FIRST OF A NEW SERIES

THE ELECTRONIC ORGAN

INTEGRATED STEREO AMPLIFIER

INTEGRATED STEREO AMPLIFIER

ALSO

PRICE 2'6
"A" SERIES

STANDARD APPROVED IN ALL LEADING COUNTRIES

BIT SIZES FROM \(\frac{1}{32} \) TO \(\frac{5}{16} \) TO CHOICE

ILLUSTRATED IS L64 \(\frac{2}{16} \) BIT INSTRUMENT

ALL VOLTAGES SUPPLIED

SPECIAL TEMPERATURES AVAILABLE

FULL RANGE OF SUPPORTING ACCESSORIES

FOR SALES & SERVICE APPLY DIRECT TO:

ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W.4

TELEPHONE:
MACAULAY 0291/3

TELEGRAMS:
SOLJOINT, LONDON S.W.4
The "Sixteen" Multirange METER KIT

This outstanding meter was featured by "Practical Wireless" in the Jan. '64 issue. Lasky's are able to offer the complete kit of parts as specified by the designer.

RANGE SPECIFICATION
- D.C. volts: 0-5-50-60-330-300 at 0-2500 mV.
- A.C. volts: 0-500 mV, 4-2500 mV, 0-2500 V.
- D.C. currents: 0-50 mA, 0-2500 mA, 0-25000 mA.
- Resistance: 0-3000 ohms, 0-30000 ohms, 0-300000 ohms.

Feature Inclusions
- Type 319 decade selector switch.
- Separate slide switch for A.C. Volts.
- D.C. Ohms, open, short, adjustable pot., meter, zero zero.
- Power or requirements: 6 L, 5 L, 12 L, 12 V batteries. Complete with all parts and full construction details. H.P. Terms available.

Lasky's Price £5.19.6

Special Interest Items

VALVE UHF MODEL

TRANSISTORISED UHF MINIATURE MODEL

- Transistorised UHF tuner. Input sens. 1 mV, output 300 mV. **Lasky's Price 25/6**

FULLY ENCAPSULATED MODULES

- Feature modules all one size: 10 x 1 x 1 in. Complete with detailed instructions and installation information. Send a stamped envelope for data.

VEREBOARD

- High grade laminated board with copper strips bonded to it and pierced with holes. **Lasky's Price 89/6**

TAPE DECK MOTORS

- High quality tape deck motor made by E.M.I. Holland. Bi-directional: size 4 x 13 x 11 in. **Lasky's Price 15/11**

CONSTRUCTORS BARGAINS

Lasky's Package Price 89/6

MOBILE BARGAINS

TAPE DECKS

- MAGNAVOX-COLLARO 363

TAPE DECKS

- The very latest 3 speed model, 4/4, 11/2, 11 in. available with either 1 track or 4 track head. Features include: pause control; digital counter; fast forward and reverse; new & fully screened induction motor; interference keys. Size: 11 x 13 x 21/2 in. deep. Model provides one unit plate. For 800/850 V.A.C. mains, 60 c.p.s. operation. Few unused and fully guaranteed. **Lasky's Price 1 track £10.10.0 model**

CONSTRUCTION SERVICE

- We consider our construction service to be the finest value on the home constructor market. If on receipt you feel not competent to build the set, you may return it as received within 7 days, when the same will be refunded less postage.
THE MOTORIST'S REV COUNTER
FULLY TRANSISTORISED
Suits 4 or 6 cyl. engines. Would cost at least £8 to buy. Kit contains moving coil movement and all parts including transformers, circuit diagrams and full instructions. Maximum reading 8,000 r.p.m. Send P.O. for £2, which includes 2/6 postage.

CYLINDRICAL U.M.F. TUNER

MULTIPLEX DECODER
Now is your chance to benefit in full from the new B.B.C stereo transmissions with our Multiplex Decoder. Design features: Highly efficient Mullard valve pot cores. Two semiconductor diodes. Double purpose value. Printed circuit type construction high input impedance. Specifications: Cross talk better than 26 db at 1 kc/s. Input requirements 0.5 - 1.5 RMS. Stability plus or minus 0.1%. Voltage requirements H.T. 150 - 250 Volts. D.C. at mains. Heaters 300 ma A.C. at 300 ma. Self powered unit shortly available, price to be announced. Size 3½" x 3½" x 1½". Fully built and tested, price £4.4.0 plus 3/- P. & P. charges.

ELEGANT SEVEN Mk. II
Buy yourself an easy to build 7 transistor superhet radio and save at least £10.0.0. Now you can build this superb 7 transistor superhet radio for under £4.10.0. No one else can offer such a fantastic radio with so many deluxe features.

Suits 4 or 6 cyl. engines. Would cost at least £8 to buy. Kit contains moving coil movement and all parts including transformers, a circuit diagram and full instructions. Maximum reading 8,000 r.p.m. Send P.O. for £2, which includes 2/6 postage.

3 to 4 WATT AMPLIFIER KIT
comprising chassis 6½" x 2½" x 1½". Transformer, output transformer, volume and tone controls, resistors, condensers, etc. 6-V, E.C.C.R1 and metal rectifier. Circuit 1½ free with kit. See page 2/9 plus 5/6 P. & P. The above Amplifier kit and built and tested 10/6 extra.
THE WORLD'S FIRST POCKET TV
THE SINCLAIR MICROVISION POCKET TV RECEIVER provided a world wide sensation when shown for the first time at the 1966 Radio and TV Exhibition. This fantastic British set tunes over 13 channels on bands 1 and 3, operates from six self-contained "Penlite" batteries and measures only 4in. x 2.1in. x 2in. Despite the minute proportions of this 30 transistor receiver, quality from the exclusively designed tube and loudspeaker is superb. This amazing Sinclair triumph will be available in January 1967 at a cost of 49 gns.

SINCLAIR MICROVISION
Available January, 1967

FOR USE WITH ANY GOOD STEREO POWER AMPLIFIER

TECHNICAL SPECIFICATIONS
Performance figures obtained with the Stereo 25 fed to two Z.12s and a PZ.3 mains power supply unit.

- SENSITIVITY: 0.01 mV into 500 ohms load per channel.
- Mic: -1 mV into 5000 ohms.
- Radio: -2 mV into 25K ohms.
- Mic: -2 mV into 5000 ohms.
- Radio: -2 mV into 25K ohms.
- FREQUENCY RESPONSE: (Mic and Radio) 20 Hz to 20 kHz, ± 1.5 dB extending to 100 kHz ± 3 dB.
- TONE CONTROLS: Treble + 12dB to -12dB at 10 kHz. Bass + 15dB to -12dB at 100 Hz.
- SIZE: 6.5in. x 2.1in. x 2.1in. overall, plus knobs.
- FINISH: Front panel sectioned in brushed and polished solid aluminium with solid aluminium knobs. Black figuring on front panel.

BUILD, TESTED AND GUARANTEED £9.19.6

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS — ALL PURCHASES GUARANTEED
2 SETS THAT HAVE CHANGED THE FACE OF RADIO

Nothing has ever equaled Sinclair designs for compactness and efficiency and the Micro-6 and Micro FM are now world famous examples of what can be achieved by specialization in transistor electronics. Countless thousands of these sets have been built to the delight of constructors all over the world. Each in its class fulfills a very real need in terms of present day listening requirements, and anyone can easily build both sets by following the well-prepared instructions supplied with each kit. Proof of their success is found in the never ending stream of enthusiastic letters constructors send us. Here are yet more typical examples.

MICRO FM

“We have now completed installation of the Micro FM after being lost in admiration for the superb construction. Results are beyond praise. The quality is perfect, in fact haven’t done a stroke of work since we finished it. Please think all for a first class job. We are thrilled with it.”

C.E. Lowith, Berwick-on-Tweed

“I should like to express my very considerate satisfaction with the performance of the Micro FM. You have clearly designed a very efficient circuit with first rate overall performance. I am more than pleased.”

L.E.M., Harrogate

MICRO-6

“A truly excellent kit. The finish and general quality is very good. It is fantastic that a radio can be so compact.”

R.R., Spanish Town, Jamaica

“...the results are outstanding when used with a good quality speaker.”

P.O.S., London, E.13

TECHNICAL DESCRIPTION

Complete kit inc. telescopic aerial, case, earpiece and instructions.

£5.19.6

MICRO-6

This is the set against which a matchbox looks enormous. Yet it is completely self-contained, including aerial and batteries and virtually plays anywhere. Its clever sub-stage circuit (2 R.F., double diode detector, 3 A.F.) ensures all you want in a radio today — power, range, quality and selectivity. A.G.C. counteracts fading, bandspread brings in Luxembourg like a local station. There is great pleasure to be had in building the Micro-6, and it makes a highly acceptable gift with its white, gold and black case and amazing performance.

7 TRANSISTOR SUPERHET

This unique, superbly engineered superhet FM set is completely professional in styling inside and out. Its performance is fantastic. It is the only set in the world which can be used both as an FM tuner and as an independent FM pocket receiver. Just whenever you wish. Problems of alignment which previously made it almost impossible for a constructor to complete an FM set for himself have been completely eliminated.

Complete kit inc. telescopic aerial, case, earpiece and instructions.

£9.19.6

SIX-STAGE MEDIUM WAVE A.M. RECEIVER

The smallest radio set in the world!

This set is ready to use the moment you have built it. The pulse counting discriminator ensures best possible audio quality: sensitivity is such that the telescopic aerial included with the kit assures good reception in all but the very poorest reception areas. The Sinclair Micro FM will give you all you want in FM reception and the satisfaction of building a unique design that will save you pounds.

Full Service Facilities Available to All Sinclair Customers
SINCLAIR Z.12
COMBINED 12 WATT HIGH-FIDELITY AMPLIFIER AND PRE-AMP

12 WATTS R.M.S. OUTPUT
CONTINUOUS SINE WAVE (30W. PEAK)

8 TRANSISTOR CIRCUIT WITH
CLASS B ULTRALINEAR OUTPUT

IDEAL FOR HI-FI (STEREO OR MONO)
CAR RADIO, ELECTRIC GUITAR, P.A.,
INTERCOM, ETC.

The amazing adaptability and rugged construction of this very powerful and exceptionally compact amplifier make it possible to use just one type of unit with outstanding success in an unusually wide variety of applications. Eight special H.F. transistors are used in a highly original circuit to achieve the characteristics demanded of any quality amplifier irrespective of price, yet this Sinclair unit costs well under £5, including its own integrated pre-amplifier. The Z.12 accepts radio, microphone and pick-up inputs. Detailed instructions for connecting these in mono and stereo are given in the manual supplied with every unit. A number of different control networks are also shown. The Z.12 will operate efficiently from any supply between 6 and 20 V. d.c., making it very convenient to run the amplifier from a car battery. Where it is required to run the Z.12 from mains supply, the PZ.3 is recommended. Those wishing to have a ready made pre-amp control unit can feed inputs via the Stereo 25, which, with two Z.12s will provide the finest stereophonic hi-fi possible—and the saving in cost is fantastic.

SINCLAIR PZ.3
POWER SUPPLY UNIT

This special power supply unit uses advanced transistorised circuitry to achieve exceptionally good smoothing. Ripple is a barely measurable 0.05 v. The PZ.3 will power two Z.12s and a Stereo 25 with ease.

89/6

SINCLAIR STEREO 25
DE-LUXE PRE-AMP. AND CONTROL UNIT

TECHNICAL SPECIFICATIONS

- Size 3 in. x 1¾ in. x 1¾ in.
- Class "B" ultralinear output
- RESPONSE 15-50,000 c/s ± 1 dB.
- Suitable for 3, 7-5 or 15Ω speakers. Two 3Ω speakers may be used in parallel
- INPUT—in 2mV into 2kΩ
- OUTPUT—12 watts R.M.S. continuous sine wave (24 w. peak); 15 watts music power (30 w. peak)
- Signal to noise ratio better than 60dB.
- Quiescent current consumption—15mA.

YOUR SINCLAIR GUARANTEE
If you are not completely satisfied when you receive your purchase from us, your money will be refunded at once in full and without question.
If you prefer not to cut this page, please mention PE.12 when writing your order.
CLOSED WEDNESDAY. AFTERNOON.
RADIO • HI-FI • COMPONENTS • TEST EQUIPMENT

ALL ITEMS SENT POST FREE

EAGLE SA100. 10W INTEGRATED STEREO AMPLIFIER
A compact, versatile integrated unit for transistor or microcircuit reproduction from record, tape recorder and tuner. Power output 8 watts per channel. Frequency response 40-20,000 c.p.s.
£18.00

EAGLE AFM100. AM-FM TUNER
Combines a host of advanced features that make it the finest AM-FM tuner in the market. A tuned RF stage on FM, AFC circuit and a heavy flywheel giving smooth but effortless tuning. Built in AM Ferrite searches. £35.00-105.00.

MS90. 20W ROSEWOOD SPEAKER
The perfect answer for the music lover who wants full range fidelity in a compact system. Features an 8in. full range high compliance speaker with an output capacity of 30 watts R.M.S. Frequency response 20-40,000 c.p.s. Sensitivity: 97 d.B./watt. Plus dummy Over 12,000. Impedance 8 ohms. High and 1074 in. wide. £29.00

As well as this beautifully designed speaker there are two other models MS95. 10 watt RMS and MS90 6 watts RMS. £25.00

All three speakers are finished in mahogany rosewood and the entire cabinet fitted with acoustic damping material.

EAGLE PRODUCTS

MAGNETIC STEREO CARTRIDGES

All models Gold £5.14.6
Silver £6.12.6
£8.10.0

DYNAMIC MICROPHONE

UI340H CARDIOID
£5.14.6
£6.12.6
£8.3.0

DMIC1. CARDIOID
£18.0.0

UD00H CARDIOID DYNAMIC MICROPHONE

DYNAMIC MICROPHONE

UD01H. OUTDOOR CARDIOID DYNAMIC MICROPHONE

UD02H. CARDIOID DYNAMIC MICROPHONE

UD03H. CARDIOID DYNAMIC MICROPHONE

UD04H. CARDIOID DYNAMIC MICROPHONE

UD05H. CARDIOID DYNAMIC MICROPHONE

UD06H. CARDIOID DYNAMIC MICROPHONE

UD07H. CARDIOID DYNAMIC MICROPHONE

UD08H. CARDIOID DYNAMIC MICROPHONE

UD09H. CARDIOID DYNAMIC MICROPHONE

27 other microphones available.

SR16S. ALL BAND COMMUNICATION RECEIVER

This entirely new professional type communication receiver features frequency coverage of 35 Kc to 50 Mkc for complete general coverage. In particular ham bands are arranged in the same calibration scale, so that the band switching can be accomplished rapidly.
£48.0.0

LAPB. AC ELIMINATOR 11
With a double wound step down transformer to operate TV, Tape Recorders, etc. from AC Mains. £1.8.6

FSW1. FOOT SWITCH
Pump-action foot switch with skid proof rubber base pad. Page tube your Tape Recorder control system but special microphone supplies enabling kits to be used with all other Tape Recorders. 24/-

CSK.10
Self-powered crystal set kit with private earphone. Supplied complete with instructions. 18/6

MCK.2. MORSE CODE KIT
Two老爸 advanced code kits supplied with instruction. 50% of connection wire and morse others.
£2.2.0

EEX28. 28 PROJECT CONSTRUCTIONAL KIT
This advanced audio kit is recommended for beginners as well as the more advanced experimenter. This unit is a solid state stereo kit with a total output of 8 watts R.M.S. and is fully serviceable over the entire FM broadcast band. Supplied with all necessary equipment and instructions.
£14.0.0

Also available WM010 £21.0.0

PROFESSIONAL SIX TRANSMITTED FM WIRELESS MICROPHONE

This cannot be operated in U.K.

WIRELESS MICROPHONES

WM010 (as illustrated) FM Wireless transmitter complete with clear audio. £6.0.0

FOR FULL DETAILS OF THESE AND MANY OTHER ITEMS SELL FOR FREE COMPREHENSIVE CATALOGUE. EAGLE NEWS AND OTHER PRODUCTS ARE AVAILABLE POST FREE AND COVERED BY 12 MONTHS GUARANTEE.

gathered together at our HI-FI SHOWROOM — 87 TOTTENHAM COURT ROAD, LONDON, W.1.

RLELRA RADIO LTD
(Dept. P. E 12)
87 Tottenham Court Road, London, W.1.

839
HI-FI AMPLIFIERS — TUNERS — RECORD PLAYERS

20 + 20W STEREO AMP. AA-22U
GARRARD AUTO/RECORD PLAYER. Model AT-60

20 + 20W TRANSISTOR STEREO AMPLIFIER. Model AA-22U. Outstanding performance and appearance. Kit £23.10.0 incl. cabinet. Attractive walnut veneered cabinet £2.5.0 extra. Assembled incl. cabinet, £39.15.0

GARRARD AUTO/RECORD PLAYER. Model AT-60, less cabinet £13.1.7. With Decca Deram pick-up £17.16.1 incl. P.T. Many other Garrard models available, ask for Lists.

HI-FI MONO AMPLIFIER. Model MA-5. A general purpose 5W Amplifier, with inputs for Gram., Radio. Modern functional appearance. Kit £11.9.6 Assembled £15.15.0

TOTAL PRICE KIT (STEREO) TFM-1S £24.18 incl. P.T.

Hi-Fi Mono Amplifier. Model MA-12. 10W output, wide freq. range, low distortion. Use with control unit. Kit £12.18.0 Assembled £16.18.0

3 + 3W TRANSISTOR AMPLIFIER. Model S-33. An easy-to-build, low cost unit. 2 inputs per channel. Kit £13.7.6 Assembled £18.18.0

DE LUXE STEREO AMPLIFIER. Model S-33H. De luxe version of the S-33 with two-tone grey perspex panel, and high sensitivity necessary to accept the Decca Deram pick-up. Kit £16.17.6 Assembled £21.7.6

POWER SUPPLY UNIT. Model MGP-1. Input 100/120V, 200/250V, 40-80 c/s. Output 6-3V, 2-5A. A.C. 200, 250, 270V, 120mA max. D.C. Kit £5.12.6 Assembled £7.2.8

Make the most of your leisure time...

Hear the BBC stereo FM programmes on the TRANSISTOR STEREO FM TUNER

Elegantly designed to match the TRANSISTOR STEREO FM TUNER

Many features including: Pre-assembled and aligned RF tuning unit, 4 stage IF amplifier, Automatic freq. control, printed circuit board, 14 transistor circuit. Available in two units, sold separately, can be built for a TOTAL PRICE KIT (STEREO) TFM-1S £24.18 incl. P.T. KIT (MONO) TFM-1M £20.19 incl. P.T. can be converted to stereo with converter kit extra, cabinet also extra.

TRANSISTOR RECEIVERS

"OXFORD" LUXURY PORTABLE Model UXR-2. Specially designed for use as a domestic or personal portable receiver. Many features, including solid live chassis. Kit £14.16.0 incl. P.T.

OXFORD UXR-1

TRANSISTOR PORTABLE. Model UXR-1. Pre-aligned I.F. transformers, printed circuit. Covers L.W. and M.W. Has 7" 4" loudspeaker. Real hide case. Kit £12.11.0 incl. P.T.

JUNIOR EXPERIMENTAL WORKSHOP. Model EW-1. More than a toy! Will make over 20 exciting electronic devices, incl.: Radios, Burglar Alarms, etc. 72 page Manual. The ideal present! Kit £7.13.6 incl. P.T.

"MOHICAN" GENERAL COV. RECEIVER for Amateur or Short Wave listening. Send for leaflet. Kit £23.17.6 Assembled £45.17.8

Welcome to our London Heathkit Centre
231 Tottenham Court Road, W.1
We open MONDAY-SATURDAY 9 a.m.-5.30 p.m. THURSDAY ... 11 a.m.-2.30 p.m. Telephone No.: MUSEUM 7549
WHEN YOU ARE IN TOWN, WE HOPE YOU WILL VISIT US THERE

Test Instruments

Our wide range includes:

3" LOW-PRICED SERVICE OSCILLOSCOPE. Model OS-2. Compact size 5" x 7" x 12" deep. Wt. only 9lbs. "Y" bandwidth 2 c/s-3 Mc/s ±3dB. Sensitivity 100mV/cm T/B 20 c/s-200 kc/s. In four ranges, fitted mute metal CRT shield. Modern functional styling. Kit £23.18.0 Assembled £21.18.0

5" GEN.-PURPOSE OSCILLOSCOPE. Model 10-12U. An outstanding model with professional specification and styling. "Y" bandwidth 3 c/s-4.5 Mc/s ±3dB. T/B 10 c/s-500 kc/s. Kit £35.17.8 Assembled £45.15.8

DE LUXE LARGE-SCALE VALVE VOLT-METER. Model IM-13U. Circuit and specification based on the well-known model V-7A but with many worth-while refinements. 6" Ernest Turner meter. Unique gimbals bracket allows operation of instrument in many positions. Modern styling. Kit £18.15.8 Assembled £26.18.0

Audio Signal Generator. Model AG-9U. 10 c/s to 100 kc/s, switch selected. Distortion less than 0.1%, 10V sine wave output metered in volts and dB's. Kit £23.15.0 Assembled £31.15.0

Valve Voltmeter. Model V7-A. 7 voltage ranges d.c. volts to 1,500, A.C. to 1,500 r.m.s. and 4,000 volt to peak. Resistance 0 to 1,000 M$a with internal battery. D.C. Input resistance 11 M$a. dB measurement, has centre-zero scale. Complete with test prods, leads and standardising battery. Kit £13.18.0 Assembled £19.18.8

Multimeter. Model MM-1U. Ranges 0-15V a.c. and d.c.; 150mA to 15A d.c.; 0-20mA 4" 50mA meter. Kit £12.18.0 Assembled £18.11.8

R.F. SIGNAL GENERATOR. Model RF-1U. Up to 100 Mc/s fundamental and 200 Mc/s on harmonics. Up to 100Mv output. Kit £13.18.0 Assembled £20.8.0

SINE/SQUARE GENERATOR. Model 1G-82U. Freq. range 20 c/s-1 Mc/s in 5 bands less than 0.8% sine wave distortion, less than 0.1% sec. sq. wave rise time. Kit £25.15.0 Assembled £37.15.0

Transistor Power Supply. Model IP-20U. Up to 50V, 1-5A output. Ideal for Laboratory use. Compact size. Kit £25.8.0 Assembled £47.8.0

Prices and specifications subject to change without notice
TAPE AMPLIFIERS — TAPE DECKS — CONTROL UNITS

HI-FI FM TUNER. Model FM-4U. Available In two units. R.F. tuning unit (£2.15.0 incl. P.T.) with I.F. output of 10-7 Mc/s and I.F. amplifier unit, with power supply and valves (£13.15.0). Total Kit £15.8.0

STUDIOMATIC 383 TAPE DECK. The finest buy in its price range. Operating speed: 15', 30' and 75' p.s. Two tracks, "wow" and "flutter" not greater than 0.15% at 75' p.s. £13.10.0 With TA-1M Tape Pre-amplifier kit £31.5.6

HI-FI AM/FM TUNER, Model AFM-1. Available In two units which, for your convenience, are sold separately. Tuning heart (AFM-T1—£4.13.6 incl. P.T.) and f.F. amplifier (AFM-A1—£22.11.6). Printed circuit board, 8 valves. Covers L.W., M.W., S.W., and F.M. Built-in power supply. Total Kit £27.5.0

WIDE RANGE OF HI-FI CABINETS, send for details.

TRUVOX DECK AM/FM TUNER

TRUVOX D-93 TAPE DECKS. High quality stereo/mono tape decks. D93/2, 4 track, £36.15.0 D93/4, 4 track, £38.15.0

TRANSITOR INTERCOM. Models XI-1U and XIR-1U. A time-saving device for office, shop or for the home. Master unit XI-1U will, operate up to 5 remote stations. Master, XI-1U Kit £18.8.0 Assembled £27.5.0

MONO CONTROL UNIT. Model UMC-1. Designed to work with the MA-12 or similar amplifier requiring 0-25V or less for full output. 5 Inputs. Baxandall type controls. Kit £9.2.6 Assembled £14.2.6

STEREO CONTROL UNIT. Model USC-1. Push-button selection, accurately matched ganged controls to ±1dB. Rumble and variable low pass filters. Printed circuit boards. Kit £19.19.0 Assembled £27.5.0

HI-FI FM TUNER. Model FM-4U. Available In two units. R.F. tuning unit (£2.15.0 incl. P.T.) with I.F. output of 10-7 Mc/s and I.F. amplifier unit, with power supply and valves (£13.15.0). Total Kit £15.8.0

STUDIOMATIC 383 TAPE DECK. The finest buy in its price range. Operating speed: 15', 30' and 75' p.s. Two tracks, "wow" and "flutter" not greater than 0.15% at 75' p.s. £13.10.0 With TA-1M Tape Pre-amplifier kit £31.5.6

HI-FI AM/FM TUNER, Model AFM-1. Available In two units which, for your convenience, are sold separately. Tuning heart (AFM-T1—£4.13.6 incl. P.T.) and f.F. amplifier (AFM-A1—£22.11.6). Printed circuit board, 8 valves. Covers L.W., M.W., S.W., and F.M. Built-in power supply. Total Kit £27.5.0

WIDE RANGE OF HI-FI CABINETS, send for details.

TRUVOX DECK AM/FM TUNER

TRUVOX D-93 TAPE DECKS. High quality stereo/mono tape decks. D93/2, 4 track, £36.15.0 D93/4, 4 track, £38.15.0

TRANSITOR INTERCOM. Models XI-1U and XIR-1U. A time-saving device for office, shop or for the home. Master unit XI-1U will, operate up to 5 remote stations. Master, XI-1U Kit £18.8.0 Assembled £27.5.0

MONO CONTROL UNIT. Model UMC-1. Designed to work with the MA-12 or similar amplifier requiring 0-25V or less for full output. 5 Inputs. Baxandall type controls. Kit £9.2.6 Assembled £14.2.6

STEREO CONTROL UNIT. Model USC-1. Push-button selection, accurately matched ganged controls to ±1dB. Rumble and variable low pass filters. Printed circuit boards. Kit £19.19.0 Assembled £27.5.0

"AMATEUR" EQUIPMENT

80-10m TRANSMITTER, DX-40U. Power inputs 75W. C.W., 60W peak CC phone. Output 40W to aerial. Provision for VFO. Kit £29.19.0 Assembled £41.8.0

SSB ADAPTOR, SB-10U Kit £39.5.0 Assembled £45.18.0

AMATEUR BANDS RECEIVER. Model RA-1. To cover all the Amateur Bands from 160-10 metres. Many special features, including: half-lattice crystal filter; 8 valves; signal strength "S" meter; tuned R.F. Amp. stage. Kit £29.6.8 Assembled £52.10.0

160-10M TRANSMITTER. Model DX-100U. Careful design has achieved high performance and stability. Completely self-contained. Kit £28.19.0 Assembled £41.15.0

COMMUNICATIONS TYPE RECEIVER. Model RG-1. A high performance, low cost receiver for the discriminating listener. Frequency coverage: 600 kc/s-1.5 Mc/s and 1.7 Mc/s-32 Mc/s. Kit £39.16.0 Assembled £53.0.0

REFLECTED POWER METER and SWR BRIDGE. Model HM-11U. Indicates reliability, but inexpensively, whether the RF power output of your TX is being transferred efficiently to radiating antenna. Kit £8.10.0 Assembled £10.15.0

OUTSTANDING "AMATEUR" EQUIPMENT

A wide range of American Amateur SSB equipments is now available in the U.K. Why not send for full details of range, for example:

FILTER TYPE SSB TRANCEIVERS Models for 80, 40 or 20 metre bands. Model HW-12 (80M) £87.10.0 Kit. Model HW-22 (40M) £66.0.0 each kit. Model HW-32 (20M) £68.0.0 price incl. duty, etc.

SEND FOR THE LATEST FREE CATALOGUE

Deferred terms available in UK over £10
Prices quoted are Mail Order prices

DAYSTROM LTD Dept. P.E.—12 GLOUCESTER
YOU CAN NOW BUY THE WORLD'S FINEST SPEAKER VALUE DIRECT FROM

R&A

The 700 Mark V Range
Specially designed to provide outstanding range, smoothness and uniformity of frequency response with freedom from self-generated forms of distortion up to levels more than adequate for domestic listening. The speakers in this range all have a highly developed dual radiating system with optimum termination of both cones — voice coil impedance 15 ohms.

Power handling capacity in appropriate enclosures:

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>R.M.S. Power</th>
<th>Peak Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>780 Mk. V</td>
<td>£3.19</td>
<td>7 watts</td>
<td>12 watts</td>
</tr>
<tr>
<td>7100 Mk. V</td>
<td>£4.14</td>
<td>8 watts</td>
<td>15 watts</td>
</tr>
<tr>
<td>7120 Mk. V</td>
<td>£4.18</td>
<td>10 watts</td>
<td>16 watts</td>
</tr>
</tbody>
</table>

Send for full technical data sheet with suggestions for enclosures to:

REPRODUCERS AND AMPLIFIERS LTD.
Frederick Street, Wolverhampton, England

LOUD SPEAKER MANUFACTURERS TO THE RADIO INDUSTRY SINCE 1930

10/- BARGAIN SALE! 10/-

10/- PISTOL-GRIP SOLDERING IRON (USUALLY 25/-) 10/-
10/- 20 well assorted TRANSISTOR ELECTROLYTICS. 10/-
10/- 3 Television Smoothing Condensers. 200/200uf., 300/125/50uf., 275 volt. 10/-
10/- 50 assorted 1/4 Watt 5% Resistors. (Long Leads). 10/-
10/- 100 assorted 3/4 to 1 Watt mixed resistor types, values. 10/-
10/- 100 assorted 4/1 to 3 Watt Close Tolerance types. 10/-
10/- 100 assorted Silver Mica/Ceramic/Polyethylene Condensers. 10/-
10/- 50 assorted paper condensers .001 to .5uf. 10/-
10/- 100 miniature paper condensers (Mixed values). 10/-
10/- 50 untested TRANSISTORS (excellent value). 10/-
10/- 6 NPN or PNP Switching Transistors (min. 200 mc/s). 10/-
10/- 10 Transistor Holders. 10/-
10/- ACOS MONO PICK-UP HEAD COMPLETE WITH NEEDLES. 10/-
10/- 3 Miniature earpieces complete with plug and lead. 10/-
10/- 20 Diodes. Very high quality. 10/-
10/- Magnetic Lapel Microphone with plug and lead. 10/-
10/- 3", 4", or 5" Low Impedance LOUDSPEAKER. 10/-
10/- SIGNAL INJECTOR R.F./I.F./A.F. parts and circuit. 10/-
10/- Car Rev. Counter, Parts and Circuit (excl. meter). 10/-
10/- 12 pre-set potentiometers mixed. 10/-
10/- FREE! 10/- FREE! 10/- FREE! 10/- FREE! 10/- FREE!
10/- FREE! Any Eleven Items for £5/-/
The Electronics & Scientific Centre

Magnavox-Collaro 336 Tape Decks

The very latest 3-speed model—11. 31/2" i.p.s. with either 1 track or 2 track head. Features include: Audio control; digital counter; fast forward and rewind; new 4-pole fully screened recording motor; interlocking keys; and spool of tape (12) x 11 x 3/4 in., deep below unit plate. For 200/ 500v. A.C. motors 50 c.p.s. operation. New model and fully guaranteed.

Lind-Air Price

1 track model 31/2" i.p.s. Carriage and Poking 7/6 extra.

50V. Servo System

A unique offer of a powerful, high cycle service that enables remote indication of angular position to be made. Ideal for use in windmills. Directions in the comfort of the control room, or the position of an aerial system for antenna broadcast. Sailboat or similar, a position of a rotary wheel could be "seen" by a relay in our system. It would be noted that 80 v. is readily obtainable, by using the 800-250v-rotor power transformer, etc.

Selector

A very interesting item with numerous applications consisting of an electro-magnetic and brass tooth wheel. A switch washer and contacts are coupled to the tips and are arranged to be on for 10 pulses and off for the next 10. An auxiliary contact is normally on, but off for one in every 10 pulses; complete with suppressor resistors and a series contact to facilitate continuous operation. Absolutely ideal for window displays, switching lamp or remote control of an electronic, radio, TV, TV, etc., yourself with this feature. A. 10/6, plus 1/2 p. P.

Sinclair Super Mini Drive

Synchronous Clock Motors

Model Maker's

Midland D.G. Motor. Ideal for driving a precision radio or control car. Mounted on a bakelite base and insulated, size 1½ in. x 1 in. dia. 1/2 in. long x 1¾ in. dia. 1/2 in. P. 1/2.

Transistors

X100 1/8" (SCT 06) 10/6, X101 1/8" (SCT 06) 10/6, X125 (SCT 06) 10/6, X125 (SCT 06) 10/6.

Magnavox-Collaro 336 Tape Decks

The very latest 3-speed model—11. 31/2" i.p.s. with either 1 track or 2 track head. Features include: Audio control; digital counter; fast forward and rewind; new 4-pole fully screened recording motor; interlocking keys; and spool of tape (12) x 11 x 3/4 in., deep below unit plate. For 200/ 500v. A.C. motors 50 c.p.s. operation. New model and fully guaranteed.

Lind-Air Price

1 track model 31/2" i.p.s. Carriage and Poking 7/6 extra.

50V. Servo System

A unique offer of a powerful, high cycle service that enables remote indication of angular position to be made. Ideal for use in windmills. Directions in the comfort of the control room, or the position of an aerial system for antenna broadcast. Sailboat or similar, a position of a rotary wheel could be "seen" by a relay in our system. It would be noted that 80 v. is readily obtainable, by using the 800-250v-rotor power transformer, etc.

Selector

A very interesting item with numerous applications consisting of an electro-magnetic and brass tooth wheel. A switch washer and contacts are coupled to the tips and are arranged to be on for 10 pulses and off for the next 10. An auxiliary contact is normally on, but off for one in every 10 pulses; complete with suppressor resistors and a series contact to facilitate continuous operation. Absolutely ideal for window displays, switching lamp or remote control of an electronic, radio, TV, TV, etc., yourself with this feature. A. 10/6, plus 1/2 p. P.

Sinclair Super Mini Drive

Synchronous Clock Motors

Model Maker's

Midland D.G. Motor. Ideal for driving a precision radio or control car. Mounted on a bakelite base and insulated, size 1½ in. x 1 in. dia. 1/2 in. long x 1¾ in. dia. 1/2 in. P. 1/2.

Transistors

X100 1/8" (SCT 06) 10/6, X101 1/8" (SCT 06) 10/6, X125 (SCT 06) 10/6, X125 (SCT 06) 10/6.
NOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...

FIRST FOR PERFORMANCE, QUALITY AND PRICE!

NEW ROAMER SEVEN Mk IV

Amazing performance and specification
FULLY TUNABLE ON ALL WAVEBANDS
Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS
9 stages—7 transistors and 2 diodes
Covers Medium and Long Waves, Trawler Band and three Short Waves to approx. 15 metres. Push-pull output for room filling volume from rich toned 7* x 4* speaker. Air spaced tuned condenser. Ferrite rod aerial for M & L Waves and telescopic aerial for S Waves. Real leather-look case with gilt trim and shoulder and hand straps. Size 9* x 7* x 3* in. (Uses 1289 battery available anywhere.)

The perfect portable and the ideal car radio. (Uses P7 batteries available anywhere.)

Total cost of parts now only £5.19.6 P. & P. 3/6

Parts Price List and easy build plans 2/- (Free with kit)

NEW MELODY MAKER SIX

3 WAVEBAND PORTABLE. 6 stages. Six transistors and two diodes.

This amazing receiver may be built for only £3.9.6 P. & P. Parts Price List and easy build plans 2/- (Free with kit)

NEW TRANSONA FIVE

"Home, Light, A.F.N. Lux. all at good volume"

G. P., Durham

7 stages—5 transistors and 2 diodes
Fully tunable over Medium and Long Waves and Trawler Band. Incorporates Ferrite rod aerial, tuning condenser, volume control, new type fine tone super dynamic 2* in. speaker, etc. Attractive case. Size 6* x 4* x 1.5 in. with red speaker grille. (Uses 1289 battery available anywhere.)

Total cost of parts now only 42/6 P. & P. 3/6 Parts Price List and easy build plans 2/- (Free with kit)

NEW ROAMER SIX

NOW WITH PHILCO MICRO-ALLOY R.F. TRANSISTORS
6 WAVEBAND!!
8 stages—4 transistors and 2 diodes
Listen to stations half a world away with this 6 waveband portable. Tunable on Medium and Long Waves, Trawler Band and two Short Waves. Top grade transistors, 3* inch speaker, handsome case with gilt fittings. Size 7* x 5* x 1.5 in. (Carrying Strap 1/6 extra.)

Extra Band for easier Tuning of Lux, Etc.

Total cost of all parts now only £3.19.6 P. & P. 3/6 Parts Price List and easy build plans 2/- (Free with kit)

MELODY SIX

8 stages—6 transistors and 2 diodes
Our latest completely portable transistor radio covering Medium and Long Waves. Incorporates pre-tagged circuit board, 3* heavy duty speaker, top grade transistors, volume control, tuning condenser, wave change slide switch, sensitive 6* Ferrite rod aerial. Push-pull output. Wonderful reception of B.B.C. Home and Light, and many Continental stations. Handsome leather-look pocket size case, only 6* x 3* x 1.5 in. approx. with gilt speaker grille and supplied with hand and shoulder straps.

Total cost of all parts now only £3.9.6 P. & P. 3/6 Parts Price List and easy build plans 2/- (Free with kit)

POCKET FIVE

7 stages—5 transistors and 2 diodes
Covers Medium and Long Waves and Trawler Band. A feature usually found in only the most expensive radios. On test Home, Light, Luxembourg and many Continental stations were received loud and clear. Designed round supersensitive Ferrite Rod Aerial and fine tone 2* in. moving coil speaker, built into attractive black and gold case. Size 5* x 3* x 1.5 in. (Uses 1289 battery, available anywhere.)

Total cost of all parts now only 42/6 P. & P. 3/6 Parts Price List and easy build plans 1/6 (FREE with Kit)

STOP PRESS!
Pocket 6 & Long Wave version with miniature speaker 29/6 P. & P.

NEW TRANSONA SIX

8 stages—6 transistors and 2 diodes
This is a top performance receiver covering full Medium and Long Waves and Trawler Band. High-grade approx. 3* speaker makes listening a pleasure. Push-pull output. Ferrite rod aerial. Many stations listed in one evening including Luxembourg loud and clear. Attractive case in grey with red grille. Size 6* x 3* x 1.1 in. (Uses PP4 battery available anywhere.)

Carrying Strap 1/6 extra.

Total cost of all parts now only £59/6 P. & P. 3/6 Parts Price List and easy build plans 1/6 (Free with kit)

MELODY SAV

8 stages—6 transistors and 2 diodes
Our latest completely portable transistor radio covering Medium and Long Waves. Incorporates pre-tagged circuit board, 3* heavy duty speaker, top grade transistors, volume control, tuning condenser, wave change slide switch, sensitive 6* Ferrite rod aerial. Push-pull output. Wonderful reception of B.B.C. Home and Light, and many Continental stations. Handsome leather-look pocket size case, only 6* x 3* x 1.5 in. approx. with gilt speaker grille and supplied with hand and shoulder straps.

Total cost of all parts now only £3.9.6 P. & P. 3/6 Parts Price List and easy build plans 2/- (Free with kit)

SUPER SEVEN

9 stages—7 transistors and 2 diodes
Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or can be fitted with carrying strap for outdoor use. Completely portable—has built-in Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 RF Stages, push-pull output, 3* speaker (will drive large speaker). Size 7* x 5* x 1.1 in. (Uses 9* battery, available anywhere.)

Total cost of all parts now only £3.19.6 P. & P. 3/6 Parts Price List and easy build plans 2/- (Free with kit)

Callers side entrance
Barratts Shoe Shop.

Radio Exchange Ltd
61a HIGH STREET, BEDFORD. Phone: 52367
ARE YOU LOOKING FOR THE USUAL?

(Seeing the above, our artist said "Yes, preferably 36-24-36").

You may perhaps remember our advertisement "Are you looking for the unusual?" showing a double-headed elephant. (We found him too costly, having to feed two ends, so we exchanged him for the above which doesn’t need feeding at all!) We would like to mention in passing one customer who wrote to us, “If you can supply a UX5 valve holder, I will believe you have two-headed elephants in stock!!” WE SENT HIM ONE BY RETURN OF POST—a valve holder, not an elephant!!

All this preamble (we hope you are still with us) leads up to the point that we thought we would like to show you a list of the most ordinary items in our current catalogue. Here we go: We start with Aerials, Batteries, Books (over 150 titles listed), Boxes, Cabinets, Chassis, aluminium (over 140 different sizes), Chokes, R.F. and L.F. coils (6 different makes, over 160 different types), Condensers (let’s just say this section runs into 17 pages), Connectors (over 96 types), Tag Boards and Tag Strips (over 40 types), Dials and Drives (over 50 types).

Eddystone Receivers and Components (the entire range), Kits (over 200), Knobs (over 80), Lamps, pilot, neon and fittings (5 pages), Lektrokit (the entire range), Miscellaneous (this includes such items as nuts, bolts, washers, grommets, solder tags, Paxolin both sheet or tube, etc.), Pick-ups, Gram Motors, Styli (these last three run to 8 pages), Relays, Rectifiers, Resistors (5 pages), Soldering irons, Loudspeakers, Switches (over 120 different types), Tapes, Tape accessories, Test Gear (5 pages), Tools (3 pages), Transformers, Output, Mains Auto, Battery charger and Transistor (this section runs to 12 pages), Transistors, Transistor holders and heat sinks, Valves and Valve holders, Wire, cable and feeders, finishing up with Z for Zener Diodes.

This is not everything that is in the catalogue but we hope it’s enough to show you the scope, and make you grab your pen to fill in the coupon.

Our Components Catalogue costs 7/6 plus 1/6 postage, but every catalogue contains 5 vouchers, each worth 1/- when used as directed. Send your cheque or P.O. for 9/- today.
A STIMULANT FOR STUDENTS

Enthusiasm for further education abounds each autumn as evening classes commence. Enrolments for vocational and non-vocational courses take place in large numbers at technical colleges and other institutions. Correspondence Schools, although not limited to seasonal sessions, find their intake of students swelling this time of the year.

But alas, past experience warns us that ere the year has ended, numbers of these once ardent seekers after knowledge will have been seduced by rival attractions or will have weakly succumbed to some latent apathy. The initial heat and fire of their enthusiasm will have wilted with the onset of winter.

These early fatalities are partly explained by the fact that the initial stages of many courses of instruction are in certain respects the most formidable. Electronic theory is a case in point. The abstract nature of this subject demands adequate demonstration by practical models to supplement theoretical dissertation, particularly so where the level of treatment precludes extensive mathematical proof.

Unfortunately such demonstration facilities are either very limited or entirely lacking in many courses dealing with electronic principles. These courses usually tend to cater for the needs of examination papers set by the various professional bodies and practical work is rarely called for. On the other hand there is no doubt that practical experimental work adds immeasurably to the interest of the subject.

In this respect, modern techniques help the electronics student to help himself. Between attendances at college or stints at the textbook he can get to grips with the realities of electronics in his home, and at no exorbitant cost in tools, components, and materials. The basic principles he has been taught can be tested in this practical way. From such beginnings he can in due course proceed to construct simple functional devices which are not merely practical exercises in the application of more advanced theory but have some permanent value.

But most important of all, active participation in the practical side of electronics will provide an additional stimulant during those precarious first weeks of the autumn session. And once that hazard is passed, the rest is likely to prove (well, comparatively) plain sailing!
Our author is a well known authority on electronic organs, and is also widely experienced as a designer and builder of pipe organs. He is president of the Electronic Organ Constructors Society.

A great deal has been written about electronic organs, but they still remain, to most people, something of a mystery. Why are there so many types of organs, using all kinds of generating systems to produce what appear to be the same kinds of sounds? What has one make got that is better than another make? Above all, why do they cost so much?

In this series of articles we will try and explain these things, and to do this we must go back to fundamentals and see how early investigators viewed the art and why some methods were bound to fail. Firstly, however, we must remember that one cannot define an organ of any kind more exactly than to say it is a sustained tone instrument capable of producing a variety of tonal qualities which can be used singly or in combination. What these tonal qualities are, and what other effects may or may not be desirable, depend on whether the instrument is intended for the serious musician, for church or liturgical work; or for home entertainment, where the romantic and popular qualities are predominant. In other words, we find the same situation which has existed for so many years in the pipe organ world; the division between the church organ and the theatre organ.

This first article will give the reader an insight into some of the experiments and devices which led up to the present state of the art; for all readers of this journal are experimentally-minded and it must always be remembered that many of the early workers knew exactly what they wanted, but the materials and processes simply did not exist to interpret their ideas.

The first recorded experiments were by C. E. J. Delezenne in 1837. He used a toothed iron wheel turned by hand in front of an electromagnet, as in Fig. 1.1. By varying the speed he found he could vary the frequency of the e.m.f. induced in the coil, and hence the pitch of the note. The sound was heard in a crude telephone receiver. This idea was put into Delezenne's head by the earlier experiments of Savart, who held a piece of card against the rotating teeth when the pitch of the note could be heard audibly.

Then we come to the monumental concept of Thaddeus Cahill, who in 1895 devised and made a complete series of alternators all driven by belts from pulleys of the correct diameters to give the intervals of the equally tempered scale. But not only did Cahill...
provide 73 odd generators, he knew that if some of these frequencies were added together as harmonics of the fundamental note, complex sounds like trumpets and violins could be formed.

Helmholtz, Fourier and Rayleigh had already found and analysed the number and strength of these harmonics, so Cahill devised a formidable array of switches and relays to introduce resistors controlling the amplitude of these harmonics. The whole of the arrangement is too complex to draw here, but it can be seen in British patents nos.: 8725, 1897; 3666A, B, C, 1903. Distribution and financial difficulties caused the abandonment of this project, and the reader will have no difficulty in recognising in this invention the fundamentals of the Hammond organ.

Next we move on to 1910, when W. Duddell discovered that an oscillatory circuit connected across an arc lamp could be used to produce musical tones. At that time, the arc was in widespread use for high power radio telegraph transmitters. Obviously this was not a basis for a serious design.

FIRST VALVE ORGAN

With the advent of the three electrode valve and the consequent ability to amplify, coupled with the rapid development of circuits in the 1914–18 war, it was now getting more feasible to reduce the bulk of the apparatus and we find the indefatigable Lee de Forest producing a valve “organ” in 1915. No need for an illuminated console then, as all valves used a tungsten filament with a light output equal to about 6 candlepower!

However, the old bogey of instability was still not conquered, so after a lapse of some years we find the Russian Leo Theremin working on the simple instrument in which the tuning capacitance for the b.f.o. employed was a metal rod like a car aerial. By bringing the hand near to this rod, the pitch could be altered and gliding tones produced. Another rod altered the volume by hand capacity, whilst a foot switch was used to cut off the note (Fig. 1.2). First made in 1924, the “Theremin” has been used until quite recently for solo work with an orchestra.

By this time the stage was set for great expansion in the art, but the first multi-note instrument came from Oskar Vierling in Germany in 1927. He made a two manual and pedal organ using gas tubes as relaxation oscillators, and this seemed to have stimulated other experiments. Coupleux & Givet in France installed a two manual valve oscillator organ in the broadcast studios of Poste Parisienne.

THE TRAUTONIUM

So far, it is very doubtful if any of the investigators understood how to form musical tone colours from the various waveforms which they produced, and it is fairly certain that it was the novelty of the devices which attracted attention. But in Germany, a great

The two manual organ designed by O. Vierling. This instrument uses neon tubes to generate sawtooth waveforms.
A deal of work was going on on tonal research in connection with orchestral instruments, and to assist in this Professor F. Trautwein devised the ingenious apparatus which he called the Trautonium (true tone). So advanced was he in his ideas that the instrument is still in use and in fact, seems unlikely to be supplanted.

In Fig. 1.3 we can see the elements of the idea. An elliptical rod of bakelite has a spiral groove cut around it, and in this is wound a high resistance wire in coiled form. Above the rod is a metal strip which cannot touch the wire because it is inside a springy metal gauze surrounding the coiled wire. If, however, the outside of the gauze envelope is depressed at any point, the strip contacts the wire and this is used to vary the grid bias of a thyratron relaxation oscillator which—in turn—alters the pitch. Each rod (there are two, one above the other) has a compass of about 2½ octaves. The waveform is a sawtooth. But this is not all; under the rod is a rubber tube like a bicycle inner tube. This contains a jelly-like conductive substance, and since the touch rod and gauze are mounted on springs, it is possible to depress the whole lot further and squeeze the rubber tube; this alters the resistance of the liquid and allows the signal to pass to the amplifier.

Dr. Trautwein devised a great many tone forming circuits including percussion and sustains, and the results made every other investigator sit up and take notice. The original patents are dated 1928 but the “Trautonium” is used (with later modifications) for concert work to this day.

The trautonium, it will be noticed again, used gas tubes; this was because at that time, Germany had brought these to a great state of perfection. Now M. Martenot in France appeared with some ingenious ideas. He went back to the melodic instrument, that is, one on which only a single note at a time can be played. His playing keys could move slightly sideways and advantage of this was taken to alter the frequency of a b.f.o. so that some gliding tones could be produced. Then as the keys were depressed further, a resistance was reduced in value, so that the loudness was proportionate to depth of touch. By using the finger to rock a key, rather in the way a 'cellist does with his string, a similar kind of vibrato was produced. Some of these instruments are still in existence.

ELECTROSTATIC GENERATOR

So far as valves were concerned, there was still trouble with instability of pitch and regulation of power supplies, so this type of organ receded into the background.

The greatest advance was that due to the John Compton Organ Co., when in 1932 they devised the electrostatic generator which they still use. By engraving a groove in a metallised disc in the form of a sine or other wave, and rotating a web-like metal electrode just above it, the cyclic changes in capacitance when a potential is applied to the disc can be transferred to a valve and amplified as in Fig. 1.4.

If a series of such scanners is driven by a belt running over properly proportioned pulleys, then we have a musical scale. If there are enough multiples of one particular groove on a disc, then we have octaves of the scale. By adding some of these together, we can have complex tones. There are many practical advantages of this system, apart from the permanence of tuning, and this was the first successful departure from valves—although a few rotating photoelectric generators had seen a brief existence in the interim.
MAGNETIC TONE WHEEL

Continuing the search for stability, Laurens Hammond launched his magnetic tone wheel organ now so well known—and fundamentally unchanged after more than 30 years. The rotating iron discs have a tooth formation giving the nearest possible approximation to a sine wave, and the signals from the pickup coils are fed to contacts under the keys which transfer them to a selector switch mechanism for mixing in a transformer in any desired manner. See Fig. 1.5.

Since the generator is gear driven, tuning is permanent. It is interesting to note that it is not possible, by any economical combination of gear teeth, to produce the exact interval of a semitone. Each alternate note is fractionally sharp and then flat in pitch. It is partly this which gives the characteristic sound to a Hammond.

In later models, many ingenious additions have been made, but historically the foregoing represents the basic organ design.

The reed organ, using wind from foot bellows, was a great favourite in the United States from about 1850 onwards. The reeds used are also noted for constancy of tone, and this led the American F. Hoschke to use wind-driven reeds operating as variable capacitances as in Fig. 1.6. Although the sounds produced were limited in tonal variety, they were extremely pleasing and indeed even today this is a very fruitful field for experiment. Later the Hoschke organ became the Everett Orgatron, and later still, the Wurlitzer organ. This model has only been withdrawn a year or so ago.

Then we must not forget the German Welte photoelectric organ. The Hoschke patents date from 1934, the Welte from 1936. Large glass discs carrying photographically-reproduced copies of ready made waveforms were rotated in front of long photocells. Each playing key operated a small shutter which allowed light from a flashlight bulb to pass through a slit and so scan the waveform, as in Fig. 1.7. Again, constant speed pulleys ensured accuracy of pitch, and in fact this organ was a success.

POST WAR ADVANCES

But then came the second war, and with it a tremendous advance in component and valve design. Intensive research regardless of cost produced all the parts required to restore the valve organ to the position it looked like losing for ever, and in addition, new magnetic materials, dielectrics and alloys enabled research into many new circuits to succeed. This brief historical survey could not include the many ingenious but hopeless ideas on which so many investigators worked, but we can conclude by mentioning the first successful post-war organs in order of appearance; Constant-Martin, Conn and Baldwin. It is to these companies that everyone owes a debt of gratitude because they laid the foundations of stability, good keying, and successful tone formation.

The present trend is to use transistors, or valves and transistors, although some makers prefer valves for large organs; they have certain advantages still.

In the next article we will try and explain what the basic musical requirements of an organ call for and what the various terms mean. This will lead us to examples of the most modern circuits and in due course to a design for a quite comprehensive organ which will have two manuals and pedals and be transistorised throughout.
The circuit outlined below was evolved to provide a model railway enthusiast with a "foolproof" means of controlling an electric train. Besides providing complete protection against overloads, the circuit gives good overall performance and a high degree of control.

OVERLOAD PROTECTION
Let us consider first the performance of a shunt connected d.c. motor; that is one with the field winding in parallel with the armature winding. If the motor is stationary, then, when the supply is switched on the current through it will initially be very high, limited only by the low armature resistance. Once the motor armature starts turning, a voltage is induced in its winding due to the dynamo effect; the winding rotates in the motor field. This back e.m.f. tends to oppose the applied voltage, and hence reduce the supply current.

If unloaded, the motor will run up to some speed such that the armature opposing voltage plus the voltage due to the product of armature current and resistance, is equal to the supply voltage. If the motor is mechanically loaded, the speed falls, and the armature current will increase to maintain the relationship. Conversely if the motor is to be speeded up for a given load, the supply voltage must be increased; the motor will then run faster and draw more current.

There are two possible ways of controlling the motor, firstly by supplying it from a constant voltage supply, and secondly from a constant current supply. In both instances control being affected by altering either the supply terminal voltage or current as appropriate.

In this instance a constant current control was decided upon since it offered the following features:

(a) Maximum current limitation could be readily built in, thus protecting the power supply against short circuits caused by metal objects being placed across the rails;
(b) If the train is overloaded and refuses to start, the current could not rise to a value sufficiently high to damage the motor;
(c) Such a controller will give constant acceleration of the train up to the required speed.

CONTROLLER THEORY
The theoretical circuit diagram is shown in Fig. 1. The a.c. mains supply is stepped down to 20 volts by the transformer T1, then rectified by the diodes D1 and D2, giving a d.c. output smoothed by the large electrolytic capacitor C1. A stabilised voltage of 6.2V is established across R2 and VR1 by the Zener diode D3. Any proportion of this voltage can be applied to the base of transistor TR1 by adjustment of the wiper of potentiometer VR1.

Suppose now that the wiper of VR1 is at the "grounded" end of the track; no voltage is applied to the base of TR1, which is cut off. Thus no current passes through R3, so there is no drive voltage to the base of TR2, which is also cut off. Similarly TR3 is also cut off and no current flows through the load.

If the wiper of VR1 is moved to some other position, a voltage is applied to the base of TR1, which is cut off. Thus no current passes through R3, so there is no drive voltage to the base of TR2, which is also cut off. Similarly TR3 is also cut off and no current flows through the load.

When this state is reached the current remains constant at that value. It is seen that the current through the load is independent of the load resistance.
If the load becomes effectively a short circuit, then the current through it cannot rise above the value determined by the setting of VR1.

Values of VR1, R2, R8, and the Zener diode D3 are chosen such that the maximum value of voltage which can be applied to the base of TR1 is 2.5V, and hence no more than 1A, producing a 2.2V drop across R8, can flow through the load. The circuit is thus protected against short-circuits across the output terminals. If the engine is overloaded and refuses to start, the maximum current through it cannot exceed 1A.

If, however, 1A is considered too much current for safe control, R2 can be increased to reduce the maximum voltage that can be applied to the base of TR1, and hence reducing the maximum current that can flow through R8 and the engine.

PRACTICAL POINTS

There are a few practical points to watch. The final transistor TR3 is a power transistor dissipating, at most, about 6 watts. It must be mounted on a heat sink; a suitable one is shown in Fig. 2a. The transistor should be insulated from it by using the customary mica washer, and clamping it on with nylon screws. All holes should be carefully deburred and smoothed so that no damage is inflicted on the mica washer. The mounting face of the transistor and the corresponding area of the heat sink should be smeared with silicon grease to improve thermal conductivity.

Transistor TR2 should be mounted in a copper heat clip, see Fig. 2b. It is quite permissible to leave this free standing as shown in the layout diagram Fig. 3, but it may of course be attached to the chassis or front panel, provided that the case is isolated from the collector of the transistor.

For a power supply of this kind it is essential that the winding resistances of the transformer are low, otherwise there will be a large voltage drop in the windings. The d.c. voltage across C1, at full power output, may fall to a value too low to maintain the Zener diode current. Should this be the case, there will be large changes in load current for variations in the load. Normally large changes in the load should not produce more than small, about 5 per cent, changes in the current through it.

A suggested layout for the components on printed wiring board is shown in Figs. 3 and 5. The Zener diode and its associated resistor R1 should be mounted clear of the board since they can get quite warm. The Zener diode should in this case be mounted on a heat sink.

![Fig. 1. Circuit diagram of the model train controller. VR1 is the speed control and S2 is the forward/reverse control](image1)

![Fig. 2a. Construction of the heat sink for TR3](image2)

![Fig. 2b. Details of the cooling clip for TR2 and transistor connections (looking at the wire ends)](image3)
Fig. 3a. Layout of components on the board

Fig. 3b. Connections and breaks on the copper strip side of the board

Fig. 4. Drilling details of the front panel
The whole can be mounted on the front panel (Figs. 4 and 5) fitted with mains switch S1, neon warning light LP1, and a reversing switch SW2.

Before putting into service the following electrical checks should be made. Check that the collector (case) of TR3 is insulated from the heat sink. With the mains supply connected and switched on, check that the voltage across R7 varies with adjustment of VR1. Connect a 15 ohm 15W resistor across the output terminals, and set VR1 to maximum output voltage. Monitor the voltage across R8, which should be about 2.2V (current 1A). Short circuit the output terminals and check that the voltage across R8 changes by not more than about 5 per cent.

The unit is now ready for service. It is not advisable to provide full output to the train immediately otherwise a derailment may result. Careful operation of the control, by increasing the output slowly, is quite adequate to give the desired realistic effect. Similarly, always slow down the train, using VR1, before reversing direction. These points are common knowledge to most model railway operators but do tend to be overlooked by some.
No piece of paper told him so: it was sufficient to have it by word of mouth from the diffidently pre-occupied elder of the Post Office who had thumped the big brassy morse key at him in that upper room, sending him odd sentences from the Morning Post to discover if he could receive at that speed of "ten per" (anyone could send).

Self Training in Morse
Yes, ten words a minute was all he had to send and receive (it is twelve in 1966). To attain this speed posed no problems to the short wave listener of a generation ago, for most of what there was to listen to came in morse anyway, and if you hoped to get anything out of your listening, well, you just had to learn it.

What this meant in actuality was that most of the candidates who presented themselves for the Post Office morse test had already served a self imposed and willingly accepted apprenticeship in copying telegraphy over a period of—quite often—many years, not to mention the "old sweats" from War World One who, learning it in battle, never forgot it. All in all, the morse test held few fears except the normal psychological one of "examination nerves". Climbers of the St. Martins-le-Grand staircase generally carried with them some attention last time in our story (this true story) next time. In the early days of British broadcasting the transmitting stations of the BBC used GPO-allotted amateur type callsigns. Probably the most famous of these was 2LO, a self-evident callsign for the capital city's first broadcasting station, situated at the top of Marconi House in the Strand. This official BBC picture shows the original 2LO transmitter with its football-size valves and much exposed high voltage wiring! This transmitter is now preserved at the BBC London Region transmitting station at Brookmans Park in Hertfordshire.

Office morse test had already served a self imposed and willingly accepted apprenticeship in copying telegraphy over a period of—quite often—many years, not to mention the "old sweats" from World War One who, learning it in battle, never forgot it. All in all, the morse test held few fears except the normal psychological one of "examination nerves". Climbers of the St. Martins-le-Grand staircase generally carried with them a few extra words per minute above the required ten to overcome that particular hazard.

To pass the morse test, although a landmark, watershed, milestone, or, perhaps more electronically, marker pip in the career of aspirants to a transmitting licence, was in reality the "end of the beginning".

What, then, of the "start of the beginning"? To this question we bent some attention last time in our review of the random pulses that trigger off in an individual the initial interest in amateur radio. Forty years ago, just as today, it could be the chance overhearing of an amateur transmission which sets his footsteps on the road to the transmitting licence.

Strange Voices
This is how it had been with our young climber of the St. Martins-le-Grand stairway all those years ago. Ever since the day, years before that, when his father bought a wireless set, he had been intrigued by the strange voices that he could hear mingling with the transmissions of the British Broadcasting Company on the medium wave band.

Who were 2SO and 2Q and SKA to be heard at tuning points not very far from 2LO and 5IT? They and others like them operating quite legitimateness on the 220 and 440 metre wavelength, then allotted to amateurs, were a source of interest and delight to the nation's 200,000 "wireless enthusiasts", avid for new stations and new voices to log.

Even more to the point, could one of them advise him how to go about getting his feet on the start of that road to the transmitting licence? And so he wrote to Mr Smith of Herne Bay. He liked Mr Smith. He had heard him so frequently that he felt he almost knew him.

His reply, though full of helpful information, contained a cryptic sentence to the effect that there was no royal road to becoming a transmitting amateur, a remark that sent our young hopeful to his dictionary. "Royal road: a way of attaining a landmark, watershed, milestone, or, perhaps more electronically, marker pip in the career of aspirants to a transmitting licence," it said.

And that seems to be where we came in—and where we must pick up this story (this true story) next time.
Amazing Kodak Quadruple Play Tape brings mains recorder playing times to battery portables!

Tiny 3 1/2" reel gives up to 5 1/2 hours playing time

Now—revolutionize your battery tape recorder, add hours of extra playing time and enjoyment with Kodak Quadruple Play Tape, the modern miracle in sound recording. Just one tiny 3 1/2" reel holds 800 ft. of tape—enough for up to 5 1/2 hours playing time. (That's over 100 'pops' with time to spare!). And a 4" reel, holding 1,200 ft. can give you up to 7 1/2 hours playing time. There's a 3" reel, too. Sound recording pleasure has never been extended like this before!

THE SECRET

The secret of these phenomenally long playing times lies in the unique thinness of the tape base. The thinner the base the greater the length that can be wound on to a given reel—and the longer the playing time. Kodak Quadruple Play Tape, has a base so fantastically thin it's even thinner than the oxide coating on Standard Play Tape!

STRENGTH WITH LENGTH

Microscopically thin as it is, Kodak Quadruple Play Tape is no weakling. The Polyester base has been specially pre-stretched and treated to overcome distortion during use. In fact, it will stand up to every stress likely to be met with under all normal conditions, no matter what the make of your battery tape recorder. And if you exercise a little extra care you can even use Kodak Quadruple Play Tape on mains recorders, too.

TOTAL UNIFORMITY

Advanced techniques of emulsion coating, developed in Kodak's world-famous research laboratories, have been applied to Quadruple Play Tape with the result that its oxide coating is uniform to within millionths of an inch. The combination of smoothness, sensitivity and signal-to-noise ratio that stems from this extreme coating precision cannot be equalled by any other tapes in the world.

PLANNED FOR LOW SPEEDS

Another unique extra! Kodak Quadruple Play Tape is actually planned for low-speed operation and has a boosted high-frequency response at low tape speeds. This means that at the speeds you'll most likely be using with a portable you'll suffer far less of the usual drop in quality. Your battery portable will surprise even you!

What the magazine 'Tape Recorder' said about Kodak Quadruple Play Tape.

"My tests show that the sensitivity at optimum bias is higher than normal, that the high-note response is much improved over normal tapes and that the drop-out count and amplitude fluctuation are the lowest of any tape yet tested".

"Test tones and sustained musical notes showed a smoothness seldom heard at this tape speed (3 1/2 l.p.s.)".

Review by Alec Tuttings.

MINIMUM PRINT-THROUGH

Normally, thin tapes are highly susceptible to print-through. But Kodak Quadruple Play Tape has a remarkable resistance to this unwelcome 'echo' effect. In fact, print-through is up by only an inaudible 1-5dB on Standard Play Tape. This feature alone would be enough to set this tape apart!

ACCLAIMED BY THE EXPERTS

Britain's Sound Recording press and many independent experts have been unanimous in praising this and other Kodak Tapes. The BBC and ITV use millions of feet of Kodak tape—and so do professional recording studios the world over. Without a doubt Kodak Tapes have set totally new standards in performance and quality—standards of which you can now take advantage. Fill in the coupon below for full details—then see your Kodak dealer and give your recorder the tape it really deserves!

*4-track 1 1/2 l.p.s.

Kodak Tapes—Standard, Long, Double, Triple and Quadruple Play—are available from Kodak Photo Dealers everywhere.
PRECISION SOLDERING EQUIPMENT

Weller

Instant-heat Soldering Gun
Solders in seconds... heats immediately... cools quickly. Long reach... built-in spot-light. Perfectly balanced, lightweight, comfortable to use. Two position trigger for dual-heat control.

EXPERT Soldering Kit. 8200-D-PK 72/6.
Kit contains: Expert Gun; resin-cored solder; cleaning brush; soldering aid tool; spanner; 2 spare bits. In fully fitted polypropylene carrying case.

The MARKSMAN Soldering Iron
Compact, lightweight, highly efficient, gives full 25 w. heat at tip. Screw-in tips and long reach for tight space working. Handle always cool.

MARKSMAN Soldering iron SP25D 25w. 240v. 29/-.
MARKSMAN Soldering Kit SP25D-K. 38/-. Kit contains: Marksman Iron; resin-cored solder; soldering aid; 2 spare tips.
Manufactured by the world's largest makers of quality soldering tools.

A New Martin Recordakit
designed specially for the MAGNAVOX 363

3 WATTS OUTPUT
- **OUTLET FOR HI-FI AMP**
- **SOLDERING NOT NECESSARY**
- **SEPARATE RECORDING LEVEL AND VOLUME CONTROLS**

Get the best out of your MAGNAVOX STUDIOMATIC TAPE DECK with a Martin Recordakit assembly. This compiles everything you want to make a superb two or four track 3-speed recorder (taking 7 in. reels) at a price that will save you pounds. The basic Martin units are assembled and tested, making it necessary for you simply to fit and connect them together in accordance with the detailed instructions book supplied. When built, your Martin Recorder appears as shown here. The lid is detachable. Case with speaker, and deck also available. Details on request. MARTIN RECORDAKITS have long been famous for their high performance standards, quality of materials, simplicity and dependability. The latest is the best yet.

Martin Audiokits for Hi-Fi
The uniquely reliable kits with "Add-on-ability"

No other system allows you to enlarge your installation stage by stage as Audiokits do. They comprise a wide range of very well made prefabricated transistorised units in which connections are standardised throughout and from which anything from a simple straight amplifier to an elaborate hi-fi stereo amplifier with FM tuner can be built. The Recordakit described above can be combined with your Audiokit assembly if you wish.

FROM PRE-AMP TO A HI-FI STEREO/FM ASSEMBLY
Martin Recordakits and Audiokits are obtainable from good stockists everywhere. In cases of difficulty please write direct. Trade enquiries invited.

MARTIN ELECTRONICS LTD
154 High St., BRENTFORD, Middx.
Phone: ISLWORTH 1181/2

MARTIN ELECTRONICS LTD
154 HIGH ST., BRENTFORD, Middx.

5-stage Input Selector £2.7.6
Pre-amp/vol. control £3.17.6
Pre-amp/tone controls £3.2.6
10 watt amp. (3 ohms) £5.12.6
10 watt amp. (15 ohms) £6.12.6
Mains power supply £2.15.0

KIT M4 less case and deck (four track) but incl. valves, wire, screws, etc. £15.19.6

KIT M2 less case and deck (two track) but incl. valves, wire, screws, etc. £14.19.6
In an earlier “Short Cut” (September issue) we saw how the value of resistances, in parallel can be estimated easily, by turning each resistance into a combination of resistances of the same size. This is not always possible: resistance values are sometimes awkward. So let’s look at some graphical aids which take most of the labour out of the process.

CLASSICAL APPROACH

Any number of resistances in parallel can be dealt with two at a time, by repeated application of the formula \(R_{tot} = R_1R_2/(R_1 + R_2) \). But the arithmetic involved may be rather tedious: what is needed is a way of avoiding calculation altogether.

Since
\[
\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \ldots \text{etc.,}
\]
we can find \(1/R_{tot} \) by adding together the reciprocals of all the individual resistances, and then take the reciprocal of \(1/R_{tot} \) which is equal to \(R_{tot} \). This can be done with the aid of a table of reciprocals, or, more conveniently, with an “inversion chart” (Fig. 1).

When using this chart, both resistances must be in the same factorial units, and if one goes from upper to lower scale in one half of the calculation one must go from lower to upper in the second half.

Example: What is the equivalent of 1 megohm and 100 kilohms in parallel? Converting 1 megohm into 1,000 kilohms and going “upper to lower” we read from the chart: 1,000 units for the 1,000 kilohms and 10,000 units for the 100 kilohms. Adding these gives 11,000 units, and the reciprocal of this (from the chart) will give the answer in kilohms.

Since the chart does not include 11,000 it cannot be used directly. But it can be extended as required: the rule is: multiply one scale and divide the other by the same number. We want 11,000 on the lower scale, so we multiply by 10, and 11,000 is now left of centre. The corresponding value on the upper scale, as marked, is 910, and this must be divided by 10 to produce the required answer of 91 kilohms.

LADDERS AND WALLS

One kind of problem often found in maths textbooks is based on two ladders placed against two facing walls. Given the lengths of the ladders and the distance between the walls, you may be asked to find how far above the ground the ladders cross. Reduced to its essentials, the problem is shown in Fig. 2, and the general solution is found from
\[
d = \frac{ab}{a + b}
\]
The lengths \(a \) and \(b \) can be found by applying Pythagoras’ Theorem. Now, this equation is identical, except for the choice of letters, to the parallel resistance formula.

\[
R_{tot} = \frac{R_1R_2}{R_1 + R_2}
\]

This means that the same geometrical construction can be used to solve the “two resistances in parallel” problem. The method of finding \(R_{tot} \) is as follows:
1. Draw a horizontal line \(c \) of any convenient length. (The ground.)
2. Draw a pair of parallel lines at right angles to it. (The walls.)
3. Mark off on the vertical lines distances corresponding to the resistances \(R_1 \) and \(R_2 \) (e.g., 2.7 inches for 270 ohms).
4. Draw in the cross-lines. (The ladders.)
5. Measure the perpendicular \(R_{tot} \) which is the parallel equivalent of \(R_1 \) and \(R_2 \).

Exactly the same procedure can be used for capacitances in series, since \(C_{tot} = C_1C_2/(C_1 + C_2) \) which has the same form as \(R_{tot} = R_1R_2/(R_1 + R_2) \). And inductances in parallel have a similar arrangement \(L_{tot} = L_1L_2/(L_1 + L_2) \).
A certain ambiguity must be cleared up at the start: this concerns the initials d.c. as used in the title and elsewhere throughout this article. These letters can mean one of two things: direct current amplifiers, or directly-coupled amplifiers. The former meaning refers to circuits which are intended primarily for amplifying steady voltages, that is devices with input and output terminals where a steady voltage of 1 volt across the input produces, say, 10 volts across the output, 2 volts in gives 20 volts out, 3 volts in gives 30 volts out, and so on. Such a device has a value of gain (10 in this case) which is entirely analogous to the gain of any a.c. amplifier.

The second meaning, directly-coupled amplifiers, refers to the electronic configuration of the circuit instead of its purpose. A directly-coupled amplifier has no coupling capacitors or transformers between the stages, but instead, the anode of one valve is connected to the grid of the next either directly, or via a network containing only resistance and/or inductance. These two names are not interchangeable. Many direct current amplifiers are directly coupled, but there are other types that are not. Directly-coupled amplifiers certainly will amplify direct current but they can also be used for a.c. signals. This article is concerned with direct current amplifiers of the directly-coupled type, but a few brief comments on other forms of direct current amplification will be given at the end.

A SIMPLE DIRECT CURRENT AMPLIFIER

The simplest possible direct current amplifier (hereafter called d.c. amplifier) is shown in Fig. 1a. When no signal is applied to the input a certain amount of anode current flows in the valve thus developing a fixed voltage across the anode load R_a. If a fixed negative voltage is applied to the valve grid the anode current decreases and the voltage across R_a falls. By connecting a voltmeter across R_a this system could be calibrated by applying known input voltages to the grid and drawing a graph of these input voltages against the rise in anode voltage. The circuit could then be used as a voltmeter, unknown input signals being found by noting the rise in anode voltage and reading off from the graph the input voltage required for such a rise.

A circuit such as this would certainly work, and by using high resistances in the grid circuit (R_e in Fig. 1a) an electronic voltmeter of extremely high input resistance is produced. However there are several undesirable features about such a simple arrangement. For example in one way it "works backwards" in the sense that increasing the input actually decreases the output voltage: although this is of no consequence electrically, it is aesthetically displeasing.

More important from the electrical point of view is the mere presence of the no-input voltage in the output. A more satisfactory arrangement is one where no input signal gives no output, a voltage appearing across the output only when something is applied to the input. This may be accomplished by using a bridge network as in Fig. 1b. In this case the steady d.c. across the anode load is balanced by an equal voltage taken from the appropriate point on a bleeder circuit across the h.t. supply. In the absence of any input on the grid, a voltmeter is connected across the output terminals and adjusted to read zero by the Set-Zero control. Any voltage now applied to the grid will cause a reading on the meter by changing the anode voltage and unbalancing the bridge. Many valve voltmeters work on this or a similar principle.

This example of a valve voltmeter was discussed in some detail as it illustrates the whole point of a d.c. amplifier. A small voltage applied to the input produces a larger voltage across the output, altering the input causes the output to change in direct proportion.

Fig. 1a. The simplest form of direct current amplifier. The output is negative "going".

Fig. 1b. Bridge circuit. An input signal produces a "positive" output.

Fig. 2. Large negative bias voltage on V2 grid.

Fig. 3. An alternative arrangement (to Fig. 2) is to return the cathode of V2 to a point above earth.
In Fig. 1 only negative input signals can be satisfactorily amplified, a positive input would cause grid current to flow and although amplification would still occur, the input/output characteristic would be unlinear. To make possible amplification and measurement of positive or negative inputs the grid must be biased negative with respect to the cathode. The various ways of doing this will be discussed in some detail shortly.

MULTI-STAGE AMPLIFIERS

So far we have considered only one-valve circuits used as voltmeters. There are many applications where the voltage gain provided by one valve is insufficient, this being partly due to the comparatively low gain of each stage. It is then necessary to build multi-stage amplifiers and a number of new problems arises. In conventional amplifiers of a.c., especially those dealing with audio frequencies, multi-stage amplifiers are fairly simple, the coupling between consecutive valves being accomplished by resistance and capacitance. The capacitor connected between the anode of one valve and the following grid will pass the a.c. signals with little attenuation, but prevents the high d.c. potential on the anode from being transferred to the grid of the next valve.

When amplifying d.c. it is impossible to use coupling capacitors between stages since obviously these would not pass a d.c. signal. It is here that directly-coupled amplifiers are useful since they do not use capacitors to transfer the signal from one stage to the next. The anode of one valve is connected to the grid of the next and the great difficulty arising as a result of this is preventing the high voltage on the anode from reaching the grid of the following valve, which must be negative.

One way of doing this is given in Fig. 2. Here a negative bias is used of approximately the same voltage, but opposite polarity, to the h.t. supply. In the absence of any input to the amplifier the potentiometer VR is adjusted so that the grid of V2 is a few volts negative with respect to the cathode. As the anode of VI rises and falls in potential so the grid of V2 also rises and falls in sympathy; however, while the anode swings, say, 200 ± 10 volts, the grid of V2 swings ± 5 volts around a steady negative voltage of, for example, 10 volts.

This is then one way of directly coupling the stages in an amplifier which overcomes the problem of the potential difference between the anode and grid.

However it does so at a price, and this price is the attenuation of the signal. In the example given the negative bias is about equal to the h.t. voltage and for V2 grid to be 10 volts negative the slider of VR must be slightly more negative than the anode of VI is positive.

Under these conditions the coupling resistors R1 and R2 will be equal and the signal appearing at V2 grid will be half that at VI anode. If the bias is made twice as negative as the h.t. is positive, then for the same bias on V2 grid R2 = 2R1; so only a third of the signal is lost in transfer. This idea can be taken further of course but is limited by the practical difficulties in obtaining a very high negative bias, and by the fact that the setting of VR becomes more critical as the bias is increased.

If making the grid negative is impractical then the converse can be tried, that is making the cathode positive. This is done simply by returning the cathode to h.t. as well as to earth as in Fig. 3. The value of R3 will be several times that of R4 and it is usually only practical to run the cathode at up to one-eighth of the h.t. voltage. Beyond this point the effective h.t. supply to the valve becomes so reduced that distortion, in the form of non-linear input/output response, begins to appear. Since the anode of VI will almost certainly be at least half the h.t. voltage or higher, it is necessary to make R1 several times the value of R2 in order to drop V2 grid to below the potential of the cathode. This attenuates the signal to such an extent that the voltage gain between VI anode and V2 anode is a mere 2-4 times.

A modification of Fig. 3 uses a double triode with one half acting as signal amplifier while the other half passes a heavy current to keep the common cathode potential high. This circuit is given in Fig. 4 and there is little to say about it as the general characteristics are those of Fig. 3.

Although the “positive cathode” stage as in Fig. 3 is of little use in the later stages of an amplifier, it can be very useful in the input stage. Here the input on the grid must be kept down to plus or minus a few volts, and returning the cathode to h.t. so as to maintain it a few volts positive provides an efficient high impedance input stage. Fig. 5 is the circuit of a working d.c. amplifier with a voltage gain of about 75. Used to drive a 6in cathode ray tube, this gave a spot deflection sensitivity of 1 volt/cm, or about ± 4 volts to move the spot from top to bottom of the screen.
SEPARATE POWER SUPPLIES
If cost is no problem in building a d.c. amplifier, then several simple stages may be put in series using an independent power supply for each stage. Such an amplifier is shown in Fig. 6. With careful design this arrangement can be made very effective and efficient if there are no coupling resistors to attenuate the signal, also each grid except the first automatically receives the required negative bias due to the standing current in each anode load. The most obvious difficulty with this "stepped" system is the necessity of providing separate power supplies for each stage. Each individual supply is small but the cost of building one for each stage tends to mount up over a multi-stage system.

It is possible to use a single power supply and incorporate a series of potential dividers to give several series-connected supplies, each being of a much lower potential than the original. This is a wasteful method as a lot of power is dissipated as heat in the potential dividers and also interaction between stages with effectively a common power supply can produce unwanted feedback with resultant complications.

GAIN CONTROL PROBLEMS
Unless the amplifier is required for one specific purpose only, it is customary to incorporate a gain control somewhere in the circuit. In conventional a.c. amplifiers a gain control can be incorporated almost anywhere in the circuit but unfortunately this is not the case with d.c. amplification. Suppose that the resistors R1 and R2 in Fig. 2 and Fig. 3 were replaced by a potentiometer track and the slider connected to V2 grid; altering the setting of this potentiometer would vary the amplification by, in effect, varying the ratio of R1 and R2. However, it would also alter the bias point of V2 which must be kept constant in order to prevent the grid from either going positive (R1 too small) or going too negative and cutting off the valve (R1 too large).

An alternative method of gain control in a.c. amplifiers is to have one stage as a cathode follower, using the track of the potentiometer as the cathode resistor, and tapping off the required amount of signal on the slider. This method too is of no direct use in d.c. amplifiers for the same reason as before, i.e. altering the setting of the control would still alter the bias point of the next stage.

Up to a point these problems can be solved by using a ganged potentiometer, one half acting as in an a.c. circuit while the other half somehow cancels out the changing bias. Fig. 7 is a simple way of using a cathode follower as part of the gain control in a d.c. circuit: VR1b selects a negative bias which cancels out the effect of voltage across VR1a. The output is at a constant potential unless some input is applied to the valve grid.

A better solution is to have all the required gain controls connected between the amplifier input terminals and the first valve grid. As explained before, and shown in Fig. 5, the input stage of a d.c. amplifier usually uses a "positive cathode" arrangement rather than biasing the grid negative.

LIMITATIONS DUE TO "DRIFT"
Any audio amplifier has a certain minimum signal which it can amplify; below this level the noise inherent in the circuit makes amplification useless. The lower limit of input for a d.c. amplifier is set by the stability of the circuit, and this in turn is dependent on temperature changes in components, slow changes in component values with age, and variations in the supply voltages. The slow variations in these factors produce a slow change in the supposedly fixed amplification of the circuit, this manifests itself in, for example, frequent re-adjustment of the Set Zero control.

Such slow changes are known as drift and are usually more marked in d.c. than a.c. amplifiers. drift is clearly undesirable and can be minimised by such methods as using high wattage, close tolerance resistors, using a stabilised power supply, and having a well ventilated chassis to keep down temperature changes. A small drift in any d.c. potential in the input stages will be amplified by later stages as a signal, so every effort is needed to ensure a very stable input stage.

Despite all precautions there is always drift to a certain extent and this places a definite upper limit to the complexity of a d.c. amplifier. Using directly-coupled stages of the types described so far, it is very difficult to use more than three stages of amplification; beyond this limit even a few millivolts of drift in the first stage are amplified to the extent of overloading the final stage. Even with three directly-coupled stages the bias and/or h.t. may need to be stabilised to ensure drift-free operation.
OUTPUT ARRANGEMENTS

The type of output stage employed depends on the purpose for which the d.c. amplifier is intended to fulfil. The output signal appears as a variation in the anode voltage of the output stage valve. If this is to run a cathode ray tube in an oscilloscope the anode can usually be coupled direct to one of the Y plates; if the amplifier is acting as a voltmeter then the output is better taken from between the anode and a backing-off network as in Fig. 1b.

Sometimes the circuit has to be arranged so that the output terminal is at earth potential when no signal is applied and varies above and below earth with positive and negative inputs to the amplifier. In this case it is necessary to use an output similar to the coupling method of Fig. 2, the output coming from the junction of R1 and R2 and being set to zero in the absence of any input by VR. The chief snag about this kind of output is its extremely high output resistance, this being several megohms in some cases.

NEGATIVE FEEDBACK

We have already said that the voltage gain of d.c. amplifiers of the types discussed here is not very high, a net gain of 5–10 times being fairly average. This is due partly to the loss across the coupling resistors, but it is aggravated by the inevitable addition of negative current feedback. This problem can now be considered in some detail.

One of the unusual features of d.c. amplifiers is the virtual absence of capacitors anywhere in the circuit. In most audio equipment cathode resistors are bypassed by capacitors of various values, but this is not so in the amplifiers mentioned here so far. Suppose we consider just what happens to a signal when amplified by a valve not having a cathode by-pass capacitor. This will show just where the signal is lost.

In Fig. 8, suppose that the grid is made more negative with respect to the chassis, then the valve passes less current so the voltage across \(R_k \) falls. This drop in voltage across \(R_k \) means that the grid-to-cathode voltage change is less than the input voltage change between grid and earth because some of the input has been cancelled out by the change in potential of the cathode. In the case of an a.c. amplifier the cathode capacitor keeps the voltage across \(R_k \) almost constant, so the grid-to-cathode swing is almost the same as the input grid-to-chassis swing. It is these two drawbacks, the loss across coupling resistors and the inevitable negative feedback which reduce the gain of this type of d.c. amplifier to low values. Obviously capacitors across the cathode resistors will have no effect on d.c. signals.

DETERMINING THE LOSS OF GAIN

It would be interesting to discover how much each of these factors affects the gain. The loss due to the coupling resistors can be found from simple potential divider theory; to find the effect of negative feedback the following set of experiments was performed.

First, using the circuit of Fig. 9a the voltage gain was measured for d.c. signals driving the grid negative, this gain was measured as the change in voltage across the anode load divided by the change in grid voltage which caused this. In this circuit, where there is no cathode resistor and hence no feedback, the voltage gain was almost exactly 10. Next, a battery was inserted in the grid circuit biasing the grid 6 volts negative (the effective internal resistance of the battery was only a few ohms). The voltage gain of this arrangement, shown in Fig. 9b, was measured by the same technique using positive and negative inputs but taking care not to run the grid positive. There was still no feedback due to a cathode resistor, but some feedback did occur as a result of the internal resistance of the battery. The voltage gain now dropped slightly, to 9.7.

At this stage a 1 kilohm resistor was inserted in the cathode circuit as in Fig. 9c. Initially this was un-bypassed and the voltage gain for d.c. was measured and found to be 4.8. Using a 50c/s a.c. signal from the valve heater circuit the a.c. gain at this frequency was also measured; it turned out to be 5.0. Then a 16\(\mu \)F electrolytic capacitor was connected across the cathode resistor and both a.c. and d.c. gain re-measured. The a.c. gain was now 10, but the d.c. gain was unaffected though there was now a noticeable time needed for the circuit to settle down after the d.c. was applied; that is, when the d.c. was applied to the grid the anode rose slowly to its new value instead of rising sharply as it did when \(C \) was absent.

The results of these experiments can be summarised as follows: In the absence of negative current feedback
the (negative-going) d.c. gain was 10, this value representing the maximum gain attainable using this particular set of component values. The addition of an un-bypassed cathode resistor introduced a degree of negative current feedback which reduced both a.c. and d.c. gain to about half their original values. By-passing the cathode resistor with a large-value capacitor restored the a.c. gain to its former value but had no effect on the absolute d.c. gain, though it introduced a delaying factor in the amplifier.

All this gives a somewhat paradoxical result as far as the design of d.c. amplifiers is concerned. If a cathode resistor is inserted in the amplifier stage this provides some bias for the grid but reduces the gain of the stage by negative feedback. The cathode resistor can be omitted by returning the grid to a negative bias supply but this automatically causes attenuation of the signal across the coupling resistor. Directly-coupled amplifiers of this type of circuit are therefore of necessity something of a compromise between several evils.

A note at this point on the measuring of the 50c/s gain of the amplifier as in Fig. 9c. As in the d.c. experiments, the gain is measured as output signal voltage across anode load divided by input signal voltage between grid and chassis. The input voltage can be found easily with an ordinary a.c. voltmeter but measurement of the output a.c. is complicated by the standing d.c. across the anode load. To measure the output an a.c. voltmeter in series with a large-value capacitor is connected across the anode load—the capacitor blocks the d.c. allowing only the wanted a.c. to reach the meter. To be strictly accurate the a.c. voltage drop across the capacitor should be taken into account, and this can easily be found from the equation giving the impedance of a capacitor at a given frequency.

A.C. PERFORMANCE

The question might well be asked—to what extent do the d.c. amplifiers described here amplify a.c.? The quick answer to this is—not very much. In designing simple apparatus to deal with d.c. only, no attempt is made to eliminate or neutralise stray inductance and capacitance, so for frequencies from a few hundred cycles per second upwards there is a steady falling off of the a.c. response. This does not mean that it is impossible to build a circuit which will amplify a.c. as well as d.c. Modern oscilloscopes sometimes incorporate amplifiers which have a response from d.c. to 50Mc/s or more, but these work on principles rather more complex than those described here. It is of course very useful to extend the response as far as possible up the frequency scale in order to avoid rounding off sharp pulses which include very rapid potential changes.

D.C. PHASE SPLITTER

Before concluding this article it would be interesting to consider a few variations on the ideas so far given. In order to drive a cathode ray tube to give optimum results it is usual to employ push-pull deflection of the plates and to do this some form of phase splitter is required, analogous to that used in an audio amplifier to drive a push-pull output stage. A simple d.c. phase splitter is shown in Fig. 10 and is similar to the a.c. circuit called the split-load phase splitter. With the grid connected to the cathode, about 100 volts is present across each 22 kilohm resistor, and when the grid is 10 volts negative with respect to the cathode this falls from 100 to 25 volts per resistor. The difference, from 200 volts down to 50 volts, is enough to drive most oscilloscope tubes.

The real problem with this type of circuit is finding a suitable driver stage to work it. The most obvious solution is to connect the anode of the driver direct to the grid of the phase splitter, via a potential divider to adjust the voltages if necessary. Such a circuit in practice loses so much signal due to negative feedback in the very large cathode resistor that the gain is barely above unity. Whatever the voltage swing between earth and anode of driver, the swing between grid and cathode of the phase splitter is only a fraction of this and the output voltage changes across both 22 kilohm resistors is quite inadequate for driving anything but the most sensitive cathode ray tubes. After a great deal of trouble the only satisfactory way of driving the phase splitter was found to be the use of a bridge network in the anode of the driver which was run from an independent power supply.
R.S.C. MAINS TRANSFORMERS

FULLY GUARANTEED

- 300V-600V, 60mA, 6.3v, 5A for 15/9
- 600V-1200V, 60mA, 6.3v, 5A for 15/9
- 1200V-2400V, 60mA, 6.3v, 5A for 15/9
- 2400V-4800V, 60mA, 6.3v, 5A for 15/9
- 4800V-9600V, 60mA, 6.3v, 5A for 15/9
- 9600V-19200V, 60mA, 6.3v, 5A for 15/9
- 19200V-38400V, 60mA, 6.3v, 5A for 15/9

FULLY SOLDERED TRANSISTOR MOUNTING KITS

- 150mA, 6.3v, 5A for 15/9
- 300mA, 6.3v, 5A for 15/9
- 600mA, 6.3v, 5A for 15/9

SOLDERED JOINTS PLDS

- 150mA, 6.3v, 5A for 15/9
- 300mA, 6.3v, 5A for 15/9
- 600mA, 6.3v, 5A for 15/9

ERSONAL SHOPPERS WELCOME

- At our showrooms, Open all day Sat.
- All Enquiries Welcome.

ALL LEADING MAKES OF HIFI EQUIPMENT STOCKED OR AVAILABLE

- Complete kits with and without remote controls.}

R.S.C. SUPER 15 HI-FI AMPLIFIER

- **POWER OUTPUT:** 15 watts RMS into 8 ohms
- **MAXIMUM INPUT:** 100 mV
- **SIGNAL TO NOISE RATIO:** >50 dB
- **TOTAL HARMONIC DISTORTION:** <0.1%
- **TONE CONTROL:** Bass, Treble
- **INPUT LEVEL:** 150 mV
- **RECOMMENDED SPEAKERS:** 8 ohms
- **DIMENSIONS:** 30 x 16 x 11 inches

R.S.C. SUPER 30 STEREO AMPLIFIER

- **POWER OUTPUT:** 30 watts RMS into 8 ohms
- **MAXIMUM INPUT:** 200 mV
- **SIGNAL TO NOISE RATIO:** >60 dB
- **TOTAL HARMONIC DISTORTION:** <0.05%
- **TONE CONTROL:** Bass, Treble
- **INPUT LEVEL:** 200 mV
- **RECOMMENDED SPEAKERS:** 8 ohms
- **DIMENSIONS:** 30 x 16 x 11 inches

R.S.C. Hi-Fi Speaker Systems

- **WEIGHT:** 29 lbs
- **DIMENSIONS:** 29 x 12 x 7 inches
- **SIGNAL TO NOISE RATIO:** >60 dB
- **TOTAL HARMONIC DISTORTION:** <0.05%
- **TONE CONTROL:** Bass, Treble
- **INPUT LEVEL:** 200 mV
- **RECOMMENDED SPEAKERS:** 8 ohms
- **DIMENSIONS:** 29 x 12 x 7 inches
EXCEL in ELECTRONICS

Through this ICS 3-way Training Method:

1. MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

2. MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering—on top of your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

3. MASTER THE MATHEMATICAL SIDE
To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/T.V. Engineering and Servicing, Closed Circuit T.V., Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.
NEW! Programmed Course on Electronic Fundamentals

EXPERT COACHING FOR:
INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS SUPPLEMENTARY STUDIES
R.T.E.B. RADIO/T.V. SERVICING CERTIFICATE
RADIO AMATEURS' EXAMINATION
P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

And there are practical "learn as you build" radio courses as well.

Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY

INTERNATIONAL CORRESPONDENCE SCHOOLS

DAVIS & WHITWORTH LIMITED
SEMI-CONDUCTOR SPECIALISTS

SPECIAL CHRISTMAS OFFER
ALL 10/- PACKS AT 8/- EACH
VALID ONLY ON ORDERS RECEIVED BEFORE 31ST DEC., 1966

6 Matched Trans. 1OC4, 2 OC45, 1 OC6ID, 2 OC6I 10/-
4 OA10 Diodes Mullard 30 PIV 1 amp ... 10/-
15 Red Spot AF Trans. PNP Factory Tested ... 10/-
15 White Spot RF Trans. PNP Factory Tested ... 10/-
4 Silicon Rect. 3 amp. 100-400 PIV Unmarked ... 10/-
1 50 watt Sil. Power Trans. 5 Mels NPN ... 10/-
4 OA55 Germ. Gold Bonded Diodes Mullard ... 10/-
5 OA47 Gold Bonded Diodes Mullard ... 10/-
4 OA202 Sil. Diodes Subminiature Mullard ... 10/-
2 Low Noise Trans. NPN 4 dB 2N1029/30 ... 10/-
5 Sil. Trans. 25303 PNP YCB25 Ic 100 mA Texas ... 10/-
10 Assorted Computer Diodes ... 10/-
4 Zener Diodes 250 mW 5-13 volts ... 10/-
2 4G417 Texas Trans. Egvt. A116/117 Mullard ... 10/-
2 200 Mels Sil. Planar Trans. NPN BS326/27 STC ... 10/-
2 Bi-Directional Trans. A5656 PNP STC ... 10/-
4 5 NPN Diodes 400 mW 3.1 80 volts 5% ... 10/-
4 Germ. Trans. High Current Mullard OC4 ... 10/-
2 Power Transistors 1 OC26, 1 OC35 ... 10/-
5 Sil. Rect. 400 PIV 250 mA I.R. ... 10/-
3 OC71 Transistors Mullard ... 10/-
3 OC75 Transistors Mullard ... 10/-
3 NPN Sil. Trans. 70 Mels ZT43 Ferranti ... 10/-
4 NPN Switching Trans. Assdt. OC339, 2N3038, etc. ... 10/-
2 10 amp. Silicon Rect. 50 and 100 PIV ... 10/-
6 Germ. Diodes 4 OA70 100 mA Ferranti ... 10/-
6 Sil. Rect. 120 PIV 100 mA Ferranti ... 10/-
1 Power Trans. 90 watts 40 volts Germ. Clevite ... 10/-
1 Germ. 1 Amp. Rect. PIV 200/500 A.E1 Stud ... 10/-
3 Sil. Rect. 400 PIV 500 mA BY101, BY114 ... 10/-
5 Metal Alloy Transistors Mulp Type ... 10/-
5 Texas 2G44A Trans. Egvt. OC44 Mullard ... 10/-

"FREE" ONE 10/- PACK OF YOUR OWN CHOICE WITH ORDERS VALUED £4 (FOUR POUNDS) OR OVER

ANOTHER FIRST FROM DAVIS & WHITWORTH LTD.
THE 'TACHO BLOCK'
This encapsulated block will turn any 0-ImA meter into a perfectly linear and accurate rev. counter for any car. State 4 or 6 cylinder, Cost 20/-.
FIRST EVER LOGIC KITS
Learn for yourself how computers work, even make one for yourself. Full instructions for a noughts and crosses machine, binary counters, timers, etc. L.1.5 gns. L.2.10 gns. No need to purchase both kits, you can start with L.2 which incorporates L.1. DETAILS FREE.
OTHER BARGAINS
Unijunction transistors 2N2160 15/- each, NKT Audio Set 3AN2 4 trans. 15/- each, 4 Solar cells inc. book of instructions 10/-, 2 NPN, PNP, comp. pair. AC128, AC176 10/-, 2N 15 99 or equivalent 25/-.
Power C/P pair NPN. PNP. AO161/162 20/-, Z2A105CF, 15 volt Zener 10/-.

Silicon controlled rectifiers, 100P1V 7-amp 10/6, 400P1V 7-amp 30/-, 600P1V 7-amp 45/-, 400P1V 1-amp 25/-, 200P1V 1-amp 25/-, 300P1V 1-amp 30/-, 400P1V 1-amp 40/-, 600P1V 1-amp 55/-.

FREE CIRCUIT DIAGRAMS WITH ALL SCR ORDERS

NO CONNECTION WITH ANY OTHER FIRM
For complete lists and substitution charts send 1/- in stamps, add 1/- post and packing per order.

222/4 WEST ROAD
WESTCLIFF-ON-SEA, ESSEX
Tel.: Southend 46344

FOR FREE HANDBOOK POST THIS COUPON TODAY

J.C.S., Dept. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11
NAME
ADDRESS
OCCUPATION...-AGE 12.66

INTERNATIONAL CORRESPONDENCE SCHOOLS
The bridge circuit action, as described at the beginning of this article and shown in Fig. 1b, gives no voltage across the output unless there is an input applied to the valve. When using the bridge network to drive the phase splitter as in Fig. 11, the Set Zero control is adjusted so that there is no voltage across the 100 kilohm bridge load resistor (Rb in Fig. 11) when V1 grid is a few volts negative of its cathode, and signals of either polarity can then be accepted. V1 in Fig. 11 can be preceded by any type of d.c. amplifier, but this must be run from the same power supply as V1 itself. V2 must have its own separate supply.

Of course we are really doing things in a somewhat absurd fashion here, using a form of phase-splitter as the output section; in conventional audio equipment the phase splitter only has the job of supplying power to, usually, a symmetrical push-pull output stage. The reply to this is that there is nothing simple in d.c. circuitry which is analogous to an a.c. push-pull output stage. The following arrangements have been attempted, all based on a form of cascode arrangement.

CASCODE ARRANGEMENTS

Fig. 12 applies the outputs from the phase splitter to the two halves of a twin triode in cascode, again taking the outputs from one cathode and one anode.

Another idea was to use two such cascodes and strap both grids together. The output from the cathode of the phase splitter went to the grids of one such cascode pair which had no cathode resistor but retained the anode load and took the output from the "top" anode. The anode output from the phase splitter went to both grids of the other cascode pair, this had no anode load but retained the cathode load at the bottom and took the output from this.

Both these ideas worked in the sense that they provided some output when a signal was applied to the phase splitter. Unfortunately both were non-linear and one acted as an attenuator instead of an amplifier!

CHOPPER-TYPE D.C. AMPLIFIER

There are, of course, other types of d.c. amplifier than those discussed here. Other forms of coupling between stages can be used, there are several forms of coupling found in transistorised circuits, including the so-called long-tailed pair, which are very useful in this respect. Alternatively the d.c. input can be made to modulate an a.c. signal which is then amplified and measured in the usual a.c. way. This modulation is carried out in a chopping device which may be either mechanical or purely electronic, and the complete circuit is called a chopper-type d.c. amplifier.

This article should have outlined the simpler design features of d.c. amplifiers of one type. It is a field of study with considerable scope for experimental work since the uses of d.c. amplifiers are numerous. They can be used to amplify the output of photo-electric tubes and other units which produce small, fairly steady, d.c. voltages. They are used in computers of some kinds and in various forms of research, often as parts of oscilloscopes. Bearing in mind the considerable difficulties involved, the study and construction of this type of circuit presents something of a challenge which is very interesting to attempt to meet.

Reference

1. For a much fuller discussion of this type of feedback see the article "Impedance and Negative Feedback" by the same author, published in Practical Electronics, May 1966.
The basis of this instrument is a flip flop circuit which is triggered by pulses generated in a multivibrator. The use of a flip flop ensures that the pulses are of constant width. The pulses are then clipped by a Zener diode before being fed to a meter which measures the average current flowing in the output stage.

The reading on the meter is dependent on three things: the frequency, amplitude, and the width of the pulses. Now the width of the pulses depends on the time constant of the flip flop and, in turn, the time constant of the flip flop depends on the amount of capacitance present in the circuit; it follows therefore that if the frequency and the amplitude are held constant then the reading on the meter will be a direct measure of the capacitance present in the flip flop, and also the meter will have a linear scale.

It was decided to include in the meter comprehensive self-check facilities, so that the calibration of the instrument can accurately be checked on all four ranges at the turn of a switch and also the internal battery voltage can be measured. The four ranges have full scale deflections of 0-001/μF, 0-01/μF, 0-1/μF and 1-0/μF. The leakage of the capacitor under test can also be assessed.

The overall result is a linear scale capacitance meter that is easy to use and check, and which enables quantities of capacitors to be checked very quickly. The author feels that this item of test gear would be a very useful addition to anybody's workshop.

THE CIRCUIT

The circuit of the linear scale capacitance meter is shown in Fig. 1. The first two transistors TR1 and TR2 form a conventional symmetrical multivibrator. The frequency of the multivibrator is controlled by sections a and c of the range switch S1, which switch in pairs of capacitors. The output of the multivibrator is differentiated by C13 and fed to the first stage of a flip flop, TR3.

For the time being we will assume that the function switch S2 is in the calibrate position, i.e. position 1, and that the master switch S3 is in the on position, i.e. position 2. Under these conditions S2a allows the calibration capacitor selected by S1d to be used as the time constant of the flip flop circuit. The output from TR4 is clipped by the Zener diode D2 before being fed to the meter M1 via S3b and S3c. The meter is set to full scale deflection by the variable resistor selected by S1b.

So it can be seen that all that is necessary, in order to calibrate the instrument is to set S2 to the calibrate position and set the range switch to each position in turn and adjust the appropriate calibration resistor VR1-4 for full scale deflection on M1.

With the capacitor to be tested (Cx) connected across the test terminals and the appropriate range selected on S1, the switch S2 is placed in the read position, position 2. S2a disconnects the calibration capacitor and S2b, b and c bring into circuit Cx as the flip flop time constant capacitor. The meter will now read the value of Cx.

LEAKAGE TEST FACILITY

If it is desired to assess the leakage rate of Cx, then S2 is set to position 3 leakage. This switch, incidentally, is spring loaded to this position and if released returns to position 2. One side of Cx is connected, via position 3 of S2b and the current limiting resistor R6, to 9 volts negative. The other side of Cx is connected via position 3 of S2c to the meter. The diode D1 will not appreciably affect the meter reading as it is now reverse biased. The meter is connected to the positive supply line via one of the calibration resistors, and because of this the meter will read slightly different leakage rates depending upon which range is selected, but as this function of the instrument is only meant as an indication and not a measurement it was thought not to be worthwhile to provide an extra way on S2 to connect the meter directly to the positive line on this function.

POWER SUPPLY

The capacitance meter is powered by a 9 volt battery, such as type PP6. The battery voltage is reduced to 6-2 volts and stabilised by the Zener diode D3 and resistor R10.

All that remains to be discussed now are positions one and three of S3. Position one of this switch is the off position, the negative side of the BY1 battery is disconnected by S3a and a short circuit is placed across the meter by S3b and c in order to damp the movement for protection in transit.

Position 3 of S3 is for measuring the battery voltage. The negative side of the meter is connected to the negative side of the battery via S3b, the meter multiplier resistor R9, and S3a. The positive side of the meter is connected to the positive line by S3c.
COMPONENTS

All the components used are standard items. There are however one or two points that are worth mentioning in this connection.

The capacitors C9, 10, 11 and 12 should be as accurate in value as possible. C9 presents no problem in this respect as one per cent components are easily obtainable. The other three may present a little more difficulty, and if the constructor has no facilities for selecting accurate components, a useful method to adopt will be suggested under calibration.

The switches used for S2 and S3 are lever operated wafer types. They lock in two positions and are spring loaded to return to centre from the third. The spring loaded positions are used in the battery check and leakage functions of the instrument.

The switches were obtained from the Specialist Switch Company and it is recommended that beginners especially who wish to follow the point-to-point wiring instructions use the switches specified, since the contact arrangements on other switches may not be the same and could lead to confusion.

The meter can be any 50 µA moving coil movement, the physical size of which will be determined by the constructor's pocket. If possible, obtain a meter scaled 0-10, but otherwise a paper scale can easily be made up and glued over the original.

CONSTRUCTION

The first task to be tackled is the case. The author used a metal box with hinged lid measuring 8 1/2 in x 5 1/2 in x 3 1/2 in deep. This is actually a readily available item since it is marketed by large stores as a "lunch box".
A piece of black Lantex should be cut to fit the recess in the face of the lunch box and then placed on one side. Brackets "A" and "B" are made up from 18 s.w.g. sheet aluminium as shown in Fig. 2. The "bottom" of the case is then drilled to take the parts in the positions shown in Fig. 2. Ensure that there is adequate clearance when the box lid is shut.

Remove all the components from the box. Place the previously cut sheet of black Lantex in position and mark the back of it for the necessary holes, using the drilled case as a template. Drill the Lantex front panel. Note that the screws which hold S2 and S3 do not protrude through the front panel, but the back of this panel is recessed to take them. The panel is held in place by the meter flange and by sockets SK1 and SK2—this prevents the appearance of the instrument being spoiled by visible screws.

Readers may be interested in two tools the author has recently acquired which have been useful in construction work of this kind. The first is a pair of pop riveting pliers, which enables items to be quickly riveted in place from one side of the work only without hammering. The second is a "Monodex" sheet metal cutter, and this enables circles to be cut from metal after drilling only one 4in hole without distorting the metal—saves all that laborious drilling and filing.

PERFORATED BOARD
The next stage in construction is to mount the components on the piece of perforated board as shown in Fig. 4. The positive and negative rails are made from 18 s.w.g. copper wire. It will be noticed that all points on the board have a letter and figure reference.

WIRING SCHEDULE

<table>
<thead>
<tr>
<th>WIRE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>WIRE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>WIRE NO.</th>
<th>FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PB/K2</td>
<td>S1c/w</td>
<td>9</td>
<td>PB/K25</td>
<td>S2c/2</td>
<td>17</td>
<td>S2b/w</td>
<td>SK1</td>
</tr>
<tr>
<td>2</td>
<td>PB/K1</td>
<td>BY1/4-VE</td>
<td>10</td>
<td>PB/O40</td>
<td>S3c/3</td>
<td>18</td>
<td>S2c/w</td>
<td>SK2</td>
</tr>
<tr>
<td>3</td>
<td>PB/K5</td>
<td>S1c/w</td>
<td>11</td>
<td>PB/O40</td>
<td>VR1/SLIDER</td>
<td>19</td>
<td>S3c/2</td>
<td>SKb/w</td>
</tr>
<tr>
<td>4</td>
<td>PB/K8</td>
<td>CI.2.3.4</td>
<td>12</td>
<td>PB/C40</td>
<td>S2b/3</td>
<td>20</td>
<td>VR1</td>
<td>S1b/1</td>
</tr>
<tr>
<td>5</td>
<td>PB/KH</td>
<td>CI.6.7.8</td>
<td>13</td>
<td>PB/A40</td>
<td>S3a/2</td>
<td>21</td>
<td>VR2</td>
<td>S1b/2</td>
</tr>
<tr>
<td>6</td>
<td>PB/O21</td>
<td>S3b/2</td>
<td>14</td>
<td>M1-VE</td>
<td>S3b/w</td>
<td>22</td>
<td>VR3</td>
<td>S1b/3</td>
</tr>
<tr>
<td>7</td>
<td>PB/K22</td>
<td>S2b/w</td>
<td>15</td>
<td>S2c/3</td>
<td>S3b/2</td>
<td>23</td>
<td>VR4</td>
<td>S4b/4</td>
</tr>
<tr>
<td>8</td>
<td>PB/K25</td>
<td>CI.14.12</td>
<td>16</td>
<td>S2a/i</td>
<td>S1b/w</td>
<td>24</td>
<td>M1+VE</td>
<td>S3b/w</td>
</tr>
</tbody>
</table>

![Fig. 3. Interior of the capacitance meter case. Wiring cable forms are shown and each individual connection is listed in the accompanying wiring schedule. For clarity it has been necessary to omit capacitors C1-C4 inclusive which have a common connection wire 4—see Fig. 5.](image)
COMPONENTS...

Resistors
- R1 33kΩ
- R2 1kΩ
- R3 33kΩ
- R4 1kΩ
All ±10% ±W unless otherwise specified

Potentiometers
- VR1-4 30kΩ wire wound, preset (4 off)

Capacitors
- C1 0.001µF
- C2 0.01µF
- C3 0.01µF
- C4 1µF
- C5 0.001µF
- C6 0.01µF
- C7 0.1µF
All high quality paper or plastics dielectric, 150V working.

Semiconductors
- TRI-4 OC44 (4 off)
- DI OA81

Switches
- S1 Wafer, normal rotary type: 4-pole, 4-way
- S2 Wafer, lever operated, one side spring biased to centre: 3-pole, 3-way. Type SS/106/3
- S3 As S2
All three switches obtainable from Specialist Switches Ltd., 23 Radnor Mews, London W.2.

Miscellaneous
- BY1 9 volt battery, PP6 or equivalent
- M1 Moving coil meter, 50µA f.s.d.
- SKL, 2 Wander sockets, with plugs (2 off)

ASSEMBLY OF COMPONENTS
The switch S2 is wired before fitting to the case, reference to Fig. 5 will show how the tags on the wafer switches are identified.

Connect a2 to b2.

Connect a length of wire to the following contacts and mark for future identification.
- aW, aI, bW, b3, cW, c2, c3.

Mount all the components in the case with the exception of the battery case bracket "B". Carefully note the way in which SI is orientated—this is easily done by checking the position of the blank tags. The switches S2 and S3 are mounted so that the spring loaded position is to the rear.

WIRING UP PROCEDURE
During the wiring up operation, reference should be made to Fig. 1 and Fig. 3. Tick off each stage as it is completed, line by line as given below; this prevents parts being omitted and makes it easy to see how far one has got if interrupted during the process.

- C1 to S1a/1
- C2 to S1a/2
- C3 to S1a/3
- C4 to S1a/4
- Join free ends of these four capacitors together.
- C5 to S1c/1
- C6 to S1c/2
- C7 to S1c/3
- C8 to S1c/4
- Join free ends of these capacitors together.
- R9 between S3b/3 and S3a/3
- S3b/1 to S3c/1
- S3c/2 to S1b/w
- S2c/3 to S3b/2
- S3b/2 to PB/021
- S3b/w to M1 positive
- S3a/2 to PB/A40

Fig. 4. Assembly of components and wiring on the perforated laminated plastics board which measures 4½in × 2½in. Numbers in brackets identify individual connecting wires as listed in the table given in Fig. 3
If you have known accurate components for C9-C12, these may now be fitted on Sid; if not proceed as follows.

CALIBRATION
Fit the battery case bracket "B" and insert and connect the battery.

Label switches as follows:

- **S1**: 0-001 kF CALIBRATE OFF
- **S2**: 0-01 kF READ ON
- **S3**: 0-1 kF LEAKAGE BATTERY CHECK
- **S3**: 10 kF

Make up a pair of short test leads using wander plugs and crocodile clips.

Switch S2 to READ and S3 to ON.

Bring the meter to mechanical zero using the adjusting screw.

Switch S1 to 0-001 kF and connect a 0-001 kF one per cent capacitor C9 across the test leads. Adjust VR1 until the meter reads full scale deflection.

Switch to the 0-01 kF range and adjust VR2 until the meter reads 1 (one tenth full scale).

Remove C9 from the test leads. Select a 0-01 kF capacitor and connect across test leads. Note meter reading; if not full scale, connect further small capacitors in parallel until meter reads exactly full scale. Do not touch VR2. The combination of capacitors so formed is C10.

Switch to the next range up with C10 still across test leads. Adjust VR3 till meter reads one tenth full scale. Connect a 0-1 k F capacitor and pad with parallel capacitors until full scale results. The resulting combination is C11.

Proceed in a similar manner for the 1 kF range, so forming C12.

Connect the so-formed capacitors C9 to C12 to the appropriate positions on Sid. Join the free ends of these capacitors together and connect to point PB/K25.

FINAL TEST
With the capacitance meter switched on and the CALIBRATE position selected, the meter should read full scale in any position of the range switch. Any errors that may creep in due to temperature changes, etc. can be corrected using the appropriate potentiometer.

With the master switch set to BATTERY CHECK the meter should indicate the battery voltage.

With the function switch set to LEAKAGE and the test leads shorted together the meter should read near full scale; if it does not, connect a fairly large value resistor in parallel with R6.
INPUT SENSITIVITY for full rated output
250mV at "PHONO" input
250mV at "TUNER" input
5mV at "MIC" input

INPUT IMPEDANCE
50MΩ at "PHONO" input
50MΩ at "TUNER" input
10kΩ at "MIC" input

CROSSTALK Better than 75dB at 1kc/s

Integrated Stereo Amplifier

By R. Hirst

PART ONE

Since the advent of transistors in 1948 a great deal of work has been done to bring a new technique to the state of the art as it is today. It wasn't until the middle fifties however that very much use was made of the transistor with regard to the high fidelity market, this being promoted initially by H. C. Lin of America. Transistor high fidelity equipment in this country is only a relatively recent achievement and this has usually been in the form of commercially built units. There have however been theoretical descriptions of a few original circuits but the amateur constructor has had little to choose from in the way of complete constructional amplifiers.

It is, therefore, appropriate that the design described in this article incorporates modern techniques in achieving a high performance compatible with a professional appearance. One unique feature, for example, is the use of the field effect transistor to obtain a very high input impedance, particularly useful for matching ceramic or crystal cartridges with negligible change of the input signal.

The wide range frequency response is obtained by omitting audio signal transformers and relying as far as possible on direct interstage coupling. Negative feedback is necessary in high quality amplifiers and has been fully employed here. Consequently, it was necessary to compensate for the resulting loss of gain by adding extra amplifying stages. Power amplification is derived from the use of complementary symmetry output stages feeding a pair of 15 ohm loudspeakers.
The metal-work requires only the facility to produce a right-angled bend in sheet aluminium and some means of cutting and drilling the required holes in the material in the first instance. The chassis itself acts as the heat-sink for the output transistors and supports the entire arrangement of plugs, sockets and controls, the only separate item being the component assembly board. The final assembly and wiring instructions are given and the finished unit is shown in the photographs both with and without the wooden encasement.

FIELD EFFECT TRANSISTOR

When using transistors difficulty has been encountered when trying to provide a very high input impedance to cater for capacitive output elements such as the crystal and ceramic transducers that are to be found on the majority of modern disc replay units.

With the introduction to the market of the field effect transistor this problem has been reasonably well overcome. These devices are still relatively new to the commercial domestic market and still tend to be on the expensive side, although not prohibitively so. If the constructor does not require the 50 megohm input impedance, resulting from the inclusion of the field effect transistor in the front end, then an alternative circuit has been indicated using conventional transistors giving an input impedance in the order of 5 megohms (see Fig. 1).

This alternative circuit uses the same component structure as the configuration designed around the field effect transistor (Fig. 2), but with minor differences in the value of one or two components.

The circuitry around TR2a and TR2b using the f.e.t. has only a very small degree of gain but the considerable amount of feedback over TR2 and TR3 reduces the distortion to a minimum. This feedback, in conjunction with the bootstrapping arrangement, establishes the very high input impedance.

With an input impedance of 50 megohms it is possible to reproduce, quite linearly, frequencies of the order of 15c/s when the transducer has a capacitance in the region of 500pF. However in the alternative circuit (Fig. 1), where a transistor replaces the f.e.t., the response from a similar capacitive source will be 3dB down at about 65c/s; still quite adequate for the majority of users.

CIRCUIT DESCRIPTION

The main power amplifier of each channel contains six Transistors TR4-9, five of which are directly coupled and shown in Fig. 2. This coupling of the output stages and driver transistor assists in maintaining a relatively accurate d.c. operating point which, under normal conditions, would tend to change due to temperature variation if the d.c. feedback is omitted.

Tracing this compensating action through TR5, TR6, TR7, TR8, and TR9, it will be noticed that, if the leakage current in TR5 increases, then the collector voltage of this transistor will tend to go more positive, thus biasing TR6 in such a fashion that the collector voltage of this transistor biases TR8 on. Consequently the collector of TR8 and the emitter of TR9 promote a rise towards the positive rail at the junction of the emitter of TR9 and the collector of TR8.

We can see that this change in voltage is fed back via the preset potentiometer VR5 to the base of TR5. As the voltage goes more positive at the base of TR5 then this transistor makes an effort to decrease the current flowing in its collector circuit, restoring the collector voltage to its original condition.

The lower output pair of transistors TR7 and TR9 also assist in this compensating action in a slightly different manner. As the collector of TR5 rises towards the positive rail, then both TR7 and TR9 emitters rise in the positive direction. This rise is reflected back to the base of TR5 once again reducing the collector current flowing in TR5 and restoring the circuit to its earlier condition.

This feedback path also acts upon the a.c. signal linearising the response over the output configuration. However, this feedback is presented in the form of shunt feedback and tends to lower the input impedance of TR5. Unless fed from a substantial current source it would introduce distortion and attenuation that would not be compatible with the quality of performance required. In order to reduce this effect, a further stage TR4 was introduced, whereby the further phase shift over this stage enabled the use of a series form of feedback. This not only increased the input impedance of the main amplifier as a whole but reduced the distortion occasioned by inter-transistor coupling.
Fig. 2. Complete circuit diagram of one channel, power supplies and inter-channel control. The second channel is a duplicate of the first shown within the dotted area.
At this point the amplifier is conducive to accepting tone correction networks that are not affected to any great degree by spurious loading of the following circuitry.

The a.c. working of the main amplifier is similar in many ways to the standard common emitter configuration in as much as TR4 and TR5 follow this principle. However TR5 is the initial stage of a directly coupled circuit feeding a cascaded common emitter pair in the form of TR6 and TR8 the resultant output being out of phase to the input of TR5.

TR5 also feeds a further cascaded pair, TR7 and TR9 this time connected in the common collector configuration. The output of this pair is in phase with the input to TR5. Therefore it can be seen that phase inversion has taken place in the output circuitry by virtue of TR6 and TR7.

The main amplifier is terminated in a 500μF capacitor feeding directly to the 15 ohm loudspeaker. From the junction of this output capacitor and the loudspeaker, a sample of the output signal is fed via R18 back to the emitter of TR4 providing about 26dB of negative feedback over the entire configuration. As previously explained this feedback not only linearises the response as a whole but tends to increase the input impedance of the amplifier.

The main amplifier has an input impedance in the order of 100 kilohms and a sensitivity of about 20 millivolts for an output power of 10 watts and at this output power the distortion was in the order of 0.3 per cent being measured as the total harmonic content (Fig. 3).

The tone controls are of an established pattern with approximately 18dB change (except bass cut 15dB) in both the upper and lower frequency levels above and below the flat response, indicated in Figure 4.

D.C. CONDITIONS

The a.c. conditions of the pre-amplifier stage in relation to the high impedance input point have been explained in an earlier paragraph. However the d.c. conditions again revolve around a directly coupled configuration promoting temperature compensating action of a similar nature to that indicated in the explanation of the output stages.

In this particular case the "drain" of the field effect transistor, TR2, would tend to move towards the negative rail as a result of an increase in temperature, biasing TR3 into the on condition and taking the collector of TR3 in a more positive direction.

This positive movement, unlike the action of the main amplifier, is fed into the "source" path of the f.e.t. and causes the "source" to move in a more positive direction. This action in effect is similar to making the "gate" circuit more negative, thus closing the "gate" circuit and reducing the "drain" current. This reduction in "drain" current causes the "drain" voltage to move in a positive direction, once again restoring the circuit to its original condition.

The introduction of a further stage is necessary to obtain the input sensitivity that is required to drive the amplifier to its full output when a microphone is the source of the signal input. In this instance the input has been arranged to cater for a low impedance microphone, such as a moving coil type. Any microphone with an impedance of up to 10 kilohms is eminently suitable as long as the output voltage is greater than 5 millivolts r.m.s. under normal user conditions.
COMPONENTS...

Where component numbers are suffixed a and b, one is required for each channel.

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1a & R1b</td>
<td>330kΩ</td>
</tr>
<tr>
<td>R2a & R2b</td>
<td>56kΩ</td>
</tr>
<tr>
<td>R3a & R3b</td>
<td>120kΩ</td>
</tr>
<tr>
<td>R4a & R4b</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R5a & R5b</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R6a & R6b</td>
<td>6-8kΩ</td>
</tr>
<tr>
<td>R7a & R7b</td>
<td>4-7MΩ</td>
</tr>
<tr>
<td>R8a & R8b</td>
<td>2-2kΩ</td>
</tr>
<tr>
<td>R9a & R9b</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R10a & R10b</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R11a & R11b</td>
<td>3-9kΩ</td>
</tr>
<tr>
<td>R12a & R12b</td>
<td>2-2kΩ</td>
</tr>
<tr>
<td>R13a & R13b</td>
<td>2-7kΩ</td>
</tr>
<tr>
<td>R14a & R14b</td>
<td>2-2MΩ</td>
</tr>
<tr>
<td>R15a & R15b</td>
<td>47kΩ</td>
</tr>
<tr>
<td>R16a & R16b</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R17a & R17b</td>
<td>27Ω</td>
</tr>
<tr>
<td>R18a & R18b</td>
<td>3-3kΩ</td>
</tr>
<tr>
<td>R19a & R19b</td>
<td>6-8kΩ</td>
</tr>
<tr>
<td>R20a & R20b</td>
<td>1-8kΩ</td>
</tr>
<tr>
<td>R21a & R21b</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R22a & R22b</td>
<td>390Ω</td>
</tr>
<tr>
<td>R23a & R23b</td>
<td>47Ω</td>
</tr>
<tr>
<td>R24a & R24b</td>
<td>47Ω</td>
</tr>
<tr>
<td>R25a & R25b</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R26</td>
<td>12Ω 10W wirewound</td>
</tr>
<tr>
<td>R27</td>
<td>680Ω 10W wirewound</td>
</tr>
<tr>
<td>R28</td>
<td>220kΩ (with neon lamp)</td>
</tr>
<tr>
<td>R29a & R29b</td>
<td>1-5kΩ</td>
</tr>
<tr>
<td>R30a & R30b</td>
<td>2-7kΩ</td>
</tr>
<tr>
<td>R31a & R31b</td>
<td>270Ω</td>
</tr>
</tbody>
</table>

All 10% ±1 waste high stability carbon except where otherwise stated.

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1a & VR1b</td>
<td>10kΩ log carbon twin ganged</td>
</tr>
<tr>
<td>VR2a & VR2b</td>
<td>10kΩ log carbon twin ganged</td>
</tr>
<tr>
<td>VR3a & VR3b</td>
<td>10kΩ log carbon twin ganged</td>
</tr>
<tr>
<td>VR4</td>
<td>150Ω linear wirewound</td>
</tr>
<tr>
<td>VR5a & VR5b</td>
<td>1MΩ linear carbon preset</td>
</tr>
<tr>
<td>VR6a & VR6b</td>
<td>1kΩ linear carbon preset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1a & C1b</td>
<td>20µF elect. 16V</td>
</tr>
<tr>
<td>C2a & C2b</td>
<td>50µF elect. 40V</td>
</tr>
<tr>
<td>C3a & C3b</td>
<td>47µF ceramic</td>
</tr>
<tr>
<td>C4a & C4b</td>
<td>80µF elect. 2-5V</td>
</tr>
<tr>
<td>C5a & C5b</td>
<td>0-047µF polyester</td>
</tr>
<tr>
<td>C6a & C6b</td>
<td>32µF elect. 10V</td>
</tr>
<tr>
<td>C7a & C7b</td>
<td>16µF elect. 10V</td>
</tr>
<tr>
<td>C8a & C8b</td>
<td>50µF elect. 40V</td>
</tr>
<tr>
<td>C9a & C9b</td>
<td>2-5µF elect. 16V</td>
</tr>
<tr>
<td>C10a & C10b</td>
<td>0-22µF polyester</td>
</tr>
<tr>
<td>C11a & C11b</td>
<td>80µF elect. 2-5V</td>
</tr>
<tr>
<td>C12a & C12b</td>
<td>150µF ceramic</td>
</tr>
<tr>
<td>C13a & C13b</td>
<td>32µF elect. 64V</td>
</tr>
<tr>
<td>C14a & C14b</td>
<td>50µF elect. 40V</td>
</tr>
<tr>
<td>C15a & C15b</td>
<td>500µF elect. 50V</td>
</tr>
<tr>
<td>C16</td>
<td>1.5kΩ</td>
</tr>
<tr>
<td>C17</td>
<td>2.5kΩ</td>
</tr>
<tr>
<td>C18a & C18b</td>
<td>0-015µF polyester</td>
</tr>
<tr>
<td>C19a & C19b</td>
<td>0-15µF polyester</td>
</tr>
<tr>
<td>C20a & C20b</td>
<td>0-047µF polyester</td>
</tr>
<tr>
<td>C21a & C21b</td>
<td>0-47µF polyester</td>
</tr>
</tbody>
</table>

Transformer

TI Mains transformer: pri. 0 240V; sec. 0 58V at 50mA
(Betclere Limited, 385 Cowley Road, Oxford)

Transistors

TR1a & TR1b BC107 (Newmarket)
TR2a & TR2b 2N3819 (Texas)
TR3a & TR3b NKT0013 (Newmarket)
TR4a & TR4b BC107 (Newmarket)
TR5a & TR5b NKT217 (Newmarket)
TR6a & TR6b BFYS1 (Mullard)
TR7a & TR7b BCY31 (Mullard)
TR8a & TR8b NKT403 (Newmarket) Matched
TR9a & TR9b NKT403 / pairs at 1A d.c.

Diodes

D1a & D1b OA99 (Mullard)
D2a & D2b OA99 (Mullard)
D3 & D6 1B40K10 bridge rectifier (Texas)

Plugs and Sockets

SK1a-4a and SK1b-4b single pin coaxial phono sockets with plugs (8 off)
PL5 3-way mains plug (chassis mounting) with socket (type P73 Bulgin)

Fuse and Lamp

FS1 5A cartridge fuse and holder
LPI Neon indicator with 220kΩ resistor

Miscellaneous

Front panel 18 s.w.g. aluminium 14in x 8in
Rear panel 18 s.w.g. aluminium 14in x 4in
Fixing brackets 24 s.w.g. aluminium 3½in x 1½in (2 off)
Capacitor clips to suit C16 and C17
Perforated s.r.b.p. sheet 0·1 in square matrix of holes 5in x 3½in
Softwood and veneer for case
Modern style knobs (7 off)
Capacitor half clips for C15a and C15b
Mica washers, nylon screws, silicon grease for transistors
Mounting feet ¾in high
Nuts and bolts, Letraset lettering for panels
Tinned copper wire, 22 s.w.g. and 12 s.w.g.

Alternative components for transistor BC107 used in second stage (see Fig. 1).

Resistors

R5a & R5b 15 kΩ
R11a & R11b 2·2 kΩ

Transistors

TR2a & TR2b BC107 (Newmarket)
Fig. 5b. Inter-component wiring. The other channel is to be wired up in an identical fashion on the other half.
Half-way stage in assembly, showing the component board in position. Some of the chassis mounted components are still to be fitted and wired. Some wires should be extra thick (see text).

This stage from a d.c. point of view is of a standard nature where the temperature stability depends upon the emitter to base voltage constancy. The inclusion of an emitter resistor obviously tends to promote some form of compensation.

As the temperature rises the emitter current of TR1 tries to increase thus dropping a greater voltage across the emitter resistor, making the emitter potential more positive or, in other words, the base potential more negative. This action closes down the Vbe characteristic and reduces the current through the emitter circuit restoring the circuit to its original condition.

The a.c. gain in this configuration could be considerably greater than that achieved, but has been deliberately reduced by the introduction of series feedback by virtue of the emitter resistor that has been left undecoupled. This has given rise to a much higher input impedance and reduces the distortion in the stage by a considerable degree.

Yet due to the relatively high gain transistor used in this stage, it still provides a gain in the order of 36dB. This results in an input sensitivity in the order of 5mV for full output when the gain control is in the maximum position. The signal-to-noise ratio is still very high, the noise being some 70dB below the signal.

TRANSISTORS

With reference to the Mullard devices, there is no direct equivalent without some slight modification to the circuitry of the amplifier. The manufacturers state that these transistors are obtainable from their distributors.

The only unit that may pose a problem, is the f.e.t. 2N3819. In this instance there are near replacement types that can be used, these being TIXS 41, TIXS 42, TIS 34, TIS 14 and the 2N 3821 series, as supplied by the manufacturers, Texas Instruments, Manton Lane, Bedford. All the Newmarket transistors are ex-stock.

BOARD CONSTRUCTION

The main amplifier board in this particular instance is a perforated s.r.b.p. sheet with a hole matrix of 0.1 in. The interconnecting wiring is made up from 20 s.w.g. tinned copper wire (Fig. 5b).

It is essential that all joints are mechanically sound prior to soldering because, should any semi-soldered or dry joints be present in the final construction, they could quite easily result in totally different performance figures being obtained upon test.

This in the main is due to the rather heavy current operation that is found in a transistorised amplifier handling some considerable power. Any poor joints represent an impedance which can conceivably promote positive or negative feedback over some of the stages with disastrous results. This factor cannot be too strongly stressed as the whole performance of the instrument depends upon very low impedance supply return paths.

After the amplifier board has been fixed in position two pieces of 12 s.w.g. tinned copper wire have been introduced in order to ensure that the return path to the chassis should contain as little impedance as possible. Should these pieces of copper wire be omitted then the input sensitivity of the microphone input stage deteriorates by as much as 20dB and also promotes instability in this particular stage.

It is worthwhile checking the component board two or three times prior to final fixing to the rear chassis as any removal of this item would be a tedious operation once the amplifier is completely wired.

From a mechanical point of view the board was fitted with hank bushes so that there should be no necessity to hold nuts and washers while trying to screw up the fixing bolts, and while this is not strictly necessary it will prove to be of considerable help in the final construction.

For those who have the required facilities it will be quite easy to make the board as a printed circuit proper; quite obviously this will save a great deal of time in the construction.

Next month: Constructional details, assembly and testing.
New Factories Opened

This young lady (above left) is assembling "time interval" units in the new Hewlett-Packard plant near the Forth road bridge in Scotland. Keeping a watchful eye is Lord Hughes (centre), Joint Parliamentary Under-Secretary of State for Scotland, who performed the inaugural ceremony of the new plant.

On 24th October the Earl Mountbatten of Burma opened a new clean air zone, a dust free assembly line, at Dover where Avo valve testers and other instruments are being assembled (above right).

Now occupying new premises at Chandlers Ford is the factory of Vero Electronics. Below we show two pictures of the manufacturing process of Veroboard. On the left is a press and indexing mechanism with a sample sheet mounted under it. This machine can be programmed to pierce a known matrix of holes in the copper clad material. On the right, the milling machine cuts away the unwanted copper between each row of holes to leave the familiar copper strip pattern of Veroboard.
West London Traffic Control

Among new traffic control systems now developed is this Plessey XL9 on-line computer. Two such systems are being installed for the Ministry of Transport in West London. They will form part of what is claimed to be the world's most advanced fully integrated computer controlled traffic system.

Laser Gyro

Three ring lasers illuminate the face of a technician who makes final inspection of an advanced laser gyroscope developed by Honeywell Systems and Research scientists in past 12 months. Each ring uses two contra-rotating beams of coherent light to sense angular attitudes in one axis.

Myriad II

This new microelectronic computer (below), Myriad II is a simpler version of Myriad I developed by Marconi.

Smoke Alarm

Although this "cage" (above) may seem unimportant to look at, it holds the secret of a new type of fire alarm developed by the Vigilante Fire Alarm Company of Shoreditch, London. This device sets off a powerful alarm immediately a small amount of smoke is detected. Hence, the alarm is raised earlier than with many conventional heat or flame detecting devices.
PART TWO

CONTINUING from the penultimate paragraph of last month's article...

There is no need to change any control settings when making a long series of pictures from film strips at the same enlargement factor and on the same type of paper, since a darker denser negative will automatically reduce the photocell current, making the capacitor take longer to charge up to cut-on for the univibrator and thus leading to the correctly increased time of exposure. The actual time of exposure is immaterial as far as mental considerations are concerned. When the picture has been aligned, it is merely necessary to press the start switch and then wait until the lamp goes off again of its own accord after the correct exposure has taken place.

PERFORMANCE SPECIFICATION

FUNCTIONS

(a) Enlarger and Photocopy Unit Exposure Control, Auto and Timer functions.
(b) Precision voltage stabiliser for Enlarger.
(c) Switchboard for Safelights, etc.

INPUT VOLTAGE

A.C. Mains.

SWITCHED OUTPUTS

Black & White Safelight
Colour Processing Safelight
Red Safelight
Subdued White Light
Photocopy Unit 400W, via Exposure Control Circuit, A.C. Mains.

STABILISED OUTPUT

185/245V 400mA d.c. for Enlarger, Stabilised, via Exposure Control Circuit.

CHARACTERISTICS OF STABILISED D.C. OUTPUT FOR ENLARGER

(a) Any output voltage between 185V and 245V d.c. may be set with VR1.
(b) The set output voltage is constant to better than:
 \[\pm 125 \text{mV} \text{ for input mains voltage (a.c.) changes } \pm 30 \text{V about nominal value.} \]
 \[\pm 350 \text{mV between no-load and full load.} \]
(c) Output impedance = approx. 10 ohms.
(d) Ripple on output: NO LOAD: 25mV r.m.s.
 FULL LOAD: 50mV r.m.s.
(e) Surge performance:
 The cold resistance of a lamp filament is approx. 10% of working hot resistance.

The switch-on surge of a 75W lamp is thus 750W peak. This surge causes a maximum dip of 6V with a mean recovery time of 7 milliseconds. The dip and recovery are dead-beat, without any overswing or damped oscillation. The output voltage is disturbed for a maximum time of 10 milliseconds (half a mains period) and to a maximum extent of 6V, due to lamp switch-on surges. (Oscilloscope measurements).

CHARACTERISTICS OF EXPOSURE TIMER FUNCTION

Coarse Control: 0.5 to 30 sec in 11 approx. logarithmic steps.
Fine Control: 0.25 to 2.5 times (multiplication factor).
Resulting Total Range: $\frac{1}{2}$ sec to 75 sec.
Accuracy and Reproducibility: $\pm 5\%$ (within tolerance of all photographic materials).
The timer runs via the stabilised d.c. supply and is thus unaffected by even large mains voltage fluctuations.

CHARACTERISTICS OF AUTOMATIC EXPOSURE FUNCTION

Same total range $\frac{1}{2}$ sec to 75 sec as for timer, on automatic basis for wide range of paper speed and picture size settings.
Leakage time in slowest setting: at least 120 sec, photocell connected but completely dark.
Leakage time in fastest setting, photocell disconnected: at least 60 sec (wiring insulation check).
The automatic exposure function runs via the stabilised d.c. supply and is thus unaffected by even large mains voltage fluctuations.
AUTOMATIC EXPOSURE SEQUENCE

Contact 2 of RLB rests shorting V7 grid pin 2 circuit to chassis when the relay RLB is de-energised, as it always is except during an exposure. Its positive supply line is interrupted at contacts 5,6 of the exposure control switch (a GPO keyswitch) S7. The negative side of the coil of RLB is connected straight through to the rectifier D5-D8, whilst the positive supply from C6 via R16, R17 and the closed contact of RLC/1 reaches centre contact 5 of S7 via resting contacts 8,9 of S7. Between contacts 5 and 6 the circuit is still open, so that RLB is not energised. The exposure is started by momentarily pressing down the keyswitch S7 and releasing it again immediately (it does not latch in this direction). This makes contacts 5,6 without breaking 8,9, so that the energising circuit for RLB is completed and this relay pulls in. So also does the main circuit breaker RLA which switches-on the lamp, because it receives its positive through connection via 5,6 and 2,3 of S7. Both relays RLB and RLA now remain energised even when S7 is released because as soon as RLB is energised its contact 1 moves over and bridges 5,6 of S7. Contact 2 of RLB has also opened, so that the grid circuit pin 2 of V7 is now free for the selected capacitor to begin to charge up positively. Conditions remain steady as far as the relays are concerned, with the lamp on, until grid pin 2 of V7 reaches cut-on. This results in RLC dropping off momentarily, which in turn causes RLB and RLA to drop off since the contact of RLC interrupts their common positive line. The holding contact A on RLB is immediately lost, so that the relays do not re-energise when RLC pulls in again after the brief response pulse of V7. The lamp remains off and the grid capacitor is discharged via RLB contact 2. A new exposure sequence can take place only when S7 is momentarily pressed down anew.

CONTINUOUS LIGHT AND INTERRUPTION OF EXPOSURE

In between exposures, the enlarger lamp is required to be switched on continuously for setting-up the next
Fig. 4. Under chassis layout and wiring
picture. This facility is provided by the upward movement of the keyswitch S7. All GPO keyswitches of this kind have three positions—a centre one and a “down” as well as an “up”. The down position is here non-latching and was used to start an exposure. The up position latches and provides continuous light by giving the circuit breaker RLA direct positive feed via 1 of S7.

The second upper contact 9 of S7 serves the purpose of permitting premature termination of an exposure. The contacts should be bent such that a very slight upward movement of the toggle breaks 9, long before 2 moves over to 1 in the fully latched-up position. Contact 9 is directly in series with the contact of RLC and thus has the same effect. It terminates the exposure and zeroes the computer when it is momentarily opened.

The keyswitch S7 thus provides a very convenient and neat “joystick” control of the lamp. An exposure, whether by time or automatic computation, is started by briefly depressing the toggle. It can be terminated prematurely at any moment by lightly tipping the toggle upwards, and continuous set-up light is obtained by latching the toggle right up. If the toggle is held down, a new exposure is commenced as soon as a previous one is completed, in continuous sequence as long as the toggle is held down. This is the “repeat” function where required.

SAFETY MEASURES

Relay RLA is required because neither RLB nor the keyswitch will make or break a 75W d.c. lamp circuit without considerable danger of exciting a non-extinguishing d.c. arc. Both components will normally switch 75W a.c. at 220V, but not d.c. A special type of relay with a very fast snap action, large substantial contacts and two-point interruption is necessary for efficient interruption of the d.c. circuit. The type of circuit-breaker relay used for switching-on a rotary transformer set via a small switch on the dashboard of a motor vehicle carrying electronic equipment is very suitable. A 24V model is here required, as originally intended for vehicles with a 24V accumulator battery. The contacts will normally switch 220V just as efficiently as 24V; no trouble whatsoever was here experienced with the prototype.

The anode current of V7 pin 6 depends upon the setting of VR2. D9 was thus added in order to nevertheless maintain nominal operating voltage across RLC. This is important to prevent overheating in the higher current settings, since RLC is energised continuously except during the brief response pulses terminating an exposure. At the same time D9 bypasses inductive surges when V7 anode pin 6 current is cut off suddenly. This bypass function is under-
taken by C7 and C8 respectively for RLA and RLB. R16 and R17 were added to stop spitting at the contacts of S7 which formerly took place due to the instantaneous transfer of charge from C6 to C7 and C8.

THE TIME FUNCTION

When S8 is switched over to the time function, the other wafer of S9 with larger capacitors is brought into circuit, so that the required times of charge are obtained with smaller charging resistors. The virtual resistance of the photocell may take on values up to a 1,000 megohms or more in feeble light, which are not conveniently realisable with standard carbon resistors on the time function. Thus whilst quite small capacitors ranging from about 1,000pF to 0-1µF are required in conjunction with the photocell, values some 10 times greater are required for the time function in conjunction with the largest values of conveniently obtainable carbon resistors.

In contrast to the automatic function via the photocell, the time of charge of the capacitors via ordinary resistors is exponential, not linear, and is strongly dependent upon the applied input voltage to the top end of the resistor chain. This aiming voltage is thus stabilised, coming from the neon tube V6. Chiefly R25 and R27 constitute a bleeder for this input voltage on the time function only, feeding some lower voltage to R24 + R23 as actual charging resistors. A set of 11 logarithmically staggered capacitors between 15nF and 1-0µF will give a set of logarithmically staggered times of run from 0-5 seconds to 30 seconds with VR2 set mid-way. The range of control of VR2 considered as time multiplication factor is some 0-25 to 2-5 with the specified component values.

For initial calibration, set VR2 exactly mid-way and then adjust the value of R27 by adding other series and/or parallel resistors until the time of run is exactly 30 seconds with the 1µF capacitor in circuit. Then without moving VR2 trim the other capacitors by judicious selection and/or parallel additional capacitors until the sequence 0-5/1-5/2/3/5/7-5/10/15/20 seconds is obtained for the other switch positions. Then find the positions of VR2 which quarter, halve, ×1-5, double, and ×2-5 these times, and mark them on a multiplication factor scale attached to VR2. The action of VR2 is to shift the cathode potential of V7 and thus the voltage to which the capacitors must charge before pin 2 grid cuts on and brings a response pulse.

The total range of calibrated times is thus from an eighth of a second to 75 seconds, covering all exposure times required for enlarger and film-to-film as well as photocopy work. The very short times are best calibrated in the “repeat” function whilst holding S7 down and counting the time taken for 10 sequences. Subtract one second for the 10 response pulses of 0-1 seconds duration each and divide the remainder by 10. The result is the duration of one run, and if not correct, modify the relevant capacitor value.

CALIBRATING THE AUTOMATIC FUNCTION

It is convenient to mark the scales of S9 and VR2 only in seconds and time multiplication factors as described above for the time function, since only these times are an unambiguous attribute of the Lumostat. The particular settings corresponding to a definite paper speed and picture size in the automatic function setting will also depend upon the geometry of the enlarger system. It is therefore a good procedure to prepare a table of “seconds” setting of S9 for each type of paper or copy film used in conjunction with a fixed set-up, and another table giving “factor” setting of VR2 appropriate for each picture size. The settings according to these two tables will be found to be mutually independent for all normal purposes.

The final instalment of this article next month will contain constructional details of the photocell sensing unit as used in the automatic function, and also a general discussion concerning the operation of the Lumostat.
BSR add yet another plus feature to the remarkable UA70 automatic/manual turntable unit by including an integral mechanical cueing device — and without increasing the price. This cueing device allows the pick-up arm to be raised or lowered at any selected point on a record during manual play. Raising the cueing lever lifts the pick-up arm which may then be positioned above the record at the chosen point. The stylus is lowered gently to the groove by returning the lever to the rest position.

Now, more than ever, the UA70, with its wealth of outstanding design features, fine engineering and high performance, provides the selective listener with a turntable unit of quality unsurpassed in this price range.

£12.18.3 retail, including P.T. without cartridge.
A-Z
(MINUS X)

ALPHABETICALLY...
we can list the names

GEOGRAPHICALLY...
we can list the countries

All over the world students know that CREI HOME STUDY COURSES are supplying the answer to their need for advanced Technical Education in the field of Electronic Engineering Technology.

CREI PROGRAMMES ARE AVAILABLE IN:
Electronic Engineering Technology
Industrial Electronics for Automation
Computer Systems Technology
Nuclear Engineering
Mathematics for Electronic Engineers
Television Engineering
Radar & Servo Engineering
City & Guilds of London Institute:
Subject 49 and Supplementary Studies
Subject No. 300

Write for free brochures to:
C.R.E.I. (London) (Dept. P.E.3.)
WALPOLE HOUSE, 173/176 SLOANE STREET, LONDON S.W.1
Telephone: Belgravia 8662
INTERNATIONAL DIVISION OF CAPITAL RADIO ENGINEERS INSTITUTE WASHINGTON D.C.

Please send me (for my information and entirely without obligation) full details of the educational programmes offered by your Institute.

Send details of the City & Guilds Programme

Name
Address

Electronics Experience

C.R.E.I. (London) (Dept. P.E.3.) WALPOLE HOUSE, 173-176 SLOANE STREET, S.W.1

L.S.T. COMPONENTS
23 NEW ROAD, BRENTWOOD, ESSEX

OUR FAMOUS BARGAIN PACKS:

- 25 Audio Transistors 2G71/81: 10/-
- 25 R.F. Transistors 2G14/7: 10/-
- 25 Switching Transistors 2N393/5/7 PNP: 10/-
- 6 Silicon Transistors NPN High and Low Voltage: 10/-
- 8 Silicon Rectifiers 100 PIV 750 MA: 10/-
- 6 BY100 Silicon Rectifiers 500 PIV 550 MA: 20/-
- 4 OC16 (Equivalent) Power Transistors: 10/-
- 6 OC76 Switching Transistors: 10/-
- 12 Miniature Diodes CG63H: 10/-
- 35 K ohm Potentiometers with Locking Nuts: 2/6
- 125 Untested Computer Diodes: 12/-

All the above and more in our October Catalogue. 16 Pages including valuable Reference Section.

Thousands of Types Listed. — Circuits included. Send 1/- Stamps.

WE ALSO STOCK:

Light Cells
ORP2 9/6
OCP71 9/6

Thermistors
R53 23/-

Unijunctions
S.C.R.'s
2N2646 14/6

Zeners: Examples
OA220 3/6

Neons: Miniature Glass Neons Ideal for “Neon Novelties”

Epoxy Planar Transistors 2N2926
The most popular Gain Spread is 150-300 Beta. In Stock at L.S.T. 4/9 each. Reductions for quantity. (Other Gains available)

Postage: Please Add 9d. Postage — Orders under 10/-

For quick, easy faultless soldering

Multicore

5 CORE SOLDER

Easy to use and economical. Containing 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy reduces wear of copper soldering iron bits.

SIZE 5
HANDY SOLDER DISPENSER
Contains 12 ft. of coil 18 s.w.g. Ersin Multicore Savbit Alloy. Quick and easy to use.
2/6 each

SIZE 12
Ideal for home construction.
Contains 102 ft. of 18 s.w.g. Ersin Multicore Savbit Alloy on a plastic reel. 15/- each
(Also available in other sizes)

BIB MODEL 3
WIRE STRIPPER AND CUTTER
Splits insulation without nicking the wire. Cuts wire and splits plastic twin flex.
4/- each

From Electrical or Hardware shops. If unobtainable write to:
MULTICORE SOLDERS LTD., Hemel Hempstead, Herts. IM20 A
This burglar alarm is easily constructed from readily available components and the layout is in no way critical. It comprises two separate units: the alarm unit and a remote trembler unit. The relay is a surplus Post Office type with all but two sets of make contacts removed. The spare contacts are used to make the trembler units.

Trembler Unit

The trembler unit is shown in Fig. 1. Two contacts are bent and mounted vertically on a base cut from Perspex or wood. A brass nut, used as a weight, is soldered to one of the contacts to encourage it to tremble. The sensitivity of the unit is controlled by the adjustment of a bolt fixed through a metal L-piece mounted on the base board. Two wires, each connected to one of the contacts, lead to the alarm unit.

Alarm Unit

The wiring and function of the alarm unit is best described by reference to Fig. 2. A slight movement of the trembler unit will cause the relay to close. The first set of relay contacts will lock the relay in the closed position. This action also closes the second pair of contacts and causes the bell to ring. The bell will continue to ring until either the alarm unit is switched off or the battery runs down.

Once the alarm is set off any interference with, or even the complete removal of, the trembler unit will not stop the bell from ringing. The trembler unit can be adjusted so that any attempt to interfere with it will set off the alarm.

Setting Up

The trembler unit can be screwed to a door or window or fitted to the front gate. The alarm unit is installed well inside the house in an occupied room. Once the trembler unit is installed the sensitivity can be adjusted by experiment. Care should be taken not to make it too sensitive as it may then be liable to be set off by accident.

In one location the vibrations of a passing vehicle were sufficient to trigger the alarm. Experiment showed that the alarm could be set off by dropping a drawing pin on to a table from a height of six inches.

Adjustments must be made with the alarm unit switched off. Apart from adjusting the bolt the function of the trembler can be varied by experimenting with different weights. The unit will operate in any position but its final position will depend on the type of movement it is to detect. For the detection of slight vibrations it is most sensitive in the vertical position.

Test Switch

The test switch is simply a bell push wired in parallel with the wires leading to the trembler unit. It allows the alarm to be tested without having to visit the remote trembler unit. The circuit does not draw current from the battery until the alarm is sounded. The life of the battery is obviously prolonged and it was for this reason that it was decided to incorporate the test switch. It enables a quick check to be made and the serviceability of the battery is not taken for granted. After testing, the alarm is reset by switching off and on again.

Sgt. F. Crimmins, Hong Kong.
NEON MULTIVIBRATOR

The series Neon Novelties included several oscillators but not a multivibrator. The circuit here (Fig. 1) is very sensitive to voltage and the frequency of operation changes with the supply voltage. Here the frequency of oscillation is about 1kc/s.

The value of R1 may need to be found by experiment but should be between 600 kilohms and 850 kilohms for oscillation to occur. V2 fires at a lower voltage which can be found with the circuit in Fig. 2. The mark/space ratio can be adjusted by variation of C2-R2 and C3-R3.

H. V. Sparrow, Deal, Kent.

FULL CONTROL

I was prompted to find another source of supply for the thyristor at a much reduced cost, and to provide the facility of increasing the range of speed control (Thyristor Control Unit, June 1966). There are three possible methods of providing control over the full mains sine wave.

1. A triac may be used, this is a bi-directional thyristor, and apart from the excessive cost, entails complete redesign of the unit.

2. A full wave bridge rectifier may be used to convert the mains sine wave into positive going excursions, over which the thyristor may have control. This means four silicon rectifiers which must be mounted on a heat sink inside the control unit. The peak repetitive current through the rectifiers would have to be about 3A and the peak surge current in the order of 10A. In view of this and the cost of four rectifiers, this method was rejected.

3. The third method was adopted, and consists of one silicon rectifier shunting the thyristor in the negative direction, and brought into circuit by the half/full switch.

With the switch in the “half” position control is exercised over the positive half cycle; the negative half cycle is unused. With the switch in the “full” position, the negative half cycle is used complete and the positive half cycle is controlled by the thyristor. Therefore the speed of the drill or other device may be controlled from near zero to the maximum for normal mains input. Fig. 1 shows the modified circuit diagram, and Fig. 2 shows the load waveform.

The rectifier chosen to carry this out is the Texas 1S423, which is 400V p.i.v., at 10A. This is obtainable from LST Components, 23 New Road, Brentwood, Essex. The thyristor type CR74 is also obtainable from LST Components, and has an increased current rating, the maximum power handling capacity of the unit is increased to 1.25kW. The price of the rectifier is 14s 9d and the thyristor is £1 7s 6d.

If the unit is to be left switched on for long periods, then a few ventilating holes may be drilled in the side of the box near the resistors R1a and R1b.

A. Thomas, Potters Bar, Middlesex.
THERE IS AN ADAMS-NORKEN SOLID STATE MODULE TO SUIT ANY TAPE OR HI-FI APPLICATION

YES, THE ADAMS-NORKEN SYSTEM PROVIDES YOU WITH THE MOST UNIQUE AND UP-TO-DATE METHOD OF DESIGNING YOUR OWN INDIVIDUAL TAPE AND HI-FI SET-UP. FROM A RANGE OF SEPARATE MODULES YOU CAN SELECT THOSE WHICH MEET YOUR OWN SPECIAL REQUIREMENTS. SHOULD YOU, LATER, WISH TO CHANGE OR EXTEND YOUR SYSTEM THEN IT IS SIMPLE TO REDESIGN AROUND THE MODULES YOU ALREADY HAVE AND ADD FURTHER ONES. A BASIC ALL TRANSISTOR TAPE RECORDER FOR EXAMPLE CAN BE ASSEMBLED FOR AS LITTLE AS £13.12.6 FROM FOUR MODULES. COMPLETE AND COMPREHENSIVE WIRING INSTRUCTIONS ARE SUPPLIED WITH EVERY PURCHASE.

ILLUSTRATED IS THE POWER OSCILLATOR MODULE. THE HEART OF ANY PROFESSIONAL TAPE RECORDER. IT PROVIDES 55 Kc/s RECORDING BIAS, ADEQUATE ERASE POWER AND 75 VOLTS SMOOTH D.C. AT 1 mA FOR A RECORDING AMPLIFIER. PRICE 69/- ASSEMBLED.

SEND 9d. TO COVER COST OF POSTAGE AND PACKING FOR ILLUSTRATED BROCHURE DESCRIBING THE WHOLE RANGE OF TRANSISTORISED PRODUCTS TO:

KEDOCO ELECTRONICS, DEPT. PE, SUBSIDIARY OF ADAMS-NORKEN LTD., SALES AND MAIL ORDER DEPT., 76 VICTORIA ROAD, SWINDON, WILTS TEL: SWINDON (OSW3) 27660 PERSONAL CALLERS WELCOME 9.0 a.m.—6.30 p.m. Sats. included, Weds. early closing

GUARANTEE

ALL OUR PRODUCTS ARE GUARANTEED AND SHOULD YOU NOT BE SATISFIED WITH YOUR PURCHASE YOUR MONEY WILL BE REFUNDED WITHOUT QUESTION.
T.R.S. BARGAINS IN KITS, COMPONENTS AND EQUIPMENT

WE ARE SINCLAIR SPECIALISTS

We carry full stocks of these well known all-British designs as advertised and give prompt delivery.

MICRO-4 is our stage vector picture rev. (K.V.) 8/6
MICRO-FM 7 transistor FM tuner-rev. (K.V.) 5/1.6
X.12 combined 12 w. amp and 12 tube auto-built 9/6
STEREO 20 de luxe pre-amplifier and build unit 19/1.6

"CIR-KIT" FOR INSTANT CIRCUIT MAKING

Indispensable for contractors. Enables you to produce "plugged circuits" quickly and cleanly. Kit No. 3 inc. baseboard, pro-

6 VALVE AM/FM TUNER UNIT

Med. 190 m., 220 m. V.L.F.—80 Main-101 Mtr. 6 valves and metal rectifier. Self-contained power unit. Magic-eye 3 pro-
bution controls, on/off, BBC of A.1.3, 6 valves and 6 tube auto-built 9/6

POSTAGE AND PACKING CHARGES

We manufacture all types Radio Mains, Transistors, Quality O/P. Transformers. Magazines invited for specially

ABROAD IN KITS, COMPONENTS AND EQUIPMENT

RADIO GRAB BARGAINS

Established 1949

(Other models — Send for list)

MISCELLANEOUS

EXAMINED COFFEE WEE (25g. total 14g. 50g. 35c.
25g. 58g. 75g. 94g. 42g. 36g. 34g. 40g. 50g.
60g. (Carr. 5/6.)

TUNED COFFEE WIRE 10-22 g. 8/-

BANDOUCET Speaker Cabinet Acoustic Weddng (11m. thick approx.) 10/- with any loud speaker. £5
V.E.D.O.B.A.R.D.—All sizes including 21 in. 24 in. 28 in. 31 in. 35 in. 39 in. 42 in. 45 in. All sizes in stock.

VOLUME CONTROLS, L.O.G. and LINEAR — ALL RANGERS, All-Stab. Control Kits offerlfly Prive to Post. Price 3/-m. 3/-m. All connecors made to order in stock.

RESISTORS —Modern ratings full range 10 ohm to 10000 meg.
nin. £1.50. M. £3.50. 1:2 meg. 10/-

FERNO MULDER "610" SILO-RUNNER

All valv s. £1 per 100. Assorted tube types and over 1000 Ohms, 2/6 each.

STEREO 26 de luxe pre-amp/control unit built £9.18.6
2.12 combined 12 w. amp and pre-imp, built £9/6
MICRO-FM 7 transistor FM tuner-rev. (Kit) £6.19.6

MULLARD HI-P 8 valves 10 W. 6 and 15 ohms output. Mullard's famous circuit with heavy duty ultra-

MULLARD "8-14" 6 valves 10 W. 6 and 15 ohms output. Mullard's famous circuit with heavy duty ultra-

TWO FAMOUS MULLARD AMPLIFIERS

Mullard design and T.R.S. kits assure

U.L.A. BRIDGE POWER TRANSFORMER

2-WAY GUARDIAN 1000 VA. £1.50

THREE TUBE FUTURISTIC TUNERS

MIDGET OUTPUT TRANSFORMER (8 and 18 ohms)

KEELED MAINS TRANSFORMERS

6/9: 12in.x6in., 7/6: 12in.x8in., 8/- etc.

DRIETH'S TINA MELDERS

1/-. 1% 3 p. 100 pf. lid. 100 pf. - 260 pf. 1/2. 270 pf. - 800 pf. 2/-
CLOSED TOL. 8/MICA 10% B pf. 600 pf. 9d. 800-6,000 pf. 1/-

BOND ACID Speaker Cabinet Acoustic Wadding (11in. thick approx.) 10/-

COEDEDuck Speaker Cabinet Acoustic Wadding (11in. thick approx.) 10/-

COPPER WIRE—2 oz. reels 14 g.£9. To 90 g. £6.40

BOND COPPER WIRE—2 oz. reels 14 g. £9. To 90 g. £6.40

DIODES & RECTIFIERS • CATHODE CHARACTERISTICS OF 7,000 VALVES

RADIO VALVE DATA

CHARACTERISTICS OF 7,000 VALVES

BASIC THEORY AND APPLICATION

Transistors • Semiconductors - Diodes Rectifiers - Cathode Ray Tubes

NEW EDITION

Inter. G.E.C. TRANSISTOR MANUAL

BASIC ELECTRONICS, by Gob. 36/-

BASIC THEORY AND APPLICATION

MICROELECTRONICS, by Koenjian. 45/-

MICROELECTRONICS, by Koenjian. 45/-

100 IDEAS FOR DESIGN '66, from Electronic Design. 15/-

TAPE RECORDER SERVICING

TAPES RECORD REPLICATING THEORY

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS

British and American Technical Books

1921 PRAED STREET

Phone: PADdington 41/83
Recently there have been a number of semiconductor devices developed which promise to increase considerably the role played by solid state elements at high frequencies. Three such devices are the Step Recovery Diode, the Hot Carrier Diode, and the Metal Base Transistor. These are described in this article.

THE STEP RECOVERY DIODE

The step recovery diode is especially useful as a multiplier for the generation of microwaves, but can also be used for the production of extremely fast pulses. In fact, as a generator of powerful nanosecond (10^{-9} second) pulses it has no equal.

All conventional semiconductor diodes conduct in the reverse direction for a short period of time immediately following forward conduction. This conduction results from carriers which have been injected and stored during forward conduction and will cease when all the stored charge has been removed. The step recovery diode has a large stored charge but has the remarkable property of switching from reverse conduction to its cut-off state at a speed little short of instantaneous. A typical diode, the Hewlett-Packard hpa 0104 will switch from a reverse conduction of 100mA to its cut-off state in 200 picoseconds, i.e. 2×10^{-10} seconds. Indeed, some diodes now available have transition times measured in femtoseconds (10^{-15} second). This combination of switching speed and current level is not attainable with any other device known at present.

The effect can be observed by applying an alternating voltage across the diode and observing the current flowing through it by means of an oscilloscope. Fig. 1 shows a comparison between an ordinary semiconductor diode and a step recovery diode. The negative going current is the stored charge flowing out of the diode before conduction ceases.

To operate the device as a frequency multiplier, the sudden change in current is made to give a high Q tuned circuit a "kick". The tuned circuit will ring at its resonant frequency and if the kicks from the diode are arranged to arrive at the correct time an oscillation will build up.

For example, if we wish to derive a 2,000Mc/s signal from a 100Mc/s source we must arrange that the diode is switched on and off by the 100Mc/s excitation and the resulting fast current edge will, if fed into a high Q tank circuit tuned to 2,000Mc/s, produce a 2,000Mc/s signal, power being fed into the tank circuit every 20 cycles. Fig. 2 shows the simplicity of this method. Output powers of 100mW at 2,000Mc/s have been obtained by this method using commercially available diodes. In the near future it is expected that diodes will be available.
to provide output power of the order of a watt in the range 1–2Gc/s and 50 to 100mW in the range 8–12Gc/s. (Gc/s = 10^9 c/s.)

Extremely fast pulses can also be produced quite simply. If the diode is allowed to conduct in the forward direction (see Fig. 3) and is then switched off, reverse current will flow through the diode and hold point A just slightly negative. When the diode ceases to conduct, point A will fall rapidly to a voltage determined by the resistors. This voltage fall can occur in picoseconds. If now an output is taken via a small capacitor from A, a negative going pulse of extremely fast rise time and several volts in amplitude is produced. Pulse circuits of this nature are now finding a use in sampling oscilloscopes to provide the necessary fast sampling pulses.

Fig. 3. Production of extremely fast pulses is achieved by this circuit arrangement

The theory of operation may be seen by referring to Fig. 4. The device consists of a small area of metal evaporated onto an n type piece of silicon. When the diode is forward biased, electrons are injected from the semiconductor into the metal. These electrons have a much higher than average energy in the metal, hence the term “hot carrier”. The electrons lose energy in the metal mainly by inter-electronic collision and when the polarity of the bias is reversed no appreciable number can be withdrawn into the semiconductor, carrier storage being virtually eliminated. Accordingly, hot carrier diodes can be used effectively in pulse and high frequency applications such as detection, mixing and limiting at microwave frequencies and the clamping and gating of fractional nanosecond pulses.

THE METAL BASE TRANSISTOR

Finally there is the metal base transistor. This has been suggested as a possible successor to the present transistor.

The theory states that transistor action can be produced by sandwiching a very thin layer of metal such as gold, between two pieces of semiconductor. The metal, which should be less than 2 × 10–6 cm thick, forms the “base” of the transistor. At the semiconductor-metal emitter junction “hot carriers”, i.e. electrons with a high energy content, can be injected into the metal base. As the base region is very thin, most of the electrons pass through and reach the other junction with sufficient energy to surmount the energy barrier present and be “collected” by the semiconductor collector.

It should be apparent that this action is very similar to that performed by the holes in a normal transistor. The important difference is that the current flow is maintained by electrons which have a much higher mobility in the metal base than holes do in a semiconductor base. This means that the transit time through the device, which with present day transistors limits their application to frequencies less than 1,000 Mc/s, is very much less and calculations predict that the metal base transistor should be capable of working at frequencies well into the S-band.

THE HOT CARRIER DIODE

The hot carrier diode has characteristics almost opposite to those of the step recovery diode. This device is also known as a metal-silicon diode or a Schottky barrier diode.

As mentioned earlier, all semiconductor diodes conduct slightly for a short time in the reverse direction due to the stored charge being removed. This stored charge sets a high frequency limit to the usefulness of the diode. The metal-silicon diode does not have this drawback. The principle behind it is not new, but it is only recently that production techniques have been developed to make the diode a commercial possibility.
a new 4-way method of mastering ELECTRONICS by doing — and — seeing . . .

1 OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS

2 B U I L D and USE a modern and professional CATHODE RAY OSCILLOSCOPE

3 R E A D and DRAW and UNDERSTAND CIRCUIT DIAGRAMS

4 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to:

NAME .. BLOCK CAPS ...
ADDRESS .. PLEASE PE 12

FREE POST NOW for BROCHURE

or write if you prefer not to cut page
DE LUXE PLAYERS
6-Speed Players 5-360.

PORTABLE AC/DC BATTERY PROJECTOR 12/6
Self-contained and hard wearing.
Quality Amplifiers ready for Quality Headphones and Base controls. All items in stock.

Special instructions to be adhered to by all customers.

TO BUILD YOUR OWN...

For... 1/6. B9A with can 1/9. Ceramic OCTAVS, EF50, B7C, 2, 6 or 12 v. ooments, 1} amp.. 8/9; 2 a, 11/3; 4 a.. 17/6.
FULL WAVE BRIDGE SELENIUM RECTIFIERS;
FULLY SMOOTHED. FULL WAVE CIRCUIT.
Mazda Oct. 8d.; B7G, B8A. B8G, DBA. 9d.; B70 with can
movtng con. multimeter epiok.

Q MAX CHASSIS CUTTER

CONTRIBUTI CABLE, a, 6. Allen screw and key
TELEVISION RECEIVER THEORY PART I
By G. H. Hutson
Published by Edward Arnold (Publishers) Ltd.
238 pages, 8½in x 7½in. Price 35s.
This is an excellent book. The author is Senior Lecturer in Radio & Electronic Engineering at Canterbury Technical College, and he has written it for technicians engaged in the servicing or manufacture of television receivers and for students of television generally. It is not a guide to fault-finding, but an explanation of how television receivers work, written on the assumption that unless you know how they should work you are not well equipped to find out what has gone wrong with a faulty one.

The people for whom this book is written will never be called upon to design receivers, and for this reason mathematics is virtually excluded. On the other hand, it is not an elementary textbook: circuits and their operation are gone into with thoroughness and in great detail. Both transistor and valve circuits are included.

This is the first of two volumes. It begins with an explanation of television in general terms, and then goes on to examine the following circuits in detail: vision detectors, video amplifiers, synchronising pulse separators, and differentiators and integrators. There is a detailed chapter on interlacing, and another on "field processing circuitry", i.e. the parts which handle the frame pulses.

This leaves (for the next volume) the "front end" and i.f. stages, the time bases, audio section, and c.r.t. circuitry.

The present volume is well printed and illustrated, and the price is relatively modest. G.W.

BEGINNERS GUIDE TO PRACTICAL ELECTRONICS
By R. H. Warring
Published by Lutterworth Press
192 pages, 8½in x 6in. Price 14s 6d
The author states that the emphasis throughout this book is on practical electronics for beginners. "No special theoretical knowledge is necessary in order to understand the projects described".

And yet from his writing it must be assumed that the reader does know what, for example, capacitors and inductors do, and what kilocycles, microfarads, Ferroxcubes, and many other terms really mean.

Here is compiled, in a somewhat haphazard sequence, a compendium of information and projects which, one feels, can only leave the absolute beginner in a certain amount of confusion.

The idea of writing a book of this nature is to be commended. It could have been a useful aid to the practical man, but it is unfortunate that errors appear. For example, a transistor collector is connected directly to its own emitter in one circuit, while its equivalent wiring diagram shows no emitter wire at all.

It appears that the diameter of wire used for coil winding is determined "by its stiffness" rather than looking up the current ratings on a later page. Perhaps we should "guesstimate by comparing with a similar coil" as he suggests?

However perhaps it would be a good idea to be guided by the various Mullard designs throughout the book; then perhaps we can build some of the projects even if we don't fully understand how they work.

M.A.C.

REGULATIONS FOR THE ELECTRICAL EQUIPMENT OF BUILDINGS
Published by the Institution of Electrical Engineers
242 pages, 8½in x 6in. Price 17s 6d
This is the fourteenth edition of the familiar "Wiring Regulations" which took effect from October 1, 1966. The increasing use of ring mains in domestic installations as well as the use of a wider variety of appliances makes this book almost essential to the householder, particularly those contemplating undertaking their own wiring.

Special attention is drawn to the earthing arrangements via water pipes, now not recommended in view of the increasing use of plastics for piping.

A new section on caravan and caravan site installations is included following the withdrawal of the hitherto separate publication.
The current credit squeeze is having little effect on the electronics industry. Although imports of foreign goods are restricted many overseas Companies avoid such difficulties by setting up factories in this country. The same is also true of British Companies.

Although a few glum faces were evident at the 21st Annual Exhibition and Convention of the Institution of Electronics, held in Manchester in September, the atmosphere generally was more of an intellectual rather than a sell or buy nature. A continuous programme of films and lectures ran concurrent to the exhibition.

This is the time when Northerners come together for their own smaller brand of components show. Hence the presence of wholesalers and lesser known firms than one expects to find at an Olympia type of exhibition in London. Some larger Companies were exhibiting their usual wares.

On arrival our reporter was told that there was little really new to be found there. In fact many of the exhibits could have been seen in London during the past twelve months or more.

Nevertheless, students from Manchester schools obviously showed an interest in what they saw, even if the exhibition was on a small scale.

Of particular interest was a range of visual study aids shown by A. M. Lock & Company of Oldham. These aids, teaching electrical and electronic theory are necessarily of large proportions for classroom demonstration and include meters (about 12in high), a wave demonstration machine (about 2ft long), a transformer kit, and other electro-magnetic devices, the likes of which are imported from the U.S.S.R. because, we are told, of the “limited equipment manufactured in this country”.

Some particularly interesting transducers, based on the electro-magnetic variable reluctance principle, were shown by Associated Engineering Limited of Rugby. A new version about ¾in long was included. These particular devices were being demonstrated by their insertion into the wall of a piston of an internal combustion engine. They will detect the proximity of metallic materials about 0.020in from the transducer face. In this example, minute irregularities in the machined cylinder can be detected, as well as giving a warning of excessive wear or vibration.

Belling and Lee have introduced a new version of the familiar flexible terminal block in moulded p.v.c. The clamping screws have rotating pressure pads on the tips to prevent the risk of cutting the wire strands.

NEW PORTABLE ELECTRONIC ORGAN KIT

The “Mayfair” portable electronic organ, is fully polyphonic (i.e., chords may be played). Ten tone colours are available operated by rocker tabs above the 49-note fully-sprung keyboard: 16’, 8’ and 4’. All pitch levels are available on each key, employing six octaves of generated tones. Vibrato is tab-controlled and a repeated vibrato is available. Two pre-amplified outputs are fitted, a main tone output and a second output for percussion. Overall volume being controlled by foot-operated expression controls. The console dimensions are 30in x 15in x 9in and weight 35 pounds.

Based on semiconductors (170 transistors and diodes) and printed circuit boards throughout, a fully illustrated instruction manual and conventional circuitry simplifies matters for any new constructor in this field. Twelve master oscillators are tuned to the chromatic scale, the remaining frequencies being obtained by binary division. After distribution and isolation, frequencies are keyed by 4-pole gold alloy switches under the playing keys, passed to the tone forming unit for waveform modification and finally to pre-amplifiers and expression pedal.

Designed primarily for use in schools, groups and for home entertainment, organists used to two manuals and pedals might be somewhat critical of the “Mayfair” organ but, at the price of a monophonic keyboard and in view of it’s portability (legs may be detached and stowed), this instrument is a compromise: a large and comprehensive organ is proportionally expensive whereas a solo keyboard is musically unsatisfactory. A 13-note pedal board may be fitted as one of the extra items offered with the kit.

A demonstration model is on show at the showrooms of Henry’s Radio Limited, 303 Edgware Road, London, W.2. The complete kit for building costs 99 guineas.

K.L.S.
HI-SPEED SPEAKER BARGAIN

These are 4 x 16 amp, sockets mounted on a panel box already for fixing to your power plug—intended for shops, offices or wall-switches, workshops — laboratories — exhibitions — display stands, etc. They avoid the use of dozens of batch-made multipole switches and adapt for other hook-ups. Price only 1/6/6 plus 6/- post and insurance. Full switch 9/6/6.

MULTI-MAINS BARGAINS

These are 4 x 16 amp, sockets mounted on a panel box already for fixing to your power plug—intended for shops, offices or wall-switches, workshops — laboratories — exhibitions — display stands, etc. They avoid the use of dozens of batch-made multipole switches and adapt for other hook-ups. Price only 1/6/6 plus 6/- post and insurance. Full switch 9/6/6.

SQUARE D ADJUSTABLE TIMER

This is a fine American made unit designed for precision. The time period is adjusted by a knurled screw. The delay period can be set anywhere from zero to 24 hours. The end of the delay operates the micro-switch—and resetting can be remote controlled or manually reset. The unit is for wall mounting and is 6½ x 4½ x 6½ in. Price 6/6/6 plus 6/- post and insurance.

FINE RECORD PLAYERS ARE 'GARRARDS'

Record players are your best choice—big range always in stock. We offer them this month at 29/6, plus 6/- post and insurance. Not many left—this is a tremendous bargain.

FINE RECORD PLAYERS ARE 'GARRARDS'

Record players are your best choice—big range always in stock. We offer them this month at 29/6, plus 6/- post and insurance. Not many left—this is a tremendous bargain.

MISCELLANEOUS

A thirteen yard, 70 watt waterproof element with temperature control by Thermostat control—and a double pole switch is set in pastel blue bakelite—with a long spindle, far standard size. Price 39/6 each plus 7/6 carriage and insurance.

INFRARED HEATERS

Ideal for bathroom, etc. They are simple to make from our easy-to-follow instructions—use silicon-encapsulated elements designed for the correct infra-red wave-length and mains voltage. Printed metal casing as illustrated, 6/6, plus 2/6 post and ins.

MAINS/TRANSFORMER POWER PACK

MAINS POWER PACK designed in operate transistor sets and amplifiers. Ideal for home use or for up to 500 milliamp. Class 3 working. Take the place of the transformer, rectifier, smoothing and load capacitors of the conventional system. A.T.T. or A.V.O. and lead back. Ferrite aerial. Six position adjustable output. Made by Lucas. Fiat or Spot or Fuji lamps. No overheating problem. These are 4 X 16 amp. sockets mounted on a panel box already for fixing to your power plug—intended for shops, offices or wall-switches, workshops — laboratories — exhibitions — display stands, etc. They avoid the use of dozens of batch-made multipole switches and adapt for other hook-ups. Price only 1/6/6 plus 6/- post and insurance. Full switch 9/6/6.

LIGHT DIMMER

Can also be used to control the speed of Motor, drills and the heat from lamps and from various other heat-generating items. These are 4 x 16 amp, sockets mounted on a panel box already for fixing to your power plug—intended for shops, offices or wall-switches, workshops — laboratories — exhibitions — display stands, etc. They avoid the use of dozens of batch-made multipole switches and adapt for other hook-ups. Price only 1/6/6 plus 6/- post and insurance. Full switch 9/6/6.

SELF REPAIRING FUSES

Saves good amounts — we can offer quite a lot but we can offer a fast and efficient service to get you operating as soon as possible. We take the place of the fuse, rectifier, smoothing and load capacitors of the conventional system. A.T.T. or A.V.O. and lead back. Ferrite aerial. Six position adjustable output. Made by Lucas. Fiat or Spot or Fuji lamps. No overheating problem. These are 4 X 16 amp. sockets mounted on a panel box already for fixing to your power plug—intended for shops, offices or wall-switches, workshops — laboratories — exhibitions — display stands, etc. They avoid the use of dozens of batch-made multipole switches and adapt for other hook-ups. Price only 1/6/6 plus 6/- post and insurance. Full switch 9/6/6.

DIY LIGHT DIMMER

Can also be used to control the speed of Motor, drills and the heat from lamps and from various other heat-generating items. These are 4 x 16 amp, sockets mounted on a panel box already for fixing to your power plug—intended for shops, offices or wall-switches, workshops — laboratories — exhibitions — display stands, etc. They avoid the use of dozens of batch-made multipole switches and adapt for other hook-ups. Price only 1/6/6 plus 6/- post and insurance. Full switch 9/6/6.
THERONITY SWITCH BARGAIN Parcel of 12 very useful rotary switches (assorted) for only £1 (plus 2/6 P.P.). Worth at least £3. Money back guarantee.

RESISTORS 1/2 watt 5% carbon film resistors, 10Ω to 1MR. Brand new, not second-hand. Each, P.P. 1/- on any order.

POTENTIOMETERS 5KΩ lin, 15KΩ lin, 10KΩ lin, 250KΩ lin, 1MR, 1MR lin, 2MR lin, 1 each, P.P. 6d.

With double pole switch 500KΩ log, 500KΩ lin, 1MR log, 2- each, P.P. 6d.

With single pole switch 10KΩ lin, 50Ω lin, 2/- each, P.P. 6d.

Pre-sets 5KΩ lin, 250KΩ lin, 250KΩ log, 1MR, 1MR log, 1 each, P.P. 6d.

Skeleton pre-sets 50KΩ 5d. each or 3/9 per dozen. P.P. 6d.

Solder pre-sets 2-2MΩ 7d. each or 5/6 per dozen. P.P. 6d.

RESISTOR PACKS 100 well assorted values and types, 1Ω to 200kΩ, 1% to 10%, bakelite, etc. A superb buy at 7/6. P.P. 1/6.

CAPACITOR PADDLE PACKS 100 well assorted silver micas, ceramics, papers, electrolytics, air-spaced variables, etc. 10/- P.P. 1/6.

VALVEHOLDERS 89A phonoax. 2/- each, P.P. 1/-.

1/Octal low-loss ceramic. 11 for 18/- P.P. 1/6.

U.K. low-loss ceramic. 6 for 9/- P.P. 1/-. HEADPHONES German made with cushioned ear pads, 5 and 2000 ohm versions. 29/- P.P. 2/-.

BRIAN J. AYRES & CO.

Department 8, 8 Hartfield Road

Wimbledon, London, S.W.19

Telephone: Wimbledon 6063

TRANSISTOR

SPECIFICATION & SUBSTITUTION HANDBOOK

New 1967 Ed. By Tec-Press 23/6

Contains over 5,000 American, Japanese, British, etc., types, and over 30,000 computer selected substitutes.

Radio Valve Data, new 6th ed., by Wireless World. 10/-

ABC's of Silicon Controlled Rectifiers, by Lytel, 17/6

Elements of Transistor Pulse Circuits, by Towers. 16/-

Multi Channel Radio Control, by Waring. 13/-

Proximity Detectors and Metal Locators, how to build. 21/-

Computer Circuit Projects you can build, by Bosch. 22/-

Electronic Motor Control, by Lytel. 11/-

Understanding Digital Computers, by Bonney. 17/-

Modern Dictionary of Electronics, by Graf, very comprehensive. 45/-

All prices include U.K. postage

WHERE possible 24-hour service guaranteed

NEW ELECTRONICS CATALOGUE

THE SHOP AT YOUR ELBOW

FULLY COMPREHENSIVE

INCLUDING:

- COMPONENTS
- TEST EQUIPMENT
- VALVES
- TRANSISTORS
- HI-FI EQUIPMENT
- ELECTRONIC APPLIANCES
- RECEIVERS
- AMPLIFIERS
- AND SPECIAL SERVICES

SEND P.O. FOR 1/6 TO:

DEPT. PE/1
dca ELECTRONICS LTD.
28 UXBRIDGE ROAD

EALING, W.5
RECRUITING DRIVE

The R.A.F. College Cranwell was open for inspection by some 150 guests from the academic world recently during a technical symposium.

The purpose of this grand gathering with an abundance of top brass was to make clear to the educational authorities the considerable opportunities the modern Air Force has to offer in its engineering branch to young men qualified in the applied sciences. Such candidates can obtain engineer cadetships leading to permanent commissions as Engineer Officers. The chance to follow a career as a professional engineer with all the very real advantages experienced by the serving officer must sound attractive to many technically minded youngsters.

The Engineer Branch (formerly the Technical Branch) is divided into two sections—mechanical and electrical, and it is the latter section of course which includes radio, radar and the other specialist electronic devices and systems.

It was with particular pleasure and anticipation that yours truly made a return visit to Cranwell: in rather different circumstances, I might add, to a previous "visit". With a group of fellow scribes, I listened to part of the morning session. Afterwards we were shown around the fine contemporary building known as Trenchard Hall which houses the applied science technical training laboratories.

The aerodynamic, engine, and weapon laboratories were well featured, but I was disappointed at the rather meagre amount of electronics we were allowed to see. Incredible as it may sound, not a single transistor or other solid state specimen manifested itself during these wanderings. The black boxes we did see, such as airborne navigational equipment, were completely enigmatic so far as their innermost parts were concerned.

Perhaps it was lack of something of a real technical appeal that caused my mind to wander back to the days when the old No. 1 Electrical and Wireless School occupied the neighbouring area. . . . My reverie of those far off days was however short lived. Looking down at the stiletto marked floor tiles (barely six months old) in the corridors I was brought back abruptly to 1966. The W.A.A.F.s of those earlier days were issued with a sturdier and less incisive kind of footwear than that worn (apparently) by the present day secretarial staff. Then, the "stiletto", like the transistor, had yet to be invented. Now, both have left their mark on our civilization and things will never be the same.

SUCCESS STORY

Thanks in part, no doubt, to you industrious constructors, the makers of a certain well known wiring board have had to open up another factory. This new building near Southampton devoted largely to the production of Veroboard, was officially opened last month by the Regional Controller of the Board of Trade.

This product is a good example of the seemingly obvious—when you know how! The story of its invention is not without interest, since the firm originally responsible, Vero Precision Engineering Ltd., was not directly concerned with electronics. Two of their engineers thought up the idea of pre-made printed wiring and used this for their own purposes in the course of some work concerned with electronic equipment for machine tool control. Somebody in the company was sufficiently foresighted to appreciate the commercial potentiality of this board, and now the whole electronics industry it seems is beating a path to their doorstep.

Now why can't I think up something like that! Sentiments wistfully echoed by many of my readers, I have no doubt.

BATTLE COURSE

That Battle of 900 years ago that we English in our own peculiar way insist on celebrating has been making the news in one way or another over the past month. As much as I would like to be in the fashion, I confess seeing little justification for introducing either King Harold or The Conqueror on this page, inconsequential though these notes may often be.

But wait—a colleague has just come to my rescue with an account of a visit he paid the other week to Aldermaston Court. This grand 19th century manor house is the headquarters of the British Institute of Engineering Technology, who run correspondence courses for a large range of subjects, including electronics. From some background notes provided by this organisation, it appears that the present building is the third to occupy this site. The original manor built nearly 1,000 years ago was held by King Harold and it then passed into the possession of William after that rather famous affair near Hastings.

Back to more relevant matters. My colleague tells me he was much impressed by the scale of operations conducted by this organisation in the field of postal tuition, although as he mentions, this particular method must fall short in certain respects when compared with direct tuition. Still for those in remote areas, a correspondence course is often the only practical way to acquire knowledge and pass professional examinations.
Sideways etching

Sir—I have just read your very interesting article on Thunderstorms (October 1966), and would like to make one or two observations on this subject.

As a science graduate in the early 1920's I had a 40ft high single wire aerial with a 60ft horizontal top, over water-logged soil in North Wiltshire. Varnished glass insulators were used.

When a rain storm, or wide area shower, approached from the North West it was often preceded by several small "outrider" clouds. Before the rain arrived these, passing overhead, allowed me to draw 3in sparks from the aerial, or light the Geissler tubes fairly now and then.

"Generally this was not possible after the rain arrived, and no other observation indicated the possibility of lightning or thunder, i.e. your diagram Fig. 2 might be changed to show electrification type.

As a senior chemistry master, now retired, I have not had complete satisfaction from theories of just sharp showery conditions. In many cases but not all, there was sharp medium-wave radio interference of the thunder-atmospheric type.—M.L.M.

... and lightning

Sir—I noticed with regret the overall title given to the six projects in the October issue; is it really necessary for this excellent journal to follow the "pop" idiom of mini-dogs, mini-mice, mini-skirts, etc.?

Perhaps herein lies a cause of the so called "Brain-drain"—Mini-think. (With apologies to George Orwell.)

Housing Hi-Fi is our business ... turntables, tape recorders, loudspeakers, tuners, amplifiers, records, tapes ... there's a RECORD HOUSING cabinet to suit your equipment.

Send for illustrated catalogue giving full details of over 20 different cabinets, plus stockists' list (U.K. only) to:

RECORD HOUSING (Dept. P.E.12)
Brook Road, London, N.22. Tel.: BOWes Park 7487

A new, larger and more colourful edition—revised and completely up-to-date. It contains articles of particular interest to the D.I.Y. enthusiast—including special beginners page, advice on stereo, stage-built systems and full cabinet drawings. Whether building or improving your own audio set-up or choosing a complete speaker system, you'll find it useful and interesting as well as informative.

Thank your Goodmans dealer or send coupon for your FREE copy.

<table>
<thead>
<tr>
<th>Please send me a free copy of the Goodmans High Fidelity Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name ...</td>
</tr>
<tr>
<td>Address ..</td>
</tr>
</tbody>
</table>

GOODMANS

D.I.Y. with GOODMANS HIGH FIDELITY MANUAL

The 227M provides 10 watts power output whilst the 127M, with 5 watts output, is designed for those whose power requirements are more modest.

The 127 is the stereo version of 127M, having two amplifiers, each of 5 watts output.

All three have similar facilities: pickup and tape inputs, tape recording output, bass and treble tone controls.

MS STEREO RADIO DECODER £14 10 0

Enabling any of our current stereo tuner-amplifiers and tuners to receive the BBC's new stereo broadcasts.

For full details and technical specifications of all models, plus list of stockists, post coupon or write mentioning 12PE/66.

ARMSTRONG AUDIO LTD.
WARLTERS ROAD, N.7
Telephone: North 3213
Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is 1/- per word (minimum order 12/-), box number 1/6 extra. Semi-displayed setting £3.5.0 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.

FOR SALE

GRACKLE PAINT. Black or Grey, 1 pint this 4/-, pint 1d. from the component specialists. SERVIO RADIO, 156-8 Merton Road, Wimbledon, London, S.W.19.

HAMMERITE. Hammer Pattern Brush Paint for Mains, Metalwork

3/- TIN • JUST BRUSH ON • WITHSTANDS 150°F, OIL, WATER, ETC.

2 oz. 1/3 pint 1/6 gallon 14/-

1 pint 1/2 gallon 2/-

1 gallon 3/-

Carriage: Orders over 1/- post 6d. from the component specialists.

CRACKLE PAINT. Black or Grey, 2/-, post 6d. from the component specialists.

FOR SALE

SERVIO RADIO, 156-8 Merton Road, Wimbledon, London, S.W.19.

FOR SALE (continued)

RELAYS. 8 assorted 12-34 volt Ex-Equipment, 20/- each. 1/- p. & p. 4/-. We can supply most relays as recommended in this journal.

GOVERNMENT SURPLUS. Electrical and Radio Equipment. Our new catalogue No. 16 now ready, 2/6 Post Free, cost refunded on purchase of goods over £2. ARTHUR SALIS, Radio Control Ltd., 93, North Road, Brighton.

C. Core Transformers

Mains Prim; Tapped 200/240V, Sec.; 80, 140, or 220 volts. 100 Milliamps, 6.3V, 1A, 6.3V, 1A Terminal Tags, Mu-Metal Screened.

Size: 3 x 3 x 3 1/2 ins.

1/4/6 post paid.

A.E.L. Semi-Conductor Rectifiers

Type G7M, 1000 volts, 500 mA, £2 12/6 each. (Heavy Duty Type 3/-). Post paid.

"A COMPUTER FOR 59/11d? YOU MUST BE JOKING!"

Digi-Comp is no joke. It is a complete mechanical equivalent of a giant electronic brain, designed so that you can see just what it is that makes a computer function. Digi-Comp solves problems and plays games, and is accompanied by an instruction and programming manual that explains binary methods and elementary logic in terms comprehensible to anyone who can count—primary school to Ph.D.! Send 59/11 or 4d. stamp for details to

1-COR SYSTEMS (Plastics Section)

18 STAMFORD HILL, LONDON, N.16

SERVICE SHEETS

SERVICE SHEETS for all makes Radio, T.V., Tape Recorders, 1925-1966. Prices from £1. Catalogue 6,000 models, 2/- per box. Please send stamped addressed envelopes with all orders/quotations. HAMILTON RADIO, Western Rd., St. Leonards, Sussex.

SERVICE SHEETS (continued)

We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service. To obtain the Service Sheet you require, please complete the attached coupon:

From:

Name:

Address:

To: S.P. DISTRIBUTORS

30 Baker Street, London, W.1

Please supply Service Sheets for the following:

Make:

Model No.:

Radio/T.V.

Make:

Model No.:

Radio/T.V.

I also require the new 1966 list of Service Sheets at 1/6 plus postage. (please delete items not applicable)

I enclose remittance of

MAIL ORDERS ONLY Dec. PE

TAPE RECORDERS, TAPES, ETC.

TAPES TO DISC—using finest professional equipment—4 t.p.m. 16/- S.A.E. leaflet.

DEROY, High Bank, Hawk Street, Gainsborough, Lanes.

WANTED

SHORT OF MONEY FOR XMAS?

CASH BY RETURN FOR CERTAIN TYPES OF RELAYS AND CONTACTS

NO QUANTITY TOO SMALL

Send S.A.E, for details

112 GROBY RD., GLENFIELD LEICESTER
Famous BELCO TRANSFORMER transforms 12 or 24v. supply to mains Power for TV, 2 drums, etc.
NOW ONLY £6 - 10 - 0

G.O.D. 2/- extra.
SMALLER MODEL: 12/24V. Input, 20/-
MAGNETIC RELAY SWITCHES. 12V. 40 for remote switching. 40/-
INDOOR TELEVISION AERIAL. 15/-
Excluding Single-dose, 28. Each
VIBRATOR POWER-PAK. Step 12V. up to MAIN'S output. For Universal A/C/D/AC, razors, small fanmotors fittings, radion, etc. 32/-
HOOFER ROTARY TRANSFORMERS. 6v. Input, 250v. output, 12v. Input 25/-
460v. output. 32 watts.

Generating Sets 2. Brand New. TINY
TIM. 12V. 300 watts. In packing case.
SELF STARTING. Normal List £35
Post NOW—Delivery by return.

JAMES WALKER, ELECTRONICS DIVISION
School House, Wood Walton, Huntingdon
Phone Abbotts Ripton 368. 9 am. to 10 pm.

RADIO TECHNICIANS
A number of suitably qualified candidates are required for permanent and pensionable employment. (In various parts of the U.K. including London, but primarily Cheltenham. Also opportunities for service abroad.)

Applicants must be 19 or over and be familiar with the use of Test Gear and have had Radio/Electronic workshop experience. They must offer at least "O" level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at 19 £747, at 25 £962 (highest age pay on entry) rising by four annual increments to £1,104.

Prospects of promotion to grades in salary range £1,032—£1,691. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days.

Normal Civil Service sick leave regulations apply.

SITUATIONS VACANT (continued)

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS
19 set Circuit and Notes 4/- P.P. 6d
155 set Circuit and Notes 3/- P.P. 6d
H.R.O. Technical Instructions 3/- P.P. 6d
36 set Technical Instructions 3/- P.P. 6d
46 set Working Instructions 3/- P.P. 6d
88 set Technical Instructions 5/- P.P. 6d
BC. 221 Circuit and Notes 3/- P.P. 6d
Wavemeter Class-D Tech. Instr. 3/- P.P. 6d
10 set Circuit and Notes 3/- P.P. 6d
BC. 1003 E.I. Set Circuit and Notes 4/- P.P. 6d
CR.100/B.28 Circuit and Notes 1/- P.P. 6d
R.107 Circuit and Notes 5/- P.P. 6d
A.R.A.B. Instruction Manual 6/- P.P. 6d
62 set Circuit and Notes 4/- P.P. 6d
57 set Sender & Receiver Circuits 6/- post free
Circuit Diagrams. Price Delivered.
R.J116/A, R.J122/A, R.J355, R.F. 24, 25 & 26,
R.1134, T.1154 (all models) BC.342, BC.312,
Resistor colour code indicator 1/6 P.P. fid.
S.A.E. with all enquiries please.

NOTICES

INGORPORATED PRACTITIONERS in Radio and Electronics. (I.P.R.E.) LTD. Conditions of Membership are familiar to all. Two questions. 1/-; 1968 Examination Question Papers. 2/-; Sample Copy of I.P.R.E. "Review". 2/-.
Apply:—Director, British School of Telegraphy, 20 Passeywn Road, Earls Court, London, S.W.5

TELEVISION:!
From your OWN Car Battery

TELEVISION SERVICING
RADIOGRAPHY
RADAR MAINTENANCE

Full and Part-time Training Courses
Apply—Director, British School of Telegraphy, 20 Passeywn Road, Earls Court, London, S.W.5

INTERNATIONAL CORRESPONDENCE SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

INTERNATIONAL! Correspondence Schools
(Dept. 152), Intertext House, Parkgate Road, London, S.W.11.

NAME

ADDRESS

Block Capitals Please

SITUATIONS VACANT (continued)

R.C.S. (ENG.), A.M.I.Mech.E., A.M.I.E.R.E., City & Guilds, etc., on "Satisfaction or Refund of Fees" terms. Write for FREE Home Study Courses in Electronics, Computers, Radio, T.V., etc. 122-page Guide—FREE.

Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124k), Aldermaston Court, Aldermaston, Berks.

EDUCATIONAL

(continued)

Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124k), Aldermaston Court, Aldermaston, Berks.

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. I.E.R.E., City & Guilds, R.T.S., etc. Also Practical Courses with equipment. All books supplied. Write for FREE Prospectus stating subject to I.C.S. (Dept. 577), Intertext House, Parkgate Road, London, S.W.11.

HOME STUDY COURSES in Practical Electronics. Fresh Brochure without obligation from: BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.

A.M.I.Mech.E., A.M.I.E.R.E., City & Guilds, O.C.G., etc. Become a Technician or Technologist for high pay and security. Thousands of passes. For details of Exams and Courses in all branches of Engineering, Building, Electronics, etc., write for 132-page handbook—FREE. B.I.E.T. (Dept. 126k), Aldermaston Court, Aldermaston, Berks.

TEST AND INSTALLATION ENGINEER for Language Laboratories, interesting and growing field of advanced electronics. ELECTRONIC CLASSROOM LTD., 197 Lower Richmond Road, Surry. Telephone: G.E. SPARK, Prospect 4163, for appointment.

EDUCATIONAL

TECHNICAL TRAINING by I.C.S.

IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I.C.S trained man. Let I.C.S train YOU for a well-paid job in this expanding field. I.C.S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized-training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

- Institution of Electronic and Radio Engineers
- C. G. & TELECOMMUNICATION TECHNICIANS' CERTS.
- C. G. & G. SUPPLEMENTARY STUDIES.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coachcd until Successful.

New SELF-BUILD RADIO COURSES.

Build your own S-valve receiver, transistor portable, signal generator and multi-tests meter. Under expert tuition.

POST THIS COUPON TODAY and find out how I.C.S can help YOU in your career. Full details of I.C.S courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

RECEIVERS AND COMPONENTS

SEMICOMPONENTS—clone equivalents: Q05, 4/5; Q07, 2/5; AF14, OC71, 3/7; AF15, OC84, 1/5; OC85, 4/5; BY100, 1/5; BY104, 1/5; 50mW/100mV barrier, 5/10; P. & F. 70. A. P. WISE, 10 Harbeck Road, Mounthalte, Lan.

ECONOMY SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1196</td>
<td>40p</td>
</tr>
<tr>
<td>2N1502</td>
<td>40p</td>
</tr>
<tr>
<td>2N1702</td>
<td>40p</td>
</tr>
<tr>
<td>2N1272</td>
<td>40p</td>
</tr>
<tr>
<td>2N3054</td>
<td>40p</td>
</tr>
<tr>
<td>2N3904</td>
<td>40p</td>
</tr>
<tr>
<td>BC107</td>
<td>40p</td>
</tr>
<tr>
<td>BC109</td>
<td>40p</td>
</tr>
<tr>
<td>BC120</td>
<td>40p</td>
</tr>
</tbody>
</table>

For further details send S.A.E.

SILICON RECTIFIERS 50 IV, 1-5A: 400 PIV, 0-75A, 2/6. 12V rectifiers 5/4. Send 6d. for full list.

TRANSISTOR COMPONENTS by Post at 4/6 each. Minimum Order 10/-.

SILICON BUBBLE TRANSISTORS at Price. S.A.E. for list. 6 W.

COMPONENTS BONANZA! S.A.E. for big list. A. J. RASSETT, 28 Park Road, Chorley, Lancs.

RECEIVERS AND COMPONENTS (continued)

SPECIAL OFFER

Lead Diodes: OX55, 4/6; OX57, 4/6; OX84. SCR order, or on request.

FREE

Three months trial on First Class letter, Free SCR Literature including S.C.R. Order, or on request.

FREE

LOGIC MODULES and/or, Gates, Memory Units, Timer Units, etc., details free.

VALUE PARA 50 TRANSISTORS 10/- 1SCR's UNMARKED, UNTESTED VOLTAGE RANGE 1 Amp 20/-

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N749 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N758 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N495 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N548 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N549 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N608 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N709 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N710 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N711 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N712 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N713 Trans.</td>
<td>8p</td>
</tr>
<tr>
<td>2N714 Trans.</td>
<td>8p</td>
</tr>
</tbody>
</table>

Our vast stocks change daily with hundreds of Semiconductor bargains becoming available. Send 5/- to cover 1 month mailing of our latest stock lists, qv. charts, circuits, etc.

To order: BLAKE, 65A Runnong Road, Birminham 12.

Receivers and components for any quantity. Post paid.

RECEIVERS AND COMPONENTS (continued)

SEMI-ARMS—clone equivalents: Q05, 4/5; Q07, 2/5; AF14, OC71, 3/7; AF15, OC84, 1/5; OC85, 4/5; BY100, 1/5; 50mW/100mV barrier, 5/10; P. & F. 70. A. P. WISE, 10 Harbeck Road, Mounthalte, Lan.

ECONOMY SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1196</td>
<td>40p</td>
</tr>
<tr>
<td>2N1502</td>
<td>40p</td>
</tr>
<tr>
<td>2N1702</td>
<td>40p</td>
</tr>
<tr>
<td>2N1272</td>
<td>40p</td>
</tr>
<tr>
<td>2N3054</td>
<td>40p</td>
</tr>
<tr>
<td>2N3904</td>
<td>40p</td>
</tr>
<tr>
<td>BC107</td>
<td>40p</td>
</tr>
<tr>
<td>BC109</td>
<td>40p</td>
</tr>
<tr>
<td>BC120</td>
<td>40p</td>
</tr>
</tbody>
</table>

For further details send S.A.E.

SILICON RECTIFIERS 50 IV, 1-5A: 400 PIV, 0-75A, 2/6. 12V rectifiers 5/4. Send 6d. for full list.

TRANSISTOR COMPONENTS by Post at 4/6 each. Minimum Order 10/-.

SILICON BUBBLE TRANSISTORS at Price. S.A.E. for list. 6 W.

COMPONENTS BONANZA! S.A.E. for big list. A. J. RASSETT, 28 Park Road, Chorley, Lancs.

RECEIVERS AND COMPONENTS (continued)
NEW CIRCUITS

- Football Pool Computer
- Multiplying/Dividing Computer
- Simultaneous Equation Solver
- Quadratic Equation Solver

The above analogue computer circuits, all based on the Wheatstone Bridge, are not expensive to build and all parts are available. Circuits, wiring diagrams, instructions, price lists, 4/6 post free.

Switches

Available from Cockrobin Controls include various panel-mounting types, toggle, push-button, rotary, etc., all by leading makers and useful for many projects described in "Practical Electronics".

Also available is the "Cockrobin" panel-mounting lampholder for M.E.S. bulbs, a special design which positively prevents cross-illumination from adjacent bulbs.

Send or illustrate list of these and other items, price 9d, including U.K. post. (Overseas, 6d. plus postage, weight 2 oz.)

COCKROBIN CONTROLS
36 Villiers Avenue, Surbiton, Surrey

NEW RANGE U.H.F. AERIALS FOR BBC 2 (625) LINE TRANSMISSIONS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

- Chimney Mounting Arrays, Complete, 7 element, 78/-; 11 element, 96/-; 14 element, 114/-; 18 element, 139/9.
- Universal Power Supply. All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Please mention PRACTICAL ELECTRONICS when replying to Advertisements

BASIC GUIDES FOR THE ENTHUSIAST — A NEW SERIES IN QUESTION AND ANSWER FORM:

Q. & A. ON AUDIO

Clement Brown

Q. & A. ON ELECTRONICS

Clement Brown

Q. & A. ON TRANSISTORS

Clement Brown

Q. & A. ON RADIO AND TELEVISION

H. W. Hellyer

Each 8s. 6d.

from bookkeepers or 9s. 6d. by post from GEORGE NEWNES, Tower House, Southampton Street, W.C.2

Please remember:

- PRINTED CIRCUIT SERVICE
 Prototypes, Layouts, Photo Work, Production Runs, or One Offs
 Express Service on All Orders

- MECCELE & CO.
 Whyclyffe Mills, High Church Street
 Basford, Nottingham
 Tel: Nottingham 77657

- RAYRIK LTD.
 assembled and wire electronic equipment and P.C. boards
 Gt 2350/9655.
VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240v. A.C. 50/60
OUTPUT VARIABLE 0-250v. BRITISH CARTRIDGE PANEL
Buy direct from the importer, keenest prices in the country. (Various makes and types) from £10.00 up to 50 amp. from stock.

OPEN TYPE (Panel Mounting)
1 amp., £3.3.0; 2 amp., £4.10.0; 4 amp., £5.12.6.

SHROUDED TYPE
1 amp., £4.10.0; 2.5 amp., £5.17.0; 5 amp., £8.7.6; 10 amp., £10.10.0; 20 amp., £17.10.0.

OUTPUT VOLTAGE 0-260v.
1 amp., £3.15.0; 2 amp., £6.7.6; 3 amp., £9.10.0; 5 amp., £13.0.0; 6 amp., £18.0.0; 10 amp., £25.0.0; 12 amp., £29.0.0; 15 amp., £35.0.0; 20 amp., £45.0.0.

CONSTANT VOLTAGE TRANSFORMER

A.C. MAINS MODEL
Incorporates Plains Transformer, Resterifier and special mains cast iron contacts. Price inc. delivery £7.15.0 plus 4/-. P. & P. 10/6.

4-STATION INTERCOM
Solve your communication problems with this versatile four-station Intercom system (1 master and 3 subsidiaries). Build it in our laboratory, use it in your own home. Kit consists of 4 complete units. Each unit costs £12.50, but the 4 units cost £44.00. Also available in a single-station kit. Complete with 2 connecting wires each 66 ft. Plus free delivery.

SOUND POWER OPERATED TELEPHONE AMPLIFIER
Take down long telephone messages or converse without holding the handset. A status symbol? Yes, but very useful as well. Price £8.11.6. P. & P. 1/6.

SOUND POWER OPERATED TELEPHONE AMPLIFIER
Will operate two such sets connected, with infinite variety of speeds, from I flash in several seconds to 30 flashes a minute. 37/6 plus 3/- P. & P. 2/6.

OPEN TYPE (Panel Mounting)
1 amp., £4.10.0; 2.5 amp., £5.17.0; 5 amp., £8.7.6; 10 amp., £10.10.0; 20 amp., £17.10.0.

COMPACT HEAVY DUTY 6 volt DC RELAY
Core of including ORP2 Cadmium Sulphide Photocell, Relay Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

LIGHT SENSITIVE SWITCH
Kit of including ORP2 Cadmium Sulphide Photocell, Relay, Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

4-STATION TRANSFORMER (Ex-Admiralty)

VARITRONIC AMPS
Suitable for use with ORP, 12 or similar units. цена per pair £2.10.0 P. & P. 1/6.

SOUND POWER OPERATED TELEPHONE AMPLIFIER
Will operate two such sets connected, with infinite variety of speeds, from I flash in several seconds to 30 flashes a minute. 37/6 plus 3/- P. & P. 2/6.

L.C. TRANSFORMERS

COMPACT HEAVY DUTY 6 volt DC RELAY
Core of including ORP2 Cadmium Sulphide Photocell, Relay, Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

LIGHT SENSITIVE SWITCH
Kit of including ORP2 Cadmium Sulphide Photocell, Relay, Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

L.C. TRANSFORMERS

SOUND POWER OPERATED TELEPHONE AMPLIFIER
Take down long telephone messages or converse without holding the handset. A status symbol? Yes, but very useful as well. Price £8.11.6. P. & P. 1/6.

SOUND POWER OPERATED TELEPHONE AMPLIFIER
Will operate two such sets connected, with infinite variety of speeds, from I flash in several seconds to 30 flashes a minute. 37/6 plus 3/- P. & P. 2/6.

OPEN TYPE (Panel Mounting)
1 amp., £4.10.0; 2.5 amp., £5.17.0; 5 amp., £8.7.6; 10 amp., £10.10.0; 20 amp., £17.10.0.

COMPACT HEAVY DUTY 6 volt DC RELAY
Core of including ORP2 Cadmium Sulphide Photocell, Relay, Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

LIGHT SENSITIVE SWITCH
Kit of including ORP2 Cadmium Sulphide Photocell, Relay, Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

L.C. TRANSFORMERS

COMPACT HEAVY DUTY 6 volt DC RELAY
Core of including ORP2 Cadmium Sulphide Photocell, Relay, Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

LIGHT SENSITIVE SWITCH
Kit of including ORP2 Cadmium Sulphide Photocell, Relay, Transformer, etc. 25/0 plus 2/6 P. & P. ORP 12 including circuit, 10 circuit, each plus 1/6 P. & P.

L.C. TRANSFORMERS
TAPE RECORDER
SERVICING
MANUAL

NEW! UP-TO-DATE!
EVERYTHING YOU NEED TO KNOW
IN ONE ESSENTIAL BOOK!

By H. W. Hellyer, A.M.T.S., A.I.P.R.E., A.M.I.S.M.

344 PAGES PACKED WITH CONCISE
SERVICING DATA AND FACTS OF
VITAL PRACTICAL VALUE TO SERVICE
ENGINEERS AND KEEN AMATEURS
ALIKE! 7 DAYS' HOME TRIAL!

Here's all the "gen" you want about TAPE
RECORDERS and how to service them—in
one BIG 344-page practical volume that no
service engineer or keen amateur can afford
to be without! Almost every tape recorder
and deck ever released in this country—282
different models covering the output of 63 well-
known makers—are included. Every model
carries concise yet comprehensive service data,
and is fully illustrated by 345 helpful drawings,
cut-away views of mechanisms and complete
circuit diagrams. The servicing notes have
been compiled partly from manufacturers' oficia! data, from other trade sources, and
from bench notes and observations made by
the author in the course of several years' practical servicing. The principles of tape
recording, practical repair procedures, micro-
phones and matching are also dealt with in
the valuable introductory section. De Luxe
Edition (Leathercloth) 63/- (or on credit
terms—see coupon on right).

DO THIS NOW! Complete form and post in 3d.
stamped, unsealed envelope to bring volume for
7 Days' Home Trial. HURRY!

Available from Booksellers, or
POST FORM NOW!

63 MAKES
* 282 MODELS

7 DAYS' HOME TRIAL!

Including:
Alba, Allegro, Ampion, B.S.R., Baird,
Brenell, Bush, Butoba, Collaro, Cossor,
Dansette, Defiant, Dynatron, E.M.I., Editor,
Ekco, Elizabethan, Elpico, Ferguson, Ferranti,
Ferrograph, Ficord, Fidelity, G.B.C., G.E.C.,
Garrard, Geloso, Grandeck, Grundig,
H.M.V., Hagen, Kolster-Brandes, Korting,
Magnavox, Motek, Murphy, Peto-Scott,
Philips, Philips, Playtime, Portogram, R.G.D.,
Regentone, Rohuk, Simon, Sobell, Sonomag,
Sony, Sound, Steelman, Stuzzi, Telefunken,
Thorn, Truvox, Ultra, Verdik, Volmar,
Walter, Winston and Wyndor.

To: Dept. S.A. 110, Oldham Books Ltd., Basted, Sevenoaks, Kent.

WITHOUT OBLIGATION please send me, on 7 Days' Home Trial, Tape Recorder
Servicing Manual. Within 8 days I will either (a) send the Cash Price of 63/- (plus
charge for postage and packing), or, (b) send a down payment of 19/- (plus postage
charge), followed by 5 monthly payments of 10/- (Total Credit Price 69/-). Alter-
atively, I will return volume in good condition, postage paid, within 8 days.

Cross out words NOT applicable below:
I wish to pay by CASH/TERMS. I am (a) houseowner; (b) tenant in house or flat;
(c) temporary resident; (d) single; (e) married; (f) over 21; (g) under 21.

PLEASE SIGN HERE

Your Signature (If under 21, signature of parent or guardian)

NAME (Mr./Mrs. / Miss)
Full Postal ADDRESS

S.A.110/Dec. 66.

909
QUALITY RECORD PLAYER AMPLIFIER

A top-quality record player amplifier. This amplifier was used in a 29 sn. record player, employs heavy duty double wound mikes transformer, ECC83, EL84, EZ80, 3 ohm, Treble and Volume controls. Complete with output transformer. Transformer is 3 ohm, size: 7 in. x 2 in. x 2 in., 1.5 in. h. Ready built and tested. PRICE £6/6. P. & P. 5/6.

QUALITY PORTABLE R/P CABINET

Unit portable and can be taken above floor level and B.S.R. or GARRARD Autochanger or Single Record Player Unit. Size 18 x 14 x 8 in. PRICE £6/6. Carr. 7/6.

4-SPEED PLAYER UNIT BARGAINS

All brand new, P. & P. 2/6 get packing. SINGLE PLAYERS

AUTO, CHANGER

Mullard OC81ID and matched pair of OCSI o/p). • Output transformer capped for 3 ohm and 15 watt. 3-1 watt output. SPECIAL PRICE £15/6. P. & P. 3/6. Also ready built complete with knobs, valves, etc. A pair of TAs are ideal for stereo.

STEROE AMPLIFIER

WELL-KNOWN MAKERS' SURPLUS I

ONE TRANSISTOR PRE-Amp.

Suitall for set B i.e. High Impeadance mikes, guitars, gram pickups, tape decks etc. For operation from 200/500 volt H.T. rail or battery. Gain approx. 14/1. Fully isolated input by Mu-Metal screened transformer. Size 4 1/2 x 1 x 1 in. PRICE £1/6. P. & P. 1/6. Only 2/6 each (free with kit).

GÖRLER F.M. TUNER HEAD

80-100 MHz, I.F. 15/1, plus 2/6 P. & P. (ECC85 valve, 8/6 extra).

TAPE DECKS

B.S.R. MONARDECK (Single speed) £3/6 per set, simple control, uses 3 in. spools, £6/15/6.

LATEST COLLAR MAGNOVAX 363 TAPE DECK DE LUXE. Three speed, 2 track, takes up to 7 in. spools, 10 gns. Plus 7/6 carr. and ins on each. (Tapes extra on both)

QUALITY PORTABLE TAPE RECORDER CASE

Brand new, beautifully finished. Few only £4.5.0. P. & P. 5/6. ACOS CRYSTAL MIKES. High Impedance, for desk work. Gain approx. 14/1. Fully isolated input. PRICE 10/6. P. & P. 6/6. B.S.R. MONARCH (Single speed) £3/6 per set, simple control, uses 3 in. spools, £6/15/6. LATEST COLLAR MAGNOVAX 363 TAPE DECK DE LUXE. Three speed, 2 track, takes up to 7 in. spools, 10 gns. Plus 7/6 carr. and ins on each. (Tapes extra on both)

VYNAX AND REXINE SPEAKER AND CABINET FABRICS. 34 in. wide. Usually 35/6 for price. All give 10/6 per yd. Length (min. 1 yd) 8/6. P. & P. 2/6. S.A.E. for samples.

HARVISON SURPLUS CO. LTD.

170 HIGH ST., MERTON, S.W.19 CHErrywood 3985
Open all day Saturday
Early closing Wed., 1 p.m.
A few minutes from Wimbledon Tube Station.
(Please write clearly)
OVERSEAS P. & P. CHARGED EXTRA. S.A.E. with all enquiries

The most accurate pocket size CALCULATOR in the world
Send a postcard today for free booklet, or if you prefer, send 75/- for this invaluable spiral slide rule on approval, with money back guarantee if not satisfied.

CARBIC LTD. (Dept. P7)
54 Dundonald Road, London, S.W.19

H/V AIN 4 TRANSISTOR PRINTED CIRCUIT AMPLIFIER KIT

Type TAI

- Peak output in excess of 11 W per channel
- All standard British components
- Built on printed circuit panel, size 6 x 3 in.
- Generator output and input transformers
- Output transformer tapped for 3 ohm and 15 ohm speakers
- Mains transformer. (Garrard, Mullard OCQ1B and matched pair of OCBI input)
- 9 volt operation
- Everything supplied, wire, battery clip, solder, etc.
- Comprehensive easy to follow instructions and circuit diagram 11 x 8 in.
- Fax plan and parts list separately

SPECIAL PRICE 45/- P. & P. 3/6.

Output transformers matched for 3 ohm speaker, ready to fit into cabinet below. PRICE £9/6. P. & P. 5/6.

GENERAL REMARKS

This kit is designed to be used with Medium or High Impedance mikes, guitars, gram pickups, tape decks, etc. For use with PCC84 and PCF80 valves 34-38 Mc/Hz IF. Biscuits and instructions. ONLY 15/- P. & P. 2/- post free.

This kit has been specially designed for us and our quantity order enables us to offer them complete with knobs, valves, etc. Incorporated in this kit.

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished transistor amplifier with an output of 14 watts from 2 EL84s in push-pull, super reproduction of both music and speech, with negative feedback. Ideal for home stereo. Available in both valve and transistor versions. Both are complete with knobs, valves, etc. Cost is ex-stock to. Our price £9/6. P. & P. 6/6. Comprehensive circuit design, practical layout and parts list 2/6 (free with kit).

This kit although similar in appearance to HA34 is entirely different and uses a different circuit.
The New 'Picture-Book' way of learning

BASIC ELECTRICITY (5 VOLS.)

You'll find it easy to learn with this outstandingly successful new pictorial method—the essential facts are explained in the simplest language, one at a time; and each is illustrated by an accurate, cartoon-type drawing.

The books are based on the latest research into simplified learning techniques. This has proved that the Pictorial Approach to learning is the quickest and soundest way of gaining mastery over these subjects.

The series will be of exceptional value to training mechanics and technicians in Electricity, Radio and Electronics.

WHAT THIS MONTH'S ENTHUSIASTIC READERS SAY

"... may I state how delighted I am with the books, and what a contrast to the many text books I have attempted to struggle through! ... G. J., Hull.

"... the Manuals are out of this world for simplicity in learning about Electronics..." P. J., Durham.

A TECH-PRESS PUBLICATION

POST NOW FOR THIS OFFER!!
50 WATT AMPLIFIER
New 6-Transistor design. Push-pull output for 73 cc. or 16 ohm speaker. 150 Watt input, 8-ohm output. For use with valve or transistor pre-amplifiers as item (10) above.
PRICE BUILT AND TESTED £19.6 P.P.
(Mains unit 79/4, p. 2/6)

MULTI-METERS SCOPE
PT24 1kV 30mA £900 10-100
PT10 2kV 1mA £900 10-100
PT15 20kV 10mA £900 10-100
PT25 20kV 1mA £900 10-100

(16) VHFM TUNER
Supplied as 2 Preassembled Panels, plus metal work Superhet design. 88-188 Mc/s. 9 volt operated.
Total cost to assemble £12.17.6, p. 2/6

NOMATTER TEST UNITS
£10, 19.6, p.p. 3/6 (Front panel plate 12/6)

25 WATT AMPLIFIER
Brand New with R/P head, elastic bar, tape cassette and instructions. 2 speed 73 cc. or 9 volt operated. List Price £13.62.0

COMPONENTS AND EQUIPMENT. The largest range in the country. 6/- buys 150-page catalogue with discount vouchers.

250PW ZENERS 4/-
MINIATURE POTS, LIN. 2/-
FULL RANGE TAPES AND TRANSMITTERS. LISTS AVAILABLE. 5K, 10K, 25K, 50K, 100K, 250K, 500K, 1M, 2M, 2/- each

MAGNETIC MINIATURE EARPIECES
ONE DOZEN POST FREE
250PW ZENER 4/-
MINIATURE POTs, LIN. 2/-
FULL RANGE OF TAPES AND TRANSMITTERS. LISTS AVAILABLE.

1a Wentworth Court, Alston Road, Barnet, Herts
BAR 3087
RETURN OF POST ORDER AND QUOTE SERVICE

J. P. Hawker's new book — planned as the standard guide...

OUTLINE OF RADIO AND TELEVISION

This introductory book starts with clear explanations of electric currents, radio and audio waves and electronic components, and continues through to the most advanced items of equipment such as a.f.f. television tuners, multiplex stereo systems and colour television receiver techniques. A must for your reference shelf. 408 pages, over 300 diagrams, 30s.

From all booksellers or by post 32s. 6d. from George Newnes Ltd., NEWNES Tower House, Southampton St., W.C.2

10 TOTTENHAM COURT RD., LONDON, W.1
TEL: MUS 2639
350/352 FRATTON RD., PORTSMOUTH
72 EAST STREET, SOUTHAMPTON
TAP: 22034
35851
2001995
4890
7200
1000
1800
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
10/8
The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering. Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECH. ENGINEERING

ELEC. ENGINEERING

AUTO ENGINEERING

BUILDING

CIVIL ENGINEERING

RADIO ENGINEERING

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

Which qualification would increase your earning power?

British Institute of Engineering Technology

316A Aldermaston Court, Aldermaston, Berkshire

We have a wide range of courses in other subjects including chemical eng., aero eng., management, instrument technology, works study, mathematics, etc.

Which qualification would increase your earning power?

B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now—FREE and without obligation.

POST NOW!

TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE
BUILD THE WORLD'S FIRST ALL TRANSISTOR PORTABLE ORGAN KIT

EASY TO BUILD WITH PRINTED CIRCUITS AND FULLY COMPREHENSIVE HANDBOOK
- **CIRCUITS USE 170 TRANSISTORS AND DEVICES**
- **10 SELECTED TONE COLOURS PLUS VIBRATO**
- **PORTABLE TWO COLOUR CABINET WITH DETACHABLE LEGS, MUSIC STAND, SWELL PEDAL**
- **THE ONLY COMPLETE KIT AVAILABLE IN THE WORLD**
- **FOR GROUPS, CLUBS, HOBBYISTS, HOME ENTERTAINMENT**

SPECIFICATIONS:
- TONE COLOURS (ROCKERTABS) 10 DIFFERENT TONES CAN BE SELECTED
- SWITCHED VIBRATO
- CABINET SIZE 30½ x 15½ x 9 in.
- WEIGHT 35 lb.
- 48 NOTE C-C FULLY SPRUNG KEYBOARD
- 6 OCTAVES OF GENERATORS
- SWITCHED VIBRATO
- FULLY POLYPHONIC
- CABINET SIZE 30½ x 15½ x 9 in.
- WEIGHT 35 lb.
- 48 NOTE C-C FULLY SPRUNG KEYBOARD
- 6 OCTAVES OF GENERATORS
- SWITCHED VIBRATO
- FULLY POLYPHONIC
- CABINET SIZE 30½ x 15½ x 9 in.
- WEIGHT 35 lb.
- 48 NOTE C-C FULLY SPRUNG KEYBOARD
- 6 OCTAVES OF GENERATORS
- SWITCHED VIBRATO
- FULLY POLYPHONIC
- CABINET SIZE 30½ x 15½ x 9 in.
- WEIGHT 35 lb.

TO BUILD YOURSELF IN EASY STAGES. ALL PARTS SOLD SEPARATELY AND FULLY GUARANTEED

Complete Kit with Cabinet, all Components and Handbook

Unbeatable for Price, Performance and Quality

Build yourself!

Valve Amplifiers and Tuners in Cabinets

Call for Demonstration

Mayfair Portable Electronic Organ

Acclaimed by Everyone

599 GNS.

Cable and Parking 50/- Extra U.K. Only

DetaiLed Leaflet Free on Request

Call for Demonstration

TRANISTORS

Latest 16-page Transistor/Reader supplies. Many new devices — plenty of price reductions. Send 5d. stamp for free copy. The Largest Range available.

Fm Stereo Decoder

7-Transistor, Principle Elements Design with Stereo Indicators. Use with any valve or transistor Fm. Use for car or home. Design and gen. cont. silicon transistors.

LATEST 1966 CATALOGUE

Have you a copy? Fully detailed and illustrated. 150 pages of components, equipment, etc. Over 5,000 stock items. PRICE 6/- post paid. Free discount vouchers with every catalogue. You cannot afford to be without a copy of this catalogue.