PRACTICAL

 JUNE 1967

ADCOLA

SOLDERING EQUIPMENT

for the DISCRIMINATING ENTHUSIAST

ILIUSTRATED:

L700 PROTECTIVE SHIELD

APPLY DIRECT TO:
SALES \& SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W. 4
TELEPHONE: MACAULAY 0291/3

OLRUS ELECTRONICS LTD.
 PADdington 1515
 9 NORFOLK PLACE (off Praed St.) LONDON, W. 2

TRANSISTORS - DIODES - ZENER - VALVES

SCR-THYRISTORS

CRSIO5 IA 50PIV 7/6: CRSIIO IA IOOPIV 7/6; CRSI20 IA 200PIV CRSI35 IA 350 PIV $16 / \%$ CRSI40 IA 400PIV 17/6; Uniiunction 15/. CRS305 3A 50PIV 8/6: CRS310 3A IOOPIV 10/-: CRS 320 3A 200PIV 13/6: CRS 330 3A 300 PIV 17/6. CR 5350 3A 350 PIV 18/6; CRS 340 3A 400PIV 20/-: CR74 7A 400PIV 25/-.

FIELD EFFECT TRANSISTOR 2N3819 18/\%.

Moulded Reed Switch
14/-
Moulded Magnet
Miniature Neon Lanip
5/Mains Panel Neon

DO II
 YOURSELF

SECTIONAL CASE AND CHASSIS

S.A.E. FOR LEAFLET

TRANSFORMERS

230v Prim. 6-10-15.18.30v 2A 321
230v Prim. 6-10-18v IA 22/.

EXPLORER KIT AM/FM VHF RECEIVER
Punched case and panel-2ADT

SINCLAIR

ZI2 int. l2w ampl. and preamp. built
PZ3 trans. mains power unit built
Micromatic buil
Micromatic kit
Micro FM kit
Stereo 25 preamp. and control unit buil

LAMGYS RADIO

For the Finest Value and Service to HOME CONSTRUCTORS \& ELECTRONICS ENTHUSIASTS

SPECIAL INTEREST ITEMS!

NEW! LASKY'S CLEAR PLASTIC PANEL METERS
Precigion made in Japan by HIOKT. Each meter bored and fully guaranteed with all fizing nuta and washers. Nizes ar of front panel. Add $1 / 6$ Post on each
Trpe Kk-5E 3×2 in. (illust rated)
$1 \mathrm{mADC} \quad \cdots \quad 32 / 8 \quad 300 \mathrm{~V}$ DC $\begin{array}{llll}1 \mathrm{~mA} \\ 5 \mathrm{~mA} \mathrm{DC} & \cdots & 32 / 8 & 300 \\ 32 / 6 & 500 \mu \mathrm{~A}\end{array}$

Type MK-38A 2in. square

1 mA
5 mA
DC

300 V DC
$500 \mu \mathrm{~A}$
1 mA S Meter
Type MK-45A 1 iin. square
1 mA DC
6 mA
300 VC
DC
$500 \mu \mathrm{~A}$.
1 mA S Meter

 $27 / 8 \quad 500 \mu \mathrm{~A} \ldots$ 25j- Type mK-65A Зin. square $39 / 6$ $361-$
$35 /-$
$25 /-5 \mathrm{~mA}$ DC
$\begin{array}{ll}25 /-300 \mathrm{~V} D \\ 25 /- & 500 \mu \mathrm{~A}\end{array}$
$35 /-1 \mathrm{~mA}$ S Meter

CONSTRUCTORS BARGAINS

/FOD High grade laminated board with copper strips

Boards			Accessories	
42/1503	$2 \frac{1}{2} \times 5$ in.	3/11	Terminal pins - pkt. of 50	3/-
43/1504	$27 \times 31 \mathrm{in}$.	$3 / 3$	Spot face cutter tool	7/3
45/1507	3 3 $\times 5 \mathrm{in}$.	5/6	1 'in inserting tool	
46/1508	$3 \frac{1}{} \times 3 \pm$ in.	3/11	Post 6d. per item extra.	
44/1505	$3 \mathrm{l} \times 17 \mathrm{in}$.	15/6	Otders of 10/- and over post free.	

SPECIAL PURCHASE-UHF/VHF T.V.TUNERS Well known British makers' aurplus stocks. Now available for the firat time to the Home Constructor. Add 2/6 Post and Packing on each.

VALVE UHF MODEL (illtatrated)
In metal case size $4 \times 6 \times 1$ in. Fully tunable-complete with PCC8G and YCC88 valres. LASKY'S PRICE 29/6. Without valves $12 / 6$
TRANSISTORISED VHF TUNER
Sub-miniature torret type fitted with 12 sets of coils and 3 Mullard AF102 transistors. In metal case size $3 \times 1 \frac{1}{3} \times 2$ tin. LASKY'S PRICE $37 / 6$ Add 2/6 Post and Packing on each.

TELEVISION IF AMPLIFIERS
$38 \mathrm{Mc} / \mathrm{s}$. Containe a large number of components, IF t ransformers, resistors, capacitors, etc., and the following valves: 2xPCF80, 1xEB91, EF80, EF182 and EF184. Overall size $112 \times 3{ }_{2} \times$ deep. Meal for servicemen and the Valve model UHF Tuner (above) provides a suitable conversion for B.B.C.2. Circuit supplied.
LASKY'S PRICE 29/6
SPECIALPACKAGEOFFER
If Amplifier plat valve dif tuner (see
above), with valves. LASKY'S PRICE $49 / 6 \underset{\substack{\text { Pogt } \\ 5 /-}}{ }$
EXPORT TTC B4002 FM WIRELESS MIC.
Highly sensitive - - ouitable for either static or mobile use. Signal can be picked up by any FM radio or tuner which receivea trequencies betwepn $96-104 \mathrm{Mc} / \mathrm{s}$. over several hundred yarcls. Size only $3 \times 21 \times$ lin. (in leather case). Operates on one PP3 type battery. Complete with neck cord, clip-on dynamic extension mike (f $\times \frac{1}{1} \times \mathrm{fin}$.) and battery.
LASKY'S EXPORT PRIRE 10 GNS. I'ost I'ree. Any. TTC 13/500. More powerful version of above - iize 71×1 i \times zin. Operatea on one PP3 type battery. LASKY'S PRICE 12 Gns. Post Free. Anywhere in the World.
These cannot be operated in the U.K. owing to G.P.O. regulations.

WATER TEMPERATURE THERMOSTATS
Britioh made-orig. for use in high quality washing machine. range adjuatable between $114^{\circ} \mathrm{F}^{\prime}$ and $230^{\circ} \mathrm{F}^{\prime}$ Rating $200 / 250$ V.A.C. 20 anns (also D.C. up to 125 V.A.). Nize LASKY'S PRICE 15/= Post 2%

207 EDGWAREROAD, LONDON, W. 2 Tel: PAD 3271 118 EDGWAREROAD, LONDON, W. 2 Tel: PAD 9789 33 TOTTENHAM CT. ROAD, LONDON, W.1 Tel: MUS 2605 The above branches open all day Saturday. Early closing Thursday.

We stock the complete range. Write for details of package deals.
THE MICRO-6 miniature radio only $1 \frac{1}{5} \times 1_{10}^{\frac{3}{10}} \times 1 \frac{1}{2} \mathrm{in}$. 12196
THE MICRO-FM. (tuner radio only $1 \frac{1}{5} \times 1 \frac{3}{10} \times 1$ din.
THE MICROMATIC mini-radio Kit $\$ 2.19 .6$. Fully built
8TEREO 25 pre-amp control unit fully built.
THE Z-12 12 watt amplifer and pre-amplifier. Fully build and tested PZ-3 power pack for $\mathbf{Z} \mathbf{1 2}$

23196
\qquad

TRANSISTORS ALL BRAND NEW AND GUARANTEED (GET 81, GET B5, GET S6 2/6; 873A, 874P 3/6; OC45, OC71, OC81D 4/6; OC 44.
 0 O 758

TRANSFILTERS By BRUSH CRYSTAL CO. Available Irom stock

42 TOTTENHAM CT. ROAD, LONDON, W.I 152/3 FLEET STREET, LONDON, E.C. 4
Both open all day Thursday. Early closing Saturday
ell Street, Tower Hamlets, London, E.I. Tel: Ol-580 2573 Tel: FLE 2833

Please address all Mail Orders and Correspondence to 3-15 Cavell Street, Tower Hamlets, London, E.
Tel.: STE 4821/2

Introducing

THE NEW RICHARD ALLAN

SARABANDE

RECOMMENDED RETAIL PRICE: £39.17.6
A magnificent triple speaker assembly containing a high flux $15^{\prime \prime}$ unit for no compromise bass, and the new

MID RANGE \& TWEETER MODULE

(E9.7.10 inc. P.T.)
which has been developed bv the same team which produced the brilliant High Fidelity
Module.
the Sarabande offers the finest VAlUE OBTAINABLE IN THIS PRICE RANGE OF LOUDSPEAKERS

RICHARD ALLAN RADIO LTD., BRADFORD ROAD, GOMERSAL, CLECKHEATON, YORKS.

TEL. : CLECKHEATON 2442

ELECTRONICS LTD. 9.10 CHAPEL STREET LONDON, N.W.I Tel.: PAD 7851 Tel.: AMB 512S	MOST TYPES, FULLY ROUDED AND TERMI BLOCK CONNECTION
tho V equipment. Input 240 v . tput $110 \mathrm{v}, 3,000$ watcs. Completely closed in strong metal case.	
Terminal block ourput. 615, carr.	$\begin{array}{lllllll} \text { IA } & 25-33-40-50 & 15 & 67 & 19 & 6 & 9 /- \\ \text { IB } & 25-33-40-50 & 10 & 65 & 19 & 6 & 7 / 6 \end{array}$
	IC $25-33-40-50$ 6 14 19 8 16
with two 2 -pin American sockets	$10 \begin{array}{lcccccc}10 & 25-33-40-50 & 3 & E 2 & 19 & 6 & 6 /-\end{array}$
terminal blocks. Neon indicat	$\begin{array}{rrrrrr}\text { 2A } & 4-16-24-32 & 12 & 45 & 7 & 6 \\ 2 \mathrm{~B} & 4-16-24-32 & 8 & 4 & 2 & 6 \\ 7 / 6\end{array}$
On/off switch and carrying hand	
f10.19.6, earr. 10/-.	20 $4-16-24-32$ 4 ± 2 12 6 $6 /-$ $-16-24-32$ 2 $E 1$ 15 0 $5 /-$
	3A* $25-30-35 \quad 40 \pm 1215 \quad 0 \quad 15 /-$
	$\begin{array}{lllllllllllll}3 B^{*} & 25-30-35 & 20 & ¢ 7 & 19 & 6 & 9 / 6\end{array}$
kets,	$\begin{array}{lllllll}3 C & 25-30-35 & 10 & 45 & 10 & 0 & 7 / 6\end{array}$
	$\begin{array}{lllllll}30 & 25-30-3 S & 5 & \pm 3 & 5 & 0 & 6 /-\end{array}$
	$\begin{array}{llllll}3 E & 25-30-35 & 2 & \pm 7 & 7 & 6 \\ 4 A & 12-20-24 & 30 & 69 & 15 & 0\end{array}$
I,000 \quad ¢4.19,6 $7 / 6$	$\begin{array}{llllll}30 & 69 & 15 & 0 & 10 / 6 \\ 20 & \mathbf{5} & 19 & 6 & 8 / 6\end{array}$
$500 \ldots15 .15 .0$... $6 / 6$	$\begin{array}{lll}9 & 6 & 8 / 6 \\ 9 & 6 & 7 / 6\end{array}$
300. ¢2.9.6 5/6	6
150. ¢1.19.6 ... $4 / 6$	
$6061 .12 .6$	$3-12-18$ 20 $\mathbf{6 5}$ 9 6 16
S.T.C. SELENIUM	
Type B84-9-1 W. F.W. bridge	$\begin{array}{cccccc}3-12-18 & 5 & \mathbf{6 2} & 5 & 0 & 5 /-\end{array}$
A.C. input 162 v. D.C. output 140	$\begin{array}{lllll}48-56-60 & 2 & 62 & 17 & 6 \\ 48-56-60\end{array}$
21/ amps.. 57/6. P.P. 5/-. Type	$\begin{array}{llllll}1 & 61 & 19 & 6 & 4 / 6 \\ 50 & 67 & 15 & 0 & 9 / 6\end{array}$
B67-9.1 $\mathrm{W}_{\text {. }}$ I $1 \frac{1}{2}$ amps. output. $37 / 6$.	50 $¢ 7$ 15 0 $9 / 6$ 0 64 10 0 $7 / 6$
P.P. 5/-. Type D84	$\begin{array}{llllll}6-12 & 20 & 44 & 10 & 0 & 7 / 6 \\ 6-12 & 10 & 62 & 19 & 6 & 6 / 6\end{array}$
quired	
input 72 v. D.C. output	$\begin{array}{llllll}70 & 6-12 & 5 & 62 & 2 & 6 \\ 9 A & 15-30 & 1 \frac{1}{2} & 19 & 6 & 4 / 6\end{array}$
	$\begin{array}{lllll}-15 & 2 & 19 & 6 & 4 / 6\end{array}$
SURPLUSL.T. TRANSFORMERS ALL BY FAMOUS MAKERS A. Pri. 200-240v. Sec. (1) Tapped $38 v$ 40 v . 10 A Sec. (2), 6.2, 6.8.7.3, 7.9. $8.5,9,9.5,10,10.6 \mathrm{v}$. 18 amps. 67/10/-, Carr. 10/-. B. Pri. 240v. Sec. Tapped $53.6,55.2 v$. 6 amps. "C" Core, 72/6, Carr. 7/6. C. Pri. 200-240v. E.S. Sec. Tapped 32, 34, $38,40,44,46 \mathrm{v} .7$ amps. 75/-, Carr. 7/6. D. Pri. 200-240v. Sec. 8 v. 6 amps. 19/6, P.P. $4 / 6$. E. Pri. 200-240v. Sec. (1) $25 \mathrm{v} .3 \mathrm{~A} . \mathrm{Sec}$. (2) $10 v_{.,} 0.1 \mathrm{~A} . \operatorname{Sec}$, (3) $115 \mathrm{v}, 0.6 \mathrm{~A}$. , 29/6, P.P. 4/6. F. Pri. 240v. Sec. (1) $45 v .25 \mathrm{M} / \mathrm{A}$. Sec. (2) Iv. $\frac{1}{2}$ amp., $15 /-$, P.P. $3 / 6$.	$\begin{array}{llllll}-3 & 15 & 4 & 17 & 6 & 5 / 6\end{array}$
	Note: By using the Intermediate Taps many other voltages can be obtained. Example: Range One 7-8-10-15-17-25-33-40-50 v . Range Two 4-8-1 2-16-20-24-32 v . Range Five 3-6-9-12-15-18 v.
	SMITH'S 4 MINUTE TIMERS
	Switch contacts 15 amp. 250 v . A.C., complete with chrome bezel and control knob. Min. operation time, 30 seconds, max. 4 minutes, brand new 17/6, p.p. 2/6.

WhyNOT BUILD ONE OF OUR PORTABLE TRANSISTOR RADIOS...
 FIRST FOR PERFORMANCE, QUALITY \& PRICE!

BACKED BY OUR SUPER AFTER SALES SERVICE

NEW ROAMER SEVEN Mk IV

7 WAVEBAND PORTABLE OR CAR RADIO

Amozing performance and specification
\star

ith PHILCO MICRO-ALLOY R.F. TRANSISTORS

 FULLY TUNABLE ON ALL WAVEBANDSCovers Medium and Long Waves, Trauder 9 stages-7 transistors and 2 diodes ush-pul output for room filling volume from rich condenser. Frriterod aerial for M \& L Waves and teled with gilt trim and shoulder and hand straps. Size $9^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}$ approx.

The perfect portable and the ideal car radio. (Uses PP7 batteries, avilable anywhere.) + EXTRA BAND FOR EASIER TUNING

Total cost of parts now only $£ 5.19 .6$
5/6.

Parts Price List and easy build plans 3/- (Free with kit)

NEW MELODY MAKER SIX

8 stages-6 transistors and 2 diodes Covers Meliunt and Long Wayes and Extrat Bant for EAMIER tuming of LUXEMBOURA, grade 3in. Loudspeaker for quality output. Two R.F'. etages for extrat boost. High ' Q ' 6 m . Ferrite
Rod Aerial. Rod Aerial. Approx. 350 millwatts push matithe

This amazing receiver

may be built for only $\mathbf{~} \mathbf{~ 3 . 9 . 6} \quad$ P. \& P. \quad| Ports Price List and easy build |
| :--- |
| (Free with kit) |

NOW WITH 3IN. SPEAKER!
NEW TRANSONA FIVE
"Home, Light, A.F". N. Lux'. allat gooll volume"' G.P., Durham

07 stages -5 transistors and 2 diodes
Fully tunable over Medium and Long Waves. Incorporates Ferrite rod aerial, tuning condenser, volume control. new type fine tone
super dynamic 3 in, speaker, etc. Attractive case. Size $6^{\prime} \times 4^{\prime} \%$ in with red speaker grille. (Uses 1289 battery available anywhere.) - Extended M.W. band for easier tuning of Luxembourg etc.

Total cost of all $42 / 6$ P. \& P. Parts Price List and easy build parts now only $42 / 6$ plans $2 /-\quad$ (Free with kit)

NEW ROAMER SIX

NOW WITH PHILCO MICRO-ALLOY
 R.F

 TRANSISTORS6 WAVEBAND!!
8 stages -6 transistors and 2 diodes
Listen to stations half a world away with this 6 waveband portable. Tunable on Medium and long Wires, Trawler Band and two Short Wives long Waves, Trawler Band and two Short Waves. Sensitive Ferrite rod acrial and telescopic aerial for short waves. Top grade transistors. 3 -inch speaker, handsome case with gilt fittings. Size $7 \frac{1}{2} \times 5 \frac{1}{2} \times 1$ in. (Carrying Strap $1 / 6$ extra.)
\& EXTRA BAND FOR EASIER TUNING OF LUX, ETC. $\begin{array}{llll}\text { Total cost of all } \\ \text { parts now only } & \mathbf{2} . \mid \mathbf{1} .6 & \text { P. \& P. Parts Price List and easy build } \\ \text { pians } 2 /- & \text { (Free with kit) }\end{array}$

MELODY SIX

8 stages-6 transistors and 2 diodes
Our latest completely portable transistor radio covering Mediunn and Long Waves. Incorporates pre-tagged circuit board. 3 in heavy duty speaker, top grade transistors,
volume control, tuning condenser, wave volume control, tuning condenser, wave change slide switch, sensitive 6in. Ferrite
rod aerial. Push-pull output. Wonderful reception of B.B.C. Home and Light, 208 and many Continental stations. Handsome leather-look pocket size case, only $6 \frac{3}{4} \times 3 \frac{1}{4} \times 1 \frac{1}{6} i n$. approx. with gilt speaker grille and supplied with hand and shoulder straps. Total cost of all $\mathbf{E 3 . 9} 6$ P. \& P. Parts Price List and easy build $\begin{array}{lllll}\text { Total cost of all } \\ \text { parts now only } & \mathbf{\$ 3 . 9 . 6} & \text { P. \& P. } & \text { Parts Price List and easy build } \\ \text { (Free with kit) }\end{array}$

QUICK CHECK TRANSISTOR TESTER. Cheeks gain of K. F. and Audio Transistors. Alsa) checks for noige level and duls. All parts ready
tis be assenbled in attractive grey cate with red tus be assembled in attractive grey ease with red
krille, complete with Jial, Kimbs, and Dynamic Krille, complete with Jial, K mobs, and Dyanic

FAULT TRACER. I versitile sighal Injector. Anhething - he constructor shoule be without. This ingenious levice ranges. With yarnable output. Telescopic Prohe. Pocket size slim dine case measures $47 \times 35 \times$ Pin. Complete set of parts with full instructions. 19/6. P. \& P. 2/-

 7 stages- 5 transistors and 2 diodes. Covers Medium and Long Waves. On test Home, Light, Luxembourg and many Con inental stations were received loud and clear. Designed round supersensitive Ferrite Rod Aerial and fine tone 3 in. moving coil speaker, built into attractive black and gold case. Size $5_{2}^{\frac{1}{2} \times 1}{ }^{1} \times 3 \frac{1}{2} \mathrm{in}$. (Uses 1289 battery, available anywhere.)Extended M.W. band for easiert uning of Luxembourg et
Total cost of all
$42 / 6$
P. \& P.

Pocket 5 Med and Leng wave

Parts Price List and easy build plans 1/6 (FREE with Kit)

TRANSONA SIX

8 stages-6 transistors and 2 diodes
This is a top performance receiver covering full Medium and Long Wives. High-grase 3in. speaker makes listening a pleasure. Push-pull output Ferrite rod aerial Many stations listed one porm one evening including Luxemboure loud and
 clear. Attractive casc in grey with red grille. Size
$64 \times 4 t \times$ l'in. (Uses PP4 battery available anywhere.) Cary ying Strap l-extra. Extended M.W. band for easier tuning of Luxembourgetc. Total cost of all $59 / 6 \quad$ P. \& P Parts Price List and easy build parts now only $59 / 6 \quad 3 / 6$ plans $1 / 6$ (Free with kit)

arge speaker). anywhere.)

\star I2 WATTS R.M.S. OUTPUT CONTINUOUS SINE WAVE
(24 WATTS PEAK)
\star I5 WATTS R.M.S. MUSIC POWER
(30 WATTS PEAK)
There has never been an amplifier to touch the Z.I2 for adaptability and compactness. It is the embodiment of power, efficiency and reliability. Nothing could be better than this fine unit for use with space-saving plinth-mounted motors and pick-ups. Equally, the light weight of the $Z .12$ makes it the ideal guitar amplifier, particularly since it operates efficiently on any power supply between 6 and 20 V. D.C. The preamp of this 8 transistor masterpiece accepts pick-up, radio and microphone outputs. Details for input matching, control and selector switching circuits are in the manual supplied with every Z.I2.

TECHNICAL SPECIFICATION

The $Z .12$ measures only $3 \mathrm{in} . \times 1 \frac{3}{4} \mathrm{in} . \times 1 \frac{1}{4} \mathrm{in}$. and weighs 3 ozs. 8 special transistors are employed in original circuitry developed by Sinclair Radionics. The unit, which includes its own pre-amp, is ruggedly built. Two are ideal in stereo. This versatile amplifier can be powered by batteries or the P.Z.3.

STEREO PRE-AMP AND CONTROL UNIT FOR TWO Z.I2's OR OTHER GOOD AMPLIFIER SYSTEMS

For use with two Z.I2's or any hi-fi stereo system. Finest quality components are used in its construction, whilst the overall appearance of this compact de-luxe pre-amp and control unit reflects the professional elegance which characterises all Sinclair designs. The front panel is in solid brushed and polished aluminium with well styled solid aluminium knobs.

Frequancy rasponse 25 c/e to 3 ke/s \pm IdB Z.12's. Sensitivity Mic. 2mvinto 50 kn : P.U. -3my into 50kn: Radio- 20 mv into 4.7 k n. Equalisation correct to within \pm Ids on RAAA curve from 50 to $20,000 \mathrm{c} / \mathrm{s}$. Sixe 6 inn. $\times 2 l i n . \times 2$ yin. plus knobs.
BUILT, TESTEO
GUARANTEED
£9.19.6

The most remarkable lefter we have so fur received
 P.O. BOX 43, PAEKAKARIKI, New Zealand,
 27th February, 1967.

Thank you very much for the new Micromatic which arrived Thank you very much for the new Micromatic which arrived safely by Airmail. Our 13 year old son is highly delighted. On the first evening he logged several New Zealand stations These included our one and only "pirate," Radio Hauraki stationed in the Gulf of that name well over 400 miles north of here.

His biggest surprise was when 2 CY , Canberra (IOKw) identified itself. Australia is more than 1,200 miles away!

I tested the receiver within half a mile of $2 Y A$ and $2 Z B$ (juse north of Wellington). Selectivity remained perfect. Neither station swamped the other and the customary nul was evident whien the set's own ferrite zerial was end on to the transmitters.

In the metal coach of an electric train, the receiver functioned normally even under noise producing conditions.

You have produced a radio receiver which has no equal. Its design, size and performance are such that even you will not easily evolve a successor.

Arnold S. Long

The original of this and countless other letters which enthusiasts
send us can always be seen at our Combridge offices.

- $14^{\prime \prime} \times 1 \frac{3}{10}^{\prime \prime} \times \frac{3}{2}{ }^{\prime \prime}$
- NEW SIX STAGE CIRCUITRY

TUNES OVER M.W. WAVEBAND
A.G.C.

AMAZING POWER AND RANGEGUARANTEED 5 YEARS

GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full and at once without question.
FULL SERVICE FACILITIES AVAILABLE
If you prefer not to cut page, please quote PE. 6 when ordering.

SINCLAIR MICROMATIC The smallest set in the world

This British made six-stage transistor receiver is a fully fledged radio with all the features essential to reliable listening. It is smaller than anything you have ever used before, yet it gives good choice of programmes anywhere, is selective, powerful, dependable. When, after two or three months or so, the batteries need replacing, new ones are easily obtainable from radio shops,

TECHNICAL DESCRIPTION

The Sincloir Micromatic is housed in a neat plastic cose with aluminium front ponel and spun aluminium calibroted tuning dial.
Special Sinclair transistors are used in a six-stage circuit of exceptional power and sensitivity-cwo scages of powerful R.F. amplification; double diode detector: 2 high gain three-stage audio amplifier. A.G.C. counteracts fading from distant stations. The set is powered by two Mallory ZM. 312 Cefls readily obtainable, for $1 / 7$ each. Plugging in the earpiece switches the set on.
Kit comes complete in see-for yourself easy to check pack with instructions and solder.

MICROMATIC KIT PACK with earpiece, inscructions, solder, etc.

ISE THIS DRIDER FOTRE FOR PRONMPT TELIVETY

ORADIONTC

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM

ABSOREBING
AND
EXCITING:

Abstract

Cnique and brilliantly simple. Hundreds of educational establish ments-Unlversities, Technical Colleges, Schools, the Armed Forcesare already using Radionic for electronie instruetion. Enthusfastie owners range from 9 to 82 years of age. Selected by the Council of Industrial Design for all British Design

 Centres. Featured in Sound and Television broadeasts.The system is Deaututuly engineered trom top quality British components. No soldering. No mains. No prior knowledge needed. Simply arrange components on perforated transparent panef, position brass connecting strip underneath, fix with 6BA nuts and clrcuit works with full efficiency. You can then dismantle and bulld another circult. Your results are guaranteed by our Technical Department and News Letter Service. All parts avallable separately for conversion or expansion of sets.
UNIQUE: Our "No soldering" printed circuit board for superhet portable. Simply insert components and tighten nuts.
No. 1 Set $\mathbf{~} 5.18 .6 . \quad 14$ Circuits (Earphone)
No. 2 Set $50.19 .6 . \quad \geqslant 0$ Circuits (Earphone)
No. 3 Set 910.19 .6 . 22 Circuits (7×41. Loudspeaker output
No. 4 Set $£ 14.19,6$. $\quad 26$ Cireuits (include 6 Transistor and reflex Prices (Post Free) superhets)
(PLUS: P.T. Surcharge of $1 / 8 \mathrm{~d} ; 1 / 11 \mathrm{~d} ; 3 / 1 \mathrm{~d} ; 4 / 2 \mathrm{~d}$, respectively.)
Full details from:

> RADIONIC PRODUCTS LIMITED STEPHENSON WAY, THREE BRIDGES CRAWLEY, SUSSEX

Tel.: CRAWLEY 27028
Trade Enquiries Invited

A No. 4 SET and 6.TRANSISTOR SUPERHET

Theoretical Circuit
Practical Layous Send for details of E/508, our do-it-yourself computer.

the Wyndsor Vanguard . . . the most versatile recorder at its price* ofiering so many outstanding features . . .

WYNDSOR RECORDING CO. LTD. (Dept. PE5) Wyndsor Works, Bellevue Road, Friern Barnet, London, N.11. ENT. 2226

HEATHKIT wORLD-FAMOUS ELECTRONIC EQUIPMENT
 The Hi-Fi, Radio, Amateur Gear, Test Instruments anyone can build

Treat yourself to superb LW, MW entertainment with the

High-Performance Car Radio Kit, Cr-I

Complete your motoring pleasure with this small, compact, high-performance car radio. It can be fitted to any make of car having 12 volt positive or negative earth system. Tastefully styled in neutral grey with matching black knobs and chrome trim to harmonise with any car colour scheme.
Features include: Six-transistor, 2-diode circuit. Completely pre-assembled and aligned tuning unit. High sensitivity, combined with wide range automatic gain control (AGC), minimisesfading under weak reception conditions. Easy-tune dial. Push button Long, Medium and Tone selection.

The car radio is available for your convenience, in two separate units; RF Amplifier Kit CR-IT £I. 13 . 6 incl. P.T., IF/AF Amplifier Kit CR-IA $£ 11$. 3 . 6.
TOTAL PRICE KIT (excluding Loudspeaker) $£ 12$. 17 . 0 incl. P.T. $8^{\prime \prime} \times 5^{\prime \prime}$ Loudspeaker Pt. No. 401-505 \&1 . 16 . I incl. P.T.

Hi-Fi performance from a "Mini"

Speaker Kit with the "AVON" BOOKSHELF SPEAKER SYSTEM

The challenge to our acoustic engineers was to design a speaker occupying the minimum space consistent with first class reproduction. The results of our efforts was this "AVON" compact unit of exceptional quality. Features: Two special speakers 6 !" BASS, $3 \mathrm{~m}^{\prime \prime} \mathrm{HF}$ unit and crossover network. Good frequency response. Beautiful fully-finished walnut veneered cabinet, size only $7_{4}^{3 n} \times 13^{\prime \prime} \times$ $8_{5}^{3}{ }^{3}$ deep.
Supplied in two units. Can be built for a total price.
Kit $£ 13$. 16 . 0 incl. P.T.

A $3^{\prime \prime}$ Service Oscilloscope Kit with outstanding features. Model OS-2

The attractively styled OS-2 is a compact, lightweight, portable oscilloscope that fulfills many of the general requirements in Laboratories, Service Departments and Educational Training. It is ideal for use in production line testing where otherwise expensive equipment would be tied up on ordinary routine tests. The bandwidth of the OS-2 is from $2 \mathrm{c} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s}-3 \mathrm{~dB}$, this scope can therefore be used in applications ranging through audio, ultrasonic and radio frequencies. The time base operates from $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$ in four quencies. Size $5^{\prime \prime} \times 7^{3 \prime \prime} \times 12^{\prime \prime}$ deep. Weight $9^{3} \mathrm{lb}$.

Kit $£ 23$. 18 . 0. Assembled $£ 31$. 18 . 0
Optional extra L/Cap Probe Kit, PK-I Kit $£ 3$. 12 . 6

Many other models in wide range.

Prices quoted are Mail Order, Retail Prices slightly higher.
Full specification sheets of any model available upon request.

To:-
DAYSTROM LTD., Dept. P.E. 6
GLOUCESTER, ENGLAND. Tel.: Glos. 20217
\square Please send me
FREE British Heathkit Catalogue
further details of model(s) shown in full colour.

Over 150 models: Hi-Fi, Audio Speaker systems, Intercom, PA Guitar amplifiers, Amateur Radio, Educational, Transistor radios, Test and service instruments. Many

FREE!

 32 page Catalogue SEND COUPON FOR YOUR COPY NOW! I NAME ADDRESS

Keentuare Coracticliean DIACROM SPATULA

The "Diacrom" is a metal spatula upon which diamond powder has been deposited by a special process. No deep scratches are possible because density is controlled and the polishing of the contacts is achieved by a gentle brushing motion With coloured nylon handle for complete insulation and easy size identification.

Manufactured in France British Patents applied for

- Grain size 200 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cieaning of industrial relays and switching equipment, etct.
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like telephone relays, computer relays, etc.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (OISTRIBUTORS) LTD.
81 Piccadilly, London, W.1. Phone: (01) 6299556
supplied to the War OHfice, U.K.A.E.A., Electricity Generating Boards, British Railways and othei public authorities: also to leading electronic and industrial users throughout the United Kingdom

The most accurate pocket size CALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send 75/- for this invaluable spiral slide rule on approval with money back guarantee if not satisfied CARBIC LTD. (Dept. PE11)
54 Dundonald Road, London, S.W. 19

BULD YOUR CIR on VEROBOARD

-the Universal Wiring Board-
obtainable from your local Retailer
Trade enquiries to
NORMAN ROSE (ELECTRICAL) LTD
8 St. Chad's Place, Gray's Inn Road, London, w.C. 1 Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

NEW BARGAINS

MOVING COIL METER. 2!in. flush mounting MOVIFG COIL EETER, $2 \frac{1}{2} \mathrm{in}$. Hush mounting $250-0-250$ micro amps. centre zero. $29 / 6$ each.
50 OHM 50 WATT WIRE WOURD POT-METER $8 / 6$ each 20X WIRE WOUND POT-METER. 20 watt type made by
10 -each.
$10 /$-each. MIMIATURE, Pot-meter Morganite standard, \ddagger in. spiudle $1 /-$ each, $9 /-$ per dozen. pre-get Berew-driver control. 8d, each. 8/-per loz. presesest 100K by Welwyn with intrical bakelite knob, $1 /$ each. $9 / \cdot$ per dozen.
100X POT-METER. Minlature type with double pole switch and standard zin. spinille, by Mor. ganite. 2/-each. 18/- per dozen.
Q5E POT-METER. Standarii
25E POT-METER. Standarii size with doubie pole switch by Egan with full length zin. aplutile. $3 /-$ each. $36 /$ - per dozen.
BLABE
BLAESETSTAT GLASS. Enclosed, normally
closed circuit, will open should blanket overhest closed circuit, fill open should blanket overheat THER
THERAAL RELAY. Can be used to delay the supply of HT while heaters warm up, or will switches or relays. Regular list price over $f 2$,
price 7/8 each.
SIEMERS HIGH SPEED RELAY. Twin 1000 ohin coils. Platinum pointa changeover contacta Ex equipment, $8 / 6$ each
ELECTROLYTIC CONDENSER. $500 \mathrm{MF}, 50$
working, $2 / 6$ each. $24 /=$ per dozen
FOOTSWITCH. Two snap-action switches in
metal box with flex lead. Ideal to control metal box with flex lead. Ideal io control tape-recorder, dark room lamps, etc., $18 / 6$, pho
$2 / 9$ postage and insurance.
Thing 10 amp. 250 v . normal one hole fitting. 2/9 each, or 30/- per doz. ELECTRIC LOCK. 24 w , coil, but rewindable to other voltages, $4 / 8$ each.
COMPRESSIOX TRIMMRRS. Twin 100 pF . 1/2 each. 9/- per dozen.
EIMIATURE RELAY. American make. 630 obm coil. $20 / 30$ volt operation. 2 pole change-
over. $3 /-$ each. $30 /$ per dozen. PRECISION WHEATSTOXE BRIDGE. Oppor tunity to build cheaply. 100 K wire wound pot.
 32 panels each $5 / \mathrm{ln} . \times 8 \mathrm{in} 6 /$.m
3in. PM LODDSPEAKRR. 3 ohm, 12/6, 80 ohm TRANBISTOR FEREITE ELAB AERIAL with medtum and long wave coilg, 7/6 each
SLIDE SWITCR. Sub miniature double pole changeover. $2 \downarrow$ each. $18 /-$ per dozen.
MAGSLIPS (Selsynis). American made repeater motors for transmitter and recelver. $27 / 6$ each Facuum Cleaner Flex. Non-kinkable ribbed Yacuim cleaner Flex fonder, most pliable but very tough. $24 / 36$
rubber Cores. Normally $1 / 9$ per yard, onere
100 yard coil, post and insurance $8 / 6$. gob-Riniature silicon Diodes. General purpose
type with gold-plated, leads, $1 /=$ each, $10 /-$ per doz.
MINIATURE WAFER SWITCHES

SILICON RECTIFIERS

Tested and guaranteed
 d.

CASSETTE LOADED DICTATING MACHINE
Battery operated atul with ill accesonries. Really fantastic offer a British
 mate 231 outfit for only 88/18/6 brilliantly designed for sneed and efficiency-cassette takes normal
spools drops in and out for easy loading-atl normal functionsacceasories include:- stethoscopic earpiare- erystal microphone has on/oft awitch-telephone pick-up tape reference pad-DON'T MISA THIS UNREPEATABLE OFFER SEND TODAY \&B/18/6
phis $7 / 6$ post :ind ins. Footawitch ph1s $7 / 6$ post and ins. Footswitch 18/6 extra. Npare

NOUGRTS AND CROSSES MACHIME. Tbis machine, degeribed in sept. 65, is impossible to beat and will provide endless fun at home and cousiderable attraction (and profit) at charity do's and fetes, ets, It employs 19 make this are available. Price $\mathbf{2 4 / 1 0 / -}$, post and insurance. $3 / 6$.

TWO NEW KITS
Muld-purpose Audio 8witch, 5 transistors and all other components to plus $2 / 9$ post and insurance.

Analog Computer, all parta including centre zero galvonometer, perspe. cursor- 8in. dials, to make the unit described in list month's issue Available at $39 / 6$, plus $2 / 9$ post and insurance.

F.M. TUNER

of exceptional quality, giving really fantastic results with virtually no noise- Suitable for mains or battery
operation. 6 transistors-three $\mathbf{1 F}$ operation. 6 transistors-three $1 F$
stages-double tuned discriminator stages-a
Comple tule new, and built up nill read complete, new, and buit of $4 \times 2 \mathrm{in}$
to work on chassis. Size 64×2 with tuning scale and slow motion irive.
28/10/-

SOLID STATE IGNITION

Big things are claimed of Electronic ignition bystems and if yon would, like to try for yourself a circuit was descrihed in ' Practical Electronics'

OZONE AIR CONDITIONER

 For removing suells aml generally improving oppressive atmosphere. In neat hammer finishbox. 'ses Philips ozone lamp and maina unit. Lamp easily replaceable. Only $30 / 6$ plus

750 mW TRANSISTOR AMPLIFIER

4 trinsistors includitig two in push pull input for crystal or maguetic microphoue or pick-up-feed-back loops-sensitivity $5 \mathrm{~m} / \mathrm{v}$. Price 10/6. Post and insurance $2 / 6$.
Speakers 3 in. $18 / 6,5$ in. $13 / 6$. $6 \quad 4 \mathrm{inc}$. $14 / 6$.
CIRCULAR FLUORESCENT

NOW INSTANT START
Brings sunshine
150 watts of light but uses only 40 w . Beautiful fittings with glass, nom-phatic centre, huorescent tube And choke control. Marte Philips. Regular price $84 / 15 /-$ Special budget price 68/B plus
$8 / 6 \mathrm{c}$ anul ins. Pleage state colour of glass centre, white, pink, blue. red, black, yellow or cream. Alao whether plug into lamp holder or ceiling mounting model. 80 watt model (normal start), $99 / 6$. $10 /$

MAINS TRANSISTOR

 POWER PACK
Designed to operate trangis

 Adiustable output 6 v., 9 v.., 12 volts for up to 300 mA . (class [3 working). Takes the place of PP6, of the PP9 and others, Kit comprige mains transformer. rectifier, smoothing and loal resistor, 5,000 and 500 nifl conlensers. Zene fiode and inatructions. Real snip at only $14 / 8$ plus $3 / 6$ portage9VOLTPRECISION MOTOR Intended for drixing battery operated tape recorlers and record players. Laminated, 6 Pole armature with Brish Gear and rapid start suiteb Normally 25/\% Our Price
\%/6, plus post and insur. $1 / 6$

SIMPLE RECEIVER FOR LOW VOLTAGE

 $A^{\text {T }}$ TRF tranisistor get powered fron the sun or a who forget to 8 witch off. 4 N.P.N. silicon transistor diode and all other components necessary to build this circuit degcribed in "Wire. less World,'" Oct., are available as a kit. Price 19/6, plus $2 / 6$ post and insurance
PHOTO-ELECTRIC KIT

All parts to make light operated switch/burglar alarm/counter, etc. Kit comprises printed circuit, Laminated Boards and chemicals, Latching relay, Intra-red sensitive Ehotocelland Hood. 2 Transistors, cond., Terminal block. Plast case, Essential data, circuite anit Ple chassis car parking light, modulated light alarm. Simple car inisible ray switch-counter-stray light alarmwarbing tone electronic alarm-projector lamp stabiliser, etc., Only 39/6, plus $2 /-$, post and insur.
HI-FI SPEAKER BARGAIN
12 in . High fidelity loudspeaker. High
flux permanent magnet permanent either 3 or 15 ohm speech coil. handle up to 10 watcir and new Price 29/6. With plus $3 / 6$ post and insurance
Multi Purpose Neon Test Unit Rabust, useful and instructive-teata insulationcatpacit -contingit resistor and L.T. fault finder -kit comprises neon indicator-4-way wafer -kit comprises neon indicator-4-way wafer switch-ebonith liagrath only $9 / 6$, plue $2 /$ post and ingurance

PP3 Eliminator-play your pocket radio from the mains! Save fs. Complete component kit comprise
4 rectifers-mains inopper resistances, stnoothing condenser and instructions. Only 6/6, plus $1 /$ - post.
SNIPERSCOPE
 Famous ey ar thime
for seeing in the tark this is an infra-red image con-
verter cell with verter cell wita a
silver caesiun silver which lights screen which lights
up (like a cathode ray tube) when the
electrons released electrons released
golden opportunity experiments, 7/8 each, posi 2or some interesting experiments, Data will be supplied with cells, if requested

HALF PRICE OFFER

G.E.C. I3A SWITCHED SOCKETS Suitable for ring mains, etc., like the moclern fused piug surface or sunk
(fush) mounting type, $4 / 8$ ea. $54 /-$ doz 12 v . INVERTER
Fully transigtorised for operating a 20-watt fluorescent tube or other 20 -ratt mains device.
8ize $6\{t$. long by $1 /$ hy 1 Bin . $\mathrm{E} 3 / 10 /=$. Poot and size 6 ft. long
Waterproof heating ciement
26 yards lengeh 70 W . Self-regulating temperiture control, $10 /=$ post frec.

Where postage is not definitely stated as an extra then orders over 83 are post iree. helow post free, otherwise add $1 /$-for post.

Sonotone TCL

HIGH FIDELITY STEREOPHONIC CERAMIC CARTRIDGES
Sonotone 9 TA SERIES. Superior quality cartridges offering extremely high compliance for a cartridge with dual styli. Tracking weights as low as $1-3 \mathrm{gm}$. allow reproduction from heavy modulated records without distortion on most changers. Standard $\frac{1_{2}^{\prime \prime}}{2}$ fixing centres. Prices: Sapphire $\neq 2.18$. 10 . Tax paid. Diamond $£ 3.16 .7$. Tax paid. Other types available.

BAKER I 2 in. DE-LUXE Mk II LOUDSPEAKER
Now with high efficiency tweeter cone
Especially designed to provide full range reproduction at an economical cost. Suitable for use with all high fidelity systems.

Maximum Power
Bass Resonance
Flux Density 32-38 c.p.s. Flux Density $\quad 14,000$ gauss Voice coil diameter Voice coil impedanse Voice coil material $\quad 15 \mathrm{ohms}$ Useful response 25 Copper Cone surround
Chassis material
Overall diameter
Send for New catalogue and enclosure plans

(DEPT. P.E.I8) THO 1665

ELECTRONICS GALORE! IN THE NEW dca CATALOGUE

THE CONVENIENT WAY TO SHOP FOR ALL YOUR ELECTRONIC NEEDS
EVERYTHING FROM SINGLE COMPONENTS TO COMPLETE EQUIPMENT ALL AT BEST VALUE PRICES.
SEND I/6d. NOW FOR YOUR COPY TO Dept. PE/7
dca ELECTRONICS LIMITED
28 UXBRIDGE ROAD, EALING, W. 5

TO SELRAY BOOK CO.
60 HAYES HILL, HAYES, BROMLEY, KENT
Please send me Without Obligation to Purchase, one of the above sets on 7 Days Free Trial. I will cither return set, carriage paid, in good condition within 7 days or send the following amounts. Basic Electricity 70/- Cash price or Down layment of 15/followed by 4 fortnightly parments of $15 /$ each. Basic Electronics 82/- Cash Irice or Down layment of $15 /$ - followed by 5 fortnightly payments of $15 /$ each. This offer applies to U.K. only: Overseas customers cash with order.
Tick set required (orly ONE set allowed on froe trial)

Signaturte
(/f under 21, signature of parent or guardian)
NAME
FULL Postal
BLOCK LETTERS BELOW
ADDRESS

GOLDRING-LENCO GL 68

Continuously variable speed control with adjustabie click in positions for standard speeds. Arm takes inter. changeable head-slides, and is rarsed and lowered by on/olf switch. Wired for mono and stereo. £19.10.7d.

There's a Goldring, or Goldring-Lenco unit to match any amplifier-whether you build it or buy it. At the modest end of the scale there's the G. 66 integrated hi-fi unit that comes complete with pick-up arm and cartridge for as little as 11 gns . Then there's the highly popular GL 68 (see left) and, for the man who wants the best he can get there's the GL 70 transcription unit with integrated transcription arm at a little under $£ 30$, or the sophisticated G 99 without arm, at around $£ 22$. Goldring hi-fi equipment includes transcription arms from 7 gns . upwards and a wide choice of cartridges. The coupon will bring you full descriptive leaflets. GOLDRING HI-FI EQUIPMENT

COMMON GROUND

MANY interesting facts are revealed through readers` letters. One point that frequently comes to light is that many newcomers make their very first acquaintance with do-it-yourself electronics because of their interest in some other quite different and seemingly unrelated hobby or pastime.

It is not hard to imagine how such introductions first come about. . . . The amateur photographer decides to build an electronic flashgun to keep up with his more affluent friends with their commercial equipment; the motorist, alert to the dangers of contemporary acquisitive society, decides to install a car alarm system; the amateur horticulturist realises the benefits to be derived from a remote temperature monitoring system for the greenhouse, particularly on those cold winter evenings. Even the more sedentary individual who normally asks nothing more than to be left alone in peace in his armchair with a book or television set as sole companion, suddenly awakens to the fact that a doorphone intercom unit could save all that bother of plodding to the front door on what are often fruitess missions.
Yes, these are representative of some different characters with widely differing ideas as to how best to spend their spare time. But they all can share common ground in amateur electronics.

Some of our new friends will limit their excursion into constructional activities strictly to the one project in mind. Others, the far larger proportion. we trust, will suddenly see the light: what a shame to ignore all the countless other possibilities of using electronics around and about the house. Not that they need become fanatics at the game, to the exclusion or detriment of any other hobby or interest; indeed home constructed electronic devices can enhance the scope and enjoyment of so many other spare time pursuits.

Furthermore, as committed electronics constructors, they will be brought into touch with an even wider range of non-vocational activities as illustrated by the specialised applications of the projects featured regularly in these pages. That common ground may well prove exceedingly fertile-in more ways than one.

CONSTRUCTIONAL PROIECTS

VIDEO PATTERN GENERATOR 415
DIAL-A-NAME GAME 420
MODEL CONTROL INSTALLATIONS 432
C.R.O. TRACE DOUBLER 443
SPECIAL SERIES
COMPUTER EVOLUTION-2 425
THE ELECTRONIC ORGAN-7 439
GENERAL FEATURES
PRESS-FIT TERMINALS 414
INGENUITY UNLIMITED 429
FIELD EFFECT TRANSISTORS 448
NEWS AND COMMENT
EDITORIAL 413
MEETINGS 438
BOOK REVIEW 442
ELECTRONORAMA 446
THE 73 PAGE 456
MARKET PLACE 459
DETACHED PARTICLES 463
READOUT 464

PRESS-FIT SOLDERING TERMINALS

0F The many forms of circuit wiring now open to amateurs and laboratory technicians, each has its inherent advantages.

This month we feature Sealectro "Cloverleaf" press-fit soldering terminals which can be used with Lektrokit perforated chassis plates No. 7 or can be mounted as required on plain aluminium plates.

The "cloverleaf" is a sub-miniature p.t.f.e. insulated press-fit, feed through terminal. P.T.F.E., otherwise known by the trade names of "Teflon" or "Fluon" has an extremely high insulation resistance, and the capacity to withstand large temperature variations.

Although rather costly, this method gives a neat appearance and is particularly suitable for h.f. work.

FITTING THE TERMINALS

The insulators*are very slightly tapered so that they are wedge fitted into pre-punched tapered holes in the chassis plates. Two projects are described on pages 415 and 443 using this method, but in order to illustrate the full details of mounting, the photographs on this page show the terminals being mounted on plain aluminium sheet.

The pre-punched plates are ideal for prototype or breadboard circuit assemblies; the components can be simply positioned on the plate so that their junction points are established. These points coincide with the terminals. Modifications or changes can easily be made for
optimum component density; since the system lends itself to above and below chassis wiring, a considerable reduction in circuit area can be affected.

If one intends using a plain 18 s.w.g. aluminium sheet or chassis the circuit components should be laid out the same as in the prepunched system to establish the junction points. (It is a good idea to sketch a rough plan on paper.) These should be marked with a scriber and holes drilled at these points with a No. 29 drill. The tapered entry for the terminal is achieved by lightly countersinking this hole half-way through the sheet with a No. 22 drill. The p.t.f.e. inserts should then be press fitted into position as in Photo. A.

WIRING

Each "cloverleaf" junction will accommodate four components or wiring leads, with a centre hole for an additional length of 21 s.w.g. bare tinned copper wire.

Soldering is a simple procedure as the "cloverleaf" provides capillary channels so that the solder flows easily when the iron is applied (Photo B). The photographs at the bottom of the page show close up, the soldered components on the board (C) and a cut-away view of a plate (D) with a terminal and components fitted.

The terminals and chassis plates are obtainable from Home Radio (Mitcham) Ltd.

THIS simple piece of equipment can be used to provide a pattern on the screen of a television receiver, showing vertical bars. It is suitable for use with such sets that have been converted to receive standard one volt peak-to-peak video signals.

A brief introduction of the theory of pulse circuitry is given in this article, but the reader should consult text books for a fuller explanation of how the various circuits, used in this piece of equipment, work.

PULSE WAVEFORM

The waveform required for displaying vertical lines is a pulse waveform that is synchronised to the line frequency or is capable of locking itself to the line frequency. The block diagram is shown in Fig. 1.

Fig. 2 shows a video pulse waveform. On the 405 -line system, the top of the pulse is at the white level, while the bottom is below the black level. The two intermediate levels are shades of grey, the lower one being the darker. The portion of the wave below the black level can be used to lock the signal into the timebase of the receiver if it is of the order of the line timebase frequency.

The waveform generated in an astable multivibrator is given in Fig. 3a. Pulses from this free running square wave generator pass into a bistable multivibrator where it is converted to a castellated waveform (Fig. 3b) which is a factor of the frequency of the pulses in Fig. 3a. This waveform is 1 volt peak-topeak (the standard video signal).

The number of "battlements" on the castellated waveform is controlled by VR1, which can give from two to about fifty "battlements" per half-cycle. Each "battlement" is of a fixed time duration, and changes the repetition frequency of the wave (Fig. 3c and 3d), and thus the number of bars seen on the screen. It will be found that adjustment of VRI will lock a picture with say four bars, then with further adjustments the picture goes out of lock, then locks again with three bars.

If the bistable multivibrator divides on both the positive and negative half-cycles of the original frequency a "staircase" waveform (Fig. 3e) would result. This would give rise to bars of different tones of grey from white to black being shown on the screen.

Fig. 1. Block diagram of the video pattern generator

Fig. 2. A typical video monochrome pulse waveform

Fig. 3. Square wave conversion to video pattern waveform

30 (top left). Output from the astable multivibrator

3b (lower left). Castellated by the bistable multivibrator

3c (top right). Two "battlements" per half wave. $\lambda=6 t$

3d (lower right). Five "bottlements" per half wave. $\lambda=1 \mathbf{2 t}$

3e (left). Staircase waveform

It would give the same effect as viewing colour bars on a monochrome receiver (see photographs).

The astable or free running multivibrator generates a symmetrical square wave at approximately 21.6 kHz which is a little more than twice the standard 405 -line frequency (10.125 kHz). The circuit (Fig. 4) is conventional; the frequency is controlled by C 1 and R ?

$$
\text { Since } t \simeq 0 \cdot 7\left(R_{2} C_{1}+R_{3} C_{2}\right)
$$

and $R_{2} C_{1}=R_{3} C_{2}$

$$
t \simeq 1 \cdot 4 R_{2} C_{1}
$$

but $\quad f=\frac{1}{t}=\frac{1}{1 \cdot 4 C_{1} R_{2}}$

Circuit values are, C_{1} is $2,200 \mathrm{pF}$ and R_{2} is 15 kilohms.

$$
\text { Therefore } \begin{aligned}
f & =\frac{10^{12}}{1.4 \times 2,200 \times 15 \times 10^{3}} \\
f & \simeq 21.64 \mathrm{kHz}
\end{aligned}
$$

In theory, the value of C_{1} and C_{2} would have to be $2,353 \mathrm{pF}$ to give a frequency of exactly twice the 405 line standard frequency, but $2,200 \mathrm{pF}$ is the nearest preferred value and is close enough.

Trigger pulses are taken from TR2 to the bistable multivibrator. The bistable operates on half the original frequency, i.e. at approximately 10.8 kHz . Its rate of division is altered by VR1. This alters the time constant of the circuit and the mark/space ratio.

ADDER

The outputs from the astable and bistable multivibrators are combined in the adder circuit of TR5. Fig. 5 shows an adder circuit, the gain of which is the ratio R_{13} / R_{12} where R_{11} and R_{12} provide the two inputs and determine the level of voltage injected into the transistor, for assuming a unity stage gain, i.e. $R_{13}=$ R_{12} (resistor R_{14} is R_{L} in Fig. 4).

$$
v_{0}=-\frac{R_{13}}{R_{12}}\left(v_{1}-v_{2}\right)
$$

the negative sign showing a 180 degree phase shift.
The values of R11, R12, R13, and R_{L} have been calculated to give a 1 volt peak-to-peak output waveform. R11 and R12 can be varied. This will vary the level of each waveform, and will change the shade of the bars seen on the screen. From the collector of TR5 the signal passes through DI, which clamps it to "earth" level (earth being zero volts in this part of the circuit). The clamping process clips the negative going pulse on the output waveform as shown in Fig. 6.

Fig. 5. Basic adder circuit of TR5

Fig. 6. Effect of clipping negative pulses at the output from TR5

TR6 is an $n p n$ transistor used as an emitter follower, and is biased by the current flowing through the diode D1. Frame sync pulses can be inserted into the waveform via SK1 and D2. This will enable the frame timebase of the receiver to be tested.

The high frequency transistor used for TR6 ensures a fast rise time on the waveform, and sharp transistions from black to white can be seen. If TR6 is a BSY18, BFY27, BSY27, etc. the fast rise time is an advantage, but an OC1 39 should work just as well. The output from the emitter follower is taken via a $0 \cdot 1 \mu \mathrm{~F}$ capacitor C8 to the phase reversal switch. This enables the signal to be changed from peak white to peak black.

The unit can be made up quite compactly on a piece of perforated board or Lektrokit chassis plate No. 7 using Sealectro press-fit terminals. Figs. 7 and 8 show the layout. Full instructions are given on page 414.

The photographs, taken direct from the television screen, show that different effects may be seen by adjusting VR1, S1 and the line hold control (line timebase frequency) on the receiver. Test Card D gives some idea of the definition of the picture compared with the pattern generator bars.

Two pattern bars of horizontal lines shown on the screen. The number of bars is determined by the setting of VRI.

Graduated tones from black to white provided by the staircase waveform when the bistable multivibrator divides on both positive and negative half cycles

This picture of Test Card D (405 lines) shows poor definltion and non-linearity

Fig. 7. Top and underside views of the perforated aluminium chassis plate No. 7

Fig. 8. Layout of components in the box

COMPONENTS

Resistors	
R1	$220 \Omega 2$
R2	$15 \mathrm{k} \Omega \Omega$
R3	$15 \mathrm{k} \Omega$
R4	$220 \Omega 2$
R5	$2.2 \mathrm{k} \Omega$
R6	$10 \mathrm{k} \Omega 2$
R7	$10 \mathrm{k} \Omega 2$
R8	820Ω

R9	$10 \mathrm{k} \Omega 2$
R10	$2.2 \mathrm{k} \Omega \Omega$
R11	$68 \mathrm{k} \Omega$
R12	$68 \mathrm{k} \Omega$
R13	$100 \mathrm{k} \Omega 2$
R14	$10 \mathrm{k} \Omega 2$
R15	$4.7 \mathrm{k} \Omega$
R16	47Ω

All 10%, $\frac{1}{2}$ watt carbon

Potentiometer

VR1 $5 k$ 【2 linear carbon

Capacitors

Cl	2,200pF polyester 500 V
C2	$2,200 \mathrm{pF}$ polyester 500 V
C3	$0.01 / 2 \mathrm{~F}$ disc ceramic 30 V
C4	$0.01 / \mathrm{F}$ disc ceramic 30 V
C5	$0.1 / 1 \mathrm{~F}$ dise ceramic 20 V
C6	$0.01{ }^{2} \mathrm{~F}$ dise ceramic 30V
C7	$0.01 / 2 \mathrm{~F}$ dise ceramic 30 V
C8	$0 \cdot 1 / 1 \mathrm{~F}$ disc ceramic 20 V
C9	$100 \mu \mathrm{Felect}$. 15 V
Clo	I,000/2F elect. 15 V

Cl $2,200 \mathrm{pF}$ polyester 500 V
C2 $2,200 \mathrm{pF}$ polyester 500 V
C4 0.01 I F disc ceramic 30 V
C5 $0.1 / 2 \mathrm{~F}$ dise ceramic 20 V
C6 $0.01{ }_{\mu} \mathrm{F}$ dise ceramic 30 V
C7 $0.01 / 2 \mathrm{~F}$ dise ceramic 30 V
C9 $100 \mu \mathrm{~F}$ elect. 15 V
C10 $1,000_{\mu} \mathrm{F}$ elect. 15 V

```
Transistors
    TRI to 5 OC44 or OC42 (5 Off) (Mullard)
    TR6 BSY27 (Mullard)
Diodes
    DI, 2 OA81 (2 off)
    D3 OA5
    D4 OAZ 247 or ZF9.1 (9V Zener)
```

Transformer
TI Pri. 200-250V; see 8 V (Bell transformer)

Switches

SI Double-pole, 2 way toggle switch
S2 Double-pole, on/off toggle switch

Sockets

SKI, 2 Coaxial sockets with plugs

Miscellaneous

Press-fit "cloverleaf" terminals (Sealectro) Chassis Plate No. 7 (Lektrokit)
(Home Radio (Mitcham) Ltd.)

On some settings of the controls white horizontal lines will be obtained equispaced on the picture 10 allow one to set the linearity controls.

The unit can be used to test video stages of receivers, transmitters, monitors, etc. and for the budding television "ham" produces an inexpensive electronic test pattern.

The power supply to the generator (9 V d.c.) is fairly critical as a higher voltage will not allow the capacitors to charge up properly, and will upset the waveforms in all parts of the circuit. As the unit draws 35 mA a mains power pack should be used: Fig. 4 shows a simple one that can be used. D4 is a Zener diode which stabilises the supply to 9 volts.

HERE is a novel idea which can give endless amusement, especially at a party or similar larger gathering. With the summer months rapidly approaching this game would be a great attraction at summer fêtes.
The purpose of the game is to score points which are derived from a system of coding for the letters of the alphabet. An element of handicap of sorts is introduced by giving certain letters a "buzz" code. These are shown in Table 1. The numerical and "buzz" codes can be altered to suit the individual, providing allowance is made on the wiring.

CODE COUNTING

Table 2 shows how the code is applied to some examples of christian names. The numbers corresponding to the name letters are added together, but a buzz code, when applicable, cancels all numbers that have gone before.

If two consecutive buzz codes apply, as in "Mary" the cancellation is void, so the previous numbers do count. In this case the name has two buzz letters R and Y; this provides a handicap in reducing the number of "counting" letters.
Each letter of each christian name is dialled (using the centre dial scale) against the initial letter of the surname on the outer scale. Let us take an example: John peter brown.
First dial J on the centre scale until it aligns with B on the outer scale. Press the button to indicate in the right-hand boxes what is scored. In this example it will be buzz (no score). Likewise dial the second letter O against B and score buzz again.

The next letter H will score 50 and N will score 60 . The second name peter will score respectively $4,2,750,2$, buzz. The last letter buzz cancels all that has gone before so the rather disappointing result for this example is nil.

CASE CONSTRUCTION

The case must be constructed first; it is made in two identical halves $18 \mathrm{in} \times 1$ in $\times 2 \mathrm{in}$. The sides are made from planed wood $2 \mathrm{in} \times \frac{1}{2} \mathrm{in}$; 9 ft will be needed for the two halves. The top and bottom boards are made from hardboard 18 in $\times 11$ in.
The bulb compartment is built up on the top by screwing a frame of wood to the hardboard lid. This frame is made from strip wood $1 \frac{1}{2}$ in $\times \frac{3}{8}$ in and is $10 \frac{1}{2}$ in long, 9 in wide, and $1 \frac{1}{2}$ in deep.
Each bulb holder (m.e.s.) is screwed to the lid in five rows of four. Holes are drilled adjacent to the terminals of all lampholders for the connecting wires to pass through.
Build up a box around each holder, $1 \frac{1}{2}$ in deep, so that the light from one box does not leak through to another. Flat pieces of white card are glued on top of each holder to reflect the light upward. It is necessary to bore a hole in the centre of each piece of card so that the bulbs can pass through to be fitted into the holders.

DIAL MECHANISM

Leave this part of the construction for a while and make the dial mechanism. The rotating dialling disc is 6 in diameter; 25 finger holes, $\frac{1}{2}$ in diameter and H_{0} in between each hole centre, are drilled around the periphery of the dial. It is best to drill these holes before cutting out the final shape of the dial, which might be plywood, s.r.b.p., or hardboard. The centre
hole in the dial is drilled to accept a Meccano rod $4 \frac{1}{2}$ in long. Secure the rod to the dial by using a Meccano face plate with boss.

Next comes the fitting of the $7 \frac{1}{2}$ in diameter wood disc on top of the case. This has the outer scale of letters of the alphabet, although these letters could be stuck straight on the box after finishing. The centre holes of both the dial and disc are concentric and are 5 in from the front (handle) side and $4 \frac{1}{2}$ in from the left-hand side of the box.

Having assembled the dial, face plate and $4 \frac{1}{2}$ in rod, pass this rod through the centre hole of the disc and through the case lid. On the inside of the case lid another disc is cut to mount the contact strips, there being 25 copper strips each lin long and $\frac{1}{2}$ in wide bent round the periphery of this disc at equal distances apart. This disc is screwed on to two wood battens $2 \mathrm{in} \times \frac{3}{8} \mathrm{in} \times 10 \mathrm{in}$.

Mount four 2 in wooden pillars lin square on the battens as shown so that they are close to the disc. Two braces are mounted on the ends of the pillars, these being Meccano strips arranged so that two holes coincide with the $4 \frac{1}{2}$ in rod in the centre of the disc. The rod is passed through this hole. Screw the battens to the inside of the lid.

Fit a bossed face plate to the $4 \frac{1}{2}$ in rod and bolt to it a copper strip made as a wiper to track over the copper contacts.

Going back to the lamp-display compartment on the right of the lid, wire the bulbs to the correct copper contacts according to the circuit diagram.

Fig. I. Complete circuit and wiring of the "Dial-a-name" game

Generalview of the open case. The dial contacts and wiper are on the left and wiring to the lamps on the right. The $4 \frac{1}{2} V$ flat pack battery is held firmly in the bottom of the case

Close-up view of the dial switch mechanism. Contact to the wiper is made by the crocodile clip on the metal spindle which is held in position by the coincident holes in the Meccano strips

A rocker switch and buzzer are mounted on top of the case. The lampholders are fitted on the top right-hand side and shrouded by cardboard compartments

COMPONENTS and MATERIALS

CASE

Wood 2 in $\times \frac{1}{2}$ in planed, 9 ft long Hardboard I8in $\times 1$ lin (2 off) Attache case handle and fastener Hinges $1 \frac{1}{2}$ in long (1 pair)
Decorative adhesive plastics sheet
Quadrant section wood $\frac{3}{4} \mathrm{in}(6 \mathrm{ft})$ for corner strengthening

DIAL ASSEMBLY

DIAL—Sheet s.r.b.p., plywood or hardboard $\frac{1}{\text { in }}$ thick, 6in diameter
LETTER DISC-Plywood $\frac{1}{4}$ in thick, $7 \frac{1}{2}$ in diameter CONTACT DISC-Plywood $\frac{1}{2}$ in thick, bin diameter BATTENS—Wood strip 2 in $\times \frac{3}{8}$ in (2 ft) PILLARS-Wood strip lin square (Ift)
CONTACTS AND WIPER-Copper strip $\frac{1}{2}$ in wide (3ft)
DIAL ROD-Meccano rod $4 \frac{1}{2}$ in long (I off)
BRACES - Meccano strips $7 \frac{1}{2}$ in long (2 off)
ROD ATTACHMENTS-Meccano face plates (No 109) $1 \frac{1}{2}$ in diameter (3 off)

LETTERS-Alphabet transfers or sticky labels (2 off each)

LAMP COMPARTMENT

WOOD FRAME-Wood strip $1 \frac{1}{2}$ in $\times \frac{3}{8} \mathrm{in}$ (39in)
CLAMP FRAME-Angle aluminium $\frac{3}{4}$ in (39 in)
LAMPHOLDERS-M.E.S. batten type (20 off)
LAMPS- 3.5 V m.e.s. torch bulbs (20 off)
LAMP BOXES-White card sheet
COVER-Translucent Perspex sheet $10 \frac{1}{2}$ in $\times 9$ in and
transparent non-inflammable acetate sheet $10 \frac{1}{2}$ in $\times 9$ in
MASKING-Black plastics masking tape

MISCELLANEOUS

Buzzer, 4 volt d.c. type
Switch, single-pole on/off push button or rocker Battery, $4 \frac{1}{2} V$ flat pack
Wire, p.v.c. covered, single core

The lamp compartment is now covered by a sheet of Perspex, preferably translucent. The number transfers are stuck on the Perspex in the right positions. Black masking tape is stuck down to the Perspex between the numbers. To protect these numbers, fit a sheet of non-inflammable celluloid on top of the Perspex and clamp both in place by screwing an angle aluminium frame round the edge to the wooden frame.

All that remains now is to complete the wiring, including the buzzer and switch. A crocodile clip is used to make contact with the wiper by clipping to the rod. Finish of the complete case by covering with adhesive plastics sheet and fix the letters to the dial and disc.

FROM THE ELECTRONIQUES HOBBIES MANUAL...

1 AERIAL ROTATORS. This range of beam rotators and accessories offers beam rotators and accessories
more advanced features than any other on the U.K. market - and at a lower price. The rotators can aim an aerial to within one degree of the transmitter iocation. No guesswork, no irritating gear clicksjust precise fine adjustment through 365 with accurate repeatability. With both models the aerial is held in place in high winds with an ingenious stop-lock brake. COMPASS MODEL offering remote fingertip control and continuous direction indication- $£ 12.12 .0$ plus $3 / 6 \mathrm{p} \& \mathrm{p}$.
AUTOMATIC MODEL (illustrated) offering remote control and facility to pre-set to desired location. A synchronised motor in the control unit gives continuous indication of aerial position£ 17.17 .0 plus 3.6 p\&

2 VALVED QOILPAX. If you are building a communications receiver, (whether for general coverage or hambands), why not avoid all the headaches in the front end by purchasing one of our highly sensitive ' QOILPAX' tuners. Sensitivity is $1 \mu \vee$ for 15 dB S: N ratio, and second channel interference is exceptionally low. The high sensitivity RF stage is designed around an EF183 connected in a Miller compensating circuit, followed by an ECH81 triode heptode frequency changer, using oscillator circuits. These give optimum mixing conductance on each waveband without any pulling. Ideal also as a converter, feeding into existing receivers. General coverage and hambands versions are available, each with an IF output of $1620 \mathrm{Kc} / \mathrm{s}$. All units are supplied completely wired, tested and aligned. Either model $£ 12.12 .0$ each plus $4 /-$ p\&p.

FREE Aerial Supplement to the Electroniques Hobbies Manual. This publication MG 222Si supplementing the Manual lists our aerial rotators and wide range of J -Beam aerials. Send for your copy today.

For the 600 page Electroniques Hobbies Manual or further detals of the products displayed on this page write to:
Electroniques (Prop. STC LId.) Edinburgh Way, Harlow. Essex. Telephone: Harlow 26777.

BRAND NEW T.V. U.H.F. TUNER AND By world famous maker Suitable By world famous maker. Suitable for use in con.
version of $T . V$ sets to $B . B . C 2(625$ fine receprion) version of T.V sets to B.B.C. 2 (625 line reception). OF ONLY 27/6. Post Paid THE BARGAIN PRICE worth far more than our price for components are and duc to the very high value we regret that no correspondence can be entered into regarding this item.)

SPECIAL PURCHASE! TURRET TUNERS By famous maker. Brand new and unused. Complete with PCC84 and PCF80 valves $34-38 \mathrm{Me} / \mathrm{s}$ IF. Biscuits or Channel to 5 and 8 and 9 . Circuit diagram supplied. ONLY 25/-each. P. \& P. 3/9.

GÖRLER F.M. TUNER HEAD

$88-100 \mathrm{Mc} / \mathrm{s} 10.7 \mathrm{Mc} / \mathrm{s}$. I.F., 151 H , plus 2/- P. \& P (ECCBS valve, $8 / 6$ extra).

LATEST COLLARO MAGNAVOX 363 TAPE DECK DE LUXE. Threespeeds, 2 track, takes up to 7 in, spools. 10 gns. Plus $7 / 6$ carr. and ins. on
each. (Tapes extra on both.) . (Tapes extra on both.)

QUALITY PORTABLE TAPE RECORDER CASE. Brand new. Beautifully made. Few only at 49/6, P. \& P. 8/6.

ACOS CRYSTAL MIKES. High imp. For desk or hand use. High sensitivity, 18/6. P. \& P. $/ 16$ MCOS HIGH IMPEDANCE CRYSTAL STICK

TWIN TELESCOPIC AERIAL. Two 3-section heavily chromed rods. Closed 12 -in. each extending to 32 in . Complerely adjustable. Universal mounting
bracket, coax lead and plug. Ideal for F.M. or T.V. bracket, coax lead
$12 / 6$. P. \& P. $2 / 6$.

QUALITY RECORD PLAYER AMPLIFIER Mk II A top-quality record player amplifier employing
heavy duty doublewound mainstransformer, ECC83 ELBA, EZ80 valves. Separate Bass Treble and Volume controls. Complete with output trans former matched for 3 ohm speaker. Size 7 in . w. $\times 3 \mathrm{in}$. d. $\times 61 \mathrm{n}$. h. Ready built and tested. PRiCE 69/6. P. \& P. 6/.
ALSO AVAILABLE mounced on board with output transformer and speaker ready to fit into cabinet below. PAICE 89/6. P. \& P. $7 / 6$.

DE LUXE QUALITY PORTABLE R/P CABINET below, Stin. above wizt Wilt take x i2in. clearance 2 in. any B.S.R. or GARRARD Autochanger or Single Player Unit (except AT60 arm SP25). Size IBin. x $15 \mathrm{in} . \times 8 \mathrm{in}$. PRICE $\mathbf{4} / 9 / 6$. P. \& P. $9 / 6$.

4-SPEED PLAYER UNIT BARGAINS All brand new in maker's original packing.
B.S.R. TU/12 $31 / 9 / 6$. Carr. $5 / 6$ GARRARD SP2S De Luxe... ci2/0/0. Carr. 5/6. B.S.R. GU7 with unit mounted pickup arm. $\begin{array}{r}\text { c4/18/8. Carr. } 5 / 6 \text {. }\end{array}$ AUTO. CHANGERS
Latest B.S.R. UA25 Super slim t6 26 $\begin{array}{llll}\text { GARRARD } 1000 \text { with special Hi-Fi cart. } 66 & 19 & 6 \\ \text { GARRARD 2000.............................. }\end{array}$ GARRARD 2000.
GARRARD AT60 10.10 .0 -arr..... 8815 All the above units are complete with tio mono head and sapphire styti or can be supplied with compatible stereo head for $12 / 6$ extra. BRAND NEW CARTRIDGE BARGAIN ! ACOS GP69-I MONO CARTRIDGE. For E.P and L.P. Complete with stylus. ONLY $12 / 6$. P. \&

BRAND NEW. $12^{*} 15 \mathrm{w}$. H/D Speakers, 3 or 15 ohm. Current production by welf-known British Guitar models: 25w. 65.5.0; 3Sw. £8.8.0
BRAND NEW 3 OHM'LOUDSPEAKERS 5 in., 12/6; $6 \frac{1}{\text { in.. } 15 /-; ~} 8$ in., 22/6; 10 in., $27 / 6$; $7 \mathrm{in} . \times 4 \mathrm{in} .16 /$.m ; $10 \mathrm{in} . \times 6 \mathrm{in} .227 / 6$.
E.M.I. 8 in. $\times 5$ in. with high flux magnet 21, .
 E.M.I. PLASTIC CONED TWEETER.
$2 \frac{1}{2}$ ". 3 ohm. Limited number: $12 / 6$ each, P, \& P. I/6 2t. 3 ohm. SPECIAL OFFER! Limized number of 12 in. 10 Watt "R.A." Speakers
3 ohm $25 /=; 15$ ohm, $27 / 6$. P. \& P. $3 / 6$. VYNAIR AND REXINE SPEAKER AND CABINET FABRICS app. 54 in . wide. Usually 35/ yd.i our price $13 / 6$ per yd. length (min. lyd.) 7.10 watt OUTPUT TRANSFORMERS to match pair of ECL 86 's in push-pull to 3 ohm outMAT ONLY IUN-. P. \& P. $2 / 6$.
supplies. Tapped pri 200-250v. Sec. 40-0 power upplies. Tapped pri $200-250 \mathrm{v}$. Sec. 40-0-40 at dial lamps etc. Drop thro mounting. Stack size $1 t^{*}$ $\times 32^{*} \times 33^{* 27 / 6 . ~ P . ~ \& ~ P . ~} 4 / 6$.
MATCHEDPAIR OF $2 /$ WATT TRANSISTOR MATCHED PAIR OF 2I WATT TRANSISTOR DRIVER AND OUTPUT TRANSFORMERS Stack size $1 \frac{1}{2} 11 \times 1 \mathrm{in}$. Output trans. tapped for
ohm and 15 ohm output. $10 / \mathrm{m}$ pair plus $2 /=\mathrm{P}$. \& P . SPECIAL OFFER: FM/AM TUNER HEAD Beautifully designed and precision engineered by Dormer and Wadsworth ted. Supplied ready fitted with twin 0005 tuning conPealigned FM sonnection. covers $86-102 \mathrm{Mc} / \mathrm{s}$. I.F. output $10.7 \mathrm{Mc} / \mathrm{s}$. Complete with ECC85 (6L12) valveand rull circuit diagram of tuner head. Another special bulk purchase enables us to offer these at $27 / 6$ each. P. \& P. 3/-. Order quickly! able with precision geared 3: I reduction drive geared $30 / \%$ P. \& P. $3 /=$.

3.VALVE AUDIO AMPLIFIER

MODEL HA34 Designed for Hi-Fi reproMains of records. A.C. built on plated heavy Ready metal chassis, size 7 tin. W x in. d. $x 4 \frac{1}{i n}$. h. Incorporates ECC83, EL84, EZ80 valves. Heavy duty, double and output transformer matched for 3 ohm speaker separate Bass, Treble and volume controls. Negative feedback line. Output $4 \frac{1}{3}$ watts. Front panel can be detached and leads extended for remote mounting of controls.
The HA34 has been specially designed for us and our quantity order enables us to offer
them complete with knobs, valves
2.5.0 etc., wired and tested for only P. \& P. 6/-.

HSL 'FOUR' AMPLIFIER KIT

A.C. Mains 200/250v.., watt, using ECC日3. EL84. EZ80 valves Wound mains duty doublewith electrostatic \star Separate Bass, Treble and volume controls, giving fully variable boost and cut with minimum insertion loss. \& Heavy negative reed back loop over 2 stages excellent quality with ensures high output at excellent quality with very low discortion factor. record player use with guitar, microphone or of controls or direct on chassis. mounting size only $7 \frac{1}{}$ in. wide $x 4$ in deep. Overall Chassis it in. * Ail components and valves are brand new. \quad Very clear and concise instructions enable even the inexperienced amateur to construct with $100^{\prime \prime}$ success. *Supplied complete with yalves, output transformer (3 ohms only), screened lead, WireiCE 79/6. Polts, solder, etc. (No extras to buy.) PRiCe 79/6. P. \& P. 6/-.
Comprehensive circuit diagram, practical layout This kit although similar kit).
employs entisely different ond advancerd tice to HA34
10/14 WATT HI-FI AMPLIFIER KIT

A stylishly fin ished monaural amplifier with an from 2 EL84s in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allowrecordsand

announcements to follow each other. Fully shrouded section wound ourput transformer to mateh and separate bass and treble controls afe provided giving good lift and cut. Valve line-up 2 EL84s ECCB3. EF86. and EZ80 rectifier. 2 Simple instruction booklet $1 / 6$. (Free with parts.) A1l Also available ready built and cested complete with std. input sockers, $19 / 5 /-$. P. \& P. P. $8 / 6$.
Carrying Case for above $28 / 6$. P. \& P. $7 / 6$. AM. P. A. P. $7 / 6$.
MATCHED PAIR AM/FM I.F.'s. Comprising Mc / s). Size $1^{-}<1 \frac{1}{2}:<2 \frac{1}{}^{+} \mathrm{H}$. Will mateh $\mathrm{FM} / \mathrm{AM}$ Tuner head on left., $1 / /-$ pair. P. \& P. 2/-. HARVERSON SURPLUS CO. LTD. I70 HIGH ST., MERTON, S.W. 19 CHErrywood 3985 Open all day Saturday Early closing Wed., I p.m. A few minutes from South Wimbledon Tube Station. (Please write clearly)
OVERSEAS P. AP.CHARGEDEXTRA. S.A.E. with all enquiries

MATHEMATICAL FUNCTION

The great advantage of an electronic computer is that $i t$ is a general purpose machine and can be programmed for one job then, when that job is finished, programmed for something entirely different. To achieve this flexibility of operation, the electronic machine works in the realm of the mathematical function, and it is to the explanation of these that the next few paragraphs must be devoted.
Suppose that a capacitor is being charged from a battery, through a resistor. The voltage and current wave-forms will look like Fig. 2.1.
If the graphs of V and I are examined more closely, it will be seen that the actual value of I is directly proportional to the slope of V. That is, near the origin of the graphs, V is sloping upwards quite sharply, and I has a high positive value. As time progresses, V slopes less sharply and the value of I drops away. In mathematical terms this can be expressed

$$
\begin{equation*}
I=C\left(\frac{\mathrm{~d} V}{\mathrm{~d} t}\right) \tag{1}
\end{equation*}
$$

where the term $\mathrm{d} V / \mathrm{d} t$ is used to represent the rate of change of voltage V with time. The operation performed on V to get $\mathrm{d} V / \mathrm{d} t$ is known as "differentiation". The letter d is an arbitrary symbol of differentiation. Similarly, to get back to V from $\mathrm{d} V / \mathrm{d} t$ the process used is known as "integration", and may be written thus:

$$
\begin{equation*}
V=\frac{1}{C} \int I \mathrm{~d} t \tag{2}
\end{equation*}
$$

Two very similar equations can be written to represent the behaviour of an inductor namely:

$$
\begin{equation*}
V=L\left(\frac{\mathrm{~d} I}{\mathrm{~d} t}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\frac{1}{L} \int V \mathrm{~d} t \tag{4}
\end{equation*}
$$

The elongated \mathbf{S} sign denotes integration.
No apology is made for starting at such an elementary point in the theory of functions, since these equations are by far the most important in the realm of analogue computing. It is in fact possible, with these four equations to set up solutions to the most complex differential equations imaginable.

Just as it is possible to differentiate V once and obtain $\mathrm{d} V / \mathrm{d} t$, it is equally possible to do it again and end up with $\mathrm{d}^{2} V / \mathrm{d} t^{2}$.

An easy way of understanding this is to consider a car travelling along a road, and to let the distance it has covered be x miles. Then if x were to be differentiated $\mathrm{d} x / \mathrm{d} t$ would be obtained which is the velocity of the car in miles per hour. A further differentiation would give $\mathrm{d}^{2} x / \mathrm{d} t^{2}$ which is its acceleration, in miles per hour per hour, and so on. In just the same manner integration may be performed again and again.
In all these examples the function "time" t has been involved and the differentiations and integrations that have been performed have been done with respect to time. Any computations done with respect to time in this manner would be known as "real time" computations.

A great deal of analogue computing is done with respect to time, although, as will be seen, it need not always be real time that is used. In some cases it is very convenient to use "half time" or "quarter time". This gives a very powerful method of speeding up what may be a tedious calculation.

Fig. 2.1. Capacitor charging circuit with voltage and current waveforms
Having described the basic formulae involved in calculus (this is the term used to describe integration and differentiation), it is possible now to turn to the differential equation, which forms the basis of all computations performed on an analogue computer. The general form of such an equation is:
$a+b x+c\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)+d\left(\frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}\right)+e\left(\frac{\mathrm{~d}^{3} x}{\mathrm{~d} t^{3}}\right)+\ldots=0$
This looks positively frightening, and as it stands, has no solution. However, if it is broken up into its separate terms, it will be seen that each term is no more than one differentiation of the previous term with a different constant attached. When all the terms are added together they might, for instance, represent the flow of air across an aircraft's wing surfaces, or, in a simplified form, they might, as has already been seen in previous equations, represent the behaviour of a capacitor or an inductor.
Solartron analogue computer in use in the electrical and mechanical research laboratories at the University of

OPERATIONAL AMPLIFIER

Toturn now to the actual hardware involved, the basic linear computing unit is the "operational amplifier" (see Fig. 2.2). The amplifier has a very high gain, and its input current is assumed to be zero.

If this is the case, then $I_{1}=I_{2}$, putting this in another form gives

$$
\begin{equation*}
\frac{V_{1}-V_{\mathrm{E}}}{Z_{1}}=\frac{V_{0}-V_{\mathrm{g}}}{Z_{2}} \tag{6}
\end{equation*}
$$

Now if the gain of the amplifier is in the thousands or even millions, then V_{g} can be neglected in comparison with V_{1} and V_{0}, and this equation becomes

$$
\frac{V_{1}}{Z_{1}}=\frac{V_{0}}{Z_{2}}
$$

or

$$
\frac{V_{0}}{V_{1}}=\frac{Z_{2}}{Z_{1}}=G
$$

where G is the "closed loop" gain of the unit as a whole. Thus the gain of this device can be controlled at will by the user simply by juggling with the two impedances Z_{1} and Z_{2}.

Suppose now that Z_{1} was a resistance of $10 \mathrm{k} \Omega$ and Z_{2} a resistance of $100 \mathrm{k} \Omega$, then the gain G would be 10 and the output voltage V_{0} would be 10 times the input voltage V_{1}. This is a simple way of multiplying a variable voltage by a constant. In fact it has performed one of theoperations required to form equation 5.

The patch board and analogue control panel on the Solartron basic 24 amplifier equipment

Fig. 2.2. Basic operational amplifer

Fig. 2.3. Two inputs fed into a basic amplifier

Fig. 2.4. Simplified diagram of an operational amplifier
In the above diagrams A is normally prefixed with a minus sign to denote 180 degrees phase shift

If the input voltage were to represent $\mathrm{d} x / \mathrm{d} t$, and $Z_{2} / Z_{1}=c$, then the output voltage will be $C(\mathrm{~d} x / \mathrm{d} t)$; one of the terms in equation 5.

Consider now what would happen if two inputs were added on to a basic amplifier, as in Fig. 2.3.

Now, using the same assumptions as before,

$$
I_{0}=I_{3}+I_{2}
$$

then

$$
\frac{V_{0}}{R_{0}}=\frac{V_{2}}{R_{2}}+\frac{V_{1}}{R_{1}}
$$

therefore

$$
V_{0}=\left(\frac{R_{0}}{R_{2}}\right) V_{2}+\left(\frac{R_{0}}{R_{1}}\right) V_{1}
$$

but R_{0} / R_{2} and R_{0} / R_{1} can be varied independently of each other, and hence it is possible to add two variables together. For instance:
Let

$$
\begin{array}{lll}
V_{1}=1 & \text { and } & R_{0} / R_{1}=a \\
V_{2}=x & \text { while } & R_{0} / R_{2}=b
\end{array}
$$

then $V_{0}=a+b x$, which are the first two terms of equation 5. It is easy to see how this technique can be extended to accomodate any number of inputs with different multipliers for each one. The only thing that remains now is to be able to differentiate and integrate electronically. Once this is possible, the whole of equation 5 will be constructed from just one input.

The only type of amplifier that has been dealt with so far is that in which the two impedances, Z_{0} and Z_{1} (see Fig. 2.4) were both resistances.

Fig. 2.5. $\quad Z_{1}$ is represented by a capacitor

Fig. 2.6. Z_{1} is represented by a resistor and $Z_{\text {: }}$ by a capacitor

Fig. 2.7. A differentiator C_{12} and scaler R_{1} are combined

In the above diagrams A is normally prefixed with a minus sign to denote 180 degrees phase shift

Elliott air data analogue computer for aircraft. Signals from the aircraft's sensors are converted for use in flight control

It may have been noted that, in Fig. 2.4, no earth or zero voltage line has been drawn. This is a matter of convenience, and provided that all voltages given on a diagram are given with respect to earth, then no confusion should arise. This makes the drafting of large, more complex circuits, a very niuch less tedious task.

Having described the results of calling Z_{0} and Z_{1} resistances, consider now what would happen if one of them, say Z_{1}, were to be a capacitance, leaving Z_{0} as a resistance, as in Fig. 2.5.

Assuming, as before, that the amplifier draws no current at its input, then $I_{0}=I_{1}$ hence, using equation 1

$$
\frac{V_{0}}{R_{0}}=I_{t}=C_{1}\left(\frac{\mathrm{~d} V_{1}}{\mathrm{~d} t}\right)
$$

or

$$
V_{0}=R_{0} C_{1}\binom{\mathrm{~d} V_{1}}{\mathrm{~d} t}
$$

This means that the output of this type of operational amplifier is directly proportional to the differential of the input. It is now that the possibilities of such an x amplifier begin to make themselves felt. Given, say, x in equation 5 , and this may be the distance that a car has travelled as read from its trip-meter, then solely by using a train of differentiators, as in Fig. 2.5, d $x / \mathrm{d} t$, and all the further derivatives of x, may be found.' This gives the speed of the car at any one point; also, its acceleration, its rate of change of acceleration, and so on.
Supposing Z_{0} and Z_{1} were to be interchanged, making Z_{0} a capacitance, and Z_{1} a resistance, as in Fig. 2.6.

In this case

$$
I_{0}=I_{1}=\begin{align*}
& V_{1} \tag{7}\\
& R_{1}
\end{align*}=C_{0}\left(\frac{\mathrm{~d} V_{0}}{\mathrm{~d} t}\right)
$$

Now, remembering that, to get from $\mathrm{d} V_{0} / \mathrm{d} t$ to V_{0} it is necessary to integrate, it is possible to integrate both sides of equation 7 , and get

$$
C_{0} V_{0}=\int\left(\frac{V_{1}}{R_{1}}\right) \mathrm{d} t \quad \text { or } \quad V_{0}=\frac{1}{C_{11} R_{1}} \int V_{1} \mathrm{~d} t
$$

The $\mathrm{d} t$ is included to show that the integration has been performed with respect to time.
Not only is it possible to differentiate and multiply with an operational amplifier, it is also possible to integrate.

The flexibility of these units is such that they can be mixed up together to give more complex results without having to use large quantities of hardware. For instance, Fig. 2.7 shows how a differentiator and a scaler can be mixed together. This dodge can save two operational amplifiers straight away.
It may have been noticed that nowhere in the preceding paragraphs is an inductor mentioned.

The reason for leaving out the inductor is that in practical circuits for this purpose they are never used. Capacitors are cheaper, smaller, easier to obtain, and more stable than inductors. Furthermore, there just isn't any need for them, since all the functions that are needed can be performed using capacitors alone.

In the next article it is intended to describe how these methods are put to use in practical analogue computers; types of d.c. amplifier that can be used; setting up for computation.

AUTOMATIC SWITCHING OF TAPE RECORDERS

THERE are, of course, alternatives to the method (January 1967 issue) of automatically switching tape recorders. One, basically with less componentsand no transistors-is shown in Fig. 1. This unit is simply interposed between the mains supply and the tape recorder. RLA is a Carpenter miniature polarised relay of the twin coil, each-side-stable variety (such as the 5 c 9 , which has 1,600 ohm coils). Coil (b) is connected so that closure of the watch contacts pulls the relay armature "in". It will, of course, remain "in" after the watch contacts have opened again.

Coil (a) is connected so that the circuit completed by the tape foil moves the armature "out". So long as the armature is "in" RLB is energised, completing the mains circuit to the tape recorder. Although normally, the unit will not be used a vast number of times, the loads switched by the watch contacts and RLA contacts are each inductive and it would be desirable to suppress arcing by wiring a resistor ($50-100$ ohms) and a capacitor ($0 \cdot 05-0 \cdot 1 \mu \mathrm{~F}$) in series across each pair of contacts as shown.

Provided the recording period is to exceed the period of closure of the watch contacts (about 35 minutes) a very short piece of tape foil will result in switching off the mains supply to the recorder. One of the short self-adhesive metallic tabs available from some photographic dealers, fixed temporarily to the back of the tape, will do the job simply and conveniently if the tape deck contacts are suitably arranged. Motor over-run will take the tab past the contacts so that the unit ceases to draw current.

For shorter recordings, a good electrolytic capacitor (say $200 \mu \mathrm{~F}$) in series with coil (b) of RLA will allow a "pulse" (whilst the capacitor charges through the coil) to move RLA armature "in", after which only a minute leakage current will flow-not enough to prevent the foil tab moving the armature "out" again at the required time. Obviously the leakage current will continue to flow only until the watch contacts open.
Since the unit draws current only during the period of watch contact closure or the period of the recording -whichever is the longer-consideration could well be given to battery operation, dispensing with a stepdown transformer which would continue to be "alive". Either way, the d.c. operating voltage is dictated by RLB: the Carpenter relay of the type mentioned, when in good mechanical adjustment, is capable of operation on less than half a volt and little more than a quarter of a milliamp-which means that each coil could have a quite large series resistance, if desired, to keep consumption to a minimum.

If operation via a transformer and rectification is preferred, the circuit of Fig. 2, which uses an additional relay, has the advantage of shutting off the mains supply to both transformer and tape recorder at the end of the recording. Operation is fairly obvious. Depressing the push-button or microswitch (of the biased-off type) closes the mains circuit to the transformer. Rectified low voltage then energises RLC through RLA contacts, and RLC contacts preserve the mains supply to the transformer when the push-button is released.

Fig. 1. Simple tape recorder switch using a Carpenter relay

Fig. 2. Improved version of circuit in Fig. I to switch off the mains supply at the end of recording

The pilot lamp (which also has another function mentioned later) indicates that the unit is set.

When the watch contacts close, RLA contacts change over, energising RLB in place of RLC, but discharge of the capacitor in parallel with RLC delays its de-energisation long enough for its function to be taken over by RLB, thus preserving continuity of the mains circuit. RLB's second pair of contacts complete the mains supply to the tape recorder.

When the deck contacts are bridged by the foil tab and RLA changes over again there is a fraction of time during which its armature is between its side contacts, touching neither. RLC is already deenergised, and RLB is immediately also de-energised so that the mains circuits to both the transformer and the tape recorder are opened. However, the fraction of time is very small indeed and if sufficient charge remains long enough on the reservoir capacitor Cl , RLC will again energise-restoring the mains supply to the transformer, though not, of course, to the tape recorder. During the changeover, RLA (via the foil tab) will briefly take some current from Cl but it will be very little; the pilot lamp will take much more.
On completion of the changeover, C2 presents a temporary virtual short to Cl , after which there may be some remanent charge on both capacitors at something less than maximum voltage) draining rapidly away via the pilot lamp and RLC coil. If the capacitance of CI is chosen to be no greater than is necessary to obviate relay chatter, the probability is that all will be wellso long, at least, as the lamp doesn't fail.

There is a simple way of making sure: a resistance R, will make RLC slow to close without disturbing its slow-to-open function-provided RLC, C2 and R all have fairly high values. A little experimenting with alternative values of C and R, with the pilot lamp removed, should quickly ensure satisfactory operation. If necessary, a bleeder resistance can be fitted across C1. Remarks, in respect of Fig. 1, concerning short recordings and inductive loads clearly apply also to the circuit of Fig. 2. All relays should be capable of operating at the supply voltage (6.3 V) and have heavy duty contacts.
If the tape recorder to be used has a three-core mains cable, the earth line can obviously also be used as a connection between the control unit and the "earthed" contact of the pair on the deck which are bridged by the tape foil. This leaves a single line connection to be made (e.g. by banana plug) to the insulated deck contact.

Fig. 3. Insulation of the tape guide and position with respect to the heads

Any rectifier diode rated at about 12 V 0.5 A will suit for DI.
N.B. Reference to removable self-adhesive foil tabs assumes use of a deck contact assembly similar to those in Fig. 3, which are easily made up. If separately mounted contacts are used, the length of stop foil spliced into the tape should be only marginally longer than the distance between them.
N. G. Dix,

London, W.I.

We would stress thot neither this system nor the original system (January 1967) are immune from the possibility of "flats" occurring on the rubber copston roller if this is mechonicolly held engoged while the recorder is not running.

SIMPLE SITAR

N the "Simple Sitar" (Ingenuity Unlimited, March issue) there should be a resistor $220 \mathrm{k} \Omega$ between TRI base and the negative supply line. R1 on the published circuit should be $4.7 \mathrm{k} \Omega$ and R2 $220 \mathrm{k} \Omega$. The battery voltage is 9 V .

FUEL SAVER TIME SWITCH

HAVE a solid fuel central heating boiler with a mains driven combustion air fan normally controlled by a thermostat. The arrangement as supplied wastes fuel overnight or goes out if the thermostat is set low due to the long waits between "fan on" phases when no heat is abstracted from the primary circuit. To cure this I found that a thirty second puff every half-hour would keep the fire alive without wasting heat. I modified the Time Switch (October 1966).
The basic time switch was used to control a power transistor with a 9 V relay (with heavy duty contacts) in the collector circuit. The delay period was extended by substituting a $1,000 \mu \mathrm{~F}$ at Cl and a $10 \mathrm{M} \Omega$ resistor at R 2 and a recycle delay (to keep the relay closed for periods of up to a minute) arranged by discharging Cl through a $100 \mathrm{k} \Omega$ preset potentiometer switched in by the relay.

Commercial units quoted for the same duty were priced in the $£ 10$ region. My switch cost $£ 4$ complete with 9 V d.c. supply from a mains power unit.

The same system, with slight variations, might be used for intermittent feeds, sampling devices, lighting displays, fountains and the like.

C. Mattingly, Wormington, Worcs.

THERMAL DELAY

Fig. I (above). Modifled
parts of the original Time

Fig. 2 (right). Mains supply is fed via the "day night" switch and RLA2 to the alr fon
f the Car Burglar Alarm System in your February issue is wired as shown, when the system is switched off, the mercury switches S1 and S2 will short-circuit the door switch whilst the car is in motion, and thus will flash the interior light.
This can be avoided by inserting a single-pole changeover switch S 4 into the circuit as shown in Fig. 1.

It must be remembered when wiring in S 4 that there can be up to four door switches; make sure that it is connected correctly.

As it is possible for the alarm to be set off accidentally, the owner may return to find a flat battery.

Fig. 1 also shows a modification to overcome this difficulty.

The system is operated in the conventional manner with mercury and door switches. When the alarm has been set any interference with the car will sound the horn for 30 seconds after which the alarm will reset itself. If the interference continues the alarm will not reset but continue sounding until manually restored.

When the concealed switch S3 is operated the two relays RLA and RLB are connected in series with the door and mercury switches.

When the circuit is completed via S1, S2, or the door switches, RLA operates and holds in via RLA1, relay RLB is a thermal delay relay which will take

30 seconds to operate. The car horn will sound via RLA2 for 30 seconds until RLB operates and RLB1 disconnects the relay circuit. RLA and RLB will release, if $S 1, S 2$, or the door switches are operated still. Relay RLA will reoperate and the horn will continue to sound. If the source of interference is removed RLA will not reoperate, thus avoiding the nuisance of flat batteries or having to attend to false alarms.

The thermal delay relay recommended is the P.O. type (Fig. 2). This can be mounted on the PO 3000 type relay, thus if RLA is the PO 3000 type relay the unit will take up very little room.

This thermal relay can be adjusted to give a delay of 10 seconds to 60 seconds in operate lag, the release lag is $1-15$ seconds depending on the operate lag and the ambient temperature.

MODEL CONTROL

PART ONE

Abstract

The short series in Practical Electronics on Miniature Model Control gave constructional details of a transmitter, receiver, and three amplifiers designed specifically for use in small models.

Sufficient information was given to allow the reader to construct and put into operation the basic units of equipment, to the point where a single or multiple on-off function could be obtained in response to a push-button command from the transmitter.

The next stage described here is conversion of a switched function to mechanical operation of various controls within the model itself.

AN IDEAL form of model control system is one where angular rotation of potentiometer spindles at the transmitter is faithfully reproduced by a like rotation of corresponding powered shafts in the model, which are linked to functions such as steering, or èngine speed. The majority of existing systems only approximate to this ideal, for the very good reason that a "full house" proportional outfit is rather expensive, and may use as many as 60 or 70 transistors. Nevertheless, it is surprising what can be done with very simple equipment and a skilful operator, particularly in the field of miniature models.

STEERING

The ability to point the model in any desired direction can be claimed as the prime requirement, and it is possible to achieve interesting results with steering alone. Other controls, such as stopping and reversing, can be added later.

Before going on to a description of an integrated steering unit it would be as well to explain first the action of the clockwork escapement. The illustration of Fig. 1 may help to make clear the sequence of events,
which is common to all four-arm escapements, including rubber powered ones.

Referring to Fig. 1, when a pulse is applied to the electromagnet by brief closure of the reed switch in the amplifier module, the latch will move down, releasing arm 1 of the rotor. The rotor is then free to move quickly under power, and drive the crank round, but the top of the latch has moved inwards and blocks the path of approaching arm 3, now on its downward journey. Thus, the rotor stops just before the crank has reached its full control position.

When the pulse ceases the latch is pulled back by its spring against the top stop, releasing arm 3 . The bottom of the latch just has time to move in and stop arm 4 when arm 3 is released, and the crank attains full control position.

Therefore, with a single input pulse of indeterminate length, the escapement has unlatched, moved under power to the next position, and relatched on cessation of pulse, ready for the next command to be given. From this it will be clear that a four-arm escapement can provide positive positioning of its crank with the minimum fuss and bother at the transmitter end, and

$\sqrt{0}$

INSTALLATIONS

Fig. I. Simple four-position sequential escapement - pulse operated

Fig. 2. Addition of stopstart circuit to steering unit

These three circuits are reprinted from the previous series on Miniature Model Contral. The Transmitter and Amplifier "B" will be given in Part Two
power is only taken from the battery for the duration of the pulse (typically $300-400 \mathrm{~mA}$).

It is only necessary to remember the simple sequence right, neutral, left, neutral to make the model go straight ahead or to left or right. Two or three fast pulses in succession will cause the escapement virtually to skip positions. Intermediate steering alignment can be approximated by fast work on the transmitter button, so that the escapement only remains at full right or left for a very brief time, sufficient to "twitch" the model in the desired direction; this is where the skill comes in.

The "Rising" Mark 1 four-arm escapement used with the prototype is manufactured by Rising and Schulz, Whissendine, Rutland, and can be obtained from many model shops. There is enough crank power available for a small boat or aeroplane, and the escapement has even been employed by the author to turn the steering wheels on a model car weighing over one pound. The clockwork motor will yield more than 150 complete revolutions of the crank on one winding.

INTEGRATED STEERING UNIT

The integrated steering unit, shown in the photographs, was made with the Recciver and Amplifier " A " module. Being only 3 gin long, this unit is small enough to fit inside electrically powered model boats. cars, and tanks. All-in weight, including batteries, is 4 ounces, making the unit suitable for fairly small model acroplanes. The main reason for having an integrated unit is that it can be quickly transierred from model to model, thus avoiding unnecessary duplication and expense.

Propulsion motors tend to radiate considerable electrical interference, due to sparking on the brushes. One remedy is to wire two $0.05 \mu \mathrm{~F}$ capacitors from the brush holders to the metal body of the motor, but even then interference may still be experienced, especially when the Receiver is positioned close to the propulsion motor.

Looking at the circuit in Fig. 2, interference control VRI has been introduced between the Receiver output and Amplifier " A " input. If interference does cause spurious triggering of the escapement. VRI can be backed off to just past the point where triggering ceases. There may be some slight loss of range, but not enough to prove troublesome.

VR1 also serves as an accessible connection for a pair of high impedance headphones, which are used to monitor Receiver operation and tone signal from the Transmitter.

Miniature model control receivers do not normally incorporate extensive supply decoupling but, when powered by low impedance Deac type rechargeable batteries, stability is adequate. However, if high gain transistors have been employed in the Receiver circuit there may be instability when it is coupled to a small layer built primary battery, such as the PP5. A simple cure for this instability, which lowers the effective battery impedance, is to wire a sub-miniature $100 \mu \mathrm{~F}$ capacitor between the negative supply rail and earth. This is shown in the photograph on the underside of the mounting panel alongside $\mathrm{Br}^{2} 2$.
The stecring unit, receiver and amplifier " A " modules are fixed to a mounting board by means of rectangular pieces of foam plastic, held in place with spots of glue. Although quite firm, the foam will absorb vibration from the propulsion motor, and guard against fatigue of soldered joints.

In the event of a very severe jolt, the modules will break free, and this avoids damage to delicate components. The crank can be attached either to the top of the putput spindle (as shown in the photograph) or underneath close to the rotor.
Higt power cells are recommended for BY2 (for example, HP7), and are slung below the mounting board and held with a rubber band. Although a small box equipped with spring contacts could be made up to take the cells, solcered connections are more reliable. Pairs of cells can be quickly taped together and soldered, and it does not take long to connect such a battery to a set of miniature screw terminals on the mounting board. In the pulsed mode, the HP7 will give a surprisingly long life, and battery replacements are infrequent.

BYI is not fixed to the mounting panel, but is used as ballast to trim the model. Similarly, switches SI and S2 (Fis. 2) should be conveniently mounted on the outside of the model. BYI is held by a rubber band, and the two switches can be attached to a sub-panel, designed for quick removal.

If the layout has been well arranged, it should be possibie to transfer the integrated unit in a few minutes to ancther model. One further practical point; the linkage to the rudder or steering can be a piece of wire with a 90 degree bend at the end, to drop into one of the holes in the crank. This is prevented from jumping out again by a short length of tight sleeving slipped on the end of the wire.

STOPPING THE PROPULSION MOTOR

Having constructed and used the integrated steering unit, the enthusiast may wish to introduce other functions, such as "stop-start" and "slow reverse". One virtue of the unit form of construction is that changes can be made without dismantling the original modules.

The only real headache is in finding a bit more space in the model to take extra circuits and batteries. If the intention is to equip one particular model only, better use of available space can be made if the sub-units are dispersed, instead of being assembled in integrated form. It is amazing how much can be stowed away in a tiny model if circuits are built on individual panels less than I in square.

The stop-start control can be readily added to the steering unit at the expense of a space measuring $\operatorname{lin} \times \operatorname{lin} \times \frac{1}{2} \mathrm{in}$, and no extra batteries will be needed: Furthermore, this motor control can be used without any modification to the simple single tone transmitter.

To make the propulsion motor stop, it will be necessary to hold down the tone button on the transmitter. It may seem the wrong way round to keep the model stationary with a continuous tone, but the reason for this becomes apparent when it is considered that the nodel spends most of its active time going forward, and that stopping is only used for manoeuvring or in an emergency.

Fig. 3a. Stop-start panel topside and underside

Fig. 3b. Construction details of RLB coil
"Stop-start" circuit details are included in Fig. 2. The bulb LPI is introduced as a battery economiser. If the escapement is to be held on for long periods it will draw a continuous current of some 300 mA , but with the bulb in series this is reduced to approximately 150 mA . The resistance of a cold filament is much lower than that of a hot filament, therefore, a heavy initial current will flow through the escapement coil when RLAI contacts close.

Before the bulb has time to warm up, the escapement latch is quickly pulled in, then the bulb glows and the current is reduced. The glow of the bulb is also a clear indication of correct circuit operation, and can be very usefully employed on single-handed range checks.

Unfortunately, although an attractively simple arrangement, the bulb does tend to slow down escapement speed and if pulses are sent in rapid succession, the bulb warms up and escapement current temporarily drops to a point where the latch is no longer pulled in. A preferred form of economy circuit will be given later.

Fig. 4. Fitting economy contacts to the escapement

OPERATION OF "STOP-START" CIRCUIT

Since relay coil RLB (Fig. 2) is wired across the reed switch RLA1, a current will flow through this when RLA1 contacts are open: This is sufficient to close reed switch RLBI and set the propulsion motor going. RLAI contacts will therefore remain closed when there is no signal, but a continuous tone from the transmitter will hold them open.

R1 and C2 suppress the arc across the reed switch contacts when switching a heavy load; motor interference suppression capacitors C3 and C4 are also shown. Only the body of the motor is connected to a common earth point, and both brushes are left floating relative to earth. $\mathrm{R} 1, \mathrm{C} 2, \mathrm{C} 3$, and C 4 should be mounted close to the propulsion motor, as permanent fixtures in the model.
"Stop-start" panel details are given in Fig. 3. The unit is very simple indeed, and can be mounted directly on the steering unit. RLB coil is wound with 2,000 turns of $40 \mathrm{~s} . w . g$. enamelled wire, and bobbin constructional details are given in the inset diagram.

REED SWITCH RATINGS

A point well worth considering, which is related to size of model and equipment, is the current rating of miniature and sub-miniature reed switches. Miniature model electric motors have a high stalling current rating, sometimes well in excess of 1 A , but the miniature reed switch, depending on type and contact material, has a typical long-life rating of 0.5A. If absolute dependability is called for, the switch rating should not be exceeded.

Although there is no reason why larger armature relays should not be used in bigger models, the reed does offer exceptional reliability and compactness, and an expected life of 100 million operations when not overstressed. Some standard size reeds, encapsulated in 2 in glass envelopes, are capable of handling as much as 3 A , and can be wound with exactly the number of turns and gauge of wire as a miniature reed in the same circuit. A bobbin for a standard reed need only be 2 in long by $\frac{3}{8}$ in dia. for a 90 ohm coil.

When a heavy current is to be switched it is recommended that larger reeds are used, either to replace the miniature reed or as slave relays. Reed switches were carefully chosen for the circuits given here, bearing in mind cost and current loading. The type numbers in the circuits are for Hamlin switches, and these are obtainable direct from Flight Refuelling Ltd., Industrial Electronics Division, Wimborne, Dorset.

No hard and fast rules can be laid down when so much depends on individual application, but it is sometimes better to retain miniature reeds and replace the motor in the model with a low consumption f ropulsion unit, where high current is a problem. This will also bring a bonus in model operating time due to lower battery drain. A suitable motor for small boats or cars is the Microperm 2000, which has a stall current of 400 mA , a running current of about 150 mA , and measures $1 \mathrm{in} \times \mathrm{H}$ in diameter case size.

ECONOMY CONTACTS

For a very fast escapement speed with good "holdon" economy, a set of contacts can be added to an escapement, as shown in Fig. 4. The contacts are normally closed when the escapement coil is not energised. When the latch moves, the contacts open and place LP1 in series with the escapement coil, roughly halving the current consumption. As before, the bulb will light up and can be employed as an indicator.

REVERSING THE PROPULSION MOTOR

Up to this point operation has been confined to one channel, using a modulated carrier only. It is possible to employ the unmodulated carrier virtually as a second channel for a separate function.
Amplifier " C " was originally intended for a 6 V supply, but will work on a 3 V source if an extra component is added. It may be remembered, from the earlier article, that Amplifier " C " is biased off by noise from the receiver. When a plain carrier is received, the amplifier switches on its relay, but does not respond to modulation.

Equally, Amplifier " A " does not respond to plain carrier, so there are two interaction free channels when both amplifiers are incorporated in a single unit.

The modified Amplifier " C " circuit is shown in Fig. 5. Enough free space exists on the amplifier panel to take not only the extra feedback capacitor C3, but a sub-miniature pre-set potentiometer VR1 and a 15 ohm relay coil identical to that used for Amplifier "A".

Fig. 5. Modified version of Amplifier "C' to operate from a $3 V$ battery

Amplifier "C" panel, together with the "stopstart" unit, are attached to the "free" end of the escapement, opposite the Receiver and Amplifier " A ". The complete control unit is $4 \frac{1}{2}$ in long and weighs 5 ounces.

REVERSING CIRCUIT OPERATION

Fig. 6 gives the complete circuit. A changeover reed relay RLC has been introduced as a simple means of reversing the propulsion motor. BY3 is the main propulsion battery and the smaller battery BY4 is switched in by RLC1 to provide slow reverse when a plain carrier is received. As before, the motor is switched off by RLB1.

Pre-set VR2 allows Amplifier " C " to be trimmed for optimum results without the necessity for altering the value of Cl in Fig. 5 and, at the same time, acts as a series resistor so that the signal from the receiver is equally shared by both amplifiers.
Note the economy contacts on the escapement in Fig. 6, and the new values of suppressor resistors in the motor circuit. The reeds of RLB and RLC can be coupled to the motor circuit with a B7G plug and socket or similar midget connector.

Fig. 6. Final comprehensive circuit with steering, stop and reverse

SETTING UP

Connect a pair of headphones via a $0.1 \mu \mathrm{~F}$ capacitor between VR1 and earth. Set VR1 to its mid-position and close S1; the hiss from the Receiver should be audible. Check that the Receiver is responding correctly to a tone signal from the transmitter to the limits of . range. Retune the Receiver if necessary and slightly advance VR1.

Next, switch on S2 and see if the escapement functions, and does not skip a position when the transmitter button is pressed. It is a good plan to set a small electric motor running close to the receiver to see if there is any interference. If the escapement starts operating of its own accord, back off VRI.
When "stop-start" is included, see that this functions correctly when RLB1 is coupled to a running electric motor. The bulb should light when the transmitter button is held down.
For Amplifier " C " the following procedure is adopted. Having first ensured that steering and stopping circuits are responding well to the transmitter, connect Amplifier " C " to S 2 and connect VR2 to the receiver output. Advance VR2 until RLC just operates then back off VR2 slightly. The correct setting is when a very slight noise is just audible from RLC reed switch. A loud noise will denote that the reed contacts are opening and closing spontaneously.

This may be checked with an ohmmeter or a bulb and battery. Key the transmitter button with modulation switched off. If all is well, RLC will change over its reed contact to the reverse position.

Test the plain carrier range, which should be slightly more than half the distance obtained with tone signals. A table of current consumption figures is given as a guide for setting up.

OTHER INSTALLATIONS

It is hoped that the information given here will enable the reader to equip a model, and devise alternative arrangements, with different amplifier and reed switch combinations. For example, if the transmitter is modified to give two tones, at 1 kHz and 5 kHz , tuned Amplifier " B ", can be placed in parallel with Amplifiers " A " and " C " to provide an extra channel, assuming

Table I. CURRENT CONSUMPTION

	No signal (mA)	Tone (mA)	Carrier (mA)
BYI Receiver	4	5	4.5
Amplifier "A"	2	150	zero
Escapement with			
economiser RLB	zero 30	150 zero c	zero 30 150
Amplifier "C"	30	zero 5	150
BY2 total	39	305	180

that two more pen cells are added in series with BY2 to give the 6 volts necessary for Amplifier " B.
The frequency determining ladder network in Amplifier " B " circuit (January issue) is tuned by capacitors $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$. If $0.02 \mu \mathrm{~F}$ capacitors are used, the amplifier will respond to a 5 kHz tone. $\mathrm{A} 0.02 \mu \mathrm{~F}$ low frequency blocking capacitor should also be added in series with the Amplifier " B " input resistor. As Amplifier " A " cuts off sharply above 2 kHz there will be no interaction between " A " and " B " channels.
The circuit diagram of the transmitter and Amplifier "B" will be reprinted in Part Two of this article.
A motorised servo can be used in place of an escapement and the wiring diagram supplied with a new servo will show how to couple to various forms of amplifier output. Although bigger than an escapement, a sequential servo works in a similar manner and its greater crank power is suited to bigger or heavier models.
Several readers have queried the r.f. chokes used in the transmitter and receiver circuits. The prototype chokes were not, in fact, home wound. They were taken from valve type i.f. transformers. There is now available an excellent 97 mA 1 mH sub-miniature choke, scarcely bigger than a $\frac{1}{2}$ watt resistor and this has been successfully used in both circuits. Manufactured by Painton, the choke is now available from Electroniques (Prop STC) Ltd., Edinburgh Way, Harlow, Essex, with the code number 58-10-0023-10.

Meetings . . .

INSTITUTION OF ELECTRICAL ENGINEERS
LONDON
Date:
May 19
Title:. Colloquium on "Advances in Measurements Brought About 'By Recently Introduced Semiconductor Devices"
Time: $\quad 9.30$ a.m.
Address: I.E.E., Savoy Place, London, W.C. 2
Tickets must be obtained from the Secretary, Savoy Place, London, W.C. 2

[^0]
SOCIETY OF ELECTRONICS AND RADIO TECHNICIANS

GLASGOW
Date: May 19
Title: Computers-A. Coppell (I.B.M.)
Time: $\quad 7.30$ p.m.
Address: Y.M.C.A. Club, Bothwell Street, Glasgow

INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS

LONDON
Daite: May 24
Title: Symposium on "Television Network
Time: Switching at the Post Office Tower"
Time: $\quad 5.30 \mathrm{p} . \mathrm{m}$.
Address: 8-9 Bedford Square, London, W.C. 1
READING
Date:
Title: May 23
Astronomical Instrumentation Prof. P. B. Fellgett
Time: $\quad 7.30$ p.m.
Address: J. J. Thomson Physical Laboratory, University of Reading

PART SEVEN

By ALAN DOUGLAS,
Sen. Mem. I.E.E.E

VIBRATO :

 Hilctidonic and MECHANICAL METHODSModern instruments rely greatly on the use of vibrato. This is partly because vibrato is an essential ingredient of romantic music; partly because it enhances the effect of certain tone qualities which would otherwise sound very dull and monotonous; and partly because it is a fashion or symbol of the times.
The word vibrato is of comparatively recent origin. It covers a multitude of sins because it can be frequency modulation, amplitude modulation, or a bit of both. Strictly speaking vibrato is equivalent to the tremulant on a pipe organ, first applied by the French; the word tremulant is a corruption of their expression tremblant. Because pipes are very sensitive to pressure changes, the device as normally fitted shakes the wind supply to certain selected ranks of pipes and this causes a considerable change in pitch, though not so much in volume. The effect is very agreeable if carefully used and when produced electronically, vibrato should give an equivalent result.
In some instruments only the volume is varied cyclically, and this is described as tremolo; an expression of Italian origin, intended to refer to the human singing voice. It is not so effective on organs as vibrato.

METHODS AVAILABLE

We can introduce the vibrato effect in two ways; either something can be done to the circuit to alter its characteristics as required; or a mechanical device can be applied to a loudspeaker to produce the desired result.

On account of the stability in tuning so easily attained with transistor generators, it is not always easy to swing the oscillators to the required extent. Further, in a
frequency divider organ, all notes down to the lowest will be modulated, and as the frequency of vibrato commonly lies between 5 and 6 Hz , pedal notes of 16 ft pitch may be so modulated. This produces a most objectıonable effect.

An alternative electrical method is to use a phase shift circuit following the generators, a necessity if these are of the vibrating reed or gear driven iron wheel type, since generators cannot be made to go off pitch. In such phase shift circuits, the pass band can be so adjusted that the bass is not modulated.

The last method, mechanical control of the sound waves, is the most effective from a truly musical point of view. Although only recently becoming popular, and heralded by some makers as a new invention, it is the oldest type of vibrato and was actually used in reed organs over 100 years ago! The forerunner of the present methods was the Everett Orgatron of 1935, whilst John Compton took out a patent for a rotating horn loudspeaker in 1936. Today, Donald Leslie's design is widely used in various forms, although the rotating unit devised by Jerome Markowitz in 1940 is a standard part of the American Allen organs; and more recently, there is the Compton Rotofon-an almost identical arrangement.

The foregoing represent all the means at present in use, although some ingenious alternatives have been proposed. So let us examine them in turn.

ELECTRONIC METHODS

In the majority of types of electronic organs which are likely to interest readers of this magazine, a Hartley type of oscillator is used as a prime oscillation generator. Although we will deal with transistor methods exclusively so far as the Practical Electronics organ is concerned, it must not be forgotten that there are thousands of valve organs in existence; therefore we show one transistor and one valve circuit in this article.

Fig. 7.1. Typical Hartley oscillator tone generator, with buffer and shaping stage to drive dividers

Because a transistor is substantially current operated, it is harder to produce a large change in the bias than in the case of a valve; and the "slope" of a transistor is entirely different from that of a valve. In Fig. 7.1 is shown a popular type of Hartley oscillator for organs. Other types vary only in detail. Differing voltages, etc. are merely due to the use of different kinds of transistor.
The base is the most sensitive element to modulate, so we find a connection which is normally floating, that is, not connected to anything, but which may be connected to a varying voltage supply through a high resistance which will not divert current from the oscillating circuit. Since the circuit shown delivers only a few volts to the load, it is possible to alter the frequency by injecting a few volts into the existing base bias. But this will very much depend on the kind of transistor used. It has long ago been found that there is an optimum value for the frequency of vibrato so produced, and this is about 8 Hz . Many people prefer a slower rate of modulation, consequently vibrato oscillators are adjustable for frequency.
It is most important that the vibrato waveform be as sinusoidal as possible, otherwise harmonics may be injected into the oscillator proper and also, the swing must be equal either way. A sine wave vibrato is therefore desirable. This also has the merit that the rise and fall of the sound is truly continuous and is not held up at all during a cycle as can happen with a square wave multivibrator. The phase shift RC oscillator is widely used to provide the vibrato modulation but this kind of oscillator requires high gain transistors.

BRIDGED-T CIRCUIT

A very successful circuit is the tuned bridged-T shown in Fig. 7.2. This was originally described in the Wireless World for December 1962 by Mr F. Butler, and can be adjusted to give the frequency for vibrato modulation as shown in the diagram.

One point to note with this circuit is that the feed resistors form part of the oscillator proper, so all must be wired up (probably 12) before tuning. Advantage can be taken of this arrangement to vary the degree of vibrato for different oscillators if desired by raising or lowering the value of these resistors until the effect is judged most pleasing. There is provision for altering both the amplitude and the frequency, and since this latter is very low, the controls can be brought out to
the console stop panel without trouble. The effect of this oscillator on the signal from a tone oscillator is shown in Fig. 7.3.

Turning now to the kind of circuit which follows a tone system, which in itself is not made to alter in pitch or volume, and is therefore applicable to any kind of electrical tone source, it is found virtually impossible to achieve the same simplicity circuit-wise and the simplest arrangement is given in Fig. 7.4. Unfortunately valves are required for this purpose, but there seems little reason why the circuit should not be transistorised. Filters are shown in the output stage to remove the switching transient and also to attenuate the bass.

Fig. 7.2. Bridged-T vibrato sine wave oscillator

Fig.7.3. Effect of vibrato circuit of Fig. 7.2 on tone oscillator waveform

Fig. 7.4. Vibrato circuit suitable for following tone generators of any kind

Such vibratos have been used by Wurlitzer, Kinsman, and Schober, and have the merit that any signal not to be so treated need not be connected to the unit. Thus, one manual need not have vibrato, nor the pedal department, even with a common generator.

MECHANICAL METHODS

Mechanical means for modulating the tone always involve some device which alternately opens and closes the direct radiation path from a loudspeaker. The earliest types used flat paddles revolving in front of a cone, as in Fig. 7.5. This scheme is still very effective, but has the drawback that the vane might stop in such a position that the sound was blocked off. Experimenters who have not tried this very simple idea might like to investigate. The effect is very pleasing, improving of course as the frequency rises. The difference between the fixed rate of rotation and the frequency source will then be greater, since the effect is based on

Doppler's theory which states that:

$$
f \text { (frequency at point of observation) }
$$

$$
=\frac{V}{V-V_{\mathrm{s}}} \cdot f_{\mathrm{s}}
$$

where $\quad V=$ velocity of sound in the medium (air)

$$
\begin{aligned}
V_{\mathrm{s}} & =\text { velocity of source } \\
f_{\mathrm{s}} & =\text { frequency of source }
\end{aligned}
$$

Unless the vane is shaped to fit the cone, the degree or extent of the vibrato will not be great; and of course some part of the cone will always be exposed and not modulated. Therefore other ideas were investigated.

ROTATING SPEAKERS AND BAFFLES

Since tremulants are always most effective at the upper frequencies, early attempts involved rotating horn loudspeakers. This does away with the difficult problem of a baffle and ensures a high degree of cut off as the horn turns away. However, current must be fed into the circuit by some means and in the first attempts, slip rings proved troublesome. Then, to extend the response of the loudspeaker further down the scale, the size became a problem. This was solved in the Leslie devices, which are as numerous as they are varied.

Two basic types exist; one which rotates a small loudspeaker without a baffle; and one in which the speaker is stationary and a shaped baffle rotates above or below the cone. A baffle is generally used in this arrangement. The small units which themselves rotate are fed with the signal from a transformer with a

(a)

Fig. 7.6. Illustrating the principle of, (a) small and (b) large, Leslie speakers
rotating winding; in the case of the larger units, connections are of course normal. Driving motors may have more than one speed, since except for the American Allen, a.c. motors are used and the speed is not so easily controlled.
Taking the Leslie units first, both patterns are shown in a basic form in Fig. 7.6. The smaller units (Fig. 7.6a) turn rather fast, but produce a very complex radiation pattern which is most effective on high notes. The larger units (Fig. 7.6b) are more generally effective, and some makers fit them inside the console. One obtains true modulation of both pitch and volume, and this is why they sound better than any electrical means of tone modulation. But why they should be so expensive is a mystery.
A rather different approach is taken by the Allen organ company and also the Compton organ company. Here we find several loudspeakers mounted on a circular baffle which must be of large size. This assembly is rotated as a whole inside a large box open at the back and there is no real attempt to make an airtight seal between the rotor and the case. Current is fed in by slip rings. Several channels can be wired

Fig. 7.7. Early Constant Martin tremulant device
into the unit, and because of the large arc described by the loudspeakers, the sound appears to move from side to side rather in the manner observed with a pipe organ when near at hand.
Apart from the main use as a vibrato device, it is found that if the baffle is turned very slowly, the spread of sound has a spacious quality which imparts a suggestion of a large room. Used with reverberation of the right kind it is therefore a useful adjunct to the organ, but it is not effective unless of large size. Of course, electrical vibrato can be added to any of these mechanical devices, when all kinds of effects become possible.

AN EARLY DEVICE

An early attempt to introduce modulation after the tone. generators was made by Constant Martin, who used the ingenious little device shown in Fig. 7.7. The signal from the generators passed through the "field" coils on its way to the amplifiers, whilst the vibrato voltage passed through the armature windipgs, and so was superimposed on the main signals. A small motor drove the armature.

Book review

BASIC PRINCIPLES OF ELECTRONICS AND TELECOMMUNICATIONS

By M. D. Armitage
Published by George G. Harrop and Co. Ltd.
390 pages, $5 \frac{1}{2}$ in $\times 8 \frac{3}{4}$ in. Price 30 s

THIs is the second edition of a popular textbook first published in 1961. Completely revised and with a considerable amount of additional text, this book must be a natural choice for the second-year technical student intending to cover the "Principles A" syllabus of the City and Guilds of London Institute's Telecommunications Technicians' Course (No. 49).

As a class work adjunct, or as a tutor text, for those who might sit this examination as external candidates, this will prove more than adequate in covering the syllabus requirements.

Liberally illustrated and with numerous worked examples, each chapter is completed with a set of questions, many of them from part C.G.L.I. examination papers, and answers which are contained at the back of the book.
G.M.H.

By B. L.Welsh

THE CIRCUIT

The circuit, containing four transistors, is basically a free running multivibrator producing two sets of negative square waves with a $1: 1 \mathrm{mark} / \mathrm{space}$ ratio, and each in antiphase with the other. The remaining two transistors form a pair of electronic "gates" or low resistance switches.

Each of these transistors has its base negatively biased by one of the square waves from the multivibrator so that it is alternately forward biased, or else forms a high resistance path to earth.

The two input signals are separately applied to the two emitters of the pnp transistors, each wired with its emitter as a collector. The two signals are fed via two 5 kilohm potentiometers which are used as gain balance controls. These two signals are alternately shorted to earth at the chopping frequency.
Trace separation is provided by negative d.c. bias on each of the two emitters via two 10 kilohm potentiometers. The enitters of the two transistors are joined together via a pair of 4.7 kilohm resistors with a centre-tap output. These provide the load. The output signal is taken from this point and fed to the oscilloscope.

With the components used the multivibrator frequency was found to be nominally $5-7 \mathrm{kHz}$ but jumped to 33 kHz when loaded with the circuitry. This provides the unit with a higher frequency response.

ACTION OF THE GATES

In the absence of any base voltage, the first gating transistor can be regarded as a reverse biased diode. Any signal appearing on its emitter is presented with a high impedance to earth via this transistor.

At the same time, however, a negative voltage appears on the base of the second gate transistor, from the antiphased output of the multivibrator. As this voltage is higher than the standing d.c. emitter voltage on gate two, this transistor becomes forward biased and consequently has a low impedance to earth via its emitter.

As there are now two alternative paths to earth, the input signal on the emitter of the first gate now goes via the lowest resistance path to the earth; this is via the second gate.

Current fows through the two 4.7 kilohm resistors and the voltage output is detected as shown, between these two resistors.
As the two d.c. voltages on each gate transistor base are 180 degrees out of phase, the signals appearing

Fig. 2. Top beam direct and d.c. coupled; middle (sine wave) and lower beams a.c. coupled. Very slight differentiation of the lower square wave is just apparent

Fig. 3. A square wave and sine wave are injected into the chopper. Both 'scope beams are d.c. coupled
at the two inputs will be alternately shorted to earth, thus producing the switched signal beam at the output.

If Y_{1} or Y_{2} is at the end of its track, then the whole supply voltage is dropped across the gate transistor.

As long as this is less than 9 V the transistors are perfectly safe. Excessive current for this case can produce burning on the end of the resistive tracks of either of the 10 kilohm potentiometers. This could, however, be eliminated by making the potentiometers 5 kilohms each with a 5 kilohm fixed resistor in series. This would give a slightly lesser degree of trace separation, but would protect the potentiometers.

COUPLING

For looking at square waves when using the unit, the output has to be d.c. coupled to the oscilloscope input amplifier, as a.c. coupling will produce differentiation (only slight) of the square wave.

Three traces of signals on a Tetronix 502A Oscilloscope are shown.

Fig. 4. Top and underside views of the chassis plate

COMPONENTS . . .

Resistors

RI, R4 Ik Ω (2 off) wirewound $5 \% 5 \mathrm{~W}$
R2, R3 $27 \mathrm{k} \Omega$ (2 off) $\}$ metal oxide 2% IW
R5, R6 $4 \cdot 7 \mathrm{k} \Omega$ (2 off) $\}$ (Radiospares)

Potentiometers

VRI, VR3 $10 \mathrm{k} \Omega$ (2 off) $\}$ miniature preset
VR2, VR4 $5 \mathrm{k} \Omega$ (2 off) $\}$ skeleton types

Capacitors

Cl, C2 4,700pF
Transistors
TRI, TR2 OC7I
TR3, TR4 BCZII

Switch

SI Single-pole on/off toggle switch

Battery

BYI 6 volts (4 pen light cells in plastics container)

Miscellaneous

Lektrokit chassis plate No. 7 and Sealectro "clover-
leaf"' terminals (Home Radio (Mitcham) Ltd)
SKI-3 Plugs and sockets coxial (3 of each)

In each case, the two lower signals displayed are chopped, the upper being the remaining beam of the oscilloscope. This top beam is displaying a square wave of about 1 kHz frequency. The middle beam is displaying a sine wave of similar frequency and the lower beam a square wave, again of similar frequency.
In Fig. 3 a square wave as well as a sine wave is injected into the chopper to show that the degree of intermodulation between the two differing shapes is only slight.

The chopping frequency on the lower two traces can be seen, but if this is a criterion, the time constants of the multivibrator can easily be changed to produce minimal chopping signal from appearing on high frequency signals.

All three input signals to the oscilloscope are produced from different isolated sources. If it is required to measure phase shift between signals, it can be seen that by putting two identical signals into each channel of the chopper, no phase shift within the device is present, thus it may be possible to measure direct time differences between signal phases.
The author successfully cascaded two such choppers, one into the other, so that simultaneous display of four signals on a dual beam 'scope was achieved. The output of the first chopper can be fed into the second chopper as one of the two inputs.

CONSTRUCTION

The circuit was constructed using standard electronic components readily available, and wired together on Lektrokit chassis plate no. 7 with Sealectro cloverleaf press-fit terminals (see page 414 for full instructions). No care was taken to screen all of the connections, although it would be advisable where very small signals from high output impedance sources are used.

If more than two channels are needed two such units can be used together, but intermodulation will occur between the two different chopping frequencies that would be produced. This can be eliminated by using the one multivibrator to drive as many gates as are needed, via a suitable emitter follower, to match the low input impedance of each set of switches.

The transistors BCZ11 are pnp silicon types. Germanium types are not suitable in this part of the circuit.

A
NEW control centre (above) for the Central Electricity Generating Board at Manchester, this is the first to operate under a three-tier grid control system, and will cover an area from Lancaster to Aberystwyth with a maximum controlled output of 5,480 megawatts. Plessey were responsible for the installation of the control centre.

Above right, we show a close-up view of two electro-hydraulically controlled governor valves, which replace conventional mechanical governors on an A.E.I. 300 megawatt turbine-generator at the West Thurrock power station. The new system incorporates an electrical speed sensing unit, from which a frequency signal is obtained and processed to provide a speed error signal. This is added to a reference voltage to control the governor valves.

Precision Measurement Machine Wins Award

The Council of Industrial Design has given an award to Ferranti for their co-ordinate inspection machine size 4, a photo-electric control system for measuring component holes and surfaces in two directions 10 an accuracy of ± 0.001 in over 24 in .

Movements of a probe are measured by an optical grating system whose light pulses are sensed by photocells and translated into a digital readout display.

Laser Image Comparison and Display

AfUTURISTIC concept of banking facilities was shown to the Press recently by the National Cash Register Company. The idea is to use holography (a means of detecting and displaying three-dimensional images using a laser beam) to match the shop customer's signature on a credit card to that on his bank account some distance away. It is thought that all shopping using cash can then be replaced by credit card holography systems.

Our picture on the left shows a credit card being inserted into a holograph unit. A photographic. reproduction of the signature can be displayed on a terminal unit.

On the right, a laser is used for demonstrating microprinting. Impulses generated by touching the keys of a typewriter keyboard causes the laser beam to form microscopically small characters on a photosensitive plate. The characters can then be printed out by normal photographic means.

Field Effect

PART TWO

TRANSISTORS

By G. B. Clayton, B.Sc., A.Inst.P

THE electrical characteristics and the theory of operation of f.e.t.s were considered last month; in this article some of the circuitry appropriate to f.e.t.s will be considered. It is not the purpose of the article to suggest that the f.e.t. is superior to the ordinary bipolar transistor, indeed arguments on the relative merits of various devices, like the valve transistor controversy that raged in the early days of transistors, are valueless without first clearly formulating a criterion of superiority.

If one adopts the criterion that the "best". device to use is the one that enables the desired circuit performance to be achieved with the minimum financial expenditure, the greater cost of f.e.t.s will usually favour the use of bipolar transistors, except in certain special circumstances, however, the price of commercially available f.e.t.s is falling so that they may eventually be used in preference to bipolar transistors.

F.E.T.S AS AMPLIFIERS

The f.e.t. like the bipolar transistor is a three terminal device and may be used as an amplifier in three different ways depending upon which of its terminals is made common to both input and output circuits.

The three amplifier configurations are called, common source, common gate and common drain analagous to common emitter, common base and common collector amplifiers respectively. The common gate circuit has a low input impedance and therefore offers no real advantages over bipolar transistor circuits, it will not be considered further.

Only junction gate f.e.t.s will be discussed here; insulated gate f.e.t.s are only just coming out of the development stage and are rather expensive.

COMMON SOURCE AMPLIFIER

A simple self-biased common source amplifier using a p-channel f.e.t. is illustrated in Fig. 10. An n-channel device would, of course, require a positive voltage supply rail. Readers familiar with valve circuits will notice the close resemblance to a common cathode valve amplifier.

Resistor R_{s} acts in a manner similar to the cathode resistor in a valve amplifier, source current flowing through R_{s} being used to produce the desired gatesource biasing voltage. $\mathbf{R}_{\mathbf{s}}$ is bypassed by capacitor C_{s} to prevent degenerative feedback. The magnitude

of the gate resistor $\left(\mathrm{R}_{\mathrm{R}}\right)$ used should be such that the leakage current which flows through the reverse biased gate junction does not seriously affect the biasing at the highest working temperature.
A circuit giving greater stability of operating conditions is shown in Fig. 11, the method of bias stabilisation being similar to the technique used for stabilising common emitter amplifiers. This method of biasing is preferable for higher temperature working or for compensating for variations in f.e.t. characteristics.
Voltage gains of about 10 are typical for common source amplifiers and because of their high input impedance, the frequency response down to low frequencies may be obtained without the use of very large values of coupling capacitor (C).
Response at high frequencies is limited by a fall of input impedance and a consequent loading of any signal source feeding the amplifier. This is due to the capacitance that exists between gate and source ($C_{p, s}$) and gate and drain ($C_{\mathrm{grt}_{1}}$). These capacitances are quite small ($C_{\mathrm{gs}}=10 \mathrm{pF}$ and $C_{\mathrm{gd}}=20 \mathrm{pF}$ are typical values for currently available f.e.t.s), but the effective input capacitance of the amplifier due to C_{gd} is increased because the signal voltage at the drain is 180 degrees out of phase with the input voltage applied to the gate (the familiar Miller effect). The effective input capacitance is given by the equation

$$
C_{1}=C_{\mathrm{gs}}+C_{\mathrm{gd}}(1+A)
$$

where A is the voltage gain of the amplifier. Substitution of typical values gives a value of about 230 pF for the input capacitance. Thus at a frequency of 10 kHz the input impedance will have fallen from its low frequency value of R_{g} to about 70 kilohms because of C_{i}. Input capacitance may be reduced at the expense of loss of gain by using smaller values of load resistance. If the load of a common source amplifier is reactive feedback through $C_{g d}$ can cause instability if no neutralisation is used.

COMMON DRAIN AMPLIFIER OR SOURCE FOLLOWER

This amplifier is analogous to the valve cathode follower and the bipolar transistor emitter follower. It is not phase inverting and is characterised by a high input impedance, low output impedance, and voltage gain less than unity, it is very useful for impedance transformation when f.e.t.s are used with bipolar transistors.

An example of a common drain circuit is shown in Fig. 12. The effect of $C_{s s}$ on the input capacitance is reduced in this type of circuit because the signal output voltage at the source varies in phase with the input signal applied to the gate. The effective input capacitance is, given by the equation $C_{i}=C_{g d}+C_{g s}(1-A)$ and with A almost unity the input capacitance is not much greater than C_{git}.

In order that the gain should approach unity the source resistance should be as large as possible. The relatively large voltage drop and power dissipation occasioned by the use of a large source resistance may be overcome by replacing it with a bipolar transistor as shown in Fig. 13. The effective source resistance is then the large dynamic resistance seen looking into the collector of this transistor. The quiescent current is set by the choice of the emitter resistance R_{c}.

AMPLIFIERS USING F.E.T.S WITH BIPOLAR TRANSISTORS

The outstanding low level characteristics of f.e.t.s are high input impedance and low noise, they are therefore

Fig. 13. Common drain amplifier using bipolar transistor instead of load resistor

Fig. 14a. Common source amplifier driving a common base pnp transistor ampllfier

Fig. 14b. Common source amplifier driving o common base npn transistor amplifier
most useful at low level high impedance points in electronic circuits, for example, as a preamplifier for use with a high input impedance transducer. Once the impedance level has been reduced it is more economical to use conventional transistors for further amplification.

Many interesting compound connections of f.e.t.s and bipolar transistors are possible; some increase the bandwidth of the f.e.t. by reducing the effects of interelectrode capacitance.

An f.e.t. common source or common drain stage may be used to drive any configuration of second stage making six possible circuit configurations. In Fig. 14 a common source amplifier is directly coupled to a common base amplifier, two versions of the circuit are shown. The voltage gain of the common source amplifier is small since it feeds the low input impedance of the common base amplifier. The low voltage gain gives a comparatively small effective input capacitance. The f.e.t. gives a very high current gain. If a large value resistance is used in the collector circuit of the bipolar transistor, high overall voltage and power gains are possible.

The circuit features a great amount of isolation between output and input making it suitable for use as a high frequency tuned amplifier if a tuned load is used instead of the load resistor. The breakdown voltage of currently available f.e.t.s is not large but quite large values of supply voltage can be used with the circuit of Fig. 14a. In this circuit the f.e.t. experiences only the voltage applied to the base of the bipolar transistor.

The effective input capacitance of a common drain amplifier, with gain close to unity, is little greater than C_{gd}, it may be reduced to an even smaller value using the type of circuit shown in Fig. 15.
In this circuit transistor TR3 drives the drain of the f.e.t. in phase with the signal applied to the gate, thus reducing the effective value of C_{gd}. The lower end of the gate resistor is also driven in phase with the signal applied to the gate, thus reducing the current through this resistance and increasing its effective magnitude.

Effective input impedances of many hundreds of megohms are possible; the input capacitance would be less than 1 pF . Input capacitance is in fact usually determined by "strays". The circuit is basically a common drain amplifier, so its gain is less than unity.

Another type of compound connection with high effective input impedance, but which can have a voltage gain greater than unity, is shown in Fig. 16. It is sometimes referred to as a "bootstrapped source follower".

The drain of the f.e.t. drives the base of the $n p n$ transistor whose collector drives the source of the f.e.t. and the lower end of the gate resistor in plase with the input signal. With the component values shown the circuit was found to have a voltage gain of eight and a maximum signal output amplitude of 4 volts. Table 1 shows the input impedance for a wide frequency range.

F.E.T. MULTIVIBRATORS

Field effect transistors can be used in nultivibrator circuits in a manner similar to bipolar transistors, but if high speed switching and high pulse frequencies are to be used bipolar transistors give better performance. However when repetitive waveforms and timing circuits having periods of several minutes are required the f.e.t. has a marked advantage.

The maximum timing resistance that can be used with a bipolar transistor is determined by the base current
required by the transistor. Because of the high input impedance of an f.e.t. very high values can be used; long time constants can be obtained in monostable and astable circuits without the need for very large capacit. ance values.

A circuit for a free running multivibrator published by Semitron is shown in Fig. 17. It is said to have a frequency of one cycle per minute.

A field effect timer circuit using a monostable multivibrator is shown in Fig. 18. In the stable state of the circuit transistors TR1 and TR2 are both conducting;

Fig. 16. Boot-strapped source follower

Table I. INPUTIMPEDANCE OF CIRCUITIN FIG. 16緮

Frequency	5 Hz	1 kHz	5 kHz	10 kHz		
Input impedance	26	26	19	8		
$\mathrm{Z}_{1}(\mathrm{M} \Omega)$						Frequency
:---						
Input impedance						
$\mathrm{Z}_{1}(\mathrm{M} \Omega)$						

a new 4-way method of mastering ELECTRONICS by doing - and - seeing . . .

1 OWN and

 complete range of presentday ELECTRONIC PARTS and COMPONENTS

2	BUILD and USE

a modern and professional CATHODE RAY OSCILLOSCOPE

UNDERSTAND CIRCUIT DIAGRAMS

[^1]

Fig. 17. Very low frequency free running multivibrator

Fig. 19. Gate waveform (top) $5 \mathrm{~V} / \mathrm{cm}$. TR2 collector (bottom) $5 \mathrm{~V} / \mathrm{cm}$. Time 0.5 second per centimetre. (Refer to Fig. 18)

Fig. 18. Field effect timer circuit

TR2 is saturated. Transistor TR3 is held cut off by the voltage across the 470 ohm emitter resistor and the potential divider connecting the collector of TR2 to the base of TR3. When the switch SI is momentarily closed the current through TR2 stops and TR3 suddenly conducts. This causes a sudden change in TR3 collector voltage which is communicated to the gate of f.e.t. TRI by the capacitor C. TR1 is cut off and this state is maintained until C discharges sufficiently to bring TR1 into conduction again when a regenerative action returns the circuit to its stable state. The waveforms at the gate of TRI and at the collector of TR2 are shown in Fig. 19. The time delay is proportional to the time constant $C R$, with the values shown the delay is variable between 3 and 90 seconds.

F.E.T. VOLTMETER

The high input impedance of anf.e.t, may be utilised in the construction of high input resistance electronic voltmeters. The circuit of a simple f.e.t. voltmeter is shown in Fig. 20. With no input voltage applied the potentiometer VRI is adjusted to bring the potential
of the point A to the same potential as the source of the f.e.t so that no current flows through the meter. The VR2 calibration control is adjusted to give full scale deflection of the meter when 0.5 V is applied to the input. The basic sensitivity of the instrument is then 4.4 megohms per volt; it is a simple matter to make it read higher voltages by using a suitable input multiplier. The reading of the meter is very stable provided no violent fluctuations in temperature take place and the instrument is extremely useful for measuring direct voltages at high impedance points.

F.E.T.S AS VOLTAGE CONTROLLED RESISTORS

The drain characteristics of an f.e.t. in the non-pinched-off region (low values of drain voltage) are almost linear and their slope is dependent on the magnitude of the gate voltage. In this region the f.e.t. acts as a variable resistor: the gate voltage determines the resistance between source and drain. Interesting applications of an f.e.t. operated in this way are possible.

SPECIAL OFFER

For this complete and up to date work on RADIO and ELECTRONICS

1,100 PAGES CRAMMED FULL WITH INFORMATION AND ILLUSTRATIONS VITAL TO THE ELECTRONICS STUDENT AND ENTHUSIAST

If you are an electronics student, teacher, enthusiast, or your business is electronics, these two fact-filled volumes will be an invaluable asset to you. Interested? Complete and send coupon TODAY. WITH NO OBLIGATION.

Application Form
To New Era Publishing Co. Ltd. (Dept. R2A)
39 Parker Street, London, W.C. 2
Please send me details of the two-volume work
"Radio and Electronics" together with particulars of easy payment terms.

Signature

RADIO AND ELECTRONICS

In two volumes
Edited by J. H. Reyner
VOLUME I deals with
Basic Principles of Electrical Engineering Circuit Design Electronic Components
Thermionic Valves
Crystal Diodes and Transistors
Cathode-Ray Tubes
The V.H.F. Phenomena
Electric Wave Theory
Plus A practical and readable guide to Engineering Mathematics indispensable to the complete understanding of electronic theory

VOLUME II deals with

Radio Transmission and Reception
Marine and Aeronautical Equipment Television Transmission and Reception Sound Recording and Reproducing (Disc, Film and Tape Techniques)
Radar Principles and Practice
Radio Interference. What causes it? How can it be controlled?
Radio and T.V. Servicing
Plus The application of electronics to medicine and industry

UARILBL
0.82

PORTABLE TYPE 68. 10. 0 .

YOLTAGE
 INPUT 230/240v. A.C. 50/60 OUTPUT VARIABLE 0-260v BRAND NEW Carriage Paid Buy direct from the importer keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp. from stock. OPEN TYPE (Panel Mounting) $\frac{1}{2}$ amp, E3. 3. 0. 1 amp, E4. 10 . 0. SHROUDED TYPE 5 amps, $£ 90.0 \quad 0 \quad 8$ amps £13. 10. 0. $10 \mathrm{amps}, \pm 17.0$. 0 $12 \mathrm{amps}, \quad 19.10 .0$. 15 amps , £22. 0. 0. 20 amps, $\mathbf{6 3 2}$. 10 . 0 37.5 amps, E85. 0. E. 0.50 amps, 1.5 amp. portable fitted metal case P voltmeter, lamp., swited, cte $\pm 8.10 .0$ P. \& C. 101 -: Similar to above 2.5 amp. 9.17 .

 100 WATT POWER RHEOSTATS (NEW) AVAILABLE IN THE FOLLOWINE VALUES1 ohm, 10 a.: 5 ohm, 4.7 a.; 10 ohm, 3 a : $25 \mathrm{ohm} .2 \mathrm{a} .550 \mathrm{ohm}, 1.4 \mathrm{a} .: 100 \mathrm{ohm}, 1 \mathrm{a}$. $250 \mathrm{ohm}, 7 \mathrm{a}$ a.: 500 ohm , 45 a.: 1.000 ohm 280 mA ; $1,500 \mathrm{ohm}, 230 \mathrm{~mA}: 2,500 \mathrm{ohm} . .2$ a. Diameter 3 tin. Shaft length $\begin{aligned} & \text { ain., dia. } \\ & \text { dīin. All at } 27 / 6 \text { each }\end{aligned}$ P. \& P. $1 / 6$.

25 WATT POWER RHEOSTATS
10 ohm, $1.5 \mathrm{a}, ; 25 \mathrm{ohm}, 1 \mathrm{a} .: 50$ ohm, 75 a ; 100 ohm, $.5 \mathrm{a} .:$ $250 \mathrm{ohm}, .3 \mathrm{a} ; 500 \mathrm{ohm}$, . $2 \mathrm{a} ; 1,000$ ohm, $15 \mathrm{a} ; 1,500 \mathrm{ohm}$,

 "CABY" MULTI-RANGE TEST METER
 Model 840. D.C. volt, 0.5
v., 2.5 v . at 10,000 ohm Szenzyl Type \& per volt. Ideal for transisper volt. ideal for transis-
tor circuit testing. A.C. tor circuit testing. A.C.
and D.C. volt, $10 \mathrm{v}, 50 \mathrm{v}$. and D.C. volt, $10 \mathrm{v}, 50 \mathrm{v}$.,
$250 \mathrm{v.} 500 \mathrm{v}, 1,1,,000 \mathrm{v}$ at $250 \mathrm{v} ., 500 \mathrm{v.} 1,.000 \mathrm{v}$. at
$4,000 \mathrm{ohm}$ pervolt. Resistance, 2 K ohm, 200 K ohm, 2 meg., 20 meg. Repair service available. Price includes Test Leads, Battery, Instruction book. Packing and Post (U.K.). E6.2.6. 3 additional models available from $54 ;-$ to $£ 14$. 14.0 . Leaflet gladly sent on request.
SOUND POWER OPERATED EX-ADMIRALTY HEAD AND BREAST SETS
Two such sets connested up will provide perfect intercom. No batteries required. Will operate p to $\frac{1}{2}$ mile. Price $17 / 6$ each plus P. \& P. 3/- or 36 VOLT 30 AMP AC or DC
VARIABLE LT SUPPLY UNIT
Low voltage supply. Fully isp-
lated. Fitted in robust metal case
with Voltmeter, Ammeter, Panel
Indicator and Chrome Handles.
Input and Output fully fused.
Ideally suited for Lab. or Indus-
trial use. E55 40/-CP.

complete composite apparatus, comprising a Transformer and electromagnet with removable coils and pole pieces. Coil tapped for $230 \mathrm{v}, 220 \mathrm{v}, 110 \mathrm{v}, 115 \mathrm{v}$; 6, 12 , $36,110 \mathrm{v}$. A.C: These coils are also used for D.C. experiments. Complete with all accessories as shown. $£ 17 \div$ $15 /$ carriage. Leaflet on request.
WIMSHURST ELECTROSTATIC GENERATORS £ $13 / 17 / 6$, carr. U.K. (B.R.S.) 10/-. Leaflet on request. ULTRA VIOLET BULBS
Easy to use source of U.V. for dozens of practical and experimental uses. 12 volt 36 watt A.C./D.C. SBC $6 / 6$. 12 volt 60 watt A.C./D.C. SBC 8/6. P. \& P. 1/- on above. Transformer to suit the above. Input $200-240 \mathrm{v}$. A.C., 12 volt 36 watts, 21/-; P. \& P. 2/6. Input 200-240v. A.C. 12 volt 60 watt, 27/-. P. \& P. 3/6.
Set of 4 Colours FLUORESCENT PAINT. Red, yellow. green and cerise. In $\frac{1}{2}$ oz. tins. Ideal for use with the above Ultra Violet Bulbs. $11 /=$, plus $2 / 6$ P. \& P.

230 VOLT A.C. GEARED MOTORS
5 r.p.m. 1.7 lb . inch $£ 2.9 .6$. P. \& P. $2 / 6$. 13 r. p.m. 1.45 lb. inch E2.17.6. P. \& P. 2/6. 80 r.p.m. 26 lb . inch E2.2.0. P. \& P. 2/6.

DOUBLE WOUND VARIABLE LT TRANSFORMERS Fully isolated low tension secondary winding. Input 230 v. A.C. Output continuously variable $0-36 \mathrm{v}$. A.C.
0.36 Vole at 5 Amp. 88.10 .0 . P. \& P. $8 / 6$.

0-36 Volt at 20 Amp. 619.10 .0 . P. \& C. $15 /-$
These fully shrouded Transformers designed to our specifications are ideally suited for Educational and Industrial Laboratory use.

CONSTANT VOLTAGE TRANSFORMER

Input 185-250 v. A.C. Output 230 A.C. Capacity 250 watt. Attractive metal case. Fitted red signal lamp. Rubber feet. Weight 17 lbs. Price £II.10.0. P. \& P. I5/-.
L.T. TRANSFORMERS

All primaries $220-240$ volts

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 995 I560 SHOWROOM NOW OPEN

Personal callers only
9 LITTLE NEWPORT St. LONDON, W.C.2. Tel. GER 0576

LODGE TRADIMG CO.

SPEAKER UNITS

12" HI/FI 25 watt 15 ohm Heavy Duty (ELAC) £6.6.0 12" Guitar 25 watt 15 ohm Heavy Duty (ELAC) £6.6.0 $12^{\prime \prime} 15$ ohm small magnet 8,000 Lines (R \& A) £2.5.0 $10^{\prime \prime}$ Ceranic 11,000 Lines 15 ohm or 3 ohm (ELAC) £1.19.6 10" $6^{\prime \prime}$ Ceramic 11,000 Lines 15 ohm or 3 ohm (ELAC) £1.19.6 $8^{\prime \prime}$ Ceramic 11,000 Lines 15 ohm or 3 ohm (ELAC) £1.17.6 $8^{\prime \prime}$ small magnet 8,000 Lines 3 ohm only (ELAC) £1.5.0 $7^{\prime \prime}$. $4^{\prime \prime}$ small magnet 7,0003 ohm only (CELESTION) 17.6 $3^{\prime \prime}$ Square 4 Hole Fixing 25 ohm only (PLESSEY)

AERIALS

CAR AERIAL WING FIXING 3 SECTION £1.5.0 CAR AERIAL LOCKING/DISAPPEARING 4 SECTION £1.17.6 CAR AERIAL WINDOW FIXING 18.9 CAR AERIAL GUTTER FIXING TOP T.V. AERIALS $\begin{array}{lr}\text { TABLE TOP } & \text { T.V. AERIALS } \\ \text { BBC/I.T.V.FM } & \text { £1.5.0 }\end{array}$ TABLE TOP T.V. AERIALS BBC 1/2 I.T.V.FM $£ 2.9 .6$
FULL MRADE DISCOUNT TO
BONA FIDE DEALERS
Terms: C.W.O. Please add S/- Postage on EASY CAR PARKING-A VISIT WILL SAVE 21 LODGE LANE,LONDON, N 12 LANE, LOND
HILIside 0749

NEW 1967 Edition RADIO AMATEUR HANDBOOK

$40 /=$
by A.R.R.L. Postage 4/-

DICTIONARY OF RADIO \& TELE. VISION, by W. E. Pannett. 36/-. Postage I/-.
RAPID SERVICING OF TRANSISTOR EQUIPMENT, by G. J. King. 30/. Postage 1/-
SUB-MINIATURE ELECTRIC MOTORS, by R. H. Warring. 36\%. Postage $1 /$-.
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR, bY A. Douglas \& S. Astley. 18/-. Postage I/-. MATHEMATICS FOR RADIO AND ELECTRONICS TECHNICIANS, by Dr. Ing Fritz Bertgold. 50/-. Postage $2 /$. TRANSISTOR POCKET BOOK, by R. G. Hibberd. 25/-. Postage $1 /$

RADIO VALVE DATA 8th ed. 9/6. Postage I/-. Compiled "WW"
Inter GEC TRANSISTOR MANUAL, $18 /-$. Postage $2 /$.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS
of British and American Technical Books
19-21 PRAED STREET LONDON, W. 2
Phone: PADdington 4185
Closed Saturday 1 p.m.

Fig. 23. Voltage to frequency converter

A simple voltage controlled attenuator is shown in Fig. 21. The attenuation ratio is given by

$$
N=\begin{gathered}
R_{\mathrm{tss}} \\
R+R_{\mathrm{ths}}
\end{gathered}
$$

where R_{14}; is the source drain resistance. The range of attenuation obtainable is dependent on the range over which R_{d} can be varied and this is a property of the particular f.e.t. in use.

In the circuit of Fig. 22 an f.e.t. is used as a voltage operated gain control. The f.e.t. is used as the emitter resistance of a common emitter amplifier introducing neyative feedback. The amount of negative feedback an 1 hence the gain of the amplifier is determined by the value of $R_{\text {tas }}$

A Mullard circuit using an f.e.t. in a voltage-tofrequency converter is shown in Fig. 23. An insulated gate f.e.t. is used in this circuit although a junction gate f.e.t. could be used in the same way. The f.e.t. is used as the resistive element in a CR npn-pnp relaxation oscillator, changing the input voltage to the gate of the f.e.t. alters the effective timing resistor and varies the frequency of oscillation.

NEXT MONTH !

SIMPLE-TO-BUILD
 OSCILLOSCOPE

Portable single beam oscilloscope with trigger and sync controls and 3in tube. Just right for audio and r.f. monitoring.

Simple to make-easy to use!

ALSO
 MODEL CONTROL INSTALLATION

The second part of this article shows how to use the P.E. Model Control Amplifier ' B ' for relayless operation of servos.

ELECTROMAGNETIC RELAYS

A comprehensive survey of different types of electromagnetic armature and reed relays and how to get the best out of them.

pBActical
 JULY ISSUE ON SALE JUNE 16 ELECTRONICS

Reserve your copy and place a regular order!
the 70
paye

by Jack Hum G5UM

Two-Plus-Three

Most short wave listeners keep in the radio room a copy of The Callbook to enable them to identify the stations they hear on the amateur bands. But besides functioning as a radio-station directory The Callbook can be a source of interesting and at times surprising information. Properly studied, it will in fact reveal a fascinating cross-section of amateur radio history when it is remembered that all two-letter callsigns printed in it are (with a few exceptions in the G4 block) of prewar origin, while all G3-plus-three callsigns are post-war. And of course all the G6-plus-three and G8-plus-three special u.h.f.-only licences are post-1964, which was the year in which these "Television" and 'Sound Licence B" permits came into issue.

What also becomes evident from a study of the pattern of British amateur transmitting licences is that there exists, in contrast to the overwhelming preponderance of G3-plusthree allocations, a smàll corpus of callsigns in the G2-plus-three series (yes, we said "G2"!), a fact which has prompted many newcomers to amateur radio to ask: What is the special significance of these calls, and why did the series start in the G2AAA block only to peter out somewhere down the G2HAA block? And why are there so few of them?

Which brings us back to the point where we left off last time, and to a word or two about what was once known as the "artificial aerial" transmitting permit.

That Unroyal Road

Before the war there was no royal road to the acquisition of a transmitting licence, as has been amply demonstrated in the last two instalments of The 73 Page. It was certainly not possible then, as it is today, to obtain "a ticket" more or less upon request after passing a

Radio Amateurs' Examination: the R.A.E. hadn't been thought of then! No, the procedure which the aspirant to transmitting facilities had to follow was to prove to the licensing authority that the "wireless experiments" on which he was engaged were such that would justify the need to transmit.
It was perhaps not surprising that a majority of applicants said they had experiments with radiating aerials in mind!

Nevertheless, whatever line of experiment was put forward, our (generally young) hopeful would almost certainly not be granted full transmitting authorisation straight away, but-much more likelywould be allocated what was known
probationary period before going on the air. (Today's cynics have been heard to say that judging from the poor quality of some of the signals and operating standards that infest the amateur bands of 1967, it is a pity that the probationary period is no longer the law. "Some of 'em ought to be on probation in a different sense!" growled one.)

"Ko 'G', Lad"

Up to the time of the war in 1939 artificial aerial permits were allocated in the Figure 2-plus-Three-Letter sequence, e.g. $2 A \mathrm{HL}$. Significantly, the national prefix was not included as part of the callsign as it is today.

Six well-known callsigns in the G2-plus-three series are shown on these QSL report cards. All were issued before the war but none of the holders transmitted on the air until after it. Left to right: G2AHL is General Manager of the Radio Society of Great Britain; G2BLA is a noted ornithologist besides being a radio amateur; G2CDX is Chairman of the Cambridge Radio Club; G2DHV is a Major who travels much on the Continent and holds several overseas callsigns as well as his British one; GM2FNF, a farmer, is one of the few transmitting men on the Isle of Arran; and G2HIF is a leading member of the Radio Club associated with the Atomic Energy Authority
as the artificial aerial (or A.A.) licence. Its purpose: to enable the newcomer to gain experience with the setting up of transmitting equipment on a non-radiating basis, output being fed not to an outside aerial but to a non-radiating artificial aerial-which today we would call a dummy load.
Although derided in some quarters, the A.A. licence system did offer the very practícal advantage of allowing the would-be transnitting amateur to master the problem of generating stable r.f. power on the short waves without making himself a nuisance to others with unintended swishes and blurps. It served also the incidental useful purpose of helping to cool the heels of the over-enthusiastic by compelling them to serve a

After all, the A.A. licensee forbidden to radiate beyond the contines of his home, had no need for national identification. The purpose of his holding his 2-plus-three callsign was to send it to himself!

One young hopeful, proud possessor of a brand new "Two-plusThree" callsign, asked for it to be published in the radio press of the day complete with the prefix " G ". Within a mail or two he found himself pulled up smartly by the G.P.O. licensing authority with a reninder that he couldn't-and shouldn'tuse "G" until he had earned his full ticket. The lad survived the reproof, and went on to mount the staircase of St Martin le Grand to take his morse test in the fullness of time.

TRANSISTORS
AFZ12. Screened V.H.F. oscillator transistors, 5/- each.
OC44, OC45, R.F. Transistors, 4/-each. OC8ID, 4/-each.
$0 C 71$ equivalent, I/- each, 63 per 100.
SWitching Transistors ASY22 (pnp) or I.8.M. (npn), 6 for 10/-
TELEVISION VALVES. BRAND NEW AND BOXED
PCF80. 7/6; PL81, $7 / 6 ;$ PCL82, $7 / 6$; PCL85, $7 / 6$; PCL84, $7 / 6 ;$ PCC84, $6 / 6$; PY81, ©/-1 ECCB2, 6/6; PL36, 9/-; EY86, 6/-; PCL83,9/-; PY33, 9/-; ECLB0; 6/6: PCC89, 9/-

Computer diodes. Make excellent detectors. Also suitable for keying BYI00 TYPE TELEVISION H.T. RECTIFIERS, SPECIAL PRICE 5/- each, 30/-dozen.
ORP12 light sensitive resistors, $9 /$ each.
TRANSISTOR BATTERY ELIMINATORS-same size as PP9. 30/-; PP6, 20/-.
BATTERY CHARGERS, with meter and fuse, 4 amp. $6 / 12 \mathrm{~V}$., $55 /$ - each.
SOLON MODEL 615 Slim Pencil-bit Soldering Irons, 25/- each.
WELLER DUAL-HEAT SOLDERING GUN, $57 / 6$.
NUTS, SCREWS and WASHERS, very useful assorted packs, 6/- each.
WALKIE-T ALKIES (not for use in U.K.), $\mathbf{E 7 / 1 0 / - p a i r .}$
MAGNETIC RECORDING TAPE, BRITISH MADE, FULLY - GUARANTEED
 7in., $1,200 \mathrm{ft}_{\mathrm{i} .}$ i $6 / 3$.
 Double Play: 3 in., 400 ft , 6/6; $5 \mathrm{mi}, 1,200 \mathrm{fc} ., 20 /-\mathrm{i} 5 \frac{3}{4} \mathrm{in}$. 1,800ft., 28/-; Triple Play Polyester: 3 in ., 600 ft ., $12 / 6$; $4 \mathrm{in} ., 900 \mathrm{ft} ., 16 / 6$.
SIGNAL INJECTOR, parts and circuit to make, $10 /$ - oniy.
-SIGNAL TRACER, parts and circuit to make, io/-only.
MOTOR CAR REV. COUNTER (less ImA meter), parts and circuit to make, 10/-only.
TRANSISTORS, COMPONENTS AND CIRCUIT to convert ImA meter to TRANSISTORISED RUMBLE AND SCRATCH FILTER (for improving reproduction of old records), all components and circuit, $\mathbf{3 0} / \mathrm{F}$ -
SINCLAIR, All products in stock including latest version of MICRO-6World's smallest radio-and only $59 / 6$!
NEEDLES FOR RECORD PLAYERS, HALF PRICE!
All types below at $3 / 6$ each!
TC8LP: GC2LP: GC8LP: BF40LP; GP67LP; GP37; GP59; TC8 Stereo LP; Studio O LP.
CARTRIDGES
CARTRIDGES
SONOTONE MONO, 10/-. ACOS, 15/-. ACOS STEREO SAPPHIRE 12/6; DIAMOND. 17/6. All complete with needles!
LAPEL MICROPHONES, Magnetic or Crystal, 10/- each.
TAPE RECORDER MICROPHONES, Fantastic value at $12 /$ - each.
ACOS MIC. $45,30 \%$. Many others, both crystal and dynamic in scock.
THIN CONNECTING WIRE. $10 y d ., 1 /-; 100 y \mathrm{~d} ., 7 / 6 ; 500 y \mathrm{~d} ., \mathrm{25/-}$; 1,000yd., 40/=. LOUDSPEAKERS. 12 in . Richard Allen. $37 / 6 \mathrm{~d}$. 12 in . Bakers Guitar, 12/6; $2 \mathrm{in}, 80$ ohm, $7 / 6$.
EARPIECES. Magnetic or Crystal, $5 /$-each.
VEROBOARD
$2 \frac{1}{2}$ in. $\times 5$ in. $3 / 11$; $2 \frac{1}{2} \mathrm{in} . \times 3$ in.. $3 / 3 ; 3 \operatorname{tin} . \times 5$ in., $5 / 6 ; 3$ in $\times 3 \frac{1}{2} \mathrm{in} ., 3 / 11$. Terminal Pins, 50 for 3/-; Spot Face Curter, 7/3; Pin Insert Tool, $9 / 6$.

ELECTRONIQUES DEALER. 600 PAGE CATALOGUE-10s. 6d, ORDERS BY POST-TO G. F. MILWARD. 17 PEEL CLOSE, DRAYTON BASSETT, STAFFS.
please include postage costs
For customers in the Birmingham area, goods may be obtained from: ROCK EXCHANGES, 231 ALUM ROCK ROAD, BIRMINGHAM 8 iin

(3) Through this ICS 3-way Training Method:

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.
MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering-alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.
MASTER THE MATHEMATICAL SIDE
To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.
Wide range of courses available include:
Radio/T.V. Engineering and Servicing, Closed Circuit T.V. Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.
NEW! Programmed Course on Electronic Fundamentals EXPERT COACHING FOR:
institution of electronic and radio enginerss
CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
CITY AND GUILDS SUPPLEMENTARY STUDIES
R.T.E.B. RADIO/T.V. SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION
p.M.G. CERTIFICATES IN RADIOTELEGRAPHY

And there are practical "learn as you build" radio courses as well.
Member of the Association of British Correspondence Colleges
for free handbook post this coupon today
l.C.S., Dept. 151, INTERTEXT HOUSE,

PARKGATE ROAD, LONDON; S.W.11

NAME

ADDRESS

OCCUPATION AGE 6/67
IITIERAAIIOHAL CORRESPOHDENCE SCHOOLS

DIGITAL VOLTMETERS!

For the first time ever. we proudly presens three digit a.c./d.c. voltmeter for less than 6100 ! Manufactured by the world famous Hawker Siddeley Group at its Gloucester Works. the Digimerer Type B.I.E. 2123 is a fully transistorised multiorange instrument possessing the following dissinctive fearures:
Electrical Characteristics :
D.c. Ranges: 10 mV to 400 V in four ranges
(1000 V for positive voltages).
Accuracy: the greater of $+0.1 \%$ of +1 digit
A.c. Ranges: 100 mV to 250 V r.m.s. in three ranges. Accuracy: the greater of: $30 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Kc} / \mathrm{s}$.
over the frequency range
Raver the irequency ran
Input Impedance: D.c.-15 Mohm on two lower ranges, I Mohm on two higher ranges.
A.c.-a.c. coupled, approximately equivalent to a shunt impedance of 8 Kohm in series with the parallel impedances 180 Kohm and 550pF.
inpur Characteristics: Single ended, floating. The
potential between terminal connected to OV and earth should not exceed 400 V d.c. or 250 V a.c nput Filter: 55 dB attenuation at $50 \mathrm{c} / \mathrm{s}$.
Conversion Time: $\mathbf{3 0 0} \mathrm{mSec}$
Sampling Rate: I reading per 2 sec or manually contralled.
Power 5upply: 100/120V, 200/250V 50c/s.
Mechanical Characteristics:
Dimensions: lozin high $\times 7$ in wide $\times 13 \mathrm{j}$ n deep.
Weight: 1516 .
Display Details: Three digit with decimal point indication. Character Height lin.
At the price we can offer these instruments no laborotory can afford to be without ane! They are ideally suited to production and inspection applications. Brand new in manulac-
turer's packing. With 102.0 turer's packing. With Corriage extra at cost
IMMEDIATE DELIVERY!

GENERAL RADIO RF SIGNAL GENERATOR

TYPE 804 C
Frequency range 8 to $300 \mathrm{Mc} / \mathrm{s}$ in 5 ranges accuracy 1% directly calibrated. Variable attenuation I Micro volt to 20MV. Modulation internal external incorporates at a glance Carrier and Modulation meters, internal stabilised P.s. $\begin{array}{ll}\text { working order. } & \text { In very geod condition and } \mathbf{~ P 2 2 / 1 0 / 0 . ~ p . p . ~ 2 0 / - ~} \\ \text { wRI }\end{array}$

HIVOLT PORTABLE E.H.T. GENERATOR Variable output from 0 to lokV d.c., Megohms range 200 to 10^{3}. A small modern completely portable instrument, Fully transistorised C/W batteries. Weight complete 211b. New condition

RELAYS MINIATURESEALED TYPES
STC 4186 EA $1 \cdot 3$ volts I heavy duty make
STC 4186 EB $6 V 45$ ohms. I HD make.
STC $4184 \mathrm{~GB} \quad 6 \mathrm{~V} 45$ ohms $2 \mathrm{C} / \mathrm{O}$.

STC 4190 GD $24 V 700$ ohms 2 C/O. (STC
STC 4184 GE 48 V 2500 ohms $2 \mathrm{C} / \mathrm{O}$.
All the above types at $8 / 6$ ea. New stock p.p. $1 /$ -
SANGAMO WESTON MINIATURE

> MOVING COIL RELAY

Resistance 90 ohms, nominal operating current 250 micro amps. single C/O. Weighs only Itoz. Relay C/W base 25/-. p.p. 1/-. Brand New.

T.M,C, CARPENTERS POLARISED RELAY

 Double wound coil TYPE 6U32 Double wound coil resistance $1000+1000$ ohms Miniarure Series. Brand new C/W base.25/-p.p. $1 / 6$.

MINIATURE LEDEX ROTARY SWITCHES 5 bank single pole II way for 24V operation. Brand new stock. PRICE ONLY 30/-. p.p. $2 / 6$

MUIRHEAD REFERENCE CELLS

Type D-845-C. "U" shaped type. Brand new in
individual cartons. \quad PRICE 25/-. p.p. $1 / 6$.

P. F. RALFE

423 GREEN LANES, HARRINGAY
LONDON, N.4. MOUNTVIEW 6939

AN/APR4 VHF COMMUNICATIONS AND SEARCH RECEIVERS

For the first time offered in new, boxed condition. Frequency Range $38-1,000 \mathrm{Mc} / \mathrm{s}$. Accuracy 1%. Five I.F. stages. Output impedance 600 or 4,000 ohms. Power supply lisv a.c. (internal). Price complete with three tuning units. NEW 690.

MARCONI POWER OUTPUT METERS

 Measures $5 \mathrm{MW}-5$ TYPE TF340Measures 5 MW- 5 watts F.S.D. A small portable instrument in excellent condition. $\mathrm{ONLY} / \mathrm{l} / \mathrm{l}$. p.p. $7 / 6$

BRITISH PHYSICAL LABORATORIES
 BRITISH PHYSICALLABORATCRMETER

 Sensitivity । MA F.S.D. resistance 75 ohms, scale Sensitivity 0 MA F.S.D. resistance reading $0-200$, scale length makes it very useful for bench work, demonstration purposes etc. where a high accuracy of indication s required, C/W special chrome fixing.$$
\begin{aligned}
& \text { ial chrome fixing: } \\
& \text { PRICE ONLY 50/-. p.D. } 3 / 6 .
\end{aligned}
$$

GARDNERS V/I "C CORE" TRANSFORMERS Double wound primary $100-250$ volts, secondarie $300-0-300$ at 60 mA and 6.3 V at 4 amps, super high quality, brand new in makers cartons.

HOME RADIO LTD. 187 London Rd., Mitcham, Surrey, CR4 2YQ Phone MIT 3282

What is your time worth per hour?

No doubt you value your time at not a penny less than five pounds per hour . . . but let us settle for an extremely conservative estimate of five shillings per hour! You could save this and much more, on your very first order to Home Radio Ltd. by using our world-famous Component Catalogue. In fact, the time and trouble this catalogue can save you is worth a fortune . . ask the other 80,000 or so contented customers.

You can save in another way too-although the catalogue costs $7 / 6$ plus $1 / 6$ for post and packing, every copy contains five vouchers each worth $1 /$ when used as directed. The latest reprint is bigger and better than ever-it lists more than 6,000 items, over 1,000 of them illustrated. Send the coupon today with your 9/- cheque or postal order.

NOW IN STOCK!

Sealectro Clover Leaf Connectors in P.T.F.E. (Lektrokit Part No, LK2031). Price 3/6 per packet of 6, plus 9d. p. \& p.

[^2]
NAME

ADDRESS \qquad

Home Radio Led.,'Dept. PE, London Rd. Mitcham, CR4 2 YQ

marhet PLALE

ltems mentioned in this feature are usually available from elecironic equipment and component retailers advertising in this magazine. However, where a full address is given. enquiries and orders should then be made direct so the firm concerned.

AUDIO FAIR

At this year's Audio Fair two companies which made an instant impact were SGS-Fairchild Ltd. and Ferranti Ltd., both first time exhibitors in this show.

The full matched set of semiconductors in the AF11 package comprises six transistors for operation at 57 volts and three diodes.

The AF12 consists of seven transistors and one diode; details of a 30 watt amplifier using these are available.

A suitable pre-amplifier design is available for both amplifiers and full details are available from SGSFairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks.

An impressive demonstration of audio equipment using silicon planar epitaxial transistors was Ferranti's contribution to the fair. All the pieces of equipment were designed by the Applications Laboratory of the Ferranti Electronics Department and a very good comprehensive 47-page brochure is issued containing all the circuit diagrams, components lists and design notes.

Ferranti pre-amplifier and f.m. tuner

SGS-Fairchild gave details of the AF11 and AF12 "packaged" kits of matched sets of six and seven silicon planar transistors and diodes suitable for building 20 and 30 watt power amplifiers respectively.

The AF1! package is supplied with full circuit and component details for an amplifier having a guaranteed power output of 20 W into 15 ohms. Frequency response is 20 Hz to $50 \mathrm{kHz}(-3 \mathrm{~dB})$. Harmonic distortion is less than 0.1 per cent and the sensitivity (for maximum output) is 450 mV .
The amplifier incorporates design features such as a stable and reliable direct coupled series output circuit, obviating the need for driver and output transformers. Square wave response is said to be excellent, with very fast rise time and no trace of "ringing".

The brochure is entitled "Ferranti High Fidelity Audio Designs", price 5s 0 d , and contains chapters on a wide range transistor phase shift oscillator, pre-amplifiers, 7 to 150 watt amplifiers, power supplies, tape recorder pre-amplifiers and amplifiers, tape record level indicator, tape bias/erase oscillator and an f.m. tuner designed to accept BBC stereo broadcasts. For details of where to obtain copies readers should write to Ferranti Ltd., Gem Mill, Oldham, Lancashire.

Ferrograph Co. Ltd., announced that all Ferrograph microphones are now supplied complete with stands.

Whilst still on the subject of the Audio Fair, in next month's Audio Trends, Clement Brown will be dealing with some of the exhibits in more detail.

The AFI2 Semiconductor pack from SGS-Fairchild

CONSTRUCTORS' AIDS

Surplus or misplaced solder can be speedily removed with a desoldering suction pump, price 65s 0 d , from Henri Picard \& Frère Ltd., 34/35, Furnival Street, London, E.C.4.

Suction is created by a sprung piston, which is released by pressure on a button catch, the solder being sucked through a pointed nozzle and ejected on the return of the piston. This seems rather expensive for a form of "cycle pump".
A new range of double-sided $0 \cdot 1$ in matrix Veroboards have just been introduced by Vero Electronics Ltd., of Chandlers Ford, Hampshire.
These new boards should be ideal for producing prototype "lash-ups" before finalising the intended designs. No special sockets for "breadboarding" are required and only a spot-face cutter is needed to break the copper strips.
It is strange the number of times faulty readings, malfunctions and general bad performance in pieces of equipment can be traced to dirt. In most cases it is found that the equipment is very delicate, and rather than risk serious damage by

attempting to clean it, one tends to give a few "puffs" to blow any loose grit clear. This procedure may work the first time but over a period of time the accumulation of dirt, grease and oils tends to solidify and no amount of blowing will shift the waste.

Now a contact cleaner, type CO, is available from Corrosion Abolition Ltd., Camey House, Horton Road, West Drayton, Middlesex. This cleaner is packaged in aerosol cans and dissolves most types of waste and does not damage the base material. The cleaner will penetrate the smallest crack or surface opening and the force from the spray blows away the dirt particles, leaving the contact clean.

A product that retailers, designers and constructors will find useful is the new Electroluminescent Numerical Indicator from Thorn Bendix Ltd., Great Cambridge Road, Enfield, Middlesex, the new name for Thorn Special Products who have merged their interests with Bendix Corporation of the U.S.A.

By applying the principles of the electroluminescent lamp in carefully designed segments, it has been possible to produce a neat numerical indicator that will produce all numerals from 0 to 9 and the letters $\mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{F}, \mathrm{H}, \mathrm{J}, \mathrm{L}, \mathrm{P}$ and U . In addition the letters G,I,O and S may be lit by using the figures $6,1,0$ and 5 but the possibilities of confusion should be considered before use.

The use of such a light source allows it to be placed directly behind a translucent face, thus eliminating

New Veroboard from Vero Electronics
numeral distortion sometimes encountered in conventional indicators with stacked numerals. Also the viewing angle, without distortion, is 160 degrees.

The life of the indicator is not adversely affected by switching on and off, there being no filament or vacuum, and should give many thousands of hours' service. These indicators are housed in either a clear or green polycarbonate case measuring $2 \frac{3}{8}$ in by $1 \frac{13}{8}$ in and has a maximum overall thickness of ${ }_{3}^{2} \mathrm{in}$.

Also available from the same company is a new midget relay type RA. The relay is a four pole change-over unit with contact ratings of 3 amps at 115 volts a.c. It has standard a.c. and d.c. coils with nominal coil voltages ranging from 6 to 115 volts. The operating time is 9 to 11 milliseconds and the release time 3 to 6 milliseconds.

LITERATURE

The new 1967 Electronics Catalogue from dca Electronics Ltd., 28 Uxbridge Road, Ealing, W.5, contains a very large list of test equipment, receivers, amplifiers, and Radiospares components. The price of the catalogue is 1 s 6 d including postage, separate price lists of valves and transistors are available free of charge.

CO Contact Cleaner by Corrosion Abolition Ltd.

An enlarged list of semiconductors and diodes is just one of the many additions to the new 1967 Henry's Radio Catalogue. A useful item in the 206 page catalogue is a list of transistor alternatives. The price of the catalogue is 7 s 6 d plus is 0 d postage. But this can be offset by the use of five free vouchers each worth 2 s . These vouchers are only usable on orders over $£ 1$ and should be used as per the instructions given in the catalogue. Copies are obtainable from Henry's Radio Ltd., 303 Edgware Road, London, W. 2.

A good components catalogue for the "den" is the Arthur Sallis (Radio Control) Lid., $1967 / 68$ Mail Order Catalogue No. 17, price 3s 0d. Practically any piece of model control equipment can be obtained direct from stock as well as a large amount of general electronic equipment.

Electroluminescent Indicator marketed by Thorn Special Products

It was noticed, whilst shopping for components, that all recognized International Rectifier distributors are passing on to the public "Pocket Cross Reference Guides'". These guides list encapsulated silicon rectifier assemblies and 1.3 A silicon diodes with easy cross reference to I.R. equivalents. These guides should prove useful in the selection of diodes and rectifiers. If any readers are unable to locate their nearest I.R. dealers they can write direct to International Rectifier at Hurst Green, Oxted, Surrey, who will notify them of the nearest agent. We are told that supplies are limited.

Three brochures on careers. in computers have just been published by English Electric-Leo-Marconi to coincide with a major recruiting drive aimed at increasing the company's sales and sales support staff. Particular stress is laid in the new brochures on the fact that it is not necessary to have had a narrowly directed training in the past in order to enter the computer field.

The three brochures are entitled "Careers in Computers", a 20-page publication describing in detail the opportunities now available in research, production, engineering, marketing, systems programming, bureau services and operations research; "Careers in Computers for Arts Graduates"; and "Opportunities for School Leavers". Copies are available from English Electric-LeoMarconi Computers Lid., Portland House, Stag Place, London, S.W.1.

POCKET MULTI-METER

Size $37,2 \frac{1}{R}$ ing. Meter size $24 \times 18 \mathrm{in}$. Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. 0.15 $0.150,0.1000$ D.C. current 0.150 mA . Resistance 0.100 k 52 . Complete with test prods, battery and full instructions, 42/6. P. \& P. 3/6. FREE GIFT for limited period only. 30 watt Electric Soldering Iron value $15 /$ - to every purchaser of the Pocket Multi-Meter

3 to 4 WATT AMPLIFJER

 Double wound output transformer for 3 ohms speaker Valves ECC81 and 6v6. $\$ 2.5 .0$ plus $5 / 6 \mathrm{P}$. \& P'. The above in Kit Form, £1.14.6 plus $5 / 6 \mathrm{P}$. \& P .

CYLDON

U.H.F. TUNER

complete with PC. 88 and PC. 86 Valves.
Full variable Full variable
tuning. New and unused. Size $4 \frac{1}{2}^{\prime \prime} \times 5 \frac{1}{2}$ $\times 1 \frac{1^{\prime \prime}}{}$. Complete with circuit diagram 35/: plus
P. \& P .

8-VALVE STEREO RADIOGRAM CHASSIS

3-4 WATTS PER CHANNEL

By Famous Manufacturer

Superb new 8-varse chassis covering long, medium and short waves on AM, also VHF transmissions on FM. AM circuit's high sensitivity permits internal aerial for most stations. Well-known Gorler tuning heart in separate FM input. Tone and volume controls. Extra large illuminated dial. External AM and FM arial
inputs. Gram. pick-up socket.
Standard 3 \&14. 14. 0 inputs. Gram. pick-up socket. Standard 3 ohm speaker. 200/250 volts A.C. Size $17 \times 7: 54$ in. deep.
P. \& P. $£ 1$

NEW Transistorised SIGNAL GENERATOR
Size $5 \frac{1}{2} \times 3 \frac{1}{4}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$. For IF and RF alignment and AF output, $700 \mathrm{c} / \mathrm{s}$ frequency coverage $460 \mathrm{Kc} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$ in switched frequencies. Ideal for alignment to our Elegant Seven and Musette. Built and tested. 39/6. P. \& P. 3/6.

TRANSISTOR INVERTOR
 50 ₹. D.C. Input. Output 240 v . A.C. 40 watts incorporating transformers, choke, condensers and 2 Muliard OC28 in solid 16 gauge Aluminium Case. Size $15^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4}$ by famous manufacturers. 19/6 plus $7 /$ /P. \& P.

40W FLUORESCENT LIGHT KIT

Incorporating GEC Choke size $83^{\prime \prime} \times 1 i^{\prime \prime}$
$13^{\prime \prime}, 2$ holder. 11/6. P. \& P. 5/6.
Similar to above: 80 W . Fluorescent Light Kit incorporating GEC Choke size
 $11 \frac{3}{2 "}^{\prime \prime} \times 1 \frac{3^{\prime \prime}}{3} \times 1 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} 2$ bi-pinholders, starter and starter holder $17 / 6$. P. \& P. 6/6.
Twin 40 W Choke instant start for $2 \times 2 \mathrm{ft}$. tubes $17 / 6$. P. \& P. 5/6.

Special offer

ELEGANT SEVEN
 mk IIa

SPECIAL OFFER. $7^{\prime \prime} \times 4^{\prime \prime}$ P.M. Speaker at no extra charge. Power supply kit to purchasers of 'Elegant Soven' parts, incorporating mains transformer, rectifier and smoothing condenser, A.C. mains $200 / 250$ volts. Output 9 v .100 mA . 7/6 extra.
Buy yourself an easy to build 7 transist or radio and save at least $\& 10.0 .0$. Now you can build this superb 7 transistor superhet radio for under $\mathbf{2 4 . 1 0 . 0 \text { . No one else can }}$ radio for under $£ 4.10 .0$. No one eise can
offer such a fantastic radio with so many de luxe star features

ONLY
4.4.0

Plus $7 / 6$ Post \& Packing * De luxe grey wooden cabinet size $12 \frac{1}{t^{\prime \prime}} \times 8 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$. \pm Horizontal easy to read tuning scale printed grey with black letters, size $11 \frac{t^{\prime \prime}}{}{ }^{\prime} \times \mathbf{2}$. $士$ High ' Q ' ferrite rod aerial. \star I.F. neutralisation on each separate stage. \star D.C. coupled push pull output stage with separate A.C. negative feedback. \rightarrow Room filling output 350 mW . \& Ready etched and drilled printed circuit board back printed for foolproof construction. \star Fully comprehensive instructions and point to point wiring diagrams. \& Car aerial socket. \star Fully tunable over medium and long wave, 168-535 metres and $\mathbf{1 2 5 0 - 2 0 0 0}$ metres. t All components, ferrite rod and tuning assembly 1250-2000 metres. thall components, ferrite rod and tuning asse mbly
mount on printed board. \quad Parts list and circuit diagram $2 / 6$ free with parts.

B S R Tape deck
AC 200/250 v., tape speed $3 \frac{3}{2}$ twin track.
Special price £5.19.6

Type E MOTOR Small A.C. mains motor $230 / 250$ volts complete with gearbox, 6 r.p.m. Price $15 /$-plus $4 /-$ P. \& P Similar to above motor but without gearbox. Price 9,6 plus $3 /-\mathrm{P}, \& \mathrm{P}$

TRANSISTORISED $1 \frac{1}{2}$ WATT. AMPLIFIER
comprising 2AC $128,20 \mathrm{C} 75$ and 2 AA 129 separate bass and treble volume controls. Complete with Power Supply AC mains 240 v . Size 7 $\mathrm{I}_{2}^{\prime \prime}$. $3 \frac{4}{4}{ }^{\prime \prime}$ 2". Price $^{2} 0 /$ - plus 2/6 P. \& P

SILICON RECTIFIERS 250 v. P.I.V. 750 milliamps. Six for 7/6, Post paid.

POWER SUPPLY KIT

A.C. MAINS 200-250 V

Incorporating " C " core type mains transtormer, full wave metal rectification and smoothing condenser. Smooth output 250 v. 250 mm and 6.3 v .4 amp for Heaters. $25 / \% \quad$ P. \& P' 9/6.

FIRST QUALITY P.V.C. TAPE

$53^{\prime \prime}$ Std. 850ft.	9/-	5	L.P. 850ft.	10/6
$7^{\prime \prime}$ Std. 1200 ft .	$11 / 6$	3'	T.P. 600ft.	10/6
3" L.P. 240 ft .	4/-	5	T.P. 1800ft.	25/6
$53_{1}^{\prime \prime}$ L.P. ${ }^{\text {P }} 200 \mathrm{ft}$.	11/6	54"	T.P. 2400 ft .	32/6
7" L.P. 1800 ft .	18/6	7"	T.P. 3600 ft .	42/6
$5 i^{\prime \prime}$ D.P. 1800 ft	18/6	$4^{\prime \prime}$	T.P. 900 ft .	15/-

Size 9" 6". 11". A C. Mitins, 200-250 v. 4 valves. For use with Std. or L.P. records, musical instruments. All makes of pick-ups and mikes. Output 8 watts at 5 per cent of total distortion. Separate bass and treble lift control. Two inputs, with controls for gram. and mike. Output transformer tapped for 3 and 15 ohm speech coils. Tuilt and tested. £4.4.0. P. \& P. $11 /$ $8^{\prime \prime} \times 5^{\prime \prime}$ Speaker to suit. Price $14 / 6$ plus 1/6 P. \& P. Crystal Mike to suit $12 / 6$ plus $1 / 6 \mathrm{P}$. \& P.

GEC KETTLE ELEMENT

3,000W WITH AUTOMATIC EJECTION $200 / 240 \mathrm{v}$. size of hole required 19 .". List Price 32/-. Our PRICE 15/-. P. \& P. 1/6.

RADIO AND T.V. COMPONENTS (ACTON) LTD.

2ID HIGH STREET, ACTON, LONDON, W. 3

Shop hours 9 a.m. to 6 p.m. Early closing Wednesday. Goods not despatched outside U.K All enquiries stamped addressed envelope. Terms C.W.O.

A/so at
323 EDGWARE ROAD, LONDON, W. 2 Early closing Thursday PERSONAL SHOPPERS ONLY All orders by post must be sent to our Acton Address

PRE-PAK semiconductors disfiliuteo
 PRE-PAK SEMICONDUCTORS Exclusiveiv Br

DAVIS \& WHITWORTH LTD.
222-224 WEST ROAD, WESTCLIFF-ON-SEA, EISSEX PHONE: SOUTHEND (OS02) 46344

FIRST EVER LOGIC KITS. Learn for yourself how compurers work, even make one for yourself. Full counters, timers, erc. L.I. 5 gns. L 2, 10 gns . No need to purchase both kits, you can start with L. 2 which incorporates L.I. DÉTAILS FREE.

THE LARGEST RANGE OF LOW PRICED SILICON CONTROLLED RECTIFIERS (THYRISTORS) IN G.B SEND FOR FULL RANGE AND PRICES. CIRCUIT DIAGRAMS ISSUED FREE OF CHARGE.

SCOOP PURCHASE!

Pre-assembled logic elements. 2 input gates 2,3 input gates 2/9. Flip Flops and others 5^{-}- each. Send for more details.

GREAT NEWS $\star \star$
We now give a writter guarancee with all our semiconductors.

COLOUR TELEVISION ! ! !

First ever correspondence course is now available. lessons fully illustrated. Test questions for student. Marked byexperts. Model answers. Total derails on request.

NO CONNECTION WITH ANY OTHER FIRM MINIMUM ORDER 10\% CASH WITH ORDER PLEASE. For complete lists and substitution chart send $\operatorname{OVERSEASADDEXTRAFORARMAIL,~}$
 4-Station Trantistor Intercom syatent (1 mastor and a subs), in de-luxe plastic cabinets for desk or wall mounting. Calftalk/listen irom Master to subs and Subs to Mater. Leadly suitable for Buyiness, Surgery, Schools, Mospital, Otice and Home. Operates on one 9 V battery. Onjult switch. Volume control Complete with 3 conuecting,
other accessories. $¥ . \$ P .6 / 6$.

INTERCOM/BABYALARM

Usuolly ficxif:
Our Price ONLY
49/6
Modernize business or home with this new two-way Podernize bubinesa Intercom, cousiating of Mater and Sub, in strong plastic cabinets with chromium stands. Designed as a two-way instant cominunication aystem. Call/talk/llaten from master to sub and Sub to Master. Operates on one 9 V battery Complete with 60 ft. wire and hattery. P. \& P. $2 / 6$

55/Why not booat bug inesent cleacy
withthil incredible De-luxe Tolephone Amplifer. Take down loug telephon messagen or converse without holding the handset. A status aymbol? Yes, hut very useful onp. onfory supplied for $2 / 6$ extra. P. $\$$ F, $2 / 6$.
Full price refunderl if not sathfiled in a days.
WEST LONDON DIRECT SUPPLIES (PE/6
169 KENSINGTON HIGE STREET, LONDON, W. 8

BINARY ADDER/SUBTRACTER

1011	
+1100	-1101 10111
0111	

Whovare two examble it calculations possible with our binary eircuit. This circait uses switehes atml fampa only, amb makes an exerlent themonstration model for schools athit taining colleges. . Wl parts are avalable at a reasumable rost. Full circuit. wiring diagran, phice list and teat captanine the Benary aystem- 3/bd. post freo
PLANET INSTRUMENT CO.
25(E) DOMINION AVENUE, LEEDS 7

Get a PHOTAIN B-A ELECTRONIC BURGLAR ALARM UNIT

Al equipment connecting wire included to protect your premises. C Easy to install $\$$ Provides complete protection (Money
complete back guarantee)
Send C.W.O. or get details from PHOTAIN CONTROLS LIMITED (K) Randalls Road, LEATHERHEAD, Surrey

NEW HI-GAIN EXPORT VHF/FM AERIALS FOR MONOSTEREO

- Full band width spacing
- High forward gain
- High front to back ratio
- Fibreglass moulding
- Universal clamp for up to $2 \frac{1}{2}^{\prime \prime}$ masts

The perfect answer to Mono/Stereo FM reception

- HGFM/3 3 element 60,
- HGFM/4 4 element $75 /-$ (lllustrated)

ALSO HIGH PERFORMANCE UHF 625 COLOUR AERIALS
Type C 5003 element 25/: Type C 5707 element $32 / 6$ Type C 51010 element $\quad 40 /=$ Type C 51414 element $47 / 6$

- Full range of masts and fittings on request - State channels required when ordering C.W.O. or C.O.D. p. \& p. 4/6d.
"C" AERIALS LTD.
14-15 QUARRY STREET, GUILDFORD, SURREY TEL.: GUILDFORD 67704

N.Z. READERS NOTE
 All brand new components LOW prices.

Silicon Transistors NPN 2N4123, PNP $2 N 4125$ 8/- each or $7 / 6$ each in : dozen lots. FT200-250 MHz/s $50-150$ Ic $200 \mathrm{ma}, 310 \mathrm{mw}$ diss. Dats sheet with d dozen 10% Resistors $\ddagger w$ high stab $5 \% 5 / 9$ dozen. Comp Vaiues. S.A.E. lor price list. 1/- P.\&P. Cross all M/Os, Cheques, etc.
Dept. P.E., GUARDALL SERVICES
Sturgeas Road, Henderson, Auckiand, H.Z.

NEW MANAGEMENT

From America, a county one particularly associates with the allpowerful business tycoon, comes a message of another wind of change. This message was delivered right here in Croydon, England, last month by Robert G. Chollar, VicePresident of the National Cash Register Company of the U.S.A.

For 1 hour 30 minutes Mr Chollar literally held the stage during a demonstration of NCR's long range research and development programme. The aim was to give businessmen from Britain and other countries "a preview of the advanced systems that will shape the future role of management".
An accomplished speaker plus an exceedingly well produced demonstration of some exotic electronic equipment made quite an impression on those present. If there were any complaints, it was that the range of equipment and systems demonstrated was perhaps too large for a single occasion. But if one suffered a little mental indigestion trying to absorb details of the different techniques on show, the desired effect was obviously registered on the audience ". . . that the information revolution is underway, and cannot fail to have a profound effect in business management circles".
I suspect that another, but less exhilarating, message was that day delivered to our own electronic engineering industry. The visual evidence of actual equipment soon to go into production is rather different to reports one may read about projected developments taking place over the other side of the Atlantic.

Tycoons of the British electronics and computer industry had better get the message-fast! Croydon could well prove to be the jumping off point for another large scale invasion of our markets.

LASERS AND HOLOGRAPHY

And what exactly, are these new aids to management, that are destined "to replace the overrated attribute of intuition". Perhaps the most exciting
are based upon applications of the laser and that even more recent technique called holography.

The laser figures prominently as a communications link, both for speech and for transmitting data from a computer in an on-line banking system.

A specific example of holography in use is the identification of signatures on credit cards. This promises to be a vital component of any "cashless' or "chequeless" society.

The equipment demonstrated how when a credit card is inserted into a machine a photograph of the bearer is located in a central file. This picture is then projected onto a screen and so the identity of the bearer can be confirmed.

The NCR demonstration also included microprinting by laser beam. This beam, focused down to an infinitesimal spot, is controlled by a typewriter keyboard. Microscopically small characters are formed on a light sensitive plate. Thus a large amount of information can be recorded in a small space. Retrieval and reproduction on enlarged scale can be performed at will.

BACK TO BASICS

The armed forces have to be prepared for even the ultimate catastrophe overtaking their electronics.

During a demonstration of FACE (Field Artillery Computer Equipment) it was stated that previously it had taken several months to train an artillery team to carry out the laborious calculations involved before each "shoot". Now the use of FACE meant that an operator could be trained to the requisite standard in just one week.

Nevertheless, a high ranking R.A. officer reassured one rather apprehensive inquirer, the army will continue to provide a certain amount of basic training in triangulation and other relevant sciences for its R.A. crews. Thus, as this officer explained, in the unlikely event of complete electronic failure the crew would be able to perform the essential basic calculations on a slide rule and back of an old envelope! So the shooting would continuealbeit a trifle less accurate than before!

ODD JOTTINGS

Come to think of it, that "old envelope" must have played a significant part in the affairs of man from time to time. How much literature, art, or music would have been lost for ever if that humble item had not been present in the pocket of some genius at the vital moment.

As for the world of science, we might still be waiting for the laser but for the fact that Charles Townes had an inspiration while sitting on a park bench in Washington D.C., way back in 1951.

Speedily he made some calculations on the back of an old envelope. The result suggested a new approach in his experimental work on the production of centimetric waves. This lead to the invention of the maser, which as you know was the forerunner of the laser.

So, you budding geniuses, never discard all your old correspondence. You never know when the Muse will descend.

miged ort A SELECTION FROM OUR POSTBAG

Radialion counter

Sir-With reference to my article Radiation Counter in the March 1967 issue. I would draw readers' attention to an error on the e.h.t. circuit Fig. 3.

The base bias resistor (R16) should be shown connected to the negative supply rail and not the collector of the transistor as it appears in the magazine. I would think that the latter configuration would severely damp the oscillatory circuit, however the effect on its performance could only be found by experiment (it may in fact work like this). This error also renders the underside wiring diagram Fig. 5 incorrect.

> P. F. Bretherick, Eastcote, Ruislip,
> Middlesex.

Surprise flash

Sir-In your article Photoflash Slave Unit in the March 1967 issue, you suggest adapting an extension lead by reversing the wires to one of the connectors to ensure that the slave unit may be connected to an electronic flashgun with polarities on its trigger lead connector opposite to those required on the slave unit connector. While this is perfectly satisfactory electronically, it should be pointed out that the better quality extension leads have connectors with all metal casings. Adapting such an extension lead would result in the casing of one connector having a polarity opposite to that of the other connector. Touching both connectors with the flashgun switched on would result in one's fingers being effectively shorted across the flashgun's trigger capacitor, which may be charged to a potential of up to 250 volts. While this would constitute no danger to a normal healthy person, the element of surprise might cause the equipment to be dropped, with somewhat disastrous results!

With this in mind, perhaps a better method of ensuring correct
polarity would be to use an extension lead with moulded plastic connectors. As the insides of these connectors are not accessible without destroying the casing, the lead itself would have to be cut and reconnected in reverse, the join naturally requiring careful insulation. This would result in only the actual connecting points of the two connectors having opposite polarities. The chances of touching both these at the same time are only small. However, if metalcased connectors are employed on the flashgun trigger lead and the slave unit itself the effectiveness of this is reduced considerably.

The most satisfactory arrangement would be to utilise some of the unoccupied space in the slave unit case by fitting a switch to reverse the connections between the slave unit's connector and the thyristor.

A. W. Hawkins,
 Lowestoft, Suffolk.

Quick-blip

Sir-I have been taking this journal for quite a time and have been particularly pleased with the articles on Radio Control by Mr D . Bollen. I hope you will persuade him to do some more of this type of article. . . .

My other request is this, could your contributors give general parameters of transistors used in their articles as well as the alternatives. I would like to make up a lot more of the gear described but am often unable to get the transistors listed in the materials lists. Our local dealers have never heard of some of the transistors specified and even famous makes such as Mullard are difficult to obtain. Given some details of the transistors used, one could try and find alternatives among those available locally.

> H. C. Wells, Como, Western Australia.

We have twisted Mr Bollen's arm and the first part of a new article starts on page 432 this month.

Hot point

Sir-It is with horror that I realise that no enmphasis has been placed on the ease with which f.e.t.s can be destroyed. I have in mind all those unsuspecting enthusiasts who are contemplating the building of your Integrated Stereo Amplifier (December 1966 issue), in which I note there is no protection of the f.e.t. from lethal transients. The transistor in question, a 2 N 3819 , has a maximum rating of 20 volts gate to any other electrode. Unlike an ordinary transistor, it will be permanently destroyed if any breakdown occurs, and even touching the gate with a finger may cause this if the body has some stray capacity to the mains. After my first disaster, I adopted the following procedure:

Before the transistor is ever brought near mains, batteries, or soldering irons, a length of fine wire (about 36 s.w.g.) is wound round the three leads to short them to each other, and kept in place until construction is complete, and a pair of catching diodes installed. These diodes are reverse biased and connected between the gate and the appropriate voltage sources to limit the range of voltage applied to the gate. In the case of the Stereo Amplifier, one is connected to earth (anode end) and the other (cathode end) may be taken to the drain electrode. These catching diodes must be silicon, type OA200 being suitable, and will protect the transistor against transients which can occur when plugging in external signal sources.

James M. S. Hutchinson, University of Bradford, Bradford, 7.

While your comments are entirely justified, it must be said that I have designed quite a few circuits for the practical constructor that do in fact contain field effect transistors and have yet to be informed of anyone who has had the misforturie to liquidate one. As long as common sense is used in the handling of these devices, they are quite as tame as the bipolar transistor. As you will no doubt appreciate there was a great deal of trepidation in soldering transistors without a heatsink in the early days, but stondard soldering procedure would in fact have caused no trouble at all.

However, do not misunderstand me, there is a real danger of field effect transistor and possiblv one of the more pertinent points would be in ensuring that the soldering iron is isolated from the mains earth. No doubt this comment will draw criticism from some people as safety is all a matter of degree.-R.H.

Q MAX CHASSIS CUTTER
Complete: a die, a punch, an Allen screw and key in. 14/6 lin. $15 / 9$ 1 $1 \mathrm{in}, 18 /-1 \frac{1}{2}$ in. 20/6 $2 \frac{3}{35}$ in. $37 / 0$
 BARGAIN XTAL PICK-UP ARM Complete with ACOS LP-78 Turnover. Head and Stylii 20/-; Stereo $301-$ SPEAKER FRET TyRan various colonrs, 58in. wide, from EX- ft . 28 Nin . Wide from $5 /-\mathrm{ft}$. SAMPLES S.A.E. EXPANDED METAL Gold or Silver 12×12 in. $8 /$. 15 pair for $200 / 250 \mathrm{v}$. (in series), or $10 /$ - each Pont $2 / 6$.
FULL WAVE BRIDGE SELENIUM RECTIFIERS:
 CHARGER TRANSFORMERS. P. \& P. 2/6. Input 200/250 $\mathbf{7}$. Hor charging at 2,6 or 12 v., $1 \frac{1}{2}$ amps., $17 / 6 ; 2$ amps., $21 /-$ 4 amps., $25 /$. . Circuit free. Ammeter 0 to $5 \mathrm{amp}, 10 / 6$.

MOVING	COIL MULTIMETER TK	TK.	25.	$47 / 6$

MOVNG COIL MULTMETER EPR EOK.
$0-2,500$ v. D.C. 20,000 ohms per volt. $0-1,000 \mathrm{v}$. A.c.
0 hms 0 to 6 meg. 50 microamps full reale. $99 / 6$
NEW MULLARD TRANSISTORS OC71 8/-; OC72 7/6; OC81D 6/-; 0C81 6/-; AP115 8/-;

ARDENTE TRANSISTOR TRANSFORMERS
D3035, $7.3 \mathrm{CT}: 1$ Push Pull to 3 ohms for 0C72, oc81
D3034, 1.75: 1 CT . Puah Pull Driver for OC72, OC81
D8058, 11.5 : 1 Ousput to 3 ohms for OC72, 0C81 D8058, 11.5: 1 Ousput to 3 ohms for $0 \mathrm{C} 72,0 \mathrm{C} 81$.. TRANBISTOR MAIN8 ELIMINATORS. FAMOUS "POWER KLTE' 9 VOLT. SAME SIZE A8 PP9 BATTERY.
FULLY SMOOTHED. 150 mA . FULL WAVE CIRCUIT. $45 /-1$

WEYRAD P50 RA2W 6 in. Ferrito Aerial With car aerial

 Volume Controls
tong spindiea. Midget Bize K. ohms to 2 Meg. LOG or LIN. L/8 3/-. D.P. 5/-.

80 om Coax 6d d_{sd} Semi-air ppaced Cable FRINGE LOW LOSS $\| / 6_{\text {yd }}$.
Ideal 625 lines

COAXIAL PLUG $1 /-$ PANEL gOCKETS $1 /-$ LIAE 8OCK ETS 2/- OUTLET BOXES, SURPACE OR FLUSH 4/6. RALANCED TWIN FEEDERS $1 /-$ yd., 80 or 300 ohms 6/6 each. CAR AERIAL PLUGS $1 / 6$. Bockets $1 / 3$.

TV REMOTE CONTROL

For PHILIPS 19TG111A,
121A, 125A, 142A,
181A, STETIA ST1089,
$39 \mathrm{~A}, 48 \mathrm{~A}, 53 \mathrm{~A}$,
C0880R CT1910
T2810 CT1910A, 21A
PEIVITS Price 3
Our 12r6. Post

STELLA RECORD PLAYER AMPLIFIER 4 watt. 2 stage. 3 to 7 ohm . Neg. Iteed back. UCL82. UY85. $200-250 \mathrm{v}$. A.C. tapped inpat. Chasias sise 8 x 21 I 4 in . high. Gold/walnut Enobs. Volame and Tone controls on separate
 NEW TUBULAR ELECTROLYTICS! 1 CAN TYPES

$\begin{array}{lllllllllll}8 / 450 & \nabla . & \cdots & 2 / 3 & 500 / 15 & \nabla & \cdots & 2 / 8 & 18 / 800 & 7 . & \cdots . \\ 16 / 450 & 12 / 6 \\ 16 & \cdots & 3 /- & 8+8 / 450 & \cdots . & 3 / 8 & 18+18 / 500 & 32+82 / 450 & \nabla . & 7 / 6\end{array}$

$16 / 450$	\cdots	$3 /-$	$8+8 / 450$	∇.	$3 / 8$	$32+32 / 450$	∇.	$6 /-$
$32 / 450$	∇.	\cdots	$3 / 9$	$8+16 / 450$	∇.	$3 / 9$	$50+30 / 350$	∇.

$25 / 25$					
₹.	\cdots	$1 / 9$	$18+18 / 450$	v. $4 / 3$	$80+100 / 350$
$50 / 50$					
∇.	\cdots	$2 /-11 / 6$			

500.0.19 PAPER TUBULARS
$550 \mathrm{v} .-0.19 \mathrm{~d} ., 0.52 / \mathrm{\beta}$; $1 \mathrm{mld} .3 /-; 2 \mathrm{mid} .160 \mathrm{v} .3 /-$ $1,000 v .-0.001,0.0028 ; 0.0047,0.01,0.02,1 / 6 ; 0.047,0.12 / 6$. E.H.T. CONDENSERS. $0.001 \mathrm{mid} ., 7 \mathrm{kV} ., 8 / 8 ; 20 \mathrm{kV} ., 10 / 6$

SUB-MTN. ELECTROLYTICS. $1,2,4,5,8,18,25,30,50,100$, $250 \mathrm{mfd} .15 \mathrm{v} .2 / 8 ; 500,1000 \mathrm{mfd} .15 \mathrm{v} .3 / 6 ; 2000 \mathrm{mfd} .25 \mathrm{v}$. $9 / 6$. CERAMIC. 500 7. 1 pF. to 0.01 mid., 9 d . Discs $1 /$ $47 \mathrm{pF}, 1 /-$ ditto 1% tolerance (plus or minus 10 pF.), 5 to TWIN'GANG. " $0=0$ " $208 \mathrm{pFF}+176 \mathrm{pF}$., 10/6; $385 \mathrm{pF} .$, ministure $10 /-$; 500 pF . standard with trimmern, $9 / 6$; 500 pF . midget leas trimmers, 7/6; 500 pP. Ilow motion, atandard $9 /-$; mall 3-gang 600 pF . $18 / 9$. Single " 0 " 365 pF . 7/6. Twin $10 /-$ SHORT WAVE. Single $10 \mathrm{pF} ., 25 \mathrm{pF}$., 50 pF., 75 pF .,
$100 \mathrm{pF} ., 160 \mathrm{pF} ., 5 / 6$ each. Can be ganged. Couplers 9 d . eacb. 100 pF . 160 pF ., $5 / 6$ each. Can be ganged. Couplers. 9 d , eacb.
TUNING. Solid dielectric. 100 pF . 800 pF . $500 \mathrm{pF}, 3 / 6$ each. TUNING. Solid dielectric. $100 \mathrm{pF}, 800 \mathrm{pF} ., 500 \mathrm{pF}, 3 / 6$ each.
 250v.R ECTIFIERS. Selenium ${ }^{5}$ wave $100 \mathrm{~mA} \mathrm{5/-;} \mathrm{BY100} \mathrm{10/-}$.

SPECIAL OFFER! NEW B.A.S.F. TAPE 7 in. L.P. 1,800 ft. (Cat. LGS35) 45/7 in. D.P. 2,400 it. (Cat. LGS26)
Spare Spools 2/6. Tape 8plicer 5/-. Leader Tape 4/6. Tape Heads: Collaro 2 track 28/6 pair. B.8.R. 4 track 99/日

MAINS TRANSFORMERS $\underset{\substack{\text { Pose } \\ 2 / 6 \text { each }}}{\substack{\text { Pa }}}$

$250-0-25080 \mathrm{~mA} .8 .3$ v. $3.5 \mathrm{a}, 6.3 \mathrm{v}$. 1 a , or 5 v .2 a . $25 /$
 MINIATURE 200 v. $20 \mathrm{~mA}, 6.3$ v. 1 a. … m^{\prime}. $10 / 6$ MIDGET 220 ₹. $45 \mathrm{~mA}, 6.3$ ₹. 2 B .
SMALL $250-0-25050 \mathrm{~mA} .6 .3$ v. 2 a
HEATER TRANS. 6.3 ₹. $1 \geq$ a., 8/6; 6.3 v. 4 a.
Ditto tapped sec. 1.4 v., $2,3,4,5,6.3$ v. 11 gmp.
GENERAL PURPOSE LOW VOLTAGE. Outputs GENERAL PURPOSE LOW VOLTAGE. Outputs 3,
$6,8,9,10,12,15,18,24$ and $30 \mathrm{\nabla}$. at 2 a.
 A UTO TRANSFORMERS 0-115-230 v. Input/Output, 150w. 25/-: $500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w} .175 /-$.

CRYSTAL MIKE INSERTS
 MOVIAG COIL HEADPHONES 100 ohms (6x. Govt.) $12 / 6$
H.R. HEADPHONES 2000 ohms... $12 / 6,4000$ ohm $. .15 /-$ H.R. HEADPHONES 2000 ohms... 12/6, 4000 ohms ...15/
H.R. HEADPHONES 2000 ohma Super Quality $\ldots . .25 /-1$

Three Wavebends: Five Valves: ECH81, EF89. Long., Med., Short. Gram. EBC81. EL84, EZ80, 5 watts 3 ohm. Chassis 13 in. \times 200-250 vin. Ferrite Aerial liln $\times 4$ in, Two pilot Lamps, Four Knobr, $\mathrm{CIO}, 10$ DE LUXE STEREO GRAMI CHASSIS V.H.F., MW, SW

HIGH GAIN TV. PRE-AMPLIFIER BAND I B.B.C Tunable channels 1 to 5 . Gain 18 dB . ECC84 valve Kit price $32 / 6$ or $55 /-$ with power pack. Detalls 6d.
BAND III I.T.A, -ame prices. Tunable channela 7 to 13. B.B.C. 2 SUPER BOOSTER transistor model. Ready bailt 75/

BLANK ALUMINIUM CHASSIS. 18 s.m.g. 2:in. sidea,

ALUMINIUM PANELS 18 3.w.g. $12 \times 12 \mathrm{in}$. $5 / 6 ; 14 \times 8 \mathrm{in}$.

ALL PURPOSE TRANSISTOR PRE-AMPLIFIER Gain 14:1.250v. or 9v. input. Ready built with Ma Metal input transformer for Mikes, Pick-Ups, Tuners. \quad S/
Inatructions and circait supplied. Posi $2 / 6$.

BAKER 12 in. STANDARD The ideal High Fidelity Loudapesker for high output at home or Built in concentric. Built in.
Voice Coil impedance 15 ohme. Max. Power 20 watts. Bas Res. 40/50 cpal. Flax 14,000 getuan. Voice Coil dismeter $1 \frac{1}{z}$ in. $\begin{array}{ll}\text { Reiponse } & 40-14,500\end{array}$ cpa. Chasia material Alcomax, overall die. 12tin., overall depth 6in.
Price 18 Post CAITALOGOE S.A.E

GROUP MODELS FOR VOCALS :
BABS, LEAD and RHYTHM GUITARS
 ${ }_{25 \mathrm{~m}}^{12 \mathrm{in} .} 5 \mathrm{gns} . \quad{ }_{35 \mathrm{~m}}^{18 \mathrm{in} .} 8 \frac{1}{2} \mathrm{gns} . \quad{ }_{50 \mathrm{~m}}^{15 \mathrm{in} .} 18 \mathrm{gns}$. OUUDSPEAKERS P.M. 3 OHMS. 2iin., sin., 4in., sin. 7in. $\times 4 \mathrm{in} ., 15 / 6$ each; 8 in . $22 / 6 ; 6$;in. $18 / 6 ; 10 \mathrm{in} .30 /-$ E.M.I. $30 /-$: (15 ohme 35/-); 10×6 in. $30 /-: 8 \times 5 i n$. $21 /-$ W.B. 10 in. HF1012, $£ 5.10 .0$. 8 in. HF818 \&4 100 Crosere 35/- Horn T JACK SOCKETS Std. Open-circait 2/8; 20 w $20 \mathrm{Kc} / \mathrm{g} .99 / 6$ Chrome Lead Socket 7/6. DIf 3-pin $1 / 3$; Lead $8 / 6$. Phono Plags $1 /-$. Socket $1 /$. Banana Plugi $1 /$-. Sackete $1 /$ JACK PLUGS STANDARD, Chrome 3/-. DIIN 3 -pin $3 / 6$. WAVE-CHANGE SWITCHES WITH LONG SPINDLES.
2p. 2-way, or 2 p. 8-way, or 3 p. 4 -way $3 / 6$ ach.
p. 12-wiy, or 4 p . $2-w \mathrm{Fy}$, or 4 p . 3-why, $3 / 6$ each

Wavechange 4p. 3-way, 6 p. 2-way. Pricen inclade click apindlen, adjusta ble TOGGLE 8WITCHES, sp. 2/-; sp. dt. 3/6; dp. 3/6; dp.dt. 4/-

DE LUXE TAPE 8PLICERR Cuts, trimg, joins
for editing and repairs. With 3 blades.
4 CHANNEL TRANSISTOR MICROPHONE MIXER. Add magical highlights and wound effects to recordings. mix Microphone, records, tape and toner with

59/6
PRINO A. 18 TRANSCRIPTION TO
omplete
with tracking template and two plugein arell: 5 gns.
anitsble for mounting any cartridges.
suits ble lor mounting any cartridges
FM TUNER 88-108 Mc/s Six Trantistor. Superhet. Ready built. Printed Circait. Calibrated slide dial $\mathbf{2 8 . 1 0 . 0}$ WATT QUALITY AMPLIFIER. 4 Transiator $65 /$ Push-Pull Ready buils, with volume control
NEW MANUFACTURERS SURPLUS UHF BBC 2 AERLAL8 BBC 2 Double Gold Ring set Top Model
BBC 2 Five Element Loft Model

\star RADIO BOORS \star (Postage 9d.)

High Fidelity Speaker Enclosures and Plans.
Trangiator Superhet Commercial Recelver:
Mrullard Andio Amplifior Manual
Practical Radio Inside Ont
Transistor Audio Amplifer Manua
Shortwsve Transiator Receivers
Transistor Communication Sets
Internations 1 Radio Station! List
Modern Transistor Circuita for Beginners
8ub-Miniature Trantistor Receivera
Wireless World Radio Valve Data
RESISTORS. Preferred valuen, 10 ohms to 10 me

 5 watt $\}$. 0.5 to 8.2 ohm 3 w . 22 meE., $1 /$ 10 watt $\}$ WIRE-WOUND RESIBTORS 5 watt 10 ohms to 6,800 ohm 1
$0 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W}$
MAINS DROPPERS. Midgot. With alidere.
0.3 s., 1

| WIRE-WOUND | 3 -WATT | WIRE-WOUND 4 -WATT |
| :--- | :--- | :--- | POTS. T.V. Type. Values 10 ohms to 30 E., $3 / 3$, TANDARD GITE POTS Garbon 30 K . to 2 mez., $3 / \mathrm{c}$ LONG SPINDLE VALUES Garbon 30 K . to 2 mer., $8 /-$. 50 OHMs to $100 \mathrm{~K} ., 7 / 6$. VALVE HOLDERS. Int. Oct. 6d. Maxda Oct. 6d.; B7G. B8A. B8G, B9A. Moulded 9d. Ceramic $1 /-$. Cani $1 /$-. Valve base plage B7G, B9A, Int. Oct., $2 / 3$.

80 ONLY-SANGAMO 3 inch SCALE LABORATORY MOVING COIL METERS 1 Hilliamp $50 / \mathrm{m}$, etc. Pont $5 /-$ extrs. Send s.A.E. for lirt. ERAND NEW OUALITYIn tough croam plaztio cabinet with rott, lead and adaptors. For any trangistor radio, intercom, maing radio, tape recorder, etc. 8 to 15 ohm matching

Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is $1 /$ - per word (minimum order $12 /$-), box number $1 / 6$ extra. Semi-displayed setting $£ 3.5 .0$ per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

SERYICE SHEET8

service sheets for all makes Radio, T/V, Tape Recorders, 1925-1967. Prices from 1/:. Tape Recorders, $1925-1967$. Prices from Catalogue 6,000 models, $2 / 6$. Free faultCatalogue 6,000 models, 2/6. Free fautstamped addreased envelope with all orders/ enquiries. HAMILTON RADIO, Western Rd., St. Leonards, Sussex.

8ERVICE SHEET8, Radio, TV, 5000 models. List $1 / 6$. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

RADIO TELEVISION, over 8,000 Models. JOHN GILBERT TELEVISION, 1 b Shepherds Bush Rd., London, W.6. SHE 8441.
T.V. Fault flnding gulde and unique testing device with servicing instructions. Faults found in minutes $15 / \%$. With service sheets 4/- each extra. Service sheets with guide only $7 / 6$. Radio sheets $3 /-$ all $\mathbf{P . P}$. State model Nos. ELECTRONIC SUPPLIES model SERVICES (I.W.), 16 Gordon Road, AND SERVIC
Newport, I.W.

SERVICE SHEETS

4/- each, plus postage.
We have the largest supply of Service Sheets for all makes and types of Radios and Televisions, etc. in the country. Speedy Service.
To obtain the Service Sheet you require, please complete the attached coupon:
From:
Name:
\qquad

To: S.P. DISTRIBUTORS

 35/38 Great Marlborough 8treet, London, w. 1Please supply Service Sheets for the following:
Make:
Model No.: ..
Make:
Model No...
Make:
Radio/TV
Make:
Model No...
I also require the new 1967 list of Service Sheets at $1 / 6$ plus postage.
(please delete items not applicable)
I enclose remittance of ...
which includes postago
MAIL ORDERS ONLY June PE

EDUCATIONAL

HOME STUDY COUR8Es in Practical Electronics. Free Brochure without obligation from: BRITISH NATIONAL RADIO SCHOOL, Reading, Berks.

CHAMBER8 QUIDE (New). Details of 293 Careers and spare-time Business, Technical and Examination Courses. A Mine of friendly "know-how" for go-aheads. For free copy write-CHAMBERS COLLEGE (Dept. 856 K), 148 Holborn, E.C.1.
A.M.S.E. (Elec.), City $\&$ Guilds, G.C.E., etc. on "Satisfaction or Refund of Fee" termis. Wide range of Home Study courses in Electronics, Computers, ladio, T.V., etc. 132-page Guide-FREL.' Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124 K), Aldermaston Court, Aldermaston, Berks.

8TUDY RADIO, TELEVIBION \& ELECTRONIC8 with the world's largest home-study organisation. I.E.1R.E., City \& Guilds, R.T.E.B., etc. Also practical courses with equipment. No books to buy. Write for FREE prospectus stating subject to I.C.S., Intertext House, Parkgate lkoad (Dept. 577), Intertext House,
London, S.W.11.
master electronics the practical WAY! For a sound understanding, knowledge and experience, practical experiments are best. Our Basic Electronics Kit teaches how diodes and transistors work; current, voltage and power operation; basic d.c. and a.c. amplifiers; oscillators; transistor switching; basic computer circuits, etc., etc. Simple instructions; easy assembly-no solderingno prior knowledge necessary. Price 85/- for kit, instruction manual, and booklet "An Introduction to Electronics'. Booklet only Introduction to Electronics Bó Booklet only
 PRERY.

ALDERMA8TON COURT POSTAL TRAINING for B.Sc. (Eng.) P'art 1, A.M.I.E.R.E., A.M.S.E., City \& Guilds, G.C.E., etc. prepares you privately for high pay and security as Technician or Technologist. Thousands of passes. For detalls of Exams and Courses in all branches of Engineering, Building, Electronics, etc. (including latest information on C.Eng.), write for 132 -page HandbookFREE. Please state interest. BRITISH INSTITUTE OF FNGINEERING TECHNOLOGY, (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

TELEVISION SERVICING
 RADIOTELEGRAPHY RADAR MAINTENANCE COMPUTER TECHNIQUES

Full and Part-time Training Courses
Apply:-Director, British school of Telegraphy, 20 Ponywern Road, Earls Court, London, 8.W.5

EDUCATIONAL

(continued)

RADIO OFFICER8 see the world! Sea going and shore appointments. Trainee vacancies during 196\%. Grants available. Day and Boarding students. Stamp for prospectus. WIRELESS COLLEGE, ('olwyn Bay, Wales.

FOR SALE

8EE MY CAT. for this and that. Tools, materials, mechanical and electrical gearlots of unusual stuff. This cat. is free for the asking. K. R. WHISTON (Dept. CPE), New Mills, Stockport

FOR 8ALE. Oscilloscopes - Galvanometers Evershed \& Vignoles Meggers. Also other items and conmonents. Free list. Stamp please. R. \& M. MART, Box 9, G.P.O., Tunbridge Wells, Kent.

ANALOG COMPUTER
Just think... with this desk-top Mini-Analog
Computer you can multiply and divide, take
square roots or powers, and do log opera-
tions - simply by turning the dials and
keeping your eye on the null meter. (And all
this from a 1t volt cell!) The Instruction
Manual covers MACI's applications in
electronics and physics, engineering and
trigonometry.
Complete in kit form, MAC-1 is 3 gns-
or $£ 313 s$ 6d built and ready for use. (For
either please add 4s 6d carriage.)
You would probably like more informa-
tion: just send a 4d stamp to:
I-COR SYSTEMS (File PE.6)
18 Stamford Hill, London, N. 16

100 PAGE illustrated catalogue No. 17 of Government and manufacturers' electronic and mechanical surplus, also a complete new section of the latest semi-conductors and miniature conponents, includes a credit voucher for $2 / 6$. Send for your copy now. Price $3 /-$ Post Free. ARTHUR SALLIS (RADIO CONTROL) LTD., 93 North Road, Brighton.

U.S.A. IRELAYS

24 volt totally enclosed and hermetically sealed relays removed from unused U.S.A. computers. These rolays are a fine example of modern electronic design. 240 ohm coil rated at 26.5 volts they will operate cleanly down to 12 volts. 6 pole change-over contaces rated at 5 amp D.C. or 4 pole rated at 1 amp.

5/- each. P.P. I/h. Four for $£ 1$ post paid.
Power relays 25 and 50 amp at fl . Time delay relays I to 600 secs. at $\mathbf{E 2}$. Amphenol plugs and sockets up to 48 pins at 15/- pair.

Of special interest to laboratories and schools, 72 valve digital counters to 10° from $\mathbb{2 0}$.

HAXTED MILL, EDENBRIDGE KENT

FOR SALE
(continued)

LARGE qUANTITY of small Bell Push Type Switches 9d. each. Small 70 V d.c. Solenoids $5 /-$ each. 6 and 12 Gang 12 -way lockdown switches $20 /$ and $30 /$ - each. Double sided printed circuit boards 22×27 lines 2/6 each. Emitapes $\ddagger^{* \prime} \times 34^{*}$ on 5^{*} dia. reels $5 /-$ each. Cash with order plus postage. METALO PRODUCTS (CROYDON) LTD., 226 Whitehorse Road, Croydon, Surrey, CR9 2NE.

HAMMEPITE AMMERTL
WITHTIN JUST BRUSH ON WiTHSTANDS $150^{\circ} \mathrm{C}$, OIL, WATER, Etc. $\begin{array}{llll}21 \text { oz. tins } & 3 / 6 & \text { Igallon } & 35 /-* \\ \text { lint } & 7 / 6 & \text { gallon } & 58 /=*\end{array}$ Carriage: Ordersup co $5 /-9 \mathrm{~d}$. up to $10 /$) Carriage:
over $10 /=$, $3 /-$. Colours: Blue, Silver, Black or Bronze. Return of post service, Monday to Friday. From your component shop or direct from the FINNIGAN SPECIALITY PAINTS (PE) Mickley Square, Stocksfield, Northumberland Tel. Stocksfield 2280

CRACKLE PAINT. Black or Grey, $\frac{1}{4}$ pint tins $4 /$-, post $6 d$. from the component specialists. SERVIO RADIO, 156.8 Merton Road, Wimbledon, London, S.W.19.

WIRE SCOOP
75,000 YDS. NEW P.Y.C. HOOK-UP WIRE
SINGLE 14/0076, 100 YARD ROLLS, $7 / 6$ POST PAID.
SINGLE 14/0048, APPROX. 200 YARD COILS, $7 / 6$ POST PAID.
SINGLE I/036, APPROX. 200 YARD COILS,
variqus tracer colours, our choice only
112 GROBY ROAD
GLENFIELD, LEICESTER

MORSE MADE ! !

FACT NOT FICTION. If you gtart right you will be reading antateur and commercial Morse within a month. reading atmateur and commercial Morse within a month.
Using scientifically prepared 3 -speed records you Using scientifically prepared 3 -speed records you
automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as easy as learning a tune. 18 W.P.M. in 4 weeks guaranteed. For full explanatory booklet enclose 8d. in stamps to G3CHs/H.
45 Green Lane, Purley, Surrey.
S.T.D. 01-6602896

MISCELLANEOUS

CONVERT ANY TV EET into an Oscilloscope Diagrams and lustructions, 12/6. REDMOND 42 Dean Close, Portslade, Sussex.
"PRACTICAL ELECTRONIC8" Milk-O-Stat. Field Strength Meter. Valve Voltmeter and Ohmmeter, Iroximity Detector. Photoflash Slave Unit. Doorbell Repeater. Integrated Stereo Amplifler, and all constructional projects going back to lssue 1 . Send s.a.e. for your choice of itemised price lists. AJAX ELECTRONICS, $18 a$ Rumbold Road, Fulham London, S.W. 6

HEATHKIT

The World's Largest manufacturer of ELECTRONIC KITS
We invite you to visit our showrooms at 233 TOTTENHAM COURT RD., LONDON, W. 1 Telephone 01-636 7349
Send for Free catalogue Dept. TC. 6

WIRELEB - WICROPHONE. Circuit and details for $5 /-\quad M r, ~ B O B K E R$, 64 Choir Street, Lower Broughton, Salford 7 , Lancs.

TAPE RECORDERS, TAPES, ETC.

TAPEs TO DIBC-using finest professional equipment-45 r.p.m. 18/\%. S.A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.
20% CA8H DI8COUNT on most famous makes of Tape Recorders, Hi-Fi equipment, Cameras of Tape Recorders, Hi-Fi equipment, Cameras,
etc. Join England's largest Mail Order Club etc. Join England's largest Mail Order Club Send $5 /-$ for menbership card, catalogues, price lists and ask for quotation on any item. C.B.A. (Dept. A18), 370 St. Albans Road, Watford, Herts.
sAVE UP TO 20% on most new, guaranteed, Hi-Fi and Tape Recorders. Large s.a.e, details. MICROSEIRVICE, Fourways, Morris Lane, Halsall, Lanes.

SITUATIONS VACANT

MINISTRY OF DEFENCE (ARMY DEPARTMENT), HAYEs, MIDDLESEX requires TECHNICIAN to assist in the supervision of an Approved Frm's Inspection Organisation an Approved Frm's Inspection Organisation
at a Ministry of Defence Agency Factory at a Ministry of Defence Agency Factory
manufacturing electronic and electro-mechanical devices. Supervision of Inspectorate of Armament staff, male and female-critical inspection of machined components, moulded items and sub-assemblies.
QUALIFICATION8: Recognised engineering apprenticeship and practical experience in inspection of armament stores. Good knowledge of modern inspection technique and statistical methods essential. O.N.C, (. dG. Finals or equivalent
8ALARY: $£ 990$ (age 26) to $£ 1,179$ per annum Outer London.
APPLICATION: Form from the Manager (PE5803), Ministry of Labour, Professional and Executive Register, Atlantic House, Farringdon Street, London, E.('.4.

8ITUATIONS VACANT (continued)

‘RADIO TECHNICIANS

A number of suitably qualified candidates are required for permanent and pensionable omployment (mostly in Cheltenham, but from time to time there are some vacancies in other parts of the U.K. including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to candidates who can offer "O" Level GCE passes in English Language, Maths and / or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at 19-£747, at 25-£962 (highest age pay on entry) rising by four annual increments to $£ 1,104$.

Prospects of promotion to grades in salary range $£ 1,032-£ 1,691$. There are a few posts carrying higher salaries.
Annual Leave allowance of 3 weeks 3 days, rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply. Application forms available from:

Recruitment Offiter (RT)
Government Communications Headquarters Oakley
Priors Road
Cheltenham, Glos.

TECHNICAL TRAINING by IC S IN Radio, television and electronic engineering

First-class opportunities in Radio and Electronics await the ICStrained man. Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: * INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.

- C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. \& G. SUPPLEMENTARY STUDIES.
- RADIO. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS EXAMINATION.
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO COURSES.
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter-all under expert tuition.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OFTHE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.

INTERNATIONAL

CORRESPONDENCE
Schools
A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

SITUATIONS VAGANT (continued)

Ferranti EDINBURGH

PUBLICATIONS DEPARTMENT

DEVELOPMENT
ENGINEERS
are continually sought-who are prepared to switch their activities from current design and development to writing about these advanced designs and developments.
We are looking for practising engineers with a degree or H.N.C. to join our teams of technical authors for the creation of Technical Manuals, to cover a wide field of new equipments being developed for the Military and Commercial markets.
This is a new profession whose expansion is taxing the rate of entry; thus offering good prospects for the future. It also offers the unique opportunity of obtaining a wide knowledge of the Company's products-design and operational requirements, production techniques, field operation and maintenance and factory overhaul.
Although we do not teach English, we train all new entrants in the science of publications, from the art of gathering information from designers to the printing and binding of the published volume-we back our authors with a complete publishing organisation.
Interviews can be arranged in London, Manchester or Edinburgh, to suit convenience of applicants.
Please send brief details of career to date to the Staff Appointments Officer, Ferranti Ltd., Ferry Road, Edinburgh, 5, quoting Ref. TA/300.

TAPE RECORDER AND HI-FI SERVICING JUNIOR ENGINEER retuired. Must be JUNIOR ENGINEER retuired. Must be wilhing to study to attain retured high stamlard. Write or phone HolidhNGi Al'JlO CENTHE, Mincing Lane'Darwen Atreet, Biackburn ('Tel. 59505/6).

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes $4 / 6$ P.P. 6d 19 set Circuit and Notes...... 4/6 P.P. 6d II55 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical Instructions 46 set Working Instructions 88 set Technical Instructions. BC. 221 Circuit and Notes.. Wavemeter Class D Tech. Instr. 18 set Circuit and Notes 3/6 P.P. 6d 3/6 P.P. $6 d$ 3/6 P.P. 6d 3/6 P.P. 6d 5/- P.P. 6d Tech. instr. 3/6 P.P. 6d tset Circuit and Notes $\cdots \cdots, 3 / 6$ P.P. 6d BC. 1000 (3I set) Circuit \& Notes 3/6 P.P. 6d CR.100/B.28 Circuit and Notes 8/6 P.P. 9d R. 107 Circuit and Notes........: 5/-P.P. 6d A.R.88D. Instruction Manual ..I5/-P.P. $1 / 6$ 62 set Circuit and Notes 4/6 P.P. 6 d 52 set Sender \& Receiver Circuits 6/-. postiree Circuit Diagrams $3 /-$ each post iree. R.III6/A, R.1224/A, R.1355, R.F. 24, 25, \& 26 A. 1134, T. 1154, CR. $300, \mathrm{BC} .342$. BC. 312. BC.348.J.E.M.P. BC.624. 22 set.
Resistor colour code indicator, 1/6 P.P. 6d. S.A.E. with all enquiries please.

Postage rates apply to U.K. only.
Mail order only to:
Instructional Handbook Supplies
Dept. P.E., Talbot House, 28 Talbot Gardens House,
Leeds 8

RECEIVERS AND COMPONENTS

R. 107 RECEIVER. Overhauled and in perfect condition. $\& 8$ delivered. Tel. cuffley $\because 459$.

R \& R RADIO

51 Burniey Road, Rawtenstall Rossendale, Lancs
Tel.: Rossendale 3152

Salvage Valves	Good Emission Guaranteed				
EF80	$1 / 6$	$30 P 4$	$-7 /-$	$30 F L I$	$5 /-$
ECC82	$3 /-$	EB91	$1 /-$	PL82	$4 / 6$
ECL80	$3 / 6$	EF85	$5 /-$	PL36	$5 /-$
$30 F 5$	$5 /-$	$30 P L 1$	$5 /-$	PCC84	$4 /-$
PCF80	$4 /-$	EY86	$4 /-$	PY81	$3 / 6$
PL8I	$5 /-$	U301	$6 /-$	PY33	$6 /-$

Speakers, Ex T,V. 5 inch rnd. $3 / 6$. $6 \times 43 / 6,8$ inch Speakers, Ex T.V. 5 inch
rnd. $6 /-$. Min. post $2 / 6$.
BY 100 and equiv rects with 10 watt res. 5/6 Fireball tuners, less cover can $9 /-$.
Ekco line O/P Trans, U26 type 35 /-, post paid. Push Button tuners, using 30 L 15 and 30 C 15 valves. rectangular buttons $27 / 6$, past paid.
Postage on valves 6d, over three, post paid.
S.A.E. with all enquiries.

2 N 2926 3/6, OC71 3/6, OA81 1/9, 850V, $\frac{1}{2} \mathrm{~A}$ Rectifiers $4 / \mathrm{H}$ iW 5% H.s. resistors $4 d$. add $6 d$. pp. Ifiscount on 10 and up. A. 1 '. ROBSON, 41 'Thunder Lane, NOHWICH.

RECEIVERS AND COMPONENTS
(continued)

SILICON PRODUCTS

2N3053. NPN. 60 V . IW. $10 / 6$
2N3055. NPN. 100V. 65W. 21/6
Unijunction 2N2646 13/6
Computer Diodes I/-
PREMMIT LTD., Components Div.
31 Queen Anne's Gate London, S.W.I
C.W.O. Add I/-P. \& P.

ECONOMY SEMICONDUCTORS
OVER 200 PRICE REDUCTIONS

RESISTORS
1 watt carbon film 50_{0}° All preferred values in stock from 10 ohms to 10 megohms 2d. each. Send S.A.E. for free sampla. CAPACITORS
Mullard Miniature Metallised Polyester P.C. Mounting ali 250 . D.C. Working $.01 \mathrm{mf}, .022 \mathrm{mf}, .047 \mathrm{mf}$, $1 \mathrm{mf}, .22 \mathrm{mf}$, . 01 mr , .022 mfi 6d. mexh.
Please include $/$ /- for postage and packing on all orders under El .

Dept. P.E. 2
BRENSAL ELECTRONICS LTD. CHARLES STREET, BRISTOL I

RECEIVERS AND COMPONENTS

(continued)

TRANSISTOR PANELS

New boxed, size $9^{\prime \prime} \times 6^{\circ \prime} \times 11^{\prime \prime}$ with " Valvo" transistors type OC45 or similar, with fuli diodes. H/S resistors, etc. Built on perforated board in a metal frame.
Panel of 20 tronsistars, diades, etc. 20/-
$30-25 \% \quad 60-40 \% \quad 90-100-\mathrm{C}$ $\begin{array}{ll}40 \text { 二 } 30 \% & 70-45 / . \\ 50-35 /- & 80-50 / .\end{array}$
Pastage 2/-per panel.
Computer boards, two types average 30 planar epitaxial transistors, 27708 or equiv. 300 megs. 30 diodes, Histab resistors. 19/6. P. \& P. 1/-.

Polystyrene Capacitors, 350v. 680, 820, 1,800, $2,200,2,700,5,600,6,800,0.018,0.022,0.033$. $125 v .1,000,1,200,1,500,1,800,3,300,3,900$ $4,700,8,200,0.01,0.012,0.015,2 / \cdot$ dozen any selection. Heat Sinks toW finned, 5/\% Minia-
 change over $10 / \%$ Electrolytics, $5,000 \mathrm{MFD}$.
50 v . $6 / 6,1,000 \mathrm{MFD}, 60 \mathrm{v}$. $5 / \mathrm{l}$. $1,000 \mathrm{MFD}$. 30v. 4/-. 3,000 MFD, Iov. $2 /-$. Gold Bonded Diodes, 75 v . P.I.V. 75 mA . cards of $25,10 \%$. Wire Wound Pots $5,10,25,50,100,250,500$, $1 \mathrm{k}, 2 \mathrm{k}, 2 \cdot 5 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}$, not presecs, 2/m each. OC23 10/:i NKT452 6/\% NKT45j 6/-; NKT2165/-; OABI 2/-. Minimum order 5/-, post 1/-.

NEW CROSS RADIO

6 OLDham road, manchester 4

AT LAST! THOSE HARD TO GET

 MICROMINIATURE MICROPHONESSensitive dynamic type. Size approx. " square by " thick. Impedance appox. IK. Ideal for external or built in application. LIMITED STOCKS AT ONLY 28/6 post free. MICRO DATA SYSTEMS C.W.O. 30 Baker Street, London, W.I

MARKET CENTRE

For Semiconductors

RECENTLY SPECIFIED TYPES

A25	$12 / 6$	BCY31	$16 /-$	BFY51	$9 / 6$
CR74	$23 /-$	NKT274	$3 / 6$	OC71	$4 /-$
OC72	$4 / 6$	OCP71	$19 / 6$	25018	$8 / 6$
15423	$14 / 9$	$2 N 1599$	$9 / 6$	$2 N 1302$	$5 /-$
$2 N 2 / 47$	$17 /-$	$2 N 2160$	$15 / 6$	$2 N 3528$	$19 / 6$
$2 N 3819$	$18 / \%$	$2 N 2926$	$3 / 9$	BC107	$5 / 6$

MINIATURE RESISTORS \ddagger WATT 5% Stock values: $10,12,15,18,22,27,33,39,47$,
$56,68,82$ and decades to $8 \cdot 2$ Megohm. $1-25$ $56,68,82$ and decades to $8 \cdot 2$ Megohm. $1-25$ 2td, each; 100 over. 2d, each. Brand new-Not surplus.

VEROBOARD 36 square inches $10 /$ 0.15° matrix. Pins, $3 /$-dozen.

SKELETON PRESETS £WATT, SK, 1OK, 25K, 100K, 250K, 500K. $1 \mathrm{Meg}, 2 \mathrm{Meg}, 2.5 \mathrm{Meg}$. 2/- each.

15 VOLT SUB-MINIATURE CAPACITORS $0.5,1,2,4,6,8,10,16,25,32 \mathrm{MFD} 2 / 3$; 50 , 100 MFD, 2/6; 250, $500,3 /-11,0005 / 9$. ALL THE ABOVE AND MUCH, MUCH MORE
IN OUR CATALOGUE, TRANSISTORS TOO IN OUR CATALOGUE, TRANSISTORS TOO NUMEROUS TO GAR PIST. INTEGRATED
CIRCUITS, BACKS, CHEAP TRANSISTOR EQUIVALENTS IN VAST QUANTITY. SEND A LARGE ($6^{\circ} \times 10^{\circ}$) ENVELOPE OR $1 /=$

Postage 9d. Callers very weleome
 L.S.T. COMPONENTS

23 New Road, Brentwood, Essex

RECEIVERS AND COMPONENTS (continued)

EXCLUSIVE OFFER COMPUTER MODULES

	4 INPUT NOR GATE	6-6
	FLIP FLOP	15.0
\star	LAMP \& RELAY DRIVER	9-0
*	9" $\times 6$ " VEROBOARD 0.1"	25-0
\star	Circuit manual	7-6
BUILD COMPUTER CIRCUITS, ADDERS, COUNTERS, GAMES 2/6 P.P. C.W.O.		
	$88-90$ PALL LEIGH-ON-SEA	$\begin{aligned} & \text { LL } \\ & \text { SSEX } \end{aligned}$

BARGAINS! BARGAINS!

Ex Government Equipment
HRO's, AR88's, 19 SETS and EQUIPMENT, 31 SETS, B44's, 88 , 38 and 18 SETS and miscellaneous equipment.
Complete List 1/- (S.A.E.)
A. J. THOMPSON (Dept. P.E.) Elling Lodge, Codicote, Hitchin, Herts. Tel.: Codicote 242

COMPONENTS

POSTAL SERVICE
\star RECHARGEABLE
(5ealed DEAC Ni-Cad)
PP3 Equiv.: $9 \mathrm{v} .37 /-(\mathrm{p} . \& \mathrm{p} .2 /-)$ $\begin{array}{ll}\text { U2 Equiv.: } & 1.25 \mathrm{v} .32 / 6 \text { (p. \& p. } 2 /- \text {) } \\ \text { U7 Equiv.: } & 1.25 \mathrm{v} .12 /-(\mathrm{p} . \& \mathrm{R} .1 / 6)\end{array}$ Uli Equiv.: 1.25 v . 26 /-(p. \& p. 1/6)
 * TRANSISTORS - Matched Output Kit: OC8ID and 2.0 OCBI
R.F. Kit: OC44 and 2-OC45 $9 / 6$

* SLIDER SWITCH—Miniature Quality 2 pole
changeover .. 3/-
($5^{\circ} \mathrm{a}$, 直, t. $\frac{1}{2}$ watt, worth E3) 15/-
(P. \& P. 1/6 per order) C.W.O.

ELMBRIDGE INSTRUMENTS LTD.
Island Farm Avenue, West Molesey, Surrey

SILICON	PRODUCTS		
2N696	$6 / 6$	$2 N 697$	$7 /-$
2N706	$4 / 6$	$2 N 3702$	$4 / 6$
$2 N 3704$	$5 / 6$	$2 N 3708$	$4 / 6$
$2 N 3053$	$11 /-$	$2 N 3055$	$22 /-$

FULL WAVE BRIDGES
looplV 6 amps $50 / \quad 200 \mathrm{~V} 60 /$ l00PIV 10 amps 65/- $200 \mathrm{~V} 75 /-$

RECTIFIERS I AMP

$50 \mathrm{~V} 6 / 6 \quad 100 \mathrm{~V} 7 /-\quad 400 \mathrm{~V} 9 /-$ BooV $14 / 6$
RECTRA COMPONENTS LTD.
25 Victoria Street
LONDON, S.W.I
C.W.O. add postage

RECEIVERS AND COMPONENTS
(continued)

REPANCO Transistor doils and Transformer. for the constructor. Send stamp for lists RADIO EXPERIMENTAI PRODUCTS LTD., 33 Much Park Street, ('oventry.

8MALL 12 V UNISELECTORS. 10 way 3 bank, plus 1 homine bank. 10'6, post 16. Colvern (LLR 8011-262, 50 K whms precision pots, $32^{\prime \prime}$ dia., also (1.16 6t10.15, 40 K sine/ cosine, $5 /-$, post $1 /-$. Silicon rectifiers 50 PIV,

 13 ('hy
('anibs.

SPECIAL OFFER

1 Watt S.T.C. $300 \mathrm{MC} / \mathrm{S}$ N.P.N. Silicon Planer. Transistors. With data. Limited Stocks. il for 6.

3/- each. OC44, OC45, OC70, OC71, OC8I, OC8ID, OC200, Get 16, Get 20.

4/- each. AFII4, AFII5, AFII6, AFII7, OC170, OC171.

5/- each. OC139, OC140, Get 7, Get 8, Get 9, XCI41, BY100, OA2II.

ZENER DIODES

3.9 v . to 26 volt, $\frac{1}{4} \mathrm{w}$. $3 / 6$ each, $1.5 \mathrm{w} .5 /-, 7 \mathrm{w} .6 /-\mathrm{each}$.

Send 6d. for full lists: inc. S.C.R. Zeners.

BSY 27, 7/6 each. OC20, 10/each.

> Cursons
> 78 Broad Street Canterbury Kent

(continued)

COMPONENTS FOR

 A.C. POWER CONTROLSilicon Bridge Rectifiers IA 400PIV encapsulated in cylinder 1 cm . by 1 cm . 15/6 p.p. 6d.
Unijunction Transistors 2N2646 suitable for firing SCR's. 12/- p.p. 6d.

The above are first grade components, not seconds or rejects.
'Cir-kit' for instant printed circuits without messy etching processes Kit, No. ${ }^{3}$. 15/= p.p. 6d.

SCR's (thyristors) also available 400PIV IA $10 /-$. 400PIV 3 A 13/-p.p. 6 d . Fully tested.

NESLO ELECTRONICS 53 GROSVENOR PLACE

NEWCASTLE UPON TYNE 2

PHOTOELECTRIC KIT

Build 12 EXCITING
PHOTOELECTRIC DEVICES
on a Printed Circuit Chassis
CONTENTS: 2 P.C. Chassis Boards, Chemicals Erching Manual. Infra-Red Sensitive Photocell. Latching Relay. 2 Transistors, Resis. Cond. Pot. Terminal Block. Elegant Case. Screws, etc. In fact, everything you need to build a
simple but efficient photo-Switch/Burglar Alarm/Counter, etc. (Project No. 1) which can be modified for modulated light operation (Prolects Nos 2\&3).

Also Essential Dara, Ei,icuirs and Plans for building 12 PHOTOELECTRIC PROIECTS. (I) Simple Photo-Switch. (2) Modulated Light Alarm. (3) Long Range Sray-Light Atarm. (4)
Relay-less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Photoelectric Alarm. (7) Projector Lamp Stabiliser. (8) Electronic Prolector Modulator. (9) Mains Power Supply Unit. (10) Automatic Car Parking Lamp Controller. (il) Super Sensitive Relay-Less Modulared Light Alarm. (12) Car Automatic Headlamo Dipper Basic Kit: 39/6. Post and Packing 2/6 (U.K.)

> OPTICAL KIT

Everything needed (Except plywood) for building Folded-Beam PTOELECTRIC PROJECTS Receiver to suit
CONTENTS:
2 lenses, 2 mirrors, Infra-Red Filter, 245 deg. Blocks. Projector Lamp Holder and Bracket. Plans, etc. Optical Kit: 19/6. Postage and Packing 1/6.

Send S.A.E. for details and photographs
YORK ELECTRICS, 333 York Rd.S.W.II

Laboratory Components

Resistors.

fW. 10% High 9tab. Class 1. Low Noise 3/- per Doz.
Capacitors.
Min. Electrolytics, Abs or single value $\quad 9 /-$ per Doz. Polystyrene sub-min. 20 V . 18% Ass. 6/- per Doz. Transistors.
BC108 5/6 each
Matched Output Kit, OC81D $+2 \times 0 \mathrm{O} 81 \quad 7 / 6$ per set Gormanium, Ass, PNP, NPN AF Types 10/6 per doz. Germantum. Low Leakage, RF Types $12 /-$ per ddoz. Trpe 1021 PNP' Germanium, AF 200mW 12/8 per Doz Type 1024, PNP, Low Leakage, RF,
4me// TYye
OC44, OC45, OC70, OC71, ACY22, OC81D Power Transistors
(OC26 7/8) (OC25 8/8) (OC36 10/-)
For complete list of Laboratory Componente send S.A.E.
LABORATORY EQUIPMENT (ELEC) 38 Crawford St., London, W.I

All goods C.W.O. and P.P. 1/6

MOOERN DCTIONARY OF EIECTRONCS $50 /$ -

AUTHORITATIVE, COMPREHENSIVE COMPLETELY UP TO DATE, BY GRAF. POSTAGE 4/6.

Tape Recorder Servicing Manual, by Hellyer. 67/6
Colour T.V. Servicing Handbook, by Hartwich. 51/6.
101 Ways to use your Oscilloscope, by Middleton. 22/-.
Having fun with Transistors, by Buckwalter. 22/-.
Transistor Electronic Organs for the Amateur, by Douglas. 19/-.

Computers, self taught through experiments, by Brayton. 31/-.

Transistor Specification and Substitution Handbook, by Techpress. 22/6.

Hi-Fi Year Book, by Miles Henslow. 16/3.
Transistor Technology, by Middleton. 31/-.
Questions and Answers on Transistors, by Brown. $9 / 3$.

All prices include U.K. postage
Where possible 24-hour service guaranteed
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Square Tube Station)

NEW RAGEE U.H.F. AERIPLS FOR BBC 2 (625) line transmissions

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.
Loft Mounting irrays. 7 element, 35/-. 11 element, $42 / 6.14$ element, $30 /-.18$ element, i\%/6. Wall Monnting with Cranked Arm. 7 element, $60 /$. 11 element, $67 /$. 14 element. $75 /-18$ element, sy/ti. Mast Monntimis with 2in. clamp. 7 element, $42 / 6: 11$ element. $50 /-;$ 14 element, 62/-i 18 element, $70 / \mathrm{F}$. Itminas Mount lus Arrays, completa, ${ }^{\text {M }}$ element, 72/6; 11 element, $80 /-; 1+$ element, si/6; 18 element, 95/-. Complete assembly instructions with every noms state clearly channel number required on all orders.

F.M. (Hand *). Loft S/D, 12/6, "H'', 30/-, 3 element, 52/6. External units available. Co-ax. cable,
Diplexer Crossover Boxes, $12 / 6$. P. \& P. 5/. Send 6d. stamps for illustrated lists. Quotations for speciai arrays available
K.V.A. ELECTRONICS (Dept. P.E.) 27 Central Parade, New Addington Surrey-CRO-OJB
LODGE HILL 2266

AMATRONIX LTD.

TRANSISTORS-

SILICON NPN:
Low-noise a.f. input (N.F. = 2dB). BCIO9,
 $30 \mathrm{~V}), 6 / \mathrm{F} ; 2 \mathrm{~N} 3705,5 / \mathrm{I} ; \mathrm{HK}^{2} 60 \mathrm{I}, 2 / 6$ (5 for $10 / \mathrm{H}$). H.F/I.F Amps: Ti $407 / 2 \mathrm{~N} 3983$ low noise $\vee H F_{1} 6 /-;$ MEIOI ($\mathrm{ft}=200 \mathrm{MHz}$): $\beta=20-120$, 2/- (6 for $10 /-$), $100-200,2 / 6$ (5 for $10 /-$),
 $500 \mathrm{MHz}, \beta$ over 20, COB 1.8 pF$) 2 /$ - (6 for $10 /-$). General Purpose: 2N2926; $\beta=90-180,3 / 6$;
$150-300,3 / 9 ; 235-470,4 /-\quad(18 \mathrm{~V}, 200 \mathrm{~mW}$,

HKO41(360mW), $2 / 6$. . 2 SBI 187 (sim. OC72, OC75, OC81), 2/- (6 for $10 /-$) GET 693 (sim. AFl17), 10 for 10/-
AMPLIFIER PACKAGES (Circuits Supplied) All transformerless single-ended push-pull output. FAIRCHILD AFIO 8-10W medium-fi,
15Ω spkr. $30 /-$. FAIRCHILD AFJ! 20 W hi-fi 150 spkr.. $30 /-$. FAIRCHILD AFII 20W hi-fi
0.2% H.D., $15 \Omega, 67 / 6$. AMAKIT 1: semiconductors and eapacitors for low-power (up to 650 mW) miniature amps. Add only two resistors to suit voltage and speaker (data sheet supplied) to complete. Easy, economical, 15/-̈ RETIFIERS: si 800 piv $500 \mathrm{~mA}, 3 /-$. Selenium RECTIFIERS: Si 800 piv $500 \mathrm{~mA}, 3 /-$. Selenium
bridge, 30 V rms max input: d.c. output 750 mA (contact cooled), $7 /-$ Miniature, 30 V rms SUBMIN, $4 /$.
SUBMIN. COMPONENTS: Mains trans type $467,1^{\prime \prime}$ dia. "i' 100 mW : $50,150,500 \Omega$. type
$1.5,5,15,150,500 \mathrm{~K} ; 1,1.5 \mathrm{M}, ~ 1 / 6 ~ e a c h . ~ C a s h ~$ with order, Mail order only. Post paid over $5 /-$.
396 SELSDON ROAD, CROYDON SURREY, CR2 ODE

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO. RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: $9 v ; 7 \mathrm{tv} ; 6 \mathrm{v}$; 4iv (single output) $39 / 6$ each. P. \& P, $2 / 9$. $9 v+9 v ; 6 v+6 v ;$ or $4!v+41 v$ (two separate outputs) $42 / 6$ each. P. \& P. 2/9. Please state output required. All the above units are wound transformer ensuring $100^{\circ}, \ldots$ safety.
R.C.S. PRODUCTS (RADIO) LTD (Dept. P.E.), li Oliver Road, London, E.I7

SPECIAL OFFERS ! YOU CAN BENEFIT

H.F. SIRENS: Have you found another use for our powerful yet miniature high frequency horna? Already they are being used in burglar and fire alarms, and for all types of equipment where a clear penetrating sound is required
1.5/4.5V. D. C. onl 3/6 each plue 1/- P. \& P. yer horn.

AERIAL WIRE: Pure copper, insulated: still avallable in 76 ft . reels at excellent price of $5 /-$ plus 1/-P. \& \mathbf{P}.

RELAYG:

1. Miniature plug-in with 2 light duty c/o contacts. Coll 185 ohms. $4 \$ / 18 \mathrm{~V}$. D.C. $15 /-$
2. Miniature plug-in with 4 light duty c/o contacte. Coil 130 ohms. 9/15V. D.C. 18/9.
3. Heavy duty car alarm relay $6 / 12 \mathrm{~V}$. D.C. 3 heavy duty c/o contacte. $27 / 6$.
P. \& P. on above items $1 /$ each.
4. Base for item (2), 3/8 plus 6d. P. \& P.

LOUDSPEAKER8: We carry a range of apeakers to suit every application. Typical examples are

1. Westwell 0.2 W .; $8 \mathrm{ohm} ; 2 \nmid \mathrm{ln}$. din., $7 / 8$.
2. Weatwell $0.2 \mathrm{~W} . ; 8 \mathrm{ohm}$; 3in. dia., $9 / 6$.
3. Rlchard Allen 12 in ., 3 ohm wlth tweeter, $37 / 6$ plus 3/- P. \& P.
TEST METERS: ITI-2. A superb buy for the discerning engineer with a 1 imited budget. 20 K . ohms/ V.: with all the usual desirable features for testing and experimenting. A smip at 69/6 plus 3/• P. \& P TEST LEAD KIT8
6/8 plus $1 / 3$ P. \&.

RECORD PLAYER AMPLIFIER: Powerful single valve amplifer (EL 84) with metal rectifier. Complete with volume and tone controls. $220 / 250 \mathrm{~V}$. A.C only $59 / 6$ plus $3 /-\mathrm{P}$. \& P.
And, of course, all Sinclair and Lander producte always in stock
Write or call now for our components list

BOTHWRLL ELECTRIC 8UPPLIER (GIasgow) LTD 54 EGLITTON BTREET
GLASGOW, C.5. Tel. 041 sOUth 2904 Member of the Lander Group

\section*{TECHNICAL TRADING Co
 All items previously advertised available, also see items advertised in Practical Wireless. Huge HiFi and Components stocks at all branches.
 ROBOPHONE ORDERS Your C.O.D. order exceeding 21 can le telephoned to

BRIGHTON 680722 BRIGHTON 680722 at any the day and might JASON TAPE Ton , mind

 TTENHAM COURT RD., LONDON, W.I Tel.: MUS 2639 350/352 FRATTON RD., PORTSMOUTH. Tel: 22034 72 EAST STREET, SOUTHAMPTON. Tel: 2585 I all mail order and retall sh
 PARK CRESCENT PLACE, BRIGHTON

WENTWORTH RADIO bar 3087 104 salisbury road, high barnet, herts Suppliers of High Quality Semiconductors

AC	$8 / 3$	ACY41	4/6	AsY32	101-	BCZII	14/3	BSY\$1	171-	HT301 5/-	ME4001	$5 / 3$	NKT123	0/3	NKT10421	19/6	NKT16422	$17 / 3$	NKT22331	30/-
ACY18	51-	AA120	6/-	ASY54	ti/8	BPY1:	$19 / 3$	13NY52	19/6	MAT100 $7 / 4$	ME4002	71-	NKT124	8/5	NKT10431	24.7	NKT20241	10/11	NKT224	3/9
ACY19	$8 / 7$	AC127	6/6	A8Y55	913	BCY18	18/-	3sY'53	221-	MAT101 E/6	ME4003	6/6	NKT125	5/4	NKT1241	cricts	NKT20331	17/6	NKT22421	301-
ACY20	4/7	AC154	b/-	ASY5ti	4/9	HFY 14	19/6		32\%-	MAT120 $7 / 9$	M E6001	6/6	NKT123	$\overline{5} / 2$	NKT12041£	10.10	NKT204*1	10/11	NKT225	3/90
ACY21	5/3	ACl5 5	6/-	Astō	71-	BFYe5	37/19	HSY5t	39/-	MAT121 $\quad 1 / 6$	M Ebione	7/4	NKT12\%	8/1:	NKT12141	$751-$	NKT211	$5 / 2$	NKT226	$8 / 6$
ACY22	4/-	AC165	6/-	A YY5	2/3	ВトY 26	$27 / 3$	BSY8i	24.	ME0404 \$/2	ME600\%	6)-	NKT128	6/-	NKT12231	17/3	NKT212	4/7	NKT227	8/6:
ACY23	4/4	AD140	10\%	AsZ15	18/-	$13 \mathrm{FY4}$	13/3	BSY8	28/-	MLE0404.1 $7 / 6$	MEY001	7/6	NKT129	$5 / 2$	NKT12232	1011	NKT213	$4 / 9$	NKT228	/4
ACY27	4/6	AD161 ${ }^{\circ}$	10/-	AsZ17	1:3/5	Bry ${ }^{\text {B }}$	13/-	BSY90	22/	ME0404.2 6	ME9002	6/-	NKT141	0 -	NKT12331	17/3	NKT214	3/9	NKT237	/3
ACY28	4/6	AD162P	10/-	A HZ26	bi-	BFY50	22/4;	185 y 95.4	7/6	ME0475 15/-	M E4021	bil-	NKT142	$5 / 2$	NKT12332	10/1	NKT215	3/4	NKT238	1-
ACY29	10/6	ADT140	15/-	$\mathrm{AHZ2}^{4}$	716	BSXEX	20/-	31\%Y0	4*2/-	ME1075 11/3	ME9022	¢i-	NKT143	$5 /-$	NKT12341	17/3	NKT216	$8 / 6$	NKT239	
ACY30	61-	AF114	4/5	$1 \mathrm{Cl10}$	$5 / 10$	18x\%24	30/-	B1'Yl	\& 7.10	MEi00 $5 / 6$	NKT0003	121-	NKT162	$4 / 11$	NKT12431	17/3	NKT217	8/-	NKT240	
ACY31	14/-	AF115	4/t	18C108	$7 / 6$	B8Y25	15/-	HT100	18/39	ME1002 fi/6	NKT0007	12/-	NKT163	4/11	NKT12432	10/1	NKT218	4/4	NKT241	
ACY32	6/-	API 16	4/6	BC109	8/8	BSY26	13/4;	HTi01	28/6	ME2001 4/9	NKT0016	46	NKT164	$4 / 11$	NKT16221	24/-	NKT219	4/10	NKT242	
ACY34	3/9	AF117	$2 / 6$	BCY31	11/3	BSY27	12/9	HT490	11/3	M E2002 6 -	NKT0019	¢6	NKT10241	10/1	NKT16222	16/6	NKT221	4/11	NK'	
ACY35	$3 / 9$	AF118	6i)-	BCY 39	19/6	B8Y28	193-	HT401	$13 / 6$	ME3011 \%/-	NKT12	5/3	NKT10321	10/1	NKT16321	24/-	NKT222	4/3	NK	
ACY36	4/9	ASY50	3/-	BCY42	8/-	BS:29	23/-	HT402	$11 / 3$	ME3001 8/8	NKT121	91-	NKT10331	24/-	NKT16322	17/3	NKT2224	30/-	N	/6
ACY40	4/1	ASY51	15/-	BCY 43	8/-	B8Y39	13/6	HT403	13/3	ME3012 ${ }^{\text {a }}$ 10/3	NKT122	6/5	NKT10341	21/-	NKT16421	24/-	NK T223	4/4	NKT262	

SIXIPAGE LIST NOW AVAILABLE, S.A.E. TERMS, CASH WITH ORDER. P.P. ADD 9d.
SEMICONDUCTORS AND MAIL ORDER ONLY, WE REGRET, NO CALLERS.

YOU CAN AFFORD! AN INDIVIDUALLY MAKUFACTURED

ENGRRVE FACLIAPANEL

WE OFFER A COMPLETELY NEW SERVICE TO ELECTRONIC ENTHUSIASTS WHO WISH TO MAKE THEIR APPARATUS INDISTINGUISHABLE FROM THE MOST EXPENSIVE PROFESSIONALLY MADE EQUIPMENT.
FOR FREE QUOTATION AND FURTHER INFORMATION SEND S.A.E. AND WORKING DRAWING OF APERTURES AND WORDING REQUIRED TO:GREYMEL LTD., 34 PANCRAS RD., LONOON, N.W. 1

A BARGAIN FOR ELECTRONICS ENTHUSIASTS BEGINNER'S GUIDE TO ELECTRONICS By Terence L. Squires, A.M.Brit.I.R.E. Early chapters explain the nature of electric currents, pulses and waveforms. The components and circuits that are the basis of electronics are then described and illustrated, and their operation clearly explained. Chapters are devoted to test instruments; the principles of and the basic techniques used in the main branches of electronics.
192 pages. 128 line diagrams. 6s. 6d.
From your Bookseller or in case of difficulty 75 , by post from:
NEWNES Tower House, Southampton Street, London, W.C. 2

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available - without charge to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new 'ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives detailsolexaminations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

ELECTRONIC: ENC.

Adrunced Electronic Eng:Gen. Elicironic Ing.- Ap. plied Electronics-Practical Elictronics - Kadar 'Jech.Frequency Alochulation Transistors
ELECTRICAL ENC:
Advanced Electrical Eng.General Electrical Eing. Jhstallations - Draughismanship - Ilhuminuting ling. Refingeranion - Ellem. Klec. Science - Elic. Sumply Mining Elec. Eng.
CIVII, ENG.
Advanced Civil Eng.Gencral Civil Ling. - Mmicinal Eng. - Sirnctural Eng. -Sanifary Eng.- Koal Eng. - Hydranlics - Mining -Water Supply --Pearol Jech.

IRADIG liNe.
Advanced Kadio Gopneral Rarlio-Ration IVUS'Sriking - II linginerring - Telew rommmthiculioms -- Sommd Kecomaing -- Aufombition
Pratical Rudio Pratical Rurlio - Rudio Amatears* Examinarion MHCHANICAL IUNG; Advanced Mechamical Eng. Ginn. Micch. Eing.- Vaintinwitce Eug. Duew ling. Press Tool Design ... Sheer Mcal Work - Wedding -Fug Pustern Noking -
Inspection - Drwnwhiwnanship
 Ens.
AUTOMOBILF ING. Advanced Amomobile Eng. Gicneral Amo. lints Alulo. Alointehtroce - Rrpair -- Fufo. Diessl Maimenance Aufo. Elictrical EdwipmamGarage Afanagement.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., A.M.I.Mech.E., A.M.S.E., A.M.I.C.E., B.SC., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Chem.E., A.R.I.C.S. M.R.S.H., A.M.I.E.D., A.M.I.MUn.E., C.ENG., CITY \& GUILDS, GEN CERT. OF EDUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A ALDERMASTON COURI, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

t HOW to get a better paid, more interes

 ing job.* HOW to qualify for rapid promotion.
- HOW to put some letters ofter your name and become a key man ... quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
大 HOW you can take adrantage of the chances you are now missing
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT

 CAREER - GUIDANCEPRACTICAL EQUIPMENT
Basic Practical and Thearelic Couses for beginners in Radio, I.V. Electronics, Etc. A.M.I.E.R.E. Gity \& Guilds Radio Amaleurs Exam. R.T.E.B. (ettilitate P. M. M. G. Certificate Practical Radia Radio 8 Television Servicing Practical Electroniss Prarto Elerions Aulomation

You are bound to benefit from reading "ENGINEERING OPPORTUNI'TIES" - send for your copy nowFREE and without obligation.
 TO B.I.E.T., 3IGA ALDERMASTON COURT,
AL. stanip if posted in
aldermaston, BERKSHIRE. Please send me a FREE copy of "ENGINEERING IOPPORTUNITIES." I am interested in (state subject, exam., or career).

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THEMORLD

[^0]: Date: May 24
 Title: The Postal Service and the Electronics Engineer
 J. Piggott and T. Pilling

 Time: $\quad 6$ p.m.
 Address: I.E.E., Savoy Place, London, W.C. 2

[^1]: To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives

 NAME

[^2]: Please write Name and Address in block capitals

