not be catered for with obvious economies where limited resources or interest so dictate. An example of this might, for instance, be where only alpha particles were to be detected. In this case only the S.S.B. detector amplifier, the ratemeter and two 9 volt batteries would be required to use S.S.B. detectors such as the 20th Century types SSNO3K and SSNO5K.

CHASSIS CIRCUIT

With reference to the inter-unit diagram Fig. 1, it can be seen that the instrument permits a solid state radiation detector and a G.M. counter to be connected simultaneously, the switch S1 ("s.s.b./g.m.") selecting the required device. An e.h.t. supply is internally generated and is available for direct application to the G.M. circuit or, suitably reduced, to the s.s.b. detector circuit. The amount of reduction needed will depend upon the maximum permissible voltage for the particular detector used.

With S1 in the "G.M." position the e.h.t. voltage is variable from zero to maximum by the front panel control VR1 ("G.M. E.H.T.").

In the "s.s.b." position S1 makes operative an internal preset e.h.t. control VR2 which sets the voltage across a variable attenuator chain R1, R2 and VR3 before being applied to the s.s.b. detector. VR3 is a front panel control ("S.S.B. VOLTS").

S2 ("ABG/A") is associated with the s.s.b. detector amplifiers. The purpose of this switch is to select the output either of the s.s.b. amplifier, whose output for alpha pulses is large in relation to others, or that of the expander stage whose added gain enables beta and gamma radiations to be detected in addition to alpha. In this way discrimination against beta and gamma pulses can be obtained by virtue of their small size. In the "abg" (alpha + beta + gamma) position of S2 the noise discriminator control VR5 ("DISC") is operative. S4 ("M/B") selects internal battery or mains power and S5 ("E.H.T. OFF") enables the e.h.t. generator to be shut off completely.

The count rate, in three switched ranges (0-5, 0-50, and 0-500 counts per second) selected by S3 ("COUNTS/SEC and OFF") is displayed on a moving coil meter M1.
The “off” position of this control disconnects all power supplies. Audible indication of counts is provided via a loudspeaker LSI, the volume of which is controllable by VR4 (“vol”). Control is given also of the meter time constant by VR6 (“meter ‘t.c.’”).

The individual circuits of the sub-units will now be described.

G.M. AMPLIFIER

The simplest of these circuits is the G.M. amplifier (Fig. 2) in which TR1 and TR2 are connected as a cascaded emitter follower amplifier.

No voltage amplification is required with the large pulses usually obtained from a G.M. counter, but since the source impedance is rather high, some impedance transformation is necessary to drive the ratemeter circuit without undue attenuation. The cascaded emitter-follower circuit adequately fulfills this requirement.

The diodes D1 and D2 protect TR1 from the danger of large voltage transients.

The output is taken from point H4 to the ratemeter, via S1.

S.S.B. DETECTOR ELECTRONICS

NOTE: A full description of the electronic circuitry required for solid state detectors appeared in an introductory article entitled “A Solid State Radiation Detector” see PRACTICAL ELECTRONICS June 1965. Reference to this previous article is recommended if amplification of the concise circuit descriptions which appear below is required.

The s.s.b. circuitry is arranged in two sections, the first, the S.S.B. Amplifier, is for alpha particle detection. In this application large signals are experienced not requiring high gain, and consequently a high signal to noise ratio is achieved. The Expander Stage is intended as an add-on unit to extend the capability of the combination for the detection of beta and gamma radiation.

S.S.B. AMPLIFIER

The circuit of the S.S.B. Amplifier is shown in Fig. 3. The outer shell of the s.s.b. detector is taken to the common earth line and the collector connected via the 1 megohm load resistor R10 to a positive bias supply. The voltage pulse appearing across the load is applied to the base of TR3 which is operating as a low noise emitter follower. TR4 and TR5 are conventional voltage amplifiers with a total gain of about 500. The output from TR5 collector is fed via a differentiating network, C13, R21, and R22, to TR6 which operates as a phase splitter output stage. The purpose of this differentiation is to enhance the signal to noise ratio by limiting the bandwidth of the amplifier.

A positive output (with link between A-B) is obtained via C15 at point F2.

If it is not intended to add the expander stage for beta and gamma detection, an economy may be made where an instrument sensitive to negative pulses is used. The output in this case may be taken via the output capacitor C15 direct from the collector of TR5 and so obviating the need for TR6. The loss of the differentiating network making no difference in this type of operation.

EXPANDER STAGE

The circuit of the expander stage is shown in Fig. 4. It consists of an input emitter follower, a variable current discriminator/amplifier and an emitter follower output stage with a similar protecting network as in the S.S.B. Amplifier.

The positive going output from point F6 on Fig. 3 is applied to the input of the expander stage. The input emitter follower TR7 is necessary to drive the low impedance current discriminator, TR8 without upsetting the output of TR6 in the first section.

The operation of TR8 as a current discriminator is very simple. The standing base current set by VR5 and the 15 kilohm base resistor R31 is used as the negative discriminator bias which the positive going signal current from TR7 must overcome for the pulse.

SPECIFICATION

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>For use with wide range of G.M. and solid state radiation detectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.M. SENSITIVITY</td>
<td>100mV</td>
</tr>
<tr>
<td>S.S.B. INPUT SENSITIVITY</td>
<td>Single Stage Only</td>
</tr>
<tr>
<td></td>
<td>Beta and gamma radiation down to 50keV</td>
</tr>
<tr>
<td></td>
<td>0-5; 0-50; 0-500 counts per sec</td>
</tr>
<tr>
<td></td>
<td>10msec, 1msec, and 100µsec respectively for the above ranges</td>
</tr>
<tr>
<td></td>
<td>Variable time constant; set zero and calibration control</td>
</tr>
<tr>
<td></td>
<td>0-800V, continuously variable</td>
</tr>
</tbody>
</table>

PORTABLE RATEMETER
Components

Resistors

<table>
<thead>
<tr>
<th>R1</th>
<th>22MΩ 1W</th>
<th>R28</th>
<th>120kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>22MΩ 1W</td>
<td>R29</td>
<td>12kΩ</td>
</tr>
<tr>
<td>R3</td>
<td>22MΩ 2W</td>
<td>R30</td>
<td>120kΩ</td>
</tr>
<tr>
<td>R4</td>
<td>2Ω 2W</td>
<td>R31</td>
<td>15kΩ</td>
</tr>
<tr>
<td>R5</td>
<td>47kΩ</td>
<td>R32</td>
<td>3Ω</td>
</tr>
<tr>
<td>R6</td>
<td>4.7MΩ</td>
<td>R33</td>
<td>120kΩ</td>
</tr>
<tr>
<td>R7</td>
<td>4.7MΩ</td>
<td>R34</td>
<td>120kΩ</td>
</tr>
<tr>
<td>R8</td>
<td>47kΩ</td>
<td>R35</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R9</td>
<td>47kΩ</td>
<td>R36</td>
<td>1MΩ</td>
</tr>
<tr>
<td>R10</td>
<td>12kΩ</td>
<td>R37</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R11</td>
<td>2.2Ω</td>
<td>R38</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R12</td>
<td>2.2Ω</td>
<td>R39</td>
<td>100kΩ</td>
</tr>
<tr>
<td>R13</td>
<td>68kΩ</td>
<td>R40</td>
<td>68kΩ</td>
</tr>
<tr>
<td>R14</td>
<td>150kΩ</td>
<td>R41</td>
<td>33kΩ</td>
</tr>
<tr>
<td>R15</td>
<td>47kΩ</td>
<td>R42</td>
<td>330Ω</td>
</tr>
<tr>
<td>R16</td>
<td>47kΩ</td>
<td>R43</td>
<td>68kΩ</td>
</tr>
<tr>
<td>R17</td>
<td>100Ω</td>
<td>R44</td>
<td>1Ω</td>
</tr>
<tr>
<td>R18</td>
<td>150Ω</td>
<td>R45</td>
<td>2.2kΩ</td>
</tr>
<tr>
<td>R19</td>
<td>47kΩ</td>
<td>R46</td>
<td>100Ω</td>
</tr>
<tr>
<td>R20</td>
<td>47Ω</td>
<td>R47</td>
<td>18kΩ</td>
</tr>
<tr>
<td>R21</td>
<td>68kΩ</td>
<td>R48</td>
<td>470Ω</td>
</tr>
<tr>
<td>R22</td>
<td>33kΩ</td>
<td>R49</td>
<td>10Ω</td>
</tr>
<tr>
<td>R23</td>
<td>33kΩ</td>
<td>R50</td>
<td>10Ω</td>
</tr>
<tr>
<td>R24</td>
<td>33kΩ</td>
<td>R51</td>
<td>430Ω</td>
</tr>
<tr>
<td>R25</td>
<td>1MΩ</td>
<td>R52</td>
<td>68Ω</td>
</tr>
<tr>
<td>R26</td>
<td>100Ω</td>
<td>R53</td>
<td>12kΩ</td>
</tr>
<tr>
<td>R27</td>
<td>120kΩ</td>
<td>R54</td>
<td>12kΩ</td>
</tr>
</tbody>
</table>

All ±10%, 1/4W carbon unless otherwise stated.

Potentiometers

<table>
<thead>
<tr>
<th>VR1</th>
<th>10kΩ linear</th>
<th>VR5</th>
<th>10kΩ log</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR2</td>
<td>10kΩ linear, preset</td>
<td>VR6</td>
<td>500Ω linear</td>
</tr>
<tr>
<td>VR3</td>
<td>2MΩ linear</td>
<td>VR7</td>
<td>2.2kΩ linear, preset</td>
</tr>
<tr>
<td>VR4</td>
<td>10kΩ linear</td>
<td>VR8</td>
<td>5kΩ skeleton preset</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>C1</th>
<th>2,500pF paper 500V (T.P.C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>0.025uF paper 500V (T.P.C.)</td>
</tr>
<tr>
<td>C3</td>
<td>0.25uF paper 500V (T.P.C.)</td>
</tr>
<tr>
<td>C4</td>
<td>100nF elect. 6V (Sub mins)</td>
</tr>
<tr>
<td>C5</td>
<td>5,000uF elect. 6V (Sub mins)</td>
</tr>
<tr>
<td>C6</td>
<td>500μF elect. 25V (Tubes)</td>
</tr>
<tr>
<td>C7</td>
<td>1μF paper 250V (T.P.C.)</td>
</tr>
<tr>
<td>C8</td>
<td>470pF ceramic (1,000V)</td>
</tr>
<tr>
<td>C9</td>
<td>5,000pF ceramic (500V)</td>
</tr>
<tr>
<td>C10</td>
<td>0.5pF elect. 15V (Sub mins)</td>
</tr>
<tr>
<td>C11</td>
<td>8μF elect. 15V (Sub mins)</td>
</tr>
<tr>
<td>C12</td>
<td>0.5pF elect. 15V (Sub mins)</td>
</tr>
<tr>
<td>C13</td>
<td>1,000pF ceramic 500V</td>
</tr>
<tr>
<td>C14</td>
<td>50μF elect. 15V (Sub mins)</td>
</tr>
<tr>
<td>C15</td>
<td>0.1μF plastic 250V (Polyesters)</td>
</tr>
<tr>
<td>C16</td>
<td>0.1μF plastic 250V (Polyesters)</td>
</tr>
<tr>
<td>C17</td>
<td>0.1μF plastic 250V (Polyesters)</td>
</tr>
<tr>
<td>C18</td>
<td>0.1μF plastic 250V (Polyesters)</td>
</tr>
<tr>
<td>C19</td>
<td>0.1μF plastic 250V (Polyesters)</td>
</tr>
<tr>
<td>C20</td>
<td>0.1μF plastic 250V (Polyesters)</td>
</tr>
<tr>
<td>C21</td>
<td>250μF elect. 25V (Tubes)</td>
</tr>
<tr>
<td>C22</td>
<td>0.1μF plastic 250V (Polyesters)</td>
</tr>
<tr>
<td>C23</td>
<td>22pF ceramic</td>
</tr>
<tr>
<td>C24</td>
<td>47pF ceramic</td>
</tr>
<tr>
<td>C25</td>
<td>1pF elect. 15V (Sub mins)</td>
</tr>
<tr>
<td>C26</td>
<td>330μF elect. 25V (Tubes)</td>
</tr>
<tr>
<td>C27</td>
<td>0.05μF elect. 500V (T.P.C.)</td>
</tr>
<tr>
<td>C28</td>
<td>1μF elect. 250V (T.P.C.)</td>
</tr>
<tr>
<td>C29</td>
<td>0.05μF elect. 500V (T.P.C.)</td>
</tr>
<tr>
<td>C30</td>
<td>0.1μF elect. 1,000V (T.P.C.)</td>
</tr>
<tr>
<td>C31</td>
<td>0.1μF elect. 1,000V (T.P.C.)</td>
</tr>
<tr>
<td>C32</td>
<td>200μF elect. 25V (Tubes)</td>
</tr>
<tr>
<td>C33</td>
<td>2,000μF elect. 25V (Tubes)</td>
</tr>
</tbody>
</table>

Note: Information in brackets is the form of coding used by Radiospares Ltd.

Switches

- S1 Midget wafer 4-pole, 2-way
- S2 Toggle, s.p.d.t.
- S3 Wafer, 4-pole, 2-way
- S4 Toggle, d.p.d.t.
- S5 Toggle, s.p.d.t.

Transformers

- T1 Mains transformer, 200-250V tapped primary.
 - Secondary 16-3V 0-3A centre tapped
- T2 Mains transformer, 200-250V tapped primary.
 - Secondary 6-3V 1A centre tapped

Transistors

- TR1-TR13 OC44 Mullard (13 off)
- TR14-TR17 OC81 Mullard (4 off)

Diodes

- D1 Silicon OA202 Mullard
- D2 Silicon OA202 Mullard
- D3 Zenner 6-8V OAZ244 Mullard
- D4 Silicon 125V r.m.s. 500mA Radiospares REC50
- D5 Zenner 6-8V OAZ244 Mullard
- D6 Silicon 800 p.i.v. 500mA International Rectifier SD98 or 98S
- D7 Silicon 800 p.i.v. 500mA International Rectifier SD98 or 98S
- D8 Silicon 125V r.m.s. 500mA Radiospares REC50

Plugs and Sockets

- PL1 Coaxial free plug
- PL2 Coaxial fixed socket
- PL3 Mains input fixed 3-pin plug
- SK1 Coaxial fixed socket
- SK3 Mains input free 3-pin socket

Miscellaneous

- BY1 9V battery
- BY2 9V battery
- F1 Fuse cartridge, 1A
- LS1 Loudspeaker 3in, 35Ω
- M1 Moving coil meter, 100µA f.s.d., 2½in. panel mounting

Sundry Items

- Chassis: 18 s.w.g. aluminium 6½in x 8¼in x 3in.
- Battery clamps: 18 s.w.g. aluminium. Component board cradle and retaining strip: ¼in thick s.r.p.b.

Radiation Detectors

- G.M. tube - Type G10H
- SSB detector Type SSN03K or SSN05K

Note

Information in brackets is the form of coding used by Radiospares Ltd.
Fig. 1. Portable Ratemeter Inter-unit wiring diagram. The ratemeter is divided into five sub-units and the physical arrangement follows closely the same general pattern as this key diagram.

- Be detected. Once this has happened TR8 operates as an amplifier, and the resulting negative pulse is fed to the output (point D5) via emitter follower TR9.
- Due to the action of the discriminator the output pulses are no longer proportional to the radiation energy lost into the detector.

Ratemeter

Simply expressed, the ratemeter circuit (Fig. 5) applies a constant charge to a meter for every input pulse regardless of its size or duration. The meter then reads the average current which is proportional to the count rate.

If the pulses applied to the meter were of the same short duration as those from the radiation detector then the average current on low pulse rates would be rather too low to be of great use. A more satisfactory arrangement has therefore been adopted in which the length of the pulse is artificially "stretched" by a monostable multivibrator.
The effect of this is to magnify the charge per pulse applied to the meter while still retaining the necessary linear relationship of average current to count rate. The amount of stretching is related to the count rate range and is a satisfactory compromise between meter deflection and count losses. In other words if the stretching were too long the likelihood of pulses occurring during the insensitive period would be too high and an unacceptable counting error would result although the meter deflection would be good.

The resolving (stretching) time “T” is defined such that if one or more pulses arrive within a time “T” of a former pulse, only the former is recorded. The circuit is therefore “paralysed” for a time “T” after each registered pulse.

The true count rate of random pulses can be obtained from the expression:

$$N_t = \frac{N_o}{(1 - N_o T)}$$

where N_t is the true count rate
N_o is the observed count rate
T is the resolving time

For example, if our system has a resolving time of 1 millisecond and a count rate of 25c/s, is observed, the true rate will be:

$$N_t = \frac{25}{(1 - 25 \times 10^{-3})} = 25.7 \text{c/s},$$
which is near enough for most purposes. The approximate resolving times of the ratemeter on its three ranges are 10μS on 5c/s, 1μS on 50c/s, and 100μS on 500c/s. If the G.M. counter has a longer “dead” time than the resolving time of the system then this will be the governing factor. The s.s.b. detector is much faster than the G.M. tube and so will not complicate the issue in this way, although very little difference will be made in any case.

The action of the circuit (Fig. 5) is briefly as follows:

A negative going input pulse greater than about 100 millivolts in amplitude will start to turn TRIO on. The positive going pulse appearing at TRIO is transferred via one of the three timing capacitors C1, C2, C3, to TR11 base. This transistor, normally held on by the current through R40, begins to turn off. The negative pulse produced at TR12 collector is fed via R39 and C23 to TR11 base and begins to turn TR11 on. The current through TR11 is in phase with the current through TR10 through R38 and therefore the action is regenerative, causing a rapid transition to the astable condition.

At the end of the duration of the input pulse TR10 cannot initiate a reversal of the action in turning off as TR11 has “clamped” TR10 collector. The charge on the timing capacitor leaks away through R40 until TR12 begins to turn on and the circuit rapidly reverts to its original state. The duration of the astable condition depends on the value of the timing capacitor and R40.

Fig. 4. Circuit diagram of the expander stage

Fig. 5. Circuit diagram of the ratemeter
The rectangular negative-going pulse appearing at TR12 collector during the astable period is fed to TR13 base via C24 and R43 turning TR13 hard on. Current then flows through the meter circuit for the duration of the pulse, causing a deflection of the pointer of M1.

METER CONTROLS

The meter time constant potentiometer VR6 ("METER T.C.") and its associated capacitors C4 and C5 are a simple arrangement provided so that the meter is slow to change its deflection on low or fluctuating count rates if desired.

VR7 is a meter zero control for backing off current in the meter caused by leakage in TR13. In the instrument described it is a preset control mounted inside the case but it is felt that many constructors might prefer it to be a front panel control and there is no reason why this should not be so if space can be found for it. The need for this control can be eliminated at extra cost by replacing TR13 by a silicon transistor type 0C202.

The purpose of the Zener diode D3 is to stabilise the meter reading against variations caused by changes in the supply voltage.

The values used for the timing capacitors are nominally, 0.25µF for 5c/s, 0.025µF for 50c/s, and 0.0025µF for 500c/s. These ranges should suffice for most purposes but can obviously be altered to suit individual requirements.

With a fixed value of R40, the values of the timing capacitors must be fairly accurate multiples of each other for good range agreement. Adjustment can be made by "padding" where necessary with suitable value capacitors in parallel.

The calibrating control VR8 enables the instrument to be initially set up. Ideally this should be done with a pulse generator but a source of low voltage 50c/s pulses can be used for the 50c/s range and to check the corresponding point on the 500c/s range.

The split collector load of TR12 is a source of low impedance pulses for driving the audio stage TR14. The combination of R48 and C6 is to prevent excessive pulses appearing on the supply line. It will also have the effect of lowering the volume of sound to decrease somewhat as pulse rate increases, particularly on the higher count ranges. This, the author believes, is a desirable feature as audible indications of counts are more useful at low rates and tend to become a nuisance at high rates.

E.H.T. GENERATOR AND POWER SUPPLIES

The circuit of Fig. 6 can be divided into two distinct sections: all that above the common positive line is the e.h.t. generator; below this line is the h.t. supply circuit. Each section is supplied from separate halves of the mains transformer secondary.

Dealing first with the e.h.t. generator: the transistors TR16 and TR17 are operated as a free running multivibrator, the load of which is the tuned 6.3 volt winding of T2. This transformer is the readily available Radiospare Standard Filament (6.3V) type which has a centre tapped 5.6 volt winding and is ideal for this purpose. It is drawn in dotted, since it is physically located on the main chassis (see Fig. 1). The operating frequency of the multivibrator is about 1kc/s, determined by C28, together with R53, R54, C27 and C29.

The winding on T2 which normally is the mains primary is now the secondary from which the e.h.t. voltage is obtained. This output is fed to the voltage doubling circuit C30, C31, D6, and D7, and appears as smooth d.c. at the e.h.t. output point B20. The output voltage is controlled by VR1 or VR2 which, via the transistor TR15, regulates the drive to the multivibrator. The e.h.t. voltage has a near linear relationship to the angular rotation of VR1 and use is made of this by calibrating the "G.M. E.H.T." knob in volts. Zener diode D5 stabilises the output against input supply variations.
R1, R2 and VR3 form the potential divider for attenuation and fine control of the bias applied to the S.S.B. detector. The above values should be chosen in conjunction with the setting of VR2 to suit the maximum rating of the detector. The total resistance of the chain should not be less than 20 megohm. However, this arrangement is shown only as a demonstration of possible systems where specially selected detectors are used operating at up to 300 volts and normal battery operation becomes unwieldy.

For the most popularly used detectors a maximum of 25 volts is the limit and it would obviously be more economical to obtain this voltage from a battery.

Drive voltage for the e.h.t. generator is obtained from one half of the centre tapped secondary of the mains transformer T1. The a.c. output of approximately 8-15 volts r.m.s. is rectified by D4 and applied to TR15 and so to the multivibrator.

The other half of T1 secondary provides the h.t. for the other four sub-units. After rectification by D8 and filtering by C32, R52, and C33, a d.c. output of -9V is obtained at point B18.

The primary of T1 is connected to the a.c. mains supply via S3d and FS1, see Fig. 1.

The construction of the ratemeter will commence next month.

Trade literature

readers requiring further information about any of the items mentioned in this column should forward request direct to the company concerned. It is requested that all enquiries be made by post only.

SIGNAL LAMPS AND LAMPHOLDERS

Thorn Special Products Ltd., Great Cambridge Road, Enfield, Middlesex

A new coloured catalogue of their range of screw and press-fit mains signal lamps and holders, 50-200 pulse/min blinker lamps and neon indicators.

HENRY’S COMPONENTS CATALOGUE price 2s

Henry’s Radio Ltd., 303 Edgware Road, London, W.2

This firm specialise in transistor and associated components and will be pleased to quote for any transistorised circuit published in P.E. Their catalogue containing more than 3,500 mostly standard parts is recommended to readers.

HOME RADIO COMPONENT CATALOGUE price 7s 6d, plus 1s postage

Home Radio (Mitcham) Ltd., 187 London Road, Mitcham, Surrey

Another must for readers of P.E. containing over 5,000 references in easy to follow layout. All prices are now contained in a separate supplement which, due to price changes, will be reprinted from time to time to keep the catalogue up to date.

POWER SUPPLIES

Most amplifier h.t. supplies will provide an extra 5mA without trouble, and this is ample. Two ways of connecting the power supplies are shown in Fig. 6. Of these, the method (b), shown in Fig. 6b, using a Zener diode, is the best and occupies less space. Alternatively, a 6-3 volt l.t. supply may be rectified and smoothed, or the unit may be battery operated. This unit should not be used on a.c./d.c. equipment.
New Colour Television Camera

A new colour television camera using four plumbicon pick-up tubes has been developed by The Marconi Company. It is claimed that this new camera will avoid the difficulties previously encountered with previous versions using three colour tubes. Colour pictures are not so dependent on accurate registration and compatible monochrome pictures should be considerably better.

Transistor circuitry is used with over sixty “thin films”. A high quality luminance signal is produced by a single tube and the other three are used to contribute colour information to the signal.

This Mark VII camera is virtually unaffected by external magnetic fields.

The three pictures on this page show the camera itself (above left), the camera control unit (above), and a “thin film” circuit of the video amplifier (left). The resistors can be seen as transparent grey tracks, while the gold pad connections appear black. The ni-chrome resistors are deposited on a thin layer of glass and are virtually unaffected by changes in temperature.
Magnetic Film Recorder

A new British magnetic film recorder and reproducer has been developed by RCA Great Britain Ltd., using solid state circuits built in plug-in modular form. Single or multi-track heads can be used on films up to 35mm wide using adjustable rollers. The plug-in modules are housed in a "nest" shown above.

The equipment has been designed so that schools as well as industry can record their own sound tracks on 16mm or 17½ and 35mm film. The heads can be positioned to provide centre or edge track recording or a combination of both.

New Scanning Electron Microscope

The picture below shows an enlarged view (X49) of a relay contact that has become pitted. This photograph was taken with the help of a new electron microscope (shown right). The microscope is the brain child of the Cambridge Instrument Company and Professor Oatley at Cambridge University.

By scanning the specimen with an electron beam it can give much clearer and more detailed pictures which are displayed on a cathode ray tube.

British Colour TV Equipment in France

The Office de Radiodiffusion Television Française in Paris is fitted with telecine equipment and image analysis which have been supplied by British colour television companies in the Rank Organisation. In the picture above an O.R.T.F. technician is shown adjusting the preset control of a Bush colour monitor, on which the O.R.T.F. programme symbol is displayed. Telecine and scanner equipment were supplied by Rank Cintel.
As an example of our new knowledge, consider the smoothing network found in most power packs. It generally consists of two capacitors and an inductance arranged as in Fig. 16.1.

The alternating current from the mains supply is converted into "pulsating d.c." by the action of a rectifier (not shown here). This current, really a.c. mixed with d.c., is too rough to use in electronic equipment. It is therefore passed through a smoothing or filter circuit.

Referring to Fig. 16.1, the first capacitor C1 offers an easy path for the a.c. variations, but the inductor LI opposes them. To d.c., however, L1 offers very low resistance, while capacitors C1 and C2 offer an infinite barrier. The small amount of a.c. that manages to pass through LI is provided with an easy return path via C2.

The first capacitor C1 charges up on the positive going "peaks", but returns some of this charge to the supply line when the a.c. component is moving negative-wise. This capacitor is often referred to as a reservoir capacitor, and it contributes largely to the smoothing or filtering action of this circuit.

In this manner smooth, steady d.c., like that from a battery, is obtained to work the "load" which is some electronic device connected across points c and d.

Transformation of the pulsating d.c. into "pure" d.c. is indicated graphically in Fig. 16.2.

We will now proceed to the construction of two filter units—both based on the circuit given in Fig. 16.1. This work will enable you to gain a little more soldering experience, and afford the opportunity to handle further types of components in a practical sense. The filters themselves will be very useful in later work. In fact they will be essential for producing smooth d.c. from the a.c. mains, via suitable transformers and rectifiers, which will be put to work operating the future practical projects we have lined up for this series.

HIGH VOLTAGE FILTER

This unit will smooth rectified a.c. (that is, pulsating d.c.) of about 250 volts pressure, supplying currents up to about 60mA. (Don't forget m stands for "milli", meaning a thousandth, and A is the abbreviation for "ampere", which is a measure of current flow.) This filter can therefore be used to supply valve equipment drawing not more than the above mentioned amount of current.

![Fig. 16.1. A typical LC filter, used to smooth pulsating d.c. It is often called a "π" (Greek letter pi) filter, from its shape](image)

COMPONENTS

<table>
<thead>
<tr>
<th>HIGH VOLTAGE FILTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 16μF electrolytic 500V</td>
</tr>
<tr>
<td>C2 16μF electrolytic 500V</td>
</tr>
<tr>
<td>L1 10 henry choke, 65mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOW VOLTAGE FILTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 5,000μF electrolytic 15 to 25V</td>
</tr>
<tr>
<td>C2 5,000μF electrolytic 15 to 25V</td>
</tr>
<tr>
<td>L1 0.1 henry choke 2A</td>
</tr>
</tbody>
</table>

Not generally available, but easily made up as described in the text. Material required: old loudspeaker transformer; small reel of 24 s.w.g. enamelled copper wire.

Miscellaneous Items for Both Units

Wooden baseboard, approximately 5\(\text{in} \times 3\text{in} \times \frac{1}{4}\text{in.}|

Brass wood screws. Black and red plastic covered wire. Perforated zinc for the cover.

![Fig. 16.2. These waveforms illustrate the smoothing action of the filter](image)
Construction is carried out on one of our standard wooden baseboards, and a perforated zinc cover is added to shield the high voltage points from the possibility of being touched. The diagrams and photographs show just where everything goes. It is useful to remember that this unit added to the output of an existing power pack will give a vast improvement in the smoothing, probably eliminating any residual hum still present in the original circuit.

IMPORTANT POINTS

Remember to connect up the electrolytic capacitors correct way round and to connect the supply positive to positive and negative to negative. Note carefully any information printed on the electrolytic capacitors. Make sure that the voltage ratings indicated on the capacitors agree with the details given in the components list.

Sometimes the aluminium can is connected internally to the negative side of the capacitors; when this is so, a separate negative solder tag may not be provided and external connection is then made by attaching a lead under one of the screws on the metal fixing clip. This brings us to another important point: always ensure that you obtain the appropriate fixing clips when you purchase electrolytic capacitors.

Small wooden panels, nearly the size used in our designs, are on sale in Woolworth's Stores. These are meant to take electrical fittings, (plugs points etc.) mounted on walls. As they say—just the job!

LOW VOLTAGE FILTER

The second filter unit supplies around 12 volts at one to two amps, and is suitable for supplying circuits employing transistors. There is no need to cover up with a shield this time, unless you would like to make one for matching the other unit, but be careful not to mistake which unit is which, or trouble will arise indeed! (Perhaps different coloured paint would overcome this hazard.)

SMOOTHING CHOKE

The components list mentions everything except the smoothing choke (L1) for the low voltage, high current unit. This particular component cannot be readily obtained in the shops, but can be made from an old loudspeaker transformer or choke similar in size to the one used in the high voltage filter. Such components can be salvaged from an old radio or television set, or a dealer will supply them. Secondhand components are quite suitable for this purpose.

Strip the transformer or choke right down, keep the laminations and bobbin, but dispose of the fine wire that formerly filled it. Now wind on about 400 turns of 24 s.w.g. enamelled copper wire. When you have covered the coil you have produced with a protecting layer of tape, replace the laminations. Notice that all the “E” laminations go in one way, and all the “I” strips go on the other end, with a piece of paper between. See Fig. 16.5. The lamination shroud now goes on, and the component is ready to be screwed down.

It is unlikely that you will be able to obtain a dual unit capacitor for the values required in this second filter unit. Two separate capacitors (as detailed in the components list) can be mounted side by side on the board. Note the remarks concerning electrolytic capacitors in general given in the section dealing with the high voltage filter.

Next time we shall discuss changing a.c. into d.c. and d.c. into a.c.
Miniature 12 watt Amplifier

Sinclair Radionics Ltd., Comberton, Cambridge.

Our photograph shows a really small amplifier, measuring 3in \(\times \) 1\(\frac{1}{2} \)in \(\times \) 1\(\frac{1}{4} \)in. Called the Sinclair Z-12 it has a claimed maximum power output of 15 watts music power (12 watt r.m.s.) with a signal-to-noise ratio of less than 60dB. There are eight transistors in the amplifier, which operates from any d.c. power supply between 6 and 20 volts. The frequency response is 15 to 50,000 c/s \(\pm \) 1dB and the quiescent current consumption is 15mA. Input sensitivity is 2mV into 2 kilohms.

The user can add his own tone and volume control circuit to suit his own requirements. Some suggested tone control circuits are given in the manual which is supplied with the amplifier.

The price of the Z-12 amplifier supplied built, tested and guaranteed is £4 9s 6d.

Chassis Punches

The British Tap & Die Co. Ltd.,
Triangle Works, Montagu Road,

The chassis punches depicted here are made from ground hardened steel and designed to cut accurate, clean holes in flat or curved sheet metal up to 16 s.w.g. mild steel, aluminium, brass or copper.

Although chassis punches are rather expensive items the amount of time saved and the clean burr-free finish obtained is well worth the outlay.

These punches are available individually or in four sets of four punches in the following ranges: 1\(\frac{1}{16} \)in; 1\(\frac{1}{32} \)in; 1\(\frac{1}{64} \)in; 1\(\frac{1}{128} \)in; 2\(\frac{1}{32} \)in; 2\(\frac{1}{64} \)in; 2\(\frac{1}{128} \)in; 2\(\frac{1}{256} \)in.

The price of the sets range from £3 13s 0d to £5 12s 0d; all sets are packed in polished wooden cases.
Instrument Cleaner

Multicore Solders Ltd., Multicore Works, Maylands Avenue, Hemel Hempstead, Herts.

We are always being warned by manufacturers to be extremely careful when cleaning certain types of instruments, meters, tape heads, etc. Now Multicore Solders have just announced their new Bib instrument cleaner which is ideal for cleaning tape heads (without risk of damage to the tape) as well as instrument panels, radio and television cabinets, telephones, and other items made from plastics, chrome and glass.

The new cleaner is contained in a plastics "squeeze" bottle (4fl ozs) and is anti-static, non-flammable, non-toxic, antiseptic and will not scratch or smear. During testing we found that when used on television screens to prevent static it is desirable to use a chamois leather. The use of other types of materials tended to leave "detached particles" on the screen which were very difficult to remove.

The retail price of the 4fl ozs size is 4s 6d.

Low Voltage Fluorescent Light Fitting

Osmabet Ltd., 46, Kenilworth Road, Edgware, Middlesex.

A new product with many applications, (for example, in caravans, cars, boats, workshops, and as emergency lighting) is the "Newlite" low voltage fluorescent light fitting. This unit is claimed to be equal to any mains operated fitting and uses standard mains 2ft 20 watt tubes.

The main feature of the unit is a transistor operated inverter for use with a 12 volt battery which is rated at 2 amp to step up the voltage.

The unit weighs 2½lb less tube, is 25in long and fixed by means of two screws. The retail price of the Newlite is £6 10s 0d less tube.
A useful adjunct to a workshop bench is a d.c. power source that has a general purpose appeal to the majority of valve circuit applications. The beginner, attempting the construction of mains-operated equipment for the first time, should find little difficulty in making this unit. It will provide a valuable exercise in wiring commonly used components.

INTRODUCTION

The unit was originally designed to provide power for a small amateur radio station, comprising a home built receiver and transmitter for top band. The usual heater supply of 6.3 volts at a few amps was required, together with an h.t. supply of 250 volts at 60 to 70mA. The receiver and transmitter were not intended to draw much current.

Also, and most important, there was very little room available on an already crowded table top, and so the unit had to be physically small.

Thus this unit was evolved, using a chassis 7in x 5in x 2\(\frac{1}{2}\)in. It was constructed as far as possible with components that were to hand.

CIRCUIT

It can be seen from Fig. 1 that the circuit employs full wave rectification, with the usual capacitor and choke smoothing and filtering arrangement.

A double pole switch S1 is incorporated in the mains input, thus ensuring complete isolation from the mains when S1 is off. The unit is equipped with fuses to protect it from overload conditions.

An EZ81 was used as the double diode rectifier. This valve has a 6.3 volt heater which is supplied by the 6.3 volt 1 amp transformer winding with one side taken to chassis. A pilot lamp LP1 is fitted and connected across the same winding.

After rectification, the supply is smoothed by the \(\pi\) filter made up of C1, L1, and C2. On no load the reservoir capacitor C1 is charged to about 350 volts. On full load of 65mA the output is reduced to 250 volts.

by K. Adkins

Fig. 1. Circuit diagram of the complete power unit
It is a characteristic of this type of power unit, where the regulation is poor, that the output voltage will vary between the limits given, dependent on the load current drawn.

The ripple fundamental frequency of 100 c/s is reduced by the factor \(\frac{1}{\sqrt{L_1 C_1}} \). This was measured and found to have an r.m.s. value of less than 0.5 volts which can be neglected for many practical applications.

A single “canned” electrolytic, \(8 + 16 \mu F \) at 500V working was used for capacitors C1 and C2, the latter being shunted by a “bleeder” resistor R1, the function of which is to discharge C1 and C2. This is a rather important feature since it prevents the possibility of shocks should the h.t. line be touched immediately after switching off the unit. An h.t. switch, S2, is incorporated after the “bleeder” resistance so that the h.t. may be switched off independently of the 6-3V heater supply.

There is one other heater winding made available on the unit giving either 4 volts 4 amp, or 6-3 volts 3-5 amp. It will be seen from the circuit diagram that one side of each 6-3V heater winding is connected to chassis. In the wiring of the output side of the transformer, all tags marked “0”, including the tag marked screen should be taken to a common point on the chassis.

All the output voltages at the terminal block are quoted as being relative to “0” or “chassis”. If the valve heaters of an external piece of equipment connected to the unit are connected to chassis on one side, it is important that both earth lines are made common, otherwise the heater winding will be short-circuited.

The 1 amp fuse gives transformer protection, but prudence should be exercised in all cases. It is worth mentioning at this point that the common line should be connected to earth at the power unit end only, otherwise hum may arise from earth loops.

Components

- **Resistor**
 - R1: 50kΩ, 6W, wire-wound

- **Capacitors**
 - C1: \(8 \mu F \) elect. 500V
 - C2: \(16 \mu F \) elect. 500V

- **Choke**
 - L1: 15H, 65mA

- **Transformer**
 - T1: Primary 200-230-250 volts
 - Secondary 1: 250-0-250V, 80mA;
 - Secondary 2: 4V 4A or 6-3V 3-5A;
 - Secondary 3: 4V, 5V 2A, or 6-3V 1A

- **Valve**
 - V1: EZ81 (Mullard)

- **Switches**
 - S1: Double-pole, on-off, toggle switch
 - S2: Single-pole, on-off, toggle switch

- **Fuses**
 - FS1: 1A (cartridge type with panel mounting fuseholder)
 - FS2: 100mA (cartridge type with panel mounting fuseholder)

- **Plugs and Sockets**
 - PL1, SK1: Chassis mounting mains connectors 3-pln
 - (Bulgin type P73 or similar)
 - SK2: Terminal block, at least 5-way (see photographs)

- **Lamp**
 - LP1: 6-5V, 0-15A with red indicator mounting

- **Miscellaneous**
 - Chassis 7in x 5in x 2\(\frac{3}{8} \)in (H. L. Smith & Co. Ltd., 287 Edgware Road, London W2); B9A valveholder;
 - Five-way tag strip, centre tag chassis mounting;
 - Grommets for \(\frac{3}{8} \)in dia. mounting hole; P.V.C. covered wire;
 - Nuts and bolts 4B.A. and 6B.A., \(\frac{3}{8} \)in long;
 - Expanded metal 16in x 14in for protective cover.

Diagram

- **A.C. INPUT**
 - 200 to 250 volts, 50c/s mains

- **D.C. OUTPUT**
 - 250 volts, 65mA

- **A.C. OUTPUT**
 - 6-3 volts, 3-5 amp
 - or
 - 4 volts, 4 amp

Fig. 2. Underside view of the chassis

127
CONSTRUCTION

The chassis of 16 s.w.g. aluminium sheet, was bought. It is a commonly available size and no difficulty should be found in acquiring one (see components list).

The mains supply is connected via socket SKI to the mains fuse and mains windings of T1. Make sure that the correct mains tappings are used to suit the mains supply voltage. The chassis drilling details in Fig. 3 conform to the components specified and these should be followed if the small physical size of the whole unit is to be maintained.

Leads are taken from the transformer and choke to the underside of the chassis, through rubber grommets fitted to the chassis, to the valveholder tags and capacitors. R1 is mounted on the tag strip, the mounting tag of this strip is the common connection for all leads going to chassis.

All leads carrying a.c. should be twisted, to reduce the risk of hum pick-up. The wire used for the 6.3V and 4V supplies should not be too thin if several amperes are to be carried (18 s.w.g. will suit all heater wiring here). The outputs are taken by way of five holes drilled through the front of the chassis. The ends are then bared and held securely by the lower screws of the terminal block. It is important that the holes drilled should be free from burrs to obviate any chance of short-circuits due to puncturing the insulation. The use of grommets will also obviate these risks. The output leads should be insulated as far as possible into the terminal block.

When the wiring has been completed it should be thoroughly checked; then the power unit may be tested. No difficulty should be experienced in getting the unit to work as the circuit is quite simple.

In practice, the unit has served its purpose very well, producing virtually no hum and running quite cool with a continuous drain of 70mA from the h.t. terminals.

Fig. 3. Drilling details of the chassis for the components used in the prototype. Some dimensions may differ according to individual requirements
Making music the hard way!
Transistor Electronic Organs for the Amateur

By Alan Douglas and S. Astley

There are undoubtedly easier ways of making music than by first constructing an electronic organ—but to the enthusiast there can be no other way. This is the fourth book by Alan Douglas, who is probably the country's leading writer on this type of equipment. It presents not only a detailed design for a full scale organ, but a complete explanation of everything to do with transistorised organs. It is written in a simple style especially for the amateur constructor, and profusely illustrated with clear diagrams. eighteen shillings net

Dispelling an old theory
Pick-ups
The Key to Hi-Fi

By J. Walton

For many years it has been the assumption that the loudspeaker is the weakest link in the record reproducing chain. This book challenges that theory. The author, after many years of research into the subject, concludes that it is the pick-up that causes most distortion. It is no exaggeration to say that, by following his advice, the owner of an ordinary gramophone or record player or the hi-fi enthusiast will not only achieve a superior standard of record reproduction, but will ensure that his records will last much longer.

"... can be highly recommended as a first-class introduction to the subject of high quality record reproduction."—Hi-Fi News. ten shillings net
Audio Fair 1966

The Audio Festival and Fair will be held as usual in the Hotel Russell in London from 14 to 17 April. Visitors will see a few changes in the layout of the Festival exhibits this year when they will be invited to climb yet another flight of stairs; an extra floor is being used with the aim of encouraging exhibitors to hire a second demonstration room in place of a booth. The purpose of this idea is to reduce the number of booths on the ground floor and provide extra gangway space which, in the past, has been hopelessly congested.

Fog Warning

A new photoelectric device to detect and give warning of fog on motorways and other major roads has been developed by the Lancashire Dynamo Electronic Products. An infra-red beam is projected by a light source transmitter to a remotely mounted photocell receiver. If the beam is partially or completely cut off by fog, the warning system is brought into operation.

The device has been undergoing tests by Staffordshire County police and local authority officials.

Degree Course in Computing Science

The first full-time degree course in Computing Science has already begun at the Stafford College of Technology. Students are being trained in all aspects of programming and data processing (generally known as “software") but not in electronics technology, which is covered in other courses.

The principle aims of the course are: to help to fill the increasing need for skilled computer programmers throughout the country; to offer to suitable candidates with the G.C.E. in subjects other than science subjects (for example, Geography, Economics, Languages) an opening where these subjects could be suitably applied during the course and later in industry.

The course is open to students who have two G.C.E. "A" levels and three other G.C.E. "O" levels, similar in fact to the requirements for almost any other degree course. It is based on a four year curriculum (honours degree) of combined college work and industry experience arranged in the now familiar and popular “sandwich” system.

Applicants who do not possess these qualifications, but who have other suitable qualities, aptitude, and a keen sense of vocation, will be considered on individual merits, but competition is keen and due regard will be exercised to the potential of candidates.

The approval of the Ministry of Education and Science and the Council for National Academic Awards has been given, bringing the course in line with other types of university degree course. It has been devised with the full co-operation of the English Electric Leo Marconi Company who have provided computing equipment and lecturers.

Our photograph shows the English Electric “Deuce” computer being introduced to students in the College by the computer supervisor.

Full details of the course can be obtained from The Principal, Staffordshire College of Technology, Beaconside, Stafford.

Teaching Aids

Development of “language laboratories” for schools has progressed very well. A new prototype, made by Tolnai of Sweden, uses 2in wide tapes. The master tape has 36 tracks with a capacity for up to 84 hours of instructional material (enough for one year’s syllabus); a slave loop tape can store some of this material as required for short repetition sessions.

This equipment was exhibited by RCA Great Britain Limited recently with another prototype programmed teaching aid which uses 16mm film strip. This uses a simple “telephone dial” type of answer selection system in which, if the answer is correctly selected, steps the film on to the next frame or, if incorrectly selected, steps it to additional information.

Two models of video tape recording equipment were also demonstrated, using the revolving head, frequency modulated, no-bias recording principles already well established.

PAL Colour for U.K.

The Postmaster-General, the Rt. Hon. Anthony Wedgewood Benn, M.P., announced in the House of Commons on 2 December, 1965, that the Television Advisory Committee appointed by the Government had recommended the adoption of the German PAL colour television system for United Kingdom. This was immediately followed by an urgent request by Mr. Bryan, M.P., for the granting of a second channel for I.T.A. to operate on the 625 line system, so that it can come into line with the B.B.C. and broadcast colour pictures on 625 lines.

Royal Charter

A Royal Charter has been granted to the Engineering Institutions’ Joint Council, which is now called the Council of Engineering Institutions. The E.I.J.C. was formed three years ago by councils of thirteen engineering institutions, including the I.E.R.E. and the I.E.E., to promote greater mutual exchange of ideas and co-operation in allied subjects.

The Duke of Edinburgh has agreed to accept the office of Founder-President for a period of five years. Existing corporate members of any of the constituent institutions are entitled to describe themselves as Chartered Engineers (C.Eng.).
Believe it or not we have actually produced an all transistor integrated HIFI amplifier complete with pre-amp and tone controls giving 20 watts power output and ready to operate for only £9 19s. 6d. The KEDOCO CLASSIC SS20/7 is the result of several years of research and investigation into the various approaches to solid state amplification. The end product, Kedoco engineers claim, with complete confidence, is the finest power amplifier available today and stands above all others for quality in a class of its own. The CLASSIC requires a 30 volt power supply but consumes only 20mA*. It will operate into most speakers but the best results are obtained with 3 ohms. We are confident you find this amplifier excels others costing many times its price.

SPECIFICATION—
- 20 watts output max.
- Distortion less than 0.1%
- Frequency response flat from 16c/s to 20kc/s.
- Noise 80dB down on max. output.
- *quiescent

MINICLASSIC SS3/9
3 watts output, 6 silicon planar epitaxial transistors, 2 diodes and one zener. All mounted on precision printed circuit board. HIFI at its cheapest — 16 c/s to 30 kc/s flat response. Many other uses. Requires 18 volt power supply. Will operate directly from crystal pickup. Used with tape Pre-amp it makes a complete Tape Amplifier. Also tone controlled HIFI Pre-amp available at 39/-.
Brand new individually checked and guaranteed

P.C. RADIO LTD
170 GOLDHAWK ROAD, W.12
Shepherd's Bush 4946
Open 9.30 a.m. Thursday 9.1 p.m.

MANY OTHERS IN STOCK include Cables Rex Two special Talents, etc., at prices below £2.25 to £1.95; over £3, £3.49, free C.O.D. 2/6 extra. Overseas
Postage extra at cost.

PORTABLE INTERCOM/ELECTRONIC BABY SITTER
DE LUXE MODEL
Transistor intercom system, originally listed at £45.00, now only £29.00 post 2/6, or 10/- dep. Credit Service Terms balance 10 finitly, and interest free. Fully transistorised, connecting flex, also usable for connection to radio. Integral battery, ex. (replaceable). Every sound relayed! Hear what goes on in another room, move about, with exclusive buzzer call and speaker system. Also usable with any other radio, TV, or with friend's radio, TV, house to garage and many other uses. Only transistor model with new seal on infallible insulation. Fully guaranteed.

AMPLIFY YOUR VOICE MAKE THEM LISTEN
Sports meetings, Dancing, Cafeterias, etc., in the fog, building sites, Creeping—ANYWHERE, in and out of doors. Be heard—enjoy hearing your voice amplified over great distances. Colourful lightweight-portable. Works off standard batteries. Simple to use—and/off press trigger and volume control. Q190 Model! NOW ONLY 75/- (With standard batteries). Or (Correct Money) send 10/- dep. + pos. b/s. 18 finitly, p/p. 4/8. Batteries 2/- per set (repleasable anyway). In a flash can be converted to listening instruments. Refund if absolutely delighted.

PREVIOUSLY CHEAPEST BATTERY/MAINS TAPE RECORDER COST £29.10.0!
NOW your fantastic BATTERY ROYAL PLUS MIX TAPE RECORDER
AMAZING CASH PRICE £5.19.6 POST & CON.
OR LOW DEPOSIT

ANOTHER GOLD FOR ROMA A
SECOND TIME "KEYCHAIN" RADIO

AUTHORSHIP!
IT'S FABULOUS! IT'S MAGICAL!
At last! A True Keychain Radio. 'The Everlast Powerful Torch! NEVER BUY TO OR BULB!' It's the (PAT) for your bag! About the size of a cigarette packet (1 1/8 x 1 1/8 x 1/2 inch).

PULL the button. "ON"! It's Magic!..... "OFF" It's Magic!!

THE (PAT) for your bag. A wonderful hand-held radio. (With or without torch light). It will fit in any bag, pocket, hand, etc. It will stay lit even if you switch 'OFF'........ for up to 9 hours..... (Precious for a long journey). A True TorchLight.- .

IT'S FABULOUS! IT'S MAGICAL!
IT'S FABULOUS! IT'S MAGICAL!
IT'S FABULOUS! IT'S MAGICAL!
IT'S FABULOUS! IT'S MAGICAL!

HEADQUARTER & GENERAL SUPPLIES LTD.
ALSO 37/39 High Holborn (Thurs. 1 p.m.), and 36 North End, Croydon, and 18 High Street, Guildford (Wed. 1 p.m.), 121 High Street, Colchester (Thurs. 1 p.m.), ALL 6 p.m. SAT. 7 p.m. FRI. ALSO 267/269 Oxford St. (Wed. 1 p.m.), Thurs. late night shopping 8 p.m. and Fri. 6 p.m.)
Due to changing techniques in construction and new components, there is very likely to be a substantial surplus of old, but still serviceable, components in constructors' work rooms. It is with this in mind that the following article is aimed at making good use of these parts; alternatively, if purchases have to be made, the cost could be very low.

This unit will perform well as a signal tracer for both a.f. and r.f. signals, as an amplifier suitable for use with a microphone or pick-up, or as a radio receiver. An extremely versatile test set such as this can be made up quickly and cheaply. Component values are, to a certain degree, flexible.

VARI-MU

Referring to Fig. 1, it can be seen that the first two stages constitute an r.f. amplifier. The anode loads (R2 and R7) of both of these valves are resistors so that the gain is independent of frequency up to about 1 Mc/s. Hence the unit does not have to be tuned to the same frequency as the signal being traced. Above about 1 Mc/s the shunt capacitance from anode to earth of each valve reduces the gain. The response can be improved at the expense of gain by reducing the value of R2 and R7 or by removing C4 and C6. Alternatively, C4 and C6 can be reduced to about 1,000 pF so that their decoupling effect only applies at high frequencies—but this latter technique requires a wide-band oscillator and an oscilloscope.

The first stage is a variable-mu pentode and the gain is controlled by a potentiometer in the cathode circuit. This is better than using a “straight” r.f. pentode and a potentiometer in the grid circuit, for in this position it damps the input and is liable to pick-up phenomena. The second stage is a high-mu pentode. Since the stage gain is approximately equal to $R_L g_m$, where R_L is the load resistor, a high g_m enables a low value of R_L to be used. This in turn reduces the effect of stray shunt capacitances since the gain falls by 3 dB when $R_L = 1/j\omega C_S$.

The detector (V3) is a 6H6 with both halves strapped in parallel. This could, with advantage, be replaced by a semiconductor diode such as an OA78. This is
followed by two triode audio amplifiers (V4a and V4b) in cascade. When used to trace r.f. signals, or as a radio, only one stage (V4b) is needed. The other stage (V4a) is provided to give sufficient gain for use with microphones or pick-ups, or for tracing very low level audio signals. The anode of V4a is decoupled by C8. If hum is excessive in the “radio” position, the anode load of V4b (R15) could be divided into two components, 100 kilohms and 150 kilohms, with an 8µF decoupling capacitor between their junction and chassis, as in the case of V4a anode load.

The output stage (V5) is a conventional power beam tetrode. A certain degree of tone control is possible by C15 and VR3. These components by-pass high frequencies to earth. The degree of attenuation is controlled by VR3. The value of C15 can be varied to suit individual loudspeakers and personal preferences. The unit does not really merit the inclusion of more elaborate tone controls, since it is not intended as a high fidelity instrument.

A simple power supply is included. This uses a metal rectifier, giving half-wave rectification, a reservoir capacitor (C14) and a smoothing circuit L2 and C13. Provided a separate heater supply is available on the transformer, a valve rectifier such as an EZ80 or a 6X4 could be used. In this case, it is best to include a protecting resistor of about 100 ohms and 2 watts rating in series with each anode of the rectifier.

FOUR FUNCTIONS

The various functions of the instrument are selected by the 3-pole 4-way rotary switch SI. In the first position (as shown in Fig. 1), the signal from the aerial, connected to SK1, is fed to the grid of V1 via the tuned circuit comprising LI and VC1. This single tuned circuit provides adequate selectivity if only local stations are required. Some improvement can be achieved by ensuring that the “chassis” is earthed through the mains plug.

A probe can be connected to the coaxial socket SK2, so that the signal in a radio receiver or amplifier can be traced. With the switch in the second position this signal is fed via the d.c. blocking capacitor C2 through S1a to the grid of V1.

The other two switch positions provide high level and low level a.f. inputs to V4b and V4a respectively. Both are high impedance inputs.

CONTROL PANEL

The front panel is made from 14 s.w.g. aluminium but other strong material will suit just as well. The spacing of the controls on this panel is not critical but it will be found that the diagram in Fig. 2 shows a logical scheme whereby leads are kept to a minimum. All fixing holes for the controls are 3⁄32 in diameter except possibly the mains switch, which may need a 7⁄32 in hole. The mains socket hole is 1⁄2 in diameter and the indicator lamp hole will depend on the actual item if fitted.
THE SKY ROVER RANGE
7 transistor and 2 diode superhet portables—covering 5 to 6 SW Bands.

The SKY ROVER Mk III.

[Partial address]

The SKY ROVER De Luxe

[Partial address]

REALISTIC SEVEN

[Partial address]

SINCLAIR SUPER MIXTURES

[Partial address]

VEROBOARD

NOW IN STOCK

VEROBOARD is a high grade laminated board with copper strips bonded to it and pierced with a regular matrix of holes. Ideal for producing single items.

<table>
<thead>
<tr>
<th>Board</th>
<th>3½ x 3½</th>
<th>3½ x 5½</th>
<th>5½ x 5½</th>
<th>5½ x 7½</th>
<th>7½ x 7½</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>9/6</td>
<td>11/6</td>
<td>14/6</td>
<td>17/6</td>
<td>20/6</td>
</tr>
</tbody>
</table>

TRANSPORTERS

ALL BRAND NEW AND GUARANTEED

[Partial address]

TRANSFILTERS

By BRUSH CRITICAL CO. Available from stock.

<table>
<thead>
<tr>
<th>Transformer</th>
<th>20-430 V 485 kohms</th>
<th>20-430 V 965 kohms</th>
<th>15-400 V 965 kohms</th>
<th>50-0 V 965 kohms</th>
<th>Post 50/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>7½/6</td>
<td>7½/6</td>
<td>7½/6</td>
<td>7½/6</td>
<td>7½/6</td>
</tr>
</tbody>
</table>
HERE'S VERSATILITY FOR YOU...

The Brenell

MONO/STEREO HI-FI TAPE LINK

Twin recording amplifiers
Variable bias
Push-pull bias/erase oscillator
D.C. heated valves
Rear sockets duplicated on front panel
Dual concentric gain controls for recording amplifiers and playback pre-amplifiers
Twin recording level meters
Frequency correction for 4 tape speeds

PRICE including power unit £46. 0. 0.

Designed for use with 2/2 or 2/4-track heads
Built to the same high standards as our tape recorders and decks this HI-FI TAPE LINK has been developed for use with your high fidelity equipment. It is capable of giving superb results when matched to one of our Mark 5 Series 3 decks fitted with the appropriate heads. Write for full details of this amplifier and deck and complete range of tape recorders.

Brenell

BRENNELL ENGINEERING CO. LTD., 231/5 Liverpool Road, London, N.1. Telephone: NOrth 8271 (5 lines)
Construction and drilling details for the main chassis and the side plate are shown in Figs. 3a and 3b. This side plate is attached to the side of the chassis by 4 B.A. nuts and bolts; if required the plate can be bent along one side to secure it to the front panel, giving a firm mounting for this panel.

Full dimensional details for drilling have not been provided in the interests of the constructor, who may prefer to use different components or possibly devise an improved layout.

CHASSIS

It is probably best to obtain a ready made chassis of approximately similar dimensions as shown. Constructors who have facilities for bending sheet metal to the shape of the chassis, will find it easier if they mark out the positions of the bends with a scribe, then lay out the main components to be mounted on the chassis.

The positions of the fixing holes can then be marked and drilled before bending. Additional holes (for example, for grommets where leads will pass through

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>68kΩ</td>
</tr>
<tr>
<td>R1</td>
<td>15kΩ</td>
</tr>
<tr>
<td>R3</td>
<td>180Ω</td>
</tr>
<tr>
<td>R4</td>
<td>1MΩ</td>
</tr>
<tr>
<td>R5</td>
<td>1MΩ</td>
</tr>
<tr>
<td>R6</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R7</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R8</td>
<td>150Ω</td>
</tr>
<tr>
<td>R9</td>
<td>100kΩ</td>
</tr>
</tbody>
</table>

All resistors 10% watt carbon except R18

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>paper</td>
<td>350V</td>
</tr>
<tr>
<td>C2</td>
<td>paper</td>
<td>350V</td>
</tr>
<tr>
<td>C3</td>
<td>mica</td>
<td>350V</td>
</tr>
<tr>
<td>C4</td>
<td>paper</td>
<td>150V</td>
</tr>
<tr>
<td>C5</td>
<td>paper</td>
<td>150V</td>
</tr>
<tr>
<td>C6</td>
<td>paper</td>
<td>150V</td>
</tr>
<tr>
<td>C7</td>
<td>mica</td>
<td>350V</td>
</tr>
<tr>
<td>C8</td>
<td>elect.</td>
<td>350V</td>
</tr>
<tr>
<td>C9</td>
<td>elect.</td>
<td>350V</td>
</tr>
<tr>
<td>C10</td>
<td>paper</td>
<td>350V</td>
</tr>
<tr>
<td>C11</td>
<td>paper</td>
<td>350V</td>
</tr>
<tr>
<td>C12</td>
<td>elect.</td>
<td>25V</td>
</tr>
<tr>
<td>C13</td>
<td>elect.</td>
<td>350V</td>
</tr>
<tr>
<td>C14</td>
<td>elect.</td>
<td>350V</td>
</tr>
<tr>
<td>C15</td>
<td>paper</td>
<td>350V</td>
</tr>
<tr>
<td>VCl</td>
<td>variable</td>
<td>mica or air dielectric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformers</th>
<th>Output transformer: pri. 8,500Ω, sec. 3Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Mains transformer: pri. 200-250V; sec. 250V 80mA, 6-3V 2A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Medium wave coil (Denco miniature dual purpose type "blue" range 2)</td>
</tr>
<tr>
<td>Or (if to hand)</td>
<td>Wareite type PHF3</td>
</tr>
<tr>
<td>L2</td>
<td>L.F. choke 10H 80 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valves</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>6K7</td>
</tr>
<tr>
<td>V2</td>
<td>6AC7</td>
</tr>
<tr>
<td>V3</td>
<td>6H6</td>
</tr>
<tr>
<td>V4</td>
<td>6SL7</td>
</tr>
<tr>
<td>V5</td>
<td>6V6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diodes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 & b</td>
<td>Metal rectifier type RMI (2 off in series)</td>
</tr>
<tr>
<td>Or Silicon rectifier type BY114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switches</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>3-pole 4-way wafer switch</td>
</tr>
<tr>
<td>S2</td>
<td>Single-pole, on-off, toggle switch</td>
</tr>
</tbody>
</table>

| Fuse | Chassis mounting fuseholder and 1A fuse |

| Loudspeaker | 5 in. circular, 3 ohms |

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis 7\frac{1}{2} in x 7\frac{1}{2} in x 1\frac{1}{4} in or sheet aluminium</td>
<td></td>
</tr>
<tr>
<td>16 s.w.g. 9\frac{1}{2} in x \frac{1}{4} in</td>
<td></td>
</tr>
<tr>
<td>Side plate made from sheet aluminium 16 s.w.g. 6\frac{3}{8} in x 6\frac{3}{4} in</td>
<td></td>
</tr>
<tr>
<td>Front panel made from sheet aluminium 14 s.w.g. 10 in x 7\frac{1}{4} in</td>
<td></td>
</tr>
<tr>
<td>Case made from 16 s.w.g. aluminium or plywood</td>
<td></td>
</tr>
<tr>
<td>Tag strips: p.v.c. covered wire, coaxial cable</td>
<td></td>
</tr>
<tr>
<td>4 B.A. and 6 B.A. nuts and bolts</td>
<td></td>
</tr>
<tr>
<td>Grommets to fit \frac{1}{4} in and \frac{3}{8} in diameter holes</td>
<td></td>
</tr>
<tr>
<td>Five knobs; five international octal valveholders</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5. The completed unit ready for fitting in a cabinet. V3 and T1 are hidden from view in the inside corner. The tuning coil L1 used on the prototype and shown here is the type PHF3.

The chassis will be required and should also be drilled. A common and useful size grommet is the type H which requires a \(\frac{1}{4} \) in diameter hole drilled in the chassis. These and \(\frac{1}{4} \) in types are suggested for this unit.

After completing the drilling and bending operations, the components can be mounted and wired up. Start with the heater leads, which should be twisted and run from the 6.3V winding of the mains transformer to each valveholder in parallel. One side of the heater winding is connected to chassis as close to the transformer as possible. The majority of components (resistors and capacitors) are connected direct to the valveholder tags and tag strips.

The layout is not critical but the important points to bear in mind are to use short grid and anode leads and keep them apart. Screened cable should be used for all grid leads, with the screen connected to chassis at the end furthest from the grid connections.

A guide to component positions is indicated on the two photographs in Figs. 4 and 5. It will be appreciated by many readers that full wiring details in this case cannot be provided due to the massing of components near the valveholders. The pin connections for each valve are shown in the circuit diagram (Fig. 1); the pins are numbered in a clockwise direction starting from the spigot key, when looking at the underneath.

Since resistors are so cheap, there is no point in departing from the values given. However, most of the capacitors can be altered, provided a little commonsense is used. The mains transformer is not critical, but if the output voltage is significantly greater than 250V, C13 and C14 must be of higher voltage rating, and an additional stage of RC decoupling applied to reduce the smoothed h.t. voltage to less than 300 volts.

PERFORMANCE

No test equipment, with perhaps the exception of a voltmeter is required. There should be no trouble from instability provided due care is taken in the layout and screening. When used as a radio, good reception of medium wave programmes is possible with a few feet of wire as an aerial. The gain of the a.f. stages may be increased by decoupling R16 with a 25\(\mu \)F 25V electrolytic capacitor. Conversely, a lower gain is obtained if C12 is omitted.

Contributed Articles

The Editor will be pleased to consider for publication articles of a theoretical or practical nature. Constructional articles are particularly welcome, and the projects described should be of proven design, feasible for amateur constructors and use currently available components.

Intending contributors are requested to observe the style in our published articles with regard to component references on circuit diagrams and the arrangement of the components list.

The text should be written on one side of the paper only with double spacing between lines. If the manuscript is handwritten, ruled paper should be used, and care taken to ensure clarity, especially where figures and signs are concerned.

Diagrams should be drawn on separate sheets and not incorporated in the text. Photographic prints should be of a high quality suitable for reproduction; but wherever possible, negatives should be forwarded.

The Editor cannot hold himself responsible for manuscripts, but every effort will be made to return them if a stamped and addressed envelope is enclosed.
BUILD OVER 40 CIRCUIT/EXPERIMENTS and master electronics the LERNAKIT way

- No maths — No unnecessary theory
- NO PREVIOUS KNOWLEDGE NEEDED
- BUILD A PROFESSIONAL CATHODE RAY OSCILLOSCOPE

Learn how to
- READ AND DRAW CIRCUIT DIAGRAMS
- RECOGNISE, HANDLE AND UNDERSTAND every type of modern ELECTRONIC COMPONENT

OVER 40 EXPERIMENTS — including:
- Valve Experiments
- Transistor Experiments
- Electro-magnetic Experiments
- Basic Amplifier
- Basic Oscillator
- Basic Rectifier
- Signal Tracer
- Simple Counter
- Time Delay Circuits
- Square Wave Generator
- Morse Code Oscillator
- Simple Transmitter
- Electronic Switch
- Photo-electric Circuit
- Basic Computer Circuit
- Basic Radio Receiver
- A.C. Experiments
- D.C. Experiments

This complete practical course will teach you all the basic principles of electronics by carrying out experiments and building operational apparatus. You will learn how to recognise and handle all types of modern components, their symbols and how to read a complete circuit or schematic diagram. The course then shows how all the basic electronic circuits are constructed and used and HOW THEY ACTUALLY WORK BY USING THE OSCILLOSCOPE PROVIDED. An application is given in all the main fields of electronics, i.e. Radio; control circuits; computers and automation; photoelectrics; counters, etc., together with rules and procedure for fault finding and servicing of all types of electronic equipment. For a new and exciting approach which gives a real understanding of electronics in an entirely practical way—this course has no equal anywhere to-day.

POST NOW FOR FREE COLOUR BROCHURE

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKSHIRE
Please send free Brochure, describing your LERNAKIT Oscilloscope Course without obligation, to:

NAME
ADDRESS
BLOCK CAPITALS PLEASE OR WRITE IF YOU PREFER NOT TO CUT COUPON (No representatives employed) P.E.2.66

British National Radio School
IMPROVED STANDARDS of Accuracy and Reliability!

Modern styling in light grey with legible black engraving.

Constructed to withstand adverse climatic conditions.

Ever ready case including leads, prods and clips.

Improved internal assemblies.

Restyled scale plate for easy rapid reading. Basic scales each 2.5 inches in length.

New standards of accuracy using an individually calibrated scale plate: d.c. ranges 2.5% of full scale deflection, a.c. ranges 2.75% of full scale deflection.

Available accessories include a 2,500V d.c. multiplier and 5, 10 and 25A shunts for d.c. current measurement.

For full details of this great pocket size instrument, write for descriptive leaflet.

The Mk. 4 MULTIMINOR is the latest version of this famous Avo instrument and supersedes all previous models. It is styled on modern lines, with new high standards of accuracy, improved internal assemblies, and incorporating panclimatic properties.

The instrument is supplied in an attractive black carrying case, which also houses a pair of leads with interchangeable prods and clips, and an instruction booklet. It is packed in an attractive display carton. Robust real leather cases are available, if required, in two sizes, one to take the instrument with leads, clips and prods, and the other to house these and also a high voltage multiplier and a d.c. shunt.

D.C. Current: 100μA f.s.d. — 1A f.s.d. in 5 ranges.
A.C. Voltage: 10V f.s.d. — 1,000 f.s.d. in 5 ranges.
D.C. Voltage: 2.5V f.s.d. — 1,000 f.s.d. in 6 ranges.
D.C. Millivolt range: 0 — 100mV f.s.d.

RESISTANCE: 0-2MΩ in 2 ranges, using 1.5V cell.
SENSITIVITY: 10,000 Ω/V on d.c. Voltage ranges.
1,000 Ω/V on a.c. Voltage ranges.

XLR/EP AUDIO CONNECTORS

Widely used Standard Audio/Video series with latch coupling. Up to 18 contacts in 15 shell styles.

Cannon Electric (Great Britain) Ltd.,
Lister Road,
Basingstoke, Hants.
Tel: Basingstoke 3171

CONCORD equipment cabinet £24

RECORD HOUSING

Turntables, tape recorders, loudspeakers, amplifiers, tuners, records and tapes. There is a Record Housing cabinet to suit your choice. Write for illustrated catalogue of complete range plus list of stockists.

Cannon Electric (Great Britain) Ltd.,
Lister Road,
Basingstoke, Hants.
Tel: Basingstoke 3171
MIND MORE THAN MATTER

To those without at least some elementary theoretical knowledge, a piece of electronic apparatus is just a meaningless collection of parts and wiring. The secrets of its operation cannot be deduced by patient observation. The components remain impenetrable and betray to the onlooker nothing that is indicative of their purpose or present state of operation. Even that one visible manifestation of life—the emissive surface of the thermionic cathode—is becoming increasingly rare.

I suspect that so far as the uninitiated are concerned, the mystery will only deepen as time goes by. Not because of greater complexity of circuits, but because of the shrinking of the physical components. Conventional, or perhaps I should use the vogue expression discrete, components can at any rate usually be recognised and related to the symbolic representation on the circuit diagram. It is an entirely different story in the case of microminiature components and integrated circuits. Due to their small size they are naturally less revealing to the naked eye. Potted, canned, or encapsulated—they don an anonymity that completely baffles the casual onlooker.

It seems quite certain that electronics will become more and more a study of the abstract. There will be an even greater dependence on theoretical knowledge in the future. Without such knowledge the tiny sliver of silicon will be as meaningless and as insignificant as a bread crumb. But to the minds of those "who know", the marvellous secrets of such microcosms of modern electronics will be exposed.

MINI EXCHANGE

Where will it all end? A fascinating thought on the possibilities arising from further micro-miniaturation was given by Professor Cherry during his recent lectures on World Communication delivered to the Royal Society of Arts.

The Professor suggested that it would one day be possible to build a complete telephone exchange in a sealed container and install this down in a manhole. I think this is a wonderful succinct illustration of the effect advancing technology may well have on our way of life.

Just consider such a small container replacing a large building that at present houses racks of equipment with heating, lighting and other services (such as are necessary even in an automatic exchange) all laid on. And consider all those valuable building sites the G.P.O. will be able to relinquish in 1984 or thereabouts. Sold or rented to builders of office blocks or perhaps multistorey car parks, the income would solve all the financial problems of the G.P.O. for quite a little time to come I reckon.

"Actually, I haven't touched it. I was going to call it Power Cut but I settled for Solid State"

ART IN INDUSTRY

It is the fashionable thing for industry to act as patron to the arts. The famous firm of Mullards are as generous in their sponsorship of modern artists as they are in the educational field. Anyone who has seen this Company's educational films will agree that the artist and cartoonist are well employed in putting over a difficult and most abstract subject in a lively and yet factual manner.

Sometimes art is used purely for its own sake. The Mullard Electronics Centre in London has three specially commissioned works by leading contemporary artists. A 50ft mural in aluminium by Niczewski occupies the central position. Called "Creation Sequence" this mural depicts in both abstract and directly representational forms the sequence of events from the development of an idea to its realisation as something tangible and of value to mankind.

"Theme on Electronics" by Barbara Hepworth has stood in the Centre for a number of years and has no doubt been seen by many readers. Commissioned in 1957, this brass sculpture is (as these things go) inevitably dated, and perhaps that is why I find it attractive and easy on the eye.

How different are my reactions when I gaze upon the Centre's latest acquisition: Bobrowski's "Nucleus".

I confess to being a Philistine in matters concerning modern art. They say the main purpose of this kind of work is to provoke thought. Well it certainly does that. This weird contraption suggests to me the unfortunate offspring of some crustaceous animal which had been frightened by a radar scanner! To my mind this heavy metallic machinery is a most inappropriate symbol of the mysterious, nebulous heart of the atom.

After gazing on this sinister masterpiece of modern sculpture it was refreshing to turn and look at another form of art displayed near by. The subjects were the everyday work of the electronic tube factory. Could the graceful, elegant shapes of the cathode ray tubes and valves and their delicate internal structures be bettered by an artist?

It is here, I suggest, in these and other examples of electronic hardware that we have the true symbolism of electronics. Many of the functional parts of electronic engineering are not without a beauty of their own. Do we really have to look outside the industry and import kinky symbolic art to provide a supposed artistic interpretation of this virile industry?
Crookes radiometer

Sir—I am trying to obtain a Crookes Radiometer and wonder if any of your readers know where they may be obtained.

The Crookes Radiometer is an evacuated glass bulb with a "paddle wheel" mounted on an almost frictionless bearing inside the bulb. One face of each paddle blade is painted white, the other side is black, and when a light is shone on the paddle it rotates slowly.

I would be very grateful for information from readers as to where I might obtain one.

M. J. Bunce, Gillingham, Kent.

Your description is correct except that a little gas (air) is left inside the bulb. The black faces of the paddle blades absorb heat energy from rays falling on them and so become slightly warmer than the white faces. Molecules of air striking the black faces absorb some of this energy, and are accelerated. The sum of the impulses of the rebounding accelerated molecules creates a pressure over the black area greater than that over the white area on the opposite face of the paddle. Thus the wheel rotates.—R.W.S.

Microwave cooking

Sir—Would it be at all possible that in the near future you might produce in your magazine a design etc., for a microwave heater or cooker?

I know that so far, no periodical has touched this subject yet is one which I am sure would attract much interest. The expense I know is high, but not out of the reach of the average man's pocket when compared with other hobbies etc., and if a reliable cooker could be made to function, electricity bills would soon repay expenditure in units saved.

P. Stonelake, Torquay.

We are afraid your suggestion is not feasible for amateur construction, yet! For one thing, the special u.h.f. radio valve is extremely expensive and hardly likely to be available on the open market.

Tachometer circuit

Sir—I have had every copy since the first number and find something of interest in most numbers.

The tachometer circuit shown is very simple and rugged, I make no claim as the originator of it as it comes from a Mullard publication. The recommended Zener is OAZ224 for 12V systems and OAZ222 for 6V systems. These are not available in New Zealand so I have used a OAZ204 which seems O.K.

The 1 henry choke is rather bulky but can be constructed on a Mullard transformer core, type FX2240, with 500 turns of 36 s.w.g. copper wire on a 25mm former type number DT2179.

I would like to ask if anyone has made up the "Voice Display Unit" by Mr. J. Hermiston in the June '65 issue.

The main trouble here is that much of the equipment advertised in European magazines is unobtainable in New Zealand hence most things have to be as simple as possible.

I am interested in this particular subject and would welcome any information from your readers.

John C. W. Hardy, Tauranga, New Zealand.

Switching problem

Sir—I have an electrical problem. I would like to know if it is possible to make one master switch operate a group of light switches, 20 in number, so that each light is switched in numerical order and remains on. The master switch could be cam or perhaps photo-electric cell operated.

O. Havard, Stroud, Glos.

The solution to your problem calls for relays instead of ordinary switches. Each light being controlled by the contacts of a relay (a relay for each light) and the master switch energising all the relays but not simultaneously. The idea is to arrange timing circuits in relation to the relay windings so that the relays energise, thereby switching on their appropriate lights, in the required order.

Any other ideas?

—G.J.K.

Unstable neons

Sir—With reference to Neon Novelties No. 4, "Music Generator", I would like to warn intending constructors that, from my own experience, simple neons are very unstable as oscillators. I doubt if they are suitable even for a monophonic instrument and I am certain that they are useless for polyphonic purposes using the simple circuit shown.

Their striking and extinguishing voltages drift continually and the position of the discharge on the electrodes can change from time to time.

I have constructed a fully polyphonic two manual and pedal electronic organ using simple neons. In my case they are synchronised from a 12-valve master oscillator and in effect operate as frequency dividers each neon feeding its own buffer amplifier. Even today, after six years domestic use, drift is still taking place and during most playing sessions it is necessary to adjust the charging resistor associated with some note or other. I also noted that the simple neon is very unstable and hard to synchronise in darkness.

Probably neons with stabilising characteristics such as the NT2 would be very satisfactory but lack of funds prevented me from trying this out.

The tone produced from an unfiltered saw-tooth waveform is horrible!!!

Peter J. Horn, Wallasey, Cheshire.

A SELECTION FROM OUR POSTBAG

The Rating of Capacitors 'C' Value Table

<table>
<thead>
<tr>
<th>The Rating of Capacitor 'C' Value Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE IN R.P.M.</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0-5000</td>
</tr>
<tr>
<td>0-7000</td>
</tr>
<tr>
<td>0-9000</td>
</tr>
</tbody>
</table>

The Tachometer Circuit

- DC001 (SEE LETTER) VR1 1kΩ (PRESET)
- C (SEE TABLE) VR2 1kΩ
- D1 (SEE LETTER) VR3 1kΩ
- D2 OA91 VR4 1kΩ
- D3 OA91 VR5 1kΩ
- D4 OA91 VR6 1kΩ
- L1 1H
- R1 120Ω

Switching problem

- Sir—I have an electrical problem. I would like to know if it is possible to make one master switch operate a group of light switches, 20 in number, so that each light is switched in numerical order and remains on. The master switch could be cam or perhaps photo-electric cell operated.

- O. Havard, Stroud, Glos.

The solution to your problem calls for relays instead of ordinary switches. Each light being controlled by the contacts of a relay (a relay for each light) and the master switch energising all the relays but not simultaneously. The idea is to arrange timing circuits in relation to the relay windings so that the relays energise, thereby switching on their appropriate lights, in the required order.

Any other ideas?

—G.J.K.

Unstable neons

- Sir—With reference to Neon Novelties No. 4, "Music Generator", I would like to warn intending constructors that, from my own experience, simple neons are very unstable as oscillators. I doubt if they are suitable even for a monophonic instrument and I am certain that they are useless for polyphonic purposes using the simple circuit shown.

Their striking and extinguishing voltages drift continually and the position of the discharge on the electrodes can change from time to time.

I have constructed a fully polyphonic two manual and pedal electronic organ using simple neons. In my case they are synchronised from a 12-valve master oscillator and in effect operate as frequency dividers each neon feeding its own buffer amplifier. Even today, after six years domestic use, drift is still taking place and during most playing sessions it is necessary to adjust the charging resistor associated with some note or other. I also noted that the simple neon is very unstable and hard to synchronise in darkness.

Probably neons with stabilising characteristics such as the NT2 would be very satisfactory but lack of funds prevented me from trying this out.

The tone produced from an unfiltered saw-tooth waveform is horrible!!!

Peter J. Horn, Wallasey, Cheshire.
Home Construction made easy by Building Heathkit models

A wide range of well designed quality kit sets to choose from.

A KIT FOR EVERY INTEREST... HOME, SERVICE WORKSHOP, LABORATORY

Ease of assembly is guaranteed. Even for those without previous experience—by the comprehensive, yet simple step-by-step construction manuals supplied with every Heathkit model.

Save £'s by building the models yourself! Heathkit units test considerably less than comparable pre-assembled equipment. You cannot buy the parts any other way as cheaply.

Guaranteed performance Every Heathkit product—asssembled in accordance with our comprehensive construction manuals is guaranteed to meet published performance specifications, or your money will be cheerfully refunded.

Convenient credit terms By taking advantage of our credit terms—you can enjoy your model right away—and pay for it in easy monthly installments. Deferred terms available over £10 in U.K.

See the complete Heathkit range in the FREE catalogue

For the home, Hi-Fi enthusiast, Home work shop, Service and Test bench, Laboratories.

FULL RANGE OF MODELS IN FREE CATALOGUE

SIMPLY SEND COUPON TO—

To DAYSTROM LTD., DEPT. PM-2, GLOUCESTER, ENGLAND

Please send me FREE BRITISH CATALOGUE (Yes/No)

Full details of model(s)...

NAME (BLOCK CAPITALS)

ADDRESS

AMERICAN

Catalogue

(Yes/No)

PH-2
Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is 1/- per word (minimum order 12/-), box number 1/6 extra. Semi-displayed setting £3.5.0 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed “Lloyds Bank Ltd.” Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.

SERVICE SHEETS

STATE MODEL NO. Radio 2/-. TV 2/-. S.A.E. DARWIN, 19 George Street, St. Helenas, Lancs.

SERVICE SHEETS

4/- each, plus postage.

We have the largest supply of Service Sheets for all makes and types of Radios, Televisions, Tape Recorders, etc., in the country. Speedy Service.

To obtain the Service Sheet you require, please complete the attached coupon:

From:

Name: ...

Address: ..

To: S.P. DISTRIBUTORS

44 Old Bond St., London, W.1

Please supply Service Sheets for the following:

Make: ...

Model No.: ...

Radio/TV

Make: ...

Model No.: ...

Radio/TV

Make: ...

Model No.: ...

Radio/TV

New 1965 List now available.

I also require list of Service Sheets at 1/6.

(please delete items not applicable)

MAIL ORDERS ONLY Feb.PE

TAPE RECORDERS, TAPES, ETC.

TAPE TO DISC. New high-level Cutters 45 r.p.m. 21/- S.B.A. Leadlet. DEBOY, 52 West Bank Lane, Lancaster.

MUSICAL INSTRUMENTS

FRANK HESSY LTD.

Liverpool's Leading Musical Instrument Dealer

QUICK SERVICE BY MAIL ORDER

STRINGS? REEDS? PICK-UPS?

TUTOR BOOKS? MICROPHONES?

MAKING OR BUYING, WE CAN SUPPLY ANY INSTRUMENT OR ACCESSORY

WE PAY ALL POSTAGE

Send for PRICE LIST

27/29/62 STANLEY STREET

LIVERPOOL 1

Suppliers to all Leading Bands and Groups

RECEIVERS AND COMPONENTS

BARGAIN PARCELS 25 TRANSISTORS 10/- 20/371/1/1 20/- 20/414/7 2/6VHF 2N1301/12

Switching all PNP uncoded but tested. Also 100 diodes for 1/2/. 100 High Stability Resistors for 1/2/. Many testimonials. Send 6d. stamp for details and stock list of other items.

Examples: OC77 Phototransistor 9/6d. 2N1153/5 7/6d. 100 p.v. silicon diodes 1/6d. O.C77 equivalents 9/6d. and much more.

SERVICES SHEETS

23 NEW ROAD, BRENTWOOD, ESSEX

PI-PLAN PRINTED CIRCUIT BOARD makes any circuit by soldering connections only.

Bargains to M.B.E., 20 Knolls View, Totternhoe, Bedfordshire, for free catalog.

6 TRANSISTOR PRINTED CIRCUIT RADIO

COMPONENTS for the above as follows—

6 transistor printed circuits (4K. 25 in, speaker

R. Interf. block 1/-. Edge volume control

1/2 D.P.S., 1/-. P.P. output transformer 7/6. Driver

All the above made specially and ready for assembly.

Post free. Any item supplied separately. Add 1/6 P. & P. when order less than 10/-. CLEVELAND ELECTRICAL ENGINEERING CO., HOLMFIELD AVENUE, CLEVELAND, N.R. BLACKPOOL.

SILICON RECTIFIERS. 50 P.V. 1-5A. 2/6d.

100 P.V. 8A. 4/6d. 400 P.V. 0-75A. 2/6d.

Zener Diodes, 12v 5/6. 4/6. Transistors in makers' sealed packs, 1/2 or AF. 96 each, 6d post on orders under 10/-.

J. COOPER, Outliew, Willesden, York.

SPECIAL OFFER

1 Watt S.T.C. 300 MC/S.N.P.N. Silicon Planer. 100% Transistors. Limited Stocks. £1 for 6.

3/- each. OC44, OC45, OC70, OC71, OC81, OC81D, OC200, Get 16, Get 20.

4/- each. AF114, AF115, AF116, AF117, OC170, OC171.

5/- each. OC139, OC140, Get 7, Get 8, Get 9, XC141, BY100, OA211.

SUN SOLAR CELL KITS

24 Page Booklet on Experiments inc. 4 Solar Cells £1.50. C.E. LIONS. 78 Broad Street, Canterbury, Kent.
RECEIVERS AND COMPONENTS (continued)

TRANISTORS AND COMPONENTS

OCT7, QCA4, CCC47, QCT7, OCR1, OCR8 — 3 each. QCA46, QCA14, OCR17, OCR17 — 3/3 each.
BY100 Mullard Brassed 350V 550mA — 3 each.
Westhamp 1/000 P.V. L.F. 1 Amp. — 5/6 each.
BY123 Silicon Rectifier 200V P.V. 6 Amps. — 5/6 each.
BY125 200V P.V. at 40 Amps. — £2. 17. 0.
O129 1/2 each. BY120 200V P.V. at 40 Amps. — £2. 17. 0.
AC126 8 each. ASY7B-6/6 each. AF106 cut of P.R.Q. 300V P.V. 1 Amp. — 6/6 each.
STC Silicon Rectifiers, P.V. 200 3 Amps. — 3/6 each.

M.A. TRANSISTORS
MAT 100 7/9.
MAT 106. 7/9.
MAT 131 8/6.
MAT 113 8/6.
Asco Record Player Cartridge Replacements for Cullum, Garrard, B.S.R., etc. — 12/6 each.
3 Transistor Walkie Talkie £7. 10. 0. pr. Xtal.

CONTROLLED ROBOT. HUMAN BODY RADIATION DETECTOR. "PERPETUAL MOTION" MACHINE.

Watch Radio 1-15" X 80" X 55". Ring 4 Crystal Sets. Carrier Power Conversion Solar Battery L/S Radio. Pocket L/S Double Reflex. Triple Reflex with self-adjusting probably haven't heard of yet, including... Diode Power Conversion Transistor Tester and many more...

Printed Circuits, Chassis Plans. Assembly using your own components. Circuit 24 SUGGESTED PROJECTS which you can

Extra copper laminate available.

"YORK ELECTRICS"

181a, York Road, London, S.W.11
Send S.A.E. for full details

RECEIVERS AND COMPONENTS

A.1 POST FREE BARGAINS. 25k or 50k Swait found pots with R.P. switch new and boxed 5/ each. Guaranteed reclaimed valves. S.A.E. for list. A.I. RADIO COMPONENTS, 14 The Borough, Canterbury.

SHOEBUYRST ELECTRONICS

We offer the greatest ever parcel of all new components. Over 350 mixed new electronic components. Each parcel will include: Condensers, Resistors, Diodes, Transistors, Silicon Rectifiers, Potentiometers, P.T.'s, Valves, Bases, Tuning Condensers, Transformers, Printed Circuits, Coils, etc. The Price: £1. 10. 0. plus 3/6 P.P.
90 BUNNERS AVENUE, SHOEBUYRST, ESSEX

COMPLEMENTARY Silicon Planar for the first time at low prices! 18V, 200mA. XPX 200mA, $ = 100 to 180 @ 5/-, $ = 180 to 300 @ 5/-, $ = 250 to 500 @ 7/-, $ = 300 @ 7/-. Quality discounts. * By return service.

ELECTROVALUE, 6 Mansfield Place, Ascot, Berks.

PRINTED CIRCUITS

By type Service Available to Home Constructors at a Very Reasonable Charge. Individual Boards to Your Own Design for Under £3. Olympic T.V. 50/- per set of 8 boards, all drilled ready for use.
P.E. listprice boards. S.A.E. for details to EDEN ELECTRONICS, 140 EYRE AVENUE, ELM PARK, HORNCHURCH, ESSEX

PRINTER CIRCUITS

PCB Style Service Available to Home Constructors at a Very Reasonable Charge. Individual Boards to Your Own Design for Under £3. Olympic T.V. 50/- per set of 8 boards, all drilled ready for use.
P.E. listprice boards. S.A.E. for details to EDEN ELECTRONICS, 140 EYRE AVENUE, ELM PARK, HORNCHURCH, ESSEX

E.C.C. RELAY (ORANGE CASE)

GEC. RELAY

Send S.A.E. for details to I12 GROBY ROAD GLENFIELD LEICESTER

WANTED

CONVERT ANY TV SET into an Oscilloscope. Diagrams and instructions. 1957. REDMOND, 42 Dean Close, Portslade, Sussex.

WANTED REWINDERS. Rewound. Output or mains. Specials made to order. Reasonable. S.A.E. enquiries, RATCHIFFE, 27 Station Road, Holmtrick, Yorks.

ELECTRONIC KITS, RADIOS, ETC. Assembled, Moderates Charges. D. KEITH, 16 West George Street, Coatbridge, Lanarkshire, Scot.

GOVERNMENT SURPLUS Electrical and Radio Equipment. Our new catalogue No. 18 now ready. 2/6 Post Free, cost refunded on purchase of goods over 62. ARTHUR SALLIS RADIO CONTROL LTD, 80 North Road, Brighton.

"EMBOSSED TAPE. 26. per min. Min. £1 Send S.A.E. for estimate sample 7/6 or order. R. HENDERSON, 51, Philthor Avenue, Fraserburgh, Aberdeenshire.

R. & R. RADIO & TV SERVICE

Dept. P.E.
44 Market Street, BACUP.
Tel. 465

Salvage Valves

6F13 4/6
6L18 5/-
6K26 10/6
6C46 4/6
6C47 5/-
6K27 5/-
6K32 3/6
6K26 3/6
6K25 6/6
6K23 6/6
6K24 6/6
6K26 6/6
6K25 6/6
6K23 6/6
6K24 6/6
6K25 6/6

S.A.E. all enquiries. All Above Post Paid
Mail Order Only: J. ROBINSON

4 Highcliffe Road, Blackley, Manchester 9

"EXPERIMENTAL" PRINTED CIRCUIT KIT

Contents

(1) 2 Copper Laminate Boards 4/" X 2/".
(2) Resist. (3) Etchant. (4) Resist Solvent.
(5) Cleaning Solvent.
(6) 16-page illustrated booklet.

(b) Attractive case 41 x 21 x 7, no such chassis.
9 Miniature Radio Dial M/W/LW.
10 Miniature Radio L/S/W/W/W/LW
Price 7/6 Post. and Packing 1/-
Extra copper laminate available.

SPECIALITY PAINTS (P) LTD. 10/6-8 Merton Road, Wimbledon, London, S.W.19.

VENER TIME SWITCHES. Reconditioned, 14 day clock, once on once off, every 24 hrs. Jewelled movement, fully guaranteed, 2 amp 5/-. 5 amp 32/6, 15 amp 38/6. Post etc. 2/6d. Cast Aluminium Cases 7/6d or order. R. BATECHELOR, P.E. Dept. 4 Park Road, Bromley, Kent.

HARMERITE HAMMER PATTERN BRUSH PAINT FOR PANELS AND BOXES

THE PATTERN IS IN THE TIN *
ALL YOU DO IS BRUSH IT ON!

2 oz. size 3/6 1 gallon 35/-* 1 pint 7/6 1 quart 50/-
2 pint 11/2 1 gallon 30/-
* 1 pint post service, Monday to Friday. From your component shop or direct from the manufacturer.
FINNIGAN SHEET METAL PAINTS (P) Ltd. Mickley Square, Stockfield, Northumberland

CONTINUED OVERLEAF
TECHNICAL TRAINING by ICS

First-class opportunities in Radio and Electronics await the ICS trained man. Let ICS train YOU for a well-paid post in this expanding field.

ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computer Technology teaching for:

- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
- C.G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C.G. SUPPLEMENTARY STUDIES
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE
- RADIO AMATEURS' EXAMINATION
- P.M.G. CERTIFICATES IN RADIO TELEGRAPHY

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO COURSES.

Build your own SSB receiver, transistor portable, signal generator and multi-test meter—all under expert tuition.

POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

INTERNATIONAL CORRESPONDENCE SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

SITUATIONS VACANT

RADIO TECHNICIANS

A number of suitably qualified candidates will be required for training, leading to permanent and pensionable employment. (Normally at Cheltenham but with opportunities for service abroad or appointment to other U.K. establishments including London).

Applicants must be 19 or over and be familiar with the use of Test Gear and have had Radio/Electronic workshop experience. They must offer at least "O" level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at 19 £747, at 25 £962, (highest age pay on entry rising by four annual increments to £1,104).

Prospects of promotion to grades in salary range £1,032—£1,691.

Annual Leave allowance of 3 weeks.

applying for positions at BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.

EDUCATIONAL

Full-time courses in RADAR and RADIO TELEGRAPHY for prospective Marine Radio Officers. Govt. approved exam. centre.

Also courses in basic ELECTRONICS, RADIO TELEVISION AND COMPUTERS.

Apply:—Director, British School of Telegraphy, 20 Penywern Road, Earls Court, London, S.W.5

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. I.E.R.E., City & Guilds, R.T.E.B., etc. Also Practical Courses with equipment. All books supplied. Write for FREE Prospects stating subject to I.C.S. (Dept. 517), Intercity House, Parkgate Road, London, S.W.11.
A SUCCESSFUL CAREER IN ELECTRONICS, RADIO AND T.V. CAN NOW BE YOURS AT VERY LITTLE COST!

NEW No. 300. RADIO AND TELEVISION COURSE, 75s.- Here is just your opportunity to own a complete course at a very modest cost! This expanded course which now includes television as well as radio repair training could get you started on a whole new career!

The Radio Section of the course was ORIGINALLY DEVELOPED BY THE RADIO TECHNICAL INSTITUTE, while the Television Section launched the famous course of instruction provided by one of the world's largest television and electronics firms.

Compare lesson by lesson with some courses costing ten shillings as much! You save because you receive all the lessons at one time and are not required to purchase equipment which you may not need.

The lessons are crystal clear, practical, easy to master and use. Early lessons make fundamentals clear even to the beginner, while others will give you the practical know-how of an expert!

The new 500 Radio and Television Course consists of 550 pages of instructions and hundreds of illustrations. We positively guarantee that you will be delighted or your money refunded.

NEW No. 400. RADIO-TELEVISION-ELECTRONICS COURSE, 85s.- This is really big value in home training. Similar in details to the above course excepting that you get an extra 25 pages of information making a total of 545 pages. A full 40s. worth of pages. Hundreds of illustrations. Include all the usual subjects plus all 100 Transistor Circuits, Electronic Test Equipment, Television Tubes, Inter-Communicator, Signal Measuring Meters, Including Printed Circuits and many more similar items. This course could be your first step into the fascinating world of electronics!

UNCONDITIONALLY GUARANTEE TO GIVE COMPLETE SATISFACTION. No returns acceptable if advanced payment is made. MAIL TODAY.

PAY ONLY 5/- per week if you wish.

Address

Please send me the free book(s) I have ticked.

☐ Oscilloscope Book.
☐ Electronic Gadgets Book.
☐ Translator Book.
☐ Radio Instruments Book.

Name

Address

£11.10.0

12 months

3 Star

Tube

Valves

Components

COLOURED FRAMES

14 in.

£7.10.0

17 in.

£7.10.0

EX-RENTAL TELEVISIONS

14 in.

17 in.

R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.E.), 11 Oliver Road, London, E.17

“PRACTICAL ELECTRONICS” CONSTRUCTIONAL DESIGNS

ALL SPECIFICATIONS, COMPLETE MASHERWORK, FULL RANGE OF MATERIALS, ENGRAVED PICTORIAL PLANS, ALL EQUIPMENT AND ASSEMBLED UNITS. COMPREHENSIVE TESTS AVAILABLE FOR EACH "P.E." CONSTRUCTIONAL ARTICLE.

MULAVY ENGINEERING WORKS

8 CURRIE STREET, HERTFORD, HERTS

T E L P H O N E : H E R T F O R D 2 5 4 1
INTERNATIONALLY FAMOUS
NATIONAL FAMOUS

NC190—10 valves, 540 kc/s to 30 Mc/s, 5-meter, noise limiters, product detector, bandspread, double conversion, £97.4.2.

EAGLE VALVE VOLTOMETER K-142
Large 6" x 4" 200 microamp meter, 11 megs, 20P in pent: 0.1/5/15/50/150/500/1000, AC also 0/250, peak-to-peak in 7 ranges. Decibels—20 to +156/62/45/65/6. 0.1/5/15/50/150/500/1000, DC. Resistance: 0.2 ohm to 100 megohm. 240 volts, 50/60 c/s. 7^ x 6J X 4^". 4.5 lbs. Complete with S.A.E. for leaflet.

MAYATO PRINTED CIRCUIT ETCHING KIT PK-1
Complete with polisher, paint, etching liquid, paint eraser, flux, 4" x 4" copper laminate, knife, spatula, etc., etc.; satisfaction guaranteed; fantastic value at 19/6. P.P. 2/-, S.A.E. for illustrated leaflet.

WESTINGHOUSE SILICON RECTIFIER S10AR2
1000 v. P.I.V. 750 mA. 9/6 each. P.P. 6d. 2 for 17/6, P.P. 2d.

BRIAN J. AYRES & CO.
Dept. DW, 21 Victoria Road
Surbiton, Surrey
Telephone: Elmbridge 2833

B.B.C. (BAND I). Tele-scope loft 21/-. External 31/-.

MAST MOUNTING ARRAYS, 9 element 48/-; wide spaced high gain, 11 element 58/-; 14 element 63/6. WALL MOUNTING WITH CRANKED ARM, 9 element 60/-; wide spaced high gain, 11 element 67/6; 14 elements 75/6. CHIMNEY ARRAYS COMPLETE, 9 element 72/-; wide spaced high gain, 11 element 80/-; 14 element 87/6. LOFT ARRAYS, 7 element 32/6; wide spaced high gain, 11 element, WITH TILTING ARM 63/6, 14 element 70/6. ALL HIGH GAIN UNITS HAVE SPECIAL MULTI-RAD REFLECTOR, LOW LOSS CO-AXIAL TABLE 1/8 yd. UHF transistor pre-amps from 75/6.

B.B.C. + ITV + F.M. AERIALS

B.B.C. (BAND I), Tele-scope loft 21/-. External 31/-.

Y.H.F. transistor pre-amps from 75/6.

K.V.A. ELECTRONICS (Dept. P.E.)
27 Central Parade, New Addington, Surrey
LOD 3266

4 STATION INTERCOM

£7/19/6

4-Station Transistor Intercom System (3 master and 3 slave), in double plastic cabinets for desk or wall mounting. Crossover from Master to Slave and Slave to Master. Operation on one 9V battery. On/off switch, volume control. Entails suitable in undertaking Office, Factory, Workshop, Warehouse, Hospital, etc. to keep constant inter-departmental contact. Complete with 2 connecting wires, each 6 ft. and other accessories. Nothing else to buy. Post Free

INTERCOM/BABY ALARM

Usually £19.6.6

Our Price ONLY

57/6

MODERNIZE your Office, Shop, Warehouse, Workshop, Surgery, Kitchen, and house with this latest two-way Transistor Intercom, consisting of two units, Master and 2nd fab, in strong plastic cabinet with chromed stands. Elegantly designed to undertake two-way Instant communication system—Call/polishmen—between two persons anywhere indoors or outdoors. Both units operate on one 9V battery. Complete with 50 ft. wire. Battery 2/6. P & P 2/6.

BATTERY ELIMINATOR AND CHARGER 27/6

Use your Transistor Radio or Intercom from domestic A.C. mains and change dry battery F20 6V to boost. Battery's life many times. Unbeatable value. Have your goods on batteries. P. & P. 1/-.

Complete with Plug, Lead and Snap clips.

Full price reduced if not satisfied in seven days.

WEST LONDON DIRECT SUPPLIES (P.E/1)
9 Cliffe Wharf, West Kaling, London, W.12

4 STATION INTERCOM

Just Published

TRANSISTOR POCKET BOOK

A comprehensive guide to the characteristics and use of the various types of transistor now available. The manufacture of the various types of transistor, up to and including the latest epitaxial planar, field of effect and metal-oxide silicon transistors, is described in detail in order to make clear the different characteristics of each. Includes notes on the use and handling of transistors, and chapters on solid state circuit techniques and recent developments.

21/2 x 5/2. About 200 pages, about 200 line diagrams and photographs. 25s.

From your Bookseller, or in case of difficulty, 27s. from G. NEWNES LTD., SOUTHAMPTON STREET, W.C.2
gives constructors the simplest... most efficient...

WIRING BASE

for any electronic assembly work — whether experimental or quantity production. Patented Veroboard is an advance on tag board wiring techniques and printed circuits, and because of its absolute stability under all conditions it is in fact now extensively used by manufacturers all over the world instead of printed circuits.

Veroboard is obtainable in many sizes of which 4 are available through the retail trade. For the name and address of your nearest Retailer please write to:

VERO ELECTRONICS LTD. (DEPT P12)
SOUTH MILL ROAD, REGENTS PARK, SOUTHAMPTON
TEL. 31061
TELEX 47593
ENQUIRIES FROM RETAILERS AND MANUFACTURERS WELCOMED

SENSATIONAL HALF PRICE OFFER!

THE FAMOUS 'Continental' RADIOGRAM AT HALF PRICE!

Magnificent Stereophonic Radio gram Chassis complete with two 10" elliptical loudspeakers, plus a Mono/Stereo 4-speed automatic record changer.

Only £29-19-6

- Easily fitted
- No soldering or Technical knowledge necessary
- Fits almost any cabinet with minimum trouble
- Modernises your old radiogram
- Built-in ferrite rod aerial
- Piano key switching

SPECIAL terms available of £4.10.0 deposit followed by 18 monthly payments of £1.13.0 (total H.P. £34.4.0) + postage & packing 15/- extra.

INDIVIDUAL CABINETS SUPPLIED ON REQUEST

Send your cheque or P.O. today for £5.5.0 while stocks last to Dept. PE26

LEWIS RADIO, 100, CHASE SIDE, SOUTHGATE
LONDON, N.14. Telephone: PAL 3733/9666
VARIBLE VOLTAGE TRANSFORMERS

- Brand New Carriage Paid.
- Direct from the Importer, keenest prices in the country.
- All types, ex new equip. P. & P. 1/6 each.
- **50 AMPS**

OPEN TYPE
- Panel Mounting
- 1 amp, £3. 3. 0
- 2 amp, £5. 18. 6

SHROUDED TYPE
- 1 amp, £3. 18. 6
- 4 amp, £8. 7. 4
- 5 amp, £9. 0. 0
- 10 amp, £12. 10. 0
- 15 amp, £17. 6. 0
- 20 amp, £33. 10. 0
- 35 amp, £65. 0. 0

PORTABLE TYPE
- 1 amp, £17. 16. 0

100 WATT POWER RHEOSTATS (NEW)

Available in the following 9 qualities:
- 0.1 ohm, £2. 15. 6
- 0.5 ohm, £3. 17. 6
- 1 ohm, £4. 15. 6
- 2 ohm, £5. 16. 0
- 5 ohm, £6. 10. 0
- 10 ohm, £9. 6. 0
- 20 ohm, £17. 6. 0
- 50 ohm, £35. 0. 0
- 100 ohm, £70. 0. 0

120 V AC RELAY
- Type 1.2 c/o, 2 amp. contacts.
- 9/6.
- 0 ohm, 3 a.; 25 ohm, 2 a.; 50 ohm, 1 a.
- Make, 1 x 2 amp. break.
- 11/6. Both

MET
- iofcoil. fully guaranteed, complete (U.K.). £6/2;6. 3 additional models available from 54.- to £14 14.-.

ELECTRIC CHECK METER
- Type No. Sec. Taps Price Carr.
- S6-48 v, D.C. operation. Any type, IS/- each, plus 10/- P. & P.
- 25/-. P. & P. 1/-.

HIGH SPEED RELAY

230 V AC MOTOR AND REDUCTION GEAR BOX
- 5 amp, £4. 15. 6.
- 10 amp, £8. 7. 4.

VERORDAO BULBS
- The perforated copper board for modern circuitry.
- 2.5 x 3.75, 1/. 6. £17. 10. 0.
- 2.5 x 3.75, 2/. 8. £25. 10. 0.
- 3.8 x 5.75, £35. 10. 0.
- Spot face cutters, 9/- Special Service, Pkts. 200. £14. 14. 1/-.

VENNER 14 DAY CLOCKWORK TIME SWITCHES
- 1, 2, 3, 4, 5, 6, 8, 10, 12, 17, 18, 20, 25, 30, 32, 34, 36 v. at 5 amps £2/19/6 6/-.
- 1/6 P. & P.

REMEMBER
- Bothwell Electric Supplies (Lindsay) Ltd.
- 84-88 mogul ST. GLESTON, GLASGOW, 05.
- Member of the Leister Group.
- We will be pleased to furnish you with detailed information and literature on request.

WORLD RADIO AND T.V. HANDBOOK 1966

Lists every B/C Station in the world, frequencies, times of operation, etc. by Johannsen. 29/3

TRANSISTOR ELECTRICAL ORGAN FOR THE AMATEUR, by Douglas. 19/8

Building and using sound mixers, by焦虑. 31/3

TRANSISTOR RECEIVERS AND AMPLIFIERS, by Rayner. 31/3

100 WAYS TO USE YOUR SIGNAL GENERATOR, by Middleton. 19/-

SERVICING WITH DIP METERs, by Lenk. 25/-

FLUORESCENT LIGHT SENSITIVE SWITCH
- Kit of several thousand per minute. 37/4 P. extra.

UNIVERSAL BOOK CO.
- 12 LITTLE NEWPORT ST., LONDON, W.C.2 (Leicester Square Tube Station)
STEREIO AMPLIFIER

STEREO AMPLIFIER

QUALITY RECORD PLAYER AMPLIFIER
Compact model recording player amplifier. This amplifier (which is used in a 29 gns. record player) employs a heavy duty, double wound main transformer, ECL85, ESL40, E88 valves. Separate Bass, Treble and Volume controls. Complete with output transformer matched for 3 ohm speaker. Size Tin. w. x 6" h. x 3½ d. P. & P. Ready built and tested. PRICE 9/6. P. & P. 4/9.

QUALITY PORTABLE R/F CABINET RECEIVERS
10 inch speaker. Separate Bass, Treble and Volume controls. Complete with output transformer matched for 3 ohm speaker. Size Tin. w. x 6" h. x 3½ d. PRICE £3/6. Carr. 4/0.

4 SPEED PLAYER UNIT BARGAINS
All brand new. Each in original packing.
SINGLE PLAYERS
B.S.R. SP25 De Luxe... 12/16/6. Carr. 15/6.
AUTO CHANGERS
B.S.R. UA15 60/16/6. B.S.R. UA15... 6/19 6
Lapser B.S.R. UA22 Slim... 6/19 6
Latest GARRARD ATS... 10 8 0
GARRARD Auto Slim... 6/19 6

PORTABLE TAPE RECORDER CASE
Beautifully made, and expandedly finished in dark grey heavy grade enamel. Solder Chrome metal grille front and chrome fittings. Speaker aperture 9" x 4". Overall size 15½" x 7 ¼" x 4½". Taped for standard tape deck or single record player. Limited number only. WRITE FOR PRICE 9/6. Carr. 5/6. Brand new and unused.

BRAND NEW CARTRIDGE BARGAINS!

TAPE DECKS
B.S.R. MONARDECK (Single speed 3/in. per sec., simple control, uses 8/in. speeds, 66/17/- plus 7/6 carr. and ins. (Tapes extra.)

10/14 WATT HIFI AMPLIFIER KIT
A stylishly finished 'dependable' unit designed to give good lift and cut. Valve lincl-op 2 ELB4s. Uses single 8 ohm speaker ready to fit into casings below. PRICE 9/6. P. & P. 3/6.

QUALITY HIFI 'AMPLIFIER KIT.

STEREO AMPLIFIER

HARVERSON'S F.M. TUNER Mark II

SPECIAL PURCHASE! from LEADING HIFI MANUFACTURER
7 WATT OUTPUT TRANSISTOR AMPLIFIER
7 WATT OUTPUT TRANSISTOR AMPLIFIER TO MATCH PAIR OF ECL 82's. In push-pull to 3 ohm output. ONLY 15/- P. & P. 2/6.

ULTRA LINEAR OUTPUT TRANSISTORS TO MATCH PAIR OF ECL 82's in push-pull to 3 ohm output. ONLY 15/- P. & P. 2/6. SPECIAL MAINS TRANSISTORS to match either of the above. Tapped primary. Secondary 250v, half wave and 6.3v. 2 amps. ONLY 12/6. P. & P. 3/6.

10/14 WATT HIFI AMPLIFIER KIT
A stylishly finished, dependable' unit designed to give good lift and cut. Valve lincl-op 2 ELB4s. Uses single 8 ohm speaker ready to fit into casings below. PRICE 9/6. P. & P. 3/6.

QUALITY HIFI 'AMPLIFIER KIT.

STEREO AMPLIFIER

SPEAKERS AND CROSSOVER NETWORKS

151
TRANSISTOR ELECTROLYTICS

COMPARE THESE PRICES!

<table>
<thead>
<tr>
<th>Value</th>
<th>25uf</th>
<th>200uf</th>
<th>400uf</th>
<th>Transistor Electrolytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Volt</td>
<td>3.2uf</td>
<td>6 Volt</td>
<td>0.6uf</td>
<td>12 Volt</td>
</tr>
<tr>
<td>4 Volt</td>
<td>4.4uf</td>
<td>6 Volt</td>
<td>0.8uf</td>
<td>12 Volt</td>
</tr>
<tr>
<td>6 Volt</td>
<td>6.6uf</td>
<td>6 Volt</td>
<td>1.2uf</td>
<td>15 Volt</td>
</tr>
<tr>
<td>8 Volt</td>
<td>8.8uf</td>
<td>6 Volt</td>
<td>1.6uf</td>
<td>15 Volt</td>
</tr>
</tbody>
</table>

Disc Ceramics. (Normally 3/-each) ••• I0/-- 100

Silver Mica 3-3 pf to 6,800 pf. Including High Voltage Paper Condensers '0001 uf, '001 uf, '001 uf, '005 uf and 'M uf

RESISTORS

1/10th 1/6th 1/4 Watt

All at 1/6

1,000 uf, 6 Volt 500 uf 25 Volt

1,000 uf, 12 Volt 500 uf 50 Volt

4,000 uf, 12 Volt 1,000 uf 50 Volt

All at 0.10/- per 100.

Now — IT'S SUPER . . . THE PUSHBUTTON WAY!

YUKAN Aerosol spraykit contains 18 ozs. fine quality durable easy Instant spray. No slow baking required. Available in Grey Hammer at 14/- at our counter or 15/-, Carr. paid, per pushbutton self-spray can. SPECIAL OFFER: 1 can plus optional transferable snap-on trigger handle (value 15/-) for 18/-.

Choice of 13 self-spray plain colours and primer (Motor car quality) also available.

Please enclose cheque or P.O. for total amount to:

YUKAN
Dept. FE/11, 307a EDGWARE ROAD, LONDON, W.2

FOR HI-FI AND F.M.

20 WATT INTEGRATED STEREO

F.M. TUNER

THE EASY WAY TO BUILD AND SAVE

Leafer on request. From good stockists everywhere.

Martin Electronics Ltd
134-135 HIGH ST., BRENTFORD, MIDDX

F.M. Tuner. Please.

MARTIN AUDIOKITS comprise an ingeniously designed series of fully-transtorised units by means of which you can build up a hi-fi assembly starting with a simple mono amplifier system, and adding to it to make a fully integrated 20-watt stereo installation, for well under £200.

This can be used with low output as well as crystal pick-ups, radio, tape-heads, microphones, etc. Building is pleasantly easy. Quality is outstanding. Now units for making an F.M. Tuner are available for adding to Audiokit assemblies or using separately.

G. F. MILWARD
17 PEEL CLOSE, DRAYTON BASSETT Nr. TAMWORTH, STAFFS

Telephone: TAMWORTH 2321
Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECH. ENGINEERING

ELEC. ENGINEERING

AUTO ENGINEERING

BUILDING

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A COLLEGE HOUSE, 29-31 WRIGHT'S LANE, W.8

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Published about the 15th of the month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, London, W.C.2. Printed in England by THE CHAPEL RIVER PRESS LIMITED, Andover, Hants. Sole Agents for Australia and New Zealand: GORDON & GATH (Asia) Ltd.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY & OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World £1 16. 0.
10 Watt & 20 Watt Hi-Fi AMPLIFIERS

- **POWER AMPLIFIERS**: 10 watts R.M.S. power, 20 watts peak. 6-Transistor design. Panel size 4 x 2 x 2in. Response 40 c/s to 20 kc/s, 100mV into 33 Kohm input.

UNIT 1: For 12/15 ohm speakers, 40 volt P.P. BUILT £16.10.0 2/6 supply.

UNIT 2: For 3 to 5 ohm speakers, 24/28 volt P.P. BUILT £15.10.0 2/6 supply.

MAINS UNITS: Mono full-function pre-amplifier. Mono and stereo versions. Sensitive to 10mV into 33 Kohm. Complete range of controls. Mains unit or battery operated. Open boxes, tape, microphones, etc.

UNIT 3: Mono full-function pre-amplifier. Size only 2 X 2 X 2in. P.P. BROWN £12.10.0 2/6. Panel plate £8.19.6.

UNIT 5: Stereo pre-amplifier for use with two units 1 or 2. Size 9 X 2 X 2in. P.P. BROWN £10.10.0 2/6. Panel plate £8.19.6.

NEW 3-WAVEBAND PUSH-BUTTON PORTABLE SUPERHET TO BUILD

- **SHORT WAVES**: 20 c/s to 900 kc/s.
- **MID WAVES**: 400 kc/s to 2.3 MHz.
- **LONG WAVES**: 2.3 MHz to 500 kc/s.

TOTAL COST TO BUILD: £8.19.6 P.P. 2/6

Hi-Fi

- All makes available—New demonstration room opening shortly.