Electronic STOCKMARKET

ALSO
"FLIP FLOP"

**** Another Game For Partytime
IN THE JET AGE......

EFFICIENCY AND RELIABILITY,
AND CONSISTANT, SUSTAINED PERFORMANCE
ARE BASIC REQUIREMENTS.
ADCOLA SOLDERING INSTRUMENTS MEET THESE NEEDS
AND GO ON MEETING THEM, DAY AFTER DAY, YEAR AFTER YEAR,
WITH UNFAILING REGULARITY.
LEADING MANUFACTURERS THROUGHOUT THE WORLD LIKE THIS,
THEY ALSO LIKE THE QUICK SERVICE WHEN REPLACEMENTS
DO BECOME NECESSARY. SO THEY SPECIFY ADCOLA.

WHY DON’T YOU!
AVAILABLE FROM SHOPS EVERYWHERE
OR DIRECT FROM
SALES & SERVICE DIVISION,
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD,
LONDON, S.W.4.
TELEPHONE 01-622 0291

SEND COUPON
FOR LATEST LEAFLET
NAME __________________________
ADDRESS _________________________
P.E.167
SPECIAL INTEREST ITEMS!

MIDLAND Model 10-502 VHF AIRCRAFT BAND

An entirely new item for the radio enthusiast bringing instant reception of the ground-to-air, air-to-ground, or band. For use 108.0-162.0 kHz with any standard AM or FM radio covering 500-1,640 kHz. Model 10-502 is a self-contained cassette receiver giving continuous electrical band spread from 10.8 kHz to 800 kHz.

Lasky's Price 79/6 Post 3/6

SPECIAL TRANSCRIPTION MOTOR OFFER — FAMOUS Connoisseur Classic

2 speed transcription deck. One synchronous motor for each speed—45 and 33 r.p.m. List Price £15.15.7.

GARRARD RECORD PLAYERS

AUTOCHANGERS

- GARRARD SP20 MX II £11/19/6
- GARRARD SP32 £15/19/6

TRANSCRIPTION DECKS

- GARRARD 601 £27/19/6
- GARRARD Lab. 80 Mk II £30/9/6

CLEARVIEW PERSPECT COVERS

- SPX £3/5/0
- SPX £4/4/0
- SPX £4/4/1

Postage on all above 5/- extra.

GARRARD BASES

- WB £3/5/0
- WB £4/5/0
- WB £4/5/0

HIJHTACHI CAR RADIO SHORT WAVE ADAPTOR

Model WM20

New from Hitachi—world famous for high quality transistor radios—a push button Short Wave adaptor enabling you to use your own small transistor radio to pick up the whole broadcast band in the 3-25 Mc/sec range. Also available a mini adaptor for use with any make or model of AM car radio (covering 500-1,640 kHz). Will not affect the performance of the car radio. A small and compact unit for added convenience and ease of use.

Lasky's Price £3/5/0

CONSTRUCTION BARGAINS

SOLID STATE MODULES

- Size of each module only 2!/4 x 1!/2 x 3/4". Ready for use with any transistor radio or amplifier. Each meter hand made and encapsulated in plastic. A M. 1/6 per each. (Quotes for quantities).

CLEAR PLASTIC PANEL METERS

- Type KR-65 3/8
- Type KK-69 1/2
- Type KK-69 1/2

- $50/9

- $30/0

- $30/0

COMMUNICATION RECEIVERS

TRIO MODEL 9R-59DE

Brief spec.: 4 band receiver covering 500kc/8 to 30Mc/8 continuous. Electrical band spread on 10, 25, 40 and 80 meters. Two valve type 7 diode circuit. 6/8 ohm output and phone jack. Special features: 1000V BFO, XN ALC, Variable RFA. Recommended for use on 112-220 volt AC mains. Fully guaranteed, complete with instructions and service data.

Lasky's Price £39.15.0 Carriage and Packing 12/6

SPECIAL INTEREST ITEM JUST ARRIVED

TTC Model A.1009 AM TUNER ADAPTOR

An amazingly ingenious AM Tuner that looks like and is exactly the same size as a standard tape recorder/player, which converts your tape recorder/player instantly into a completely self-contained unit with build-in aerial, power source (one miniature Ever-Ray R525). A tape recorder/player instantly becomes a tape recorder/player that can receive all broadcast bands. Ready for use with all standard tape cassette recorders and players. Complete with battery.

GET YOUR LASKY'S CATALOGUE

FREE Second great issue now in preparation—more pages, 1,000 more items, many more prices. Make sure you get your copy now. Just write your name, address and we'll post it.

Branches:
- 207 EDGWARE ROAD, LONDON, W.2 Tel. 01-723 3271
 Open all day Saturday, early closing 1 p.m. Thursday
- 33 TOTTENHAM CT. RD., LONDON, W.1 Tel. 01-636 2605
 Open all day 9 a.m.—6 p.m. Monday to Saturday
- 152/3 FLEET STREET, LONDON, E.C.4 Tel. FLEet St. 2833
 Open all day Thursday, early closing 1 p.m. Saturday

ALL MAIL ORDERS AND CORRESPONDENCE TO:

3-15 CAVELI ST.. TOWER HAMLETS, LONDON, E.1 Tel. 01-790 4821

GET YOUR LASKY'S CATALOGUE

FREE Second great issue now in preparation—more pages, 1,000 more items, many more prices. Make sure you get your copy now. Just write your name, address and we'll post it.

Branches:
- 207 EDGWARE ROAD, LONDON, W.2 Tel. 01-723 3271
 Open all day Saturday, early closing 1 p.m. Thursday
- 33 TOTTENHAM CT. RD., LONDON, W.1 Tel. 01-636 2605
 Open all day 9 a.m.—6 p.m. Monday to Saturday
- 152/3 FLEET STREET, LONDON, E.C.4 Tel. FLEet St. 2833
 Open all day Thursday, early closing 1 p.m. Saturday

ALL MAIL ORDERS AND CORRESPONDENCE TO:

3-15 CAVELI ST.. TOWER HAMLETS, LONDON, E.1 Tel. 01-790 4821
LAFAYETTE DE-LUXE 100 Kn/TOLT
LAFAYETTE Multimeter. H-c.
Volts 125V-I000.
MODEL 2507. 2,000 25uA-10 Amp.
Protection, mirror scale. Built-in meter protection. 0 / 125 / 600 / 1200 / 2500.

NEW LAFFAYETTE SOLID STATE H&00 RECEIVER
5 BAND AM/FM AND SHORT WAVE. 500BCS TO 500KCS.
F.P. front end & 3 mechanical filters
Headphone jack. Operation 220V a.c./12V d.c. neg.
£39.15.0. Carriage 12/6.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
A completely new transistorised receiver covering 500Kc/s to 30M. Fully tuneable or crystal controlled (not supplied) for fixed frequency operation.

CLEAR PLASTIC METERS

TRANSPORTED TWO-WAY TELEPHONE

GARRARD DECKS
Brand new and guaranteed.
1000 stereo £5.19.6.
2025 TC stereo £6.19.5.
2025 TC less cart. £4.10.0.
1025 stereo £3.15.0.
2000 stereo £3.15.0.
35 watt Integrated Amplifier. Carr. 6/-.
50 watt Audio Signal Generator. 15c's to 50 kc/s. Price £30.
500 watt Audio Signal Generator. 15c's to 50 kc/s. Price £30.
9 watt. 8 transistors. Built-in speaker and overload protection. 220,240V. a.c. size

MICROWAVE CARROTS
To microwave in 30 seconds.

TRANSPORTED FM TUNER
RIGIDITY TUNER. SIZES 3, 5, 7, 9. If no. of stations 2, 4, 6, Po. & P. 5/0.

VHF. VALVE VOLTMETER
R.F. measurements in excess of 100 Mc/s and d.c. measurements up to 1,000 V. With a.c. range. 300 mV to 300V RMS. Resolution 0.02% of full scale.

LIMITLESS VHF MILLIOUTLET METER
Transistorised. 1mv to 1000V AC. 1mc/s to 1Mc/s.

SINCLAIR EQUIPMENT
212 12 watt amplifier. 89/6.
PT2 Power Supply Unit 89/6.
Stereo 85 PreAMP. 25/17.9.
Q1 Speakers. 27.19.6. Micromatic Radio Kit 50/6.
ALL POST PAID

NEW SINCLAIR 2000 SYSTEM
ERSIN

Multicore

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

<table>
<thead>
<tr>
<th>SIZE 5</th>
<th>HANDY SOLDER DISPENSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains 10 ft. coil of 18 s.w.g. Ersin Multicore Savbit Alloy, 2/6 each.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE 15</th>
<th>SOLIDER DISPENSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains 21 ft. coil of 60/40 Alloy, 22 s.w.g. Ideal for small components, transistors, diodes. etc. 3/- each.</td>
<td></td>
</tr>
</tbody>
</table>

SIZE 12
Ideal for home constructors.
Contains 90 ft. of 18 s.w.g. Ersin Multicore Savbit Alloy on a plastic reel. 15/- each.

BIB MODEL 8
WIRE STRIPPER AND CUTTER
Strips insulation cleanly and quickly, fitted with unique 8 gauge wire selector. Plastic handles. 6/- each.

From Electrical and Hardware shops. If unobtainable, write to:
Multicore Solders Ltd., Hemel Hempstead, Herts.

TWO SCOOPS FROM "KING’S"

CONTINUOUS LOOP
(NEVER ENDING – NOREWINDING)
TAPE CASSETTE

BULK PURCHASE
RIDICULOUS PRICE

IDEAL BACKGROUND MUSIC – LANGUAGE COURSES, ETC. 200ft. HIGH QUALITY AMPEX TAPE. WILL FIT ALL TAPE RECORDERS. CANNOT BE REPEATED

NEARLY ALL GONE
HURRY! NOW ONLY 18/- EACH

ALSO
BARGAIN PRICED–PHILIPS TYPE CASSETTES TO FIT ALL CASSETTE RECORDERS
TYPE C.90 LASTS 1 1/2 Hrs. 18/11d
TYPE C.60 LASTS 1 Hr. 12/11d
SEND NOW. (post & pack 6d each)

KING’S TELE-SERVICE CO.
105/107 DAWES ROAD, FULHAM, S.W.6
FULHAM 1668-2993

YOUR FREE FOR 7 DAYS

The ‘New Picture-Book’ way of learning

BASIC ELECTRICITY (5 VOLS.)

BASIC ELECTRONICS (6 VOLS.)

You’ll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD—the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon-type drawing. The books are based on the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.

WHAT READERS SAY

“May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice.”
L. W. M., Birmingham.

“I find that the new pictorial method is so easy to understand and I will undoubtedly enjoy reading the following five volumes: thank you for a wonderful set of books.”
C. B., London.

“Please accept my admiration for producing a long felt want in the field of understanding Electronics.”
S. B. J., London.

“The easiest set of manuals it has been my pleasure to study.”
J. P. F., Taunton.

A TECH-PRESS PUBLICATION

POST NOW FOR THIS OFFER !!

TO THE SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT SE2 7HP

Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts.

BASIC ELECTRICITY 75/-
Cash Price or Down Payment of 20/- followed by 3 fortnightly payments of 20/- each.

BASIC ELECTRONICS 90/-
Cash Price or Down Payment of 15/- followed by 4 fortnightly payments of 20/- each.

This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

Tick Set required (Only one set allowed on free trial)

BASIC ELECTRICITY

BASIC ELECTRONICS

Prices include Postage and Packing.

Signature

(If under 21 signature required of parent or guardian)

NAME

BLOCK LETTERS

FULL POSTAL ADDRESS

836
THE BEST OF ITS TYPE

Use 4 transistor Stereo Transistor Tape Recorder, place of latest cassette and converter recorder to radio reception.

NEW ADASTRA "DOUBLE 5" STEREO AMPLIFIER.

NEW TRANSISTOR RADIO KIT. Complete kit with all parts and easy to follow instruction book. Covers full medium wave. £6.5. P. & P. 2/-.

HEADPHONES FOR STEREO.

With soft rubber earpieces with switch for mono listeners. £3.5.6. P. & P. 2/6.

NEW TOSHIBA TASCAM 2000-P STEREO TAPE DECK.

Complete with 100 foot tape. £237.19.6. P. & P. 2/-.

NEW GARRARD DECKS.

2925 Stereo mono cart £7.19.6.

300D Stereo Diamond cart £10.19.6.

SP23 less cart £11.19.6.

SP23A mono cart £7.19.6.

AT90 less cart £11.19.6.

AT90A mono cart £11.19.6.

AP97 less cart £22.11.

AP97A mono cart £22.11.

SRR97 less cart £22.11.

SR97A mono cart £22.11.

All prices P. & P. 7/6.

NOW OPEN — OUR NEW STORE

★ HI-HI DEMONSTRATION ROOM
★ RECORDING TAPE BAR
★ SCIENTIFIC COLLECTOR'S Width of Microscopes,
Biocameras. Telescopes.
At 18 Tottenham Court Road, W1.
4-STATION INTERCOM

£7/15/0

Solve your communication problems with this 4-Station Transistor Intercom system (1, master and 3 subs), in durable plastic cabinets for desk or wall mounting. Call/Speak/Listen from Master to Subs and Subs to Master. Ideally suitable for Business, Surgery, Schools, Hospital, Office and Home. Operates on one 9V battery. On/off switch. Volume control. Complete with 3 connecting wires each 66ft. and other accessories. P. & P. 7/6.

WIRELESS INTERCOM

INTERCOM/BABY ALARM

Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Fingers. Complete with 66ft. connecting wire, Battery 2/6 extra. P. & P. 4/6-

2/6. Pull price refunded if not satisfied in 7 days.

Phone. Complete with 66ft. connecting wire. Battery 2/6 extra. P. & P. 4/6-

4 STATION INTERCOM

INTERCOM/BABY ALARM

WEST LONDON DIRECT SUPPLIES (P.E/10)

109 KENSINGTON HIGH STREET, LONDON, W.8

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

BBC·ITV AERIALS

BBC (Band 1), Telescopic, 8/6. External 3/6, 5/6, 7/6.

ITV (Band 2), 3 element loft array, £3/-; 7 element, £5/6. 11 element, £6/6. Wall mounting, 3 element, £4/-; 7 element, £6/-; 11 element, £6/6.

Combined BBC/ITV, Loft 1+3, 40/-; 1+5, 50/-; 1+7, 60/-; Wall mounting 1+3, 57/-; 1+5, 67/-; Chimney 1+3, £7/6; 1+5, £8/6.

VHF translator pre-amps, 75/-.

COMBINED BBC·ITV·BBC AERIALS

1+3, 89/-; 1+5, 100/-. Loft mounting only. Special lead-in available.

Car or van foot stand £1 1/6. Complete assembly instructions included.

CALLERS WELCOME

OPEN ALL DAY SATURDAY

K.V.A. ELECTRONICS (Dept. P.E.)

27 Central Parade, New Addington

Surrey—CRO-01J

LODGE HILL 3266

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated module-type units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims for years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification.

NEW VARI-STAT

thermostatic soldering iron

High Production Model D

PRICE

60/6

Miniature Iron 50 watt

Voltage 12-250 volt

Weight 1 3/4oz.

Our range also includes:

Standard Miniature Model 50W

Standard Instrument Model 70W

High Production Instrument Model 125W

Industrial Model 300W

All these irons give excellent bit and element life since the thermostat completely eliminates overheating and controls reserve heating capacity which makes possible continuous soldering without chilling of the bit. The consistent temperature makes these irons ideal for printed circuit work.

CARDROSS ENGINEERING CO. LTD.,

Woodway Road, Dumbarton.

Phone: Dumbarton 2655

For many years now Martin Electronics have been producing highly efficient and dependable prefabricated module-type units for simple assembly into reasonably priced high fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to this day, completely justifying our claims for years of trouble-free service. No system gives you wider flexibility in the choice of units available than Martin and all equipment conforms precisely to stated specification.

AMPLIFIER SYSTEMS • TUNERS • RECORDERS

ONLY FROM MARTIN

Cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amps and output pick-ups. Escutcheon panels to suit the arrangement you choose. Tuner is styled to match. Tuna is styled to match.

Start by sending for leaflets at once

MARTIN ELECTRONICS LTD.

MARTIN IS HIGH-FIDELITY

The first and still the most satisfactory unit assembly system

UNIT OPTIONS INCLUDE:

■ 5-stage input selector
■ Pre-amp tone controls
■ 10 watt amp. (3 ohms)
■ 10 watt amp. (15 ohms)
■ Mains power supply
■ F.M. Tuner

Trade enquiries invited

MARTIN ELECTRONICS LTD.

154 HIGH STREET, BRENTFORD

MIDDLESEX.

P.E.10/68

838
I TRANSISTOR EQUIVALENT BOOK

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Gold Bonded Diodes eqvt. OA47</td>
<td>10/-.</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2N3707 NPN Planar Transistors</td>
<td>10/-.</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>BC108 NPN Silk Transistors</td>
<td>10/-.</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Zeners Silicon 0.5-5.0W</td>
<td>10/-.</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2N3707 NPN Planar Transistors</td>
<td>10/-.</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3A 600V Sil. Rect. Stud.</td>
<td>10/-.</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Flyback Rect. TP912/906</td>
<td>10/-.</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2N696 NPN Silk Trans.</td>
<td>10/-.</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>OC44 Trans. Gen. P. RF</td>
<td>10/-.</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>Silk Diode 250V 50mA MOSI. Gen. P.</td>
<td>10/-.</td>
</tr>
</tbody>
</table>

 Each month for one month only we offer special bargain packs available at this special price. Take full advantage and have even more on your B-PAK bargain.

UNIFICATION

4X4, Equip. 2NS264. Dept. T47C, BNN5000
7/6 each
53-79s/- 100 UP 4/-

INTEGRATED CIRCUITS

1. Operational Amplifier with Zener output.
 Type 709C. Ideal for MF. Project in 1-5 or 5-10 case.
 Pull data.
 Our price 1/2 6 each
 or $2/- each. Large Qty. Prices quoted for.

FAIRCHILD EPOXY TO-5

8 Lead

1000 Buffer 10/-
1524 Dual Gate 10/-
1523 Z.K. Gate 14/-
1 J.C. Data Circuits, etc 1/6

MULLER J. AMPLIFIER MIXED

TA293 ORP Ass. 75/-
TA294 1A ORP Ass. 15/-
TA298 0.P. Amp 65/-
RCA CAD20 Audio Amp 30/-

PRINTED CIRCUITS E-COMPUTER

Packed with semiconductors, and other components, 10 boards give a guaranteed 30 transistors and components. 10 or more boards 15/-. Plus 5P. & P.

SIL. G.P. DIODES

50/- each

25PIV (Min.) 100 25/-
250PIV (Min.) 150 30/-
1000PIV (Min.) 300 40/-

IDEAL FOR ORG. BUILDERS.

FAIRCHILD EPOXY TO-5

8 Lead

1000 Buffer 10/-
1524 Dual Gate 10/-
1523 Z.K. Gate 14/-
1 J.C. Data Circuits, etc 1/6

MULLER J. AMPLIFIER MIXED

TA293 ORP Ass. 75/-
TA294 1A ORP Ass. 15/-
TA298 0.P. Amp 65/-
RCA CAD20 Audio Amp 30/-

PRINTED CIRCUITS E-COMPUTER

Packed with semiconductors, and other components, 10 boards give a guaranteed 30 transistors and components. 10 or more boards 15/-. Plus 5P. & P.

SIL. G.P. DIODES

50/- each

25PIV (Min.) 100 25/-
250PIV (Min.) 150 30/-
1000PIV (Min.) 300 40/-

IDEAL FOR ORG. BUILDERS.

FAIRCHILD EPOXY TO-5

8 Lead

1000 Buffer 10/-
1524 Dual Gate 10/-
1523 Z.K. Gate 14/-
1 J.C. Data Circuits, etc 1/6

MULLER J. AMPLIFIER MIXED

TA293 ORP Ass. 75/-
TA294 1A ORP Ass. 15/-
TA298 0.P. Amp 65/-
RCA CAD20 Audio Amp 30/-

PRINTED CIRCUITS E-COMPUTER

Packed with semiconductors, and other components, 10 boards give a guaranteed 30 transistors and components. 10 or more boards 15/-. Plus 5P. & P.

SIL. G.P. DIODES

50/- each

25PIV (Min.) 100 25/-
250PIV (Min.) 150 30/-
1000PIV (Min.) 300 40/-

IDEAL FOR ORG. BUILDERS.
Today there is a huge demand for technologists such as electronics, nuclear and computer systems engineers, radio and television engineers, etc. In the future, there will be even more such important positions requiring just the up-to-date, advanced technical education which CREI, the Home Study Division of McGraw-Hill Book Co., can provide.

CREI Study Programmes are directly related to the problems of industry including the latest technological developments and advanced ideas. The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges.

Take the first step to a better job now — enrol with CREI, the specialists in Technical Home Study Education.

CREI Programmes are available in:
- Electronic Engineering Technology
- Industrial Electronics for Automation
- Computer Systems Technology
- Nuclear Engineering
- Mathematics for Electronics Engineers
- Television Engineering
- Radar and Servo Engineering
- City and Guilds of London Institute: Subject No. 49 and Advanced Studies No. 300.

Post this coupon today for a better future

S-DeC BREADBOARDING

- Fast, reliable, solderless circuit assembly
- Contacts last indefinitely
- Use ordinary components again and again
- Test all the circuits in the magazines

This breadboard is used professionally by development engineers throughout the world. Over 80% of current production is exported.

A booklet of projects is included with each kit giving construction details for a variety of circuits. S-DeC retail.

4-DeC Kit: Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet "S-DeC Projects" all contained in a strong, attractive, plastic case. Ideal for the professional user. £5.17.6 retail.

RELIABLE COMPONENTS! — AT THE RIGHT PRICE!!

SUBMINIATURE TAGBOARDS (1½ in. wide)... 6-way at 1½; 18-way at 4½; etc.
CAPACITORS — CERAMIC TUBULAR (Standard values)... 47pF to 0.01µF.
RESISTORS — CARBON FILM... ½ watt 50Ω to 10 meghm... ½d. ea. or 3½ per dozen.
POTENTIOMETERS — MINIATURE CARBON... 5kΩ, 10kΩ, 25kΩ, 50kΩ, 100kΩ each... 50p each. 0.1µF, 0.01µF, 0.001µF, 0.0001µF... 2½d. ea.
DIODES — OA47, OA70, OA71, OA79, OA81, OA90, OA91, OA200, OA272, etc...
TRANSISTORS — BC107, BC108, BC109, BC110, BC207, BC208, BC209, etc...
INDUCTORS — 3µH, 10µH, 100µH, 1kΩ, 10kΩ, etc...

AVAILAVLE FROM LEADING SUPPLIERS

or in case of difficulty from

S.D.C. PRODUCTS (Electronics) LTD
THE CORN EXCHANGE, CHELMSFORD, Essex

TERMS: C.W.O. (or C.O.D.—over £3 only). Tel. Chelmsford (OCH 5) 56215

HI-FI AUDIO CIRCUIT KITS

Complete with circuit diagrams

ACS1K. Everything for building a Hi-Fi mains powered transistor stereo amplifier. 250mV 800kΩ input for 67µV RMS output each channel. Baxendale type tone control. Attractive silver and black fascia. Panel mounting 12¾in. x 5½in. £112. Solid state base £3. Circuit board and chassis only 50s.

ACS2K. Kit for matching magnetic pick-up, etc. OR for Baxendale type tone control complement and pre-stage. 3 transistor circuit. £2 5s 6d each. Board only 17s.

ACS3K. For matching stereo magnetic pick-up. 120mV 47kΩ input. 300µV 100kΩ output with RIAA correction. Line voltage ±24V up to 350V d.c. £3 10s. Fitted plastic case 12s 6d. Board only 18s 6d. Forget P and V. £2. Deal in facts and get better value

V² (RMS) = W direct from ACS.

R Styling and results must more than satisfy. S.A.E. for lists.

AUDIO COMPONENTS & SERVICES

Sound Studios, Bell Hill (off Crown Hill), Croydon, Surrey. Phone 688-3706
HIGH GRADE COPPER LAMINATE BOARDS

Now using Silicon Transistors in first five stages on each channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit that contains 14 transistors giving 8 watts push output per channel (16W mono). Integrated pre-amplifier. With ECL84, EL84 and Valco 2 x 20 volt P.C.C. transformers. Fully shrouded section wound output transformer to 8 ohm and announcements. Complete with latest type lightweight pickup arm and ceramic cartridge with 2-3V output for LP. LIMITED EDITION.

SPECIAL OFFER!

E.M.I. 4-SPREADSTER HEAD

SPECIAL OFFER!

GREAT TWIN CARTRIDGE HEAD

SPECIAL OFFER!

STEREO ALPHABET A66

OUR ROCK BOTTOM PRICE 50/-

HARVERSON'S SUPER MONO AMPLIFIER

A super quality gram amplifier using a double wound transformer, ECG25 rectifier and EL84 or similar type double wound valve as audio amplifier and power output stage. Heavy duty wound metal transformer, ECG25, EL84, E820 valves. Separate Bass, Treble and Volume controls. Chassis size only 7in. wide x 4in. deep x 10in. high. Completely self contained and can be easily mounted in a cabinet below. A.C. Mains 200-240V- Supplied absolutely complete with built in power transformer and output trans- former and output trans- former matched for 3 ohm speaker, separate Bass, Treble and Volume controls. Negative feedback line. Output 4 watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etc., wired and tested for only £4.5/6. P. & P. 3/-.

TWIN PETHER READ

VAH-SIR AND SPEAKERS AND CABINET

NEW S.C.T. TYPE 25 MINIATURE RELAYS

SPECIAL OFFER!

SPEAKER TAPE RECORDER CASE

Dual Pentaode Tape Eraser and Tape Head Demagnetiser £5.5/6.

ACOS CRISTAL MIXES. High Imp. for desk or hand use.

SPECIAL OFFER!

MOVING COIL STICK MIXES. Fitted on-off switch for remote control. High quality. With low impedance. (Inst. state required). REFERENCE PRICE 30/-

QUALITY RECORD PLAYER AMPLIFIER

A top-quality record player amplifier employing heavy duty wound metal transformer, ECG25, EL84, E820 valves. Separate Bass, Treble and Volume controls. Complete with output transformer for 3 ohm speaker. Output trans. tapped for 3 ohm and 15 ohm. Heavy 3-4in. metal turntable. A.C. Mains 200-240V- Supplied absolutely complete with built in power transformer and output trans- former and output trans- former matched for 3 ohm speaker, separate Bass, Treble and Volume controls. Negative feedback line. Output 4 watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etc., wired and tested for only £4.5/6. P. & P. 3/-.

WM-27 TRANSISTOR AMPLIFIER

BRAND NEW TRANSISTOR BARGAINS, SET 1215 (Matched Pair) 10-20 WATTS 12-0-12 1-6 AMP.

Set of Mullard 6 transistors OC44, 9-04, AC128, matched pair AC128 850-6V, Mullard LIF83 Audio Transistor Pack and matched pair of AC128 12V. ORP81 Cadmium Sulphide Cell 10V. All post free.

HIGH GRADE COPPER LAMINATE BOARDS

New standard 350 x 125 x 30mm. Prefabricated ply wood backing board. Price £3.5/6. P. & P. 2/-.

HIGH GRADE COPPER LAMINATE BOARDS

NEW S.C.T. TYPE 25 MINIATURE RELAYS

SPECIAL OFFER!

SPEAKER TAPE RECORDER CASE

Dual Pentaode Tape Eraser and Tape Head Demagnetiser £5.5/6.

ACOS CRISTAL MIXES. High Imp. for desk or hand use.

SPECIAL OFFER!

MOVING COIL STICK MIXES. Fitted on-off switch for remote control. High quality. With low impedance. (Inst. state required). REFERENCE PRICE 30/-

QUALITY RECORD PLAYER AMPLIFIER

A top-quality record player amplifier employing heavy duty wound metal transformer, ECG25, EL84, E820 valves. Separate Bass, Treble and Volume controls. Complete with output transformer for 3 ohm speaker. Output trans. tapped for 3 ohm and 15 ohm. Heavy 3-4in. metal turntable. A.C. Mains 200-240V- Supplied absolutely complete with built in power transformer and output trans- former and output trans- former matched for 3 ohm speaker, separate Bass, Treble and Volume controls. Negative feedback line. Output 4 watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etc., wired and tested for only £4.5/6. P. & P. 3/-.

WM-27 TRANSISTOR AMPLIFIER

BRAND NEW TRANSISTOR BARGAINS, SET 1215 (Matched Pair) 10-20 WATTS 12-0-12 1-6 AMP.

Set of Mullard 6 transistors OC44, 9-04, AC128, matched pair AC128 850-6V, Mullard LIF83 Audio Transistor Pack and matched pair of AC128 12V. ORP81 Cadmium Sulphide Cell 10V. All post free.

TRANSPORTER STEREO 8 + 8 MK II

Now using Silicon Transistors in first five stages on each channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit that contains 14 transistors giving 8 watts push output per channel (16W mono). Integrated pre-amplifier. With ECL84, EL84 and Valco 2 x 20 volt P.C.C. transformers. Fully shrouded section wound output transformer to 8 ohm and announcements. Complete with latest type lightweight pickup arm and ceramic cartridge with 2-3V output for LP. LIMITED EDITION.

SPECIAL OFFER!

E.M.I. 4-SPREADSTER HEAD

SPECIAL OFFER!

GREAT TWIN CARTRIDGE HEAD

Beautifully designed and pre-wound twin cartridge head. Will take above amplifier and any B.S.R. or GARRARD turnchanger or Single Player Unit (revised AT60 and 250). Size 18 x 15 x 6in. PRICE £3.5/6. P. & P. 5/6.

DE LUXE QUALITY PORTABLE R/P CABINET

FUNK TONER READ

Beautifully designed and pre-wound twin cartridge head. Will take above amplifier and any B.S.R. or GARRARD turnchanger or Single Player Unit (revised AT60 and 250). Size 18 x 15 x 6in. PRICE £3.5/6. P. & P. 5/6.

TWIN CARTRIDGE HEAD

The Sinclair IC-10 is the world’s first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts, is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zinc diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.

Monolithic I.C.s. were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.

The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc.

The photographic masks required for producing monolithic I.C.s. are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

SINCLAIR RADIONICS LTD, 22 Newmarket Rd. Cambridge. Tel: OCA3-52731
Specifications

- Power Output: 10 Watts peak, 5 Watts R.M.S. continuous.
- Frequency response: 5 Hz to 100 KHz ±1 dB.
- Total harmonic distortion: Less than 1% at full output.
- Load impedance: 3 to 15 ohms.
- Power gain: 110dB (100,000,000,000 times) total.
- Supply voltage: 8 to 18 volts.
- Size: 1 x 0.4 x 0.2 inches.
- Sensitivity: 5 mV.
- Input impedance: Adjustable externally up to 2.5 M ohms for above sensitivity.

Circuit Description

The circuit diagram of the IC-10 is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class AB with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud-hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifier, radio receivers. The transistors in the IC-10 have cut off frequencies greater than 500 MHz so the pre-amp section can be used as an R.F. or I.F. amplifier making it possible to build complete radio receivers without any additional transistors.
The most challenging loudspeaker development in years

It costs about a quarter of what you would expect to pay for a good stereo speaker system when you choose Q.14s. This is because of the considerable amount of research and experimentation into the acoustic properties of special materials that went into the design of this excellent speaker. It resulted in an instrument so outstandingly good that experts, reviewers and the public alike were unanimous in their praise for the Q.14 at this year's Audio Fair. The Q.14 is very compact, measuring only 9\(\frac{3}{8}\)in square on its face by 4\(\frac{3}{8}\)in deep. Its unusual contours permit it to be positioned where no ordinary speaker could be used to advantage. The neat black matt finish with aluminium bar trim keep this speaker pleasantly in conformity with modern design trends. The Q.14 has acoustically contoured and sealed sound chamber. Smooth response from 60-16,000Hz. Loading up to 14 watts. 8 ohms impedance. Brilliant transient response. Size 9\(\frac{3}{8}\)in square on face. Finished black matt with aluminium bar trim. Detachable pedestal base. Hear the Q.14 in your own home. If you are not delighted with it, send it back, and your money, including cost of return postage to this office, will be refunded in full.

£7-19-6

SINCLAIR RADIONICS LTD., CAMBRIDGE

Sinclair IC-10 a revolutionary new amplifier—See previous pages—
The smallest radio set in the world

The Sinclair Micromatic is available ready built or in kit form. This latter now comes in a convenient new presentation pack complete down to a generous free supply of solder. The moulded polystyrene interior enables you to check the contents in an instant, and helps to make building even easier and surer. Now, the Micromatic is better than ever—more powerful and better sounding to assure superb listening. Selectivity is better than many larger sets. Whether you build it, or buy your Micromatic ready built, it is the best and the smallest personal radio in the world—and it’s British. In elegant aluminium fronted black case with slow motion tuning.

IN THE NEW KIT PACK

This attractive new presentation pack enables you to check the contents of your kit instantly. Everything is there down to the last nut and includes easy to follow instructions and generous supply of free solder.

SINCLAIR Z.12
12 WATT AMPLIFIER AND PRE-AMP

The Sinclair Z.12 has fantastic power-to-size ratio, and great adaptability. It will operate from batteries or PZ.4 mains power supply unit, and gives superb stereo reproduction for modest outlay. Thousands are in use throughout the world—in hi-fi, electronic music instruments, P.A., intercom systems, etc. This true 12 watt amplifier is supplied ready built, tested and guaranteed together with the Z.12 manual which details control circuits enabling you to match the Z.12 to your precise requirements. For complete listening satisfaction use your Z.12 system with Q.14 loudspeakers. It assures superb quality with substantial saving in outlay.

IDEAL FOR BATTERY OPERATION

- 3 x 10 x 16in
- Class B Efformer output
- 15-50,000Hz
- Suitable for 3, 5, 8 or 150 speakers. Two 10 speakers may be used in parallel
- Input—2mV into 2kΩ
- Output—12 watts R.M.S.
- continuous sine wave (24V peak) 15W music power (30W peak)
- Ready built, tested and guaranteed.

89/6
Radiocommunication of Industry for all British Design Centres. Featured in Sound and Television broadcasts.

Beautifully engineered; battery operated; "no soldering; no prior knowledge needed.

Results guaranteed by our technical department. People say;

"Most Impressive—a stroke of genius whoever devised it."

"Nothing could paint the picture clearer than building these sets."

"You have opened up a new world."

"I can only describe the results as brilliant, absolutely brilliant."

Selected by the Council of Industrial Design for all British Design Centres. Featured In Sound and Television broadcasts.

A No. 4 SET and 6-TRANSISTOR SUPERHET

Theoretical Circuit
Practical Layout

Ej/05 Light Operated Relay. Our 'E' Series of basic electronic circuits is available separately.

Post and Packing costs are continually rising; Please add 1/1 towards same. CASH WITH ORDER PLEASE

OVERSEAS QUOTATIONS BY RETURN OF INSTRUCTIONS TO ANYWHERE IN THE WORLD

RADIO & ELECTRONIC INSTRUCTIONAL SYSTEM

Theoretical Circuit
Practical Layout
THERMOSTAT WITH PROBE

This has a sensor which is connected to a 15A switch using a 15A probe. The probe has a housing which is made of a flexible capillary tubing — control range is 20°F to 100°F, suitable for control of oil heating and liquid heat. The probe is made of a suitable material and is insulated against the vessel. This thermostat is used in dark rooms, for use in conjunction with a fire alarm, or if liquid is being heated by gas or other means not controllable by the switch. The probe is made by the famous Thomas Co., we offer these at £2.0/ each. Postage and insurance 5/.

MINIATURE WAFFER SWITCHES

4 pole, 6 way—3 pole, 2 way—4 pole, 2 way—3 pole, 3 way—2 pole, 6 way—1 pole, 12 way. All at 1⁄2 inch, 88/-, doz., your interest.

WATERPROOF HEATING ELEMENT

Type A, 110V. Measures 2'/6 long. Is ideal in Kitchen, Bedroom, Hallway, Porch, etc., for parking light, modulated light alarm. Simple to install, stabiliser, etc. Only 39/6, plus 2/- post and insurance.

PHOTO-ELECTRIC KIT

Particularly good for dark room light or for making a switch for use in side so luminous in dark, alarm/counter, etc. Kit comprises printed circuit, AH parts to make light operated switch/burglar alarm. Laminated Boards and chemicals. Latching relay, 14/6 each. 6/6 each. 3 heat model 7/6. Don’t miss this amazing offer, 30/- with tube. Assembled ready to install. Postage and Insurance 6/6 extra. Other “Atlas” fluorescent fittings with tubes 6V, 40W 4/6, twin, twin 40W 20/6. 4 pole, 1 core 20/6, 2 pole, 1 core 19/6. Post and 4/- post.

BLANKET SIMMERSTAT

2500 watts—4ft. long but best to shape, ideal for overhead heater—just mounted reflected above. 12/6 each, plus 4/6 post post paid.

CONTROL CLAP ELEMENTS

1500 watts—4ft. long but best to shape, ideal for overhead heater—just mounted reflected above. 12/6 each, plus 4/6 post post paid.

BEAKASTACK

This is an instant plug-in transformer. Simply plug your appliance into it and it will regualate the temperature. 15% post free.

PP3 ELIMINATOR

Plays your pocket radio from the mains. Save £2. Complete with condenser and instructions. Only 6/6 plus 1/- post.

BATTERY OPERATED TAPE DECK

With Captain control. This unit is extremely well made and is suitable for playing tapes or microphones as long as you have a mains operated charger which you mount on the wall. It can be equipped with M4 type intended for use with fluorescent tubes or the new “Grolux” tubes for silent use. Chokes are superior, do not include the choke. 30/- plus 2/- post. Don’t miss this offer.

MICRO-SONIC

7 transistor key chain loudspeaker. Radio in very pretty case, size 1 3/4 x 1 3/4—compact with ＄5 leather zip bag. Specification: Circuit Type 7 transistors (5N23, 5N28, 5N27, 5N46, 4354). Frequency range: 50 to 16000c/s. Sensitivity: 1 mV at 80dB at 1800 c/s. Power output 5mW at 80dB output. Design: Loose Loudspeaker—permanent magnet type. In transit from the factory all the leads were cut so the loudspeaker was in working order and in this condition is cleared away they should work perfectly. It is suitable for use with any of the tapes that are new. 12/6 plus 2/- post and insurance. Price 50/- each.

BARGAIN OF THE YEAR

Transistor amplifier, Price 50/- each.

HI-FI BARGAIN

Full 13 inch loudspeaker. This is undoubtedly one of the finest loudspeakers that we have ever offered produced by one of this country’s most famous makers. It has a die-cast metal base and is strongly recommended for home use. It is cheap and very compact. Only 39/6, plus 2/- post. Don’t miss this offer.

FLUORESCENT LIGHTING SNIP

The wonderful DREAMLAND clock is luminous, you can always see the time and realise that the blidet is on. It can be mounted on the wall or on the ceiling. 8/6 each, plus 2/6 post. This month’s special, 8/6 each, plus 2/- post and insurance. You save £2-10-0.

FLUORESCENT CONTROL KITS

Suitable for a dozen of different applications—such as bypassing through with one of this country’s most famous makers. It has a die-cast metal base and is strongly recommended for home use. It is cheap and very compact. Only 39/6, plus 2/- post. Don’t miss this offer.

DRILL CONTROLLER

CENTRIFUGAL FAN

TRANSMITTER POWER PACK

Designed to operate transistor sets and amplifiers. Adjustable output 6V, 4V, 3V, 2V, and 1V. 6V output can be used up to 500 watts. The following batteries: PP1, PP3, PP4, PP5, PP7, PP9, and others. Kit comprises mainst power pack, condensers and instructions. Real input at 10/6, plus 3/6 postage.

REED SWITCH

Price 6/6 each. for crystal or for use with largeohl plates, 4 pole, 2 way—3 pole, 3 way—2 pole, 6 way—1 pole, 12 way. All at 1⁄2 inch, 88/-, doz., your interest.

FULL F.I. 12 INCH LOUDSPEAKER. This is undoubtedly one of the finest loudspeakers that we have ever offered produced by one of this country’s most famous makers. It has a die-cast metal frame and is strongly recommended for home use. It is cheap and very compact. Only 39/6, plus 2/- post. Don’t miss this offer.
Ordering Components is **FUN**

with THIS Catalogue in your hands!

Ever had trouble locating a particular piece for your project? Ever wasted time thumbing through confusing price lists? Ever been foot-weary and frustrated tramping round the shops?

Sigh no more. Just sink into an armchair and enjoy life with a Home Radio Catalogue! Pick your parts. Grab your pen. Make for a letter-box. Your chosen items will be with you almost before you can get back to that armchair!

This Catalogue really is a must if you’re interested in Radio and Electronics. It has 256 pages, over 7,000 items listed, over 1,300 illustrations. With each catalogue we supply a Book Mark giving Electronic Abbreviations, an Order Form and an Addressed Envelope. All this for only 7/6 plus 3/- post and packing. By the way, every catalogue contains 5 vouchers, each worth 1/- when used as directed. Send the coupon today with your cheque or P.O. for 10/6.

Please write your Name and Address in block capitals

Name

Address

Home Radio (Mitcham) Ltd., Dept. PE, 187 London Rd., Mitcham, CR4 2YQ

TRIAL AND ERROR DESIGN

Designing by soldering iron, rather than by pencil and paper, is a "failing" most of us would admit to, sometime or the other. Once a rudimentary circuit has been sketched out, the temptation to wire up some components and see what happens is often irresistible. The resulting assemblage of parts is not exactly 'a joy to behold, not that we are under any delusions in this regard, for do we not describe it by some unflattering name such as a "bird's nest", a "lash-up", or a "breadboard design"? Nor of course are we surprised when the circuit fails to "go" first time. At this point we really start to think in earnest, though our thoughts, if we are honest, are likely to be directed towards component substitution, rather than back to first principles.

This is where the soldering iron takes over as an essential design tool. Why get involved in time consuming paper calculations when it is but a few seconds work to disconnect a component and insert a substitute? If the new one does not work, the process can be repeated ad infinitum until success is achieved. By the time this happy moment arrives, our "bird's nest" will have changed its geometry many times and the final arrangement may bear little resemblance to the original set-up. But now the circuit diagram can be drawn in its final form and those little details like component values filled in.

The purist can argue that this empirical approach to electronic design is completely wrong. True it is a back-to-front process, but it suits many private designers to arrive at the answer mainly through practical experiments.

Some non-professionals may be surprised to learn that the "trial and error" method of design is not uncommon in industry either. Indeed it is sufficiently widely practised to have provoked strong criticism from two members of the University of Edinburgh, Prof. W. E. J. Farvis and J. Murray, in a paper which they presented to a Conference on Electronics Design last September. The authors argue that this casual, undisciplined approach to design is not found in any other branches of engineering, and that it is uneconomical and inefficient, and is a serious liability that has to be borne by our electronics industry.

Amateur designers must be excused if they permit themselves a wry smile at this confirmation of what has long been suspected—that their "weakness" is shared by the professionals. For the industry, this criticism of its design methods is food for thought indeed. Will it prove indigestible?

F. E. Bennett—Editor
Open pipe door chimes have almost usurped the common or garden clamorous electric bell. The sweetly sonorous tones linger with each chime lulling you to the door.

Electronics offers a variant on these mechanical tinnitus abulations for the unit to be described, whilst producing the true ringing sound of a bell, may be adjusted for rate of chiming, pitch, volume and sustain.

For hoteliers and guest house managers who would prefer a push button alternative to the dinner gong simple modifications to the unit are provided.

PULSE GENERATOR

The pulse generator is built around a complementary pair TR1, TR2 shown in Fig. 1. Assuming C1 and C2 are both discharged. When S1, the bell push switch, is made C1 charges by way of diode D1 and R3 whilst C2 charges via R2 and R3.

Fig. 1. Circuit diagram of chimes unit. Note that Sla and Slb are ganged. Sib switches the amplifier shown in Fig. 3.
With the charging of C2, TR1 is held off by the negative voltage appearing across R2. Since no collector current is flowing no voltage appears across R1 and TR2 is similarly non conducting.

When C2 has charged the npn transistor TR1 conducts and switches TR2 hard in so that a positive going pulse appears across R3 and is applied to TR3 via the coupling capacitor C3.

This pulse reverse biases diode D1 so that capacitor C1 maintains TR1 in conduction.

As C1 discharges so does C2 and with the completion of these processes the circuit reverts to its initial passive state before another pulse cycle.

To increase the pulse repetition frequency either C1 or C2 should be diminished in value. To decrease the p.r.f. raise these values.

TWIN-T TONE GENERATOR

The chimes producing circuit is a twin-T oscillator consisting of a high gain silicon transistor TR3 and attendant RC networks which determine the frequency of operation.

The twin-T geometry derives from the arms R5, C5, R8 and C4, C7 and VR1. As is common with sinusoidal RC oscillators frequency varies inversely with these component values. In this unit values were selected to produce a frequency of about 3kHz consistent with bell sounds.

SHOCKING

To produce a ringing tone the oscillator must be shocked into activity. This means that in its passive

| COMPONENTS . . . |
|--------|--------|--------|
| **Resistors** | **Potentiometer** | **Transistors** |
| R1 6-8kΩ | VR1 22kΩ miniature carbon preset |
| R2 100kΩ | |
| R3 47kΩ | TR1 NKT713 |
| R4 47kΩ | TR2 NKT128 |
| R5 100kΩ | |
| R6 56kΩ | |
| R7 6-8kΩ | |
| R8 100kΩ | |
| All 10%, 1/2W carbon |

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 25μF 15V sub-miniature elect.</td>
<td>S1 Push-to-make 2 pole miniature (Radiospares)</td>
</tr>
<tr>
<td>C2 8μF 15V sub-miniature elect.</td>
<td></td>
</tr>
<tr>
<td>C3 25pF</td>
<td></td>
</tr>
<tr>
<td>C4 1,000pF</td>
<td></td>
</tr>
<tr>
<td>C5 1,000μF</td>
<td></td>
</tr>
<tr>
<td>C6 1,000μF</td>
<td></td>
</tr>
<tr>
<td>C7 60μF 15V sub-miniature elect.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1, BY2, BY3 Three PP1 6V batteries</td>
</tr>
</tbody>
</table>

Fig. 2. Component layout on board and underside view showing the breaks in the copper strips
Fig. 3. Suitable 200mW amplifier (Mullard) for use with chimes unit

state no oscillations are produced, a condition which is determined by the setting of VR1.

With the arrival of incoming positive pulses developed across R3 the twin-T oscillator produces a train of progressively damped sine wave.

The R6/C6 combination sustains this so that the tone lingers gradually diminishing in intensity.

Adjustment of this time constant must be in accord with the p.r.f. of the pulse generator. As a rule of thumb the higher the frequency, the shorter the time constant. This means a reduction of C7 capacitance.

CONSTRUCTION

The complete circuit can be assembled on a piece of Veroboard, similar to that given free with the October issue of PRACTICAL ELECTRONICS. See Fig. 2 for arrangement of components and wiring.

AMPLIFIER

The output at F16 can be applied to any high input impedance amplifier but for those constructors who have no such unit a suitable design is given in Fig. 3. This will provide an output of up to 200mW. Volume is, of course, adjustable to suit personal requirements.

S1 ensures that no battery power is consumed until this switch is depressed when S1a and S1b route the required 12 and 6 volt supplies to the chime and amplifier circuits.

GONG

To produce the sound of a gong the capacitors C4, C5 and C7 should be changed to 0.01µFd. No other alterations are necessary.

FUNCTIONAL CHECKS

To check that the pulse generator is working successfully a 6V, 0.06A pilot bulb should be substituted for R3 when the wiring of this half of the circuit according to Fig. 3 is completed.

If the lamp continuously blinks the supply can be disconnected, R3 substituted and then the tone generator assembled. For checking the tone generator the amplifier must be attached. Rotation of VR1's wiper will produce an oscillation. This should be adjusted to the point when single chiming tones are produced; this completes the setting up of the unit.

TWO TONES

For those constructors wanting two tones at different pitches, another twin-T circuit is required. The pulse output of R3 can be applied to a flip flop circuit which would gate the two tone generators, the outputs being taken out to the amplifier.

For pitch variation the C4, C5 and C7 capacitors should be collectively altered.
Very simple circuits can be designed using the characteristics of silicon planar transistors to their best advantage. The biasing technique in particular has proved to be of great benefit in industrial practice and variations on it are very common in the design of integrated circuits. It is worth considering whether circuits can be further simplified without losing too much in performance.

POTENTIAL DIVIDER BIAS

The base-emitter voltage of a silicon transistor is surprisingly steady for a wide range of currents and temperatures. For example it will be changed by only 10 per cent for an eight-fold increase in current or a 30 degree C change in temperature. So under the conditions normally met by the home experimenter this voltage can be assumed constant for any one transistor and is not likely to differ by more than a few per cent for other transistors of the same type.

Even transistors from different manufacturers can be expected to be sufficiently close for most purposes. As a check on this two planar npn silicon transistors, an ME101 and a 2N3707, were operated at room temperature with emitter currents of 1mA. The corresponding base-emitter voltages were 675mV and 630mV respectively. As can be seen from their data sheets, these two are very different transistors by different manufacturers and yet the V_{be} is within 10 per cent in each case, a closer tolerance than the resistors often used in biasing networks. For most small signal planar transistors these figures are typical.

Consider Fig. 1; if the current in the potential divider chain can be made much greater than the base current, then, since the voltage across R_2 is 600mV (the base-emitter voltage of the transistor) the voltage at the collector must be $\frac{R_1 + R_2}{R_2} \times 600$mV.

The errors in this figure will be due to:

1. The base current disturbing the potential divider.
2. Change in V_{be} with temperature replacement of the transistor, etc. As outlined above these changes are small.

In Fig. 2, an emitter follower is added in which the current can be higher, permitting a potential divider of as low a resistance as desired thus allowing the elimination of error (1) if desired. Too low a value of resistance in the divider will shunt the input signal too severely and reduce gain.

To achieve the highest possible voltage gain without sacrificing d.c. stability the emitter resistor of TR2 may be bypassed and a load inserted in the collector circuit (Fig. 3). Where this form of circuit is used, the emitter potential of TR2 is constant regardless of signal and the base of TR2 and hence the collector of TR1 will only have a small voltage swing. It is here that a further characteristic of transistors, not shared by valves, comes to our aid in producing a simple, stable design.

It is often assumed, since a transistor can be represented by two diodes back-to-back in explaining the bias voltage polarities, that it is necessary for the collector-base diode to be reverse-biased. Deeper investigation shows that what is required is only that the collector-base diode shall not be forward-biased sufficiently for it to conduct.

Thus in an npn transistor the base potential with respect to ground will be approximately equal to 600mV while the collector may fall to 200mV or less with only a small effect on the gain. This can be checked by looking at the saturation region characteristics of the transistor.
SINGLE RESISTOR BIAS

Replace the potential divider by a single resistor again of a low enough value that base current provides only a small voltage drop. The voltage at the emitter of TR2 will now be little higher than that of TR1 base, i.e. approximately equal to 600mV. Thus the emitter resistor will have to be of a lower value if the current in TR2 is to be maintained (Fig. 4). Note that the collector of TR1 is now at about 1.2V giving an adequate safety margin for the avoidance of saturation.

The advantages of this circuit are two-fold:

1. The stability is as good as that of the original but with one less resistor.
2. A smaller voltage drop occurs across R_e, permitting a lower supply voltage, or alternatively, a slightly increased gain by increasing the load resistances and maintaining the currents constant.

The design procedure is then as follows:

1. Assume that R_f can be low enough that the voltage drop across it is negligible. Decide the current required in TR1 from a knowledge of the load. The voltage across R_e will now approximate to the V_{be} of TR1 (600mV). If R_e is in ohms

 $I_{e2} = I_{e2} = \frac{600}{R_e} \text{mA}$

 i.e. $R_{e2} = \frac{V_{ce} - 0.6}{2. I_{e2}}$

 if V_{ce} is in volts, I_{e2} is in mA, R_{e2} is in kilohms.

3. TR1 must carry sufficient current to supply the base of TR2 comfortably. If the d.c. current gain of TR2 is known (h_{FE2}) then the base current can be calculated as

 $I_{e2} = \frac{I_{c2}}{h_{FE2}}$

 Otherwise a minimum gain of, say, 30 may be assumed, and the resulting value calculated for R_{e2} may be increased if experience shows this to be pessimistic.

 The collector load current of TR1 can then be made at least twice the maximum expected base current of TR2; for safety a factor of three or four times might be preferable. The voltage at the collector of TR2 is, as previously indicated, about 1.2V. Hence

 $R_{e1} = \frac{V_{ce} - 1.2}{4 \times I_{b2}}$

 where I_{b2} is in mA and R_{e1} in kilohms.

 The safety factor used here is 4, i.e. the base current will be one quarter of the collector resistor current and the collector current of TR1 three-quarters of it. Since the input impedance of TR2 is relatively low (operating at a larger current, r_{in} falls) then even larger safety factors may be used without R_{e1} falling enough to shunt the signal away from the base of TR2 and lower the gain.

For most silicon planar transistors the gain will be maintained even at low currents, but with alloy junction units or germanium ones it may be necessary to reduce R_{e1} considerably so that TR1 has sufficient current for satisfactory operation.

4. R_t can now be chosen so that the voltage drop across it is negligible compared with the 600mV at the base of TR1. If it is to be limited to say 10 per cent, then first calculate

 $I_{b1} = \frac{I_{c1}}{h_{FE1}}$

 Then

 $R_{t(\text{max})} = \frac{60}{I_{b1}}$

 where, if I_{b1} is in mA, $R_{t(\text{max})}$ will be in ohms; the voltage is 600mV.

PRACTICAL EXAMPLE

The above procedures may seem complicated so let us now apply them to a practical example. An output of
2V r.m.s. is required into a load of 2 kilohms. The peak load voltage is 2√2 volts, i.e. peak load current is about 1.4mA. To give a safe margin on both voltage and current, a supply voltage of say 9V should be used with a standing current in the last transistor of 5mA.

Thus

\[R_c = \frac{9 - 0.6}{2 \times 5} = 0.84 \text{ kilohms} \]

Choose the nearest preferred value of 820 ohms.

Similarly

\[R_e = \frac{600}{5} = 120 \text{ ohms}, \]

which is itself a preferred value. Note that in practice the voltage at the emitter of TR2 will be somewhat higher than at the base of TR1 and in choosing the nearest preferred value for Re it would be preferable to err on the high side.

Now take current gains for the two transistors as being typically 40 each.

\[I_{b2} = I_{c2} = 0.125 \text{mA} \]

We can now make the current in the collector load of TR1 say four times this, i.e. 0.5mA, leaving a collector current in TR1 of 0.5 - 0.125 = 0.375mA.

\[R_{e1} = \frac{9 - 1.2}{0.5} = 15.6 \text{ kilohms}, \]

i.e. a preferred value of 15 kilohms may be used.

The base current

\[I_{b1} = \frac{I_{c1} \text{(mA)}}{40} = 9.4 \mu\text{A} \]

If the voltage drop across \(R_t \) is not to exceed, say, 10 per cent of the \(V_{be} \) for TR1, i.e. 60mV.

\[R_t = \frac{60}{9.4} = 6.4 \text{ kilohms}. \]

A preferred value of 6.8 kilohms would not be unreasonable, and the values are now shown in Fig. 5. The capacitors are not shown but would be required as usual at input and output, and one to bypass \(R_e \).

Typical values for input and output might be 25μF; for bypass a similar capacitance is used although at a lower voltage working. These would give a lower cut-off frequency somewhere around 100Hz depending on source and load resistances.

AMPLIFIER BUILDING BRICK

This block is a most useful general purpose amplifier and can be made the basic building brick of most audio and many r.f. circuits. For example, if TR2 emitter is left unbypassed and its collector taken straight to the positive supply (Fig. 6) we have a very simple example of an operational amplifier, the basic circuit for analogue computers.

The voltage and current at the base of TR1 are both negligible compared with those at the output and for a.c. purposes the base may be considered as a "virtual earth". From this, \(V_{out}/V_{in} \approx -Z_2/Z_1 \) since \(Z_2 \) and \(Z_1 \) carry the same current and have a common point which is effectively at earth potential. Making \(Z_1 \) and \(Z_2 \) both resistors, we have an amplifier whose gain is almost independent of the transistor characteristics, provided that one aims at a gain very much less than the maximum of which the circuit is capable.

Fig. 7 shows a practical form of the circuit in which the feedback is taken from a tapping on the emitter resistor. This raises the emitter potential allowing a larger voltage swing at the output, but the gain calculation becomes a little more complicated. Consider Fig. 8, if the gain of the amplifier is high then \(V \) will be negligibly small compared to the output voltage and we may conveniently take it as zero. If, as before, we similarly ignore the base current then we have the following relationships:

\[I_t \approx I_{in} \]

\[\frac{V_t}{R_t} = -\frac{V_{in}}{R_1} \]

and

\[\frac{V_t}{V_{in}} = -\frac{R_2}{R_1} \]

But

\[\frac{V_o}{V_{in}} \approx -\frac{R_3}{R_1} \times \frac{R_4 + R_3}{R_3} \]

Multiplying equations (1) and (2),

\[\frac{V_o}{V_{in}} \approx \frac{1}{R_1} \times (R_4 + R_3) \]

Thus the working gain of the amplifier with feedback is defined by the value of the resistors and hence can be extremely stable. Unfortunately the initial gain of a two-transistor amplifier is not very high (perhaps a couple of hundred at most and often less). The actual gain will be appreciably less than that predicted by the equation unless, for example, the ratio \(R_2/R_1 \) is made so small that the overall gain is only 5 or 10. Even so the amplifier gain holds fairly steady in the region of 20 for a wide range of transistors.

If these are planar units, the response is to within 3dB up to at least 500kHz and in some cases to beyond 1MHz. It is not surprising that this particular circuit is commonly used in integrated form as a wide-band r.f. amplifier with bandwidths up to 10MHz and above. Note that \(R_1 \) plays no part in the biasing of the circuit but determines the input impedance of the circuit.
A given output voltage depends only on a specified input current, and this can be provided either by a small input voltage if \(R_i \) is low, or a larger voltage if \(R_x \) is high (Fig. 7). In the first case the input impedance is low and is more affected by the parameters of the transistors, while the higher input impedance of the latter also means that the overall voltage gain is reduced.

RECORD AMPLIFIER

If the load is re-inserted in the collector of TR2 as in Fig. 5, but with no bypass capacitor across the emitter circuit, we have an output that is back in phase with the input. The output resistance at the collector is high because the current in the collector is almost equal to that in the emitter and the latter is closely controlled by the negative feedback. The overall output impedance at the collector is then roughly equal to the collector load.

If the collector can receive its current through some component with a very high impedance, then the circuit can deliver a current to an external load regardless of its impedance. For example, using a choke of high inductance as in Fig. 8 the circuit can serve as the final stage in the record amplifier of a tape recorder. The requirement is for a linear response of output current into the tape-head to provide a flat response (in practice some high frequency boost is required to help overcome head losses).

The head being inductive has a rising impedance with frequency, and the technique with valve amplifiers was often to swamp this by using a large series resistance, thus requiring a large voltage swing. With transistors, the same high source impedance must be duplicated by feedback as in this circuit. For a record current of up to 200\(\mu \)A, a standing current of 1mA in the output transistor is adequate.

The circuit is not complete in that it would require a bias filter to prevent the amplifier being overloaded by the h.f. bias being fed to the head by the oscillator. Secondly, the boost in high frequency performance can be conveniently added in the output stage. Neither of these have been checked with these particular component values, though interested readers will find the ideas discussed in more detail in articles on tape recorder design that appear from time to time elsewhere.

In Fig. 9 some suggested values are given for the high frequency boost circuit to give a rising characteristic at about 3kHz, with a limit in this rise to a few decibels by the series resistor. The response will be limited by the falling impedance of the collector choke above its own self-resonant frequency.

PLAYBACK AMPLIFIER

Following up the characteristics of tape heads leads to a further application of the circuit in the playback amplifier. The e.m.f. generated in a tape head increases with the frequency of the recorded signal. In valve amplifiers the resulting voltage was fed to the grid of the first valve, with equalisation applied by negative feedback in the following stages. Since the impedance of the tape head rises with frequency at the same rate as does the e.m.f. generated, then the current flowing in a short circuit placed across the head will be independent of the frequency of the recorded signal.

Such an approach would be difficult with valves with their high input impedance, but the transistor is a "natural" in this circuit. Aided by a little judicious negative shunt feedback as in this form of circuit, the input impedance can be made sufficiently low to appear as a short circuit compared with the relatively high impedance of a large inductance tape head (about 0.5H). Thus the circuit of Fig. 9 provides an output voltage which would be constant with frequency were it not for the fall-off in head and tape characteristics above one or two kilohertz.

Again the solution is to boost the gain at these frequencies by shunting the emitter of TR2 with a capacitor. More care has to be taken in the playback system in that tape noise will also be boosted, and, for that reason, in more sophisticated systems the high frequency compensation is achieved by carefully calculated tuned circuits in the record amplifier. (The writer has found that circuits similar to Fig. 9, but using general purpose germanium transistors, gave adequate performance with tape-heads originally intended for valve amplifiers.)

It should be noted that low-impedance tape-heads would not provide a suitable current drive for this circuit unless its input impedance were lowered still more by heavier feedback. These heads have been specially designed for use with transistor amplifiers in a manner similar to the standard valve circuits.
HIGH IMPEDANCE INPUT

We have now seen how to achieve and apply both low and high output impedances (emitter and collector outputs of TR2) and low input impedance. It remains to be seen whether the circuit can provide a high impedance input if desired, and if so, how to make use of this characteristic. As a first step, return to Fig. 4 and reconsider the function of R_t.

It serves to provide bias current for the base of TR1 and for best stability bias conditions should be as low as possible. The lower limit is set by the resulting loading of the source which is effectively in parallel.

Now take the particular case of a transformer coupled input as from, say, a low impedance microphone and step-up transformer. This could be connected as in Fig. 10a but would require a coupling capacitor to preserve the d.c. bias conditions, while R_t would provide an additional shunt path for signal current. If now R_t is replaced by the secondary of the transformer, the bias is fed via an almost zero resistance path, while the shunting effect of R_t is removed.

The secondary is still effectively earthed via the bypass capacitor on the emitter of TR2 and the result is a circuit from which one resistor and one electrolytic capacitor has been removed, the bias stability has been improved and the possibility is of a slight increase in gain. The input impedance, however, is still that of a grounded emitter stage, so our earlier question of high input impedance has not yet been answered.

VIRTUAL EARTH

Now remove the bypass capacitor from the emitter of TR2. The circuit characteristics are radically changed, most particularly in regard to the input impedance. Realising that the voltage gain between the base of TR1 and the emitter of TR2 can be large, we see that as in the operational amplifier (of which this is really a special case) the majority of the voltage across the secondary of the transformer appears between the emitter of TR2 and ground, i.e. TR1 base is again a “virtual earth”.

For example, a secondary voltage of 1 volt might produce 0.99 volt at the emitter with only 0.01 volt at the base of TR1. This latter voltage will cause only a small current flow in the base, i.e. only a small current is drawn from the transformer. With the component values as shown in Fig. 10b this input current might be as little as one or two microamps, and this, for an input voltage of one volt, gives an input impedance of several hundred kilohms. Having removed the capacitance shunt on TR2 emitter, both collector and emitter become available as output points, see Fig. 11.

The emitter has the advantage of low impedance and is tolerant of heavier loads including capacitance of cables, but the voltage gain is slightly less than unity. It is worth noting that in these respects the circuit is comparable to a Darlington pair.

FLOATING INPUT

A disadvantage is that both sides of the input are floating and so the circuit is limited to cases where neither end of the source need be grounded. It is quite feasible to use it in conjunction with a crystal microphone, for example with a 1:1 transformer, though it is certainly not the best circuit for that application.

It is hoped that these examples illustrate the flexibility of the d.c. feedback pair and will persuade more readers to experiment with it. With the ever-falling cost of transistors such circuits are bound to replace single transistors as basic building blocks.

NEXT MONTH

BUILD THIS LIGHTWEIGHT METAL LOCATOR

You can use this super-sensitive electromagnetic locator to trace any type of metal object in earth, sand, masonry, etc.—anything of the size and weight of a penny, for instance, under three inches of soil; larger objects at greater depths. Full how-to-make details and instructions for use in next month's issue. An easy-to-build, easy-to-operate unit.

ALSO

HIGH PERFORMANCE STABILISED POWER SUPPLY

A versatile d.c. power supply, using silicon transistors, to add to your test gear. Continuously variable output of 0 to 22V at load currents up to 1A with stability better than 2 per cent.

PRACTICAL ELECTRONICS

JANUARY ISSUE ON SALE FRIDAY DEC. 13

ORDER YOUR COPY NOW!
R.S.G.B. EXHIBITION

The 21st International Radio Engineering and Communications Exhibition, the yearly meeting place of hams from many countries, was formally opened by Mr. W. J. Sharp C.B.E., the Director of Communications, Diplomatic Wireless Service, on October 2. More than 30 officials attended the opening luncheon and mobile visitors were "talked-in" by a live transmitting station which continued operation throughout the exhibition. The 38 stands, set up in the New Horticultural Hall, London, showed a variety of equipment and displays from many manufacturers, clubs and distributors.

This year's innovation was presented by the Diplomatic Wireless Service who exhibited some modern sensitive equipment used in the "Piccolo" overseas radio telegraph and broadcasting system. The G.P.O. stand, which displayed methods of dealing with television interference and measuring the power output of S.S.B. transmitters, was well attended both by hams and visitors who were also enquiring about transmitting licences. Also of interest to hams was the new "Solid State 2 Metre A.M. Transceiver" which was shown by Daystrom Limited.

P.E. WAS THERE!

The combined stand of Practical Electronics, Practical Television and Practical Wireless attracted great attention from those particularly interested in working practical projects—the PEAC (Analogue Computer) was demonstrated and the new "Bionics" series was represented by a working display of the two electronic "animals" described in last month's issue. A "Wideband Triple Conversion Communications Receiver", which is to be a future project, commanded considerable interest from radio hams, who readily understood the impressive specification provided. Other items on the P.E. stand included the series of "IC Projects" and the "Hi Fi Transistor Microphone".

Other stands displayed a wide range of transceiver, receiver, audio, test, experimental and ancillary equipment from British, American and Japanese manufacturers. A large range of components were displayed on a number of stands and many visitors took advantage of the "special offers".

Specialised groups and clubs concerned with amateur communications who held displays were—the Radio Amateur Invalid and Bedfast Club, The Radio Amateur Emergency Network, the British Amateur Television Club and the British Amateur Radio Teleprinter Club. Over 8,000 enthusiasts visited the exhibition.

POINTS ARISING

RADIO CONTROL FOR MODEL BOATS—3
(August 1968)

The author has had experience of three transmitters, which have all operated similarly, and has discovered that depending on where the coil of L3/L4 (Fig. 13) is with respect to the former, an ambiguity in setting-up procedure can exist if the technique used in the published articles is used. This was not apparent on the first transmitter. This ambiguity can result in reduced transmitter output. If the following procedure is adopted instead of that outlined under Transmitter Alignment in the August issue, more positive control will result.

Open link 2 and set VR2 to a maximum. This is to ensure that TR4 does not overheat during setting up with link 2 open. Insert current meter (0-50mA) in emitter of TR3 between emitter connection and L1 and if a further meter (0-20mA) is available insert in place of link 1. The antenna should be connected.

Screw L3/L4 slug out to one end of the former, and observe that both TR3 and TR5 current is very small (<1mA). Commence screwing in the slug, and TR3 current will rapidly increase to a maximum (10-20mA), TR5 current will also increase. Further insertion of the slug (which should be at least 3 in long) will cause a reduction in TR3 current but little change in TR5 current. Adjust the slug so that TR3 current is maintained at a maximum and stable state when S2 is repeatedly opened and closed. Adjust C8 for a minimum "dip" in TR3 current. TR5 current should be 5-10mA.

Reconnect link 2 and set VR2 midway (100 ohm). Rotate VR1 so that TR3 current is a maximum. This will be less than when link 2 was open. The optimum maximum setting of L3/L4 should not have changed.

Adjust C8 for a minimum "dip" in TR3 current. TR5 current should be 5-10mA.

Reconnect link 2 and set VR2 midway (100 ohm). Rotate VR1 so that TR3 current is a maximum. This will be less than when link 2 was open. The optimum maximum setting of L3/L4 should not have changed.

Adjust C8 for a minimum "dip" in TR3 current. TR5 current should be 5-10mA.

Remove meters and reconnect circuit. The transmitter is now aligned.
PRACTICAL! VISUAL! EXCITING!

a new 4-way method of mastering

ELECTRONICS

by doing — and — seeing . . .

1. OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS

2. BUILD and USE a modern and professional CATHODE RAY OSCILLOSCOPE

3. READ and DRAW and UNDERSTAND CIRCUIT DIAGRAMS

4. CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FREE POST NOW for BROCHURE

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: NAME .. BLOCK CAPS

ADDRESS .. PLEASE P E II

or write if you prefer not to cut page 859
A NEW DE-LUXE FM MONO/STEREO TUNER FROM TRS

- A.F.C. & G.C.
- Noise Limiter
- Chassis Ready
- pre-tuned

Kit to make MONO & STEREO.

40 tubes, 15 assembly, tuning and tuning units. 10 gains. 2/-.

Add-on Stereo Unit 3/- (3/-)
Power Unit 3/- (3/-)
Simplex Cabinet 1/- (1/-) per unit

TRS STEREO 4-4 INTEGRATED AMPLIFIER

Assembled: Mono/mono and Radio/PU switches.
Amplifier Kit 10/-.
TRS. Power Unit 2/- 5. (5/-)
TRS. Simplex Cabinet 2/- 17. (17/-) per unit

4 p.c. D.L. plugs and sockets (post free)

CABINET—All standard sizes in close tol. fi

VEROBOARD—All standard sizes in

[Continued on next page]
Pulse forming circuits and rhythm switch assembly were completed last month. In this second and final article operation of the sound generating circuits and their construction will be presented together with final wiring details.

SOUND GENERATION CIRCUITS

Fig. 10 shows the block diagram of the circuits involved in the sound generating half of the unit. Pulses from the two sets of differentiators are routed to the wipers of the rhythm selector switch S3. In selecting a dance tempo switch position pulses are steered to the associated sound forming circuits producing a rhythmic percussion pattern of high and low bongoes, bass drum and brushes as desired. As described in the last article these patterns are contained in the framework of the 6 or 8 pulse cycle produced from the twisted ring counter. The panel controls VR1 and S2 permit both control of tempo and extension of the rhythm pattern up to a maximum of 12 or 16 beats to the bar.

The noise generator produces a random combination of frequencies embracing the audio gamut. This is fed to two transistor gates which are separately triggered by pulses of different duration to produce long and short brush sounds after amplification. Fig. 11 gives the complete circuit of the various stages. With reference to this a more detailed description of operation follows.

HIGH BONGO

This sound is produced by feeding a pulse or pulses into the circuit comprising D35, R68, C34 and L2 the latter winding being encapsulated in an LA7 ferrite pot core. 700 turns of 36 s.w.g. enamelled wire are wound on to the bobbin the ends being taken out and soldered to the tags. The bobbin is then placed in the core assembly and the clamps tightened down. (Two should be wound for both bongo circuits.)

The coil inductance should be between $\frac{1}{2}$ and 1 Henry, and depending on the choice of parallel capacitor a wide range of bongo type sounds are possible. The circuit can be used to produce bongo or "scull" sounds.
Fig. 11. Circuit diagram of noise generator and percussion elements
The capacitor is best selected by experiment to give the pitch of sound required. This in fact will be found to lie in the range of 0.1 µF to 1 µF. In the prototype C34 was 0.1 µF for high bongo.

LOW BONGO

Both bongo sounds are the result of pulse exciting a “ringing” circuit consisting of a parallel LC resonator. Since the coil inductances of both circuits are designed to be identical pitch variation will depend on the value of the capacitor used. In the prototype C34 was 0.25 µF but this should be tailored by experiment.

NOISE GENERATING AMPLIFIER

The amplifier is conventional except for the input transistor TR15. The prototype uses the noise generated by a reverse-biased pn junction, but equal performance may be obtained with a noisy Zener diode.

The transistor used is a silicon planar type which has a maximum emitter-base reverse bias of 5 V. When operating from a 12 V supply the junction breaks down and acts like a Zener diode, the current being limited by resistor R75.

The amplifier transistor TR17 should preferably have a gain, or hfe, in excess of 100, to give adequate noise output. Alternatively an extra stage of amplification could be added.

The output amplitude can be adjusted by inserting a feedback resistor R81 the value of which should be resolved by experiment. Lowering the value of this resistor increases the noise output.

MONOSTABLE PULSE GENERATOR

The monostable pulse generator has one stable and one semi-stable state. In its stable state TR16 is on and TR18 off. With the application of a positive trigger pulse, routed via S3, TR16 switches off and TR18 on; the circuit is now astable.

After a period determined by the C37, R72 time constant, the circuit reverts naturally to the stable state with TR16 on and TR18 off.

The monostable timing element determines the width of the positive output pulse appearing at the collector of TR18 and ensures that the short brush gate receives a constant duration input pulse irrespective of the tempo setting.

The triggering of the monostable is taken from either the clock pulse output, which gives a repetitive brush every beat, or one or more differentiator outputs via the rhythm switch S3.

SHORT BRUSH GATE

The short brush gate consists of a common base amplifier configuration. When a short brush sound is required on each beat the clock pulse generator provides positive pulses to D38 so gating TR20.

In the idle condition the gating circuit is held off by a small negative bias on the emitter. This bias should be just sufficient to prevent the noise signal from passing via the gate and this may be set by altering the value of R89. The panel mounted control VR3 enables muting of short brush sounds by setting to zero resistance.
Fig. 12. Component layout and wiring for noise and monostable generators and bongo circuits on board "C".

(a) topside view
(b) underside view

Fig. 13. Component layout and wiring for brush gates, bass drum and pre-amplifier circuits on board "D".
LONG BRUSH GATE
The long brush gate input is connected to the wiper of wafer S3r at the rhythm switch. This provides a selection of any one bistable output which may be applied to diode D37 for gating TR19. As with the short brush gate, bias tailoring is by adjustment of the value of R86. It should be noted that the larger the noise input to the gates the lower the value of bias resistor needed. Panel control VR2 provides both muting by zero resistance setting and adjustment of noise pulse duration to suit personal requirement.

BASS DRUM
A fair imitation of a bass drum can be provided by the bongo circuit using a larger capacitance and so producing a low resonant frequency. However, a high Q coil is desirable and higher resistance values must be used to avoid the sound being too dead.

A better method is to employ a low frequency phase shift oscillator, TR21, which is set by means of VR4 so that the circuit cannot sustain continuous oscillation. The circuit now becomes a selective amplifier and the input pulse from S3a causes a transient disturbance, and the output obtained is similar to that for the bongo drum. VR4 can be set to give a much longer decay to the output and if set too low in value the circuit will oscillate continuously.

This particular circuit can be used to generate more realistic bongo drums than the resonant circuit given and if constructors wish to use this circuit for such sounds it is only necessary to select different values of capacitors for the feedback network to alter the frequency of operation. (It should be noted that R109 was omitted from the components list. This is normal rating, i.e. 10%, 1W.)

BEAT EMPHASIS
For some rhythms it is desirable, for emphasis, to trigger both the bass drum and bongo drum circuit together on the same beat. This accentuation is provided by the wafer S3q.

Reference to Fig. 6, the rhythm switch wiring diagram given in the first article, shows that in the "Mambo" setting of the rhythm switch, connection is made to O1/B1 and this is passed to the drum circuit at wafer S3a via C32.

Since the wiper of this switch is also connected to the O1/B1 output via D17, a differentiator diode, the high bongo circuit is also triggered when the bistable 1 changes state so providing beat emphasis.

It should be emphasised that none of the switch wafers, S3a to S3p should be used to operate two sound circuits simultaneously as this would mean that these circuits would have a common input and would always sound together in other rhythm switch positions.

MIXER AND PREAMPLIFIER
The outputs from the two brush gates are amplified by a single stage amplifier TR22 which drives a resonant filter circuit C56, L3. This circuit gives a characteristic formant to the noise pulses to produce a more realistic imitation of the brush sounds.

The bass drum and bongo outputs are combined and together with the preamplifier brush signals require further amplification in a power amplifier. In the equipment used by the author, the extra amplification is provided by the power amplifier of an electronic organ, into which the rhythm unit is fitted.
BOARD ASSEMBLY
Reference to Fig. 12a shows the topside of board C. Solder pins should be located at the positions indicated and components assembled and soldered to them. With these attachments completed the board should be reversed and components assembled as in Fig. 12b. Board D assembly, Figs. 13a and 13b should be completed and both boards laid temporarily aside.

RING COUNTER CHECK OUT
Constructors should first test the clock pulse generator and ring counter and rhythm patterns can be tried out. During development the author decreased the speed of the clock pulse generator by using 20μF coupling capacitors for C1 and C2. This allows the counter operation to be examined in slow motion using a 20,000Ω/volt voltmeter.

FLYING CONNECTIONS
After the boards are checked for proper function they should be attached to the rails of the chassis assembly (See Fig. 9) and inter board flying connections made. This operation should proceed through from board A to board D. Next, flying lead connections to the switch bank S3 should be made, referring to Fig. 6. Sleeved lead lengths should be cut according to board location. Again connections should be systematic working from wafer S3a through to S3u.

The switch assembly should now be tightly bolted to the front panel and solder connections to the boards made. From front panel control wiring completed and connection made to C58 at output socket SK1 the unit is ready for final testing. (C58, omitted from the components list, is a 0.1μF ceramic type.) Before connection to an amplifier a further wiring check out should be undertaken.

SIMPLIFICATION
The equipment can be simplified, if required, by omitting the fifth bistable. This means that only one set of eight differentiators and associated switching wafers are required. Because of this, TR13, TR14 and S2 in Fig. 4 can be omitted and the 10 kilohm differentiator resistors taken down to the 3V bias line. The bias line resistor R48 should be increased to about 150 ohms.

This simplification means that the maximum number of beats in any rhythm is six or eight. The “BosaNova” rhythm requires a total cycle of 16 beats and so cannot be generated correctly with this reduced system.

No power supply circuit has been given as this will most likely be provided from existing sound equipment. The circuits will operate from less than 12 volts, but if the voltage is reduced too far the noise generating transistor will not be operating in a breakdown mode and the noise output will most certainly be inadequate. The supply used should be well smoothed to avoid hum on the output signal.

SOUND PROOF, INDEED!
Readers will be interested to learn that earlier this year the author demonstrated this Rhythm Generator before a meeting of the Electronic Organ Constructors Society. We understand the performance of this unit created quite an impression upon the audience—Ed.

COMPONENT SUPPLIES
Readers of PRACTICAL ELECTRONICS are frequently interested in obtaining small quantities of specialised electronic components, so our visit to the exhibition paid particular attention to this aspect. All too often one is told, when asking about supplies of “one off” orders: “Well we can, but...”

The sad tale is that some component specialists who handle products from several manufacturers just don’t want to supply in “one off” quantities because overheads are high and the resulting profit margin is very nearly eliminated. The products are there but the problem is how to get them.

How about the retailers? Their job is to sell to the private consumer, the goods that he wants. If he wants a particular type of integrated circuit, or switch, or relay, or what have you, he should be able to walk into a shop and get it either over the counter or on order. The retailer should have few problems—at least, that is what we deduce by talking to representatives of firms like Sasco, Jermy Industries, Waycom, Newmarket, Mullard and so on. These companies, and others, supply in quantity to industry and the trade.

MANCHESTER SHOW
Of the many electronics exhibitions held throughout the course of each year, few can compare with that of the Institution of Electronics, which took place, as usual, in the Lancaster Hall, Belle Vue, Manchester, in September. Immediately one is aware of the informal friendly atmosphere and helpful technical advice received on the various stands.

The lectures in the adjacent rooms are equally, informal, and it is interesting to note the popularity in particular of the demonstration and talk on the Wyvern electronic church organ. This is a fine instrument with two manuals and 30-note radiating pedalboard.

EDUCATIONAL AID
Of particular interest to educational establishments is the “Locktronics” circuit construction system. This is a base board with pillars and clips, on which can be mounted almost any combination of circuitry in the form of clip-on components. Link wires, junctions and crossovers are also supplied in this form. Each piece or component has the circuit symbol painted on its upper surface so that when complete the circuit diagram is shown.

A novel method of encapsulating dry reed switch relays has been employed by Electrothermal Engineering. These are called the “Flat Pack” range and are made in miniature and standard sizes (using single or multiple replaceable switch capsules), or in printed circuit style.

Model control enthusiasts will welcome the news of the Deac Universal constant current automatic electronic charger. This has been specially designed to handle 1 to 20 Deac cells in series connection up to 5Ah in capacity. Charge rate is adjustable in two ranges up to 50mA and 500mA. A charge timer is also incorporated so that the charger can be left unattended.

Deac introduced the new Varta 10/SD 1-6V control cell or “Third electrode cell battery” enabling the battery to be fully charged in one hour. A special charging unit or circuit can be supplied with this for application to the makers.
Complete precision soldering kit

This kit—in a rigid plastic "tool-box"—contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted 1/8" bit.
- Interchangeable spare bit. 5/32".
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
- PLUS 36-page booklet on "How-to-Solder"—a mine of information for amateur and professional.

From Electrical and Radio Shops or send cash to Antex.

49/6

... pin-point precision soldering ... fingertip control ... bits that do not stick to shafts ... bits that slide over elements ... sharp heat at the tip ... reliable elements ... spares always available ...

in Europe, Africa, Asia, America ... ANTEX soldering irons are used by experts and amateurs alike; they have found out the advantages of Antex ... you can too ... buy one in a shop or direct from us ... or ask for our catalogue first.

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from .040" (1mm) up to 3/16". For 240, 220, 110, 50 or 24 volts.

From Electrical and Radio Shops or send cash to Antex. **32/6**

Model CN240/2
15 watts - 240 volts
Fitted with nickel plated bit (3/32") and in handy transparent pack. From Electrical and Radio Shops or send cash to Antex.

31/-

E 20 watts. Fitted with 1/4" bit. Interchangeable spare bits 3/32", 1/8", 3/16", and 1/4". For 240, 220, 110 or 24 volts. 35/-.

ES 25 watts. Fitted with 1/8" bit. Interchangeable spare bits 3/32", 3/16", and 1/4". Ideal for high speed production lines. For 240, 220, 110, 24 or 12 volts. 35/-.

Spare bits and elements for all models and voltages immediately available from stock.

To: Antex, Mayflower House, Plymouth, Devon

Please send me the Antex colour catalogue
Please send me the following irons

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Model</th>
<th>Bit Size</th>
<th>Volts</th>
<th>Price</th>
</tr>
</thead>
</table>

...

I enclose cheque/P.O./cash value...

NAME...

ADDRESS...

Telephone:...

Antex, Mayflower House, Plymouth, Devon

867
ELECTRONICS

SALE MART

BARGAINS • BARGAINS

Fane Loud Speaker—Few Only
Type 183—15in. dia. 60 watts r.m.s. 15 ohms. Listed at £25.4.0.
SALE PRICE £16.19.6

Remote Control Transmitter
Designed for remote switching of famous mikes radiogram (export model).
Output 27-2Mc/s. Fitted with 5 valves, crystals, etc. For
switch allowing normal hand remote control, voice sensitivity
Remote Control Transmitter

Strong black plastic case. Length 7½in. Fitted with 2-5 and 3-5 mm.
SALE PRICE 89/6

SALE PRICE £10.10.0

Push Button Two Band Car Radio
A high quality all transistor superhet car radio that really breaks
the quality/price barrier. Fitted with 6 valves, 2 boards (for round or elliptical speaker). Fully guaranteed.
Complete with 6 x 4in. elliptical Bn dynamic speaker.
SALE PRICE £10.10.0

Crown Model TR-960C

LW/MW/SW 9 Transistor Radio
Superb quality 9 transistor, three band radio. Covers LW 150-
350 Kc/s, MW 525-1605 Kc/s, SW 6-18 Mc/s. Fine tuning and tone
controls. Illuminated dial. Telecopic aerial. Complete with
a Simulated leather case, earpiece and 4 x 1.5V U7 batteries.
SALE PRICE £11.10.0

R.S.T. VALVE MAIL ORDER CO.
BLACKWOOD HALL, WELLSFIELD RD., S.W.16
Special 24 Hour Mail Order Service

<table>
<thead>
<tr>
<th>REF</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A20</td>
<td>9 TR. 9 TRANS.</td>
<td>£10.10.0</td>
</tr>
<tr>
<td>A30</td>
<td>9 TR. 9 TRANS.</td>
<td>£11.10.0</td>
</tr>
<tr>
<td>D20</td>
<td>27-2 Mc/s</td>
<td>£27.2.0</td>
</tr>
</tbody>
</table>

All valves and transistors brand new and boxed.

OPEN DAILY TO CALLERS 9 a.m.—5.30 p.m. No early closing
C.W.O. No C.O.D.

Send S.A.E. for FREE LIST OF 6,000 TYPES, VALVES AND TRANSISTORS

PERSONAL CALLERS TO:
48 TOTTENHAM CT. RD., W.1

MAIL ORDERS TO:
378 HARROW ROAD, PADDINGTON, LONDON, W.9

WIRECOMP ELECTRONICS

SALE MART

BARGAINS • BARGAINS

DON'T DELAY—ALL ITEMS SUBJECT TO AVAILABILITY

100's and 1000's of Other Bargains

RECORD PLAYERS • HI-FI EQUIPMENT • TELEVISIONS • RADIOS • TAPE RECORDERs ETC., ALL BY WORLD FAMOUS MANUFACTURERS
COME AND LOOK TODAY
CAR LIGHTS ALARM

This circuit was designed to overcome the annoying habit of continuously leaving the car sidelights on and, consequently, running down the battery.

The circuit, Fig. 1, gives an audible warning that the sidelights, foglight, etc. have been left on for 15 minutes at the ignition switch position. It is basically a simple or gate (D1, D2, D3) and an indicator. In the prototype a simple Woolworths’ doorbell was used as the indicator.

When both sidelight and ignition switches are on, and S1 in the “Drive” position, −12V appears at both sides of D1 and the latter does not conduct, and no current flows through the indicator. If the ignition is now switched off, point X is grounded via the ignition coil causing D1 to conduct, allowing current to flow through the indicator, producing a suitable warning. If the lights are now switched off the indicator will cease to function.

When the sidelights are switched on and the ignition switch is on, D1 is reverse biased and no current is allowed to flow through the indicator. This prevents the alarm sounding when driving normally with the lights on.

On some occasion it will be necessary to leave the sidelights on when the ignition is off. To prevent the alarm operating continuously in this condition, S1 is switched to “Park”. When the ignition is again switched on, the alarm will operate warning the driver to switch S1 back to the “Drive” position.

Any number of lights or auxiliary circuits can be monitored simply by adding further diodes to the gate as shown (D2, D3). For negative earth cars, the diodes should be reversed.

F. Cogger, Sevenoaks, Kent.

Fig. 1. Circuit diagram for a car lights alarm
The accompanying circuit was developed to check whether or not transistors were suitable for r.f. applications.

The components as shown cause the transistor under test to oscillate at approximately 3MHz. If the transistor is capable of oscillating at this frequency, the output will be detected and will be shown as a reading on the meter. The amount of this reading is no real importance, only that it is used as a comparison with a reading from a transistor known to be good.

The frequency at which the test transistor is made to oscillate can be varied by the preset capacitor in series with the 100μH choke. The meter can be built into the instrument, or it could be the 50μA range of a multimeter.

The preset potentiometer control is used to set the output reading to approximately mid-scale for an average transistor. Switch S1 is a 4-pole 3-way, key or rotary type.

R. D. McGillivray, New Zealand.

SCREEN WIPER DELAY

If any readers are contemplating wiring a screen wiper delay unit to the BMC 1100 or 1300 models, it should be noted that these models have a set of contacts that short out the wiper motor when the wipers are switched off and returned to the parking position; this acts as a brake (Fig. 1). If any of these delay circuits are used on these cars the thyristor will be destroyed.

The circuit of the wipers in these cars and a suggested circuit to avoid the destruction of the thyristor is given in Fig. 2.

This circuit breaks the shorting path before the thyristor fires and makes again before the contacts close to cut out the motor. It is necessary to incorporate a time delay (approximately 0.25sec) in the relay circuit to allow adequate braking of the motor.

R. End, Sunningdale.
Readers might be interested in the intercom system described. Fig. 1 shows the circuit for a two-wire, two-way intercom, with call facility from either end: it consists of a fairly conventional amplifier preceded by a diode gate.

Under normal talk/listen conditions the diode is reverse biased and has no effect. When the appropriate call button is closed, however, the diode becomes forward biased and closes a positive feedback loop between output and input, generating an audible output at about 4kHz. Change in this frequency is achieved by altering the feedback capacitance.

The input transistor was selected to have a gain of at least 40 at 0.5mA collector current.

S.G.S. Fairchild devices, such as BC154 and BC113 may be used for the pnp and npn respectively and BA130 for the diodes.

The speakers were moving armature types, similar to those used in telephone receivers, but any unit from 75 ohms upwards could be used.

Fig. 2 shows the additional circuitry required for operating a number of sub-stations from one master, being just a lamp driving circuit, one being required for each sub-station. The 2N3703 was selected to have a gain of at least 40 at 3mA. A BC154 may be used here, but a BC115 or BC125 must be used for the npn.

The Zener diode may be omitted and the 39 kilohm resistor increased to 82 kilohms if lighting of the indicator lamp can be tolerated in the talk position of the main station.

M. Tucker, Ilford.
Electronic STOCKMARKET

Electronics

Electronics stockmarket is a game combining skill and chance in proportions such as to provide endless hours of amusement for all the family. Costing little over £7 in parts, it is simple to construct and can be depended upon to outlast many other conventional games, except, perhaps, chess.

The model illustrated accommodates four players or less, but extra players' positions can be accommodated on the board if required for an outlay of approximately 15s per position for components.

The game is designed to simulate very closely the thrills and hazards met in investing in the stockmarket proper. In the game, however, monetary gains and losses are substituted by changes in electrical charge on capacitors. These charges are checked by the players throughout the game so that each player can keep a thrifty eye on his business "potentials" and "capacity"!

Briefly, each player makes intelligent transactions on 11 different market commodities, the individual "share" prices of which are constantly changing under the control of dice throws. A good memory is beneficial in playing, so that transactions will be made only on commodities whose shares have risen. This ensures that the player makes the most advantageous use of his transaction.

The ultimate object of the game is to build up one's cash (i.e. potential on "cash" capacitor) and to transfer it at intervals to a "bank" capacitor until the accumulated bank balance reaches a preset level, representing one "million". As soon as this point is reached, the player's "million" lamp starts flashing, so identifying the winning player.

By B.H. Baily
HAZARDS IN PLAY

The play is not as easy-going as may be indicated from the above, however, and deliberate hazards have been introduced to add interest to the game. For instance, if a player throws a “5”, he is compelled to push his “bank raid” button. This at once puts a short-circuit across his “bank” capacitor and reduces all his accumulated bank savings to nil, leaving him with only his cash balance. Other dice throws affecting levels are as follows:

1. Demands that the shares of the selected commodity be brought “down”; press “shares down” button.

6. Raise the shares of the selected commodity, by the pressing of the “shares up” button. Players either gain or lose by transacting with commodities whose shares are up or down, respectively.

Shares are raised to a set high level by the “shares up” button, the actual level being preset by means of a preset potentiometer. Shares are lowered by the “shares down” button, which reduces the shares capacitor charge by a proportion of its original value only. A time constant is incorporated to make shares vary in their drop, if the down button is pressed twice within about 30 seconds.

A realistic “tax” system is incorporated which taxes or rebates players from time to time, according to their “financial” position.

PLAYERS’ CONTROLS

The basic circuit is simple, see Fig. 1, and consists of three separate parts: a meter and associated emitter follower stage, the “Stock Exchange” capacitors and associated rotary selector switch and push-buttons, and finally the players’ circuits.

The players’ circuits are all identical, irrespective of the number of players accommodated. Each comprises a “cash” capacitor and a “bank” capacitor. The cash capacitor has push-buttons marked “check cash”, “transact”, and “cash to bank” to allow for the required functions.

The bank capacitor has a push-button marked “bank raid” which is connected so as to short-circuit the bank capacitor when the button is operated. A two-transistor level detecting and lamp-drive circuit monitors the bank capacitor potential at all times, and starts to flash the player’s “million” lamp when it detects a certain minimum “winning” level in the player’s bank.

CHECKING CHARGE LEVELS

The meter used in the prototype has an f.s.d. of 50μA, but one of 100μA would do equally well provided that the series resistor is modified suitably.

Since the meter circuit is used to check charge levels on capacitors, the greater sensitivity used the better, or undue current drain would result through the base circuit of the meter circuit, so robbing the players of...
Each player has four push button controls and a "million" lamp.

Fig. 2. Layout and wiring diagram of the Central Stock Exchange and one Player's Position. The player's position wiring within the dotted segment is repeated at the three other dotted positions. All players' positions are connected similarly at points "A", "B", "C" and "D".
part of their accumulated “cash”. The transistor emitter follower circuit is designed to reduce this drain to a minimum, due to its characteristically high input impedance.

STOCK EXCHANGE COMMODITY SWITCH

The Stock Exchange is a simple common negative array of 11 200µF electrolytic capacitors, the positive terminals of which are connected to the stationary contacts of a 12-way single-pole rotary switch. The switch must be of the continuously rotating type, and it may be necessary to bend the stop on some types of switch to allow for this function.

COMPONENTS...

<table>
<thead>
<tr>
<th>CENTRAL STOCK EXCHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>R1 100kΩ if M1 is 50µA; 50kΩ if M1 is 100µA</td>
</tr>
<tr>
<td>R2 100kΩ</td>
</tr>
</tbody>
</table>

| **Potentiometers** |
| VR1 5kΩ linear preset |
| VR2 5kΩ linear preset |

| **Capacitors** |
| Cl to C12 200µF elect. 10 or 12V (12 off) |

| **Transistors** |
| TR1 2N2926 |

| **Switches** |
| S1 Single-pole 12-way rotary, continuous break before make type |
| S2 Single pole on/off toggle |
| S3 to S6 Push to make, release to break, Castelco type or similar push button switches (4 off) |

| **Meter** |
| M1 50µA or 100µA type MR65P (see R1 above) |

| **Battery** |
| BY1 4½V flat pack type 1289 (2 off) |

| **Miscellaneous** |
| Materials (hardboard and wood) to make the board according to requirements (see text) |
| Tag strips |

PLAYER'S POSITION

One off each component referenced per player’s position

<table>
<thead>
<tr>
<th>Resistors</th>
<th>R3 39kΩ</th>
<th>R4 3-3kΩ</th>
</tr>
</thead>
</table>

| **Potentiometer** | VR3 5kΩ linear preset |

| **Capacitors** |
| Cl3 200µF elect. 10 or 12V |
| Cl4 200µF elect. 10 or 12V |
| Cl5 16µF elect. 10 or 12V |

| **Transistors and diodes** |
| TR2 2N2926 |
| TR3 OC81 |
| D1, D2 OA91 |

| **Switches** |
| S7 to S10 Push-to-make, release-to-break, Castelco type push button switches (4 off per position) |

| **Lamp** |
| LPI 6 to 8V 0-05 or 0-1A lamp in holder, panel indicator type |

The twelfth stationary contact of the switch is taken to the wiper of a 5 kilohm preset potentiometer. This provides an arbitrary “tax” level, and the corresponding switch position is marked “tax”. All other 11 positions of the switch pointer knob are marked with a set of stock-market commodities, e.g. “mining”, “leather”, “oil”, etc. Ideas can be found in the financial pages of any national newspaper.

The Stock Exchange selector switch wiper is connected to a line termed the “selected commodity” line. It is to this line that each player connects his cash capacitor when transacting, in the hope of “milking” the selected capacitor of some of its wealth. The line may also be connected to a preset high level via the “shares up” button, or to a discharged capacitor via the “shares down” button.

This reduces the selected capacitor’s charge by about half, whether pushed once or more times, and also compensates for varying degrees of length of push, since the discharged capacitor has a long time constant resistor across it. All shares are stabilised at the commencement of a game by pushing the “stabilise shares” button and rotating the selector switch slowly. This levels all selected capacitors to the preset level of “tax”.

PLAYERS' POSITIONS

The cash and bank capacitors of each player’s position are connected by push-buttons to various lines as follows:

1. The “transact” button connects the cash capacitor to the selected commodity line.

2. The “check cash” button connects the cash capacitor to the common meter circuit, to allow the player to see his cash balance before and during transactions, etc.

3. The “cash to bank” button connects cash and bank capacitors together to allow high cash levels to be transferred to bank.

4. The “bank raid” button shorts out the bank capacitor.

All capacitors use a common “earth” or return line, and switching is achieved in the live lines.

The level detection and lamp drive circuit is simple, using a silicon 2N2926 transistor and a germanium OC81. Alternatively, two OC71’s could be strapped in parallel for the second transistor. “Million” lamps should preferably be of 0-05A, but 0-01A types will serve since their use is intermittent during play.

CONSTRUCTION

The prototype was constructed on a hardboard sheet about 2ft square, supported underneath with wood battens to form a shallow inverted box. Controls and lamp holders were mounted through the hardboard, as was the meter, and all electronic circuits were built on single row strips of tag-board. These were later glued to the underside of the hardboard at convenient positions. All “floating” components were affixed by similar treatment.

Power lines from the batteries were attended to first, and this was followed by the wiring of basic lines, e.g. earth, selected commodity, transact, meter lines and so on. Wiring is quite a simple procedure if tackled in this manner. Note that all storage capacitors are 200µF 10 or 12 volt, and that they all have their negative ends connected to “earth”.

875
THEORY OF OPERATION

Charges stored on capacitors are distributed and redistributed as the game progresses. Each transfer of charge is made from one capacitor to another, with the exception of “bank raid”, “shares up” and “tax” operations.

Under normal play conditions “bank raid” occurs only occasionally to any one player, and the loss of potential to earth by this hazard is more than compensated for by the raising of selected shares by the “shares up” button. This effect is cumulative as the game progresses. Charges progress from the battery to the players’ banks as follows:

(a) Battery to selected commodity capacitor via “shares up” button.
(b) Selected commodity capacitor to player’s cash capacitor via his “transact” button.
(c) Player’s cash capacitor to his bank capacitor via “cash to bank” button.

At each transfer a, b, and c the charge (under the worst conditions) is halved, so that at each stage the original source is never completely depleted by a transfer. Note that there is a relatively long time constant on the “shares down” button capacitor. This adds interest to the game, in that if two “down” actions occur consecutively, the second results in less reduction of shares.

Initially, small charges may be transferred, but as charge builds up on a player’s cash or bank capacitor, he has to note that he will only gain from an action in which he connects to a charge which is higher than his own—otherwise he will lose to the source. For instance, he may find himself buying shares instead of selling them for cash. In this case the share price will rise at the expense of his cash balance.

For the same reason the game’s taxman is considerate. If a player transacts with low cash balance, he will gain, but if he has more than the tax level, the latter will trim his balance down to size! As the rules explain, trans-action with the taxman is compulsory when one’s throw lands the selector switch to “tax”.

PLAYING RULES

The suggested rules were compiled as a result of many trial games and have resulted in games lasting anything from 15 to 40 minutes, whilst giving dramatically exciting playing.

Before commencing a game, switch on the main battery switch, set “Stock Exchange” selector switch to “tax” and press “check shares” and “stabilise shares” buttons. Hold both down and slowly rotate the selector switch around all 12 positions. Stop on each position for about 3 seconds, or until the reading has stabilised to the tax level.

Next, ask each player to press his “bank raid” button, so that each starts without any bank balance. With the selector back at tax position, ask each player in turn to press his “transact” button for about 3 seconds. This gives each player a starting cash potential equal to the tax level.

Stress to each player that he must never push any buttons out of turn, but to await his own turn of dice throw before doing anything.

The game is played by each player taking turns at throwing a dice. Dice throws are interpreted as in Table 1.

Close-up view of the Central Stock Exchange controls with meter
If, after moving the selector switch the required number of positions, it ends up pointing to “tax”, the player must transact. He may watch what results by holding his “check cash” button down whilst transacting.

USE OF A CALLER
With the four-player version of this game, it is inevitable that the various labelling of share commodities will be read by some players better than by others. The prototype was labelled to be read from one position only, and this player was asked to move the selector, and to call out any share price changes as they occurred. He could be unofficially called the “stock broker’s runner”.

<table>
<thead>
<tr>
<th>Turn Selector Number thrown</th>
<th>Switch clockwise this number of positions</th>
<th>Other action by thrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Press “shares down” button.</td>
</tr>
</tbody>
</table>
| 2 | 2 | “Free choice of action unless switch lands on “tax”.
| 3 | 3 | Ditto. |
| 4 | 4 | Ditto. |
| 5 | 1 | Unless switch lands on “tax”, must push own “bank raid” button. |
| 6 | 1 | Unless switch lands on “tax” push “shares up” button. |

*Free Choice means that the player may press his “check cash” button to observe his cash balance, and choose whether he wishes to “transact” or put his cash to his bank by “cash to bank” button.

SUGGESTED LEVEL SETTINGS
The following levels were decided upon for the various presets, and were found by experiment to work out satisfactorily for normal lengths of play.

Shares Up Preset
Set to give hard over deflection on meter, but avoid turning to full 9 volt position. Press “shares up” and “check shares” buttons together with selector to any position but not “tax”.

Tax Preset
Set selector switch to “tax” and press “check shares” button. Adjust to give half-scale deflection on meter.

Players’ Positions “Million” Presets
Set selector switch to “tax” and hold down the “transact”, “check shares”, and “cash to bank” buttons together. Adjust preset to full 9 volt end and very slowly turn it back until “million” lamp flashes. Adjust very cautiously, since there is a delay in the lamp firing. Treat all positions similarly, and afterwards check each for final adjustment. The “million” lamps flash two or three times, and then remain on.

Length of Play Adjustment
The “shares up” preset will affect the length of play, as will the individual adjustment of the players’ “million” presets. It may be necessary to make the players’ “million” circuits fire at anything down to half of “tax” level. This is done by “inching” the “bank” capacitor up in small steps by repeated short depressions of the “transact” buttons, on “tax”, with the “check cash” and “cash to bank” buttons held down on each position in turn. Alternatively the tax level could be reduced to half for the duration of the settings of the players’ positions, and afterwards restored to half-scale.

The author has applied for Patent Rights on this Electronic Stockmarket game.
Having discovered the general lines upon which the conditioned reflex may be evoked, we can now utilise the knowledge to work out how we might synthesise it.

Examine the block schematic in Fig. 2.1. It will be seen that it has been drawn in the "black box" configuration; there are the two inputs Ss and Sn, and two outputs Es and En. We now know that by application of input signals, reflex responses will appear at the output. Furthermore, we would expect to find evidence of a conditioned response to Sn at Es, following the repeated combination of input Sn a short time prior to Ss. This pre-supposes that for Sn to remain effective up to the time Ss appears, it must be extended in time; put in another way, we need to include a short term memory for Sn.

Another gate (G1), have been added. We need to know the number of times Ss has been applied, rather than the duration of its individual appearances; hence it is necessary to differentiate Ss prior to its summation with Sn. The extra gate has been included so that the short term memory can have a direct control over Ss once it has been differentiated.

The gates used here have been devised by the author to simplify explanation of the black boxes because their functions are largely analogue. Unlike the more normal logic gates which are either open or closed, these can be partly open, or partly closed. The cross-hatched gates are open until energised, and the remaining gates closed until energised.

A MEMORY DEVICE

When Ss makes its appearance for the first time, no observable reaction takes place; it is not until the input combination has occurred several times that an effect is elicited. Hence it would not be unreasonable to assume that some form of counting mechanism existed within the "black box", which had the ability to sum the number of times Ss had appeared just after Sn.

It would seem that this device therefore had the ability to exclude all reasonable possibilities for chance combinations of stimuli, by giving no output until an acceptable number of repetitions had occurred. We would then suppose that a gate (G2) would be opened by the summer which now allowed Sn to produce a conditioned response at Es. (We might conceive of the summer as a type of long term memory). Once Rs has been established it will also be necessary to inhibit the normal response to Sn; this is provided by gate G3.

DIFFERENTIATOR

Just to tidy up the "black box", a differentiator, and another gate (G1), have been added. We need to know the number of times Ss has been applied, rather than the duration of its individual appearances; hence it is necessary to differentiate Ss prior to its summation with Sn. The extra gate has been included so that the short term memory can have a direct control over Ss once it has been differentiated.

The gates used here have been devised by the author to simplify explanation of the black boxes because their functions are largely analogue. Unlike the more normal logic gates which are either open or closed, these can be partly open, or partly closed. The cross-hatched gates are open until energised, and the remaining gates closed until energised.

INHIBITION SYNTHESIS

As yet, the black box has only fulfilled a few of its promises—it is to be expected that in addition to the excitation responses, we should be able to observe some aspects of inhibition too. A look at Fig. 2.2 will disclose that this should not be difficult to synthesise either.

Let us go back then, to where we investigated inhibition and ponder upon what we should expect to find inside the black box that could give rise to this phenomenon. As we only have two inputs available for stimulation, further distracting stimuli may of course be considered here as irrelevant. However, inhibition which is consequent upon application of Sn without Ss might be demonstrated. To accomplish this we need a further summer and two inhibit gates.

Assume that the "box" has been conditioned, and that Sn is being applied only, resulting in an output at Es via G4 and G2. Seemingly, Sn would be passed via G5 to No. 2 summer, with the eventual result that G4 would be closed and hence inhibit further action for a while.

The design and construction of electronic "animals" or machines with artificial intelligence
Digital display for the Plessey Flight data recorder

ESRO Satellite Checker

This second Elliott-Automation mobile satellite check-out station will exercise and test satellites from factory trials to launching for the European Space Research Organisation (ESRO).

Phantom Reconnaissance Pod

The latest McDonnell-Douglas Phantom F4M jet strike aircraft will carry a reconnaissance pod under the fuselage, which houses sideways and downwards looking radar, data converter for translating data into binary code for film storage, low level infra-red line scan equipment for ground close-ups, and cameras for day and night surveillance. The equipment has been developed by E.M.I. Electronics.

NORAMA
ROUGH 1968

280,000-Channel Transceiver

A new military manpack transceiver, the Plessey B20 operates over the 2-30MHz range with 280,000 channels available in the a.m., c.w., and s.s.b. modes.

Nodding Heightfinder

This rather unusual looking scanner is the new Marconi "Heightfinder", part of the S600 series of radar equipment, designed for use in the C frequency band. It can be made static or transportable and will fold up for transportation. It is operated through a simple backwards and forward "nodding" action by computer control with height elevation angles between -5 and +55 degrees at velocities up to 45 degrees per second.
Fig. 2.4. Circuit diagram for the photo and tactile sensors and reflex sections of the system outlined in Fig. 2.3
DISINHIBITION SYNTHESIS

Using the same building bricks, disinhibition may also be included. On the assumption that R_c has been inhibited, if S_a is now presented, No. 2 summer will be cleared and G_4 will then open again; the conditioned response will once more appear. As this summer has a decay characteristic, it follows that disinhibition will also occur with the passage of time.

Our "paper" model seems to function as we would wish. It appears to demonstrate simple learning, has the ability to store data in its memory, and shows certain preferences for particular meaningful combinations of stimuli. Readers here may object that we have built all this into the design: this, to a degree is correct but it must not be forgotten that this is true for a real live animal as well. After all, it is endowed with the equipment to learn, but these innate qualities cannot develop other than of the animal's own volition.

ELECTRONIC "GRAFTING"

The electronic counterpart of the learning aspects demonstrated by the black box model will be considered in the next article. However, in the meantime we must attend to the job of "grafting" in the sensory electronics, also the circuitry associated with scansion and reflexes. It must be remembered that most of the hardware is only temporary, so it would be as well to make provision for this in the "mobile breadboard" mentioned in Part 1 of this series.

Examination of Fig. 2.3 and 2.4 will familiarise the constructor with the circuitry being added to the existing breadboard. It will be noticed that we have effectively included two channels: one a combination of photosense and scansion, and the other dealing with tactile (or touch) stimuli. Although the building blocks used in the "animal" are fairly conventional, their interconnection and operation are a trifle unorthodox and so require some explanation. (The muscle control and motor drive circuits appeared in Fig. 1.2 last month.)

Fig. 2.1. Block diagram of a basic arrangement for synthesising conditional reflex action

Fig. 2.2. The basic arrangement of Fig. 2.1 now developed to include inhibition synthesis

Fig. 2.3. Block diagram of the electronic "animal" at the present stage of development
later found necessary to introduce some randomness into the actual direction of turn. This was because there were occasions when if the “animal” experienced difficulties in extricating itself from a situation, a change of turn in the opposite direction often proved successful.

TOUCH SENSOR PROBE

In order to sense tactile stimuli, a probe system has been incorporated at the forward end of the “animal” (Fig. 2.5). This amounts to a simple pivoted affair, made from heavy gauge wire, and controlling a microswitch or a pair of relay contacts. Upon contact with an obstacle in the “animal’s” path, the probe will swing inwards to operate the switch, thereby generating a pulse. The avoidance reaction is provided by three monostable flip-flops: one to provide the reversing characteristic, and the other two in order to produce turns.

The pulse produced by the probe first triggers the reversing monostable, which causes the animal to move backwards; when the monostable flips back, a positive pulse will be fed to one or other “turn” monostables via either gate G1 or G2, resulting in the “animal” executing an appropriate turn. Once this final phase has been completed the “animal” will move in its normal forward direction.

RANDOM GENERATOR

The gates G1 and G2 are alternately switched in a random fashion under the control of a binary, driven via a Schmitt trigger, and a random generator. The design of the random generator posed quite a problem, for it was at first thought that the only basic prerequisite would be some form of white noise generator. However, it turns out that nearly all white noise generators produce pulse repetitions of too high an order (even after selecting pulses of only high amplitude). Eventually a relatively simple system was discovered that produced low occurrence pulses—this we shall use in our model.

The “noise” source (Fig. 2.6) is essentially a saline cell R38, consisting of two electrodes surrounded by a pad of cotton wool just saturated with a solution of ordinary table salt. The size of the container is not very important. It could be ½ in to 1 in diameter, and about ½ in to 1 in high.

When a current is passed through the cell, gassing occurs at the electrodes. Because the gas is given off rather irregularly, and because the “pockets” of gas surrounding the electrodes vary the dielectric of the cell, the current through it changes intermittently. These changes will produce a stream of pulses, each pulse varying in amplitude.

In the model we first amplify these pulses at TR17, then use the Schmitt to select those pulses with the highest amplitude. Finally the binary is switched by pulses from the Schmitt, resulting in G1 and G2 being enabled alternately. The “animal’s” turning mode is thus quite random.

If during the “animal’s” response to light it encounters an obstacle, the tactile sense will take priority and override or inhibit the photo reflex. This is brought about by interaction between the reflexes at diodes D1 to D6, the tactile response taking precedence due to the absence of resistors in the D3/D4, D1, and D6 lines.

![Fig. 2.5. A simple touch sensor probe](image)

Fig. 2.5. A simple touch sensor probe

![Fig. 2.6. A saline cell (R38) used as a random signal generator](image)

Fig. 2.6. A saline cell (R38) used as a random signal generator

SEPARATE POWER SUPPLIES

It should be noted that separate power supplies are utilised for the muscle control and reflex circuits. This is necessary since it is extremely likely that the motors will generate sufficient “noise” to interfere with the switching circuits. If the constructor intends using a common supply for both circuits, a very large measure of decoupling will be required in the muscle control circuit. In the recommended arrangement, the “OV” line is common to both circuits, i.e. Fig. 1.2 and Fig. 2.4.

In the present example a probe has been suggested for tactile sensing because this is a simple way of tackling the problem. However, other methods could be used as an alternative. The mercury switch is one example, but a more sophisticated scheme which we will consider in a later article makes use of the change in motor current accompanying increased mechanical loads. This concept will also open a vista of other interesting possibilities, but in the meantime we must be content with simplicity.

Anyhow, we now have a model that will respond to two kinds of stimuli. In the next article we will consider the design of the “learning” and “memory” electronics, and how they might be interconnected with existing functions.

To be continued
PHOTO SENSE AND SCANNING SYSTEMS

The photo sense and scansion systems have been designed to be positively photo-tropic; that is, light stimuli result in the “animal” moving towards, rather than away from, light. The circuit for this is a fairly simple arrangement comprising a pair of photo-transistors (photo-sensors) controlling a bistable flip-flop, which in turn feeds signals to the muscle control units mentioned in the previous article.

The photo-sensors are situated at the forward end of the “animal” and are located close together with their respective emitter areas facing port and starboard. In addition the areas of the sensors facing one another are painted black to prevent light pick up from the opposite side—this would otherwise result in an incorrect response.

Operation of the circuit is quite straightforward. Assuming that the supply has been switched on, but that the photo-sensors are not illuminated; then the bistable will be in one or other states—say TR10 switched off (collector negative) causing the muscle control units to drive the “animal” to port. It will therefore maintain a counter-clockwise movement, and thereby scan the field.

If during this scansion condition the starboard sensor encounters a light of sufficient strength, it will conduct, with the result that TR11 will be turned off and TR10 turned on. The port channel will now be inactive and the animal will turn to starboard homing on to the light.

When the light is encountered again, the bistable will switch once more causing a turn to port, and so on. The resulting gait of the “creature” will thus be cycloidal during scansion, and a rather wobbly line composed of short arcs when attracted to a source of illumination. In the absence of light the scanning mode is of course resumed.

LIGHT SENSITIVITY ADJUSTMENT

Sensitivity to light may be varied by adjustment of VR1 and VR2. These controls are necessary since TR9 and TR12 must not conduct during dark conditions. They are also of importance in preventing premature responses caused by ambient lighting conditions. The diodes D2 and D5 are included in the outputs of the bistable to maintain only negative or zero conditions, and also to prevent inter-action with other “forward” reflexes that could be added later.

There are obviously many ways in which the basic scansion configuration could be improved. One which might be considered would be to convert the bistable into a binary, and feed it with low occurrence pulses from a random generator similar to the type we shall be discussing for use in the tactile sense. The “animal”, even in complete darkness, would then periodically change its direction of scansion, giving it a somewhat improved chance of locating a light source.

AVOIDANCE REACTION

Stimulation of the tactile sense has been designed to result in what might rightly be called an “avoidance reaction” (negatively tactile-tropic).

During its adventures, the “animal” is obviously going to meet a considerable number of obstacles in its path. With this in mind and after much trial and error, the best avoidance reaction found seemed to be that of a “reverse and turn” configuration. In addition it was
This is the fourth project in our five-part series featuring the integrated circuit linear amplifier Type SL701C.

In the previous three articles we have considered, in effect, how we can use the Plessey SL701C integrated circuit for a.c. and d.c. amplification, but we have not yet used the circuit for signal generation. One simple circuit for generating a fixed frequency sine wave is dealt with this month, while the last of the practical circuits of this series (next month) deals with a fixed frequency square wave generator.

Wien Bridge

Since the integrated circuit has both inverting and non-inverting inputs, a high input impedance, a low output impedance, and a high open loop gain, it can be used as the amplifier section of any of the well-known audio oscillators. Fig. 1 shows the Wien bridge oscillator circuit.

This network has zero phase shift and an attenuation of three times at a frequency given by:

\[f = \frac{1}{2\pi CR} \text{ Hz} \]

In the oscillator circuit a non-inverting gain of three times is needed for the amplifier, to complete the positive feedback loop via the \(C \) and \(R \) network; while \(R_2 \) and \(R_3 \) provide negative feedback to maintain the gain at the required value of three times. A thermistor is normally used in the \(R_2 \) position to provide automatic amplitude stabilisation. If the output of the amplifier tends to increase, more current passes through the thermistor and its resistance decreases, more negative feedback is applied around the amplifier, and the output is decreased. In this way the amplitude of the oscillator can be kept almost constant.

This circuit is used extensively as a variable frequency RC oscillator, since \(R \) can be made variable over a ten to one range with a double gang potentiometer, and the \(C \)'s can be switched.

Since the attenuation of the network is only three times at the oscillation frequency, its selectivity is not too good, and we would expect distortion to be in the order of 0.25 per cent. For a fixed frequency oscillator where we have no intention of attempting to switch components to cover a frequency range, we can with advantage use a much more selective network (even though it has more components) since we have a high gain available from our amplifier.

![Fig. 1. Block diagram of a Wien bridge oscillator](image)

![Fig. 2. The circuit diagram of the parallel-T frequency selective network](image)
MARKET PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

LIGHT DIMMER WITH SUPPRESSOR

The PH200 Dimlite lighting control from Photain Controls Ltd. incorporates a patented radio interference circuit which is believed to be the first of its kind to comply fully with the B.S.800 specification on radio interference.

Designed to fit a standard plaster depth switch box without modification it is easily fitted in place of most existing light switches. Installation is carried out by simply removing the front plate and connecting the lighting wires to the dimmer and screwing the unit to the recessed wall box.

The dimmer will control 200 watts of tungsten lighting load at 240V a.c. and measures 3 3/4 in x 3 1/2 in x 1 7/8 in. The unit incorporates an on/off switch and will vary the amount of the lighting from full brilliance down to 15 per cent of total load.

The cost of the PH200 Dimlite is £4 19s 6d and is available from Photain Controls Ltd., Randalls Road, Leatherhead, Surrey.

SOLDERING AND WIRE

A complete soldering kit for the home handyman and hobbyist has been marketed by Weller Electric Ltd. The kit, retailing at £2 1s 6d, contains a Marksman 25 watt soldering iron, two spare tips, a soldering aid—heat shunt, scraper and wire grip, and a coil of 60/40 solder.

Four standard interchangeable tips are available for the Marksman range, comprising a cone tip, screwdriver tip, and chisel double-flat and single flat tips. Soldering tips are made from pre-tinned nickel plated copper and are simply screwed into the end when required.

An improved soldering iron is the Litesold 60 watt model from Light Soldering Developments Ltd. This iron is an improved version of the 55 watt model, which it replaces, and has a new style moulded nylon handle.

Other improvements feature spring collet mounting bit and the simplification of the element fixing arrangement.

The handle is also available in translucent nylon so that an internal indicator lamp can be installed to show when the iron is switched on, reducing the risk of accidental burns. This feature is to special order only.

A useful aid to the preparation of soldering is the Bib Model 6 wire stripper and cutter from Multicore Solders Ltd.

This new product, similar to other wire strippers manufactured by the same company, is sprung at the handle so that the tool automatically opens after any operation.

The Model 6 enables the insulation to be easily removed from the ends of cables and flex, without nicking the wire. The aperture setting for different diameter wires is simply adjusted by a sliding screw in one of the handles. There are two cutting positions, one for normal flex, and the other on the tip for cutting wire after it has been connected to a tag or bolt. The handles are plastic covered and the tool is retained in the closed position by a handle slip ring.

The Bib Model 6 wire stripper retails at 8s 6d.

POWER TRANSISTOR

A safe-area power rating of 100W is the feature of the latest discrete-emitter power transistor BLY72 from SGS-Fairchild.

Discrete-emitter transistors are high performance power devices which instead of the usual single emitter, utilise a compound emitter made up of a multiplicity of discrete emitter sites each linked to a common busbar by an integrated thin-film feedback resistor. This construction results in a claimed improved operating characteristics.

The BLY72 can be used for amplification or switching. Amplifier uses include r.f. communications, audio and servo amplifiers. Switching applications include inverters/converters, solenoid and relay drivers, and regulators.

Further details can be obtained from SGS-Fairchild Ltd., Planar House, Walton Street, Aylesbury, Bucks.

IC PACKAGE

An inexpensive new power plastic package for integrated circuits, the P20, has been introduced by Plessey Microelectronics of Swindon.

Planned eventually to accommodate a variety of chips, the P20 has already made its commercial debut in colour TV receivers. This encapsulation, which is particularly suited to commercial applications, will also be used for the fully integrated Plessey car radio, and 3 and 5 watt audio amplifiers, all due to appear later.

Main features of the P20 package are its low cost and effective power dissipation. Basically a 20-lead in-line plastic package with an integral heatsink, it can be bolted to a further heatsink, or simply to an equipment chassis. The package is designed to dissipate at least 3 watts when used with a suitable heatsink.

It can't be long now before these integrated circuits are available to the amateur as "off the shelf" items from any of the dealers in "Tottenham Court Road."
A few figures will show why we can use a diode in this instance. If we assume that the diode conducts at 0.5V, then the output will be ±0.5V and if the network has a loss of 40dB, the amplifier input must be ±5mV. If the amplifier had a gain greater than 40dB the output would tend to build up, and if it reaches ±0.505V the diode conducts to feed back +5mV to reduce the input level, at this time, from -5mV to 0V. The diode only has to, in effect, clip 5mV off the output in order to completely reduce the input to zero. So our sine wave output is reduced from a possible ±0.505V to ±0.5V and has a 1 per cent flat top.

In practice the onset of diode conduction is gradual, and we can adjust the network so that its loss is slightly less than the amplifier gain, and oscillations are maintained with a good waveform.

PRACTICAL CIRCUIT

For the values chosen:

\[
f = \frac{1}{2\pi CR^1} \text{Hz} = \frac{1}{2\pi \times 0.01 \times 10^{-6}} \times 18.10^2 \text{Hz} = 900\text{Hz}
\]

The complete circuit of the 900Hz oscillator is shown in Fig. 5. Positive feedback is applied via the network to the inverting input of IC1 (pin 5), and VR1 is a preset potentiometer to ensure that the bridge is unbalanced by the exact amount required to maintain oscillations. This control is adjusted from maximum towards minimum resistance until the circuit oscillates reliably, at this point the waveform is excellent. If the resistance is reduced still further the waveform becomes poor and the frequency departs from the theoretical value of 900Hz, but there is no difficulty in setting this control; especially if the waveform is observed on an oscilloscope.
PARALLEL-T NETWORK

The use of the parallel-T network of Fig. 2 to produce a null is well known. Without delving too much into the mathematics of this arrangement, we can see that there are two parallel, frequency selective paths between input and output. For the one path the time constant is:

\[t_1 = \frac{C_1 R_1}{2} \text{ secs} \]

For the other path the time constant is:

\[t_2 = R_1.2C_1 \text{ secs} \]

so that:

\[4t_1 = t_2 \text{ balance equation.} \]

For this arrangement, the null frequency is given by:

\[f = \frac{1}{2\pi C_1 R_1} \text{ Hz} \]

The depth of rejection at this frequency depends on the balance of components, obviously in practice (even if close tolerance components are used) the circuit must be unbalanced to some extent and only (say) 40dB of attenuation may be achieved at the null frequency. The gain characteristic is shown in Fig. 3 (a).

For the phase characteristics there are two possibilities, depending on the direction of unbalance. If \(4t_1 \) is greater than \(t_2 \) the phase characteristic returns through 0 degrees at \(f \), as in Fig. 3 (b). If \(4t_1 \) is less than \(t_2 \) the phase rotates through \(-180\) degrees at \(f \) and continues lagging to approach \(-360\) degrees, as in Fig. 3 (c). The gain characteristics are identical, since we are talking in terms of slight unbalance.

We can use this network to form an oscillator by choosing the phase characteristic of Fig. 3 (c) and using the basic arrangement of Fig. 4. At low frequencies (below \(f \)) the resistive section provides an almost direct coupling between the output and input of the amplifier, and heavy negative feedback sets up our d.c. conditions. At \(f \) the network provides an extra 180 degree phase shift around the loop so that positive feedback occurs at this point and the circuit will oscillate provided that the attenuation of the parallel-T network is overcome by the gain of the amplifier.

For this circuit to work and give a reasonable waveform the degree of unbalance must be kept small, and the network attenuation will be large, so that a high gain amplifier is essential.

DIODE LIMITER

In Fig. 4 the diode \(D \) provides a large amount of negative feedback when the positive signal peak just brings the diode into conduction, and hence limits the signal output. Since the network has a high \(Q \) (good selectivity) this does not cause a distorted output waveform. The process can be likened to preventing the build up of oscillation of a swing. A child on a swing can move her legs with sufficient power just to cause oscillations to increase in amplitude, while a parent can maintain any desired peak to peak amplitude by applying a retarding force at one peak of the excursion only.

If we had used a less selective network (such as the Wien bridge) then the diode limiter would have to be replaced by a less drastic (non-clipping) arrangement (such as a thermistor) as the gain determining element in order to maintain distortion at an acceptable level.
POLAR WIND

During September there was a symposium held in Washington on the Physics of the Magnetosphere. From the University of California at San Diego came Dr Peter Banks with an annoucement of his discovery of a "polar wind" phenomena. Some 300 or so scientists from all parts of the world attended this symposium to review the progress and assess what had been learned about the magnetosphere.

It is well known that the magnetosphere forms an invisible envelope that is shaped somewhat like a tear drop. The larger part is on the sunward side of the Earth and the tail extends outwards on the opposite side for some three million kilometres. It is forced into this shape by the solar wind which sets up tremendous forces along the Earth's magnetic field. This has been established by many observations which have been made of artificial satellites and records from satellites operating a solar-terrestrial warning system with headquarters at Boulder, Colorado.

ROUND THE MOON AND BACK

The U.S.S.R. successfully launched a space vehicle which under automatic control circumnavigated the Moon and returned to Earth to be safely recovered from a touch down in the Indian ocean. It seems certain that this was a test not only for the control systems but also for a vehicle some six tonnes in weight to be brought near the Moon. Zond 5, as it was called, was almost certainly one of the Voyus line of vehicles.

The previous test flight in near-Earth orbit of Zond 4, also a Voyus type of craft, was no doubt the beginning of a series of tests prior to sending a vehicle round the moon back with one or more astronauts on board. The Voyus are known to have special facilities for automatic docking and rendezvous techniques.

Now comes the discovery of this "polar wind" streaming out from the north and south poles of the Earth. It is in fact a portion of the Earth's atmosphere escaping into space. Though it consists of atmospheric electrons and atom of oxygen, helium, nitrogen and hydrogen the loss of the Earth's atmosphere is negligible. There is no threat to the life supporting oxygen or other necessary constituents of the atmosphere. Once again the discovery has been confirmed by a satellite and this time it was Explorer 31.

It seems that the action results from the warming pressure of sunlight. This causes an expansion and the "polar wind" blows down the magnetic tail of the Earth and escapes through the magnetic field lines at the poles. An interesting confirmation was made by Dr I. A. Zhulin of the Soviet Union who suggested that here there was an opportunity to set up a solar-terrestrial warning system for passengers who will ride in supersonic transports. Such craft which will be flying at 20 miles altitude would be subject to the hazards of radiation from solar storms, auroral storms and residual radiation from the Van Allen belts. It should be noted that the U.S. is already

APOLLO 7

Though there is no information from the U.S.S.R. about their vehicles there is plenty from the U.S. about the Apollo craft. The arrangement of Apollos 7 is in seven distinct parts with total height of 67m (224ft). At the bottom of the stack is the first stage of Saturn 1B rocket - 24m high (80-2ft) and 6-5m in diameter (21-5ft) and weighing about 450,000 kilograms (almost a million pounds) when fueled. On this is a three rocket second stage, the S-4B. This is 17-5m high (58-4ft) and 6-5m (21-5ft) in diameter with a weight when fueled of 112,000 kilograms (250,000lb).

Then follows a ring 0-9m high and 6-25m (nearly 21ft) in diameter. This is the section which houses the instrument unit and contains the sophisticated electronic equipment for monitoring and controlling the vehicle from the moment of lift-off until its insertion into orbit.

Above the instrument unit is a conical section called the Lunar Module Adapter. This is 8-4m high (21-5ft) and has a bottom diameter of 6-7m (22ft) and tapers to a diameter of 3-9m (nearly 13ft). It is a container for the Lunar Module, the four-legged lunar landing vehicle. The Module has to be in this container to protect it from the atmosphere during launch since it is designed for operation in space.

On the first flight of Apollo 7 the Lunar Module was not included, which reduced the weight of this section. Above this is the Service Module with a height of 6-6m (22ft) and a diameter of 3-9m (nearly 13ft). Above this again is the Command Module, the conical unit in which the astronauts lived. At the time of launch and landing the Command Module is 3-6m high and 3-9m in diameter at the bottom, tapering almost to a point at the top. Of the seven units only the Command Module returned to earth intact. The last one to be jettisoned was the Service Module which was not needed for re-entry.

APOLLO 7

Following the first flight of Apollo 7 and will be the first manned flight of the Saturn-Five moon rocket. Apollo 9, the first manned flight with full moonship complement (service, command and lunar landing module) is scheduled for the first quarter of 1969 as a far out earth orbit flight, subject to what may happen in December. Dr Paine also had something to say about the requirements for a moon landing by the U.S.S.R.

"The U.S.S.R. problem was to develop a rocket with more than the 3-1 million pounds thrust vehicle they now had and there was evidence that they were doing this. The alternative for them was to assemble in an earth orbit the 50 tonnes or so of equipment needed with smaller rockets."
Since only a small amount of negative feedback is required to amplitude limit the oscillations, it is essential to use a silicon diode for this purpose as a germanium diode would have too high a leakage current and would not have a high resistance in the non-conducting state. The onset of diode conduction is lower than the 0-7V normally associated with the forward volt drop of a fully conducting silicon diode, so the diode is tapped down the output in order to maintain a reasonable output level of about 1V peak to peak. The output can be increased if required by decreasing the lower 5-6 kilohm resistor R6 to a value of 2-7 kilohm in order to provide the extra swing required.

Other fixed frequencies could be generated by altering the components for the T network, while maintaining the relationships outlined in the theoretical section of the article.

The level of signal applied to the output socket SK1 is controllable by the potentiometer VR2.

CONSTRUCTION
The construction is straightforward and on similar lines to previous articles. The s.r.b.p. board should be drilled for mounting in the case, and the soldering pins carefully inserted as indicated in Fig. 6. The integrated circuit IC1 and components should then be soldered in position. Particular care should be taken to avoid damage through excessive heat when soldering the IC.

The case should be drilled to receive the three power supply feed-through terminals, output socket SK1 and level control VR2. A small hole should be drilled in the side of the case to allow adjustment of the preset control VR1. The position of the hole should be ascertained by first laying the s.r.b.p. board in the case as a guide, and then marking the side of the box. The board is secured in the die-cast box, using extra nuts or spacers to provide clearance between the metal and live points on the circuit board. Once the board has been mounted in the case, to complete the wiring of the unit all interconnecting leads and resistor R8 should be soldered in position.

ERRATUM
Switched Gain General Purpose Amplifier—Sept. 68, page 619. In Table 1 noise referred to the input should be in microvolts, i.e. 200μV and 24μV.

Next month: A fixed frequency Square Wave Test Oscillator
Rapid Mail Order Service

UNBEATABLE VALUE IN NEW SEMICONDUCTORS

- 20 watt BAILEY AMPLIFIER complement
- M4541 6SN7G гг $12.90
- M6001 6SN7GT гг $9.90
- BC135 6N7GT гг $12.90
- BC125 6N7G гг $9.90
- BC127 6N7GT гг $11.90
- BC108 6N7G гг $9.90
- BC129 6N7G гг $11.90

Total for each matched pair $21.90. For single units, add 10%.

- BAILEY AMPLIFIER complement $0.00 watt
- M4541 6SN7G гг $0.00
- M6001 6SN7GT гг $0.00
- BC135 6N7GT гг $0.00
- BC125 6N7G гг $0.00
- BC127 6N7GT гг $0.00
- BC108 6N7G гг $0.00
- BC129 6N7G гг $0.00

G.O.I.

SMD2004 PLASTIC range: 18V 200mW

Red

- 69 = 69 to 69 69

Orange

- 69 = 30 to 19 69

Green

- 69 = 53 to 47 69

- Our choice of color 69 each, 10 for 21 69.

High reliability ceramic type available: CS2926 red 3 9; orange 4 9; yellow 4 3; CS2920 2 3 to 4 7, 5 9.

2N4289 PNP 60V hFE over 100 100/xA to 1mA.

2N4285 PNP hFE 35-150 10mA.

2574062 5 9 100 to 600 4 3

2N4058 low noise 5.

2N3707 low noise 4 6.

FETs

- EFR105 25V max., 20 6

Rapid Mail Order Service

ALL PEAK SOUND PRODUCTS AS ADVERTISED

2N2926, our choice of color 2 2 each, 10 for 21 69.

UNBEATABLE VALUE IN NEW SEMICONDUCTORS

- 2N3819 25V max., 5m

Opportunity of a lifetime! Big price reductions on top quality knights-kits

ELECTROVALUE

Dept. P.E.12 6 MANSFIELD PLACE, ASCOT, BERKS

ALL GOODS BRAND NEW

NO “SECONDS” OR SURPLUS COMPONENT DISCOUNTS: 10% for total order value exceeding $2 list.

- Please send me: Free Knight-Kits brochure

Send 1 — for our catalogue containing data on 500 up-to-date semiconductors and accessories as well as many other components, all try also equivalent table. Invaluable to every serious experimenter and designer. Everything at best possible prices.

Stereo telephone No. EGHAM 5533 (STD 0748-3)
Build yourself a quality transistor radio
guaranteed results
backed by our after sales service!

roamer seven mk iv
SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE!
7 FULLY TUNABLE WAVEBANDS—MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five
MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size 21 x 11 x 31/2in. Fully tunable over both Medium and Long Waves. Also includes a 15in telescopic aerial for easier tuning of Luxembourg, etc. All first grade components. Easy build plans and parts list 1/6 FREE with parts.

Total building costs 44/6 P. & P. 3/6

transona five
MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. Size 21 x 11 x 31/2in. Fully tunable. 7 stages-6 transistors and 2 diodes, ferrite rod aerial, tuning condenser, volume control, fine tone moving coil speaker also. Personal Earpiece with switched socket for private listening. Easy build plans and parts price list 1/6 FREE with parts.

Total building costs 47/6 P. & P. 3/9

super seven
THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case size 71/2 x 51/2 x 11in. with gilt fittings. Covers Medium and Long Waves and Trawler Band. Special circuit incorporating 22 R.F. Stages, push pull output, ferrite rod aerial, 5 transistors and 2 diodes, 3in. speaker (will drive larger speaker) and all first grade components. Easy build plans and parts. Price list 5/- FREE with parts. (Personal Earpiece with switched socket for private listening 5/- extra.)

Total building costs 69/6 P. & P. 4/6

roamer six
SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt fittings, size 71/2 x 51/2 x 11in. World wide reception. Tunable on Medium and Long waves, two short waves, Trawler Band plus an extra M.W. band for easier tuning of Luxembourg, etc. Sensitive ferrite rod aerial and telescopic aerial for Short waves. All top grade components. 8 stages-6 transistors and 2 diodes including 2 Micro-Alloy R.F. Transistors, etc. (Carrying strap 1/- extra.) Easy build plans and parts price list 6/- FREE with parts. Personal Earpiece with switch socket for private listening 5/- extra.

Total building costs 79/6 P. & P. 4/6

NEW LOOK

N 6 TELEVISIONS AND COMPONENTS

RADIO EXCHANGE LTD
61 HIGH STREET, BEDFORD. Tel.: Bedford 52367
I enclose £ please send items marked
ROAMER SEVEN ☐ ROAMER SIX ☐
TRANSONA FIVE ☐ SUPER SEVEN ☐
POCKET FIVE ☐ MELODY SIX ☐
Parts price list and plans for Name
Address

891
HI-FI IN THE HOME
By John Crabbe
Published by Blandford Press Ltd.
327 pages, 8in x 5in. Price 40s

Books on high fidelity sound reproduction are to be found in abundance, most of which give technical details of the equipment used. It is a welcome change, therefore, to find an author who has introduced this subject from an objective point of view—the aural appreciation of real music through an artificial medium. Concertgoers and record lovers alike can now read of the direct purpose of hi-fi at home in relation to something more than just a gimmick or status symbol.

The author, as a well-known journalist, is already recognised as a convincing authority, and has always taken great pains in promoting the theories behind hi-fi for the purpose of helping the music industry to find and maintain a truly appreciative audience.

One feels here that we are being carried through a "world tour" in the author's living room through the medium of recorded music during the last two chapters, having earlier discovered the association of music with electronics, and found how to assess the relative merits of commercial equipment for individual requirements.

Space here does not permit a comprehensive description of this book; no doubt one can imagine how much can be packed into 327 pages of small but clear type.

A glossary and bibliography are appended and no doubt will receive repeated reference. For the non-technical addicts, do not be deterred, for you will soon appreciate this adventure more fully having grasped its purpose.

This book is recommended to all for its musical, technical, and literaty merits.

M.A.C.

WORLD AT THEIR FINGERTIPS
By John Claricoats, O.B.E., G6CL
308 pages, 8in x 5in. Price 12s 6d

RADIO COMMUNICATION HANDBOOK
Fourth Edition
710 pages, 10in x 7pin. Price 63s

AMATEUR RADIO TECHNIQUES
By J. Pat Hawker G3YA
160 pages, 9in x 7pin. Price 12s 6d
All published by The Radio Society of Great Britain

The recent exhibition has something to do with the sudden appearance of a number of books from the R.S.G.B.; anyhow, whatever the cause, "propagation" is seemingly not applicable only to radio waves!

Amateur radio is as old as radio itself. John Claricoats is probably fully justified in describing Prof. D. E. Hughes as Britain's first radio amateur. In 1879 Hughes received signals in a telephone earpiece while walking in a London street some quarter of a mile from a primitive transmitter. This important episode is recalled in the opening chapter of World at Their Fingertips and from such historical beginnings the story of the amateur radio movement in this country is narrated through the 30 succeeding chapters.

The Radio Society of Great Britain grew from the London Wireless Club which was formed in 1913. The author is uniquely qualified to recount the significant events of the ensuing years, since he held office as the Secretary of the Society from 1930 until 1963. The birth pangs of the new organisation, the frequent tussles with officialdom about licences and operating conditions, and the achievements of individual amateurs in the developing hobby of radio communication, all add up to a fascinating tale.

The R.S.G.B. has been constantly involved in politics, negotiating both with the home government and with international bodies on behalf of the radio amateur. Not surprisingly these activities and the personalities involved make up a considerable part of this story, and one is a little disappointed to be given just tantalisingly brief accounts of the important successes in radio communication and of the techniques and equipment employed by the various amateur stations concerned. However, an excellent selection of photographs do help make amends in this respect, for many of these are of great historical interest and show transmitting and receiving equipment used in epic making "contacts".

The phenomenal success of the R.S.G.B.'s first major publication The Amateur Radio Handbook is referred to in World at Their Fingertips. This handbook was eagerly seized upon as a valuable text book by the Services during the second world war, and was reprinted many times before being replaced by a third edition in 1961. Last September a fourth edition, now renamed the Radio Communication Handbook was published.

The pattern of that earlier book is still discernible in this greatly enlarged work but the subject matter reflects the immense technical changes and advances that have taken place over the years. It incorporates the contributions of a number of specialist contributors. The novice is catered for in the first chapter which deals with basic principles in a fairly elementary way; then follow further accounts of valves and semiconductors. Four chapters are devoted to receivers and transmitters (h.f. and v.h.f./u.h.f.), and these include practical designs for home construction; some are valve circuits and some use semiconductors. A chapter on single sideband transmission extends to over 100 pages—by far the longest chapter in the book—and indicates the completely up-to-date outlook of this work.

There is much more besides, but it will suffice here to add that anyone interested—as amateur or professional—in radio communication will hardly be able to resist acquiring a copy once they examine this excellently produced copious volume of technical information.

From a "combined op" to a solo effort. The name Pat Hawker is familiar to all readers of the R.S.G.B. Bulletin as the author of a lively series entitled "Technical Topics" first introduced in 1958.

Little of significance to the amateur seems to escape the eye of this diligent gleaner of technical news items. New equipment, discoveries, experiments, a new principle, a new invention—nothing escapes his sharp, perceptive eye. Pat Hawker's The Amateur Radio Techniques is now presented, in paper back form, a selection from these items originally published over the past 10 years, together with some additional material. This book is a revised second edition of that published in 1965 under the title Technical Topics for the Radio Amateur. It contains over 350 circuit diagrams.

WIRELESS WORLD DIARY 1969
Published by T. J. & J. Smith Ltd. in conjunction with Iliffe Technical Publications Ltd.
79 pages of information plus diary section, 4in x 2in.
Price 6s 6d in rexine cover, 9s in leather cover

This well established diary maintains its aims in up-dating the information section to include current practices and is a useful condensed reference work for all branches of electronics. Of particular interest are the recent sections dealing with the PAL colour television system, stereo sound reception on BBC Radio 3, including a decoder circuit diagram; some transistor near equivalents and coding nomenclature. However, it is surprising to find, with a journal of this kind, that the circuit symbols in many cases still do not comply with British Standard specifications, particularly among semiconductor devices.
Faraday Lecture

This year's Faraday Lecture arranged by the Institute of Electrical Engineers will be given by Mr. P. E. Trier M.A., C.Eng., F.I.E.E., F.I.M.A., Director of Research and Development, Mullard Ltd., and Director of Mullard Research Laboratories, and Professor of Electronics at the University of London. The subject is to be "The role of electronics to the Institute of Electrical Engineers, Savoy Place, W.C.2."

The lecture will be delivered in 12 towns throughout Britain, and is intended to inform the general public, in straightforward language, about microelectronics. Mr. Trier will cover the history, demand and physical principles of microelectronics and proceed to explain the technology for making microcircuits and the standards of the industry formed to meet the demand. Applications will be highlighted and described with the aid of models, demonstrations and films which are intended to introduce the subject in an enjoyable and entertaining way.

Members of the public are admitted (free) by ticket, obtainable (with details of dates and venues) on application to the Institute of Electrical Engineers, Savoy Place, W.C.2.

Golf Drive Measurement

Electronic equipment was used at the Alcan "Golfer of the Year" Championships for distance measurement of players' drives. The equipment used has a wide application in surveying and mapping. Drive distances can be measured within inches by transmission of microwaves from a "master" unit to a "remote" unit mounted on a motorised golf cart. The equipment, which is made by Tellurometer (U.K.) Ltd., can provide instant readout and drive distances can be recorded together with temperature and depth measurements.

New Stock Market Computers

Two computers valued at almost £1 million will serve as the master systems of the Ultronic quotation service to stockbrokers from the United States to the Far East covering Canada, Europe and South America.

The two computers, supplied by Univac—a division of Sperry Rand—will be installed in a new computer centre in Mount Laurel, New Jersey. When installed, the incoming information from most major markets will be processed and transmitted to 26 satellite computer centres at high speed. From the centres the information is routed to some 2,000 brokerage offices in more than 400 cities. In-depth information on more than 8,000 individual stocks and commodities is available continuously.

Cheaper Printed Circuits

"New Technology" the MinTech news magazine reports on a new process for etching holes in the plastic insulation of printed circuit boards having two or more interconnected conducting layers. The process replaces costly mechanical methods and is based on the discovery of a new chemical action.

To permit the connection of integrated circuit packages and the interconnection of layers of conductors, holes are made in the p.c. board and the walls are plated with copper. After etching the holes, the board is masked and plated with copper to form the conductors and connections through the walls of the holes.

I.T.A. Colour O.B. Vehicle

Granada Television have ordered a five-camera colour outside broadcast vehicle from EMI Electronics. The unit consists of three individually air conditioned areas for production, sound and vision and are of modular solid state construction.

The new company of Thames Television has also been buying colour equipment from the same manufacturer. The orders include: 14 colour cameras and 10 video switching modules, each with 28 inputs and 5 outputs, for use in the new studio complex to be built for Thames Television at the Euston Centre, London.

Light Emission from Plankton May Help Food Shortage

The possibility that plankton might be used as a means of solving the universal food shortage has placed an increased importance on the study of its behaviour and environment. A comprehensive study into light emission by plankton is being carried out in the Firth of Clyde by the Scottish Marine Biological Association using special equipment made by Plessey.

A photo-multiplier light detector, which is considerably more sensitive than the human eye, is housed in a pressure-tight case from which signals are relayed via underwater cables to a research vessel. The signals are automatically recorded together with temperature and depth measurements.

Television Advisory Committee Reports

The government's decision to adopt the PAL system of colour television and to authorise the duplication of BBC-1 and independent television programmes on U.h.f. with a definition standard of 625 lines were announced in 1966 and 1967. The technical considerations which led up to these decisions have now been published in the "Report of the Television Advisory Committee 1967", obtainable from Her Majesty's Stationery Office, price 2s. 6d.

In 1962 the Government decided, on the advice of the Advisory and Pilkington Committees, to change to a 625-line standard system.

Since 1959 the Advisory Committee has been considering methods of changeover — methods of "overnight switchover" and "duplication" were considered. The committee found that the final solution would have to be a mixture of the two methods and advised the Government that the work necessary for duplication should be put in hand at once, also that duplication should be continued until the residue of the public watching the 405-line standard was small enough to effect an "overnight switchover". The Committee also recommended the use of the PAL system in the United Kingdom for colour television.

In March 1966 the Government accepted the recommendations of the Committee, and the first moves were made in the changeover. In December 1967 a full colour service began on BBC-2 using the PAL system.

Airborne Advertising

An aircraft to be used as an advertising medium has been built by Slingsby Aircraft Ltd. The aircraft carries on its sides illuminated panels, consisting of a matrix of special tungsten lamps which can reproduce messages, nominally 30 words in length, whilst airborne.

The project is based on a memory system, supplied by Mullard, which accepts information from an electric typewriter; this information is stored so that messages can be reproduced at will. Logic circuitry converts the memory output into a suitable form to drive the thyratrons which control the lamps. The messages are then flashed on alternate sides of the aircraft to save power.
FOR VERSATILITY RELIABILITY AND SOUND VALUE INSIST ON

EAGLE PRODUCTS

Distributed by B. Adler & Sons (Radio) Ltd., Coptic Street, London, W.C.1

896

THE DORSET (600mW Output)
7-transistor fully tunable M.W.-L.W. superhet portable—
with baby alarm facility. Set of parts. The latest modular
and pre-alignment techniques makes this simple to build.
Sizes: 12" x 8" x 3".

Mains Power Pack Kit: 8/6 extra.
Price £5.50 plus 7/6 p. & p. Circuit 2/6 FREE WITH PARTS.

THE ELEGANT SEVEN MK. III (350mW output)
7-transistor fully tunable M.W.-L.W. portable. Set of parts. Complete with all components, including
ready printed and drilled printed circuit board—back
printed for foolproof construction.

Mains Power Pack Kit: 9/6 extra.
Price £4.95 plus 7/6 p. & p.
Circuit 2/6 FREE WITH PARTS.

50-WATT AMPLIFIER A.C. MAINS 200-250V
An extremely reliable general purpose valve amplifier
—with six electronically mixed inputs. Suitable for
use with: micros, guitars, gram, tuner, organs, etc.
Separate bass and treble controls.

X101 10W SOLID STATE HI-FI AMP WITH INTEGRAL
PRE-AMP
Specifications: R.M.S. Power Output (into 3 ohms speaker): 10 watts continuous (blue wave), 12 watts rms output.
Sensitivity (for rated outputs): 1 mV into 3K ohms (2-35 Mc. up to
600 Hz). Total Distortion (at 1KHz): at 6 watts 0-55%, at rated output 1-5%. Frequency Response: Minimum 5K points 20Hz and 40KHz.
Speaker: 3-4 ohms 16-18 ohms may be
used. Supply voltage: 220-230V A.C. @ 60Hz (6-24V may be
used).

Control assembly: including resistors and capacitors.
1. Volume: PRICE £1
2. Treble: PRICE £1
3. Comprehensive bass and treble: PRICE £2

The above 3 Items can be purchased for use with the X101.

Power Supplies for the X101:

THE CLASSIC
Controls: Selector switch, Tape speed selector switch (32 and 73 L.p.s.), Volume, Treble, Bass. 2 position switch filter and 2 position rumble filter.

Specifications: Sensitivities for 10 watt output
At 315Hz: Tape speed 3-50V (at 13 gns.)
Max. P.M.: 2mV, C.S. F.U.: 50mV, Radio: 100mV.
Ampl. 1000V, Tape Rec. output: 200V, Equilibration for each input is correct to within ±12B (R.E.A.) from 20Hz to 20KHz. Tone
counter range: Bass 15dB at 40KHz. Treble 15dB at 20KHz. Total distortion: (for 10 watt output) <1-5%. Signal noise: <1-6%, A.C. mains noise 300-2500.
Size: 11" long, 4' deep, 2-5" high. Test finished case

The Reliant 10W SOLID STATE HIGH QUALITY AMPLIFIER
Input impedance: 3 to 4 ohms. Inputs: 1. Xtal mixer 50V (2); 2. Grammaphone 100V Volts, Tone controls: Treble control range ±15dB at 10KHz. Bass control range ±35dB at 100Hz. Frequency response (with bass controls central): Minimum 25 points use
30Hz and 10KHz. Sine wave to noise ratio: better than 60dB. Transistor: 3 silicon Planar type and 3 germanium type. Mains input: 220-230V A.C. 15A. Max. surge: 500-2500VA. For use with Std. OR P.E. records, musical instruments, all makes of pic-k-up and mikes. Separate bass and treble knob controls. Two inputs with control for gram and mike. Built and tested. 8" x 5" speaker to suit:
PRICE £5.50 plus 5/- p. & p.

THE VISCOUNT
Integrated High Fidelity Transistor Stereo Amplifier

Price 13 1/2 gns. Postage & Packing 7/6 extra.

CYLDON U.H.F.
TUNER
Complete with P.C.B and P.C.W. Values: Full
variable tuning. New
and unusual. Size 4 1/2
5" x 11". Complete
with circuit diagram.
Price 35/- plus 3/- p. & p.

CYLDON U.H.F.
TUNER
Complete with P.C.B and P.C.W. Values: Full
variable tuning. New
and unusual. Size 4 1/2
5" x 11". Complete
with circuit diagram.
Price 35/- plus 3/- p. & p.

THREE-IN-ONE HI-FI 10 WATTS
A complete Loud Speaker system on one frame, combining three matched ceramic magnet speakers with a low loss cross-over network. Peak handling power 10 watts. Frequency range 40-60kHz. Price 6/-.

Price 35/- plus 3/- p. & p.

Goods not despatched outside U.K. Terms C.O.D. All enquiries S.A.E.

RADIO & TV COMPONENTS (ACTON) LTD.
21d High Street Acton · London W.3
323 Edgware Road · London W.2
ORDERS BY POST TO OUR ACTON ADDRESS PLEASE
THE DESIGNER'S GUIDE TO BRITISH TRANSISTORS

Comprehensive ratings, characteristics and test conditions of more than a thousand transistors. Comprehensive Equivalents List of 11 manufacturers.

By I. J. Kampel

Price 25/- Postage 1/-.

COLOR TV TROUBLESHOOTING PICT-O-GUIDE 38p. Postage 1/-.

COLOUR TV TROUBLESHOOTING

Illustrated catalogue of British and American Technical Books

19-21 Praed Street, London, W.2

Phone: Paddington 4185

Closed Saturday 1 p.m.

PRICE LIST

SERVICE TRADING CO

All Mail Orders—Also Callers—Ample Parking Space

57 Bridgman Road, London, W.4 Phone 995 1560

SHOWROOM NOW OPEN

CLOSSED SATURDAY

UNISELECTORS NEW

4 Bank 25 Way 24 v. D.C. operation £17.6/- plus 2/6 P. & P.

8 Bank 35 Way 24 v. D.C. operation. £7.12.6/- plus 4/- P. & P.

MINIATURE UNISELECTOR SWITCH

Transistor and Circuit, etc., 6-12 volt D.C. operation. 2 make 2 break (or, 2 c/o). 15 amp. contacts. 1/6 P. & P.

SPECIAL OFFER

Dry Read Switches half special offer of Dry Read Switches half to 50 amp. from stock. £1.50. P. & P. ORP 12 including circuit, P & P.

PORTABLE TYPE

Similar to above j UNISELECTOR SWITCHES

17/6 plus 2/6 P. & P. V

SERVICE TRADING CO

All Mail Orders—Also Callers—Ample Parking Space

57 Bridgman Road, London, W.4 Phone 995 1560

SHOWROOM NOW OPEN

CLOSSED SATURDAY

UNISELECTORS NEW

230 VOLT A.C., GEARED MOTORS

Type 113V 5 r.p.m. 1.7 lb. inch. £9.5.0. P. & P.

ECONOMY KIT. Flash rate 1-36 flash per second. **INDUSTRIAL KIT.** Ideally suited for schools, laboratories, etc. Incorporates double wound transformer which isolates both tube and timing circuit. £8.8/0 plus 6/- P. & P.

PARLOR TYPE

10/6 each, plus 1/-P. & P.

PORTABLE TYPE

Price inc. circmt 47/6 plus 2/6 P. & P.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon lamp housing, to take MBC bulb. Separate time control. Fitted in metal case. 36 hr. continuous running. £9.5.0. Post paid.

COLLECTIVE TERMINAL

SEMICON DUCT TRANSFORMER

430 volt 3 amp. £1.12.6. £1.17/6. & C. £1.17/6 plus 2/- P. & P.

SHADED POOL TRANSFORMER

£9.5.0. V

ALPHA RADIO SUPPLY CO

103 Leeds Terrace, Leeds 7. Tel. 25187

SERVICE TRADING CO

All Mail Orders—Also Callers—Ample Parking Space

57 Bridgman Road, London, W.4 Phone 995 1560

SHOWROOM NOW OPEN

CLOSSED SATURDAY

UNISELECTORS NEW

4 Bank 25 Way 24 v. D.C. operation £17.6/- plus 2/6 P. & P.

8 Bank 35 Way 24 v. D.C. operation. £7.12.6/- plus 4/- P. & P.

MINIATURE UNISELECTOR SWITCH

Transistor and Circuit, etc., 6-12 volt D.C. operation. 2 make 2 break (or, 2 c/o). 15 amp. contacts. 1/6 P. & P.

SPECIAL OFFER

Dry Read Switches half special offer of Dry Read Switches half to 50 amp. from stock. £1.50. P. & P. ORP 12 including circuit, P & P.

PORTABLE TYPE

Similar to above j UNISELECTOR SWITCHES

17/6 plus 2/6 P. & P. V

SERVICE TRADING CO

All Mail Orders—Also Callers—Ample Parking Space

57 Bridgman Road, London, W.4 Phone 995 1560

SHOWROOM NOW OPEN

CLOSSED SATURDAY

UNISELECTORS NEW

4 Bank 25 Way 24 v. D.C. operation £17.6/- plus 2/6 P. & P.

8 Bank 35 Way 24 v. D.C. operation. £7.12.6/- plus 4/- P. & P.
CONSTRUCTION

The components were assembled on a piece of Veroboard similar to that given away free in the October issue. Component mounting should follow that given in Fig. 2a. When soldering is completed layout should again be checked. Copper strips should then be cut as in Fig. 2b using a spot face tool or knife. If LP1 and X1 are attached to the board 20 s.w.g. wire should be used for a rigid fixture. An M.E.S. batten holder will prove suitable for holding this lamp, and can be screwed to the bottom of the box, inside. X1 is then suspended by the stiff wires in close proximity to the lamp and facing it.

The small size and battery required permit a small housing to be used. No constructional details of this are given here but if anything prefabricated is used make sure that there are no gaps for unwanted light to come through as this will upset circuit action.

DECORATION

Decorating the box top where the lamps protrude is a matter of taste. The lamps should be labeled "heads" and "tails" and SI "spin".

Panel lampholders come in a variety of transparent lens colours such as amber, blue, green or red and these can be used in addition to identify the coin faces.

COMPONENTS

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R2</td>
<td>100Ω</td>
</tr>
<tr>
<td>R3</td>
<td>470Ω</td>
</tr>
<tr>
<td>R4</td>
<td>4.3kΩ</td>
</tr>
<tr>
<td>R5</td>
<td>5.6kΩ</td>
</tr>
<tr>
<td>R6</td>
<td>100Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>25µF</td>
</tr>
<tr>
<td>C2</td>
<td>50µF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>2N2160</td>
</tr>
<tr>
<td>TR2</td>
<td>NKT128</td>
</tr>
<tr>
<td>TR3</td>
<td>OC81</td>
</tr>
<tr>
<td>TR4</td>
<td>OC81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Light Dependent Resistor</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 ORP12 (Mullard)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diode</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>OA81</td>
</tr>
<tr>
<td>D2</td>
<td>OA81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Single pole push-to-make switch</td>
</tr>
<tr>
<td>S2</td>
<td>On/off toggle switch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lamp</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP1, LP2, LP3</td>
<td>M.E.S. 6V 0.06A (3 off)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1</td>
<td>9 volts (type PP7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.E.S. Battenholder (1 off). Panel lampholders (2 off)</td>
</tr>
</tbody>
</table>
Here is a novelty that should amuse the young over Christmas. It is a solid state version of the popular “heads or tails” game using neons which has already been described. Unfortunately that circuit, although simple, requires a battery supply of about 100 volts which is rather prohibitive when thinking in terms of portability.

The unit described in this article requires only 9 volts and the filament lamps present a better twinkling display when simulating a coin spin.

UNIJUNCTION TRANSISTOR

TR1 is a unijunction transistor working as a relaxation oscillator, see Fig. 1. With S2 switched on the electrolytic capacitor C1 charges through R1. With the omission of the photoconductive cell X1, TR1 would normally fire when its peak point voltage appears at the capacitor. In unijunction devices this is a fixed percentage of the base-1 to base-2 voltage.

At this voltage the emitter to base-1 evinces a negative resistance characteristic, which means that the capacitor discharges although its voltage falls below the original peak point. The charge and discharge at C1 is reflected at R2 and R3 as positive and negative pulse trains. In dark conditions the high resistance of the light cell X1 holds off firing at TR1.

TIME DELAY

TR2 forms part of a time delay circuit the action of which is initiated by depressing the “Spin” push switch S1. This causes C2 to charge and the transistor to conduct, lighting the lamp LP1. With the release of S1, TR2 is maintained in conduction with the discharge of C2 through R5.

LP1 is arranged in close proximity to X1 and its light reduces the resistance of the cell to a few tens of ohms. The result is that TR1 conducts and its negative pulse output is taken off at R3 and applied to the diodes D1 and D2.

FLIP FLOP

The flip flop circuit containing TR3 and TR4 is the “coin” in the novelty. Each of its faces is represented by a lamp LP2 or LP3: a head or a tail.

With S2 depressed either TR3 or TR4 is switched on and its corresponding lamp lit. With the spin switch S1 depressed pulses arrive alternately “flipping” TR3 and TR4 into conduction and causing the lamp loads to light. After a period determined by the time delay the pulse train is cut short. The flip flop assumes a stable condition showing either a “head” or a “tail”.

Building two complete circuits enables you to play that two coin variant of “odds” or “evens” which is calling for unmatching or matching coin faces to appear in the final combination.
AUTOMATIC DRIVING SYSTEM

So far we have dealt with the safety signalling system, which over-rides commands related to the driving of the train. These command signals are given to the train by feeding audio frequency currents into 10ft sections of running rails, and are known as command spots. No special insulation is necessary for these sections.

The current used is produced by an electronic generator, and a frequency of 100Hz for 1 mph is used for spots or sections where specific train speeds are required, as in stopping a train at a station.

The automatic driver command signals are picked up by the separate induction coils, only one coil is used at a time, but with two coils available the “spot” can be placed on the most convenient running rail. The command signal frequency is detected and compared with a frequency produced by a generator mounted on the end of a motor on the train.

The train generator has a continuous output but the spot generator produces “bursts” of 127Hz at a time. A counter on the train starts as soon as a signal is received from the track and counts 127. No comparison is made unless this count is exactly right. If it is, a comparison is made with the train generator, which has been subject to simultaneous count. This comparison shows whether the train is moving faster or slower than the pre-determined speed and adjusts the braking of the train accordingly.

RUN-AND-COAST OPERATION

When the train operator closes the doors and presses the twin start button simultaneously, the train is receiving the 420 pulse code, provided the track is clear, and will move off under power. The train proceeds under power until it reaches the point at which power should be cut off, and here there is a command spot with a 15Hz frequency current passing through the track. This is a special frequency, outside the speed range of the train, which is recognised by a circuit in the train mounted equipment. This causes the supply to the motors to be cut off and the train then coasts.

The train will continue to coast, given a clear track, until it approaches a station, where it meets the first of a series of speed related frequency command spots to gradually slow the train down.

The first of the series of spots might dictate a speed of 35 mph and have a frequency of 3.5kHz, the impulses following each bringing the speed down by approximately 5 mph. The speed reduction is achieved by a comparison of the actual speed of the train, in terms of frequencies produced by a train mounted tachometer generator, with the frequencies received from the track. The brakes are applied as required until the speed drops to 4 mph, the braking is then “eased out” to give a smooth stop. The braking rate down to this speed is controlled by mercury retarder switches.

Command spots are also provided to control train speed where there are speed restrictions or signals.

TRACK SIDE EQUIPMENT

The provision of coded track circuits to operate the safety train equipment required special arrangement of the track circuits at those parts of the track involving junction work.

To give proper operation the track circuit current must always flow towards the front of an approaching train. Some of the track circuits associated with junctions have, therefore, been made reversible and are normally operated with two track relays.
BARGAIN STEREO/MONO SYSTEM
Attractive Stereo Player Cabinet with B.S.R. PAIR Deck + 4 AMPLIFIER and TWO matched LOUDSPEAKERS

NEW TUBULAR ELECTROLYTICS
3.5 volts 500 ma. 8 x 1 6.3 volts 100 ma. 10 x 1
4.5 volts 100 ma. 12 x 1
6.3 volts 250 ma. 12 x 1
8.5 volts 250 ma. 12 x 1
16.5 volts 12 x 1
14.5 volts 12 x 1
14.5 volts 12 x 1
30.0 volts 12 x 1
550 volts 12 x 1

CAN TYPE
3.5 volts 500 ma. 8 x 3
6.3 volts 12 x 3
250 ma. 12 x 3
8.5 volts 150 ma. 12 x 3
16.5 volts 12 x 3
14.5 volts 12 x 3
14.5 volts 12 x 3
30.0 volts 12 x 3
550 volts 12 x 3

SUB-MIN. ELECTROLYTICS
1.8, 3, 4.5, 6.8, 8.9, 29, 50, 100.
3.5 volts 100 ma. 8 x 1
4.5 volts 50 ma. 8 x 1
14.5 volts 50 ma. 8 x 1
250 ma. 8 x 1
500 ma. 8 x 1
1000 ma. 8 x 1

SUB-MIN. TRANSDUCERS
1.8, 3, 4.5, 6.8, 8.9, 29, 50, 100.
3.5 volts 50 ma. 8 x 1
4.5 volts 50 ma. 8 x 1
14.5 volts 50 ma. 8 x 1
250 ma. 8 x 1
500 ma. 8 x 1
1000 ma. 8 x 1

GEAR INVESTMENT CO.

CHASSIS
Post 6-in.
Three Wavebands: Five Values: ECGS1, EFR9, EFR10, EFR11, EFR90.
Manmor three 6.5mm. 0.5x 50.0 ohms, 50.0 ohms, 50.0 ohms.
Autochanger, Foil Sticker, 0.5x 50.0 ohms, 50.0 ohms, 50.0 ohms.
Allied calibrated, Chassis isolated from mains supply, 50.0 ohms, 50.0 ohms, 50.0 ohms.
6 valve plus rect. Size 17 1/8 x 1 3/4.

GARRARD PERSEPOLIS COVER SPCL/P. FOR WH1 EACH.

MINITUNE AMPLIFIER
For All Record Players.
A.C. Main Transformer.
Price £9 12s. 6d.

MERRY CHRISTMAS
Take your Wellerchoice

LOW INITIAL COST

Marksman irons to cover all your soldering needs. 25W, 40W, 80W, 120W, 175W. Nickel-plated factory pre-tinned tips in stainless steel shanks.

INSTANT HEAT FOR RAPID SOLDERING

THE tool for intermittent work such as servicing. Working heat in a few seconds. The job is done in less time than it takes a normal iron to heat up. Expert dual-heat and Heavy Duty models.

TEMPERATURE CONTROL FOR RELIABILITY

For sophisticated production line soldering or to replace several conventional irons. No dry joints. Control of temperature without inhibiting performance. Mains or low voltage.

Send for full information

Weller Electric Limited
Redkiln Way, Horsham, Sussex
Tel: 0403. 61747

STereoGRAM CABINET £19
An elegant Stereogram Cabinet in modern Veneered Mahogany and cloth covered Front Panel
BLACK LEATHERETTE SIDE PANELS
Dimensions: 52" x 17" x 12", Speaker positions for Twin 10" x 5" Speakers

OTHER MODELS—SEND FOR LIST
SPEAKERS 6/6
2"—72.5, 0.25"—35Ω, P. & P. 2/6.
ACO MILCS, 35"—STANDARD
ASSORTED CONDENSERS
10" for 50, P. & P. 7/6.
ASSORTED RESISTORS
ASSORTED CONTROLS
10" for 25, P. & P. 7/6.
TRANSISTORS
MULLARD MATCHED OUTPUT KIT
9" OC81D—2 OC81 & 8.
FERRITE RODS 3/6
6", 8" x 3" complete with LW/LM COILS. P. & P. FREE.

DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Phone 01-478 6001-2-3
Stamp for Free List.

17in. £11.10.0 Carr. 30/-
19in. SLIM-LINE
FERGUSON 24 gns.

WIDE RANGE OF MODELS
Sizes and Prices
DEMONSTRATIONS DAILY

INSTANT HEAT FOR RAPID SOLDERING

FREE ILLUSTRATED LIST OF TELEVISIONS
17"—19"—21"—23"

OTHER MODELS—SEND FOR LIST

SPEAKERS 6/6
2"—75Ω, 0.25"—35Ω, P. & P. 2/6.
ACO MILCS. 35"—STANDARD
ASSORTED CONDENSERS
10" for 50, P. & P. 7/6.
ASSORTED RESISTORS
ASSORTED CONTROLS
10" for 25, P. & P. 7/6.

TRANSISTORS
MULLARD MATCHED OUTPUT KIT
9" OC81D—2 OC81 & 8.
FERRITE RODS 3/6
6", 8" x 3" complete with LW/LM COILS. P. & P. FREE.

DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Phone 01-478 6001-2-3
Stamp for Free List.

17in. £11.10.0 Carr. 30/-
19in. SLIM-LINE
FERGUSON 24 gns.

WIDE RANGE OF MODELS
Sizes and Prices
DEMONSTRATIONS DAILY

OTHER MODELS—SEND FOR LIST

SPEAKERS 6/6
2"—75Ω, 0.25"—35Ω, P. & P. 2/6.
ACO MILCS. 35"—STANDARD
ASSORTED CONDENSERS
10" for 50, P. & P. 7/6.
ASSORTED RESISTORS
ASSORTED CONTROLS
10" for 25, P. & P. 7/6.

TRANSISTORS
MULLARD MATCHED OUTPUT KIT
9" OC81D—2 OC81 & 8.
FERRITE RODS 3/6
6", 8" x 3" complete with LW/LM COILS. P. & P. FREE.

DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Phone 01-478 6001-2-3
Stamp for Free List.

17in. £11.10.0 Carr. 30/-
19in. SLIM-LINE
FERGUSON 24 gns.

WIDE RANGE OF MODELS
Sizes and Prices
DEMONSTRATIONS DAILY

OTHER MODELS—SEND FOR LIST

SPEAKERS 6/6
2"—75Ω, 0.25"—35Ω, P. & P. 2/6.
ACO MILCS. 35"—STANDARD
ASSORTED CONDENSERS
10" for 50, P. & P. 7/6.
ASSORTED RESISTORS
ASSORTED CONTROLS
10" for 25, P. & P. 7/6.

TRANSISTORS
MULLARD MATCHED OUTPUT KIT
9" OC81D—2 OC81 & 8.
FERRITE RODS 3/6
6", 8" x 3" complete with LW/LM COILS. P. & P. FREE.

DUKE & CO. (LONDON) LTD.
621/3 Romford Road, Manor Park, E.12
Phone 01-478 6001-2-3
Stamp for Free List.
The recently opened Victoria Line is the first new "tube" railway to be built under central London for over 60 years. Probably the most technically advanced railway in the world, this line relies heavily upon electronics for its automatic running.

Electronics Underground

The travelling habits of many thousands of London commuters underwent a major change on September 2, 1968. On this day the first fully automatic train pulled away from Walthamstow Central station, marking the opening of the first section of the new Victoria Line. The first section runs from Walthamstow Central to Highbury and Islington, the next section, due to commence running in December, is from Islington to Warren Street and the third section from Warren Street to Victoria will be completed in the early spring. A fourth section will be completed in 1970, which will extend the line to Brixton.

Role for Electronics

Apart from the enormous task of the tunnelling there was the task of station and train design to be considered. This is where electronics plays a starring role in the form of automatic trains, automatic ticket issuing, automatic passenger barriers, closed circuit television, and for the first time in this country the use of carrier wave equipment for intercommunicating with traffic regulators in control rooms and in other trains, whilst still running underground.

Most of the design of the complete system has been done by London Transport design departments in close consultations with subcontractors.

Tracking and coding equipment of the type used on the new line

The Automatic Train

The first train fitted with automatic driving equipment to be tried in passenger service began way back in April 1963. Since then many exhaustive tests and experiments to ensure safety and reliability of running have been carried out.

Automatic driving apparatus incorporates two separate systems, the safety signalling system which ensures the safety of the train and its passengers, and the automatic driver signal command system. Both systems rely on electrical currents, either coded or of different frequencies, being picked up by induction coils mounted at the front of the train.

Safety Signalling System

The safety signalling system uses coded signals which take the place of the usual visual signalling system, although enough visual signals are provided to allow trains to proceed manually if any emergencies arise.

The basic principle of the system is that a train cannot run unless it is receiving a continuous series of coded pulses transmitted through the running track. The coded signals inform the train whether the track is clear or if another train is ahead. The train must receive one or other of the safety codes continuously. If a code ceases to be received then the brakes are automatically applied.

The safety signals are derived from mains current at 125Hz, which is interrupted into the necessary codes by means of pendulums swinging at different rates and operating electronic switches.

Coded Signals

The codes used are: 420 impulses per minute, indicating that the track is clear for full speed running; and 180 pulse, which indicates that the train cannot proceed at more than 25 mph. Indications of the codes are given by lights in the cab for the information of the train operator.
CAUTION

Ensures that no power will be supplied to the traction motors unless the air brakes are fully operative.

CLOSE RUNNING

A feature of the equipment is the provision of a 20kHz command spot which works in conjunction with a stop signal and is switched on and off with it. The purpose of this special command pulse, outside the train speed frequency, is to enable a train to approach an occupied section at reduced speed.

If a train is standing in a station under the protection of the home signal, the 20kHz pulse is automatically switched on. Any other train approaching receives this signal and is caused to make a service brake application so as to stop before reaching the signal itself. The train will re-start by itself as soon as the train ahead leaves the station and the signal is cleared, but will continue into the station at the reduced 20 to 23 mph speed until it comes to the braking points for the station stop. The effect of the 20kHz spot is to cause the train to be stopped at a signal position before it runs on to a lower or no-code section when it would be stopped by means of the emergency trip valve. Full safety braking distances are incorporated in the positioning of the safety signalling equipment applying the codes to the tracks.

AUTOMATIC TICKET GATES AND FARE COLLECTION

In the new stations full use is made of automatic ticket issuing, automatic barriers and closed circuit television.

This automatic system has been developed to act as a deterrent to fraudulent travel and to cut costs.

Two types of gates are used—the four-door gate and the tripod turnstile. Entry and exit gates are worked by yellow tickets with magnetic tape backing on which the journey details are electronically encoded. When passengers place their tickets in the appropriate slot, these details are “read” electronically by the gates, which open only if the ticket is valid.

A high percentage of tickets sold in station booking halls will come from automatic machines including a

“Four-door” automatic collection gates, one of two types used on the Victoria Line

V.H.F. transmitter and receiver used on the new automatic trains

new multi-fare machine which has a range of 20 fares; this accepts any coin and gives change as necessary. Note changing machines will also be used at stations; these accept banknotes and, after checking electronically, deliver two shilling pieces as necessary.

CLOSED CIRCUIT TELEVISION

Closed circuit television, designed by Peio Scot Ltd., will help maintain a smooth flow of passengers to and from the trains.

Seventy-four cameras and 42 monitor sets and distributive equipment will be used between Walthamstow Central and Victoria to cover the 10½ mile, 12 station section of the new line.

At most stations on the new line an operations room, generally at ticket level, will be equipped with two 11in monitor screens on which the supervisor in charge will be able to select pictures from any of the cameras at his disposal. A microphone connected to loudspeakers on the platforms will enable him to make announcements to passengers.

Television also gives a visual link with all Victoria Line stations to the line controller. At the control centre at Cobourg Street, Euston, he will have two 19in monitors on which to pick up pictures from cameras on any of the station platforms throughout the whole system.

In the event of a delay to the service he will be able to see the effect of the trouble at a glance.

A two-way sound system, linked to the TV set-up, will enable the line controller to hear as well as see what is going on with the range of each camera, and to speak through the platform public address system if required.

For the train operators, monitor screens are sited on each platform opposite the point where the front of the train stops. These show the picture transmitted by the camera mounted at the opposite end of the same platform.

SUMMARY

Finally, the cost of the Victoria Line, which has a carrying capacity of equivalent to eleven motorways running across the heart of London, will be about £80 million and will have a rush hour capacity of 25,000 passengers an hour in either direction.

But is the money well spent? Will it ease the congestion and frayed tempers during rush hour? Only time will tell.
Short of a lead?
With a 3-pin DIN plug on one end and 3.5mm jack on the other? With the
Goldring Screened Audio Lead Set, you've got it—instantly—at your
fingertips. And 37 other different equipment-to-equipment connections
as well. With cable lengths of 20", 40", or 60" according to the combinations you use. All
tidily and instantly to hand in a small neat storage box. There's no longer any need to have
an unwieldy collection of dozens of different leads... and that's not just for audio.
This new Goldring set will give you most of the connections you're ever likely to want—
without searching for cables and plugs, without soldering, without waiting, without
further expense. The Goldring Audio Lead Set, from your Hi-Fi dealer.

£3.6.0

Goldring MANUFACTURING CO. (G.B.) LTD.,
9 & 10 CHAPEL STREET
LONDON, N.W.1
01-723 7851 01-262 5125

Now! A FAST EASY WAY TO LEARN BASIC RADIO AND ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics.
No soldering—but you learn the practical way.

Now you can learn basic Radio and Electronics at home—the
fast, modern way. You can give yourself the essential technical
'know-how' sooner than you would have thought possible—
read circuits, assemble standard components, experiment, build... and enjoy every moment of it. B.I.E.T.'s Simplified
Study Method and the remarkable new TECHNATRON Self-Build Outfit take the mystery out of the subject—make learning
easy and Interesting.

Even if you don't know the first thing about Radio now,
you'll build your own Radio set within a month or so!

and what's more,
YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Tech-
natron Outfit contains everything you need, from tools to transistors... even a special Multimeter which we teach
you how to use. You need only a little of your spare time, the cost is surprisingly
low and the fee may be paid by
convenient monthly install-
ments. You can use the
equipment again and again—
and it remains your own
property.

You LEARN—but it's as
fascinating as a hobby.

Among many other interest-
ing experiments, the Radio
set you build—and it's a good
one—is really a bonus; this is
first and last a teaching
Course. But the training is as
rewarding and interesting as
every hobby. It could be the
springboard for a career in
Radio and Electronics or
provide a great new, spare-
time interest.

BRITISH INSTITUTE OF
ENGINEERING TECHNOLOGY
Dept. 371B, Aldermaston Court,
Aldermaston, Berkshire.

You'd like to know more about this
intriguing new way to learn
Radio and Electronics? Fill
in the coupon and post it
to us today. We'll send you
details and a 132-page book
—ENGINEERING OPPORT-
UNITIES—Free and
without any obligation.

To: B.I.E.T., Dept. 371B, ALDERMASTON COURT,
ALDERMaston, BERK.

Please send me full details and FREE 132-page book.

name age

Post this coupon now!
Low-cost FM Stereo Receiver, AR-17
Kit K/AR-17
£39.0.0
P.P. 10/6

Cabinet walnut or teak finish £3.10.0 extra

Quality FM Stereo Receiver, AR-14
Kit K/AR-14
£54.0.0
P.P. 13/6

Cabinet walnut or teak finish £4.10.0 extra

Low-cost FM Mono Receiver, AR-27
Kit K/AR-27
£22.10.0
P.P. 10/6

Cabinet walnut veneered £3.10.0 extra

Solid-State Volt-ohm-Milliammeter, IM-25
Kit K/IM-25
£48.10.0
P.P. 10/6

Solid-State Volt-ohm Meter, IM-16
Kit K/IM-16
£28.8.0
P.P. 10/6

Solid-State Low Voltage Power Supply, IP-27
Kit K/IP-27
£46.12.0
P.P. 10/6

SEE HEATHKIT MODELS IN LONDON, Tottenham Court Road. BIRMINGHAM, St. Martin's House. GLOUCESTER, factory
This special trackside equipment has been installed in special “relay rooms”. The equipment transmits instructions to the train in the form of electrical impulses which are fed to the running rails and picked up by the induction coils on the train; they are then passed to the “brain”, which is a box of electronic equipment and electrical relays housed in special compartments on the train. The impulses convey commands to the train which operate the electrical circuits. These in turn actuate the brakes or the motors so that the train can accelerate, coast, and brake accordingly.

The impulses having been pre-set to give the most efficient running section by section over the line, act as automatic check points to ensure that the speed is dropping correctly to halt the train in proper alignment with the platforms regardless of its passenger load.

CAB DESIGN

Automatic train operation has involved considerable changes in the cab as compared with that of a standard train. The train operator has a folding seat on the rear bulkhead on the near side, with the more important controls and dials grouped on a desk in front of him.

Immediately in front of the operator and duplicated on both sides of the cab are the twin push-button switches used for starting the train—the only driving control required in normal automatic working.

For use when the train is being operated manually, as in entering the depot or in the event of a failure of the automatic system, there is a combined traction/brake controller to the left of the desk. The handle is pushed forward for motoring and pulled back for braking. On the right hand side is a switch for selecting manual (forward or reverse) or automatic driving, or “off”.

To operate the train when no signalling codes are being fed to the track, the train operator must first raise a “slow manual” flag switch on the off-side of the cab which restricts speed to approximately 10 mph. When signalling codes are being picked up by the train the train operator can drive in manual control at up to 25 mph.

DOOR CONTROL AND DRIVING LIGHTS

There are two other controls in regular use—the near and off-side door controllers. These are levers moving through 90 degrees and can be worked while the operator is looking, from the cab drop window, back along the train. To protect against inadvertent opening of the doors, the door controllers cannot be operated until a lock has been depressed.

As automatic train operation is used, there are few of the colour-light signals, which, on a standard Tube line, act as points of visual reference to drivers. Because of their absence, the new trains have been fitted with headlights which will light up the tunnel for some distance ahead, giving a visual relationship between the movement of the train and its surroundings.

An unusual item in the cab is an emergency calling light switch. When switched on from the operator’s position, a light on the outside of each cab acts as a breakdown calling light. The light at the front of the train acts as a repeater to show the operator that the rear call light is also functioning.

COMMUNICATION SYSTEM

Each train cab is fitted with a v.h.f. transmitter and receiver, supplied by Nelson Tansley Ltd., with an aerial mounted on the front of the train. Fitted with a telephone handset and selector panel there are three positions on which the operator selects Public Address, Intercommunication, or inter-train communication.

Selection of inter-train communication position by depressing an associated push button will, after alerting the called train, enable a normal two-way radio-telephone conversation to take place. This enables the operators of the two trains to speak to each other before coupling so that the man in the following train can be told the nature of the fault in the train ahead.

This avoids the risk of, say, an electrical fault being inadvertently transmitted from the disabled train to the one behind as the couplers make contact. Means are provided for isolating the electrical connections in these circumstances.

Selecting Public Address on the selector panel enables train operators to convey information and/or instructions to passengers via six loudspeakers in each coach. This facility will normally only be used when the train is stationary.

Carrier wave equipment is also fitted, operating via the conductor rails, to allow the train operator to speak to the Central Control Room and vice versa. The carrier wave system operates whether the train is moving or not.

STARTING THE TRAIN

Each train has a one-man crew who is called a train operator. He travels in the front cab and can switch over to manual control at any time in the event of a failure of any part of the automatic system. He uses a control in the cab to open doors at station stops, and to close them again he must carry out two safety procedures before the train will commence its journey. They are, that he must close the cab drop window and press twin start buttons simultaneously; this way no train can be sent on its journey without an operator. The twin starting buttons are also provided so that a fault in one wire cannot cause a false start.

Interlocking devices ensure that the train cannot start until all doors are properly closed and unless the 420 code is in operation. Indicator lights are provided near the buttons to show the train operator whether these conditions have been fulfilled. An additional pre-

Cab of the Victoria line train. The operator's desk, with controls for manual operation when required, is on the front wall of the cab, with other controls and switches on the desk in the right foreground.
GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.

(2 miles from Station and Bus.)

FULL GUARANTEE.

Aldershot 29340

CLOSED WEDNESDAY AFTERNOON.

CABINET 1-

ALL ITEMS FULLY BUILT UNLESS OTHERWISE STATED

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, HANTS.

NEW F.M. STEREO TUNER £25

Range 87 to 107 MHz block crackle finish metal case with cot front crystal.

Size 13in. x 7in. x 31/2in. high. Mains transformer. Metal Rectifier and Valve Dotted, 6GE6, 6GUF, EX100, 6HF6 as cathode followers. EMI tuning indicators and a dial. A really fantastic performer. Price £25, tax paid and curr. paid. M Boro Version as above but less stereo decoder £17.17.0 tax and curr. paid. Terms available this item.

“SUPER SIX” I.W. and M. W. TRANSISTOR RADIO KIT

Mark 9. Complete set costs 64.8.6; (6½ pots). TFT ball, 2½ extra. Extra instructions and label 2½. (free with kit). Supplied: ferrite rod, wooden box, 91/2 x 31/2 x 3in. Billed in 1/2, speaker, 6-transistor, dials, etc.

RADIOGRAM CHASSIS

CLEAR PLASTIC PANEL METERS D.G. Type 7x16.5sq. 25 micron, 50,000 microamps. £7.17.0, £10.10.0 tax andcurr. paid. £25.00 deposit and 5 monthly payments of £5.00. Total I.F. price £50.15.9. UNICORN ELECTRONICS

NEW INSTANT CIRCUIT SYSTEM

Better than anything you have ever used or heard before.

This is the quicker, cheaper, tidier and more efficient way to make a modern flat-board circuit. Unique “Cir-kit” adhesive copper strip and special matrix board enable you to work to professional standards with ease. Soldering is easier too, so are modifications. That is why “Cir-kit” is also widely used in labs., industry and special matrices enable you to work to professional standards with ease. Soldering is easier too, so are modifications. That is why “Cir-kit” is also widely used in labs., industry and by experimenters. A 5ft. spool, 3½ in. wide

32 St. Jude’s Road, Englefield Green, Egham, Surrey

Telephone: EGHAM 5316
PACKS OF YOUR OWN CHOICE UP TO TRANSISTORS ONLY 1/- EACH

All tested and guaranteed transistors—unmarked.

Manufacturers over runs for the new PRE-PAK range.

EXCITING NEWPAKs
FOR AMATEURS, PROFESSIONALS, FACTORIES, ORGAN BUILDERS, AND THOSE PEOPLE THAT JUST USE LARGE QUANTITIES OF TRANSISTORS.

XA PAK
Germanium NPN type transistors, equivalents to a large part of the OC range, i.e., 44, 45, 71, 72, 81, etc.
PRICE £5 PER 1000

XB PAK
Silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a, BS27/29, BSY95A.
PRICE £5.50 PER 500
PRICE £10 PER 1000

XC PAK
Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY3I-39 and DKIO, etc.
PRICE £5 PER 1000

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMI-CONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

P/P 2/6 PER PACK (U.K.)

FREE!
Packs of your own choice up to the value of 10/- with orders over 4

TRANSISTORS ONLY 1/- EACH

SILICON • **PLANAR** • **N.P.N.** • **P.N.P.**

All these types available

2N929 2N706 2S131 2S103 2N696 2N1613 2S733 BFY10
2S501 2N706A 2S712 2S104 2N697 2N1711 2N726 2S731
BC108 2N3011 2N220 2N2220 2N1507 2N1893 2N2484 2S732

All tested and guaranteed transistors—unmarked.

Manufacturers over runs for the new PRE-PAK range.

NEW UNMARKED UNTESTED PAKS

25 BSY95A NPN Silicon TRANSISTORS 10/-
10 OC45-OCS1 Mull. G. Trans. TRANSISTORS 10/-
25 BSY26-27 NPN Silicon TRANSISTORS 10/-
10 10 Watt Silicon All Voltages ZENERs 10/-
25 BFY50-1-3 NPN Silicon TRANSISTORS 10/-
10 4 amp. Stud. Silicon RECIPIENTS 10/-
25 BC107-8 NPN Silicon TRANSISTORS 10/-
40 1N581-4 OA200/202 Sub. Min. Silicon DIODES 10/-
150 Mini. Germ. High Quality DIODES 10/-
25 2N706 NPN Silicon TRANSISTORS 10/-

PRE-PAK. N.605 POWER TRANSISTOR EQUIVALENT TO NKT30I-2-3-4

COMPLIMENTARY SET NPN/PNP GERM. TRANS.

5/- each 2/6 pair

PRE-PAKS
Selection from our lists

No. Price
B1 50 Unmarked Trans. Untested 10/-
B2 4 Photo Cells Inc. Book of Instructions 10/-
B6 17 Red Spot AF Transistors 10/-
B6A 17 White Spot RF Transistors 10/-
B9 1 ORP 12 Light Sensitive Cell 9/-
B3 25 S4 Trans. 400 M/Cs Brand New 10/-
B5 40 ... NPN To S Trans Voltage 10/-
B55 40 ... NPN To18 & Gain Failsouts 10/-
B56 40 ... NPN/PNP All Tested 10/-
B69 10 Top Hat Recs. 750 P.I/ 100-600 PIV 10/-
B69 20 Diodes. Glb-Bnd. Germ Sil. Planer 10/-
B74 5 Glb-Bnd. Diodes. 2-OA9, 3-OA5 10/-
B75 1 Comp. Set. 2G21, 2G28. 2G33A 10/-
C1 1 Unijunction Transistor 2N1260 15/-
C32 6 Top Hat Recs. 1S100 Type 15/-
C35 3 Unijunction Transistor — to 2N1260 15/-
A1 2 Silicon Rectifiers BY160 Type 20/-
A5 25 Mixed Marked and Tested Transistors 20/-
A21 5 Power Transistors 1-AD149I-1OC26 and 3 others 20/-

AND MANY MORE

BRAND NEW PAK • JUST RELEASED
 REPLACES OUR VERY POPULAR B.39 PAK. BRAND NEW SHORT LEAD COMPONENTS ALL FACTORY MARKED AND MOUNTED ON PRINTED CIRCUIT PANELS.
80 TRANSISTORS & DIODES 50 HIGH TOLERANCE RESISTORS 20 VARIOUS CAPACITORS FOR ALL

PLEASE STATE WHEN ORDERING PAK P.I.
2/- P. & P. WITH THIS PAK.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a perfectly linear and accurate rev. counter for any car. State 4 or 6 cylinder. 20/- each

FREE CATALOGUE AND LISTS for:
— ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS & SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS

BI-PRE-PAK LTD DEPT. A. 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX TELEPHONE: SOUTHEND (0702) 46344
The pre-paid rate for classified advertisements is 1/3 per word (minimum order 15/-), box number 1/6 extra. Semi-displayed setting £4.2.6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

HOLIDAYS

HOLIDAY FOR BOYS 14/16 years August 1969, specialising in engineering, electronics, photography. Tuition and practical work including go-karting. 11 days—£14.10.0. Write for free brochure: INTER-SCHOOL CHRISTIAN FELLOWSHIP, 47 Marylebone Lane, London W1.

SITUATIONS VACANT (continued)

WANTED

NEW VALVES WANTED. Popular TV and Radio types. Best cash price by return. DURHAM SUPPLIES, 367F Kensington Street, Bradford 8, Yorkshire.

WANTED. Practical Electronics. Urgently require to buy copies any of the following issues:—November, December 1964; November, December 1966; June, August 1987: BOORMAN, 31 Marlborough Crescent, Sevenoaks, Kent.

SITUATIONS VACANT

A.M.I.E.E., A.M.S.E. (Elec.), City & Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 122-page Guide—FREE. Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

ARE YOU PRACTICAL AND FED UP WITH YOUR PRESENT JOB?

We require a number of junior and senior engineers with drive and initiative for:

- Circuit design—development and prototype construction, etc.
- Electro-mechanical drafting—printed circuit/chassis layouts, etc.: Production line test and inspection engineers: Production line fault finders.

Excellent prospects and full training given, day release considered. Salary up to £1,400 depending on experience and qualifications.

Send full details in writing of experience to date and present salary to:

Mr. B. C. Johnson,
Solid State Controls Limited,
Brunel Road,
Acton, W.3,
London.

Wanted for production line Testers and Fault Finders with experience of alignment of Radio Receivers. Average weekly wage including bonus £18 to £24 per week, depending upon experience and skill.

Apply to: Mr. W. Eddington
Fidelity Radio Ltd.
6 Olaf Street
London, W.11
Telephone No.: PARK 0131 - Ext. 54

V.H.F. TEST ENGINEERS

URGENTLY REQUIRED—Test Engineers to align and test our wide range of VHF Radio-Telephone equipment.

These positions are particularly suitable for those having experience in TV or Radio servicing or Ex-Service personnel having similar training.

Excellent working conditions, good salary, free pension and life assurance scheme, etc.

Write or telephone the Chief Inspector—TODAY.

DYMAR ELECTRONICS LIMITED
Colonial Way, Radlett Road
Watford, Herts
Telephone: Watford 21297/8/9
Build Your Own HEATHKIT Electronics!

Stereo Record Player SRP-1
Total price KIT K/SRP-1
£28.6.0 P.P. 10/6
- Automatic Playing of 16, 33, 45, and 78 rpm records
- All transistor circuitry ensures cool, instant operation
- Dual sapphire stylus for LP’s and 78’s
- Plays mono as well as stereo records
- Compact, with easy-to-carry handle for suitcase portability
- Detachable speaker enclosure for best stereo separation
- Two 8” x 5” speakers
- Operates on 220-250V ac supply.
A portable STEREO record player for the home! The all-transistor amplifiers give a total high-power output of 3 watts r.m.s., uses two large, high efficiency 8” x 5” speakers for crisp, bold sound. With the new Heathkit SRP-1 you can now enjoy the stirring realism of stereophonic sound in any room of your house.

Here’s the Car Radio for You—Luxury Motoring with the CR-1
Total Price KIT K/CR-1
£14.12.0 P.P. 4/6 incl. Speaker
- Superb Long and Medium Wave entertainment wherever you drive
- Complete your motoring pleasure with this compact, high performance radio
- Latest semi-conductors (6 transistors, 2 diodes)
- For 12 volt positive or 12 volt negative earth systems
- Powerful output (4 watts)
- Pre-assembled and aligned tuning unit
- Push-button tone and wave change controls
- Positive manual tuning
- Easy circuit board assembly
- Instant operation, no warm-up time
- Tastefully styled to harmonise with any car colour scheme
- High quality output stage will operate two loudspeakers if desired.

Compact Slim-Line Speaker System—the Berkeley
KIT K/Berkeley
£21.4.0 P.P. 13/6
- Beautiful walnut veneered, fully finished cabinet
- Two specially designed speakers
- New compact ‘slim line’ size
- Build it in an evening
- Professional attractive styling
- Use one for mono and a pair for stereo
- Outstanding performance at a low price
- Shelf or floor standing
- Use vertical or horizontal
- Designed to harmonise with modern or traditional decor
- The two loudspeakers, 12” low resonance unit and 4” Mid/High frequency ceramic unit, both specially designed for this type of cabinet, give extremely enjoyable high quality reproduction over a very wide frequency range.

Stereo Tape Recorder STR-1
Fully Portable—Own Speakers
KIT K/STR-1
£58.0.0 P.P. 10/6
- 1 track stereo or mono record and playback at 7½, 33⅓ and 45⅞ ips
- Sound-rupture and sound-with-sound capabilities
- Stereo record, stereo playback, mono record and playback on either channel
- 18 transistor circuit for cool, instant and dependable operation
- Moving coil record level indicator
- Digital counter with thumbwheel zero reset
- Stereo microphone and auxiliary inputs and controls
- Speaker/headphone and external amplifier outputs
- Front panel mounted for easy access
- Push-button controls for operational modes
- Built-in stereo power amplifier giving 4 watts rms per channel
- Operates on 230V.

Shortwave 4-Band Receiver, GR-64E
KIT K/GR-64E
£22.8.0 P.P. 9/-
- 4 bands - 3 shortwave bands cover 1 MHz to 30 MHz, plus 550 kHz to 1620 kHz AM broadcast band
- Built-in 5” permanent magnet speaker for a big, bold sound
- Illuminated 7” slide-rule dial with extra logging scale
- Easy to read lighted bandspread tuning dial for precise station selection
- Relative signal strength indicator aids pin-point station tuning
- 6 transistors, 1 diode circuit
- Large 7” x 4” speaker for crystal clear tone
- Choice of case in colours and brown real leather
- Long and Medium waveband coverage
- Pre-aligned IF transformers ensure first-time performance
- Fast, easy, printed circuit board construction
- Portable radio UXR-1
KIT K/UXR-1 Leather £12.8.0 P.P. 4/6
- 6 transistor, 1 diode circuit
- Large 7½” x 4½” speaker for crystal clear tone
- Choice of case in colours and brown real leather
- Long and Medium waveband coverage
- Pre-aligned IF transformers
- Battery economiser-circuit
- Push buttons for Long/Medium and Tone
- Double-tuned IF stage for greater sensitivity and selectivity
- Output for personal phone
- Choice of brown or black, real leather case and handle.

An Ideal Beginner Kit
- Portable radio UXR-1
KIT K/UXR-1 Colour Case
£13.8.0 P.P. 4/6
- 6 transistor, 1 diode circuit
- Large 7½” x 4½” speaker for crystal clear tone
- Choice of case in colours and brown real leather
- Long and Medium waveband coverage
- Pre-aligned IF transformers
- Battery economiser-circuit
- Push buttons for Long/Medium and Tone
- Double-tuned IF stage for greater sensitivity and selectivity
- Output for personal phone
- Choice of brown or black, real leather case and handle.

Compact Slim-Line Speaker System—the Berkeley
KIT K/Berkeley
£21.4.0 P.P. 13/6
- Beautiful walnut veneered, fully finished cabinet
- Two specially designed speakers
- New compact ‘slim line’ size
- Build it in an evening
- Professional attractive styling
- Use one for mono and a pair for stereo
- Outstanding performance at a low price
- Shelf or floor standing
- Use vertical or horizontal
- Designed to harmonise with modern or traditional decor
- The two loudspeakers, 12” low resonance unit and 4” Mid/High frequency ceramic unit, both specially designed for this type of cabinet, give extremely enjoyable high quality reproduction over a very wide frequency range.

Here’s the Car Radio for You—Luxury Motoring with the CR-1
Total Price KIT K/CR-1
£14.12.0 P.P. 4/6 incl. Speaker
- Superb Long and Medium Wave entertainment wherever you drive
- Complete your motoring pleasure with this compact, high performance radio
- Latest semi-conductors (6 transistors, 2 diodes)
- For 12 volt positive or 12 volt negative earth systems
- Powerful output (4 watts)
- Pre-assembled and aligned tuning unit
- Push-button tone and wave change controls
- Positive manual tuning
- Easy circuit board assembly
- Instant operation, no warm-up time
- Tastefully styled to harmonise with any car colour scheme
- High quality output stage will operate two loudspeakers if desired.

Compact Slim-Line Speaker System—the Berkeley
KIT K/Berkeley
£21.4.0 P.P. 13/6
- Beautiful walnut veneered, fully finished cabinet
- Two specially designed speakers
- New compact ‘slim line’ size
- Build it in an evening
- Professional attractive styling
- Use one for mono and a pair for stereo
- Outstanding performance at a low price
- Shelf or floor standing
- Use vertical or horizontal
- Designed to harmonise with modern or traditional decor
- The two loudspeakers, 12” low resonance unit and 4” Mid/High frequency ceramic unit, both specially designed for this type of cabinet, give extremely enjoyable high quality reproduction over a very wide frequency range.

Stereo Tape Recorder STR-1
Fully Portable—Own Speakers
KIT K/STR-1
£58.0.0 P.P. 10/6
- 1 track stereo or mono record and playback at 7½, 33⅓ and 45⅞ ips
- Sound-rupture and sound-with-sound capabilities
- Stereo record, stereo playback, mono record and playback on either channel
- 18 transistor circuit for cool, instant and dependable operation
- Moving coil record level indicator
- Digital counter with thumbwheel zero reset
- Stereo microphone and auxiliary inputs and controls
- Speaker/headphone and external amplifier outputs
- Front panel mounted for easy access
- Push-button controls for operational modes
- Built-in stereo power amplifier giving 4 watts rms per channel
- Operates on 230V.

Shortwave 4-Band Receiver, GR-64E
KIT K/GR-64E
£22.8.0 P.P. 9/-
- 4 bands - 3 shortwave bands cover 1 MHz to 30 MHz, plus 550 kHz to 1620 kHz AM broadcast band
- Built-in 5” permanent magnet speaker for a big, bold sound
- Illuminated 7” slide-rule dial with extra logging scale
- Easy to read lighted bandspread tuning dial for precise station selection
- Relative signal strength indicator aids pin-point station tuning
- 6 transistors, 1 diode circuit
- Large 7½” x 4½” speaker for crystal clear tone
- Choice of case in colours and brown real leather
- Long and Medium waveband coverage
- Pre-aligned IF transformers ensure first-time performance
- Battery economiser-circuit
- Push buttons for Long/Medium and Tone
- Double-tuned IF stage for greater sensitivity and selectivity
- Output for personal phone
- Choice of brown or black, real leather case and handle.

An Ideal Beginner Kit
- Portable radio UXR-1
KIT K/UXR-1 Leather £12.8.0 P.P. 4/6
- 6 transistor, 1 diode circuit
- Large 7½” x 4½” speaker for crystal clear tone
- Choice of case in colours and brown real leather
- Long and Medium waveband coverage
- Pre-aligned IF transformers
- Battery economiser-circuit
- Push buttons for Long/Medium and Tone
- Double-tuned IF stage for greater sensitivity and selectivity
- Output for personal phone
- Choice of brown or black, real leather case and handle.

FREE! CATALOGUE
Describes these and many more kits and multi-use models for Studio, HiFi, Domestic Radio, Record Player, Tape Recorder, Ammeter, Alarm, Short-wave, Test Educational, Home and Hobby. Send twenty with, Heathkit, models, Mail coupon or write to Daystron Ltd., Gloucester. Tel. 254511.

DAYSFTRON LTD., Dept. P.E.12
GLOUCESTER Tel. 25451
□ Enclosed is £
□ Please send model (c)
□ Please send FREE Heathkit Catalogue.
Name
Address
City
(please Print)
Prices and specifications subject to change without notice.

909
TECHNICAL TRAINING by
ICS
IN RADIO, TELEVISION AND
ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the ICS trained man.
Let ICS train YOU for a well-paid post in this expanding field.
ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and
easily, the specialized training so essential to success. Diploma courses in Radio/
TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:
- C. & G. TELECOMMUNICATION TECHNICIANS’ CERTS.
- C. & G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS’ EXAMINATION.
- F.M.G. CERTIFICATES IN RADIO TELEGRAPHY.

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 3-valve receiver, transistor portable, signal generator, multi-
meter and valve volt meter—all under expert guidance.

POST THIS COUPON TODAY and find out how ICS can help YOU in your
career. Full details of ICS courses in Radio, Television and Electronics will be
sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

International Correspondence Schools
(Dept. 152), Interex House, Parkgate Road,
London, S.W.11.

NAME
Block Capitals Please

ADDRESS

12.68

WANTED for Factory Service Department
Engineers with experience on Transistor Radios, Tape Recorders and Record Players.
A substantial individual bonus is available for
fast workers. The present average bonus being
earned is £6.10.0 per week, but there is no
limit.

Call or write to:

Mr. Savvides
Service Department
Fidelity Radio Ltd.
6 Olaf Street
London, W.11

Telephone No.: PARK 0131 - Ext. 28
KONTAKT 60
FOR INACCESSIBLE CONTACTS—More than just a cleaner. KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordance with today's technology.

KONTAKT offers the following advantages:
1. Dissolves oxides and sulphides the safe way without attacking contact substances.
2. Contains carefully selected solvents which do not attack plastics whereas they do dissolve re-sinified contact greases and dirt.
3. Contains no silicone.
4. Contains a light lubricant in order to avoid the contact paths being corroded.
5. Prevents further oxidation setting in.
6. Prevents "creep" currents.

Because of these outstanding properties KONTAKT 60 is one of the best and most popular contact cleansing agents in the world.

Users include: Rolls Royce Ltd., C.E.G.B., South of Scotland Electricity Board, Trinity House Workshops, Koester Brandes, Mullard, Plessey, etc.

OTHER KONTAKT PRODUCTS ARE:
70 Protective Lacquer 80 Special Siliconized Polish
72 Insulating Spray 100 Antistatic Agent For Plastics
75 Cold Spray For Fault Location 101 Dehydration Fluid

Write for full details of above complete range of Kontakt products to:

SPECIAL PRODUCTS DISTRIBUTORS LIMITED
81 Piccadilly, London, W.1 01-629 9556

EXCLUSIVE OFFER
KITS for Transformerless Amplifiers, ZENER DIODES, ASSORTMENTS of Capacitors, Potentiometers, Carbon Film Resistors and branded new ORIGINAL TRANSISTORS

KIT No. 7 for high quality, high power A.F. transformerless amplifier
Supply voltage
Working current
Loudspeaker connection
Input voltage at max. val.
Input resistance
Frequency range
Printed circuit board for KIT No. 7

ZENER DIODES I W 4-3, 6-2, 8-1, 8-2, 10, 11, 12V 3/4 each
ASSORTMENTS of ELECTRONIC COMPONENTS
ORDER No.:
DIO 3 100 p. germanium diodes sub-miniature
TRA I 50 p. different transistors
ZB 100 p. Zener diodes different values 250mV-1W
ELKO I 30 p. i.f. Electrolytic capac. sub-min. good sel.
KER I 100 p. disk, sub-miniature pearl capac. 20 val. ± 5%
KON 1 100 p. plastic foil condens. 20 val. ± 5 % good sel.
EIN I 10 p. adjust. potentiom. ohm values good select.
WID I-I 100 p. carbon film resist., axial, 6V 20 val. ± 5%
WID I-1100 p. carbon film resist., axial, 6V 20 val. ± 5%

BRAND NEW ORIGINAL TRANSISTORS
AC 153 156 1/4
AC 188K 178 1/4
AC 189K 178 2/4
AD 136 2/3
AD 150 2/3
AC 143 = AD 115 1/9
2N706 = BSY62 1/6
All goods BRAND NEW of HIGH QUALITY, fully guaranteed. NET Prices Subject to prior sale.

Please request our complete free SPECIAL OFFER B/1968.
We shall be very pleased to receive your trial order:

EUGEN QUECK
Ingenieur-Büro Import-Export
CH-8810 HORGEN
Switzerland

Burroughs are looking for young men aged 18-25 with get going potential. Young men who want to get out and work in freedom on their own initiative. It could be you. We want you to become an advanced Burroughs Technician so that you can ensure our machines are kept up to Burroughs standards of perfection. Our business is big business. We manufacture and market business equipment that ranges from simple adding machines to some of the world's largest computer systems.

You will be trained for the job and put on the road to promotion. All you need is enthusiasm and G.C.E. 'O' levels in 5 subjects and/or some O.N.C. study or experience in electro-mechanical devices.

A good initial salary will be paid, rapidly rising with training and experience.

FILL THIS IN NOW FOR A NEW FUTURE
I HAVE THE QUALIFICATIONS YOU ASK FOR and am interested in a career with Burroughs Machines Limited.

Please send me a preliminary application form
NAME
ADDRESS

Please print clearly and send to:
J. A. R. DAKIN
BURROUGHS MACHINES LTD
HEATHROW HOUSE
BATE ROAD, CRANFORD
HOUNSLOW, MIDDLESEX
CAPACITORS

Mullard Miniature, Small and Large Electrolytics. Mullard Miniature Metallised Polymer and Film Polyester. Polystyrene, Ceramic Plate and 1 %, silver mica.

For further information of all our stocks write sending 3/6 for our bright new catalogue (or 6d. for individual data sheets) or call—

STUDENT ELECTRONIC SERVICES, 196 Regent Road, Salford 5. Tel. 061-872 5187.

RECEIVERS AND COMPONENTS (continued)

CAPACITORS

WE ARE BREAKING UP COMPUTERS

COMPUTER PANELS

(a) those 21 inch 4 in 8 for 10/-.

PANELS with 2 power transistors sim. to OC45; each board + components. 2 boards (4 x OC45) 16/-.

P. & P. 2/-.

NPN GERMANIUM

TRANSISTORS on small TOS I Watt Power.

P. & P. 2/-.

for £30 4- carr.

(As shown) 2 in x 4 in 8 for £1.

4 in, 2 in diam. Screw terminals.

30 transistors. 100 for £8 8/- 300 for £20.

COMPUTER PANELS.

5,000 pF 150 V d.c. working.

All at 6/- each + 1/- P. & P.

P. & P. 2/- with min. order 10/-.

MINIATURE GLASS NEONS. 12/6 doz.

POWER TRANSISTORS sim. to 2N747 ex-equit. 4 for 10/-, P. & P. 2/-.

POWER TRANSISTORS sim. to 2N747 ex-equit. 4 for 10/-, P. & P. 2/-.

TRANSISTORS. 10 for 10/-.

POWER TRANSISTORS sim. to 2N747 ex-equit. 4 for 10/-, P. & P. 2/-.

POWER TRANSISTORS sim. to 2N747 ex-equit. 4 for 10/-, P. & P. 2/-.

LONG ARM TOLLGE SWITCHES ex equt. P. & P. 17/-.

STUDENT ELECTRONIC SERVICES, 196 Regent Road, Salford 5. Tel. 061-872 5187.

COMPONENTS

- **1000** components for disposal following cancelled and changed orders.
- **OVER 500 TYPES OF CAPACITOR**—Electrolytic, tantalum, polyester, paper at knock down prices (e.g. 12.5mFD at 6V, 16mFD at 9V).
- **Also large quantities of semiconductors, variable voltage transformers, etc.**

These are all brand new and unused in irreproachable packing.

Send 6d in stamps and address for list.

O AND M SERVICES (PE12) ELM HOUSE, 80, CLOSE WHITEFIELD, LANCs.

TAPE HEADS

BAR READ 39/6 pair

MICHIGAN REC-PLAY 2 TRACK 1/2 " 45/-

BAR MAIL 39/6 pair

REUTER - COLLAR WORKING 4 TRACK 15/-

4 TRACK

2 TRACK 15/-

TAPE HEADS

GERMANIUM

COMPONENT SALE

1,000 of components for disposal following cancelled and changed orders.

- **OVER 500 TYPES OF CAPACITOR**—Electrolytic, tantalum, polyester, paper at knock down prices (e.g. 12.5mFD at 6V, 16mFD at 9V). Also large quantities of semiconductors, variable voltage transformers, etc.

STUDENT ELECTRONIC SERVICES, 196 Regent Road, Salford 5. Tel. 061-872 5187.

FITTINGS

- **1000** components for disposal following cancelled and changed orders.
- **OVER 500 TYPES OF CAPACITOR**—Electrolytic, tantalum, polyester, paper at knock down prices (e.g. 12.5mFD at 6V, 16mFD at 9V). Also large quantities of semiconductors, variable voltage transformers, etc.

These are all brand new and unused in irreproachable packing.

Send 6d in stamps and address for list.

O AND M SERVICES (PE12) ELM HOUSE, 80, CLOSE WHITEFIELD, LANCs.

TAPE HEADS

BAR READ 39/6 pair

MICHIGAN REC-PLAY 2 TRACK 1/2 " 45/-

BAR MAIL 39/6 pair

REUTER - COLLAR WORKING 4 TRACK 15/-

4 TRACK

2 TRACK 15/-

TAPE HEADS

GERMANIUM

COMPONENT SALE

1,000 of components for disposal following cancelled and changed orders.

- **OVER 500 TYPES OF CAPACITOR**—Electrolytic, tantalum, polyester, paper at knock down prices (e.g. 12.5mFD at 6V, 16mFD at 9V). Also large quantities of semiconductors, variable voltage transformers, etc.

These are all brand new and unused in irreproachable packing.

Send 6d in stamps and address for list.

O AND M SERVICES (PE12) ELM HOUSE, 80, CLOSE WHITEFIELD, LANCs.
ARE YOU . . . ?

THE CIVILIAN TECHNICIAN
WE NEED TO SUPPORT THE
ROYAL NAVY OF THE 1970's

In other words, DO YOU—

(a) Have an ONC or an equivalent qualification in Electronic or Electrical engineering.

(b) Seek a varied career associated with modern engineering techniques and equipment.

(c) Desire a place in the salary scale £1,347 per annum on entry rising to £1,565 by four annual increments, with the prospect of promotion to the highest posts of the Technical Class with salary of £2,390.

(There is a separate scale for those under 25 or requiring further experience.)

(d) Wish to serve initially in London, Slough, Bath, Covenacre (Wilts.), Portland, Portsmouth, or the main shipbuilding areas — with the opportunity of transfer to other parts of the country later.

IF SO:—

Write for application form to:
Superintendent of Production Pool (Naval) (30/5)
Room 93, Empire Hotel
BATH, SOMERSET BA1 5AB

SITUATIONS VACANT (continued page 914)

EDUCATIONAL (continued)

STUDY RADIO, TELEVISION AND ELECTRONICS with the world's largest home study organisation. City & Guilds; R.T.E.B. etc. Also practical courses with equipment. For FREE Prospectus to JCS (Dept. 577), Intertext House, London, SW11.

BOOKS AND PUBLICATIONS

MAKE YOUR OWN TALKIES. An introduction to electronic tape/film synchronisation, with an explanation of the “Carol” Cinesound system, modifying equipment, filming in sync., etc. Price 7/6, post free (refundable against purchase of your “Carol” Cinesound equipment). Contronics Ltd., Deepcut, Camberley, Surrey.

FOR SALE

TIME SWITCHES, 14 day clock, once on once off every 24 hours, reconditioned and fully guaranteed £5 5s 6d, 15 amp Venneler, 40/6. £4 10s 6d, A. P. BATECEOR (P.R. Dept. 1), 4 Park Road, Bromley, BR1 3HF.

5 TON FACTORY CLEARANCE. Radio, TV. elec. components in 27s. 6d. mixed parcels. Lot free. Example: resistors, condensers, pots, speakers, coax, coils, fibre washers, valves, over a dozen different types, tuning knobs, grommets, slewing IPS, Paxolin, wire, rectifiers. Lots of other items. Post paid. Postal orders to—P. L. NEWTON, 16 Shallcross Crescent, Hatfield, Herts.

ILLUSTRATED CATALOGUE No. 17 Manufacturers' Surplus and New Electronic Components including Semiconductors. 3/- post free. ARTHUR SALLIS LTD., 28 Gardner Street, Brighton.

OSCILLOSCOPE, Concor D/B d.c. amplifiers, stabilised supplies, perfect conditions £24. O.N.O. 117/8 Herrick Road Southhampton 8.

HIGH GLOSS METAL
HAMMERED ENAMEL
MAKES FANTASTIC
DIFFERENCE TO PANELS
say hundreds of enthusiastic users. "Crackle" pattern appears like magic on plain wood and metal. No under-coat... Air dries 15 min. to hard glossy finish. Heat, liquid and scratch-proof. Lt. Bronze; Brown; Lt. Blue; Lt. Green; Black. Send for Free list, or 8/- (1/9 post) for trial pint of TIN, colour samples and instructions. Send NOW. FINNIGAN SPECIALTY PAINTS Dept. P.E. STOCKFIELD, TEL. 2249 Warrington.

BRASS, STEEL, LIGHT ALLOY, STAINLESS STEEL TUBE. Bar Material, Tools, Mechanical, Electrical, plus Assorted Lots. Send A.N.O. for latest Cat., 1,000 items. R. E. WHISTON, Dept. BPE, New Mills, Stockport.

MORSE MADE EASY

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse automatically learn to recognise the code RHYTHM with an explanation of the "Carol" Cinesound system, modifying equipment, filming in sync., etc. Price 7/6, post free (refundable against purchase of your “Carol” Cinesound equipment). Contronics Ltd., Deepcut, Camberley, Surrey.

BOOKS AND PUBLICATIONS (continued)

SURPLUS HANDBOOKS

19 set Circuit and Notes 6/6 P.P. 6d
1155 set Circuit and Notes 6/6 P.P. 6d
H.I.E., Technical Instructions 4/6 P.P. 6d
38 set Technical Instructions 6/6 P.P. 6d
46 set Working Instructions 6/6 P.P. 6d
56 set Technical Instructions 7/6 P.P. 6d
BC. 221 Circuit and Notes 5/6 P.P. 6d
Wavevemeter Class D Tech. Instr 5/6 P.P. 6d
19 set Circuit and Notes 5/6 P.P. 6d
BC.1000 (31 set) Circuit & Notes 5/6 P.P. 6d
CR.1232/3B Circuit and Notes 10/6 P.P. 6d
R.I.07 Circuit and Notes 7/6 P.P. 6d
A.R.86D. Instruction Manual 10/- P. 6d
12 set Circuit and Notes 6/6 P.P. 6d
52 set Sender & Receiver Circuits 7/6 post free
Resistor Code Colour Indicator.... 2/6 P.6d
S.A.E. with all enquiries please. Postage rates apply to U.K. only.

Instructional Handbook Supplies
Dept. P.E., Talbot House, 28 Talbot Gardens, Leeds S.
TRANSISTOR

AMERICAN, JAPANESE, BRITISH, ETC. NEW 8th EDITION. 16/- P. & P. 1/3.

MODERN DICTIONARY OF ELECTRONICS by Graf. 3rd ed. 70/- P. & P. 4/6.

SYNCHROS AND SERVOS by Brite. 35/- P. & P. 1/3.

TELEVISION TAPE FUNDAMENTALS by Ernes. 40/- P. & P. 1/6.

SOLID STATE POWER SUPPLIES by Lytell. 20/- P. & P. 1/3.

SILICON CONTROLLED RECTIFIERS by Lytell. 21/- P. & P. 1/3.

RADIO COMMUNICATIONS HANDBOOK by R.S.G.B. 63/- P. & P. 4/6.

TAPE RECORDER SERVICING MECHANICS by Schroder. 21/- P. & P. 1/3.

ELECTRONIC MUSICAL INSTRUMENT MANUAL, new 5th ed. by Douglas. 5/- P. & P. 1/3.

F.M. MULTIPLEXING FOR STEREO by Feldman. 30/- P. & P. 1/3.

SOLID STATE ELECTRONIC SPEED CONTROL UNIT by F.E.T. CIRCUITS by Turner. 25/-

UNIVERSAL BOOK GO. 4/- 6.

SILOM TREE SUBSTITUTION HANDBOOK. Wall or desk transistorised. Built-in wire, battery, etc. Instructions, connecting 4/6.

ETC. NEW 8ch EDITION. 16/-.

4/6.

SILICON CONTROLLED RECTIFIERS by Turner. 25/-.

SOLID STATE POWER SUPPLIES by Lytell. 20/-.

UNMARKED AND UNTESTED TRANSISTORS 50 transistors in each parcel 10/6 for 50.

SPECIAL COMPONENTS AT BARGAIN PRICES Midget Relays 500 ohm 9V.

EX COMPUTER PANELS 12 each 12/6 each.

Transistor Earpieces 8 ohm match.

Midget Knife switches Fluorescent Starters Standard size 20 each 1/6 each.

Midget Rectifiers 32mF 300V Electrolytic capacitors 19 each.

UNMARKED AND UNTESTED TRANSISTORS 2 make; lamps, fuse switch, etc., in case size 10 x 10 x 5." Ideal for battery charger, one second timer, transistor power supply, etc.

Tested and guaranteed working £3.10.0. P & P 15/- Untested, but complete £2.10.0. P & P 15/-.

TRANSISTOR OSCILLATOR variable frequency 40 c/s to 5 kc/s 5 volt square wave o/p; for 6 to 12 V D.C. input. Size 12" x 8" x 5".

Brand new unmarked transistors. Types OC71 and OC44. Tested and guaranteed 10d each. Min. order 2/6.

CALLERS WELCOME. Cash with order.

CHILTMEAD LTD
22 Sun Street, Reading, Berks.
Tel. Reading 65916 (9 a.m. to 10 p.m.)
ORGAN BUILDERS: SILICON N.P.N. TRANSISTORS, ALL INDIVIDUALLY TESTED IN PUBLISHED DIVIDER CIRCUIT! GOLD-PLATED LEADS FOR EASY INSTALLATION! Unbeatable value at 1/2 each or £3/9 each. 3 VOLTS TRAVERS FLUORESCENT LIGHT. * 8 WATT 12in TUBE. Current drain only 700mA! Complete and tested £2/19/6 each in kit form:

- 12in TUBE. Current drain only 700mA! Complete and tested £2/19/6 each.
- Transistors similar to OC44, OC71 and OC72, all 1/- each. OC200, OC203, OC204, all at 2/- each.
- LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each. 2G378A, all at 1/6 each.
- Post and Packing 5/-.

DIODES. Very low leakage. Make excellent detectors, also suitable for unmarked, untested transistors, 7/6 for 50.

RECTIFIER Sapers: BYZ13, 6-amp, 400 p.i.v., available on same terms. BYK>0, 800p.i.v., 2/6 each, 24/- per doz., £7/10/- per 100, £50 per 1,000.

PAPER CONDENSERS, MIXED BAGS, 0.0001 to 0.5. 12/6 Condensers. Well assorted. Mixed types and values. 10/- per 100. 6/6 per 100, 55/- per 1,000. Individual resistors 3d each. Also a give-away offer! Mixed types and values, 1 to 1 watt.

WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only.

GP 67/2 Mono. 15/- complete with needles.

RANGES; a.c. 1,000V, 500V, 100V, 50V, 25V. d.c. 2,500V, 500V, 250V, 50V, 25V, 5V.

MULTIMETERS. 20,000 ohms per volt. Range: d.c. 1,000V, 500V, 100V, 30V, 10V. d.c. 250mA, 25mA, 50mA d.c. 2,500V, 100V, 50V, 25V, 5V. Resistance: 0/60k and 0/6M. Special price £4/- only.

ELECTROLYTIC CONDENSERS
- 0.25µF 3 volt 4µF 4 volt 10µF 25 volt 64µF 9 volt
- 1µF 6 volt 4µF 12 volt 20µF 6 volt 100µF 9 volt
- 10µF 20 volt 4µF 25 volt 25µF 6 volt 320µF 4 volt
- 12.5µF 16 volt 5µF 6 volt 12µF 25 volt 120µF 10 volt
- 2µF 3 volt 6µF 4 volt 6µF 4 volt 400µF 6-4 volt
- 2µF 350 volt 3µF 30 volt 3µF 6 volt
- 2.5µF 16 volt 8µF 12 volt 30µF 10 volt 40µF 6-4 volt
- 3µF 25 volt 6µF 6 volt 30µF 10 volt All at 1/- each.
- 3µF 25 volt 6µF 6 volt 30µF 10 volt
- 3.5µF 64 volt 10µF 6 volt 64µF 2-5 volt 20 assorted (our selection) 10/-

SKELETON PRE-SET POTENTIOMETERS. 100Ω, 100kΩ, 200kΩ, 500kΩ.

SLIDERS. 680kΩ. 6d each.

SMALL TRANSISTOR OUTPUT TRANSFORMERS 1½ each.

SMALL TRANSISTOR DRIVER TRANSFORMERS 2½ each.

CRYSTAL LAPEL MICROPHONES 10/-

TAPE RECORDER MICROPHONES 12/-

Orders by post to:
G. MILLWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.

Please include suitable amount to cover post and packing. Minimum 2/-.

For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.
BARGAIN PACKS!

- **4 PST38 STC** STC Recyclers New and Marked 1000 p.v. 1 amp. and substitute for BY100, etc. -£13.
- **RA5310 AF** STC Avallanche Recyclers New and Marked 1.200 p.v. 1 amp 5A surge rated 20/.
- **222M New and Marked AEI Germanium Recyclers 100 p.v. 1 amp.** 10/.
- **GP397/7** Sub-miniature power transformers Texas New and Marked 12/.
- **2Z164** STC New and Marked 16V 300W Zener Diodes 10/.
- 1 Pair of AD161 AD162 PNP PNP Power Complementary Pair 15/.
- 1 Pair of AC128/AC176 PNP Driver Complete Pair 15/.
- Set OC130 2 x OC182 Matched Pair New Mullard Marked 12/.
- **4 BU954A** STC New and Marked Planar Transistors 10/.
- **4 BC100** Mullard Latest type Low noise planars New and Marked 10/.
- **4 NKT756** New and Marked Newmarket Audio General purpose transistor 10/.
- 36 Square inches of 0.15 in Matrix Veroboard—the most popular pack of all—only from LST 10/.
- **4 NKT65** New and Marked Newmarket Audio Switching Transistor 10/.
- **2 OC19** New and Marked Mullard Power Transistor 10/.
- **5 BA15** New and Marked Mullard Colour Tele Vision Transistor 10/.
- **4 2G717** New and Marked Texas Audio Transistors 10/.
- **4 BYX38-Mullard** New and Marked Power Transistor 12/.
- **1 Designer's Guide to British Transistors** New data book with over 1,000 types listed—Computer selected substitution chart. Just out from Publishers (add 2/6 this item post) 25/.

Postage and Packing by First Class Mail now 1/- minimum per order.

SPECIAL OFFER. AC relays, 250V coil. 3H/D contacts, 3m, 1B, 22° x 11°. New, 25/.
- Transformers, 200-50 input, 12V out, about 5 amp, with input lead, switch, neon. Totally enclosed, new, 50/— + 5/- 1st. P.O. for list of new kit equipment. Snapes, Slaters, etc. STOODLEY POSTAL ELECTRICALS, Sedbury, Doctors Hill, Sherfield English, Romsey, Hants. N0000W.

Tapes to Disc—using finest professional equipment—45 r.p.m. 18/- S.A.E. leaflet, DEKOTY, High Bank, Hawk Street, Garforth, Leeds.

NOT SUBMIN

Let's get one thing clear from the start: our AX series component kit is NOT for subminister Us. But constructors who have discovered that mini-RF receivers give mini performances will find a pleasant contrast in this one. It uses a 4m x 6in light-weight ferrite aerial to provide a reasonable input signal, a high-gain low-noise two-stage RF amplifier to boost it, and a sensiti-

SILICON RECT'S

- **FULL TESTED GUARANTEED**
 - **PFX 190mA 150mA 100mA 10mA 2A 10A**
 - **50V 6V 3V 8V 60V 250V**
 - **50V 12V 3V 6V 60V 250V**

TAPE RECORDERS, TAPES, ETC.

TAPES TO DISC—using finest professional equipment—45 r.p.m. 18/- S.A.E. leaflet, DEKOTY, High Bank, Hawk Street, Garforth, Leeds.
SOLID STATE—HIGH FIDELITY

AUDIO EQUIPMENT

Audio Equipment developed from DECADE MK II—each unit or system will compare favourably with other professional equipment selling at much higher prices.

COMPLETE SYSTEMS FROM

£15.5.0

THE FINEST VALUE IN HIGH FIDELITY—CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

All units available separately.

SEND FOR 16 PAGE BROCHURE (No. 21) TODAY!

DEMONSTRATIONS DAILY AT '303' EDGWARE ROAD

[Partial text]
The Mini 3 Receiver...

Plus 8-page AUDIO SUPPLEMENT providing a detailed guide to:

- AUDIO SERVICING
- TEST EQUIPMENT
- WORKSHOP PRACTICE

How-to-Make Features:

THE MINI 3
A 3-transistor 5-stage reflex receiver.

PYRAMID RECORD DECK
A battery-operated turntable and TRANSISTOR T.R.F. TUNER — both constructional projects in the PYRAMID series. Plus many other projects and regular features.

OUT NOW — 3s.
Have you had your copy of “Engineering Opportunities”?

The new edition of “ENGINEERING OPPORTUNITIES” is now available—without charge—to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new “ENGINEERING OPPORTUNITIES” should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On ‘SATISFACTION OR REFUND OF FEE’ terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

CIVIL ENG. Advanced Civil Eng.—General Civil Eng.—Municipal Eng.—Structural Eng.—Sanitary Eng.—Road Eng.—Hydraulics — Mining — Water Supply — Petrol Tech.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
316A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Published about the 15th of the month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, London, W.C.1, at the maximum price shown on the cover. Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents—Zealand: GORDON & GOTCH (A./a) Ltd.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World £2 2s. 0d.