"A" SERIES

STANDARD APPROVED IN ALL LEADING COUNTRIES

BIT SIZES FROM $\frac{1}{32}$" TO $\frac{5}{16}$" TO CHOICE

ILLUSTRATED IS L64 $\frac{3}{16}$" BIT INSTRUMENT

ALL VOLTAGES SUPPLIED

SPECIAL TEMPERATURES AVAILABLE

FULL RANGE OF SUPPORTING ACCESSORIES

FOR SALES & SERVICE APPLY DIRECT TO:

ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W.4

TELEPHONE:
MACAULAY 0291/3

TELEGRAMS:
SOLJOINT, LONDON S.W.4
TAKE IT WITH YOU EVERYWHERE

Not only is the Sinclair Micro-6 the smallest set in the world—it has already been built by more constructors than any other kit in the entire history of transistor sets and thousands more are being built each month. *It is easy to see why.* The power and selectivity of the Micro-6 are remarkable by any standards. Its minute size and design are irresistibly attractive and it even has vernier-type tuning for easy station separation. Building is simplicity itself.

The instructions make success assured from the moment you unpack the parts for your Micro-6. Everything is guaranteed, and a full-time service department is available so that you cannot possibly go wrong. The Micro-6 tunes over the medium waveband with bandspread to bring in Luxembourg like a local station. In fact, this little giant of a set will bring in programmes where larger sets sometimes cannot be heard at all, for it plays virtually everywhere. Until you have experienced the thrill of owning your own Micro-6, you will never know just how exciting radio can be.

SINCLAIR MICRO-6

6 STAGE POWER AND SELECTIVITY

In the Sinclair Micro-6 three Special Sinclair Micro Alloy Transistors (M.A.T.s) are used in a six stage circuit to provide two stages of R.F. amplification followed by double diode detection and a high gain three stage audio frequency amplifier. Signals are tuned in on the special self-contained ferrite rod aerial. A.G.C. counteracts fading from distant stations. Power for the Micro-6 comes from two minute pill size batteries which are housed within the set and give about 70 hours working life. Plugging in the lightweight earpiece switches the set on.

BUILD IT IN AN EVENING

Complete kit of parts including white plastic case finished in gold and black, lightweight earpiece, transistors, components and instructions

Total Kit Price

59/6

SPECIAL MONEY SAVING OFFER No. 1 TO P.E. READERS

Pack of 6 M.A.T.s ... 10/6

SINCLAIR RADIONICS LTD.

22 NEWMARKET ROAD, CAMBRIDGE

Telephone: 52731

The World's smallest radio

SIZE 1 4" × 1 3/8" × 1/2"

WEIGHT—BARELY 1 oz.

TUNES OVER M.W. BAND

BANDSPREAD FOR LUXEMBOURG

PLAYS EVERYWHERE

Anyone can build it!

Full Service Facilities Available to All Sinclair Customers

SPECIAL OFFER

By buying a Sinclair Z.12 Amplifier (See next page) with your Micro-6, you can save 9/- and it gives you the basis of a powerful car, portable or domestic radio. Bought separately, these items come to £7.9.0. Send now for

PACK'A' £7.0.0

Now removed to New Larger Premises
COMBINED F.M. TUNER-RECEIVER

All you want from an F.M. Tuner and Receiver in a single unit

For far less money and trouble you can enjoy building and using the most advanced F.M. design in the world when you buy the Sinclair Micro F.M. This fully fledged 7 transistor, 2 diode F.M. superhet has original features that ensure superb audio quality and great sensitivity together with utmost ease of assembly. There are two separate output sockets. This exclusive Sinclair feature enables you to use your Micro F.M. as a tuner and an independent pocket size portable receiver whenever you wish. This wonderful set is just about as big as a packet of 10 cigarettes, and is as outstanding in appearance as in performance. Many other excellent features are included in the Micro F.M. to make building an F.M. set easy for all enthusiasts. Best of all, it brings first class performance with a saving of pounds.

SIZE —
$2\frac{3}{8}" \times 1\frac{1}{4}" \times 2\frac{7}{8}"
PLUS 5-SECTION AERIAL

TECHNICAL DESCRIPTION
The Sinclair Micro F.M. is a seven transistor, two diode FM superhet designed to be used both as a tuner and as a self-contained pocket receiver. The R.F. amplifier is followed by a self oscillating mixer. The Low I.F. dispenses with the need for alignment. In this remarkable circuit a three stage I.F. amplifier produces a square wave of constant voltage which is fed into the pulse counting discriminator. This is converted into uniform pulses, the average output from which is directly proportional to the signal frequency. Thus the original modulation is reproduced exactly resulting in excellent audio quality. After equalisation, the signal is fed both to the audio output socket and to the receiver's own audio amplifying stage for using the Micro F.M. as an independent self-contained receiver. A.F.C. "locks" on each station automatically and makes tuning easy. THE SINCLAIR MICRO F.M. is self-contained within a neat black plastic case faced by an elegantly designed front panel of brushed and polished aluminium with spun aluminium tuning dial to match.

Complete kit including telescopic aerial, case, aluminium front panel, dial, earpiece, 2nd outlet plug and instructions

£5.19.6

Hi-fi quality plus a saving in pounds!

SPECIAL MONEY SAVING OFFER No. 2 TO P.E. READERS

To make it possible for constructors to obtain the best possible standards of reproduction we are offering the Micro F.M. together with the Z.12 described opposite for £9.10.0 instead of the usual price of £10.9.0. Send now for

PACK’B’ £9.10.0

FULL SERVICE FACILITIES ALWAYS AVAILABLE TO SINCLAIR CUSTOMERS

NOW AT NEW, LARGER PREMISES

SINCLAIR RADIONICS LTD
Sinclair Z.12 Combined 12 Watt Amplifier and Preamp

- **3" x 1½" x 1½"**
- **12 watts R.M.S.**
 - (24 watts PEAK)
- **15-50,000 c/s ± 1dB**
- **Ideal for 12V. Battery Operation**

The ultimate in **SIZE, POWER, QUALITY AND PRICE**

With the Z.12, there's power in plenty for:
- Mono and stereo hi-fi systems
- Car or portable radio with the Micro-6
- Quality radio with the Micro F.M.
- Electric Guitar
- P.A. and Intercom systems, etc.

Never has such power and quality been contained within so compact a size as in the Sinclair Z.12. This eight-transistor amplifier includes its own pre-amplifier designed to accept any type of input. The Z.12 incorporates ultra-linear class B output in a circuit in which special M.F. transistors are used to provide exceptionally good performance standards. This newest Sinclair amplifier may be powered from any supply between 6 and 10 Volts D.C.; the output can be fed directly into any load from 1.5 to 15 ohms. Thus the scope of the Z.12 is far greater than that of any other amplifier irrespective of price, making it the most dependable, versatile and compact audio amplifier system ever.

Complete Z.12 amplifier and pre-amp, ready built, tested and guaranteed, with Z.12 manual PX.1 Power Pack £1.14.0

89/6

GUARANTEE

All purchases from Sinclair Radionics Ltd., 22 Newmarket Road, Cambridge, are covered by this simple, straightforward guarantee as follows: Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full and at once without question.

Should you prefer not to cut this page, please quote Fr. E.4 when writing your order.

ORDER HERE!

To SINCLAIR RADIONICS LTD.
SINCLAIR HOUSE
22 NEWMARKET ROAD, CAMBRIDGE

Please send goods indicated below

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinclair Micro-6</td>
<td>£2.19.6</td>
</tr>
<tr>
<td>Pack 'A'</td>
<td>£7.0.0</td>
</tr>
<tr>
<td>Sinclair Micro F.M.</td>
<td>£5.19.6</td>
</tr>
<tr>
<td>Pack 'B'</td>
<td>£8.10.0</td>
</tr>
<tr>
<td>Sinclair Z.12</td>
<td>£4.9.6</td>
</tr>
<tr>
<td>Pack 'C'</td>
<td>£8.8.0</td>
</tr>
<tr>
<td>Power Pack X.1</td>
<td>£2.14.0</td>
</tr>
</tbody>
</table>

for which I enclose Cash/Cheque/Money Order

Value £..............

NAME

ADDRESS

SPECIAL MONEY SAVING OFFER No. 3 TO P.E. READERS

You can save still further by buying two Z.12s together at the special price of £8.8.0 instead of £8.19.6 it costs to buy them separately. This is a wonderful opportunity to possess a low-priced super-quality stereo system. The X.1 Power Supply Unit (£2.14.0) will comfortably drive two Z.12s. Send now for PACK 'C' £8.8.0

ALL ITEMS COVERED BY THE SINCLAIR GUARANTEE
For quick, easy faultless soldering

Ersin Multicore 5-core solder is easy to use and economical. It contains 5 cores of non-corrosive flux, cleaning instantly oxidised surfaces. No extra flux is required. Ersin Multicore Savbit Alloy considerably reduces the wear of copper soldering iron bits.

HANDBY SOLDER DISPENSER
Size 1/8 s.w.g. SAVBIT alloy in a continuous coil, used direct from free-standing dispenser. 2/6 each

SAVBIT SIZE 1 CARTON
Contains approx. 30 ft. of 1/8 s.w.g. SAVBIT alloy in 14 and 16 s.w.g. 5/- each

BIB WIRE STRIPPER AND CUTTER
Strips insulation, cuts wire clean. Adjusts to any size. 4/- each

Available from all Electrical and Hardware shops. If unobtainable write to:
MULTICORE SOLDER LTD.
Multicore Works, Hemel Hempstead, Herts. Hemel Hempstead 3636 M.4/8
Enjoy yourself and Save Money by Building Heathkit models

A wide range of well designed quality kit sets to choose from

A KIT FOR EVERY INTEREST... HOME, SERVICE WORKSHOP, LABORATORY

Ease of assembly is guaranteed
Even for those without previous experience—by the comprehensive, yet simple step-by-step construction manuals supplied with every Heathkit model.

Save £6 by building the models
Heathkit units cost considerably less than comparable pre-assembled equipment. You cannot buy the parts any other way as cheaply.

Guaranteed performance
Every Heathkit product—assembled in accordance with our comprehensive construction manuals is guaranteed to meet published performance specifications, or your money will be cheerfully refunded.

Convenient credit terms
By taking advantage of our credit terms—you can enjoy your model right away—and pay for it in easy monthly installments. Deferred terms available over £10 in U.K.

Audio
Cabinets, Turntable units, Mono and Stereo Amplifiers, Pick-ups, Speakers, Speaker Systems, Mono and Stereo Control Units, Tape Pre-amplifiers, Tape Decks, Transistor Mixers.

Radio
AM/FM and FM Tuners, Transistor Radios, SW and Communication Receivers.

Test instruments
A wide range of Audio Test, Home Workshops, Service Workshop and Laboratory Instruments.

Amateur gear
A wide range of equipment.

Miscellaneous
Hobby kits for the youngster, Tool kits, Intercoms, Electronic Organs, PA/Guitar Amplifiers, etc.

Instruments for Test, Service, Home Workshop

SCOPEs
POWER SUPPLIES

TRANSISTOR TESTER

VALVE VOLTMETERS

TV ALIGN. GENERATORS

In-Sin., LOW-PRICED OSCILLOSCOPE. Model OS-2. Ideal for servemen. Compact: 5" x 7" x 2½". Kit inc. $7, TV bandwidth, 2 u. to 300 Mc/s. T.V. 20 c.c. to 200 c.c/s in 4 ranges. Kit £31.18.0. Assembled £32.18.0.

HEATHKIT EXHIBITION
APRIL 14th-17th.
H.m.—9 p.m. (8 p.m. Sun.)
THE GRAND HOTEL,
SOUTHWARK, LONDON

 kits for Hi-Fi Audio Radios Miscellaneous construction kits

"MALVERN" HI-FI EQUIPMENT CABINET. Will house all your Hi-Fi equipment. Light grained white. Size: 39" x 22" x 21" in. Kit £11.16.0. (inc. P.T.) A wide range of other cabinets.

JUNIOR ELECTRONIC WORKSHOP. Fascinating work that can be made. Special solderless connections. Kit £7.16.6. (inc. P.T.)

TRANSISTOR MIXER. TM-1. A must for the car enthusiast. 4 inputs, 9 v. battery operation. Kit £6.16.0. Assembled £6.17.4.

See the complete Heathkit range in the FREE catalogue

Welcome To Our
LONDON HEATHKIT CENTRE
In response to the request of many customers, we have opened a showroom and restorers.
233 Tottenham Court Road
WHEN YOU ARE IN TOWN, WE HOPE THAT YOU WILL VISIT US THERE

To DAYSTROM LTD., DEPT. PM-4, GLOUCESTER, ENGLAND

Please send me FREE BRITISH CATALOGUE (Yes/No)

Full details of model(s)

American
Catalogue 1/ p.p. (Yes/No)

NAME

BLOCK CAPITALS
ADDRESS

(Yes/No) ..

PM-4

237
IMPROVED STANDARDS of Accuracy and Reliability!

Modern styling in light grey with legible black engraving.

Constructed to withstand adverse climatic conditions.

Ever ready case including leads, prods and clips.

Improved internal assemblies.

Re-styled scale plate for easy rapid reading: 2 basic scales each 2.5 inches in length.

New standards of accuracy using an individually calibrated scale plate: ± 0.25% of full scale deflection, ± 0.5% of full scale deflection.

Available accessories include a 2,500V d.c. multiplier and 3, 10 and 35A shunts for d.c. current measurement.

The Mk. 4 MULTIMINOR is the latest version of this famous Avo instrument and supersedes all previous models. It is styled on modern lines, with new high standards of accuracy, improved internal assemblies, and incorporating panelmatic properties.

The instrument is supplied in an attractive black carrying case, which also houses a pair of leads with interchangeable prods and clips, and an instruction booklet. It is packed in an attractive display carton. Robust real leather cases are available, if required, in two sizes, one to take the instrument with leads, clips and prods, and the other to house these and also a high voltage multiplier and a d.c. shunt.

D.C. Current: 100µA f.s.d. — 1A f.s.d. in 5 ranges.
A.C. Voltage: 100V f.s.d. in 5 ranges.
D.C. Voltage: 25V f.s.d. — 1,000 f.s.d. in 6 ranges.
D.C. Millivolt ranges: 0 — 100mV f.s.d.

RESISTANCE: 0-2M Q, in 2 ranges, using 1.5V cell.
SENSITIVITY: 10,000 S/0 on d.c. Voltage ranges.
1,000 S/0 on a.c. Voltage ranges.

See the latest AVO Coil Winders and Electrical Testing Instruments on STAND H4, A.S.E.E. Exhibition.

D & B TELEVISION (WIMBLEDON) LTD.
131 KINGSTON ROAD, SOUTH WIMBLEDON, LONDON, S.W.19
Telephone: CHirburywood 3955

ALL BRAND NEW VALVES GUARANTEED 3 MONTHS
Postage and Packing on Valves 6d. each

Cannon Electric
(Great Britain) Ltd.,
Lister Road,
Basingstoke, Hants.
Tel: Basingstoke 3171

CANNON

STANDARD K CONNECTORS

General Purpose, Rugged Multipole series. Up to 110 Contacts. Lightweight and quick dis-connect.

Cannon Electric
Registered Trademark
FOR IMMEDIATE DELIVERY

DE LUXE PLAYER KITS POST FREE

4-Speed Players £2.95

De Luxe 12" £7.95

Six loudspeaker and 8 watt

Dreadnought type speakers. Built. Quality output. Volume

conveniently adjusted. Special features enable

Playing time up to 45 minutes, only 5

18 months guarantee.

TO BUILD YOURSELF

POST FREE PRICES

SHELL PLAYER KIT

Bee Nib 5.95

Bee Guv 5.15

OR SEPARATELY

Player Cabinet 2.10

AUTOCHERUB KITS

Dee Nib 1.40

Garrard 850 1.40

Garrard 860 1.40

AUTOCHERUB KITS

Dee Mod 50 1.10

Garrard AT 50 1.10

SINGLE PLAY UNITS

Dee Guv 4.00

Garrard SP 12 1.50

TRANSCRIPTION UNITS

Garrard AT 850 2.00

Q MAX CHASSIS CUTTER

Complete: a die, a punch, an Allen screw and key

. 14/6 in. 18 in. 3 in. 1/6 in.

. 14/9 in. 18 in. 3 in. 1/6 in.

. 15/0 in. 18 in. 3 in. 1/6 in.

. 16/0 in. 18 in. 3 in. 1/6 in.

CRYSTAL MIKE INSERTS

11 x 1100 3 in. 5/4 in. 7/8 in. 2/3 in. 2/3 in.

TASTY CARBON MIKE with switch 5/6 in.

BARGAIN STAL-FIX UP ARM Complete with switch and diode 8/0 in.

SPEAKERS: 25mm various colours, 600w., wide from 100 to 160. £1.50 each. Samples 6/-

EXPANDED METAL Gold or Silver 18 x 12 in. 6/6.

FULL WAVE BRIDGE SELLENIUM RECTIFIERS:

1.5 per, 2.5 per, 3.5 per, 4.5 per 5.5 per.

CHARGE TRANSFORMERS. Tapped input 200/500 v.

for charging at 6 x 8 in. 15 amp. 15.5 amp. 17 amp. 17.5 amp.

MOVING COIL - MULTITRANS 150 v.

2.500 ohm, 1000 ohm, 500 ohm, 250 ohm.

NEW MULLARD TRANSISTORS

OCTAEV MURPHEY MULLARD 1966

AP161 4/6 offer 5/6 offer 3/6 offer 7/6 offer

Maxa Oct. 62. B70, B80, B84, B86. B70 with cap

ECC84 8/-, 7012 8/-, 4186 12/-, 4085 15/-.

TRANSISTOR MAINS ELIMINATORS 29/6

F.5/6 volt, F.5/6 vol, (all mains as batteries) 80 mA.

D.C. 600v. 4 F.5/6 F.5/6 F.5/6. 4 x 4 volt.

POWELL PACK 80. 80 volt. Fully Space Age.

WEYRAD PSO — Transistor Coils

RAW 6 in. Ferroxcube with aerial coil 12... 7... 6...

On 5000, F.5/6 7/6. F.5/6. 5/6. 5/6. 4 x 4 volt.

SPACE COILS... 4 volt.

Driver Trans. L.P.75/4 7/6.

L.P.75/4 7/6.
The **Brenell**

MONO/STEREO HI-FI TAPE LINK

Twin playback pre-amplifiers

- Variable bias
- Push-pull bias/erase oscillator
- D.C. heated valves

Rear sockets duplicated on front panel

Instant comparison of original and recorded signals

Frequency correction for 4 tape speeds

Price including power unit £46.00.

Designed for use with 2/2 or 2/4 track heads

Built to the same high standards as our tape recorders and decks this Hi-Fi TAPE LINK has been developed for use with your high fidelity equipment. It is capable of giving superb results when matched to one of our Mark 5 Series 3 decks fitted with the appropriate heads. Write for full details of this amplifier and deck and complete range of tape recorders.

Brenell

BRENELL ENGINEERING CO. LTD.,
231/5 Liverpool Road, London, N.1.
Telephone: NORth 8271 (5 lines)

KONTAKT 60

THE SPECIAL CLEANER FOR INACCESSIBLE CONTACTS

- KONTAKT 60 cleans and protects all contacts
- Eliminates high transition resistances
- Prevents 'creep' currents
- Does not affect plastic materials
- In spray can with 5" spray nozzle

Other Kontakt products are:

- 70 Protective Lacquer
- 72 Insulating Spray
- 75 Cold Spray for Fault Location
- 80 Special Siliconized Polish
- 100 Antistatic Agent for Plastics

Write for full details of above complete range of Kontakt products to:-

81 Piccadilly, London, W.1. GROsvener 6482

D.I.Y. with GOODMANS HIGH FIDELITY MANUAL

A new, larger and more colourful edition—revised and completely up-to-date. It contains articles of particular interest to the D.I.Y. enthusiast—including special beginners page, advice on stereo, stage-built systems and full cabinet drawings. Whether building or improving your own audio set-up or choosing a complete speaker system, you'll find it useful and interesting as well as informative. Ask your Goodmans dealer or send coupon for your FREE copy.

Please send me a free copy of the Goodmans High Fidelity Manual

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
</tr>
</tbody>
</table>

GOODMANS INDUSTRIES
Askam Works, Wembley, Middlesex
Telephone: WEMbly 1200
A Member of Radio Rentaset Products Ltd.
THE SKYROVER RANGE
7 transistor and 2 diode superhet portables—covering full modulation, plus 6 SW bands.

THE SKYROVER Mk III. (Illustrated.) Now supplied with redesigned black plastic cabinet, grey and chrome finish. Special valves included. Controls: Waveband Selector, T.T.R. Control with on/off switch, Tuning Control. In plastic cabinet, size 4¼ x 2¾ in., with internal trim and carrying handle.

Can now be sold for £8.19.6 Post Free. N.P. Terms: 27/6 plus 2/- the value of 15/- because of 15/- face. Total N.P. £10.0s. 3d.

THE SKYROVER De Luxe
Tune Control is incorporated, with separate Tone Control. In addition to Volume Control, Waveband Control and Waveband Selector. In a wood cabinet, size 11½ x 6¼ in., complete with washable material, plastic trim and carrying handle. Also earphones. Can now be sold for £10.19.6 Post Free. N.P. Terms: 33/3 plus 1/- and 6/- the value of 10/- because of 10/- face. Total N.P. £12.3s. 10d.

Data for De Luxe: Price extra. Refundable if you purchase the parcel. Four 10s. batteries 3½ extra. All components available separately.

REALISTIC SEVEN
Fully tunable long and medium waves. Uses 7 Transistor Transistor; plus Diode OA70.

STAR features:

REALISTIC SEVEN De Luxe
With the same electrical specification as standard model—PLUS A SUPERIOR WOOD CABINET. AND A POLISHED BIRK PLASTIC CASE. H.P.R. is wallmountable in any style of cabinet, with super-chronic trim and carrying handle. Also a full oval circular dial, externally moulded to further enhance the pleasant styling. ONLY 8/- EXTRA.

Both models: Price extra. (All components available separately.) Data and instructions separately 8/-, refunded if you purchase the parcel.

SINCLAIR SUPER MINIATURES
We stock the complete range of Sinclair Super-miniatures.

THE MICRO-4 miniature radio only 1½ x 1½ x 1½ in. .. 31 10 s.

THE MICRO-LINE transistor pocket watch ... 41 10 s.

THE MICRO-FM, (tuner/receiver) ... 51 10 s.

THE X-50 50 watt P.W.M. amplifier .. 69 10 s.

THE X-10 10 watt amplifier and pre-amp ... 89 10 s.

Available ready built, tested and guaranteed .. 19 10 s.

VEROBOARD — Vero is a high grade laminated board with metal conductors built into it and pierced with a regular matrix of holes. Ideal for producing single items.

Price: 6d. 10d. 2/6. £1.00.

SPECIAL INTEREST ITEMS!

TEST METER ADAPTOR
Type P.220—this is a fully transistorised device which enables any 50 microamp D.C. Milliammeter to be used in place of a valve volt meter. On the 1V, range an importance of 1 microamp is offered which increases on the 100V. range to 100 microamps.

7 ranges: 1 to 1000 volts. Designed for immediate connection to Avo 8 and similar instruments but are quite suitable for use with any other microamp meter. Size 5 x 2½ x 1½ in. Neat and handy. Last Price 7/6.

LASKY'S PRICE 39/6 Post Free. Set of batteries 7½ extra.

GORLER UT 340 FM/VHF TUNING HEART

...continued...

LASKY'S FOR SPEEDY MAIL ORDER SERVICE

207 EDGWARE ROAD, LONDON W.2 Tel: PAD 3271
33 TOTTENHAM CT. RD., LONDON, W.I Tel: MUS 2605
Both open all day Saturday. Early closing Thursday.

Please address all Mail Orders and Correspondence to 3-15 Cavell St., Tower Hamlets, London, E.1. Tel.: STE 4821/2
EXCEL in ELECTRONICS

Through this ICS 3-way Training Method:

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE
To many this aspect is a bitter problem. Even you'll learn each course is set out in easy-to-understand terms. Abilities in electronic engineering alongside your easy-to-follow illustrations. Quickly develop your practical abilities. Master the theoretical side. It's the sure way to success.

Wide range of courses available include:
Radio/T.V. Engineering and Servicing, Colour Television, Electronics, Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.

New! Programmed Course on Electronic Fundamentals

Expert Coaching for:

Instituion of Electronic and Radio Engineers City and Guilds Communication Technicians City and Guilds Supplementary Studies R.T.E.B. Radio/T.V. Servicing Certificate P.M.G. Certificates in Radiotelegraphy

And there are practical 'learn as you build' radio courses as well.

Member of the Association of British Correspondence Colleges.

For FREE HANDBOOK POST THIS COUPON TODAY

ICS, Dept. 131, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11

NAME

ADDRESS

OCCUPATION

AGE

INTERNATIONAL CORRESPONDENCE SCHOOLS
KEDOCO PRODUCTS

KEDOCO CLASSIC 20 WATT TRANSISTORISED AMPLIFIERS NOW AVAILABLE IN THREE ALTERNATIVE DESIGNS

UNDoubtedly

THE COMPLETE 12 VOLT SYSTEM

TAPE PRE-AMP SSTR/7

All silicon transistor. Zero hum. High gain and equalised at 7½ per cent. to give flat response output. Simple mod.
description. Accompanying instructions allows equalisation at all speeds. Suitable for all medium impedance heads.

MINICLASSIC PRE-AMP SSPA/50

Tone controlled high gain preamplifier designed specially for application with the SSTR/7. All silicon transistor. Zero hum.
requires 12 volt: + H.T. Separate inputs for crystal ceramic cartridge and radio.

MINICLASSIC SS3/10

High fidelity 2 watt main amplifier: ideal for use with SSTR/7 and makes complete tape amplifier. 16 c/s to 30 kc/s. Requires 12 volt: + H.T and will operate directly from crystal pickup. 6 transistors and two diodes all mounted on precision printed circuit board. Max. music power 4 watts into 3 ohm speaker.

RADIO MICROPHONE

80-100 m/s. A quality product. Professionally engineered. All silicon transistor. Dimensions 20 mm. × 55 mm. × 45 mm. Ideal for stage work, intercom, broadcast clarity.

TV/FM BOOSTER

WHY PUT UP WITH A WEAK PICTURE, Suitable for Bands I and 2. Battery operated.

BOOK

Theory and applications of planar epitaxial transistors. Explains significance of these new transistors and gives many interesting circuits.

ORDER FORM: To KEDOCO ELECTRONICS, BEVERSTONE WORKS, TETBURY, GLOS.

PLEASE SUPPLY

- Enclose Cheque/P.O. for
- Postage 2/- extra for all orders under £1

All KEDOCO products are fully guaranteed and should you not be completely satisfied with your purchase we will gladly refund your money if returned within seven days of receipt.

ZENER DIODE

Silicon planar diffused diode. Very sharp knee. Type No. specifies voltage.

- KZ5.5: 100V 2,000 pF
- KZ6.2: 100V 100 pF
- KZ8.2: 50V 240 pF
- KZ9.5: 33V 720 pF
- KZ11: 60V 1,000 pF

Power Dissipation 250 mW Temperature co-efficient 0.01% per degree C.

PLANAR EPITAXIAL SILICON TRANSISTOR

GOLD PLATED, ALL WELDED

- KPS 24 7/11
- KPS 25 11/11
- KPS 26 16/6
- KPS 27 19/6

Double diffused npn. Suitable from audio to RP power applications. 100 V. Less than 100 mA.

RESISTORS 1 watt HYSTAB

- 470, 10, 27, 100, 470, 15, K1, 2.2K, 3.3K, 4.7K, 10K, 15K, 24K, 33K, 56K, 100K, 330K, 560K, 1M

ELECTROLYTIC CAPACITORS

- 8uF, 16uF, 33uF, 50uF, 100uF, 15V
- all at 1/3 each

MYLAR CAPACITORS

- 1,000 pF, 5,000 pF and 10 pF

TECHNICAL SPECIFICATION

SS20/9

A versatile table model version with own power supplies and in-keeping with the standard trend to build hifi systems from self contained separate and compact units. Ready to operate and connect to tape, gram and radio via coax sockets at the back of the cabinet. The amplifier and power supply parts are housed in an attractive press steel case. Finished in a greystoved enamel and brushed aluminium front panel engraved and displaying the four controls. Treble, bass, volume and three position input selector. Cabinet measurements 12 1/2 × 6 1/2 × 3 1/2.

KEDOCO COMPONENTS A COMPLETE RANGE TO SATISFY ALL YOUR NEEDS

UNDOUBTEDLY

THE FINEST RANGE OF TAPE RECORDER EQUIPMENT ON THE MARKET TODAY

TAPE OSCILLATOR SS013

Complete unit incorporating push pull silicon transistor oscillator giving adequate erase and recording bias. The unit is mounted on the back of the main chassis. High efficiency oscillator for recording from 12 volt D.C. supply at approx. 250 mA.

RECORD AMPLIFIER

SSH/3

Fully transistorised. High voltage H.T. rail derived from oscillator. Provides substantially constant current record signal. 1% input noise and distortion. Input impedance 5 k. Power requirements 1 mA 75 V. Derived from SS013 and 1 mA 12 V. This is a gain stabilised low distortion circuit.

POWER SUPPLY

30 volt, 3 amp. Ready built and ideal for your Kedoco Classic and will power 2 of them.

AMPLIFIERS

COMPLETE

- 20 WATTS
- H.T.
- Power output 20 watts peak into 3 ohm speaker. Input impedance, selected to suit input. Output impedance 0.1 ohms. Bass boost, 12 dB at 100 c/s max. Treble boost, 12 dB at 100 Kc/s max. Distortion, 0.1%.

TECHNICAL SPECIFICATION

SS20/7

De luxe version complete and ready to mount into your cabinet. With three controls mounted on front of steel enamelled and moulded plastic and spun aluminium control knobs fitted as standard. Tag strip mounted on back of chassis in addition to facilitating the L.S. and H.T. connections provides sep. inputs for crystal, ceramic cartridge, magnetic pick-up, radio and tape recorder. Max. dimensions of whole unit 6.1 × 9.1 × 3.1.

**USERS ACCLAIM **

BEAUTIFULLY ENGINEERED

OUTSTANDING PERFORMANCE
Why

NOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...

All components may be purchased separately if desired. Parts price lists and easy build plans available separately at prices stated. Overseas post 10/-.

NEW ROAMER SEVEN Mk IV

- **7 WAVEBAND PORTABLE OR CAR RADIO**
- **FULLY TUNABLE ON ALL WAVEBANDS**
 - 7 stages—7 transistors and 5 diodes
 - Covers Medium and Long Waves, Trawler Band and three Short Waves to approx. 15 metres.
 - Push-pull output for extra high fidelity volume from rich toned 7 × 3 in. speaker. Air spaced guage tuned condenser. Ferrite rod aerial for M & L Waves and telescopic aerial for S Waves.
 - Real leather-look case and gilt trim and shoulder, hand straps. Size 9 × 7 × 4 approx.
- **EXTRA BAND FOR EASIER TUNING OF PIRATE STATIONS**

NEW ROAMER SIX

- **6 WAVEBAND!!**
- **8 stages—6 transistors and 2 diodes**
- Sensitive Ferrite rod aerial and telescopic aerial for short waves. Top grade transistors. 3-inch speaker, hardwearing case with gilt fittings. Size 7 1/2 × 5 1/2 × 1in. (Carrying Strap 1/6 extra.)

MELODY SIX

- **8 stages—6 transistors and 2 diodes**
- Our latest completely portable transistor radio covering Medium and Long Waves. Incorporates pre-taged circuit board, 3-in. heavy duty speaker, top grade transistor volume control, tuning condenser, wave change slide switch, sensitive 6-in. Ferrite rod aerial. Push-pull output. Wooden case for reception of B.B.C. Home and Light, 208 and many Continental stations. Handsome leather-look pocket size case, only 6 1/2 × 3 1/2 × 1 1/2in. Approx. with gilt speaker grill and supplied with hand and shoulder straps.

NEW TRANSONA FIVE

- **"Home, Light, A.F.N. Lux. at all good volume"**
- **7 stages—5 transistors and 2 diodes**
- Fully tunable over Medium and Long Waves and Trawler Band. Incorporates Ferrite rod aerial, telescopic aerial, volume control, carbon microphone. Size 6 1/4 × 4 1/4 × 1in. with red speaker grille. (Uses 1289 battery available anywhere.)

POCKET FIVE

- **7 stages—5 transistors and 2 diodes**
- Covers Medium and Long Waves and Trawler Band, a feature usually found in only the most expensive radios. On Home, Light, Luxembourg and many Continental stations were received loud and clear. Designed round cheap sensitive ferrite rod aerial and fine tone 2in. moving coil speaker, built into attractive black case with red speaker grille. Size 3 1/2 × 1 1/2in. (Uses 1289 battery available anywhere.)

SUPER SEVEN

- **9 stages—7 transistors and 2 diodes**
- Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or can be fitted with carrying strap for outdoor use. Completely portable—has built-in ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3-in. speaker (will drive large speaker). Size 7 1/2 × 5 1/2 × 1in. (Uses 9v battery, available anywhere.)

BARGAIN CORNER!

- **A.C. ELIMINATOR.** To operate 6v Radio from Mains. Also recharge 6v batteries. Complete with leads for 6v type batteries. Leads can be adapted to suit other 6v battery types. Only 17/6. P. & P. 1/-.

Satisfaction Guaranteed. Phone for advice and price in any case.

RADIO EXCHANGE Ltd

61a HIGH STREET, BEDFORD. Phone: 52367

Open 9-5 p.m.

Saturdays 9-12.30 p.m.
BENEFITS ALL ROUND

SOME hobbies are strictly individualistic pursuits providing mental and physical exercise to the participant alone. There are other hobbies which, while still in every respect satisfying the individual's creative instincts, do also produce certain results which can be enjoyed or appreciated by other members of the family or circle of friends. These achievements may be in the form of intangible services, or are more likely to appear as concrete examples of the hobbit's skill in devising and building some material article or equipment.

We feel that amateur electronics is a hobby that is in many respects unique. Admittedly we are biased—nevertheless we believe the truth of this claim can be well demonstrated.

Despite the somewhat mystical aura that, in popular imagination at least, surrounds this subject, electronics is certainly no "closed shop" or restricted preserve for "boffins". Some technical knowledge is a prerequisite obviously, but one can become actively involved in this absorbing and stimulating subject at various levels of technical proficiency. The most certain results which can be enjoyed or appreciated by other components, and circuit techniques are continually being made enjoyment in its solution than a crossword puzzle. However, we are chiefly concerned with those who translate abstract and intellectual stimulus. Indeed there are people to whom imagination at least, surrounds this subject, electronics is an unusual circuit diagram offers a greater challenge and more important requirement at the outset is enthusiasm and interest. The special knowledge and skills are developed most attractive to the amateur, who probably has very limited workshop facilities at his disposal.

The growth of the electronics industry is phenomenal. The horizon is ever receding as fresh developments in materials, components, and circuit techniques are continually being made and new prospects thus opened up for further exploitation. In his humbler way, the amateur designer or builder reaps the benefits of this progress. He knows that his hobby is not likely to become static or bereft of new ideas.

Now to our main argument. The individual constructor need not be the sole beneficiary of this spare time activity, for the applications of electronic techniques know hardly any bounds. As is only right and proper, we offer some practical examples to support our argument that the electronics enthusiast need not be an introvert or self-centered character—quite the opposite in actual fact. Among this month's constructional projects are four devices of relatively simple design, which perform worthwhile functions particularly appropriate to the domestic scene. Here then is just one attempt to demonstrate the general usefulness of applied (amateur built) electronics.

In conclusion, a discreet hint. May we suggest that any husband or son who may have been guilty of devoting too much time to projects of strictly personal appeal, has now an opportunity to rehabilitate himself in the eyes of the maternal side of the family? And, who knows, as a result of this perhaps a more tolerant view will then be taken in future of any unconventional work performed on the kitchen table.

To work men!
Reference to electronics, when speaking of the cinema, may perhaps sound strange to many, and automation more so. What electronics are involved, one may ask, in putting over a performance in a modern "super"? How does automation help?

The first part of this article briefly relates how electronics have affected the cinema. It describes the early forms of sound equipment and proceeds to the advent of automatic control.

The second part will begin by outlining stereophonic and wide-screen equipment and end with a detailed description of the Cinemation system of fully automatic control of a cinema. This system, the most advanced of its kind, was commissioned in July 1965, in the Twin-Odeon Theatre, Nottingham.

To realise fully the progress made in the cinema and before we can consider the futuristic Cinemation equipment, it will be helpful briefly to review sound film since its inception.

Some of us may remember the "village hall" cinema with its single, hand-driven projector and its jingling out-of-tune piano providing so-called background music. These "village halls" were the forerunners of luxury theatres, palaces of chrome, crystal and comfort, many housing a forty-piece orchestra and an electronic organ, both of which provided music for B.B.C. programmes. The production techniques of silent films kept pace with the progress of the "trade" and altogether most of the productions from the giant studios were of superlative quality, the illusion of "life" in the film was continually destroyed by printed subtitles which conveyed the dialogue.

That was the situation when, in 1926, Warner Brothers recorded sound on 16-inch discs, synchronised it to a film and showed the first Vitaphone sound film, Don Juan, to a selected trade audience.
THE FIRST "TALKIE"

The excitement aroused in the trade was as nothing compared to the enthusiastic public welcome which greeted the first general release in the Warner Bros. theatre chain--Al Jolson's The Jazz Singer. Elsewhere, other exhibitors, hitherto scornful of the new "talking film", began to think, when The Jazz Singer was closely followed by The Singing Fool (perhaps Jolson's finest film), thought became swift action. Theatres were re-decorated, using sound-absorptive materials to cut down the reverberation essential to the orchestra. (Cross-phasing of reflected sound-waves causes distortion and possibly loss of volume.) "Operating boxes", hitherto housing two small projectors, one slide lantern, one "operator" and a "rewind-boy", became "projection suites" to house complicated projection and sound equipment (which we shall look at in a moment), together with a "chief projectionist", "second projectionist", and an "apprentice". The trade took the matter quite seriously.

Initial problems were complicated by the rumour of optical recording on film; the rumour became fact when Fox Films introduced the Movietone system. Almost on the heels of The Singing Fool, Movietone News was born, to become the most popular newsreel of those days. Before we discuss "sound on film", however, let us look at the Vitaphone disc installation.

SOUND FROM DISC

In many small theatres, the "silent" projector was incorporated in the sound system, because the aspect ratio (4 × 3) of silent and disc-sound films was the same. Most concerns renewed the lot, and many projectionists, handling only disc recordings, wondered about a small shutter which vertically masked off part of the picture gate on the new head. They learned why, presently.

The projector was mounted on a heavy base which carried a double-ended motor to drive at one end a gearbox coupled to the projector and, at the other, a gearbox to rotate a massive 16-inch turntable on which the disc was "played". These discs turned at 33 r.p.m., and were played "inside out" by electro-magnetic pick-ups using replaceable steel needles. The needle pressure was 5 oz. The pick-up output passed to a selector switch taking the output from either of two projectors, then to a common volume control, sync/non-sync switch, pre-amplifier, main amplifier, and to the hall speakers placed behind the screen. The plaster screen had given way to the "dishcloth", a multi-layer cotton sheet of fairly open weave to give good sound-transparency (but a poor light reflector; of this, more later).

The amplifiers (typically, 500 watt output at very low distortion levels) were duplicated and could be cross-connected or paralleled, depending on audience conditions. (The larger the audience, the greater is the sound-absorption and the need for more output.) Audience variation required a telephone (later simplified to a simple buzzer) between the hall and the projection room. The buzzer proved very amusing to perceptive small boys; however, the projectionist soon knew by the volume from the monitor speaker alongside him, and by the audience he dimly saw below, what was necessary.

UNSYNCHRONISED MUSIC

Not all the films were "talkies" in the early days. As the majority of orchestras had gone or were going, a means of providing music to accompany silent films was...
At normal speed, the amplifier gave no output; any variation was self-cancelling. The constancy of these motors was remarkable, but now that the a.c. grid is universal, they are no longer required.

The standard-groove, 16-inch disc gave way to an experimental micro-groove 12-inch disc in order to cope with longer film reels; these discs, in the hands of unskilled personnel, wore badly and intensified sync trouble. The trade, generally, was relieved when Warner Bros., Fox, and Western Electric eventually discarded discs altogether in favour of sound-on-film.

ENTER SOUND-ON-FILM

The "soundhead", for sound-on-film, was located on the base immediately below the projector. It carried a small, high-intensity "exciter" lamp containing a horizontal filament whose light was focused by an optical system to form a strip of light, about 0.003 inch thick and 0.1 inch long, at one side of a film gate. The gate carried a similar slot through which the light could pass to a photo-electric cell, backed by a pre-amplifier. Output from the pre-amplifier passed to the projector selector switch, volume control, etc., as the disc output had done. The film which had passed through the projector was pulled by a sprocket through the sound gate, whence it reached the take-up spool.

Sound, initially, was recorded by the Western Electric "variable-density" system in which a shutter, operated by modulation from amplifiers, allowed a fine strip of light to fall on sensitive film. Frequency depended upon the number of lines per centimetre, amplitude upon the density of the line. In projection, the recording, which was printed on a 0.1 inch strip of the picture area adjacent to the sprocket holes and was several frames "ahead" of the relevant picture so as to achieve synchronism, passed over the slit in the sound gate and thus modulated the light reaching the photocell.

Life became much easier for the projectionist whose sync troubles were at an end. Other troubles arose, however. "Flutter", caused by the intermittent motion of part of the projector, was transmitted to the sound sprocket through the projector mechanism: an effective answer was a sound sprocket mounted on a shaft.

Fig. 1. Two methods of recording sound on film

(a) The Western Electric variable density system in which lines of varying thickness and frequency provided modulation

(b) The variable area system in which one half of the sound wave envelope was photographed. The "slow" contour wave on the left reduced noise in low-level modulation sequences

Fig. 2. Layout of a typical cinema projection room, about 1935
carrying a heavy, spring-loaded flywheel. Noisy backgrounds, due to fingermarks on the sound track, were removed by cleaning the entire length of the programme (perhaps 15,000 feet of film), using carbon tetrachloride and special pads. Joints in film involved doubling the film thickness—and density—so causing "thuds" in sound until triangular black patches were painted over the joint to give a gradual cut-off and cut-out of the light falling on the photocell.

Perhaps the biggest nuisance was failure of the accumulators used to light the exciter lamp; these might fail in the middle of a programme and cause a hurried changeover to the standby set. Some early versions of a.c. operated lamps caused hum modulation by temperature variation until an improved filament became available, then accumulators were discarded.

PROJECTOR ARC LAMPS

Another nuisance (which eventually proved to be a blessing in disguise) was the "dishcloth" screen, whose snowy whiteness, within a few days of the screen being "hung", became yellow with tobacco smoke. These screens were changed very frequently, but wear and tear made this a costly procedure. A partly successful solution was the introduction of the medium intensity, 40-amperes arc lamp to replace the 15-amperes affair of the silent day.

A short description of a low-intensity arc lamp will help us appreciate the problems inherent in a high-intensity version. The lamp operates on a d.c. low-voltage high-current supply and uses a thin, negative carbon, opposing a much thicker positive carbon; the extra thickness is necessary because, in all arcs operating on d.c., it is the positive which produces an intensely brilliant tongue of flame, and burns up much faster in doing so. A parabolic mirror focuses the light on the projector gate, covering only sufficient area to illuminate evenly each frame passing the gate aperture. As the carbons burn away, they are manually kept about half an inch apart by operation of control knobs. Other controls re-position the carbons if they tend to burn unevenly, and cause unwanted colouring of the picture.

In the medium-intensity arc based on the foregoing, new troubles arose. Carbons burned very rapidly and required constant attention; also, the tendency to burn unevenly and produce colouring was much greater. Heat, focused by the mirror, became so intense that the projected film buckled in the gate during the milliseconds it remained stationary; continually sharp focus was practically impossible in these conditions.

AUTOMATED ARC

Much thought was given to these problems, added to by the advent of Technicolor. Eventually, two solutions were found which combined in producing one of the greatest advances since the arrival of sound. One was a perforated rubber screen, surfaced with powdered glass which gave it a reflecting power far beyond that of the "dishcloth"; also, the new screen was as sound-transparent as the "dishcloth", perhaps more so. The second was automation of the arc lamp. The arc was manually "struck" and initially adjusted, but thereafter was controlled by a motor, itself controlled by the voltage drop across the arc. This voltage drop, as the arc gap widened, caused the motor to speed up and close the gap to the preset width, thus maintaining a light constancy which the projectionist could not manually equal. Another small motor (sometimes the arc-feed motor) rotated the "positive" as it burned and thus prevented unevenness of lighting.

Further study of the arc led to magnetic control of the flame (which is, in fact, an electric current possessing a magnetic field). An electro-magnet, powered by the arc current and positioned near the carbons repelled the magnetic effect of the flame, thereby concentrating the flame into a ball which permitted much improved focusing, and assisted the carbon-rotator to obtain even burning. Heat in the gate was reduced by air-blowers directed at the aperture, and in some experimental lamps, by passing the arc light through a water screen—a hollow glass disc through which chilled water flowed continuously. (Recent semi-manual lamps now use, in addition to the foregoing, a dichroic heat-transparent mirror which, although reflecting light with high efficiency, is a very poor reflector of heat.)

HIGH INTENSITY XENON LAMP

The demand for higher powers has risen steadily and resulted in the 100-amperes, fully automated lamp. One starter button and extinguisher for standby or emergency use are provided, but the arc can be struck by remote control. Thereafter, all adjustments are motor-controlled; the arc mechanism itself is now water-cooled and air-blown. A serious competitor has also arrived in the Xenon lamp which produces a high-intensity light from an arc contained in an evacuated bulb. The life of the bulb is in the region of 300 hours, and its generated heat is much lower than that from a carbon arc. The lamp is readily automated. So far, widespread adoption of the Xenon lamp in the larger theatres has been delayed while development of very high-powered Xenons proceeds. To be continued.
PART TWO

This month's series of "Bonanza Board" projects follows similar lines to those published last month. For readers who did not see last month's Practical Electronics, let us briefly go over some of the salient features of this interesting exercise.

BASIC THEME

Each of the "Bonanza Board" projects described uses a basic theme on which is built a number of different circuits. One common pattern of printed circuit board is used for each, with link wires added as required (see Fig. 1). The pattern of this board will be found at the beginning of each "Bonanza Board" article, together with a code number relating to each project. The complete list of projects will be found at the foot of this page.

It is, of course, helpful to the reader to refer back to last month's issue, to familiarise himself with the techniques involved in producing the basic printed circuit board, which incidentally is only 2in square. This board is reproduced (right) so that readers can make a fresh start if they wish.

PRINTED CIRCUIT BOARD

A printed circuit kit can be obtained from one of the many component stockists advertising in this journal; the board and chemicals are usually supplied in the kit. Full constructional step-by-step details with photographs were published last month in the article "Printed Circuit Techniques".

It should be stressed again that the chemicals can be harmful to the skin; rubber gloves should be worn. It can be dangerous to the eyes; wear goggles if possible.

If each board is made with the same pattern of copper, it is a simple matter to alter the components of one circuit to make another. Soldering the components on the board is a simple operation if a hot iron is used and is only allowed to remain in contact with the copper and component wires for long enough to make good electrical joints. Use a heat shunt wherever possible (a pair of pliers will do) especially on transistors and diodes.

Last month's projects included a Pre-amplifier and Treble Booster, a Driver Amplifier, an A.M. Radio Tuner, and a Guitar Practice Adaptor.

Look for these projects:

THIS MONTH

BB5 Wide Range Harmonic Oscillator and Metronome, page 251
BB6 Bistable Trigger Circuit, page 253
BB7 Regenerative Coincidence Detector, page 282
BB8 Ultrasonic Sawtooth Oscillator, page 283
BB9 Envelope Amplifier, page 296
PLUS Guitar Sound Effects Unit, page 254
Audio Power Booster, page 284
Vocal Sound Effects Unit, page 299
WIDE RANGE HARMONIC OSCILLATOR and METRONOME

This circuit will generate harmonics which will cover the entire audible frequency range. The presence of such harmonics will be found in two basic waveforms: the sawtooth waveform contains even harmonics; the square wave or pulse contains odd harmonics. The frequency of each waveform is, in fact, the fundamental frequency relating to these harmonics.

The oscillator is suitable for providing musical tones and sound effects. The output from either SK1 or SK2 can be amplified by connecting to SK1 of the “Simple Pre-amplifier” described in last month’s issue. The circuit is shown in Fig. 1. It is recommended that high stability type resistors should be used for R2, R3, and R4, although ordinary 10 per cent carbon resistors will give an adequate performance.

MAKE

The layout of components is shown in Fig. 2; link wires are used at positions B, C, and D. Most of the components are mounted on the printed circuit board, but the potentiometer VR1 is mounted on a suitable sized housing and connected to the base of TR1 and emitter of TR2 by short flexible wires. The wiper (centre tag) and only one of the outer tags of VR1 are used. Similar sockets SK1 and SK2 are mounted on the box and connected to R1 and R6 respectively by short lengths of screened wire or coaxial cable.

CHECK

When the unit is completed and the wiring checked, VR1 should initially be set to maximum. Monitor each of the outputs by connecting a crystal earpiece or oscilloscope to SK1, then SK2.

Connect the battery BY1 and listen for a low pitched buzz in the earpiece or appropriate waveform (as shown in Fig. 1) on the oscilloscope. Slowly rotate the spindle of VR1: the pitch of the tone should change, according to the setting of VR1. If this change in pitch does not take place check the connections to VR1.

USE

The sawtooth output is the most suitable for sound effects, being a little less harsh than the pulse output.

continued on page 261
This is this eighth of a series of short articles illustrating some of the many uses of neon lamps. The neons employed are all miniature wire-ended types as shown above.

Two examples which are ideally suited to these applications are those supplied by Radiospares (striking voltage 65 volts), and the Hivac type 3L general purpose neons. The latter type requires a striking voltage of 80 volts and maintaining voltage of 60 volts.

Some neon indicators have a resistor wired in series with one of the neon wires to make them suitable for mains voltages. These would normally be unsuitable for the circuits described unless the resistor is removed or short-circuited.

MULTI-PURPOSE TEST UNIT

by R. Bebbington, GRAD., I.E.R.E.

This simple unit was primarily devised as a capacitor tester. A batch of capacitors was needed for an application that required low leakage. With this circuit a leakage having an equivalent resistance of 40 megohms causes the neon to glow faintly, whilst higher leakages (lower resistances) cause the neon to glow correspondingly brighter. Capacitors over the range of 0-001µF to 1µF were tested and the really good ones caused the neon to flash once when connected.

The circuit may also be used for insulation testing. The intensity of the neon's glow will give a rough idea of the degree of insulation: the better the insulation the fainter the glow and vice versa. A few comparison checks using known values of resistance will serve as a means of checking the actual value.

So far the tests have only needed the simplest of circuits: a neon, a battery and a resistor, in series with the component to be tested. However, the addition of a single-pole 4-way switch, a resistor and two capacitors extends its use considerably. The functions of the four switch positions are:

1. Audio Oscillator.
2. Capacitor and Insulation Tester.
3. Mains Tester.
4. 65V Neon (direct connection).

The audio oscillator is useful for fault finding in audio circuits. The frequency may be varied by either changing the value of the capacitor C1 across the neon, or by inserting a resistor across the test leads, which otherwise should be shorted together to form one oscillator output lead.

Switch position 3 connects the neon in series with a limiting resistor R2 and provides a simple method of identifying the "live" mains lead, or whether an a.c./d.c. radio chassis has been connected properly. The chassis should not be connected to the mains "live" lead. Do ensure however that the test leads and prods are well insulated to avoid shocks. The neon will light when connected between "line" and "earth" but not between neutral and earth.

Switch position 4 isolates the neon from d.c. via C2, except for the small charge left in C1. The neon can therefore be connected to any external circuit. Remember, however that it strikes at about 60–70 volts and this potential should not be exceeded without a limiting resistor in series.
Low power trigger circuits hold a well deserved position as one of the most useful types of "building block" in modern electronics, especially in pulse coded transmission techniques.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 330Ω</td>
<td>R3 2.2kΩ</td>
<td></td>
</tr>
<tr>
<td>R2 3.3kΩ</td>
<td>R4 1kΩ</td>
<td></td>
</tr>
<tr>
<td>All 10% 1/2 watt carbon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1 20kΩ linear carbon or wire wound</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 40μF elect. 12V</td>
<td></td>
</tr>
<tr>
<td>C2 100μF elect. 15V</td>
<td></td>
</tr>
<tr>
<td>C3 100μF elect. 15V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1 MAT101 (\text{Sinclair})</td>
<td></td>
</tr>
<tr>
<td>TR2 MAT120</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1 9 volt light duty</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed circuit board (see text)</td>
<td></td>
</tr>
<tr>
<td>Battery connectors (if required)</td>
<td></td>
</tr>
<tr>
<td>P.V.C. covered wire</td>
<td></td>
</tr>
</tbody>
</table>

TRIGGER CIRCUIT

Although this particular circuit has little use on its own, this article shows the construction of the individual unit, which will be incorporated in the "Guitar Sound Effects Unit" described later. Fig. 1 shows the circuit diagram of a simplified trigger circuit or bistable amplifier. It is built on the same pattern of printed circuit board as in all the other "Bonanza Board" projects. A full size drawing of the copper pattern is shown on page 250.

The layout of components is shown in Fig. 2; links A and C are used. The potentiometer VR1 is not mounted on the board but, since the unit is to be built into a larger box later, the leads to VR1 can be soldered as shown in Fig. 2. Each wire can be left about 6in long and connected to VR1 later. Similarly the output and input leads should be left for subsequent connection to another units.
GUITAR SOUND EFFECTS UNIT

The sound effects unit described in this article is made up from a combination of two "Bonanza Boards" with additional switching and a filter circuit. It can be used with melody lines, where only one note is played at a time. An organ-like tone can be produced; if a tremolo arm or vibrato unit is incorporated with the guitar and power amplifier these effects may be made to fluctuate in pitch. The sound effects unit has been designed to offer three effects or changes of "sound" by using a switch.

(a) pre-amplifier for extra gain.
(b) treble booster for extra "tops".
(c) "fractured" sound.

A well known "pop" guitar group produces a sound similar to that made by this guitar sound effects unit, although the method of producing this sound is not exactly the same. By introducing a degree of inter-modulation and "switching noise" this unit will produce a "fractured" sound. There is no need to use any other special equipment apart from an electric guitar and guitar amplifier.

The basis of the device described here is the simplified trigger circuit, which converts the guitar signals to square waves. The filter circuit removes some unwanted harmonics, although interesting effects can be obtained if this is replaced by a 270 kilohm resistor connected across the output of the trigger circuit.

The basic idea is open to amendment or elaboration, by extending the switching to cover further combinations of the pre-amplifier and treble booster with the trigger circuit, and variations on the filter unit described later.

Each switched channel has its own volume control (VR1, VR2, or VR3) with a master to control the whole output (Fig. 1). Thus each channel can be quickly set up, before being switched into use, without upsetting the other two.

MODIFY BB1

The guitar pick-up is connected to the input of the "Pre-amplifier and Treble Booster" unit described in BB1 last month. Both outputs of this unit are used as shown in Fig. 1. The modification to the emitter circuit of TR2 can be carried out (according to last month's article) if selective stepped treble boost is required; otherwise the plain pre-amplifier can be used. In the latter case C4 should be changed to 10μF; "output 2" is connected to a 100μF capacitor C4g via a switch S1b as shown in the diagram of the sound effects unit (Fig. 1 below). This will provide a simple treble boost of only one fixed amount when S1 is operated. VR1 on BB1 can be omitted if desired as can SK2, SK3, and BY1.

TRIGGER AND FILTER

There is no modification necessary to the trigger circuit, which is described on page 253 of this issue. However, the wiring of its flying leads should be carried out according to Fig. 1 below.

The filter unit is a simple passive circuit which need not be built up on a board as the components can be self-supporting. However, component board assembly is neater and facilitates changing the components for different values. The circuit diagram of the filter unit is shown in Fig. 1 and is a basic treble cut circuit. Fig. 2 shows how the filter can be assembled on a small piece of laminated wiring board (Veroboard). The copper strips run horizontally; no breaks need be made in these strips. The filter is used to "kill" unwanted harmonics.

![Fig. 2. Layout of the filter components on a piece of Veroboard. The copper strips run horizontally. No breaks are necessary](image-url)
LAFAYETTE HA-35 COMMUNICATION RECEIVER

7 valves plus Rectifier. 4 Bands. 550 kc/a.
- 70 Mhz. 80 M Hz.-AM-X. A.M. Stand.

LAFAYETTE HA-320 AMATEUR COMMUNICATIONS RECEIVER

Supersedes model B5-30. 8 valves + rectifier. Continuous coverage on 5 bands. 550 kilocycles.

MAIN LONDON AGENTS FOR CODAR EQUIPMENT

CR20A Communication Receiver $10 10 0
CR20B Power Pack 31.5
RQ-16-1 Q Multiplier $6 15 0
A.T.S. Ametor TX $18 10 0

Full details on request.

SINCLAIR TRANSISTOR AMPLIFIERS

TRANSPORTED TWO-WAY TELEPHONE EEGRO

MAGNOVAX 363 TAPE DECKS

CHAMOIS PADDLED M/C HEADPHONES

CAMBRIDGE UNINIPOT GAVLOS

AMERICAN TAPE

First grade quality American tapes. Brand new and guaranteed. Directions for quantities.

36, 200-1, P. T. acetate. 4/12.
32J, 200-1, P. T. mylar. 12/12.
32J, 600-1, P. T. mylar. 10/10.
525, 600-1, P. T. ind. plastic. 12/12.
525, 600-1, P. T. ind. rubber. 10/10.
525, 800-1, P. T. ind. rubber. 12/12.
751, 800-1, P. T. acetate. 12/12.
751, 800-1, L. S. acetate. 12/12.
751, 800-1, L. S. ind. plastic. 12/12.
751, 800-1, L. S. ind. rubber. 12/12.
751, 800-1, L. S. mylar. 12/12.
751, 200-1, L. S. mylar. 12/12.
751, 200-1, D. S. mylar. 12/12.
751, 200-1, D. S. ind. plastic. 12/12.
751, 200-1, D. S. ind. rubber. 12/12.
751, 200-1, D. S. acetate. 12/12.

Postage 2/6. Over $2 post paid.

CALLERS WELCOME!

Open 9 a.m. to 6 p.m. every Monday to Saturday. Trade supplied.

LAFAYETTE HA-48 COMMUNICATION RECEIVER

12 transistors + Rectifier. 4 Bands. 550 kilocycles.
- 70 M Hz. 80 M Hz.-AM-X. A.M. Stand.

LAFAYETTE HA-55 AIRCRAFT RECEIVER

Full details on request.

TEST EQUIPMENT

PORTABLE OSCILLOSCOPE CT.01

A compact (8" x 6" x 1") dual purpose v. 7/8
Mullard DU 8/2 2BT. For operation on 240/240 v.

OS/BU OSCILLOSCOPES

High quality Portable American Oscilloscope. $ 99.
- 7/8 3 e.g. 6 kc. Amp. 6.000 kc. Y. Amp. 0.6 M Hz. Power requirements 150-255 $.

OS/BU 10 DOUBLE BEAM OSCILLOSCOPE

Time base 2 c.p. 20 kc. Calibrators at 100 kc. and 1 M Hz. Separate Y1 and Y2 amplifiers up to 2.5 M Hz. Operation 110/220 volt A.C. Supplied in perfect working order. $275/20. Carriage free.

ERKINE TYPE 11 DOUBLE BEAM OSCILLOSCOPE

2-Channel (6" x 6") dual purpose v. 7/8
Mullard DU 8/2 2BT. For operation on 240/240 v.

OS/BU OSCILLOSCOPES

High quality Portable American Oscilloscope. $ 99.
- 7/8 3 e.g. 6 kc. Amp. 6.000 kc. Y. Amp. 0.6 M Hz. Power requirements 150-255 $.

OS/BU 10 DOUBLE BEAM OSCILLOSCOPE

Time base 2 c.p. 20 kc. Calibrators at 100 kc. and 1 M Hz. Separate Y1 and Y2 amplifiers up to 2.5 M Hz. Operation 110/220 volt A.C. Supplied in perfect working order. $275/20. Carriage free.

ERKINE TYPE 11 DOUBLE BEAM OSCILLOSCOPE

2-Channel (6" x 6") dual purpose v. 7/8
Mullard DU 8/2 2BT. For operation on 240/240 v.

OS/BU OSCILLOSCOPES

High quality Portable American Oscilloscope. $ 99.
- 7/8 3 e.g. 6 kc. Amp. 6.000 kc. Y. Amp. 0.6 M Hz. Power requirements 150-255 $.

OS/BU 10 DOUBLE BEAM OSCILLOSCOPE

Time base 2 c.p. 20 kc. Calibrators at 100 kc. and 1 M Hz. Separate Y1 and Y2 amplifiers up to 2.5 M Hz. Operation 110/220 volt A.C. Supplied in perfect working order. $275/20. Carriage free.

ERKINE TYPE 11 DOUBLE BEAM OSCILLOSCOPE

2-Channel (6" x 6") dual purpose v. 7/8
Mullard DU 8/2 2BT. For operation on 240/240 v.

OS/BU OSCILLOSCOPES

High quality Portable American Oscilloscope. $ 99.
- 7/8 3 e.g. 6 kc. Amp. 6.000 kc. Y. Amp. 0.6 M Hz. Power requirements 150-255 $.

OS/BU 10 DOUBLE BEAM OSCILLOSCOPE

Time base 2 c.p. 20 kc. Calibrators at 100 kc. and 1 M Hz. Separate Y1 and Y2 amplifiers up to 2.5 M Hz. Operation 110/220 volt A.C. Supplied in perfect working order. $275/20. Carriage free.
7 VALVE AM/FM RADIOGRAM CHASSIS

New 1965 Model Now Available

L.P. RECORDING TAPE BARGAIN

By leading British manufacturers—

PROFESSIONAL GRADE—DOUBLED-SIDED

(12 x 1/2in. spool only. SPECIAL PRICE Offer 1,450 feet 20/- (2 reels))

Ideal for the experimenter who wants to record both sides, and a good L.P. Tape for the enthusiast who wishes to record sound only.

CO-AX 80 ohm CABLE

High grade low loss Coaxial Aerial Spaced Polyethylene Jn. Slm. Stranded Cond. Now only 6d. yard

BARGAIN PRICES SPECIAL LENGTHS

20 yds. 6d. unr. 40 yds. 15d., 40 yds. unr. 15d. 40 yds. unr. 20d. Conn. Plugs 1/2. Locs. 1/2. Couplers 1/2.

CO-AX 80 ohm CABLE

High grade low loss Coaxial Aerial Spaced Polyethylene Jn. Slm. Stranded Cond. Now only 6d. yard

BARGAIN PRICES SPECIAL LENGTHS

20 yds. 6d. unr. 40 yds. 15d., 40 yds. unr. 15d. 40 yds. unr. 20d. Conn. Plugs 1/2. Locs. 1/2. Couplers 1/2.

CO-AX 80 ohm CABLE

High grade low loss Coaxial Aerial Spaced Polyethylene Jn. Slm. Stranded Cond. Now only 6d. yard

BARGAIN PRICES SPECIAL LENGTHS

20 yds. 6d. unr. 40 yds. 15d., 40 yds. unr. 15d. 40 yds. unr. 20d. Conn. Plugs 1/2. Locs. 1/2. Couplers 1/2.
The pre-amplifier, trigger circuit, and filter can be assembled in a metal box 6in × 4in × 2¼in; an aluminium chassis would suit very well. Insulating backing boards should be fitted to the underside of all wiring boards. These can be thin s.r.b.p. sheet. The insulating board and printed circuit board are screwed together to wooden blocks glued on the inside of the box.

TRY IT OUT
When the construction is complete and all wiring checked, connect the guitar to the input. The output can either be connected to a guitar amplifier or, for monitoring only, a crystal earpiece. All volume controls should be set about half way. S1 is set to the “straight amplifier” position first to make sure a reasonable sound is heard from the guitar, via the pre-amplifier. Switch on S2.

Next switch S1 to “treble boost” and check for the appropriate change in sound quality. Now switch S1 to “fractured sound”. Without plucking any strings slowly rotate the spindle of VR1 (trigger circuit) until a click is heard in the earpiece. Two positions will be found to provide this click between which the guitar sound will be heard through the earpiece, but with a rather unusual tone. If not, careful adjustment of VR1 should give the required results. Once VR1 has been set up it should not need any further adjustment. It would be best if it was made a preset control with a screwdriver slot instead of a knob.

Now, turn down all volume controls on the unit (i.e. VR2, 3, 4, and 5) and on the guitar amplifier (if used). With S1 set in each appropriate position adjust the volume controls to provide a balanced output. VR5 will be the master control which will control the sound from the other three by a proportional amount.

A different kind of effect can be obtained if the value of R3 in the trigger circuit is changed to 3·3 kilohms. The circuit will no longer give the “fractured” trigger action, but will alternate from one state to the other. A simple modification can be made so that the two values of resistance can be selected by another 2-way switch.
PART THIRTEEN

by R. A. DARLEY

LAST MONTH we dealt with the basic principles of timer counter instruments. This month’s article is the last of the series in which mathematical circuits, both passive and active, are described.

COMPUTERS AND ELECTRONIC “BRAINS”

Computers fall into two distinct types, digital and analogue. Digital computers generally work on the basis of a binary code and employ many of the circuits and principles already outlined in parts 10, 11, and 12 of this series. They are capable of giving results to a high order of accuracy, and are very complex and expensive.

Analogue computers, on the other hand, are rather like electronic slide rules, with typical accuracies of about 2 per cent. In principle, the main difference between an analogue computer and a slide rule is that, on the slide rule, numbers are represented by the difference in distances between the scale markings, whereas in the analogue computer the numbers are represented by voltages, currents, resistances, or some other electrical quantities.

Electronic “brains” are computers with memory and logic circuits. The “memory” may take the form of a magnetic recording tape or it may be a system of electromagnetic matrices for storing “bits” of information.

The principles of storing “bits” of information in the memory are perfectly simple. A very crude example of a “memory” is an ordinary light switch; this is just a “two-state” device, which will switch the light “on” or “off”. Any piece of information, no matter how complex, can be stored or “remembered” in coded form by a series of “two-state” circuits. The diagram shown in Fig. 11.2 (Part 11 of this series) shows just one of the many ways in which a circuit can be made to “remember” any one of ten alternative “bits” of information.

“Logic” circuits may be used to decipher the coded memory circuits, and Figs. 11.3a and 11.4a (Part 11) show two of the logic circuits that might be used. These again are perfectly simple circuits. There is a rather unfortunate tendency amongst many people to imagine that electronic “brains” are some sort of near mystical wonder, which can be understood only by our most brilliant scientists. Such notions are far from the truth, and electronic “brains” are, in principle, basically simple devices.

We shall now deal with specific circuits for carrying out mathematical functions, giving particular attention to circuits that are suited to use in analogue computers.

ADDITION AND SUBTRACTION CIRCUITS

Addition can be carried out in a number of ways; Fig. 13.1a shows the simplest method of carrying out this function, using passive elements. If, say, 1 volt is connected to input 1, and the values of the resistors are as shown, a current flows through R1 and R5. Since these two resistors form a voltage divider network, 0.1 volt is available at the output. If 1 volt is also connected to input 2, a current will flow through R2 and R5, of such a value that, if input 1 is disconnected, 0.1 volt would be available at the output. Thus, each input causes a current to flow in R5, and the output voltage is a function of the sum of these currents. The output would be 0.2 volts for two like input voltages. Similarly, no matter how many inputs are connected, the output voltage is a function of the sum of the input voltages provided all input resistors are of equal value.

If the circuit is required to give an output that is directly equal to the sum of the inputs, it can be modified by adding an amplifier to the output of the passive network, as shown in Fig. 13.1b, the amplifier having negative feedback applied from its output to its input to stabilise its gain. The gain should be made equal to the attenuation factor of the combined input passive network.

Fig. 13.1c shows the equivalent circuit of the passive network as seen between any two input terminals, one with an input signal of 1 volt connected, and the other with no input signal connected.

The input signals must be fed from some particular source impedance, and this should be low compared to the input impedance of the adding circuit; a source impedance Z_s of 100 ohms is shown in the diagram. Thus, when 1 volt is connected to input 1, 0.1 volt appears at the output across R5, ignoring the shunting effect of R2 and R7. This output voltage is connected across R2 and Z_o, which act as a potential divider network, and approximately 1.1 mV appears across input 2. Thus, a certain amount of interaction takes place between the input signals, detracting from the accuracy of the unit. Generally, the greater the attenuation factor of the network and the lower the source resistance, the less interaction will there be between inputs and the more accurate will be the readings.

This passive adding network can also be used for subtraction, by simply reversing the polarity of the input signal that is to be subtracted.

The network can be used with either a.c. or d.c. inputs; for a.c. work, the resistive elements may be replaced by inductive or capacitive components.
Fig. 13.1a. Passive adding circuit. The output is proportional to the sum of the inputs.

Fig. 13.1b. By adding an amplifier with gain equal to the attenuation factor of the passive network, the output is made equal to the sum of the inputs.

Fig. 13.1c. Effective circuit between input 1 and input 2 of the arrangement shown in Fig. 13.1a. Z_0 is the source impedance of each input.

Fig. 13.2. Two transformers wired in series can be used for addition if the inputs are in phase, or for subtraction if 180 degrees out of phase. The dots indicate in-phase connection.

Fig. 13.3. Long-tailed pair circuit may be used for either subtraction or addition according to the phase of the two inputs.
without in any way changing the principles of operation, but making it possible to operate at high frequencies.

The passive network, using resistive components, is widely used as a mixer in audio frequency circuits.

Addition and subtraction of a.c. signals can also be carried out using transformers wired in series, as shown in Fig. 13.2, the inputs being in-phase for addition and in anti-phase for subtraction.

Again, the long-tailed pair circuit, shown in Fig. 13.3, can be used for the addition of two inputs, either a.c. or d.c. Basically, the circuit is a "difference amplifier", there being two input terminals, one to the base of TR1 and the other to the base of TR2, the output signal being a function of the difference between the two inputs; thus, subtraction functions are naturally carried out. By reversing the phase of one of the inputs, the circuit is made to subtract a negative value, which is the same as adding a positive one. This circuit was dealt with in detail in Part 5 of this series.

MULTIPLICATION

Multiplication can be carried out in any one of a number of ways. A step-up transformer may be used to carry out this function, one number being represented by a suitable signal connected to the primary input, and the second number being represented by a suitable tapping point on the secondary, as shown in Fig. 13.4a, the output signal then being proportional to the product of the two numbers. Again, a simple calibrated potential divider can be used to carry out multiplication functions, as shown in Fig. 13.4b. This is, in fact, a divider circuit, but division and multiplication are, after all, interchangeable functions as long as the position of the decimal points is known. The potential divider should be calibrated inversely, as shown.

An amplifier that has its gain closely controlled by negative feedback may also be used to carry out multiplication, the input signal level being made to represent one number and the gain of the amplifier another. The output signal level is then proportional to the product of the two numbers.

The most popular way of carrying out multiplication involves, as in the case of the slide rule, the addition of logarithms of the relevant numbers. Fig. 13.5a shows one method that may be used; VR1 and VR2 are log. potentiometers, calibrated with a linear scale from 0 to 10 to correspond with the log. of those numbers. The readout system employs an ohmmeter to measure the total resistance of the circuit in use by the two potentiometers in series, the scale being calibrated so as to convert the log. values back to real numbers.

Alternatively, regulated voltage supplies may be connected across two log. potentiometers wired in parallel. The resulting log. voltages available at the two outputs are added in a passive network, the sum of the two voltages, and thus the product of the two input numbers, being indicated on a moving coil meter.

In some cases it may not be required that the two input numerals be set manually, but that they should be set automatically. For example, an electronic circuit may have two outputs, one giving an output voltage that rises proportional to the magnitude of the number, the other rising proportional to the increment. A control signal may be required that is proportional to the product of the two signals. In this case, the fact that some diodes exhibit approximately logarithmic forward characteristics with applied voltage can be made use of, as shown in Fig. 13.5b. Resistor R1 is
wired in series with the diode, the two components forming a potential divider network across which the input voltage is applied. The logarithmic output voltage would be taken from across the diode and fed to the input of a passive adding network, which would automatically give an output voltage that is proportional to the product of the two input signals once it has been reconverted in an antilog circuit.

Another circuit that may be used in an analogue computer to carry out multiplication is the simple Wheatstone bridge, shown in Fig. 13.6. An a.c. or d.c. energising source can be used, and a moving coil meter or head-phones used as a balance indicator. At balance $R_1 \times R_4 = R_2 \times R_3$, which is the same as saying that $R_1/R_2 = R_3/R_4$. To use the circuit for multiplication, R_1, R_2, and R_4 can be calibrated potentiometers with linear scales, and R_3 can be represented by a series of switched decade resistors. To find the product of two numbers, one number is set up on R_1 and the other is set up on R_4; the bridge is then balanced by adjusting R_2 and R_3 for balance and the result read off on R_2. The position of the decimal point is determined by estimation, as in the case of a slide rule.

DIVISION

Many of the techniques that are used for multiplication can also be used for division, either directly or with some slight modification. The transformer system can be used by employing a step-down, instead of step-up transformer. The potential divider system can be used directly for division.

Instead of using an amplifier, as for multiplication, an input can be fed through an attenuator, the amplitude of the input signal being made to represent the number that is to be divided, and the attenuation factor equalling the number by which it is to be divided.

The two numbers that are to be divided can be converted into log. form and the resulting signals subtracted and converted back into decimal form in an antilog circuit to give the required results.

Again, the Wheatstone bridge circuit can be used to give the result of dividing one quantity into another. In this case, the numerator is set up on R_1 and the denominator is set up on R_2. The bridge is then balanced by adjusting R_3, which should be a calibrated linear potentiometer, and R_4, which could be a series of switch selected decade resistors. The result is then read out by R_3, the decimal point being established by estimation. Note that the same bridge can be used for both multiplication and division by using a switch to transpose the positions of R_3 and R_4 to suit the particular mode of operation.

SQUARING AND OTHER CIRCUITS

To square a number, it is simply multiplied by itself. Thus, almost any of the circuits that are used for multiplication can be adapted as "square" resolving circuits. Alternatively, some transistors, that have characteristics approximating to the square law can be used to give the square of a number more directly.

By suitably arranging electronic components, almost any mathematical function can be carried out fairly simply. Circuits can be devised to resolve square roots, to integrate or differentiate with little difficulty, and many of these functions can be carried out by using an analogue computer. Strictly numerical calculations, as opposed to quantitative calculations, are performed by a digital computer.

WIDE RANGE HARMONIC OSCILLATOR

continued from page 251

The "colouring" of this tone can be altered by using suitable filter networks in the output. These filters reduce certain harmonics according to their circuit component values. More details are given in the article "Guitar Sound Effects Unit".

The pulse output can be used as a signal injector for testing amplifiers. Some radio control enthusiasts consider pulse modulation of the transmitter signal to be superior to sine wave modulation, especially where the receiver uses LC tuned circuits instead of reed banks. A pulse can be used with an amplifier and transducer as a source of sound waves for the Kundt's "tube experiment" to determine the speed of sound.

METRONOME

With minor alterations to the circuit this unit can be converted to a metronome. The following modifications will be necessary:

(a) Remove C_3 and insert in its place a capacitor $8\mu F$, with the positive end connected to TR1 base.

(b) C_1 and R_1 can be omitted altogether as only "output 2" is required.

Almost any type of audio frequency transistors can be used although the MAT 101 and MAT 120 are quite suitable.

Using a crystal earpiece or audio amplifier connected to "output 2" a regular beat will be heard. The frequency, or time interval between beats, can be controlled as before by $V R_1$.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th>R_1 470 kΩ</th>
<th>R_2 22 kΩ</th>
<th>R_3 3.3 kΩ</th>
<th>R_4 1 kΩ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitors</td>
<td>C_1 0.047 μF polyester</td>
<td>C_2 100 μF elect. 15 V</td>
<td>C_3 0.047 μF polyester</td>
<td>C_4 40 μF elect. 12 V</td>
</tr>
<tr>
<td>Transistors</td>
<td>TR1 MAT 101</td>
<td>TR2 MAT 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>BY1 9 volt light duty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Printed circuit board (see text)</td>
<td>Switch, single-pole, on/off (optional) for battery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion to Metronome</td>
<td>Change C_3 to 8 μF elect. 12V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete C_1, R_1, and SK_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 261
Until comparatively recently, most model radio control receivers have been of the super-regenerative type, based originally on a single "hard" valve (triode). Later on a gas filled valve (thyatron) was used, then a combination of a "hard" valve detector circuit plus a transistor amplifier and more recently the all-transistor receiver. The superheterodyne receiver has appeared as a practical proposition with the advantage of superior selectivity, the only real disadvantages being the bulk and cost of the additional mixing stage. Very little use has been made of the t.r.f. receiver largely because the ideal amount of amplification cannot be realised without the risk of amplified noise interfering with consistent operation. Such t.r.f. receivers that have proved workable have had a strictly limited practical range.

Super-Regen

Although it is a simple practical circuit, the operation of the super-regen receiver is actually quite complex. Basically, it uses a simple oscillator circuit which is tuned to be just on the point of oscillation. In this condition it is very sensitive to small voltages applied from the aerial tuning coil, and the resulting change from non-oscillating to oscillating state is accompanied by a marked fall in anode current. This current change is great enough to operate a sensitive relay in the anode circuit.

Oscillations are controlled or suppressed in bursts at a predetermined "quench" frequency, either by the use of a second quencher oscillator injected in the first stage or by making the original oscillator capable of acting as its own quencher oscillator (i.e. self-quenching). This can be done by coupling the grid in such a manner that the fundamental oscillation gives rise to its own intermittent suppression. The particular virtue of quench control is that the quench can be increased to a point at which the receiver will not oscillate, unless the oscillation is started and continuously boosted by an incoming signal of the same fundamental frequency, and hence acts as a sensitivity control.

A typical basic circuit is shown in Fig. 3.1. The grid/anode coil L2 is split at its centre with the inner ends connected to a transformer (quench coil L1). Oscillation is initiated in the r.f. circuit and immediately quenched by L1, the quench frequency being determined by the values of L1 and C1. Signal voltage is applied directly to L2b from the aerial. The relay in the anode h.t. circuit provides an on-off switch (via its contacts) controlling the external actuator circuit and is simply adjusted to operate just below the maximum anode current and drop out above the minimum anode current. Current change is typically of the order of 1 to 2 milliamperes, calling for the use of a sensitive relay and precise adjustment of differential. The larger the current change the less critical the relay operation becomes, and thus the less critical the relay performance and adjustment will be.

The main disadvantage of such a circuit is that sensitivity is affected by falling voltage (particularly the l.t. battery voltage). Also within the limitations of a single-valve circuit a greater anode current change can only be produced by an increase in h.t. battery voltage, calling for a more expensive and bulkier battery and making the receiver more expensive to operate.

Up to 90 volts h.t. may be necessary with a single valve receiver to produce a satisfactory current change for reliable relay operation, the relay being a critical factor. If desired, a further "adjustment" may be provided in the form of a potentiometer inserted in the h.t. lead between the relay and the battery, enabling a satisfactory level of relay current to be established.
of Models

By R.H. WARRING

This also allows for some adjustment to compensate for falling h.t. battery voltage. The performance of the complete unit is only as good as that of the relay employed. Special lightweight relays are produced specifically for such circuits.

GAS FILLED TRIODE

A greater current change with lower h.t. voltages can be achieved with the use of a "soft" valve, for example, the subminiature XFG1 gas-filled triode. It is also possible with such a circuit to dispense with the separate coils for controlling the quench frequency, keeping the receiver permanently in a state of self-quenching super-regeneration. On receipt of a signal the strength of the oscillation in the receiver rises, thereby increasing the bias which reduces the anode current. The characteristics of soft valves (i.e. gas-filled types) are such that when ionisation of the gas breaks down the anode current drops sharply. Hence a relatively small signal strength can be made to produce a large change in anode current, provided the standing anode current lies just above the point of discontinuity. A potentiometer is usually provided in the anode circuit to adjust accordingly (see Fig. 3.2).

The soft valve receiver was very sensitive to changes in h.t. voltage, and the actual valve characteristics were affected by ageing. Although this could be compensated for by adjustment of the potentiometer, eventually the anode current will become too unstable or too low for satisfactory working at all, even with readjustment of component values. The particular virtue of this type of receiver was that it weighed only about one third as much as a hard valve receiver, giving an equivalent or better anode current change on a lower voltage h.t. Further improvements were also possible with an additional stage of amplification—see Fig. 3.3.
Variation on the circuit shown in Fig. 3.1, using a transistor amplifier to operate the relay

Its equivalent, in hard valve circuitry (but far more stable and reliable) employing a super-regen, hard valve detector, followed by a hard valve amplifier, was a bulky and heavy unit for model work. It did, however, have the specific advantage of making the relay operation less critical and thus the complete receiver unit was more reliable.

One of the most satisfactory two-valve arrangements used the first valve to bias off the second. Such a circuit had an inherently low idling current, usually of the order of only 0.2 to 0.3 milliamperes, falling to virtually zero on receipt of a signal. This change triggered the second valve which then passed a current of anything between 3 and 5 milliamperes for as long as the signal was held on.

TRANSISTOR AMPLIFIER

When suitable transistors became available a greater degree of miniaturisation was possible. Transistor amplifier stages could follow, a conventional valve type detector, or transistors could be used for all stages. Both basic types are used and have their own individual merits. The valve detector continues to score, generally, as regards stability under extreme weather conditions, high temperatures and varying battery voltages (i.e. overall operating stability). However, it requires a bulky h.t. battery, although this can be reduced to 22½ volts, typically, with transistor amplifier stages following, and a separate l.t. battery. The all-transistor circuit scores in being more compact and "solid state" (apart from the relay) and requires only a single low voltage battery.

One of the simplest circuits employing a valve detector followed by transistor amplification is shown in Fig. 3.4. This is basically nothing more than a single transistor stage added to the circuit of Fig. 3.1. The relay shown in Fig. 3.1 is reconnected as shown in Fig. 3.4. The immediate advantage is that the same current change (of the order of 3mA down to 1mA) can be obtained with the h.t. reduced to 22½ volts, thus affecting a substantial saving in battery weight and cost.

Yet a further extension of this basic circuit for carrier wave operation is to add two further stages of transistor amplification, when the current change is raised to a sufficient level to operate an actuator direct and dispense with the relay.

A well proven valve-transistor receiver for tone operation is shown in Fig. 3.5. This uses an XFY34 sub-miniature valve followed by three 2N217 transistors in simple circuitry. It is designed to respond to a 350-700c/s tone with 80-100 per cent modulation. The output load is a 5,000 ohm sensitive relay. The change in receiver current on receipt of the signal would be from about 0.6mA (idling) to approximately 4.5mA. A single tuning control only is employed (L1) to tune to the signal frequency.

This basic circuit has been used by individual constructors and commercial manufacturers, and probably represents the ultimate in basic practical requirements from a simple single-channel valve receiver. Its sensitivity is of the order of a few microvolts. It is still, however, a relatively bulky circuit and largely outdated by the all-transistor type of circuit.

The simplest possible type of transistor receiver can employ a semiconductor diode in place of a valve detector. Unfortunately a diode has only a fraction of the sensitivity of a valve used for the same purpose.
THERMOSTATS

Type "A" 1/2 amp. for controlling room heaters, greenhouses, airing cupboards. Has built-in adjustable thermostat quickly adjustable from 30°-50°F. 3/8", plus 1½-3 post. Suitable box for wall mounting 5½ x 3½ x 1/2 in.

Type "B" 1/2 amp. This is a 17½ in. long rod type spring loaded by the famous elastic Co. Springe adjusts this from 50-55°F, internal screw alter the length so it could be adjustable over 20-100°F. Suitable for controlling furnace, over kiln, immersion heater or to make flour-start or fire alarm. 3/8", plus 2½ post and insurance.

Type "C" is a small porcelain thermostat, fitted to electric blanket, etc. 3½" W. x 1½" H. 1½" D. and adjustable by screw through side. 3½", 6", plus 1½ post. 6½", 9", plus 2½ post. 9½", 12½", plus 3½ post.

Type "D" is the fleece thermostat. It is cute and adjustable at will on or out at around freezing point. 2½ amp. Has many uses, one of which would be to keep the loft pipes from freezing, if a length of our blanket wire (16 yds. 1½") is wound round the pipes. 7/8", 9/16", 11/16", plus 2½ post.

WALL MOUNTING THERMOSTAT

By halfwch, intended for use on control of central oil or gas or electric heaters indoors or a green house—adjustable over 40/80 complete with mounting screws. 2½, plus post 2½ (normal price is at least twice this).

TRANSISTOR BARGAIN

With carrying handle size 10½ x 8½ x 3½ Strongly made from best grade pine covered with two-tone fabric and bound with tape. Good quality, overall, good value for the money.

TRANSISTOR SET CASE

Very modern cream coloured, also 9½ x 8½ x 3½, with chrome handle, turning knob and socket. Price 4½, plus 3½ post and ins.

GANGED POTS

Standard type and size with good length of spindle—made by Marguette. Last price is 3½, 3½, 4½, 5½ and 6½. Quickly you can have them at 12½-1½, or just 1½ each if less than 50.

ARMCHAIR CONTROL UNIT

Remote Controller for Phillips and Conne C.T.V. sets, a self-contained unit, adaptable to all make, and to model control. Complete with three rock switches, two variable resistances and components including Mullard OA10B-1001015 way plug and 11 ft. 7 way cable, etc. Last price 4½, yours for only 19½, plus 2½ post and ins.

In the Dark

See in the Dark INFRA-RED BINOCULARS

These infra-red from a high voltage source will enable objects to be seen in the dark, providing the objects are given infra-red beam. Each eye tube contains a complete optical infra system as well as the infra cell. These optical systems can be used as lens for TV cameras—light cells, etc. (details supplied).

Binoculars formed from the Army night driving (Tebby) equipment. They are designed and used to be in good working order, but sold without guarantees. Price 40/15, plus 15½ carriage and insurance. Handbook 2½.

AMPLIFIER BARGAIN—NOT BEATABLE

750 mW TRANSISTOR AMPLIFIER

AMPLIFIER includes two in push-pull—amplification in crystal or magnetic microphone or pick-up—feed back loops—sensitivity 3 mV. Price 12½.

Post and ins. 2½.

SOUND POWERED TELEPHONES

These require no batteries, in fact they have only to be connected by a piece of wire. They can thus be fitted into existing bell circuits. Results are excellent and the control and maintenance costs are nothing. Wall bracket included, 1½, each, 3½ post.

SPEAKER BARGAIN

Waterproof Heater Wire

16 yds. 1½ length, 75 watts, self-regulating temperature control, 10½ post free.

FOUR-STATION INTERCOM

Will save time and improve efficiency. Ideal for surgery, etc. Complete outfit comprises 1 master and two substations. Kit contains two-way flex, three substations and they plug into standard size garden frame, 12½, plus 2½ post and insurance.

FINE TUNERS

TUNER 50 with long scale as illustrated, 1½, or 1½-doz. Twin 50 and quite long scale, 2½, or 2½ doz.

OZONE OUTFIT

For removing musty and generally improving any oppressive atmosphere. Kit consists of Philips ozone lamp and mains unit, only needs box, 12½, plus 2½ post and insurance.

And when postage is not definitely stated as an extra then orders over £3 are post free. Below £3 add 1½.

ELECTRONICS (CROYDON) LIMITED

102/3 TAMWORTH ROAD, CROYDON, SURREY

266 LONDON ROAD, CROYDON, SURREY

(Opp. W. Croydon Station)

(Opp. ABC Cinema, West Croydon)

post orders to: Dept. PE, SPRINGFIELD ROAD, EASTBOURNE, SUSSEX
8 tips for practical soldering

NEW!

The Instant Heat Soldering Kit complete with tips, extension barrel, probe and solder.

Complete £3 19 6

Ask for a demonstration from your local dealer or fill in the coupon below for full details.

SEMICONDUCTOR PACKS AT SUPER-SAVE PRICES

TRANSISTORS FOR EXPERIMENTER, KIT BUILDER, HOBBYIST

50 MIXED UNTESTED TRANSISTORS. £10

"FREE" ONE 10/- PACK OF YOUR OWN CHOICE WITH ORDERS VALUED £4 (FOUR POUNDS) OR OVER

Burgess Products Co. Ltd.
Sapcote, Leicester.
Tel: Sapcote 292 Telex: 34549

SEMI-CO N DUC T ORS S P E CI AL IS T S

DAVIS & WHITWORTH LIMITED

SEMI-CO N DUC T OR SPECIALISTS

220-224 WEST ROAD

WESTCLIFF-ON-SEA, ESSEX

Tel.: SOUTHEND 46344
Range is normally only a few yards. Such a circuit is interesting to build as an experiment, however, and a typical circuit is given in Fig. 3.6. It should be workable at close range with any reasonable c.w. transmitter. VR1 is adjusted to suit individual transistors.

ALL-TRANSISTOR RECEIVERS

The ultimate success of the all-transistor type of receiver depends to a large extent on the degree of stabilisation as well as individual transistor characteristics. With transistor amplification it is fairly simple to add further stages of d.c. amplification to provide a final current change sufficiently high to operate an actuator direct.

Basically, whilst it is a perfectly practical proposition to produce an all-transistor receiver circuit for carrier wave operation, a tone receiver, although slightly more complicated in circuit design requirements, will generally be easier to tune and less likely to be affected by changes in transistor characteristics. There are advantages in employing a tone transmitter as noted in Part 2 last month. Thus, most of modern transistor receiver designs are based on tone operation. The same basic receivers, of course, then have the possibility of being extended to multiple-tone operation, for example, via a reed bank switching output.

The transistor circuit design shown in Fig. 3.7 lends itself to extreme miniaturisation. A typical commercial receiver of this type has been built on a printed circuit board \(1\frac{1}{2}\) in \(\times \) 1 in. An output current of up to 350mA is available for operating an actuator with an 8 ohm coil direct.

One of the main operating characteristics of the super-regen. receiver is very broad tuning. Although individually tuned to a specific transmitter frequency, such a receiver will normally pick up any other signals within, and even adjacent to, the 27 Mc/s band. Equally, most tone receivers will respond to superimposed tone frequencies between 200 and 1,000c/s, although performance may be rather more critical as regards percentage modulation of the carrier.

SUPERHET

The superheterodyne receiver overcomes this limitation by virtue of its extreme selectivity, albeit at a considerable complication of the additional front-end circuitry, and in alignment for initial setting up. Although individual superhet designs have appeared over the years, commercial production of this type of receiver is a very recent innovation and, in line with modern development, is invariably based on the all-transistor receiver of the "tone" type—see Fig. 3.8.
The i.f. normally chosen is between 450 and 475kc/s, 455kc/s being generally used in America and 470kc/s in this country. Receiver oscillator frequency is normally made lower than the signal frequency as this gives greater efficiency in the tuned circuits. After mixing, up to five stages of i.f. amplification may be used, although some circuits may be worked with only a single i.f. stage; although two i.f. stages are a more usual minimum.

Automatic gain control (a.g.c.) is more or less obligatory since the gain through the i.f. amplifiers is not self-limiting, and overloading can prevent operation of the receiver. The stronger the input signal from the transmitter the stronger the output from the i.f. coils. When using a transmitter with less than 100 per cent modulation, clipping and distortion takes place to the point of elimination of modulated or tone signals within the i.f. stages. This is particularly significant in the case of multi-channel receivers, which are basically similar in design to single-channel tone receivers. The function of a.g.c. is to limit the total overall gain, proportional to the strength of the input signal, by rectifying part of the i.f. signal at the last i.f. stage and presenting it as a d.c. bias to the first i.f. stage. Thus when the i.f. carrier reaches an excessive amplitude in the final i.f. stage, which could cause overloading and clipping, enough reverse bias is presented to the first i.f. to reduce its gain and control overall response.

For precise tuning the r.f. signal is controlled by a crystal; the transmitter and receiver are matched by the use of a matched crystal pair, tuned to frequencies differing precisely by the i.f. The degree of selectivity obtained depends to a large extent on the individual circuit designs involved. Simultaneous operation on at least five or six "spots" within the 29-96 to 27-28Mc/s band is usually possible, with up to thirteen different spot frequencies available and capable of being worked. Simultaneous operation, in this respect, means that this number of separate transmitter-receiver combinations can be operated simultaneously without interfering with one another.

The superhet-receiver, of course, is also not likely to be affected by spurious signals within the 27Mc/s band, unless these coincide exactly with, or embrace, the actual "spot" frequency of operation, and then only if present at a suitable strength. The superhet receiver is regarded as the preferred type for model radio control work because it is possible to operate more than one transmitter-receiver combination simultaneously with general freedom from interference. It is, however, considerably more expensive to produce than its super-regen. counterpart; and the additional cost is less justified in the case of single-channel receivers than multi-channel receivers.

References

1. Ivy AM carrier receiver (also produced in kit form by Macgregor Industries.)
2. Orbit single-channel tone receiver.
3. Otarion sub-miniature receiver.

Next month: Design aspects for single channel actuators
A remote indicator provides an invaluable aid in monitoring a child’s distress calls, when the parents are so engaged to be normally unaware of its discomfort. The alarm system described here can be adapted to form a communications link between any two rooms in the house. It is extremely sensitive, powerful, and of reasonable quality to make the calls intelligible.

Some baby alarms can be unreliable if the sensitivity is poor; this circuit overcomes this problem and, indeed, is so sensitive that sound many feet away can be picked up without difficulty.

HIGH GAIN

The circuit is, in essence, a three-stage audio amplifier providing a high gain output from a push-pull class B pair of transistors. A loudspeaker is used as a microphone connected to a 1:50 input transformer, which provides a voltage step-up and impedance matching to the input impedance of TR1. Resistors R1, R2, and R4 provide a stabilized bias to the transistor with C3 acting as an a.c. bypass.

The output from this stage is tapped off by the wiper of VR1, which serves as a sensitivity control, and fed to the base of TR2. This is the driver which supplies the signal to the output pair TR3 and TR4, via a phase splitting transformer T2. Both TR3 and TR4 must be matched to avoid undue distortion arising from differing current gains.

Overall negative feedback was not found necessary, as the degree of distortion was quite acceptable for the purpose intended. Also gain was considered of greater importance. If this distortion is unacceptable a negative feedback resistor (620 kilohms) can be connected between TR3 collector and TR2 base. This is shown dotted in Fig. 1. Output linearity and hence distortion will be improved at the expense of some gain.

Fig. 1. Circuit diagram of the complete baby alarm system
HEAT SINKS

It is recommended that heat sinks should be used on TR3 and TR4 to contribute to thermal stability. The transistors are fitted with copper cooling clips (obtainable from most component specialist shops), which are bolted to two pieces of 16 s.w.g. aluminium or copper measuring at least 7cm x 5cm.

In the prototype box, a piece of 16 s.w.g. aluminium was bent to a right-angle and screwed to the top in such a position that it was close to the transistors standing up on the component board. They are easily fastened to this heat sink.

The output transformer matches TR3 and TR4 to a 3 ohm loudspeaker. The other loudspeaker LS1, used as a microphone, is also a 3 ohm type, which is mounted separately in its own case, 7in x 4in x 3½in.

The amplifier, switch, and battery were housed in a box 8in x 4½in x 5in. The battery is held in place by a spring clip screwed to the box.

Single core screened microphone cable was used to connect LS1 to T1. No hum was apparent when a 25ft length was used on the prototype.

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 180kΩ</td>
</tr>
<tr>
<td>R2 33kΩ</td>
</tr>
<tr>
<td>R3 12kΩ</td>
</tr>
<tr>
<td>R4 3·3kΩ</td>
</tr>
<tr>
<td>R5 68kΩ</td>
</tr>
<tr>
<td>R6 12kΩ</td>
</tr>
<tr>
<td>All 10% ½ watt carbon, except R11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1 10kΩ log. carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 12µF elect. 25V</td>
</tr>
<tr>
<td>C2 100µF elect. 15V</td>
</tr>
<tr>
<td>C3 100µF elect. 15V</td>
</tr>
<tr>
<td>C4 2µF elect. 10V</td>
</tr>
<tr>
<td>C5 2µF elect. 10V</td>
</tr>
<tr>
<td>C6 100µF elect. 15V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 "Miniature" type output transformer 50:1 (Radiospares)</td>
</tr>
<tr>
<td>T2 Driver transformer (Repanco TT45)</td>
</tr>
<tr>
<td>T3 Output transformer (Repanco TT46)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 single-pole, on/off toggle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1 OC45 (Mullard)</td>
</tr>
<tr>
<td>TR2 OC81D</td>
</tr>
<tr>
<td>TR3 OC81</td>
</tr>
<tr>
<td>TR4 OC81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loudspeakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS1 3 ohms 2½in dia.</td>
</tr>
<tr>
<td>LS2 3 ohms 3½in dia.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1 9 volts (Vidor VT3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veroboard 3½in : 2½in, 0·15in pitch</td>
</tr>
<tr>
<td>Wood for amplifier case 4½in x ¾in x 2½in</td>
</tr>
<tr>
<td>Plywood front panel 8½in x 5½in</td>
</tr>
<tr>
<td>Wood for LS1 case</td>
</tr>
<tr>
<td>Cooling clips for TR3 and TR4</td>
</tr>
<tr>
<td>Copper or aluminium heat sinks (see text)</td>
</tr>
<tr>
<td>Expanded metal loudspeaker grille</td>
</tr>
</tbody>
</table>
RAIN SENSOR

by G.M. HARVEY

With this simple electronic device the clothes line can be left fully laden, without the housewife worrying about the possibility of rain. A rain sensor can be left in the garden; its two connecting wires lead to a flashing alarm in the house.

SENSOR CIRCUIT

The sensor is an arrangement of parallel thick wires, alternate wires being electrically connected together as shown in the photograph. If a raindrop is caught by two adjacent conductors of the sensor it forms a relatively low resistance path to d.c., which virtually connects TR1 base to VR1 wiper via R1.

VR1 acts as a sensitivity control which can be preset to provide the correct bias condition for TR1. The conductance of the raindrop and separation of the conductor wires on the sensor will determine the setting of VR1. Resistor R1 acts as a base current limiting resistor to prevent accidental damage to TR1 in the event of a dead short across the sensor wires.

The potentiometer is normally set so that maximum collector current is drawn when the input (base) circuit is complete; the transistor is said to be “bottomed.” This is about 6mA higher than the operating current of the relay RLA, so its action is immediate.

The diode D1 acts as a low resistance load, which suppresses high transient currents induced by the inductive load RLA. This will avoid undue damage to the transistor.

ALARM FLASHER

The relay’s operation closes RLA1 and connects the battery supply to a multivibrator circuit. The indicator lamps at the collector of TR3 are made to flash due to the interchange of cumulative action between the transistors TR2 and TR3. The flashing time is determined by C1 and R3, and C2 and R4. The time per cycle in this circuit is approximately 0.5 second but if required this can be altered by reducing the values of C1 and C2 for faster flashing. Two 6 volt lamps are connected in series and will have almost the whole battery voltage across them at the commencement of each cycle, due to the “bottoming” of TR3. If low current lamps are used (6V, 0.06A) the current drawn should be well within the maximum rating of TR3 collector.

Fig. 1. Circuit diagram of the rain sensor unit. The sensor wires are connected alternately together as shown in the photograph above.

271
COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th>(R_1 , 2-2k \Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(R_3 , 6-8k \Omega)</td>
</tr>
<tr>
<td></td>
<td>(R_2 , 1k \Omega)</td>
</tr>
<tr>
<td></td>
<td>(R_4 , 6-8k \Omega)</td>
</tr>
<tr>
<td>All resistors</td>
<td>10%, ½ watt, carbon</td>
</tr>
</tbody>
</table>

Potentiometer

| VR_1 | 1MΩ linear carbon |

Capacitors

| C_1 | 100μF elect. 25V |
| | C_2 | 100μF elect. 25V |

Transistors

| TR_1, TR_2, TR_3 | NKT 216 (3 off) (Newmarket) |

Diode

| D_1 | OA81 (Mullard) |

Relay

| RLA | 700Ω 12V Type MH2 |
| | (Keyswitch Relays Ltd.) |

Lamps

| LP_1, LP_2 | Panel lampholders, m.e.s. with bulbs, 6V, 0.06A, m.e.s. (2 off each) |

Battery

| BY_1 | 12V, made up from four 3 volt batteries (type 72, Ever Ready) |

Switch

| S_1 | Single pole, on/off, toggle switch |

Miscellaneous

| Veroboard 3½in x 2½in (or as required) |
| Wander plugs and sockets (2 off each) |
| Battery connectors and plastics case (see text) |
| P.V.C, covered wire |
| Wood for box 4½in x 3½in x 18in |
| Wooden baseboard, plastics sheet, and wires for the sensor (see text) |

On "stand-by" the current drain is negligible. When operative an average of about 60mA per flashing cycle is drawn. This led to a choice of power supply made up from four 3 volt batteries arranged in series to give 12 volts. This voltage is required to operate RLA.

The battery pack can be made up from four batteries, type 72, each of which consists of two cells, type 1915. They can be conveniently housed in two plastics containers specially made and fitted with connecting strips for the purpose. These containers are obtainable from G. W. Smith & Co. (Radio) Ltd., 3 Lisle Street, London, W.C.2.

MAKING THE SENSOR

The sensor itself is made by fitting four (or more) straight parallel tinned copper wires to two plastics side supports. These supports should be impervious to moisture, as any absorption by the supports would trigger the alarm unintentionally; hence, wood is not recommended.

If 16 s.w.g. wire is used the holes in the side supports can be drilled with a ½in diameter drill. The distance between any two wires should not exceed ½in so the pitch between centres would be 3in. Alternate wires are connected together (see photograph). The length and number of wires used is a matter of choice, but obviously the larger the "catching" area the greater the sensitivity to a passing shower. When soldering on the wires, it is recommended that pliers are applied between soldering iron and plastics support, to prevent the plastics melting and loosening its grip on the wires.

The layout of components on the wiring board is not critical and it would be possible to reduce this layout area on a smaller board, thus reducing the size of the finished article.

The housing is a made up wooden box 6in x 4½in x 3in, but a metal box would probably provide a more pleasing appearance.
HEATER OR FIRE MONITOR

by GORDON J. KING

This unit was designed as a greenhouse heat failure system. It can of course be adopted for other temperature monitoring purposes, as will be appreciated from the following description of its function.

With the kind of application in mind, close temperature tolerance is not essential and since the relatively high temperature at the top of the correctly working heater can easily be "monitored", a thermistor has been employed as the temperature sensing element. This device works in conjunction with a two-stage transistor d.c. amplifier, the second stage being suitable for energising a magnetic relay which, in turn, switches the alarm bell.

CIRCUIT OPERATION

If the base current of TR1 is turned off either by disconnecting the thermistor X1 or the thermistor battery connection at point "A" on the battery pack, the conductivity of TR2 is then governed by the base current delivered by the base potential-divider comprising R2, VR2, R3. The smaller the total value of the top section (R2, VR2), the greater the base current and hence the greater the collector current.

The preset control VR2 allows the conductivity of TR2 to be adjusted until the collector current is suitable to energise the relay RLA. The maximum, safe amount of collector current is, of course, governed by the type of transistor used, so a relay must be chosen whose operating sensitivity falls within the power capabilities of TR2.

The Muilard OC72, or equivalent, has sufficient power reserve to work a relay calling for up to about 20mA at a voltage not greater than about 10. The Post Office type 3000 relay with a 500-ohm coil satisfies these requirements. There are other relays suitable for instance, the Omron, supplied by Key-switch Relays Limited, type 2051 is available with a 650-ohm coil, which operates at about 12mA. This component is illustrated in the accompanying diagrams.

SETTING TR2

The second preset potentiometer VR2 is adjusted so that the relay energises, ensuring that TR2 collector current does not exceed 20mA. This can be achieved either by putting a milliammeter in series with TR2 collector circuit or by measuring the d.c. voltage across the relay coil, assuming that the coil resistance is known. The voltage is equal to the current in amperes times the resistance. Thus, a 500 ohm relay would be passing 20mA when the voltage measured across it is 10.

It will be seen that the collector/emitter circuit of TR1 is across R3, the bottom arm of the potential-divider of TR2. With the thermistor (hence, base circuit of TR1) disconnected, the effect of TR1 across R3 is negligible. However, when the thermistor circuit is connected TR1 base current flows and causes TR1 to conduct.

The degree of conductivity of this transistor depends on (a) the setting of the "set temperature" preset VR1 and (b) the resistance of the thermistor. The thermistor is an element whose resistance falls as its

Fig. 1. Circuit diagram of the heater or fire monitor. IMPORTANT: The left hand relay contact should be marked "2" and not "1" as shown

Fig. 2. Housing for the sensing element
temperature rises. The resistance at nominal ambient temperature, say, 25°C differs between thermistors of different types, though the ratio of resistance change with temperature change does not differ greatly. Ambient or "cold" resistance can be less than 400 ohms or greater than 140 kilohms, depending on type.

A thermistor with a medium value cold resistance is best suited to the application in hand, and the Brimar CZ10 was found to be suitable. This component drops to about 150 ohms at its maximum temperature (about 200°C).

ENVIRONMENT TEST

Assuming that TR2 has been adjusted as previously explained, the thermistor battery circuit should next be connected and the thermistor should be subjected to an environment whose temperature is in the order of that likely to be encountered in the greenhouse, room, or other premises with the heater inactive.

The relay must remain energised under this condition. This is achieved with VR1 correctly adjusted because in spite of the thermistor battery circuit being connected the conductivity of TR1 is still limited by the high, cold resistance value of the thermistor. Thus, the collector-emitter circuit of TR1 will still have little shunting effect across R3.

When the temperature of the thermistor rises, or at the temperature of the heater monitored as previously described, the resistance of the thermistor will be considerably lower than its cold value. This will incite TR1 base current, thereby increasing the conductivity of the transistor, the effect of which is to increase the shunting across R3. This pulls back the base current of TR2, and thus reduces the collector current to a value where the relay de-energises.

Components...

<table>
<thead>
<tr>
<th>Resistors</th>
<th>R1 220Ω</th>
<th>R2 10kΩ</th>
<th>R3 1.5kΩ</th>
<th>R4 220Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentiometers</td>
<td>VR1 5kΩ open skeleton type preset (Radiospares)</td>
<td>VR2 25kΩ preset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td>C1 0.1 µF paper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor</td>
<td>X1 CZ10 (Brimar) or similar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistors</td>
<td>TR1, TR2 OC72 (2 off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td>C1 OA81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay</td>
<td>RLA Omron type 2051, 650 ohm coil (Keyswitch Relays Ltd.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch</td>
<td>S1 D.P.S.T. toggle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries</td>
<td>BY1-3 3 × 4.5V flat flashlamps type (3 off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Veroboard, 16 strip × 21 holes</td>
<td>Test tube, rubber stopper, paraffin wax. Electric bell 4.5/6V d.c.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 3. Strip-side of the Veroboard](image)

Setting VR1

To get the system working properly, therefore, VR1 must be set for maximum sensitivity at the required temperature. The idea, then, is to adjust VR1 so that the relay is truly energised when the temperature immediately above the heater is considered too low for safety. When the relay is so energised, the contacts close and put the bell in series with BY3 battery section. If the setting of VR1 is correct, the relay will de-energise when the air from the top of the heater is allowed to increase the temperature of the thermistor. This is the "normal" condition, of course, with the alarm bell muted.

![Fig. 4. Arrangement of components. IMPORTANT: The lead shown connected to tag "1" on the relay should in fact go to tag "2"](image)
BATTERIES
The unit is run from three 4·5 volt flat flashlight batteries. The full 13·5 volts is applied to TR2, via the relay, the 4·5 volts of BY3 operates the bell and the 4·5 volts of BY1 supply the base current of TR1, via the thermistor and VR1. R1 is a current limiting resistor, but on no account should the thermistor or its leads be short-circuited as this could result in a damaging current in the emitter-base junction of TR1.

Diode D1 across the relay winding suppresses transient pulses that may otherwise harm the transistor, while the capacitor-resistor series network C1, R4 across the bell minimises interference from this source.

A double-pole, single-throw switch disconnects the supply from both the base of TR1 and from TR2 when the unit is switched off.

HOUSING THE EQUIPMENT
The circuit can be built upon a piece of Veroboard or eyelet board, or a printed-circuit could be produced to accommodate it. This board can then be housed along with the three batteries in a suitably-sized wooden box. It is important to place the unit at a site of fairly normal ambient temperature. On no account should the unit itself be allowed to sample heat direct from the heating appliance.

The thermistor should be connected to the unit through a length of flexible cable, and one way of housing this component is shown in Fig. 2. Here the thermistor is contained within a small test-tube filled with a heat conducting insulating material, such as paraffin wax. The tube is sealed with a rubber stopper, through which the connecting leads are passed.

AUTO NIGHTLIGHT
by GORDON J. KING

This project illustrates very simply a useful application of the photoconductive cell. It is a device that automatically switches on an electric light (i.e., a hall lamp or a table lamp) at dusk and switches it off again at dawn. Many readers have written to us of their interest in such a device, especially as a means of discouraging intruders when the house is left unoccupied over night, the light switching on at dusk, of course, giving the impression that a human element is present in the house.

PHOTOCONDUCTIVE CELL
The prime component of the project is the photoconductive cell, sometimes called a light-sensitive resistor. This component is made of cadmium sulphide and has a resistance value that changes widely with changes in light intensity falling upon it. The particular cell used here is the Mullard type ORP12 and this has a dark resistance (i.e. unity lux) of about 10 megohms. Under full light conditions this resistance falls to between 75 and 300 ohms.

The ORP12 is encapsulated in plastic, and is of "button" construction, one side of which is transparent to allow the unrestricted passage of light. The other side carries the two leadout wires which should not be bent nearer than 1·5mm to the seal. When these leadout wires are soldered the heat conducted to the encapsulation should be kept to a minimum by the use of a "heat shunt".

In many applications, the photoconductive cell is arranged to control the bias of a transistor or valve or some primary circuit to give rise to a secondary action, like the operation of a relay in the anode or collector circuit of a transistor. However, in the device under discussion the cell is arranged to operate a relay direct. This is possible provided the maximum power dissipation and the maximum voltage of the cell are not exceeded.

The author has discovered that consistent results are possible with the ORP12 which has a maximum power dissipation of 200mW from 20 to 40°C, falling to 110mW at 50°C. The maximum voltage rating is 110. The relay required should have a coil resistance of about 10,000 ohms, pulling in at about 5mA at 50 volts.

HOW THE DEVICE FUNCTIONS
The circuit of the auto nightlight is shown in Fig. 1. It is powered from the mains supply through the mains transformer T1, which has isolated primary and secondary windings. The specified transformer has a
Fig. 2. Layout of components and wiring. The baseboard can form the bottom panel of a wooden case

240V primary which will suit most domestic installations. The secondary winding delivers about 50 volts (r.m.s.) at 30mA.

This secondary supply is rectified by D1, which can be a small germanium or silicon diode of suitable p.i.v. rating and C1 is the reservoir capacitor. The resulting d.c. voltage is applied across a preset resistor VR1 controlling the sensitivity of the device.

The photoconductive cell X1 is connected in series with the winding of the relay, and VR1 is adjusted for relay "hold-on" under the ordinary daylight ambient lighting conditions at the site of the cell.

Clearly, then, when the ambient illumination falls below a level preset by VR1, the current in the relay will fall below its "hold-on" value, the relay will de-energise and the contacts will make, switching on the light. Conversely, when the light intensity at the cell rises again the relay will re-energise and the lamp will be switched off.

DESIGN CONSIDERATIONS

There are one or two design factors that must now be considered. Assuming that the maximum d.c. voltage across VR1 is 60 and that VR1 is adjusted for full output voltage, maximum dissipation occurs in X1 when the light falling upon it causes its resistance to equal the resistance of the relay winding (about 10,000 ohms). Under that condition the voltage across the cell will be half the supply voltage, or 30 volts.

Now, power dissipation in such a circuit is equal to E^2/R, where E is the voltage across the element. Thus, we have 30^2/10,000, which works out to 90mW, well within the 200mW rating of the ORPI2.

However, the voltage across VR1 should never exceed about 80, and if a voltage of this magnitude is necessary to operate the relay properly, then a cell with a higher maximum dissipation and a suitable voltage rating should be employed.

It should also be noted that the cell should not be operated at below -30°C and if its temperature (due to sun etc.) rises above 40°C it must be derated powerwise.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Component</th>
<th>Description and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>10kΩ wire wound preset</td>
</tr>
<tr>
<td>Capacitor</td>
<td>C1 16µF electrotype 150V</td>
</tr>
<tr>
<td>Transformer</td>
<td>T1 Miniature main transformer. Primary 0-240V. Secondary 50V 200mA. Type MS 3390. Belclere Co. Ltd., 385:387 Cowley Road, Oxford</td>
</tr>
<tr>
<td>Diode</td>
<td>D1 OA202 Mullard (or similar silicon diode with p.i.v. of 150V and 30mA forward current)</td>
</tr>
<tr>
<td>Relay</td>
<td>RLA Miniature relay. 10kΩ coil, 50V approx., 4.5mA. Single pole contacts rated at 5A. Omron type 2051 with 48 volt coil. Key-stock Relays Ltd.</td>
</tr>
<tr>
<td>Photoconductive cell</td>
<td>XI Photoconductive cell. ORPI2 Mullard</td>
</tr>
</tbody>
</table>

MOUNTING ARRANGEMENTS

The cell should be placed so that it is capable successfully of monitoring external light conditions. Moreover, it should be shielded from the room lights. There would not be a lot of point if the device operated at dusk and was then promptly affected by the light going on in the room!

The photoconductive cell can either be integral to the unit or it can be connected to it through a length of plastic-covered flex. In the former case, the unit as a whole can be mounted in the corner of a window, while in the latter case the cell can be built into a small tubular housing, this being sited for maximum response to outside light and minimum response to inside light.

Attention should be given to the insulation on the external leads and cables, for although there is only a maximum of 60 volts on the photoconductive cell cable, this could give a nasty shock to sensitive people. Even more important is the insulation on the mains supply circuit, and the plugs, sockets and cable connecting to the electric light. Poor insulation here could be lethal.

It is best to build the unit as a whole into a small plastic or wooden (non-metallic) box, for in any event the relay should be well protected both mechanically and from dust. The relay contacts must have a rating of, at least, 2 amperes at 240 volts a.c., but usually the contacts are rated at 5 amperes.

AN ADDITIONAL REFINEMENT

One refinement that may be considered worthwhile is the inclusion of a thermistor in series with the relay winding. This would give a delay in operation of the relay, so that should, for instance, the cell be illuminated intensely, say, from the headlight of a passing motor vehicle, the delay in relay operation would keep the winding de-energised during a normal period of time expected by this kind of transient illumination.

A suitable thermistor is a Mullard VA1067, but it must be remembered that this will act as a current limiter and thus call for a greater d.c. operating voltage.
All in the MAY issue
on sale April 14th
ORDER YOUR COPY NOW!
Receiving Moon Signals

Touch-down on 4 February to U.S.S.R. and, indeed, to the rest of the world meant the first soft landing on the moon. The photograph above was the result of some quick thinking in the offices of the Daily Express. With the help of their Muirhead FM/AM Converter type K-129 and photographic receiver type D-700 (shown right) this remarkable picture was composed at Jodrell Bank from signals received via the radio telescope.

The camera installed in the spacecraft Luna 9 scanned the moon's surface at a distance of only a few feet after touch-down. The black blunted triangle at the bottom is believed to be the nose cone of the rocket. Intense light and shade show the rocks on the surface of the moon.

The signals were converted to a.m. then fed into the receiver, which is an electro-mechanical optical unit with signal compensation, oscillator, and comparator circuits. The scanning of the optical unit over sensitised paper is controlled by the drum speed and phasing circuit, the scanning path being helical.

The incoming signals were monitored by a loudspeaker amplifier and a pictorial monitor.
Tiny Television

This photograph shows what is claimed to be the smallest television set ever produced (right). Beside it, some of the components including a 1\text{in} tube and microcircuits are shown. The technician is holding one such microcircuit with tweezers. The cathode ray tube shown here is not likely to be placed on the commercial market. The set measures $4\frac{1}{4}\text{in} \times 3\frac{3}{4}\text{in} \times 2\text{in}$ and can operate from battery or mains. It has been developed by Westinghouse Defence and Space Center in U.S.A.

Home Emergency Aid

The Post Office is conducting an experiment with Manchester Corporation and the N.W. Electricity Board to see whether a device will help housebound persons to contact neighbours when an emergency arises. The device is a Labgear intercommunications system (shown left) which requires no inter-unit wiring and can be plugged into the mains.

Anti-slop Probes

A pair of Sonac ultrasonic liquid level probes, fitted into a road tanker built by Durham Industries Limited, have overcome a problem of spillage involved in the transportation of a hazardous liquid. The probes give visual indication of when the diaphragm of the sensor is covered and when the liquid level falls below the diaphragm. The control panel (above right) is inside the driver's cab. The tank (right) is fitted with high and low level sensors.

Thyristor "Cranestat"

Cranes supplied by Stothert & Pitt Limited are to be controlled by English Electric thyristor equipment called "Cranestat" (left), which provides accurate closed-loop speed control from the driver's lever position. It also provides speeds up to three times normal full speed on light hook.
BEGINNERS start here...

An Instructional Series for the Newcomer to Electronics

Fig. 18.1. The thermionic diode or two-electrode valve. The general form of construction is shown in (a). Electrons emitted from the cathode are attracted to the anode because the latter has a positive charge. In (b) we see the effect of applying a negative charge to the anode—the free electrons are repelled and remain in the vicinity of cathode. The circuit symbol for an indirectly heated diode is shown in (c).

Last time, we ended up by saying that electronic equipment produces, and makes use of, signals. This word signal has been handed on from the radio communication field; before then it had been used in connection with the telegraph, flag, and earlier methods of sending intelligence. It originated in the Latin word signum, meaning a sign. Any electrical waveform, or pulse carrying information qualifies, therefore, to be described as a signal.

As we mentioned before, the odd thing is that after taking pains to obtain smooth steady d.c., we then convert this back to a.c. This is because signals are nearly always a.c. waveforms and pulses. Information can be conveyed by these a.c. signals—by varying the amplitude, frequency timing, or the shape of the waveform.

Signals are generated by electronic circuits, or by devices known as transducers. We shall discuss transducers later. When signals are available, they can be amplified, and/or stored (recorded). They can also be distorted by the electronic circuitry. This is something we usually wish to avoid, because we lose information that way, or else introduce false information.

THE HEART OF ELECTRONICS

All these possibilities arose because of the advent of one extremely important electronic device, namely the thermionic valve. Now, its younger brother the transistor is taking over more and more the functions of the valve. Both these devices, although working on slightly different principles, enable amplification and rectification to be obtained. Without electronic amplification nothing much could have evolved in the way of radio, television, or other electronic developments.

Rectification is the property of allowing a flow of current in one direction only. This enables valves and transistors to be operated like switches (with no moving parts!) to control and divert different signals (that is, information) around a circuit.

Amplification is the possibility of boosting the size or power of signals—thus enabling a very weak signal source (such as a gramophone pick-up) to do a large amount of work (such as fill a large concert hall with sound). Linear amplification is the most important type, meaning that the output is a faithful copy of the input, i.e. there is no (or in practice, little) distortion.

It appears, then, that valves and transistors are the heart of all the circuitry of electronic devices, and an understanding of these devices will enable you to grasp what is going on, quite easily.

THERMIONIC VALVES

A quick look at the history of the electronic valve is of great interest. The simplest valve, now called the diode or two electrode valve, was first made, in England, by Fleming. He had read a paper about darkening of electric lamp glass envelopes, written by the American inventor Edison. Edison reported that, whatever was coming off the glowing carbon filament and darkening the envelope could be stopped by sealing into the bulb a small plate, and connecting this to the positive side of the filament. Fleming developed his valve using this idea.

The important action upon which valves are based is called the thermionic effect. This is the fact that electrons can be "boiled off" the surface of a heated substance and the electrons then form a "cloud" in the space adjacent to the surface.

Now, electrons is the name we give to tiny particles of negative electricity, and they are attracted to a positive charge (and if you remember, repelled by other negative charges). The cloud of electrons will not move very far unless as much air as possible is removed. This means a vacuum must be produced, and under these conditions you probably agree that it will be easy to attract the electrons across the vacuum to a positive
plate nearby. This plate is called the anode. If the plate is charged negatively, no electrons stream across. This is because none is being emitted by the cold plate, and those at the hot filament are repelled by its negative charge.

You have just covered all the important ideas concerning the diode valve. It is quite easy to see now why the valve allows current through in one direction only. (Hence the name “valve”.) The electron emitter is called the cathode, and it is either a filament heated directly by an electric current, or more commonly now, an indirectly heated surface. In the later case the heater is separate from the cathode itself, acting rather like a small electric fire.

Moving on to a remarkable development of the diode, we will see how much of electronics was made possible by the addition of a third electrode. The idea of having free charges of electricity moving through a vacuum from one electrode to another begs the question: what would happen if other electrodes are placed in the electron stream? The more complicated valves which make use of these extra electrodes give rise to the types known as triodes, tetrodes, pentodes—and so on, together with the rather specialised variety known as cathode ray tubes.

THE TRIODE VALVE

The addition of one further electrode into the space between the cathode and the anode makes three altogether, and accounts for the name “triode”.

Suppose a metal mesh is placed between the cathode and the anode. Electrons will flow through the gaps in this mesh, or grid and reach the positive anode as before. But if an electric potential is placed between this mesh and the cathode, the flow of electrons will be greatly affected. If there is a negative voltage on the grid, the electrons will be repelled and slowed down, and fewer will reach the anode. In fact, if the grid is made sufficiently negative, all the electrons will be repelled back, and none will pass to the anode, despite its positive potential. We say the valve is cut off, or in electronics, switched off at the grid, when this condition occurs. See Fig. 18.3.

![Fig. 18.3. The graph shows how the current flowing through a triode is influenced by the voltage applied to the control grid. As the grid is made more negative, a point is finally reached where the anode current ceases altogether. This is the “cut-off” value of grid bias.](image)

The importance of this third electrode can be appreciated now: small changes of the grid voltage can produce much greater changes in the current passing through the valve. Not without justification is this third electrode frequently referred to as the control grid. You can see that a triode can be looked on as a voltage-change to current-change converter, and is in fact, an amplifier of signals. Amplifications of 50 to 100 times are possible with modern valves.

In practice, the grid is held at a small negative voltage with respect to the cathode. This is called the grid bias and the small signal voltage variations increase and decrease the value of the grid voltage about this point. Only in exceptional cases is the grid allowed to rise positive to the cathode, and therefore attract electrons to itself.

VALVE CONSTRUCTION

Most substances must be heated to a very high temperature before an appreciable number of electrons are given off. Early valves used tungsten filaments, which had to be heated to 2,200° Centigrade before electrons were emitted. They glowed like an electric lamp, and much power was consumed to heat them. An alloy of tungsten and thorium came into use next, and operated at about 1,600°C. The great breakthrough came when “oxide coated” filaments (and soon after, separate cathodes) became possible.

The filaments of directly heated valves are usually made of tungsten. The separate cathodes are cylinders of nickel or molybdenum. The carbonate of the metal barium or strontium is painted onto the cathode, and this is heated to quite high temperatures during the pumping of the vacuum, which forms the oxide. This delicate oxide coating emits electrons readily at temperatures of about 750°C, so that only a dull red heat is required.

The anode plate is usually of nickel or molybdenum, blackened to radiate heat. It is held by welding thick wires to it, these passing through mica end supports wedged into the glass envelope. In use, the bombardment of the anode by the speeding electrons produces heat. The anode must remain cool, or electrons might be emitted from it also, although other damage is usually done long before the temperature rises to the electron emission point.

Now to the grid. There are very few materials suitable for this electrode, and again tungsten or molybdenum are the usual metals employed. The grid is formed by winding a spiral of fine wire round two stout support wires (held in the mica pieces).
Many readers will be aware that recent advances in transistor circuitry have culminated in obtaining high efficiency and high power output from transistor audio amplifiers. The secret to this is called "pulse code modulation", which employs pulsating techniques to drive the output transistors hard at brief regular intervals, while maintaining low heat dissipation.

This article describes how a regenerative coincidence detector can be built on our "standard" pattern of printed circuit board, described in "Bonanza Boards". Later an ultrasonic sawtooth generator, suitable for driving this unit, will be described.

The basic circuit is shown in Fig. 1. Many readers will recognise it as a "flip-flop", in which the outputs are switched on alternately by a trigger pulse applied to one of the transistor bases. The circuit reverts to normal when that pulse is removed.

The component layout on the printed circuit board is shown in Fig. 2 and should present no problems. A link wire is used at C. For this particular circuit it will be necessary to cut the square piece of copper laminate into two strips and drill an extra hole, making three holes in each strip. This is shown dotted in Fig. 2, the copper being on the reverse side of the board. Careful cutting and lifting of the unwanted piece can be done with a sharp knife.

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th>2.7 kΩ</th>
<th>2.7 kΩ</th>
<th>2.7 kΩ</th>
<th>2.7 kΩ</th>
<th>33 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>All resistors</td>
<td>10% 1/2 watt carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th>VR1, VR2 10kΩ linear carbon (2 off)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>C1 100 µF elect. 50V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C2 100 µF elect. 50V</td>
</tr>
<tr>
<td></td>
<td>C3 100 µF elect. 50V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
<th>TR1, TR2 OC81 (Mullard) (2 off)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
<th>BY1 45 volt (Ever Ready type B104) (or a suitable 40V d.c. power supply unit)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plugs and Sockets</th>
<th>PL1 and SK1 coaxial for "output 1"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PL2 and SK2 coaxial for "a.f. input"</td>
</tr>
<tr>
<td></td>
<td>PL3 and SK3 coaxial for "output 2"</td>
</tr>
<tr>
<td></td>
<td>PL4 and SK4 coaxial for "sawtooth input"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Printed circuit board (see text)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch, single-pole, on/off (optional) for battery</td>
</tr>
<tr>
<td></td>
<td>Battery connectors and p.v.c. wire</td>
</tr>
</tbody>
</table>

Fig. 1. Circuit diagram of the regenerative coincidence detector. All components inside the dotted line area are mounted on the printed circuit board
Fig. 2. Layout of components on the regenerative coincidence detector board. Link wire C only is required. Notice that the square piece of copper (shown dotted) is cut into two strips, each with three holes.

Coaxial plugs and sockets can be used for the inputs and outputs if the unit is to be self-contained, but if used with the sawtooth oscillator the units can be connected direct as will be shown later.

To set up this unit for use, connect a 40 to 45 volt power supply or battery. Adjust the two potentiometers so that the wipers are nearest to the common positive line connection, i.e. with the base of TR1 and TR2 at zero potential. Connect an earphone across “output 1”. Measure the voltage between TR1 collector and common positive with a high resistance voltmeter (observe polarity). This reading should be almost equal to the power supply voltage (on load). Adjust VR1 until the meter reading has dropped to a minimum obtainable voltage. Turn back VR1 the opposite way until the meter reads about 0.5 volt higher than this minimum value. Leave VR1 set at this point.

Now transfer the meter to measure the voltage between the collector of TR2 and common positive. Adjust VR2 until a similar reading is obtained on the voltmeter. Carefully rotate the spindle of VR2 a short distance in each direction so that a series of pops can be heard in the earphone. The circuit should change state; as the TR1 collector voltage rises, that of TR2 falls and vice versa. If this does not occur, there is probably too much negative bias on the base of TR1, reduce this slightly by adjusting VR1 until the “popping” of the two states is evident from the earphone, when VR2 is rotated back and forth. Set VR2 to a point in between the two trigger “pops” and the unit will be ready for use with the “Ultrasonic Sawtooth Generator”.

ULTRASONIC SAWTOOTH GENERATOR

Fig. 1. Circuit diagram of the ultrasonic sawtooth generator. Components inside the dotted line are mounted on the printed circuit board. The chain-dotted line represents the metal housing which is necessary and should be earthed.

This unit is useful for a wide variety of functions including the testing of h.f. and r.f. circuits. The ultrasonic sawtooth generator is not so useful for direct a.f. checking without an oscilloscope, but it will be found that, when combined with BB7 (Regenerative Coincidence Detector), it can be used in electronic switching applications, where a very high speed is required, such as “pulse code modulation” for audio power amplifiers.

The circuit is shown in Fig. 1. High quality components should be used and the whole unit should be mounted in a metal box. If possible the box should be
COMPONENTS...

Resistors
- R1 2.7kΩ
- R2 75Ω
- R3 56kΩ

All resistors 5%, 1 watt, high stability

Potentiometer
- VR1 100Ω linear wire wound

Capacitors
- C1 10μF elect. 50V
- C2 0.01μF ceramic 30V

Transistors
- TR1, TR2 OCS1 (Mullard) (2 off)

Battery
- BY1 45V (Ever Ready B104) or d.c. power supply 40 to 45V

Plug and Socket
- PL1 and SK1 coaxial for output

Miscellaneous
- Printed circuit board (see text)
- Switch, single pole, on/off (optional) for battery
- Battery connectors (optional)
- Metal box (aluminium) fully enclosed, size to suit application
- S.R.B.P. backing board for the printed circuit board

connected to “earth” to prevent unwanted radiation interfering with domestic receivers. All cables carrying the sawtooth signal must be screened, with the screen connected to the metal box. The box is indicated in Fig. 1 with a chain-dotted line around the whole circuit.

The layout of components on the “standard” pattern printed board (see “Bonanza Boards”) is shown in Fig. 2. The potentiometer VR1 is not mounted on the board, but is fitted to the metal box, and connected to the appropriate points on the board by short flying leads.

When the unit is complete it can be checked for errors. If everything is correct, connect the output to an oscilloscope, and a battery or power unit supplying 40 to 45 volts d.c. to points indicated in Fig. 2. A high frequency sawtooth waveform should be displayed on the oscilloscope.

Fig. 2. Layout of components on the printed circuit board. Link wires are required at A, B, and C

Fig. 1. Connecting BB7 to BB8 for initial checking and setting up procedure

MANY push-pull transistor power amplifiers, both commercial and home-built, utilise high frequency output transistors for the relatively low frequency purpose of audio amplification. By interposing a Schmitt trigger circuit or a coincidence detector with an ultrasonic sawtooth oscillator, it is possible to drive these transistors more efficiently in an a.f. coded ultrasonic switching mode.

This could give a higher output power with less strain on the components of the amplifier, less heat dissipation from the output transistors, and higher conversion efficiency of electrical power into a.f. power output.

Transformerless class AB and bridge type amplifiers are particularly amenable to conversion in this manner; the power output rating may be easily doubled or quadrupled, with the transistors actually running noticeably cooler, and the output quality unimpaired.

This kind of operation is known as “pulse code modulation”. This article will describe how an existing audio amplifier can be modified to provide that extra power.

USING BB7 AND BB8

The output from the pre-amplifier or driver stage of an existing amplifier is applied to the input of the power booster. The booster output is applied to the subsequent stages of the amplifier.

A suitable set-up uses the “Regenerative Coincidence Detector” (BB7) and the “Ultrasonic Sawtooth Generator” (BB8) described elsewhere in this issue, and the combined circuit is shown in Fig. 1. Component values (shown in the respective articles) were chosen for a booster to suit an amplifier running from a 40 volt d.c. power supply. Allowance must be made for the extra current drain, and the power supply should be capable of handling this. However, the circuits shown will operate satisfactorily between about 35 and 45 volts; hence the battery quoted was a 45 volt type which is readily obtainable. Higher voltages may require different values for some components.

Before connecting the units together the following adjustments should be made: follow the setting-up instructions given in the article on the “Regenerative Coincidence Detector”. Now switch off the power supply, disconnect the earphone, and connect the “Ultrasonic Sawtooth Generator” as shown in Fig. 1. It is not advisable to attempt to listen to the high note produced through the earphone.

Switch on the power supply again and measure the collector voltages of TR1 and TR2 on BB7. Adjust VR2 on BB7 until there is very little difference between

Audio Power

Many push-pull transistor power amplifiers, both commercial and home-built, utilise high frequency output transistors for the relatively low frequency purpose of audio amplification. By interposing a Schmitt trigger circuit or a coincidence detector with an ultrasonic sawtooth oscillator, it is possible to drive these transistors more efficiently in an a.f. coded ultrasonic switching mode.

This could give a higher output power with less strain on the components of the amplifier, less heat dissipation from the output transistors, and higher conversion efficiency of electrical power into a.f. power output.

Transformerless class AB and bridge type amplifiers are particularly amenable to conversion in this manner; the power output rating may be easily doubled or quadrupled, with the transistors actually running noticeably cooler, and the output quality unimpaired.

This kind of operation is known as “pulse code modulation”. This article will describe how an existing audio amplifier can be modified to provide that extra power.

USING BB7 AND BB8

The output from the pre-amplifier or driver stage of an existing amplifier is applied to the input of the power booster. The booster output is applied to the subsequent stages of the amplifier.

A suitable set-up uses the “Regenerative Coincidence Detector” (BB7) and the “Ultrasonic Sawtooth Generator” (BB8) described elsewhere in this issue, and the combined circuit is shown in Fig. 1. Component values (shown in the respective articles) were chosen for a booster to suit an amplifier running from a 40 volt d.c. power supply. Allowance must be made for the extra current drain, and the power supply should be capable of handling this. However, the circuits shown will operate satisfactorily between about 35 and 45 volts; hence the battery quoted was a 45 volt type which is readily obtainable. Higher voltages may require different values for some components.

Before connecting the units together the following adjustments should be made: follow the setting-up instructions given in the article on the “Regenerative Coincidence Detector”. Now switch off the power supply, disconnect the earphone, and connect the “Ultrasonic Sawtooth Generator” as shown in Fig. 1. It is not advisable to attempt to listen to the high note produced through the earphone.

Switch on the power supply again and measure the collector voltages of TR1 and TR2 on BB7. Adjust VR2 on BB7 until there is very little difference between

Fig. 1. Connecting BB7 to BB8 for initial checking and setting up procedure
BOO SI

Fig. 2. An example of a complementary-symmetry type of amplifier. Component values are not given since they can differ from one design to another. The dotted line represents the intersection for connecting the power booster (see Fig. 3.)

CONNECTING TO AUDIO AMPLIFIER

If a push-pull output is required from the booster, both outputs may be used in order to supply this. If only one output is required (as in the following example) only output 1 need be used.

As an example of one application of the booster, let us consider the conversion of a "complementary symmetry" type of output. A simplified form of this circuit is shown in Fig. 2. The conversion is shown in Fig. 3. Notice that the base diode D1 has been removed and the bases of TR6 and TR7 joined together. The coupling capacitors C2 and C3 in BB7 have been omitted; C3 because output 2 is not required, C2 because TR1 in BB7 can be directly coupled to the bases of TR2 and TR3 in this existing amplifier. Capacitor C1 in BB7 is reversed so that the negative lead is connected to the "negative" collector of the preceding stage. An additional resistor (1 kilohm) is connected in series with this capacitor. The feedback capacitor has to be removed to avoid upsetting the operation of the power booster. Tone correction should, if necessary, be applied to earlier stages.

If a mains operated power supply unit is used, it is worth incorporating some extra smoothing. This is shown in the form of an LC circuit in the sawtooth generator negative line, and would prevent excessive hum modulation reaching the loudspeaker.

Make sure, before applying the booster to the power unit, that the voltage and current ratings of all its components will handle the extra load. If not they must be replaced by different types of adequate rating. This extra load current should be measured before connecting to the amplifier.

COMPONENTS . . .

Bonanza Boards
BB7 Regenerative Coincidence Detector (see page 282)
Reverse polarity of C1 and add
Rx 1kΩ 10% 1/2 watt carbon (see text)
delete C2 and C3
BB8 Ultrasonic Sawtooth Generator (see page 283)
Add capacitor Cx 100µF elect. 50V
and choke L1 10H 100Ω (minimum current rating 20mA)
Power Supply Unit (see text)

Fig. 3. The final set-up of the amplifier shown in Fig. 2 combined with the power booster (BB7 modified and BB8). Only part of each circuit is shown for connections; refer to the appropriate articles for full details. The complete booster and amplifier should be housed in a metal box and the box "earthed".
Out March 29. The 124 page guide every Motorist needs

Make 1966 your best-ever year on the road with the help of this guide that will save you pounds in repair and running costs.

PRESERVATION KNOW-HOW. Undersealing - checking corrosion - repairing bodywork - easy stain-removing - inexpensive interior draughtproofing - 10 routine tips for cleaning chrome and paintwork.

DRIVING TECHNIQUES. Tips on safer motoring in all road and weather conditions — the art of reversing — split-second action on mechanical failure — looking for possible dangers ahead.

BEGINNER'S GUIDE TO THE ENGINE. A simple explanation of the functions and operation of the cooling and lubrication systems, carburettor, gearbox, etc.

BUDGET HOLIDAYS. Packed with advice on pre-holiday arrangements — preparing the car — living under canvas — towing a caravan.

BUYING OR SELLING A CAR. How to (a) get value for money — (b) get the best price for your car — tips on running in.

BIG DEMAND! RESERVE YOUR COPY NOW!

NEW PROJECTS, NEW IDEAS
NEW WAYS
TO IMPROVE YOUR HOME

Go for the 1966 PRACTICAL HOUSEHOLDER ANNUAL today! It brings you dozens of ways in which you can give your home an up-to-the-minute new look... with detailed instructions and how-to-do-it illustrations that show you how to tackle each job with a sure professional touch. Don't miss it!

SPECIAL SECTIONS ON:

HOME WORKSHOP
SOLVING THE GARAGE PROBLEM
KITCHEN FURNITURE YOU CAN BUILD
GUIDE TO HOME HEATING
GATES AND FENCES FOR HOME AND GARDEN
BUILDING A GLAZED SUNLOUNGE
REFERENCE DATA FOR ROOFING MATERIALS AND CONCRETE
BUILDING AND WOODWORKING
SIMPLIFIED ELECTRIC WIRING

BIG DEMAND—GET YOURS NOW!

2/6 NEWSAGENTS AND BOOKSTALLS
The five sub-units are built on pieces of Veroboard. The approximate overall dimensions of board used in each case are given in the caption to the appropriate diagram (See Figs. 19 to 23).

It should be noted that those four boards which are installed below the chassis must measure 2\(\frac{1}{4}\) in depth in order to fit into the cradle. This means that boards containing 15 or 16 copper strips will be required, although only 11 strips are actually used for wiring purposes. Two or three spare strips should be allowed at either edge, and the 11 “used” strips numbered from the common positive line (No. 1) to the minus 9 volt line (No. 11). The “spare” strips are not shown on the diagrams of these boards.

In the case of the power supply sub-unit, there are 20 copper strips, and again No. 1 is the common positive edge (no surplus strips are necessary here).

In addition to the numbering of the strips, each end of every board has an individual alphabetic code, e.g. ends G and H on the G.M. amplifier board. In this way, every interconnection is coded and the corresponding points are similarly marked in the circuit diagrams and component layout diagrams.

ASSEMBLING THE SUB-UNITS

Proceed with the construction of these sub-units as follows: First prepare the reverse side of the board by cutting away portions of the copper strip where indicated (Figs. 19 to 23). Then mount the components on the plain side of the board passing their leads through the appropriate holes and then soldering to the copper strip. Be sure to add any wire links shown in the component layout diagrams.

The power supply board requires somewhat different treatment. When preparing the strip-side of this board, drill three holes and fix two metal mounting brackets as shown in Fig. 23. Three large capacitors are mounted within the cradle with the latter out of the chassis to facilitate most of the inter-board wiring. Most of these leads are identified in Fig. 15: other connections, such as those to transformers T1 and T2, can be taken from Fig. 1. The individual circuit diagrams should also be consulted for interconnection details.

The output link on the s.s.b. amplifier must be set according to requirements. See Figs. 8 and 10.

The method of fixing the loudspeaker unit within the instrument case is shown in Fig. 18. Holes must of course be made in the rear of the case to allow access to the mains connector and fuse.

THE CRADLE ASSEMBLY

Four of the completed boards may be temporarily mounted within the cradle with the latter out of the chassis to facilitate most of the inter-board wiring. The correct positioning of these boards and the aluminium screens is shown in Fig. 16. The screens are made of 18 s.w.g. aluminium and are the same width as the boards and are mounted in slots in exactly the same way as the boards. The plate between the s.s.b. amplifier and the expander stage is cut away where necessary to clear the grommet and the wires it carries through the chassis, etc.

Refer to Fig. 1 for the inter-unit wiring. Interconnections should take the shortest convenient routes and should be screened and earthed only where indicated in Fig. 1. With this wiring completed, the cradle assembly should be installed inside the chassis and secured with two 4 B.A. bolts and nuts. Finally the retaining strip should be secured in position (Fig. 16).

The power supply board is mounted on the top of the chassis and is secured by the two metal brackets (bottom edge) and also, at the top edge, by a plastic rod drilled and tapped 4 B.A. at either end. The other end of this support rod is screwed on to one of the meter fixing bolts. See Figs. 11 and 15.

COMPLETING THE WIRING

The final stage of the ratemeter wiring can now be undertaken. Three grommets are mounted in the most convenient positions on the chassis for taking through the necessary connections. Again, take care to use screened leads wherever these are indicated in Fig. 1.

The various interconnecting leads should be soldered to the ends of the appropriate strips on the circuit boards. Most of these leads are identified in Fig. 15: other connections, such as those to transformers T1 and T2, can be taken from Fig. 1. The individual circuit diagrams should also be consulted for interconnection details.

The output link on the s.s.b. amplifier must be set according to requirements. See Figs. 8 and 10.

The method of fixing the loudspeaker unit within the instrument case is shown in Fig. 18. Holes must of course be made in the rear of the case to allow access to the mains connector and fuse.
Fig. 19. Geiger-Muller tube amplifier sub-unit. Size of board 2½\text{in} \times 3\text{in}. a (left): Underside of Veroboard. b (below): Component layout on top (plain) side of board. (For circuit diagram see Fig. 2)

Fig. 20. S.S.B. amplifier sub-unit. Size of board 2½\text{in} \times 4\text{in}. a (left): Underside of Veroboard. b (below): Component layout on top (plain) side of board. (For circuit diagram see Fig. 3)
Fig. 21. Expander stage sub-unit. Size of board 2\(\frac{3}{4}\)in × 3\(\frac{3}{4}\)in. a (left): Underside of Veroboard. b (below): Component layout on top (plain) side of board. (For circuit diagram see Fig. 4)

Fig. 22. Ratemeter sub-unit. Size of board 2\(\frac{3}{4}\)in × 4\(\frac{1}{4}\)in. a (left): Underside of Veroboard. b (below): Component layout on top (plain) side of board. (For circuit diagram see Fig. 5)
CALIBRATION OF E.H.T. CONTROL

Calibration of the "G.M. E.H.T." control VR1 is fairly simple. For this operation a 20,000 ohms per volt meter is required. An AVO model 8 on the 1,000V d.c. range was used on the instrument described.

The meter is connected across the e.h.t. output point B20 (with no connection to the rest of the circuitry) and the control VR1 varied from zero to maximum, calibrating VR1 at 100 volt intervals on the front panel and marking the points with Indian ink. Maximum output under these conditions is about 800 volts.

When the calibration is complete and the e.h.t. is reconnected at point B20, R3 loads the output to the same extent as the meter and so the calibration is still valid. R3 also provides a discharge path for the e.h.t. when it is required to reduce its value quickly.

This e.h.t. supply is not dangerous but is quite capable, at full output, of dealing out quite a "cringer" to careless fingers!

Calibration of the "SSB VOLTS" control VR3 is not quite as straightforward as that of VR1, because of the finite resistance of these semiconductor devices which varies slightly from detector to detector.

Probably the best way to overcome this would be to individually calibrate for a particular s.s.b. detector. One way this could be done is by temporarily connecting the device to the s.s.b. input and then comparing the applied voltage with a known variable supply. If a voltmeter is used for the comparison then, when the two voltages are equal, no current will flow and therefore no extra load is imposed on the s.s.b. output. The s.s.b. voltage at that particular setting can therefore

![Diagram of Power Supply Sub-unit](image-url)
BUILD OVER 40 CIRCUIT/EXPERIMENTS
and master electronics the LERNAKIT way

- No maths — No unnecessary theory
- NO PREVIOUS KNOWLEDGE NEEDED
- BUILD A PROFESSIONAL CATHODE RAY OSCILLOSCOPE

Learn how to
- READ AND DRAW CIRCUIT DIAGRAMS
- RECOGNISE, HANDLE AND UNDERSTAND every type of modern ELECTRONIC COMPONENT

OVER 40 EXPERIMENTS — including:-
- Valve Experiments
- Transistor Experiments
- Electro-magnetic Experiments
- Basic Amplifier
- Basic Oscillator
- Basic Rectifier
- Signal Tracer
- Simple Counter
- Time Delay Circuits
- Square Wave Generator
- Morse Code Oscillator
- Simple Transmitter
- Electronic Switch
- Photo-electric Circuit
- Basic Computer Circuit
- Basic Radio Receiver
- A.C. Experiments
- D.C. Experiments

This complete practical course will teach you all the basic principles of electronics by carrying out experiments and building operational apparatus. You will learn how to recognise and handle all types of modern components, their symbols and how to read a complete circuit or schematic diagram. The course then shows how all the basic electronic circuits are constructed and used and HOW THEY ACTUALLY WORK BY USING THE OSCILLOSCOPE PROVIDED. An application is given in all the main fields of electronics, i.e. Radio; control circuits; computers and automation; photoelectronics; counters, etc., together with rules and procedure for fault finding and servicing of all types of electronic equipment. For a new and exciting approach which gives a real understanding of electronics in an entirely practical way—this course has no equal anywhere to-day.

POST NOW FOR FREE COLOUR BROCHURE
To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKSHIRE
Please send free Brochure, describing your LERNAKIT Oscilloscope Course without obligation, to:

NAME
ADDRESS

BLOCK CAPITALS PLEASE OR WRITE IF YOU PREFER NOT TO CUT COUPON (No representatives employed) P.E.1.66

British National Radio School
be determined. This process can be repeated at convenient voltage intervals within the range of the control.

MOUNTING THE S.S.B. DETECTOR

A useful arrangement for mounting the s.s.b. detector on a short length of coaxial is shown (Fig. 24). The coaxial connector required is the nickel-plated brass (Belling-Lee) type. Stage-by-stage instructions follow.

The cable clamp and polythene insulator are removed from the coaxial connector.

For SSNO3K detector a 4 B.A nut and washer are then soldered to the outer case, as shown, taking care to avoid fouling the thread. In the case of the SSNO5K detector a 2 B.A nut only will be required instead.

Allow the assembly to cool. The central pin is then removed from the polythene insulator. A short application of the soldering iron to the pin will assist in its removal by softening the surrounding polythene. The remaining hole should be enlarged to about \(\frac{1}{4} \) in diameter. The insulator can then be replaced in the connector body. The detector is then screwed into position, taking care at the same time to feed its signal lead through the hole in the insulator. A gentle tightening with a small pair of pliers will be sufficient to retain the unit. The detector signal lead should be protruding from the other end of the connector body. Cut this back until about \(\frac{1}{8} \) in protrudes. Bare and tin about \(\frac{1}{8} \) in at the end. Over the signal lead slip half an inch of \(\frac{1}{8} \) in diameter rubber sleeving leaving the tinned end of the wire still exposed.

Cut off about 2 ft of coaxial cable. Remove about \(\frac{1}{8} \) in of the plastic outer cover and push back the copper brading to expose the insulated inner conductor. Bare and tin about \(\frac{1}{8} \) in of the inner conductor wires. The brading is cut back until about \(\frac{1}{8} \) in long and is then "combed" straight.

Slide the cable clamp over the brading in the usual way and splay the brading round the clamp. Solder the tinned wires together. Having done this the rubber sleeving is then worked back up the signal lead to cover the joint. The screw cap is then slid up the cable from the free end to engage with the cable clamp. The \(\frac{1}{4} \) in or so of slack in the signal lead before the screw cap can engage with the screw thread on the connector body, will be taken up by the signal lead folding inside the connector.

The cap is firmly screwed up and the unit is then ready for connection to the ratemeter.

OPERATING THE S.S.B. DETECTOR

When using the s.s.b. detector for beta or gamma radiation detection, the highest voltage compatible with acceptable noise must be used, as stated in the introductory article. A Solid State Radiation Detector - Practical Electronics, June 1965. In fact it is still possible to get some beta and gamma counts with 20 volt or so using the s.s.b. amplifier without the expander stage. This is explained by the sensitivity of the ratemeter circuit. If discrimination against beta and gamma to leave only alpha pulses is required, then the voltage on the detector must be reduced until no response to beta and gamma is obtained with S2 in the "ALPHA" position.

The expander stage, when properly set up and with the detector voltage as described above, will allow detection of alpha, beta and gamma radiations with S2 in the "ABG" position, while in the "A" position the beta and gamma signals will be removed.

It can also be shown that the s.s.b. detector can detect radiation with no applied voltage—but with reduced efficiency.

HANDLE WITH CARE

A warning must be given concerning the handling of the s.s.b. detector. The gold window of the detector will be damaged if it comes into contact with anything, and so it is a very good plan to leave in position the small piece of plastic sleeve which is fitted when the detector is supplied. This sleeving will not generally affect the detector operation in most circumstances and will give protection from many causes of damage, the most likely of which is careless fingering.

MOUNTING THE GEIGER-MULLER TUBE

Geiger-Muller tubes may have a variety of terminations, depending on the type. The 20th Century Electronics type G10H, which is used for the purposes of this article, has a British 4 pin base. A hand-held probe for this tube may be constructed from a small aluminium screw-top container as shown in the illustration on the final page of this article.

But first, a precautionary word on some of the aspects of connecting G.M. tubes. A pitfall which some people fall into when dealing for the first time with G.M. tubes is to connect them directly to lengthy festoons of cable and after getting very short, gay lives from the tubes, curse the manufacturer for his cunningly executed policy of "limited product life." This is very unfair. The reason why early failures occur in these circumstances is the
BEGINNER’S GUIDE TO ELECTRONICS

by Terence L. Squires, A.M.Brit.I.R.E.

Written throughout in easy-to-understand language, covering all aspects of modern electronics, this invaluable book provides a ‘short cut’ for the beginner to the full understanding of electronic principles and practice. No prior technical knowledge is assumed and complicated mathematics is avoided. The book will enable the reader to go on to more specialised studies with confidence.

192 Pages packed with Basic Detail
128 Diagrams . Sections include:

- ELECTRIC CURRENTS
- DIRECT AND ALTERNATING CURRENTS
- ELECTRONIC COMPONENTS
- BASIC ELECTRONIC CIRCUITS
- RADAR
- MEDICAL ELECTRONICS
- ELECTRONICS IN SPACE
- TELEVISION
- ELECTRONICS IN INDUSTRY
- THE FUTURE OF ELECTRONICS AND TEST INSTRUMENTS
- TRAINING TO BE AN ELECTRONICS ENGINEER

Make sure of your copy at this greatly reduced price

COMPLETE & SEND THIS FORM TODAY!

Please send me my privilege price copy of BEGINNER’S GUIDE TO ELECTRONICS. I enclose remittance value 6s. 6d. (Cheques and P.O.s should be crossed and made out to George Newnes Ltd. Write your name and address on back of cheque).

NAME

ADDRESS

If undelivered please return to George Newnes Ltd., 136 Long Acre, London, W.C.2.

PE, April, 1966

It is regretted that this offer is not available to Eire and Overseas readers.

Closing date 30 April, 1966
R.S.C. TRANSFORMERS

TOP SHROUD DROPPED THROUGH

250-0-250. 70a. 6.3v. 2a, 0-5-6-3v. 2a
250-0-250. 80a. 6.3v. 2a, 0-5-6-3v. 2a
250-0-250. 100a. 6.3v. 3a, C.T.
250-0-250. 150a. 6.3v. 4a, 0-5-6-3v. 4a
250-0-250. 200a. 6.3v. 5a, C.T.
250-0-250. 250a. 6.3v. 6a

FULLY SHROUDED UPRIGHT MOUNTING

250-0-250. 80a. 6.3v. 2a, 0-5-6-3v. 2a
Midget type 2A. 1a, 3a
300-0-300. 80a. 6.3v. 2a, 0-5-6-3v. 2a
300-0-300. 100a. 6.3v. 3a, C.T.
300-0-300. 150a. 6.3v. 4a, 0-5-6-3v. 4a
300-0-300. 200a. 6.3v. 5a, C.T.
300-0-300. 250a. 6.3v. 6a

250/4-450/5. 200a. 6.3v. 2a, 0-5-6-3v. 2a

250/4-450/5. 300a. 6.3v. 2a, 0-5-6-3v. 2a

R.S.C. TRANSFORMERS

425-0-450. 200mA. (6.3v. 4a Twists). 5a. 3a
450-0-450. 250mA. 6.3v. 4a. C.T. 5a. 3a

FILAMENT TYPES

6.3v. 0-110. 110v. 110/110/110v. 60mA. 6.3v. 2a
110v. 0-110/110/110v. 60mA. 6.3v. 2a

OUTPUT TRANSFORMERS

Push-Pull 8 watts, EL84 or 6SV6 to 3 or matched to 150. 9W
Push-Pull 10-12 watts to match 6SH4 or 6L84 to 3-4-8 to 150. 19W
Following types for 3 and 150 Q speakers—Push-Pull 10-12 watts, 6SH4 or 6L84 18/9
Push-Pull 11-13 watts, 6SH4 or 6L84 18/9
Push-Pull Mullard 510 Ultra Linear 29/9
Push-Pull 20 watts, individually wound 6L4. TE61, EL34, etc. 49/9

CHARGER TRANSFORMER.

300-0-300. 8a, 12/9; 0-9-15v. 2a. 14/9; 0-9-15v. 3a. 16/9; 0-9-15v. 5a. 19/9; 0-9-15v. 6a 29/9; 0-9-15v. 8a. 29/9

AUTO STEP VOLTAGE TRANSFORMER.

0-110/220-230/250. 50-60 watts 13/9; 150 watts. 29/9; 250 watts. 49/9; 500 watts. 99/9

AUDIONETRE HI-FI TAPE RECORDER KIT

REALISM AT INCREDIBLY LOW COST, CAN BE ASSEMBLED IN AN HOUR. Incorporating the latest Magnavox Tape Deck. The Audionette Hi-Fi Tape Recorder Kit, with this High Quality Tape Amplifier and a Domestic Portable Carrying Cabinet covered in attractive leather-clad, chrome-fitted and trimming. Size 14" x 17" x 8" in high, and circuit total cost if purchased individually approx 640. Performance equal to units in the £30-£70 class, S.E.A. for leaflet approx. S.C.O.N.T. TERMS—4 gns. deposit and mostly of 42. (Total 19 gns.) ONLY 3 PAIRS OF SOLID WELDS PLUS MAINS.

TRANSISTOR SALE

Mullard OCLI 211, OCL 237, OC44 311I, OC27 211, OCBI 211, OCVI 191, Eidwein 2A110 39, XA112 39, AIC117 8/4. Postage 6d., for up to 3 transistors.

COMPLETE POWER PACK KIT

Consisting of Mains, Transistor, Metal Rectifier, and Push-Pull Smoothing choke and chassis and circuit. For 200/250 VAC mains. Output 200V. 60mA. 6.3v. 2a.

The PUNCH you need!

HOLE PUNCHES

Instant Type
1" diameter........... 6/10 ea.
2" diameter........... 9/10 ea.

Screw Type
1" BGA.............. 9/10 ea.
2" BGA, 89A............ 10/6 ea.
4" BGA............. 4/6 ea.

B" diameter Int. Octal
1/16"............. 16/2 ea.
1/16"............. 16/2 ea.
3/16".............. 24/4 ea.
1/8".............. 24/4 ea.

24".............. 33/2 ea.

Complete Set 69.3.

No extra charge for postage and packing in the U.K.

The RADIO AMATEURS HANDBOOK 40/-
1966 Ed. by A.R.R.L. Postage 3/-

WORLD RADIO AND T.V. HANDBOOK 1966, by Johansen. 29

ABC'S OF ELECTRONIC ORGANS, by Crowhurst. 17/-

TRANSMITTER ELECTRONIC ORGANS FOR THE CONSTRUCTOR, by Douglas. 19/-

ELECTRONIC GUITAR AMPLIFIER HANDBOOK, by Darr. 25/-

ELEMENTS OF TRANSISTOR PULSE CIRCUITS, by Towers. 36/-

ELECTRONIC MOTOR CONTROL, by Lytel. 31/3

PRACTICAL TRANSMITOR SERVICING. New Edition, by Caldwell. 25/-

Pick-ups, the Key to Hi-Fi, by Walton. 10/-

ABC'S OF COMPUTERS by Lytel. 17/-

ELECTRONIC COMPUTERS, a made simple book by Jacobowitz. 19/-

UNDERSTANDING LASERS AND MASERS, by Leinwoll. 14/3

All prices include U.K. postage.

Where possible 24-hour service guaranteed.

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.C.2
(Leicester Square Tube Station)

BCC 625 LINE TV Aerials

B.B.C. B.B.C. (BAND 1), Tele­
scopic loft 2.1/2a. External units approx. 15/-

I.T.V. (BAND 3). 3 Element loft array 25/-

COMBINED B.C.B. I.T.V.

I.T.V. (BAND 3). 3 Element loft array 25/-

MAST MOUNTING ARRAYS.

9 element 45/-, wide spaced high gain, 11 element 55/-; 14 element 62/6. WIDE SPACED MOUNTING WITH CRANKED ARM. 9 element 60/-, wide spaced high gain, 11 element 69/6. Ultra Linear 14 element 75/6. CHIMNEY ARRAYS COMPLETE.

9 element 55/-; 14 element 80/6; 14 element 87/6. LOFT ARRAYS, 7 element 32/6, wide spaced high gain, 11 element with TILTING ARM 60/-; 14 element 70/-; 500 WATT GAIN UNITS HAVE SPEC 39/-, Wall mounting 39/- Reflector. LOW LOSS CO-AXIAL CABLE 16/6. UHF transistor pre-amps from 75/6.

B.B.C. 1/4 M.F. AERIALS

B.B.C. (BAND 2). 1/4 wave Masts 32/-

44/6. 1/4 wave Portable 25/6.

YHF transistor pre-amps from 75/6.

F.M. (BAND 2). 1/4 wave Masts 32/-

K.V.A. ELECTRONICS, New Addington, Surrey

LOD 2266
excessively high current flowing as the cable charges with each Geiger pulse. The G.M. cathode is soon impaired under these conditions and is apparent by a shortening and steepening of the plateau region of the characteristic which is finally lost altogether.

The most usual method of avoiding this is to place a series resistor in the anode lead between the tube and the cable (R4 2·2 megohm see Fig. 1) to form part of the anode load. There are two unused pins on the valve-holder which are convenient for mounting this resistor in the probe. The cable should still be kept as short as possible and about 2ft should be sufficient with a portable unit such as this particular ratemeter. Any good quality low capacity TV coaxial cable will suffice for this purpose.

Two different types of input plug and socket combinations are used on the instrument to avoid wrong connection, but it might be more acceptable to the constructor more concerned with the cost to omit these altogether. If, instead, the cables are taken through grommets in the front panel and permanently anchored inside, this should be a perfectly satisfactory arrangement.

OPERATING THE G.M. TUBE

Setting up the G.M. tube is quite simple and can be done using a luminous wrist watch as a source of radioactivity. The e.h.t. is then increased from zero until the ratemeter just begins to count, and then if it is increased a little more, say another 50 volts, this will ensure operation in the plateau region.

If the e.h.t. is increased too much and the tube is taken beyond the plateau it will go into discharge which is apparent by a sudden increase in count rate. Provided that the e.h.t. is immediately reduced no damage will be done to the tube, but this condition should be avoided if possible. If the tube does not appear to give results at the voltage stated by the manufacturer, then increasing the e.h.t. is not the answer. G.M. tubes have been made for quite a few years now and almost invariably do exactly as the maker predicts.

If they don't then usually something else is wrong and the tube should only be suspected as a last resort.

SAFE LEVELS OF RADIATION

The first question most people ask when they see a "Geiger counter" being used is whether the amount of radiation present is dangerous.

This is an easy question to ask but it is not so easily answered.

At the moment the recognised basic safe level for controlled personnel, that is medically supervised personnel, in a radioactive environment, is 2·5 m. r/hour for a 40 hour working week and this is a very good guide. The prototype ratemeter was operated in a gamma flux of this intensity using the G10H tube and the observed count rate was about 250 counts per sec. The 500 c.p.s. range therefore read 0·5 m. r/hr. It will soon be realised how insignificant are the levels from a luminous watch by comparison.

The best attitude to adopt, however, is "any radiation is too much radiation" and not unnecessarily expose oneself to it.

SELECTING AN APPROPRIATE DEVICE

There is not sufficient space in an article of this nature to discuss all the possible types and applications of either type of radiation detecting device, and although only one type of G.M. tube has been mentioned it should not be assumed that it will suffice for all purposes.

The best policy is to get in touch with the tube manufacturers, who are usually very helpful in such matters.

ACKNOWLEDGEMENT

The author wishes to thank the Directors of 20th Century Electronics Ltd. for permission to publish this article.
THE "envelope" amplifier described in this article is intended primarily for use in the vocal sound effects unit, which will be found elsewhere in this issue. The purpose of this circuit is to convert an a.c. signal into a variable d.c. signal proportional to the amplitude of the a.c. waveform. This d.c. is known as the "envelope" of the a.c. signal.

Diodes D1 and D2 detect and rectify the a.c. signal. TR1 and TR2 act as a d.c. amplifier to provide a power supply to the bell gate amplifier described in the "Vocal Sound Effects Unit" article. The bell gate amplifier is, in fact, a variation of the "Pre-amplifier" circuit described last month.

Fig. 1 shows the circuit diagram. The output is taken from the emitter of TR2 and fed to an LC network to smooth the d.c. The signal input is derived from the emitter (output 2) of the "Pre-amplifier" circuit described last month.

Fig. 2 shows the layout of components. It is not essential to use plugs and sockets for the input and output, since the unit can be connected direct to the other circuits in the "Vocal Sound Effects Unit". Only one link wire is required at A.

The circuit is built upon the "standard" pattern printed board as used in the other "Bonanza Board" projects.

COMPONENTS...

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>R1 2.7k Ω 10% 1/2 watt, carbon</td>
</tr>
<tr>
<td>Capacitors</td>
<td>C1 40μF elect. 12V</td>
</tr>
<tr>
<td></td>
<td>C2 0.047μF mica</td>
</tr>
<tr>
<td></td>
<td>C3 1μF elect. 12V</td>
</tr>
<tr>
<td>Transistors</td>
<td>TR1 OC71 (Mullard)</td>
</tr>
<tr>
<td></td>
<td>TR2 OC72 (Mullard)</td>
</tr>
<tr>
<td>Diodes</td>
<td>D1, D2 OA5 (Mullard)</td>
</tr>
<tr>
<td>Battery</td>
<td>BY1 9 volt light duty</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Printed circuit board (see text)</td>
</tr>
<tr>
<td></td>
<td>Switch, single pole on/off (optional) for battery</td>
</tr>
<tr>
<td></td>
<td>Battery connectors and p.v.c. wire</td>
</tr>
</tbody>
</table>
MINIATURE METALLIZED POLYESTER CAPACITORS

These small moulded metallized polyester capacitors are ideally suited to the applications of printed wiring panels and transistorised circuits. The use of the new dielectric material and unique construction combine the advantages of small physical size and superior electrical characteristics which meet the requirements of H.5 DEF. 5011 Specification.

CONSTRUCTION

The windings are virtually non-inductive and the wire terminations are soldered direct to the metal electrodes eliminating contact resistance and ensuring the minimum possible inductance.

Cap. Tolerance: ±20%
Voltage Rating:
Peak ripple voltage and D.C. voltage must not exceed rated D.C. voltage.
Power Factor: <0.01 at 1 Kc/s, at +20°C.
Temperature Rating: Suitable for working at +85°C without derating.

Insulation Resistance: 10,000 megohms or 2,000 ohm farad whichever is less.
Terminations: 22 SWG solder-coated parallel wires for vertical mounting.
Finish: Insulated—special non-cracking heat resisting thermosetting compound providing good insulation and good protection against the ingress of moisture.

THE TELEPHONE CONDENSER CO. LTD.
Electronics Division · North Acton · London N.3 · Tel. ACO 066 · Telex 261383
(Also at) CHESSINGTON, SURREY & BATHGATE, SCOTLAND

Of drastically low mass FLUID ARM, incorporates a unipivot working down into a deep well of fluid, which surrounds the pivot, providing lateral support, and PURE DAMPING, and achieves a pivot friction which defies measurement IN ALL PLANES. Other design features include a ROLLER ACTION adjustable bias compensator, a sophisticated lowering AND positioning device, fine balance adjuster, modular counterweight system, vertical AND horizontal base adjustment, stereo leads and plugs, and every conceivable adjustment. THE TRANSCRIPTOR ARM is similar in design, and only slightly less sophisticated using a conventional unipivot, and having no bias compensator. THE SWEEP ARM tracks at a i-1 of a gramme and has a squirrel hair brush unipivot; adjustable height and pressure, and a parking device. THE STYLUS SCALES use a single balanced beam over a unipivot with a bubble readout, and are accurate to 1/50th of a gramme.
Absolutely fantastic price, only £5.19.6. postal & pack. 3/6 or 30/- dep., bal. 18 Penny p'ts. 6/4 (Total Credit Sale Price 14/-) & postal. Have fun with the smallest tape recorder imaginable! Styled on those shown on T.V. and in spy films, that also record and play when concealed in any position—even as a distance! Plays back clearly and distinctly—terrific adjustable sound control. Perfect for voice of music, verbal contracts, reporters' dictating, etc. or just for fun and games! Works in jacket or trouser pocket, handbag, etc. Yes, measures only inches. DEPTH ONLY 1". OPERATES FROM BATTERY WITH CARRYING CASE, ACCESSORIES AND MICROPHONE. Super 15 minute (App.) tape 1/2d extra. Standard medium batteries 1/9 per set (obtainable anywhere). Fully guaranteed. Limited stocks—send now or call. "H & G" first again with a quality novel offer at a fantastic price. Worth far, far more than double the price. Worth if not absolutely delighted. Absolutely fantastic price, only £5.19.6. postal & pack. 3/6 or 30/- dep., bal. 18 Penny p'ts. 6/4 (Total Credit Sale Price 14/-) & postal. Have fun with the smallest tape recorder imaginable! Styled on those shown on T.V. and in spy films, that also record and play when concealed in any position—even as a distance! Plays back clearly and distinctly—terrific adjustable sound control. Perfect for voice of music, verbal contracts, reporters' dictating, etc. or just for fun and games! Works in jacket or trouser pocket, handbag, etc. Yes, measures only inches. DEPTH ONLY 1". OPERATES FROM BATTERY WITH CARRYING CASE, ACCESSORIES AND MICROPHONE. Super 15 minute (App.) tape 1/2d extra. Standard medium batteries 1/9 per set (obtainable anywhere). Fully guaranteed. Limited stocks—send now or call. "H & G" first again with a quality novel offer at a fantastic price. Worth far, far more than double the price. Worth if not absolutely delighted.
VOCAL SOUND EFFECTS UNIT

Fig. 1. The complete vocal sound effects unit after circuit modifications. A tone generator is connected to SK2

Doctoring of the sound of the human voice is widely practised for both recording and public address purposes. This tone bending is quite simple to achieve and gives apparently artificial effects.

The basic circuit is shown in Fig. 1. The signal from the microphone is amplified by a slightly modified version of the “Pre-amplifier” described last month. Both outputs of this unit are used: the signal from output 1 is made available through a volume control VR1 and Rx for listening to the “true” sound. The signal from output 2 of the pre-amplifier is fed into an “Envelope Amplifier” (see BB9 article) which converts it to d.c. proportional to the amplitude of the a.c. signal. This d.c. drives the bell gate amplifier. No other power supply is needed for this amplifier.

The bell gate amplifier is another modified version of the “Pre-amplifier” (BB1). The input to this is applied to SK2 and can be an electronic tone or chord which is modulated by the fluctuating d.c. from the envelope amplifier. Thus, the bell gate amplifier acts rather like an electronic volume control. The unusual effects produced are passed to SK3 (output 2) via a volume control VR2 and Ry.

Both outputs can be electronically combined by closing switch S2, providing sufficient output to drive a power amplifier. Alternatively, each output can drive its own individual power amplifier.

The main purpose of the unit is to amplitude modulate the electronically generated tone with an “envelope” waveform similar to that provided by the human voice, or any other sound picked up by the microphone. This electronic sound is mixed (by using S2) with the original vocal sound to give some “colouring”. Some intriguing and sometimes startling effects can be produced.

Modifications

The best way to start is to assemble the three basic units with the necessary modifications outlined as follows:

Referring first to the pre-amplifier, make up this unit according to the article (BB1, Figs. 1 and 2, page 182 last month) and carry out the following modifications:

1. R5 should be omitted and replaced by a shorting link A;
2. Omit VR1 of the pre-amplifier;
3. Change C1 to 40μF and connect + to SK1;
4. Change R4 to 560 ohms;
5. Insert new resistor R6 470 ohms as shown in Fig. 2 below. Remove link D and replace by R6. The centre wire of the coaxial cable to “output 2” should be removed and connected to the vacant hole next to TR2 emitter (see Fig. 2b);
6. SK2, SK3, and BY1 (in Fig. 1, page 182) can be omitted.

The envelope amplifier (BB9) should be made up as shown in the appropriate article elsewhere in this issue.
The bell gate amplifier is another pre-amplifier unit (BB1) with different modifications as follows:

(1) Change R1 to 6·8 kilohms;
(2) Change R2 to 150 kilohms;
(3) Change R3 to 1 kilohm;
(4) Change R4 to 220 ohms;
(5) Omit VR1, C4, SK1, SK2, and R5;
(6) Change C1 to 40µF, connect + to R6;
(7) Insert new resistor R6 10 kilohms in series between C1 + and SK1;
(8) Insert link wire A in place of R5;
(9) Change C3 to 1µF.

Refer to Figs. 1 and 2 on pages 182 and 183 of last month’s issue when carrying out the modifications.

ASSEMBLY

The three units can now be assembled and wired together according to the circuit in Fig. 1. Be sure to get the interconnections between units correct. Extra components will, of course, be required and these are specified in the components list. The choke L1 has an inductance of 10 henries which, when combined with C3 in the bell gate amplifier, smooths the d.c. from the envelope amplifier. It is likely to be a bulky item so it will have to be mounted separately in the box.

The three Bonanza Boards and associated components are assembled in a metal box which can be an aluminium chassis with a cover plate. This should be large enough to house everything; a suggested size would be not less than about 8in × 6in × 2½in. Readers may like to incorporate the tone generator for feeding the bell gate amplifier within the box and, of course, allowance should be made for this. If a pure sine wave tone generator is not essential the Harmonic Oscillator BB5 could be used.

BEAT FREQUENCY

Interesting effects are obtainable when the two inputs are almost the same pitch, a beat frequency (the difference between the two fundamental input frequencies) will be heard as well. Some dissonance will be heard, but the good singer should be able to avoid this by matching his voice to the oscillator frequency. It is useful to be able to adjust this frequency to match the voice; VR1 on BB5 (Wide Range Harmonic Oscillator) is inserted to perform this function.

This sound effects unit is not necessarily confined to vocal sound effects. There is no reason why one should not use musical instruments and tape recorded sounds. The scope is enormous—the effects fascinating.

As recommended in other articles in this series, it is worth using insulating backing boards to protect the copper strips from short circuits. The choke must be firmly clamped and bolted to the box.

SETTING UP

Connect a milliammeter temporarily in series with the battery negative lead to measure the quiescent current (i.e. with no signals applied to the circuit). This should be about 5mA when S1 is switched on. If it rises rapidly to more than about 10mA, switch off quickly and check that the wiring is correct. When a signal is applied via, say, a microphone to SK1 the current consumption from the battery will rise to quite a high value, depending on the signal strength.

Set VR1 and VR2 to minimum volume, close the switch S2, and connect one of the output sockets to a power amplifier and loudspeaker. Increase the volume setting of VR1 gradually until the audio input signal can be heard at a reasonable level from the loudspeaker.

Connect an audio oscillator (sine wave, square wave, or sawtooth) to input 2. Increase the volume setting of VR2 until the oscillator signal can be heard in the loudspeaker. This will only be heard when an audio signal is fed into input 1.

This setting up procedure applies to obtaining a combined signal from both outputs. If you want the two signals separated, open switch S1 and feed each output to its own power amplifier. Use VR1 and VR2 to obtain a reasonable balance between the two signals.

COMPONENTS . . .

| BB1 Pre-amplifier modified according to text |
| BB9 Envelope amplifier (see page 296) |
| BB1 Bell gate amplifier modified form of preamplifier (see text) |

Additional components not included in the above units

| Resistors |
| Rx 47kΩ | 10%, 1/2 watt carbon |
| Ry 47kΩ |

| Potentiometers |
| VR1, VR2 50kΩ log carbon (2 off) |

| Inductor |
| L1 10H 100mA l.f. choke |

| Switches |
| S1, S2 Single pole, on/off toggle (2 off) |

| Plugs and Sockets |
| PL1 and SK1 coaxial or jack for input 1 |
| PL2 and SK2 coaxial for input 2 |
| PL3 and SK3 coaxial for output 2 |
| PL4 and SK4 coaxial for output 1 |

| Miscellaneous |
| Chassis 8in × 6in × 2½in with cover plate |
| Coaxial and p.v.c. wire |

| L-C PICOMETER |
| USED IN CONJUNCTION WITH A G.D.O. TO MEASURE SMALL CAPACITANCE AND INDUCTANCE VALUES QUICKLY |

| TV TERMS AND DEFINITIONS |
| NEW SERIES EXPLAINING IN SIMPLE TERMS THE DEFINITIONS AND PHRASES PECULIAR TO TV |

| FAULTY CHOKES AND TRANSFORMERS |
| A LOOK AT THE SITUATIONS IN WHICH THESE ARE TO BLAME |

April issue on sale MARCH 24th—Price 2s.

| PRACTICAL WIRELESS |
| REFLEX-2, TRANSISTOR RECEIVER |
| TWO TRANSISTOR 4-STAGE POCKET SET FOR THE BEGINNER |
| EL KEY |
| AN ELECTRONIC MORSE KEY |

April issue on sale NOW—Price 2s.
The hard-to-find man is the man with advanced technical knowledge

In the field of Electronics today the greatest demand is for men to fill the positions of skilled technicians and support engineers. These are the 'hard-to-find' men for whom the way ahead to rewarding and interesting jobs lies wide open.

CREI HOME STUDY COURSES offer advanced technical education to the man who realises that technical knowledge must be current and up-to-date if progress is to be made in a world in which new ideas, new techniques and new applications develop almost overnight.

CREI COURSES ARE AVAILABLE IN:—
Electronic Engineering Technology
Automation & Industrial Electronic Engineering
Nuclear Engineering
Communications Engineering
Aeronautical & Computer Engineering
Television Engineering
Servomechanisms & Navigational Engineering
Space Data Systems
Radar & Servo Engineering
Mathematics for Electronic Engineers
City & Guilds of London Institute: Subject 49 & Supplementary Studies Subject 300.

For further information write to:
C.R.E.I. (London) (Dept. P.E.1.)
WALPOLE HOUSE, 173/176 SLOANE ST. LONDON, SW1
Telephone: BELgravia 8662

International Division of Capitol Radio Engineering Institute, Washington, DC
BUILD A HI-FI SYSTEM
WITH WHARFEDALE LOUDSPEAKERS

These Loudspeakers are the actual speakers that Wharfedale use in their world famous cabinet models. Each is fitted with roll surround for low resonance and double diaphragm assembly for extended H.F. response.

Send today for further details of these units plus free cabinet construction sheets to enable you to build a top quality Hi-Fi loudspeaker system.

SUPER 8/RS/DD
Frequency range 40 c/s — 20,000 c/s. Impedance 10/15 ohms.
Power handling capacity 6 watts (12 watts peak) £7.0.0. (tax paid)

SUPER 10/RS/DD
Frequency range 30 c/s — 20,000 c/s. Impedance 10/15 ohms.
Power handling capacity 10 watts (20 watts peak) £11.13.4. (tax paid)

SUPER 12/RS/DD
Frequency range 25 c/s — 20,000 c/s. Impedance 12/15 ohms.
Power handling capacity 20 watts (40 watts peak) £17.10.0. (no tax)

FREE CONSTRUCTION SHEETS

Complete this coupon for 8 page booklet on Wharfedale Speaker Units plus FREE CABINET CONSTRUCTION SHEETS for your own Hi-Fi system. (Dept. PE4)

NAME ..
ADDRESS ..
TOWN ..
COUNTY ..

PARKERS SHEET METAL FOLDING MACHINES HEAVY VICE MODELS

With Bevelled Former Bars Carr. free
No. 1. Capacity 18 gauge mild steel x 36in. wide £11.10.0
No. 2. Capacity 18 gauge mild steel x 24in. wide £6.15.0
No. 3. Capacity 16 gauge mild steel x 18in. wide £8.15.0
Also new bench models. Capacities 48in. x 18 gauge £38. 36in. x 18 gauge £23. 24in. x 16 gauge £13. Carryage free.

End folding attachments for radio chassis. Tray and Box making for 36in. model, 5/4 per ft. Other models 3/4. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

A. B. PARKER, Wheatcroft Works, Wellington St., Batley, Yorks. Tel. 3428

YUKAN SELF-SPRAY . . . THE YUKAN AEROSOL WAY!

GET THIS AIR DRYING HAMMER FINISH

YUKAN Aerosol sprayskit contains 16 ozs. fine quality durable easy instant spray. No stove baking required. Available in Grey, Blue, Gold, Bronze at 14/-11 at our counter or 15/-11, carriage paid, per push button self-spray can. SPECIAL OFFER: I can plus optional transferable snap-on trigger handle (value 5/-) for 10/- carriage paid.

Choice of 13 self-spray plain colours and primer (motor car quality) also available

Please enclose cheque or P.O. for total amount to:

YUKAN · DEPT. PE/4 · 307a EDGWARE ROAD · LONDON · W.3

G. F. MILWARD
17 Peel Close, Drayton Bassett, Near Tamworth, Staffs.
Tamworth 2321
CURRENT FLOW

I have already referred to one great difficulty encountered by the novice to electronics. Unlike the student of mechanical or pneumatic engineering, for instance, the budding electronics engineer has to take an awful lot on trust or prove it to himself mathematically.

The effects of electron currents we can observe with our various senses. The character and behaviour of the atomic particles that make up these currents are still very mysterious, despite the efforts of physicists to explain in word and by pictorial representation. Most elementary text-books fall back on the water-system analogy when explaining electron current flow. This seems to be a useful aid during the first steps. It now occurs to me that the student of logic circuits seeking a more tangible analogy could not do better than to take a peep into the world of pneumatics. Seemingly all the familiar binary logical and switching functions can be found in pneumatic systems such as are used in process industries, mechanical handling and so on.

Following upon my mention of fluid computers last January, I have received from AEI some literature describing their AIRLOG logic units, or relays. These devices, as the makers point out, operate on more conventional principles than the fluid devices I previously wrote about.

The AIRLOG devices are about 2in high and something less than 14in in diameter, and incorporate three chambers stacked one above the other. Three diaphragms enclose the three separate chambers each of which may receive an input signal (pulse of air) through entries in the base. A signal in either of the two upper chambers causes a downward force sufficient to operate the relay. A signal in the bottom chamber acts upwards and has the effect of inhibiting the effect of one but not of two signals acting in the other two chambers. By making appropriate signal connections the basic switching functions OR, AND, NOT, etc. may be performed.

Another AIRLOG device called a solenoid probe can be used to operate pneumatic systems from transistor switches. And this brings me back to more familiar ground again.

A SHRUNKEN IMAGE

The Russians' Space Spectacular with Luna 9 was made especially memorable for us by the publication in our newspapers of close-up views of the moon's surface. Publication of these pictures also brought forth a strong protest from Moscow. Indeed the Russian accusation that this enterprise amounted to piracy was later echoed by a leading Canadian research scientist Dr. P. Millman, who claimed that this was the same as contravening the copyright laws. Sir Bernard Lovell has vigorously defended his action, stating that as the Russians were well aware that Jodrell Bank would easily receive the picture signals, this implied that they were not really concerned with maintaining exclusive rights on these transmissions.

Since it is clear that the Russians employed the standard international facsimile system for this operation, the following question comes to mind: was it due to technical difficulties that more elaborate equipment providing some measure of "security" in the transmissions was not used on this sensational lunar project?

Now back to Earth. Admitting that the signals were directly translatable, the further query arises: was it ethical for Sir Bernard to feed these signals to the British Press before the "owners" had released any pictures? The Russians think it was bad form, piracy in fact, to publish the pictures without prior consultation with their own scientists, and they make the technical point that the British reproductions were shrunk in the horizontal scale by about two and a half times.

My view is that this last point really does demolish Sir Bernard's claim to have acted purely in the interest of science. No, I think here he succumbed (perhaps understandably) to the excitement of the occasion and to the prompting of the Press!

Some people may view the whole argument as only a storm in a tea cup. But surely there is food for thought here. The question of copyright of radio transmissions, of whatever kind, from outer space will have to be sorted out on an international basis before many more years have passed if we are to be saved from continual international bickering — if not worse!

SOUR GRAPES?

Unfortunately another rather sour note was added to this affair by one of the heads of the American National Aeronautics and Space Council, Dr. E. Walsh. This spokesman went out of his way to emphasise that the U.S.A. did not have to wait for "Russian statements or British pronouncements to find out something about what was going on". From these remarks it seems likely that the worldwide tracking and data collection system known as SPADATS picked up some of the photographs transmitted by Luna 9. (Copyright? But I doubt if the American Press were in on this!)

However we must not allow any acrimony to obscure what an amazing achievement the Luna 9 episode adds up to.

Luckily radio waves at any rate do not recognise terrestrial or space boundaries. All those responsible for the aerial and electronic equipment which enabled the minute signals to be captured and amplified, whether located in Moscow, Jodrell Bank, or Colorado Springs, have cause to be pleased with themselves; perhaps only a trifle less than those responsible for initiating this unique O.B. from our satellite the moon.
A good buy

Sir—I have copies, complete with blueprints, etc., of PRACTICAL ELECTRONICS from No. 1 to January 1966. If any of your readers are interested I would be willing to sell them at a reasonable price.

H. S. Copping,
25 Peartree Avenue,
Yiewsley,
Middlesex.

Three-gang pots

Sir—I have been reading about the Fletcher-Munson curves and I have come across a circuit for a volume control which gives a close approximation to these curves. The circuit involves the use of a three-ganged potentiometer. I have tried in vain to obtain one.

The specified pot was I.R.C. type LC-1. I would be grateful if anyone could give me details of where I could obtain one.

A. D. Hart,
Ramsgate,
Kent.

Current flow

Sir—I note you use the conventional theory of current flow in "Electronic Building Blocks". As a relative beginner I always found the theory of electron flow easier to understand. I notice also this is used by the more up-to-date text books.

R. V. Walley,
Abbots Leigh,
Bristol.

With regard to your directional problems on current flow, we would suggest that you learn to appreciate both conventional and electron flow in their application to a circuit's interpretation. In thermionic emissive devices, such as valves, electron flow lends itself readily to the circuit they are employed in, but in transistor circuits, since npn types are most commonly employed, and the majority carriers are "holes" or positive charges, it is easier to interpret circuit action in terms of conventional current flow.

The choice of current flow directions is an arbitrary one for text-book authors and always rather confusing to students, and it is well to acquire a facility in using both systems.

Sounds good

Sir—I am interested in the electronic manipulation of sound and music. Your articles on vibrato units and electronic music have been most useful.

I hope that you will continue this series, and give some information on electronic reverberation or echo without resorting to the expense of tape loops or mechanical devices such as springs and transducers.

D. A. Somerville,
Gerrards Cross,
Bucks.

Question of power

Sir—I am interested to see your new series of articles on "Radio Control of Models" by Mr. R. H. Warring, who is well known in this field.

I am surprised by the statement in the February issue that output power must not exceed five watts. Whilst the statement is true it conveys the impression that up to five watts is permitted. In fact power should not exceed 1½ watts e.r.p. on 27Mc/s and ½ watt e.r.p. on 468Mc/s, according to my licence.

T. J. Froggatt,
Solihull,
Warwickshire.

Sorry for this slip! The current regulation allows a maximum of 1½ watts transmitter output. With older types of transmitter where battery consumption was not a major problem, we did use up to 5 watts d.c. input at times, but doubt that even then we get 1½ watts radiated output! R.H.W.

Neon polyphony

Sir—With reference to the article on "Unstable Neons", Readout, February '66 issue, where your reader appears to have an unfortunate experience with the cheap type of neon bulbs when used in an electronic organ, I feel obliged to say a few words in their defence, so that any intending constructor is not discouraged from using them.

I too have constructed a fully polyphonic organ (two manual and pedal) using the same type of neon indicators as used in your Neon Novelties series. Yet, although played daily, it never needed retuning after the original setting three years ago. It is also completely insensitive to any change in temperature.

Perhaps a good, stabilised h.t. supply for the neons, as well as employing the "two neons in series" type of divider, may provide the answer. It is also essential to test each neon so that it can stand a variation of ±2.5V about its nominal voltage. Any bulb unable to stay locked within that variation must be changed.

J. M. Stejskal,
Thorney Island,
Hants.

About turn!

Sir—with reference to M. J. Bunce's letter on page 142 of the February 1966 issue I am afraid that your contributor R.W.S. is perhaps being a little misleading in his description of the action of a Crookes' Radiometer.

A true radiometer—as invented by Sir William Crookes to demonstrate the physical pressure of lightwaves—does not contain any gas at all.

Under this condition the paddle wheel revolves in a counter-clockwise direction. If, however, a small amount of gas is introduced into the evacuated bulb then the phenomena as described by R.W.S. predominates—the paddle wheel revolving in the opposite direction.

This latter effect is known as the "radiometer effect" and it occurs at its maximum between about 10^{-4} and 10^{-5}mm mercury gas pressure.

Should M. J. Bunce obtain a radiometer, he should carefully check in which direction it revolves.

S. J. Colgan, B.Sc., A.R.C.S.
FRINGE BENEFITS!!

(Oh dear! our artist is thinking of Gloria again)

One of the fringe benefits that purchasers of the Home Radio Catalogue get is our Special List of Bargains. This is sent automatically with the first parcel of goods. Let us highlight a few items from our List:

BG6A Condenser Pack. Silver Mica Condensers — values 15, 25, 71, 80, 160, 200, 400, 470, 1000, 1500, 1670, 3300, 4700 pf (the 470 pf are 750V). Twelve of the fourteen in each pack. Moulded Micas — values 68, 620, 1000, .002, .005, .01 (the .001 are 2250 volts test). Five out of the six in each pack, plus one .02 and one .001 paper, both 750V. All this for 5/6 plus 2/6 Postage & Packing (Today's value: 15/-).

BG28 Jackson type 100 pf air dielectric trimming Condenser. Three for 2/6 plus 1/6 Postage & Packing. (Today's value: 25/6).

BG41 Resistor Kit consisting of thirty different pre.ferred values between 1200 ohms and 4.7 Megs. 2Watt Resistors (Erie type T2). 5/- plus 2/6 Postage & Packing. (Today's value at least: 21/-).

These are three out of about sixty Bargains offered to purchasers of our Catalogue.

Now as to the Catalogue itself... it has 210 pages containing 5800 items, with over 900 illustrations. Price 7/6 plus 1/6 Postage & Packing. Every catalogue contains 5 coupons each worth 1/- when used as directed.

P.S. If you are interested in the above bargains send your money, quoting the Catalogue numbers.

Please write Name and Address in block capitals

Name

Address

Home Radio Ltd., Dept. P.E., London Road, Mitcham, Surrey
SERVICE SHEETS

Each, plus postage.

TRADE SERVICE SHEETS. Radio, TV, etc.
Mixed dozen at 4/-, 100-22/6d. p.p. TELKAY, Maidland Bank, Preston.

STATE MODEL No. Radio 2/-, TV 3/-.
S.A.E. DARWIN, 19 George Street, St. Helens, Lancs.

SERVICE SHEETS 4/- each, plus postage.

We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service.

To obtain the Service Sheet you require, please complete the attached coupon:
From: ___________________________
Name: ___________________________
Address: _________________________

To: S.P. DISTRIBUTORS
44 Old Bond St., London, W.1
Please supply Service Sheets for the following:
Make: ___________________________
Model No.: Radio/TV
Make: ___________________________
Model No.: Radio/TV
Make: ___________________________
Model No.: Radio/TV

I also require the new 1968 list of Service Sheets at 1/6 plus postage.

MAIL ORDERS ONLY Aml. FE

CONVERT ANY TV SET into an Oscilloscope. Diagrams and Instructions. 12/6 REDMOND, 42 Dean Close, Putney, Sussex.

TRANSFORMERS: Rewound. Output or mains. Specialist made to order. Reasonable prices. S.A.E. enquiries. BATCLIFFE, 27 Station Road, Holmfirth, Yorks.

PRINTED CIRCUIT BOARDS. Are you looking for a supply of P.C. boards in quantity or just a few for prototypes? Send circuit or layouts for quick 1st class service. Supplies of Viroboard, Sinclair kits, 30 watt transistor amplifiers, tape recorders. Write for details. B.E.E.P., 11, Caneck Road, Burntwood, Staffs.

ELECTRONIC KITS, radios, etc. Assembled. Moderate charges. D. KIETH, 1g, West George St., Carlbridges, Lanarkshire, Scotland.

FOR SALE

VENNER TIME SWITCHES. Reconditioned, 14 day clock, once set off every 24 hrs. jewelled movement, fully guaranteed. 1 amp 24-v, 5 amp 33/6d., 15 amp 33/6d. Post etc. 2/6d. Cast Aluminium Cases 7/6d. A. R. BATCHELOR, P.E. Dept. 4 Park Road, Bromley, Kent.

CRANKLE PAINT. Black or Grey, ½ pint tins 4/-, post 6d. from the component specialists. SERVIO RADIO, 136-9 Morton Road, Wimbledon, London, S.W.19.

TRANSMITTERS UNMARKED UNTESTED. 40 for 10/-, 4 packets post free. Relays, thousands of types, special catalogue free. General Cables. Mechanical & Electrical Gear, etc. S.A.E. enquiries, 5,000 items, free.

RELAYS. 8 assorted 12-24 volt Ex-Equipment, 20/-, p. & p. 4/-. We can supply most relays as recommended in this journal.

GOVERNMENT SURPLUS. Electrical and Radio Equipment. Our new catalogue No. 16 now ready. 2/6 Post Free, cost refunded on purchase of goods over £2. ARTHUR BAILLIE, Radio Control Ltd., 93, North Road, Brighton.

ELECTRIC SOLDERING IRON

FANTASTIC BARGAIN OFFER

Lightweight Pistol Grip: 40 watt. 240 - 250v. A.C. Solid copper bit, detachable handle forms cover P. & P. 1/- for iron when not in use. With 4 Arts, Safety Scissors Free. Indispensable for every home handyman. A boon to model makers and a necessity for every electronics enthusiast. Offered to you at this new amazing price.

C. H. SERVICE (Dept. PE.1)
Lusted Hall Lane, Tadworth, Kent.

Small Battery Motors 3/4 in dia. x 2 in long—44 to 9 volts. Heavy construction—only 7/6d. each. P. & P. 1/-.
WALTONS WIRELESS STORES, 15 Church Street, Wolverhampton.

HAMMERITE HAMMER PATTERN BRUSH PAINT FOR PANELS AND BOXES

* THE PATTERN IS IN THE TIN *
* ALL YOU DO IS BRUSH IT ON *
21 oz. tins 30/6d. 35/-
pint 7/6 7/6d.
15/- 1/-
 pint 15/- 15/-

Carriages: Orders up to 5/-, 50/ up to 10/-, 1/9 over 10/-, 2/-
Colours: Blue, Silver or Metallic Black. Return of post service, Monday to Friday.
From your component shop or direct from the manufacturer:

FINNIGAN SPECIALITY PAINTS (PE)
Mickey Square, Stockfield, Northumberland
Tel. Stockfield 2280

PRACTICAL ELECTRONICS CLASSIFIED ADVERTISEMENTS

The pre-paid rate for classified advertisements is 1/- per word (minimum order 12/-), box number 1/6 extra. Semi-displayed setting £3.5.0 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.
FOR SALE
(continued)

FOR SALE. Oscilloscopes—Galvanometers—
Evershed, Vignoles, Moggers. Also other
items and components. Free list. Stamp
please. R. E. MART, Box 9, G.P.O.,
Tunbridge Wells, Kent.

WANTED

WANTED
THIS TYPE OF RELAY CONTACT
MARKED WITH "V" NOTCHES
112 Groby Rd., Glenfield, Leicester
SEND
S.A.E.
FOR
DETAILS

G.P.O. TYPE RELAY CONTACT SPRINGS

EDUCATIONAL

B.Sc. (ENG), A.M.I.Mech.E, A.M.I.ENG.E. City
& Guilds, etc., on "Satisfaction or Refund of
Fee" terms. Wide range of expert Home
Study Courses in Electronics, Computers,
Radio, T.V., etc. 156-page guide—FREE. Please
state subject of interest. BRITISH
INSTITUTE OF ENGINEERING TECHNOLOGY,
124 College House, Wright's Lane,
London, W.S.

Institute's full-time courses in RADAR and RADIO-
TELEGRAPHY for prospective marine Radio
Officers. Govt. approved exam. centre.

Also courses in basic ELECTRONICS, RADIO,
TELEVISION and COMPUTERS.

Apply: Director, British School of Telephony,
20 Poynters Road, Earls Court, London, S.W.5

STUDY RADIO, TELEVISION AND ELEC-
TRONICS with the world's largest home
organization. I.E.E., City & Guilds,
R.T.B.B., etc. Also Practical Courses with
equipment. All books supplied. Write for
FREE Prospectus stating subject to I.C.S.
(Dept. 577), Intertext House, Parkgate Road,
London, S.W.11.

HOME STUDY COURSES in Practical
Electronics. Free Brochure without obligation
from: BRITISH RADIODомICAL RADIO
SCHOOL, Reading, Berks.

A.M.I.Mech.E, A.M.I.ENG.E. City & Guilds,
G.C.E. etc. Become a Technician or Technolo-
gist for high pay and security. Thousands
of passes. For details of Exams and Courses
in all branches of Engineering, Building,
Electronics, etc., write for 156-page handbook

TAPE RECORDERS, TAPES, ETC.

TAPES TO DISC—using finest professional
equipment—45 r.p.m. 10/-. S.A.E. leaflet.
DEBOY, 82 Hest Bank Lane, Lancaster.

PUBLIC APPOINTMENTS

AIRCRAFT FITTING—RADIO, CIVILIAN
INSTRUCTOR GRADE III. One post at the
School of Army Aviation, Middle Wallop,
Hants, for a man fully skilled in the above
trade, able to teach it to O.N.C. standard
and to supervise trainees. Appropriate O.N.C.,
C. & G. Certificate or equivalent qualification
desirable. Selection by trade test and inter-
view. Starting salary £894 (at age 21) to
£1,243 (at age 30) rising to £1,556. Prospect
of pensionable employment and promotion.
Write for application form to: C.E.F.O., H.Q.,
Salisbury Plain Sub-District, C.T.C. Headquarters,

MINISTRY OF DEFENCE (AD). London.
requires technicians for collection and evalua-
tion of data relating to wide field of electrical
or mechanical engineering subjects with a view
to preparation of standards. Qualifications:
Recognised apprenticeship in electrical or
mechanical engineering; good general ex-
perience of engineering practices and manu-
facturing processes; capable of clear and
concrete expression in correspondence and pre-
paration of technical reports; knowledge of
service stores and experience in preparation
of spare schedules an advantage. O.N.C. or
equivalent. Salary £1,294—£1,693 p.a.
(Inner London). Application: Form from The
Manager, HENRY'S RADIO LTD., 303 Edgware Road,
London, W.2.

SITUATIONS VACANT

A FULL-TIME TECHNICAL EXPERIENCED
SALESMAN required for Retail sales. Write
giving full details of age, previous experience,
and salary required to: The Manager,
HENRY'S RADIO LTD., 303 Edgware Road,
London, W.2.

RADIO TECHNICIANS

A number of suitably qualified
candidates will be required for training,
leading to permanent and pensionable
employment. (Normally at Cheltenham but
with opportunities for service abroad or
appointment to other U.K. establishments
including London).

Applicants must be 19 or over and be
familiar with the use of Test Gear and
have had Radio/Electronic workshop
experience. They must offer at least "O" level
GCE passes in English Language, Maths and/or Physics, or hold the City
and Guilds Telecommunications Technician
Intermediate Certificate or equivalent
technical qualifications.

Pay according to age, e.g. at 19 £747,
at 25 £962 (highest age pay on entry)
raising by four annual increments to £1,104.

Prospects of promotion to grades in
salary range £1,032—£1,691.

Annual Leave allowence of 3 weeks
3 days, rising to 4 weeks 2 days.

Normal Civil Service sick leave regulations apply.

Apply
Recruitment Officer (RT/54)
Government Communications Headquarters
Oakley
Priors Road
CHELSEA, Glos.

TECHNICAL TRAINING by
ICS

IN RADIO, TELEVISION AND
ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man.
Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and
easily, the specialized training so essential to success. Diploma courses in Radio/
TV Engineering and Servicing, Electronics, Computers etc. Expert coaching for:

- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
- C. & G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. & G. SUPPLEMENTARY STUDIES.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.G. CERTIFICATES IN RADIO TELEGRAPHY.

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO COURSES.
Build your own 5-valve receiver, transistor portable, signal generator and multi-
tester—all under expert tuition.

POST THIS COUPON TODAY and find out how ICS can help YOU in your
career. Full details of ICS courses in Radio, Television and Electronics will be
sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

INTERNATIONAL
CORRESPONDENCE
SCHOOLS

A WHOLE WORLD
OF KNOWLEDGE
WAITS FOR YOU!

International Correspondence Schools
(Dept. 132), Intertext House, Parkgate Road,
London, S.W.11.

NAME

ADDRESS

Block Capitals Please

4.66

TRANSMITTERS AND COMPONENTS

HULLTRANS TRANSISTORS

OC71, OC44, OC45, OC72, OC81, OC81D—2/- each. OC103B, OC107, OC171—3/- each. AF114, AF115—4/- each.

MATCHED SETS TO CLEAR

1. OC104 3-3 1/2 -. Set of 7-3/4 each.
1. OC114 2-2 1/2 -. Set of 4-1/2 each.
1. GET 674—3-3 1/2—. Set of 4-1/2 each.
1. GET 673—2-2 1/2—. Set of 4-1/2 each.
1. OC44 2-2 1/2 1 OC61 1 OC81D 1 OC81B—3-3 1/2—. Set of 6-3/- each.
BY100 Hulland Branded 230/550 MA 1-1/2—. Each Westinghouse 1,000V P.I.V. 1 Amp. —6/- each.
AC126—6/- each. AT128—6/- each. AT186—4/- each.

STC Silicon Rectifiers

P.I.V. 200 3 Amps.—3/- each.

M.A.T. TRANSISTORS

MAT 100 7/10.
MAT 101 8/6.
MAT 129 7/6.
MAT 121 8/6.

Acorn Recorder Player Cartridge Replacements for Carollo, Garrard, B.S.R. etc.—1/2/- each.

TEXAS TRANSISTORS

G200—AF216 3/6.

Other types available on request.

Full range of Speaker Cabinets—6d each.

S.A.E. all enquiries.

All Above Post Paid

Mail Order Only:

J. ROBINSON

4 Highfields Road, Blackheath, Manchester 9

SUN SOLAR CELL KITS

24 Page Booklet on Experiments inc. 4 Solar Cells 11/- Set.

G.P.O. DIAL TELEPHONES

20/- each. 35/- pair.

SPECIAL OFFER

1 Watt S.T.C. 300 MC/S N.P.N. Silicon Planar. 100% Transistors. Limited Stocks. £1 for 6.

3/- each. OC44, OC45, OC70, OC71, OC81, OC81D, OC200, Get 16, Get 20.

4/- each. AF114, AF115, AF116, AF117, OC170, OC171.

5/- each. OC139, OC140, Get 7, Get 8, Get 9, XC141, BY100, OA211.

L.S.T. COMPONENTS

23 New Road, Brentwood, Essex

Special March Bargain offers: All Brand New Transistors and Diodes.

A1 POST FREE BARGAINS

25k or 50k 3watt w/wound pots with S.P. switch new and boxed £3.95. Guaranteed reclamed valves, S.A.E. for list. A.1 RADIO COMPONENTS, 14 The Borough, Canterbury, Kent.

CASH BUYING DISCOUNT

HI-FI AMPLIFIERS, TUNERS, SPEAKERS, TURNTABLE UNITS, ETC.

Any make supplied with a DISCOUNT

S.A.E. with enquiries please to:

HIGH FIDELITY CENTRE
61 West Street — DORKING — Surrey

SOLAR CELL KITS

CABLES AND ACCESSORIES

SPECIAL OFFER

CATALOGUES

NEW PRODUCTS

CANGARANTY

SPECIAL OFFER

BULK BUYING enables us to offer you this month wonderful bargains at prices you can afford.

BATTERY ELIMINATORS (all 9 volt)

The 'Quanta' battery eliminator is a neat little unit that may be used as a substitute for a PPS battery or where a low current 9v supply is required. Many thanks to all at Iw. plus one price is more than value for money.

- Quanta—output PPS battery, ONLY 1/8, plus 1/8 P. & P.
- Stack-Model LA-4P with self contained pilot lamp, ONLY 2/10, plus 1/4 P. & P. Suitable for most transistor radios.
- Norman—the most versatile eliminator of this size not made available to the public, replacement PPS 4, 5 and 9. Uses double wound mains transformer for maximum safety and is virtually the same size as a PPS battery. Handy power supply for the home constructor and at ONLY 5/6, plus 5/6 P. & P.

AMATEURS WIRE (harnessed) Buy at old prices whilst stocks last.

25/A, 1/8 50ft. coil . . 25/A P. & P. 6d.

PRINTED OUT, BOARD ENDS The most complete kit on the market today. Includes everything you will need to produce your own professional style of circuit boards. Includes 8 x 4in. Copper laminated board. Wonderful value at 17/6, plus 1/4 P. & P.

The PARGO 12-pin plug 24 plug is a useful item to have in the workshop or home. It is a spring loaded—instantly adjustable Split plug to suit all British and Continental sockets. List Price, 7/6—OUR PRICE 5/6, plus 5/6 P. & P.

NOTE:

BOTHWELL ELECTRIC SUPPLIES (Glasgow) LTD.
64 HOLLINTON STREET.
GLASGOW, C.A.

Member of the Leader Group

is at your disposal whether you are a personal or mail order customer. Use our FREE ADVISORY SERVICE by writing, or phoning SOUTH in 2004. Trade enquiries welcomed.

NO 67/147 CONTENTS

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. TRIMMER available: 9v. for 4½v. (single output) 39/6 each, P. & P. 2/9.

9v. & 6v. 6½p. for 4½v. (two separate outputs) 42/6 each, P. & P. 2/9. Please state output required—above units are completely isolated from mains by double wound transformer ensuring 100% safety.

BATTERY ELIMINATORS

No. 67/147 CONTENTS

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. TRIMMER available: 9v. for 4½v. (single output) 39/6 each, P. & P. 2/9.

9v. & 6v. 6½p. for 4½v. (two separate outputs) 42/6 each, P. & P. 2/9. Please state output required—above units are completely isolated from mains by double wound transformer ensuring 100% safety.

BATTERY ELIMINATORS

No. 67/147 CONTENTS

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. TRIMMER available: 9v. for 4½v. (single output) 39/6 each, P. & P. 2/9.

9v. & 6v. 6½p. for 4½v. (two separate outputs) 42/6 each, P. & P. 2/9. Please state output required—above units are completely isolated from mains by double wound transformer ensuring 100% safety.
ANYONE CAN AFFORD THESE NEW JOB TRAINING COURSES

NEW, No. 500, RADIO AND TELEVISION COURSE, £7.50...
Here at last is your opportunity to own a most complete course at a very modest cost! This expanded course which now includes television as well as radio repair training could get you started on a whole new career! The Radio Section of the course was ORIGINALLY DRAFTED BY THE RADIO TECHNICAL INSTITUTE, while the Television servicing Course has formed the basis of instruction provided by one of the world's largest television training organizations. Compare lesson by lesson with courses costing ten times as much! You save because you receive all the lessons at one time and are not required to purchase equipment you may not need.

The lessons are crystal clear, practical, easy to master and use. Early lessons make fundamentals clear even to the beginner, while other lessons will give you the practical know-how of an expert!

The new 500 Radio and Television Course consists of 355 large quarto size pages of instruction, hundreds of illustrations. We positively guarantee that you will be delighted or your money refunded!

NEW, No. 400, RADIO-TELEVISION-ELECTRO-SCOPIC COURSE, £6... This is really big value in home training. Similar in details to the above course except that you get the modern practice making a total of 1000 quarto size pages. Hundreds of illustrations. Includes all the main subjects plus Radio Transmitter Circuits, Electronic Test Equipment, Thyristor Tubes, Inter-Communicators, Sound Level Meters, Servicing Printed Circuits and many familiar items. This course could be your first step into the fascinating world of electronics!

No. 400. ELECTRO-SCOPIC COURSE, £4.50... A complete home-work course of 32 lessons. Consists of 216 large quarto size pages in 2 parts. Course complete with instructor's notes and test questions. This is a modern course that teaches without resorting to cryptic symbols... Thorough electronic and electronic theory have now taken this course and enjoyed every minute of it... Why not you? Claim the offer for your free trial offer now...

UNCONDITIONALLY GUARANTEED TO GIVE COMPLETE SATISFACTION! Any course not satisfactory may be returned within 10 days post-paid for full refund or credit of the purchase price.

IF YOU SEND CASH WITH ORDER WE WILL INCLUDE A FREE BOOK worth 4/- to 6/- if bought separately. By sending cash you reduce bookkeeping and other costs which we pass back to you. But you must include cash at the time of order to get this special offer!

PAY ONLY 5/- per week if you wish.

Please send the courses I have circled.

No. 500 No. 400 No. 400

If not delighted I may return any book post-paid without further obligation on my part, otherwise I will pay cash price of 5/- weekly (10/- fortnightly) commencing not later than 10 days after delivery. I am over 21 years of age. (If under 21 parents should place order.)

I enclose cash to the sum of £...

I understand that I will refund this money if I am not 100% satisfied and I return the book within 10 days.

Please send me the free book(s) I have ticked.

☐ Oscilloscope Book.
☐ Electronic Gadgets Book.
☐ Transistor Book.
☐ Radio Instruments Book.

Name: ____________________________
Address: _________________________

VARIEABLE VOLTAGE TRANSFORMERS

INPUT 110/240v. A.C. 50/60-
OUTPUT VARIABLE 0-246v.
BRAND NEW CARTRIDGE PAID.
Buy direct from the importer.

Any current in the following 9 values
10 ohm, 3 a; 25 ohm, 5 a; 50 ohm, 1 a; 100 ohm, 5 a; 250 ohm, 1 a; 500 ohm, 0.5 a; 1000 ohm, 250 mA; 2500 ohm, 2 a.

SHROUDED TYPE

Available in the following 9 values
50 ohm, £17.00, 4 a; 75 ohm, £12.25, 4 a; 100 ohm, £10.50, 4 a; 125 ohm, £10.00, 4 a; 150 ohm, £10.25, 4 a; 200 ohm, £12.25, 4 a; 375 ohm, £5.50, 1 a; 500 ohm, £12.75, 1 a.

PORTABLE TYPE

2.5 a. Portable. £29.17, 6.

100 WATT POWER RHEOSTATS (NEW)

230V.A.C. MOTOR AND REDUCTION GEAR BOX

230V. CARTRIDGE (NEW)

ULTRA VIOLET BULBS

Easy to use source of U.V., for a dozen of practical and experimental uses. 12 volt 36 watt A.C./D.C. SBC 6/4, 2/5 P, 1/7; 6 volt 40 watt A.C./D.C. SBC 8/4, 2/6 P, 1/7; Transformer to suit the above, Input 200-240 V.A.C. 12 volt 60 watt, 2/6 P, 1/7; 200-240 V.A.C. 12 volt 60 watt, 2/6 P, 1/7; 200-240 V.A.C. 12 volt 60 watt, 2/6 P, 1/7.

NICKEL CADMIUM BATTERY

W. HAMPSON WESTON Type S32 24 Edgewedge Meter 250 Micro-amp. scaled in dB's. New 29/6. 1/2 P.

VEROBOARD

The perforated Copper Board for Modern Circuitry 15x5, pitch, 2.5x1.75, 3/4, 2/6, 2/6, 2/6, 2/6, 1/2 P.

120/240V. AC/DC RELAYS

VERSITAX

Type No. 36-35, 2a, 15 amp, 500v, 20 ma, 6, 22, 22, 53, 100. 10, 10 from stock.

BUILDING A SIMPLE EFFICIENT STROBE UNIT FOR ONLY 37/6.

The simple circuit diagram and all electrical parts including the NSP2 Strobe tube which will enable you to easily and quickly construct a unit for infinite variety of speeds, from 1 flash in several seconds to thousands per minute. 37/6 plus 3/4 P, 1/2 P.

UNIVERSAL DEMONSTRATION TRANSFORMER

Sterzen Type

A complete composite apparatus, comprising a 3V and 3A mains and electro-magnet with removable coils and poles. Stroboscope coil supplied for 230v, 220v, 110v, 115v, 12, 36, 110v. V.A.C. and D.C. coils are also used for D.C. experiments. Complete with all accessories as shown. £17 10/- to cartridge. Leaflet on request.

12 VOLT D.C. RELAY

Single coil, 600ohm coil, New. 2 for 10/- plus 1/- P.

18 VOLT D.C. RELAY

168 ohm coil, 3 x 5 wires. £1 10/- c/o contacts. New. 16/- plus 1/- P.

ELECTRIC CHECK METER (Sangamo Weston) 200/240 volt, A.C. 40 amp. As new 25/- plus 1/- P.

LIGHT SENSITIVE TRANSISTORS

Kit of parts, including ORP12 Cadmium Sulphide Photocell, Relay, Transistor and Circuit, etc. price 25/- plus 2/6 P. & P. ORP12 including circuit, 12/- each, 6/- each 2/6 P. & P.

A.C. MAINS MODE, INCORPORATES MAINS TRANSFORMER, RECTIFIER and special relay with 3 amp mains c/o contacts. Price inc. circuit 47/6 plus 2/6 P.
ANNOUNCING COMPONENTS AT PRICES YOU CAN AFFORD

BARGAIN OF THE MONTH

MULLARD BRAND NEW 1/8 each

Unrepeatable Offer—No catch

P.P. 6d. 1/2 or more—Post free

PORTABLE SOLDIER GUN, 30W 240V, 9/3.

PORTABLE GUN, 30W 240V, 9/3.

PORTABLE SOLDER GUN, 30W 240V, 9/3.

SHORT WAVE, TRIPLE GANG

TUNING CAPACITOR 90PF - 160PF - 160PF, 4/11. P.P. 1/1

We welcome enquiries for all types of components. Lists. S.A.E. Terms, cash with order, P.P. add 9d, for orders under £2

WENTWORTH RADIO, 1a, Wentworth Court, Alston Rd., Barnet. Tel.: BAR 3007
QUALITY RECORD PLAYER AMPLIFIER

A unique quality record player amplifier. This amplifier (which is used in a 29 gm. record player) employs 300,000-pair vacuum tubes. Transformer, EL34, EL84 valves. Separate Bass, Treble and Volume controls. Complete with output transformer and matched pair of EL34 valves. 9 Vol. output. $20.00 each. Ready built and tested. PRICE $65.00.

ALSO AVAILABLE mounted on board with output transformer matched for 3 ohm speaker. Output transformer magnetized for 3 ohm speaker. $20.00 each. Negative feedback line. Output 45 watts. Front panel can be detached and leads extended for remote mounting of controls. The HA34 has been specially designed for use in and output circuitry enabling them to operate with knobs, valves, etc., wired and tested for only $45.00.

QUALITY PORTABLE A.P. CABINET

6-SPEED PLAYER UNIT BARGAIN

STEREO AMPLIFIER

Incorporating 2 x 100 W.R.M. heavy duty, double wound mains transformer. Output 4 watts per channel. Full tone and volume controls. ABSOLUTELY COMPLETE!

STEREO AMPLIFIER

also available

AUTO CHASSIS

GARRARD Auto-Slim (4 pole motor) £15 0/6.

All the above units are complete with 50 pairs of speakers and all controls. £8.0/6. B. & P. 8.0/6.

SPECIAL OFFER! Famous COLLARO 4-speed Co-Transistor Amplifier. £5.0/6. B. & P. 5.0/6.

SEPAADE CARTRIDGE BARGAINS!

Bass & Treble are completely internal. B. & P. 11/6.

Also available on each.

Also available on each.

50 WATT HI-FI AMPLIFIER KIT

SPEAKERS 4-WAY TANGLE TELEPHONE CABLE

Latest spring construction. £2.75. P. & P. 2.75.

Complete with rubber bushing. £4.6/6 each. B. & P. 4.6/6.

VINAIR AND BUXINE

SPEAKERS £2.4/6. 3000 WATT NET FABRICS O.S. 36 in. wide. Usually 33 yards. £1.00. P. & P. 1.00.

Price 13/6 per yd. length (min. 10 yds.) B. & P. 13/6 per yd. S.A.E. for samples.

HARVÉSON SURPLUS CO. LTD.

170 HIGH ST., MERTON, S.W.19. CHEerywood 3985

Open all day Saturday Early closing Wed., 1 p.m.

A few minutes from South Wimbledon Tube Station. (Please write clearly) OVERSEAS P. & P. CHARGED EXTRA. S.A.E. with all enquiries.

50 WATT HI-FI-AMPLIFIER KIT

SPEAKERS 4-WAY TANGLE TELEPHONE CABLE

Latest spring construction. £2.75. P. & P. 2.75.

Complete with rubber bushing. £4.6/6 each. B. & P. 4.6/6.

VINAIR AND BUXINE

SPEAKERS £2.4/6. 3000 WATT NET FABRICS O.S. 36 in. wide. Usually 33 yards. £1.00. P. & P. 1.00.

Price 13/6 per yd. length (min. 10 yds.) B. & P. 13/6 per yd. S.A.E. for samples.
Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECH. ENGINEERING

RADIO ENGINEERING

CIVIL ENGINEERING

ELEC. ENGINEERING

AUTO ENGINEERING

BUILDING

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A COLLEGE HOUSE, 29-31 WRIGHT'S LANE, W.8

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now—FREE and without obligation.

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

NEW 1966 CATALOGUE 150 PAGES

Fully detailed and illustrated components, equipment and Hi-Fi. All types and makes. 5000 Stock lines. 500 Transistors and Devices, 1000 Quartz Frequencies. 800 Valves and Tubes. The Finest and Largest Range available. A mine of information.

Price 6/- post paid
FREE with Catalogue. 6/- Value Discount vouchers give 2/- in pound discount on purchases.

CATALOGUE COSTS NOTHING AFTER USING VOUCHERS

(1) GLOBEMASTER

MW/LW/SW PORTABLE

TOTAL COST TO BUILD

£8.19.6 P.P. 3/-

(6) VHF FM TUNER

87/105 Mc/s Superhet. Geared tuning. Terrific quality and sensitivity. For valve or transistor amplifiers. 4¾ x 2¾ in. (15cm x 7cm). 6V6/6AK5 Valves.

TOTAL COST TO BUILD

£6.19.6 2/6

(Cabinet Assembly 1½ bits extra)

10 AND 20 WATT TRANSISTOR MONO AND STEREO HI-FI UNITS

(2) POWER AMPLIFIERS

10 watts RMS output. 100mV input. 30kΩ to 20kohms: 1dB. 6-Transistor Push-pull. Panel size 2½ x 1½ x 1 in. 6¾ x 4 x 1in. H/S ½ x 4 in.

TPA10/20/3.5 ohm spkr. £5.10.0 p.p. 2/6

TPA10/15 12-16 ohm spkr. £6.19.6 p.p. 2/6

(Mains unit for 1 or 2 amplifiers. 5 volt, p.p. 2/6)

The Finest High Fidelity at Unbeatable Prices

(3) PREAMPLIFIERS

8 input selector. Treble, bass, volume, filter controls. 1mV to 300mV inputs. Battery operated or mains unit. Output up to 150mV RMS.

MP2 Mono 9 x 2½ x 2½ in. £5.10.0 p.p. 2/6 (brown and front panel 8½ in)

SP4 Mono/Stereo 9 x 3½ x 1½ in. £10.19.6 p.p. 3½ (front panel plate 12½ in)

ALL UNITS BUILT AND TESTED

(4) Regent-4

MW/LW POCKET RADIO

TOTAL COST TO BUILD

£8.19.6 P.P. 3/-

(7) 5 WATT AMPLIFIER

6-Transistor Push-pull. 3 ohms. 6mV into 1kΩ. 12/18V supply. 3½ x 2½ x 1½ in.

BUILT AND TESTED

£8.19.6 P.P. 3½ (optional mains units 54/- p.p. 2½)

New matching Preamplifier, 6 inputs, treble/bass/selector/volume controls. 6/10mV p.p. 9-18V supply. £7.6.19.6 p.p. 2½. For use with any Transistor Amplifier

HI-FI

(5) BUILD A TAPE RECORDER

Three speeds—3 watts. Complete kits with new "363" decks. Supplied as preassembled sections. Complete with portable cases and speakers—excellent quality. 1,200 ft tape and spool.

★ TWO TRACK ★ FOUR TRACK

(1) Garrard Decks

(p.p. 5/- any p.p.)

1000 mono £6.16.9. stereo £8.19.6

2000 mono £6.16.9. stereo £8.19.6

3075 mono £8.19.6. stereo £11.19.6

Polaris mono £6.19.6. stereo £8.19.6

Atlas mono £6.19.6. stereo £8.19.6

Artis mono £8.19.6. stereo £11.19.6

3000LM mono £8.19.6

(10) MultiTuner

Cartridge add 60/- to mono price. £1 autochange (except SP25). Complete with cartridge. Brand new.

(8) ROADSTER

MW/LW CAR RADIO

Supplied as Preassembled Panels. Permanently tuned superhet. Push-pull wavechange. Push-pull output. Fits any car, 7½ x 4½ x 4 in. 12 volt (1½ ext)

ASSEMBLY TOTAL COST

£8.19.6 P.P. 2½

(9) 25 WATT AMPLIFIER

New 8-Transistor design. Push-pull output for 7½ x 150mW speaker. 150mW input. 30kΩ to 20kohms: 1dB. For use with valve or transistor preamplifiers as item (3) above. Size 2½ x 2½ x 6 in.

PRICE BUILT AND TESTED

£8.19.6 P.P. 2½ (Mains units £7.9.6 p.p. 2½)

(11) VHF FM TUNER

(12) MULTIMETERS

PT34 1kV 3½ 10PPS 20KV £5.19.6

MT 2kV 4½ EPF30 30KV £8.10.0

TP10 7½ EPF50 £20.10.0

EPF50 10kV £30.10.0

ITL1 20kV 8½ EPF100 £50.10.0

EPF100 50kV £100.10.0

(13) VHF FM TUNER

(14) NEW MW/LW TUNER TO BUILD

Fully tunable superhet with excellent sensitivity and selectivity. Output up to ½ volt peak. Complete with front panel, etc. 9 volt operated.

TOTAL COST TO BUILD

79/6 2½

LETS US QUOTE FOR COMPONENTS AND ACCESSORIES FOR YOUR CIRCUIT. SEND A LIST FOR A QUICK REPLI

QUALITY COMPONENTS AT VALUE FOR MONEY PRICES.

PLNYR'S RADIO LTD.

303 EDGWARE RD., LONDON, W2

FADDINGTON 1089

Open Mon. to Sat. 9.45 Thurs. 1 p.m. Open all day Saturday.