FREE inside!
"PRINTED WIRING" BOARD
with details of 6 Interesting Projects to build
ADCOLA PRODUCTS LIMITED
(Regd. Trade Mark)

"A" SERIES

STANDARD APPROVED IN ALL LEADING COUNTRIES

BIT SIZES FROM $\frac{1}{32}$" TO $\frac{5}{16}$" TO CHOICE

ILLUSTRATED IS L64 $\frac{3}{16}$" BIT INSTRUMENT

ALL VOLTAGES SUPPLIED

SPECIAL TEMPERATURES AVAILABLE

FULL RANGE OF SUPPORTING ACCESSORIES

FOR SALES & SERVICE APPLY DIRECT TO:

ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W.4

TELEPHONE:
MACAULAY 0291/3

TELEGRAMS:
SOLJOINT, LONDON S.W.4
Transistorised FM Tuner

HIGH QUALITY: LOW NOISE: BATTERY OR MAINS OPERATION

Reproduction stands favourable comparison with top quality 3-rail sets at much less cost. Come and hear it (and compare it) at any of our branches or send to Brighton without delay as we anticipate a very heavy demand.

This beautifully compact 6 transistor machine (size: 10 1/2in x 6in x 2 1/2in) will give quitter, more interference-free reception. Months of use from a set with battery or its small power requirements can be drawn from any amplifier. Low noise (frequency changer with smooth 2 gang tuning feeding no less than three I.F. stages coupled to a double-tuned discriminator I.F. stage giving ample output for all quality amplifiers.

16 WATT TUNER AMPLIFIER KIT

Consisting of 6101, 1010, 1014 and other selected S.I.C.S. (solid state) transistors, an excellent kit with complete instructions and circuits or complete with AC mains power pack £17.13.6. Complete control of volume and circuits. **£13.19.0**

Half Price Stereograms

Large purchase well known portable Record Players with ingenious Split Cabinet giving two separate high quality head speakers, plus main unit with Garrard Deck and crystal clear amplifiers. Compact, powerful, amazing value. Before High Grade compact Diamond Cartridges normally £29.99, 18.99. Non-Auto-Aligning model with comes complete with 4 x 5in. W.B.S. test record complete. **£29/-**

New

Silicon Rectifiers

Latest silicon rectifiers, all the popular valves. Tested and guaranteed. **£10.10.0**

Value in Valves

Guaranteed 3 months by return of post. Satisfaction or Money Back Guarantee on goods if returned unused within 14 days.

All valves are New Unless otherwise informed. Free transit insurance. Postage 1 value 9d, 2-6 values 1/6 per value. Free over 6.

<table>
<thead>
<tr>
<th>Valve</th>
<th>Code</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>6L6G</td>
<td>6L6G</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>6L6L</td>
<td>6L6L</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Elpico Mono Preamp

DPA15. Latest black/tiatic chrome finish high quality, high fidelidy built-in stereo preamplifier with all the usual features. 9/6. **£37.10.0**

Transistors

Guaranteed top quality Mullard Matched Output 9/6. B.P. Kees OC67, OC68 (2) 9/6. **£10.10.0**

Germanium Diodes

‘General Purpose miniature detector. A.V.C., etc. 9/6 new. **£1.00.0**

Silicon Rectifiers

Lates Garrard

Screw cartridges fitted for 3/16 extra. **£10.10.0**

NEW Branch With Huge Stocks

Tel. 2585

Old and New Customers Welcomed—Hi-Fi Dem. Rooms

Technical Trading

Branches of Leeds, Qued, Chesham, Gosport, Armagh, Tring, Warwick. Please telephone, telegraph, telex, teleprinter, etc., to order.

<table>
<thead>
<tr>
<th>Branch</th>
<th>Code</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>LONDON</td>
<td>10 Tottenham Court Road</td>
<td>10 Tottenham Court Road</td>
<td>10 Tottenham Court Road</td>
<td>10 Tottenham Court Road</td>
</tr>
<tr>
<td>BRIGHTON</td>
<td>BRIGHTON</td>
<td>10 Tottenham Court Road</td>
<td>10 Tottenham Court Road</td>
<td>10 Tottenham Court Road</td>
<td>10 Tottenham Court Road</td>
</tr>
<tr>
<td>PORTSMOUTH</td>
<td>PORTSMOUTH</td>
<td>12 East Street</td>
<td>12 East Street</td>
<td>12 East Street</td>
<td>12 East Street</td>
</tr>
<tr>
<td>SOUTHAMPTON</td>
<td>SOUTHAMPTON</td>
<td>12 East Street</td>
<td>12 East Street</td>
<td>12 East Street</td>
<td>12 East Street</td>
</tr>
</tbody>
</table>

Prices

<table>
<thead>
<tr>
<th>Branch</th>
<th>Code</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>LONDON</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
</tr>
<tr>
<td>BRIGHTON</td>
<td>BRIGHTON</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
</tr>
<tr>
<td>PORTSMOUTH</td>
<td>PORTSMOUTH</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
</tr>
<tr>
<td>SOUTHAMPTON</td>
<td>SOUTHAMPTON</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
<td>£10.10.0</td>
</tr>
</tbody>
</table>

All Branches—Ex. W. D.

Value in Valves

Guaranteed 3 months by return of post. Satisfaction or Money Back Guarantee on goods if returned unused within 14 days. All valves are New Unless otherwise informed. Free transit insurance. Postage 1 value 9d, 2-6 values 1/6 per value. Free over 6.
FOR THOSE WHO KNOW THE MEANING OF QUALITY

A stereo pre-amp/control unit to ensure high fidelity at its best with a saving of pounds

Sinclair's newest unit, the Stereo 25 has been designed specially to obtain the very finest results used in conjunction with two Sinclair Z.12's for stereo reproduction. The best quality components, individually tested before acceptance, are used in its construction, ganged controls are carefully checked for matching, whilst the overall appearance of this very compact deluxe pre-amp control unit reflects the professional elegance which characterises all Sinclair designs. The front panel is in solid brushed and polished aluminium with beautifully styled solid aluminium knobs. Mounting and connecting the unit is simple, and the generous output of the PZ.3 is more than enough to power the Stereo 25 together with two Z.12's for stereo. Hi-fi enthusiasts seeking the ultimate in equipment for domestic listening will find all they want from this combination of Sinclair units, and with a Micro FM to provide the radio, their installation will compare favourably with anything costing up to FOUR TIMES as much.

THE STEREO 25 MAY BE USED WITH ANY STEREO HI-FI POWER AMPLIFIER

Technical Specification

- Performance figures were obtained using the Sinclair Stereo 25 fed to two Z.12's and the entire assembly powered by a PZ.3 Power Supply Unit.
- **Sensitivity** for 10 watts into 1.5 ohms load per channel
 - Mic: -2 mV into 50 K ohms
 - Pick-up: -3 mV into 50 K ohms
 - Radio: -20 mV into 4.7 K ohms
- **Frequency Response** (Mic, and Radio): 25 c/s to 30 kc/s ±12dB extending to 100 kc/s ±3dB
- **Equalisation for P.U.** Correct to within ±12dB on RIAA curve from 50 c/s to 20 kc/s.
- **Tone controls**
 - Treble: +12dB to -10dB at 10 kc/s
 - Bass: +15dB to -12dB at 50 c/s
- **Size**: 6 x 24 x 21 ins overall, plus knobs
- **Finish**: Front panel in brushed and polished solid aluminium with solid aluminium knobs. Black figuring on front panel.

Order built, tested and guaranteed, with manual.

SINCLAIR STEREO 25

DE-LUXE PRE-AMPLIFIER AND TONE CONTROL UNIT

SINCLAIR RADIONICS LTD., 22 NEWMARKET ROAD, CAMBRIDGE Telephone (0CA3) 52731

A COMPLETE HIGH FIDELITY STEREO ASSEMBLY FOR £22.18.0

All you need is one Stereo 25 pre-amp Control Unit (£9.19.6), two Z.12's (£8.19.0) and one PZ.3 Mains Power Supply Unit (£3.19.6) to possess the finest possible hi-fi stereo installation. As a very desirable optional extra, you could include the Micro FM (£5.19.6) described on page 684 of our advertising. The overall saving to you in cash will be staggering, and you will have an installation second to none irrespective of price.

ORDER FORM AND MORE SINCLAIR DESIGNS WILL BE FOUND ON PAGES FOLLOWING

£9.19.6
Comment from around the world

AUSTRALIA

"Congratulations on your F.M. sets. You certainly are the leaders in miniature electronics." P.F.K., Vaucluse, N.S.W.

"The Micro-6 is tremendous and all 7 local stations here in Melbourne are easy to tune. I wish to congratulate you on your excellent design." L.M.C., Bentleigh, Victoria.

JAMAICA

"The reception and sound is superb (Micro-6), and I found the instructions very clear." R.R., Kingston.

NEW ZEALAND

"I have received your Z.12 amplifier. I am extremely pleased with its performance, and it is worth every cent. Thank you for your prompt delivery." B.R.L., Howick, Auckland.

SWAZILAND

"I am extremely pleased with the Z.12 amplifier, and I wish to congratulate you on the Micro F.M. The performance of the tiny radio has amazed friends who just cannot believe it works until demonstrated. It is roughly thirty miles from the station in mountainous terrain, and without any aerial or any signal is produced." D.J.B., Mbabane.

SOUTH AFRICA

"I have received the Micro-6, and I found the instructions very clear." D.R., Bishop's Storeford.

U.K.

"Much to my delight, the tuner (Micro F.M.) performs splendidly, fully justifying the modest outlay called for. The tuner picks up all the F.M. programmes. I am now anxious to purchase two Z.12 amplifiers." P.E.R., Florida, Transvaal.

"I am extremely pleased with the Z.12 amplifier. (Connected to the tape head). The sound is absolutely top rate, always rate highly in my esteem." G.C., Glasgow.

35,000 CONSTRUCTORS CAN'T BE WRONG

Something like thirty-five thousand Micro-6 kits have been bought and assembled by constructors ranging in experience from beginners to experts, for in size, design and performance there is just nothing like it in the world. We have simply lost count of the number of enthusiastic letters received from Micro-6 constructors for this set, together with the Micro F.M., have firmly established entirely new trends in radio design which are fast becoming the things that every constructor should possess.

START BUILDING WITH SINCLAIR TODAY

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS

MICRO-6

The smallest radio set on earth

A minutely sized receiver which will slip into a waistcoat pocket without even showing. It is the smallest set in the world, yet the Micro-6 is completely self-contained including aerial and batteries and it virtually plays anywhere. Its clever six-stage circuit (2 R.F., double diode detector, 3 A.F.) ensures all you want in a radio today—power, range, quality and selectivity. A.G.C. counteracts fading from distant stations, bandspread brings in Luxembourg like a local station. There is a great pleasure to be had in building the Micro-6, and it is not a highly acceptable gift once others have seen its white, gold and black case and heard its amazing performance.

With brushed and polished aluminium front panel and solid aluminium tuning control

The world's only combined pocket-sized F.M. Tuner and personal receiver

This unique, superbly engineered superhet F.M. will give you enormous satisfaction in building and using it. It is the only set in the world which can be used both as an F.M. tuner and as an independent F.M. pocket receiver just whenever you wish and its performance is fantastic used either way. Problems of alignment which have previously made it almost impossible for a constructor to complete an F.M. set have been completely eliminated in the Micro F.M. It is ready to use the moment you have built it. The pulse counting discriminator ensures best possible audio quality; sensitivity is such that the telescopic aerial included with the kit assures good reception in all but the very poorest reception areas. The Sinclair Micro F.M. will give you all you want in F.M. reception and the satisfaction of building a unique design that will save you pounds. Use it with your Z.12 assembly!

Technical Specification

THE SINCLAIR MICRO FM is a completely self-contained double-purpose F.M. superhet. It uses 7 transistors and 2 diodes. The R.F. amplifier is followed by a self-oscillating mixer and three stages of I.F. amplification which dispense with I.F. transformers and all problems of alignment. The final I.F. amplifier produces a square wave which is converted so that the original modulation is reproduced exactly. A pulse-counting discriminator ensures better audio quality. One output is for feeding to amplifier or recorder and the other enables the Micro F.M. to be used as an independent self-contained pocket portable, A.F.C. "locks" the programme tuned in. The telescopic aerial included is sufficient in all but the worst signal areas. Case size—2\(\frac{1}{2}\) x \(\frac{1}{4}\) x \(\frac{1}{4}\) in. plus aerial.

- Fascinating to build
- No aligning necessary
- Super quality and sensitivity

Complete kit of parts inc. transistors, case, front panel assembly, all parts, earpiece and instructions.

£5.19.6

MICRO-6

7 TRANSISTOR

SUPERHET F.M.

Two sets that have changed the face of radio
More power per square inch than any other amplifier in the world!

The Sinclair Z.12 is a powerful high fidelity amplifier of exceptional compactness complete with its own high gain pre-amplifier and ready to connect to any input. It's great power gives you an output equal to SIX WATTS PER SQUARE INCH of its total size—a standard of performance unsurpassed by anything in its class. And because of its size and unique circuitry, you can now use quality amplification in applications never before possible.

8 special H.F. transistors are used in a circuit in which generous negative feedback and ultra-linear class B push-pull output achieve the highest possible standards of quality. The unit will operate from 6 to 20v. d.c., and when not using a battery, the P.Z.3 will be found ideal. Response—15 to 50,000 c/s ± 1 dB. Input sensitivity 2mV into 2 K ohms. Signal to noise ratio is better than 60dB and the output may be fed directly into any load from 3 to 15 ohms, or two 3 ohm speakers may be used in parallel.

The manual included with the Z.12 gives full details of matching tone and volume control circuits for mono and stereo together with multi-input switching facilities.

- SIZE—3" x 1½" x 1½"
- FANTASTIC POWER!
 12 WATTS R.M.S. CONTINUOUS SINE WAVE (24 W. PEAK)
 15 WATTS R.M.S. MUSIC POWER (30 W. PEAK)
- REQUIRES FROM 6 TO 20V.
- FOR HI-FI, RADIO TUNER, ELECTRIC GUITAR, P.A., ETC.
- HI-FI PERFORMANCE AT A FRACTION OF THE USUAL COST

Stereo 25 de luxe pre-amp and control unit See page 683

ORDER FORM
To SINCLAIR RADIONICS LTD.
22 NEWMARKET ROAD, CAMBRIDGE
Please send
for which I enclose
CASH | CHEQUE | MONEY ORDER
for £ s. d.
NAME...
ADDRESS...

79/6
89/6
685
take your pick!

from IR semiconductor centers

Over 100 IR semiconductor devices are available from your dealer, many with free instruction manuals and project and experiment details.

Look for the floor-standing 'Semiconductor Center,' or the counter-top 'Minicenter.'

EXPERIMENTER SEMICONDUCTOR KITS
MOUNTING KITS AND HEAT SINKS
SILICON BRIDGE RECTIFIERS
UNIJUNCTION TRANSISTORS
SELENIUM PHOTO CELLS
INSTRUMENT RECTIFIERS
AUTOMOTIVE RECTIFIERS
SILICON SOLAR CELLS
GERMANIUM DIODES
THYRISTORS (S.C.R.)
ZENER DIODES
TRANSISTORS
SELENIUM STACKS

Write for the free illustrated catalogue and price-list, also the name and address of your nearest IR SEMICONDUCTOR CENTER

INTERNATIONAL RECTIFIER
HURST GREEN - OXTED - SURREY - Tel.: 0XTED 3215

Dealers—write for details of how you can start your own IR SEMICONDUCTOR CENTER.

TWO-YEAR GUARANTEE
EX-RENTAL TELEVISIONS

17 in. £11.10.0
3 star Guarantee

Tube Valves Components
ILLUSTRATED FREE LIST
Channels for all areas
Demonstrations daily from Large Selection
Personal collection or Insured
Carr. 30/-

RADIOGRAM CABINETS £9.10.0

Superbly made and styled in Veneered English Walnut
LIFT UP LID TO CHANGER AND RECORD STORAGE COMPARTMENT
Position 8" X 5" Twin Speakers
Diameter: 40 x 16j x 18j
Legs 1:6m.
Carr. 30/-

DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Liverpool Street—Manor Park—10 mins.
Phone: iIFord 600-1-3-3. Stamp for Free List.

ERSIN Multicore SOLDER

For quick, easy faultless soldering

Ersin Multicore 5-core solder is easy to use and economical. It contains 5 cores of non-corrosive flux, cleaning instantly heavily oxidised surfaces. No extra flux is required. Ersin Multicore Savbit Alloy considerably reduces the wear of copper soldering iron bits.

HANDY SOLDER DISPENSER

Size 6 pack contains 24 ft. of 60/40 high tin quality 22 s.w.g.
2/6 each

LOW TEMPERATURE SOLDER

Size 6 pack contains 24 ft. of 60/40 high tin quality 22 s.w.g.
2/6 each

SAVBIT SIZE 1 CARTON

Contains approx. 30 ft. of 18 s.w.g. SAVBIT alloy. Also available in 14 and 16 s.w.g.
5/- each

Available from all Electrical and Hardware shops. If unobtainable write to:

MULTICORE SOLDERS LTD.
Multicore Works, Hemel Hempstead, Herts. Hemel Hempstead 3636
M.4/8
The SUPER 6

LONG AND MEDIUM WAVE TRANSISTOR RADIO

- 5 transistors and diodes
- 50mW
- Superhet, Picture and sound
- Component positions and references printed on back of board
- Wooden cabinet 11 x 7 x 3½ in
- Hook-up kit, delivery charge 11/-
- £15.15.0

Price £8 plus 8/- tax

6 x transistors and diodes

AM/FM (V.H.F.) RADIO GRAM CHASSIS £15.15.0

Price £18.19.0 cash paid or 48.13.0 deposit and 6 monthly payments of 68/-

TV TRANSISTOR RADIO

Price £18.19.0 cash paid or 48.13.0 deposit and 6 monthly payments of 68/-

SUPER STEREO GRAM CHASSIS

Price £18.19.0 cash paid or 48.13.0 deposit and 6 monthly payments of 68/-

The SUPER 6 Module

SPECIFICATION—Bass Unit: Natural resonance 40 C.B.S. Flux density 14,000 Gauss. Total front 12,000 Maxwells. Tweeter Unit: Flux density 6,000 Gauss. Total flux 9,000 Maxwells. Overall Height 11½ in, (29 cm), width 14 in, (35.5 cm), depth 4½ in, (11.4 cm), weight 15 lb, (6.8 kg). Power handling 10 watts in recommended enclosure. Impedance 8, or 45 ohms.

TECHNICAL DETAILS:
The unit is a compact and self-contained loudspeaker system which only needs to be fitted into a simple cabinet of the recommended design to produce a high fidelity loudspeaker of the highest quality. The unit consists of a 5½ in, bass unit, tweeter and crossover network mounted on a duralumin plate which forms the front panel of the complete enclosure.

The method of assembly of the module is unique in that the cone and synthetic rubber surround of the 5½ in, bass unit are mounted directly onto the duralumin front panel and the ceramic magnets are supported on substantial pillars attached to the panel. The complete chassis with all its disadvantages is thus eliminated.

The tweeter is a special version of the 460T unit with a doped cambric surround and extremely light suspension system.

The crossover network is a five element circuit, using ferrite cored inductors and reversible electrolytic capacitors mounted on a printed circuit board. Principal constructional details of the recommended cabinet are readily available from us.

When larger power handling is required several units may be mounted in a large cabinet, multiple units may also be mounted in a column enclosure to form a high power handling, high quality line source. The unit may also be mounted directly into existing equipment or in cavities in walls, etc.

The unit forms the drive system of the 'Minnette' enclosure for details see separate leaflet.

Price £8 plus 8/- tax

For further details please contact:

RICHARD ALLAN

RADIO LIMITED

Printed by C. G. Johnson, 2442/3

The Army needs men trained in the following skills, and who have the appropriate Ordinary National Certificate or City & Guilds qualifications.

ELECTRONIC TECHNICIANS AIRCRAFT TECHNICIANS

MOTOR MECHANIC/AUTOMOBILE ENGINEER

PROMOTION TO SERGEANT SIX WEEKS AFTER YOU JOIN!

Here's your chance to train as one of the Army's top class technicians—an Artificer in the Royal Electrical and Mechanical Engineers—specializing in vehicles, aircraft, electronics or radio.

Today's Army is equipped with all the most modern technical equipment—radio transmitters, closed circuit TV, gunfire control equipment, radio transceivers, helicopters. That's the kind of exciting equipment you could be working on as a R.E.M.E. Artificer.

EARN £987 A YEAR AND MORE!

This year every soldier in the Army is better off. As a sergeant, you will earn £987 a year—and all your food and lodging are free. Married men get an additional £236. Staff Sergeants earn more and you'll be given every chance to work for still further promotion and still better pay.

WANT TO KNOW MORE?

SEND OFF THE COUPON TODAY!

TO: ARMY CAREERS MP6(A), LANDSWONE HOUSE, LONDON W.1

Please send me full details of how to become an Artificer

NAME

ADDRESS

TOWN

COUNTY

DATE OF BIRTH

(You must be resident in the UK)
The "Sixteen" Multirange METER KIT

This outstanding meter was featured by Practical Wireless in January, '64. Lasky's are able to offer the complete kit of parts as specified by the designer.

Range Specification:
- DC volts: 0-0.5, 0.5-2, 2-6, 6-20, 20-200, 200-600, 600-2000, 2000-6000, 6000-20,000, 20,000-100,000 V.
- AC volts: 0-60, 60-200, 200-600, 600-2000, 2000-6000, 6000-20,000, 20,000-100,000 V.
- DC current: 0-0.6, 0.6-3, 3-15, 15-50, 50-100, 100-200, 200-500, 500-1000, 1000-2000, 2000-5000, 5000-10,000, 10,000-20,000 A.
- AC current: 0-60, 60-200, 200-600, 600-2000, 2000-6000, 6000-20,000, 20,000-100,000 A.

Power requirements: 120V, 50Hz, 60Hz. Power consumption approximately 100W.

LASKY'S PRICE £5.19.6.

NEW—LASKY'S MINIATURE TRANSISTOR AMPLIFIER MODULES

Incorporating the very latest circuitry to provide high sensitivity and good quality in conjunction with extreme small size and compactness. High quality popular transistorised equipment throughout. All designed to operate on 5V. miniature battery. Add 1/- on each for post and packing.

TYPE LPC 1, Transistor. Input: 40mV, output 100mV, output Imp. 10kΩ. Size: 2X2X1 in. - PRICE 27/6

TYPE LPC 2, Transistor. Input: 6mV, output 300mV, output Imp. 10kΩ. Size: 2X2X1 in. - PRICE 27/6

TYPE LPC 3, Transistor. Input: 1mV, output 1W, output Imp. 50kΩ. Size: 2X2X1 in. - PRICE 27/6

TYPE LPC 4, Transistor. Input: 1mV, output 1W, output Imp. 50kΩ. Size: 2X2X1 in. - PRICE 27/6

TYPE LPC 5, Transistor. Input: 1mV, output 1W, output Imp. 50kΩ. Size: 2X2X1 in. - PRICE 27/6

TYPE LPC 6, Transistor. Input: 1mV, output 1W, output Imp. 50kΩ. Size: 2X2X1 in. - PRICE 27/6

TYPE LPC 7, Transistor. Input: 1mV, output 1W, output Imp. 50kΩ. Size: 2X2X1 in. - PRICE 27/6

LASKY'S PRICE £7.13.6.

FULLY ENCAPSULATED MODULES

- LAKES PRICE £5.19.6.
Weller

PRECISION SOLDERING EQUIPMENT

Instant-heat Soldering Gun
Solders in seconds...heats immediately...cools quickly. Long reach...built-in spot-light. Perfectly balanced, lightweight, comfortable to use. Two position trigger for dual-heat control.

EXPERT Soldering Kit. 8200D-PK 72/6.

Kit contains: Expert Gun; resin-cored solder; cleaning brush; soldering aid tool; spanner; 2 spare bits. In fully fitted polypropylene carrying case.

R.S.T. VALVE MAIL ORDER CO.

Manufacturers and Export Inquiries Welcome

Special 24 Hour Service

R.S.T. VALVE MAIL ORDER CO.

144-146 WELLFIELD ROAD, STREATHAM, S.W.16

Mon.—Sat. 9 a.m.

—5.45 p.m.

No Early Closing

For Opening Hours Callers

All Valves

brand new

and boxed

PLEASE NOTE OUR NEW ADDRESS.
HI-FI AMPLIFIERS — TUNERS — RECORD PLAYERS

20 + 20W STEREO AMP. AA-22U

TRANSISTOR MIXER. Model TM-1. A must for the tape enthusiast. Four channels. Battery operated. Similar styling to Model AA-22U Amplifier. Kit £11.16.6 Assembled £18.17.8

20 + 20W TRANSISTOR STEREO AMPLIFIER. Model AA-22U. Outstanding performance and appearance. Kit £39.10.0 (less cabinet). Attractive walnut veneered cabinet £25.5.0 extra. Assembled incl. cabinet, £29.15.9

GARRARD AUTO/RECORD PLAYER. Model AT-60, less cartridge £13.1.7. With Decca Deram pick-up £17.16.1 inc. P.T. Can be converted to stereo with converter kit extra, cabinet also extra.

GARRARD AUTO/RECORD PLAYER. Model AT-60. Six stage IF amplifier. Automatic freq. control, units, sold separately, can be built for a printed circuit board, 14 transistor circuit. Available in two versions subject to change without notice.

Many features including: Pre-assembled and aligned RF tuning unit, 4 stage IF amplifier. Automatic free, control, printed circuit board, 14 transistor circuit. Available in two units, sold separately, can be assembled for a

TOTAL PRICE KIT (STEREO) TFM-1S £24.18 incl. P.T. KIT (MONO) TFM-1M £20.19 incl. P.T. can be converted to stereo with converter kit extra, cabinet also extra.

HI-FI MONO AMPLIFIER. Model MA-5. A general purpose 5W Amplifier, with inputs for Gram., Radio. Modern functional appearance. Kit £11.9.6 Assembled £15.15.0

HI-FI STEREO AMP. 9 + 9W STEREO AMP. MA-12. 10W output, wide freq. range, low distortion. Use with control unit. Kit £12.18.0 Assembled £18.18.0

3 + 3W STEREO AMPLIFIER. Model S-33. An easy-to-build, low cost unit. 2 inputs per channel. Kit £13.16.6 Assembled £18.18.0

DE LUXE STEREO AMPLIFIER. Model S-33H. De luxe version of the S-33 with two-tone grey perspex panel, and high sensitivity necessary to accept the Decca Deram pick-up. Kit £15.17.6 Assembled £21.7.8

POWER SUPPLY UNIT. Model MGP-1. Input 100/120V, 200/250V, 40-60 c/s. Output 6-3V, 2-5A. C. 200, 250, 270V, 120mA max. D.C. Kit £5.12.8 Assembled £7.12.8

HI-FI MONO AMPLIFIER. Model MA-5. A general purpose 5W Amplifier, with inputs for Gram., Radio. Modern functional appearance. Kit £11.9.6 Assembled £15.15.0

HI-FI STEREO AMP. 9 + 9W STEREO AMP. MA-12. 10W output, wide freq. range, low distortion. Use with control unit. Kit £12.18.0 Assembled £18.18.0

3 + 3W STEREO AMPLIFIER. Model S-33. An easy-to-build, low cost unit. 2 inputs per channel. Kit £13.16.6 Assembled £18.18.0

DE LUXE STEREO AMPLIFIER. Model S-33H. De luxe version of the S-33 with two-tone grey perspex panel, and high sensitivity necessary to accept the Decca Deram pick-up. Kit £15.17.6 Assembled £21.7.8

POWER SUPPLY UNIT. Model MGP-1. Input 100/120V, 200/250V, 40-60 c/s. Output 6-3V, 2-5A. C. 200, 250, 270V, 120mA max. D.C. Kit £5.12.8 Assembled £7.12.8

TEST INSTRUMENTS

Our wide range includes:

1. **3'-LOW-PRICED SERVICE OSCILLOSCOPE.** Model OS-2. Compact size 9 1/2" x 12" deep. Wt. only 8lb. "Y" bandwidth 2 c/s-3 Mc/s ± 3dB. Sensitivity 100mV/cm T/B 20 c/s-200 kc/s in four ranges, fitted metal CRT Shield. Modern functional styling.
 Kit £23.13.0 Assembled £31.13.0

2. **5'-GEN.-PURPOSE OSCILLOSCOPE.** Model 10-12U. An outstanding model with professional specification and styling. "Y" bandwidth 3 c/s-5 Mc/s ± 3dB. T/B 10 c/s-500 kc/s. Kit £35.17.6 Assembled £45.17.6

4. **AUDIO SIGNAL GENERATOR.** Model AG-8U. 10 c/s to 100 kc/s, switch selected. Distortion less than 0-1%. 10V sine wave output metered in volts and dB's. Kit £23.15.0 Assembled £31.15.0

5. **VALVE VOLT METER.** Model V7-A. 7 voltage ranges d.c. volts to 1,500. A.C. to 1,000V. 100A current. Up to 200 Mc/s on harmonics. Up to 100mV output. Kit £13.18.0 Assembled £20.8.0

6. **MULTIMETER.** Model MM-1U. Ranges 0-1-5V to 1,500V a.c. and d.c.; 150kA to 15A d.c.; 0-20 to 20M a.c. and d.c. ranges d.c. volts to 1,500. A.C. to 1,500 r.m.s. and 4,000 peak to peak. Resistance 0-1 n to 10M with Internal ranges d.c. volts to 1,500. A.C. to 1,500 r.m.s. and 4,000 peak to peak. Kit £35.8.0 Assembled £45.8.0

8. **VALVE CONTROLLER.** Model S-33H. De luxe version of the S-33 with two-tone grey perspex panel, and high sensitivity necessary to accept the Decca Deram pick-up. Kit £15.17.6 Assembled £21.7.8

TRANSISTOR RECEIVERS

"OXFORD" LUXURY PORTABLE Model UXR-2. Specially designed for use as a domestic or personal portable receiver. Many features including solid leather case. Kit £14.18.0 incl. P.T.

**"MOHICAN" GENERAL COV. RECEI VER for Amateur or Short Wave listening. Send for leaflet. Kit £37.17.6 Assembled £45.17.6

MAKE THE MOST OF YOUR LEISURE TIME

Hear the BBC stereo FM programmes on the TRANSISTOR STEREO FM TUNER

Elegantly designed to match the stereo Amplifier, AA-22U. Many features including: Pre-assembled and aligned RF tuning unit, 4 stage IF amplifier, Automatic free, control, printed circuit board, 14 transistor circuit. Available in two units, sold separately, can be assembled for a

TOTAL PRICE KIT (STEREO) TFM-1S £24.18 incl. P.T. KIT (MONO) TFM-1M £20.19 incl. P.T. can be converted to stereo with converter kit extra, cabinet also extra.

WELCOME TO OUR LONDON HEATHKIT CENTRE

233 Tottenham Court Road
We open MONDAY-SATURDAY 9 a.m.-5.30 p.m. THURSDAY ... 11 a.m.-2.30 p.m.
Telephone No: MUSEUM 7349
WHEN YOU ARE IN TOWN, WE HOPE YOU WILL VISIT US THERE
HI-FI FM TUNER. Model FM-4U. Available in two units. R.F. tuning unit (£5.15 incl. P.T.) with I.F. output of 10.7 Mc/s and I.F. amplifier unit, with power supply and valves (£13.15). Total Kit £16.5.0

STUDIOVATIC "363" TAPE DECK. The finest buy in its price range. Operating speed: 1/2, 3/4 and 7/8 p.s. Two tracks, "wow" and "flutter" not greater than 0.15% at 7/8" p.s. £13.10.0 With TA-1M Tape Pre-amplifier kit £31.5.6

HI-FI AM/FM TUNER. Model AFM-1. Available in two units which, for your convenience, are sold separately. Tuning heart (AFM-T1—£4.13.6 incl. P.T.) and I.F. amplifier (AFM-A1—£2.11.6). Printed circuit board. 8 valves. Covers L.W., M.W., S.W., and F.M. Kit £27.5.0

"AMATEUR" EQUIPMENT

50-10m TRANSMITTER, DX-40U. Power inputs 75W. C.W., 60W peak CC phone. Output 40W to aerial. Provision for VFO. Kit £29.19.0 Assembled £41.10.0

SSB ADAPTOR, SB-10U. Kit £39.5.0 Assembled £45.18.0

AMATEUR BANDS RECEIVER. Model RA-1. To cover all the Amateur Bands from 180-10 metres. Many special features, including: half-lattice crystal filter; 8 valves; signal strength "S" meter; tuned R.F. Amp. stage. Kit £39.6.6 Assembled £52.10.0

160-10M TRANSMITTER. Model DX-100U. Careful design has achieved high performance and stability. Completely self-contained. Kit £81.10.0 Assembled £106.15.0

COMMUNICATIONS TYPE RECEIVER. Model RG-1. A high performance, low cost receiver for the discriminating listener. Frequency coverage: 600 kc/s-1.5 Mc/s and 1.7 Mc/s-32 Mc/s. Kit £39.16.0 Assembled £53.0.0

REFLECTED POWER METER and SWR BRIDGE. Model HM-11U. Indicates reliability, but inexpensively, whether the RF power output of your TX is being transferred efficiently to radiating antenna. Kit £29.10.0 Assembled £33.17.0

OUTSTANDING "AMATEUR" EQUIPMENT

A wide range of American Amateur SSB equipments is now available in the U.K. Why not send for full details of range, for example:

FILTER TYPE SSB TRANSCEIVERS

Models for 80, 40 or 20 metre bands.
Model HW-12 (40M) £37.10.0 Kit.
Model HW-22 (40M) £36.0.0 each kit.
Model HW-32 (20M) price incl. duty, etc.

Deferred terms available in UK over £10
Prices quoted are Mail Order prices
DAYSTROM LTD
Dept. P.E.--10
GLOUCESTER

Without obligation please send me (Tick here)
FREE BRITISH HEATHKIT CATALOGUE

(full details of model(s).)
NAME ... DEPT. P.E.10
ADDRESS ..
You can now buy the world's finest speaker value direct from R&A.

The 700 Mark V Range
Specially designed to provide outstanding range, smoothness and uniformity of frequency response with freedom from self generated forms of distortion up to levels more than adequate for domestic listening. The speakers in this range all have a highly developed dual radiating system with optimum termination of both cones — voice coil impedence 15 ohms.

Power handling capacity in appropriate enclosures:—

780 Mk. V 8 in. 6 watts r.m.s. 12 watts peak. (inc. 10/6 P.T. and P. & P.)
Price £3. 18. 6

7100 Mk. V 10 in. 8 watts r.m.s. 15 watts peak. (inc. 12/6 P.T. and P. & P.)
Price £4. 13. 0

7120 Mk. V 12 in. 10 watts r.m.s. 18 watts peak. (No P.T. but inc. P. & P.)
Price £4. 18. 6

Send for full technical data sheet with suggestions for enclosures to:
REPRODUCERS AND AMPLIFIERS LTD.
Frederick Street, Wolverhampton England
LOUD SPEAKER MANUFACTURERS TO THE RADIO INDUSTRY SINCE 1930

KONTAKT 60

The special cleaner for inaccessible contacts
★ KONTAKT 60 cleans and protects all contacts
★ Eliminates high transition resistances
★ Prevents 'creep' currents
★ Does not affect plastic materials
★ In spray cans with 51⁄4" spray nozzle

Other Kontakt products are:-
70 Protective Lacquer
72 Insulating Spray
75 Cold Spray for Fault Location
80 Special Siliconized Polish
100 Antistatic Agent for Plastics

Write for full details of above complete range of Kontakt products to:-
SPECIAL PRODUCTS DISTRIBUTORS LIMITED
81 Piccadilly, London, W.1. GROsvener 6482

HERMETICALLY SEALED CONNECTORS
High Pressure, High Temperature, Low Leak Types from 1-100 Contacts.

Cannon Electric
(Great Britain) Ltd.,
Lister Road,
Basingstoke, Hants.
Tel: Basingstoke 3171
In our office at Mitcham we have a large map of the world. We stick a pin in it to mark each new area to which we have despatched our famous Components Catalogue. Our world has become a pin cushion! Yes, it's not only from Mitcham to Morden that our Catalogue is being used, nor even only from Putney to Pimlico... we know for instance that it is being used by the British Antarctic Survey Team at the South Pole, and as far North as the Arctic Circle. Fiji, Pekin and Budapest are just three more of the hundreds of places marked on our map. It is not by chance that the demand for the Home Radio Catalogue is world-wide. It is due to its reputation for accuracy, clarity and comprehensiveness. We have always set ourselves a high standard in these matters and we ensure that each edition is better than its predecessors.

Even if you don't live in Timbuktu or Wogga Wogga we shall be delighted to send you a copy of our catalogue. The price is still 7/6 plus 1/6 postage and packing. And remember—every copy contains five coupons, each worth one shilling when used as directed. Fill in the coupon on the right and send it today with your P.O. or cheque for nine shillings. Your catalogue will be sent by return post.

Please write your Name and Address in block capitals

Name

Address

Home Radio Ltd., Dept. PE, 187 London Road, Mitcham, Surrey
PLUMBING THE DEPTHS

Science fiction may have encouraged the belief that some of the world's sociological and economic problems will have to be solved by migration to other planets. Notwithstanding the impressive progress in space exploration, this is likely to remain a (very) long-term plan. We are sure the next few generations will just have to continue being dependent on the earth for living space and sustenance!

Not that the problems arising from the alarming rate of population growth have escaped the attention of many authorities throughout the world. In this connection expert opinion is unanimous that we can no longer afford to neglect the vast potentialities of that three-quarters of the earth's surface covered by the seas and oceans.

Knowledge of these areas is still very limited and oceanography is a comparatively young science. But it is fortunate that attention is being directed towards ocean exploration and exploitation at this present time when electronic technology has reached such an advanced stage.

Echo sounding devices have already played a large part in the charting of the ocean floor. These and many other electronic instruments will figure prominently in future exploration of these vast regions. This was made clear at a five day conference entitled "Electronic Engineering in Oceanography" organised by the Institution of Electronic and Radio Engineers and held recently at Southampton University. Scientists and engineers from many countries contributed to this conference, the first of its kind to be held in Europe.

The underlying purpose of this interchange was to discover how the food productivity of the seas can be increased, but there were many other important matters under discussion, including the exploration of new sources of power such as oil and gas fields, as well as pure scientific and geophysical research. A wide variety of measuring and recording systems developed for these special needs was described.

All the indications are that oceanography will provide abundant new opportunities for the electronics industry. Moreover, success in this latest area of development should bring tangible benefits to the world's expanding population long before the first emigration space ship leaves for Mars!
Nature has been producing very effective electronic devices long before man had even conceived the idea of the electron. Twentieth century inventions have long been paralleled by natural creations of similar basic function. Thus the eye with associated nerves and brain section is an electronic equipment comprising an efficient navigational radar with information storage facilities, built to dimensions not reached by even the latest man-made micromodule circuit techniques. Even experienced technicians seldom pause to be impressed by these achievements of Nature.

Exceptions to this rule are those displays of natural electronics which lead to spectacular phenomena, and thunderstorms here rank high up on the list. Since at least one hundred years, scientists have been trying to find out how thunderstorms produce their immense electrical energies of several million kilowatt-hours per cumulonimbus cell (thundercloud), whereby a large storm system may consist of 100 or more such cells. To this day, no final answer has been found.

For the duration of its average active lifetime of about 15 to 30 minutes, each cumulonimbus cell runs at an electrical power of about ten thousand megawatts, which exceeds the rating of even the largest man-made turbo-generators feeding the national grid system.

The principle of this powerful natural electric generator is not yet understood. However, we do know a great deal about the qualitative properties and structure of thunderstorms, and the first sections of this article will be devoted to these accepted facts.

AN EXPLOSION OF WARM MOIST AIR

Some meteorologists have aptly described the thunderstorm as an explosion of warm moist air. The essential starting requirements for the development of a thunderstorm are warm air of high humidity located as close to the ground as possible. Such air already contains all the vast energy which is ultimately unleashed in the storm. It is latently present in two forms, neither of which are electrical. The first form is simply the compression of the low-lying air, due to the weight of the other air masses above it. The second form is the latent heat of vaporisation of the water vapour content. Most of the energy is locked-up in this second form, but the first form is sometimes more important in getting the process started, i.e. in lifting the moist air to a level at which condensation can start and the liberated latent heat can then take over control. Thus there is no mystery about the source of the energy as such.

The thermodynamic energy content of roughly one billion tons of air participating in each, cumulonimbus cell, including the latent heat of vaporisation of the water vapour content, is about ten times greater than the ultimate electrical energy output of the cell. We thus know that its efficiency in converting heat energy into electrical energy is roughly 10 per cent. The question is to determine the nature of the mechanism adopted for this energy conversion.

TYPES OF THUNDERSTORMS

Thunderstorms are not ready-made structures which float along with air masses, approaching, passing overhead and then proceeding elsewhere. They are dynamic processes involving entire parcels of air which finally take the form of a cylinder with anvil crown, often ten miles high and ten miles in diameter.

When mature, the accompanying cloud structure has an appearance in many ways similar to the mushroom of an atomic explosion. This is not usually visible as
such from the ground, also by no means always on
aerial photographs either, because many cells in
different stages of development may merge into a more
extensive cloud structure covering large areas. It is
well established that each cell undergoes a distinct life-
cycle of its own, independent of neighbouring cells in a
composite storm system and lasting about one hour
inclusive of all phases. During the active part of its
lifetime, which normally does not exceed half an hour,
the cell seldom drifts further than through its own
diameter, i.e. 5 to 15 miles. In some cases it may not
move at all. When thunderstorms appear to travel
over distances of hundreds of miles, this is always by
way of regeneration of fresh independent cells adjacent
to older spent ones. Large storm areas involve
numerous cells which happen to be active simul-
taneously.

Thundercells are officially known as *cumulonimbus*
cells. This term is derived from the cloud structure,
whereby cumulus clouds are the frothy upward-rising
structures so familiar on fine days and “nimbus” is the
suffix for any cloud-type producing precipitation.

Thunderstorms are generally classified into two
groups, the *thermal* (convective) variety and the
frontal (cyclonal) variety. The same cumulonimbus
cell is produced in either case, the difference merely
laying in the nature of the initial conditions which cause
the warm moist air to rise to the point of water con-
densation. In practice, the distinction between thermal
and frontal character is by no means clear-cut in many
storms, the behaviour is also modified by the topo-
graphy, and any distinction is largely irrelevant by the
time the cell reaches maturity.

CYCLONAL INITIATION

Initial lifts of moist air to the point where latent heat
release can take over rapid thunderstorm development
are very frequent at the fronts of cyclonal disturbances,
particularly at the cold front, where cold air is under-
cutting the moist warm air and forcing it upwards
abruptly.

THE STRUCTURE OF A THUNDERCELL

Every thundercell passes through three phases, the
cumulus phase, the mature phase and the dissipating
stage.

Fig. 1 (left). Plan representation of a cyclone (depression)

Conditions which could favore thunderstorms

Fig. 2. Vertical section through a cyclone at ACWB

In Fig. 1 During the cumulus phase, huge volumes of air are

rushing into the rapidly growing cell, with towering

production of cumulus cloud. In the mature stage the
cell has attained its full dimensions of about a thousand
cubic miles, strong precipitation is forming and raining

or hailing out, ice and rain are present simultaneously

in the cloud which is now towering far above the frost

level, and downwind as well as upwind sections have
developed, producing wind shear and friction surfaces.

The onset of ice production in the upper regions of the
cell is coincident with the onset of strong radar

reflections at centimetric wavelengths, so that it can be
determined quite accurately. The first flash of lightning
appears roughly eight minutes later. The electrostatic

field near the cloud maintains normal fine-weather
values of about +250 V/m at ground level until the ice

production, marked by the appearance of centimetric

radar reflections, commences. In the following two
minutes, the field strength drops to zero and then

reverses polarity, climbing to about -3 kV/m in the

remaining six minutes before the first flash of lightning
darts out of the cloudbase and strikes the ground.

From measurements of the wavelengths of electro-
magnetic radiations as well as instantaneous field
changes, it is known that this first flash originates at a

height of just over two miles. The cloudbase usually

rests at a height of about a mile, so that at least one

half of the track of the first lightning flash is inside the

cloud. Subsequent flashes are found to originate from

increasingly greater heights, finally from a height of

about six miles, so that five miles of the track are

invisible inside the cloud and one mile is visible in the

air below.

These observations show that electric charges begin
to build up when the crown of the thundercell has
passed the frost level and ice is forming, not earlier.
The lower regions of the cell thereby acquire negative
charge (a surplus of electrons) and the upper regions a
positive charge (deficiency of electrons). The
negatively charged region encompasses a layer about
one mile thick by the time sufficient potential difference
has been established for the first lightning flash to take
place. This negative region grows to a thickness of
about five miles, i.e. to approximately half the total
height of the thundercell, in the course of its further
electrical activity. It appears that water and ice, but
certainly ice, are essential before the generation of electricity can take place in the thundercell.

CHARGING THE ICE-WATER MIXTURE

Most hypotheses so far put forward for an electrification mechanism are concerned with the possible behaviour of ice and water when in mutual contact under the extremely turbulent conditions inside a thundercell.

It can be demonstrated in the laboratory that a water spray or even an air jet directed at ice will cause electric charges to build up on the ice. Disruption of water drops also produces charges which can be collected on ice particles. The conversion of ice particles into sleet, subsequent breakup in lower regions of the cloud and all manner of analogous physical processes produce demonstrable electrostatic effects. If water droplets and ice particles thereby acquire opposite charge polarities, there is little difficulty in visualising their rapid separation through the influence of the mechanical turbulence, before neutralisation can take place.

Electronically this is equivalent to driving apart the plates of a capacitor whilst maintaining the charge. This is a straightforward way to boost voltage and convert mechanical energy into electrical energy. The problem is to obtain sufficient electric charge in the first place. It is just here that most hypotheses so far put forward fall short of actual requirements. To make matters worse, many of the processes with the best yields produce the incorrect polarity, or either polarity by chance. But thundercells are always negative at the base and positive at the crown.

HOW MUCH CHARGE IS REQUIRED?

Electrostatic field measurements around thundercells and flashes of lightning have revealed that an average ground discharge dissipates 20 coulombs and the repetition rate is about 20 seconds. In other words, the charge source must be able to deliver an externally manifest mean current of 1 amp for 15 to 30 minutes before it is exhausted. It is rather difficult to visualise more than a small fraction of this current from most individual ice-water turbulence mechanisms, so that several of these would have to operate simultaneously, if it should turn out that the actual mechanism really is based on them.

EQUIVALENT ELECTRICAL CIRCUIT

A discharge can take place when the accumulation of charges has built up to the breakdown voltage. The discharge may take place entirely within the cloud, between its oppositely charged regions, or via a circuit external to the cloud. It is found that about 85 per cent of the discharge current takes the former path, leaving only some 15 per cent for the external circuit involving ground strokes of lightning with their mean current of 1 amp for each thundercell. The net current including the internal dissipation is thus about 7 amp. Fig. 3 shows an equivalent circuit for describing the properties of the discharges in detail.

The internal shunt resistor represents the internal discharges. Its value is typically 200 megohms and since it carries a current of 6 amp, the e.m.f. of the thundercell is approximately 1,200 megavolts. This source of e.m.f. is depicted in series with a rectifier diode to emphasise the important fact that thunderstorms are never found with the opposite polarity. The power dissipated in is clearly about 7,200 megawatts, whilst some 1,200 megawatts mean power are dissipated in the resistors of the external circuit branch.

The lightning flashes to ground are depicted by the resistor whose value is typically 800 megohms and thus dissipates nearly two-thirds of the total external power. The ground discharges must be balanced by discharges into the ionosphere, which are usually of a corona or glow character. They are depicted by the resistor whose value normally lies around 480 megohms. The external circuit is completed by the leakage resistance between the ionosphere and ground. This has the very low value of 145 ohms, because the entire atmosphere of the world is available for it. It is common to the circuits of all thunderstorms throughout the world and is found to be carrying...
a total current of 1,500 amp which is a measure of the average total thunderstorm current for the whole world. This current produces a voltage drop of about 225kV across R_1, i.e. between the ionosphere and ground. The conductivity giving rise to R_1 is largely due to ionisation in the atmosphere at large, due to cosmic radiation. If ground flashes of lightning individually transfer 20 coulombs and the combined world return current is 1,500 amp, there must be 75 ground flashes of lightning per second in the world taken as a whole. Thunderstorms are thus extremely common.

Although the height of the ionosphere layers differs and fluctuates, we may consider 0.04 farad as an approximate value for the spherical capacitor constituted by the ionosphere and the ground. In conjunction with $R_1 = 145$ ohms, this gives a storage time constant of about six seconds, during which time a mean number of 450 flashes of lightning are expected throughout the world. Assuming normal statistical behaviour, we can expect a random fluctuation of about ± 5 per cent. Fluctuations of ionospheric capacitance due to changes in height of the layers, sunspot activity, etc. are obviously much greater, so that it is not possible to employ observed fluctuations of the fine-weather return current through R_1 for drawing conclusions about non-random fluctuations of worldwide thunderstorm activity.

It is interesting to note that all the thunderstorms in the world may be treated as transformer and rectifier of a power pack, with the ionospheric capacitance as reservoir capacitor and the resistor R_1, as load resistor. The output power is then about 340 megawatts, whilst some 250kWh are stored in the reservoir capacitor. These figures clearly represent only a small fraction of the total electrical power, most of which is dissipated inside the thundercells and by the lightning flashes immediately below them.

Let us conclude this section by recapitulating the polarities. These are never the reverse. The ionosphere rests about 225kV positive with respect to ground. It draws up electrons from the ground. This fine-weather upstream of electrons takes place throughout the world, except at those isolated locations where thunderstorms happen to be taking place. The ionosphere delivers the electrons into the positive tops of all thundercells. The lightning flashes out of the negatively charged bases of all thundercells convey the electrons back into the ground, to complete the global circuit.

LIGHTNING TRACKS

Lightning discharges out of the base of the thundercell are propagated by a pilot and return stroke, instead of by a direct-shot discharge. The pilot advances out of the cloud in steps of 10 to 100 yards at a time and consolidates each step by transferring negative charge out of the cloud to the extremity of the pilot. This process is usually accompanied by branching, whereby not all branches need reach the ground finally. When any heads of the pilot have come within a few dozen yards of the ground, they become able to distinguish differences in topography and conductivity and seek optimum points within their range for striking the ground. The return stroke is thereby initiated and taps-off all the negative charges stored along the pilot track.

This process is almost instantaneous and gives rise to a massive current pulse of many thousands of amperes, accompanied by most of the visual and audible effects. Several further discharges out of the cloud usually follow in quick succession along the prepared track. The whole sequence, including the pilot, takes approximately one second. The essential function is to convey electrons from the cloudbase into the ground.

The discharge current will distribute roughly hemispherically from the point at which the discharge enters the ground. Even if the ground resistance is only a fraction of an ohm per yard, voltage drops of several kilovolts can still arise under these conditions between the legs of a walking person standing close to the point of direct entry into the ground, or entry via a lightning arrester, tree or other tall object. Such potential differences can electrocute a person even if he has not been struck directly. When surprised by thunderstorms, it is thus important to keep away from preferred objects of entry, to keep both feet close together and not to touch the ground or other objects with the hands or other parts of the body. It is also advisable to squat down low.

All types of trees are dangerous to stand under, since they will attract the pilot if its head happens to pass sufficiently close. Certain types of trees with a smooth bark offer excellent surface conductivity when wetted by the torrential rainfall accompanying thunderstorms, so that the discharge current does little or no damage to the tree. Other rough-barked trees offer little surface conductivity, so that the discharge passes through the internal sap ducts and may explode the tree. This visible damage has led to the quite false belief that such types of trees are preferred by lightning.

The useful function, if any, of lightning conductors on buildings is still a debatable point. Lightning is not the only means by which a thundercell can discharge electrons to ground. Corona discharge, especially at elevated pointed objects, is also possible and some authorities maintain that a good lightning conductor can reduce the frequency and intensity of lightning flashes in its vicinity by draining off charge quietly. Other sources state that the chief function of the conductor is to provide an easy path to ground if struck, thus minimising the resulting damage. This is analogous to the smooth-barked trees which often survive unscathed when struck by lightning.

WORLDWIDE DISTRIBUTION OF THUNDERSTORMS

An important fact is that thunderstorms are very much rarer at sea than over land, whilst inland they are most frequent over geographically disturbed areas. They are commonest over equatorial land masses and their frequency drops to zero approximately at the pack-ice boundary as polar regions are approached. This might well be expected and explained by the reduced solar radiation intensity in high latitudes. But not so the fact that thunderstorms are rare over equatorial and temperate oceans. Cyclonal lifts should here be possible, and indeed cloud formations and storm intensities akin to thunderstorms are produced—but often without the accomplishment of electrical phenomena.

POSITIVE CHARGE ISLANDS

More detailed observations of the electrostatic fields around thundercells have shown that the potential gradient once again drops to zero and returns to fairly high positive values when a cell is directly overhead.
This means that small islands of positive charge must be located within the main region of negative charge in the cloudbase. These positive islands are independent of the main positive charge in the crown and they are much smaller. They appear to be associated with the region in which the heaviest rainfall is leaving the cloudbase (Fig. 4).

ALPHA-RADIATION IN THUNDERCELLS

All land masses contain minute traces of uranium and radium, in whose radioactive decay chains exist isotopes of the gaseous element emanation, chiefly the gas radon. This seeps out of the rocks and into the air. In spite of the extremely minute quantities of material involved, the resulting radioactivity imparted to the air is quite appreciable, on account of the intense specific activity of these substances.

A useful unit for the radioactivity of a specimen is the picocurie (10^{-12} curie), corresponding to 2-2 disintegrating atoms per minute. The radon activity in continental air masses is about 100 picocurie per cubic yard. At sea it is very much less, because water tends to dissolve emanation gases rather than injecting them into the air. Over geologically disturbed areas the radon content of the air can be much greater. A mature thundercell contains about 10^{12} cubic yards of air, so that over land masses it may be expected to contain at least 100 curie of radium emanation and its first daughter product radium A, both of which are intense alpha-emitters. Now 100 curie of an alphasmitter produce 2.2×10^{14} alpha-particles per minute, representing an electric current of about 1 microampere.

The alpha-particles are ejected from the radioactive atoms with an energy of 6 million electron volts and are known to dissipate this energy by producing short tracks of dense ionisation. If each ionisation requires a volt or two, which is a reasonable figure for ice, it is clear that a charge multiplication factor of several million is feasible before the energy of the primary alpha-particles has been expended in this manner. The total charge production by this mechanism alone could thus amount to several amperes, which is of the required order of magnitude to account for the observed electrical phenomena of the thundercell.

There can hardly be any doubt about the production of these charges. Continental air masses engaged in a thundercell contain this amount of alpha-radioactivity and the familiar ionisation phenomena thus must take place. The question open to discussion is whether these charges simply recombine on the spot and then contribute nothing to the electrification of the thundercell, or whether the turbulence can get a grip on them sooner, hurling them apart to build up the huge amounts of electrical energy produced in a thundercell. As an alternative, the alpha-ionisation may induce sufficient partial electrification for producing conditions favourable for large-scale exploitation of one or more of the conventional mechanisms.

This hypothesis would give a clear reason why thunderstorms are rare at sea although otherwise similar storms but lacking electrical phenomena are not infrequent there. The concentration of radium emanation in the air is inadequate remote from land masses. The time taken for air masses to move well out to sea is comparable with or long relative to the 3-5 day half-life of the emanation, so that there is not much left by the time the air gets there.

A second argument is more involved and is based on the author's own experimental observations of the emanation product radioactivity in thunderstorm rainfall. This work has been handicapped by the fact that only a single station was operated at a fixed site, waiting for whatever weather happened to come by chance. The results are necessarily more confused than if several mobile or airborne stations had been operated simultaneously to approach and encircle the weather patterns of interest, aided by all other meteorological services and methods of location.

ELECTRONIC EQUIPMENT AND METHOD

The principle was to make comparative studies of the initial concentrations and decay rates of the mixed emanation products for successive small samples of rainwater taken in the course of thunderstorms and other kinds of rainfall, aiming to detect systematic trends and differences for drawing possible conclusions therefrom. This called for the construction of an efficient multi-channel ratemeter system with chart-recording facilities for comparing the radioactive decay of successive samples of rainwater on a common time scale. It is essential to ensure a high degree of circuit stabilisation against random electrical or thermal drifts. A great deal of work was involved in designing a fully satisfactory electronic equipment, but all problems on this score have been solved.

Coaxial Geiger-Muller counter tubes for liquid samples have chiefly been employed as radiation detectors. These are almost exclusively responsive to the high-energy beta and gamma radiation of radium C. If a sample contains equilibrium amounts of all the successive decay products of radium emanation, then a mean decay half-life of about 35 minutes will be observed, corresponding to the equilibrium sequential decay of the products. If radium C is deficient, then it must first of all be produced from its forerunners, so that the measured activity will initially increase over any time from 10 to 90 minutes, before a decay can commence for the mixture as a whole. On the other hand, if radium C is in excess, its forerunners may be ignored and the observed mean half-life of the sample

Fig. 4. Sketch of a mature thundercell
will approach more closely to the short 19 minute half-life of pure radium C. A detection system which is exclusively responsive to radium C is thus quite sensitive to variations in the proportions of this isotope relative to its forerunners.

RESULTS AND DISCUSSION

Of the various systematic trends indicated in the course of these experiments, only two are of outstanding importance in relation to thunderstorm electricity. The first effect was noted at an early stage, since it can interfere with the method of taking samples. These are caught in a large plastic photographic developing tray. If the rainwater is poured therefrom straight into the radiation detector system, rather low readings and short decay times are observed, corresponding to deficiency of radium C. If the tray is subsequently washed down with an equal volume of dilute nitric acid and the washings are then run parallel on another ratemeter channel, rather high readings and long decay times, corresponding to deficiency of radium C, are observed. In many cases filtration of the water prior to measurement can bring this separation process to virtually quantitative completion. The earlier product radium B, possibly even radium A, thus shows a great tendency to deposit out of the water onto any available solid surface, whilst that portion of the radioactivity which has already decayed as far as radium C remains in homogeneous solution. This observation is significant, because it means that similar deposition phenomena might be expected inside a thundercell, once ice begins to form and presents a solid deposition surface.

This brings us to the second important trend which has been noted. Thunderstorms usually commence with isolated large drops of rain for a few minutes, followed by a fairly sudden transition to torrential rainfall. In most cases this appears to be an equally sudden transition in the nature of the radioactivity in the rainwater. The initial drops tend to show high specific concentrations, but short decay times, so that they contain radium C in excess, having lost the earlier products. The early portions of the torrential rainfall contain much lower specific concentrations (yet greater total amounts of activity), but have quite long decay times, showing that here radium C is deficient and the earlier products predominant.

Now it is known that the large raindrops of the torrential rain result from melted ice particles which have grown at the expense of smaller water or cloud particles in the upper regions of the cloud, often after several journeys up and down through the cloud in the turbulence streams. Thus the author's observations could be taken as evidence that the ice in a thundercell accumulates large fractions of the emanation product radioactivity arriving with the inrushing air.

Furthermore, in a mature thundercell the boundary between the indefinite earlier section and the start of the torrential rainfall is also roughly the dividing line between the inrushing upwind and the outgoing downwind, i.e. it is the wind shear and friction surface. If most of the alpha-radioactivity really is concentrated in this region of maximum turbulence, there would indeed be a better chance for the turbulence to get a grip on the resulting intense ionisation, in order to separate the charges to the observed magnitudes.

The author must emphatically point out that this is still pure conjecture. The observed behaviour of the radioactivity is fact, but the interpretation put forward may be right or wrong. Other explanations are conceivable, but the type of further experiments necessary to decide the issue are obvious and feasible.

DETERMINATION OF POLARITIES

On the basis of the alpha-radioactivity hypothesis as a mechanism for the electrification of thunderstorms, it would be necessary to depart even further into the realm of pure conjecture in order to give a plausible explanation of the definite polarity, i.e. of the "rectifier behaviour" of the thundercell. Nevertheless, at least one reasonably straightforward mechanism is conceivable.

The crystal structure of ice is an array of rather loosely packed oxygen atoms, with interposed protons (hydrogen bonds) holding the oxygen atoms further apart than a spacing corresponding to close packing. It would be conceivable that the radiation of intense alpha-activity accumulated on the ice could smash-out protons, which are positively charged and very readily attached to small particles in the upstream which then carries them aloft to the crown of the cloud. The negatively charged ice crystals would ultimately drop out as rain to the base of the cloud. By the time they get there, the radioactive products could have decayed through radium B and radium C to radium C, which is once again an intense alpha-emitter and might thus attempt to repeat the process in miniature in the cloud base. This could account for the observed islands of positive charge inside the principal negatively charged region at the bottom of the mature thundercell.

In conclusion, it should be noted that the e.m.f. of a thundercell falls into the same class as many of the more powerful man-made particle accelerators, i.e. it is ample for inducing a whole variety of nuclear reactions. At the high beam currents involved, it might be worth considering whether nuclear reactions play any role in the behaviour of a thundercell. But this is really begging the question, for we are looking for a mechanism leading to the creation of the high voltages and powers, not for secondary effects produced by these voltages once they are established.
The constructional articles in this month's issue are mainly devoted to building six electronic circuits, any one of which can be made up on the sample piece of Veroboard given free with this issue.

It will be seen from the diagrams just how much can be packed on to a small board $2\frac{1}{2}$in $\times 1\frac{1}{2}$in containing 119 holes and seven copper strips. This sample piece has been manufactured specially for Practical Electronics and is not generally available in the size given; neither can extra samples be purchased in this size. However, extra pieces can be cut from the larger sizes generally available.

The holes in the board are arranged in a $0\cdot15$in square matrix, each row of holes being given a code number or letter for easy location of component wires.

Where a large number of components are mounted on the board it is often necessary to make breaks in the copper strips to isolate two or more distinctly different parts of the circuit.

There are a number of ways of breaking the strips, but in any case care must be exercised to prevent the wanted part of the strip being lifted. They are bonded on to the board and being very thin ($0\cdot0015$in) and only $0\cdot1$in wide they can be easily damaged.

There is a special tool on the market which will make clean circular cuts in the strip. This tool, the spot face cutter, looks like a short twist drill with a centre spigot and wooden handle (see photograph). The spigot is located in the appropriate hole where the break is to be made. A firm but gentle twist on the tool will cut the copper.

An alternative method is to use a sharp thin bladed penknife, adopting a backward and forward "sawing" action. The piece of copper to be removed should be cut on either side of the hole. It can then be lifted as before. Be careful not to allow the knife blade to cut adjacent strips.

It is sometimes necessary to link two or more strips; this is done with link wires on the top of the board.

PROJECT CONSTRUCTION

Each article in the Miniboards series is easily recognised by the grey symbol M. The projects are not intended to be self-contained units that will be used on their own; that is why no housing or cabinet details are provided. It was envisaged that the constructor would be able to incorporate his selected project into a more complex piece of equipment that he has already or can build with it.

Due to the density of components on the boards a few hints might be helpful to make construction easier.

Always start by cutting the breaks in the copper strips where necessary. Secondly, if link wires or flying leads are required solder these in position; p.v.c. covered wire is recommended. Next, insert the components on the top (plain) side of the board commencing at one end and working your way out to the other end. This will avoid accidentally touching a component with the soldering iron and give sufficient room to manipulate with a pair of round nosed pliers.

For the most efficient soldered joint, insert the wire through the hole, bend over and cut off the surplus, leaving about $\frac{1}{2}$in of wire laying flat on the strip to solder.

Most of the components are mounted on end with the top lead bent down to pass through a nearby hole. The components should not touch the board, but be left standing on their connecting wire about $\frac{1}{2}$in above the board. This provides a maximum degree of air circulation around the components. It is better to leave the wires too long rather than too short.

A word of advice concerning transistors: always use a heat shunt—a pair of pliers—gripping the lead-out wires between the soldering iron and transistor itself. Do not bend the lead-out wires closer than $1\cdot5$mm from the transistor encapsulation.

6 interesting projects are described in this issue
The first of this series of Miniboard projects is probably the easiest from both the theoretical and the constructional points of view.

The unit contains a light sensing element and an electronic switch. The switch is off under normal daylight conditions, but when the light falls to a pre-determined level, such as at dusk, the switch automatically changes state and switches on. It may be used to operate an external device, such as a lamp or an alarm circuit.

The unit can be modified to give a number of alternative modes of operation, for example, switch is normally on but switches off when the light falls to a pre-determined level, or switch is normally off but switches on when light is raised to a pre-determined level.

HOW IT WORKS

The complete circuit of the unit is shown in Fig. 1. The light dependent resistor X1 is a cadmium sulphide photocell; the resistance of this device varies with the light intensity.

Under conditions of extreme darkness the resistance is in the order of a couple of megohms, falling to as low as a few hundred ohms in extremely bright conditions. X1 is connected in series with VR1, the two components forming a potential divider circuit. As the light level falls the voltage at the junction of VR1 and X1 rises.

TR1 is an emitter follower or impedance changer, with emitter load VR2. The emitter follower has a relatively high input impedance compared with the output, with an amplification factor of almost one. Because of its high input impedance, TR1 causes negligible shunting across X1; the voltage appearing at TR1 emitter is very nearly the same as that on its base.

SCHMITT TRIGGER

TR2 and TR3 constitute a Schmitt trigger; this is a two state circuit in which either TR2 is on and TR3 off, or TR3 is on and TR2 is off. The state of the circuit can be changed by applying a suitable trigger potential to TR2 base.

In the circuit shown in Fig. 1, R1 and VR2 form a potential divider base-bias network for TR2. The bias voltage is such that TR2 is normally off, with its collector at near full negative rail potential, and TR3 is switched on with its collector at near zero volts. TR4 is wired as an emitter follower, d.c. coupled to TR3 collector. In the prototype circuit a 6 volt 40mA bulb is used as the emitter load of TR4.

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th>VR1 25kΩ</th>
<th>R4 10kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 47kΩ</td>
<td>VR2 10kΩ</td>
<td></td>
</tr>
<tr>
<td>R2 5.6kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3 22kΩ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All 10%, ±1% watt carbon

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th>VR1 25kΩ</th>
</tr>
</thead>
</table>

preset skeleton

VR2 10kΩ miniature

<table>
<thead>
<tr>
<th>Photo Sensitive Device</th>
<th>X1 ORP12 (Mullard)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
<th>TR1, 2, 3, 4 NKT277 or NKT274 (4 off) (Newmarket)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Diode</th>
<th>D1 OA200 (Mullard)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lamp</th>
<th>LPI 6 volt 40mA (or relay, see text)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
<th>BY1 9 volts type PP7 or PP9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Sample piece of Veroboard</th>
</tr>
</thead>
</table>

Battery connectors

P.V.C. covered wire

Fig. 1. Circuit diagram of the light operated switch
If diode D1 is omitted from the circuit it would be found that, although TR4 base (and TR3 collector) are at near zero volts, sufficient negative bias would still be available to cause TR4 to conduct quite heavily (to approximately 30mA). Diode D1 effectively raises the emitter potential of TR4, reducing the negative bias condition, and reducing the emitter current to approximately 2mA with the Schmitt trigger off.

As the external light level falls and the resistance of the l.d.r. rises, the potential at TR1 base (and emitter) rises; the voltage on TR2 base rises also. When the voltage on TR2 base rises sufficiently, the Schmitt trigger circuit will switch very sharply. TR2 collector falls to near zero volts and TR3 collector rises to near full negative rail potential. The base of TR4 also rises to near full negative rail potential and the transistor conducts heavily, lighting the bulb LPJ.

When the external light level rises again, the potential on TR2 base falls; when this potential falls to a sufficiently low level, the Schmitt circuit again switches, reverting very sharply to the off state.

It should be noted that there is a small difference between the potential required to switch the Schmitt circuit on and that required to turn it off again; the difference between these two potentials is referred to as "backlash". By adjusting VR1 and VR2, the circuit can be set to switch at any required light level with negligible backlash.

CONSTRUCTION

Construction is fairly simple. All components except R1 are mounted vertically (see introductory article). Start by breaking the copper strips. Solder the flying leads for the battery to the Veroboard where shown in Fig. 3.

When assembling the unit, start by mounting VR1, X1, TR1, and VR2. Now check that this part of the circuit functions correctly, by temporarily connecting a 9 volt battery and using a voltmeter to check that the voltage at TR1 emitter varies with the light level. Next, wire up the Schmitt trigger circuit, then check that it functions correctly. Finally, wire up TR4, LPJ, and D1, and check that the complete circuit functions correctly.

Transistors NKT277 are industrial types; the NKT 274 is suitable as an alternative.

VARIATIONS OF THE CIRCUIT

In the circuit shown in Fig. 1, LPJ is normally off, but switches on when the light level falls to the preset value. If it is required that LPJ should be normally on, but switches off when the light level falls to the preset value, modify the circuit by breaking the connection between TR4 base and TR3 collector and re-connecting TR4 base to TR2 collector. If it is required that LPJ should be normally off but switches on when the light level rises to a predetermined value, modify the circuit by transposing the positions of VR1 and X1.

Finally, if it is required that LPJ is normally on but switches off when the light level rises to the pre-determined value, modify the circuit by transposing VR1 and X1 and breaking the connection between TR4 base and TR3 collector and re-connecting TR4 base to TR2 collector. To cover a wide range of light intensity it may be necessary to increase the value of VR1.

LPJ may be replaced by a 6 volt relay, if required. The relay resistance must be greater than 120 ohms; with resistance greater than about 1,000 ohms, diode D1 may be omitted from the circuit.

Although LPJ is marked as a 6 volt 40mA bulb, it may be found that it actually takes a current of about 70mA, due to the wide manufacturing tolerances. Make sure that the resistance of LPJ or any alternative load in the emitter of TR4 is not so low as to allow currents greater than about 80mA to flow, or TR4 or D1 may be damaged.

USING THE UNIT

To set the unit to operate at the required degree of darkness, set VR1 at about mid-travel and turn the moving arm of VR2 so that it is at near zero potential. Now reduce the intensity of light falling on the face of X1 to the trigger level required; adjust VR2 to the point where LPJ switches on.

Now slightly increase the level of light falling on X1; LPJ should switch off again; if it does not, systematically adjust VR1 and VR2 until a combined setting is obtained at which the required trigger level is achieved with a minimum of "backlash".

APPLICATIONS

The circuit has many uses: it may be used to switch the parking lights of a car on automatically at dusk and off again at dawn, or to carry out a similar function with house lighting. It can be adapted as a lamp economy unit for “pot-holing” or to give automatic operation of a torch.

The circuit may be used to trigger a “light-beam” type of burglar alarm; it may be used as the basis of a counting unit, the output of the unit being fed to an electro-mechanical counter, while the articles that are being counted are made to make and break a light beam that is directed on to the light dependent resistor. The reader will, no doubt, find many other uses for the "Light Operated Switch".
BSR add yet another plus feature to the remarkable UA70 automatic/manual turntable unit by including an integral mechanical cueing device — and without increasing the price. This cueing device allows the pick-up arm to be raised or lowered at any selected point on a record during manual play. Raising the cueing lever lifts the pick-up arm which may then be positioned above the record at the chosen point. The stylus is lowered gently to the groove by returning the lever to the rest position.

Now, more than ever, the UA70, with its wealth of outstanding design features, fine engineering and high performance, provides the selective listener with a turntable unit of quality unsurpassed in this price range.

£12.18.3 retail, including P.T. without cartridge.
Wide range of courses available include:

- Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, and Telemetry, Computers, etc.
- NEW! Programmed Course on Electronic Fundamentals
- Radio/T.V. Engineering and Servicing, Closed Circuit T.V.
- Instructors, all makes of pick-ups and microphones.
- Output Transformer tapped for 3 and 15 ohms speech coils. Built and tested. £4, 19/6, P. & P. 12/6.

3-way Training Method:

1. MASTER THE THEORETICAL SIDE:
 - From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

2. MASTER THE PRACTICAL SIDE:
 - ICS shows you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

3. MASTER THE MATHEMATICAL SIDE:
 - To many this aspect is a bitter problem. Even so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:

- Radio/T.V. Engineering and Servicing, Closed Circuit T.V.
- Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.
- NEW! Programmed Course on Electronic Fundamentals

For FREE HANDBOOK POST THIS COUPON TODAY

I.C.S., Dept. IS1, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11

NAME

ADDRESS

OCCUPATION...AGE...10.66

INTERNATIONAL CORRESPONDENCE SCHOOLS

THE MOTORISTS' REV COUNTER
FULLY TRANSISTORISED

Suit 4 or 6 cyl. engines. Would cost at least £8 to buy. Kit contains moving coil movement and all parts including transistors, a circuit diagram and full instructions. Minimum reading 8,000 r.p.m. Send P.O. for 22/-, which includes 2/6 postage.

- **CYLDON U.H.F. TUNER** complete with PC.88 and PC.86 Valves. Full variable tuning. New and unused. Size: 4¾" x 5½" x 7½". Complete with circuit diagram. 35/- plus 3/6 P. & P.
- **8-watt 5-valve PUSH-PULL AMPLIFIER & METAL RECTIFIER** Size: 9 x 6 x 1½" A.C. Mains 200-250v. 5 valves. For use with Std. or L.P. records, musical instruments, all makes of pick-ups and microphones.
 - Output 8 watts at 5 per cent total distortion.
 - Separate bass and treble lift controls.
 - Two inputs, with controls, for gram and mike.
 - Output Transformer tapped for 3 and 15 ohms speech coils. Built and tested. £4.19/6, P. & P. 12/6.

ELEGANT SEVEN Mk II

Combi-Portable Car and T.V. Radio

The随 the "Star" Features

- **7-transistor superhet. Output 180 mW.**
- Wooden cabinet, fitted handle with silver-coloured fittings, size 12½" in. 8½" in. x 3½ in. x 2½ in. In silver with black lettering.
- Horizontal tuning scale, size 1½ in. x 2½ in. All stations clearly marked.
- Ferrite-rod internal aerial.
- Separated from PP9 battery, fully comprehensive instructions and point-to-point wiring diagram.
- P. & P. 3/6 free with parts. 360 mW.

TRANSPORTER SIGNAL GENERATOR

Size 5½" x 3½" x 1½". For IF and RF alignment and AF output, 700 c/s frequency coverage 460 Kc/s to 2 Mc/s in switched frequencies. Ideal for alignment to our Elegant Seven and Musette. Built and tested. 39/6, P. & P. 5/6.

ELECTRONIC AUTOMOBILE REV COUNTER

For 4 or 6 cyl. engines. Would cost at least £10 to buy. Kit contains moving coil movement and all parts including transistors, a circuit diagram and full instructions. Minimum reading 8,000 r.p.m. Send P.O. for 22/-, which includes 2/6 postage.

POWER SUPPLY KIT

To purchasers of Elegant Seven parts, incorporating main transformers, etc. A.C. mains 200-250v. Output 9v. 50mA, 7½d. extra.

THE MOTORISTS’ REV COUNTER

Suits 4 or 6 cyl. engines. Would cost at least £8 to buy. Kit contains moving coil movement and all parts including transistors, a circuit diagram and full instructions. Minimum reading 8,000 r.p.m. Send P.O. for 22/-, which includes 2/6 postage.

8-watt 5-valve PUSH-PULL AMPLIFIER & METAL RECTIFIER

Size: 9 x 6 x 1½" A.C. Mains 200-250v. 5 valves. For use with Std. or L.P. records, musical instruments, all makes of pick-ups and microphones.

- Output 8 watts at 5 per cent total distortion.
- Separate bass and treble lift controls.
- Two inputs, with controls, for gram and mike.
- Output Transformer tapped for 3 and 15 ohms speech coils. Built and tested. £4, 19/6, P. & P. 12/6.

ELEGANT SEVEN Mk II

Combi-Portable Car and T.V. Radio

The随的 "Star" Features

- **7-transistor superhet. Output 180 mW.**
- Wooden cabinet, fitted handle with silver-coloured fittings, size 12½" in. 8½" in. x 3½ in. x 2½ in. In silver with black lettering.
- Horizontal tuning scale, size 1½ in. x 2½ in. All stations clearly marked.
- Ferrite-rod internal aerial.
- Separated from PP9 battery, fully comprehensive instructions and point-to-point wiring diagram.
- P. & P. 3/6 free with parts. 360 mW.
This circuit has been deliberately designed in its present simplified form, as its primary purpose is intended to illustrate the general design features of the Wien bridge oscillator circuit. It is possible to incorporate this unit in a more complex arrangement to provide an audio signal generator, as shown last month.

GENERAL PRINCIPLES OF OSCILLATORS

To cause an electronic circuit to oscillate, the main requirement is that the output of an amplifier, with a voltage gain greater than 1, should be fed back to, and in phase with, its input.

The circuit will then oscillate, but the frequency of oscillation and the shape of the waveform needs to be controlled. To obtain full frequency control, a filter network must be introduced into some part of the circuit, in which case it is the overall gain of the circuit that must be made greater than 1. If a pure sine wave output is required from the circuit, the overall gain must be held constant at exactly 1.

WIEN BRIDGE

One of the most useful filter networks for use as the frequency determining section of an audio or low frequency oscillator is the Wien bridge, shown in basic form in Fig. 1.

![Fig. 1. Basic circuit of a Wien bridge network](image)

The important feature of this particular network is that the output signal is out of phase with the input at all except one particular frequency; the frequency at which input and output are in phase is determined by the component values of the bridge.

In actual practice the Wien bridge is usually designed to give an actual "null", by suitable selection of the values of R3 and R4, at the required frequency. For use in an oscillator, this "null" condition is not needed; R3 and R4 can be left out of the circuit and the output signal taken from between the C1, R2, C2 junction and earth. This modification makes no difference to the phase relationships of the circuit.

It is more or less standard practice to select the values of the Wien network such that R1 = R2 and C1 = C2. In such a case, the attenuation factor of the Wien network is 3 at the frequency corresponding to zero phase shift. The tuned frequency is given as:

\[f_0 = \frac{1}{2\pi R_1 C_1} \]

OSCILLATOR CIRCUIT

The basic circuit of an oscillator using the Wien network is shown in Fig. 2. The input and output of the amplifier are in phase and the overall gain is unity.

The Wien network in the circuit of Fig. 2 is made up as follows: R9 and C2 correspond to R1 and C1 of Fig. 1, while C1 of Fig. 2 corresponds to C2 of Fig. 1; R2 in Fig. 1 corresponds to R8 and VR1 in series in Fig. 2. R1 and R2 in Fig. 2 are in parallel (from an a.c. point of view) and have some small effect on this arm of the network, although the primary function of R1 and R2 is to provide base bias to TR1.

By using this method of connection, it is possible to vary this combined resistance and thus the frequency, without appreciably changing the base bias conditions. In the interest of good frequency stability over a reasonable temperature range, the base current of the first transistor of the amplifier should be either very constant or very small compared to the oscillatory currents of the Wien network.

In the circuit in Fig. 2 the second of these alternatives is used, TR1 and TR2 being a Darlington pair to give very high gain, with correspondingly low base current to TR1. TR1 and TR2 can be regarded as a

WIEN BRIDGE OSCILLATOR
single, very high gain transistor, connected as a common emitter amplifier, with collector load R4, an uncoupled emitter resistor R3, and base bias voltage divider network R1 and R2.

A second common emitter amplifier TR3 has its base directly coupled to the collector of TR2; the collector of TR3 is coupled, via C4, to the input of the Wien network, completing the positive feedback path. The collector of TR3 also coupled, via C4 and VR2, to the emitter of TR2; this part of the circuit forms a negative feedback loop, by which the gain of the amplifier can be reduced to approximately 3, i.e. the overall gain of the circuit can be set at 1.

Finally, the output of the Wien bridge oscillator, taken from TR3 collector, is directly coupled to the base of TR4, an emitter follower, which gives a low impedance output from the unit via C5.

CONSTRUCTION

Construction is fairly involved and will need some degree of patience and practical ability.

Following the procedure outlined in the introductory article, cut the copper strips according to Fig. 3. Then assemble the wires and components, starting at one end and working through to the other end.

When complete, check the wiring and connect the battery. If an oscilloscope is available, monitor the output and check that the unit is functioning. If no oscilloscope is available, connect the output to an audio amplifier, or a.c. voltmeter. If no output is obtained, try adjusting VR2.

The transistors NKT672 in the circuit diagram (Fig. 2) are industrial types, but suitable alternative types, NKT675 may be more easily obtained. In case of difficulty the manufacturers will advise.
SETTING UP
An oscilloscope will be found to be most useful. Set VR1 to mid-travel and VR2 to maximum resistance; the overall gain of the circuit will be greater than 1 and the output waveform will be severely distorted, approaching a square wave. Now slowly decrease the resistance of VR2; the waveshape will improve until a point is reached at which a nearly pure sine wave (about 6 volts peak-to-peak) is obtained. Decreasing the resistance of VR2 further will result in a decrease in amplitude and distortion. Eventually, oscillation will cease completely as the overall gain falls below unity.

Next, reset VR2 to give a sine wave of about 3 volts peak-to-peak. Now change the setting of the frequency control VR1 both to increase and to decrease the frequency; it will be noticed that, as the control is turned in one direction, the distortion of the waveform increases, while in the other direction the amplitude decreases until oscillation ceases completely. These changes are due to changing levels of attenuation that occur in the Wien network as the relative values of resistance in the upper and lower arms are altered; the attenuation factor is three, only when the two arms hold the same values of resistance and capacitance.

WIDER FREQUENCY RANGE
Using the component values shown the frequency range of the unit is about 800-1,000 c/s. If lower frequencies are required, increase the values of C1 and C2; for higher frequencies, decrease the value of these two capacitors. The circuit will operate satisfactorily up to several hundred kilocycles per second.

If a variable frequency oscillator is required, replace R9 and the R8–VR1 combination with a twin ganged 10 kilohm potentiometer. This modification will largely overcome the variations in waveform level and shape that can occur when only one resistive arm is used to vary the frequency.

For really good results, as are required in a signal generator, some form of automatic amplitude stabilisation is essential; it will probably be found that, if VR2 is replaced by a thermistor (type R53) and R3 is replaced by a 500 ohm preset potentiometer with its moving arm connected to the zero line via a 50 μF capacitor, the required results can be obtained by adjusting the 500 ohm preset for minimum distortion, at any frequency. It may, however, be necessary to experiment by wiring a resistor in series or in parallel with the thermistor for optimum results.

TIME SWITCH

The time switch described in this article consists, essentially, of an electronic time delay circuit which feeds an electronic switch. At the moment when power is supplied to the unit, the switch is off; after a predetermined time delay, the switch changes state very rapidly and flips on. By making a suitable choice of time delay components, time delays ranging from a fraction of a second to a few minutes can be obtained.

If required, the circuit’s mode of operation can be changed so that, as soon as power is supplied to the unit, the switch turns on, but turns off again after a predetermined time delay. The switch may be used to operate a low power lamp or an external circuit via a relay.

TIMING CIRCUIT
The full circuit diagram of the unit is shown in Fig. 1. The time delay circuit is built around the first two stages TR1 and TR2, which are connected as a Darlington pair.
This configuration has a high input impedance which matches the high reactance of a large capacitor in the integrator circuit of C1 and R2. Here, TR2 is connected as an emitter follower, with emitter load VR1; the second transistor, TR1, is also wired as an emitter follower, but in this case its emitter load is the base of TR2. Thus, the circuit can be regarded as an emitter follower circuit in which the current gain h_{fe} is the product of the two individual transistor gains. The input impedance of an emitter follower is given approximately as the product of h_{fe} and the emitter load.

Returning for the moment to Fig. 1, the actual circuit used in the electronic time switch, R2 and C1 can be regarded as the time constant circuit. An additional resistor, R10, connected between TR1 emitter and the common positive line, is used to give d.c. stabilisation to the circuit.

The output waveform of a simple integrator CR circuit follows that of an exponential graph. For many applications, including that of the electronic time switch, it is more useful to have a waveform that rises linearly with time instead of exponentially. If the actual charging current (or the voltage across R) is kept constant during the charging cycle, the required linear voltage rise would be obtained.

An isolating resistor R1 is interposed between the main time constant resistor R2 and the negative supply. One feature of the emitter follower circuit is that the voltage on the base is almost the same as that on the emitter. The voltage on the base of TR1 is "seen" at the emitter of TR2. The emitter of TR2, being coupled via C2 to the "top" end of R2, thus, results in the same changing voltage appearing at each end of R2. Therefore, the voltage across R2 is virtually constant. Thus, the output voltage at the emitter of TR2 rises linearly with time. This part of the circuit is a "bootstrap" sawtooth generator.

AIMING VOLTAGE

If a ruler is placed tangentially against an early part of the exponential rise curve, and a line projected to the point where it intersects the vertical line corresponding to the CR time, the point of that intersection will represent some particular voltage (since the vertical axis represents volts), which is referred to as the "aiming voltage" at that particular instant.

With the exponential rise CR circuit, if a supply of 9 volts is used, the initial aiming point of the waveform may be several hundred volts, falling rapidly towards 9 volts with time. With the linear sawtooth generator also operating from a 9 volt supply, an aiming potential of several hundred volts may be maintained throughout a major part of the cycle!

TRIGGER

The rest of the circuitry of the time switch shown in Fig. 1 is fairly straightforward. The two transistors TR3 and TR4 constitute a Schmitt trigger, i.e. a two state circuit in which TR3 is normally off and TR4 is on. When a sufficiently large negative voltage is fed to the base of TR3, the circuit will trigger and rapidly change state, TR3 switching on and TR4 off.

The linear rising voltage from the bootstrap circuit is used to trigger the Schmitt via a diode D1. Variable time constants are obtained by varying the voltage level obtained from TR2 by adjusting VR1. The main function of D1 is to prevent the d.c. voltage across VR1 being reflected on to the base of TR3, which is at a higher potential. D1 also ensures that only negative trigger voltages are applied to TR3. TR5 is an emitter follower, with its base directly coupled to TR4 collector. Since TR4 is normally on, its collector is normally at near ground potential; D2 imparts a certain amount of emitter bias to TR5 so that, with TR4 collector at near zero volts, TR5 is biased to near cut-off. When the Schmitt circuit triggers, TR4 switches off and its collector goes to near the full negative rail potential; TR5 is biased on and conducts heavily, illuminating the lamp LP1.

CONSTRUCTION AND TESTING

All components are mounted vertically on the sample Veroboard panel (see introductory article). Start construction by breaking the copper strips in the positions shown in Fig. 3 and connecting the battery leads.

Next, wire up the bootstrap circuit TR1 and TR2. If a voltmeter is available, set it to the 10 volt d.c. range and connect it across VR1. Connect the battery to the circuit so far built. The voltage across VR1 should rise to about 0-5 volts and remain steady for a second or so, after which it will rise, in a linear fashion, to about 5-5 volts in about 25 seconds; the voltage

Fig. 1. Circuit diagram of the complete time switch
will then continue to rise at a slower rate up to about 6.5 volts. These figures are not critical and are only for guidance.

Now wire up the Schmitt trigger circuit and check that it functions correctly; connect the voltmeter to TR4 collector and battery positive. Initially, it should read about 0.8 volts, but after a few seconds should jump to 6 volts or more as the circuit triggers. If triggering does not occur, check that VR1 has not been turned down too far. Finally, wire up TR5, LP1, and D1, and check that the circuit functions correctly, operating the lamp after the predetermined time delay governed by the values of R2 and C1.

Transistors NKT277 and diode NKT249A30 are industrial types; suitable alternatives are the NKT274 and OA81 respectively.

USING THE UNIT

To set the unit initially to give an arbitrary time constant, set VR1 to near zero output and connect the supply. As soon as the required time period has elapsed, advance the arm of VR1 until the lamp comes on; final adjustment should be made by trial and error.

If electrolytic timing capacitors are used, considerable timing errors may be obtained between the first and all subsequent cycles in a series. This trouble is not usually experienced with non-electrolytic capacitors with a paper dielectric.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 82kΩ</td>
</tr>
<tr>
<td>R2 820kΩ</td>
</tr>
<tr>
<td>R3 47kΩ</td>
</tr>
<tr>
<td>R4 3.3kΩ</td>
</tr>
<tr>
<td>R5 5.6kΩ</td>
</tr>
<tr>
<td>R6 5.6kΩ</td>
</tr>
<tr>
<td>R7 22kΩ</td>
</tr>
<tr>
<td>R8 10kΩ</td>
</tr>
<tr>
<td>R9 470Ω</td>
</tr>
<tr>
<td>R10 33kΩ</td>
</tr>
<tr>
<td>All 10%, 1/4 watt carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1 5kΩ preset skeleton miniature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 16µF elect. 15V</td>
</tr>
<tr>
<td>C2 50µF elect. 12V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1, 2, 3, 4, 5 NKT277 or NKT274 (5 off) (Newmarket)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 NKT 249-A30 (Newmarket) or OA81 (Mullard)</td>
</tr>
<tr>
<td>D2 OA200 (Mullard)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1 9 volt type PP3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lamp or Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPI 6V 40mA (see text)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample piece of Veroboard</td>
</tr>
<tr>
<td>Battery connectors</td>
</tr>
<tr>
<td>P.V.C. covered wire</td>
</tr>
</tbody>
</table>

After completing each cycle, C1 and C2 should be discharged through a low resistance of about 100 ohms.

With the component values shown in the circuit diagram, the unit will give time delays in the range of 2½ to 25 seconds with good reliability. There may be some variation in the long term accuracy of the timing cycles with large changes in operating temperatures.

If the value of C1 is increased to give a longer time constant, the value of C2 should also be increased in proportion.

This circuit can be used in many applications but for accurate timing (for photographic processing) use a non-electrolytic capacitor for C1.

VARATIONS

In the form shown in the circuit diagram, LPI is normally off, but comes on after a predetermined time delay. If it is required that LPI should be normally on instead, and switch off after the time delay, break the connection between TR5 base and TR4 collector and reconnect TR5 base to TR3 collector. If required, LPI can be replaced by a 6 volt relay of resistance greater than 120 ohms; if the relay resistance is greater than 1000 ohms, D2 can be omitted from the circuit.

If longer or shorter time delays are required than are available with the circuit as shown, they can be obtained by increasing or decreasing the value of C1. If consistent time constant values are required, non-electrolytic capacitors should be used in place of C1 and C2, but at high values these capacitors will be rather more bulky.
LAST month's article concluded with the development of a practical logic diagram for the Q register. We continue now with the development of the 0/1 discriminator in a similar manner.

THE 0/1 DISCRIMINATOR

The 0/1 discriminator can take several forms. In brief, the requirements are as follows: it is set so that, whenever a "test-Q" pulse is applied to the Q register, a pulse leaves the discriminator on a 1 wire if the test pulse finds a 1, or on a separate 0 wire if the tested bit is a 0. A 1 is represented in this equipment as a voltage pulse and a 0 as the absence of a pulse, if a 1 is present in a tested bit of Q a pulse will flow along the common output wire when the appropriate gate is opened.

This output pulse will be coincident with the input test pulse so the discriminator can be produced by the combination of two gates and a negator (or inverter), connected as in Fig. 5.1a. If, at any given "test-Q" pulse position, the bit in y is a 1 then a pulse will travel along the output wire and be AND-gated in F with the original test pulse, this will give an output on the 1 wire. At the same time the test pulse will be applied to the other gate E but there was an output from Q so this will be inverted by D to give no signal at the second input to E.

(Remember that a negator gives an output signal when there is no input, but no output when there is an input. The simplest form of negator or inverter circuit is shown in Fig. 5.1b. In the absence of an input the collector of TR1 is at the potential of the -9 volt line, i.e. a "1" output. With a 1 input (i.e. a negative voltage) the output potential falls as the transistor conducts and so gives an 0 output.)

Thus there is no output on the 0 wire. If the test pulse fails to find a 1 there is no output from Q, so gate F will not operate and D will produce an output signal. This will be gated with the test pulse in E to give an output on the 0 wire.
THERE IS AN ADAMS-NORKEN SOLID STATE MODULE TO SUIT ANY TAPE OR HI-FI APPLICATION

YES, THE ADAMS-NORKEN SYSTEM PROVIDES YOU WITH THE MOST UNIQUE AND UP-TO-DATE METHOD OF DESIGNING YOUR OWN INDIVIDUAL TAPE AND HI-FI SET-UP. FROM A RANGE OF SEPARATE MODULES YOU CAN SELECT THOSE WHICH MEET YOUR OWN SPECIAL REQUIREMENTS. SHOULD YOU, LATER, WISH TO CHANGE OR EXTEND YOUR SYSTEM THEN IT IS SIMPLE TO REDESIGN AROUND THE MODULES YOU ALREADY HAVE AND ADD FURTHER ONES. A BASIC TAPE RECORDER FOR EXAMPLE CAN BE ASSEMBLED FOR AS LITTLE AS £13.12.6 FROM FOUR MODULES.

LEADERSHIP IN SOLID STATE ELECTRONICS

ILLUSTRATED IS THE POWER OSCILLATOR MODULE, THE HEART OF ANY PROFESSIONAL TAPE RECORDER. IT PROVIDES 65 Kc/s RECORDING BIAS, ADEQUATE ERASE POWER AND 75 VOLTS SMOOTH D.C. AT 1 mA FOR A RECORDING AMPLIFIER.

SEND 9d. TO COVER COST OF POSTAGE AND PACKING FOR ILLUSTRATED BROCHURE DESCRIBING THE WHOLE RANGE OF PRODUCTS TO:

KEDOCO ELECTRONICS, DEPT. PE, SUBSIDIARY OF ADAMS-NORKEN LTD.
76 VICTORIA ROAD, SWINDON, WILTS
TEL: SWINDON (0SW) 27660

GUARANTEE

ALL OUR PRODUCTS ARE GUARANTEED AND SHOULD YOU NOT BE SATISFIED WITH YOUR PURCHASE YOUR MONEY WILL BE REFUNDED WITHOUT QUESTION.
THE ELECTRONICS & SCIENTIFIC CENTRE

10 TRANSISTOR TRANSCEIVERS

NEW 50 VOLT SERVO SYSTEM
A unique offer of pair of 50v., 50 cycle servos enabling remote control of angular position to 2 microradians. Ideal for monitoring Wind Directions, or position of aerial system for amateur broadcasting enthusiasts. It should be noted that 50v. is readily obtainable by using the 200v.250v. transformer for 120 impulses drive ratchet operated duty contacts make every quarter revolution. Dial and pointer show position by means of knob on front dial. Resistance of solenoid 150 ohms, operating voltage 34. Remote Control: Spring motor driving heavy escapement which operates pair of heavy duty contacts at 120/min. Heater and bi-metal type thermostat provides temperature regulation, usually suppressed. Uses: forms the basis of an impulse clock, lap counter for model cars, etc.

TIMER AND REMOTE CONTACTOR
Circular panel mounting impulse operated contactor. 120 impulses drive ratchet operated cam through one revolution. Single pair of light duty contacts make every quarter revolution. Dial and pointer show position by means of knob on front dial. Resistance of solenoid 150 ohms, operating voltage 34. Remote Control: Spring motor driving heavy escapement which operates pair of heavy duty contacts at 120/min. Heater and bi-metal type thermostat provides temperature regulation, usually suppressed. Uses: forms the basis of an impulse clock, lap counter for model cars, etc.

MINIATURE D.C. MOTOR
Ideal for driving gear system or as a Tachometer. 10,900 r.p.m. at 230mA 6.3v. Black ebonite housing 1½in. X 1½in. dia. Spindle ⅛in. X ½in. min. dia. Price £1.25. P. & P. 1/-.

SELECTOR DRIVE
Numerous applications. Electro magnet and brass tooth wheel. A twitch wafer and contacts are arranged to pass on impulses without and off for 15. An auxiliary relay is normally in but off in every 25. Complete with suppressor resistors plus series contact for continuous operation. Ideal windows, display, switching faders, models, etc. 1½v., or 24v. D.C. Brand new and boxed. 12½/6d. P. & P. 1/-.

ANOTHER FIRST FOR LIND-AIR!
New Experimental Printed Circuit Kit "Essay your own" printed circuits brought within everyone's budget at only 19½d. laminated boards plus 24, yes, 24 different circuit diagrams for constructing everything from radio control receivers to metal models and crystal-sets! The bargain of the month, ONLY 10½d. for the kit. P.P. 1/6. The plans are worth that alone!

FIELD TELEPHONES

THIS MONTH'S LIND-AIR SPECIAL
Make the World's Smallest Transistor Radio with this fantastic new kit. Complete with all components, printed circuit board, diagram, instructions, etc. Easy to assemble and it works beautifully. Ideal for the postman or you can send it back to the makers. Smaller than a matchbox, requires no external aerial or earth and gives a performance comparable to transistor systems and brass tooth wheel. A twitch wafer and contacts are arranged to pass on impulses without and off for 15. An auxiliary relay is normally in but off in every 25. Complete with suppressor resistors plus series contact for continuous operation. Ideal windows, display, switching faders, models, etc. 1½v., or 24v. D.C. Brand new and boxed. 12½/6d. P. & P. 1/-.

PAYMAIL YOUR ORDER TO
LIND-AIR Electronics Ltd. DEPT. P.E.1
53 TOTTENHAM COURT ROAD, LONDON W.I.
LANgham 3853

PARKERS SHEET METAL FOLDING MACHINES
HEAVY VICE MODELS
With Bevelled Former Bars
Car. free

<table>
<thead>
<tr>
<th>No. 1.</th>
<th>Capacity 18 gauge mild steel x 36in. wide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£12.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. 2.</th>
<th>Capacity 18 gauge mild steel x 24in. wide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£7.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. 3.</th>
<th>Capacity 18 gauge mild steel x 18in. wide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£7.50</td>
</tr>
</tbody>
</table>

Also new bench models. Capacities 46in. x 18 gauge £55. 36in. x 18 gauge £35. 24in. x 16 gauge £24. Carriage free.

End folding attachments for radio chassis. Tray and Box making for 36in. model, 5/6 per ft. Other models 3/6. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

FREE BOOKLET ON REQUEST

THE MOST ACCURATE POCKET SIZE CALCULATOR IN THE WORLD
Send a postcard today for free booklet, or if you prefer, send 75/- for this invaluable spiral slide rule on approval, with money back guarantee if not satisfied.

CARBIC LTD. (Dept. PE6)
54 Dunby Road, London, S.W.19

DIY WITH GOODMANS HIGH FIDELITY MANUAL

A new, larger and more colourful edition—revised and completely up-to-date. It contains articles of particular interest to the D.I.Y. enthusiast—including special beginners page, advice on stereo, stage-built systems and full cabinet drawings. Whether building or improving your own audio set-up or choosing a complete speaker system, you'll find it useful and interesting as well as informative. Ask your Goodmans dealer or send coupon for your FREE copy.

Please send me a free copy of the Goodmans High Fidelity Manual

Name

Address

P.E.10

GOODMANS INDUSTRIES
Axiom Works, Wembley, Middlesex
Telephone: WEmbley 1200
A Division of Radio Rentas Ltd.
Linking the circuits of Figs. 4.5 and 5.1 gives the complete system for testing Q bit by bit and discriminating between 0's and 1's contained in each bit.

The flow diagram of Fig. 4.4 shows what happens after each test of Q. If the bit is a 0, A is cleared and B is shifted up one place, the usual check being made to see if a 1 is lost—if this does happen a bistable is set. These two events can be made to happen simultaneously since they are independent and this saves a little time. The shift takes a lot longer than the clearing of A and when the shift is complete a “shift completed” pulse leaves the shift network (see Fig. 3.3 — August) and this is used to start testing the next bit of Q. One logical set-up which will do this is given in Fig. 5.2.

If the discriminator brings up a 1 then the events are slightly more complex. From the flow diagram it is seen that an output on the 1 wire will, successively, recycle the content of R to A, clear R and then add A + B to give a new value of R. After this it enters the part of the loop taken when a 0 is found so A is cleared, B is shifted and the next bit of Q is tested. Fig. 5.3 shows the complete output logic from the discriminator, for both 0's and 1's, the action is seen to correspond with the process described above.

COMPLETE MULTIPLICATION NETWORK

Fig. 5.3, together with the shifting circuits and Q-testing circuitry, forms almost the entire multiplication network. To complete the system two small additional sections are required, (1) an input section which, when triggered, causes the operands to be written into B and Q and causes the loop to be entered for the first time, (2) an output section which forms, in all, a complete multiplier. The only addition required is the adder since this is the same as the original type. The complete logical system for multiplication, showing input/output circuits, Q-register with testing circuitry, discriminator, and shifting elements, is given in Fig. 5.5. The only thing not shown is the adder since this is the same as the original type. The B register, however, is shown, as this is the shifted one.

DESCRIPTION OF LOGICAL DIAGRAM

The multiplication process is begun by applying a single pulse to the “start” point. This causes the operands to be sent to the input registers, x into B and y into Q, it also initiates a delay element, A. After a delay A produces a pulse which opens a gate and allows the digit stored in Q1, the least-significant bit, to enter the discriminator; through R the same pulse also enters the discriminator which is formed of elements D, E and F; finally, it sets a bistable, S, in the “test-Q” network. If Q1 held a 1 then the AND
Fig. 5.5. Multiplication logical diagram—complete system

gate F will produce an output on the 1 wire, if Q1 held a 0 the output will be on the 0 wire from E.

Both these outputs from the discriminator are treated exactly as in Fig. 5.3: a 0 passes through the or gate N, clears register A and initiates the upward shift of the number in register B. When this has been done a "shift completed" pulse is produced, passes through gate H which is normally open and becomes the first "test-Q" pulse. If the digit in Q1 was a 1 it would do three things, recycle R to A, then clear R after a delay given by element L, and then start addition after a further delay given by M.

When the addition is complete an appropriate pulse is sent to gate N where it enters the loop at the point reached directly if the discriminator test had found a 0. Thus A is cleared, the shift of B occurs and the next "test-Q" pulse is generated. This is applied, via gate H, to a series of AND gates, called W1, W2 . . . but only W1 will allow it to pass. This is because bistable S is already set and so only W1 has the necessary two inputs to give an output. The "test-Q" passed by W1 opens Q2 gate and this digit passes into the 0/1 discriminator together with the original test pulse. The action is the same as before, and depends on whether Q2 held a 0 or a 1.

The gating pulse which opened Q2 gate was also used to initiate another delay unit, T. In due course this unsets S and sets U instead, consequently when the next "test-Q" pulse arrives it will be gate W2 which will have two inputs, so it will be the digit in Q4 which gets tested next. The gating pulse from W2 also sets the next delay element, V, which unsets U and sets X.
After the bit in Q4 has been tested and the appropriate action taken, the next "test-Q" pulse is produced.

In the logical diagram of Fig. 5.5 the Q register is shown as having only three digit places, but this is only for simplicity and in practice there is no reasonable limit to the number which could be used. Each successive test pulse reads the content of the next bit of Q and the appropriate part of the loop is entered.

In Fig. 5.5 the fourth position, gated by a pulse from W3, produces the "last character" signal. In practice any number of stages could be inserted, each having the delay elements T/V and the bistables U/X, and a W gate. The extreme top position, however, must always be of the type shown in Fig. 5.5.

When the last test pulse arrives it passes through W3 only since, of the bistables, only X will be set at this time. The final gate will open but instead of one of the Q digits, the clock pulse is passed and used to initiate the terminating action for the multiplication.

It closes gate C at once, otherwise the discriminator would assume that the test pulse was a normal one which had found a 0. Also it causes the final answer to read from R and, after a delay, causes all bistables to be cleared.

All this supposes that numerical capacity has not been exceeded, but the checking circuits are constantly monitoring this. If a significant 1 is lost by the shift bistable J is set and remains set until the end of the calculation or until it is manually reset. The output from J is AND-gated with the 1-output from the discriminator in gate K. If a 1 is found by the discriminator after J has been set then an error signal is generated and a set signal passed to bistable G. This closes gate H so that when the shift finishes the "test-Q" pulse is blocked and the calculation stopped.

This description shows how the flow diagram of Fig. 4.4 is converted into a logical diagram. The two loops, or rather the main loop with its entry point if the Q-bit was a 0, seen in Fig. 4.4, is transferred into a recognisable loop in Fig. 5.5. If the discriminator brings up a 1 the signal goes through elements L, M, the adder, gate N, the shift network, and then tests the next bit of Q, applying it to the discriminator to complete the loop. If the bit were a 0 it by-passes the first part of the loop and enters at gate N.

This is by no means the only way in which multiplication can be performed but it is a method which lends itself to reasonably easy explanation.

Division may be done by a somewhat similar process, but using repeated subtraction instead of addition. The division process will be considered next month, but using repeated subtraction instead of addition. The design of such circuits is fascinating but it needs to be taken slowly and step by step.

Electronics, Instruments, Controls and Components

EXHIBITION and CONVENTION

This is the 21st Annual Exhibition and Convention to be held by the Institution of Electronics at Belle Vue, Manchester from 27 September to 1 October 1966.

Separate tickets issued for the exhibition and lectures may be obtained (free of charge) from the Exhibition Secretary, Institution of Electronics, 78 Shaw Road, Rochdale, Lancashire.

Catalogues giving full details in advance—price 4s 9d post free on receipt of addressed label.

SILICON PLANAR SCREENED TRANSISTORS

Since the P.E. Transistor Guide booklet was prepared new types of transistor have been announced. Neutralising circuits in television i.f. amplifiers are now made unnecessary by a new type of high-gain npn silicon planar transistor, known as Mullard TVistors.

In these devices an integrated screen formed by an additional layer diffused into the collector surface under the base contact bonding area reduces, by a factor of four, the high feedback capacitance inherent in planar construction.

Because of their very low feedback capacitance—only 150mpF (150 x 10^-12pF) for the BF167 and 230mpF for the BF173—and high forward transfer admittance, the integrated screen devices have a figure merit which is four times greater than that of a conventional planar transistor. This enables the designer to produce simple i.f. amplifiers with consistent performance and adequate gain.

INTEGRATED SCREENING

The integrated screen is a thin layer of p-type material diffused into the collector surface under the base contact bonding area. The junction between the n-type collector and the p-type screen acts, in effect, as a reverse biased diode.

Without the screen the base-collector bonding area capacitance would be in the region of 500mpF, to which must be added the junction capacitance of the actual transistor. In a typical BF167 with integrated screen, the total feedback capacitance is only 150mpF—less than a quarter of that of the unscreened device.

Due to the presence of the screen, the base contact area capacitance is transformed into additional capacitance at the input and output of the transistor. In i.f. amplifiers these capacitances do not cause any problems because they form part of the tuning capacitances of the bandpass filters.

![Fig. 1. Assembly of an "integrated screen" silicon planar transistor](image-url)
The BF167 is intended for use as a television i.f. amplifier with forward gain control. Its characteristics provide consistent control of up to 60dB over the required current range. The i.f. gain-control characteristic is controlled in order to maintain consistency in the transfer of a.g.c. from the i.f. amplifier to the tuner.

The BF173 has a high dissipation (200mW at 45 degrees C), a low bottoming voltage (7V) and maintains its gain over a wide range of current levels. It is therefore particularly suitable for use in the final stage of the video i.f. amplifier where high output and good linearity are essential requirements.

The BF184 features high d.c. current gain and high input impedance which results from its high f_t. It is therefore especially suitable for use in the gain controlled and final i.f. stages of car radios and mains or battery operated a.m./f.m. receivers.

The BF185 maintains a very low noise figure over a wide range of source impedance the BF185 has an obvious application in the first stage of car radios and f.m. receivers. Its f_t also makes it suitable for use in the self-oscillating mixer stage of f.m. receivers.

Complementing the BF167 and BF173 are five other new silicon transistors specifically designed for domestic receivers.

The BC107 TVistor is particularly suitable for use in television timebase and oscillator stages. Its low bottoming voltage and high collector voltage make it especially suitable for driver applications.

The BC108 fulfils the wide range of functions in audio and other circuit applications where high gain and high-impedance are required. It is also suitable for use in a.g.c. amplifiers, video output drivers and sync separator stages of television receivers. Audio applications include the pre-amplifier stages of radios and record-players.

A low-noise (2dB), high-gain transistor for the pre-amplifier stages of tape-recorders and high-quality audio equipment.

Features of the BF184 are its high d.c. current gain and high input impedance which results from its high f_t. It is therefore especially suitable for use in the gain controlled and final i.f. stages of car radios and mains or battery operated a.m./f.m. receivers.

The BF184 is also suitable for use in television sound i.f. amplifiers.

Because it maintains a very low noise figure over a wide range of source impedance the BF185 has an obvious application in the first stage of car radios and f.m. receivers. Its f_t also makes it suitable for use in the self-oscillating mixer stage of f.m. receivers.

 Meetings . . .

SOCIETY OF ELECTRONIC AND RADIO TECHNICIANS
LONDON
Date: September 23
Title: The Development of the Loudspeaker
Ralph West, B.Sc., M.I.E.R.E.
Time: 7 p.m.
Address: Institution of Electrical Engineers, Savoy Place, W.C.2.

INSTITUTE OF PHYSICS AND THE PHYSICAL SOCIETY
LONDON
Date: September 26–28
Title: Advances In Electron Microscopy
Advance registration for attendance at this meeting is necessary. Details and application forms from: The Meetings Officer, 47 Belgrave Square, S.W.1.

ELMWOOD TAPE RECORDING AND RADIO CLUB
STOCKTON-ON-TEES
Date: September 17
Title: Festival Of Sound
Time: 10 a.m. to 8 p.m.
Address: Elmwood Community Centre, Hartburn, Stockton-on-Tees.

BRITISH AMATEUR ELECTRONICS CLUB
PENARTH
Date: September 15
Time: 7 p.m. to 9 p.m.
Address: Penarth Secondary School, St. Cyres Road, Penarth.

CONFERENCE AND EXHIBITION
LONDON
Date: October 11–12
Title: Ultrasonics For Industry 1966
Time: 9.45 a.m. to 5 p.m.
Address: St. Ermin's Hotel, Caxton Street, St. James's, S.W.1.

Applications to attend the conference should be made before September 23 to "Ultrasonics", Dorset House, Stamford Street, S.E.1.

COURSES: Preparation for MAY 1967 R.A.E.
LONDON
Days: Thursday Evenings
Subject: Theory and C.W.
Time: 7 p.m. to 10 p.m.
Address: Battersea Institute, Spencer Park Branch, Trinity Road, London, S.W.18.

Days: Wednesday Evenings
Subject: Theory Only—New Course
Time: 7.30 p.m. to 9.30 p.m.
Address: Catford and Lewisham Institute, Stainton Road (Brownhill Road), London, S.E.6.

Enrolment at both Institutes commences September 19.
FREE NEXT MONTH'S Issue!

Double-sided BLUEPRINT

to build 2 ELECTRONIC PARTY GAMES

IN TIME FOR CHRISTMAS
FUN FOR CHILDREN—AND ADULTS!

1. THE SQUEALER
The idea of the game is to grab a tempting prize before an electronically controlled siren squeals.

2. MIGHT LIGHT
A game to test gripping strength. Calibrated knob indicates relative power of grip when the light comes on.

ALSO NEXT MONTH

AUTOMATIC DARKROOM EXPOSURE CONTROL UNIT Ideal for photographic work. Suitable for monochrome and colour enlargements and prints, and other imaging processes

MINIATURE R/C DESIGN
Second unit in the current series is a minute receiver

NOVEMBER ISSUE ON SALE OCT. 13 2/6 Make sure of your copy ORDER NOW!
SPECIFICATION

Output Voltage
1. 8-13.5 volts preset as required
2. 5-25 volts continuously variable

Current Capacity
1. 150mA when both outputs are in use
2. 500mA maximum at 24 volts output

Voltage Stability
Less than 1 per cent change over the current range 10 to 500mA

Ripple
Less than 5mV r.m.s. total at 10 volts output

Output Voltage Indicator
Meter 1mA f.s.d. wired to read 0 to 10V or 0-25V (switched ranges)

Many power supply units available on the domestic market are of the type known as "sagging" supplies, i.e. the voltage across the load is inversely proportional with the current through it, neglecting the small power lost through heat dissipation.

The diagram in Fig. 1 shows the theoretical circuit of such a supply: \(V_1 \) is the e.m.f. produced by a d.c. supply with internal source resistance \(R \). The current drawn by the load is \(I \) and the voltage or potential difference across the load is \(V_2 \).

Let us assume a voltage \(V_1 = 20 \) volts from the supply. Then under virtually zero current conditions \(V_2 \) will approximate to \(V_1 \) or 20 volts. If we assume that \(R = 10 \) ohms, then increase the current through \(R \) to 100mA, then we can say that

\[
V_1 - V_2 = I \times R
\]

\[
= \frac{1}{10} \times 10
\]

\[
= 1 \text{ volt}
\]

therefore \(V_2 = V_1 - 1 \)

\[
= 20 - 1
\]

\[
V_2 = 19 \text{ volts.}
\]

If we were to assume that \(I = 1A \), then

\[
V_2 = V_1 - (I \times R)
\]

\[
= 20 - (1 \times 10)
\]

\[
= 10 \text{ volts.}
\]

Fig. 1. Theoretical circuit of a d.c. power supply

Fig. 2. Circuit diagram of a “sagging” power supply
A “sagging” supply as shown in Fig. 2 is quite satisfactory in some cases, but as class B complementary output stages are being used more frequently in amplifier designs, considerable care has to be taken in ensuring that the maximum supply voltage does not exceed the working tolerances of the components, nor cause the quiescent current of the output stage to increase and thus endanger the temperature stability. At the low end of the voltage range the power supply should establish the correct working voltage at the required current.

It is difficult to attain both of these conditions and yet meet the smoothing requirements without reverting to the use of an expensive choke. The inclusion of such a choke will affect the voltage regulation and quite obviously will provide better smoothing.

![Circuit Diagram](image)

Fig. 3. Typical class B output stage

The current requirement for, say, a three watt amplifier can be considerably greater than one envisages at first sight. Considering the class B output stage shown in Fig. 3 if we assume a supply voltage of 12V and a speaker loading of 5 ohms the maximum peak-to-peak output voltage would be in the order of 11V and the peak output voltage would be 5.5V. The peak current under these conditions would be

\[I_{\text{peak}} = \frac{V_{\text{peak}}}{R_L} \]
\[= \frac{5.5}{5} \]
\[= 1.1 \text{A} \]

where \(R_L \) is the load resistance.

This is indeed a heavy current and, as we can see from our earlier example, our sagging power supply would vary between approximately 10 and 20V. Under musical drive conditions the smoothing capacitor would help to smooth out some of these irregularities, but under sine wave conditions, which by necessity our testing procedure would have to encompass, the supply would not react as in the dynamic conditions.

The circuit of Fig. 4 shows a stabilised supply unit designed to give two outputs, one of which is continuously variable between 5 and 25V; the other, at any preset figure between 8 and 13.5V, is available on two pairs of terminals.

CIRCUIT DESCRIPTION

The basic circuit for each supply is the same with the exception of the monitor circuit M1, so a description of one section only (output 2) will be given. If we present the circuit in the more conventional form shown in Fig. 5, it takes the shape of the well-known d.c. coupled feedback pair with \(R_L \) representing the variable external load. As the load upon the circuit becomes heavier more current is drawn by \(R_L \) thus lowering the output voltage \(V_{\text{out}} \).

This voltage is monitored by the base of TR2 and, as this biasing voltage decreases, so the current flowing through TR2 and \(R_L \) decreases. This causes the base

continued on page 725
Fig. 4 (above). Complete circuit diagram of the transistor stabilised power supply

Fig. 5. Basic theoretical circuit of a d.c. supply stabiliser

Fig. 6. Aluminium bracket for mounting C1 and C3
Fig. 7. Drilling details of the front panel: Holes C are for the terminals which also hold the component assembly board in position.

Fig. 8. Wiring of the panel mounted components.
Fig. 9. Component layout and wiring on the perforated board with external connections

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistors</th>
<th>VR1 3kΩ wirewound "Midget" type (Radiospares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR2 1kΩ linear carbon preset</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>C1 1.000µF elect. 50V</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 1.500µF elect. 25V</td>
<td></td>
</tr>
<tr>
<td>C3 1.000µF elect. 50V</td>
<td></td>
</tr>
<tr>
<td>C4 1.500µF elect. 25V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformer</th>
<th>T1 Mains transformer. Pri. 0-220-240V; Sec. 1 13V 150mA; Sec. 2. 24V 500mA (Type LX 3391)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Belclere Company Ltd., 385 Cowley Road, Oxford.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors</th>
<th>TRI NKT 403</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR2 NKT 217</td>
<td></td>
</tr>
<tr>
<td>TR3 NKT 304</td>
<td></td>
</tr>
<tr>
<td>TR4 NKT 217</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diodes</th>
<th>D1-4 0A202 (4 off) (Mullard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5-8 BY122 bridge rectifier (1 off) (Mullard)</td>
<td></td>
</tr>
<tr>
<td>D9 3-9V Zener diode HS2039 (Hughes) or ZL3-9 (Brush)</td>
<td></td>
</tr>
<tr>
<td>D10 7-5V Zener diode HS2075 (Hughes) or ZL7-5 (Brush)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switches</th>
<th>S1 Double pole, on-off, toggle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2 Single pole, 2 way, slide switch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meter</th>
<th>MT 0-1mA f.s.d.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Terminals</th>
<th>XI-6 4mm screw terminals (6 off) (Radiospares)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fuse</th>
<th>FS1 2A cartridge fuse and holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS2 2A cartridge fuse and holder</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Wooden box made up 8.5in × 5.75in × 2.5in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium panel 18 s.w.g. 8.5in × 5.75in</td>
<td></td>
</tr>
<tr>
<td>Perforated s.r.b.p. panel 0.15in hole matrix, 4-625in × 3-75in</td>
<td></td>
</tr>
<tr>
<td>14 and 18 s.w.g. tinned copper wire</td>
<td></td>
</tr>
<tr>
<td>P.V.C. covered flexible wire</td>
<td></td>
</tr>
<tr>
<td>Mounting pillars 11n long (4 off)</td>
<td></td>
</tr>
<tr>
<td>Mounting clips for C1 and C3 (11n dia.)</td>
<td></td>
</tr>
</tbody>
</table>

724
voltage of TR1 to become more negative; in consequence TR1 emitter voltage rises thus restoring the original condition.

Relating this to the circuit in Fig. 4, \(V_{in} \) is supplied by T1 sec. 2 and rectified by D5-D8, which is a full wave bridge rectifier. In turn the output voltage is set by VR1 with D10 maintaining a constant reference voltage. The meter circuit is switched so that it will read the output on two ranges: 0-10V and 0-25V.

CONSTRUCTIONAL NOTES

The large smoothing capacitors C1 and C3 are mounted on a bracket attached to the front panel by the same long screws used to hold the terminals and component board in position. Drilling details of this bracket are shown in Fig. 6.

The metal front panel is made from 18 s.w.g. aluminium and is cut out and drilled as shown in Fig. 7. The finish is obtained by liberally smearing the surface of the metal with oil and then rubbing with fine wire wool from left to right, endeavouring to maintain a relatively straight action. After 2 or 3 minutes the surface can be wiped dry with some soft cotton rag until all traces of oil are removed. This can be more easily attained by washing the surface of the front plate with a liquid detergent.

The front panel is used as the heat sink for the power output transistors. TR3 should be mounted with the mica washer between transistor and front panel. For better heat dissipation both sides of the mica washer should be smeared with silicon grease. The insulating bush should be used to isolate the mounting clamp from the front panel otherwise a short would most definitely lead to irreparable damage to the power transistors. All the mounting accessories for TR3 may be obtained from the manufacturers (see components list).

The lettering was taken from a Letraset pack type K 10 and fixed to the surface according to the instructions on the pack. Finally the lettering can be very lightly brushed over with ordinary clear varnish. Under no circumstances must nail varnish or any acetate varnish be used otherwise the lettering will dissolve.

The meter was a Sifam type M 202, 1mA f.s.d., with an original scale of 0-10. One must be extremely careful when opening the meter case to apply the second scale. The mounting of this item and the other smoothing components is shown in Fig. 8 and all the rest of the components are mounted on the board as shown in Fig. 9.

Fig. 10. Case construction showing corner fillets

All the wiring on the underside of the board should be made with 18 s.w.g. tinned copper wire with the exception of the earth return paths, that is the positive leads, and these should be wired with at least 14 s.w.g. tinned copper wire (see Fig. 9). All the joints should be mechanically sound prior to soldering.

Two separate outputs are provided from the preset supply to enable the user to run external test equipment such as a signal generator or a millivoltmeter.* With this in mind the mains transformer coding must be strictly adhered to so that the start and finish of both windings are connected as shown in Fig. 4. This will ensure that internal "earth" loops do not affect external measurements.

The case as can be seen from Fig. 10 was quite simply made from wood, glued and pinned and finally held rigid by the front panel, which is screwed in position.

SETTING UP

Prior to switching on a final check should be made to make sure that all connections have been made correctly. The variable supply should require no setting up at all. However the fixed supply can be set by adjusting VR2 so that the output reads 9V (or the voltage required) at the output terminals on the front of the panel. The variable supply will give up to 500 milliamps and the fixed supply up to about 200 milliamps.

* If both millivoltmeter and signal generator (described in previous issues) are to be run from this supply simultaneously, it is advisable to make the common "earth" connection at the signal generator, leaving the millivoltmeter "earth" terminal floating.

Next month: Using the Test Gear Trio
Young Programmers

A mobile computer classroom, with an Elliott 903 computer, has been touring the country giving courses in computing for teachers.

Previously, boys at Westminster School, London, showed a high degree of aptitude and ability in programming during a voluntary "crash" course of only four days. Some of them are seen here (left) full of enthusiasm for what they are doing. It has been shown that young students are more adept in compiling a programme than many adults.

Seeing Through Glass

A new bottle inspection plant, claimed to be "the first in the world to check the entire bottle for foreign bodies and defects", has been successfully proved in trials.

An input conveyor feeds bottles to a star wheel, where the bottle is rotated and scrutinised by a scanning vertical slit of light. Further light beams are projected through the side of the bottle and are picked up by photo-electric cells.

The machine is able to detect cracks and dirty matter and store this information before the offending bottles are passed to the "reject" table. Up to 400 bottles per minute can be inspected by the machine which was developed by Fords (Finsbury) Ltd. of Bedford.

The drawing above shows schematically the optical system for horizontal scanning, via a vertical slit. On the left the bottles are conveyed to the inspection table (centre rear). In the foreground the memory trip circuits determine which bottles are to be directed to the "reject" table (right).
BEGINNERS start here...

An Instructional Series for the Newcomer to Electronics

This is the final article in our Beginners Start Here series, and in it, we shall be considering the last link in our electronic chain—transducers. Actually, these devices form both the last and the first links in an electronic system, as we have mentioned before.

We can classify transducers according to the nature of the stimulus to which they are sensitive (or, of course, at the other end to the type of output they produce). Using this line of approach, we will start with the most common type of transducers—those sensitive to vibrations in a medium. These include all the microphones (sensitive to vibrations in the air), gramophone pick-ups (operated by mechanical vibrations of a stylus) and such devices as guitar pick-ups (working directly from the vibrating strings). All the reverse cases exist—converting the electrical signals to the corresponding vibrations.

The conversion of a mechanical vibration into the corresponding electrical oscillation, can be arranged by making use of the magnetic effect, in which a conductor moving in a magnetic field has a voltage induced across it or the piezo-electric effect in which mechanical twisting or bending sets up voltages across the faces of certain crystals such as quartz; or by the effects produced in electrostatic induction, in which voltages are changed by moving charged conductors relative to each other. Finally, a signal can be produced by making the stimulus alter the electrical resistance of a circuit.

ELECTRO-MAGNETIC TRANSDUCERS

The moving coil microphone is a direct example of the use of the magnetic effect. A light diaphragm is set vibrating by sound wave vibrations. A coil joined to the diaphragm is set in motion and because of the strong magnet surrounding the coil, voltages are induced across the ends of this coil. These signals can be amplified as required by electronic means.

A variation of this kind of transducer is the ribbon microphone, in which a single corrugated conductor acts as a diaphragm and "coil" all at once. The ribbon vibrates in the magnetic field, and voltages appear across it, as before.

In the so called dynamic microphone, an iron diaphragm moves in a magnetic field, altering the strength of the field through fixed coils. This alteration sets up voltages across the coils. A variation on this principle is found in guitar pick-ups in which the vibrating steel strings alter the magnetic field in sympathy through the pick-up coils, hence producing the electrical signal.

PIEZO-ELECTRIC TRANSDUCERS

Devices relying on the piezo-electric effect have become very common, and the crystal microphone is found in nearly all popular tape recorders, at amateur radio stations, and so on. It gives good quality signals and is inexpensive.

The diaphragm is directly joined to one corner of a fixed crystal, and any vibration flexes the crystal, thus producing a voltage across the electrodes.

Crystal units can be made to work at a very high frequency, even into the ultrasonic region, and they are found in hydrophones used under water in such systems as SONAR or ASDIC for detecting submarines or shoals of fish, by echoes of sound waves transmitted in the water.

Contact crystal transducers can be placed on engines and moving machinery to detect knocks, vibrations, and other tell-tale signals. The resultant readout on a cathode ray tube gives a great deal of information regarding troubles and faults. In a similar way, ultrasonic transducers can be used to detect flaws and cracks in structures, by actually transmitting high frequency sound waves into them, and detecting the echoes and reflections with a contact microphone.

ELECTROSTATIC METHODS

The electrostatic or capacity microphone appears to be the simplest in construction, but in practice is difficult to make because the diaphragm must be light enough to follow the rapid vibration of the sound waves striking it, but stiff enough not to deflect and short circuit to the other electrode. The diaphragm must be very close to the other plate to produce a large enough change.

As its name implies, this device is a variable capacitor, whose capacity is altered by the sound wave moving one plate. The voltage across the terminals of this charged capacitor varies as the capacity changes, and the resultant signal can be fed to an amplifier. One interesting variation is found in the use of the capacity microphone directly in an r.f. oscillator, thus frequency modulating the output.

The capacity type transducer finds an important use in pressure gauges for such applications as measuring cylinder pressure changes in engines. The gauge is screwed into the cylinder, and the variations in pressure move the diaphragm, producing an electrical signal, which in turn can be employed to operate a pen recorder or cathode ray tube, after being amplified.

VARIABLE RESISTANCE TRANSDUCERS

One of the first microphones ever designed was the carbon type which is still used in the ordinary telephone.

This type of transducer makes use of the fact that pressure variations on packed carbon granules change the electrical resistance of the pack. Thus if a battery is connected in series with this device, the current flowing will vary in sympathy with the sound vibrations moving the diaphragm, which alters the pressure on the carbon granules behind it.

Except for the last, all the above mentioned devices are reversible and one comes across the moving coil loudspeaker, the crystal earpiece, and the ordinary (moving iron) earpiece. There are even ribbon and electrostatic loudspeakers. The crystal hydrophone is often used as the transmitting transducer as well as the receiver, (by using pulse signals).
However, the construction of the transducers is often appropriate to their function, so that a moving coil microphone would not make an efficient loudspeaker; and loudspeakers are often too large for microphone use.

Notice the interesting exception of non-reversibility in the carbon microphone. Passing a signal current into it would warm it up, but no sound would be produced.

All the above devices can be immediately redesigned into the gramophone pick-up form, by connecting a stylus arm to the coil or crystal, etc. instead of the diaphragm. The common pick-ups are the crystal, moving coil, and moving iron types.

STRAIN GAUGES

It is only a short step from mechanical vibration to mechanical distortion. One is an “alternating” effect, the other a “direct” one.

Strain gauges are transducers which develop a signal proportional to the strain or distortion of the structure on which they are placed. The piezo crystal type can be used in this way, the strain bending the crystal to produce the output voltage.

Resistance strain gauges are the most common. The strain produces a change in the electrical resistance of a wire fixed to a flexible support, thus altering the current in a circuit. Such simple devices have been found to give valuable information concerning strains and stresses in bridges and other large constructional works, and in engines and other machinery.

LIGHT AND HEAT OPERATED DEVICES

Photocells come in a variety of forms, and we will mention two main types here. First the photoconductive kind, and then the photovoltaic type.

The photoconductive cells are usually made of semiconductor materials. Thus phototransistors give an output because light falling on the junctions produce current carriers and so the resistance alters. The resultant changes in current can be amplified and made to operate an output transducer, such as a door opener, relay, and so on. Another photoconductive cell is made of lead sulphide, and is extremely sensitive to infra-red rays falling upon it. Such cells are used in missiles and can guide them (via the electronics and control equipment in artificial satellites). A motor car has been driven along by the electronics and control equipment in artificial satellites. A motor car has been driven along by the electronics and control equipment in artificial satellites.

Photocells come in a variety of forms, and we will mention two main types here. First the photoconductive kind, and then the photovoltaic type.

The photoconductive cells are usually made of semiconductor materials. Thus phototransistors give an output because light falling on the junctions produce current carriers and so the resistance alters. The resultant changes in current can be amplified and made to operate an output transducer, such as a door opener, relay, and so on. Another photoconductive cell is made of lead sulphide, and is extremely sensitive to infra-red rays falling upon it. Such cells are used in missiles and can guide them (via the electronics and rocket control operating transducers) onto the heat exhausters of aircraft at great distances. They are used to detect infra-red rays in scientific research.

The photovoltaic types include the selenium cells commonly used in photographic exposure meters. The light energy striking the active surface produces a voltage across the cell, and a microammeter reads the resultant current. In some cameras, the cell output controls the lens aperture directly, thus automatically adjusting the exposure for varying light conditions.

Solar cells are also of the photovoltaic type. So efficient are these silicon cells that they are used to generate power from the sunlight, in order to operate the electronics and control equipment in artificial satellites. A motor car has been driven along by the power generated from a “roof full” of solar cells. A number of cells are available on the amateur market and the current they produce will drive a small motor, or operate simple transistor radio receivers.

The thermocouple is an old device, and has been used as a thermometer for many years. This device converts thermal (heat) energy directly to electrical energy, as can be demonstrated by joining a piece of copper wire to iron wire and connecting up to a milliammeter. Heat-
This compact and simple little unit is specifically designed as an electronic flasher or turn indicator for use in a motor car or other vehicle with a 12 volt "positive earth" electrical system.

In essence, the unit consists of an electronic repetitive switch, which may be used to operate a small bulb, or a relay. Thus, the unit may be used to operate as a light flasher, a sound "bleeper", a transmitter keyer, or any other device which requires a repetitive automatic switch operating once per second.

ASTABLE MULTIVIBRATOR

The device consists basically of an astable multivibrator, TR1 and TR2, which is used to operate a common emitter amplifier TR3 (see Fig. 1). The external device (bulb or relay) acts as the collector load of TR3.

One disadvantage of the conventional astable multivibrator is that, as the circuit "switches state", a very large positive voltage, nearly equal in magnitude to the full supply voltage, is applied to one of the transistor base circuits. Thus, for satisfactory operation, the transistors used in the circuit must be rated to withstand twice the supply voltage. Most general purpose germanium transistors have ratings of only 20 volts or so, and are thus not suitable for use as astable multivibrators operating from a 12 volt supply.

This is overcome in this circuit (Fig. 1) by inserting a resistor R6 in series with the supply to the multivibrator and decoupling the circuit with C1. Only a fraction of the 12 volt supply is fed to the astable circuit. Unfortunately, R6 and C1 form a time constant, with the result that, when the supply is initially connected to the unit, the voltage across the astable rises relatively slowly to its working voltage.

Hence the unit is slow to start. If we make a section of the two time constant circuits of the actual multivibrator common to each other, with VR1 slightly larger piece of Veroboard panel should be used, suitably drilled to provide mounting holes for the relay.

The layout of this circuit is in no way critical, and an alternative composition to that shown in Fig. 3 may be used, if preferred. Follow the constructional sequence as outlined in the introductory article.

VARIATIONS

The unit operates with a 1 : 1 mark/space (on/off) ratio. This ratio can be varied, within limits, by altering the values of C2 and C3 so that one is different from the other. The operating frequency of the unit can be increased by lowering the values of these two components, or lowered (to give operating cycles of several seconds) by increasing the values of C2 and C3.

The unit can be made to give two outputs from the collectors of TR1 and TR2: one off when the other is on, by suitably arranging relay contacts or, if no relay is used, by duplicating the TR3-D1-R5 circuit and connecting similarly to the collector of TR1.
COMPONENTS...

Resistors
- R1 4.7kΩ
- R2 4.7kΩ
- R3 22kΩ
- R4 22kΩ
- R5 33kΩ
- R6 1.8kΩ

All 10%, 1 watt carbon

Potentiometer
- VR1 150kΩ preset skeleton

Capacitors
- C1 8µF elect. 15V
- C2 8µF elect. 15V
- C3 8µF elect. 15V

Transistors
- T1, 2, 3 NKT277 or NKT274 (3 off) (Newmarket)

Diode
- D1 OA200 (Mullard)

Relay
- RLA 700Ω type MH2 (Keyswitch Relays Ltd., 120-132 Cricklewood Lane, London, N.W.2)

Switch
- S1 2-pole, 3 ways, toggle switch, centre-off

Battery
- BY1 12V (car battery is used)

Lamps
- LP1, LP2 Two pairs of 12V wing flashing indicators
- LP3 12V Pilot dashboard lamp

Miscellaneous
- Sample piece of Veroboard
- Terminal block
- P.V.C covered wire

APPLICATIONS OF THE UNIT

The unit is specifically designed to operate as a turn indicator, and the connections for this application are shown in Fig. 1. A single changeover relay, RLA, and a 2-pole, 3-way switch form the basis of the circuit. The switch is normally in the centre (off) position, but when it is turned to the left (or right) S1a connects the negative supply from the battery to the electronic unit.

 Relay RLA operates, contact RLA1 opening and closing at the preset repetition rate, and alternatively connecting and disconnecting the left (or right) indicator bulb across the battery via S1b. At the same time the warning bulb in the dash-panel flashes on and off at the same repetition rate.

The repetition rate is set by VR1 (see Figs. 1 and 3), the most satisfactory speed being about 3 flashes per 2 seconds.

In other applications, the relay may be replaced by a bulb or by an alternative servo-mechanism. Care should be taken, however, to ensure that the emitter current of TR3 never exceeds 100mA, and preferably not more than 40mA.

If a relay is used, it should be designed to operate at 9 volts or less. If a 12 volt relay is used, its operation may be very slow and unreliable.
Of course, it is necessary to know where to knock! A copy of *The Callbook*, the radio man’s directory of his confreres’ callsigns and locations, is an indispensable part of the luggage. And as for not knowing much of the language of the person called upon, it is found to be of little account in the light of the fact that English is the universal tongue on the amateur communication bands, and two radio amateurs of different nationalities will get along famously with its aid.

Paradox

Paradoxically, this self-generating, spontaneous feeling of world wide brotherhood to which something like half a million transmitting amateurs the world over are kin, begins with one solitary man in a lonely room. And it begins at a point in time well ahead of that never-to-be-forgotten day when his transmitting licence arrives. It begins, in fact, at that moment when the radio enthusiast, casting his mind over the infinite variety of practical electronics available for him to explore, decides that it is the short wave communication avenue down which he will travel, with possession of the coveted “ticket”—the transmitting permit—the ultimate destination.

For months he will “go it alone”, finding out via his classic communication receiver where the amateur bands are and how to master the special language that operators employ for efficient communication within them.

Then comes the moment when the lone listener feels a very considerable desire to want to belong to this friendly fraternity, to join up with the amateur radio group which his listening tells him exists in his own district.

How to do it?

By keeping his ears open! By noting the callsigns he overhears. By looking them up in *The Callbook* to see where their owners are located. Sooner or later someone local will be identified.

Over-Enthusiasm

When this stage is reached the thing to guard against is over-enthusiasm, and the urge to rush out and to call on the newly discovered local transmitting amateur, first to see a “real live station” in action and secondly to find out how to join up with the local radio group if one exists. Restraint is desirable.

Friendly and gregarious though most radio amateurs are, not all of them welcome unannounced callers turning up at random intervals. Particularly to the consistent operator who puts out a prominent signal would it be embarrassing if every short wave listener in the area who heard him decided to look him up!

The proper and courteous thing to do is so obvious as to be stated here with some diffidence: write the man a letter, enclosing a stamped addressed envelope, and ask him when it will be convenient to pay him a visit.

Very likely the recipient’s reaction will be unfriendly. He will remember that he probably started his amateur radio career in just this way, that his local group can always do with an influx of new members with fresh ideas and ideas to offer, and that this enquirer-out-of-the-blue may very well be a person worth fostering for the good of the amateur radio cause.

Two Other Courses

What if no local transmitting amateur is to be heard, how then is our lone-wolf short wave listener to get into touch with similar like-minded people?

There are two things he can do—and it is a good plan to try both.

One of them is to invite the local newspaper to publish a paragraph—which it will probably be pleased to do, maybe in its gossip column—to the effect that moves are afoot to establish an amateur radio communications club locally, and that interested enthusiasts should get in touch with so-and-so at such-and-such address (meaning you). If a club already exists and you didn’t know, you soon will!

Secondly, remembering that local groups of the Radio Society of Great Britain (which is the British transmitting amateurs’ national body) flourish in scores of centres up and down the country, it is no bad thing to write to the R.S.G.B. (again enclosing that stamped addressed envelope) asking for the name of your Area Representative. Then get in touch with him—and the first steps towards enjoying amateur radio’s gregariousness will have been taken.

Note—The *Callbook* referred to above is published by the R.S.G.B., 28, Little Russell Street, London W.C.1., price 6/-.

It contains U.K. and Eire transmitting amateurs’ callsigns, names and addresses.

It would be appreciated if readers writing in with queries arising from “The 73 Page” would accompany such enquiries with a stamped addressed envelope.
A t radio and high audio frequencies, an amplifier can be made frequency selective by incorporating an LC tuned circuit in the collector, base or emitter circuit of an amplifying stage. This is the normal practice, for example, in the r.f. and i.f. stages of a conventional radio receiver. Unfortunately, this system of tuning is not so practical at low audio frequencies, due to the very large values of inductance and capacitance that are necessary in the tuning system.

The tuned amplifier described here uses no inductive components, but nevertheless acts as a high-Q tuned amplifier, even at low audio frequencies. The unit is specifically designed to operate at 1 kc/s, but its tuned frequency may be varied by altering the values of the tuned circuit components (see later section in this article).

FREQUENCY SELECTIVE ATTENUATOR

One method which may be used to make a conventional amplifier frequency selective is shown in Fig. 1a. Here, the amplifier gives a constant phase shift of 180 degrees, and has controlled negative feedback applied by feeding its output back to its input via a frequency selective attenuator. The attenuator gives maximum attenuation at the tuned frequency, and low attenuation to all other signals.

Thus, at the tuned frequency, only a negligible part of the output is fed back to the input, and the amplifier gain is high. At all other frequencies, a large part of the output is fed back 180 degrees out of phase to the input. The overall gain at these frequencies is thus considerably lower.

A number of RC circuits are suitable for use as the frequency sensitive attenuator, although some of them have their own particular disadvantages. The Wien bridge, for example, suffers from the fact that it is a four terminal network, making it difficult to mate the amplifier and the bridge circuits together.

The most useful RC circuit in this respect is the parallel or “twin-T” network, shown in Fig. 1b. This circuit is a three terminal equivalent of the Wien bridge. If the component ratios are as shown in the diagram, it shares the same general balance equation.

The twin-T network can be used on its own, if necessary, to act as a frequency rejecting circuit, wired in series with a conventional amplifier, to reject 50c/s pick-up from the mains, for example.

FINAL ARRANGEMENT

The full circuit diagram of the tuned amplifier is shown in Fig. 2. Here, the twin-T network is made up of R8, R9, R10, C4, C5, and C6.
A conventional LC tuned circuit is normally required to have a fairly high value of \(Q \), to give tuning "sharpness". Thus, the tuned amplifier is also required to exhibit high-\(Q \) tuning characteristics.

In this case, however, the \(Q \) is virtually independent of the characteristics of the filter network. In fact, \(Q \) is a function of the amplifier's voltage gain, the \(Q \) increasing with the gain. A very high gain circuit is thus essential if good results are to be obtained.

This high gain can be achieved in a number of ways: for example, cascade amplifiers could be used or a single transistor with controlled positive feedback, making the gain regenerative, could be utilised. One disadvantage with both of these systems is that the gain would tend to vary with temperature, resulting in possible instability of the amplifiers. If the gain became excessive, the unit would act as an oscillator.

In Fig. 2 this is overcome by connecting TR1 and TR2 together as a super-alpha pair, thus acting as a single transistor with a gain equal to the product of the two individual transistors. This very high gain stage is wired into a conventional common-emitter amplifier circuit, with R5 as the collector load and R6 as the emitter load.

Base bias is provided via the voltage divider chain R2 and R3, but the "top" end of R2 is connected to the collectors of TR1 and TR2. Thus, controlled a.c. negative feedback is applied over the stage, tending to stabilise the gain of the amplifier.

Resistor R4 is used to compensate for the differing leakage currents that may occur between one transistor and another.

TWIN-T FILTER

The output of the collector of TR2 is directly coupled to the base of TR3, a conventional emitter follower. The low impedance output at TR3 emitter is coupled to the input of the twin-T filter circuit. The output of the unit is also taken from TR3 emitter, via C3. The output of the twin-T filter is fed, via C7, back to the base of TR1, to provide the selective negative feedback described above.

To prevent interaction between the feedback portion of the signal and the amplifier input signal, an isolating resistor R1 is connected in series between C1 and TR1 base. Since R1 and the input impedance of TR1 form a voltage divider, considerable attenuation takes place on the input signal, and the overall gain of the complete system is quite low.

The ability of the circuit to reject unwanted low frequency signals can be increased, as shown, by using a very low value of input capacitor C1 which forms a short time constant with R1.

A fairly low value of emitter decoupling capacitor C2 ensures that increased negative feedback will be applied to the amplifier and, at low frequencies, the gain will be reduced even more.

Additional moves to "tailor" the frequency response, such as wiring a low value capacitor in parallel with R5 to reduce the gain at high frequencies, are not recommended, as they generally tend to form a tuned filter with some other part of the circuit. This makes the final response of the unit unpredictable, and can result in its ability to pass two bands of frequencies.

VR1 is used as a simple input volume control, and may be omitted from the final unit, if preferred.

CONSTRUCTION

Construction of the unit is fairly simple, but the exact layout shown should be adhered to, as instability may possibly result with alternative layouts.

Use the sample piece of Veroboard and break the copper strips at the positions shown in Fig. 3.

Now wire up the unit as shown; do not wire the twin-T section just yet. When satisfied that it is wired correctly, carry out a functional check of the amplifier.

First, connect a low level input signal to the base of TR1 via a blocking capacitor, and check that the unit gives very high gain. The amplifier has a very low input impedance, and the input signal should be fed from a low impedance source to avoid misleading results. If satisfactory, connect the input to VR1 and check that the amplifier gain falls off as the input frequency is reduced below 1kc/s.
Finally, wire up the filter section of the circuit, and check that it functions as a sharply tuned amplifier at about 1kc/s. This can be done by connecting the output to an audio amplifier or a c.v. voltmeter.

Transistors NKT277 are industrial types; the NKT274 is a suitable alternative.

VARIATIONS

The frequency of operation may be increased or decreased, as required, by altering the values of the twin-T circuit to conform with the frequency equation 1/2\pi R C. The values of R8 and R9 should not be made greater than 4-7 kilohms each. If the frequency of operation is increased, lower the values of C4 and C6 to suit; if the frequency of operation is lowered, increase the values of these two components.

The circuit as shown in Fig. 2 may concede a small amount of frequency drift with changes in temperature. This can be eliminated by wiring a single transistor emitter follower, with its base coupled to the output of the twin-T via a capacitor (16\mu F), and its emitter coupled to the base of TR1 via C7 in the feedback circuit. The stage would be inserted at point “X” shown in Fig. 2.

The unit may be adapted to give variable tuning by replacing R8 and R9 with a twin gang 5 kilohm potentiometer, and providing switch selection of the remaining twin-T components.

The Q of the circuit can be varied by wiring a 100 kilohm potentiometer connected as a variable resistor with a 16\mu F capacitor in series, and connecting the combination between the base and collector of TR1.

USING THE UNIT

The unit may be used in a manner similar to an ordinary amplifier. If, however, the unit is built into a composite piece of equipment, some instability may be experienced, and the normal precautions should be taken to ensure that the negative supply rail is fully decoupled to ac.

APPLICATIONS OF THE UNIT

The unit is ideal for use in the receiver section of a radio control system, it being far more reliable than a conventional reed, and giving far better frequency stability than a conventional pot core tuned amplifier.

Several units may be wired in parallel and fed from a common input, to give several different output frequencies, or two or more units may be wired in series to give very sharp tuning of a single frequency. The unit may be used in a high quality a.c. bridge to reject the unwanted components of the detected signal.

It can also be used to operate a sound operated servo-mechanism. Using the same principle, two or more tuned amplifiers may be used to ensure that the servo operates only when a specific complex sound is received, i.e. the device operates as a sound actuated combination lock.

Components...

Resistors	R1 39kΩ	R6 1kΩ
R2 56kΩ	R7 2.2kΩ	
R3 8.2kΩ	R8 3.9kΩ	
R4 12kΩ	R9 3.9kΩ	
R5 5.6kΩ	R10 2.2kΩ	

All 10%, 1 watt carbon

| Capacitors | C1 0.01μF disc ceramic 30V |
| C2 2μF elect. 15V |
| C3 1μF elect. 15V |
| C4 0.05μF disc ceramic 30V |
| C5 0.1μF polyester 250V |
| C6 0.05μF disc ceramic 30V |
| C7 16μF elect. 12V |

| Transistors | TR1, 2, 3 NKT277 or NKT274 (3 off) (Newmarket) |

| Battery | BY1 9 volts type PP3 |

| Miscellaneous | Sample Veroboard |
| Battery connectors |
| P.V.C. covered wire |

APPLICATIONS OF THE UNIT

The unit is ideal for use in the receiver section of a radio control system, it being far more reliable than a conventional reed, and giving far better frequency stability than a conventional pot core tuned amplifier.

Several units may be wired in parallel and fed from a common input, to give several different output frequencies, or two or more units may be wired in series to give very sharp tuning of a single frequency. The unit may be used in a high quality a.c. bridge to reject the unwanted components of the detected signal.

It can also be used to operate a sound operated servo-mechanism. Using the same principle, two or more tuned amplifiers may be used to ensure that the servo operates only when a specific complex sound is received, i.e. the device operates as a sound actuated combination lock.

735
Origin

During the late war there existed an insatiable demand for ground station receivers for the multifarious jobs of point-to-point communication, air-to-ground reception, and intelligence monitoring. In the last stages of the war a receiver came into service which was regarded by delighted operators as representing the (then) ultimate for communication purposes. This was the AR88, which gave the impression from its ruggedness, the completeness of its electrical specification—and indeed for its beautiful appearance both inside and out—to have been developed almost regardless of cost. It is small wonder that, more than twenty years after its advent, it should still command a price in the region of £50.

As may be seen from the block diagram, the complement is very complete: there are two r.f. stages, three i.f., and an audio amplifier ahead of the output stage.

Waveranges Covered

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>73 to 205 kc/s</td>
</tr>
<tr>
<td>Band 2</td>
<td>195 to 550 kc/s</td>
</tr>
<tr>
<td>Band 3</td>
<td>1,480 to 4,400 kc/s</td>
</tr>
<tr>
<td>Band 4</td>
<td>4,250 to 12,150 kc/s</td>
</tr>
<tr>
<td>Band 5</td>
<td>11,900 to 19,500 kc/s</td>
</tr>
<tr>
<td>Band 6</td>
<td>19,000 to 30,500 kc/s</td>
</tr>
</tbody>
</table>

(The LF version is quoted for the sake of completeness)

Variants

Three versions of the AR88 are available, the basic model, the AR88D with output into a 600 ohm balanced line, and the AR88LF, with “long waves”. In R.A.F. service these models were subjected to certain commonsense modifications that change them into the R1556, R1556A and R1556B respectively—but an AR88 by any other name remains as sleek. Use of the “LF” version confers the advantage of a standard frequency transmission in the form of the 200 kc/s Light Programme transmission.

Basic Circuits

<table>
<thead>
<tr>
<th>Component</th>
<th>Valve type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two r.f. amplifiers</td>
<td>6SG7</td>
</tr>
<tr>
<td>Mixer</td>
<td>6SA7</td>
</tr>
<tr>
<td>Local oscillator</td>
<td>615</td>
</tr>
<tr>
<td>I.F. amplifier, three</td>
<td>6SG7</td>
</tr>
<tr>
<td>Detector, a.g.c., and noise limiter, two</td>
<td>6H6</td>
</tr>
<tr>
<td>C.W. oscillator</td>
<td>615</td>
</tr>
<tr>
<td>Audio amplifier</td>
<td>6SJ7</td>
</tr>
<tr>
<td>Output</td>
<td>6V6G or 6K6GT</td>
</tr>
<tr>
<td>Stabiliser</td>
<td>VR150/30</td>
</tr>
<tr>
<td>Mains rectifier</td>
<td>5Y3G</td>
</tr>
</tbody>
</table>

COMMENT: Throughout the circuit the AR88 employs 6.3 volt international octal valves of common types that should remain available for many years ahead.

Intermediate Frequencies

Users intending to perform their own alignment should note that the i.f. in the AR88D is 455 kc/s, but that in the AR88LF it is 735 kc/s.

Power Requirements

A built-in power unit renders the AR88 operative on either low voltage American or standard British (190–260 volt) mains. It is possible to operate the receiver under portable conditions if 12 amp from a 6 volt accumulator can be tolerated: for this service a vibrator unit type M1-8319 is required.

Controls

The six controls ranged across the foot of the front panel are, from left to right:

Switch for “mains on”, “transmit”, “b.f.o. OFF” and “b.f.o. ON”. In the “transmit” position the receiver is mute. In some modified models a separate “mains on” switch is added beneath this four-position rotary.

COMMENT: What will be evident to the amateur short wave listener is the fact that all of the amateur h.f. allocations are included in the above ranges, not excepting the “Fourteen” and “Ten Metre” bands, often missing from classic communication receivers.
Frequency range switch, then r.f. gain and a.f. gain. Selection Switch: selects a bandwidth of 16kc/s for good quality audio, and five other bandwidths of increasing sharpness.

Noise Limiter/A.G.C. A four-position switch which rotated clockwise gives:

1. A.G.C. and noise limiter out: for reception of c.w. under clear conditions;
2. A.G.C. out, noise limiter in: for reception of c.w. under interference conditions;
3. A.G.C. in, noise limiter in: for reception of 'phone under interference conditions;

We present this month the fourth article in our series, “Classic Communication Receivers”. Intended as a guide to the prospective purchaser of a high performance receiver for use on the h.f. bands, this series gives the basic technical information he will need without delving too deeply into the circuitry. Readers should always make sure that a handbook or circuit diagram, at least, is supplied with any receiver purchased.

COMMUNICATION RECEIVERS

Above this last control is the c.w. pitch control. Above that again is the noise limiter control, which selects the percentage of noise limitation required.

Remaining “occasional” controls are a simple variable tone control top left, with the aerial alignment control (the “peaker upper”) below.

Final Comment

The AR88 has just one drawback: it is big (19½ in square by 11 in high) and heavy (about 100 lb). Although enthusiasts have been known to take it out on radio field-days, this is not an operation to be recommended.

For many years the AR88 has held its price better than most classic communication receivers, but this might ease with the advent of modern sets with their very different circuitry from the oldsters—and then some really bargain “Eighty Eights” may appear!
There can be nothing more off-putting to the uninitiated than the profusion of "powers of ten" like \(10^{-3}\), \(10^9\), \(10^{11}\) and so on, which occurs in mathematical formulae. Engineers and designers find such expressions of immense value when dealing with very large or very small numbers, particularly when using a slide rule instead of a set of log tables.

Effort is saved in several ways. The first is in writing down numbers which would otherwise have a lot of noughts in them. Instead of 2,000,000, write \(2 \times 10^6\). A positive index number indicates the number of noughts. Instead of 0.00007, write \(7 \times 10^{-5}\). A negative index number indicates the number of decimal places.

Most of the quantities which occur in radio engineering contain only a few significant figures with a number of noughts or decimal places. One virtue of writing them with index numbers is that one is much less likely to make an error in the decimal factor. Indices come into their own when numbers have to be multiplied or divided. For instance:

\[
5 \times 10^{12} \times 12 \times 10^9 = 60 \times 10^{21}
\]

\[
3 \times 10^3 \times 2 \times 10^{11} = 6 \times 10^{20}
\]

\[
\frac{5 \times 10^{12} \times 12 \times 10^9}{3 \times 10^3 \times 2 \times 10^{11}} = 100
\]

There are only two rules, both very simple. The rules are:

(a) To multiply, add the indices,
(b) To divide, subtract the indices.

Thus, \(5 \times 10^{12} \times 12 \times 10^9 = 60 \times 10^{21}\)
and \(3 \times 10^9 \times 2 \times 10^{11} = 6 \times 10^{20}\)
Therefore \(\frac{60 \times 10^{21}}{6 \times 10^{20}} = 10 \times 10^1 = 100\)

which is all very nice provided you know that \(10^1 = 10\).

This may not be obvious, but it does come into a logical sequence:

\[
10 \times 10 \times 10 = 10^3
\]
\[
10 \times 10 = 10^2
\]
\[
10 = 10^1
\]
\[
1 = 10^0
\]
\[
1/10 = 10^{-1}
\]
\[
1/100 = 10^{-2}
\]
\[
1/1000 = 10^{-3}
\]

and so on.

One other general point, before we get down to a practical example. Applying the first rule,

\[
10^1 \times 10^1 = 10^2 = 10.
\]

but \(\sqrt{10} \times \sqrt{10}\) is also equal to 10.

So \(10^1 = \sqrt{10}\).

In other words, raising something to the "power of one half" is just another way of saying: take its square root. Similarly \(10^{1/2}\) is a cube root, \(10^{1/3}\) a fourth root and so on.

Resonant Frequency

What is the resonant frequency of a tuned circuit composed of a 150pF capacitor and a 80\(\mu\)H inductor? The formula \(f_0 = \frac{1}{2\pi \sqrt{LC}}\) assumes that \(L\) is in henries and \(C\) in farads. Indices come in useful here in avoiding noughts, because 1\(\mu\)H = \(10^{-6}\)H and 1pF = \(10^{-12}\)F. We write \(150 \times 10^{-12}\)F for 150pF and \(80 \times 10^{-6}\)H for 80\(\mu\)H, and forget about decimals. Also \(\sqrt{LC} = (LC)^{1/2}\), which is just another way of writing the square root. Putting all this into our formula gives:

\[
f_0 = \frac{1}{2\pi \left(150 \times 10^{-12} \times 80 \times 10^{-6}\right)^{1/2}}
\]

\[
= \frac{1}{2\pi (12,000 \times 10^{-18})^{1/2}}
\]

At this point we exercise a little ingenuity so that we end up with a number whose square root is easy to find.

Let's deal with the index number first. Taking the square root is simplicity itself. You simply divide the index by two. Thus the square root of \(10^8\) is \(10^4\); i.e. \(\sqrt{100} = 10\). In the same way, the square root of \(10^{-18}\) is \(10^{-9}\). We get into deeper water if the index is odd. For example, the square root of \(10^9\) is \(10^{4.5}\); the value of which is not obvious. It's not as difficult as it looks, as we'll see in a moment, but for the time being note that, when taking square roots, we should if possible arrange for our indices to be even.

In the present example, \(10^{-18}\) has an even index, but we still have to deal with 12,000, a rather large number. We could reduce it like this:

\[
12,000 \times 10^{-18} = 12 \times 10^3 \times 10^{-18} = 12 \times 10^{-15}\]

but this gives us an odd index and \(\sqrt{12}\), which most of
NOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...

FIRST FOR PERFORMANCE, QUALITY AND PRICE!

NEW ROAMER SEVEN Mk IV

7 WAVEBAND PORTABLE OR CAR RADIO * Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS *

FULLY TUNABLE ON ALL WAVEBANDS * 9 stages - 7 transistors and 2 diodes *

Covers Medium and Long Waves, Trawler Band and three Short Waves to approx. 15 metres. Push-pull output for room filling volume from rich toned 7" x 4" speaker. Inclined ganged tuning condenser. Ferrite rod aerial for M & L Waves and telescopic aerial for S Waves. Real leather-look case with gilt trim and shoulder and hand straps. Size 9" x 7" x 4" approx. The perfect portable and the ideal car radio. (Uses PP7 batteries available anywhere.)

Total cost of all parts now only £3.9.6 P. & P. Ports Price List and easy build plans 2/- (Free with kit)

NEW MELODY MAKER SIX

3 WAVEBAND PORTABLE. 8 stages. Six transistors and two diodes.

Covers Medium and Long Waves and extra Band for easier tuning of Pirate Stations, etc. Top grade transistors, heavy duty speaker, top grade transistors, volume control and tuning condenser, new type fine tone super dynamic 2½ in. speaker, etc. Attractive case. Size 6½ x 4¾ x 1½ in. with red speaker grille. (Uses 1209 battery available anywhere.)

Total cost of all parts now only 42/6 P. & P. 3/6 Plans 2/- (Free with kit)

NEW TRANSONA FIVE

"Home, Light, A.F.N. Lux. all at good value" G.P., Durham *

7 stages - 5 transistors and 2 diodes

Fully tunable over Medium and Long Waves and Trawler Band. Incorporates Ferrite rod aerial, telescopic aerial for short waves. Top grade transistors. 3½ inch speaker. handsome case with gilt fittings. Size 6½ x 4¾ x 1½ in. (Carrying Strap 1/6 extra.)

★ EXTRA BAND FOR EASIER TUNING OF PIRATE STATIONS, etc.

Total cost of all parts now only £3.19.6 P. & P. 3/6 Plans 2/- (Free with kit)

MELODY SIX

8 stages - 6 transistors and 2 diodes

Our latest completely portable transistor radio covering Medium and Long Waves. Incorporates pre-tagged circuit board, 3½ inch speaker, top grade transistors, volume control, tuning condenser, new type fine tone super dynamic 2½ in. speaker, etc. Attractive case. Size 6½ x 4¾ x 1½ in. with red speaker grille. (Uses 1209 battery available anywhere.)

Total cost of all parts now only £3.9.6 P. & P. 3/6 Plans 2/- (Free with kit)

POCKET FIVE

7 stages - 5 transistors and 2 diodes.

Covers Medium and Long Waves and Trawler Band. a feature usually found in only the most expensive radios. On test Home, Light, Luxembourg and many Continental stations were received loud and clear. Designed round super-sensitive Ferrite Rod Aerial and fine tone 2½ in. moving coil speaker, built into attractive black and gold case. Size 2½ x 1½ x 3¾ in. (Uses 1209 battery available anywhere.)

Total cost of all parts now only 42/6 P. & P. 3/6 Plans 2/- (Free with kit)

SUPER SEVEN

9 stages - 7 transistors and 2 diodes.

Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or can be fitted with carrying strap for outdoor use. Completely portable—has built-in Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3½ inch speaker (will drive large speaker). Size 7½ x 5½ x 1½ in. (Uses 9v battery, available anywhere.)

Total cost of all parts now only £3.19.6 P. & P. 3/6 Plans 2/- (Free with kit)

/* EXTRA BAND FOR EASIER TUNING OF LUX, ETC.

Total cost of all parts now only 59/6 P. & P. 3/6 Plans 2/- (Free with kit)

RADIO EXCHANGE Ltd

61a HIGH STREET, BEDFORD. Phone: 52367

OPEN 9—5 P.M. SATURDAYS 9—12.30 P.M.
QUALITY RECORD PLAYER UNIT
The HA34 has been specially designed for us and incorporates: 12" turntable, 3-speed, automatic belt drive, heavy cabinet, separate iBass, Treble and volume controls. Output transformer matched for 3 ohm speaker, panel can be detached and leads extended for mounting. CARTRIDGE: OM137, 12/14/watt, £9/2/6. P. & P. 7/6.

SPECIAL OFFER! FM/AM TUNER HEAD
Also available mounted on board with output transformer and dim, speaker ready to fit into cabinet. Price £8/0. P. & P. 1/6.

QUALITY PORTABLE R/C UNIT

STEREO AMPLIFIER KIT
Incorporating 2 ECL82s and 1 EZ80, heavy duty, double wound main transformer. Output 4 watts per channel, full bass and volume controls. Absolute quality. Incl. bass, treble and balance controls for all outputs. Complete with leads and switches. Price £14/19/6. P. & P. 1/6. FREE 10 Mc/s. FILTER HASSES.

STereo Amplifier Kit
A stylishly finished, mental amplification with an output of 15W from 2 EZ80s in push-pull. Super reproduction of both treble and bass with separate bass and treble controls, and separate bass and treble controls are provided with excellent tone and balance. Price £14/19/6. P. & P. 1/6.

AUTO-BASS and TREBLE CONTROL

QUALITY PORTABLE R/C UNIT

FM Receiver Kit
A 4-valve audio amplifier with dual mono inputs. Price £13/15/6. P. & P. 1/6. FREE 10 Mc/s. FILTER HASSES.

SILICON RECTIFIER HANDBOOK
by Motorola. 12/4. Postage 1/-.

INTER. G.E.C. TRANSISTOR MANUAL
16/. Postage 1/6.

RADIO AND AUDIO SERVICING HANDBOOK
by G. J. King. 30/-.

LABORATORY MANUAL OF ELECTRONICS
by K. J. Dean. 20/-.

LENZ-RETURN ELECTRONICS WITH SOLUTIONS
by F. A. Benson. 22/6.

PRINCIPLES OF TRANSISTOR CIRCUITS
by S. W. Amos. 25/-.

THE MODERN BOOK CO.
BRITISH'S LARGEST STOCKISTS
British and American Technical Books
19-21 PRAED STREET
HILL, W.2.
Phone: PADdington 4185
Closed Saturday 1 p.m.

NEW EDITION
RADIO VALVE DATA
CHARACTERISTICS OF 7,000 VALVES
TRANSISTORS • SEMICONDUCTOR DIODES & RECTIFIERS • CATHODE RAY TUBES
Compiled "W.W" 8th edition. 9/6 Postage 1/-.
us don’t carry around in our heads. Try again:

\[12,000 \times 10^{-10} = 120 \times 10^3 \times 10^{-18} = 120 \times 10^{-16}. \]

We now have an even index, and we have to find \(\sqrt[11]{120} \), which is so near to \(11 \) that we can tolerate the small error.

To return to our formula, we can now write:

\[f_0 = \frac{10^8}{2\pi \times 11} \text{ c/s} \]

and since \(1/10^{-8} = 10^8/10^{-8} = 10^8 \),

\[f_0 = \frac{10^8}{2\pi \times 11} \text{ c/s} \]

A negative index denominator equals a positive index numerator. To get the answer in Mc/s, divide by 1 million or \(10^6 \):

\[f_0 = \frac{100}{6.28 \times 11} = \frac{100}{69.08} \text{ Mc/s} \]

Which is approximately \(100/70 = 1.4 \text{Mc/s} \).

Now let us see how we can deal with fractional indices. The commonest one is \(10^{4.5} = 10^4 \times 10^{0.5} \). This comes into other indices; e.g. \(\sqrt[10]{10^4} = 10^4 \times 10^{0.5} = 10^4 \times \sqrt[10]{10} = 10^4 \times 3.16 \). The thing to remember is that \(\sqrt[10]{10} = 3.16 \). This can sometimes be taken as 3 without serious loss of accuracy, and it can sometimes be cancelled out against \(\pi \) if this happens to come on the other side of the fraction (\(\pi \approx 3.14 \)). Remember that \(10/\sqrt{10} = \sqrt{10} \); this often enables \(\sqrt{10} \) in the denominator to be transferred to the numerator, where it is less of a nuisance.

INGENUITY

UNLIMITED!

In this feature we hope, from time to time, to be able to publish suggestions submitted by some of our readers on the possible improvement of projects previously described in Practical Electronics; short contributions on other subjects may be included. The aim is not to find fault or undermine the abilities or knowledge of our contributors. It may well be that the original article is par excellence but it could be improved or adapted to suit individual requirements. The views expressed by readers are not necessarily those of the Editor.

FLIP FLOP TACHOMETER

After reading the article on "Logic Design" in the June issue I thought you might be interested in this circuit of a tachometer using a flip-flop.

The circuit is a monostable flip-flop, triggered by the pulse from the distributor, the transient peak of this pulse being 100 volts or more. The effective value of the pulse is reduced by \(R_1 \) and \(R_2 \).

In the stable state, \(TR_2 \) is conducting, \(TR_1 \) is cut off by the positive bias on its base. The first diode, \(D_1 \), eliminates the positive half of the input pulse, and the negative half is applied to the base of \(TR_1 \). \(TR_1 \) then conducts, applying a heavy positive bias to \(TR_2 \) base, thus cutting it off. The circuit remains in this state for a time (determined by \(R \) and \(C \)) and then flops back to the stable state again, thus producing a square waveform of the same frequency as the applied pulses. The 0-5mA meter reads the mean value of the ensuing waveform, this mean value being proportional to the frequency, as the amplitude is constant.

The Zener diode stabilises the supply voltage so that the meter reading does not vary with battery voltage. The second diode \(D_2 \) protects the circuit against transient peaks.

H. A. Cook,
Christchurch,
Hampshire.
A.M. TUNER CIRCUIT

I was especially pleased with the A.M. Tuner published in your “Bonanza Board” series in the March and April issues. I am very interested in miniature receivers and your circuit worked very well although the layout was rather critical if the printed circuit was not used.

I “played about” with this circuit for some time and some of your readers might be interested in the one which I built as a result of my experiments. It works quite well on local stations driving a crystal earpiece.

The main problem with respect to how small this receiver can be built is the length of the ferrite rod used to obtain satisfactory reception. I managed to get reasonable volume from a 1/2in length. Two old i.f. bases were fixed on to the rod and the tags on the bases used to anchor the components. A small 250pF trimmer served as a tuning capacitor. “Red Spot” transistors worked just as well as OC7Js in this circuit and an SB305 or any “MAT” type used in the second stage improves the performance.

B. A. Austin,
Solihull,
Warks.

This is a good circuit, almost identical to one I tried. One disadvantage is a poor ratio between base d.c. current and r.f. current in TRI. Another is that the circuit will only operate satisfactorily using low voltage power supplies. The crystal earpiece cannot be driven to so high a volume as with BB3, and the circuit does not tolerate a wide variation in d.c. operating conditions. However, the sensitivity of the receiver is very good.—A. J. B.

Fig. 1 (top). Simplified A.M. Radio Tuner
Fig. 2 (centre). Ferrite rod component assembly
Fig. 3 (right). Added stage for greater output

ELECTROLYSIS FOR PRINTED CIRCUITS

In your articles on printed circuitry (March Issue), you are constantly stressing the danger of allowing the etching fluid to come into contact with the body. I do not know exactly what this substance is, but I know that nitric acid is also commonly used for etching. The precautions needed to be taken when using these substances, together with the fear of acids which many people possess, may well discourage many people from attempting printed circuitry.

However, when making printed circuits, I now use a method which I once thought of and used when I had run out of acid during the local holiday week: this was electrolysis.

To make the circuit, simply paint the circuit design onto the laminate board with shellac and allow to dry, then attach a crocodile clip to an unpainted part with a lead running from the clip to the positive terminal of a car battery or low voltage transformer and rectifier unit. Immerse the board in copper sulphate solution and place a piece of copper wire somewhere in the solution so that it does not touch the board or clip. Attach this wire to the negative of the power source and the process will begin.

The unpainted copper will slowly pass into solution. When the current has ceased to flow, the unwanted copper should have all been etched away. If isolated patches of copper remain, it will be found that these are very thin and are easily removed with a pen-knife.

This process is both safe and cheap, as the amount of electricity used is almost negligible and copper is deposited from the solution and onto the negative wire at a rate equal to that at which it is being removed from the board, hence the copper sulphate solution remains at an almost constant concentration and none is lost. The slight increase in concentration is due to some loss of water.

For an average sized board, the length of time needed using 12V, 2oz would be about one hour.

This method has been thoroughly tested and used and I assure you that it is entirely successful.

P. R. Newell,
Blackburn,
Lancashire.
IMPROVED STANDARDS of Accuracy and Reliability!

Modern styling in light grey with legible black engraving.

Constructed to withstand adverse climatic conditions.

Ever ready case including leads, prods and clips.

Improved internal assemblies.

Restyled scale plate for easy, rapid reading. 2 basic scales each 2.5 inches in length.

New standards of accuracy using an individually calibrated scale plate; d.c. ranges 2.25% of full scale deflection, a.c. ranges 2.75% of full scale deflection.

Available accessories include a 2,500V d.c. multiplier and 5, 10 and 25A shunts for d.c. current measurement.

For full details write for descriptive leaflet.

The Mk. 4 MULTIMINOR is the latest version of this famous Avo instrument and supersedes all previous models. It is styled on modern lines, with new high standards of accuracy, improved internal assemblies, and incorporating panclimatic properties.

The instrument is supplied in an attractive black carrying case, which also houses a pair of leads with interchangeable prods and clips, and an instruction booklet. It is packed in an attractive display carton. Robust leather cases are available, if required, in two sizes, one to take the instrument with leading clips and prods, and the other to house these and also a high voltage multiplier and a d.c. shunt.

D.C. Current: 100μA f.s.d. — 1A f.s.d. in 5 ranges.

A.C. Voltage: 10V f.s.d. — 1,000V f.s.d. in 5 ranges.

D.C. Voltage: 2.5V f.s.d. — 1,000V f.s.d. in 6 ranges.

D.C. Millivolt range: 0 — 200mV f.s.d.

RESISTANCE: 0-2MΩ in 2 ranges, using 1.5V cell.

SENSITIVITY: 10,000 Ω/V on d.c. Voltage ranges, 1,000 Ω/V on a.c. Voltage ranges.

AVO LIMITED
AVOCET HOUSE • DOVER • KENT

Telephone: Dover 2626

MULTIMINOR Mk 4

AVO LIMITED
AVOCET HOUSE • DOVER • KENT

Telephone: Dover 2626

WHARFEDALE SOUND

RANK WHARFEDALE LIMITED
IDLE, BRADFORD, YORKSHIRE

Telephone Bradford 612592/3 • Telegrams 'Wharfdel' Bradford

BUILD A HI-FI SYSTEM
WITH WHARFEDALE LOUDSPEAKERS

These Loudspeakers are the actual speakers that Wharfedale use in their world famous cabinet models. Each is fitted with roll surround for low resonance and double diaphragm assembly for extended H.F. response.

Send today for further details of these units plus free cabinet construction sheets to enable you to build a top quality Hi-Fi loudspeaker system.

SUPER 8/RS/DD
Frequency range 40 c/s — 20,000 c/s. Impedance 10/15 ohms.
Power handling capacity 6 watts (12 watts peak) £7.0.0. (tax paid)

SUPER 10/RS/DD
Frequency range 30 c/s — 20,000 c/s. Impedance 10/15 ohms.
Power handling capacity 10 watts (20 watts peak) £11.13.4. (tax paid)

SUPER 12/RS/DD
Frequency range 25 c/s — 20,000 c/s. Impedance 12/15 ohms.
Power handling capacity 20 watts (40 watts peak) £17.10.0. (no tax)

FREE CONSTRUCTION SHEETS

Complete this coupon for 8 page booklet on Wharfedale Speaker Units plus FREE CABINET CONSTRUCTION SHEETS for your own HI-FI system. (Dept. FE10)

NAME
ADDRESS
TOWN

743
SILICON RECTIFIERS I.R. 1N2374
1000V 250mA 4/6d. P.P. 1/6d.
1000V 9/6d. P.P. 1/6d.
RESISTORS 100 well assorted values and types, 10p. to 10G, by 1G, by 10G, etc. A super buy at 7/6d. P.P. 1/6d.
VALVEHOLDERS and thread sizes.
CAPACITORS Parcel of 100 well assorted values and types, 0.1mfd. to 10mfd., 1% to 10%, by-steps, electrolytics, air spaced variables, etc. A super buy at 7/6d. P.P. 1/6d.
Some more examples from our large selection of transistors

NEW RANGE U.H.F. AERIALS FOR BBC 2 (625) line transmissions

All U.H.F. aerials now fitted with fitting bracket and boom. Complete with full instructions. With double pole switch 10K log. 1 + 3, 50/-; 1 + 5, 63/-; Wall Mounting 1 + 3. 56/6; 1 + 5, 69/6; 14 element, 30/6. 18 element, 38/6. Mast Mounting 1 + 3. 56/6; 1 + 5, 69/6; 14 element, 30/6. 18 element, 38/6. Complete assembly instructions with every unit. Low Loss Cable, 18/6. U.H.F. Feedaways from 74/6. State clearly channel number required on all orders.

THE MOST FANTASTIC RADIO OFFER EVER!

DUE TO HEAVY FOREIGN SUBSIDY

GETS WORLD WIDE RECEPTION
THOUSANDS OF STATIONS & TRANSMISSIONS!

8 WAVE BAND
PORTABLE RADIO

£10.19.6
OR LOW DEPOSIT

BOX & POST 4/6

(H.D.T.B.)

Available at 1000V, 1500V, 2000V and 2500V.

BY 1000 S/6

Standard Jack Socket $1.00

Standard Jack Plug $1.00

Communications Receivers

TAPE SPICER, DORSET.

£10.00

FILM 1000 S/6

FLOWER CRESCENT STATIONERY LTD.

WOOD GREEN, N.22

BOWES PARK 3206

LONDON'S ELECTRONIC CENTRE

BEST QUALITY - KEEN PRICES

CRESCENT RADIO LTD.

40 MAYES ROAD, WOOD GREEN, N.22

BOWES PARK 3206

LONDON'S ELECTRONIC CENTRE

BEST QUALITY - KEEN PRICES

WEDNESDAY, FRIDAY & SATURDAY

BY 1000 S/6

Standard Jack Socket

Standard Jack Plug

Tape Spicer, Dorset.

£10.00

FILM 1000 S/6

FLOWER CRESCENT STATIONERY LTD.

WOOD GREEN, N.22

BOWES PARK 3206

LONDON'S ELECTRONIC CENTRE

BEST QUALITY - KEEN PRICES

WEDNESDAY, FRIDAY & SATURDAY

BY 1000 S/6

Standard Jack Socket

Standard Jack Plug
This, the last of this series of Miniboard projects, describes a five transistor, transformerless, power amplifier, designed to feed up to 200mW to a 25 ohm speaker. The quiescent current of the complete unit is approximately 8mA. The first transistor of the amplifier is connected as an emitter follower, having an input impedance of 80 kilohms, thus making the unit suitable for use as an audio signal tracer, if required. For normal audio amplifier applications, this first transistor can be omitted from the circuit; a pre-amplifier would then be connected across the volume control.

COMPLEMENTARY SYMMETRY

The actual circuit (shown in Fig. 1) uses two output transistors TR4 and TR5, in complementary symmetry mode. TR5 is an npn type which is the load in the emitter of TR4 (pnp) connected as an emitter follower. The actual output load R_l is the loudspeaker which is connected to TR4 emitter via C6. As far as a.c. is concerned the negative and positive supply lines are at virtually zero potential, due to the low impedance of the power supply, so the load can be effectively "grounded" to either positive or negative supply lines. The base of TR4 is connected to the signal source (in this case the driver stage output) with a source impedance Z_0.

The output impedance of an emitter follower is given approximately as the source impedance Z_0 divided by the current gain h_{FE} of the transistor. In the actual unit under consideration, Z_0 is 680 ohms and h_{FE} is 200 nominal, so the output impedance is 3-4 ohms nominal. If the output load R_l is made 3-4 ohms, the output voltage (peak) would be limited to half of the input voltage (peak), since the output impedance and R_l are in series and act as a potential divider. A near perfect match is then obtained between the loudspeaker and the source impedance. Similarly TR5 is also connected as an emitter follower with TR4 acting as its emitter load.

Thus, on the negative portion of the signal TR4 conducts and TR5 is cut-off, while on the parts of the signal that are positive TR5 conducts and TR4 is cut-off. R10 is used to give a degree of base-bias to the output transistors and prevent cross-over distortion.

The upper end of the main collector load resistor R11, of the driver transistor, is taken to the negative supply line via the 25 ohm speaker. A degree of negative feedback is thus obtained, which helps to
reduce any distortion that could otherwise occur, due to the slightly uneven driving voltages on the bases of the two output transistors. This negative feedback also effectively lowers the source impedance of the driver stage, and thus the output impedance of the output stages. Resistors R7 and R8 form a voltage divider base bias network for TR3.

The upper end of R7 is directly coupled to the common emitter junction of TR4-TR5; d.c. negative feedback is thus obtained, stabilising the working voltages of TR3.

The driver stage is fed, via C4, from the common emitter preamplifier TR2, which in turn is fed from the emitter follower input circuit TR1. The emitter load of TR1 is a potentiometer, VRI, which serves as a volume control. To prevent overall positive feedback and consequent instability, the decoupling network R6 and C5 is inserted between TR2 and the output stages.

CONSTRUCTION

Following the procedure outlined in the introductory article break the copper strips in the sample piece of Veroboard as shown in Fig. 3 and connect the flying leads.

The components are fairly cramped on the board so it is probably best to start assembly by wiring up the output and driver stages. Before connecting the supplies to test this part of the circuit, check the wiring. Connect the 25 ohm loudspeaker; then connect the 9 volt supply with a milliammeter in series.

Check that the current, with the base of TR3 shorted to ground via a large value capacitor, is less than 10mA. If a voltmeter is available, check that the voltage between the common emitter junction of the output transistors and battery positive is about 41 volts. A functional check can now be made by removing the shorting capacitor from TR3 base and connecting an input signal to TR3 base via a blocking capacitor. The current will then rise significantly. If satisfactory, wire up and check the rest of the circuit, taking care to monitor the total current of the unit at all times.

VARIATIONS

If the unit is to be used as a normal audio amplifier, either with a microphone, pick-up, or with a radio tuner, omit R1, C1, and TR1 from the circuit, and couple the input, via a 16µF capacitor, to the top end of VRI.

With the component values shown in the circuit diagram, the frequency response of the unit is considered to be adequate for normal domestic use, although the results are by no means hi-fi. The low frequency response can be improved, however, by replacing C6 with a 1000µF capacitor.

Using a 25 ohm loudspeaker, about 200mW of output power is available at reasonable quality; greater output power can be obtained using the same speaker, but distortion then becomes excessive. Undistorted output power can be increased by using a lower impedance speaker, but in this case larger transient currents have to be handled by the output transistors which may be damaged as a result.

Never disconnect the loudspeaker when the power supply is on or the output transistors may be damaged. It should be possible to use this amplifier with speaker impedances as low as five or even three ohms, but in this case a 100mA fuse should be wired in the negative supply line as a safety precaution against damaging the output transistors. The maximum output voltage that is available without distortion is about 7 volts peak-to-peak (approximately 2-5 volts r.m.s.), with a 25 ohm loudspeaker.

If the unit is to be built into a composite piece of equipment, replace VRI with a front panel mounted volume control and knob.

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>100kΩ</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>68kΩ</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>10kΩ</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>5.6kΩ</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>1kΩ</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>330Ω</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRI</td>
<td>5kΩ</td>
<td>preset, skeleton miniature or panel mounting control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1µF</td>
<td>elect.</td>
</tr>
<tr>
<td>C2</td>
<td>10µF</td>
<td>elect.</td>
</tr>
<tr>
<td>C3</td>
<td>16µF</td>
<td>elect.</td>
</tr>
<tr>
<td>C4</td>
<td>16µF</td>
<td>elect.</td>
</tr>
<tr>
<td>C5</td>
<td>16µF</td>
<td>elect.</td>
</tr>
<tr>
<td>C6</td>
<td>16µF</td>
<td>elect.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRI, TR2, TR3</td>
<td>NKT277 or NKT274 (4 off)</td>
<td>(Newmarket)</td>
</tr>
<tr>
<td>TR4, TR5</td>
<td>NKT777 or NKT773 (Newmarket)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loudspeaker</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI</td>
<td>25 ohms, 5 inch, round (Plessey)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1</td>
<td>9 volt</td>
<td>type PP9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veroboard</td>
<td></td>
</tr>
<tr>
<td>Battery connectors</td>
<td></td>
</tr>
<tr>
<td>P.V.C. covered wire</td>
<td></td>
</tr>
</tbody>
</table>
PRACTICAL!

VISUAL!

EXCITING!

a new 4-way method of mastering

ELECTRONICS

by doing — and — seeing . . .

1) OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS

2) BUILD and USE a modern and professional CATHODE RAY OSCILLOSCOPE

3) READ and DRAW and UNDERSTAND CIRCUIT DIAGRAMS

4) CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FREE POST NOW for BROCHURE

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

NAME

ADDRESS

PLEASE PAY 10

747
11 Directors and reflector mat—a really effective model by one of our most famous makers—most impressive, £45/-. Also, loose co-ax cable 2/6 yd. BBC 2 aerial Amplifier 4/4.0.

STEREO DE LUXE HEADPHONES
Everyone who is anyone has a pair, and everyone who wants to have one is fascinated with the stereo phone. After all, you can touch them without fear of scorching or fire. The new Telefron ear-pieces are detachable and Insurance.

Two prices are quoted—9/- for the cotton model, and 12/9 plus 2/9 post and insurance. They can be adjustable over 30" to 1,000". Suitable lor long SAHARA AREAS BBC 2 TELEVISION AERIAL.....

INFRA-RED HEATERS
Make up one of these latest type heaters. Made in four sizes. Complete for 1,2,3, or 4 sq. ft., 240v, 500w, 1000w, 1500w, or 2000w. A genuine performance heater, suitable for use in any modern property. For a limited time only, we can offer a bargain price 76/-.

FINE RECORD PLAYERS

4 transistors including two push-pull inputs for maximum stereo response and magnetic microphones. Complete with pickup loop for best possible record reproduction. 3/6 each.

PRICE 1/9/6
Post and Ins. 6/6.

TUBULAR HEATERS
New and unused made by G.E.C.—rated at 60 watts per foot. Size 1", 2", 3" and 4" in lengths without limit. Suits almost all types of rooms. Supplied complete with fixing brackets and instructions. Price 6/6 each. A.B.I. group these at 12/6 each.

PRICE 8/6
Post and Ins. 3/9 each.

SIMMERHEAT HEATER REGULATOR
Made to control elements, heater, polishing tins and boiling rings up to 5,000 watt. Complete adjustable from 0 to 100%. 8/6 plus 3/8 post and insurance.

Type 'A' £1. 95. pour point, high quality, suitable for baking.
JUST A DREAM

One's heart must go out to Lord Robens and his fellow members of the National Coal Board. With courage and imagination they embarked upon a vast programme of modernisation, calling in all the resources of modern technology. This planning reached a grand climax in the completion of the showpiece colliery at Bevercotes in Nottinghamshire. Twelve months ago the National Coal Board unveiled this, the first remotely controlled mine in the world, with electronically guided and controlled machinery.

What an inspiring picture this presented: here was one of the oldest industries of all—nostrous for the severity of its working conditions—boldly deciding to take a gigantic step forward into the 21st century. A shining example for other industries to follow. A glimpse of the future, when all unpleasant and arduous toil would be undertaken by machines with man merely there to supervise their operation.

So we thought. Alas, this remains but a dream.

For some inexplicable reason, the mineworkers seem unappreciative of the new white-coated role they are being offered. A few million pounds worth of equipment including complex electronic installations lies entombed 3,000 feet below the surface, unused, at Bevercotes. The coal that might have been won during these past 12 months is estimated at about a million tons.

OFF THE BEAT?

Computers, infra-red devices, radio, and closed circuit television are some of the electronic aids now being mobilised for action in the campaign against the mounting crime wave.

Will this extended use of science and technology result ultimately in the disappearance from our streets of the “bobby”? I would not myself have thought this at all likely. But no less an authority than the Secretary General of Interpol, M. Jean Nepote, believes this to be so. By 1975, he forecasts, policemen will have vanished from the streets in Britain and their function will have been taken over by television cameras!

Such a state of affairs can hardly be contemplated. Just consider, for one thing, our guests from overseas. Whatever will they do when they want to be directed to say—The Tower, or wish to know when the Changing of the Guard ceremony takes place. And, in particular, let us consider those members of the fair sex one sees in the busy streets of the Capital gazing admiringly upwards into the face of an ever helpful bobby. They surely will find little recompense in the glassy eye of a television camera—even if it is part of an all knowing robot with a computer fed encyclopaedic mind.

RELIABLE SERVICE

The radio and television rental system is hardly known in the U.S.A., where it is limited to such institutions as schools and hospitals. This is in sharp contrast to our own country, where the rental system is becoming increasingly popular with the general public. When colour arrives in Britain (all being well—end of 1967) it is predicted that at least 80 per cent of colour receivers in private homes will be hired on the rental basis. This at any rate was the view put forward by Mr. Robinson, Chairman of Radio Rentals Limited, when announcing a tie up between his firm and The Radio Corporation of America for the production of colour tubes in Britain.

Apart from the very real financial aspect, I suspect that the swing over to rental as opposed to private ownership has been greatly encouraged by the public's suspicion of the “servicing” fraternity. Perhaps this Cinderella of the radio and television trade could learn something from its counterpart in the U.S.A. Over there the private listener or viewer is dependent on the service man or “troubleshooter” and, one presumes, has no qualms about calling him in.

ALL-TALKING INSTRUMENTATION

The motorist has benefited very considerably from electronic developments. As readers of this magazine will know quite well, there are a variety of devices designed to assist the driver or to safeguard his vehicle. Nevertheless, what we have seen so far is apparently just the beginning. For example, the Ford people, I understand, are developing “audio” speedometers and petrol and oil gauges. Miniature tape machines will give pre-recorded warning messages as the needle reaches a danger mark. The idea is to relieve the motorist of the necessity of frequently glancing at the dashboard instruments. I suggest that automatic muting of the car radio when the audio warning comes up is a vital adjunct to such a scheme.

Talking of car radio, the practice of driving along with the accompaniment of broadcast entertainment is so widespread now that it will doubtless surprise many younger readers to learn that the introduction of this amenity was fiercely opposed in some quarters in the early days as being a dangerous distraction. But, paradoxically, it was soon proved that a radio programme can help keep the driver alert, particularly on long solitary journeys.

Talking Speedometers
Fitted while you wait

“No thanks, I already have one”
Where has all the fuzz gone?

Sir—I have completed making the Fuzz Box described in the July issue, but have not obtained fully successful results with it.

On connecting up and plucking the guitar string softly, only a very small output can be obtained (far softer than without the fuzz box connected). However, on plucking the guitar string fairly hard, a very loud (much amplified above normal level, i.e. without the fuzz box) fuzzed output is obtained. This is satisfactory, except for the fact that this note lasts only for a few seconds on the bass notes, and even shorter on the treble notes. This, however, I suspect is due to the guitar’s lack of sustain on the treble notes) before suddenly cutting out and reverting to the “tinny” output, as before. Just before cutting out, a crackle also appears, with the fuzz. Thus, it seems that whether the unit fuzzes or not is dependent upon the input supplied by the guitar.

In the unit which I constructed I was not able to obtain the correct values for all the components. But, since the margins of error are fairly small, I am not sure whether or not the fault can be traced to any of these.

S. F. Bywaters, Hornchurch, Essex.

Slight modifications may be necessary so as to make the fuzz box match the particular guitar output specification. The clipping stage preceded by the pre-amp has a definite minimum threshold input level which can be varied by changing the value of R3, altering the gain of TR2, or trying a different diode as D1. Any signal lower than the minimum trigger input level will not be reproduced at all. The circuit will give an illusion of sustaining the signal because, providing the input signal is over the threshold level, the output signal is always at the same level until cut-off point is reached, when the input level falls below threshold. The true sustain effect is not only unobtainable but also undesirable. If any such unit gave a sustain effect then any note played would carry on to give a cataclysmic discord if the next note was played soon after.—M. S.-R.

The Roding Boys’ Society

This radio and electronics group for boys has changed the Headquarters location, and the meetings are now held in Waltham Forest, London, E.17.

An expansion of the activities should now take place with the new facilities available to us.

Meetings will continue on Tuesday evenings, plus special activities on Saturdays.

Boys who are especially keen on radio/electronics are particularly welcome to visit the new Centre. If you are interested please contact:—Ron Marchant, 154, Essex Rd., London, E.10.

CAN YOU HELP?

Letters for inclusion under this heading should be as brief as possible. Replies should be made direct to the readers concerned.

Sir—I have been trying to obtain some early issues, Nos. 1 to 10, but have had no luck. I wonder if any of your readers can help? I will, of course, pay the postal rates and charges.

B. Toffoli, 18, Farnley Street, Mt. Lawley, Perth, Western Australia.

Sir—I am interested in purchasing back number 1 to 12 of volume 1 and February 1966 at cost plus postage.

A. Balsch, Science Dept., Williamwood High School, Seres Road, Clarkston, By Glasgow.

Sir—Can any reader supply me with all back copies for volume 1 as well as numbers 1 to 4 of volume 2?

O. W. Griffiths, P.O. Box 13304, Snowy, Pretoria, South Africa.

Sir—Can anyone supply me with the first four copies of Practical Electronics? I would pay full price for these to complete my collection.

D. R. Fairbrother, Averill House, King’s College, Otahuhu, Auckland, New Zealand.

Sir—Could any of your readers supply me with volume 1 complete with blueprints, etc?

J. A. Daykin, 14, The Avenue, Churchdown, Glos.

Back numbers are usually very quickly exhausted. We strongly advise all our readers that a standing order be placed with their news-agent to avoid any future disappointment.

Noise from the quiet sun

Sir—I read with interest the article on Radio Astronomy by C. B. Sibley in the August edition.

I should like to point out that the detection of thermal noise from the quiet sun is not as easy to detect as the writer suggests. The block diagram (Fig. 4) shows a radiometer or full power system which is quite suitable for detecting large solar outbursts and should give good results during maximum sunspot activity.

Trying to detect the quiet sun with this system would be impossible as all forms of man made interference will be shown on the pen recorder. As a result it would be difficult to sort out genuine solar signals from the unwanted ones.

My main purpose of writing this is to prevent any would-be constructors becoming disappointed if their efforts failed, as I have constructed similar equipment without producing any results.

The type of equipment that could be used very successfully by the amateur with a garden of moderate size is the phase-switched interferometer. This system takes more time and effort but the results are most satisfying as I have found with my own equipment.

M. J. Hale,
Secretary of the Radio Astronomy Section,
The British Astronomical Association,

“Pop” mandolin

Sir—Having read Colin Greig’s letter in the August edition, I think that I ought to make one or two comments in reply.

The first is that the original instrument, the Electronic Mandolin, designed by S. Chisholm in the June edition was made originally with the idea of being highly amplified in a “pop” group. Also if it is to be used for this purpose a crystal microphone would be useless as the risk of “feedback” and the picking up of extraneous noises would be too great.

If a crystal pick-up is used the tone would be extremely “tinny” and tend to reproduce the upper register of the instrument more than the lower one.

G. K. Mitchell,
Orpington, Kent.
MAKE UP ALL SIX CIRCUITS

IN THIS MONTH'S ISSUE WITH THIS SPECIAL

VERO BOARD PACK 9/9

- 5 ADDITIONAL BOARDS WITH SPOT FACE CUTTER for only

Obtainable from your usual Retailer. One Board FREE in this month's "Practical Electronics".

IF YOU WOULD LIKE TO KNOW MORE ABOUT VEROBOARD AND VERO PRODUCTS WRITE TO

VERO ELECTRONICS LTD.
INDUSTRIAL ESTATE, CHANDLER'S FORD
Hampshire
Tel.: CHANDLER'S FORD 2921 — TELEX 47551
Branches and Agents throughout the World

A New Martin Recordakit
designed specially for the MAGNAVOX 363

Get the best out of your MAGNAVOX STUDIOMATIC TAPE DECK with a Martin Recordakit assembly. This comprises everything you want to make a superb two or four track 3-speed recorder (taking 7 in. reels) at a price that will save you pounds. The basic Martin units are assembled and tested, making it necessary for you simply to fit and connect them together in accordance with the detailed instructions book supplied. When built, your Martin Recorder appears as shown here. The lid is detachable. Case with speaker, and deck also available. Details on request. MARTIN RECORDAKITS have long been famous for their high performance standards, quality of materials, simplicity and dependability. The latest is the best yet.

Martin Audiokits for Hi-Fi
The uniquely reliable kits with "Add-on-ability"

No other system allows you to enlarge your installation stage by stage as Audiokits do. They comprise a wide range of very well made prefabricated transistorised units in which connections are standardised throughout and from which anything from a simple straight amplifier to an elaborate hi-fi stereo amplifier, with FM tuner can be built. The Recodakit described above can be combined with your Audiokit assembly if you wish.

FROM PRE-AMP TO A HI-FI STEREO/FM ASSEMBLY

Martin Recordakits and Audiokits are obtainable from good stockists everywhere. In cases of difficulty please write direct. Trade enquiries invited.

MARTIN ELECTRONICS LTD
154/155 HIGH ST., BRENTFORD
M'SEX Phone: ISLeworth 1161/2

KITT M4 less case and deck (four track) but incl. valves, wire, screws, etc. £15.19.6
KITT M2 less case and deck (two track) but incl. valves, wire, screws, etc. £14.19.6

MARTIN RECORDAKITS have long been famous for their high performance standards, quality of materials, simplicity and dependability. The latest is the best yet.

FROM PRE-AMP TO A HI-FI STEREO/FM ASSEMBLY

Martin Recordakits and Audiokits are obtainable from good stockists everywhere. In cases of difficulty please write direct. Trade enquiries invited.
The pre-paid rate for classified advertisements is 1/- per word (minimum order 12/-), box number 1/6 extra. Semi-displayed setting £3.50 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed “Lloyds Bank Ltd.” Treasure notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.

SERVICE SHEETS

For all makes of Radio, T.V., Tape Recorders, 1935–1966. Please from 1/-. Catalogue 6,000 models. 2/- Free fault-finding guide with all sheets. All types of Valves, Components, Books, S.A.E. lists. Please send stamped addressed envelope with all orders/queries. HAMILTON RADIO, Western Road, St. Leonards, Sussex.

CIRCUIT, COMP., VALUES, also model 7. 2/6 plus S.A.E. TEL RAY, Mandiant Bank, Preston.

SERVICE SHEETS

4/- each, plus postage.

We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service. To obtain the Service Sheet you require, please complete the attached coupon:

From: ____________________________
Name: ____________________________
Address: ____________________________

To: S.P. DISTRIBUTORS
30 Baker Street, London, W.1

Please supply Service Sheets for the following:

Make: ____________________________
Model No.: ____________________________

Make: ____________________________
Model No.: ____________________________

Make: ____________________________
Model No.: ____________________________

I also require the new 1966 list of Service Sheets at 1/6 plus postage, (please delete items not applicable) I enclose remittance of ____________________________ which includes postage.

MAIL ORDERS ONLY Oct. PE

FOR SALE

BACK NUMBERS OF “P.E.” from No. 1 (28) with blue prints. Electronics pocket book, by Hawker, cost 21/-. Sixtech Electronics Course 41/-. Best offer, first over 88.00 to include advert and postage. WHITE, 1 Cross Street, Burnham-on-Sea, Somerset.

FOR SALE

Circuit Diagrams 3/- each post free.

Mail order only to: Instructional Handbooks Supplies
Dept. P.E., Talbot House, 28 Talbot Gardens
Leeds 8
TELEVISION!!
From your OWN Car Battery

Famous DELCO TRANSFORMER transforms 12 or 24v. supply to mains Power for TV, fridges, etc. Now £5-10-0

VIBRATOR POWER-PAK. Step 12v. up to MAINS output. For Universal A/D/C, razors, small fluorescent fittings, radios, etc. Only 32/6

HOVER ROTARY TRANSFORMER. 6v. input, 250v. output, 12v. input. £7-0-0 400v. output, 32 watts.

Send NOW—Delivery by return.

JAMES WALKER, ELECTRONICS DIVISION School House, Wendover Road, Huntingdon Phone Abbot's Ripton 388. 9 am. to 10 pm.

TRANSFORMERS

EDUCATIONAL (continued)

HOME STUDY COURSES in Practical Electronics. Free Brochure without obligation from: BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.

Situations Vacant

ENGINEER with 20 years' experience in all branches of electronics, manufacturing and retail, seeks servicing or installation post in N.W. London or Herts. Box 6.

UNIVERSITY OF LONDON
GOLDSMITHS' COLLEGE
New Cross, London, S.E.14

Required Immediately for Educational Television Research Unit an ELECTRONICS ENGINEER (young man or woman) to maintain, adapt, develop and, where appropriate, to originate equipment used in two mobile "Mini-Studios," including a video tape recorder. Starting salary according to qualifications and experience. Post would suit ambitious service engineer, or newly qualified graduate wanting to widen experience, and attracted by pioneer work in a small team. Applications (THREE copies) to Registrar from whom further particulars may be obtained on request.

SITUATIONS VACANT (continued)

RADIO TECHNICIANS

A number of suitably qualified candidates will be required for training, leading to permanent and pensionable employment. (In various parts of the U.K. including London, but primarily Cheltenham. Also opportunities for service abroad.)

Applicants must be 19 or over and be familiar with the use of Test Gear and have had Radio/Electronic workshop experience. They must offer at least "O" level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at 19 £747, at 25 £962 (highest age pay on entry) rising by four annual increments to £1,104.

Prospects of promotion to grades in salary range £1,032—£1,691. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days.

Normal Civil Service sick leave regulations apply.

Apply Recruitment Officer (RT/54) Government Communications Headquarters Oakley Priors Road CHELTENHAM, Glos.

TECHNICAL TRAINING by I.C.S

IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I.C.S trained man. Let I.C.S train YOU for a well-paid post in this expanding field.

I.C.S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

• INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
 C.A.G. TELECOMMUNICATION TECHNICIANS' CERTS.
 • R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
 • RADIO AMATEURS' EXAMINATION.
 • P.M.G. CERTIFICATES IN RADIO TELEGRAPHY.

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO COURSES. Build your own 5-valve receiver, transistor portable, signal generator and multi-meter—all under expert tuition.

POST THIS COUPON TODAY and find out how I.C.S can help YOU in your career. Full details of I.C.S courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE SCHOOLS.

International Correspondence Schools
(Dept. 132), Intertext House, Parkgate Road, London, S.W.11.

NAME
Block Capitals Please

ADDRESS

10.66

CONTINUED OVERLEAF
Can Earn £20+ per week
TRANSPORT RADIO SERVICE ENGINEERS

Applicants must have practical experience in all types of Transistor Receivers.

Write or phone for appointment to Mr. H. GEE
Perdio Products Ltd.
Lowther Road, Stanmore, Middlesex
Telephone: Wordsworth 0020

NEW—BIGGER—BETTER
"EXPERIMENTAL"
PRINTED CIRCUIT KIT

STOP PRESS!
PHOTOELECTRIC
PRINTED CIRCUIT KIT
Build 10 EXCITING
PHOTOELECTRIC
DEVICES

Contents: 2 Copper Laminate Boards and all chemicals required.

30 SUGGESTED PROJECTS
Extra Laminate 1/-, etc., etc.

"YORK ELECTRICS"
181a, York Road, London, S.W.11
Send S.A.E. for details and photographs
R. & R. RADIO & TV SERVICE
44 Market Street, Bexleyheath, Kent.
Tel. 465
Salvage Sales—Good Value Guaranteed
EP80 1/6 304P 7/6 30L1 5/6
ECC82 3/- EB19 9/- U801 7/6
ECL80 3/6 EB55 6/6 PL62 4/6
395S 3/- 395PL 3/- P36 4/6
PCF80 4/- EBY6 4/- PCC84 4/6
PL9 4/6 AUN 7/6 P36 3/6
P320 5/- P536 6/- U301 6/6
SPEAKERS: Ex TV. 3 ohm imp. 5" Red. and 6" x 4" 3/4" 6" 8 Rand. 6d. Post 2/-
BY100: Rectifiers complete with 1 watt tests 6d. Post 6d. Fireball Tuners, less cover cans 9/- post.
By 100, Rectifiers complete with 1 watt tests 6d. Post 6d. Fireball Tuners, less cover cans 9/- post.
Video, printed circuit capes, ideal for stripping 3/6. Post 1 1/2. 5/- for 3 post paid.
TV Tubes from £1, callers only.
Line output transformers, Scan coils, tuners, etc. S.A.E. for prompts reply.

SPECIAL OFFER
1 Watt S.T.C. 300 MC/S N.P.N.
3/- each. OC44, OC45, OC70, OC71, OC81, OC81D, OC200, Get 16, Get 20.
4/- each. AF114, AF115, AF116, AF117, OC170, OC171.
5/- each. OC139, OC140, Get 7, Get 8, Get 9, XC141, BY100, OA211.
ZENER DIODES
3.9v. to 26 volt, 3w. 3/6 each, 1.5w. 5/-, 7w. 6/-.
Send 6d. for full lists. Inc. S.C.R.

CURLONS
78 Broad Street
Canterbury
Kent

R. & R. RADIO & TV SERVICE
44 Market Street, Bexleyheath, Kent.
Tel. 465
Salvage Sales—Good Value Guaranteed
EP80 1/6 304P 7/6 30L1 5/6
ECC82 3/- EB19 9/- U801 7/6
ECL80 3/6 EB55 6/6 PL62 4/6
395S 3/- 395PL 3/- P36 4/6
PCF80 4/- EBY6 4/- PCC84 4/6
PL9 4/6 AUN 7/6 P36 3/6
P320 5/- P536 6/- U301 6/6
SPEAKERS: Ex TV. 3 ohm imp. 5" Red. and 6" x 4" 3/4" 6" 8 Rand. 6d. Post 2/-
BY100: Rectifiers complete with 1 watt tests 6d. Post 6d. Fireball Tuners, less cover cans 9/- post.
By 100, Rectifiers complete with 1 watt tests 6d. Post 6d. Fireball Tuners, less cover cans 9/- post.
Video, printed circuit capes, ideal for stripping 3/6. Post 1 1/2. 5/- for 3 post paid.
TV Tubes from £1, callers only.
Line output transformers, Scan coils, tuners, etc. S.A.E. for prompts reply.

SPECIAL OFFER
1 Watt S.T.C. 300 MC/S N.P.N.
3/- each. OC44, OC45, OC70, OC71, OC81, OC81D, OC200, Get 16, Get 20.
4/- each. AF114, AF115, AF116, AF117, OC170, OC171.
5/- each. OC139, OC140, Get 7, Get 8, Get 9, XC141, BY100, OA211.
ZENER DIODES
3.9v. to 26 volt, 3w. 3/6 each, 1.5w. 5/-, 7w. 6/-.
Send 6d. for full lists. Inc. S.C.R.

CURLONS
78 Broad Street
Canterbury
Kent
NEW MANUFACTURED SURPLUS UPEP BBC S AERIALS
BBC S Double Gold Ring Set Top
BBC S Fire Renovator Wall Mounting

NEW BUILDERS DATA SERIES

RADIO BOOKS (Postage +d.)
RADIO BOOKS (Postage +d.)

The books are based on the latest research into simplified learning techniques. This has proved that the Pictorial Approach to learning is the quickest and soundest way of gaining mastery over these subjects.

To Selray Book Co.
60 Hayes Hill, Hayes, Bromley, Kent
Please send me Without Obligation to Purchase, Basic Electricity/Basic Electronics on "Day". Payable on signature of parent or guardian. In good condition with 8 days or send down payment of 15/- (Basic Electronics) followed by 6 fortnightly payments of 12/6. Price includes postage and packing. This offer applies to United Kingdom only.

Name
Signature
Address

Buses 133, 68 pass door.
S.R. Stn, Selhurst

Radio Component Specialists
كتبًا BASEIC ELECTRICITY (5 vols)
كتبًا BASEIC ELECTRONICS (6 vols)

The New 'Picture-Book' way of learning BASEIC ELECTRICITY

You'll find it easy to learn with this outstandingly simple, new pictorial method—the essential facts are explained in the simplest language, one at a time; and each is illustrated by an accurate, cartoon-type drawing.

RADIO COMPONENT SPECIALISTS

Written guarantee with every purchase. (Export—Send remittance and extra postage, no C.O.D.)

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, CALLERS WELCOME

337 WHITEHORSE ROAD
W. CROYDON
TEN 1665

We offer the bogst feature of learning for the quickest and soundest way of gaining mastery over the subjects.

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, C.O.D. 2/6 extra.

CALLERS WELCOME

337 WHITEHORSE ROAD,
WEST CROYDON
TEN 1665

Buses 133, 68 pass door.
S.R. Stn, Selhurst

RADIO COMPONENT SPECIALISTS

Written guarantee with every purchase. (Export—Send remittance and extra postage, no C.O.D.)

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, CALLERS WELCOME

337 WHITEHORSE ROAD
W. CROYDON
TEN 1665

We offer the bogst feature of learning for the quickest and soundest way of gaining mastery over the subjects.

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, C.O.D. 2/6 extra.

CALLERS WELCOME

337 WHITEHORSE ROAD,
WEST CROYDON
TEN 1665

Buses 133, 68 pass door.
S.R. Stn, Selhurst

RADIO COMPONENT SPECIALISTS

Written guarantee with every purchase. (Export—Send remittance and extra postage, no C.O.D.)

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, CALLERS WELCOME

337 WHITEHORSE ROAD
W. CROYDON
TEN 1665

We offer the bogst feature of learning for the quickest and soundest way of gaining mastery over the subjects.

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, C.O.D. 2/6 extra.

CALLERS WELCOME

337 WHITEHORSE ROAD,
WEST CROYDON
TEN 1665

Buses 133, 68 pass door.
S.R. Stn, Selhurst

RADIO COMPONENT SPECIALISTS

Written guarantee with every purchase. (Export—Send remittance and extra postage, no C.O.D.)

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, CALLERS WELCOME

337 WHITEHORSE ROAD
W. CROYDON
TEN 1665

We offer the bogst feature of learning for the quickest and soundest way of gaining mastery over the subjects.

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, C.O.D. 2/6 extra.

CALLERS WELCOME

337 WHITEHORSE ROAD,
WEST CROYDON
TEN 1665

Buses 133, 68 pass door.
S.R. Stn, Selhurst

RADIO COMPONENT SPECIALISTS

Written guarantee with every purchase. (Export—Send remittance and extra postage, no C.O.D.)

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, CALLERS WELCOME

337 WHITEHORSE ROAD
W. CROYDON
TEN 1665

We offer the bogst feature of learning for the quickest and soundest way of gaining mastery over the subjects.

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, C.O.D. 2/6 extra.

CALLERS WELCOME

337 WHITEHORSE ROAD,
WEST CROYDON
TEN 1665

Buses 133, 68 pass door.
S.R. Stn, Selhurst

RADIO COMPONENT SPECIALISTS

Written guarantee with every purchase. (Export—Send remittance and extra postage, no C.O.D.)

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, CALLERS WELCOME

337 WHITEHORSE ROAD
W. CROYDON
TEN 1665

We offer the bogst feature of learning for the quickest and soundest way of gaining mastery over the subjects.

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, C.O.D. 2/6 extra.

CALLERS WELCOME

337 WHITEHORSE ROAD,
WEST CROYDON
TEN 1665

Buses 133, 68 pass door.
S.R. Stn, Selhurst

RADIO COMPONENT SPECIALISTS

Written guarantee with every purchase. (Export—Send remittance and extra postage, no C.O.D.)

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, CALLERS WELCOME

337 WHITEHORSE ROAD
W. CROYDON
TEN 1665

We offer the bogst feature of learning for the quickest and soundest way of gaining mastery over the subjects.

RETURN OF POST DESPATCH

Minimum P.P. Charge 1/6 per order unless otherwise stated. Full List 1/-, C.O.D. 2/6 extra.

CALLERS WELCOME

337 WHITEHORSE ROAD,
WEST CROYDON
TEN 1665

Buses 133, 68 pass door.
S.R. Stn, Selhurst
MOTORISTS!
Make Sure of this BIG-VALUE DOUBLE ISSUE

FREE! 32-PAGE GUIDE UNDERSTANDING YOUR CAR
How it works • How to maintain it

FREE with October PRACTICAL MOTORIST, just out—a 32-Page Book packed with spot-on know-how, showing you how to understand every section of your car like an expert, and how to apply that understanding to maintain it in perfect running order. It covers:

ENGINE AND LUBRICATION • IGNITION COOLING • CARBURATION AND FUEL PUMPS • ELECTRICS • CLUTCH • GEARBOX • TRANSMISSION • BACK AXLE BRAKES • SUSPENSION • TYRES

GET YOURS NOW!
OCTOBER 2/-
TRANSMITTER POCKET BOOK
By Hibberd. 24/-

ABC's of Silicon Controlled Rectifiers, by Lycil. 17/-.

Computer Circuit Projects, by Boshen. 22/-

How to build Proximity Detectors and Metal Locators, by Shields. 21/-

Computer Dictionary, by Sprn. 41/-

Principles of Transistor Circuits, by Armgo. 24/-

Servicing Electronic Organs, by Firtman. 31/-

Transistor Ignition Systems Handbook, by Ward. 23/-

ABC's of Electronic Organs, by Crowhurst. 17/-

Elements of Transistor Pulse Circuits, by Towens. 3/-

Know your Test Meters (VOM-VTVM), by Risse. 3/6

ABC's of Electronic Organs, by Crowhurst. 17/-

Know your Test Meters (VOM-VTVM), by Risse. 3/6

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240v. A.C. 50/60
OUTPUT VARIABLE 0-220v.
BRAND NEW Carriage Paid.
Available from the importer, keenest prices in the country.
All Types (and Spares) from 1 to 50 amperes from stock.
OPEN TYPE (Panel Mounting)
1 amp. £3. 3. 0. 1 amp. £4. 10. 0. 3 amp. £6. 12. 6.
SHROUDED TYPE
1 amp. £3. 10. 0. 2.5 amps. £5. 7. 6. 5 amps. £9. 0. 0. 8 amps. £13. 10. 0. 10 amps. £17. 0. 0. 12 amps. £22. 6. 0. 20 amps. £32. 10. 0. 37.5 amps. £60. 0. 0. 50 amps. £85. 0. 0.

PORTABLE TYPE
2.5 amps. Portable £9. 17. 6.

100 WATT POWER Rheostats (New)

AVAILABLE IN THE FOLLOWING VALUES

<table>
<thead>
<tr>
<th>Ohm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ohm</td>
<td>0.1</td>
</tr>
<tr>
<td>2 ohm</td>
<td>0.2</td>
</tr>
<tr>
<td>5 ohm</td>
<td>0.5</td>
</tr>
<tr>
<td>10 ohm</td>
<td>1</td>
</tr>
<tr>
<td>25 ohm</td>
<td>2.5</td>
</tr>
<tr>
<td>50 ohm</td>
<td>5</td>
</tr>
<tr>
<td>100 ohm</td>
<td>10</td>
</tr>
<tr>
<td>200 ohm</td>
<td>20</td>
</tr>
<tr>
<td>500 ohm</td>
<td>50</td>
</tr>
</tbody>
</table>

MULTI-RANGE TEST METER

Model 840, D.C. volts, 0.5 V to 100,000 ohms per volt. 0.1% accuracy throughout. B.C.D. readout. Price £17. 12. 6.

230 V. MOTOR AND REDUCTION GEAR BOX

Reversible 4.5 h.p. 1,450 r.p.m. £75.

SOUND POWER OPERATED EX-ADMIRALTY HEAD AND BREAST SETS

Two such sets connected up will provide perfect intercom circuit. No batteries required. Operates up to 3 mile. Price £7/6 each plus P. & P. 3/6 or 2/6 per pair.

UNIVERSAL DEMONSTRATION TRANSFORMER

A complete apparatus comprises, a Transformer and electro-magnet with movable coils and pole pieces. Coil tapped for 230v. 220v., 110v. 115v. 6, 12, 16, 18, 24, 36, 48 volt A.C. These coils are also used for D.C. experiments. Comes with all accessories as shown. £17 10/- carriage. Leaftlet on request.

COMPACT HEAVY DUTY 6 volt DC RELAY

6-9 volt D.C. operation. 30 ohm coil 2 x 10 amp. 12 volt D.C. operation. Can be used to handle up to 250 volt A.C. with extra connections. Price £7 6/6 each plus 2/6 P. & P. 3 for 20/- post paid.

SERVICE TRADING CO

Personal callers only: 9 LITTLE NEWPORT STREET, LONDON, W.C.2. Tel.: GERard 0576
10 AND 20 WATT MONO AND STEREO TRANSISTOR AMPLIFIERS

(9) POWER AMPLIFIERS. 10 watts RMS output. 100V input. 30 c/s to 20kc/s ± 1dB. 6-Transistor Push-pull.
power output for 10000 ohm speaker. 150V input. 30 c/s to 10kc/s ± 1dB. For use with
valve or transistor preamplifiers as item (10) above. Size 23 x 23 x 43 xin.
PRICE BUILT
£7.19.6 P.P.
(Mains units 79/-, p.p. 2/6)

(10) PREAMPLIFIERS. 8 input
selector. Treble, bass, volume, filter
controls. 1mV to 300mV inputs. Battery
operated or from Mains Unit.
Output up to 1000mV RMS.
MP3 Mono 91 x 23 x 23 xin. £5.10.0, p.p.
2/6 (grey and gold front panel 8/6)
SP4 Mono/ Stereo, 9 x 31 x 111n.,
£10.19.6, p.p. 3/6 (front panel plate 12/6)

ALL UNITS BUILT AND TESTED

(11) MW/LW QUALITY TRANSISTOR RADIO TUNER
Fully tunable superhet with excellent
sensitivity and selectivity. Output up to
3 volt peak. Complete with front
panel, etc. 9 volt operated. For use
with any amplifier or tape recorder.
TOTAL COST TO BUIILD
£3.19.6 P.P.

(12) VHF FM TUNER
Supplied as 2 Preassembled Panels,
plus metal work Superhet design, £8-10.
Heo. 9 volt operated. Total cost to assemble £12.17.6 p.p. 3/6

(13) 5 WATT AMPLIFIER
6-Transistor Push-pull, 3 ohms, 6watts
into 1K. 12/18V supply. 23 x 23 x 11in.
BUILT AND TESTED
£6.99.6 P.P.

(14) VHF/FM TUNER
Supplied as 2 Preassembled Panels,
plus metal work Superhet design, £8-10.
Heo. 9 volt operated. Total cost to assemble £12.17.6 p.p. 3/6

(15) GARRARD BATTERY 3-Speed Tape Deck
Brand New with R/F head,
erase/record head, tape cassette
and instructions. 2 Speed-2 track 9 volt operated.
List Price 13 gns.
PRICE £8.19.6 P. & P. 3/6

COMPONENTS and Equipment.
The largest range in the country. Of
buys 150 page catalogue with discount
vouchers.

SEE BACK COVER FOR MORE ITEMS OF INTEREST

MAKE 5 DIFFERENT TRANSISTOR RADIOS

FOR ONLY
35/-

Amazing Radio Construction Set. Become a
radio expert for 35/-. A complete Home Radio
Course. No experience required. Parts include
instructions for each design, Step-by-Step
plan, all Transistors, loudspeaker, personal
phone, knobs, screws, etc., all you need. Box
size 14" x 10" x 3" (parts available separately).
Originally 40/- NOW 35/- plus 3/6 p. & p.

BAKER 12in. DE-LUXE Mk II
Especially designed to provide full range
radio reception at an economical cost.
Suitable for use with any high fidelity system.

Maximum Power 15 watts
Flux Density 14000 gauss
Voice coil diameter 1/4"
Voice coil impedance 15 ohms
Voice coil material Copper
Useful response 25-16,000 c.p.s.
Cone surround Plastic
Chassis material Solid aluminium
Overall diameter 12".

Send for New catalogue and enclosure plans
Baker Reproducers Ltd.
Bensham Manor Road Passage, Thornton Heath, Surrey. THO 1665

HENDRYS RADIO LTD.
303 EDGWARE RD., LONDON, W.2

Open Mon. to Sat. 9-6. Thurs. 1 p.m.
Open all day Saturday.

Dear Sirs,

I have enclosed 6/- in stamps for the return of the high fidelity
information pack. Kindly let me have an ample amount of the
literature you send.

Yours faithfully,

See next side of this leaflet for more items of interest.

MADE IN ENGLAND.
Have you had your copy of “Engineering Opportunities”? The new edition of “ENGINEERING OPPORTUNITIES” is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new “ENGINEERING OPPORTUNITIES” should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On ‘SATISFACTION OR REFUND OF FEE’ terms This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECH. ENGINEERING

ELEC. ENGINEERING

AUTO ENGINEERING

BUILDING

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Published about the 15th of the month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, London, W.C.2. Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents for Australia and New Zealand: GORDON & GOTCH (Asia) Ltd.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY & OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World £1 16.0.
BUILD THE WORLD'S FIRST ALL TRANSISTOR PORTABLE ORGAN KIT

★ EASY TO BUILD WITH PRINTED CIRCUITS AND FULLY COMPREHENSIVE HANDBOOK
★ CIRCUITS USE 170 TRANSISTORS AND DEVICES
★ 10 SELECTED TONE COLOURS PLUS VIBRATO
★ PORTABLE TWO COLOURED CABINET WITH DETACHABLE LEGS, MUSIC STAND, SWELL PEDAL
★ THE ONLY COMPLETE KIT AVAILABLE IN THE WORLD

SPECIFICATIONS:
- TONE COLOURS (ROCKER TABS) 10 DIFFERENT TONES CAN BE SELECTED
- SWITCHED VIBRATO • 49 NOTE C—C FULLY SPRUNG KEYBOARD • 6 OCTAVES OF GENERATORS
- OUTPUT UP TO 3 VOLTS
- 110/250 VOLT MAINS OR 18 VOLT BATTERY • FULLY POLYPHONIC
- PRESET VOLUME CONTROL • TONE COLOUR BLEND CONTROL • FOOT SWELL PEDAL
- 10 SELECTED TONE COLOURS • 5 DIFFERENT TONES CAN BE SELECTED • SWITCHED
- 2000 STAGE WO PIV, 7 Amp 25/1200
- 7g.
- TOTAL COST £79 6 P-P

UNBEATABLE FOR:
- PRICE
- PERFORMANCE
- QUALITY

CALL IN AND HEAR ONE PLAYED

COMPLETE KIT WITH CABINET,
ALL COMPONENTS AND HANDBOOK
★ ALSO SOLD SEPARATELY
PACKET BY PACKET
★ H.P. AVAILABLE FOR COMPLETE KIT
★ HANDBOOK SEPARATELY
2/- POST PAID

FOR GROUPS • YOUTH CLUBS • SCHOOLS • HOBBYISTS • HOME ENTERTAINMENT

TO BUILD YOURSELF IN EASY STAGES
ALL PARTS FULLY GUARANTEED

CARRIAGE AND PACKING
30g. EXTRA
DETAILED LEAFLET FREE ON REQUEST

HENRY'S RADIO LTD.
303 EDGWARE RD., LONDON, W.2
PADlington 1008/9
Open Mon. to Sat. 9-6, Thurs. 1 p.m.

WE CAN SUPPLY FROM STOCK MOST OF THE PARTS SPECIFIED ON CIRCUITS
IN THIS MAGAZINE. SEND LIST FOR QUOTATION. ASK FOR NEW 4-PAGE CATALOGUE SUPPLEMENT ALSO LIST
OF SPECIAL HI-FI COMBINATIONS.

LATEST 1966 CATALOGUE
HAY YOU A COPY?
- Fully detailed and illustrated, 360 pages
- Components, equipment, etc.
- Over 8,000 stock items, PRICE 6/-
- See catalogue. Send list for free catalogue

YOU CANNOT AFFORD TO BE WITHOUT A COPY OF THE CATALOGUE

SUPPLIERS OF QUALITY COMPONENTS AND EQUIPMENT

SEE PAGE 760 FOR MORE ADVERTS