Introducing... PEAC

* PRACTICAL ELECTRONICS ANALOGUE COMPUTER
ILLUSTRATED:
L64 "BIT INSTRUMENT IN L700 PROTECTIVE SHIELD

APPLY DIRECT TO:
SALES & SERVICE DEPT.
ADCOLA PRODUCTS LTD.
ADCOLA HOUSE
GAUDEN ROAD
LONDON, S.W.4
TELEPHONE 01-622 0291

TRANSISTOR BARGAIN SALE! NEW STOCK AT UNBEATABLE PRICES!
OC44, OC45, OC81D NEW ONLY 1/- each £6.00 per 100
OT10, OC73 equivalent 1/- each £6.00 per 100
ASY52 Switching Transistors 2/- each £10.00 per 100
2NT33 PNPN Silicon Planar, 300mV, 250µa. High-speed switching 2/- each
B5Y38 PNPN Silicon Planar, Epitaxial, 300mV, 300MC 1/- each
B1Y55 PNPN Silicon Planar, Epitaxial, 800mW, 100MC 1/- each
AFZ12 PNPN Germanium Diff. low-noise VHF amplifier 2/- each
Complete sets of transistors for radio
2G144A/2G345A/2G348B/2G371A/2G378B/2G378A + diode - 15/- only!
OC42/OC46/OC45/OC81D/OC81C/OC81B + diode 10/- only
GET SN 2 watts. Heat sink included 2/- each
OC28 5/- each
BYZ13 6 amp. rectifier 2/- each
Light sensitive transistors similar to OC91) 1/- each
UNMARKED, UNTESTED TRANSISTORS TO CLEAR. 1/- each, 20 for 10/-
Silicon diodes. Make excellent detectors. Also suitable for keying electronic organs. 1/- each, 20 for 10/-

BY 100 type rectifiers. SPECIAL REDUCED PRICE: ONLY 2/- each, 250 for £10.00 错 100.

ELECTROLYTIC CAPACITORS - FANTASTIC SELECTION!
<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1µf</td>
<td>0.5V</td>
</tr>
<tr>
<td>0.2µf</td>
<td>15V</td>
</tr>
<tr>
<td>0.5µf</td>
<td>6V</td>
</tr>
<tr>
<td>2.5µf</td>
<td>12V</td>
</tr>
<tr>
<td>10µf</td>
<td>25V</td>
</tr>
</tbody>
</table>

PAPER CAPACITORS - ALL HALF PRICE

RESISTORS

WIRE-WOUND RESISTORS

WIRE, THIN, P.V.C. INSULATED

WIRE, BRAND-NEW AND BOXED, ROCK-BOTTOM PRICES!

A FURTHER 10% DISCOUNT WILL BE GIVEN ON LOTS OF 50 OF ANY ONE TYPE

RECORD PLAYER CARTRIDGES

ORDERS BY POST TO: G. F. MILWARD, 17 PEEL CLOSE, DRAYTON, BASSET, STAFFS. Please include suitable amount to cover postage.

Recorded addresses envelope must be included with any enquiries for customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8. (All POST orders to Drayton)
LIND-AIR LTD
LONDON'S LEADING COMPONENT SHOPS
25 & 53 TOTTENHAM COURT RD. LONDON W.1.
TELEPHONE 01-580 4532/7879
Open 9 a.m.-6 p.m. Mon. to Sat. inclusive

GARRARD DECKS UP TO 25% UNDER LIST PRICE

- £79.95
- £109.95

PAPR

Garrard 3000 Record Changer unit fitted lightweight using latest silicon

TRNSITSTR FM TUNER ONLY

- £6.76
- £4.13

Send your order now or call and hear this to bookshelves, room dividers or existing furniture.

MULTIMETERS

- TCC 100 $.
- S. 19.3
- A. 19.9
- C. 19.9

SPECIAL OFFER

- 20/- OFF

This coupon entitles you to receive 20/- special discount off any purchase over £15.

SINCLAIR AMPLIFIERS

- Z12 Amp. and Pre-amp.
- STEREO 53 Control
- P. & P. £9.8

Efficient Mail Order Service

For prompt despatch send your orders to Dept PE166, 63 Tottenham Court Road, London, W.1.
Hi-Fi AM/FM Tuner
- Model AFM-1: Available in two units which, for your convenience, are sold separately. Sold separately, can be built for a Total Price: Kit £8.10.0. Assembled £12.5.0

Stereo Decoder SD-1
Available as extra for above models. Self-powered. Kit £22.11.6. Assembled £35.15.0.

Hi-Fi FM Tuner
Model FM-12.
- Outstanding car radio, Model CR-1
- Kit TFM-IS (STEREO) £24.18.0 incl. P.T.

Hi-Fi Amplifiers
- **20+20W TRANSISTOR STEREO AMPLIFIER.** Model AA-22U.
- Outstanding performance and appearance. Kit £35.10.0 (less cabinet). Attractive walnut veneered cabinet £25.0 extra. Assembled incl. cabinet, £59.15.0.
- **HI-FI MONO AMPLIFIER.** Model MA-12.
- 10W output, wide freq. range, low distortion. Use with control unit. Kit £12.18.0 Assembled £16.18.0
- **HI-FI CABINETS.** Full details available. MALVERN: Kit £18.10.0.
- **DELUXE STEREO AMPLIFIER.** Model S-33H.
- De luxe version of the S-33 with two-tone grey perspex panel, and high sensitivity necessary to accept the Decca Deram pick-up. Kit £15.17.6 Assembled £21.7.6
- **HI-FI STEREO AMPLIFIER.** Model S-99.

Test Instruments

Our wide range includes:
- **3" LOW-PRICED SERVICE OSCILLOSCOPE.** Model OS-2.
- Compact size 5" × 7" × 12" deep. Wt. only 91 lb. Three bands: 2 c/s-3 Mc/s ±3dB, Sensitivity 100mv/Vcm T/B 20 c/s-200 kc/s in four ranges, fitted metal CRT Shield. Modern functional styling. Kit £23.18.0 Assembled £31.18.0
- **5" GEN.-PURPOSE OSCILLOSCOPE.** Model 10-12U.
- An outstanding model with professional specification and styling. "Y" bandwidth 3 c/s-4.5 Mc/s ±3dB. T/B 10 c/s-500 kc/s. Kit £35.17.6 Assembled £45.15.0
- **DE LUXE LARGE-SCALE VALVE VOLT-METER.** Model IM-13U.
- Circuit and specification based on the well-known model V-7A but with many worth-while refinements. 6" Ernest Turner-meter. Unique gimbal bracket allows operation of instrument in many positions. Modern styling. Kit £18.18.0 Assembled £26.18.0
- **AUDIO SIGNAL GENERATOR.** Model AG-9U.
- 10 c/s to 100 kc/s, switch selected. Distortion less than 0-1%, 10V sine wave output metered in volts and dB's. Kit £23.15.0 Assembled £31.15.0
- **VALVE VOLT-METER.** Model V-7A.
- 500 kc/s.
TAPE DECKS — CONTROL UNITS

NEW! STEREO AMPLIFIER, TSA-12
12 x 12 watts output
Kit £30.10.0 less cabinet
Assembled £42.10.0
Cabinet £2.5.0 extra

FOR THIS SPECIFICATION
- 17 transistors, 6 diode circuit
- 1 db, 16 to 50,000 c/s at 12 watts per channel into 8 ohms
- Output suitable for 8 or 15 ohm loudspeakers
- 3 stereo inputs for Gram, Radio and Aux
- Modern low silhouette styling
- Attractive aluminium, golden anodised front panel
- Handsome assembled and finished walnut veneered cabinet available
- Matches Heathkit models TFM-1 and AFM-2 transistor tuners.

Full range power...over extremely wide frequency range. Special transformerless output circuitry. Adequately heat-sunk power transistors for cool operation—long life. 6 position source switch.

FULL SPECIFICATION SHEET AVAILABLE

Build Your Own Electronics

Hi-Fi SYSTEMS

NEW! SPEAKER SYSTEM. Model SSU-1. Ducted-port bass reflex cabinet "in the white". Two speakers. Vertical horizontal models with legs, Kit £12.12.6, without legs, Kit £11.17.6 incl. P.T.

Many other models in range.

See latest catalogue for details.

NEW! STEREO TAPE RECORDER, STR-1

½ track stereo or mono record and playback at 7½, 33 and 1½ ips. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator, Digital counter with wheel-zero reset. Stereo microphone and auxiliary inputs and controls, speaker headphone and external amplifier outputs...front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 watts rms per channel. Two high efficiency 8 in. by 5 in. speakers. Operates on 230v A.C. supply.

Kit £45.18.0
Assembled price on request

Low-Cost Transistor Stereo Amplifier Kit TS-23

A really low priced unit yet incorporates all essential features for good reproduction from gramophone, radio and other sources, 3 watts for channel output (15 ohms). Kit £17.15.0. Beautiful walnut veneered cabinet £2.00 extra.

FREE! 36 page Catalogue. SEND FOR YOUR COPY NOW!

To DAYSTROM LTD., Dept. P.E.1, Gloucester: Please send FREE catalogue to my friend.

NAME
ADDRESS
P.E.1
INDISPENSABLE ALIKE TO:

- STUDENT
- TEACHER
- AMATEUR EXPERIMENTER

Clear, simple, versatile, this rugged system can build almost any electronic circuit. Ideal for the experimenter, the teacher, and the complete beginner. Already used by well over 1,000 schools in the U.K.

Selected by the Council of Industrial Design for all British Design Centres. Featured in Sound and Television broadcasts.

Beautifully engineered; battery operated; no soldering; no prior knowledge needed. Results guaranteed by our technical department. People say:

"I can only describe the results as brilliant, absolutely brilliant."

"You have opened up a new world."

"Nothing could paint the picture clearer than building these sets."

"The kit has been used by my son (aged 10) with complete success."

"Most impressive - a stroke of genius whoever devised it."

UNIQUE! Our "No soldering" printed circuit board for superhet portable. Simply insert components and tighten nuts.

No. 1 Set £15.15.6. 14 Circuits (Earphone)
No. 2 Set £10.15.6. 20 Circuits (Earphone)
No. 3 Set £10.15.6. 22 Circuits (7 x 4tn. Loudspeaker output)
No. 4 Set £14.15.6. 26 Circuits (include 6 Transistor and reflex superhet)

Prices (Post Free)
(Plus P.T. increases of 1/2d; 1/1d; 3/1d; 4/2d respectively)

Full details from:
RADIONIC PRODUCTS LIMITED
STEPHENSON WAY, THREE BRIDGES
CRAWLEY, SUSSEX

Tel.: CRAWLEY 27028

TRADE ENQUIRIES INVITED

GRAPHIC DESIGN: STUART HEWITT

RADIO & ELECTRONIC CONSTRUCTION SYSTEM

A No. 4 Set and 6-Transistor Superhet

Theoretical Circuit

Practical Layout

ERIN

Multicore

5 Core Solder

for quick, easy, reliable soldering

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Erin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

SIZE 5
HARDY SOLDER DISPENSER
Contains 12 ft. coil of 18 s.w.g. Erin Multicore Savbit Alloy. 2/6 each.

SIZE 10
SOLDER DISPENSER
Contains 21 ft. coil of 60/40 Alloy, 22 s.w.g. Ideal for small components, transistors, diodes, etc. 3/- each.

SIZE 12
Ideal for home constructors. Contains 102 ft. of 18 s.w.g. Erin Multicore Savbit Alloy on a plastic reel. 15/- each.

BIB MODEL 8
WIRE STRIPPER AND CUTTER
Strips insulation cleanly and quickly, fitted with unique 8 gauge wire selector. Plastic handles: 9/6 each.

Two Scoops from "King's"
CONTINUOUS LOOP
(NEVER ENDING - NO REWINDING)
TAPE CASSETTE
BULK PURCHASE
RIDICULOUS PRICE

IDEAL BACKGROUND MUSIC - LANGUAGE COURSES, ETC. 200ft. HIGH QUALITY AMPEX TAPE. WILL FIT ALL TAPE RECORDERS.

CANNOT BE REPEATED.

HURRY! SEND FOR YOURS.

HURRY! NOW ONLY 16/- EACH

FULL CIRCUIT - INSTRUCTIONS - PARTS LIST TO BUILD YOUR OWN TELEPHONE ANSWERING MACHINE:
SIMPLE - QUICK - EASY - AUTOMATIC.
TAKES 100'S OF CALLS:
CHEAP TO BUILD. SEND NOW 25/-

KING’S TELE-SERVICE CO.
105/107 DAWES ROAD, FULHAM, S.W.6
FULHAM 1668-2998

From Electrical and Hardware shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.
GREAT NEWS!

THIS YEAR LASKY'S CELEBRATE THEIR 35TH ANNIVERSARY

35 Great Years of service to you based on fair prices and value.

To celebrate our success and your satisfaction we are publishing a 12-page, fully illustrated colour "35th Birthday Pictorial" Catalogue

Printed in large 14 x 11in. modern magazine format—the "Birthday Pictorial" contains thousands of different items from our vast stocks of Radio, Hi-Fi, TV, Test Gear, Components, Communications and other equipment.

PLUS many bargain offers and prices exclusive to Lasky's.

In every copy of the Birthday Pictorial is numbered and automatically enters you in our great "Birthday Draw" with over £1000 in Gift Vouchers to be won.

All goods shown in the "Birthday Pictorial" are available over the counter from any of our branches—or by post to any address in the U.K. or overseas—bring the benefits of shopping at Lasky's to you in your home.

PUBLICATION DATE—NOVEMBER. Make sure of your copy NOW—just send your name, address and £4. stamp for postage.

A MUST FOR EVERY ELECTRONICS HOBBYIST AND HI-FI ENTHUSIAST!

SPECIAL INTEREST ITEMS!

NEW VOICE ACTUATED MICROPHONE

MODEL B 5001

This new voice actuated microphone is designed for use with tape recorders with facilities for remote control. The microphone is fitted with a three position switch allowing normal hand remote control, voice sensitivity action and off. The degree of voice or sound level required to operate the recorder can be adjusted. The microphone is self powered by one 9V (P.P3 type) battery giving 6 to 10 hrs. operating time. Special features: 88B-CW Input. 9V d.c. source. Full data and circuit supplied.

OUTSTANDING BARGAINS!

TRANSISTOR FM TUNER CHASSIS

MAGNETIC TAPE REPLAY PRE-AMP. Designed so that a 450 mH head can be matched into any of the audio amplifier modules listed above. Size 21 x 11 x 15/16in. Price 27/6.

Voices and sound level required to operate the recorder can be adjusted. Microphone is self powered by one 9V (P.P3 type) battery giving 6 to 10 h.s. operating time. Special features: 88B-CW Input. 9V d.c. source. Full data and circuit supplied.

LASKY'S PRICE 56/19.6 Post 2/6.

MULTIPLEX ADAPTOR

Now you can enjoy stereo sound with the FM tuner above. Brief spec. MPX input sensitivity 100mV. Output 100mV. Self powered by a 9V battery. 4 transistor and 6 diode circuit. Size 65 x 2 x 9/16in. Also suitable for use with other FM tuners with MPX input.

LASKY'S PRICE 99/6 Post 5/-.

PACKAGE PRICE IF BOUGHT TOGETHER 111 Post 6/-

FULLY INCAPACITATED MODULES

Special function modules—all one size 1 1/4 x 1 1/4in. Complete with detailed instructions and installation instructions. £5.10.0 for data. M. 1. Public address amp. for use with carbon, crystal or Dynamic microphone. 212 output Imp. £4. 212.0. M. 1. Gramophone amplifier—provides sufficient power to fill average room. 312 output Imp. £3. 212.0. Morse code practice oscillator—one with Morse key of 20 word per minute. £2. 212.0. M. 1. Metronome module—provides audible and visual beat from 30 to 240 beats per minute (for use with 30 speaker or loud amp). £2. 212.0.
CHRISTMAS BARGAINS!

GEE'S SPECIAL OFFER!

GARRARD MODEL A70

Three-speed record changer complete with
attetive
3,000 c.p.s.
15 in.

Stereo pick-up.

Need not be limited to existing Hi-Fi Amplifiers. Brand new in original packing.

GEE'S PRICE 18 Gns.

SEND FOR ILLUSTRATED CATALOGUE OF TAPE AND AUDIO ACCESSORY BARGAINS

STOP READING start building start SW listening

For only £28 6.2d. you can build this exciting, instructive Short Wave Receiver. The Star Roamer kit looks and sounds professional. A beautifully finished charcoal grey cabinet and matching front with ham type operating features and performance. The perfect introduction to radio construction and ham techniques - the perfect gift for enthusiast and novice alike.

Like all Knightkits the Star Roamer is available from Electroniques on convenient credit terms. It is fully guaranteed and for any construction problem our friendly Service Department is ready to advise and assist.

Send for the FREE Knightkit 40-page brochure, It gives full details and performance specifications on the Star Roamer and dozens of other unusual electronic kits. No real enthusiast can afford to be without a copy.

Please send me your FREE brochure K37 giving full details on the Knightkit Model. Excess.

Send to ELECTRONIQUES

Quality built in, built up by you
SINCLAIR
MICROMATIC
the world’s smallest radio set

Down in price!
and
UP IN LISTENING QUALITY

With sales and export orders for the Sinclair Micromatic breaking all
records, we have changed over to new production methods to meet the
ever-increasing demand for the world’s smallest radio set. This has
enabled us to effect dramatic economies because of the large quantities
of materials involved. At the same time, we have appreciably improved
the set’s quality. We now supply a magnetic earpiece which matches
perfectly to the powerful output of the Micromatic, and what was superb
performance before, now sounds better than ever. Now that your
Micromatic costs you less (49/6 kit; 59/6 built), you can afford not only to
have one for yourself, but give them as gifts. But be quick. At the new
prices, everyone is going to want the Micromatic. Order yours now.

PLAYS ANYWHERE
FANTASTIC POWER AND RANGE
FULLY GUARANTEED

NOW SUPPLIED WITH A DE-LUXE MAGNETIC EARPIECE
This new finely engineered magnetic earpiece has great sensi-
tivity and covers a very wide frequency range. It provides ex-
ceptional clarity and quality and is of robust construction. Each
one is individually checked before despatch.

Available separately with instruction for adoption to existing Micromatic Sets, post. fee 15/-

FULL SERVICE FACILITIES AVAILABLE WHEN YOU BUY THE KIT AND BUILD IT YOURSELF

Order form and more Sinclair designs
SEE PAGES 2 AND 3 SINCLAIR ADS
A no-compromise high-fidelity loudspeaker of outstanding quality

Price need no longer stop you enjoying the best possible high-fidelity loudspeaker reproduction nor is size any longer a problem. (These considerations are of utmost importance to every audio enthusiast for stereo.) In the Sinclair Q.14 you will find a loudspeaker of such superb quality and so compactly and attractively styled that you will want to change over to Sinclair immediately you hear it. This is no ordinary loudspeaker. A vast amount of money, time and research have gone into producing a design which proves beyond question that good reproduction does not have to be expensive. Users of the Z.12 for instance, know that full well, and coupling the Q.14 to this Sinclair amplifier assures the keen listener of superb audio reproduction.

The Sinclair Q.14 has been tested in an independent laboratory and shows exceptionally smooth response between 60 and 16,000c/s with well sustained output both below and above these readings. Its remarkable transient response ensures clean-cut separation between instruments, voices, etc. The unusual shape of the sealed, seamless pressure chamber allows the Q.14 to be conveniently positioned on shelves, in wall corners, or flush mounted in assemblies of one or more units.

Try the Q.14 in your own home now. If you are not satisfied send it back and your money plus the cost of posting your Q.14 to us will be refunded in full.

£6.19.6 POST FREE ANYWHERE IN THE UK

SINCLAIR RADIONICS LTD., 22 Newmarket Road, Cambridge

Phone: OCA3 52996
SINCLAIR Z.12

12 WATTS R.M.S. OUTPUT CONTINUOUS SINE WAVE
(24W PEAK) 15 WATTS MUSIC POWER (30W PEAK)

The embodiment of power, efficiency, reliability and economy. Nothing could be better than this fine amplifier for use with space-saving plinth-mounted motor and pick-up assemblies. Equally, its light weight makes the Z.12 ideal for guitar amplifier or electronic organ. It operates efficiently on any power supply between 6 and 20V. d.c. The pre-amp of this 8-transistor masterpiece will accept the outputs of pick-up, radio and microphone, etc. Full details for matching control and selector switching circuits are in the manual supplied with each unit. The Z.12 is now in use all over the world and is the accepted standard for all hi-fi needs.

TECHNICAL DETAILS
- Class “B” ultra-linear output.
- RESPONSE 15-50,000 c/s ± 1dB.
- Suitable for 3, 7.5 or 15w speakers. Two 3n speakers may be used in parallel.
- INPUT—2mV into 2kΩ.
- Signal to noise ratio better than 60dB.
- Use two for stereo.

PZ.3 Mains Supply Unit for Z.12 and Stereo 25 79/6

ALL ITEMS POST FREE • SATISFACTION OR MONEY BACK GUARANTEE • PROMPT DELIVERY

SINCLAIR MICRO FM
7 TRANSISTOR DUAL PURPOSE FM TUNER/RECEIVER

Now I.F. makes alignment unnecessary when built. Tunes 88-108 Mhz. The telescopic aerial suffices for good reception in all but poorest areas. Signal to noise ratio—25dB at 30 microvolts. One outlet leads to amplifier or recorder. The other allows set to be used as a pocket portable. Complete kit with vanes and instructions.

£5.19.6

Please quote P.E.12 if you want to write your order instead of cutting out the coupon.

SINCLAIR STEREO 25
For use with two Z.12s or any hi-fi stereo system. Frequency response 25c/s to 30kc/s ±1dB. Switched inputs for P.U. Radio, Microphone, etc. Equalisation correct to within ±1dB on RIAA curve from 50 to 20,000c/s. 6fin. x 2fin. x 2fin. plus knobs. Built, tested and guaranteed £9.19.6
The ADAMIN range includes five other models (5, 8, 12, 18 and 24 watts), Thermal strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/37.
The latest Eagle range is greater than ever!

It's now ready—the new Eagle Catalogue presenting 'The Wonderful World of Electronics'. Hundreds of items for the Radio Hobbyist, Hi-Fi Enthusiast, Serviceman, Do-it-Yourself, etc. The widest ever choice of sensibly priced Electronic Components, Audio and Tape Accessories, Educational Projects, Home Lighting, Intercoms, Hi-Fi Amplifiers, Tuners, Tape Recorders, Loudspeakers and Speaker Systems, all of which are fully illustrated together with technical specifications. There's something for everyone in Eagle's Wonderful World of Electronics so send for your copy now or call in at one of the 6,000 Eagle Stockists today.

To: EAGLE PRODUCTS, Dept. P.E.I

Please send me catalogue of the entire "Eagle" range. I enclose 5/-.

Name

Address

To: EAGLE PRODUCTS, Dept. P.E.I

Please send me catalogue of the entire "Eagle" range. I enclose 5/-.

Name

Address
These new devices offer features which can be exploited in an extremely wide field of applications. Their outstanding modulations and switching capabilities, coupled with completely solid state circuit design and small physical size make them ideally suited to such purposes as short distance speech and data links, remote relay controls, safety devices, burglar alarms, batch counters, level detectors, etc.

DEMONSTRATIONS
of these devices operating as SPEECH LINK and ON/OFF LINK are being given daily at our only address:

52 TOTTENHAM COURT ROAD
LONDON, W.1

MARTIN IS HIGH-FIDELITY
PREFERRED FOR RELIABILITY, QUALITY, ADD-ON-ABILITY AND ECONOMY

You can do so much with MARTIN kits. The system of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have, so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness without sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTIN — it’s simple to install, good to listen to, and looks completely professional.

AMPLIFIER SYSTEMS • TUNERS • RECORDERS

MARTIN ELECTRONICS
154 High Street, Brentford, Middlesex
Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)
BUILD YOURSELF A QUALITY TRANSISTOR RADIO—FULL AFTER SALES SERVICE!

THE MAGNIFICENT ROAMER

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION

- 7 FULLY TUNABLE WAVE BANDS—MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band.
- Extra Medium waveband provides easier tuning of Radio Luxembourg, etc.
- Built in ferrite rod aerial for Medium and Long Waves.
- 5 Section 22 in. chrome plated telescopic aerial for Short Waves—can be angled and rotated for peak S.W. listening.
- Socket for Car Aerial.
- Powerful push-pull output.
- 7 transistors and two diodes including Philco Micro-Alloy R.F. Transistors.
- Famous make 7 x 4 in. P.M. speaker.
- Air spaced ganged tuning condenser.
- Separate on/off switch, volume control, wave change switches and tuning control.
- Attractive case with hand and shoulder straps. Size 9 x 7 x 4 in. approx.
- First grade components.
- Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build with guaranteed results.

Total building costs £5.19.6 parts price list and easy build plans 3/- (FREE with kit).

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE

Attractive case with red speaker grille. Size 6½ x 3½ x 7½ in. Fully tunable. 7 stages—4 transistors, and 2 diodes—ferrite rod aerial, tuning condenser, volume control, blue tone super dynamic speaker, all first grade components. Easy build plans and parts price list 1/- (FREE with kit).

Total building costs 42/6 parts price list 3/6.

MELODY SIX

TWO WAVEBAND PORTABLE WITH 3in. SPEAKER

Handsome tester-box case, size 4½ x 3½ x 6½ in. with gilt trim and hand and shoulder strap. Fully tunable over both Medium and Long Waves. Incorporates pre-taped circuit board. 8 stages—6 transistors and 2 diodes—ferrite rod aerial, push-pull output, wave change slide switch, tuning condenser, volume control, 3in. moving coil speaker, etc. Easy build plans and parts price list 2/- (FREE with kit).

Total building costs 59/6 parts price list 3/6.

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case with gilt fittings, size 7½ x 5½ x 7½ in. World wide reception. Tuneable on Medium and Long Waves, two Short Waves, Trawler Band plus an extra M.W. band for easier tuning of Luxembourg, etc. Sensitivity. ferrite rod aerial and telescopic aerial for Short Waves. All top grade components. 8 stages—6 transistors, and 2 diodes including Philco Micro-Alloy R.F. Transistors, etc. (carrying strap 1/- extra). Easy build plans and parts price list 2/- (FREE with kit).

Total building costs 79/6 parts price list 3/6.

RADIO EXCHANGE Ltd

61a HIGH STREET, BEDFORD

Telephone: Bedford 52367

Callers side entrance Barratt's Shoe Shop. Open 9.5 p.m. Saturday 9.30 p.m.
Well here's a pretty how-d'ye-do!! The Old Chap is lost, to-night of all nights, and that stubborn old Rudolph airing his navigational knowledge. Let's hope he finds his bearings before the morning!

If you find yourself lost in the maze of components required for your next project the surest way to find the way out is to get a copy of that invaluable guide, the Home Radio Catalogue. Surprise surprise, although the Catalogue has been enlarged and improved every year, the price remains at 7/6 plus 2/- postage and packing. So if you want some interesting Christmas reading send the coupon and p.o. or cheque without delay. Oh! and by the way, every catalogue contains 5 vouchers, each worth 1/- if used as directed.

The Directors and Staff of Home Radio wish you all a MERRY CHRISTMAS and a HAPPY NEW YEAR
PARTY time approaches, so here is a simple quiz for you, but don’t worry, there are just two questions (and we give the answers too!)

1. What single piece of equipment or apparatus best typifies the advanced state of the electronic art today?
2. Name the earliest (and simplest) piece of electronic apparatus of practical value to be put into the hands of the ordinary man.

The first is very easy. Science fiction and James Bond gadgets apart, we think you will plump for the computer.

The second is perhaps a trifle more difficult, and certainly less immediately obvious the younger you are. When you do think about it, however, there is no doubt that the “crystal set” radio receiver was the founder member of the great family of electronic apparatus we are familiar with today.

“... Tall oaks from little acorns grow.” That early crystal diode or “detector” was a prolific ancestor. A veritable technological forest now exists some 60 years after the first acorn was planted. “Crystal set to computer” just about sums it up.

This “forest” is growing still, and it is becoming rather difficult for the amateur to explore alone; so many different paths each offering rival attractions. Some individuals prefer to keep to the well trodden paths, others are more venturesome and are eager to explore and seek out the less frequented parts of the forest.

We do our best to help, guide, and encourage all in their various pursuits. To this end, gadgets of wide and popular appeal figure prominently in our pages, as do high quality equipments for home entertainment. But in addition, the more serious, scientific minded reader is offered opportunities to exercise his abilities and acquire further knowledge through more advanced and ambitious projects. This is illustrated by our recently introduced series “Nucleonics for the Experimenter” and now by the appearance in this issue of the Practical Electronics Analogue Computer.

Back to that little acorn. As the forester seeds the ground for the future, we likewise have the novice very much in mind. And what is more suitable and appropriate than a crystal set as a very first project? To be honest, we can’t say that the beginner of 1968 will have quite as much excitement as his counterpart of the cat’s whisker twiddling days, but that’s progress for you!

To all readers—whatever their particular interests, whether they participate in electronics for sheer pleasure and relaxation, or primarily for utilitarian or serious experimental purposes—the editorial staff of PRACTICAL ELECTRONICS wish a very happy and constructive new year.

F. E. Bennett—Editor

THIS MONTH

CONSTRUCTIONAL PROJECTS

I.C. TAPE RECORDER 16
COMBOTRON 21
SHAVER ADAPTOR 35
P.E. ANALOGUE COMPUTER 36
WHITE NOISE GENERATOR 44
SINE TO SQUARE WAVE CONVERTER 57

SPECIAL SERIES

NUCLEONICS FOR THE EXPERIMENTER—3 62

GENERAL FEATURES

INGENUITY UNLIMITED 24
HOLOGRAPHY 28
CROSSWORD PUZZLE 42
DETERMINING VOLTAGE AMPLIFICATION 54

BEGINNERS

SEMICONDUCTOR BASICS—2 48
CRYSTAL RECEIVER 51

NEWS AND COMMENT

EDITORIAL 15
POINTS ARISING 42
ELECTRONORAMA 43
MARKET PLACE 46

Our February issue will be published on Friday, January 12

All correspondence intended for the Editor should be addressed to: The Editor, PRACTICAL ELECTRONICS, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Advertisement Offices: PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, W.C.2. Phone: 01-836 4363. Telegrams: Newnes London. Subscription Rates including postage for one year, to any part of the world, 36s. © George Newnes Ltd., 1968. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.
This article describes a mains operated tape recorder using the latest techniques in linear integrated circuits. For ease of wiring and the obvious advantage of being able to monitor the recording from the tape during the recording process, the design has been based upon a three head system. The three-speed tape deck is a readily available unit and may be purchased from many radio dealers. This unit comes complete with two heads (record/replay and erase). A third replay head may be ordered at the same time to fit into the space provided.

The replay characteristics of the final tape recorder follow the recommendations laid down by the C.C.I.R. at all speeds and the reproduction of pre-recorded tapes is of a very high quality. The full output power of 1 watt is more than sufficient to fill a large room and at this level the distortion is held to within less than 4 per cent. The signal/noise ratio, when related to the full output power, is better than 48dB and the hum level better than 52dB down at 7½ in/second. Tone correction is available in the form of treble lift and cut using one control only to perform both these functions in the replay condition.

As most recording equipments include a speaker, considerable thought was given to including a speaker in this unit but, due to the inability to maintain a reasonable size and at the same time take full advantage of the sound output quality, it was thought that most readers could use a separate speaker which may be part of an existing hi-fi set-up.

The tape recorder was designed as an immobile unit to blend in with the more modern style of furnishing, therefore the addition of a speaker unit as a separate item should present no serious problems. A recommended size for the speaker in question would be in the order of 8 inches and may be housed in an enclosure to suit the reader's taste and pocket.

REPLAY AMPLIFIER

From Fig. 1, it may be seen that the replay amplifier is in no way connected to the recording chain and, for the constructor who may wish to build the unit as a replay device only, can omit the recording amplifier in its entirety without affecting the replay function.

The pre-amplifier function is performed by the integrated circuit type TAA263 which has been described in the article IC Gram Amplifier in the October 1967 issue, so no further description of the internal characteristics of this device is necessary.

The signal from the replay head X1 is fed directly to the input of the integrated circuit, amplified and fed out to the volume control via C2 and R7. The d.c. working point of the pre-amplifier is established by R1, R2, and R3; the a.c. gain is set to the required level by the resistance capacitance network R5 and C4. In order to promote some of the treble lift required to meet the C.C.I.R. replay specification, further decoupling of the a.c. negative feedback is achieved by the inclusion of R4 and C3 which forms a frequency selective network.

INTEGRATED CIRCUIT TAPE RECORDER

A QUALITY TAPE RECORDER IN MODERN BOOKSHELF STYLE USING TWO LINEAR INTEGRATED CIRCUITS IN A SIMPLE CONSTRUCTION

SPECIFICATION

<table>
<thead>
<tr>
<th>TAPE SPEEDS</th>
<th>7½, 3½, 1½ inches per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLIFIERS</td>
<td>Separate record and replay amplifiers</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td>Overall, 50Hz to 10kHz ±3dB at 7½ in/sec</td>
</tr>
<tr>
<td>POWER OUTPUT (Replay)</td>
<td>Replay, 50Hz to 12kHz ±3dB at 7½ in/sec</td>
</tr>
<tr>
<td>DISTORTION</td>
<td>1 watt into 15Ω load</td>
</tr>
<tr>
<td>SIGNAL-TO-NOISE RATIO</td>
<td>Better than 2.5% total harmonic distortion at 500mW output</td>
</tr>
<tr>
<td>RECORIDING LEVEL</td>
<td>Better than 48dB at peak recording level</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>VU level meter 1mA f.s.d.</td>
</tr>
<tr>
<td>INPUTS: Microphone</td>
<td>100-600Ω, 500µV (moving coil type)</td>
</tr>
<tr>
<td></td>
<td>220kΩ, 400mV (crystal or ceramic pick-up)</td>
</tr>
</tbody>
</table>
The more experienced constructor may notice the lack of any form of bass lift in the replay amplifier. This may be readily explained by considering the fact that under open-circuit conditions a tape head will provide a voltage characteristic that falls at the rate of 6dB per octave toward the bass frequencies. However, as the impedance of the head falls in a similar fashion, it can be shown that a constant current output may be obtained, and it is this constant current that is fed into the very low input impedance of the pre-amplifier, which presents a constant voltage output across the output load R18.

The main amplifier comprises TR1, 2, and 3 connected as a directly coupled configuration thus maintaining excellent stability of the d.c. and a.c. operating points. The stability is brought about by the a.c. and d.c. negative feedback that is applied to the base of TR1 via R9 and VR2.

In order to avoid shorting out some of the negative feedback by the collector load of the previous stage, varying as the volume control slider is moved, R7 has been included in the slider of the potentiometer. D1 and R11 hold down the bases of the output transistors, working in class C operation, to prevent thermal runaway.

The tone control provides both treble lift and cut in the following manner: With the slider of VR1 at the junction of C6, the a.c. negative feedback applied via R9 and VR2 is shorted to the negative rail at the upper frequencies, therefore the amplifier has more gain at any frequency shorted out by C6.

When the slider of VR1 is at the other end of its travel, that is to say at C7, more negative feedback is applied to the base of TR1 by the shunting effect of C7, giving a total variation of 12dB in output at 10kHz. This is quite adequate to compensate for the lack of switched treble equalisation at the three speeds.

RECORD AMPLIFIER

Fig. 1 also indicates the record amplifier configuration, where an integrated circuit similar to that contained in the replay amplifier, is used as a pre-amplifier. It is connected in almost identical fashion but the treble lift components have been omitted and the gain is set as before by decoupling the negative feedback applied by R15 and R17.

The output from the pre-amplifier is fed to the record volume control via C11 and R20 and subsequently to the base of TR4. R20 has been included to isolate R18 from the base circuit of TR4, with R21 and C15 forming a treble lift network at the upper frequencies to compensate partially for recording losses. The collector of TR4 is decoupled by C16 so that bias frequency leakage is not superimposed on the collector output signal.

The majority of the treble compensation is achieved by the network C18 and R26 ensuring that the overall response of the system is flat between 50Hz and 10kHz. R27, which is in series with the output to the recording head, helps to prevent bias flowing back into the collector load, which is now effectively a short circuit at bias frequency, thus ensuring an adequate supply of bias for the recording head.

The level of the recording signal is indicated by M1 which is in the collector of TR5. This stage is not biased in the normal manner but relies upon the incoming signal from the record amplifier, via R25 and VR5, being rectified by the base-emitter junction of TR5.

The advantage of this type of circuit lies in the very small range of level that is presented to the meter. The scale from 2 to 8 represents a change in output level of only 6dB. While this condition allows for very accurate setting of levels, some disadvantage may be encountered in the initial use of such a system due to the relatively small movement of the meter at an average signal level. C20 is included in the base circuit to prevent the meter reading from being affected by any bias leakage.

The action of the pointer may be damped to suit personal preference and the existing damping capacitor C21 gives a rather fast action but a value in the order of 100µF may be more suited for programme material of a wide dynamic range.
Fig. 1. Circuit diagram of the complete tape recorder. The components inside the dotted line box are included in the ready made power unit.

OSCILLATOR

The bias oscillator is of the push-pull variety being biased in class D. The coil is wound on a ferrite core and presents an output of excellent waveshape and symmetry at a frequency of 50kHz. The output winding is tapped to feed the erase head and at this point the coil is tuned to promote the correct operating frequency. The series capacitor C27 tunes the erase head to minimise the load on the oscillator and a value of 4,700pF matches this particular erase head. Bias for the recording head is fed via C25 and C19 to the junction of R27 and the record head.

The value of C19 is such as to ensure that 220µA of bias flows through the record head. Some slight delay in the decay time of the oscillator is brought about by the inclusion of R32 and C22, thus reducing the risk of saturating the record head due to sudden spikes when discontinuing the supply by reverting to the replay condition.

The recorder is changed from the replay position to record by virtue of a switch S1 mechanically linked to the function lever on the tape deck. Recording cannot commence until this switch is operated, so there is no risk of the bias frequency partly erasing a pre-recorded tape. To simplify construction only one set of contacts on the switch wafer has been used and these remove the positive supply from the record amplifier and the oscillator.

POWER SUPPLY

The tape recorder was designed to function from a 15 volt source of supply capable of delivering at least 400mA without the voltage falling to less than 12 volts. A ready made unit available on the market was used at a very modest cost, but alternative components can be used.

The only addition to the power supply unit was in the form of a series resistor and capacitor to smooth any remaining ripple. Two 4.7 ohm resistors were
COMPONENTS

Resistors

<table>
<thead>
<tr>
<th>R1</th>
<th>4.7kΩ</th>
<th>R14</th>
<th>560Ω</th>
<th>R27</th>
<th>10kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>15kΩ</td>
<td>R15</td>
<td>12kΩ</td>
<td>R28</td>
<td>1.2kΩ</td>
</tr>
<tr>
<td>R3</td>
<td>12kΩ</td>
<td>R16</td>
<td>82kΩ</td>
<td>R29</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R4</td>
<td>560Ω</td>
<td>R17</td>
<td>15kΩ</td>
<td>R30</td>
<td>12kΩ</td>
</tr>
<tr>
<td>R5</td>
<td>2.2kΩ</td>
<td>R18</td>
<td>1.5kΩ</td>
<td>R31</td>
<td>12kΩ</td>
</tr>
<tr>
<td>R6</td>
<td>2.2kΩ</td>
<td>R19</td>
<td>680Ω</td>
<td>R32</td>
<td>27Ω</td>
</tr>
<tr>
<td>R7</td>
<td>680Ω</td>
<td>R20</td>
<td>1.2kΩ</td>
<td>R33</td>
<td>4.7Ω</td>
</tr>
<tr>
<td>R8</td>
<td>1.2kΩ</td>
<td>R21</td>
<td>1.2kΩ</td>
<td>R34</td>
<td>4.7Ω</td>
</tr>
<tr>
<td>R9</td>
<td>33kΩ</td>
<td>R22</td>
<td>3.9kΩ</td>
<td>R35</td>
<td>680Ω</td>
</tr>
<tr>
<td>R10</td>
<td>470Ω</td>
<td>R23</td>
<td>39kΩ</td>
<td>R36</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>39Ω</td>
<td>R24</td>
<td>1.2kΩ</td>
<td>R37</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>100Ω</td>
<td>R25</td>
<td>56kΩ</td>
<td>R38</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>220kΩ</td>
<td>R26</td>
<td>82kΩ</td>
<td>R39</td>
<td></td>
</tr>
</tbody>
</table>

All 10%, 1/4W high stab. carbon except that R12 is 10%, 5W. R33, R34, R35 are 5%, ±PN.

Potentiometers

VR1	10kΩ log. carbon miniature
VR2	250kΩ linear preset sub-miniature skeleton
VR3	10kΩ log. carbon miniature
VR4	10kΩ log. carbon miniature
VR5	100kΩ log. preset sub-miniature skeleton

Capacitors

C1	32µF elect. 4V	C17	0.64µF elect. 4.4V
C2	20µF elect. 16V	C18	470pF poly. 125V
C3	0.033µF poly. 160V	C19	270pF poly.
C4	32µF elect. 4V	C20	1,000pF disc ceramic
C5	125µF elect. 10V	C21	32µF elect. V4
C6	0.1µF poly. 160V	C22	125µF elect. 10V
C7	3,300pF poly. 160V	C23	0.01µF poly. 160V
C8	320µF elect.	C24	0.01µF poly. 160V
C9	32µF elect. 4V	C25	500pF poly.
C10	20µF elect. 16V	C26	0.015µF poly. 160V
C11	20µF elect. 16V	C27	4,700pF poly.
C12	0.022µF poly. 160V	C28	1,000µF elect. 12V
C13	125µF elect. 10V	C29	2,500µF elect. 25V
C14	50µF elect. 6-4V	C29	or as supplied in power unit (see below)
*C15	0.022µF poly. 160V	C29	as supplied in power unit (see below)
C16	0.01µF poly. 160V	C29	

* See text for alternative values at other tape speeds.

Integrated Circuits

| IC1, IC2 | TAA263 (Mullard) (2 off) |

Diodes

- D1 Matched to TR2 and 3 (Newmarket)
- D2-5 LT108 or LT120 12V 1A selenium bridge rectifier or rectifier supplied in power unit (see below)

Power Supply Unit (optional)

PC106 (Newmarket)

Meter

M1 0-1mA f.s.d. scaled VU Meter or scaled 0-10
(type MR2P)

Sockets with Plugs

SK1-3 Phono socket (3 off)
SK4 Mains chassis mounting miniature plug type P360

Tape Heads

X1 Replay head (extra head type MN155 with spring and screw) (B.S.R.)
X2 Record head Supplied with tape deck
X3 Erase head

Miscellaneous

- Tape deck, 3-speed, type TD10 (B.S.R.)
- Perforated s.r.b.p., 0.1 in matrix 72in × 2in
- Aluminium sheet, 18 s.w.g. 12in × 4in (2 off)
- Veneered chipboard 9in × 4in (2 off), or as required for case.
- FS1 Fuse and fuseholder 2A
- LP1 10V or 12V bulb with wire ends (Hivac)
- S1 Single-pole, on/off, wafer (see text)
- S2 Double-pole, on/off, toggle
chosen as they were easier to obtain than one of 9.4 ohms. The mains supply is connected to the transformer at the appropriate mains tap; the resultant d.c. voltage is visually indicated by LP1 which is a 10 volt "pea" bulb taking something in the order of 40mA. Resistor R12 is included to reduce the supply voltage to this level. The bulb rating is not critical; any type can be used provided that R12 is adjusted to suit the voltage rating of it. Current rating should be as low as possible.

OSCILLATOR COIL

The oscillator coil is simple to wind by making a suitable nut and bolt arrangement to fit into an ordinary hand drill. The former is clamped between a nut and the face of the chuck of the drill and two washers will assist in establishing an even fitting. The primary is wound in a bifilar fashion (i.e., both halves wound together to achieve perfect matching). The preparation of the wire is shown in Fig. 2a; the method of winding is also indicated.

![Diagram of oscillator coil winding](image)

Fig. 2. Primary winding of the oscillator coil. Both halves are wound together

- **Primary:** 6 + 6 turns of 24 s.w.g. enamelled copper wire, bifilar wound (see Fig. 3)
- **Secondary:** 42 turns of 36 s.w.g. plus 48 turns of 40 s.w.g. enamelled copper wire, layer wound

Once the primary has been wound, which incidentally forms one layer only, a single layer of thin plastics tape may be used to hold it in position. When the coil is finally assembled the looped end is cut to form two terminations A and B. One of these cut ends is checked to see which of the other wires C or D at the further end of the coil forms a complete circuit when measured on an ohmmeter.

When this is established A and D should form one circuit and B and C the other. Now twist A and C together which will form the centre tap of the coil and B and D will go to the respective collectors of TR6 and TR7. This operation is shown in detail in Fig. 2b and it is important to observe the correct connections.

The secondary winding of the coil is wound in the more normal manner of layer or pile winding; that is to say, the whole of this winding is wound in the same direction and the tap is brought out to form a connection. The layers are wound on top of each other until the required number of turns has been made. Fit thin plastics sleeving on all lead-out wires. The finished bobbin should be covered with another layer of insulating material before being assembled in the outer ferrite core.

The two halves of the core were stuck together with a resin adhesive such as Araldite and held to the component board similarly. Care must be taken to ensure that the ends of the wires are tinned and cleaned well so as to make good soldered joints. This is not a difficult item to make as long as the instructions are followed exactly. Care must be taken not to damage the enamel insulation on the wire and not to chip the core.

The pot core assembly can be obtained through retailers who distribute Mullard components.

Next month the constructional and wiring details and setting-up procedure will be given
Amuse your friends or family with this fascinating
party novelty

You can construct the robot or the game —
either way it's fun!

The Combotron

Crack the combination
and his eyes respond

This is not a game where mental agility or high
I.Q. may be demonstrated, but one of chance
(with mathematical undertones) where boffin or dullard
may compete on level terms.

The object of the game is to crack the circuit complet-
ing combination by random insertion of three
jumper plugs. Each plug must be inserted into one
of the line of sockets running vertically from its fixed
termination point, i.e. “A”, “B”, and “C”. If the
circuit is successfully completed this winning com-
bination will be indicated by the robot’s eyes flashing.

Since many readers might only be interested in con-
structing the robot as a desk-top or sideboard novelty,
its construction will be described separately but with
simple add-on instructions if it is to be included in
the game.

NUMEROUS COMBINATIONS

Examination of the circuit will show that random
switching of S2, S3, and S4 presents a completely
different set of plug combinations for each game and
if the wiring of sockets to switch tags is equally random
in the construction of the unit it should be virtually
impossible to memorise winning combinations.

Since there are six sockets available to each jumper
jack plug there are six possible inserts at each column
of sockets to successfully complete the robot’s supply
line. It can be seen then that there are 6^3 combina-
tions available by switch settings, or to generalise a
formula, $c = x^n$ where c is the total number of com-
binations, x the number of switch ways and n the
number of switches. This indicates that with more
switch ways and sockets the game increases rapidly in
complexity, and if you don’t want to exhaust the
patience of your friends or family you should restrict
the game to the modest limits set out here.

BUILDING THE ROBOT

The robot is in essence a simple free running “multi”,
with its working parts contained entirely in its physical
make up. The body and legs make up the timing
components and the switching transistors the arms.
The simplest order of construction was found to be
from the head and progressively working downwards.

The head can be any small plastic box of sufficient
size to house the small indicator lamps, but not too
large to appear ungainly on the body. If the com-
ponents are obtained first it is a simple matter to
proportion the choice of box with the torso capacitors.
Fig. 1. The robot circuit. This is a free running multivibrator

Fig. 3. The game circuitry.

Fig. 2. The completed robot assembly. The "feet" resistors R7 and R8 have no circuit function. A rectangular piece of laminated plastics provides a plinth for the robot, and is mounted on the top of a 2oz tobacco tin

Fig. 4. Constructional details of box for the Combotron

COMPONENTS...

Resistors
R1 15Ω 1W
R2 4.7kΩ 1W
R3 2.2kΩ 1W
R5 2kΩ 1W
R6 15Ω 1W
R7 (any value)
R8 1W

Capacitors
C1, 2 250μF elect. 15V subminiature tubular (Radiospares) (2 off)

Transistors
TR1, 2 OC81 (Mullard) (2 off)

Lamps
LPI, 2 1.5V 0.16W subminiature 5mm tubular L.E.S. (Vitality Bulbs Ltd.)

Switches
S1 Slide switch s.p.s.t. (see text)
S2-4 Rotary switch, s.p. 8 way (Henry's Radio) (3 off)

Miscellaneous
21 4mm panel sockets; 6 plugs to suit (G. W. Smith)
Aluminium sheet 6in × 6in. Plywood for case.
4.5V flat battery
Holes should be drilled for the lamps LP1 and LP2 and these positioned. Using these as references, holes for the ear resistor leads, nose resistor, and mouth capacitor leads should be made with a No. 60 diameter drill.

A 1 watt resistor of any value, or a piece of sleeved wire, should be inserted at the nose position. One lead of the resistor is cut short with the other protruding into the box by approximately a ¼ inch. The nose resistor is then inserted, with one lead being soldered to their respective lamps and the other leads being wrapped round the projecting nose wire. For the mouth a small length of sleeved wire was inserted and retained on the other side of the box by twisting together the free ends with long nosed pliers.

The capacitor negative leads can now be fed through into the box and soldered at the unconnected lamp tags. The head construction is completed by joining a 5 inch length of sleeved wire to the three wires at the nose position and soldering this junction.

The 1 watt resistors making up the legs and feet should now be completed making sure that the joints are mechanically strong before soldering so providing a rigid support for the robot. The resistor wires at the feet should be left long at this stage.

The addition of the transistor arms is straightforward if care is taken with soldering. The base leads are extended by soldering a 2 inch piece of wire to their ends after which both are sleeved and joined to the capacitors. The emitters are then made common with a small piece of bare wire. An 8 inch piece of sleeved wire should be connected to its mid point for battery positive.

If it is not intended to incorporate the robot with the game it can be conveniently mounted on a 2oz tobacco tin using the feet wires, through holes drilled in the lid, both for retaining and connection to the slide switch S1 in Fig. 1. For added rigidity Araldite should be applied to bond the resistors and lid.

Finally the sleeved positive lead should be taken through a hole in the lid and connected to the 4½ volt flat battery that will be housed in the tin (Fig. 2).

GAME SECTION

If the robot is to be used as an indicator with the game the game circuitry should be connected to points a, b in Fig. 1. The game circuitry thus forms a complex on/off, or combination, switch. The switch S1 can be retained as a master control, permitting the robot to be operated continuously for display purposes.

The socket panel used was a piece of 6in x 6in aluminium sheet. If the vertical rows of sockets are commenced about 1 inch from the panel edge with separation of a ¼ inch for sockets there will be ample space for the robot's attachment which will follow the same lines as detailed before.

A box for switch mounting and battery housing of dimension 6in x 6in x 2in should be constructed of plywood or hardboard. When drilling the switch holes these should be arranged slightly below the line of centre to offset any possibility of contact with sockets. Wiring of the sockets should be commenced and the leads plaited to their respective switch tags, making sure that the leads protrude by about 3 inches beyond the panel when the bunches are drawn taut.

With the robot attached to the panel wiring, wiring to the switch tags can be completed. This operation should be random for the reasons outlined previously. With battery connections made the game is complete.

Hey! Ever played a GLISSANDOVIBRE?

Next month's issue gives you an opportunity to build an entirely new-type electronic instrument that will bring hours of enjoyment. Designed for solo or group performance, with a frequency range of two octaves, the Glissandovibe puts glissando, vibrato, and percussive effects at your finger-tips. Make sure of the February issue now!

Also

CAR ANTI-THEFT ALARM

When fixed, immobilises the engine and gives external indication immediately the car is tampered with. Suitable also for motorcycles and other vehicles with a 12V supply.

PEAC

Second part of the Practical Electronics Analogue Computer series. Commencing construction of UNIT A.
THE "MINI-CLIP"

The necessity to protect semiconductor devices from overheating when soldering into circuit, needs no further elaboration to the average experimenter.

When making up transistor circuits, it is a fair assumption that the soldering-in process may well be a one-shot, "for all time" job. The usual pliers or crocodile-clip heat shunt, when soldering semiconductors, normally suffices.

However, for the experimenter who designs and builds, his budget may demand that components will be used many times over. After re-soldering many times, bending leads to effect the appropriate temporary connection, a transistor may start to complain. On the other hand, the novice may solder in a transistor with painstaking precautions, and then immediately solder many other components to the same terminal, with no thought for the device rapidly frying to death!

This novel gadget (which may be fitted and removed in seconds) will give threefold protection to semiconductors. It will provide a very good thermal shunt, give mechanical protection of the lead-out wires and seals, and by shorting all the leads together, protect against stray currents from a "leaky" soldering iron.

The Mini-clip is in essence, a miniature screw clip (Fig. 1). The transistor leads are placed between the "jaws" to within 5mm of the encapsulation and the clip screwed up. The leads are then held very firmly. On test, all three leads of a transistor were wrapped around the bit of a 25 watt iron for 3 to 5 minutes with the clip in place without the leads becoming dangerously hot. The leads below the clip may be bent at any angle and even pulled strongly with pliers without disturbing the transistor in any way.

After soldering, the clip is removed by unscrewing the jaws open to only half of the diameter of the encapsulation, the end plate may then be removed and the clip lifted off the transistor. Thus, the Mini-clip may be used in fairly confined spaces.

The dimensions given (Fig. 2) are for the "large size" (as seen in the photograph) which will accommodate the larger four-lead transistors. The dimensions may be considerably reduced for use with the small epoxy encapsulated devices now available. The prototype was made up from a small piece of brass (from a valence rail) about 2mm thick. The three pieces are cut and drilled as shown.

Fit the two 6 B.A. runners through the holes in the pressure plate, and locate their ends in the holes in the shoulder plate. Solder these screws in. Make up the thumb screw as in Fig. 2 and screw into the tapped hole. Fit the base-plate over the guide rails and the unit is then complete. Several of these clips may be constructed in an hour or so.

Fig. 1. Exploded view of the Mini-clip

Fig. 2. Dimensions of the Mini-clip parts
BI-PRE-PAK LTD

THE VALUE OF 10/- WITH ORDERS

PACKS OF YOUR OWN CHOICE UP TO

2' PRE-PAK LTD TEL

All tested and guaranteed transistors—unmarked.

TRANSISTORS ONLY 1/- EACH

SILICON • PLANAR • N.P.N. • P.N.P.

All these types available

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC107</td>
<td>6/-</td>
</tr>
<tr>
<td>AC127</td>
<td>3/-</td>
</tr>
<tr>
<td>AC128</td>
<td>3/-</td>
</tr>
<tr>
<td>AC117</td>
<td>3/-</td>
</tr>
<tr>
<td>AC115</td>
<td>3/-</td>
</tr>
<tr>
<td>AC116</td>
<td>3/-</td>
</tr>
<tr>
<td>AC17</td>
<td>4/-</td>
</tr>
<tr>
<td>AC18</td>
<td>3/-</td>
</tr>
<tr>
<td>AC19</td>
<td>3/-</td>
</tr>
<tr>
<td>BC211</td>
<td>5/-</td>
</tr>
<tr>
<td>BFY50</td>
<td>1.5/-</td>
</tr>
<tr>
<td>BSY26</td>
<td>5/-</td>
</tr>
<tr>
<td>BSY27</td>
<td>5/-</td>
</tr>
<tr>
<td>BSY28</td>
<td>5/-</td>
</tr>
<tr>
<td>BSY29</td>
<td>5/-</td>
</tr>
<tr>
<td>BSY95A</td>
<td>5/-</td>
</tr>
<tr>
<td>OC41</td>
<td>2/6</td>
</tr>
<tr>
<td>OC42</td>
<td>1/1</td>
</tr>
<tr>
<td>OC45</td>
<td>5/6</td>
</tr>
<tr>
<td>OC71</td>
<td>2/6</td>
</tr>
<tr>
<td>OC72</td>
<td>2/6</td>
</tr>
<tr>
<td>OC73</td>
<td>5/</td>
</tr>
<tr>
<td>OC81</td>
<td>2/6</td>
</tr>
<tr>
<td>OC82</td>
<td>2/6</td>
</tr>
<tr>
<td>OC83</td>
<td>2/6</td>
</tr>
<tr>
<td>OC139</td>
<td>2/6</td>
</tr>
<tr>
<td>OC140</td>
<td>5/-</td>
</tr>
</tbody>
</table>

FREE!

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER £4

FRE!

PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER £4

BRAND NEW

UNTESTED TRANSISTORS!

SAVE £’s TEST THEM YOURSELF

WE TELL YOU WHAT TYPES THEY ARE

DON’T TAKE CHANCES ON UNKNOWN LOTS

NEW UNMARKED UNTESTED TRANSISTORS!

SAVE £’s TEST THEM YOURSELF

WE TELL YOU WHAT TYPES THEY ARE

DON’T TAKE CHANCES ON UNKNOWN LOTS

PRE-PAK'S FIELD EFFECT TRANSISTORS

2N3822 N Channel 4 lead 15/-

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rev. counter for any car. State 4 or 6 cylinder. 20/- each

FREE CATALOGUE AND LISTS FOR:

TANTALUM CAPACITORS, TRANSISTORS, RECTIFIERS & CIRCUIT DIAGRAMS, SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD

BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS
TAPE STOP FOIL DEVICE

An inexpensive auto-stop for a tape recorder is a useful addition to any machine. The one that appeared in the Tape Recorder Auto-Switch article in the January 1967 issue uses a 12V relay and suggests insulating a spare guide bollard. This is not possible on many tape decks (such as the B.S.R. TD2) and may appear at first sight to be more difficult than fitting a photocell. This is the principle described here that can be made for under £1.

To provide a pillar with two insulated contacts, a 3.5mm jack plug was mounted on the deck. This is arranged to switch a 6V relay which is powered via a rectifier from the 6.3V heater winding of the tape recorder mains transformer.

A latching circuit may be incorporated as shown in Fig. 1. This enables shorter lengths of stop foil to be used. SI is a “reset” switch, releasing the relay.

If the recorder uses solenoid operated brakes, a latching circuit is not required. Two additional refinements are then worth adding: pause and remote pause. The circuit is given in Fig. 2. S2 being the pause control and S3 a remote start/stop. It is not considered worthwhile adding these extra facilities to a deck in which the brakes would be uncontrolled, due to the time taken for the drive mechanism to slow down.

The diode and smoothing capacitor may be mounted directly on to the tags of the relay. All mains contacts on the relay must be heavy duty types rated at 250V a.c.

STOPPING MODEL TRAINS

My model locomotive controller was built in rather a hurry several months ago; however I have since drawn up a complete circuit and included a modification to obtain a more realistic performance. It appears to be usual practice for children to reduce the output voltage from maximum to zero instantaneously as the train approaches a station. A locomotive with magnetised wheels running on steel track comes to an immediate stop.

Speed versus voltage was plotted and found to be a linear function, therefore if the voltage could be made to fall in an exponential manner the above defect would be overcome. A time constant at the input to the compound emitter follower gives the desired results, as shown below.

With the switch in position A the circuit performs as before; this position is used for shunting, etc.

When starting the train a similar set of conditions occurs although the waveform is not as ideal for starting, it is a reasonable compromise. The output voltage is quite often increased from zero to 10 volts instantaneously, causing the train to lurch away from the station. With the switch in position B acceleration is more gradual.

A note regarding construction may be of interest especially when the safety of small children is considered.

The mains transformer and fuses are housed in a separate unit, this being situated near the mains supply socket. An 8ft length of three core lead connects the 18–0–18V supply to the controller.

One side of the output is connected to earth so that the 100mA fuse in the primary can prevent a dangerous rise in output voltage should the transformer insulation become faulty.

This arrangement eliminates high voltage mains from the train set but also provides a low voltage secondary for the operation of “point” solenoids, etc.
Holography has been exciting a great deal of comment in the scientific circles during recent years. In the popular press this comment has tended to take the form of optimistic suggestions about three-dimensional “snapshot” cameras, cinema, and television. While holography is potentially capable of providing these and other fascinating devices, it is scarcely out of its infancy.

Five years ago the recently invented laser was being described as “a solution in search of a problem”. Holography, a thriving offspring of laser research, is today in very much the same situation. In this article we shall discuss how holograms are made, the theory behind them, and some of their applications.

By M. R. B. FORSHAW

Fig. 1. Under the ordinary room lighting the hologram looks like an ordinary photographic plate, with little or no visible detail upon it.

When seen in ordinary room lighting, a hologram looks like an unexposed photographic plate, with a uniform layer of grey or “milky” emulsion on it (Fig. 1). No sign of an image, three-dimensional or otherwise, can be seen.

Suppose now that we take a helium-neon gas laser, which emits a continuous pencil beam of red light. If this narrow beam (a few millimetres in diameter) is passed through a lens, the laser light is focused to a point and then diverges. When this diverging cone of light falls on the hologram most of it passes straight through, but a fraction of the light is scattered by the emulsion. The result of this scattered light is a red image which appears to lie behind the surface of the hologram.

Fig. 2 shows how the camera is focused on the image of a toy horse, which lies behind the out-of-focus hologram frame. The hologram becomes a window, through which one can see the impressively substantial scene on the other side. In some way the hologram has recorded information about the distance to the various parts of the scene, which an ordinary two-dimensional photograph fails to do.

Instead of using a laser to illuminate the hologram, suppose that a “point” source of white light is used; a quartz-iodine car headlamp bulb is a convenient approximation to such a point source. The image which results is usually unrecognisable; a spectrally dispersed rainbow of colours is all that results. Putting a red gelatine filter over the white light enables us to recognise the image on the other side of the plate, but the finer details of the scene are blurred or indistinguishable.

The purpose of this second experiment is to show that monochromatic (single frequency) light gives the
best reconstruction from a hologram: the helium-neon gas laser is a near-ideal source of such monochromatic light. A tolerable reconstruction can be obtained with a non-laser source (the white light and red filter) if it is nearly monochromatic.

A laser is not only the best source for viewing holograms: it is also the most suitable source for making them. One can make holograms with a non-laser source such as a mercury arc (the first ever holograms were made by Professor D. Gabor in 1947 using mercury-arc lamps) but the results are visually unimpressive and nowadays nearly all holograms are made with laser sources. The reason for this is explained later.

MAKING HOLOGRAMS

Making a hologram is a relatively simple progress. Fig. 3 illustrates one holographic “camera” layout which has proved convenient and adaptable. Light from the laser is split into two beams by the beam splitter—a piece of ordinary unsilvered glass. Most of the light passes straight through this glass plate and is reflected from the plane mirror M1. This reflected light passes through the lens L1 which illuminates the object O. The light scattered from the object then falls directly on the hologram.

The rest of the laser beam is reflected from the beam splitter, bounces off mirror M2 and is expanded by lenses L2 and L3 to a wide collimated beam of light which also illuminates the hologram. This second beam is called the “reference” beam, and it is the interaction between the reference beam and the light scattered from the object which affects the photographic plate and produces the hologram. To make the hologram one simply switches the laser on for the required exposure, perhaps ten seconds, and then develops the photographic plate in the normal way.

There are snags, of course. For reasons which will become clear all the apparatus has to be kept stationary to within one-tenth of a wavelength of light during the exposure. This is done by mounting everything on a firm table, with foam rubber under the table to isolate the equipment from shocks.

Very fine grain photographic plates must be used if wide angle scenes are to be recorded. The photographic plates most often used in holography have this extremely fine grain, but only at the expense of film speed. For comparison, an ordinary fine grain film, with a film speed of about 100 ASA, will resolve up to 50 lines per millimetre. The special holographic plates can resolve up to 5,000 lines per millimetre, but their speed is only 0.03 ASA.

After the plate has been developed, processed, and dried, it is then illuminated by the “reference” source by itself (the objects having been removed in the meantime) and the three-dimensional image is seen as in Fig. 2.

PRINCIPLES

The underlying principle of holography can be expressed quite briefly. Like radio waves and microwaves, light is an electromagnetic wave phenomenon.

If two waves, A from the object and B from the reference source, have exactly the same wavelength, then they are said to be mutually coherent. They are able to interfere with one another and produce a stationary wave pattern which is recorded by the photographic plate as a detailed fringe structure (see Fig. 4). This photographic plate, with the fringe pattern recorded upon it, is the hologram. If the photographic plate is illuminated by the reference wavefront B, then the recorded fringe pattern behaves like an optical diffraction grating and diffracts (scatters) some of the light. This diffracted light has exactly the same form as wavefront A (the object wave). The reconstructed object thus “appears” once more in its original position.

If the object and reference waves A and B are not monochromatic (i.e. if they contain more than one wavelength) then interference still occurs but each wavelength lays down its own interference pattern and the resulting average fringe structure recorded in the hologram becomes blurred or disappears completely. This is why monochromatic lasers have to be used to make holograms.

It was mentioned earlier that, in order to make a good hologram, all the equipment had to be kept steady to within a fraction of a wavelength. This stationary condition prevents the recorded fringes from being smeared out and lost. This blurring of the recorded fringes can be turned to good use.

As an example, suppose that halfway through the recording of a metal plate (simulating a bridge), we were to load it with a model car (see Fig. 5). The mirror behind the model car provides a plan, as well as a side view of the bridge. The bridge will deflect under the load and some of the interference fringes recorded by the hologram will be blurred. These fringes, once destroyed, cannot reconstruct their

Fig. 2. Illumination of the hologram with red laser light gives a three-dimensional image lying behind the photographic plate
Fig. 3. The apparatus required for making a hologram

Fig. 4. Enlargement of part of a hologram (about 1,000 lines per millimetre)

corresponding images, and parts of the bridge will be invisible in the reconstructed image. Fig. 6 shows how different parts of the bridge have been deflected by varying amounts. The deflection can be calculated quite readily because each dark ring in the picture represents a deflection of one half wavelength of light. Almost any sort of small movement or vibration can be detected by this technique which is called holographic interferometry. It is used very successfully in wind tunnels to obtain three dimensional pictures of the air flow patterns round aircraft models. It can be used to measure stress in mechanical structures, to measure thermal expansion or "creep", or to measure the amplitude of vibration of objects such as quartz crystals or loudspeaker cones. Fig. 7 shows a holographic image of a loudspeaker diaphragm undergoing small periodic oscillations; each dark zone represents about one half of a wavelength of light flexure of the diaphragm. This is a measurement which is readily made using holography. There is no need to touch the object in any way while making the measurement, and so the vibration is unaffected by the measurement.

INTERFERENCE PATTERNS

Another interesting facet of holographic interferometry is the production of "live" interference patterns. Take as an example the bridge shown earlier, but without disturbing the apparatus during the exposure. If the hologram is developed and put back in exactly its original position, then on looking through the hologram we see the original object and its holographic image superimposed. If the object and image are perfectly aligned, nothing unusual is seen, but if the bridge is now loaded by the toy car then "live" interference patterns are seen. These are similar in appearance to those in Fig. 6, but can vary as the car is moved along the bridge. "Real-time" measurements can be made in preference to the "frozen" patterns shown in Fig. 6.
Numerous other applications are being investigated in laboratories throughout the world—three-dimensional microscopy, pattern recognition devices, holograms made with microwaves and ultrasonic waves, and a variety of experiments concerned with the use of holograms in visual display systems. Work on the last item includes the development of a new type of hologram which, despite the remarks in the opening paragraphs, can be viewed with unfiltered white light sources.

This last type of hologram is called a reflection hologram, or sometimes a “white light” hologram. The “camera” arrangement used to make reflection holograms differs from that shown in Fig. 3. Instead of the object and reference beams converging onto the same side of the photographic plate, as in Fig. 3, they fall on opposite sides of the plate. The resulting interference pattern recorded in the emulsion differs from that in an “ordinary” hologram as Fig. 8 shows. Closely spaced layers of silver, half a wavelength of light apart, are stacked through the thickness of the emulsion. Even though the emulsion is very thin (about 1.5 x 10^{-3} cm) several dozen layers can still be registered.

These reflection holograms require a different viewing technique from that used for ordinary “transmission” holograms. Fig. 9 compares the two viewing methods. Ordinary, transmission holograms require a laser, mercury lamp, or other monochromatic source for viewing. Reflection holograms, as their name implies, are viewed by reflection and give a single-colour image with any “point” white light source, such as a car headlamp or torch bulb—even sunlight gives a recognisable image.

There are two main reasons why reflection holograms are not more widely used. First, the reconstructed images are not very bright; second, a colour change occurs between recording and viewing, that is to say a reflection hologram made with red laser gives a green image.

The explanation of the faintness and colour change of the image is as follows. When we shine white light onto the reflection hologram, most of it passes straight through the thin emulsion, but light which has a wavelength corresponding to the spacing of the silver layers (see Fig. 8) is selectively reflected. The action of the stacked layers is to pick out a narrow band of wavelengths and reflect them towards the viewer, as indicated in Fig. 9. Because the emulsion is so thin, not much of the light is reflected and so the image is very faint.

The change in colour between making and viewing the hologram is due to the leaching of the silver salts from the emulsion during the fixing stage. The emulsion shrinks on drying, and the layers which were originally half the wavelength of red light apart contract to a spacing of half the wavelength of green light—we therefore see a green image. By dampening the emulsion the correct colour can be recovered temporarily before the gelatine dries out once more.
The interference fringes laid down in a reflection hologram differ from those recorded in an ordinary "transmission" hologram.

Viewing transmission holograms and reflection holograms.

FUTURE DEVELOPMENTS

We can now look to the future and see how holography may develop. At the present time most effort seems to be going into interferometric applications, where small object movements require measuring. Various workers in the U.S.A. have made multi-colour reflection holograms—by using different coloured lasers in making the hologram a multi-coloured image can be obtained. A lot of work has still to be done however, before other than very small objects can be imaged in colour.

Projects such as holographic television are even less developed. At least two big problems remain unsolved—the nature of the "television tube", and the large bandwidths required. If we recall that a hologram is a "window" through which we look at the scene beyond, then it is clear that the "window-frame" has to be quite large in order not to intrude on the viewer. Since the picture has to change at about 25 frames per second, we must "read in" the hologram onto the screen at this rate, and also erase it. Unfortunately, an ordinary television tube cannot be used to project holograms, and the possible alternatives, such as the existing Eidophor projection television system, simply do not have the image resolution required.

This brings us to the other problem, that of bandwidth. Suppose that our hologram window is one foot square. The required fringe detail in the hologram is about 1,000 lines per mm (see Fig. 4)—thus the number of "picture points" required is about 10^{11}. To project this at a rate of 25 frames per second requires the enormous electrical bandwidth of 2.5 tera-cycles per second. Despite the possibilities of bandwidth compression techniques, it is evident that an acceptable holographic television system is still a number of years away.

There is, however, no need for gloom about the prospects for holography. After a protracted infancy, from 1947 to 1964, the last three years have shown considerable improvements in equipment and technique, and this progress is still continuing—the future prospects for holography look distinctly inviting.

You may have noticed that the images recorded in the holograms are of small objects, no more than a foot or so across. This is not due to a shortage of laser light. The reason is that even lasers are not sufficiently monochromatic but emit light with a narrow, but finite bandwidth. Referring to Fig. 3, the object light travels from the beam splitter, via M1, L1 and the object, to the hologram. If this object light gets out of step with the reference light, travelling via M2 L2 L3, by more than six inches or so, then it turns out that we are unable to record any interference fringes on the hologram—the two beams are said to be mutually incoherent. It is possible to make sufficiently monochromatic lasers to look at large objects, but a lot of light is lost in reducing the bandwidth.

The other problem in making holograms, that of keeping the equipment stationary during the exposure, can be overcome by the use of pulsed lasers. A pulsed ruby laser can be made to emit a 10 nanosecond burst of light. Moving objects can thus be "frozen", and holograms have been made of bullets travelling at hundreds of feet a second.

PRACTICAL ELECTRONICS

BINDERS

Easi-binders with a special pocket for storing blueprints and data sheets, etc., are available price 14s 6d inclusive of postage. State whether "Vol. 1", "Vol. 2", "Vol. 3" or "Vol. 4" is required.

Orders should be addressed to the Binding Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.
PRACTICAL!
VISUAL!
EXCITING!

a new 4-way method of mastering
ELECTRONICS
by doing — and — seeing . . .

1
OWN and
HANDLE a
complete range of present-
day ELECTRONIC PARTS
and COMPONENTS

2
BUILD
and USE
a modern and profes-
sional CATHODE RAY
OSCILLOSCOPE

3
READ and
DRAW and
UNDERSTAND
CIRCUIT DIAGRAMS

4
CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC
CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER

- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER

- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SIGNAL TRACER
- SIMPLE TRANSMITTER
- MEASURING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FREE POST NOW for BROCHURE
or write if you prefer not to cut page

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives
NAME .. BLOCK CAPS
ADDRESS .. PLEASE PER
STEREO 8 + 8

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push-pull output per channel. (10 W mono). Integrated pre-amp with Bass, Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 16 ohms. Conspicuous design, all parts well supplied including Bertie centre, front view. Circuit board, motorised, front panel, knobs, wire, solder, note, hole, everything. Printed circuit board makes step by step instructions easy for a constructor to build an amplifier to be proud of.

Power requirements 23 V at 6-6 amp.

TRANSISTOR STEREO 8 + 8

STEREO AMPLIFIER

Incorporating 2 ECL86s and 1 E890, heavy duty, double wound mains transformer. Output 4 watts per channel. Full tone and volume controls. Absolutely complete.

Hi Gain 4 Transformer Printed Circuit Amplifier Kit. Type TAI.

• Peak output in excess of 11 watts.
• All standard Radio components.
• Simple to build on printed circuit panel size 6 x 3in.
• Generous size Driver and Output Transformers.
• Output transformer tapped for 1 ohm and 15 ohm.
• Preparations available including Bertie centre, front view, circuit diagram 2/- (Free with kit). All parts sold separately. Price 11/- each.
• Also ready built and tested. 32/6. P. & P. 2/6.

RE/AM TUNER HEAD

MATCHED PAIR AM/FM I.F.s.

MATCHED PAIR H.F./M.F.

TUNER TUBES by famous maker.

PARALLEL WAVE-TUNABLE TELEPHONE CABLE.

Latest soft braid type, bulk purchase enables us to offer these at 77/6 each. P. & P. 1/-.

E.S. THOMAS CARTRIDGE HAVING A SLOPE.

Type SRS 300 MC. 6 amps. 3000 feet. 1 in. long x 3 in. dia. approx. Last 240/. OUR PRICE 12/6.

HIGH AC A.M. INDICATOR.

For panel mounting, cut out size 11 x 5 x 1 in. polished. For use with Lucas aerial. For mains 200V/250V. 2/6 each. P. & P. 5/- (6 or more post free).

LATEST COLLABO MAGNAVOX 33 HI-FIDELITY STEREOPHONIC CARTRIDGE

QUALITY PORTABLE TAPE RECORDER CASE.

Affordable, sturdy, lightweight, waterproof plastic case. Up to 6 spools. 10/- for five spools. Also available mounted on board with output transformer and speaker ready to fit into cabinet below. Price 9/- 6d. P. & P. 1/6.

DE LUXE QUALITY PORTABLE R/P CABINET

Uncut motor board size 14 x 12 in. laminar 2 mm. Below, 5/- in. above. Will take above amplifier and any B.R.E. or GARRARD Autochanger or Single Player Unit (except AT60 and AT55). Size 18 in. x 12 in. x 8 in. Price 25/- P. & P. 3/6.

QUALITY RECORD PLAYER AMPLIFIER

QUALITY STEREO PHANTOM speaker 8 ohms.

LATEST DE LUXE QUALITY PORTABLE R/P CABINET

Uncut motor board size 14 x 12 in. laminar 2 mm. Below, 5/- in. above. Will take above amplifier and any B.R.E. or GARRARD Autochanger or Single Player Unit (except AT60 and AT55). Size 18 in. x 12 in. x 8 in. Price 25/- P. & P. 3/6.

QUALITY RECORD PLAYER AMPLIFIER

QUALITY PORTABLE TAPE RECORDER CASE.

Affordable, sturdy, lightweight, waterproof plastic case. Up to 6 spools. 10/- for five spools. Also available mounted on board with output transformer and speaker ready to fit into cabinet below. Price 9/- 6d. P. & P. 1/6.

DE LUXE QUALITY PORTABLE R/P CABINET

Uncut motor board size 14 x 12 in. laminar 2 mm. Below, 5/- in. above. Will take above amplifier and any B.R.E. or GARRARD Autochanger or Single Player Unit (except AT60 and AT55). Size 18 in. x 12 in. x 8 in. Price 25/- P. & P. 3/6.

QUALITY RECORD PLAYER AMPLIFIER

QUALITY STEREO PHANTOM speaker 8 ohms.

LATEST DE LUXE QUALITY PORTABLE R/P CABINET

Uncut motor board size 14 x 12 in. laminar 2 mm. Below, 5/- in. above. Will take above amplifier and any B.R.E. or GARRARD Autochanger or Single Player Unit (except AT60 and AT55). Size 18 in. x 12 in. x 8 in. Price 25/- P. & P. 3/6.

QUALITY RECORD PLAYER AMPLIFIER

QUALITY STEREO PHANTOM speaker 8 ohms.

DE LUXE QUALITY PORTABLE R/P CABINET

Uncut motor board size 14 x 12 in. laminar 2 mm. Below, 5/- in. above. Will take above amplifier and any B.R.E. or GARRARD Autochanger or Single Player Unit (except AT60 and AT55). Size 18 in. x 12 in. x 8 in. Price 25/- P. & P. 3/6.

QUALITY RECORD PLAYER AMPLIFIER

QUALITY STEREO PHANTOM speaker 8 ohms.

LATEST DE LUXE QUALITY PORTABLE R/P CABINET

Uncut motor board size 14 x 12 in. laminar 2 mm. Below, 5/- in. above. Will take above amplifier and any B.R.E. or GARRARD Autochanger or Single Player Unit (except AT60 and AT55). Size 18 in. x 12 in. x 8 in. Price 25/- P. & P. 3/6.
The voltage doubler described here was built to enable a 200–240 volt a.c./d.c. electric shaver to be used on 100–115 volt a.c. mains when travelling abroad. The output is 200–240 volt d.c. depending on the input voltage. The razor was found on test to take 60 to 70mA at 240 volts, the output of the voltage doubler being ample for this as the rectifiers are rated at 500mA at 250 volts. The circuit is shown in Fig. 1.

The 16μF 150 volt working capacitors were used because of their small size, but are not as easy to obtain as the higher voltage types; these may be used instead but will make the unit more bulky.

CONSTRUCTION

The two capacitors are soldered to a six-way tag strip and arranged side by side, with the positive of one capacitor joined to the negative of the other, see Fig. 2. Where the ends of the capacitors are soldered to one tag a lead from the 110–115 volt flex should also be soldered on to the same tag.

The rectifiers are soldered to the opposite ends of the capacitors together with the output leads. It is important to observe the polarities of the rectifiers and capacitors. When soldering, a pair of pliers should be used to act as a heat shunt from the leads.

The other ends of the rectifiers are soldered together on to the tag strip and the remaining 110–115 volt lead is soldered to this junction point.

Once all the wiring to the tag strip is completed it should be fitted in a small hardboard, or similar material, case. A large diameter cardboard roll would be ideal. The output leads can be wired to a socket bolted to the end of the case or can be the actual shaver leads.

It is advisable that the components be mounted in an insulated case, but if a metallic case is used, this must be connected to earth. The 240V output terminals must not be connected to the mains supply.

COMPONENTS . . .

Capacitors
C1, C2 16μF elect. 350V (2 off)

Diodes
D1, D2 RECS1A (Radiospares) (2 off)

Miscellaneous
Six-way tag strip. Plug and socket. Hardboard for case, see text
Introducing....

PEAC

A low cost, general purpose analogue computer of modern design, intended for the amateur or student.

A useful tool which is capable of solving complicated problems at high speed.

Can be used as a model to simulate mechanical systems and electronic networks.

Extends enormously the scope of the amateur experimenter.

This series of articles will explain in detail the design, construction, and operation of PEAC.

Most of the publicity afforded to computers favours digital equipment. However, digital methods tend to be disproportionately expensive for small installations. On the other hand, although analogue equipment is ideally suited to limited, low-cost applications, it was not until the silicon transistor had become firmly established, and enough practical published information was available, that a start could be made on designing analogue computing equipment to yield a reasonable standard of performance in the lowest possible price range.

A WORTHWHILE PROJECT

No doubt many readers will think that construction of a true computer could involve them in a great deal of time, money, and effort. They might also believe that an average understanding of mathematics would not be sufficient to equip them to operate a computer effectively. However, the amount of time and money spent building PEAC need be no more than is consumed by a home constructed hi-fi outfit of normal proportions and performance, and the computer will solve even simple problems a great deal faster than the human mind or slide rule, once it has been programmed to do so.

In fact, a general purpose computer can find application in almost every sphere of technical activity, and is particularly useful in the electronic workshop, to the point of becoming indispensable after a short period of use.

UNIT CONSTRUCTION

PEAC is arranged in the form of units, and is organised in such a way that reasonably advanced computations may commence upon completion of the first unit, UNIT "A". The cost of building UNIT "A", based upon typical retail prices at the time of writing, will not be much above £25, and yet it will solve algebraic polynomial equations, simultaneous linear equations, simple differential equations, and can also be used to simulate the behaviour of many elementary mechanisms and electronic networks.

UNIT "A" is designed primarily to satisfy a minimum user requirement, for experimental and educational work, but it also serves as a convenient starting point for the addition of further units to expand the computer to almost any desired degree of capability and complexity. The additional facilities provided by the add-on UNITS "B", "C", and "D" are described in the specification. See also the block diagram, Fig. 1.1.

A comprehensive PEAC installation, equipped with a function generator and multiplier, and with full integrating facilities for the fast solution of a range of differential equations, might finally cost around £60: not a lot to pay for an item of workshop equipment which can solve electronic formulae in 10ms, and which may also be employed as a variable waveform generator, 18 input high quality audio mixer, variable characteristic high Q audio filter, large inductance or capacitance simulator, d.c. or a.c. millivoltmeter, and many other things besides.

COMPARISON BETWEEN ANALOGUE AND DIGITAL COMPUTERS

Although popularly regarded as an inaccurate machine of limited usefulness, the analogue computer is to be found in the Polaris missile, spacecraft, aircraft, large scale chemical processes, and many automated production lines, quite apart from basic research work, where flexibility and ease of working are often considered to be more important than extreme accuracy. The analogue computer is, in most cases, very much faster than its digital counterpart, and can offer far more in the way of general facilities for a given outlay.
The time taken to solve a problem on an analogue computer is independent of problem length. All circuits operate in parallel, simultaneously. A typical solution might be arrived at in 20ms, and this solution can then be repeated at the rate, say, of 25 solutions per second. In human terms the solution is virtually immediate and continuous, therefore, any adjustments made to problem parameters (terms of an equation) while the computer is working will be immediately reflected in the solution readout. This rapid response allows the operator to quickly gain an insight into the workings and structure of a problem.

In contrast, digital computers perform many mathematical operations in a pre-determined and comparatively lengthy sequence, which bears little obvious relationship to the structure of the problem, but they do offer the very high degree of accuracy essential for calculations involving money or very precise data.

The computer of the future will undoubtedly combine the best of both worlds with analogue and digital equipment in hybrid form.

ANALOGUE METHODS

The statement that an aeroplane is a machine for solving sets of differential equations is not very far removed from the truth. If the aeroplane did not solve its equations correctly it would not be able to fly at all. Almost all relationships or events can be described mathematically, or in turn be represented by an analogy. A model aeroplane in a wind tunnel solves, by analogy, roughly the same equations which govern the behaviour of the real aeroplane, although in much simpler and less expensive fashion.

An analogy of a physical or mathematical process could be achieved by a system of gears, pulleys, and levers; or by the controlled flow of gases or liquids. But in the last couple of decades electronic methods of simulation and equation solving have become almost universal, because of the accuracy, availability, and adaptability of standard electronic components.

The main purpose of the analogue computer is to allow a model to be set up quickly and easily, to simulate the behaviour of a full scale system, and at
POWER SUPPLY
Input 205V—245V 50Hz. Output ±12.5 V d.c. Voltage regulation better than 1% for loads of 0—200mA, and 2% for 0—300mA. Total ripple 2mV. Complete short circuit protection.

AMPLIFIERS
Three multi-purpose operational amplifiers, each with five silicon transistors. Open loop voltage gain greater than 5,000. Output ±10V at 5mA. Current demand (average) 40mA. Equivalent input drift under normal room conditions better than ±0.5mV per hour. Unity gain frequency response within 1% for 0—10kHz, and 5% for 0—25kHz. Typical noise and hum at output 3mV.

VOLTAGE SOURCE
Five independent outputs, each continuously variable in three steps giving ±0—0.1V, ±0—1V, and ±0—10V. Dial setting accuracy better than 3% of full scale between dial divisions 1—10. Total current demand 50mA.

COEFFICIENT POTENTIOMETERS
Four 10 kilohm 270° potentiometers. Dial setting accuracy better than 5% of full scale between dial divisions 1—10.

SUMMING NETWORKS
Three five-input summing networks provided with voltage check sockets, and plug-in computing components.
the same time solve the equation which represents the system. Sometimes the computer will be used just for solving equations or, alternatively, as a working model only, depending on the nature of the problem. The advantage of the electronic computer is that it will do each, or both at the same time, with ease.

The computer is set up, or "programmed", for a particular task by inserting computing components, i.e., resistors and capacitors, into sockets on the front panel. This procedure will be described in full detail in due course.

ANALOGUE COMPUTER CIRCUITS

In the electronic analogue computer, the analogy is created fundamentally by manipulating sets of d.c. voltages. There is nothing to prevent a.c. voltages being used—in fact they often are—except that a.c. measurement techniques are generally less accurate at low levels than d.c. However, when simulating dynamic processes with d.c. voltages, the computer will be handling a voltage which varies with time. In this context it is more appropriate to regard a waveform, even if it is a pure sinewave, as a d.c. voltage varying with time according to a formula which describes the nature of the waveform.

The main computing element is the "operational amplifier". As far as operational amplifiers are concerned, the decibel is much too coarse a unit to use for the measurement of frequency response, so amplitude linearity is usually expressed as a percentage variation over a fairly restricted range of audio frequencies. In some cases, for example, an operational amplifier and its attendant circuits will be expected to respond from d.c. to 5kHz with an accuracy of a fraction of 1 per cent, and up to 10kHz at no worse than 1 per cent.

COMPUTING ELEMENTS

The majority of problems can be solved by the varied application of only five analogue elements, but the size of the problem to be handled will in turn depend on the quantity of elements available, and hence on the overall size of the computer.

The five computing elements are shown in Fig. 1.2, together with their conventional symbols and generalised functions. The symbols are used as a kind of shorthand when drawing up a computer programme.

The first thing to note about the simplified circuit diagrams of Fig. 1.2 is that the common earth return is often completely ignored. Computer supply voltages are usually positive and negative in relation to an earthed centre tap. Since the input and output terminals of each computing element are arranged to be very close to earth potential in the absence of an input voltage, it is feasible to take the earth rail for granted and regard all circuits as having only two terminals, instead of the usual four.

Although the symbol and function of each of the elements of Fig. 1.2 are common to all analogue computers, the actual circuit design and choice of components will naturally vary from one computer to another. For example, the time-division multiplier of Fig. 1.2e is only one among many possible circuit configurations for achieving multiplication of independent variables. Alternative approaches include the Hall effect, the servo, logarithmic, and quarter square multipliers.

Fig. 1.2 Analogue computing elements
It is proposed to examine computing elements in greater detail when they are dealt with individually at a later stage, but in the meantime a brief survey will suffice.

COMPUTING POTENTIOMETER

The potentiometer of Fig. 1.2a may be used for multiplying a variable voltage (often called a machine variable) by a constant of less than unity.

Example: potentiometer input 1.5 volts. Slider set exactly half way along resistance track, corresponding to a constant of 0.5. Output voltage E_o therefore equals 1.5×0.5, or 0.75. As set, the potentiometer will multiply any input voltage by 0.5.

When incorporated in the feedback loop of an operational amplifier, the potentiometer will divide a machine variable by a constant smaller than 1. The fact that potentiometer constants are less than unity is no real disadvantage. It is a simple matter to either increase input voltages by a factor of ten, or increase the gain of an operational amplifier ten times, to bring the potentiometer constant above unity. Like the slide-rule, it is simply a matter of deciding in advance where the decimal point should be.

SUMMING AMPLIFIER

The summing amplifier of Fig. 1.2b uses a high gain operational amplifier with several inputs to achieve addition and subtraction of machine variables. When the operational amplifier has a voltage gain equal to several thousand, input voltages will be accurately summed together, without unwanted interaction. The summing junction SJ is at "virtual earth", a way of saying that SJ will never be more than a few millivolts above or below earth potential, and is also, to all intents and purposes, shunted by a resistance of only a few ohms. Compared with input resistors R_1-R_3, the SJ shunt resistance is very low indeed, a condition necessary for accurate summarization of voltages.

A definite relationship exists between resistors R_1-R_3, and feedback resistor R_f, and if these resistors are arranged to plug into the amplifier, many problem conditions can be met by "ringing the changes" on preferred values of fixed resistor, including multiplication by a constant as well as addition.

If a voltage E_i is applied via resistor R_1 (in Fig. 1.2b) to the summing junction SJ, the output voltage E_o will be

$$ E_o = \frac{E_i R_f}{R_1} \left(1 - \frac{R_2}{R_3} + \frac{R_3}{R_f} \right) $$

Substituting values

$$ E_o = \frac{10}{100} - \frac{3.5 \times 10}{2} + \frac{2 \times 10}{100} = (5 - 3.5 \times 5) + 0.2, $$

therefore $E_o = 12.3$.

In the above example, the summing amplifier has not only summed negative and positive inputs, but has also multiplied E_2 by 5, and E_3 by a constant of 0.1, merely by selection of appropriate values of input resistor.

SUMMING INTEGRATOR

The summing integrator is used for the detailed investigation of time dependent variables, and for the solution of problems involving calculus.

The integrator of Fig. 1.2c is based on the inverting operational amplifier, with capacitor C_t acting as the feedback component. The output from a single integrator, in response to a steady voltage input, is a linear ramp voltage which increases with time at a rate dependent on choice of input resistor, feedback capacitor, and input voltage. Once again, precise relationships must exist between computing components and voltage, but now time is introduced as an additional analogue variable.

The action of electronic integration is best explained by a working example, and reference should be made to the diagram of Fig. 1.3a.

Example: a fairly sluggish motor car accelerates from rest at a steady rate of 20ft/second/second. Examine the progress of the motor car during the first four seconds of its motion. The computer is set up to operate in "real time", that is to say, the time actually occupied by the motor car when accelerating. The problem layout of Fig. 1.3a shows a computing potentiometer "A" coupled to the input of Integrator "1", which in turn feeds Integrator "2". Voltmeters are connected into circuit to display the three parameters of interest. Potentiometer "A" is first adjusted so that its dial reads 2, corresponding to multiplication by the constant 0.2, to represent 20ft/s² scaled down to yield a voltage of appropriate magnitude for the integrators to handle. The output from the potentiometer is a steady voltage analogue of a steady rate of acceleration.

As soon as switch S3 is closed to the +V position, the velocity and distance meter pointers will start to move in a manner analogous to the motion of the motor car. Velocity will increase linearly with respect to time, while distance will be displayed as an accelerating pointer movement. Integrator "2" computes distance (s) as a voltage function of the square of time, in terms of $s = \frac{1}{2}at^2$.

With the problem of Fig. 1.3a, acceleration, velocity, and distance are immediately available to the computer operator as dial and meter readings. He can vary acceleration just by turning the dial of the potentio-
ACCELERATION \(a = \text{ft/see}^2 \)

VELOCITY \(V = \text{ft/sec} \)

DISTANCE \(S = \text{ft} \)

If switch S3 is moved to the \(-V\) position, the car will decelerate and stop.

COMPUTE, HOLD AND RESET

It is obviously inconvenient to take readings from voltmeters when pointers are on the move, and it is impossible to do so if time \(t \) is very short, as with fast events, or when the computer is speeded up to some fraction of real time. The sequence governing switches S1 and S2, in Fig. 1.2c, is therefore arranged to provide three facilities, called "compute", "hold", and "reset".

The purpose of the "hold" facility is to allow a steady meter reading to be taken at any point on the voltage/time curve output of an integrator. The high gain introduced by the operational amplifier effectively multiplies the capacitance of \(C_t \) when the integrator input is disconnected from input resistors and reset resistance \(R_r \). With amplification, \(C_t \) becomes the equivalent of a very large capacitor which is capable of holding a charge for a relatively long time. In practice, the ability of an integrator to "hold" or store a voltage will also depend on low amplifier drift.

Fig. 1.3b shows graphically the effect of compute, hold, and reset modes, when applied to the distance curve of Fig. 1.3a. In this case, it is necessary to halt the computation after an elapsed time of 2.5s, and obtain a value for distance in the form of a steady meter reading.
The compute mode is initiated by opening S1 and closing S2 (Fig. 1.2c). After 2.5 seconds, S2 automatically opens and the amplifier input is left floating, with C_t still connected between input and output and holding a stored charge. A meter coupled to the integrator output will show the distance travelled after 2.5 s of acceleration.

The "hold" period can occupy several tens of seconds, and is usually at the discretion of the operator. To begin a new computer run, S1 is closed, discharging C_t through R_r, thus resetting the integrator output to zero. The input E_{ic} in Fig. 1.2c, is to allow an initial condition to be applied to the integrator, as in the case of a motor car which does not start from rest, but is already in motion when it accelerates. When computing and resetting times are shorter than about 1 s, voltmeter answers will appear to be given at the instant of pressing the button which initiates the S1, S2 cycle.

The above description relates to a "single shot" computer run, where the operator adjusts, takes a reading, adjusts, and so on. In the repetitive mode, the hold facility is ignored and the computer keeps on repeating the answer curve, for display on an oscilloscope, chart recorder, or XY plotter.

DIODE FUNCTION GENERATOR

In many computer applications it is necessary to generate a voltage which varies according to some nonlinear function not provided by normal operational amplifier techniques. The diode function generator of Fig. 1.2d will allow a mathematical function to be constructed from a series of straight line tangents, as shown in Fig. 1.4a.

Each straight line characteristic is obtained from a single diode-resistor network, and when the outputs from several networks are summed together a complete function will result. The shape of the final approximated curve is determined by adjustment of the network resistors. Apart from powers of x, and other functions, roots are achieved by placing the function generator in the feedback loop of an operational amplifier.

A single diode network appears in Fig. 1.4b, and the slope of its output characteristic can be varied by adjustment of R_r. The diode breakpoint (the voltage at which the diode starts to conduct) is dependent on the value of R_b.

MULTIPLIER

The computing potentiometer will multiply a variable by a constant, but special techniques must be used to multiply one variable by another variable. The process employed in modern computers is akin to modulation, where the gain of a circuit is controlled by an applied voltage.

The multiplier should yield a product of correct sign when multiplying negative or positive variables, and this is readily achieved with the self-excited time division circuit of Fig. 1.2e. The time division multiplier operates on the principle of modifying the mark-space and amplitude of a square wave in accord with two voltage inputs. The filter of Fig. 1.2e extracts the mean level of d.c. from the square waveform. An additional advantage of the Fig. 1.2e circuit is that it can be arranged to cater for more than two variables. For example, inputs X_1, X_2, and X_3 multiplied by input Y.

Next month: Commencing the construction of UNIT "A".
CONFERENCES between two distant locations can now be conducted through
the medium of closed circuit television. Following a demonstration of
the system between Gresham Street in the City of London, and the Post
Office Research Station at Dollis Hill, North-west London (about 10 miles
apart), our correspondent joined the panel in the City and found that
greater relaxation was experienced while conversing with the other panel
over the television link. By the inclusion of “privacy” equipment; pro-
ceedings would be kept confidential; a scrambling code is brought into
operation to obviate telephone tapping. A translucent blackboard with
written or drawn material can be monitored from behind it and
transmitted to the distant studio.

Logicon Controls Float Glass

AUTOMATIC control of float glass
processing, involving cutting, snapping, squaring, and berthing has
been installed at the Pilkington plant
at St. Helens, Lancashire. Under
automated control from AEI Logicon
solid state electronic systems, the
operation forms part of a continuous
process in producing a continuous
ribbon of glass which is cut into
patterns of a required size. The glass
is then trimmed and snapped before
being conveyed into the warehouse.

Control of the speed of the plant is
effected by adjustment to the fre-
cuency of the output. A mains
standby transformer can be used to
enable the plant to be run at constant
speed from the mains supply. Signals
from over 300 vane-operated magnetic
proximity switches, which can detect
the presence of glass, initiate the
Logicon system controlling the various
operations.
WHITE NOISE is a very special form of audible sound, in that it has no special pitch or waveform, but contains a random mixture of pitches and waveforms, covering the entire audio spectrum. This makes it a very interesting subject for the audio experimenter, who can, from a given sample of white noise, electrically or acoustically filter out and make use of sounds of any desired pitch, or within any chosen passband. It is also possible to adjust the envelope waveform of a given sample of white noise, either before or after filtering.

By means of these manipulations, it is possible to produce a wide range of very interesting sound effects, many of which are of practical use in making electronic music. Some examples of these effects are: steam locomotive; heavy surf; wind effects; cymbals; rhythmic wood-blocks; and an effect very loosely termed "phasing", which finds considerable favour as a "psychedelic audio experience". More about these special effects will come later.

The circuit of the white noise generator operates from a power supply of 18 to 24 volts, although a 9 volt battery can be used, as described later, and gives rather less output. Construction is based on a standard P.E. Bonanza Board printed circuit as shown on the full size pattern in Fig. 2a.

HIGH LEAKAGE DIODE

Electrical power is fed to diode D1 through resistor R1. The diode is reverse biased, but passes quite a considerable leakage current with the result that a random output or white noise output is produced at the junction. The way in which this happens is described in considerable detail in various textbooks. The output from the diode is at a fairly low level, so is fed via C2 to a high gain transistor stage TR1, which amplifies the white noise output to a more useful level. This output is available from the collector of TR1, and is fed to the output connection point through the coupling capacitor C4.

CONSTRUCTION

Obtain the components listed except diode D1, and resistor R1, which are mentioned later in the text, and solder to the printed circuit board in the positions shown in Fig. 2b. Connect also the link wires shown. Connect the circuit to the power-source (a suitable power supply unit was given in the Spring Line Reverberation Unit last month) or a 9 to 18 volt dry battery. The voltage across TR1 (collector to emitter) should be about half the supply voltage. If it is not near this value, change the transistor or select a different value for R3 accordingly.

Fig. 1. Circuit diagram of the white noise generator

Fig. 2a. Printed circuit pattern of the "Bonanza Board"

Fig. 2b. Final layout of components on the printed circuit board
COMPONENTS...

Resistors
- R1: see text (2.7 kΩ)
- R2: 47 kΩ (2.7 kΩ)
- R3: 39 kΩ (1 kΩ)
- All 10%, ±5% ± watt carbon

Capacitors
- C1: 25 µF elect. 25 V
- C2: 10 µF elect. 25 V
- C3: 1000 µF elect. 12 V
- C4: 10 µF elect. 25 V

Transistor and Diode
- TR1: C424 (S.G.S. Fairchild) or ST141 (Sinclair)
- DI: Point contact diode (see text)

Miscellaneous
- Printed circuit board (see Fig. 2)
- Potentiometer 1 MΩ for diode selection (see text)
- Crystal earpiece for testing (see text)

The diode used by the author is a miniature glass-encapsulated unmarked germanium point-contact type intended for use in a crystal radio set in place of the old-fashioned "cat's whisker" and galena crystal. These diodes are often so very leaky in the reverse direction that they may be said to have no definite peak inverse voltage rating! This leakage is put to good use in this white noise generator. The diode is cheap to buy and is usually found at component surplus suppliers for about 6d to 1s.

Various types of crystal diodes were tried by the author, but those which produced the most noise were unbranded, and the best way to obtain a suitable diode appears to be to buy a few and select one which generates a considerable noise level. (It has been said that almost any crystal diode can be caused to generate more noise, by passing a very heavy current through it for only a few seconds, so that it glows like a dimly lit bulb. The author did not need to try this process, as there were many diodes in the spares box which were very noisy already.)

SELECTING A DIODE

In order to select the most suitable diode from a number which may be to hand, carry out the following experiment. Connect in place of R1 a 3.3 kilohm resistor in series with a 1 megohm potentiometer (see Fig. 3). Connect in place of DI two short flying-leads with crocodile clips attached, so that diodes can be quickly tested and passed on.

The easiest way to check the diodes is to listen to the noise output by connecting the output of the generator to a crystal earpiece or an audio amplifier. Other methods are by means of a signal strength meter or an oscilloscope.

Check the diodes in turn, adjusting the potentiometer in each case for highest noise output. If you connect a diode wrong way round so that it is forward biased, no harm will be done, but the noise level is not so great when connected this way. If you are using the higher supply voltage (18 volts or above), it is worth using the emitter junction of a C424 transistor as a noise generator diode, with R1 set at 100 kilohms; this does not work well at lower voltages.

The white noise will, in most cases, be heard as a steady hissing or rushing sound, but some diodes are uncertain, with intermittent fading effects. These should be rejected; a diode giving a loud, steady output should be chosen.

When you have chosen a diode, remove the 3.3 kilohm resistor and the potentiometer, without altering its setting, and measure the total resistance. Choose a fixed resistor of the nearest standard value and solder in place as R1. Solder the diode in place as DI.

The white noise generator should now be ready for use.

Fig. 3. Set up the module for finding the most suitable diode and adjust the potentiometer to given optimum bias and noise output.
MARKET PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

SEMICONDUCTORS

The case for the use of monolithic circuits in the audio field is now beginning to make an increasing impact and will surely be generally accepted in time, just as the transistor is now firmly established.

The MC1554G monolithic circuit from Motorola Semiconductor Products Inc., is a high performance audio amplifier of one watt output with a harmonic distortion of 0.4 per cent over a frequency range of 20Hz to 20,000Hz.

The input impedance is 10kΩ and the output impedance is 0.2Ω. The input impedance is optimised for driving a 16Ω load, usually found in audio and servo applications.

Housed in a 10-pin metal can, this device needs to be powered by a 16 volt d.c. supply; the d.c. drain current is only 15mA with a zero signal input.

Further details of the MC1554G can be obtained from Motorola Semiconductor Products Inc., York House, Empire Way, Wembley, Middlesex.

Three new silicon npn transistors announced by Mullard have been designed for mobile f.m. transmitters that operate from a 13-8 volt supply. Types BLY34 and BLY55 are intended as drivers, but can also be used in the output stages of small v.h.f. transmitters. Type BLY36 is intended for use in the output stage of larger v.h.f. transmitters.

SGS-Fairchild have announced price reductions over their whole range of silicon planar devices. In some cases these reductions are over 50 per cent. We hope that these reductions will be passed on to the public by retailers.

SHOPPING GUIDE

Now to items that would make suitable gifts:

Something that will hold the interest of younger people, and the serious designer will also find useful, is the S-Dec “breadboarding” system marketed by S.D.C. Products (Electronics) Ltd.

A single unit or “building block” consists of two panels with seven parallel rows of phosphor bronze double-leaf spring contacts. Each row has five connecting holes, drilled in the panel, and are linked electrically.

To make up circuits, component leads are simply pushed into the panel holes and can be removed quite easily for any circuit alterations. If more than one unit is required, they can be joined together by keys and keyways on the four walls of the boxes.

S-Dec costs 29s 6d each unit and further details can be obtained from S.D.C. Products (Electronics) Ltd., Pump Lane, Springfield, Chelmsford, Essex.

Items for the workshop include a set of three tools: 5in engineers’ pliers; 5in diagonal cutters; and 5in long-nosed pliers, produced as a set in a p.v.c. wallet by Elliott-Lucas Ltd.

Bib Home Electrician’s Kit by Multicore Solders Ltd. contains virtually every item needed to carry out minor electrical repair work in the home.

The kit costs 14s 6d and contains a Bib Model 8 Wirestripper and Cutter; three flex shorteners; Ersin multicore tape solder, which can be melted with a match; insulating tape; fusewire rated at 5 and 15 amps; and a screwdriver with a blade designed to suit all plugs in general use.

A riveter’s skill is brought within everyone’s reach with the “Pop” Rivet Kit marketed by United Marketing (Leicester) Ltd.
rivet kit and should prove most helpful in the workshop. Marketed by United Marketing (Leicester) Ltd., it is priced at 39s 11d and contains a riveting tool; a supply of rivets in three lengths; washers; a 3.3mm drill bit; and an instruction leaflet. A feature of the kit is that it can be used where only one side of the work is accessible and a nut and bolt cannot be used.

Finally, two items that are invaluable in the home workshop.

First, a fire extinguisher should always be kept handy. Simoniz Ltd. are offering two in a Christmas pack at 55s. Weighing only 1 lb, it is claimed that this extinguisher will snuff out a car engine fire in five seconds and a television fire just as quickly.

Secondly, a power tool has numerous uses for the many cabinet making and chassis drilling jobs that are always needed when making any equipment. Both the Black and Decker D500 and D520 models have %in chucks, and retailing at £5 10s and £8 19s 6d respectively, are always welcome gifts.

The two-speed model D520 is particularly useful for low speed drilling with high torque, such as required for drilling steel sheet and masonry. Maximum recommended hole sizes are ½in for steel and masonry and 3in in hardwood at the slow drill speed of 900 r.p.m. The drill can be used to cut larger holes for components up to 1in diameter if used with a "holesaw".

The presentation of audio equipment can cost from a few shillings to several pounds. For example, there is the Bib Tape Head Maintenance Kit for 12s 6d or the Fidelity HF36 console stereo record player at 45gns. The Fidelity HF36 is finished in fine teak veneer and is fully transistorised. The turntable is a Garrard four speed auto/manual type, taking eight records on auto. Four watts output per channel is fed to two 8in speakers in acoustically designed chambers.

The new Sinclair Q14 loudspeaker at £6 19s 6d measures only 9½in x 9½in x 4½in and is claimed to produce a smooth level response between 60Hz to 16,000Hz. The full frequency range is claimed to be 45Hz to 18,000Hz and it can handle 14 watts r.m.s. at 1,000Hz. The impedance of the speaker is 15 ohms.

The demand for tape recorders has steadily increased over the years, so a tape recorder spool or accessory may be another useful gift.

Mastertape (Magnetic) Ltd. are now producing their 5in, 5½in, and 7in reels in a strong black polypropylene box in the form of a book, with grained front and back covers. The spine has the brand names and a label printed in a colour which identifies the type, reel size and length of recording, i.e. red for standard play, yellow for long play, etc. Prices range from 20s 6d for a 5in spool of standard play tape to £5 for a 7in spool of triple play tape. The "books" also contains a printed card index and tape clip.

The 4in, 5½in, and 7in Synchrotape spools are available from Adastra Electronics Ltd., 167, Finchley Road, London, N.W.3, and include a 12-page guide to playing times and speeds, editing and storage hints, technical data and a recording log for individual tabulation of recordings. Coupons are given with these spools enabling a tape splicer to be purchased at half price.

The care and maintenance of tape recorders is important if good service and reproduction is to be maintained throughout the life of the recorder. So at 12s 6d the Bib Size E Tape Head Maintenance Kit is a worthwhile consideration for those who really care about tape recorder maintenance; others need encouragement, too!

The kit consists of a bottle of instrument cleaner; cleaning tissues; applicator and polishing tools and sticks; double-ended brush and a five-page instruction booklet.

NOTE

In the G.S.P.K. (Electronics) Ltd. advertisement (December 1967) for their Printed Circuit Kit, the price was incorrectly given as being £1. The correct price is £1 5s 6d plus 3s 6d postage and packing.
LAST MONTH'S article described how semiconductors are formed from carefully prepared crystalline materials. Now, going a little deeper this month, the actual crystal structure will be shown to have specific properties.

A common crystal for semiconductors is germanium which, in its pure state, has a very low conductivity. However, its conductivity rises steeply with increase in temperature and above 100 degrees C it is so high that current control becomes a bit of a problem.

TWO MAIN TYPES

Germanium is extracted from flue ash formed from the burning of Northumberland coal. In this state it is an oxide containing a great deal of impurity and, for semiconductor applications, it has to undergo a purifying process called "zone refining". Here the germanium ingot is placed in a radio frequency heating field in such a way that only a small part is affected, producing a molten zone. This is arranged to "sweep" along the ingot from one end to the other, and because the impurities are concentrated in the molten zone they are, in effect, "swept" out of the crystal to one end. After several sweeps the heavily contaminated end is cut off the ingot, leaving the bulk of pure crystal.

Silicon is another common semiconductor material. This has a lower electrical conductivity (more resistance to current flow) than germanium, and is thus more suitable for high power devices than germanium. It can also be used at higher temperatures without posing the current control and heating problems of germanium.

Pure germanium has a resistivity of about 60 ohm-centimetres, while pure silicon is much higher, rising to about 600,000 ohm-centimetres. The controlled addition of impurities, referred to last month, reduces the resistivity of the pure crystals to about 2 ohm-centimetres at room temperature. Fig. 2.1 shows the scale of resistivities of pure germanium and silicon relative to copper and glass.

CRYSTAL LATTICE

The structure (called crystal lattice) of pure crystal materials is composed of atoms which are effectively bound to their partnering atoms by the pairing of their outer or valence electrons. This gives so-called electron-pair bonds, as shown in Fig. 2.2. Because each of the four valence electrons per atom is linked to the electrons of an adjacent atom, no electrons are available for the conduction of electricity (there are no current carriers), which is why a pure crystal has such a high resistance.

However, partial collapse of the lattice occurs when the crystal is heated owing to the result of thermal...
energy. This releases electrons from the bonds, making them available for current conduction, which lowers the crystal’s resistance.

If heated crystal is arranged to pass an electric current, more heat is generated due to normal power dissipation. This allows even more current to flow and the effect, which is cumulative, eventually results in the destruction of the lattice. Germanium is more influenced by temperature rise than silicon.

Fig. 2.3 shows what happens in the lattice when an infinitesimally small amount of impurity is added to give n-type material. The impurity atom fits into the lattice, but because it has one more electron than the atoms of the crystal this becomes available for current carrying. The diagram shows that the crystal atoms each have four electrons, while the impurity atom has five electrons. Four are used for the bonding into the lattice and the excess one for conduction.

Fig. 2.4 shows what happens when an impurity atom is added to the crystal to produce p-type material. Here the impurity atom has only three valence electrons and, while these pair-up with the electrons of adjacent crystal atoms, one of the bonds in the lattice cannot be completed because the impurity atom lacks the final valence electron. This gives rise to the so-called hole, or positive current carrier, explained last month.

It will be appreciated now that holes encourage conduction by electrons, since they provide a “channel” in the semiconductor material through which electrons can flow. A hole, in fact, exerts an attractive force on any electron, and if this is one liberated from a crystal atom it may combine with the hole, but will have left a hole behind it. This process is continuous within the crystal, thereby constituting a flow of positive current carriers, as shown in Fig. 1.4 last month.

The impurities added to the pure crystal to give it n- and p-type characteristics are called respectively donor and acceptor atoms, the first giving negative current carriers and the second positive current carriers (i.e. electrons and holes).

PN JUNCTION

When p- and n-type materials are brought close together and effectively diffused at their junction, the well-known pn junction diode effect is achieved. This is illustrated in Fig. 2.5. Contrary to expectation, electrons do not flow from the n-type material into the p-type material to neutralise the holes.

As soon as holes flow from the p-type and electrons from the n-type material, the n-type develops a positive charge and the p-type a negative charge, because the p- and n-type materials are electrically neutral. These charges inhibit any further interchange of electrons and holes across the junction.

A “charge barrier” is, in fact, developed across the junction, and is often referred to as “potential barrier”, “space-charge”, “transition region”, and “depletion layer”. All these terms mean the same thing—the charge developed across the junction due to the initial interchange of holes and electrons.

It should be understood that the electric charge exists only across the junction, and it cannot be measured by connecting a voltmeter between the p- and n-type materials, but it can be represented by an imaginary battery connected within the two crystals at the junction, as shown in Fig. 2.6.

JUNCTION BIASING

This depletion layer has a fundamental effect on the action of the two materials so united when an external supply is connected. Suppose an external source of electricity is connected across the p- and n-type materials with a polarity that will counteract the potential developed across the junction. This is shown in Fig. 2.7a. A potentiometer, connected so that this source can be varied upwards from zero, and a means of measuring the current flowing, should show that very little current flows when the voltage is first applied, but after a certain small value, the current rises fairly steadily as the voltage is increased.

The initial slow start is due to the external supply overcoming the potential across the junction, and from then onwards the “barrier” is broken and electrons in the p-type material, near the positive terminal of the supply, break their electron-pair bonds and enter the supply, thereby producing new holes.

Simultaneously, electrons from the negative terminal of the supply enter the n-type material and diffuse towards the junction. Excess electrons from the n-type then flow across the depletion layer and move, via the holes in the p-type, towards the positive terminal of the battery. This flow continues as long as the external supply is connected, and it is called forward current flow due to forward biasing of the junction.

When the external supply polarity is reversed, giving reverse biasing of the junction (as shown in Fig. 2.7b) the potential within the material across the junction is effectively reinforced—it becomes wider. This is because the free electrons in the n-type are attracted...
towards the positive terminal, away from the junction, while the electrons from the negative terminal of the supply enter the p-type and diffuse towards the junction, filling the holes as they approach the junction. Current flow is then extremely small, it being called reverse current.

Fig. 2.8 shows the forward and reverse characteristics. In the forward-bias region, current rises swiftly as the voltage is raised, while in the reverse-bias region the current is much lower (being microamperes as opposed to milliamperes and amperes in the forward direction).

The reverse current is caused by minority carriers due to the impossibility of obtaining absolute purity in the basic crystal, and being considerably aggravated by temperature increase, releasing current carriers due to thermal energy.

The “diode effect” can also be created by introducing, say, a piece of n-type material, into the surface of which is embedded a pointed piece of wire called a cat’s whisker. This is after the style of the old crystal detector used in radio receivers of yesteryear. N-type material, for instance, has a surface layer of electrons and an adjacent layer of positively charged donor atoms. These produce a potential barrier or depletion layer similar to that of a junction diode as shown in Fig. 2.9.

This type of construction is called a point-contact diode, and is adopted extensively for small low capacitance diodes for radio detection and similar, low power applications.

The junction type of diode is used more for power rectification applications and for voltage stabilisation, using the Zener effect explained below.

ZENER DIODES

If a diode is reverse biased with increasing voltage, there comes a point when the current rises very rapidly. This is called the reverse breakdown voltage or Zener voltage, after the name of the engineer who discovered it. In normal applications diodes are not subjected to such reverse stresses, but for stabilisation applications special diodes have been developed to work at and beyond reverse breakdown potentials. One name for these is the Zener diode.

If such a diode is reverse biased from a supply through a series resistor, the voltage applied to a load circuit from across the diode will remain fairly constant in spite of changes in load current. Further, the voltage will hold constant even though the input voltage may alter. Fig. 2.10 shows why this happens.

Here the current curve rises sharply at the breakdown point, so that if the load takes an increasing current, the current in the series resistor tends to increase likewise. This is prevented, however, by the diode passing a small Zener current, thereby holding the current in the series resistor constant. Fig. 2.11a shows how the Zener diode is used in a circuit.

VARIABLE CAPACITANCE DIODES

The depletion layer of a pn junction diode has a value of capacitance determined by the effective width of the depletion layer. The greater the width, the smaller the capacitance. Therefore, when unbiased, the capacitance is determined by the diode’s design, but as the reverse bias is increased, the capacitance falls since the width of the depletion layer increases.

This basic principle is exploited in the variable capacitance diode which is used for remote tuning of radio and television circuits, for automatic frequency correction in radio, television and f.m. receivers, for parametric amplifiers and for host of other applications.

Figs. 2.11b and 2.11c show respectively applications of the junction diode as a power supply rectifier and the point-contact diode in a simple radio receiver, the up-to-date version of the crystal set.
While the Semiconductor Basics series (introduced last month) is running, it is intended to publish each month a simple constructional item for the real beginner, based on the particular semiconductor device currently under discussion.

As our opening project, the semiconductor diode is presented in a modern version of the crystal set to illustrate its ability to function as a signal rectifier.

A few words in general about these special beginners projects...

A non-soldering method of construction has been adopted throughout this series. The method used has the virtue of being simple and inexpensive, and even the youngest novice need have no fear to embark upon the building of these electronic circuits. Careful reading of the text and close study of the illustrations is all that is required.

The only tools needed are: a pair of long-nosed pliers; an electrician's small screwdriver, a larger one for fixing the terminal strip and front panel; a wire stripper; and drills and saw for making the baseboard and front panel.

Components specified in all these projects are readily available from the usual retailers; in case of local difficulty, components can be ordered from various firms specialising in mail order service who advertise in this magazine. (Copy out the full description given in the Components List).

The approximate cost of components will be stated for each project. This figure will be based upon brand new "top" prices. The actual cost could well be somewhat lower if the reader is prepared to do some "shopping around".

Early crystal sets were very elaborate "instruments" with the crystal detector taking pride of place on a highly polished ebonite top panel, itself mounted on an oiled-wood box about 9 in square and 6 in deep. This panel also carried a large tuning knob and a very scientifically-constructed tuning coil; and there were large, instrument-type brass terminals for aerial, earth, and headphones.

Today's crystal set works on exactly the same principles as the first ever made 40-odd years ago; but it can take advantage of the incredible developments in components since those early days, particularly so far as the crystal detector and tuning coil are concerned.

THE CIRCUIT

The circuit of our constructional item is given in Fig. 1, which is very straightforward, indeed. The coil L1 picks up the signals from the aerial. This coil is tuned by the variable capacitor VC1. When the resonant frequency of the combination L1, VC1 matches the frequency of the required signal a large r.f. signal voltage is developed across the tuned circuit. This is the "carrier" voltage of the transmission, while its "envelope" carries the audio information, as shown at a and b in Fig. 2.

A pair of headphones connected directly across this "tuned-in" r.f. voltage would fail to respond in spite of the presence of audio information on the envelope because of the symmetrical nature of the wave. One half cycle would cancel out the other, and the net result would be no movement of the diaphragm. However, by rectifying the wave (this is where the crystal detector—or diode—comes in), the asymmetrical
Fig. 1. Circuit of the crystal set. The numbered circles represent the terminal strip connections; arrow heads represent crocodile clips.

Fig. 2. These waveforms illustrate the process of "detection":

(a) Radio frequency carrier wave, unmodulated
(b) Carrier wave modulated with programme "audio" signal
(c) Rectified modulated carrier wave, after passing through DI
(d) Resulting audio wave which is applied to the headphones; the r.f. component is filtered out by CI

Fig. 3. Constructional and wiring details. The front panel has been layed flat for clarity.

COMPONENTS...

Capacitors
- C1 100pF Mica
- VC1 500pF Solid dielectric variable tuner (Dilecon)

Diode
- DI OA81 Germanium diode (Mullard)

Coil
- L1 DRX1 Duel range crystal set coil (Repanco)

Miscellaneous
- Headphones, high resistance, Eagle SF20 (Electroniques)
- One 12-way plastics terminal strip (see text)
- Wooden baseboard 5in x 5in x 1/2in
- Hardboard front panel 31/2in x 5in
- Woodscrews for mounting coil, terminal strip and front panel to baseboard
- Four miniature crocodile clips
- One knob
- Plastic covered, single core copper wire (Woolworths)

TOTAL COST £1 10s 6d
waveform of Fig. 2c is produced. Capacitor C1, across the headphones, by-passes the r.f. carrier wave and leaves only the audio information, Fig. 2d, which operates the headphones.

GOOD AERIAL ESSENTIAL

It will be appreciated that the phones are powered by the actual transmitter signal as picked up by the aerial, so it is essential that the latter be very efficient. This means a long outdoor aerial, as high as possible. A good earth connection is also needed; this supplements the aerial. An earth connection can be made to a cold water pipe, or to a metal spike inserted into the ground. *Do not use gas mains, hot water, or radiator pipes for this purpose.*

WAVE BAND SWITCHING

L1 is a dual band coil. The whole winding is used for long waves; the top section only for medium waves. To change from long to medium wave remove the crocodile clip from the blue tag and fit to the red tag.

Any kind of tuning knob can be used fitted to the tuning capacitor VC1. Slow-motion tuning is not necessary for the selectivity of this kind of set is not great. The headphones which should have a resistance of about 2,000 ohms (not less than 1,000 ohms) are connected direct to the terminal strip (1 and 2).

CONSTRUCTION

The first stage in construction is to measure and cut a baseboard 5in by 5in from any 3/8-in thick softwood. The hardboard front panel measuring 3 1/2in x 5in is cut and drilled as shown in Fig. 3 and screwed to one of the edges of the baseboard with three 3/8in No. 6 countersunk wood screws. The variable capacitor VC1 and coil L1 should next be mounted on the front panel and baseboard, respectively, in roughly the positions indicated in the photos and Fig. 3.

Once the capacitor and coil have been secured in position the next step is to wire-up the four-way terminal strip which has been cut from the 12-way strip (the remainder of this strip will be used in later projects). The strip can be cut with a sharp pocket knife, or a Junior hacksaw.

It is best to wire the terminal strip before mounting on the baseboard and the terminal screws should not be tightened up until all component wires for that particular terminal have been positioned. Each wire should be given a slight pull to ensure it has made contact and is held fast by the screw once it has been tightened. Refer to Fig. 1 and Fig. 3 for connections.

When the terminal strip has been wired-up, four miniature crocodile clips should be fixed to the four leads which connect the tuning capacitor and coil to the terminal block.

Once the crocodile clips have been fixed to the four leads the terminal block should be checked and screwed on to the baseboard by two 3/8in No. 4 countersunk wood screws. The four crocodile clips should be attached to the capacitor VC1 tags and coil L1 tags as shown in Fig. 3. The clips should not be allowed to short out on each other.

Finally, once the wiring has been carefully checked, the aerial, earth and headphones should be connected as indicated in Fig. 3. As stated earlier it is important to have a good aerial and earth if the Crystal Receiver is to give good results.

Next month: A transistor audio amplifier
QUITE frequently when designing, modifying or constructing valve audio amplifiers and the a.f. stages of receivers, it is desired to know the voltage amplification effected by each stage so that the output stage can be correctly loaded from the applied input.

Furthermore, if it is necessary to include a pre-amplifier to boost low level signals to any desired degree, determination of the gain required will indicate what type of valve and load resistor to use.

It is quite a simple matter, and always interesting and informative to calculate valve amplification, using one of three separate formulas.

VALVE STAGE GAIN

The most commonly used is

\[
A = \frac{\mu R_L}{r_a + R_L}
\]

where \(A\) is the amplification or stage gain obtained, \(\mu\) is the valve amplification factor, \(r_a\) the valve anode impedance (both obtained from manufacturers' charts), and \(R_L\) is the value of the anode load resistor employed.

Thus to give an actual example, suppose an ECC40 triode was incorporated in a pre-amplifier to boost a low voltage microphone input, what magnification would it give with a load resistor of 39 kilohms, and what voltage would appear across the load resistor, for transmission to a later stage, if the input is only 0.2V?

\[
A = \frac{\mu R_L}{r_a + R_L} = \frac{30 \times 39 \times 10^2}{(11 + 39)10^3} = \frac{1170}{50} = 23.4
\]

With an input of 0.2V, there would be an a.c. voltage of \(0.2 \times 23.4 = 4.68\) developed across the anode load resistor.

Thus the theoretical amplification factor of 30 was not equalled in practice, and although an increase in \(R_L\) would increase gain beyond the 23.4 realised, the full figure can never be quite attained.

In Fig. 1 it can be seen that a loaded valve amplifier can be regarded as a perfect signal generator of amplification factor \(\mu\), in series with a resistor \(r_a\) equal to its own impedance, and \(R_L\) equal to its effective load, so that the total gain developed is divided between the two resistors relative to their proportional values.

COUPLING COMPONENTS

The formula given ignores the effect of the coupling capacitor and grid leak resistor of the succeeding stage, which are virtually shunted across the load resistor, thereby reducing it in effective value.

This is because in most instances the following grid resistor has a value greatly in excess of the load resistor and will only reduce its value by a trifling amount. If \(R_L\) is in the region of 200 kilohms or more, the effect of even a 500 kilohm grid leak will be appreciable. Ignoring the capacitive reactance \(1/\omega C\) of the coupling capacitor, the effective value of the load resistor becomes

\[
R_L = \frac{R_L \times R_g}{R_L + R_g}
\]

where \(R_g\) is the grid leak resistance.

continued on page 69
FOR 'INSTANT HEAT'... SAFE ... EFFICIENT SOLDERING

With a Weller 'Expert' Dual Heat Gun in hand you can successfully tackle any soldering job—from a small printed circuit up to sheet metal work! You get INSTANT HEAT at the press of a trigger— and tip is cool within 10 seconds of releasing trigger. Completely safe for operator ... and components. Simple to use ... speedy and accurate. Dual Heat 120-140 watts.

Expert Dual Heat Gun 66/- (Kit 89/6). Also available: Marksman Soldering Iron 29/- (Kit 38/-).

Manufactured by the world's largest makers of quality soldering tools.

Write for literature on Weller Soldering Equipment.

To: WELLER ELECTRIC LIMITED
Horsham, Sussex.
Telephone: Horsham 61747

GOODMANS HIGH FIDELITY MANUAL
A Guide to full listening enjoyment

The Manual is much more than a catalogue of Goodmans High Fidelity Loudspeakers—it contains informative articles, including advice on stereo, special beginners page, and full cabinet drawings. You'll find it interesting as well as informative.

The Perfect Combination
MAXAMP 30
STEREOMAX
MATCHING AM/FM STEREOPHONIC FM TUNER

STEREOMAX
MATCHING AM/FM STEREOPHONIC FM TUNER

Manufactured by the world's largest makers of quality soldering tools.

Write for literature on Weller Soldering Equipment.

To: WELLER ELECTRIC LIMITED
Horsham, Sussex.
Telephone: Horsham 61747

GOODMANS LOUDSPEAKERS LTD
AXIOM WORKS • WEMBLEY • MIDDLESEX. Tel: 01-902 1200

GOODMANS LOUDSPEAKERS LTD
AXIOM WORKS • WEMBLEY • MIDDLESEX. Tel: 01-902 1200

EXCEL in ELECTRONICS

Through this ICS 3-way Training Method:

MASTER THE THEORETICAL SIDE
From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

MASTER THE PRACTICAL SIDE
ICS show you how to develop your practical abilities in electronic engineering—alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

MASTER THE MATHEMATICAL SIDE
To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/T.V. Engineering and Servicing, Closed Circuit T.V., Electronics, Electronics Maintenance, Instrumentation and Servomechanisms, Telemetry, Computers, etc.
NEW! Programmed Course on Electronic Fundamentals

EXPERT COACHING FOR:

INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS

R.T.E.B. RADIO/T.V. SERVICING CERTIFICATE

RADIO AMATEURS' EXAMINATION

P.M.G. CERTIFICATES IN RADIOTELEGRAPHY

And there are practical "learn as you build" radio and electronics courses as well.

Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY
I.C.S., Dept. 151, INTERTEXT HOUSE, PARKGATE ROAD, LONDON, S.W.11

NAME ..
ADDRESS ..
OCCUPATION ..

P.E.1/68

INTERNATIONAL CORRESPONDENCE SCHOOLS
EXPERIMENTER’S PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS
ON A PRINTED CIRCUIT
WITH PARTS AND TRANSISTORS FROM YOUR SPARES BOX

CONTENTS:
1. Copper Laminate Boards 4" x 21".
2. Board Markers.
3. 34 Block Components (Resistors, etc.).
4. Resistors.
5. Capacitors.
6. Inductors.
7. Lamp Socket.
8. Transistors.
9. Other Parts.

40 TRANSISTORISED PROJECTS
A very comprehensive selection of circuits to suit everyone's requirements and construction ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER’S PRINTED CIRCUIT KIT

8/6

Postage & Pack: 1/6 (UK)
Commonwealth:
SOUTH AFRICA, CANADA, SOUTH AFRICA, CANADA

SULPHIDE PHOTOCELL, LATCHING RELAY, 2 TRANSISTORS, CONDENSER, RESISTORS, TRANSMITTER.

SENSITIVE ALARM. MODULATED - LIGHT ALARM.

LONG - RANGE STRAY - LIGHT ALARM.

you need to build a STEADY - LIGHT PHOTO-SWITCH/COUNTER/BURGLAR ALARM, etc.

PHOTOELECTRIC KIT

27

CONSTANT VOLUME INTERCOM.
28

REMOTE CONTROL OF MODELS BY INDUCTION.

PHOTOELECTRIC DETECTOR.
33

CRYSTAL SET WITH DYNAMIC LOUDSPEAKER.
4

CRYSTAL TUNER WITH CIRCUITS FOR AMATEURS.

BUILD 40 INTERESTING PROJECTS
ON A PRINTED CIRCUIT
WITH PARTS AND TRANSISTORS FROM YOUR SPARES BOX

BUILD 12 EXCITING PHOTOELECTRIC DEVICES

Commonwealth:
AUSTRIA, NEW ZEALAND, SOUTH AFRICA, CANADA

36/9

AIR MAIL 8/-

POSTAGE & PACK 1/6 (UK)

Commonwealth:
SOUTH AFRICA, CANADA, SOUTH AFRICA, CANADA

12 PHOTOELECTRIC PROJECTS.
1. Steady-Light Photo-Switch/Alarm.
5. Warning-Clock Alarm.
6. Closer Loop Alarm.
7. Projector Lamp Stabilizer.
8. Electronic Projector Modulator.
11. Automatic Headlamp Dipper.

INVISIBLE BEAM OPTICAL KIT

EVERYTHING NEEDED (EXCEPT WOOD) FOR BUILDING):
1. Invisible-Beam Projector.
2. Photoelectric Cell Receiver.

1 LONG RANGE OPTICAL KIT

29/6 p. i. p.

OBTAINABLE FROM LARGER ELECTRONIC COMPONENTS DISTRIBUTORS OR DIRECT FROM

EXPERIMENTAL ELECTRONIC ENG. KITS

YORK ELECTRICS, 333 York Road, London, S.W.11

Send a SAE for full details, a brief description and photographs of all Kits and all 52 Radio and Electronic Photoelectric Sets Applied.**
SINE TO SQUARE WAVE CONVERTER

By A. FOORD

Since a square wave contains many harmonics as well as a basic frequency, square wave testing of an audio amplifier is more representative of actual operating conditions on speech and music than mere sine-wave testing. The circuit shown in Fig. 1 can be used to convert a sine wave to a square (or rectangular) wave.

SCHMITT TRIGGER

This circuit, commonly known as a Schmitt trigger, is a two stage amplifier with positive feedback via R5, this resistor being common to both TR1 and TR2. It has two stable states: TR1 conducting and TR2 off, and TR1 off with TR2 conducting—depending on the amplitude of the input. Due to the positive feedback the circuit switches rapidly from one state to the other, and can be used to produce a square or rectangular wave.

If TR1 is non-conducting, the base of TR2 is biased via R1, R2, and R3 at about +6.8V, and the emitter of TR1 and TR2 will be at +6.2V (0.6V base-emitter drop for silicon), so that for TR1 to be off (as was assumed) the input must be less than +6.2V. As the input approaches 6.2V a critical voltage is reached where TR1 begins to conduct, and positive feedback brings TR1 on rapidly and cuts TR2 off, so that a good rise time is achieved. If the input is now lowered below a similar critical value TR2 will conduct and TR1 will be cut off.

Fig. 1. The basic Schmitt trigger circuit

1. Square wave output at 1kHz
2. Square wave output at 100kHz
3. Marker pips at 10kHz
4. Marker pips at 1kHz, showing non-linearity of timebase used to display these pips
THE PRACTICAL CIRCUIT

The practical circuit has several additions, as will be seen by reference to Fig. 2. The 220 kilohm resistor R1 is used to bias TR1 on, and the signal cuts TR1 off. The addition of the two diodes D1, D2 prevents the base-emitter junction of TR1 from being reverse biased. (Transistors such as the OC71 have a reverse rating of about 10V, the much faster 2N2926's have a reverse rating of 5V, and the diodes prevent this from ever being exceeded; when the input falls below the trip voltage the emitter of TR1 is clamped to the base via a diode.)

Using a 6V supply the output achieved with this circuit was 1V peak to peak, for a 12V supply it was 2.5V peak to peak, and for a 15V supply it was 3V peak to peak. The results tabulated below and shown graphically in the photographs are for a .12V supply.

PERFORMANCE
Input impedance 2 kilohm
Input (for square-wave output) 1.5V pp sinewave at 1kHz
2V pp sinewave at 100kHz
Output 2.5V pp square wave
Rise time less than 1μs

The first photograph 1 shows the output at 1kHz. On this scale the rise time of 1μs is so fast that the vertical edges do not photograph. The second photograph shows the output at 100kHz. Here the rise and fall times are clearly visible (but the square wave is reasonably good, an amplifier of 300kHz bandwidth would noticeably degrade these edges!)

DIFFERENTIATING CIRCUIT
By adding a differentiating circuit as shown in the right hand portion of Fig. 2, this unit can be used to provide a variable time calibration for an oscilloscope.

For a 1kHz input this differentiator would give pips every 1ms. In use the pips would be displayed, and the oscilloscope time base varied to give a convenient calibration on a graticule (say, 1ms per cm). If the pips were removed and a signal displayed, time intervals could easily be measured. Those fortunate enough to own a double beam oscilloscope can of course display both signal and marker pips simultaneously.

The time constant chosen for the pips is a compromise; at 10kHz (photo 3) the pips are easily seen, but at 1kHz (photo 4) the pips are very narrow compared with the interval. Photo 4 actually shows the poor timebase linearity of a simple oscilloscope (not the one used to take the other photo's!); the timebase is slightly cramped at the start and appreciably cramped at the end.

If the add-on circuit is used for markers it should be connected via a switch as shown in the diagrams since it loads the square wave and degrades its edges.

COMPONENTS

Resistors
R1 220kΩ
R2 3.3kΩ
R3 1.8kΩ
R4 6.8kΩ
R5 2.2kΩ
R6 5.6kΩ
R7 10kΩ
R8 10kΩ
All ±10%, ±W carbon

Capacitors
C1 10μF elect. 20V
C2 10μF elect. 20V
C3 1,000pF ceramic or paper

Transistors
TR1, 2 2N2926 yellow or green spot (2 off)

Diodes
D1, 3 OA81 (3 off)

Sockets
SK1-3 Coaxial socket (3 off)

Switch
S1 Single pole changeover, small slide type

Miscellaneous
Battery, 12V. Veroboard. Diecast box 4in x 2.5in x 1in. Two feed-through terminals. Spacers, screws and nuts, insulating material.

Fig. 2. Circuit diagram of the complete sine to square wave converter
The Melguard Safermatic consists of an electrical device housed in a small metal box 4" x 2" x 1", which has been designed and developed to provide protection required by the average motorist at an economic cost. Using this system, the alarm and the immobilised condition is set automatically as soon as you park the car. Should you leave the key in the ignition, no one but you can drive the car away. Upon operating the vehicle the method of starting the car is by switching on the ignition, depressing two hidden switches and simultaneously operating the starter.

Location of the switches is known only to you. Should the alarm be set off it can be stopped by following the normal starting procedure. For 12V operation. List price 79/- our price 29/6 plus 2/6 P. & P. Full easy-to-follow instructions supplied.

3 to 4 WATT AMPLIFIER

Extractor | Fan
A.C. Mains 230/240v complete with pull switch. Size 6" x 6" x 4". Price 27/6 plus 5/- P. & P.

BSR Monarch UAI6 With Full-Fl Head

4-speed, plays 10 records, 12in., 10in. or 7in. at 16, 33, 45 or 78 r.p.m. Interchangeable bases, 41in. below baseboard 24in. Fitted with Full-Fltuner-over crystal head. £19.4.6. P. & P. 9/-.

Star SR 150 Communication Receiver

New! Dorset Transistor Portable Radio

Plus Baby Alarm Facilities

Completely modulated high quality portable radio featuring complementary N.P.N. and P.N.P. output stages. The comprehensive easy-to-follow drawings supplied make this the easiest-ever transistor radio set of parts, with the following features:

- Simple connections to only 6 tags on the R.F. I.F. module. 3 I.F. stages, osc. out, and 3 transistor stages with their associated components are completely wired.
- Only 4 connections on the A.F. module to complete the 4 transistor 600-milliwatt solid state amplifier.
- Pre-aligned R.F. I.F. module built and tested.
- A.F. module built and tested.
- Intermediate Frequency 470 Kc/s.
- Sensitivity: M.W. at 1 Mc/s: 10 microvolts plus or minus 3db. L.W. at 100 Kc/s: 50 microvolts plus or minus 4db.
- High Q internal ferrite rod aerial on both wavebands.

First Quality P.V.C. Tape

Features NPN and PNP Complementary Symmetrical Output Stages. The elimination of transistors ensures maximum efficiency and frequency response. Combined AC/DC feed back. Class B output stage, i.e. output power is proportional to total current consumption, this ensures long battery life. Under no signal conditions (10 current drain is approx. 12mA at 9 volts (4mA in the output pair). Printed circuit construction, size: 21/2" long, 6" x 5" Speaker to suit. Output transformer investigated. Price 11/- P. & P. Only £4.4.0.

R & TV Components (Acton) Ltd.

Radio and T.V. Components (Acton) Ltd.
21 High Street, Acton, W.3
Shop hours 9 a.m. to 6 p.m. Early closing Wednesday. Goods not despatched outside U.K. All enquiries stamped addressed envelope.

Also at 312 Edgeware Road, London, W.2. Personal shoppers only. All orders by post must be sent to our Acton address.

Antithief Car Burglar Alarm

The Melgaard Safermatic consists of an electrical device housed in a small metal box 4" x 2" x 1", which has been designed and developed to provide protection required by the average motorist at an economic cost. Using this system, the alarm and the immobilised condition is set automatically as soon as you park the car. Should you leave the key in the ignition, no one but you can drive the car away. Upon operating the vehicle the method of starting the car is by switching on the ignition, depressing two hidden switches and simultaneously operating the starter.

Location of the switches is known only to you. Should the alarm be set off it can be stopped by following the normal starting procedure. For 12V operation. List price 79/- our price 29/6 plus 2/6 P. & P. Full easy-to-follow instructions supplied.

Special Offer

Elegant Seven

Elegant Seven

Special Offer, Power supply kit to purchasers of 'Elegant Seven' parts, incorporating mains transformer, rectifier and smoothing condenser, A.C. mains 200/250 volts. Output 5v. 100 mA. 9/6 extra.

Buy yourself an easy to build 7 transistor radio and save at least 10/5.0. Now you can build this signal amplifier set yourself. Built and tested. Price £3.10.0. Full instruction manual included.

600mW Solid State 4-Transistor Amplifier

Features NPN and PNP Complementary Symmetrical Output Stages. The elimination of transistors ensures maximum efficiency and frequency response. Combined AC/DC feed back. Class B output stage, i.e. output power is proportional to total current consumption, this ensures long battery life. Under no signal conditions (10 current drain is approx. 12mA at 9 volts (4mA in the output pair). Printed circuit construction, size: 21/2" long, 6" x 5" Speaker to suit. Output transformer investigated. Price 11/- P. & P. Only £4.4.0.

8-Watt 4-Valve Push-Pull Amplifier & Metal Rectifier

Size 9" x 6" x 11". A.C. Mains, 200/250 v. 4 valves. For use with Std. or L.P. records, musical instruments. All makes of pick-ups and mice. Output 8 watts at 5 per cent of total distortion. Separate bass and treble in control. Two inputs, with controls for gram. and mice. Output transformer tapped for 3 and 15 ohm speech coils. Built and tested. Price 14/- plus 1/- P. & P. Crystal Mike to suit 12/- plus 1/- P. & P.

Transistorised Signal Generator

Size 5¼" x 3¼" x 1½". For IF and RF alignment and AF output, 700 c/s frequency coverage 460 Kc/s to 2 Mc/s suitable for all listening frequencies. Ideal for alignment to our Elegant Seven and Musetie. Built and tested. Price 39/6. P. & P. 3/-.
BARGAIN OPPORTUNITIES

TRS MULLARD AMPLIFIERS

STEREO 10-10
Valve amplifier to exact Mullard spec. With pre-amp, tapped op transformer & 3 and 10W, all controls, H.T. and L.T. outlet, mono, stereo and speaker phase-switching. Complete with associated knobs, plugs, etc.

£20.00

5-10 MONO
3 valve, 3W amplifier complete kit. Includes complete circuit kit and panel. £7.100

7 VALVE AM/FM RC REPLACEMENT CHASSIS
A superlative performance instrument for the keenest enthusiasts. Providing tuning on AM, medium and FM wavebands. Excellent sensitivity. £13.19.6

LOWEST PRICES YET ! SEMICONDUCTOR BARGAINS

BRAND NEW—GUARANTEED

ACOS G99 / JSC latest compatible mono transistor cartridge.
Track stereo records.

£25.00

TITAN TAPES
27 HIGHVIEW AVENUE
EDGWARE, MIDDX.

£25.00

GARRARD UNITS & PLINTHS
L6000 Record Player with P.A. Strobe. Brand new as from box. £6.15.0
AT 60 Mk II De-Luxe Auto-changer, direct turntable. £11.19.0
Hi-Fi De-Luxe single record player, direct turntable. £9.19.0

£8.15.0

TRX RADIO COMPONENT SPECIALISTS
Established 1946
70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY
Tel. 01-684 2188. Hours 9 a.m.-6 p.m. 1 p.m. Wednesdays
A few doors from Thornton Heath Stn. (S.R., Victoria section.)
Full details of the construction of this sine to square wave converter appear in Fig. 3, Fig. 4 and Fig. 5. The equipment depicted here relates to the complete circuit given in Fig. 2. It should be noted that the model shown in the photograph is the simpler version, i.e. it does not include the differentiator; thus S1 is omitted and C2 is connected directly between TR2 collector and SK2.

Whichever version is built, it is a good idea to utilise a small diecast box as the housing, as illustrated. The circuit components are mounted on a piece of Veroboard which is prepared according to Fig. 3.

The diecast box is drilled to accommodate the coaxial sockets, switch S1, and feed-through battery supply terminals. Two holes are made in the bottom of the box for the 6 B.A. screws which secure the Veroboard in position (see Fig. 5). It is a wise precaution to cover the bottom of the case interior with a piece of insulating material to ensure complete isolation of case from circuit board and its connections.
nucleonics
for the
EXPERIMENTER

By M. L. Michaelis M.A.

3—ESSENTIAL PARTS OF A NUCLEONIC EQUIPMENT;
RADIATION DETECTORS (GAS IONISATION TYPES)

L ast month we introduced the subject of measuring nuclear radiation in a general way, and pointed out that electronic methods for such measurements can be explained most clearly on the basis of a typical equipment. Fig. 2.1 (last month) showed the complete block diagram of the equipment chosen for this purpose. This equipment, called STRACE, has been designed specially for this series of articles, and experienced readers will be able to construct all or parts of it from the theoretical circuits given in the course of discussions. However, our chief aim is to provide the general reader with a practical introduction to the electronic principles and methods of working with nucleonic equipment, as electronic devices for detecting and measuring nuclear radiation are called.

NUCLEONIC EQUIPMENT

Nuclear radiation is never a continuous stream such as water flowing out of a tap, but rather a series of disjointed and essentially independent events. Each such event is the emission of one or more gamma rays and/or particles from an unstable atom, whereby the emission process may be considered as instantaneous. Furthermore, the unstable atoms (radioactive atoms) do not influence each other in any way. In other words, the decay of a particular atom does not influence the point in time or the nature of the decay of any other atom in any way whatsoever.

Nucleonic equipment consists of three fundamental sections, see Fig. 3.1. The first section is the radiation detector. Its purpose is to produce a brief pulse of electric current in response to the nuclear radiation of interest. Since the decay of radioactive atoms and consequent appearance of nuclear radiation amounts to a random series of isolated events, all radiation detectors produce a random sequence of pulses as output. Random here refers to the time intervals between any two successive pulses, which are quite unpredictable. All that is predictable is a most probable interval, which means that if very many pulses are counted over a very long time (compared to the most probable interval), a more or less constant average rate (pulses per unit time) will be found. This average rate is a measure of the activity of the radioactive sample.

The conventional unit used for stating activities in nucleonics is the curie. One curie (symbol Ci) is the activity of 1 gram of pure radium, and was named after the discoverer of radium. The curie is a measure of the number of disintegrating atoms per unit time, without taking account of the type or energy of the emitted radiations. One curie represents an average rate of \(2 \times 10^{11}\) atoms disintegrating per minute in the sample.

This is a very large, for amateur purposes immediately lethal, activity. It is thus convenient to employ sub-units, the commonest of which are the pico-curie (pCi) and the nano-curie (nCi) for studying small activities, e.g. under amateur and educational conditions.

1 pico-curie (pCi) = \(10^{-12}\) curie = 2.2 atoms/minute decaying on the long-term average
1 nano-curie (nCi) = \(10^{-9}\) curie = 2,200 atoms/minute decaying on the long-term average

Although legislation is not quite clear in all respects, amounts of \(100\) nCi of individual radioactive substances generally represent the maximum quantities which are sold without special permits or precautions. For some substances, much smaller amounts already represent the “free” limit, where the nature of the emitted radiation entails increased biological hazards.

All radioactive substances involved in the course of this series for specific experiments are available in the UK from the Radiochemical Centre, Amersham, Bucks. Schools and legitimated responsible private persons can purchase the materials from this source without special permit for the required amounts, and no further precautions beyond those customary for highly poisonous chemicals are required in storage and use thereof.

RADIATION METER

Whereas the radiation detector, as first section of a nucleonic equipment, supplies a random sequence of individual pulses, the activity registering unit, as third section of the equipment, must indicate or record some steady reading corresponding to the average rate of arrival, i.e. the mean repetition frequency of the pulses.

The radiation meter unit, as second section of the equipment, between the radiation detector and the activity registering unit, must perform the transformation from a random pulse sequence to a “d.c.” output signal corresponding to the average repetition frequency of the pulses. In the simplest case, an ordinary moving coil meter can fulfill both functions, since the inertia of the pointer will give a more or less steady reading on any rapid sequence of
A smoking gun
VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240v. A.C. 50/60- kHz
VARIABLE O.36v.
NEW BRAND NEW 50 AMP
KEENEST PRICES IN THE COUNTRY
ALL TYPES (AND SPARES) FROM 50 AMP.
SHROUDED TYPE
1 amp. £8. 10. 0. 10 amps. £17. 11. 0.
2 amp. £19. 10. 0. 15 amps. £22. 0. 0.
3 amp. £23. 10. 0. 20 amps. £23. 10. 0.
4 amp. £26. 5. 0. 50 amps. £65. 5. 0.
PORTABLE TYPE
1.5 amp. portable fitted metal case.
Miniature iron 50 watt. Attractive metal case.
Input 185-250 v. A.C. Output 185-250 v. A.C.
 Capacitance 250 watt. Attractor metal case. Fitted red signal lamp.
Rubber feet. Weight 17 lbs. Price £11. 10. 0.
PORTABLE TYPE
£8. 10. 0.

LIGHT SENSITIVE SWITCH
Kit of parts, including ORP12 Cadmium Selenide Photo-cell, Relay, Transistor and Circuit, etc.
Volts D.C. 35 volts to 250 volt. ORP 12 including circuit.
10/4 each, plus 1/2 P. & P.
A.C. MAINS MODEL
Incorporates mains transformer, Rectifier and special relay with 3 amp mains c/o contacts.
Price inc. circuit 47/6 plus 2/6 P. & P.

SOURCE AND PHOTO
Compact Heavy Duty 6v. D.C. Relay.
Price £18. 0. P. & P.

NEW TRANSFORMERS
VARIABLE 0-260 Volts
45 turn.
Precision engineered.
PRICE £3. 3. 0.

call

SERVICE TRADING CO

All Mail Orders—Also Callers—Ample Parking Space
57 BRIDGAM ROAD, LONDON, W.4 Phone 995 1560
SHOWROOM NOW OPEN
Personal callers only
9 LITTLE NEWPORT ST., LONDON, W.2. Tel. GER 0576

SUPPLIERS OF ELECTRONIC EQUIPMENT TO . . .

Our New 1967/8 illustrated catalogue NOW AVAILABLE
(Send 2/- in stamps for your copy)

Includes: Valves, Transistors, Transformers; Loudspeakers, Recording Tape, Coils, Resistors, Condensers, Potentiometers, Chassis, Rectifiers, Test Meters, Microphones, Tools, Solder, etc.

DISTRIBUTORS OF EAGLE PRODUCTS WHOSE NEW ENLARGED CATALOGUE
is now available 5/-
The need to devise more refined radiation meter units, which provide a true "d.c." output, arises from the fact that we have to deal with rather slow pulse sequences in many cases. Intervals between successive pulses may be several seconds, or even hours in extreme cases. A better "storage" device than the sluggishness of a meter pointer is then obviously required. However, it is quite clear that any radiation meter unit is essentially a frequency meter.

The problems are twofold in this special case: firstly very low frequencies (down to small fractions of 1Hz) have to be dealt with, and secondly, the momentary frequency is quite irregular. The second problem is by far the more serious one. If the mean pulse rate is, say, 1Hz, pairs of pulses may appear at much shorter intervals. A frequency meter suitable for steady oscillator frequencies up to 1Hz, is thus quite unsuitable for determining the mean rate of random pulse sequences up to 1Hz. The steady-frequency resolution limit must be many times greater than the highest desired random pulse frequency measurement, otherwise missed pairs of rapidly consecutive pulses will lead to intolerable errors. It is possible to make quite good arithmetical corrections here, but it is always better to avoid the source of error by designing the radiation meter unit with adequate time interval resolution for the envisaged measurements.

ANALOGUE AND DIGITAL METHODS

The transformation from a random pulse input sequence to a "d.c." output reading corresponding to the mean pulse frequency, can be effected by two inherently different means. These are the analogue method and the digital method, a duality of possibilities for almost any basic computer function.

The digital method (Fig. 3.2) is theoretically the simpler, since it merely amounts to numerical counting of the individual pulses for a definite time determined by some form of stopclock. Each pulse from the radiation detector, after suitable amplification, is made to advance a cyclometer-type digital counter mechanism by one unit. The total number of clocked-up pulses must subsequently be divided by the time of running, to obtain the final activity reading. This method of working is clearly the more advantageous, the smaller the mean pulse frequencies involved. For fast pulse rates, i.e. greater than 25 to 100Hz, mechanical counting mechanisms fail to respond sufficiently rapidly. It is then necessary to resort to digital electronic techniques, at least for pre-division of the pulse sequences (called *scaling*), and ultimately for the digital displays and registers themselves. This rapidly leads to extensive equipment, a disadvantage of digital methods.

The analogue method (Fig. 3.3), here also known as the Ratemeter method, leads to a true d.c. output signal which can be displayed directly on a moving coil meter with scale calibrated in activity values. Individual pulses arriving from the radiation detector cause little or no visible change of the meter reading. Instead, each pulse is reshaped electronically to a standard form and then used to pump a definite quantity of electric charge into a large-value leak resistor connected across the same capacitor continuously drains away the accumulated charge.

It is evident that the average voltage established across the capacitor by this process is directly proportional to the mean number of pulses arriving within the so-called integration time. The latter is the time constant, $C \times R$, where C is the capacitance of the capacitor and R is the value of the leak resistor connected across it. The practical difficulty with such equipment lies in the design of circuits with adequately large C/R-values for very slow pulse rates.

The ratemeter circuit is evidently the more elegant in design and performance, the faster the pulse rates to be measured, since then quite small values of C and R suffice. We saw that the digital counter method suffers increasing economic drawbacks just here. The ratemeter is thus favoured for measuring medium and high activities, and there has the advantage of simplicity and direct-reading. But its accuracy becomes increasingly poorer relative to the digital method, as still higher pulse rates are involved. This is because a moving coil meter can be read to an accuracy of little better than 1 per cent, whereas the read-off accuracy of a digital counter is theoretically unlimited, e.g. it is already 0.1 per cent when a thousand pulses have been clocked-up. For this reason, professional equipment makes extensive use of complex digital counting equipment for measuring fast pulse rates, in spite of the apparent suitability of a ratemeter on superficial considerations.

At the other extreme, the ratemeter is definitely ineffective for dealing with very low pulse rates, e.g. where only a few pulses arrive per hour, as is the case in some professional studies of low alpha-activities. A digital counter is then eminently suitable and can be very simple for such low pulse rates, since only a conventional amplifier is required between the radiation detector and an electromechanical counting mechanism.

Summing up, we thus see that the ratemeter is preferable for all except the lowest counting rates, provided that no great demands are placed on read-off accuracy. If high demands are placed on read-off accuracy, the digital counter method is always essential, and it is the only practicable method for extremely low counting rates. These considerations make it quite clear that a general-purpose amateur nucleonic equipment should be designed around the ratemeter principle, as our STRACE equipment is. Nevertheless, we shall have recourse to amateur digital circuits in the course of this series, and will of course mention professional digital techniques at the appropriate points.
RADIATION DETECTORS

All radiation detectors are based on the exploitation of ionisation produced when nuclear radiation is absorbed by matter. Each radiation particle or quantum of gamma radiation dissipates its kinetic energy by dislodging electrons in the structure of the matter absorbing it. The absorbing matter may thereby be a gas, a liquid or a solid. It is convenient to consider radiation detectors according to this classification. A second parallel classification is concerned with the manner in which the ionisation is made to produce an electric current pulse, or some other effect.

THE GEIGER-MÜLLER TUBE

The gas-ionisation group of radiation detectors includes the most familiar device for detecting nuclear radiation, the Geiger-Müller counter tube, often simply referred to as a Geiger counter or G.M. tube.

The G.M. tube is a gas-filled diode with more or less cylindrical cathode surrounding a coaxial thin-wire anode, see Fig. 3.4a. The applied voltage is just not sufficient to cause a permanent discharge, but a temporary discharge immediately takes place when triggered-off by ionisation from a quantum or particle of nuclear radiation entering the active volume of gas between the cathode and anode. Two effects then quench the discharge again very rapidly. The first quenching effect is the large voltage drop at the anode as soon as discharge current flows, reducing the voltage across the tube below the level required to sustain a discharge.

The second quenching effect results from the inclusion of heavy or complex molecules in the gas filling, either as a principal component (e.g. chlorine in so-called halogen G.M. tubes) or as admixture (e.g. alcohol vapour in argon-filled G.M. tubes). As soon as the electric discharge has built-up in the tube, the heavy vapour molecules are set spinning and vibrating instead of undergoing only ionisation. This removes energy from the ionisation process, so that the discharge can no longer be sustained.

This gas quenching effect is the more important one in modern G.M. counter tubes, and usually is able to quench the discharge even if the electrodes are connected directly to a low-impedance power supply, when the discharge no longer makes the tube voltage drop. However, G.M. tubes should never be operated in this manner, but always via large anode or cathode load resistors of several megohms. Unless otherwise specified by the makers, the total load resistance should be about 1 megohm per hundred volts of applied e.h.t. potential.

THE IONISATION CHAMBER

Two further gas-ionisation radiation detectors closely related to the G.M. tube are the ionisation chamber and the proportional counter.

Apart from differences in structural detail for practical versions, the only difference in principle lies in the lower applied voltage, see Fig. 3.4b. The ionisation produced by an absorbed particle or quantum of nuclear radiation is then unable to set off a full-scale discharge. When used as ionisation chamber, only a very small voltage (usually under 100 volts) is applied between the electrodes. This achieves no more than drawing-off the primary ionisation produced by the absorbed nuclear radiation.
MERRY CHRISTMAS

THE E.A.R. RECORD PLAYER CABINET

Superbly built by craftsmen of either Blue or Grey leathercloth both 15" x 15" x 7" ready cut out for M.R. Monarch DA 12/14/15/19/23 deck. Gilt brass handles. A.R. P. 11/2 or 11/3. Reducing space from 3 x 7", is completely enclosed. The handle board is cut out for 11/4. Tie 195/6 x 197/6.

PAPER TUBES

500-0.1, 0.05, 0.022, 0.047, 0.1, 0.22, 0.47, 0.5
1500-0.001, 0.005, 0.007, 0.01, 0.015, 0.022, 0.047
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

HIGH STABILITY, HIGH SENSITIVITY, LARGE \(\pm 0.002 \) TUNING, 9/6 to 10/6, 10 in.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.

NEW TUBULAR ELEKTROFISH CAN TYPES

325 v. 0.1, 0.2, 0.22, 0.3, 0.47, 0.5, 0.6, 0.8
1500-0.001, 0.002, 0.007, 0.01, 0.022, 0.047, 0.06
10000-0.002. These tubes have 1000 special watt load capacity, with 1 ft. output.
Armstrong
high fidelity sound

series 27
TUNER-AMPLIFIERS
for the
BUDGET SYSTEM

127 STEREO TUNER-AMPLIFIER (illustrated) £40.1.6
127M MONO TUNER-AMPLIFIER £29.18.9
227M MONO TUNER-AMPLIFIER £40.1.6
OPTIONAL CASE, teak and vinyl hide £3.15.9

Three tuner-amplifiers, identical in size and similar in styling, each with the same high performance AM-FM Tuner incorporated. The 227M provides 10 watts power output whilst the 127M, with 5 watts output, is designed for those whose power requirements are more modest. The 127 is the stereo version of 127M, having two amplifiers, each of 5 watts output. All three have similar facilities; pick-up and tape inputs, tape recording output, bass and treble tone controls.

For full details and technical specifications of all models, including the new series 400, plus list of stockists, post coupon or write mentioning 1PE68.

ARMSTRONG AUDIO LTD., WARLTERS ROAD, N.7
Telephone 01-607 3213

THREE HEADS ARE BETTER THAN TWO...
Two amplifiers are better than one...

WYNSOR RECORDING CO. LTD. (Dept. PE12)

SOLDERING?
— you need the Antex
SOLDERING TOOL KIT

- Model CN240 15W Precision Iron with 3/16" bit.
- Two spare Interchangeable Bits (3/32" and 1/8")
- Reel of Solder
- Heat Sink
- Cleaning Pad
- PLUS 36-page booklet on "How-to-Solder"

British made. From The Army & Navy Stores, Harrods, and Radio Shops, or if unobtainable locally, direct from:

ANTEX LTD
GROSVENOR HSE • CROYDON • CR910E
Telephone: 01-686 2774

Name
Address

1PE68.
The resulting electric current will then be strictly proportional to the energy of the absorbed radiation, because this energy determines the number of gas atoms or molecules which the radiation particle can ionise before coming to rest. Ionisation chambers are thus useful for measuring particle energies as well as total activities.

A G.M. tube can measure only activities directly, since the current pulses it produces are all identical; a particle either causes a pulse or does not cause a pulse. The amplitude of the pulses produced by the ionisation current is, on the other hand, proportional to the particle energy. But it is extremely small, lying in the microvolt or millivolt range, so that very sensitive amplifiers and amplitude discriminators are required. On the other hand, very large volumes of gas can be employed without technical difficulties, so that radiations with a long range can be completely absorbed within the inter-electrode volume. Hence the term ionisation chamber. Sizes up to many gallons are common in professional ionisation chambers.

THE PROPORTIONAL COUNTER

The proportional counter is intermediate in size and function between the ionisation chamber and the G.M. tube, and the applied voltage also lies intermediate, at one or several hundred volts. In this voltage range, primary ionisation produced by the radiation absorbed in the gas volume are accelerated on their way to the electrodes, producing secondary ionisation by collision with further gas molecules on the way.

The total anode current in the resulting pulse is thus much greater than for an ionisation chamber, but still requires considerable amplification in critical circuits. Proportionality is preserved between pulse amplitude and particle energy, because each primary ion produces a definite mean number of secondary ions, determined solely by the applied voltage.

G.M. TUBE OPERATION

Between the voltage range for proportional counter operation and the G.M. tube range, lies an indefinite region which is of little practical use. Above the G.M. threshold voltage, all particles entering the tube produce a large discharge pulse of fixed amplitude and duration, independent of the particle energy within the range known as the Geiger-Müller plateau. The upper limit of this plateau is the voltage at which a permanently sustained discharge is established in the tube, and the applied voltage also lies intermediate, at one or several hundred volts. This discharges the stray capacitance across the anode or cathode load resistor, due to the current from the e.h.t. supply which immediately commences to recharge the stray capacitance. The voltage across the load resistor then drops exponentially as the recharge process proceeds, see Fig. 3.4c.

The time constant is thereby usually 30 to 100 microseconds (stray capacitance several pF, load resistance several megarhms). This means that the G.M. tube cannot work faster than about 10kHz, which is a serious limitation in professional work. There is no advantage gained in working with smaller load resistors, because the so-called dead time of the tube is also about 60 microseconds. It is the time taken for the quenching and de-ionisation process to be completed, and the sensitivity of the tube for a new particle to be restored.

The discharge of the stray capacitance at the start of the pulse takes place approximately down to the threshold voltage so that the pulse amplitude is usually about 25 volts, a value which is easily handled by simple electronic circuits.

Next month: Other types of radiation detectors.

DETERMINING VOLTAGE AMPLIFICATION

continued from page 54

Similarly, if the load resistor should be of only medium value, but working into a succeeding stage of medium impedance, the normal formula for two resistors in parallel should be substituted for R_L only to obtain greater accuracy.

Of course, R_L need not necessarily be a resistor. It could be an a.f. choke, whose value would be determined by ωL at an average frequency handled, usually 400Hz, or the primary of an unloaded interstage transformer which would also multiply the usual stage gain by its turns ratio.

As the impedance of a choke or untuned transformer primary winding is electrically at 90 degrees out of phase to the valve impedance, the formula must be altered so that they can be correctly related to each other so that A becomes

$$A = \frac{Z}{\sqrt{\left(r_a^2 + Z^2\right)}}$$

With a tuned circuit or transformer at resonance, its impedance or dynamic resistance L/C^2 behaves as a pure resistance and this figure merely replaces R_L in the formula.

FEEDBACK

Naturally, this and all other formulae presupposes that there is no negative feedback present in the stage which means that the cathode bias resistor must be effectively bypassed.

If no bypass capacitor is present the formula for stage gain then becomes

$$A = \frac{\mu R_L}{\left(\mu + 1\right) \times R_a + R_L + r_a}$$

Resolving this for the example already computed with a bypass capacitor shows a big decrease in gain.

ANODE LOAD

As well as being able to compute what the stage gain is, it is also convenient to decide what value of anode load resistor should be employed with any specified valve to obtain the exact degree of amplification required.

The static μ of the valve must naturally be comfortably in excess of that required to prevent the use of very high value resistors, which might bring the working point of the valve off the straight part of the I_0/V_k characteristic, and limit the grid input swing.

The formula is

$$R_L = \frac{A \times r_a}{\mu - A}$$

Thus, if it is required to obtain an amplification of just 20 from the same ECC40 triode, whose static μ is 30, the load resistor should be,

$$R_L = \frac{20 \times 11}{30 - 20} = \frac{220}{10} = 22 \text{ kilohms}$$

An application of 0.2V to such a one-valve amplifier would therefore produce an a.c. voltage of 0.2 \times 20 = 4V across the anode load resistor.

With these two simple formulae therefore it is an easy matter to compute and arrange for any required degree of amplification.

★

69
TO SELRAY BOOK CO.

60 HAYES HILL, HAYES, BROMLEY, KENT

Please send me Without Obligation to Purchase, one of the above sets on 7 Days Free Trial. I will either return set, carriage paid, in good condition within 7 days or send the following amounts. Basic Electricity 70/- Cash price or Down Payment of 15/- followed by 5 fortnightly payments of 15/- each. Basic Electronics 82/- Cash Price or Down Payment of 15/- followed by 5 fortnightly payments of 15/- each. This offer applies to U.K. only. Overseas customers cash with order.

Tick set required (only ONE set allowed on free trial)

BASIC ELECTRICITY (5 Vols)

BASIC ELECTRONICS (6 Vols)

ELECTRONIC CIRCUITS (2 Vols)

INDUSTRIAL ELECTRICITY (2 Vols)

SYNCHRO & SERVOMECHANISMS (2 Vols)

The New 'Picture - Book' way of learning

The books are based on the latest research into simplified learning techniques. This has proved that the Pictorial Approach to learning is the quickest and soundest way of gaining mastery over these subjects.

“Times” Educational Review says: The volume can be thoroughly recommended as a training and revision course for T.V engineers

—NOW READY—

BASIC TELEVISION Pt. 1.

Price 22/- inc. postage.

Complete in two parts, publication date of Pt. 2 to be announced later. Available on 7 days free trial, see coupon.
CIRCULAR FLUORESCENT

Bring sunshine into your house. 120W of light but only 6 to 8W. Reusable fittings with glass, non-plastic, fluorescent tube and choke control. Regular price £1.55. Special 10p.

CASSETTE LOADED DICTATING MACHINE

Battery operated and with earphones. Regally fantastic offer, a British made, precision styled for speed and efficiency. Complete with microphone. Cassette tapes normal speed drops in and out for easy handling—all normal functions—accessories include stetho -scopic ear-phones—cylindrical microphone. Cassette supply telephone pickup.

DRILL CONTROLLER

Electrically changes speed from approximately 10 to rev. in minute. Full power at all speeds by fingertip control. Kit includes all parts, case, every thing and full instructions. 10/- each. Postage and insurance. Available made up 320.

CUTTER

250W TRANSISTOR AMPLIFIER includes two in plus-pull output. 24/- post and insurance. 10/- each. Postage and insurance. Available made up 320.

PHOTO ELECTRIC CONTROL SYSTEM

Comprises a light source unit with option Red filter and lens system to house the light. Also a photoelectric relay control unit. Both are housed in a case for bench or wall mounting. Normally used for control of a sensitivity control as a switch.

SPECIAL BARGAINS

50 OHM 50 WATT WIRE WOUND POT-METER 6/-
17. 6 in.

COIL TIMER

5 Ohm - BARGAIN. Bargain. A 30 sec. timer with adjustable on. 17. 6 in.

MAGNETIC SWITCH

1000A single pole. Twin 24/- a pair.

THERMAL RELAY

250A. Twin 24/- a pair.

SHEET PAXOLIN

Selected for transistor bridge. 12 in. 24/- each.

TRANSISTOR

FERRITE SLAB AERIAL with wind and Bovaird wave coils. 2/6 each.

TUBULAR HEATERS

New and inside made by L. E. C. rated at 60W per ft. These are ideal in airing cupboards, wardrobes, offices, stores, etc., containing no paper or wood, tough without fear of warping. Suitable complete with fixing brackets and radial spot light fitting. 8 ft. £1.25; 12 ft. £2.50.

TUBULAR HEATERS

EDGEDOWN CONTROL, Magnetics, at fitted many transistor sets. 24/- each.

TUBULAR HEATERS

EDGEDOWN CONTROL, Magnetics, at fitted many transistor sets. 24/- each.

TUBULAR HEATERS

May be used for operating a 25W fluorescent tube, also 6in long 11/9. 40/10/- Post and insurance 2/-.

GRAPHIC MOTOR SNIP

3 speed, gram. motor with lightweight pickup -up, electronic parts. £1.10. Pull switch for battery or mains. 10/- each. Postage and insurance 3/-.

NO SOLDERING

Quick Cuppa. Mini improvement, £0.6. Boils full cup in about two minutes. A key to get or wire holder. Have at bedside for tea, baby etc. 1.28, post and insurance 1.75.

MULTI-RANGE TEST METER

1000 OPV. For checking car, electric, radio, TV, ignition systems, household lighting, etc. Precision, 10/- for lamp holder. Have at bedside for tea, baby etc. 1.28, post and insurance 1.75.

OZONE AIR CONDITIONER

For removing all the minute dust particles. Uses Philips ozone lamp and mains unit. Lamps are easily replaceable. 25/- plus 6/- cash and lreg.

ADVERTISEMENTS

Where postage is not definitely stated as an extra then orders over £3 are post free. Below 40/- add 1/- for postage. Over 1/- post free. SAE with enquiries please.
Practical Electronics Classified Advertisements

TAPE RECORDERS, TAPES, ETC.

TAPERS TO DISC—using finest professional equipment—45 r.p.m. £10, s.a.e. leaflet. DERBY, High Bank, Hawk Street, Garforth, Leeds.

20% CASH DISCOUNT on most famous makers of Tape Recorders, Hi-Fi equipment, Cameras, etc. Join England’s largest Mail Order Club now and enjoy the advantages of bulk buying. Send 5/- for membership card, catalogues, price lists and ask for quotation on any item. C.B.A. (Dept. A1S), 370 St. Alban’s Road, Watford, Herts.

RATES: 1/3 per word (minimum 12 words). Box No. 1/6 extra. Advertisements must be prepaid and addressed to Advertisement Manager, “Practical Electronics” 15/17 Long Acre, London, W.C.2

MISCELLANEOUS (continued)

EDUCATIONAL (continued)

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 125K), Aldermaston, Berks.

TELEVISION SERVICING

RADIO TELEGRAPHY

RADAR MAINTENANCE

Full and Part-day Training Courses

Apply:—Director, British School of Telegraphy, 20 Penywern Road, Earls Court, London, S.W.5

STUDY RADIO, TELEVISION AND ELECTRONICS with the world’s largest home study organisation. I.E.E.; City & Guilds; R.T.E.E., etc. Also, practical courses with equipment. No books to buy. Write for FREE Prospectus to ICS (Dept. 577), Intertext House, London, S.W.31.

CITY AND COUNTY OF BRISTOL
BRISTOL TECHNICAL COLLEGE

CAREERS IN RADIO AND RADAR

Marine Radio Officers
2-year full-time course for young men aged 16, upwards, leading to First and Second Class P.M.G. Certificates and B.O.T. Radar Maintenance Certificate.
Conversion Course (Second Class to First Class).
R.T. Courses (for Full or Restricted Licence).
Marine Electronic Maintenance Engineers Course (for qualified Marine Radio Officers).

Licensed Aircraft Radio Engineers
2-year full-time course for A.R.M.E. Licences, categories A and B, and six months courses for Radar Rating in association with the above.

Training given on the latest types of Marine and Aircraft Equipment in newly equipped Laboratories at

THE SCHOOL OF MARINE RADIO AND RADAR

Senior Lecturer-in-Charge: F. E. Barltrop

For details, write to—

The Registrar, BRISTOL TECHNICAL COLLEGE
ASHLEY DOWN, BRISTOL 7

No. 10 PADDED MOVING COIL HEADPHONES AND MIKE

NEW CONDITION HIGH QUALITY HIGH IMPEDANCE

Bargain 13/- Post Paid
S.A.E. for List of other Bargains

SALES ELECTRONICS
9A GREYFRIARS ROAD, COLEHAM
SHREWSBURY, SHROPSHIRE

ELECTRONIC EQUIPMENT to buy, sell, or exchange, visit 21 Buckingham Street, Leicester. A broad selection, including the unusual, i.e. spectrum analysers, polargraph, electronic tube filling machine, decade potentiometer, transformer test set, teleprinter and u.h.f. gear.

EDUCATIONAL

FABRICATIONS, 20 Pennywell Road, Earls Court, London, S.W.5

P.E. (Electrical, Mechanical, Chemical Engineering, Physics, Mathematics, 96-page Handbook, 3/- post paid). 72-74 Desert St., Earls Court, London, S.W.5

MISCELLANEOUS

CITY AND COUNTY OF BRISTOL TECHNICAL COLLEGE

CAREERS IN RADIO AND RADAR

Marine Radio Officers
2-year full-time course for young men aged 16, upwards, leading to First and Second Class P.M.G. Certificates and B.O.T. Radar Maintenance Certificate.
Conversion Course (Second Class to First Class).
R.T. Courses (for Full or Restricted Licence).
Marine Electronic Maintenance Engineers Course (for qualified Marine Radio Officers).

Licensed Aircraft Radio Engineers
2-year full-time course for A.R.M.E. Licences, categories A and B, and six months courses for Radar Rating in association with the above.

Training given on the latest types of Marine and Aircraft Equipment in newly equipped Laboratories at

THE SCHOOL OF MARINE RADIO AND RADAR

Senior Lecturer-in-Charge: F. E. Barltrop

For details, write to—

The Registrar, BRISTOL TECHNICAL COLLEGE
ASHLEY DOWN, BRISTOL 7

FEED UP WITH YOUR PRESENT JOB?
We require a number of junior engineers with drive and initiative:
Circuit design—development and prototype construction, etc.; Electro-mechanical drafting—printed circuit/chassis layouts, etc.; Production line test and inspection engineers; Production line fault finders.
Excellent prospects and full training given, day release considered. Salary up to £1,000 depending on experience and qualifications.
Send full details in writing of experience to date and present salary to:
Solid State Controls Limited
30/40 Dalving Road, London, W.6

TED UP WITH YOUR PRESENT JOB?
We require a number of junior engineers with drive and initiative:
Circuit design—development and prototype construction, etc.; Electro-mechanical drafting—printed circuit/chassis layouts, etc.; Production line test and inspection engineers; Production line fault finders.
Excellent prospects and full training given, day release considered. Salary up to £1,000 depending on experience and qualifications.
Send full details in writing of experience to date and present salary to:
Solid State Controls Limited
30/40 Dalving Road, London, W.6

RADIO TECHNICIANS
A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Chelsea and other parts of the U.K. including London). There are also opportunities for service abroad.

WANTED

TAPE RECORDER bench engineer required for central service department at tape recorder specialist company, situated East London (Upton Park). Some experience in tape recorder servicing essential. Interesting and varied work. 5 day week. MR. WILLIAMS, GHA. 2110.

SERVICE SHEETS

FOR SALE

SERVICE SHEETS

PROSPECTS OF PROMOTION TO GRADUES IN RADIOTELEGRAPHY

First-class opportunities in Radio and Electronics await the I C S trained man. Let I C S train YOU for a well-paid post in this expanding field.

I C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc., Expert coaching for:

- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
- C. & G. TELECOMMUNICATIONS TECHNICIANS' CERTS.
- C. & G. SUPPLEMENTARY STUDIES.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.G. CERTIFICATES IN RADIO TELEGRAPHY.

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter—all under expert guidance.

POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.

INTERNATIONAL CORRESPONDENCE SCHOOLS

INTERNATIONAL CORRESPONDENCE SCHOOLS

First-class opportunities in Radio and Electronics await the I C S trained man. Let I C S train YOU for a well-paid post in this expanding field.

I C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc., Expert coaching for:

- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS.
- C. & G. TELECOMMUNICATIONS TECHNICIANS' CERTS.
- C. & G. SUPPLEMENTARY STUDIES.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.G. CERTIFICATES IN RADIO TELEGRAPHY.

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter—all under expert guidance.

POST THIS COUPON TODAY and find out how I C S can help YOU in your career. Full details of I C S courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES.
FOR SALE

100 PAGE Illustrated Catalogue No. 17 Government and manufacturers' electronic surplus, also new section of latest semiconductors and miniature components. Credit voucher for 2/6 included. Price 3/- post free. ASTH'S. SALLIS LTD., 93 North Road, Brighton.

RECEIVERS AND COMPONENTS

(continued)

SEMICONDUCORS

All Brand New. No Manufacturers' Rejects.

AC22 (Mullard) 3/9, OC71 (Mullard) 3/9.

Mullard diode: OA70, OA81, OA90, OA91 2/- each.

Sabine 1/6, list of orders for mention; C.W.O.

DVD ELECTRONICS

10 The Drive, Newcastle upon Tyne 7.

FET'S MPF101 suitable for 2X3819 applications.

10/- Resistor, jw 3 4.7-5 4.7M 20. Each. Capacitors, rectifiers, etc. S.A.E. price list.

STUDENT ELECTRONIC SERVICES, 104 Regent Road, Salford 5.

RECEIVERS AND COMPONENTS

(continued)

RECONIJO Transit Coils and Transformer. For B.C. Constructor. Send for list.

FACERO EXPERIMENTAL PRODUCTS LTD., 33 Much Park Street, Coventry.

R & R RADIO

51 Burnley Road, Rawtenstall Rosendale, Lancs

Tel.: Rosendale 3152

Battery Valves

Fully Guaranteed

EF90 4/- PCC24 5/- PY33 7/-

EC88 4/- PCF80 5/3 30P19 7/-

EC83 5/1 PB15 5/6 50P15 7/-

EB91 2/- PY51 7/- U191 7/-

EB46 5/- PY800 5/6 U101 7/-

ET96 5/6 PCL85 7/-

Postage: One valve 9d., Two valves 6d. each, Three to Six valves 2d., each, over Six post paid. Speakers ex TV. 5 inch round 3/6, 6 x 4 2 1/2, post 3/-, 8 inch round 4/6, post 4/6 or two for one.

Transistors

150 NEW ASSORTED Capacitors, Resistors Silvered Mica, Ceramic etc. Carbon, Hystab, Vitonite, 1/2 watt 12/6. FREE. WHIT- SAM ELECTRICAL, 18 Woodrow (Box), Perivale, Middlesex.

RESISTORS

3/4 watt carbon film 5%

All preferred values in stock from 10 ohms to 10 megs 2d. each.

Send S.A.E. for free sample

CAPACITORS

Mullard Miniature Metallised Poly-ester P.C. Mounting, all 250V D.C. working. 0.01mf, 0.022mf, 0.047mf, 0.1mf, 0.22mf, all at 6d. each.

Hunts tubular 0-1mf 200v working at 3d. each.

Send 6d. stamp for extensive list of low priced Electronic Components, Instruments and Equipment.

Please include 1/- postaging and packing on all orders under £1

Dept. P.E.6

BRENSAL ELECTRONICS LIMITED

CHARLES STREET, BRISTOL 1

FOR SALE

HARMERIE PATTERN ERASER

160 PAGE Art Materials

MORSE MADE EASY

FACT NOT FICTION. If you start right you will be reading amateur and commercial Morse within a month. Normal progress to be expected.

Using scientifically prepared 3-speed records you automatically learn the code without translating. You can't help it. It's so easy as long as you keep up to the line of work twice a week. For details and course C.O.D. ring T.O. 66-2806 and ask for experimental booklets to:

GEBHS, 46 GREEN LAKE, FULBERT, SURREY

RECEIVERS AND COMPONENTS

TIME SWITCHES. Reconditioned 14-day clock, once on once off every 21 hours. Fully guaranteed. Hirstman 25/- to 15/- per copy. Perivale, Middlesex.

HYSTABS

1% 5% Carbon film low noise 10% tolerance. Stocked 10% to 100% decade only.

Your choice 3d. each, 2 1/2 oz. 17/- 100.

W.E TETC 12 = 32d. 150 V 3/6 each

W.F TETC 500gf = 10 2/- each

C.W.O. P/P 2/- Order. S.A.E. Gen. list.

CALDER RECORDINGS LTD.

Regent St., HERBEND BRIDGE, Yorkshire

VALUE FROM ELECTROVALUE

NEW RESISTORS

1W All values, 5,1 to 330,1 ohms, carbon film low noise, 5% tolerance. 1/100 ohm, 1/4 100 mixed; 13/- 100 of one ohmic value.

1W All values, 470 to 100,000, carbon film low noise, 10% tolerance. 1/100, 1/4 100 mixed; 13/- 100 of one ohmic value.

1W All values, 1 meg to 100 meg, carbon film low noise, 5% tolerance. 1/100, 1/4 100 mixed; 13/- 100 of one ohmic value.

1W All values, 10,000 to 10 mega, carbon film low noise, 5% tolerance. 1/100, 1/4 100 mixed; 13/- 100 of one ohmic value.

1W All values, 2.24 to 1000,000, carbon film low noise, 5% tolerance. 1/100, 1/4 100 mixed; 13/- 100 of one ohmic value.

1W All values, 10,000 to 10 meg, carbon film low noise, 5% tolerance. 1/100, 1/4 100 mixed; 13/- 100 of one ohmic value.

All mixtures are to your specified values. Large quantities stocked.

Quality carbon Skeleton Resistors: 100, 250, 500 g, 1 kg, 2.5 kg, 10 kg, 25 kg, 50 kg, 100 kg, 250 kg, 500 kg, 1 ton.

All resistors have average vertical or horizontal mounting.

Volume controlled: 100 to 5000, 5% tolerance. Large quantities stocked.

10% DISCOUNT OVER £3

Mains noises, round, single hole fixing, 3 1/2 each. 5 Dec 3/6.

NEW TRANSISTORS AND DIODES

Silicon

Silicon low noise, small signal amplifiers C2922 15/- 03/6, C2922 Red 55-110 3/3 High reliability type, made in U.S.A.

C2922 Orange 90-180 3/3 Equiv. to the popular 2N2926 series.

C2922 Yellow 150-300 3/3 Higher power rating, smart appearance.

C2925 2J5-47/9-4

Low noise, high gain 3N228, 3N307, 3N297, 3N298, 3N309. 3/6 to 2/-

General purpose high gain NPN: BC107 2J5, 2N3904 2J5-3, 303, 3N395, BF195 7/- BF585 7/6

High Power Output: 2N3054 5/- 2N3055 5/- 4045 1/-

High Power outputs: 2N3059 3J5 2N3059 3J5 4J5 2N3940 4/- BF245 7/- BF260 7/-

Field effect transistor: MPF501 10/- (equivalent to 2N3819).

Germanium

Lamptron AF NPN: NKT236 3/- 2C108 3/- 2C109 3/-

General purpose switching NPN: ACY17 3/- ACY18 5/- ACY19 5/-

ACY20 6/- ACY21 6/- ACY22 6/-

High Power NPN: NKT401 15/- NKT403 15/- NKT405 15/- NKT406 15/-

High Power Complementary matched pair: AD161/AD162 3/- pair.

Complementary matched driver pair: 2N2926 GREEN 4/-; 2N697 3/-, 2N706 3/-.

NPN: ACY17 3/- ACY18 5/- ACY19 5/-

Fast Service

10% DISCOUNT OVER £3 Data supplied

ELECTROVALUE, 6 Mansfield Place, Ascot, Berkshire
PURE SOLID STATE HIGH FIDELITY MODULES

SPA1. Silicon mono-stereo preamplifier. Inputs for magnetic/ceramic cartridges. Aux/tuner/tape, etc. Supplied tested on 0C139 5W. THD 0.8%. 25W RMS/8. £25.00.

A new concept in amplifier design. Pure comp. silicon units on edge connected printed circuits and heat sink. 6in x 2in. Overall height 6in. SWP. 5W RMS/8. F.R. 20-20KHz at 4W. THD 0.8%. 500mV 1/2 33K (L). 15W. 0C44. 0C45.

FMF4. Field Effect Transistor Front End Version. SWP. As above but 150mV/2K1. 0c19.6.

All modules are Guaranteed for twelve months. Mail back for free.

Power Supplies. SW. £10.00. 10W. £15.00. 25W. £20.00. tuner or decoder. £2.25. Guaranteed Transistors.

BRAND NEW TRANSISTORS

OC28 5/ 0C29 1/10 0C30 8/ 0C31 8/ 0C32 2/3 0C33 8/ 10W. 15W.

Module P. & P. 3/- extra Trans. P. & P. 9d. extra

Lists 9d. stamps

C.W.O. Airmail extra
RECEIVERS AND COMPONENTS (continued)

DUXFORD ELECTRONICS (PE) DUXFORD, CAMBS.
C.W.O. P & P. 1/- Minimum order value 5/-.
Trade enquiries invited.

RECEIVERS AND COMPONENTS (continued)

COMPONENTS

RECORDING TAPES

SEMICONDUCOR BARGAINS

SEMI-CONDUCTORS (ALL NEW) 0A5, 0A81, 0A82.

SEMI-CONDUCOR BARGAINS

SEMI-CONDUCOR BARGAINS

SEMINARUNG INSTRUMENTS LTD., Island Farm Avenue, West Moseley, Surrey

JOHN'S RADIO (Dept. B) OLD COOP. WHITWELL ROAD, DISBURG, DONCASTER. Phone: 2139.

FAMOUS ARMY SHOT-WAVE TRANSCEIVER NE. III

This is a modern self-contained tunable V.H.F. low powered frequency modulated transceiver for V.H.F. communications, or as a complete V.H.F. receiver. Made for the Ministry of Supply at an extremely high cost by well known British constructors. It has a 3-stage midget R.F. valve, receiver incorporating B.F. amplifier. Simple and ready to use, the 3-stage receiver tuning tone with the dial calibrated in 40 channels each 500 kc apart. The frequency covered is 29-48 Mc. Also has built-in Crystal calibrator which gives pins to coil on the tuning dial. Power requirement is 9.5 volts, H.T. 100 volts, tapped at 90 volts for receiver. Each set supplied complete with double stable Crystals and all necessary equipment. Complete, in canisters, complete with adjustable whip aerial and circuit. Price 44/18, carriage 15/.-. Headset or hand telephone 60/-. Internal power unit stabilised for 200/300 A.C. input. 60/0. extra.

C. MARSHALL & SON (LONDON) LTD. 28 Cricklewood Broadway, London, N.W.2

RADIO CONTROL RECEIVERS. All new low priced units. Sensitive four trans- aator design. For escapements, relays, lights, motors, etc. Requires only 4.5 V. Size 2in x 11in x 1in, weight 110. Fully guarant

CURSUNS TRANSISTORS ALL GUARANTEED

1/- each

BAY31, BAY50, DK10, OA70, OA80, OA200, OA10, OA91, OA255, IN914, IN916, JL102

2/- each

XA101, XA102, OC71, OC72, OC81, OC81D, OC44, OC45, GET16, FST3/1, ACV22, ASY57

3/- each

OC139, OC140, 2N706, 2N708, 2N894, BY100, RAS310AF, RN914, BSy26, BSy27, BSy95A, AFZ12

7/- each

RAS508AF, CRS3/40, BLY10, BLY11, BY100, BY111, ADY22, ADY23, ADY24, OC22, OC26

B. CURSUNS S.A.E.

76

ZENER DIODES

3-9v to 26v, 3/- each, 1.5w 4/-, 7w 5/- each.

78 BROAD STREET CANTERBURY KENT

110/£.

Send S.A.E. for full catalogue
ELECTRICAL

240 VOLT ELECTRIC POWER FROM YOUR 12 volt or 6 volt CAR BATTERY
Run your mains AC/DC equipment direct from your car battery with this compact low battery consumption dynamo. Size only 5½ in. x 3½ in. Study construction.

Converts a 12 volt input to a 240 volt output. Huge purchase enables us to offer them at only 3½/- each, post and packing 6½. 6½ volt input model only 3½/-, post and packing 6½. Thousands already sold.

GLOBE SCIENTIFIC LTD
24 CAWOODS YARD, MILL STREET
LEEDS 9
Callers welcome

BOOKS AND PUBLICATIONS

SURPLUS HANDBOOKS

19 set Circuit and Notes 4/6 P.P. 6d
1155 set Circuit and Notes 4/6 P.P. 6d
H.R.O. Technical Instructions 3/6 P.P. 6d
38 set Technical Instructions 3/6 P.P. 6d
46 set Working Instructions 3/6 P.P. 6d
88 set Technical Instructions 5/-
BC. 221 Circuit and Notes 3/6 P.P. 6d
Wavemeter Class D Tech. Instr 3/6 P.P. 6d
18 set Circuit and Notes 3/6 P.P. 6d
BC.1000 (31 set) Circuit & Notes 3/6 P.P. 6d
CR.100/B.28 Instruction Manual 15/- P.P. 1/6
62 set Circuit & Notes 1/6 P.P. 6d
52 set Sender & Receiver Circuits 6/-, post free
Circuit Diagrams 3/- each post free.
R.1164/2, R.1224/1, R.1355 P.F. 24, 25, & 76.
A.1134, T.1154, CR.300, BC.342, BC.312,
Resistor colour code indicator, 1/4 P.P. 6d.
S.A.E. with all enquiries please.
Postage rates apply to U.K. only.
Mail order only to:
Instructional Handbook Supplies
Dept. P.E.6
GLOBE SCIENTIFIC LTD
24 CAWOODS YARD, MILL STREET
LEEDS 9
Callers welcome

COCKTAIL/STEREOGRAM CABINET £25

STEREOGRAHAM CABINET

An elegant Stereogram Cabinet in modern Veneered Mahogany and cloth covered Front Panel
BLACK LEATHERETTE SIDE PANELS
Dimensions: 52" x 14½" x 12½" Speaker positions for Twin 10" x 5" Speakers
Polished walnut veneer with elegant glass fronted cocktail compartment, padded. Position for two 10" elliptical speakers. Record storage space. Height 5½", width 52", depth 14½". Legs 1½ in. extra.

OTHER MODELS—SEND FOR LIST

TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE ILLUSTRATED LIST OF TELEVISIONS
17"-19"-21"-23"
WIDE RANGES OF MODELS
SIZES AND PRICES DEMONSTRATIONS DAILY
TWO-YEAR GUARANTEED TUBES 196/7. P.P. 7/6.
14"-16"-17"-18"-19"
EXCHANGE BOWLS. Carr. 10/6

DUKE & CO. (LONDON) LTD.
621/3 ROMFORD ROAD
MANOR PARK, E.12
Phone: 01-478 6001-2-3
Liverpool Street—Manor Park 10 mins. Stamp for Free List.

WENTWORTH RADIO

104 SALISBURY ROAD, HIGH BARNET, HERTS.
Suppliers of High Quality Semiconductors

TAPE RECORDER CABINETS 49/6
Dia. 16" x 12½" x 7½". Red and Green. Cut out for BSR deck. P. & P. 7/6.

TRANSISTOR CASES 19/6.

BAR 3087

SINGLE PLAYER CABINETS 96/6

39' W. CABINETS 49/6

WIDE RANGE OF MODELS

BARGAIN OF THE MONTH
FANTASTIC!
OC72 AT 1/9d
12 OR MORE POST FREE

S.A.E. FOR LIST. CASH WITH ORDER. P. & P. 9d.

HIGH SPEED MAGNETIC COUNTERS (4 x 1 x 1 in.). 4 digits. 12/24/48V. (state which) 8½ each. P. & P. 9d.
COPPER LABRABTE BOAROD (5½ x 2 in.). 8½ each. 5 for 10/-.
RE-GETTABLE HIGH SPEED COUNTER (3½ x 1 in.) 3 digits. 10/5/48V. (state which) 8½/6 each.

BULK COMPONENT OFFERS
100 Capacitors 5µF to 10µF.
250 Carbon Resistors ± ± 1% (Tranistor types).
250 Carbon Resistors ± ± 1%.
100 Ceramic Capacitors 2—1000µF.
20 Silicon Diodes 1000 m.A.
20 Silicon Rect. 100 p.i.v. 3 amp.
50 Silicon Erase. (10070/106, 8035/20, BC.614/41-42 types.) Unmarked, Untested.
20 Silicon Diodes 300 m.A. 100 p.i.v. Rub. Min.
ANY ITEM 10/- ANY 5 ITEMS 5/-

CR.91/40 7/6.
CR.91/10 7/6.
CR.92/30 8/6.
CR.92/45 10/-.
CR.93/35 10/-
CR.98/35 10/-
3000 TYPE RELAYS (ex. new equip.) 10 for 25/- (our choice) p.p. 6/-.

PATTACK & KINNIE, 81 Park Lane, Romford, Essex
Romford 44473

BAR 3087

SALISBURY ROAD, HIGH BARNET, HERTS.

Suppliers of High Quality Semiconductors

BARGAIN OF THE MONTH
FANTASTIC!
OC72 AT 1/9d
12 OR MORE POST FREE

S.A.E. FOR LIST. CASH WITH ORDER. P. & P. 9d.

HIGH SPEED MAGNETIC COUNTERS (4 x 1 x 1 in.). 4 digits. 12/24/48V. (state which) 8½ each. P. & P. 9d.
COPPER LABRABTE BOAROD (5½ x 2 in.). 8½ each. 5 for 10/-.
RE-GETTABLE HIGH SPEED COUNTER (3½ x 1 in.) 3 digits. 10/5/48V. (state which) 8½/6 each.

BULK COMPONENT OFFERS
100 Capacitors 5µF to 10µF.
250 Carbon Resistors ± ± 1% (Tranistor types).
250 Carbon Resistors ± ± 1%.
100 Ceramic Capacitors 2—1000µF.
20 Silicon Diodes 1000 m.A.
20 Silicon Rect. 100 p.i.v. 3 amp.
50 Silicon Erase. (10070/106, 8035/20, BC.614/41-42 types.) Unmarked, Untested.
20 Silicon Diodes 300 m.A. 100 p.i.v. Rub. Min.
ANY ITEM 10/- ANY 5 ITEMS 5/-

CR.91/40 7/6.
CR.91/10 7/6.
CR.92/30 8/6.
CR.92/45 10/-.
CR.93/35 10/-
CR.98/35 10/-
3000 TYPE RELAYS (ex. new equip.) 10 for 25/- (our choice) p.p. 6/-.

PATTACK & KINNIE, 81 Park Lane, Romford, Essex
Romford 44473

FREE BOOKLET ON REQUEST
NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

Complete assembly instructions with every unit. Low Loss Cable, 1/6 yd. U.H.F. Pre-amplifiers from 76/-. See trade circular channel number required on all orders.

B.B.C.-ITV AERIALS

ITV (Band 3). 3 element loft array, 33/-; 5 element, 38/-; 7 element, 43/6; 15 element, 43/6; 21 element, 49/6. Combined B.B.C/ITV. Lott 1/3, 42/6; 1-45; 48/6; 1-47, 56/6; Wall mounting 1-3, 58/6; 1-5, 65/6, 68/6; Chimney 1-3, 63/6; 1-4, 71/-.

VHF transister pre-amps, 72/6.

COMBINED BBC-ITV-BBC AERIALS 1-43, 78/6; 1-45, 95/-; 1-47, 98/6. 1-49; 100/-, Special leadet aerial. F.M. (Band 2). Lott S.D. 12/6, 31/6; 30/-; 3 element, 78/-; 5 element, 90/-; all units available as U.A. cable. 5d. Coax plugs, 1/6. Outlet boxes, 6p. Deluxe Outlet Boxes 12/-; C.W.O. or C.O.L. 4/-, P. & P. 5/-.

Send 6d. stamps for illustrated lists.

CALLERS WELCOME

OPEN ALL DAY SATURDAY

K.V.A. ELECTRONICS (Dept. P.E.)
27 Central Parade, New Addington
Surrey-CRO-OJB
Lodge Hill 2246

COMPUTER DICTIONARY AND HANDBOOK
By C. Sipli. 90/-, P. & P. 4/6

TRANSISTOR SPECIFICATION AND SERVICE TRAINING BOOK, by Techness. 21/-, P. & P. 1/-.

TAPE RECORDER SERVICING MECHANICS, by Schroder. 21/-, P. & P. 1/-.

101 WAYS TO USE YOUR OSCILLOSCOPE, by Middleton. 21/-, P. & P. 1/-.

DIGITAL COMPUTERS, STORAGE AND LOGIC CIRCUITRY, 30/-, P. & P. 1/-.

PAL COLOUR T.V., by Mullard, Pal System and Circuits described. 12/6, P. & P. 1/-.

ELEMENTS OF TRANSISTOR PULSE CIRCUITS, by Towers. 35/-, P. & P. 1/-.

SILICON CONTROLLED RECTIFIERS, by Lytel. 21/-, P. & P. 1/-.

ELECTRONICS FOR YOUNG EXPERIMENTERS, by Pearce. 18/6, P. & P. 1/-.

SYNCHRO AND SERVOS, by Tinning and Reating Inc. 35/-, P. & P. 1/-.

TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR, 18/6, P. & P. 1/-.

Where possible 24-hour service guaranteed.

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C.2
(Leicester Square Tube Station)

CRESTCEN RADIO LTD.
(electronic component specialists)

For all regular components try
40 MAYES ROAD, WOOD GREEN, N.22

For surplus components and equipment try
11 MAYES ROAD, WOOD GREEN, N.22

Printed circuit board, Bin + Sin

SPECIAL LINES

6 x 3 transistor cabinet 3/- each
Transistor carry case 4in. + 2in. 96 d each
2in 80 ohm loudspeaker 5/6 each
Sin 22 ohm loudspeaker 96 d each
8 ohm transistor earphones 1/6 each
2sin transistor earbuds 2/6 each
Relay 500 ohm 9V Pidget 5/- each
4V Buzzer 1/6 each
Transistor power heat sinks 10d each
Miniature 5x1i with switch (pot) 2/6 each
Twin transistor heat clips 1/- each
5Op airspaced variable with spindle 2/6 each
1 meg skeleton pre sets 6d each
Rotary mains switch D.P. 2/- each
12V 2A rectifiers 4/6 each
L.E.S. bulb holders 6d each
500fF 15V 50pF airspaced variable 18/- each
16pf 275V capacitor 1/- each
2.2uf 1000V capacitor 3/- each
250uF pre set pot 1/- each

SURPLUS TRANSISTORS

2CG39A 1/- each
2nI108 matched pair 2CG39B and 2CG39B 3/- pair
R1410 3/- each

PHOTOCONDUCTIVE CELLS

ORP12 1/6 each
RPy32 7/6 each

With our new premises in Mayes Road we can now offer an even wider selection of components for the home constructor and enthusiast.

PLEASE INCLUDE POSTAGE WITH ALL ORDERS

FIRST-CLASS RADIO AND T/V COURSES...

GET A CERTIFICATE!

After brief, intensely interesting study—under taken at home in your spare time—YOU can secure a recognised qualification or extend your knowledge of Radio and T.V. Let us show you how:

FREE GUIDE

The New Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry. Chambers College provides first rate postal courses for Radio Amateurs' Exam., R.T.E.R. Servicing Cert., C. C. Telecons., A.M.I.E.E. Guide also gives details of range of diploma courses in Radio T.V. Servicing Electronics and other branches of engineering, together with particulars of our remarkable Guarantee of SUCCESS OR NO FEE

Write now for your copy of this invaluable publication. It may well prove to be the turning point in your career.

FOUNDED 1885—OVER 150,000 SUCCESSES
CHAMBERS COLLEGE (Incorp. National Inst. of Engineering) (Dept. 850F) 148 HOLBORN LONDON, E.C.I

The world's most versatile and compact band

JOYSTICK VARIABLE FREQUENCY ANTENNA

B.B.C. WORLD SERVICE—Henry Hatch talking about the JOYSTICK V.F.A.—"I couldn't believe the wonderful signal."

DURHAM UNIVERSITY EXPEDITION TO TURKEY—'We enjoyed excellent radio reception at all times, due of course to the JOYSTICK V.F.A. used; because after all, A RADIO IS ONLY AS EFFICIENT AS THE AERIAL IT USES.'—M. K. SARGINSON, B.Sc.

These are just two enthusiastic testimonies to the amazing efficiency of this minute aerial!

Obtainable from the best radio dealers—or direct from:
PARTRIDGE ELECTRONICS LTD.
(Dept. P.E.A.)
CAISTER HOUSE, PROSPECT ROAD
BROADSTAIRS, KENT
C.O.D. IMMEDIATE DISPATCH
Phone: THANET 62335 (STD 0343-62335)
BI-PAK SEMICONDUCTORS

8 Radnor House
93/97 Regent St
London W.1

NEW TESTED
SUPER PACKS FOR 1968

30 MADT's PNP
10 SIL. 1 AMP. METAL ALLOY DIFFUSED GLASS RECT.
200-800 PIV

30 GERM. ALLOY
12 EPOXY 500mA
AF TRANS. PNP
500-600 PIV
SIL. RECT.
Sim. 115/130

30 FAST SWITCH
PLANAR DIODES
Sim. 1N4916
BAY31J

QUALITY-TESTED VALUE PACKS NOW MORE FOR YOUR MONEY *

2 Drift Trans. 2N1225 Germ. PNP 100 Mc/s...
2 Matched Trans. OC44/45/81/B1D
16 Red Spot AF Trans. PNP
5 Silicon Rects. 3 A 100-400 PIV
2 T0 1 Silicon Rects. 100 PIV
2 Power Trans. OC122 Rect.
2 Power Trans. OC126 OC35.
5 Silicon Rects. 400 PIV 250 mA
4 OC72 Transistor Mullard Type
1 Power Trans. OC120 100 V
2 AO202 Sil. Diodes Fixed
2 Low Noise Trans. NPN 2N929/30
Sil. Trans. NPN VCB 100 ZTR
8 OA01 Diodes (CY448)
OC77 Transistors Mullard Type.
15 Rects. 400 PIV 500 mA.
1 5GET883 Trans. OC44.
5 GET883 Trans. Eqvt. OC45.
3 VHF Sil. Epoxied Trans. NPN 100 Mc/s...
2 2N7065 Sil. Trans. 300 Mc/s NPN
3 CT24 45 Germ. Trans. OR200 (Eqvt. OC71)
3 GT21 LF Low Noise Germ. Trans. PNP
20 Sil. Trans. 75 PIV 75 mc.
9 AO99 Germ. Diodes Fixed
5 NPN Germ. Trans. NTK773 Eqvt. AC130
5 OC25 Power Trans. germ.
10 IC77 Mullard Trans.
4 AC128 Trans. PNP High Gain
2 AC171/280 Germ. Trans. PNP/PPN
10 Assorted Gold Bonded Diodes
1 Power Trans. 12A 1000 PIV
20 Germ. Diodes General Purpose
2 OC124 Trans. Ultra Slow. QAT1
3 AF116 Mullard Type Trans.

FREE Use £10- Pack of your own choice
five with orders valued £4 or over

SEASONS GREETINGS FROM BI-PAK SEMICONDUCTORS and a Xmas "GIFT DOLLAR" value 5/- redeemable with all orders of One Pound or over. Cash in now and save 5/- on your next order. Not valid after 31st January 1968.

CUT ALONG DOTTED LINE

NEW TESTED SUPER PACKS FOR 1968

30 MADT's PNP
10 SIL. 1 AMP. METAL ALLOY DIFFUSED GLASS RECT.
200-800 PIV

30 GERM. ALLOY
12 EPOXY 500mA
AF TRANS. PNP
500-600 PIV
SIL. RECT.
Sim. 115/130

30 FAST SWITCH
PLANAR DIODES
Sim. 1N4916
BAY31J

QUALITY-TESTED VALUE PACKS NOW MORE FOR YOUR MONEY *

2 Drift Trans. 2N1225 Germ. PNP 100 Mc/s...
2 Matched Trans. OC44/45/81/B1D
16 Red Spot AF Trans. PNP
5 Silicon Rects. 3 A 100-400 PIV
2 T0 1 Silicon Rects. 100 PIV
2 Power Trans. OC122 Rect.
2 Power Trans. OC126 OC35.
5 Silicon Rects. 400 PIV 250 mA
4 OC72 Transistor Mullard Type
1 Power Trans. OC120 100 V
2 AO202 Sil. Diodes Fixed
2 Low Noise Trans. NPN 2N929/30
Sil. Trans. NPN VCB 100 ZTR
8 OA01 Diodes (CY448)
OC77 Transistors Mullard Type.
15 Rects. 400 PIV 500 mA.
1 5GET883 Trans. OC44.
5 GET883 Trans. Eqvt. OC45.
3 VHF Sil. Epoxied Trans. NPN 100 Mc/s...
2 2N7065 Sil. Trans. 300 Mc/s NPN
3 CT24 45 Germ. Trans. OR200 (Eqvt. OC71)
3 GT21 LF Low Noise Germ. Trans. PNP
20 Sil. Trans. 75 PIV 75 mc.
9 AO99 Germ. Diodes Fixed
5 NPN Germ. Trans. NTK773 Eqvt. AC130
5 OC25 Power Trans. germ.
10 IC77 Mullard Trans.
4 AC128 Trans. PNP High Gain
2 AC171/280 Germ. Trans. PNP/PPN
10 Assorted Gold Bonded Diodes
1 Power Trans. 12A 1000 PIV
20 Germ. Diodes General Purpose
2 OC124 Trans. Ultra Slow. QAT1
3 AF116 Mullard Type Trans.

FREE Use £10- Pack of your own choice
five with orders valued £4 or over

SEASONS GREETINGS FROM BI-PAK SEMICONDUCTORS and a Xmas "GIFT DOLLAR" value 5/- redeemable with all orders of One Pound or over. Cash in now and save 5/- on your next order. Not valid after 31st January 1968.

CUT ALONG DOTTED LINE
This directly calibrated AF oscilloscope (50½c to 12½c has a maximum output of 300mW into 600 ohm and is fitted with an output level meter and 600 ohm load attenuator of 0-500B. An alternating current of 5000 ohm output is provided and the level in each case is continuously variable. AF measurements, the voltmeter may be used for AF inputs (external) over the ranges of 0 to 80V in 4 ranges, providing a very useful facility. Supplied in excellent condition and working order for only £18.10.0. Power supply 240V a.c. (internal).

DIGITAL VOLTMETER

For the first time ever, we proudly present a three digit a.c./d.c. voltmeter for less than £100! Manufactured by the world famous Hawker Siddley Group & its Gloucester Works, the Digimeter Type B.E.C. 2128 is a fully transistorised multi-range instrument possessing the following distinctive features:

Electrical Characteristics:
D.C. ranges: 10mV to 400V in four ranges (1000V for positive voltages).
Accuracy: the greater of ±0.3% or ±1 digit over the frequency range 30c/s to 1kHz. Range change is manual.
Input impedance: D.C.-15MΩ on two lower ranges, 1MΩ on two higher ranges.
A.C.-A.C. coupled, approximately equivalent to a short impedance of 8KΩ in series with the parallel impedances 18KΩ and 53KΩ.
Sampling rate: 1 reading per 2sec or manually controlled.
Power Supply: 160/250V, 50/60Hz (50/60Hz).
Dimensions: 10½ in high x 7½ in wide x 13 deep. Weight: 15lbs.
Display details: Three digits with decimal point indication, Character height 1½ in.
At the price we can offer these instruments no laboratory can afford to be without one! They are ideally suited to production and inspection applications.

BRAND NEW IN MANUFACTURING WORKSHOP...

£92.10.0

Immediate Delivery!

MARCONI AUDIO TESTER TYPE TF94

This directly calibrated AF oscillator with 50½c to 12½c has a maximum output of 300mW into 600 ohm and is fitted with an output level meter and 600 ohm load attenuator of 0-500B. An alternating current of 5000 ohm output is provided and the level in each case is continuously variable. AF measurements, the voltmeter may be used for AF inputs (external) over the ranges of 0 to 80V in 4 ranges, providing a very useful facility. Supplied in excellent condition and working order for only £18.10.0. Power supply 240V a.c. (internal).

SOLARTRON CALIBRATING UNIT AT203

Providing an output range of 10µV to 10V, in the frequency range of DC to 300kHz. An extremely useful instrument of high accuracy for calibrating meters, and research work where the voltage output must be easily selected and of high standard. Offered in first class condition, fully tested, for 240V a.c. supply at £50.

SPECIAL OFFER OF COLVERN 10 TURN HELIPOTS TYPES CLR16/100I

POWER RHEOSTATS

3 ohms 8½A, 35/-, P. & P. 1½. 7½ ohms 5½A, 35/-, P. & P. 1½. 15 ohms 1½A, 12½/-, P. & P. 6/6. 3k 0 75W, 12½/-, P. & P. 1½. All heavy duty types Toroidal wound on ceramic formers.

COMMUNICATION RECEIVER TYPE R200

Try some S.W.L. over the range 15Mc/s to 20Mc/s in 4 ranges function AM, FM, CW incorporates rock steady BFO for monitoring, 35b or telegraph signals, aerial trimmer, Vernier drive for station selection, 2 aerial inputs, AF gain control, built-in speaker and phone outlet, uses all miniature valves and the power requirements are 6V d.c. size 12½ in 8½ in 9½ deep housed in moisture proof light alloy case, made to rigid Ministry standards in excellent working condition only £15 plus 10/- P. & P.

AVOMETER MODEL 7

In first class condition and working order. Price 41½/-, P. & P. 7½. Also leather case for Model 7. Price 5/-, P. & P. 1½.

TELEVISION MONITOR E.M.I. TYPE 306

Designed for close circuit TV operating on the 625 lines system with 19 inch picture tube, very latest model, in as new condition complete with simple carry case, for use with any existing service dept., college or university, offered at one fifth of manufacturer's price, in perfect working condition, for only £15 plus 10/- P. & P. New in manufactory can afford to be without one! At the price we can offer these instruments no laboratory can afford to be without one! They are ideally suited to production and inspection applications.

£26.10.0

Carriage extra at cost

IMMEDIATE DELIVERY!

MARCONI AF ABSORPTION WATTHOURMETER Type 6MC/CT4

Designers of the world famous Digimeter, have now produced an instrument of the same quality in the absorption watt-hourmeter. One of the most important features is the potentiometric calibration of the input circuit. The input impedance for each range is:

D.C.: 75.0 MΩ (nominal) and 1.2Ω (nominal),
A.C.: 75.0 MΩ (nominal) and 1.2Ω (nominal).

Also available for sale at approx. one third of makers price.

Price 50/-, P. & P. 7½.

STC MOVING COIL STUDIO MICROPHONES TYPE 403A

A limited quantity of these superb low impedance microphones for sale at approx. one third of makers price, type 4064A jack plug in as new little used condition. Price £7.10.0, P. & P. 3½.

WESTON RF AMP Meters

Two inch flush round panel mounting, 25 each.

Great for the home handyman and radio enthusiast. For and the hundred and one jobs around the house that need a really reliable soldering iron. Strongly made. Sensibly sized. Extra long flex. Fully guaranteed for 6 months.

BUY YOURS TODAY!

Woolworth's larger stores stock them

quick, accurate soldering with the

Dee Gee high speed electric soldering iron

Sole makers:
DAVID GRIFFIN LTD.
HOLLAND WAY, BLANDFORD, DORSET

ONLY 16/-

(Dept. P.E.25)

BAKER MAJOR "MODULE"

A new Loudspeaker system featuring the famous 12 inch Baker Major Full range speaker on 1½" 12½" baffle board with 3½" tweeter and crossover. Output 30 watts. Response 20-17,000 c.p.s. Impedance 15 ohms. Ideal mono or stereo conversion of existing cabinets, furniture, etc.

£12.10.0 Post Free

Also available in kit form with instructions £10.19.6

Baker Reproducers Ltd

Bensham Manor Road Passage, Thornton Heath, Surrey. 01-684-1665

BUILD YOUR CIRCUITS on VEROBOARD

—the Universal Wiring Board—

obtainable from your local Retailer

Trade enquiries to:

NORMAN ROSE (ELECTRICAL) LTD.
8 St. Chad's Place, Gray's Inn Road, London, W.C.1

Technical enquiries to:

VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants
The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative, and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms
This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
- Advanced Electronic Eng.
- Frequency Modulation - Transistors.

ELECTRICAL ENG.
- Advanced Electrical Eng.
- General Electrical Eng.
- Installations - Draughtsmanship - Illuminating Eng.

CIVIL ENG.
- Advanced Civil Eng.
- General Civil Eng.
- Municipal Eng. - Structural Eng.
- Sanitary Eng. - Road Eng.
- Hydraulics - Mining - Water Supply - Petrol Tech.

RADIO & T.V. ENG.

MECHANICAL ENG.
- Advanced Mechanical Eng.
- Maintenance Eng. - Diesel Eng.

AUTOMOBILE ENG.
- Advanced Automobile Eng.
- General Auto. Eng.

AUTOMOTIVE ENGINEERING
- Advanced Automotive Eng.
- General Auto. Eng.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES"—send for your copy now—FREE and without obligation.

WHICH QUALIFICATION WOULD INCREASE YOUR EARNING POWER?

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS

POST NOW! TO B.I.E.T., 316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

3d. stamp if posted in an unsealed envelope.
NEW! SOLID STATE HIGH FIDELITY EQUIPMENT

BRITISH MADE

We are pleased to present this new range of Audio Equipment developed from Dissolve Mark II—each unit or system will compare favorably with other professional equipment selling at much higher prices. Brief details are below:

System	Comprising	Price
A	5 watt mono for 3/8 ohm speakers	£10.3.0
1	15 watt mono for 3/8 ohm speakers	£13.17.6
2	15 watt mono for 12/16 ohm speakers	£14.12.6
4	30 watt mono for 12/16 ohm speakers	£20.15.0
8	20 watt mono for 12/16 ohm speakers	£24.0.0
9	24 watt mono for 3/8 ohm speakers	£26.15.0
14	40 watt mono for 71/16 ohm speakers	£29.10.0

All systems are complete with Dial Plate and Knobs. Units may be purchased separately.

THE FINEST VALUE IN HIGH FIDELITY—CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

BUILD A QUALITY TAPE RECORDER WITH MARTIN RECORDAKITS

Transistor Radio Tuner

Complete Kit Price £5.19.6. P.P. 2/6

TRANSMITTERS

- Largest range over 650 types
- C.R.'s from 0.5 to 60
- FIELD EFFECT TRANSISTORS from 4.1-12.6
- POWER TRANSISTORS from 2.5 to 60
- DIODES AND RECTIFIERS from 0.5 to 2.5

Send for Free List No. 36. 24-page Illustrated Brochure. 1/2-post paid.

Electronic Organ

- Build this instrument step by step in your own home.
- A truly portable instrument for all enthusiasts.
- A fully transistorised complete design.

Complete Basic Kit £14.9.6.

We regret to announce the untimely passing of MR. LEWIS R. ROGERS on Oct. 1st. He will be sadly missed by his many friends and colleagues.

Cathode Ray Tube

- 24 inches, £26.0.0
- 21 inches, £21.9.6
- 12 inches, £13.15.0

We can supply from stock most of the parts specified on circuit diagrams. Send list for quotation.

Send today 8/6 Post paid.

HENRY'S RADIO LTD.