PRACTICAL =

 ALGLST 1969
(4) 1 1! FDIDIUHIDIII BHDR:

THE RELIABLE

SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET
ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4

ORGAN TRANSISTORS

ZTX300
ZTX302
ZT44.
ZT1613
ZT1700

$1 / 11$	ZT1701	\cdots	$22 / 6$	ZS 1
$3 /-$	ZT3055	\ldots	$20 / 6$	OC

ZT1700
12/9
ZT3055
KR54
KR56
$27 / 6$
$27 / 6$
KR54
ZR12
Mullard LA2300 9/5
All above transistors direct from manufacturer
Unmarked silicon planar ransistors suitable for use in divider circuits:-1/6 each or $\{5$ per 100 .

LIGHT-SENSITIVE DEVICES

GIANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6MA FROM DAYLIGHT! 67 mm diameter $10 /-{ }^{\circ}$ each. $50 \mathrm{~mm} \times$ 37 mm . 2 for $10 /-$.
Transistors similar to OCP71 2 - each
ORP12 CADMIUM SULPHIDE LIGHT-SENSITIVE RESISTORS 9/- each. Light-sensitive diodes $10 /$ - per dozen.

WIRE-WOUND RESISTORS

Mains dropper type. Up to 30 watts. Some multi-tapped. Fraction of normal price! 10/-per dozen.

MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE! 0.001μ F $400 \mathrm{~V} 3 \mathrm{~d} ., 0.0015 \mu \mathrm{~F} 400 \mathrm{~V}$ 3d., $0.0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d}$. , $0.0022 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.15 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ $6 \mathrm{~d} ., 0 \cdot 27 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $1 \mu \mathrm{~F} 125 \mathrm{~V} 1 /-$.

RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES GP67/2 Mono 15/-, GP91/3 Compatible £1, GP93/1 Crystal Stereo 25/-, GP94/1 Ceramic 30/-.

TRANSISTORISED SIGNAL INJECTOR KIT 10/-.
SIGNAL TRACER KIT 10/-. CAR REV. COUNTER KIT 10/-.

VEROBOARD

	$\times 1^{\prime \prime} \quad 0.15$ matrix	1/3	17	3" $0 \cdot 1$	matrix	$4 / 8$
3	$\times 2 \frac{10}{} \times 1.15$ matrix	3/3	$3 \frac{3}{4}$	$\times 2{ }^{\frac{1}{\prime \prime}} 00 \cdot 1$	matrix	4
$3 \frac{3}{7}$	$\times 3{ }^{\prime \prime} 0.15$ matrix	3/11	33	$\times 3 \frac{3}{4 \prime \prime} 0 \cdot 1$	matrix	4
5	$\times 2 \frac{1}{} \times 1.15$ matrix	3/11	5	$\times 2 \frac{1}{2 \prime \prime}^{\prime \prime} 0.1$	matrix	$4 / 7$
5	$\times 3 \frac{3}{} \times 0.15$ matrix	5/6	5	$\times 3{ }^{\frac{3}{4}}{ }^{\prime \prime} 0 \cdot 1$	matrix	5/6
	$\times 2 \frac{1}{} \times 0.15$ matrix					

Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins 3/6 for 36. Special Offer! Spot Face Cutter and $52 \frac{1}{2} \times 1^{\prime \prime}$ boards......9/9 only.

PAPER CONDENSERS. Mixed bags $0.001 \mu \mathrm{~F}$ to $\cdot 5 \mu \mathrm{~F}, 12 / 6$ per 100 . SILYER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /$ - per 100.
RESISTORS. Mixed types and values, $\frac{1}{4}$ to 1 watt. $6 / 6$ per 100. 55/per 1,000 . Wire-wound resistors. 1 watt to 10 watts. Mixed values. 20 for 10/-
TRANSISTORS. Mixed, unmarked, mainly O.K. $7 / 6$ for 50.

12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF NORMAL PRICE.
8 Watt $12^{\prime \prime}$ tube. Reflector type $£ 2.19 .6$. 15 watt $18^{\prime \prime}$ Batten type $£ 3.19 .6$. IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

ELECTROLYTIC CONDENSERS

$0 \cdot 25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$10 \mu \mathrm{~F}$	25 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F}$	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$400 \mu \mathrm{~F}$	6.4 volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	All at $1 /-$ each.	
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	20 assorted	
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	(our selection)	
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	$2 \cdot 5$ volt	$10 /-$.	

Orders by post to:
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum order $10 / \mathrm{F}$. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

[-ass:70's

MIDLAND Model 10-502 VHF AIRCRAFT BAND CONVERTER

Brings instant reception of the ground-to-air, air-to-ground wave band. For use with any standard AM or FM radio covering 535 to $1,505 \mathrm{kc} / \mathrm{s}, 88$ to $108 \mathrm{Mc} / \mathrm{B}$ respectively- rith no electrical con version or connection required. The model 10-502 (sels powered by one 90° (PP3 type) battery) is merely placed close the the receiving set and then tuned over band. Volume and reception pffectiveness is adjusted by ruoving both sets to the nost favourable position and balancing the volume controls of cach accordingly. The Model 10-502 mas a martly designed black plast ic
 cabinet with brughed metal front panel and 18 in chrome telescopic ante

LASKY'S PRICE 79/6

TMK

20,000 O.P.S. Multitester for the amateur or profeslonal. Features mirror scale and wood grain finish 00V at $20 \mathrm{~K} / 0 . P \cdot V, A . C / S$ ranges: $3,30,120,600 \mathrm{~V}$ at $8 \mathrm{~K} / \mathrm{O} . \mathrm{P} . \mathrm{F}$. D.C. current: $50 \mu \mathrm{~A}, 0 \cdot 6,60$, 600 mA . Resistance: $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}$ and 10 M ohms end acale ($65,650,6.5 \mathrm{~K}$ and 65 K ohms centre scale). Decibele: -20 to +57 daB in four ranges. $44 \times 23 \mathrm{in}$. Complete rith test leads, batterjes anul instructions.

LASKY'S PRICE £7.19.6

DE15HI BOARD KITS

NEW EXPERIMENTAL

AND EDUCATIONAL CIRCUIT

 SYSTEMThe DEFSHI BOARD sybtem enables the young experimenter and electronics hobbyist to produce a wide range of transistor circuits increasing sophisticationwithout soldering or the use of any tools at all! Basically the system comprises a slotted circuit board into which plug-in components and bridge pieces are set to produce up ponents are incapsulated in trans-

TTC Model C-1051
20,000 O.P.N. pocket multimeter with mircor scale and built in thermal protection circuit. Exceptionally large easy to rend meter with D'Arsontal movement. Colour coded scales. for all ranges. Ohms zero adjustment. Range or an A.C. volts: $0-6-30-300-1200 \mathrm{~V}$ at $10 / \mathrm{K}$ ohmec. F . D.C. volts: $0-3-15-130-300-1 \cdot 2 \mathrm{KV}$ at $20 \mathrm{~K} /$ ohnis/V, Resistance: $0-60 \mathrm{~K}-6 \mathrm{megs}$. D.C. curtent: $0-60 \mu A-300 \mathrm{~mA}$. Decibels: - 204 Bigh
+17dB. Hand catibration gives extremely high standard of accuracy on inll ranges. Lses one 115 penlight battery, Strong jupace resistant plastic cabinet-size only
Complete with test leads and battery. Original list price 5 gas .

LASKY'S PRICE 75/6 Post 2/6

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRANDTAPE at RECORD LOW PRICES

 3 3in Message tape, 2205 . 3 in Triple play, 600 ft Mylar. 4 in Triple play, 900 ft Mylar 5 in Double play, $1,200 \mathrm{ft}$ Myla 5 in Long play, 900 ft Acetate 5 in Standard play, 600ft PVC 5 in Triple play, $1,8001 \mathrm{f}$ Mylar 5 in Double play, 1,800ft Mylar 5 in Long play, 1,200n Acetate. 126 万in Triple play, $3,600 \mathrm{ft}$ Mylar.. 500 P. \& P. 1/- extra per reel. 4 reels and oser Post Free. Special quotes for quantities.

BUDGET PRICED CASSETTES

OVERTURE High quality cassettes from the U.S.A. C.60-10/6 C.90-15/m C.120-20/Post $1 /$ - ench. 4 and over Post Frec. Special quotes for quantities. SPECIAL OFFER: $6-$ C. 60 cassettes for 59/6 POST FREE
parent plastic blocks bearing the appropriate circuit symbol and
value thus enabling even the complete novice to visually grasp the fundamentals of circuitry after
only a few moments study In addition each DEASHI BOARD
KIT comes complete with on 80 Kage manual of circuits and data. DENSHI BOARD KIT SR-IA comprises: Base board; tuner block; 4 resistors; choke oil; transformer; 2SA transistor for RF 2 diodes: 3 capacitors; battery block; morse key; antenna lead; crystal earphone arlous bridge and connecting pieces and 80 page manual. This kit permits the building
various bridge and
of 16 basic circuits.
LASKY'S PRICE £4.19.6 Post $3 / 6$
DENSHI BOARD KIT SR-2A as SR-IA but with the following
additional parts: ${ }_{2 S}$, 2 resistors; 1 capacitor; crystal microphone; test probes;
\qquad additional parts: 2 , 2 resistors; 1 capacitor; crystal microphone; test probes; THESE ARE JUST A FEW OF THE CIRCUITS YOUCAN BUILDIN MINUTES: VARIOUS RADIO RECEIVERS, AMPLIFIERS, MORSE CODE PRACTICE DEVICE 2SB transistor for AF; 2 resistors; ${ }^{1}$ capacitor; crystal microphone; test probes,
electrode; additional connecting pieces; 9 battery; This kit permits the building of 30 circuits.

LASKY'S PRICE $£ 7.2 .6$ Post 3/6

LASKY'S ENCAPSULATED SOLID STATE MODULES
8 completely new special function circuit modules. Size of each module only $\frac{1}{2} \times 1 \frac{1}{2} \times$ in. Ready for immediate use-iust connect to power source (usually are shockyroof and almost indestructible. Comp. with fill ins. Post $1 / 6$ each
E-1311 Phono Pre-amp Module-max. output 3V. RMS, input 50 mV , input imp

GET YOUR LASKY'S AUDIO-TRONICS PICTORIAL
$\square \square\left[\begin{array}{l}16 \text { colour page catalogue in large } 16 \times \text { ling. format packed } \\ \text { with } 1,000^{\circ} s \text { of items from our vast stocks. Hi-Fj, Radio, }\end{array}\right.$ - - Electronics, Test Equipment, Components, etc., etc.

SEND FOR FREE CATALOGUE OF MUSICASSETTES - OVER 600 titles now available.

LThyer for Romponents

Selection from our range of STOCK transistors

ACY18	$4 / 5$	BCI84L	3/2	TIS50	3/9	2N2924	4/4
ACY19	5/3	BC212L	3/9	2N696	4/9	2N2926	3/-
ACY20	4/6	8C213L	3/9	2N697	5/-	2N3053	618
ACY2I	4/11	BC214L	4/-	2N706	3/3	2N3055	19/6
ACY22	2/10	BCY70	5/4	2NI132	$10 / 9$	2N3702	$3 / 6$
ASY27	6/2	BCY71	10/4	$2{ }^{\text {N }} 1302$	3/11	2N3703	$3 / 3$
ASY26	81-	BCY72	4/6	2 N 1303	3/11	2N3704	3/9
ASY28	6/2	BDI21	18/-	2 N 1304	5 $/-$	2N3705	$3 / 4$
ASY29	8/-	8FY50	5 -	2 N 1305	5/-	2N3707	4/-
8 Cl 07	3/3	BFY51	$4 / 6$	2N1306	6/5	2N3708	2/5
BCl08	3/-	BFY52	5:-	2N1307	$6 / 5$	2 N 3819	$9 /-$
BCl09	3/3	BSY95A	3/11	2N:308	$9 / 6$	2N3820	189
BCI82L	3/2	TIS44	1/9	$2 \mathrm{~N} / 309$	$9 / 6$	2N4058	4/6
BCI83L	2/5	TIS49	216	2N2906	13/-	2N4059	3/5

G.E. Type PA230 Low Level Amplifier
G.E. Type PA234 1 Watt Audio Amplifier G.E. Type PA233 2 Watt Audio Amplifier RCA Type CA3035 Uleratt Wide Band Amplifie Mulfard Type TAA263 Genigh Gain Amplifier Mullard Type TAA 310 Receral Purpose A.F. Amplifi Mullard Type TAA310 Record/Playback Amplifier Mullard Type TAA320 MOS FET with Bipolar Transistor G.E. Type 2N5306 Darlington Pair G.E. Type D!3TI Programmable Unijunction Transistor

Add $1 /$ - each to the above for data sheets for i.c. if required. Data sheets may be purchased separately at $1 / 6$ each pose free.

PROFESSIONAL COMPONENTS AT REALISTIC PRICES! Send NOW for our brand new COMPONENTS CATALOGUE, at only $2 /-$ post free. This catalogue is packed with information on a host of up-to-the-minute components by leading manufacturers. Included are
International Rectifier Products, Resistors, Capacitors, Veroboard, International Recrifier Products, Plugs and Sockers, Switches, etc.
Please note that all goods supplied by us are brand new and guaranteed to fully conform to the manufacturer's published specifications.
DISCOUNTS: Order value of $£ 5-10 \%$; Order value over $£ 10-15 \%$. DISCOUNTS: Order value of $£ 5-10 \%$; Order value oy
Cash with order please. Post and packing $1 / 6$ per order.

NEW! ELECTROSTATIC-IT'S FANTASTIC

SMELL KILLER AIR FRESHENER

No moving parts, fans, filters, chemicals. A sealed set of ELECTRODES produces nascent oxygen which mixes with the oxygen in the air to produce OZONE. OZONE is the most powerful SMELL KILLER/AIR CLEANER known to science. Ozone breaks up the airladen molecules of mell-completely dispersing all smells not disguising them. Its EFFICIENCY will maze you in kitchens living rooms, offices, etc. Less than a Id a week to run. No maintenance. Lifetime's wear. Portable Fully guaranteed. 220/40v AC. Over 6000 S
sold at Ideal Home Exhibition. NEVER 2 m BEFORE AN ELECTROSTATIC CLEANER Post $4 / 6$ Distributed by

ANDREW STEPHENS (1947) CO.

 61 DICKSON RD., BLACKPOOL. 0253-23755

a complete stereo system for 28 gns!

The new Duo general purpose two way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally. flux 6×4 in speaker and $2 \frac{1}{4}$ in in ohms. It incorporates Goodmans high 4 guineas each, P. \& P. $7 / 6$. Garrard Changers from $67.19 .6, P$. \& P. $7 / 6$. Cover and Teak finish Plinch \&4.15.0, P. \& P. $7 / 6$.

Integrated Transistor Stereo Amplifier

9 GNS

 7/6 P. \& P. The Duetto is a good quality amplifier, attractively styled and finished. costing far more. SPECIFICATION: R.M.S. power output: 3 W per channel into 10 ohms speakers. Input Sensitivity: Suitable for medium or high output crystal cartridges and tuners. Crosstalk better than 30 dB at dual ganged volume control 4 -position selector switch (2 pos, mono and 2 pos. stereo) dual ganged volume control. Tone Control: Treble lift and cut. Separateon/off switch. A preset balance control.

81 $\frac{1}{2}$ GNS
P. \& P. 7/6

Specification: Sensitivities for 10 W output at 1 KHz . Tope head: 3 mV (at $3 \frac{3}{2}$ i.p.s.). Mag. P.U.: 2 mV . Cer. P.U.: 80 mV . Radio: 100 mV . Aux.: omv. within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Totol distortion: (for 10 W outpur) $<1.5 \%$. Signal noise: $<-60 \mathrm{~dB}$. A.C. mains $200-250 \mathrm{~V}$. Size $12 \frac{1}{2}$ in long, $4 \frac{1}{4}$ in deep,
$2 \frac{1}{4}$ in high. Teak finished case.

I/scount

$13 \frac{1}{2}$ GNS
$+7 / 6$ P. \& P.
Integrated High Fidelity Transistor Stereo Amplifier
SPECIFICATIONS: Output: 10 W per channel into 3 to 4 ohms speakers (20W monoral). Input: 6 position rotary selector switch (3 pos. mono and 3 pos, stereo). P.U., Tuner, Tape and Tape Rec. out. Sensitivities: All Inputs 100 mV into 1.8 M ohm. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{db}$. Tone controls: Separate bass and treble controls. TREBLE I3db lift and cut [at 15 KHz]. BASS 15 db lift and 25 db cut [at 60 Hz]. Volume ontrols: Separate for each channel. A.C. mains input: $200-240 \mathrm{~V}$. $50-60 \mathrm{~Hz}$. Size:
$12 \frac{1}{2} \times 6 \times 2 \frac{z}{\text { in }} \times \mathrm{in}$ in teak finished case. Buitt and tested. P. \& $P, 7 / 6$.

THE DORSET (600 mW Output)
7 -transistor fully tunable M.W.-L.W. superhet portable-with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques make this simple to build. Sizes: $12 \times 8 \times 3$ in. MAINS POWER PACK KIT:
Price $£ 5.5$. 0
Plus 7/6 P. \& P. Circuit 2/6 FREE WITH PARTS.
THE ELEGANT SEVEN Mk. III (350mW Output)

7-transistor fully tunable M.W.-L.W portable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board-back Printed for foolproof construction.
MAINS POWER PACK KIT: $9 / 6$ extra.

Price $£ 4.9 .6+7 / 6$ P. \& P.

$2 / 6$ FREE WITH Circuit
50 WATT AMPLIFIER A.C. MAINS 200-250V

An excremeiy reliable general purpose amplifier-with six electronically mixed inputs. Suitable for use with: miks, guitars, gram, tuner, organs, etc. Separate bass and treble controls.
Output impedance 3,8 and 15 ohms. Price 27 GNS $+20 /$ - P.\&P.

THE
RELIANT

SOLID-STATE GENERAL PURPOSE AMPLIFIER
Specifications: Output: IOW R.M.S. Output impedance: 3 to 4 ohms. Inputs: 1. Xtal mie 10 mV ; 2. Gram/radio 250 mV . Tone controls: Treble control range $\pm 12 \mathrm{~dB}$ at 10 KHz ; Bass control range $\pm 13 \mathrm{~dB}$ at 100 Hz . Frequency response (with tone controls central): Minus 3 dB points are 20 Hz and 40 KHz . Signal to noise rotio: better than -60 dB . Tronsistors: 4 silicon Planar type and 3 Germanium type. Mains input: $220-250 \mathrm{~V}$ a.c. Size of chossis. or L.P. records, musical inscruments, all makes of pick-ups and for use with Sto. bass and treble life control. Two inputs with control for mram and mike. bass and treble life control. Two inputs with control for gram and mike.
Built and tested. 8×5 in speaker to suit: Price $14 / 6$ plus $/ / 6 \mathrm{P}$. \& P . Crystal mike to suit: $12 / 6$ plus 1/6 P. \& P. Mk. I as above, less teak case $5 \frac{1}{2} \mathrm{gns} .+$
$7 / 6 \mathrm{P} . \& \mathrm{P}$.
RELIANT MK. II $6 \frac{1}{2}$ GNS $7 / 6 \mathrm{P}$. 8 P. In teak-finished case

POCKET MULTI-METER
 d,000 O.P.V. on both a.c. and d.c. volts. 0-15,0-150, a-1,000 with test prods, battery and full instructions, $42 / 6$. P \& \& P with test prods, battery and full instructions, $42 / 6$. P. \& P. Solderinglion Value $15 /=$ to every purchaser of the Pocker Multi-Meter. ${ }_{\text {PRICE }}^{\text {OUR }}$ 12 for 30 Postage 4/6

CYLDON 2 TRANSISTOR U.H.F. TUNER. BRAND NEW. COMPLETE WITH CIRCUIT DIAGRAM £ $2.10 .0+1 /$ P. \& P. THREE-IN-ONE HI-FI 10 WATT SPEAKER A complete Loud Speaker system on one frame, combining three matched ceramic magnet speakers with a low loss cross-over network. Peak handling power 10 W . Impedance $\mathbf{i 5}$ ohms. Flux density 11,000 gauss. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency
range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size $13 \frac{1}{2}$ in X range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size $13 \frac{1}{2} \mathrm{in} X$
8 is $\mathrm{in} \times 4 \frac{1}{2} \mathrm{in}$. By famous manufacturer List price 67 . Our price $74 / 6$ plus $5 /-$
P. \& P. Similar speaker to the above minus tweeters in $3 \& 15$ ohms $44 / 6+5 /-$
$P . \& P$ above

RADIO \& TV COMPONENTS (ACTON) LIMITED Goods not despatched outside U.K. Terms C.W.O. . All enquiries s.a.e. ALL ORDERS by post to our acton address 21d High Street, Acton, London, W. 3 also at 323 Edgware Road, London, W. 2

RACAL RA-17

First ministry release of these world famous communication receivers. Frequency range $500 \mathrm{Kc} / 8-30 \mathrm{Mc} / \mathrm{s}$. Available n excellent condition fully tested and garanteed. £150. Carr. 40

CLASS D WAVEMETERS

(rosatcontrolled heterocovering $\quad 1 \cdot \overline{8}-8 \mathrm{Mc} / \mathrm{s}$. Operation on 6 V d.c. Ideal for amateur use. Available ingood used con-
dition. $£ 5.19 .6$. Carr. $7 / 6$. Or brand new with acces* sories. £7.19.8. Carr. 7/6.

CLASS D WAVEMETERS No. 2 Crystal controlled. 1-2-19 Mc/g. Mains or 12 V d.e. operation. Complete with calibration charts.

MARCONI CT44/ TF956 AF ABSORPTION WATTMETER
1μ watt to 6 watte. £20. Carr. 20;

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0.20 \mathrm{Kc} / 8$ on 2 ranges. Output
500 O
0 500Ω or $5 \mathrm{k} \Omega$. Operation $200 / 250 \mathrm{~V}$. A.C. Supplied in perfect orter $\mathbf{3 1 2 / 2 0 / -}$

AVOMETERS
supplied in excelfully costerl and fully testell and with prods, leads and instructions. Model 47A £9.19.6 P. \& P. 7/6.

SOLARTRON CD. 1016 OSCILLOSCOPE

 Double beam. dic. To $5 \mathrm{Mc} / \mathrm{s}$. Excel
AM/FM SIGNAL GENERATORS

Oscillator Test Nio. 2. A high quality ment mate for the ministry by Airmee. Frequancy cover-
age $20-50 \mathrm{Mc} / \mathrm{s}$. AM/ worates precision dial, level meter, precieion attenuator $1 \mu \geqslant-100 \mathrm{mV}$. Operation from 12 V d.c. or $0 / 110 / 200 / 250 \mathrm{~V}$ a.c. Size condition complete with all connectors fully testect. 245. Carr. 20

GEARED MAINS MOTORS

 Paralux type SD19 230/250V a.c. Rerersible. Complete $98 / 8$. Carr $10 /$

SINCLAIR EQUIPMENT
Z12 12 watt amplifer, 89:6 FZ4 Power Supply Unit 89/B tereo 25 Preamp., 59.19 .6 Q14 Speakers, 27.19.6 Micromakic Radio Kit, 49/8. Built 59;

SPECIAL OFFER
Two Z12 Anps., PZ4 Power Supply, Stereo 25 Preamplifier, 822 , or with two Q14

NEW SINCLAIR 2000 SYSTEM

 35 watt Integraterl A inplifier 529. Carr. $5 /-$Self powered F.M, Tuner. $£ 25$. Carr. $5 /-$

ECHO HS-606 STEREO

 HEADPHONES

Wonderfully coln-
fortable. Yortable Misht-
weipht
actustable winyl headlband.
viny
6 hen stereo jack plug.
 P. \& P. $2 / 6$.

UNR-30 4-BAND COMMUNICATION RECEIVER

Covering $550 \mathrm{Ke} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{g}$. Incorporates BFO. Built-in speaker and phone jack. Metal cabinet. Operation 220 | instructions. | |
| :--- | :--- |
| | |
| | Carr. $/ 6$ |

TRIO COMMUNICATION

 RECEIVER MODEL 9R-59DE4 band receirer corering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. continuous and electrical bandepread on 10, 15,20 , 40 and 80 metres. 8 ralre plus 7 cliode circuit. - Variable BFO S meter - Sep, bandspread dial $1 F$. $445 \mathrm{Ke} / \mathrm{s}$. Audio output 1.5 W . Varjable RF and AF gain controls, $115 / 250$ A.C. Mains. Beautifuly designed. Sha

TRIO JR-500SE 10-80 METRE AMATEUR COMMUNICATION £69.10.0. Carr. Paid.
SPECIAL BONUS OFFER! TRIO SP5D Matching Speoker Mate and TRIO HS4 Communication Headphones. Normal Value 1 10.7.0. FREE OF CHARGE with every JR-500SE purchased.

HAMMARLUND SP600JX

COMMUNICATION RECEIVER

High quality professional dual conversion communication recelvers. Few available again in this, country at a 6 reasonable price. Frequency range $540 \mathrm{Kc} / \mathrm{s}-54 \mathrm{Mc/8}$ in 2.5 watt output into 600 ohms. Input $110 / 230 \mathrm{~V}$ a.c 20 valve circult incorporating; Xtal filter, B.F.O., A.N.L. Xtal calibrator, S meter etc. Size $19 \times 12 \times 22 \mathrm{in}$,
(List $£ 520$.) Offered in excellent condition fully tested and cheoked. \&100 each.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER
 19 transistors, 8 diodes, IHF music power, 30W tortion 1% or less. Inputs, 3 mV and 250 mV . Output 3-16 Ω. Separate L and R volume controls. Treble and bass control. Stereo phone jack. Brushed aluminium, gold anodised extruded front panel with complementary metal case. Size $10 \frac{1}{4} \times$
$39 / 16 \times 713 / 16$ in. Operation $115 / 230 \mathrm{~V}$. A.C. $39 / 16 \times 713 / 16 \mathrm{in}$
f28. Carriage $7 / 6$.

MARCONI TEST EQUIPMENT

EX-MILITARY RECONDITIONED.
TF 144G STANDARD SIGNAL GENERATORS, $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}, 225$, carr. $30 /-$ TF. 885 , VIDEO
 T.F. 195M, BEAT FREQUENCY OSCILLATOR $0-40 \mathrm{Kc} / \mathrm{s}, 200 / 250 \mathrm{~V}$ a.c. 820 carr. $30 /-$ TF. 142 E Dibove offered in excellent condition fully tested and checked. TF. 1100 VALVE VOLT
 MESER, Brand New, e50. T.F. 1267 TRANS-
MSSION TEST SET, Brand New 275 . TF. 137 . Wide Baul Millivolt Meter, ${ }^{2} 50$.

MULTIMETERS for GVERY purpose!

 UXE 100 K Ω /VOLT Glant 6in. scale. Built-in meter protection. 0/5/2.5/10/50/ $250 / 500 / 1,000 \mathrm{~V}$ d.c.
$0 / 3 / 10 / 50 / 250 / 500$ $\begin{array}{lll}1,000 \mathrm{~V} \\ \mathrm{a}, \mathrm{c} . & 0 / 10 / \\ 00 \mu \mathrm{~A} / 10 / 100 & 500\end{array}$ 100/2A/20/100/500 $10 \mathrm{~K} 100 \mathrm{~K}, 10 \mathrm{M}$

MODEL AS-100D. mirror scale. Built o/ meter protection $300 / 600 / 60 / 1200$ 4.c. $0 / 6 / 30 / 120 / 300 /$ $60 / 60 / 300 \mathrm{MA} / 122^{\text {a.c. }} 10 \mu \mathrm{~A} /$ $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$. 00Mの. 20 to

 OVERIOAD PROTECTION $0 / 3 / 12 / 60 / 300 / 600 / 1,200 \mathrm{Y}$
$0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{Y}$ d.c. $0 / 6 / 30 / 120 / 300 / 1,200 \mathrm{y}$
d.c. $0.03 / 6 / 60 / 600 \mathrm{MA}$ d.c. d.c. $0.03 / 6 / 60 / 600 \mathrm{MA}$ d.c.
$16 \mathrm{k} \Omega / 160 \mathrm{k} \Omega / 1.6 / 16 \mathrm{M} \Omega$.
 $\bar{P}^{20} \&$ to 2

MODEL TE-70, 30,000 O.P.Y, 0/3/15160/300 $600 / 1,200 \mathrm{~V} .1 . \mathrm{c} .0 / 6$ $30 / 120 / 600 / 1,200 \mathrm{~V}$ a.c. $0 / 30 \mu \mathrm{~A} / 3 / 30$
300 mA . $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ 1.6 M 16megohm 55.10.0. P. \& P. 3/-

MODEL PT-34. $50 / 250 / 500$ / 1.000 V a.c. and
 mA
$\mathrm{K} \Omega$
$1 / 6$.

TE-900 $20,000 \Omega$
VOLT GIANT
 MOLTMMETER

6in. full view meter. colour scale, overload protection. 0/2.5/10 $0 / 25 / 12.5 / 10 / 50$	250	$1,000 / 5,000 \mathrm{~V}$
d.c. $0 / 50 \mu \mathrm{~A}$		d.c. 500 niA 10 A

d.c. $20 \mathrm{~K} / 200 \mathrm{~K} / 20$ M.c. $20 \mathrm{~K} / 200 \mathrm{~K} / 20$

LAFAYETTE

57 Range 50,000 O.P.

Multimeter. D.
olts $125 \mathrm{~V}-1,000 \mathrm{~V}$ 1,000V D c. Current $25 \mu \mathrm{~A}-10 \quad$ Amp.
Ohms. 0.15 Meg Ω
$\mathrm{dB} .-20$ to +81 dB

dB. -20 to +81 dB.
Overload Protection. 812.10 .0 . Curr. $3 / 6$ PROFESSIONAL 20,000 O.P.V. LAB. TESTER
 overload pro tection, mir$\begin{array}{ll}\text { ror scale. } \\ \text { Ranges: } \\ 50 / 2 / 10 / & 500\end{array}$ 1,000 volts, 1,000 volts, w.c. and a.c $0-500 \mu \mathrm{~A}$
$10 \mathrm{~mA}, 250 \mathrm{~mA}$. Current: $0 / 20 \mathrm{~K}, 200 \mathrm{~K}$ 2 megohm. Decibels: -20 to $+22 d B$ \&5.19.6. P. \& P. 2/6.
MODEL TE 80. 20,000 0.10
$\begin{array}{ll}0 / 10 / 50 / 100 / 500 / \\ 1,000 \mathrm{~V} & 1\end{array}$ $250 / 500 / 1,000 \mathrm{~V}$ d.e. $0.5 \mu \mathrm{~A} . \quad 5 / 50 / 500 \mathrm{~mA}$ / $0 / 6 \mathrm{~K} / 60 / \mathrm{K} / 600 \mathrm{~K} / 6$ M Fg.
e4.17.6. P, \& P. 3/-.

$\begin{array}{ll}\text { MODEL } & \text { TE12. } \\ \text { O.P.V. } & 0 / 0.6 / 30 / 120 / 600 /\end{array}$ O.P.F: $0 / 0 \cdot 6 / 30720 / 600$ $1,20 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ a.c $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{MA}$ $0 / 6 \mathrm{~K} / 600 \mathrm{~K} / 6 \mathrm{meg} / 60$. $\begin{array}{ll}\text { Megohm } & \$ 0 \mathrm{PF} .2^{2} \text { M } \\ \text { 25.19.6. } & \text { P. } 8.3 / 6 \text {. }\end{array}$

TO-2 PORTABLE

OSCILLOSCOPE

FIELD TELEPHONES TYPE L Generator ringing, metal cases. Operate:
from two $1-5 \mathrm{y}$. batteries (not supplied). Excellent condition, 44,10.0. per pair Garr. 10/.
T.E. 40

HIGH SENSITIVITY A.C. VOLTMETER 0 meg. input 10 ranges:
 R.M.S. $4 \mathrm{c} / \mathrm{s} .-7.2 \mathrm{Mc} / \mathrm{s}$. Decibels- 40 to +50 dB . Supplied brand new complete with leads and instructions. Operation 230 V a.c. E 17.10 .0.

AUTO TRANSFORMERS $0 / 115 / 230 \mathrm{r}$. Step up or step down Fully ahrouded.
150 W. \&1.12.6, P. \& P. $3 / 6$
300 W . £2.7.6, P. \& P. $3 / 6$

1,000 W. $£ 5.10 .0$, P. \& P. $7 / 6$
1,500 W. 26.10 .0. P. \& P. $8 / 6$
7,500 W. e15.10.0, P. \& P. $20 /$
TE22 SINE SQUARE WAVE
AUDIO GENERATORS Sine: $20 \mathrm{c} / \mathrm{s}$ to
$200 \mathrm{Kc} / \mathrm{s}$ on 4
 $200 \mathrm{Kc} / \mathrm{g}$ on ${ }^{4}$ bands. Square: bands. Square: Output impedance 5,000 ohms. ance b,000 $20 / 250 \mathrm{~V}$.
S.C. Supplied brand new and guaranteed with instruc-
£16.10.0. Carr. $7 / 6$.

TE111.
 \section*{DECADE}

RESISTANCE
ATTENUATOR
Yariable range
$0-111 \mathrm{~dB}$. Con-

nections. Un

balanced T and Bridge T 600Ω range $(0.1 \mathrm{~dB} \times 10)+(1 \mathrm{~dB} \times 10)$ $+10+20+30+40 \mathrm{~dB}$. Frequency: d.c. to 200 kHz (-3 dB). Accuracy. 0.05 dB . indication dB $\times 0.01$. Maximum input less than 4 W (50 V). Built in 600Ω loat resistance with internal. external switch. Brand new \$27.10.0

TY75 AUDIOSIGNAL GENERATOR Sine Wave $20 \mathrm{c} / \mathrm{s}$ to
$200 \mathrm{ke} / \mathrm{s}$. Square Ware $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$. High and low impedance output. Output variable up to 6 valts. $220 / 240$
Size $210 \times 150{ }^{2 . e} \times$ Size $210 \times 150 \times$
120 mm . Brand new 120 mm . Brand new 5ith instruc
£16. $7 / 6$.

CAR LIGHT FLASHERS

Heary duty light flasher employs a condenser dis operating on elec operating onancal relay, (As inset.) Housed in strong
plastic case. Flashing case
rate betreen 60-120 yer minute. 12 volt DC operation. Maxi mum load 6 amps. Size 2 11/16" dia, $x^{\prime \prime} 4^{\prime \prime}$. Supplied brand new at a fraction of 17/6 P.\&P. 4/6).

Full ragge of all components Valves Semi-conductors Test equipment Receivers © Hi-fi equipment All a discount prices.
G. W. SMITH
\& CO (RADIO) LTD.
Also see oppos. page

HEW CATALOGUE
Nearly 200 pages giving full details of a comprehensive range
of COMPONENTS TEST EQUIPMENT, COMMUNICATION EQUIPMENT AND HI-FI EQUIPMENT.
Each section greatly enlarged and fully illustrated. Thousands of items many at bargain prices.
FRE DISCOUNT COUPONS FREE DISCOUNT COUPONS SEMD NON-OMGY 76 PEPR

GARRARD

FULL CORRENT RANGE OFFERED, BRAND NEW AND GUARANTEED AT FAKTASTIC

 -1025 Stereo 27.15.0 AT60MKII ${ }^{*} 2025$ Stereo 27.19 .6 *SL6 -2025T/C AP75 Mono/Stereo 28.17.8 401 -3000 Stereo 89.19 .6 SL75 SP25 MKII $£ 11.19 .6$ SL95 | 213.5 .0 |
| :--- |
| $\ell 14.14 .0$ | 228.10.0 Bes 196 Pe 76 exta any mudel. WBI

 Bases $£ 3.1$

TYPE 13A DOUBLE BEAM

OSCILLOSCOPES

An excellent general pur
 p.Be D/B oscilloscope.
 Senaitivity $33 \mathrm{mV} / \mathrm{CM}$. Operating voltage $0 / 110 /$
$200 / 250$ V. a.c. Supplied 200/250 V. a.c. Supplied in excellent working con-
dition. 822.10 .0 . Or complete with all accessories, probe, Carriage 301
ADMIRALTY B. 40 RECEIVERS Released by the Ministry. High quality 10 valve receiver manufactured by Murphy. Coverage in 5 bands $650 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. I.F.
 $00 \mathrm{kc} / \mathrm{s}$. Incorporates stages, band-pass filter. poise limiter, crystal controlled B.F.O., calibrator. O/F output, etc. Built-In speaker. output for phones. Operation 150/230 V a.c. Size $191 \times 131 \times$
16 in . Weight 114 lb , 16in. Weight 1141 l . ing coudition. $£ 22.10 .0$. Carr. 30/-. With version of above. $15 \mathrm{Kc} / \mathrm{s}-700 \mathrm{Kc} / \mathrm{s}$. $£ 17.10 .0$. Carr. 30/-

R209 MK II
COMMUNICATION RECEIVER 11 ralve high grade communication receiver suitable for tropical use. $1-20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. vernier driver, BFO. Aerial trimmer internal 8 peaker and 12 Y d, internal
 plied Supexcellent fully tested

Carr. 20/-

ADVANCE TEST EQUIPMENT Brand new and boxed in original sealed VM. 76 VALVE VOLTMETER R. F. measurements in ercess of $100 \mathrm{Mc} / \mathrm{s}$ and d.c. messurements up to 100 Y with
accuracy of $\pm 2 \%$ d.c. range 300 MV to 1 kV a.c. range 300 MV to 300 V RMS. Resistance 02-500Ma.
VM. 78 A.C. MILLIVOLT METER. Transisorised 1 MV -300V. Frequency $1 \mathrm{c} / \mathrm{s}$
VM. 79 UHF MILLIVOLT METER. Tran= sistorised. A.c. range $10 \mathrm{MV}-3 \mathrm{M}$. Resistance 1 ohm-10 megohms.
Price 2125.
H1B AUDIO SIGNAL GEAERATOR.
 IIB AODIO

D-50 GIGNAL GENERATOR. IL GEXERA per J1B except fitted with ontput TT1S TRASSISTOR TESTER. \&37.10.0 Carrisge 10/-per item.
SOLARTRON MONITOR
OSCILLOSCOPE TYPE 101 An extremely high quality oscilloscope with time base of $10 \mu / \mathrm{sec}$ to $20 \mathrm{~m} / \mathrm{sec}$. Internal \mathbf{Y} $200 / 250 \mathrm{~V}$. Supplied in excellent condition with cables, probe, etc., as received from Ministry, 48.19 .6 , carriage $30 /$.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

 12V. D.C. Neg. earth. $\& 37.10 .0$, Carr, $10 /-$
Variable Voltage TRANBFDRIIER

High quality construction. Input 230 v $50-60$ cycles
Output full variable from 0.260 V. Bulk quantities available. 8 amp . $2514.10 .0 ; 2 \cdot 5 \mathrm{amp}$.- $86.16 .0 ; 5 \mathrm{amp}$.- 29.15 .0 ;
$20 \mathrm{amp}-\mathrm{Hz.0.0} 10 \mathrm{amp} .-218.10 .0 ; 12 \mathrm{amp} .221 .0 .0$;

$20 \mathrm{amp} .-137.0 .0$

> $\operatorname{lmA}_{1-0.1 \mathrm{~mA}}^{2 \mathrm{~mA}} . . .$. | 5 mA. |
| :--- |
| 10 mA | $37 / 6 \quad 10 \mathrm{~mA}$.

> $1 \mathrm{amp} .$. $\begin{array}{ll}32 / 6 & 5 \mathrm{mp} \\ 32 / 6 & 20 \mathrm{~mA} .\end{array}$ $\begin{array}{ll}32 / 6 & \text { 20mA. } \\ \text { 37/8 } & \text { Postage Ex }\end{array}$

20V. D.C.

	200 mA 25
	300 mt 25
	500mA 25
	3V. D.C. 25
	10V. D.C..... 25
	20V. D.C. . . . 25
	100 V . D.C.

$500 \mathrm{~V} . \mathrm{D}$
$750 \mathrm{~V} . \mathrm{D}$
15 F. 150 V . A.
150 V . A 150 V. A.C.
$300 \mathrm{~V} . \mathrm{A} . \mathrm{C}$ $500 \mathrm{~V} . \mathrm{A} . \mathrm{C}$
8 neter

5 BAMD AOL/CW/SSBB AMATEOR AND SHORT 5 BAND AK/CW/SSB AMATEOR AKD 8HORT
WAYE $150 \mathrm{Kc} / \mathrm{s}-400 \mathrm{kc} / \mathrm{s}$ and $650 \mathrm{ke} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{m}$ fis T front end e 2 me chanlcal filtera Huge Variable BFO Solse limiter of meter 84 in Bendapread - 230 V a.c. 112 V d.c. nes. earth
 45. Carr, 10/-. §.A.E. for fall defails.

A completely new transistorised receiver covering $152-174 \mathrm{Mc} / \mathrm{a}$. Fully tuneable or crystal controlled
 A (not supplifed) For fixed irequency operation. Incorporates 4 INTEGRATED CIRCUITS. Built in speaker and illuminated dal. Squelch and Folume controls. Tape recorder outal. Squelch and volinput. Headphone jack order output. 75Ω aerial dphone jack. Operation 230V. A.C.

AMERICAN TAPE

A new portable bridge offering excellent range and accuracy at low $1 \Omega-11-1$ meg Ω
 ges -2%, 6 . 10pF Ranges $\pm 2 \%$. TURNS RATIO 1:1/1000 $1,000 \mathrm{cps}$. Operated 1%. Bridge voltage a Mefer indication. Attractive 2 tone metal case. Size $7 \frac{1}{8} \times 5 \times 2 \mathrm{in}$. 220. P. \& P. $5 /-$.

TE-65 VALVE VOLTMETER

High quality instrument with 28 ranges. D.c. volts $1 \cdot 5-1,500 \mathrm{~V}$. A.c. Volte up to 1,000 megohms. $220 / 240 \mathrm{~V}$ a.c. operation Complete with probe and instructions. ex17.10.0. P. \& P. 6/-. Additional Probes available: R.F $35 / 4$. K.V. $42 / 6$. Brand grade quality American ta 3 in. 225 It L.P, acetate 31 in .600 ft . T.P. mylar. 5 in. 600 ft . atd. plastic
5 in. 900 ft . L. P. aceta sin. $1,200 \mathrm{ft}$. D.P. mylar ${ }_{5}$ fin. $1,200 \mathrm{ft}$. L.P. acetate 52 in . $1,200 \mathrm{ft}$. L.P. metare 5 In. 1,800ft. D.P. mylar 5 gin. 2,4001t. L.P. mylar 7 in . 1,2001t. std. acetate 7 in . I, 800 ft . L.P. acetate 7in. 1,800ft. L. P. mylar 7in. 2,4001 t. D.P. mylar Postage 2/-. Orer $£ 3$ post pald.

RECORDING HEADS

Reuter 1 -track. As fitted to Collaro Mrk. IV and Studio Decks. High imp. record play back, low imp. erase. Lower track only, t-track heads. High imp. record/playback $65 /-$ Low hmp. erase $20 /$. MARRIOTT t-track heads. High imp. record/playback
$85 /-$ Low imp. erase $20 /$ - Post extra.
\star TRANSISTORISED FM TUNER ${ }_{6}^{\star}$
 HIGH QUALITY TUNER, QUALITY $O N L Y 6 \times 4 \times 21 \mathrm{in}$. 3 I.F. stages.
Double tuned dis. criminator. Ample output to feed most
amplifers. ates on 9 V battery. Coverage $88-108 \mathrm{Mc} / \mathrm{s}$ Ready built ready for use. Fantastic value for money. \&B.7.6. P. \& P P. 2/6.
Stereo multiplex adaptors $89 / 6$. TRANSISTORISED TWO-WAY TELEPHONE: INTERCOM
Operative over amazingly
long distances. Separate call and press to taik buttons, 2-wire connection. $1000^{\prime} s$ of applications, Beautifully finished in ebony. Supplled
complete with batteries and wall brackets. 28.19.8. P, \& P. $3 / 6$

TE-16A Transistorised Signalgenerator. 5 ranges
$400 \mathrm{kHz}-30 \mathrm{mHz}$ inexpensive instrument for the handyman. Operates on 9 v battery. Wide, 800 kHz modulation $51 \times 5\{\times 3$ in. Complete with instructions and MODEL ZQM TRANSISTOR CHECKER
It has the fullest capacity for It has the fullest capacity for
checking on A, B and Ico.
Equally adaptable for
checking diodes, etc. Spec.: A: $0.7=0.9967$. $\begin{array}{lll}\text { B: 5-200. } & \text { Ico: } & 0-50 \\ \text { microamps } & 0-5 & \mathrm{~mA} .\end{array}$ Resistance for diode
$200 \Omega-1 \mathrm{Mg}$. Supplied 200 Д-1 Ma. Supplied
complete with instruc-
tions, battery and lead. es.19.6. P. \& P. 2/6 TE-20RF SIGNAL GENERATOR Accurate wile range signal generator corer $\rightarrow \begin{aligned} & \text { ing } 120 \mathrm{kc} / \mathrm{s}-260 \\ & \mathrm{Mc} / \mathrm{s} \text { on } 6 \text { bands }\end{aligned}$

NOW OPEN IN EDGWARE ROAD

Onr new walk around shop is now open at 311 Edgware Road fully atock with Edgucare Road for all Equipment-Lisle Street for all Equipment ned Compouep

Directly calibrated
variable R.F. at tenuator. Operation Brand new with in struction. 215.0 .0 .
P. \& P. $/ 6$. S.A.E. lor details.
ARF-100 COMBINED AF-RD SIGNAL GENERATOR

prepare now for tomorrow＇s world

Today there is a huge demand for technologists such as electronics，nuclear and computer systems engineers，radio and television engineers，etc．In the future，there will be even more such important positions requiring just the up－to－date，advanced technical education which CREI，the Home Study Division of McGraw－Hill Book Co．，can provide．
CREI Study Programmes are directly related to the problems of industry including the latest tech－ nological developments and advanced ideas．The individual tuition given by the CREI panel of experts in each specialised field is comparable in technological content with that of technical colleges．

Take the first step to a better job now－enrol with CREI，the specialists in Technical Home Study Education．

CREI Programmes are available in：
Electronic Engineering Technology＊Industrial Electronics for Automation＊Computer SystemsTechnology＊Nuclear Engineering＊Mathematics for Electronics Engineers＊ Television Engineering＊Radar and Servo Engineering＊ City and Guilds of London Institute：Subject No． 49 and Advanced Studies No． 300.

$\overline{C R E I}$

CREI（London），Walpole House， 173－176 Sloane Street，London S．W．1． A Subsidiary of McGraw－Hill Inc．
Post this coupon today for a better future

STEREOGRAM CABINET \＆19 An elegant stereogram Cabinot in modern Veneered Mahogany and cloth covered Front Panal
black leatherette side panels
Dimensions： $52^{\prime \prime} \times 171^{\prime \prime} \times 12^{\prime \prime}$ ．Speaker positions for Twin $10^{\prime \prime} \times 5^{\prime \prime}$ Speakers

SPEAKERS $6 / 6$

$2^{\prime \prime}-75 \Omega .2 \frac{1_{2}^{\prime \prime}}{2}-35 \Omega$. P．\＆P．2／6． ACOS MICS． $35 /=$ STANDARD
STICK MIC．2gns．P．\＆P．3／6． ASSORTED CONDENSERS
$10 /-$ for 50 ．P．\＆P． $7 / 6$. ASSORTED RESISTORS

10／－for 50．P．\＆P．4／6． ASSORTED CONTROLS

10／－for 25．P．\＆P．7／6． TRANSISTORS

MULLARD MATCHED
OUTPUT KIT 9／－OC8ID－2 OC8I＇s． P．\＆P．FREE．

FERRITE RODS $3 / 6$

$6^{\prime \prime}, 8^{\prime \prime} \times 3^{\prime \prime}$ complete with LW／MW COILS．P．\＆P．FREE．

17in．－£ 11.10 .0 carr． $30 /-$ I9in．SLIM－LINE FERGUSON 24 gns． TWO－YEAR GUARANTEE EX－RENTAL TELEVISIONS
－ーーーーーー
FREE ILLUSTRATED $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

WIDE RANGE OF MODELS sIZES AND PRICES dEMONSTRATIONS DALLY

RECORD PLAYER CABINET loth 496. Takes any modern autochan Takes any P．\＆P． $7 / 6$ ． SINGLE PLAYER CAEINETS 15／6．P．\＆P．7／6．
TRANSISTOR CASES 19／6．
Cloth covered，many colours． Size $9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2} \times 3 \frac{1_{2}^{\prime \prime}}{2}$ P．\＆P，3／6．
Similar

TWO－YEAR GUARANTEED REGUNNED TUBES 70° \＆ $90^{\circ} 14 \mathrm{in}$－$-69 / 6,17 \mathrm{in}$ ．－
 19in．\＆ 21 in． $999 / 6$ ． 23°（not bonded）－ $199 / 6.5$ Exchanged Bowls．Carr． $10 / 6$ ．

DUKE \＆CO．（LONDON）LTD．
621／3 Romford Road，Manor Park，E． 12
Phone 01－478 6001－2－3
Stamp for Free List．

COMPLELR STERTO Sy
FOR ONLY

The Premier Stereo System consists of an all transistor stereo amplifier, Garrard Model $202 \overline{5}$ auto/mannal record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The 10 transistor Amplifier has an output of 5 watts per channel with inputs for pick-up, tape and tuner also tape output socket Controls: Bass, Treble, Volume, Selector. Power on/off, stereo/mono swith. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 3 \frac{2^{\prime \prime}}{}$ high (Amplifier available separately if required $£ 14.19 .6$. Carr. 7/6).

HI-FI STEREO
HEADPHONES
Designed to the highest
possible standard. Fitted
2 in speaker units with
soft padded ear muffis.
Adjustable headband.
ohm impedance. Coni-
stereo jack plug.
59/6

MONO HEADPHONES 2,000 ohm 14/6 P. \& P. $2 / 6$. STEREO STETHOSCOPE SET LOW imp. 25/- P. \& P. 2/MONO STETHOSCOPE SET Low imp. 10/6 P. \& P. 2/-

PICK-UP CARTRIDGES
AT MONEY SAVING PRICES!
GOLDRING G800 (Stereo) 59.19 .6
B \& O SP1 (Stereo).
2 (Stereo)
d (stereo)
SONOTONE 9TAHC/Diamond (itereo
ACOS GP91/1SC (Mono compatible)
ACOS GP94 (Stereo)
BSR X3M (Mono compatible)
B 8 R X3H (Mono compatible) \qquad RONETTE 105 (Stereo)

"PREMIER" SPEAKER SYSTEM

Specially designed oiled teak cabinet pecially uesigned oled teak cabine 7itin wide, 61 in deep. Fitted 61 lin EMI 8 ohm Bass speaker with rolled surround and matching 3in F.M.J. weeter. Fuly lagged.
£7.19.6 58.10 .0
E2.15. 28.15 .0
81.13 .5 E1.13.5
E2. 8.7 £2. 8.7 \&2.14.8 z1.16.5
\&1.16.5 \&1.15.0 E1.15.0 RONETTE 106 (Stereo)

MULTI TESTERS
MODEL D14. A really ver8atile instrument that makes a handy pocket size tool. Measures a.c. or d.c. voitage in three ranges
of $0-15-150-1,000$ volts. Resistance $0-100,000$ ohms. Current $0-150 \mathrm{~mA}$ d.c.
 hattery, test leado and $49 / 6 \quad$ P. \& P instructions.

POCKET SIZE MODEL. With wille-
 angle, jewelled meter movement, ceramic long-life, low-loss switching, tough impact resisting case. Sensitivity $20,000 \mathrm{ohms} /$
volt d.c. 10,000 ohma/rolt a.c. volt d.c. 10,000 ohme Folt a.c. 18 Ranges: $0-5-25 \cdot 50-250-500-2,500$ volts
d.c. $0-10-50-100 \cdot 500-1,000$ volts $0-50 \mu \mathrm{~A}-2.5 \mathrm{~mA}-350 \mathrm{~mA}$ d.c. $0-6,000$ ohmes6 megohms, $10 \mu \mu \mathrm{~F}-0.001 \mathrm{mF}-1 \mathrm{mF}$. -20 to +22 dB . Complete battery, test lead and
instructions.
\&4.19.6
$3 / 6$. P.

WELLER SOLDERING TOOLS

MONO GRAM AMPLIFIER

$2 \frac{1}{2}$ watts output. Uses EL84 valve, double wound mains transformer. Ideal for use with any record deck. Volume on/off and tone controls on fiying leads. Output impedance 30 hms , size overall 5 inin. \times stind \times 3inb. a.c. 200/240 ONLY 69/6. P. \& P. 5

JULIETTE NA. 50185 BAND 18 TRAN SISTOR MAINS BATTERY RADIO Covers AM $540-1,600 \mathrm{kc} / \mathrm{s}$. Marine $\begin{array}{ll}1 \cdot 6-4.6 \mathrm{Mc} / \mathrm{s}, & \text { FM } 88-108 \mathrm{Mc} / \mathrm{s} \text {. VHF } \\ 108-134 \mathrm{Mc} / \mathrm{F} \text {. } & \text { PB } 148-174 \mathrm{Mc} / \mathrm{s} \text {. Fer- }\end{array}$ rite bar aerial for AM/MB. Telescopic aerial for FM/VHF/PB, 4in P.M. Speaker. Operates on a.c. 250 V or d.c. by four 1.5 Y batteries. Size: 9 P $\times 5$: $\times 3$ inin.
$\underset{\text { PRICE }}{\underset{\text { PRER }}{ }} 33$ GNS.
33 P \& P. 10\%-

THO 8TATION TRANBESTOR
LTEERCOM8.

Coniplem.

Complete with battery and solt connecting wire. call sypact size, two home, office, fictory, etc
$65 /=\underset{4 /-}{P}$ \& P.

FOUR STATIOR ITTERCOM, Master unit and 3 slares. Ideal for office and home. Complete with battery and connecting wire $27,19.6$ P. \& P. 5/6.

"VERITONE" RECORDING TAPE

SPECLALLY MANUFACTURED DN U.S.A. FROM EXTRA STRONG FRE-STRETCHED MATERIAL. THE QUALITY IS UFRQUALLED. TENSILISED to ensure the most pernanent base. Highly resistant to breakoutput throughout the entire audio range. Double rrapped-attractively bored
 TT3 $3^{\prime \prime} 450^{\circ}$ POLYESTER 7/6 TT6 5ぎ 2400' POLYESTER 37 DT3 3t* 600° POLYESTER 11/6
SP5 5* 600 P.V.C. $\quad 8 / 6$
LPS $5^{\circ} 900^{\prime}$ P.V.C. $10 /-$
DT5 5 5° 1200' POLTESTER
LP8 5: ${ }^{\prime \prime} 1200^{\circ}$ P.F.C.
12/6

Post and Packing $3^{*} 1 /-, 5^{*}, 5!^{*} 1 / 6,7^{-2} 2 /-$. (3 reels and over Post Free.)

"PREMIER" TAPE CASSETTES
\%-

C60	$\left(\begin{array}{l}\text { (60 } \\ \text { min }\end{array}\right.$
C90	$\left(\begin{array}{l}\text { min. }\end{array}\right)$
Cl20	(120)

P. \& P. 1/-
CASSETTE
CLEANER
Removes unwanted deposits from delicate tape heads.

TRANSISTOR ELECTRONIC ORGANS

FOR THE AMATEUR
NEW ED. BY DOUGLAS. 21:3

110 SEMICONDUCTOR PROIECTS FOR THE HOME CONSTRUCTOR by Marszon. 19
VHT-UHF MANUAL by dessop R.S.G.B. 226.

AMATEUR RADIO TECHNIQUES by R.S.G.B. 14 -
DESIGNERS GUIDE TO BRITISH TRANSISTORS by Kampel. 26:6.
PRINCIPLES OF TRANSISTOR CIRCUITS new ed. by Amos. 26:6. PRINCIPLES OF PAL COLOUR T.V. by Sims. 226.

PRACTICAL OSCILLOSCOPE HANDBOOK by Turner. 266.9 ELECTRONIC NOVELTY DESIGNS by Kampel. 96.
R.C.A. SILICON POWER CIRCUITS MANUAL. 24.
F.E.T. PRINCIPLES, EXPERIMENTS, AND PROJECTS by Noll. 42
BEGINNERS GUIDE TO TRANSIS-
TORS by Reddihcugh. 16:-
Above prices include U.K. postoge.
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT ST., LONDON, W.C. 2 (Leicester Squiare Tube Station)

NEW RAMGE BBC 2 AERALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid refiectors.

Loft Mounting Arrays, 7 element, $37 / 6$. 11 element, 45/:. 14 element, 52/6. 18 element, 60/-. Wail Mounting with Cranked Arm, 7 element, $60 /-.11$ element, $6 \% / \%$. 14 element, 75/. 18 element, 82/6. Mast Mounting With 2 in. clamp. 7 element, 42/6; 11 element, 55/-;
14 element, $62 /-18$ element, $70 /-$ Chimney 14 element, $62 /-$; 18 element, $70 /-$ Chimney Mounting Arrays, Complete, 7 element, 72/6; 11 element, $80 /-$; 14 element, $87 / 6 ; 18$ element; unit. Low Loss Cable, $1 / 6$ yd. U.II.F. Preamps from $75 / \mathrm{F}$. State clearly channel number required on all orders.

BBC • ITV AERIALS

BBC (Band 1). Telescopic
 "H", 25/.. Extemal S/D, 30/. TIV (Band 3). 3 element loft array, $30 /-5$ element, $40 /=$ 3 element, $47 / 6$. 5 element, $52 / 6$. Combined BBC/TIV. Loft $1+3,40 /-; 1+5,50 /-; 1+7$,
$60 /-$ Wall mounting $1+3,57 / 6 ;$
$1+5,67 / 6 ;$ Chimney $1+3,67 / 6$ $1+5,67 / 6 ;$ Chimney $1+3,67 / 6 ;$
$1+5,75 / \%$

COMBINED BBC1-ITV-BBC2 AERLALS
 $1+7+14,100 /-$.
leaflet avallable.
F.M. (Band 2). Loft SJD, 15/-, " H ", 32/6, 3 element, $55 /-$. External units avallable. Co-ax. cable, 8d. yd. Co-ax. plugs, $1 / 4$. Outlet boxes, $5 /=$ D. \& P. 6/\% Send 6u. stamps for lilustrated lists. CALLERS WELCOME
OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS (Dept. P.E.) 40-41 Monarch Parade London Road, Mitcham, Surrey 01.6484884

CRESCENT RADIO LTD.

(electronic component specialists)
For all regulor components try
40 Mayes Road, Wood Green, N. 22
For surplus components and equipment try
it Mayes Road, Wood Green, N. 22
Printed circuit board, 8×6 in $\quad 2 /$-eac
Zener diode 8.2 volt, $400 \mathrm{~mW} \quad 2 / 6$ each

BARGAIN BOARDS

Transistops, diodes, resistors, capacitors and
various components all mounted on computer board, 2/-each, 3 for 5/-, 7 for 10/- and 15 for $20 /$

MODEL MOTOR
4/6 each
12 volt, $9,000 \mathrm{r} . \mathrm{p} . \mathrm{m} ., 400 \mathrm{~mA}$
TRANSISTORS \& DIODES

SILICON DIODE RECTIFIERS
$750 \mathrm{~mA}, 800$ p.i.v.
COMPONENT BARGAINS
D.P. rotary ON/OFF mains

Car fuseholders complete with
lead and rages
Low impedance transistor earpiece
Sab aerial transistor eype
$\begin{array}{ll}\text { LA3 type pot core } 45 \mathrm{mh} & 2 / 9 \mathrm{each} \\ \text { 2 } \mathrm{kin} \text {. transistor loudspeaker } & 4 / 6 \mathrm{each} \\ 80 \mathrm{ohm} & 5 / 6\end{array}$
Rev counters (tape recorder type)
CASSETTES
$C 60$
$C 90$
5/- each
$12 / 6$ each
$18 / 6$ each
With our new premises in Mayes Road we can how offer an even wider selection of comenthusiast.

POSTAGE WITH ORDER PLEASE;P.S our new catalogue is now available at $1 / 6$ per

BC107／8／9mi $2 / 9$
2N3819 要 8／－

2N2646 ，umicix 10／－
CRS3／40AF
STC SLICOO NVALKCGHE
Threstroik auply 3i 12／6
$25+111-100+10,3$
SC41D

T0716 buxa 12／－

BFF80 Mixlin mix 6
$2 H 3055115$ 世月T
POWER SLLCOON RPM
$25+13-100+11$
15／－

2N2926 wimir $2 /-$
$2 N 4871$ миторана $6 / 9$

 $\begin{array}{lllr}\mathrm{uL} 914 & 11 /- & 9 / 6 & 8 / 4 \\ \mathrm{u} 2523 & 11 / & 12 / 6 & 11 / 9\end{array}$ 5 page Data and Circults Larger quantity prices（ $100+$

LINEAR AMP．IC＇S

CA 3020 ＋watt output 9 volt supply ．．．．．．．．．．．．．．．．．．．30／6 Guitar／PA Amplifier！！
TAA263 Tiny Mullard Itnear only $17 / 6$－data on request CA3012 Wide band with builit in regulation．．．．．．．27／6 CA3014 3 stage amp．with Darlington ouzput ．．．．．．．32／6 L701 Plessey lin．amp．for PE circuits ．．．．．．．．．．．．．18／

ULTRASONIG transoucers

 Operate at $40 \mathrm{kc} / \mathrm{s}$ ．Can be used for remote control sys－ tems without cables or elec－ tronie links．Type incers tan transmit FREE：With each pair our complete transmitter and re－ ceiver circuit．PRICE 25.18 .0 Pair（sold only in pairs）

CHEAPEST EVER GOLID－GTATE GALE

best value in britain

$10 \mathrm{BFY} 50 / 1 / 2$ Type NPN TO 5 Planar．Tested．uncoded
40 silicon Pianar Transistors．TO－18 case．NPN and PNP mixed．
Similar V405A，P346A，etc．Not tested or coded Guar
 30 Tilicon Planar Transistors．＂TO－18 case．＂NPN $\ddot{8}$ type similar 30 Silicon Planar Transistors．TO－18 case．NPN type similar
BCl07／8／9 range．Not tested or coded．Guaranteed minimum
 20 Germanium Transistors 2 2G371B．Case so． 2 ．Fully tested 20 Germanium Transistors 2G371B．Case SO－2．Fully tested 25 silicon NPN VHF Transistors．TO－18 case．Similar to BSY $\ddot{7}$ ， 20 etc．Not rested or coded
20 Silicon Planar Transistors．Plastic type．NPM．Similar to
$50 \% \mathrm{good}$ O \quad＂．
20 Silicon Planar Tratsistors．＂Plastic type．PNP．Similar to
2N3702．Not tested or coded．Guaranteed minimum 50%
16 good Rectifiers．Top－Hat case $750 \mathrm{~mA}+\sqrt{a} 100-1,000$ pir Guaranteed minimum 80% good
12 Silicon Avalanche Rectifiers．Top－Hat cos
1,200 piv．Guaranteed minimum 80% goo
15 sidicen Epitexalant．Planar Disodes－ 50% gutiniat
Silicen Epizaxial．Planar Diodes－Sub－miaturn ．．．
Plessey．Exact substitute for iN914，etc． 100% perfect．Not
coded
30 Part made Top－Hat Rectifiers（top connection broken，büt
plenty room to solder） 750 mA up to 800 piv．Guaranteed plenty reom to solder） 750 mA up to 800 piv．
minimum 80% good
Other un－coded stock Manufacturers＇tested devicen type numbers as a guide only．
Money refunded if not satisfied．
Al $2 b 0 v e$ packs post free in
EXPORT SPECIAL： 10% of
export until August 1959.

SLILCON RECTIFERS \boldsymbol{x}^{*}

PV 50 100 200 400 600 800 1000
 200 mA 6 d 9 d $1 / 3$ $2 j-$ $3 /-$

 $\begin{array}{ll}2 \text { Amp } & 10 \\ 2 / 3 & 1 / 6 \\ 2 / 3 & 4 / 6 \\ 2 / 9 & 5 / \\ 4 / 6 & 8 / 6 \\ 5 /- & 11 / 3 \\ 6 / 6 & 14 /\end{array}$ Amp $1 / 6$ $5 /-$ $9 / 6$ $9 / 3$ $1 /-$

$\begin{array}{cccc}\text { PIV } & 1 \mathrm{~A} & 3 \mathrm{~A} & 10 \mathrm{~A} \\ 50 & 7 / 6 & 9 /- & 7 / 6 \\ 100 & - & 10 /- & 10 /- \\ 200 & 8 / 6 & - & 12 / 6 \\ 300 & - & 11 /- & - \\ 400 & 9 / 6 & 12 / 6 & 15 /- \\ 800 & - & - & 20 /-\end{array}$
 S．DeCS samberex midit single
nectsories and manual．．．．．．pro
ject －2－DeC＂kit contalins two＂DeCs component tray，accessories，th－ ＂Ive piastic box

BOOKS FROM STOCK

＂General Electric Transistor Manual＂． 650 pages of data and ＂RCA Transistor Manual＂． 554 pages includes SCR circules 28／ ＂Detigners Gulde to British Transistors＂．Excellent data book itsts over 1,000 common types plus computer selected substrtu－ NEOND $2 / 6$ POST \＆PACKING FÖRALL BOOKK） Signal
Signal neens for many types of dircult type＂ N ＂
HEATSINKS．Sultate dozen mercial equipmenc．Type 100
$6 \times 4 \times 2$ in with reinforced corners 69 each（ P \＆P ．16）． Ally panel to fit，1／6．Paxolin panel to fit，2／－，Many other sizes in stock up to $12 \times 8 \times 2+\ln$（see cacalogue）

\pm Wate 10% Tolerance－ Voltages：	10% Toterance－		
	4.7		12 ALL
$3 \cdot 3$	5.1	8.2	13
3.6	5.6	9.1	
3.9	6.2	10	
43	6.8	11	
See	Pane		
	ge 5	vatt a	

SOLAR CELLS

B2M 0．2－0．4 volts＠ 2 mA Selenium type ．．．．．．．．．．．．．．．． $12 / 6$ B3M 0．2－0．4 yolts（त， $1 \frac{1}{2}-\mathrm{mA}$ Selenlum type ．．．．．．．．．．．．．．．． $15 /$ S4M 0．3－0．4 volts＠ $25-40 \mathrm{~mA}$ Silicon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $33 / 6$

SOLAR DRIVE MOTOR
EP50A Runs from sunlight activity on 54M cells（above）．．．．．39／6
PHOTOCONDUCTIVE CELE
CSi20 20V 0．4 wart dark Res 110 xohms Min． R ＠ $10 \mathrm{FC}=7.2 \mathrm{k}$ R

SOLAR CELL KITS
DOI90 Contalos 4 Selenlum photocells and free 24 page K－121 handbook．． $9 / 11$

TRANSISTOR KITS

DDI80 Contalins 2 audio and I RF translstor plus free
 cell and germanium diode．With FREE manual．．．．．．，33／6

SILICON RECTIFIER KITS

DDI75 Contains 4100 ply $\frac{t}{t}$ amp diodes
DDI76 Contains 2200 pir $\frac{\mathrm{amp} \text { dlodes } .}{}$ ALL INCLUDE FREE 24 PAGE MANUAL

ZENER DIODES

Avalable in the following voltages with 2 dissipation of 1 Watt and
tolerance on 10% ．All supplied with free manual deserthing many tolerance on 10% ．All supplied with free manual describing many $3.9 \mathrm{~V}, 4.7 \mathrm{~V}, 5.6 \mathrm{~V}, 6.8 \mathrm{~V}, 8.2 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V}, 22 \mathrm{~V}, 2 \mathrm{~V}$ ． ALL ONE PRICE：

ZENER KIT

DDI70 Bargain pack－contains 5 popular I inatt diodes plus free

TRANSISTOR SUBSTITUTION

Our TRO1－C to TR10－C range are universal replacements for ove UULL SEMICONDUCTOR CENTRE LISTINGS，COZEAEA INTERESTING DEVICES IN OUR CATALOGUE．

m COMPONENTS－It

RESISTORS \＆OR \＆WATT 5% LOW NOISE CARBON

 $\begin{aligned} \text { ELEGTIOLYTIC CAPACITORS（Mullard）．} & -10 \%{ }^{20} \\ & +50 \% \text { Tol }\end{aligned}$
 VEROPINS For 0．1 Sin， 36 pirice $3 /-2 \nmid 10,3$ ，

With Sinclair you can buy a total stereo assembly or choose units to add to or modify existing installations. Each of the products shown here is the result of intensive research and development, representing a new and original approach in each case to users' needs. Each product has achieved unsurpassed standards of performance, quality and value, while for individual radio listening, there is the very efficient Micromatic, which is also the world's smallest radio.

SPECIFICATIONS

 (two 3 -ohm speakers may be used in parallel) Output power-12W R.M.S. continuous sine
 requirements from 6 to 20 V d.c., the Z. 12 can be run from a car battery or the PZ. 4 for example. Size $3 \times 1 \frac{3}{4} \times 1 \frac{1}{4} \mathrm{in}$. Supplied ready built, tested and guaranteed.

APPLICATIONS

12 WATT HIGH-FIDELITY AMPLIFIER AND INTEGRA
 \section*{AMPLIFIER AND INTEGRATED PRE-AMP}

$89 / 6$

> Hi-fi system (2 required for stereo): car radio. p.A. systems: electric guitar: electronic organ: intercom system: record
> player: laboratory and industrial use, etc.

ェ

Abstract

HIGH FIDELITY LOUDSPEAKER
SPECIFICATIONS
Compact high-fidelity loudspeaker of outstandingly good performance and value it has
smooth frequency response from 60 to $16,000 \mathrm{~Hz}$; ; oading capacity up to 14 RW R.M.S. Input
impedance-4 ohms. With special drive unit in a sealed, seamless pressure chamber
ensures excellent presence and transient response. Size- 93.3 sin square \times 43in deep on
pedestal base; black matt finish with aluminium bar trim. It is the speaker which has won
so much praise from reviewers in the technical press.
Compact high-fidelity loudspeaker of outstandingly good performance and value it has
smooth frequency response from 60 to $16,000 \mathrm{~Hz}$; loading capacity up to 14 W R.M.S. Input
impedance-4 ohms. With special drive unit in a sealed, seamless pressure chamber
ensures excellent presence and transient response. Size- $9 \frac{3}{4}$ in square $\times 4 \frac{3}{4}$ in deep on
pedestal base; black matt finish with aluminium bar trim. It is the speaker which has won
so much praise from reviewers in the technical press.
APPLICATIONS
For good hi-fi audio systems: As hi-fi extension speaker(s):
for listening in conditions of restricted space. May be shelf
or wall mounted or positioned to maximum advantage in
any environment.
SPECIFICATIONS
Compact high-fidelity loudspeaker of outstandingly good performance and value it has
smooth frequency response from 60 to $16,000 \mathrm{~Hz}$; loading capacity up to 14 W R.M.S. Input
impedance-4 ohms. With special drive unit in a sealed, seamless pressure chamber
ensures excellent presence and transient response. Size- $9 \frac{3}{4}$ in square $\times 4 \frac{3}{4}$ in deep on
pedestal base; black matt finish with aluminium bar trim. It is the speaker which has won
so much praise from reviewers in the technical press.

都

CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from . $040^{\prime \prime}$ (1 mm) up to $3 / 16^{\prime \prime}$ For $240,220,110,50$ or 24 volts.
If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them.
Antex soldering irons are stocked by quality electrical dealers, or order direct from Antex by sending Cash. A free colour catalogue will be supplied on request.

PRECISION MINIATURE SOLDERING IRONS

Antex, Mayflower House, Plymouth, Devon.
Telephone : Plymouth 67377/8. Tolex 45296. Giro No. 2581000

OUT OF SPACE

THis is the day and age of instant communication, and nowhere is this better. epitomised than in space exploration. Some of the impact the imminent moon landing should have on us earth dwellers will be blunted through familiarity with previous space voyages brought right into our homes by television. It is all so matter-of-fact, or so the marvels of electronics make it seem to the viewing millions. Let us hope minds will not be too jaded to sense the magnitude of the achievement and to thrill to the momentous occasion when man sets foot on earth's own satellite, the moon, for the first time.

Yet we fear discordant voices will be heard again, even on this unique occasion. One of the charges that could be made against instant communication is the ease with which minds can be conditioned by over exposure to the television screen. So it is to be expected that a chorus of complaints will arise from some of those temporarily deprived of their favourite programme. There are those who are intolerant of any disturbance of their cosy dream world populated by fictional characters, whose performances as often as not are pre-recorded and later resuscitated from film or video tape by electronic devices. The live show going on in space has tough competition!
Communications systems are the life line of every space project, and not only manned spacecraft. The less spectacular unmanned satellites perform a variety of useful functions. The communications satellites have been much in the public eye, since they already contribute regularly to the relaying of television programmes, amongst other services. Less is generally known about the proposed remote sensing satellites.
These, it is forecast, could perform broad scale surveys of earth agricultural, forestry, and mineral resources; and gather data about ocean currents, movement of icebergs, flow rate of rivers, and so on. With their aid it would be possible to obtain data from areas of the earth not otherwise accessible to man.
A host of specially developed electronic instruments would be carried in these survey satellites. Included would be sensors operating in all parts of the electromagnetic spectrum: long waves through to microwaves, and infra-red and light waves. Neither the land regions nor the ocean depths would be able to conceal their secrets from these electronic or photographic eyes.
The vast expenditure on space is often challenged, and the value of the return in the form of commercial "spinoffs" open to question. Nevertheless it would be churlish to deny the exciting prospect of international economic betterment opened up through the use of data collecting satellites, which would have the whole globe under surveillance.
F. E. Bennett-Editor

CONSTRUCTIONAL PROIECTS

SPRING LINE REVERBERATION UNIT 566
R.F. WATTMETER 580
SPLIT PHASE
CONDUCTIVITY BRIDGE 587
P.E. ORGAN-4 596
SPECIAL SERIES
OPERATIONAL AMPLIFIERS—3608
GENERAL FEATURES
ELECTRONICS FOR THE BOAT OWNER572
NEWS AND COMMENT
EDITORIAL 565
SPACEWATCH 579
COMPONENTS 69 582
POINTS ARISING 586
ELECTRONORAMA 594
READOUT 616
Our September issue will be published on
Friday, August $/ 5$

THE SPEED of sound through air, water, and metal is quite slow when compared with its speed in the form of an electrical signal through wires. Good use can be made of this to create echo and reverberation, by employing an arrangement like that shown in Fig. 1. Here the direct electrical sound signal is mixed with its delayed acoustic counterpart after the latter has travelled via the loudspeaker and microphone. This is the principle of the so-called "echo chamber".

However, the real object of the system is not to create separate and distinctive echoes, like those obtained with a magnetic tape system, but rather a series of very short duration echoes gradually, but eventually, completely dying away.

This is called reverberation and is achieved by the use of hard surfaced walls which cause the sound to bounce backwards and forwards until it decays completely. A degree of reverberation varying from that of a small room to a large church hall can be produced by controlling a mixture of the reverberant and direct signals.

A rather more sophisticated but very expensive arrangement, known as metal plate reverberation, is now used by recording and broadcasting studios. The idea is similar to that of the echo chamber illustrated in Fig. 1 but employs metal instead of air as the delay medium.

The main component is a thin steel plate approximately 6 ft by 3 ft suspended in a tubular metal frame (see Fig. 2). The plate is excited into vibration at one end by means of a moving coil driving unit and these vibrations are picked up at the other end by special contact microphones. However, the vibrations continue to travel backwards and forwards along the plate until they die away, thus producing the "reverberation" effect previously described.

The spring line system (Fig. 3) operates in much the same way as a plate reverberator, the echo time being a few milliseconds, but the reverberation time is longup to about two seconds. The spring line is driven by an electro-magnetic unit and the signals are picked up at the far end by another. The signals from the line output are mixed with the direct signals as in Fig. 4.

A spring line reverberator requires fairly large signals to drive it and, since the output signals are small, these must be amplified to bring them to a level approximately equal to the direct signal. A block diagram of the system is shown in Fig. 4.

SPRING LINE REVERBERATION

The circuit given in Fig. 5 employs a spring line unit type HR42 (see components list). Reverberation times from a fraction of a second up to approximately 2.5 seconds are available and with the reverb. control off the through signals are of course "dry", i.e. no reverberation. The unit can therefore be used to simulate reverberation varying from that of a small room to a large empty hall.

Two medium impedance inputs are provided, each of which can be mixed, the input signal requirements being from about 100 mV minimum up to 1 volt maximum. The input signals are first amplified by TR1 and TR2, the output from TR2 being divided through R9 to the line driver TR5 and through R10 to the output amplifier TR3 and TR4.

The output signals from the spring line unit are first amplified by TR6 and TR7 and then returned via the reverb. control VR4 and R11 to the output amplifier. The direct and reverberated signals are therefore mixed at the junction of R10 and R11.

As the signals from the spring line unit are added to the direct signals, it is quite easy to overload the output

Fig. I. The echo chamber system in diagrammatic form with the direct bypass line

Fig. 2. Basic idea of the metal plate reverberator

SPECIFICATION . . .

Fig. 3. Basic spring line reverberation system

Frequency range
Frequency response
Distortion (without reverb.)
Reverb. frequency range
Signal to noise ratio
Minimum input required with VRI or VR2 set to full gain
Maximum signal output Input impedance (either channel)
Output load impedance

20 to $20,000 \mathrm{kHz}$
-3 dB at $20 \mathrm{~Hz},-2 \mathrm{~dB}$ at 20 kHz (ref. level at IkHz) Less than 0.5 per cent

Approx. 100 to $4,000 \mathrm{~Hz}$ Better than 50dB
100 to 150 mV

1 volt
10 kilohms
Not less than 1,000 ohms or 600Ω at reduced output signal level)

Fig. 4. Block diagram of the complete spring line reverberation system described in this article

COMPONENTS

- -

Resistors

RI	$10 \mathrm{k} \Omega$	RII	$2.7 \mathrm{k} \Omega$	R21	$10 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$	R12	$47 \mathrm{k} \Omega$	R22	68Ω
R3	$10 \mathrm{k} \Omega$	R13	$10 \mathrm{k} \Omega$	R23	22k Ω
R4	$47 \mathrm{k} \Omega$	R14	$3.9 \mathrm{k} \Omega$	R24	$10 \mathrm{k} \Omega$
R5	$3.9 \mathrm{k} \Omega$	R15	$1 \mathrm{k} \Omega$	R25	$47 \mathrm{k} \Omega$
R6	$1 \mathrm{k} \Omega$	R16	$22 \mathrm{k} \Omega$	R26	$5.6 \mathrm{k} \Omega$
R7	$100 \mathrm{k} \Omega$	R17	$1 \mathrm{k} \Omega$	R27	$1 \mathrm{k} \Omega$
R8	$2.7 \mathrm{k} \Omega$	R18	$1 \mathrm{k} \Omega$	R28	$2.7 \mathrm{k} \Omega$
R9	$4.7 \mathrm{k} \Omega$	R19	680Ω	R29	100Ω
RIO	$10 \mathrm{k} \Omega$	R20	$10 \mathrm{k} \Omega$		(see text)

Potentiometers

VRI $10 \mathrm{k} \Omega \log$.
VR2 $10 \mathrm{k} \Omega \log$.
VR3 $4.7 \mathrm{k} \Omega$ or $5 \mathrm{k} \Omega$ log. preset
VR4 $10 \mathrm{k} \Omega \log$.

Capacitors

Cl	12μ F elect. 25 V	C9	
C2	$50 \mu \mathrm{~F}$ elect. 12 V	Clo	$25 \mu \mathrm{~F}$ elect. 15 V
C3	$50 \mu \mathrm{~F}$ elect. 12 V	Cll	$25 \mu \mathrm{~F}$ elect. 15 V
C4	$12 \mu \mathrm{~F}$ elect. 25 V	C 12	$0.0068 \mu \mathrm{~F}$ paper 200 V
C5	$50 \mu \mathrm{~F}$ elect. 12 V	Cl3	$25 \mu \mathrm{~F}$ elect. 15 V
C6	$50 \mu \mathrm{~F}$ elect. 12 V	C14	$50 \mu \mathrm{~F}$ elect. 12 V
C7	$50 \mu \mathrm{~F}$ elect. I 2 V	CI5	5,000 $\mu \mathrm{Felect}$. 15 V
C8	$50 \mu \mathrm{~F}$ elect. 12 V	C16	2,000 F elect. 25 V

Transformers
TI 3.75 : 12 watt car radio output transformer; secondary 3 to 5 ohms (Repanco type TTi2)
T2 Primary 0-110, 250 V mains; sec. 13 V 0.5 A with electrostatic screen. Type PSI2/5

Spring Reverberation Unit
Model HR42 (full details in Henry's Radio catalogue)

Transistors
TRI, 2, 3, 4, 6, 7 OC7I (6 off)
TR5 OC81

Diodes
DI to 430 V 400 mA Contact cooled bridge D5 OA8। rectifier type 1 H 3 (one unit)

Meter

MI $250 \mu \mathrm{~A} 280$ ohms level meter type V250

Lamp

LPI Neon mains indicator with ballast resistor

Switch

Si Single-pole, on/off, toggle

Jacks and piugs

JK1, JK2, JK3 Tip and sleeve standard jacks with screened plugs

Miscellaneous

Perforated s.r.b.p. $0 \cdot 15$ in pitch without copper strips 5 in $\times 3$ in (2 off)
Angle aluminium strip $\frac{3}{8}$ in to support perforated boards
Aluminium case $11 \frac{1}{4} \mathrm{in} \times 6 \frac{1}{8} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}$ (Electroniques type 2222)
Control knobs with numbered skirts
(a)

(c)

Fig. 6. Various ways in which the unit can be used: (a) adding reverb to a pre-recorded tape; (b) recording from a microphone; (c) mixing two microphone signals for recording; (d) adding reverberation effects to any sound source
mixing amplifier. An overload meter has therefore been provided which can be adjusted by the preset control VR3 to indicate the onset of overload when the pointer reaches approximately 0.75 of full scale reading.
The meter should have a $250 \mu \mathrm{~A}$ movement; the one chosen for the prototype reverb unit has a horizontal scale type used for recording level indication on tape recorders. It is coloured red above about 0.75 of full scale. An ordinary round scale meter could of course be used.

PERFORMANCE

As the current consumption of the unit is a little on the high side (50 mA) for economical battery operation, a mains power supply consisting of T2, the bridge rectifier D1 to D4, and the smoothing components C15, C16 and R29 have been included.
The ample smoothing ensures negligible ripple on the supply, in fact the total hum and noise level of the unit is around 50 dB below an output signal level of 1 volt. Note that the value of R29 may have to be adjusted slightly to obtain the correct line voltage if the supply transformer is other than that used for the prototype (see components list).

The frequency range of the unit extends from 15 Hz to well over $20,000 \mathrm{~Hz}$, the response being -3 dB at 20 Hz and -2 dB at $20,000 \mathrm{~Hz}$ (reference $1,000 \mathrm{~Hz}$). Note that the response of the spring line amplifier section has been 'adjusted to suit the characteristics of the HR42 unit. The performance of the unit is given in the specification.

The circuit provides for fairly flexible use; for instance, it can be fed from signal sources with impedances ranging from about 600 ohms up to one megohm or so, and it can be coupled to a following amplifier or tape recorder with input impedances ranging from about 1,000 ohms to a megohm or more.

The prototype has been tested with microphone mixers, tape recorders and amplifiers of different types and can be used in various ways as shown by the block diagrams in Fig. 6. The unit has insufficient sensitivity for the direct connection of microphones or pick-up cartridges; a pre-amp will be necessary to achieve the required signal level in this case.

CONSTRUCTION

The entire circuitry was built in an Electroniques aluminium case type 2222, as shown in the photographs. Details of the panel layout and the distribution of the amplifier boards and power supply components within the case are given in Fig. 7. The two amplifier sections are assembled on perforated s.r.b.p. boards cut to size and fitted with a mounting bracket as shown in Fig. 7.

The layouts of the components on the two amplifier
boards shown in Figs. 8 and 9 are as used in the prototype. Note that the components for the overload meter (C7, C9, R18, the meter rectifier D5 and pre-set control VR3) are located on board B. The OC81 transistor (line driver) on this board must be provided with a wrap round type heat sink.
It is most important that the spring line unit is mounted with the output end furthest from the mains transformer T2, otherwise there is a risk of hum being induced in the spring line pick-up coil.

Fig. 7. Drilling details for front panel and layout of boards and components in the case

TESTING THE UNIT

A satisfactory performance will be obtained if the unit can be tested with an audio signal generator and high impedance transistor or valve voltmeter. First test the unit with the reverb control off.

With an input signal of 100 to 150 mV r.m.s. (either input) the output should be approximately 1 volt r.m.s. The input gain control in use should be at maximum for this.

Now reduce the input signal until the output level is approximately 300 mV . The preset control VR 3 is now adjusted until the overload meter reads approximately half scale. The onset of overload will be indicated (with or without the reverberation on) when the meter reads approximately 0.75 full scale or at the beginning of the red section if the meter is as indicated

The interior showing the position of the circuit boards, the spring line unit and the layout of the power supply components, etc. in the components list.

The frequency response curves given in Fig. 10 may be useful for checking each of the amplifier sections. The overall response is of course that between input and output with the reverb. control turned off.

The response of the spring line driver amplifier only (TR5) can be checked between C10 and the secondary of T1, and should approximate to that shown in Fig. 10.

The response of the spring line output amplifier TR6/TR7 can be checked between the input to C12/R23 (with the spring line disconnected) and the output at the

Fig. 9. Assembly board "A". Layout of components for the input and output amplifiers

Fig. 8. Assembly board "B" layout of components. This contains the spring line driver amplifier, its output amplifier and the components for the overioad meter
junction of VR3 and C14. The response should approximate to that in Fig. 10 and has been adjusted to suit the characteristics of the spring line unit.

REVERB UNIT IN USE

A unit of this nature is intended for the simulation of reverberation in varying degrees ranging from that of a small empty room to the longer and slightly more hollow sounding reverberation of a large hall.
If used excessively, especially on music, the effect can be unpleasant or at least unnatural. The real object of this form of reverberation is to introduce an effect, i.e. to simulate changes in acoustic environment, in plays for instance, where the speaker moves from the open air to an interior.
It can also be used by vocalists to create the "singing-in-a-cathedral" sound which is perhaps more pleasant than the tape-head type of echo for this particular application.
One final point concerns the placement of the unit when in use. Spring lines are very sensitive to mechanical vibration and can give an effect like valve microphony. Do not place the unit too close to a loudspeaker that carries reverberated signals. Avoid knocking the unit whilst it is in use; it may be worthwhile standing the unit on a rubber cushion.
Finally, a note on components: all components are readily available. Deviation from the recommended types in the components list could result in inadequate performance compared with the given specification.

Fig. 10. Frequency responses: (a) overall response of the spring line reverberation unit; (b) line output amplifier and (c) line driver amplifier

By M. Kenward

AVAILABLE RANGE OF EQUIPMENT

Over the last ten years the introduction of electronic navigational and emergency warning devices to craft of all sizes has become more widespread. Specialist electronic firms have done much for the development of suitable equipment in this field and now produce high quality units that have been carefully designed, manufactured and tested with the smaller boat owner in mind.
The evolution of the highly scientific racing yacht has also brought about electronic racing aids. The use of electronics in racing yachts is restricted in the various classes but nowadays most of the cruising classes and the boats in the junior offshore group are well equipped with various instruments as are the larger offshore power boats.
Instruments showing relative wind direction to boat heading and boat speed are now available for the smaller craft and are beginning to be introduced in racing dinghys, although their use has recently been restricted.

The first and main interest of the larger yacht owner is one of navigation and positional "fixes" especially during bad weather. The range of electronic equipment now available for this purpose is vast and covers a field from electronic gyroscopic compasses and marine radar as used in large vessels, down to direction finding (d.f.) accessories that can be used with transistorised radios.

Nowadays marine radar is fairly standard on the larger motor yachts (for those who can afford such luxuries) and one system that appears repeatedly is the Decca 101. The photograph shows a typical installation with the aerial and transceiver unit mounted on the cabin roof and the display and power supply units inside the cabin. The major advantages of this system is the absence of wave-guide and the associated installation problems that can often be very costly.

AIDS FOR SMALLER CRAFT

Coming down in boat size to the now very popular 15 to 30 ft range. Many firms manufacture small "aids" to the yachtsman which are mainly operated from their own internal batteries. These instruments are designed to be water resistant and can thus be mounted in the cockpit if so desired.
Most firms list instruments covering the range, boat speed and distance travelled through the water (not allowing for currents), depth of water, apparent wind
direction (in two scales-one for sailing "on the wind"), and windspeed indicators.

Recently introduced equipment by Brookes and Gatehouse is the "Hadrian" automatic dead reckoning computer and the "Helios" radio compass.

The d.r. computer is an innovation in the range of electronic gear for small craft and has been designed for use with the Harrier log and Hestia electronic compass from the same firm. This computer has an accuracy, depending on the calibration of Harrier and Hestia, of 180ft per mile sailed maximum (neglecting errors in tidal and leeway allowances).

Repeater meters are available for most of the instruments and some firms market special housings for mounting repeaters. The bottom photograph shows a typical layout of instruments in a modern racing yacht. The cost of such an installation would be in the region of $£ 400$ to $£ 1,000$.
As any readers who are also concerned with such racing craft will know, these instruments are now considered necessary by owners and the cost is just another addition to their already expensive sport.
Many readers may have previously considered the possibility of constructing their own instruments and some suggestions will be made later in this article. A great saving in cost can be achieved by constructing some of the various aids.
For the dinghy sailor and runabout owner, the range of electronic instruments is limited and many people argue that these instruments detract from the enjoyment of small boat sailing. However, instruments such as boat speed and revolution counters for power craft and apparent wind direction indicators for sailing dinghys are available although, unless these devices are home constructed, the price may be prohibitive.
Commercial equipment can cost as much as a small boat-about $£ 60$ for a wind indicator. Such instruments are normally only used by the "experts". Once again, boat owners must check if such instruments are allowed by class rules if they are to be used when racing.

RADIO EQUIPMENT

Radio equipment for small craft can mean anything from a small emergency distress signallernot necessarily a communication link-to a telephone transmitter-receiver. There are many firms marketing equipment in this range and the price of distress beacons is no longer prohibitive when one considers their life saving ability.
The photographs in this article show examples of distress and radio equipment used by small craft. Most small receivers are available with d.f. equipment and some have this facility built in.
Generally radio direction finding equipment relies on the operator getting a null indication, either on a meter or earphones, of the signals transmitted by the various navigational beacons around the coast and, in the case of aircraft beacons, inland. This process has the disadvantage that the result is ambiguous and the operator has a choice of two directly opposite readings; however, results can be verified by taking a second reading on another beacon.

It should be pointed out that such instruments cannot give an exact positional "fix"; they are intended as an aid to navigation and are in this respect excellent instruments.

DESIGN POINTS FOR THE CONSTRUCTOR

The amateur constructor in this field must restrict himself to the more simple equipment and, unless

A complete installation of Brookes and Gatehouse instruments showing repeaters mounted in a special console where they are easily seen by the helmsman. The navigator is shown taking a radio fix on a beacon

calibration facilities are available to him, equipment upon which his safety does not depend! Although this rules out such instruments as direction finders and possibly depth sounders, because of the circuit complexity and the need for accurate readings, the constructor still has a large range of possibilities open to him.
There are, of course, certain special considerations to be made when designing and building equipment to be used afloat. The major factors to be taken into account are those concerned with protecting equipment from the elements, stock and misuse.
When installed in small craft the instruments are very likely to get sprayed or even covered in salt water and protection must be afforded them for this reason. Careful choice of material for cases and meters is a must and all materials should be protected by a marine paint of some kind.
The shock factor may at first seem slightly odd but after sailing in a small boat, punching into a heavy sea, this suggestion will appear more reasonable. Shock also comes under the term misuse.

Fig. I. Mechanical construction of wind speed indicator using reed switches

Many sailors have no knowledge of electronics and if a reading is disbelieved the unknowing person will flick switches and try to "persuade" the instrument to correct itself with a friendly "pat on the back".
Not all boats use the same supply voltage; on most small craft this can be 12,24 or 36 volts. This voltage must be checked before the circuit is designed and fitted if it is to be supplied from the boat's internal power.

Many proprietary devices are equipped with internal batteries (but this can prove expensive) and a battery voltage checking facility should be provided. There are some small battery chargers now available for recharging alkaline manganese cells and these can result in a saving of battery costs-one unit for this purpose is the "Kestrel" battery charger available from DCB Instruments and Lighting as shown left.

A few items that the home constructor, having some knowledge of electronics, should be able to construct and install are given below with suggested operational methods and the various difficulties that may arise. (This magazine hopes to be able to publish some constructional articles of the following nature in the future-Ed.)

It is suggested that all the electronic parts of the various aids are enclosed in die-cast metal cases of the type often used for "normal" electronic work. These cases should be carefully painted both inside and out and as few holes as possible made in the outer surface; lids should be sealed by thin strips of rubber.

Protection to the circuit board itself can be carried out in many ways but generally this prevents components being changed and should not be necessary if the case is carefully sealed.

WIND SPEED INDICATOR

The main design problem connected with the wind speed indicator is the type of "transducer" to be used. One of the easiest ways of measuring wind speed is to convert the revolutions of a normal anemometer speed indicator into electrical pulses and measure the frequency of the resultant output.

The conversion of rotation to an electrical signal must be done with little or no friction being applied to the rotor. Two possible methods of arranging this conversion are:

Fig. 2. Mechanical construction of wind speed indicator using an l.d.r.

VOLUME CONTROLS 80 ohm Coax 8d. yd.

\section*{Long spindles. Midget Size BRITISH AERIALITE} LIN. L/S 8/- Meg. LOG or AERAXIAL-AIR SPACED STEREO L/S 10/6, D.P. 14/B FRINGE LOW LOSS Edge 5K. S.P. Trangistor: 5/-. Ideal 625 lines yd. I/6 WIRE-WOUND 3-WATT WIRE-WOUND 3 -WATT | POTS. T.V. Type. Values STANDARD SIZE PGTS. |
| :--- |
| 10 ohms to $30 \mathrm{E}, \mathrm{S}$ | | 10 ohms to 30 E, , | | |
| :--- | :--- | :--- |
| Carbon 30 K to 2 meg. | $4 / 6$ | LONG SPINDLE | VEROBOARD 0.15 MATRIX

EDGE CONNECTORS 16 Fay $5 /-; 24$ way $7 / 6$.
S.R.B.P. Board 0.15 MATRIX 2 ilin . Fide Bd, per lin., 3 in Wide 9d, per lin. 5 in. wide $1 /=$ per 1 in, (np to 17 in .).

 ALUMINIUM PANELS 18 s.w.g. $12 \times 12 \mathrm{in}, 6 / 6 ; 14 \times 9 \mathrm{in}$.
$5 / 6 ; 12 \times 8 \mathrm{in}, 4 / 6 ; 10 \times 7 \mathrm{in}, 3 / 6 ; 8 \times 6 \mathrm{in}, 26 ; 6 \times 4 \mathrm{in}, 1 / 6$.

MAX CHASSIS CUTTER

Complete: a die, a punch, an Allen screw and key
 "SONOCOLOR' CINE RECORDING TAPE 5^{*} reel, 900^{\prime} with LP atrobe markings, also cine light defletor-mirror for synchronisation.
UNIVERSAL TAPE CASSETTES C60. THREE FOR $30 /=$. Tape Spools 2/6. Tape Splicer 5/-. Leader Tape $4 / 6$.
Reuter Tape Heads for Collaro models 2 track 21/- pair A.R. ALL PURPOSE HEADPHONRES LO REXESTANCE HEADPHOHES 3-5 Ohms. THE INSTANT"

BULK TAPE

 ERASER AND RECORDING HEADDEMAGNETISER

BARGAIN STEREO/MONO SYSTEM
Attractive Slim PLAYER CABNEET with B.E.B. Stere
 (Önly 4 pairs of wires to join).
£19.19.6

NEW TUBULAR ELECTROLYTICS CAN TYPES $2 / 350 \mathrm{~V} \ldots 2 / 3 \mid 100 / 25 \mathrm{~V}$.. 2/-

 $2 / 350 \mathrm{~V}$$4 / 350 \mathrm{~V}$ $4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$ $8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$ $18 / 450 \mathrm{~V}$

$32 / 450 \mathrm{~V}$ | | $8 / 2$ | $8+8 / 450 \mathrm{~V}$ | $3 / 6$ |
| :--- | :--- | :--- | :--- |
| $35 / 450 \mathrm{~V}$ | \cdot | $3 / 9$ | $8+16 / 450 \mathrm{~V}$ |
| $3 / 6$ | | | | | | $8+8 / 450 \mathrm{~V}$ | $3 / 6$ | $32+16 / 500 \mathrm{~V}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \cdots | $3 / 9$ | $8+16 / 450 \mathrm{~V}$ | $3 / 8$ | $50+3250 \mathrm{~V}$ |

 SUB-MIN. ELECTROLYTICS. $1,2,4,5,8,16,25,30,50,100$ $250 \mathrm{mF} 15 \mathrm{~V} 2 /-; 500,1000 \mathrm{mF} 12 \mathrm{~V} 8 / 6 ; 2000 \mathrm{mF} 25 \mathrm{~V}^{2} 7-$ CERAMIC. 500 V 1 pF to 0.01 mF , 9 d . Discs $1 /$
PAPER 350V-0.1 9d, 0.5 2/6; 1mF 3/-; 2mF 150 V 3
$1,000 \mathrm{~V}-0.001,0.002 \mathrm{~d}, 0.0047,-0.01 \mathrm{0} 1 / 6 ; 0.53 /=$
SILYER MICA. Close tolersnce $101,0.02,1 / 6 ; 0.047,0.1,2 / 6$. $2 /-2,700-5,600 \mathrm{pF} 3 / 6 ; 8,800 \mathrm{pF}-0.01 \mathrm{pF} 1 /-560-2,200 \mathrm{pF}$
 ture $10 / \mathrm{F}, 500 \mathrm{pF}$ standard with trimmers, $12 / 6$: miniamidget less trimmers, 7/6;500pF slow motion $12,500 \mathrm{p}$ small 3 -gang 500 pF 10/6. Single " 0 " 365 pF 7/6. Twin $10 / 6$ SHORT WAVE. Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6 \mathrm{each}$
TURENG. Solld dielectric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /=$ each. $\begin{array}{ll}\text { TRIMMERS. Compression } 30, & 50,70 \mathrm{pF}, 1 /-; \\ 150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 800 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{pF}, 2,6 .\end{array}$

250V RECTTRIERS. Selenium $\frac{1}{3}$ Fave $100 \mathrm{~mA} 5 /-;$ BY $10010 /-$ Full quge cooled twave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA}$ of

RESISTORS. Preferred values, 10 ohms to 10
 Ditto 5%. Preferred values 10% ohms to 22 meg to 10 meg., $2 /$ 5 watt 0.5 to 8.2 ohm 3 meg., 9 dd 10 Wati 15 Watt $\}$ WIRE-WOUND RESISTORS 15 Fatt $10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 800 \mathrm{Khmz}$ FULL WAVE BRDDGE CEARGER RECTIFIERS CHARGER TRANSFORMERS. P. \& P. 5/tor 6 or 12 F ., 1! amps., 17/6; $2 \mathrm{amps},, 21 /-; 4 \mathrm{amps}, 30 /-$ VALVE HOLDERS, 9d.; CERAMIC 1/-; CANS $1 /-$. BRAND NEW TRANSISTORS 6/- each 0c71, OC72, OC81, OC44, 0C45, 00171, 00170, AF117 MAT REPANCO TRANSISTOR TRANSFORMERS. TT45. Pusi Pull Drive, $9: 1$ CT, 6/\%. TT46 Outpat, CT8:1 6/ TT49. Interstage, $4 \cdot 5: 1,6 /-$; TT52 Output 3 ohms, $20: 1$, 6 1T23/4 PAIR 10 watt Amp. Transformers and circuil 45/-.
TRANSISTOR MAINS POWER PACES. FULL WAYE
 Half Wave 9 volt 50 mA . Size 21×1 in. Snap terminals $32 / \mathrm{A}$ ENCH POWER PACK 230-250\%. A.C. Msins with Meter. Supplies 6-9-12v. 1 amp D.C.

MAINS TRANSFORMERS ${ }_{\text {Posit }}^{5}$

$250-0-25050 \mathrm{~mA}, 6.3 \mathrm{~F} .2 \mathrm{amps}$, centre tapped

$250-0-25080 \mathrm{~mA} .6 .3$ จ. 3.5 a. 6.3 च. 1 a , or 5

 $350-0-35080 \mathrm{~mA}$$300-0.300$
$\mathrm{\nabla} .120$
MIHLATURE $200 \mathrm{mA},$.6.3 \%. 4 a, C.T.; 6.3 v. 2

 GENERAL PURPOSE LOW VOLTAGE. Oqtputs $3,42 / 6$ 1 \&mp., $6,8,10,12,16,18,20,24,30,36,40,48,60,35 /-$
AUTO TRANSFORMERS $0-115-230$ AUTO TRANSFORMERS $0-115-230 \mathrm{~F}$. Inpat/ $^{2} / 0 \mathrm{utpat}$,
$60 \mathrm{~F}, 18 / 6 ; 150 \mathrm{w} .30 /-; 500 \mathrm{w}, 92 / 6 ; 100 \mathrm{w} .195 /$.

COAXLAL PLUG 1/3, PANEL SOCEETS 1/3. LINE 2/UTLET BOXES. SURFACE OR FLUSH $4 / 6$.
BALARCED TWIN FEEDERS 1/- Fd. 80 ohms or 300 ohms. JACK SOCEET Std. open-circait 2/6, closed cireuit $4 / 6$ Chrome Lead Socket 7/6. Phone Plugs 1/-. Phono Socket $1 / \mathrm{F}$ JACK PLUGS Std. Chrome $3 /-; 3.5 \mathrm{~mm}$ Chrome $2 / 6$. DIN SOCKETS Chassis $3-\operatorname{pin} 1 / 6 ; 5-\operatorname{pin} 2 / \sim$ DUf SOCKETS Lead
-pin $3 / 6 ; 5-$ pin $5 /-$ DIN PLUGS $3-\operatorname{pin} 3 / 6 ; 5-\operatorname{pin} 5 / \%$

WAVE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p .2 way, or $2 \mathrm{p} .6-\mathrm{way}$, or $3 \mathrm{p}, 4$-way $4 / 6$ each. 1 p .12 -way, or 4 p .2 -way, or 4 p .3 -way, $4 / 6$ each 4 p. 3-way, 6 p. 2 -way. 1 waler 12/-, 2 , wafer $17 /-3$ w. 3 p. 4 -way, Additionsi frifers 5/- each np to 12 max. $17 /-3$ wafer 22/a
TOGGLE SWITCHES, sp, 2/6; sp. dt. $3 / 6$; dp. $3 / 6$; dp. dt. $4 / 6$

MINI-MODULE LOUDSPEAKER KIT

10 WATt 55/- CARR.

Triple speaker system combining on ready cat baffle. ind chiphoard 15 in. $\times 8 \frac{7}{7} \mathrm{in}$. Separate Bass, Middle heavy daty 5 in. Bass Woofer crossover condenser. The heavy duty 5 in. Bass Woofer unit has a low resonance drive to the middie register and the toreter recreate thd top end of the musical spectrum. Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm . I7AE ENEERED BOOESEELF ENCLOSURE.

BAKER I2in. "SUPERB" LOUDSPEAKER
Suitable for all Hi-Fi Syatems. of the deepent bas cen able effciency in the apper register Response $20-17,000$
apper eps. "Baker" double cone magnet, Flox density 16,500 geuss, Beas resonance 22-28 8 ohms wats rating. Foice coil
8 ohms or 15 ohms

C15 Post

$48-p a g e$
$5 / 8$ post paid.
5/9 post paid.
LOUDSPEAKER CABNET WADDING 18 in wide, 2/6It BAKER " GROUP SOUND " SPEAKERS-POST FREE Group 25' 'Group 35' 'Group 50
 ALL KODELS "BAKER SPEAKERS" IN STOCK
Super Cone Tweeter 2 !in squsre, $3-17 \mathrm{kc} / \mathrm{s}$. I0W $17 / 6$ LOUDSPEAKERS P.H. 3 OHMS. 2 in, 3 in , 4 in , 5 in , $26 / 6 \mathrm{in}$ $17 / 8$ each; $6!$ in $22 / 6 ; 8 \times 51 \mathrm{in}, 21 /-8<21$ in $21 /-; 10.6 \mathrm{in}$, $30-; 10 i n$, or 12 in . Donble cone 3 or $15 \mathrm{ohm} 39 / 6$.
with twin tweeters, X/over and cersmic mam models, 45 :- or PECIA OFBER, 8 over andeersmic magnet 76 . $15 / 6$ EACH: $8 \mathrm{ohm}, 2 \mathrm{in} ; 6 \times 4 \mathrm{in} ; 80 \mathrm{ohm} .2 \mathrm{fin}, 23 \mathrm{in}$ $15 / 6$ EACH 25 ohm, $6.4 \mathrm{in} ; 35$ ohm, 3 in in LOUDSPEAKER UNITS 30 ohm $27 / 6$; 15 ohm 30 : 8 in De Laxe Cersmic $3 \mathrm{ohm} 45 /-150 \mathrm{hm} 50 /-$
5 in. WOOFER. 8 watts max, $20-10,000 \mathrm{cpg} .8$ or 15 ohm . $39: 8$ OUTPOT TRARS. ELS4 efc. 4/6; MIKE TRANS. 50:1 3/9.

Post 8/

Three Wavebsads: Five Valves: ECH81, EF89, 12-month guarantee. A.C, 200-2507. F81, EL84, EZ80,
 13in. x 4in. Two pilot Lampz. Eouz Enobs. $4||\mid 5$
 $19-50 \mathrm{~m}$. SW $60-180 \mathrm{~m}$, Magicese, push butions, 422 , 10 $19-50 \mathrm{~m}$. SW $60-180 \mathrm{~m}$, Magic eye, push butions, $\leq 22,10$
6 valve plus rect. Size $15 \times 7!$ 6in, high.

ALL EAGLE PRODUCTS

 SUPPLIED AT LOWEST PRICES.45-PAGE EAGLE CATALOGUE 5J-. Post
BARGAIN AM TUNER. Medium Wave.
Transistor Superhet. Ferrite aerial. 9 volt.
BARGAIN DE LUXE TAPE SPLICER Cuts,
trims, joins for editing and repairs. With 3 blades.
$17 / 6$
trims, joins for editing and repairs. With 3 blades.
musical highlights and sound effects to recordings. Will mix Hicrophone, records, tape and tuner with
geparate controls into single output. 9 volt. BARGAIN FM TUNER $88-108 \mathrm{Mc} / \mathrm{s}$ Six Transistor. Ready
built. Printed Circuit. Calibrated slide dial 66.19 .6
 BARGAIK 3 WATT AMPLIFIER. 4 Transistor $69 / 6$
Push-Pull Ready buitt, with volume control. $97.69 / 6$ \star RADIO BOOKS \star (Postage 9d.
Practical Transistor Receiver
Supersensitive Transistor Pocket Radio
High Fidelity Speaker Enclosures and Plans.
Radio Taive Gnide, Books 1, 2, 3, or 4 ea. 5,-No. 5 ea. 6 Practical Radio Inside Ont.
Shortware Transistor Receivers.
Transistor Communication Sets.
Modern Transistor Circuits for Beginners
Modern Transistor Circuits for Begin
Sub-Miniature Transistor Receivers
Sob-Miniatura Transisior Receivers
Wireless World Radio Valve Data
At a glance valve equivalents.
Valves, Transistors, Diodes equiralents manual Receive foreign T. V. programmes by simple modiacations5/ Transistor Circuits Radio-Controlled Models MANUFACTURERS SURPLUS! 25/ TAPE RECORDER CABIRET. Red/Cream of $25 /$ rey $\begin{array}{lll}\text { POCKET MOVING COIL } \\ 0-1,000 & \text { MULTIMETER. } & \text { M.C. } 10 / 6\end{array}$ $\begin{aligned} & \text { SUPERIOR. MOVING COIL MULTMETER } \\ & 0-2-500 \text { V.D.C. } 20,000 \text { ohms per volt, } 0-1,000 \text {. A.C. }\end{aligned} 99 / 6$
 $99 / 0$
S.A.E.

BRAND NEW QUALITY

EXTENSION LOUDSPEAKER Handsome plastic cabinet, 20ft. lead and recorder, etc. 3 to 15 ohm.
Size: $7 \% \times 5)^{2} \times 3$

Minimum Post and Packing 2/6. RETURN OF POST DESPATCH. HI-FI STOCKISTS. CUSTOMERS FREE CAR PARK. CALLERS WELCOME. $30 /=$
RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, WEST CROYDON
List I/-. Written guarantee with every purchase. (Export: Remit cash and extra postage.) Buses 133,68 pass door. S.R. Str. Selhurst. Tel. 01-684 1665

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-FULL AFTER SALES SERVICE!

ROAMEER 7
 SEVEN WAVEBAND PORTABLE

7 FULLY TUNABLE WAVE BANDS-MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band. Extra Medium waveband provides easier tuning of Radio Luxembourg, etc. Built in ferrite rod aerial for Medium and Long Waves. 5 Section 22 in chrome plated telescopic aerial for Short Waves-can be angled and rotated for peak S.W. listening. Socket for Car Aerial Powerful push-pull output. 7 transistors and two diodes including Micro-Alloy R.F. Transistors. Famous make $7 \times 4 \mathrm{in}$ P.M. speaker. Air spaced ganged tuning condenser. Volume/on/off control, wave change switches and tuning control. Attractive case with carrying handle. Size $9 \times 7 \times 4$ in approx. First grade Total building costs Parts price list and components. Easy to follow instructions and f5.19.6 P. \& P. easy build plans $3 /-$

Personal Earpiece with switched socket for private listening, 5/-extra.

"NEW LOOX" MELODY SIX MED. AND LONG WAVES. WITH
if transistors and 2 diodes. Pueh-
high "Q"' ferrite rohl aerial,
listening. f! $\times 4 \times 2 \mathrm{in}$. Tota!
Building Costz 69/6. P. \& P. 4/3.
Plans and parts list 2/- (free

> MED. and LONG WAVES AND TRAWLEE BAND to appros. 50 metres. WTTH SPEAKER AND EARPIECEE. 5 transigtors and 2 diodes, ferrite fod aerial, tuning 5 Cort $44 / 6 . \quad \mathrm{P}$. \& P . 3/6. Plang and Parts list $1 / 6$ (free with parts).

ROAMER SIX

6 WAVEBAMDS - MW1, MW2, SW1, SW2, LW AND TRAWLER Ferrite rod and telescopic actials. 3 in speaker. Top grade components. size $71 \times 5 \frac{1}{3} \times 1$ in. Total Bnidding Costs 70/6. P. \& P. 4/6. Plans and parts list $2 /$ (free with parts).
RADIO EXCHANGE LTD
DEPT. PE8, 6Ia HIGH STREET, BEDFORD 023452367
Callers side entrance Stylo Shoe Shop. Open 10.1, 2,30-4.30 Monday - Friday
9.12.30 Saturday

Fig. 3. Block diagram of basic circuit for the wind speed indicator

Fig. 4. Mechanical construction of boat speed indicator showing the hull fitting
(1) By firing reed switches with a magnet attached to the rotor (see Fig. 1).
(2) By arranging a rotating mask with holes in to block the light from a bulb falling on a light dependent resistor. Thus the resistance of the l.d.r. will change each time the holes in the mask allow light to fall on its sensitive surface (see Fig. 2).

Method (1) is fairly simple to make and set up but, to give a steady meter reading at low wind speeds, three or four reed switches should be used to step up the frequency.

Method (2) has the obvious disadvantage that a supply to feed the bulb must be provided. However, if the case around the l.d.r. is made light-proof apart from one hole, the ambient light can be used during daylight hours to operate the l.d.r. It is possible that the masthead light on larger sailing craft could be used for firing the circuit at night but this calls for careful arrangement of the anemometer which may not always be possible or practical.

WIND SPEED CIRCUITRY

The circuitry used for both measuring methods would be essentially the same and should consist of a Schmitt trigger to shape the pulses coming from the transducer and provide a square wave output. This square wave is then used to trigger an astable multivibrator circuit which will provide a train of equal duration pulses, the frequency of which will vary in sympathy with the speed of rotation of the "transducer".

The pulse length must be carefully chosen to accommodate the maximum possible frequency or the frequency corresponding to the highest wind speed to be measured.
These pulses are then fed to an integrator circuit which will provide an output, the amplitude of which will vary with the frequency of the input. Thus a meter reading can be obtained that varies linearly with wind speed. Fig. 3 shows a block diagram of the electronics involved in the windspeed indicator.

Fig. 5. Basic circuit for the apparent wind direction indicator. Circuit values depend on supply voltage and the value of the variable capacitor used

BOAT SPEED INDICATOR

Once again the design and manufacture of a transducer presents a greater problem than the electronics. The most.suitable method is to use a small propeller, that is driven around by the water moving past the boat, to induce a frequency into a coil by placing the propeller in a magnetic field. The induced signal can then be amplified by a single transistor stage and the frequency measured-possibly by the same method as given above-to produce a voltage output and thus a meter reading of boat speed.

There are various pitfalls in this method, the major one being that slip of the propeller is not taken into account and an accurate calibration method must be found. The accuracy of the instrument can be altered quite drastically depending on its underwater position.

A suggested transducer arrangement is shown in Fig. 4. If possible the transducer should be made removable in order to free it of any weed or other debris that may foul it.
It is normal practice to link the speed indicator to an electronic log that indicates distance travelled through the water, but this can be difficult for the amateur and if attempted the final unit must be accurate if it is to be of any use. Again this type of instrument would be difficult to calibrate accurately.

WIND DIRECTION INDICATOR

This is probably one of the easiest instruments that the boat owner can construct and also one of the most useful, especially when sailing on the wind or when sailing at night. The transducer is simply a variable capacitor of about 100 pF . To this capacitor is attached the wind vane. The bearings should be made free running by degreasing them before installation, and the capacitor must be of the continuously rotating type; able to be varied from $1-2 \mathrm{pF}$, to its maximum value.
The variable capacitor is placed in circuit as shown in Fig. 5 and the potentiometer set to give an f.s.d. reading on the meter with maximum capacitance in circuit. The meter is then calibrated $90-0-90$ degrees
corresponding to the increase of the capacitance from minimum to maximum (see Fig. 6). It may be necessary to supress the meter zero point slightly by using the manual "set zero" control.

With the vane set on the capacitor as shown in Fig. 7 the meter will read from 0 degrees to 90 degrees as the

CAPACITANCE
CAPACITANCE
Fig. 6. Meter calibration for the apparent wind direction indicator

Fig. 7. Showing arrangement of the wind vane and capacitor plates with respect to the boat

The Ferrograph graphic echo sounder that gives a continuous permanent record of depth

A marine radiotelephone giving 25 watts of transmitted power and covering the frequency ranges 1.6 to 3.8 MHz (transmitter) and 160 kHz to $4,100 \mathrm{kHz}$ (receiver). Manufactured by Ajax Electronics Ltd
apparent wind direction to the boat varies from head-on to abeam, and then return from 90 degrees to 0 degrees as the wind direction moves from abeam to dead astern. Thus, by this method wind position all around the boat can be shown although some ambiguity may arise when the apparent wind is at 90 degrees to the boat's heading.

WATER LEVEL ALARM

It is very easy to forget to pump the bilge during a prolonged passage and, whilst this is hardly ever dangerous, water in storage lockers and all over the floor and engine can be very annoying and possibly expensive.

Again an electronic gadget of simple design and construction can be used to give advanced warning of the depth of bilge water.
Water level is sensed by two wire probes across the base emitter junction of a pnp transistor. When the probes are not under water the resistance across them is almost infinite and the transistor is turned off. As soon as water covers both probes a current path is formed between them thus turning on the transistor.

By the use of one or two stages, and a suitable power transistor or relay, the circuit can be made to turn on a warning device of some description.

OTHER ELECTRONIC AIDS

Various other.simple gadgets are also useful aboard small boats, many of which are described in these pages from time to time. A few examples are as follows.

Light operated switch. This device can be very useful when moored in an area where riding lights are necessary. The switch can be wired up to turn on the light in the evening and off again at dawn. This can result in power saving and the worry of remembering to switch on and off.
D.C.-A.C. converter. This equipment can be useful in many ways and is fairly simple to construct although the power output is limited. Such things as fluorescent lights, electric shavers and other low power a.c. equipment can be operated from the boat's d.c. supply.
Burglar alarm. Many boats are left moored in rivers, often amongst hundreds of others, and are vulnerable to theft. Although a burglar alarm may not necessarily prevent this, it is a great deterrent to the would-be thief.

All that is necessary is a number of microswitches on the hatches, wired in parallel to a latching relay circuit that feeds on alarm. The relay should be connected to a simple time switch to turn it off after two or three minutes, and reset for subsequent readiness.

By this method the alarm will be sounded as soon as a hatch is opened and will continue to sound, even if the hatch is then closed, until the timing circuit resets it.

Although not electronic, radar deflectors, generators and rotary converters are also very useful items to have aboard.

There are many other uses for electronics in sailing and not only for use aboard small craft, e.g. power amplifiers for use by clubs to give directions to members and for starting signals.
There are also many devices such as detectors for gas and petrol fumes and distress signallers that have not been discussed because of design considerations and calibration problems. However, perhaps the more inventive readers of this magazine may be able to overcome some of the inherent problems.

SPREEWVITCH By Frank W. Hyde

OTHER MOONS

It has been suggested by J. Bagby of the Hughes Aircraft Company that Earth has at least ten natural satellites. This claim is based on recent telescopic and photographic observations. The data gathered together by Bagby on suspected observations, when added to the indirect evidence available, indicated that several moonlets existed. From this evidence orbits were calculated.
A thorough search carried out last year with a camera having a very large field of view revealed two satellites in the orbits that had been predicted. The size of these moonlets is of the order of 100 feet in diameter.
The indirect evidence for the existence of such bodies comes from the perturbations of the orbits of artificial satellites. In particular Explorer 26 showed a marked jump in its orbit inclination, and also in its apogee and perigree distance in December 1965. This was caused, it is said, by moonlet IIIc, and it is a fact that natural satellites could cause the anomalies that have been noted in more that 150 cases.

On theoretical grounds it is quite possible for Earth to capture small bodies but it has not been generally accepted that it has done so. The important thing about this present claim is that if the orbits are projected backwards in time it suggests that there was a large natural satellite circling the Earth until December 1955, at which time it broke up leaving the debris in orbit.

STARS WITH PLANETS

Some of the results of a lifetime study of nearby stars has been released by Peter van de Kamp. According to his special observations of sixty of the near stars, no less than seven have planetary companions. They are dark and unseen so a special technique is required to establish their existence.

Briefly the technique is to watch the star over long periods of years by regular photographic exposures. The photographs are compared in a special viewing unit which shows up any variations or wobble against the background stars.

Van de Kamp has photographs which cover the last thirty years of observations and the wobble he has detected indicates the effects of gravity caused by the unseen companion.

One star, 61 Cygni, is some eleven light years away and has a planet
that revolves round its parent in approximately five years. lts mass is about one hundredth that of the Sun. Another star known as Barnard's star has a very rapid motion across the sky and in this case it is easy to detect small changes in its motion. It is probable that it has two planets.

Of the seven stars with planets, Van de Kamp has calculated the masses of five of the planets that accompany them. These masses are not greater than the masses of Saturn or Jupiter and it is not thought that they could support life as we know it.

For example, Barnard's star, as a sun to its possible two planets, is too cold to have conditions like Earth. However, should some of the other stars such as 61 Cygni have intelligent life it will be eleven years before they learn of earthmen journeying to the moon.

MORE MASCONS
 \section*{ON THE MOON}

The number of known "mascons" (mass concentrations) is now increased to twelve according to a report from the Jet Propulsion Laboratory of California Institute of Technology. Radio tracking of the lunar orbiter spacecraft has revealed six more areas which show the characteristic change in gravity.

Four of the new mascons are under typical ringed plains and these are well delineated and are named Mare Crientale, Grimaldi, Mare Humboldtianum and Mare Smythii. Although the other two have the appearance of partially obliterated mare areas, they have not been considered significant enough to be given names, and are therefore known by their latitude and longitude co-ordinates.

There is still an open mind on these oddities and what they are; two current suggestions are that at one time there was considerable water on the moon and the other a simple suggestion that in fact the maria are at a much higher level than was originally thought. Here is one project at least for the lunar explorer of the future.

JETS MAY CHASE
 LUNAR SHADOW

On the 7 March 1970, there will be a total eclipse of the Sun and it is hoped that it may be possible to chase the shadow with a jet aircraft for about ninety minutes, thus keeping in view the chromosphere and corona.

So much has to be done in the short period of totality (about 3.5 minutes) that any extension of the period must be of great value to observers. The U.S. Air Force reconnaissance aircraft $S R-71 A$ could follow the track of the shadow at a supersonic speed of 1,400 knots or so.
In 1970 the path of totality runs from south west of Mexico north
eastward over the Gulf of Mexico and Florida and thence over Newfoundland. If the aircraft flew between 65,000 and $75,000 \mathrm{ft}$ unique observations could be made, as the eclipse would be seen against a dark cloudless sky with only about a thirtieth of the atmosphere above the plane and clear of all water vapour.
This would enable so many important observations to be made at the same time that the million dollars required for the conversion would be well worth while, particularly as the same plane could be used for subsequent eclipses, of which there are six in the next ten years.

SIZE OF ICARUS

Caltech's Jet Propulsion Laboratory have determined that the asteroid Icarus, which comes very close to Earth on occasions, is about 900 metres in diameter. It has a rotation period of between 1.5 and 3.3 hours.
The measurements were made over a three day period at the Goldstone tracking station where one of the 26 metre aerials was fitted with a 450 kW transmitter operating at $2,388 \mathrm{MHz}$. The receiving aerial was at Goldstone's 64 metre aerial located 23 miles from the transmitter.

The distance of Icarus at that time was $6 \times 10^{6} \mathrm{~km}$ from Earth so that the round trip of the radar pulses was about 43 seconds. The echoes were faint but readable and while the composition of the minor planet cannot be determined from such measurements the indications are that it is jagged, and in the words of Dr R. M. Golstein "somewhat oval and rough like a peach stone".

The Apollo II Lunar Module in which astronauts Armstrong and Aldrin will descend to the surface of the moon

QUANTITATIVE measurements at very high radio frequencies usually involve expensive test gear or, alternatively, somewhat devious methods of obtaining the desired result. This is particularly so when relatively low voltages and currents are to be measured.

This r.f. wattmeter is a simple instrument, devised to give accurate readings of power over an extremely wide frequency range, extending to the v.h.f. band.

One well tried method of establishing the magnitude of an r.f. current is to use it to heat a short, straight length of resistance wire, then to assess the amount of heat developed. The virtues of this system are that the current path is short, the wire has a very small selfcapacitance, and a minimum of self-inductance, thus making calibration virtually independent of frequency.

Starting at 60 mW , the scale proceeds by divisions of 3 mW up to the maximum reading of 120 mW , corresponding to the full scale deflection of the meter. By the use of shunts, described later, a much wider range can be covered.

No on-off switch is necessary in the instrument, as the dark current of the ORP60 is a minute fraction of a microamp. The probe leads should, however, always be disconnected whenever the bulb is removed from its tube, as ambient light could overload the meter.

SIMPLE ASSEMBLY

The prototype was built in a small box, measuring 4 in square by $2 \frac{1}{2}$ in deep (Fig. 3). This can be made from plastics materials, wood, or hardboard. A large hole

By D.BOLLEN

Thermocouple ammeters and hot-wire ammeters work in this way but have the disadvantages of being somewhat insensitive and very prone to burn out when overloaded. Another even simpler method is the familiar flash-lamp bulb and loop, used to give rough indications of power maxima when coupled to small transmitters.

A refinement of this is the photometric method of comparing the brilliance of the bulb when illuminated by an r.f. current with its brilliance when fed from a known d.c. source.

With a suitable bulb, outputs of less than 100 milliwatts can be accurately measured, and if the bulb blows it can be replaced without difficulty and at low cost.

Normally, photometric methods of measurement are somewhat cumbersome but if a light meter is used, directly calibrated in terms of electrical power, the device becomes very simple. Taking this as a starting point, the following circuit was evolved.

LIGHT PROOF CYLINDER

The bulb is contained in a small light-proof cylinder together with a light dependent resistor (1.d.r.). As the bulb glows, the resistance of the 1.d.r. drops and this change is measured by the simple ohmmeter circuit of Fig. 1. With suitable adjustment of VR1, a linear reading can be obtained over a major portion of the meter scale, allowing direct calibration.
The graph in Fig. 2 shows that there is a serious departure from linearity below the $100 \mu \mathrm{~A}$ division on the meter, but this is, if anything, an advantage as the result is a usefully expanded scale with a suppressed zero.

Fig. I. Complete circuit of the r.f. wattmeter

Fig. 2. Graph showing the relationship between the $500 \mu \mathrm{~A}$ meter scale and the power measurement calibration required
is cut into the lid to take the meter movement. Sufficient space must be allowed when positioning so that the potentiometer (VR1) and the terminals can also be fitted to the lid. These terminals can be of the press stud variety, taken from transistor radio batteries, or screw terminals could be employed if first-class contact is to $\mathrm{t} \approx$ assured.
The 221 $\frac{1}{2}$ volt hearing-aid battery specified is small enough to be clamped to the back of the meter and with normal use should last almost as long as its shelf life.

PROBE ASSEMBLY

The probe can be made from a cylinder of several layers of gummed paper wound on a $\frac{1}{2}$ in former, afterwards being painted or covered with self-adhesive plastic. When thin leads have been soldered to the

1.d.r., taking care not to bend the wires too close to the encapsulation, a suitable rubber grommet is pushed into the tube so that the 1.d.r. is firmly held in place (Fig. 4). The leads can then be threaded through a small cap which fits the end of the tube.
Thin strips of gummed paper are wound round the threads of the bulb, to allow a good sliding fit in the cylinder so that the bulb position can be easily adjusted during setting up. To the bulb are soldered two sockets taken from a B7G valve holder. These can be carefully pressed out of the moulding if all surplus solder is first removed from the tags.

METER SCALE

The meter scale can be modified quite easily without unscrewing the scale. After removing the meter cover, erase the existing numerals with a typewriter rubber and also the divisions. Inscribe the new numerals with a sharp soft pencil (as in Fig. 5), taking care not to damage the exposed pointer and movement.
Any mistakes can be removed with the rubber. If the meter is not calibrated $0-500$ or if it is not wished to modify the meter, a suitable conversion chart can be pasted to the front face of the wattmeter.
The range of the instrument can be multiplied in exactly the same way as an ammeter, although it is not

Fig. 4. Sectional view of the interior of the probe tube with lamp and l.d.r.

Fig. 5. New meter scale calibrated in milliwatts

ROII|DOIS

 P.E. LOOKS AT CURRENT TRENDS

 P.E. LOOKS AT CURRENT TRENDS AT THE INTERNATIONAL LONDON AT THE INTERNATIONAL LONDON ELECTRONIC COMPONENTS SHOW

 ELECTRONIC COMPONENTS SHOW}MUCH HAS been talked about the financial costs of providing a colour television service in this country in recent months. It can only be expected that sales of colour receivers would be slow due to presentday credit restrictions and high capital costs. But in spite of this, the manufacturing industry is forging ahead developing new components specifically for this luxury commodity in preparation for an assumed mass audience of tri-channel coverage.

This development in particular is, to say the least, speculative and, in the interests of the health of the domestic electronics industry, one hopes it proves worthwhile and profitable.

In another field of technical endeavour, the public at large finds much to criticise in the expenditure of vast sums on exploration of outer space, without really realising that the by-products of such efforts are widely applied to industrial developments using electronic equipment in other fields. Concorde has also become victim of some unjust criticism.

The biennial Electronic Components Show, this year turned international for the first time and held at Olympia from May 20 to 23, was a real eye-opener to those who tend to take domestic luxuries and necessities for granted. Although a few of these developments are mentioned in this review, it must not be forgotten that, were it not for such stimulating projects as previously mentioned, the strength of the British electronics industry in the overseas market would not be as prominent as it certainly is. . The amateur market also derives considerable benefit from these beginnings in the use of improved techniques.

The average British man (and woman) can tend to be a little insular when watching Apollo on television and before criticising would do well to spare a thought for the expertise gained in all channels of communication for the general betterment of his mode of life.

SEMICONDUCTORS

Semiconductor devices often imply transistors, which in turn (to the mass population) spell pocket radios. Lest we forget, the term semiconductors also includes diodes, thyristors, special purpose transducers, integrated circuits and so on. In fact the whole electronics industry is virtually revolutionised around the use in some form or other of silicon slices.
Mullard, for example, devoted half their massive stand to semiconductor devices applicable to television circuitry. We should be seeing some of their new integrated circuits incorporated in colour receivers which must bring the size, complexity and price of colour television down to manageable domestic proportions; reliablity should also be improved.

A new transistor designed for television line output stages, the BU 105 , claims a high $V_{C B}$ rating of $1,500 \mathrm{~V}$ and current rating of 2.5 A . Two of these in series will provide adequate line output voltage for colour.

Thyristors are called for to stabilise the line deflection supplies and are superior to using transistor circuitry here due to simplicity and higher reliability.

VARIABLE CAPACITANCE DIODES

It looks as if the days of the troublesome turret tuner are definitely numbered, and service engineers and viewers will look forward to seeing the "Varicap" tuner. No mechanical linkage between tuner and control is required in the form of rotary selectors. The new tuner will use push buttons to apply d.c. potentials to variable capacitance diodes in the r.f. and local oscillator stages. Consequently tuning drift is eliminated because the switches do not have to carry vulnerable high frequencies.

Also of interest on the Mullard stand was a new 30W power amplifier using pulse width modulation digital techniques. Typical harmonic distortion is given as 0.25 per cent with 30 dB of feedback. But here is the rub! The pop singer or guitarist will be able to carry it in his pocket (being no bigger than a cigarette packet) thanks to integrated circuits.

INTEGRATED CIRCUITS

Several smaller or otherwise engaged firms have developed their own integrated circuit plant for prototype and small batch production. It is particularly encouraging to see them making maximum use of their resources for outside contract work.
Technograph International Developments offer a "customer service" using ceramic based circuits with copper, nickel and gold conductors, specially aimed at high frequency applications.
Dual-in-line active hybrid modules on thick film are now being supplied to customers' requirements by A.B. Electronic Components (see photograph below).

Granulated glass and sintered preforms made from
Pilkington glass by Mansol (Great Britain) Ltd.
A new range of monolithic wideband amplifiers, suitable for audio hi fi, video, instrumentation, and high speed analogue computers, is under development by SGS (United Kingdom) Ltd. A 4 kHz bandwidth telephone amplifier for electronic exchanges has been produced in integrated circuit form; its gain is in excess of 16 dB for an output power of 40 mW into 600 ohms .

SMALLER CHIPS

A significant advance in silicon growth and epitaxial layer deposition has enabled S.G.S. to carry out deposition at a lower temperature, so avoiding impurity diffusion out of the substrate slice. The benefits expected are in increased yield through smaller chip size and increased performance through greater design freedom.

A good example of space saving was illustrated by the new Plessey MOS circuits. A complete eight-channel balanced multiplexer has been designed for aircraft data handling, feeding information from strategically positioned transducers in the aircraft to the flight recorder (black box) The multiplexer is built on a silicon chip.

PASSIVE COMPONENTS

The fundamental discrete electronic componentsresistors and capacitors-are still sold in increasing quantities despite the advances being made in the integrated circuit field. The trend in discrete components is towards smaller physical size combined with improved performance and reliability. Many components are becoming more specialised in application and new materials are continually being developed to meet users' demands.
Glass plays a very large part in the manufacture of electronic components and it is appropriate that the large Pilkington group should co-operate with the electronics industry in development work. Their latest is a solid state ultrasonic delay line glass for colour television, being supplied to the British STC Components group within the I.T.T., now
Components.

CAPACITORS

The available range of capacitors is ever increasing and this is one field where new materials play an important role in development of improved smaller types. Tantalum capacitors are one instance of a new material making available the type of components required by industry for microelectronic work, and a vast future for these and the new polypropylene types is forseeable. In particular polypropylene has been dubbed the "material of the 70 's"; the use of this material will decrease the size and increase the working temperatures of electrolytics of the future.
Many types of capacitors were on display at the exhibition and Mullard displayed their new range of polycarbonate film a.c. capacitors. These types are available covering the capacitance range 1.5 to $10 \mu \mathrm{~F}$ with tolerances of ± 10 per cent.
Chip capacitors for integrated circuits were shown on the Plessey stand. A special feature of these small size capacitors is the use of palladium for the electrodes; palladium has less tendency to dissolve in solder than silver.

Demonstrating the advances being made in capacitors the new ITT range of solid tantalum types covers capacitance values from $1 \cdot 2$ to $680 \mu \mathrm{~F}$ at working voltages
up to 35 V d.c.

RESISTORS

As with capacitors the demand for resistors increases as their size decreases; for applications where discrete components are used with integrated circuits, size and accuracy are of paramount importance. New materials are assisting in improving quality and in the production of special types, although it is generally the case that new materials are being used with old manufacturing methods. This is the case with the precision wirewound resistors displayed by Muirhead Ltd.

Claimed to be the smallest wirewound resistor available, the RBO3 is made of a new type of wire which ensures greatly increased stability. Also marketed by Muirhead is the RBO6 which is mounted in a TO5 "transistor type can" having standard lead spacing (three leads, one resistor?). It is claimed that using this type of case the assembly of instruments can be streamlined.

Many firms displayed metal film and metal oxide resistors and Electrosil showed their glass-tin oxide range of resistors. These are manufactured in all sizes from It W up to $6,000 \mathrm{~W}$.

POTENTIOMETERS

Perhaps one of the most diverse fields of components is the potentiometer types. Various versions of everything from a small preset or trimmer to large high resolution vernier types were displayed on many stands around the show.

Size reduction is a good selling point for presets but many "front panel" types are the same size as in previous years since there is no point in making them any smaller. Among the smallest of all the potentiometers on display was the $\frac{1}{i n}$ cermet type from Painton. This component is

Muirhead precision wire-
Wound resistors (left)

Chance-Pilkington delay line glass for colour television
(left) (left)

Painton sub-miniature cermet potentiometer (right)

a single turn type in a cylindrical case measuring only $\frac{1}{4} \mathrm{in}$ long, it is available in resistance values ranging from 100 ohms to 100 kilohms and can handle a maximum input voltage of 300 V d.c. at a power rating of 0.5 W .

Ferranti announced a new range of conductive plastic potentiometers that have been developed over the last few years to provide a range of environmentally proven components of high stability and very high resolution. The new potentiometers are continuously rotatable and have a claimed life expectancy of better than ten million sweeps.

An interesting development in potentiometers is a new type from Computer Controls which incorporates solid state circuitry to provide low output impedance and high input impedance.

RELAYS

Although relays cannot truly be considered electronic they are still a necessity for many applications of electronics. Over the last few years the design of relays has improved vastly and with new manufacturing techniques and materials they are no longer the bulky mechanical nightmare of days gone by.

Most firms were showing small encapsulated reed relays generally with printed circuit pins. The photograph shows the type R12 manufactured by B. and R. Relays. This design is typical of the latest types and incorporates two normally open reed switches mounted on either side of the operating coil. Positioning the switches in this way ensures the effects of thermal e.m.f., due to the operating temperature of the coil, are kept to a minimum.

The previously more common solenoid type have also been improved in many ways other than size. Most firms now produce their relays in some form of plastics cover and one firm, Oliver Pell Control Ltd., are marketing what they claim to be the only direct mounting printed circuit board relay available in this country.

INDUCTIVE COMPONENTS

Miniaturisation and improved performances are to the fore in transformer and inductor manufacture and these requirements are being fulfilled mainly by improved design. Ferrite pot cores appeared on numerous stands and many were designed for printed circuit applications. Of particular interest in this field is the new square module pot cores from ITT. These cores, shown in the photograph, are designed to plug straight into printed circuit boards and their shape is such that an increased packing density is achieved.

Other firms displayed numerous types of mains, audio and auto-transformers as well as a large variety of inductive components. Gardners Transformers showed a new range of invertor transformers and modules and were giving away a newly published manual describing their complete range. Inductive components for computer applications were to be found on a few stands and the advent and development of such devices will no doubt aid the design of the more commonplace mains and audio transformers.

PANEL METERS

Once again the range of meters available is extensive and the general trend is to larger and more clearly defined scales. The latest designs use virtually the whole meter face area for the scale and are thus conservative of space whilst still being easily read. Displayed by Taylor Electrical Instruments were their latest wide angle miniature moving coil panel meter. This instrument has a scale length of $4 \frac{5}{8}$ in and a panel width of only just over $2 \frac{1}{2} \mathrm{in}$.
General trend in this field is for wider angle scales and plain faces.' Most instruments now have back-of-panel fixing; this also helps to provide an uncluttered face and more room for scale markings.

SOLDER AND SOLDERING TECHNIQUES

At first there does not seem to be any great changes in this field but, when a closer scrutiny is made, a number of improvements come to light. One of the main advances has been the higher purity attained in solders during manufacture.
Multicore Solders introduced "Extrusol"' solder which is primarily designed for solder machines. This solder is available in bars, solid wire and pellets, is claimed to have less dross on initial melting, improved "wetting" of components and circuit boards, and fewer reject joints. Various melting temperature grades of solder are now available. Both Multicore Solders and Enthoven Solders are producing preforms for assembly line techniques with temperature melting points to specification. Superspeed preforms in the production of television receivers was demonstrated on the Enthoven stand.
Weller Electric demonstrated the versatility of their established temperature controlled irons for soldering and desoldering. For the latter, they demonstrated how 16 and 14 lead integrated circuit packs could be desoldered using their SK137 and SK126 tips. They also showed their simple suction desoldering tool in operation.

PRINTED CIRCUITS AND WIRING BOARDS

This area was widely represented and is probably the most interesting, although confined largely to machine and chemical manufacturing techniques.
The main improvement seems to be the use of glass fibre to give greater resistance to leakage between copper strips. Glass fibre board is also able to withstand varying temperature changes and robust handling.

On the G. T. Schjeldahl stand their Mini-etcher was shown producing flexible printed circuits. The fiexible printed circuits can be produced to fit directly to the rigid type of printed board.

Formica displayed several grades of laminates suitable both for flexible and rigid printed circuit boards. One of Electrosil Advanced Products Division exhibits was the Augat 8136 Series of high density boards, with solder tab or wire-wrap facility. These boards are specially designed for i.c.'s and can be rack mounted in cases.

A printed circuit development pack was one of many items on show from Guest Electronics. This pack costs approximately $£ 15$ and contains 50 perforated boards;

300 ft self-adhesive copper tape 0.062 in wide and 100 ft $0: 125$ in wide; 6 pieces self-adhesive copper sheets; reel of transparent insulating tape; tube of soldering pins with insertion tool; surgical knife; pair of tweezers and a bottle of lacquer and lacquer brush.

To make up any prototype printed circuit or one-off unit the copper is cut to size, the backing paper removed and the copper pressed firmly into position on a perforated board. Once the adhesive has been allowed to dry for four hours, solder connections can be made direct to the copper, or in the case of integrated circuit modules the push-fit pins can be used as termination points. The lacquer is included to protect the copper against oxidisation, and includes a fluxing agent so that any subsequent soldering can be carried out through the protective coating.

A new type of component group panel was one of the new products of interest to the experimenter on Vero Electronics stand. These boards are like strips of standard Veroboard; a wide centre channel with no copper strips saves material for component grouping. The strips are easily cut to the required number of component groups.

Another wiring board very similar to Veroboard was shown by Radiatron. Here the board composition is of fibre glass, giving greater electrical insulation; the copper strips and hole matrix has a reference grid printed on the underside. This, we feel, is an excellent improvement and we hope to see it on the retail market in the near future.

SWITCHES

The range of switches currently available is not surprisingly large and the one noticeable advance apart from miniaturisation is the use of coloured mouldings to provide for colour coding of controls.

Many heavy-duty and miniature rotary switches were prominentiat most stands. A new general purpose rotary switch from A.B. Electronic Components was announced. This switch, type Nu-M, is available as 1 -pole 12 -way to 4 -pole 3 -way with make-before-break or break-beforemake contacts. The switch is also available with printed circuit mounting contacts.
A miniature rotary thumbwheel switch, called the Miniswitch 500, was one of the many varied switches exhibited by Painton. Another type of thumbwheel switch, claimed to be the smallest produced, was announced by Kynmore Engineering. Designated Mini-Stac, the switch is available in binary coded decimal or straight decimal 10 -positions.

Microswitches were displayed in abundance and the various types of operating techniques was very interesting. Cozet England Ltd., had microswitches with various methods of lever, sprung and press-button operating dollies suitable for alarms, timers, automobiles, and so on. One of the Plessey exhibits was the recently introduced Licon microswitch rated 10 A at 250 volts a.c.
A 25 - to 50 -way reed switch from FR Electronics was one of their more interesting products. Once this switch is assembled the number of contacts can easily be increased or decreased as desired.

A dry reed relay uniselector with a memory circuit was displayed for the first time on the B \& R Relays stand. The relays are mounted on plug-in printed circuit cards. The drive circuit incorporates a pulse generator relay which stores the input pulse and passes it on to the selected circuit when the pulse ceases. The pulse generator relay can be delayed for a given time to offset any effects of contact bounce.

Numerous lever switches, push-button and toggle switches were shown; representive of these was the 250 V 2 A a.c. lever switch from N.S.F. Bulgin have improved versions of their large range of toggle switches and both Bulgin and Arrow Electric Switches had illuminated pushbutton switches to offer.

CONNECTORS

Connectors play an important part in the electronics field and were well represented at the show. Belling-Lee, probably the largest supplier, had connectors for coaxial leads to ribbon cable forms on show. The use of stand-off insulators, solder pins and lead through connectors were shown by Henry \& Thomas.

CASES

The range of equipment cases seems to be on the increase each year. This year plastics and metal cases were in abundance and were all designed with both aesthetic and practical considerations in mind.

The West Hyde Developments Contil cases, Vero circuit board cabinets, Imhof cases and racking equipment, Lektrokit systems from A.P.T. Electronics Industries, and Datum cases by Bedco were all well represented. Some very colourful finishes were conspicuous on some stands, although we understand that these are usually specials and cost a little more than the standard battleship grey kind of finish.

BATTERIES

Better performance and reliability was the claim at the battery manufacturers' stands. Nickel cadmium, alkaline, and mercury cells were the main topics at Deac (Great Britain), Mallory Batteries, Ever Ready, Cadmium Nickel Batteries and many other exhibitors' stands.
The present aim seems to be towards the more popular use of rechargeable types, although the prices will have to fall slightly if they are to achieve massive sales.

EQUIPMENTS

A new mast-head amplifier for colour and monochrome television reception was announced by Wolsey Electronics. The amplifier can also be mounted on the rear of a televison and is ideal for fringe areas.

Daystrom displayed their usual range of Heathkit audio equipment, although there were many more test and laboratory equipments. We were told that in the next few months we should see many-more pieces of test apparatus appearing on the market as they intend to make a concerted effort in this lucrative field.

continued

RESINS AND LUBRICANTS

The increasing use of silicones, resins and lubricants was shown by Midland Silicones, CIBA (A.R.L.), and Electrolube. CIBA had various items that had been impregnated with Araldite resins.
A wire with a p.v.c. covering that does not shrink back when in contact with a hot iron was exhibited on the ITT Components Group stand.

The increasing use of dry transfer circuit symbols for aiding the electronics draughtsman were the main products shown by Circuitape. These transfers are self-adhesive backed and can be used on prototype printed circuit layouts for preparing for silk-screen printing, litho printing and for photographic enlarging.

STANDARDS

British Standards are fast becoming international standards through the International Electro-technical Commission, at any rate as far as other European countries are involved. The important every day role to be played by adopting the metric system of measurements will undoubtedly be seen by many as the key to simplified units and multiples. The Ministry of Technology's B.S.I. representation, related to the electrical industry, discussed the metric system to visitors and introduced the BS 9000 scheme.

The BS 9000 is a new comprehensive system of specifications for electronic components, backed by several years of research and discussion with leading professional bodies in the electronics industry. The publication of generic specifications and a qualified parts list (GPL) will help purchasers and designers to specify their requirements under a common language.

POCKET RADIATION MONITOR (April 1969)
We have been informed by Fortiphone Ltd., that they no longer manufacture miniature transformers, and that the transformer side of their business has been taken over by Messrs Parmeko Ltd., who supply ex-Fortiphone type transformers.

PHOTOGRAPHIC TIMER (March 1969)

Plessey "Double High Cap" capacitor $68 \mu \mathrm{~F} 75 \mathrm{~V}$ is available from Southwell Radio and T.V. Electric Engineering, 5, Southall, Hornsey, Yorkshire.

Southwell are not an official Plessey supplier but have been kind enough to distribute these capacitors to readers, price $£ 111 \mathrm{~s} 11 \mathrm{~d}$ including postage and packing.

OSCILLOSCOPE PRE-AMPLIFIER

(Ingenuity Unlimited July 1969)
It should be noted that TR2 collector should be connected to R3, R5 and SK 2 output socket.

COLD CATHODE TUBES-PART 4
We regret that, due to shortage of space this month, Part 4 of Cold Cathode Tubes has been held over. It will appear in the September issue.

แสußfilw sipitumer lisilt

INSULATION AND DIODE TEST SET

A versatile tester for your workshop. Basically an e.h.t. generator, this test set can be used for continuity, capacitor insulation, Zener diode, and rectifier diode testing. The voltage output is continuously variable from 0 to 1500 volts and a switchable ammeter/voltmeter is incorporated.

CINE/TAPE SYNCHRONISER

Use your tape recorder to add a sound channel to your films. Sound and visual synchronisation is achieved with an 18 frames per second projector. Using sprocketed tape, synchronisation of better than two frames in 200 feet is achieved.

3/- September Issue on sale Friday August 15

anateat

=LECTRONIES

By M.L.MICHAELIS м.A.

Abstract

An improved type of instrument of high resolving power for electrolyte conductivity measurements, such as are commonly used to indicate reaction progress in analytical chemistry.

ALL chemical reactions give rise to characteristic electrical effects, which can be detected and measured with suitably designed electronic equipment of adequate sensitivity. This is true in particular for electrolytes and electrolyte reactions.

One of the simplest classes of electrical measurements which can be performed on electrolyte solutions is the determination of electrical conductivity. Many of the standard, less expensive instruments designed for this purpose do however suffer certain limitations.

Conventional derivatives of the Wheatstone bridge using a small transformer or induction coil, a slidewire, headphones and a resistance box, generally suffer from poor balance-point sharpness because they attempt to measure the out-of-balance voltage of the bridge to determine when this voltage reaches zero at balance. In fact it never reaches zero, because stray capacitances and electrode capacitances produce phase-shifts and spurious bypass currents.

Very many conductivity bridge circuits found in school textbooks of chemical analysis have not progressed beyond this primitive stage, whose attendant inaccuracy and, above all, very poor differential resolution has prevented appreciation of the true power of the conductometric method.

SPLIT PHASE BRIDGE

A much better approach is to sense the peak voltage in each bridge arm, in a manner irrespective of the relative phase angle between the voltage waveform peaks, and then to detect when these peak voltages are equal. This can be done by rectifying each waveform separately with a peak rectifier, then applying the two rectified voltages to a null detector. This merely involves the insertion of a rectifier and reservoir capacitor on each side of the balance meter in a conventional bridge circuit, but it completely fails to remove the second cause of poor balance readings which lies in the absence of a nominal balance marker.
This can be provided by feeding the voltage waveforms from the two bridge arms alternately via an electronic switch to an oscilloscope or magic eye indicator, using a fast timebase in the former case. This gives a double raster on the oscilloscope screen, or a double sector on the magic eye. At balance the double raster coincides to a single raster or the magic eye sectors coincide to a single sharp-edged sector.

EXTREMELY SHARP BALANCE

This type of balance indication is extremely sharp, and not disturbed even to the slightest extent by very large
capacitive shunts and phase-shifts. It may be thought that this arrangement can be realised only at the price of undue circuit complexity, but a glance at Fig. 1 and Fig. 2 shows that the additional outlay with respect to a conventional bridge circuit is negligible. The trick is to operate the two bridge arms in antiphase from a centretapped transformer as shown in Fig. 1b. The same centre-tapped winding drives two switch transistors in phase cross-over to function as an electronic switch. The entire electronic switch thus uses nothing more than two transistors, two diodes and six resistors.

Especially when used in conjunction with a fairly large-screen conventional oscilloscope, this circuit principle leads to such high differential resolution that a number of titrations with large non-participating ionic background become readily possible.

Furthermore, on account of its complete tolerance of even very large capacitive phase shifts, the split phase bridge can work with the 50 Hz mains frequency even when highly conducting solutions are used. This obviates the audio oscillator providing the necessary higher supply frequency under such conditions in conventional bridges. Since the electronic switch used in the present design is very much simpler than an audio oscillator and associated switching, the split phase bridge is altogether simpler, apart from its superior performance.

READOUT DEVICES

The oscilloscope is not an essential necessity for the read-out section; an ordinary magic eye circuit as used in conventional bridges is also usable at somewhat reduced differential resolution.
(A later article will provide full constructional details for a simple magic eye balance indicator as a separate unit which may be used by those readers who do not have an oscilloscope available and do not wish to go to the expense of procuring one. There is of course no objection to integrating the split phase bridge and the magic eye indicator into a single cabinet. Details can safely be left to the individual constructor, because there are no special problems involved in such an integration.)

REQUIRED RANGE

We find that actual resistances of the electrolyte between the electrodes with solutions of any strength likely to be encountered in ordinary routine analyses, are normally greater than 10 ohms but less than 1 megohm. This total range must be expressed in reciprocal units, since we are interested in determining the conductance values.

The reciprocal ohm is still known conventionally as the mho, but the author finds this nomenclature clumsy. In several continental countries the siemens, abbreviated S , is being applied as the new name for the reciprocal ohm as conductance unit. Thus 1 siemens (1S) and 1 mho are identical. We shall use the siemens for the remainder of this article. The required resistance range from 10 ohms to 1 megohm corresponds to a conductance range from 1 microsiemens ($\mu \mathrm{S}$) to 100 millisiemens (mS).

PRACTICAL BRIDGE CIRCUIT

The full circuit of the practical split phase conductivity bridge is shown in Fig. 2. The bridge arm containing the electrolyte cell consists of SK1, SK2 and the resistor selected by the range switch S1B. The other bridge arm consists of R3 (shunted by R4, R5 in the highest range) and the bridge potentiometer VR1 in series with its range limiting resistor R6. These two bridge arms are fed in antiphase from T1.

To ensure that the antiphase voltages are truly of equal magnitude, T 1 secondary should be wound bifilar and the nominal current rating must be about ten times the maximum actual current. This calls for a transformer rating of at least 1 amp , although normally only 100 to 150 mA maximum current is drawn by the bridge. If it is not possible to have a transformer wound to suit these requirements, then the standard component given in the components list will generally prove quite adequatein many cases.

The same antiphase voltages, in cross-over connection, drive the bases of two switch transistors TR1 and TR2, respectively, connected to the centre points of the bridge arms. Each drive connection is via a diode (D1 and D3). The arrangement is such that each

Fig. 2. Circuit diagram of the split phase conductivity bridge
transistor short-circuits the negative half-cycles of the bridge waveform it is sensing, as seen at the bottom end of R13 or R14. These two resistors are inserted to avoid short-circuiting of the bridge itself on negative half-cycles. However, the net impedance seen by the electrolyte cell bridge arm would be slightly lower on negative half-cycles, because R13 then shunts the resistors on S1B directly via TR1, but only indirectly via the remainder of the switching resistor network R15, R16 and TR2 on the positive half-cycles when TR1 is cut off. This amounts to slight partial rectification in this bridge arm and R7 and D2 just cancel this by imposing the right amount of additional loading on the positive half-cycles too.

COMPENSATION PROBLEMS

This form of compensation is satisfactory only if the highest bridge arm impedance (highest value of resistor selected by S1B in the lowest conductivity range) is at most 10 per cent of the electronic switch impedance. The latter is nominally a megohm to match standard oscilloscopes and magic eye indicators, so that we are limited to a maximum bridge resistor value of 100 kilohms (which has to be corrected to 110 kilohms with R8 to allow for the switch shunting effect).
We require a total range from 1 microsiemens to 100 millisiemens, i.e. five decades. Thus if we switch the bridge resistor down in five decades starting at 100 kilohm, we would arrive at 10 ohm in the highest range. This is not permissible, since 100 ohm is the smallest usable bridge resistor without exceeding the polarisation range. Thus we have had to retain the 100 ohm bridge resistor R12 of range 4 for range 5 too,
instead reducing the impedance of the corresponding branch in the opposite bridge arm by a factor of ten, by shunting R3 with R4, R5 when switching from range 4 to range 5 . This slightly sacrifices differential resolution at the extreme top end of the highest range.

ELECTRONIC SWITCH OPERATION

The electronic switch operates entirely with a.c. voltages, requiring no separate rectified collector supply. Considering either transistor alone, when the bridge arm feeding its collector is describing a positive halfcycle, the transistor collector is receiving normal polarity, but the base is cut off because zero voltage is applied to it. The diode in series with the base drive holds off the actual negative voltage applied from the other bridge arm, which is just describing its negative half-cyc'e. Without the diode, reverse breakdown would occur between base and emitter of the transistor.
Now consider the negative half-cycle in the bridge arm feeding the collector. This inverts the transistor, i.e. interchanges the roles of collector and emitter, a condition leading to particularly small residual switch voltages. At the same time the other bridge arm is now describing its positive half-cycle, so that the base diode conducts and turns the transistor hard on. The transistor thus behaves as a very efficient short-circuit to chassis, especially as it is running inverted in this phase period. Only the signal from the other bridge arm, which is describing the positive half-cycle, can get through to the output terminal SK3. Thus the composite signal at SK3 is a train of positive sinewave half-cycles, with alternate ones belonging to the respective bridge arms.

Types of split phase bridge displays on an oscilloscope (left) double bright-edge raster; (centre) phase pointers; (right) direct display of switch output waveform

MAGIC EYE INDICATOR

If this signal is applied to an amplifier feeding a magic eye, we obtain two luminous sectors of differing apex angles as long as the bridge is out of balance and thus alternate half-cycles at SK3 are of unequal amplitude. When the bridge is balanced, all half-cycles at SK3 become of equal amplitude and the two luminous sectors of the magic eye indicator coincide exactly to constitute a single sector. The actual width of this sector is unimportant and can be set to any convenient size by adjusting the amplifier gain control. Note the very clean action of the electronic switch as demonstrated by the oscillograms.

USE OF OSCILLOSCOPE

If the signal from SK3 is applied to an oscilloscope, three forms of display may be used, of which the double bright-edge raster type is the best for general work. Here the signal from SK3 is fed to the Y -amplifier input and the internal timebase is set unsynchronised to the highest available repetition frequency, at least 20 kHz and preferably 100 kHz . Numerous timebase strokes will thus be traced during each mains-frequency half-cycle, so that we obtain a raster in a manner similar to a television raster. However, since the sinewave spends much more time near its peak value, many more timebase traces will fall there, giving the raster a sharp bright upper edge.

When the bridge is still unbalanced, each half-cycle amplitude will produce its own bright-edge raster. The two bright edges coincide to a single bright edge at balance. This balance criterion is extremely sharp, irrespective of polarisation, giving an outstandingly good differential resolution. The slightest off-balance is evident at once as a split-up of the single bright edge
into two sharp bright edges. Differential resolutions of much better than 0.1 per cent are easily obtainable with a 3in oscilloscope.
The magic eye type of indicator does not produce bright edges, but only sharp edges of the sectors, because a given voltage produces a full sector and not merely the sector limit lines. Thus light integration is always towards the centre of the sector when applying a varying voltage to a magic eye. This makes the double sector display on a magic eye inherently poorer than the double bright-edge raster on an oscilloscope, especially if the gain control is set too high, giving a large sector. Always set the gain control to give a sector as small as possible whilst allowing clear balance observation.
The second type of oscilloscope display is the phase pointer diagram. This is obtained by feeding the signal from SK3 as before to the Y-amplifier input, but now switching to external X -input and feeding a sample of the drive voltage of one bridge arm from SK4 to the X-input of the oscilloscope. This produces two pointers on the screen, like the hands of a clock. The bridge is balanced when both pointers rest at the same height. Provided the working conditions do not involve too large polarisation, this type of display is visually very good for demonstrations given to complete classes.

Alternatively, as the third type of display, the waveform from SK3 may be 'scoped directly in the normal manner to show the train of successive half cycles. The bridge is balanced when all half-cycles are of the same peak amplitude. Only the double bright-edge raster display can be accurately balanced, and only it is quite free from disturbance through polarisation phase shifts. Thus this display alone is recommended for routine work.

COMPONENTS . . .

Resistors

	rs	R10	W
RI	$10 \mathrm{k} \Omega \pm 10 \%$ IW	RII	$1 \mathrm{k} \Omega \pm 10$ IW
R2	$10 \mathrm{k} \Omega \pm 10 \% \mathrm{IW}$	R12	$100 \Omega \pm 1 \% 5 \mathrm{~W} \mathrm{ww}$
R3	$8.2 \mathrm{k} \Omega \pm 5 \%$ IW	*R13	$1 M \Omega \pm 5 \%$ IW
R4	$820 \Omega \pm 5 \%$ IW	*R14	$1 \mathrm{M} \Omega \pm 5 \% \mathrm{lW}$
R5	$100 \Omega \pm 5 \%$ IW	*R15	IM $\Omega+5 \%$ IW
R6	$470 \Omega \pm 5 \% \mathrm{lW}$	*R16	$1 \mathrm{M} \Omega \pm 5 \% \mathrm{IW}$
R7	$2.2 \mathrm{M} \Omega \pm 10 \% \frac{1}{2} \mathrm{~W}$	R17	$100 \mathrm{k} \Omega \pm 10 \% \mathrm{IW}$
R8	$10 \mathrm{k} \Omega \pm 5 \%$ \% ${ }^{\text {W }} \mathrm{W}$	R18	$100 \mathrm{k} \Omega \pm 10 \% \mathrm{iW}$
R9	$100 \mathrm{~L} \pm 1 \%$ IW		

All carbon except R12

* Mutually matched to $\pm 1 \%$, if possible

Potentiometer

VRI $10 \mathrm{k} \Omega$ carbon track potentiometer, linear. Standard large volume control type
Semiconductors
D1, D3 Silicon rectifier ISJ50 (Radiospares) (2 off)
D2 Silicon diode BAll4 (Mullard)
TRI, 2 Silicon transistor, BSY56 or 2 N16I3 (2 off)
Miscellaneous
SI 2-pole 5 -way wafer switch (Radiospares Makaswitch)
TI Mains transformer. Secondary tapped at 12, $15,20,24,30 \mathrm{~V} 2 \mathrm{~A}$. Douglas MT3AT
or Rewind secondary of 6.3 V 5A heater transformer to
provide bifilar double 15 V winding-see text
FSI Fuse cartridge and holder, 0.5 A
PLI Mains panel connector 3pin,5A and cable socket (Bulgin SA1861)
SKI, 2, 4 Insulated wanderplug sockets; yellow, black and red (3 off)
SK3 Coaxial socket
Case $12 \frac{1}{4}$ in $\times 7 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in (Olson 27A-Home Radio)
One small pointer knob. One large instrument type skirted knob (with pointer). Tag strip, 25 way

Electrodes

Materials as specified in Fig. 6b

Fig. 3. Rear view of front panel. This shows all components and wiring. Details of the mains transformer connections are given in the inset diagram

CONSTRUCTIONAL DETAILS

The entire circuitry for the split phase bridge is assembled on the front panel of a standard instrument case, measuring 12.25 in by 7.5 in by 5.5 in deep. The 16 s.w.g. steel front panel is sufficiently rigid to carry the mains transformer.

Fig. 3 and Fig. 4 show full constructional details. Layout is uncritical and there are no special problems involved.

Observe the component tolerance limits specified in the components list. The resistors on Slb should be mutually matched in decimal steps, so that continuity of differential linearity is preserved if it is necessary to switch over to a different range in the course of a titration.
In general, try to avoid range switching during a titration. If, for example, conductivity falls in the course of the titration, arrange to start with a reading close to the upper limit of a range. If the reading falls below 50 per cent of the optimum range, switch down to the next lower range and add more water until the reading comes in at the top of the new range. Conversely, for cases where conductivity rises in the course of the titration.

Fig. 4. Drilling details for the front panel

CALIBRATION

Provided that resistors conforming to the tolerance limits specified have been used, it is merely necessary to provide VR1 with a scale calibrated from 1 to 13 such that the numerical reading multiplied by the unit conductance value selected with Sl gives the absolute conductance seen between SK1 and SK2. It is best to use graded standard resistors connected to these sockets, e.g. a resistance substitution box.

Calibrate in range 3 to strike the best compromise between low impedance and low current. The calibration should hold on all ranges if the resistors on S1B have been properly matched. Pad the resistors of the other ranges if necessary. Finally, check that differential continuity is preserved when switching from range 4 to range 5 , correcting any discrepancies by padding R4, R5 accordingly.

Fig. 5. General view of front panel with all components in position

ELECTRODE CONSTRUCTION

Fig. 6 shows some common electrode constructions for conductometry.

Type (a) is strongly recommended, but usually has to be purchased commercially and is not cheap (prices range to 5 guineas and more). Note the lateral horizontal ball-ended electrode pins. Any heating at the electrodes here sets up immediate convection, so that fresh liquid at the mean temperature of the bulk is continuously presented to the electrode pins. Furthermore, if the polarisation does exceed the electrolysis threshold during brief phase angles in each cycle, the gas bubbles can escape upwards without building pockets between the electrode pins, so that balance fluctuations and errors are minimised even under these extreme conditions.

The type of electrode shown in Fig. 6a is thus least subject to giving trouble under arduous conditions. It

Fig. 6. Platinum electrodes for conductivity measurements
often works well even in the absence of stirring, and should be used if at all possible when no magnetic stirrer is available and intermittent manual stirring with a glass rod is resorted to.

Electrodes constructed according to Fig. 6b are easily home-made and give very good performance in conjunction with efficient stirring. The length and diameter of the platinum wire, or the dimensions of the spiral, are in no way critical, but do not use excessive length or too thin a wire gauge. The spiral form promotes convection. The required amount of platinum wire costs only a few shillings from chemical apparatus dealers, the remaining items costing only a
few pence.

The electrode type shown in Fig. 6c is normally used when the intention is to make absolute measurements, as distinct from the mere differential methods involved in conductometric titrations. This type of electrode gives more definite geometric conditions which can be related to specific conductivity for unit cube of the electrolyte. It is expensive and not to be recommended for the work envisaged by this article.
All electrodes used for conductometry should be coated with platinum black, an amorphous form of platinum which vastly increases the effective surface area and thus boosts the polarisation capacitance value, and so the maximum alternating current which can be accommodated within the polarisation range for a given frequency.

COATING THE ELECTRODES

Platinum electrodes of types shown in Fig. 6a or b are coated with platinum black according to the procedure now described.
Take the bright platinum electrode(s) and support them in concentrated nitric acid diluted with two parts of distilled water. Switch the split phase bridge to the highest conductivity range (switch setting 10 mS) and connect up to the mains and to the electrodes. Brisk electrolysis with gas evolution will be observed, because the polarisation capacitance of the blank electrodes is too small to accommodate the 150 mA current.

After 5 minutes, the gas evolution will have slowed down markedly, and after some 10 to 15 minutes it should have ceased altogether. The electrode pins are now covered with a silky black layer. The actual active agent in this process is the trace of hydrochloric acid present in almost all specimens of nitric acid. If the sample of acid is too pure, marked by persistent electrolysis, add a few drops of concentrated hydro-
chloric acid.

When electrolysis has ceased completely, carefully wash the electrodes several times with distilled water, and store in distilled water in a jacket tube as shown in
Fig. 6 a.

The deposit of platinum black formed in this simple manner is very delicate and easily rubbed off. However, it is not disturbed by agitated solutions during normal titrations, even if suspended precipitates are formed in the course of reactions. If allowed to go dry, the platinum black deposit falls off of its own accord. Thus wash the electrode carefully with distilled water and return to the storage tube after use.
If damaged mechanically or by going dry, rub off the entire deposit, clean the electrode with fine emery paper and then repeat the coating process. This is also advisable if the deposit has become poisoned by certain substances and balance readings consequently fluctuate erratically.
R.F. WATTMETER

Continued from page 581

desirable of course, to introduce switching to cover the ranges at radio frequencies.
An r.f. shunt is shown in Fig. 6. A strip of s.r.b.p. on which two solder tags are screwed, can be soldered to the parallel input wires as illustrated. The resistance wire, taken from suitable wirewound resistors, is clamped between washers under the heads of the screws and adjusted in length until the correct value is found.
The resistance wire should not be coiled as this will introduce appreciable self-inductance. It is better to find the right gauge of wire of roughly the length to match the distance between the screws.
If the wire is too thin it will run at white heat, thus quickly leading to its deterioration in free air and a large change in its resistance at high temperatures. Both of these effects will destroy calibration accuracy.

As a guide, if the scale is to be multiplied by ten to read 1,200 milliwatts full scale the shunt resistance should be 8.3 ohm, and wire taken from a 500 ohm 10 watt resistor was found to be suitable.

Obviously the whole range of possible. shunts cannot be described here. For audio applications, however, ordinary carbon resistors of the correct rating can be employed. Non-inductive resistors will also serve as shunts for the lower radio frequencies.

CALIBRATION

To calibrate the wattmeter on its basic range, a 50 mA meter and a 5 V meter are arranged as in Fig. 7. Adjust the bulb consumption until it is exactly 60 mW , then slide the bulb in or out of the probe tube until the wattmeter pointer is on the $100 \mu \mathrm{~A}$ division. Set the bulb consumption to 120 mW and adjust VR1 until the wattmeter reads full scale. Repeat the procedure again until no further adjustment is required, then lightly glue the bulb to the tube. It should be found that the intermediate divisions on the wattmeter scale correspond to the product of volts \times milliamps shown by the calibration rig. To calibrate any shunts, replace the 50 mA meter with one giving a multiple of 100 mW .

LIOHTING CONTROL

The opening on May 31 in Ottawa of Canada's National Centre for Performing Arts attracted installed in the main hall and theatre of the Centre.
The lighting control systems, which have been made in Bris memory systems which incorporate Strand Electric Company, depend for their 250 . 300 combinations of these magnetic storage drums. circuits together with their light intensities are rectighting sequences chosen by the lighting director possible to reproduce, night after night, he ex during rehearsal.
The theatre lighting system is similar to that of the main hall except that it controls 200 come binations of 180 channels.

The lighting systems are extremely flexible in operation aready rerded. There is also provision during a performance without affecting the light settings already recorded tape for future use. To for permanently recording a complete lighter back into the system and the lighting sequences are repeat a performance

Type-out facilities are also provided to enable lamp settings to be recorded in an easily-read manner.

The photograph shows the memory system for the larger lighting system undergoing tests at Sperry's Research and Developmient Centre.

PRINTED CIRCUIT MANUFACTURE
 THE latest technique developed at

Palmer's Camberley factory is the production of multi-layer circuits which, they say, will soon allow them to produce up to 16 layers at a time. Among other new methods of manufacture is a plated-through process by which boards can be produced as easily as a conventional etched double-sided panel.

Prior to "printing" an operative at Palmer Aero Products' printed circuit factory, removes boards from the copper pyrophosphate tank during the production of platedthrough circuits. The ping-pong balls on top of the tank help to keep the solution's heat constant by preyenting the escape of steam.

AUTOMATIC TYPE COMPOSING

BRITAIN's latest automatic type composing equipment, which is equally suitable for large and small printers, was exhibited for the first time anywhere in the world, at the International Exhibition of Modern Printing Machinery-Inpolygraphmash 69-in Moscow from July 9 to 23.

Muset $\mathrm{K}-380-\mathrm{B}$, shown above, which is claimed to be the simplest and lowest-priced computer capable of 100 per cent correct word hyphenation, has been developed and manufactured by Muirhead Limited. Muset uses the latest solid state microcircuits, does not require air-conditioning or temperature control, consumes only 360 watts and occupies only four and a half square feet of tabletop space.

THOK FILM PRITTER

The DEK 1200 fully automatic substrate printer (shown above) for thick film circuits has been designed and manufactured in Britain by DEK Printing Machines Ltd. It embodies all the features required for repetitive work.
Controlled setting of squeege pressure, length of print stroke, distribution of medium on return stroke and gap between substrate and underside of screen. Print stroke speed is smooth and adjustable by calibrated setting, up to 1500 impressions per hour; substrates can be fed by magazine or vibratory bowl.

When displayed at the Paris Components Show considerable interest was shown by representatives of various companies from five countries outside Britain, including Russia.

AMOTHER MELORY

EUROPE's fastest commercially viable computer memory, the Plessey Mark 1 S250, has been delivered to the Ministry of Technology by the Automation Divisions of Plessey Electronics Group. It is shown, below, being commissioned.
This memory system has a 290 nanosecond cycle time and offers substantial improvements in performance margins and simplicity with immediate cost advantages over ferrite core and film techniques at 300 nanoseconds cycle time and less.

The system operates in the destructive read-out mode using plated wire storage elements: the elements are formed at the crosspoints of beryllium copper wires which are continuously plated with nickel iron and the word strip lines which are printed on to fexible sheets. Thus the stack design uses normal production techniques and avoids the high labour content associated with core memories.
The system electronics is based on high speed TTL integrated circuits. Full self test facilities were designed into the system so that comprehensive performance monitoring can be carried out independently from the main processor.
The Mark 1 S 250 has a capacity of 100,000 bits and represents an important breakthrough for the British electronics industry.

$\|=\square$

LAST month we ended with the pedal cables attached at one end to the upper manual printed circuit board. Now we must terminate these free ends.

PEDAL RESISTOR BOARDS

Just as we have anti-robbing resistors in the manual contact assemblies so we require them in the tone outlets, to the pedals. As there are 3016 ft pitch wires and 308 ft pitch wires emanating from the upper manual, two 30 way miniature tag boards are required for mounting the pedal resistors.
These are made up from four, 18 -way tag boards each being screwed to the back of the kneeboard using backing bakelite plates as insulators (see photograph). Reference to the console rear view photograph in Part Two will clarify their positioning.
Across each pair of turret lugs connect a 100 kilohm $\frac{1}{2}$ watt 10 per cent resistor. When the pedal cable wiring is completed these resistors will be in series with the tone outlets and in due course with the pedal contacts-when we get onto that part of the organ.
First connect the 3016 ft pitch wires to two of the boards. Fig. 4.1 shows the order of these connections in terms of the wiring colour code adopted for the 16 ft pitch wires only. The black wire, 32.7 Hz , is soldered on at turret tag marked X, then the brown wire to the tag adjacent until all 30 wires are used up. The wiring of the 308 ft pitch wires to their two boards is identical in its sequence but now the black wire, $65 \cdot 4 \mathrm{~Hz}$, goes to the tag marked X and wiring continues till all 30 wires are exhausted.

Pedal resistor boards in position on console kneeboard. Here the pedal plugs are shown mated to the sockets

PLUGS AND SOCKETS

To mate the pedals to the console, a floating plug arrangement was decided on as this makes it much easier for the constructor to set and adjust the contacts on the pedals, away from the organ.
Two pairs of 32 -way plugs and sockets are required, although only the sockets are used at this stage; the plugs will be attached later to the pedal board.

In Fig. 4.1 is shown the top side of the 16 ft pitch socket. To make the connections from this to the

COMPONENTS . . .

PEDAL RESISTOR BOARDS

RI-60 $100 \mathrm{k} \Omega \frac{1}{2}$ watt 10% resistors (60 off)
PLI, 2 32-way plugs (2 off) $\begin{array}{ll}\text { SKI, } 2 & \text { 32-way sockets (2 off) }\end{array}\left\{\begin{array}{l}\text { Electroniques, } \\ \text { Edinburgh Way, } \\ \text { Harlow, Essex. }\end{array}\right.$
Miniature 18 way tag boards (4 off)
Bakelite backing plates (4 off)

Fig. 4.I. Upper manual wiring to $16 f t$ pitch pedal resistor boards and socket SKI. For the 8 ft pitch boards a black lead $(65.4 \mathrm{~Hz})$ is connected to tag X and subsequent note wires attached until all 30 tags are terminated. Pins 31 and 32 on the sockets will eventually be terminated with the 16 ft and 8 ft busbar return wires from the pedals

MAIN AMPLIFIERS \& POWER UNITS

resistors on the 16 ft pitch tag boards merely means joining with short insulated wire lengths between the commonly numbered tags, that is, one to one, two to two, etc.
For the 8 ft pitch boards the other socket is used, the numbering and wiring being the same. The sockets should now be carefully fixed to the kneeboard using 6B.A. countersunk screws and $\frac{3}{4}$ in spacers.

AMPLIFIERS AND POWER SUPPLIES

Since we decided on silicon planar transistors for the tone generating system, the choice of this advantageous semiconductor is a natural one for the amplifiers and power supplies.
For the pedals a 7 watt amplifier is used, and a 15 watt unit for the two manuals. Both employ transformerless Class B circuits capable of delivering the full specified power into their respective 15 ohm loudspeaker loads in the frequency range 20 Hz to 20 kHz with a total harmonic distortion of less than 0.25 per cent.
With the large current taken by Class B output stages the power supply units need to be stabilised. This feature results in the associated power amplifier having a much greater low frequency stability.
The following details of the amplifiers and power supplies are reproduced with acknowledgement to Ferranti Ltd.

P.S.U. 2 AND P.S.U. 3

Reference to Fig. 1.1, the block diagram of the organ, shows that the power supplies P.S.U. 2 and P.S.U. 3 feed the pedal amplifier P.A.1, and the manual amplifier P.A. 2 , respectively.

The circuit diagram for both power units is given in Fig. 4.2. As can be seen the basic configuration applies for the two units, the only difference being in the com-
ponents required. Changes for P.S.U. 3 are shown in parenthesis.

CIRCUIT DETAILS

The stabiliser circuit is fed from a voltage doubler comprising of D1, D2, C2 and C3. The reference voltage is developed across the Zener diode D3 which is compared with a proportion of the output voltage by TR1. This transistor is directly coupled to TR2 and TR3 and controls the voltage dropped across them.
If the output voltage should rise the base potential of TR1 rises; the current in TR1 increases resulting in a larger voltage drop across R1. This is transferred to the output via TR2 and TR3 as a voltage drop. The capacitor C 8 ensures a low output impedance at high frequencies. A good feature of this circuit is the delayed switching effected by the capacitor C5, which obviates unpleasant transients in the output.

CONSTRUCTION

Since there are only slight component value differences in the power units, the chassis wiring layout of Fig. 4.3 can be applied to both.

A 3in miniature tag board is used for small component mounting, this being mounted on two $\frac{3}{4}$ in spacers and fixed by 1 in 6B.A. nuts and bolts.

For those who prefer a printed circuit board alternative, an etched wiring and component layout is given in Fig. 4.4 and Fig. 4.5.

Diode D3 should be bolted to the power supply chassis which serves as a heat sink. Transistors TR2 and TR3 are mounted on a common heat sink of $4 \mathrm{in} \times 4$ in $\times \frac{1}{16}$ in aluminium which is insulated from the chassis by three nylon feed-through bushes.
Both the transistors heat sink and diode mounting to chassis can be seen in the photograph.

COMPONENTS . . .

P.S.U. 2 AND P.S.U. 3

Component differences for P.S.U. 3 are given in parentheses

Resistors
RI $2 \cdot 2 \mathrm{k} \Omega$ R4 100Ω
R2 100Ω R5 390Ω R3 330Ω R6 $3.3 \mathrm{k} \Omega(2.2 \mathrm{k} \Omega)$ All 10%, $\frac{1}{2}$ watt carbon

Potentiometers

VRI $5 \mathrm{k} \Omega$ lin. ($2.5 \mathrm{k} \Omega \mathrm{lin}$)

Capacitors

$\mathrm{Cl} 0.1 \mu \mathrm{~F}$
C2 $5,000 \mu \mathrm{~F}$ elect. 50 V
C3 $5,000 \mu \mathrm{~F}$ elect. 50 V
C4 $0.25 \mu \mathrm{~F}$
C5 $0.01 \mu \mathrm{~F}$
C6 $25 \mu \mathrm{~F}$ elect. 25 V
C7 $500 \mu \mathrm{~F}$ elect. 60 V
C8 $50 \mu \mathrm{~F}$ elect. 100 V

Transistors

TRI ZTX300 (Ferranti)
TR2 ZTI613 (ZTI700) (Ferranti)
TR3 ZT1701 (Ferranti)

Diodes

D1 ZR12 (Ferranti)
D2 ZRI2 (Ferranti)
D3 KR54 33V Zener
(KR56 47V Zener) (Ferranti)
D4 Z570 (Ferranti)

Transformers
TI Douglas MT3AT. Prim. 230V
Sec. 20V 2A. (Prim. 230V
Sec. 24 V 2 A) (Home Radio)

Switches

SI Mains double pole on/off

Fuses

FSI | amp

Miscellaneous

Fuse holder, Chassis $8 \mathrm{in} \times 6 \mathrm{in} \times 2 \frac{1}{2}$ in 18 s.w.g. Heat sink $4 \mathrm{in} \times 4 \mathrm{in} \times \frac{1}{16} \mathrm{in}$. Miniarure 12 -way tag board $2 \frac{3}{4}$ in long. Two-way terminal block.

Fig. 4.3. Wiring layout which can be applied for both P.S.U. 2 and P.S.U.3. The d.c. output wires go to the terminal block shown in the chassis topside layout in the photograph opposite

PRINTED CIRCUIT VERSION WIRING

Fig. 4.4 (above). Printed circuit board alternative for power supplies, full size
Fig. 4.5 (right). Component layout and wiring for the printed circuit version

Fig. 4.6. Circuit diagram for pedal (P.A.I) and manual (P.A.2) amplifier. Component differences for P.A. 2 are given in parentheses

PEDAL AND MANUAL AMPLIFIERS

The audio amplifier circuit to be described serves to supply 7 watts for the pedal output (P.A.1) and 15 watts for the manuals (P.A.2). The circuit given in Fig. 4.6 is fundamental to both, component differences for P.A. 2 being shown in parenthesis.

CIRCUIT DESCRIPTION

The input is fed via the-volume control potentiometer VR1 and amplified through the two a.c. coupled, common emitter stages, TR1 and TR2. These have local feedback from collector to base, while overall feedback from the output is taken to the emitter of TR2 by way of R17.

TR3 is a split load phase inverter which provides the necessary assymetrical drive to the two halves of the driver stages TR4 and TR5. Diodes D1 and D2 serve to provide a stable bias for the drivers, which being directly coupled to the output stage, produce a standing current in the output transistors which eliminates crossover distortion. Positive bootstrap feedback, developed across R10 via C7, is used to equalise the power gain of the two halves.

The output stage is basically symmetrical with TR6 connected as an emitter follower and TR7 in the common emitter mode. The low source impedance presented by the emitter follower drivers to this stage does much to enhance the high frequency response and minimise harmonic distortion.

SPECIFICATION . . .

Nominal input impedance	approximately 1 kilohm
Nominal output impedance	less than 1 ohm
Sensitivity	
Nominal power output	7 watts
(P.A.1)	
Nominal	
(P.A.2) power output	15 watts
Total hart innic distortion	less than 0.25 per cent
Frequency response	Within 1 dB over
	range 20 Hz to 20 kHz
Total current for full power	
output at 1 kHz	
P.A. 1	300 mA
P.A.2	500 mA

CONSTRUCTION

The design is intended for construction on a printed circuit board but as lead lengths are of no great consequence other methods can be employed; but it is essential that a low impedance earth path is provided when laying out to prevent instability arising.

In the prototype organ both tag board and printed board assemblies were used in the construction of the amplifiers and power units to prove that variations in layout would not affect performance.

Whilst latitude is permissible in component layout, it is important that no attempt should be made to integrate an amplifier and power unit on a single chassis. Separate unit construction minimises the adverse effect of ripple current flow.

a new 4-way method of mastering by doing - and - seeing

1 OWN and complete range of presentday ELECTRONIC PARTS and COMPONENTS

a modern and professional CATHODE RAY OSCILLOSCOPE

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING

- PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT - BASIC RADIO RECEIVER - ELECTRONIC SWITCH - SIMPLE TRANSMITTER
A.C. EXPERIMENTS
D.C. EXPERIMENTS

SIMPLE COUNTER
TIME DELAY CIRCUIT

- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge'required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

POSTNOW for
BROCHURE
or write if you prefer not to cut page

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives NAME

BLOCK CAPS
ADDRESS
 lusing heavy duty fully mains transformer with full wave rectification
giving adequate gmoothing Vialve line up:- $2 \times$ $1 \times$ EZ80 29 full wore rectifier. Two dual potentiometers are provided for bass amd treble control, giving bass and treble boost and cut. A tual volume control is used. Balance of the left and right hand channels can be adjusted by means of a separate "balance"' control fitted at the rear of the chassis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watta per channel (8 Fatts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows high
volume levels to be vaen pith neglighble diatortion. $\begin{aligned} & \text { volume levels to be uael hith negligitgle diatortion. } \\ & \text { supplied conmplete with knohs, chassis size } 1 l i n . ~ w ~\end{aligned} \times 4 \mathrm{in}$. x . Supplied conmplete with knons, chassis size Realy built and tested to a high standart, Price 8 gns. P. \& P. 8/-.

TRANSISTOR STEREO $8+8$ MK II
Now using Silicon Transistors in first five stages on each channel resulting in even lower noise level with inprocel sensitivity. A really first-class Hi-Fi Stereo Amplifier Kit. Cses 14 transistors giving 8 watts push pull output per
channel (16W mono). Integrated pre-amp. with Biss, channel (16W mono). Integrated pre-amp. With Bass,
Treble and volume controls. Suitible for use with Treble and Volume controls. Suitible for use with Ceramic or Crystal cartridges. Output deage all parts speakera from 3 to 15 ohnis. Compuct design, at part supplied ive front panel, knobs, wire, solder, nuts, boltsno extras to buy. simple step by step fustructions enable any constructor to bulld an amplifier to be prouis of.
Brief specifcation: Fred. response $\pm 3 \mathrm{BB}, 20-20,000 \mathrm{c} / \mathrm{s}$. Brief specification: Fref. responiee $\pm 31 \mathrm{~B}, 20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 dB . Treble cut approx. to -16 dB . Negative feedback 181 B
Power requirementiE PRICES: AMPLIFIER KIT 810.10 .0 ; POWER PACK KIT 3.0 .0 ; CABINET 2.0 .0 . All Post Free. with kit) 1/6. (N.A.E.)
 ESPECIAL PURCEASE! Heary 8 in. metal turntable Heary 83 in , metal turntable.
Lnw flutter performance $200 j$ Lnw flutter per formance 200
250 V shaded motor (90 tap). Complete with latest type lightweight pick-up arm and mono cartridge with t/o
stylii for JIP/8. ONLY stylii for J.P/78.
$63 /-$ P. \& P. $6 / 6$.

-SPFED RECORD PLAYER BARGAINS

 Msins models, All brand new in maker's packing.B.8.R. VAes with latest mono compatible cart...
e. 19.6 B.8.e. UAes All plus Cerriage and Packing 6/6.

LATEST GARRARD MODELS. All types available 1025, LATES SP25, 3000 , AT 80 etc. Send S.A.E, Ior Latest Prices! 2025, SPE USHITS cut out for liarrard Models 1025, 2025. PLIBTH UHITS cut out for darrard Models 1025, 202., 2000, 3000, AT60, SP25. With rigid pe

SOKOTONE STMC compatible Stereo Cartridge with dianiond strius $50 /-$ P. \& P. $2 / .0$ Compatible Cartridge for EP/LP/Stereo/78. 32/6, P. \& P. 2/.
LATEST RONETTE T/O Mono Complable Cartridge for EP/LP/8 mono or atereo records oh mono equipment. 30\%. P. \& P. 2/-. FEW ONLY: ACOS HIGEK-G
LP. Only 10/-. P. \& P. 2/-.

HIGH GAIF 4 TRANSISTOR PRINTED CIRCUI
AMPLIFIER KIT

Type TAl

put in excess
put in excess
of $1 \frac{1}{2}$ qatts
dard British
dard British
components.

- Built on
printed circuit panel size $6: 3$ inn.
Generous size Driver apu Out Transformers.
Out - Output transformer tapped for 3 ohm and 15 ohm speakera. Tranaistors (GET114 or S1 Mullart ACI28D aud nuatched pair of AC128 o/p). onvolt operation. - Every thing supplied, Fire, battery clips, bolker, etc. Comprehensive ensy to follow ingtruct ons and SPECLAL PRICE 45/-, P. \& P. 3
Also realy built and tested, 52/6. P. \& P. 3/-

S-VALVE ADDIO ARPLIELER HA34 ME II Designed for Hi-Fi reproduclion of records. A.C. Mains operation. Ready built on
platel heavy gauge metal plated heavy gauge meta chassis, size rinw, in. incorporates ECc83, EIS 84, EZ80 valves. Henvy duty, double wound mains transformer and output trans-
former matchel for 3 ohm speaker. Separate volume control and now with improved wide range tone controls giving bass and treble hit and cut. Negative feedback ine. Output fay wats. Fronte panel can be detached and lends extended for remote wirell and tested for only $£ 4.15 .0$. P. \& P. $6 / \%$,

10/14 WATT HI-FI
A strlishly finishel
monaural amplifer with an output of 14 witts from 2
ELSA in push-pull. EL84s in pursh-pult. of both music and speech, hith heparate inputs for mike and gram allow records
and announcements
 to follow each other. to follow each oth Fully shrouded section wound output transformer to and separate bass and treble controls ave provided giving and separate cuss and lift and cune-up 2 ELSM4s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet: $2 / 6$ (Free with parts). All parts sold separately. OXLX 27.9 .6 . P. \& P. $8 / 6$. Also arailable ready built and tested complete with std. input sockets, 29.5 .0. P. \& P. 8/6.

BRAND NEW 3 OHM LOUDSPEAKERS
$\sin .14 /-; 6!\mathrm{in} .18 / 6 ; 8 \mathrm{in} .27 /-; 7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{jn} .27 / 6$. E.M.1. 8 Sin. with high fux magnet $21 /$. E.M.I. $131 \times$ Sin. With high flux ceramic magnet 42/- (15 ohm $45 j-$). E.M.I. $13<8$ in. With two inbuilt tweeters and crossover net work. 3 or 15 ohn 14 gns.
$10 \& 12$ in. $3 / 6$ per speaker.
BRAND NEW. 12 in . 15 W H/D Speakers, 3 or 15 ohnis. BRAND NEW. 12 n . 19 maker. Now with Hi Flux ceramic By well-knorn British matyer.i.10.0. P. \& P. 5/-. Guitar Models: 25w. §6; 35w. \&8.
E.M.I. $3!$ in. HEAVY DUTY TWEETERS. Powerful ceramic magnet. A vailable in 3 or 8 ohms 15i- each; 15 ohn 18/6 each. P. \& P. $2 / \mathrm{h}$.

VYNAIR AND REXIFE SPEAKERS AND CABINET FABRICS app. 54in. Wide. Usually 35/-yd., our price $13 / 6$
yd. fength. P. \& P. $2 / 6$ (min. 1 yd.). S.A.E. for samples.

NEW! HSL. 700 MONO

 TRANSISTOR AMPLIFIER AD161-AD162 ymmetrical complementary
pair. Output transformer coupled to 3 ohm ant 15 ohm speaker sockets. Standard phono input sockets. Full wave briuge rectiffer power supply 240v. Controls: bass, treble, volume/on/off. Function selector for PUI, PUZ, tape, radio. The HSL. 700 ia strongly constructeri on rigid ateel chassis bronze hamme enamel finish, size $9 k \times \overline{0} \times 4 \frac{1}{2} \mathrm{in}$, high.
Performance figures:
Sensitivity- \quad PUl- $50 \mathrm{~m} / \mathrm{v}$,
ple $2-110 \mathrm{~m} / \mathrm{y}$, 1 meg input impedance.
Tape- $110 \mathrm{n} / \mathrm{F}, 1 \mathrm{meg}$ input mp .
Radio- $110 \mathrm{~m} / \mathrm{Y}, 1 \mathrm{meg}$ input impedance. RMS into Output power measured at $1 \mathrm{Kc}-6.2$ Overall frequency 3 ohms, 5.8 watts RMS into 15 ohm. controls; Bass, +81 b to -121 b at $100 \mathrm{c} / \mathrm{s}$. Treble +10 db to -10 bb at $10 \mathrm{Kc} / \mathrm{e}$.
The HSL. 700 has been designed for true high fidelity reproduction from radio tuner, granophone deck and tape recorder pre amp but is also capable of being used in conjunction with a guitar by connecting to PUl socket and the peak ontput porer will then be in the region of 15 watts.
Supplied ready built and tested, complete with knobs, attractive anolised aluminium front escutcheon panel, lons spindles (can be cat to surit your housing requir

COLLARO MAGNAVOX 363 STEREO TAPE DECE. comeeds, 4 track, up to 7in. spools. 218.10.0. Carr. 10/\%HIGH IMPRDANCE CRYSTAL STICX MIKES. OUF PRICE 21/-P. \& P. 1/6. P. \& P. 1/6.

QUALITY RECORD PLAYER AMPLIFIER MK II top-quality record player amplifier employing heary duty double wound nains transiormer, EZ80 valves. Separate Bass, Treble and Volume controls. Complete with output transformer matched for 3 ohm speaker. Size 7 im . W. $\times 3 \mathrm{~d} . \times 6 \mathrm{~h}$. Realy po board with output transformer and opeaker ready to fit into cabinet below. PRICE 97/6. P. \& P. $7 / 6$. DE LUXE CUALITY PORTABLE RiP CABEET MK II Uncut motor board size $141 \times 12 \mathrm{in}$., clearance 2 in . below, 5kin, abore. Will take above amplifier and any B.S.R. or GARRARD changer or Single Player (except AT60 and SP25). Size $18 \times 15 \times 8 \mathrm{in}$. PRICE 78/6. P. \& P. $9 / 6$. MAMS TRAXSFORMER. Primary $200-240 \mathrm{~V}$ two separate $\frac{1}{4}$ Wave secondaries giving approx. 16 V at 1 amp and 20 V at 1.5 amp. Ideal for transistor power supplies. Drop through mounting. Stack size $27 \times 3 \times \times$ fin. 15/- P. \& P. $6 / \%$. HAMS TRANSFORMER, For transistor porer supplies. Pri. 200/240V. Sec. $9-0-9$ at $500 \mathrm{mA.A}$. $11 / 1$. P. \& P. $2 / 6$. Pri. 200/240V. Sec. 12-0-12 at 1 amp . 14/8. P. \&\& P. 2/6.
Pri. 200/240. Sec. 10-0-10 at 2 amp 27/6. P. \& P. $3 / 6$. Pri. 200/240 PAR OF 2! WATM TRAKSISTOR DRIVER MATC OUTP PAT TRANSFORMERS. Stack size $1 \frac{1}{2} \times 11 \%$ ARD OUTPUT TRANSFORMERS, Output trans. tupped for 3 ohm and 15 ohm output. lin. Output trans. tupped
$10 /=$ pair plus $2 /=$ P. \&P.
(Please write clearly) PLEASE YOTE:P. P P. PHARGES QUOTED APRLY. TO U.E. ONLY P. \& P. OR OVERE
CEARGED EXTRA.

Open all day Saturday
Early closing Wed. 1 p.m.
Trube Station

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. 01-540 3985 SEND STAMPED ADDRESSED ENV ELOPE WITH ALL ENQUIRIES

HOW TO BUILD YOUR OWN HOME

All the money-saving details in the August issue of

AMPLIFIER WIRING

Fig. 4.7. Component layout on topside of printed circuit board for P.A.I and P.A.2.
For details of heat sink see Fig. 4.10 . Note the radial col For details of heat sink see Fig. 4.10. Note the radial cooler for TR3

Fig. 4.8. Wiring of potentiometer and transistors to underside of amplifier printed
circuit boards
COMPONENTS . . .
P.A.I AND P.A. 2

Component differences
for P.A. 2 are given in
parentheses
Resistors

R1	$120 \mathrm{k} \Omega(180 \mathrm{k} \Omega)$
R2	$680 \Omega(1 \mathrm{k} \Omega)$
R3	10Ω
R4	$68 \mathrm{k} \Omega(82 \mathrm{k} \Omega)$
R5	$560 \Omega(820 \Omega)$
R6	27Ω
R7	$1.5 \mathrm{k} \Omega 1 \mathrm{~W}$
R8	$15 \mathrm{k} \Omega(12 \mathrm{k} \Omega)$
R9	$1.5 \mathrm{k} \Omega(1 \mathrm{k} \Omega)$
R10	820Ω
RII	$220 \Omega(150 \Omega)$
R12	$220 \Omega(150 \Omega)$
R13	$2 \cdot 2 \mathrm{k} \Omega(2.7 \mathrm{k} \Omega)$
R14	$150 \Omega(100 \Omega)$
R15	$2.2 \mathrm{k} \Omega(2.7 \mathrm{k} \Omega)$
R16	$150 \Omega(100 \Omega)$
R17	270Ω
R18	56Ω
R19	56Ω
R20	$0.5 \Omega 2 \mathrm{~W}$
R2I	$0.5 \Omega 2 \mathrm{~W}$

All $10 \%, \frac{1}{2}$ watt carbon unless otherwise stated Capacitors

C 1	$25 \mu \mathrm{~F}$ elect. 12 V
C 2	$25 \mu \mathrm{~F}$ elect. 25 V
C 3	220 pF
C 4	$25 \mu \mathrm{~F}$ elect. 12 V
C 5	$25 \mu \mathrm{~F}$ elect. 12 V
C 6	680 pF
C 7	$250 \mu \mathrm{~F}$ elect. 12 V
C 8	$100 \mu \mathrm{~F}$ elect. 12 V
C 9	$100 \mu \mathrm{~F}$ elect. 12 V
Cl	$2,000 \mu \mathrm{~F}$ elect. 50 V

Potentiometers
VRI $5 \mathrm{k} \Omega$ lin.
VR2 100Ω preset
VR3 100 Ω preset
Transistors
TR1 ZTX302
TR2 ZTX300
TR3 ZT44 (ZT1613)
TR4, 5 ZT1613
TR6 ZT1701 (ZT3055)
All Ferranti types

Diodes

DI, 2 ZS70 (Ferranti)
Loudspeakers
LSI WB. HFIOI6
LS2 WB. HFI214

Miscellaneous

Printed circuit boards. Aluminium heat sinks (minimum area 4 sq . in) Radial cooler for TR3
Components and printed circuit boards for the amplifiers and power supplies can be obtained from: Welbrook Engineering and Electronics Ltd., Brooks Street, Stockport,

Fig. 4.9. Printed circuit board for P.A.I and P.A.2, full size

Practical Books from Pitman

The Electronic Musical Instrument Manual

Alan Douglas
Fifth Edition

Substantial changes have been incorporated in the fifth edition of this most successful work, many of these being due to the impact of transistors-now widely used in small electronic organs for traditional circuits, as well as for additional effects.

Transistor Electronic Organs for the Amateur

Alan Douglas and S. Astley
20s net
This book presents not only a detailed design for a full-scaled organ, but a complete explanation of everything to do with transistorized organs. It is written in a simple style especially for the amateur constructor, and profusely illustrated with clear diagrams.

Modern Electronic Componerits

G. W. A. Dummer
Second Edition

"... a very readable book, full of interest and packed with information..
-Post Office Electrical Engineers Journal

Radio Communication

J. H. Reyner and P. J. Reyner Second Edition

Paperback 45 s net
Here is a book covering the work required for the City and Guilds Telecommunications Technicians Certificate (Radio Subjects) to final year.

Sir Isaac Pitman \mathcal{E} Sons Ltd The Pitman Publishing Group

In addition, the earth line connection between amplifier and attendant power unit must be made to the earth line at the output end of the amplifier, not to the end where the potentiometer VR1 is connected to the earth line.

The amplifier component layout and wiring is given in Fig. 4.7 and Fig 4.8, the etched printed circuit pattern is depicted full size in Fig. 4.9.

The output transistors TR6 and TR7 are each mounted on an aluminium heat sink. Since these transistors have case collectors they must be insulated from the aluminium with suitable mica washers. Details of one of the heat sinks is given in Fig. 4.10. Reference to the photograph of a completed amplifier (P.A.2) shows how the sinks afford a mounting base for the printed circuit board.

To complete the amplifiers the wiring of the potentiometers and transistors to the underside of the printed board is given in Fig. 4.8

SETTING UP

The preset resistors VR2 and VR3 shown in Fig. 4.8 provide a means of setting the standing current of the output transistors for elimination of crossover distortion and ensuring maximum voltage swing across the loudspeaker load.
To adjust these in each of the amplifiers a milliameter is inserted in the positive supply line from the serving power supply unit. A d.c. voltmeter is then connected from TR 7 collector to the earth line. With the relevant power unit switched on, each of the 100 ohm preset resistors is adjusted from minimum resistance until the current in the milliameter increases by approximately 15 milliamps. At the same time it is necessary to ensure that the d.c. collector voltage at TR7 is approximately half the value of the supply voltage.
Both in the setting up and with any dynamic checks that might be made on the amplifiers the loudspeaker loads should be included.
With the completion of the setting up of the amplifiers these should be temporarily placed to one side.

END CHEEKS FOR S.K.A. KEYBOARDS

In Part One of this series we gave as an alternative to

keyboard support rails. Here cheek recesses can be clearly seen
the Goddard keyboards those manufactured by KimberAllen Ltd. Unfortunately, the geometry of the latter keyframes precludes fitting in the cheek assembly given in Fig. 1.9. Since then Kimber-Allen Ltd. have produced special hardwood end cheeks which are slotted in such a way to enable the 61 note S.K.A. keyboards to be pushed in, then screw-attached.

It follows, of course, that complete accuracy of fitting is ensured with these manufactured cheeks since both keyboards are finally held in their proper relative positions. For purchasers of the keyboards and end cheeks, fully dimensional drawings are shown in Fig. 4.11 and Fig. 4.12 toenable the fixing of these to the keyboard supports C and F as shown in Fig. 1.4.
The Harmonics contact assemblies will fit quite easily under the Kimber-Allen plastic keys; should the holes for the actuators come in the wrong place by any mischance, the keys are easily taken off while new holes are drilled. It should be noted that the plastic actuators fitted to the Kimber-Allen keys are not now required and simply pull out, leaving the dollies of the Harmonics contact assemblies to contact the underside of the keys directly.

Next month we will introduce the tone forming circuits.

To be continued

EXPERIMENTS WITH THE OPERATIONAL AMPLIFIER

By G.K.FAIRFIELD

Part 3 Design criteria

THIS concluding article will consider the design of some typical operational amplifiers which can be used in any of the applications described in the two previous articles.

As explained earlier, the greater the open-loop gain of the amplifier, then the less important will be the deterioration of its active elements (valves or transistors) and the voltage stability of its power supplies. A high gain also allows its gain with feedback components added to be determined only by the value of these components. Finally a high gain permits a high input impedance to be obtained, which facilitates certain applications such as the meter described last month.

Operational amplifiers used in highly accurate analogue computers have open loop gains of the order 10^{6} to 10^{8}. Such large stable d.c. gains can only be obtained by elaborate chopper stabilised amplifier designs and, as such, are expensive to purchase and quite difficult to design. However, if the required gain can be reduced to about 10^{4} then considerable simplification is possible in a practical design.

Such a gain is quite adequate for the amplifiers used in the applications quoted previously, as the requirements are by no means as stringent as is the case with an analogue computer. Two transistorised examples of such an amplifier are described below.

AMPLIFIER DESIGN

The most important feature of a high gain d.c. amplifier is its performance with regard to change of temperature at its output terminal when the amplifier input is short-circuited.

This is known as the d.c. drift of the amplifier and is usually stated as so many microamps per degree C, and refers to the equivalent drift of its output current, assuming all of this occurs at the input terminals. Thus the drift of the output current due to temperature change is the number of microamps per degree C multiplied by the overall amplifier gain.

There are very many ways of compensating for the inevitable drift that occurs in a practical amplifier. A well-known method is to use a temperature sensitive resistor at some point in the circuit, whose purpose is to introduce an equal and opposite current change to cancel out that due to change in transistor characteristics. This requires fairly careful design however and the compensation technique is never completely successful.
An alternative method which, although using more amplifier components, is easier to apply and is known as the emitter coupled transistor amplifier. The fundamental principle is to assume that a pair of transistors will drift a similar amount and to arrange the circuit so that these drifts will cancel out and not be added to the d.c. level of the signal being amplified.

EMITTER-COUPLED TRANSISTOR AMPLIFIER

The basic emitter coupled stage is shown in Fig. 3.1. The two transistors should have similar characteristics and ideally be mounted in the same can. The static collector currents must be identical and a potentiometer VR1 is included to permit adjustment of these currents to equality.
The circuit operation is as follows. Provided that R 3 is large, the signal voltage is divided equally between R_{i}, the base-emitter diode of TR2 and R4 in the ratio of their resistance values. Assuming that the transistors are identical then the voltage across the base-emitter diodes are the same, causing equal and opposite inputs to the two transistors.
Where R4 is zero a voltage $V_{i} / 2$ appears at the midpoint of VR1. However, more usually R_{i} is fairly large and R4 must be made equal to it. For this reason an appreciable part of the input voltage V_{i} appears across R4 and as a result the gain of the stage is reduced.
The large value of R3 causes the sum of the two emitter currents, and hence the collector currents to be stabilised as $-V_{\mathrm{EE}} / R_{3}$. Hence the in-phase changes of current through the two transistors are almost completely prevented, and current changes due to identical variation of the temperature-dependent transistor parameters are considerably reduced. In a similar

FULLY TESTED AND MARKED

ACl07	3/-	OCI70	3/-
AC126	2/6	OC171	4/-
A.C127	$2 / 6$	OC200	3/6
${ }^{\text {ACl }} 28$	2/6	OC201	7/-
ACl76	$5!$	2G301	$2 / 6$
ACY17	3/-	2 G 303	2/6
AFII4	4/-	2N711	10%
AFI15	3/6	2N1302-3	4/-
AF116	$3 / 6$	2 N 1304 -5	5-
AFl17	3/6	2 N 1306.7	6%
AF239	$12 / 6$	$2 \mathrm{~N} 1308-9$	8/-
AF186	$10 /-$	2N3844A	$5 /$
AF139	10\%	- Power	S-
BFY50	$41 /$	Transistors	
BSY25	$7 / 6$	-C20	10-
BSY 26	3/-	$\bigcirc \mathrm{OC} 23$	10/-
B5Y27	3/-	$\bigcirc{ }^{\circ} \mathrm{C} 25$	$8 /$
BSY28	3/-	$\bigcirc \mathrm{C} 26$	5/-
BSY29	3/-	OC28	7/6
BSY95A	3/-	\bigcirc	5/-
OC41	2/6	-C36	7/6
OC44	2/6	AD149	101-
$\bigcirc \mathrm{OC45}$	216	AUYIO	$301-$
OC71	$2 / 6$	2N3055	15\%
0 C 72	$2 / 6$	Diodes	
$0 \mathrm{OC7} 3$	$3 / 6$	AAY42	$2 /-$
OC81	2/6	OA95	$21-$
OC8ID	$2 / 6$	OA70	
OC83	4/6	OA79	$1 / 9$
OC139	$2 / 6$	OA81	$1 / 9$
OC140	$3 / 6$	IN914	$1 / 6$

FREE!
PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS

OVER $\mathcal{L} 4$

TRANSISTORS ONLY 1/- EACH SILICON
 All these types available
 2N929 2N706 2S131
 2S501 2N706A 2S512
 $2 S 103 \quad$ 2N696
 2S104 2N697
 2N2220 2N1507
 All tested and guaranteed for gain and leakage-unmarked.
 Manufacturers' fall outs from the new PRE.PAK range.

TRY OUR X PAKS FOR UNEQUALLED VALUE

XA PAK

Germanium PNP type transistors, equivalents to 2 large part of the $O C$ ranse, i.e. 44, 45, 71, 72, 81, etc.

PRICE $6 S$ PER 1000
POST \& PACKING 4/6 U.K.

XB PAK

Silison TO-18 CAN sype transistors NPN/PNP mixed lots with equivalents to OC200-1, 2N706z, BSY27/29, BSY95A.

PRICE E5.5.0 PER 500
PRICEE10 PER 1000
POST \& PACKING $2 / 6$ U.K.

XC PAK

Silicon diodes miniature glass types, finished black with polarity marked, equivalents to OA200, OA202, BAY31-39 and DK10, etc.

PRICE ES PER 1000
POST \& PACKING 2/6 U.K.

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM AMOUNTS QUOTED PER PACK.

NEW TESTED AND GUARANTEED PAKS			
${ }^{\text {B2 }}$	4	Photo Celis, Sun Batteries inc. Book of Instructions	10/-
B15	5	ASY66 Bidirectional Trans.	10/-
B77	2	ADI61-ADI62 NPN/PNP	10/=
B79	4	$\begin{aligned} & \text { IN407. Sil. Res.Diodes } \\ & 1000 \text { pilv. } \mathrm{Amp} \text {. Miniature } \end{aligned}$	10/-
B61	10	Reed Switches, mixed types large and smali	10%
889	2	SSP5 Light Sensitive Cells. Light Res. 400 Dark 1 M /	10/-
$\underline{89}$	8		10/-
B92	4	NPN. Sil. Trans. AO6= BSX20, 2 N 2369500 MHz , 360 mW	10/-
893	5	GETII3 Trans. equiv. to	10/-
B94	6	NPN Sil. Planar Epitaxial Trans. CS4 simila BSY 38 or BCl 108	10/m
$\overline{896}$	5	600 mA .200 MHz	10/-
¢98	10	XB12 and XEIO2 equiv. 20 ACliz6 AC156, OC81/2. OC7li, NKT271, etc.	10/=
899	200	Capacitors, Electrolytics paper, silver mica, etc. Post parking, this Pak $2 / 6$	\%

RETURN OF THE UNBEATABLE P.I PAK. NOW GREATER VALUE THAN EVER
full of short lead semiconductors AND ELECTRONIC COMPONENTS, APPROX. 170. WE Guarantee at least 30 really HIGH QUALITY FACTORY MARKED TRAN. RIGH QUALITY FACTORY MARKED TRAN.
SISTORS PNP AND NPN. AND A HOST OF DIODES AND RECTIFIERS MOUNTED ON DIODES AND RECTIFERS MOUNTED ON
PRINTED CIRCUIT PANELS. IDENTIFICATION PRINTED CIRCUIT PANELS. IDENTIFICATION
CHART SUPLIED TO GIVE SOME INFORMA. TION ON THE TRANSISTORS.
PLEASE ASK FOR pak P.I only 10/-
2/- P. \& P. on this Pak.
Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a linear and accurate rev.
counter for any car.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHART

MINIMUM ORDER 10/. CASH WITH ORDER PLEASE. Add $1 /$-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD bEWARE OF IMITATIONS
FREE! A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

110 SEMICONOUCTOR PROJECTS FOR THE HOME CONSTRUCTOR

By R. M. Marston

18/-

TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR, by Alan Douglas. 20/-. Postage $1 /-$
COLOR TV TROUBLESHOOTING PICT-O-GUIDE, by R.C.A. $10 /$. Postage

VHF-UHF MANUAL, by G. J. Jessop. 21/. Postage. $1 / 6$
QUESTIONS \& ANSWERS COLOUR TELEVISION, by J. A. Reddihough. 10% Postage $6 d$.
COLOURTELEVISION PALSYSTEM, by G. N. Patchett. 40/-. Postage $1 /$-. SOLID STATE HOBBY CIRCUITS MANUAL, by R.C.A. $17 / 6$. Postage $1 /-$. 49 EASY TRANSISTOR PROJECTS, by Robert M. Brown. 16/-. Postage I THE RADIO AMATEUR'S HANDBOOK 1969, by A.R.R.L. 45/-. Postage 4/6.
CATALOGUE, 2

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-21 PRAED STREET LONDON, W. 2 Phone: PADdington 4185 Closed Saturday I p.m.
 4-Station Transiator Intercom syatem (1 master and 3 Subs), in de-lare plastic cablinets dor desk or wall
mounting. Call/talk/listen from Master to Subs and subs to Master. Ideally quitable for Business, Sursobs to master. Ideally suitable ior Brasiness, Sur-
gery, Schools, Hospital, Omfe and Home. Operates on one 9 V battery. On/off switch. Volume control. Complete with 3 connecting wires each 66 ft . and other accessories, D. \& P. 7/6.

MAINS INTERCOM
Ho batteries-no wires. Just plug in the mains for instant two-may, loud and clear communication. On/off switch and volume control. Price 12 gns.

Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phane. Complete with 66it. connectiog wire. Battery 2/6. P. \& P. 4/6.
 ciency rith this incredible De-Luxe Telephone Amplifier. Take down long telephone messages or converge without holding the handset. A useful office aid, On / off switch. Volume control. Battery $2 ; 6$ extra. P. \& P. 3/6. Full price refunded if not satisfed in 7 days. WEST LONDON DIRECT SUPPLIES (PE/3)
I69 KENSINGTON EIGE STREET, LONDON, W. 8

BUY QUALITY FROM US GET GUARANTEED RESULTS

MORSE OSCILLATOR KIT. P.C. board, transistors, high stah, components, Battery carrier, earpiece. Adj. tone. Just attach your key. Drives phones or speaker. 15/6, ${ }^{3}$. \& P. 2/-
METRONOME RIT. Variable beat, listen whilst yout play and keep in the groove. Ensy to build, pocket play and keep in the groove. Ensy to blild, pocket VOX SWITCH. This sound operated switch is jdeal for mobile T.X. work, tape recorder switching, etc., etc., you speak it switches. High and med, imp 42/6. P. \& P. 2/6.
All the above kits come complete with easy to follow instructions, P.C. board and finest quality compon without question.
8-8-12 VOLT D.C. I AMP POWER SUPPLY. A robust, versatile, well filtered, very low ripple B.C power supply for operating and servicing:-radios, sintors, appliances, experiments, etc. Mains I / P. sistors, appliances, experiments, etc. Mains 1/P. attractive ventilated metal case, i. $3 \frac{1}{2} \times 2 \frac{1}{3} \mathrm{~m}$. Only 87.4.6, P. \& P. 5/6,
REVERBERATIOR AMPLIFIER, Completely selfcontained transistorised battery operated. Reverberdiferent approach to sound eprotuction. Normally sound reproduction from a ingle source has a flat one dimensional effect fith this proper sound delay through reverberation tones are created with a truly third dimension for concert hall originality. Two controls ndjust reverberation and volume. So complicated Firing, simply plug microphone, guitar, etc, in and the oly
into your amplifier. Supplied in a beautiful walnut cabinet, $7 \frac{1}{4} \times 3 \times 43 \mathrm{in}$. 210.4 .0, P. \& P. \& Ins. $6 /-$. AMPLIFIERS. Bullt and tested-where else can ou buy at this price it thousand and one uses. $\begin{array}{ll}\text { WATT amp. } 9 \text { volt } & \text { 52/6, P. \& P. } 2 / 6 \\ \text { W7/6, P. \& P. } 2 / 6\end{array}$
SEMCONDUCTORS. Surplus but guaravteed tested 101-per pack $70 \times 2 \mathrm{~F} 06$ or $8 \times 2 \times 2926$ or 25 signal diorles.

AUDIO EFFECTS, 5 Shaw Lane, Halifay, Yorks.

HEATHIIT ELECTRONICS

Join the creative men who build Heathkit electronics. It's the exciting leisure-time way to superior equipment at lowest cost

FREE

catalogue
 Q

DAY8TROM LTD., Dept. RC/8
GLOUCESTER Tel. 29451

Please send FREE Heathkit Catalogue.
Name
(Pleasy Print)
Address
City
way the output is reasonably independent of supply voltage variations.

In order to achieve a high value for R3 this resistor is often replaced by a transistor having a common-base configuration so that three transistors are required for one emitter-coupled stage.

PRACTICAL CIRCUIT

An operational amplifier using several d.c. emittercoupled stages is shown in Fig. 3.2. The input is applied to the base of TR1 (single-ended input) or where a pushpull balanced signal is available to the bases of both TR1 and TR2, through input resistors $R_{i_{1}}$ and $R_{i_{2}}$. If no signal is applied via $R_{i_{1}}$, then its free end is connected to ground.

This first pair of transistors TR1 and TR2 makes use of a transistor (TR7) connected to give a very high impedance in the common emitter supply lead. Potentiometer VR1 is adjusted to give a total current through R1 of about 0.5 mA , and the balance potentiometer VR2 is adjusted to give equality of collector currents for TR1 and TR2. A simple way to check this is to connect a high resistance millivoltmeter between the collectors and adjust for a null reading.
The second emitter coupled pair TR3 and TR4 is directly coupled to TR1 and TR2 and no adjustment should be necessary to the junction point of R7 and R8. If these transistors are slightly out of balance then a compensating adjustment to VR2 can be made.
The final stage draws rather more current through its common emitter lead in order that the output impedance may be reasonably low in comparison with the value of the feedback resistors $R_{\mathrm{fb}_{1}}$ and $R_{\mathrm{fb}_{2}}$. An adjustment is made to the common emitter current by means of VR3. The purpose of this is to enable the output terminal at the collectors of TR 5 and TR6 to be adjusted to zero potential in the absence of an input signal to TR1 and TR2.
The input and feedback impedances are shown connected by dotted lines in the diagram. The gain with feedback is $R_{\mathrm{fb}} / R_{\mathrm{i}_{1}}$ or $R_{\mathrm{fb}} / R_{\mathrm{i}_{2}}$; although R_{fb} can be omitted when $R_{i_{2}}$ is connected to ground (single ended input) it is advisable to keep the circuit completely symmetrical by making $R_{\mathrm{fb}_{1}}=R_{\mathrm{fb}_{2}}$ and $R_{i_{1}}=R_{i_{2}}$ if only one input and one output is to be used. This is to avoid any possibility of instability when a large loop gain is used.

The amplifier design has a gain of 10,000 at frequencies up to 100 kHz ; phase compensating capacitors C 1 and C 2 enable a level frequency response up to this frequency to be obtained.
With several of the applications mentioned earlier, it may not be possible to duplicate the input and feedback impedances in the way described above. In such cases $R_{\mathrm{i}_{2}}$ is grounded and $R_{\mathrm{f} \mathrm{b}_{2}}$ is omitted so that the circuit becomes a single-ended amplifier. The gain is a little reduced and more care must be taken with the initial balancing to avoid instability, otherwise the connection is quite straightfoward.
The complete amplifier can be constructed by soldering the components directly on to a printed wiring board.
Setting-up of the amplifier is quite simple. VR1 is first adjusted to give a current of about 0.5 mA through R1. The output current of 3 mA is then adjusted by VR3 with the current meter placed in series with VR3.
Finally with a high resistance, low current meter connected between the collectors of TR5 and TR6, VR2 is adjusted to give a null reading on the meter. It may then be necessary to readjust VR3 to obtain the required current of 3 mA .

Fig. 3.2. Practical operational amplifier design with a gain of 10,000

Fig. 3.3 Simple balanced pair design with a gain of 8,000

All of these adjustments should be carried out with the input terminals grounded.

ALTERNATIVE DESIGN

One of the difficulties in providing a good match for the pairs of transistors used in the emitter-coupled amplifier is due to the fact that the transistors were often manufactured separately and will not necessarily have identical characteristics. Fortunately manufacturers are becoming aware of the need for matched pairs and are able to supply transistors made from the same "chip" of semiconductor material and mounted in the same can.

A design based on transistor pairs of this type is shown in Fig. 3.3. This uses the S.T.C. dual transistors TK254A or equivalent. The design is a little simpler than the one given in Fig. 3.2 and only two potentiometers are necessary for balance adjustment.

The drift characteristics of this amplifier are very good, due to the similar characteristics of the transistor pairs, and is about $10 \mu \mathrm{~A}$ /degrees centigrade, which compares favourably with some computer amplifiers.

The open loop gain will depend upon the spread in gain for the transistors, but a gain of at least 8,000 should be realised.

INTEGRATED CIRCUITS

This series of articles on the operational amplifier would not be complete without a mention of the integrated circuit amplifier. The question the reader will probably pose in this connection is whether he should take advantage of the recent developments in integrated circuits and purchase, instead of construct, the amplifier.
The cost of an integrated circuit amplifier having a similar performance to the designs described above is now quite comparable to the cost of the components required for a unit constructed of discrete elements.
Operational amplifiers are now produced by several manufacturers, fabricated on a single chip of silicon, including all the interconnecting resistors, and mounted in a single transistor can. The complexity of the sort of design realised in this way can be judged from the schematic diagram of the integrated circuit amplifier, type 702A, shown in Fig. 3.4a. The eight leads to the amplifier are brought out of the can and are shown in the connection diagram Fig. 3.4b.
A loop gain of 10,000 is available which is adequate for the applications described previously. If the high frequency response of the amplifier is important, which may be the case where it is used as, say, an oscilloscope pre-amplifier, then a small capacitor should be connected across terminals 5 and 6 .
The actual value depends on the closed loop gain required and can be found by experiment. For a typical closed loop gain of 100 then a value of 500 pF will permit a level frequency response of up to 30 MHz to be obtained.

A monolithic construction is used for the integrated circuit amplifier. This means that all the transistors and resistors are fabricated under identical conditions and situated very close to one another on the same silicon chip. Consequently the matching between critical components is very good and under operating conditions the temperature differential from one component to another is quite small causing minimum d.c. drift.

The integrated circuit is produced by diffusing layers of n - and p-type material into the silicon chip in order to fabricate the circuit by purely chemical means. A
cross-section of a part of a Texas Instruments operational amplifier (type SN523a) is shown in Fig. 3.5 to give an idea of this form of construction.

ADVANCED OPERATIONAL AMPLIFIER APPLICATION

To complete this series of articles the use of an operational amplifier to produce a simple frequency filter will be described.

Fig. 3.4. A 702A integrated circuit operational amplifler; (a) the theoretical circuit, (b) the i.c. lead-out connections

Fig. 3.5. Quadruple diffused planar operational amplifier in the Texas Series 52

NEW PRICES ON NEW COMPONENTS

RESISTORS

High stability，carbon film，low noise．Capless construction，molecular ermination bonding
$\begin{aligned} & \text { Dimensions（mm）：Body；} \begin{array}{r}1 \\ \frac{1}{2} W \\ W\end{array} \quad 10 \times 2.8 \\ & \text { Leads；} 35 \times 4.3\end{aligned}$

> Leads; hhms to
0% ranges； 10 Ohms to 10 Megohms（El2 Renard Series）
5% ranges； 4.7 Ohms to 1 Megohm（E24 Renard Series）
Prices－per Ohmic value．

＋W	10\％	each	10 off	25 off	100 off
IW	10\％	2 d	1／6	3／3	$10 / 4$
WW	5\％	21d ${ }_{2}$ d	1／9	3／8	$11 / 8$
W	10\％	$2 \frac{1}{2}$ d	1／9	3／8	11／7
$\frac{1}{2} W$	5\％	3d	2／－	$4{ }^{\prime \prime}$	12／10

CAPACITORS

Subminiature Polyester film，Modular for P．C．mounting．Hard epoxy resin encapsulation．Radial leads． $\pm 100 \%$ tolerance．
Prices－per Capacitance value（ μ F）

$0.001,0.002,0.005,0.01,0.02$	each	10 off $4 / 3$	25 off	100 of
			8／4	30／
	d	6	12／6	41／8
$0 \cdot 2$	10d	7／1	15／6	51
0.5	1／2	10／－	20／10	68／6
Polystyrene film，Tubular，Axial leads．Unencapsulated． $\pm 5 \%$ or \pm Ipf tolerance． 160 Volt Working．				
Prices－per Capacitance value（ $\mu \mu \mathrm{f}$ ）				
12，15，18，22，27，33，39，47，56，68，	each	10 off	25 off	100
470，560，680，820，1，000，1，500 ．．	6 d	4／－	8／8	26／8
2，200，3，300，4，700，5，600	7 d	5／－	$10 / 10$	$33 / 4$
6，800，8，200，10，000，15，000	8 d	6／－	13／－	40／－
22，000 ．．	9 d	6／9	18／－	45／4

$\begin{array}{lll}22,000 \\ \text { Polystyrene film，Tubular，Axial leads．Professional } & \text { Grade．} & \text { Hard Epoxy }\end{array}$ Resin encapsulation．
$\pm 1 \%$ tolerance．
100 Volt Working．

OTENTIOMETERS（Carbon）

Miniature，fully enclosed，rear tags，carbon brush wiper．Long life，low noise．Body dia．，$\frac{3}{2} \mathrm{in}$ ．Spindle，lin．$\times \frac{1}{4}$ in． 4 W at $70^{\circ} \mathrm{C} . \pm 20 \% \frac{1}{4} \mathrm{M}$ $\pm 30 \%$ ． 1 M Lin． 100 Ohms to 10 Megohms，Log． 5 Kohms to 5 Megohms． Prices－per ohmic value．each 10 off 25 off 100 off

$2 / 3$	$20 /-$	$45 / 10$	$186 / 8$

GANGED STEREO POTENTIOMETERS（Carbon）
$\frac{1}{2} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$ ．Long Spindle．
Logarithmic and Linear： $5 k+5 k$ to $I M+I M$

each	10 off	25 off	100 off
$8 /-$	$70 /-$	$162 / 6$	$575 /-$

SKELETON PRE－SET POTENTIOMETERS（Carbon）
High quality pre－sets suitable for printed circuit boards of O．lin．P．C．M． 100 Ohms to 5 Megohms（Linear only）．
Miniature： 0.3 W at $70^{\circ} \mathrm{C}$ ．$\pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ above $\frac{1}{4} \mathrm{M}$ ．Horizontal （ $0.7 \mathrm{in} . \times 0.4 \mathrm{in}$ ．P．C．M．）or Vertical（ $0.4 \mathrm{in} . \times 0.2 \mathrm{in}$ ．P．C．M．）
Subminiature： 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above
Prices－per ohmic value
$\begin{array}{lllllll}\text { per ohmic value } & & & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ \text { Miniature }(0.3 W) & . & \ldots & 1 /- & 8 / 9 & 18 / 9 & 66 / 8 \\ \text { Subminiature }(0.1 W) & . . & \therefore & 10 \mathrm{~d} & 7 / 1 & 14 / 7 & 46 / 8\end{array}$

JACK PLUGS

$\frac{4}{4}$ in．Type PI，Standard．Screened．Heavily chromed
$\frac{1}{4} \mathrm{in}$ ．Type $\mathrm{SE} / \mathrm{PI}$ ．Side－entry version of type PI．
ain．Type P2．Standard．Unscreened．Unbreakable moulded cover．
tin．Type P3．Tip－Ring－Sleeve Stereo version of Type PI．
$\frac{1}{2} \mathrm{in}$ ．Type P4．Tip－Ring－Sleeve Stereo version of Type P2．
3.5 mm Type P5．Standard．Screened．Aluminium cover．
3.5 mm Type P6．Standard．Unscreened．Unbreakable moulded cover． Prices－

	each	10 off	25 off	100 off
P1．	$3 /-$	$26 / 8$	$62 / 6$	$233 / 4$
SE／P1．	$3 / 6$	$30 / 10$	$66 / 8$	$280 /-$
P2．	$2 / 6$	$23 / 4$	$54 / 2$	$200 /-$
P3．	$6 / 6$	$60 /-$	$137 / 6$	$500 /-$
P4．	$6 / 2$	$56 / 6$	$127 / 6$	$455 /-$
P5．	$2 / 2$	$19 / 2$	$43 / 9$	$158 / 4$
P6．	$1 / 8$	$15 /-$	$33 / 4$	$116 / 8$

JACK SOCKETS
in．Type S3．Stereo version for use with P3 or P4 plugs．
in．Type S．5．Standard．Moulded body．Chrome insert
3.5 mm Type S．6．Standard．Moulded body．Chrome insert

Available with make or break contacts on Tip，Ring and Sleeve． Prices－

each	10 off	25 off	100 off
$3 / 3$	$30 /-$	$68 / 9$	$250 /-$
$2 / 9$	$25 /-$	$56 / 8$	$216 / 8$
$1 / 6$	$13 / 4$	$33 / 4$	$100 /-$

ELECTROLYTIC CAPACITORS（Mullard）．-10% to $+50 \%$

Subminiature（all valu	$\mu \mathrm{F})$	ditard．		－	
4 V	32	64	125	250	400
6.4 Y － 6.4	25	50	100	200	320
10 V 4	16	32	64	125	200
16 V 2．5	10	20	40	80	125
25 V －1．6	$6 \cdot 4$	12.5	25	50	80
40 V I	4	8	16	32	50
64 V － 0.64	$2 \cdot 5$	5	10	20	32
Price $\quad 1 / 4$	1／3	1／2	1／－	$1 / 1$	1／2
Small（all values in $\mu \mathrm{F}$ ）					
4 V	800	1，250		2，000	3，200
6.4 V	640	1，000		1，600	2，500
10 V	400	640		1，000	1，600
16 V	250	400		640	1，000
25 V	160	250		400	640
40 V	100	160		250	400
64 V	64	100		160	250
Price	1／6	2／－		$2 / 6$	$3 /$.

POLYESTER CAPACITORS（Mullard）
Tubular， 10% ， $160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068$ $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.22 \mu \mathrm{~F}, 1 /-. \quad 0.33 \mu \mathrm{~F}, 1 / 3 . \quad 0.47 \mu \mathrm{~F}, 1 / 6 . \quad 0.68 \mu \mathrm{~F}$, $2 / 3$ ． $1 \mu \mathrm{~F}, 2 / 8$ ．
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$ $7 \mathrm{~d} . \quad 0.033 \mu \mathrm{~F}, 8 \mathrm{~d} . \quad 0.047 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}$ $1 / 6 . \quad 0.33 \mu \mathrm{~F}, 2 / 3 . \quad 0.47 / \mathrm{F}, 2 / 8$.
Modular，metallised．P．C．mounting， 20% ，250V： $0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$ $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /=, 0.33 \mu \mathrm{~F}, 1 / 5$ $0.47 \mu \mathrm{~F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3$ ． $1 \mu \mathrm{~F}, 2 / 9$ ．

SEMICONDUCTORS：OA5，OA81，1／9．OC44，OC45，OC71，OC81， OC81D，OC82D，2／－．OC70，OC72，2／3．AC107，OC75，OC170，OCI71， 2／6．AFII5，AFII6，AF117，ACY19，ACY21，3／3．OC140，4／3．OC200， 5／－．OC139，5／3．OC25，7／－．OC35，8／－．OC23，OC28，8／3．
SILICON RECTIFIERS（0．5A）：170 P．I．V．，2／9． 400 P．I．V．，3／－． 800 P．I．V．，3／3．1，250 P．I．V．，3／9．1，500 P．I．V．，4／－．（0．75A）： 200 P．I．V．， $1 / 6$. 400 P．I．V．，2／－． 800 P．I．Y．，3／3．（6A）： 200 P．I．V．， $3 /-.400$ P．I．V．， $4 /-$. 600 P．I．V．，5／－． 800 P．I．V．，6／－．
SWITCHES（Chrome finish，Silver contacts）：3A 250V，6A 125 V ． Push Buttons：Pushoon or Push－off 5／－．Toggle Switches：SP／ST，3／6， SP／DT，3／9．SP／DT（with centre position）4／．．DP／ST，4／6．DP／DT，5／．

ROTARY SWITCHES（Wafer）

High quality．Rear tags．Long spindle，$\frac{1}{4}$＂Dia
$1 \mathrm{p} / 12 \mathrm{w}, 2 \mathrm{p} / 6 \mathrm{w}, 3 \mathrm{p} / 4 \mathrm{w}, 4 \mathrm{p} / 3 \mathrm{w}, 2 \mathrm{p} / 3 \mathrm{w}$ ．
$\begin{array}{lcccc}\text { Prices－} & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ \text { All Types } & 4 / 6 & 38 / 4 & 83 / 4\end{array}$
PRINTED CIRCUIT BOARD（Vero）．
0.15 in Matrix： $3 \frac{1}{4} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 3 / 3$ ． $5 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 3 / \mathrm{II}$ ． $3 \frac{3}{4}$ in $\times 3 \frac{3}{4} \mathrm{in}, 3 / 11$ ， 5 in \times 3⿳亠丷厂彡⿱丆贝：in， $5 / 6$ ．
0.1 Matrix： 3 腬in $\times 2 \frac{1}{2} \mathrm{in}, 4 /-. \sin \times 2 \frac{1}{2} \mathrm{in}, 4 / 6.3 \frac{3}{4} \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}, 4 / 6.5 \mathrm{in} \times 3 \frac{3}{3} \mathrm{in}$ ， 5／3．

Send S．A．E．for January， 1969 Catalogue
（Visit us－at our new Mail Order，Wholesale \＆Retail Premises）MINIMUM ORDER VALUE 5／－C．W．O．Post and Packing 1／6

S.E.S. $\begin{aligned} & \text { your complete supplier }\end{aligned}$

196 Regent Road, SALFORD 5, Lancashire
TELEPHONE 06I-872 5187
(Member of the Harrop Industrial Group)
C.W.O. please

1/- p. \& p. for orders of components under \&il
Orders of Lektrokit: 2 - handling charge on orders under $£ 1$

$$
5 / \text { - handling charge on orders under } £ 5
$$

RESISTORS: All brand new, Hi-Stab, low noise, 5% tol. carbon film. E24 series 4.7 ohm to $10 \mathrm{M}, 2 \mathrm{~d}$. each or $15 /$ per per of one value value. ${ }^{2} \mathrm{~W}$ W series 2.2 ohm to 3.9 ohm, 8d, each. IWEI2 series 10 ohm to 10 M . 10% tol.). 3d. each. 3 W -wirewound- 0.5 ohm to $12 \mathrm{ohm} .1 / 6 \mathrm{each}$. 5 W wirewound 15 ohm to 8.2 k hm, $1 / 9$ each. S.E.S. Pre-Pack gives you 5 off
 10 ohm to $100 \mathrm{kohm}, 2 \mathrm{~d}$. each.
PRE-SETS: Min, skele:on carbon track, low noise with good stability; Values-Lin: $1 \mathrm{k}, \mathbf{2} 5 \mathrm{kk}, 5 \mathrm{k}$, ete., to 5 M ; Lor: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc., to 1 Mohm ; only lod. each. Sub-Min skeleton Lin. track: $1 \mathrm{k}, 2 \cdot 5 \mathrm{k}, 5 \mathrm{k}$, ete., to 5 M , only 9 d.
3 e each. Stider pre-sets wirewound $\frac{1}{2} \mathrm{~W}$ rating Lin: 10 ohm to $5 \mathrm{k}, 2 / 3$ each.
wirewound fully enclosed Lin. tracks. 10 ohm to $30 \mathrm{k}, 3 / 9$. POTENTIOM
POTENTIOMETERS: Min, enclosed, carbon track and wiper contact only 2/6; Values-Lin: $\mathrm{Ik}, 2.5 \mathrm{k}, 5 \mathrm{k}$, etc., to 10 M ; Log: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc.. to
5 Mohm . Min. with double-pole switch, insulated spindes only $5 / 6$. Yalues Lin: $25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}$; Log: $3 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}$. 3 W wirewound
CAPACITORS: New genuine Mullard Electrolytics

$6.4 V$ 10 V	6.4	25	50	100200	320	640	1,000	all) 1,600	2,500
		16	32	64125	200	400	640	1,000	1,600
25 V	2.5 1.6	10.4	20	4080	125	250	400	640	1,000
40 V		4	12	16 16	80	160	250	400	640
64 V	0.64	2.5	5		32	6	160	250	00
Prices: 1/-				lod. each	32		100		250
				lod. each		$1 / 3$	$1 / 6$	${ }^{1 / 9}$	$2 / 6$
254	800	1,250	2,00					${ }_{\text {ultiples) }}^{8 \rightarrow 8 \mu \mathrm{~F}}$	
40V	500	${ }^{800}$	1,250	2,500	4,000		500 V		6/6
Price	320	500	800	- 1,600	2.500		350 V	32-32 $\mu \mathrm{F}$	$7 / 3$
Prices:	5/-	616		-12/6	15/-		350 V	50-50 $\mu \mathrm{F}$	9

Mullard Miniature Metallised Polyester 250V. $0.01,0.015,0.022,0.033$,
$0.047,0.068 \mu \mathrm{~F}, 6 \mathrm{~d}$. each. $0.1,0.150 .22 \mu \mathrm{~F} .7 \mathrm{~d}$. $03 \mathrm{ch}, 0.020$ Mullard Polyester Film and Foil 400 V . 0.001 .0
0.0068 , ete., to $0.033 \mu \mathrm{~F}$, 6 d . each. 0.047 to $0.1 \mu \mathrm{~F}, 0.0022,0.0033,0.0047$, $0.22 \mu \mathrm{~F}, 1 /=.{ }_{0} 0.33 \mu \mathrm{~F}, 1 / 6$. $0.47 \mu \mathrm{~F}$, 19.047 to $0.1 \mu \mathrm{~F}$, 8 d . each. $0.15 \mu \mathrm{~F}$, 10 d , Disc Ceramies (Erie) $500 \mathrm{~V}, 1,000,4,700$
500 V 2.2pF to 820pF, 1/- each. Polystyrene 160 V . 100 Silver Mieas 1% tol. *** NOW-Bead Tantalums (polarised) $35 \mathrm{~V}, 0.47,0.68,1,000 \mathrm{FF}$, 5 d . each. $3 \cdot 3,4.7,6.8 \mu \mathrm{~F}, 3 / 4$ each. $20 \mathrm{~V} 10 \mu \mathrm{~F}, 15 \mathrm{~V} 22 \mu \mathrm{~F}$, $10 \mathrm{~V} 33 \mu \mathrm{~F} / \mu \mathrm{F}, 2 / \mathrm{f}$ each, 2.2 , $1 / 3$ each. Midget Tubular 20 V - 0.01 , o.022, $0.047 \mu \mathrm{~F}_{\text {, }}$ IOd, each. 0.1, each. 0.22 , SEMICONDUCTORS All
SEMICONDUCTORS: All New and Unused
Mullard; OA5, $1 / 6 ;$ OA81 3/4; OA2022/3; OC71 4/-; OC72 4/6; OC44 7/9 OCt5 6/-; 8C107, 109 3/9 each; BCIO $3 / 6$; BFY51 4/6; MPF $1059 / 6$; 400piv $6 /$ - 800 piv $7 /-5 A$) 500 piv $2 / 9$; 800 piv $3 /-\mathrm{i} 1,500$ piv $3 / 6$; (1.2 A)

 3/3; 2 N 3643 8/6; 2N3794, 2N4289 4/- each; IN 4148 i/6.
SWITCHES: 100 series-SPST 3/8; SPDT 3/11; DPST 4/6; DPDT $4 / 8.400$ push-to-make or push-zo-break 3 , (with centre position) $3 / 8$. Series $500-$ red, black green). Slide Switch $3 / 4$; Wave Chantons available in white Miniaeure "Maka-Switch" also available-Shafts change switches $5 / 9$ each.
PLUGS AND SOCKETS: Min. Plugs (black or red) $6 d$. Min. Socket
7 d . Banana Plugs (black or red) 9 d . 4 mm Sockers to fit. Min. Sockets to fit 9d. Co-Ax Plugs $1 / 2$. Co.Ax Sockets 11 mm . Sockets to fit (black, red, green) 2/- eaeh. Min. Jack Plugs and Sockets $3 /$ - each. Recorder Plugs 3 -way $2 / 7$ 5-way 3/-. Recorder Sockets 3 -way 1/2, 5-way $1 / 4$.
WIRE: Min. Stranded (available in 10 colours) 3d, yd. Solid Core 3d. yd.

LAMPS; Min Wir
Lighps: Min. Wire Ended Neons $2 /-$; Panel Neon Indicator 6/4; Pilot SOLDERING $8 /-$ Min. Flange Light +12 V bulb $11 /-$.
SOLDERING IRONS: A.N.T.E.X. CN240 I5W mains operated, smalI, and elements available. Also stands for ally shaped handle, $35 /-$. Spare bits and elements available. Also stands for above irons, $11 / 6$ each. **pare Now
SOLDER by Muteicore-at Reduced Prices to Everyone! Size A-Approx 20ft coil $60 / 40$ Alloy 22 s.w.g. in dispenser. Recommended retail price individually packed. Recommended retail price 15/-. OUR PRICE $\mathbf{2 0}$ i2/6. BIB Wire Srippers: strips inmended retail price $15 /$, OUR PRICE i2j6.
retail price $4 / 6$, OUR PRICE $4 /$-.
LEKTROKIT: Chassis construction system-the professional look to a home 2 eonstruction. Parts io build a chassis $87 \times 4 \mathrm{in} .-2$ chassis rails $1 / 10$ each. Pefforated cover $5 / 5$. 2 Front panel (covered in crack-proof paint) $8 / 3$.
 aluminium board $\mathbf{2 / 2}$. Aluminium board above ehassis. Plain perforated B8A. B9A, 2/6. Aluminium board drilled for 2 valveholders inders 876 . octal, UX4, etc., 2/4. 0.1 in . perforated grid SRBP board $2 / 9$ international
 lead throughs $6 d$. each. Pins for SRBP board $4 / 6100$.)
For full details of all our stocks send $3 / 6$ for our bright explanatory 120 page eatalogue, or 6d. stamp for Data Sheets.

VALVES SAME DAY SERVICE NEW! TESTED! GUARANTEED!
SETS $\begin{aligned} & \text { 1R5, 1S5, 1T4, 3S4, 3V4, DAF91, DF91, DK91, DL92, DL9 } \\ & \text { Set of } 4 \text { for 18/B. DAF96, DF96, DK96, DI96, } 4 \text { for } 20 / 6\end{aligned}$

ELEGTROVALUE

EYERYTHING BRAND NEW AND TO SPEC. NO SURPLUS SPECIALIST SUPPLIERS OF TRANSISTORS
IN TYPES TO SUIT ALMOST ALL APPLICATIONS

- COMPETITIVE PRICES
- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE Our latest 1969 catalogue is packed with up-to-the-minute items and invaluable information. Send $1 / 6$ for your copy now.
DISCOUNTS 10\% on orders for components for £ 3 or more. 15% on orders for components for £ 10 or more.
- POSTAGE on orders for $£ 1$, add $1 /$. FREE on orders for El or over. Overseas orders welcome-Carriage charged at cost.
ELECTROVALUE (DEPT. PE), 32a ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY Telephone: Egham 5533 (STD 0784-3)

Fig. 3.6. Low pass filter circuit (a) and the typical frequency response (b)

Fig. 3.7. High pass filter circuit (a) and the typical frequency response (b)

For this application an operational amplifier is required that does not invert the signal applied to its input. This is easily obtained with emitter-coupled amplifiers shown in Figs. 3.2 and 3.3. Since outputs can be obtained from either collector output terminal, one will be inverted and used for stabilising feedback and the other is required for filter feedback purposes.
The circuit for a low-pass filter is shown in Fig. 3.6a. This circuit will pass signals of a frequency lower than the turn-over frequency f_{c} without any attenuation. At frequencies higher than this the signals are considerably reduced. This is shown in Fig. 3.6b which gives the filter gain performance.

With $R_{\mathrm{i}}=R_{\mathrm{fb}}=100 \mathrm{k} \Omega$ and $\mathrm{R1}=100 \mathrm{k} \Omega$ and $\mathrm{R} 2=600 \mathrm{k} \Omega$ then the cut-off frequency of the filter depends on the values chosen for C 1 and C 2 . The relationship is:

$$
\mathrm{C} 1=\frac{2 \cdot 1}{f_{\mathrm{c}}} \mu \mathrm{~F}
$$

and

$$
\mathrm{C} 2=\frac{0.35}{f_{\mathrm{c}}} \mu \mathrm{~F}
$$

where f_{c} is the turn-over frequency in hertz.
Thus if we required a filter to cut all frequencies higher than 9 kHz , then with the resistance values given above,

$$
\mathrm{Cl}=\frac{2 \cdot 1 \times 10^{6}}{9,000}=233 \mathrm{pF}
$$

and

$$
\mathrm{C} 2=\frac{0.35 \times 10^{6}}{9,000}=40 \mathrm{pF}
$$

The counterpart of this filter is the high-pass filter which attenuates all signals below the turn-over frequency, f_{c}. The circuit is given in Fig. 7a.

Here $R_{\mathrm{i}}=R_{\mathrm{tb}}=100 \mathrm{k} \Omega$ as before, and with $\mathrm{R} 1=250 \mathrm{k} \Omega$ and $\mathrm{R} 2=1 \mathrm{M} \Omega$ the capacitors are given as;

$$
\mathrm{Cl}=\mathrm{C} 2=\frac{0.5}{f_{\mathrm{c}}} \mu \mathrm{~F}
$$

again with f_{c} given in hertz.
This filter might be used to cut out turntable rumble in a record reproducing system. For example, if we let $f_{\mathrm{c}}=60 \mathrm{~Hz}$ then with the resistance values given above,

$$
\mathrm{Cl}=\mathrm{C} 2=\frac{0.5}{60}=0.083 \mu \mathrm{~F}
$$

The component values need to be accurate to ± 10 per cent if the correct cut-off frequency is to be obtained.

It is possible by using two operational amplifiers to assemble a bandpass filter quickly from a combination of a low-pass filter in series with a high-pass filter. This may be useful where a particular frequency or band of frequencies are to be excluded from a signal extending over a range of frequencies.

It is hoped that these three articles have illustrated the wide versatility of the operational amplifier. Many other applications are possible than those given and will suggest themselves to the user as familiarity is gained in the use of the amplifier. Indeed the experimenter may well find the operational amplifier becoming an indispensible part of his workshop tool kit for solving almost any electronic problem!

Correspondents wishing a reply must enclose a stamped addressed envelope

Tongue Tied

Sir-The article An International Technical Language by R. Spathaky in June P.E. made me wonder if fellow readers are aware that a working international language already exists? Esperanto, spoken by several million people throughout our world, meets all the requirements for a simple technical language.
Technical books in Esperanto are all available through the "Brita Esperantista Asocio", Holland Park Avenue, London, W. I

The International Electrotechnical Commission, which your article mentions in its opening paragraph, include Esperanto in their multilanguage dictionary of technical terms.

I enclose a copy of a translation of the first two paragraphs of your article about voltage indicators.

Tensiaj Indikiloj

Miniaturaj neonaj diodoj kiuj enhavas malgrandajn elektrodojn ofte trovigas en hejma aparataro. La speco de cirkvito kiun oni povas uzi montrigas per figuro 2.1. La diodoj posedas du identajn elektrodojn por ke la kurento tra ili povas fiui ambaưdirekten sen troa damago; la diodoj kiuj montrigas en la cirkvito estas tial reprezentataj per simetria simbolo, c̀iu elektrodo kombinas la simbolojn de la anodo kaj malvarma katodo.
Kiam la ŝaltilo fermiĝas, la neona diodo arkas tuj kiam la momenta tensio de la alterniga linia enfluo atingas la arkan tension de la diodo uzata. La tubo estingiǵos kiam la linia tensio falas sub la subtenanta tensio če la fino de ćiu duonckilo sed ekbrilos denove dum la sekvanta duonciklo. Tial la tubo eligas 100 ekbrilojn po sekunde sed la okulo vidas plene konstantan lumadon.
A. McConachie,

Great Malvern.

Alarm circuifry

Sir-I was interested to read Mr Bollen's excellent article on his modulated light burglar alarm but I was surprised to see his complicated solution to the problem of an a.c. latching relay. Might I propose a simpler circuit which would not require delicate setting up adjustments? See Fig. 1 below.

Though I have not had an opportunity of verifying this, I feel sure that the output of Mr Bollen's amplifier would operate a suitable low impedance relay or reed relay without biasing.
I also have another suggestion which I discovered in another connection; a greater modulated light output may be obtained from a low voltage filament bulb by operating it on unfiltered half-wave rectified a.c. rather than plain a.c. (see Fig. 2 below).

It is safe to increase the supply voltage slightly.

> J. Wrigley, Cambridge.

Although the relay system chosen for the I.R. Alarm might appear to be complicated and difficult to set up, a closer examination will show that it offers several advantages when compared with more fomiliar systems.
Firstly, a magnetically biased reed relay will operate at inputs of typically less than 8 mW , an unbiased reed relay at 30 mW , and a similar priced conventional armature relay at more than 200 mW . Also, bearing in mind that a changeover reed switch costs four times as much os a "make ond break" reed switch, the price of a biased reed relay, including magnet, works out at about two thirds that of a reed or armoture latching relay. It follows from the above that the magnetically biased reed switch was chosen for the I.R. Alarm because it offered the best sensitivity for the lowest cost, and is, in fact, not at all difficult to adjust and set up.

Mr Wrigley's second point concerning the use of unfiltered half-wave rectified a.c. to supply the bulb is quite valid, and should increase the maximum beam path of the I.R. Alarm by giving a greater depth of modulation of the light.
D. Bollen

Strobe Effect

Sir-I feel I must write to you with a serious warning about the use of stroboscopes at low frequencies.

It is well known in neurological circles that a light flashing at a rate of 10 to 15 Hz can induce an epileptic fit into some members of our species -especially if the eyes are closed or if the ambient light level is low. For this reason if a stroboscope is used at these frequencies it must be in conditions of high ambient lighting and for short periods only. Also for this reason it is advisable to have some form of push button switch on the light unit itself so that should epilepsy set in the light will cease to operate.

One word of consolationalthough the experience is very unpleasant it should leave no after effects and the condition ceases as soon as stimulation is removed.

Anyone interested in this phenomena would do well to read Dr Gray-Walter's book the Living Brain which not only deals with this subject but also has quite a lot of space devoted to two "animals" Machina speculatrix and Machina doeilis.
C. J. Manwell,

University of Wales Institute of Science \& Technology,

Penylan, Cardiff.

Mobile Rully

Sir-I would be very grateful if you could find space in your next issue to publish details of our first mobile rally.
Called the "White Rose Mobile Rally", it will be held on the July 27 at Allerton Girls' High School, Leeds, Yorkshire. There is ample car parking facilities and talk-in is on 160 and 2 metres.

There will be a demonstration station, refreshments, and something for XYLs and children.
R. Short, G3YEE,

Pudsey and District Radio Club, Bramley Liberal Club,

Fig. I. Simple a.c. latching relay circuit
Fig. 2. used in record recks ideal also for extractor fans, blower, heater, etc. New and perfect. snip at $8 / 6$. Postage - for first one then orlered. 12 and over pnat free.

ROTISSERIE
 MOTOR

Very powerfu! 7 r.p.us, operates
fron standari plus $3 / 6 \mathrm{P}$. \& P .

230 VOLT SOLENOID

Famous war-time "cat's eye" used
for seeing in the dark. This is an
intra-red image con-intra-redinage con-
verter with a silver caesium screen
which lights up (like which lights up (like
a cat hote fay tube) a cathote ray tube)
when the electrons
released released by the
opportunity for some infra-red atrike it. A golden opportunity for come
interesting experiments. $7 / 6$ each, post $2 / 6$. Data will be supplied with cells, if requested.

MAINS TRANSFORMER SNIP

Making a power pack for
amplifier or other equipamplifier or other equipment? These transformers have normal mains primaries (230/40V) and isolated secondaries two types (1) $12 \mathrm{~V}, 500 \mathrm{~mA}$ at
$8 / 6 ;$ (2) 15 V . 500 mA at

3PRING COIL LEADS as fitted to telephones,
4 core $2 / 6$ each, 3 core $2 /-$ PP3 ELIMINATOR. Play your pocket radio from the mains! save \&s. Com-
plete componert lit comprises 4 plete componerit kit comprises ${ }^{4}$,
rectifiers-mains dropper resistances, rectifiers-mains dropper resistasces; simoothing condenser and $\begin{aligned} & \text { and } \\ & \text { tions } \\ & \text { and }\end{aligned}$

QUADRUPLE TAPE
Qualruple tape on 3 in . spool giving 600it. Of the finest quality by very famous niaker. Especially suitable for message tapes and portable equipplus $2 / 9 \mathrm{p}$. \& p. or 3 for $22 / 6$ post pajd.

EXTRACTOR FAN

leans the air at the rate
of 10,000 cubic feet per of 10,000 cubic feet per cord it extracts grease, grime and cooking smells before they dirty decorations. Suitable for kit chens, bathrooms,
factories,
changing factories, changing be heard. Compact, 6 ins. casing with spin. fan blades. Suitable wherever it is necessary to move air fast. Kit conprises motor, fan blades, sheet steel
casing, pull switch, mains connector and fixing
brackets. $39^{\prime} 6$ plus $6 / 6$ post and insurance brackets. 39/6 plus b/6 post and insurance.

TRANSISTOR

SET CASE
 net.
with chrome handle, tuñing knob and scale. Price 4/B plus $2 /-$ postage.
Printed circuit board for Printed circu
this case $2 ; 6$.

[^0]
VARYLITE

Wibl ulim fivorescent or incansiescent lighting up to 600 watts from full brilliance to out. Fitted on M.K. flush plate, same size and fixing as standaril wall switch so may be fitted in plastic box with control knob $\mathbf{~} 3.19 .6$.

NICAD RECHARGEABLE BATTERIES

$3.6 \mathrm{~V} ~ 500 \mathrm{~mA}$ size $11 \times 13 \mathrm{in}$. dia. type ref. DKZ500 really price $17 / 6$ each. New and cuaranteed. Ot her voltages available single cell $1 \cdot 2 \mathrm{~V}^{6 / 6}$. 5 cell $6 \mathrm{~V} 29 / 6$.

ELECTRIC CLOCK WITH 20 AMP SWITCH

Made by Snith's these units are as fitted to many top quality cookers to control the oven. rodled so it is extremely accurate. The two small dials enable switch on and off times to be accurately set-also on the left is another timer or alarm-this may be set in minutes up to 4 hours. At the end of the period a bell will sound. Ideal for switching on tape recorders. Offered at only
a fraction of the regular price-only $45 /-$, less than the value of the clock alone - post and
 insurance $2 / 9$.

THIS MONTH'S SNIP

BATTERY OPERATED TAPE DECK

With Capstan control. This unit is extremely With Capstanl control. This unit is extremely leep. Has three piano key type controls for Record, Playback and Rewind. Motor is a special heavy duty type intended for opera-
tion off $4 / 5$ volts. supplied complete with 2 tion of $4 / 5$ volts. Supplied complete with 2 is the sensitive M4 type intended for use with
e $59 / 6$. Post and insurance $4 / 5$.

DISTRIBUTION PANELS
Just what you need for work bench or lab. 4×13 amp sockets in metal box to take standard 13 amp fused plugs. Supplied conplete with 6 feet of heavy cable and
13 amp plug. Similar advertised nt 85 . Our price $38 / 6$ plus $3 / 5$ post and ing.

PROCESS TIME CONTROLLER

 Made by Smiths, motorised and mains ilrivent, enables 15 A circuit to be started up to 18 hours in advance and to stay on for a period from 15 minutes to 3 hours. Totally enclosed in matal box with glass front
surround. $49 / 6$ plus $4 / 7$ post and insurance.

REED SWITCH

suitable for dozens of different applications, such a burglar alarms, conveyor belt switching. These are simply glass encased switches which can be operated by a passing permanent maknet con. A special buy enables us to offer these at $2 / 6$ each. or 24/- a dozen. Ruitable nagnets are 1/- each.

MOVING COIL METER BARGAIN

Panel meters are always being needed and they are jolly costly when yon have to buy them in a hurry - so you should take advantage of this offer: 2 in . moving coil flush mounting meters only $9 / 6$. These are actually R.F. meters and cost about $\& 3$ each but if you lon't want then for R.F. then all you have to do is to remove the thermocouple and you will have a $2-3$ ma. meter which you can mak
into almost anything by afling shunts or series resistor. New and unueth.

MOTORISED CAM SWITCH

Male by the fanous meter company Chamberlain and Hookham, these have a normal mains $2 \mathrm{CO-240V}$ motor which
Irives a ratchef nuechanism so geared to give one ratchet drives a ratchet mechanism so geared to give one ratchet
actinn per minute on a wheel with 60 teeth thus a conplete revolution of the can takes place in one hour. The cant operates 8 switches (6 changeover and 2 on/off thus 480 circuit changes per hour are possible). Contacts, rated at $1 \overline{5}$ amps have been set for certain switch combinations but can, no doubt, be altered to suit a specinl job. Also nther switch waters or devices can he attached to the shaft
approximately one inch. $47 / 6, \mathrm{p}$. in . $4 / 6$.

MAINS TRANSISTOR POWER PACK

Designed to operate transistor sets and amplifers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}^{\circ}$, 12 V for up to 500 mA (class \mathbf{B} working). Takes the place of any of the follow: ing batteries: PP1, PP3, PP4, PP6, PP7, PP9, and others. Kit comprises mains transformer rectifier, smoothing and load resistor, condensers and instructions. Real snip at only 16/6, plus $3 / f$ postage.

FLEX CABLE BARGAIN

$23 / 0076$ triple core P.V.C. covered, circular, normally sold at $1 / 6 \mathrm{yd}$. Our price 100 yd . coil $£ 3.19 .6$. Post and insurance 6/6.

Multi Purpore Neon Test Unit. Robust, userul and instructive, teats insulation, capacity, continuity reaistor, volume controls, alan acts as gigna injector and L.T. fault finder, kit comprises neon inulicator, 4 -way wafer-switch, ebonite tubes, resistors-contenser, terminale, etc, with dia gram, only 9/6, plus 2/-post and insurance. Tuning Condenser, sulid di-electric .0005 mfl . variable $2 / 6$ each, $24 /$ - Inzen.
A.E.I. Fractional H.P. Motor. 200/250 $50 / 60$ c.p.e. enclosefl, continunus rating $\mathrm{J} / 40 \mathrm{~h} . \mathrm{p}$., ex equip. Perfect order, 19/6, plus 4/6
Experimenting with ultra violet? Philips U.V lamp, 16/6; holder and contrn! gear 18:6 plus 4/6 post.
G.E.C. Black Light Tube for experiments and special lighting effectr- 40 watt 2 ft , tubes only, 14/6 each: holders and control gear, 19/6, plus 4/6 post.
Clock Motor. 230 5 50 c.p.s. synchromous-sels starting $3 / 6$.
Pentode Output Transiormer. Standivil size, 40-1, 5:8 each.
E.H.T. Condenser. $0-1$ mid. $3 \mathrm{kV}, 8,6$ each

Neon Mains Tester, $1 / 8$ each, 12 - cloz.
Flood Lamp Control. Our lim and full switch is dieal for controlling photo flooll lampsi it gives laups off. Similar control of other applinnces can be arranged where used in pair or where circuit can be aplit exactly in half. Teehnically the switch is known as a double-pole change over with off. Our price $8 / 6$.
Sub-Miniature Silicone Diodes. General purpose type with gold-platell leads, 1/- each or $7 / 6$ per lozen.
Message Tapes. 225 ft . Tape on 3 in . spoole, nor mally $4 / 6$ each, we ofler 4 tapes for 12:6.
Circular Flex. Non-kink, ifleal-for vacuum clenners etc., twin made by BICC. Vaually 8 d. yd., 100 yd coil for $30 /-$ plus h-postage.
Edgewise Control. Morganite, as fitted many Lransistor ratios, 2 K or
or 24/-per anzen.
12V Inverter. Full transistorisel for operating a
and 23.10.0. Post and insurance $3 /-$. Silicon Rectifer. Equiv. BY100 $\overline{5} 0 \mathrm{~mA} 400 \mathrm{~V}$, 10 for 201
Miniature Pickup for Tin. records manle by Cobmoende, crystal cart dozen.
Eeadphones. Ex WD, unused and perfect, low resistance, single with headmind 4/6, Double with Midget Feons for matins indicators, etc., $1 / 3$ each or $12 /$ - rozen. Compression Trimmers. Twin $100 \mathrm{p} F, 1 /-$ each;
3in. PM Loudspeskers. 3 ohm, $12 / 6 ; 80$ ohm, $8 / 6$, Rotary Csm Opersted Switch. 12 positions each of which close a separate pair of contacts except the 250 V 16 anipe, $15 /$-each. Rotary Csm Opersted Switch. \& positions: let position all contacts open: 2 nil contact 1 closed; 3 rd contacts 1 and 2 closed: 4 th contacts 1,2 and 3 closed. Contact rated 250 V 1ti amps, $8 / 8$ each. Pocket Test Heter, measures AC volts (3 ranges), DC Volts (3 ranges), ohms, milli amps, ideal to carry aroum?. Complete with instructions and test proils. $39 / 6$ plus $2 / 6$ p. \& p.
Breast Microphone. Fine American nade dynamic type, atjustable on breast plate with neck straps,
Circulsr Fluorescent. 22 watt, Min. diam. tube eomplete bith choke, atarter, holders and chrome clips, 29/6, pnst, etc., 4/6.
Midget Relay twin 250 ohm coils, size approx. $1 \frac{1}{2} \mathrm{in} . \times \mathrm{lin} . \quad 1 \mathrm{in}$. 4 pairs changenver contacts, $7 / 8$ each.
$1,000 \mathrm{~W}$
1,000W Fire Spiral, repltcement for ninst fires, $1 / 3$ 50 ohm 50 watt Wire Wound Pot-meters, 8,8 each 1 Mer Miniature. Pot-meter Morganite standard
tin. spinille $1 /-$ each; $9 /$ - per dinzen.
1 Meg Miniature. Pot-meter Morganite preset surewilriver control. 9d. each; 8/-per dozen.
Pre-Set 100 K by Welwyn with intrical bakelite knoh, 1/- each; $9 /-$ per dozen.
100 K Pot-Mifeter. Mininture tspe with double pole switch ansl standard $\ddagger \mathrm{in}$. spintle, by Morganite,
Battery Motor $1 \frac{1}{2} \mathrm{in}$. long, $\overline{\mathrm{in}}$. Hia., operates from Battery motor 1 upards, reversible, speed variable by changing roltage or resistance $4 / 6$ each, $50 /-$ doz.
Thermal Relay. Can be ueed to delay the supply of HT while heaters warm up, or will enable 15.A loads to be controlled by miniature 8 witches or relays. Regular list price over $£ 2$, price $7 / 6$ each.
Toggle Switch Bargain, 10 A 250 V nornm one Toggle Switch Bargain, 10 A 250 Y
hole fitting $2 / 9$ each: or $30 /-$ per doz.

QUICK CUPPA

Mini Inmersion Feater, 350 W $200 / 240 \mathrm{~V}$. Boils fuli cup in about tho ninutes. holder. Have at bedside for tea, baby's food, etc. 18/6, post and insurance 1/6. 12V car model also available.

Yarn Clearer made by Bendix
The best buy in years. Photo transistor Control Clearer, 1000's of uses, complete, only requires 2-9 volt batteries to operate. Capable of intercepting slub or variation in diameter of thread whilst passing lens at 60 ft per second. Circuit comprises of OCP7I photo transistor discriminator, amplifier optical system, including servo conerolled light source to provide accurate sensitivity constantly, temperature compensated.
pots, pots, zener, diodes, etc. Complete with cinch 8 -way plug and socket. lens system and light source all encased in diecast unit, at a very minimal fraction of cost,

E4 18s 6d

including post and packing, sircuit and details. Only 150 left. C.W.O. please.
Tested, in new condition. Not junk but high-class professional equipment

Return of post delivery guaranteed.
Southern Electronics Ltd. 7 South Terrace, Cork, Ireland

CITY AND COUNTY OF BRISTOL BRISTOL TECHNICAL COLLEGE CAREERS IN RADIO AND RADAR

Marine Radio Officers
2 year full-time course leading to the Second and First Class P.M.G. Certificates and the B.O.T. Radar Maintenance Certificate.
Conversion Course (Second Class to First Class). R.T. Licences (Full or Restricted).

Licensed Aircraft Radio Engineers full-time course covering the Aircraft Radio Engineer nces categories A \& B, issued by the Board of Trade Aving (A \& B) in association with the above. Courses for Qualified Marine Radio Officers Single Side Band Techniques (2 weeks) Marine Electronics Diploma Course ($($ months)

Training is given on the latest types of Marine and Aircraft equipment in approved Laboratories at THE SCHOOL OF RADIO AND RADAR Senior Lecturer-in-Charge: F. E. Barlerop

For further information, apply: Registrar
Bristol Technical College
Ashley Down BRISTOL 7

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 79/6 p.p. 2/6.

De. Luxe Professional Kit De Luxe Prolessional Kie
with 17 tools $130 /-$ p.p. Wi/6.
Money Ref. Guarantee.

VALUE
 ALLTHE
 WAY

INTEGRATED

 CIRCUITSBI-PAK MONOLITHIC
 Bras.a.t G-Input AND grate $9 / 6$ eacb. BP314A, 7 Input NOR gate, $9 / 6$ each.
BP315A.
Dual P315A, Dual 3.Input SP316A, Dual 2 -Input MOR gate (expandable), 9/6 each.
BP320A, J.K-Binary element, $11 / 6$ each.
BP332A, Dual 3-Input OR gate, $8 / 8$ each.
BI-PAE MOROLITHIC (TO-5 8 lead) BP709C, Operatlonal amp11fer, 15/- each.
BPT01C, Operational ampliffer (with Zener out put), 12,6 each. BP702C, Operational amp put), $12 ; 6$ each. BP501, Wide ha
fier, $18 /-$ each.
BP52I, Logarithmic wide band amp., 14/- each. BP210C, General purpose amplifier (TO-5. 8 lead). (voltage or current amp.) $12: 6$ each.
L.C. Operational Ampliffer with Zeneri ontput. Prolects. 8 Lead TO-5 Pase Full data.
our price $12 / 6$ each 5 off Il/-ench. Large Qt? Prices quoted for

OTHER MONOLITEIC

 DEVICESBP4 8 each
$8 / 8$.
This device is a monolithic 1.C. that acts as combined threshold detector and trigger eircuit for control to pulse the gate of thyristor at the point of zero supply voltage, and therefore elominate radio frequency interierence when user! with resistive loads.
D13D1 Silicon TVilateral switch 10/- each.
A Silicon Planar, monohaving thyristor electrical characteristics, but with an anode grate apd a built-in "Zener" tiode between gate and cathode. Full data and application cir-

FAIRCHILD (U.B.A.)

 DTEGRATED CIRCUITS Epoxy case 78-5 lead temp. range Bufter, $10 / 6$ each UL914, Dual two-input LL914, DualUL923 J-K-flip-flop, 14/each.
Complete clata and circuits for the Fairchild I.C.'s ávallable in hooklet form priced 1/6.

MULLARD I.C.

TAA243, Operational amp lifter, $70 /$ each.
TAA263, Linear AF amplifler, 18/6 each.
TAA293, General purpose
CA3080 RCA (U.S.A.)
CATEAR HTEGRATED CIRCUTRS
Audio Power Amplifier, 80/- each.
Owing to the mass of 1.C. printed matter often required by customers in connection with the I.C.'s
themalves we ask you to hembelyer we ask you to
help us in the cost of reproducing this literature
rey adding
by
towards by adding 28. this is only necds
Banc. sary when a number of

Sil. trans. suitsble for Eq.E. Organ. ZTX 800 1/= esch. Any ets.

ADI61 . PPA
ADI62 $P_{N P}$
MATCHED COMPLEMENTARY PAIRS OF GERM. POWER TRANSJSTORS.
For mains driven out. and Radio receivers
OUR LOWEST PRICE OF 12/6 PER PA/R

HIGH POWER SILI CON PLANAR TRAN SISTORS
TEXAS
T0.3.
VCB104
AT. 15M/cs
VCE100 Ptot. 40W
VEB8
VEB8 hFE(inin.)

FREE

One 10/- Fack of your own choice iree with

SEMCONDUCTOR HANDBOOK th introluction with introluction to
basic circuits, regigtered transistor and diode types, full specificat tons. Eleven languages includFrench, German Swedich, Spanish and Swedioh,
Italian.
240 pages of semiconductor information. Price 28/6. Money re
funded if funded
satisfied.

NPY DIFFUSED SILICON PHOTO. DUO-DIODE TYPE IS701 (252175) for Tape Readout, bigh aritching and measurement indi cators, $50 \mathrm{~V}, 200 \mathrm{~mW}$ OUR PRICE 10-EACH FULL DETAILS

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS

NEW BI-PAK UNTESTED SEMICONDUCTORS

Satisfaction GUARANTEED in Every Pak, or money back. Pak No. U1 120 Glass Sub-min. General Purpose Germanium Diodes..... 10/-	
C2	60 Mixed Germanium Transistors AF
V3	75 Germanium Gold Bonded Diodes sim. O.
U'4	40 Germanlum Transistors like OC81, ACl28
$\underline{5}$	60200 mA Sub-min. Sil. Diod
6	40 Sillicon Planar Trancistors NPN sim. BSY95A, 2N706 ... 10/-
U7	16 Silicon Rectifers Top-Hat 750 mA upto $1,000 \mathrm{~V}$
$\overline{4} 8$	60 Sil. Planar Diodes 250 mA OA/200/202
U9	20 Mixed Folts 1 watt Zener Diodes
C11	30 PNXP Silicon Planat Traneistors T0-5 sim. 2Nil132 10
U12	12 silicon Rectifiers EPOXY BY126/127
U13	30 PNP-N PN Sil. Transistore OC200 है 25
V14	150 Mixed Silicon and Germaniun Diodes
115	30 NPN silicon Planar Transistors TO-5 sin. 2N697......... 10
U16	10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV
V17	30 Germanium PNP AF Transistors TO-5 like ACY 17.2
C18	86 -Amp Silicon Rectifiers BYZ13 Type up to 600 P
U19	30 Silicon NPN Transistorg like BCi08
¢20	$121 \cdot 5-\mathrm{amp} \mathrm{S}$
U21	$30 \mathrm{~A} . \mathrm{F}$. Germaniun alloy Transistors 2(3)30
U22	10 l-amp Glass Min. Silicon Rectifiers High Volt
L23	30 Madt
C24	20 Germa
U25	$35300 \mathrm{Mc} / \mathrm{s}$ NPK Silic
で26	30
	Experimenters Assortment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, etc., 8 Assorted Pieces
	101 a
V30	15
C	20
L	25
133	15 Plaetic
L	30 Sil. PNP alloy trans. TO-5 BCX $26,28302 / 4$
L35	25 Sil. Planar trant. PNP TO-18 2N2
U36	25 Sil. Planar NPN trans. TO-5 BFY 50/51/52
	30 Sil. alloy trans. sO-2 PNP, OC200 2
	20 Fast Switching Sil. trans. NPN, 400Mc/8 2N3011
	30 RF Germ. PNP trans. 2N1303/
0	10 Dual trans. 6 lead TO-5 2 N 2
E41	30 RF Germ. trans. TO-1 OC4
C42	10 VHF Germ. PNP trans. TO 1 NKT667 AF

Code Nos. mentioned above are given as a guide to the ty
the Pak. The devices themselves are nornally unnarked

SIL. G.P. DIODES

 ${ }_{25 \mathrm{PIV}(\text { Min. })}^{300 \mathrm{~mW}}{ }^{30}$ Sub-3in. 500 Fully Tested 1,000 Ideal for Organ Buildere.
CADMIUM CELLS

ORP60 ORP618/ each ORP12 8/8

fULL RAMGE OF ZENER DIODES

FOLIAGERANGE 2-187
400 mW (Do-7 Case).....2/6 each
 All fullv tested 5 . toi. an state voltage required.

TRANBISTOR EQTT. BOOK 52 pagees of cross reterences for
 Japanese. §pecially 'miported b JIPAK..............10/- each

BRAND NEW TEXAS GERM. TRANSISTORS Coded and Guaranteed

Pak	
T1	8
T2	8
T3	8
T4	8
T5	8
T	8
T	8
T8	8
T9	8
T10	

PRINTED CIRCUITS

EX-COMPUTER

Packed with semiconductors and components, 10 boards give a guaranteed
diodeg. Our price 10 bans. and 30
boarda $10 /=$ diodes. Our pric
Plus $2 /-$ P. \& P.

GERM. RECTIFIER SIHGLEPHASE BRIDGE. Mullard type. CgX $541-$ B. P. Output Ylts. 48 V .
Output I.C. 5 . Liat Price 58/-

2K2060 NPN SIL. DUAL TRANS. CODE D1699 TEKAS. OUR PRICE 5/- each

120 VCB KIXIE DEIVER TRANSISTOR Bim. BEX2I 4407. 2N1893 FULLY TESTED AND CODED ND120. $1-24$ 8/6 each. TO-5 NPN 25 up 3/- each.

PLEASE NOTE, To avoid any further Increased Postal Charges to our Customers and enable us to keep our "By Return Postal service " which is second to none, we have re-organized and streaniment our Despatch order Depart send all your orders together with your remittance, direct to our Warehouse and Despatch Department, postal address: BI-PAK SEMCONDUCTORS, Derpsich
Dept. P.O. BOX B, WARE, Dept.. P.O. BOX 6, WARE,
HERTS. Postage and packing stili

FET'S

UNIJUNCTION
 7/6 EACH
25-99 5/- 100 UP 4/-

TESTED SCR'S

SIL. RECTS. TESTED
PIV 750 mA 3 A 10A 30 A

			A
50	1/8	$2 / 9$	4/3 816
100	1/8	$3 / 8$	4/6 15/-
200	1/8	4/-	4/9 201.
300	2/3	4/8	6/6 22/-
400	216	5/6	7/6 25/-
500	3/-	6/	$8 / 6301-$
600	3/8	8/8	9/-87/-
800	$3 / 6$	7/6	11/= 40/0
1000	5/-	9/3	12/6

QUALITY-TESTED PAKS

6 Matched Trans, OC44/45/81/81D
0 Red Spot AF Trans. PNP
White Spot RF Trans. PN
White Spot RF Trans. PNP.
10 A Silicon Rects. 100 PIV
OCl 140 I'rang. NP S Switching
12 A SCR 100 P1
Sil. Trans. 25303 PNP
Zener Diodes $240 \mathrm{~mW} 3-12 \mathrm{~V}$
200 Mc/s sil. Trans. NPN BSY26/2
Zener Dlodes $\mathrm{I} W 33 \mathrm{~V} 5 \%$ Tol.
High Current Trang. OC42 Eqvt.
2 Power Tranaistors 1 OC26 1 OC3
Sllicon Recte, 400 PIV: 250 mA
OCT5 Transistors
Power Trads. OC20 100 F
OA202 Sil. Diodes Sub-min......
Low Noise Trans. NPN 2N929/30 2 Low Noise Trans. NPN 100 ZT86
OA81 Diodes..
40 OC72 Transistors
4 OC77 Iransistors
4 Sil. Rects. 400 PIV 500 mA
5 GET884 Trans. Eqvi. OC44
2 2N708 Sil. Trans. $300 \mathrm{Mc} / \mathrm{s}$ NP 2N708 Sil. Trans. $300 \mathrm{Mc} / \mathrm{B}$ NPN IN914 Sil, Diodes 75 PIV 75 m 80 A95 Gerar. Diodes Sub-min. IN69 NPN Germ. Trans. NKT773 EqVt. .
OC22 Power Trans. Germ
OC25 Power Trans. Cerm.
4 AC128 Trans. PNP High Gain . AC1271128 Comp, pair PNP/NPI 2N1307 PNP Switching Trans. AF116 Type Trans.
Asgorted Germ. Diodes Marked
ACl 26 Germ. PNP Trans.
Sllicon Rects. 100 PIV 750 mA
AF117 Trans. ...
OC171 Trane.
2N2926 Sil. Epoxy Trans. 0C71 Type Trans.
${ }^{2 S 701}$ Vil. Trans. Texas
10 A 600 PIV Sil, Recte. IS 46 R BC108 Sil. NPN High Gain Trad
2N910 NPN Sil. Trans. VCB 100 1000 PIV Sil. Rect. 1.5 A R 53310 AF BSY95A Sil. Trang. NPN 200Mc/ 3 OC200 Sil. Trans

GET880 Low Noise Germ. Trans
AF139 PAP High Freq. Tran8.
4 Madt's 2 MAT100 \& 2MAT120
3 Madt's 2 MAT101 \& 1 MAT121
OC44 Germ. Trans. AF .
ACl27 NPN Germ. Trads.
2N 3906 Sil. PNP Trans. Motorola
Sil. Power Rects. BYZ13............
2 Sil. Power Rects. BYZ13
TK201A.
Zener Diodes $3 \cdot 15 \mathrm{Y}$ Sub-min.
3 2N697 Epitaxial Pladar Trans. Sil
Germ. Power Trans. Eqvt. OC16
1 Unijunction Trans. 2N2646
Tunnel Diode AEY11 $1050 \mathrm{Mc} / \mathrm{s}$ 1 Tunnel Diode AEY 11050 Hc/s. 8 BY100 Type Sil. Rects. 5 Sil. and Germ. Trans. Mixed, al marked, New

KING OF TEE PAKS BH-PAK GURANIE SATSGCTINGR MONEY BACK

Practicul Electronics Classified Advertisements

MISCELLANEOUS

BUILD IT in a DEWBOX quality cabinet 2 in $\times 2$ in \times any length. DEW LTD, Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now-right now.

ETCHED PRINTED CIRCUIT BOARD KITS. Full instructions. 19/6, c.w.o. CIRCVITETCH, 12 Cambridge Rd., St. Albans, Herts.
musical miracles. Send S.A.E. for details of Rhythm Modules, Versatile Bass-pedal unit, self-contained with unique effects, kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters $25 /-$ post paid. HURRY! D.E.W. LTD. 254 Ringwood Road, Ferndown, Dorset.

UFO DETECTOR CIRCUITS, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts

ELECTRONIC SOLITAIRE. Build this game from complete kit. Over 32,000 combinations, Hours of intrigue, relaxing, challenging! Full Kit and instructions $55 /$ Educates in binary
logic. D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

ONE OFF PRINTED CIRCUIT BOARD8. Cheaply made to customers' requirements. Send s.a.e. for details: D. R. MANN, 12 Randolph St., Nottm.

ROCK BOTTOM PRICES for P.C. Boards from $1 /-$. FOX, Ridgeway, Farnsfleld, Notts

CLEARING LABORATORY, scopes, V.T.V.BI's, V.O.M's, H.S. recorders, transcription turntables, electronic testmeters, calibration units, P.S.U.'s, pulse generators, D.C. nulipotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, $3 / \mathrm{C}$ relays, components, etc. Lower Beeding 236.

PROJECT BUILDERS note-Having trouble obtaining special components? We will endeavorr to supply ALL parts for your endeatour to supply iols, specials, e.g., coils. p.c. boards, etc., as project, specials, e.g., coils, p.c. boards, etc, as well as standard items. SRI ELLECTRO.ICS, 01-684 0402 .

ROBOTS

Synthetic Animals with "BRAINS" of their own. The NEW range of projects include: an electronic 'animal' which "LEARNS", an Electro Chemical device capabe of SURE TO INTRIGUE YOU are an audio transmitter/receiver which has quite an amazing range and requires NO LICENCE; also a machine which "recognizes" itself, and an electronic dog whistle, etc., etc. HOSTS OF EASY-TO-CONSTRUCT projects, for anyone with a basic knowledge of Electronics.
SEND $2 / 6$ for your list-NOW!
TO: 'BOFFIN PROJECTS' incorporating
BIONIC DESIGNS, 4 CUNLIFFE RD
STONELEIGH, EWELL, SURREY, Designed by GERRY BROWN and JOHN SALMON and presented on T.V.

Send $1 /$ for

STATE OF THE ARTISTS LIST OF Comps and full data, applications on latest del
uhf low noise N/FET. 2 N5245, $10 /-$ ea. also uhf low noise N/FET, ${ }^{2}$ NS245, 10/- ea. also
Sprague UNICIRCUI, ULN2IIA, d.i.I. for Sprague 'UNICIRCU1T' ULN2IIAA d.i.l. for
FM/SSB det, 60 do wdebnd ampllim, etc. f1.10.6 ea. C.W.O. 6d. P.p. Per order to:
2 Crown Acre, Brockenhurst, Hants

RATES : $1 / 3$ per word (minimum 12 words). Box No. 1/6 extra. Advertisements must be prepaida nd addressed to Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD.,
Fleetway House, Farringdon Street, London, E.C. 4

MISCELLANEOUS (continued)

PROFESSIONALLY MADE CONTROL PANELS from 4d. sq. in. $16 / 18$ gauge aluminium, cut, drilled, spray painted and legend. Send full size drawing for quotation, C. S. CONDUIT, 7 Millbrook, Salisbury, Wilts.

FOR SALE

26,000 IN YOUCHER8 GIVEN AWAY. See free Cat. for details. Tools, Materials, Mechanical, Electrical, thousands of interesting items. WHISTON, Dept. PVE, New Mills, Stockport SK12 4HL.

MINIATURE DYNAMIC MICROPHONES. High impedance size $\frac{7}{8}$ in $\times \frac{5}{8}$ in $\times \frac{5}{16}$ in, Also work as impedance size $\frac{7}{8}$ in $x \frac{5}{8}$ in $X \frac{5}{16}$ in. Also work as
mini speakers; suit transistor circuits, $7 / 6$ each, ${ }_{3}$ mini speakers; suit transistor circuits, $7 / 6$ each, 77 The Crescent, Southwick, Sussex.
8URPLUS to requirements, various small electronic components. S.A.E. for list. Box No. 20.

MORSE MADE ! !

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse Withing scientifically prepared 3 -speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as easy as learning a tune. 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring S.T.D. 01-660 2896 or send 8d. stamp for explanatory booklet to: G3HSC (BOT 19), 45 GREEN LAFE, PURLET, SUREEY

BOOKS AND PUBLICATION8

SURPLUS HANDBOOKS

19 set Circuit and Notes

1155 set Circuit and Notes H.R.O. Technical Instruetions 38 set Technical Instructions. 46 set Working Instructions. 88 set Technical Instructions. 88 set Technical instructions. Wavemeter Class D Tech. Inser Wavemeter Class D Tech. Instr
18 set Circuit and Notes...... 18 set Circuit and Notes. $100 .$. BC. 1000 (31 set) Circuit \& Notes
CR. $100 / \mathrm{B} .28$ Circuit and Notes CR. $100 / \mathrm{B} .28$ Circuit and
R. 107 Circuit and Notes... A.R.88D. Instruetion Manual. . 62 set Circuit and Notes \qquad 52 set Sender \& Receiver Circuits 7/6.6 P.P 6d Circuit Diagrams-5/- each post free R.II16/A, R. $1224 /$ A. R. 1355 , R.F. 24, 25 , \& 26. A.l134, T.1154, CR. 300 , BC.342. BC. 312. BC.348.J.E.M.P. BC.624. 22 set.
Resistor Colour Code Indicator... 2/6 P.P. $6 d$ S.A.E. with all enquiries please.

Postage rates apply to U.K. only.
Mail order only to:
Instructional Handbook Supplies Dept. P.E., Talbot House, 28 Talbot Gardens Leeds 8

BOOKS AND PUBLICATIONS

(continued)

SERVICE SHEETS

RADIO TELEVISION, over $8,0 G 0$ Models. JOHN GILBERT TULEVISION, ib Shepherds Bush Rd., Iondon, W.6. SHE 8441.

8ERVICE SHEETS, Radio, TV, 5,000 models. List 1/6. S.A.E. enquiries. TELRAX, 11 Maudland Bank, Preston.

LARGE SUPPLIER OF

SERVICE SHEETS

T.V., Radio, transistors, tapes, car radios

Only 5/- each, plus LARGE S.A.E.
(Uncrossed P.O.'s please, returned
if service sheets not available.) free tv fault tracing chart or tv

LIST ON REQUEST
C. CARANNA

7I BEAUFORT PARK, LONDON, N.W.II
MAIL ORDER ONLY
8ERVICE SHEETS (1925-69) for televisions, radios, transistors, tape recorders, record players, etc., by return post, with free faultfinding guide. Prices from $1 /-$. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

EDUGATIONAL

ENGINEERS. A technical certificate or qualifleation will bring you security and much better pay. Elem. and ady. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.1.O.B. and G.C.E. exams. Diploma courses in all branches of Engineering-Mech., Elec., Auto, Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132-page guide. BRITISH INSXITUTE OF ENGINEERING TECHNOLOGY (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

GET INTO ELECTRONICS - big opportunities for trained men. Learn the practical way with low-cost Postal Training, complete with equipment. A.M.I.E.R.E., R.T.E.B., City \& Guilds, Radio, T/V, Telecoms., etc. For FREE 100page book, write Dept. 856K, CHAMBERS COLLEGE, 148 Holborn, London, E.C.1.

RADIO OFFICERS see the world. Sea going and shore appointments. Trainee vacancies in Sept. and Jan. Grants available. Day and Boarding students. Stamp for prospectus. WIRELESS COLLEGE; Colwyn Bay, Wales.

TECHNICAL TRAINING in liadio, TV \& Electronics thro' world-famous ICS. For details of proven home-study courses write IUS, Dept. 561 , Intertext House, Stewarts Road, London, S.W.S.

CITY \& GUILDS AND R.T.E.B. EXAMS. Specialised ICS home-study course will ensure success. For details of wide range of exam. and diploma courses in Radio, T.V. and Electronics, also new practical courses with kits, write to ICS (Dept. 577), Intertext House, Stewarts Road, London, S.W.8.

SITUATIONS VACANT

A.M.I.E.R.E., A.M.S.E. (Elec.), City \& Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee", terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132 -page Guide-FREE. Please state subject of interest. BRITISH INSTITUTE OF EXGINEERLNG TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

SERVICE ENGINEERS-we are an old established electronics company, but headed by a young management team, and we need you to help us. Age is no barrier to a high salary as you will find out when you join us. If you have experience in T.V., Radio or Hi-Fi Service and want a job that looks ahead, phone MICHAEL ADLER at 01-636 9606.

GLASGOW ENTHUSIAST WANTED, willing to assist with simple but interesting wiring, two or three evenings per week-financially re. warding. Tel. 041-942 3233 .

RADIO TECHNICIANS VACANCIES TO BE FILLED BY OCTOBER 1969

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of electro-mechanical equipment will be an advantage.

Pay according to age, e.g. at 19 $£ 869$ at $25-£ 1,130$ (highest age pay on enery) rising by four annual increments to $£ 1,304$.

Prospects of promotion to grades in salary range $£ 1,217-\{2,038$. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.
Application forms available from:
Recruitment Officer (RT/54)
Government Communications Headquarters Oakley, Priors Road
Cheltenham, Glos. GL52 5AJ

RECEIVERS AND COMPONENTS

SILICON PLANAR TRANSISTORS, 100% tested and full spec. supplied with orders. NPY types for orgam projects, 25 for $£ 1$. PNP types sim. to $\because \mathrm{N} 3702$ and germanium sim. to ACV'22, 50 for \&1. Post free. WlisTEK, P,O. Box $\overline{\text { 亿 }}$ Rickmansworth, Herts

R \& R RADIO

51 Burnley Road, Rawtenstall
Rossendale, Lancs
Tel.: Rossendale 3152
VALVES BOXED, TESTED \& GUARANTEED

BF80	3/-	PCC84	3/-	PY8!	3/6
EBF89	$3 / 6$	PCF80	3/-	PY82	31-
ECC82	3/-	PCF82	3/6	U191	4/6
ECL80	3/-	PCL82	41-	6 F 23	5/-
EF80	1/6	PCL83	4/-	30F5	$2 / 6$
EF85	3/-	PL36	5/-	30 LI 5	5/-
EY86	4/-	PL8I	4/-	30 Pl 2	416
EZ40	$4 / 6$	PL83	4/-	$30 \mathrm{C15}$	5/-
EBC41	4/6	PY33	5/-	50CD6	
Transistor Audio Pack, 2G339A, 2G381A, 2G371B 10!- each post 6 d . POST, ONE VALVE 9d. TWO TO SIX 6d. OVER SIX POST PAID.					

TRANSISTORISED REVERBERATION

Six transistor circuit, all components £7.10.0. post free. (Case 34/- extra, P. \& P. 2/6). Circuit and construction details $1 / \mathrm{m}$ (free with kit).
TRANSISTORISED SIGNAL INJECTOR 19/6 P. \& P. 1/6. Catalogue of components etc. P. \& Wilsic Electronics Ltd, 6 Copley Road, Doncaster, Yorks.

RECEIVERS AND COMPONENTS (continued)

TERRIFIC TRANSISTORS!

High-gain low-noise npn planars $20 \mathrm{~V}, 220 \mathrm{~mW}, 200 \mathrm{~mA}$ peak le, hfe up to 900 . $\mathrm{BCl} 68=\mathrm{BCl} 48(\mathrm{sim} . \mathrm{BC108}, \mathrm{BCl} 70, \mathrm{BCl} 183$, $2 \mathrm{~N} 2925,2 \mathrm{~N} 2926$), hfe $=250-900$
$\mathrm{BC169}=\mathrm{BC149}$ (sim. $\mathrm{BC} 109, \mathrm{BC} 151, \mathrm{BC} 154$, 2N3391A, etc.). hfe $=450-900$
Prices: $B C 168,5$ for $10 /-50$ for $90 /=$.
$8 \subset 169,5$ for $11 / 3,50$ for $£ 5$.
Brand new, mint, makers' trade marks. Full list with data, components, circuits, kits 6 d. FREE WITH ORDERS

Can be built to size of PPG battery. Components and data sheet, $17 / 6$. Transformer only, 0-230-250/9-0-9V, 80 mA , size $1 \frac{1}{} \times 1 \times 1^{\prime \prime}$, with data sheet, $11 /$., Eagle transformers (same size) MT6, $6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}$, MT12, $12-0-12 \mathrm{~V}, 50 \mathrm{~mA}, 13 / 6$ each. All these can be used with bridge rectifiers giving double the voltage at half the current. Submin. selenium bridge to suit, $3 / 6$.
AMATRONIX LTD, (Mail order only) 396 Selsdon Rd., SR2uth Croydon, Surrey

INTEGRATED CIRCUITS at lowest price. GE Type PA234 1 Watt Audio Amplifier Few only at $17 / 6$ each inc. data P. \& P. C.W.O JEF ELECTRONICS, 12 York Drive, Grappenhall, Warrington, Lancs. Mail order only.

SITUATIONS VACANT

TECHNICAL TRAINING by ICS in radio, television and electronic engineering

First-class opportunities in Radio and Electronics await the IC S trained man. Let I CS train YOU for a well-paid post in this expanding field. ICS courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:
C. \& G. TELECOMMUNICATION TECHNICIANS' CERTS.
C. \& G. ELECTRONIC SERVICING.

* R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMATEURS' EXAMINATION.
- P.M.G. CERTIFICATES IN RADIOTELEGRAPHY.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how ICS can help YOU in your career. Full details of ICS courses in Radio, Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

> IWTERNATIONAL
> CORRESPONDENC: Schools

> A WHOLE WORLD OF KNOWLEDGE AWAITS YOU:

International Correspondence Schools
(Dept. 152). Intertext House, Stewart Road,
London, S.W.8.

NAME Block Capitals....................................

ADDRESS

RECEIVERS AND COMPONENTS
(continued)

COMPONENTS

Samples from our catalogue:- Geared motors $300 \mathrm{rpm}=1 \mathrm{r} / 24 \mathrm{H}$ from $7 / 6,15 \mathrm{v} .300 \mathrm{mw}$. Zeners 3:- $10 \mathrm{~K}+10 \mathrm{~K} 2 \% 3^{\circ}$ ganged pots 20/-, 220 ohm 200 watt resistors $7 / 6$, 6 d , stamp for catalogue.

F. HOLFORD \& CO.

6 Imperial Square, Cheltenham
BRAND NEW ELECTROLYTICS, 15 volt, 0.5 , $1,2,5,6,8,10,15,20,30,40,50,100,200 \mathrm{mfds}$. 76 dozen, postage $1 /-$. THE ('R. SCPPL

TAPE HEADS

BSR BRAD.

$29 / 6$ TRACE $|$| pair | MICHIGAN REC. PLAY |
| :--- | :--- |
| MED. IMP. | |

BSR MARR $39 / 6$ pair
4 TRACK
REUTER - COLLARO 4-TRACK 45/= bagen erase $\begin{array}{ll}\text { UL218;8 } & 27 / 6\end{array}$
 TRANSISTORISED FM TUNER
6 TRANSISTOR HIGH QUALITY TUNER. SIZE OXLY Gin $\times \operatorname{tin} \times 2$ Iin 3 I.F. stages. Double
tuned diseriminator. Ample output to feed amplifiers. Operates on or battery. Coverage
$88.108 \mathrm{Mc} / \mathrm{s}$. Jeady built ready for $\frac{\text { use. Fantastic value for money }}{\text { SUB-MIN. TRANSISTOR LW/MW FM TUNER }}$ Similar to above. Complete with aerial,
tuners, dial and instructions
TUNER dulci fmtzs stereo $£ 23$

COMPACT TRANSISTOR FM TUNER

 FM MULTIPLEX STEREO ADAPTOR
Printed circuit biscuit, \& trans. $6 \quad £ 4.19 .6$
diodes 9 with full instructions
LOUDSPEAKERS
12"TWIN CONE 10
watt PEAK $1 \overline{5}$ or 35/.

Horn type Hi-Fi $18,000 \mathrm{c} / \mathrm{s}$

SUPER SILICON RECT. T.l.. etc., 1,200 PIV condenser, 86 , or complete with instr. resistor $6 \mathrm{~A}, 6 /-$, BV100 type, 6 for 10 i-
Jomper lead 8°. Croc clips to Phono plug $\quad 7 / 6$
and Sta. J:ack Alfaptor
and std. Jitck Allaptor
 $\begin{array}{llll}\text { GET103-113-116-118-119-887-889-890-896-7-8 } & \text { OC45 } & \text { OA911/6 }\end{array}$

CHANGER DECKS

UA25 BSR with template, Mono. List £6.19.6 UA25 BSR with template, Stereo. List £7.9.6 $\begin{array}{ll}1025 \text { Garrard with template, Mono. } & \text { List £7.7.6 } \\ 1025 \text { Garrard with template, Stereo. } & \text { List £7,i7. }\end{array}$ PLINTH in simulated teak. Complete with $£ 4.15 .0$ Clearview rigid juerspex cover for 10
P / \mathbf{P} on Decks, Plinth and Corer $7 / 6$
SWITCH ROTARY RECIPROCATING
Position, 15 amp . Single hole fixing, with $\quad 5 / 6$ C60 CASSETTE 10/3. C90 14/3. 3 Post free Stamped envelope for full selection and bargain offers in MULTMETERS, RADIOS, BABY ALARMS, INTERCOMS, WALKIE-TALKIES,
RECTIFIERS, SINCLAIR, DULCI, AND EAGLE Lists. UNDER £1-P. \& P. 6d., £1 to £3-1/6.
over $£ 3-2 / 6$. C.O.D. $3 / 6$. MAILORDER ONLY,
DURHAM SUPPLIES 367 KENSINGTON STREET BRADFORD 8, YORKSHIRE

WE ARE BREEAMGG COMPITERS

EX COMPUTER PRINTED CIRCUIT PANELS 2 in $\times 4$ in packed with semiconductors and top quality resistors, capacitors, diodes, etc, Our price, 10 boards mum of 35 transistors.
SPECIAL BARGAIN PACK, 25 boards for fl. P. \& P. 3/6. With a guaranteed
minimum of 85 transistors. 100 boards $65 /$. minimum of 85 transistors. 100 boards $65 /=$.
P. \& P. $6 / 6$. With a guaranteed minimum of P. \& P. 6/6. With a guaranteed minimum of

GIANT PANELS. $5 \frac{1}{2} i n \times 4 \mathrm{in}, \min .20$ transistors, 9×56 Micro H inductors, resis
tors, diodes, etc. 3 for $\& 1$. P \& P,

PANELS with 2 power transistors sitn. to OC28 on each board + components. 2 boards $4 \times$ OC28) 10\%. P. \& P, 2/-.

TRIM POTS on $2 \mathrm{in} \times 4 \mathrm{in}$ boards + Ta caps and other components. $100 \Omega, 500 \Omega$. 20K. State requirements. 5 boards $10 /$.

NPN GERMANIUM TOS I WATT POWER TRANSISTORS on small heat
sink, on $2 \mathrm{in} \times 4 \mathrm{in}$ panel. 5 for $10 / \mathrm{P}$ \& sink, on $2 \mathrm{in} \times 4 \mathrm{in}$ panel. 5 for $10 /-$. P. \& P.

POWERTRANSISTORS sim. to 2N174 ex eqpe., on Finned Heat Sink (10D). 4 for $£ 1$.

ORGAN BUILDERS' SPECIAL 300 GATES ON NSISTORS + 200 Si DIODE GATES on panels. \&4. P. \& P. 6\%
OVERLOAD CUT OUTS. Panel mount
ing in the following values...5!-each. 2,3
ing in the following values... 5:- each. 2,3 Ex-Computer "MEMORY" FERRITE
CORESTORES. 4,000 bits per plane. 25/-

+ 3/=P \& P

PAPST FANS. Powerful Extractor/Blower
fans. $230 / 250 \mathrm{~V} .100$ e.f.m., 2,800 r.p.m. $35 /$ /
$+5 / 6$ P. \& P. each. MICRO SWITCHES. Miniature button
type. IO/-doz. P. \& P. $1 / 6$. NEW RECORDING TAPE. 900ft on 5 in reels, low noise tin tape. fl per reel, post

NEW SPRAGUE. $\quad 0.22 \mu \mathrm{~F} \quad 250 \mathrm{~V}$ smalt NEW SPRAGUE ELECTROLYTICS. 4 μ F I50V. 5/- doz. P. \& P. 1/-.
LARGE CAPACITY ELECTROLYTICS $4 \frac{1}{2}$ in, 2 in diam. Screw terminals.
All at $6 /$ - each $+i / 6$ each P. \& P.
All as $6 /-$ each $+1 / 6$ each P. \& P.
$4,000 \mathrm{mF}$
$4,000 \mathrm{mF} \quad 72 \mathrm{~V}$ d.c. wkg.
$10,000 \mathrm{mF}$
$25,000 \mathrm{mF}$
25 V d.c. wkg.
$12 \mathrm{~d} . \mathrm{c}$ wkg.
KEYTRONICS, 52 Earis Court Road London, w.8. Mail order only

COLD CATHODE TUBES XN.5 NUMERAL INDICATORS, New, with data

 $7 / 8$ each. DEKATRON counter tubes, new. 10 -way 15/-, 12-way 20/6, Silicon power diodes for HT supplies-10/- per dozen. RESISTORS-Grade 1 Histab 20 k to 2.4 Meg- $2 / 9$ per dozen. CAPACIceramic $0.01 \mathrm{nF} / 1-5 \mathrm{KV} 5 /-\mathrm{d}$ 2/9 dozen. These are only a few from our bargain list of components. Send S.A.E. for FREE LIST Quantity prices on request. Please include P. \& P. minimum 2/6. No C.O.D122a EsinARIRGE - G3PRR

Whether Buying or Selling a Classified Advertisement in PRACTICAL ELECTRONICS could be the answer to your Problem.
For details write to:-
Classified Advertisement Dept.,
practical electronics
Fleetway House,
Farringdon Street,
London, E.C. 4

RECEIVERS AND COMPONENTS
(continued)

TAPE RECORDERS

TAPE8 TO DI8C-using finest professional equipment- 45 r.p.m. 22/-. S.A.E. leaflet, DEROY, High Bank, Hawk Street, Carnforth. Lancs.

ELECTRICAL

240001 ANYWHERE

BESTEVER 200/240 VOLT"MAINS" SUPPLY FROM 12 YOLT CAR BATTERY Exclusive World Scoop Purchase. The fabulous Mk.2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Brilliant 200/240 volt perforf Drills, Power Tools, Mains Lighting, AC Flills, Power Tools, Mains Lighting, AC Universal ACIDC mains and all $200 / 240$ volt tremendous cost for U.S.A. Govt. by DelcoRemy. This magnificent machine is unobeainable eisewhere. Brand New and Fully Tested. Only $44.19 .6+106$ postage. C.O.D. With pieasure, refund guarantee. Please send S.A.E. or illustrated details.
Dopt. PE, STANFORD ELECTRONICS Rear Derby Road, North Promenade
BLACKPOOL, Laneashire

ELECTRICAL (continued)

STANDARD DESK TELEPHONE

Another rcoop pur
chase epables us to
offet a limited quantity only of these standari? desk telephones at a
fraction of their fraction original cost. Complete cradle, line, connection block, receiver ete. Not new but workable. Sultable for all applications. Only 18/6 each, P. \& P. 5/-. Two for
$39 / 6$ for $85 / 6$ post free.

\{SURPLUSTS PORTABLE TRANS/RECS
 ETYPE B BIIGOS

A Compact haudy Trans/Rec. Consists of a fully transistorised self-contained transmitter and receiver, microphone, aerial, etc, Operates from standard dry batteries. As used by Armed forces on manocuvres. Regulations state must not be operated in U.K. So rhen ordering please mention
"For Dismantling Purposes ouly." Price 53.10 .6 each, P. \& P. 10/6. Two sets for is post free. Four sets EIf post free. Bulk sale of 8 sets for $£ 25$ post free. Export enquiries invited.

TELEPHONE SPARES

DIALS not new but working. Only 6/- each, P. \& P. 1/6. Four for 21 post free. Telephone bells not new but working, $5 /-$ each, P. \& P. $2 /-$. Four for $\& 1$ post free, Complete telephones Iess handset only $7 / 6$ each, P. \& P. $3 / 6$.

TELEPHONE EXCHANGES

PUBE type. Ex-GPO in good condition. Complete and ready to use. Cordless type. Only 215.10.0. Carr. 75f-. Cord type $£ 12.10 .0$. Carr. 75/
Radiation meters. Price now 15/-nch. P. \& P.5/-. Two for $30 /-$ post free.
G.F.O. Telephone handsets. Brand new. Now 15/: each. P. \& P. 51-

PRECISION PANEL METERS

Brand new, boxed and fully guaranteed. With firing nuts and bolts. Size approx. 3inn. square. 0.500 volts ESD. As used by leading laboratories. Ex-etock, only $25 /-$, P. \& P. 51-. Two for 50/-, post free. 150 ma . meters, same dimensions as above.

HEAVY DUTY POWER SUPPLY UNITS
Bulk Purchase. Famous manufacturer. Must have cost aearly $£ 40$ each. Input $200 / 250$ volts $50 \mathrm{c} / \mathrm{s}$ a.c. Output 250 volts d.c. at approx. $175 \mathrm{ma.a} 6 \cdot 3 / 12$ volte
at approx. 4 amps a.c. Robut metal rack mounting cabinet, size approx. $19 \times 15 \times 8$ in. Price only $65 /-$ carriage and insurance $15 /-$. All units are fully fused and metered.

SMOOTHING UNITS "CURE YOUR HOM PROBLEAS"

Beautifully made pieces of equipment. 12 volts or 24 voltt d.c. input gives a tully emoothed fully regulated d.c. output. Worth \mathbf{m}. 30 each. Robust Brand new in maker's cartons. Price 55/-, P. \& P. 15/-

ORGAN BUILDERS!

Use our bistable dividers for your tone sources and cut your costs by more than half.
A small printed board with four complete transistor dividers will cost you only $18 / 6$ including postage so why pay more?

Removed from working equipment, each circuit is meticulously inspected and tested before dispatch.
Just send a S.A.E. for free details to:

Roger Allen
13 Millways
Great Totham, Essex

DIMMASWITCH

This is an attractive dimmer unit which fits in place of the normal wall light switch. The mounting plate is ivory to match modern fittings and the contro knob is in bright chrome. An ON/OFF switch is incorporated to control up to 500 watts at mains voltages from 200-250 volts, 50 Hz .

These are normally sold at $f 419 \mathrm{~s}$. 6 d .our price is $£ 35 \mathrm{~s}$: We also offer at $\ell 215 \mathrm{~s}$. a complete kit of parts with simple instructions enabling you to build this dimmer yourself.

The circuit uses the latest miniature RCA triac and new diac triggering device to give complete reliability. Radio interference suppression is included.

DEXTER \& COMPANY

14 Endsleigh Gardens, Chester CH2 ILT Chester 26432

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR The ideal Way of runniyg Your AMPLIFIER, sec. Types available: 9v; 71v; 6v: 4 iv (single output) $39 / 6$ each. P. i P. 2/9. ov $+9 v ; 6 v+6 v$; or $4 i v+41 \mathrm{y}$ (ewo separase outputs) $42 / 6$ each. P. \& P. 2/9. Please state output required. All the above units are completely isolated from mains by double Rud transformer ensuring loin iol LTO.
R.C.S. PMODUCTS (RADIO) LTD.
(Dept. P.E.)، 31 Oliver Road. London. E. 17

RELAI " PRACTILAL MOTORIST

* Holiday motoring tips
* Smooth control advice
* Trim improvement know-how
But if you want to work you'll discover
* How to de-coke a B-series
* Ways of coping with the cooling
* The best methods of tappet adjustment Plus your favourite regular features all in

PRACTICAL MOTDRIST August issue on sale Tuesday July 15-2/6

FASTER - NEATER than nuts and bolts PROFESSIONAL RIVETING

EYEN WHEN ONLY ONE SIDE IS ACCESSIBLE! Ideal for constructors, car and sheet metal applications. British made. Complete with rivets and instructions. Rivets obtainable at Halfords, etc. Plastic wallet for storage.

NTERBURY WALK, CHELTENHAM,

There is scope, variety and responsibility as a RADIO TECHNICLIAN in Air Traffic Control

Join the National Air Traffic Control Service, a Department of the Board of Trade, as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.

Entrance qualifications: you should be 19 or over, with practical experience in at least one of the main branches of telecommunications.
Once appointed and given familiarisation training, you will be doing varied and vital work on some of the world's most advanced equipment, including computers, radar and data extraction, automatic landing systems and closed-circuit television. Work is based on Civil Airports such as Heathrow, Gatwick and Stansted, Air Traffic Control Centres, Radar Stations and other specialist establishments.
Starting salary is $£ 869$ (at 19) to $£ 1.130$ (at 25 or over): scale maximum $£ 1.304$ (higher rates at Heathrow), and some posts attract shift-duty payments. Your career prospects are excellent and every opportunity and assistance is given to study for higher qualifications. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS On a PRINTED CIRCOIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Boards $41^{\prime \prime} \times 22^{*}$. (2) 1 Board fer Match box Radio. (3) 1 Buard for Wristwatch Radio, etc. (4) Resist, (5) Resist Solvent (6) Etchant. (7) Cleanser/Degreaser. (8) 16-page Booklet Printed Circoits for A mateurs. 19) 2 Miniature Radio Dials SW/MW/LW, Also free with each kit. (10) Essential Design Data, Circuits, Chassis Plans, etc. For 40 TRANSISTORISED PROJECTS. A very comprehensive selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very efficient designs published for the first time, including 10 new circuits.

EXPERIMENTER'S printed circuit kit

 8/6

 8/6}

Pootage \& Pack. $1 / 6$ (UK)
Commonwealth: SERFFACE MAIL 2/AIR SLAIL $8 f-$ Australia, New Zealand South Africa, Canada.
(2) Crystal set with biased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audio Reflex. (i) Matchbox or Photocell Rallo. (8) "TREFLEXOA", Triple Peflex with self-adjusting regeneration (Patens Pending). (9) Solar Battery Loudspeaker Radio The smallest 3 designs yet offered to the Home Constructor anywhere in the World. 3 Subminiature Radio Receivers baced on the "Triflexon" circuit. Let us know if you know of a smaller design published anywhere. (10) Postage Stamp Radio.
 Ring Radio $-70 \times \times-70 \times-55 *$. (13) Bacteria-powered Radio. Runs on sugar or com. (15) 1-ralve Amplifer. (18) Reliavele Burglar Alarm. (19) Amplitier. (16) InterGuided Missile. (20) Perpetual Motion Machine (21) Metal Detector (20) Transistor Tester (23) Human Budy Radiation Detector. (24) Man/Woman Discriminator (25) Signal Injector. (26) Pocket Transeeiver (Licence required). (27) Constant Volume Intercom, (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio, (31) Wristwatch Transmitter(Wire-less Microphone. (32) Wire-less Door Bell. (33) Vltrasonic Switch/Alarm. (34) Stereo "Photophone". (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptophone "Photophone". (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptor. (39)
Ultrasonic Transmitter. (40) Thyristor Drill Speed Controller.

YORK ELECTRICS

 333 YORK ROAD, LONDON, S.W. 11Send a S.A.E. for full detants, a brief description and Photographs of all K its and alt 52 Radio, Electronic and Pholoelectric Projects Assembled.

I2in. "SUPERB" $£ 15$

The exceptional quality and performance of the "Superb" brings truly exceptional sound from a single loudspeaker recreating the musical spectrum virtually flat +5 db .20 to $17,000 \mathrm{c}$. s . The unit consists of the latest double cone wo consists tweeter cone together witha massive Baker "Feeter cone together with a massive Baker density of 16,500 gauss and a total flux of 176,000 Maxwells. Bass resonance 22-26 s.p.s. Rated 20 watts. Voice coils available 8 or 15 chms. Suitable for all High Fidelity Systems. A high qualicy loudspeaker providing clear reproduction of the deepest bass and highest treble.

Bensham Manor Road Passage, Thornton Heath, Surrey. OI-684-1665

RESISTORS
 Mixed parcel, 30 variable.. $20 /$. P. \& \& \& P. $2 / 6$.

CHASSIS UNITS

13 valves, ECC82 (5), E891 (6), EF91 (2). 60 resistors, capacitors, etc. Valve cans and bases. Multicon plugs. 30/-. P. \& P. 6/-. Flexible metal tubing. Galvanised $3 / 8 \mathrm{in}$. int. dia. $35 /-100 \mathrm{ft}$. P. \& P. $7 / 6$.

Field telephones Type F. 32/6. P. \& P. 7/6.
Mixer units Type 18. H.F., M.F., L.F. Valve 882. 10/-. P. \& P. $2 / 6$.
TRANSFORMERS
SSTR894. Pri. $220-230-250 \mathrm{~V}$. Sec. 6.3 V (2A), 300-350-390V $(35 \mathrm{~mA}), 80-90-100 \mathrm{~V}(10 \mathrm{~mA}) .30 / \%$ P. \& P. $5 /$.
SSTR073. Pri. $220-230 \mathrm{~V}$. Sec. $35 \mathrm{~V}(0.5 \mathrm{~A}), 6.3 \mathrm{~V}(2 \mathrm{~A}), 225-0-225 \mathrm{~V}$ (27 mA). Oil filled. $25 /-$ P. \& P. $5 /$-.
SSTRO09. Pri. 230 V . Sec. 50 V (50 mA), 4 V (IA), $6.3 \mathrm{~V}(8 \mathrm{~A}) . \quad 25 / \mathrm{H}$ P. \& P. 5/-.

Two core cable rubber covered, $1 /-$ per yard, inc. P. \& P.
STATUS SUPPLIES Status House, Wilkinson Avenue, Blackpool

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new '"ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our'Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

ELECTRONIC ENG.
Advanced Electronic Eng.Gen. Electronic Eng.-Applied Electronics-Practical Electronics-Radar Tech.Frequency Modulation Transistors.
fLECTRICAL ENG.
Advanced Electrical Eng.General Electrical Eng. Installations - Draughtsmaniship - Illuminating Eng. Refrigeration - Elem. Elcc. Science - Elec. Supply Mining Elec. Eng.
CIVIL ENG.
Advanced Civil Eng.Gencral Civil Eng. - Municipal Eng. - Structural Eng. -Sanitary Eng.-Road Eng. - Hydrathics - Mining Water Supply - Petrol Tech.

RADIO \& T.V. ENG. Advanced Radio - General Radio-Radio \& TV Servicing -TI Engineering -Telecommumications - Sound Recording - Automation Recording - Automation - Radio Amatetrs' Examination.

MECHANICAL ENG.

Advanced Mechanical Eng.Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. ance Eng. - Desi Tool Design - Sheet Press Tool Design
Metal Work - Welding Matal
Eng. Pattern Making 二 Eng. Pottection-Draughtsmanship Engetallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng.Advanced Automobile Eng.-
Gencral Auto. Eng. - Alto. Maintonance - Repair Alto. Diesel Maintenance Auto. Electrical EquipmentGarage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC.
Which qualification would increase your earning power? A.M.I.E.R.E., B.Se.(Eng.), A.M.S.E., A.M.I.P.E., A.M.1.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Ex., A.R.I C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., C.ENG., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 316A aldermaston court, aldermaston, berkshire ing job. easily.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interest-
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and
* HOW to benefit from our free Advisory and Appointments Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL EQUIPMENT
Basic Practical and Theoretic Courses for beginners in Electronics, Radio,T.V., Etc. A.M.I.E.R.E. City \& Guilds Radio Amateurs' Exam. R.I.E.B. Certificate
P.M.G. Certifitate

Practical Electronics
Electronics Engineering Practical Radio Radio \& Television Servicing Aulomation

You are bound to benefit from reading 'ENGINEERING OPPORTUNITIES" - send for your copy nowFREE and without obligation.

The specialist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with practical equipment. Ask for details.

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD
Published about the 15 th of the month by IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2, at the recommended maximum price shown on the cover. Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents-Australia and New Zcaland: GORDON \& GOTCH (A/sia) Ltd.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World $£ 22 \mathrm{~s}$. 0 d .

SOLID STATE-HIGH FIDELITY AUDIO EOUPMENT

Mono or Stereo Audio, Equipment devel oped from Dinsdale Mk.II-each unit or system will compare favourably with other professional equipment selling much higher prices.
COMPLETE SYSTEMS FROM
\&15.5.0
THE FINEST VALUE IN HIGH FIDELITYCHOOSE A SYSTEM TO SUIT YOUR meEDS AND SAVE POUNDS

SEND FOR FREE All units available separately DEMONSTRATIONS DAILY AT '303' EDGWARE RODAY INTEGRATED TRANSISTOR AMPLIFIERS macs 6 Watts mono or 12 watts stereo We ref pleasede to offer wo new designs with the choice of eithe mono or stereo systems. These BRiTISH DESIIGNED Uifinee
Tavour the user in so many
 mains operation. mains operation

\longrightarrow DO IT YOURSELF
 DO IT YOURSELF
MW/LW PORTABLE New printed circuit desion with on both mwi/m tull power output. Fulity funable on both mw/lw bands. 7 transistors pilus diode,
pursh-pull circuit. Fitted 5 inch speaker, large ferrite aerial and Mullard transistors. Easy to build with terrific results. All local and Continental
stations. TOTAL COST £6.19.6. P.P. $4 / 6$
TO BUILD Send for Brochure i BUILD A QUALITY
TAPE RECORDER To get the bent out of your MAGNAVOX DECK, you need a
MARTIA RECORDAKIT. This comgrizes a quanity 6 valve amulifies and pre-mplififer which comet to

 SHete havourably with trontrum, which. when built, will com-
you nted no

 xis comprises: Deck mICROPHONE Tin 1. Amplitier, Cabint and soeser wit

CIFFI equipment to suit EVFRVPOQKY

TRANSISTORS MANUFACTURERS-DISTRIBUTORS
 FROM STOCK in ovet sod diferent devices available PRICES COCDIFS mith PROMPT DELYEERESS.
TO OBTAIN YOUR COPY, WRITE TO

 We purchaces/b Eth. 4 (011) 7230401 Erth. Transistors and medium to targe quantities of Ttansistors and Devices excess to Manufacturers and Distribuzors requirements. Write or Phone Extn 4

VISIT OUR NEW HI-FI CENTRE af 309 EOGW ARE ROAD
AND SAVE UP TO
for all leading makes AMPLIFIERS

TUNERS

DECKS
SPEAKERS
MICROPHONES TEST EQUIPMENT HEADPHONES
CARTRIDGES, etc.
All with.
Terrific Savings
It will PAY YOU
AGE ILLUSTRATED HI-FI LIST 16/17

COMPLETELY NEW 1969 LIST OF TOO types. Send for your FREE COPY TODAY, (list 36) S.C.R.'s from $5 /$

Field Effect Transistors from 7/6 Power Transistors from 5/ Diodes and Rectifiers from 1

The mayeal Acclaimed by everyone

 complete detaried and lllustrased he.
list All items may be purchased separateiy. All parts supplied are fully with circuits and full parts \star thive grosvenor
The Grosvenor is designed for the more ambitious musician and
has a much wider tanae than most commercial organs. It complagal
two four-octave cis two four-octave (49 note) keyboards and a thirfeen- Iotorprtest
 ment keyboard, two pitches (i.e., 16 tt , 8 ft) on the on the pedal board. Variable
sustain on the some It has 15 voices in the solo and variable vibrato on both heyboards. paniment tone-forming unit and 4 yoices in the 10 voices in accomunit. all componants and kit sections are avallable separately A complote detailed console at 865.18 .0 ,
with circuits and full parts list. All items menual is provided separarely. All and puth pans list. Alt iterns may bo puplied are fully guerantegy. Full ather sorvice and advice troply evailabie.
Once built the 'MAYFAlR' provite years of MAYFAlR" or "GROSVENO

KIS FROM 222
BROCHURE $\$$ B

PRACTICAL ELECTRONICS-ELECTRONIC ORGAN KIT

ORGAN COMPONENTS: COMPLETE RANG in series. Details on request

Fully

Illustrated CATALOGUE

COMPLETELY NEW 9th EDITHON (1969)
The most COMPREHENSIVE
CONCISE-CLEAR COMPONENTS CATALOGUE

Complete with $10 / \mathrm{F}$ wh discount vouchers FREE WITH EVERY COPY
32 pages of transistors and semi-conductor devices, valves and crystals.
210 pages of components and equipment.
70 pages of microphones, decks and Hi-Fi

6,500 ITEMS

320 BIG PAGES

303 Edgware Road, London. W.2. Mail Order Dept. all types of Components, Organ Dept. (01) 723-100819 309 Edgware Road, London, W.2. High Fidelity Sales, P.A. and Test Equipment, Record Decks(01) 723-6963

[^0]: BATTERY CHARGER FOR NICADS
 This is in plastic case, size $5 \times 4 \times 3$ in. approx. All wired up with 3 core output lead and 3 core
 mains input leas. Contains mains transformer mains input lead. Contains mains transformer primary. Also contains full wave bridge rectiffer, neon indicator, wired up with resistors to cha* ${ }^{-1}$? Fleall batteries sinultancously, Cbarge rates of 50 mA and $2 \overline{\mathrm{mat}}$ respectively: Batteries up to
 30 rolts may be charged. Price $39 ; 6$ ench, plus $3 / 6$ 30 volts may be charged
 postage and insurance.

