
 ELECTRONICS

cyill

 C 6 - 0^{0000}

$$
0 \text { O }
$$ of damage to expensive transistors and integrated circuits, when soldering? Use Antex low-leakage soldering irons

220-240 Volts or $100-120$ Volts
 Model X25

The leak age current of the NEW $\times 25$
is only a few microamps and cannot harm the most delicate equipment even when soldered "live" Tested at 1500 v . A.C. This 25 watt iron with it's truly remarkable heat-capacity will easily "out-solder" any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages. Fitted long-life iron-coated bit $1 / 8^{\prime}$ 2 other bits available $3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$.

PRICE: $£ 1.75$ (rec. retail) Suitable for production work and as a general purpose iron

Model CCN
 220 volts or 240 volts

The 15 watt miniature model CCN also has negligible leakage. - Test voltage 4000 v . A.C. Totally enclosed element in ceramic shaft. Fitted long-life iron-coated bit $3 / 32^{\prime \prime}$ 4 other bits available $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime} 1 / 4^{\prime \prime}$ and $1 / 16^{\prime \prime}$ PRICE: $£ 1.80$ (rec. retail)

OR Fitted with triple-coated, (iron, nickel and Chromium) bit $1 / 8^{\prime \prime}$
PRICE: $£ 1.95$ (rec. retail)

Totally enclosed element in ceramic and steel shaft Bits do not "freeze" and can easily be removed

A SELECTION OF OTHER SOLDERING EQUIPMENT.

MODEL CN

Miniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ ironcoated bit. Many other bits available from 3/64" to $3 / 16^{\prime \prime}$. Voltages $240,220,110,50$ or 24
PRICE: $£ 1.70$ (rec. retail)

MODEL CN2

Miniature 15 watt soldering iron fitted with nickel plated bit $3 / 32^{\prime \prime}$. Voltages 240 or 220
PRICE. $£ 1.70$ (rec. retail)

$1-$

MODEL G
18 Watt miniature iron, fitted with long life ironcoated bit $3 / 32^{\prime \prime}$. Voltages 240,220 or 110. PRICE. $£ 1.83$ (rec. retail)

MODEL SK. 1 KIT
contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet. PRICE £2.75
(Rec. retail)
MODELSK. 2 KIT contains 15 Watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$
 heat sink. solder and booklet "How to Solder

MODEL

MES.KIT Battery-operated 12v. 25 watt iron fitted with 15^{\prime} lead and 2 heavy clips for connection to car battery. Packed in strong plastic wallet with book let "How to Solder." PRICE $£ 1.95$
(Rec. retail)
I enclose cheque/P.O./Cash (Giro No. 2581000)
\qquad

PRICE $£ 2.40$ (Rec. retail) PL1 1BR Tel: 075267377

NAME

ADDRESS
Please send the ANTEX colour catalogue. Please send the following:
From radio or electrical dealers, car accessory shops or, in case of difficulty direct from:ANTEX LTD. FREEPOST

\square
\qquad
CONSTRUCTIONAL PROJECTS
P.E. TRIFFID I.C. RADIO by F.R. Heath 120
An easy to build inexpensive portable a.m. radio using the latest integrated circuit
BIOLOGICAL AMPLIFIER by D. Bollen 126
A brain rhythm frequency meter and a cardiophone
P.E. SOUND SYNTHESISER-1 by G. D. Shaw 140
A comprehensive and versatile instrument for the experimenter in sound
P.E. DIGI-CAL-8 by R. W. Coles 148
Logic and construction of the adder board
GENERAL FEATURES
AUDIO FREQUENCY DISCRIMINATOR by G. F. A. Hoffman de Visme 133
Use of switching circuits for frequency separation
DESIGNING WITH I.C.s-5 by A. Foord 157
Operational amplifiers with power stages
INGENUITY UNLIMITED
Proximity Switch—Sound/Light Modulator 165
NEWS AND COMMENT
EDITORIAL-The Whole And The Parts 119
SPACEWATCH by Frank W. Hyde 136
Ecological studies from space and India's space programme
REPORT FROM AUSTRALIA by J. M. Waldie 139
F.M. Broadcasting proposals-Sydney audio show-Optical communications
INDUSTRY NOTEBOOK by Nexus 146
What's happening inside industry
ELECTRONORAMA 147
Focus on the new satellite-communication aerial at Goonhilly
NEWS BRIEFS154
Computer '72—High Speed Printer using a Laser
BOOK REVIEWS 161
Selected new books we have received
PATENTS REVIEW 162
Thought provoking ideas on file at the British Patent Office
MARKET PLACE 166Catalogues you should have and new products available
Our March issue will be published on Friday, February 9, 1973

[^0]
The revolutionary new Supertester 680R. Buy it for what it is. Or buy it for what it can be.
 itself a high quatity test meter with eighty ranges on a 128 mm mirror backed scale. it is also the basis of a complete measurement system. With the addition of the appropriate accessories it can measure a wide range of values including light, temperature, gauss and phase sequence. And there are other accessories to greatly extend the 680R's range. The 680R System offers many advantages over conventional test meters including tremendous versatility and economy.
 ACCESSORIES TO CONVERT THE SUPERTESTER 680R TO THE FOLLOWING: Amperclamp : Signal Temperature
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Injector</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Probe</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">For measut.</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">producing</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Covering the range</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">ing a.c</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">1 kHz and</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$30^{\circ} \mathrm{C}$ to $200{ }^{\circ} \mathrm{C}$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">currents from</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">500 kHz</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">£1195</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">| 250mA 10 |
| :--- |
| 500 A [1195 |</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Stgrals</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | Injector | Probe |
| :---: | :---: | :---: |
| For measut. | producing | Covering the range |
| ing a.c | 1 kHz and | $30^{\circ} \mathrm{C}$ to $200{ }^{\circ} \mathrm{C}$ |
| currents from | 500 kHz | £1195 |
| 250mA 10
 500 A [1195 | Stgrals | |</table-markdown></div>
 Gauss PhaseSequence ElectronicVoltmeter Transistor Meter Indicator

-

4.

LASKYS SUPER

 NEW YEAR OFFER PRICE
THIS IS THE FIRST PAGE OF THE GREAT Bl-PAK SECTION

BRAND NEW FULLY GUARANTEED DEVICES

NEW COMPONENT PAK BARGAINS

Pack

No.	Oty.	Description
C 1	250	Resistors mized values approx. count by weight
C 2	200	Capacitors mixed values approx, count by weight
C 3	50	Precision Resistors $1 \%, \cdot 01 \%$ mixed values
C 4	75	th W Resistors mixed preferred values
C 5	8	Pieces assorted Ferrite Rods
C 6	2	Tuaing Gangg, MW/LW VHF
C 7	1	Pack Wire 50 metres assorted colours
C 8	10	Reed 8witches
C 9	3	Micro Switches
C10	15	Assorted Pots \& Pre.Sets
11	5	Jack Sockets $3 \times 35 \mathrm{~m} 2 \times$ Standard 8witch Trpe
$\mathrm{Cl2}$	40	Paper Condensers preferred types mixed values
C13	20	Electrolytics Trans. types
C14	1	Pack assorted Hardware-Nuts/Bolts, Grommets
C15	4	Mains Toggle ${ }_{\text {Switches, }} 2 \mathrm{Amp} \mathrm{D} / \mathrm{P}$
C16	20	Assorted Tag Strips \& Panels
C17	10	Assorted Control Knobs
C18	4	Rotary Wave Change Switches
C19	3	Relays 6-24V Operating
C20	4	Sheets Copper Laminate approx. $10^{*} \times 7^{*}$

JUKBO COMPONENT PAKS
MIAEDELECTHONICCOMPONENTS Exceplionally good calue
Reslstors, capacitors, pots, electrolytles approximately 3 lig in weight. Price incl. P. \& P. 41.50 only.

BRAND NEW POST OFFICE TYPE TELEPHONE DIALS ONLY 75p each

THE NEW S.G.S. EA 1000 AUDIO AMP MODULE * Guarantee
3 Watts
R.M.S.

ONLY £2.63 each
Modual Tested and Guaranteed quantities quoted on request. Full hook-up diagramb and complete technical data supplied free with each modual or available separately at 10 p each.

SYSTEM 12 STEREO

Please add 10 post and packing on all component packs, plus a further 10 p

PLUS-MUCH MORESEND NOW FOR THE

BI-PAK "Component Catalogue"
$5 p$ to cover postage etc.

Each Kit contains two Amplifier Modules, 3 watts RMS, two loudspeakers, 15 ohms, the pre-amplifier, transformer, power supply module, front panel and other accessories, as well as an illustrated stage-by-stage instruction booklet designed for the beginner. Further details available on 5 , request.

MORE FANTASTIC OFFERS

The largest selection

NEW LOW PRICE TESTED S.C.R.'s TO5 TO66TO66TO64 TO48TO48TO49TOA $\begin{array}{rrrrrrrrrr}50 & 0.23 & 0.25 & 0.35 & 0.35 & 0.47 & 0.50 & 0.53 & 1.15 \\ 100 & 0.25 & 0.33 & 0.47 & 0.47 & 0.50 & 0.58 & 0.63 & 1.40\end{array}$ \begin{tabular}{lllllllll}
100 \& 0.25 \& 0.33 \& 0.47 \& 0.47 \& 0.50 \& 0.58 \& 0.63 \& 1.40

200 \& 0.35 \& 0.37 \& 0.49 \& 0.49 \& 0 \& 57 \& 0.611 \& 0.75

\hline

200 \& 0 \& 35 \& 0.37 \& 0 \& -49 \& 0.49 \& 0 \& 57 \& $0 \cdot 61$ \& 0.75

400 \& 0.43 \& $0-47$ \& 0 \& 56 \& $0-58$ \& 0 \& 67 \& 0 \& -75 \& 0.93

\hline
\end{tabular} 4000.43

6000.53
$\begin{array}{llllllllll}800 & 0.63 & 0.57 & 0.68 & 0.68 & 0.77 & 0.97 & 1 & .25 & - \\ 800 & 0.68 & 0.70 & 0.80 & 0.80 & 0.90 & 1.20 & 1.50 & 4.00\end{array}$
SIL. RECTS. TESTED

PIV 300 mA 750 mA IA 1.5 A 3 A 10A 30 A $\begin{array}{llllllll}50 & 0.04 & 0.05 & 0.05 & 0.07 & 0.14 & 0.21 & 0.60 \\ 100 & 0.04 & 0.06 & 0.05 & 0.13 & 0.16 & 0.29 & 0.75\end{array}$ | 100 | 0.04 | 0.06 | 0.05 | 0.13 | 0.16 | 0.23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.65 | | | | | | |
| 200 | 0.05 | 0.09 | 0.06 | 0.14 | 0.20 | 0.24 | $\begin{array}{llllllll}200 & 0.05 & 0.09 & 0.06 & 0.14 & 0 \cdot 20 & 0.24 & 1 \cdot 00 \\ 400 & 0.06 & 0.13 & 0.07 & 0.20 & 0.27 & 0.37 & 1.25 \\ 600 & 0.07 & 0.16 & 0.10 & 0.24 & 0.34 & 0.45 & 1.86\end{array}$ $\begin{array}{llllllll}8000.67 & 0.16 & 0.10 & 0.2 & 0.34 & 0.45 & 1.86 \\ 800 & 0.10 & 0.17 & 0.11 & 0.25 & 0.37 & 0.55 & 2.00\end{array}$ $\begin{array}{llllllll}10000.11 & 0.25 & 0.14 & 0.30 & 0.46 & 0.63 & 2.50\end{array}$ $\begin{array}{llll}0.38 & 0-67 & 0 & -75\end{array}$

TRIAC8
VBOM 2A 6A

 Case) 18p ea. 1\%W (TopStud) 25p ea. All fully teated 5% tol and
narked. State voltage rnarked.
required.

POR USE WITH TRIACS

BR100 (D32) 37D each

FREE

One Sop Paly of your own choice freo with
orderi valued E 4 or over

ERAND NEW TEXAS

 GERM. TRANSISTORS Coded and GuaranteodPak No.

sak No
1

10 amp POTTED BRIDGE RECTIFIER
on heat sink.
I00PIV. 90p each

NEW LINE

Plastic Encapsulated 2 Amp. BRIDGE RECTS. 50 v RMS 32 p each 100 V RMS 87D 48
$\frac{\text { Size } 15 \mathrm{~mm} \times 6}{\text { UNIUUNCTION }}$ UT46. Eqvt. 2N2646 Eqvi. TIB43. BEN3000 27p each, $25-99$ 25b
100 UP 20p.

CADMIUM CELLS ORP12 43p
ORP60, OliP61 40p eac GENERAL PURPOSE NPN SILICON SWITCHING TRANS. TO-18 SLM. TO 2N700/8. BSY27/28/05A. All unable
devlces no open or ahort
 ABLE in PNP Sim. to 2N:2906, BCY70. When orderiag please stat

138 S 21 \& C407, 2N1893 FULLY TESTED AND CODED ND 120. 1-24 170 each. TO.
25 up 15 p each.

Mil. trans. suitable for P.E. Organ. Metal TO-18 Fqit. ZTX 30050 each.

POWER
 TRANS

BONANZA!

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI-PAK UNTESTED

QUality tested secicondoctors

		$\underset{\text { Prics }}{\substack{\text { Pics } \\ \hline}}$
Q1	20 Red spot transistors PNP	0. 50
Q2	16 White «pot R F. transistors PNP	0.80
Q3	4 OC 77 type transistors	0.50
Q4	6 Matched transistors OC44/45/81/8	30
Q5	4 OC 75 transistors	0.80
Q5	5 OC 72 transigtors	0.50
Q7	4 AC 128 tranaistors PN P high gain	0.50
Q8	4 AC 126 tramistors PNP	$0 \cdot 50$
Q9	OC 81 ty de transiators	
Q10	7 OC 71 type transistors	
Q11	2 AC 127/128 Complementary pairs PNP/NPN	
Q12	3 AF 116 type transistors	0. 50
Q13	3 AF 117 trpe transistors	0.60
Q14	$30 \mathrm{O} 171 \mathrm{H}, \mathrm{F}$. type transistors	
Q15	7 2N2926 Bil. Epoxy transistors mixed colourg	
Q16	2 get880 low noise Gerinanium	
Q17	5 NPN $2 \times$ ST. 141 \& $3 \times 8 T .140$.	0. 50
Q18	4 MADT*\& $2 \times$ MAT $100 \& 2 \times$ MAT 120	$0 \cdot 50$
Q19	3 MADT'S $2 \times$ MAT $101 \& 1 \times$ MAT 121	
Q20	4 OC 44 (iermanium transistors A.F	0.50
Q21	4 AC 127 NPN Germanium transisto	
Q22	20 N KT transistors A.F. R.F. coded	0. 80
Q23	10 OA 202 silicon hiodes sub-min	
Q24	8 OA 81 diodes	$0 \cdot 80$
Q25	15 IN914 Silicon dioles 75 PIV 75 ma	
Q26	8 OA95 Germanium dioles bub-min INi9	$0 \cdot 50$
Q27	2 10A PIV Silicon rectiffers I8425R	$0 \cdot 30$
Q28	2 Slicon wower rectifiers BFY 13	0. 80
Q29	4 silicon transiators $2 \times 2 \times 296$, $1 \times 2 \mathrm{~N} 697,1 \times 2 \mathrm{~N} 698$	0.50
Q30	7 sllicon switch transistors 2N706 NPN	
Q31	6 Silicon switch transistors 2N708	- 50
Q32	3 PNP Bilicon transistors 2×2 N1131, $1 \times 2 \mathrm{~N} 1132$	O. 50
Q33	3 silicon NPN transistors 2NiJII	0.50
Q34	7 silicon NPN transistors 2Na369. 500 MHz (cole P397)	$0 \cdot 50$
Q35	3 Silicon PNP TO-5. 2×2 N2904 \& $1 \times 2 \mathrm{~N} 290 \mathrm{~K}$	0.50
Q3a	$72 \mathrm{~N} 3646 \mathrm{TO}-18$ plastic 300 MHz NPN	0.50
Q37	32 N 3053 NPN Silicon tranaistors	
Q38	7 NPN transistors $4 \times 2 \mathrm{~N} 3703, \triangleleft \times$	0.50

ELECTRONIC SLIDE-RULE
The MK Slide Rule. designed to simplify Elec Conne calculations features the following acales:-
of Frequency and Wavelength Calculation of L, i and fo of Tuned Circuite Reactance and Self Inductance. Area of Circles. Volnme of Cylinders. Reaistance of Conductora Weight of Condurtors. Decibel Calculations Angle Functiona. Natural Logs and 'e' Functiona Multiplication and Division. Equaring, Cubing and A वuare Koots. Conversion of kW and Hp A must for every electronic engineer and enthusi
ast. Size: $2 \mathrm{~cm} \times 4 \mathrm{~cm}$. Complete with care and ast. Size: 2
ingtructions.

GENERAL PURPOSE GERM. PNP Coded GPloo. BRAND NEW TO.3 CABE POSS REPLACE. $-00^{25-28-29-30-35-36 . ~ N K T ~}$
404-405-406-430-451-452-453. T13027-3028,
$2 N^{2} 250 A-$ 2N456A-457A-458A, 2N511 A \& B. 2G220-222, ETC YCBO 80 V VCEO 50 V IC 10 A PT. 30 WATTS H $30-170$.
PRICE

43p each $\quad 40 \mathrm{p}$ each $\quad 100 \mathrm{up}$

8LICON Eigh Voltage 250 V NPN TO-3 case. G.P. Switching \& Amplifier Aplications. Brand new Coded R 2400 VCHO 250/VCEO $100 / \mathrm{IC} 6 \mathrm{~A} / 30$ Watts.
 2N3055

 HFE trpe $20 / 1 \mathrm{~T}$ 5MHZ.OUR PRICE EACH
$\frac{50 \mathrm{p}}{\mathrm{AD} / 61 / 162}$
100 up
40 p

115 WATT SIL

 POWER NPN50p EACli

SILICON 50 WATTS WATCEED NPN/PNP BIP 19 NPN TO-3 Plastic. BIP 20 PNP. Brand new OUB PRICE PE 50/IC 10A. HFE type 100/ft 3 mHZ $1-24$ prs. 60p $\quad 100$ prs. 60p

INTEGRATED CIRCOIT PAKS
Manufacturers Fall Onts which include Functional and Part-Functional Units These are classed as 'out-of-spec' from the maker's very rigid siecifications, but PakNo. Contentı Price Pak Ko. Contents Price $\mathrm{UICOO}=12 \times 7400 \quad 0.50$ $\mathrm{UIC01}=12 \times 7401$
$\mathrm{UIC02}=12 \times 7402$
U .50
$\mathrm{UIC}=12$ $\begin{array}{ll}\mathrm{UIC} 02=12 \times 7402 & 0.60 \\ \mathrm{UIC} 03 & =12 \times 7403 \\ 0.60\end{array}$ each.

> SILICON PHOTO TRANMPN Gin. to $\mathrm{HP}^{2} \times 25$ and P21. BRAND NEW. Full data avaiable. Fully quaranteed. | Qtg. | 1.242599 | 100 up |
| :--- | :--- | :--- |
| Price each | 45 D | 40 p |

F.E.T.'S

> 2N3819
2N3820
> 2N3820
> 2N3821
> 2N3823
> $\begin{array}{ll}350 & 2 N 5458 \\ 500 & 2 N 5459\end{array}$
> 80p MPF105
$\begin{array}{ll}\mathrm{UICO4}=12 \times 7404 & 0.50 \\ \mathrm{UIC} 05=12 \times 7405 & 0.50\end{array}$ $\begin{array}{ll}\mathrm{UIC} 06=8 \times 7406 & 0.50 \\ 0.50\end{array}$ $\begin{array}{ll}U 1 C 00 & =8 \times 7406 \\ \text { UIC1 } & 0.50 \\ =12 \times 7410 & 0.50 \\ U & 0.50\end{array}$

NEW EDITION 1971 TRANSISTOR EQUIVALENTS BOOK. A complete cross reference and equivalents book for European, tors. Excluaive to BI-PAK 90 D

A LARGERANGE OF TECHNICAL AND DATA BOOKS ARE NOW AVAILABLE EX. STOCK. SEND FOR FREE LIST. $\begin{array}{ll}\text { UIC20 }=8 \times 72 \times 7420 & 0.50 \\ \text { UIC30 } & =12 \times 7430 \\ & 0.50\end{array}$ $\begin{array}{ll}\mathrm{UIC} 30 & =12 \times 7430 \\ 0.60\end{array}$ UIC41 $=12 \times 7440$ UIC42 $=5 \times 7441$
UIC43 $\begin{array}{ll}\mathrm{HC} \\ \mathrm{HC}\end{array}=5 \times 74=743$ $\begin{array}{ll}\text { TIC44 }=5 \times 7444 & 0.50 \\ \text { UIC45 }=5 \times 750 \\ 0.50\end{array}$

BI-PAISS NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT COMPETITIVE PRICES18 BALDOCK STREET (A|O), WARE, HERTS. TEL. (STD 0920) 61593.
open MON.-SAT. 9.15 a.m. to 6 p.m., FRIDAY until 8 p.m.
All mail orders please add 10 p post and packing.
Send all orders to BI-PAK, P.0. BOX 6, WARE, HERTS.

M/P COMP OUR LOWEST PRICE OF 65p PER PAXR

-the lowest prices!

74 Series T.T.L. I.C's BI-PAK STILL LOWEST IN PRICE. FULL SPECIFICATION SN7400
SN7401

SN7401 SN7402
SN74 SN SN03
SN7404 SN7403 SN7 SN 7407
SN 7407 SN 7406 SN 7409
SN7709 SN7410 SN74
SN7412 SN7413
SN7416 SN7417
SN7417 SN7420 SN7422 SN 7423
SN7423 SN 2429 SN
SN7428 SN $N 440$ SN
$\mathrm{SN} N 432$ SN 743 l SN 7437
SN7437 SN N N43
SN740 SNT441 SN74
SN744 SN7444 SN744
SN744S SN7446 SN747
SN 7448 SN 7450
SN74S4 SN7460
SN7470 SN7472
SN7472 SN7473 SN74
SN7474 SN7475 SN74
SN 7476 SN 7480 SN 7491

SN744 SN748S SN748is

LINEAR I.C. -LFULL SPEC.				ROCK BOTTOM PAICES LOGIC DTL 930 Serles I.C's				
				1 yp	1-24	Price		
	1-24	${ }_{20}$ Price 100 up		$\begin{aligned} & \text { Yo } \\ & \text { HP9 } 10 \end{aligned}$		25-9100up		
Type so.				$12 p$	25-90	$100_{10 p}$		
8P2014-51.2018	48	23-9	45p		${ }_{\text {RP93 }}$	13 p	12 p	110
8P7016-S1.7018	48	50	45p	HP919	$13 p$	12 p	$11 p$	
8P7026-S1.7026	4 p	50 p	45p	8P9\%	14 p	12 p	$11 p$	
BP702-72702	53p	$4{ }^{40}$	${ }^{40} \mathrm{p}$	BP944	1.9	12p	110	
BP709-727.39	\%p	3 P	*p	${ }_{\text {H Proy }}$	$25 p$	24 p	22^{p}	
	34 p	${ }_{4}{ }_{4}$	40	KP946	120	110	10p	
BPFIO- ${ }^{\text {BPA }}$	450	4.4p	400	4P948	250	24.	220	
BP741-52741	750	0°	sop	AP991	65 p	0 p	53 p	
世47036-世A703	28 p	$26 p$	$24 p$		11p	$1{ }^{19}$	${ }^{10 p}$	
TAA263-	700	60p	55 p	APso9?	40 p	\%	35 p	
TAAP93-	คp	75p	70p	${ }_{4}^{41 p 9094}$	*p	40	${ }^{35}$	
TAABSO ${ }^{\text {S }}$ (1000	170p	159\%	1.50 p		40	3 p	3 spp $1.5 p$	
S.Cis FA 10002				Deviser may quanlity price un applasation	$\begin{aligned} & \text { te mixed } \\ & \text { larger }{ }^{\text {a }} \\ & \text { (DTi } 930 \end{aligned}$	qualif antily Serie,	y for price unly)	

BI-PAK DO IT AGAIN! 50W pk 25w (RMS)

0.1% DISTORTION! HI-FI AUDIO AMPLIFIER

THE AL50

* Frequency Response 15 Hz 100,000-1dB.
\Rightarrow \qquad
15
* Distortion-better than 1% at 1 KHz .
\star Signal to noise ratio 80 dB .

ONLY

23.250 each

* Supply voltage $10-35$ Volts.
\star Overall size $63 \mathrm{~mm} \times$ $105 \mathrm{~mm} \times 13 \mathrm{~mm}$.

Tatlor made to the moat atringent specifications using top qually components and incorporating the latest solid atate circuitry and ALBO, was concelved to fill the need for all your A.F. amplification needs.
FULLY BUILT - TESTED - GUARANTEED.

STABILISED POWER MODULE SPM80

AP80 is especially designed to power 2 of the AL50 Anplifers, up to 15 watt (r.m.s.) per channel simultaneously. This module embories the latent componenta sircuit protection. With the addition of the Mains Transformer MT80, the unit will provide outputs of up to 1.5 ampe at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$. These unlts enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:-Disco Systems, Public Adiress, ntercom Units, etc. Handbook avallable, 10p PRICE £2.95

TRANSFORMER BMT80 £1.95 p. \& p. 25p.

STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a price, and yet atill the greatest value on the market, the PA100 stereo pre-amplifier has been concejved from the latest circuit teconlques. Designed for use with the Al50 power ampliffer syatem, thls quality made unit incorporatea No less than eight silicon planar transisto
Three switched stereo inputs, and rumble and scratcb filters are featurea of the PAl00. which also has a STEREO/MONO awitch, volume, balance and continuously varlable bass and treble controls.
gPECIPICATION Frequency Response
Inputs : 1. Tape Head $\quad 1.25 \mathrm{mV}$ into $50 \mathrm{~K} \Omega$
2. Radio, Tuner
1.25 mV into $50 \mathrm{~K} \Omega$
1.5 mV into $50 \mathrm{~K} \Omega$

All Input voltagea are for an output of 250 mV . Tape and P.U. inputs equalised to RIAA curve within $\pm 1 \mathrm{~dB}$. from 20 Hz to 20 KHz . Base Control
$\pm 15 \mathrm{~dB}$ at 20 Hz
$\pm 100 \mathrm{~Hz}$
8 KHz
better than - 65 dB
$+28 \mathrm{~dB}$
+35 volts at 20 mA
ONLY E11.95
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMT 80 \& 1 PA100 ONLY £23-00 FREE p. \& p.

JAMES

SALE OF SURPLUS ELECTRONIC EQUIPMENT The following items are available for immediate delivery at very competitive prices-

SEALED RELAVS (NATO APPROVED)

GEC 4 pole c/o 24 V 670 ohm. GEC 2 pole on/ott 24 V 670 ohm GEC 2 pole cJo rice each 75p. P \& P 10 p

NEWMARKET TAANSISTORS							
NKT351	73p	NKT12329	9 27p	2N2222	14p	NKT218	23p
NKT352	25p	NKT 12429	9 27p	NKT12	30p	NKT221	30p
NKT406	60 p	NKT 13329	$927 p$	NKT72	25p	NKT222	18p
NKT420	C1 00	NKT13429	9 27p	NKT73	22p	NKT223	25p
NKT450	30 p	NKT 16229	9 27p	NKT121	21p	NKT224	22p
NKT603	22p	NKT20329	9 21p	NKT124	28p	NKT227	25p
NKT613F	28 p	NKT80111	1 65p	NKT125	38p	NKT237	29p
NKT674	30p	NKT80113	3 \%	NKT128	35p	NKT238	16p
NKT677	14p	NKT80125	5 80p	NKT127	23p	NKT249	29p
NKT713	27p	BC107	8	NKT128	18 p	NKT261	${ }^{19} \mathrm{p}$
NKT734	24 p	BC108	ep	NKT129	22p	NKT270	18p
NKT736	30 p	BCY70	13p	NKT135	24p	NKT271	16p
NKT773	23p	BFY51	$\sim 17 p$	NKT137	30p	NKT272	15p
NKT0216	20 p	BSY95A	100	NKT142	40p	NKT273	18p
NKT3055	23p	2 N697	13p	NKT143	48 p	NKT274	16p
NKT8917	27p	2N706	8 p	NKT212	23p	NKT275	21p
NKT 10339	23p	2N914	15p	NKT213	$23 p$	NKT278	18p
NKT 10419	17p	2N918	23	NKT214	21p	NKT301	70p
NKT 10439	25p	2N9330	$22 p$	NKT215	19p	NKT302	85
NKT 10519	20p	2N1990	22p	NKT217	4 p	NKT303	$70 p$

\$.t.C. RELAYS-GAAND NEW

UNISELECTOR SWITCHES

6 bank 25 way 75 coll 50 V d.c. operation panel containing 20 illuminated Push gutton Switches Completely wired for operation. PAP PO 55

AUTOMATIC CVCLER UNIT
This unit generates stepping pulses (50 V d C .) at intervals of 6 puises per min to 120 pulaes per min -continuously variable Can be used for Automatic
Stepping of one or more unizelector switches shownabove Price $£ 1250$

NEWMAAKET PACKAGED AUDIO AMPLIFIEA
PC1 150 mW Audio Amplifier
Price \&1 00 each P \& P 5010 PC10 Magnetic replay head amplifter supply voltage $9 V$ o c input impedance 150

WE have alarge range of capacitors ANO RESISTORS PLEASE SEND A STAMPED AND RESISTORS. PLEASE SEMO ASTAMPED FOA YOU CATALOGUE

JAMES SCOTT (ELECTRONIC ENGINEERING) LIMITED CARNTYNE INDUSTRIAL ESTATE, GLASGOW G32 6AB TEL: 041-7784206

NEW COMPONENTS

Post and packaging free for orders over $£ 1 \cdot 50$, include 10 P P\&P for each single pack under fil. 50 .
200 Mixed Resistors all types, 50p. 100 Mixed Modern and Miniature
Resistors, 50p. 10 mF 64 V Electrolytic Caps, 5 for 25 p ; 12 for 50 p. 640 mF 16 V Electrolytic Caps 3 for 50 p ; 7 Mr 60 p . 10 mF 63 V WIMA non-electrolytic, 15 p each. $(3200$ grf $10 \mathrm{~V}, 15 \mathrm{p} ;)$ for $38 \mathrm{p} ; 5$ for 60 p . SEMICOTNDETORS
Any 6 of the following, 50 p , or 10 en each. OC7I, BFY50, 2 N 3702 , CV8615, BSY95A, NTG885, 2N930, OA8I, 2×1 N914. (OR P60 50p)

CONSTRUCTORS' ITEMS

Subminiature Omron I2V d.c. relays mounted on CCF board, 3 for $60 p$, P\&P 9p; mounted on CCT board with components, 2 fo-60p, Pap-7 GPO Relays, various 200s $2-7000 \Omega$, 30p each. Uni electors, 10 pole, 25 way, El each, P\&P 25p. Heavy Duty Foot Ped Is, 50p, P\&P 20p. 6 V 5 digit High Speed Counters, E1,50, 15p P\&P.

DICTATING MACHINES

£2.50 each-ideal for spares, motor, power pack, record/replay, electronics with mike $\mathbf{〔 3 . 2 5}$,

TRANSFORMERS

Mains-13V 2.5A and $15 \mathrm{~V} 0.75 \mathrm{~A} \in 1.45,20 \mathrm{p}$ P\&P. Mains-I 13 V IA 12 $0.5 \mathrm{~A}, \mathrm{£1.25}, 20 \mathrm{P} P \& P$. Mains-13V 5 A and 24V 2A, £2, 25p. P\& Mains-24V 100 mA and $6 \mathrm{~V} 100 \mathrm{~mA}, 75 \mathrm{p}, 10 \mathrm{p}$ P\&P.
Power Pack-suitable to run Transistor Radio or Cassett

EX COMPUTER CIRCUIT BOARDS

10 Boards, 50p, 8p P\&P: 25 Boards, $11,18 p$ P\&P.
2 Boards with 2 power transistors, IE $4 \times$ OC 28 type, 50p, 7p P\&P

LAWBAK ELECTRONIGQ

(HI-FI AND COMPONENTS SPECIALISTS)
18 HIGH RD., SWAYTHLING, SOUTHAMPTON
Telephone: Southampton 58479 No Half Day Closing
Discount and Credit Terms Available

B.H. COMPONENT FACTORS LIMITED

${ }^{\mu \mathrm{LF}}: 0.01,0.015,0.022,0.033,0.047,3 \mathrm{p}$ each; $0.068,0.1,0.15,4 \mathrm{p}$ each; $0.22,5 \mathrm{p}$ $\mu \mathrm{F}: 0.01,0.015,0.022,0.033,0.047,3 \mathrm{p}$ each; $0.068,0.1,0.15,4 \mathrm{p}$ each; 0.
$0.33,7 p ; 0.47,8 p ; 0.68,10 \mathrm{p} ; 1.0,13 \mathrm{p} ; 1.5,20 \mathrm{p} \cdot 2.2,23 \mathrm{p}$. 160V: ($\mu \mathrm{F}) 0.01,0.015,0.022,2 \mathrm{2p} ; 0.047,0.068,3 \mathrm{p} ; 0.15,0.22,4 \mathrm{p} ; 0.33,5 \mathrm{p}$;
$0.47,6 p ; 0.68,1.0,10 p$.
$400 \mathrm{~V}:(\mu \mathrm{F}) 0.001,0.0015,0.0022,0.0033,0.01,2 p ; 0.015,0.033,3 p ; 0.068,4 \mathrm{p}$. MINIATURE ELECTROLYTIC MULLARD C426 SERIES (5p each) (μ F/V) $0.64 / 64,1.6 / 25,4 / 4$), $8 / 40,10 / 40,10 / 64,16 / 40,20 / 64,25 / 25,32 / 10$, 40/16, 64/10, 80/16, 80/25, 100/6.4, 125/16, 200/6.4, 200/10, 320/6.4, 125/10. MULLARD C437: ($\mu \mathrm{F} / \mathrm{V}$) 64/64, 9 p ; 160/25, 9p; 160/40, 11 p ; 640/6.4, 9p $1600 / 6 \cdot 4$, 14p.

ELECTROLYTIC CAPACITORS. Tubular and large can (μ F/V) 2.5/50, 3p; $4 / 10,10 / 25,16 / 15,20 / 25,25 / 15,25 / 25,40 / 6,64 / 10,200 / 6$,
$250 / 10,4 \mathrm{p} ; 10 / 6,10 / 50,25 / 50,32 / 50,50 / 10,64 / 25,100 / 25,50,50 / 50,64 / 40$ $\begin{array}{ll}250 / 10,4 p ; 10 / 6,10 / 50,25 / 50,32 / 50,50 / 10,64 / 25,100 / 25,5 p ; & 50 / 50,64 / 40, \\ 250 / 15,1,000 / 3,6 p ; 100 / 50,250 / 25,400 / 10,500 / 10,500 / 12,640 / 10,1.000 / 6,\end{array}$
 1,000/50, 35p; 2,000/25, 25p; 2,500/25, 30p; 2500/50, 55p; 3,000/50, 65p;
5,000/50, 85p. 5,000/50, 85p.
CERAMIC PLATE CAPACITORS

750V: (pF) 5, 10, 25, 40, 70, 220, 2tp; (μ F/V) $0.0047 / 30,0.01 / 350,2 p$ $0.047 / 30,3 \mathrm{p} ; 0.1 / 30,4 \mathrm{p} ; 0.1 / 100,5 \mathrm{p} ; 22 \mathrm{pF}-1000 \mathrm{pF} 50 \mathrm{~V}$, EI2 Series; 1500 pF $0.022 \mu \mathrm{~F} 50 \mathrm{~V}$, E6 Stries 2 p each.
CARBON FILM RESISTORS $\ddagger W 5 \%, 10$ ohms- $2 \cdot 2 M, 1 p$ each, or 100 for
55p.
S5P. SPECIAL RESISTOR KITS (1 W 5% CARBON FILM) 10 E 12 Kit: 10 of each El 2 value, 10 ohms- 1 M , a total of $610,62-80 \mathrm{net}$ $\overline{\text { VEROBOARD }} \begin{array}{lllll}0.1 & 0.15 & \text { IN400I } & \text { op }\end{array}$

NIFTD FROM ADCOLA THE BEST IN SOLDERING KITS Styrene packed with see-through top

Contents

BOX OF SOLDER
TWO SPARE BITS
HINTS ON SOLDERING
686 SOLDERING STAND
646 INVADER SOLDERING TOOL

Sinclair Project60

Active Filter Unit
 (A.F.U.)

Built and tested post free $£ 5.98$

The value of an efficient filtering system cannot be over emphasized in these days of very high quality reproduction since there are so often occasions where its use can mean the difference between comfortable and uncomfortable listening. On the low pass side the Sinclair A.F.U. will effectively reduce hiss from radio or tape, cut out heterodyne whistles on A.M. reception, greatly reduce record surface noise and other imperfections; on the high-pass side it will cut out motor rumble and other spurious low frequency intrusion. The unit is for use between pre-amp (including tape pre-amps) and power amplifiers, and operates in two sections, both stereo. The cut-off frequencies are continuously variable, and since attenuation in the rejection band is rapid (12 dB /octave) there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is as easy to mount as the stereo 60 pre-amp/control unit which it matches in styling, along with the Stereo FM Tuner.

SPECIFICATIONS

The A.F U employs two Sallen and Key type active filter stages. one rumble (high pass) and one scratch (low pass). The two stages use complementary iransistors io minimise distortion.
Supply voltage: 15 to 35 volts Current 3mA maximum.
Gain at $1 \mathbf{k H z}$: Filters flat 098 (-0.2 dB)
HF cut off: (-3 dB) variable from 28 kHz to 5 kHz at 12 dB /octave.
LF cut off: (-3 dB) variable from 25 Hz to 100 Hz at 12 dB /octave.
Distortion: at 1 kHz (35 volt supply) 0.02% at rated output.

Super IC. 12 mesertece circum
 high fidelity amplifier

sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the Z..50 and Z.30 amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). 6-8 . Frequency Response: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at all output powers and frequencies in the audio band $(28 \mathrm{~V})$ Loed Impedance: 3 to 15 ohms. Input Impedance: 250 Kohms nominal. Power Gain: 90 dB (1.000 .000 .000 times) after feedback Supply Voltage: 6 to 28 V . puiescent cur-, rent: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ in cluding pins and heat sink
Manual available separately 15 p postfree.

Having introduced Integrated Circuits to hi-fi constructors with the IC. 10 . the first time an IC had ever been made avallable for such purposes. we have followed it with an even more efficient version. the Super IC. 12 . a most exciting advance over our qrigjnal ynit. This needs verv few external resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up. F.M. radio or small P.A. set up, etc. The free 40 page manual supplied, details many other applications which this remarkable IC make possible: It is the equivalent of a 22 tran-

Project 605

The easy way
to buyand
build

Project 60
Project 605 is one pack containing: one PZ5. two Z30's, one Stereo 60 and one Masterlink. This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little clips to plug straight on to the modules. T患us all soldering an hunting for the odd part is eliminated. You will be able to add further Project 60 nodules as they become a wailable pdapted to the Project 605 method of connecting Complete Project 605 pack with
£29.95 comprehensive manual, post free
le a superb 30 Everything you need to assemble a superb 30 watt high fidelity stereo amplifier without having to solder.

Sinclalr Radionics Ltd, London Road, St. Ives, Huntingdonshire PE17 4HJ. Tel: St. Ives 64311

the world's most advanced high fidelity modules

Z.30 \& Z.50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to provide unsur passed standards of performance. Total harmonic distortion is an incredibly low 0.02% at 15 w (8Ω) and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in your Project 60 system will depend on personal preference, but they are the same size and are intended for use principally with other units in the Project 60 range. Their performance and design are such. however, that $Z .50$ s and $Z .30$ may be used in a far wider range of applications.
SPECIFICATIONS (2.50 units are interchangeable with 2.30 s in all applications).- Power Outputs Z. 3015 watts R.M.S. into 80 hms using 35 volts: 20 watts R.M.S. Into 3 ohms using 30 volts
$\mathbf{Z . 5 0} 40$ watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. into 8 ohms using 50 volts
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Distortion: 0.02% into 8 ohms. Signal to noise ratio: better Frequal oh ns impedance. Fize: $14 \times 80 \times 57 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit

Built testedand guaranteed.
Designed specifically for use on Project 60 systems. the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxıal planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
SPECIFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. pu. 3 mV correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} 20$ to 25.000 Hz . Ceramic p.u. - up to 3 mV : Aux - up to 3 mV . Output: 250 mV . Signal to nolse ratio better than 70 dB Channel matching: withın 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz : BASS better 12 dB a 10 H z Front panel: brushed alumınıum with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$

Project 60 Stereo F.M. Tuner

The phase lock loop princıple was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fan tastically good results. Other advanced features include varicap dıode tuning. printed circuit colls, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems.
 SPECIFICATIONS-Number of transistors: 16 plus 20 ml .C. Tuning range : 87.5 to 108 MHz . Sensitivity: $7 \mu V$ for lock-in over full deviation. Squelch level: Typically $20 \mu V$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}$ ($\pm 1 \mathrm{~dB}$). Total harmonic distortion: 015% for 30% modulation. Stereo decoder operating level: $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M S. maximum Operating voltage: $25-30 \mathrm{VDC}$. Indicators: Stereo on: tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$

Power Supply Units

Designed specifically for use with the Project 60 system of your choice. Use PZ. 5 for normal Z.30 assemblies and PZ. 6 or $P Z .8$ where a stabilised supply is essential.

PZ. 530 volts unstabilised $£ 4.98$ PZ. 635 volts stabilised $\mathbf{£ 7 . 9 8}$ PZ. 845 volts stablised (less manstransformer) $\begin{array}{ll}\text { (less mains transformer) } & £ 7.98 \\ \text { PZ.8 mainstransformer } & \mathbf{£ 5 . 9 8}\end{array}$

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	2.30	Crystal P.U., 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control, etc.	£9.45
12W. RMS contınuous sine wave stereo amp. for average needs	```2x Z.30s, Stereo 60;PZ.5```	Crystal. ceramic or mag. P.U., F.M. Tuner, etc.	£23.90
25 W . RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times Z .30 \text { s, Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic P.U., F.M. Tuner, Tape Deck. etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	2×2.50 s, Stereo 60: PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic.. guitar. speakers, etc.. controls	£19.43
F.M. Stereo Tuner (£25) \& A.F.U. (£5.98) may be added as required.			

Guarantee

If, within 3 months of purchasing any product direct from Sinclair Radionics Ltd. you are dissatisfied with it. your money will be refunded at once. Many Sinclair appornted Stockists also offer this same guarantee tn co-operation with Sinclair Radionics Ltd.
Each Project 60 module is tested before leaving our factory and is guaranteed to work perfectly. Shouid any defect arise n normal use we will service it at once and without any harge 10 you if it is returned within wo vears from the date harge to you. of purchase. Outside this period of guarantee a small charge (typically $£ 1.00$) will be made. No charge is made for postage by surface mail. Air Mall is charged at cost

TRANNIES
24 WOODHILL HARLOW, ESSEX

Ad.l $5 \mu \mathrm{P}$. \& P. Price list s.a.s
No callers please

All our stocks are brand new

MULLARD POLYESTER CAPACITORS C2B0 SERIES

MULLARD POLYESTER CAPACITORS C296 SERIES

 $0.4 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}$
$0 \cdot 2 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}$ ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
 $6.4 / 6 \cdot 4,2 \overline{0} / 64,50 / 54,100 / 5 \cdot 4,200 / 4 \cdot 4.3 \div 0 / 54,4 / 10,16 / 10,3: / 10,14 / 10,125 / 10,200 / 10$,

MULLARD C437 SERIES
 $640 / 10,1,20 / 4,1,000 / 64.4,600 /-3,12 p .140 / 44,250 / 40,400 / 2-\overline{3}, 540 / 14,2,000 / 4,1,000 / 10$, $1,600 / 64,2,500 / 2 \pi .15 \mathrm{p} .950 / 64,400 / 40,640 / 23,3,200 / 4,1.000 / 16,1,600 / 10,2,500 / 64$

Miniature Fixed Ceramic Plate 3p each

VOLUME CONTROLS
Potentiometers
Corbon track 500Ω to $2 \cdot 2 \mathrm{M} \Omega$ Log or Linear Single 12p. Dual gang (stereu) 40 p . RESISTORS
W 5% carbon
10% carbon in 10% carbon $1 p$ ipeach range $+7 \Omega$ to $10 \mathrm{M} \Omega$ tyiue TR triple raterl h-1, tin oxtile $\times 2 \%$ SLIDE SWITCH
BPST 10p each. D.P.D.T. 12p each MINIATURE NEON LAMPS $\because 40 \mathrm{~V}$ or $110 \mathrm{~V} 1-45 \mathrm{p}, 5$ plus 412p each.
CARBON SKELETON
PRE-SETS
Small high quality, type PR, linear only $100 \Omega, 2-2 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}$,
 mounting, 6p each.

MINITRON DIGITAL INDICATOR TYPE 3015F

Data Sheet on request)

ONLY £1-50

TLL 209 LIGHT EMITTING DIODE. Made by TEXAS IRST. (Red) 35 p . VEROBOARD
sLIDE POTENTIOMETERS
3 N (iLf ammin, TRACK
Ik to im 40, LOG or Ll
TWIN GANGED, LOG or LIS
to 500 k . 60p ea
SUPER PACKS

 everything that's broadcast-by any
one-from anywhere in the world. You name it-it gets it! Exciting specialised transmissions as well as BBC, Local Radio, Luxembourg, Continental and Pop Stations. PLUS broadcasts from all corners of the world on the earth shrinking SHORT WAVEBANDS.
Attractively finished in leatherette and stainiess steel to enhance any lounge or study. USE ANYWHERE-costs virtually nothing to run using standard batteries or plugs into mains. Tone, volume and tuning controls enables adjustment to individual listening perfection, 2 aerials, advanced keyboard cype push button waveband selector. Dial light (essential for use in darkness). Special world-wide dial and world map computes correct time in any country of the world. Personal hiofi earphone for private listening. 14 transistors, 9 diodes, 1 thermistor FREQUENCIES: Long: $150-350 \mathrm{kc} / \mathrm{s}$; Medium: $565.1605 \mathrm{kc} / \mathrm{stor}$ SHORT BANDS: $1.6-4.5 \mathrm{Mc} / \mathrm{s} ; 4-12 \mathrm{Mc} / \mathrm{s} ; 12.24 \mathrm{Mc} / \mathrm{s}$; $365 \mathrm{VHF} \mathrm{HA} / \mathrm{kN} / \mathrm{s} ;$ $88-108 \mathrm{Mc} / \mathrm{s} ; 108-135 \mathrm{Mc} / \mathrm{\$} ; 135-174 \mathrm{Mc} / \mathrm{s} . £ 27.50+50 \mathrm{pP}$. \& P. or $£ 7.50$ dep +50 p P. \& P. and 6 months at $£ 4(£ 31.50)$.

"GEMINI" FM STEREO TUNER

All components to build this outstanding phase lock, easily aligned tuner. As described in April/ May/June P.E. We are offering an optional chassis and wood sleeve. Complete kit, as illustrated, including chassis and solid wood sleeve £33.90 post paid.
All components available separately. Send S.A.E. for details and itemised price list.

SCORPIO ELECTRONIC IGNITION

Complete kit with comprehensive construction and fault finding data, £11. Post paid. Data 10p. Itemised prices, S.A.E. please

AMCEL, MAIL ORDER, 160 DRAKE ST. ROCHDALE

Tel. 0706-46234

A SpeakerSystem to meet every need

EMI provides the speaker system to suit your needs and your budget, all with one thing in common, superb quality of sound over the full audio range. Choose from new elegant speaker enclosures for the connoisseur; home assembly enclosure kits and matched speaker kits and a range of basic chassis loudspeakers as used in the highest quality sound reproduction equipment. Send for full details and name of your nearest stockist.

To: EMI Sound \& Vision Equipment Limited. EMI Pathe Division, 252 Blyth Road, Hayes, Middlesex. 01-573 3888 Please send me details of EMII loudspeaker's and name of nearest stockist.

Name
Address

GWI
 Perfection in Sound

A member of the EMI Group
Records and Entertainment.

USED EXTENSIVELY BY GOVERNMENT DEPARTMENTS, INDUSTRY, EDUCATIONAL AUTHORITIES, ETC. LOW COST ${ }^{\circ}$ QUICK DELIVERY OVER 200 CLEAR PLASTIC PANEL METERS

TYPE SW. 100	$100 \mathrm{~mm} \times 80 \mathrm{~mm}$ Fronts	
$30 \mu \mathrm{~A}$.	23.80	
${ }^{50} 0-0-50 \mu \mathrm{~A}$	28.80	
100, A. $\ldots . .$.	88.80	A
${ }^{100-0-100 \mu A}$.	23.70	
	23.60	
	23.40	
50V dic.	23.40	$\overline{\mathrm{j}}$ mp. d.e. . . 23.40
300 V a.e.	23.40	300 ya ac. ... 23.40
1 amp . dic.	23.40	Vi' Meter ... $\mathbf{8 4}$-15

POWER RHEOSTATS

namel. Heavy auty brush wiper. Cintinnous ratink. Wide range
 25 WATT. 10/ $2 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohums, 90 p . P. \& P. 71 p 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohms. $21 \cdot 65$. P. \&P. 712 P .
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS s-260 General Purpose Bench Mounting

Purpose	Bench Mounting
1 amp .	87.00
心Ј amp.	\$8.05
${ }^{5} \mathrm{amp}$.	211.75
8 amp.	\$15.90
10 amp .	£22-50
$1: 3 \mathrm{mmp}$.	428.60
10 amp .	248.00
2'J amp.	258.00
40 amp.	882.50

AUTO TRANSFORMERS

230 VOLT A.C. 0 CYCLES RELAYS
Brand new. 3 sets of changeover contacts at Post 10 p (100 lots each. Quantities available.

240° Wide Angle 1 mA Metera
 Post extra

RPE14 REGOLATED POWER SUPPLY Solid state. Variable output $0-24 y$ d.e. up to 1 anup. loual seale meter to mon up
 voltage and current Input $220 / 240 \mathrm{Y}$ a.c.
Size $185 \times 85 \times$ 10 जnm. 48.97 Port 2 ºp.

PS. 200 REGOLATED P.S. ס.

Solid state. Variable ontput $5-20 \mathrm{~V}$ d.c. up to 2 smp .
independent
meters to mopendent meters to
monitor voltage and current. Output $220 / 240 \mathrm{~V}$.

PS. 10008 REGULATED POWER SUPPLY POWER SUPPLY

or 102 V d.e. up to 3
anps. Meter to monitor
current. Input $290 / 240 \mathrm{Y}$
a.c. Size 4 in. $\times 3+1)^{2} \times$

LBe TRAREISTOR TESTER
Tests or NPN transistors. Audio indication. Operates on two $1 \cdot \overline{\mathrm{~V}}$ batteries. Complete with all instructions etc.
$\mathbf{2 4}$-50. Post 20 p .

LBS TRANSISTOR TESTER Tests ICO and B. Prp/nph. Operates from
9 V battery. Complete with all instructions, etc *3.95. Post 20 p .

SEND S.A.E. FOR LIST OF SEMICONDUCTORS AND YALYES
G. W. SMITH
\& CO. (RADIO) LTD. Also see next three pages

MULTIMETERS for EVERY purpose!

TE60 POCKET
HULTMEBTER
High-precielon at low-cost.
Ranges: D.c. $15 \mathrm{~V}, \quad 1 \mathrm{jov}$
 $15 \mathrm{~V}, 150 \mathrm{~V}, 100 \mathrm{~V}(1,00$ O.P.V.). tance 100 K ohnis.
21.85. Post 1 jp .

MODEL 1098 Testmeter.

5,000 O.P.
$0 / 3 / 15 / 150 / 300 / 1,200 V^{\prime} 1$. $0 / 300 \mu \mathrm{~A} / 300 \mathrm{MA}$ $0 / 300 \mu \mathrm{~A} / 300 \mathrm{MA}$ Decibels - 10 t 49.75 each. Poat 15 l d

HIOKI MODEL 780 20,000 O.P. $5 / 25 / 100 / 500 / 1,000 \mathrm{~V}$ $10 / 50 / 2 \overline{5} / 1,000 \mathrm{~V}$ a.c. | $50 \mu \mathrm{~A} / 2 \overline{0} 0 \mathrm{~mA}$. | $20 \mathrm{~K} / 2 \mathrm{meg}$ |
| :--- | :--- |
| 5 Hm. | -5 |
| to | |
| 6.2 dB | | ©hm.

HIOEI MODEL 780X
30,000 O.P.V. O verload protectlon. $\quad 6 / 30 / 60 / 300 / 600 /$ $1,200 \mathrm{~V}$ (1.c. $12 / 60 / 120 / 600$ 300 mA . ${ }^{2 . c} 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{meg}$ hom. -10 to +63 dB 86.50 . Post 1 up .

HODEL TE-18
20,000 O.P.V. $0 / 0 \cdot 6 / 6 / 30 / 120 /$ $600 / 1,200 / 3,000 / 6,000$ $0 / 6 / 30 / 120 / 600 / 1.200 \mathrm{~V}$ $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{n} 1 \mathrm{~A}$ $600 \mathrm{~K} / 6 \mathrm{Meg} . / 60 \mathrm{Meg} . \Omega 50 \mathrm{pF}$ $0 \cdot 2 \mathrm{mFd}$ ES 97 . Post 17 g

MODEL TE-800 20,000 Mirror scale, overload
tlon. $0 / \overline{2} / 2 / 125 / 1,000 \mathrm{~V}$ c. $0 / 50 \mu \mathrm{~A}$. +62 dB . $8-95$. Post 15 .

MODEL $500 \quad 80,000$ O.P.Y with overlogd protection mirror scale 0/0.5/2-5/10/25/ $100 / 250 / 500 / 1.000 \mathrm{~V}$ $\begin{array}{ll}15 / 25 / 10 / 25 / 100 / 250 / 500 / \\ 1,000 \mathrm{~V} & \text { a.c. } 0 / 50 \mu .4 / 5 / 50 /\end{array}$ $500 \mathrm{~mA} \quad 12$ smp. d.c. $0 / 60 / \mathrm{K} / 6 \mathrm{Meg} / 6$
88.87 . Pont paid

HIOKI MODEL 750X
50,000 O.P.V
 $0-3$ to $1,200 \mathrm{~V}$ a $0-3 \mathrm{~K} / 30 \mathrm{meg}$ on +17 dB.
e8.97. Post 20 p

HT100B4 MULTI-METER
 Tirror scale. Overload protection. $0 / 0 \cdot 5 / 2 \cdot 5 / 10 / 50 / 250 / 500 /$ $1,000 \mathrm{~V}$ d.c.
$0 / 2 \cdot 5 / 10 / 50 / 2,0 / 500 / 1,000 \mathrm{~V}$ a.c.
$0 / 10 / 250 \mu \mathrm{~A} / 2 \cdot 5 / 2 \mathrm{~g} / 250 \mathrm{MA}$

10 mmp . $0 / 20 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{MEO} / 20 \mathrm{ME}$ $-20+6211$ B. 218.50. Post 25 sp .

0/120/ d.c. a.c. a.c. $0 / 6 \mathrm{~K} /$ 50 pF 17 p.

$0 / 5 \mathrm{~K} / 50 \mathrm{~K} / 500 \mathrm{~K} / 5 \mathrm{MEG}$
 for general
667 O.P.V. $600 / 900 \mathrm{~V}$ B

ROUND SCALE TYPE PENCLL TESTER
MODEL T8.68 MODEL T8.68
 Completely portable, simple to use pocket sized tester.
Ranges $0 / 3 / 30 / 300 \mathrm{a}$ a.c. $\begin{array}{lll}\text { Ranged } \\ \text { and I.c. it } & 0,000 & \text { O.P.V } \\ \text { Resigtancer }\end{array}$ $\begin{array}{ll}\text { Resistance } & 0 \cdot 30 \mathrm{~K} \\ \text { ONLY 21.07, } & \text { Popt } 13 \mathrm{p}\end{array}$

MODEL TH-12 20,000 O.P.V. overload pro tection. Slide switch selector
$0 / 0.25 / 2 \cdot 6 / 10 / 00 / 250 / 1,000 \mathrm{~V}$ d.c. $0 / 10 / 50 / 250 / 1,000 \mathrm{~V}$ a.c $30 \mathrm{~K} / 300 \mathrm{~K} / 3 \mathrm{~m} / \mathrm{mA}$, L.e. $0 / 3 \mathrm{~K}$ +50 dB . \&.97. Post 10̄p.
 $\begin{array}{lrr}\text { MODEL } & \text { PL430 } \\ 20 \mathrm{k} \Omega / \mathrm{N} & \text { d.c. } & 8 \mathrm{k} \Omega / \mathrm{V}\end{array}$ a.c. Mirror scale.
$0.6 / 3 / 12 / 30 / 120 / 800 \mathrm{~V}$ $\begin{array}{ll}\text { rl.c. } & 3 / 30 / 120 / 600 \mathrm{~V} \\ \text { a.c. } & 50 / 600 \mu \mathrm{~A} / 60 /\end{array}$ $60011 \mathrm{~A} . \quad 10 / 100 \mathrm{~K}$

-20 to +46 dB . $26 \cdot 97$, Post 12 p .

TMK MODEL TW-50K 48

 $2 \overline{5}, 50 \mu \mathrm{~A}, 2.5,5,2 J, 50,250$,
$500 \mathrm{~mA}, 5,10$ almp. Resistance : $500 \mathrm{~mA}, \overline{5}, 10 \mathrm{amp}$ Resistance
$10 \mathrm{~K} .100 \mathrm{~K} .1 \mathrm{MEG}, 10 \mathrm{MEG} \Omega$

 $500 / 1,000 \mathrm{~V}$ a.c. $0 / 50 \mu \mathrm{~A} / 5 / 50 / 150 / 500 \mathrm{~mA}$
5 A d.c. $0 / 3 \mathrm{~K} / 300 \mathrm{~K} / 3 \mathrm{meg} . \mathrm{HB} .8 \mathrm{~s}$. Poat 20 p

HIOKI MODEL 700X protection. Mirror scale $120 / 300 / 600 / 1,200 \mathrm{~V}$ i.c. $1 \cdot 5 / 3 / 6 / 12 / 30 / 60 / 150 / 300$ $600 / 1,200 \mathrm{~V}$ a.c.
$15 / 30 \mu \mathrm{~A} / 3 / 6 / 30 / 60 / 150 / 300 \mathrm{~mA}$
$6 / 12$ amp. l.c. $2 \mathrm{~K} / 200 \mathrm{~K}$
+531B. 213.50 . Post 20

MODEL C-7080 EN
Giant 6in mirror scale. Giant 6 in mirror scal
20,000 O.P.V. $0 / 0 \cdot 20 / 1 / 26 / 10 / 00 / 250 /$ $1,000 / 5,000 \mathrm{~V}$ d.c. $0 / 2 \cdot 5 / 10$
$150 / 250 / 1,000 / 5,000 \mathrm{~V}$ a.c. $150 / 250 / 11 / 10 / 100 / 500 \mathrm{ma}$ 10 mmp d.c. $0 / 2 \mathrm{~K} / 200 \mathrm{~K}$ 20 meg.
$2020 \mathrm{to}+50 \mathrm{~dB}$.
218.05.

U4812 MULTIMETER

Extremely aturdy instrument
$0 / 0 \cdot 3 / 1-5 / 7 \cdot 5 / 30 / 60 / 160 / 300 /$ $600 / 900 \mathrm{~V}$ d.c. and 75 mV . $0 / 0 \cdot 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300 /$ 600MA/1.5/6/15/60/150 600MA/1- $/ 6 / 6 \mathrm{amp}$. d.c. $\mathrm{I} \cdot \overline{5} / 6$ arp. a.e. $0 / 200 \mathrm{M} / 3 \mathrm{k} / 30 \mathrm{k}$ Knife edge pointer, mirror scale. Acenrac with sturdy metal carrying case, lests and inatructions. 80.50. Post 2 F p

Selected TEST EQUIPMENT

MODEL 449A IN

 TOR TESTER Check true a.c. betain/out. Checks Icbo Checks diodes in/out Checks SCR, ete
 Beta H110-500
LO $\quad, 50$
Jetho 0.5000μ

TE-20D RF SIGNAL GENERATOR
 ial generator covering 120 kHz -500 MHz on bands. Dircctly caliennator, aullo output, Xtal socket for calibraton. $290 / 240 \mathrm{~V}$ a.c. Brand Carr. 37p. Size $140 \mathrm{~mm} x$ リйแı $\times 170 \mathrm{~mm}$.

MODEL $\$ 5$

Y.O.M

Heput imperlance 10 meg ohins. $0 / 0 \cdot 3 / 1 \cdot 2 / 3 /$ $60120 / 600 \mathrm{~V}$ a.c. $0 / 3 / 12$ 1120 mA 九.c. $01 \mathrm{~K} / 100 \mathrm{~K}$ 10 meg $/ 100$ meg ohms. \&15.97. Post ?ap.

CI-6 PULSE OSCILLOSCORE
For display of pulsed and periodic waveforms in AMP. Bandwidth 10M Hz Senaitivity at 100 kHz RMS/mm. 0.1-25;
HOR. AMP, l3andadith
 $0 \cdot 3-2 \overline{3}$; Pre-set triggered sweep $1 \cdot 3,000 \mu \mathrm{Rec}$. Pree rumning $20-200,000 \mathrm{~Hz}$ in nine ranges $430 \mathrm{~nm} .115-230 \mathrm{v}$ a.c. operation. 239. Carr pali

TO-3 PORTABLE OSCILLOSCOPE

 TE-16A Transiatorised ges $400 \mathrm{kHz}-30 \mathrm{MHz}$. An inexpensive instrumen for the harulyman Operates on 9V' battery Wide easy to real scale
 ('omplete with inat
tions and leads. E7.9\%. Post 25 p .
TRAMBISTORISED L.C.R. A.C
MEASURING BRIDGE

BELCO AF-5A 8OLID 8TATE SLIE SQUARE WAVE C.R. OSCILLATOR | Square $\quad 18-50,000$ |
| :--- |

DEL
 WAYR AUDIO GEAERATOR
Range 19-220,000 Hz . Sine Wave
$19-100,000 \mathrm{~Hz}$. Square Wave. Out
put Sine or squar wave 10 V . P. to i'. size $180 \mathrm{~mm} \times 90 \mathrm{mni} \times$ 90 nmln . Operstion $220 / 240 \mathrm{~V}$ a.c.

17-so. Post 37p.

ohms. Max. Input power 3041 Em Size $180 \mathrm{~mm} \times 90 \mathrm{~mm} \times 50 \mathrm{~mm}$
818.50. Post $3^{7} \mathrm{p}$.

HODEL U4811 SUB-STANDARD MOLTI-RAIGE VOLT AMMETER

a.c. and il.c. Accuracy 0.5%
i.c. 1.
$0 / 300 / 750 \mu \mathrm{~A} / 1 \cdot 5 / 3 / 7 \cdot 5 / 15 / 30 /$

 anp. a.c. 0/7.5/150/300/ $75 / 150 / 300 / 750 \mathrm{~V}$ di.c. 0/
 antomatic cut out. sup. plied complete with test leads, manual and teut certificateq. 249 . Post 50 p .
G. W. SMITH \& CO. (RADIO) LTD. Also see opposite page and next two pages

UITR-80 RECEIVER

4 Bands covering $500 \mathrm{kHz}-30 \mathrm{MHz}$. BEO Built-in Speaker $920 / 240 \mathrm{~V}$ a.c. Brand new with instructions, $\mathbf{8 1 5} 75$. Carr. 37 p

UR-1A SOLID STATE COMMUHICATION RECEIVER

4 Bands covering $500 \mathrm{kHz}-30 \mathrm{MHz}$. FET. 5 Meter. Variable BFO for SSB, Built-in Speaker, Bandspread, Sensitivity Control. $220 / 240 \mathrm{~V}$ a.c. or 12 V d.c. $12\{\mathrm{in} \times 4 \mathrm{in} \times 7 \mathrm{in}$.
Brand new with instruct ions. \&2 5 . Carr. 37 p .

8KY WOOD CX208 COMMU HICATION EECEIVER

Bolid state. Coverage on 3 bands $200-430$ kHz and $0 \cdot 3 \mathrm{j}$ to 30 MHz . Iltinimated slide rule dial. Bandspreal. Aerial tuniug. BFO, grated speaker and phone socket. Operation $220 / 240$ a.c. or 12 d.c.size $3-J \times 266 \times 150$ nim. 50 (arr 50 p .

LAFAYETTE HA-600 SOLID STATE BECEIVER
 General coverage $\begin{array}{lr}150-400 \mathrm{kHz}, & 5.50 \\ \mathrm{kHz}-30 \mathrm{MHz} & \mathrm{FET}\end{array}$ front end. 2 mech. detector,
vroduct
variable
cer. 8 Meter, Bandspread. KF (iain. 1 jinx $91 \mathrm{In} \times 81 \mathrm{in}$. 18 lbs . $220 / 240 \mathrm{~V}$ a.c. or 12 V d.c. Brand new with instructions. $\mathbf{8 5 0}$. Carr. J0p.

and electrical 30 MHz con10. 15. 20. 40 and 80 betres. 8 valve plus 7 diode circuit. $4 / 8$ ohnt output and phone Jack. SAB-Cw. ANL, Variable BFO. $4 J$ meter. Sep. banuspread dial. Firequency and AF gain controls $115 / 250 \mathrm{~V}$ a.c. Size $7 \ln \times 13 \ln \times 10 \mathrm{in}$ with inatruction manual. 249-50. Carr. paid.

EMI LOUDSPEAKERS
Model 3.50 . $13 \mathrm{in} \times 8 \mathrm{in}$ with single tweeter/crossover, 20-
$20,000 \mathrm{~Hz}$. 15 W RMS. Avallable 8 or 15 ohms. 87.25 each. Post 37p.
Model 4j0. $13 \mathrm{in} \times 8$ in with twin
tweeter/crossover. tweeter/crossover. $5,5,13,000 \mathrm{~Hz}$. 8W RMS. Available 8 or 15
ohms. 88.69 each. Post 25 sp . ohms. 8.69 each. Post $25 p$.

SINGLAR IC-12

AKAIBARGAINS

SUPER MONEY SAVING OFFERS—BUY NOW WHILE STOCKS LAST! ALL BRAND NEW AND FULLY GUARANTEED
SINCLAIR EQUIPMENT Project 60
Package Packag
offers.
$2 \times \mathbf{Z 3 0}$ amplifier aterco power supply. \&15.95. Carr. ${ }^{37} \mathrm{p}$. Or with PZ6 power supply. 818.00 . Carr. 37 p .
$2 \times Z \mathbf{j} 0$ amplifier, stereo 60 pre-amp, PZ8 $2 \times \mathbf{Z 3 0}$ amplifier, stereo 60 pre-amp. PZ8 power supply. 220-26. Carr. 37 p .
Transformer for P78. 28.97 extra.
Add to any of the abore 4.45 for active fitter unit and 213.00 for pair of Q16 speakers. 2000 anp. e21 95. ('arr. 37p.; 3000 ainp. E88.50. Carr. 37 p. : Neoterlc Allp. 243.95.

WHARFEDALE MID-RANGE HI-FI UNITS As used in world famous
ayntem. jun dia. Impedance 4/8 ohns. High flnx ceramic magnet. 20W RM
e1.50. Carr. 37p.

SPECIAL OFFER:

GOODMAN
AXIOM 301
range speaker. $30-16,000 \mathrm{~Hz}$. range speaker. $30-16,000 \mathrm{~Hz}$.
16,500 gauss. 8 ohm imped. ance. Brand new and boxed.
List price fer 1.2%). OU'R (List price e2l-7\%). OUR
PRICE 212.50 each. Carr. 50 p.

depth of reverberation control. Beantiful walnut cabinet. 7 !in $\times 3 i n \times 4 \frac{1}{2} . \quad$ e5.97. Post 15p.

SPECIAL OFFER!
ROTEL RH700
STEREO
HEADPHONES

HEADPHONES
 Post esp.

SPECIAL OFFER: STEREO
Matched pair of stereo Matchel pair of stereo luxe teak veneered finish.
 16 W peak. Complete
with DiN lead. 812.85 . Carr. j0p.

HA-10 STERE0 HEADPEOTE HEADPEOSE AMPLIFIE istor amplifter oper- ates from nagnetic

ates from nagnetic ceramic or tuner impund separate volume controls for each channel. Operates from 9V hatters. Inputs $5 \mathrm{MU}^{\prime} / 100 \mathrm{MU}$. Output 50 MW 25.97. Post 15p.

SPECIAL PURCHASE! NEAT G30J STATIC BALANCE PICK-UP ARMS

 $\%$
F

Identical speciffcation to NEAT G30 arm but with two-tone chrome and black finish Complete with head sheil, pick.up rest and
piug in phono leads. BRAND NEW-prug in phono GUANAEED. ONLY 88.85. Post 25p.

Arp 30 BTONAL GEEERATOB All transistorised, compac ully portable. AF gine wave 18 Hz to 220 KHz . AF
square wave 18 Hz to 100 square wave 18 Hz to 100 KHz. Output sine/square
$10 \mathrm{v} . \mathrm{P}-\mathrm{P}$. RF 100 KHz to 200 MHz , Out put 1v. maximum. Operation 220/240v tions and leads. \$29.95. Port 50p.

1721 Tape Kec. X 3000 Tape Rec. 4000D Tape Deck 4000 Ds Tape Deck X201D Tape Ileck X22lD Tape Deck GX220D Tape Deck GX280D Tape Deck X1810D Tape/8 track beek GX1900D Tape/Cass. Deck XRe00s 8 Tape/Cas/8 Rec CR81D 8 track Rec CR8IT \& track/Receive
CRsogs 8 track gystem
C850 Cassette Rec.
CsioI) Cassette Deck

282.25
2132.95
$\mathbf{1 1 6 9 . 9 5}$ GXC40D Cassette Deck
Cassette/Receiver
1148.50 GXC4SD Cassette Deek
2949.40 GXC46D Cassette Deck
8168.95 GXCROD Cassette Deck
GXCfín Cossette Deck
2888.80
GX35D Cassette Deck
$\mathbf{4 8 0 . 9 5}$ A.A6200 Receiver
265.95 AA6300 Receiver
2118.90 AA6600 Receiver
$\begin{array}{rllll}2145.00 & \text { A A8500 Receiver } \quad . & . & . . & 8109.00 \\ 278.00 & . & 8175.00\end{array}$

Carriage 30 p extra (recorders and decks 7üp).

K088 8P.8XC HEADPHONES Response Impedance 4-6 chms. Brand new. List $£ 9.50$). OUR PRICE 26.50. Post 2 op 1021 gTERE LISTENLD
8TATION FTATION
Fain salancing and
selection of loudspeakers with
sdditional facility for stereo headphone switching. controls, hesulphone sockets. 6 in $\times 4$ in $\times 2$ in. 82.25 . Post 1 1 p.

MP' MIXER PREAMPLIFIER
$\xrightarrow{\square}$

Popular range of (iarrard decks with Sluire cartridge fitted in
deluxe plinth with
hinged lid.
 83.50
88.80 AP96 Module/M75-6 288.75
252.60 Zero 100 S Module/M93E

complete mixin Inputs Mics: $3 \times 3 \mathrm{mV} 50 \mathrm{~K}: 2 \times 3 \mathrm{mV} 600$ ohm. Phono meg. 4 mV 50K. Phono ceramic $100 \mathrm{~m} ~ 1$ meg. Output $250 \mathrm{~m} V 100 \mathrm{~K}$. 28.97. Post 20 p

TE-103K STEREO HEADPRONES Low cost high perform
ance stereo headphones Fuant rubber ear cups. 8 Adustable head-band $18,000 \mathrm{~Hz}$. With lead and stereo jack plug.
21.97. Post 12 p .
NEW GARRARD MODULES

FANTASTIC OFFER！ NIKKO TRM50 STEREO AMPLIFIER

$17+17 \mathrm{~W}$ r．m．s．stereo amplitier with inputs for Magnetic and Crystal phono．Tuner，Tape，Aux and Tape Monstar． Foll rainge of controls inchuling loulness control，scratch filter． etc．Size 13 in $\times 9$ in $\times 3$ in．
Darepeatable offer－limited stocks！

List price £ 29.5 OUR PRICE

 £39•95Carriage 50 p

NIKKO TRM 50 SYSTEM

$\underset{{ }_{17} \mathrm{~W}}{\text { NKO }} \underset{\text { TRMS }}{\text { TRO }} \underset{\text { stereo }}{17}+$
 plinth and cover， Goldring ri800 cart
ridge，pair of Linton speakers and all leads

LEAK DELTA 30 SYSTEM

SUPER BARGAIN！

8－TRACK CAR STEREO TAPE PLAYER

Tone，rolume and balance controls．Track selector．Complete with matched pair of ONLY $\mathbf{E} \mathbf{5 . 9 5} \quad$ Yost 30 P

HOMER INTERCOMS

Ideal for home， office，stores，fac－ ories ete．Supplied
complete with bat－ teries，cable and
Station， $\mathbf{2 8 - 9 7}$ ， 3 Station $\mathbf{5 5 - 2 5}$ ，Post 15 p ． 4 Stat lon f6－68．Port 17 p ．

WHARFEDALE LINTON SYSTEM

TELETON CRIOT／RG42 SYSTEM

Teleton AM／FM $4+4 \mathrm{~W}$
gtereo
tuner armplifer，
stereo tuner Tanplifer，
Carrard
20．2．
T／C．
plinth and cover，atereo
cartridge，pair of
 glieaker
leads．
$\underset{\text { PRICE }}{\operatorname{OUR}} \quad £ 35.50$

$\underset{\text { PRICE }}{ }$
Carr．and
Tons．\＆1

MW／LW CAR RADIO

Fully transistorised，dual waveland．Size $6 \operatorname{tin} \times 4 \frac{3}{3} \times 2 \mathrm{in}$ ． 12 V f．c．Neg．or pos．earth Complete with fixing kit，speaker and leads
ONLY
£7．50
Post 20p

B．S．R．TD8S 8－TRACK STEREO TAPE PLAYER DECK
Integrated preamps（output I25mb）to（eed into any stereo amplifier．Automatic and manual programme selector．
OUR PRICl：$\quad £ 16.25$
Carr． 3 万阝p．

CREDIT TERMS FOR CALLERS
ACCESS \＆BARCLAYCARD
WELCOME

HI－FI EQUIPMEENT SAVE UP TO 33 $\frac{1}{3} \%$ OR MORE

SEND S．A．E．FOR FULL DISCOUNT PRICE LISTS AND PACKAGE OFFERS！

SAVE ELE＇S PHILIPS GA308 TRANSCRIPTION TURNTABLE
2 speeds 33 h and 45 r．p．m．Light－ counterbalanced counterbalanced arm．Belt driven
low speed syn－ low speed syn－ chronous motor． Viscous damped
pick－up lift lower device． Complete with teak plinth and hinged cover． GA308 less cartridge（list $£ 36 \cdot 55$ ） OUR PRICE £24．50．Post 50p． GA308 PU with GP400 stereo masnetic cartridge（list £47．65） nagnetic Cartridge（ist Post 50p．
OUR PRICE f29．95．Post OUR PRICE £29．95．Post
LIMITED NUMBER ONLY！

LEEAK

LIMITED OFFER

ALL STOCKS BRAND NEW AND GUARANTEED Delta 30
Delta 70
Delta FM

Deita AM

Leak 150 pair
Leak 250 pair
Leak 600 each
Post 50 p extra each item
ROTEL BARGAINS
ALL BRAND NEW AND GUARANTEED

EAGLE TSA． 150 STEREO AMPLIFIER

Housed in attractive Teak cabinet． $7.5+7.5$ watts rms．Switched inputs for Mag．Cer．tape，tuner，bass， treble，volume，balance controls． Headphone socket．Output for main or remote speakers．List price $£ 29 \cdot 60$ ．

OUR PRICE £16．50
Carr，and Ins． 50 p ．

RECORD DECKS			
（Post ${ }^{\text {d }}{ }_{\mathrm{p}}$ ）			，
BSR McDONALD			
C129 Moto	£6．50		
C137	¢8．35		
MP60	¢0．75		
610	£12．65		
810	£31．25	GOLDRING	
$210 /$ TPD3	¢8．75	GL69／？	\＄18．60
MP60／C800	£12．95	GLi？	¢20．95
MP60／TPD1	E1605	GL72／P	227－50
MP60／TPD1／		Plinth 69／72	87.02
G800	£19．50	Lid ${ }^{\text {T＊}}$	£3．25
MPG0／TPD 2	214.35	（cL7．	226．95
610／TPD1	818.95	$9 \mathrm{GL5}$	$235-25$
510／TPD1	£17．95	Plinth 75	87．36
HT 70	\＆13．98	LID	£3．80
HT70／G800	217.25	G99	218.25
HT70／TlDD	£20．35	GL85P／C	258.85
HT70／TPD1		LID 85	24.95
G800	223．80	（101P／C	220．50
$810 \text { Plinth }$	£8．25	LEAK	
CONNOISSEUR		Delta	252.50
13D1 Kit	£10．90	MICRO－SEIKI	
BD1 Chassis 813.60			
$\begin{aligned} & \text { BD1/SAU2/ } \\ & \text { Plinth/C } \\ & £ 33.10 \end{aligned}$			
		and Cover	\＆ 8.50
BD2／gAU Chassis		PHILIPS	
BD2／SAU＊／		（；A105	£16．05
Plinth／C	£33．85	（1A160 Teak	£27．00
GARRARD		GA308 Teak	224.50
2025 T／C		（A308	
Stereo	18．50	P．U．Teak	228－95
40B Stereo	29.25	GA212	258．75
8P2JIII 210.25		PIONEER	
SP25III／			
M75．6	£15．95	PL12D	2．51－35
SP25 III Mor	ule／	PL 35	282．65
M75．6	823.50	PLJ0	2111．85
8L65B	¢13．75	PLJ10	$\underline{2118.50}$
AP76	£17．95	PL41D	¢118．80
APre Module／		PL61	2119.95
M ${ }^{\text {5 } 5-6 ~}$	£33．80	THORENS	
SLi2B	£21．85	TD125 II	£ 80.50
SL90 B	238．25	TD120．ab II	£98．85
401	¢25．95	TX25	26.95
ZERO 100A	£38．95	TD160C	\＄58．95
ZERO 1008	238.95	TD150	£28．85
ZERO 100 S		TDI50A 11	135.95
Mod／M93－	¢55 60	TD150AB 11	238.95
AP96 Modul		TD150 Plinth	123．80
M7－6	£38．75	TX11	£3． 80
GOODMANS			
TD100 Teak	＊55．95	WHARPEDAL	LE
TD100 Whit	258－25	Linto	28

Budget SP25，etc． $\mathbf{2 3 . 2 0}$

Budget SP2
Budget S12

Play
Budget AP76／Zero 1008
Budget B．S．R．
£84－50
RECORD DECK PACKAGES（Past 50p）
Decks supplied with
stereo cartirige
realy wired in
plinth with
$3025 \mathrm{TC} / 9 \mathrm{TAHCD}$

SP25 LII／M75－6
SP2．5 III／M44－7
SP25 II／MM5゙F
AP／6／G800
AP76／M75．0
AP76／M50 E
APT6／M75EJ
AP76／G800E
AP76／M44E

$\begin{array}{ll}\text { AP7／M7．0ED } &$| 230.50 | |
| :--- | :--- |
| | |
| 38.95 | |\end{array}

B．S．R．McDONALD
MP60／G800
MP60／M44－7
MP60／M44－E
GOLDRING
GL72／G800
GL75／G800
GL75／G800E

WOMS A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Abstract

Build as you learn with the exciting new TECHMATRON Outftl No mathematics. No soldering-you learn the praotical way.

Learn basic Radio and Electronjcs at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s simplified study method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or sol

[^1]Dept. BPEI2, ALDERMASTON COURT, READING RG7 4PF Accredited by the Cousecil for the Aereditation of Correxpondence Colleges.

Are you alright for Jacks?

Ask for Rendar Jack plugs and sockets at your local stockist. They come in a wide variety of configurations, and in cases of difficulty can be ordered DIRECT from the Rendar factory.
Standard, mini and sub-miniature sizes ... plugs in both
screened and unscreened versions . . . socket bodies in high melting point thermoplastic ... several unique features (some protected by UK and US Patents) ... Post Office and NATO specifications.
If you want to study all the facts and figures, all the ingenious construction details, send for the Rendar Electronic Components Catalogue of technical data sheets covering their entire range of products.
The cost of the catalogue is $25 p$, including P \& P, and it's money very well spent!

RENDAR ${ }^{\text {® }}$

Rendar Instruments Ltd., Victoria Road Burgess Hill, Sussex. Tel. Burgess Hill 2642-4 Cables: Rendar, Burgess Hill

$\underset{\substack{\text { OUR } \\ \text { PRICE } \\ \text { O28.95 } \\ \hline}}{ }$
+50 p P. \& P.

SERVICRE BARDS $135-174 \mathrm{MHz}$ F Fully
guaranteed. N.B. The MInistry of Post \& Telecommunications has pointed out that alicence (not generally avallableto the public) rejuired for receplion of transmissions by Fire Brigade, Aireraft, Shipping, ell.

Tune into the world with this amasing commanications receiver. A truly exceptional unlt in performance and looke-leatherette with Stairiless steel trim. Looks good anywhere, Use either as a portable with standard batteries or plug it
directly into $220-240 \mathrm{~V}$ domestic directly into $220-240 \mathrm{~V}$ domestic mains supply. 14 trantistors;
0 dlodes; 1 thermistor. Internal 9 diodes; 1 thermistor. Internal
ferrite rod antenna plus telescopic ferrite rod antenna plus telescopic
aerlal. Separate tone, volume and tuning controla with puib-button selectors for the 8 WAVEBARDS. Complete with HI-Fi earphone for personal Ilatening. Frequency ranges: Long wave $150-350 \mathrm{kHz}$. Medium $353-1605 \mathrm{kHz}$, Marine $1 \cdot 6-4 \cdot 5 \mathrm{MHz}$. 8hort Wave $12-24 \mathrm{MHz}$. FITVHF 88-108 MHz. Aircraft 108-135 MHz, POBLIC (5) 5

SONIC SOUND

AUDIO LTD.

at these prices you can afford instruments for your test bench

o sized Heathkı catalogue is full of good things. Stereo amplifiers, tuner amplifiers tuners, loudspeakers and audio accessories, electronic calculator, metal detectors shortwave receivers intercoms .. . even a powerful battery charger kit.

[^2]

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning. heavily oxidised surfaces. No extra flux is required.

IDEAL FOR HOME CONSTRUCTORS
 EASY-TO-USE DISPENSERS

Size 1 cartons all at 25 peach in 40/60, 60/40, or Savbit alloys in 7 gauges.

Size 5

(Savbit) 18swg, $18 p$ (illustrated)
Size 19A (60/40 alloy) 18swg. 18p
Size 15
(60/40 alloy)
22swg. 22p

BIB WIRE STRIPPER AND CUTTER

Model 3A. Strips insulation from cable or flex without nicking wire. 4 different settings, $4 \& 6$ BAspanner ends, ground cutting edges Price 32 p Also available, de luxe Model 8

From Electrical and Hardware Shops. If unobtainable, write to: Multicore Solders Ltd., Hemel Hempstead, Herts.

EIECTROKII

Now available from one company are complete kits for many of the articles published in the Electronics, Radio and TV Journals. Examples of our range are
SCORPIO IGNITION SYSTEMS (P.E. Nov. 1971), $\mathbf{6 1 0 . 5 0}$. This kit includes all the parts for the assembly of this popular and reliable system. The hardware and instruction data are included.
ELECTRONIC PIANO (P.E. Sept. 1972). We can supply the various sections for this article in kit form. Power supply, price 66.50 . Preamp and Tremolo $\mathbf{4 3} \mathbf{2 0}$. Main Amplifier (less speakers) $£ \mathbf{3 - 3 0}$. I 3 Pitch boards $£ 39.50$ (less inductors).
DRILL SPEED CONTROLLER (E.E. Aug. 1972). Kit consists of resistors, rectifiers, thyristor and tag board as specified in the article, price $£ 1.05$. Kit with M.K. box, plate and switch, price $\mathbf{£ 2} \mathbf{0 5}$.
LIGHT DIMMER. Kit contains all parts including circuit and construction data, 480 watts, fully suppressed, price E2.65.
We shall also be offering kits for most articles published in the P.E. and other popular electronics magazines and will be pleased to quote prices.
All kits sent Post FREE.
Send for details of all other kits available (please enclose S.A.E.).

ELECTROKIT

12 Lauderdale Road, London, W. 9 Telephone 01-286 0011

```
```

 U.H.F. TV AERIALS
    ```
```

 U.H.F. TV AERIALS
 SUITABLE FOR COLOUR \& MONO.
SUITABLE FOR COLOUR \& MONO.
CHROME RECEPTION
CHROME RECEPTION
Al U.H.F. aerials
Al U.H.F. aerials
M,
M,
SN
SN
SN
SN
SN
SN
SN
SN
M
M
8 element E3.75
8 element E3.75
WALL MOUNTING c/w WALL ARM
WALL MOUNTING c/w WALL ARM
AND BRACKET. 7 element \&3.25. It element
CHIMNEY MOUNTING ARRAYS e/w
CHIMNEY MOUNTING ARRAYS e/w
MASTANDLASHINGGKIT, 7 element \&4.
MASTANDLASHINGGKIT, 7 element \&4.
MAST AND LASHINGGKIT, 7 element \&4.
MAST AND LASHINGGKIT, 7 element \&4.
lement \&5.25
lement \&5.25
MAST MOUNTING arrays only }7\mathrm{ element
MAST MOUNTING arrays only }7\mathrm{ element
\&2.25. II element £2.75, 14 element \&3.25
\&2.25. II element £2.75, 14 element \&3.25
I8 element 63.75. Complete assembly ir:-
I8 element 63.75. Complete assembly ir:-
I8 element \&3.75. Complete assembly ir:-
I8 element \&3.75. Complete assembly ir:-
coaxial cable 9p yd.
coaxial cable 9p yd.
KING TELEBOOSTERS from E3.75. LABGEAR
KING TELEBOOSTERS from E3.75. LABGEAR
all band V.H.F.-U.H.F.-F.M. radio mains
all band V.H.F.-U.H.F.-F.M. radio mains
number required on all orders. P. \& P. on all
number required on all orders. P. \& P. on all
aerials 50p aces. I5p. C.W.O. min. C.O.D.
aerials 50p aces. I5p. C.W.O. min. C.O.D.
charge 25p.
charge 25p.
BBC-ITV-FM AERIALS
BBC-ITV-FM AERIALS
BBC (band 1) Wall S/D \&2. LOFT inverted
BBC (band 1) Wall S/D \&2. LOFT inverted
TTV (band 3) 5 element loft array E2.50.
TTV (band 3) 5 element loft array E2.50.
ITV (band 3) 5 element loft array E2.50.
ITV (band 3) 5 element loft array E2.50.
element E3. COMBINED BBC-ITV Ioft

```
```

element E3. COMBINED BBC-ITV Ioft

```
```



```
```

CHIMNEY UNITS ALSO AVAILABLE.

```
```

CHIMNEY UNITS ALSO AVAILABLE.
Pre-amps from 43.75.
Pre-amps from 43.75.
COMBINED U.H.F.V.H.F. aerials I +5 +9 \&4.
COMBINED U.H.F.V.H.F. aerials I +5 +9 \&4.
+5+14 64.50. 1+7+14 65. F.M: RAD10
+5+14 64.50. 1+7+14 65. F.M: RAD10
loft S/D \&I. 3 element 63.25. 4 element \&3.50.
loft S/D \&I. 3 element 63.25. 4 element \&3.50.
Standard coaxial plugs 9p. Coaxial cable 5p yd,
Standard coaxial plugs 9p. Coaxial cable 5p yd,
M,
M,
rully illustrated lists.
rully illustrated lists.
CALLERS WELCOMED
CALLERS WELCOMED
K.V.A. ELECTRONICS
K.V.A. ELECTRONICS
40-41 Monarch Parade, London Rd.
40-41 Monarch Parade, London Rd.
Mitcham, Surrey
Mitcham, Surrey
M,

```
    M,
```

```
7 element &3., COMBINED BBC-ITV Ioft
```

7 element \&3., COMBINED BBC-ITV Ioft
C.W.O. min. C.O.D. charge 25p. Send 5p for

```
C.W.O. min. C.O.D. charge 25p. Send 5p for
```


Vary the strength

 of your lighting with a

The DIMMASWITCH is an attractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fit tings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $\mathbf{2 0 0 - 2 5 0} \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression

600 Watt- $\mathbf{5 1 2 0}$. Kit Form $\mathbf{£ 2} 70$
300 Watt-E2.70. Kit Form $\mathbf{E 2}$.20
All plus IOp post and packing.
Please send C.W.O. to:-

DEXTER \& COMPANY

1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel. 0244-25883 As supplied to H.M. Government Departments

Shopertunities "thunder" ahead with an offer that's FANTASTIC (even by our standards!). We've snapped up 500 magnificent machines. Latest sensation in the world of sound! First-class makers! Fabulous V HF, AM/
FM Radio AND Cassette Tape Recorder \& Player combined \& it also runs off standard batteries or mains. (Simply plug in the $220 / 240 \mathrm{~V} A C$ line cord.) Record and play back anything, anywhere! Even tape direct rom th E44! WE OFFER AT ALMOST HALF PRICE! Wonderful features * Press-button Keyboard Control Panel or latest MASTER SWITCH CONTROL! 太 "MAGIC EYE" Visual Battery check/recording leve indicator or built-in automatic Leveller! \& Separate ON/OFF and Hi-LO volume controls! " Heavy duty built-in speaker! \star Earphone (For personal listening or "'monitoring") and extension speaker sockets? \star Remote control microphone! \star Built-in swivel telescopic extension aerial (24in approx.)! Magnificently made case with carry handle,
(DESIGNS VARY SLiGHTLY.) Takes standard $30,60,90$ or 120 -minute Casserte Tapes obcainable everywhere. AND the amazing built-in full circuit VHF, AM/FM Radio gives you superb clarity of cone, incredible scacion selection. Unique rotating Station Selector Dial-get all local city and regional seations in every part of the country plus B.B.C. National, VHF. Picks up dozen of foreign stations. Fabulous in your car! You sould pay $£ \in £^{\prime}$ s more for a
Car Radio or Car Cassette player ALONE! \&23.75, CARR. ETC. 35 p . Complete with simple instructions remote control microphone with on/of switch and microphone stand. WITH WRITTEN GUARANTEE. Send today or call at either store. Send $\&$ test 7 days, refund if not delighted. Or cal
BONUSOFFER; Batteries and Cassette Tape 25 p extra if required.

THE ONE STEP FORWARD EVERYONE HAS WAITEDFOR! NOW a superb e- portable BATTERY/MAINS tape recorder and player-and incredible Shopertunities bring ic to you for ONLY £12.49! Due to our cut price we annot name first-class makers-butrestassured you're getting one of
Expensive"PIANO KEYBOARD"CONTROLPANEL (orlatest MASTER SWITCH control) AND AUTOMATIC LEVEL CONTROL iddling with awkward tape and reels, just "slap-in" a cassette and off you go Takes 30,60 , or 90 minute standard cassette tapes obeainable everywhere) Amazing performance ensuresperfect tapings and superb reproduction! Remoce control microphone. Rapid Rewind! Fast forward! Beautiful tone from whisper to a roar! Completely self contained-record anywhere, indoors or
out! Runs on standard batteries AND $220 / 240 \mathrm{~V}$ AC mains. Separate acks for remote control microphone, etc. Size 9 in ${ }^{\text {in }}$ Sin $2 \frac{1}{2}$ in approx ull inscructions. ONLY 12.49 post, etc., $31 p$. A Refund if you don't agree we could charge up to $£ 26.97$! BONUS OFFER (one per customer) 50p extra Order by post to Uxbridge Road address or call at either store. Bargains galore at both stores.-(COMMERCIAL TRAVELLERS PLEASE Bargains galore at both stores.-(COMMERCIAL
NOTE: Merchandising office at Holborn Store.)

THE FABULOUSLY SUCCESSFUL VISCOUNT III AUDIO £52complete
 $14+14$ watts r.m.s. $40 \mathrm{~Hz}_{\mathrm{z}}$ to 40 kHz 3 dB . Total distortion at 10 watts

 at $1 \mathrm{kHz}-0.1 \%$.This is real value for money! We have designed 2 systems and the heart of them all is the Viscount III amplifier. A unit of great eye appeal with teak finished cabinet. FET's (Field effect transistors) are incorporated on the input stages, just like top priced units. FET's give you more of the signal you want and almost none of the hiss you don't. Both units have output sockets for headphones and tape recorder. Filters and tone controls give a wide range of bass and treble adjustment.

For both systems we have chosen the famous Garrard SP25 Mk. III deck, with fitted magnetic cartridge, which comes complete with simulated teak plinth and tinted acrylic cover.

The exclusive Duo loudspeaker systems are incomparable for quality within their price range. Large speakers in extremely substantial cabinets. There's a choice of the Duo II's for the smaller room or the big Duo III's for real bass response.

SPEAKERS

Duo Type II Size approx. 17 in . IOtin. $6 \frac{3}{9} \mathrm{in}$. Drive unit IJin. Bin. with parasitic tweeter. Max power 10 watts, 8 ohms. Simulated Teak cabinet.
f14 pair + 43 p \& p .
Duo Type 111 Size approx. $23 \frac{1}{2} \mathrm{in}$. $11 \frac{1}{2} \mathrm{in}$. $9 \frac{1}{2} \mathrm{in}$. Drive unit $13 \frac{1}{2} \mathrm{in}$. $8 \frac{1}{\mathrm{i}} \mathrm{in}$. with H.F. speaker. Max power 20 watts 8 ohms. Freq. range 20 Hz to 20 kHz . Teak veneer cabinet £32 pair + $£ 3 \mathrm{p}$ \& p .

SPECIFICATION RIOI

14 watts per channel into 3 to 4 ohms (suitable 3.15 ohms). Total discorsion " 10 W $1 \mathrm{kHzO} .1 \%$ P.U.l. (mor ceramic cartridges) 150 mV into 3 Meg. P. U. 2 ((for magnetic cartridges) 4 mV a kHz into 47 K equalised within IIDB R.1.A.A. Radio 150 mV into 220 K . (Sensitivities given at full power.) Tape out facilities: headphone socket, power out 250 mW Bass fititer: 6dB per octave cut. Treble control: treble +12 dB to -12 dB " " 15 kHz . Treble fitter: 12 dB per octave. Signol-tonoise rotio: (alle conerols at max) - P.U.I. and radio - 65 dB . P.U. 2 - 58 dB . Cross tolk better than -35 dB on all inputs. Overlood characteristics better than 26 dB on aH inputs. Size approx. 13 in . 9 in , 3 inn. Send S.A. E. for fully illustrated brochure.
12 MONTHS WRITTEN GUARANTEE, British made
S.A.E. for illustraced leafler.
5.A.E. for illustraced leafles.

-ONLY FROM US

Viscount III

Solid Stale Srerpo Amplite

Times of opening Edgware Acton-Mon.-Sat. 9.30-5. Closed all day Wed.

MUSIC MAKERS

RELIANT MK.IV

$\star 5$ Electronically Mixed Inputs. $\star 3$ Individual Mixing Controls. \& Separate bass and treble controls common to all 5 inputs. \& Mixer employing F.E.T. (Field Effect Transistor). \& Solid State Circuitry. \& Attractive Styling. \star Sides finished in solid teak.
INPUTS:-1. Crystal Mic. or Guitar 9 mV . 2. Moving coil Mic. or Guitar 8 mV . Inputs 3, $4 \& 5$ are suitable for a wide range of medium output equipment (Gram., Tuner, Monitor, Organ, etc.). All 250 mV sensitivity CONTROLS:-3 Volume controls. Bass control range: 13 dB ($a 6 \mathrm{~Hz}$. Treble control range: $\pm 12 \mathrm{~dB}$ @ 15 KHz . Separate ON/OFF Switch. Neon indicator. POWER OUTPUT:-12 Watts R.M.S. into 3 to 4 ohms speaker. SIGNAL NOISE:BE B.C. Mains. SIZE:-12 12 in.
 (6)

JUST ANNOUNCED

above.
plus p \& $\mathrm{p}^{60 \mathrm{p}}$
Radio and TV Components (Acton) Ltd 21 D High St., Acton, London W3 6NG 323 Edgware Road, London, W. 2
Mail orders to Acton - Terms C.W.O. All enquiries S.A.E Goods not dispatched outside U.K.

HOME RADIO (Components) LTD. Dept. PE, 234-240 London Road, Mitcham CR43HD Phone 01-648 8422

The Catalogue you MUST have!

THE WHOLE AND THE PARTS

SCOPE for the home constructor is widening the whole time, both in scale of circuitry and nature of application. Projects once considered highly ambitious and sophisticated are now well within the reach of the average amateur, thanks to the integrated circuit. Circuit arrangements that would be considered quite large in discrete component terms, are now likely to be found playing the part of some individual stage or section within the ramifications of some much more extensive circuit or system

Despite miniaturisation and close packing, the extent of the circuitry involved in a sophisticated design may add up to a large and unwieldly piece of equipment. In such cases-and the present signs are that they will become more and more commonplace - the answer probably lies in unit or modular construction. This is a well-established practice in large commercial equipments. Now it is beginning to merit serious consideration in the home constructor field, for particular designs.

The modular form of construction can be seen as a further development of the plug-in circuit board arrangement, with carefully selected and clearly definable parts of the overall system assembled within mechanically independent units. The modular system offers a number of advantages. In some instances individual modules belonging to a system may be capable of serving other functions, either while remaining within the parent rack or cabinet, or as free-standing and independent units pressed into service at short notice for some ad hoc experiment or demonstration, for example.

The additional cost in hardware is therefore likely to be fully recompensed by the greater versatility provided by the constituents that go to make up the whole system. The maximum possible utilisation of valuable equipment can be assured. Operational flexibility is, of course, another important attribute of modular construction, as well as greater facility for the subsequent updating or improvement of particular sections of the system in the light of technical progress.

The P.E. Sound Synthesiser demonstrates some of the most valuable and desirable features of the modular approach. This project is certainly ambitious, in amateur terms; yet such is the current interest in the synthesis and manipulation of sound for all manner of divergent uses, that the popularity of this instrument is not in doubt. And it has this additional attraction: many of the modules have other possible applications, alone or in association with other equipment, outside the confines of the main system. The Sound Synthesiser series of articles can be considered in the whole-relating to one large and comprehensive design with great capabilities. Alternatively, the series may be viewed as a collection of separate designs, many of these having interesting possibilities as solo units in the wide and appealing field of creative and experimental sound.-F.E.B.

Editor

F. E. BENNETT

Editorial

D. BARRINGTON
G. GODBOLD
S. R. LEWIS B.Sc

Art Dept.

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
S. W. R. LLOYD

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4202

P. J. MEW

Phone: 01-634 4210
C. R. BROWN Classified

Phone: 01-634 4301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.,
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

The latest in circuit integration.....

By F. R. HEATH b.Sc. (Hons.) (Ferantit Lta.)

NEW CDI integrated circuit technology has enabled Ferranti engineers to produce the smallest radio i.c. device in the world that offers a satisfactory alternative to the superhet. This article will take a brief look at the CDI techniques used to produce this device and then describe in full how you can build a high quality medium and/or long wave portàble radio of superior quality for modest cost.

For the constructor there is, at least, a rest from some of the tedious coil-winding operations so often necessary in radio construction. There is no recourse to expensive alignment equipment, as no setting up is required.

This article does not aim to stress an overall small size, such as in a matchbox radio, because the majority of constructors will want a radio with a speaker and cabinet, ferrite'aerial, and room for a long lasting battery. To make full use of the superior sound quality available from the radio i.c. these items are essential. Anybody wishing to make a "micro-radio" or a medium and long wave tuner for an existing hi-fi system, will be able to adapt from the design in this article.

The "P.E. Triffid" design has been tried in most parts of the British Isles, from Exeter to Edinburgh, and gives good results on stations which are of normally reasonable signal strength for the area. The only problem (occurring with all t.r.f. designs) is when the receiver is being used very close to the transmitter. In such a case rotation of the rod aerial is necessary to find a null. Although desgined for reception of BBC Radio 1, 2, 3 and 4, the set works well on many foreign stations, especially Radio Luxemburg.

COLLECTOR DIFFUSION ISOLATION (CDI)

CDI is a new bipolar integrated circuit manufacturing technique which possesses the following inherent advantages:

1. Simplicity of processing
2. High component density
3. High switching speed
4. Low supply volts.

Fig. 1. Cross section view through a CDI transistor

CDI in its basic form, as developed by Bell Laboratories, was limited to a 3 V supply voltage. Ferranti carried out a major development programme to achieve a 5 V process for compatability with current logic i.c. systems.

The processes involved in the production of CDI devices are much simpler than for standard bipolar techniques. Only five masks are required which compare directly with MOS processing; four less than for conventional bipolar i.c. processes. The transistor size is much smaller due to the self isolating properties of CDI, and much thinner (1 micron) epitaxial layers can be used in processing.

This simplicity is of direct importance in achieving low cost and yielding large quantities, both factors being passed on to the consumer as cheaper i.c.s.

A cross-section of a CDI transistor is shown in Fig. 1. Buried n regions are diffused into a p-type substrate wherever transistors, diodes or resistors are required. A thin, high resistivity p-type epitaxial layer is then grown over the slice.

Table 1: BASIC CDI TRANSISTOR CHARACTERISTICS

| $V_{\text {cbo }}$ | 7.5 volts |
| :---: | :---: |
| $\mathrm{h}_{\text {fe }}$ | |
| f_{T} | 1 GHz |
| $\mathrm{R}_{\text {sat }}$ | 10 ohms |
| Voftset | 5 mV . |
| lcbo | 1.0 pA |
| $\mathrm{h}_{\text {fe }}$ (inverse) | 20 |
| $\mathrm{C}_{\text {b }}$ | 0.3 pF |

A block diagram of the radio chip is shown in Fig. 2. Basically, the circuit is a 10 transistor t.r.f. tuner which will operate from 150 kHz to 3 MHz and requires about 1.3 volts power supply. Audio output is typically 30 mV r.m.s.

The i.c. requires the minimum of external circuitry and effective a.g.c. action is available. Distortion from the chip is very low (typically 2%), which is three or four times better than in an average superhet. Current requirements for the i.c. are approximately 0.5 mA and the characteristics are shown in Fig. 3 and 4 and in Table 2.

Fig. 2. Block diagram of the interior circuitry of the ZN414 with associated tuned circuit and a.g.c. components

Isolation, deep collector contact, interconnection crossunders, and definition of base and resistor areas are all achieved by a single selective n_{+}diffusion through this epitaxial layer. The isolating n_{+}diffusion completely surrounds each buried layer island, complete isolation being provided by the p-type epitaxial layer and the substrate between the n_{+} diffused regions. The p-type epitaxial layer which is completely enclosed is used to form transistor bases and p-type resistors (medium value resistors 2 k S 2 to $50 \mathrm{k}(2)$.
Another n_{+}diffusion defines the transistor emitters, and can also be used for low value resistors. Contact holes are then cut and the basic aluminium interconnection pattern is evaporated onto the device.
The parameters of CDI devices are shown in Table 1.

RADIO CHIP DESIGN

The design of the ZN414 radio chip began in November 1970. A basic circuit was produced and then "breadboarded" using discrete CDI devices. As in many basic t.r.f. designs, instability was the major problem. Intensive development work culminated in a design that is stable provided certain external requirements are satisfied.

Many prototype experimental circuits were tried and found to be capable of excellent quality. The first i.c. radio was working in July 1971. The present day radio chips are predictable and consistent.

Table 2:
MAIN CHARACTERISTICS OF THE ZN414

Supply volts
Temperature range
Supply current
Frequency range
R.F. input impedance

Output impedance
Sensitivity
Power gain
$1.1-1.5$ volts 0 to $+70^{\circ} \mathrm{C}$ 0.5 mA maximum $200 \mathrm{kHz}-3 \mathrm{MHz}$ $1.5 \mathrm{M} \Omega$ typical 500Ω typical $100 \mu \mathrm{~V}$ r.m.s. 70 dB typical

Fig. 3. Graph of voltage gain showing the effective a.g.c. region

Fig. 5. The integrated circuit is driven from a constant voltage source of 1.3 volts derived from a 9 volt supply

HIGH QUALITY RADIO SET

To obtain the best possible results from the ZN414, certain rules must be adhered to. All leads in the radio circuitry must be .kept short, and the i.c. should preferably be soldered flush to a printed circuit board. The aerial coil should have a high Q or selectivity will suffer.

The only problem occurs when a very strong station swamps the front end. Here, rotating the set until a null is found will solve the problem. A demonstration radio gave better reception of Radio Luxemburg than a superhet, not because selectivity was better, but because the superhet gave out so many whistles and shrieks that any pleasure from the programme was impossible to achieve.

One other important requirement is to keep the a.g.c. resistor within the range 470 to $1,000 \mathrm{ohms}$,

A typical case used to house the P.E. Triffid receiver

and for best selectivity keep to the lower end. This means that if the radio is powered from a 9 V battery, then a constant voltage source is needed to derive the 1.3 volts necessary. This is done using the circuit shown in Fig. 5.

Fig. 4. shows that the gain of the chip falls off at long wave frequencies. For this reason, a switch is fitted to increase the supply volts (and consequently increase the gain of the chip) on long wave so that the volume is kept approximately the same when the different bands are selected. Fig. 5 shows the circuit changes needed to accomplish this.

AMPLIFIER AND CASE

The output amplifier and loudspeaker should be of good quality to do justice to the signal from the receiver. Several i.c. amplifiers were tried. All gave some results, but most were tricky to stabilise and did not give the quality needed. For this reason a discrete amplifier was used, low power output at 500 mA being suitable for a personal radio. Low cost and battery power consumption are kept to a minimum making this receiver suitable for the inexperienced radio constructor.

Cabinet and speaker design is dependent on personal taste so the following constructional details deal mainly with the circuitry aspect. Most constructors will want to design their own housing for the unit, and there are many cases available to cater for those who do not like woodwork.

The case must not contain large metal parts near to the ferrite rod, as this will damp the Q of the coil.

AMPLIFIER DESCRIPTION

The amplifier is not claimed to be a revolutionary design: rather it is intended to be easily built, and of good enough performance to match the radio i.c., whilst maintaining battery current economy and using inexpensive transistors.

The circuit in Fig. 6 shows a class-AB amplifier with a constant current source (TR4) enabling a

NOTE: The earthy side of VC1 (moving section) musi be connected to C1/R16

Fig. 6. The complete circuit diagram of P.E. Triffid receiver
higher voltage gain from the drive stage TR2. The current in TR4, and consequently the quiescent current taken by the circuit, is around 5 mA . This $p n p$ current source was found to reduce distortion in the circuit. The voltage gain at 1 kHz is approximately 80, thus the input sensitivity for full output (5.7 volts before clipping) is 70 mV .

The value of R13 may be lowered to give less bias voltage at the expense of distortion. Replacing it with a wire link is recommended if other output transistors are used, or any modifications are tried, as this prevents the possibility of thermal runaway

If a reduced ouput power is acceptable, ZTX300 and ZTX500 may be used as the output pair, or BFS60 and BFS96; both sets give good results. Distortion with the standard circuit is one per cent at 1 kHz and 2 volts peak output, mainly second harmonic. No crossover distortion can be seen on an oscilloscope trace at 20 kHz , indicating that distortion is due mainly to non-linearity in the whole amplifier rather than to crossover "spikes"

No heatsinks are necessary with the recommended output pair. Three layouts of the circuit were tried, all were stable and gave similar results.

The amplifier is certainly of good enough performance to use as an amplifier for an f.m. tuner, or record player, and experimenters can easily modify the circuit to switch in to another function or functions.

CONSTRUCTION AND LAYOUT

Provided the layout is carried out as described earlier, almost any method of construction can be used. However, a printed circuit board is recommended as it offers reliably consistent results.
The combined amplifier and radio circuit is shown in Fig. 6, the p.c.b. pattern and layout in Fig. 7. Apart from essentially sound soldered joints, two further precautions must be observed: wires from the coil-capacitor tuned circuit must be kept away
from other circuitry, especially the battery leads and loudspeaker leads; the volume control must be $10 \mathrm{k} \Omega$ or greater, if it is not to affect the a.g.c. characteristics.

Layout of components on a printed circuit board

Resistors

| R1 | $56 \mathrm{k} \Omega$ | R8 | $1 \mathrm{k} \Omega$ | R15 | $1 \Omega 1 W$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| *R2 | $56 \mathrm{k} \Omega$ | R9 | $3.3 \mathrm{k} \Omega$ | R16 | $100 \mathrm{k} \Omega$ |
| *R3 | 680Ω | R10 | 10k $\Omega 2 \%$ | R17 | $10 \mathrm{k} \Omega$ |
| *R4 | $1 \mathrm{k} \Omega$ | R11 | 1k $\Omega 2 \%$ | R18 | $22 \mathrm{k} \Omega$ |
| R5 | $100 \mathrm{k} \Omega$ | R12 | 27Ω | R19 | $220 \mathrm{k} \Omega$ |
| R6 | $220 \mathrm{k} \Omega$ | R13 | 100Ω | | |
| R7 | $10 \mathrm{k} \Omega$ | R14 | $1 \Omega 1 \mathrm{~W}$ | | |

Potentiometer

VR1 $10 \mathrm{k} \Omega$ volume control with switch (S3)

Capacitors

C1 $0.01 \mu \mathrm{~F}$
C2 $0.22 \mu \mathrm{~F}$
C3 $4 \mu \mathrm{~F}$ elect 10 V
C4 25μ F elect 10 V
C5 $500 \mu \mathrm{~F}$ elect 10 V
C6 47pF disc ceramic
C7 $0.01 \mu \mathrm{~F}$ polyester
C8 $250 \mu \mathrm{~F}$ elect 10 V
C9 $0.1 \mu \mathrm{~F}$ polyester
VC1 200 pF single gang tuning

Integrated Circuit
IC1 ZN414 (Ferranti)
Transistors

| TR1, 2, 3 | ZTX109 (3 off) |
| :--- | :--- |
| TR4 | ZTX504 |
| TR5 | ZN1132 |
| TR6 | ZT1711 |

Diodes

$$
\begin{array}{ll}
\text { D1 } & \text { KS047A } \\
\text { D2 } & \text { ZS142 }
\end{array}
$$

Tuning Coil

L1 85 turns +250 turns 28 s.w.g. enamel wire wound on $\frac{3}{8}$ in dia. 6 in ferrite rod (see text)

Miscellaneous

LS1 8Ω loudspeaker
B1 9V battery style PP9
Printed circuit board (see Fig. 7)
Case and tuning scale

Fig. 7. Component layout and printed circuit board pattern (full size)

Fig. 8. Coul winding details and waveband selection

Fig. 9. A tone control circuit is inserted in the position of R4 as shown here with another capacitor

TUNING COIL

If the tuning range is tending towards the low frequencies, then fewer turns are needed on the coil. For a 6 in ferrite rod with the coil feeding a 200 pF tuning capacitor, about 85 turns of close wound enamelled copper or litz wire are needed; 28s.w.g. wire is suitable, but nothing is critical here, and adjustments are easy. It is better to wind more turns (say 100) and then remove some until the correct tuned frequency spread is reached. Litz wire gives highest Q coils and is highly recommended.

Constructors who wish to wind a long wave coil and fit a wave-change switch will find that, with the values above, the coil will need about 250 turns. Multilayering is best, but again this is not critical. Fig. 8 shows the long wave components necessary.

The type of ferrite rod affects the inductance, as does the type of wire, but it is easy to adjust the coil to suit the requirements of the rod obtained. Do not expect to adhere rigidly to the specified coil details for optimum results.

TESTING

Building the circuit should present no problems if carried out in the following manner:

1. Build up the amplifier unit and volume control, and test it on suitable inputs. If no signal generator is available, see if a hum is produced when the input is touched. The output (before $C 5$) should be at 4.5 volts ± 0.5 volts.
2. Wire up the radio drive circuit and put a $3.3 \mathrm{k} \Omega \Omega$ resistor between emitter of TRI and earth. This should have 1.3 volts $\pm 0.2 \mathrm{~V}$ across it.
3. Wire up the radio i.c. and test.

Interior of receiver showing the printed circuit board mounted on a plain board which also has the tuning capacitor, volume control and aerial mounted on it

If instability is encountered, the following procedure is used.
(a). Short the tuning capacitor out, if instability continues then the radio supply voltage may be incorrect.
(b). Radio frequencies generated in the amplifier may be feeding back to the i.c. To cure this a 47 pF capacitor may be fitted across the $220 \mathrm{k} \Omega$ resistor, and /or a $30 \mu \mathrm{H}$ choke placed in the supply before R9. (The link on the board is replaced by the choke.)
(c). Leads to the tuning circuit may need re-routing.
(d). If instability continues then replacing R 2 by a 47 k ! resistor, and replacing the link above R 2 with a $20 \mathrm{k} \Omega 2$ preset, will facilitate greater control of radio supply voltage. This has an additional advantage; as the battery ages and its voltage drops, the set will still give good results (down to 6 volts with this preset in circuit.)
Happily, none of these problems occurs if neat systematic working is done, and normally the radio should work first time.

TUNING INDICATOR

A tuning indicator is very simply added to the set by inserting a $0-1 \mathrm{~mA}$ (or $0-500 \mu \mathrm{~A}$) meter between TR1 emitter and the top end of R3. This should read approximately 0.3 mA with no signal, but should read higher as one tunes through a station. The maximum reading indicates that the station is properly tuned, and depending on the signal strength, should give a reading around 0.5 mA .

In normal circumstances this receiver should not drift and once set, the tuning should not need to be altered.

TAPE RECORDER OUTPUT

Provided the circuitry of the tape recorder has an input impedance of several tens of kilohms, a screened lead can be taken from the "top" end of the volume control to the tape recorder input socket most suited for a 100 mV flat response input signal. Care that the bias circuitry does not interfere with the radio is needed, so a fairly long lead is recommended.

TONE CONTROL

Fig. 9. shows a recommended tone control, which in its extreme position gives a $6 \mathrm{~dB} /$ octave roll-off above 1 kHz . To fit the tone circuit, the connection between C3 and R4 has to be cut. Apart from this the board is adaptable for the modification.

Biological Amplifier

HIS month we describe the construction of a brain rhythm frequency meter and cardiophone.

BRAIN RHYTHM FREQUENCY METER

The circuit in Fig. 8 can be employed to identify different brain rhythms, and will demonstrate, for example, how alcohol intake affects alpha frequency.

A signal taken from output 1 of the pre-amplifier is amplified by TR3 and squared by the Schmitt trigger TR4 and TR5. Differentiator C15 and VR4 converts the square wave into an a.c. signal of amplitude proportional to frequency. This is rectified and smoothed by D3, D4, and C16, with the resulting d.c. current being measured by ME2. VR4 calibrates the instrument, and VR3 adjusts sensitivity.
The frequency range covered by ME2 is $0-20 \mathrm{~Hz}$, and capacitor C 8 in the pre-amplifier can be switched into circuit by S3 to give additional top-cut for noise and interference rejection, see Fig. 2.
In addition to the frequency meter, a voltage controlled unijunction oscillator TR7, gives an audio output into 8 ohm headphones of frequency proportional to the subsonic brain rhythm frequency, so that the user can sense changes of rhythm with his eyes closed. TR6 controls the charge rate of the unijunction emitter capacitor C17.
If interest is centred on either beta, theta, delta, or slow alpha rhythms, the centre frequency of the preamplifier can be modified according to the capacitor value listed in Fig. 3. Alternatively, a three-pole four-way wafer switch can be used to select twin-T filter capacitance values.

CONSTRUCTING AND USING THE FREQUENCY METER

Constructional details of the frequency meter output module are shown in Fig. 9. A suggested layout in a metal box, similar to that used for the alphaphone, will be found in Fig. 10. Cl 6 is mounted on the meter terminals.

Plug headphones into SK4, leave the head electrodes disconnected from SK1 and SK2, and set VR1 and VR2 to minimum resistance, and VR3 and VR4 to maximum resistance. Switch on the

COMPONENTS . . .

ADDITIONAL COMPONENTS FOR FREQUENCY METER

Fig. 8. Wiring of the pre-amplifier to the frequency meter circuit to measure brain rhythm rates
Resistors

| R22 | 10 k , | R26 | 2.7 k (| R30 | $2.7 \mathrm{k} \Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R23 | 100 k ¢ | R27 | $1 \mathrm{k} \Omega$ | R31 | $1 \mathrm{k} \Omega$ |
| R24 | 10ks 2 | R28 | $22 \mathrm{k} \Omega$ | R32 | 100Ω |
| R25 | $1 \mathrm{k} \Omega$ | R29 | 10kS | | |
| All $\pm 10 \% \frac{1}{2}$ watt carbon | | | | | |

Potentiometers
VR3 $500 \mathrm{k} \Omega$ sub-min horizontal pre-set
VR4 $10 \mathrm{k} \Omega$ sub-min horizontal pre-set
Semiconductors

| TR3 | BC108 | TR6 | OC71 |
| :--- | :--- | :--- | :--- |
| TR4 | BC108. | TR7 | 2N2646 |
| TR5 | BC108 | D3, D4 | IGP5 or OA91 |

Capacitors

C14 $2 \cdot 2 \mu \mathrm{~F}$ tantaium 35 V
C15 $2 \cdot 2 \mu \mathrm{~F}$ tantalum 35 V
C16 $1,000 \mu \mathrm{~F}$ elect. 3 V
C17 $0.01 \mu \mathrm{~F}$ polyester

Meter

M2 $100 \mu \mathrm{~A}$ edgewise type level indicator

Switches

S3 single-pole, on-off sub-miniature
S4 3-pole, 2-way wafer

Socket

SK4 3-pole jack

Batteries

B6, B7, B8 9 volt styie PP3 (3 off)

Miscellaneous

8 ohm mono or stereo headphones, electrodes, battery connectors, metal box.

Fig. 9. Layout and wiring of the frequency meter board

Fig. 10. Suggested layout of components for the brain rhythm frequency meter circuit shown in Fig. 8
instrument and listen for a steady low note in the phones. Advance VR3 until the audio note just starts to rise slightly.

If an accurately calibrated audio oscillator with an output of around 30 millivolts r.m.s. at 10 Hz is available, connect this to the pre-amplifier input via a 10 megohm resistor, with a 10 kilohm resistor shunting SK1 and SK2. Set VRI for a steady deflection of meter ME2, and adjust VR4 for a half full scale reading, corresponding to 10 Hz .

In the absence of an audio oscillator, set up the frequency meter for alpha rhythms (with head electrodes on a subject who can generate steady alpha rhythms) and adjust VR4 for a mean meter reading of 10 Hz . With the eyes open. ME2 should fluctuate between $2-7 \mathrm{~Hz}$, indicating the presence of random brain noise and low level theta.

As an experiment, measure a subject's alpha frequency and then ask them to have a drink (alcoholic). After $15-30$ minutes the alpha frequency should fall by several hertz. A whole range of experiments can be conducted with the frequency meter, such as mental reactions to various stimuli, or the effect of dreams on sleep rhythins.

ELECTRODE SITING

With previous projects the earthed electrode (SK2) was sited on the forehead so that eyeblink signals
could be used to test equipment in the absence of alpha rhythms, but in some investigations eyeblink pulses can be a nuisance. Alpha, theta, and delta signals are best obtained from the back of the head, with the earthed electrode positioned an inch or two from the live electrode. For beta signals the electrodes can be placed on the forehead or near the cheeks. but watch for noise generated by facial muscles and eyes.

If the earthed electrode is placed on the neck, or other parts of the body, while observing brain rhythms, a strong heartbeat pulse will be superimposed, tending to block the brain signals.

CARDIOPHONE

Stress situations, like running for a bus, attending an interview, sitting an exam, or appearing before an audience, are usually attended by an obvious increase in heartrate, but during the course of an uneventful day the heart also responds to numerous minor stress situations which normally pass unnoticed.

By making the heartbeat clearly audible, it is possible to detect these subtle changes, and perhaps learn to control them. This is really an example of bio-feedback. If the heart speeds up slightly in response to some unconscious stimulus, you become aware of it and seek to reduce it.

Conversely, it may also be possible to induce an artificial state of excitement by consciously trying to increase heartrate, and thereby cause more adrenalin to be released into the system.

In the cardiophone circuit (Fig: 11) transistor TR8 is in series with the emitter supply to astable multivibrator TR9 and TR10. In the absence of a heartbeat signal, TR8 base is grounded (by R16, Fig. 3) and the multivibrator is therefore switched off. Diode DI in the pre-amplifier, rectifies a heartbeat signal and applies a positive going pulse to TR8 base, thus switching on TR8 and the multivibrator. and causing a 300 Hz audio "bleep" tone to be heard in the earpiece X 1 .

Switch S5 in Fig. 11 gives additional top cut to suppress mains borne interference.

Brain rhythm frequency meter. The coaxial socket provides a connection to the visual feedback unit

Fig. 11. The pre-amplifier used with a cardio-phone circuit

Fig: 12. Layout and wiring of the cardiophone output module

COMPONENTS

ADDITIONAL COMPONENTS FOR CARDIOPHONE

Resistors

| R33 | $1.5 \mathrm{k} \Omega$ |
| :--- | :--- |
| R34 | $22 \mathrm{k} \Omega$ |
| R35 | $22 \mathrm{k} \Omega$ |
| R36 | $1.5 \mathrm{k} \Omega$ |
| All \pm | $10 \% \frac{1}{2}$ watt carbon |

Capacitors

C18 $0.03 \mu \mathrm{~F}$ polyester
C19 $0.03 \mu \mathrm{~F}$ polyester

Transistors

TR8 BC108
TR9 BC108
TR10 BC108

Earpiece

X1 150 ohm magnetic

Switches

S5 Single-pole, on-off sub-miniature toggle
S6 3-pole, 2-way wafer

Batteries

B9, B10, B11 9 volt style PP3 (3 off)
Socket
SK5 3.5 mm 2 pole jack
Miscellaneous
Electrodes
Battery connectors
Metal box (see text)

Fig. 13. Circuit of the visual feedback lamp driver

COMPONENTS . . .

```
            ADDITIONAL COMPONENTS FOR
            VISUAL FEEDBACK LAMP DRIVER
Resistors
    R37 1MS2
    R38 10k\Omega
    R39 470\Omega
    R40 100\Omega
    R41 4.7k\Omega
    R42 10\Omega
    All }\pm10%\frac{1}{2}\mathrm{ watt carbon
```


Potentiometer

VR5 $500 \mathrm{k} \Omega$ sub-miniature horizontal mounting preset

Capacitor

C20 $0.25 \mu \mathrm{~F}$ miniature polyester
Transistors
TR11 BC108
TR12 BC108
TR13 AC128
Switch
S7 Single-pole, on-off toggle or slide
Lamps
LP1, LP2 6V 60mA m.e.s.
Battery
B12 9 volt style PP9

Brain rhythm frequency meter. The coaxial socket provides a connection to the visual feedback unit

Fig. 14. The method of mounting the lamps in plastics lens sunglasses

CONSTRUCTING AND USING THE CARDIOPHONE

The cardiophone output module circuit board (Fig. 12) may be housed, along with the preamplifier module, in a metal box similar to that used for previous projects. Socket SK 5 must be insulated from the box.

Electrodes for use with the cardiophone can either be positioned a few inches apart on the left side of the chest, or one on each wrist, and held in place with elastic straps.

Set VR1 to minimum gain, and VR2 to wideband, with S5 open circuit. Plug earpiece X1 into SK5, the electrode leads into SK1 and SK2, and switch on. If no heartbeat "bleep" is heard, advance VR1. When the heartbeat is masked by interference, close S5, and adjust VR1 and VR2 for a clear signal.
Try using the cardiophone with a friend who is driving a car. The "bleep" rate will increase when negotiating roundabouts, traffic lights, and congested streets, and will rise sharply when overtaking.

VISUAL FEEDBACK

The lamp driver circuit in Fig. 13 can be employed as an external unit to extend the scope of previous projects. An output taken from the pre-amplifier (output 1) is amplified to a level sufficient to flash two low consumption filament lamps (LP1 and LP2) which are mounted close to the eyes in a pair of cheap plastics lens sunglasses; see Fig. 14.

When driven by brain rhythms, visual feedback will produce an interesting variety of "strobe" effects while leaving the ears free to, say, listen to music or other sound sources.

If the lamp driver circuit is housed in a small plastics box, it can be coupled to the alphaphone, alphameter, frequency meter, or cardiophone, via screened cable to a coaxial socket which connects with pre-amp output 1 . VR5 is adjusted so that both lamps just glow when there is no signal. Setting up instructions are otherwise the same as for previous projects.

Note: pin 12 in the case interwiring diagram in Fig. 5 (last month) should be designated pin 11 to agree with the practical circuit.

RAPY

3/ CARRY OUT OVER
 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit. computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments. d.c. experi. ments, simple counter, time delay circuit, servicing procedures.

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test. service and maintain all types of electronic equipment, radio and TV receivers, etc.

TRANSFORMERS

MAINS ISOLATING SERIES
Primary $200-250$ Volts Secondary 240 Volts
ALSO AVAILABLE WITH $115 / I 20 V$ SEC. WINDING

Ref. VA Weight No. (Wotts) lb oz Size cm.

| 67 | 20 | 1 | 11 | $7.0 \times 6.0 \times 6.5$ |
| ---: | ---: | ---: | ---: | ---: |
| 100 | 60 | 3 | 8 | $8.9 \times 8.0 \times 7.7$ |
| 61 | 100 | 5 | 12 | $10.2 \times 8.9 \times 8.3$ |
| 30 | 200 | 9 | 8 | $12.0 \times 10.3 \times 10.0$ |
| 62 | 250 | 12 | 4 | $9.5 \times 12.7 \times 11.4$ |
| 55 | 350 | 15 | 0 | $14.0 \times 10.8 \times 12.4$ |
| 63 | 500 | 27 | 0 | $17.1 \times 11.4 \times 15.9$ |
| 92 | 1000 | 40 | 0 | $17.8 \times 17.1 \times 21.6$ |
| 128 | 2000 | 63 | 0 | $24.1 \times 21.6 \times 15.2$ |

Ref. VA WUTO SERIES (NOT ISOLATED)
 $\begin{array}{cccccc}150 & 3 & 0 & 8.9 \times 6.4 \times 7.6 & 0-115-200-220-240 \\ 300 & 6 & 0 & 10.2 \times 10.2 \times 9.5 & . & , . \\ 500 & 12 & 8 & 14.0 \times 10.2 \times 11.4 & n & n\end{array}$ $P \&$
P
0.85
1.66
2.30
2.80
3.89
5.78
10.49
15
19.84
26.99
TOTALLY ENCLOSED IISV AUTO TRANSFORMERS IISV 500 Watt totally enclosed auto transformer, complete with Also available a 20 Watt version. El.67. P \& P 22 p

$$
\begin{aligned}
& \text { LOW VOLTAGE SERIES (ISOLATED) } \\
& \text { PRIMAMY 200-250 VOLTS I2 AND/OR } 24 \text { VOL }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LOW VOLTAGE SERIES (ISOLATED) } \\
& \text { PRIMAMY } 200-250 \text { VOLTS } 12 \text { AND/OR } 24 \text { VOLT RANGE } \\
& \text { Ref. Amps. Weight Size } \mathrm{cm} \text {. Secandopy Windings } P \text { \& } \\
& \text { No. } 12 V 24 V \text { ib oz }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ref. Amps. Weigh } \\
& \text { No, } 12 \mathrm{~V} 24 \mathrm{~V} \text { ib } \\
& 1110.50 .25 \\
& 110
\end{aligned}
$$

$$
\begin{array}{lll}
10.5 & 0.25 \\
130 & 0.5
\end{array}
$$

$$
\begin{array}{rr}
71 & 2 \\
18 & 4 \\
70 & 6 \\
108 & 8 \\
72 & 10 \\
17 & 16 \\
115 & 20 \\
187 & 30 \\
226 & 60
\end{array}
$$

$$
\begin{array}{cc}
t & \\
0.85 & 2 \\
1.01 & 2 \\
1.33 & 2 \\
1.86 & 3 \\
2.24 & 4 \\
2.48 & 5 \\
2.94 & 5 \\
4.54 & 5 \\
5.78 & 6 \\
10.67 & 8 \\
19.61
\end{array}
$$

| Amps. | Weight is oz | Size cm. | VOLT RANGE Secondary Taps | |
| :---: | :---: | :---: | :---: | :---: |
| 0.5 | 14 | $8.3 \times 3.7 \times 4.9$ | 0.12-15-20.24-30V | 1.01 |
| 1.0 | 20 | $70 \times 6.4 \times 6.0$ | | 1.35 |
| $2 \cdot 0$ | 32 | $8.9 \times 7.0 \times 7.6$ | . | 2.01 |
| 3.0 | 46 | $10.2 \times 8.9 \times 8.6$ | . | 2.48 |
| 4.0 | 60 | $10.2 \times 10.0 \times 8.6$ | ", ", | 2.94 |
| 5.0 | 68 | $12.1 \times 10.0 \times 8.6$ | '* | 3.68 |
| 6.0 | 78 | $12.1 \times 10.0 \times 10.2$ | " | 4.36 |
| 8.0 | 100 | $14.0 \times 11.7 \times 10.0$ | .. | 5.64 |
| 10.0 | 122 | $14.0 \times 10.2 \times 11.4$ | ". ${ }^{\text {\% }}$ | 7.14 |
| Amps. | Weigh | Size cm. ${ }^{50}$ | VOLT RANGE Secondary Tops | P |
| 0.5 | 16 Oz | $7.0 \times 7.0 \times 5.7$ | | |
| 1.0 | 210 | $8.3 \times 7.3 \times 7.0$ | ,. | 1.94 |
| 2.0 | 50 | $10.2 \times 8.9 \times 8.6$ | , .. | 2.69 |
| 3.0 | 60 | $10.2 \times 10.2 \times 8.3$ | | 3.65 |
| 4.0 | 94 | $12.1 \times 11.4 \times 10.2$ | | 4.83 |
| 6.0 | 124 | $12.1 \times 11.1 \times 13.3$ | .. | 7.1467 |
| 8.0 | 189 | $13.3 \times 13.3 \times 12.1$ | \cdots | 9.3297 |
| 100 | 1912 | $16.5 \times 11.4 \times 15.9$ | | 11.68 |

> AVOMETERS - MAINS KEYNECTOR ELECTROSIL RESISTORS

CARRIAGE VLA BR8
BARLRIE electronics
11 MOSCOW ROAD, QUEENSWAY 11 MOSCOW ROAD, QUEENSWAY
LONDON W2 4AH Tel:01-229 6681/2 NEAREST TUBE STATIONS: BAYSWATER, QUEENSWAY
$\begin{array}{llllll}50 & 12.5 & 11 & 14 & 13.3 \times 10.2 \times 10.2 \\ \begin{array}{llll}511\end{array}\end{array}$ clude rectifiers $\begin{array}{lll}3.49 & 52 \\ & 5.20 & 67\end{array}$ All ratings are continuous. Standard construction: open with solder FULL SPEC. TRANSISTORS

$100+$ 7p

Minimum order 10

SPECIAL OFFER
Garrard SP25 M
Goldring G800
Goldring G800 All leads supplied
Please add fl .25 for

TURNTABLES

Please add 75p post 8 packing Garrard SP25 Mk. 111 Garrard AP76 Garrard SL65B Garrard 2025 TC. Sonoto 9TAHC Ca Garrard 401
Garrard Zero 100 (Auto) Garrard Zero 100 (Suto) BSR MP60
Goldring GL72
Goldring GL75
Goldring GL75/P
Goldring GL85/P
Goldring IoI/P.C
Leak Delta
Wharfedale Linton + cart.
Thorens TD $125 A B \mathrm{Mk}$. I
Thorens TDI50 Mk.

AMPLIFIERS

Please add 75p post \& packing Amstrad 8000 M
Amstrad
IC 2000
 Amstrad Integra 4000 Armstrong 521 (Teak cased) Alpha Highgate 212 Alpha Highgate FA 400 Leak Delta 30 Metrosound ST20E Metrosound ST\$0 Pioneer 5A900 Pioneer SA 1000 Rogers R/brook (Chassis)
Rogers R/brook (Cased) Rogers R/brook (Cased) Rogers R/bourne (Chassis) Rogers R/bourne (Cased) Rotel RA210
Rotel RASIO
Sinclair PRO60
 Sinclair PR060 $2 \times$ Z30/PZ6 £16.70 Sinclar PR060 $2 \times 250 / \mathrm{PZB}$ Sinclair AFU (Filter Unid) Sinclair 605 Sinclair 2000 Sinclair 3000 Wharfedale Linto Eagle TSA149 Teleton SAQ 206B Teleton SAQ 206 B
Teleton SAQ 307

TUNERS

Please add 75p post \& packing Amserad Mulriplex 3000 Armstrong 523
Rogers R/brook FET 4
(Chassis)
Rogers R/brook FET4
(Cased)
Rogers R/bourne FET4
Rogers R/bourne FET4
(Chassis)
Rogers R/bourne FET4
Rogers R/bourne FET4
Sinclair PR060 (Module)
Sinclair PR060 (Module)
Sinclair 2000/3000 Tuner
Philips RH690
Leak Delra FM (Cased)

| Leak Delta AM/FM (Cased) | $\mathbf{6 5 3 . 6 5}$ |
| :--- | :--- |
| 6.95 | |

TUNER/AMPLIFIERS
Please add 75p post 8 packing
Armstrong 525 (Teak cased) $£ 69.45$
Armstrong 526 AM/FM
$\begin{array}{lr}\text { Armstrong } \\ \text { (Teak cased) } & \mathbf{E 7 7 . 2 5} \\ \text { Leak Delta } 75 & \mathbf{1 2 0 . 9 5} \\ \text { Philips RH702 } & £ 82.50\end{array}$
Teleton 2100
Goodmans One Ten
Rogers Ravensbrook
Rogers R/brook (Chassis)
Goodmans Module 80
Alpha Highgate 150
SPEAKERS
Please add $\mathbf{4} 1-25$ for post 8 packing Priceper pair Amstrad 138
Wharfedale Denton 2
Wharfedale Linton 2
Wharfedale Dovedale
Wharredale Dovedale 3
Celestion Ditton 15
Celestion Ditton 25
Celestion County (new prod)
Goodmans Double Maxim
Goodmans Mezzo 3
Goodmans Magister

CARTRIDGES

Please add 10 p post 8 packing
Goldring G850
Goldring G800E
Goldring G800 Super E
Shure M3D
Shure M44E
Shure M55E
Shure M75E Type 2
fit. $20 x$
Plus 35p P. \& P
Finished in teak veneer with tinted
dust cover. (Fully assembled). For
AT60; 2000; 2500; 3500; 5100:
1025: SL65B; Also for BSR,
MeDonald MP60 and others.
For AP76; AP75; SL72B; SL75;
SL95B*. E4. 20 plus 35p P. \& P
Also finished in walnut to match
ot time of going
of time af going
$£ 82.50$
$£ 31.00$ $£ 31.00$
$£ 98.00$
681.50
675.75

E121.00
649.95
er palir
f 13.90

Tonal

Dept. PE2, 174 Pentonville Road, London, N.1. Tel. 01-278 1769 Or: 4 High Viow Patade, Redbridge Lane East, Woodford Avenue IIford, Essex. Tel. 01-550 1086

[^3]

Audio Frequency Discriminator By G.F.A. HOFFMAN de VISME

ACIRCUIT for distinguishing between two notes whose frequencies are very close together and whose amplitudes may differ greatly is shown in Fig. 1. The operation of the circuit does not depend on the use of filters, and notes of any frequency may be distinguished by simple potentiometer adjustment.

The circuit was designed for a project in which it was necessary to distinguish between notes differing in frequency by as little as 20 Hz , the mean frequency of the notes lying in the range 300 to 1500 Hz . The amplitudes of the notes could differ by as much as a factor of ten, and the notes themselves were not free of distortion. In addition, a certain amount of acoustic noise was present during the experiment.

The requirement was that when the higher pitched note was sounded a bistable should be set, and when, after an unspecified period of silence, the lower pitched note was sounded the bistable should be reset. There was no need for undue speed in the response of the bistable since each note was sounded for some seconds.

Whilst audio frequency filters can be devised to meet the above demands, there are well known difficulties with these as regards the realisation of high Q at low frequency and as regards tuneability, and sensitivity to signal amplitude. The method described below is a simple alternative which achieves the required objectives without the use of filters or counting techniques.

Although originally designed for a project involving acoustic measurements such a circuit could be used in a variety of practical situations. For example it could be used to enable the driver of a moving vehicle to switch on (and switch off) a stationary warning light of some kind by sounding notes of appropriate frequencies. Alternatively an operator could use the circuit to control a model railway

Fig. 2. Trip circuit switching levels and waveforms
acoustically, or, by sounding horns of different frequency, a motorist could open and close his garage doors from his driving seat.

Although the circuit as described here consists of discrete components, every part of it except the emitter followers and pump circuit is realisable using standard integrated circuit modules. In this form the circuit could be made extremely compact.

PRINCIPLE OF OPERATION

Fig. 1 is a block diagram of the circuit. The audio signal, after amplification, is squared by a Schmitt trigger circuit to yield a wave with sharp leading and trailing edges. The squared signal is applied to a diode pump circuit designed to give a d.c. output

Fig. 3. Circuit diagram of the a.f. discriminator

as nearly as possible proportional to the signal frequency. Thus if a note A is sounded a voltage of, say, 4 volts appears at the output of the pump circuit, while if a higher pitched note B is sounded a voltage of, say, 5 volts appears there. It is required, therefore, that the bistable, if set, should be reset by the 4 volts signal due to note A , and if reset, it should be set by the 5 volt signatl due to note B.

To achieve this the pump circuit output is applied simultaneously to two trip circuits. The switching levels of these are so arranged that when note A is sounded only Trip I switches, while when note B
is sounded both are switched. The signals from these trips are then used as the reset and set signals, respectively, of a bistable whose output controls a relay. In order to ensure that the bistable remains set after note B has ended the switch-off level of Trip 2 is made lower than the switch-off level of Trip 1. In this way the set signal produced by Trip 2 lasts until after the reset signal from Trip 1 has ended.

Fig. 2 shows the waveforms from Trip 1 and Trip 2 and the corresponding bistable output, resulting from notes A and B respectively.

Fig. 4. Trip circuit and bistable outputs from selective discriminator

CIRCUIT FEATURES

Fig. 3 shows the circuit of the discriminator using all discrete components. Most of the circuitry is conventional, but suitable circuit values are included for the benefit of readers.

The only features worthy of note concern the pump circuit. To ensure a reasonably linear voltagefrequency characteristic from this stage capacitive loading of the previous stage must be small, hence the relatively small coupling capacitor $(0.022 \mu \mathrm{~F})$, and a transistor must be used in the place of the usual shunt diode. Adequate sensitivity then demands a fairly large shunting resistor ($47 \mathrm{k} \Omega$), which therefore necessitates the inclusion of an emitter follower between the pump circuit and the trip circuits.

A large value $(16 \mu \mathrm{~F})$ is used for the reservoir capacitor to slow down the speed of the response of the pump circuit and so minimise its sensitivity to background noise.

PERFORMANCE

The discrimination attainable by the above circuit was found to depend to a large extent on the purity of the notes used as signals. The following table shows how the pump circuit output varies with signal frequency, the signal being provided by a signal generator rather than a microphone:

| Frequency (Hz) | 300 | 400 | 500 | 600 | 700 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Pump circuit output (volts) | 2.7 | 3.6 | 4.5 | $5 \cdot 3$ | $6 \cdot 1$ |

By setting the switch-on and switch-off levels of Trip 1 to $3 \cdot 8$ and $3 \cdot 1$ volts, respectively, and those of Trip 2 to $5 \cdot 3$ and 1.6 volts, respectively, it was possible to distinguish signals of frequency 590 Hz and 600 Hz with complete reliability. Using a good quality microphone and real notes generated by a
loudspeaker the performance was almost as good $(570 \mathrm{~Hz}$ and 590 Hz$)$ even though the notes from the speaker were noticeably distorted. With a poor (carbon) microphone, however, the discrimination was much poorer due to frequency jitter at the output of the squarer.

BAND-PASS FILTERING

The above principle may readily be extended to provide selective discrimination, whereby, if A, B and C are notes of successively higher pitch, A or C reset a bistable which has been previously set by B. In this case three trip circuits are used, the switching levels of Trip 1 being arranged to lie within those of Trip 2, which in turn lie within those of Trip 3. As shown in Fig. 4, note A causes only Trip 1 to switch, note B causes Trip 1 and Trip 2 to switch, while note C causes all three to switch.

When notes A. B and C are sounded in turn the trip circuit outputs pursue sequences as shown in the following table. The 'required output Q from the bistable is shown alongside, the symbol Q^{\prime} representing "the previous value of Q ":

| OUTPUTS | Note A | Note B | Note C |
| :--- | :---: | :---: | :---: |
| Trip 1 | 010 | 01100 | 0111000 |
| Trip 2 | 000 | 00110 | 0011100 |
| Trip 3 | 000 | 00000 | 0001110 |
| Bistable (Q) | $Q^{\prime} 00$ | $Q^{\prime} 0111$ | $Q^{\prime} 010000$ |

From this table it is easy to deduce that the reset signal for the bistable has to be $\overline{\mathrm{T}}_{1}$ (the inverse of the Trip 1 output), while the set signal has to be $\overline{\mathrm{T}}_{2}+\mathrm{T}_{3}$ (i.c. the inverse of the Trip 2 output OR the Trip 3 output).

BY FRANK W. HYDE

SATELLITE CAMERAS

Cameras that have been developed and used with such great success on satellites and other spacecraft have been mainly devoted to the obtaining of high definition. Similarly with television cameras where the task is much more difficult, the British company EMI have made a major contribution in this field. They developed a low light tube which was used in the ESRO TD-I spacecraft launched in March 1972. and was part of a French experiment to map gamma rays from the galaxy. It was the first time that a European camera tube has been used in space.
The tube, known as the Ebitron. was developed at Hayes, Middlesex. by EMI Central Research Laboratories. it is an intensifier vidicon tube measuring 160 mm by 64 mm and is claimed to be the smallest tube of its type in the world. It formed the "seeing" part of the camera designed by the French company Engins Matra. The camera with its associated equipment is quite light. the camera itself weighing only 1.8 kg .

The EMI tube was chosen because of its small size. low weight and its ability to "see" in near darkness. Its ease of operation, fast response. low light requirement made it ideal for recording the sparks caused in a gas chamber by the passage of gamma rays.

As gamma rays pass through the gas filled chamber the gas becomes ionised leaving trains of sparks These are short lived (a few millionths of a second only) and of low intensity.

A series of mirrors is arranged so that two sides of the chamber can be viewed by the Ebitron thus enabling a three dimensional image to be obtained. The information is
stored and transmitted to earth stations for analysis by computer.

The $T D-I$ is the first satellite to scan the whole sky and also the first to be able to operate in full daylight. The picture of the sky is built up over a period of six months from a polar orbit of some 500 km altitude. The satellite is one of the most advanced in operation put into space. It was launched on a ThorDelta rocket from the Western Test Range in California.

ECOLOGICAL STUDIES FROM SPACE

Aboard the Earth Resources Satellite which was launched in July 1972 were cameras designed by RCA for high resolution TV. These cameras can detect crop deseases and pollution sources in the course of making their scanning passes.

The system which consisted of three cameras was designed by the Astro-Electronics Division of RCA at Princeton. N. Jersey. They have produced a picture which is some ten times sharper than the kind that appears on home television sets.

Each camera uses 4,000 horizontal scanning lines for the building of a picture. From a height of some 900 km each camera will be able to view the same area of $180 \mathrm{~km}^{2}$. Each camera observes in a different part of the spectrum, one in red, one in infra-red and the third in green. After transmission to Earth the three images are combined and the composite picture can then be studied.
It is perhaps worthwhile to point out that this technique was used ten years ago by Ian Whitacker when studying the moon. Later other astronomers used the same technique.
Now its use has been extended to the study of the environment and has proved exceptionally valuable. Already the diseased areas of various food crops have been photographed, as well as silt movement from estuaries into the sea and the direction of ocean currents have also been mapped.
One of the advantages of this kind of photography is that the altitude of the satellite gives orthographic pictures so that the proper spacial relationships are directly seen. No corrections are required to show the real condition without the spacial distortion that arises from ordinary mapping.

As the orbit of the satellite is synchronised with the Sun the same lighting conditions exist for, each area viewed, thus avoiding distortions that appear when using other methods of carrying cameras aloft which are subject to changing angle of the light of the Sun. The full significance of this aspect can be appreciated when it is understood that only 72 per cent of the habit-
able land has been mapped in detail and of this more than 50 per cent of those that exist are out of date.

The new mapping will now fill in this gap, and not only that, each area will be mapped 18 to 20 times a year.

INDIA AND SPACE ACTIVITY

India has been very active in the field of space development. as well as in radio astronomy. There are plans afoot to build the first allIndia satelite for launch in 1974.

It is expected that the launch vehicle will be Russian and will carry a satellite weighing about 100 kg . There will be three experiments on board which have been designed by ISRO (India Space Research Organisation) and will be built entirely in India.

Development is also proceeding on a design for a carrier vehicle expected to be ready by the end of 1974. It is a four stage design similar to the Scout rocket. It will be capable of putting a 40 kg package into orbit at about 400 km altitude.

It is planned that the first firing be made to gain experience. Later launchings will carry on-board experiments. This will be worked up eventually to a coverage for educational purposes.

By 1974 India will have access to the NASA satellite ATSF which will be launched in 1973. This will enable India to have the facility to cover some 5,000 villages for educational purposes. India will design and manufacture the small and rugged battery receivers needed and also the 10 ft diameter aerials made of chicken wire.

There are two major satellite communications stations in India one at Avi and the other at Ahmedabad. The dishes at these sites are 30 m dia. Most of the research is carried out at the National Aeronautical Laboratories in Bamgalore. There are divisions there covering Aerodynamics, Propulsion, Materials. Electronics, Instrumentation and Structures.
India suffered a severe blow with the death of their leading scientist Vikam Surabhai in 1971. However. such was the nature of his forward planning that India has today a very successful space research team.
India has contributed quite considerably already to the space programmes of other countries. From the launching sites at Thube near Travandram, which is U.S. sponsored. several hundred launchings have taken place. Rockets. probes. and satellites of British. French. Russian and Indian origin have already been launched from there.

A new site now being completed. the Shrihameola Range, will extend India's future space activities even further.

CAXOT EMIERALAM: wis
 STANDARD and CUSTOM-BUILT AUDIO and ELECTRONIC EQUIPMENT NEW and SECONDHAND MUSICAL INSTRUMENTS. MAIN DISTRIBUTORS FOR A.K.G. HIGH QUALITY MICROPHONES

SA25-SA35-SA100

LOW-PRICED AUDIO MODULES FOR DOMESTIC and COMMERCIAL USE

THESE THREE MODULES HAVE ENIOYED UN. PARALLELED SUCGESS DURING TME FIRST FEW MONTHS' OF THEIR BEING MADE AVAILABLE TO THE GENERAL PUBLIC. WE ARE PLEASED TO ANNOUNCE THAT WE CAN NOW OFFER FAST DISPATCH ON MOST OF OUR ADVERTISED ITEMS, DISPATCH ON MOST THREE MODULES.
SA25 22-95 ?
25 WATTS R.M.S. 7 transistors. 7 diodes
SA35 84•45 \%
35 WATTS-R.M.S. 7 teansistors, 7 diodes
SA100 \&10-90
100 WATTS R.M.S. 11 cransistors, 6 diodes
ALL THREE MODULES HAVE OPEN AND SHORT CIRCUIT PROTECTION. AND THE SAIOO IS PROOF AGAINST -OVER-DISSIPATION AND FAULTY IN. DUCTIVE LOADS
ONLY ADVANCED DESIGN TECHNIQUES MAKE THESE EXTRAORDINARILY LOW PRICES POSSIBLE.

BRIEF SPEC. FOR ALL THREE MODULES
Freq. response $\quad 1540,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
Distortion $\quad 0.2 \%$ at 1 kHz
Loads
Loads
Quiescent current 15 mA than -75 dB
Supply voltage
$25-45 \mathrm{~V}$, SA25/35
Size
40 -70V, SA100
Size $4 \frac{1}{2}$ in $4 \mathrm{in} \operatorname{lin}(5 A 100)$
4in 3 in lin (SA25, SA35)
Circuits, connecting instructions and application data are supplied \mathfrak{r} ree with all modules.

POWER SUPPLIES FOR THE SA25/35 and SA100 AUDIO MODULES
PS45 Stabilised module for 2 SA 25 's or two SA 35 's. £ 35.0 , carr. free
MT45 Transformer for above, heavy duty, $£ 2.85$,
MT30 Transformer for unstabilised supply complete with rectifier diodes mounted, $£ 3.50$, carr. 20p
PU70 Unstabilised supply for one or two SA100,
PS70 Stabilised supply module for one or two SA100's, $\$ 4.90$, carr. free
MT70 Transformer for PS70, $\mathbf{~ 4} \cdot 90$, carr. 40 p
ALL MODULES ARE BUILT ON GLASS fIBRE P.C BOARD

OTHER SAXON PRODUCTS . . .

120 WATT HEAVY DUTY MODULE £ $13.90+20$ p carr. or with

Featuring a rugged class A driver stage, this module will run rom all our mixers etc., and most other makes of mixer. It can (II5W) output transistors.

PECIFICATION

 Power output nout sensitivity Construction 200 mV into 10 K Sin $\times 4$ in $\times 4$ in Low distortion parallel push-pull output stage supply $18.95+40 p$ carr
SINGLE CHANNEL SOUND/LIGHT CONVERTER

This compact and reliable unit operates from amplifiers with outputs from 5-100W. Does not impose a heavy load on the amplifier, or, if connected in the wrong polarity, cause any damage, as with some units.

Operation is simplicity itself and the unit is fully fused. The unit is supplied to function from bass notes but may easily be converted to respond only to treble or mid-range notes by

THREE CHANNEL SOUND TO LIGHT UNIT

Handling the total of $3.000 \mathrm{~W}(3 \mathrm{~kW}$) this unit is unique for its price in that not only bass middle and treble but also master controls are provided. wo ampliner sockecs elimin blue split leads, etc. Supplied in tough white steel case with a bive 410 stelevite hooded cover. Fully guaranteed

MONO VERSION $\mathbf{6} 6.50$, carr. 20p
(Asillustrated below. S.A.E. details. gV operation) OUTPUTS UP TO IV RMS

SAXON STEREO CONTROL UNIT

Two decks, and full headphone monitoring. The unit is mains operated and measures $17 \frac{1}{2}$ in 3 in x 4in deep and is finished with a smart whice on black facia. The controls are: Left/Right deck fader, volume, bass, treble, headphone selector and volume, microphone volume, THEOUS AND IS COMPARABLETO UNITS AT OVERTWICE THEPRICE.

COMPLETE AMPLIFIERS
THE CS 100. $£ 34.90 \mathrm{carr}$. free
This versatile unit is now available in a black vynide case and so represents even better value than ever, delivering speech and music powers of up to
 Two individually controlled inputs with wide range bass and treble controls. Ideal for smalf groups, D.J's, etc
The SAXON 100. $\mathbf{~ 4 8 . 5 0 , ~ c a r r . ~ f r e e . ~}$

```
<<c<
- - SMXON
```

With an R.M.S. output of I20W speech and music. 100 W continuous power, four individually controlled E.T. input stages and wide range bass and treble unit offering quality and reliability at low cost.

LOUDSPEAKERS British made bargains!!!
12 in 25 W 8/15 ohms 65.95, carr. 30p: i5in 50W 8/15 ohm, 614.50, carr. 50p 2 in $40 \mathrm{~W} / 5,000$ gauss magnet system $\mathrm{B} / 15 \mathrm{ohm}, \mathrm{f} 11 \mathrm{50}$, carr. 40p.
A.K.G. MICROPHONES suitable for disco, group or generalP A use SEND S.A.E, FOR DIIOHL r.r.p. £ll, our prise $\mathbf{6 9 . 4 5}$ post free.
D190C High Z r.r.p. $£ 21$. 50 , our price $£ 17.45$ post free.
D 1000 C 24 ct . gold plate r.r.p. 637 , our price $\mathbf{4 3 2}$ post f́ree.

OUR A.K.G. PRICE LIST. DISCOUNTS ON ALL MICS.

CALLERS AND MAIL
ORDER:
Thornton Heath, Surre
Tel. 01-689 3685

CALLERS ONLY: CIRCLE SOUND

 Rochester. Medway 40AIsTERMS OF BUSINESS: C.W.O. or C.O.D. (35p extra). All cash in regd. enve CROYDON BRANCH. TRADE AND EXPORT ENQUIRIES INVITED

FAST-RELIABLE SERVICE FOR ELECTRONIC COMPONENTS CATALÓGUE
 Sth EDITION AND DISCOUNT VOUCHERS 25p POST FREE (UK)

W.E.C. LTD.

HIGH STREET, RIPLEY, SURREY Established 1954

FERRANTI

SEMICONDUCTORS

| | ZTX320 | 28p | BF596 | 13p | Z5178 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{8} \mathrm{p}$ | 2T×330 | | BFS97 | $21 p$ | ZS270 | | 10 p |
| | ZT×331 | 14 p | BFS98 | 18p | Z5271 | | 14 p |
| 10p | $2 T \times 500$ | 10p | | | Z5272 | | 16 p |
| 20p | $2 \mathrm{Z} \times 502$ | 15p | DIODES | | Z5274 | | 17p |
| 10 p | Z $\mathrm{Z} \times 504$ | 39p | ZS140 | 22p | Z5276 | | 23p |
| 15p | 2TX510 | 15p | ZSI41 | 39p | Z 5278 | | 33p |
| 19p | ZTX530 | 19p | 25142 | 30p | IN 4001 | | . 6p |
| ${ }_{8 p}^{\text {p }}$ | ZTX ${ }^{531}$ | 20p | ZSI70 | 9p | ZN4I4 I.C. Radio | | |
| 9 p | ZTX550 | 15 p | 2S171 | $11 p$ | As shown on | | |
| 9p | BF559 | 13 p | 25172 | 14 p | "Tomorrow's
 World " 61.20 | | |
| 10p | BF560 | 18p | 25174 | $15 p$ | | | |
| $11 p$ | BFS61 | 19p | ZS176 | $21 p$ | incl. | ree | da |

VALENCE ELECTRONICS

2A CANAL STREET, DROYLSDEN, MANCHESTER

report from
 AUSTRALIA

BY J.M.WALDIE

FM BROADCASTING

The Australian Broadcasting Control Board has been enquiring into the desirability of $\mathrm{f} . \mathrm{m}$. radio in Australia and has now issued its findings in a 100 -page volume entitled "Frequency Modulation Broadcasting' '. The board examined some 150 written submissions and 70 formal exhibits, and employed its Technical Services Division to carry out an examination "of every technical problem considered to be possible' $"$.

The upshot of this deliberation is to recommend that f.m. broadcasting should be introduced, and this has been endorsed by the Government.

This is, in fact, the third time that official committees in one form or another have examined f.m. radio in Australia. The first was in 1942 and resulted in the installation of four experimental transmitters, operating in Sydney, Melbourne, Brisbane and Adelaide in 1948.

OBJECTIONS

In 1957, the board conducted a public enquiry and found "very real practical objections to the introduction of f.m. broadcasting''. The four stations, which by then were transmitting for some 80 hours weekly using substantially the same material as was included in the more serious of the then two $A B C$ programmes, were closed down in 1961 to allow for expansion of the television services from 10 to 13 channeis.

This situation, in which the v.h.t. band is more or less saturated with television and other services, provided a large headache for the enquiry just completed. It was preferable to use the v.h.f. band for the projected radio service for obvious reasons: the technology was well known and the signal propagation would be relatively high. However, this meant the abolition or re-allocation of one or more television channels with obvious disadvantages and the possible need to use bandwidths of as low as 0.4 MHz .

The alternative was to use the u.h.t. band, which is relatively uncluttered, but this, too, has disadvantages: no other country uses u.h.t. for f.m., and standardisation should be the aim; the technology
was virtually unknown; the coverage obtainable would be lower than with v.h.f.

However, the die is now cast: the recommended bandwidth (allowing 20 stations to cover each area) is 40 MHz and the suggested frequency range is $470-510 \mathrm{MHz}$. Local manufacturers have three years in which to decide on the technical standards for u.h.f. reception and transmission.

PLANS FOR THE FUTURE

The aim is to provide two national stations, one to transmit the current $A B C$ network for provincial and country areas, and the second, citybased, to provide a second "fine music', network. Commercial stations will also be licensed. Finally, a new type of station will be introduced, on a non-profit basis, to cater for the needs of minority groups. All these stations can transmit stereophonically.

It has been suggested, with just a hint of patriotism, that Australia's venture into u.h.f. broadcasting might just be the shot in the arm that the local manufacturers claim is needed. It will be interesting to see if the Japanese will produce a u.h.t.$\mathrm{f} . \mathrm{m} . / \mathrm{a} . \mathrm{m}$. receiver for the Australian market by 1978 .

AUDIO SHOW

There can be no doubt that hi-fi enthusiasts (at least in Sydney) have an extremely large selection of equipment available to them, if the 1972 Audio Show, held in Sydney on August 9-13, is any guide. It is equally true to say that the average buyer can not be badly off; the manufacturers and importers, in conjunction with Australian hi-fi, must be conscious of a considerable interest to stage an exhibition of this magnitude.

The show actually covered three floors of a moderately large multistorey motel. The ground floor was relegated to 16 large (silent) displays; two upper floors were used to demonstrate, in over 40 individual suites, the complete range from any one manufacturer or selected combinations.

More than half the equipment shown originated in Japan, with all the major names being present. British exhibitors included Garrard
(the Zero 100 deck was used in many stands), Wharfedale, KEF (who have, along with Leak and Goodmans, commenced local production), Plessey, BSR, and B\&W.

NEW DEVELOPMENTS

Interesting new developments for the cassette enthusiast included the new Sony deck (TC 165) with automatic and continuous reverse facilities, several new decks with inbuilt Dolby, including National, TEAC, Kenwood and Pioneer, and a C 180 cassette, and an endless loop cassette, both from TDK.

There were many four-channel units demonstrated, but by far the most impressive was one line-up consisting of a four-track TEAC 3340 deck, feeding two JVC PST 1000 stereo graphic equalisers, in turn feeding two phase linear power amplifiers whose 2,800 watts (r.m.s.) output was handled by four ESS transmission line speakers-and this in a room measuring about $12 \mathrm{ft} \times 15 \mathrm{ft}$! Cost-about $£ 4,000$, but trade-in's are acceptable.

OPTICAL
 COMMUNICATIONS

Australian communications may benefit from a new joint venture by Amalgamated Wireless (Australasia) Ltd., and the Tribophysics Division of the Commonwealth Scientific and Industrial Research Organisation (CSIRO). The CSIRO have developed a new type of optical fibre, consisting of a liquid-filled hollow glass tube.
Although finer than a human hair, the fibre could transmit more information than existing wide-band microwave and coaxial communication links. Using a helium-neon injection laser as a light source, for example, it is claimed that, using the new fibre, previous disadvantages of signal loss over long distances using light guides are overcome.

The system has been made available to the Australian Post Office for its research laboratories to evaluate the fibre's potential in the development of Australia's Telecommunications network.

It is certainly a far cry from that eventful day in 1870 when John Tyndall showed that light could be borne by a liquid around corners.

THE realisation of music and allied effects by means of a variety of electıonic devices has been possible for a good many years. The electronic organ, for examp"e, was becoming rapidly accepted a ciecade before World War II. Of the vast range of electronic instruments now available, however, there are a few which are not aligned to operate around a conventional chromatic scale. Thus, for the performer, the appeal of such instruments would be based primarily on the effect of tone quality, ease of playing and novelty in design.

For the composer, however, the abundance of electronic instruments does little more than provide a range of alternatives to supplement or replace standard instruments of the orchestra Out of such a situation the idea of musique concrete was born. This technique enabled composers to create and experiment with sound forms generated naturally or unnaturally by such unlikely scurces as dustbins, rattling teacups, conversation or malplayed musical instruments. Some workers incorporated a system of manually operated oscillators, both groups linking their sound sources to one or more disc cutters or, later, tape recoiders.

The task of creating and blending discrete tones into a coherent and recognisable musical work involved so much laborious effort that musique concrete established the reputation of being more of a technical exercise than a creative art form. Thus the publication of Moog's designs for voltage controlled amplifiers and oscillators about eight years ago was hailed with enthusiasm in many quarters of the musical world.

Moog's designs crystallised the ideas and requirements expressed by a number of serious composers winose creativity was hampered and frustrated by the confines of the accepted musical disciplines. The possibilities of, and extensions to, Moog's original circuits have led with great rapidity to the inception of a series of variably complex devices having the generic label of 'synthesiser".

THE SYNTHESISER DEFINED

What exactly is a synthesiser? The word "synthesis" is defined as the building up of separate elements into a connected whole and this, very succinctly, describes the function of the synthesiser with respect to the formation of sound structures.
Essentially the instrument consists of a number of sound sources and sound treatments which may be combined together in an enormous diversity of ways to produce an equally varied range of sounds in a number of applications.

1. As a live performance instrument. A considerable company of popular artists and groups use a synthesiser, in one form or another, as a standard item of equipment either to supplement their normal methods of sound treatment or to play as an instrument in its own right.
2. As a sound effects unit. The use of the synthesiser is by no means restricted to musical circles and it is equally at home "producing" creaking doors, artillery fire, explosions, dripping water, birdsong and a virtually unlimited range of sounds similar to those featured in and popularised (for some) by the "Dr Who" series. Thus the tape recording enthusiast, amateur dramatic society, cine club and so on could easily find the synthesiser becoming a useful and indispensible tool.
3. As an audio-visual teaching aid (in conjunction with a good oscilloscope) the synthesiser can provide an invaluable insight into the fundamentals of electronic and acoustic waveform phenomena. In this respect there is a large potential field of application.

IMITATIVE OR UNIQUE

The term synthesiser carries the implication, for some, that the instrument is of an essentially imitative nature and/or that the sounds produced by it are ersatz. With regard to the former criticism, the degree of control which may be exercised in a well designed synthesiser is such as to allow it to imitate a wide range of musical instruments very effectively.
For the sound effects man, the ability of the instrument to produce imitations of a wide range of naturally occurring sounds is a feature which cannot be lightly set aside.

In answer to the second criticism which implies that the sound forms produced by the synthesiser are, in a sense, unreal-nothing could be further from the truth. The nuance and timbre imparted by the synthesiser to a fundamental tone is no less real than the nuance and timbre imparted, to the same tone, by, say, a trumpet or a violin. In practice, the purity and exactitude of the tonal permutations made available by the synthesiser are frequently inspiring and possess a beauty which is peculiarly their own.

Fig. 1. Block diagram of a voltage controlled oscillator

VOLTAGE CONTROL

Various forms of voltage control have been known and exploited for a number of years but the application of the principle to the control of synthesiser circuits results in the appearance of a number of unique features. By way of illustration one could scarcely choose better than a form of voltage controlled oscillator based on the design published by Dr Moog. Fig. 1 shows such a device in block form.

The relaxation oscillator is driven by an operational amplifier the output current of which is proportional to the exponential of the input. As the output current increases so also will the rate at which the charge on capacitor " C " reaches the unijunction breakdown voltage. Thus the frequency is increased.

The unijunction sawtooth is fed to a series of waveform shaping circuits which provide a useful number of "in phase" outputs. By means of this system relatively wide frequency ranges may be obtained without the necessity of switched RC or inductively tuned networks.
The general principle of voltage control may similarly be applied to almost any parameter in any of the devices built into the synthesiser, e.g. amplifier gain, filter bandpass or band reject characteristics, degree of reverberation and so on. There are a number of distinct advantages in so doing, these are:

1. Signal and control paths are quite separate from one another. Thus a device may be remotely controlled without compromising the signal in any way.
2. Devices can control one another in a continuously variable manner without the necessity of complicated, expensive and limited-range switching circuits. In certain circumstances a device may control or limit its own output by using part of the signal output as feedback to the control input.
3. By provision of high input impedance to the control circuits each controlling device has a potentially large "fan-out" capability thus making multiple parameter control a possibility.
A specific example of voltage control is given later in this article and will serve to underline the flexibility and versatility of the system.

SYNTHESISER DESIGN

In designing a synthesiser care has to be taken to ensure that the system does not become so complex that it is impossible to operate effectively.

Consequently it is necessary to define the requirements of the instrument and to specify the means by which these requirements may be met. In this respect a form of modular construction offers the distinct advantage that one may start with a simple system and increase the size and complexity as and when required.

As a general rule most sounds have a fairly complex structure comprising a fundamental tone, one or more overtones or harmonics and, in some cases, an element of noise. It is usually the fundamental tone which dominates the sound structure and which provides the primary means by which the sound is observed.

The author's prototype synthesiser is shown above. Below is the final version built in modular form and housed in a Vero metal case

Another important feature concerns the way in which the sound structure is presented. The rapidity with which the sound becomes audible, the maximum volume attained and the rate at which the sound dies away together constitute a pattern, known generally as an envelope, which contributes very largely to the recognition of the sound. Variation in the rapidity of attack and the rate of decay of an otherwise unchanging sound structure can make an enormous difference to the auditory effect of the sound on an observer.

Two other factors play an important part with respect to the recognition of sound. These are timbre and nuance. Timbre is defined as the characteristic quality of sounds produced by each particular instrument or voice, depending upon the number and character of the overtones while nuance relates to the delicacy, or shade of meaning, of a sound.

ACHIEVING THE REQUIREMENTS

It is a relatively straightforward matter to provide hardware to meet three of the above requirements, i.e. fundamental tones may be provided by one or more oscillators; variation in sound presentation is achieved by means of an envelope shaper while
timbre may be varied by selective filtering and additive mixing, either separately or in combination, together with a degree of reverberation.

Control of nuance cannot, however, be achieved by the application of a discrete piece of hardware but is controlled by the inter-adjustment of practically all the parameters involved in any particular sound structure.

PROGRAMMED MODULES

The hardware so far considered covers the basic necessities of sound formation but offers nothing that cannot be obtained from a selection of signal generators, reverberation amplifier and integrator, all of which are easily obtainable as discrete units and in a variety of forms. The next stage, therefore, is to devise a means whereby the principal function of the modules may be voltage controlled and to provide the means by which they may be programmed to produce a range of tone patterns or rhythms. Automatic programming may be achieved by provision of one or more ramp or random voltage generators.

If these latter devices are, themselves, made programmable then the possible control signal permutations, with only a small number of modules, becomes

SPECIFICATION

Stabilised Power Supply $+15 \mathrm{~V} / \mathrm{O} /-15 \mathrm{~V}$ at 750 mA per rail. Max. ripple at $\mathbf{1 2}$ per cent overload is less than 15 mV .

Two Input Amplifiers
Gain variable from unity to $\times 50$.
Two Ramp and Pulse Generators
Frequency range (a) 0.01 Hz to 15 Hz .
(b) 0.05 Hz to 30 Hz .

Manual and voltage control. Output voltage is 4 V nominal ramp and -4 V nominal pulse.

Two Triangular/Square Wave Oscillators
Frequency range (voltage control) less than 1 Hz to 16.5 kHz . Frequency range (manual control) 5 Hz to 10 kHz . Output voltage: Triangular 350 mV p-p. Square IV p-p.

Two Output Amplifiers Variable gain with manual and voltage control. Panning facility between channels. Input level 500 mV . Maximum voltage gain +13dB.

Reverberation Amplifier

Variable gain manually controlled. Voltage control of reverberation. Unity gain with reverberation out. Frequency range of spring line -3 dB at 80 Hz and 4 kHz . Input level 500 mV .

Ring Modulator

Four quadrant multiplier based on integrated circuit. Frequency response effectively flat from d.c. to greater than 150 kHz . Input levels $2 \times 500 \mathrm{mV}$ max. Output level 800 mV max.

Tone Control

Tuneable active filter. Effective slope 7dB/octave. Overlapping bass and treble ranges allow extreme effects to be obtained.

Envelope Shaper

Produces an envelope of variable shape and period derived from internal constant voltage source and external trigger. May be triggered manually. Output waveforms variable from pulse, sawtooth, trapezoid, and triangular.

Noise Generator

Provides up to 3.5 V white noise. Control of colouration by means of tuneable low pass filter.

Sample and Hold

Random voltage generator which can double as an additional ramp generatos. Produces staircase waveforms of formal or random nature. Clock output is provided for synchronisation purposes. Output level - 6 V max.

Differential Amplifier

Provides additive and/or subtractive mixing facilities. Output level proportional to sum and/or difference of the four inputs provided, maximum 26 V p-p.

Inverter

Similar to above but with only two inverting inputs.

Meter Unit

A meter with precision rectifier circuit to read a.c./d.c. signals in two ranges, 0.5 V and 1 V .

Fig. 2. Block diagram of the synthesiser
very wide indeed. If the frequency range of the ramp generators is sufficiently wide they may themselves be considered as sound sources and used for the direct provision of rhythms.
Similarly. with the control signal suitably attenuated and running at a frequency of between $6-8 \mathrm{~Hz}$, a single ramp generator may be used to provide a vibrato modulation to an oscillator thus adding greatly to the interest content of discrete tones.

Synthesiser keyboard with separate sustain, vibrato and oscillator units mounted on the left

ADDING A KEYBOARD

Perhaps the simplest method of programming the oscillators is by the addition of a keyboard. Since keying provides a range of control voltages to the oscillator the keyboard itself may be considered to be a manually operated staircase generator.

The keyboard may also be used to provide gating and synchronising pulses to initiate treatment or shaping sequences each time a key is depressed.

SOUND TREATMENTS

The only sound treatment so far given any degree of consideration is that of reverberation. There are. however, a number of others which can provide very useful extensions to the facilities offered by the synthesiser. Up to now the accent has been on synthesis by addition, but, equally, one can synthesise by subtraction.

In this latter case the starting point is a complex sound, such as white noise. from which the required elements are obtained by filtration. There is thus a place for one or more notch and/or band-pass filters the actual characteristics of which may be varied by means of voltage control.

On the simpler side there is also a place for a form of tone control of sufficient range to enable extreme effects to be investigated.

INTERFACING

Finally, it is necessary to consider the best means of interfacing the synthesiser with external equipment so that it may accept as wide a range of inputs as possible without distortion and, on the output side, provide a similar widely compatible drive.
A block diagram of the synthesiser to be described is given in Fig. 2.
The idea of external connection compatibility for all modules was believed to be a prime requirement in view of the possibility that many constructors may wish to build only a limited number of the

The basic modular form of construction that will be used throughout the series modules to be described as additions to existing synthesiser projects. In view of this situation it may seem somewhat paradoxical to provide modules labelled input and output amplifiers.

In point of fact these can be connected in virtually any position in a chain of modules the main limitation being due to the possible saturation of the amplifiers due to the input levels being exceeded.

The final stages of the output amplifiers are crosscoupled by "panning" controls thus enabling stereo and "floodsound" effects to be investigated.

INTERCONNECTIONS

Referring again to Fig. 2, it will be noted that many of the modules are shown with interconnections made between them.

Of the three most widely used systems of module interconnection the one most suited to the modular concept is that in which individual devices are coupled by means of patch cords. The great disadvantage of this system is that a complicated patch can render the front panel controls almost inaccessible.

With a view to relieving this situation modules may be connected internally in the manner in which they are most likely to be used. The actual method of internal connection is really a matter of the individual constructor's preference, those connections shown in Fig. 2 being intended as a guide rather than a mandatory requirement.

BUILDING THE SYNTHESISER

Full constructional details will be given on building the synthesiser shown and an outline specification of the instrument appears in this article.

Extensive use has been made of the 741 operaional amplifier since the use of these devices invariably simplifies design and construction in comparison with circuits in which discrete semiconductors are employed. Furthermore, the 741 offers the feature of unconditional stability under almost any operating condition and is protected internally against "latch-up" and output short circuit and is readily available at economic prices from a variety of sources.

The only test equipment requirement is for a good oscilloscope, particularly during the setting up stages. Ideally the scope should be d.c. coupled but, failing this, a high resistance voltmeter will suffice to monitor the v.l.f. performance of the various modules.

Next month, constructional details for the stabilised p.s.u. will be given.

NEXT MONTH

,娄

TAPE LINK:...

Bring hi-fi quality to your tape deck with this quarter track stereo tape link.
It features separate record and replay amplifiers using modern circuit technology to give low distortion and noise, and accurate replay characteristics.
Tape speeds of $1 \frac{7}{6}, 3 \frac{3}{4}$ and $7 \frac{1}{2}$ inches per second are catered for, and a switch is included for single track mono operation. Setting up requires only minimal circuit adjustments.

SIENAL INEECTOR TRACER

Using a digital integrated circuit in a linear mode makes this Signal Injector and Tracer cheap and easy to build. Extremely useful for fault finding on radios, amplifiers and other audio equipment. A simply built r.f. probe makes the Tracer suitable for high frequency detection.

PRACTICAL

GREAT LEAP FORWARD

The year 1973 should be good for Solartron and the Schlumberger Group, of which Solartron is the U.K. member. I hear that the French companies in the Group have now virtually completed a rationalisation programme in which what was once a rag-bag of smallish companies has now been consolidated into major groupings of considerable strength.

In Britain, Solartron's Farnborough plant was as busy as I'd ever seen it when I called in last month. The Master Series, a range of a dozen digital voltmeters launched earlier this year, was described to me as having made a major impact in the market place with revenues already ahead of schedule. But the big new field is in radio frequency instrumentation and Solartron will be offering equipment for use up to 40 GHz .

Another new Solartron activity is frequency synthesizers. This activity was previously concentrated in the Munich plant but now Farnborough engineers are involved in a joint development programme and new models will probably be manufactured in both locations.

Another bright product line is the realistic tank gunnery simulator known as "Simfire" for which Solartron recently won a Ministry contract worth $E 1.4$ million following successful field trials by the 15th/19th Hussars in Germany. The system uses a low-power pulsed laser beam to simulate the firing of the shell and its trajectory. The target is fitted with detectors and if a hit is detected it triggers off a pyrotechnic display on the "killed" vehicle.

Solartron is spending plenty of cash on R and D to bring themselves into a leading position in Europe. Most companies think themselves pretty progressive if they plough back 10 per cent into R and D. The Solartron figure is currently running at 14 per cent on the instrument side of the business.

The biggest Schlumberger business, though, is still in oilfield instrumentation. Worldwide there are 30,000 employees operating in 50 countries.

LES FOLIES

One of the brightest of the new generation of electronic industry entrepreneurs, Tom Jermyn, has a keen eye for the ladies, in a strictly business sense of course. His company, Jermyn Industries, manufactures semiconductor accessories such as i.c. sockets, transistor pads and heatsinks for which there is a world-wide sale.

Nearly three years ago he set up a sales office in Munich, soon to be followed by another in San Francisco and now he has opened his third in Paris. They all have one
thing in common-all are managed by ladies, and all of them good lookers.

Heading up the Paris office (appropriately located in the rue de Londres!) is multi-lingual Stella Bornstein who now joins Lore von Kleist, Munich, and Janice Pascoe, San Francisco. Stella is as yet untested, having only just started, but Janice and Lore have easily outpaced the performance of the local agents they replaced, Lore for example having built up the German business to 50 per cent of the present Jermyn U.K. turnover.

The point of this story is not so much the girls but how some of our more thrusting companies are getting around the world and really selling.

Incidentally, Jermyn is expanding manufacturing facilities bevond simple semiconductor accessories. Latest product is a 300 W triac-controlled light dimmer which fits neatly in place of the common square MK liạht switch. The dimmer, desianed bv Jermyn enaineers. is also available in kit form for home constructors.

NEW LINE ON DEFENCE

Defence contracts may be getting harder to come by but they are still very big business. A new lineup of Thorn Automation, the Kelvin Hughes and Aviation divisions of Smiths Industries, and Scott and Electromotors, will be in a stronger position to bid for contracts under the group name Defence Equipment. Between them they employ 11,000 people and have combined assets of $£ 164$ million and a turnover of $£ 440$ million.

One reason for the link-up is said to be the reduction in size of Ministry R and D establishments and the farming out of work to the larger companies.

IN TRIPLICATE

Despite all the trials and tribulations experienced during the commissioning of the new air traffic control system at West Drayton, Marconi Radar Systems has finally handed over the $£ 5$ million complex-after a year of operational trials. The triplicated MYRIAD computer systems operate independently to give a reliability such that the system is only out of action for less than thirty seconds in five years.

Another Marconi achievement was the $£ 1.5$ million system for Eurocontrol based at Bretigny, near Paris. This has now also been handed over. Marconi led the international consortium which included Standard Elektrik Lorenz of Germany, and S.A.I.T. Electronics of Belgium. Altogether Marconi has completed 38 major ATC installations in the last decade.

ELECTRONORAMA

Goonhilly 3, Britain's new £22 million satellite-communication aerial, is significantly different from the two earlier aerials at the Post Office's earth station on Goonhilly Downs. It is specifically intended for tracking satellites in geo-stationary orbit, whereas Goonhilly 1 was deslgned for tracking fast-moving satellites, and Goonhilly 2 for both sub-synchronous and synchronous orbiting satellites.

REFLECTOR

The $29.6-\mathrm{m}$ diameter reflector of Aerial 3, although larger than those of aerials 1 and 2 (26 m and 27.4 m respectively) for improved performance, is considerably lighter, due to the use of 2 mm aluminium sheet for the reflecting surface, instead of stainless and mild steel. The sub-reflector can be tilted under the control of an hydraulic system to deflect the aerial beam by up to 25 minutes of arc in azimuth or elevation without moving the main reflector.

DRIVE EQUIPMENT

Movement of the main reflector about each axis is effected by twin driving units each having two electric motors. Solid-state control devices are used instead of rotating machines as on aerials 1 and 2.

When the satellite starts to move out of the beam, error signals appear and activate the servo systems which steer the beam to eliminate the tracking error. Tracking can be accomplished by movement of the main reflector with the sub-reflector locked in a central position, or alternatively by movement of the sub-reflector

only
Goonhllly 3 is currently transmitting two and receiving 11 telephony carriers, although it is capable of being expanded ultimately to receive 33 carriers. The transmit carriers are radiated in the band 5.930 to 6.420 GHz and recelved in the 3.705 to 4.195 GHz band.

When required, Goonhilly 3 transmits and receives two television carriers, one for vision, the other for sound. It can also operate a transmit and receive contingency carrier arrangement to support services lost during failure of a transatlantic cable.

RECEIVING SYSTEM

The received signals pass through flexible waveguide to one of a pair of low-noise parametric amplifiers, cooled to $15^{\circ} \mathrm{K}\left(-258^{\circ} \mathrm{C}\right)$ by a closed-cycle gaseous-helium cryogenic system (botlom left).

The signal from the LNAs, further amplified by 400 B in a tra-velling-wave-tube amplifier, passes by waveguide down the centre of the king post to a rotating waveguide joint, and is then carried in the waveguide to the central control building (boltom right).

The board to be described this month is the all important ADDER board which forms the heart of the arithmetic section of the calculator. The name ADDER is a shortened name for what is really an adder/subtractor with carry store, but before going into the design of the board in detail it is necessary to recall some of the principles of binary and B.C.D. addition and subtraction.

BINARY ADDER

The principles involved in a simple single stage binary full-adder are fairly well known in this, the computer age, but for the sake of completeness it is as well to run over them again here.

Fig. 8.1. shows the logic diagram of a typical binary adder which generates a SUM and Carry output from the three inputs termed a, b, and Carry in. The word "typical" is quite meaningful in this connection because a circuit to perform binary addition can be made up in a number of different ways, the end result being the same, no matter which gating arrangement is used.

The performance of this sort of array is best described in terms of a truth-table which lists the circuit's output response to all possible input conditions, and the truth-table for the ADDER is also given in Fig. 8.1. If any reader is unfamiliar with the basic rules of binary addition, studying the truthtable will tell all.

Fig. 8.1. Single binary full adder stage. The truth table defines all the outputs for all combinations of inputs

Fig. 8.2. A parallel binary adder to add two four-bit words. Each of the stages in this adder is identical to that shown in Fig. 8.1

PARALLEL BINARY ADDER

A binary adder stage like that of Fig. 8.1 is of limited use as it stands, being capable of adding together only a single pair of binary digits and a carry, whereas most sums a machine is asked to solve would stretch to a number of pairs of such digits. The simplest way to extend the capabilities of this circuit is to use a number together to form a parallel adder like the one in Fig. 8.2.

Each pair of binary digits in the two numbers to be added has its own adder circuit with the carry connected in series down the chain. This method of addition is widely used in binary computers but suffers from the disadvantages of large scale component use and slow propagation of the serial carry which has to "ripple-through" to the last stage before the addition is complete.

A circuit arrangement which only uses a single adder stage to add two n-bit numbers is quite possible if the addition is carried out sequentially, i.e. one pair of digits at a time, in a system such as that shown in Fig. 8.3. This method of binary addition is called "serial addition" and requires a store to "remember" the carry from a previous addition so that it may be added in with the next.
The two basic addition methods are both employed in Digi-Cal, with some special modifications to allow operation in the B.C.D. code.

Fig. 8.3. Basic serial binary adder/subtractor. The ADD/SUBTRACT unit presents either the true or complemented output from the X REGISTER to the adder under the control of the FUNCTION CODE A signal

SUBTRACTION

Once the truth table required of a binary subtractor has been worked out it is quite easy to design a simple logic circuit to perform the operations required, but in practice this is very seldom done, because, by making the number to be subtracted negative, i.e. by complementing it, it is possible to achieve the effect of subtraction in an adder circuit of the types already described.
The principles underlying this method of subtraction are quite straightforward and it can be readily appreciated that adding a negative number is the same as subtracting a positive one. Turning a positive binary number into a negative equivalent is simply achieved by inverting all its digits so that all the ones become zeros and vice versa, and then adding a one in the least significant position, for example

| binary three | 0011 |
| :--- | :--- |
| becomes | 1100 plus 1 |
| equals | 1101 |

To show that this process does generate a negative equivalent we can add the result to say binary four:
binary four 0100
plus binary thirteen 1101 (complement of binary three)

$$
\text { equals } \quad \overline{0001} \text { which is correct }
$$

Note that the carry digit from the most significant stage is disregarded, being only an indication of whether the result is positive (as in this case) or negative (if no carry results).

The operation of these principles in a practical circuit can be seen in Fig. 8.3 which is a serial adder system with subtraction carried out by simply feeding the inverted version of the x register output to the ADDER. and arranging for a carry to be preset into the store before the start of the clock pulse series.

M.S.I. ADDERS

The TTL medium scale integration process has been used to produce several different binary adder circuits ranging from the very flexible SN7480 single, full adder to the compact SN7483 cricuit which contains four complete adders arranged as a four-bit parallel adder. It is this latter device which is used
in the 'Digi-Cal adder circuitry, where the four-bit length lends itself well to use with the binary coded decimal (B.C.D.) arithmetic process.

The SN7483 is used as a basic building block in the adder to be described and before venturing into the intricacies of B.C.D. addition and subtraction it is best to become familiar with its construction and operation in its intended role as a parallel binary arithmetic unit.

The equivalent logic circuit of the SN7483 is shown in Fig. 8.4 and comparison of this logic with Figs. 8.1 and 8.2 will show that this device is connected to add together two, four-bit binary numbers with a carry in to the first (least significant) stage. termed C_{0}, and a carry out from the final (most significant) stage termed C_{4}.

Fig. 8.4. The internal logic of the SN7483 four bit binary adder i.c.

The two four-bit words to be added to indicate the termed A and B with a suffix I to 4 to indicate the significance of each bit. The carry circuit delays have been reduced as far as possible by internal connection, the use of high-speed type gating, and the elimination of unnecessary inversion circuitry, so that the addition time is kept below 100 ns .

BINARY VERSUS B.C.D.

The numbers stored in the registers of Digi-Cal are represented by groups of four binary digits conforming to the Binary Coded Decimal (B.C.D.) code. This code is not complicated since it is identical to straight binary except that only the values 0 to 9 inclusive are allowed in each four-bit group instead of the values 0 to 15 .
With straight binary the word length can be any convenient value, depending on the quantities to be represented, each increment to the word length increasing the range of representable quantities by a factor of two.
In the B.C.D. system however the binary word length must not exceed four bits, and the value of each four-bit word must not exceed 9. Capacity is increased by adding extra four-bit B.C.D. words, each of which increases the range of representable quantities by a factor of ten. As an example of the contrast between the two systems:

$$
\begin{aligned}
& \left.\begin{array}{l}
0110 \\
1001 \quad \text { equals } 6 \\
01101001
\end{array}\right\} \text { in straight binary equals } 105 \\
& 0110,1001 \text { in B.C.D. equals } 69
\end{aligned}
$$

Fig. 8.5. Basic practical B.C.D. adder with a carry store flip-flop

The use of B.C.D. in calculators is desirable because of the simplicity in interfacing the logic with old fashioned human operators who insist on thinking in the decimal number system.

B.C.D. ADDITION

When two four-bit B.C.D. words and a possible B.C.D. carry bit are added together in a parallel binary adder a total of 19 different (four-bit + carry) sums can be produced. Since the largest quantity representable in the B.C.D. code is 9. it is obvious that the nine most significant sums will require correction, and will be responsible for the generation of a B.C.D. carry bit. A moment's thought reveals that the correction required by sums from ten to 19 is the subtraction of ten, e.g.

7 plus 6 equals 13
subtract $\quad 10$
equals $\quad 3$ plus a carry to the next decade.
As we have seen already, the subtraction of ten is readily achieved by adding its complement, which is 0110 , or 6 if you prefer, and so the problem reduces to that of detecting sums in excess of nine so that the subtraction can be initiated.

The basic circuit of the B.C.D. adder used in DigiCal is shown in Fig. 8.5. Here the two B.C.D. words are added in ADDER A in the conventional binary fashion, the detection for sums in excess of nine being performed by gates GI, 2, 3, and 4 . If any such sum is detected G4 feeds a carry to the carry-store
flip-flop and inserts 0110 into adDer b where it is added to the sum from adDer a.

The output from the second adder is the corrected versions of sums over nine, but if a carry is not required because the sum is less than or equal to nine, ADDER B passes the sum from ADDER a through to its output in an unmodified form due to the addition of 0000 instead of 0110 .

CARRY DETECTION LOGIC

The performance of gates G1, 2, 3 and 4 in detecting sums in excess of nine can be taken for granted if the reader prefers, but for those who would like to know how the gating arrangement was arrived at, and who have some previous logic experience, the design was carried out as follows.
The carry out from adder a is a ready made indication that the sum is in excess of 15 , which reduces the problem to that of detecting sums of between 10 to 15 inclusive. To determine the gating required, the sums in question are plotted on a Karnaugh map, as shown in Fig. 8.6.

The Karnaugh map is just a special way of drawing a truth table to make it easy to see what gating will be required to generate a specific function. It has the property that where adjacencies occur in the plots, the particular value, or values which change between the plots can be eliminated from the resulting logic equation.
As can be seen in Fig. 8.6 there are two distinct groups of plots, 10, 11. 14. 15, and 12, 14, 15, 13. In the first group the terms Σ_{1} and Σ_{3} change, and can be eliminated. In the second group the terms Σ_{1} and Σ_{2} change, resulting in the required gating function of (Σ_{2} AND Σ_{4} OR Σ_{3} AND Σ_{4}) OR (Cout).

This function could be realised using two twoinput AND gates and a three-input or gate, but as the standard gating function of TTL is NAND it is possible to invert $C_{\text {out }}$ NAND Σ_{2} and Σ_{4} and Σ_{3} and Σ_{4}, and feed these inverted functions to a further NaND gate which carries out the NOR function because of the inverted nature of its inputs.

Fig. 8.6. The Karnaugh map used to determine the gating required to detect the sums from 10 to 15 inclusive

B.C.D. SUBTRACTION

The B.C.D. adDer just described cannot be used for subtraction as it stands, and the method of addition of complements is complicated by the fact that it is not the straight binary complement which is required, but the decimal complement which can be defined as 10 minus the number to be subtracted. In practice the generation of the "tens complement" causes problems with the carry logic, and it is preferable to generate the "nines complement" by subtracting from nine and then use the carry logic to add in a 1 .
The generation of the "nines complement" of the data from the z Register requires the addition of the circuit shown in Fig. 8.7, which employs yet another SN 7483 quad adder.
The principle behind this "nines complementer" is that the binary complement of the input data is added to binary nine to produce nine minus z, but since the binary complement of a number is its inverted version plus 1 , in practice the circuit adds the inverted z data to binary 10 thus taking care of the extra 1 required by the complement.

The inversion of the z data is carried out in an SN7486 quad exclusive-or gate, which, when connected as shown, allows a true version of the input data through to the output when the common control input is a logic 0 , and an inverted version when the control is a logic 1 .

This useful property of exclusive-or gates, along with the fact that it is the control input which inserts the required 1010 into the adder, allows the "nines complementer" to either pass the z data unmodified when FUNCTION CODE A is a logic 0 indicating an addition is required, or pass the "nines complement" of the z data when the function code a line is a logic I indicating that subtraction is required.

Fig. 8.7. B.C.D. nines complementer. This generates the output 9 minus Z when subtraction is required

Fig. 8.8. Complete circuit diagram of the ADDER board

The details of the subtraction process are quite hard to grasp at first but the process may be easier to understand after working through the following example (right).
Note that the borrow function which would be generated if the answer to a subtraction is negative is stored in the carry store in the opposite sense to that of a carry in addition, i.e. a 1 stored means no borrow, and vice versa.

FULL CIRCUIT DIAGRAM

The complete circuit of the Digi-Cal adder/subtractor is shown in Fig. 8.8. This circuit is made up of a combination of the ADDER and COMPLEMENTER circuits already covered, with the addition of IC104 and gating for the Carry Store preset/CLEAR input.

| A Register data | 1000 | (equals 8) |
| :--- | ---: | :--- |
| B Register data | 0110 | (equals 6) |
| Carry store | 1 | No borrow from
 previous subtraction |
| Function Code A | 1 | Subtraction |

START ADDITION

Invert z data 1001
Add to $1010 \quad 0011$
Add to a data plus
carry input 1100
Add 0110
B.C.D. carry generated

Equals 2, the required answer

COMPOLENIS . . .

ADDER BOARD

Capacitors
C33 $10 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.
C34 $0.047 \mu \mathrm{~F}$
Integrated Circuits
IC100 SN7486
IC101-IC103 SN7483 (3 off)
IC104 SN7408
IC105 SN7410
IC106 SN7400
IC107 SN7474
Printed Circuit Board
Type DL109/22 (Shirehall)
$1 \mathrm{ClO4}$ is an SN7408 quad AND gate which is connected as an a register data inhibit, requiring its common enable input to be a logic 1 before the a data is allowed through to the ADDER.

The purpose of this i.c. is to allow flexibility in the programming possibilities and, particularly, to inhibit data recirculation when the a REGISTER data is being normalised after a multiplication sequence.

The normalisation process was covered last month. and readers may recall that after multiplication, the A data are shifted to the right by the number of decimal places selected on the thumbwheel.

If the inhibit gates were not fitted the data which were to be discarded during normalisation would
recirculate and appear at the most significant end of the a register. The enable input is controlled by the programme.

The purpose of the gating in the Carry store preSET and Clear inputs is to allow for the fact that a BORROW is stored in the opposite sense to a CARRY, requiring the store to be preset before a subtraction, and cleared before an addition. Since there is a single Carry store clear signal from the programme, the FUNCTION CODE A input is used to control two, two-input nand gates which steer the Clear signal to the correct side of the Carry store flipflop.

The only other part of the circuit worthy of note is the CARRY SENSE output which is used to inform other parts of Digi-Cal of the state of the CARRY store, one of its uses being to stop subtractions when a borrow is produced after any tenth clock pulse during division, i.e. it senses when the A REGISTER contents are negative.

CONSTRUCTION

The construction and wiring of the ADDER board is quite straightforward since the circuit is housed on the usual Dualine card, in this case a DL109/22.

On this board almost all of the connections are carrying high speed data signals which must have a high integrity, and for this reason it is necessary to keep wiring as short as possible to minimise problems caused by line reflection

The component layout and edge connector wiring is shown in Figs. 8.9 and 8.10

ADDER BOARD

Fig. 8.9. Layout of the components on the DL109/22 printed circuit board

Fig. 8.10. Function of the edge contacts for the ADDER board

TESTING

Checking out this board in isolation is relatively easy since it is possible to check the sum responses to various dummy control and data inputs. The data values can be inserted by wiring each of the four data lines from the separate sources to ground, or leaving them open circuit, to simulate a particular B.C.D. number.

Providing the enable and function code a lines are also properly activated, a B.C.D. answer should appear on the SUM outputs from IC103, and a CARRY/BORROW signal at the D input of IC107. The Carry store clear input can also be tested in combination with FUNCTION CODE A, monitoring the result at the Q or $\overline{\mathrm{Q}}$ output of the flip-flop.

Constructors who have followed the assembly sequence suggested will also be able to try the first complete calculations on their machine by judicious application of dummy control signals which would normally emanate from the programme.

Numbers entered into the ENTRY REGISTER can be transferred to the z REGISTER by operation of the (cleared) a REGISTER by momentarily grounding the start clock input to board cb. This process requires a large number of temporary control signals to be wired in, and may be daunting to some readers: the prospect has been suggested only to enable the more adventurous to experiment with the way the programme board (to be described next month) will be required to carry out the process of addition and subtraction automatically. Those who do attempt this type of test will learn a great deal about the intimate workings of Digi-Cal.

Note: In Part 4 (Oct. 72), Fig. 4.2, C13 on IC21 should be marked C9, and C8 should be $10 \mu \mathrm{~F}$ not $22 \mu \mathrm{~F}$

COMPUTER '72

Taking both the Grand and National Halls at Olympia. the COMPUTER 72 exhibition (December 4 to 8) attracted over 200 international companies who had data processing services to offer. The organisers of this show, the Business Equipment Trade Association. described its purpose as "explaining the benefits of electronic data processing to commercial and industrial management". thus the exhibition presented services rather than the actual hardware itself, though peripherals were much in evidence.

One of the most attractive stands was that of the Post Office. The display was a symbolic representation of their Datel services in multicoloured plastics. with some exhibits showing data transmission techniques of the past.

On the hardware side. Hewlett-Packard presented their new minicomputer. Model 30. This computer is no larger than a good sized teletype terminal and provides an economical alternative to time-sharing, operating in BASIC. the language most used for time-shared systems. It has an internal cassette store with a capacity of 24.000 numbers. Its readout is via an 80 character alphanumeric display, though a printer is an optional extra.

As well as the main exhibition some light relief was provided by Honeywell who presented the winning entries to the Observer Colour Magazine children's "Paint-a-Computer" competition. Also on display was the Honeywell/Roland Emett forget-me-not computer. On the NCR stand a simulated game of cricket was being played through one of their computers and results were presented as the "game" progressed.

The bringing together of a large nuumber of companies in this way is obviously a great service to management and the success of this and future shows is assured.

High Speed Printer Using a Laser

NON-IPACT printer capable of writing 1,000 lines per minute is being developed by R.C.A. for the U.S. Army. The new printer uses a laser to transfer digital communications alphanumerics onto ordinary paper.

The printer is called the Material Transfer Recorder (MTR) and uses a dye-coated plastic ribbon scanned by the laser beam to record the messages on the ordinary paper.

There are no keys as in normal mechanical printers thus wear problems and maintenance are greatly reduced. Also the printer is almost silent because of the lack of impact.

Through its data interface the MTR can receive any type of digital signal from a wide variety of sources including satellite ground terminals. It can receive this information at the rate of 20,000 words per minute.

The MTR is easily transportable and can be used in the field in a van or any other military shelter.

BINDERS

Binders for P.E. are available price $£ 1$, including postage and packing. State Volume Number required.
Orders for Binders should be addressed to Binding Dept., IPC Magazines Ltd., 68, Great Queen Street, London, W.C. 2 .

Next month: Programme Board

| | | | |
| :---: | :---: | :---: | :---: |
| 1.C. Sockets | | | |
| Slider P | | | |
| | | | |
| NEW LISTS LOUPSPEAKERS COILS AND INDUCTORS TRANSFORMERS (postage sp_{p}) | | | |
| Diodes E Rectifiers | Power Section | | |
| | | | |
| EHT Rectifier Tra | | | |
| S. | | | |

EHRMMRSDNTE electronics

minimum of $7 p$ appiies, p. \& p on overseas order is charged at cos
AODRESS TO. Mail Order Dept. 56, Fortis Green Road, London, N10 3HN

Mullard \& Siemens Electralytics

YATES ELECTRONICS (FLITWICK) LTD.
 ELSTOW STORAGE DEPOT KEMPSTONHARDWJCK BEDFORB

C.W.O. PLEASE. POST AND PACKING PLEASE ADD 10p TO ORDERS UNDER 12.

Catalogue which contains data sheets for most of the components listed will be sent free on requese. 10p stamp appreciated.

OPEN ALL DAY SATURDAYS

RESISTORS

W Mullard stability carbon film-very low noise-capless construction IW 2% ELECTROSIL TR5

| Power watts | Tolerance | Range |
| :---: | :---: | :---: |
| t | 5\% | 4.7n-2.2Mn |
| $\frac{1}{3}$ | 10\% | 3.3Mn-10Mn |
| t | 2\% | $100-1 \mathrm{Ma}$ |
| t | 10\% | $1 \Omega-3 \cdot 9 n$ |
| t | 5\% | 4.7n-1Mn |
| 4 | 10\% | $1 \mathrm{n}-100$ |

Values
available
E24
E12
E24
E12
E12
E12
$\begin{array}{cc}\text { Price } & \\ -99 & 100+ \\ \text { ip } & 0.8 p \\ \text { Ip } & 0.8 p \\ \text { 5p } & 3 \\ \text { Ip } & 0.8 \\ \text { ip } & 0.8 \\ 6 p & 5.5\end{array}$
Quantizy price applies for any selection. Ignore fractions on total order.

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to IMn

POTENTIOMETERS
Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$. log or linear $(\log \ddagger W$. lin $\ddagger W)$
Single, 12p. Dual gang (stereo), 40p. Single D.P. switch 24p.

SKELETON PRESET POTENTIOMETERS

Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix)
TRANSISTORS

MULLARD POLYESTER CAPACITORS C296 SERIES
$00 \vee: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 7 \frac{1}{3} \mathrm{~F}$. $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F} 4 \frac{1}{2} \mathrm{p}$ $0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \frac{1}{3} \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$ MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F},{ }^{3} \mathrm{p} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $31 \mathrm{p} .0 .1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{FF}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p}, 1.0 \mu \mathrm{~F}, 13 \mathrm{p}$.
$1.5 \mu \mathrm{~F}, 20 \mathrm{p} .22 \mu \mathrm{~F}, 24 \mathrm{p}$,
MYL
$\begin{array}{ll}\text { MOLAR } \\ 0.001 \mu \mathrm{~F}, & 0.002 \mu \mathrm{~F}, \\ 0.005 \mu \mathrm{~F}, \quad \text { CAPARS } 100 \mathrm{~V}\end{array}$ 21p. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.06 \mathrm{~B} \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 31 \mathrm{p}$.

ELECTROLYTIC CAPACITORS—MULLARD OI5/6/7 RANGE REPLACES C426,
 $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,47 / 63,68 / 6 \cdot 3,68 / 16,100 / 4$, $100 / 10,100 / 25,100 / 40,150 / 63,150 / 16,150 / 25,220 / 4,220 / 10,220 / 16,330 / 4,330 / 10$, $\begin{array}{lll}470 / 6 & 3.5 p \text { each. } 68 / 63,150 / 40,220 / 25,330 / 16,470 / 10,680 / 6 \cdot 3,1,000 / 4,9 p, 100 / 63,\end{array}$ $.000 / 16,1,500 / 10,2,2016,15.000$, $500 / 6 \cdot 3,12 p, 220 / 63,47,40,680 / 25$ $3,300 / 6 \cdot 3,4,700 / 4,18 p$.
SOLID TANTALUMBEAD CAPACITORS

LARGE (CAN) ELECTROLYTICS

| EE (CAN) ELECTROLYTICS | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1600 \mu \mathrm{~F}$ | 64 V | 74 p | $2500 \mu \mathrm{~F}$ | 64 V | 80 p | $4500 \mu \mathrm{~F}$ | 16 V |
| $2500 \mu \mathrm{~F}$ | 40 V | 74 p | $2800 \mu \mathrm{~F}$ | 100 V | 63.00 | $4500 \mu \mathrm{~F}$ | 25 V |
| $\mathbf{6 1 . 6 8}$ | | | | | | | |
| $2500 \mu \mathrm{~F}$ | 50 V | 58 p | $3200 \mu \mathrm{~F}$ | 16 V | 50 p | $5000 \mu \mathrm{~F}$ | 50 V |
| $\mathbf{4 1 . 1 0}$ | | | | | | | |

HIGH VOLTAGE TUBULAR CAPACITORS-I,000 VOLT

| $0.01 \mu \mathrm{~F}$ | 10 p | $0.047 \mu \mathrm{~F}$ | 13 p | $0.22 \mu \mathrm{~F}$ | 20p |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $0.022 \mu \mathrm{~F}$ | 12 p | $0.1 \mu \mathrm{~F}$ | 13 p | $0.47 \mu \mathrm{~F}$ | 22p |

POLYSTYRENE CAPACITORS I60V $2 \frac{1}{2} \%$
IOpF to 1,000 pFEI2 Series Values 4p each.
SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is the worlds first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane, propane, alcohol, North Sea gas, as well as carbon-dust containing air or full details and circuits are supplied we enough to be utilized without amplification. PRINTED BOARD MARKER

PRINTED BOARD MARKER

Draw the planned circuit onto a copper laminate board with the P.C. Pen, allow 97
dry, and immerse the board in the erchant. On removal the circuit remains in high
relief.

CERAMIC DISC CAPACITORS 100pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each

ELECTROLYTIC CAPACITORS Miniacure P.C. mounting \quad 5p each
$(\mu \mathrm{F} / \mathrm{V}): 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.

VEROBOARD

+6TOOLS

MERLIN SUPPIY CO.

Dept. PE2D, Mailsea, Bristol B519 2LP

LOW COST BRIDGE RECTIFIERS

| DCoutput | | TypeNos. |
| :--- | :---: | :--- |
| Amps | Volts | |
| | 60 | PM7A1 |
| | 125 | PM7A2 |
| | 250 | PM7A4 |
| When | 375 | PM7A6 |
| whounted | 125 | PM7A1Q |
| m | 250 | PM7A2O |

AVAILABLEEXSTOCK

ATEI

צEMICDMDUCTIRS
AEI Semiconductors Limited Carholme Road Lincoln

5 OPERATIONAL AMPLIFIERS WITH POWER STAGES

SOME instrumentation or audio applications may require a greater output current capability than that provided by an integrated circuit on its own. The simplest way to achieve this is to include an emitter follower inside the feedback loop, as in Fig. 5.1.

Since the output is compared with the input the effect of the 0.7 volts base-emitter bias voltage is reduced by the feedback. If the input is zero then the output of the integrated circuit will be 0.7 volts, allowing the output of the arrangement to remain at zero, as shown in the diagram. Short circuit protection can be given by R3 and the gain is determined by R1 and R2 in the usual way.

Since this is a class-A circuit it is not suitable where load currents of hundreds of milliamps are required, and other booster circuits must be designed on the lines of class-B audio power stages. A straightforward class-B output stage is shown in Fig. 5.2.

UNITY GAIN OUTPUT PAIR

When load currents of several amps are needed a higher current gain output stage is required; one possible combination for one half of an output stage is shown in Fig. 5.3. It has several advantages, including good d.c. stability, and consists of two common emitter stages with 100 per cent negative feedback from the collector of the power transistor to the emitter of the driver transistor. This gives an overall voltage gain of unity and a high current gain.

For a positive going signal TR1 conducts, increasing the drive to TR2 which also conducts. Hence both transistors operate in class-B, apart from a small quiescent current.

For a collector current of 30 mA it was found that a typical silicon power transistor required a baseemitter bias voltage of 0.56 V . This seems lower than might be expected for a silicon transistor until we remember that 30 mA is a small part of the 5 A or so to which a power transistor can be driven.
(Indeed it is the range of currents over which a power stage has to be driven that causes many of the problems associated with this area).

Fig. 5.1. An operational amplifier with a class-A emitter follower output

Fig. 5.2. An operational amplifier with a class-B output stage

Fig. 5.3. One section of a class-B, unity gain, high current, output stage

The base-emitter voltage of the driver transistor was 0.65 V for a 5 m A collector current, and this becomes the input bias voltage required under quiescent conditions. For the other combination of a pnp driver and an npn power transistor the bias was 0.71 V , and these values are typical.

PRECAUTIONS IN MEASURING CURRENTS

The quiescent current of the output transistor can only be measured in its collector lead if the d.c. conditions are not to be disturbed. Alternatively,
the change in total supply current can be measured as the bias resistor is increased and the power transistor conducts.

Great care should be taken in making such tests because one careless move could result in a damaged meter or a heavy current through the transistors. A current limited power supply provides an extra measure of safety.

30 WATT POWER AMPLIFIER

If the unity gain power stage previously discussed is used, then the maximum output swing is limited to about 20 V peak-to-peak from the integrated circuit. This would provide up to 5 watts into 8 ohms. Where more power is required the output stage can be modified to provide a small gain, five times is enough.

A complete power amplifier circuit is shown in Fig. 5.4. The required voltage gain is provided by the integrated circuit, supplemented by the output stage, while current gain is provided by the class-B output stage. The small signal driver transistor and the potentiometer allows the quiescent current to be set.

With the potentiometer at maximum resistance the transistor is bottomed and no current flows in the output stage. As the slider is brought towards minimum resistance the transistor takes less current and the collector current of the ouput transistors can be set to (say) 50 mA .
There is 100 per cent overall negative feedback at d.c. to maintain the output close to earth potential under no signal conditions. Direct coupling to the

ATTRACTIVE DISCOUNTS
 ON VERY MANY ITEMS WHENYOU BUY FROM US
 Electrovalue Electronic Component Specialists

RST
VALVE MAIL ORDER CO. 16* WELLFIELD ROAD, LONDON SWI6 2 S SPECIAL EXPRESS MAIL ORDER SERVICE

Expresspostage I per transistor, over ten post
INTEGRATED CIRCUITS $5 p+$ Ip each added

Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. Valves, Tubes and Transistors - Closed Sat. I p.m.-3 p.m.
Terms C.W.O. only
Tel. 01-677 2424-7

FM TUNER THOUsands
 NOW IN USE

 NELSON.JONES
Reduced prices

Approved parts of this outstanding design (W.W. April 1971),
Featuring $0.75 \mu \vee$ sensitivity. Mosfet front end. Ceramicl.F strip. Triplegang tuning, $\frac{1}{2} V r . m . s$. output level, suitable for phase locked decoder, as below. Designer's own P.C.B.
Tuner parts with box. Less than Ell-50. S.A.E. please for lists. NEW Solid State Tuning Indicator and Dial-Chassis Kit.
High Performance Decoder also available.
NEW IC Stabilised PSU. SC, overload protected, low ripple. £3.55 p.p. 19p.

LIGHT EMITTING DIODES (Red)

Improved Type panel or PCB mounting with free mounting clipclear or black. Order LEDIA. Please add postage.
Monsanto miniature PCB mounting with radial leads. Order LED2. Please add postage
NOW ONLY 35p each with connection data.

7 SEGMENT LED DISPLAY

0.325 in Characters 09 and nine letters. TTL, DTL compatible. ONLY £2.46 each, p.p. IUP. BCD-7Seg Dec Driver, $£ 1.30$.

ELECTRONIC CALCULATOR MODEL BC806
 Pocket Size

Full 4 Function-will perform Addition, Subrraction. Mulciplication and Division including Chain or Mixed Multiplication or Division as well as true credit balance. Constant Key: Fixed or Floating decimal point. Bateries and leacher case supplied.
PRICE ONLY £46. 25
(Mains adaptor $64 \cdot 50$)
(POST FREE)
INTEGREX LIMITED, dept. p.e. P.O. BOX 45, DERBY DEI ITW. Tel. 0283893580

GUNTON ELEGTRONIO IGNITION KIT

READY BUILT UNIT $\mathbf{G} \mathbf{~ G U A R A N T E E D ~} 5$ YEARS 95 + $95 p$
Patents Pending. 12 volt only-state pos. or neg. earch
Capacitive discharge ignition is recognised as being the most efficient
\star Continual Peak=Tuned Performance

* Up to 20\% reduced fuel consumption
* Easier All weather Starting

太 Increased Acceleration and Top Speed

* Longer Spark Plug Life
* Ebimination of Contact Breaker Burn

Kit Purer Exhaust Gas Emission
Kit includes absolutely everything for assembly: Case, Cables, Coil fitting of all rypes of tachometers. Callin for a workshop demonstration S.A.E. all enquiries please, or Phone 33652. (Many letters from satisfied SCORPIO: Transformer $£ 1.85+25$ p P. \& P. P.C.B. $65 p+10$ p P. \& P Special interference filter $65 p+10 p \mathrm{P}$. \& P

ALUMINIUM BOXES
 Complete with baseplate and screws

AT DIRECTFROMMANUFACTURERS' PRICESWITHRETURN OFPOST SERVICE

| Type No. | L | W | D | Price | P. \& P. |
| ---: | :---: | :--- | :--- | :--- | :--- |
| 7^{*} | $5 \frac{1}{4}$ | $2 \frac{7}{4}$ | $1 \frac{1}{2}$ | 25p | $15 p$ |
| 8^{*} | 4 | 4 | $1 \frac{1}{2}$ | 25p | $15 p$ |
| 9^{*} | 4 | $2 \frac{7}{4}$ | $1 \frac{1}{2}$ | 25p | $13 p$ |
| 10^{*} | $5 \frac{1}{4}$ | 4 | $1 \frac{1}{2}$ | 29p | $18 p$ |
| 11 | 4 | $2 \frac{1}{2}$ | 2 | 25p | $13 p$ |
| 12 | 3 | 2 | 1 | 22p | $13 p$ |
| 13 | 6 | 4 | 2 | $35 p$ | $18 p$ |
| 14 | 7 | 5 | $2 \frac{1}{2}$ | 42p | $19 p$ |
| 15 | 8 | 6 | 3 | 54p | $26 p$ |
| 16 | 10 | 7 | 3 | $61 p$ | $26 p$ |

These sizes accept standard veroboard range
Dept. PE, ELECTRONICS DESIGN ASSOCIATES
82 BATH STREET, WALSALL WSI 3DE
load allows a good low frequency response without using a large coupling capacitor. However, it could be argued that we have moved it back to the supply to obtain the centre tap.

The a.c. feedback sets the gain to 26 times or 28 dB . If the BC184 transistor is mounted on the same heat sink as the power transistors, it will tend to compensate for variations in quiescent current if they become warmer. The 330 ohm resistors limit the maximum drive if the load is accidentally shorted. When used as shown in the diagram the BC184 can be considered simply as a low value impedance.

Since in these circuits the power stages appear inside the feedback loop, extra care must be taken with frequency compensation to achieve closed loop stability. Measurements on a prototype show that distortion should be better than 0.2 per cent at 30 watts at 1 kHz .

CONSTRUCTION

It is essential that the $10 \mu \mathrm{~F}$ capacitor is a low leakage tantalum type because if a leakage current flows through this component there will be a d.c. offset at the output which could cause a quiescent current to flow in the load.

The output offset voltage could be measured before the load is connected, or if a small d.c. current flows through the load as it is connected, this would be indicated by an unbalance in the current drawn from each supply. The offset should be small, less than 10 mV . Each power transistor should be mounted on a heat sink of thermal resistance $2 \cdot 8^{\circ} \mathrm{C} /$ watt or better. Each driver transistor should also have a small heat sink.

CONCLUSIONS

The final circuit given for a 30 watt power amplifier should be regarded as experimental because it has not been fully toleranced as regards transistor and integrated circuit variations. Some adjustment might be necessary for the 10 pF capacitor in order to obtain the best possible square wave at 10 kHz . For instrumentation applications the circuit can easily be direct coupled so that its response extends down to d.c.

Part 6 will look at basic memory circuits

SEMICONDUCTOR DIODE LASERS
By R. W. Campbell and F. M. Mims
Published by Foulsham.Sams
192 pages, 9 in $\times 5 \frac{1}{2}$ in. Price $£ 1.90$

O'ptoelectronics is a field which is attracting a great deal of attention at the present time but semiconductor diode lasers are still very much in the development stage. Though the large manufacturers are producing them it appears that the price is still a prohibitive factor in their widespread use. One of the authors points out that "laser specifications of recent years should generally be reasonably accurate" showing that even the manufacturers are still not totally confident in the devices.

This new book originating in America (but with the usual Foulsham-Sams introduction for English readers) is thus directed more towards the researcher and experimenter than the constructor.

The opening chapters give a description of the development of the laser diode with a description of light generation processes in both lasers and ordinary light emitting diodes (l.e.d.s). For those who have not met semiconductor lasers before, they differ from 1.e.d.s in that they emit coherent light in an intense beam. The structure of lasers is different from 1.e.d.s and they are usually used in the pulsed mode. mode.

Probably the main interest in the book will be in the practical laser diode driving circuits. Perhaps the most interesting design is of a laser transmitter and receiver using pulse frequency modulation which can be used for voice communication at up to $3 \frac{1}{2}$ miles range. Of course, sophisticated optics are needed to achieve such a range and this side of the design is not neglected.
For the interested amateur or the researcher this book provides an excellent introduction to semiconductor lasers and the techniques needed to use them.
S.R.L.

SEMICONDUCTOR DATA HANDBOOK

Published by the General Electric Company, U.S.A. $\mathbf{1 , 5 3 8}$ pages, $8 \frac{1}{2} \mathrm{in} \times 10 \frac{1}{2} \mathrm{in}$. Price $\mathbf{E 2 \cdot 3 0}$.

THIS massive 1.538 page handbook embraces the full range of semiconductor devices manufactured by the General Electric Company. It contains data sheets, circuits application tips and hints, equivalent and device selector guides and indexes to application notes and technical publications.

Devices covered include silicon and germanium transistors from small signal to power types; signal and tunnel diodes and power rectifiers; unijunction switches and triggers; s.c.r.s and triacs; optoelectronic devices; voltage regulators, differential and Darlington amplifiers; selenium components; transistor and diode chips; military and high reliability types and associated mounting hardware.

The Semiconductor Data Handbook can be obtained from Jermyn Distribution, Vestry Estate, Sevenoaks, Kent.

PNTENTE

Ele:CTRONIC METRONOME

In BP 1280117 Andre Paquet of France details a simple but probably reliable electronic metronome for producing synchronised sound and light signals.
In his circuit (see Fig. 1) the inventor uses a bi-stable multivibrator which can be switched from one of its states to the other by a time constant circuit R1, VR1, C1. In fairly conventional manner the capacitor C1 is charged via R1, VR1 to a voltage V (defined by R3 and R4) at which TR1 and TR2 transistors conduct. In this state the capacitor C 1 discharges and a negative pulse is passed via C 2 to the multivibrator. There follows a change of state of the multivibrator which energises the coil L1 and the lamp LP1 and the coil L2 and the lamp LP2 alternately in a "flip-flop" manner.

In one design the coils attract cores which strike a metal plate to produce a sound output. In another design, a sound output is produced by a loudspeaker connected in series with a thyristor controlled by an RC circuit.

Regulation of the rance of frequency to be covered is by adjustment of the frequency control VR1. The other adjustment is of the absolute value of the frequency at a predetermined point on the potentiometer-usually this is the minimum frequency required.

The main advantage claimed is that as the value of a potential U on the base of TR1 is defined with respect to V by $\frac{R 4}{R 3+R 4}$ the period P between switching operations will depend only on the slope of the exponential of the charging
curve of the capacitor C1, i.e. on (R1 + VR1) \times C1, which is adjustable, of course, by means of the potentiometer.

Thus (discounting leakage currents) the frequency of switching of the multivibrator is independent of the voltage of the power source and thus the metronome will not speed up or slow down according to battery condition.

COUVTING STACKED ARTICLES

WHEN flat articles such as envelopes, paper sheets or packages are stacked, counting them can be extremely difficult. The main problem is that very low contrast gradients exist between adjacent stacked articles and so photoelectric sensing devices produce such poor signal-to-noise ratios that the final count is hopelessly unreliable.

One way round the problem is simply to weigh the stack and another proposal has been to enhance the signal from the photoelectric sensors by some means, such as a high pass filter. But so far (at least according to Spar. tanics Limited, of llinois, USA, in BP 1 280 311) the overall results have been poor.

In this new British patent Spartanics suggest counting the discontinuities between adjacent stacked articles by an array of sensors having an effective thickness less than that of the stacked articles.

The sensors are photoelectric and (see Fig. 1) an area of the stack of articles is illuminated by means of a lens focusing light from a d.c. source. The axis of illumination ($x 1$) is adjustable so as to give the maximum contrast possible at the article edges. A pair of cross coupled photoelectric

BP 1280117

Fig. 1

E.M.I. WOOFER AND $\ddagger \mathbf{~ W E E T E R ~ K I T} \mathbf{7 5}$ Available separately
Woofer 84.25 Tweeter $\mathbf{1 1} .90$
Comprising a fine example of a Wooter $10^{3} \times 6 \frac{1}{2} \mathrm{in}$. With a massive Ceramic Magnet, 440z. Ga uss 13.000 lines. Alnminium Cone centre to improve middle and top response. Also ecial lightTwetter 3 in. square has a special and 10,000 lines. Crossover condenser and full instructions supplied.
mpedance Standard
Maximum Power 8 obms
12 wate
Uselul Responee $\quad . .35$ to $18,000 \mathrm{cfs}$
Base Resonance MOITABLE ENCLOSURE \quad C 9 POSt

SPECIAL OFFER
SMITH'S CLOCK
Single pole two-way. Surface mounting with fixing screws. Will replace erinting wall switch to give ligh anti-burglar lights, etc. Variable knob Turn on or off at lull or intermediate
 settings. Two types available 0 to. 60 minutes or 0 to 6 hours. Mekers last list price $\mathbf{5 4 . 5 0}$. Brand new and fulty
guaranteed. Fally insulated.
OUR PRIGE f1.60. P. \& P. 15 p or 53 pair. Post Free.
(Please state type when ordering). (Please state type when ordering).

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerial ..72p Spare Cores

Osc, P50/1AC 33p \quad Driver Trans. LFDT4 . 58p I.F. P50/2CC 470 kc/s . 36p Printed Circuit, PCA1 - 58p 3rd I.F. P50/3CC P51/1 or P51/2 P50/3V | 36p | J.B. Tuning Gang |
| :--- | :--- |
| 36 p | Weyrad Booklet |
| 36 p | OPT1 |

Mallard
VOLUME CONTROLS
80 onm Coax 4 pyd. Long spindles. Midget Size
5 K. ohms to 2 Meg. LOG or BRITISH AERIALITE LIN. L/S 15p. D.P. 25p. STEREO L/S 55p. D.P. 75p.
8 in. or $10 i n$. ELAC
HI-FI SPEAKER
Dual cone plasticised roll sur-$50-60,000$ Large ceramic magnet. $55 \mathrm{c} / \mathrm{s} .88 \mathrm{chm}$ impedance, 8in 10 watts, 10 in 12
watts music power. $\quad \mathbf{E 3} 75$
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$.

SPEAKER SALE!

With twin tweeters.
And crossover. 10 - 3.5 watt. State 3 or 8 or
15 ohm. As illustrated. Post 25 p With flared tweeter cone and ceramic magnet. 10 watt
Flux $10,000 \mathrm{gaus}$

BRITISH MADE STEREO

MULTIPLEX DECODER

Brand New. 7 transistors and integrated circuit. Fibre-Giass printed circuit board. Size $21 \times 6 \times 1$. Pre-Aligned. ComOutput. 100 Mv Input. Full instructions for any $\mathbf{6 6 . 5 0}$ Ph Tuner. Some technical BLANK ALUMINIUM CHASSIS. 18 s.w.g. $2 \frac{1}{2}$ in sides
 ALUMINIUM PANELS 18 s.w.R. $6 \times 4 i n 9 p ; 8 \times 6$ in 15 p ; $14 \times \sin 16 p ; 10 \times 7$ in 19p; $12 \times \sin 20 p ; 12 \times 8 \mathrm{in} 28 \mathrm{p} ;$ HI-FI STOCKISTS RETURN OF POST DESPATCH

RADIO COMP SPEClilis

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

SOUND/LIGHT MODULATOR

READERS may be interested in my version of a sound/light modulator shown in Fig. 1. It is entirely adjustable and works out to be very cheap compared with other modulators which incorporate frequency band splitters and sync pulse generators.

Sensitivity is controlled by VR1, and resistor R1 is to protect the transistor in the instance of the bulb filament shorting. The value of RI was 100s? rated at $\frac{1}{2}$ watt which can be lowered depending on the bulb used. A 6 V 0.06 A or 0.1 A bulb can be used quite satisfactorily.

Fig. 1. Circuit diagram of the sound/light modulator. The value of R2 was found to vary between 15 to 27 kilohms according to the load

If a microphone is to be used it should be of the carbon type and connected in the circuit as shown (dotted) in Fig. 1

If the circuit is to be built in a cabinet or case the lamp should be positioned approximately $\frac{1}{2}$ in away from the l.d.r. (ORPI2).

For a load greater than 500W the handling current of the thyristor should be increased. The potentiometer VR2 controls the brilliance of lamp LP2.

This circuit is open to a great deal of experiment, for instance three circuits could be built with the potentiometer in each adjusted to different stages to make a three channel unit.
The input is completely isolated from the mains. C. Walker,

London, S.W. 9

TOUCH SWITCH

THE circuit in Fig. 1 detects voltage changes caused by the proximity of the hand on a sensitive plate or contact, causing a relay to operate. The characteristics of the circuit may be tailored to a particular application by choice of component values.

Typical component values are shown in Fig. 1. The transistors and diodes are general purpose silicon types. The relay coil resistance should be about 700 ohms to 1.5 kilohms, and the supply should be easily capable of operating the relay but not exceeding 25 V .

Resistor R1 may be decreased to about 2.7 megohms if the circuit is required to operate only when contact is made to the input by one's fingers. Conversely, as a proximity detector the value of the resistance may be increased.

If the battery drain is an important factor, the resistor R2 may be increased so that the quiescent current is only a few microamps. Sensitivity may be increased by reducing the value of $R 2$. If the sensitivity is increased too much the relay will remain permanently operated.

If the circuit is required to remain operated for some time after triggering, the value of Cl may be increased. The delay before the relay releases is
about one second per microfarad. As the capacitor is charged up through R2, it may be necessary to reduce the value of $R 2$ to give speedy operation.

The circuit may be used in a wide variety of applications such as burglar alarms, doorbells, practical jokes, and is particularly useful for switches which have to be found in the dark.
P. K. Webb,

Malvern, Worcs.

Fig. 1. Circuit diagram of a simple proximity switch
ltems mentioned in this feature are usually available from electronic equipment and com ponent retailers advertising in this magazine However, where a full address is given enquiries and orders should then be made direct the firm concerned.

CATALOGUES

It is at this time of the year that we take stock of all of our component catalogues and usually receive all the new editions. Judging by the amount of catalogues we have already, received and those acquired during the past year it seems a good time to mention just some of the many excellent catalogues in our files.

It seems that as more and more components are becoming available generally, particularly the more specialised types, as electronic tech niques forge ahead so we are receiving a greater number of catalogues and firms are tending to specialise in particular fields.

Typical of this trend is LST Components who, through the component explosion, have found it increasingly difficult to maintain their excellent personal service to both the home constructor and the trade. Not wanting to lower their high standards they recently formed a new company called Arrow Electronics Ltd., to deal exclusively with the home consumer market. The parent company is now dealing with the trade only.

The new company have recently issued an excellent catalogue containing items from i.c.'s to switches. Copies of the catalogue can be obtained from Arrow Electronics Ltd., 7 Coptfold Road, Brentwood. Essex.
Another firm who tends to specialise. in this case in integrated circuits. is Bywood Electronics. Their catalogue lists such items as a Digital Clock Chip, LSI Calculator i.c.'s and several LED devices (including liquid crystal types).

The Bywood catalogue is available from Bywood Electronics, 181 Ebberns Road. Hemel Hempstead. Hertfordshire.

From the other side of the coin GSPK (Sales) Ltd., who are well known trade distributors, have recognised the vast demands for components from the consumer side and have set up a special retail counter at their office. Also, they issue a very good mail order catalogue and are offering a great many
of their components which are not normally available to the constructor, unless ordered in large quantities, on a one-off basis.
Copies are available from GSPK (Sales) Ltd., Hookstone Park, Harrogate. Yorkshire.
A catalogue we strongly recommend to our readers is the Audio Pack Trade Reference Catalogue from Tape Recorder Spares Ltd. This catalogue costs 35 p , including postage. and covers over 600 items marketed under the name of "Audio Pack".
The catalogue seems to cover practically every conceivable arrangement for connecting up audio equipment. A special section is devoted to Garrard spares.
This catalogue is certainly an excellent audio spares reference source and should be very near the top of any "Catalogues Wanted" list. Copies are available from Tape Recorder Spares Ltd., 206-210 Ilderton Road, London SE15 INS.

Finally, as proof of the component growth Home Radio Components have had to completely change the format of their catalogue.

The new 240 -page catalogue contains over 8,000 items, 1,500 illustrations and still maintains the usual high standards of previous editions. The cost of the catalogue is 75 p , including postage, but contains 10 redeemable vouchers worth 5 p each when used as directed.

Included with the catalogue is a price supplement which will be updated from time to time and each page will have the date stamped on it. At the bottom of the price supplement is a note to the effect that "when the supplement is six months old 10 per cent should be added to any item purchased and a new supplement be requested". Upon investigation it was pointed out that this was to avoid any unnecessary delay in dispatching of orders. Any difference between the remittance and the current price of goods ordered will be returned as a credit note with the option of a cash refund.

The Home Radio catalogue is probably one of the most useful reference sources for components on the market and copies can be obtained from Home Radio (Components) Ltd., 240 London Road. Mitcham. Surrey CR 4 3HD.

SYNTHESISER MODULES

Commencing in this issue is the first part of the P.E. Synthesiser which we are sure will generate tremendous interest amongst our readers. This synthesiser will be described in great detail over the next few months and each circuit function will be described and complete constructional details given.
For those readers who do not wish to understand or construct

Two of the Dewtron synthesiser modules from D.E.W. Ltd.
each individual circuit as the series progresses but prefer to connect up "black boxes" (modules) then the Dewtron Project X Synthesiser modules from D.E.W. Lid., may be worth looking into.
The Project X modules are completely sealed units which have a two year guarantee against failure and their range includes a voltage controlled oscillator, sample, hold and envelope shaper unit and a ring modulator module. The Project X Synthesiser is in NO way connected with the P.E. Synthesiser.

A list of modules and other musical effects units with prices are available from D.E.W. Ltd.. 254 Ringwood Road. Ferndown, Dorset.

SLIDER CONTROLS

Whilst on the subject of effects units we often get requests for the slider type of controls which are used extensively in effects units. To, date, these type of controls have been difficult for the home constructor to obtain and a compromise has had to be made by using standard rotary potentiometers.

A range of slider potentiometers is now available direct from DJ Electronics (Hackney) Ltd. or from most component retailers. The sliders, complete with knob and fixing screws, are available as single or double gang types in both logarithmic and linear configurations.

A range of mounting plates are available separately and enable the constructor to make up numerous configurations. The plates are offered as single-way, double or triple-way.

The cost of the sliders are expected to be 6lp for single gang types; and 81p for double gang. The mounting plates will cost 25 p for single-way, $36 p$ for double-way and 45p for three-way.

Addresses of nearest stockists can be obtained from DJ Electronics (Hackney) Ltd., 122 Balls Pond Road. London. N1 4AE.

Slider control from DJ Electronics

PCB'S FROM

 GEMINI PRE.AMP
 PHONOSONICS

All PCB's Fibreglass, Drilled, Roller Tinned
Circuit Diagram and Assembly Notes Free with each PCB PCB-Mounting Slider Pots with Knobs supplied as Alternative to Rotaries at Extra Cost where indicated PCB's designed by Phonosonics except wherestated otherwise DESIGNS PUBLISHED IN P.E

AURORA (Apr./Aug. 71) Multichannel Sound Controlled Light S/c's (excl. SCRs), Rs, Cs, Cores. Pots., 8 ch. 117.75 : 4 ch . $\mathrm{fl0} 15$. Slider

 Sync Gen. 8 cores, 8 SCRs, $E 1.35$.
A.F. SIGNAL GENERATOR (NOV, 72)

S/C's, Rs, Cs, Pots, Sw's 62 25. PCB (2tin fin) also holds $5 w$'s, 90 p. BIOLOGICAL AMPLIFIER-Details on requese.
CALLERCORD (Jul./Aug. 72) Automatic Answering Machine
 66.95. Pips Gen with PCB, $\mathbf{6 1} \cdot 50$.

DOOR BELL YODELLER (Apr. 71)-5/c's, Rs. Cs, Pors. E4. 20.
Transformer, $\mathbf{6 1} 130$. Loudspeaker, $\mathbf{C 1} \cdot 30$. PCB (3in 3 tin), 90 p.
ELECTRONIC PIANO (5 ept. 72 Jan. 73)
Pre-Amp-Rs, Cs. Pors, 61.90 . PCB as published, 61.20 . Power Supply-
Rs, Cs, $61.15 . P C B$ as published. $95 p$. Piteh $1-12$ Rs, C_{s} E2 10 each
 13-Rs, Cs, $\mathbf{1 1 5 0}$, Piteh PCB as published $\mathbf{6 1 - 8 5}$ each. Discounts for Qty
GEMINI STEREO AMP (Nov. 70/Mar. 71) Stereo Sets and PCBs Pre-Amp-S/c's, Cs, Pots, Maka-Sw's-with $\ddagger W 20 \%$ M.O. Rs, 113.45 -with Knobs extra, $i 1.65$. PCB (3 tin $\times 10$ in) for kits with \ddagger W M.O. or $\ddagger W C . F$. Rs. Holds pots and Makaswis, 6210 . Main Amp-Rs, Cs, Pors. 44,30 .

GEMINISTEREO TUNER (Apr./Jun. 72)
Rs, Cs, Pot, $63 \cdot 20$. PCB as published, 41.80
LOGICAL RADIO CONTROL (Dec. 71/Jan. 72)-Sers incl. Rs, Cs, 5/c and Pots (where requ.) butexcl. l.C's. Coder I and Clock Pulse Gen., C2.95 MODEL SERVO CONTROL (Feb./Mar. 72)-Sets incl. Rs Cs S/c's and

MICROPHONE MIXER (Apr. 69)-S/c's, Rs, Cs, Pots. $\mathbf{C 2} 20$. Slider Pots and Knobs extra, $11 \cdot 15$. PCB (34 in $\times 44$ in)-holds pocs, 6120
PHOTOPRINT PROCESS CONTROL (Jan./Feb. 72)
Finds exposure, controls ciming, stabilises mains voltage.
S/c's, SCR, LDR, Rs Cs, Pots. Relay Sw, T/former, 67.60 .
S / c 's, SCR, LDR, Rs, Cs, Pots, Relay, Sw, T/former, 6760 . PCB ($3 \frac{1}{2}$ in $\times \mathrm{S} \frac{\mathrm{t}}{\mathrm{in}}$) also holds pots, relay, Keyswitch, $\mathbf{1 1} 20$.
SOUND SYNTHESISER-Decaits on request.
TAPE NOISE LIMITER (Feb. 72)-Mono Circuit
S/e's, Rs, Cs, Pot, PCB (1 in $\times 3$ in), $22 \cdot 20$. Regulated Power Supply (will
ULTRASONIC TRANSMITTER-RECEIVER (May 72)
Rs, Cs, Pot, S/C's, T/ducers, Relay, E9.95. Dual PCB (2in
Rs, Cs, Pot, S/c's, T/ducers, Relay, $\mathbf{6 9 . 9 5}$. Dual PCB (2in $\times \mathbf{S} \frac{1}{\frac{1}{2}}$), 75p.
VERSATILE LIGHT EFFECTS UNIT (Jun. T2)-Single Channe! Sound Controlled Light-atso has buile-in variable strobe generator. S/e's (excl SCR), Rs, Cs, Pots, T/formers, Keyswitch, $\mathbf{8 8 . 8 5 .}$ PCB (Stin \times Stin) also
holds Pots, Sw. T/former (T/T7), $\mathbf{L I} 50$. Slider Pots and Knobs (excl. $2 S R$ Lin.

SOME OTHER DESIGNS AVAILABLE

REVERBERATION UNIT (Practical Wireless Nov. -Dec. 72)
Sic's, Rs, Cs, Slider Pots, T/former, 9 in 5 pring Line Unit 69.70 (with rotary
 sliders (compatible with publ. panel) $\mathbf{C l} 20$.
B WATT AMPLIFIER (Practical Wirelass Nov. 72)
 re-amp-S/c's. Rs, Cs, Pots, Maka-Sw, Mono, $\mathbf{6 2 \cdot 5 0 ; \text { Stereo, } \mathbf { E S } \cdot 2 0 \text { . Slider }}$
 (St MW
C. 2.7W STEREO AMPLIFIER (Radio Constructor July 71)

Rs, Cs, Pots. I.C's complete with heatsinks, 67.50 . PCB (4tin $\times 5$ in) -1
(Stereo) also holds Pots, 61.20 Power Suply, 62.85 (ider Pots (Stereo) also holds Pots, $\mathbf{6 1 \cdot 2 0}$. Power Supply, ©2.85. Slider Pots and
AURORA AUXILIARY CONTROL UNIT (2 variable frequancy
 5 fin) holds all generators plus pots, El .35
THYRISTORS (400 V P.I.V.)
IA 50p. 3A 55p. 7A 70p. 16A 95 p
Lists for these ond lotest new designs-send foolscap S.A.E.
Dept. P.E.2, 25 Kentish Road, Belvedere, Kent DAl7 5BW

YOU MUST HEAR

miniWISE audiLECT YOUR PERSONAL TUTOR

Get PLEASURE from your CAREER or HOBBY through ORGANISED TUITION. YOUR PERSONAL TUTOR will give you rapid UNDERSTANDING-the key to SUCCESS in your own HOME and at your own SPEED Your FUTURE in RADIO, TV or ELEC. TRONICS could EASILY be much BRIGHTER. FOR DETAILS OF THIS UNIQUE METHOD just send us your name and address MINIWISE PRODUCTS
FREEPOST (P), BLETCHLEY, BUCKS.
INCLUDE ONLY £ $1 \cdot 20$ TO OWN A TRIAL LESSON* on a C90 cassette or L.P. Tape (state which)

* Your money INSTANTLY REFUNDABLE if not 100% convinced that this can be the turning point in your hobby or career

the natural way to learn

| INPUT 230/240Y a.c. 50/60 OUTPUT | |
| :---: | :---: |
| VARIABLE 0 | 260 V |
| All Typas | |
| from to 50 mm | np from stock. |
| SHROUDED TYPE | |
| 1 amp [7.00 | $20 \mathrm{amp}, 649.00$ |
| $2.5 \mathrm{mmp}, 18.05$ | 25 a mp, $¢ 58.00$ |
| $5 \mathrm{amp}, 611.75$ | $37.5 \mathrm{mmp}, 682.00$ |
| 10 amp, 622.50 | $50 \mathrm{amp}, \mathbf{8 8 . 0 0}$ |
| $15 \mathrm{mmp}, 625.00$ | |

Panel Mounting) $\frac{1}{2}$ amp, $\mathbf{4 . 7 5}$. OPEN TYPE DOUBLE ENDED BLOWER UNIT Powerful, continuously rated, 2 -speed.
Blades easily removable. Either 6 or
$\mathbf{1 2}$ volt D.C. opperation. PRICE
\&1.75. P. \& P. 25p.
12 VOLT D.C. MOTOR
Powerful I amp. REVERSIBLE motor. Speed 3,750 r.p.m. removable) giving approx. final speed of ither 125 r.p.m. or 240 r.p.m. Size: $4 \frac{1}{4}$ in

ONSTANT SPEED, PRECISION MADE ${ }^{6}$
750 pole armature, ballrace bearing 2,750 r.p.m. Length 2 it, Dia. Hi , Shaft ength is load 350 mA . Ideal for portable REVERSIBLE SPLIT PHASE MOTOR 250 r.p.m., $100-115 / 210-240 \mathrm{~V}$ A.C., 2 in . \times lin. 1deal powerful for size, including small capacitor. 75p
post paid.
PARVALUX TYPE SD19 $230 / 250$ VOLT A.C REVERSIBLE GEARED MOTORS Position of drive spindle adjustable to 3 differ ubstantial cast alum ment. Tested and in first-class running order A really powerful motor maker's price. $£ 6 \cdot 30$. P. \&

PARVALUX Type: SDI.S
86896/OJ
$230 / 250 \mathrm{~V}$ A.C. 50 r.p.m. $7 \mathrm{lb} /$ in. Continuously rated. TYPE: SDI.S/89400/OM
 $30 / 250$ A.C. 50 r.p.m. $22 \mathrm{fb} / \mathrm{in}$ The above motors are new and unused.
PARVALUX TYPE SD2. 200/250 VOLT A.C./D.C. HIGH SPEED MOTOR Speed 9,000 r.p.m. approx. or 3,200 variable speed over a wide range used in conjunction with ou Dimmer Switch, illustrate
PRICE \&1.75. P. \& P. 25D.
600 WATT DIMMER SWITCH.
Easily fitted. Fully guaranteed by
makers. Will control up to 600 W of ali
lights except fluorescent at mains
voltage. Complete with simple in-
structions. E3 incl. P. \& P.

24-HOUR TIMER

Can be adjusted to give a switching delay of berween $\frac{1}{t} \mathrm{hr}$. to 24 hrs .
Driven by $200 / 250 \mathrm{~V}$. C . synchronous notor. $15 \mathrm{amp} \mathrm{s} / \mathrm{o}$ contacts. Mfg. C Led. Supplied with scale calibrated $0-10$ (2 hrs
per division). Brand New. \&i.75. P. \& P. 25p.
HONEYWELL PROGRAMME TIMERS
240V. A.C. S r.p.m. mocor Each cam operating a c/o ing inumerable combinations Ideally suited for machinery ontrol, automation, erc. Also in the field of entertain ment, for chaser lights
15 cam model 65.75
5 cam model $\mathbf{6 5 . 7 5}+\mathbf{2 5}$ p. P. \& P
2 cam model with 15 r.p.m. motor $£ 1.75+25 p$ SIMPLE 12 CAM PROGRAMMER with 4 adjustable cams and 8 that may be profiled to All Mail Orders-Callirs-Ample Parking
Dept.PE2,57 BRIIDMAN ROAD
CHISWICK, LONDON W4 5BB Phone 01-995 1560

36V 30 AMP. A.C. or D.C VARIABLE L.T. SUPPLY UNIT INPUT 220/240V A.E. VARIABLE 0-36
Fully isolated. Firted in robust metal case with Volt meter. Ammeter Panel Indicator and handles
Lab. or Industrial use. E6B plus $E 2$ P. \& P
MOTOROLA MAC $11 / 5$ PLASTIC Now available EX STOCK Supolied and applications

STROBE! STROBE! STROBE!
Build a Strobe Unit, using the latest type Xenon
white light fiash tube. Solid state timing and EXPERIMENTERS' ECONOMYY ORET
Sp Speed adjustable I to 30 flash per sec. All S.C.R. Unijunction Xenon Tube and inseructions 66.30 , plus 25 p P. \& P

NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc Roller sin princed circuit. New trigger coil approx. 1 output of Hy -Lygh
Price f 10.50 P. \& P. 50 p .
HY-LYGHT STROBE MK III
Designed and produced for use in large rooms halls and the photographic field and utilises coil. Speed adjustable $0-20$ f.p.s. Light ourput approx. greater than many (so called 4 Joule Strobes.
THE 'SUPER' HY-LYGHT KIT proven Hy-Lyghtes trobe light output of our well - Heavy duty power supply - Variable speed from I-13 flash per sec. Reactor control circuit producing an intense ever before a Strobe Kit with so HIGH an output at so LOW a price.
ATTRACTIVE, ROBUST, FULLY VENTI LATED METAL CASE specially designed for the Super Hy-Lyght Kit including reflecto
$£ 7.00 \mathrm{P}$. \& P. 45 p . For Hy-lyght Kitincluding reflector. ©4.00. Finch POLISHED REFLECTOR Ideally suited for above Strobe kits. Price 53p.

RAINBOW STROBEFOUR LIGHT CONTROL MODULE
ofrer a mains operated fully isolated short variable flash rate. It will operate four of our Hy-Lyght or Super Hy-Lyght Serobes in either 1, 2, 3, 4 sequence; $2+2$; or all together filters. Modules can be connected together to operate 8 or 12 Strobes. Will work on long runs of up to 50 yards, so that your Strobes of module is 5×6 for maximum effect. Size your own equipment, or into a separate case. Thoroughly tested and reliable. Complete with full connection instructions. Price:

Complete with oil
filled colour wheel.
100 watc lamp. 200 /
240 V AC. Features
fical system. $f 18.50+$
COLOUR WHEEL

BIG BLACK LIGHT
400Wars. Mercury vapour designed to absor Exight and transmit powerful source of Innumerable industrial applieations also ideal for stage,
display, discos, etc PF ballas display, discos, etc. P.F. ballast is essential with these bulbs.
Price of matched ballast and Price of matched ballast and Spare bulb \&7.00, P. \& P. 30p BLACK FLUORESCENT U.V. TUBES
\qquad

Superior Quality Precision Made NEW POWER RHEOSTATS

100 WATT. I ohm, 10A; 5 ohm

 4.7A; 10 ohm, 3A; 25 ohm, 2A $500 \mathrm{hm}, 1.4 A_{i} 100 \mathrm{ohm}_{1} 1 \mathrm{~A}$ 250 ohm, $7 \mathrm{AA}, 500$ ohm, $0.45 \mathrm{~A} ; 1 \mathrm{k0} 290 \mathrm{~mA}$ $5 \mathrm{kn}, 230 \mathrm{~mA} ; 2.5 \mathrm{~kg}, 2 \mathrm{~A} ; 3.5 \mathrm{k} \Omega, 5 \mathrm{~kg}, 140 \mathrm{~mA}$ Diameter 3tin Shaft teneth tin, dia. 数in. All a 50 WATT. 1/5/10/25/50/100/250/500/1/1.5/2.5/5kn All at \&1.15 azch. P. \& P. 7tD25 WATT. $10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 / 1 / 5 / 2 \cdot 5 / 3 \cdot 5$ kn. All at 90p each. P. \& P. 7tp
Black Silver Skirted knob calibrated in Nos. 1.9
RELAYS SIEMENS, PLESSEY, Etc. MINIATURE RELAYS Col.(1)

Col. (2) Working
d.c. volts

Col.
Contracts
Col. (4)
Price
HD= Heavy duty Post paid.

| 52 | $3-6$ | $2 \mathrm{c} / \mathrm{o}$ |
| :---: | :---: | :---: |
| 410 | 10-18 | $4 \mathrm{c} / \mathrm{o}$ |
| 600 | 12-24 | $4 \mathrm{c} / \mathrm{o}$ |
| 700 | 16-24 | 4M2B |
| 700 | 16-24 | $4 \mathrm{c} / \mathrm{o}$ |
| 700 | 15-35 | $2 \mathrm{c} / \mathrm{OHD}$ |
| 700 | 16-24 | 6M |
| 700 | 6-12 | $1 \mathrm{c} / \mathrm{oHD}$ |
| 700 | 20-30 | $6 \mathrm{c} / \mathrm{O}$ |
| 1,250 | 24.36 | $4 \mathrm{c} / \mathrm{o}$ |
| 2,500 | $36-45$ | 6M |
| 2,400 | 30-48 | $4 \mathrm{c} / \mathrm{o}$ |
| 9,000 | 40-70 | $2 \mathrm{c} / 0$ |
| 15k | 85-110 | 6 M | 63p*

$73 p^{*}$
$78 p^{*}$
$63 p^{*}$
$78 p^{*}$
$73 p^{*}$
$65 p^{*}$
$50 p^{*}$
$75 p^{*}$
$63 p^{*}$
$63 p^{*}$
$50 p^{*}$
$50 p^{*}$
$50 p^{*}$
12 VOLT D.C. RELAY 140 ohm coil
Type 1 : Three sets e/o contacts rated at 5 amps. 78p Type 2 : One set of clo contacts 60 p incl P. Type 3: 4-8 volt, 3 c/o HD, 67 ohm coil. 78 p DIAMOND H' 2

RELAYS (Unused)

PRICE: 50p. P. \& P. 10p. (100 lot 40 including P. \& P.
230 YOLT A.C. RELAYS MFG. KEY SWITCH One set c/o contacts rated at 7.5 amps. Bored MINIATURELATCHING RELAY Manufactured by Clare-Elliotr Ltd. Type F. 2 c/o per manent latching in either direction. Coil 1150 ohm

UNISELECTOR SWITCHES
NEW

"HONEYWELL" PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY 10 amps 240 V . A. C. Black knob lin fixing hole in. ONE bank 30p; \& ${ }^{40 \mathrm{P} \text {. Quot. }}$

HONEYWELL' LEVER OPERATED
MICRO SWITCH
cacts. Types N39, N95, N100,
PRICE: 10 for $\mathbb{E} 1-90$ incl. P. \& P.

INSULATION TESTERS NEW!

 Test to liE.E. Spec. Rugged metalconstruction, suitable for bench or field work. constant speed clurch. Size L.8in, W. 4 in, H.6in, weight 61 b .
l,000V, 1.000 megohms, $E 34.00$ carriage paid.
$500 \mathrm{~V}, 500$ megohms, $\mathbf{6} 28$ incl. P. \& P

50 in I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no Meter, Relay. Transformer. plus a host of othe components and a $56-p a g e$ instruction leaflet Sound Level Meter, 2 Transistor Radio, Amplifier

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

FOR RAPID

 GARLAND BROS. LTD

 GARLAND BROS. LTD DEPIFORD BROADWAY, LONDON, SE8 GQN

 DEPIFORD BROADWAY, LONDON, SE8 GQN}

TRANSFORMERS

all with 0-250
MM6 6V, $500 \mathrm{~mA}+6 \mathrm{~V}, 500 \mathrm{~mA}$ MM12 $12 \mathrm{~V}, 250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~mA}$ MM20 $20 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}$, 150 mA
L.T. 1.29 plus 13p p. \& P .

LT1 $6.3 \mathrm{~V}, 1.5 \mathrm{~A}-75 \mathrm{p}$ plus 18 pp . \& p. LT2 $6.3 \mathrm{~V}, 3 \mathrm{~A}-87 \mathrm{p}$ plus $26 \mathrm{p} p$. \& p.
LT3 $12 \mathrm{~V}, 1.5 \mathrm{~A}-87 \mathrm{p}$ plus 26 p p. \& p . LT4 12 V , 3A- El 1.32 plus 30 p LTS 9-0-9V, 0.5A-75p plus 21p LT6 12-0-12V, IA-95p plus 26p Multi-tapped

MT30/2 0-12-15-20-24-30V, 2A| MT60/1 | (1.95 plus 30p p. \& F p. |
| :--- | :--- |
| 20-30-40-60V, IA- | | MT60/2 0-5-20-30-40-60V, 2ACharger $\quad \mathbf{2 . 9 5}$ plus 34p p. \& p

 CT/02 2A- 1.10 plus 30 p p. \& p.
CT/03 4A- 1.60 plus 30 p p. \& CT/03 4A- 1.60 plus 30p p. \&
Speaker Matching 3-8-16
Example: 16Ω speaker to 8 , amplifier. 90 p plus 20 p p. \& p.

SEMICONDUCTORS, etc. Zeners-400mW, 15p: 1.5W, 221pp C.D.R.ORP12, $56 p$

Bridge rectifier- 40 P. ${ }^{\text {P/ }}$ 50 p
Bridge 50p
Transistor sockets-7p
D.1.L. I.C. sockers-14 pin. 20p $16 \mathrm{pin}, 20 \mathrm{p}$
N4001-50 P.I.V. 1.0A. 6p
N4002-1
I 100 P.I.V., I OA,
Ip
IN4003-200 P.IV., I.OA, 8p
IN4005-400 PI.V. I OA, op
IN 400 P.I.V. $1.0 A$, I2p
ALUMINIUM BOXES
with lids and serews \quad. Price p. g p.
 GB8: tin 4 in litin 38p 15p

GB9. lin 2tin litin 38p 13p $\begin{array}{lll}\text { GBio. Stin 4in 1tin 44p } & 18 p \\ \text { GBil } \\ \text { GBil } 4 \text { in 2tin } 2 i n & 38 p & 13 p\end{array}$ | GBil | $4 i n$ | $2 \frac{1}{2} i n$ | $2 i n$ | $38 p$ |
| :--- | :--- | :--- | :--- | :--- |
| GBi2 | $3 i n$ | $2 i n$ | $1 i n$ | $33 p$ |
| GBi3 | $6 i n$ | $4 i n$ | $2 i n$ | $52 p$ |
| $18 p$ | | | | |

 GB15 8in 6in 3in 81p 26p GBI6 l0in 7in. These sizes fir

EQUIPMENT CASES in plain aluminium with sloping front panel
Type H. W. D. Pricep. \& SFP $2 i n$ stin $2 \operatorname{tin} 45 \mathrm{p}$ 12p $\begin{array}{lllll}\text { SF2 } & \text { 2in } 7 \operatorname{tin} & 3 \operatorname{tin} & 60 p & 16 p \\ \text { SF3 } & \text { 2in } 9 \text { in } & 4 \frac{1}{2} i n & 75 p & 19 p\end{array}$ tove - enamelted silver-grey ham-
mer finished, 25p mer fa.

CONSOLE CASES
in plain aluminium, ideal for mixers Type W. A B C Dprice p. ap. $\begin{array}{lllllll}\text { GB20 } & 8 & 9 & 3+2 & 3 & \& 1.42 & 30 p \\ \text { GB21 } & 10 & 9 & 312 & 3 & E 1.58 & 30 p\end{array}$ $\begin{array}{lllllll}\text { GB2 } & 12 & 9 & 3 \frac{1}{2} & 3 & \text { E1.58 } & 30 \mathrm{p} \\ \text { GB2 } & 12 & 9 & 3 \frac{1}{2} & 3 & \text { El.72 } & 30 \mathrm{D}\end{array}$

VEROBOARD

| Size | $\begin{gathered} 01 \\ \text { matrix } \end{gathered}$ | $\begin{gathered} 0.15 \\ \text { matrix } \end{gathered}$ |
| :---: | :---: | :---: |
| 2tin \times 3tin | 22p | 16p |
| 2 in in $\times 5 \mathrm{in}$ | 24p | 25p |
| 3tin \times 3tin | 24p | 25p |
| $3 \frac{1}{1} \mathrm{in} \times 5 \mathrm{in}$ | 27p | 29p |
| $17 \mathrm{in} \times 2 \mathrm{im}$ | 75p | 57p |
| $17 \mathrm{in} \times 3$ 3in | ¢ 1 | 75p |

ELECTROLYTICS

| $1 \mu \mathrm{~F}$ | 450 V | 19p | 1,000 F | 25 V | 27p |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mu \mathrm{~F}$ | 450 V | 20p | 1,000 ${ }^{\text {F }}$ F | 50 V | 42p |
| $4 \mu \mathrm{~F}$ | 350 V | $14 p$ | 2,000 F | $25 V$ | 39p |
| $8 \mu \mathrm{~F}$ | 450 V | 17p | 2,000 $\mu \mathrm{F}$ | 50 V | 53p |
| $16 \mu \mathrm{~F}$ | 450 V | 18 p | 2,500 ${ }^{\text {F }}$ | 25. | 45p |
| $25 \mu \mathrm{~F}$ | 25 V | 7p | 2,500 ${ }^{\text {F }}$ | 50 V | 60p |
| $25 \mu \mathrm{~F}$ | 50 V | 10p | 3,000 F | $25 V$ | 48p |
| $32 \mu \mathrm{~F}$ | 450 V | 27p | 5,000 ${ }^{\text {F }}$ | $25 V$ | $60 p$ |
| $50 \mu \mathrm{~F}$ | 50 V | 10p | $5,000 \mu \mathrm{~F}$ | 50 V | (1) 10 |
| $100 \mu \mathrm{~F}$ | $25 V$ | 10p | 8-8 $\mu \mathrm{F}$ | 4SOV | $18 p$ |
| $100 \mu \mathrm{~F}$ | 50 V | 11p | $8-16 \mu \mathrm{~F}$ | 450 V | 20p |
| $250 \mu \mathrm{~F}$ | 25. | 14p | 16-16 $\mu \mathrm{F}$ | 4S0V | 27p |
| $250 \mu \mathrm{~F}$ | 50 V | 17p | $16-32 \mu \mathrm{~F}$ | 450 V | $63 p$ |
| $500 \mu \mathrm{~F}$ | 25 V | 18p | 32-32 $\mu \mathrm{F}$ | 450V | 49p |
| $500 \mu \mathrm{~F}$ | 50 V | 25p | $50-50 \mu \mathrm{~F}$ | 3 SoV | ${ }^{38}$ p |

MINIATURE ELECTROLYTICS

| $1 \mu \mathrm{~F}$ | 63 V | 6p | $47 \mu \mathrm{~F}$ | 16 V |
| :---: | :---: | :---: | :---: | :---: |
| $2.2 \mu \mathrm{~F}$ | 63 V | 6p | $47 \mu \mathrm{~F}$ | 25 V |
| $3.3 \mu \mathrm{~F}$ | 63 V | ${ }^{6 p}$ | $68 \mu \mathrm{~F}$ | 16 |
| $4.7 \mu \mathrm{~F}$ | 63 V | 6p | $100 \mu \mathrm{~F}$ | 10 |
| $8 \mu \mathrm{~F}$ | 40 V | 7 p | $220 \mu \mathrm{~F}$ | 16 |
| $10 \mu \mathrm{~F}$ | 25 V | ${ }^{6 p}$ | $330 \mu \mathrm{~F}$ | 16 |
| $10 \mu \mathrm{~F}$ | $64 V$ | $7{ }^{7}$ | $470 \mu \mathrm{~F}$ | 10 |
| $16 \mu \mathrm{~F}$ | 40 V | $7 p$ | 1,000 ${ }^{\text {F }}$ | 16 |
| $33 \mu \mathrm{~F}$ | 16 V | 6p | 1,500 F | |

CASSETTE OWNERS

For Philips and similar cassecte recorders.
PUI2 Power unit for connection to
$2 V+$ or - E car electrica
systems, giving $7 \frac{1}{2} V$, stabilised $\mathbf{£ 3 . 2 5}, ~$
output.
PUI4 As zbove but switched for $\mathbf{\$ 5 . 1 0}$
PP75 Mains power supply. output $\mathbf{f |} 95$
All units are complete with cable and plug.

CASSETTES

Top quality British made, low noise, complete with transparent ibrary cases $-\overline{0}$
C60-40p; C90-55; C120-70

BATTERY ELIMINATORS current equipment
PP96 Input 240 V a.c. Output 6 V d.c
Price $\mathrm{fl}: 50$ plus $12 \mathrm{p} \mathrm{p}$.\& F p.

ILLUSTRATED CATALOGUE

Post Free
15p

CONTROLS, Log. or Lin.
Single, less switch, $15 p$
Single, D.p. switch, ${ }^{4} \mathrm{p}$
Tandem, less switeh, 40
$5 \mathrm{k} \Omega$, $10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$. $50 \mathrm{k} \Omega$. $100 \mathrm{k} \Omega$, $250 \mathrm{k} \Omega$. $500 \mathrm{k} \Omega, 1 \mathrm{Mn}, 2 \mathrm{Mn}$

RESISTORS

 AW, 1fp;iW, 4p; 2W, 6p$5 \mathrm{~W}, 10 \mathrm{p}$; $10 \mathrm{~W}, 12 \mathrm{p}$

SWITCHES

Toggle switches, standard size
SW20-S.P.S.T. 18p; SW21-D.P.D.T. 23p. Push Button, miniature, SWI-I3p.
Wafor switches (rotary)-24p each
SW4-1 pole, 12 way. SW5-2 pole, 6 way SW6-3 pole, 4 way. SW7-4 pole, 2 way SW8-4 pole, 3 way

BONDED ACRYLIC FIBRE

B.A.F. wadding, I8in wide, lin thick. The ideal lining for speaker enclosures. 30p per
yard. p. \& p. one yard I 2 p; each extra yard 4 p

TYGAN tod quality loudspeaker covering material. Please send 6p for samples, sizes and prices.

MAGNETIC COUNTERS

Brand new, neat, 48 volt
Brand new, neat, 48 Vo
5 digit counters. 60 p

| PLUGS | | | |
| :---: | :---: | :---: | :---: |
| Car aerial | 14 p | | |
| Co-axial
 D.I.N. 2 pin (speaker) | $10 \mathrm{p}$ | | |
| D.iN. 3 pin | 13 p | 15 | |
| D.IN. 4 pin 180° | 14 p | | |
| | $13 p$ 150 | | |
| D.I.N. 6 pin | 15 p | | |
| Jack, 2 tmm unscreened | 9p | | |
| Jack. 24 mm screened | 10 p | | |
| Jack, $3 \frac{1}{2} \mathrm{~mm}$ unscreened Jack, $3 \frac{1}{2} \mathrm{~mm}$ screened | 12p | -x (1) | |
| Jack, tin unscreened | 12 p | | |
| Jack, din screened | 20p | SOCKETS | |
| Jack, stereo, unscreened | ${ }^{20 p}$ | Car aerial | $\mathrm{l}_{8 \mathrm{p}}^{8}$ |
| fack, stereo, screened | ${ }^{35 p}$ | Co-axial, flush | 9 p |
| Phono, plated met | 12 p | D.I.N. 2 pin (speaker) | 10 p |
| Wander, red or black | ${ }^{3} \mathrm{p}$ | D.I.N. 3 pin | $9 p$ |
| Banana 4 mm , red or black | 6 P | D.IN. ${ }^{\text {D }}$ pin, 180° D.I.N. 5 pin, 240° | 9p ${ }^{\text {p }}$ |
| LINE SOCKETS | | $\begin{aligned} & \text { Jack, } \frac{2}{2} \frac{2 m m}{\text { Jack, }} 3 \frac{2}{2 m m} \end{aligned}$ | 10 p |
| Caraerial | 14 p | Jack, din unswitched | 15 p |
| C.I.N. 2 pin (s | 178 | Jack, tin switched | 17 p |
| D.IN. 3 pin | 16 p | Jack, stereo, switched Phono, single | ${ }^{24} 5$ |
| | 16p | Phono, 2 on a strip | $7 p$ |
| D.IN, 5 pin, 240° | 150 | Phono, 3 on a strip | p |
| Jack, $3 \frac{1}{2} \mathrm{~mm}$ | 15p | Phono, 4 on a strip | 10p |
| Jack, tin screened | 49p | Wander, single, red or black | 5p |
| Jack, stereo, screened | 34 p | Wander, twin str | 7 p |
| Phono, plated metal | 14 p | Banana 4mm red, or black | 6p |

| CAPACITORS | | | | $0 \cdot 0027_{\mu} \mathrm{F}$ | $\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$ | S / M | 15p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.2pF | 500 V | S/M | $71 p$ | | 125 V | Cer. | 6p |
| $3 \cdot 3 \mathrm{pF}$ | 500 V | S/M | 710 | $0.0033 \mu \mathrm{~F}$ | 500 V | Poly. | $6 p$ |
| 5 pF | 500 V | S/M | 7 ¢ ${ }^{\text {P }}$ | $0.0033 \mu \mathrm{~F}$ | 1,000V | MDC | 6p |
| 10 pF | 125 V | P.S. | 5p | $0.0036 \mu \mathrm{~F}$ | 500V | S/M | 15p |
| 10 pF | 500 V | S/M | 71 p | $0.0047 \mu \mathrm{~F}$ | 125 V | P.S. | 9 p |
| 15 pF | 125 V | P.S. | 5p | $0.0047 \mu \mathrm{~F}$ | 500 V | Poly. | 6 p |
| 15 pF | 500 V | Cer. | 4 p | $0.0047 \mu \mathrm{~F}$ | 500 V | S/M | 20p |
| 18 pF | 500 V | S/M | $71 p$ | $0.0047 \mu \mathrm{~F}$ | 1,000V | MDC | 6 p |
| 22pF | 125 V | P.S. | 5p | $0.005 \mu \mathrm{~F}$ | 100 V | Mylar | 3p |
| 22pF | 500 V | S/M | 7 p | $0.005 \mu \mathrm{~F}$ | 500 V | Cer. | 5 p |
| 25pF | 500 V | S / M | 71 p | $0.0068 \mu \mathrm{~F}$ | 125 V | P.S. | 101p |
| 27 pF | s00V | Cer. | 4 p | $0.0068 \mu \mathrm{~F}$ | 500 V | S/M | 30p |
| 33 pF | 125 V | P.S. | 5p | $0.0068 \mu \mathrm{~F}$ | 500 V | Poly. | 6p |
| 33 pF | Soov | S/M | 710 | $0.0082 \mu \mathrm{~F}$ | 125 V | P.S. | $101 p$ |
| 39pF | 500 V | S/M | $71 p$ | $0.0082 \mu \mathrm{~F}$ | 500 V | S/M | 30p |
| 47 pF | 125 V | P.S. | $5 p$ | $0.01 \mu \mathrm{~F}$ | 18 V | Dise | 4p |
| 47pF | 500 V | Cer. | $4 p$ | $0.01 \mu \mathrm{~F}$ | 125 V | P.S. | $101 p$ |
| 50 pF | 500 V | S/M | 7 tp | $0.01 \mu \mathrm{~F}$ | 160 V | Poly. | 4 p |
| 56\%F | 500 V | S/M | 7 P | $0.01 \mu \mathrm{~F}$ | 250 V | M.F. | 3 p |
| 68 pF | 125 V | P.S. | 5p | $0.01 \mu \mathrm{~F}$ | 400 V | Poly. | 3 p |
| 68 pF | 500 V | S/M | 7 p | $0.01 \mu \mathrm{~F}$ | 500 V | Cer. | $5 p$ |
| 75 pF | 500 V | S/M | 7 P | 0.0114 F | 500 V | 5/M | 10p |
| 82pF | 500 V | S/M | 7 P | $0.01 \mu \mathrm{~F}$ | 600 V | MDC | 7 p |
| 100 pF | 125 V | P.S. | 5 p | $0.01 \mu \mathrm{~F}$ | $1,000 \mathrm{~V}$ | MDC | 9 p |
| $100 p \mathrm{~F}$ | 500 V | S/M | 7 p | $0.015 \mu \mathrm{~F}$ | 160 V | Poly. | $3 p$ |
| 100 pF | Soov | Cer. | 5p | $0.015 \mu \mathrm{~F}$ | 400 V | Poly. | 3 p |
| 120 pF | 500 V | S/M | $7 \frac{1 p}{}$ | $0.02 \mu \mathrm{~F}$ | 100V | Mylar | $3 p$ |
| 150pF | 125 V | P. 5. | ${ }^{5 p}$ | $0.022 \mu \mathrm{~F}$ | 18 V | Disc | $5 p$ |
| 150pF | 500 V | S/M | 7 P | $0.022 \mu \mathrm{~F}$ | 250 V | M.F. | 3 p |
| 150pF | 500 V | Cer. | 5 P | $0.022 \mu \mathrm{~F}$ | 400 V | Poly. | 3 p |
| 180pF | 500V | $5 / \mathrm{M}$ | $71 p$ | $0.022 \mu \mathrm{~F}$ | 600V | MDC | $71 p$ |
| 200pF | 500 V | S/M | $7 \frac{1}{5 p}$ | $0.022 \mu \mathrm{~F}$ | 1,000V | MDC | 10p |
| 220pF | 125 V | P. S. | ${ }_{5 p}$ | 0.033 $\mu \mathrm{F}$ | 250 V | M.F. | 4p |
| 220pF | 500 V | Cer. | 5 p | $0.033 \mu \mathrm{~F}$ | 400 V | Poly. | 4 p |
| 250pF | 500 V | S/M | 8 p | $0.047 \mu \mathrm{~F}$ | 12V | Disc | 6 p |
| 270pF | 500 V | Cer. | 5 p | $0.047 \mu \mathrm{~F}$ | 180 V | Poly. | 3 p |
| 300 pF | 500 V | $5 / M$ | 8 p | $0.047 \mu \mathrm{~F}$ | 250 V | M.F. | $3 p$ |
| 330pF | 125 V | P.S. | 5 p | $0.047 \mu \mathrm{~F}$ | 400 V | Poly. | 4 p |
| 330pF | 500 V | 5/M | 8 p | $0.047 \mu \mathrm{~F}$ | 600 V | MDC | 8 p |
| 390 pF | soov | S/M | 8p | $0.047 \mu \mathrm{~F}$ | 1,000V | MDC | 10 p |
| 470 pF | 125 V | P.S. | 5p | $0.1 \mu \mathrm{~F}$ | 30 V | Dise | $6 p$ |
| 470pF | 750 V | Dise | $5 p$ | $0.1 \mu \mathrm{~F}$ | 250 V | M.F. | 4 p |
| 500 pF | 500 V | 5/M | 8 p | $0.1 \mu \mathrm{~F}$ | 400 V | Poly. | 5p |
| S60pF | 500 V | S/M | 8 p | $0.1 \mu \mathrm{~F}$ | 600 V | MDC | 10p |
| 680pF | 125 V | P.S. | 6 p | $0.1 \mu \mathrm{~F}$ | 1.000 V | MDC | 14p |
| 680pF | 500 V | S/M | 8 p | $0.15 \mu \mathrm{~F}$ | 250 V | M.F. | 5p |
| 820 pF | 500 V | 5/M | 8 p | $0.22 \mu \mathrm{~F}$ | 160 V | Poly. | $6 p$ |
| $0.001 \mu \mathrm{~F}$ | 100V | Mylar | 3 p | $0.22 \mu \mathrm{~F}$ | 250 V | M.F. | 5 p |
| $0.001 \mu \mathrm{~F}$ | 125 V | P.S. | ${ }^{6 p}$ | $0.22 \mu \mathrm{~F}$ | 400 V | Foil | 10p |
| $0.001 \mu \mathrm{~F}$ | 400 V | Poly. | 3 p | $0.22 \mu \mathrm{~F}$ | 1,000V | MDC | $15 p$ |
| $0.001 \mu \mathrm{~F}$ | 500 V | S/M | 10p | $0.33 \mu \mathrm{~F}$ | 250 V | M.F. | ap |
| $0.001 \mu \mathrm{~F}$ | 500 V | Cer. | 5p | $0.47 \mu \mathrm{~F}$ | 250 V | M.F. | 8 p |
| $0.001 \mu \mathrm{~F}$ | 1,000V | MDC | 6 p | $0.47 \mu \mathrm{~F}$ | 400 V | Foil | 15p |
| $0.0015 \mu \mathrm{~F}$ | 400 V | Poly | ${ }^{3} \mathrm{p}$ | $0.47 \mu \mathrm{~F}$ | 1,000V | MDC | 25p |
| $0.0015 \mu \mathrm{~F}$ | 500 V | S/M | 10p | $1.0 \mu \mathrm{~F}$ | 250 V | M.F. | 15p |
| $0.0015 \mu \mathrm{~F}$ | 500 V | Cer. | ${ }^{5 p}$ | | | | |
| $0.0018 \mu \mathrm{~F}$ | 500 V | S/M | 10p | Note | | | |
| $0.002 \mu \mathrm{~F}$ | 100 V | Mylar | 3 p , | $S / \mathrm{M}=$ | er mi | \% | |
| $0.002 \mu \mathrm{~F}$ | 500 V | Cer. | 5p | P.S. $=$ p | ystyrene | 21\% | |
| $0.0022 \mu \mathrm{~F}$ | 125 V | P.S. | $6 p$ | MDC | c. ratin | $=300 \mathrm{~V}$ | |
| $0.0022 \mu \mathrm{~F}$ | 500 V | S/M | 10 p | M.F. $=$ | ullard m | . foil. | |
| $0.0022 \mu \mathrm{~F}$ | 1,000V | MDC | 6 p | Cer. $=$ ce | eramic. | . | |

(IP) IL.P. (Eseatenestuc

THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last year. This highiy improved odule achieves true High Fidelity with a dramatic reduction in distortion (iypically 0.05% at KHz into 8 ohms! ! and is electronically and mechanically compatible with the HY40.

With this important improvement the HY 41 retains all of the quality characteristics found in he earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete保 power amplifier of extremely high perstmand industry.
HI-Fi but also for public address systems and industry. HY 4 t and its various applications including
The free manual gives a full circuit diagram of the complete stereo amplifier
Like its predecessor the HY41 is based on conventional and proven circuit techmiques developed over recent years.
OUTPUT POWER: British Rating 40 WATTS PEAK, 20 watts
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz .
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 0.15% (typical 0.05%)
at 1 KHz
FREOUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz}+1 \mathrm{db}$
SUPPLY VOLTAGE: + 22.5volts D.C
SUPPLY CURRENT: $\overline{0} .8$ amps maximum.
PFIICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.:-
MONO: $£ 4.90$
STEREO: $£ 9.80$

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an integrated pre-amplifier circuit

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection.

Two distinctive features of the HY5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from 16-25 Volts and a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo pre-amplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.

INPUTS

Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Fape Replay texternal components to suit head) $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up lequalized and compen-
satable) $20-2000 \mathrm{mV}$. variable.
Tuner (flat) 250 mV . $100 \mathrm{~K} \Omega$
Auxiliary 1250 mV . $47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

OUTPUTS
Main Pre-amp output 500 mV .
Direct tape output 120 mV .
ACTIVE TONE CONTROLS (Bexendall)
Treble $\pm 12 \mathrm{db}$
Bass + 12 db
INTER̄NAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VOLTAGE
16-25 volts
PRICE: MONO: $£ 3.60$
STEREO: £7. 20

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply your HY41's + HY5's in stereo or mono format.

Specification
Input: 200-240 Volts.
Output: ± 22.5 Volts at 2 amps
Overall Dimensions: L. $7^{\prime \prime} ;$ D. 3.8"; H. 3.1 ${ }^{\prime \prime}$
PRICE: 4.50 inc. P. \& P.

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT
CANTERBURY 63218

BEDFORD ELEGTRONIGS
 2 GROVE PLACE, BEDFORD
 (continuation of Lurke Sereet)

Tel.: Bedford 51961
MULLARD C296 POLYESTER FILM CAPACITORS
$400 \mathrm{~V}=0.001,0.0015,0.0022,0.0033,0.0047,21 \mathrm{p}, 0.0068,0.01,0.015,0.022$, 12p, 3p. 0.047, 0.068, 0.1, 4p. 0.15, 5ip, 0.22, 7p. 0.33, 101p. 0.47 $160 \mathrm{~V}: 0.01,0.015,0.022,0.033,0.047,0.068,3 \mathrm{p}, 0.1,3 \neq \mathrm{p}, 0.15,4 \mathrm{p}, 0.22$ 41p. $0.33,51 p . \quad 0.47,7 p . \quad 0.68,10 \mathrm{p} .10,12 \mathrm{p}$.

MULLARD C280 METALLISED FILM CAPACITORS 250V
$0.01,0.015,0.022,3 p .0 .033,0.047,0.068,31 p .0 .1,4 p, 0.15,0.22,41 p$. $0.33,6 p . \quad 0.47,71 p .0-68,10 \mathrm{p} .10,12 \mathrm{p}, 1-5,18 \mathrm{p} .2 \% 21 \mathrm{2}$.

CERAMIC CAPACITORS 50V (Square plaquette body) CERAMIC CAPACITORS 50V (Square plaquette body)
E12 Series 22pF-1,000pF, IIp. E6 series $0.0015-0.01,2 p$. E6 series 0.015 -
0.047 , 2 pp .

HIGH VOLTAGE CAPACITORS IO00V d.c. (300V a.c.)
$0.001,0.0022,0.0033,0.0047,7 \mathrm{p}$. $00068,0.01,0.022,10 \mathrm{p} .00 .047,01,12 \mathrm{p}$.
$0 \cdot 22,20 p . \quad 0.47,22 p$.
POLYSTYRENE CAPACITORS $125 V, 21^{\circ}$
Values in PF: $5,10,15,22,33,47,56,68,100,150,220,330,470,560,680,820$ 1000, 3ip.

SOLID TANTALUM RESIN DIPPED BEAD CAPACITORS μ F/V; $0.1 / 35,0.22 / 35,0.47 / 35,1 \cdot 0 / 35,2 \cdot 2 / 35,4.7 / 35,10 / 6 \cdot 3,10 / 16,10 / 25$, 22/16, 47/6.3, $100 / 3,15 p$.

MULLARD 015/016/017ELECTROLYTICS (Replaces C426/C437) $\mu F / V: 1 / 63,1.5 / 63,2 \cdot 2 / 63,3.3 / 63,4-7 / 63,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 10,15 / 63$, $22 / 25,22 / 63,33 / 16,33 / 40,47 / 10,68 / 16,100 / 4,100 / 10,100 / 25,150 / 16,220 / 16$,
 $1500 / 6 \cdot 3,11 \mathrm{p}, 10220 / 63 \cdot 470 / 40$
$1500 / 16,2200 / 10,3300 / 6 \cdot 3,18 p$.
RESISTORS
ISKRA TYPE
MULLARD I/3W
MULLARD $1 / 5 \mathrm{~W}$ METAL FILM IW WIREWOUND 2.5 W WIREWOUND 2.5 W

[^4]PRACTICAL ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEM

This Capacisor-Discharge Electronic Ignition system was described in the November and December issues of for incorporating in any 12 V ignition system in cars, boats, go-karts, etc. of either pos. or neg, earth and up to six cylinders. The original coil, plugs, points and contact-breaker capacitor fitted in the vehicle are used. No extra or special com ponents are required.
Helps to promote easier starting (even under sub-zero conditions), improved acceleration, better highspeed performance, quicker engine wanomy. Eliminatesproved fue ecoct-breaker point burning and che need to adiust point and spark-plue gaps with precision. Construction of the unit can easily be completed in an evening and
installation should take no longer than half an hour. A complete complement of components is supplied with each kit together with ready-drilled roller-tinned professional quality fibre-glass wownd transformer and fullymachined die-cast case. All components are availabie separately. Case size 7 itn $\times 4 \frac{1}{2}$ in $\times 2$ in. approx.
Complete assembly and wiring manual $25 p$, refundable on purchase
of kit. Price: : $10 \cdot 50$ plus 50 p P. \& P

PSYCHODELIC LIGHTING UNIT Mk. 3

This unic represents a natural pro gression from our phenomenally befores the drive voltage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency sig nals into a three-coloured light display; the colour depending on the frequency of the signal and the incensity on the loudness of the audio source
The unit is constructed on professional fibre-glass princed-circuit wave triac circuitry. There full master-level control together wish independent sensitivity controls for each channel. The original minimum ambient light level controls have been redesigned permitting thei use as faders; allowing dimming from max. to zero at the turn of knob. R.F.I. suppression is now incorporated as standard as well as
provision for D.J. "Pulse. Flash " provision for D.J. "' Pulse. Flash
controls. The choice of two inputs enables operation from wo inputs and low power amplifiers Max power 1.5 kW per channel ax power
240 V a.c.
Complete assembly built and tested Size 9 in $\times 7$ in $\times 3 i n$. Price 25 carr. paid

DABAR ELECTRONIC PRODUCTS

 98a Lichfield Street, Walsall, Staffs. WSI IUZTELEPHONE: WALSALL 34365 TELEGBAMS: DABELEC Walsall Staffs.

SINCLAIR EQUIPMENT-
 AFU £4.50 Project $605 \mathrm{E19} 00$
S-DECS AND T-DECS
S-DECS 51.40
T-DECS $£ 2.80$
μ DEC A $£ 3.00$
$16 \mathrm{dil} / \mathrm{C}$

SINCLAIR EXECUTIVE
CALCULATOR

Weighs only 2 for. Fits the pocket. Runs for 3 months average use on one set of tiny hearing aid batteries. Contains 7000 transistors. Brilliant 8 digit display. Adds, subtracts, multiplies and divides. Constant multiplier tacility. Floating point or fixed point with 2,4 or 6 decimal places Subject to manufacturer's complete 5 year guarantee. Comprehensive after sales back up is any Executive purchased from us falls to give satisfaction and is returned undamaged in 10 days we undertake to refund the whole ourchase price.
OUR PRICE ONLY 569 (List Price £79).
SWANLEY ELECTRONICS
32 Goldsel Road, Swanley, Kent
Mail order only. Postage 10p per item.
Our Hi-Fi colour catalogue is 10 p post free. Official credit orders welcome.

Bl-p

COMPLETE TELEPHONES
 POST \& PACKING 35D EACH

TELEPHONE DIALS

Scandard Post Office type
Guaranceed in working order
ONLY 25p
POST \& PACKING 15p

| 82 | 4 Photo Cells, Sun Batteries. 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA | 50p |
| :---: | :---: | :---: |
| B79 | 4 IN 4007 Sil. Rec. diodes. 1.000 PIV I amp. plascic | 50p |
| B81 | 10 Reed Swiches, mixed cypes large and small | 50p |
| B99 | 200 Mixed Capacitors. Approx. quantity, counted by weight | 50p |
| H4 | 250 Mixed Resistors. Approx. quantity counted by weight | 50p |
| H7 | 40 Wirewound Resistors. Mixed types and values | P |
| H9 | 2 ОСРグ। Light Sensıtive Photo Transistor | 0 p |
| H28 | 20 OC200/1/2/3 PNP Silicon uncoded TO-5 can | 50p |
| H30 | 20 Watt Zener Diodes. Mixed Volcages 6-8-43V | 50p |
| H35 | 100 Mixed Diodes. Germ. Gold bonded, etc. Marked and Unmarked | 50p |
| H38 | 30 Short lead Transistors, NPN Silicon Planar types | p |
| H39 | 10 Integrated circuits 6 gates BMC 962, 4 flip flops BMC 945 | Op |
| H40 | 20 BFY 50/2, $2 \mathrm{~N} 696,2 \mathrm{~N} 1 \overline{6} 13$
 NPN Silicon uncoded TO-5
 UNMARKED UNTESTED PACKS | 50p |
| BI | 50 Germanium Transistors PNP, AF and RF | $50 p$ |
| 866 | 150 Germanium Diodés Min. glass type | 50p |
| B83 | 200 Trans manufacturers' rejects all types NPN, PNP. Sil. and Germ. | 50p |
| B84 | 100 Silicon Diodes DO-7 glass equir to OA200. OA202 | 50p |
| B86 | 100 Sil. Diodes sub, min. IN914 and IN916 eypes | $50 p$ |
| 888 | 50 Sil. Trans. NPN, PNP equir to OC200/1 2N706A, BSY95A, etc. | 50p |
| H6 | 40250 mW . Zener Diodes DO-7 Min. Glass Type | 50p |
| His | 30 Top Hat Silicon Rectifiers. 750 mA . Mixed valts | 50p |
| H16 | 15 Experimenters' Pak of Integrated Circuits. Data supplied | 50p |
| H17 | 203 amp. Silicon Stud Rectifiers, mixed volts | 50p |
| H2O | 20 BYI26/7 Type Silican Rectifiers I amp. plastic. Mixed volts | 50p |
| | 15 Power Transistors, PNP. Germ. NPN silicon TO-3 | 50p |

MAKE A REV COUNTER FOR YOUR CAR The 'TACHO BLOCK'. This encapsulated block will turn any 0 -ImA meter into a linear and accurate rev normal coil ignition system. E_{1} eash

1000 000 TRANSISTORS IN STOCK

We hold a very large range of fully marked, tested and guaranteed Transistors, Power Transistors, Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.

600,000

 Silicon Planar Plastic Transistors unmarked, untested factory clearance. A random sampling showed these to be of remarkably high quality.AUDIO PNP, similar to ZTX500 2N3702/3, BCY70, etc. AUDIO NPN, similar to ZTX300, 2N3708/9, BCI07/ $8 / 9, \mathrm{BCl} 68 / 9$, etc. RF NPN and SWITCHING NPN types also. Please state type of Transistor required when ordering. ALL TYPES:
P \& P 10 p for 1,000
500 for $£ 3$
1,000 for $\mathbf{\epsilon 5}$ 10,000 for E 40

OUR VERY POPULAR 3p TRANSISTORS

TYPE "A" PNP Silicon Alloy, TO-5 can,
TYPE "BE". PNP silicon. plastic encapsul
TYPE "E" PNP Germanium AF or RF.
TYPE "G" NPN Silicon plastic encapsulation, similar ZTX
TYPE "G", NPN Sllicon, similar ZYX

POWER TRANSISTOR

 PRICE BREAKTHROUGHPlastic Cased Silicon Power Transistors of latest design. 40 watts and 90 wate
PNP and NPN types. All types available at the most shatteringly yow prices
of all time. All are fully tested. of all time. All are
marked and guaranteed!

$40 W$ NPN $40 W$ PNP
 90W NNP

$90 W$ PNP
PAKS complementary
MP40 $40 \mathrm{~W}+40 \mathrm{~W}$
50
$60 p$

A CROSS HATCH GENERATOR

YES, a complete kit of parts including Printed Circuis Board. A four position switch gives
X-hatch, Dots, Vertical or Horizontal lines. Integrated Circuit design for easy construction and reliability. This is a project in the Septembe edition of Practical Television.
This complete kit of parts costs £ 3.50 , post paid.
A MUST for Colour T.V. Alignment.
Our famous PI Pak is still leading in value for money. Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked
Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.I. Only 50p.
ask for Pak P.I. On
$10 p \mathrm{P}$ \& on this Pak

SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid etate
audioampliffer. Brand audio amplifler. Brand new component throughout. - silico power output tors in push•pull. Full wave rectification Output approx. 13W r.m.s. into β ohnt $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$. Fully integrated preamplifier atage $\quad \mathrm{tith}$ aeparate folume. Hass bout ahol Trate fan controls. suitable for 8-1/ thm speakers. Input for ceramic of output. Aupplied realy buift and feyted. with knobe escucheon pariel, bumt and oht punt phas. Orerall size PRICE $£ 10.50{ }^{\text {P }} 4$ P.

DE LUXE STEREO AMPLIFIER
 EZ80 as acetifict. Twis dalal potentionetera are provided for bass and treble control, giving hass and treble boost and cut. A dual volume control is used.
lialance of the deft atul right hand channels can be laalance of the left atul right hand channels can be
adjuated by means of a sebrate "halance" contul foted at the rear of the chassis. Input gensjitivity is approximately 300 m'v for fult peak output of 4 watte per channel (8 watts mono), into a ohm speakers. Full regative feedback in a carefully cahthated circuit, allows high volume levela to be used with liegligible diatortion
 Overall helght including valrus 5in. Rendy buit and
tested to ligh utandard. Price $\mathbf{8 8} 92$. P. \& P. 45p.

NEW! POWER SUPPLY UNIT
 continuous ($1 \frac{1}{2}$ amp intermittent).
Fitted ingulated output terminals and pilot lampindicatur. Gammer finish metal cave, overall Suitable for Tranaistor Radios. Tape Recorlers.

PRICE £4-50

BLACE AKODISED 16g. ALUMRNIUM HEAT SINKS. Fin approx. 25p pair. P. do P. apl .

LDMITED MUMBER: COILED SPRING BACK TELE PHONE CABLE. Cline d aprov. $10^{\prime \prime}$. extends to 36°. SPECLAL OFFER! MAINS TRARSFORMER. 200/240V A.C. inpust. 35 y at ly Rup A.C. motput. Overall size vertical mounting. 90 p . P. \& P. 30
BRAND REW MULTI-RATIO MAINS TRANSFORMERS. dary 13 alternatives. Primary: 0-210.2at. Secon. dary contbinations: $0-5-10 \cdot 15-20 \cdot-3 \cdot-30-35 \cdot 40-60 \mathrm{v}^{2}$ half
 dull wave.
MADS TRANSFORMER. F'ur transistor power supplies Pri. 200/2t0V. Sec. 3-0-9 at 500 mA . 85 p . P. \& P. 13 p Pri. 200/240y. Sec. 122-0-12 at 1 amp. 95p. F. \& P. 13 p

GRNERAL PURPOSE HIGH STABILITY TRAKSIRTOR PRE-AMPLIPIER. For P.U. Tape, Mike. Guitar, etc., and suitable for use with valve or line 2001300 V . Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Qain 26 dB . Solid encapsulation size $1 \mathrm{t}, \mathrm{I}=\times 1 \mathrm{in}$. Brand new - complete with instructions. Price
$88 p$. P. \& P. 13 p .

HANDBOOK OF TRANSISTOR EQUIVALENTS and SUBSTITUTES A must for servicemen and home con structors. Including many 1000's of British U.S.A., European and lapanese transistors ONLY 40p. Post 5 p.

4-SPEED RECORD PLAYER BARGAINS Maing modelis. All brand new in maker's packing
 With latest mono compatible cartridge 28.97. Carr. 50
With stereo cartriuge 27.97 . Carr. 50 p.

SPECIAL BARGAIN OFFER!

 PRECISION ENGINEERED PLINTHS Beautifully constructed in heary gange "Colorcoat" plaatic coated meeel. Resonance free. Designed to take Garrard 1025. 2000, 2025TC, 2500. 3000, 3500, 5100, SPP23 11 and 111 , SLC5B, AT60, etc., or B. B.R. C109, C129. A21, etc. Black leatheretite finish. Size 12 fin x Arnckellars slic corer.). NOW ONLY $£ 4.50$
Latest acos apgl/1SC Mono Compatible Cartridge with

 to stylus for l.P. EP'74. Iniversal mounting hrackel. 2150 . P. \& P'SONOTONE 9TABC COMPATIBLE STEREO CARTRIDGE
 E2.50. P. \& IOp. Also available fitter with tuin Diarnond T,O stylus for Stereo LP. 83. P. \&P. 10p. LATEST RONETTE T;O Stereo Compatible Cartridge for EP/LP/Steren/N. e1-63. P. \& P. 10p
LATEST RONETTE T/O Mono Compatible Cartridge EP/LP/is mono or steren recneda on mono equipment.
\&1.50. P. \& P. 10 p. \&1.50. P. \& P. 10 P
QUALITY RECORD PLAYER AMPLIFIER ME II duty double wound maing transIormer, ECC83 FL8s and rectifler. Separate Bass, Treble and volume controls. Complete with out put transformer matched for 3 ohm speaker. size 7in.w. 3 d .6 h . Ready buill and tested. PRICE 83.95 . I. \& P. 40p. ALSO AVAILABLE mounted on board with output trangformer and speaker
ready to fit cabinet below. I'RIC'E \&5.25. P. \& P. 50 p . DE LUXE QUALITY PORTABLE R/P CABINET MK II neut motor board size it $12 \mathrm{~m}_{\mathrm{a}}$. chearance 2 in . below, Stin. above. Will take abrove amplifier and any B.S.R. or

SPECIAL OFFER!! HI-FI LOUDSPEAKER SYSTEM

Beautifully made teak finish enclouse with most
attractive Ty
 Ceranic Magnet $13 \mathrm{Bin}^{\circ} \cdot 8$ in bass unit, two H.F. twecter unitg and crossover. Power handling low.

Our Price $£ 8.40$
Carr. 65рp
BINET AV゙ALLABLE SEPARATEI.
Also a a alable in 8 ohin with EMI 3 3in $\times 8 \mathrm{in}$. bass

LOUDSPEAKER BARGADS

 E.M.I. 134×8 in with high flux ceramic, P . \& P . 20 p . parasitic tweeter 3,8 , or 15 olum s3-20. P. \& P. 30p.
E.M.I. 13×8 in, 3 or 8 or 15 ohm with two inbuilt treeters and crossover net work $84 \cdot 20$. P. \& F .301 .
BRAND NEW. I I in 15 w II/I) speakers
Current production by well-known llitish maker. Fon.

SPECIAL OFFER! LIMITED NUMBER OR BRAND
NEW ELAC 10° TWIN CONE NEW ELAC 10" TWIN CONE
LOUDSPEAKERS, With large cramie masnet and planticise, £2. 75.

12 in "RA" TWIN CONE LOUDSPEAKER 35 watm SPEAK lathding. 3,8 טr 15, whm, £2.20. I'. \& I' 30 p . "POLY PLAHAR" WAFER-TYPE, WIDE RANGE "POLY PLANAR" WAFER-TYPE. WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 x ohn only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. (aat be mounted ceilings, walls, doors, under tables, cte., and msed with ${ }^{15}$ without hafle. Send S.A.E. for full details. Only E5.95 each. P. \& P'. 25p.
VYNALR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in. wide. Zanally 8175 sd., our price 75 p yd. ongth. P. A P. 15 p per
\qquad
HI-FI STEREO HEADPHONES
Adjustable healband with comfortable fiexifoam ear-
muffe. Wired and fitted with standard atereo tin jack muffs. Wired and fitted with standard stereo tin jack
plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching
impedance $8-16$ ohns. Fisily converted for mono. PRICE 82.95. P. \& P. 15 g .

HIGH DMPEDANCE CRYSTAL STICK MIKES. OV'R PRICE 81 .05. P. \& P. 8p.
CENTRE ZERO MINIATURE MOVING COIL METER. $100 \mu \mathrm{~A}$ for balance or tuning. Approx. size Iin lin
fin. Limited number 75 .

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

NEW FORTHER IMPROVED MODEL WITH HIGHER OUTPCT AND INCORPORATING HIGH QUALITY READV DRILLED FIBRE GOMPONENT IDENTIFICATION CLEIRLY MARKED FOR EVEN EANIER CON:

A really first-class Hi-Fi Stereo Amplifer Kit. Cases five stages on each channel resulting in even lower noise level with improved sensitivity. Integrated preamp with Bass, Treble and two Volunc c'ontrols. Suifable for use with ('eramic or Crystal cartridges. (Very simple to modify to sujt magnetic cartrjige-instructions inchuled). Out put stage for any speakers from 5 to 15 hrille. Compare pupplied including arilled netal work, high quatity ready drilled flbre gluss primted chin front wart hrushed anodised nuts, bolts - no extras to bus Siuple sire, solder inst ructionsenable any constructor to huili an ay step to be proud of. Brief specification: Power output 141 r.mis. per chanmel into 6 ohms. Frequency reaponse +3 dB $12-30,000 \mathrm{~Hz}$. Senaitivity better than 80 mV into $1 \mathrm{M} \Omega$ Full power landridth : $3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boos approx. to $+12 d B$. Treble cut approx, to $-16 d B$ Negative feedback I8,iB over main amp. Power require merits 30, 12 wide 8 deep 2if high.
Fully detailed F-page constınetion manund and parts list PrICES AMPLLFLER KIT, E10.50 P. \& P. 15 p
 Post Free if all units purchaychat same time). Full after ales Rervice. Afso asnilable ready built and tested, Vote: P0, Pust Free
Note: The above amplifice is suitable for feeding two mono sowres and will (e.g. mike, ratio, win record decks, etre.) and icill then provide mixing and fading
facilities for medium powerd Hi-Fi Discotheque wee ele.
3-VALVE AUDIO
AMPLIFIER HA34 ME II speaker. Separate volume former matehed for 3 ohm wide range tone controle civing and noss with improved cut. Negative fealback giung bass anditreble lift and panel can be detached and lemls extemded for remote wired and teyted for ouly $84-95$.
HSL "FOUR" AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different and advanced HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifier using a double wound fully isolated mains transformer, rectifier and ECL 82 triode pentode valve as audio amplifier and power out put stage. and tone coul rols. Chassis put approx. 3.5 watts. Volume and tone controls. Chassis size only Fin. wide Bin. deep Brand New, completely wircd and tested with cood quality output tranaformer OUR ROCK BOTTOM
BARGAIN PRICE \quad f2.95 P. \& P.
10.14 WATT HI-FI AMPLIFJER KIT A stylishly finished monaural anplific with an output
14 wattg froln ELS4s in push-pul Super reproduction of bot! music and apeech, with negli gible hum. Separat inputs for mike and gram allow recorde to follow each other
 Fully shrouded se Fully shroutcd section wound oufput transtormer to and zeparate bass and treblc controls ate provided diving goodlift and eut. Valve line-up 2 FL84s, ECC83. EF86 and EZ80 rectifier. Simple instruction booklet 13p (Free with parts). All paris sold separately, ONL, Y $£ 7.97$. P. \& P. 55 p.
Also available ready built and tested $£ 10.97$. P. \& P. 60 p.

Open 9-5.30 Monday

to Saturday

Early closing Wed. 1 p.m.
 Tube Slation

HARVERSON SURPLUS CO. LTD. I70 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01-540 3885 send stamped addressed envelope with all enquiries
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO O.K. OMLY. P. \& P OR OVERSEAS ORDERA
CHARGED EXTRA.

INTEGRATED CIRCUITS

Why buyalternativas when you can buy the genuine articie from us at CHILD

Type $1 / 1112 / 2428 / 99$

SN740
BN740
$\begin{array}{llll} \\ \text { GN7403 } & 0 \cdot 20 & 0.18 & 0.18 \\ \text { SN } & 0.20 & 0.18 & 0.18\end{array}$
$\begin{array}{llll}\text { SN7404 } & 0.20 & 0.18 & 0.16 \\ \text { SN7406 } & 0.20 & 0.18 & 0.16 \\ \text { 8N7406 } & 0.30 & 0.27 & 0.25\end{array}$
$\begin{array}{lllll}\text { BN7400 } & 0.20 & 0.18 & 0.16 & 8 \\ \text { 8N7406 } & 0.30 & 0.27 & 0.25 & \text { 8 } \\ \text { BN7407 } & 0.30 & 0.27 & 0.25 & 8 \\ \text { BN7408 } & 0.20 & 0.18 & 0.18 & \text { B }\end{array}$
$\begin{array}{llll}\text { BN7408 } & 0.20 & 0.18 & 0.18 \\ \text { SN7409 } & 0.45 & 0.42 & 0.35 \\ \text { BN7410 } & 0.20 & 0.18 & 0.16 \\ \text { SN7411 }\end{array}$
$\begin{array}{llll} \\ \text { BN7411 } & 0.23 & 0.22 & 0.20 \\ \text { BN7412 } & 0.42 & 0.40 & 0.35 \\ \text { BN7413 } & 0.30 & 0.24 & 0.25\end{array}$
$\begin{array}{llll} \\ \text { BN7413 } & 0.30 & 0.27 & 0.25 \\ \text { SN7417 } & 0.30 & 0.27 & 0.25 \\ \text { N } 7417 & 0.30 & 0.27 & 0.25\end{array}$
$\begin{array}{llll} \\ \text { BN7420 } & 0.30 & 0.27 & 0.25 \\ \text { SN7422 } & 0.48 & 0.44 & 0.18 \\ \text { SN7423 } & 0.48 & 0.44 & 0.40\end{array}$

| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| SN7425 | 0.48 | 0.44 | 0.40 | SN |
| SN7427 | 0.48 | 0.40 | 0.35 | S |
| SN7． | 0.39 | 0.35 | | |

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SN7．428 | 0.50 | 0.45 | 0.42 | SN7493 | 0.75 | 0.70 |
| SN | 0.85 | | | | | |
| SN7430 | 0.20 | 0.18 | 0.18 | SN7495 | 0.80 | 0.75 |
| 0 | 0.70 | | | | | |

$\begin{array}{lllllllll}\text { SN7432 } & 0.20 & 0.18 & 0.16 & \text { SN7495 } & 0.80 & 0 & 75 & 0.70 \\ \text { SN7433 } & 0.70 & 0 & 39 & 0.35 & \text { SN7496 } & 1.00 & 0.97 & 0.95 \\ \text { SN } & \text { SN } \\ \text { SN }\end{array}$

| | | | |
| :--- | :--- | :--- | :--- |
| RN74412 | 0.75 | 0.72 | 0.70 |

$\begin{array}{llll}\text { AN7443 } & 1.00 & 0.95 & 0.90\end{array}$ $\begin{array}{llll}\text { SN7445 } & 2.00 & 1.75 & 1.60 \\ \text { SN－446 } & 2.00 & 1.75 & 1.60\end{array}$ $\begin{array}{llll}\text { \＆N } N 447 & 1.75 & 1 \cdot 60 & 1.45\end{array}$ PRICES OF 7400 SERIES ARE CALCULATED ON THE TOTAL NUMBER PRICES OF 7400 SERIES ARE CALCULATED ON THE LARGER QUANTITY PRICES PHONE（OI） 4024891
TEXAS HANDBOOK NO． 2 IC． 700 PAGES DATA 60 p ．POST 20p．
HIGH POWER SN 74 HOO NOW in stoek－send
LOW POWER SM 74 LOO $\}$ for list No． 36

A SELECTION OF SEMI－CONDUCTORS FROM STOCK

| AAY30 | 10p | HC147 | | BU105 | 2.25 | OC44 | 15p | TIS43 | | 30 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AAY42 | 15 p | BC169C | 12p | BY100 | 15p | 0445 | 150 | V405A | 25p | － N 3440 | 75p |
| AAZ13 | 10p | BC18： | 10p | HY126 | 15p | OC57 | 50 p | ZTN108 | 12p | 2N3442 | 1.25 |
| AC107 | 35p | HC214 | 15p | BY127 | 15p | 0 OCl 1 | 15p | ZTX300 | 12p | 2N3525 | 75p |
| AC126 | 25p | ВСY32 | $75 p$ | BYZ13 | 35p | $0 \mathrm{Cl2}$ | 25p | ZTX301 | 15p | 2N3614 | 59p |
| AC127 | 25p | BCY 34 | 35p | C106D | 65p | $0 \mathrm{OC}^{7} 7$ | 45p | 2TX302 | 18p | 2N3615 | ${ }^{75 p}$ |
| AC128 | 25p | BCY 39 | 1.00 | （1ET111 | 55p | OC81 | 26 p | ZTX341 | 20 p | 2 N 3702 | 10 p |
| AC176 | 25 p | 13CY42 | 30p | CET115 | 55p | 0088 | $25 p$ | ZT | | | 10p |
| AC187 | 25p | BCY43 | 25p | GET880 | 45p | OC140 | 55 p | ZTX503 | | | 10p |
| AC188 | 25p | BCris5 | 250 | LM 309 K | | OC170 | 25p | | | | 180 |
| ACY17 | 30p | BCY70 | 15p | （T03） | 1.87 | 0 O 171 | $80 p$ | 2N 404 | 20p | 2N3771 | 175 |
| ACY20 | 20p | BCY71 | 20p | MATl－ 2 | 25p | OO200 | 45p | 2N527 | 35p | 2N3773 | 200 |
| ACY＇21 | 20p | BCY7 ${ }^{\text {a }}$ | 15p | MJE340 | 50p | OC201 | 75p | 2 N 695 | 15p | 2N3790 | 2.25 |
| ACY39 | 55p | BCY87 | 2.99 | MJ E370 | 70p | $0 \mathrm{OC202}$ | 80 p | 2N697 | $15 p$ | \％ 38819 | 35p |
| AD140 | 50p | BCZIL | 50p | MJE520 | 75p | OC203 | 50p | 2N706 | 10 p | 2N3820 | 50p |
| AD149 | 50p | B1124 | 80p | MJE 295 | | 0 OCP 71 | $1-25$ | 2N930 | 20 p | 2N3866 | |
| AD161 | 35p | BD131 | 75p | | 110 | ORP12 | 50p | 2N987 | ${ }^{45 p}$ | ${ }_{2}^{2 N 3903}$ | |
| A 1162 | 35p | BD132 | 80 p | M | 5 | ORPP60 | 40p | 2N1131 | 25p $25 p$ | 2， N 4061 | |
| AF1］7 | 20p | BF115 | 25p | | 75p | P346A | 20 p | 2N1302 | 25p | ${ }_{2} \mathrm{~N} 40 \mathrm{H}$ ． | |
| AFP124 | 50 p 250 | ${ }_{13 F 173}$ | $25 p$ $25 p$ | MP | 40p 20p | | 45p | 2N1304 | 22p | ${ }^{2} \mathrm{~N} 412$ | 15p |
| AFF124 | 20 p 30 p | 13F173 | 250p | NKT21 | 640 p | RAS | $\mathrm{AF}^{\text {P }}$ | 2 N 1305 | 22D | ${ }^{2} \mathrm{~N}+87$ | 35p |
| AF189 | 40p | BF180 | 30p | NKT217 | 7 40p | | 55p | ${ }_{2} \mathrm{~N} 13137$ | ${ }^{25 p}$ | 2 N 545 | 30p |
| AF＇239 | 4UD | BF194 | 15p | NKT403 | 370 p | TAA963 | 75p | 2 N 1308 | 25p | $2 \mathrm{NS77}$ | 55p |
| AsY27 | 30p | BP195 | 15p | NKT404 | 450 p | TIL209 | 39p | 2N1613 | 20p | 28001 | |
| AsY28 | 25p | ［3FSh1 | 25p | 0.45 | 50p | TIP29a | | 2N1671 | 1.00 | 28012 | 0.00 |
| BA102 | 30p | Fs98 | 25p | OAl0 | 35p | TIP30A | | 2N 214% | 75 p | ${ }^{2} 88018$ | 0 |
| BA115 | 7 | BFX13 | 25p | 0481 | 10p | TIP31A | | 2N2160 | 39p | ${ }^{2} 88301$ | D |
| JA145 | 15p | BFX34 | 75p | 0×91 | 7 p | TIP32A | | 2N2217 | | ${ }_{28303}$ | 65p |
| BAX13 | 5p | BFX37 | 30 p | OA200 | 7 p | Trp33． | | | | 2\＄324 | P |
| BAX16 | 7 p | RF＇X88 | 20p | OA202 | 10p | | 1.00 | | 25p | 40250 | 50 p |
| ${ }^{\text {BC }} 107$ | 10 p | BFY50 | 20 p | OCle | $75 p$ 950 | | 1.50 | | 25p | 40360 | 40 p |
| BC108 | 10p | BFY51 | $20 p$ $20 p$ | $\mathrm{OC}^{\mathrm{OC} 20}$ | 85p | | 1.50 | | 15p | 40361 | 40 p |
| BClo ${ }^{\text {a }}$ | 10p | BFY ${ }_{\text {BFY }}$ | 20p | OC23 0 OC 25 | 85p | | 2.50 | 2N290 | 20p | $403 \mathrm{ta}^{2}$ | 50 p |
| BCl09C | 12p | BFFY90 | 58p | $0 \mathrm{OC2}$ | 85p | TI | | 2N292f | | 40408 | 50% |
| BC1 13 | 15p | BLY3 3 | 8.00 | 0 C 35 | 50 p | | 3.00 | cola） | 10 p | 40486 | |
| BC117 | 20p | B8X20 | 15 p | OC | 85p | TIP41 | 75p | ${ }^{2} \mathrm{~N} 3053$ | 20p | 4063 | |
| BC143 | 85p | BSY 27 | $15 p$ | OC4 ${ }^{2}$ | 40p | TIP42 | 85p | 2N305 | 50 | 40430 | ． |
| INTEGRATED CIRCUIT SOCKETS LOW PROFILE PLATED PINS | | | | | | OUANTITY DISCOUNTS | | | | | |
| | | | | $x^{2}+\frac{1}{4}+y$ | | $\begin{array}{ll} 10 \% & 12+: \\ 20 \% & 100+: \\ \mathbf{2 5} \% & 25+ \\ 250+ \end{array}$ | | | | $\begin{gathered} \text { ANY ON } \\ \text { TYPE } \end{gathered}$ | |
| | | From above rections except Intsgratel Circuits and special Ofters where dis． | | | | | |
| | | | | | | | | | |
| （19）Leal I．I．L．） | | （14 Lead | | | | （8 Leal | | contits are included． | | | | | |
| | 17p | | | I． | | Minimum orter value el please． pontare 7 p on all orders． | | | | | |

Typ

 EN74145GN74150 SN74150 SN74151 8N74165
GN 74156 GN74156
GN74157 GN74161
SN7416 GN74163
BN7416 8N7416
8N 7416 8N74167
8N74170 SN74170
SNT 4174 ざッ

12／24 25／ 1.401 .8 $\begin{array}{lll}10 & 0 \cdot 95 & 0.9 \\ .35 & 1.27 & 1.2\end{array}$.001.

QUANTITY DISCOUNTS
$\begin{array}{llll}10 \% & 12+: & 15 \% & 25+ \\ 20 \% & 100+: & 25 \% & 250+\end{array}$
rom above rections except In？aratel Minimum order value El please．
15p

SPECIAL OFFERS！ SEMI－CONDUCTORS

| $25+20 p$ | $25+9 p$ |
| :---: | :---: |
| $100+17 p$ | $100+8 p$ |
| $500+15 p$ | $500+6 p$ |
| | $1000+5 p$ |
| AFII7Mullard 25p | $2 N 3819$ Texas 35p |
| $25+17 p$ | $25+30 p$ |
| $100+15 p$ | $100+25 p$ |
| $500+12 p$ | $500+20 p$ |

| STUD WITH ACCESSORIES | | |
| :---: | :---: | :---: |
| Type | Volts Price PI．V．1－11 | |
| 8 amp ravae | | |
| 8C35． | $100 \quad 750$ | |
| 8 C 36 B | 200 79p | |
| 8C35D | 400 85D | |
| 6 AMP RANGE（TO48） | | |
| 8C40A | 100850 | |
| $8 \mathrm{SC40B}$ | 200 －90p | 3 Amp |
| BC40D | $400 \quad 21 \cdot 00$ | T048 |
| 10 amp range（to48） 1048 | | |
| | | |
| $8 \mathrm{SC45}$ A | 100 95p | |
| $8 \mathrm{SC45}$ | $200 \quad 81.00$ | |
| 8C45D | $400 \quad 11.25$ | |
| 15 AMP RANGE（T048） | | |
| | | |
| Scsob | | |
| | 200
 400 81.35
 1.85 | |
| ${ }^{\text {SCLAE }}$ DIAC 3425 P | | |
| | | |
| TRIACS－ | | |
| Alditional
 40430
 060 | Trpes | |
| | | 15 Amp |
| 40689 | （1as） 81.00 | T048 |
| 40488 | （TO5）80p | |

DIODES

400 M／W 6\％
Miniature
BZY 88 Range
BZY 88 Range
All voltages
$3.3-33$ Volt
$10 p$ each．

LINEAR
（O／P AMPS）

| 702 C | T05 | 75 p |
| :--- | :--- | :--- |
| 709 C | T099 | 35 p |
| 709 C | D．I． L. | 35 p |
| 723 C | T099 21.00 | |Z

\mathbf{D}
100
$3 i_{i}$
B_{2}
$A 11$
313
3e．

| 741 C | T099 5450 |
| :--- | :--- |
| 741 C | D．1．L． 55 p |
| 747 C | T099 $£ 1.10$ |

$\begin{array}{ll}\text { 72741P D．I．L．} \\ 72748 \mathrm{P} & \text { D．I．L．} \\ \text { 80p }\end{array}$

| $\begin{gathered} \text { OCI } 70 \text { Mullard } 25 \mathrm{p} \\ 25+20 \mathrm{p} \\ 100+118 \mathrm{p} \\ 500+155 \\ 1000+13 \mathrm{p} \end{gathered}$ | $\begin{array}{r} 25+8 p \\ 100+7 p \\ 1000+8 p \\ 1000 \\ \hline 0 \end{array}$ |
| :---: | :---: |
| Byi27 Mullard 15p | AD161，ADI62 35peach25 |
| 25＋ 12 p | |
| （100 +10 p | |
| 1000＋ | |
| | |
| $25+8$ | 2N3053 20p |
| 25 100 $+8 p$ $+8 p$ | $\begin{array}{r} 25+18 p \\ 100 \pm+15 p \\ 1000 \pm+12 p \\ 1000 \end{array}$ |
| | |
| $1000+$ Sp | | TRIACS

$$
\begin{gathered}
\text { OC35 Muilard } 50 \mathrm{p} \\
25+45 \mathrm{p} \\
1000+30 \mathrm{p} \\
500+35 \mathrm{p} \\
1000+30 \mathrm{p}
\end{gathered}
$$

| |
| :---: |1f Watt 5%

Wire Ends
Metal Case
All voltages
$6.8-100$ olt
$6.8-100$ Jolt
20 p each
$25+$
$100+$
$500+$
$1000+$
100
3 Watt Plastic
3EZ Range
All voltages
$6.8-100$ Volts
30 p each．
72748P D．I．L． 80 p
SINCLAIR．
ICI．2
\＆1．80
TH9O13PTH9013
20 WATT AMP
$£ 4.47$ POST PAIDDATA AND
E1．50
DEF
CIRCUITS RE 4210REF．
42 10
ITU
SEAPRANCHASESTRANSISTORS
IC＇S，TRIACS，BRIDGES．SCR＇s，LDR＇s

NEW FREE BOOKLET （No．36） OVER 1500 TYPES－
 ${ }_{36}^{46}$
\qquad
NEW BRIDGE
RECTIFIERS
SMALL SIZE AND LOW COST

| SMALL SIZE AND LOW COST | |
| :--- | :---: |
| Type | Volts |
| Price | |
| P．I．V． | 1.11 |

TUBOLA
W00s
W01
W02
W0r

NEW BRIDGE

$$
\begin{aligned}
& x \\
& \mathrm{~B} \geqslant / \\
& \mathrm{B}
\end{aligned}
$$

$$
\begin{aligned}
& x=1 \\
& B \geqslant / 05 \\
& B \geqslant / 100
\end{aligned}
$$

$$
\begin{array}{lr}
x=1 \\
\mathrm{~B}=/ 20 & 50 \\
\mathrm{~B}^{2} / 100 & 100 \\
132 / 200 & 200 \\
B_{2}^{2} / 200 & 600 \\
B^{2} 2 / 1000 & 1000
\end{array}
$$

$$
\begin{aligned}
& B 2 / 100 \\
& 132 / 200 \\
& 102 / 600
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B} \cdot 11000 \\
& \text { FOUR AMP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SILICON CONTROLLED } \\
& \text { RECTIFIERS }
\end{aligned}
$$

ONE AMP CRS $1 / 05$
CRN $1 / 10$ CRS 1
CRS
CRE

CRE 3／60 $\quad{ }^{600}$

CRS $5 / 400$ 400 SEVEN AMP（TO48） CRS 7／100 $100 \quad 60$ $\begin{array}{ll}\text { CRS } 7 / 200 & 200 \\ \text { CRS } 7 / 400 & 400\end{array}$ $\begin{array}{ll}\text { CRS } 7 / 400 & 400 \\ \text { CRS } 7 / 600 & \text { f00 }\end{array}$ CRSTEEN AMP SCR 11／100 10

ZIGGY'S 2001 ELECTRONICS Co. Ltd. RARE BARGAINS

SPECS. MULTIMETER U4324. Sensitivity 20,000 OPV
 AC3 to $900 \mathrm{~V} D C$. 0.6 to 1200 V Resistance S00 ohms-20-200 $2,000 \mathrm{~K}$ ohms. Transmission level $-10 t 0+12 \mathrm{db}$. This high
quality qualicy instrument has diode
procection. Complete with restleads, batteries, etc. PRICE 88 plus 25 p post, ete. OTHER RUSSIAN METERS IN STOCK AT BARGAIN PRICES. Model U43S, 68 : U4312. 68.50 : U4313,
Packing and postage, 25 .
NEW TTC SRITE HEADPHONES IN RED. Quality stereo phones at only $E 1.95$ plus EAGLE Lit

TRANS., LT44 TRANS Our price 32p each, postage 6p.
1 K 190 . Type 2006 Horn, 8 Ω. Type K20, 1 Dome, 33.45 B 2007 Horn. Es, postage $\mathbf{2 0} \mathrm{p}$-N. B. crossovers must be used SO aroid damage. TOGGLE SWITCHES -very useful, very small. S/P 25p. DP/ST, 33p: OP/DT, ${ }^{45 p}$. Postage $5 p$ each over 10 , post free SUBMINIATURE MAINS TRANSFORMERS. Eagle MT6, $6.0-6,100 \mathrm{M} / \mathrm{A}, 80 \mathrm{p}$, postage 10p
MINIATURE TYPE MAINS TRANS FORMERS. Eagle Type MT280 TANS $280 \mathrm{M} / \mathrm{A}, \mathrm{E} 1.20$: MTI 50 , $12-0-12$, ISOM $/ \mathrm{A}$ E1.20, MT100, 24-0-24, $100 \mathrm{M} / \mathrm{A}, E 1 \cdot 20$. R/S $\begin{aligned} & \text { types, } 13 \mathrm{~V}, 0.5 \mathrm{amp} \text {, C. Tapped, } 61.06 \text {. } 16.3 \mathrm{~V} \text {, } \\ & 0.3 \mathrm{mpm}, ~ C . T ., ~ E l ~\end{aligned}, 06$. Postage isp on minia0.3 smp, C
ture

UT46 Unijunctions, 25 p plus $3 p$ postage
E/S Serew BATTEN HOLDERS. Ideal for spots. lamps, etc. Top ciass, 48p plus 7p postage FOR SPEEDY DELIVERY OF THESE MINT CONDITION COMPONENTS PLEASE SEND C.W.O to ZIGGY'S 2001 ELECTRONICS CO. LTD., DEPT. P.E
34 MABLEY STREET, LONDON, E. 9

EX COMPUTER PRINTED CIRCUIT

 PANELS$2 \times 4 \mathrm{in}$. packed with semi-conductors and cop quality resistors, capacitors, diodes etc Our price 10 boards 50 p (8p). With a guaranteed min. of 35 transistors-data included.
SPECIAL BARGAIN PACK
25 boards for $\{1$ (25p)

ELECTROLYTICS

$10.000_{1 /} 75 \mathrm{v} .33,000_{/ 1} 40 \mathrm{v}$. $4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. dia. 2.500 / $25 v, 20,000 / 130 v, 8,00055 v, 4 \frac{1}{2} \times 3$ in . dia. $50 \mathrm{p}(12 \mathrm{p}) .15,000$: $15 \mathrm{v}, 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. $20 \mathrm{p}(10 \mathrm{p})$. 2,000 , 25 v wire ended. $3 \times 1 \mathrm{in}$. dia. 15p (5p) or 12 for 61 (15p).
250 MIXED CAPACITORS 60p (8p) 250 MIXED RESISTORS $60 \mathrm{p}(8 \mathrm{p})$ 204 STUD RECTIFIERS, 100 p.i.v. 3A STUD RECTIFIERS, 100 for EI (7 p) ASSORTED RELAYS 8 for 50p (5p) SUB MIN. CO-AX. PLUGS \& SKTS. MINIATURE GIASS 4 pairs 50 p (5p) REED RELAYS MIXED 12 for 50p (5p) MICRO SWITCHIXED 10 for 50p (5p) MICRO SWITCHES, MIXED

8 for 50 p (8p)
PAPST EXTRACTOR'BLOWERFANS $100 \mathrm{cfm} 4 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ 6350 (28p) $\underset{12 \mathrm{~V} 55 \mathrm{w}}{\text { QUART }}$

50p (5p)
Postage and package for each item shown

KEYTRONICS

(Mall Order only)
44 EARLS COURT ROAD LONDON W8.

01-478 8499

BELLING LEE IMSULATED TERMIN
BERCOSTAT WIREWOUND RHEOSTAT
300Ω, 25 watts, 2 in dia. 25p, p.p. 7 fp .
finmed aluminium heatsine. sia $\times 1 \mathrm{jin}$. Ready (trilled. 20p, p.p. 6itp.
SUB-MIN. CROC. CLIPS. Red or Black, insmlated 4p. Min quantity, f, p.p. 3!p
garrard mag. tape decks: ifi.p.e. jur, amenoid operated braker, etc. Maills coltaze motors 27.50 each, p.p. 11.23 .
4 in Plannair pans. Cumplet
motio motors. hoover or aromplon PAREIMSON. 250V: Single phase a

ADDIO CONNECTORS
> pin Din Plug i pin Din Pluge, B tyue
> pin Din Speaker Plug/Socket
> pin Din Line Socket
> Standard Jack Plug
> Screened Standard Jack Plug
> Stereo Jack Plug
> Screeneu Stereo Jack Plug

Phono Plags: Red or Black 3p each
P.p. on above items 3\}p.

mains meons

Red or (Green, Size: LEVER ACTION P.0.1000 TYPE SWITCHES Lock 4-pule changeover, 15p, p.p. 3pp. Ex equip, Lock :-pole changeover, 10p, p.p. 3in. Ex equip.

AUDIO LEADS

Screened Phono Leads 46 in loug. 15 p.
3 3imin Jack $/ 3$ Mmm Jack 7 ft 6in Jong. 40 p .
5.Pin Din A Type. J-PIN A TYPE. Approx, ift long, 70p.

MULLARD \& MALLORY SCREW TERMINA CAPACTORS $4,00 \mu \mathrm{~F}$ 64, $7,100 \mu \mathrm{~F} 40 \mathrm{~N} .50 \mathrm{p} \mathrm{each}$ 20,000 305, $25,00025 \mathrm{~V}$, 30,000 155, 30p each p.p. 10p.
mollard follwave rectipiers
$6.48 \mathrm{~V}, 15 \mathrm{amp}, 75 \mathrm{p}, \mathrm{p} . \mathrm{p} .8 \frac{1}{2} \mathrm{p}$.
BELLING LEE $1 \cdot \bar{j}$ aup in-line rubher coveret interference suppreswor, 25p, p.p. 8 p
RUBBER 3 PIN 5 AMP NON-REVERSIBLE CABLE CONNECTORS, 20p, p.p. 3ip.
SOLENOIDS 12 VOLT PULL ACTION
in $\times \operatorname{lin} \times$? in, $40 \mathrm{p}, \mathrm{p} . \mathrm{p}, \mathrm{x} \mathrm{p}$
SIEMENS MINIATURE RELAY. Double pole changeover dust cover/base 48 V , $2500,50 \mathrm{p}, \mathrm{p} . \mathrm{p} .51$

OMRON MK2 MIDGET POWER RELAY. IN' Double pole changeover. New, 70p, p.p. Jp.
STC miniature relay ano Ω, perspex cover -15V new, 35p, p.p. 5p.
GARDNER'S POTTED TRANSFORMER, $0-250 \mathrm{~V}$ Input: $18 \mathrm{~V} 500 \mathrm{~m} / \mathrm{n}, 50 \mathrm{~V}^{1} 150 \mathrm{~m} / \mathrm{a}$. $6 \mathrm{C}^{2} 250 \mathrm{~m} / \mathrm{a}$ a 104 p put
 teated

TELESCOPIC AERLALS

Chromed 7 in closed, 28 in extended. is sectinn hall jointed base, 28p. p.p. Kp new
MULLARD 4 DM 180 indicators in plastic holderfcover, ex equip, size approx. Ifin \times itin x in, 86p, p.p. 8p.
PRINTED CIRCUIT BOARD/19 ACY 19 's 10 OA:00 Diodes: 1 reed relay: 1 AZ 2229 zenner ass, capacitor)
 wirmg cable
Size: 1.020. Various colours. 350y.1, 60p, p.p.20p. TOGGLE SWITCHES. Double throw. Ex equip. new condition, 75p doz., p.p. 13p
TOGGLE SWITCHES. Single pole, dumble throw Ex equip., new condition, 50 p doz., p.p.13p.
padston plug soceets. Type $1 \bar{y} y$ serien. Working voltage 330 V a.c./d.c. current, max. 3 amp
 plug and ocket, $21, \mathrm{p} . \mathrm{p}$.
BOCKET, $21-50, \mathrm{p} . \mathrm{p} .6 \mathrm{p}$. Cash with order pleage
FIELD
ELECTRIC LIMITED
3 Shenley Road Borehamwood, Herts.
Adjacent Elstree Mainline Station Tel.: 01-953 6009
by R. M. Marston
\&1.40.
Postage 10 p .
50 PHOTOELECTRIC CIRCUITS AND SYSTEMS by P. S. Smith. \&1-30. Postage 10p.
MULLARD FIELD EFFECT TRAN. SISTORS by Mullard. El.80. Postage 10p HI-FI YEAR BOOK, 1973 by IPC. $£ 1.50$. Postage 20p.
VIDEO RECORDING RECORD AND REPLAY SYSTEMS by G. White, $£ 3.25$ Postage 15p.
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. $£ 1-80$. Postage 10p RSGB AMATEUR RADIO CALL BOOK, 1973. 60p. Postage 8p. by R.H. Warring. El:60. Postage 10p. SEMICONDUCTOR DIODE LASERS by R, W. Campbell. £1.90. Postage lop.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-21 PRAED STREET LONDON W2 INP Phone 01-723 4!85
Closed Saturday 1 p.m.

4STATION INTERCOM

4-Station Tranaistot Intercom problemis with thi 4-Station Tranaistor Intercom Getems (1 master and
3 Subs), in de.luxu plactic cabinele 3 Subs), in de-luxe plactic cabinela fur deak or wall mounting. Call talk liaten frotn Master to Subs and
Subs to Master. [ifeally sumatule for Buxipoo Sur gery, Schoole, Huspala, office am lf bue. Operates on one $9 V^{-}$baltery. On'off usiteh. Volume control. Complete with 3 cwisisetmes arres each fifitt and other acecsanjes. I' \& P. 40 p.
MAINS INTERCOM
No batteries-no wires. Just plug in the mank for
inatant two-was Onfof switeh and volume controk with lach Price £14-40. P. A P. 25p extra.

20•35 communication. Ideal as liahy Alarma amd Door Phone, Complete with bift. Eonnecting wire. Battery 14p. Г. \& P. 25p
 aer. Take dorn long telephone messageq or converse Without holding the handact. I weful uflice ash. On/ ogp. Full price refunded if not atisfied in - \&

WEST LONDON DIRECT SUPPLIES (PE/2)
69 KENSLAGTON HIGH STREET. LONDON, W. 8

WherecanIget exclusive units at lowest prices?".

h. 08 g MATCHED STEREO LOUD SPEAKERS. Here's real value in stereo speakers! Each unit comes plug. and look really smart. Power plug, and look really smart. Power
handling per speaker. 4 watts rms
ans 8 walls peak. Frequency range aus
16000 Hz . Flux density. 8.500 gauss 16000 Hz . Flux density. 8,500 gauss
Impedance: 8 ohms. Dimensions ' 9 .
 oiled walnut ROC PRICE 99.50 pair Q REALISTIC 30 WATT STEREO A superb hi-fi amplifier with all the feat Lures you be ever wanted - 10 un under
\$46.00. Saving over 61000 on the norm
 flail value. Up-to-the-minule slider controls for bass and treble a volume and balance controls Headphone socket on front panel. Push-button
input controls - magnetic phone (high/iow) tunes, aux, mono, monitor. DOC PRICE
$33 E$ Loudness pushbutton control for perfect sound at low output levels ${ }^{c} 20$ nd tape monitoring facilities. Two auxiliary $A C$ outlets. Frequency response 20 $20.000 \mathrm{~Hz}+1 \mathrm{dt}$ at full power. 15 watts ms per channel. Walnut cabinet why satin aluminium trims. Inputs. phone 2.5 mV and 5 mV RIAA. tuner faux 250 mV . Hum and noise: phone - 50 db. tuner faux - 65 dh . How s that for a specification

SOLID STATE STEREO AMPLIFIER The A. 3000 looks as good as "t sounds! Giving you a bug performance this super i
 all the controls novice ever likely to need all the controls you re ever like to need plus. signal inputs, speretion
Specifications: 18 walls rms per channal into $\begin{aligned} & \text { t ohms. Frequency response } 20-35,000\end{aligned}$ $\mathrm{Hz}(\pm 2 \mathrm{~d})$ Inputs Magnetic. Ceramic. Tunas. Tape. Aux. Tape Play. $\$ 1 z 0$ $345 \mathrm{~mm} \times 300 \mathrm{~mm} \times 130 \mathrm{~mm}$

CONSTRUCTORS' KITS

TWO TRANSISTOR RADIO KIT
Complete with solar cell E2.50

10 PROJECT

integrated circuit kit
Build a radio 63.50
solar electronic kit
20 ways of harnessing 64.50

TWO OCTAVE ELECTRONIC ORGAN KIT

Make your own music.
Complete with speaker $: 4.50$

OLSOMAM. Bes A0.WATTST
An ideal unit tor your na 3110100 suasrass system. below the normal retail price Making that AM- 195
one of 8 rita in's best hi-fi
REALISTIC SA-100R 6-WATT O
STEREO AMPLIFIER STEREO AMPLIFIER O minaluus! this nigh quality stereo amplifier measures only 9 " wide ${ }^{3}$ high of deep. And yet it has epa
ganged volume. balance and tone con +12 C. 2.45 tuner and power onfolt slide switches. The ends are oiled walnut, with match

O. R. 446 3 -WAY MATCHED SPEAKERS pocket mo 520 00 a pain they are real value for Each cal handle 16 watts rms (18 watts rms each). Each loudspeaker contains a $6 \frac{1}{2}{ }^{\frac{1}{2}}$ base unit plus tweeter. Frequency range 40 to

as on amain 4 -WATT STEREO AMPUFIER, O_{2} Here's marvellous value for someone ie alerting to set them. salves up in audio A1 only c10.50. you gat a ling amplifier in a scratch resistant metal cabinet. with a smart brushed aluminium Front banal. It incorporates separate tone and volume common to

 $20,000 \mathrm{~Hz} \pm 3$ de Output: 2 watiter.m.s. par channel into if ohm.
 41° wide

O

25-watt 3-way
ChRYSLER living audio SPEAKER CE .Sb

This high qua lily spent
3 -way sound response wite
 giving fou the ideal Itaquency raspana for Normal Price beautiful heart, oiled music listening. It
 mid range with 2^{*} concentric tweeter Power handing capacity: 25 wats rams into it hms. Overall frequency fer posse $35 \cdot 20.000 \mathrm{~Hz}$. Cabinet size: $10 \mathbf{1}^{*} \times 73^{\prime \prime} \times 14^{*}$. Exact right for matching the mast modern deco

LACE AM/FM/MPXETEREOTUMER AMPLIFIEr SBA-10 This is ana of the lowest pied stere tuner amplifiers on the market If covers the full rene of bath AM and FM broadcast frequencies. And when you're switched to FM. an indicator lights up when astoria signal is received - that's the time switch ta 'Stereo' I The SSA-18 hes all the factivites you en oct to find on tuners costing ice as much - esparaio wo l UTe. bats. treaties. balance and tuning conirgla. Solactor witch for tape. phons. AM. FM, sterno. Jack secka! on front! panel for theresa hasphonet. Frequency renge. FAm Bs. 108 MHz. AM 535.1605 kHz . Frequency response. $50.10 .000 \mathrm{~Hz} \pm 300$.
 s: sinkers Sire: 15° wide. 4$\}^{*}$ high, 8^{*} deep.
 compact unit measuring only 59° wide. 11
high and by" dep. It contains its own molas
power supply. and has a ganged volume control and separate treble controls for with channel. Spacificaluon. frequency re posse $40-17000 \mathrm{~Hz} \pm 388$ output 35 watts music power pe chanel into ohms. input, phone. 600 mV : signal. to nair rato belle than 45 dB

0

\section*{$\ln \mathrm{Cl}$} | Normal |
| :---: |
| Price E 2 |

CL SOM AM-372 IE -WATT STEREO AMPLIFIER O

 Here's a really good amplifier al a dally down-to-arth price the AM. 372 will do tor you - reproduce signals from ceramic or crystal cartridges. AM and FM Tuners, and tape recorders. and it gives you outputs for two sols of speakers, hesiphonet and tape recorders Frequency response is 30 to $20.000 \mathrm{Kz} \pm$ 3d8. Output I wetter ,mes. per channel music power into sim spates. Pons input 200 mV$121^{\prime \prime}$ wide. 31^{-}high $75^{\prime \prime}$ deed

| TTMS | |
| :---: | :---: |
| Fity FULLY ILLUSTRATED | |
| PHONE NOW FOR YOUR COPY 037-42 79033 or write to: MAPLIN ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX No s.e.e. meededl | |
| | |
| | ${ }_{\text {che }}^{\text {Monostable M }}$ |
| | |
| | SPECIAL I.C. for organ dullders, 7 stage frequency package $\left\{2.63^{\prime}\right.$ or special price |
| | tor pack of 12,225 . Why not osk us s.ostis a dota sheet |
| | |

ALARMING NEWS!

NOW for the first time ever-a direct advisory and supply service ANYONE wishing to install their own professional quality burglar or fire alarm syseem.
BURGLAR ALARM CONTROL UNIT (TyPE F) incorporating a tes button fault indicator lamp, securiey keyswitch and solid state circuitry in battery. The unit will remove or apply $\times 2$ in with provision for contro

$$
\begin{aligned}
& \text { in an alarm condition. } \\
& \text { C } 15.50 \text { plus } 30 \text { p P. \& P. }
\end{aligned}
$$

SELF activating and self contained high security bell unit (Type C). This unit consists of an all weather steel case with tamperproof cover fitted with haves, afy wise construction finished in hammer grey, housing a 6 in powered from a 6 vol (15 , plus 50p carriage.
6in HEAVY duty iron clad bell without case. 6 volt. $\mathbf{6 5 . 6 3}$ plus 30 p carriage. MAINS POWER SUPPLY unit including miniacure lead acid battery on rickle charge. 7 in $\times 5$ in $\times 4$ in. 6 volt, 49.60 . 12 volt, $411 \cdot 20$, plus 30 p P. \& P. PHOTO ELECTRIC (invisible) light ray transmitter and receiver (MR-2) each housed in a 4 in $\times 3$ in $\times 2$ in metal case complete with internal spring angle dustments, silicon transistor amplifier and 6 or 12 volt relay. 415 per pair plus 35D P. \& P.
MAGNETIC door and window contacts, state which, 75p each plus 10 p
PRESSURE sensitive mats, $\mathbf{6 2} \mathbf{2 0}$ plus 20^{p} P. \& $\boldsymbol{\&}_{1}$ P.
FIRE detectors, $\mathbf{6 4}$ plus $10 \mathrm{p} P$. \& P.
Break glass units, sirens- 12 V d.c. and 240 V a.c., self adhesive lead foil. !unction boxes, pass locks, 2, 4 and 6 core cable, snap wire, and many other items available.
Orders by post should include cheque, postal order, money order or cash by registered mail. Items unpriced and technical advice available on proformer.

> J. WILKINSON, Security Consultant Bank Road Works, Bowness on Windermere Westmorland

| ELECRONIC BARGAINS | IL WHEEL PROJECT |
| :---: | :---: |
| SOLDERING IRONS
 Recommended Our Retail Price Price | |
| Antex CCN240 ¢ | theque |
| $\begin{array}{lll}\text { Antex CN240 } & \text { ¢ } 1.70 & ¢ 1.36 \\ \text { Antex X25 } & \text { ¢ } 1.75 & 〔 1.40\end{array}$ | or home |
| STEREO HEADPHONES | |
| | Suitable for mounting on virtually all slide projectors. Kit contains: $6^{\prime \prime}$ dia. multicoloured oil wheel. \star I rpm miniature geared mains motor (available separately 80 p).
 \star Full instructions. |
| Extension Lead $¢ 1.35$ | * MULLARD * plus |
| AMPLIFIER MODULE
 Amplifier module AEIO00 3 watt, 62.37. 5 watt, 63 . | A.M. RECEIVER Suicable 470 klizz
 ceramic resonator
 TAD 100 I.C. Complece with
 circuit for |
| FERRANTI RADIO CHIP, ZN414 EI.12 | mixer, oscillator.
 i.f. amplifier, a.g.c.
 Receiver
 Receiver. |
| D.I.L. HOLDERS-14 pin, I5p, 16 pin, 16p. | stage.
 C.T. ELECTRONICS |
| COMPACT CASSETTE | 267 ACTON LANE • LONDON, W. 4 |
| C60 30p 87p | |
| C90 40p $\quad \mathbf{1 / \cdot 1 7} \quad £ 3.50$ | |
| Cassette Head Cleaners 32p
 8-track Head Cleaners $\mathbf{7 5 p}$ | In44 RADOIO
 Build a MW/LW radio using Ferranti's I.C. £1-20 inc. post.
 ELEMENT, The Trees, Barker Lane Mellor, Nr. Blackburn, Lancs. |
| Fully Guaranteed. Mail Order only Cheque or P/O to:
 P. \& P. 13p | |
| T. F. J. ELECTRONICS 25 EASTBUAY COURT LEMSFORD ROAD
 St. Albans, herts. | |

| LEAK
 TRUSPEED
 2-speed 45 and $33^{1 / 2} \mathrm{rpm}$ with plinth. cover and Shure
 LIST PRICE 669.50
 | | AUDIOTRONIC 6 POLE
 QUADRAPHONIC
 DECODER
 - 0000000
 4-channal sound from SO records and 4 channel discrete sources. It performs the CBS SO matrix decosing funcmajority of the world's manufacturers). from disc, tape |
| :---: | :---: | :---: |
| | | lour ampitifers and four speakers. will be pe pesented as left. right and tront, Uett and right back intormation |
| DIGITAL CLOCK
 EXCLUSIVELY FROM LASKY'S
 The clock meas
 in. $(H) \times 3$ in (D) loverall from front of
 drum to back of switch). SPEC.: $210 / 240 \mathrm{~V}$ a.c. $50 \mathrm{~Hz}_{2}$ tions. NOW WITH ILLUMINATED DIAL COMPLETE WITH KNOBS FEATURES. HOUR ALARM AUTO "SLEEP" SWITCH HOURS, MINUTES AND SECONDS READ-OFF FORWARD AN BACKWARD TIME ADJUSTMENT SILENT OPERATION
 | | by synthesizing tour channels: normal stereoi: 2 and channel record and playeck. The mastier vo reat contool allows overall level to be set plus a reat |
| | TMK 200 KIT | contral tor front to back balancin |
| | BUIL TOP YOUR OWN OULITY METER | Resp. $4 \mathrm{~Hz}-100 \mathrm{kHz}$, Frea. Sep. 60 dB Re Power Req. $A C 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Size 180 |
| | | |
| | | LASKY'S DOLBY 'B' |
| | is supplied with the meter scale and | T |
| | | |
| | | |
| | ohms/volt | |
| TM-1 TEST METER | measurement ranges with mirror scale, s. $\times 5 \mathrm{mmm}$ meter scale. Accuracy DCV and resistance $\pm 3 \%$. Special 0.6 V DC range | Laskys Nolse REDUCTION UNIT Uses the tamous DOLGY; B system to provide users of semil protesional and cassette recorders with way wio increase per- formance at low tape speeds by reducing tape hiss |
| 1,000 ohms/volt | , | 600 Hz rising to $6 d \mathrm{~dB}$ at 1200 Hz and 10 dB uencies above 3000 Hz . The unit is ideal |
| Laske's new look top value TM-1 | | |
| Providing big meter accuracy and pertormance Precision moverment | Decibels $-20+63$ OUtout 0.05 blocic O. Uses | tor input levels and NoISE, reduction on record and ceplay. 2 meters are provided tor instant checkng |
| calirated to $+3 \%$ of toll scaie | e. Siza $127 \mathrm{~mm} \times 76 \mathrm{~mm}$ \% | |
| Beautitlly designed and made impact resistant biack case with urite and | KIT PRICE \&5 | |
| mealic redgreentituring ohms efo | TTC. C. 1084 | |
| in | TEST METER | WITH A TEST TAPE (PLEASE SPECIFY WH |
| $1 \mathrm{Kohms} / \mathrm{V}$. 0-150Kohms Current: Decibels -1 mA .100 $10+22 \mathrm{~dB}$ Com Resist testlead | A 43 range precision mulimeter | LASKY'S SPECIAL |
| | | |
| | | avox |
| TM-5 TEST METER | | |
| 5,000 ohms/volt | | MULTIPLEX |
| Another pocket multimeter from Lasky's. The "slimline impact re | | TUNER |
| | | A re |
| sistorised equipment. Zero ohms adjustment. Butt tinish with crysta 150-300-1.200 at $5 \mathrm{~K} / \mathrm{ohms}^{2} / \mathrm{V}$ 5 K ohmisiv. OC Current 0 -300 AA . $0-300 \mathrm{~mA}$. sistance: 0 -10K ohms. $0-1 \mathrm{M}$ ohms. © Decibels -10 dB to168 dB . Complete with test leads, baltery and instructions | | sutable for us |
| | ${ }_{\text {PRICE }} \mathbf{L A S E S} \mathbf{1 1 . 5 0}$ c.sp | AFC and directional trelescopi |
| | FANTAVOX VHF | molete with battery |
| | 105 AlRC | |
| | ND | |
| | | |
| TTC C. 1051 TEST METER | with any standard AM or FM | '73 AUDIO- |
| Miniatursed version ol Model | ${ }^{18}$ | |
| | self | The great new 1973 edition of Lask's Iramous Audio The 48 newspaper size pages-many in full colour-are |
| | type | |
| | | |
| tremely high standard of accuracy on all ranges Omms zero adiustment. Colour coded scales | | |
| | | |
| | (including knobs). Complete with battery and full in tions. | |
| | LASKY'S | talar mailing list |

DIGITAL CLOCK

${ }^{\text {EXROM SNELY }}$

 Hons Now with iluminato bial complet HOUR ALAAMM AUTO. SLEEPD SWITCH OHOUSS MAOTKSAND SEONOS HEAOOF FORNAHD AND OAKHARK AMD VIIJBATION PROOF O BULT IN alablal SPECIAL OUOTES
FOR QUANTTIES
LASKY'S
PRICE
S6-50
C5p

TM-1 TEST METER
1,000 ohms/volt
is a really tiny pocket multimeter performance Precision movemen: Click stop range selection switch resistant black case with white and adjustment. $1,000^{\prime \prime}$ s IN USE. IZE

OCN 0-10.50-20
 lest lieads.
$\underset{\text { PAICE }}{\text { LASK'S }} \mathrm{£1} 99$
TM-5 TEST METER

Pructical Elecironics Classified Advertisements

SITUATIONS VACANT

Jobs galore！ 144,000 new computer personnel needed by 1977．With our revolutionary，direct－from－ America，course，you train as a Computer Operatorinionly 4 weeks？ Pay prospects？$£ 2500+$ p．a．
After training，our exclusive ap－ pointments bureau－one of the world＇s leaders of its kind－intro－ duces you FREE to world－wide opportunities．Write or＇phone TODAY，without obligation．

London Computer Operators
Training Centre
M82，Oxford House
9－15 Oxford Street，W． 1
Telephone 01．734 2874
127 The Piazza．Dept．M82
Piccadilly Plaza，Manchester 1
Telephone 061－236 2935
SOUND EQUIPMENT．Intripating and viriod joh installing and survicing publir address rimpoment．A working knowedge of andis is meded（or radio might do）．Chan driving

 Tret． 539 10134i．

EDUCATIONAL

 Postal comrow in limpinerring，Electronies Radion．TV，Computers．Drabuhtsmanship． Buildines．bitc．，FREE book from：BIE：T

SERVICE SHEETS

SERVICE SHEETS for Tolivisions，Radios． Transivtors．Tape Recorders．Record Players． etc．．from 5p witlo free Fault－Finding liuide S．A．it orders／inguiries．Catalogue 15 p ． HAMILTON RABIO，di Bohmmia Rond．St

SERVICE SHEET8，Radio．TV＇，ett，R，000 motels．（atalogur 15p．S．A．F．Muquitien． T＇ELRAY， 11 Mandand bank，Preston．

FOR SALE

Abstract

MORSEMADE EASY！！ FACT NOI FICTION．If you start Iticilli you wiil he reating annatelre and connmercial Morse ＂ithin a month（normal progress to be expected）． automatically lean to recognibe the colle RHYTHM Without trimsatug．wing cant hep it，it ens easy at Beginuer：a Sectan ouly $\mathbf{~} 3 \cdot 30$ ，complete course $\mathbf{5 4 . 5 0}$ （Overseas $\{11$ extra）details onls， $4 \downarrow$ stathp． $01-680$ 2808 G3HSC（BOX 19）， 45 GREEN LANE．PURLEY，SURREY

8EEN MY CAT？ 5,000 items．Mechanical and Bifetrical fipar，and materials．S．A．N．K．R Whis＇los，bept．l＇E，Jew Mills，Stockport．

FOR 8ALE．Complete set of＂1＇ractical Electronics＂，Nos． 64 to Der．io，in seven hinders £29＇a．n．o．A．KLA＇（＇HISG： 10 The Hawthoms．（ireat Ayton，Middlesbromph． Teesside，Tis 6 bis．
ALMOST NEW．Heath electronic multi－ meter．FET 10 MQ input，${ }^{27}$ rankes， 6 in meter．Cost 554 sell for 230 ．R．C．A．Data－ books，cosmos，linear ic＇s，transistors，applical tions e4，Oticial Moog syuthesiser mannal \＆4． Tel．C＇N B（ 0×95 ）3642×．

WANTED

TOP PRICES PAID

for new valves and components
Popular T．V．and Radio types KENSINGTON SUPPLIES
（B） 367 Kensington Street Bradford 8，Yorks．

LADDERS

LADDER8，$\because 4$ fift $\mathbf{8 9 . 8 0}$ ，carr． 80 I ，Leaflet
 ＇ESTRRE，Baldwin Ratd，Stourport．Wores． 1el．029－9：3 2．5\％4．

RECEIVERS AND COMPONENTS

Trimpus glantinain

 CALCULATOR full 4 fumetion，$\&$ digit，$£ 38 \cdot 97$ ，lata

IL digital clach

28 pin Dil $12 / 24 \mathrm{hr}$ ． $4 / 6$ digit． 811.50 ，data 9 p ． KOS／LS IC cators 2129 ea．PCB 2188 ，Сане 35 p STERE（1）
QUAD ALUIO from stereo，matrix IC．eq 67. MAGNETIC CARTRIDGE，dibmond $20-20 \mathrm{kHz}$ ， 28．MC1310P MPX FM deender， $82 \cdot 69$ ；KIT $\mathbf{2 3} \mathbf{4 5}$ ． 5 W dual amp tone／balance $50-20 \mathrm{k} \mathrm{Hz}, 45.97$ ． PW Texan．Kit less chassis，e2l－49：PAKS：Res 80p；ic／enniconductor， 87 ；caps， $22 \cdot 49$ ； 1 ransformer EQ：67．
INTEGRATED CIRCUITS：with data 741 DIL，28p： 709 TO5，21p；D1L，28p；710，33p；748，83p；723， 57p；Photodetector／amp，39p；foltage Regulator
lamp，$\overline{5}$ to $20 \mathrm{~V}, 3$ lead， $\mathrm{E1} \cdot \mathrm{67}$ ：TAD 100 RX ． 41．79；Data 16D； 3 jW AF amp， 21 ＇24．
${ }_{74 N}$ TTL：Data booklet，13p．
Gates， $7400 / 1 / 2 / 3 / 4 / 5 / 10 / 20 / 30 / 40 / 50$ ，etc， 15 p
 81．29；7490，63p；7492，69p；74121，49p； $74141,21$.
DIL SOCKETS，high or tow profle， 14 or 16 pin， 18 p ． DIL SOCKETS，high or tow profle， 14 or 16 pin， $18 p$ ． SEMICONDUCTORS
2N805S，40p．BC107，8p．BC108，8p．BC108，8p． $\mathrm{AC125/6/7/8}, \mathrm{AC127/8}, \mathrm{AC187/8}. \mathrm{AF117}$, $\mathrm{AD161/2}$ ，85p：BC167／8／9，17p；BC＇177／8／9，15p

 ME $0411 / 2,18 p:$ ME 4001，12p；ME 4102，11p： IN914，5p；OA91，5p：OA200／202，10p．RECT8： IN 4001 ， $4 p$ ；IN $4004,8 p$ ；Bridge 100V．25p．ZENLRS： BZY88 $400 \mathrm{~mW}, 11 \mathrm{p}$ ； $10 \mathrm{~W} / 51 \mathrm{~V}, 29 \mathrm{p}$ ． 8 CR ＇s 400 V 1A，23p：3A，40p；4A 55p；Triac 6A，68p． CAPACITORS： $25 / 30 \mathrm{~V}$ Electrolytic． $10 / 50 / 100 \mu \mathrm{~F}, 5 \mathrm{p}: 200 / 500 \mu \mathrm{~F}, 8 \mathrm{p} ; 1,000 \mu \mathrm{~F}, 15 \mathrm{p}$ ． DISC．22pF $1 \mathrm{w} \%$ 1
 ELECTRONIC：CAR IGNITION KIT， 26.87 ． FREE CATALOGUE，S．A．E．，Data 8ht．，6p each， CWO，P．\＆P．7p，Overseas 35p．Discount $10+10 \%$ ． P．O．BOX 29，BRACKNELL，BERKS．

8PECIAL OFFER． 100 mixed resisturs．P＇re

 ＇I＇ALEXANDERS． 16 lnverness street Lomdon，N．W．1．Tッ． 4655322 ．

MINT，BRANDED BC1690 super－gain low noise npn，10p．AD161／AD162 complenemtary pairs， 60p．Mail oriler only，${ }^{1} . \mathrm{K}$. post 5 n ．AM－ TKOS゙TX LTD， 396 selsdnn Joad，south （rovdon，Nurrev，（＇R2 oJ）

ORY REEDJNSERTS

Overall length $1.85^{\prime \prime}$（Body length 1.1° ）． Diameter 0．14＂to switch up to 500 mA at up | to 250 v D．C．Gold clad contacts． $62+\mathrm{p}$ per |
| :--- |
| doz．； $\mathbf{3} .75$ per $100 ; \pm 27.50$ per 1,$000 ; ~$ |
| 100 per | doz．： 13.75 per 100； $527 \cdot 5$

40／48 Portland Rond，Worthing，invex 090314897

PRECISION
 POLYCARBONATE CAPACITORS

FRESH 8TOCK－FULLY TESTED
Cluse tolerance．Hish stability．All 63V d．c．

2.2μ
4.71
6.81
$\begin{array}{ll}68 \mu \mathrm{~F}: & \pm 50^{\circ} 90 \mathrm{p} ; \\ 10, \mathrm{~F}: & \pm 5 \% \mathrm{Fl} 10 ;\end{array}$ $15 \mu \mathrm{~F}: \quad \pm 5^{\circ}{ }_{\mathrm{o}} \mathrm{E} 1 \cdot 80$ ； TANTALUM BEAD $\pm \boxed{20} 20 ; \pm 10$ available $0.22,0.47 \quad 1.0 \quad 2.2$ CACITORS．Values avalable $0.22,0.47,1 \cdot 0,22,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at 35 V,
$10 \mu \mathrm{~F}, 25 \mathrm{~V}, 15 \mu \mathrm{H}, 20 \mathrm{~V}, 22 \mu \mathrm{~F}$ is, $33 \mu \mathrm{~F}$ 10V， $47 \mu \mathrm{~F} .6 \mathrm{~V}, 100 \mu \mathrm{~F} 3 \mathrm{~V}$－all at 9 p each； 6 for 50 p ； 14 for $f 1$ ．Special pack 6 off each value（ 72 capacitors） 65 ．
NEW！－TRANSISTORS．BCIO7，BCIO8， BC109．Allat 9p each； 6 for 50p； 14 for CI．Al brand new and marked．Full spec．devices．May be mixed to qualify for quantity prices．
POPULAR DIODES．IN914，7p each； 8 for 50p；18 for E1．IN916，9p each： 6 for 50p；14 for C1．IS44，5p each；I！for 50p； 24 for E1．All brand new and marked．
NEW LOW PRICE -400 mW Zenerg． $12,13 \cdot 5$ ariable $4 \cdot 7,5 \cdot 6,6 \cdot 8,7 \cdot 5,8 \cdot 2,9 \cdot 1$ ， 10 ， 11 marked．Price 10 p each； 6 for 50 p； 14 for $\in 1$ ． Special offer 6 off each voltage（ 66 zeners） 44.50. RESISTORS．Carbon film $\frac{1}{2} W 5 \%$ ．Range from $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{Ms}$ in El2 series，i．e． $10,12,15,18$ High stabilicy，low noise．All at lp dech． 8 for 10 of any one value； 70 p for 100 of any one value．Special development pack－ 10 off each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{Mn}$（ 730 resistors） 65 ．
440 V A．C．CAPACITORS． $0.1 \mu \mathrm{~F}$ ，size 1 $\frac{1}{2}$ in，25p； $0.25 \mu \mathrm{~F}$ ，size 1 各in \times in，30p； 0.47 and $0.5 \mu \mathrm{~F}$ ，size 1 itin \times tin， 35 p ； $1.0 \mu \mathrm{~F}$ ，size $2 \mathrm{in} \times$ in 45p；2． 0 AF ，size 2 in X lin 75p．
SILICON PLASTIC RECTIFIERS I．5A－ Brand new wire－ended DO27．IOOPIV at 8 p each or 4 for 30p；400 PIV at 9p each or 4 for 34 p； 800 PIV at 14 p each or 4 for 50 p．
5 p post and packing on all orders below 65. V．ATTWOOD，DEPT．B6，P．O．BOX B， ALRESFORD，HANTS

Abstract

TAPE AMPLIFIERS $\mathbf{6 3}$ Use $2 \times$ ECC83，EL84，EZ80．Low impedance operated single mocor non－standird enoid Tin．x tin．speaker．All in polished oak cabinet，í3（£1）with ect． 0 （15p）： 2005% Hi RESISTORS： $3005 \%, 60 \mathrm{p}$（15p）：200 $\%$ Hi Stabs， 60 p （12p）： 10010% and $2 \% 60 \mathrm{p}$（8p） 100 metal axide， 600 （ 8 p ）One of each， 62 $(25 \mathrm{p})$ $33 \mathrm{k}, ~$ $82 \mathrm{k}, 100$ for $50 \mathrm{p}, ~(25 \mathrm{p})$. $33 \mathrm{k}, 82 \mathrm{k}, 100$ for 50 p （ 25 p ）．Meters： 2 tin ． 500 V d．c． 40 p （ 10 p ）： 2 tin． 10 V a 40 p （ 10 p ）． 500 V d．e． $40 \mathrm{p}(10 \mathrm{p}) ; 2 \frac{1}{\mathrm{t} i n .} 10 \mathrm{~V}$ a．c． 40 p （ 10 p ）； ${ }^{2} \frac{1}{2} \mathrm{n}$ ． 100 V rect．（5mA FSD）．60p（10p）； $5 \frac{1}{\frac{1}{2} \mathrm{in} \text { ．}}$ Ferric chloride． $11 \mathrm{~b}, 40 \mathrm{p}$（ 15 p ）： $101 \mathrm{~b}, 63.50$（ 50 p ） HA709C，25p；$\mu A 741 \mathrm{C}, 25 p$ ； 2 N 3055 － 2 p ； $350 \mathrm{~V}, 10 \mathrm{p}, 10$ for $75 \mathrm{p}(25 \mathrm{p})$ ； $8 \mu \mathrm{~F} / 2,500 \mathrm{~V}, 62$ （40p）；Reed switch unit，contains 31250 V $\frac{1}{2} A$ reeds mounted round a drum with magnet 12 p （35p）；reeds， $4 \mathrm{p} . \mu \mathrm{A} 723 \mathrm{C}, 40 \mathrm{p}$ ； 2 N 1613 ． TEST GEAR：TFI44G sig．gen．，recalibrated as new． $\mathcal{E 2 0}(\mathcal{E})$ ；decaderes．box $0-9999$ ohms． ET．50（ 50 p ）：BSR audio oscillator， $0-16 \mathrm{kHz}$ GREENWELD ELECTRONICS（PE4） 24 GOODHART WAY，W．WICKHAM， KENT．Tel． $01-777$ 2001．S．A．E．list．Post in brackers，small parts 3 p ．Callers welcome． Please ring first（up to $10.30 \mathrm{p} . \mathrm{m}$ ．）

RADIO \＆TELEVISION AERIAL BOOSTERS 82．95，five television valves 45p．50p bargain transistor packs，bargain $\$ 1$ resistor and cap－ acitor parks．i＇HF－VHF televisions $\mathbf{8 7 . 5 0}$ （＇arr，f1－50．S．A．E．for 3 leaflets．VEL（＇O） ELLECTRONIC＇S，Bridge St．；Ramshottom， Bury，Laurs．

POLYSTYRENE CAPALITORS. $125,-100, \quad 120$, $1,50,180,220,260,2,200,2,700,3,300,3,900,5,600,6,500$, M.200, 0.01, $00112,20 \mathrm{p}$ dize, po4t $10 \mathrm{p} .0 .015,0.018$, $0 \cdot 022.0027,0033$. 30p doz, post 10 p , whes bought with other gimath poust jain
COMPUTER PANELS, AMERICAN, $4-60 \mathrm{p}$, post $12 p$

UNTT WITH 4LAZ POT CORES + CAPS, 50p. PDut J.3p. LAE PV. twipt . 20p, now athl boxed, 30p, C.P.
ORP12 ON PANEL EX. EQUIPT., 35p. ($\%$.1. M.C.
 BANK OF FIVE WITH FIVE C407 DRIVER TRAN-
 WITH RESET CROUZETGEARED SYN. MOTOR, uains "peratini RESETTABLE CpUNTERS DNM INM, 5-FIGURE
 phuer Riv nu, (pee, 50p, pot L1p. 22 POSITION STEPPING SWITCH, a
80 p, put 1
ASSORTED COMPONENTS, $7 \mathrm{th}, ~ £ 1.50, \mathrm{C}^{\prime} \mathrm{Y}^{\prime}$
ASSORTED COMPUTER PANELS, $91 \mathrm{~h}, \mathrm{f1.56,T}$, MIXED POLYSTYRENE, S/MICA CAPS. 40145 COPER
4142
300

J.W.B. RADIO

1/wil ordiry rinty

Modern Computer Panels. with TOS and plastic transistors, 6 for $£ 1$, 15p p. \& p.
P/C Board S/S $5 \frac{1}{2}$ in $5 \frac{1}{2} \mathrm{in}$. 10 for 50p ; 15p p. \& p.
Transformers, $7.5-7.5 \mathrm{~V}$ app. $\frac{1}{2} \mathrm{~A}$,
60 p, p.p. 180 18V 200 mA | 24 V $40 \mathrm{~mA} 70 \mathrm{p}, \mathrm{p} . \mathrm{p}$.
Potted Transformer, 100001000 V 250 mA, Brand New, E6, p.p.
F.M. Tuner, with RF stage with AGC. 3 plug in transistors neg earth. Size $2 \frac{1}{4}$ in 2 in $\frac{1}{\frac{1}{2} i n . ~ W i t h ~ c i r c u i t, ~}$ El-25, p.p.
Crouzet Geared Motors, 240 volt $10,15,30$ or 60 rpm , new, $£ 1.40$, p.p. Transformers, 52-0 52VIA + 22-0$22 \mathrm{~V} 0.2 \mathrm{~A}, \mathrm{E2}$, p.p. 34-0 34V 2A 22-0 22V'-2A, £2, p.p.
3EGI Scope Tube, new, fl 75 , p.p. UHF Tuners, transistorised, $£ 1 \cdot 50$, p.p.

Veroboard 0.14 in . $2 \frac{1}{2} \mathrm{in}$. 10 for $\mathrm{El}+$
15p p. \& p.
R.T. SERVICES (Mail order only) 77 Hayfield Road, Salford 6

100 WATT AMPLIFIER

Fully protected, transformerless, 9 transistor circuit. Input 500 mV . Output into 8 ohms. 0.1"., distortion.
Printed circuit board and full instructions. $\neq 1.45$ p - 10 p P. \& P. S.a.e. for list of component bargains
EDMUND8 COMPONENTS, 134 NORTH END ROAD, LONDON, W14.
(Mailorder only)
5-N-Channel FETs 3819E—£I
Full specification devices complete with circuit details for building voltmeter, umer, ohmmeter. etc.
Send $10 p$ for full list of field effect transistors and other top
gain prices.
REDHAWK SALES LTD.
45 Station Road, Gerrards Cross, Bucki, MAIL ORDER ONLY

TV LINE OUT-PUT TRANSFORMERS
Tidman Mail Order Ltd, 236 Sandycombe
Road, Richmond, Surrey TW9 2EQ 01.9483702

NEW GUARANTEED DEVICES ORDER WITH CONFDENCE

Discounts begin at 10% for $10+$

JEF ELECTRONICS (P.E.2)

York House, 12 York Drive, Grappenhall, Warrington WA4 2EJ, Mail Order Only. C.W.O. P. \& P. 9p oper order. Overseas ofp.

BRAND NEW COMPONENTS BY RETURN.
 subininature bead-tyle tantalums, $0 \cdot 1 / 35 \mathrm{~B}$, $11.22 / 35 \mathrm{~V}, 047 / 35 \mathrm{~N}, 1 / 35 \mathrm{~N}, 22 / 35 \mathrm{~N}, 4.7 / 35 \mathrm{~V}$, 10/16V. 8p, Mylat Film 1005, (0.601. (0.0102, $10 \cdot 005,0 \cdot 01,0 \cdot(0)-2 p$. $\left(0 \cdot 114,0 \cdot 05,2 \frac{1}{2} p\right.$. $0 \cdot(068,0 \cdot 1$. 3p. Polvistrme ti3S. 10pot-10.100pf.. 1612 prifes, 2p. Mullarl miniaturn (arton Film Resistors. E12e serips, third watt $152-10$ MS2.

COMPONENTS-Integrated ('irenits, IDigital bisplays. Dionles. Resistors. Cinacitors.

 18:3 618

MISCELLANEOUS

AT LAST YOU CAN TRANSMIT AND

 FORGET ABOUT LICENCE EXAMINATIONSbecause this Ministry a
kit does not use R.F. Your transmissions will be virtualiy SECRET since they won't be heard by conventional means. Accualty ic's TWO KITS IN ONE because you get the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGELANGUAGE LABORATORIES, SCOUT CAMPS', erc.
GET YOURS! SEND 6550 NOW (S.A.E. for details TO: 'BOFFIN PROJECTS' DEPT. KE2OIO STONELEIGH, EWELL, SURREY

ENAMELLED COPPER WIRE | S.W.G. | 116 Reel | $\frac{1}{2} / 6$ Reel |
| :--- | :--- | ---: |
| 1014 | $£ 1.15$ | $65 p$ |
| $15-19$ | $£ 1.15$ | $65 p$ |
| $20-24$ | $£ 1.18$ | $68 p$ |
| $25-29$ | $£ 1.25$ | $75 p$ |
| $30-34$ | $£ 1.30$ | $80 p$ |
| $35-40$ | $£ 1.40$ | $85 p$ |
| The | | |

INDUSTRIAL SUPPLIES

102 Parrswood Rd., Withington, Manchester 20 Telephone No. $061-2243553$

AUDIO KINETIC8: X-40, X.fit. X.100, alld sperial equipment amplifiers to he released soon bor advance infenmation write:

FREE! FREET FREE! FREE!
WITH OROERS FOR NIP-E-BOARD FOR P.E. projects (to reach us by dan. 31) we will send an
extra board with compliments. This versatile and superior quality standardised printed circuit range was reviewed in Market Place, October ssue.
Examples of P.E. projects that can be made on NIP-E-BOARDS. Prices in brackets are for drilled boards. Planning chart supplied.
Hooting Owl, ntercom Oscillator, srbp IIEA 16p (30p), glass fibre IIEB 19p (35p).
Rally Driving Game, Square Wave Gen. A.F. Sig. 12EB 32p (62p).
Designing with I.C.5, srbp 21 EA 16p (30 p), glass fibre $19 p$ (35 p).
IC Intercom Amplifier, srbp 32EAS 30p (58p), lass fibre 35 p (68 p).

Beaconsfield Road st Aiban Ber,

BEST EVER-INTERNATIONAL 230 VOLT A.C. "MAINS" PERFORMANCE from 12 volt car batcery. R.C.A. INTERNATIONAL 230 volt A.C. POWER UNIT. Wonderful 230 volt a.c. performance with low battery drain. Marvelious for A.C. Fundreds of makes and rypes of 200/240 volt A.C. and UNIVERSAL A.C./D.C. APPLIANCES. Can be used for recharging battery by using an ordinary motorist's 4 amp battery charger. Total weight of unit 21 lbs. New improved model only 66.90 , plus $£ 1$ delivery. C.O.D. with pleasure. 7 days approval against cash.
Dent. PE BROADWAY Distributors, The Generator Centre, House of Time, 273 Broadway, Rossall, Fylde, Lancs.

Build the Mullard C.C.T.V. Camera Kits are now available with comp rehensive construction manual (also available separately at 65p.)
 CROFTON ELECTRONICS 15/17 Cambridge Road, Kingston-on-Thames, Surrey KT1 3NG

FIBRE OPTICS

FLEXIBLE LIGHT PIPE used to convey light to inaccessible positions for inspection, panel FIBROFLEX Type i glass fibre flexible light conduit 1.14 mm active dia. bunde sheathed in P.V.C. Prices per metre (U.K. post free): 1-4, 70p; 5-9, 55p; $10+, 40 \mathrm{p}$. 25 metres 66 per reel. CROFON (Trade mark of Du Pont) Type 1610 plastic flexible light condurt now
64 filaments. Active dia 1.80 mm
Pricesper metre: $1-4$, fi $20 ; 5-9, \mathrm{f1}$; $10+80 \mathrm{p}$ Prices per metre:
25 metres $£ 16$ per reel.
Send 5 . A. E. for full range of products, price list and literature.

FIBRE OPTIC SUPPLIERS
P.O. BOX 702, LONDON W 10 6SL

MUSIC

If your interest is in SYNTHESISERS and other ELECTRONIC MUSIC projects, you need our 1973 catalogue of circuit assemblies and units. Detailed and inform
TAYLORELECTRONIC MUSIC DEVICES
P.O. Box 42, Chester CHI 2PW

CIRCUIT BOARD ETCHING KITS, full
 GOMLASY, 1:2 ('imbridge Road, Nt. Alhans llerts.

ELECTRONICS FANATICS

Whather beginner or advanced- We ects.
Have you ever wanted to build A MACHINE THAT LEARNS? Or Derhaps make a TEACHING DEVICE? Maybe ycu FANTASY MACHINE? How about "Thing", capable of REPRODUCING TSELF: Whacever your electronic turn-of-mind, there's just GOT TO BE LOADS O INFEREST YOU in the science-fiction world of BOFFIN

EET YOUR CATALOGUE - SEND JUST NOW! (S.A.E. for details)

TO: BOFFIN PROLECTS
4 CUNLIFFE ROAD STONELEIGH, EWELL SURREY

Designs by GERRY BROWN and JOHN SALMON and presenced on TV.

DIMMIT

range of light dimmers

standard wall mounting models
 module only: 400 W E2.80 IKW $£ 3.60$ Slider: 400W 14.35 IKW $£ 4.95$ module only: $400 \mathrm{~W} E 3.50$ IKW $E 4.05$

2 kW Slider module now available Send 10 p for complete catalogue of Dimmits. Orders: add 10p P. \& P. for each dimmer

YOUNG ELECTRONICS

54 Lawford Rd., London NW5 2LN 01-267 020
METER REPAIR8. Ammetors, voltmettrs, multi-ramge maters, rote, semblo Mbitik
 N1601)S.

CON8TRUCTION AID8, Norms, muts. spmeers

 "te., ill small quantitios. Ahmanimim panels pumalod ta spees. ur patin shoet stopplied Fascia pateels etched aluminimm to individual requirements. I'rinted circuit hoards-masters,

 (t1-Avoll, Warwk

BYWOOD STOP PRESS
RADIO CHIP (Tomorrows World $\begin{gathered}\left.\text { Tid Nov., } 1972)^{2}\right)\end{gathered}$
AM 10 trans TRF circuit in TOIS package.-ptus six components equals one radio, pfice $\mathbf{i} \mathbf{i}-\mathbf{2 5}$
including P. \& P. including P \& P
$1 \mathrm{pBw}, 2 \mathrm{p} 4 \mathrm{w}, 4 \mathrm{p} 2 \mathrm{w} 4$ (a) 1 p 2 w
75p 80p 85p 90p $+12 p$ P. \& P
NEW LED PRICES:
TIL 302 Large 7 seg display
TIL 312 inch 7 seg display $\quad . \quad . \quad 63.50$
TIL209 IED point
P. \& Purfor

NOMOREROOM-CATALOGUEISP-NOWI

ELECTRONICS
181 ebberhs road, hemel heupstead, herts.' 044262757

HOLIDAY FOR BOY8, $14 / 16$ years. Simmmer 1973. Tuition and practical work in electronics (and tape recording), engineering (k arting), and photography. It days in Norfolk, W17.50. $^{\text {Whe }}$ Write for free brochare: INTER-N('HOOL CHRISTLAN FELLOWSHIP, c/o 1 Hıbhard

THERMOCOUPLE Wire Junctions Hase Metal, to real to 12000 entigrade. For Kiln P'yrometers. 50 p eatch. 13 llarwent Drive. Hayes, Middx.

8TROBO8COPE8 built, tested in smart case. Variable 1-40 F.P.S. OS Joule. special offer $\& 10 \cdot 20$. Instructions supplied, spectal, 32 Church Road, London, S.E.19.
FOR ALL your Electronic Component require ments. send for free list to B.C. ELECTR ON1 STPPLIES, 7 Regent Road, Huddersfield, HH14NR.
Touch Sensitive Envelope Shapers $£ 12.50$
Keyboards from $\quad £ 12.00$
Electronic Piano Units $\quad \mathbf{6 6} 50$
Transistor I'C Oscillators 8 octave $\quad £ 5.50$
Percussion Units $£ 4.75$
Transistor I'C Oscillators 4 octave $£ \mathbf{\$ 5 0}$
Send 15p for Brochure

DIGICHORD

Duffryn Giywd House, Elm Road, Tokers Green, Reading, Berks. Reading 479226

12 VOLT FLUORESCENT LIGHTS

(as lillustrated)

Beat power cuts. Be independenc. Ideal for caravens, tents, emergency lighting, ecc. Works anywhere where 12 v is available. Guaranteed for six monehs. Ready to use at:
12ins. 8 watt $£ 3.60$ post paid 21 ins. 13 watt $£ 4.60$ post paid 3ALOP ELECTROWICs, 23 WYLE COP BHREWBEURY, BHROPSHIRE. Callers welcome. For lists or enquiries, large,s.a.e.

PSYCHEDELIC MINI-STROBE
 A very POWERFUL, POCKET-SIZED STROBE-LIGHT that is SELF-CONTAINED and you can take anywhere. Go to parties DAZZLING PSYCHEDELIC EFFECTS and STOP-MOTION FLASHES. Boffin's MINI-STROBE kit constitutes a fully solid-state electronic device which is COMPLETE with FUTURISTIC casel reflector, unit, printed-circuit board. extra is a battery whilamp-the oniy extra is a battery which you can buy builr in a few wours whing can be easily A veritable FLICKERING FASCINATOR! Adjustable flash-rate
 GET ONE (Or two) NOW and BEGIN and PARTIES with your own POCKET. LIGHTNING!
 SEND $\mathbf{1} 1.95$ for YOUR MINI-STROBE, to:
 Boffin Projects
 4 Cunliffe Rd., Stoneleigh, Ewell, Surrey

BOOKS AND PUBLICATIONS

| * Recent Publications KILRIMONT BOOKS
 * No American Reprints
 10 I.C. Projects (Marston) $\ldots \$ 1 \cdot 20$ (*5p post) lestronic Designer's Hand-
 book (Hemingway) $\$ 3 \cdot 40$
 omputer Science (Harvey) .. $\mathbf{6 2} \cdot 00$
 nderstanding Electronic
 Components (Sinclair) .. $\$ 3.50$
 Many others. S.A.E.for Lists.* Postfree unless dicated.*
 KILRIMONT BOOKS (D), Kilrimont
 House, London Road, Braintree CM7 8 QL | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |

THE PICTURE BOOK METHOD OF LEARNING

BASIC ELECTRICITY 5pts $£ 4.50$. BASIC ELECTRONICS 6pts $£ 5.40$. BASIC TELEVISION 3 pts $£ 3.60$
Postage and Packing included)
The Pictorial Approach Manuals assure the quickest and soundest method of gaining mastery over these subjects. The clear and concise illustrations make study a real pleasure. Your money refunded if not completely satisfied is your 100% Guarantee. Free Illustrated Prospectus on request.
Send now to SELRAY BOOK CO., 60 HAYES HILL, BROMLEY BR2 7HP

3T를 IC DECODER

HIGH PERFORMANCE PHASE LOCKED LOOP (as in 'W.W.' July '72)
MOTOROLA MCI3IOP MOTOROLA MCIJIOP

EX STOCK DELIVERY

Specn. Separation: $40 \mathrm{~dB} 50 \mathrm{~Hz}-15 \mathrm{kHz}$. Distortion: 0.3%. I/P level: 560 mV rms. O/P level: 485 mV rms per channel. Input impedance: 50 k . Power requirements: $8-12 \mathrm{~V}$ (16 mA . Will drive up to 75 mA stereo 'on' lamp or LED.
KIT COMPRISES FIBREGLASS PCB
(Printed and tinned), Resistors, I,C., Capacitors, Preset Potm. \& Instructions. Only $£ 3 \mathbf{5 0}$ post free. LIGHT EMITTING DIODE (Red)
Suitable as stereo 'on' indicator. For above with panel mounting clip and instructions. Only 35p + p.p.
MCI3IOP only $\notin 2.77+$ p.p. 6 p.
MC13IOP only $\mathbf{E 2 . 7 7}+$ p.p. 6 p
IN4001 50V IA RECT. DIODES Full 5 Lerificer
709' DIL IA PIN OP AMPS. FUll Specification Devices. ONLes. ONLY 5p each
Fi-Comp Electronics
BURTON ROAD, EGGINTON, DERBY DE6 6GY

I R.P.M. MOTOR
Smiths. 240 V 50 cycle mains worklag. Ideal motor to drive clock mechanisma. Price 21 each 3 PIN PLUG AND SOCKET
Our Ref. No. P801. Flat pins American styie rated at 10 A 250 V . Socket panel mounting. Plug is white and intended for flex. Useful where non etandard power outlet is required. Also
auitable for speaker leads, etc., etc. Price 25 p suitable
THERMOSTAT WITH PROBE
Our Ref. No. TH01. Made by Ranco. Range $0-107^{\circ} \mathrm{C} 18 \mathrm{~A} 250 \mathrm{~V}$ switch. Joined to a loin probe by approx. 40 in of capllary tubing. 1 hole fixing. Normal control spindle 85 p each
THERMOSTAT WITH PROBE
our Rel. No. TH02-As THO but the range is long. Price 95 p each.
PROCESS SWITCH
Gur Ref. No. P301, 6 switches some of whict are changeover types. All rated at 10A. Operated
by motor which makea 1 rev every 3 mina. by motor which

PUSH PUSH SWITCH

our Ret. No. 804. This is fitted to tablelamps, etc. Superior quallty and reliable (Leviton). Conservatively rated 1 A 250 V . Has 2 flex leada ttached messuring 40 in and 12 in each respecIvely. Price 10p each

RE: TIMAC CLOCKS

Advertlaed last month we now have obtained some continental plugs which will fit these blankets are required. Price 30 p each with 6 ft flex attached.
INDUCTION MOTOR
Made by G.E.C. Normal type with approx. 1 in of $3 / 8$ apindle. Standard fixing in stack. Brand new tocks available.
CLOCK WITH 25 AMP SWITCH
8miths Mains driven clock will cost over 26 n normal shops-but for less than $\mathbf{s} 2$ you can have a 8miths clock and a
MINIATURE ROCKER SWITCH Helf-fxing into hole size approx $\operatorname{lin} x$ tin by tatnous Frefich each.
ROCKER SWITCH
Our Ref. RS02. 13A selt-flxing into hole approx. In $\times \mathrm{in}$. Made by the Carr Fastener Co. Very ellable. Price 8p each

PHOTO TRANSISTOR

OCPF0-ideal for burglar alarms and similar applica-
tions. Price 65 p each.
EXIT SIGNS

EXIT

One of our customers easily our hox signs can aigns. Thene are to exit ted having a 20 W fiuorescent lamp with coar plastic. Directly onto this you can atick down the letters available at most stationers. There \mathfrak{j} room inside the box for a battery and low volt amp in the case of power failure. Size of aign is 2 ft high $\times 14 \mathrm{in}$ wide $\times 5 \mathrm{in}$ deep. Solidly mad roln sheet steel and hammer finished in enamel. Price 53.50 plus 50 p carriage per 200 miles.
6 PIN PLUG AND SOCKET
And nietal case with flex grip for one end, this ther part fitting to the equipment. Price 40 p per paír-10 pairs as-60.
LIGHT DIMMERS
We regret that through increased costs our 1 kW model has now to be increased to $\$ 2.95$

LIGHT DIMMER BOX

Another festure we can supply is box and 13 A socket, this makes dimmer suitable for control of portable lights and equipment. This price is 450 extra.

TAPE HEADS

We are gradually obtaining nore information bout the Truvox tape heads we have, we are ingenlous way so that winding may be coupled either in parallel or in seriea depending whether high or low impedance is required. We also have matching erase heads and now offer these in pairs, 1 record and 1 erase head. Price of th track 45p per pair, 4 track 75 p per pair. Pai

REED SWITCH COILS
These are solenoids wound on moulded tormera of the correct shape and dimensions to tak standard reed switches. They have printed circui board mounting. 8 ix types avaitsble:-
RCl takes 1 reed-Operates $10-15 \mathrm{~V}$ - 600 ohm 80 m
 tendard reed ewitchea available 10 p each of 10 for $90 \mathrm{p}, 100$ for $28-50$.

CENTRIFUGAL BLOWER
Miniature mains driven blower centrifugal type blower unit by Woods, powerful but specially induction motor with specially buil tusnone bearings. Overall size of blower is spprox. 4 in $\times 4!$ in $x 4 i n$. When mounted by its flange air is blown into the equipment but to suck air out mount it from the centre using a clamp, ideal for cooling electrica equipment, or fiting into a cooker hood. nlm drying etc., etc. A real bargain at $81-85$.
MULLARD I.F. MODULE
This is a fully gereened intermediate frequency module for amplification and detection of f.m. signala at 10.7 HMz and a.m. signals at 470 kHz . The first stage is used as an
i.f. amplifter for f.m. and a sell oscillating mixer for a.m

100 for $268 \cdot 50$. With connection diagram.
TANGENTIAL HEATER UNITS

This heater unit is the very latest type, most and blower heaters costing \& 15 sitd in Hoover have a few only. Comprises motor, impeller 1, 2 and 3 kW and with thermal ang switching 1,2 and 3 kW and with thermal aafety cut-out Can be fitted into any metal lined case or cabinet Only need control switch, $\mathbf{8} \mathbf{8} 50$. 2 KW Model as above except $2 \mathrm{kilowatts}$, Don't miss this. Control $8 w i t c h, 85 \mathrm{p}$. P. \& P. 40 p

ELECTRIC TIME SWITCH
Made by smitha these are A.C. mains operated. NOT CLOCKWORK. Ideal for mounting on rack or shelf or can be built into box with 13 A nocket. 2 completely adjustable time periods per 24 hours, 5 A change-over contacts will switch cl rcuit on or off during these periods

COMPUTER TAPE

${ }^{\circ}$2,400ft of the Beat Magnetic Tape money can buy-users claim good results with Video and sound. 1 in wide $41-00$ plus 33p pos and insurance with cassette. Iin wide 21 plus 30 p post an insurance with cassette. tin wide 85 p plus 25 p post and insur ance with cassette. Spare spools and cassettes-lin 75p, in 75
each plus 20p post and insurance.

MULLARD 4 WATT AMPLIFIER EP 9000

8uitable for mono or stereo aystems. Its output approx. 4 W speech or music into a $12-15 \mathrm{ohm}$ speaker. Power requirements 24 V iow. Harmonlc distortion at typical listening level is less than 2%. Frequency response at typical listening level 50 Hz to 16 kHz . Totally enclosed in moulded case size 3 tin $\times 24 \times 1$ in with screw terminal connections. A fantastic bargain at only 81.25 whife stocks last. Don't miss this-it's one of our best bargains ever

HORSTMANN "TIME AND SET" SWITCH (A 30A Switch.) Just the thing if you want to come home to a warm house without it cosking you a iortune. You can delay the switch on time of your electric fires, etc., up to 14 hours from setting time or you can use the switch to give a boost on period ap ice probably around $£ 5$. process. 81.60 p $\&$ ins 23 p price 21.50, p. \& inn. 23p.

HONEYWELL THERMOSTAT
Made by Honeywell for normal air temperatures
$40^{\circ}-80^{\circ} \mathrm{F}$ ($0-25^{\circ} \mathrm{C}$). This is a precision instrument with $40^{\circ}-80^{\circ} \mathrm{F}\left(\tilde{0}-25^{\circ} \mathrm{C}\right)$. This is a precision instrument with 1.5° F. A mercury switch breaks on temp. rise-the switch is operated by a coiled bi-metal element and adjustable heater is incorporated for heat anticipation. Elegantly styled and encased in an fvory plastic case with clear piastic windows thermometer above and switch setting scale below-rize approx. $3.8 \mathrm{in} \times 3.2 \mathrm{in} \times 1.4 \mathrm{in}$ deep-can be mounted on conduit box or directly on wall. Price $21-25$ each or ten for 811.25 .

LIGHT CELL

Almost zero reaistant in sunlight incresses to 10 kohms in dark or dull light, epoxy reain sealed. Size appror. lin dia. by tin thick. Rated at 500MW, wire ended. 43p with circuit. Also ORP 12 light cell 46 p .
PAPST MOTORS
Est. 1/40th h.p. Made for $110-120 \mathrm{~V}$ working, but two of these work ideally together of our standard 240 V malna. A really beautiful motor, extremely
quiet running and reversible. \$1-50 each. Postage quiet running and reversible. 23 p , two 33 p .230 V model $\%$.
RADIO STETHOSCOPE
Easieat way to fault find-traces signal from aerial
Easiest way to fault find-traces signal from aerial
to speaker-when signal stops you've found the to speaker-when signal stops you've found the amplifier, anything-complete kit comprises two special transiators and all partis including probe tube and crystal earpiece. et-twin atetho-set instead of earpie
750 extra post and ins. 20 p .

DISTRIBUTION PANELS

Just what you need for work bench or lab.
$4 \times 13 \mathrm{~A}$ sockets in metal box to tak standard 13A fused pluge and on/off switch with neon warning light. Supplied complete with 6 feet of flex cable. Wired up
 ready to work, 28-25 plus 23p P. \& I.

MULLARD AUDIO AMPLIFIERS

All in module form, each read nection tags, data aupplied
Model 1153500 m watt power output 65p
Model 1172750 m watt power output 85 p
Model EP9000 4 watt power output $81 \cdot 45$.
EP9001 Twin channel pre amp for atereo $\mathbf{2 1 , 8 0}$. 10% discount if 10 or more ordered.

Where postage is not stated then orders over $L_{5} 5$ are poat free. Below L_{5} add 20 p. Semiconductors add 5p post. Over \&1 post free.
S.A.E. with enquiries please.

CAR PANEL SWITCH
Our Ref. No. 802. Arco made
Has long fat ended toggle, black
250 V and is double pole on/oft.
Listed at 45 p . Our price 28 p each
CAR PANEL AUTO SWITCH
Ref. No. 803. Again a flat ended toggle. Made by Arrow. A 3 position double pole changeover witch centre off for auto serials, reversing

3 PIN REVERSE PLUG \& SOCKET Our Ref. PSO\%. For bringlng live leado to equipment. All brown bakelite con-
atruction, rated 10 A 250 V . Price 850 per pair.
13 AMP JUNCTION BOXES
Made to take 7029 cables so ideal for ring mains.
Made to take 7029 cables
Price 8p each or 10 tor 78p.

SPIT MOTOR

200-250V Induction Motor, driving a Carter gear box witn
l \dagger in of output drive ahaft running at 5 revs per minute. intended for roastling chickens also suitable for driving models -windmills, coloured diac lighting effect, etc., etc. 21.85 plus
20 p post and insurance.

PANEL NEON INDICATOR

ype self-fixing intu whong Suitable for sonperox price 13 p eacll.

MAINS TRANSISTOR POWER PACK
besigned to operate transistor set anul aluplitiers. (dlass 13 working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP PPy and athers. Kit couprises. Haine trans ormer rectifier, gawothing and load resistor, condensers and instrictions. Real snip at only \&1, plus:20p postage.
carriage extra at cont.
INSTANT START UNITS
For 2ft tubes. Philip or Bmart d Brown in a tray complete with tube clips a
Price $81 \cdot 50$ each or 10 for $\$ 18 \cdot 60$.

FLUORESCENT TUBES

Standard types-Bipin ends, ideal pelmet lighting as well as for standard replacements-18in 15 W ,
$24 \mathrm{in} 40 \mathrm{~W}, 36 \mathrm{in} 40 \mathrm{~W}, 39+$ in 40 W . All first grade ubes oftere at one price- 8.50 per box of 24 e. less than 15 p each. If not collecting then please add 50 p per box per 200 miles.
DIGITAL DISPLAY
Panel mounting unit measuring approx. 31 in
 f the display deep. size approx. $1 \mathrm{lin} x$ in x in. uight up to o-9. Ei and in perfect order.

DIGITAL SWITCHES

Small type 8.T.C. number SW21/630CAA. These are a snap in fit hole approx. 1 tin \times in. K nob engraved 0-9. Gold plated contacts 1 pole 10 way. that they may be stacked in rowe. Price 78p each.

6 DIGIT COUNTER
Operated by 240 V a.c. mains through resiator or direct from 115 V a.c. or from 80 V d.c. Made urface mounting. 8 ize approx. 3 tin $\times 1$ ifin \times $2 f$ in. Price 21 each. 10 for 29 .
COLOURED 13 AMP SOCKETS standard Fluph mounting available in the following colours: Yellow, Green, Grey and Red. These made by Ward and Goldstone. Uneful on control panels. Price $20 \mathrm{peach}, 10$ for $81 \cdot 90$.

WATERPROOP HEATLEG ELEMERT
26 yards length 70W. Self-regulating temperature control. 50p poat free.

BUILD A

 PROFESSIONAL SYNTHESISER

You too can build a professional synthesiser like the one illustrated using the professionally-proven range of Dewtron modules. NEW MODUMATRIX modular matrix system replaces clumsy patching 3 and 4 octave keyboards and contacts.
VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt/octave voltage control. £22 each or $£ 25$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touchsensitive playing when used with VCO-2 signals. $£ 15$.
Modules (except VCO-1) guaranteed two years.

using 1 PM/ (1)!

(Regd. Trademark)

PROFESSIONAL MODULES

CASH SAVINGS

by buying modules and parts in bulk! All modules are available separately:
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $\mathbf{£ 1 0} \mathbf{5 0}$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £12. Voltage-controlled Phase PH 1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £9. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls $£ 4.50$. REVERB Module and spring unit $£ 15$.

With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to a leading group. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.I. £330. Send 15 n for full catalogue of our famous musical effects.

D.E.W. LTD.
254 Ringwood Road, FERNDOWN, Dorset BH22 9AR

save on FERRANTI

All devices Top grade Brand new, Fully guaranteed.

| BFS59 | 13 p | ZTX313 | 10p | , | - | * ZENERS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BFS60 | 18p | ZTX314 | IIp | ZS120 | 7p | KSO30A | |
| BFS61 | 18p | ZTX320 | 28p | ZS121 | 9 p | KSO33A | |
| BFS96 | 13p | ZTX330 | 13p | ZSI22 | $11 p$ | KS036A | |
| BFS97 | $21 p$ | ZTX331 | 14p | ZS123 | 14 p | KS039A | |
| BFS98 | 18 p | ZTX382 | $11 p$ | ZS124 | 16p | S043A | |
| ZTX107 | $8 \mathrm{8p}$ | ZTX383 | 13p | ZS140 | 22p | KS043A | |
| ZTX108 | 7p | ZTX384 | 16p | ZS141 | 39p | KS047A | |
| ZTX109 | 10p | ZTX450 | 15p | ZS142 | 30p | | |
| ZTX114 | 20p | ZTX451 | 15p | ZS170 | 9p | S056A | |
| ZTX212 | 12p | ZTX500 | 10p | ZS171 | $11 p$ | K 5062 A | |
| ZTX213 | 12p | ZTX501 | | ZS172 | 14 p | K5068A | |
| ZTX214 | 13 p | ZTX502 | 15p | ZS174 | 15 p | K5075A | |
| ZTX300 | 10% | ZTX503 | 12p | ZS176 | $21 p$ | K 5082 A | |
| ZTX301 | $11 p$ | ZTX504 | 39p | ZS178 | 34p | K5091A | |
| ZTX302 | 15p | ZTX510 | 15p | ZS270 | 10p | KSIOOA | |
| ZTX303 | 12p | ZTX530 | 19p | ZS271 | 14 p | KSIIOA | |
| ZTX304 | 19p | ZTX531 | 20p | ZS272 | $16 p$ | KSI20A | |
| ZTX310 | 8p | ZTX550 | 15p | ZS274 | 17p | KSI30A | 7p |
| ZTX311 | 9p | ZTX551 | 15p | ZS276 | 23p | KSI50A | |
| ZTX312 | 9p | 2N3055 | 65 p | Z5278 | 33p | KS180A | |
| MOTO R.C.A.: | $\begin{aligned} & \text { LLA: } \\ & \text { A307 } \\ & \text { IINI } \end{aligned}$ | $\begin{aligned} & \text { MJE2955 } \\ & \text { £I-35; } \\ & \text { IUNER. } \end{aligned}$ | $\begin{aligned} & \text { £1.06 } \\ & \text { A } 309 \\ & \text { Full } \end{aligned}$ | MJE3055
 Q, £4.30.
 of sem | | | |

P.E ELECTRONIC PIANO--SPECIAL BULK PRICES!

350 ZSI70, $£ 20 ; 110$ ZTX 300, E9.50; 24 ZN7474E, $£ 14.40 ; 14$ KS047A 62.30 . We can supply all semiconductors' used in this FERRANTI ZN4I4 MICROCIRCUIT RADIO. As seen on TV. This amazing device is now available to the home constructor at only $£ 1 \cdot 25$ each post free, supplied complete with free data.
Postage and packing 10p. Free over E2. Send S.A.E. for Ferranti Posta.
WE CAN SUPPLY ANY FERRANTI DEVICE. Send S.A.E. for quotation.

BUY NOW AND BEAT V.A.T.
ALL PRICES MUST RISE ON APRIL Ist
DAVIAN ELECTRONICS
PO BDX 38, OLDHAM,LANCS. DL2 6XJ

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn. Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you ... but it could be the best thing you ever did.

Others have done it, so can you

"Yesterday I received a letter from the Institution mforming that my application for Associate Membership had been approved. 1 can honestly say that this has been the best value for money I have ever obtained - a view echoed by two colleagues who recently commenced the course"'- Student D.I.B., Yorks:
"Completing your course, meant going from a job I detested t" a job that I love, with unlimited prospects".--Student J.A.O. Dublin
"My training with B.I.E.T. quickly changed my earning capacity and, in the next few years, my earnings increased fourfold".-Student C.C.P'., Bucks.

This FREE 76 page book can put you on the road to success througha B.IET. Home Study Course.Choose your subjectnow!

| MECHANICAL | Man. Prod.cont. | Constructional-cont. |
| :---: | :---: | :---: |
| A.M.S.E. (Mech.) | Salesmanship | Building Drawing |
| Boiler Inspection | Storekeeping | Building Foreman |
| \& Operation | Work Study | Carpentry \& Join. |
| C \& G Eng. Crafts | Works | Civll \& Municipal |
| C \& G Fabrication | Management | Engineering |
| Diesel Eng. | DRAUEHTSMANSHIP | Constructional |
| Eng. Inspection | A.M.I.E.D. | Engineering |
| Eng. Metallurgy | Design of Elec. | Construction |
| Inst. Eng. \& Tech. | Machines | Suryevors |
| Inst. Motor Ind. | Die \& Press Tool | Institute |
| Maintenance Eng. | Design | Clerk of Works |
| Mechanical Eng. | Electrical | Council Eng. |
| Sheet Metal Work | Draughtsman- | Geology |
| Welding | ship | Health Eng. |
| ELECTRICAL \& | Gen. Draughtsmanship | Heat \& Vent. |
| ELECTRONIC | JIg \& Tool Design | Inst. of Builders |
| A.M.S.E. (Elec.) | Technical Drawing | Inst. Clerkof Works |
| C \& G Elec. Eng. | | |
| C \& G Elec. Inst. | RADIO \& TELE- | Highway Supers. |
| C \& G Elec. Tech. | COMMUNICATIONS | Painting \& Dec. |
| Computer Elect. | Colour TV | Public Hygiene |
| Elec. Maths | C\&G Radio/TV/ | Road Englneering |
| Elec. Science | Electronics | Structural Eng. |
| Electronic Eng. | C \& G Telecomm. | Surveying |
| Electrical Eng. | Tech. | |
| Install. \& Wiring | Prac. Radio \& Elec. | GENERAL |
| Meters | (with kit) | |
| \& Measuring | Radio Amateurs | Council of Eng. |
| Instruments | Exam. | Inst. |
| MANAGEMENT \& | Radio Servicing | Farm Sclence |
| PRODUCTION | \& Repairs | General Education |
| Automatic Control | Radio \& TV Eng. | Gen. Plastics |
| Computer Prog. | TVMMain. \& Serv. | Pract. Maths |
| Electronic Data | TV Man. \& Serv. | Pract. Slide Rule |
| Processing | AUTO \& AERO | Pure \& Applied |
| Estimating | A ero Eng. | Maths |
| Foremanship | A.M.I.M.I. | Refrigeration |
| Inst. Cost \& Works | A.R.B. Cert. | Rubber Technology |
| Accountants | Auto Engineering | Sales Engineers |
| Inst. Marketing | Auto Repair | Tech. Report |
| Management | C \& G Auto. Eng. | Writing |
| Metrication | Garage | Timber Trade |
| Motor Trade Man. | Management | University Ent. |
| Network Planning | MAA/IMI Diploma | |
| Numerical Control | Motor Vehicle | |
| Operational | Mechanics | G.C.E. |
| Research | CONSTRUCTIONAL | 58 '0' 8 'A" |
| Personnel Man. | A.M.S.E. (Civil) | |
| Production Eng. | Architecture | LEVELS SUBJECTS |
| Quality Control | Building | Over 10,000 |
| Coaching for | any major exams. | group passes |

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way cf getting ahead or of opening up new uppuiunities for yourself. It will cost you a stamp to find out how we can help you. Write to B.I.E.T. Dept, BPE1, Aldermaston Court, Reading RG7 4PF

BUILD

THE

$20+20$ WATT INTEGRATED

 I.C. STEREO AMPLIFIER
FREE TEAK CASE

FEATURES: New stim design with 6 lCs , IC Sockets, 10 silicon transistors. 4 rectifiers, 2 zeners. Fibre glass PC panel. Complete chassis work HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES -DEVELOPED BY TEXASENGINEERS FOR PERFORMANCE, RELIABILITY AND EASE OF CONSTRUCTION. FACILITIES: On/off switch indicator, headphone socker. rumble filters. mono/stereo switch, Input selector: Mag. P.U.. Radio Tuner. Aux. Can bealtered for Mic, Tape. Tape head etc. (Parts list Ref. 20 on request). Constructional Details Ref. No.
21.30 p . 21. 30p.

LOW COST HI-F| SPEAKERS

POLISHED CABINETS 150 , 150 TC $450 \mathrm{E4.60}$ Post 30 p ASSEMBLED IN POLISHED CABINETS (8 OHM) SERIES 6 (Assembled 150TC) per pair © $16 \% 50$. Post 70
SERIES 8 (Assembled 450) per pair $£ 18.95$. Pose 70 .

ML3 MW/LW

 TUNER TO BUILDSlow Uses Mullard Module $2 \operatorname{tin} \times 3 \mathrm{in}$ battery. Ferrite aerial. Overall size $7 \mathrm{in} \times$ All partssold separat COST TO BUILD 64.85. Post 15p
"BANDSPREAD" PORTABLE TO BUILD
 Printed circuit all eransistor design
using Mullard RF/IF Module. Medium using Mullard RF/IF Module. Medium
and Long Wave Sands plus Medium and Long Wave sands plus Medium 600 mW push-pull outpus, fibre glass
PVC PVC covered cabinet, car aerial
Atcractive appearance and performance Attractive appearance and performance.
TOTAL COST TO BUILD 67.98 , p.p. 32 (Bate. 22p). All parts sold separately
-Leaflet No. 2 .

CATALOGUE

Fully detailed and

illustrated covering every plus data, circuiss and information. 10,000 Stock Special Low Prices and Fully Guaranteed.

PRICE 55p Post

 (40p FOR CALLERS) PLUS! FIVE 10p VOUCHERSSend to this address-
Henry's Radio Led. (Dept PE), 3 Albemarle Way, London, E.C.I-for eatalogue by pose only. All other mail and caller
to " 303 ", see above.
MORE OF EVERYTHING ALWAYS All the parts you need plus Data and Circuit

TEST EQU\|PMENT | Justa |
| :---: |
| selection |

SE250B Pocket Pencil Signal Injector, fl-90 THL33D Robust $2 \mathrm{~K} /$ Volt, $£ 4.55$; with case TEI5 Grid Dip Meter $440 \mathrm{KHz}-280 \mathrm{MHz}, 613.45$ $50030 \mathrm{~K} /$ Voit Multimeter, $£ 9.25$; 200H'20 K Volt Mus. 10.50 $\mathbf{2 0 0 H} 20 \mathrm{~K} /$ Vole Multimeter, $\mathbf{£ 4 . 2 0}$; with case $\mathbf{6 4 . 9 5}$ AF 105 50K/V Multimeter, $\mathbf{6 8} 50$; with case, 69.50 tester with steel case. $£ 10.50$

sLIM design WITH SILVER TRIM

 Overall chassis size $14 \frac{1}{2}$ in. $\times 6$ in. $\times 2$ in highRECORD DECKS
CHASSIS (Post 50p) $\begin{array}{ll}\text { SP25/3, } £ 10.25 & \text { MP60, } 69.95\end{array}$ MP610, $£ 14.50$ AP76, $£ 17.95 \quad$ GLIO. 12.95
GL75, $\mathbf{2 8} .50$ AP76, EI7.95 GL75, E28.50
PLINTH/COVERS (State Mode!) SP25/MP60/610 E3.30 (Post 40p) AP76 64 50 (Post 40p)
CART/PLINTH/COVER CART/PLINT
(Post 70 p)
(HL) MP60/GB00H/PC $\quad 18.50$ MP6IO/SC5MD/TPD2/PC AP76/M756SM/PC (HL) AP76/GBOO/PC (HL) SP25/GB00H/PC HT70/G800/TPDI/FC (HL) 2025/9TAHCO/P MP60/SC5MD/PC (HL) GL75, G800E/PC
(HL) GL75/G800/PC

ULTRASONIC

TRANSDIICERS
Operate at $40 \mathrm{ke} / \mathrm{s}$ up to 100 yds. Ideal remote switching and signalling. Complete with data and circuits.
PRICE PER PAIR ©5-90. PostIOD.
MARRIOT TAPE HEADS 4TRACK MONO
or 2 TRACK STEREO 17:-High Impedance $£ 200$ "18" Med. Impedance Erase Heads for above Eras " Heads for above 75 p
$63^{2} 2$ track mono - High " 43 "Erase Head for above 75

POWER INTEGRATED CIRCUITS
Plessey SL403D-3 watt with B-page data, layouts and circuits E1.50. P.C. Board 60p; Heat Sink 14p. Sinclair IC I $2-60$, wate with
data and circuits $£ 1-80$. data and circuits $£ 1.80$. TH9013P-20 watt Fower
Amp Module E4.57. TH9014P-IC Preamplifier $£ 1.50$. Data/Circuits (No. 42) forabove lop.

7 SEG \& NIXIE TUBES XN3, XNI3, GN6 $0-9$ side view with data, 85p.

GNP-7, GNP-8 0-9

with decimal points and data With decimal points and data,
$95 p$.
3015 f 7 seg with data. 24 each, slock circuits. 12 and 24 hour
Ref. No. 3115 p .

MIAIATIJRE AMPLIFIER 5 transistor. 300 mW o/p. Fitted volume and sensitivity
control 9 volt operated. 61.75 each. p.p. 15p

QUALITY SLIDER CONTROLS ganmed. Stroke singles and ganged. Complete with knobs
$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega .25 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$. $250 \mathrm{k} 2,500 \mathrm{k} \Omega$. I meg. Log and Lin. 40 p each, $10 \mathrm{k} \Omega$. $25 \mathrm{k} \Omega$, $50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$, \log and Lin. ganged. 60 p each,

HI-FI AND TAPE EGUIPMENT

[^0]: (c) IPC Magazines Limited 1973. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, £2.65.

[^1]: and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile' Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again.
 You LEARN-but It's as fascinating as a hobby.
 Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.

 A 14-year-old could understand and benefit from this cpurse-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a carcer, B.I.E.T. has a fine range of clourses up to City and Guilds standards.

 Specialist Booklet
 If you wish to make a career in Electronics, send for your FREE copy of "NEW OPPORTUNITIES". This brand new booklet -just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

 ## FREE

 ## BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

[^2]: Heath (Gloucester) Limited, Gloucester GL2 6EE

[^3]: Open Monday to Saturday 9.30 a.m. © $\quad 6$ p.m. LATE MT FaIDAY 7 p.m.

 Mail CALLERS: Please note that cheques can only be accepted tagether
 witn cheque cards (not Barclay Cerd).

[^4]: Post and packing 10p on orders under 62 ; overseas at cost.
 FULL CATALOGUE ON REQUEST.

