PRACTICAL

is this the price you pay?

"

Probably, if you're still using an ordinary soldering iron Ordinary soldering irons can cause damage to transistors and integrated circuits - damage which wastes time and costs money. Now, with the unique ANTEX $\times 25$ and CCN Iow leakage soldering rons no harm can come 10 the most delicate equipment, even when soldered 'Live
(You could be making quite a saving).

CONSTRUCTIONAL PROJECTS

HI FI TAPE LINK by P.S. Ewer
All the electronics to bring Hi Fi to an existing tape deck 210
P.E. SOUND SYNTHESISER-2 by G.D. Shaw
Twin stabilised power supply unit and racking details 232
SIGNAL INJECTOR and TRACER by R. A. Penfold
Useful dual-purpose item of test gear for a.f. and r.f. applications 238
P.E. DIGI-CAL-9 by R.W. Coles
Logic and construction of the programme board 242
GENERAL FEATURES
ELECTRONIC TIMEPIECES-1 by J. B. Dance
Evolution of designs up to tuning-fork principle 221
DESIGNING WITH I.C.s-6 by A. Foord
Basic memory circuits 249
NEWS AND COMMENT
EDITORIAL—Our Transistor 209
SPACEWATCH by Frank W. Hyde
Is someone trying to contact us?-USSR meteorite research 217
ON THE FRINGE by Gerry Brown
The more unusual aspects of electronics 218
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 226
TRANSISTOR SILVER JUBILEE
The team behind the invention-anniversary events 229
TRANSISTOR TRAIL
Highlights of research and development leading to the first transistor 230
NEWS BRIEFS
Tidal Monitoring—Radar Testing—UK Tops In Data Transmission 241
POINTS ARISING
Biological Amplifier-l.C. Linear Ohmmeter 241
BOAT SHOW REPORT
A look at marine electronics for the small boat owner 253
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 254
MARKET PLACE
New products and component information 258

Our April issue will be published on Friday, March 9, 1973

[^0]
回四回 THE

 $14+14$ watts r．m．s． 40 Hz to $40 \mathrm{kHz} \pm 3 \mathrm{~dB}$ ．Total distortion at 10 watts
 PRICES：SYSTEM

at $1 \mathrm{kHz}-0.1 \%$ ．
This is real value for money！We have designed 2 systems and the heart of them all is the Viscount III amplifier．A unit of great eye appeal with teak finished cabinet． FET＇s（Field effect transistors）are incorporated on the input stages，just like top priced units．FET＇s give you more of the signal you want and almost none of the hiss you don＇t．Both units have output sockets for headphones and tape recorder． Filters and tone controls give a wide range of bass and treble adjustment．

For both systems we have chosen the famous Garrard SP25 Mk．III deck， with fitted magnetic eartridge，which comes complete with simulated teak plinth and tinced acrylic cover．

The exclusive Duo loudspeaker systems are incomparable for quality within their price range．Large speakers in extremely substantial cabinets．There＇s a choice of the Duo II＇s for the smaller room or the big Duo III＇s for real bass response． SPEAKERS
Duo Type II Size approx． 17 in ． $10 \frac{2}{2} i n$ ． $6 \frac{1}{4} \mathrm{in}$ ．Drive unit 13 in ． 8 in ，with parasitic tweeter． Max power 10 watts， 8 ohms．Simulated Teak cabinet
Max power 10 watts．
f14 pair $+63 p \& p$ ．
Duo Type 111 Size approx． $23 \frac{1}{2}$ in． $11 \frac{1}{2} \mathrm{in}$ ． $9 \frac{1}{2}$ in．Drive unit $13 \frac{1}{2}$ in． $8 \frac{1}{2}$ in．with H．F．speaker． Max power 20 watts 8 ohms．Freq．range 20 Hz to 20 kHz ．Teak veneer cabinet． £32 pair＋$£ 3 \mathrm{p}$ \＆ p ．

SPECIFICATION RIOI

14 watcs per channel inco 3 co 4 ohms（suicable $3-15$ ohms）．Total distortion＂ 10 W
 4 mV ， kHz into 47 K equalised within it IdB R．I．A．A．Rodio 150 mV inco 220 K ．（Sensi－
 Bass filter： 6 dB per octave cut．Treble control：treble +12 dB to -12 dB ＂＂iskHz． Treble filcer： $12 d B$ per occave．Signal－to－noise ratio：（all controls at max）－P．U．I．and radio－65dB，P．U．2－58dB．Cross tolk better than－35dB on all inputs．Overiood chorocteristics better than 26 dB on all inputs．Size approx．I 3 itin．sin． 3 in ． Send S．A．E．for fully illustrated brochure
I2 MONTHS＇WRITTEN GUARANTEE， I2 MONTHS＇WRITTEN GUARANTEE．British made． S．A．E．for illustraced leaflet

－ONLY FROM US

iscount II｜R 101 amplifier $\mathbf{6 2 0 . 0 0}+90 \mathrm{p}$ patp 2 ．Duo Type 11 speakers $\mathcal{E} 14 \cdot 00+62$ p\＆p Garrard SP25 Mk．III with
cover cartridge plinth and cover

$$
\text { Total } \quad \overline{\mathbf{C S 9 . 0 0}}
$$

Available complete for only $\mathbf{4 5 2}$
63．50p8p

PRICES：SYSTEM 2

Viscount R 101 amplifier $\quad £ 22.00+90$ p p\＆p
Duo Type 111 speakers
Garrard SP25 Mk．I｜I with
MAG．cartridge plinth and
cover
632．00＋63p\＆p

MUSIC MAKERS

A'NATURAL' ONLY FROM the pullman pb car radio kit

Apart from the output stage, which is an integrated circuit, the only other electronic components that need soldering are some capacitors, resistors, etc. The kit includes a pre-built RF tuner unit, and fully modulised IF stages which arc pre-aligned before despatch. As well as electronic components, this kit also contains 2 diamond-spun aluminium knobs, elegant matching front panel, dial, washers, screws and wire.

The Tourist PB is suitable for 12 volt working on both negative and positive earth vehicles. It covers the full medium and long wave bands. Four push-buttons for medium wave, one for long wave. It is permeability tuned and sturdily constructed. Output is a full 2.5 watts into an 8 ohm speaker. But the Tourist PB will operate into any loud speaker from 8 to 15 ohms. Power consumption is less than I amp.
The Tourist PB can be mounted in any standard size dash panel and it has an illuminated tuning scale for easy reading at night. Approx. chassis size is: 7 in wide, 2 in . high and 4 tifin. deep (excluding front panel, etc.).

* Circuit diagram and comprehensive instructions 50p, free with parts.
* Circuit diagram and comprehensive instructions 50 p

PRICEONLY $£ T+p \& p 50 p$
Speaker with baffle and fixing strips $\& 1 \cdot 50+25 p p \& p$, post free if brought with the kit.
Send for illustrated leaflet

> VISIT OUR SHOWROOMS

RELIANT MK.IV

* 5 Electronically Mixed Inputs. $\$ 3$ Individual Mixins Controls. \& Separate bass and treble controls common to all 5 inputs. \star Mixer employing F.E.T. (Field Effect Transistor). \star Solid State Circuitry, \star Attractive Styling. \star Sides finished in solid teak

INPUTS:-1. Crystal Mic. or Guitar 9mV. 2. Moving coif Mic. or Guitar 8 mV . Inputs 3, 4 \& 5 are suitable for a wide range of medium output equipment (Gram., Tuner, Monitor, Organ, etc.). All 250 mV sensitivity CONTROLS:-3 Volume controls. Bass control range: $13 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Treble control range: $\pm 12 \mathrm{~dB}$ @ 15 KHz . Separate ON/OFF Switch. Neon indicator. POWER OUTPUT: WI
R.M.S. into 3 to 4 ohms speaker. SIGNAL NOISE: Better than -60dB on inputs 3. 4 and 5 \& -50dB on I \& 2. SUPPLY:-220-250 A.C. Mains. SIZE:-12tin

6in. $\times 3 \frac{1}{2} \mathrm{in}$. NEW VERSION: 20 watts into 8 ohms $\mathbf{f 1 3 . 5 0}+60 \mathrm{p}$ p \& p plus p \& p 60p
JUST ANNOUNCED
The new 20 watt (into 8 ohms) versionfor iust $\{3$ extra. All other specifications as above.

Radio and TV Components (Acton) Ltd. 21D High St., Acton, London W3 6NG 323 Edgware Road, London, W. 2
Moil orders to Acton - Terms C.W.O. All enquiries S.A.E Goods not dispotched outside U.K.

Tomotisertr B.D. 2 Press Bution Speed Change Turntable

The Connoisseur BD2 belt drive turntable with press button speed change is an integrated turntable and pickup arm assembly, the raise/ lower device of which is operated by the knob at the front right hand corner. The head shell allows for the lateral adjustment of the cartridge. The BD2 is supplied as a chassis unit or spring mounted on a wood plinth complete with dust cover.
S.A.U. 2 Pick-up Arm

Recognised as one of today's most advanced pick-up arms it features
Q Auto-bias Compensator
O Hydraulic Lowering Device

- Precision Balance

B.DiTurntableKft

The B.D.I. well known for its superb performance and quality two speed working through a flexible belt drive system is now available in kit form. Construction is simplicity itself with no soldering required. Now it's so easy to own the best.

r-
NGEER-LOO-G-K-N-N Phasincstobicenawers

PRICES

ALL PRICESTAXPAID
> [WITYA
> qumsen (Dept. PE3) 124 Cricklewood Broadway, London, N.W. 2 Tel. OI-450 4844

U.H.F. TV AERIALS

SUITABLE FOR COLOUR \& MONO. CHROMERECEPTION

WALL MOUNTING E/W WALL ARM AND BRACKET. 7 element 53 25. 11 element
 CHIMNEY MOUNTING ARRAYS c/w MAST AND LASHING KIT. 7 element E 4. 11 element $\mathbf{6 4 . 5 0}$. 14 element $\mathbf{6 4 . 7 5}$. IB element C 5.25.
MAST MOUNTING arrays only 7 element 62.25. 11 element $\mathbf{6 2 . 7 5}$. 14 element $\mathbf{6 3 . 2 5}$ 18 element 63.75 . Complete assembly ir.structions with every aerial. LOW LOSS ING TELEROOST
KING TELEBOOSTERS from 63.75 . LABGEAR all band V.H.F.-U.H.F.-F.M. radio mains operated pre-amps $\& 7$ al ore clearly channel
number required on all orders. P. \& P. on all aerials 50 p aces. 15p. CW.O. min C.O.D charge 25 p.

BBC-ITV-FM AERIALS
BBC (band 1) Wall S/D E2. LOFT inverted T' 61.25 EXTERNAL 'H' array only $\mathbf{5 3}$. ITV (band 3) ${ }^{5}$ element loft array $£ 2.50$.
 $1+5$ E2.75. ${ }^{\prime}+7$ t3. 50 WALL AND
CHIMNEY UNITS ALSO AVAILABLE. CHIMNEY UNITS
COMBINEDU.H.F.V.H.F. aerials $1+5+9 \in 4$ loft SID EI . 3 element $\in 3.25$. 4 element $£ 3.50$ Standard coaxial plugs 90 Coaxial cable 5 . 50 . Standard coaxial plugs 9 pi Coaxial cabee 5 p yd
Outler box 30 p. P. $\& P$ ali aerials 50 p aces 30 p C.W.O. min. C.O.D. charge 25p. Send 5p for fully illustrated lists. CALLERS WELCOMED

OPEN ALL DAY SATURDAY
K.V.A. ELECTRONICS

40-41 Monarch Parade, London Rd. Mitcham, Surrey Telephone 01-6484884

Vary the strength of your lighting with a

 ■MMSSMICHThe DIMMASWITCH is an ateractive and efficient dimmer unit which fits in place of the normal light switch and is connected up in exactly the same way. The white mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of alt lights except fluorescents at mains voltages from $200-250 \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has buile-in radio incerference suppression

600 Watt £3.20. Kit Form $\mathbf{E 2 . 7 0}$
300 Watt $\mathbf{£ 2 . 7 0}$. Kit Form $\mathbf{£ 2 . 2 0}$ All plus 10 p post and packing. Please send C.W.O. to:

DEXTER \& COMPANY
1 ULVER HOUSE, 19 KING STREET CHESTER CH1 2AH Tel. 0244-25883
As supplied to H.M. Government Departments

HELETH: Ferem
 Why buy alternatives when you can buy the genuine articlefrom us at competitive prices from stock. BMANDED FROM TEXASI.T.TFAIRCHILD

Type 1/1112/2420/99

$\begin{array}{lllll}\text { SN7400 } & 0.20 & 0.18 & 0.16\end{array}$

GN7401	0.20	0.18
GN7	0.16	
SN7402	0.20	0.18

$\begin{array}{lll}\text { GN7403 } & 0.80 & 0.18 \\ \text { GN7404 } & 0.16\end{array}$
$\begin{array}{llll}\text { QN7404 } & 0.20 & 0.18 & 0.18 \\ \text { BN7405 } & 0.20 & 0.18 & 0.16\end{array}$
$\begin{array}{llll}\text { BN7405 } & 0.20 & 0.18 & 0.16 \\ \text { SN7406 } & 0.80 & 0.27 & 0.25 \\ \text { BN7407 } & 0.80 & 0.27 & 0.25\end{array}$
$\begin{array}{llll}\text { BN7407 } & 0.80 & 0.27 & 0.25 \\ \text { QN7408 } & 0.80 & 0.19 & 0.18 \\ \text { SN7409 } & 0.45 & 0.42 & 0.35\end{array}$

8N7409	0.45	0.42	0.35
SN7410	0.20	0.18	0.16
SN7411	0.28	0.22	0.20
BN7412	0.48	0.40	0.85

$\begin{array}{llll}\text { BN7411 } & 0.28 & 0.22 & 0.20 \\ \text { BN7412 } & 0.42 & 0.40 & 0.85 \\ \text { QN7413 } & 0.80 & 0.27 & 0.25 \\ \text { 8N7416 } & 0.80 & 0.27 & 0.25\end{array}$
$\begin{array}{llll}\text { GN7417 } & 0.80 & 0.27 & 0.25 \\ \text { GN7420 } & 0.80 & 0.27 & 0.25 \\ & 0.20 & 0.18 & 0.16\end{array}$

BN7420	0.80	0.18	0.16	8
SN7422	0.48	0.44	0.40	8
SN7423	0.48	0.44	0.40	8
GN7425				

$\begin{array}{llll}\text { SN7427 } & 0.48 & 0.40 & 0.35 \\ \text { GN7428 } & 0.50 & 0.39 & 0.35 \\ \text { SN7430 } & 0.80 & 0.18 & 0.42 \\ \text { SN } & 0.16\end{array}$
SN7430
SN7432
$\begin{array}{llll} \\ \text { BN7437 } & 0.65 & 0.61 & 0.44 \\ \text { BN7440 } & 0.65 & 0.60 & 0.50 \\ \text { SN74 } & 0.20 & 0.1 & 0.5\end{array}$
$\begin{array}{lllll} & 0.85 & 0.60 & 0.50 \\ \text { SN7440 } & 0.20 & 0.18 & 0.16 & 8 \\ \text { SN7441AN } & 0.75 & 0.72 & 0.70\end{array}$
$\begin{array}{lllll} \\ \text { SN7442 } & 0.76 & 0.72 & 0.70 \\ \text { 8N7443 } & 1.00 & 0.85 & 0.90\end{array}$
$\begin{array}{llll} \\ \text { N7445 } & \mathbf{2} \cdot 00 & 1 \cdot 75 & 1 \cdot 60 \\ \text { SN7446 } & 2.00 & 1.75 & 1.60\end{array}$

PRICES OF 7400 SERIES ARE CALCULATED ON THE TOTAL NUMBER
LARGER QUANTITY PRICES PHONE (OI) 4024891 AS HANDBQOK NO, 2, I.C. 700 PAGES DATA 60p. POST 20p. LOW POWER

A SELECTION OF SEMI-CONDUCTORS FROM STOCK

INTEGRATED CIRCUIT SOCKETS
LOW PROFILE PLATED PINS
LOW PROFILE PLATED PIN

$(14$ Lead
D.I.L.)
15 p
D.I.L.

QUANTITY DISCOUNTS
$10 \% 12+: 15 \% 25+\quad$ ANY ONE
$20 \% 100+: 25 \% 250+\quad$ TYFE
$20 \% 100+: 25 \% 250+\quad$ TYF'E
From above aections except Int $\because g r a t e$
From above nections ercept Int igrated
Circuits and $\mathbf{S p e c i a l}$ Offers where dis
counts are included.

Go Hi-Fi yourself! New Goodmans Din 20 loudspeaker kit specially designed to give the D.I.Y. enthusiast excellent hi-fi reproduction at moderate cost

This system has been thoroughly tested to Goodmans high standards. It will provide extremely satisfactory listening levels from amplifiers rated at 10 watts (per channel, in the case of stereo equipment) but it may also be operated from amplifiers of higher power.
The kit contains all parts needed to complete the system (except timber and other material for the cabinet itself) and has detailed, illustrated assembly instructions.

Contents

1 Bass unit 204 mm (8 in) diameter.
1 Dome HF radiator 25.4 mm (1in) diameter.
1 Port tube.
1 Crossover panel with colour coded leads.
1 Terminal board.
1 Foam gasket.
1 Input lead complete with DIN plug and spade terminals.
Acoustic wadding foam pad.
Fixing screws and hardware.
Cabinet template (on bottom of box).

Goodmans
Sound reasoning.
THORN A memberol the Ihorn Group
Name
Address

Downley Road, Havant, Hampshire.
Please send me free leaflets on Constructors' equipment and the name of my Goodmans dealer.

	EL METERS	USED EXTENSIVELY BY GOY INDUSTRY, EDUCATIONAL LOW COST aUICK RANGES IN STOCK	YERNMENT DEPARTMENTS, AL AUTHORITIES, ETC. DELIVERY OVER 200 THER RANGES TO ORDER
	PHASTMP PATE	ETERS	"SEW" BAKELITE PANEL METERS
TYPE SW. 100 100mm $\times 80 \mathrm{~mm}$ Fronts	Type MR.85P. $41 \mathrm{in} . \times 4 \mathrm{in}$	Type MR.38P. 1 21/88in. bquare Front	
$30 \mu \mathrm{~A}88 .80$		$\begin{array}{lll}200 \mathrm{~mA} & \cdots . . & 81.75 \\ 300 \mathrm{~mA} & \cdots . & 81.75\end{array}$	
$\begin{array}{llll}30-0-50 \mu \mathrm{~A} & . . & 83.80 \\ 100 \mu \mathrm{~A} & \ldots . . & . & \\ \mathbf{2 3 . 8 0}\end{array}$	$\begin{array}{llll}100 \mathrm{~mA} & . . . & 88.10 \\ 500 \mathrm{~mA} & \cdots . & 88.10\end{array}$		
100-0-100 μ A. 83.70		$750 \mathrm{~mA}{ }^{81.75}$	15 amp 28.15
$\underline{j 00 \mu A}$. 53.50	amp.	$1 \mathrm{amp}.{ }^{21.75}$	(1) mmp. 4.18 .15
	20 kim.c. 88		10 V d.c. ... 62.15
	50V d.c. 28.10	3V' d.c. 8 el-75	20 v d.c. \cdots. 28.15
	50ha 88.98 1504 d.c. ... 88.10		
Type SD. $83088.5 \mathrm{~mm} \times 110 \mathrm{~mm}$ Fronts	$100 \mu \mathrm{~A} \ldots .$. $23-40$ 15 V a.c. \ldots. $28 \cdot 10$ $100-0-100 \mu . i$ $83-30$ 300 V a.c. .. $83 \cdot 10$		
		$500 \mu \mathrm{~A} \ldots . . .{ }^{21 \cdot 80}$ 150V d.c. ... 21.75	
$\begin{array}{llll}50 \mathrm{~mA} & \cdots & . & 88.60 \\ 100 \mathrm{mat} & \ldots . & 8.50\end{array}$	500-0-500 A . $\mathrm{ESP}^{28} 10$ 1 amp. a.c. . **83-10	$500-0-500 \mu \mathrm{~A}$.	
$\underline{1}$ amp.p. 82.60			
		5ma \cdots..... 81.75 50V a.c. ...	
			$\underline{1-0-1 \mathrm{~mA}}$... eter 15 5 amp. a.c.** E2.15
50-0-50¢... 28.70 10V1c. . 22.50			
	TJpe MR.52P. 2ina, square Fronts. 29.90	100 mA	
100-0-100 LA . 28.70		150mA 81.75 VU Meter ... 82.30	
		10mA 2176 vil Meler ...	
		Type MR.45P. 2in. Bquare Fronts.	Type 8-80 80mm square Fronts
£2-50 $\mathrm{V}^{\prime} 1$			
			50 $1.1 . .$.
Tjpe SD. $64083.5 \mathrm{~mm} \times 85 \mathrm{~mm}$ Fronta	$10 \mathrm{~mA} \mathrm{....}$.82.20 VUMeter ... 28.50	$100 \mu \mathrm{~A} \ldots . . .828 .30$ 20V d.c. $\ldots .$.	$100 \mu \mathrm{~A}$. 8 8-40
		100-0-100 4 . 28.05 J0V d.c. \cdots. 21.85	100-0-100ر-A. 88.80
	100 mA . . . $48.20 \bar{j}^{\text {amp. a.c. }}$. 28.20		
			300 v d.c. . . . 28.85
			1 amp. A.c. . . 28.85 300Y are. ... E2.85
			i) amp. d.c. . . 28 -85 VT Meter ... 88.70
10mA 22.35 15Va.c. ... 82.40			
50 mA 22.35 300va.e. ... 82.40	50-0-50 0 A. . 52.00 20V d.c. $\ldots .$.		"SEW'" EDUCATIONAL
			METERS
		—	
Type SD. $460 \quad 46 \mathrm{~mm} \times 59.5 \mathrm{~mm}$ Pronts	$200 \mu \mathrm{~A}$. $3 . .$. . 28.00		$\begin{gathered} 0 \\ \hline \end{gathered}$
	500-0-500 A . 28.40 50V a.c. . . . 22.55		
			\times new range of high
100 1 A...... 82.35 10 апир. 82.15		$\begin{array}{lllll}200 & 300 & 500 & 500\end{array}$	quality moving coil
100-0-100 AA . 28.35 5V d.c. \ldots. 28.15		-	instruments ideal
			or behool experi-
			ments and other
			bench applications.
		SEW	3in. mirror scale. The
50 mA			ter movement is casily sccessible to
100mA …..			in the following ranges:
	30 amp. 22.5510	Type PE.70. 3 17/88in. $\times 1$ 15/32in. \times	
*MOVING IRONALL OTHERS MOVING COIL			
	が, d.c. 28.40 30 amp. a.c. . 22.40		
			1-0-1miA ... 44.85 Dual range
	Send for Hllustrated trochure on SEW Panel Meters-diseounts for quantitles.		

POWER RHEOSTATS

230 VOLT A.C.
50 CYCLES
RELAYS
Brand new. 3 sets of
changeover contacts at
S amp, rating. 50 p each.
Post 10p (100 lota 240)
Quantities avallable.

50 CYCLES RELAYS

Brand new. 3 sets of
changeover contacts at 5 amp. rating. 50 p each, Quantities arailable.
RANSFORMERS
up or step down. Fully
${ }_{5 \varepsilon .70}^{28.10} \mathrm{P} . \&$ P. 18 p

PS.1000B REGULATED POWER SUPPLY
Solid state. Output 6.9 or 12 V d.c. up to 3
amps. Meter to monitor current. Input $220 / 240 \mathrm{~V}$ a.c. Elze 4 in. $\times 31$ in. \times

LB4 TRANBISTOR TESTER Testa PNP or NPN trangistor: Audio indication. Operates Complete with allingtructions. 24-50. Post 20p.

LB3 TEAMBIETOR TESTER Testa 1 CO and B Pup/npn. Operates from 9 V battery. Complete 88.95. Post 20 p .

MCA. 280 AUTOMATIC STABILISER

Input 88-195 176 -250V 2.c. Output 120 V a.c. or 240y a.c. 200 V
rating,
e11.97. Post 50p.

SEND S.A.E. FOR LIST OF SEMICONDUCTORS AND VALVES

G. W. SMITH
\& CO. (RADIO) LTD.
Also see next thiee pages

MULTIMETERS for EVERY purposed

T860 POCKET
MOLTMETER MOLTINETER High-precision at low-cost.
Ranges: \quad D.c. $15 \mathrm{~V}, 150 \mathrm{y}$ Ranges: D.c. $15 \mathrm{~V}, 150 \mathrm{~V}$
$1,000 \mathrm{~V}(10,000$ O.P.V.). A.c $5 \mathrm{~V}, 150 \mathrm{~V}, 100 \mathrm{~V} \quad(1,000$
D.c. Current 150mA Res ance 100 k ohms.

MODEL 1092 Testmeter.

5,000 O.P.V
$0 / 3 / 15 / 150 / 300 / 1,200 \mathrm{~V}$ d.e $0 / 6 / 30 / 300 / 600 \mathrm{~V}$
$0 / 300 \mu \mathrm{~A} / 300 \mathrm{MA}$ $0 / 10 \mathrm{~K} / 1$ meg
Decibels -10 to +16 d13

EIOKI MODEL
20,000 O.P.V.

Overload protection 5/25/100/500/1,000V $10 / 50 / 250 / 1,000 \mathrm{~V}$ a.c. | $50 \mu \mathrm{~A} / 250 \mathrm{~mA}$. | $20 \mathrm{~K} / 2$ |
| :--- | :--- |
| hlm. | -5 |
| to | |
| 62 dB | | 24.97. Post 15p.

HIOKI MODEL 780X 30,000 O.P.V. Overlosd protectlon.
$1,200 \mathrm{~V}$ d.c.
6/30/60/300/600/
$12 / 60 / 120 / 600 /$ $1,200 \mathrm{~V}$ (..c. $12 / 60 / 120 / 600 /$
$1,200 \mathrm{~V}$ a.c. $\quad 60 \mu \mathrm{~A} / 30 \mathrm{~mA} /$ $300 \mathrm{~mA} .{ }^{2 . \mathrm{c}} 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{meg}-$ ohm. -10 to +63 dB .

MODEL TE-12 20,000 O.P.V. $0 / 0 \cdot 6 / 6 / 30 / 120$ $600 / 1,200 / 3,000 / 6,000$ $0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V}$ $0 / 60 \mu \mathrm{LA} / 6 / \mathrm{b0} / 600 \mathrm{~mA}$ $600 \mathrm{~K} / 6 \mathrm{Meg} . / 60 \mathrm{Meg} . \Omega 50 \mathrm{pF}$ 0.2 mFd . 5.97 . Post 17 p

MODEL TE-200 20,000 O.P.V
MIrror scale, overload protec Mirror scale, overioad protec-
tion. $0 / 5 / 25 / 125 / 1,000 \mathrm{~V}$ d.c.
$0 / 10 / 50 / 250 / 1,000 \mathrm{~V}$ $0 / 10 / 50 / 200 / 1,000 \mathrm{~V}$ a.c. $0 / 50 \mu \mathrm{~A}$ +62 dB . 82.85 . Post 15 p

MODEL $500 \quad 30,000$ O.P.V. with overload protection $100 / 250 / 500 / 1,000 \mathrm{~V}$ $0 / 2.5 / 10 / 25 / 100 / 250 / 500 /$ $1,000 \mathrm{~V}$ a.c. $0 / 50 \mu \mathrm{~A} / 5 / 50$ 500 mA . 12 amp . d.c 88.87. Pont paid.

HIOKI MODEL 750 X
43 ranges 0.0 .

$0-3$ to $1,200 V_{\text {a }}$ $0.30 \mu A ~$ 0.300 m

$0.3 \mathrm{~K} / 30 \mathrm{meg}$ oh
+17 dB.
$\begin{aligned} & \text { \$8.97. Post 20p. }\end{aligned}$

HTIOOR4 MULTI-METER

10 amp .

$0 / 20 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{MES} / 20 \mathrm{ME}$ $-20+62.1 \mathrm{~B}$. \&12-50, Posi 25 p .

970 WTR MULTMETER $\begin{array}{lll}\text { Foatures } & \text { a.c. } & \text { current } \\ \text { rangen, } & 20.000 & \text { O.P.V. }\end{array}$ $0 / 0-5 / 25 / 10 / 50 / 250 / 500$ / 0/2-5/10/50/250/500/1,000V $0 / 50 \mu \mathrm{~A} / 1 / 10 / 100 \mathrm{ma} / 1 / 10$ $0 / 100 \mathrm{~mA} 1$

$0 / 5 \mathrm{~K} / 50 \mathrm{~K} / 500 \mathrm{~K} / 5 \mathrm{MEG} / 50 \mathrm{ME}$
$-20+62 \mathrm{~dB}$. 215. Post 25 p .

ROUND SCALE TYPE PENCLL TESTER MODFL TR. 88
 'ompletely portable, simple to use pocket sized teater.
Ranges $0 / 3 / 30 / 300 \mathrm{v}$
anc. Ranges
and th.c. at 2,000
O.P.V. Resistance $0 \cdot 20 \mathrm{~K}$
ONLY \&1.97, Post 13 p .

250A. $6 \mathrm{~K} / 6$ meg ohms. $-20 \mathrm{t} 0+22 \mathrm{~dB}$

MODEL TH-12

20,000 O.P.F. Overload protection. Slide switch selector. d.e. $0 / 10 / 50 / 250 / 1,000 \mathrm{~V}$ $30 \mathrm{~K} / 300 \mathrm{~K} / 3 \mathrm{meg}$
+4.97. Post 150 p.

 $-20 t o+46 \mathrm{uB}$. 88

TMK MODEL TW-50K 46 ranges. mirror acale, $50 \mathrm{~K} / \mathrm{V}$
d.c. $5 \mathrm{~K} / \mathrm{V}$ a.c. D.c.: Volts $0.125,0 \cdot 25,1-25,2-5,5,10,25,50$ Volts: $1-\dot{J}, 3, \overline{5}, 10,2 \overline{5}, 50,12 \overline{0}$ $250,500,1,000 \mathrm{~V}$. D.c. Current
 $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{MEG}, 10 \mathrm{MEG} \Omega$ Decibela: -20
$\mathbf{2 8}-50$. Poat 17 p .

$50 / 250 / 500 / 1,000 / 2,500 \mathrm{~V}$ d.c. $0 / 15 / 50 / 1 \overline{5} 0$

2A d.c. $0 / 3 \mathrm{~K} / 300 \mathrm{~K} /$ आmeg. 28.85 . Post 20 p

HIOKI MODEL 700X protection. Mirror acale protection: Mirror acale
$0 \cdot 3 / 0-6 / 1-2 / 1 \cdot 5 / 3 / 6 / 12 / 30 / 60 /$ 120/300/600/1,200v d.c. 1-5/3/6/12/30/60/150/300/ $600 / 1,200 \mathrm{~V}$ a.c.
15/30 $\mu \mathrm{A} / 3 / \mathrm{a} / 30 / 60 / 150 / 300 \mathrm{~m}$. $6 / 12$ amp. d.c. $2 \mathrm{~K} / 200 \mathrm{~K} /$
$2 \mathrm{Meg} / 20 \mathrm{Meg}$ ohm -20 to
+6311 B . 418 -50. Post 20 p .

MODEL C-7080 EN 20,000 O.P
 $1,000 / 5,000 \mathrm{Y}$ d.c. $0 / 2 \cdot \mathrm{~J} / 10$
$150 / 250 / 1,000 / \mathrm{J}, 000 \mathrm{~V}$ a.c $0 / 50 \mu \mathrm{~A} / 1 / 10 / 100 / 500 \mathrm{~mA} /$ 10 amp. d.c. $0 / 2 \mathrm{~K} / 200 \mathrm{~K})$ 20 meg.
-20 to +50 dB.
218.95. Post 35.

U4812 MULTIMETER Extremely sturdy instrume tor general
$6670 . \mathrm{P} . \mathrm{V}$.
$0 / 0 \cdot 3 / 1 \cdot \mathrm{j} / 7 \cdot \mathrm{~F} / 30 / 60 / 150 / 300 /$ $600 / 900 \mathrm{~V}$ d.c. and 75 mV . $0 / 0 \cdot 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300 /$ $600 / 900 \mathrm{~V}$ a.
$0 / 300 \mu \mathrm{~A} / 1 \cdot \overline{5} / 6 / 15 / 60 / 150$ 600MA/L $\overline{0} / 6 \mathrm{amp}$. d.c. $0 / 1 \cdot 5 / 6 / 15 / 60 / 150 / 600 \mathrm{M}$ Kol amp. a.c. $0 / 200 \Omega / 3 \mathrm{k} / 30 \mathrm{k} \Omega$. Accitracy With sturdy metal carrying case, leads and instructions. 29.50. Poat 25 p .

Selected TEST EQUIPMENT

Models-100TR MOLTMEETER/TRANBI8TOR TRSTER. mirror scale overload prote
 Ico. Complete with batteries. inatructions and lears.
ela-50. Pont 2 yp .

TE-20D RF SIGNAL GENERATOR

CI-5 PULSE OSCILLO8COPE
For display of pulsed and periodic waveforms in
electronic circuits.VERT AMP. Bandwidth 10MHz. gensitivity at 100 kHz RMA/mm. 0.1-25;
HOR. AMP. Bandwidth
 100 kHz , V RMS $/ \mathrm{RMm}$. $03-2 \overline{5}$; Pre-set triggered sweep $1 \cdot 3,000 \mu s e c .:$
free running $20 \cdot 200,000 \mathrm{~Hz}$ in nine ranges. free running $20-200000 \mathrm{~Hz}$ in nine range
Calibrator pipa. $220 \mathrm{~mm} \times \quad 360 \mathrm{~mm} \times$ 430 mm . $115 \cdot 230$, a.c. operation. e39. Carr paid.

TO-3 PORTABLE O8CILLOSCOPE

3intube, Y amp. Sensitivity
$0 \cdot 7 V_{\text {p-p/CM. Bandwidth }}$ $0 \cdot 7 \mathrm{~F}$ p-p/CM. Bandwidth
1.5cps.1.jMHz.

 Banduldth $1 \cdot \overline{\mathrm{c}} \mathrm{cps}-800 \mathrm{kHz}$.
Input imp. 2 meg $\Omega 20 \mathrm{pF}$. Time base. $\overline{3}$ ranges 10 cps . Time base. $\overline{3}$ ranges 10 cpg
300 kHz . $\begin{aligned} & \text { Synchronisation, } \\ & \text { Ilhuminated scale } 140 \mathrm{~mm}\end{aligned}$ internal/externa.
$\times 215 \mathrm{~mm} \times 330 \mathrm{~mm}$. Weight $\quad 15 \ddagger 1 \mathrm{~b}$. $2.20 /$ 240 V a.c. Supplied brand new with hamdbook. 840.00 . Carr. 50 p

RUSAIAN CI-16 DOUBLE BEAM RUSSIAA CI-16 DOUBL OSCILLOSCOPE

 2ll accessories
$\$ 87$. Carr. paid.
 TE-18A Transistorined Signal Generator. 5 ran
ges $400 \mathrm{kz}-30 \mathrm{M} \mathrm{Hz}$. An ges $400 \mathrm{k} \mathrm{Hz-30MHz}$. An
inexpensive instrument for the handyman Operates on 9 y battery Wide easy to read scale 800 kHz modulation.
tions and leads. 27.97 . Post 23 p.

TRAMEISTORISED L.C.R. A MEASURING BRIDGE

 $1: 1 / 1000-1: 11100$. f Ranges $+1 \%$. Bridge voltage at $1,000 \mathrm{cp}$. Operated fromi 95
 metal case. Size $\overline{3}$ sin $\times \sin \times 2$ in. 480 . MODEL TE15 GRID DIP METER as Grid Dip, oscillater Absorption W'ave Meter and Oselllating Detcetor. Frequency range 440 k Hz
-280 MHz in 6 coil ? 80 MHz in 6 coils. $500 \mu \mathrm{~A}$ meter. 9V battery opers-
tion. Size $180 \mathrm{~mm} \times 80 \mathrm{~mm}$ tion. Size $180 \mathrm{~mm} \times R 0 \mathrm{~mm}$
$\times 40 \mathrm{~mm}$.
 $\times 40 \mathrm{~mm}$.
e 12.50 . Post 20 p.
BELCO AP-5A 8OLID STATE SLIE
SQOARE WAVE C.R. O8GLLATOR
Sine $18 \cdot 200,000 \mathrm{~Hz}$

MODEL MG-100 GIME 8QUARE GEIERATOR Range $19-2: 0,000$
Hz . Sine Wave
19 19
Square Wave. Out. put Sine or Square
$180 \mathrm{~nm} \times 90 \mathrm{~mm} \times$ mave $10 \mathrm{~N}^{\circ}$. P . to P . Hize 180 mn 90niml. Operation
217.50. Post 37p

MODEL AT201
DECADE
ATTREATOR Frequency $0-200 \mathrm{kHz}$.
Attenustor $0-111 \mathrm{~dB}$,
$0.1 d \mathrm{~B}$ 0.ldB step. $\quad 600$
Impedance ohms. Max input power 30 klBm .
Size $180 \mathrm{~mm} \times 90 \mathrm{~mm} \times 5 \mathrm{~m}^{2} \mathrm{~min}$. 212.50. Post 37 p .

MODEL U4811 SUB-STANDARD

Mensitivity Amo ETER Sensitivity 330 nhms/Volt
a.c. and tic. Accuracy 0.5%
(l.c. 10_{n} a.c. Scale lengh 16 c num.
$0 / 300 / 7 \mathrm{~J} 0 \mu \mathrm{~A} / 1 \mathrm{c} / 3 / \mathrm{T} \cdot \mathrm{J} / 15 / 30 /$ 7.5/150/300/750 $13 \mathrm{~A} / 1 \cdot 5 / 3 / 7.5$ p.d.c. $0 / 3 / 7 \cdot 5 / \mathrm{I} / 30 / 75 / 150 /$
$300 / 750 \mathrm{~mA} / 1: 5 / 3 / 7 \cdot 5$ anip. a.c. of $75 / 10 / 300 /$ $10 \mathrm{mV} / 15 / 3 / 7 \cdot 3 / 13 / 30 /$
$75 / 100 / 300 / 750 \mathrm{~d}$ d.c. $750 \mathrm{mV} / 1 \cdot 5 / 3 / 7 \cdot 5 / 15 / 30 /$
$75 / 150 / 300 / 750 V^{2}$
tutomatic cut out. Supplied complete with tent leads, n
teat certificatca. f48. Post \%op.
G. W. SMITH \& CO. (RADIO) LTD. Also see opposite page and next two pages

UPR-s0 Cicerver

4 Bands covering $550 \mathrm{kHz}-30 \mathrm{MHz}$. BFO. Built-in speaker 220/240V a.c. Br

UR-1A SOLID STATE COMMUNICATION RECEIVER
4 Bands covering $550 \mathrm{kHz}-30 \mathrm{MHz}$. FET. 8 Meter. Variable BFO tor BSB, Built-in $220 / 240 \mathrm{~V}$ a.c. or 12 V d.c. $12 \operatorname{in} \times 41 \operatorname{in} \times 7 \mathrm{in}$. Brand new with inetructions. 225. Carr. 37 p .

SEYWOOD CXPO COMMUNICATION REGEIVER

0000000

Solid state. Coverage on 5 bants 200-4:20 Hie dial Rendspresd rule dial. Bendspresd. Aeriai thaing. BFO, AVC, ANL, "g" meter. AM/CW/8SB. Inte$220 / 240 \mathrm{~V}$ a.c. or 12 V d.c. Size $32 \overline{5} \times 266 \times 150$ mom. Complete with instruetions and circuit. 28.50 . Cerr. 30 p .

LAFAYEITFE HA-800 SOLID STATE BECETVER
 $150-400 \mathrm{kHz}$, $\quad 550$ kHz-30MHz. FET front end. 2 mech. flters, product detector, variable ter. s Meter, Bandspread. RF Gain. $15 \ln x$ Brand new with ingtructions. 260 . Carr d.c.

TRIO 9R59D

 COMMUM1 CATIONRECEIVER 4 band cove $\operatorname{lng}_{30 \mathrm{MHz}} 500 \mathrm{kHz}$ conbandspread ${ }^{\text {on }}$ tinuous and electrical bandspread on plus 7 diode circuit. $4 / 8$ ohm output and phone jack. 8SB-CW. ANL. Variable BFO. Sineter. Sep, bandspread dial. IF frequency 455 kHz . Audio output $1.5 W$. Variable RF and AF gain controls $11 \bar{j} / 250 \mathrm{~V}$ s.c. Size $7 \mathrm{in} \times 13 \mathrm{in} \times 10 \mathrm{in}$ with inatruction manual. 849.50 . Carr. paid

EMI LOUDSPEAKERS

 Model 350 . 13 in $\times 8$ in with single tweeter/crossover, to-0. 000 Hz . 15 W RM. Avallable $20,000 \mathrm{~Hz}$. 15 W RMS. Avalisble
8 or 15 ohms. +25 each. 8 or 15 ohms. © 8.25 each.
Post 37 p .
Model $43 \mathrm{in} \times 8$ in with twin
 8 W RMs. Available 8 or 15
ohms. 88.89 each. Pott 2 opl.

HONEXWELL
 DIGIMAL

VOLTHETER VT. 100
Can be panel or Rasic meter mea.
sures $1 V$ d.c. but

can be used to mesure owile raing of and di.c. volt, current and ohus withe of a.c. plug in cards specification: Ampuran: $\pm 0 \cdot 2, \pm 1$ digit. Resolution: 1 mV . Number of digits: 3 plus fourth overrange algit. Overrange: 100% (up to 1.999). Input Impedance: 1000 Meg ohm. Measuring cycle: 1 per second. Adjugtment: Automatic zeroing, full gcale adjustment againat an internal reference voltage. Overload: to 100 V d.c. Input: Fuily foating (3 poles). Input power: $110-230 \mathrm{~V}$ a.c. $50 / 60$ cycles. Overall size: $5 \ln \times 2 \frac{1}{4} \operatorname{in} \times 8$ hing AVAILABLE BRAND NEW AND FULLY GUARANTEED.
\$ss. 50. Carr. 50 p .

SINGLAR IC-12
 List Prioe
 £1.80
 P. \& P. 10p

SINCLAIR EQUIPMENT
 Preckage
offers. ö̃̀ 2×230 amplifter, stereo 60 pre-amp, PZ5 PZ6 power supply. 418.00 Carr. 37 p $2 \times Z 50$ amplifier, stereo 60 pre-anip, PZ8 power supply. $280 \cdot 25$. Carr. 37 p . Transiormer for P78. 49.97 extra Add to ony of the above 24.48 for active filter unlt and 13 . 00 for pair of Q18 speakers. All other Sinclair products in stock. 2010 amp .481 .95 . Carr. $37 \mathrm{p} . ; 3000 \mathrm{amp}$ 828.50 . Carr. 37 p. : Neoteric Amp. 848.95 Carr. ${ }^{37 P}$. 1C12. $21 \cdot 80$. P. \& P. 10 P .

SPECIAL OFFER!

GOODMANS

AXIOM 301

Hi-Filㄹin 20W twin cune full range speaker. $30-16,000 \mathrm{~Hz}$.
16,300 ganse. 8 ohm imped. ance. Brand new and boxed. (Llat price $821 \cdot 72$). OUR
PRICE 812.50 each. Carr. 50 p.

HA-10 BTEREO HEADPYORE AITPLIFIER All silicon transistor amplifier oper-
ates from magnetic ceramic or tuner inputs with twin stereo headphone outputs and separate volume controls tor each channel. Operates from 9 V battery. Inputs $5 \mathrm{MT} / 100 \mathrm{MTT}$. Output 50 MW . 25.07. Pont 15p.

SPECIAL PURCHASE!

NEAT G30) STATIC

BALANCE PICK-UP ARMS

Identical specification to NEAT G30 arm but with two-tone chrome and black finish. Complete with head shell, pick-up reat and
plug in phono leads. BRAND NEWplug in phono leads.
ONLY \&8-96. Post 25p.

GAMODEA HE-850 TRAHEISTOR TESTER High quality instrument to test Reverse Leak
current and D.C. current. Amplification factor of NPN, PNP, transistors, dlodes, SCR's, etc. $4^{\prime \prime} \times$ 4i clear scale meter. hatteries. Complete with inatructions, leads and carr ying handle. $212 \cdot 50$. Post 30p.

GAMODEN HMG-600 ITSULATION RE8ISTAICE TRESTER
Range $0-1,000$
Megohms, 500 Volt. Batter y operated. Wide range clear meter $43^{\prime \prime} \times 4^{\prime \prime}$. Complete with deluxe carrying case,
batteries, instruction \$19.95. Post 30 p

ARP-800 AP/RF
AIGHAL GEIERATOR BiGAAL GEMERATOR
All transintnrised, compact, fully portable. AF sine wave 18 Hz to 220
KHz . AF square wave 18 Hz to 100 K Hz . Out put rine/square 10 p . P-P. RF 100 KHz to 200 MHz . Output 1 v . Maximum. Operstion
$220 / 240 \mathrm{v}, \mathrm{AC}$. Complete $220 / 240 \mathrm{v}, \mathrm{AC}$. Complete
with
Instructions lead. $829 \cdot 95$, Post 50 p .

AKAI BARGANS SUPER MONEY SAVING OFFERS—BUY NOW WHILE STOCKS LAST! ALL BRAND NEW AND fuLLY GUARANTEED

1721 Tape Rec. X 5000 Tape Rec. 4000Ds Tape Deck 4000 DE Dust Cover X201D Tape Deck X221D Tape Deck GX200 Tape Deck GX220D Tape Deck X1810D Tape/8 track Deck (X1900D Tape/Cars. Deck X20008D Tape/Cas/a Rec CR81 8 track Rec
 CR81D 8 track Rec
 CR81T 8 track/Receiver CRR08R 8 track aystem

273-95

(iXC401) (assette Derk	\cdots
GXC40T Cassette/Receiver	.
GXC4jD Cassette Deck	
rixC46D Cassette Deck	
GXC46 Cassette Recorder	
(iXCfoD Cansette Deck	
GXC6sD Cassette Deck	
CR35D Cassette beck	
A A6300 Receiver	
AA8030 Receiver	
A.48080 Recejver	
AAB:00 Receiver	
riage 50p extra (recoril	

Carriage J0p extra (recorders and decks 75p)

BARGAIN! KOSS SP. BXC STEREO
HEADPHONES Response
$10-1 \bar{\omega}, 000 \mathrm{~Hz}$. Impedance 4-b whms. Brand new Boxed and fully g'teed PRICE 28.50 . PRICE 26
Poat 2 Jp .

1081 8TEREO LISTENINC 8TATIOA For balancing and gain selection of
loudspeakers with loudspeakers with for stereo hearlphone $9 \operatorname{lin} \times 3$ iin. A.e. $200 / 20.50$

Awitching. 2 gain controls, speaker urnoff aldde switch, stereo
hesiphone mekets. fin $\times 4 \mathrm{in} \times 2 \mathrm{in}$. A8.25. Post 15 p .

MP7 MIXER PREAMPLIFTER
 pu andividual with controls enable ging
 taciiities. Battery opersted. $9 / \operatorname{lin} x \operatorname{jin} \times 3$ ing. inputs Mics: $3 \times 3 \mathrm{my}$. 00 K . Phono ceramic 100 mV 1 meg. Output 250 mV 100 K . $28 \cdot 97$. Post 20 p .

TE-1085 STEREO HEADPHONES Low cost high performance atereo headphones.
Foam rubber ear cupa Adjustable head-band 8 ohm impedance. 25 . $18,000 \mathrm{~Hz}$. With lead and stereo jack plag.
21-87. Pont 12 p .
NEW GARRARD MODULES

Popular range of Garrard decks With Shure cartridge fittell in

 - Pis Module/Miv-6
 Carr. 50p extra any itct 258.60

-LUXE BTEREO HEADPHONES
Reatures unique mech. Features unique mech
anical 2 way unita and anical 2 way unite and fitted adjustable level controls. 8 ohm im . pedance $20-20,000 \mathrm{cp}$ F lead \& atereo jack plug 87.97. Post 12p.

DOLBY SYSTEM NOISE REDUCTION UNIT

Inuproves the performance of cassette anti 4eni-protequinal recordera. Reduces tape hiss for all freluencles atiove 3000 Hz contron or all frequencles above 3000 Hz . Controha for replay. 2 metera for bolby level. Off tape monitoring. Frequeney respunse: 20 Hz to

OUR
PRICE
BO2.50 carr. $0 \mu \mu . ~$
HO8IDEN DHO-2S 8TEREO HEADPHONES
 and excellent per.
formance combinet. Aljustable headband. \& uhum thapertance. $\because 0-1 \because, 000$ cps. Complete with
lead and lead and plitg. Pant 10p.
 $\begin{array}{lll}\text { W0 } & 3 \text { for } 7 \mathrm{Sp} & 10 \text { for } 2235 \\ \text { (.90 } & 3 \text { for } 81.05 & 10 \text { for } 88.30 \\ \text { cl.00 } & 3 \text { for } 81.35 & 10 \text { for }\end{array}$
 Pust inp extra.

FANTASTIC OFFER! NIKKO TRM50 STEREO AMPLIFIER
 $17+17 \mathrm{~W}$ r.m.s. stereo annplifier with inputs for Magnetic ans Crystal phono, Tuner, Tape, Aux and Tape Monitor. Outputa fo two pairs of stereo speakers and tape. stereo headphone socket Full range of controls including loudness control, scratch fitter te. Size $13 \mathrm{in} \times 9 \frac{1}{2} \mathrm{~m} \times 3 \mathrm{ain}$.
 Unrepentable offer-limited atocks

NIKKO TRM 50 SYSTEM

MIKKO TRM50 $17+$ 17W rms stereo amplifter, BSR MP60, Goldring G800 cartridge, pair of Linton 2 speakers and all leads.

LEAK DELTA 30

Leak Delta 30 stereo anplifier, Goldring GL75, plinth, cover Pair of Leak 150 speakers and all

OLR
£ 123.50
Carr. and
Ins. el 1 ;00

SUPER BARGAIN!

 8-TRACK CAR STEREO TAPE PLAYER

Cone, volume and balance controls. Track tector. Complete with matched pai ONLY $\quad 15.95$

Post 30p

HOMER INTERCOMS

Ideal for honue, office, stores, factories, etc. Supplied complete rith bat-
teries, cable and ree instructions.
Station, 22.87, 3 Station 25.25, Port 15p 4 Station :8-62. Post 17p.

WHARFEDALE LINTON SYSTEM

AMSTRAD 8000 : 1 SYSTEM

MONOTONE 6750 SYSTEM

MW/LW CAR RADIO

Fully transistorised, dual waveband. Size $6 \frac{3}{2} \times 4 \frac{3}{3} \times 2 \mathrm{in}$. 1 dV d.c. Neg. or poo, earth
ONLY ©7.50 Post 20 F

B.S.R. TD8S 8-TRACK

STEREO TAPE PLAYER DECK
Integrated preamps (output 12 m mV) to feed into any stereo amplifier. Automatic and manual programme select chronous motor. $210 / 240 \mathrm{~V}$ a.c. OUR PRICE Carr. 37 p .
$£ 16 \cdot 25$

CREDTT TERM8 FOR CALLERS AND MAL ORDER CUB 18 or 88% deponit
ACCESS \& BARCLAYCARD WELCOME

 AND PACKAGE OFFERS!
SAVE Eff's

PHILIPS GA308 TRANSCRIPTION TURNTABLE
2 speeds $33 \frac{1}{3}$ and
45 r.p.m. Lightweight tubular counterbalanced
arm. Belt driven
low speed syn-
chronous motor.
Viscous damped
pick-up lift Comer device. Complete with plinth and hinged cover. GA 308 less cartridge (list $£ 36.55$) OUR PRICE £24.50. Post 50p. LIMITED NUMBER ONLY!

LEAK BARGAINS!

ALL STOCKS BRAND NEW AND GUARANTEED

Delta FM
Delta AM/FM
Delta 75
FM
pair
Leak 150 pair
Leak 650 pair
Leak 600 each
Post 50 p extra each item
ROTEL BARGAINS !
ALL BRAND NEW AND GUARANTEED

RA210 Amp.
RA310 Amp.
RA610 Amp.
RX150 Receive
23.35

RX150 Receiver
RX200 Receiver
RX400 Receiver
Post 50 p extra any item.

SPECIAL OFFER!
ROTEL RH700
STEREO
HEADPHONES
$20-20,000 \mathrm{~Hz}$. 8 - 16 ollw. (List
PO8J). OUR PRICE 26.75

PLINTHS AND COVERS

SME 2000 System
88.25
5840

RECOED DECK PACKAGES (Post 50p)
Decks supplted with
atereo cartridge
plinth with cover.
GARRARD
2025TC/9TAHCD SP2J III/G800
8P25 111/M70-6 SP2J LII/M44-7 8P² III/M44-F SP2J III/MEJF
AP7b/G800
AP76/M7J-6
AP76/M75-6
$\mathrm{AP} 6 / \mathrm{M} 5 \mathrm{E}$
AP76/M75EJ
AP76/G800E
AP76/G800E
AP76/M75ED
B.8.R. McDONAL1)

MP60/G800
MP60/M44-7
GOLDRING:
GLJJ/G800

SPECIAL OFFER! STEREO
SPEAKERS
Matched pair of stereo
bookshelt rpeakers. De-
luxe teak yeneered thish.
Size: 14 in \times 9in $\times 7!\mathrm{n}$.
8 ohins. 8w RMs.
16 W peak. Complete
with DIN lead. 818.95.
Carr. 50 p .

[^1]

"GEMINI" FM STEREO TUNER

All components to build this outstanding phase lock, easily aligned tuner. As described in April/ May/June P.E. We are offering an optional chassis and wood sleeve. Complete kit, as illustrated, including chassis and solid wood sleeve £33•90 post paid.
All components available separately. Send S.A.E. for details and itemised price list.

SCORPIO ELECTRONIC IGNITION

Complete kit with comprehensive construction and fault finding data. £11. Post paid. Data 10p. Itemised prices, S.A.E. please.

```
AMCEL, MAIL ORDER, }160\mathrm{ DRAKE ST.,
ROCHDALE
    Tel. 0706-46234
```


COMPARE OUR PRICES

Speaker Bargains
E.M.I. 1 Bin \times 8in 3,8 \& 15 ohms plain
with tweeter
twin tweeter
Type $360-20$ watt with tweeter 8 ohnis. P.P. 37 p $8 \operatorname{in} \times 5 \operatorname{in} 3,8$ \& 15 ohms FANE 8 in 8 obm , dusal CELESTION Bin 15 ohn GOODMANB $10 \ln \times 6 \sin 3 \mathrm{obm}$ BAKER GROUP 25 12 in 25 W 8 or 10 ohm
Postage 25 p per speaker 2 jin 8 or 64 obm P.P. 10 p Kll-iorm oabinete, tealy'

$$
\begin{aligned}
& \text { (17in } \times 10 \ln \times 6 \mathrm{in}) \\
& \text { with a } \times 13 \mathrm{in} \times 8 \mathrm{in} \text { or } 8 \mathrm{in} \text { cut out } \\
& (12 \mathrm{in} \times 12 \mathrm{in} \times 6 \mathrm{in}) \text { with a } 8 \mathrm{in} \times
\end{aligned}
$$8

CM70 PLANET atick metal,
Amplifier Modules
P. 2Jp)
crystal hand
GIC60"ACOS" stick crystal
DM160 Dynamic unl-dir
ball metal
UD130 $50 \mathrm{~K} / 600$ ohm uni-dir,
ball metal
9THAC Sonotone atereo ceraml
(diamond)
ACOs GP67/2C muno crystal
ACOS GP101 compatible crysta
ACOS GP101 compatible crystal
Postage 5p per certridge
One valve chassis amplifier for recorc
player, 2 W output, volume control and
3w mono audio module (transistorised)
£8.50 (P. \& P. 10p).
15W mono audio module (trannis
torised), $\$ 8.95$ (P. \& P. 10p).
3W stereo module (1
3W intereo module
E 275 (P. \& P. 10 p).

$$
\begin{aligned}
& \text { With a } 13 \text { in } \times 8 \text { in or } 8 \text { in cuit out } \\
& (12 i n \times 12 i n \times 6 i n) \text { with a } 8 \text { in } \times
\end{aligned}
$$

${ }_{5} \mathrm{~W}$ atereo module (2 i in . matt/chennel)
45.60(P. \& P. 15p)

$$
\begin{aligned}
& \text { Sin or 8in cut out. } \\
& \text { (please specify cut o }
\end{aligned}
$$

Add 35p per Cabinet for poat \& packing

8tereo Headphones

De-Luxe finish 8-16 ohm ntatching imp.
Microphone Bargaing monolstereo switch complete with lead

$$
\begin{aligned}
& \text { MIC46 "ACOS' metal case, } \\
& \text { crystal hand }
\end{aligned}
$$ and stereo lack plug only 88.75 (P. \& P. 25p.)

Mo Stereo Phono Socket?
Headphone adaptor only $\mathbf{8 1 . 3 5}$ (P. \& P. 10p).
Tapes-"MYLAR" base fineat quality Brltith made.

 5inin 1200 ft 850 7in 2400 ft 05 , Poatage 9p each

THIS MONTH'S SPECIAL OFFER BIE Groov-Eleen
Model 42, effective record cleaner. Retail price $21 \cdot 95$. Our price $81 \cdot 50$. Mall Order Dept. 县/78, P.O. Box ${ }^{670}$, Mancheater M60 4B SEID 25p FOR COMPLBTE CATALOGUE GUARANTEED

OSMABET HTD, We make transformers
AUTO-TRANSFORMERS
500W, $88.85 ; 750 \mathrm{~W}, \pm 12 ; 1,000 \mathrm{~W}, 215 ; 1,000 \mathrm{~W}, 221$; $500 \mathrm{~W}, 28.85 ; 750 \mathrm{~W}, 212 ; 1,000 \mathrm{~W}, 215 ; 1,500 \mathrm{~W}, \mathrm{f}$
$2,000 \mathrm{~W}, 827 ; 3,000 \mathrm{~W}, 287.50 ; 4,000 \mathrm{~W}, 258.50 \mathrm{C}$ LOW VOLTAGE TRANSFORMERS
Prim. 200/240V a.c. 6.3 V 1.5A, $21.05 ; 3 \mathrm{~A}, 21.30$; 6A CT $22.05 ; 12 \mathrm{~V}$ 1-5A, $11.35 ; 3 \mathrm{~A}$ CT, $22.15 ; 6 \mathrm{~A}$
$\mathrm{CT}, 22.80 ; 18 \mathrm{~V} 1.5 \mathrm{~A}$ CT, $42.15 ; 24 \mathrm{~V} 1.5 \mathrm{~A}$ CT, CT, $22 \cdot 80 ; 18 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$ CT, $22-15 ; 24 \mathrm{~V} 1.5 \mathrm{~A}$ CT,
$28.15 ; 3 \mathrm{CT}, 28.80 ; 5 \mathrm{~A}, 24.80 ; 8 \mathrm{~A}, 26.75 ; 12 \mathrm{~A}$, $28.15 ; 3 \mathrm{~A}, \mathrm{CT}, 22.80 ; 5 \mathrm{~A}, 24.30 ; 8 \mathrm{~A}, 5675$; 12A ع0.40; 40 Y 3 A UT, 83.75 ; $\overline{0} 0 \mathrm{OV} 6 \mathrm{~A}$ CT, 810.
MIDGET RECTIFIER TRANSFORMERS
For FW rect., $200 / 240 \mathrm{~V}$ a.c. $9-0-9 \mathrm{~V} 0.3 \mathrm{~A}, 12-0-12 \mathrm{~V}$ 21.15: $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ or $20-0-20 \mathrm{Y}$ each; $0-0-9 \mathrm{~A}$, 1.85 A , O/P TRANSFORMERE FOR POWER AMPLIFIERS P.P. Bec. tapped $3-7 \cdot 5-10$ ohme, A-A $6 \cdot 6 \mathrm{Kn} 30 \mathrm{~W}$
 (EL34,KT88, etc.), \&12.50. Multi O/P 10 W, 29.25 . MAINS TRANSFORMERS POWER AMPLIFIER8 Prim. $200 / 240 \mathrm{~V}$ a.c., TX 6 нec. $42 \overline{5}-0-425 \mathrm{~V} 500 \mathrm{Ma}$, 6.3 V CT $6 \mathrm{~A}, 6.3 \mathrm{~V}$ CT $6 \mathrm{~A}, 0-5-6.3 \mathrm{~V}$ 3A. 214.25; TX1 $425-0-425 V$ 2j0Ma, $6.3 V$ CT $4 \mathrm{~A}, 6-3 V \mathrm{CT} 4 \mathrm{~A}$,
 G.E.C. MANUAL OF POWER AMPLIFIERS Covering valve amplifiers of 30 to 400 W , with price list of transformers and chukes speciffed. 80p.
Bernards Amplifier Manual, 5 to 1000 W .
75p. LOUDSPEAKERS FOR POWER AMPLIPIERS FANE 15 W w/tweeter, 84.99 ; $50 \mathrm{~W}, \mathrm{g10.90} ; 80 \mathrm{~W}$, $212.90 ; 100 \mathrm{~W}$, £22.50; BAKER $25 \mathrm{~W}, ~ £ 6.40 ; 35 \mathrm{~W}$, 87.20: Hi-Fi Major Module, 20 W w/Tweeter and Xover $30-17 \mathrm{kHz}$, 89.90 ; EMI $13 \mathrm{in} \times 8 \mathrm{in}$, 29.25;
 LOUDSPEAKERS
2fin $16 \mathrm{n}, 2 \mathrm{jin} 25 \mathrm{n}$. 3 in $30 \mathrm{n}, 75 \mathrm{p}$; $3 \operatorname{in} 3$ or 1 m , $4 \ln 8$ or $15 \mathrm{n}, 5 \mathrm{in} 3,8,15$ or 25 n , $5 \mathrm{in} \times 3 \mathrm{in} \mathrm{3}, 8,15$ or $25 \mathrm{n}, 21.05$ each; 6 in $3 \mathrm{n}, 6 \mathrm{in} \times 4$ in 8 or $25 \mathrm{n}, 7 \mathrm{in} \times$ or $25 n \mathrm{El} 1.60$; 1 thin 150 , 22.50 ; 10 in $\times \sin 30,8,10$ SPEAKER AOTO MATCHWG TRANSFORMERS $12 \mathrm{~W}, 3$ to 8 or 15 n , up or down, 21.05 .
BULK TAPE ERASERS
Instant erasure, tape spools, cassettes, deniagnetises tape hesia a.c. $200 / 240 \mathrm{~V}$, 28.50 plus 2 ap P. \& P. RELAY8 Sub mini, $6 / 9 \mathrm{~V}, 250 \mathrm{D}$.
15, 20 or 30 Y d.c., 2 C.Os 80 p ea
12V DC FLDORESCENT LIGHTING
Silicon transistor invertor for 21 W tube, 85.75.
Tubular W/E $2 \cdot 2$ mfd
Tubular W/E $2 \cdot 2 \mathrm{mfd}, 250 \mathrm{~N}$ Kovers, etc., 15p, 25 100. Block $4 \mathrm{mid}, 800 \mathrm{~V}, 75 \mathrm{p}, 1,500 \mathrm{~V}, 81 \cdot 25$ Carriage extre on all ordera, etc.
8.A.E. ENQUIRIES-LISTS. MAL ORDER ONLY 46 Kenllworth Road, Edsware, Midx. HA8 8 YG Tel. 01-9589314

CALLERS BARGAIN

A limited number of TWIN TAPE DECK UNITS

These superb twin tape deck unita were originally deyigned for installations requiring the continuous replay of muac or apeech when connected to suitable
anplifiers and coat approx. $£ 4 \overline{5} 0$ each to mannfacture. Conaist ing of two canpletely self-contained tape decks operating at either 3^{3} in a 3 button itrack notel) or \bar{t} in (6 button it track moklel). Constructel to the highest specifcation with the finest components available. Nothing has been spared in the construction and the superb heavy (4 off), tols grade relays, solenoidm, etc., all bear witnesg to the high atanilards set. A.c. $\because 30 / 250 \mathrm{~V}$ $30 \mathrm{c} / \mathrm{s}$. Vertival or lurizontal operation. Size: 91 in $\times 19 \mathrm{in} \times$ rin deep. Weight j 416 .
We have a lunited number available requiring either order-these are offerell to personial callers only.
EFOM El0 each (Depending $\begin{gathered}\text { on } \\ \text { conditio) }\end{gathered}$
FIRST COME - FIRST SERVED
-Personal callers only 01-472 2185/2110 for appointment to view
Few working and complete ©35
Carriage and Insurance including Packing case 83.50
SYPHA SOUND SALES LTD. 191-193 Plashet Rd., Upton Park, London, E13

Shopertunities "thunder" ahead with an offer that's FANTASTIC (even sensation in the world of sound! First-class makers! Fabulous VHF, AM FM Hadio AND Cassette Tape Recorder \& Player combined \& it also runs off standard batteries or mains. (Simply plug in the 220/240V AC line PRICE GENUINELY $44!$ WE OFFER AT ALMOST HALF PRICE Wonderful features: $\$$ Press-button Keyboard Control Panel or lates MASTERSWITCH CONTROL! \star "MAGIC EYE" Visual Battery check recordinglevel indicator or built-inautomatic Leveller! \star Separate ON pinone (for personallistening or" "monit Heavy dutybuilt-in speaker! t Ear * Remote control microphone! t Built-in swivel telescopic extension aerial (24in approx.)! Magnificently made case with carry handle (DESIGNS VARY SLIGHTLY.) Takes standard $30,60,90$ or 120 -minute Cassette Tapes obtainable everywhere. AND the amazing built-in full circuit VHF, AM/FM Radio gives you superb clarity of tone, incredible station selection. Unique rotating Station Selector Dial, gets locally, local city and regiona of foreign every part of the country plus B.B.C. National, HF. Picks up dozen Car Radio or Car Cassette player ALONE $£ 23.75$, CARR ETC plete with simple instructions remote control microphone with on af switch and microphone stand. WITH WRITTEN GUARANTEE. Send BONUS OFFER; Batteries and Cassette Tape $\mathbf{2 5 p}$ extra if required.

THE ONE STEP FORWARD EVERYONE HAS WAITED FOR! NOW a superb dealuxe portable BATTERY/MAINS tape recorder and player-and incredible Shopertunities bring it to you for ONLY $\mathbf{f 1 2 4 9 \text { . Due to our cus price we }}$ annot name first-classmakers-but rest assured you're getting one of the BEST
Expensive"PIANOKEYBOARD" CONTROL PANEL (orlatest MASTER SWITCH control) AND AUTOMATIC LEVEL CONTROL. NO fidding with awkward tape and reels, just "slap-in" a cassette and off you go Takes 30,60 , or 90 minute standard cassette tapes obtainable everywhere). Amazing performance ensures perfectrapings and superbreproduction! Remot control microphone. Rapid Rewind! Fast forward! Beautiful tone from a
 acks for remore concrol microphone, ecc $220 / 240$ tin 5 in 2 in approx Design can vary slightly. With carry handle. WRITTEN GUARANTEE and ull instructions. ONLY ± 12.49 post, etc., Jlp. \& Refund if you don't agree Cassette tape, set of standard batteries AND microphone stand all for sopextra, if required. Send quickly, after receiving goods test 7 days refund if not delighted. Orcall.
FOrder by post co Uxbridge Road address or call at either store. —n Bargains galore at both stores.-(COMMERCIAL TRAVELLERS PLEASE
NOTE: Merchandising office at Holborn Store.)

Wows a Fast Easy WAY TO LEARN BASIC RADIO \& ELECTRONICS

Build as you learn with the exciting new TECHNATRON Outfl! No mathematics. No soldering-you learn the praotical way.

Learn basic Radio and Electronics home-the fast, modern way, Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s simplified study method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!
and what's more, you will understand exactly what youl are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again. You LEARN-but it's as facinating as hobby. Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the spring. board for a career in Radio and Electronics.

FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this clourse-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of clourses up to City and Guilds standards.
Specialist Booklet
If you wish to make a career in Electronics, send for your FREE copy of "NEW OPPORTUNITIES". This brand new booklet -just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. BPE13 ALDERMASTON COURT, READING RG7 4PF
A ceredited by the Council for the Accreditation of Correspondence Colleges.

 forfast, easy
reliable soldering
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

IDEALFOR HOME CONSTRUCTORS

Size 1 cartons all at $25 p$ each in 40 60, 6040 .
or Savbit alloys in 7 gauges.

EASY-TO-USE DISPENSERS

Size 5
(Savbit) 18swg,
18p (illustrated)
Size 19A
(60 - 40 alloy)
18swg. 18p
Size 15
(6040 alioy)

BIB WIRE STRIPPER ANDCTTTER

Model 3A. Strips insulation from cable or flex without nicking wire 4 different settings, 4\&6 BAspanner ènds. ground cutting edges Price 32 p. NEWI ${ }^{\text {Also avalable }}$ de luxe Model $8 . \quad$ Price 58p.
From Electrical and Hardware Shops. If unobtainable, write to Multicore Solders Ltd., Hemel Hempstead,Herts.HP2 7EP

WwMy PRACTICAL PAPERBACKS F-n
 FOLLEHAM-TAB

FEBRUARY

ADVANCED RADIO CONTROL
Edward L. Safford, Jr. El.00
EASY WAY TO SERVICE
RADIO RECEIVERS
Leo G. Sands
104 EASY TRANSISTOR
104 EASY TRANSISTOR
PROJECTS YOU CAN
BUILD
Robert M. Brown
SOLID-STATE PROJECTS
Wayne Green
Wayne Green
TEN-MINUTE TEST
TEN-MINUTE TEST
TECHNIQUES FOR
TECHNIQUES FOR
ELECTRONICS SERVICING
Elmer Carlsón CIRCUIT
TRANSISTOR CIRC TRANSISTOR
GUIDEBOOK
GUIDEBOOK
USING ELECTRONIC
TESTERS FOR CAR
TUNE-UP
Albert Wanninger
£ 1.20
MARCH
BEGINNER'S GUIDE TO
T.V REPAIRS

George Zwick
George Zwick $£ 1.40^{*}$
PRINCIPLES AND
PRACTICE
PRACTICE
Brice Ward
Brice Ward $£ 1.40^{*}$
ELECTRONIC PUZZLES
AND GAMES
Matthew Mandl
f1.40*
£1.40*

HOW TO READ
ELECTRONIC CIRCUIT
DIAGRAMS
Robert M. Brow'n and Paul
Lawrence
$£ 1 \cdot 40^{*}$
Lawrence
104 EASY PROJECTS FOR
IO4 EASY PROJECTS
THE ELECTRONICS
GADGETEER
Robert M. Brown $£ 1.40^{*}$
MODEL RADIO-CONTROL
Edward L. Safford, Jr. $£ 1.40^{*}$
APRIL
125 ONE-TRANSISTOR
PROIECTS
Rufus P. Turner $£ 1.40^{*}$
INSTALLING AND
SERVICING ELECTRONIC
PROTECTIVE SYSTEMS
Rarvey F. Swearer $£ 1.40$
PRACTICAL SOLID-STATE PRANCIPLES AND PROJECTS
Ken W. Sessions. Ir. $£ 1.40^{*}$ RAPID T.V. REPAIR
G. Warren Heath
TEST NSTRUMENTS FOR

ELECTRONICS
(Ed. by) Martin Clifford $£ 1.40^{*}$ VIDEO TAPE PRODUCTION AND COMMUNICATION TECHNIQUES
Joel Lawrence Efrein
E1.40*
HANDBOOK OF
SEMICONDUCTOR
CIRCUITS
£1.40*
FOULSHAM-TAB LTD.
YEOVIL ROAD. SLOUGH.BUCKS.

THITFRE: HEAMHKIIC CATALOGUEperhaps the most valuable stereo Hifi/Electronics kit publication available today

NEW MULTI-SPEAKER KIT
Features Four KEF Hı-fi Drive Units. Offers mionitor quality at lowest cost

NEW AM FM STEREO RECEIVER KIT
Sold State Firl IF Circuntiy two IC s, two "tamu filers Black magic lightung
NEW PORTABLE ENGINE ANALYSER KIT
Versanle automonve tes'm J and touble shooting
LOW-PRICED TESTERS AND INSTRUMENTS
tor the hobbyist and techni laf.
P:US
alit the models you n ive read about in international publicatiors
NEW 1214 SERIES STEREO HI-FI Ideal for use for quadraphome sound.
the HOW AND WHY OF KIT BUILDING
Electioncs is fin the HEATHiTIT way
BUILD YOURSELF A PAIR OF SPEAKERS
in an evermu's enjoy Stereo sound
GET THE BEST IN HI-FI
Enloy wor thwhile kut savings
SOMETHING FOR ALL
THE FAMILY
even a lattery char fe: for dad
LOW COST S'TEREO RECORD PLAYER
anaczung sent:d wall.e

It sFiee usthe late:- Hi-Fi Fhetioma cataloque from Heath the we: ld sam: 's electrome ko mamuactue:s ardus yout on reques' Thus ater" cata "tote will the eat o all the famm: Stere, H1-Ft Trans stor portables Meta: detec.ur Leernom, supp.y All mode.s offer unt eitathle specifcalions fol ille
 Elmsatalla
 publicatur oryout persu:al wh ot day

Heatl: (Gloucester) Limited Gloucester GL2 6EE

Catering to your particular service and production requirements

OUR RANGE INCLUDES

Aerosol Aids : From Kontakt, Antistatik spray - cold spray - Fluid spray - Graphit spray - Oil spray Plastik spray - Soldering lacquer - Switch and contact cleaners - Video spray for cleaning tape heads.

Allen \& Bristol Keys: L Type. Standard and Long Arm
Contact Cleaners : Diacrom Diamonded Spatulas and Kontakt aerosols
Nut Drivers : Hex - A.F. - Metric. Solid and hollow shaft and Palnut.

Pliers, Seizers and Nippers: Quality precision made hand tools from Xcelite, and other leading products of special tools.

Special Products Distributors Ltd.
81 Piccadilly, London W1V OHL.

Screwdrivers: Allen - Ball head - Bristol - Clutch head - Hold-e-Zee - Phillips and slotted
Soldering Equipment : Resistance and heat controlled units. Also thermal wire stripping equipment from American Beauty and Wassco
Tweezers: Quality Swiss made electronic tweezers.
Ultrasonic Cleaners: Bench models and accessories from American Beauty.
Work Positioners : The versatile Panavise 300 series for modern precision and allied industries.
Work Viewers : Distortion free Ednalite viewers and optical glass lenses for single and group viewing.
For catalogues and other information on the above write

Tel.: 01-629 9556
Cables: Speciprod
London WiV 0HL

PCB'S
 FROM PHONOSONICS

All PCB's Fibreglass, Drilled, Rolled Tinned Circuit Diagram and Assembly Notes Free with each PCB. PCB-Mounting Slider Pots with Knobs supplied as Alternative to Rotaries at Extra Cost where indicated. PCB's designed by Phonosonics except where stated otherwise DESIGNS PUBLISHED JN P.E.
AURORA (Apr./Aug, 71) Multichannel Sound Controlled Light S/c's (excl. SCRs). Rs, Cs, Cores, Pors., B ch.. $\in 17.75 ; 4 \mathrm{ch} ., \mathrm{E} 10.15$. Slider
 incl. all pors, $\mathbf{E 2} 35$. PCB (41 in $\times 6 \frac{1}{2}$ in) for PSU, Sync. Gen, 8 cores, 8 SCRs. C1. 35 .
A.F. SIGNAL GENERATOR (Nov. 72)

S/c's, Rs, Cs, Pots, Sw's, 62.25. PCB (2tin $\times 4 \mathrm{in}$) also holds Sw's, 90 p
AUDIO MIXER (Jan. 72)
R_{s}, C_{s}, Pots (i.c. excl.), PCB ($1 \frac{1}{\mathrm{i}} \mathrm{n} \quad 2 \mathrm{in}$), c 1.55.
BIOLOGICAL AMPLIFIER (Jan./Feb. 73)-Pre-amp Set
S/c's, Rs, Cs, Pots (i.e's excl.) $\not \mathbf{2}$-05. PCB (2in 4 in), 85p.
CALLERCORD (Jul./Aug. 72) Automatic Answering Machine S/c's, Rs, Cs, Pors. Switches, Relays, Transformer, fil 15 . PCB (4in 7 in) also holds relays, connectors, fI 150 . Recorder, 66.95 . Pips Gen with
$\mathrm{PCB}, \mathrm{f} 1.50$. PCB, El- 50 .
DOOR BELL YODELLER (Apr. 7I)-S/c's, Rs, Cs, Pots, $\mathbf{E 4} \mathbf{2 0}$
Transformer, $\mathbf{f 1} 30$. Loudspeaker, $\mathbf{6 1 \cdot 3 0}$. PCB ($\sin \times 3 \frac{1}{2}$ in), 90 p.
ELECTRONIC PIANO (Sept. 72/Jan. 73)
re-Amp-Rs, Cs, Pots, 3-Rs, Cs, 1150 . Pirch PCB as published $61.85-R_{s}, C_{s}, 62 \cdot 10 \mathrm{each} \mathrm{sec}$. Pitch GEMINI STEREO AMP (Nov. 70/Mar. TI) Stereo Sets and PCBs Pre-Amp-S/c's. Cs, Pors, Maka-Sw's-with $\frac{1}{2} W 2 \%$ M. 2 . Rs, $113-45$-with
 Rs. Holds pots and Maka-Sw's, 42.10 . Main Amp-Rs, Cs, Pocs, $45 \cdot 40$. PCB ($3 \frac{1}{2}$ in $\times 5 \mathrm{in}$), $\mathrm{EI} \cdot 40$. PSU- R_{s}, C_{3}, Pot, E 3.70 . PCB ($2 \mathrm{in} \times 4 \mathrm{in}$), 75 p .

GEMINI STEREO TUNER (Apr./Jun, 72)
Rs, Cs, Poc, 63.80. PCB as published. E2.10
LOGICAL RADIO CONTROL (Dec. 71/han. 72)-Sers inel. Rs, Cs. S/e's and Pots (where requ.) but excl. I.C's. Coder I and Clock Pulse Gen., $\mathbf{~ E 2} 95$ Coder 2A, 2280. Coder 2B, E3. Decoder, 55p. PCBs as pub., 75p each.
MODEL SERVO CONTROL (Feb./Mar. 72) -Sets incl. Rs, Cs, S/c's and Pots (where requ.) but excl. I. C's. Servo Amps: "A", ©1.40; "B", $\mathbf{6 2 . 5 5}$ '. C^{+}' and Fail-Safe 50p each
MICROPHONE MIXER (Apr. 69)-S/c's, Rs, Cs, Pots, $\mathbf{6 2} 90$, Slider Port extra, 41.15 . PCB (3 itin $\times 4 \frac{1}{4}$ in)-also holds pots, $\mathrm{f} 1 \cdot 20$
PHOTOPRINT PROCESS CONTROL (Jan./Feb. 72)
Finds exposure, controls timing, stabilises mains voltage.
S/c's, SCR, LDR, Rs, Cs, Pots, Relay. Sw, T/former, $£ 7.60$. PCB ($3 \frac{1}{2} \mathrm{in} \times 5 \frac{1}{} \times \mathrm{in}$) also holds pors, relay, Keyswiteh, El 20.
SOUND SYNTHESISER-Details on request.
TAPE NOISE LIMITER (Feb. 72)-Mono Circuit
S/c's, Rs, Cs, Pot, PCB ($1 \frac{1}{2}$ in $\times 3$ in), 6220 . Regulated Power Supply (wil) feed 2 units) and PCB ($1 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in), $\mathbf{6 3} 20$
ULTRASONIC TRANSMITTER-RECEIVER (MaY 72)
Rs, Cs, Pot, S/E's, Transducers, Relay, $\mathbf{E 9 . 9 0}$. Dual PCB (2 in $\times 5 \frac{1}{\frac{1}{2}} \mathrm{in}$), $\mathbf{7 5 p}$.
VERSATILE LIGHT EFFECTS UNIT (JUn. 72)-Single Channel Sound Controlled Light-also has buitt-in variable strobe. S/C's (excl. SCR), Rs, Cs

SOME OTHER DESIGNS AVAILABLE

AEVERBERATION UNIT (Practical Wireless Nov.-Dec. 72)
S/c's, Rs, Cs. Slider Pots, T/former, $\mathbf{6 6 . 8 0}$ (with rotary pots $\mathbf{6 5} 70$). PCB (2 in $\times 11$ in) also holds stiders (compatible with publ. panel) $\mathbb{I} \mathbf{2 0}$.
8 WATT AMPLIFIER (Practical Wireless Nov. 72)
Main Amplifier-S/c's, Rs, Cs, Pot (Mono Set), $\mathbf{6 3} 90$. PCB (2 tin $\times 3$ in) (Mono) 60p. Pre-amp-S/c's, Rs, Cs, Pots, Maka-Sw., Mono, $\mathbf{6 2 \cdot 5 0}$; Stereo, $\mathbf{6 5}$-20.Slider Pots extra, Mono, Cl.26: Stereo. ©l.52. PCB ($3 \frac{1}{3}$ in $\times 7 \frac{1}{3}$ in) (Stereo)also holds all pots and Maka-Sw., $\ddagger 150$.
AURORA AUXILIARY CONTROL UNIT (2 variable freq. 63.25. Slider Pond 4 Variable amplitude freq. zens.), Rs, Cs, Pots, S/C

HYRISTORS (400V P.I.V.)
THYRISTORS (400V P.I,V.)
IA 50p. 3 A 55p. 7A 70p. I6A 95p
ists for these and latest new designs-send S.A.E
Orders: U.K. IOp P. \& P. Overseas at cost. Mail Order only.
V.A.T. WILL BE CHARGED ON ALL U.K. ORDERS FROM APRIL Ist

Dept. P.E.3, 25 Kentish Road, Belvedere, Kent DA17 5BW

A SpeakerSystem to meet every need

EMI provides the speaker system to suit your needs and your budget, all with one thing in common, superb quality of sound over the full audio range. Choose from new elegant speaker enclosures for the connoisseur; home assembly enclosure kits and matched speaker kits and a range of basic chassis loudspeakers as used in the highest quality sound reproduction equipment.
Send for full details and name of your nearest stockist.

To: EMI Sound \& Vision Equipment Limited. EMI Pathe Division, 252 Blyth Road, Hayes, Middlesex. 01-573 3888 Please send me details of EMI loudspeaker's and name of nearest stockist.
Name
Address

EnI Perfection in Sound

[^2]

P.E. SOUND SKNTHESSER

Get away to a flying start with this exciting Space Age project. Precision cut metal parts to form modular units as described in this issue are available NOW.
A. Power supply subframe with tab drillings only £I.35 (P. \& P. 25p).
B. Circuit board support plates fully drilled, 94p.

Panels drilled with locating holes only: C. 20 mm , 18 p ; D. $38 \mathrm{~mm}, 21 \mathrm{p} ; \mathrm{E} .60 .5 \mathrm{~mm}, 28 \mathrm{p}$; F. $64 \mathrm{~mm}, 31 \mathrm{p}$; G. Module locking rods complete, £l-20. SAVE MONEY by obtaining a complete kit of hardware which comprises I off each A, C, D, F, 5 off E, and 7 off B, G $£ 17.42$, Post Free. "SCOPE" built REGULATED POWER SUPPLY fully assembled and GUARANTEED. Voltage rails adjustable from 8-17V. Nom. $15-0-15 \mathrm{~V}$ at 500 mA per rail. Stab. ratio 250 : 1; Ripple and Noise $500 \mu \vee$ at full load. Load regulation $<1 \%$ zero to full load, line regulation $<\frac{1}{1} \%$ for 10% change in mains voltage. Size 4 in $\times 2$ tin $\times 7$ in fits easily into power supply subtrame. Terrific value at $\mathbf{f} \mathbf{1 9} 90$ Post Free. (Include ISp for insurance if required.)

Let us quote you for bulk supplies of any items listed.

EATON AUDIO

P.O. Box No. 3 ST. NEOTS HUNTINGDON

TERMS: MAIL ORDER ONLY. C.W.O. Cheques or crossed P.O. payable to Eaton Audio. Minimum order E2. POSTAGE/ PACKING: some items show P. \& P. charges in brackets, where P. \& P. charges are not shown please add $10 p$ in the $f 1$ to orders under $\mathbb{5} 5$. Orders over $\mathbf{E 5}$ will be sent free of P. \& P.

THIS IS THE FIRST PAGE OF THE GREAT BI-PAK SECTION

BRAND NEW FULLY GUARANTEED DEVICES

$4 \mathrm{Cl07}$	0.20	AD162	0.88	BC148	$0 \cdot 10$	BD137	0.45	BF188	0.40	OC19	0.35	2G371							
AC113	$0 \cdot 20$	AD161		BC149	0.12	BD138	0.60	BF194	0.12	0 C 20	0.68	29371 B	0.12	${ }_{2} \mathbf{2 N} 2219$	0.20 0.22	2N3064	0.46 0.50	2N4059	0.10 0.12
$\mathrm{AC115}$	0.88	AD162	(MP)	BC150	0.18	BD139	0.55	BF195	0.12	$\bigcirc \mathrm{C} 22$	0.88	${ }_{20373}$	0.12 0.17		0.22 0.20	2N3055	0.50 0.14	2N4060	0.12 0.12
AC117K	0.20		0.55	BC151	0.20	BD140	$0 \cdot 60$	BF196	$0 \cdot 14$	0 C 23	0.48	29374	0.17	${ }_{2} \mathrm{~N}^{2} 2222$	0.20		0.14 0.16	${ }_{2}{ }^{2 N} 4081$	0.12 0.12
AC128	0.18	ADT140	0.50	BC152	$0 \cdot 17$	BD155	$0 \cdot 80$	BF197	0.14	0 C 24	0.50	2 G 377	0.80	2N2368	0.17	${ }_{2} \mathbf{2 N 3 3 9 1 A}$	0.16 0.14	2N4082	0.12 0.17
ACl^{25}	0.17	AF114	$0 \cdot 84$	BC153	$0 \cdot 28$	ED175	0.60	BF200	0.45	OC25	0.88	29378	0.16	2N2369	$0 \cdot 14$	2N3343	0.14	2N4284	0.17 0.17
${ }^{\text {ACl26 }}$	$0 \cdot 17$	AF115	0.84	BC154	0.80	BD176	0.60	B F222	0.95	OC26	0.25	$2 \mathrm{G381}$	$0 \cdot 16$	2N2369A	0.14	2N3394	0.14	2N4285	0.17 0.17
AC127	0.17	AFl16	$0 \cdot 84$	BC157	0.18	BD177	$0 \cdot 65$	BF257	0.45	OC28	0.50	20382	$0 \cdot 16$	2N2411	0.84	2N3395	0.17	2N4286	0.17
${ }^{\text {ACl34 }}$	0.14	AF124	0.85 0.80	${ }_{\text {BC1 }}$	0.12	BD179	0.70	BF259	0.85	$0 \mathrm{OC3}$	0.48	$2 \mathrm{G414}$	0.80	2N2648	0.47	2N3403	0.21	2N4289	0.17
AC137	0.14	AF125	0.26	BC16I	0.50	BD185	0.70	${ }_{\text {BF262 }}$	0.65	${ }_{0}^{0 \mathrm{OC} 36}$	0.50	26417	0.25	$2 N 2711$	$0 \cdot 21$	2N3404	0.88	2N4290	0.17
ACl_{41}	0.14	AF126	0.28	BC167	$0 \cdot 18$	BD186	0.65	BF270	0.85	0 C 42	0.84	2N388A	0.85	2N2712	0.81	2N3405	0.42	2 N 4291	0.17
AC141K	$0 \cdot 17$	AF127	0.28	BC168	0.18	BD187	0.70	BF271	$0 \cdot 80$	$0 \mathrm{OC44}$	0.15	2N 404	0.55 .0 .20	2N2714	$0 \cdot 21$ 0.17	2N3414	0.15	2 N 4292	0.17 0.17
$\mathrm{ACl}^{2} 2$	0.14	AF139	0.30	BC1 69	0.12	BD188	0.70	BF272	0.80	0 C 45	0.12	2 N 404 A	. 0.28	2N2904A	0.17 0.21	2N3415	0.15 0.28	2N4293	0.17 0.12
AC142K	0.17	AF178	0.50	BC170	0.18	BD189	$0 \cdot 75$	BF273	$0 \cdot 35$	$0 \mathrm{C70}$	0.10	2N524	0.48	2N2905	0. 21	2N3416	0.28 0.28	2N5172	0.12 0.38
${ }_{4}{ }_{4} \mathrm{ClF} 5$	0.15	AF179	0.50	BC171	$0 \cdot 14$	BD190	0.75	BF274	0.35	$0 \mathrm{C71}$	0.10	2N527	0.49	2N2905A	0.81	2N3525	0.75	2 N 5458	0.38 0.82
${ }^{4} \mathrm{ACl54}$	0.80 0.80	AF180	0.50 0.45	BC172	$0 \cdot 14$	BD195	0.85	BFW 10	$0 \cdot 60$	OC72	0.14	2N598	0.48	2N2906	0.15	2N3646	0.09	2N5459	0.40
AC158	0.20	AF186	0.45	BC 173 BCl 74	0.14 0.14	BD196	0.85 0.90	BFX29	0.27 0.28	OC74	0.14	2N599	0.45	2N2906A	0.18	2N3702	$0 \cdot 10$	28301	- 50
AC157	0.84	AF239	0.87	BC175	0.82	BD198	0.60	BFX85	0.22 0.80	$0 \mathrm{OC76}$	5	2 N	0.	2N2907	0.20	2N3703	0.10	28302A	0.48
AC165	0.20	AL102	0.65	RC177	0.18	BD199	0.95	BFX86	0. 28	OC77	0	2N698	0.	2N2907A	0.88	2N3704	$0 \cdot 11$	28302	0.42
AC166	0.20	AL103	0.65	BC178	0.18	BD200	0.95	BFX87	0.24	0 C 81	0.15	2N699	0.	2N292,	0.14	2N3705	$0 \cdot 10$	2 S 303	0.55
ACl67	0.20	A8Y26	0.85	BC179	0.19	BD205	0.80	BFX88	$0 \cdot 22$	OC81D	0.15	2N706		${ }_{2} \mathrm{~N} 2925$	0.14 0.14	2N3706	0.09	28304	$0 \cdot 70$
ACl 68	$0 \cdot 24$	ABY27	0.80	BC18n	0.24	BD206	0.80	BFY50	0. 20	0 C 82	0.15	2N706A	0.09	2 N 92	0.14	${ }_{2} \mathrm{~N} 3707$	0.11	28305	0.84
ACl69	0.14	ABY28	0.85	BC181	$0 \cdot 24$	BD207	0.98	BFY 51	0.20	OC82D	0.15	2N708	0.18			2N3708	0.07	28306	0.84
AC176	$0 \cdot 20$	A8Y29	0.25	BC182	$0 \cdot 10$	BD208	0.95	BFY ${ }^{\text {P }}$	0.20	0 C 83	$0 \cdot 20$	2N711	0.80	(2N3710	0.09	283307	0.84 0.54
AC177	0.24	AsYD0	0.25	BC182L	$0 \cdot 10$	BDY20	1.00	BFY53	0.17	OC84	0.20	2N717	0.35		0.11	2N3711	0.09	28321	0.58 0.48
${ }^{\text {AC178 }}$	0.28	ASY51	0.85	BC183	$0 \cdot 10$	BF115	0.24	BPX25	0.85	OC139	0.20	2ソ718	0.24	2N2926		2N3819	0.28	283222 A	0.42 0.42
${ }^{\text {AC179 }}$	0.28	A8Y52	0.26	BC183L	0.10	BF117	0.45	BEX19	0.15	OC140	0.80	2N718A	0.50		0.10	2N3820	0.50	28323	0.42 0.56
AC180K	0.17 0.20	A8Y54	0.25	BC184	0.12	BF118	0.70	BEX 20	0.15	OC169	0.25	2N726	0.28	2N2926 (R)		2N3821	0.35	28324	0.20
AC181	0.17	A8Y56	0.25	BC184L	0.12	BF119	0.70	B8Y26	0.15	OC170	0.85	2N727	0.28		0.10	2N3823	0.88	28325	$0 \cdot 70$
AC181K	0.20	ASY57	0.25	HC187	0.28	BF123	0.45	BSY26	0.15	$0 \mathrm{Cl71}$	0.25	2N743	0.20	2N2928 (B)		2N3903	0.28	28326	0.70
AC187	0.22	A8Y88	0.25	BC207	0. 11	BFi25	0.45	B8Y27	0.15	0 O 200	0.25	2N744	$0 \cdot 20$		0.10	2N3904	0.30	28327	$0 \cdot 70$
AC187K	$0 \cdot 20$	A8221	0.40	BC208	0.11	BF127	0.50	B8Y29	0.15	$\mathrm{OC}^{0} 201$	0.28	2N914	0.14	2N3010	0.70	2N3905	0.28	28701	0.48
4 Cl 188	0.22	BC107	0.09	BC209	0.12	BF152	0.55	R8Y38	0.18	OC202	0.28	2N918	$0 \cdot 30$	2N3011	0.14	2N3906	0.87	40361	0.40
AC188K	0.80	BC108	0.08	BC212L	0.11	BF153	0.45	B8Y 39	0.18	0 O 204	0.25	2N829	$0 \cdot 21$	2N3053	0.17	2N4058	$0 \cdot 12$	40362	0.45
ACY17	0.25	BCl09	0.10	BC213L	$0 \cdot 11$	BF154	0.45	B8Y40	0.88	${ }_{0} \mathrm{C} 205$	0.85	2 N 930	0.21						
ACY19	$0 \cdot 20$	BC113	0.10	RC214L	0.14	BF15s	0.70	BSY41	0.28	$0 \mathrm{C309}$	0.40	2N1132	0.20						
4CY19	$0 \cdot 20$	BC114	0.15	BC225	0.25	BF156	0.48	B8Y95	0.12	P346A	0.80	2 N 1302	0.14		DIO	ES AND	ECT	IERS	
ACY20	$0 \cdot 20$	BC115	0.15	BC226	$0 \cdot 85$	BF107	0.65	B8Y95A	0.12	P397	0.42	2 N 1303	0.14						
ACY21	0.20	BC116	$0 \cdot 15$	BCY30	0.84	BF158	0.86	Bul05	2.00	$0 \mathrm{CP71}$	0.48	2N1304	0.17	AA120	0.08	164	0.21	A1	0.35
ACY22	0.18	BC117	$0 \cdot 15$	BCY31	0.28	BF159	0.60	Cll1E	0.50	ORP12	0.48	2N1305	0.17	AA129	0.08	BY164	0.60	OA47	. 07
ACY27	0.18	BCl18	0.10	BCY 32	0.80	BF180	0.40	$\mathrm{C400}$	$0 \cdot 30$	ORP60	0-40	2N1306	0.21	AAY 30	0.09	BY $\times 38 / 30$		-	0.07
ACY28	0.19	BC119	0.80	BCY 33	0.28	BF162	0.40	C407	0.25	ORP61	0.40	2 N 1307	0.21	AA7.13			0.25	OA79	0.07
ACY29	0.85	BC120	0.80	BCY34	0.25	BF183	0.40	C424	$0 \cdot 20$	gT140	0.18	2N1308	0.88	BA100	0.10	BY210	- 30	0 O81	0.07
ACY 30	0.28	BC125	$0 \cdot 12$	BCY70	0.14	BF164	0.40	C425	0.50	8T141	$0 \cdot 17$	2N1309	0.28	BA116		BYZ11	$0 \cdot 30$	OA85	0.09
ACY31	0.28	BC126	0.18	BCY71	0.18	BFlis	0.40	C 426	0.85	Tis43	0.30	2N1613	$0 \cdot 20$	BA126	0.22	BYZ12	$0 \cdot 30$	OA90	0.06
ACY34	0.21	BC132	0.12	BCY72	0.14	BF167	0.28	C428	0.20	UT46	0.27	2N1711	0.20	BA148	0.14	BYZ18	0.25	OA91	0.08
ACY 35	0.21	BC134	$0 \cdot 18$	BCZ 10	0.20	BF173	0-28	C441	0.80	2G301	0.09	2N1889	0.82	BA154	0.12	BYZ17		OA9b	0.07
ACY 36	0.88	BC135	$0 \cdot 12$	BC211	0.25	BF176	0.85	C442	0.30	$2 \mathrm{C302}$	0.19	2N 1890	0.45	BA155	0.14	BYZ18	0.86	OA200	0.08
ACY40	0.17	BC136	0.15	BCZ12	0.25	BF177	0.85	C444	0.85	2G303	0.19	2N1893	0.37	BA156	0.18	BYZ19	0.88	8D20	0.07
tCY41	$0 \cdot 18$	BC137	0.15	BD121	$0 \cdot 60$	BF178	0.80	C450	0.82	2G304	0.24	2N2147	$0 \cdot 72$	BY100	0.15	CG62		8D19	0.05 0.05
ACY44	0.85	BC139	0.40	BD123	0.85	BF179	0.80	MAT100	0.18	$2 \mathrm{C3} 06$	0.40	2N2146	0.57	BY101	0.12	(Eg) OA91		IN34	0.05
AD130	0.88	HC140	0.80	BD124	0.60	BF180	0.80	Matiol	0. 20	2(1308	0.85	2N2160	$0 \cdot 60$	HY 105	$0 \cdot 17$		0.05	IN34A	
ADI40	0.48	BCl4l	0.30	ED131	0.50	BF181	0-30	MAT120	0.19	2G309	0.35	2N2192	0.35	BY114	0-12				
AD142	0.48	BC142	0.80	BD132	0.60	BF182	0.40	MAT121	0.80	2G339	$0 \cdot 20$	2N2193	0.35	BY126	0.14			1N914	0.08 0.06
AD143	$0 \cdot 38$	BC143	0.30	BD133	0.65	BF183	$0-40$	MPF102	$0 \cdot 42$	$2 \mathrm{G339}$ A	0.10	2N2194	0.35	BY127	0.15	OA79		1 N 916	0.06 0.08
AD149	$0 \cdot 50$	BC145	0.45	BD135	0.40	BF184	0.25	MPF104	0.87	20344	0.18	2N2217	0.22	BY128	0.16	OAJ9	0.08	${ }_{19021}$	0.08 0.10
AD161	0.88	BC147	$0 \cdot 10$	BD136	$0 \cdot 40$	BF185	$0 \cdot 30$	MPF 105	0.87	20345	0.16	2N2218	0.80	BY130	$0 \cdot 16$	OA58L	0.21	15951	0.10 0.08

NEW COMPONENT PAK BARGAINS
${ }^{\text {pack }}$
 on pack Noe. $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 19, \mathrm{C} 20$.

PLUS-MUCH MORESEND NOW FOR THE

 BI-PAK "Component Catalogue"$5 p$ to cover postage etc.

JUMBO COMPONENT PAKS

MIXEDELEGT KONICCOMPONENTS Exceplfonally good value
Resistors, capacitors, pots, electrolytics Approimately 3lbe in weight. Price incl. P. \& P. 21.60 only.

BRAND NEW POST OFFICE TYPE TELE. PHONE DIALS ONLY 75p each

THE NEW S.G.S. EA 1000 AUDIO AMP MODULE * Guarantee

3 Watts

R.M.S.

ONLY
£2.63 each
Modual Teated and Guaranteed quantities quoted on requeat. Full hook-up diagrania and complete technical data supplited free with each modual or avallable separately at 10 p each.

SYSTEM 12 STEREO

Each Kit contains two Amplifier Modules, 3 watts RMS, two loudspeakers, 15 ohms, the pre-amplifier, transformer, power supply module, front panel and other accessories, as well as an illustrated stage-by-stage instruction booklet designed for the beginner.
Further details available on sfity request.

MORE FANTASTICOFFERS

The largest selection

NEW LOW PRICE TESTED S.C.R.'s TO5 TO68TOA6TO64TO48TO48TO49TO48 $\begin{array}{rllllllll}50 & 0.23 & 0.25 & 0.35 & 0.35 & 0.47 & 0.50 & 0.53 & 1.15\end{array}$ $\left.\begin{array}{lllllllllll}100 & 0.25 & 0.33 & 0.47 & 0.47 & 0.50 & 0.58 & 0.63 & 1.40 \\ 200 & 0 & 35 & 0.37 & 0 & 49 & 0.49 & 0 & 57 & 0.61 & 0.75 \\ 1\end{array}\right)$ 4000.43 6000.53 $8000.630 .70 \begin{array}{lllllllll} & 0.68 & 0.68 & 0.77 & 0.97 & 1.25 & -\end{array}$

SIL. RECTS. TESTED

PIV 300 mA 750 mA 1 A 1.5A 3 A 10 A 30A $\begin{array}{rlllllll}50 & 0.04 & 0.05 & 0.05 & 0.07 & 0.14 & 0.21 & 0.60 \\ 100 & 0.04 & 0.06 & 0.05 & 0.13 & 0.16 & 0.23 & 0.75\end{array}$ | 100 | 0.04 | 0.06 | 0.05 | 0.13 | 0.18 | 0.23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.75 | | | | | | |
| 200 | 0.05 | 0.09 | 0.06 | 0.14 | 0.20 | 0.24 | $\begin{array}{lllllll}200 & 0.05 & 0.09 & 0.06 & 0.14 & 0.20 & 0.24 \\ 400 & 0.06 & 0.13 & 0.07 & 0.20 & 0.27 & 0.37 \\ 1.25 \\ & 000 & 0.07 & 0.16 & 0.10 & 0.2 . & 0.34 \\ 0.40 & 1.86\end{array}$ $\begin{array}{lllllll}600 & 0.07 & 0.16 & 0.10 & 0.20 & 0.34 & 0.37 \\ 800 & 0.10 & 0.17 & 0.11 & 0.25 & 0.37 & 0.55 \\ 8 & 2.00\end{array}$ $\left.\begin{array}{rllllll}800 & 0.10 & 0.17 & 0.11 & 0.25 & 0.37 & 0.56 \\ 2\end{array}\right) \cdot 00$ $1200-\quad \begin{array}{lllllll} & 0.33 & - & 0.38 & 0.57 & 0.75\end{array}$

,		ACS	
VBO	M 2 A	6A	10A
	TO-1	0.6	T0-88
	\%p	40	ED
100	80	50	78
200	50	80	80
400	70	78	1-10
		C8	
POR			ITH

TRIACS
BR100 (D32) 87p each

FREE

One 50p Psk of your wh cholce free with BRAED KEW TETAB GERY. TRAMBISTORS Coded and Gutranteed
Pak No. EQVT

T1 82033713 OC71

 $\begin{array}{lll}8 & 8 \text { D1374 } & 0 \mathrm{OC75} \\ 8 & \mathrm{D} 1216 & \text { OC81D }\end{array}$ $\begin{array}{lll}8 & \text { D1216 } & \text { OC81D } \\ 8 & 2 G 331 T & \text { OC81 }\end{array}$ $\begin{array}{ll}8 \text { 2G381T } & \text { OC81 } \\ 82 \mathrm{G} 382 \mathrm{~T} & \text { OC82 }\end{array}$ 82 G 344 B OC44 $82 G 345 \mathrm{~B}$ OC45 8 2G399A 2N1302 1082 G 417 AF117 All 50p each par2N2000 KPN SIL. DUAL | RK20 |
| :--- |
| TRAF8. CODE SIL. DUAL |
| 1699 | TRANA. CODE D O Pr bach.

120 VCB MIXIE DRIVER TRANEISTOR. B8X21 \& C407, 2 N 1893 m . OLLY TESTED AND 7D each. TO.5 N.P.N 5 up 15 peach.

Sil. trans. suitathle for
PE Organ Metal TO. 18 P.E. Organ. Metal TO-18
EqVt. ZTX 30059 each. Aqvt. ZT

POWER
 TRANS BONANZA!

FULL RAMGE OF VOLER DIODES RANGE 2-83v. 400 mV (DO.7 Case) 18p es. 1 W W (TopHat) 18p ca. 10w (SO-10 Btud) $85 p$ ea. All fully
tested 5% tol. and marked. Btate voltage required.

10 amp POTTED

 BRIDGE RECTIFIERon heat sink. 100PIV. 90p each

NEW LINE

Plastic Encapualated 2 Amp. BRIDGE RECTS.

100 v RMS

 100 Y RM8 87 400 V RM8 46DUHLUNCTION OT40. Eqvi. 2N2646, 89pt. TIS43. BEN3000 27p eacb, ${ }^{25-99}$ 25p
100 UP 20p.

CADMIUM CELLS

ORP12 48p
ORP60, ORP61 40p each
GERERALPORPOSE MPM SILLCON SWITCEING TRANS. TO-18 SIM. TO 2N700/8. BAY-
$27 / 28 / 95 \mathrm{~A}$. All uable devices no open or alort devices no open or ahort
circuits. ALBO AVAILABLE in PNP Sim. to 2N2906, BCY70. When

$$
\begin{aligned}
& \text { ordering please state } \\
& \text { preterence NPN or PNP. }
\end{aligned}
$$

GRNERAL PURPOSE GERM. PMP Coded GPloo. BRAND NEW TO-3 CASE POSE REPLACE.-OC25-28-29-30-35-36. NKT 401-403$2 \mathrm{~N} 458 \mathrm{~A}-457 \mathrm{~A}-458 \mathrm{~A} .2 \mathrm{~N} 511$ A $\&$ B. $29220-222$ ETC YCBO 80 V VCEO 50 V IC 10 A PT. 30 WATTS Hie PRICE
$\begin{array}{ccc}1-24 \\ 48 p \text { each } & \begin{array}{c}25-99 \\ 40 p \\ \text { each }\end{array} \quad \begin{array}{c}100 \mathrm{up} \\ \text { 86p each }\end{array}\end{array}$
81LICON High Voltage 250 V MPM
TO-3 case. G.P. Switching
O-3 case. G.P. Switching A Amplifer YCBO 250/VCEO 100/IC ba/30 Watts. HFE type 20/IT SMHZ.
our price each

$1-24$	$25-99$
50 p	45 p

-99	100 up
50	40 p

2 23055
115 WATT SII POWERE TPM 50p EACH

KING OF THE PAKS Unequalled Value and Quality SUPER PAKS NEW BI.PaK UNTESTED SEMICONDUCTORS

Pak Mo.	O. Decripilion	Price
0112	120 Glass Sub-Min. General Purpose Germanium Diodes	
U	60 Mixea Germanium Transietors AF/RF	
U 3	75 Germenium Gold Bonded Sub-Min. like OA5, OA47	0
U	40 Germanium Transistora like OC81, AC128	0.80
U		0.50
U	30 8it. Planar Trans. NPN like BSY95A. 2N7	0
U	16 Bil. Rectiflers TOP-HAT 750 mA VLTG. RANG	0.50
178	50 Sll. Planar Dloder DO-7 Glass 250 mA lite OA200/202	
U 9	20 Mlxed Voltages, 1 Watt Zener Dlores	0
U10	20 BAY50 charge storage Diodes DO.7 Glass	
	25 PNP 8il. Planat Trans. TO-5 like 2N11s2, 2N2904	
U12	12 silicon Rectiners Epoxy 600 mA up to 800 PIV	
U13	30 PNP-NPN Sil. Transletors OC200 \& 28104	0
U14 15	150 Mixed silicon and Germantum Dlodes	0
U15	25 NPN Bil. Planar Trans. TO-5 like BFY51. 2 N 697	0.50
U18	103 Amp Sllicon Rectifers Stud Type up to 1000PIV	
U17	30 Germanium PNP AF Transistors To. 5 like ACY 17-22	0.50
U18	86 Amp Billcon Rectiflera BYZ13 Type up to 600 PIV	0
U19	25 silicon NPN Tranaintora like BC108	
U20	121.5 Amp Bilicon Rectifiers Top Fit up to	
21	30 AF. Germanium Alloy Translators 20300 series \& OC71	0.50
23	30 MADT's like MHz Series PNP Translators	0.50
U24	20 Germanium 1 Amp Rectifers GJM Series up to 300 TIV	0.50
U25	25300 MHz NPN Bilicon Transiators 2N708, B8Y27	
28	30 Fast Bwitching Billcon Dloden like 1N914 Micro-Min	
U27	12 N P'N Germanium AF Tranalatora TO-1 Hke ACl27	0
V29	101 Amo 8CR's TO-8 can, up to 600 PIV CRS1/25-600	2.00
30	15 Plastic silicon Planar Trans. NPN 2N292A	
U31	20 Silicon Planar Plastle NPN Trans. Low Noise Amip 2	
U32	25 Zener Dlodes 400 mW DO-7 case $3-18$ volta mixed	
U33	15 Plastlc Case 1 Amp Silicon Rectifers IN 4000 Series	
U34	30 Silicon PNP Alloy Trans. TO-6 BCY26 28302/4	0
U35	25 Silicon Planar Tranaibtors P'NP TO-18 2N 2906	0
U38	25 Sillicon Planar NPN Transiators TO-5 BFY50/51/52	50
U37	30 Sillicon Alloy Transistors s0-2 PNP OC200, 2832	0
	20 Fart Switching gilicon Trans. NPN 400 MHz 2 N 3011	0.50
U39	30 RF. Germ. PNP Transistors 2N 1303/5 TO.5	0.50
U40	10 Dual Transistors 6 lead TO-5 2N2060	0. 50
U41	25 JF Germanjum Translstors TO-5, OC45, NKT72	0.50
U42	10 VHF Gernianium PNP Transibtors TO-1 N K T667, AF117	0.50
T43	25 8il. Trans. Plastic TO-18 A.F. BCl13/114	
U44	20 gil. Trans. Plastic TO-5 BClis/NPN	0.50
U45	3 A 8CR. TO66 up to 600PIV	1.00

ELECTRONIC SLIDE-RULE

The MK slide Rule, deaigned to simplify Electronic calculation features the following acales: Conversion of Frequency sind Wavelength Calculation of L, G and to of Tuned Clircuite. Reactance and Self Inductance. Area of Circlea Weinhe of Conductors, Decibel Calculatlons. Angle Functions. Naturai Logs and e e - Functions. Multiplication snd Divisions. Squaring, Cubing and Bquare Roots. Conversion of kW , and Hp . A must for every electronic engineer and enthusiinstructions.

Price each: $83 \cdot 35$ the pak. The devices themalvea are normally unmarked.

> SILICON PHOTO TRAN ISTOR. TO-18 Lens end BRAND NEW. Full date avallabie. Fully guaranteed Qty. 1.2425 .09100 up
> Price each 45p 40p 85D

F.E.T.'S

2N3819	85 s	2N6468	50 p
2N3820	80 p	2N6459	$\mathbf{4 0 p}$
2N3821	35 p	BFW 10	100
2N3823	80 p	MPF105	$\mathbf{1 0 p}$

NEW EDITION 197I TRANBISTOR EQUVALENTE BOOK. A complete croga reference and equivalents book for European, tors. Ereluslve to BI-PAK 90p each.

A LARGE RAMGE OF TECEMICAL AND DATA BOOKS ARE MOW AVAILABLE EX. STOCK SERD FOR FREE LIST.

ADI61/162
 PNP

M/P COMP GERM TRANB.
55p PER PAIR

SILICOM 60 WATT8 EATCHED NPN/PNP BIP 18 NPN TO-3 Plastic. BIP 20 PNP. Brand new OUR PRICE PER PAIR $1-24$ prs. 80p $25-99$ prs. E5p 100 prs. 50p

IFTEGRATED CIRCUIT PAKS
Manufacturers "Fall Outs" which incluile Functional and Part-Functional Units. These are classed as 'out-of-spec" from the maker's very rigid specifications, but are Ideal for learning about I.C's and experimental wor
Pak No. Contents Price $\mathrm{UIC} 00=12 \times 7400 \quad 0.50$ $\begin{array}{ll}\text { UIC01 }=12 \times 7401 & 0.50 \\ \text { UIC0 } & =12 \times 7402\end{array} 0.50$ $\mathrm{UIC} 02=12 \times 7402 \quad 0.60$ $\begin{array}{ll}\text { U1C03 }=12 \times 7403 & 0.50 \\ \text { UIC04 }=12 \times 7404 & 0.80\end{array}$ $\begin{array}{ll}\mathrm{UICOS}=12 \times 7405 & 0.50 \\ \mathrm{UICO}=8 \times 7406 & 0.80\end{array}$ $\begin{array}{ll}\text { UIC07 }=8 \times 7407 & 0.50 \\ \text { UIC10 }=12 \times 7410 & 0.50\end{array}$ $\begin{array}{ll}\text { UIC1 } 3=8 \times 7413 & 0.80 \\ \text { UIC20 }=12 \times 7420 & 0.80\end{array}$ $\begin{array}{ll}\text { UIC30 }=12 \times 7430 & 0.50 \\ \text { UIC40 } & \text { O. }\end{array}$ $\begin{array}{ll}\text { UIC40 }=12 \times 7440 & 0.50 \\ \text { UIC41 }=5 \times 7441 & 0.50\end{array}$ $\begin{array}{ll}\text { UIC4 }=5 \times 7441 & 0.50 \\ \text { UIC42 }=8 \times 7442 & 0.50\end{array}$ $\begin{array}{ll}\mathrm{UIC43}=5 \times 7443 & 0.50\end{array}$ $1 \mathrm{CA4}=5 \times 7444 \quad 0.50$

PakNo. Contents Price

UIC46 $=5 \times 7446 \quad 0.50$

 $\mathrm{UIC47}=5 \times 7447 \quad 0.50$ $\begin{array}{ll}\mathrm{UIC4B}=5 \times 7448 & 0.50\end{array}$ $\mathrm{U1C50}=12 \times 7450$ UIC51 $=12 \times 7451$U1C53 $=12 \times 7453$ U1CE $4=12 \times 7454$ $\begin{array}{lll}\mathrm{ULC} 100=12 \times 7460 & 0.50 \\ \mathrm{U} 1 \mathrm{C7} 0\end{array}$

Pak No. Contents Price UIC86 $=5 \times 7488$ $\mathrm{UlC90}=5 \times 7490$ UIC92 $=5 \times 7491$ UTC93 $=5 \times 7492$ UIC94 $=5 \times 7494$ UIC95 $=5 \times 7445$ UIC96 $=5 \times 7496$ UIC100 $=5 \times 74100$ $\begin{array}{lll}\mathrm{UIC1} 121\end{array}=5 \times 74121 \quad 0.50$ $\begin{array}{lll}\mathrm{UICl} \\ \text { UIC151 }\end{array}=5 \times 74141 \quad 0.50$ UIC151 $=5 \times 741510.50$
UIC154 $=5 \times 741540.50$ UIC154 $=5 \times 74154 \quad 0.50$
UIC193 $=5 \times 741930.50$ UIC199 $=5 \times 74199 \quad 0.50$

UICXI $=25$ Assorted

Packs cannot be split, but 25 assorted pieces (our mix) is available as PaK UIC Xi
BI-PAES NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND ACCESSORIES AT COMPETITIVE PRICES-
18 BALDOCK STREET (A|0), WARE, HERTS. TEL. (STD 0920) 61593.
open MON.-SAT. 9.15 a.m. to 6 p.m., FRIDAY until 8 p.m. All mail orders please add 10 p post and packing. Send all orders to BI-PAK, P.O. BOX 6, WARE, HERTS.

-the lowest prices!

74 Series T.T.L. I.C’s

 BI-PAK BTILL LOWEST IN PRICE. FULL SPECIFICATIOR GUARANTEED. ALL FAMOUS MAMUFACTURERS
$2 \pi 1$ ncroloaic circuts Price each
Epory TO-5 case 1-24 25-99 100 ap aL900 Buffer 85\% 85 87 uL914 Donal 21/P
\qquad ul92s J-K Atp-lop 60p 47 CN
Date and Circult Booklet for IC'I Price 7p.
DUAL 14 LIT Leed sockers.
14 \& 18 lead sockets for ne with
DUALIN-LINE I.C's. TWO Rangee
PROFESBYONAL A NEW LOW COST
PROF. TYPE No. $1-24$ 25-99 100 ap
T8O 14 pin type 800 270 260
T8O 16 85 88P 30p
Low COBT No.
$\begin{array}{llll}\text { BPS } 14 & 18 p & 18 p & 11 p \\ \text { BPS } 16 & 16 p & 189 & 12 p\end{array}$

BI-PAK DO IT AGAIN! 50W pk 25w (RMS)
0.1% DISTORTION! HI-FI AUDIO AMPLIFIER
\star Frequency Response 15 Hz to ONLY 100,000-1dB.
\star Load-3, 4, 8 or 16 ohms.
$£ 3.25 p$ each
\star Distortion-better than $\cdot 1 \%$ at 1 KHz .
\star Signal to noise ratio 80dB.

* Supply voltage 10-35 Volts.
* Overall size 63 mm $105 \mathrm{~mm} \times 13 \mathrm{~mm}$.

Tailor mare to the mont atringent specifications using top quality components and incorporating the latest solid ntate circuitry and ALSO was conceived to AM the need for all your A.F. amplification needs.
FULLY BUILT - TESTED-GUARANTEED.

STABILISED POWER MODULE SPM80

AP80 is especially designed to power 2 of the ALso Amplifers, up to 15 watt (r.m.s.) per channel simurtaneousiy. This module embories the latest component and circuit techniques incorporating complete thort cormer MT80, the unit whil provide outputs of up to 1.5 amps at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$. These unlts enable you to build Audto Systems of the highest quality at a bitherto unobtainable price. Also ideal for many Intercom Units, etc. Handbook available, $10 p$ PRICE 22.95
TRANSFORMER BMT80 £1.95 p. \& p. 25p.

STEREO PRE-AMPLIFIER TYPE PA100

Bullt to a apecification and NOT a price, and yet atill the greatest value on the market tne Pal 00 stereo pre-smplifier has been concelved from the latest circuit tecnniques Deaigued for use with the Aluo power ampliner system, this quaily made unit hicorporate NPN devices for use in the input stages. Three bwitched stereo inputs, and rumble which also has a STEREO/MONO switch, volume, balance and continuoualy variable bass and treble controls.

BPECLFICATION
Frequency Response Harmonic Distortion 1. Tape Head 3. Magnetic P.U

$$
\begin{aligned}
& 35 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega \\
& 1 \cdot 5 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { All Input voltages are for an output of } 250 \mathrm{mV} \text {. Tape and P.U. Inputs } \\
& \text { equalised to RIAA curve within } \pm 1 \mathrm{~dB} \text {. from } 20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \text {. }
\end{aligned}
$$

Bass Control $\pm 15 \mathrm{~dB}$ at $20 \mathrm{~Hz}_{2}$
Fiters: Rumble (High Pass) $\quad \mathbf{1 0} 15 \mathrm{~dB}$ at 20 KHz Scratch (Low Pass)
Signal/Nolse Ratio
input overload Bupply
Dimension

8 KHz

better than - 65 dB $+26 d \mathrm{~B}$
+35 volts at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$ ONLY $\mathbb{1 1 1} 95$
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMT 80 \& 1 PA100 ONLY $23 \cdot 00$ FREE p. \& p.

financol meet the precision TMTM I Ei' SOLDERING

Precision instruments supplied with standard detachable copper chisel face bits. Standard temp. $360^{\circ} \mathrm{C}$ at $19 / 23 / 27$ watts. Special temps. from $250^{\circ} \mathrm{C} / 410^{\circ} \mathrm{C}$

For perfection in soldering

[^3]
TRANSFORMERS

- Mimary Mains ISOLATING SERIES 200-250 Voits Secondary 240 Volts Centre Tapped (120V) and Earth Shielded
ALSO AVAILABLE WITH $115 / 120 \mathrm{~V}$ SEC. WINDING
Re

		ght	
	Otis)	lb oz	
07	20	111	$70 \times 6.0 \times 6$
100	60		$8.9 \times 8.0 \times 7.7$
61	100	512	$10.2 \times 8.9 \times 8.3$
30	200		$12.0 \times 10.3 \times 10.0$
62	250	12	$9.5 \times 12.7 \times 11.4$
55	350	15	$14.0 \times 10.8 \times 12.4$
63	500	27	$17.1 \times 11.4 \times 15.9$
92	1000	40	$17.8 \times 17.1 \times 21.6$
128	2000	630	$24.1 \times 21.6 \times 15.2$

Ref. VA WUTO SERIES (NOT ISOLATED)
Ref. VA Weight Size cm. Auto Tops
No. (Wotts) 16 .
$\begin{array}{ccccccc}113 & 20 & 11 & 7.3 \times 4.3 \times 4.40-115-210-240 \\ 64 & 75 & 1 & 14 & 7.0 \times 6.4 \times 8.00 .115-210.240 \\ 4 & 150 & 3 & 0 & 8.9 \times 6.4 \times 7.60-115-200-220-2\end{array}$
$\begin{array}{cccccc}66 & 150 & 3 & 0 & 8.9 \times 6.4 \times 7.6 \\ 67 & 300 & 6 & 0 & 10.2 \times 10.2 \times 9.5 \\ 600 & 12 & 8 & 14.0 \times 10.2 \times 11 & \cdots\end{array}$
$P \& P$
0.8522
0.85
$\begin{array}{ll}0.85 & 22 \\ 1.66 & 30\end{array}$ $\begin{array}{ll}2.68 \\ 3.89 & 52 \\ 5.78 & 67\end{array}$
5.7867
10.4982
10.49
19.20
19.84

TOTALLY ENCLOSED IISY AUTO TRANSFORMERS 115V 500 Watt totally enclosed auto transiormer, complete with mains lead and two 115 V outlet sockets, 57.87 . P \& $P 67 p$
Also available a 20 Watr version. 41.67 , P \& P 22p
OW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLTS 12 AND/OR 24 VOLT RANGE
Ref. Amps. Weight Size cm . Secondory Windings P \& μ No. 12 V 24 V lb oz
1110.50 .25
$2131.00 .5,12 \quad 7.6 \times 5.7 \times 4.40 .12 V$ at $0.25 A \times 20$.

0.85
1.01
1.33
1.86
1.84
2.48
2.48
2.94
4.54
5.78
10.87
19.61

30 VOLT RANGE
$\begin{array}{cr}\text { Amps. } & \text { Weigh } \\ 0.5 & 16 \\ 02 & 4 \\ 1.0 & 2 \\ 0 & 0 \\ 2.0 & 3 \\ 3.0 & 2 \\ 4.0 & 6 \\ 6 \\ 5.0 & 0 \\ 0.0 & 8 \\ 6.0 & 7 \\ 8.0 & 10 \\ 10.0 & 0 \\ 10 & 2\end{array}$
Size cm.
$8.3 \times 3.7 \times 4.9$
$7.0 \times 6.4 \times 6.0$
$8.9 \times 7.0 \times 7.6$
$10.2 \times 8.9 \times 8.6$
$10.2 \times 10.0 \times 8.6$
$10.2 \times 10.0 \times 8.6$
$12.1 \times 10.0 \times 8.6$
$12.1 \times 10.0 \times 10.2$
$12.1 \times 10.0 \times 10.2$
$14.0 \times 11.7 \times 10.0$
Secondory Tops
$140 \times 10.2 \times 11.4$
50 VOLT RANGE

LEAD ACID BATTERY CHARGER TYPES
Ref. Amps. Weight Size cm .
No. lb oz

All ratines are continus 5.8×12. 2067
Al ratings are continuous. Standard construction: open with solder
tags and wax impregnation. Enclosed styles to order.
FULL SPEC TRANSISTORS
BC107/108/1099.0p each $2 N 305568 p$ each | $A D$ 161/162 60p pa
$25+7 p$
$100+6.5 p$
$100+6.5 p$
$500+6 p$
Minimum order 10

2 mica and bushes	+ mica and bushes
$25+55 p$	$25+55 p$
$100+45 p$	$100+550 p$
$500+40 p$	$500+54 p$

AVOMETERS MAINS KEYNECTOR ELECTROSIL RESISTORS

Carriage tia bra
BARRIE electronics
11 MOSCOW ROAD, QUEENSWAY LONDON W2 4AH Tel:01-229 6681/2
NEAREST TUBE STATIONS: BAVSWATER , QUEENSWAV

ADASTRA "HI-TEN" IOin LOUDSPEAKER

The British made "Hi-Ten" unit has also had minor improvements of late including an extended top response and a new matt black chassis finish. This full range 10 in . loudspeaker handles up to 10 watts with convincing all round performance and total reliability. A high flux ceramic moulded magnet keeps the unit compact. An ideal unit for a!! ful! range music, audio and monitoring purposes and particularly suitable for column enclosures. Available in 8 or 15 ohm versions. $\quad \mathbf{2 . 7 0}$
Frequency Response: $40-13,000 \mathrm{~Hz}$. Bass Resonance: 70 Hz . Power Handling: 10W. Impedance: 8 and 15 ohms. Flux Density: 10,000 lines Voice Coil 25 mm (lin.). Baffle Aperture: 228 mm (9 in). Fixing Centres: $244.5 \times 6.4 \mathrm{~mm}$. Dimensions: $255.8 \times 91.9 \mathrm{~mm}$. Weight: $0.91 \mathrm{~kg}(21 \mathrm{~b})$.

K2006 HORN CONE TWEETER

Neat 3 in $(75 \mathrm{~mm})$ pressure driven tweeter with spun metal cone giving excellertt H.F. response with up to 10 watts load. Designed for fitting into a rebate (80 mm dia.) with fitting by four corner holes on outer flange. Screws provided. Polarised connections. 8 or 15/16 ohms, impedance matching. EI. $\mathbf{6 5}$ Freq. Resp.: $1,500-16,000 \mathrm{~Hz}$. Crossover Freq. : $3,000 \mathrm{~Hz}$. Sensitivity: 104 dB Size: $85 \times 85 \times 80 \mathrm{~mm}$. Weight: 0.30 kg . Impedance: 8 or 16 ohm versions. K4004 VARIABLE CROSSOVER
 Continuously variable from $2,500 \mathrm{~Hz}$ to infinity and matching any Bass/H.F. unit combination this variable crossover is housed in a two-colour metal case with marked and polarised connections. $102 \times 66 \times 55 \mathrm{~mm}$
EI-05 ALL TMREE FOR 15.20

All orders value 52 or over post free. Other orders 'please add 10p P. \& P. We only'sell new products - do not confuse with "seconds" or surplus stock. Because of our keen prices we regret the prices apply to U.K. and B.F.P.O. addresses only. Please fill in the coupon and send with 10 p (refundable on ordering) for catalogue.
ALL CALLERS WELCOME
To G.S.P.K. (Sales) Limited, Dept. E.E.,
Head Office: Hookstone Park, Harrogate, Yorkshire HG2 7BU
Mon. to Fri. 9-5.

CAYOT ETIRAMAMEMIS

STANDARD and CUSTOM－BUILT AUDIO and ELECTRONIC EQUIPMENT NEW and SECONDHAND MUSICAL INSTRUMENTS．MAINDISTRIBUTORS FOR A．K．G．HIGH QUALITY MICROPHONES

SA25－SA35－SA100

OTHER SAXON PRODUCTS ．．．

LOW．PRICED AUDIO MODULES FOR DOMESTIC and COMMERCIAL USE

THESE THREE MODULES HAVE ENIOYED UN－ PARALLELED SUCCESS DURING THE FIRST FEW MONTHS OF THER BEING MADE AVAILABLE TO THE GENERAL PUBLIC．WE ARE PLEASED TO ANNOUNCE THAT WE CAN NOW OFFER FAST DISPATCH ON MOST OF OUR ADVERTISED ITEMS． including these three modules．

SA25
 22－95 \％

25 WATTS R．M．S． 7 eransistors， 7 diodes

SA35 24．45 sec

35 WATTS R．M．S． 7 transistors， 7 diodes
SA100 $210-90$＂ef
100 WATTS R．M．S．It transistors， 6 diodes
ALL THREE MODULES HAVE OPEN AND SHORT CIRCUIT PROTECTION，AND THE SAIOO IS PROOF AGAINST OVER－DISSIPATION AND FAULTY IN． DUCTIVE LOADS．

ONLY ADVANCED DESIGN．TECHNIQUES MAKE THESE EXTRAORDINARILY LOW PRICES POSSIBLE．

BRIEF SPEC．FOR ALL THREE MODULES

Freq．response	$20-40,000 \mathrm{~Hz}+1 \mathrm{~dB}$
Distortion	0.2% at 1 kHz
Loads	4 to 16 ohms
Quiescent current	15 mA
Noise	Better than -75 dB
Supply voltage	$25-45 \mathrm{VA}, \mathrm{SA} / 35$
	$40-70 \mathrm{VAlOO}$
Size	$4 \frac{1}{2}$ in $4 \mathrm{in} \operatorname{lin}(S A 100)$
	$4 \mathrm{in} 3 \mathrm{in} \operatorname{lin}$（SA25，SA35）

Circuits，connecting instructions and application data are supplied free with all modules

POWER SUPPLIES FOR THE SA25／35 and SA100 AUDIO MODULES
PU45 Unstabilised supply for 2 SA25／35＇s，64．90．
PU70 Unstabilised supply for one or two SA100＇s， 67．75，carr．40p
MT45 Transformer for above，heavy duty， $\mathbf{6 2} 85$ ， carr．20p
PS45 Stabilised module for 2 SA25＇s or two SA35＇s， 63．50，carr．íree
MT70 Transformer for PS70，C4．90，carr．40p
PS70 Stabilised supply module for one or two SA100＇s，6490，carr．free

ALL MODULES ARE BUILT ON GLASS FIBRE P．C． BOARD

CALLERS AND MAIL
ORDER
351 Whitehorse Road Thornton Heath，Surrey
Tel．01－689 3685
CALLERS ONLY
OUR NEW DISTRIBUTORS．
CIRCLE SOUND 328－330 The Banks Rochester．
Medway 40419

120 WATT HEAVY DUTY MODULE
f $13.90+20 \mathrm{p}$ carr．or with Featuring a rugged class A driver stage，this module will run from all our mixers ets．，and most other makes of mixer．It
delivers 120 W into an eight ohm load and employs 4 TO 3 delivers 120 W into an eight ohm load and employs 4 TO can（IISW）output transistors． SPECIFICATION
Power output Freq．response input sensitivity Construction Cons
Size
Low
ow d
output stage．
NEW： 160 W att version \＆supply $\mathbf{2 7 7} 90$
SINGLE CHANNEL SOUND／LIGHT CONVERTER
This compact and reliable unit operates from amplifiers with outputs from 5－loow．Does not impose a heavy load on the amplifier，or，if connected in the wrong polarity，cause any damage，as with some units．

Operation is simplicity itself and the unit is fully fused．The unit is supplied to function from bass notes but may easily be converted to respond only to treble or midarange notes by the addition of components costing less than 5p．

THREE CHANNEL SOUND TO LIGHT UNIT

Handing the total of $3,000 \mathrm{~W}$（ 3 kW ）this unit is unique for its price in that not only bass middle and treble but also master controls are provided．Two amplifier sockets eliminate the need for case with a blue hooded cover．Fully guaranteed．

MONO VERSION $66 \cdot 50$ ，carr．20p
（Asillustrated betow．S．A．E．details．9V operation） OUTPUTS UP TO IV RMS

$£ 15 \cdot 80$ carr

Two decks，and full headphone monitoring．The unit is mainsoperated and measures $17 \frac{1}{1}$ in $\times 3$ in x tin deep and is finished with a smart white on black facia．The consrols are：Left／Right deck mains onlof．THIS IS A MUST FOR THE HOME BUILT HIGH QUALITY DISCO： THEGUEAND IS COMPARABLE TO UNITS AT OVEN TWICE THEPRICE．

COMPLETE AMPLIFIERS
THE CS 100． 634.90 carr．free
This versatile unit is now available in a black vynide case and so represents even better value than ever， defivering speech and music powers of up to 100
R．M．S．and continuous signal outputs of 70 W ． Two individually controlled inputs with wide range
 bass and treble controls．Ideal for small groups， O l＇s，

SAXON STEREO CONTROL UNIT
もくでくな -

- - SAXON

The SAXON 100． 848.50 ，carr．free． With an R．M．S．output of 120 W speech and music． loow continuous power，four individwally consrolled F．E．T．input stages and wide range bass and treble conerols，this amplifier has established itself as a unit offering quality and reliability at low cost．

LOUDSPEAKERS British made bargains ！！！

12in 40W 15，000 gauss magnet system 8／15 ohm，\＆1l．50，carr．40p．
A．K．G．MICROPHONES suitable for disco，group or generalP．A．use SEND S．A．E．FOR DIIDHL r．r．p． $\mathcal{f 1 1}$ ，our price $\mathbf{6} 9.45$ post free．
D190C High Z r．r．p．©2I．50，our price £17－45 post free．
DIOOOC 24 ct ．gold plate r．r．p． $\mathbf{C 3 7}$ ，our price $£ 32$ post free．

OUR A．K．G．PRICE LIST．DISCOUNTS ON ALL MICS．

[^4]

OUR TRANSISTOR

This seems a good time to reveal our own secret suspicions concerning the origin of the transistor. We admit that for long we have had an irresistible feeling that this device was in fact conceived with the private constructor expressly in mind. Yes indeed, and plenty of evidence points this wayother important users and impressive applications notwithstanding.

Forget, for a moment or two, those epic moon journeys monitored on colour television. Forget (if you can) those ubiquitous transistor radios. Forget those prodigious com-puters-and those in-vogue status setting personal appurtenances like pocket calculators and solid state wristwatches. Instead, reflect upon what the transistor has meant to us as private constructors and experimenters. For we as much as any other body of individuals have cause to be jubilant and grateful in respect of that revolutionary technological breakthrough a quarter century ago.

We suggest that if the trio of research physicists at Bell Labs had been working to a specification drawn up with the private constructor's interests foremost in mind, they could hardly have done better. Those readers able to cast their minds back to the pre-transistor days when the valve ruled the roost will certainly be appreciative of the transformation set in train by the solid state amplifying device. It ushered in an era of expansive amateur activities, by bringing within the private individual's reach, literally to his table top, previously undreamed of electronic techniques.

By comparison with the thermionic devices it was going to replace, the transistor when it made its debut seemed so ridiculously simple to handle, so small and undistinguished in appearance, so undemanding in power, as not to be true. Not that there were no headaches for the average constructor and experimenter initially, when trying to get to grips with strange new concepts involving solid state physics, with a little chemistry and metallography thrown in. It was rather a traumatic experience trying to adjust to the transistor's idiosyncrasies. (An h.t. line of minus 6 volts-what nonsense was this? Though we got our potentials right once again when the npn version arrived.) First attempts to make practical use of the strange component were accompanied with trepidation, for burnt-out transistors weren't uncommon in those pioneering days.

Seen now in retrospect, these were but little teething troubles. The advantages and rewards arising from the solid state device were soon made apparent. Without the transistor and its descendants amateur activity would never have reached the advanced technical stage, nor have been able to embrace such wide and diverse applications as it does today. Undoubtedly the basic simplicity of construction is the great single factor which has stirred up popular interest in solid state electronics. It is now an ideal sparetime hobby which can be pursued without difficulty in the home.

Yes, constructors and enthusiasts all, there is cause to be exuberant. And don't forget, without the transistor there could hardly be Practical Electronics. So we all owe a vote of thanks to Messrs. Bardeen, Brattain, and Shockley. And surely no true enthusiast will dare deny that our suspicions are well founded.-F.E.B.

Editor

F. E. BENNETT

Editorial
D. BARRINGTON
G. GODBOLD
S. R. LEWIS B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
S. W. R. LLOYD

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202

P. J. MEW

Phone: 01-634 4210
C. R. BROWN Classified

Phone: 01-634 4301
Editorial \& Advertising Offices: Fleetway House, Farringdon St., London EC4A 4AD Phone: Editorial 01-634 4452

Advertisements 01-634 4202

1)

THERE must be many readers who possess a tape recorder whose quality does not match that of the rest of their hi-fi system and who would like to improve it to save the expense of buying a completely new deck.

This article describes how to convert a reasonable quality deck to hi-fi by renewing the electronics and the heads whilst retaining the original tape transport system. All that is required is a tape deck of reasonable quality, the author using a Collaro Studio. Full constructional details relating to the deck will be given.

Since it is assumed that the constructor will already possess a high quality amplifier, this will not be described. Microphone facilities are not included because in the author's opinion these are best provided by a comprehensive mixer.

OVERALL SYSTEM

A block diagram of the overall system is shown in Fig. 1. A six-pole three-way switch is used to select either upper track, lower track, or stereo operation (S3). A, relay (RLA) is used to control record and playback modes. The relay itself is controlled by an external switch normally fitted to the tape deck. This switch is also used to control the supply to the bias and erase oscillator, which is on in the record position and off in the playback.

A ganged potentiometer (VR6, VR106) controls the gain of the record amplifier which is fed from the input signal via a•DIN socket. The output of
the record amplifier is fed via a resistor and the relay contacts to the record/replay heads. It is also fed to the meter circuit which can also be used to read the bias voltage.

The resistor between the record amplifier and the head is used to achieve constant current drive.

In the record mode the relay contacts connect the heads to the record amplifier. The bias oscillator is on and feeds the erase heads. Two 50 kilohm potentiometers (VR7 and VR107) are used to control the bias. When only single track operation is selected then the unused output of the bias oscillator is grounded via a 10 kilohm resistor (R 42).

In the playback mode the output of the heads is fed directly to the playback amplifier and then out via another DIN socket.

HEAD REQUIREMENTS

A tape recorder is only as good as its heads and to achieve the required performance heads of very high calibre are essential.

The characteristics required for the record/replay head are

1. Low eddy current loss at high frequency so that a high bias frequency can be used both to avoid interference (this being particularly important when recording stereo radio transmissions with its attendant sub-carrier output problems), and to enable the minimum pre-emphasis to be employed.
```
System
    Quarter track stereo tape link intended for use in
    conjunction with a high fidelity system. Features
    sinclude two level indicators, adjustable metered
        bias, and single track mono operation
    *)
    Overall Frequency Response
    7\frac{1}{2}}\mathrm{ i.p.s. }30\textrm{Hz}-17\textrm{kHz}\pm1\textrm{dB
    3妾i.p.s. }40\textrm{Hz}-11.5\textrm{kHz}+1,-1.5\textrm{dB
    1% i.p.s. }40\textrm{Hz}-6.5\textrm{kHz}\pm2\textrm{dB
Replay Characteristic
CCIR
    7\frac{1}{2}
    3\frac{3}{4}\mathrm{ i.p.s. 140 }\mu\textrm{S}
    1\frac{7}{8} i.p.s. 280\muS
```


Distortion

1% at 0 VU

Signal to noise ratio

60 dB weighted according to the CCIF characteristic and using low noise tape

Crosstalk

45dB

Input

55 mV r.m.s. to infinity at 10 kilohm

Output

1 volt r.m.s. from near zero source impedance. Protected against accidental short circuit
2. A well-engineered gap which is as close as possible to the mechanical gap width. This results in minimal gap losses at short wavelengths.
3. The magnetic core should have a low coercivity to prevent magnetic saturation occurring which would reduce the signal-to-noise ratio and cause second harmonic distortion. This is particularly important at low tape speeds or when using low noise tapes.

On the playback side the important characteristics are:
4. Low source impedance consistent with a high output, which is required to enhance the signal-tonoise ratio.
5. A narrow gap width and a small gap depth.
6. A ripple free response at low frequencies.

The erase head should be very efficient, requiring a low input power and so causing minimal damping of the oscillator tuned circuit.

The heads specified for the recorder fulfil these requirements and are manufactured by Wolfgang Bogen of West Berlin. They are obtainable in the U.K. from Cole Electronics Ltd., the sole agents (see Components List for the address).

RECORD AMPLIFIER REQUIREMENTS

A recording amplifier raises the level of the input signal to an amplitude suitable for driving the head. It must incorporate pre-emphasis to compensate for the high frequency fall-off inherent in the head to tape characteristic, and provide a constant current output to the head.
$U=$ UPPER
$S=S T E R E O$
$L=L O W E R$

Fig. 2a. Constant current drive using the high output impedance of a transistor collector

Fig. 2b. Constant current drive using the head in the feedback loop

Fig. 2c. Actual method used which uses a series resis̀tor to provide the constant current

Furthermore, even allowing for the full preemphasis required, there should be no overload, and the general distortion figure should be low.

CONSTANT CURRENT DRIVE

Because the record/replay head is an inductor its impedance rises with frequency. Therefore to induce a constant magnetic flux in the tape head the head -should be driven from a constant current source. (This is the opposite of the constant voltage drive which requires a low output impedance from the amplifier.)

A high impedance in comparison with that of the head is thus required and there are many ways of achieving this in practice.

Use can be made of the intrinsically high collector impedance of a transistor, or the head may be included in the feedback loop of an amplifier as shown in Figs. 2a and 2b. Both these|approaches give an excellent approximation to the ideal current drive requirements.

However, both systems have the disadvantage of bias rejection problems and the consequent need for tuned circuits in series with the head. As this is considered to be a major drawback, the author has adopted a different method of obtaining this constant current.

METHOD USED

The basic recording amplifier has a very low output impedance and the record signal is fed to the head via a resistor of a value which is large in comparison with that of the head over the frequency range under consideration.

The bias signal is now attenuated by the resistor and the output impedance of the amplifier (see Fig. 2c).

The penalties to be paid for this solution are: firstly, the departure from accurate current drive (the source impedance is now no longer negligible in comparison with the head impedance); and secondly, the need for a high rail voltage if a reasonable value of series resistor is to be used.

The impedance of the specified Bogen head varies from 170 ohms to a maximum of 10 kilohms. At even the highest tape speed under consideration, the output from the head begins to drop at three kilohertz. Departure from constant current above this frequency can thus be compensated for in the recording pre-emphasis.

A value of 33 kilohms was chosen for the series resistor. Between 20 Hz and 3 kHz the variation in
the record current is truly negligible, and even up to 18 kHz the drop in current is only 3.7 per cent.

RECORD AMPLIFIER CIRCUIT

The output required from the amplifier is $10 \cdot 8$ volts peak-to-peak for full modulation of the tape. Allowing for the full pre-emphasis to be utilised and for the saturation losses in the amplifier transistors, a rail voltage of at least 48 volts is required. In fact 55 volts are available thus allowing for a small overload.

Referring to the circuit diagram (Fig. 3), it will be seen that the circuit is similar in conception to that commonly employed in audio power amplifier ${ }^{-}$ design.

Transistor TR1 forms a low noise input stage and has a gain of 4.5 times. TR2 is the workhorse of the amplifier. It has a boot-strapped collector load for high gain with low distortion due to the limited modulation index of the collector current, and forms the driver for the output stage.

Transistors TR3. and TR4 comprise the output stage which operates in class \mathbf{A}, a requirement for low distortion when a large output is required.

The amplifier has good linearity even before feedback, and this, coupled with the high gain and hence large amount of allowable feedback, serves to reduce distortion to a very low level.

The overall loop gain at d.c. is urity giving exceptional stability of the mid-rail voltage. Components R5, R6, and C9 provide a.c. feedback, and the frequency response for the different speeds is shaped by Ll in conjunction with $\mathrm{C} 5, \mathrm{C} 6$, or C 7 , the frequency of maximum treble boost being switched according to the speed in use, and the amount being preset by the series resistors VR1 to VR3.

The nominal gain is approximately 70 and this gives an input sensitivity in the region of 55 mV . C11 is a phase shifting capacitor required to give stability by preventing high frequency oscillation.

METERING CIRCUIT

It is the author's opinion that average reading meters of the volume unit (VU) variety allow short duration overloads to occur without any indication. The recording meters in this recorder are therefore of the peak reading kind having a fast attack, and a slow decay time of about 2.5 seconds.

This reduces the effect of meter movement inertia, for the pointer generally has less far to travel to

Resistors			
R1, R101	390ks	R26, R126	$1 \mathrm{k} \Omega$
R2, R102	$180 \mathrm{k} \Omega$	R27	$5.6 \mathrm{k} \Omega$
R3, R103	100ks	R28	$1.2 \mathrm{k} \Omega$
R4, R104	$6.8 \mathrm{k} \Omega$	R29, R129	$1 \mathrm{M} \Omega$
R5, R105	$100 \mathrm{k} \Omega$	R30, R130	$15 \mathrm{k} \Omega$
R6, R106	$10 \mathrm{k} \Omega$	R31, R131	$10 \mathrm{k} \Omega$
R7, R107	150Ω	R32, R132	$2.2 \mathrm{k} \Omega$
R8, R108	$10 \mathrm{k} \Omega$	R33, R133	56Ω
R9, R109	39k Ω	R34, R134	$8.2 \mathrm{k} \Omega$
R10, R110	$6.8 \mathrm{k} \Omega$	R35, R135	$10 \mathrm{M} \Omega$
R11, R111	220Ω	R36	270Ω
R12, R112	$220 \mathrm{k} \Omega$	R37, R137	$39 \mathrm{k} \Omega$
R13, R113	220Ω	R38, R138	$82 \mathrm{k} \Omega$
R14, R114	33 k S	R39, R139	$150 \mathrm{k} \Omega$
R15, R115	$180 \mathrm{k} \Omega$	R40, R140	10M Ω
R16, R116	$100 \mathrm{k} \Omega$	R41, R141	$10 \mathrm{k} \Omega$
R17, R117	$33 \mathrm{k} \Omega$	R42	$10 \mathrm{k} \Omega$
R18, R118	$39 \mathrm{k} \Omega$	R43, R143	15k $\Omega \frac{1}{2} \mathrm{~W} 5 \%$
R19, R119	$3.3 \mathrm{k} \Omega$	R44	10S $\frac{1}{2} \mathrm{~W} 2 \%$
R20, R120	$3.3 \mathrm{k} \Omega$	R45	$3 \cdot 3 \mathrm{k} \Omega$
R21	220 S	R46	$3 \cdot 3 \mathrm{k} \Omega$
R22, R122	$560 \mathrm{k} \Omega$	R47	10ת $\frac{1}{2}$ W 2\%
R23, R123	$22 \mathrm{k} \Omega$	R48	$22 \Omega 5 \mathrm{~W} 5 \%$ wirewound
R24, R124	$18 \mathrm{k} \Omega$	R49	$47 \Omega \frac{1}{2} W 10 \%$
R25, R125	$4.7 \mathrm{k} \Omega$		
All $\frac{1}{4}$ W 5% carbon film histab unless otherwise stated, 2 off of each except R21, R27, R28, R42 and R44-R49			
Capacitors			
C1, C101	560pF	lystyrene	
C2, C102	$2 \cdot 2 \mu \mathrm{~F}$	V Tantalum	
C3, C103	$10 \mu \mathrm{~F}$	Tantalum	
C4, C104	$100 \mu \mathrm{~F}$	\checkmark elect.	
C5, C105	$0.15 \mu \mathrm{~F}$	\% polyester	
C6, C106	$0.068 \mu \mathrm{~F}$	5\% polyest	
C7, C107	$\begin{aligned} & 0.027 \mu \mathrm{~F} \\ & \text { (use } 0 . \end{aligned}$	5\% polyest $22 \mu \mathrm{~F}$ and 0.	$005 \mu \mathrm{~F}$ in parallel)
C8, C108	$50 \mu \mathrm{~F} 2$	elect.	
C9, C109	$2.2 \mu \mathrm{~F}$	\checkmark Tantalum	
C10, C110	$16 \mu \mathrm{~F}$	elect.	
C11, C111	47pF 1	polystyre	
C12, C112	$0.47 \mu \mathrm{~F}$	olyester	
C13, C113	$0.33 \mu \mathrm{~F}$	olyester	
C14, C114	$10 \mu \mathrm{~F}$	Tantalum	
C15, C115	$5 \mu \mathrm{~F} 10$	Tantalum	
C16, C116	$50 \mu \mathrm{~F} 1$	Tantalum	
C17, C117	$2 \cdot 2 \mu \mathrm{~F}$	V Tantalum	
C18, C118	$0.1 \mu \mathrm{~F}$	lyester	
C19, C119	1,800pF	\% polystyr	
C20, C120	$50 \mu \mathrm{~F} 2$	elect.	
C21	$50 \mu \mathrm{~F}$	elect.	
C22, C122	$1 \mu \mathrm{~F}$ pol	ester	
C23, C24	2,500 F	40 V elect.	
C25, C125	330 pF	ramic	
C26	0.022μ	10\% polyes	
C27	$0.22 \mu \mathrm{~F}$	0\% polyest	
C28	0.022μ	10\% polyes	
2 off each except C21 and C26-C29			
Potentiometers			
VR1, VR101)			
VR2, VR10	100Ω preset (R.S. Mouldtrim) (6 off)		
VR3, VR10	$1 \mathrm{k} \Omega$ submin skeleton preset (2 off)		
VR4, VR10			
VR5, VR10	$4.7 \mathrm{k} \Omega$ submin skeleton preset (2 off)		
VR6, VR10	$10 \mathrm{k} \Omega+10 \mathrm{k} \Omega \mathrm{log}$ ganged pot		
VR7, VR10	$750 \mathrm{k} \Omega+50 \mathrm{k} \Omega$ lin ganged pot		

Inductors	
$\left.\begin{array}{ll}\text { T1 } & \text { 20V-0-20V } \frac{1}{2} A \text { (R.S. 20V Rectifier) } \\ \text { T2 } & \text { Bias transformer } \\ \text { L1, L101 } & 4 \mathrm{mH} \text { (2 off) }\end{array}\right\}$(see next month for details)	

Heads

EH1 Bogen erase head type UL296
RPH1 Bogen universal head type UK207E
(These are available from Cole Electronics Ltd., 7-15 Lansdowne Road, Croydon CR9 2HB and Brenell Engineering Co. Ltd., 231/5 Liverpool Road, London, N. 1 who also market a tape deck incorporating these heads).

Transistors	
TR1, TR101	BC159
TR2, TR102	BC147
TRR, TR103	BC157
TR4, TR104	BC147
TR5, TR105	BC148
TR6, TR106	BC157
TR7, TR107	BC149
TR8	BC158
TR9, TR109	2N3823
TR10, TR110	BC159
TR11, TR12	BFY50
All 2 off except TR8	

Diodes

D1, D101	OA47 (2 off)
D2	BZY88C $27 V 400 \mathrm{~mW}$ Zener
D3	BZY88C 20V 400 mW Zener
D4, D5	BA145 (2 off)
D6	12V 1.5 W Zener
D7-D10	BA148 or 1N4002 (4 off)

Integrated Circuit

IC1, IC101 SN72741P or 741OPA (2 off)

Relay

RLA 12V $185 \Omega 4$ changeover contacts (ITT)

Meters

ME1, ME101 VU meters. Sensitivity 1.228 V a.c. for $0 \mathrm{~dB}(300 \mu \mathrm{~A})$ (2 off)

Switches

S1 4 pole 3 way (R.S. miniature Maka-switch)
S2 2 pole changeover miniature slide
S3 6 pole 3 way (R.S. miniature Maka-switch)
S4 see text

Miscellaneous

SK1 5 pin 180° DIN socket

SK2, SK3 B9A valveholder (2 off)
SK4 5 pin 180° DIN socket
PL2, PL3 B9A plug (2 off)
PL4 Mains plug Bulgin type P429
LP1 $\quad 12 \mathrm{~V} 0.75 \mathrm{~W}$ lamp and holder
LP2 Mains neon with integral resistor
$9 \frac{1}{2}$ in $\times 5$ in 0.1 in matrix plain Veroboard
16 s.w.g. aluminium for chassis (see Pt. 2 for dimensions), TO5 clip-on heatsinks (2 off), plastic cable clips (2 off), capacitor clips (2 off), 21,30 and $34 \mathrm{~s} . \mathrm{w} . g$. enamelled copper wire

Fig. 3. Full circuit diagram of the stereo tape link. Only the upper channel has been shown; the lower channel electronics being identical to the upper channel. Components numbers of the lower channel are upper channel numbers plus 100
indicate a transient, and is easier for the eye to follow.

Referring now to the circuit diagram, transistors TR5 and TR6 comprise a unity gain voltage follower having a very low output impedarice.

The metering signal is rectified by diode D1 and stored in C15. Because of the low impedance of the voltage follower the major limitation on the charging time of C15 is the forward resistance of the diode which is a gold-bonded germanium type.

The discharge time is governed by the combination of the reverse resistance of the diode, R22 and the input impedance of TR7.

In the absence of an input signal the base of TR7 is at 6.7 volts. Preset VR4 is set so that TR7 is just cut off and hence no current flows through the meter. As the signal input increases the charge on C15 increases positively hence forward biasing TR7. Resistor R23 provides the meter with overload protection.

BIAS AND ERASE OSCILLATOR

A very pure bias waveform is needed if the full dynamic range of the tape is to be realised. Also, due to the dependence of frequency response, output level, distortion and modulation noise on the bias amplitude, the oscillator amplitude should be drift free.

Push-pull operation is used to minimise even harmonic distortion and the rail voltage is regulated to ensure amplitude stability of the waveform.
So that adequate filtering of the oscillator harmonic output is assured, the tuned circuit must have a high working Q. This is achieved by the employment of a low impedance tuned circuit wound with thick wire on a low loss high permeability pot core. The tuning capacitor should have low dielectric losses as well.

The transistors are protected against reverse breakdown of their base emitter junctions by diodes D4 and D5. Although this breakdown does not interfere with the operation of the oscillator, it can, after a period of time, cause reduction in the current gain of the transistors.

Zener diode D6 regulates the voltage supplied to 12 volts. The bias is arranged to decay slowly by discharging C29 when switching off from record. This is essential if magnetisation of the heads is to be avoided.

In practice, the oscillator works well. The output rises by 0.25 dB over the first minute of operation and is thereafter stable. The waveform is good, as indicated by the inaudible change in the tape noise after virgin tape has been passed by the erase head. It is important when performing this test to pull the tape away from the record head as this will record modulation noise. Modulation noise is inherent in all biased recorders and can be reduced only by the use of low noise tapes and careful design of the heads.

REPLAY AMPLIFIER

The output of the record/replay head when playing a tape rises at the rate of 6 dB per octave (i.e. it doubles for every doubling of frequency) up to the point at which high frequency fall-off occurs.
The replay amplifier compensates for this characteristic, and provides a high level output signal suitable for feeding long screened cables.

When considering the connection of the head to the amplifier it is important that no appreciable direct current flows through it, as this would result in magnetisation of the head, and a consequent increase in the background hiss of the tape. It is thus inadvisable to couple the head via a capacitor as the charging current for it will pass through the head.

F.E.T. INPUT STAGE

The use of a field effect transistor as an input device allows direct connection of the head. Because of the very high input impedance of the f.e.t. it requires only a miniscule bias current (about 2 nA) which is insufficient to affect the head. Compared to a bipolar transistor the f.e.t. also possesses a generally lower noise and distortion level.
The f.e.t. and TR 10 comprise a complementary feedback pair operating at a gain of 50 from an input signal of 2.7 mV at 1 kHz and at $7 \frac{1}{2}$ inches per second. This stage has a flat frequency response. The f.e.t. has a considerable spread in the gate to source bias voltage for a given drain current, being anywhere from 0.5 to 7.5 volts. It is not easy to design away this variation, and a preset resistor (VR5) has therefore been provided for setting-up.

SUPPLY RIPPLE REDUCTION

An interesting feature of the input stage is the method of supply ripple reduction. Transistor TR8 is biased as a current source. Zener diode D2 maintains the base-emitter potential constant in the presence of ripple on the 55 volt line. reducing modulation of the collector current.
The high source impedance of the current combined with the low slope resistance of the Zener diode D3 attenuates the ripple to a negligible level.

EQUALISATION

The function of equalisation is left to the last stage, thus resulting in lower noise levels, and greater accuracy of equalisation which, if carried out earlier could cause variations in the input impedance.
The general purpose operational amplifier type 741 is the equaliser and output stage and is eminently suitable for this application. Because of its high gain and low output impedance it is capable of producing very accurate equalisation. It has its own internal frequency compensation for stability and its output is short circuit protected.
The d.c. source impedances of the inverting and non-inverting inputs are similar and the d.c. gain of the stage is set to unity to minimise drift of the quiescent output voltage with temperature.
The equalisation components R37-39 and C19 are selected according to the speed in use and set to the CCIR standards of 70,140 and 280 microseconds.

POWER SUPPLY

The power supply is quite simple, providing two outputs of 55 volts and 27 volts. Full wave rectification and large value reservoir capacitors are employed to produce good supply regulation and low output ripple.

In the second part of this article, next month, con-
struction of the Hi-Fi Tape Link will be described

ARE WE ALONE?

From time to time the question of other living entities, whether they be elementary forms or whether equivalent to homo sapiens or better, is revived. Over the past year or so the climate of acceptability has improved in these matters and there are less sceptics each year.

While all science fiction has been treated as having license in this direction, examination tends to show that in our galaxy, at least, the chances of bug-eyed monsters or intelligent vegetations being our companions is losing ground. In general all the findings so far point to a cycle of emergence to the present level of homo sapiens as the most likely, though minor variations could occur.

At the present state of knowledge the evidence is in favour of similar forms of life to that which exists now. This being the case the field is narrowed quite considerably and statistically it is known that there is a high possibility of life existing elsewhere, but the possibility of communication presents a major problem.

From several sources recently there have come new suggestions for contacting other intelligences. Some are based on the concept that if there are fundamental laws governing the matter, they would be the same for all. The use of mathematical constants and the geometric forms regarded as fundamental. is a natural step.

ECHOES FROM SPACE?

There have been two recent suggestions, one which relates to a cyclic condition of the movements of heavenly bodies and one which is based on the problem of long time echoes of known broadcasts.

The first of these suggestions involves the possibility of near approaches to the solar system by stars which might have a planetary system. Statistics show that there is a quite frequent approach to within 50 light years of the solar system.

A second line put forward is based on the phenomenon of echoes. first noted by Störmer and Van der Pol in 1928. While they appeared to be curious and puzzling at that time this is not really the case now.

However, renewed interest has been aroused by D. Lunan, who has studied available data over a long period and has offered certain suggestions as to the reason for the echoes.

One of the suggestions is that the echoes behave as though they were reflected from a point at or near the orbit of the moon. He has constructed maps which are very similar to the star maps of the northern hemisphere and suggests that the star Epsilon Boötes might

be the source from which a probe has been dispatched.

The probe may be in orbit and attempting to make earth beings aware of its existence by re-transmitting broadcasts. It is also suggested that the probe may have arrived in the solar system about 11,000 vears ago.

Perhaps all the evidence has not been released but the matter was given considerable discussion at a meeting of the Interplanetary Society.

The echoes are both long-time, that is years, and short-time, that is 3 to 15 seconds and it is the latter that Lunan has investigated.

It is easier to offer an alternative for this suggestion because the periods are short enough to avoid the complication of dissipation of power. A short time of three seconds could be a direct reflection from the earth's other moon that has so frequently been postulated or even from the moon itself over a long path.

However, for both of the extremes of timing there is a simple answer which involves the model of the ionosphere that was considered satisfactory for a long time. This was a layer type model like the successive skins of an onion.

The ionosphere in fact is not a bit like that and not only are there now many doubts about propagation theories that have been held for so long, but the layer theory disappeared with the advent of Sputnik 1. In this connection there is much evidence that indicates that there is no homogenity about these layers at all.

Moreover, there is considerable variation in the density of the northern and southern hemispheres. This variation of density in the layers has a considerable effect on
the length of reflection paths. It is, therefore, possible for a signal to go round the earth several times before emerging at a particular angle that could be recorded as an echo.

It would be possible to expand on the Lunan theory, but suffice to say that the answer to the appearance of regular patterns can only come from a specific attempt to make a practical test of Lunan's work. It is in fact an experiment that could be undertaken by amateurs and perhaps here is an opportunity for UFO supporters to produce some practical answers to their claims.

USSR RESEARCH

As a result of finding amino acids in the Murchison meteorite the Russians have been carrying out further experiments on meteorites that have fallen in the past. They concluded - so state academicians Vinogradov and Vdovykin - that there is evidence for the chemical evolution of life.

They also state that it is not necessary for there to be special fortuitous circumstances for this to come about: in short, life could evolve anywhere where there is a dust accretion in the galaxy. This has been deduced from an examination of the Mighei meteorite which fell in the Ukraine in 1889.

The Murchison meteorite revealed amino acids and the Mighei meteorite shows an acid which is similar to $D N A$ but has a spiral which is symmetrical. From this fact they conclude that it is not of biological derivation.

CRAB NEBULA AGAIN

The crab nebula has been much in the news of late. The original noting of this supanova by the Chinese astronomer Yang Wei-Tek was on July 4, 1054. Little other record of this occurrence is found in literature though it must have been an event of considerable note.

However. in 1955 W. C. Miller discovered evidence that the North American Indians had recorded the event. Pictures were found showing the crescent moon with the nova nearby. This was thought to be a unique record and the date was confirmed as July 5, 1054.

Recently another discovery was made at Fern Cave in California. This cave was occupied at the time of the event in 1054 and so could be depicting an event during the formation of the settlement. The timing has been checked by four investigators and though no absolute claim for identification is made it seems unlikely that it records any other event.
The fact that the nova was more brilliant than Venus must have made it an outstanding sight.

Gerry Brown

SENSE OF SMELL

Apropos of our discussion some months back, relating to "sniffing", it seems that someone else has latched on to the idea of recruiting bugs to serve as extensions to our probosci. This time it's some form (goodness knows what) of marine bacteria which come as a packagedeal for detecting the smells associated with just about, anything from bombs to pineapples.

These wonderful little "critters" can, I gather, be trained (presumably in the good old Pavlovian way) to glow whenever they sense or come in contact with a material of one's choosing. It is then simply a matter of detecting this light with a photocell (photomultiplier?) to identify the type of smell. Unlike previous attempts to make bugs useful in the role of an olfactory sense, this way would appear to be far more flexible.

The particular application to which this artificial nose might show some real worth ultimately is tele-olfaction.

Using this new way to sense smell at a distance ought not to be too difficult, but may be complicated by the fact that odours do not seem to be represented to us in the same way that, say, colour is; to wit, it is not simply a question of discovering primary odours then combining them to produce "hues" (or phews!).
No doubt, the limitation would be on the number of trained bacteria packages one could incorporate in a transducer, since each package would only respond to a particular smell. Assuming a compromise could be accepted at around one hundred or so packages, that is one package for each of the more common smells, then by fanning air over the device, sequential interrogation of the bacterias' photocells would classify both type and amplitude of odour.
This, though, is only part way to the ultimate in communication. There still needs to be a method for reproducing the "pong" from the transducer output waveform. This should be a simpler job because, following receipt of this signal, it might then be decoded within the receiver and the resultant employed to address a corresponding set of control valves, so releasing the correct aromatic. As an alternative, heaters could be arranged to vapourise the material.

Whether there should be a delay between different signals is a moot point; naturally, it would not be the best of schemes to follow one smell by another when the chance existed that they might clash or produce some offensive "mixture".

Honestly, imagine one of these things going wrong. There is little doubt that TV servicemen would suddenly find new uses for the humble pair of bull-nosed pliers!

SHOCK THE VILLAINS

Mugging, and the crop of pensioner-bashing cases we have witnessed lately must be distasteful to anyone with a sense of respect for their fellows. For a while now I have considered a number of possibilities for beating this, very real, public menace, but it is not something to be easily reckoned with.
Anyhow, having contacted the Chief Constable for my area and

discovered that, 'no, you were not permitted to use portable highvoltage equipment with a view to shocking the villians into submission", the only effective alternative seemed to be a notion based on the word "shock". The best deterrent thus appeared to be one that could attract a lot of attention to one's predicament by others in the vicinity of the incident.
An electronic device to meet our requirements generally needs to have quite bulky proportions, so probably the best "noise-maker" would be a small klaxon employing a miniature electric motor, this driving a coarse-pitch gear pinion bearing directly against a piece of bent metal (certainly noisier than any loudspeaker of twice the size). The metal "noise-maker" could be carved out of the lower part of a handheld lamp case the upper portion being utilised for photo-flash attention lamps.

This kind of alternative, at least, should come within the limits of the law and Fig. 1 gives the general picture of how such a set-up would function.
Two switches control the device, The "arm" switch (preferably concealed) connects a supply battery preparatory to possible operation. Simultaneously, photo-flash lamp drive is inhibited while a "set" pulse is fed to a six-stage ring counter whose outputs all go to logical " 0 '".

Release of the spring-return 'trigger' switch starts the klaxon and also causes the clock generator to run. In turn, a (deliberately over-run) "keep-alive" lamp rapidly flashes while the divider counts down the signal from the clock. Thus, every 13 or so seconds, the ring counter will be advanced one step and so fire (one at a time) the photo-flash lamps.

Naturally, the device ought not to be too inelegant physically, but should be of sufficient size to prevent any feeble-minded body-vandal shoving it in a convenient Gladstone bag!

introducing

RAFIIU ELEBIROHISS ITL. $\%$

an associate Company of LST ELECTRONIC

 COMPONENTS LTD.
'Service the way it ought to be'

When it comes to retail distribution we te hesd and shoulders above the rest!

We re a new Company but our expenience and ability in electronic components gees back a long way

Here at Arrow Electronics fast, reliable service is law!

We offer a rapid, same day turn round on all mail received up to $\mathbf{3 ~ p m}$ on any given Meekday

What's more, when we promise to clear all orders on receipt. We really mean it!

Our no fuss, no bother ordering system is a joy to behold. We'll give you all the forms and envelopes you could possibly need. Com bine them with our simple Catalogue Coding and hey presto. you can order and order, time and time again without the slightest error or mistake.

You'll always be up to date with us-we're continually adding to our high quality stoch range and we're always up-dating cur catalogue.

Get to know us and you'll soon rasse you hat to our customer discount-it's tops wirh a total order value discount of 10% on orders exceeding $\mathbb{£} 4.00$.

Now's your chance to get to know us better. Our brand new Catalogue is now awaiting you, hot from the presses.

NEW PRODUCTS

Products featured in the Arrow Electronics Mail Order Catalogue include the following:-

Extended ranges of Bridge Rectifiers, and
Capacıtors including Variable Capacitors.
Low cost Integrated Circuit Mounting Fins. Instrument Knobs.
Light Emitting Diodes.
Magneto Resistors.
Optically Coupled Isolators
Extended Range of Potentiometers.
Medium current and High current Rectifiers. Temperature controlled Soldering Irons
Extended Range of Thyristors.
Many new types of Passive Components.
Hardware and Accessories including qools.

Chassis.

Aluminium Boxes
An extended range of Opto Electronic

Devices.

A very wide range of new Semiconductors. Test Meters.
and many other items of great interest te the home constructor.

Arrow Electronics Limited
Dept. PE5
7 Coptfold Road
Breniwood Essex
Tel: Brentwood 219435

MEW PRODUCT

The urique test instrument illustrated gives an instarnty visible display of the Logic State of DIL linegrated arcuits. The ofice automatically salecrs its power suppl, from the terminals 6 : :he iC's being inspectad Each Logic Checker is supplied complete with a set of clip-on Logic plates. For fuller details see the new 4row catalogue.

NEW PRODUこ1
Arrcuw are the first to offer the new double w Jund ring core chokes designed for RF inze ferente suppression in Bur.Polar SCR and TRIAC circuits. The chokes are supplied as a kit inclusing a Celta Capacitor. For details see the new catalogue.

MOSt watches and small clocks being manufactured at the present time still employ a mainspring as the source of power and a balance wheel plus hair spring as the timing mechanism. The basic design of such timepieces has remained essentially unaltered since Huygens developed the balance wheel mechanism in the 17th Century.

RECENT PROGRESS

The first battery powered wrist watch was marketed in 1952, but recent developments in micro-miniature integrated circuits have enabled high quality electronic watches to be produced which are much more accurate than the more common types of watch. Most of the quartz crystal controlled watches show an accuracy of about one minute per year.

Electronic watches do not have a spring which requires winding periodically, but their miniature battery must be replaced about once per year. Smaller movements suitable for ladies' watches are becoming available, but considerable problems arise in designing watches which can be powered by miniature mercury cells which must have the minimum acceptable life of one year.

TYPES

Some of the main types of electronic watches can be classified in the following way. Many variations of these main types are available.

First generation watches employ a conventional balance wheel and hair spring as the timing mechanism, but they are powered by a battery instead of
a main spring. They have the advantage that they do not have to be wound, but their accuracy is not generally so much greater than that of a conventional watch.

Second generation watches employ a tuning fork mechanism operating at about $300-500 \mathrm{~Hz}$ as the timing device; a transistor circuit drives the tuning fork. Such watches have an accuracy of about one minute per month, this being considerably better than that of an ordinary watch. Tuning fork watches do not tick, but emit a slight hum.

Third generation watches employ a quartz crystal oscillator which normally operates at a frequency of between about 8 kHz and 33 kHz ; most types have an accuracy of about one minute per year. The pulses from the quartz crystal are used to control the speed of a motor which drives the hands of the watch. Various techniques are employed to accomplish this.

Fourth generation watches do not employ hands to indicate the time, but incorporate a digital display which shows the time in actual figures. These watches have no moving parts and are completely electronic. They employ a quartz crystal oscillator and have an accuracy of about one minute per year. They are only just becoming available.

PRICES

Unfortunately the price of electronic watches is still quite high. The price of many watches is increased because a gold case is employed.
In the case of stainless steel cased watches, one finds tuning fork models ranging from just under

Fig. 1. The circuit diagram of the first electric watch
£40 upwards, with the smaller ladies' watches rather more expensive. The quartz crystal controlled watches are generally priced from about $£ 100$ upwards, but some of the watches providing a digital display are not so much more expensive than other quartz crystal controlled watches.
It seems fairly certain that the prices of electronic watches will fall during the next few years. The components of all electronic digital watches can be mass produced and assembled by relatively unskilled personnel. This will effect a great saving in labour costs at a time when the general trend is for labour costs to rise rapidly and integrated circuit production costs to fall-especially if large numbers are produced. Thus it seems we are experiencing a revolution in watch design.

Although one has the annual cost of the power cell replacement (typically $£ 1$), most electronic watches do not require servicing so frequently as ordinary watches. The forces in the transmission gearing are usually less than in conventional watches and therefore satisfactory functioning is almost independent of the increase of viscosity of the oil with time. In general the regular cleaning and preventative maintenance recommended for balance wheel watches are unnecessary with most electronic types; one only has the watch attended to if it stops or does not keep time with its normal accuracy.

CLOCKS

Electronic clocks are also available with either a digital display or with the analogue display provided by ordinary hands. Many electronic clocks are quartz crystal controlled and provide an accuracy of about one minute per year. Both battery powered and mains types are available.

Some of the main types of electronic timepieces will now be considered in reasonable detail. The development of electronic clocks has followed a rather similar pattern to that of watches (although the problems of size are not nearly so acute) and therefore clocks and watches will be discussed together

THE FIRST ELECTRIC WRIST WATCH

The first battery driven wrist watch was developed by the French Company LIP in collaboration with the Elgin Company of the U.S.A. This watch was introduced into the LIP range on 15th March 1952, but the same type of movement is still being produced by this Company. The Hamilton Company introduced a similar type of movement very shortly after the LIP watch became available.

Although this type of watch is electric rather than electronic, it will nevertheless be discussed, since it led to the development of some electronic types and has been described as the greatest advance in watch design for some centuries. The same basic principle has also been used in clocks manufactured by the Hamilton, Vedette, Bayard and Odo Companies.

PRINCIPLE OF OPERATION

The principle of operation of the LIP type R. 148 movement is shown in Fig. 1. The R. 184 is similar, but it also indicates the date.

As the balance wheel rotates in an anticlockwise direction, the jewelled cam on the balance wheel pivot pushes the contact wire onto the contact. A current then flows from the power cell through the electro-magnet and the contacts and back to the cell. The energising of the electro-magnet at the instant the pole of the balance wheel is approaching the pole of the magnet causes the two poles to be attracted together so that the balance wheel is given an impulse.

The balance wheel continues to rotate after the contact has been made and the wire returns to its normal position. When the balance wheel swings in the opposite direction, the cam merely pushes the contact wire away from the contact and the magnet is not energised. The electro-magnet passes a current which increases to about 1 mA over a period of 3 milliseconds and then the current falls rapidly to zero. The current pulses occur every 0.4 s . For simplicity a magnetic shunt employed in this type of watch is not shown in Fig. 1.

SPARK SUPPRESSION DIODE

A diode is connected in parallel with the electromagnet. When the contacts are joined little current flows through this diode, since the potential across the electro-magnet reverse biases the diode. When the contacts break, however, the current ceases to flow through the electro-magnet and a back e.m.f. is developed across the latter, owing to its inductance. The diode shorts out this back e.m.f. and thus prevents damage to the delicate contacts by sparking.
The cam illustrated in Fig. 1 consists of a jewel. The amplitude of the balance wheel oscillations can be controlled by adjusting the contact regulating lever; the latter rotates the contact arm on its axis.

The amplitude of the oscillations of the balance wheel remains fairly constant and this results in the watch keeping more accurate time than many watches which are powered by a main spring. There is some negative feedback, since if the amplitude of oscillation decreases, the contact time is increased and this provides more power which helps to stabilise the amplitude of oscillation.

The mean current taken from the 1.55 V cell is normally $5 \mu \mathrm{~A}$, but does not exceed $7 \mu \mathrm{~A}$. A 100 mA hour battery therefore has a life of some 15 to 18 months.

Fig. 2 (left). A circuit which can be used to drive the balance wheel of a watch

Fig. 3 (right). A circuit used in some self-starting watches and clocks for driving the balance wheel

ELECTRONIC WATCHES WITH A BALANCE WHEEL

The main problem with the type of electric watch just described is that the contacts must be very carefully designed and positioned if they are to have a reasonable life. In any case, the contact life tends to be limited.

The work of Marius Lovet of France has led to the development of electronic watches with balance wheels in which the switching is carried out by a transistor.

The balance wheel of such electronic timepieces carries small permanent magnets which move near to two coils-a feedback coil and a power coil. The currents induced in the feedback coil by the movement of the balance wheel magnets drive the transistor into conduction so that the power coil receives a pulse. The magnetic field developed by this coil acts on the magnets to give the balance wheel a driving pulse.

CIRCUIT

The type of circuit shown in Fig. 2 may be used in timepieces which employ an electronically driven balance wheel. If the latter is stationary, the base and emitter are at the same potential and therefore the collector current is extremely small.

When a magnet of the balance wheel moves past the feedback coil, however, the voltage induced in this coil causes the transistor to conduct. A current therefore flows in the power coil and an impulse is

The Swissonic 10 electronically driven balance wheel movement. The magnets can be seen fixed to the balance wheel and the power coil under the balance wheel. The first three letters of the days of the week are shown in French
produced which powers the balance wheel. The pulse duration is typically 10 milliseconds. Spurious oscillations of the circuit can be suppressed by connecting a capacitor between the base and collector of the transistor. The resistance of the coils may be a few hundred to a few thousand ohms.

One of the disadvantages of this type of circuit is that the balance wheel does not commence to oscillate automatically. The watch must be rotated to start it. This difficulty can be avoided by connecting a resistor of about 100 to 200 kilohms in the base circuit (as shown in Fig. 3) so that a very small current flows in the base and collector circuit even when the balance wheel is stationary.

The current flowing through the power coil interacts with the magnets of the balance wheel and causes the latter to move. The minute oscillations are built up by transistor action until the normal amplitude of vibration is reached.

Although a current flows through the circuit continuously, this current can be eliminated by connecting an electrolytic capacitor in series with the feedback coil (as shown in Fig. 3).
Contactless circuits of this general type are widely employed in some of the more economical types of electronic watch. For example, the LIP movement type RE. 50 (introduced in 1970) was the first electronic watch for ladies available anywhere in the world. Much of the internal volume is occupied by the $1.55 \mathrm{~V}, 60 \mathrm{~mA}$-hour cell which is 7.9 mm in diameter. One finds similar circuits in the 9154 "Dynotron" movement produced by Ebauches S.A.

- EbAUCHES SA

Fig. 4. The miniature tuning fork used in the Bulova 214 series of "Accutron" models
(a large group of Swiss watch manufacturers), in the Junghans 600.12 self starting wrist watch produced in Germany, etc.

Electronic clocks employing this type of movement are produced by Junghans (type ATO-MAT-WERK 726); the mean current consumption is less than $160 \mu \mathrm{~A}$ at 1.4 V or a total of less than 1.5 A -hour per year. Similar types of clock are produced by the Jaz Company.

ELECTRONIC ALARMS

The first wrist watches with electronic alarm systems were introduced by the Nepro Company of Switzerland in 1972 after five years of development work. Although watches which have an alarm powered by a spring are available, the stored energy is rather small and this results in the intensity of sound being low and the duration limited. In addition, the alarm spring must be wound each time the alarm is used.

The Nepro watches employ a 1.5 V battery of 40 mA -hour capacity to power their wrist watch alarms. The current is about 8 to 12 mA and the battery has a life of about a year with normal use. The alarms of these watches sound for five minutes unless cancelled by a push button.

ALARM MODELS

One type of wrist watch with an alarm produced by Nepro is the "Memotron". A vibrating membrane generates the sound in the MB 500 alarm system contained in this watch. This is the smallest electronic alarm in production, having a volume of only 0.8 cubic centimetres.

Watches using this type of alarm can be used to remind a person of appointments throughout the day and can therefore be used for many purposes for which normal alarm clocks are unsuitable. The Nepro Company also produce a range of very small alarm clocks with battery powered alarms.

TUNING FORK WATCHES

The first tuning fork movement was announced by the Bulova Company on 25th October 1960. This watch, which was the result of six years of research by Dr Hezel of Bulova, represented a real revolution

Fig. 5. The circuit of the Bulova 214 series of "Accutron" watches

Fig. 6. The pawl mechanism used in the Bulova "Accutron" watches for converting the tuning fork vibrations into a rotary motion
in watch design. It was the first watch to employ an electronic mechanism and the first to use a timing mechanism not based on the balance wheel. In addition, it was the first watch to be delivered to the purchaser with a written guarantee of its time keeping accuracy; this is ± 1 minute per month.

The frequency of operation of the tuning fork watches made by Bulova for men is 360 Hz . The mechanical loss of energy has been reduced to a very low level and this enables the low power consumption of about $8 \mu \mathrm{~W}$ to be obtained. The tuning fork mechanism is relatively insensitive to shock.

The tuning fork employed in the Bulova 214 series is shown in Fig. 4. It is made of a special alloy which is little affected by changes of temperature. A strong conical magnet and a magnetic cup are fitted to each prong of the tuning fork.

A coil is fitted over each magnet. The coils must be fixed in position so that they are very close to the vibrating magnets but never touch them. The coils have a total of about 16,000 turns, comprising about 200 metres of insulated copper wire of diameter 0.015 mm . About one quarter of the number of turns on the one coil is used for feedback purposes.

CIRCUIT

The circuit of the 214 series of Bulova watches is shown in Fig. 5. It consists of a simple transistor oscillator with a feedback coil (or "phase sensing

Fig. 7. The inside of a Bulova 214 series "Accutron" watch
coil") and two power coils. Indeed, it is basically very similar to the circuits of Figs. 2 and 3 which drive balance wheel watches.
The alternating voltages induced in the phase sensing coil are applied (via the battery and capacitor) to the base-emitter junction of the transistor. This diode junction rectifies these voltages and the capacitor is charged with such a polarity that the voltage across it opposes the power cell voltage.

The resistor in parallel with the capacitor allows the charge of the latter to leak away slowly so that a small pulse of current flows each time the voltage across the phase sensing coil is near to its maximum value and at a time when the polarity of the voltage induced in the power coils opposes that of the power cell.

If the total voltage induced in the power coils at the instant the transistor conducts were exactly equal to the cell voltage, no current would flow through them. At the correct amplitude of vibration, the voltage induced across the power coils at a time when the transistor conducts is about 10 per cent less than the cell voltage. A 10 per cent increase in the amplitude of vibration would therefore result in the current pulses to the power coils becoming zero and the amplitude would then quickly fall to its correct value. Similarly, a 10 per cent decrease in the amplitude would raise the current through the power coils to double its normal value and return the amplitude quickly to normal.

TRANSLATING THE VIBRATIONS

The vibrations of the tuning fork are converted into rotary motion by means of the rachet and pawl mechanism shown in Fig. 6. Attached to one arm of the tuning fork is a straight spring (the "index") tipped with a tiny jewel which engages ratchet teeth on an index wheel. The wheel advances one tooth for each complete vibration of the tuning fork. A
pawl holds the index wheel in position during the return stroke of the index jewel. Although the index wheel is only 2.4 mm in diameter and 0.04 mm in thickness, it has 300 teeth spaced at 0.025 mm intervals. The index wheel drives a gear train which turns the hands of the watch.
The rate of rotation of the index wheel is unaffected by any normal changes in the amplitude of vibration of the tuning fork. The index wheel will move one tooth per vibration of the tuning fork when the index jewel moves any distance between just over one and just under three times the distance between adjacent teeth. If the index wheel moves a distance just over the distance between successive teeth. the pawl jewel will push it back during the time the index jewel returns; the net movement is then one tooth.
continued on page 231

Four smatl Accutron watches for ladies, using a tuning fork movement

YEAR OF THE HYBRID

This could be the year of the hybrid microcircuit. Thick film technology has made enormous strides through development of special inks for printing resistive networks, plenty of chip capacitors and active devices are available and potting techniques have also had their share of improvement. The result is a neat module of high reliability which has become extremely attractive to equipment manufacturers.

The manager of the very active hybrid microcircuit division of Welwyn Electric, Brian Attwood, tells me that although Welwyn started research on thin films some seven years ago and reached a high degree of perfection, the less expensive thick film technology has now reached the stage where it can do all the jobs of thin film. Welwyn are now fully concentrated in the thick film area with a plant capacity capable of handling $£ 1$ million worth of circuits a year, although he admits that actual production has not yet reached this figure.

Welwy is engaged in the high technology end of the business with as many as a couple of dozen components in a single package. At any one time some 60 different circuits are going through the plant and some 500 types of circuits, all custom built by Welwyn, are in field service.

Also bidding for a big share of the hybrid market but in the higher volume area is Newmarket Transistors Lid., a member of the Pye Group.

Two recently announced products are a low level audio amplifier, the performance of which can be adjusted as required by external components or links, and a selfcontained hearing aid amplifier.

The company states that thick film hybrids have now reached a
stage where costs are becoming appreciably lower than discrete assemblies. So confident is Newmarket that they are inviting users of circuits using discrete components to send details to the Newmarket design team who will then evaluate it in hybrid terms free of charge and submit a quotation for supplies.

Yet another firm spreading its wings with hybrids is Coutant Electronics, best known as a supplier of power supply units. Coutant started a thick film facility for inhouse use manufacturing mainly encapsulated voltage regulators and over voltage protection units. Now the company is offering a full design and manufacturing service to allcomers.

POLLUTION MEASUREMENT

The big investment in design of pollution measurement equipment by Plessey looks as if it may be starting to pay off. The company's water quality monitoring equipment came through a four-month evaluation at the Water Pollution Research Laboratory, Stevenage, with flying colours and installations are now operating with the Sussex, Lancashire and Trent River Authorities. Orders have been taken from similar authorities in Sweden, Italy and France, the forerunners of a profitable export trade.

Another notable order, although valued only at $£ 20,000$ is for an environmental monitoring system at Lovisa, Finland, where that country's first nuclear power station is scheduled to come into operation in 1975. The Plessey installation measures meteorological, hydrographic and water quality data at the outfall of the station's water cooling system. A total of 38 separate parameters are automatically monitored and the resulting data should prove extremely valuable even before the station comes into operation.

PROFESSIONAL COMPONENTS FOR THE AMATEUR

SDS Components at Portsmouth have opened a retail shop for the home constructor at their premises at Gunstore Road, Hilsea Trading Estate. This is not the first time a wholly professional supplier has turned to the amateur market for extra revenue and it will be interesting to see if the project fares better than some earlier attempts elsewhere which, in the end, proved uneconomic.

Many famous names are listed in the product list which can be obtained by sending 20p to SDS Components Ltd. Tim Curtis,
managing director of SDS, says that he intends to break down the bar* riers between the amateur fraternity and industrial manufacturers.

NEW OUTLET FOR EVR

Electronic Video Recording EVR - has been slow in market development but good business could result from its use at sea. Most ships now have TV for the use of the crew when in port and in coastal waters. In fact Marconi Marine has supplied more than 4,000 multi-standard receivers to vessels of all types.

Ships' crews are just like their shore-based counterparts and like to have TV on tap all the time. Hence the interest in EVR which will allow the TV to keep entertaining from video telecartridges when out of normal reception range.

Marconi Marine has entered an agreement with Telmar Programme Service for the supply of recorded programmes on the EVR film cartridge system which is manufactured at Basildon, Essex. The cartridges each give two 30 -minute monochrome programmes or one 30 minute colour programme.

Many thousands of recorded programmes are available and ships will be able to exchange programmes at ports throughout the world. The playing units are manufactured by a number of companies under licence from the EVR partnership of ICI and CIBA. GEIGY.

RACAL AND THE YOUNGER MAN

Chairman and managing director of Racal Electronics, Ernest Harrison, believes in youth. He likes to spot likely managers early in life and then give them the opportunity to show what they can do.

Some recent promotions prove the point. Keith Thrower who heads up a newly-formed Advanced Development Team has made big progress on the engineering side. He now has a top job at the age of 38. David Elsbury, 36, has climbed the ladder to become. managing director of Racal Mobilcal Lid., one of the most profitable of all Racal companies and the one that recently booked the largest ever contract for the company valued at $£ 1.8$ million.

Two. other youngsters who now have top jobs are Gerry Smith, heading up Racal's Singapore office, and Jim Diggins, who joined Racal at the age of 25 and is now managing director of Racal Communications Ltd.

Harrison told me that in general successful people need to be "well seen" before they are 30 years old. Very few good people, he savs, ever leave the company because promotion prospects are good.

(P) AL_P. (Electronics) Ltd

THE HY41

The HY41 supersedes the popular HY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion (typically 005% at 1 KHz into 8 ohms!) and is electronically and mechanically compatible with the HY 40

With this important improvement the HY41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No fur ther components are required to construct a compiete ower amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi-Fi but also for public address systems and industry.

The free manual gives a full circuit diagram of the HY4t and its various applications including amplete stereo amplifier

Like its predecessor the HY41 is based on conventional and proven circuit techniques developed over recent years.
OUTPUT POWER: British Ratıng 40 WATTS PEAK, 20 watts
R.M.S. continuous.

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz .
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION : less than 0.15% (typical 0.05%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz}+1 \mathrm{db}$
SUPPLY VOLTAGE: +22 5volts D.C.
SUPPLY CURRENT: $\overline{0} .8$ amps maximum.

PRIICE: inc. comprehensive manual, P.C. board, five extra components and P. \& P.
MONO: £4.90
STEREO: $£ 9.80$

UNIQUE HYBRID PRE-AMPLIFIER

The HY5 has rapidly established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an integrated preamplifier circuit.

Supplied with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use.

Internally the HY5 provides equalization for almost every conceivable input, the desired function is achieved by use of a multi-way switch or by direct interconnection,

Two distinctive features of the HY 5 are its inbuilt stabilization circuit, allowing it to be run off any unregulated power supply from 16-25 Volts and a balance circuit which, when linked by a balance control to a second HY5, forms a complete stereo pre-amplifier
Specificaliy and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY41 and PSU45 forms a completely intergrated system.

INPUTS

Magnetic Pick-up (within $\pm 1 \mathrm{db}$ R|AA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Replay lexternal components to suit head. $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphone (flat) $10 \mathrm{mV} .47 \mathrm{~K} \Omega$
Ceramic Pick-up lequalized and compensatable) $20-2000 \mathrm{mV}$. variable
Tuner (flat) $250 \mathrm{mv} .100 \mathrm{~K} \Omega$
Auxiliary $1250 \mathrm{mV} .47 \mathrm{~K} \Omega$
Auxiliary 2 $2-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

OUTPUTS
Main Pre-amp output 500 mV Direct tape output 120 mV .

ACTIVE TONE CONTROLS (Bexendall) Treble + 12db
Bass +12 db .
INTERNAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VOLTAGE
16-25 volts
PRICE: MONO: $£ 3.60$

SUPPLY CURRENT
6 mA approx.
OVERLOAD CAPABILITY
better than 26 db on most sensitive input
infinite on tuner and auxl.
OUTPUT NOISE VOLTAGE: 0.5 mV

STEREO: $£ 7.20$

POWER SUPPLY PSU45

The versatile P.S.U. 45 is designed to supply vour HY41's +HY5's in stereo or mono format.

Specification

Input: 200-240 Volts.
Output: +22.5 Volts at 2 amps .
Overall Dimensions: L. $7^{\prime \prime}:$ D. 3.8'": H. 3.1"
PRICE: $£ 4.50$ inc. P. \& P.

WAITORD ELECTRONICS 35 CARDIFFROAD, WATFORD
C.W.O. Please. P. \& P. please add 10 p to order under
\&2.

RESISTORS

High stability, low noise, carbon film resistors. Tubular miniature, high power resistors.

Power Watts	Tolerance	Range	Values available	Price	
t	5\%	2.2-2.2M Ω	E/2	Ip	0.8 p
t	5%	2.2-10M Ω	E12	ip	0.8p
	5\%	2-2-10MS	E12	2 p	1.5 p
4	10\%	I-IOM Ω	E12	6 p	

Quantity prices available for any selection. Ignore fractions on total order.

CAPACITORS

Electrolytics, general purpose, miniature, axial lead. Mullard O/5, O16, O17 series.

1 mf					
1.5 mf	63 V	${ }_{6 p}^{6 p}$	22 mf	63 V 63 V	${ }^{6 p}$
2.2 mf	63 V	6 p	100 mf	40 V	6 p
3.3 mf	63 V	$6 p$	150 mf	25 V	6 p
4.7 mf	63 V	6 p	220 mf	25 V	110
6.8 mf	63 V	6 p	470 mf	25 V	13 p
10 mf	63 V	6p	680 mf	25 V	20p
15 mf	63 V	$6^{\mathbf{p}}$	100 mf	25V	25 p

POLYESTER FILM CAPACITORS

Mullard C296 series. 400 V d.c.
mf: $0.001,0.0015,0.0022,0.0033,0.0047,0.0068,0.01,0.015,0.022$, rice 21 p.
mf: $0.033,0.047,0.068,0.1$, price 4p.
mf: 0.15 , price 8 p .
mf: 0.22 , price 7 p .
mf: 0.33, price 10p.
mf: 0.47, price 13 p.
160 V d.c.
$\mathrm{mf}: 0.1,0.15$, price 4p; 0.22, price 5 p ; 0.33 , price 6 p ; 0.47 , price 7 p 0.68 , price 10 p ; 1.0 , price 13 p

Mullard 280 series P.C. mountings. 400 V d.c.
$\mathrm{mf}: 0.01,0.015,0.022$, price 3p; $0.033,0.047$, price 4 p
250 V d.c.
mf: $0.068,0.1,0.15$, price $4 p$.
$\mathrm{mf}: 0.22,0.33$, price 5 p .
$\mathrm{mf}: 0.47$, price $7 \mathrm{p} ; 0.68$, price 10 p ; 1.0 , price 11 p .
CERAMIC DISC CAPACITORS
Working voltage 50 V d.c., Plaquette body with 25 in leads Range: 22pf-10,000pf, price 2p.

POTENTIOMETERS

Carbon track, $1 K-2 m$, log or linear, single gang, price 12 p ; $5 \mathrm{~K}-2 \mathrm{~m}$, log or linear, dual gang, price 37p; $5 K, 2 \mathrm{~m}$, log or linear, single gang with switch, 24p.
Knobs for above 10 p .
SLIDER POTENTIOMETERS
Single $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$, log or linear, 31 p .
Dual gang, IOK plus 10K, etc., above values log or linear, 50p. Knobs for above @10p.

PRE-SET POTENTIOMETERS SKELETON

Horizontal or vertical mountings, 0.25 W , miniature, price $5 \frac{1}{p}$ p

DIN PLUGS AND SOCKETS

2 pin, ${ }^{3}$ pin, 5 pin (180° or $\mathbf{2 4 0 ^ { \circ }}$). Plugs, price 12p. Sockets, price 8p.

(1) 졀

 5ILVER

 5ILVER THE FIRST TRAMSISTOR

THE TEAM

THE original transistor device was demonstrated in public for the first time on June 30. 1948, at Bell Telephone Laboratories New York premises. This was the pointcontact transistor, invented by two physicists, John Bardeen and Walter Brattain, who had been researching into solid state materials. They formed part of a Bell Laboratories team led by William Shockley.

A few months following the successful experiment that resulted in the first practical solid state amplifying device. Shockley set out to formulate a theory to explain transistor action. He proposed, in fact, the junction transistor structure. This theory was later developed in practice and the junction transistor became the very successful successor to the pointcontact transistor and the latter was obsolete by about 1956.

One of the first experimental pointcontact transistors.

A whole new field of semiconduction technology sprang from the exploitation of the $p n$ iunction. as originally proposed by Shockley. An amazing range of devices have been developed through the application of the pn junction principle. where conduction is performed through minority as well as majority current carriers-holes and electrons.

William Shockley was also responsible for proposing the four layer pnpn device, which led to the silicon controlled rectifier (thyristor); and also for a different class of unipolar devices, based upon the field effect. These inventions followed within a few years of the junction transistor.

For their outstanding contributions to transistor physics. John Bardeen. Walter Brattain. and William Shockley were awarded the 1956 Nobel Prize in Physics.

An early version of a junction transistor.

DR WILLIAM SHOCKLEY

Dr W. Shockley was born in London of American parents on February 13, 1910. Reared in California, he received his B.Sc. degree at the California Institute of Technology in 1932 and his Ph.D at the Massachusetts Institute of Technology in 1936. He joined Bell Telephone Laboratories in 1936. During the war he served as Director of Research for the U.S. Navy. Afterwards he returned to Bell and became director of the solid state physics research programme which saw the development of early junction transistors.
In 1963 Dr Shockley was named the first Alexander M. Poniatoff Professor of Engineering Science at Stamford University. He has received numerous awards for scientific achievement and public service, and serves on many top level Advisory Committees in the United States. Dr Shockley has contributed over one hundred articles to scientific journals, and more than 70 U.S. Patents have been granted for his inventions.
\& Dr William Shockley is to lecture at the I. E.E. in London on February 14.

An early production version of the point-contact transistor.

IERE and IEE

To celebrate this silver Jubilee, the Institute of Electrical Engineers, in conjunction with the Institution of Electronic and Radio Engineers, has arranged a number of events which will take place between the 12 and 16 February 1973.

The IERE is marking the 25 th anniversary of the invention of the transistor by devoting a specially enlarged issue of its Journal-The Radio and Electronic Engineer-to a unique collection of nearly 20 papers on semiconducting subjects contributed by leading British scientists and engineers who have worked in this field during the past quarter of a century.

This Transistor issue of the Radio and Electronic Engineer which is dated January-February 1973, may be obtained from the IERE Publications Sales Department, 9 Bedford Square, London WCiB 3RG, price $£ 2.00$ per copy, post free.
;

12th-16th February 1973
An exhibition at the Institution of Electrical Engineers demonstrating the evolution from the point-contact transistor to complex integrated circuits.

13th February 197310.00 a.m.
A colloquium "The 25th anniversary of the Transistor' at the Royal Society.

14th February 19735.30 p.m.
A lecture by Dr William Shockley "The invention of the transistor: an example of creative-failure methodology" at the IEE

15th February 197310.30 a.m.
A half-day discussion meeting "What next in semiconductors' at the IEE

3.00 p.m.

A lecture by Dr W. E. J. Farvis 'The influence of the transistor in our society and economy" at the IEE.

FROM RECTIFYING CONTACTS TO PN لUNCTIONS

AStartingly new and revolutionary technical device rarely appears simply out of the blue. The invention or discovery is generally a culminant achievement by a research worker who has followed in the train of a number of earlier researchers and experimenters.
Experience suggests that requisite conditions for a momentous breakthrough are (1) a sufficiently advanced state of theoretical knowledge, (2) a large demand or potential need for a particular kind of device and (3) a sufficiently sophisticated technology capable of undertaking development and then quantity production of some innovation.
Amplification of electric currents is an essential part of electronics. The idea of a solid state amplifier had been a vision in the minds of many scientists and experimenters for many years before the triumph of 25 years ago.
As beneficiaries of the electronic wonder of the century, it is appropriate for us to look back and try to pick out some of those stepping stones that formed a path, no matter how faint and discontinuous, which led to the ultimate success of Messrs. Bardeen, Bratain, and Shockley.

EARLY INVESTIGATIONS

With some justification we can identify the commencement of the trail to the transistor with Michael Faraday, who in 1833 recorded the non-linear characteristics of certain conductors of electricity. He found that silver sulphide had a negative temperature coefficient.

In 1873 Willoughby Smith discovered that light affected the resistance of crystalline selenium.

In 1876 Adams and Day observed non-linear conduction phenomena on light-sensitive selenium cells.
(A fascinating light beam wireless communication system was created by the American experimenter and inventor Alexander Graham Bell (1847-1922). Speech was transmitted some distance in space by modulating a light beam and then received upon a selenium element, which produced an electrical output corresponding to the speech input.)

The earliest detailed investigation of the rectifying effect of dis-similar materials in contact, was carried out by the Austrian physicist Braun around 1874. Braun explored a variety of crystals, but mainly lead and ferrous sulphide, and used a base electrode and wire as a point-contact. He observed that the resistance was dependent upon the polarity of the applied voltage, as well as on the nature and condition of the contact surfaces. Braun likened this phenomena to the conduction between closely spaced electrodes in a gas.

Braun also appears to have been the first to observe the rectification effect produced by selenium.

Like many pioneers, Braun had his critics and his discoveries did not gain immediate recognition.

POINT-CONTACT RECTIFIERS

Point-contact rectifiers were first put to practical use as signal detectors in the early days of wireless, around 1904. Natural lead sulphide was commonly used. During the mid-1920's the crystal detector was finally ousted from radio receivers by the thermionic valve.

PLATE RECTIFIERS

Plate or "metal" rectifiers consist of thin semiconducting layers with metallic electrodes on either side. Cuprous oxide and selenium are the two most important materials that have been widely used.

The rectification effect of contacts between metals and cuprous oxide was already known to Braun. The first useful device appears to have been made by Grondahl in 1920.

The cuprous oxide rectifier was used on a large scale for power rectification and for use in measuring instruments, from the mid-1920's to the late 1930's. Then it began to be replaced by the selenium rectifier which offered many advantages.

The selenium photocell was widely used during the period 1930-40.

NEW CONCEPTS

Investigation into the properties of semiconducting materials appears to have received a great impetus in the 1930's. One important new concept was the "hole", introduced by A. H. Wilson in 1931 when formulating the transport theory of semiconductors based on the band theory of solids.

But the mechanism by which the widely used metal-semiconductor rectifiers ("metal" rectifiers) operated was not clearly understood. One theory that received general acceptance was based on the Schottky effect (1938), a concept similar to the ideas put forward to explain thermionic emission. According to Schottky, cold emission or field emission is produced by the application of a few volts across a thin film of semiconducting material (the copperoxide coating); and this is due to stable space charges in the semiconductor alone, without the presence of a chemical layer.
Also during the same period N. F. Mott offered a theory for swept-out metal semiconductor contacts which is known as the Mott Barrier.
In 1938 Helsch and Pohl published an account of a solid-state amplifier. This consisted of a single crystal of potassium bromide with a single wire of platinum providing control of current through the crystal. No practical developments resulted.

WAR-TIME ADVANCES

The invention of radar just before the second World War stimulated a new interest in the solid state rectifier as a detector of microwaves. And so the silicon point-contact detector was developed.

During the 1940 's the technique of crystal "doping" was introduced. Boron added to highly purified silicon was found to result in highly sensitive crystals. This arose from experiment and the theory behind this effect could not then be explained.
This was a very significant period for the future of solid state. For one thing, the requirement for improved detectors for operation at centimetric wavelengths led to an intensive search for new materials. The discovery of germanium was one direct result of this activity.

POINT-CONTACT TRANSISTOR

Shortly after the war, Bardeen, Brattain, and Shockley were involved in research on copper oxide rectifiers. Bardeen showed that a Schottky barrier layer could exist at the free surface of a semiconductor. This layer makes the contact properties independent of thermionic work functions. Following upon this, Bardeen and Brattain initiated the series of experiments that led to the invention of the point-contact transistor.
They placed two point-contacts close together on the surface of a crystal. It was found that a current flowing through one could influence the current flowing through the second circuit. The first practical solid state amplifying device had arrived. This was December 1947.
In working out the basic mechanism involved in point-contact transistors, Bardeen discovered the carrier-injection phenomena. This injection of extra current carriers into the semiconductor in the region of contact when forward bias voltage is applied produces the "transistor" action.

Later, Shockley carried out a research experiment to diagnose the surface phenomena of the original transistor. In the process, he found he had devised a new type of transistor. This was patented as the junction transistor. An account of this important discovery was published in 1949. Within a few years the $p n$ junction device was to prove vastly superior to the point-contact device, both from manufacturing and application view points.

It is of interest to note that around the mid 1930's Shockley had instigated some research into copper oxide rectifiers in an attempt to invent a solid state amplifying device. The results were negative.

DIFFERENT MECHANISMS

The rectifying properties of metal-semiconductor contacts are due to a different mechanism to that now understood to be responsible in the case of $p n$ junctions.

During the last decade, the metal-semiconductor type of contact has returned to favour, albeit with new materials, and it has assumed a new prominence in special devices such as field effect or metal oxide semiconductor transistors (m.o.s.t.), and Schottky barrier diodes used for microwave purposes. The m.o.s. technique is extensively used in integrated circuit manufacture.

Thus it seems the circle has been completed. Development of the $p n$ junction has stimulated further widespread research into solid state physics over these last 25 years, and a new interest has arisen in the rectifying phenomena which was the starting point of this "trail to the transistor". And so more devices seem likely to be developed in the future which make use of both mechanisms of current transport.

ELECTRONIC TIMEPIECES

Regulation of the watch is effected by moving either of the small regulator plates which are attached to the ends of each side of the tuning fork. This makes an extremely minute change in the effective length of the fork. An adjustment of half a second per day can be made.

An interior view of the mechanism of the Bulova 214 series watches is shown in Fig. 7.

MODELS

The Bulova tuning fork watches are known by the name "Accutron", a word derived from "accuracy" and "electronics". In 1970 this Company introduced the first Accutron watches for ladies (series 230). These employ a power cell of the same size as that used in Accutron watches for men, but the frequency of the electronically driven tuning fork is 480 Hz so that the movement can be made far smaller. The shape and construction of the tuning fork is different from that in the models for men, but the current consumption remains at $8-10 \mu \mathrm{~A}$.

A few other companies now offer tuning fork watches. Longines offer the Ebauches caliber 6312 "Mosaba" movement in their "Ultronic" watches. (Mosaba is a word derived from "Movement sans balance"). Baume and Mercier have given the name "Tronosonic" to their tuning fork watches, whilst Omega refers to such watches as " f 300 ". Bulova also produce clocks with tuning fork mechanisms.

GRAVITATIONAL EFFECTS

The frequency of some types of tuning fork watches is dependent on their position owing to the pull of gravity on the prongs of the fork. When the prongs (or "tines") point downwards, the watch may run a few seconds per day faster than when the prongs are horizontal.
This disadvantage has been almost eliminated in the balanced Mosaba movement designed by Ebauches S.A. It operates at 300 Hz and is marketed as the Swissonic 100 range by Longines in their "Ultronic". The Omega " f 300 " range also employs a balanced tuning fork movement.
Next month the final article will look at, among other things, quartz, cybernetic and digital watches.

P= 5ound Eynthafiser
 5ID:ULEET POWER SIPPL By G. D. SHAW

I F the modular concept outlined last month, is to be followed in its entirety, this implies that not only must each circuit be entirely self contained but also that each circuit, complete with its various controls, should be capable of operating as a separate entity either within, or external to, the framework of the synthesiser as a whole.

These factors, coupled with the experience gained in building the prototype, contributed towards a decision to redesign the instrument into a fully modular form based on one of the many commercially available racking systems.

This month modifications to a standard racking system will be described together with constructional details of the twin stabilised power unit that will supply the various synthesiser card modules.

CHOICE OF RACKING SYSTEM

It was believed that, in the interests of economy, the Card Frame System 1 by Vero offered the greatest value. Utilisation of this particular system, however, means that the constructor will be obliged to manufacture his own modular inserts which may perhaps be a deterrent to those not having the facilities or experience to tackle sheet metal fabrication. In this case the modular racking system type 3E also by Vero has the advantage that it covers a range of components which may be easily assembled into modular inserts.

This latter system is extremely well designed and the component parts of the assemblies are precision made, these factors, naturally enough, being reflected in the price of the 3E System which is several times greater than that of System 1.

Fig. 2.1 shows a general view of the assembly of the card frame to be used as the mainframe of the synthesiser chassis. The aluminium end plates are already pre-drilled to suit the standard Vero components normally used in the assembly of a System 1 Card Frame. It will be necessary, however, to provide additional holes to allow for modifications to the standard assembly and to provide mounting facilities for a number of components. Drilling details are shown.

MAINTAINING A TIGHT ASȘEMBLY

The slotted card support sections are made of plastic and are secured to the end plates by means of
self tapping screws. Repeated removal and replacement of these screws will result in wearing of the threads which will, in turn, make the assembly sloppy. It is suggested therefore that assembly of the mainframe is only attempted when all necessary drillings, etc. have been completed, and that, once assembled, it is left so. If the constructor wishes, for any reason, to have the facility of stripping the assembly down repeatedly he would be well advised to redrill the securing screw holes and tap them to take a suitably sized metallic thread insert.

COMPONENTS

RACKING SYSTEM

Card Frame

Kit of parts for a System 1 Card Frame with a pair of guide mouldings to suit (Part No. CFMN/1)
SK7-SK13 8 pin McMurdo sockets (Part No. RS8) (7 off)
PL1-PL7 8 pin McMurdo plugs (Part No. RP8) (7 off)
Frame parts above available from Vero Electronics Ltd., Industrial Estate, Chandler's Ford, Eastleigh, Hants., SO5 3ZR

MODULE FRONT PANELS

Fig. 2.2 shows the composite front panel layout with dimensions. It will be seen that the panel is divided vertically into eight separate sections. These sections represent the front panels of individual modular units and, with the exception of the strip on the extreme right of the panel, can be removed from the mainframe complete with their respective card supports and circuitry.

The right hand strip is permanently fixed to the mainframe by two small aluminium brackets.
The left-hand panel is slightly wider than the remainder mainly to act as "fill-in" on the full width of the front panel.

Fig. 2.1. Perspective view of the Card Frame System 1. The end slots on the upper mounting rail require to be elongated for future adjustment of McMurdo sockets

Fig. 2.2. Composite front panel. These sections represent the front panels of individual modular units as indicated

Fig. 2.3a. Drilling and bending details for circuit board support plate and McMurdo plug (b) details of retaining rod

MODULE SUPPORT PLATE

Circuit boards are supported on a plate to one end of which is attached the module front panel and to the other end a plug which mates with a socket at the rear of the mainframe assembly. Fig. 2.3a shows details of this support plate. Care should, be taken in bending this item and the bends should be made as tightly as possible. Lack of attention to this point will mean that the overall depth of the plate is greater than specified with the result that the front panel, when attached, will not be flush with the card support moulding in the main frame.

Modules are retained in the main frame by means of a $\frac{3}{16}$ in $(4.5 \mathrm{~mm})$ rod, Fig. 2.3b, screwed 2B.A. at one end. which passes through the front panel and engages with a Rosan bush, or similar, in the power supply subframe. - This arrangement also provides a means whereby the module may be withdrawn from the main frame and, for this purpose, a locking collar is provided to. abut the lower lug on the circuit board support plate.

P.S.U. SUB-FRAME ASṠEMBLY

Fig. 2.4 shows the bending and drilling details of the power supply sub-frame. As with the circuit board support plate care should be taken that the clamping and bending is carried out as shown and that the bends are made as tightly as possible. Details have not been provided about the positioning of holes for Rosan bushes or components within the sub-frame.

POWER SUPPLY UNIT

In a project of this kind the predictability of circuit performance depends largely on the ability of the power supply to maintain its voltage rails within relatively close limits. This is particularly true where the oscillators and hold circuits are concerned since quite small variations in supply rail voltage can cause significant changes in the low frequency and "droop" characteristics respectively.

The power supply unit is based on one of the latest regulator i.c.s to appear from Fairchild, the $\mu \mathrm{A} 7815$: This particular device is capable of passing up to 1.5 amps without the necessity of external series regulating transistors, thus it is operating well within its maximum capability. Output ripple and noise is around 500 microvolts or less while load

Dimensions shown thus ${ }^{\text {㭗 are for reference }}$
only and are to be marked from Components
Board
All dimns in mm.

regulation from zero to 400 mA is better than 1 per cent. (Total current requirement for the basic synthesiser is 400 mA per rail.)

The output voltage of the i.c. is specified as being - plus or minus 5 per cent of its nominal rated voltage thus the constructor may find up to 1.5 volts variation across the two power supply rails. This is not necessarily a disadvantage since all the voltage dividers in the synthesiser which require an accurately set voltage are fitted with presets.

CIRCUIT

The circuit diagram of the power supply unit is shown in Fig. 2.5.
Construction is perfectly straightforward (see Fig. 2.6) the only recommendation being that the leads from the transformer to the bridge rectifiers be routed to avoid passing directly over the regulators and that they be twisted together in the interests of hum reduction.
Wires carrying a.c. to the power supply control strip on the front panel should pass through holes. drilled in the rear of the sub-frame and fitted with rubber grommets. These leads should be 10 in (254 mm) in length measured from the rear face of the sub-frame.

Fig. 2.4. Bending and drilling details of the p.s.a. sub-frame

COMPONENTS . . .

TWIN STABILISED P.S.U.

Resistors

R1 $2 \cdot 7 \mathrm{k} \Omega$ R2-R5 200Ω (2 off)
R6 $2 \cdot 7 \mathrm{k} \Omega$
All $2 \% \frac{1}{2}$ watt metal oxide

Capacitors

C1-C2 $3,300 \mu$ F 63 V
High ripple elect. (2 off)
C3-C4 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. (2 off)

Bridge Rectifiers

D1-D8 REc 41A (2 off)

Integrated Circuits

IC1-IC2 $\mu \mathrm{A} 7815$ (Fairchild)
Macro Marketing Ltd., 396 Bath Rd., Slough, Bucks.

Transformer

T1—Main transformer, primary 240 V ;
secondary $30-0-30 \mathrm{~V}$ at 1.5 A

Miscelianeous

S1-Miniature double pole, single throw on/off switch
LP1-LP2 miniature 28 V filament lamps,
FS1- 500 mA fuse,
SK1-SK6 1 mm miniature sockets (6 off)
14 s.w.g. aluminium as required

Fig. 2.5. Circuit diagram of twin stabilised p.s.u.

Fig. 2.6. Mounting and wiring details of p.s.u. components

Smoothed d.c. supplying the indicator lamps and calibrating voltage points is taken from the d.c. busbars coupling the McMurdo Red-Range sockets and thus may pass over the top of the sub-frame.

When the power supply unit has been wired up, with the exception of the d.c. to the indicators and calibrating voltage sockets, the mainframe assembly may be commenced.

ARRANGEMENT OF PANEL UNITS

Referring for a moment to Fig. 2.2, the constructor should decide at this stage the actual arrangement or order in which he wishes the panel units to be placed relative to one another. The arrangement shown need not be adhered to with the exception of the meter and reverberation unit and the power supply control strip, which have to be sited as shown at the extreme left- and right-hand sides of the front panel respectively.

This decision is necessary at this time in order that the support plates may be correctly placed between the slotted mouldings. Viewed from the front of
the assembly, the correct position of these plates is in the slot immediately to the right of the one occupied by a circuit-board support plate.

Since component placement on all front panels offers very little clearance at the left-hand side of the panel it is necessary to cut out the front face of the support plates as shown in Fig. 2.1. The 18 mm depih of the cut-out is adequate to clear potentiometers and sockets on all front panels except that of the output amplifiers which will be fitted with ganged "pan-pots".

The optimum position for the support plates is approximately one third of the distance in from the end plates, the exact point, of course, depending upon the module arrangement chosen by the constructor.

MAIN FRAME ASSEMBLY

Assembly of the main frame should be started by loosely securing the bottom slotted moulding between the end plates. The support plates may then be dropped into their respective slots and the upper slotted moulding placed over the lugs on the top edge of the panels and loosely secured between the end plates. Ensure that the chamfered edge of the slots in the mouldings are towards the front face of the assembly and that the vertical panels are in the same respective slot in both mouldings.

This being so, the securing screws may be fully tightened and lugs on the vertical panels twisted through 45 degrees where they protrude through the upper and lower faces of the mouldings.

SECURING THE P.S.U.

The power supply sub-frame may now be secured to the rear of the end plates. The lower socket support should be drilled to mate with the slotted holes in the power supply sub-frame (Fig. 2.4) and loosely secured in position. Similarly the upper socket support should be placed loosely in position.

Fig. 2.7. Socket arrangement and wiring on connector mounting rails

POSITIONING THE SOCKET SUPPORTS

The final position of these latter supports is determined by inserting an assembled circuit support plate, complete with plug, into the slotted mouldings until the front panel is flush with the face of the mouldings.

A socket is now placed over the plug so that its securing lugs abut the supports at the rear face and the supports adjusted so that they align with the

Fig. 2.8. Wiring details for rear of p.s.u. control strip
socket lugs and are parallel with the front face of the mouldings. The socket supports can now be secured firmly at this point and the socket placed in position for the first of the modules to be incorporated into the assembly.

Ideally all the sockets should be placed in position at this time; but if this is not possible the first socket to be positioned should be immediately adjacent to the power supply control module so that its terminals can provide a convenient jumping off point for the leads supplying d.c. to this latter assembly.

The arrangement for supplying power to the individual sockets is illustrated in Fig. 2.7, while Fig. 2.8 illustrates the arrangement for wiring up the rear of the power supply control strip.

TESTING THE P.S.U.

The power supply may be tested on completion of assembly and wiring up the main frame. The main purpose of testing is to establish whether the ripple and noise and output voltage levels of each regulator are within their rated specification. Load regulation may also be checked by coupling a 30 ohm 10 watt wirewound resistor across each power rail and observing the change in output voltage on the oscilloscope. If the offset on the scope is not sufficient to enable the trace to be observed at a sufficient degree of sensitivity, a high resistance voltmeter should be used.

The level of change of output voltage at the moment of connecting the resistor across the power rails is likely to be of the order of 150 millivolts or less. Note that the resistor will be dissipating about 7.5 watts and is likely to get uncomfortably hot after a few moments across the power rails. It is best therefore to incorporate a switch in series with the resistor.

The main frame assembly is designed to be accommodated in a standard 19 in case in the Vero range. A later article will include details of the types of cases which may be used and modifications necessary in order to fit a.c., d.c., and keyboard sockets to the rear of the case.

Next month: The operation and construction of the voltage controlled oscillators and voltage inverter will be given.

THis project uses a single, inexpensive, TTL integrated circuit, type SN7402, and a few discrete components

The SN 7402 i.c. is a quad, two-input, positive, NOR gate, intended for switching rather than linear applications. However, this device is available for less than the price of many single transistors.

Although when used as a gate its usefulness to the home constructor is rather limited, with a little ingenuity it can be adapted to perform other functions.

THE SN7402 INTEGRATED CIRCUIT

Internal connections to the pins of the SN7402 are shown in Fig. 1.

It is housed in a dual-in-line 14 pin package. As will be seen from looking at Fig. 1, each gate has two inputs, and a single output. The output voltage of the gate will be high only if all the input voltages are low. The output potential will be low, if any of the inputs are at a high potential. Therefore, if one of the inputs is connected to earth, the input will be controlled by the remaining input alone.

The gate may now be biased into a linear operating condition, by connecting this input to earth through a suitable resistor. The value of this resistor must be such that the voltage at the output is approximately half the supply voltage.

INJECTOR CIRCUIT

The function of the gate under the conditions described above is that of a Class A amplifier. The input and the output are 180 degrees out of phase, and the stage thus has very similar characteristics to a single stage transistor amplifier.

By capacitively coupling two gates together, with each output connected to the input of the other gate.

Fig. 1. The internal circuit of the SN7402N quad two input positive NOR gate

Fig. 2. Circuit diagram of the complete signal injector and tracer unit
a circuit similar to that of a free-running, or astable multivibrator, is obtained. A circuit diagram showing two gates connected in this fashion is shown in the upper half of Fig. 2.

The circuit operates as follows. When the supply is connected, the voltages at the outputs will begin to rise, and due to slight variations in component tolerances in the circuit. one will start to rise more quickly than the other.

For example, assume that the output voltage of gate 1 rises most quickly. This rise in voltage will be coupled by C3 to the input of gate 2. This will cause the output voltage of gate 2 to fall, this fall in voltage being coupled by $C 2$ to the input of gate 1.

A further rise in the voltage at gate 1 output will occur, and this regenerative process will continue until this voltage is at its highest level, and gate 2 output is at its lowest level.

Capacitor C2 will now begin to charge through gate 1 , and the voltage at gate 1 input will begin to rise, causing the output voltage to fall. This fall in voltage is coupled to gate 2 , causing its output voltage to swing to a slightly higher level.

A regenerative action will again take place, until gate i output is very low, and gate 2 output is very high. C3 will now begin to charge through gate 2 ,

COMPONENTS . . .

INJECTOR AND TRACER

Resistors

R1, R2, R3	$1.3 \mathrm{k} \Omega$ (3 off)
R4	$1 \mathrm{k} \Omega$
R5	$4.3 \mathrm{k} \Omega$
All $\pm 5 \%$	W carbon

Potentiometer

VR1 $500 \mathrm{k} \Omega$ logarithmic
Capacitors
C1 $\quad 100 \mu \mathrm{~F} 6.4 \mathrm{~V}$ elect.
$\mathrm{C} 2, \mathrm{C} 3 \quad 0.22 \mu \mathrm{~F}$ (2 off)
C4 $\quad 0.1 \mu \mathrm{~F}$ disc ceramic
C5 $\quad 2 \cdot 2 \mu \mathrm{~F}$ non elect.
C6 $\quad 0.47 \mu \mathrm{~F}$
C7 $\quad 0.056 \mu \mathrm{~F}$
C8 $\quad 100 \mu \mathrm{~F} 6.4 \mathrm{~V}$ elect.
Integrated Circuit
IC1 SN7402N positive NOR gate

Miscellaneous

S1	Double pole sing
JK1, JK2	3.5 mm jack sock
PL1, PL2	3.5 mm jack plugs
LS1	15 to 30Ω, $2 \frac{1}{2}$ to $3 \frac{1}{\frac{1}{1} \mathrm{in}}$ speaker
$1.6 \mathrm{in} \times 2 \mathrm{i}$	0.1 in matrix Veroboard
Universal panels	Chassis members: 4 in $\times 2$ in side off); 5 in $\times 2$ in side panels (2 off);
$\mathrm{n} \times 4 \mathrm{in}$ pl CU52A type U7	es (2 off) (Home Radio type CU51A, d CU156 respectively) $1 \frac{1}{2} V$ batteries off) and battery holder

and the opposite will occur. The circuit will thus begin to oscillate continuously, the actual frequency of oscillation being determined by the value given to C3 and C2.

The output is taken through the isolating capacitor, C4, to the output socket. The output wave shape will be almost square, and harmonics of the fundamental frequency will thus be available up to frequencies of many megahertz.

TRACER CIRCUIT

The signal tracer circuit consists of the remaining two gates suitably biased, and coupled by a capacitor, C6. The circuit of the tracer is shown in the lower half of Fig. 2.

There is enough output available to drive a 25 ohm impedance loudspeaker. This should preferably have a fairly high efficiency, as, the output is not very large, although perfectly adequate for this function.

Capacitor C 7 is used to limit the high frequency response of the amplifier, which is otherwise so good, that instability arises.

Resistors R4, and R5 bias the output stage, and as R5 is connected to the output, it also introduces a certain amount of negative feedback, to the amplifier.

The input to the amplifier is taken through C5, and the potentiometer which is the sensitivity control.

RADIO FREQUENCY DETECTOR

If the tracer is to be used with r.f. signals, a detector must be added at the input of the amplifier. This could be made an integral part of the unit, but in the prototype a separate r.f. probe was used. The circuit of this probe is shown in Fig. 3.

Fig. 3. The circuit of a simple detector which can be built into a small metal tube to enable the tracer to be used with radio frequencies

COMPONENTS

R.F. DETECTOR

Resistors R6 $56 \mathrm{k} \Omega$ R7 $2.2 \mathrm{k} \Omega$

Capacitors

C9 $1,000 \mathrm{pF}$
Diode
D1 OA91

Miscellaneous

Metal tube for case plus metal for prod

Photograph of the completed signal injector and tracer unit showing the layout of the front panel. The box is built using universal chassis members

The casing, and metal prod for the probe will both have to be home made. They can be constructed from whatever suitable materials are at hand. Pen cases, pen light torch cases, and 35 mm film containers are popular for housing this type of probe.
The metal prod can be a long bolt, or something similar. The hardware used for the prototype probe consists of a disused penlight torch case, some rubber grommets, and a steel knitting needle for the metal prod. The output should be taken through a screened lead to a 3.5 mm jack plug. The components can be mounted on a small piece of $0 \cdot 1$ in matrix Veroboard.
If the detector is to be an integral part of the unit, an extra jack socket will have to be mounted on the front panel. The break contact of this should be wired in parallel with that of the other input socket. The detector is wired between these two sockets.
same time. The internal wiring of the i.c. is such, that the power supply must be connected to all, or none of the gates.
The circuit has, therefore, to be arranged so that when the plug is inserted into the tracer input socket, the break contact of the jack disconnects one of the biasing resistors of the injector, thus disabling it. When the injector lead is plugged in, the result is the same, except that it is the tracer, output stage biasing which is removed.
The unit requires 6 V at about 20 to 25 mA , and this is supplied by four batteries wired in series. A supply of no more than 7 V may be used, or the i.c. will be destroyed.

CONSTRUCTION

The circuit is built on a piece of $0 \cdot 1$ in matrix Veroboard, measuring $2 \mathrm{in} \times 1.6 \mathrm{in}$. A diagram giving the layout of this board is given in Fig. 4.
When completed this board is bolted to the rear right-hand side of the case and must be insulated from the case. This may be achieved by placing a piece of expanded polystyrene between the board and the case. Cl is not mounted on the board, but is mounted on switch SI.

ALUMINIUM CASE

An aluminium case is constructed using Home Radio Universal Chassis Members, and measures $\operatorname{Sin} \times 4 \mathrm{in} \times 2 \mathrm{in}$.

The front, back, and side panels are bolted together using eight 2BA bolts, the holes for which are already drilled in the panels.
The base plate is fixed in place by four 6BA bolts.

CIRCUIT ISOLATION

Due to breakthrough between the trace and injector circuits, these cannot both be run at the

Break copper strips at 9D, $10 \mathrm{~F}, 10 \mathrm{G}, 10 \mathrm{I}, 10 \mathrm{~J}$ and 10 K

Fig. 4. Layout of the components on the Veroboard panel and interwiring details

Two 4BA self-tapping screws are required to hold the lid in place. The holes for these should be drilled centrally on the flanges of the side panels, using a No. 31 twist drill.

A drill of the same size may be used to drill the holes for the 6BA bolts. A No. 24 twist drill is used to make the mounting holes in the lid. The speaker should be mounted on the lid at any convenient place.

Details of the front panel can be seen in the photograph. The exact size of the mounting holes will vary according to the type of switch, or jack socket used. but the positioning of the holes will of course remain the same.

The batteries are positioned to the rear, and at the left-hand side of the case, opposite the main component board. They should be mounted in a battery holder of the type specified in the components list. Battery clips of the type used with PP3, or PP6 batteries are used to make the connection to the holder.

USING THE UNIT

Switch S1 is the main supply on-off switch.
As described earlier, the function of inject, or trace is obtained by merely inserting the appropriate test lead.

When using the injector, the first test would be to the speaker of the radio, or amplifier under test. Tests should then be made at the inputs of the earlier stages, working forwards towards the r.f. stages, or the amplifier input.

When a test is made, and no output comes from the speaker, the faulty stage has been located. It is the stage which lies between the last, and the penultimate one to be tested. Because the output of the injector is so rich in harmonics, it may be used to test the a.f., r.f., and i.f. stages.

USING THE TRACER

To use the tracer, the same procedure is used, except in reverse, with the first test being made at the input of the amplifier, and then working towards the speaker.

A signal of some kind must be connected at the input and when this signal is not received by the tracer the faulty stage has been located. It is again the one that lies between where this last test, and the previous one were made.

When testing i.f., or r.f. stages of a receiver, the r.f. probe must be substituted for the ordinary test leads.

NEWS BRIEFS
Tital Monitoring System
THE TASK of monitoring tidal conditions and wave height along the coast of Spain presents enormous difficulties using conventional monitoring techniques. To overcome this problem Plessey Environmental Systems have supplied pressure sensors and a digital logging system to the Spanish maritime authorities to provide precise information at 25 of the harbours around Spain's coastline, which is one of the longest in Europe.
The pressure sensors are accurate to $\pm 0 \cdot 3$ per cent of full scale and this measured pressure is encoded into a frequency modulated analogue signal which is transmitted to a central data collection unit in Madrid where it is stored on magnetic tape for subsequent analysis by computer.

Hew Radar Testing Equipment for Europe's MRCA

Europe's new multi-role combat aircraft (MRCA) uses a highly sophisticated radar system and efficient testing is vital for such a system. EMI Electronics' Systems \& Weapons Division have just announced that they are supplying radar testing equipment to assist in-flight testing.
Unlike conventional airborne radar testing methods which limit thorough evaluation of the radar to the period that the aircraft is in flight, the EMI systems will enable the radar's performance to be examined in detail on the ground.

When fitted to the aircraft, the equipment will continuously record the video signal from the radars onto magnetic video tape which can later be replayed on ground equipment.
The new technique is expected to yield far more information from each test than was previously possible.

UK Tops Europe in Data Transmission

The number of terminals sending and receiving computer data in the Post Office's Datel services has grown by more than a quarter over the last year. Datel terminals in service reached a new peak of 22.214, a growth of 27 per cent. Although the UK has only a quarter of Europe's computers, there are more data-transmission terminals in Britain than in the rest of Europe combined.

I.C. LINEAR OHMMETER (January 1973)

This article was the work of Charles Griffiths B.Sc (Eng). We apologise for the fact that an incorrect initial was attached to our author's name.
BIOLOGICAL AMPLIFIER (January 1973)
In Fig. 3, page 34, the value of resistor R5 should be $5.6 \mathrm{k} \Omega$. In the last paragraph under the side heading Alphaphone on page 38 reference to C 10 should read C11.
Fig. 5, page 39, the pin numbers 9 and 10 should be transposed in both the circuit diagram and case interwiring. In the case interwiring pin 12 should be 11. These corrections bring Fig. 5 into agreement with the circuit diagram Fig. 3.

THe bulk of the Digi-Cal logic has now been described. Throughout the articles covering the logic boards from display to ADDER, readers will constantly have encountered a variety of signals. attributed to a mysterious PROGRAMME BOARD.

The far-reaching influences of this board thus having been established, the time has arrived to delve into the method of deriving the plethora of programme output signals, a most important aspect of the calculator.

DIGI-CAL PROGRAMME

The requirements of Digi-Cal are humble, reprogramming not being required in the normal run of things and the tasks for which a programme is necessary, namely the four arithmetic functions of addition, subtraction, multiplication and division can be carried out with only a few programme steps and without recourse to any high level language facilities other than the press of an appropriate key.

Programming then is carried out at the basic level of logic gates and flip-flops, and the Digi-Cal philosophy is retained by making the programmes variable by wiring in diodes where required in a matrix arrangement.

The separate jobs to be controlled by the programme include shifts, transfers, register and counter clearing, routing and clock pulse initiation, all of which must be carried out in a strict sequence.

PRINCIPLES OF PROGRAMME GENERATION

The programmes for Digi-Cal are formed in a diode matrix in the form of a Read Only Memory or R.O.M. "Memory" because a number of separate addressable locations are provided, and "Read Only" because the instruction data in each address location is fixed at the wiring-up level and is not altered by the operator.

In the present system the R.O.M. array is addressed sequentially by means of a counter. In this
way each location in the memory is addressed in turn starting each time at address " 1 " and continuing to the final address of each R.O.M. in an incremental fashion.

It is not possible to jump back or forward in the sequence and random addressing of a particular location is likewise impossible.

Pausing during a sequence for an indefinite length of time is possible, as is aborting the sequence by clearing the address counter and stopping the clock.

BASIC CIRCUIT

The incremental address COUNTER/R.O.M. programme system is best understood initially by means of a simplified circuit without any trimmings (Fig. 9.1).

Fig. 9.1. Principles of Read Only Memory Programme generation

Here, a four stage binary counter with 16 possible states is driven continuously by a clock pulse train. The system states of the counter are individually decoded by gates which produce an active low output when inputs are in the appropriate states.

These gates are in the form of an SN74154 TTL M.S.I. decoder which has extra facilities to generate the complement versions of the four inputs required by the decoder gates and a common overriding enable, or strobe input which can be used to inhibit all outputs.
The pin connections of the SN74154 is shown in Fig. 9.2. Referring again to Fig. 9.1 with Fig. 9.2 in mind, it can be seen that, as the counter steps through the sequence, each output from the decoder is enabled in turn for one clock period, thus establishing the programme steps.

The number of operations to be controlled by the programme depends on the requirements of the machine controlled, and can be few or many as required only four being shown in the basic circuit.

All that remains to perform a particular operation in a particular programme step, is to connect a diode across the appropriate intersection where the step line crosses the operation line.

DIODE MATRIX

Inverters are used at the output end of the operation lines to act as what could be described as "sense amplifiers" in traditional memory terms. Another way of looking at the operation lines and inverters is as multi-input Nor gates with the number of inputs to each gate being determined by the number of times that an operation is used.

Note that each operation can be used any number of times and also that any number of different operations can be activated simultaneously.

The basic circuit has no facilities for stopping or starting the sequence which therefore runs continuously. Also only one programme is catered for and, because of the ripple-through counter circuit propagation delays combine to give spurious pulses of a few nanoseconds width on some of the step lines.

All of these disadvantages have to be overcome in the Digi-Cal circuit, which is shown in Fig. 9.3.

Fig. 9.2. The pin connections of the SN74154 four line to 16 line decoder

FULL CIRCUIT

The full circuit looks very much more complicated at first sight but the R.O.M. arrays can be easily identified, and the rest of the tangle breaks up into sections with specific jobs.

First out of the way are IC108, 109 and 110 which are simply there to divide the master (ungated) clock signal from board ce by a factor of a thousand, to allow the programme circuits to operate at slow speed.

This eases reflection and decoding problems while keeping the operation of the calculator logic tied to a master synchronising clock signal. The only special thing about these dividers is the fact that the three SN7490 are connected in the $\div 10$ mode which gives a 1:1 mark space output from the final stage.

This is arranged by connecting the A stage of the circuit after the B, C, D stage.

STOPPING AND STARTING

An SN7493 (IC112) is used as the programme counter, and it is made to stop or start counting by means of a gate in its clock line. Gate G1 itself is controlled by a latch flip-flop which is SET by a pulse from the equals key monostable in the keyboard logic and reset by the programmes themselves.

Setting the latch is accomplished by using the clock input with a permanent " 1 " on the D input and clearing is achieved by using the programme stop programme operation to energise the clear input of the first flip-flop via a monostable formed from the other flip-flop and a couple of inverters.
This method of forming a monostable was described in the article covering the clock board, Fig. 7.5, a monostable being necessary in this case to prevent "race" conditions removing the RESET input before the latch was properly cleared.

PROGRAMME SELECTION

Three separate programmes are required in DigiCal ; three rather than four because the sequences for addition and subtraction are identical, the distinction being drawn by the fact that the adder board operates either as a subtractor or an adder depending on the function code which is produced directly by keyboard depressions.

The adD/SUBTract programme is quite simple as might be expected and requires only a few steps. Seven steps are, however, provided to allow reprogramming if any "frills" such as round-off or true negative answer are considered possible later.

The multiply and divide programmes are separate and have a possible 15 steps each, to allow for the increased complexity of these operations. Some spare steps are also left in these operations, and can be employed as required.

The selection of the required programme is accomplished by utilising the $\mathrm{G} 1 / \mathrm{G} 2$ enable inputs on the SN74154 decoders providing the multiply and divide sequences, and by using the D input for the same purpose on the SN7442 of the shorter adD/SUBTRACT sequence.

Using the D input as an enable is possible with the SN7442 because if the D input is high, the output selected must be greater than seven and since only outputs one to seven are used, a high D input means all programme steps are disabled even though they may be addressed by the A, B and C counter outputs.

Fig. 9.3. The full circuit diagram of the PROGRAMME BOARD. Power supply connections to the SN74154 and SN74119 are shown in Figs. 9.2 and 9.6. All others have $V_{c c}$ to pin 14 and GND to pin 7 except the SN7490 and SN7493 which has $V_{C C}$ to pin 5 and GND to pin 10 , and SN7442 which has $V_{C e}$ to pin 16 and GND to pin 8

```
COMPONENTS
Capacitors
    C35, C36 10\muF 15V elect. (2 off)
    C37-C40 0.047\muF (4 off)
Diodes
    D104-D142 West Hyde type "red" (or any small
                        silicon diode) (39 off)
Integrated Circuits
    IC108-IC110 SN7490 (3 off)
    IC111 SN7474
    IC112 SN7493
    IC113 SN7400
    IC114, IC115 SN7442 (2 off)
    IC116, IC117 SN74154 (2 off)
    IC118 SN74119
    IC119, IC120 DTL9935 (2 off)
    IC121, IC122 SN7404 (2 off)
Printed Circuit Board
    0.1in Veroboard (8.2in \times 3.4in)
Edge Connector
    32 way 0.1in pitch edge connector (optional)
```


STROBE SYSTEM

Enabling the appropriate programme decoder is not done in a d.c. manner, with a constant input throughout a particular sequence but in an a.c. manner by routing enabling or "strobe" pulses to the selected decoder which occur in the centre of each addressing period.

This scheme is used to kill two birds with one stone, since by enabling decoder outputs only in the middle of each address period the problem of spurious outputs or "glitches" is overcome.

By the time the enable, pulse arrives the address counter is resting in a particular state and propagation delay problems are overcome.

Fig. 9.4. Gate G2 is used to generate a strobe pulse by detecting simultaneous C and A outputs during the clock period as shown in the truth table. The decoder is used to select the appropriate part of the programme according to the FUNCTION CODE inputs

This selection system involves IC114, G2 and G3 and to make the principle clearer it is redrawn in an integrated way as Fig. 9.4. Two states of the final divider (IC110), count sequence are detected by gate G2 which gives a negative strobe pulse near the end of the run (see Truth Table).

The strobe pulse is applied to the c input of IC114 which is being under-used in this application as a two to four line decoder with strobe input.

One of the outputs zero to three is addressed by the two line function code generated by the keyBOARD in response to the arithmetic selection made by the operator.

The selected output will remain high however, until the strobe pulse takes the c input low. The result of all this is that a continuous stream of strobe pulses is delivered, via the logic described, to the strobe or enable input of the selected programme decoder. Gate G3 is used as a negative logic NOR gate to enable the single add/SubTract programme whether addition or subtraction is called.

PROGRAMME OUTPUTS

Fifteen programme operations are possible on this board, and although more of these would be useful, board space is a limiting factor for the layout of the R.O.M. matrix.

Because of this limited number of available lines, some outputs do two or more jobs which seem to be unconnected. For example, line a is responsible for normalising the entry register, clearing the z REGISTER, and clearing the EQUALS LatCH on the m COUNTER boards.

PROGRAMME OPERATION CODE ASSIGNATIONS

a Normalise Entry Register
Clear Z Register
Clear M Counter Equals Latch
b Clear Carry Store
Clear M Counter (to 000000)
c Set latch, changing clock count to DOWN and disabling A inputs to ADDER
d Transfer the contents of the E register to the Z register
e Start Arithmetic Clock
f Stop programme sequence
g Transfer the contents of the A register to the Z register
h Clear the Programme Counter
i Clear E register
j Clear A register
k Preset NORM code from the thumbwheel into the clock counter

I Transfer contents of M counter to A register
m A register NORM in progress
n Preset M counter to 999999

- Clear latch array/select A register for display with point position determined by thumbwheel

These operations are not related and are grouped together because they do not interfere with each other if performed at the same time.

It must be remembered, however, that if a clear z signal is required by a programme, the other signals are also produced which may or may not be important if a "home-made" programme sequence is employed.
Programme outputs are arranged to be either "active high" or "active low" depending on the requirements of the logic they drive, and for this reason either one or two inverters are placed at the end of the operation lines.
The inverters connected directly to the R.O.M. lines are from the DTL family and are type 935 which do not have input diodes (Fig. 9.5). This enables the R.O.M. diodes to be used as an integral part of the circuit without reducing noise immunity.

LATCH ARRAY

The latch array performs a variety of jobs which are related to the programme, one of the most obvious of which is to stretch programme operations over a number of steps.
"Stretching" is achieved by using the programme to SET a latch in a particular step, and to RESET it in another. The latch output is then used to control a particular operation which must be continued for longer than one step.

Latch L6 is used in this way to control the clock counter direction and adder enable during a register normalisation in the multiply sequence. Latch L5 is used to control routing logic during an E^{2} operation, being SET by pressing the E^{2} key and reset by the clear latch array programme operation at the end of each sequence.

Latches L3 and L4 are not used, but are available if required, and L1 and L2 operate together to control the display selection.

Latch Ll controls the decimal point selection (fixed or floating) and L2 controls the register selection (A or E).

The i.c. used in this position is the very versatile SN74119, which like the SN74154 decoders is housed in a 24 pin dual-in-line package. The logic of this device is simply that of six cross-coupled gate latches with a common clear line, and is shown in Fig. 9.6.

Fig. 9.5. This diagram shows how the R.O.M. diodes and the DTL inverters are used to form NOR gates

Fig. 9.6. Internal logic of the SN74119 hex SET/RESET LATCH

CLOCK AND CLEAR

There are only a couple of items left on the full circuit to be mentioned, the first of these being G4 which is used to nor the clear e output from the programme and the clear e input from the ce key to give a combined signal.
Next, the e register normalising clock output is taken as a tapping from the divider-chain so that although much faster than the final programme clock, the normalising clock is slower than the arithmetic clock to prevent difficulties with the long line lengths used.

PROGRAMMING

The programmes used in the prototype are shown in Fig. 9.7, which presents the sequences as flow diagrams.
The operations inside the shaded boxes in the multiplication and division programmes show the conditional branching operation carried out by the clock generating board, and are included in the flow diagram for completeness.
Each of the square boxes corresponds to the programme step with which it is numbered, several operations being possible at each step. The spare steps do not give rise to any outputs from the board, but may be used to advantage if the basic programme is expanded or re-arranged.
Re-programming does not require any particular skill other than commonsense and a knowledge of the way the circuits operate.

The writer has had very little time to consider just what improvements could be programmed into the calculator, but with a little ingenuity and perhaps modification, true negative answers (as opposed to complement versions as the machine stands) should be possible.

Fig. 9.7. This flow diagram shows the three programmes used on the PROGRAMME BOARD. The same programme is used for addition and subtraction as mentioned in the text

Fig. 9.8. The layout of the components on the Veroboard panel. Crosses show breaks in copper strips

Diode matrix construction

```
PROGRAMME BOARD WIRING
DESTINATIONS
aa not used
ab START PROG (fr kbd)
ac RECALL K (fr kbd)
ad UNGATED CLK IN (fr CB/43)
ae FUNC CODE A (fr kbd)
af DISPE (to disp)
ag E2 (fr kbd)
DISPE (fr kbd)
FUNC CODE B (fr kbd)
ai CNT DIR'N (to CB/28)
ak CLEAR E (to ED/2)
al CLEAR E (fr kbd)
am not used
GND
E E2 (to E2 logic)
ap +5V
aq CLEAR Z REG etc (to Z2/43, kbd (NORM) and
    M1/19)
ar CLEAR CARRY etc (to AD/23, M1/20, M2/20)
as DISPA (to DISP)
at START CLK (to CB/44)
au not used
av DEC PT SEL'N (to kbd)
aw TRANSFERETOZ (to Z1/24)
ax E REG NORM CLK (to kbd)
ay ADD ENABLE (to AD/37)
NORM A REG (to CB/37)
ba PRESET NORM CNT (to CB/27)
bb TRANSFER M TO A (to CB/39)
bc notused
bd PRESET M (to M1/21, M2/21)
be CLEAR A REG (to A1/44, A2/44)
bf TRANSFER A TO Z (to Z2/24)
```


CONSTRUCTION

This circuit is built on a Veroboard panel (Fig. 9.8) and carries a good deal of wiring on both sides. The R.O.M. operation lines are formed by the printed tracks on the board, but the step lines are formed from bare tinned copper wire running at right-angles to the tracks.

These are spaced from the board by about $\frac{3}{8}$ in so that diodes may be soldered-in where required. Note that the diodes are inserted with their red ends uppermost, connected to the step lines.

Wiring is congested but not critical, thanks to the low programme speed, and both sides of the board carry wire interconnections.

An edge connector of 32 or more ways is recommended for use with this board, but it is not essential; connections can be soldered directly to the printed tracks if desired. If an edge connector is used it is necessary to clean the track ends thoroughly with fine emery paper and then coat them with a tarnish preventer and cleaner such as Electrolube.

TESTING

Programme selection and step sequences can be easily checked after construction by using a large value capacitor on the clock board to give a very slow programme sequence. Steps can then be followed with a multimeter set to a low voltage range.
Operational testing can be carried out only with the add/SUBTRaCT programme until the M COUNTER boards and E^{2} logic are constructed, but when this is working, little trouble should be experienced with the other programmes.

Note: In Fig. 6.10 (Dec. 72) Z1/22, Z1/43, Z2/22, and $Z 2 / 43$ go to $Z 2 / 44$ not CB/13. $Z 1 / 21, Z 2 / 21$ go to $C B / 23$. $A 1 / 42, A 2 / 42$ go to $C B / 40$. A1/43, A2/43 go to CB/38. In Fig. 7.7 (Jan. 73) CB/40 should go to A1/42, A2/42.

Next month: M Counter Boards

Designing with

Integrated circuits BY A.FOORD

6

Simple Memory Circuits

THis month we will show how simple memory circuits may be constructed from gates and how the master-slave bistable is developed. In the way that a transistor bistable can be made from two cross-coupled inverting stages, a bistable can also be made from two inverting gates. This is shown in Fig. 6.1 for NAND gates, although a similar NOR circuit is also possible.

If the clear and set inputs are at 1, and so have no effect, then for either gate a 1 at its input would produce a 0 at its output, and vice versa. Since the output of one gate is the input of the other, the two outputs must be in opposite states. If Q is 1 then \bar{Q} must be 0 , and vice versa.

If the clear input is 0 and the set input is 1 , then $\overline{\mathrm{Q}}$ becomes 1 and Q becomes 0 . If the set input is 0 and the clear input is 1 then the opposite state is set up with Q equal to 1 and $\overline{\mathrm{Q}}$ equal to 0 .

If a momentary 0 input is applied to either the set or clear input the corresponding output will become a 1 and will remain in this state until a 0 is applied to the other input. The circuit can therefore act as a memory and can be used to eliminate the effects that are obtained from contact bounce on a mechanical switch. This could be checked as an experiment (Fig. 6.2).

From the truth table it can be seen that, if 0 levels are applied to both inputs, then both the Q and ' Q outputs will be 1 . For a true bistable circuit this condition would be avoided.

GATED MEMORY

When input gates are added to the basic memory in Fig. 6.1, it can be made to respond to input levels only during a specific clock time interval, as shown in Fig. 6.3. While the clock input is at 0 , gates 1 and 2 have a 1 at their outputs and the set and clear inputs are locked out of the memory. New information can only reach the memory when the clock input is at 1 .

A 1 at the set input with a 0 at the clear input will give a 0 input to gate 3 and a 1 input to gate 4 , then Q will be a 1 . The other possible states are shown in the truth table.

Fig. 6.1. The basic bistable circuit

momentary 0 on an INPUT sets corresponding OUTPUT to 1
Fig. 6.2. The basic bistable circuit used to eliminate the effects of switch contact bounce

If both set and clear inputs are at 0 when the clock goes high the inputs to the memory remain at 1 and the output does not change from its previous state. In the truth table T_{n} represents the time during the clock pulse while $\mathrm{T}_{\mathrm{n}}+{ }_{1}$ represents the time after the clock pulse. Similarly Q_{u} represent the state of the memory at the time of the clock pulse. (These are common terms used in manufacturers' data on digital i.c.s.)
When the sampling interval is over and the clock returns to 0 , further changes in set and reset can have no effect until the next clock pulse. The memory is said to have "clocked", because the sampling point can be timed to occur when the required data is at the set and clear inputs, and data outside this time will be ignored. For this circuit the set and clear levels need not be pulses because input pulsing is provided by the clock.

DATA LATCH

The previous circuit had three useful conditions, $\mathrm{Q}_{n}, 0$, and 1 . In some applications the data latch

CLOSSAR

BISTABLE CIRCUIT A circuit in which the output has two stable states.
NAND GATE A logic circuit where all inputs must have 1 level signals to produce a 0 level output.

NOR GATE Any one input or more than one input having a 1 level signal will produce a 0 level output.
TRUTH TABLE A chart which tabulates all the combinations of possible states of the inputs and outputs of a circuit.

INPUTS T_{n}		$\begin{gathered} \text { OUTPUT } T_{n}+T \\ Q \end{gathered}$
CLEAR	SET	
0	0	$Q_{n}\left(Q\right.$ at $\left.T_{n}\right)$
0	1	1
1	0	0
1	1	INDETERMINATE

Fig. 6.3. The gated memory with SET and CLEAR inputs

Fig. 6.4. The gated memory with a single data input

EARTH....PIN 7
Fig. 6.5. The gated memory with a single data input and the minimum number of gates. It can be realised with an SN7400N

TRUTH TABLE

INPUTS		OUTPUT $T_{\mathrm{n}}+1$
J	K	Q
0	0	Q at T_{n}
0	1	0
1	0	1
1	1	Q at T_{n}

1 Isolate slave from master
2 Enter information to master

Transfer information from master to slave
Fig. 6.6. The basic action of a master-slave bistable circuit

ATTRACTIVE DISCOUNTS ON VERY MANY ITEMS WHEN YOU BUY FROM US
 EIEGTROLALUE Electronic Component Specialists

TRANSISTORS

\author{

Oode Power Tolera

ELECTROVALUE
Catalogue No. 6

Wide range. Up to date. Brand new
-no 'seconds' or surplus. Higheat quality and reliability.

8 0 0 0 0

I m:-2.an

Minitron DIGITAI | 1

jNr

SOLDERSTAT
SOLDER
as appointed distributora for well-knowins Woll "Solderstat" irons, we ofter this model HME In 16 or 24 watt, a.c. maine, net $\leqslant 1 \cdot 87$

INFINITELY VARIABLE ${ }^{\text {TTEMPERATURE }}$ CONTROLLED SOLDER IRON $\mathbf{6 9} 20$ DE-SOLDER BRAID
Per $61 t$ length, net 50 p .
NIPPIBOARDS

It's more than just a catalogueand we give you a $25 p$ REFUND VOUCHER with it!

The Electrovalue Catalogue No, 6 (4th printing- 96 pages) is as much a manual of valuable technical information as it is a comprehensive, up-to-date catalogue of semiconductors components, accessories, materials, tools, etc. All items are brand new and to makers specifications. Prices are competitive, there are attractive additional discounts offered, and now we include a refund voucher for 25 p available for spending on orders for 65 or more Send 25 p for latest Electrovalue Catalogue now, post free

- Hundreds of today's most wanted transistors with data and outiones
* Diodes, thyristors and tri-acs fully detailed
- I.C's plus schematics, theoretical and connection diagrams
- Resistors and capacitors in very wide ranges
- Siemens pot cores
- Connectors. switches, relays Transformers, solder irons, otc.

S-Dec, T-Dec, mounting boards

ELECTROVALUE

(Dept. PE3) 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Hours : 9-5.30. Sat. 1 p.m. Tel.: Egham 3603 (STD 0784-3).
electrovalde lit.--an independent company simge its establibelemt in 1065

RSI
VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SWI6 2BS special express. mail order service Express postaze lp per transistor, over ten post re
INTEGRATED CIRCUITS 5p +1 ip each added

Open daily to callers : Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors . Closed Sat. I p.m.-3 p.m. Terms C.W.O. only I Tel. O1-677 2424-7

BEDFORD ELEGTRONIOS 2 GROVE PLACE, BEDFORD
 (continuation of Lurke Street)
 Tel.: Bedford 51961

MULLARD C296 POLYESTER FILM CAPACITORS
$\begin{array}{lllllll}400 \mathrm{~V}: 0.001,0.0015,0.0022,0.0033,0.0047,21 p . & 0.0068, & 0.01, & 0.015, & 0.022, \\ 0.033,3 \mathrm{p} . & 0.047,0.068,0.1,4 \mathrm{p} . & 0.15,51 \mathrm{p} . & 0.22,7 \mathrm{p} . & 0.33,101 \mathrm{p} . & 0.47\end{array}$
 4ip. $0.33,51 \mathrm{p} . \quad 0.47,7 p . \quad 0.68,10 \mathrm{p} .10,12 \mathrm{p}$
MULLARD C280 METALLISED FILM CAPACITORS 250V

CERAMIC CAPACITORS 50V (Square plaquette body)
E12 Series 22pF-1.000pF. IIp. E6 series $0.0015-0.01,2 p$. E6 series $0.015-$
$0.047,21 p$.
HIGH VOLTAGE CAPACITORS 1000 V d.c. (300V a.c.)
$0.001,0.0022,0.0033,0.0047,7 p . \quad 0.0068,0.040 .022,10$ p. $0.047,0.1,12 p$. $0.22,20 p$. $0.47,22 p$.

POLYSTYRENE CAPACITORS 125V, 21%
Values in pF: $5,10,15,22,33,47,56,68,100,150,220,330,470,560,680,820$, $1000,3 \mathrm{p}$.

SOLID TANTALUM RESIN DIPPED BEAD CAPACITORS
LFIV: $0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,2.2 / 35,4.7 / 35,10 / 6 \cdot 3,10 / 16,10 / 25$, 22/16, 47/6.3, $100 / 3$, 15p.

MULLARD 015/016/017 ELECTROLYTICS (Replaces C426/C437) MF/V: $1 / 63,1 / 5 / 63,2 \cdot 2 / 63,3,3 / 63,4.7 / 63,68 / 63,10 / 25,10 / 63,15 / 10,15 / 63,150 / 16,220 / 16$ p. $47 / 63,470 / 6 \cdot 3,51$ p. $68 / 63,130 / 16,9$ p. $100 / 63,150 / 63,680 / 16$ $500 / 6 \cdot 3,11 \mathrm{p} .10220 / 63.470 / 40,1000 / 16$. $15 \mathrm{p} .1330 / 63,680 / 40,1000 / 25$,
$1500 / 16,2200 / 10,3300 / 6 \cdot 3,18 \mathrm{p}$, 1500/16, 2200/10, 3300/6.3, 18p.
RESISTORS
ISKRA TYRE ISKRA I/2W
MULLARD $1 / 3 W$ MULLARD $1 / 3 W$
MULLARD $1 / 5 W$
METALFLM IW METAL FILM IW
WIREWOUND 2.5 W
 Range
4R7-2M2 4R7-2M2
$3 \mathrm{M3}-10 \mathrm{M}$
$1 \mathrm{R}-3 \mathrm{R} 9$ 1R
4 R-
$27 R-1 M$ $27 R-1 M$
R22-R WIREWOUN

500R an

IR-270R
IR

E24
E12
E12
E24
E12
E12
E12 Pri ice each
Ip
Ip
Ip
Ip
ifp
$9 p$
7p
6p.

Poot and packing 10 p on orders under $£ 2$; overseas at cost
FULL CATALOGUEON REQUEST.
 FORGET ABOUT
EVERYTHING ELSE
YOU'VESEEN, THIS
ISIT:-the most amazing
 portable VHF Radio and communications
receiver we've yet offered. BRAND NEW -manufactured and guaranteed by one of the most reputable companies in advanced radio and electronic communications equipment. You won't match this for value and variety of performance anywher price! AND YOU RISK NOTHING because you can return within 10 days if not 100% satisfied. We can't list everything that this remarkable receiver picks up. BUT we can say that
the 8 wavebands cover just about everything that's broadcast-by any-
one-from anywhere in the world. You name it-it gets it! Exciting specialised transmissions as well as BBC, Local Radio, Luxembourg, Continental and Pop Stations. PLUS broadcasts from all co
of the world on the earth shrinking SHORT WAVEBANDS.
Attractively finished in leatherette and stainless steel to enhance any lounge or study. USE ANYWHERE-costs virtually nothing to run using standard batteries or plugs into mains. Tone, volume and tuning controls enables adjustment to individual listening perfection. 2 aerials, advanced keyboard type push button waveband selector. Dial light (essential for use in darkness). Special world-wide dial and world map computes correct time in any country of the world. Personal hi-fi earphone for private listening. 14 transistors, 9 diodes, thermistor. SHORT BANDS: $1.6-4.5 \mathrm{Mc} / \mathrm{s} ; 4-12 \mathrm{Mc} / \mathrm{s} ; 12-24 \mathrm{Mc} / \mathrm{s} ; 3$ VHF BANDS: $88.108 \mathrm{Mc} / \mathrm{s}$; $108-135 \mathrm{Mc} / \mathrm{s}$; $135-174 \mathrm{Mc} / \mathrm{s} .627 .50+50 \mathrm{p}$ P. \& P. or $\mathbf{8} 7.50$ dep. +50 p P. \& P. and 6 months at E 4 ($£ 31.50$).
Send 5 p stamp for Comprehensive Brochure of Unusual Frequency Radios
is used for storing the output information in counters or computers until the readout has been achieved. This enables counting to recommence while the readout from a previous phase is still taking place.

If only the two middle entries in the truth table are required (as is usual) then a single data input can be used while the complement is obtained from an inverter, Fig. 6.4. The input data is up-dated during the clock pulse and retained when the clock goes low.

MINIMISED DATA LATCH

The circuit in Fig. 6.4 required five gates to realise it because the D was obtained by the direct inversion of D. However, D can be obtained from the output of gate 1 , because D is only needed at the input to gate 2 when the clock is high; therefore, gate 1 will provide the required information.

The minimised circuit shown in Fig. 6.5 may be realised as an experiment using a single SN7400N. Data D will be entered into the memory while the clock is high and retained when the clock is low.

LOGIC GATE BISTABLES

In the previous circuits the inputs are coupled to the bistable circuit all the time the clock pulse is high, so that these circuits can only be made to toggle (divide by two) if the inputs are a.c. coupled. However, it is essential in logic circuits to overcome this problem without giving up the advantages of d.c. coupling, so circuits were developed which prevent the output transitions from altering the input information which was present when the leading edge of the clock occurred.

These circuits are usually designed in the form of two gated memories, one holds the output state and one holds the input information read in at the beginning of the clock pulse. Since this information is later transferred to the output memory, such a circuit is called a "master-slave" bistable.

Several different versions are available but they all have the master-slave action shown in Fig. 6.6. Here the operation shown is the J-K function where information is transferred from master to slave on the falling edge of the clock pulse. From the truth table it can be seen that this J-K master-slave bistable will divide by two if J and K are taken to I, and an input applied to the clock.

CONCLUSION

We have shown how the simple memory circuit develops into the master-slave bistable, with its many advantages.

Part 7 will describe counters and displays

The International \& Allied Equipment Exhibition, Bloomsbury Centre Hotel, London, WC2 March 13 to 15

BOAT SHOW' 73

THE Yachtsman's winter break, this year in the setting of a sunny Spanish harbour, the annual International Boat Show provides us with a shop window of marine electronics for small craft.

As in previous years there has been a steady development of the electronic gadgetry available, this year has seen the introduction of the l.e.d. (light emitting diode) to boat electronics, a new type of knotmeter and some advancement in the receiver, transmitter field.
One firm whose name must be to the forefront when we consider this year's innovations is EMI; in fact one could call it their year of innovation, with no less than four completely new instruments available. The most interesting new product is a magnetic log.
The new log operates by the transducer generating an a.c. magnetic field in the water surrounding it. As the boat moves through the water a small e.m.f., dependent on the boat speed, is produced and sensed by the transducer head. This induced signal, fed back through the system, is amplified to give a display of speed and distance. Housed in the normal EMI Electra range case the biggest advantage of this instrument is that there are no moving parts below the water and virtually no projection (only 3 mm) below the hull surface.

The other innovations from EMI are an automatic direction finder, an f.m. radio telephone, and a gas detector and alarm. The direction finder is a three band receiver covering the range 175 kHz to $3,000 \mathrm{kHz}$. To use it, it is tuned to the required radio beacon and automatically gives an immediate and continuous bearing of the transmitter. The unit has its own internal supply or can be powered from a 12 V or 24 V ship's supply.

The Electra Gas Alarm uses a solid state imported detection unit and provides both visual and audible alarms of dangerous concentrations of gases.
It is interesting to note that the Electrascan MK11 radar has been ordered by the RNL1 for use in lifeboats. Whilst on the subject of radar both Decca and Electronic Laboratories have introduced MKII radars and the Decca Super 101 MK1I is now sold with a magnifier that increases picture size to 9 inches.

TECHNICAL INNOVATION

As far as real technical innovation goes, this is the first time that we have found a l.e.d. used in a depth sounder. Produced by Marine Electronics and available for about $£ 39$, the sounder works on the same principle as a neon type and probably has a similar accuracy.

Instead of providing a point of light at the depth reading, the l.e.d. is turned on when the pulse is transmitted and off when the pulse is received, thus providing an arc of light showing the depth.
Brookes and Gatehouse-manufacturers of perhaps the most reliable and widely used instruments for the racing yachtsmen-have, we feel, done the sensible thing in offering most of their instruments for use on ship's supply. At last no more fiddling with batteries in a heavy seaway.

Baron Instruments, another contender for the "crack" racers' instrument panel, have redesigned their meter faces and introduced a new range-the Baron Sailboat Console-the meters are lit by l.e.d.'s and are $4 \frac{1}{2}$ inches in diameter. Provided the instruments can prove themselves at sea, with the new meters (which were in fact suggested by us last year) we feel that this range is the most likley to rival B. and G. this year,

Finally we think it is a pity to see Smiths Industries cashing in on the boat market with standard Radiomobile car radios and tape units. Without the necessary marinisation we feel that these units will not stand up to marine use--particularly in salt water-and for Smiths to push the standard product for this purpose is surely not good policy.

PAIENTIR RETCETM

WIRIMG HARNESSES FOR CARS

The Ford Motor Company patent No. 1287074 is concerned mainly with wiring harnesses for cars but most electronic enthusiasts will see far wider applications.

In a vehicle all the various electrics, such as sidelights, headlights. stoplights and wipers are usually connected to a power source by separate power carrying cables. The electrics are controlled by switches (usually located inside the vehicle remote from the devices) in the oower cables from one of the supply terminals. The vehicle chassis acts as a common return to complete the circuit to the other supply terminal.

Providing heavy duty power lines for each separate remote electrical function is uneconomical. The Ford system is based on the house "ring main" idea and uses a flat strip power conductor capable of handling the total current load for all the vehicle electrics, see Fig. 1.

The strip conductor is flexible and is coated with flexible insulating material. On the surface of the insulating material a thin conducting layer is deposited and etched away to form a parallel series of thin low current control conductors. Each of these has connecting pads spaced out along its length and Ford suggest that in a practical system 20 to 30 control conductors can be used along with one main power conductor.

The vehicle power source is permanently connected to the power
conductor by a pin connector which bites through the insulating material and into the conductor. Similar power connectors can be used to connect the power conductor to any electrical device which requires a permanent supply of power.

Each remote electrical function that requires only a switchable power supply (such as headlights, etc) is connected to the power connector by a gated olug. The gated plugs each house a transistor of which the emitter is permanently connected to the power conductor.

A resistor of around 1,000 ohms is connected between the base and emitter of the transistor and the base of the transistor is also connected to the required control conductor of the wiring harness. The transistor collector is connected externally to whatever electrical function is to be powered, Fig. 2.

The gate is controlled by a trigger signal from the control conductor and will only pass current to its load when a control signal is present.

In Fig. 2, the electrical functions or loads are lamps LP1 and LP2. When manual switches S1 and S2 are "off" the base of transistors TR1 and TR2 are at the same potential as the emitters and neither transistor conducts; thus lamps LP1 and LP2 do not liaht. If switch $\mathrm{S1}$ is turned "on" the potential of control conductor CC1 falls, transistor TR1 is switched on and current flows throuah lamp LP1. Similarly if switch S2 is turned on, current flows through lamp LP2. The circuit takes into

BP1 287074

Fig. 1

Fig. 2
account the high cold current surges involved in lighting most vehicle lamps.

Although SCR's may be used it is easier and cheaper to use switch resistors R1 and R2 (around 100 ohms each) which, together with the resistances connected between the emitters and bases of the transistors, form potential dividers which hold the base potentials constant at a level to which they fall on closing the switch. Current through the transistor can only increase until the voltage across the low emitter resistance (cable resistance, etc) raises the emitter potential to a similar value to the base potential.

BIO-NOTES

Readers of Gerry Brown's fascinating column will have noticed his comments in the January 1973 issue concerning "Electrophonic Hearing' and his suggestion that the effect of feeding electric currents direct to the brain should be re-examined as a possible aid to the deaf.

Anyone wishing to follow this line of research will be interested by the content of two British patents Nos. 1284158 and 1286 316 respectively from the ZCM Corporation of USA and Hermann Mengeler of Germany. Both patents were published some while ago but each contains useful technical information on the subject.

The ZCM patent details a method of using an audio signal to pulse a microwave radio signal, the resultant pulses being then fed to electrodes which are capacitively coupled to the subject's skin. This is claimed to produce a brain sensation in some respects equivalent to hearing.

The Mengeler patent claims a comparable system for introducing video information to the brain. In brief, a miniature TV camera produces a scanning voltage which is capacitively coupled to the subject's temples. This supposedly stimulates the optic nerve and produces sensations which the subject may train himself to equate with sight sensations.

Reference to these two patents betore experjmentation could well save readers wasted time and work -it could also save their subjecfs unnecessary electric shocks.

3/ CARRY OUT OVER

 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:valve experiments, transistor experiments amplifiers, oscilfators, signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch. simple transmitter, a.c. experiments, d.c experiments, simple counter, time delay circuit. servicing procedures

[^5]
LINDAIR (EEECTRO-TECH) LTD-
 "PRECISION FAK CO."
 FURTHER BULK PURCHASE

TANGENTIAL HEATER
Silently iriven by a uhaded pole
Mycalex motor. Compact, powerful Mycalex motor. Compact, powerful
and quiet running with aluniniun impeller (outlet $\overline{51} \times 1 \frac{1}{2}$). Mains valtage. PLus matching heater unit f180 with spiral element. May be switched
for 500 or 1,000 wattig. PRICE OMLY P. \& P. 50p SYNCHRONOUS AUTO-RESET PROCESS TIMER
 (Bmiths Industries) DOUBLL EATRY CRITRIFUGAL FAN fully balanced, part lcularly quiet running unit giving approx. 90 cubic ft./min
The motor is a 2 pole shaded The motor is a 2 pole shaded
pole $\triangleq 40 \mathrm{~V}$ Mycalex, Irawing pole 240 V Mycalex, "lrawing
only $\quad 240 \mathrm{ma}$ on rum. Weight 1lb. Sizes: Case dia. 3 - 1 in, width (case only) $3 \cdot 12 \cdot \mathrm{jin}$
 1.85 in . Offered well below makers' price at $\& 2.85$ P. \& P. ${ }^{2}$ ̄p.

By LONDEX LIMITED

Type Dip Mr. 2 Brand New and Boxed. These well known timers are already in world-wide use and are perfect for Induastrial Electronic Timing, Research and for all machtne control timing problema. Repetitive more can be interconnected to give control of a series of processen, $230 / 200 \mathrm{~V}$. $\overline{0} 0 \mathrm{~Hz}$, also OUR PRICE scale, 1 j secs, per division. Driven ONLY by sel1-starting sync. motor. ConONLY tact rat Ing 0 amp at 200 V a.c. ln . corporates solenoll operated ciutch also lever actuated mijero switches. Normal price probably in excess of nector as illotrath malti-pin con nector as illustrated.

AMPEX 7-5V D.C. MOTOR. This is an ultra-precision tape motor model AG20 portable recorder Torque $450 \mathrm{GM} / \mathrm{CM}$. Stall load at sooma. Draws 60mla on run. $600 \mathrm{rpm} \pm 5 \%$ mpeed adjuatment. Internal AF/RF suppreasion, dia. $\times 1^{\circ}$ spinde, motor 3^{3} dia $\times 11^{*}$. Original cost 116 . 0 . Our price 24.25. P. d P Mup. Large quantity available (special quotations) Mil-metal enclosure available 75p each,

"sorema"
SOLENOM. 1. Matifs pull (approx.), Size: 21 I long

"DAVENSET" Malws solemom. 1 " travel. slb. pull (approx.). Size:
Similar in
in 2 p .

NEW AND UNUSED

Poutal or carriage chargea are for Groat Britain oniy. We walcome ordors from eutablished companies, oducational dopts., etc. All oriers under $22 \cdot 50$, cash

SILVANA MAGNETIC SWITCM
HOW COMPLETE WITH REFERENCE MAGMET: A magnificently activated switch Vacuum realed in a glass envelope. Silve contacts normally closed, rated 3 amp at 120 V . 1 etc., and wherever non-mechanical switching is required. New Lower Price. Only $22 \cdot 10$ for 12,28 for 50 or 215 for 100 complete with nagnet.

PROGRAMMER TIMER
BY HONEYWELL

A bank of 15 micro-switcher are each independently operated by 15 pairs of cams which in turn are individu. ally adjustable to glve switching periods of zero to mains synchronous motor drives the cam shatt at 1 rev. per 12 seconds (5 R.P.M.). Designed originally for vending machines at a cost of 215.00 plus. Many applications where con-
tinuous sequence programmes are tinuous sequence programmes are required, such as lighting effecta, etc. \$5\%

315 EDGWARE ROAD, LONDON W.2. Tel. 01-723 5667 Open 9 a.m.-6 p.m. MON. to SAT.

Fane Pop 100 Watt $18^{-} 8 / 15$ ohm

BARGAINS

Fane Pop 60 Watt $15^{\prime \prime} 8 / 15$ ohm Fane Pop 50 Watt $12^{\prime \prime} 8 / 15 \mathrm{ohm}$ Fane Pop 25/2 $12^{\prime \prime} 25$ watts $8 / 15$ ohm Fane Pop $1512^{\prime \prime} 10$ watts $8 / 15$ ohm Baker Group $2512^{\prime \prime} 3,8$ or 15 ohm Celestion PS8 for Unilex
EMI $13 \times 8,3,8$ or 15 ohms
EM1 $13 \times 83,8$ or 15 ohms
EMI 13×8 twin tweeter 3,8 or 15 ohms EMi 13×8 type 35015 watt 8 ohm Richard Allen $8^{\prime \prime} 3,8$ or 15 ohm. Richard Allen $12^{\prime \prime}$ dual cone 3 or 15 Fane $8^{\prime \prime}$ dual cone 808 T 8 or 15 ohm Fane $8^{\prime \prime}$ d/cone roll surround 807T 8 or 15 ohm
Elac $59 R \mathrm{M} 109^{\prime \prime} \times 5^{\prime \prime} 15$ ohm Elac 59RM114 $9^{\prime \prime} \times 5^{\prime \prime} 8 \mathrm{ohm}$
Elac $6 \frac{1}{2} \mathrm{~d} /$ cone 8 ohm
Elac $6 \frac{1}{2}{ }^{\prime \prime}$ d/cone, roll surround 8 ohm Elac 4" tweeter 8 ohm
Crossover for above (p. \& p. free)
Goodmans 8 P 8 or 15 ohm
Goodmans 8 P, 8 or 15 ohm
Goodmans 10 P, 8 or 95 ohm
Goodmans 12 P, 8 or 15 ohm
Goodmans 18 P', 8 or 15 ohms
Goodmans 18 P. 8 or 15 ohms
Phillips $5^{*} 80 h m$
$7^{\prime \prime} \times 4^{\prime \prime}$ or $8^{\prime \prime} \times 5^{\prime \prime} 3$ or 8 ohm
$\times 6$ 3, 8 or 15 ohm
FREE with orders over 56 -"Hi-Fi Loudspeaker Enclosures" book.

All units guaranteed new and perfect.
Prompt despatch p. \& p. 25p per speaker.

WILMSLOW

AUDIO, Dept. PE
10 Swan St., Wilmslow, Cheshire, SK9 1HF

TRANSISTOR AUDIO AND RADIO CIRCUITS

 by MULLARD<1.80.
Postage 12 p .
TRANSISTORIZED RADIO CONTROL FOR MODELS by D. W. Aldridge. 52.50 . Postage 12p.
HI FI YEAR BOOK 1973. 11.50. Postage BEGINNER'S GUIDE TO TELEVISION by Gordon l . King. El 1.60 . Postage lop.
RADIO TECHNICIAN'S BENCH MANUAL by H. W. Hellyer. 63. Postage 15p.
INTEGRATED CIRCUIT POCKET BOOK by R. G. Hibberd. 22.50 . Postage 12p.
FIELD EFFECT TRANSISTORS by MULLARD. 11.80. Postage 12p.
HAM RADIO: A BEGINNER'S GUIDE by R. H. Warring. 11.60. Postage 12p.

I10 THYRISTOR PROJECTS USING SCRE AND TRIACS by R. M. Marston. \& 1.40 ,
ostage
50 PHOTOELECTRIC CIRCUITS AND SYSTEMS by P. S. Smith. $£ 1.30$. Postage 8p. FOUNDATIONS OF WIRELESS AND ELECTRONICS by M. G. Scroggie. 61,80 . Postage 25p.
RADIO VALVE TRANSISTOR DATA by A. M. Ball. 75p. Postage 12p.

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books |9-2| PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday I p.m.

ZIGGY'S 2001 ELECTRONICS Co. Ltd. RARE BARGAINS

SPECS. MULTIMETER DC. Usually high current ranges. 3 amps AC/DC. Voltages AC3 to 900 VOC .0 .6 to 1200 V . Resistance 500 ohms- $20-200$ $2,000 \mathrm{~K}$ ohms. Transmission level -10 to +12 db . This high quality instrument has diode protection. Complete with test leads, batreries, etc.
OTHER RUSSIAN METERS IN STOCK U4312, 68.50; U4313, 69.50 ; U4341, 69.50 , Packing and postage, 25 p
NEW TTC SPRITE HEADPHONES IN RED. Quality stereo phones at only $\mathbb{E} 1.95$ plus 15p postage.
EAGLE LT7
Our price 32p TRANS., LT44 TRANS. TWEETERS BY, TTC. Type 22006 Horn, 80 . Type K201 i Dome, 63.4580 Packing and postage 20 p - N.B. crossovers must be used to avoid damage. TOGGLE SWITCHES SUBMINIATURE TOGGLE SWITCHES DP/DT, 45p. Postage 5p each, over 10, post free. SUBMINIATURE MAINS TRANSFORMERS. Eagle MT6, 60-6, $100 \mathrm{M} / \mathrm{A}$. 80p. postage 10p. MT12, $12-0-12,50 \mathrm{M} / \mathrm{A}, ~ 60 \mathrm{p}$,
Postage TiNIATURE TYPE MAINS TRANSFORMERS. Eagie Type MT 280 , 6-0-6, E1.20, M十 $100,24-0-24,100 \mathrm{M} / \mathrm{A}$, 11.20 . R/S types, $13 \mathrm{~V}, 0.5 \mathrm{amp}, \mathrm{C}$. Tapped, fl.06. 16.3 V ,
$0.3 \mathrm{amp}, \mathrm{C} . \mathrm{T} ., \mathrm{fl} .06$, Postage I5p on miniacuresize.
UT46 Unijunctions, 25p plus 3p postage.
E/S Screw BATTEN HOLDERS E/S Screw BATTEN HOLDERS. Ideal for spots, lamps, etc. Top class, 48p plus 7p postage. FOR SPEEDY DELIVERY OF THESE MINT CONDITION COMPONENTS PLEASE SEND C.W.O. to ZIGGY'S 2001 ELECTRONICS CO. LTD. DEPT. P.E.,
34 MABLEY STREET, LONDON, E. 9

1 113 OF TEST EQUIPMENT BARGAINS!

A PROFESSIONAL

DIGITAL MULTIMETER
BRAND NEW AT A FRACTION OF THE ORIGINAL PRICE!
 $100 \mu \mathrm{~A} ;$ a.c. $100 \mu \mathrm{~A}$. Resistance 0.1Ω to $999 \mathrm{k} \Omega$. Operates from 230 V 50 Hz .

Ory celis or Nicad batceries. 0.3 P. \& P
BRAND NEW DIGITAL PANEL VOLTMETERS 10 mV to $1.99 \mathrm{~V}, 199$ measuring points. Input

Orizinal Price E52.
CANNON XLR AUDIO 0.150 AUDIO WATTMETER

XL3-11 3-pole socket (free, line mounting), XL3-32 3-pole plug (chassis mounting). © $1 \cdot 25$ per patr
\times L6-32 6.pole (chassis mounting). XL6-11 6-pole socket (free, line mounting). © 1.50 \times L3. 32 3-pole plug. 75 p each BARGAIN OFFER-LOW VOLTAGE STABILISED POWER SUPPLIES - Voltage Range 16-24V - Current Range to 6A

Full over-voltage and Current protection
AC Ripple content better than
These PSUs are constructed to exacting standards and incorporate the very best of components and circuit design for long life and reliability. Employs Silicon transistors, thyristors, C-Core
transformer, etc. Offered in perfect condition, carefully perfect condition, carefully price over ©125. Our price only $£ 26 \cdot 50$. Carriage $£ 1$.

AERIAL CHANGEOVER RELAYS
of current manufacture designed especially for mobile equipments, coil voltage 12 V , frequency up to 250 MHz at 50 W . Small size only. 2 in . x in.

ADVANCE AUDIO OSCILLATOR TYPE J.I
15 Hz to 50 kHz in 3 ranges. Output $0-25 \mathrm{~V}$ into 6000 . In sood, serviceable 15Hzto 50kHzing ranges. Output 0-25
condition. PRICE \&18.50. P. \& P. 50p.

WE SPECIALISE IN SUPPLYING NEW AND USED TEST EQUIPMENT . .
o industry, educational establishments and privace enthusiasts. Whatever your requirements: signal generators, audio oscillators, frequency meters, oscilloscopes (by Tektronix and other leading makers), high and low voltage power supply unies, relays (simple or special), panel meters, chart recorders. etc.-a celephone call to us could save you pounds!

P. F. RALFE

IO CHAPEL STREET, LONDON N.W. 1 Tel. 01-723 8753 impedance. Dimensions $10 \mathrm{in} \times 7 \mathrm{in} \times 4 \mathrm{in}$. deal for determining output power of P.A. systems, audio amplifiers, etc., etc supplied as new. Price 16.50 post paid.

HELICAL POTENTIOMETERS STC Relcor, Io-turn, Type No. HEL/ $07 /-10 / 1 / 001 / \mathrm{A}$. Following values supplied ex-stock.
All $500 \Omega \pm 1 \%$ lkn $5 k \Omega \quad 20 k \Omega$ Quanrixies available. Price il. 25 srock P. \& P. Sp for one Beckman Type A Helical pots. 5W. 10 turn. Resistances available. 30k0 and $50 \mathrm{k} \rho$. Brand new and boxed. Price 1.75 each.
Bournes Helical pots. Miniature type Resistance $10 k \Omega$. Brand new. Price
fl. 50 .

10-15V D.C. REGULATED, STABILISED P.S.Us.
Rating $1 A$. Measurements: 0 yin $\times \sin x$ $4 i n$. Limited quantity, cannot be repeated. paid.
MULLARD FERROX-CUBES Type LA4. Brand new boxed. Price 95 p.
P. \& P. inc. \& P. inc
oil
eable

Dual range $0-50$ and $0-150 \mathrm{~W}$. 15 ohms

"

mariet PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.

LOW COST DIGITAL MULTIMETER

A new $£ 49$ digital multimeter from Sinclair Radionies promises to be a strong contender in the professional quality meter market having as it does a claimed high accuracy, high input impedance, portability, and relative low cost. It is aimed at the replacement market as an economical substitute for analogue multimeters.
Measuring $190 \times 130 \times 58 \mathrm{~mm}$ and weighing $1 \frac{1}{2} \mathrm{lb}(0.6 \mathrm{~kg})$, the multimeter can easily be held in the hand when making measurements. The leads are fixed to the instrument and wrap around a recess in the lightweight polypropylene case. Simple yet effective finger plate selector switches form an integral part of the case.
The instrument has ranges extending from $1 \mu \mathrm{~A}$ up to 1 A d.c., 1 mV to $1,000 \mathrm{~V}$ d.c. and a.c., and resistance ranges from 1,000 ohms to $1 \mathrm{M} \Omega$ full scale. Display is by three Nixies with a carry of one in a single neon. This gives an effective $3 \frac{1}{2}$ digits without using a fourth tube.

The measuring technique is such as to reduce current consumption to a minimum, in fact, the manufacturer's specification promises 80 hours of switched-on operation with a current drain of 12 mA .

Input impedance is very high at $1,000 \mathrm{M} \Omega$ compared to analogue meters, as are the accuracy parameters of 0.4 per cent on volts d.c., and 1 per cent on a.c. with an f.s.d. error of ± 2 digits.

An interesting aspect of the circuit is that it is all discrete, with a component count of around 300 (including 100 transistors) all mounted on three p.c.b.s.

In operation all inputs are brought within a 1 V range and the incoming signals are analogue-todigital converted to produce a pulse train the length of which is. proportional to the input level. The
pulse train is passed to a chain of three cascaded pump circuits. Component values have been so chosen that the incoming pulse is summed in units, tens, and hundreds.

A "ring-of-ten" counter strobes each Nixie numeral terminal in sequence and for each strobe "tops up" the pump circuits. This action is used to time the point in the strobe sequence when the supply is switched onto the relevant Nixie to illuminate the correct numeral.

This instrument is available, by mail order, direct from the makers, Sinclair Radionics Ltd., London Road, St. Ives, Huntingdonshire.

CASES

Encouraged by the success of their Contil Mod-2 range of instrument cases, West Hyde Developments recently launched a new complementary range of cases designated Mod- 3 types.
The Mod- 3 cases have fixed sides. in scuff resistant p.v.c. coated steel, made of two parts rigidly locked together. A chassis is supplied with the case, this and the panels being made up first and then assembled afterwards in the case.

Interior drilled side flanges allow the chassis plate to be positioned in any convenient position. The side flanges also take the rear and front panel fixing screws.
Case dimensions vary from 3 in $\times 7$ in to 6 in $\times 11$ in and further details and price list can be obtained from West Hyde Developments Lid., Ryefield Crescent. Northwood Hills. Northwood, Middlesex.

WAFER SWITCHES

The wafer switch is still one of the widest used components in electronics, and Ultra Electronics (Components) Ltd are now marketing a range of wafer switch kits.

One of the advantages of the switch kit is its versatility and ease with which the designer can make up prototype switching assemblies and change them on the spot.
The Centralab Switchkits are packaged as separate components: the Series PA 1000 and PA 2000 kit contains. for example. 1.000 clips. 800 eyelets, 925 contacts. stators, rotors, nuts and packing washers. plus 25 index assemblies. 25 adjustable stops, eyeletting pliers and assembly tools and instructions.

Further information and details of the switch kits can be obtained from Ultra Electronics (Components) Ltd.. Fassetts Road. Loudwater. Bucks.
Also available from Ultra Electronics is a free switch wallchart giving typical ratings and configurations.

SPECIAL OFFERS

Here is a chance to stock up with solid state devices at bargain prices. We have been advised by \mathbf{A}. Marshall \& Son Ltd., that their advertisement next month will list a series of special offers, available only to readers of this magazine.

This well-known component supplier will be disposing of a large amount of stock at reduced prices. prior to moving into new premises.

Contil Mod-3 cases from West Hyde Developments

BELLLIG LEE IMSULATED TRRMINALE. Red or Black, Jamp max. 10 p pair, p.p. 3 p
BERCOSTAT WIREWOUTD REEOSTAT. 30 volt,

FHNED ALDMANIUK HEATBINE. $9 \mathrm{in} \times 1$ in. Ready drilled. 20 p , p.p. $6 \ddagger \mathrm{p}$.
80B-MIN. CROC. CLIPS. Reil or Black, flasulated 4 p . Min.quantity, 6. p.p. 3!p.
GARRARD MAG. TAPE DECK8; lii.p.s., jo andenold operated brakes, etc. Maina voltage ach, p.p. $£ 1 \cdot 23$.
4in PLAMMAIR FAls8, Complete, capacitor, ex equip. 2,800 r.p.m. $83 \cdot 50$, p.p. 40 p .
ELECTRIC MOTORS, HOOVER OR CROMPTOK PARELison. 20 V . Single phase a.

1 h.p., 1.425 r.p.m. or 2,800 r.p.m., 28.75
p.p. $£ 1 \cdot 25$.
th.p., 1,440 r.p.ni., 22-25, p.p. isp
AUDIO COMRECTORS
3 pin Din Plug
${ }_{5}$ pin Din Plug A type, B type
2 pin Din Speaker Plug/Bocket
3 pin Din Line Socket
3.5 mm Jack Plug Bcreened

Standard Jack Plug
Bcreened Standard Jack Plugn
Stereo Jack Plug
Phono Plugs: Red or Black 8p each.
P.p. on above jtems 3pp.

MADNS MEONS

Red or Green. Size: \ddagger in $\times 1 \nmid \mathrm{in}$. 16p, $p . p, 34 \mathrm{p}$
LEVER ACTION P.O. 1000 TYPE 8 WITCHES
Lock 4-pole changeover, 15p, p.p. 3pp. Ex equip
$\begin{array}{ll}\text { Lock } & \text {-pole changeover, } \\ \text { Lock 2-pole changeover, } 10 \text { p, p.p. } & \text { 3it. }\end{array}$

ADDIO LEAD8

Screened Phono Leads 46 in long. $15 p$.
3.5 mm JACK 3 . mmm JACK 71 th in long, 40 p .

5 -Pin Din A Type, \quad-PIN A TYPE. Approx. Jft long, 70 p .
MDLLARD \& HALLORY ECBRW TERMIEAY CAPACITORS $4,000 \mu \mathrm{~F} 64 \mathrm{~V}, 7,100 \mu \mathrm{~F} 40 \mathrm{~V}, 60 \mathrm{each}$. $20,00030 \mathrm{~V}, 25,00025 \mathrm{~V}, 35,000$ 15V. 30 p each) p.p. 10p.

MOLLARD FULLWAVE RECTHEERS
$648 \mathrm{~V}, 15 \mathrm{amp}, 76 \mathrm{D}, \mathrm{p} . \mathrm{p} .8 \ddagger \mathrm{p}$.
BELLING LEE $1 \cdot \bar{v}$ anp in-line rubber covered interference suppresmor, 28p, p.p. 8p.
RUBEER 8 PIH 5 AMP KON-REVERSIBLE CABLE CORHECTORS. 80p, p.p. Jip.
SOLENOIDS 12 VOLT PULL ACTION
$2 \ln \times 1 \ln \times 3 \mathrm{in}, 40 \mathrm{p}, \mathrm{p} . \mathrm{p} .8 \mathrm{p}$.
SIEMENS MIMLATURE RELAY. Double pole changeover duat cover/base 48 V . 2500 , 50p, p.p. 5 p

Oun
OMRON MES MIDGET POWER RELAY. 12 V d.c. Double pole changeover. New, 70p, p.p. Jp.
gTC MmLATURE BELAY 290Ω, perspex cover, 6-15V new, 86p, p.p. 5p.
GARDRER'S POTTED TRARSFORMEB, $0-250 \mathrm{~V}$. Input: $18 \mathrm{~V} 500 \mathrm{~m} / \mathrm{n}, 50 \mathrm{~V} 150 \mathrm{~m} / \mathrm{m}, 6 \mathrm{~V} 250 \mathrm{~m} / \mathrm{a}$ out put Size: 3 in $\times 21 \mathrm{in} \times 2$ in. 81, p.p. 20 p . Ex equip. tested.
TRLESCOPIC ARBIALS
Chromed 7 in closed, 28 in extendel, if nection ball Chromed
fointed base, 88 p . p.p. 8 p new.
MULLARD 4 DM 160 MDICATORS in plantic

PRLLTED CIRCUIT BOARD/19 ACY 19's 100 OA200 Dlodes: I reed relay: 1 AZ 229 zenner ass. capacitor/ resistors. Power supply $22 \mathrm{~V}, 250 \mathrm{~m} / \mathrm{A}$ d.c. Output 240 V a.c. 12, p.p. 20p. Ex equip.

WIRTIGCABLE

size: 1-020. Varlous colours. 3j0yd, 60p, p.p. 20p TOGGLE SWITGEHES, Double throw. Ex equip. new condition, 76p doz., p.p. 13p
TOGGLE SWITCEES, single pole, double throw Ex equip., new condition, 50 p doz., p.p. 13p.
PADTON PLUG SOCKETS. Type 159 series. Working voltage 350 V a.c./d.c. current, max. 3 amp a.c./d.c. 7 pin plug and socket, $50 \mathrm{p}, \mathrm{p} . \mathrm{p} .6 \mathrm{p}, 15 \mathrm{pin}$ plug and socket, s1, p.p. 6
SOCKET, 21.50 , p.p. 6 p.

CABH WITH ORDER PLEABE

FIELD

ELECTRIC
LIMITED
3 Shenley Road
Borehamwood, Herts.
Adjacent Elstree Mainline Station Tel.: 01-953 6009

ELECTRONIC BARGAINS

SOLDERING IRONS

	Recommended Retail Price	Our Price
Antex CCN240	$£ 1.80$	$£ 1.44$
Antex CN240	$£ 1.70$	$£ 1.36$
Antex $\times 25$	$£ 1.75$	$£ 1.40$

STEREO HEADPHONES
MD802. Frequency 20-18,000 c.p.s.
8 ohm
£3.50
£2.25

MD806. Frequency $20-20,000$ c.p.s.
8 ohm $£ 8.00$
$£ 4.95$
Coiled Headphone
Extension Lead
\& 1.35
AMPLIFIER MODULE
Amplifier module AE1000 3 watt,
42.37. 5 watt, 63 .

FERRANTI RADIO CHIP, ZN414, $\$ 1 \cdot 12$
D.I.L. FOLDERS-14 pin 15p 16 pin, I6p.
COMPACT CASSETTE

Fully Guaranteed. Mail Order only Cheque or P/O to: P.\& P. 13p

T. F. J. ELECTRONICS 25 EASTBURY COURT STEMSFORD ROAD

Same as 4 -station Intercum for tro.way inatant communication. Ideal as Baby Alarm and Door Phone. Complete with fift. connecting Fire. Batters 14p, P. \& P. 25p.

Would you spend an hour a day to earn more money in Eleatronios-Television-Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.
And if you're already in, we can help you get on!

With our know-how and wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success, Once you've got the qualifications you need, you'll be in a good position to take full advantage of the opportunities which exist today in all fields of electronics-in television (colour and black/white) and in radio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve recelver, transistor portable and high grade test instruments.)

With ICS you study at home-at your own pace, when you choose, in the time you've got available. Your ICS tutors will give you all the help and encouragement you need to pass any exams you want to take.

Don't waste another day. Take your first step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

Project 60 Stereo FM Tuner

with phase lock-loop principle

Amongst the many advanced electronic features to be found in this remarkable stereo tuner, use of the phase lock loop principle ensures standards of audio quality better than from any other method of detection yet used. Varicap diode tuning, accurately formed printed circuit coils, an I.C. in the special stereo decoder section and switchable squelch circuit for silent tuning between stations contribute to the unsurpassed performance of this tuner, irrespective of price consideration. But the Project 60 FM Stereo Tuner is far from expensive - indeed, it offers fantastic value for money and will bring the thrill of stereo radio to many who previously may not have been able to afford it. The tuner may be used with any good system as well as Project 60, but if you use it with other Project 60 modules, you will find the matching front panels particularly impressive in appearance as wellas function.

SPECIFICIATIONS
Number of transistora: 16 plus 20 in I.C Tuning range : 87.5 to 108 MHz .
Sensitivity: $7 \mu \mathrm{~V}$ for lock-1n over full deviatıon.
Squelch level : typically $20 \mu \mathrm{~V}$.
Signal to noise ratio: $\pm 65 \mathrm{~dB}$.
Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{Khz}$ ($\pm 1 \mathrm{~dB}$).
Total harmonic distortion: 0.15% for 30% modulation.
Stereo decoder operating level : $2 \mu \mathrm{~V}$
Cross talk: 40 dB .
Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. max. (typically $2 \times 50 \mathrm{mV}$. stereo)
Operating voltage: $25-30 \mathrm{~V}$ DC at 100 mA .
Indicators: Stereo on tuning.
Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Integrated circuit
high fidelity amplifier

Having introduced Integrated Circuits to hi-fi constructors with the IC.10. the first time an IC had ever been made avallable for such purposes. we have followed it with an even more efficient version, the Super IC. 12, a most exciting advance over our original unit. This needs very few external resistors and capacitors to make an astonishingly good high fidelity amplifier for use astonishingly good high fidelity amplifier for use
with pick-up. F.M. radio or small P.A. set up. etc. with pick-up. F.M. radio or small P.A. set up. etc
The free 40 page manual supplied. details many other epplications which this remarkable IC. make possible. It is the equivalent of a 22 tran-
sistor circuit contained within a 16 lead DIL package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with the $Z .50$ and $Z .30$ amplifiers. Complete with free manual and printed circuit board.

SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak). $6-8 \Omega$. Frequency Reaponse: 5 Hz to $100 \mathrm{KHz}=1 \mathrm{~dB}$. Total Harmonic Distortion: Less than 1%. (Typical 0.1%) at all output powers and frequencies in the audio band (28 V) Losd Impedance: 3 to 15 ohms Input Impedance: 250 Kohms nominal. Powar Gain: 90dB (1.000.000.000 times) after feedback. Supply Voltage: 6 to 28 V . Quiescent current: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ in. cluding pins and heat sink.
Manual avalable separately 150 post free.
With FREE printed circuit
board and 40 page manual
$\mathbf{£ 2 . 9 8}$ Post tiee

Project 605

The easy way to buy and build
 Project 60

Project 605 is one pack containing: one PZ5. two 230's. one Stereo 60 and one Masterlink. This new module contains all the input sockets and output components needed together with all necessary leads cut to length and fitted with neat little clips to plug straight on to the modules. Thus all soldering and hunting for the odd part is eliminated. You will be able to add further Project 60 modules as they become available adapted to the Project 605 method of connecting.
Complete Project 605 pack with $£ 29.95$
comprehensive manual. posi free
col Everything you need to assemble a superb 30 wati high fidelity stereo amplifier without having to soider.

the world's most advanced high fidelity modules

Z.30 \& Z.50 power amplifiers

The $Z .30$ and $Z .50$ are of advanced design using silicon epitaxial planar transistors to provide unsurpassed standards of performance. Total harmonic distortion is an incredibly low 0.02% at $15 w(8 \Omega)$ and all lower outputs. Whether you use $Z .30$ or $Z .50$ amplifiers in vour Project 60 system will depend on personal preference, but they are the same size and are intended for use principally with other units in the Project 60 range. Their performance and design are such, however, that Z .50 s and Z .30 may be used in a far wider range of applications.
SPECIFICATIONS (2.50 units are interchengesble with 2.30 s in all applications), - Power Outputs: 2. 3015 watts R.M.S. into 8 ohms using 35 volts: 20 watts R.M.S. into 3 ohms using 30 volts
Z. 5040 watts R.M.S. into 3 ohms using 40 volts 30 watts R.M.S. Into 8 ohms using 50 volts

Frequency response: 30 to $300.000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Distortion : 0.02% into 8 ohms . Signal to noise ratio: better than 70 dB unwerghted. In put sensitivity: 250 mV into 100 Kohms (for 15 w into 8Ω). For speakers from 3 to 15 ohms impedance. Size: $14 \times 80 \times 57 \mathrm{~mm}$.

Stereo 60 Pre-amp/control unit

Designed specifically for use on Project 60 systems. the Stereo 60 is equally suitable for use with any high quality power amplifier. Since silicon epitaxial planar transistors are used throughout. a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount.
£9.98

PECFICATIONS-Input sensitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB} .20$ to 25.000 Hz . Ceramic $p u$. -up to 3 mV Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio: better than 70dB. Channel matching: within 1dB. Tone controis: TREBLE +12 to -12 dB at 10 KHz : BASS +12 to -12 dB at 100 Hz Front panel: brushed aluminium with black knobs and controls. Size: $66 \times 40 \times 207 \mathrm{~mm}$.

A.F.U. High \& Low Pass Filter Unit

Bult. rested and guaranteed.
For use between Stereo 60 unit and two $Z .30$ s or $Z .50$ s. The unit is very easily mounted and is unique in that the cut-off frequencies are contınuously variable. As attenuation in the rejected band is rapid (12 dB /octave). there is less loss of the wanted signal than has previously been possible. Amplitude and phase distortion are negligible. The A.F.U. is suitable for use with any other amplifier system. There are two filter sections - rumble (high pass) and scratch (low pass). H.F. cut-off (-3 dB) variable from 28 KHz to 5 KHz . L.F. cut-off (-3dB) variable from 25 Hz to 100 Hz . Distortion at 1 KHz (35 V . supply) 0.02% at rated output. Operating voltage from 15 to 35 V . Current 3 mA . Size: $66 \times 40 \times 90 \mathrm{~mm}$.

Power Supply Units

Designed specifically for use with the Project 60 system of your choice. Use PZ.5 for normal Z.30 assemblies and PZ. 6 or PZ.8 where a stabilised supply is essential.

PZ. 530 volts unstabilised $\mathbf{f} 4.98$
PZ.6 35 volts stabilised $£ 7.98$ PZ. 845 volts stabilised (/ess mans transformer) $£ 7.98$ PZ.8mains transformer E5.98

Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	Z. 30	Crystal P.U., 12V battery volume control, etc.	£4.48
Mains powered record player	Z.30, PZ.5	Crystal or ceramic P.U. volume control. etc.	£9.45
12W. RMS continuous sine wave stereo amp. for average needs	$\begin{aligned} & 2 \times 2.30 \text { s, Stereo } \\ & 60 ; \text { PZ. } 5 \end{aligned}$	Crystal. ceramıc or mag. P.U., F.M. Tuner, etc.	£23.90
25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times 2.30 s, \text { Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetıc P.U.. F.M. Tuner, Tape Deck, etc.	£26.90
80W. (3 ohms) RMS continuous sine wave de luxe stereo amplifier. (60W. RMS into 8 ohms)	$2 \times 2.60 \mathrm{~s}$, Stereo 60; PZ.8. mains transformar	As above	¢34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers. etc., controls	£19.43
F.M. Stereo Tuner (£25) \& A.F.U. (E5.98) may be added as required.			

Guarantee

If. within 3 montha of purchasing any product direct from Sinclair Radionics Lid., you ere dissatisfied with it, your money will be refunded at once. Many Sinelair appointed Stockiste also offer this same guerantes in co-operation with Sinclar Radionice Lid.
Each Project 60 module is tested bafore laaving our factory and is quarenteed to work pertectly Should uny defect arise and is guaranteed to work pertectly. Should uny defect arise in norms use. We will service it at once and without any of purchsse. Outside this period of guwantee amall charge of purchase. Outside this period of gubrantee small charge postage by surfece mal. Air Mail is charged at cont.

SINCLAIR RADIONICS. ST IVES. HUNTINGDONSHIRE PE17 4HJ
Please send
I enclose cash/cheave/money order.
Name
Address
PE $3 / 73$

VARIABLE VOLTAGE TRANSFORMERS

DOUBLE ENDED MOTOR UNIT Powerful, concinuously rated, 2 -speed.
Either 6 or 12 volt $0 . C$. operation.

$\overline{\mathbf{1 2}}$ VOLT D.C. MOTOR
Powerful I amp. REVERSIBLE motor. Speed 3,750 r.p.m. complete with external gear train
(removable) giving approx. final speed of (removable) giving approx. final speed of
either 125 r.p.m. or $240 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Size : $4 \frac{1}{2}$ in $\times 2 \frac{1}{2}$ in dia. Eicher type price 95 p inc. post.

REVERSIBLE SPLIT PHASE MOTOR

 250 r.p.m., $100-115 / 210-240 \vee \mathrm{~A} . C ., 2 \mathrm{in} . \times \operatorname{lin}$. Ideal for rim-drive models, display, etc. Extremelypowerful for size, including small capacitor, 75 p post paid.
PARYALUX TYPE SD19 230/250 VOLT A.C. REVERSIBLE GEARED MOTORS 30 r.p.m. 40 lb, ins.
Position of drive spindle adjustabl
angles. angles.
substan substan inium bas cast alumment. base. Ex-equip-first-class running order A really powerful moror. offered at a fraction of
maker's price. $£ 6.80$. Post maker
Paid.

PARVALUX TYPe: SDIS
$86896 / \mathrm{OJ}$
230/250V A.C. 50 r.p.m. base. 66.30 . Post Paid.
TYPE: SDI.S/89400/OM
$230 / 250$ V A.C. 50 r.p.m. $22 \mathrm{lb} / \mathrm{in}$.
rated. Incl. base. 67.30 . Post Paid.
The above motors are new and unused.
PARYALUX TYPE SD2, 200/250 VOLT A.C./D.C. HIGH SPEED MOTOR Speed 9,000 r.p.m. approx. or 3,200
r.p.m. if used with built-in governor, or variable speed over a wide range if used in conjunction with our Dimmer Switch, illustr
PRICE $£ 2$. Post Paid.

$$
\xrightarrow{\text { PRICE E2. Post Paid. }}
$$ 600 WATT DIMMER SWITCH.

Easily fitted. Fully guaranteed by Easily fitted. Fully guaranteed by
makers. Will control up $80 ~ 600 \mathrm{~W}$ of all lights except fluorescent at mains voltage. Complete

VENNER ELECTRIC TIME
SWITCH 200/250V Ex. GPO.
Tested. Manually set ${ }^{2}$ on, 2 off every
24 h . Override switch: $15 \mathrm{~A}, \mathbf{4 3 . 4 5}, 20 \mathrm{~A}$. 63.95. Post Paid. Also available with

24-HOUR TIMER

Can be adjusted to give a switching delay of between hr. to 24 hrs .
Driven by $200 / 250 \mathrm{~V}$ A.C. synchronous motor. $15 \mathrm{ampc} / 0$ contacts. Mig. Crater Controls Led. Supplied with scale calibrated $0-10(2 \mathrm{hrs}$,
per division). Brand New. E2. Post Paid,
HONEYWELL PROGRAMME TIMERS
240V. A.C. 5 r.p.m. motor.
Each cam operating a c/o micro switch. Cams are
individually variable. allowing inumerable combinations. control, automation, erc Also in the field of entertainm
animated displays, etc.
15 cam model E6, Post Paid.
10 cam model ES . Post Paid
2 cam model with $15 \mathrm{r} . \mathrm{p} . \mathrm{m}$. motor E2. Post Paid. SIMPLE 12 CAM PROGRAMMER with 4 adjustable cams and 8 that may be profiled to individual requirements, available with 15 or 13
r.p.m. motor, $\mathbf{E 3} 75$. Post Paid.

All Mail Orders-Callers-Ample Parking Dept. PE3,57 BRIDGMAN ROAD

 CHISWICK, LONDON W4 5BB Phone 01-995 156036 V 30 AMP. A.C. or D.C VARIABLE L.T. SUPPLY UNIT INPUT $220 / 240$ V. A. VARIABLE 0-36

Fully isolated. Fitted in robust metal case with Volt input and output fully fused. Ideally suited for Lab. or Industrial use. 670 . Post Paid.

MOTOROLA MAC $11 / 6$ PLASTIC TRIAC 400 PIV. 10 AMP Now available EX STOCK. Supolied with full data and applications sheet. Price \&1 I2. Post Paid

STROBE! STROBE! STKOBE!

| Build a Strobe Unit, using the latest type Xenon White light flash tube. Solid state timing and
trigzering circuit. $230 / 250 \mathrm{~V}$ a.c. operation. EXPERIMENTERS' ECONOMY KIT Exped adjustable I to 30 flash per sec electronic components including Veroboard S.C.R. Unijunction Xenon Tube and instructions 66.55. Post Paid

NEW INDUSTRIAL KIT
Roller suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil,
plastic shyristor. Speed adjustable 1-80 f.p.s. approx. O output of Hy
Price Eli. Post Paid.
HY-LYGHT STROBE MK III
Designed and produced for use in large rooms, halls and the photographic field and utilises a silica tube, printed circuit, also a special erigger
coil. Speed adjustable $0-20$ f.p.s. Light output approx. greater than many (so called 4 joule) approx. greater than many
strobes. $£ 12.50$. Post Paid.
THE 'SUPER' HY-LYGHT KIT
Approx. four times the light output of our well proven Hy-Lyght strobe. Incorporating:
Heavy duty power supply.

- Reactor conerol circuir producing an
producing an intense
Never before a Surobe Kit with so HIGH an output at
ATTRACTIVE, ROBUST, FULLY VENTILATED METAL CASE Super Hy-Lyght Kit including reflector. 67.45 . Post Paid.
For Hy-Lyght Kit including reflector. $£ 45$ 7-inch POLISHED REFLECTOR
Toinch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 66p Ideally suited for above Strobe kits. Price 66p.

50 in I ELECTRONIC PROJECT KIT 50 easy to build Projects. No soldering, no Meter, Relay. Transformer, plus a host of other components and a 56 -page instruction leaflet. Some examples of the 50 possible Projects are Sound Level Meter, 2 Transistor Radio. Amplifier

Superior Quality Precision Made NEW POWER RHEOSTATS

100 WATT. I ohm, 10A; 5 ohm,

 $47 \mathrm{~A}: 10$ ohm, $3 \mathrm{~A}, 25 \mathrm{ohm}, 2 \mathrm{~A}$$50 \mathrm{ohm}, 1.4 \mathrm{~A}: 100$ ohm, 1 A ; $250 \mathrm{ohm}, 0.7 \mathrm{~A}: 500$ ohm, 0.45 A ; 250 ohm, $0.7 \mathrm{~A} ; 500$ ohm, $0.45 \mathrm{~A} ; 1 \mathrm{k}, 280 \mathrm{~mA}$;
 E/.73. Post Paid.
50 WATT. $/ / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 5 \mathrm{k} \Omega$.
All at El.23. Post Paid.
25 WATT. $10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3-5 /$ 5kI. All at 98p. Post Paid
Black Silver Skirted knob calibraced in Nos. I-9.
RELAYS SIEMENS, PLESSEY, Etc
miniature relays Col.: (1)
Coil ohms
Col. (2)
Working
d.c. volts
Col. 3
Contracts
Col. (4)
Price
$\mathrm{HD}=$
Inel. Base

52	$3-6$
410	$10-18$
600	$12-24$
700	$16-24$
700	$16-24$
700	$15-35$
700	$16-24$
700	$6-12$
700	$20-30$
1,250	$24-36$
2,500	$36-45$
2,400	$30-48$
9,000	$40-70$
$15 k$	$85-110$

$2 \mathrm{c} / \mathrm{O}$	63 p *
$4 \mathrm{c} / \mathrm{o}$	73p*
$4 \mathrm{c} / \mathrm{o}$	78p ${ }^{\text {c }}$
4M 28	63 p *
$4 \mathrm{c} / 0$	78p*
$2 \mathrm{c} / 0 \mathrm{HO}$	73 p *
6M	65p ${ }^{\text {* }}$
$1 \mathrm{c} / 0 \mathrm{HD}$	50p*
$6 \mathrm{c} / \mathrm{o}$	75p
$4 \mathrm{c} / \mathrm{O}$	63 p *
6M	63 p*
$4 \mathrm{c} / \mathrm{O}$	50p*
$2 \mathrm{c} / 0$	50p*
6M	50p*

12 VOL.T D.C. RELAY 140 ohm coil
Typel: Three sets c/o contacts rated at 5 amps. 78p incl. P. \& P. (Similar to illustration below.) Type $3: 4-8$ volr, $3 \mathrm{c} / 0 \mathrm{HD}, 67 \mathrm{ohm}$ coil. 78 p .
SPECIAL OFFER
00 ohm 4 e/o. Ex. new equipment. $K 50$ p
00 incl bases (minimum 100).
DIAMONDH' 230 VOLT A.C.
RELAYS (Unused)
Rhree sets clocontacts rated at 5 mps .
PRICE: 80 p. Post Paid. (100 lots $£ 40$ including P. \& P.

230 VOLT A.C. RELAYS MFG. KEY SWITCH One set $4 / 0$ contacts rated at 7.5 amps. Boxed.
PRICE: 45 p. Post Paid. (100 lots $£ 32$ ine. P. \& P.) MINIATURE LATCHING RELAY
Manufactured by Clare-Elliott Ltd. Type F. 2 c/o permanent latching in either direction. Coil il 150 ohm ,

UNISELECTOR SWITCHES
NEW 4 Bank 25 Way Namer

MICRO SWITCH emovable metal panel
assembly. Ex. P.O. 20 for Cl ine. assembly. Ex. P.O. 20
post. (Min. order 20.)
METER BARGAINS
BALANCE/LEVEL METERS
$100-0-100$ Micro Amp. Size $1 \frac{1}{2}$ in $+1 \frac{1}{2}$ in
fin. Price only 75 p including P. \& P .
AMMETERS NEW! 2tin. Flush round. Available in D.C. Amps 1, 5, 15,
20 or A.C. Amps 1, 5, 10, 15, 20, both types El .75 incl.
$\$ 1.90$ incl. P. $\&:$

INSULATION TESTERS NEW!
Test to I.E.E. Spec. Rugged metal
construction, suitable for bench
construction, suitable for bench or
field work, constant speed clutch. field work, constant speed clutch.
Size L.8in, W.4in, H. 6 in, weight 61 b Size L.8in, W. in , H. Sin, weight 61 b .
$1,000 \mathrm{~V}, 1.000$ megohms. $£ 34.00$

[^6]
z 5 WherecanIgetexchusive unitsatlowest prices?"..

 EDCEEEHROUNG!
O. REALISTIC 30 WATT STEREO A superb ha- 11 amolifir with all the features rouve ever wanted
 retail value. Up. to - the minuts slider contiols for bass and treble. Jephation AOC PAICE
 Left and right push-bution on/off swhtehes for speakers. Noise fittering ond tape monitoring facilities. Two auxiliary AC outlets. Frequency response 20 . satin aluminium trims. Inputs, phono 2.5 mV and 5 mV RIAA . unner $/$ aux 250 mV . Hum and noise: phono -50 db : tuner/aux - 65 db . How's that for a socciticaion

O. OLSON PA.310 AM/FM/MPX - stereotuner This ROC Tuner is especially de-
 Stereo Amplifier. In price and
value as well as it's good look. value. as well as it's good look
ing desiont But of course it's also ing design! Bu of course it's also
The RA. 310 cosis f 10.00 less than
 Cating the latest salid state techniques. Operation is difth free for sup. amplititer. to a tape deck or a tape recerder. And of course it covers all the slations in the AM and FM bands. FM: $87-108 \mathrm{MHz}$: AM $525-1605 \mathrm{kHz}$ M Sonsitivites: $F M$. $3 \mu \mathrm{~V}$. AM, $250 \mu \mathrm{~V}$. Stereo separation 30 dB at 1 kHz , image rejection 6008. Size : $11 \frac{1}{1}$ " wide 4 " high, $7 \frac{1}{3}^{\prime \prime}$ deep.

	REALISTIC SA-100B G-WATT STEREO AMPLIFIER Here's fabuious, exciting value miniature! Jhis high quality stereo a mplifier measures only 9 " wide $\times 3^{*}$ high $\times 5\}^{\text {- deep. And yet it has sepa }}$ rate ganged volume, balante and tons con Plus speaker in/out, mono/stateo. phono/ es. The ends are oiled walnut, with matchpanel is satin aluminium and walnut-brown $01090.000 \mathrm{~Hz}+3 \mathrm{~dB}$. Output 3 watts r.m.s. \checkmark for both phone and tuner.
SPECIAL OFFER! TEL HAGMT HEAD mHONE RADIO When you want to is istan to the radio all by yoursell Then this will solve the Drobiem Separtio valume and tunning conirols with sesyryum knobs Freavency range is 538 to loas k the medium wave band Manimum output is 300 mW mormal Price IT 56 ROC PAICE	eagle le ot stemeo movimg-maghet cantrioce Hert's your opportunity to own a transcription cartrideo for the price of eceramicl is apecially designed te match top quality lone arms, and to get the vary best lrom your ho fi amplifier. 07 mil diamond stylus. Output: ImV par channel. Frequancy range $20-21.000 \mathrm{Mz}$. tion: 28 dB . Compliznce: $12 \times 10-6 \mathrm{~cm} / \mathrm{dyne}$ ROC PRICE CE 37

R. obe matched stereo ldud SPEAKERS. Here's real value in stereo quakers! Each unit comas somplete with 10 -foot lead and phono plug. and look really smatt. Power handing per spoaker: 4 watts rms. $16,000 \mathrm{~Hz}$. Flun density: 8,500 gauss. Impedance: : olmms. Dimensions: 9^{-2}
 high, st wil
ROC PRICE E9. 50 pair Normal Pice 510.75

SOLIO STATE STEAED AMPLIFIER The A. 3000 looks as good is it sounds) Giving you a big perlormance this supart udio the lront and rear panals on the feone at the contals you paner likely to need wn heathone socket. An tha rear hura shosdphons rockor on mo rear gral ingurs. speako and a lina use for circuit protection
piciliciren. fene with per channel to it ohms. Froqueney response 20.35,000 $h_{z}(\pm 2 \mathrm{db})$ Inputs Magnatic. Coramic. Tunar. Tape. Aur. Tape Play. Site:
$345 \mathrm{~mm} \times 300 \mathrm{~m} \times 130 \mathrm{~mm}$.

CONSTRUCTORS' KITS

TWO TRANSISTOR RADIO KIT
Compleie with solar cell 62.50

10 PROIECT

INTEGRATED CIRCUIT KIT
Build a radio, morse key, etc C3. 50

SOLAR ELECTRONIC KIT
20 ways of harnessing
the suns energy C4.50

TWO OCTAVE ELECTRONIC ORGAN KIT

Make your own music.
Complete with speaker 4.50

018DMAM. 385 40. Watt steneo
all Plifier An ideal unt lot your nem
 below the normal rethit price! Making the AM. 395
ont of Brita in's bost mp-fi
O. R. 466 3.Way matcheo speakers

- These will do justice to your amplifier - and to your pocket. at only E 20.00 a pair, they are real value-for-money. handle 15 watts heavily lagged and teak finished. They contains a 61 " base unit plus tweeter Frequency lange 40 to $19,000 \mathrm{~Hz}$. Size $14^{\prime \prime}$ high, 9^{*} wide, 61_{4}^{*} deep.

PRACTICAL ELECTRONICS

"SCORPIO" ELECTRONIC IGNITION SYSTEM

PSYCHODELIC LIGHTING

 UNIT Mk. 3This Capacisor-Discharge Electronic Ignition system was described in the Practical Electronics. It is suitable for incorporating in any 12 V ignition system in cars, boats, go-karts, etc. of either pos. or neg. earth and up to six cylinders. The original coil, plugs. points and contact-breaker capacitor fitted in the vehicle are used. No extra or special com ponents are required
Helps to promote easier starting even under sub-zero conditions), speed performance, quicker engine warm-up and improved fuel economy. Eliminates excessive con-tact-breaker point burning and the need to adjust point and spark-plug gaps with precision.
Construction of the unit can easily be completed in an evening and installation should take no longer than half an of components is supplied with each kit together with ready-drilled roller-tinned professional quality fibre-glass printed-circuit board, customwound transformer and fullymachined die-cast case. All components are available separately. Case size $7 \mathrm{tin} \times 4 \frac{\mathrm{in}}{} \times 2 \mathrm{in}$. approx.
Complete assembly and wiring of kit. Price: © 10.50 plus 50 p P. \& P.

This unit represents a natural progression from our phenomenally successful Mk. 1 and 2 Units. As before the drive voltage is derived directly from the amplifier output or across the speakers. The unit converts the audio frequency signals into three-coloured light display; the colour depending on intensity on the loudness of the audio source. The unit is constructed on professional fibre-glass printed-circuit board material and uses latest fult master-level control. together with independent sensitivity controls for each channel. The original minimum ambient light level controls have use as faders; allowing dimming from max. to zero at the turn of a knob. R.F.I. suppression is now incorporated as standard as well as provision for D.J. "Pulse-Flash" controls. The choice of two inputs enables operation from both high and low power amplifiers. Max. power 1.5 kW per channel at Complete
Size gin assembly built and tested. size gin

DABAR ELECTRONIC PRODUCTS
98a Lichfield Street, Walsall, Staffs. WSI IUZ
TELEPHONE: WALSALL 34365 TELEGRAMS: DABELEC Walsall Staffs.

THE TRIFFIDS ARE COMING!

Build this really high quality A.M. receiver \star SIMPLE TO BUILD $\mid \star$ LOW COST \star NO ALIGNMENT $\quad \star$ NO DRIFT
Printed circuit, fibre glass, roller-tinned, drilled with
component placement (approvet by designer) $\mathbf{6 0 p}$
ZN414 I.C. - £1.20 (Board and I.C. $-£ 1 \cdot 70$, inc. post
Prom ELEMENT
The Trees - Barker Lane
MELLOR • BLACKBURN • LANCASHIRE

7 Segment LEDs

These are full spec. devices from a famous manufacturer. The display size is just over t inch giving readability at about 12 feet distance. The display is cast in clear epoxy resin and mounted in a 14 pin DIL package fully compatible with all good quality sockets and VERO. The uniti driven between a 7447 and the 5 volt line
Prices: I off $£ 3 \cdot 00,4$ off $£ 2 \cdot 50,6$ off $£ 2 \cdot 35$. Quantities above $8 £ 2 \cdot 15$ each. In all cases please add 12p P. \& P.

You may telephone your order and pay by Access.

ELECTRONICS
181 EBBERNS ROAD, MFMEL HEMPSTEAD, HERTS.
044262757

ELECTRONIC COMPO PHONE NOW FOR YOU or wr MAPLIN ELECTR P.O. BOX 3, RA No s.a.e.	NENTS CATALOGUE COPY 037-42 79033 to: \qquad ONIC SUPPLIES LEIGH, ESSEX needed!
LOOK! EVERTHHNG GUARANTEED BRAN	JUST A FEW OF THE DS OF LOW-PRICED IN THE CATALOGUE. new marked by manufacturer
High-gain low-noise silicon NPN BC 109C	Until further notice PRICEREDUCED 8 PIN DIL OP AMP
115-Watt Power Transistor 2N 3055	$741 \mathrm{C} 36 p$
	SPECIAL IC. for organ bullders, 7 stage frequency divider in 1,14 pin TTL
Versatile Unijunction TIS 43 (SS43) \qquad 28p	price for pack of 12, £25. Why not ask us to slip a data sheet hwith your catalogue.
Postage and packing FREE in UK. But we have to ask you to send a $10 p$ handiling charge with order under 50p.	

HOW TO MAKE THE ‘DIGIRONIC' SOLDD-STATE DIGIIAL CLOCK USING JUST 30 BITS: NOT EASILY

Full instructions in this month's issue for versions with either four or six figures PLUS A

AD1 E EDM B E E

Easy to apply and ideal for an impressively professional finish.
And many other constructional features, including directions for making an electronic maze that will keep everyone amused for hours.
Its cost? Around $£ 2$.
ALL IN THE MARCH ISSUE, ON SALE NOW 20p
PraCical wireiess

YATES ELECTRONICS (FL.TTWICK) LTD. ELSTOW STORAGE DEPOT KEMPSTON HARDWICK

C.W.O. PLEASE. POPFAND PACKING PLEASE ADD 10p TO ORDERS UNDER 12 ,
Catalogue which pontains data sheets for most of the components listed will be sent free on request. IOp stamp appreciated.

OPEN ALL DAY SATURDAYS

n ESISTORS

\$W lskra high stability carbon film-very low noise-capless construction. W Mullard CR25 carbo
W 2% ELECTROSIL TRS

Values
available
E24
E12
E24
E12
E12
E12

Price
-99
Ip
Ip
3 5p
1p
Ip
6p
e
$100+$
$0.8 p$
$0.8 p$
$3 p$
$0.8 p$
$0.8 p$
$5.5 p$
order.
Quantity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
0.5 watt 5% iskra resistors 5 off each value 4.7Ω so $1 \mathrm{M} \Omega$.
E12 pack 325 resistors $£ 2.40$, E24 pack 650 resistors $£ 4.70$

POTENTIOMETERS

Carbon track $5 k \Omega$ to $2 M \Omega$, log or linear (log $1 W$, lin $1 W$).
Single, $12 p$. Dual gang (stereo), 40p. Single D.P. switch 24p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C

TRANSISTORS

$\begin{array}{llllllllll}\text { ACIO7 } & 15 p & \text { AFI } 25 & 20 p & \text { BDI } 32 & 75 p & \text { OC28 } & \text { 50p } & 2 N 3702 & 13 p \\ A C 126 & 12 p & A F I\end{array}$

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{1} \mathrm{P}, \quad 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 71 \mathrm{p}$. $0.33 \mu \mathrm{~F}, 11 \mathrm{P} .0 .47 \mu \mathrm{~F}, 13 \mathrm{D}$.
$160 \mathrm{~V}=0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F} 4 \frac{1}{2} \mathrm{p}$. $0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 7 \frac{1}{3} \mathrm{p}$. $0.68 \mu \mathrm{~F}, 11 \mathrm{p}$. $1.0 \mu \mathrm{~F}, 13 \mathrm{p}$.
MULLARD POLYESTER CAPACITORS C280 SERIES
$250 V$ P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$,
$31 \mathrm{p} .0 .1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$ $3 \frac{1}{2} \mathrm{p} .0 .1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \frac{1}{3} \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{1}{2} \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 \cdot 0 \mu \mathrm{~F}, 13 \mathrm{p}$.
$1.5 \mu \mathrm{~F}, 20 \mathrm{p} .22 \mu \mathrm{~F}, 24 \mathrm{p}$. $1.5 \mu \mathrm{~F}, 20 \mathrm{p} .22 \mu \mathrm{~F}, 24 \mathrm{p}$.
$\begin{array}{llll}\text { MYLAR } & \text { CAPM } \\ 0.001 \mu \mathrm{~F}, & 0.002 \mu \mathrm{~F}, & 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, & 0.02 \mu \mathrm{~F},\end{array}$ $\begin{array}{lll}0.001 \mu \mathrm{~F}, & 0.002 \mu \mathrm{~F}, & 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, \\ 2.02 \mu \mathrm{~F} \\ \text { 21p. } 0.04 \mu \mathrm{~F}, & 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, & 34 \mathrm{p} .\end{array}$

CERAMFC DISC CAPACITORS
100pF to $10,000 \mathrm{pF}$, 2p each.

ELECTROLYTIC CAPACITORS—MULLARD OI5/6/7 RANGE REPLACES C426, C457 RANGES:
$\begin{array}{lllllllllllllll} \\ (\mu \mathrm{F} / \mathrm{V}) & 1.0 / 63, & 1.5 / 63,2 \cdot 2 / 63, & 3 \cdot 3 / 63, & 4 \cdot 7 / 63,6 \cdot 8 / 40, & 0 / 25, & 10 / 63, & 15 / 16, & 15 / 40, & 15 / 63, \\ 22 / 10, & 22 / 25,22 / 63, & 33 / 6 \cdot 3,33 / 40,47 / 4,47 / 10 & 47 / 25 & 47 / 40 & 47 / 63 & 58 / 6.3 & 68 / 16, & 100 / 4\end{array}$ $22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,47 / 63,68 / 6 \cdot 3,68 / 16,100 / 4$.

 $1,000 / 16,1,500 / 10,12,200 / 6 \cdot 3,15 p .330 / 63,680 / 40,1,000 / 25,1,500 / 16,2,200 / 10$,
$3,300 / 6 \cdot 3,4,700 / 4,18 p$.

SOLID TANTALUM BEAD CAPACITORS				
$0.1 \mu \mathrm{~F}$	35 V	$2.2 \mu \mathrm{~F}$	35 V	$22 \mu \mathrm{~F}$
$0.22 \mu \mathrm{~F}$	35 V	$4.7 \mu \mathrm{~F}$	35 V	$33 \mu \mathrm{~F}$
$0.47 \mu \mathrm{~F}$	35 V	$6.8 \mu \mathrm{~F}$	25 V	$47 \mu \mathrm{~F}$
$1.0 \mu \mathrm{~F}$	65 V	$10 \mu \mathrm{~F}$	25 V	$100 \mu \mathrm{~F}$

ELECTROLYTIC CAPACITORS Miniature P.C. mounting 5p each.

ELECTROLYTIC CAPACITORS Miniature P.C. mounting
$(\mu \mathrm{F} / \mathrm{V}): 10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.

| VEROBOARD | | | JACK PLUGS AND SOCKETS |
| :--- | :--- | :--- | :--- | :--- |
| | 0.1 | 0.15 | Andind screened $18 p \quad 2.5 \mathrm{~mm}$ in |

Standard screened
Standard insulased Standard insulased

Stereo screened $\begin{array}{lll}\text { Stereo screened } & 35 \mathrm{p} & 3.5 \mathrm{~mm} \text { inscreene } \\ \text { Standard socker } & 15 \mathrm{p} & 2.5 \mathrm{~mm} \text { solate }\end{array}$ | Stereo socket | 18 p | 2.5 mm socket |
| :--- | :--- | :--- |
| 3.5 mm socket | | |

D.I.N. PLUGS AND SOCKETS

2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ} .6$ pin
Plug 12p. Socket 8p.
4 way screened cable, 15 p/metre
6 way sereened cable 22 p/metre
BATTERY ELIMINATOR
9 V mains power supply. Same size as PP9 battory.

ZENER DIODES
$400 \mathrm{~mW} 5 \% 3 \mathrm{~V}$ to $30 \mathrm{~V}, 12 \mathrm{p}$. WIRE WOUND POTS, 3 W,
50Ω and decades to $100 \mathrm{k} \Omega, 35 \mathrm{p}$.

DIODES

 (formerly C. R. HADLEY) HARLOW 37739
 Add 5p P. \& P. Price list S.A.E. No callers pleas
 All our stocks are brand new with money back refund
 MINITRON DIGITAL INDICATOR TYPE 3015F
 Reads $0-9$ and decimals (Data Sheet on request)
 ONLY £1-50
 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \multicolumn{4}{|l|}{TRANSISTORS} \& $$
\begin{aligned} & \text { BD116 } \\ & 310121 \end{aligned}
$$ \& $$
\begin{aligned} & 78 \mathrm{p} \\ & 50 \mathrm{p} \end{aligned}
$$ \& OC44 ()C4J \& $$
\begin{aligned} & 13 p \\ & 13 \mathrm{p} \end{aligned}
$$ \& TIP33A TIP34A \& $$
\begin{array}{r} 95 p \\ \mathbf{4 1 . 8 0} \end{array}
$$ \& $$
\begin{aligned} & 3 N 3711 \\ & 40251 \end{aligned}
$$ \& $10 p$ 49 p
 \hline dC10\% \& 15. \& ALI0: \& 58p \& BD130 \& 48 p \& OC71* \& 12 p \& 2N697 \& 18p \& 40×36 \& 55 p
 \hline 4 Cl 26 \& 11 p \& AL103 \& 49 p \& BD131 \& 59D \& OC7-3 \& 12p \& ${ }^{2} \mathrm{~N} 1171$ \& 24p \& \&
 \hline ACAT \& 110 \& A1103 \& 85p \& BF194 \& 15p \& OC81 \& 13p \& $\because \mathrm{N} 1304$ \& 25 p \& \&
 \hline 1C1:8 \& 11p \& - 11111 \& 95 p \& $\mathrm{EFFYJO}^{\text {a }}$ \& 150 \& OC81D \& 13p \& $\cdots \mathrm{N} 1305$ \& 25 p \& \&
 \hline C176 \& -25p \& BCl^{8} \& 8 p \& BF「 ${ }^{\text {B }} 1$ \& 12p \& $0 \mathrm{OC3}$ \& 20 p \& 2 N 2646 \& 475 \& \&
 \hline ACJ41K \& 20p \& 13 Cl 08 \& 8 p \& Bsy ${ }^{\text {ajob }}$ \& 15p \& OC170 \& 249 \& 2×2926 \& 10p \& DIODES \&
 \hline \& 20 p \& BCL^{109} \& 8 p \& \$1 C040: \& 18 p \& OC:00 \& 25p \& ${ }^{2} 30.3$ \& 20 p \& IN4001 \& 4 p
 \hline AD14 \& 40 p \& 13C1J4 \& 0 p \& M F0404 \& 145 \& OC201 \& 25p \& $2 \mathrm{~N} 30 . \mathrm{j}$ \& 49p \& IN 4002 \& 40
 \hline AD100 \& 44 p \& $13 C 168$ \& 0 D \& ME4401 \& 10p \& O< \& 25p \& 2N370? \& 12p \& $1 N 4003$ \& 5 p
 \hline AD161 \& \& BC169 \& 4 P \& ME4102 \& 12p \& OCR \& 30 p \& 2 N 3703 \& 12p \& IN4004 \& 7 D
 \hline AD16: 3 \& 55p \& BC18\% ${ }^{\text {ch }}$ \& \& YE600- \& 14 p \& OC39 \& 36 p \& ${ }^{2} \mathrm{~N} 3704$ \& 12 p \& 0490 \& 6 p
 \hline \& 15p \& 13C1831. \& 8 p \& atibiol \& 14 p \& OC3J \& 25p \& 2×370 \& 12 p \& 0.491 \& 6 D
 \hline +F113 \& 15p \& BCIR4. \& 8 p \& MEtio:? \& $15 p$ \& OC3\% \& 369 \& - N 3706 \& 10p \& OA: 00 \& 10 p
 \hline AFIIf \& -15p \& $\mathrm{BC} \mathrm{C}_{1} 12 \mathrm{~L}$ \& 8p \& MP8111 \& 32p \& Tlp:29 \& 48p \& - N 3707 \& 10 p \& O. 202 \& 8p
 \hline AP117 \& 15p \& JC.314L \& 8 p \& MP8511 \& 340 \& TIP30A \& 559 \& 2 N 3708 \& 9 p \& 1844 \& 10 p
 \hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{CAPACITORS}} \& \multirow[t]{2}{*}{$$
\begin{aligned} & \text { n1p8513 } \\ & 0 \mathrm{C} 41 \end{aligned}
$$

 \& 45p \& T1P31A \& 58p \& $\because \mathrm{N} 3709$ \& 10p \& IN414. \& 4 D
\hline \& \& \& \& \& 13p \& TIP3.A \& 69p \& 2×3710 \& 10p \& WO: \& 32p

\hline
\end{tabular}
 MULLARD POLYESTER CAPACITORS C280 SERIES
 $0 \cdot 10 \mu \mathrm{~F}$ MULLARD POLYESTER CAPACITORS C296 SERIES
 $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0023 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.004 \pi \mu \mathrm{~F}, 81 \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.01 \mu \mu \mathrm{~F}$

 $160 \mathrm{v}: 0.01 \mu$

 ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
 $64 / 64,2 / 54,50 / 64,100 / 74,200 / 54,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10,105 / 10,200 / 10$ $4 / 40,8 / 40,15 / 40,32 / 40,50 / 40,0 \cdot 64 / 64 / 16.164,5 / 64,10 / 64,20 / 64,32 / 64$
 MULLARD C437 SERIES
 $100 / 40,160 / 25,150 / 16,400 / 10.1540 / \hbar 4,400 / 4,1,000 / 25,9 \mathrm{p} .100 / 64,160 / 40,250 / 22,400 / 1 \mathrm{~h}$ $640 / 10,1,250 / 4,1,000 / 64,1,600 /-2,12 \mathrm{p}$. $160 / 64,250 / 40,400 / 2 \cdot 5,640 / 16,2,000 / 4,1,000 / 10$

 Miniature F'ined C'eramic Plate 3p cach

 Preferred valueg from 1.8 pf to $10,000 \mathrm{pf}$
 PRINTED CIRCUIT KIT
 BULID 50 InTERESTING PROJECTS on a PRDTED CRECUIT CEASSIS with PARTB nd TRAFSISTORS from your SPARES BOX
 CONTENTA: (1) 2 Copper Laminate Boards $4\{$ in $\times 2$ qin. (2) 1 lioard for Match box Radio. (3) 1 Board for Wrlstwatch Radio, etc. (4) Resist. (5) Resist golvent (6) Etchant. (7) Cleanser/Degreaser. (8) 16 -page Booklet Printed Circuits for A mateurs. (9) 2 Miniature Radio Diale \&W/MW/LW. Also free pith each kit: (10) Essential
 ELECTROKII} Design Data, Clrcuits, Chassis Plans, ete, for 50 TRANSISTORISED PROJECTS. A very comprehensive aelection of clreuits to suit everyone's requirements and constructlonal abillty. Many recently de reloped very efficient designs pubished
the first time, including 10 new clrcuits.

PRINTED CIRCUIT KIt 60p
Postage \& Pack. 10p (UK)
Commonwealth
SURFACE MAIL i5p
AIR MAIL 600
Australia, New Zealand,
South Africa, Canada
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler detector (3) Crystal get with Dynamic Loudspeaker. (4) Cryatal Tuner with Audio Ampliffer (5) Carrier Power Conversion Receiver, (6) Split-Load Neutralised Double Reffex (7) Matchbox or Photocell Kadio. (8) That adjusting regeneration (Patent Pending). (9) Solar Battery Loudspeaker Radio The smallest 3 designs yet offered to the Home Constrictor anywhere in the world
3 gubminiature Radio Receivers basei if you know of a smaller debign published anywhere. (I0) Postage Stamp Radio gize onls $1.62 \ln \times 0.85 \mathrm{in} \times 0.25 \mathrm{in}$. (11) W riatwatch Radio $1.1 \overline{\mathrm{jin}} \times 0.80 \mathrm{in} \times 0.55 \mathrm{in}$. (12) Ring Radto $0.70 \mathrm{in} \times 0.70 \mathrm{in} \times 0.55 \mathrm{in}$. (13) Bacteria-powered Radio. Runs on sugar or bres1. (14) Radio Control Tone Receiver. (15) Transistor P/P Amplifter. (16) Inter com. (17) 1-valve Amplifler. (18) Reliable Burglar Alarm. (19) Light-Seeking Animal Guided Missile. (20) Ferpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radiation Detector. (24) Man/Woman Discriminator (25) Bignal Injector. (26) Pocket Transceiver (Licence required), (27) Constant Volume intercom. (28) Remote Control of Models by Induction. (29) Inductive-Loop Transmitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Transmiter/ Wire-lep Microphor (35) Quality gitereo Puih-Pull Amplifer (36) Light-Beam Telephone "Photophone". (37) Light-Beam Transmitter. (38) gilent TV Sound Adaptor. (39) Ultranonle Transmitter. (40) Thyristor Drill Speed Controller. Plus 10 Photoeiectri

YORK ELECTRICS, Mail Order Dept.
335 BATTERSEA PARK ROAD, LONDON, S.W. 11

Now available from one company are complete kits for many of the articles published in the Electronics, Radio and TV Journals. Examples of our range are:
SCORPIO IGNITION SYSTEMS (P.E. Nov. 1971),
69.50. This kit includes all the parts for the assembly of this popular and reliable system. The hardware and instruction data are included
ELECTRONIC PIANO (P.E. Sept. 1972). We can supply the various sections for this article in kit form. Power supply, price £6.60. Preamp and Tremolo 63-20. Main Amplifier (less speakers) $\mathbf{£ 3 \cdot 3 0}$. 13 Pitch boards $£ \mathbf{8 9} \cdot \mathbf{5 0}$ (less inductors).
DRILL SPEED CONTROLLER (E.E. Aug, 1972). Kit consists of resistors, rectifiers, thyristor and tag board as specified in the article, price 61.05 . Kit with M.K. box, plate and switch, price $\mathbf{\ell 2} \mathbf{0 5}$.
LIGHT DIMMER. Kit contains all parts including circuit and construction data, 480 watts, fully suppressed, price E2. 10.
We shall also be offering kits for most articles published in the P.E. and other popular electronics magazines and will be pleased to quote prices
All kits sent Post FREE.
Send for details of all other kits available (please enclose S.A.E.).

ELECTROKIT
12 Lauderdale Road, London, W. 9 Telephone 01-286 0011
Mon.-Fri. 9.30-5.30 Thurs. 9.30-6.30

SUPERSOUND I3 HI-FI MONO AMPLIFIER

 A superb solld siate
audioamplifier Brand new component throughout. 5 ailicon transistors plus 2
power output tranaispower output tranal Full wave rectlication Output approx. 13W r.m.s. into 8 ohm Frequency reapons $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$ Fully integrated pre amplifier stage with eparate Volume. Rass boost and Treble cut controls Buitable for $8-15$ ohm speakers. Input for ceramic or
cryatal cartridge. Bensitivity approx. 40 my for full cryatal cartridge. Bensitivity approx. 40 mV for full
output. Supplied ready built and tested, with knobs, output. Bupplied ready buil and tested, wine panel, input and output plags. Overall size 3 in hlgh $\times 6 \mathrm{In}$ wide $\times 7$ tin deep. A.C. $200 / 250 \mathrm{~V}$

PRICE $£ 10.50{ }^{\text {P }}{ }_{250}^{4}{ }^{4} \mathrm{P}$.
DE LUXE STEREO AMPLIFIER

$1 \times$ EZ80 as rectifier Two dual Triode Pentodes. provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and right hand channels can be
adjusted by means of a separate "balance" control flted at the rear of the chassis. Input senaitivity is approximately $300 \mathrm{~m} / \mathrm{l}$ for full peak output of 4 wates per channel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Supplied completc with knobs, chassis size 11 in . $w \times 4 \mathrm{in}$. x. Overall height including valves \sin. Ready bullt and
teated to a high standard. Price 88.92 . P. \& P, 45p.

NEW! POWER SUPPLY UNIT
$200 / 240 \mathrm{~V}$ A.C. input. Four switched fully amoothed D.C.
outputa giving 6 V and 7 f and 9 V and 12 V at 1 amp outputs giving 6 V and $7 \nmid \mathrm{~V}$ and 9 V
continuous ($1 \ddagger$ amp intermitent).
Fitted insulated output terminais and pilot lamp indicator. Hammer finish metal case, overall size $\left.6^{\prime \prime} \times 3\right\}^{\prime \prime} \times 2 \jmath^{\prime \prime}$ ".
Guitable for Transistor Radios. Tape Recorders, Suitable for Transistor Radios, Tape
Amplifiers, etc., etc. Ready built and tested.

PRICE £4.50 $\underset{35 \mathrm{p} \text {. }}{\text { P. }}$
BLACE AKODISED 16g. ALUMINIOM BEAT SLIK8 For TO3, complete with mica's and bushes. Size $2 \|$ in \times For To3, complete with mica's and
3in approx. 25 p pair. P. \& P. 5p.

LIMITED NOMBER! COLLED SPRING BACK TELEPRONE CABLE. Closed approx. 10°, extends to 36^{*}. 4 core or 6 core. 25 p each. P. dP. 5 p. 5 or more post free. A.C. input. 35 V at 11 amp A.C. output. Overall size
$24^{\prime \prime} \times 2 \xi^{\prime \prime} \times 3^{\prime \prime}$ approz. Sutable for drop through or vertical mounting. 80p. P. \& P. 30 p
BRAND NEW MULTI-RATIO MAIMS TRANSFORMERS. Glving 13 alternatives. Primary: $0-210-240 \mathrm{~V}$. Secondary combinations: $0 \cdot 5-10 \cdot 15-20-20.30-35-40-60 \mathrm{~V}$ half full wave. Size 3 inh $\times 3$ inw $\times 3$ ind. Price 81.85 . fullwave.
P. \& P. 30 p .
MAMS TRANSFORMER. For transistor power aupplies. Pri. $200 / 240 \mathrm{~V}$. Sec. $9-0-9$ at 500 mA . 85 p . P. \& P. 13 p . Pri. 200/240V. Sec. $12-0-12$ at 1 amp. 95p. P. \& P. ${ }^{123 p}$.
Pri. 200/240V. Sec. $10-0-10$ at 2 amp. 21.45. P. \& P. 30p.

GENERAL PURPOSR HIGH GTABILITY TRARGISTOR PRE-AKPLIFIER. For P.U. Tape, Mike,

 Guitar, etc., and suitable for use with valve ortransiator equipment. $9-18 \mathrm{~V}$. Battery or from H.T. transibtor equipment. $9-18 \mathrm{~V}$. Battery or from H.T.
line $200 / 300 \mathrm{~V}$. Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. line 2001300 V . Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$.
Gain 26 dB . golid encapsulation size $1 \% \times 1 \frac{1}{2} \times \mathrm{in}$. Gain 26 dB . Solid encapsulation size $1 \% \times 1 \frac{1}{2} \times 1 \mathrm{n}$.
Brand new - complete with instructions. Price Brand new - com
88 p.
P. \& P. 13 p .

HANDBOOK OF TRANSISTOR EQUIVALENTS and SUBSTITUTES A must for servicemen and home constructors, Including many 1000's of British, U.S.A., European and Japanese transistors. ONLY 40p. Post 5p.

4-SPRED RECORD PLATER BARGAIME Mains models. All brand new in makeri pacing. With latent mono compatible cartridge $26-97$. Carr. 50p. With stereo cartridge s7.97. Carr. 50 p . Garrard SP25 Mk. MI with heavy precision machined die cast tur

SPECIAL BARGAIN OFFER!

PRECISION ENGINEERED PLINTHS

 Beautifully constructed in beavy gauge "Colorcoat" plastic coated steel. Resonance tree. Demigned to take SP25 II and III, BL65B, AT60, etc., or B.S.R. C109, C129, A21, etc. Black leatherette finish. Size $12 \dagger$ in x 14 ifn $\times 3$ in high (approx. 71 in high, including rigld amoked acrylic cover). NOW ONLY £4.50LATEST ACOS GP91/180 Mono Compatible Cartridge with
t/o atylus for I.P/EP/78. Univergal mounting bracket. \&1.50. P. \& P. 80 .
SONOTONE GTAHC COMPATIBLE BTEREO CARTRIDGE T/O stylus. Diamond Stereo LP and Mapphire 78. ONLY e2.50. P. at P. 10 p . Also available fitted with twin Diamond T/O stylus ior Stereo LP. \&3. P. \&P. 10p. LATEST RONETTE T/O Steroo Compatible Cartridge for EP/LP/Stereo/78. 21.68. P. \& P. 10p.
LATEST RONETTE T/O Mono Compatible Cartridge for EP/LP/78 mono or stereo records on mono equipment. 8150.

QUALITY RECORD PLAYER AMPLIFIER ME II A top-quality record player amplifier employing heavy
duty double wound mains transformer, ECC83, EL84, and rectifier. Separate Bass, Treble and Volume controls. Complete with output transiormer matched for 3 ohm epeaker. Size 7in. w. \% $3 \mathrm{~d} ., 6 \mathrm{~h}$. Ready buitt and tested. PRICE 88.95. P. \& P. 40p. ALSO AVAILABLE mounted on board with out put transformer and speaker Deady to fit cablnet below. PRICE eb 25 P. \& P. 50p. DE LUXE QUALITY PORTABLE R/P CABIRET
Uncut motor board size $14 \xi \times 12 \mathrm{in}$., clearance 2 in below Uncut motor board size $14 \% \times 12 \mathrm{in}$, clearance 2 in . Be low, Stin. above. Will take above ampiner and any B.8.R. or
GARRARD changer or Single Player (except AT60 and GARRARD changer or single Player (except AT60 and
SP25). Size $18 \times 15 \times 8$ in. PRICE e4.75. P. \& P. 50 p .

SPECIAL OFFER!! HI-FI LOUDSPEAKER SYSTEM

Beautifully made teak finish enclosure with moat attractive Tygan-Vynair front. 8 ize $16+$ in high $\times 10 \downarrow i n$ wide $\times 5 t^{\prime}$ deep. Fitted with E.M.I. Ceramic Magnet $13 i n \times 8 i n$ bask unit, two H.F.
tweeter unita and crossover. Power handling low.
tweeter unita and crossover. Power hat
Our Price $£ 8.40$ Carr. 6sp.

> CABINET AVAILABLE GEPARATELY

Also available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass
peaker with parasitic tweeter. $\mathbf{~} 8.50$. Carr. 65p.

LOUDSPEAKER BARGAINS

$5 \operatorname{in} 3 \mathrm{ohm} 21.05$, P. \& P. 15p. $7 \times 4 \mathrm{in} 3 \mathrm{ohm} 21.15$, P. \& P
 E.MI $134 \times$ in with high fux ceramic \times. x. E.M.1. E.M.I. $13 \times 8 \mathrm{in}, 3$ or 8 or 15 ohm with two inbuilt tweeters and crossover network 8420 . P. \& P. 30p.
BRAND NEW. 12 in 15 w H/D Speakers, 3 or 15 ohm , Current production by well-known Britioh maker. Now

SPECIAL OFFER!

LMMTED FUMBER OF BRAND NEW ELAC 10^{-}TWIN CONE LOUDSPEAKERS. With large ceramic magnet and plasticised 22.75, P. \& P. 25p

1RIn "RA" TWW CONE LOUDSPEAKER 10 watts peak handling. 3,8 or $15 \mathrm{ohm}, 82 \cdot 20$. P. \& P. 30 p
 ELECTRO-DYKAMIC 8PEAKER
Size 11 in $\times 14 \mathrm{H}$ in $\times 1$ ․ . in deep. Weight $190 z$. Power handling 20W r.m.s. (40W peak). Impedance 8 ohm onls. Response 40 Hz -20kHz. Can be mounted on ceilinga, walls, doors, under tablea, etc., and used with of without baffie. Send B.A.E. for fuli details. Only VYNAIR \& REXINE BPEARERS \& CABINET FABRICA app. 54 in. wide. Usually $£ 1.75$ yd., our price $75 p$ yd.
length. P. \& P. $15 p$ per yd. (min. 1 yd.). S.A.E. for length.
samples.

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable flexifoam earmuffs. Wired and fitted with otandard atereo \ddagger in jack plug. Frequency reaponse $30-15,000 \mathrm{~Hz}$. Matching mpedance 8-16 ohns. Easily converted
82.85 . P. \& P. 15 p. HIGH TMPEDANCE CRYSTAL STICE MIRES. OUR PRICE E1.05. P. \& P. 8p.
CENTRE ZERO MINLATURE MOVING COIL METRR $100 \mu \mathrm{~A}$ for balance or tuning. Approx. siz
$\times \mathrm{fin}$. Limited number 75 p . $\mathrm{P} . \mathrm{d} \mathrm{P} \quad 10 \mathrm{p}$.

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

MEW FURTEER IMPROVED MODEL WITH HIGHER OUTP HIGH QUALITY READY DRILLED FIBRE GLABS PRINTED CIRCEIT BOARD WIRH MARKED FOR EVEN GAMIER CONsTRUCTION

A really firat-class $\mathrm{Hi}-\mathrm{Fi}$ Stereo Amplifier Kit. Usen 14 transistors including silicon Transistors in the first Ove otagea on each channel reaulting in even lower noise level with improved sensitivity. Integrated pre-anp with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. (Very bimple
to modity to suit magnetic cartridge-instructions to modify to suit magnetic cartridge-instructions Included). Output atage for any apeakers from oluding obma. Compact deaign, all parts supplied including drilled metal work, high quality ready drined obre
glass printed circuit board, smart brushed anodised glass printen auts, bolta-no extras to buy. Simple step by step inatructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output 14W r.m.s. per channelinto 5 ohms. Frequency reaponse $\pm 3 d B$ $12-30,000 \mathrm{~Hz}$. Senaltivity better than 80 mV into 1 Mn . Full power bandwidth $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16 dB Negative feedback 18 dB over inain amp. Power requiremente 35 V at 1.0 amp . Overall size- 12° wide $\vee 8^{\circ}$ deep Fully detall
etalled 7-page construction manual and parta list Pree with kior
PRICES AMPLIFIFR KIT,
210.50 P. \& P. 15 p (Magnetic input components $30 p$ extra)
POWER PACK KIT, \&s P. \&P. 30 p .
 (Post Free if all units purchasedat banietime). Fullafter sales service. Also available ready built and teated H20.50. Poat Free.
Note: The above amplifier is suitable for feeding two Note: The above amplifier is milable for feeding two mocks, ete.) and will then provide mixing and fading facililies for medizm powered $H i$-Fi Dlscotheque use, ele.

3-VALVE AUDIO
AMPLIFIER HA84 HK II Designed for Hi-Fi reproducoperation. Ready bullt on plated heavy gauge metai changin, size 7 in $w . x 4 \mathrm{in}$. d. x 4in. b. Incorporatee ECC83,
EL84, EZ80 yalves Heary EL84, EZ80 valves. Heary duty, double wound maina
transformer and output trans. transformer and output trans-
former matched for 3 ohm speaker. Separate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output if watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etc wired and tested for only 24.95. P. \& P. 35p.
HSL "FOUR" AMPLLFIEE EIT. Similar in appearance to HA34 above but employe entirely different and ad vanced circuitry. Complete set of parte, etc. $84 \cdot 10$. P. \& P. 40p. HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifer using a double wound fully isolated mains transformer, rectifier and ECL82 triode pentode vaire as audio amplifier and power output atage. Impedance 3 ohms. Output approx. $3 \cdot 5$ watts. Volume and tone controls Chassis size only 7 in . wide $\times 3 \mathrm{in}$, deep \times 6 in . high overall. AC maine 200/240V. Supplied absolutely Brand New, completely wired and teated with good

10/14 WATT HI-FI AMPLIFIER KIT
A atyliahly finiahed
monaural amplifier monaural amplifier with an output of
14 watte from 2 14 watts from ${ }^{2}$ EL84s in push-pult.
Super reproduction of both music and speech, with negi-
gible hum. Separate imputa for mike and gram allow reecrds
 and announcements
to follow each other. P R \& R R Fully ahrouded section wound out put transformer to match 3-15 \cap apeaker and 2 independent volume controls, and separate bars and treble controls are provided giving
good lift and cut. Valve line-up 2 ELe4s, ECC83, EF 86 and EZ80 rectifer. Simple instruction bookiet 18 p (F'ree with

Open 9-5.30 Monday
to Saturday
Early closing Wed. 1 p.m.
4 fow minutes
Twbe Station

HARVERSON SURPLUS CO. LTD.
Dept. PE, 170 High St., Merton, London, S.W. 19 tel. $01-5403985$ SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEABE ROTE: P. \& P. CHARGEA QUOTRD APPLY TO U.E. OMLE. P \& P, ON OVFRSEAS ORDERS CHARGED EXTRA.

JAMES

SALE OF SURPLUS ELECTRONIC EQUIPMENT The following items are available for immediate delivery at very competitive prices-

NEWMARKET TRANSISTORS							
s.t.c. relays-brand new							

AUTOMATIC CYCLER UNIT

This unit genderates stepping pulases isov a ci at intervale of 6 pultem per min. Stepping of one or more uniselector sly varichestion Can beed lor Automatic | Price | 12 | 50 |
| :--- | :--- | :--- |
| P | 8 | |

NEWMARKET PACKAGED AUDIO AMPLIFIER
PC) 150 mW Audio Amplifier
Price 11 do each. P \& P co 10
age $9 V$ d. e. inpulimpedance 150
WE HAVE LARGE RANGE OF CAPACTORS
ANO AESISTOAS. PLEASE SEND ASTAMPED
ANO ADORESSED FOOLSCAP ENVELOPE for youm catalogue
POST \& PACKING OVER C2-PREE. OVER IT AND UNOER E2-15. UNOER [1-TCO UNLESS SPECIFICALLY MENTIONED.

JAMES SCOTT (ELECTRONIC ENGINEERING) LIMITED CARNTYNE INDUSTRIAL ESTATE, GLASGOW G32 6AB TEL: 041-778 4206

B.H. COMPONENT FACTORS LIMITED

SPECIAL RESISTOR KITS (4 W 5% or IW 5% CARBON FILM) 10EI2 Kit: 10 of each El2 value, 10 ohms-IM, a total of $610,52.80$ not $25 E 12$ Kit: 25 of each EI 2 value, 10 ohms-IM, a total of I, 525, E6.50 net POLYESTER CAPACITORS MULLARD C280 250 V $\mu \mathrm{F}: 0.01,0.015,0.022,0.033,0.047,3 p$ each; $0.068,0.1,0.15,4 \mathrm{p}$ each; $0.22,5 \mathrm{p}$;
 $160 \mathrm{~V}:(\mu \mathrm{F}) 0.01,0.015,0.022,2 p ; 0.047,0.068,3 \mathrm{p} ; 0.15,0.22,4 \mathrm{p}: 0.33,5 p$ $0.47,6 p ; 0.68,1 \cdot 0,10 p$.
$400 \mathrm{~V}:(\mu \mathrm{F}) 0.001,0.0015,0.0022,0.0033,0.01,2 p ; 0.015,0.033,3 p ; 0.063$, 4p. MINIATURE ELECTROLYTIC MULLARD C426 SERIES (5p each) (μ F/V) $0.64 / 64,1.6 / 25,4 / 49,8 / 40,10 / 40,10 / 64,16 / 40,20 / 64, \quad 25 / 25,32 / 10$, 40/16, 64/10, $80 / 16,80 / 25,100 / 64,125 / 16,200 / 64,200 / 10,320 / 6.4,125 / 10$. MULLARD C437: ($\mu \mathrm{F} / \mathrm{V}$) 64/64, 9p; 160/25, 9p; $160 / 40$, 11 p ; 640/6.4, 9p; $1600 / 6 \cdot 4$, 14p.

ELECTROLYTIC CAPACITORS. Tubular and large can
($\mu \mathrm{F} / \mathrm{V}$) $2 \cdot 5 / 50,3 \mathrm{p} ; 4 / 10,10 / 25,16 / 15,20 / 25,25 / 15,25 / 25,40 / 6,64 / 10,200 / 6$ $250 / 10,4 p ; 10 / 6,10 / 50,25 / 50,32 / 50,50 / 10,64 / 25,100 / 25,9 p ; 50 / 50,64 / 40$, $250 / 15,1,000 / 3,60,100 / 50,250 / 25,400 / 10,500 / 10,500 / 12,640 / 10,1,000 / 6$, $8 p ; 500 / 25,10 p ; 500 / 50,12 p ; 1,000 / 12,10 p ; 1,000 / 25,2,000 / 12,2,500 / 12,15 p ;$
 $5,000 / 50,85 p ; 1,000 / 100,60 p ; 8 / 350,12 p ; 16 / 350,17 p ; 32 / 350,22 p$.
750 V : (PF) 5, 10, 25, 40.70, 220, 2tp; ($\mu \mathrm{FF} / \mathrm{V}$) $0.0047 / 30,0.01 / 350$, 2p: $0.047 / 30$ 3p; $0.1 / 30,4 p ; 0.1 / 100,5 p ; 22 \mathrm{pF}-1000 \mathrm{pF} 50 \mathrm{~V}$, E12 Series; 1500 pF , CARBON FILM RESISTORS
CARBON FILM RESISTORS 1 W 5\%, 10 ohms- $2 \cdot 2 \mathrm{M}$, IW 5\%, 22 ohmsMETALFILM RESISTORS IW $5 \% 22$ ohms - $10 M$, IIp each or 100 for EI.

VEROBOARD 0.1	0.15	IN400)	$6 p$	
$2 \mathrm{p} \times 5 \mathrm{in}$ 25p	25p	IN4002	7 p	UANTUTY
$2 \mathrm{x} \times 34 \mathrm{in}$ 23p	17p	IN4003	$8 p$	DISCOUNT
$34 \times 5 \mathrm{n}$ 29p	30p	IN4004	$9 p$	SPECIAL BULK BUY
$32 \times 34 \mathrm{in}$, 25p	25p	IN914	$6 p$	SPECIAL BULK BUY
$21 \times$ in 2 for 12p	12 p	$\mu \mathrm{L} 914$	30p	PRICES ARE AVAILABLE
$2 \frac{1}{} \times 5$ in (plain)	120	0 O 71	12 p	BY QUOTATION FOR
$2 \frac{1}{5} \times 3 \frac{3}{3}$ in (plain) -	$11 p$	$0 \subset 75$	150	LARGE PROJECTS
5×3 in (plain)	20p	OC83'	18 p	

8p 2pin DIN Plug. 12p; Skt.,
10 p .3 pin DIN Plueg 13 p . 0p. ${ }^{3}$ pin DIN Plug, $13 p$
$5 \mathrm{kt}$. 10p. 5 pin DIN Plug. 180°, 15p; Skt., 12p. Transistor Equiv. Book, 40p. Carbon pots $5 K-2 M$ log, g tin, single 15p, single
switch 24p, dual 42p.

Screened wire, yd.

Stereos.c. wire, yd
Quad screened wire,
core circ. mains cable white........... 19p Neon bulb 90 V wire ended
\qquad
C.W.O. onty. P. \& P. 10D on orders below 15 Discount : C10-10\%, C 20-15\%.

Dept. P.E. sI, CHEDDINGTON ROAD, PITSTONE Tel.: Cheddington 668446 STD. (0296) inquiries-S.A.E. Catalogue FREE Callers please phone first.

Stereo radio from your existing funer.
 CAUTION MAX YOLTS: 16 vaC
 A complete set of parts

$\left.\begin{array}{rllll}\circ \\ + & \circ \\ \hline\end{array}\right)$
 from Jermyn to build a sitereo decoder module that will convert your existing mono tuner for stereo reception whilst maintaining a high standard of reproduction.

The distortion is very low (typically 0.3% at 560 mV RMS composite input signal) with 40 dB channel separation.

The stereo switching is automatic and there is a light emitting diode which acts as a stereo beacon.

The kit requires no coil and there are no alignment problems.
Fitting. The module requires a 10-16 volt power supply which can normally be tapped off the existing tuner. The signal input is taken off before the de-emphasis circuit which in practice means disconnecting one, or at the most, two capacitors. Any radio engineer will be able to spot these capacitors, but if you're really stuck send the cirCuit with a SAE to us and one of our engineers will indicate the output point. (This is the full extent of our involvement, nohardware please).

Of course, if you have a modern mono tuner with a multiplex output our module simply plugs in.

The outputs go via a screened twin cable to the tuner inputs of your stereo amplifier.
And the cost? $£ 4.90$ for the Kıt with 100% tested integrated circuit.
Also available assembled and aligned. checked and ready for use at $£ 6.90$ (includes 12 month guarantee). Beat that!
 30 Vestry Estate I enclose cheque/postal order for $£$
Sevenoaks
Kent
Name
Address

Block Capitals Please

BSR LATEST SUPERSLIM STEREO \& MONO

Playe $12^{\prime \prime}, 10^{*}$ or $7^{\prime \prime}$ recordis. Auto or Manual. A high quality nnit backed by BSR
reliability with 12 month: guarantee. AC $200 / 850 \mathrm{~V}$ Bise 181×11 in.

Above motor board 3 in. below motor board $2 \frac{1}{2}$. with sTEREO and MONO XTAL 18.75 Pont 25p.

E.M.I. WOOEEERAND KLTM Available separately
Wooler 24.25 Tweeter 81.90
Compriaing a fine example of a Woofer Magnet, Hioz, Gaugs 13,000 lines. Aluminium Cone centre to improve middle and top reaponse. Also the E.M.I. Tweter 3 lin. square has a special lightweight paper cone and magnet flux 10,000 linet. Cromover condenter and Inll inutraction supplied.
 Useinal Response
 SUTTABLE ENCLOSURE 20 I 18 I 9 in.
MODER DESIGN. TEAK WOOD FLISH

69 ${ }_{8}^{\text {Potb }}$
SPECIAL OFFER
8MITH'S CLOCKWORK 15 AMP TDIE SWITCE
ginge pole two-way. Burface mountin with fixing screwh. Will replace oxtaing wall Ewitch to give lighs Lor retarn home, garage, sutomatic anti-burgiar lights, etc. Variable knob Turn on or off at full or intermediate 0 minuter or 0 to 6 hourt. Makers lat liat price $£ 4.50$. Brand new ond fally
 (Plesse state type when ordering

WEYRAD P50 - TRANSISTOR COILS RAQW Ferrite Aerial . 72p Spare Core:
 I.F. P50/2CC 470 \% c/a . . 36p \quad Printed Circuit, PCA1. 3rd I.F. P50/3CC P51/1 or P51/2 $\cdots \cdot . .38 \mathrm{p}$ J.B. Tuning Gang Werrad Booklet .58 p
.58 p
.65 p OPT1 …..............58p VOLUME CONTROLS Long spindles. Midget Bixt K. Ohms to $2 \mathrm{Meg} . \mathrm{LOG}$ or LTEREOL/S S5p. D.P. 25p. Edge 5K.8.P. Tranuistor 25p.

80 obm Coax 4 prd.
 BRITISH AERIALITE AERAXIAL-AIR SPACED

 $40 \mathrm{yd}, \varepsilon 1-40 ; 60 \mathrm{yd}$, , 2 L .FRIHGE LOW LOS FRINGE LOW LOSS
Ideal 625 and colour 8in. or IOin. ELAC HI-FI SPEAKER
Dual cone planticised roll surround. Large ceramic magnet.
$50-60,000 \mathrm{c} / \mathrm{g}$ Bama resonance $50-80,000 \mathrm{c} / \mathrm{s}$ Bais resonance 8 in 10 wattu, 10 in $12 \quad 33.75$

E.M.I. $13 \frac{1}{2} \times 8$ in.

SPEAKER SALE!
With twin tweeters.
And croshover. 10
as watt. State 3 or 8 or
15 ohm. Al illustrated. Post 25p With fared tweeter cone and ceramic
megnet. 10 watt. mignet. 10 watt. Flox 10,000 gave 8 tate 3 or 8 or 15 ohm. Pont 25p

BRITISH MADE STEREO

MULTIPLEX DECODER

Brand New. 7 trapaistors Plum intexrated eircain. Fibre-Glasd printed circuit board. Size $2 \frac{1}{} \times 61 \times \frac{3}{2}$. Pre-Aligned. Complete with stereo beacon indicator, 12 V d.c. operation, $400 \mathrm{~m} V$ Outpat for 100 mV Inpat. Full instructions for any $\quad \mathbf{6 0 5 0}$
FI Toner. 80me teohnical oxperience esfential. FIS Tuner. Some teohnical experience essential. BLANK ALUMINTUM CHASSIS. 18 s.w.g. $2 \pm i n$ sides 6×4 in $45 p ; 8 \times 6 \operatorname{in} 83 p ; 10 \times 7$ in $65 p ; 12 \times 8 i n 85 p ;$
14×9 in $90 p ; 18 \times 8 \ln 90 p ; 12 \times 3$ in $50 p ; 16 \times 10$ in 1.

 HI-FI STOCKISTS RETURN OF POST DESPATCH

WHARFEDALE SÜPER $10^{\prime \prime}$ HI-FI SPEAKER 15 watt. 4 to 8 ohms, Reaponse 20 c / s to $12 \mathrm{kc} / \mathrm{s}$. Base remonance $48 \mathrm{c} / \mathrm{s}$. masive Ceramic Magnel. Deep labric Weight 5 lb . (Value $\& 10.50$.) Hict $£ 5.50$
THE FAMOUS WHARFEDALE SOUND
R.C.S. STABILISED POWER PACK KITS All parts and instructions with Zener Diode, Printed Circuit, Bridge Rectifiera and Donble Wound Mains Traniormer nput $200 / 240 \vee$ a.c. Output voltagea available 6 or 8 or 18 PLEASE STATE VOLTAGE REQUIRED.

£2 Detaili S.A.E. Size $3 \frac{1}{2} \times 1 \frac{1}{2} \times 1$ in. CN PREAMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.J., Guitar, otc. Can be used with Ittery $9-12 \mathrm{~V}$ or H.T. Line $200-300 \mathrm{~V}$ d.c. operation. Size I $1 t$ I in. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{xc} / \mathrm{s}, 26 \mathrm{~dB}$ gain. | For use with valve or tranuistor equipment. |
| :--- |
| Funtructions supplied. | GARRARD DECCA DISCO DECK

Single-play Stereo/Mono Deram transcription head and arm Anti-rumble fllter. Bias compentation. Laboratory motor.
IMETAL PLINTH AND PLASTIC COVER
Cut out for mont Garrard or B.S.R. Mont wil? play with cover in position. $121 \times 141 \times 71$ in leatherette. f 18.50_{i} Post 25 D
leatherett

ALSO AVAILABLE IN SOLID NATURAL MAHOGAKY WAX POLISHED PINISH-AT SAME PRICE

MAINS TRANSFORMERS

250-0-250 80mA 6.3V 4A
$250-0-25080 \mathrm{~mA}$ 6.3V 3.5A, 6.3 V 1 A , or 5 V 2 A All poat
$25 p$ each $350-0-35080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6-3 \mathrm{~V} 1 \mathrm{~A}$, or 5 V 2A $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}$ O.T.; 6.3V 2A MINIATURE $200 \mathrm{~V}, 20 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A}, 2 \mathrm{k} \times 2 \mathrm{~m} \times 2 \mathrm{in}$ MDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 2 \mathrm{~A}, 2 \mathrm{j} \times 21 \times 2 \mathrm{in}$ \times 26p each
. 81.50

in HEATER TRANS 6.3V 3A
GENERAL PURPOSE LOW VOLTAGE. Tapped outputs at $2 \mathrm{~A}, 3,4,5,6,8,0,10,12,15,18,24$ and $30 \mathrm{~V} . .$. e 22.25 $1 \mathrm{~A}, 6,8,10,12,18,18,20,24,30,38,40,48,60 \mathrm{~V}$ 22.25 $2 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{~V}$ $5 \mathrm{~A}, 8,8,10,12,18,18,20,24,30,36,40,48,60 \mathrm{~V}$ 3A, 5, 8, 13 V
Ditto SA 83.25
88.75
$\varepsilon 1.00$
81.00
21.20

3A, 5, 8, 10, 13V, 5+0-5V
81.30
21.50

Ditto 5A ... 21.50

CEARGER TRANSFORMERS. Input $200 / 250 \mathrm{~V}$.
CHARGER TRANSFORMERS. Input
for B or $12 \mathrm{~V}, 1 \neq \mathrm{A}, 21.50 ; 2 \mathrm{~A}, 21.80 ; 4 \mathrm{~A}, \mathbf{2 2} .50$.
BATTERYCHARGERS. $1+A \mathrm{E} 2 ; 3 \mathrm{~A}$ e3; 4 A E4.
PULL WAVE BRIDGE CHARGER RECTIFIERS B or 12 V outputs. $11 \mathrm{~A} 40 \mathrm{p} ; 2 \mathrm{~A} 55 \mathrm{p} ; 4 \mathrm{~A} 85 \mathrm{p}$. LUCAS zDos0 Full wave Bridge rov, bn gSD.
MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary 0-240V. 3A. 720W. Insulated terminals. Varnish impregnated. Fully enclosed Fs mous make. (Value f19) OUR PRICE $1 \mathbf{C l O}$ Carr. Can be used as 800 W a uto transformers 240-110V.

NEW

1450 V .14 D 1000/25V..
$18 / 450 \mathrm{~V} \quad 15 \mathrm{D} \quad 1000 / 50 \mathrm{~V}$.

$32 / 450 \mathrm{~V}$	20 p	$8+8 / 450 \mathrm{~V}$
$25 / 25 \mathrm{~V} .$.	10 p	$8+18 / 450 \mathrm{~V}$

$50 / 50 \mathrm{~V} .:$	10 p	$16+16 / 450 \mathrm{~V}$	25 D	$32+32+32 / 360 \mathrm{~V}$	43 p
$100 / 25 \mathrm{~V}$	10 p	$32+32 / 350 \mathrm{~V}$	25 p	$100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$	

LOW VOLTAGE ELECTROLYTICS.
$1+2,4,5,8,18,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
500 mF 12 V
$15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2000 mF 6 V 25p; $25 \mathrm{~V} 42 \mathrm{p}: 50 \mathrm{~V} 57 \mathrm{p}$.
2500 mF 50 V 62p; $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 65p.
$5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$.
CERAMIC. 1 pF to 0.01 mF , 4 p . Silver Mica 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$.
PAPER $350 \mathrm{~F}-0.14 \mathrm{p} 0.513 \mathrm{p}, 1 \mathrm{mF} 15 \mathrm{p} \cdot 2 \mathrm{~m}$ PAPER $350 \mathrm{~V}-0.14 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$ 00V-0.001 to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$.
 TWIF GANG. " $0-0$ ", $808 \mathrm{pF}+176 \mathrm{pF}, 65 \mathrm{p}$: mld 30 peach . drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; 500 pF matand ard 45 p ; ingle gang 500 pF 75 p ; small 3 -gang $500 \mathrm{pF} 81 \cdot 60$. SHORT WAVE SINGLE, $10 \mathrm{pF}, 30 \mathrm{p}, 25 \mathrm{pF}, 55 \mathrm{p}, 50 \mathrm{pF}, 55 \mathrm{p}$. NEON PANEL INDICATORS 250V AC/DC, ASp, Soper 20p. RESISTORS. : W, $\frac{1}{2} \mathrm{~W}, 1 \mathrm{~W}, 20 \% 1 \mathrm{p}$; $2 \mathrm{~W}, 5 \mathrm{p} .10 \Omega$ to 10 M .
HIGH STABILITY. $2 \% 10$ ohms to 1 meg. 10 p . Ditto 5% Preferted ralug 10 ohms to 10 meg . 4 p . 10 p . Ditto 5%. Preferred values 10 ohms to 10 meg., 4 p.
WIRE-WOUND RESISTORS 5 watt. 10 watt. 15 watt LO ohmi to 100 K 10p each; 0.5 ohm to 8.2 oh

MINIMUM POST AND PACKING I5p
SPECIALISTS

ALL MODELS "BAKER BPEAKERB" IN BTOCK Ei Fi Enclosare Manual containing 20 plani, decigns,
crossover data sid cubic tables. BAKER I2in. MAJOR $£ 9$

$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$. double cone, woofer and tweeter cone
together with a BAKER together with a BAKER
ceramic magnet asambly having a flay density of
14,000 gauas and a total flux of 145,000 Marwolls. Base resonance $40 \mathrm{c} / \mathrm{s}$. Rated 20 W . State 3

Module kit, $30-17,000 \mathrm{c} / \mathrm{s}$ with tweeter, crossover, batie and
instruction
$61 \mid .50$

'Group 25'। 'Group 35' 'Group 50'

 | 3 or 8 or 15 ohm | 3 or 8 or 15 ohm | 8 or 15 ohm |
| :--- | :--- | :--- | TEAK HI-FI SPEAKER CABLNETS. For 12 in or 10in dia. speaker $20 \times 18 \times 9$ in, 89 . Pont 25 p . For 18×8 in or speaver $16 \times 8 \times 6 \mathrm{in}$, 24 , Poilt 25 p .

LOUDSPEAKER OABINET WADDNG 18 in wide, 15p per ft.
GOODMANS 6 $\frac{1}{2}$ in. HI-FI WOOFER
8 ohm. 10W. Large ceramic m
Special Cambric cone sur-
Special Cambric cone sur-
round. Frequency reaponse
$30-12,000 \mathrm{c} / \mathrm{s}$. Ideal P.A. 2,4
Columns. Hi-Fi Enclosure 8 sitems, etc
Bin Standard Cone 12 w e4.50

ELAC CONE TWEETER

The moving coil diaphragm given a good radiation pattern to the higher frequencies and a emooth extension of sotal response from $1,000 \mathrm{c} / \mathrm{s}$ to $18,000 \mathrm{c} / \mathrm{c}$. Size $3 \frac{1}{3} \times$ $\begin{array}{ll}81 \\ 8 \text { gin deep. } & \text { Rating } 10 \mathrm{~W}, 3 \text { ohm or } \\ 15 \text { ohm models. } & \text { (} 90 \text { pont } 10 \mathrm{p} \text {. }\end{array}$
PEAKER COVERING MATERLAL8. Samples Large S.A.E. Horn Tweeteri 2-16kc/a, 10 W 8 ohm or 15 ohm 21.95. De Lure Horn Tweeteri 2-18kc/a, $15 \mathrm{~W}, 15$ ohm 23 .
WAY $3,000 \mathrm{c} / \mathrm{s}$. CROSSOVERS 3 or 8 or 15 ohm 95p.
WAY 3,000 c/s. CROSSOVERS 3 or 8 or 15 ohm 95p. LOUDSPEAKERS P.M. 3 OHMS. 7x4in., 21.25 ; 61 in ., 21.50 ; $8 \times 5 \mathrm{in}, 81 \cdot 60 ; 8 \times 21 \mathrm{in}, 81-50 ; 8 \mathrm{in}, 81 \cdot 75 ; 10 \times 6 \mathrm{in}, 81 \cdot 00$. SPECLAL OPFER! $80 \mathrm{ohm}, 2$ in, $23 \mathrm{in} ; 35 \mathrm{ohm}, 2 \mathrm{in}, 3 \mathrm{in}$,

E) EACB $15 \mathrm{ohm}, 81 \mathrm{in}$ dia, $6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, 8 \times \sin$. 2 ohms 21.50 .

 5 WATT MULTI-RATIO, 3,8 and 15 ohms 80 p .
MAJOR IOD WATT
ALL PURPOSE
transistor
AMPLIFIER
4 inputs speech and
munic, 4 way mixing.

Response $10-30,000 \mathrm{c} / \mathrm{s}$. Matcher
loudspeakers, $8: 15$ ohm. A.C. 200/250V Separate Treble and Basi control. BARGAIN AM TUNER. Medium Wave.
Trannintor Superhet, Ferrite aerial. 8 volt.

64.95

Traniintor superhet, Ferrite aerial. 8 volt.
GARGALA CHANNEL TRANEISTOR GONO MIXER
Add masical highlights and sound effecte to recordings. Wil] mix Microphone, records, tape and toner \quad (3.95 with separate controle into aingle outpu
BTEREO VERSION OF ABOVE 85.95 .
BARGAIN FM TUNER 88-108 Me/s Six Tranistor. 9V.
Printed Circuit. Calibrated alide dial tuning. $\leq 14,85$ Wainut Cabinet. Size $7 \times 5 \times 4 i n$.
BARGAIN FM TUNER as above leas cabinet
$£ 9.85$
BARGAIN
Pubh-Pull
Ready built,
anith Pubh-Pull Ready built, with volame control and on/ofl awitch, 8 volt.
COAXIAL PLUG 6p. PANEL SOCKET8 6p. LINE 18p. OUTLET BOXES. SURFACE OR FLUSH 25p
BALANOED TWIN RIBBON FEEDER 300 ohms. 5 p Id. JACK SOCKET Std. open-circuit 14p, closed circuit 23p; Chrome Lead-Socket 45p. Phono Plugz 5p. Phono Socket 5p. JACE PLUGS Std. Chrome 15 p : 3.5 mm Chrome 12p. DIH SOCKETS Chassir 3-pin 10p; 5-pin 10. DN SOCKETS Lead 3-pin 18p; 5-pin 15p. DIN PLUG8 3-pin 18p;
VALVE HOLDERS, 5p; CERAMICS 8p; CARS 5p.
E.M.I. TAPE MOTORS. 180 V or 240 V
A.C. 1,200 r.D.m. 4 pole 135 mA . 8pindle
 0.187x0-75in. 8ize $31 \times 21 \times 2$ in $\leq, 25$
(illuatrated). Poat 15 p.
E.M.I. GRAM. WOTORB, 120 V or 240 V a.c.
 CUSTOMERS FREE CAR PARK CALLERS WELCOME 337 WHITEHORSE ROAD, CROYDON Open $9-6$ p.m. (Wednesdays 9.1 p.m., Saturdays $9-5$ p.mn.)

[^7]

The mast accurate pocket size GALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $£ 4.65$ for this invaluable spiral slide rule on approval with money back refund if not satisfied
CARBIC LTD. (Dept. PE 45)
54 Dundonald Road, London SW19 3PH

FOR RAPID GARLAND BROS. LTD, DEPIFORD AROADWAY, LONDON, SE8 GAN

TRANSFORMERS
Miniature
MM6 6V, $500 \mathrm{~mA}+6 \mathrm{~V}, 500 \mathrm{~mA}$ MM12 $12 \mathrm{~V}, 250 \mathrm{~mA}+12 \mathrm{~V}, 250 \mathrm{~mA}$ MM $2020 \mathrm{~V}, 150 \mathrm{~mA}+20 \mathrm{~V}, 150 \mathrm{~mA}$ L. $\quad \mathbf{L} .29$ plus 13 P P. \& P .

LT1 $6.3 \mathrm{~V}, 1.5 \mathrm{~A}-75 \mathrm{p}$ plus 18 PD . \& P LT2 $6.3 \mathrm{~V}, 3 \mathrm{~A}-87 \mathrm{p}$ plus 26 p P. \& p .
 LT5 9-0-9V, 0.5A-75p pius ${ }^{2} 2$ p. LT6 $12-0-12 \mathrm{~V}, 1 \mathrm{~A}-95 \mathrm{p}$ plus 26 p . Multi-tapped
MT30/2 0-12-15-20-24-30V, 2A$\begin{array}{ll}\text { MT60/I } & \text { O-5 }-20-30-40-60 \text { p. p. \& A P. }\end{array}$ MT60/2 0-5-20-30-40-60 V . 2 A P.
Chargor
CT/10
IA- 61
05
plus 26p p. \& p

T/03 4A-f1.60 plus 30p p. ${ }^{\text {s }}$
Speaker Matching 3-8 16Ω
Example: 16 n speaker to 8 amplifier. 90p plus 20p p. \& p
SEMICONDUCTORS, etc. Zeners- 400 mW , 15p; 1.5 W , 22ip L.D.R.-ORP12, 56 p S.C.R.-400 P.I.V., $3.0 \mathrm{~A}, 57 \mathrm{p}$ Bridge rectifier- 40 P.I.V., I.5A, 50 p
Bridge
50 p rectifier-200 P.I.V., 2.0A $\stackrel{50 \mathrm{p}}{\mathrm{50}}$
Transistor sockers-7p
D. $1.1 .{ }^{\text {sen }}$ sockers-14 pin, 20p
 IN4002-100 P.I.V., 1.AA, 7p
in4003-200 P.I.V., $1.0 A, 80$

ALUMINIUM BOXES
with lids and screws
Type. Pricep. \& ${ }^{\text {W. }}$.

 $\begin{array}{lllll}\text { GB11 } & \text { 4in } & 2 \text { tin } & 2 i n & 38 \mathrm{p} \\ \text { GB1 } & 13 \mathrm{p} \\ \text { GB12 } & \text { 3in } & 2 \mathrm{in} & 1 \mathrm{in} & 33 \mathrm{p} \\ 13 \mathrm{p}\end{array}$

 GB16 10 in 2in $\begin{gathered}\text { 3in } 92 \mathrm{p} \text { 26p } \\ \text { These sizes fit } \\ \text { standard } \\ \text { veroboards }\end{gathered}$

EQUIPMENT CASES aluminium with sloping front panel.
 $\begin{array}{llllll}\text { SF } & 2 \mathrm{in} & 5 z i n & 2 \text { Iin } & 45 \mathrm{p} & 12 \mathrm{p} \\ \text { SF2 } & 2 \text { in } & 7 \text { 7in } & 3 \text { in } & 60 \mathrm{p} & 16 \mathrm{p}\end{array}$
 Stove-enamelled
silver-grey ham mer finished, 25p \qquad

CONSOLE CASES

in piain aluminium, ideal for mixers,
Type W. A B C D Price p. p .
 $\begin{array}{ccccccc}\text { GB21 } & 10 & 9 & 3+2 & 3 & 61.58 & 30 p \\ \text { GB22 } & 12 & 9 & 3+2 & 3 & 61.72 & 300\end{array}$

VEROBOARD

	0.1	0.15
Siz*	metrix	
2 ¢in $\times 3$ ¢ in	22p	16p
$2 \mathrm{fin} \times 5 \mathrm{sin}$	24p	$25 p$
3xin $\times 3$ 3in	${ }^{24}$	25
17in $\times 2$ tin	75p	57p
$17 \mathrm{in} \times 3$ Lin	$1{ }^{\circ}$	75

ELECTROLYTICS

$1 \mu \mathrm{~F}$	450 V	19p	1,000 F	25 V	27
$2 \mu \mathrm{~F}$	450 V	20p	1,000 F	50 V	12p
$4 \mu \mathrm{~F}$	350 V	14p	2,000 F	$25 V$	19p
$8 \mu \mathrm{~F}$	450 V	17p	2,000 F	50 V	53 p
$16 \mu \mathrm{~F}$	450 V	18p	2,500 F	$25 V$	45 p
$25 \mu \mathrm{~F}$	25 V	7p	$2.500 \mu \mathrm{~F}$	50 V	60 p
$25 \mu \mathrm{~F}$	50 V	10p	3,000 F	25 V	48p
$32 \mu \mathrm{~F}$	450 V	17p	5,000 $\mu \mathrm{F}$	25 V	60 p
$50 \mu \mathrm{~F}$	SOV	10p	5,000 $\mu \mathrm{F}$	50 V	$¢ 1.10$
$100 \mu \mathrm{~F}$	25 V	10p	8-8 0 F	450 V	18p
$100 \mu \mathrm{~F}$	50V	IIp	$8-16 \mu \mathrm{~F}$	450 V	20p
250 $\mu \mathrm{F}$	25 V	14p	$16-16 \mu \mathrm{~F}$	450 V	27p
$250 \mu \mathrm{~F}$	50 V	$17 p$	$16-32 \mu \mathrm{~F}$	450 V	$63 p$
$500 \mu \mathrm{~F}$	$2 S V$	18p	32-32 $\mu \mathrm{F}$	450 V	49p
$500 \mu \mathrm{~F}$	50 V	25p	$50-50 \mu \mathrm{~F}$	350 V	38

MINIATURE ELECTROLYTICS
1 FF 63V 6p $47 \mu \mathrm{~F}$ 10V 7p $47 \mu \mathrm{~F}$ 25V 6p $3.3 \mu \mathrm{~F} 63 \mathrm{~V} 6 \mathrm{p}$
$68 \mu \mathrm{~F}$ 16V 6p

$100 \mu \mathrm{~F}$	10 V
$220 \mu \mathrm{~F}$	
16 p	

$\begin{array}{lll}330 \mu \mathrm{~F} & 16 \mathrm{~V} & 11 \mathrm{p} \\ 470 \mu \mathrm{~F} & 10 \mathrm{~V} & 11 \mathrm{p}\end{array}$ $8 \mu \mathrm{~F}$
$10 \mu \mathrm{~F}$
$10 \mu \mathrm{~F}$
$16 \mu \mathrm{~F}$
$33 \mu \mathrm{~F}$

$500 \mu \mathrm{~F}$	16 V	19 p
50		

CASSETTE OWNERS!
For Philips and similar cassette recorders. PU12 Power unit for connection to
systems, giving $7 \frac{1}{f} V$, stabilised $\{3.25$ PU14 As above but switched for $\mathbf{1 5 . 1 0}$ pP75 Mains power supply, output $£ 1.95$ All units are complete with cable and plug.

CASSETTES

Top quality British made, low noise, complete with transparent library cases-
C60-40p: C90-55p; C120-70p

BATTERY ELIMINATORS
suitable for transistor radios and similar tight current equipment Output 6 V d.c. pp9 Input 240 V a.c. Output 9 V d.c

ILLUSTRATED CATALOGUE

Post Free
15p
CONTROLS, Log. or Lin.
Single, less switch, $15 p$
Single, D.P. switch, 24p
$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$. $100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$ 500kn, $1 \mathrm{Mn}, 2 \mathrm{Mn}$

RESISTORS

All 5%, highastability, E12 values. it W, Ip W,Ifig: IW,4p; 2W, 6p
SW, 10p; 10W. 12p

SWITCHES

roggle switches, standard size SW20-S.P.S.T. 18p; SW21-D.P.D.T. 23 p Push Button, miniature, SWI-I3p Wafer switches (rotary)-24p each.
SW4-I pole, 12 way. SW5- 2 pole, 6 way SWG-3 pole, 4 way, SW7-4 pole, 2 way SW8-4 pole, 3 way.

BONDED ACRYLIC FIBRE
B.A.F. wadding, I 8 in wide, lin thick. The deal lining for speaker enclosures. 30p per

TYGAN top quality loudspeaker covering material. Please send 6p for samples, sizes and material.

MAGNETIC COUNTERS
Brand new, neat, 48 vol

PLUGS

Car aeria
Co-axial

D.IN. 3 pin D.I.N. 4 pin 180 D.I.N. 5 pin, 240 D.I.N. 6 pin \qquad
lack, $2 \frac{1}{2} \mathrm{~mm}$ screened
fack, $3 \frac{1}{2} \mathrm{~mm}$ unscreened
Jack, $3 \frac{1}{2} \mathrm{~mm}$ screened
Jack, tin unscreened
Jack, sin screened
Jack. stereo, unscreened
jack, stereo, screened
Phono, plastic top
Phono, plated metal
Wander, red or black
Banana 4 mm , red or black

LINE SOCKETS

Car aerial

O.I.N. 2 pin (speaker)
D.IN. 3 pin
D.I.N. 5 pin
D.I.N. 5 pin, 180
D.I.N. 5 pin, 240
O.I.N. 5 pin, 240°
Jack, $3 \frac{1}{2} \mathrm{~mm}$

Jack, tin screened
Jack, stereo, screened
Phono, plated meta!

C

CAPACITORS

 1

CAPACITORS				$\begin{aligned} & 0.0027 \mu \mathrm{~F} \\ & 0.003 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$	S / M	$\begin{array}{r} \text { 15p } \\ \text { 50 } \end{array}$
2.2pF	500 V	5/M	$71 p$	$0.0033 \mu \mathrm{~F}$	$125 \vee$	P.S.	${ }_{6 p}$
3.3 pF	s00V	5/M	7 lp	$0.0033 \mu \mathrm{~F}$	500V	Poly.	6p
5pF	soov	S/M	$71 p$	$0.0031 \mu \mathrm{~F}$	1,000V	MDC	6p
10 pF	125 V	P.S.	Sp	$0.0036 \mu \mathrm{~F}$	500 V	S/M	15p
10 pF	500 V	S/M	710	$0.0047 \mu \mathrm{~F}$	125 V	P.S.	9p
15pF	125V	P.S.	5p	$0.0047 / 1 \mathrm{~F}$	500 V	Poly.	$6 p$
15 pF	500 V	Cer.	$4 p$	0.004711 F	500 V	S/M	20p
18 pF	500 V	S/M	$71 p$	$0.0047 \mu \mathrm{~F}$	$1,000 \mathrm{~V}$	MOC	8p
22pF	125 V	P.S.	5p	$0.005 \mu \mathrm{~F}$	100V	Mylar	3p
22pF	500 V	5/M	7 p	$0.005 \mu \mathrm{~F}$	soov	Cer.	5p
25pF	500 V	S/M	7 p	$0.0068 \mu \mathrm{~F}$	125 V	P.S.	101 p
27 pF	500 V	Cer.	4p	$0.0068 \mu \mathrm{~F}$	500 V	S/M	30p
33 pF	125 V	P.S.	5p	$0.0068 \mu \mathrm{~F}$	500 V	Poly.	6p
33 pF	500 V	SIM	${ }^{7} \mathrm{p}$	$0.0082 \mu \mathrm{~F}$	125 V	P.S.	101p
39pF	500 V	S/M	71 p	$0.0082 \mu \mathrm{~F}$	500 V	S/M	30 p
47pF	125 V	P.S.	5p	$0.01 \mu \mathrm{~F}$	18 V	Dise	4p
47pF	500 V	Cer.	4p	$0.01 \mu \mathrm{~F}$	125 V	P.S.	$10 \frac{1}{\text { P }}$
50pF	500 V	S/M	$71 p$	$0.01 \mu \mathrm{~F}$	160 V	Poly.	4 p
56pF	500 V	S/M	$7{ }^{19}$	$0.01 \mu \mathrm{~F}$	250 V	M.F.	3p
68pF	125 V	P.S.	5p	$0.01 \mu \mathrm{~F}$	400 V	Poly.	3p
68 pF	500 V	S/M	71p	$0.01 \mu \mathrm{~F}$	500 V	Cer.	5p
75 pF	500 V	S/M	7 p	$0.01 \mu \mathrm{~F}$	500 V	5/M	30p
82pF	500 V	5/M	71 p	$0.01 \mu \mathrm{~F}$	600V	MDC	7p
100 pF	125 V	P.S.	5p	0.01 1 F	1,000V	MDC	9p
100 pF	500 V	S/M	71p	$0.015 \mu \mathrm{~F}$	160 V	Poly.	3p
100pF	500 V	Cer	5p	$0.015 \mu \mathrm{~F}$	400 V	Poly.	3 p
120 pF	500 V	S/M	71p	$0.02 \mu \mathrm{~F}$	100 V	Mylar	3p
150 pF	125 V	P.S.	5 p	$0.022 \mu \mathrm{~F}$	18 V	Disc	5p
150 pF	500 V	S/M	$71 p$	$0.022 \mu \mathrm{~F}$	250 V	M.F.	3p
150 pF	500 V	Cer.	${ }^{5 p}$	$0.022 \mu \mathrm{~F}$	400 V	Poly.	3 p
180pF	500 V	S/M	7 7p	$0.022 \mu \mathrm{~F}$	600 V	MDC	719
200pF	500 V	S/M	7 p	$0.022 \mu \mathrm{~F}$	1.000 V	MDC	10p
220pF	125 V	P.S.	${ }_{5 p}$	$0.033 \mu \mathrm{~F}$	250 V	M.F.	$4 p$
220pF	500 V	Cer.	5 p	$0.033 \mu \mathrm{~F}$	400 V	Poly.	4p
250pF	500V	5/M	8 p	$0.047 \mu \mathrm{~F}$	12 V	Disc	6p
270pF	500 V	Cer.	5 p	$0.047 \mu \mathrm{~F}$	160 V	Poly.	3p
300 pF	500 V	S/M	${ }^{8 p}$	$0.047 \mu \mathrm{~F}$	250 V	M.F.	${ }^{3 p}$
330 pF	125 V	P.S.	5p	$0.047 \mu \mathrm{~F}$	400 V	Poly.	4p
330pF	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	600V	MDC	8p
390pF	500 V	S/M	8 p	$0.047 \mu \mathrm{~F}$	1.000 V	MDC	10p
470pF	125 V	P.S.	5p	0.14 F	30 V	Disc	$6 p$
470pF	750 V	Dise	5p	$0.1 \mu \mathrm{~F}$	250 V	M.F.	4p
500pF	500 V	S/M	8 p	$0.1 \mu \mathrm{~F}$	400 V	Poly.	5 p
560pF	500 V	S/M	8 p	$0.1 \mu \mathrm{~F}$	600 V	MDC	10p
680pF	125 V	P. S.	6 p	$0.1 \mu \mathrm{~F}$	1.000 V	MDC	14p
680pF	500 V	S/M	$8 p$	$0.15 \mu \mathrm{~F}$	250 V	M.F.	5p
820pF	500 V	S/M	8 p	$0.22 \mu \mathrm{~F}$	160 V	Poly.	$6 p$
$0.001 \mu \mathrm{~F}$	100 V	Mylar	3 p	$0.22 \mu \mathrm{~F}$	250 V	M.F.	${ }^{5 p}$
$0.001 \mu \mathrm{~F}$	125 V	P.S.	$6 p$	$0.22 \mu \mathrm{~F}$	400 V	Foil	10p
$0.001 \mu \mathrm{~F}$	400 V	Poly.	3 P	$0.22 \mu \mathrm{~F}$	1.000 V	MDC	15p
$0.001 \mu \mathrm{~F}$	500 V	S/M	10p	$0.33 \mu \mathrm{~F}$	250 V	M.F.	8 p
$0.001 \mu \mathrm{~F}$	500 V	Cer.	5p	$0.47 \mu \mathrm{~F}$	250 V	M.F.	8 p
$0.001 \mu \mathrm{~F}$	1.000 V	MDC	6p	$0.47 \mu \mathrm{~F}$	400 V	Foil	$15 p$
$0.0015 \mu \mathrm{~F}$	400 V	Poly	3 P	$0.47 \mu \mathrm{~F}$	1.000 V	MDC	25p
$0.0015 \mu \mathrm{~F}$	500 V	S/M	10p	$1.0 \mu \mathrm{~F}$	250 V	M.F.	15p
$0.0015 \mu \mathrm{~F}$	500 V	Cer.	5 p				
$0.0018 \mu \mathrm{~F}$	500 V	S/M	10p	Note			
$0.002 \mu \mathrm{~F}$	100V	Mylar	3p	$S / M=s i$	ver mica	1%	
$0.002 \mu \mathrm{~F}$	500 V	Cer.	5p	P.S. $=$ poly	lystyren	e 2%	tol.
$0.0022 \mu \mathrm{~F}$	125 V	P.S.	6p	MDC	.c. rati	$\mathrm{g}=300$	
$0.0022 \mu \mathrm{~F}$	500 V	S/M	10p	M.F. $=$ M	uilard	in. foil	
$0.0022 \mu \mathrm{~F}$	$1,000 \mathrm{~V}$	MDC	6p	Cer. $=\mathrm{c}$	eramic.		

Bi.P

COMPLETE TELEPHONES

 EX. G.P.O. NORMAL HOUSEHOLD TYPE
 ONLY 95p
 post \& Packing 35p each

TELEPHONE DIALS

Standard Post Office type Guaranteed in working order.

ONLY 25p
POST \& PACKING 15p

TESTED AND GUARANTEED PAKS		
	4- Photo Cells, Sun Satteries. 0.3 to $0.5 \mathrm{~V}, 0.5$ to 2 mA	50p
879		50p
881	$10 \begin{aligned} & \text { Reed switches } \\ & \text { large and } 5 \text { mali }\end{aligned}$	50p
	$200 \begin{aligned} & \text { Mixed Capacitors. Approx. } \\ & \text { quantity, counted by weight }\end{aligned}$	50p
2	250 Mixed Resistors. Approx. quantity counted by weight	50p
H7	40 Wirewound Resistors. Mixed ypes and values	p
н9	2 OCP7I Light Sensitive	p
H28	20 OC200/1 2/3 PNP Silico	50p
H30	$20{ }^{1}$ Watt Zener Diodes;	Op
H^{35}	100 Mixed Diodes, Germ. Gold bonded etc. Marked and Unmarked	50p
H38	$30 \begin{aligned} & \text { Short lead Transistors, } \\ & \text { NPN Silicon Planar types }\end{aligned}$	50p
H39	10 integrated circuits 6 gates ${ }^{\text {ind }}$	50p
H^{40}	20 BFY 50,2 2 2 N 696.2 N 1613 . unMarked untested packs	50p
BI	50 Germanium Transistors	50p
1	$\overline{150}$ Ginmanium Dioles	50p
883	200 Trans. manufacturers' ${ }^{\text {jecte }}$. jects an types	50p
1	$100 \begin{aligned} & \text { Sificon Diodes DO-7 glass } \\ & \text { equive to OA200, OA202 }\end{aligned}$	50p
1	$100 \begin{aligned} & \text { Sil. Diodes sub min. } \\ & \text { IN9I4 and IN9i6 eypes }\end{aligned}$	50p
888	50 Sil. Trans. NPN. PNP equiv to 0 C200/1 equivia BSY95A, ect.	50p
H6	40250 mW Zener Diodes 0.7 Min. Glass Type	50p
¢ा5	30 7op Hat Silicon Rectifiers	50p
H16	15 Experimenters' Pak of supplied	50p
H17	$20 \begin{aligned} & 3 \text { amp. Silicon siud Recri- } \\ & \text { fiers, mixed volts. }\end{aligned}$	50p
H20	20 BY126/7 Type sificicon Rectivolts \qquad	50
	Can	50p

make a rev counter FOR YOUR CAR
The 'TACHO BLOCK. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a counter for any car with C1 each

$1,000,000$ тамлsitois IN STOCK

 We hold a very large range of fully marked, tested and guaranteed Transistors, Power Transistors, Diodes and Rectifiers at very competitive prices. Please send for Free Catalogue.600,000
Silicon Planar Plastic Transistors. unmarked, untested, factory clearance. A random sampling showed these to be of remarkably high quality.
AUDIO PNP, similar to ZTX500, 2N3702/3, BCY70, etc. AUDIO NPN, similar to ZTX300, 2N3708/9, BC107/ 8/9, BCI68/9, etc. RF NPN and SWITCHING NPN types also.
Please state type of Transistor required when ordering.
ALL TYPES
500 for $\in 3$ 1,000 for $\mathbf{E 5}$ 10,000 for $£ 40$
P. \& P. 10 p for 1,000

OUR VERY POPULAR 3p TRANSISTORS
TYPE "A" PNP Silicon Alloy, TO-5 can.
TYPE "B": PNP Silicon, plastic encas easulation
TYPE "EE", PNP Germanium AF or R
TYPE ."F". NPN silicon plastic encapsulation. TYPE "G". NPN silicon, similar ZTX 300 range

POWER TRANSISTOR PRICE BREAKTHROUGH

Plastic Cased Silicon Power Transistorso latest design 40 watts and 90 watt PNA
 latest design it PNP and NPN types. Watts ant types available

 at the most shateringly low pricesof all time. All are fully tested marked and guaranteed

```
40W NPN
40W NPN
40W PNP
```

90W PNP
PAKS complementary pairs
MP40 $40 \mathrm{~W}+40 \mathrm{~W}$ pairs
MP90 $90 \mathrm{~W}+90 \mathrm{~W}$ 60D
Please state

A CROSS HATCH GENERATOR

 FOR $\mathbf{£ 3} \mathbf{5 0}$: : 1YES, a complete kit of parts including Printed Circuit Board. A four position switch gives Integrated Circuit design for easy construction and reliability. This is a project in the September edition of Practical Television.
This complete kit of parts costs £3.50, post paid.
A MUST for Colour T.V. Alignment.
Our famous PI Pak is still leading in value for money.
Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at Transistors PNP \& NPN, and a host of Diodes \& Rectifiers mounted on 'Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak Pif. Only 50p.
10 p P \& P on this Pak

Build yourselfa ThAUSSITOR RADIO
 WITH AFTER SALES SERVICE

 ROAMER 10 WITH VHF INCLUDING AIRCRAFT
10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MW1, MW2, LW, SW1, SW2, SW3

 TRAWLER BAND, VHF AND LOCAL STATIONS ALSO AIRCRAFT BANDBuilt-in ferrite rod aerial for MW/LW. Retractable, chrome plated 7 section telescopic aerial, can be angled and rotated for peak short wave and VHF listening. Push-pull output using 600 mW transistora. Car Aerial and tape record sockets. 10 transistors plus 3 diodes. Fine tone moving coil speaker. Ganged tuting condenser with vHF section. Separate coil for Aircraft Band. Volume/on/ont, wave change and tone controls Attractive case in black with silver blocking. Size 9 in \times in $\times 4$ in
Easy to follow instructions and diagrams. Parts price list and easy build plans 30 p (l'REE th parts). Earpiece with plug and switched socket for private liatening 30 p extra \qquad

7 TUMABLE WAVEBANDS: MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND. Built-in ferrite yod aerial formy and LW. Retractable chrone plated tele-
scopic aerial for short waves. Push-pull out put using 600 mW transistors. Car aterial and tape record sockets Selectivity qiwitch. 8 tiansistors plus 3 dioiles. Fine tone moving coilspeaker. Air spaced ganged toning condenser. Yolume/on/off, tuning. wave change and tone controls. Attractive case in rich chestnut shade with gold blocking. Size 9in \times Fin $\times 4$ in approx. Easy to follow nstructions and diagranles. Parts price list and easy build plans 25p (FIREL with parts). Earpiece with plug TOTAL

POCKET FIVE

8 TUNABLE WAVE-
BRADS: MW, LW,
WITH EXTENDED
MW BAND FOR EASIER TUNING OF LUXEMBOURG, ETC. 7 stages- 5 transistors and 2 diodes, supersensitive ferrite rod aerial, fine tone mowing coil
speaker. Attractive hlack and goll case. Size 51 in x speaker. Attractire hlack and gold case. Size $5 \frac{1}{2} \mathrm{in} \times$
If in $\times 3$ in. Easy buidd plans and jarta price list 10p (FREE with parts).

TOTAL P Q P.P. \& INS. 23p
BUILD
BUILDING COSTS

BUILD RADIOS, AMPLIFIERS, ETC., FROM EASY STAGE DIAGRAMS. FIVENNITS INCLUDing master unit to construct. Component include: Tuning Condenser: 2 Volume Controls: 2 Terminal Strip: Ferrite Rod Aerial: 3 Plugs and Terminal Strip: Ferrite Rod Aerial: 3 Plugg and Armature Unit: 10 Transistors: 4 Diodes: Resistors: Capacitors: Three in Knobs. Units once con Unit, enabling them to be stored for future use. Ideal for Schools, Educational Authorities and all those intice lied in radio construction, I'arts price liat anl easy build plans 25 p (FREE -jith parts).

CASE AND PLANS F5, 5?
P.P. \&iNS. 32p (OYERSEAS P. \& P. EI)

[^8]
NEW! "EDU-KII"

 BAND. Extra medium waveband provides easier tuning of Kadio Euxembourg, etc. Built-in ferrite rod aerial for MW and LW. Retractable 4 section 24 in chrome plated telescopic aerial for SW. Socket for car aerial. Powerful push-pull output. ${ }^{5}$ transistors and 2 diodes,
including micto-alloy R.F. transistors. Fine tone moviug coil speaker. Air spaced ganged tuning condenser. coil speaker. Air spaced ganged tuning condenser.
Volume'on/of, tuning and wave chance controls. Attractive case with carrying handle. Size gin $\times 7$ in \times fin approx. Easy to follow instructions amd diagrans. parts price list and easy huild plans day (FREE with parta). Earplece with plug and 8 witchell socket for private listening 30 p extrat TOTAL P C.OP.P. \&INS. 45p BUIAL
£5.98 (OVERSEAS

TRANSONA FIVE
 5 TRANSISTORS AND 2 DIODES

3 TUNABLE WAVE BANDS: MW, LW AND TRAWLER BAND. 7 tage- 5 transistors and 2 diodes. ferrite rod aerial, tuning condenser, volume contro!, fine tone speaker grille. Size 6 in $\times 4 \frac{1}{2}$ in $\times 1$ in. Easy build plans and parts price list 10p (FREE with farts). $\left.\begin{array}{l}\text { TOTAL } \\ \text { BUILDING COSTS }\end{array}\right\} \begin{aligned} & \text { P.P. AiNS, 24p } \\ & \text { (OVERSEAS } \\ & \text { P. \& P. 63p) }\end{aligned}$
total building costs

P.P. \& INS. 50p (OVERSEAS P. \& P. KI)

RADIO EXCHANGE LTD

61a HIGH ST., BEDFORD MK401SA. Tel. 023452367
| enclose $£$
please send items marked
ROAMER TE ROAMER EIGHT TRANSONA FIVE
ROAMER SEVEN
TRANS EIGHT
ROAMER SIX
EDU-KIT
Parts price list and plans for
Name
Address

Dept. (PE3) 174 Pentonville Road, London, N.1. TeI. 01-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue Ilford, Essex. Tel. 01-550 1086
Open Monday to Saturday 9.30 a.m. to
6 p.m. LATE NIGHT FRIDAV 7 p.m. MALLORDERS. Ordar with confidence. Send Postal Order. Cheque. Mait. CALtERS: Plose note that creques can oniv be accepred together

QUALITY COMPONENTS - BUDGET PRICES

PSYCHEDELIC LIGHT UNIT IN KIT FORM
Make this fascinating three channel unit from a kit which contains all the components needed to produce a reliable and entertaining display. Takes its drive from the speaker terminals of record player, tape recorder or portable transistor ra
All components with full step-by-step instruction

Resistons
10% Carbon, 12 values.
$10-10 \mathrm{M}$.
IW Hystab, E24 values.
5\% M
ion
ion IM, titw

2% M.O. E24 values \quad| 21 P |
| :--- |

CAPACITORS
CAPACITORS Tantalum- $\mu F / V: 0.1 / 35,0.22 / 35,0.47 / 35,1 / 35,2 \cdot 2 / 35,4 \cdot 7 / 35,10 / 63,10 / 25$. $10 / 16,22 / 16,47 / 6 \cdot 3,100 / 3$.
Moulded Polyester 250V: $0.01,0.022,0.033,5 p ; 0.047,0.068,0.1,7 p$; 0.22. 10p; 0.33. 12p; 0.47, 15p; 0.68, 18p; $1 \cdot 0,22 \mathrm{p} ; 2 \cdot 2,35 \mathrm{p}$.
Prineed Circuit Electrolycic—MF/V: $0.47 / 63$.। $1.0 / 63.2 \cdot 2 / 63,4.7 / 40,10 / 63$. $22 / 40,7 \mathrm{p} ; 47 / 40,10 \mathrm{p} ; 100 / 63,13 \mathrm{p}$; $100 / 10$. $7 \mathrm{p} ; 120 / 40$, 470/16. 13p;
FIXED VOLTAGE REGULATORS
TO3 case, Gives stabilised supply, MVR $5 V$, MVR $12 V$, MVR $15 V$. All at El. 50 ,

TRANSISTORS							
ACl07	28p	$A D 149$	47p	BC168	22 p	OC72	19p
ACl 26	$27 p$	BC107	12p	BC169	20p	OC75	22p
ACl27	- 23 p	BC108	12 p	BD112	$4{ }^{4} \mathrm{p}$	OC81D	19p
ACI28	20p	BCl09	12p	BFY51	23p	2N2926	13p
AC132	19p	BC147	20p	OC28	52p		
AC176	20p	BC148	20p	0 C 71	$14 p$	ADI62	75p pr

PRINTED CIRCUIT BOARD
VEROBOARD

The above shows only a very small selection from ou
All orders over 50p POST FREE in U.K. S. A.E. with all queries.
We can supply ALL R.S. COMPONENTS, mostly by return of post
CELECTRON-E
P.0. Box No. I, Llantwit Major, Glamorgan, CLF 9 YN

GUNTON ELEGTRONIC ISNITION KII
 $37.95+{ }^{25 p}$

Patents Pending. 12 volt only-state pos. or neg. earth.
system and will give you: Performance

* Continual Peak-Tuned Performance
t Upto 20\% reduced fuel cons
t Ensier All-weather Starting
A Increased Acceleration and Top Speed
* Increased Battery Life
t Elimination of Contact Breaker Burn
* Purer Exhaust Gas Emission

Kit includes absolutely everything for assembly: Case. Cables, Coil
Connectors, Silicon Grease, etc. 8 page illustraced inserucrions cover fitting of all types of tachometers. Call in for a workshop demonstration. S.A.E. all enquiries please, or Phone 33652. (Many letters from satisfied
customers.
SCORPIO: Transformer $61.85+25$ p P. \& P. P.C.B. $65 \mathrm{p}+10$ p P. \& P
Special interference filter $65 \mathrm{p}+10 \mathrm{p}$ P. \& P.

ALUMINIUM BOXES

Complete with baseplate and screws
AT DIRECT FROM MAN UFACTURERS' PRICES WITHRETURN OF POST SERVICE

Type No.	L	W	D	Price	P. \& P.
7*	$5 \frac{1}{4}$	$2 t$	$1 \frac{1}{2}$	$25 p$	$15 p$
8^{*}	4	4	$1 \frac{1}{2}$	$25 p$	$15 p$
9^{*}	4	$2 t$	$1 \frac{1}{2}$	$25 p$	$13 p$
10^{*}	$5 \frac{1}{2}$	4	$1 \frac{1}{2}$	$29 p$	$18 p$
11	4	$2 \frac{1}{2}$	2	$25 p$	$13 p$
12	3	2	1	$22 p$	$13 p$
13	6	4	2	$35 p$	$18 p$
14	7	5	$2 \frac{1}{2}$	$42 p$	$19 p$
15	6	6	3	$54 p$	$26 p$
16	10	7	3	$61 p$	$26 p$

These sizes accept standard veroboard range.
Nos. 12 to 16 available 15 th January onwards.
Dept. PE3, ELECTRONICS DESIGN ASSOCIATES 92 BATH STREET, WALSALL WSI 3DE

MAINS MOTOR
Precision made-as used in record deck and tape recor-dera-ideal also for extractor fan, blower, heater, etc. New and perfect. Snip at 65p. Postage 20 p for first one then 10 p tor each one ordered.

MiniAture

WAFER SWITCHES
2 poie, 2 way- 4 pole, 2 way-
3 pole, 3 way- 4 pole, 3 waypole, 4 way -3 pole, 4 way- 2 pole
6 way-I pole, 12 way. Allat 80 p wach $11+80$ pole, 12 way. All at 80 p .

IISA ELECTRICAL PROGRAMMER
Learn in your sleep: Have radio playing and
kettle boiling as you kettle bowing as you
awne-switch on lights to ward off intrudershave warm house to come
many other things you home to. All these and many other things you can do if you invest in an electrical programmes witch. Switch on time can be set anywhere to stay on up to $20 \mathrm{p} p$ \& p or with glase front chrome bezel 75p

RESETTABLE FUSE

How long does it take you to renew a fuse? Time yourself when next one e1 per hour see how quickly our resettable fuse (auto circuit breaker) will pay for itself. Price only 21 each or 211 yer dozen, spec
fit in place of switch.

FLUORESCENT CONTROL KIT Each kit comprises seven items-Choke, 2 tube ends, starter, holder and 2 tube clips, with tubes or the new "Grolux" tubes for figh tanks and indoor plants. Chokesare super-sllent, mostly resin flled. Kit A-15-20W, 21 . Kit B-30-40W, K1. Kit C-80w, 21-20. Kit F-65W, $81 \cdot 20$. Kit F for 8ft 12.jW tube 81-75. Kit MF1 is for $6 \mathrm{in}, 9 \mathrm{in}$ and 12 in miniature tubes, 21 . Kit MF2 for 21 in 13 W miniature tube, 21. Postage on Kits A and B 23p for one or two kits then 23 p for each two kits ordered. Kits C, D and E 23 p
on first kit then 18 p for each kit ordered. Kit F on first kit then 18p for each kit orilered. Kit F 33p then 23p for each kit ordered. Kit MFI 1
on frgt kit then $1 \bar{\omega}$ p on each tro k its ordered.

${ }^{3}$

SOLDER GUN

A must for every busy man, gives almostinstant heat alsollluminated
job. 100 watt 52.25 plus post and job. 100 watt 42.25 plus post and
ins. 200 . BIG JOB 950 W model 84.75 plus post and ins. 40 p .

WATERPROOF HEATING ELEMENT
26 yards length 70W. Self-regulating temperature control. 50 pont free.

MAINS TRANSISTOR POWER PACK

Designed to operate trangistor sets and amplifiers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ for up to 500 mA following batteries: PP1, PP3, PP4, PP6, PP7, PP9 and others. Kit comprises: mains' transformer rectifier, smoothing and load resistor, condensers and instructions. Real snip at only 21.00. plus 20p postage.

THERMOSTATS

Type 'A" 15 A for controlling room heaters, greenhouses, airing cupboards. Has spindle for pointer knobs: Quickly adjustable from $30-38$ deg. F. 48p.
Type "R" 10A. This is a 17 in long rod type made Type "H" 10A. This is a 17 in long rod type migde
by the famous Sunvic Co. Spindle adjusts this by the famous Sunvic Co. Spindle adjusts this
from $50-\bar{j} 0$ deg. F. Internal screw alters the tron $50-550$ deg. F. Internal screw alters the
setting so this could be adjuatable over 30 deg. to $1,000 \mathrm{deg}$. \mathbf{F}. Suitable for controlling furnace, oven, kiln, immersion heater or to nake fame-stat
or fire alarim, 50 p plua 128 post and insurance Type ' C . Simply clamp to tank, pipe hestsink casing. Break temperature adjusiable by calibrated knob 75p.
Type "D ' We call this the Ice-stat as it cuts in and out at around freezing point, $2 / 3 \mathrm{~A}$. Has many uses, one of which would be to keep the loft pipes from ireezing, if a length of our blanket wire
(10yd) 50 is is wound round the pipes. 28p. P. \& P. 5p. 50 p is round round the pipes. 28p. P. \& stat. Spindte adjustunents cover normal refrigerator temperature. 50 p plus 5 p post.

SPARTAN Portable RADIO
Long and medium wave, 7 transistor size 6 in $\times 4$ in $\times 1$ in
with larger than usual speaker With larger than usual speaker
giving very good tone, Built-in giving very good tone. Built-in
ferrite aerial and telescopic aerial for distant stations. A real bargain complete with Jeather
case, carrying al ing, earplug case, carrying sling, earplug
and case 88.75 plus 25 p post and ins.
THE REMITONE TRANSISTOR Medium wave pocket loudspesiker radio. Loud and with good tone will make wonderful
present. Buy while stocks last. Fuil money present. Buy while stocks
back guarantee. 21.99 Only.

BATTERY MOTORS A bargain parcel of 7 motors for 11 . Some not as large as a postage stamp and only fin thick. largeat is $1 \mathrm{ilin} \times 1 \mathrm{lin}$ dia. Some work of 1 iV some as high as 18 V . These notors are used in racing cars, power toys, etc. The largest in so powerfulthat it willdrive a minidrill, model lathe, or siming 16.5 V but very powerful even op low as $4 \frac{\mathrm{~g}}{\mathrm{y}} \mathrm{V}$. Don't misa this wonderful snip.

COMPUTER TAPE

2,4001t of the Best-Magnetic Tape money can buy-users clain good results with Video and sound. 1in wide 21.00 plus 30 p post and insurance, with cassette, in wide 21.00 plua 30 p post and with cassette. Spare spools and cassettes-1in 75 p , 1 in 75 p each plus 20 p post and insurance.

TANGENTIAL HEATER UNITS

This heater unit is the very latest type, most, efficient and quiet rumning. Is as fitted in Hoover and blower heaters costing $\& 13$ and more. We have a few only. Comprises motor, impeller, 2 kW element and 1 kW element allowing switch ing 1 2 and 3 kW and with thermal safety cut-out. Can be fitted into any metal tin, ase or cabinet. Only need control awitch, 88.50 . Don't mise this. Control 8 witch 95 p . P. \& P. 40 p .

THIS MONTH'S SNIP

5 AMP VARIAC for 6

This heading is not quite accurate becsuse it is not a variable transformer that we are offering but a solld state device which serves the amme purpose in almost all applications and, of course, much smaller. Made by Ciltra Electronics, can be fited into ordmary switch box. Engrave a circle on the voitmeter (youl will find the scale almost linear) you caw bave with your controller equal to a 5 amp variac costing $\$ 12$ or inore.

THYRISTOR LIGHT DIMMER

For any lamp up to 1 kW . Mounted on switch plate to flt in place of standard switch. Virtually no radio interference Price 22.85, plua 20 p pont and insurance.

MULLARD UNILEX

This D.I.Y. Atereo Amplifier is still avallable complete at 87 for the four Mullard Modules, or Modules can be bought aeparately as follows:
4 W amp nodule (e required) Mullard Ref. No. E.P. $9000-1.65$ a 4W amp module ('2 required) Mullard Ret. No. E.P.9000- 1 - 65 oach. Pre-amp module Mullard Re1. No. E.P.9001- $21 \cdot 60$ each. Power module-Mullard Ref. No. E.P.9002- $\mathbf{\$ 2} \cdot \mathbf{1 0}$ each. In addition and made to Mullard Specification we offer Standard Control Unit with escutcheon- 22.50
Knobs-Get of 4-50p. Knobs-Bet of 4-50p

MULLARD I.F. MODULE This is a fully screened intermediate frequency module for amplification and detection of $1 . \mathrm{m}$. signals at $10-7 \mathrm{M} \mathrm{Hz}$ l.f. amplifier for at 470 kHz . The first stage is used as an. operation, in conjunction with external oacillator coil 85 p each. 10 for $\mathbf{~} 7.85$. 100 for 888.50 p . With connection

ATLAS

TWENTYLITE

Fluorescent lighting units with polyenter choke and finished white enamet. 2 ft model, ideal kitchen, bedroom, hallway, porch, loft, etc. With tube assembled ready to instal, 21.99, plus P. \& P. 30p and insurance.

No, of Poles	Standard size 1 in wafer-silver-plated j-amp contact. standard in spindle 2 in long-with locking washer and nut								
	2 wa	3 wa	4 w	5 way	6 way	8 way	9 way	10 way	ioway
1 pole	40p	40p	400	400	40p	40p	40p	40p	Op
2 poles	409	40 p	40 p	40 p	407	40p	40p	70p	70 p
3 poles	40 p	40p	40 D	40p	70 p	70 p	70 D	95p	95p
4 poles	40p	40 p	40 p	70p	700	70 p	70 D	21.20	21-20
5 polea	40 p	40 p	700	70 p	95p	950	95 p	21.45	81.46
6 poles	40p	70p	70p	70p	95p	850	85p	21.70	81.70
7 poles	70 p	700	70p	95]	81.20	21.20	E1-20	21.96	21.95
8 poles	70 p	70 p	709	850	21.20	21.20	21.20	42.20	22-20
9 poles	70 p	700	95 D	850	81.45	81-45	\%1.45	42.45	28-45
10 poles	$70 p$	70 p	95 p	\$1.20	21.45	21.45	21.45	2. 20	
11 poler	700	95 p	95p	+1.20	81.70	21.70	\&1.70	28.96	22-95
12 poles	700	96p	85p	21.20	\$1.70	11.70	81.70	\$8-20	88-20

POCKET BLEEPERS

These work on quite a low frequency, are carried in the pocket, nam be contacted quickly. These contain two encapanlated circuits personnel the relay and cause the bleep as well as rechargeable nickel cadmium calls Quite cortly things to buy. The ones we have are not new, but belleved to be in good working order and sold on the understanding that if they are not, they will be replaced free. The size of the case, which is intended for carrying in top
pocket, in approx. 4 in long, Lin wide and sin thick. Limited quantity at tion pocket

9 VOLT BATTERY ELIMINATOR $61 \cdot 00$

PRESSURE SWITCH

Bailecently received a delivery of a very fine pressire awitch made by Bandey Mackey. Their type no. 108 R . This la an elaborate switch very anperior construction with a heavy brass hody. We understand that the regular price of this is $£ 12$ and we have linited stocks ofred at $24-50$ each.

POCKET CIRCUIT TESTER

Test conthuity of any low
resistance circuit, bouse wiring, car electrics. Tests polarity of diodes and recconversion to signal injector conversion to signal injector
(circuit supplied). 80 p or for 50 p post paid.

AMPLIFIER IN CASE WITH

SPEAKER

Marketed by British Relay under the name Luxiator. This is in a very neatlooking cabinet and is ideal around the home or in the worknhop for trouble shooting or for testing out a quick lash up Size approx. 9 in $\times 6$ in $\times 34$ in deep. Inputis via a matching transiormer and volume control and battery or an external 110 V source. Speaker is an R-A eliptical $6 \mathrm{in} \times 3!\ln 10,000 \mathrm{gauss}$. The ampli R-A eliptical 6 in X fin 10,000 gauss. The amplic 88.50 each, 10 for 881.50 . Pont and insurance 20 p

BAKELITE INSTRUMENT CASE
size spprox. 6in $\times 3$ in x 2 in deep with brass inserts in our corners. This is a very strong case sultable to houge instrument paxlid 10 p extra.

TELEPHONES

Complete, as illostrated. Save your legs, time and temper simply by putting in bom tew but. Ex. G.F.O. no condition guaranteed in good Gupplied with diagram ind Instructions ahowing how connect. Price 75 peach +50 p post or 2 for $\& 2$ post pald Also available separately, dials and handsets 50 p each +20 p poet
ROCKER SWITCH
13A self-fixing into an oblong hole.
size appro
10 for 72 p
SLIDE SWITCHES
Slide \$witch. 2-pole changeover pane mounting by two 6B.A. screws. Size approx. 1 in \times 2in rated 250 V lamp.
6 p each. 10 for $54 \mathrm{p}, 100$ tor $\mathbf{5 6} 10,500$ Tor 224. Dit 8 ub Miniature $81 \mathrm{H}_{\mathrm{M}}$ BWitch. DPDT 19 mm (10 approx.) between fixing centres. 18p each or 10 tor 21.
1 A .10 p .
EDUCATIONAL KITS-all with pictorial instructions

THISBALANCE KIT FRAE
Eagle
anducational Eagleeducatlonal made these are made these are
excellent value
for money. We do not expect to
he able to repeat this offer once stocks are aold. Brief description of each klt is given below and with 3 kits or inore we give FREE an accurste 11 piece balance kit. Price of kits 40 p each pont paid. Special price for all 8 klta 88 whth free KA2 Lens Kit. Eleven parts, including candle, one concave lens. one convex lens, stage and slit through difterent lenses.
KA3 Wator Pump Kit. Tbirteen parts. Top of pump is transparent so that operating parts may pump is transparent so that operating parts may be geen easily while working. Three typea of Force Pump with reservoir and nozzle.
KA4 Busser Kit. Eleven parts. Transparent cover sallow the operation of buzzer to be seen.
Illuatrates and teacheshow electromagnetiam with Illuatrates and teaches how electromagnetiam with an automaticswitch resultsinan operating buzzer. Incl etc. Motor operates fromiliv battery. Illustrates and teaches how electro-magnetism operates a motor
KA7 Electro-Magnet Kit. Fifteen parts, Includen compass. Makes two electro-magnets, one with wire. Picks up tacka, nails and any small parts wire. Picks up tacks, nails and
showing how magnetlam works.
KA8 Current and Roniatance Kit. Twenty-nine parts, including bench and light bulb. Conduct interesting and educational projects to learn the application oi and resistance with different types and lengths of wire.
KA9 Bell Kit. Elght parts, including bell and push but how the hammer is coniggerede electric bell and rlng.
flve part kit, easy to conatruct, simple to Twenty flve part kit, easy to conatruct, simple to operate.

Practical Electronics Classitied Advertisements

RATES: $9 p$ per word (minimum 12 words). Box No. 20 pextra. Semi-Display $£ 7$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House,

THE PICTURE BOOK METHOD OF LEARNING BASIC ELECTRICITY 5 pts $£ 4.50$. BASIC ELECTRONICS $6 p t s ~ £ 5 \cdot 40$. BASIC TELEVISION $3 p t 5 ~ £ 3.60$

Postage and Packing included

The Pictorial Approach Manuals assure the quickest and soundest method of gaining mastery over these subjects. The clear and concise illustrations make study a real pleasure. Your money refunded if not completely satisfied is your 100% Guarantee. Free lllustrated Prospectus on request.
Send now to SELRAY BOOK CO.. 60 HAYES HILL, BROMLEY BR2 7HP

- KILRIMONT BOOKS
 conductor projects (1469), $£ 1 \cdot 20+$ [jp post; linder. standing Electronic (components (I 572,1 , $88-50$; Transistur Circuit Design Tables (1971), £2-80:
 Bench Manual (1971), £2.50; Introduction to Semiconductor Devices (1972), £1.90 + 5p post. Many others. Please send for lints. Post free unless indicated.
EILRIMONT BOOKS (D), Kilrimont Houne, London Road, Braintree, Estez

THOSE 1,000 BANBURY UFO's! Details of our Prediction (and list) S.A.E. Numerous ('harts, Map, Detectors. IR. © E. I'CHLA1rATION゙, Highlands, Nevdhatm Market. Nutfolk.

DIGITAL COMPUTER Logic aud Elertronics. I four volume relf-inst ructional courso, $\mathbf{8 2} 99$ post free Mones back assirance ('AMBRIDME JBARXIXV, xa Rose (resernt, (ambrides.

FOR SALE

8EEN MY CAT? 5, 100 itens. Mechanical and Electrical tipar, and materials. ふ.A.E. K. K. WHINTON, Dept. l'li, New Mills, Ntockport.

FOR 8ALE. Ferrograph Series Severn-half-track stereo. Also Tindherg series 15 four-trark. 130x 48.

EDUCATIONAL

ENGINEER8. liet a technical rartiticatt. Postal courses in Enginpering, Falectronics, Radio, TV, ('omputers, Dranghtsmanship; Buildings, ete. F'REE book from: B1E F (Dept. $\mathcal{Z}(\mathrm{Bl}$ B 24), Aldermaston (ourt, Reading, RG: +1'F. Accrodited by ('AC('

WANTED

TOP PRICES PAID

for new valves and components
Popular T.V. and Radio types
KENSINGTON SUPPLIES
(B) 367 Kensington Street Bradford 8, Yorks.

SERVIGE SHEETS

8ERVICE 8HEET8 for Televisions, Radios, Transistors, Tape Recorders. Record Hlayers, ete, from $5 p$ with free Fault-Finding Guide. S.A.E. orders/inquirics. Catalogue 15p. HAMIITON RADIO, 47 Bohemia Road, st. Leonarils. Sussex. Telephone Hastings 29066.

SERVICE 8HEET8, Radio, TV, ete. y,000 motels. (atalogue 15 p. S.A.E. emquiries. TELRAY, 11 Maudland lank, Preston.

EDUCATIONAL

HONS. DEGREE IN ELECTRONIC ENGINEERING
Two academic years in college, one year in industry and a final academic year in college.
HONS. DEGREE IN
ELECTRICAL ENGINEERING
Three years on a six-monthly Polytechnic/Industry sandwich pattern followed by a final academic year in college.
H.N.D. IN

ELECTRICAL and ELECTRONIC ENGINEERING

Three year thin-sandwich course.
For full details apply to Head of Department of Electrical and Electronic Engineering, North Staffordshire Polytechnic, Beaconside, Stafford or telephone him at Stafford 52331.
Please quote reference 2373/PE on both envelope and letter.

TELEVISION TRAINING

(MONOCHROME AND COLOUR)

This private College provides theoretical and practical training in Radio and TV Servicing. Courses of 16 months' duration, with daily attendance, are available for beginners and shorter courses for men with previous training in Electronics and Radio. Next course commences April 16th. Training courses in Marine Radiocommunication and Radar are also available. Write for prospectus to:. London Electronics College, Dept. B/3, 20 Penywern Road, Earls Court, London SW5 9SU. Tel. 01-373 8721.

Propertyof a. HICET

Trompus alanimonin

C GA
 ELTRASORIC transducer/remote control. 28.

IL digital cloch

Kit 221 DiL $12 / 24 \mathrm{hr} .4 / 6$ (ligit, 211.50 , iata $9 p$ KW ELECTROIIC CAR IGAITION KIT, \&6.67.

STEREO。

QIAD ACDIU from stereo, matrix IC, e3.67 MAGNETIC CARTRIDGF, llamond $20-20 \mathrm{kHz}$ 1419. DUAL I' PREAMP E1. 87 . FM Hi-FiTINER 28. MC131OP MPX FM decoder, £8.69: KIT 28.45 IITEGRATED CRRCUIT8: with lata, 709 TO.i, $21 p$ DIL. 28p: 710 and $748,33 p: 723,55 \mathrm{p}$
141 OP AMP DIL, 28p Photndetector/atip, Koltage regulator 11 Fro to 20 V 3 leal, 21.49.
 555 Timer/mono/ar table osc. clock, 95p
Hivinif TGTM BRANDED
 11.27; $440,59 \mathrm{p}: 7492,67 \mathrm{p}: 7421,40 \mathrm{p}: 7+1+1 ; 99 p$ DIL SOCEETS, high or low profile, 14 or 16 pin, 13 p . DIL PLUG or IC case, 16 p in , 10 mm high, 35 p . 8EMICOKDUCTORS
$\mathrm{BClOF}^{\circ} 8 \mathrm{p}$. BC108, 8p. BC109. 8p. 2N3055, 40 p. $\mathrm{AC125/6/7/8}, \mathrm{AC127/8} \mathrm{ACl} 27 /$,8 , AF117, 15p

 12 p ; $2 \mathrm{~N} 2369,21 \mathrm{p} ; 2 \mathrm{~N} 2646,49 \mathrm{p} ; \quad 2 \mathrm{~N} 30 \mathrm{p} 3 \mathrm{~N}, 17 \mathrm{p}$

 ${ }^{59 \mathrm{p}} \mathrm{ME} 0$
$\frac{\mathrm{ME}}{\mathrm{ME}} 0411 / 2,18 \mathrm{p}$; ME 4001, 12p; ME $4102,11 \mathrm{p}$

10p 4001 , $1 \mathrm{~F} 4004,8 \mathrm{p}$: 30 V I ${ }^{13}$ ridge, 28 p
 68p.
CAPACITORS: $95 / 30 \mathrm{~V}$ Electrolytic.
$10 / 50 / 100 \mu \mathrm{~F}, 5 \mathrm{p}: 200 / 500 \mu \mathrm{~F}, 8 \mathrm{p}: 1,000 \mu \mathrm{~F}, 15 \mathrm{p}$ DISC: 22pf to $0.047 \mu \mathrm{~F}$, 4 p ; up to $0 \cdot \mathrm{I} \mu \mathrm{F}$, 6p
 60p. Copper Board $10^{*} \times 6^{*}$: S.R.B.P., 40p. Fec. 80 p .
Antex irons at R.R.P. Desolder Braid, 16 p . WEATHER STATION barometer, temp., humid., 48. FREE CATALOGUE S.A.E. Discount $20+10^{\circ}$ FREE CATALOGUE S.A.E. Discount $20+10^{\circ}{ }^{\circ}$.
C.W.O. P. \& P. UK \& Europe 7p. Overveas 35 p . P.O. BOX 29, BRACKNELL, BERES.

FIBRE OPTICS

Crofon light guide type 1610, 64 fibres in sheath, fl per metre; $5+, 80 p ; 10+, 70 p$.
RESISTOR PACKS: $3005 \%, 60 p$ (15p); 200 5% hi-stabs, 60p (12p); 100 i \& 2%. 60p (8p) 100 metal oxide, 80 p (8 p). One of each pack 62 (25 p). 2 N3055, 35p; BC107-8-9, 8p or

 (40 p). Reed switch units, contain 31 reeds
mounted round a drum, magnet inside, also mounted round a drum, magnet inside. also
 $20 \mu \vee i / p$ for $2 W$ o/p. $7 i n \times 4 i n 3 \Omega$ speaker. All in polished oak-faced cabinet with nonstandard single motor tape deck. Only 63 (f).

GREENWELD (PEo)

24 Goodhart Way, W. Wickham, Kent Tel. 01-777 2001. Shop at 21 Deptford Brdwy., S.E.8, open Sats. Tel. 01-692 2009. Post in brackets, small parts 3p. S.A.E. list.

TV LINE OUT-PUT TRANSFORMERS
Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey TW9 2EQ $01-9483702$.

BRAND NEW COMPONENT8 BY RETURN, Electrolytics, $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 1,2 \cdot 2,4 \cdot 7,10$ mfds., $3 \frac{1}{2} \mathrm{p} ; 22,47,4 p(50 \mathrm{~V}, 5 p) ; 100,5 p(50 \mathrm{~V}$, $6 p$) Subminiature bead-type tantalums $0 \cdot 1 / 35 \mathrm{~V}, 0 \cdot 22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}$ $4 \cdot 7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}, 8 \mathrm{p}$. Mylar Film $100 \mathrm{~V}, 001$ $-002,-005,-01,-02,2 p ;-04,-05,2 \frac{1}{2} p ;-068,-1$, 3p. Polystyrene 6.3T, E12 series 10 pf, $-10,000$ pf., 2p. Miniature Highstab Resistors E. 12 series 5% Third Watt ('arbon Film $1 \Omega-10 \mathrm{MS}$ (10% over 1 M) and 1 W Metal Film $27 \Omega-10 \mathrm{M} \Omega$, $\&$ for 5p. Insured postage 8p. THE (i.R. SWPPlS CO., 127 Chesterfield Road, Nheftield, SKORN.

COMPUTER PANELS. 9in $\times 7 \frac{1}{2} \mathrm{in}$ long lead 10 Trans., 40p (10p); E47. 10 Trases, 80 p (IOp). AMERICAN PANELS. 4 for $60 p(1 \because p)$ with data M.C. METERS, \quad - 3 in, three asisoried, $\mathbf{5 1 . 0 5}$ (2 J p) WIRE ENDED NEONS. 10 f(w 45p (R_{p}): 20 for 75 p (\%)). Bank of flve with i) C 40 i Driver Trans. 43 . 22 WAY STEPPING SWITCH wilh Rexet, Mains Operation, 80p (1.5p)
NEW 46 WAY AS ABOVE, 21.25 (2 L)
CROUZET GEARED MOTOR. Mains, is r.p.m. a.cl.w.. 75p (].j)).
 work oh 12 ($\mathbf{2}$ (1)p).
SILICON DIODES 650V $1 \frac{1}{2}$ A. 10 om Taghoarty 30 g
I.C. 7490 SERIES ON PANEL(S). 10 for 75 p (10p). COPPER CLAD PAX. PANELS. $j!$ in \times j!in, 6 for 30p (10p).
POLYSTYRENE CAPACITORS. 125 S , 100 pF to (0) (1)2, 20 p dozen: $0 \cdot 01$: to 0 06s, 30p dozen (if ordered alome 10 p)
MIXED POLYSTYRENE/S. MICA CAPS. 100 fol 45p.
7ib ASSORTED COMPONENTS, £1.50.
2lb ASSORTED COMPUTER PANELS, 21.50.
8.A.E. gin $\times 4$ in FOR LISTS.
J.W.B. RADIO

75 HAYFIELD ROAD, SALFORD 6, LANCS
Postage in brackets
Mail order only
 marked. Price 10 p each; 6 for 50 p; 14 for El . Special offer 6 off each voltage (66 zeners) $\mathbf{4} 4.50$. RESISTORS, Carbon film $\frac{1}{2} W 5 \%$. Range from $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{Mn}$ in El2 series, i.e. $10,12,15$, 18 , High stability, low noise. All at Ip each; 8p for 10 of any one value; $70 p$ for 100 of any one value. Special development pack- 10 off each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ (730 resistors) C 5 .
440V A.C. CAPACITORS. $0 \cdot 1 \mu \mathrm{~F}$, size 1 tin x
 $45 p ; 2 \cdot 0 \mu \mathrm{~F}$, size 2 in X J in $75 p$.
SILICON PLASTIC RECTIFIERS I.5ABrand new wire-ended DO27. I00PIV at 8p each or 4 for 30 p; 400 PIV at $9 p$ each or 4 for 34 p ; 800PIV at 14 p each or 4 for 50 p .
5p post and packing on all orders below $£ 5$. V. ATTWOOD, DEPT. 86, P.O. BOX 8, ALRESFORD, HANTS

SITUATIONS VACANT

- TECHNICAL TRAINING IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I CS trained man. Let I CS train YOU for a well-paid post in this expanding field.
IC S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Colour TV Servicing, also Electronics, Computers, etc. Expert coaching for:

- c. \& . telecommunication technicians certificates.
- RADIO AMATEURS' EXAMINATION.
- general radiocommunications certificate.
* C. \& G. RADIO SERVICING THEORY.

Now available, Colour T.V. Servicing.
Examination Students coached until successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5 -valve receiver, transistor portable, signal generator and multi-meter. All under expert guidance.
POST THIS COUPON TODAY and find out how I C S an help YOU in your career. Full details of IC S courses in Radio. Television and Electronics will be sent to you by return mail
MEMBER OF THE ABCC
ACCREDITED BY THE CACC

INTERNATIONAL
 CORRESPONDENCE

SCHOOLS

A WHOLE WORLD OF KNOWLEDGE AWAITS YOU!

International Correspondence Schools
(Dept. D.X.25), Intertext House, Stewarts Road, London SW8 4UJ

NAME
Block Capitals Please
ADDRESS
\qquad

AGE

MENH
 ser can beyours

Jobs galore！144，000 new computer personnel needed by 1977．With our revolutionary，direct－from－ America，course，you train as a Computer Operatorin only 4 weeks！ Pay prospects？$£ 2500+$ p．a．
After training，our exclusive ap－ pointments bureau－one of the world＇s leaders of its kind－intro－ duces you FREE to world－wide opportunities．Write or＇phone TODAY，without obligation．

London Computer Operators Training Centre M83，Oxford House
9－15 Oxford Street，W． 1
Telephone 01－734 2874
127 The Piazza，Dept．M83
Piccadilly Plaza，Manchester
Telephone 061－236 2935
RECEIVERS AND COMPONENTS
（continued）

Modern Computer Panets；with TOS and plastic transistors， 6 for $£ 1,15 p$ P．\＆P． P／C Board $S / S 5 \frac{1}{2}$ in $5 \frac{1}{2}$ in． 10 for $50 p$ +15 p P．\＆P．
Transformers， $7.5+7.5 \mathrm{~V}$ app．$\frac{1}{2} \mathrm{~A}, 60 \mathrm{p}$ ， p．p． $18-0-18 \mathrm{~V} 200 \mathrm{~mA}+24 \mathrm{~V} 40 \mathrm{~mA} 70 \mathrm{p}$ p．p．
Potted Transformer， $1000-1000 \mathrm{~V}$（a 250 mA ，Brand New，E6，p．p．
F．M．Tuner，with RF stage with AGC． 3 plug in transistors neg．earth．Size $2 \frac{1}{2} \mathrm{in}^{2} \cdot 2$ in $1 \frac{1}{2} \mathrm{in}$ ．With circuit，$£ 1.25$ ， p．p．
Crouzet Geared Motors， 240 volt $10,15,30$ or 60 rpm ，new， $\mathrm{El} \cdot 40$ ，p．p． Transformers， $52-0-52 \mathrm{~V} 1 \mathrm{~A}+22-0-22 \mathrm{~V}$ 0.2 A, E2，р．р． $34-0-34 \mathrm{~V} 2 \mathrm{~A}+22-0-22 \mathrm{~V}$ －2A，$£ 2$ ，p．p．
3EGI Scope Tube，new，¢1．75，p．p．
UHF Tuners，transistorised，£1．50，p．p． Veroboard 0.14 in $\times 2 \frac{1}{2} \mathrm{in}$ ． 10 for $\mathrm{El}+$ 15 p P．\＆P．
38PI Scope Tube with base and screen （ex equipr．），£2．50，p．p．
Mullard I．F．Module，A．M．／F．M．to suit our tuner，transistorised，$£ 1 \cdot 25$ ， ．p．p．

R．T．SERVICES（Mail order only）

77 Hayfield Road，Salford 6

8PECIAL OFFER． 100 mixed resistors．Pre－ ferred Values $\frac{1}{4} W$ and $\frac{1}{3} \$ 1 \cdot 25$ ，including postage． $2 \cdot 2 m \mathrm{~m} 200 \mathrm{~V}$ Whir 10 p each，including PP．ALEXANDERS． 16 Inverness Street， London，N．W．1．Tel． 4655322.

5－N－Channel FETs 3819E—fl
Full specification devices complete with circuit details for building voltmeter，timer，ohm－ meter，etc．
Send 10 p for full list of field effect transistors and other top quality transistors available at bar gain prices．
45 Stat REDHAWK SALES LTD．
Station Road，Gerrards Cross，Bucks． MAIL ORDER ONLY

100 WATT AMPLIFIER

Fully protected，transformerless， 9 transis－ tor circuit．Input 500 mV ．Output into 8 ohms． 0.1% distortion．
Printed circuit board and full instructions． \＆1．45p +10 p P．\＆P．S．a．e．for list of component bargains．
EDMUND8 GOMPONENT8， 134 NORTHEND
ROAD，LONDON，W14．
Mail order only
RADIO \＆TELEVISION AERIAL BOOSTER8 £2．95，five television valves 45p．50p bargain transistor packs，bargain $£ 1$ resistor and cap－ acitor packs．UHF－VHF televisions 87.50 ． Carr £1－50．S 4 ．for 3 leaflets．VELCO ELECTRONICS，Bridgems．，Ramsbottom， Bury，Lancs．

LADDERS

LADDER8， $24 \frac{1}{\mathrm{ft}}$ E9．80，carr．80p．Leaflet （bept PEE），HOME SALES LADDER （EENTRE，Baldwin Road，Stourport，Worcs． Tel．029－93 2574.

MISCELLANEOUS

ENAMELLED COPPER WIRE $\begin{array}{llr}\text { S．W．G．} & 116 \text { Reel } & 1 / 6 \text { Reel } \\ 10-14 & 61.15 & 65 \mathrm{p} \\ 15-19 & 61.15 & 65 \mathrm{p} \\ 20.24 & 61.18 & 75 \mathrm{p} \\ 25-29 & 61.25 & 80 \\ 30-34 & 1.30 & 85 \mathrm{p} \\ 35-40 & & 60 \\ \text { The above prices cover P．\＆P．in U．K．} & \text { Supplied by }\end{array}$

INDUSTRIAL SUPPLIES
102 Parrswood Rd．，Withington，Manchester 20 Telephöne No． $061-2243553$
FOR ALL your Electronic Component require－ ments．Send for free list to B．C．ELECTIRONHC suppliEs． 7 Regent Road，Hudderstield， HD1 4 NR ．

METER REPAIR8．Ammeters，voltmeters． multi－range meters，etc．Send to METER REPAIRS， 39 Chesholm Road，London， N 160 DS ．

at last you can transmit and FORGET ABOUT LICENCE EXAMINATIONS
because this Ministry approved transmitter／receiver kit does not use R．F．
Your transmissions will be virtualiy SECRET since they won＇t be heard by conventional means． Actually it＇s TWO KITS T NE because you get the transmitter AND receiver．You＇re going to find the transmitter AND receiver．Youregotne th the this Project REALL FUN－TO－FOLLOW instructions．An extremely flexible design with quite an AMAZING•RANGE－ has obvious applications for SCHOOL PROJECTS． LANGUAGE LABORATORIES，SCOUT CAMPS， ete．
GET YOURS！SEND $\mathbf{6 5} 50$ NOW（S．A．E．for details） TO：＇BOFFIN PROJECTS＇

DEPT．KE2010
4 CUNLIFFE ROAD
STONELEIGH，EWELL，SURREY

MAXI LIGHT

 EMERGENCY FLUORESCENT LIGHTING FROM YOUR 12 v ． CAR BATTERY OR TWO $6 v$ ． LANTERN BATTERIESSuitable for car inspection，boat，caravan， garage motor－caravan or where mains lighting is not available．
12 ins． $12 v .8$ watt，$£ 2.70$ each．P．\＆P．free．
Reduction for quantities．
Custom－built D．C．／A．C．Inverters or D．C．／ D．C．Converters to your specification

W．E．B．ELECTRONICS P．0．BoX 4

 malvern－WORCS．WRI4 3HX
MUSIC

If your interest is in SYNTHESISERS and other ELECTRONIC MUSIC projects，you need our 1973 catalogue of circuit assemblies with projecr layouts and informative．complete with pr
TAYLORELECTRONIC MUSIC DEVICES P．O．Box 42，Chester CHI 2PW

CONSTRUCTION AIDS．Nerews，nuts，spacers， fte．，in small quantities．Almminiun panels punched to spec．or plain sheet supplied． Fascia panels ptched aluminium to individual requirements．P＇rinted circuit boards－mastars， negatives and boards，one－off or snall numbers Send $6 p$ for list．RAMAR CONNTRUCTOR SERVICEs， 29 Nhelbourne Road，Stratford－ on－Avon，Warwks．

AUDIO KINETIC8：X－40，X－60，X－100，and special equipment amplifiers to be released soon．For adrance information write： IMPULSF DYNAMIC＇s ORGr．，Box 4．4．

DontPREVARICATE －PREVATITAKE

 Calculators and components will all go up by 10% ，buy now and SAVE！Our 1973 catalogue now available at only 15 p includes calcula－ tor and LSI／LED data．BYWOOD are always up to date！

CALCULATORS
You may telephone your order and pay by Access．

AMAZING MINI•DRILL逶定 FOR 定明 FOREISION woid woak明胃
＋6 TODLS

Indispensable for precision drilling，grinding，polishing， etching，gouging，shaping． etching，gouging，shaping． recision pow Shockprod enthusiast．Shockproof． Completely portable power from $4 \frac{1}{2}$ volt external battery．So much more scope with MINI－DRILL． Super Kit（extra power．in－ erchangeable chuck）$£ 4.95$ p．p．13p．
De Luxe Professional Kit with 17 Prools $£ 7.65$ Kis with 17 tools E7．65 p．P 23p．

Build the Mullard C.C.T.V. Camera
Kits are now available with comp rehensive construction manual (also available separately at 65p.) SEND 5^{-1} X7" S.A.E. FOR DETAIIS TO: CROFTON ELECTRONICS $15 / 17$ Cambridge Road, Kingston-on-Thames,Surrey KT1 3NG

PSYCHEDELIC MINI-STROBE
A very POWERFUL, POCKET-SIZED
STROBE-LIGHT that is SELF-CONTAINED and you can take anywhere. Go to parties and really BRAIN-FREEZE them with DAZZLING PSYCHEDELIC EFFECTS and STOP-MOTION FLASHES. Boffin's new MINI-STROBE kit constitures a fully solid-state electronic device which is
COMPLETE with reflector unit, printed-circuit board electroniss, and source-lamp-the only execranics, and source-lamp-u the only locally. The whole thing can be easily built in a few hours.
A veritable FLICKERING FASCINATOR: Adjustable flash-rate.
GET ONE (or two) NOW and BEGIN STEALING THE THUNOER at DISCOS and PARTIES with your own POCKET LIGHTNING
SEND 11.95 for YOUR MINI-STROBE, to:
Boffin Projects
4 Cunliffe Rd., Stoneleigh, Ewell, Surrey
CLEARING LABORATORY, scopes, V.T.V.M's V.O.M's, H.S. recorders, transcription turn tables, electronic testmeters, caliljration units. P.S.U.'s, pulse generators, I).('. nullpotentiometers, bridges, spectrum andysers, voltage regulators, sig-gens, M (' relays, components, etc. Lower leeding 236 .

12 VOLT FLUORESCENT LIGHTS
 (es Illustrated)

Beat power cuts. Be independenc. Ideal for caravans, cents, mergency lighting, etc. Works anywhere where 12 v is available. Guaranteed for six months. Ready to use ac:
12ins. 8 watt $£ 3.60$ post paid
21 ins. 13 watt $£ 460$ post paid
MLOP ELEOTRONIOS, 23 WYLE OOP shRE WIEURY, BHROPSHIRE, Callers welcome. For lists or enquiries, large,s.a.e

FIBRE OPTIC SUPPLIERS

P.O. BOX 702, LONDON WIO 6SL

 FLEXIBLE LIGHT CONDUIT used to convey light to inaccessible positions for inspection, panel indicators, photo-electric and other applications.FIBROFLEX Type I glass fibre flexible light conduit, 1.14 mm active dia., bundle shearhed in P.V.C. Prices per metre (U.K. post free) 1-4, 70p; $5-9,55 \mathrm{p} ; 10+, 40 \mathrm{p} ; 25 \mathrm{~m}$, 66 per reel. Epoxy resin plus ferrules ine. with orders over 10 m .
CROFON Type 1610 plastic flexible light conduit, 64 filaments. Active dia. 1.80 mm Prices per metre: $1-4$, 11.20 ; 5-9, EI ; $10+$
80p. $25 \mathrm{~m}, \mathrm{f} 16$ per reel.
PLASTIC MONOFILAMENT Type FP20, 0.5 mm dia. unsheathed. $100 \mathrm{~m}, E 3.50 ; 200 \mathrm{~m}$ 66.

Send S.A.E. for full range of products, price list and literature. Overseas orders add 50 p please.

EX COMPUTER PRINTED CIRCUIT PANELS

2×4 in packed with semiconductors and cop quality resistors, capacitors, diodes, etc. Our price 10 boards 50p (8p). With a guaranteed min. of 35 transistors-data included.
SPECIAL BARGAIN PACK
25 boards for $f 1$ (25 p)
ELECTROLYTICS
$10,000 \mu 75 \mathrm{~V}, 33,000 \mu 40 \mathrm{~V}, 4 \frac{1}{2} \times 2 \frac{1}{2}$ in dia. $25,000 \mu \quad 25 \mathrm{~V}, 20,000 \mu 30 \mathrm{~V}, 8,000 \mu \mathrm{5} \mathrm{V}$, $4 \frac{1}{2} \times 3$ in dia. 50p (12p). $15,000 \mu \mathrm{l} 15 \mathrm{~V}$ $4 \frac{1}{2} \times 2$ in dia. 20p (10p). 2,000/ 25 V wire ended, $3 \times$ lin dia. I5p (5p) or 12 for E1.50 (15p).
250 MIXED CAPACITORS 60p (8p) 250 MIXED RESISTORS 60p (8p) 3A STUD RECTIFIERS, 100 p.i.v. 4 for 50p (5p) ASSORTED RELAYS 8 for $\mathrm{El}(25 \mathrm{p}$) SUB-MIN. CO-AX, PLUGS \& SKTS. 4 pairs 50p (5p) MINIATURE GLASS NEONS

12 for $50 \mathrm{p}(5 \mathrm{p})$
REED RELAYS, MIXED 10 for 50p (5p) MICRO SWITCHES, MIXED

8 for 50p (8p)
PAPSTEXTRACTOR/BLOWERFANS $100 \mathrm{cfm} 4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} £ 3.50$ (28p)
QUARTZ HALOGEN BULES
I2V 55W
50p (5p)
Postage and package for each item shown in brackets.

KEYTRONICS

(Mail Order only)
44 EARLS COURT ROAD LONDON W8

01-478 8499

Elements of Linear Microcircuits

T. D. Towers

Gives practical guidance on the selection of commercially available linear microcircuit devices, and on the handling of these sensitive circuits within an assembly. The emphasis throughout is on applications and on the everyday problems of designing electronic equipment, as opposed to production technology.
1973116 pp illustrated $059200077 \times$ £2.80

50 Photoelectric Circuits and Systems

P. S. Smith

Contains design details of fifty circuits incorporating photoelectric cells, covering over one hundred basic applications. Since requirements vary widely for different applications, many of the circuits are intended as a starting point for further experiment although all circuits are complete and operable as described. Details are given of all components so that alternatives may be easily selected if necessary.
197288 pages illustrated
Cased $0592028178 \quad £ 2 \cdot 30$
Limp $0592028798 \quad £ 1 \cdot 30$

110 Thyristor Projects

using SCRs and TRIACS

R. M. Marston

Describes many projects making use of thyristar devices capable of handling mains voltages that can control currents of tens or hundreds of amperes.
The projects described, which range from simple electronic alarms to highly sophisticated self-regulating electricheater power controllers, should be of equal interest to the electronics amateur. to the student of electronics and to the professional engineer.
1972146 pp illustrated
Cased $0592000737 \quad £ 2.40$
Limp $0592000745 \quad$ £I. 40
The Butterworth Group
88 KIngs way, London WC2B 6AB
Trade counter: 4-5 Bell Yard, WC2

PROFESSIONAL SYNTHESISER

You too can build a professional synthesiser like the one illustrated using the professionally-proven range of Dewtron modules. NEW MODUMATRIX modular matrix system replaces clumsy patching. 3 and 4 octave keyboards and contacts
VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt/octave voltage control. £22 each or $£ 25$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touchsensitive playing when used with VCO-2 signals. $£ 15$.
Modules (except VCO-1) guaranteed two years.
using
PROFESSIONAL MODULES CASH SAVINGS
by buying modules and parts in bulk!
All modules are available separately:
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $\mathbf{£ 1 0 . 5 0}$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £12. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £9. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls $£ 4 \cdot 50$. REVERB Module and spring unit £15.

With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to a leading group. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.I. E330. Send 150 for full catalogue of our famous musical effects.

The great 1973 edition of Lasky's famous Audio-Tronics catalogue is available - FREE on request. The 48 newspaper size pages - many in full colour - are packed with 1.000 s of items from the largest stocks in Great Britain of everything for the Radio and Hi-Fi enthusiast, Electronics hobbyist, Serviceman and Communications Ham. Over half the pages are devoted exclusively to every aspect of Hi-Fi (including Lasky's budget Stere Syst new Lasky's Credit Plan Scheme-enabling you to buy yourideal choice of equipment on easy terms.
Scheme-enabling you to buy your ideal choice of equipment on easy terms

 WE ARE SPECIALISTS IN FERRANTI SEMICONDUCTORS

BFSS9	13p	ZT×310	8p	ZTXSO4	39	ZSI
BFS 60	18p	ZTX311	9p	ZTXS10	15p	ZS17
BF561	18p	ZTX312	9p	ZTX530	19p	ZS172
BFS96	13p	ZTX313	10p	ZTXS31	20p	ZSI7
BFS97	$21 p$	ZTX314	IIP	ZTXS50	15p	ZS176
BFS98	18p	ZTX320	28p	ZTXSSI	15p	ZS178
ZTX107	8p	ZT×330	13p	2N30S5	$65 p$	ZS270
ZTX108	7 p	ZTX331	14p			ZS27
ZTX109	10p	ZT×382	$11 p$	DIO		ZS27
ZTX212	12p	ZTX383	13p	ZS120	7p	ZS27
ZTX213	12p	ZTX384	16p	ZS121	9p	ZS276
ZT×214	13p	ZTX450	15p	ZSI22	$11 p$	ZS278
ZT×300	10 p	ZTX451	15p	ZS123	14p	
ZTX301	$11 p$	ZTXS00	10p	ZS124	16p	ZE
ZTX302	$15 p$	ZTXSOI	11p	ZS140	22p	KSO30A
ZFX303	12p	ZTX502	15p	ZS141	${ }^{39} \mathrm{p}$	1518
ZTX304	19p	ZTXS03	12p	ZSI42	30p	
ALL DE	ICES	TOP	$\begin{aligned} & \text { ADE } \\ & \text { JAR } \end{aligned}$	BRAND NTEED	NE	$A N$
WE CA quotatio	SUI	PLY AN	FE	ANTI D	VICI	Send
POSTAG our full	AND rice	PACKIN st and da	10_{p} she	REE ove	62	Sen
BUY	OW	$\begin{gathered} \text { AND BI } \\ \text { RISE } \end{gathered}$	AT	A.T.! APRIL	$L L$	ICES

Hide

Over 150 ways

 to engineer a better future
That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn. Why not do the thing that really interests you? Without losmy a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). Noobligation and nobody will call on you... but it could be the best thing you ever did.
Others have done it, so can you
"Yesterday I received a leiter from the lotitution mforming that my applira-
 la been the bent value for money I have exr obtaned - a view erhoed be two colleagues who recently commenced the coure".. -Student I).I.B., York "Completing yonr conise, meant thing from a job I detected to , a job that I Inve, with undimited propects". Stulent J. A. O. I Mblan.
"My traning with B.I.j:'T. quckly changed my earming capacity and, in the next few years, my carnings moreaved fourtold".-Student C.C., B', Buck:

FIND OUT FOR YOURSELF

These letters - and there are many more on file at Aldermaston Court - speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way (f getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we (an help wou. Write to B.I.E.T. Dept, BPE2 Aldermaston Court, Reading RG7 4PF

[^9]
U.K'S LARGEST ELECTRONIGS CINTRES!

BUILD
THE

$20+20$ WATT INTEGRATED
 I.C. STEREO AMPLIFIER \star FREE TEAK CASE $\begin{gathered}\text { with } \\ \text { complete kits }\end{gathered}$

 FEATURES: New slim design with 6 ichs. IC tockets, 10 siticon transistors, 4 rectifiers, 2 zenersSpecial Gardners low field slim line transformer Special Gardners low field slim line transor
Fibreglass PC panel. Complece chassis work.
HIGH QUALITY \& STABILITY AREPREDOMINATE FEATURES HIGHQUALED BY TEXAS ENGINEERS FOR PERFORMANCE, RELIABILITY AND EASE OF CONSTRUCTION.
RELIABILITY AND EASE OFITIES: On/off switch indicator, headphone socket. separate treble, bass, volume and balance controls, scratch and rumble fileers, mono/stereo switch. (Parts list Ref. 20 on request). Constructional Details Ref. No. Rares itst
21. 30 p .

LOW COST HI-FI SPEAKERS

POLISHED CABINETS 150 . 150 TC, $450 \leqslant 4.60$. POSE 30 p . ASSEMBLED NP POLISHED CABINESS (BOHM) SERIES 6 (Assembled 150TC) per pair $\$ 16 \cdot 50$. Post 70 p. SERIES 8 (Assembled 450) per pair $118 \% 95$. Post 70 p.

ML3 MW/LW TUNER TO BUILD Uses Mullard Module. Slow motion tuning Built-in
 All parts sold separately-Leaflet No. 6 .
"BANDSPREAD" PORTABLE TO BUILD
 Printed eircuit all transistor design
using Mullard RF/IF Module. Medium using Mullard RF/IF Module. Medium
and Long Wave bands plus Medium Wave Bandspread for extra selectivity 600 mW push-puli output, fibre glass Attractive appearance and performance. TOTAL COST TO BUILD 67.98 , P.p. $32 p$ (Batt. 22p).
-Leafler No. 2.

CATALOGUE

Fully detailed and
llustrated covering every
aspect of Electronics-
plus data, circ
10,000 Stock lines at Special Low Prices
Fully Guaranteed.
PRICE 55p ${ }^{\text {Post }}$ (40p FOR CALLERS) PLUS! FIVE IOp VOUCHERS
Send to this address-
Henry's Radio Led. (Dept. PE), 3 Albemarle Way,
London, E.C.I-for
London, E.C.I-for
catalogue by post only
catalogue by post only.
All other mail and cal

'Proctical Wireless' moty
ny
SLIM DESIGN WITH SILVER TRIM
Orerall chassi, size
14i
in 14ı in. $\mathbf{I} 6$ in. $\mathbf{x} 2 \mathrm{in}$ high COMPLETE WITH FREE TEAK CABINET

Designer approved kits distributed by Henry's!

RECORO OECKS
CHASSIS (POSt 500 SP25/3, $£ 10.25$ HT70, $\& 14.50$ $\begin{array}{ll}\text { MP60, } £ 9.95 \text { MP610, } £ 12.95 \\ A P 76, ~ & 17.95\end{array}$ AP76, 17.95 GL75, E28.50
PLINTH/COVERS (State Model) SP25:MP60/610 63.30 (Post 40p) AP76 E4.50 (POSt 40p)
CARTIPLINTH/COVER CART/PLINT
(POSC 70p)
(HL) MP60/G800H/PC 618.50 MP6IO/SC5MD/TPD2/PC E19.95 AP76/M7565M/PC AP96/M756SM/PC
(HL) AP76/G800/PC (HL) AP76/G800/PC
(HL) SP25/G800H/PC (HL) SP25/G800H/PC
HT70/G800/TPDI/PC HT70/G800/TPDI/PC
(HL) 2025/9TAHCD/PC MP $60 / 5 C 5 M D / P C$
(HL) GL75/G800E/PC (HL) GL75/G800/PC

ULTRASONIC TRANSDUCERS Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100 yds. Ideal remote switching and
signalling. Complete with data signalling. Complete with data and circuits.
PRICE PER PAIR 65-90. Post 10 D MARRIOT TAPE HEADS
4 TRACK MONO or 2 TRACK STEREO
 $\begin{array}{ll}\because 17 . & \text { High Impedance } \\ \because 18 . " \text { Med. Impedance } & \mathbf{6 2 0 0} \\ " 36 \text { ". Med.Low Imp. } & \mathbf{~} 3.50\end{array}$ Erase Heads for above 63 track mono - High
1 mpedance . 43 "Erase Head for above 75p

POWER INTEGRATED CIRCUITS
Plessey SL403D-3 watt with 8-page daca, layouts and circuits 61.50. P.C. Board 60p; Hear Sink 14p. Sinclair IC 12-6 watt with data and circuits E1.80. Amp Module t4.57. Amp Module $\mathbf{t 4} 57$. Data/Circuits (No. 42) for above 10p.

7 SEG 8 NIXIE TUBES XN3, XN13, GN6 $0-9$ side view with data, 85p. GNP-7. GNP-B 0-9 side view with decimal points and data. 95 p.
3015F 7 seg. 62 each, 47 per 4 with data.
with data. hour clock circuits.
12 and 24 h
Ref. No. 31 15p.
MINIATURE AMPLUFIER
cransistor. 300 mW olp 5 cransistor. Fitted volume and sensitivity
control 9 volt operated. El.75 each. p.p. i5p.

60 mPALITY SLIDER CONTROLS 60 mm . Complete with knobs. $5 \mathrm{k} \Omega$. $10 \mathrm{k} \Omega, 25 \mathrm{k} \Omega$. $100 \mathrm{k} \Omega$. $250 \mathrm{k}: 2,500 \mathrm{k} \Omega$. 1 meg. Log and
Lim.
40 p each, $10 \mathrm{k} \Omega .25 \mathrm{k} \Omega$. Lim .40 p each, $10 \mathrm{k} \Omega$. $25 \mathrm{k} \Omega$.
$50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 250 \mathrm{k} \Omega$, Log and Lin. ganged. $60 p$ each.

Hi-FI AND TAPE EQUIPMENT

Acknowledged
Largest Stockis
Largest Stock Prices Plus 12 Months
Guarantee. Write or cal for FREE 16 page lists
(Ref. No. 17) All the parts you need plus Data and Circuit

Free Leaflet No. 3 \& 7 . TOTAL 46.97 , p.p. 20p
Decoder Kit $\mathbf{5 5 . 9 7}$. Tuning meter unit ${ }^{\text {Mains unit (optional) Model PS } 900 \text { © } 2.47 \text {. Post 20p }}$
Mains unit (optional) Model PS900 E2.47. Post 20p.
Mains unit for Tuner and Decoder PS6/12 63.25. Post 20p.
PA-DISCO-LIGHTING UK's Largest Range-Write
phone or call in. Details and DJ30L dhan on requesc. DJ30L 3 Channel sound to
DJ40L 3 Channel Mic (Built-in) to light, FIBRE OPTICS DJ40L 3 Channel Mic (Built-in) to light,

AT HENRY'S

-it's all in there: DJ70S70 watt Disco amp/mixer, 449.95 DISCOAMP 100 watt Disco amp/ mixer, E66.50 DJ105S 30 watt Disco amp/mixer, $\mathbf{\$ 3 2 . 7 5}$ Anti-Feedback Quality Mic, $\in 11.50$
DJ500 50 watt PA amplifier, E44.00 DJ500 50 watt PA amplifier, $\mathbf{\epsilon 4 4 . 0 0}$
Group 300150 watt rms Group Valve
amplifier, $£ 86 \cdot 00$

- Credit terms for callers

SINCLAIR PROJECT 60 MODULES
-SAVE POUNDS
$23063.57 \quad$ Z 50 64.37
5TEREO $60 \quad £ 7.97$ PZ5 63.97 PZ6 66.37 PZ8 64.77.
Transformer for PZ8 E2.95.
Active Filter Unit $\mathbf{4 4 5}$.
Stereo FM Tuner © 16.95 .
IC12 41.80 Ql6's $£ 15$ pair.
Post, ecc. 20p per item. EFFECTS PRO. IECTORS. SPOTS DIMMERS STANDS MPEAKERS Everything for PA - Disco Lighting.
FREE Stock List Ref. No. 18

PACKAGE DEALS Post 25 p 2×230, Stereo 60, PZ5 615.95 $2 \times Z 30$. Stereo 60, PZ6 618.00 $\begin{array}{lr}\mathbf{2} \times Z 50 \text {, Stereo } 60, \text { PZ8 } & \mathbf{6 2 0 . 2 5} \\ \text { Transformer for PZ8 } & \mathbf{£ 2 . 9 5}\end{array}$ $\begin{array}{lr}\text { Transformer for PZ8 } \\ \text { PROJECT } 605 \mathrm{KIT} & \mathbf{E 2 . 9 5} \\ \mathbf{E 1 9 . 9 5}\end{array}$

[^0]: © IPC Magazines Limited 1973. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imıations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, £2.65.

[^1]: 11.12. Paddingtors to-
 12. Paddington Groen.

 London, W 2
 $\mathrm{~T} \otimes 1.07-2626582$

[^2]: A member of the EMI Group of Companies. International leaders in Electronics,
 Records and Entertainment

[^3]: ADCOLA PROOUCTS JTL ADCOLA HOUSE GAUDEN ROAD LONDON.SW 4 LLH Regd. No. 442762 ENGLAND
 Postage.packing paid on orders over $£ 2$. under $£ 2$ add $£ 0.10$
 Models required
 Enclosing P/O or cheque for
 Name
 Address

[^4]: BUSINESS
 HOURS： 9.30 a．m．to 5.30 p．m．

 TERMS OF BUSINESS：C．W．O．or C．O．D．（35p extra）．All cash in regd． envelopes please！Telephone orders to our CROYDON BRANCH．TRADE AND EXPORT ENQUIRIES INVITED

[^5]: FREEE $\begin{gathered}\text { POST NOW } \\ \text { for } \\ \text { BROCHURE }\end{gathered}$
 or write if you prefer not to cut page
 To BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, P.O. BOX 156, JERSEY. Please send your free brochure, without obligation, to:
 we do not employ representatives
 NAME
 BLOCK CAPS
 ADDRESS
 PLEASE EL33

[^6]: $500 \mathrm{~V}, 500$ megohms, $\mathbf{C 2 8}$ incl. P. \&

[^7]: Illustrated Colour Brochure, Radio Books and Component Lists 10p, (Export: Remit cash and extra postage.) Buses 50, 68, 159. Rail Selhurst. Tel, 01-684-I665

[^8]: FULL \quad * Callers side entrance "Lavell" Shop AFTER SALES
 SERVICE

 * Open 10-1, 2.30-4.30 Monday-Friday, 9-12 Saturday

[^9]:

