Great Repair Aid

HELPs YOU EARN MORE

Time-saving Repair Data for nearly 900 Radios & TV's.

Now you can have at your fingertips Circuits and Data for repairing all the popular TV's, Radios, Grams, Record players and Tape recorders—right back to 1964. A guaranteed money-spinner... saves your time, increases your earning-power!

Compiled by a team of research engineers Newnes RADIO & TV SERVICING not only gives repair information for nearly 60 principal makes but also includes section of latest developments in the industry. Thousands upon thousands of copies of previous editions sold—it's the most sought-after publication in the trade. Seize this opportunity to see it on free trial. Send now!

TELEVISION • RADIO
RADIOGRAMS • CAR RADIOS
RECORD REPRODUCERS
TAPE RECORDERS

2 VOLUMES • OVER 1,000 PAGES
NEARLY 1,400 CIRCUITS, COMPONENT LAYOUT DIAGRAMS, DRAWINGS and TABLES

Plus section of latest developments in Radio and Television

Yours for a week FREE

EASY NO-INTEREST TERMS IF KEPT AFTER FREE TRIAL

If under 21 your father must fill up coupon

Buckingham Press Ltd.
15-17 Long Acre,
London, W.C.2

Please send Newnes RADIO & TV SERVICING (2 volumes, 1964-66 models) without obligation to buy. If you accept this application I will post 15/- deposit 8 days after receipt of books, then 15/- monthly for 10 months, paying £8.5s. in all—or return the books. Cash balance 8 days £8.5s.

Full Name
BLOCK LETTERS
(Mr., Mrs., Miss)
Address

Rick 'x where applicable
The address is left in
By Property
Rented unfurnished
Parents' Home
 Furnished Accom.
Temporary Address

Occupation
Signature

100/2228

ILLUSTRATED:
L64 8 BIT INSTRUMENT IN L700 PROTECTIVE SHIELD

APPLY DIRECT TO:
SALES & SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W.4
TELEPHONE: MACAULAY 0291/3
Transistorised FM Tuner

HIGH QUALITY: LOW NOISE: BATTERY OR MAINS OPERATION

Reproduction stands favourable comparison with tuners costing 3 times as much. Come and hear it and compare it at any of our branches or send to Brighton without delay as we anticipate a very heavy demand.

This beautifully compact 5 transistor machine (size 6in. x 4in. x 2 1/2in.) will give clearer, more interference-free reception. Months of use from a standard 9 volt battery or its small power requirements can be drawn from any amplifier. Low noise frequency changer with smooth gang tuning feeding no less than three I.F. stages coupled to a double-tuned discriminator stage giving an I.F. stage giving ample output for all quality amplifiers.

avoid disappointment

ORDER NOW £8-10.

TUBES SATISFACTION GUARANTEED

<table>
<thead>
<tr>
<th>6 Months</th>
<th>12 Months</th>
<th>NEW TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carr. & Tax</td>
<td>12/6</td>
<td>2</td>
</tr>
</tbody>
</table>

Satisfaction guaranteed or money refunded if returned unsold within 14 days.

<table>
<thead>
<tr>
<th>MOST MULLARD,</th>
<th>HARTMANN,</th>
<th>SPEAKERS,</th>
</tr>
</thead>
<tbody>
<tr>
<td>12M</td>
<td>4M</td>
<td>4</td>
</tr>
<tr>
<td>£2.00</td>
<td>£2.10</td>
<td>£2.50</td>
</tr>
<tr>
<td>£3.00</td>
<td>£3.10</td>
<td>£3.50</td>
</tr>
<tr>
<td>£4.00</td>
<td>£4.10</td>
<td>£4.50</td>
</tr>
<tr>
<td>£5.00</td>
<td>£5.10</td>
<td>£5.50</td>
</tr>
<tr>
<td>£6.00</td>
<td>£6.10</td>
<td>£6.50</td>
</tr>
<tr>
<td>£7.00</td>
<td>£7.10</td>
<td>£7.50</td>
</tr>
<tr>
<td>£8.00</td>
<td>£8.10</td>
<td>£8.50</td>
</tr>
<tr>
<td>£9.00</td>
<td>£9.10</td>
<td>£9.50</td>
</tr>
<tr>
<td>£10.00</td>
<td>£10.10</td>
<td>£10.50</td>
</tr>
<tr>
<td>£11.00</td>
<td>£11.10</td>
<td>£11.50</td>
</tr>
<tr>
<td>£12.00</td>
<td>£12.10</td>
<td>£12.50</td>
</tr>
<tr>
<td>£13.00</td>
<td>£13.10</td>
<td>£13.50</td>
</tr>
<tr>
<td>£14.00</td>
<td>£14.10</td>
<td>£14.50</td>
</tr>
<tr>
<td>£15.00</td>
<td>£15.10</td>
<td>£15.50</td>
</tr>
<tr>
<td>£16.00</td>
<td>£16.10</td>
<td>£16.50</td>
</tr>
<tr>
<td>£17.00</td>
<td>£17.10</td>
<td>£17.50</td>
</tr>
<tr>
<td>£18.00</td>
<td>£18.10</td>
<td>£18.50</td>
</tr>
<tr>
<td>£19.00</td>
<td>£19.10</td>
<td>£19.50</td>
</tr>
<tr>
<td>£20.00</td>
<td>£20.10</td>
<td>£20.50</td>
</tr>
<tr>
<td>£21.00</td>
<td>£21.10</td>
<td>£21.50</td>
</tr>
<tr>
<td>£22.00</td>
<td>£22.10</td>
<td>£22.50</td>
</tr>
<tr>
<td>£23.00</td>
<td>£23.10</td>
<td>£23.50</td>
</tr>
<tr>
<td>£24.00</td>
<td>£24.10</td>
<td>£24.50</td>
</tr>
<tr>
<td>£25.00</td>
<td>£25.10</td>
<td>£25.50</td>
</tr>
<tr>
<td>£26.00</td>
<td>£26.10</td>
<td>£26.50</td>
</tr>
<tr>
<td>£27.00</td>
<td>£27.10</td>
<td>£27.50</td>
</tr>
<tr>
<td>£28.00</td>
<td>£28.10</td>
<td>£28.50</td>
</tr>
<tr>
<td>£29.00</td>
<td>£29.10</td>
<td>£29.50</td>
</tr>
<tr>
<td>£30.00</td>
<td>£30.10</td>
<td>£30.50</td>
</tr>
</tbody>
</table>

Satisfaction guaranteed or money refunded if returned unsold within 14 days.
SINCLAIR MICRO FM

7 TRANSISTOR SUPERHET F.M. TUNER/RECEIVER

This unique, superbly engineered superhet FM set gives enormous satisfaction both in building and in using it. It is completely professional in styling inside and out. When built, the performance of the Sinclair Micro FM is fantastic. It is the only set in the world which can be used both as an FM tuner and as an independent FM pocket receiver just whenever you wish. Problems of alignment which have previously made it almost impossible for a constructor to complete an FM set for himself have been completely eliminated in the Micro FM. It is ready to use the moment you have built it. The pulse counting discriminator ensures best possible audio quality; sensitivity is such that the telescopic aerial included with the kit assures good reception in all but the very poorest reception areas. The Sinclair Micro FM can give you all you want in FM reception plus the satisfaction of building a unique design that will save you pounds.

TECHNICAL DESCRIPTION

THE SINCLAIR MICRO FM is a completely self-contained double-purpose F.M. superhet. It uses 7 transistors and 2 diodes. The R.F. amplifier is followed by a self-oscillating mixer and three stages of I.F. amplification which dispense with I.F. transformers and all problems of alignment. The final I.F. amplifier produces a square wave which is converted so that the original modulation is reproduced exactly. A pulse-counting discriminator ensures better audio quality. One output is for feeding to amplifier or recorder and the other enables the Micro FM to be used as an independent self-contained pocket portable. A.F.C. "locks" the programme tuned in. The telescopic aerial included is sufficient in all but the worst signal areas.

- Size: 2 1/2" x 1 3/4" x 3/4"
- Powerful A.F.C.
- Pulse counting discriminator
- Low I.F. completely eliminates alignment problems
- Tunes from 88 to 108 Mc/s
- Audio response: 10 to 30,000 kc/s ± 1dB
- Signal to Noise Ratio: 30dB at 30 microvolts
- Operates from standard 9V battery, self-contained
- Plastic case with brushed and polished aluminium front and spun aluminium tuning dial

Complete kit inc. telescopic aerial, case, earpiece and instructions

£5.19.6

SINCLAIR MICRO-6 — Build it in an evening

This is the set to build if you want a minute sized receiver which will slip into a waistcoat pocket without even showing. It is the smallest set in the world, against which a matchbox looks enormous. Yet the Micro-6 is completely self-contained, including aerial and batteries and it virtually plays anywhere. Its clever six-stage circuit (2 R.F., double diode detector, A.F.) ensures all you want in a radio today—power, range, quality and selectivity. It is very simple to build and useful to have with you always. A.G.C. counteracts fading from distant stations, bandspread brings in Luxembourg like a local station. There is great pleasure to be had in building the Micro-6, and it makes a highly acceptable gift once others have seen its white, gold and black case and heard its amazing performance.

Complete kit including case, aerial, lightweight earpiece and instructions

59/6

Sinclair radionics ltd.
22 Newmarket road, Cambridge
Telephone 52731
12 WATTS R.M.S. CONTINUOUS SINE WAVE (24 W.)
15 WATTS R.M.S. MUSIC POWER (30 WATTS PEAK)
HIGH FIDELITY AMPLIFIER AND PRE-AMP

This is the hi-fi amplifier of the future—very small, fantastically powerful and with the characteristics you expect from the most expensive equipment available. The Z.12 incorporates its own high gain pre-amp, arranged so that any type of input and tone control circuit is easily matched. Full details are given in the manual supplied with every Z.10, and even for stereo the cost is but a few shillings. The Z.12 operates efficiently from any supply between 6 and 20 volts D.C. and a 12 volt car battery makes an ideal power source. For mains operation, the PZ.3 is recommended. Because of its size, the Z.12 can be used for car radio, guitar, P.A. system, intercom, etc., as well as the very best hi-fi it was designed for. It is indeed the ideal amplifier wherever the need is for power and quality from the smallest possible unit. This is the approach to high fidelity audio reproduction and one which you can enjoy for remarkably little outlay.

TYPICAL COMMENT

"I have just completed building the Micro F.M., and I am very pleased with the result especially when linked up to the Z.12 amplifier."
J.G.O.C., Sandwich, Kent

"I am very pleased with it (Z.12). It suits my needs very well."
C.T.P., Widnes

"Results I am getting are out of this world. I have demonstrated it to quite a few Hi-Fi enthusiasts who are swayed away from valve sets and changing over to Z.12."
R.L.V., London, W.3

NEW SENSATIONAL POWER SUPPLY UNIT

SINCLAIR PZ.3

Designed specially for the very high standards of the Z.12, this entirely NEW power supply unit uses advanced transitorised circuitry to achieve exceptionally good smoothing. Ripple is a barely measurable 0.05V. The PZ.3, which will power two Z.12s with ease, costs—

89/6

If you prefer not to cut the coupon out, please refer to P.E.7 when writing your order.

To SINCLAIR RADIONICS LTD.
22 NEWMARKET ROAD, CAMBRIDGE

Please send...

for which I enclose...

CASH/CHÈQUE/MONEY ORDER for £ s. d.

NAME...

ADDRESS...

P.E.7
FIRST QUALITY PVC TAPE

<table>
<thead>
<tr>
<th>12" Std. 850 ft.</th>
<th>9/3</th>
<th>6" Std. 1200 ft.</th>
<th>11/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 L.P. 240 ft.</td>
<td>5/3</td>
<td>3/4 L.P. 1200 ft.</td>
<td>11/4</td>
</tr>
<tr>
<td>1/2 J.P. 2400 ft.</td>
<td>11/4</td>
<td>1/2 J.P. 1200 ft.</td>
<td>11/4</td>
</tr>
<tr>
<td>5/3 L.P. 1800 ft.</td>
<td>11/4</td>
<td>5/3 L.P. 330 ft.</td>
<td>11/4</td>
</tr>
<tr>
<td>7/3 T.P. 3600 ft.</td>
<td>4/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P & P on each 1/5, 4 or more post free.

 CYLDON
U.H.F. TUNER

Complete with plastic cabinet, size 4½" x 3½" x 1½". Operated from PP3 Battery.

8-watt 5-valve PUSH-PULL AMPLIFIER & METAL RECTIFIER

Size: 9" x 6" x 1½" A.C. Mains 200-250v, 5 valves. For use with Std. or L.P. records, musical instruments, all makes of pick-ups and microphones.

Output 8 watts at 5 per cent total distortion. Separate bass and treble lift controls. Two inputs, with controls, for gram and mike. Output Transformer Tapped for 3 and 15 ohms speech coils. Built and tested. £3.19.6. P. & P. 10/-.

"MUSETTE" 8-TRANSISTOR SUPERHET PORTABLE RADIO

★ 2½" Speaker.
★ Transistor Superhet Output 200 mw.
★ Plastic Cabinet in red, size 42" x 3½" x 1½", and gold speaker louvre.
★ Horizontal Tuning Scale.
★ Ferrite Rod Internal Aerial.
★ IF 460 Kc/s.
★ All components Ferrite Rod and Tuning Assembly mounted on printed board.
★ Operated from PP3 Battery.
★ Fully comprehensive instructions and point-to-point wiring diagram.

Only £4.4.0

Power supply kit to purchasers of Elegant Seven parts, incorporating mains transformer, etc. A.C. mains 200-250v. Output 9v, 50mA., 7/6d. extra.

ELEGANT SEVEN Mk. II

Combined Portable and Car Radio

The Radio with the "E" Feature

★ 7-transistor superhet. Output 300 mw.
★ Wood cabinet, fitted handle with silver-coloured fittings, size 12½" x 8½" x 5½".
★ Horizontal tuning scale, size 11½" x 2½", in silver with black lettering.
★ All stations clearly marked.
★ Ferrite-rod internal aerial.
★ Operated from PP3 battery.
★ D.C. neutralization on each stage 460 Kc/s.
★ D.C. coupled output stage with separate A.C. negative feedback.
★ All components, ferrite rod and tuning assembly mounted on printed board.
★ Fully comprehensive instructions and point-to-point wiring diagram.
★ Printed circuit board, back-printed with all component values.
★ Fully tunable over medium and long wavebands.
★ Car aerial socket.
★ 4 in. SPEAKER. Parts list and circuit diagram 2/6. FREE with parts.

Power Supply Kit 6½/6 Post & Packing

RADIO & T.V. COMPONENTS (ACTON) LTD.
21D, HIGH STREET, ACTON, LONDON, W.3
TWO-YEAR GUARANTEE
On all our plasma TVs
Send for free list

EX - RENTAL TELEVISIONS
17 in. £11.10.0
12 months 3 star Guarantee
* Tube * Valves * Components
* Coloured Free List
* Channels for all areas
* Demonstrations daily from Large
Selection
* Personal collection or Insured
Carr. 30/-

RADIOGRAM CABINETS £9.10.0
Superbly made and styled in
Veneered English Walnut
Lift up Lid to Changer and
Record Storage
Compartment
Possam 8° x 5° Twin
Speakers
Diameter: 40 x 15¼ x 15¼
Legs 1 ½ in. Carr. 30/-
Other Models—Send for List

RESISTORS 5½ per 100. New, Mostly
High Scale. Assorted. P. & P. 2½-
Overseas 3½.
VALVES £1 per 100. Assorted TV and
Radio. Surplus ex-rental dismantled
receivers. Post 4/-. Send for list.
RECORD PLAYER CABINETS 49/-.
Latest designed covered cabinets. Takes
any modern Autochanger.
SINGLE PLAYER CABINETS 19/-.
P. & P. 5½.

DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Liverpool Street—Manor Park—10 mins.
Phone: ILford 600-1-2-3. Stamp for Free List.

KONTAKT
60
THE SPECIAL CLEANER
FOR INACCESSIBLE
CONTACTS
★ KONTAKT 60 cleans and
protects all contacts
★ Eliminates high transition
resistances
★ Prevents 'creep' currents
★ Does not affect plastic materials
★ In spray can with 5½' spray
nozzle

Other Kontakt products are:-
70 Protective Lacquer
71 Insulating Spray
75 Cold Spray for Fault Location
80 Special Siliconized Polish
100 Antistatic Agent for Plastics

Write for full details of above complete
range of Kontakt products to:-

SPECIAL PRODUCTS DISTRIBUTORS LIMITED
81 Piccadilly, London, W.I. GRosvenor 6462

from IR
semiconductor centers

Over 100 IR semiconductor devices are available from your dealer, many with free
instruction manuals and project and experiment
details.
Look for the floor-standing 'Semiconductor
Center,' or the counter-top 'Minicenter.'

EXPERIMENTER SEMICONDUCTOR KITS
MOUNTING KITS AND HEAT SINKS
Silicon Bridge Rectifiers
Unijunction Transistors
Selenium Photocells
Instrument Rectifiers
Automotive Rectifiers
Silicon Solar Cells
Silicon Rectifiers
Germanium Diodes
thyristors (S.G.R.)
Zener Diodes
Transistors
Selenium Stacks

Write for the free illustrated catalogue
and price-list, also the name and address
of your nearest IR SEMICONDUCTOR CENTER

INTERNATIONAL RECTIFIER
HURST GREEN • OXTED • SURREY • Tel.: OXTED 3215
Dealers—write for details of how you can start your own
IR SEMICONDUCTOR CENTER.
ABSORBING
AND EXCITING!

Unique and brilliantly simple. Hundreds of educational establishments—Universities, Technical Colleges, Schools, the Armed Forces—are already using Radionic for electronic instruction. Enthusiastic owners range from 14 to 83 years of age. Selected by the Council of Industrial Design for all British Design Centres. Featured in Sound and Television broadcasts.

The system is beautifully engineered from top quality British components. No soldering. No noise. No prior knowledge needed. Simply insert components on perforated transparent panel, position nuts connecting strip underneath, fix with GA nuts and circuit works with full efficiency. You can then dismantle and build another circuit. Your results are guaranteed by our Technical Department and News Letter Service. All parts available separately for conversion or expansion of sets.

UNIQUE! Our "No soldering" printed circuit board for superhet portable. Simply insert components and tighten nuts.

No. 1 Set £12.15.6
No. 2 Set £16.19.6
No. 3 Set £24.19.6
No. 4 Set £31.19.6

Prices (Over £3)

FULLY GUARANTEED
INDIVIDUALLY PACKED

RADIONIC PRODUCTS LIMITED
STEPHENSON WAY, THREE BRIDGES
CRAWLEY, SUSSEX

Tel.: CRAWLEY 28700
Trade Enquiries Invited

P.C. RADIO LTD
170 GOLDHAWK ROAD, W.12
Shepherd's Bush 4946
Open 9.5-30 p.m. Thursday 9-1 p.m.

MANY OTHERS IN STOCK include Cathode Ray Tubes and Special Features. U.K. Orders below 2½ & P. & P. plus over 8½, 1½ & P. & P. for overseas. Ordees

P.C. RADIO LTD

CRAWLEY 1968
For the Finest Value and Service to Home Constructors & Electronics Enthusiasts

We consider our constructors' needs to be the finest value on the home constructor market. It is our policy to ensure that we offer the complete line of parts as specified by the designer.

The "Sixteen" Multirange Meter Kit

This outstanding meter was featured by Practical Wireless in the Jan. '84 issue. Lasky's are able to offer this complete line of parts as specified by the designer.

LASKY'S PRICE 25/19.6

NEW—LASKY'S MINIATURE TRANSISTOR AMPLIFIER MODULES

Incorporating the best British design to provide high sensitivity and good quality in conjunction with extreme small size and compactness. High quality Newmarket transistors used throughout. All designed to operate on 9v. miniature battery.

LASKY'S PRICE 25/19.6

SPECIAL PURCHASE—UHF/VHF TUNERS

Well known British makers' surplus stocks. Now available for the first time to the Home Constructor. Circuit supplied.

LASKY'S PRICE 39/6

TRANISTORISED UHF MINIATURE MODEL

Stainless steel case only 31 x 11 x 3in. Fully tunable—complete with two AF 159 transistors. **LASKY'S PRICE 39/6**

LASKY'S PRICE 39/6

TEST METER ADAPTOR

Type P.E. 200—is a fully transistorised device which enables any 30 micromot D.C. Multimeter to be used in place of a valve volt meter. On the 1V. range an increase of 1 megohm is offered which increases on the 1000V. range to 100 megohms. Tuned to 1 to 1000 volts. Designed for immediate connection to Avo 8 and similar size meters but quite suitable for use with any other 30 micromotor meter. Size 6 x 6 x 2in. New and boxed. Lasky's Price 2/-

LASKY'S PRICE 2/-

PARA-SUSPENDED CASES

Lasky's are proud to announce the opening of their restyled and completely modernised Hi-Fidelity Demonstration Studios. Absolutely new and right up to date for your every need from the largest stores in Great Britain—backed by Lasky's vast experience and name—eponymous with Electronics for over 30 years.

REMEMBER LASKY'S GUARANTEE YOU THE BEST IN ELECTRONICS

SPECIAL PURCHASE—UHF/VHF TUNERS

Well known British makers' surplus stocks. Now available for the first time to the Home Constructor. Circuit supplied.

LASKY'S PRICE 39/6

TRANISTORISED VHF MODEL 1

Stainless steel case only 31 x 11 x 3in. Fully tunable—complete with FCC89 and FCC83 valves. **LASKY'S PRICE 32/6**

LASKY'S PRICE 32/6

SPECIAL PURCHASE—UHF/VHF TUNERS

Well known British makers' surplus stocks. Now available for the first time to the Home Constructor. Circuit supplied.

LASKY'S PRICE 39/6

LASKY'S PRICE 39/6

TRANISTORISED VHF MODEL 2

Stainless steel case only 31 x 11 x 3in. Fully tunable—complete with two FCC89 and FCC83 valves. **LASKY'S PRICE 32/6**

LASKY'S PRICE 32/6

GOLAR UT 340 FM/VHF TUNING HEART

PERFORMANCE TUNED—covering 67 kilo and 50 for use with one FCC89 valve.

LASKY'S PRICE 15/11

LASKY'S PRICE 15/11

207 EDGWARE ROAD, W.2 Tel: PAD 3271
33 TOTTENHAM CT. RD, LONDON, W.1 Tel: HUS 2605
Both open all day Saturday. Early closing Thursday.

Please address all Mail Orders and Correspondence to 3-15 Cavell St., Tower Hamlets, London, E.1.

Tel.: ST 4821/2

LASKY'S FOR SPEEDY MAIL ORDER SERVICE

LASKY'S FOR SPEEDY MAIL ORDER SERVICE

CONSTRUCTORS BARGAINS

The "Sixteen" Multirange Meter Kit

This outstanding meter was featured by Practical Wireless in the Jan. '84 issue. Lasky's are able to offer this complete line of parts as specified by the designer.

LASKY'S PRICE 25/19.6

NEW—LASKY'S MINIATURE TRANSISTOR AMPLIFIER MODULES

Incorporating the best British design to provide high sensitivity and good quality in conjunction with extreme small size and compactness. High quality Newmarket transistors used throughout. All designed to operate on 9v. miniature battery.

LASKY'S PRICE 25/19.6

SPECIAL PURCHASE—UHF/VHF TUNERS

Well known British makers' surplus stocks. Now available for the first time to the Home Constructor. Circuit supplied.

LASKY'S PRICE 39/6

TRANISTORISED UHF MINIATURE MODEL

Stainless steel case only 31 x 11 x 3in. Fully tunable—complete with two AF 159 transistors. **LASKY'S PRICE 39/6**

LASKY'S PRICE 39/6
8 tips for practical soldering

The Instant Heat Soldering Kit is complete with 2 tips, extension barrel, probe and solder. Complete £3.19.6
Ask for a demonstration from your local dealer or fill in the coupon below for full details.

G. F. MILWARD
17 Peel Close, Drayton Bassett, Nr. Tamworth, Staffs.
Phone: Tamworth 2321
ORDERS UNDER 10/- PLEASE INCLUDE 1/- POST AND PACKING

The SUPER 6
LONG AND MEDIUM WAVE TRANSISTOR RADIO

- 6 transistors and diode
- RF switch
- Component positions and references printed on board
- Wooden cabinet

Price: £4.00
FULLY BUILT £4.7.8 Tax & Can.

AM/FM (V.H.F.) RADIO GRAM CHASSIS £15.15.0

NEW 6 PUSHBUTTON STEREOGRAM CHASSIS

- 6 pushbuttons
- Wooden Radio Gram Chassis
- 12" vinyl turntable

Price: £18.15.0 cash or £19.10.0 deposit and 6 monthly payments of £3.3.6

GLADSTONE RADIO
66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. from Station and Station Road)
CLOSED WEDNESDAY AFTERNOON CATALOGUE 6d.
KEDOCO

TRANSISTORISED MODULES BRING TOP-QUALITY TO HOME CONSTRUCTION HI-FI TAPE EQUIPMENT — AT INCREDIBLY LOW COST!

KEDOCO STAR FEATURES
- Kedoco quality control ensures high product performance — always
- Transistorised modules ready-assembled for simple, speedy wiring into circuit
- Units operate from 12 volts — ideal for out-and-about recording
- Miniaturization of modules permits compact packaging
- Complete flexibility in design from eight basic units
- Money-back guarantee on all products

CLASSIC TRANSISTORISED
20-WATT AMPLIFIERS

KZ9/3 £9.1/4

The now well proven model as illustrated combining 47Ω, 2.3-Ω, and main amplifier measuring 4.5Ω × 4Ω both mounted on base plate and supplied complete with bass, treble and volume on/off controls.

KZ9/0 £11 GNS.

A de luxe version complete in itself and ready to mount into your cabinet. Supplied with three controls mounted on the front of the stove enameled chassis and has moulded plastic and rubber handles. Dimensions: 70 × 40 × 35mm. ASSEMBLED £4/2.

MINICLASSIC SS3/9 AND SS3/10

Two high fidelity amplifiers providing adequate power for normal domestic listening or portable equipment. The SS3/9 is the more powerful and provides a maximum of 6 watts into 3 ohm speaker. The SS3/9 provides 4 watts into 3 ohms and has the advantage of working from a 12 volt supply. Specification: Frequency response, 16 c/s to 30 Kc/s. Input Sensitivity 1 volt. Both will operate directly from crystal pickup and provide complete tape amplifier with SSTR/7, 6 transistor 2 diode. HT + SS3/9 18 volt. SS3/10 12 volt. Dimensions 50 × 85 × 22.5mm. £9/2 ASSEMBLED, both models.

TAPE EQUIPMENT

TAPE PRE-AMP SSTR/7
All silicon transistor. Zero hum. High gain and equalised at 75° per sec. to give flat response on output. Selectable pre-amp stage allowing instructions equalisation at all speeds. Suitable for all medium impedance heads. Dimensions 40 × 50 × 15mm. £2 ASSEMBLED 9/4.

MINICLASSIC PRE-AMP SSPA/30
Tone controlled high gain pre-amp designed specially for application with the SS3/10. All silicon transistor. Zero hum. 12 volts = HT. Dimensions: 70 × 40 × 35mm. Separate inputs for crystal ceramic cartridge and radio. ASSEMBLED £4/2.

MINICLASSIC SS3/9 AND SS3/10

Two high fidelity amplifiers providing adequate power for normal domestic listening or portable equipment. The SS3/9 is the more powerful and provides a maximum of 6 watts into 3 ohm speaker. The SS3/9 provides 4 watts into 3 ohms and has the advantage of working from a 12 volt supply. Specification: Frequency response, 16 c/s to 30 Kc/s. Input Sensitivity 1 volt. Both will operate directly from crystal pickup and provide complete tape amplifier with SSTR/7, 6 transistor 2 diode. HT + SS3/9 18 volt. SS3/10 12 volt. Dimensions 50 × 85 × 22.5mm. £9/2 ASSEMBLED, both models.

Record pre-amp Sr/8 couples SS/9 through to ribbon and dynamic mic. High gain all silicon transistor. £29/6.

TAPE OSCILLATOR SSO13
Complete unit incorporating push pull silicon transistor oscillator giving adequate erase power and recording bias. The only unit on the market at such an economical price. Ferrite transformer operating from 11 volt supply at approx. 2.5 mA 12V, This is a gain stabilised low distortion oscillator. £1.40/4.

RECORD AMPLIFIER S59/3
Fully transistorised. High voltage H.T. rail derived from oscillator. Provides substantially constant current record signal. 1 volt input sensitivity. Input impedance 5k. Power requirements 1 mA 75V, derived from SSO13 and 3 mA 12V, derived from SSO13. £1.60/4.

POWER SUPPLIES

30 volt, 3 amp. Ready built and ideal for your Kedoco Classic and will power 2 of them. £9/4. 18 volt, 1 amp 9V. 12 volt, 1 amp 12V. £1.75/4.

Sub-miniature 3 transistor, 3 diode FM Tuner. Covers 88-108Mc/s, operates from 9 Volt battery. £1.95/4.

Sub-miniature superhet AM Tuner — £4/2. KEDOCO ELECTRONICS LTD. NEW SHOWROOMS AND MAIL ORDER DEPARTMENT
Department PE, 76 Victoria Road, Swindon. Personal callers welcome. Open 9 a.m. — 6.30 p.m.
9 a.m. — 1.00 p.m. Wednesdays
EHT required 800V: Deflection Sensitivity .125 mm/V lor
Practical Electronics Odalmope in March and April Issuue.

CATHODE BAY TUBES SQP1—as recommended In the

12J.0. P.P. 5/-.

Base 7/6.

DO7-5:2J" screen; 6,3Vheaters;
gain 80, 60/- per pair.

2X1132 (PNP), 60 mc/4 cut-off; 600 tvnJV: dlnsipatlon:
5V40 B/-
&Z40 8/-
6Z3 1/8
6D40B 8/-
BU4G B/-
5R40Y 8/-

SABOT 8/-
2A3 384 8/-
302I
3Q4 8/8
104 8/-
IB30T 7/-
OC3
obs

Enthusiast Readers SAY

Head Office and Warehouse: 44A WESTBOURNE GROVE, LONDON, W.2.

Z & I AERO SERVICES LTD.

PLEASE BEND SAB (FOOLSCAP) FOB TOLL PRICE LIST

Radio and Electronics,

You'll find it easy to learn with this outstandingly successful new textbook method—the essential facts are explained in the simplest language, one at a time; and each is illustrated by an accurate, cartoon-type drawing.

The books are based on the latest research into simplified learning techniques. This has proved that the Pictorial Approach to learning is the quickest and soundest way of gaining mastery over these subjects.

To Selray Book Co.
60 Hayes Hill, Hayes, Bromley, Kent

Please send me Without Obligation to Purchase, Basic Electricity/Basic Electronics on 7 Days' Free Trial. I will either return set, carriage paid, in good condition within 6 days or send down payments of 5/- (Basic Electricity) followed by 6 fortnightly payments of 10/- Down payment of 15/- (Basic Electronics) followed by 4 fortnightly payments of 12/- Alternatively, I will send 60/- (Basic Electricity—5 parts), 81/- (Basic Electronics—6 parts) post free. This offer applies to United Kingdom only.

Tick against set required (only one set allowed on free trial).

BASIC ELECTRICITY

Signature

If under 21, signature of parent or guardian

Name

BLOCK LETTERS BELOW

Address

P.E.7

Full Postal
STUPENDOUS OFFER—£11 for £2

The Princess binoculars described below is a very fine little set that has been carefully designed for high performance. Only recently (under another name of course) this was on offer in many music shops, for £10/10/0, but we have been fortunate in obtaining the packs at a very low price and now post this saving on to you. If you act quickly you can purchase this for only £9/9/6 plus 3/6 post and insurance. Note these features: • Long and Medium Waves • Long clear sound with travelling pointer and slow motion drive • Push pull output approximately 300 m.w. • A.V.G. and Beat back • Four crystal transistors • High selectivity, tuned serif • Six tuned transistors • Printed circuit board for fool-proof assembly • Economy output circuit gives long life from PP3 battery • Permanent magnet moving coil speaker • Cabinet size 4 1/2 in. X 3 1/2 in.

You get your 100 perfect points value for this excellent standard with good length spindle. SO/- doz.

WE ARE BEST FOR GARRARD and because they have been making record players for as long as GARRARD are your best choice—big range always in stock.

125 Watt Mercury Vapour Spot Lamp

In addition to the normal use in photography and lighting generally you will find that a spot light shining over your shoulder is a great boon when working on intricate micro-circuits. This model due to a fortunate purchase we are able to offer a complete "Phillips" outfit for about one-fifth of its proper price thank you again, it is a real bargain. The outfit comprises 125 watt SPOT LAMP (free porous, same lens as 200 watt ordinary lamp) • Polyvalent filled choke starter and adjustable mounting bracket, with lamp holder—listed at over £10 we offer the complete outfit in perfect order—unless but a little store sold out only £7 8/- plus 6/- post and insurance.

INTERCOM BARGAIN

OFFICE 10/- 13/6 15/6
SNOW 15/6 19/6
STORE 15/6 19/6
MANAGING DIRECTOR 15/6 19/6

YOU WILL SAVE UP TO 40% TWIN 220-240 Volt Transformers—will not work on 110 volt, 50-500 watt, 1 per set. Sell your transformers to traders and make a huge profit. Make a saving of 50% immediately and then you will be able to buy a new transformer or buy new transformers. The transformers are perfect for all your needs.

TWO OUT OF SEASON BARGAINS

1. 720 watt infra red silica gloss heater—wall mounting with pull switch. £8/- plus 6/- post and insurance.

2. Two-heater electric blanket element. Two complete washproofed elements 13 1/2 x 36 long; connect both for full heat (70 watt) and one only for half heat, temperature controlled by thermal bimetal, £2/- post free.

When posted this is not dedicated as an extra but orders over 50 are post free. Below 50 add 1/9.

TOUR MASTER CAR RADIO

Medium and long wave (push-button change) port, tuning; six transistors including power output transistor—unbelievably one of the best car radio available today—currently being sold at £4 10/. Our price only £2/6 ready built and guaranteed 12 months.

MULTI PURPOSE NEON TEST UNIT

Avaliable for use in all applications, from the very simple to the highly complex, from the highest v.s.d. to lb. Type special purpose neon tester and LT fault finder—also acts as signal injector and LT fault finder—kit comprises: metal front panel all perforated and stencilled—operating on stable 6 volt battery—fully tested transistor and diodes and all the necessary resistors and capacitors and circuit diagram (separately 0/9, for £6/-, all for 20/- plus 9/- post and insurance)

ENGINE REV COUNTER

Direct reading frequency meter

Employing a special frequency discriminator the instrument is just right for any of the jobs you have wanted to do—it can be permanently installed in your car or as a portable instrument it will do all such jobs as accurately furnish a pulse rate, pitch of instrument, basal pulse, etc. kit comprises; metal front panel all perforated and stencilled—operating on stable 6 volt battery—fully tested transistor and diodes and all the necessary resistors and capacitors and circuit diagram (separately 0/9, for £6/-, all for 20/- plus 9/- post and insurance)

BOXES AND CORD MACHINES—an opportunity to make this very useful item—described in Practical Electronics. Kit of 12 switches only 9/9/- post paid. Several for Panel games etc., most of the brackets have the same size, but made in different sizes. £2 1/- each, 6 1/- each, 3 1/- each, 2 1/- each.

MAINS POWER PACK

MAINS POWER PACK designed to operate transistor sets and monitors. Adjustable output 0-5 volt, 2000 29.9.6. 1000 28.8.9. 500 27.19.8. 250 26.19.8. 125 25.0.0. 65 24.9.0. 45 23.8.0. 30 22.7.0. 20 21.6.0. 15 20.5.0. 10 19.4.0.

STORE

TAPE RECORDER BARGAINS

Capstan Driven, 5 Transistors SPECIFICATION:—2000/197.000 c.p.s. 5 mm. copper oxide track—speed 150 ft./min. Twin reel driving—motor. 100 volt Transformer. 250 kg., 110 volt weights 7 lb. Size 8 x 11 x 8 in. Complete with motor, detector, tape spool and instruction manual. Nothing to go wrong if you use a good quality tape. Demonstration gladly given at our Croydon shop. Special Offer,—This Month GARRARD SPARES 225. 0. 0. 2000 200. 9. 0. 1000 180. 9. 0.

THE "MINY"

Best of the spot driven machines, remote control on mesa, battery operated £19/9/6. 5/6/- post and insurance.

ELECTRONICS (CROYDON) LIMITED

372 TAMWORTH ROAD, CROYDON, SURREY (Opp. West Croydon Station) post orders to: Dept. PE, SPRINGFIELD ROAD, EASTBOURNE, SUSSEX
NORMA VIENNA

- **40 RANGES FOR—**
 - D.C. CURRENT & VOLTAGE
 - A.C. CURRENT & VOLTAGE TO 30 kc/s
 - RESISTANCE TO 5 MEGOHMS
 - TEMPERATURE
 - OUTPUT

- Sensitivity of
 - 20,000 Ohms/volt D.C.
 - 4,000 Ohms/volt A.C.

- Accuracy of
 - 2.5% D.C.
 - 3.5% A.C. to 500 c/s

- Robust Taut
 - Suspended Meter Movement

- **£11-10-0 available from**

CROYDON PRECISION INSTRUMENT COMPANY

HAMPTON ROAD • CROYDON • SURREY Tel.: THORNTON HEATH 4025 & 4094

HOME RADIO (Mitcham) Ltd., 187 London Road, Mitcham, Surrey. Phone: MIT 3282

"Read all about it!"

Translated into the Queen’s English... "Read all about it." The gentleman is referring to the fact that Reprint No. 12 of the Home Radio Catalogue is hot off the press. As always, its pages (all 210 of them) are packed with good things, things of absorbing interest to every radio and electronics enthusiast. No increase in price... better than ever value at 7/6, plus 1/6 post and packing. And remember, every copy contains five coupons, each value 1/- when used as directed. If you have never had the good fortune to own one of these famous components catalogues, or if your own copy is now a bit long in the tooth, send the attached coupon with your cheque or P.O. for 9/-. Our pleasure in sending you the catalogue will be exceeded only by your pleasure in receiving it.
THE MICROBUG MENACE

The Postmaster General’s declaration that the use of any kind of eavesdropping or “bugging” equipment is illegal in the U.K. is most welcome.

For some time we have noted with apprehension a steady growth of the market in electronic eavesdropping or “bugging” devices—mainly of foreign origin. The undue publicity these electronic gadgets have received through bizarre television series and films must be partly to blame for the cultivation of an unhealthy interest in secret listening among certain sections of the general public. It is to be hoped that the outlawing of these devices will discourage our own manufacturers and retailers from pandering to such (now) illicit demands.

It is probably true that the novelty of these miniature devices may fascinate some of the technically minded and induce them to conduct genuine experiments, without any real intent to eavesdrop on private conversations. To satisfy one’s technical curiosity is one thing, but there is a real danger that the temptation to continue listening may prove irresistible for some. What might well have begun as an innocent prank or experiment could thus easily develop into a much more sinister and serious affair.

In welcoming the official clarification of the position concerning “bugging” devices we appreciate that fully effective enforcement of the ban on their use is largely beyond the capabilities of the authorities. It is a frightening thought—but nevertheless a realistic appreciation of the times—that no one will ever be entirely safe from this menace. And yet there is no reason to accept passively the use of microbugs and their like. Electronics enthusiasts, amateur as well as professional, have an opportunity to apply their particular expertise in a worthwhile cause. Electronics which admittedly made the radio microbug possible also provides antidotes, including means for detection. Such a “de-bugging” instrument, which can be built by any capable amateur, is featured in our pages this month.

The anonymous snoopers will be discouraged and their pockets hit every time one of their hidden playthings is tracked down and destroyed. As with other kinds of pests, even if we cannot entirely eradicate the electronic variety, we can hold them severely in check.
Much work has been done in the field of superconductivity since the initiation, by the then Department of Scientific and Industrial Research, of a national research programme into the applications of superconductivity in Britain. What, you may ask, is superconductivity and how is it likely to affect our lives in the coming decade?

When a piece of metal is cooled down below ambient room temperature, its electrical resistance falls as the electron scattering caused by thermal agitation grows less. There comes a point, however, when the resistance ceases to fall, for at very low temperatures the electrons are scattered mainly by imperfections in the structure of the crystals forming the metal.

But when H. Kamerlingh-Onnes cooled a sample of mercury into still lower regions of temperature he found that the electrical resistance again fell, but this time suddenly, to zero, at a temperature of minus 268.95°C. This discovery marked the beginning of experiments into the phenomenon known as superconductivity.

Although Onnes' discovery was made as long ago as 1911, little practical use was found for the phenomenon until quite recently. Nevertheless, these last few years have seen a radical change in the position, and the effect that for so long had seemed little more than a scientific curiosity has developed into what promises to be a major tool of science and engineering. Its possible applications range from power generating equipment with ratings of hundreds of megawatts to microscopically small components for digital computers.

PROPERTIES OF SUPERCONDUCTORS

The temperature at which the change from finite conductivity takes place depends mainly on the strength of the magnetic field in which the conductor is placed. The presence of a magnetic field will force down the "transition temperature" or even prevent transition entirely (the "critical field"). Yet even in the complete absence of a field, superconductivity demands incredibly low temperatures, temperatures at which all the gases except helium have solidified.

Two types of superconductor have been discovered: "soft" (also known as "ideal" or "type I") and "hard" (otherwise known as "non-ideal", "type II" or "London").

Soft superconductivity was the first to be detected. Soft superconductors such as tin, lead, mercury and aluminium only remain in the superconducting state in magnetic flux densities of less than a few hundred gauss.
Magnetic fields are unable to penetrate beyond the extreme outer layers of a type I superconductor; indeed, it was thought for some years that all magnetic lines of force were excluded entirely from a sample when it entered the superconducting state. However, we now know that flux will penetrate to a depth dependent on the temperature of the sample and its purity. Another peculiarity of soft superconductors is the fact that any electric current entering a superconductor passes through the outer skin of the sample, down to a depth of the order of one hundred-thousandth of a millimetre.

At the present time, many laboratories are conducting investigations into a range of materials that remain in the superconducting state in very powerful magnetic fields. These are members of the class of "hard" superconductors. Hard superconducting materials are of two types: alloys such as niobium-zirconium and intermetallic compounds like Nb₃Sn. This last material has the highest transition temperature found so far: minus 25.5°C. In hard superconductors, the current is not confined to the outer skin of the conductor, but is distributed fairly evenly throughout the whole cross-sectional area.

There are other factors besides temperature and magnetic field that affect the behaviour of a superconductor. One of these is the value of the current passing through it. Any electric current creates a magnetic field, and according to Silsbee's hypothesis, the critical current for a superconductor, that is the current which causes a sample to revert to its normal state, is simply the current required to produce the critical field at the surface of the sample. Other factors that modify the behaviour of a superconductor are mechanical pressure, carrier concentration and ionising radiation. However, it is the three factors of temperature, magnetic field strength and electric current that bear most directly on the applications of superconducting materials.

SUPERCONDUCTING ELECTROMAGNETS

To create a magnetic field in an ordinary electromagnet, energy must be "pumped" into the windings; when the field collapses, this energy is returned. No energy at all is needed to maintain the field, just an electric current. Unfortunately, ordinary electromagnet windings have a finite resistance and energy must be supplied to overcome this resistance. On the other hand, if the windings had zero resistance, as would be the case if they were superconducting, we could have what amounts to a "permanent electromagnet"; for once the field current had been induced to flow it would continue for ever, as would the field it creates. No heat would be generated in the windings, so that a very powerful magnet could be made as small as desired without any danger of it melting.

Thus the discovery of superconductivity brought to mind the possibilities of extremely powerful electromagnets weighing pounds or ounces instead of tons. Complicated and expensive water cooling systems, needed on conventional power magnets to carry away the energy wasted as heat, would no longer be needed. But it took the further discovery in the United States of hard "high field" superconducting materials before this dream could become anything more than a dream. Bubble chambers, energy storage, ion drives and radiation shields could enter the realm of possibility. Despite formidable problems, it is likely that the superconducting magnet will prove useful in generating electricity, in bubble chambers, energy storage, ion drives, and radiation shields.

The one major disappointment has been the poor behaviour of superconducting materials when subjected to an alternating field, when the material no longer operates in a completely "lossless" manner. In fact, the losses in a.c. fields have proved to be so high that the power needed to keep the temperature down to the "liquid-helium" level, more than outweighs the power that would be lost in ordinary conductors working at room temperature.

Where direct fields alone are concerned, however, the picture is more promising. Experimental work has been in progress in the U.S.A. on a superconducting excitation magnet system for a 600 megawatt turbo-generator, and an experiment toward the same end carried out in the U.S.S.R. Academy of Sciences is shown diagrammatically in Fig. 1. This simple device is a d.c. generator with what amounts to a "permanent electro-magnet" supplying the field. An armature borrowed from a small motor runs between pole pieces in a soft-iron loop which is broken to admit a superconducting coil. The coil is contained in a double Dewar—a laboratory vessel consisting of a vacuum flask holding liquid helium inside another vacuum flask containing liquid nitrogen.

The superconducting coil (of Nb₃Sn wire) is short-circuited and a direct current induced into it. The voltage that has been obtained at the terminals of this machine is 200 times greater than would have been possible using a permanent magnet. In a full-size turbo-generator, the flux density created by such a magnet system would do away entirely with the need for iron in the magnetic circuit. Not only would this save a great deal of weight and expense, but the considerable loss of energy due to this iron would be absent.

SUPERCONDUCTING BEARINGS

When a conductor is moved in a magnetic field, an electric current is induced in the conductor. If a block of copper is brought near to a magnet, the eddy currents induced in the copper will repel the magnet, but
the force is so small that it is difficult to detect under normal conditions. If the copper is replaced by a superconductor, however, there is no resistance to damp out the eddy currents and a heavy block of metal can be made to hang in space supported only by the field of a magnet beneath it. If, in turn, we make this superconducting block part of the journal at the end of a shaft, we obtain a bearing that has no friction losses whatever, as the shaft is entirely supported by “field interaction”. In Fig. 2, the field generated by the two coils supports the T-section ring of superconductor which is rigidly fixed to the shaft.

SUPERCONDUCTOR MOTORS

“Superconducting” motors and generators can be built on similar principles as conventional machines, but with the windings made of superconducting material that is cooled to liquid helium temperatures. On the other hand, more radical designs become possible using superconductors.

Fig. 3 shows one such design in diagrammatic form. A superconducting rotor in the shape of a polygon runs inside a system of stator conductors. Currents flowing through certain of the stator bars create forces on the rotor which act perpendicular to the surface of the rotor adjacent to the bars concerned. As the forces are “off-centre” with respect to the shaft, the rotor will turn in the direction shown, i.e. counter-clockwise. In turning, the rotor switches the currents into the next series of bars so that the energised bars are always in the same relative positions to the rotor. Such a machine has been studied in the laboratories of the General Electric Company of America.

THIN-FILM CRYOTRON

The term superconductor is no exaggeration; in a superconducting circuit a piece of silver would act as a relatively high resistance. Thus, the effect on a circuit, when an element in the superconducting state reverts to its normal finite conductivity, is like turning off a switch. This “switch” can be turned off by temperature, current, a magnetic field or even by mechanical pressure or radioactivity. It is, however, electric current that controls the behaviour of a thin-film cryotron.

Basically, the cryotron is an extremely simple device, for it involves nothing more than the intersection of two metal strips, electrically insulated from each other (Fig. 4). One strip is known as the “gate”, the other as the “control”. The gate is made of a material that permits it to be switched from the superconducting to the normal state by the introduction of a current into the control. It is, in effect, a relay.

The cryotron can be used to switch the automatic circuitry of a factory or power station, and it can form part of the logic scheme of a digital computer. However, its use in logic circuits is limited by its relatively slow speed of operation (relative, that is, to the present-day speeds of computers). As far as computers are concerned, the cryotron is more likely to find its place in the memory system, a role in which it shows considerable promise. If the strips of superconductor are arranged into loops, any currents introduced into these loops will persist until some outside action (such as a
Fig. 5. Basic scheme of superconducting energy store. (a) The source of supply gradually builds up, the current flowing through inductor L at a rate controlled by charging resistance R until the required value is attained. (b) Switch S3 closes to short-circuit the inductor; switch S1 opens to disconnect the supply. (c) To discharge the inductor, switch S2 closes and switch S3 opens, diverting the current into the load. S3 is a superconducting switch turned off by the field of a small electromagnet.

current in the “control”) determines that they do otherwise.

ENERGY STORAGE

Storing large amounts of electrical energy is a costly and sometimes inefficient business. One factor common to all storage systems is the great size and cost of the stores (accumulators, capacitor banks, the reservoirs of a pumped-storage scheme etc.) in relation to the amounts of energy that they can hold. As was mentioned earlier, a magnetic field can store energy; but unlike an accumulator or pumped-storage scheme this energy can be released in one intense burst. Its only real competitor at the present time is capacitor storage; this can be very powerful indeed. While a bank of capacitors must be considerably larger than the inductor of a magnetic store of equivalent power rating, the losses in the latter are extremely high. These energy losses, caused by the resistance of the inductor windings, are so great that magnetic energy storage on a large scale is only practical where the energy can be pumped rapidly into the store and then released immediately.

Both of these requirements are achieved if the inductor is wound with a superconducting material. With no resistance losses, the field can be “trickle-charged” from a low power source of electricity; the inductor will hold its charge until such time as it is required. Fig. 5 shows one way in which a superconducting energy store could operate in practice.

Many problems have still to be solved before the superconducting energy store is able to compete successfully with existing storage methods, but its great potential seems to lie in situations where large amounts of energy (more than 100 kilojoules) are needed for release over periods of a few thousandths of a second. It could, for example, be used to supply the energy for metal-forming processes of the “exploding-wire” type, or for pumping high power lasers.
Apart from the usual tone controls, there are at least three different electronic effects that are currently in vogue amongst both individual guitar players and pop groups. They are:

(a) *Echo or Reverberation*—effected by a tape delay or a mechanical delay. This is made evident as a periodic recurrence of a single sound.

(b) *Vibrato*—sometimes mistakenly called tremolo—is produced by mixing a fixed low frequency oscillation with the guitar signal.

(c) *Fuzz Box*—a harsh yet not unpleasant sound effected by wave shaping circuits. Here the impact of this contrived distortion is most evident on low frequencies.

There are plenty of published designs for echo units and vibrato units yet there has been little available on Fuzz Box circuitry, although considerable interest has been aroused in the subject.

Commercial units are available but the price of these inclined the author to design and build his own.

TECHNICAL DESCRIPTION

The fuzz box is based on a three stage shaping circuit, shown in Fig. 1. The first stage TR1 is a simple pre-amplifier of medium gain the input being applied via an 0.47µF capacitor C1. The value of this capacitor can however be decreased to 0.1µF if fuzz bass is not to be used. Base bias current is supplied by R1, a more sophisticated means of bias stabilisation being unnecessary as any thermally induced changes of the working point can only introduce additional "fuzz".

The signal developed across R2 is applied to the single sided peak clipper diode D1. Any type of semiconductor diode could reasonably be applied here, point contact or junction types. The value of R3 is similarly non-critical, a choice of resistor between 600 kilohm and 1 megohm proving satisfactory in the prototype.

Squaring of the component tones of the guitar complex wave input is completed by the overdriven amplifier TR2, the output of this being fed to the compound-connected output amplifier composed of TR3 and TR4, which together further amplify and improve the squaring by reducing the rise and fall times.

This output is then differentiated by the CR network, made up of C3 and the output potentiometer VR1. The resultant spiked positive and negative pulses make up the rasping "fuzzed" sound which can be fed to an amplifier or other effects units by way of SK2.

A requirement of this kind of unit is its ability to be switched in and out of circuit without the instrumentalist using his hands. This was achieved by using a single-pole changeover switch S1 operated as a foot switch. This serves the dual purpose of by-passing the effects box when the switch is not depressed and energising the circuit, thereby breaking the by-pass when foot pressure is applied. As can be seen this provides a considerable saving in current.

The setting of the output preset potentiometer VR1 will be determined by the power output of the main amplifier and an optimum level can be found by individual experiment.

CONSTRUCTION

Since the unit housing would be subjected to continuous foot pressure, it was decided to use an 18 s.w.g. aluminium chassis, with the changeover switch being mounted at one end. This allowed for easy control of switching as the foot is allowed to pivot on the box.
Fig. 1 (right). Circuit diagram of the fuzz box with footswitch

Fig. 2a (below). Layout of components on the laminated wiring board

Fig. 2b. Underside of the component board showing holes which are used (black) and copper strip breaks

COMPONENTS . . .

Resistors
R1 68kΩ R4 220kΩ
R2 3.3kΩ R5 3.9kΩ
R3 1MΩ R6 2.2kΩ
All ± 10% ±W carbon

Capacitors
C1 0.47μF polyester 160V
C2 0.1μF polyester 150V
C3 0.1μF polyester 150V

Transistors
TR1—TR4 OC71 or NKT214 (4 off)

Diode
D1 OA81 Mullard

Potentiometer
VR1—1kΩ preset, linear

Switch
S1 Single pole changeover switch—S.M.357 Bulgin

Battery
BY1 9V battery. Ever Ready PP3 or Vidor VT2

Sockets
SK1-2 coaxial, surface mounting (2 off)

Miscellaneous
Chassis: 18 s.w.g. aluminium, 6in × 4in × 2½in
Veroboard: 2½in × 1½in. P.V.C. covered wire
Tery clip. Solder tags

Assembly of components is made on a piece of Veroboard and can be readily followed from the wiring diagram, Fig. 2. Stand-off insulators can be used for board mounting but in the prototype a section of barrier terminal strip (block) served equally well.

It will be noted that the positive line is taken to chassis by solder tags at the input and output sockets.

OUTPUT FILTER

A π network filter may be found necessary in some amplifiers which have relatively large coupling capacitors (see Fig. 4). Its inclusion is dependent on the fuzz quality required. Its exclusion gives a somewhat heightened string intermodulation which, in the author’s opinion, epitomises the “wildness” of fuzz.

It is kinder to the loudspeaker however to use this filter if much high volume chord work is intended or if the speaker enclosure is found to resonate on account of too fierce a fuzz. The filter serves to reduce the harmonic content which is considerable due to the effectiveness of the squaring circuit.

The filter is inserted between the output capacitor and the output level control. The potentiometer VR2 is adjusted for the desired effect.

EFFECTS SWITCHING

There are three possible methods of installing and using the unit:
Fig. 3. Wiring details of the unit. The full details of the centre component board are shown in Fig 2.

Fig. 4. Pi-filter connected to the output of TR4.

Fig. 5. Suggested method of coupling four effects units to the guitar amplifier input.

Fig. 6a. Footswitch used to introduce vibrato.

Fig. 6b. Footswitch used to introduce fuzz.

Fig. 7. Method of obtaining a positive low voltage supply from the power amplifier h.t.

Fig. 8. Rectifying the heater supplies to obtain −9V output.
(a) The unit can be installed in the amplifier itself, either with a separate footswitch control or with manual control to form a “fuzz channel”.
(b) As a complete footswitch unit as described earlier incorporating all the electronics. The guitar lead plugs into the footswitch unit itself and the output from the unit is connected to the amplifier.
(c) As part of an “effects box” which is external to the amplifier. The remote control of this unit is difficult to achieve without either induced hum or “switchover click”. However if good coaxial cable and a shielded microswitch are used then sufficient control is gained by just shorting out the fuzz input to fuzz output via the footswitch. This system is really more suited to the type of unit described earlier.

If built into an effects box, one can have a number of facilities such as echo, fuzz, vibrato, treble boost and so on. All that has to be done is to link the required units to switches on a control panel; a suggested set-up is shown in Fig. 6. Alternatively a footswitch unit with one switch for each effect can be used.

It is possible to simplify the arrangement by making one footswitch perform two functions. This can be particularly useful in groups. For example, the rhythm section would use vibrato/pre-amplifier switching and the lead section fuzz/treble boost switching. Examples of footswitching for these are shown in Fig. 6.

POWER SUPPLIES

There are a number of different ways of providing power to the subsidiary effects circuits: battery supplies, separate mains driven power unit, of tapping the h.t. from the power amplifier. Polarities and connections of the supply are very important, particularly when using pnp transistors with a valve power amplifier. The fuzz box uses pnp transistors.

Taking the first method (battery supplies) this should present no problems, but remember that pnp transistors require a negative supply and npn transistors a positive supply. Never exceeded the recommended voltage for each effects unit.

The second method (mains driven power unit) can be made up from one of the circuits which have been or will be published in these pages.

The third method calls for a certain amount of ingenuity and care. First of all make sure that the power amplifier supplies have enough reserve to enable up to about 10mA to be drawn from the h.t., which will usually be in the region of about 250V positive.

This h.t. is not likely to be stabilised so it is advisable to employ a Zener diode, for example OA2207 or OA2272 for 9V, to help maintain a steady d.c. supply voltage. One method of doing this is shown in Fig. 7; the extra components can be mounted on a small tag board inside the amplifier cabinet. This is only suitable for npn transistors.

Alternatively the 6.3V heating winding on the amplifier mains transformer can be used if suitably rectified and smoothed. This can be seen in Fig. 8. It is important here to make sure that one side of the heater winding is not connected to chassis; it is best to connect the centre tap of the 6.3V winding to chassis, which will also be common to the “positive” line of the 9V d.c. output.

This method is suitable for pnp circuits and is probably the simplest. The polarity of the output can be reversed for npn transistors provided the negative line is connected to chassis instead of the positive. Almost any low voltage rectifier diodes of low current rating can be used, for example OA200 or OA90.

STABILISED POWER SUPPLY

BY P. RUSH, B.A. (Cantab)

An unstabilised power supply is usually not suitable for driving a power amplifier since the current taken by such an amplifier varies greatly with the signal input. (Here we are assuming a class B output, as is common with transistor amplifiers.) Because of the transient variation the voltage supplied from an unstabilised unit will vary with signal amplitude, resulting in distortion.

STABILISATION

The stabilisation of the supply keeps the voltage to the amplifier almost constant no matter what current is drawn, that is it gives the supply a very low internal resistance which is comparable to, or better than, that of a battery.

Fig. 1 shows the poor regulation of an unstabilised supply (initial internal resistance about 45 ohms). The stabilisation applied in this unit reduces the internal resistance to only 1-8 ohms (0-9V drop in supply voltage at 500mA).

The basic method of stabilisation is the use of a Zener diode. This is a special silicon diode biased in reverse. The voltage across it is always fixed by this diode at a characteristic value, provided the supply voltage is greater. To limit the current through the

SPECIFICATION

Input: 200-250V a.c.
Output 1: 13V d.c. 0-500mA
(Internal resistance 1-8 ohms)
Output 2: 9V d.c. 0-50mA

The power unit described here has outputs chosen so that the unit is suitable for supplying a transistor radio tuner or pre-amplifier (9V supply) and a transistor power amplifier delivering up to 4 watts (13V supply). The ripple content is negligible and is inaudible in the output of an amplifier powered by the unit.

It is suitable not only for powering existing equipment but for providing stable experimental supplies. Details are given for modifications.
Zener diode a series resistor, such as R1 and R2 in this unit (see Fig. 2) is needed. The internal resistance measured across the diode is equal to the dynamic resistance of the device. This method of regulation is used for the 9V supply.

An extension of the basic method is used for the 13V supply. The transistor base voltage is fixed by D2 and so the emitter voltage is only about 0.2V less than the characteristic voltage of D2 no matter what the current. The transistor has the effect of reducing the internal resistance of the circuit even more, here, for the 13V supply, to 1.8 ohms.

Such stabilised supplies are not dependent to any great extent on input voltage. This unit has been operated on both 210V and 240V mains with only a minimal difference in output voltage.

SUPPRESSION OF RIPPLE

Because the output voltage depends to a slight extent on input voltage, ripple is automatically suppressed. The capacitors C2, C3 and C4 incorporated here reduce any remaining ripple to an almost undetectable level. The values of these capacitors might possibly be reduced without a significant increase in ripple, but they are readily obtainable at the values quoted at low prices and are recommended.

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistors</th>
<th>R1 1x2k 10% 1/2 watt carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R2 470Ω 10% 1/2 watt carbon</td>
</tr>
<tr>
<td>Capacitors</td>
<td>C1 2000μF elect. 50V</td>
</tr>
<tr>
<td></td>
<td>C2 5000μF elect. 15V</td>
</tr>
<tr>
<td></td>
<td>C3 2500μF elect. 12V</td>
</tr>
<tr>
<td>Diodes and Transistor</td>
<td>D1 BYZ 13</td>
</tr>
<tr>
<td></td>
<td>D2 OAZ 213 (12 volts nominal, 1/2 watt)</td>
</tr>
<tr>
<td></td>
<td>D3 ZS 9-1 or OAZ 292 (29-1 volts nominal, 7 watt)</td>
</tr>
<tr>
<td>Transformer</td>
<td>TR1 XC 142 (Ediswan)</td>
</tr>
<tr>
<td></td>
<td>(All available from Henry’s Radio and other stockists)</td>
</tr>
<tr>
<td>Fuse</td>
<td>FS1 1A cartridge fuse and holder</td>
</tr>
<tr>
<td>Switch</td>
<td>S1 Double pole on/off (mains rating), -slide or toggle switch</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Two B7G valveholders and plugs. Four wander plugs and sockets. P.V.C. covered wire, mains cable and anchoring clip. Mica washer, 4B.A. nylon screws, and silicon grease for transistor insulation. Aluminium sheet 16 s.w.g. for chassis 3/4in x 4 3/4in x 2 1/4in. Plywood for box 6 3/4in x 5in x 3 3/4in.</td>
</tr>
</tbody>
</table>

CONSTRUCTION OF THE UNIT

The prototype was built on a chassis of heavy gauge aluminium. The layout used can be seen from Fig. 3, but this can be varied according to personal choice. It is essential, however, that the transistor is given an adequate heat sink, which is insulated from the chassis, since it must dissipate several watts when the unit is supplying a high current. In the prototype the chassis is used as the heat sink with particular care paid to insulation. A mica washer is used to insulate; silicon grease was applied to the surfaces first. Nylon or similar non-conducting screws are essential for fixing. The diode D1 should also be given a heat sink; here it is insulated from the chassis with plastic bushes. Heat sinks are not necessary for D2 and D3 with the values of components as given, but if run near to their maximum power ratings (1 and 7 watts respectively) then a heat sink is advisable.

The original unit used a Zener diode type VA9-B which is rated at 24 watts although it tended to get warm on test. It was decided to replace this with a Brush Crystal Zener type ZS 9-1 which is rated at 7 watts and should suit the application just as well.

![Graph of the load characteristic—output voltage against load current for a typical low voltage unstabilised d.c. power supply circuit](image-url)
The transformer is described in the components list. If an alternative component is used make sure that the secondary has a minimum resistance of 14 ohms; if not make up to this value with a fixed series resistor. With this value the diode D1 will not be destroyed by the surge current when the unit is switched on.

A slide or toggle switch may be used, preferably two-pole for safety. If the former is employed as on the prototype ensure that it is suitably rated for mains operation; some are not. Bare terminals should be covered with insulation tape or sleeving. As a further precaution provide an anchorage point inside the cabinet for the mains cable in order to avoid pull on the switch terminals if the cable is tugged.

The capacitor C5 is used between the loudspeaker of the power amplifier and "earth" in transformerless output amplifiers where one side of the loudspeaker would normally be connected to the centre-tap of a battery. This capacitor can be omitted if the amplifier to be powered is not of this type.
In the prototype the outputs were connected to B7G type valve sockets; a B7G plug and multicore cable connects the unit to the tuner and amplifier. A second socket for further developments and wander-plug sockets to provide supplies for experimental purposes were also included.

ALTERATION OF OUTPUT VOLTAGES AND CURRENT RATINGS

The unit can be easily modified provided certain precautions are taken. To alter an output voltage substitute a Zener diode of appropriate voltage and alter the series resistor so that the current through it is either (a) equal to the maximum current needed plus about 1–2mA (D3 and R2), or (b) equal to the maximum base current needed plus 1–2mA (D2 and R1). The maximum base current can be taken as roughly \(\frac{1}{\beta} \) of the maximum current which you wish to draw from the supply. For this transistor \(\beta = 62.5 \). As an example, suppose we require the unit to provide 13V at 500mA.

Fig. 1 shows that at 500mA the transistor collector is at 24V relative to "earth". There is thus:

\[
24 - 13 = 11 \text{ volts across } R_1.
\]

Now the maximum base current is

\[
I_b \approx \frac{500}{62.5} \text{ mA} \\
\approx 8 \text{ mA}
\]

so \(R_1 \) should carry 1–2mA more than this, say 9mA. Therefore \(R_1 \) should carry 11/9 kilohms. The nearest preferred value is 1.2 kilohms.

To alter the output current keep the Zener diodes as specified and alter the series resistors as described above, but in all such cases ensure that the wattage ratings of the Zener diodes or the transistor (11W) are not exceeded.

Fig. 4. Drilling details of the chassis made from 16 s.w.g. aluminium. The left-hand flange is folded twice so that part of it is U-shaped. A grommet should be fitted to hole "D" for the wires to SK5 and SK6.
NOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...

BACKED BY OUR SUPER AFTER SALES SERVICE

NEW ROAMER SEVEN Mk IV

7 WAVEBAND PORTABLE OR CAR RADIO

FULLY TUNABLE ON ALL WAVEBANDS

 hues with Philco Micro-Alloy R.F. TRANSISTORS

- 6 WAVEBAND!!
- 9 stages—7 transistors and 2 diodes

Covers Medium and Long Waves, Trawler Band, and three Short Waves to approx. 15 metres.

Push-pull output, 3m. speaker (will drive large speaker), Quality Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3m. speaker (will drive large speaker). Size 7\(^2\) x 5\(^2\) x 3\(^2\). (Uses 9v battery, available anywhere.)

Total cost of all parts now only £3.19.6 P. & P. 3/6 (Free with kit)

POCKET FIVE

- 7 stages—3 transistors and 2 diodes

Covers Medium and Long Waves and Trawler Band. Incorporates Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3m. speaker (will drive large speaker). Size 7\(^2\) x 5\(^2\) x 3\(^2\). (Uses 9v battery, available anywhere.)

Total cost of all parts now only £3.19.6 P. & P. 3/6 (Free with kit)

NEW TRANSONA FIVE

"Elms, Light, A.F.N. Lux. all at good volume"

G.F., Durham

- 7 stages—5 transistors and 2 diodes

Fully tunable on Medium and Long Waves. Incorporates Ferrite rod aerial. Super sensitive Ferrite Rod Aerial and Ferite Rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3m. speaker (will drive large speaker). Size 7\(^2\) x 5\(^2\) x 3\(^2\). (Uses 9v battery, available anywhere.)

Total cost of all parts now only £3.19.6 P. & P. 3/6 (Free with kit)

SUPER SEVEN

- 9 stages—7 transistors and 2 diodes

Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or any other use. Completely portable—holds built-in Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3m. speaker (will drive large speaker). Size 7\(^2\) x 5\(^2\) x 3\(^2\). (Uses 9v battery, available anywhere.)

Total cost of all parts now only £3.19.6 P. & P. 3/6 (Free with kit)

THE SIG-GEN. A versatile Signal Injector. Something no constructor should be without. This ingenious device generates an audible signal through the Audio and R.F. ranges. With variable output. Telescopic Probe. Pocket size slim-line case measures 4\(^2\) x 3\(^2\) x 1\(^2\). Complete set of parts with full instructions. 10/6. P. & P. 1/6.

QUICK CHECK TRANSISTOR TESTER.

Checks gain of R.F. and Audio Transistors. Also checks for noise in the Audio and R.F. ranges. With electric output. Telescopic Probe. Pocket size slim-line case measures 4\(^2\) x 3\(^2\) x 1\(^2\). Complete set of parts with full instructions. 10/6. P. & P. 1/6.
Through this ICS 3-way Training Method:

MASTER THE THEORETICAL SIDE:
From basic principles to advanced applications, you'll learn the theory of electronic engineering—quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE:
ICS show you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE:
To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
- Radio/T.V. Engineering and Servicing, Closed Circuit T.V.
- Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.
- NEW! Programmed Course on Electronic Fundamentals

EXPERT COACHING FOR:
- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
- CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
- CITY AND GUILDS SUPPLEMENTARY STUDIES
- R.T.E.B. RADIO/T.V. SERVICING CERTIFICATE
- R.T.E.B. RADIO AMATEURS' EXAMINATION
- R.T.E.B. RADIO/T.V. SERVICING CERTIFICATE
- R.T.E.B. RADIO AMATEURS' EXAMINATION

And there are practical "learn as you build" radio courses as well.

Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY

I.C.S., Dept. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11

NAME

ADDRESS

OCCUPATION

AGE

7.66

INTERNATIONAL CORRESPONDENCE SCHOOLS

BI-PAK SEMICONDUCTORS

VALUE Pak 50 TRANSISTORS MIXED UNTESTED 10/-

- 3 OC139 Trans. NPN Mullard
- 2 Drift Trans., 2N1225 Germ. PNP 100 M/Cs RCA
- 6 Matched Trans., 1 OC44, 2 OC45, 1 OC81B, 2 OC81
- 4 OA10 Diodes Diode 30 PIV 1 amp
- 15 Red Spot AF Trans., PNP Factory Tested
- 15 White Spot RF Trans., PNP Factory Tested
- 4 Silicon Rect. 3 amp. 100-400 PIV Unmarked
- 4 NPN Switching Trans. Assorted CI39, 2N1308, etc.
- 2 10 amp. Silicon Rect. 50 and 100 PIV
- 8 Germ. Diodes 4 OA70, 4 OA79 Mullard
- 12 amp Silicon Controlled Rect. 100 PIV
- 3 Sil. Trans. 2S303 PNP VCB2S 100 mA Texas
- 10 Assorted Computer Diodes
- 4 Zener Diodes 250 mV 5 1/2 100 12/4 vts
- 2G417 Texas Trans. Eqvt. AFl16/117 Mullard
- 200 M/Cs Sil. Planar Trans. NPN B5726/27 STC
- 2 Bi-Directional Trans. ASY66 PNP STC
- 2N1225 Germ. Diodes 400 mV 30 32 150 vts. 5/2
- 4 Germ. Trans. High Current Mullard OC42
- 2 Power Transistors 1 OC26, 1 OC35
- 5 Sil. Rect. 400 PIV 250 mA 1.R.
- 2 OC71 Transistors Mullard
- 3 OC75 Transistors Mullard
- 3 NPN Sil. Trans. 70 M/Cs ZT43 Ferranti
- 1 Power Trans. OC20 100 vts. 45 watts. Mullard
- 5 OA47 Gold Bonded Diodes Mullard
- 2 OA202 Sil. Diodes Subminiature Mullard
- 2 Low Noise Trans. NPN NF4 6 6N99/99/30
- 1 Sil. Trans. NPN VCB 100 200 M/Cs ZT8 Ferranti
- 8 OA81 Diodes Subminiature (CV448) Mullard
- 3 Sil. Rect. 400 PIV, 500 mA BY101, BY114
- 5 Metal Alloy Transistors Max Type
- 5 Texas 2G344A Trans. Eqvt. OC44 Mullard

"FREE" One 10/- pack from the above free with all orders valued £4 (Four Pounds) or over.

LOW COST SILICON RECTIFIED RECTIFIERS

50 PIV 1 Amp. 8/6 400 PIV 7 Amp. 10/6
100 PIV 7 Amp. 10/6 100 PIV 16 Amp. 16/6
Free Circuit Diagrams for Light Dimmers, Speed Controllers, AC Power Switch, etc. with SCR orders.

SCOOP PURCHASE NEVER BEFORE OFFERED

Logic Modules All Plug in units
and, or, Gates Double and Single Modules, Memory Units, Power Amplifiers, Timer Units, Fanout Multipliers, 1 and 5 amp. SCR Modules, Permanent Memory Units, Power Supply Units 24 vts.
Full details on request (supplied in kit form)

Unijunction Transistors 2N2648 5/6
Tunnel Diodes IN3720 (TD-5) 15/6
6 Sil. Rect. Type BY100 500 PIV 500 mA 5/6
40 Mixed Semiconductors Marked New 40/6

Our vast stocks change daily with hundreds of Semicon-ductor bargains becoming available. We will be glad to put you on our mailing list and rush you our latest stock lists, eqv. charts, free offers, etc. Just send 2/6 to cover 3 months mailing.

Minimum order 10/- cash with order please. Add 1/- postage and packing per order.
By Return Postal Service Mail only.

BI-PAK SEMICONDUCTORS

8 RADNOR HOUSE, 93/97 REGENT STREET
LONDON, W.C.1
The first part of this article (see May issue) dealt with the meanings of the symbols used in the Practica.l Electronics Transistor Guide. In this concluding part, more general matters are explained and a table is also provided in which all types mentioned in the booklet are grouped according to application suitability.

CASES AND ENCAPSULATIONS

The case which contains a transistor is just as important as the glass envelope which maintains the vacuum and houses the electrodes of an electronic valve. The first function of a transistor case is to keep the dirt out. It has been painfully established over the years that the life of a transistor is very largely a function of the amount of foreign matter inside it. This is why transistors are assembled under clinically clean, dust-free conditions and in atmospheres of controlled low humidity—water is a great enemy of transistors.

Early types of transistor such as the OC71 were smeared with silicone grease and then hermetically sealed in a glass envelope. Later, metal cans were used, with the transistor leads taken out via an insulating glass base or “header”. These cases are often filled with an inert gas such as helium.

The more recent development of silicon planar transistors has eased the problem of “encapsulation”. It is possible to treat the surface of the silicon chemically during manufacture so as to passivate it, i.e. make it less vulnerable to chemical attack. The process is so effective that unencapsulated surface-passivated transistors have been operated immersed in water, a treatment which would cause more or less instant death to another type than one thermionic valve for another. To begin with, all currently produced transistors are triodes. Then again, they are usually wired-in, not plugged in, and so one is not bothered by variations in pin connections.

Thus, in principle, any two transistors with comparable electrical characteristics can be substituted for one another. The problem is to be sure their characteristics are really comparable, and this depends on the particular application.

One thing is quite clear: it is never possible to substitute a pnp transistor for an npn transistor without modifying the circuit, since a pnp transistor requires a negative collector supply while an npn transistor requires a positive collector supply. (The middle letter gives the collector polarity with respect to the other electrodes.)

On the other hand, in non-critical applications, quite different transistors may do the same job. For example, a high-voltage transistor, with a collector voltage rating of, say, 50V may be a perfectly good substitute for a low-voltage transistor in a particular circuit. But the low-voltage transistor cannot do duty in the place of the high-voltage one in a high-voltage circuit. This is a case of “one-way” exchangability.

COMPARABLES AND EQUIVALENTS

It is much easier to substitute one transistor for another than one thermionic valve for another. To begin with, all currently produced transistors are triodes. Then again, they are usually wired-in, not plugged in, and so one is not bothered by variations in pin connections.

Thus, in principle, any two transistors with comparable electrical characteristics can be substituted for one another. The problem is to be sure their characteristics are really comparable, and this depends on the particular application.

One thing is quite clear: it is never possible to substitute a pnp transistor for an npn transistor without modifying the circuit, since a pnp transistor requires a negative collector supply while an npn transistor requires a positive collector supply. (The middle letter gives the collector polarity with respect to the other electrodes.)

On the other hand, in non-critical applications, quite different transistors may do the same job. For example, a high-voltage transistor, with a collector voltage rating of, say, 50V may be a perfectly good substitute for a low-voltage transistor in a particular circuit. But the low-voltage transistor cannot do duty in the place of the high-voltage one in a high-voltage circuit. This is a case of “one-way” exchangability.

The Practical Electronics Transistor Guide lists “comparables”, i.e. transistors which can probably be substituted for one another in many applications: but not necessarily for all applications—the detailed characteristics should be consulted if there is any doubt. In general, there is enough information in the P.E. Booklet to enable substitutes to be picked out, but occasionally one has to consult the transistor makers’ complete data. Here are some examples:

Noise

If a transistor is to be substituted in the first stage of a high-gain amplifier or receiver, the user must find out from the makers’ full data whether it passes muster...
A.F. Amplifier, Low-Level General Purpose

<table>
<thead>
<tr>
<th>AC113</th>
<th>NKT215</th>
<th>OC71</th>
<th>OC201</th>
<th>V10/50A</th>
<th>2N2926</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC155</td>
<td>NKT219</td>
<td>OC73</td>
<td>OC202</td>
<td>XB103</td>
<td>2S002</td>
</tr>
<tr>
<td>AC156</td>
<td>NKT223</td>
<td>OC75</td>
<td>OC203</td>
<td>XB104</td>
<td>2S004</td>
</tr>
<tr>
<td>AC165</td>
<td>NKT224</td>
<td>OC78D</td>
<td>OC430</td>
<td>XB105</td>
<td>2S005</td>
</tr>
<tr>
<td>BCZ11</td>
<td>NKT225</td>
<td>OC81D</td>
<td>V6/4R</td>
<td>ZT45</td>
<td>2S321</td>
</tr>
<tr>
<td>BSY95A</td>
<td>NKT226</td>
<td>OC81DM</td>
<td>V6/8R</td>
<td>ZT24</td>
<td>2S322</td>
</tr>
<tr>
<td>NKT213</td>
<td>NKT272</td>
<td>OC82D</td>
<td>V10/15A</td>
<td>ZT697</td>
<td>2S323</td>
</tr>
<tr>
<td>NKT214</td>
<td>OC70</td>
<td>OC200</td>
<td>V10/30A</td>
<td>2N706A</td>
<td>2S324</td>
</tr>
</tbody>
</table>

A.F. Power

<table>
<thead>
<tr>
<th>AD140</th>
<th>NKT402</th>
<th>OC16</th>
<th>OC28</th>
<th>OC206</th>
<th>V30/20P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT400</td>
<td>NKT403</td>
<td>OC22</td>
<td>OC29</td>
<td>V15/10P</td>
<td>V30/30NP</td>
</tr>
<tr>
<td>MGT600</td>
<td>NKT404</td>
<td>OC23</td>
<td>OC30</td>
<td>V15/20P</td>
<td>ZT270</td>
</tr>
<tr>
<td>NKT263</td>
<td>NKT405</td>
<td>OC24</td>
<td>OC35</td>
<td>V15/30P</td>
<td>2N456A</td>
</tr>
<tr>
<td>NKT362</td>
<td>NKT452</td>
<td>OC26</td>
<td>OC36</td>
<td>V30/10P</td>
<td>2N457A</td>
</tr>
<tr>
<td>NKT401</td>
<td>NKT457</td>
<td>OC81M</td>
<td>OC82</td>
<td>V30/15NP</td>
<td>2S013</td>
</tr>
</tbody>
</table>

Low Power A.F. and Switching

<table>
<thead>
<tr>
<th>AC128</th>
<th>ASY83</th>
<th>GET104</th>
<th>NKT222</th>
<th>OC72</th>
<th>OC205</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC154</td>
<td>ASY84</td>
<td>GET105</td>
<td>NKT227</td>
<td>OC76</td>
<td>V10/15J</td>
</tr>
<tr>
<td>AC157</td>
<td>ASY85</td>
<td>GET106</td>
<td>NKT228</td>
<td>OC77</td>
<td>V15/20P</td>
</tr>
<tr>
<td>AC166</td>
<td>ASY86</td>
<td>GET111</td>
<td>NKT271</td>
<td>OC78</td>
<td>V15/30P</td>
</tr>
<tr>
<td>AC167</td>
<td>ASY87</td>
<td>NKT211</td>
<td>NKT272</td>
<td>OC81</td>
<td>V30/10P</td>
</tr>
<tr>
<td>AC168</td>
<td>ASY88</td>
<td>NKT212</td>
<td>NKT273</td>
<td>OC82</td>
<td>V30/15NP</td>
</tr>
<tr>
<td>AC177</td>
<td>ASY89</td>
<td>NKT217</td>
<td>NKT304</td>
<td>OC83</td>
<td>2N412</td>
</tr>
<tr>
<td>ASY28</td>
<td>GET102</td>
<td>NKT218</td>
<td>NKT713</td>
<td>OC84</td>
<td>2N413</td>
</tr>
<tr>
<td>ASY82</td>
<td>GET103</td>
<td>NKT221</td>
<td>NKT773</td>
<td>OC204</td>
<td>2S019</td>
</tr>
</tbody>
</table>

R.F. Amplifiers, Oscillators & High Speed Switches

<table>
<thead>
<tr>
<th>ADT140</th>
<th>AFZ12</th>
<th>NKT142</th>
<th>OC140</th>
<th>ZT706A</th>
<th>2N412</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFI14</td>
<td>AUY10</td>
<td>NKT162</td>
<td>OC141</td>
<td>2G301</td>
<td>2N428</td>
</tr>
<tr>
<td>AFI15</td>
<td>BSY53</td>
<td>NKT162</td>
<td>OC169</td>
<td>2G302</td>
<td>2N585</td>
</tr>
<tr>
<td>AFI16</td>
<td>BSY95A</td>
<td>NKT163</td>
<td>OC170</td>
<td>2G303</td>
<td>2N697</td>
</tr>
<tr>
<td>AFI17</td>
<td>MAT100</td>
<td>NKT164</td>
<td>OC171</td>
<td>2G306</td>
<td>2N706A</td>
</tr>
<tr>
<td>AFI18</td>
<td>MAT101</td>
<td>NKT674</td>
<td>V6/2R</td>
<td>2G371</td>
<td>2N1091</td>
</tr>
<tr>
<td>AFI19</td>
<td>MAT120</td>
<td>NKT675</td>
<td>XA101</td>
<td>2G381</td>
<td>2N1302</td>
</tr>
<tr>
<td>AFI24</td>
<td>MAT121</td>
<td>NKT676</td>
<td>XA102</td>
<td>2G382</td>
<td>2N1613</td>
</tr>
<tr>
<td>AFI25</td>
<td>MAT121</td>
<td>NKT677</td>
<td>XA111</td>
<td>2G401</td>
<td>2N2926</td>
</tr>
<tr>
<td>AFI26</td>
<td>NKT121</td>
<td>OC41</td>
<td>XA112</td>
<td>2G402</td>
<td>2N410</td>
</tr>
<tr>
<td>AFI27</td>
<td>NKT124</td>
<td>OC42</td>
<td>XA151</td>
<td>2G414</td>
<td>2S019</td>
</tr>
<tr>
<td>AFI37</td>
<td>NKT125</td>
<td>OC43</td>
<td>ZT23</td>
<td>2G415</td>
<td>GROUPING</td>
</tr>
<tr>
<td>AFI38</td>
<td>NKT126</td>
<td>OC44</td>
<td>ZT24</td>
<td>2G416</td>
<td>APPLICATION</td>
</tr>
<tr>
<td>AFV12</td>
<td>NKT128</td>
<td>OC45</td>
<td>ZT697</td>
<td>2N410</td>
<td></td>
</tr>
</tbody>
</table>
GOLDRING-LENCO G.99
Incorporates the unique Goldring-Lenco continuously variable speed control and vertical drive features. Machined 8 lb. non-magnetic turntable. Push-button switching. Neon-fit stroboscope. Speed constant within 1% for up to 13% mains voltage change. £21.19.5d.

GOLDRING-LENCO GL 68
Continuously variable speed control with adjustable click-in positions for standard speeds. Arm takes interchangeabe lead-slides, and is raised and lowered by on/off switch. Wired for mono and stereo. £19.10.7d.

There's a Goldring, or Goldring-Lenco unit to match any amplifier—whether you build it or buy it. At the modest end of the scale there's the G.66 integrated hi-fi unit that comes complete with pick-up arm and cartridge for as little as 11 gns. Then there's the highly popular GL 68 (see left) and, for the man who wants the best he can get there's the GL 70 transcription unit with integrated transcription arm at a little under £30, or the sophisticated G 99 without arm, at around £22. Goldring hi-fi equipment includes transcription arms from 7 gns. upwards and a wide choice of cartridges. The coupon will bring you full descriptive leaflets.

GOLDRING HI-FI EQUIPMENT

Phase send me descriptive leaflets on

☐ TURNTABLE UNITS ☐ TRANSCRIPTION ARMS
☐ MONO & STEREO CARTRIDGES ☐ HI-FI ACCESSORIES

DE LUXE PLAYER KITS POST FREE

NEW ELECTROLYTIC CAPACITORS FAMOUS MAKES

TUBULAR TUBULAR TUBULAR KAT TYPE

V-6 200 V 300 V 500 V 1000 V 2000 V 3000 V 5000 V 10000 V 20000 V

PAPER TUBULARS

2500-0.01 470-0.02 1 ml. 50-0.02 50-0.05 0.25 0.12 250 0.05 0.02 0.01 0.005

HIGH FIDELITY MOBILE

12-in. STALWART 15w. 2 or 3 ohm £5.50.

Baker LOUDSPEAKERS HANDCRAFTED BY CRAFTSMEN

POST FREE

5-in. 8.50—6-in. 10.50—7-in. 15.00

12-in. DE-LUXE £8.00.

LABORATORY STANDARD MODELS

2-in. D.W. L/Cone £13.10.0

GROUP MODELS FOR VOCAL

3-in. D.W. L/Cone £16.10.0

RESISTANCE AND BUS-TUNING GUITARS

T鹅. '90. 95. £1.25. £2.10.

GARDROSE ENGINEERING Co. LTD., WOODWAY ROAD, DUMBARTON.

Tel.: Dumbarton 2655.

thomasthoracic

thermostatic

soldering iron

for controlled temperature

Miniature Model 50 watt 55/-

Baker LOUDSPEAKERS HANDCRAFTED BY CRAFTSMEN

Instrument Model 70 watt Mk. 1 (Micro-Switch) 79/-

Both Models give excellent bit and element life since the thermostats completely eliminates overheating and controls the reserve heating capacity, which makes possible continuous soldering without taking off the bit.

The consistent temperature makes these irons ideal for printed circuit work.

GARDROSE ENGINEERING Co. LTD., WOODWAY ROAD, DUMBARTON.

Tel.: Dumbarton 2655.
on this score. Makers usually quote a noise figure or noise factor for the transistor under specific conditions of frequency, collector current, signal-source resistance and so on. These can be compared, but take care to make sure that they are really comparable.

Example: an OC71 is used in the first stage of a tape recorder. Its noise performance is satisfactory but the treble response is poor. Can a high-frequency transistor such as the OC171 be used to remedy this defect? A glance at the makers' data suggests that substitution is possible. The maximum noise figure for the OC71 is 16dB, while that for the OC171 is 8dB, which suggests that the OC171 is much better. But wait a minute! This noise figure for the OC171 is obtained at 500kc/s and 10Mc/s, not at a.f. The a.f. figure is 30dB maximum which clearly rules it out for this critical application.

Internal Capacitances

In tuned high-frequency amplifiers such as i.f. amplifiers, neutralisation is sometimes necessary to preserve stability.

Can an AF117 be substituted for an OC45 in a neutralised 470kc/s i.f. stage? Reference to the makers' data shows that the internal feedback capacitance of the AF117 is quite different from that of the OC45, while the gain is higher. There is evidently some risk of instability.

GERMANIUM OR SILICON?

There is no difference in principle between silicon and germanium transistors. But there are important practical differences. In the early days of silicon transistors, the difference which received most emphasis was that the leakage currents in silicon transistors are much less than in germanium. The effect of temperature is therefore reduced. In addition, silicon devices will withstand higher junction temperatures, and this is of interest in many military aircraft applications where ambient temperatures are high.

In everyday applications these properties are not all that important, though sometimes the lower leakages enable simple biasing circuits to be used (Fig. 1) even at quite high ambient temperatures. This saves components, and may tip the economic balance in favour of silicon even if a silicon device costs more.

A difference between germanium and silicon transistors which has a bearing on circuit design is that the working base-to-emitter voltage for silicon is about 0.5–1 volt, compared with 0.1–0.3 volt for most germanium devices. This has a bearing on the design of bias networks, and it also means that silicon transistors will not work from quite such low voltages as germanium ones.

Planar transistors have the useful property of “beta hold-up” at low collector currents, i.e. the current amplification factor does not fall off much as the collector current is reduced. Current gains of 100 or more at Ic=50µA are not uncommon. This is very useful in low-level audio work, because, in general, transistor noise is reduced at low currents. Noise figures of less than 2dB can be achieved with some transistors. However, though the current gain at low frequencies is preserved at low currents, the radiofrequency performance falls off.

POLARITY: PNP AND NPN

Most germanium transistors are pnp. This is mainly a matter of convenience in manufacture, although a pnp transistor would have somewhat better...
h.f. performance than its exact npn twin. With silicon planar transistors, the npn types are more common at present.

In all-transistor circuits, there is no special advantage in using one type rather than the other. Performance and cost are the important considerations. In mixed valve and transistor circuits, npn types have the advantage that the valve h.t. supply can be used very easily to furnish a collector supply.

However, the important thing is to remember that both types can be used in the same circuit, often with advantage. The circuit of Fig. 2 is a typical example. It not only provides component economy, but also allows direct coupling between stages to be combined with a small load resistance for TR1—an advantage in wide-band amplifiers. If an a.g.c. current is applied to TR1, both transistors are controlled. TR2 may be a germanium type, but silicon is best for TR1 because it must have low temperature drift.

Another use for mixed-polarity circuitry is the "complementary" output stage, which enables push-pull output to be achieved without using a transformer (Fig. 3).

FABRICATION

The earliest junction transistors were all of the alloy type (Fig. 4a). To form a npn structure, blobs of p type material are placed on opposite sides of a thin wafer of n type material and then the whole lot is "cooked" at a little below melting point. The p type impurities pass into the n type material, and the whole art of making this type of transistor is to know just when to stop. The best h.f. performance is obtained when the p type impurities almost meet in the middle, but not quite. This is not easy to arrange, and in mass production 15Mc/s cut-offs are about the best average that can be reached (OC44, etc.).

Alloy transistors, including r.f. types, usually have good noise figures at audio frequencies. The difficulty of controlling the width of the base layer led manufacturers to search for alternative methods of fabrication. One ingenious answer was to dissolve away the base wafer simultaneously on opposite sides with the help of two tiny jets of electrolyte and an electric current. (This process is the reverse of electro-plating.) Much better control over base thickness is possible, and the finished "surface barrier" and "micro-alloy" transistors can have better h.f. performances than ordinary alloy types.

In the above transistors, the main wafer is the base. In later types, however, it ends up as the collector. In the alloy-diffused type of transistor and the post-alloy-diffused type (PADT) a thin n-type base layer is formed on the surface of p-type material by gaseous diffusion. Emitter and base contacts are later alloyed to this layer (Fig. 4b). Familiar types of alloy-diffused transistor are the AF115 series. These transistors are noisy at audio frequencies, but at r.f. their noise can be very low.

In the grown junction structure used in the original Texas Instruments silicon transistors, the device is not fabricated from a tiny wafer. Instead, the three layers are formed in a large crystal as it is "grown" from molten silicon, by adding the right kind of impurities at the right time. The crystal is later cut up and leads attached, to form individual transistors. The process is wasteful of silicon, and is not used much nowadays, having been superseded by the planar technique.

The silicon planar epitaxial type of transistor is made by an extension of the diffusion process plus photochemical techniques rather like those used in lithography or printed-circuit production. The base and emitter contacts are "printed" on the surface of a silicon wafer, and this enables their precise shape and size to be controlled very accurately.

An essential part of the process is to form a layer of silicon oxide on the surface of the wafer. This acts as a barrier, just like the "resist" used in photo-lithography and printed circuits. It can be etched away where required to expose the areas of silicon needed for the base and emitter contacts. (Unfortunately, germanium does not lend itself easily to the technique, because germanium oxide evaporates.)

In epitaxial transistors the collector is made up of two layers: a thick layer of low-resistance material, and a very thin, high-resistance layer. The thick layer acts mainly as a mechanical support for the more active regions. The h.f. performance is vastly improved. A simple epitaxial transistor's structure is shown in Fig. 4c. Many modern types have complex base and emitter areas whose shapes interlock, and the base connection is a closed loop, such as a ring, which encircles the emitter connection. At the present time this is the most popular fabrication process, and it has made most of the others obsolete.

APPLICATION GROUPING

The information in these two articles can be used to assess transistor operating data such as that in the Practical Electronics Transistor Guide. To provide a quick reference to application suitability, however, transistors included in the guide have been grouped together under various headings on page 492. The groupings are to some extent arbitrary, and some transistors appear under more than one heading because they are general-purpose types.

Since transistor technology is in a constant state of change, a transistor which is today a candidate for one list will tomorrow have to be put in another. Early r.f. alloy transistors are a case in point: no professional designer would nowadays specify the OC45 for a 470kc/s i.f. amplifier, though he might be inclined to use it as a general purpose low level a.f. type. It has been put in the r.f. list here because readers will probably come across it in i.f. stages of transistor portables.

On the other hand, the OC24, which was designed for use as a high frequency power amplifier, has been put in the a.f. power list. Why? Because, with a cut-off frequency of only 2-5Mc/s, it has been superseded for radio frequency applications. But if it ever appears on the surplus market, at a low price, it will be an attractive proposition for a small a.f. power amplifier.

PRACTICAL WIRELESS

JULY

- ★ Grid dip Meter
- ★ Wide range A.F. Oscillator
- ★ Beginners' Short Wave Receiver
- ★ A.G.C. in Tape Recording

On sale NOW 2s 6d
THE widespread use of miniature electronic eaves-dropping devices could be a cause of anxiety and embarrassment for the private citizen, as well as for those presiding in board-rooms. Unfortunately, the GPO cannot possibly be expected to track down every short-lived, unauthorised transmission, especially when the signal is weak and the range limited. Radio amateurs and radio control enthusiasts have been justly complaining for some time about the fly-by-night activities of pirate walkie-talkie operators and, if the trend continues, it may be gloomily predicted that anarchy of the air will overtake us in the future, when all the normal radio bands will be jammed solid by individual gibberish.

The tiny, transistorised, so called "bug" can be planted virtually anywhere, to relay private conversations 100ft or more, to a nearby house or parked car, and the National Press has already brought this threat to the attention of the public. The potentialities of its use by criminals are almost limitless.

Fortunately though, bugs are self-advertising, and the inverse square law of their radiation pattern favours the intended victim. A transmitter of only a few tens of milliwatts power will produce a strong r.f. field in its immediate vicinity, which is easily detected by a suitable instrument. Equipped with a Bug Locator, the private citizen can do much to discourage the use of such electronic pests. If he finds one he can throw it straight on the fire, or better still, take it to bits to use the components for some more rewarding project. Purchasers of bugs will soon find themselves very much out of pocket if their gadgets are always discovered.

The purpose here is to describe a fairly simple instrument which will detect a suspected "plant" and incidentally can be used also to locate numerous sources of troublesome electrical interference.
DETECTING TECHNIQUE

Although the favoured frequencies for "bugging" are in the 27-28Mc/s h.f. band, and the 85-100Mc/s v.h.f. band, such strict adherence to any particular set of frequencies, on the part of unlicensed operators, cannot be relied upon. Their choice will be largely determined by the receiver they intend to use. It is reasonable to assume that the practical upper limit, imposed by conventional components, will lie at about 200Mc/s. Since, at low frequencies, the ferrite rod will radiate effectively over room to room distances, doing away with the need for a long aerial, the lower limit might lie within the long wave band of a domestic receiver. Therefore, for the purposes of detection, the need is for an uncomplicated receiver covering, say, 100kc/s to 200Mc/s.

Few commercial receivers will cover this wide range, and those that do are bound to be cumbersome, complicated, and expensive. Sensitivity and selectivity are not of primary importance in this present application. If the bug is close to the receiver, acoustic feedback will occur by interaction between the concealed bug microphone and the loudspeaker of the receiver, and there will be no doubt as to the nature of the signal.

A simple alternative, avoiding knob-twiddling and band-changing, would be an untuned wide-band amplifier, capable of picking up any signal within the frequency range suggested above, and relying on the fact that this nearby signal will swamp all others and make tuning unnecessary.

Initially, tests were made with a simple point-contact diode detector and a.f. amplifier, to estimate the degree of sensitivity required, however when placed next to the output lead of a signal generator, results were unpromising. A stage of r.f. amplification ahead of the diode was tried. Even then, with a single transistor, RC coupled for wide band unselective coverage, the gain was disappointing low. Finally, a two transistor cascode amplifier gave the desired sensitivity.

THE FINAL CIRCUIT

The complete circuit of the finalised microbug locator is given in Fig. 1.

The left-hand half of this diagram consists of the cascode amplifier TR1, TR2, the detector D1, and the coupling stage TR3.

A modulated r.f. signal is picked up and fed to the base of TR1, which operates as a common emitter amplifier, and is partially compensated by selective feedback resulting from C4 and R4, to offset fall of gain with increasing frequency. The collector of TR1 is directly coupled to the emitter of its companion transistor TR2. With base grounded to a.c. by capacitor C3, TR2 functions in the common base mode, with a good gain-frequency characteristic needing no compensation. It will be noticed that C3 is taken to the negative rail, the virtual earth of the npn pair. This arrangement gave the best results at critically high frequencies. R1, R2, R3 provide joint base biasing for both of the cascode stage transistors.

The combination R5, C5, D1, supplies a demodulated signal to the base of TR3 via C6, and the audio output is taken from R8. TR3 thus acts as an emitter follower.

A word or two about the types of transistors for the cascode stage. The BFY19 has been selected for TR1 because it has a cut-off frequency of 300Mc/s. In the common base mode, a BFY18 which has an fT of 200Mc/s is quite acceptable for TR2. These particular transistors will give optimum performance. If, however, alternatives have to be used, those mentioned in the components list will be suitable—but with a slight limitation to the extreme high frequency response.

Almost any small transistor amplifier, whether transformer type, transformerless output, or complementary output, could be coupled to the emitter follower stage to supply the necessary drive for the locator loudspeaker.

The a.f. drive amplifier shown in the right-hand half of Fig. 1 is of a type that is fairly common and may, indeed, be bought complete as a commercial module, constructed from a kit, or it can even be sliced from the circuit panel of a defunct transistor radio!

To increase audio sensitivity in noisy surroundings, provision is made for low impedance headphone operation by means of jack socket JK1 mounted in the handle of the instrument.

MECHANICAL DESIGN

Microbugs may be hidden in inaccessible places, behind high pelmet boards, inside ventilator gratings, behind or under furniture, to instance just a few hideouts. To reach high places, or under obstacles, the locator was constructed as a hand-held boom, with amplifiers, aerial, and loudspeaker at the business end, and battery, switch, and headphone socket in the wooden handle.

Another reason for this particular layout was that the wiring inside the boom tube would act as a counterpoise for the short whip aerial. To minimise strain on the wrist, weight must be kept low since considerable leverage results from a boom nearly a yard in length. To this end a lightweight, glued rather than screwed, compact method of construction was chosen.

General layout details of the microbug locator are given in Fig. 2. Individual construction may differ slightly from the prototype, dictated by the sort of components available. It so happened that the writer's 2in loudspeaker fitted neatly inside the lid of a Kodak Microdol-X developer tin. Other tins of approximately the same dimensions should not be difficult to find.

Perhaps it should be stressed that both tin and tube were selected, not for screening purposes, but rather for mechanical rigidity, and it is possible that a much lighter form of construction would result from the use of alloy tubing for the boom, and a slim loudspeaker of the kind favoured by makers of miniature radios.
Fig. 1. Circuit diagram of the microbug locator

Fig. 2. General constructional details of the microbug locator.
(a) General assembly of the complete instrument
(b) The loudspeaker unit, showing how the two electronic sub assembly panels are mounted
(c) Details of the wooden handle
CIRCUIT ASSEMBLIES

Construction commences with the two sub-assemblies which carry the majority of the circuit components. These are shown in situ in Fig. 2a.

The a.f. drive amplifier is assembled on a piece of laminated plastics board, shaped to fit the loudspeaker magnet, shown in Fig. 3. The drawing given in Fig. 3b is full size and may be used as a drilling template. When all components have been mounted and the wiring on the reverse side of the panel completed, the unit should be tested. Short leads (about 2 in long) should be soldered to points P1, P2 and P3 (see Fig. 3c).

Note that this does not apply to the blue and yellow connections marked "to S1" and "to JK1", respectively. These leads are added at the final wiring-up stage.

After this the a.f. amplifier panel should be glued to the loudspeaker frame with Araldite and temporarily held secure with rubber bands. (To hasten setting of this epoxy glue, an assembly may be placed in a cool oven, at around 50 degrees C for a few hours.)

The cascode amplifier unit is built up on another, smaller, plastics board, details of which appear in Fig. 4. Here again, a template is provided—see Fig. 4a. After testing this unit, the final assembly work can be tackled.

A considerable amount of care is required during this final assembly work. Place the cascode amplifier unit, wiring side uppermost, on the loudspeaker chassis so that ends "A" of both panels are facing the same direction. Solder the three flying leads to points P1, P2, and P3 on the cascode amplifier. Note that these leads must be of sufficient length to permit routing around the insulating panel which will be sandwiched between the two sub-assemblies.

Place a piece of thin plastics board (approximately 2½ in x ¾ in) against the underside of the a.f. amplifier panel, apply glue to the edge of the second sub assembly and fix this latter unit in position on the loudspeaker magnet. Secure the completed assembly with rubber bands until the glue has hardened.

For future repairs or component replacement the panels may be carefully prised away from the loudspeaker with a screwdriver, and afterwards re-glued.

HOUSING AND BOOM ASSEMBLY

The housing and boom assembly can now be dealt with.

Cut a circular hole in the lid of the tin, leaving a narrow rim. Glue some plastic gauze to the outer surface of this rim. Fit the loudspeaker unit inside the lid. If the loudspeaker is a reasonably tight fit, a little glue will suffice to make this secure; otherwise it may be advisable to bolt the unit to the rim of the lid—this operation should, of course, be performed before the gauze is stuck in position.

Drill a hole in the side of the tin to suit the aerial socket SK1.

Next drill the base of the tin to suit the outside diameter of the brass tube and solder the tube to the tin. A large soldering iron is essential for this purpose.

Line the interior of the tin with cartridge paper or plastics material. Secure the aerial socket in position and solder one end of C2 to the socket.
Fig. 4. The cascade amplifier sub assembly
(a) drilling template—actual size
(b) component layout
(c) wiring on underside of panel

COMPONENTS...

Resistors
R1 2.2kΩ R8 4.7kΩ
R2 4.7kΩ R9 15kΩ
R3 10kΩ R10 10kΩ
R4 100kΩ R11 560kΩ
R5 1kΩ R12 1kΩ
R6 22kΩ R13 10kΩ
R7 10kΩ R14 150kΩ
All 10%, 1/2 watt carbon

Capacitors
C1 0.01µF paper
C2 100pF ceramic tubular
C3 0.01µF paper
C4 50pF ceramic tubular
C5 2,000pF plastic-paper
C6 2µF elect. 9V
C7 15µF elect. 9V
C8 100µF elect. 12V
C9 100µF elect. 12V
All are miniature types

Transformers
T1 Push-pull driver. Rex LT44
T2 Output. 3Ω secondary. Rex LT700
(Henrys Radio Ltd.)

Transistors
TR1 BFY19 Suitable alternatives:
TR2 BFY18 J BSY27, BSY29, 2N753, 2N744
TR3-6 OC72 (4 off)

Diode
D1 QA81

Loudspeaker
LS1 2 in dia., 3Ω

Battery
BY1 9V layer type. PP3 or equivalent

Switch
SI Single pole toggle on/off

Sockets
SK1 Wander plug and socket (Radiospares)
JK1 Miniature jack socket, with shorting contact

Miscellaneous
Circular tin 2½in dia. x 2½in high (see text).
Brass tube ½in outside dia., 26in long. Plastic
speaker gauze. Laminated plastics board. Timber
½in. square. Hardboard. 14 s.w.g. tinned copper

THE HANDLE

The handle is built up from two pieces of ½in planed timber and two pieces of hardboard.
The cut outs should be fashioned with a tenon saw and chisel and the various holes drilled as indicated in Fig. 2c. Two hardboard panels, of identical size and shape, should be prepared—an additional hole for the headphone socket is needed in one panel. Assemble and glue together the two timber pieces and the hardboard side with the additional hole.

Push the brass tube into the hole at one end of the handle. Fit the jack socket, switch and battery into the handle housing. Pass four differently coloured connecting wires down the boom tube and connect these to the components as shown in Fig. 5.

Secure the handle lid with three wood screws.
Fig. 5. Wiring diagram for the handle compartment. The four coloured leads pass through the boom tube and terminate at the points indicated on the loudspeaker assembly.

Fig. 6. This illustrates the technique used in detecting hidden radio microbugs. The hidden snooping device is activated by the operator whistling in a “suspect” area. This sound is transmitted by the bug, and received by the locator, the audio output of which is picked up by the bug, and so a self-sustaining feedback loop is created around the two devices. The intensity of the loudspeaker output will increase as the locator is brought closer to the concealed bug, whose hiding place is thus soon discovered.

FINAL WIRING-UP

Returning now to the “business end”, connect the four wires to the appropriate points on the loudspeaker/electronic assembly as indicated in Fig. 5. Connect the free end of C2 to the base of TR1 (see Fig. 4c). Carefully install this assembly inside the tin, checking that the various wires are not strained or fouled in any way.

To hold the lid in place, and to protect against knocks and abrasions, a slice of bicycle inner tube can be stretched over and around the lid and tin, as shown in the illustrations.

The aerial consists of a 21in length of 14 s.w.g. tinned copper wire with a wander plug soldered to one end.

FIELD TESTS

It might be useful to mention some field tests carried out with the prototype locator.

At first, the tin and tube were earthed to the battery positive but this was found to attenuate response above about 50Mc/s, probably because of the additional capacitance thus introduced, so the connection was removed.

With a long outside aerial plugged in to the locator socket, just about every transmission within skip distance came in at fair volume, dominated by the local B.B.C. Home Service and Light Programme. Tests with a signal generator indicated that the limits of usable response were greater than 100kc/s to 180Mc/s. As for sensitivity, with headphones plugged in and a short whip aerial on the Locator, a 60mW radio control transmitter could be clearly detected at a distance of 25ft.

Another test was with a microphone and amplifier input to the modulation transformer of the signal generator. When the locator loudspeaker was brought close to the hook-up, acoustic feedback occurred—a distinctive warbling note. The onset of feedback could be initiated by a sharp whistle from the mouth or, better still, by using a toy whistle to jerk the system into oscillation.

“DEBUGGING” PROCEDURE

In use then, the mode of operation might be as follows. With headphones connected, the area to be “cleaned” is scanned while the operator emits a few strident whistles. If a bug is close at hand the operator will hear his whistles plus room echoes reproduced in the headphones. Next, he will remove the headphones, unplug them from the locator and use the instrument like a feather duster, going round the room in a search for the source of the transmission he has picked up, while still whistling loudly. Sooner or later the warble note from the loudspeaker will give him a clue to the bug’s exact whereabouts.

The microbug locator can, of course, be used for purposes other than that for which it was especially designed. It will effectively trace sources of electrical interference, check for mains borne r.f., serve as a zero beat detector where two close frequencies are to be compared, or it can be coupled to the i.f. output of a superhet receiver as a temporary detector and a.f. amplifier.

It only remains to wish would be Hemipterists, happy Bug hunting!
EXPERIMENTS in
LOGIC DESIGN
by S.T. ANDREWS

The system shown in Fig. 1.12 last month, although capable of adding binary digits in the form of voltage pulses, has one disadvantage. The input pulses have to be applied simultaneously, and must be of identical waveform and identical duration. It may well be that two numbers become available at different times, this is especially true if the numbers are applied by an operator punching them on a keyboard, one after the other. Obviously some form of storage system is required, capable of holding the numbers to be added, and preferably capable of holding the result as well.

A store which is intended to hold one complete binary number is known as a register, and the number is held as a series of on/off signals, each representing one binary digit. The term binary digit is usually contracted to bit and this term will be used from now on.

STORING BINARY NUMBERS

Of the various ways of storing binary numbers, the most convenient method in small-scale equipment is to use rows of bistables, each storing one “bit” of the number. In the three-input adder five bistables are needed, three to hold the input digits and two to store the output; one of these can be dispensed with later.

Using bistables to hold the numbers solves the immediate problem of storage, but raises another problem in its place. It is now necessary to provide some form of gating circuit between the input store and the adder itself to prevent the digits from entering the adder until required to do so. Each of the three input bistables must have its own gate, but since all three gates will operate simultaneously it is legitimate to consider them as a single unit and draw the block diagram of the adder as in Fig. 2.1a.

A set-up of this sort is of far greater use than the three-input adder by itself. The binary digits can be written into the bistables at any time and added at leisure by applying a suitable gating pulse to the gate.

The circuit of a suitable gate can take several forms. Essentially the requirement is for a form of AND gate with the gating pulse and the output from the bistable as inputs, as in Fig. 2.1b. The action of this is obvious and it would be quite possible to use an AND gate of the type shown in Fig. 1.5 followed by a suitable amplifier.

Another version is shown in Fig. 2.2 and this runs the gating amplifiers off the +9 volt line. In this circuit the bias developed across R_X is sufficient to maintain TR4 cut off whatever the state of the bistable, as long as TR3 is conducting. The gating pulse is arranged so that it causes TR3 to cut off for a short time. When this happens the state of the amplifier depends on how the bistable is set: if TR2 is conducting then its collector will be nearly at zero potential and TR4 will remain cut off; if TR2 is cut off then its collector will be at about the potential of the -9 volt line and TR4 will conduct. TR4 and TR5 form a voltage amplifier which drives an emitter follower output, TR6. In effect this circuit is an AND gate in which only one input is applied in the conventional way and the other is used to remove the bias which makes the gate into an AND.

Three bistables, and three gated amplifiers, are required to drive one three-input adder. The gating transistor, TR3 is common to all three gates, the bottom ends of all three R_Y resistors (Fig. 2.2) being connected to the collector of TR3. The output from the adder can be coupled directly to the output bistables, no gating circuits are needed at this point.

SET AND UNSET CONDITIONS

Having devised the circuit of the input gate we have effectively set the convention for the bistable switch. We have already explained how a bistable can hold a 0 or a 1 depending on whether it is set or unset. In the circuit of Fig. 2.2 the convention for use with the input registers is: the bistable is set, and holds a 1, when the transistor on the output side (TR2) is not conducting; the bistable is unset, and holds a 0, when the output transistor is conducting. This convention is an inevitable result of the way in which the circuit is arranged.

![Fig. 2.1a. Block diagram of the adder with storage bistables and gating circuits now included](image)

![Fig. 2.1b. A gating circuit based on an AND gate](image)
The sequence of events for adding three digits is now as follows: the digits are read into the input store of bistables in any order, and with any time delay between writing individual ones. A suitable pulse is then applied to TR3, causing it to stop conducting, and allowing the contents of the three bistables to pass through the gates, enter the adder and be added. The resulting pulse outputs from the adder set the output bistables where appropriate. After the gating pulse ends all three inputs fall back to zero as TR3 starts to conduct again and the output can be read off from the output bistables; the input bistables can all be reset to zero if required.

So far, then, we have produced a three-input binary adder capable of storing the numbers to be added, adding them when a suitable pulse is applied, and storing the result of the calculation. We can use a set-up of this kind to build up a complete adding unit which can be made quite automatic, but before going on to do so a little theory of addition might be useful.

THEORY OF ADDITION

When adding two numbers, not only in binary but in any numerical system, there is a certain pattern to be followed. Assuming that the numbers are written down one above the other, then the process of addition will be: (1) Add the extreme right-hand pair of digits, writing the result underneath and, if necessary, writing a 1 in the carry column of the next stage to the left. (2) Add the digits in this next column, including the carry if appropriate, and again write the result underneath and, if necessary, a 1 in the carry column of the next stage on the left. (3) Add this column in the same way . . . etc., etc.

The process is summarised in Fig. 2.3. This may seem very elementary but it is important to realise what happens when an addition is done on paper, so that an electrical analogy can be produced.

THE COMPLETE ADDER

The three-input adder so far discussed can store three binary digits and add them when required to do so. This is what is needed in each of the vertical columns in Fig. 2.3 and in order to add multi-digit numbers one three-input adder is required for each vertical column of addition. The numbers to be added are held in storage units consisting of rows of bistables and it is these which are used as the input to the adders. There are two rows, each of which is one register, and the block diagram of a complete adder is shown in Fig. 2.4. Several points arise from this.

The two input registers are on the left and are made up of some of the bistables that feed the three-input adders. The carry output of each adder, except the last, is used to set the remaining bistable of the subsequent adder, thus the carry signals are passed from one stage to the next. The carry output of the final stage forms the left-hand digit of the final answer. The extreme right-hand adder (the bottom one in Fig. 2.4) will not have a carry signal input since there is no stage on its right, consequently a simpler two-input adder will do in this position.

An adder such as this can be extended almost indefinitely by including more three-input adders, the "repeating unit" is also shown in Fig. 2.4. Each additional unit will double the size of number which the adder can handle.
TIMING CIRCUITS

Each individual adder in Fig. 2.4 has its own gate which, when triggered, will allow digits from the appropriate parts of each register to enter the adder. In the arrangement of Fig. 2.4 these gates must be opened in sequence, first the two-input adder, then the three-input one above it, then the three-input one above that, and so on, right up the adder. The larger the registers, the longer a complete addition will take, and the result appears gradually in the output register as the addition proceeds.

CLOCK PULSES

In order to make all this happen some form of timing chain is required, which must be able to trigger the gates one after another, in the correct sequence. There is no real harm in a gate opening twice, but it is best if each one opens only once, at its correct place.

One method of obtaining the desired result is to generate a constant stream of pulses all the time and use these to generate all the other special waveforms needed. Such pulses are called clock pulses and are generated in an oscillator which runs all the time the

1's adder
2's adder
4's adder

Photograph of the adder built by the author. This is depicted in block diagram form in Fig. 2.4

505
The differentiator (A) produces a constant stream of negative-going pulses, each of which is coincident with the start of a clock pulse. These are AND-gated with the output from a bistable which is set by the trigger pulse used to begin the addition. In the resting state the output from (A) is the only signal applied to the AND and so there is no output from it. When a trigger pulse is applied to the network the bistable changes over and a signal appears at the second input of the AND. As soon as the next pulse from the differentiator arrives it passes through the AND and triggers the flip-flop into its quasi-stable state. The time-constant in this flip-flop is set so that the circuitหมู่ again after the duration of exactly one clock pulse, so since differentiated signals occur only at the beginning of a clock pulse this circuit ensures that the STARTADD pulse, taken from the flip-flop, occurs exactly coincidentally with a clock pulse.

The output from the flip-flop can be used to drive TR3 in Fig. 2.2 directly, the base of TR3 being connected to the transistor in the flip-flop which is normally cut off. It is better, though, to have a buffer transistor between the two sections of the circuit.

The output from the flip-flop also passes through a differentiator (B) and is used to unset the bistable. Successive pulses from (A) do not then cause further operation of the circuit which is thus seen to be self-resetting.

Fig. 2.5 contains one version of the STARTADD generator, but this can be modified. The flip-flop could be replaced by a second bistable which is supplied with a constant supply of unset pulses, each at the end of a clock pulse. This would require a third differentiator. Alternatively the one bistable of Fig. 2.5 could be replaced by a flip-flop set to spend exactly one clock pulse duration in the quasi-stable state, but although this method dispenses with one of the differentiators it is not recommended. The output from (A) can be applied to the bistable as shown in the dotted line in Fig. 2.5. This would be done by an (electronic) switch and would serve to inhibit the STARTADD generator, and could be used as an additional safety check to prevent addition from occurring while checking the contents of the registers.

Fig. 2.5. Logical diagram of STARTADD pulse generator and waveform of the clock pulse

In order to start the addition, once the numbers have been written into the input registers, the first available clock pulse is made to open the 1’s adder gate. This requires a circuit which, when triggered, will give a single output pulse coincident with one of the clock pulses, this being done irrespective of the phase of the clock pulse at the instant the initiating pulse is applied. In this type of circuit it is sometimes useful to give names to particular pulse sequences, thus the constant stream of square pulses which ultimately controls the whole circuit is known as the clock pulse. The pulse produced by the trigger which opens the 1’s adder gate and initiates the adding process can be called the STARTADD pulse. The logical diagram of a suitable STARTADD pulse generator is given in Fig. 2.5; this also shows the details of the clock pulse itself.

Fig. 2.6. Circuit of a STARTADD generator based on the logical diagram of Fig. 2.5
A DETAILC CIRCUIT

A special version of the StartAdd generator is given in Fig. 2.6 and although it follows the logical diagram of Fig. 2.5 there are some unusual points to be mentioned. TR1 is the buffer amplifier for the clock pulse and it feeds a form of differentiator, C1 and R2. From this a stream of trigger pulses pass to the base of TR2 which, together with TR3, makes up the flip-flop. TR5 and TR6 form a bistable which, in the resting state is set so that TR6 is conducting and TR5 is cut off. The collector of TR6 is connected to the collector of TR2 through VR2 and this holds TR2 collector at a low potential making it impossible for it to cease conducting despite the pulses being applied to its base.

The instruction to begin adding closes S1 and causes the bistable to change over, the collector of TR6 rising nearly to the potential of the —9 volt line. The inhibiting bias on TR2 collector disappears and the next trigger pulse from TR1 sets the flip-flop into its quasi-stable state. The resulting pulse from it, the StartAdd pulse proper, leaves on the 1's adder output wire to open the adder gate. At the end of the quasi-stable period (which in this case is one clock pulse) the flip-flop reverts to its normal state, TR4 and C4 provide a pulse which resets the bistable, and a pulse to start the next stage of the addition leaves via C3.

TIMING UNIT

Each stage needs a single pulse to open the appropriate adder input gate, and it is quite easy to make one stage trigger the next. The output from C3 in Fig. 2.6 is used to set a flip-flop whose time in the quasi-stable state is about half of one clock pulse. When this returns to its stable state it sets a bistable which can only be unset by a pulse at the end of a clock pulse. The output from the bistable is AND-gated with the main clock pulse to give the pulse needed to open the 2's adder gate. The logical diagram for this is given in Fig. 2.7.

The sequence of operations is: a constant stream of unset pulses is applied to the bistable, one at the end of each clock pulse, but these have no effect since it is unset anyway. The gating pulse from C3 in the 1's adder occurs at the end of a clock pulse and this triggers the flip-flop. Sometime about the middle of the inter-pulse period (see Fig. 2.5) this flops back again and in doing so sets the bistable, during the next clock pulse, then, the AND has two inputs, the permanent one from the clock pulse line, which is normally ineffective, and now the second one from the bistable. This next clock pulse then passes through the AND and opens the 2's adder gate. When it finishes the bistable is unset by the pulse from the differentiator, the adder gate closes, and the second differentiator provides a pulse which triggers the 4's adder timing unit. This, of course, is identical with the 2's adder circuit, and will be opened by the next clock pulse.

As we have seen, there is no limit to the number of digits which the whole adder can add, the "repeating unit" of Fig. 2.4 being repeated as many times as desired. Fig. 2.7 is the repeating unit of the timing chain, and again there is no reasonable limit to the number which can be used, each will operate once, then reset itself and trigger the next stage. One "timer repeating unit", as in Fig. 2.7 must accompany each "adder repeating unit" of Fig. 2.4. In the final stage of the addition, corresponding to the extreme left-hand digit of the answer, the output from the timing stage could be used to initiate a process to print out the result of the addition and/or unset the bistables in the input registers.

We now have a complete adding unit which can be made to handle numbers of any size, the numbers being stored before addition, and the result being stored afterwards. The actual addition is started by applying a single trigger pulse after which the process is automatic. By itself this adder is not much more than a toy since in general it cannot do anything which cannot be done equally well by a human operator. However it can be extended to include other mathematical functions and these will be considered shortly, but first a few practical considerations will be mentioned.

PRACTICAL CONSIDERATIONS

There is no special way of constructing the adder and standard circuit techniques can be used. The writer constructed a small version across a number of tagstrips which were fixed to a large aluminium panel. This gave, effectively, a two-dimensional layout in which each component and circuit element was easily accessible, but the overall result was rather large. This unit is shown in the accompanying photograph.

Alternatively, tagboards could be used, bolted in parallel rows, and this would yield a more compact design but one in which many of the components would be inaccessible. The mechanical layout is not too important and, like the finer points of the circuitry, will probably be varied by individual constructors.

The clock pulse generator is most easily a multivibrator, since this will provide a good square wave with little variation in frequency. The pulse frequency is largely a matter of choice, it can be extremely low, 1c/s for example, so that the circuit action can be followed on a voltmeter, or several 1c/s—though slight modifications to the circuit would then be necessary. There is no point in trying to make an adder with a very high clock pulse rate since the long time needed for information to get into, and out of, the adder would make this quite pointless.

INPUT AND OUTPUT DEVICES

So far no mention has been made of how to get information into or out of the adder. The more sophisticated electronic calculators have several methods of exchanging information with their human operators; these include punched paper tape with 5, 7 or 8 tracks, punched cards, and various forms of electric typewriter. Mere cost makes all these arrangements impossible for the amateur constructor, and a good deal of ingenuity is required when constructing input/output devices.

Fig. 2.7. The timing unit for each stage of addition.
About the best that can be done is the modification of an ordinary typewriter by the addition of switches to the numbered keys (to get information in) and, possibly, electromagnets attached to the same keys (to get the results out). This must be regarded as something of an ideal and in most cases a simpler arrangement will have to be used, for example, a row of small lamps as the display unit.

We are not concerned in this series with the mechanics of input/output devices as these will probably be different in the case of each constructor. However, a few notes will now be given dealing with the conversion from one numerical system to the other, i.e. binary to decimal and back again. This requires some form of converter which can unfortunately get somewhat complex as large numbers are handled, but which can be kept reasonably simple with smaller numbers.

As an example, a simple decimal-to-binary converter is shown in Fig. 2.8. The number is applied by closing the appropriate decimal key which sends a pulse along whichever of the binary output wires is appropriate. The three binary output wires supply set signals to the input registers. A two-way switch is also needed to connect the output from the converter to one or other of the input registers. It would be possible to arrange things so that pressing a + key made the switch change over so that the first number went into one register and the second automatically went into the other.

Output converters are rather more complex: these take a binary input and produce a decimal output. One experimental type is given in Fig. 2.9 and the mode of action is thus: the striated wires carry the output signals from the adder and these pass through gates to a series of bistables which are arranged to act as gated amplifiers. The timing unit of the last section of the adding chain produces an output pulse which initiates printing by setting flip-flop (A). This opens the adder output gates and the appropriate bistables are set. As it flops back to its stable state it triggers bistable (B) via a differentiator, this bistable is and-gated with the main clock pulse line, so clock pulses now enter the decoder proper through the AND and leave at one of the eight outputs. Which output this is depends on which bistables were set and this, of course, is a property of the adder output. The decimal output wires can be made to operate display lights or type out the number, as required.

EXTENSIONS TO THE ADDER

The adder so far described can add two numbers quite efficiently but is unable to do anything else as it stands. Extra circuitry, however, will increase the abilities of the adder and enable such mathematical operations as subtraction, multiplication and division to be performed, as well as certain logical functions, for example the "non-equivalence" operation.

The non-equivalence function is useful in recognising whether or not two numbers are the same, i.e. doing a direct comparison. The exact procedure might be: considering the numbers a digit at a time, write a 0 in the answer register when the pair of digits of the compared digits are the same, and write a 1 when they are not the same. An example of non-equality is:

```
Numbers on which arithmetical operations are performed, for example the above two, are called operands

1011001011
1101100010
```

```
operate

0110101001
```

```
result
```

As an example the above two numbers are the same, i.e. doing a direct comparison. The exact procedure might be: considering the numbers a digit at a time, write a 0 in the answer register when the pair of digits of the compared digits are the same, and write a 1 when they are not the same. An example of non-equality is:

```
perform the non-equivalence function between the numbers 1011001011 and 1101100010. (Numbers on which arithmetical operations are performed, for example the above two, are called operands)
```

```
1011001011
1101100010
```

```
operand

0110101001
```

```
result
```
In order to make the adder perform this function it is only necessary to inhibit the CARRY signals which pass from one stage to the next. Three possible ways of doing this are shown in Fig. 2.10. An extra gate, normally open but closed in the non-equivalence operation, can be placed in the CARRY output from each three-input adder; the input gate in each adder which passes the CARRY from the previous stage can be held permanently shut; a constant stream of UNSET pulses can be applied to the CARRY bistable at the input of each three-input adder. If the CARRY's are inhibited in one of these ways (or any other way) then the two operands are written into the input register in the usual way. A STARTADD pulse is applied and the timing chain operates in the usual way, the non-equivalence result then appears in the output register in the usual way.

Subtraction, multiplication and other operations can all be done on the adder by putting in extra circuits, as with the non-equivalencing. The additional logic is somewhat complex and so for the time being only an outline will be given of the requirements.

ADDER CONTROL UNIT

Since all the various functions use the adder to a greater or lesser extent, it can be regarded as the central piece of the calculating machine, and the various mathematical operations all use it in their own particular way. We thus require an additional unit which is told which function is required and brings the appropriate sections of the circuit into operation; this can be called the adder control unit. The whole logical set-up, containing the adder itself and the control unit, can be called the arithmetical unit.

Since there are several functions which can be called into action it is necessary to have some method of telling the adder control which function is needed in a particular case. This could be done with a set of switches which would be set by hand before each operation, but this would waste a lot of time. A better arrangement would be to allocate a code-name or code-number to each function and feed this into the machine with the numbers themselves. For example, 01 could be the code for addition, 02 for subtraction, 03 for multiplication, and so on.

A complete instruction to the machine would then have three parts, A the code-number, or function-number, which states which operation is required, and B and C the two numbers on which the operation is being performed, i.e. the operands. To add the two binary numbers 10110 and 01111 the input to the machine would be:

<table>
<thead>
<tr>
<th>A (code)</th>
<th>B (operand 1)</th>
<th>C (operand 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>10110</td>
<td>01111</td>
</tr>
</tbody>
</table>

and to multiply them it would be:

<table>
<thead>
<tr>
<th>A (code)</th>
<th>B (operand 1)</th>
<th>C (operand 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>10110</td>
<td>01111</td>
</tr>
</tbody>
</table>

The block diagram of the whole machine is now that given in Fig. 2.11.

If some more extensive form of storage is available then large numbers of instructions and operands can be stored until required. Since the result of one operation can be one of the operands of another, quite complex mathematical calculations would become possible. The snag, of course, lies in the storage methods available, or rather the lack of them. Vast numbers of bistables are impractical due to the increasing possibility of failure and the large amount of space required; core and drum stores are also impractical due to the very high cost and complexity of the equipment required to run them. Magnetic tape, used perhaps on a modified commercial tape deck, is about the only practical method available to amateurs and even this is expensive and very complicated.

Despite this last discouraging note it is possible for a keen constructor (or better still a group of keen constructors) to build some form of calculating unit, provided that this is not made too complex. The problems involved in building arithmetical circuitry are great, but not too great to be solved, and attempting to solve them is a fascinating branch of experimental electronics.

To be continued.
Suppressing Transients in Computers

A means of reducing unwanted transient pulses in computer supply systems has been developed by engineers of the Plessey Components Group. These transients are causing increasing errors of calculation in modern computers of high operational speed and complexity.

Normal voltage or current pulses for operations are generated by stabilised circuits, but transients in the power supplies can upset the normal function of the pulse generators.

An experimental suppressor unit, currently in production for a leading computer manufacturer, is shown on the left undergoing final tests.

Combining Filter for U.H.F

One of the many items of equipment required for expanding the u.h.f. television services throughout the U.K. is the vision and sound radio frequency combining filter. This picture (left) shows the filter being assembled in the Cambridge factory of Pye TVT Limited. Later, it will be installed with other parts of the transmission system for broadcasting on the BBC2 network.
"Divcon" Character Display

Television on election night may know that a computer was used for predicting the final election result, but few probably realised that a new system was used by the BBC for displaying some of the constituency results on the screen. This system, although tried for the first time in this country, has had a successful run in Canada.

Known as the RCA "Divcon" (digital to video conversion) system, it accepts data from a variety of sources, stores the data and converts them into a signal suitable for display on television screens (right). Cameras are not necessary for this system since all information is supplied to the transmitter in pulse code form.

One interesting feature is that it is not necessary to "rewrite" a complete message in order to change one or more characters. The system responds to all functions carried on an electric typewriter such as shift and back-space.

Numerical Control

Development work on the automatic control of machine tools has been in progress for some years, but the first exhibition specially devoted to numerical control took place at the beginning of May this year.

The picture on the left shows the Emicon S1000 Positioning Control system, which is basically an analogue computer with electro-mechanical links to the various machine function controls. The nucleus of the system is a pre-punched paper tape of either five or eight tracks, which is printed in code according to the required milling or boring operations. Complex shapes in two dimensions can be machined under the control of this equipment.

Tape Time Announcer

After the first speaking clock in Sudan, installed five years ago to provide a service in English and Arabic for the Khartoum area, A.E.I. Telecommunications Group are supplying five more machines to give a complete service throughout the Republic.

These machines use tape recorded announcements in up to four languages at 10, 15, or 20 second intervals on one inch wide tape. The timing is based on a crystal controlled chronometer, the timed announcements having an accuracy of plus or minus one second per month.

The tape used is a heavy duty instrumentation sandwich type 489 manufactured by the 3M Company. The oxide coating is completely covered with a thin smooth non-abrasive plastic material to prevent wear to the replay heads. Hence the heads are maintained slightly "out-of-contact" at a uniform distance.
BEGINNERS start here...

An Instructional Series for the Newcomer to Electronics

Following on from the discussion on semiconductor diodes last month, we stated that a transistor can be considered as a pair of diodes connected back-to-back. Now we will investigate the operation of a transistor in some detail. It must be appreciated of course that what follows is of necessity an extremely simplified description — but will serve our immediate purpose which is to impart a basic understanding of this most important electronic component.

TRANSISTOR OPERATION

The action of transistors can be fairly readily visualised if the forward and reverse ideas in connection with semiconductor diodes are remembered.

Fig. 21.1 depicts a transistor of the pnp type. The first “diode”, formed by the electrodes known as the emitter and base in the transistor, is biased in the forward direction by a small battery BY1. The other “diode” junction, formed by the base and collector electrodes, is biased in the reverse direction by a larger battery BY2. The interesting thing is that the current (heavy, because of the forward biasing) from emitter into the base, drifts right on through to the collector. Thus collector current flows in spite of the reverse bias on this second “diode”. Only a fiftieth or so of this current flows into the base via the connecting lead.

If a small current signal is injected into the base-emitter circuit, the collector current varies in sympathy. Since the collector current is some fifty times greater than the input signal, amplification is achieved. The transistor thus acts as a current to current change converter.

It is of great interest to note the differences between valves and transistors. Valves are voltage operated at the grid, and convert grid voltage changes into current changes through the valve. Transistors are operated by current changes at the base electrode. Base current changes produce much greater current changes through the transistor collector-emitter circuit.

To sum up, the transistor can be looked on as two semiconductor diodes back-to-back, but the common region (the base) is so thin that current carriers crossing the forward biased emitter-base junction are nearly all swept straight across the reverse biased collector-base junction. The current actually allowed to reach the collector connection is controlled by the base current, not directly by the collector battery. (This is reminiscent of the action of the grid voltage in the triode valve.)

WATCH THE POLARITY

Most transistors at present in use are of the pnp type, but npn types are often found and are becoming increasingly common.

With npn types the battery connections (as indicated in the accompanying diagrams) must be reversed to give correct operation. Also, the arrow on the emitter symbol is reversed for npn types, as shown in (e) of Fig. 20.3 last month.

Fig. 21.2 gives an idea of the actual construction of a common type of junction transistor. The collector lead is usually spaced widely from the other two, and a spot of paint is placed on the cap beside this lead to assist the identification.
Now, to put theory into practice, here is a constructional project. It is an audio frequency oscillator employing two transistors and should be simple to build if the accompanying diagrams are carefully followed.

A TRANSISTOR OSCILLATOR

First it would be a good thing to remind ourselves of the two main requirements to be met in all electronic oscillators that produce a continuous signal. (In fact, all vibrators that go on and on, electronic or otherwise.) First we need a source of energy which can be used to operate devices with gain, or amplification properties and, secondly, an arrangement to feed back part of the amplified signal in the correct phase to boost the oscillating circuit.

In the first oscillator we built (Part 19), a valve was used as the gain producing device and the phase was carefully chosen, by selecting appropriate points in the circuit, so as to maintain the oscillations in the parallel tuned circuit.

As we have just seen, transistors also have gain or amplifying properties, and as a practical example of the use of these devices the present oscillator has been designed for you to build.

ACTION OF THE CIRCUIT

This oscillator produces a sine wave signal within the audio frequency range, and does so by means of the following circuit action.

Referring to the circuit diagram Fig. 21.3, the base of the first transistor TR1 receives a small signal from point "A", the junction of the parallel C4 and R8.

COMPONENTS...

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>39kΩ</td>
</tr>
<tr>
<td>R2</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R3</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R4</td>
<td>39kΩ</td>
</tr>
<tr>
<td>R5</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>R6</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>R7</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R8</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>10kΩ linear skeleton potentiometer</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1µF 6V</td>
</tr>
<tr>
<td>C2</td>
<td>0.01µF 6V</td>
</tr>
<tr>
<td>C3</td>
<td>0.01µF 6V</td>
</tr>
<tr>
<td>C4</td>
<td>0.01µF 6V</td>
</tr>
<tr>
<td>Transistors</td>
<td></td>
</tr>
<tr>
<td>TR1</td>
<td>OC71</td>
</tr>
<tr>
<td>TR2</td>
<td>OC71</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Wooden baseboard, Brass wood screws, Wire and sleeving.</td>
<td></td>
</tr>
</tbody>
</table>
with the series C3 and R6. This signal appears amplified and inverted in phase at the collector of TR1. It is fed into the base of the second transistor TR2 via C1 where it is further amplified and appears as a large signal, again inverted in phase, at the collector of TR2. This signal is fed into the series/parallel CR network, and the whole action keeps on repeating—the circuit is oscillating.

Notice the important phase changes as well as amplification that occur. Using two stages means that the phase is inverted twice, which means in turn that the final phase is the same as the initial signal. Fig. 21.4 shows the signal relationships in a clear manner.

Which part of the circuit determines the frequency? It is not a coil and capacitor circuit as in the case of the valve oscillator. In this present oscillator we have used capacitors and resistors to set the frequency: capacitors C3 and C4. You will probably think up some uses for the audio frequency signal which you now have available, and once again the unit is a useful signal generator for testing purposes.

POINTS ON CONSTRUCTION

We will conclude this part with a few ideas concerning the construction. First, remember that transistors are very sensitive to heat. Keep the transistor leads long. Complete the soldering operation as speedily as possible so that the component does not become unduly heated. By the way, never let the transistor envelope accidently touch the body of the soldering iron.

The baseboard used in this project is a white painted electrical fitting board—readily obtainable from multiple stores.

This is partly in order to show that there is more than one method available. We have mentioned the series/parallel CR network, and this is redrawn in Fig. 21.5 to increase the clarity of our argument. This is a well-known combination of components known as part of a Wien Bridge Network. The oscillator circuit is, in fact, a Wien Bridge Oscillator. The network has the property of supplying an output signal in phase with the input, at one frequency only. At all other frequencies, the C's and R's shift the phase relative to each other. Thus when the amplifying section is added, oscillations start to be produced, at this one particular frequency only.

We say that the Wien network is frequency selective. By changing the values of the capacitors, a different frequency is obtained, but it is usual to keep the values of both the capacitors equal. In most oscillators it is important that the amount of amplification should be just right—not too much, not too little. In this circuit the gain is adjustable by the potentiometer VR1 which can be set to give the purest note from the circuit.

We therefore see that all the requirements for an oscillator have been met, and this simple two transistor circuit will produce a sine wave signal over a range of frequencies according to the values of the controlling capacitors C3 and C4. It is a good idea to choose a colour code for the wiring of any electronic unit. This helps greatly in later servicing or circuit tracing. The obvious colours are red for the positive supply rail and black for the negative. Signal paths can be green. The main point is to choose a colour scheme, and use this consistently so that no confusion arises in the future.

OPERATION

Power for the oscillator can be obtained from a 9 volt dry battery such as type PP3 or equivalent; or alternatively the mains operated power unit and filter unit described in Parts 16 and 17 can be employed.

The output signal from the oscillator can be taken from the collector of either transistor, via a small capacitor of about 5,000pF. Actually, there is less effect on the frequency of oscillation if the collector of TR1 is used. The other output terminal can be either the positive or the negative supply line.

Radio enthusiasts can use this oscillator straightaway for morse practice, by employing headphones across the output, and putting a key in series with one of the supply leads.

Another use, which we will consider in a later article, is as the source of audio signals for a component measuring bridge. When we deal with simple test and measuring equipment, the oscillator will be mentioned again.
In creative tape recording a mixer unit has many uses. It enables multiple sound sources to be individually controlled as input levels so that a balanced output can be achieved. The monitoring of group instruments or voices from microphone inputs, by way of this unit, can provide flexible levels before amplification, also acoustic feedback is minimised in the greater separation of microphones and amplifier loudspeaker when using fixed microphone lead lengths. Any type of high impedance crystal or dynamic microphone may be used.

The simplest mixer that can be constructed consists of a purely passive network, as in Fig. 1. This suffers from the disadvantage that even on maximum output the input to a tape recorder or amplifier is less than a single input would be if it was connected directly. Although “virtual earth” mixers can be used to overcome this disadvantage, the easier solution is to add an amplifier after the passive network.

Fig. 1. Passive mixing circuit for four channels

Four Channel Microphone Mixer

by A. FOORD

Fig. 2. Circuit diagram of the four-channel mixer with transistor amplifier
THE CIRCUIT

The circuit diagram is shown in Fig. 2. As can be seen there are four input jacks, JK1-4, and associated gain controls, VR1-4, which allow for selective monitoring. The individual signals are fed by way of stopper resistors, R1-4, which isolate their respective inputs against level changes in the other channels.

Mixing is achieved at the juncture of these resistors and the resultant complex signal is fed to the base of TR1 by way of C1. The amplified signal at the collector is applied to the base of the npn transistor TR2 and the output of this is developed across the master control VR5 via the blocking capacitor C5, a part of which is re-routed to the emitter of TR1 by R11. This provides negative feedback to the amplifier and fixes the overall gain at a value independent of the variation of transistor current gains normally encountered due to the spread of the transistor characteristics. Bias stabilisation to fix the working points is achieved in the normal way; C3 and C4 acting as signal by-pass capacitors to their stabilising resistors.

CONSTRUCTION

The unit was designed with an eye for symmetry and compactness which enabled lead lengths to be kept reasonably short and a point-to-point wiring layout to be easily maintained.

The component disposition and wiring arrangement shown in Fig. 3, if followed, should provide the performance specifications as set out below.

SPECIFICATION

Single input impedance—500 kilohms

Maximum Output—250mV

Frequency Response—20c/s to 20ke/s ± 3dB

Overall Gain with any input—approximately × 1

Fig. 3. Component layout and wiring of the four-channel mixer
COMPONENTS...

Resistors
R1 1MΩ R7 27kΩ
R2 1MΩ R8 4.7kΩ
R3 1MΩ R9 100kΩ
R4 1MΩ R10 1kΩ
R5 100kΩ R11 1kΩ
R6 10kΩ R12 4.7kΩ
All 10% 1/2 watt carbon

Potentiometers
VR1 1MΩ carbon, log
VR2 1MΩ carbon, log
VR3 1MΩ carbon, log
VR4 1MΩ carbon, log
VR5 10kΩ carbon, log

Capacitors
C1 5μF elect. 12V
C2 5μF elect. 6V
C3 200μF elect. 6V
C4 100μF elect. 12V
C5 25μF elect. 12V

Sockets
JK1-4 Standard type jack sockets (4 off)
SK1 Coaxial socket

Switch
S1 Single Pole on/off switch

Battery
BY1 12 volt pack made up from four 3V batteries type 72 or eight 1.5V cells type 1915

Transistors
TR1 2G30B
TR2 2N1304

Miscellaneous

The input jack sockets are ¼in standard types. It will be noted from the photograph that shorting type jacks were used to enable the inputs to be grounded until the plugs are inserted—however, these are not essential.

The main circuitry was wired on to a 2in length of standard group panel with a similar sized plastics backing plate acting as a chassis insulating mounting, the whole being retained with a single screw fixing.

The battery pack was made up from four batteries type 72, each of which consists of two cells, type 1915. They can be housed in containers obtainable from G. W. Smith & Co. (Radio) Ltd., 3 Lisle Street, London W.C.2.

There is a wide range of suitable control knobs on the market and so the individual constructor has scope here for satisfying personal preferences. A useful addition would be graduated escutcheons which would provide a reference scale. Here, of course, pointer knobs would be required.

The cost of the unit, for materials and components worked out at approximately £4.
Origin

This receiver has certain features of resemblance to the popular aircraft BC348, dealt with here earlier, in several respects electrically, though not mechanically. For example, it includes two r.f. stages, six switched bands and several other features in common with the aircraft version—and it is of much the same age, too, being manufactured in quantity in America 20 years ago as a general purpose ground station receiver.

Basic Circuit

Two r.f. amplifiers, both VT86 (6K7)
First detector VT87 (6L7)
Separate local oscillator VT65 (6C5)
Two i.f. amplifiers, both VT86 (6K7)
Separate beat oscillator VT65 (6C5)
Second detector & audio VT88 (6R7G)
Output valve VT66 or VT107 (6V6G)

COMMENT: This valve line-up is typical of that to be found in most versions of the BC342. The combination of two radio frequency stages, two i.f. amplifiers and an audio stage driving the 6V6 output stage ensure a level of sound output more than adequate for most needs. As befits a sensitive receiver the screening is exceptionally good, the case, of copper sheet, being virtually “leakproof” from the r.f. point of view.

Waveranges Covered

Band no. 1	1,500–3,000kc/s.
Band no. 2	3,000–5,000kc/s.
Band no. 3	5,000–8,000kc/s.
Band no. 4	8,000–11,000kc/s.
Band no. 5	11,000–14,000kc/s.
Band no. 6	14,000–18,000kc/s.

Intermediate frequency

470kc/s on most versions.

COMMENT: Four of the six main h.f. communication bands allocated to the amateur service are embraced within these ranges, though to cover the 21 and 28Mc/s regions (and of course v.h.f.) external converters would be needed.

Power Requirements

If the valves are rewired for 6.3 volts l.t., a mains power unit giving about 3 amps at this voltage and approximately 80mA at 250V will be satisfactory. Because the BC342 was intended to operate under service conditions from a variety of power sources, space was allowed for a small mains power to be inserted at the rear left. Almost certainly this will be found to be for the American supply voltage of 110 to 120 volts, in which case a step-up transformer to the British 240 volt level will be required. In many samples of this receiver this change will have been made already by modifying the existing power pack, but the point should be checked at the time of purchase.

Controls

Central is the frequency scale (with detachable escutcheon) operated by the tuning knob below through a set of sturdy brass gearwheels, and a convenient vernier logging scale: one rotation of the main tuning handle rotates the logging control through four revolutions—a commendable order of mechanical bandspreading.

Along the top of the front panel are the aerial alignment control (it operates a 10–210 pF midget trimmer well screened to obviate unwanted pick up), the crystal phasing control ganged with the crystal filter switch, and the c.w. oscillator knob. Below, left: the band-change switch. Below, right: combined i.f. and a.f. gain control.

COMMENT: Inspection of the control actions and of the general construction of the BC342 discloses its essentially rugged construction. The wavechange
We present this month the third article in our series "Classic Communication Receivers". Intended as a guide to the prospective purchaser of a high-performance receiver for use on the h.f. bands, this series gives the basic technical information he will need without delving too deeply into the circuitry. Readers should always make sure that a handbook or circuit diagram, at least, is supplied with any receiver purchased.

A 12 volt accumulator and vibrator pack might be the power source. The private user can with no difficulty rewire all heaters for the more convenient 6.3 volt service by earthing pin 2 or 7 of each socket and connecting the other to the a.c. low tension rail.

Aerial Input: Two terminals are provided. One may with profit be disconnected and a coaxial socket substituted (see illustration) to accept low impedance input for an external tuner unit or converter (in the latter case this modification is essential to obviate i.f. breakthrough).

Separating the Gain Controls: An unsightly "spout" at the bottom right hand corner of the front panel conveyed cableform connections to an associated

COMMUNICATION RECEIVERS

Fig. 1. Block diagram of the BC342

![Block diagram of the BC342](image)

switch goes over with a heavy and positive "clank"; within, massive screening of all coil sections is combined with an arrangement of covers readily removable for inspection purposes—though they need not be for trimming, for all signal frequency inductors are accessible from the back, and are clearly identified, as indeed are all stages and their major associated assemblies.

The refinement of internal screening puts the oscillator section of the gang capacitor in a separate box, an insulated spindle conveying the drive from the other three sections of the gang.

The spread of each amateur band is as follows, using the main tuning knob as bandset and the vernier as bandspread:

<table>
<thead>
<tr>
<th>BAND</th>
<th>REVOLUTIONS</th>
<th>SCALE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8Mc/s</td>
<td>5 1/4</td>
<td>1 in</td>
</tr>
<tr>
<td>3.5Mc/s</td>
<td>5 1/4</td>
<td>1 3/4 in</td>
</tr>
<tr>
<td>7.0Mc/s</td>
<td>6 1/4</td>
<td>2 1/4 in</td>
</tr>
<tr>
<td>14-0Mc/s</td>
<td>6 1/4</td>
<td>2 in</td>
</tr>
</tbody>
</table>

Used as an i.f. strip for 144-146Mc/s, tuning over the popular range of 14-16Mc/s required no less than 22 1/2 revolutions—an admirable degree of bandspreading.

Recommended Basic Modifications

Heaters: Pairs of valves have heaters series connected, with suitable i.t. equalising resistors where appropriate, to permit use in the field (in a military sense) where transmitter in some wartime applications. The related microphone and key jacks are redundant and can be turned to more useful service, to feed a second headset, perhaps. The "spout" should be removed, the resulting orifice being covered by a blanking plate and the combined gain controls separated and mounted on it as shown in the illustration.

The redundant switch labelled "Rec Send" can either be removed entirely or used to switch on the mains power unit.

The three position switch furnishing a.v.c. or manual control will upon being turned to the left (to "OFF") mute the receiver output.

Capacitors—the usual warning: The age of every BC342 means that many capacitors will be suspect—and it is better to test these for leakage before switching on rather than wait for smoke to emerge from the case! Even better, ask for a demonstration of the set before purchase.

DON'T BE DISAPPOINTED

We receive many requests for back numbers but many have to be disappointed because stocks are limited. Don't let this happen to you. Make certain of your copy of PRACTICAL ELECTRONICS every month by placing an order with your local newsagent or bookseller.
Healthy and constructive

Sir—If the tone of this letter appears to be one of criticism I hope that it will be received in the spirit intended—i.e. healthy and constructive.

For years most relevant technical magazines have issued a succession of "Process Timers" for photographic and other uses. I observe from the June issue that another version is published. The world of electronics can be so useful to the amateur (and professional) photographer. What a pity, then, that we do not appear to explore it fully. From the description given it would seem to me that the purely audible device implied would have been very useful some 20 or 30 years ago. I can see no point in constructing a device purely for the sake of constructing it and which can do little more than simpler (and perhaps cheaper) devices which already exist.

The photographic timer would have been of use in the days when, say, film development was carried out by hand in the darkroom. But, surely what the photographer requires these days is firstly, an interlocked enlarger lamp and timer. Secondly, assistance in determining correct exposure for given negatives and preferably that this information be automatically coupled to the timing device. Commercial devices such as this already exist and so surely it would be not too difficult to produce an amateur design.

A comparable device for use with production of colour prints would also be most acceptable but here, I would agree, we may be too ambitious.

I would also be interested in more information with reference to electronic flash equipment. There appears to be a gap here which has not been adequately filled.

In passing, I must also express some personal disappointment in the lack of detailed constructional information on transistor transmitters for Radio Control. The recent series, I felt, concentrated too much on valves and this is one field where the tremendous advantages of transistors must render valves obsolete.

In a nutshell, this is a plea for devices which are really worthwhile. I hasten to add that worthwhile devices have appeared in your publication but the ones quoted, in my opinion, do fall short in value.

D. Coney,
Lincoln.

Your comments concerning the timer for photographic processes were particularly of interest since we are proposing to publish details of a rather more ambitious device within the next few months. This device will be designed specifically for colour prints.

We have already published a design for an electronic flash gun. However, in view of the considerable interest shown in this particular field, we shall be offering another design next month.

Finally, with regard to your comments concerning the Radio Control of Models series, I should explain that this was intended primarily as an introduction to the subject, and no attempt was made to introduce detailed designs. We hope to publish constructional projects for radio control in the future.—Ed.

New Zealand calling

Sir—I have been interested in some of the pictures you have shown in your 73 Page and thought you might like one from overseas.

New Zealand changed its licence plate system a couple of years ago and I managed to hunt down the one in the photograph which has an added interest with the "88".

Best of luck to you and your page.

ZL2RP,
Lower Hutt,
New Zealand.

Keyboard cantata

Sir—I wonder if any of your readers can suggest an answer to a problem that I am faced with.

I am designing a machine to play any piano. Briefly, the method is that the music will be played first by a pianist on a specially adapted master piano. This adaptation will consist of electrical contacts being placed beneath each of the 85 notes plus the sustaining pedal, the contacts being wired to 86 tracks on specially wide magnetic tape. When any note or the pedal is pressed, an impulse is recorded on the appropriate track on the moving tape.

The playback can be on any piano, by means of the following: The playback mechanism is contained in a casing, the length of a keyboard, and can be placed on the keyboard of any piano. There is an additional mechanical device to be clamped to the left pedal, to reach over and motivate the right pedal.

The tape is played back over 86 magnetic heads, each impulse charging an electro-magnet which motivates a plunger above one of the 85 notes on the keyboard, or the sustaining pedal. Thus the entire piece of music is replayed.

However, the problem is: Can the velocity at which each individual note is struck by the pianist on the master piano be faithfully recorded by the impulse and transmitted to the playback plunger? It is quite essential, of course, to record and transmit the comparative velocities of the various notes, for without this there can be no expression in the music when replayed.

I am assuming that impulses at the recording stage and electromagnets at the playback stage are the best means to employ for this mechanism.

Percy Kramer,
London, N.W.11.

A method which might be helpful here, in obtaining control over the expression, would be by means of d.c. recording techniques and use of magnetic amplification.

A recently developed type of playback head uses a ferrite core, and is sensitive to direct unchanging magnetic fields, and to magnetisation of the tape at very low speeds, and even provides an output when the tape is stationary! This is because the ferrite is arranged to comprise a saturable reactor.

If the pulse is picked up by means of an iron-cored search coil situated near the piano mechanism of each individual note, it may be passed on to a magnetic amplifier. Small magnets may be attached...
Enjoy yourself and Save Money by Building Heathkit models

A wide range of well designed quality kit sets to choose from

A KIT FOR EVERY INTEREST... HOME, SERVICE WORKSHOP, LABORATORY

Ease of assembly is guaranteed
Even for those without previous experience—by the comprehensive, yet simple step-by-step construction manuals supplied with every Heathkit model.

Save £££s building the models
Heathkit units cost considerably less than comparable pre-assembled equipment. You cannot buy the parts any other way as cheaply.

Guaranteed performance
Every Heathkit product—asssembled in accordance with our comprehensive construction manuals is guaranteed to meet published performance specifications, or your money will be cheerfully refunded.

Convenient credit terms
By taking advantage of our credit terms—you can enjoy your model right away—and pay for it in easy monthly installments. Deferred terms available over £10 in U.K.

MULTIMETER. Model HM-11. Ranges 0.1V to 1,000 v A.C. and D.C. 150 mA to 16 A. D.C./0 to 20 M.D. 41 in. 50A meter. Kit £12.18.0. Assembled £18.11.6.

5-in. FLAT-FACED OSCILLOSCOPE. Model IO-41U. Lab. performance at utility 'oscope price. "Y" bandwidth 2.5 Mc/s to 4.5 Mc/s. 1810 kHz to 500 kHz in 5 steps. Built in V. calibrator. Dim.: 8" w x 10" h x 17" d. Kit £25.18.0. Assembled £35.18.0.

R.F. SIGNAL GENERATOR. Model RF-41U. Free coverage from 100 kHz to 100 M.C/s on six bands on fundamentals and up to 200 Mc/s on exhibited harmonies. Kit £18.8.0. Assembled £26.18.0.

PORTABLE TRANSISTOR TESTER, Model TP-30U. Unmatched in quality, performance and price. Provides complete d.c. analysis of PNP, NPN transistors and FNM, FNM transistor tests up to 9 v. Kit £2.18.0. Assembled £3.9.0.

GENERAL COVERAGE RECEIVER. Model RG-1. Free coverage 600 kHz to 1 Mc/s. 1.7—32 Mc/s in 6 switched bands. Many features include: justica crystal filter. Kit £26.19.0. Assembled £38.0.0.

PORTABLE 5 Mc/s in 6 switched bands. Many features include: justica crystal filter. Kit £26.19.0. Assembled £38.0.0.

6-in. DE LUXE VALVE VOLTMETER. Model VC-11U. Measures 600 v a.c. and d.c. 0-450 v to 1,500 v A.C. and D.C. ISO txA to ISA D.C.; 0.5 to 20 kHz. 41 in. 50A meter. Kit £12.18.0. Assembled £18.11.6.

VALVE VOLTMETERS

TV ALIGN. GENERATORS

FROM £9.99 to £11.50 including P.T.

DECAY RESISTANCE, Model DR-IU. Range 100—1,000,000 in 11 steps. Kit £37.18.0. Assembled £45.17.6.

DECADE CAPACITOR, Model DC-1IU. Range 100 pF to 0.11 μF in 100 μF steps. Kit £37.18.0. Assembled £45.17.6.

SGU-1 SPEAKER SYSTEM. A practical solution to the problem of a low-price speaker system. Two speakers. (Bookcase) £16.17.6 Kit (inc. P.T.) (With legs) £18.12.0 Kit (inc. P.T.)

The Berkeley SPEAKER SYSTEM. New construction gives faster assembly. Professionally styled and finished cabinets. £2.5.0 extra.

The complete Heathkit range in the FREE catalogue

See the complete Heathkit range in the FREE catalogue

 Scouts POWER SUPPLIES Instruments for Test, Service, Home Workshop

HIFI CABINETS QUALITY STEREO and MONO AMPLIFIERS

HIFI CABINETS QUALITY STEREO and MONO AMPLIFIERS

SW RECEIVERS TRANSMITTERS

FM & AM/FM RADIO TUNERS

TEAPE DECKS

CONTROL UNITS

WELCOME TO OUR
LONDON HEATHKIT CENTRE
233 Tottenham Court Road
We open MON.-SAT. 9 a.m.-5.30 p.m.
THURS. 11 a.m.-2.30 p.m.
Telephone: MUSEUM 7349
WHEN YOU ARE IN TOWN, WE HOPE THAT YOU WILL VISIT US THERE

To DAYSTROM LTD., DEPT. PM-7, GLOUCESTER, ENGLAND
Please send me FREE BRITISH CATALOGUE (Yes/No)

Full details of model(s)

American NAME (BLOCK CAPITALS)

Catalogue 1/-p.

To PM-7
VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240v, A.C. 50/60—OUTPUT VARIABLE 0-260v

NEW Variable Panel
Buy direct from the importer, keenest prices in the country.
All types (and Spares) from ½ to 50 amp., from stock.

OPEN TYPE (Panel Mounting)
- ¾ amp. £3.1.7
- 2 amp. £5.1.6

SHROUDED TYPE
- 2.5 amp. £5.17.0
- 4 amp. £6.7.6
- 5 amp. £6.9.0
- 8 amp. £7.10.0
- 10 amp. £7.17.0
- 15 amp. £8.2.0
- 20 amp. £8.10.0

PORTABLE TYPE
- 2.5 amp. Portable £6.17.6

100 WATT POWER RHEOSTATS (NEW)

Available in the following values:
- 10 ohm, 3 a.; 25 ohm, 2 a.; 50 ohm, 1 a.
- 100 ohm, 1 a.; 250 ohm, 0.5 a.
- 500 ohm, 0.2 a.; 1000 ohm, 0.1 a.

NEW! PHOTO ELECTRONIC COUNTER

Can be set for counts of up to 500 per minute. 210-350 v. A.C. powered.
Kit of Components including photo cell. High speed non-resettable counter. Transformer, relay, etc., together with clear circuit diagram. £3.2.6, plus 2/6 P. & P.

SANGOMO WELDON

Type S12 • £2.15.6
2½ Edgewise Meter
250 Micro-amp., scaled in 6's. New
£2.10.0 P. & P.

230 V. A.C. MOTOR and REDUCTION GEAR BOX

Reversible ¾ h.p., 1,450 r.p.m. 1½ in. long shaft. Mounted in anti-vibration cradle.
Supplied complete with precision 20:1 reduction gear box and pulleys.

SOUND POWER OPERATED EX-ADMIRALTY HEAD AND BREAST SETS

Two such sets connected up will provide perfect intercommunication. No batteries required. Will operate up to 5 mile. Price 17/6 each, plus 2/6 P. & P. 5/6.

UNIVERSAL DEMONSTRATION TRANSFORMER

A complete composite apparatus, comprising a Transformer and electro-magnet with removable coils and pole pieces. Coil tapped for 210v, 220v, 110v, 115v; 6 to 20 volts, 6, 12, 36, 110v, A.C. These coils are also used for D.C. experiments and complete with all accessories as shown. £17 to £10½—carriage, leaflet on request.

SILICON BATTERY

Sintered Cadmium Type, 1.2v., 7AH. Size: height 3½", dia. 2¾", 9 LITTLE NEWPORT ST., LONDON, W.C.2

250 MICRO AMP., SCALED IN DB'S, NEW

£2.6.6, plus 2/6 P. & P. 7/6.

340 SILICON SOLAR CELL

4 x 3 Volts unit series connected output up to 2½v at 16-20 mA in sunlight. 30 times the efficiency of sodium. A.C. 200-240 volt panel. £2.15.6

230 VOLT A.C. GEARED MOTORS

5 r.p.m. 1.7½ in. £2.5.6
8 r.p.m. 2.6½ in. £2.2.0

LATEST HIGH SPEED MAGNETIC COUNTERS

4 figure impulses per second. Type 1001D, 4.1 ohm coil, 12 volt motor. Type 1001C, 0.1 ohm coil, 18-24 v. D.C. operation. Type 100B, 2,300 ohm coil, 36-40 v. D.C. operation. Any type, 15/- each, plus 1/6 P. & P. 8/6.

L.T. TRANSFORMERS

All primaries 220-240 volts, Type No. Price 2/6
- 30, 32, 34, 36 v. at 5 amperes £3.5.6
- 30, 40, 50 v. at 5 amperes £3.5.6
- 10, 17, 18 v. at 20 amperes £5.10.0
- 6, 12, 19 v. at 20 amperes £6.17.6
- 5, 10, 17, 18 v. at 25 amperes £6.12.6
- 6, 12, 20 v. at 20 amperes £7.2.6
- 7, 24 v. at 10 amperes £7.15.0
- 8, 28, 39, 31 v. at 21 amperes £7.10.0

ULTRA VIOLET BULBS

Easy to use source of U.V. for dozens of practical and experimental uses.
- 12 volt 36 watt A.C./D.C. SBC £6.6
- 12 volt 60 watt A.C./D.C. SBC £6.12.6
- 12 volt 100 watt A.C./D.C. SBC £6.19.0

METERS

2½ Flush Round A.C. AMMETERS 0-10, 0-20 Amp. All 2½ in. each, p. & p. extra. A.C. VOLT METER 0-25, 0-50, 0-150 V. All 2½ in. each, p. & p. extra. 0-100, 0-200, 0-500 £2.2.0 each plus P. & P. or Rectifier £1.9.0.

NICKEL CADMIUM BATTERY

Sintered Cadmium Type, 1.2v., 7AH. Size: height 3½", dia. 2¾", 9 LITTLE NEWPORT ST., LONDON, W.C.2

UNIVERSAL BOOK CO.

12 LITTLE NEWPORT ST., LONDON, W.C.2

(Lcister Square Tube Station)

The most accurate pocket size calculator in the world

Send a postcard today for free booklet, or if you prefer, send 75/- for this invaluable spiral slide rule on approval, with money back guarantee if not satisfied.

CABRIO LTD.

(Dept. P5),
54 Duneldon Road
London, S.W.19
paid for out of the membership fee of 10s Od per year.

If anyone is interested in starting an electronics group elsewhere I would be very pleased indeed to give them any help they may require based on my own experience when I started the St. Cyres Electronics Group and this club.

We have other very interesting projects lined up for the future and also hope to publish a Newsletter giving details of our activities, together with reports on affiliated groups. Starting next September we will show technical films at meetings and have discussions on them, as well as our special projects.

Cyril Bogod, Penarth, Glam.

Regenerative feedback

Sir—I would be obliged if you could help with a point of electronics theory.

I am at present working on a project to design a school electronics course, approached via semiconductors. One of the circuits I have constructed is a perfectly conventional, RC coupled, three stage amplifier using three GETI13 transistors.

The amplifier functions perfectly while I used a 9V bench supply in the laboratory. Recently the 9V unit was changed and I used in its place a 9V battery. The amplifier immediately produced a very high audio frequency oscillation. When the input terminals were shorted together the oscillation reduced in frequency but emerged at full gain from the loudspeaker.

Returning to the bench supply the oscillation disappeared. Using separate 9V packs for each stage also removed the oscillation.

I have not yet found a theoretical explanation for this effect. Can you shed any light on the problem?

P. Green, Beckett Park, Leeds, 6.

The impedance of the 9V battery was providing regenerative feedback. The internal impedance of a battery increases with its discharge state.

Since the loop gain of the unit is greater than unity, with the input grounded conditions are right for the amplifier to function as a phase-shift oscillator. This might be proved by inserting a low value potentiometer in the battery lead. If this is varied you will probably find that the pitch of the oscillation will change.—G.G.
This month, more than the usual variety of technical developments compete for attention. Not only were many new products introduced at the Audio Fair, but a wealth of American equipments, many of them unfamiliar to British enthusiasts, were also shown at an exhibition in London.

Better Record Reproduction

As far as British and some imported disc equipments are concerned, the Audio Fair provided confirmation of trends that were apparent during the last year or so. Greater understanding of pick-up requirements have taken us well beyond a quest for wider response: manufacturers can now claim more success in lessening the audible effects of distortions inherent in record reproduction. Tracking distortions can detract more from clear, musical results than any other flaws in the audio system are likely to do; but disc reproduction at its best is superior to anything achieved with other programme sources.

Customers for pick-ups of really high quality will of course look for such features as low playing weight, smooth response and high head compliance. However, there can be no warranty of secure tracking and good performance unless the pick-up presents a small mechanical impedance to the groove; hence a greater emphasis on small effective tip mass (as low as 1 milligramme) and the taming of resonances. The mass of arm/head combinations are further reduced in recent models.

New Pick-ups

Leak's new stereo pick-up, an integrated arm and head, is a variable reluctance design intended to track at 2 grammes. The tip mass is quoted as less than 1 milligramme. Other specification points include 10×10^{-6} cm/dyne compliance, channel separation of 25dB at 1,000 c/s, and average output of 6mV. An elliptical stylus is fitted. The arm, which features a viscous-damped unipivot, has a raising and lowering device. Price is £26 16s. 6d.

A new version of the Ortofon moving-coil head, imported by Metro-Sound, is basically similar to the already familiar model but has the high compliance of 20×10^{-6} cm/dyne and a vertical tracking angle of 15 degrees. An elliptical stylus is fitted, and there is a new method of stylus arm mounting to give better protection against damage.

Further down the price range is the CS91/E, the most recent version of Goldring's ceramic stereo cartridge. Compared with the familiar CS90, it can be tracked at a lower pressure; the compliance is higher and there is an elliptical tip. This cartridge exemplifies what is being done to offer a good standard of performance with reduced record wear—at moderate cost.

In the more advanced arms, intended for very low playing weights, the reduction of pivot friction is essential. It is equally vital to ensure that connecting wires passing round the pivots do not introduce appreciable friction or torque. This particular snag does not arise in a new laboratory arm by Audio & Design, who have ingeniously incorporated mercury baths in the pivot pedestal. Signals from the head pass, via small electrodes, through the mercury and thence to the lead-out cables.

Audio Electronics

On the electronics side of audio the application of transistors is clearly the focus of interest. This is a time of steady development, and performance standards are gradually being raised. One of the most interesting amplifiers in the popular price range is

Audio & Design pick-up and mercury bath
BUILD OVER 40 CIRCUIT/EXPERIMENTS
and master electronics the LERNAKIT way

- No maths — No unnecessary theory
- NO PREVIOUS KNOWLEDGE NEEDED
- BUILD A PROFESSIONAL CATHODE RAY OSCILLOSCOPE

Learn how to
- READ AND DRAW CIRCUIT DIAGRAMS
- RECOGNISE, HANDLE AND UNDERSTAND every type of modern ELECTRONIC COMPONENT

OVER 40 EXPERIMENTS — including:-
- Valve Experiments
- Transistor Experiments
- Electro-magnetic Experiments
- Basic Amplifier
- Basic Oscillator
- Basic Rectifier
- Signal Tracer
- Simple Counter
- Time Delay Circuits
- Square Wave Generator
- Morse Code Oscillator
- Simple Transmitter
- Electronic Switch
- Photo-electric Circuit
- Basic Computer Circuit
- Basic Radio Receiver
- A.C. Experiments
- D.C. Experiments

This complete practical course will teach you all the basic principles of electronics by carrying out experiments and building operational apparatus. You will learn how to recognise and handle all types of modern components, their symbols and how to read a complete circuit or schematic diagram. The course then shows how all the basic electronic circuits are constructed and used and HOW THEY ACTUALLY WORK BY USING THE OSCILLOSCOPE PROVIDED. An application is given in all the main fields of electronics, i.e. Radio; control circuits; computers and automation; photoelectrics; counters, etc., together with rules and procedure for fault finding and servicing of all types of electronic equipment. For a new and exciting approach which gives a real understanding of electronics in an entirely practical way—this course has no equal anywhere to-day.

POST NOW FOR FREE COLOUR BROCHURE

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKSHIRE
Please send free Brochure, describing your LERNAKIT Oscilloscope Course without obligation, to:

NAME __
ADDRESS __

BLOCK CAPITALS PLEASE OR WRITE IF YOU PREFER NOT TO CUT COUPON (No representatives employed) P.E.7.66

British National Radio School
KING'S TELE-SERVICE CO.
Electronic Engineers
(Sole distributors for Radio Bleep Ltd.)
Micro-Miniature Components
Micro-Microphones.
Flea Size Transistors.
Full range of American Tunnel Diodes. Perfect for high frequency oscillation at excess of 100 m/cs at only 1.5 volts.
Condensers you need a magnifying lens to see.
Prototype Printed Panel Division for your Panels.
All Photographic Resist Materials and Developers available.
Miniature Resistors.
Call and see us and bring your magnifying lens
105-107 DAWES ROAD
FULHAM, S.W.6
FULHAM 1668-2998

The hard-to-find man is the man with advanced technical knowledge

In the field of Electronics today the greatest demand is for men to fill the positions of skilled technicians and support engineers. These are the 'hard-to-find' men for whom the way ahead to rewarding and interesting jobs lies wide open.

CREI HOME STUDY COURSES offer advanced technical education to the man who realises that technical knowledge must be current and up-to-date if progress is to be made in a world in which new ideas, new techniques and new applications develop almost overnight.

CREI COURSES ARE AVAILABLE IN:—
Electronic Engineering Technology
Automation & Industrial Electronic Engineering
Nuclear Engineering
Communications Engineering
Aeronautical & Navigational Engineering
Television Engineering
Servomechanisms & Computer Engineering
Space Data Systems
Radar & Servo Engineering
Mathematics for Electronic Engineers
City & Guilds of London Institute: Subject 49 & Supplementary Studies Subject 300.

For further information write to:
C.R.E.I. (London) (Dept. P.E.2)
WALPOLE HOUSE, 173/176 SLOANE ST. LONDON, SW1
Telephone: BELgravia 8662

International Division of Capitol Radio Engineering Institute, Washington, DC
the Goodmans Maxamp, which employs silicon transistors. Others include a new Elizabethan model: it is a shelf-mounting unit, catering for magnetic and ceramic pick-ups and rated at 10 watts per channel. The price is 39 gns.

Howland-West showed prototypes of transistor amplifiers which are due for production in August. System One, as the first model is called, incorporates a new type of output stage and is rated at 12\(\frac{1}{2}\) watts per channel. A power response of 20-20,000 c/s is claimed. A second model, System Two, is also promised.

Tape recorders, especially portables, are mostly transistorised, and exceptions to the rule become fewer. On the other hand it is noticeable that many professional machines depend on valves: this is true of the Brenell and Ferrograph recorders and some other top-class instruments seen recently.

Decks include two by Scopetronics. Their type 82S, costing £49 10s., has 7\(\frac{1}{2}\) and 3\(\frac{3}{4}\)in/sec speeds, and the selection of speed is effected by changing over the number of poles in the capstan motor. Four heads can be fitted. A larger deck, type 1150, operates at 15 and 7\(\frac{1}{2}\)in/sec and accepts spools of up to 11\(\frac{1}{2}\)in diameter.

SPEAKER SYSTEMS

New speaker systems and drive units continue to arrive in variety. Among the compact systems are the Decca Kelly-Mini and the Leak Mini Sandwich. The latter employs methods of design and construction already made familiar in the standard Sandwich system. Other small speakers are the Rectavox Ambi (£36 10s.), the Sonotone Solent (£18) and the Truvox LS.120 (19 gns.).

Among the new floor-standing speakers is the KEF Concord, the successor to the Duette. This nice-looking model, measuring 24in x 15in x 9\(\frac{1}{2}\)in, sells at £39 19s. Constructors should note that a brochure of enclosure designs is available from KEF Electronics Ltd., Tovil, Maidstone, Kent. The latest big speaker from Wharfedale is the Teesdale (£52 10s.), and there is also a new 12in drive unit, the W12/FRS.

AMERICAN PRODUCTS

Firms represented by Delrama included Acoustic Research, whose excellent speakers and turntables have received limited attention in the U.K. before. Other turntables included two Rek-O-Kut models and the Marantz zero-tracking-error model, which has a radial pick-up arm. Empire, Grado and Pickering were among the pick-up specialists. Tape equipment included high-quality machines by Crown and Ampex, the latter's reputation being such that 800 and 2,000 series recorders were used for demonstrations by the other exhibitors.

Only one or two of the many speaker firms can be mentioned. Although compact models seem fairly popular, there are at least as many large, heavy-duty systems on the American scene. Those by J. B. Lansing and Sherwood are intended for large rooms and gracious living. Nearly all American speakers are multi-unit systems with crossover filters.

The first thing one notices about the tuners and amplifiers is the predominance of smart metal control panels. Then one becomes absorbed in technical matters, notably the wide use of elaborate transistor circuits (no expense spared). Some power ratings seem unnecessarily high, even taking low efficiency speakers into account; but obviously a generous power reserve means small distortion under practical conditions.

Some names to look out for are CM, Electro-Voice, McIntosh and Sherwood. As befits the size of the market, American enthusiasts enjoy an impressive choice, and the chances are that we shall be sharing some of it with them if things go well.
TABS ON THE DABS

Quite a bit of controversy has arisen over the Home Office suggestion that perhaps everyone's fingerprints should be recorded as part of the campaign to stamp out crime. There will be bitter arguments about whether or not this is an infringement of individual liberty. This apart it is not altogether certain that the proposal is feasible from a technical point of view.

Classifying the "dabs" of some 60 million people would be quite an undertaking even for that prodigious machine the electronic computer. However some experts think that there is a good chance of sorting out the fingerprints by measuring the sines and cosines of the arches, loops and whorls which make up fingerprint patterns. At anyrate, IBM for one are busily investigating this possibility.

Where will all this recording and tabulating of persons end? Will the stage ever be reached where it will be possible to locate instantly any individual through the medium of an implanted device—as a colleague of mine suggested the other day? Perhaps a somewhat nightmarish thought, but it is reasonable to suppose that technology will be called upon to play an ever increasing role in the fight against crime.

GOODBYE TO C/S?

So far as symbols and abbreviations used in electronics are concerned, there is already a fair degree of conformity between different countries.

But one important case where we do differ from the continents is in the terminology used for frequency. While we have been quite happy with cycles per second and the abbreviated form "c/s", it has long been common practice in other countries to use "Hertz", and the shortened form "Hz", for this purpose.

The Americans, although 3,000 miles or more from Europe, have now decided in favour of "Hertz" and the change is already apparent in technical literature originating in the U.S.A. In face of this, can we in this off-shore island hold out much longer against our close neighbours?

Well I suppose it is no good preaching standardisation and then raising objections in particular instances. The balance seems now decidedly in favour of Hertz and I am afraid we shall soon be saying a reluctant good-bye to our old friend "c/s". But it won't be easy to readapt oneself after years of writing kc/s, Mc/s and plain c/s.

RATHER SHATTERING

Those living in the vicinity of a major airport will readily accept the claims made for the demoralising effectiveness of the "Curdler."

The latest device for quelling unruly mobs. A kind of super public address system with a built-in noise generator, the Curdler has been devised to bombard troublesome crowds with a raucous output of such intensity and tonal character that the disorderly elements are well and truly stunned, frozen in their tracks, and finally compelled to retreat with hands clamped to ears. They are luckier in this respect than some householders who just have to sit and take it when another VC10 or 707 shrieks its way over the roof tops.

"I said it would be no good at a pop festival—they're dancing to it!"
CALLERS WELCOME!

Open 8 a.m. to 6 p.m. every day Monday to Saturday. Trade supplied.

G. W. SMITH & CO. (Radio) Limited

Phone: GERRARD 8204/9155
Cables: SMITHEX LESQUIRE

3-34 LISLE STREET, LONDON, W.C.2

529
The pre-paid rate for classified advertisements is 1/- per word (minimum 12/-), box number 1/6 extra. Semi-displayed setting £3.50 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed “Lloyds Bank Ltd.” Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.

TAPE RECORDERS, TAPEs, ETC.

TAPEs TO DISC—using sheet professional equipment—45 r.p.m. 1/6/. S.A.E. leaflet.

DEBOY, 65 Heat Bank Lane, Lancaster.

SERVICE SHEETS

SERVICE SHEETS for all makes Radio, TV, Tape Recorder, 1925-1965. Prices from 1/-

Catalogue 5,000 models, 2/6. Free fault-finding guide with all sheets. All types of Valves, Components, Books, S.A.E. lists. Please send stamped addressed envelope with all orders/queries. HAMILTON RADIO, Western Road, St., Leonards, Sussex.

CIRCUIT, COMP., VALUES, etc., model 7/2 plus S.A.E. TRENET, Maidland Bank, Preston.

STATE MODEL NO. Radio 1/6, TV 3/6, S.A.E. DARWIN, 19 George Street, St. Helens, Lancs.

SERVICE SHEETS

4/- each, plus postage.

We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service.

To obtain the Service Sheet you require, please complete the attached coupon:

From: ..

Name: ..

Address: ..

To: S.P. DISTRIBUTORS

44 Old Bond St., London, W.1

Please supply Service Sheets for the following:

Make: ..

Model No.:

Radio/T.V.

Make: ..

Model No.:

Radio/T.V.

Make: ..

Model No.:

Radio/T.V.

I also require the new 1966 list of Service Sheets at 1/6 plus postage. (please delete items not applicable)

I enclose remittance of ..

which includes postage

MAIL ORDERS ONLY July PE

MISCELLANEOUS

AT LAST! Printed circuit boards at a price you can afford. Supplied for all published designs. Electronic, Electrolytic TV, and multi-Fil magnasutures. Components also available for all circuits. Bargains include 2% Hi-Stab resistors 4d. each, general purpose germanium diodes 6d. each, S.A.E. full details. BEEJAY ELECTRONICS (Dept. P.E.), 106, Rudget Heath Road, Sutton Coldfield, Warwickshire.

CRACKLE PAINT. Black or Grey, 1 pint tins 4/-, post 6d. from the component specialists. Many uses. Brand new, 25/- each. P. & P. 1/6. WALTONS WIRELESS STORES, 15 Church Street, Wolverhampton.

HARDWARE SPECIALISTS. Electrical and Radio Equipment. Our new catalogue No. 16 now ready. 2/6 Post Free, cost refunded on purchase of goods over £5. ARTHUR BALLIS, Radio Control Ltd., 93, North Road, Brighton.

C. Core Transformers

Mains Prim: Tapped 200/240V. Sec.: 80, 140, or 0.220 volts. 100 Milliamps, 6.3V, 1.8A, 6.3V, 1A Terminal Tags, Mu-Metal Screened. Size: 3 x 3 x 3/4 ins. 14/6 post paid.

A.E.I. Semi-Conductor Rectifiers

Type GJSM, PVI 300 volts, 500 m. a. at 2/6 each, post paid.

Cash with order (no C.O.D.)

JACK PORTER LTD.

(Established 1928)

30/31 College Street, Worchester

ADHESIVE STRIP LABELS. 4" embossed Glossy, P.V.C. various colours. 14d. letter.

C.W.O. and S.A.E. lo.—Mr. BROWN, 1 Effie Place, London, S.W.7.
VALVES & SERVICE SHEETS
T.V. & RADIO. MOST MAKES
PRICE 4/6 each & 6d. postage
Valve price list sent on receipt of stamped envelope. Valves guaranteed new & boxed.
T.V. ELECTRONICS
MARBLE ARCH HOUSE
361 EDGWARE ROAD
LONDON, W.2.
Mail Order Only

VENNER TIME SWITCHES. Reconditioned, 14 day clock, once on every 24 hours. Jewelled movement, fully guaranteed, 15 amp. 27/6. P. & P. 2/6. J. R. BATEUROA.
(E.M. Dept.) 4 Park Road, Bromley, Kent.

QUALITY A.F. TRANSISTOR AMPLIFIERS by Newmarket, suitable for Record Players, Radio, Tape Recorders, Intercom or with Microphones, etc.
9v Supply. GUARANTEED PERFORMANCE.
Power Supply Input Output Impedance
400mW 2mV 120kHz 2k6
600mW 5mV 50kHz 2k6
1 watt 8mV 1kHz 2k6
9 watt 20mV 1kHz 2k6
100 watt 80mV 1kHz 1k6

Free catalogue will suit various requirements.
Power Supplies: 9V 120mA — 8/6;
12v 200mA — 8/6;
Transistor Boost Amplifier for T.V. Installation.
DRY BATTERIES 20/6, 37/6. P. & P. 2/6. A. R. BATTREOE.

69 Christmas Ave., Normandy, Surrey.

EDUCATIONAL

Full-time courses in RADAR and RADIO TELEGRAPHY for prospective marine Radio Officers. Govt. approved exam. centre. Also courses in basic ELECTRONICS, RADIO, TELEVISION and COMPUTERS.
Apply—Director, British School of ELECTRONICS, 20 Penywern Road, Earls Court, London, S.W.5

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organization. I.E.R.E., City & Guilds, B.T.E.R., etc. All Practical Courses with equipment. All books supplied. Write for FREE Prospectus stating subject to I.C.S. (Dept. 577) Intercross House, Parkgate Road, London, S.W.11.

HOME STUDY COURSES in Practical Electronics. Exp Brochure without obligation from: BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.

MINISTRY OF DEFENCE, LONDON AND BATH, require TECHNICIANS for collection and evaluation of data relating to wide field of electrical or mechanical engineering subjects with a view to preparation of standards and the elimination of unnecessary variety.
QUALIFICATIONS: Recognised apprenticeship in electrical or mechanical engineering; good general experience of engineering practices and manufacturing processes; capable of clear and concise expression in correspondence and preparation of technical reports; knowledge of service stores and experience in preparation of stores schedules an advantage. A. O.C. or equivalent.
SALARY: £115. £120. £125. £130 p.w. (all salaries under review), with additions for staff working in London; 5-day week, 5 weeks 3 days annual leave; Public and privilege holidays in addition; promotion prospects for posts carrying salaries up to £195.Opportunities for pensionable appointments.
APPLICATION: Form from The Manager (PE2483), Ministry of Labour, Professional and Executive Register, Atlantic House, Farrington St., London, E.C.4.

SITUATIONS VACANT
A FULL TIME TECHNICAL EXPERIENCED SALESMAN required for Retail sales. Write giving full details of age, previous experience, and salary required to: The Manager, HENRY'S RADIO LTD., 303 Edgware Road, London, W.2.

RADIO & RADAR ENGINEERS required to operate and maintain various equipment (including airborne radio and radar) at an airfield on the coast near Barnsthorp, North Wales. Ex R.A.F. or Naval experience ideally suited for these vacancies. Apply SHORT BROTHERS & HARLAND, Llandre, Merioneth.

RADIO TECHNICIANS
A number of suitably qualified candidates will be required for training, leading to permanent and pensionable employment. (Normally at Cheltenham but with opportunities for service abroad or appointment to other U.K. establishments including London).
Applicants must be 19 or over and be familiar with the use of Test Gear and have had Radio/Electronic workshop experience. They must offer at least "O" level G.C.E. passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.
Pay according to age, e.g. at 19 £747, at 25 £962 (highest age pay on entry) rising by four annual increments to £1,104.
Prospects of promotion to grades in salary range £1,032—£1,671. There are a few posts carrying higher salaries.
Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days.
Normal Civil Service sick leave regulations apply.
Apply Recruitment Officer (RT/54) Government Communications Headquarters Office, Priory Road, Cheltenham, Glos.

FOR SALE (continued)

PUBLIC APPOINTMENTS

SITUATIONS VACANT (continued)

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
First-class opportunities in Radio and Electronics await the I.C.S trained man. Let I.C.S Training give you the well-paid post in this expanding field.
I.C.S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:
— INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
— G.C. TELECOMMUNICATION TECHNICIANS' CERTS.
— C. & G. SUPPLEMENTARY STUDIES.
— G.C. ELECTROLYSIS AND T.V. SERVICING CERTIFICATES.
— RADIO AMATEURS' EXAMINATION.
— I.E.R.E. CERTIFICATES IN RADIO TELEGRAPHY.
Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES.
Build your own 5-valve receiver, transistor portable, signal generator and multi-meter—all under expert tuition.
POS POST THIS COUPON TODAY and find out how I.C.S can help YOU in your career. Full details of I.C.S courses in Radio, Television and Electronics will be sent to you free of charge.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES,

INTERNATIONAL CORRESPONDENCE SCHOOLS
International Correspondence Schools
(Dept. 152), Intercross House, Parkgate Road,
London, S.W.11.

NAME
Block Capitals Please
ADDRESS

INTERMEDIATE ARMED FORCES

7.66
A CAREER IN AUTOMATION

junior electrical testers

There are still a few vacancies in our Test Department for technically
minded boys and young men.

These openings form first-class introductions to the growing field
of automatic electrical control. The work demands an enquiring and
methodical mind — reliability, accuracy and enthusiasm are most
important.

Those appointed will be encouraged to study for recognised
qualifications and a paid day-release scheme to Technical College
is in operation. Working conditions in an entirely new building are
excellent and there are ample opportunities for advancement — many
of our senior executives entered the Company through the Test
Department.

experienced senior test engineers

Experienced men are also required for the Final Inspection
Department. Applicants should possess a minimum of O.N.C. or
equivalent and have practical experience of testing and adjusting
automatic electrical control equipment.

Apply with full details of education or experience to:
Mr. G. W. Hanson,
Head of Test Department,
LONDON LTD.
42 Croydon Road,
London, S.E.20
Telephone: SYDenhamp 6258

A Member of the Elliott Automation Group

SITUATIONS VACANT (continued)

RECEIVERS AND COMPONENTS

(continued)

SPECIAL OFFER

1 Watt S.T.C. 300 MC/5 N.P.N.
Silicon Planer. 100% Transistors.
Limited Stocks. £1 for 6.

3/- each. OC44, OC45, OC70,
OC71, OC81, OC81D, OC200,
Get 16, Get 20.

4/- each. AF114, AF115, AF116,
AF117, OC170, OC171.

5/- each. OC139, OC140, Get
7, Get 8, Get 9, XCI41, BY100,
OA211.

SUN SOLAR CELL KITS

24 Page Booklet on Experiments
inc. 4 Solar Cells 11/- Set.

G.P.O. DIAL TELEPHONES

20/- each. 35/- pair.

Send 6d. for full lists: inc. S.C.R.

Zeners.

The Courses

78 Broad Street
Canterbury
Kent

R. & R. RADIO & TV SERVICE

Dep't P.E.
44 Market Street, BACUP.
Tel. 465

NEW VALVES

6KR, 6VR, 660D 4/6d.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.

SUN SOLAR CELL KITS

PY34 7/6d.

Specials

XCI41, BY100, OA211.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.

SUN SOLAR CELL KITS

PY34 7/6d.

Specials

XCI41, BY100, OA211.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.

SUN SOLAR CELL KITS

PY34 7/6d.

Specials

XCI41, BY100, OA211.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.

SUN SOLAR CELL KITS

PY34 7/6d.

Specials

XCI41, BY100, OA211.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.

SUN SOLAR CELL KITS

PY34 7/6d.

Specials

XCI41, BY100, OA211.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.

SUN SOLAR CELL KITS

PY34 7/6d.

Specials

XCI41, BY100, OA211.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.

SUN SOLAR CELL KITS

PY34 7/6d.

Specials

XCI41, BY100, OA211.

SALVAGE VALVES

PCF80 4/6d.

NEW VALVES

PCF84 5/3d.

POWER VALVES

PL81 6/6d.

CHASSIS PARTS

PY33 7/6d.
NEW—BIGGER—BETTER

“EXPERIMENTAL”

PRINTED CIRCUIT KIT

(1) 2 Copper Laminate Boards 4" x 21".
(2) 1 Board for Wrist-Watch Radio, etc.
(3) I Board for Wrist-Watch Radio, etc.

“PRINTED CIRCUITS FOR AMATEURS”

NEW—BIGGER—BETTER

which you can build with your own components

Plains of easy-to-build transistorised

and Circuits of easy-to-build . . . Thanks for the Kit.

“Very interesting designs” . . . Worth it for

“PRACTICAL ELECTRONICS” —

RECEIVERS AND COMPONENTS

(continued)

PRINTED CIRCUIT KIT

Send 6d. P.P. for details and photographs

TRANSISTORS AND COMPONENTS

RECEIVERS AND COMPONENTS

(continued)

MILLAND GET TRANSISTORS

1 GET 974 = OCC4

2 GET 975 = 83; per Set

OCC4 = 2 OCC5 Matched Set—83; per Set.

AC124—4½, AC125—4½, AC186 cut of FREQ

900 MHz—27½ each. Texas GM129 cut of

FREQ 700 MHz—17½ each.

TASx TRANSISTORS

1N1302 = AE598—4½ each

2N302 = GT672—7½ each

2N201 = GET 673—4½ each

2S201—4½ each

2N347—4½ each

MAT TRANSISTORS

MAT 101—8½

MAT 120—7½

ACOS RECORD PLAYER CARTRIDGE

Replacement for Collins, Garrard, B.S.R., etc.

J/12 each.

SILICON RECTIFIERS AND DIODES

BY215, P.P.V. 200 at 40 Amps. Brand New—

2N1975, 4½ each

100 P. V. 10 Amps (same size as BY215)—5½ each.

OCA—5½ each

High Speed... 4½ each

Pocket Transceiver (Licence Required).

(2) Simple Transistor Tester.

(2) Human Body Radiation Detector.

(26) Pocket Transceiver (Licence Required).

(27) Constant Volume Intercom.

(28) Remote

(29) Pocket Signal Injector.

(30) “Quamp-o Q .

Animal-Guided Missile. (20) Perpetual

Tone Electronic Alarm. (6) Closed-Loop

and Circuits of easy-to-build . . . Thanks for the Kit.

Really wonderful value for money ... I found

the circuits alone . . . Thanks for the Kit.

“Very interesting designs” . . . Worth it for

“PRACTICAL ELECTRONICS” —

TRANSDUCERS, VALVES, TRANSISTORS, Etc.

Call on and 6d. for list. 20/6, 31 Nelson

Street, Southport.

PRACTICAL ELECTRONICS

when relying to

Advertisements

STOP PRESS!

PHOTOELECTRIC

PRINTED CIRCUIT KIT

Build 10 EXCITING

PHOTOELECTRIC

DEVICES

Pots and Pack, 2/6. Contents: 2 Copper

Laminate Boards and all chemicals required.

Etching Mask, Untinted Photo-Boards.

Infrared sensitive Photocell and Head, 2 high-

gain Amplifiers, Switching, and Radio

Operations.

“Very interesting designs” . . . Worth it for

“PRACTICAL ELECTRONICS” —

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

SIMULATED ELECTRONICS

RECEIVERS AND COMPONENTS

(continued)

SILICON TRANSISTORS

2N3707 (T1415) Super low-noise high-

gain input transistor for a.f. amplifiers.

will work down to 10uV or less. Noise

factor (10uV—15mV) less than 2dB, Beta

10000 at 1V. 150—300 each.

2N1304 (T1412) Small power transistor

for audio amplifiers, switching, and radio

transistors. P-Vce—360mV. High beta

10000 at 300mA, high current

(100mC minumum), high peak current

(800mA). Advance P.O. 7/- each.

GERMANIUM R.F. TRANSISTORS

(PNP) GT. 1803 equiv. 5 for 5/-.

GET673 3 for 5/-

SIMULATED ELECTRONICS

POTS (Egen Type 467) 3 inch dia. 200/2.

1,5K, 5K, 15K, 50K, 100K, 200K, 1M.

Linear. Any three for 3/-.

Above 3, 1/6 each.

All goods are first grade. Post paid.

C.W.O. Mail order only.

amatronix ltd.

396 SELSDON RD. CROYDON, SURREY

**“PRACTICAL ELECTRONICS” —

CONSTRUCTIONAL DESIGNS**

All specified 1st grade Components, complete

Metalwork, full size engraved Panel Plates, Ancillary Equipment and Assembled

Units. Complete Kits available for each

“P.E.” Constructional Article.

Please order from your usual stockist

MALVYN ENGINEERING WORKS

Engineers to the Radio and Electronic Industries

7 BURRIDGE STREET, HERTFORD, HERTS

TELEPHONE: HERTFORD 2264

HIGHEST QUALITY—LOWESTCOST

NEW SEMICONDUCTORS

Examples: 2N1292, B 55 to 100, 500; 2N170,

B 55 to 100, 500; 2N1703, B 500; 2N1663, 138, C07.

846, 2N1354, 43, 2N1320, 43, AST50, 19, 500.

10000 at 100mA, high current

(100mC minumum), high peak current

(800mA). Advance P.O. 7/- each.

GERMANIUM R.F. TRANSISTORS

(PNP) GT. 1803 equiv. 5 for 5/-.

GET673 3 for 5/-

SIMULATED ELECTRONICS

POTS (Egen Type 467) 3 inch dia. 200/2.

1,5K, 5K, 15K, 50K, 100K, 200K, 1M.

Linear. Any three for 3/-.

Above 3, 1/6 each.

All goods are first grade. Post paid.

C.W.O. Mail order only.

amatronix ltd.

396 SELSDON RD. CROYDON, SURREY
QUALITY RECORD PLAYER AMPLIFIER

A sequel quality record player amplifier which was used in a 29 g. record player employs heavy duty double wound transformers and ECC83, EL4, EZ80 valves. Separate Bass, Treble and Volume controls. Complete with output transformers matched for 3 ohm speaker. Size 7½ in. x 4½ in. x 6 in. Ready built and tested. Price £9/6. P. & P. 4/-.

ALSO available on board with output transformer and disc speaker fitted into cabinet below. Price £8/6. P. & P. 5/-.

QUALITY PERFORATED R/P CABINET

Unobtrusive motor board. Will take above amplifier and record player. Also complete with record player for remote mounting of controls.

This cabinet has been specially designed for us and our quantity order enables us to offer them at competitive prices, with or without equipment etc., wired and tested for only £4.50. P. & P. 6/-.

HARVERSON'S F.M. TUNER M.T.

F. M. tuning head by familiar maker.

Guaranteed non-drift. Permanence tuning. Balanced dial. Two 1½, stages and discriminator.

Attractive maroon and gold dial (7 x 3 in). Gold plated, metal case, quality mains transformer and valve rectifier.

Valves used ECC83, two EF80's, and EZ80 (rectifier). Fully drilled chassis. Size of completed tuner 8 x 6 x 7½ in. Quality equipment for serious enthusiasts. See of parts if purchased at one time £5/19/6, plus P. & P. 8/-.

BARGAIN OF THE MONTH

We welcome enquiries for all types of components. Lists. S.A.E. Terms, cash with order, P.P. add 9d. for orders under £2.

4 PIN TRANSISTOR SOCKETS

DECK DE LUXE. Three speeds,2 track, takes up per see., simple control, uses SJJin. spools, £6/15/-.

LATEST COLLARO MAGNOVX J6J TAPE SET OF PARTS. If purchased at one time £5/19/6, plus tuner 8 X 6 x SJJ-in. • All parts sold separately.

1/6 post free. Mark II Version as above but (7 x SJJ-in, glass). • Self powered, using a good diode output non-drift. •

Valves used ECC85, two EFBOs, and EZ60 (rectifier). Incorporating 2 ECU82s and 5 E780, heavy duty, standard British manufacture. Absolutely complete.

BRAND NEW CARTRIDGE BARGAIN!

ACOS GP67- £1. More complete. List price £1/6. Our price 1/-.

BRAND NEW. 12" 15w. H/D Speakers, 3 or 15 speakers. Current price £13/-.

GARRARD 3 SP25 Deluxe... £22/10/-.

GARRARD ART 46,10.10. Carr. 6/6 on each. USES HIGH QUALITY COMPONENTS

HARVEY'S SURPLUS CO. LTD.

170 HIGH ST., MERTON, S.W.19. CHELSEA 3965

Open all day Saturday. Early closing Wed., 1 p.m.

A few minutes from South Wimbledon Tube Station. (Please write clearly)

OVERSEAS P. & P. CHARGED EXTRA. S.A.E. with all enquiries.

WENTWORTH RADIO

Genuine High Quality Components

Genuine Low Prices

<table>
<thead>
<tr>
<th>OC44</th>
<th>2/6</th>
<th>OC45</th>
<th>2/6</th>
<th>OC71</th>
<th>2/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC72</td>
<td>2/6</td>
<td>OC77</td>
<td>3/6</td>
<td>OC81D</td>
<td>2/6</td>
</tr>
<tr>
<td>OC81</td>
<td>2/6</td>
<td>OC200</td>
<td>3/6</td>
<td>AC128</td>
<td>3/6</td>
</tr>
<tr>
<td>AF115</td>
<td>3/6</td>
<td>AF17</td>
<td>2/6</td>
<td>OC170</td>
<td>3/6</td>
</tr>
<tr>
<td>OC26</td>
<td>10/-</td>
<td>OC35</td>
<td>10/-</td>
<td>GET95</td>
<td>12/6</td>
</tr>
<tr>
<td>MAT101</td>
<td>7/9</td>
<td>MAT102</td>
<td>8/6</td>
<td>MAT120</td>
<td>7/9</td>
</tr>
<tr>
<td>MAT12</td>
<td>8/6</td>
<td>OA95</td>
<td>1/-</td>
<td>BY100</td>
<td>6/6</td>
</tr>
</tbody>
</table>

MINIATURE POTS. LIN. SKD, 10K, 10KLOG, 25K, 50K, 100K, 250K, 500K, 1M, 2M, 2½ each.

We welcome enquiries for all types of components. Lists. S.A.E. Terms, cash with order, P.P. add 9d. for orders under £2.
SENSATIONAL HALF PRICE OFFER!

THE FAMOUS
'Continental'
RADIOGRAM
AT
HALF PRICE!

Magnificent Stereophonic Radio-gram Chassis complete with 10" elliptical loudspeakers, plus a Mono/Stereo 4-speed automatic record changer.

Only £29-19-6

- Easily fitted
- No soldering or Technical knowledge necessary
- Fits almost any cabinet with minimum trouble
- Modernises your old radiogram
- Built-in ferrite rod aerial
- Piano key switching
- All British make

SPECIAL terms available of £7.10.0 deposit followed by 18 monthly payments of £1.9.1 (total H.P. £33.13.6) + postage & packing 15/- extra.

INDIVIDUAL CABINETS SUPPLIED ON REQUEST

Send your cheque or P.O. today for £8.5.0 while Stocks last to Dept. PE76

LEWIS RADIO, 100, CHASE SIDE, SOUTHGATE
LONDON, N.14. Telephone: PAL 3733/9666

TRANSISTOR POCKET BOOK

R. G. Hibberd, B.Sc.,
M.I.E.E., Sen.M.I.E.E.

A comprehensive guide to the characteristics and use of the various types of transistor now available. The manufacture of the various types of transistor, up to and including the latest epitaxial planar, field effect and metal-oxide silicon transistors, is described in detail in order to make clear the different characteristics of each. Includes notes on the use and handling of transistors, and chapters on solid state circuit techniques and recent developments.

7½ x 5”. About 280 pages, about 200 line diagrams and photographs. 25s.

From your Bookseller, or in case of difficulty, 27s. from GEORGE NEWNES LTD., SOUTHAMPTON STREET, W.C.2

CRUCIAL ELECTRONIC SUPPLIES LTD.

40 MAYES ROAD
WOOD GREEN, N.22

BOWES PARK 3206
LONDON'S ELECTRONIC CENTRE

BEST QUALITY—KEEN PRICES

TRANSISTOR AMPLIFIERS
Harlow, EG1004 4 Trans, Push-Pull 1 Watt £3.14.6
Harlow, EG2000 4 Trans. 250 M/W £1.19.6
Eagle, EGX04 4 Trans. 1 Watt £1.19.6
Silenite, 212 12 Watt £4.9.6
210 10 Watt £6.19.6
220 20 Watt £6.19.6

TRANSISTOR TELEPHONE AMPLIFIER
Model 300 £3.0.0

TRANSISTOR MAINS UNITS
PP9 Type 33/6
PMTypo 27/6

TRANSISTOR EAR PIECES
Crystal and Magnetic Types Fitted 2.5 or 3.5 plugs 3/9.

HOLE PUNCHES

- Instant Type
- Screw-up Type
- Toggle switch
- Diameter

Complete Set £9.3.6.

No extra charge for postage and packing in the U.K.

Supplied by:

TOMPKINS & LONGMAN LTD.
237 GIPSY ROAD
WEST NORWOOD, S.E.27.
Tel. Gipsy Hill 5000

From your Bookseller, or in case of difficulty, 27s. from GEORGE NEWNES LTD., SOUTHAMPTON STREET, W.C.2
MARCONI CRYSTAL CALIBRATOR No. 5 MKII 1 Mc/s precision crystal calibrator complete with spare and handbook. Brand new in transit case. £7.10.0. Carr. 10/-.

HEADPHONES German made with cushioned ear pads, 5 and 2000 ohm versions. 2 1/2/- P.P. 2/-.

VALVEHOLDERS B6 or B15, 5/- per dozen. P.P. 1/-.

PHOTOMULTIPLIERS 10/- each.

CAPACITORS Parcel of 100 well assorted silver mica, ceramtics, papers, electrolytics, air spaced variables, etc. 10/- P.P. 1/6d.

With double pole switch 500K log, 500K lin, 1M log, 15M lin. 2 1/2/- each. P.P. 6d.

With single pole switch 50K lin, 2/- each. P.P. 6d.

Pre-set potentiometers 50K lin, 250K lin, 100K lin, 1M lin, 2M lin. 1/- each. P.P. 6d.

AMATEUR RADIO CALLBOOK With single pole switch 50K lin, 2 1/2/- each. P.P. 6d.

With double pole switch 500K log, 500K lin, 1M log, 15M log. 2 1/2/- each. P.P. 6d.

FM TUNER 1

Printed Circuit kit, 6v + 6v, 45v + 4 1/2v (two separate outputs) 42/- each. P. & P. 2/6. Please state output required as all these units are completely isolated from mains by double wound transformer ensuring 100% safety.

R.C.S. PRODUCTS (RADIO) LTD. (Dept. P.B.), II Oliver Road, London, E.17

COMMUNICATIONS EQUIPMENT A guide selection of communications receivers, test equipment, etc. always in stock.

BRIAN J. AYRES & CO.
Dept. DZ, 8 Hartfield Road
Wimbledon, London, S.W.19
Telephone: Wimbledon 0083

20 WATT INTEGRATED STEREO

ADD-ON UNIT SYSTEM

F.M. TUNER

THE EASY WAY TO BUILD AND SAVE

Leaflet on request.

From good stockists everywhere.

Martin Electronics Ltd
154-155 High St, Brentford,
Middlesex. I.E.'Newtown 16/2

PARKERS SHEET METAL FOLDING MACHINES HEAVY VICE MODELS

With Bored Formed Burs

No. 1. Capacity 18 gauge mild steel x 36in. wide

No. 2. Capacity 18 gauge mild steel x 24in wide

No. 3. Capacity 18 gauge mild steel x 18in. wide

Also new batch models. Capacities 48in. x 18 gauge £38; 36in. x 18 gauge £27; 24in. x 16 gauge £23. Carriage free.

End folding attachments for radio chassis. Tray and Box making for 36in. model, 9 1/2 per ft. Other models 3/6. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

One year's guarantee. Money refunded if not satisfied. Send for details.

A. B. PARKER, Wheatscroft Works, Wellington St, Bailey, Yorke. Tel. 3488

YUKAN SELF-SPRAY

SO PROFESSIONAL ... THE YUKAN AEROSOL WAY!

GET THIS AIR DRYING HAMMER FINISH NOW!

Yukana Aerosol spraykit contains 16 ozs. fine quality durable easy instant spray. No stove baking required. Available in Grey, Blue, Gold, Bronze at £1/6 at our counter or 15/11, carriage paid, per pushbutton self-spray can, £1.2/6. Also options transferable snap-on trigger handle (value £5) for 10/11 carriage paid.

Choice of 13 self-spray plain colours and primer (motor car quality) also available

Please enclose cheque or P.O. for total amount to:

YUKAN • DEPT. PE/7 • 307A EDGWARE ROAD • LONDON • W.2
VALUABLE NEW HANDBOOK TO AMBITIOUS ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On ‘SATISFACTION OR REFUND OF FEE’ terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECH. ENGINEERING

ELEC. ENGINEERING

AUTO ENGINEERING

BUILDING

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

B.I.E.T.

YOU ARE BOUND TO BENEFIT FROM READING "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now—FREE and without obligation.

POST NOW!

TO B.I.E.T., 316A COLLEGE HOUSE.
29-31 WRIGHT’S LANE, W.8.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Published about the 15th of the month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, London, W.C.2. Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents for Australia and New Zealand: GORDON & GOTHIC (Asia) Ltd.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY & OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World £1 16.0.
PRICE REDUCTIONS FOR MANY ITEMS THIS MONTH

FREE

CATALOGUE COSTS NOTHING AFTER USING VOUCHERS

10 AND 20 WATT MONO AND STEREO TRANSISTOR AMPLIFIERS

(9) POWER AMPLIFIERS. 10 watts RMS output. 100mv input. 30 c/s to 20 kc/s. 6-Transistor Push-pull. Panel size 4 x 2 x 3 in. H/S X 4 X 4 in.

TPA10 3-5 ohm spkr. £ 4.10.0, pp. 2/6

TPA10/13 12-10 ohm spkr. £ 5.50.0, pp. 2/6

(Mains unit for 1 or 2 amplifiers £9.6/6, pp. 2/6)

The Finest High Fidelity at Unbeatable Prices

(16) VHF FM TUNER TO BUILD

87-108 M$c. Superhet Superhet. Geared tuning. Terrific quality and sensitivity. For valve or transistor amplifiers. 4 x 2 x 3 in.

TOTAL COST £6.19/6. P.P.

(Cabinet Assembly 20/- extra)

1000 mono £9.9.0. 9 volt peak. Complete with front panel plate, etc. 9 volt operated. For use with any amplifier or tape recorder.

PRICE £9.9.0. P.P.

(15) HI-FI EQUIPMENT

Special price cuts. Let us have your enquiries for equipment.

(13) S WATT AMPLIFIER

6-Transistor design. Push-pull output. 3 ohms. 6V into 1K. 12/18V supply. 25 x 2 x 3 in.

BUILT AND TESTED (optional mains units £4/6) £9.6/6. P.P.

£1/5 watt version £9.6/6.

New matching Preampifier, 6 inputs, treble/bass/solo, 2 finely adjustable Treble, bass, volume, filter controls. 12V to 200V input. Complete with matching Preampifier.

DEAC CHARGER

To charge 3-6 volt and 9-6 volt packs. Fully mains isolated. £4/6. P.P.

£3/6 in moulded case.

(18) BUILD A QUALITY TAPE RECORDER

Three speeds—3 watts. Complete kit with new "363" decks. Supplied as preassembled sections. Complete with portable cabinets and Speaker—excellent quality. 7 x 1,200 ft. tape and speed and Acheson-45 microphone. "363" decks with tape and Acheson mic.

(2) TRACK £13.10.0, p.p. 5/-

(Total £5/10.0, p.p. 2/6)

(3) TWO TRACK £8.19.6, p.p. 3/6

(4) FOUR TRACK £6.19.6, p.p. 3/6

(12) MULTI-METERS

D'ARMSTRONG 1000 Superhet 1000 kHz to 150 MHz. Crystal oscill. 8 volt. 500 mA. Size; 7 1/4 x 1/16 X 1/8 in.

£12.17/6. P.P.

(13) RECHARGEABLE BATTERIES

3-6 volt 500 mAh. Size; 1 1/2 x 3/8 x 1 in.

£1.50. p.p. 10/-

9-6 volt 225 mAh. Size; 1 1/2 x 3/8 x 1 in.

£1.50. p.p. 10/-

BRAND NEW—Offered at a fraction of normal retail price.

Special Bargain Offer. Buy Now!

PRICE £9.9.0. P.P.

(14) MV/LW QUALITY TRANSISTOR RADIO TUNER

Fully tunable superhet with excellent sensitivity and selectivity. Output up to 1 volt peak. Complete with front panel, etc. 9 volt operated. For use with any amplifier or tape recorder.

PRICE £19.6. P.P.

(2) NOMBREX TEST UNITS

*300 kHz—350 m/c Transistor Audio Generator

£16.15.0

HENRY'S RADIO LTD.

303 EDGBWAE RD., LONDON, W.2

Open Mon. to Sat. 9-6. Thurs. 1 p.m.

Open all day Saturday.