PRACTICAL

JUNE 1973

555 Interameatateif

H:

9

One ceramic shaft to give you near-perfect insulation and negligible leakage current (only $3-5$ microamps) so that you can safely solder delicate and expensive integrated circuits and transistors, even when "Iive
Another shaf 1 , of stainless steel, to give you the strength required of an everyday robusi general purpose iron
Plus large volume long-life bits to store the enormous neat-capacit of the 25 watt element. Bits that do not stick (no screws or pins) and bits that slide over the element shaft to give you efficient heat transter and a capacity equivaient to irons of 2-3 times the wat tage.

MODEL CCN

220 volts or 240 volts. The 15 watt miniature model CCN also has negligible leakage
Test voltage 400 v . A.C. Totaliy enclosed element in ceramic shaft
Fitted long-life iron-coated bit $3 / 32$
4 other bits available $1 / 8^{\circ}, 3 / 16^{\prime \prime}, 1 / 4$ and $3 / 64^{\circ}$
PRICE: $\mathbf{£ 1 . 8 0}$ (rec, retail) OR Fitted with triple-coated, iron nickel and Chromium bit 1/8". PRICE: £1.95 (rec. retail). P\&P5p

From radio or electrical dealers car accessory shops or
in case of difficulty direct from ANTEX LTD. FREEPOST
(no stamp required) PLYMOUTH PL1 1BR. Tel 075267377

MODEL G
18 watt miniature iron, fitted with long life iron-coated bit $3 / 32$ Voltages 240,220 or 110. PRICE: $£ 1.83$ (rec. retail) P\&P5p

All prices mentioned are exclusive of V.A.T

MODEL CN

Miniature 15 watt soldering iron fitted $3 / 32^{\prime \prime}$ iron-coated bit. Many other bits available from $3 / 64^{\prime \prime}$, to $3 / 16$ Voltages 240, 220, 110,50 or 24. PRICE: $\mathbf{£ 1 . 7 0}$ (rec retaii) P\&P5p MODEL CN2

Miniature 15 watt soldering iron titted with nickel plated bit $3 / 32$ Voltages 240 or 220 PRICE: $£ 1.70$ (rec. retail).P\&P5p
MODEL SK. 2 KIT
Contains 15 watt miniature ron fitted with $3 / 16^{\prime}$
bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$ heat sink. solder. and "How to Solder" bookiet. PRICE : $£ 2.40$

with 15' lead and 2 heavy clips for con nection to car battery Packed in strong plastic wallet with book PRICE: $£ 1.95$ (rec. P\&P 12p

Contains 15 watt miniature iron fitted with $3 / 16$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet. PRICE: $£ 2.75$ (rec. retal), PRICE: $£ 2.75$ (rec. retal).
P\&P12p

Please send the ANTEX colour catalonue

Please send the following

I enclose cheque/P.O./Cash (Giro No. 2581000 Reg. No: 393594

NAME

CONSTRUCTIONAL PROJECTS

GENERAL PURPOSE TIMER by J. B. Dance
A simple i.c. based design for photographic and similar applications 486
AUTOTONE by R. Skagestad
A novel digital melody maker 490
P.E. SOUND SYNTHESISER-5 by G. D. Shaw
Sample-Hold and Noise Generator Module 506
WIDE RANGE PULSE GENERATOR by M.J. Trand
Simple i.c. generator covering 1 Hz to 1 MHz in switched ranges 522
GENERAL FEATURES
SPEECH SYNTHESIS by A. V. Flatman
History and present day accomplishments in the field of phonetics 494
THE TRANSISTOR AND BEYOND by Prof. G. D. Sims
An appreciation of past developments and future prospects 504
THE 555 TIMER I.C. by J. B. Dance
A new integrated circuit discussed in detail with design parameters for a variety of applications 514
LOGIC EXPERIMENTS-2 by M.J. Hughes
Demonstrating logic inversion 518
INGENUITY UNLIMITED
Variable Stabiliser-Lamp Strobe-Timing Circuit 529
NEWS AND COMMENT
EDITORIAL—Buried From View 485
BOOK REVIEWS
Selected new books we have received 500
SPACEWATCH by Frank W. Hyde
Rings of Saturn-Technical Euthanasia-Orange Moon Soil-Lunar Probe 503
SOUND '73
Report from the Public Address Engineers'. Exhibition 512
PATENTS REVIEW
Walking Stick for the Blind-Magic Wipers 513
POINTS ARISING
Novel Battery Fliminator-Camera Shutter Tester-P.E. Gemini Tuner 518
INDUSTRY NOTEBOOK by Nexus

- What's happening inside industry 521
SONEX '73
Hi Fi equipment show report 525
NEWS BRIEFSMotorway Communication-Underwater Detection-Aircraft Tactical Simulator-PO Digital Trunk Network526

Our July issue will be published on Friday, June 8, 1973

[^0]

ELECTRONICS A COURSE BOOK FOR STUDENTS
 G. H. OLSEN $£ 2.75$

MAKING AND USING ELECTRONIC OSCILLATORS by W. Oliver. Price E2.10. HI-FI IN THE HOME by John Crabbe. Price $\mathbf{4 2} 15$.
HOW TO GET THE BEST OUT OF YOUR TAPE RECORDER by P. J. Guy. Price © 1.60 .

110 THYRISTOR PROJECTS USING SCR AND TRIACS by R. M. Marston. Price ©l.50.

TRANSISTORISED RADIO CONTROL FOR MODELS by D. W. Aldridge. Price 6260.

ELECTRONICS AND RADIO by M. Nelkan. Price El 1.95 .
RADIO AND AUDIO SERVICING HANDBOOK by G.J. King. Price 63.15. PRACTICAL DESIGN WITH TRANSIS. TORS by M. Horowitz. Price $\mathbf{E 2} \mathbf{5 0}$.
TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price El 1.90 .
THE MAZDA BOOK OF PAL RECEIVER SERVICING by D. J. Seal. Price $\mathbf{1 3 . 9 5}$. RADIO VALVE AND TRANSISTOR OATA by A. M. Ball. Price 85p.
ALL PRICES INCLUDE POSTAGE

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-2| PRAED STREET

LONDON WV IN
Phone 01.723 4185
Closed Saturday 1 p.m

P.C.B.: For Mallard Transistor Audio and Radio Circuits Handbook

The following boards are now available: lIst Edition: paper base laminate. IOW H.Q. audio amp, p. 102, 66p. 25W H.Q. audio amp, p. 106, 70p. 10/25W H.Q. audio preamp, p. 108, 73p.
and Edition: fibreglass laminate 10W Audio Amp, p. 122, 69p. 15/20W Audio Amp, p. 126, 73p. 25W Audio Amp, p. 128, 73p (incorporates protection circuit. p. 130).

Universal preamp, mono, p. 148 , 78p. Universal pre-amp, stereo, p. $148, € 1 \cdot 48$.

No other circuits are available Price includes P. \& P. but add VAT Remittance (not cash or stamps) with order. Allow 14 days for cheque clearance otherwise prompt despatch subject to stocks
All boards are roller tinned, drilled and have component ident. printed on reverse.

BRIBOND PRINTED CIRCUITS LIMITED

Regd. in England 593908
Terminus Road, Chichester Sussex

EX COMPUTER PC PANELS

$2 \times 4 i n$ packed with semiconductors and cop quality resistors, capacitors, diodes, etc. Guaranteed min. 35 transistors plus data 10 boards 50p (Bp)
SPECIAL BARGAIN PACK
25 boards $11(25 p)$. Panels with 4 power transistors in OC 28 50p (9p). ELECTROLYTIC
$10,000 / 475 \mathrm{~V}, 68,000 / 16 \mathrm{~V}, 4 \frac{1}{3} \mathrm{in}$ dial. $25,000 \mu 25 \mathrm{~V}, 20,000 \mu 30 \mathrm{~V}, 5,000 \mu \mathrm{~V}, \mathrm{~V}$ 35.000 u $15 \mathrm{~V}, 8,000 / 455 \mathrm{~V}, 4 \frac{1}{2}$. Sin dias. 50 p (12 p) . $15,000 \mu 15 \mathrm{~V}, 10,000 \mu 35 \mathrm{~V}, 4 \frac{\mathrm{t}}{2} \quad 2$ india 30 p (10 p). $2.000 \mathrm{f} / 25 \mathrm{~V}$ wire ends 15 p (5 p), 12 for $\& 1.50$ ($15 p$).
8 black toggles dost 50p (8p), A.
250 MIXED CAPACITORS
250 MIXED RESISTORS
150 HI-STAB RESISTORS
200 SI PLANAR DIODES
UNTESTED
60p (Bp) \qquad

SUB-MIN.CO-AX PLUGS
${ }^{8}$ SKIS. 4 pairs 50 p (Sp) REED RELAYS, MIXED 10 for 50 p (Sp) $\begin{array}{ll}\text { MICRO SWITCHES } & 8 \text { for } 50 p(8 p) \\ \text { ASSORTED RELAYS } & 8 \text { for }\end{array}$ ASSORTED RELAYS 8 for $(1)(12 p)$
MIN.GLASSNEONS 12 for $50 p(5 p)$ MIN. GLASS NEONS 12 for $50 p(5 p)$ 10 WAY TERMINAL BLOCKS

10 for 55p (Sp) 50p (Sp)

Postage and package shown in brackets. Please add 10% VAT to prices

Mail Order only
KEYTRONICS
Mail Order only
44 EARLS COURT ROAD LONDON WB

01-478 8499
 ENTERTANTMENTS
STANDARD and CUSTOM-BUILT AUDIO and ELECTRONIC EQUIPMENT NEW and SECONDHAND MUSICAL INSTRUMENTS. MAIN DISTRIBUTORS FOR A.K.G. HIGH QUALITY MICROPHONES

BRIEF SPEC. FOR ALL THREE MODULES

Circuits connecting inseructions and application data are supplied free with ali modules

POWER SUPPLIES FOR THE SA25/35 and SA100 AUDIO MODULES
PU45 Unstabilised supply for 2 SA25/35's, $\mathbf{E 4} 90$.
PU70 Unstabilised supply for one or two SAlOO's 67.75, carr. 40p 5tabilised module for 2 SA25's or two SA35's
$\mathbf{\$ 3 . 5 0}$, carr free £3.50, carr free
MT45 Transformer for above, heavy duty, $\mathbf{E 2} .85$ carr. 20p
MT30 Transformer for unstabilised supply complete
PS70 With rectifier diodes mounted E3.50, carr. 20 p
MT70 Transformer for PS70, $\mathbf{E 4 9 0}$, carr. 40p
all modules are built on glass fibre p.c. BOARD AND ARE SUPPLIED FULLY TESTED

OTHER SAXON PRODUCTS . . .

120 WATT HEAVY DUTY MODULE
Featuring a rugged class A driver stage, this module will run delivers 120 W inco an eight ohm load and employs $4 \mathrm{TO}^{3}$ can (115W) output transistors.
SPECIFICATION Frea. response inpur sensitiviey Construction Size 200 mV into 10 K
Fibreglass board Low distortion parallel push-pull output stage

SINGLE CHANNEL SOUND/LIGHT CONVERTER

This compast and reliable unit operates from amplifiers with outputs from 5-100W. Does not impose a heavy load on the amplifier, or, if connected in the wrong polarity. cause any damage, as with some units

Operation is simplicity itself and the unit is fully fused. The unit is supplied to function from bass notes but may easily be converted to respond only to treble or mid-range notes by the addition of components costing less than 5p.
$613.90+20 p$ carr. or with supply $618.95+40$ p carr

THREE CHANNEL SOUND TO LIGHT UNIT e an

Handling the total of 3.000 W (3 kW) this unit is unique for its price in that not only bass midale and treble but also master controls are provided. Two amplifier sockets eliminate the need for split leads, etc. Supplied in tough steel case for free-mounting
or panel fixing. Fully guaranteed.

MONO VERSION £6.50, carr. 20p

As illustrated below. S.A.E.
OUTPUTS UP TO IV RMS

Two decks, and full headphone monitoring. The unit is mains operated and measures $17 \frac{1}{1}$ in. 3 in ader, volume, bass, treble, headphone selector and volume, microphone volume, bass, treble, mains on loff. THIS IS A MUST FOR THE HOME BUILT HIGH QUALITYDISCO: THEQUE AND IS COMPARABLE TO UNITS AT OVER TWICE THEPRICE, (N,B.-Stereo only has mic. input.)

COMPLETE AMPLIFIERS

THE CSE 100. $£ 34.90$ carr. free

This versatile unit is now available in a black vynide case and so represents even better value than ever. R.M.S. and continuous signal outputs of 70 W . Two individually controlled inputs with wide range
 bass and treble controls. Ideal for small groups, D.j's, et

CALLERS ONLY:	BUSINESS
OUR NEW DISTRIBUTORS	HOURS:
CIRCLE SOUND	9.30 arm to
328-330 The Banks	5.30 p.m.
Rochester. Medway 404199	

OUR NEW DISTRIBUTORS CIRCLE SOUND 328-330 The Banks Medway 4919

TERMS OF BUSINESS: C.W.O. or C.O.D. (35p extra), All cash in regd. envelopes please! Telephone oirders to our CROYDON BRANCH. TRADE AND EXPORT ENQUIRIES INVITED

Dept. (PE6), 174 Pentonville Road, London, N.I. Tel. 01-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue IIford, Essex. Tel. 01-550 1086

[^1]
FERRANTI Z

 only $\mathbf{£ 1 . 3 2}$ witн dataWE ARE SPECIALISTS IN FERRANTI
SEMICONDUCTORS

| BF559 | $15 p$ | ZTX310 | 9p | ZTX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PO BOX 38 OLDHAM LANCS OL2 GXJ

FIRST TIME EVER at $\mathbf{4 2} \mathbf{5 0}$. Solartron CD7IIS2 Double Beam Oscilloscope d.c.-9MAz; 3 mV crys 4 in flat faced tube. in good working condition. Carriage el: 50
HARTLEY TYPE 13A. ONLY 618. Double Beam Oscilloscope. $182 \mathrm{~Hz}-750 \mathrm{kHz}$. Band width 5.5 MHz . Sensitivity $33 \mathrm{Mv} / \mathrm{cm}$. Calibration markers 100 kHz and MHz . A completely reliable general purpose CUIT DIAGRAM and Mains lead Carr. \&ll.50. Complete with all
ascessories. £25. Carr. E1-50 Many other oscilloscopes available

GRATICULES. $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ in High Qual
P. \& P. 5D.

MODERN TELEPHONES type 706. Two tone grey. 63.75 each. P. \& P. 25p each. 22.75 each AS NEW type 706 BLUE, 65 each. | P. \& P. 25p. |
| :--- |
| Also TOPAZ YELLOW |
| 4.50 | Each. P. \& P. 25D. PHONE (black) with internal bell. $87 p$ each. P. \& P. 50p. Two for

\& 1.50 . P. \& P. 75 p. All telephones complete with bell and dial
20Hz to 200 kHz WB SINE AND SQUARE GENERATOR. Four ranges. Independent amplitude controls, thermistor stabilised. 6 6.85 each. P. \& P. 25 p. (Not cased not calibrated.) WOBBULATOR. Sweeps 8 to 45 MHz ready to use. \&.3V a.c.
required. $£ 9$ each. P. \& P. 25 p required. 99 each. P. \&
(Not cased, not calibrated.)
CAPACITOR PACK. 50 Brand
new components only 50 p. P. \& P. new
17 p .

POTS- 10 differenc values. Brand
 of 2.2 NEN PACK consisting witches: pors, various, brand new 250 resistors $\frac{-1}{4}$ and wath many high stabs erc. Fine value
50p per pack. P \& P . 17 p .
P.C.B. PACKS \& D Quantity 2 sqit no tiny pieces. 50p plus P \& P FIBRE GLASS as above $\& 1$ plus 5. \&RY. 20p.

CRYSTALS 70 to 90 kHz . Our choice, 50p. P. \& P. 15p.
M5pirch
TRIMMER PACK. 2 Twin 50 200pF ceramic 2 Twin 10/60pF ceramic; 2 min . strip with 4 prese on each; ${ }^{3}$ air spacee
preset $30 / 100 \mathrm{pF}$ on ceramic base ALL BRAND NEW, 25p the lot PLECTRONIC TIMER UNITS -wall or bench mounting-Hybrid timer boards may be removed leaving excellent ac Price only 62.50 incl carriage. LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38p each. Holder Ip each information 5p.
PHOTOCELL equ. OCP7I. I3p PHOTO-RESIST type Clare 703 TWO for 50p.
AMERICAN OSCILLOSCOPE type USM24. A 10 meg scope-all diagram. Mains input 115 volt 50 diagram. Mains input 115 volt 50 MOTOR MIN. SYNCHRON. OUS. Size $1^{* *} \times 2^{*} \times 4,240 \mathrm{Vope}$

DELIVERED TO YOUR DOOR I ewt of Electronic Rubbish. FOR ONLY \&3-50.

II
 1.... (Electronics) Ltd

THE HY41

The HY41 supersedes the popular HYY40 introduced by ILP last year. This highly improved module achieves true High Fidelity with a dramatic reduction in distortion (typically 0.05% at 1 KHZ into 8 ohms! and is electronically and mechanically compatible with the HY40.

With this important improvement the HY41 retains all of the quality characteristics found in the earlier version and P.C. board, Resistor, Capacitors, Hardware Mountings and comprehensive manual are included in the basic kit. No further components are required to construct a complete power amplifier of extremely high performance sufficiently versatile to provide power not merely for Hi-Fi but also lor public address systems and industry.

The free manual gives a full circuit diagram of the HY41 and its various applications including a complete stereo amplifier.

Like its predecessor the HY41 is based on conventional and broven circuit techniques developed over recent years.
OUTPUT POWER: British Rating 40 WATTS PEAK, 20 watts
R.M.S. continuous,

LOAD IMPEDANCE: 4-16 ohms.
INPUT IMPEDANCE: 30 K ohms at 1 KHz .
VOLTAGE GAIN: 30 db at 1 KHz
TOTAL HARMONIC DISTORTION: less than 015% (typical 0.05\%)
at 1 KHz .
FREQUENCY RESPONSE: $5 \mathrm{~Hz}-50 \mathrm{KHz}+1 \mathrm{db}$
SUPPLY VOLTAGE: ± 22.5volts D.C.
SUPPLY CURRENT: $\overline{0} .8$ amps maximum.
PR:CE: inc. comprehensive manuat. P.C. board, five extra componerts and $P . \& P$
MONO: £5.39 STEREO: £10.78

UNIQUE HYBRID PRE-AMPLIFIER

The \vdash YS has rapidly established a position in the WORLD as the sole hybrid pre-amplifier to contain all feedback and equalization networks within an integrated pre-amplifier circuit

Suppled with the HY5 are two stabilizing capacitors and by the addition of volume, treble and bass potentiometers it is ready for use

Interrally the HY5 provides equalization for almost every conceivabie input, the desired function is achieved by use of a multi-way switch or by direct interconnection,

Two distinctive features of the HYS are its inbuilt stabilization circuit, allowing it to be rurt off any unregulated fower supply from 16-25 Volts and a balance circuit which. when linked by a balance control to a second HY5, forms a complete stereo pre-amplifier.

Specifically and critically designed to meet exacting Hi-Fi standards, the HY5 combines extremely low noise with a high overload capability. When used in conjunction with the HY4t and PSU45 forms a completely intergrated system.

INPUTS

Magnetic Pick-up (within $\pm 1 \mathrm{db}$ RIAA curve) $2 \mathrm{mV} .47 \mathrm{~K} \Omega$
Tape Repilay (external components to suil head). $4 \mathrm{mV} .47 \mathrm{~K} \Omega$
Microphorie (fiat) $10 \mathrm{mV}, 47 \mathrm{~K} \Omega$
Ceramic Pick-up lequalized and compen-
satablet $20-2000 \mathrm{mV}$. variable.
Tuner (flat) 250 mV . $100 \mathrm{~K} \Omega$
Auxiliary 1250 mV . $47 \mathrm{~K} \Omega$
Auxiliary $22-20 \mathrm{mV}$. $100 \mathrm{~K} \Omega$

OUTPUTS
Main Pre-amp output 500 mV . Direct tape output 120 mV .

ACTIVE TONE CONTROLS (Bexendall)
Treble + 12 db
Bass +12 db .
INTEAZNAL STABILIZATION
Enables the HY5 to share an unregulated
supply with the Power Amplifier.
SUPPLY VOLTAGE
16-25 volts
PRICE: MONO £3.96 STEREO £7.92

POWER SUPPLY PSU45
The versatile PS.U. 45 is designed to supply your HY41's +HY5's in stereo or mono format

Specification
Inpur: 200-240 Volts.
Output: ± 22.5 Volts at 2 amps
Overall Dimensions. L. $7^{\prime \prime}:$ D. $3.8^{\prime \prime} ;$ H. 3.1^{\prime}
PRICE: £4.95inc. P. \& P

Please note:-All prices include V.A.T. We reserve the right to substitute at our discretion updated versions of advertised designs where applicable

\section*{TRANSFORMERS

MAINS ISOLATING SERIES
Primary 200-250 Volts Secondary 240 Volts Conte Tapped (120V) and Earth Shielded
ALSO AVAILABLE WITH IIS/I20V SEC. WINDING
Ref.
No.
07
100
61
30
62
55
63
92
128

$R e f$
No.
113
64
4
66
67
84
93
95
73
7
115
TOTALLY ENCLOSED IISV AUTO TRANSFORMERS 115V 500 Watt totally enclosed auto transformer. com
mains lead and two 115 V outlet sockets, 68.63 . P \& P 67p Also available a 20 W ate version. 61.84 . P \& P 22 P

LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLTS 12 ANDIOR 24 VOLT RANGE Ref. Amps. Weight Size cm . Secondary Windings
No. 12 V 24 V oz oz

in

 eight Size cm . VA Weight Size cm ,(Wats) | 16 oz |
| :--- |
| 20 | $1117.0 \times 6.0 \times 6.5$ * *NVNOKNO O *NVNNOKOD

S

S

THIS IS THE FIRST PAGE OF THE GREAT BI-PAK SECTION

BRAND NEW FULLY GUARANTEED DEVICES

PLUS-MUCH MORESEND NOW FOR THE

 BI-PAK "Component Catalogue"5 p to cover postage, etc.
INTERESTED IN ELECTRONICS?
then give us a ring, we need staff-fast!

JUMBO COMPONENT PAKS Mised Elictronic Componnts \qquad nding P° \& I $£ 1-65$. 3Ib in weight. I'rice \qquad BRAND NEW POST OFFICE TYPE TELEPHONE DIALS ONLY 83p each	THE NEW S.G.S.EA 1000 AUDIO AMP MODULE *Guarantee 3 Watts R.M.S. ONLY £2-89 each Module Tested and finaranteed quant it ies quwted on request. Trull hook-up diagraths and complete technical data mupplied free with each momtule or available separately at lop each.

Each Kit contains two Amplifier Mod* ules, 3 watts RMS, two loudspeakers, 15 ohms, the pre-amplifier, transformer, power supply module, front panel and other accessories, as well as an illustrated stage-by-stage instruction booklet designed for the beginner. Further details available on request.

The Iargest selection

NEW LOW PRICED TESTED S．C．R．＇S

PIV						
	50	100	200	400	600	800
	£p	E 0	ip	Ep	fp	£p
1，TOS	0.28	0.28	0.34	0.48	0.58	0.70
3．T066	0.28	0.37	0.41	0.52	0．63	0.77
ja TO6is	0.34	0.52	0.54	0.82	0.75	0.88
¢ A T064	0.34	0.58	0.54	0.82	0.75	0.88
TA TO48	0.52	0.55	0.83	0.74	0.85	0.09
10．4 T048	0.58	0.64	0.67	0.83	1.07	1.32
16．T048	0.58	0.70	0.83	1.03	1.38	1.65
30.4 TO48	1.87	$1 \cdot 54$	1.76	1.83		4.40

SIL．RECTS．TESTED

GENERAL PURPOSE GERM．PNP
 REトLACE：－OC25－2F－29－30－35－36．NKT $401-403$

 $\begin{array}{cccc}30-170 & 1-24 & 25-94 & 100 \text { up } \\ 1 P R I C E & 47 p \text { each } & 44 p e a c h & 40 p \text { esch } \\ & & \end{array}$ SILICON Higb Voltage 250 V NPN $\mathrm{I}^{\prime} \mathrm{O}-3$ came Chestions．Brand new Conted R 2400 HFE tyne 20 fT 5 MHZ HFE tyMe 20 fT 5 MH
OUR FRICE EACH：

525	259	100 up
65 p	50 p	44 p

2N3055

115 WATT 8 IL POWER NPN 55p EACH

KING OF THE PAKS Unequalled Value and Quality CIDED DAVG NEW BI－PAK UNTESTED SEMICONDUCTORS
Gatisfaction GUARANTEED in Every Pak，or money back
Pal No．
Description

1	1	12
1	2	10
1	3	7
1	4	4
1	5	2
1	4	3
1	7	1
1	4	5
1	4	3
1	10	2
0	11	$=$
1	10	1

\qquad
\qquad
Sil．Ilanar Trans．NPN like lssrog en0 sil．I＇lanar Diodes［bO－7（ilasa 250mA like Da200／20：2Nixell boltages，I Watt Zener Diondes
$\mathrm{N} \cdot 394$NPNil．Planar Trans．TO．，Like 2 N 112
Mixel silicmal aifematinum limele
0 3 Amp Bibern Rectitiers Stud Type up fu Ion01130 （iertuanuan PSP AF＇Tranvistors TO－8 f Amp Bilicon Rectifiers BYZ13 Type up to 600 PIVab sucon NPN Transistors like BC＇t08$\because 1 . \overline{5}$ Amp Silicon Rectithers Top Hat $11 p$ to 1000 PI
31）MADT＇s like MHz Ar－ries PAP Tratisistorg300 Mil 2 N PN silicon Transistors ？ 2704 B8
lat switching silicon biodeshike［N914 Bicro．MinNPN（iemmanlum AF Transistore TO－1 jike AClo－Plast ic silicon Planar Trans．NPN $2 \mathrm{~N} \cdot 2 \underline{2}$
L゙31 0－Silsen Planar Plant ic NPN Trabs Low Noise Amp 2N370
Y33 15 Plastic Case 1 Alay Silicon Rectitlers［N 4000 Ser

U38 20 Fast Suithing Silicon Trats．NPN fnombz 2 N 3011U39 30 RF．（ierm．P＇WP Transistors 2N1303／5
141 RP（iermanimm Transistors TO－J．OCHa，NKT7

20 8it Trang Plant io TO BUIURIP

Combe $\mathrm{Na}_{\text {o }}$ ，mentioned above are given ms a gidide to the type of device in the fak．The revices themsetver are normaliy unnarken．	

quality tested semiconductors

No．			Price £p
Q		Red apot transistors pup	55
Q 2	16	White spot R．F．tranmistors	0.55
3	＋	OCJJ type translators	
4	6	Matched transistor：OC4／45／31／81D	
Q 5	＋	OC75 transistors	
4	5	OC72 transistors	
Q	＋	AClas transistors pnp high gat	
Q	4	ACl26 transistors pnp	
	7	OCXI type tranistora	
Q10	7	OC71 type transistors	
Q11	2	ACL2T／L28 Complementary palre pnp／npn	
Q12		Al＇116 type transistors	
Q13		AF＇17 type transistors	
Q14	3	OC171 H．F＇．type transintors	
Q15		$\because 529 \leq 6$ 8il．Epoxy transintors mixed colomrg	
Q16	2	GET880 low hoise Germanium transistors	
Q		$n P n 2 \times 8 T .141 * 3 \times 8 T .140$	
Q18		MAbT＇g $2 \times$ MAT 100 \＆ $2 \times$ MAT	
Q19		$\underset{121}{\text { MADTS } 2 \times \mathrm{MAT} 101 \pm 1 \times \mathrm{MAT}}$	
Q 20		OC44（emmanlun transistors A．E．	－ 0.55
Q21	4	AC127 npm Germanium transmators	
Q2：	20	NKT transistors A．F．R．j．codelt	5
Q23	10	OA20：2 Silicon dlowes sub－min	0．55
424	8	O． 8181 diodes	
Q25	1.5	IN414 Silicon diomer 70 PIV 75 mm	
Q26		OA95（Germanhum diodes subrmin ING9	
Q 27		10 A 600 ly Silicon rectithere 18425に	
		Silicon prwer rectitjers BYZI3	
Q 24		Bulcth transistors $2 \times 2 \mathrm{~N} 69 \mathrm{~B} .1 \times$ $2 \mathrm{~N} 04 \mathrm{t}, 1 \times \mathrm{N} 698$	
Q30		Silicon switch tranisistors 2×706 $n p n$	
Q3！		Silucon switch transistors 2 N 70 O, $n \mathrm{pn}$	
Q32		pир вilicon transistors $2 \times 2 \mathrm{~N} 1131$. $1 \times 2 \mathrm{~N} 1132$	
Q33		Silicon $n p$ e transistora 2 N 171	
Q34		silicon $n p n$ transiatory $2 N 2369$, 500 MHz （code P397）	
Q30		sillcon pup TO－5． $2 \times 2 \mathrm{~N} 2904$ \＆ $1 \times 2 \mathrm{~N} 2905$	
Q3i			
Q37		2N3053 npn Silicon transistors	
Q38			

ELECTRONIC SLIDE－ROLE

The MK slide Rule，deaigned to simplify Ele tronic catculatlons features the following scalea：－ Conversion of Frequency and Wavelength Calculation of L，C and fo of Tuned Circuits Reactance and Sclf Inductance，Area ondircles． weight of Conductors．Decibel Calculations Angle Functions．Natural Logs and＇e＇P＇unction Multiplication ard Division．Squaring，Cubing and Square Roots．Conversion of kW and Hp A must fur every electronic engineer and enthusi ast．Size： $2 \mathrm{~cm} \times 4 \mathrm{~cm}$ ．Complete with case and
instructions．
Price each：$£ 3.68$

F．E．T．＇S

2－3619	31p	2×5458	35p
2－ 3 H 20	55 p	2 NJTog	44p
2 N 3 m 1	$34 p$	31－4 10	68p
$\because \mathrm{N} 38.3$	31p	MPrios	41p

NEW GTH EDITION

 TRANSISTOR EQUIVALENTS book．A comphete cross reference and equivalents book for European． American and Japanese Transis－tors．Exclusive to म／PAK g9p each．

A LARGE RANGE OF TECHNICAL AND DATA BOOKS ARE NOW AVALLABLE EX STOCK． SEND FOR FREE LIST．

4D／61／162
Mip cosp germ trans．
OUR
LOWEST PRICE
OF

SILICON 50 WATTS MATCEEED NPN／PHP
BIP 19 NPN TO－3 Plantic．BLP 20 PNP．Brand new．
VCBO $100 / \mathrm{VCEO} 50 / \mathrm{IC} 10 \mathrm{~A}$ ．If EE type $100 / \mathrm{ft} 3 \mathrm{mHZ}$ ．
$V C B O ~ 100 / \mathrm{CCEO}$ SOICCIRA
OUR PRICE PER PAIR：

INTEGRATED CIRCUIT PAKS
Manffacturers＇＂Fall Outs＂which include Fumetional and Part－Functional Unite These are claused as＇ont－of－spec＇from the maker＇
are ideal for learning about C ．＇s and experimental wor

Pak No．Contents Price $\mathrm{VICO} 0=12 \times 7400 \quad 0.55$ $\begin{array}{ll}\mathrm{YICO1}=12 \times 7401 & 0.55 \\ 1 \mathrm{CO}=12 \times 740^{2} & 0.55\end{array}$
 $1003=12 \times 7403$
$1104=12 \times 7404$ $\begin{array}{lll}110.4=12 \times 7404 & 0.55 \\ 11(05 & =12 \times 7405 & 0.55\end{array}$ $\begin{array}{ll}111 \mathrm{C} 06=3 \times 7406 & 0.55 \\ & 0.55\end{array}$ $1 \mathrm{CO}^{2}=8 \times 8 \times 740^{-}$ $\begin{array}{lll}1 \mathrm{Cl} 10=12 \times 7410 & 0.55 \\ 0.55\end{array}$ $\begin{array}{rl}-1 \mathrm{C} 20 & =8 \times 72 \times 7420 \\ 0.55 \\ -12 & 0.55\end{array}$ $1 \mathrm{C} 30=12 \times 7430 \quad 0.55$ $1 \mathrm{C} 40=12 \times 7440$ $1 \mathrm{C} 41=5 \times 7441$ $1 \mathrm{C} 42=5 \times 7442$
$1 \mathrm{C} 43=5 \times 7443$
1 C $1 \mathrm{CH} 4=5 \times-44$ $\begin{array}{ll}\mathrm{C} 4 \overline{0}=5 \times 7.14 \overline{4} & 0.55 \\ 0.55\end{array}$

No．Contents	
［11C4fis $=5 \times 446$	0.55
UIC4 $=5 \times 7447$	0.55
UIC $48=3 \times 74.48$	0.55
$\mathrm{UIC50}=12 \times 7450$	0.55
UIC ${ }^{\text {a }} 1=12 \times 7451$	0.55
$\mathrm{UIC53}=12 \times 7453$	0.55
U1C54 $=12 \times 74.34$	0.55
UICf0 $=12 \times 7460$	55
11C70 $=8 \times 7470$	5
VIC72 $=8 \times 7472$	56
$1 \mathrm{C} 73=8 \times 7473$	0.55
11C74 $=8 \times 7474$	0.55
$\mathbf{L T C 7 5}=8 \times 7475$	0.55
$\mathrm{V} 1076=8 \times 7476$	0.55
C80 $=5 \times 7480$	0.55
［C81 $=5 \times 7481$	0.55
$1 \mathrm{C82}=5 \times 7482$	0.55
IC83 $=5 \times 7483$	0.55

Pbk No．Contents Price UIC8 $=5 \times 7486 \quad 0.55$ $\mathrm{U1C90}=5 \times 7490 \quad 0.55$ $\begin{array}{ll}\mathrm{UCP90}=5 \times 1.990 & 0.55 \\ \mathrm{U1C91}=\overline{0} \times 7491 & 0.55\end{array}$ $\begin{array}{ll}\mathrm{U} 1 \mathrm{CO}=5 \times 7491 & 0.55 \\ \text { UIC92 }=5 \times 7492 & 0.55\end{array}$ －IC93 $=5 \times 7493$ UIC94 $=5 \times 7494$ $\mathrm{U} 1 \mathrm{C} 95=5 \times 749$ $\begin{array}{ll}11(965=5 \times 7496 & 0.55 \\ 0.55\end{array}$ $\begin{array}{lll}\text { U1C100 }=5 \times 74100 & 0.55\end{array}$ $11 \mathrm{C} 121=5 \times 741210.55$ $\begin{array}{lll}\mathrm{ClCl} 141=5 \times 74141 & 0.55 \\ \mathrm{CIC151}=5 \times 74151 & 0.55\end{array}$ $\begin{array}{lll}\mathrm{CIC151}=5 \times 74151 & 0.55 \\ \text { U＇IC154 }=5 \times 74154 & 0.55\end{array}$ $\begin{array}{ll}\mathrm{VIC154}=5 \times 74194 & 0.55 \\ \mathrm{UIC193}=5 \times 74193 & 0.55 \\ \end{array}$ UIC199 $=5 \times 74109 \quad 0.55$

BI－PAKS NEW COMPONENT SHOP NOW OPEN WITH A WIDE RANGE OF ELECTRONIC COMPONENTS AND aCCESSORIES AT COMPETITIVE PRICES－
18 BALDOCK STREET（A｜0），WARE，HERTS．
TEL．（STD 0920）6I593
open MON．－SAT． 9.15 a．m．to 6 p．m．，FRIDAY until 8 p．m．
All mail orders please add 10 p post and packing．
Send all orders to BI－PAK，P．O．BOX 6，WARE，HERTS．

-the lowest prices!

74 Series T.T.L. I.C's
BI-PAK STLLL HOWEST IN PRICE. FULL SPECIFICATION GUARANTELD. ALL FAMOUS MANUFAOTURERS

NUMERICAL INDICATOR TUBES

16
0
0
0
0
0
0
0

MODEL	C1966	GR116 m	$\begin{aligned} & 3015 \mathrm{~F} \\ & \text { Minitron } \end{aligned}$	All indicators
Anode Voltage (Vdc)	170 min	$175 m \mathrm{man}$	5	
Cathode Current (mA)	$2 \cdot 3$	14	8	Decimal point. All
Numerical Height (mm)	16	13	9	
Tube Height (mm)	47	32	22	viewing.
Tube Dlameter (mm)	19	13	12 wide	for all types
I.C. Driver Kec.	$\begin{gathered} \text { BP41 or } \\ 141 \end{gathered}$	$\underset{\substack{13 P \\ 1+1}}{ }$	BP47	on request.
PRICE EACH	£1.87	21.70	£1.09	
ROLOGIC CIRCUITS	DUAL IN LINE SOCKETS			
-5 case $\begin{gathered}\text { cat } \\ \text { Price each } \\ 25-99 \\ \end{gathered}$	(14\&16 Lead)		$1-24$	$\begin{array}{cc}25-99 & 100+ \\ 0.30 & 0.28\end{array}$
fler 38p 36p 29p	TSO14		- 0.34	$\begin{array}{ll}0.35 & 0.38\end{array}$
al $21 / \mathrm{p} \quad 38 \mathrm{p} \quad 36 \mathrm{p} \quad 29 \mathrm{p}$	BPS14 14 pin type (low cont)		pe 0.17	$\begin{array}{ll}0.15 & 0.12\end{array}$
flip-flop 550 51p 49p				
Circuita Booklet for IC'n	BPS16 16 pin type		pe 0.181	$0.16 \quad 0.13$

BI-PAR DO IT AGAIN!

50W pk 25w (RMS)

0.1\% DISTORTION!

 HI-FI AUDIO AMPLIFIER* Frequency Response 15 Hz to ONLY 100,000-1dB
* Load-3, 4, 8 or 16 ohms
* Distortion-better than $\mathbf{1 \%}$ at
* Supply voltage $10-35$ Volts.
* Overall size $63 \mathrm{~mm} \times$ $105 \mathrm{~mm} \times 13 \mathrm{~mm}$.

* Signal to noise ratio 80dB

Tailor made to the most stringent syecifations using top quality componenta and incorforating the latest soljed state circuitry and AL8O was conceived to till the need for all your A.F anplitication needs
F゙ULLY BUILT-TESTED-GEARANTEEI

STABILISED POWER MODULE SPM80

AP80 is especially llesigned to power 2 of Amplifiers, up to 15 watt ($\mathrm{r} . \mathrm{m} . \mathrm{s}$.) per channel simultareously. This module embodles the latert components and circuit techniques incorporating complete short circuit protection. With will provide outputs of up trais- 1.5 former MT80. the unit will provide outputs of up to 1.5 These at 35 volts. Size: $68 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$.
These units enable you to build Audio 8ysteme of the highest other applications incluting:-Diaco 8 ystems, Public Address. Intercom Unita, etc. Hatudhook available, 10D PRICE ©3.25

TRANSFORMER BMT80 £2.15 p. \& p. 28p

STEREO PRE-AMPLIFIER TYPE PA100

huiti in a specification and NOT a price, and yet atill the greatest value on the market, the 'A 100 atereo pre-amplifier has been conceived from the latent circuit techniques Designed for use with the ALj0 power ampliffer system, this quality made unit incor porates no less that eight silicon planar transistors, iwo of these are specially selected low noise NPN devices for use in the input stages
which and which also has a STEREO/MONO sxitch volume, balance and continuously variable bass and treble controls.

ONLY'£13•15
SPECIAL COMPLETE KIT COMPRISING 2 ALBO'8, SPM8O, 1 BMTBO\&IPA100ONLY E25-30FREEp.\&p.

puris tor pracicical HiECRONICS projecis

After many requests, Electro Spares are now supplying lists of components for all the projects featu:ed in "Practical Electronics '", commencing with this month's issue. Just forward an S.A.E. (preferably $9^{\prime \prime} \times 4^{\prime \prime}$ minimum), and state which project is of interest to you-we will forward an individually priced list of the components required.
No need to buy a full kit-you need only purchase the parts you require at any one time.
All Electro Spares supplied components are new, branded products of reputable manufacturers, and carry full makers' guarantee.
We regret we cannot supply lists for projects published before this issue.
"ONE SOURCE" BUYING MAKES SENSE-
IT CAN SAVE YOU TIME, MONEY AND POSTAGE

"p.e." I.m. Varicap stereo IUner"

Electro Spares offer a kit of high quality parts to the published specification for this remarkable tuner, featured in "Practical Electronics ' ', May 1973.
Features include pushbutton "Spot On" tuning, with up to 5 pre-set stations (no difficult tuning dial and drive cord). Easy: "no problem" construction, requiring only a few simple setting up adjustments with a D.C. Voltmeter. Uses NEW pre-set modules for R.F. and I,F, circuits-no circuit alignment. High efficiency integrated circuit Phase Lock Loop Decoder for perfect stereo reception, with stereo lamp indicator.
Fibre Glass P.C. Board, neat slim line cabinet, with brushed aluminium front panel, push buttons, etc., etc.
IDEAL FOR USE WITH THE "TEXAN","P.E. GEMINI' AND ANY GOOD QUALITY STEREO AMPLIFIER. Please send S.A.E. for full details.

"p.e. gemini" stereo amplifier
 QUAALITY HI-FI FOR THE HOME CONSTRUCTOR 30 Watts (R.M.S.) per Channel into 8 ohms!
 Total Harmonic Distortion 0.02% !
 Frequency Response (-3 dB) $20 \mathrm{~Hz}-100 \mathrm{kHz}$!
 We are still continuing to supply components for this fabulous amplifier, which is now recognised as practically the ultimate in High Fidelity. We know of no better unit for the home constructor, and can supply a booklet, containing full specification, complete constructional information, wiring diagrams, fault finding guide, etc., etc., price 55 p plus 4 p postage.
 Our new, low comprehensive price list is supplied with each booklet, or supplied separately on receipt of large S.A.E.
 FOR PEOPLE WHO REQUIRE THE BEST -
 IT HAS TO BE THE 66 1.e. 1 RMIII's

NOTE OUR NEW ADDRESS - WITH NEW MAIL ORDER DEPARTMENT FOR QUICK EFFICIENT SERVICE.
please pay us a call - visitors welcome-easy parking

Eleciro-Spares
 288 Ecclesall Rond Sheffield S11 8PE Tel.: Sheffield 668888
 "THE COMPONENT CENTRE OF THE NORTH"'

 RMS. Complere with free printed circuit bo
booklet.

SWANLEY IC TOMORROW The Worid's most powerful IC The Worid's most powerful operates at 35 V max. supply and operates at 12 W RMS output. Manugives factured for us by a leading semiconductor company. Supplied with guarantee, but no printed circuit.

SINCLAIR EQUIPMENT

Z30 $\quad 33.50$	Stereo 60	\$7.80
$\begin{array}{ll}\text { PZ5 } & 63.97 \\ \text { PZ8 } & 66.60\end{array}$	Z 20	¢4.25
AFU 64.50	PZ6	E6.40
Transformer for PZ8 E2.95. Project 60 tuner $\mathbf{6} 16.80$.		
EXECUTIVE CALCULATO		
PROJECT 60 KI Our extremely po the extra capacito sockets, cables needed to comple	T pular kit rs, din plu and fuse e Project	E2.50 ntains 5 and older .

KITS FOR ICI2 AND IC
TOMORROW
Except for the power kits and speakers all items suit both integrated circuits.
DELUXE KIT
Includes all parss for the printed circuit and volume, bass and treble controls needed to complete the mono version EI-45. Stereo version with balance control $\mathbf{£ 3 . 3 0}$.
POWER KIT FOR ICI2
A set of components to construct a $28 \vee 0.5 \mathrm{~A}$ power supply 62.27. Also suitable Sinclair PZS 23.9
POWER KIT FOR IC
TOMORROW
A set of components to construct $35 V$ IA power supply $\mathbf{2 2 . 9 7}$.
LOUDSPEAKERS FOR ICI2 8 ohm types. 5^{\sim} 61.00. $5^{*} \times 8$ 61.45.

PREAMPLIFIER KITS
Type I for magnetic pickups, mics and tuners with 3 position equalisasion switch. Mono model $£ 1.20$ Stereo model £2.20. Type 2 for ceramic or erystal pickups. Mono 60 p . Stereo fli20.
SEND S.A.E. FOR FREE LEAFLET
ON KITS AND TBA6SI. S-DECS AND T-DECS

IC RADIO CHIP TBA65I E2.10 The world's most advanced IC radio chip. Contains RF Amp, oscillator. mixer, IF Amps, wide range AGC circuitry and voleage scabiliser. With data E2.10. Send S.A.E. for free leaflet on chip and kit.

SWANLEY ELECTRONICS

32 Goldsel Road

Swanley
Kent BR8 8EZ
Postage 10p per item Please add 10% extra to cotal cost of order for VAT.

for fast, casy
 reliable soldering

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons in 40/60, 60/40 and Savbit alloys in 7 gauges 25 p

Size 12
for Service
Engineers and Electricians. 75 ft of 18 swg Savbit alloy. 75p -

1.c. Socket			
	Transistors \& integraced Circuits		
NEW LISTS Boxes, chassis, etc. THANSISTORS, l.c.ts, etc. (postage 5p).			

 The prwate party an electric
athonsphere，a projectat batedo cober of edolour makes ther tomsic Wht will abreal to the visual as This bulk it system conpares outhoticaters and the the more priced motels
specificatiot Projector 150 W
 Sin diameter mult icolour． The Motur is fitted th the frojector and can buly he Liquald Wheel．somple unit．The bery popular ktandard moniel and mar be purchavel
Rtiparately I bargan－Prijectut ujth Mortor ready for instant nige E15： 6 in hiqu
plya igp cart

TRI－VOLT BATTERY ELIMINATOR
Enable you to wor Rallio．Amplifiet Casette，cle．，from through this compract

DIGITAL CLOCK KIT

24－hr．Nixie dig clock kit We supply：a cornplete set of compunernts：a complete set of easy 10 follow natructions；printed circuits marle to make const ruct min as yimple as pussible： a cabinet and front manel to kive a protessithal linish．All for the price of
the conupurents．$£ 22.50+$－00； 1 p ， P ． the conpunests．$£ 22.50+50 ; 1^{1}$ ．is
Please send S．A．E．if you reanire information

AL20 5 WATT AUDIO AMPLIFIER A low cost high thatity

supply \qquad
 Elnminator．Just by moving
plug sum car setect the voltage youn

Frenuenc
Fverallize＝techuival
111 guaranteed and a bargain at $£ 2.63$ plus montole
V．A．T．
From lat April，1973，will you
From int April， 1973 ，will you
please inclade on yonr Total（Goods plas Postage and Packing）Falue

MINIATURE RELAY 6 ralt 80
Single P plugle Pole Chat Approv．нize $=$
coner $=40 \mathrm{D}$
in $x \operatorname{tin} \times 3$

TRI－VOLT CAR SUPPLY

 or Cassette eti．Mrom the 12 volt car supply negative earth．From the I2 volt carsupily．Positive or This comerter aupylies $f t, 7 \frac{1}{2}$ or 9 volts and is transistor regnlated．A real rooney saving tevice for 22.50 plusADD LUXURY TO YOUR CAR

WITH A MOTOR DRIVEN

CAR AERIAL
Fixterded Length 100 cm length under Fender 40 cm Cabie Length $1: 20 \mathrm{~cm}$
Suppliel commete with Fixing 1sracket and
Control Suitch． 66.75 pius ${ }^{2.5 p}$ p． 56．75 P．\＆P．P．

CRESCENT CASSETTES
Tis quality cassetteq at unbeatable prices（complete with

PSYCHEDELIC LIGHT CONTROL UNIT

E

ATT R．M．S．ALL PURPOSE AMPLIFIER ＂CRESCENT＂ 100 WATT R．M．S．ALL P
U．BUILD．IT

＊THE POWER AMP MODULE TPIOOW
筑 ＊THE PRE－AMP MODULE
 －THE POWER SUPPLY MODULE PSIOO Complete fining instructions are supplied andi no technieat knowlelfe is reguired to conmet the three ready wired modules． A fatitastichargain．If you purchase all thre modules $\mathbf{1} 25$ carr．7inp
Send S．A．E．for further details on this or our ready built amplifiers．

MAINS TRANSFORMER Fuscd Primary 4405 ．Secondary 220 y （6） $50 \mathrm{HA}, 6 \cdot 3 \mathrm{~V}$（a） 1 A ．This trans high stamard and is a

EM：LOUDSPEAKER 450 $10 \mathrm{~W} 13 \mathrm{n} \times 8 \mathrm{in} \pm$ two 2.2 in and ready cross－over，All wired and ready fur use．This eve $\mathbf{4} \mathbf{3 . 7 5}$ ，lus 38 ，P．\＆P．eatch
7in $\times 4$ in LOUDSPEAKER a top quality （6）ant．Matufactured ant．Manufactured
by it M．for weell－
nown hi－fi knowit hi－fir Bet
maker．Size：jis x
 $12 k!f \%$ Power handling： 5 W I＇nbeatable．P＇rice $£ 1.60$ ．F＇re

ADCOLA PRODUCTS LTI ADCOLA HOUSE GAUDEN ROAD IONOON．SW 4 GLH V．A．T．REGD．No． 2356153.72

A INVADER SOLDERING KIT	£4．39	\square
B L706INVADER	£2．15	\square
C L646INVADER	£2．33	口
D L1076INVADER	¢2．40	\square
E BL646 BATTERYMODEL	£2．99	－
F BL1076 BATTERYMODEL	£3． 12	\square
G SOLDER REEL $\frac{1}{2}$ KILO	¢1．28	\square
H Solder reelzoz	¢0．45	\square
1 SOLDER PACK	¢0．065	口
J DE－SOLDERING BRAID	£0．66	\square
K L686SOLDERING STATION	£1．88．	\square
L L700 STAND	£2．26	口
New Catalogue		\square
All prices inc／ude 10\％V．A．T．		

 both battery and mains use! We're almost giving them away at price 1 We challenge you to compare periormance and value with $£ 80$ radios! *Send quickly, after receiving goods test 7 days refund if not delighted. Or call. Elegane black chrome finish facia, set in fabulous Cabinet built case-constructed of fine Russian hardwood in beautiful Tazk Venear finishprevents vibration, ensures purer \& swester tone than over!
Volume controlled from a whisper to a roar that would fill a hall! Much wider band sprazd, for absolute "pin-point" station selection! Plus MAGIC EYE,' tuning level indicator for passed themselves, proving again their fantastic ability in the field of electronics and brilliantly reflecting their advanced micro-circuitry techniques in the field of spaceship and satellite communications. Standard Long, Modium, Short and Ultra Short Waves to cover the four corners' of the earth during 24 hours a day including all normal transmissions. VHF,FM/USW, AM:LW MW, SW, gets, locally, focal 8 now stations not yer operation
al, and messages from all over the world! Expensive TURRET TUNER side control waveband selection unit (as used on expensive T. A.). Every waveband clicks into position, giving incredible ease of station tuning! Genuine push-pull output! ON/OFF volume
and separate Treble and Bass rone controls for utrer perfection reproduction and tone! Press-button dial illumination! Take it anywhere-runs economically on standard batteries (obtainable
everywhere) or direct through battery eliminator from $220 / 240 \mathrm{VAC}$ mains supply. Internal ferrite rod aerial plus built-in "rotatable"' CARRADIO. Can also be used through extension amplifier, tape recorder or public address system. SIZE I4in $\times 10$ itin x fin overall approx. Magnificently designed, made to give yoars of peract service. (U.K. service racilties Wish WRITTEN GUARANTEE, manual with simple operating instructions \& circuit diagram. PLUS ultraz sonsitive earphone for personal listonextra). BOX, POST, ETC. 45p. *BUTWAIT, for only 75 p extra You get the sensational "COMPUTERISED" WORLD missions the whole world over-even a child can do it in a flashit even lets youknow when to tune into the U.K. When abroad. NO GUESSING! NO MESSING!) PLUS Standard 'Ionglife' batteries. (Sorry-We cannot change these new radios for any or call at either Store. But HURRY! SHOPERTUNITIES SAVE or call at either Store. But HURRY! SHOPERTUNITIES SAVE
YOU Efis's.

1973 RUSSIAN RADIO TECHNOLOGY SHRINKS THE WORLD! ${ }^{\text {COMMPUTERISED? }}$

THIS-FANTASTIC $\begin{gathered}\text { BRANDNEW } \\ \text { FABULOUS MSTRMD17 }\end{gathered}$

 EATHOSIDIIIITR PORTABLE RADIO\& COMMUNICATIONS (4 ris. 24.901 miles SHRLINK TO ONLY' $44^{\prime} \times 10$ ² $\times 44^{1 / 2}$ inches approx?
9 - transistors
 AND DIODES!
 wavebands: standabo lomgand MEDUM
 Plus 5SHORT WhIEBMNDS
 pous ULIRA SHORT WAMES
 (V.H.EAM. AHSWW)
 (51850新

MAINS/BATTERY
ELIMINATOR - 22 extra

RECEIVER WORIDWNO

Shopertunitios "thunder" ahead with an offer that's. FANTASTIC (even by our standards!). We've snapped up 500 magnificent machines. Latest sensation in the world of sound! First-class makers! Fabulous VHF, AM/FM
Radio AND Casette Tape Recorder \& Player combined \& it also runs off standard batteries or mains. (Simply plug in the $220 / 240 \mathrm{~V}$ AC line cord. Record and play back anything, anywhere! RECOMMENDED RETAIL
PRICE GENUINELY G44! WE OFFER AT ALMOST HALF PRICE! PRICE GENUINELY C44! WE OFFER AT ALMOST HALF PRICE! Wonderful features: $\begin{aligned} & \text { Prass-button Keyboard Control Panel or latest } \\ & \text { MASTER SWITCH CONTROL! }\end{aligned}$ check/recording level indicator or built-in automatic Leveller! Battery rate ONOOFF and HI-LO volume controls! t Heavy duty built-in speaker! * Earphone (for personal listening or "monitoring") and extension speaker soekets! \star Remote control microphone! t Built-in swivel tefescopic extension aerial (24in approx.)! Magnificently made case with carry handle. (DESIGNS VARY SLIGHTLY.) Takes standard 30,60 , 90 or 120 -minute Cassetre Tapes, obtainable everywhere. AND the amazing
built-in full circuit VHF, AM/FM Radio gives you supert clarity of tone in built-in full circuit VHF, AM/FM Radio gives you superb clarity of tone, incredible station sefection. Unique rotating Station Selector Dial-gets, locally,
city and regional stations in every part of the country, plus B. B. C. National VHF city and regional stations in every part of the country, plus B.B.C. National, VHF Picks up dozens of foreignstations. Fabulous in Your Car! You could pay ées
more for a Car Radio or Car Cassette player ALONE! $£ 22$. 40 , carr. etc., $39 p$. Complete with simple instructions, remote control microphone with on/off switeh and microphone stand. WITH WRITTEN GUARANTEE, Send quickly, after receiving goods, test 7 days, refund if not delighted. Or call. BONUS OFFER: Batteries and Cassette Tape 28p extra if roquired.

SHOPERTUNITIES LTD

(Our bargain prices even absorb V.A.T.) NOW a superb THE ONE STEP NS tape recorder and player-and incredible BEST! Expensive "PIANO KEYBOARD" CONTAOL PANEL (or latest MASTER SWITCH control) AND AUTOMATIC LEVEL CONTROL. No fiddling with awkward tape and reels, iust "slap-in" a cassette and off you gol (Takes 30,60 , or 90 minute stardard cassette tapes obtainable every where). Amazing performanceiensures perfect tapings and superb reproduction Remote whisper or our! Runs on standard batteries AND $220 / 240 V$ AC mains. Separate
or jacks for remote control microphone, erc. Size 91 in $\times 5$ in $\times 2 \frac{1}{2}$ in approx. Design tions. Recommendith carry handle. WRITTEN GUARANTEE and full instruc atc. 34 p . Send quickly, after receiving goods test 7 days-refund if not delighted. Or call at either of our stores.
BONUS OFFER:-
BON S OFFER:-Cassette tape, standard batteries AND Microphone stand 55p extra if required.
TOrder by post to Uxbridge Road address or call at either store. - - - -
Bargains galore at both stores.-(COMMERCIAL TRAVELLERS PLEASE NOTE:

POWER RHEOSTATS

High quality uranice constructios. Windings embedded in vitreons

AUTO TRANSFORMERS 0/116/230

80 W	28.10	\& P. 18p
150W	22.70	P. \& P. 18p
300W	83.60	P. \& P. 23 p
500w	25-25	P. \& P. 33μ
1000w	27.60	P. \& P. 38p
1500W	210.20	P. \& P.43p
2250w	817.85	P. \& P. 50 p
-	28.00	

LB4 TRANSISTOR TESTER Tests PNP or NPN transistora, Audio indication. operate nt wo $1 \cdot 5$ batterjes.
complete with alinstructions
24.50. Post 20 p

LB3 TRANSISTOR TESTER Tests LCO and B. $9 \mathrm{y}^{\mathrm{n}}$ battery. Complete with all instructions, etc. 23.95. Post 20 p .

SEND S.A.E. FOR LIST OF SEMICONDUCTORS AND SEMICONDUCIOR
VALVES

G. W. SMITH
\& CO. (RADIO) LTD. Also see next three page

MULTIMETERS for EVERY purposel

T800 POCKET
High-precision at low eost. Rangea: D.c. $1: 2 \mathrm{~V}, 150 \mathrm{y}$ $1,000 \mathrm{~V}(10,000$ 5V, 150v, 10n

Cance Current 150
look ohms 21-85. Post 1 可,

MODEL 1092 Teitmeter	
6,000 O.P.V.	
0/3/15/150/300/1,1006 ¢1.	
0/6/30/300/500 V a.c.	
$0 / 300 \mu \mathrm{~A} / 300 \mathrm{MA}$	
0/10K/1 meg Ω	
Decibels - 10 to +16 all	
28.75 each. Post lip.	

HIOKI MODEL 780X 20,000 O.P. $5 / 25 / 1000$ F00/section. $5 / 25 / 100 / 500 / 1,000 \mathrm{~V}$ $50 \mu \mathrm{~A} 2 \overline{0} 0 \mathrm{mi}$ a.c
$00 \mu \mathrm{~A} / 2 \mathrm{~J}_{\mathrm{man}} \quad 20 \mathrm{~K} / 2 \mathrm{meg}$
84.87. Post lop.

HIOKI MODEL 730X 0,000 O.P. V. Overlobd pro1200 V
t.c. $\quad 12 / 60 / 120 / 600 / 60 / 300 / 600 /$ $1,200 \mathrm{~V}$ (1.c. $12 / 60 / 120 / 600 /$
$1,20 \mathrm{~S}^{2}$ a.c. $\quad 60 \mu \mathrm{~A} / 30 \mathrm{~mA} /$ $300 \mathrm{~mA} .2 \mathrm{~K} / 200 \mathrm{~K} / 2$ mieg hth. -10 to $+63 \mathrm{cls}^{2}$ 20.50. P(n)

MODEL $500 \quad 30,000$ O.P.Y. with overload protection mirror scale $0 / 0 \cdot 5$
$100 / 250 / 500 / 1,000 \mathrm{~V}$
$0 / 2 \mathrm{~J} / 10 / 2 \overline{0} / 100 / 250 / 500$ /

 | $0 / 60 / \mathrm{K} / \mathrm{t}$ | $\mathrm{Meg} . / 60 \quad \mathrm{amp} \mathrm{Meg} \Omega$ |
| :--- | :--- | \&8.87. Post paid.

HIOKI MODEL 750X 3 ranges 0.000 . 0.3 tu $1,200 \mathrm{v}$ a.c. $0-3 \mathrm{~K} / 30 \mathrm{mcg}$ ohmm. +17113 .

HT100BA MULTI-METER Featares a.c. current
ranges. 100,000 O.P.Y. tirror scale. Overload protection.
0/0.5/2.5/10/50/250/500/ $1,000 \mathrm{~V}$ d.c.
$0 / 2 \cdot \mathrm{v} / 10 / 50 / 2 \mathrm{~J} 0 / 500 / 1,000 \mathrm{~V}$
$0 / 10 / 250 \mu \mathrm{~A} / 2 \cdot 5 / 2 \mathrm{~J} / 250 \mathrm{MA}$
10 smip. d.c.

amp, a.c. $0 / 20 \mathrm{~K} / 20$ KK/2MEli/20 MEG;

370 WTR MULTIMETER Feature: a.c. current $0 / 0 \cdot \mathrm{~J} / 2 \cdot \mathrm{~J} / 10 / \overline{2} 0 / 250 / \mathrm{J} 00 /$ $1,000 \mathrm{~V}$ il.c.
$0 / 2 \cdot 5 / 10 / 20 / 250 /, 00 / 1,000 \mathrm{~V}$ $0 / \overline{0} \mu \mathrm{~A} / 1 / 10 / 100 \mathrm{ma} / 1 / 10$ amp. I.c. o/ $100 \mathrm{~mA} / 1 / 10$ amp. a.c.
$0 /: 5 \mathrm{~K} / 50 \mathrm{~K} / 50 \mathrm{~K} /$ SMEG/ J0ME -20 + 62ilB. 215. Post 2.5 p .

RUSBIAN 22 RANGE MULTIMETER Model C437 10,000 . instrument manufactured in standarts. Kanges: $2 \cdot 5 / 10$ 00/250/500/1,000V d.c. $2 \cdot 5$
 D.c. current $100 \mathrm{wA} / 1 / 10 /$
Resistance 300 whins $/ 3 / 30 / 300 \mathrm{~K} / 3 \mathrm{ml} \Omega$. Complete with batteries, aturdy ateel carrylng cose

V.A.T. Information

All prices quoted are subject to 10%

 Value Added TaxThis must be added to the total value of goods ordered (including powtage! carriage). MODEL TB. 68

Selected TEST EQUIPMENT

 TE-18A Tranaigtorimed $8 i g n a l$
ges $400 \mathrm{kHz}-30 \mathrm{MHz}$. An inexpensive instrument for the handyman Wide easy to read scale 800 kHz modulation.

 $\begin{array}{lr}\text { MODEL } & \begin{array}{r}\text { PL438 } \\ 20 \mathrm{k} \\ \mathrm{KN} \\ \hline\end{array} \mathrm{d.c} \\ 8 \mathrm{k} \Omega / \mathrm{N}\end{array}$ a.c. Mirror scale. $0 \cdot 6 / 3 / 12 / 30 / 120 / 600 \mathrm{~V}$ | a.c. | $3 / 30 / 600 / 600 \mathrm{~V}$ |
| :--- | :--- |
| a.c. | |
| coll | |
| coll | | 600mA. $10 / 100 \mathrm{~K}$

KAMODEN HM720B F.E.T. V.O.M.

Input inppedance 10Ma. $250 / 1,000 \mathrm{~V}$ d c. $0 / 2.5 / 10 / 50 /$ $25011,000 \mathrm{~V}$ a.c. $0 ; 25 \mathrm{~A} / 2 \mathrm{~F}$) $20 / 250 \mathrm{MA}$ i.c. -00 to
 Post 30 p .
TME MODEL TW-50K 46 f.c. $0 \cdot 12 \overline{0}, 0 \cdot 20,1 \cdot 2 \overline{5}, 2 \cdot 5,-10,25, \overline{0} 0$,
 $\overline{5}, 50 \mu, 1, \overline{0}, \overline{3}, 2 \overline{0}, 50,2 \overline{2} 0$,

 \&8.50. Pust 17 p .

MODEL C-7080 EN
 Giant bin mirrur scale,

$0 / 0 \cdot 2 J / 1 / 4-5 / 10 / 50 / 2 \overline{0} 0 /$ $1,000 / 5,000$ स1.c. $0 / 2 \cdot 5 / 10$ $150 / 250 / 1.000 / 5000 \mathrm{~V}$ a.c. $0 / 50 \mu \mathrm{~A} / 1 / 10 / 100 / 500 \mathrm{~mA}$ $10 \mathrm{amp} . \mathrm{d.c.0/2K/200K}$

MODEL

Input inupedance meg ohni\#. 0/0-3/1.13/6/ $30 / 120 / 600 \mathrm{~V}$ d.c, $0 / 3 / 122$ $60 / 120 / 600 \mathrm{~V}$ a.c. $0 / 190 \mu \mathrm{~A}$ 1120 mA d.c. $0 / 1 \mathrm{~K} / 300 \mathrm{~K} /$ $10 \mathrm{meg} / \mathrm{l} 00 \mathrm{meg}$ ohms. 215.97, Post 2.\%.

CI-5 PULAE OSCHLO SCOPE
For diaplay of pulsed and periollic waveforms in AMP. Band width 10 MHz , sensitivity at 100 kHz HOR. AMP 0 mm, $0.1-25$; jo0kHz. Bensitivity st 100 kHz selsitivity a gered вweep $1-3,000 \mu \mathrm{mec}$. 0-3-2J: Pre-set triggered aweep $1-3,000 \mu$ sec.
free running $20-200,000 \mathrm{~Hz}$ fil nine ranges free running $20-200,000 H z$ in mine ranges
Calibrator pips. $220 \mathrm{~mm} \times 360 \mathrm{~mm} \times$ $430 \mathrm{mb}, 115 \cdot 230 \mathrm{~V}$ a.c. operation

230. Carr pall

Nin tube, Y amp. Se -IV p-p/CM. Bandwldth
 mpsitivity
0.9 V . $\mathrm{p}-\mathrm{p} / \mathrm{CM}$. Input imp. 2 neg $\Omega 20 \mathrm{pF}$ imie base. 5 ranges 10 cps
00 kHz . Synchronisation Interna/tuxternal. Illuminated scale 140 min $\times 215 \mathrm{~mm} \times 330 \mathrm{~mm}$. Weight 15j1h. 220/ book. 847.50 . Carr. 50 p .

-20 to

Post 35p.
\% © 08
U4812 MULTIMETER Extremely sturdy instrument fur general electrica us
$6670 . P$. . $600 / 900 \mathrm{~V}$ d.c. and 7 EmV $0 / 0 \cdot 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300 /$ $600 / 900 \mathrm{~V}$ s.c.
$0 / 300 \mu \mathrm{~A} / 1 \cdot \mathrm{~J} / 6 / 1 \mathrm{~J} / 60 / 1 \mathrm{~s} 0$ 600MA/1.5/6 arup. d

$0 / 1 \cdot 5 / 15 / 60 / 150 / 600 \mathrm{MA}$

I-s/6 amp. a.c. $0 / 200 \Omega / 3 \mathrm{k} / 30 \mathrm{k} \Omega$. Accuracy Knife edge pointer, mirror scale. Complete with sturdy metal carrying cas.

GAMODEN 78.200

SAMODEN HM-350 TRANBISTOR TESTER High quality inst runcent
to test Reverse Leak o test Reverse Leak Amplification tactor of
APN, PNP, transistors, diodes, SCR'8, etc. 4" \times $4 l^{*}$ clear scale meter. Operates from internal nstructions, Icals and carrying handle. $212 \cdot 50$. Post 30p

KAMODEN HMG-500 insUlation reIISTANCE TESTER
 Battery operatel. Wide ranue clear Conplete with de. Juxe carrying caye, 219.95. Post 30 p.

ART-300 AP/RF SIGNAL GENERATOR dact trancistorised. conipact. sully portable. A sine wave 18 Hztow
KHz . AF square wave 8 Hz to 100 K Hz . Ont
 200 MHz . Output 1 .
Onaxinnurn.
Opration maxinum. Operation $220 / 240 \mathrm{v}$. AC . Complete

HAND HEL WALKIE TALKIES

Induat rial quality in rolust murial cayes. Battery "peration. Volume and squelch controls. Call button and pregs to talk carryiny cases.

clannel	\mathcal{L}	air.
300 mW		5
3 chantel	¢79.50	Pair.

(Note: licence requiresl for operation

HOMER INTERCOMS

Ideal for holue, nffice, stores, fac:
tories, etc. supplied tor ies, etc. Supplied complete with lat.
eries, cable and teries, cable and
frec instruct tions.
2 Station, 28.97, 3 station 25.25, Prist 151 . 4 Staticticer.62. Poxt 17 p .

EMI LOUDSPEAKERS

 Mondel $450.13 \mathrm{in} \times 8 \mathrm{sin}$ with twin
 ohnis. $£ 3.62$ cach. Pust $2 . a p$.

SPECIAL OFFER! STEREO SPEAKERS
Matchell pair of stereo bookshelf speakers. Deluxe teak rencerell finish.
Size: 14 in \times Sin $\times T i n$. Size: $14!$ in \times Sin $\times 7 \mathrm{in}$.
x whins. sW RMs. 16W peak. Complete
with DIN leail. 212.95. Carr. Jop.

[^2]
OMR-sO

 ORR-sORECEIVER

4 Bands covering $550 \mathrm{KHz}-30 \mathrm{MHz}$. BFO Built-in Speaker $220 / 240 \mathrm{~V}$ a.c. Brand new with instructions. 215-75. Carr. 37 p .

UR-1A SOLID State communication RECEIVER
 8 Metcr. Cariable, 1 F'O for $48 B$, Built-in
Spraker, Bandspreal, Sensitivity Control $220 / 2400^{\circ}$ a.c. or $12 \mathrm{~V}^{\text {d.c. }} 12 \mathrm{in} \times 4 \ddagger \mathrm{in} \times 7 \mathrm{in}$ Brand new with instructions. 225 . Carr. 37 p .

SKYWOOD CX2O3 COMMUNICATION RECEIVER

0000000

Solict state. Coverage on 5 bands 200-4:0
 AVC, ANL, " ${ }^{\prime}$ " neter. AM/CW/SBB. Inte grated speaker and jlhone socket. Operation $220 / 240 \mathrm{~V}$ ac. or 12 V d.e. Size $32.5 \times 266 \times 150$ nuth. Complete with instructions and circuit 832.50. Carr. 50 p .

LAFAYETTE HA-600 SOLID STATE RECEIVER
 $100-400 \mathrm{kHz}$,
$\mathrm{k} 1 \mathrm{Iz}-30 \mathrm{M} \mathrm{Hz}$ front end. 2 FET \& front end. \& mech.

 Brand new with ingtructions. $\mathbf{8 5 0}$. L'arr. 50p.

TRIO 9R59DS CATION RECEIVER
4 band cover ${ }_{30 \mathrm{MHz}} 550 \mathrm{kHz}$ tinuous and electrical bandspreau on 10, $15,20,40$ ans 80 metres. 8 valve phone jack. SSB-CW. AN L Variable BFO S meter. Sep. bandspread dial. IF frequency 4.akllz. Audio ontput, 1 SN. Variable RF and AF gain controls $110 / 250 \mathrm{~V}$ a.c. Siz $7 \mathrm{in} \times 13 \mathrm{in} \times 10 \mathrm{in}$ with instruction manual.
$\mathbf{£ 4 9} 50$, C'arr. paid.

HA-10 STEREO HEADPRONE AMPLIFIER istor amplifer oper ates from magnctic
ceramic or tuner inputs with twin stereo headphone outputs and separate volume controls for each channel. Operates from 9 y battery. Inputष . $\mathrm{ML} / 100 \mathrm{MI}$. Out put 50MW \&5.9\%. Post 1.7n

1021 STEREO LISTENIN STATION For balancing and loulspeakers with afluitional facility forstereo headphone switehing. ${ }^{2}$ gain controls, speaker on-off slicle switch, stered
headphone sockets. 6 in $\times 4$ in $\times 2 t i n . ~$
22.25 healphon
Post 15p.

MP7 MIXER PREAMPLIFIER
 J microphone in-
puts each
with
individual
gain controls enabling complete mixing facilities. Battery operated. 9 ! $\operatorname{in} \times \sin \times 3 \mathrm{in}$ Inputs Mics: $3 \times 3 \mathrm{mV}$ 50K: $2 \times 3 \mathrm{mV} 600$ ohin. Phono meg. $4 \mathrm{mV} \mathbf{j} 0 \mathrm{~K}$. Phono ceramic 28.97. Post 20 p .

Hf-FI EQLIIPMENT

FANTASTIC OFFER!

 NIKKO TRM50 STEREO AMPLIFIER
$17+17 \mathrm{~W}$ r.m.s. stereo amplifier with inputs for Magnetic and
Cryatal phono. Tuner, Tape, Aux and Tape Monitor. Outputs fo: two pairs of stereo speakers and tape. Stereo headphone socket. Full range of controls including loulness control, seratch filter. List price 159.50

Attractive black andi silver finish. 2 y V neg. earth. Shider controls for volume, tone and balance. Channel selector button with monnting brackets and instructions.
ONLY ≤ 12.50
P. \& P. 40 P .

AUDIOTRONIC
ACR 3500
CAR RADIO

Manual tuning of Medium and Long waves I?V pos. or neg. earth. Complete with oUR PRICE $86.50 \quad$ P. \& P. 50p
AUDIOTRONIC ACR. I PUSH BUTTON CAR RADIO
Push button tuning of one LW and five MW stations of your choice. 12 V Pos. of brackets afd instructions.
our price $\quad £ 8.95$

MONOTONE 6750 SYSTEM

OLRE
PRICE

arr. and

WHARFEDALE LINTON SYSTEM

OUR
PRICE
C95.95 Carr. and
PRICE RECEIVER 8YSTE简 E105. C1.2 LINTON RECE

AMSTRAD 8000 II SYSTEM

Amstrad 8000 I1 $7+7 \mathbf{W}$ anplifter. BSR MP6
and cover, (ioldring G800 cartridge, pair of Apollo speakers andall leads.

B.S.R. TD8S 8-TRACK

STEREO TAPE PLAYER DECK

Integrated preamps (output $1: 2 \mathrm{zm}$ V) to feed into any stereo anpp acerctor, 4 pole asn 1ron
ofr price $£ 12.75$
Carr. 50p
G. W. SMITH
\& CO. (RADIO) LTD.
Also see previous page
and opposite page

$2 \times$ Z30/8tereo $60 / \mathrm{PZJ}$
$\mathbf{2 1 5 . 0 5} . \quad \mathrm{P} . \dot{\mathrm{a}} \mathrm{P} .37 \mathrm{p}$ $2 \times$ Z30/Btereo 69/PZ6 18.00. P. \& P. 37p $2 \times 250 /$ Stereo $60 / \mathrm{PZ}$. 220-25. P. \& P. 37 p Transtormer for PZ8 88.65 extra Active Filter Un
84.45 extra
Pair of Q16 Speak $810 \cdot 70$ extra
Sinclair Project 60 880.97. P. \& P. 37

All other Sinclair Products in stock: 2000 fer, $88.05 ; 2000 / 3000$ Stereo Tuner. 286.05 P. \& P. 50p.

* TRANSISTORISED FM TUNER
 TRANBBTOTM HIGH QUALITY
TUNER,
SIZE ONLY $6 \mathrm{in} \times 4 \mathrm{in} \times$ 2 tin. 3 I.F. atages. Double tuned dis criminator. Ample output to feed most mplos tastic value for money. es.os. Post 1 . Stereo multiplex adaptora \& 4.97 TE 1018 DE-LUXE DANCE MEADPET DANCA Bendert Bensitive, soft earpads Magnetic, Impedance 2,600 ohmp.

EOSS BARGAIN SP3XC STERREO Extremely sensit ive bigh quality headpbones. Impedance 4-16 ohms. $10-15,000 \mathrm{~Hz}$. Soft sponge ebr cushions.
loft coiled lead. Brand new and bored (List $29-50$)

HOSIDER DEO-2S 8TEREO HEADPHONE Wonderful value and excellent perAdjustable head-
band. 8 ohm jm pedance. $\quad 90-12,00$ cps. Complete with lead and plug Post 12p.

TE-1085 STEREO HEADPEONES Low coat high perform ance atereo headphones
Foam rubber ear cups Foam rubber ear cups. 8 ohm irmpedance. 25 $18,000 \mathrm{~Hz}$. With lead and stereo jack piug. ONLY 21.97. Post 12 p .

BH. 001 HEAD 8ET AMD BOOM Moving coll. Ideal for language leaching, comimp. 16 ohma phone imp. 200 obms. 84.89: Post 15p

AA6300 AM/FM STEREO

 TUNER AMPLIFIER$20+20$ watts rms . Magnetic, ceramic and ape inputs $\mathrm{FM} 88-108 \mathrm{MHz}$. AM 635 1605 kHz . Dual stereo apeaker outpute Headphone socket. (Rec. List Price $2117-46$) OUR
PRICE 6.95 P.a P AKAI AA6300 SYSTEM
 $20+20$ watt $A M$ / FM atereo tuner ampllter. Garrard AP76, plinth and cover. G800 cartridge, pai of Mezzo III apeakers.

OUR \quad \& 132.50
Carr.
Pack.
$2 \cdot 00$

STEREO AMPLIFIERS
RA310 $15+15$ watt RA610 $32+32$ watt RA810 $40+40$ watt
HA1210 $60+60$ watt
P. \& P. 50p extra

AM/TM ATEREO RECEIVERS
RX150 7i + 7 watt
RX $400 \cdot 30+30$ watt
286.95
846.50
$\mathbf{2 5 7 . 5 0}$
P. \& P. 75p

RXI50 SYSTEM AM/FM $\quad 7!+7$ $\begin{array}{cc}\text { watt stereo tuner } \\ \text { amplifer, } & \text { BgR }\end{array}$ MP60, plinth and cover, 6800, pair of Denton 2 speakers and all leads.

OUR
PRICE

21.25

HOSIDEN DE-088 DE-LUEE BTEREO
 Features unlque mechanical 2 way units and fitted adjustable level, controle. 8 ohm lm pedance $20-20,000 \mathrm{cps}$ Complete with opring 67.97. Pott 12 p

CAssetre (P. \& P. 50p)
CS350 Deck
CS35 Recorder
CS35/CSB8 speakers GXC40D Deck
GXC40T Deck/Receiver
$G X C 4$ a Deck
AXC46D Dolby Deck
GXC46 Recorder
GXC60D Deck
GXC6SD Dolby Leck CARTRIDGE (P. \& P.. 50p CR8 1 Deck with amps. CR81D Deck
CR81T Recorder/Receiver CR808s 4 chanrel Recorder CR80DS8 4 channel Recorder TAPE (P. \& P. 75p) 4000 DS Deck
1721 L Recoriler
X 5000 Recorder
$\times 201 \mathrm{D}$ Deck
GX220D Deck
(iX2210 Deck
(iX280D Deck
TAPE/CASBETTE (P. \& P. 75p)
TAPE/CARTRIDGE (P. \& P. 7óp X1A10D IVeck TAPE/CASSET
X2000sD Recorde
MJCROPHONES (P. \& P. 50p)
ADM11 Dynamic (pair)
RECEIVERS (P, \& P .7 F) AA6300 20 + 20 watt AAR030 $25+25$ watt AA8080 $40+40$ watt
\qquad
DOLBY SYSTEM NOISE REDUCTION UNIT

mproves the performance of casactle and emi-professional recurders. Reducen tape hise y all $100 \mathrm{~Hz}, 6 \mathrm{~dB}$ at 1200 Hz and 10 dB input levels and nolge reduction on record and replay. 2 metern for Dolby level. Oft tape monitoring. Frequency response: 20 Hz to $15 \mathrm{kHz} \pm 1 \mathrm{~dB} 19 \mathrm{kHz}-35 \mathrm{~dB}$. Size $15 \mathrm{in} \times$ ginx 3 in. A.c. $200 / 250$
OUR
PRICE
$\mathbf{S 3 2} 50$

Tape Head Cleaner 80 p each Free Free

RECORD DEGKS

Carriage and Packing 50p			
BgR MaDOAALD			
C114 Mini	58.		
C129 Mono 45.50			
C137 87.0			
$510 / \mathrm{TPD} 1$	318.95		
610 se.			
$810 / \mathrm{TPD1}$	214.85	GARRARD	
710	518.80	1025 T 8ter	14.05
810	284.50	2025 T/C S	
$710 / 810$ Plinth 80.40			
and Cover	48.35	8P95 III	88.50
MP60 87.65 8P25 IIL			
M P60/G800	\$10-25	GP104	58.50
MP60/TPD1	1218.60	8P26/M75.6	818.90
MP60/TPD2HT70	211.25	AP76	216.68
	810.97	8L65̄B	211.15
HT70/G800	\$18.60	8L72B	S17.76
HT70/TPD1	815-95	$8 \mathrm{L9jB}$	205.25
		401	288.50
CONNOIRSEUR		ZERO 100A	880-30
BDl Kit	$80 \cdot 10$	ZERO L00S	827-05
BD1 Chassia 811.35			
BD1/SAU2/		GOLDEIFG	
		699	818.90
RD2/SAC'y/Chasals		0101P/C	218.00
	228.85	(1 L 69 P ?	216.75
BD2/SAC2/		GL72	\&20.07
Plinth/Cover	228.20	6L72/P	827.80
		Plinth 69/72	86.80
THOREMS		LID 72	82.80
TD125/II	258.15	GL75	286.80
TD12JAB/II	278.55	6L75P	284.40
TX25	65.60	Plinth 70	27,80
TD150A/II	889.25	LID 75	82.80
TD1600	248.95	GL85P/C	258.55
PLINTHS AND COVERS			
Carriage and Packing 50 p			
Budget SP25. etc.			42.85
Budget A P78/Zero 100S			23.06
Budgret BgR			(28.95
SME 2000 System			£26.40
RECORD DECW PACKARE			
Carriage and Pack. ing 75p.			
Complete units with			
ateren cartridge			
ready wired in			
plinth with cover.			
E8R McDONAL			

Neat $030 J$ Arm. 57.60. P. \& P. 25p. Neat G30B Arm, s.40. P. \& P.
Neat 770 Cartridge (original pack), 25.16 . Neat V70 Cartridge (bulk pack), 81.60 Neat V70E Cartridge. 28.35.
Neat V60MH Cartringe, 88.15 .
(P. \& P. 1'2p extra on last four items)

CREDIT TERMS FOR CALLERS ON
PURCHASES OF 550 AND OVER.
ACCESS I BARCLAYCARD WELCOME
Note: All items correct at time of printing

WOM! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Abstract

Build as you learn with the exciting new TECHNATRON Outfit No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s simplified study method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

Abstract

and what's more, you will understand exactly what youl are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile' Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you cao use it again and again. You LEARN-but it's as fascinating as a hobby.

Among many other interesting experiments, the Radio set you build-and it's good one-is really a bonus. This is first and last a teaching course, but the training is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.
FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this course-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T. has a fine range of clourses up to City and Guilds standards.

Specialist Booklet
If you wish to make a career in Electronics, send for your FREE copy of "NEW OPPORTUNITIES". This brand new booklet Tist out-tells you atl about TECHS out-tell y and about full range of courses.

Dept. BPEI6 ALDERMASTON COURT, READING RG7 4PF
Accrediter by the Comarll for the Accredilation of Correnpontence Collegen.

8 Spatar Bargaina	ACOS GP91/28C	
I. $13 \mathrm{in} \times 8 \mathrm{in} 3.8 \pm 150 \mathrm{hms} 8.00$	corapat st	
$\operatorname{lin}_{\text {in }}$	ACOS GP95 stereo crystal $\quad 1.15$	
twin tweeter $\quad 8.50$	ACOS GP96 stereo ceramic	
Type 350.20 wa	9 THAC Sonotone atereo ceram	
${ }^{\text {tweeter } 8 \text { obms. P.P. 37p. }}$	dac/G Sonotone ste	
	O GP101 com	
CELESTION $\sin 15$ ohm ${ }^{\text {che }}$	19-TI Sonotone stereo crystal	
8 or 15 ohm	Postage 5p per cart	
$2 \operatorname{tin} 8$ or 64 ohm P.P. 10p		
Kit-torm es binetio	0 input 6 or 9 V d.c. output	
	at 150 mA 240 v input $6,7 \mathrm{l}$ or 9 v output $\quad 1.89$	
With a 13 in $\times 8$ in or 8 in cut out		
$18 \mathrm{in} \times 11 \mathrm{in} \times 9 \mathrm{in}$ with $13 \mathrm{in} \times 8 \mathrm{in}$ cut out for EMI $350 \quad 28.70$	$12 \mathrm{vd.c.innut} \mathrm{(for} \mathrm{cars}$,	
	ighter socket) 6, 7\% or 9	
Sin or 8 in cut out. (please specify cut out) Add 35 p per Cablnet for post \& packing		
	Taper-"MYLAR'" base fnest quality	
Microphone Bargsina MICA5 'ACOS' metal case. cryatal hand		
	5 in 600ft 36p 5 din 1800ft 85p	
	5 in 900 ft 45 p 7in 1200ft 55p	
CM 20 Crystal Hand DX 143 Dynamic, cassette-type	5 in 1200ft 60 p \%in 1800ft 80 p	
CM70 PLANET 日tick metal, swltch crystal	Postage 9p each	
	Piantic Library Cazen for	
DM160 Dynamic uni-dir, ball metal	${ }^{\text {Pin }}$	
	Reel	
UD130 $50 \mathrm{~K} / 600 \mathrm{ohm}$ uni-di	P. \& P. Sp each	
TW209 Lesson dual imp ball		
$\begin{array}{ll} \text { metal uni-dir } \\ \text { Condenger Mike uni-dir } 600 \text { ohm } & \begin{array}{c} 5.75 \\ \text { Gultar malke } \end{array} \\ \hline 95 \end{array}$	THIS MONTH'S	
	SPECIA	
Lapel type, cryats Postage 17 p each	Model HPS 5A with v. controls. Recommended retail price $\mathbf{£ 6} \mathbf{8 5}$. Our price ${ }^{\text {83.05. }}$. P. \& P. 25p	
Cartridges-with standard fittings		
GOLDRING G850	d $10^{\circ}{ }^{\circ}$ V.A.T. on prices incl. P. \& P.	
	Mail Ordor Dept. E6/73. $\text { F.O. Box } 470 \text {, }$	

LARGE STOCKS, ATTRACTIVE DISCOUNTS DEPENDABLE SERVICE

Everything brand new and to makers' specifications.

ELECTROVALUE Electronic Component Specialists

TRANSISTORS BY SIEMENS AND NEWMARKET
2N3055 npn silicon power
ACl53K pno germanium low power
ACI76K npn germanium low power
AD161 npn germanium medium power
AD162 pnp germanium medium power
AF139 pnp germanium UHF
NPN. BCIO7 13p, BC108 12p, BC $11 \mathrm{p}, \mathrm{BC} 168^{9} \mathrm{p}, \mathrm{BC} 16911 \mathrm{p}$.
PNP: BC17721p, BC178 19p, BC17921p, BC257 12p, BC258 I $\mathrm{p}, \mathrm{BC} 259$ | 3p.
Standard eroupings available.
BDI 35 npn medium power
BDI 36 pnp medium power
DIODES
OA90, OA91, OA95, 6p each; OA200, 9p; OA202. 10 p .
Other semiconductors: $A C I 2 B, 17 p$; AFII7, 35p; BFY51, 19p. Full lists and technical data will be found in Catalogue No. 6. See also amendments list.

SIEMENS' THYRISTORS
$0.8 \mathrm{~A} 400 \mathrm{~V} 65 \mathrm{p}, 600 \mathrm{~V} 50 \mathrm{p}$.
$3 \mathrm{~A} 400 \mathrm{~V} 70 \mathrm{p}, 600 \mathrm{~V} \mathrm{El} 02$.

ZENER DIODES full range E24 values: 400 mW 2.7 V to 36 V , 14 p oach; $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to $82 \mathrm{~V}, 21 \mathrm{p}$ each 1.5 W : 4.7 V to 75 V , 48 p each. Clip to increase
1.5 W rating to 3 watts (type 266 F) 4p. -
DIN PLUGS AND SOCKETS
by Hirshmann, 4A rating

2 way LS -socket 10p, plug 12 p
3 way scr.-socket 10p, plug i2p
5 way scr.-socket IIp, plug 15p

TRANSISTOR ACCESSORIES
TO3 cover, 7 p ; Heat sinks $1^{\circ} \mathrm{C} / \mathrm{W}$, type 6 WI . undrilled, 60p.

SWITCHES

1011 SPST
toggle, 20p; 409
DPDT toggle, 29p
(these are chrome
(these are chrome $2 \cdot 5 A$ rating); 7201 sub-miniature DPDT 250 V a.c. $/ 2 \mathrm{~A}, 4 \mathrm{~d} \mathrm{p}$.

ROTARY SWITCHES

Radiospares Miniature Maka-switch (in assembly kit BBMIPI2W, $2 P 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}, 6 P 2 \mathrm{~W}, 32 \mathrm{p}$ each.

WAVECHANGE SWITCHES

ELECTROLYTIC CAPACITORS axial lead Rated voltage: $3 \mathrm{~V} \quad 6.3 \mathrm{~V} 10 \mathrm{~V} 16 \mathrm{~V} 25 \mathrm{~V} 40 \mathrm{~V} 63 \mathrm{~V} 100 \mathrm{~V}$ Capacity ${ }_{0} 14 \mathrm{~F}$

60 p 25p
$23 p$ 23p 42p p P
.

$\underset{\text { Code }}{\text { RESISTORS }}$ -
 M WW 7W 5% In-10K \quad I Codes: $C=$ carbon fim, high stability, low noise $\mathrm{MO}=$ metal oxide, Electrosil
$\mathrm{WW}=$ wire wound. Plesser.
Values:
El2 denotes series: $10,12,15,18,22,27,33,39,47,56,68,82$
and their decades
as El2 plus 11, 13, 16, 20, 24, 30, 36, 43, 51

Values	1 to 9	10 to 99	00 up
available		(see note below)	
E12	9	8	7.5
E24	1	0.9	0.75
E12	,	0.9	0.75
E24	$1 \cdot 2$	1	0.6
E12	2.5	2	16
E24	4	3	2
E12	7	7	6
E12	7	7	6
E12	9	9	8

Prices are in pence ach for quantities of the sameotmic value and power rating. NOT mized values, Ignore fractions on total value of resistor order.)
$62,75,91$ and their decades.
We regret that where substantial price increases have occurred in some items, they are due to

KNOBS
All grub screw ficting for tin
shafes. Black. For other types
-see Catalogue No. 6, p. 54. F. 14 (20 mm) pack of 2, 32p: F. 13 (26 mm) pack of 2 , 38p; F.12 (33mm) pack of 2 , 40p; F.19 (20 mm) pack of 2, 32p; F.18 (26 mm) pack of 2, 38p; F. 17 (33 mm) pack of 2, 40p: KB, 4 (20 mm) pack of $4,40 \mathrm{p}$; K $30 / 3$ (17 mm) aluminis

$k 84$

TRANSFORMERS—MAINS

T3 30V/2A pluss 4 taps	62.85
MT103 50V/IA plus 4 taps	t2.55
MT104 50V/2A plus 4 taps	E3. 50
MT12760V/2A plus 4 taps	63.80
$13 \mathrm{TO5} 13 \mathrm{~V} / \frac{1}{2} \mathrm{~A}, \mathrm{CT}$	fl. 25
28 TO5 $12+12 \mathrm{~V}, 22-0-2 \mathrm{~V}$.	41.65

> IT'S ALL IN THE LATEST ELECTROVALUE CATALOGUE No. ${ }^{6}$ (4th printing) contains IC, with circuit diagrams, R's and C's of practically every kind. accessories, components, tools, materials, etc. information and equivalent tables, etc. Well illuscrated (96 pages, 5 in $\times 8 \frac{1}{2}$ in) for 25 p allowable on orders over
> for $25 p$ allo
65 or more.

POTENTIOMETERS

Rotary, carbon track.
Rotary, carb
double wipe
SINGLE P20
$2.2 \mathrm{Ma}, 12 \mathrm{p}$: P20 lin, 100 s 8 to $2.2 \mathrm{Meg}, 12 \mathrm{p}: 1 \mathrm{P} 20 \mathrm{log} .47 \mathrm{~K} \Omega$.
 Dual log. $4.7 \mathrm{~K} \Omega$ to 2.2 Man . 42p; Log/antilog, 10K, 22K, antilog. 10 K only, 42p. Any type with 2A D.P. mains switeh $12 p$ extra. available in ranges quoted.
DUAL CONCENTRIC DP20 in any combination of P20 values, 60D; with switch, 72p. SLIDER
Lin. or log. IOK co 1 meg. in all
popular values, each 26 p . popular values, each 26p. yel./gr./blue/dk. grey/lt. grey CARBON SKELETON PRE. SETS
Small high quality, $P R$ lin.
$100 \Omega, 220 \Omega, 470 \Omega$. IK, $2 \mathrm{K2}, 4 \mathrm{K7}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}$, look, $220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{Mz}$.
$5 \mathrm{M}, 10 \mathrm{MG}$ Vertical or horizontal mounting,
$5 p$ each

DISCOUNTS

All items offered for sale in accordance with our stated terms of business, copy of which available on request.
Nat ollowed on nett price items. 10% on orders for
is or more 15% P5 or more. 15% on orders of \& 15 or more. Prices subject to aiterition without prior notice
Prices quoted DO NOT include V.A.T. Orders received from U.K. customers must be accomoanied by an additional 10% of the nett value for V.A.T. Overseas orders are exempt.
POSTAGE AND PACKING FREE
SURCHARGE 10p on small mail orders under $£ 2$. Overseas orders carriage and insurance charged at

'Hurry up Grandad... we're making a digital clock next'

Some young AMTRON enthusiasts do get a bit impatient at times, but when you consider all the cxciting kits in the AMTRON range, it's casy to sec why.

So many interesting and useful things to makeand you don't have to be an electrical 'boffin' cither.

Among the 200 kits, you will find: Power
supplics; L.F. instruments. tuners, receivers and I.C. digital equipment, etc.

Solder together with full instructions are included in the attractive blister pack.

Prices range from $£ 1.10$ to $£ 80$.

Hours of enjoyinent await you with AMTRON so 'Hurry up Grandad...'

PLEASE SEND FOR BROCHURE
Trade and Education enquiries welcome

TITIRDD

LIMITED
Should you experience any difficulty in obtaining Amtron Kits, contact us direct.

BURIED FROM VIEW

THE irresistible march of microelectronics means that more and more circuitry is disappearing from view. Circuitry that often is highly interesting in itself is being buried, not just metaphorically but literally, within the confines of black boxes. An oft-posed question is, should the user attempt to prise the secrets of the black boxes, or should he be content to accept them quite simply at their face value like any other circuit components? The latter is probably the most sensible thing to do. Yet sometimes it is essential to have a certain amount of inside information, though there are degrees of delving, of course.

Two articles in this issue illustrate different approaches to a fairly complex i.c., in order to suit (a) the builder of a detailed project and (b) the designer or experimenter.

The article decribing the General Purpose Timer gives all the information needed to build this complete instrument. The i.c. upon which the design is based is treated purely and simply as a black box. So far as the constructor is concerned it is just one of the 28 circuit components employed.

This approach is perfectly satisfactory in a constructional article where a proven design is presented for the reader to copy, right down to the final detail, circuit-wise. But should the constructor wish to modify or depart from the specified design in any way, he then obviously needs to know quite a bit more about the i.c. As indeed do all those interested in designing and experimenting for themselves.
Such requirements we have met on this occasion by a separate article which describes the technical characteristics of this i.c. and its possible applications. The device is discussed in practical terms and all relevant parameteqrs are given that need to be taken into account when designing a system around it. Even for this purpose, this "closer look" at the i.c. need not extend to a detailed examination of the actual circuitry of the chip. A functional block diagram is perfectly adequate.

Now this brings us back to that interesting and arguable point. Is there any need to peer deeper into the anatomy of an integrated circuit?

Microcircuit manufacturing processes allow quite unusual innovations in the creation of circuit elements. For example, it is quite normal for the active $p n$ junction to be employed as a maid-of-all-work, including serving in the humble role of a passive element. Not surprisingly, any normally wellrecognised classic circuit configuration becomes less obvious, maybe entirely unidentifiable, to the average eye scanning the equivalent circuit diagram of some monolithic device.

The internal circuit of an integrated device is not likely to be of any practical value to the general user. Admittedly it can be of academic interest and even offer some reward as a technical brain teaser. But we imagine most users will be content for the i.c. to remain an inscrutable black box. The external discrete circuitry which these devices invariably stimulate and within the web of which they become enmeshed, singly or severally, provides enough for designer, experimenter, or constructor to concentrate upon.-F.E.B.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD
S. R. LEWIS B.Sc

Art Dept

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
S. W. R. LLOYD

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4202

P. J. MEW

Phone: 01-634 4210
C. R. BROWN Classified

Phone: 01-634 4301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St., London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

The general. plerpose timer discussed here is based on 555 i.c. timer from Signetics which is the subject of the feature commencing on page 514. The unit is constructed in an Eddystone die-cast box of external dimensions $7.39 \times 4.703 \times 2.062$ inches. There is enough space for a mains power pack or a battery to be included inside the box. Whilst construction of the prototype is described in detail, many variations are possible to suit individual needs.

CONTROLS

The control arrangement is shown in the photograph. The eleven-position switch $S 1$ is used to select the first digit of the desired number of seconds. whilst the second digit is selected by the potentiometer VR1. The range switch, $S 2$, is arranged so that the total time selected by $S 1$ and VRI can be multiplied by $0 \cdot 1.1$ or 10 .

SELECTION OF DELAY

If a time delay of 860 seconds is required, $S 1$ is set to " 80^{*}. VR1 to " 6 " and S2 to " $\times 10^{\prime \prime}$. A delay of $1 \cdot 1$ seconds can be obtained by setting S1 to " 10 ". VRI to "1" and $S 2$ to "x0.1". Delays of less than 1 second can be obtained by setting S1 to " 0 " and S2 to "x0.1". The maximum delay with this unit is about 1100 seconds (18 minutes 20 seconds).

In general the delays are accurate to a few per cent.

OPERATION

The timing period commences at the instant the SIART bution is released after it has been pressed. The internal relay closes at this time, but automatically opens again at the end of the desired delay. It may be found that the timing starts when the SIARI button is pressed down owing to contact bounce. This will not matter provided that the button is pushed quickly and then released.

If the Start button has been pressed and one does not wish the timing operation to continue, the resei button may be pressed. A fresh timing operation can then commence from the beginning when the start button is pushed again. The use of the reset facility prevents having to wait or alter the timing setting after commencing a fairly long timing operation and wishing to terminate it.

THE CIRCUIT

The circuit of the timer is shown in Fig. 1. It is essentially the same as the basic circuit of Fig. I of the article commencing on page 514, but some refinements have been added.

The resistance of R_{i} has been replaced by $R 1$ to R11 in series with VR1. The resistor R11 is of low value and is included to prevent a fairly high current (about 60 mA) from flowing to pin 2 of the 555 if SI and VRI should both be set for zero resistance. The resistors around S1 are each 1 MS2 and their total value (as set by S1) is added to the setting of VRI.

THE TIMING CAPACITORS

The timing capacitor is selected by S2a. It cannot be emphasised too strongly that the electrolytic capacitors $C 1$ and $C 2$ must be good quality components which have a low leakage current. The writer would have expected electrolytic capacitors with a working voltage of about 30 V to pass a lower leakage current when 12 V is applied to them than similar capacitors with a working voltage rating of 15 V . However, measurements of the leakage current of a number of capacitors seems to indicate that this may not be the case.

An additional range of "x100" could have been added using a $1,000 / \wedge \mathrm{F}$ electrolytic capacitor to give time delays of up to 11000 seconds (over 3 hours), but a capacitor selected for low leakage current would probably be required. A 4-way 2 -pole switch would then be required for $S 2$.

COMPONENTS . . .

Resistors
$\left.\begin{array}{ll}\text { R1 to R10 } & 1 \mathrm{M} \Omega, 5 \% \text { (preferably } 2 \% \text {) } \\ \text { R11 } & 4.7 \mathrm{k} \Omega, 10 \% \\ \text { R12, R13 } & 22 \mathrm{k} \Omega, 10 \%\end{array}\right\}$ All 0.5 W

Potentiometers
VR1 $1 \mathrm{M} \Omega$ linear
VR2 to VR4 10k $\Omega, 26$ turn rectilinear
(RS Components Ltd.)

Capacitors

C1 $100 \mu \mathrm{~F}, 15$ to 30 V , electrolytic
C2 $10 \mu \mathrm{~F}, 15$ to 30 V , electrolytic
C3 $1 \mu \mathrm{~F}, 63 \mathrm{~V}$, polyester (WIMA or RS Components Ltd.)

Switches

S1	11 way, 1 pole rotary switch
S2	3 way, 2 pole rotary switch
S3, S4	Single pole push-to-make switches
S5	(RS Components Ltd.)
S5	Single pole, single throw toggle switch

Semiconductors

ICI NE555V integrated circuit (SDS Components Ltd., Gunstore Rd., Hilsea Trading Estate, Portsmouth, Hants.)
DI OA47 Germanium diode
Miscellaneous
RLA MS1B 12 V micro-switch relay (Keyswitch Relays Ltd.)
8 pin dual-in-line socket (RS Components Ltd.)
Eddystone die-cast box $7.39 \times 4.703 \times 2.062$ in external dimensions
1 Lektrokit board
4 BA bolts $1 \frac{1}{4}$ to $1 \frac{1}{2}$ in long
12 4BA nuts
68 BA nuts and bolts

TIMER By J.B. DANCE m.s.

Capacitors of a large value have wide tolerances. In addition they pass different leakage currents. Three trimmer potentiometers (VR2 to VR4) are therefore incorporated in the circuit so that each range can be calibrated. S 2 a and S 2 b are on the same switch wafer and select the appropriate trimmer potentiometer together with the appropriate capacitor.

CALIBRATION

Adjustment of the preset potentiometers VR2 to VR4 alters the control voltage applied to pin 5 of the 555 timer. When each potentiometer has been adjusted so that the delay is correct at one point
on each range, all of the other delay values should be approximately correct. It is best to make the final adjustments to each potentiometer at a setting near to the maximum delay for the range concerned where the timing errors are greatest. A stop watch is desirable (but by no means essential) for the accurate calibration of the $\times 0.1$ range.

The tolerance of RI to R10 in the prototype was a nominal ± 5 per cent. The accuracy of the delays was found to be a few per cent, as would be

Fig. 1. Circuit diagram of the general purpose timer and the pin connections for the 555 i.c. in both DIL and TO99 case versions

Fig. 2. The front panel layout with switch wiring detached for clarity. The top and bottom views of the circuit board showing disposition of components and interwiring is shown on the left

The completed timer with board and controls mounted in position
expected. An error of 30 seconds in 1,000 seconds is therefore reasonable. Resistors of closer tolerance should be used if it is desired that the timing delays shall be as accurate as possible.

The tolerance of the capacitors Cl to C3 can be quite wide, since the potentiometers VR2 to VR4 allow a timing adjustment of over $10: 1$ on each range. For example, when the time was set to 20 seconds on the xI range, adjustment of VR3 allowed any delay between 3 and 43 seconds to be obtained with the capacitor C 2 used by the writer.

The 26 -turn trimming potentiometers enable a very accurate setting to be obtained. The cheaper "skeleton" preset potentiometers could be tried, but it would then be necessary to connect fixed resistors between each side of these potentiometers and the power supply lines to make their adjustment less critical.

In selecting the component values, the factor of 1.1 in equation 1 of the previous article was neglected so that component values with round whole numbers could be employed.

START AND RESET

The trigger pin 2 and the reset pin 4 are normally biased to the $+\mathrm{V}_{\text {tc }}$ potential through R12 and R13 respectively. This prevents unwanted triggering of the START or RESET functions by spurious voltage peaks.

It is especially important that pin 2 should normally be at the $+V_{c c}$ potential, since the triggering action is extremely sensitive. It has been mentioned earlier that the circuit exhibits spurious triggering at the end of each delay period if R12 is omitted; the relay then fails to open at the end of the delay time.

THE RELAY

The relay is connected so that it is normally open and is energised only during the timing delay. This minimises the current consumption of the circuit.

The relay used is a miniature micro-switch 12 V , 465s: relay, type MSIB which is available (through retailers) from Keyswitch Relays Ltd. The tolerance of the operating voltage is 20 per cent, so it will function with a coil operating voltage of 9.6 to 14.4 V . The writer has found that a relay of this type will operate with less than 7 V across the coil and the prototype circuit functions satisfactorily from a 9 V battery. However, a 12 V supply is ideal.

The MSiB is a printed circuit relay, but other versions are available including the totally enclosed plug-in version type MSIP. The MS1B can switch up to 5 A at up to 250 V in a.c. circuits; this is adequate for most purposes, since it can switch over a kilowatt at the normal mains voltage. In d.c. circuits the maximum recommended currents are 2.5 A at up to $24 \mathrm{~V}, 0.25 \mathrm{~A}$ at up to 100 V and $0 \cdot 2 \mathrm{~A}$ at up to 250 V . Higher alternating voltages can be switched, since these voltages fall to zero many times per second and any arc which is formed is then broken.

THE DIODE

The diode in parallel with the relay coil shorts out the back e.m.f. transient voltages developed when the current ceases to flow through the coil. This prevents damage to the 555 timer.

It should be noted that either the type of diode specified or a similar gold bonded germanium diode should be used. The writer has tried a number of other types of diode in the circuit but many of these. do not suppress the transient voltage across the relay coil adequately enough to prevent this pulse from re-triggering the circuit. If, therefore, a nother type of diode is employed and the relay does not open at the end of the delay period, re-triggering is almost certainly the cause.

CONSTRUCTION

All of the components are mounted on the lid of the die-cast box, since this provides maximum accessibility and ease of adjustment of the trimming potentiometers. The switch Sl is mounted in the position shown in Fig. 2 and the resistors R1 to R10 inclusive are mounted directly onto this switch: VRI is mounted near to S1 with R11 mounted directly between these components.

The timing capacitors Cl to C3 mount directly onto the switch S2. The push-button switches S3 and S4 automatically open when they are released. They are mounted in line with the on/ off switch S5 under the circuit board containing the other components.

CIRCUIT BOARD

The circuit board used is a piece about 4×1.7 in sawn off a Lektrokit board with holes spaced at $0 \cdot 1$ in intervals into which metal pegs can be inserted. The board is supported by four 4BA long bolts at a little over one inch under the lid of the box clearing S3, 4 and 5.

The three trimmers VR2 to VR4 are mounted using 8 BA bolts on one edge of the board where they can be easily adjusted as in Fig. 2.

An 8 -pin dual-in-line i.c. socket mounts on the board, the solder on the pins holding it in position. R12 and R13 mount by the side of this socket. Care should be taken to ensure that the NE555V is always inserted with the correct orientation in this socket, since it is symmetrical and will fit in either way.
It is convenient to mount the relay on its side, cutting holes in the circuit board to accommodate any small projecting parts of the relay. In fact the wire connections to the relay can hold one side of this component to the board, the coil side being fixed by passing pieces of thin wire around the coil and tying the wire under the board.

The only component placed under the board is the diode in parallel with the relay coil. The wires connected to the board are made long enough to allow the board to be easily removed and turned over if it should require attention at any time.

USES IN PHOTOGRAPHY

The circuit is suitable for use as an enlarger timer in photography. The relay contacts are used to control the power to the enlarger lamp directly. The lamp is illuminated when the START button is released and is automatically switched off after the required time. This is much more convenient than having to estimate times or to peer at a watch in a dark room.

The circuit can also be used for timing the development of plates and films. The relay contacts are used to operate a buzzer or a small bell at the end of the required time.

THE making of music automates has been an attractive challenge to inventors for many years. In both the mechanical and electronic versions a varety of ingenious ideas hate been applied. However. in general most of the systems are complex and expensive in their realisation.

The circuit to be described has none of these drawbacks.

BLOCK DIAGRAM

A block diagram (Fig. 1) indicates the operating principles of the Autotone. Here an astable pulse generator of fixed frequency switches on and off the supply feeding a shift register of four so advancing conduction from one stage to the next in sympathy with the pulse input.

Each conducting stage in the counter is preadjusted to provide a particular bias voltage to a tone generator so that variable pitch tones are available. The sequenced tones produced are further amplified and fed to loudspeaker.

Fig. 1. Block diagram of Autotone

COMPONENTS . . .

Resistors			
R1	$47 \mathrm{k} \Omega$	R 15	220Ω
R2	$33 \mathrm{k} \Omega$	R16	$1 \mathrm{k} \Omega$
R3	33Ω	R17	$56 \mathrm{k} \Omega$
R4	$6.8 \mathrm{k} \Omega$	R 28	$56 \mathrm{k} \Omega$
R5	33Ω	R19	470Ω
R6	$1 \mathrm{k} \Omega$	R20	120Ω
R7	$10 \mathrm{k} \Omega$	R21	820Ω
R8	$1 \mathrm{k} \Omega$	R22	330Ω
R9	$220 \Omega 2$	R23	$33 \mathrm{k} \Omega$
R10-R11	$1 \mathrm{k} \Omega(2$ off)	R24	$10 \mathrm{k} \Omega$
R12	220Ω	R25	$1.5 \mathrm{k} \Omega$
R13-R14	$1 \mathrm{k} \Omega(2$ off)	R26	220Ω

All $\frac{1}{2}$ watt 10% carbon
Potentiometers
VR1-VR3 220ks2 vertical presets
Capacitors

C 1	$0.5 \mu \mathrm{~F}$ to $20 \mu \mathrm{~F}$ (see text) elect. 15 V
C 2	$0.01 \mu \mathrm{~F}$ elect. 9 V
C 3	$100 \mu \mathrm{~F}$ elect. 9 V
C 4	$10 \mu \mathrm{~F}$
$\mathrm{C} 5-\mathrm{C} 7$	$0.01 \mu \mathrm{~F}(5$ off)
C 8	0.1 to $0.01 \mu \mathrm{~F}$
C 9	$100 \mu \mathrm{~F}$ elect. 9 V
C 10	$500 \mu \mathrm{~F}$ elect. 9 V
C 11	$100 \mu \mathrm{~F}$ elect. 9 V
C12	$100 \mu \mathrm{~F}$ elect. 9 V
C13	$200 \mu \mathrm{~F}$ elect. 9 V
Diodes	
D1-D9	ISJ50 (9 off)

Transistors
TR1, TR3, TR4, TR6, TR8, TR10
2S104 (6 off)
OC200 (4 off)
AC126 (2 off)
AC128 (5 off)
AC127

Miscellaneous

BY1-BY2 9V batteries (PP9) (2 off)
Veroboard as required, LS1, 5in 3Ω loudspeaker

PULSE GENERATOR

The complete circuit of the Autotone for four note generation is shown in Fig. 2. This can be increased for an eight note diatonic scale or twelve note chromatic scale by adding extra stages to the ring counter.

The pulse generator is made up of transistors TRI and TR2. When voltage is first applied Cl starts to charge through the emitter of TR1. This transistor switches on TR2 and a regenerative switching action takes place until the voltage on Cl exceeds the base voltage of TRI when conduction ceases.

Cl now discharges through RI until conditions are right for the conduction cycle to start again.

The pulsating voltage at TR2 emitter switches TR3 on and off which itself is in series with one of the supply rails to the ring counter so this is also switched

SHIFT REGISTER

When power is first applied to the shift register none of the stages normally conducts. But when C4 is switched in it starts to charge thereby giving TR5 the necessary base current drive to make the stage

GIRGUIT DIAGRAM

Fig. 2. Circuit diagram of Autotone. Only three stages of the shift register are shown but other identical stages can be added to as required
(TR4/TR5) conducting and an output voltage of about 8 V appears at the top of R10. Eor this condition to exist TR3 must also be switched on.

When TR3 is pulsed off the first stage of the register ceases to conduct. However, since C5 is charged the bias conditions are correct for TR6 to conduct and hence TR7 when TR3 next switches on. This means that the 8 V output now advances one stage to appear at the top of R13.

After the fourth shift, to maintain a cycling output, point X can be connected to point Y.

TONE GENERATOR AND AMPLIFIER

The outputs taken from the shift register via the presets (VRI-VR4) are used to give base bias to TR10. Both this and TR11 are wired as a high gain amplifier with C8 providing regenerative feedback for oscillation.

The frequency is partly determined by the base voltage at TR 10 which depends in turn on the resistance of the presets with the given value of C8 this frequency can only be varied within a certain range.

Fig. 3. Assembly and wiring details of Autotone Veroboards

Shift register board containing the eight stages for a diatonic scale. In this example the output potentio meters and diodes have been omitted and transferred to another board

To change this, values of capacitor from 0.1 to $0.1 « \mathrm{~F}$ can be tried.

Tones generated are fed to a four transistor power amplifier. For experimental work the amplifier can be left out and an 80 ohm loudspeaker substituted for R21. In the circuit diagram two power supplies are used to avoid interaction.

CONSTRUCTION

The prototype unit was constructed on separate Veroboards as in Fig. 3. Of course, there is no reason why it could not be assembled on a single board, but it does make testing and servicing simpler to make the circuit elements modular.

TESTING

To test the pulse generator connect a crystal earpiece between the base of TR3 and negative line where a ticking should be heard if all is well.

By connecting a 10 V meter (v.o.m.) across one of the output resistors R10, R13, etc., the action of the shift register can be checked by observing that the needle indicates about 8 V at regular intervals with X and Y connected.

The tone generator can be tested by connecting a crystal earpiece across transistor TRII. and switch on. A lively oscillation should be heard

COMPOSING MELODIES

If the shift register is extended to embrace eight or twelve notes there is no need to use all the outputs as the music will become uniform and dull. The melody will be more natural when some of the outputs are left out so achieving breaks or pauses.

In order to make certain tones last longer than others, the presets of two stages may be adjusted to produce the same tone giving the effect of sustain. The speed at which the shift register advances depends upon the value of Cl . This may be altered to suit the melody being composed

If Cl is reduced to around $1 \mu \mathrm{~F}$ a special effect is achieved which makes the Autotone suitable as an exciting doorbell alarm.
 NOSE

Natural gas, petrol, butane, propane, alcohol and smoke, the Electronic Nose can "smell" them all. Its uses range from a simple breathalyzer to amuse your friends, to a detector for tracing lethal concentrations of odourless gas in the bilges of boats.
This easy to construct device uses a new gas detector and incorporates an audio oscillator for easy interpretation of readings. It also uses battery power for complete portability.

Twin Power Supply

A high quality power supply unit is invaluable in the workshop for testing and evaluating equipment. This design features excellent regulation and extremely low ripple voltage. It also has a feature normally restricted to the most expensive commercial units, an accurate current limit facility, allowing current to be held constant at anything up to the maximum of one amp.

Lighting Controller Unit

A simple thyristor light control circuit provides a variety of switching actions to give effects with lighting circuits including anything from Xmas lights to discotheques. Simple in con. struction and operation.

An account of the attempts to build a speaking machine from the eighteenth century to the present day.

By A. V. Flatman ${ }_{\text {(North }}$ Staforosshirie Poyvecthic)

THE synthesis of speech is a subject that has preoccupied humanity for a long time. It has been a legendary precept and mystery since the eighteenth century. Today, again, this question conserves a mysterious aspect, because speech is concerned with human activity.

Research contributions date back almost two centuries to the "talking machines" of Kempelen and Faber, who, as pioneers, established a great understanding in the acoustic structure of speech, a science that later became known as phonetics. It was unfortunate, however, that the early synthesisers were limited to a purely mechanical and inefficient construction

The mid-twentieth century arrival of electronics proved to be the technology all researchers were waiting for. The tape recorder and oscilloscope made possible the acoustic spectrogram or "voice print" for analysis and synthesis of speech waveforms, whilst computer automation has effectively "untied" the operator"s hands.

SPEECH ANALYSIS

Before the various techniques of synthesising speech are examined, we must first analyse its alcoustic formation.

All acoustical signals can be represented in a sonogram or acoustic spectrogram; this is simply a graph of frequency plotted to a base of time, with acoustic intensity shown as line thickness. Fig. 1 gives examples of sonograms for elementary sounds.

When a complex sound enters a resonator, the harmonics near the resonant frequency will be amplified to add a certain "colour" to the sound. This frequency zone is known as a formant. Fig. 2 shows the effects of fixed and variable resonant frequencies on several types of acoustical signal.

English spoken in Britain can be broken down into approximately forty fundamental sound units called phonemes, the acoustic formation of which may be demonstrated with the aid of the human speech apparatus shown in Fig. 3.

(a) Simple sound of increasing amplitude
(b) Simple sound of increasing frequency
(c) Vibrato
(d) Harmonic sound
(e) White noise
(f) Coloured noise
(g) Noise impulses

Fig. 1. Sound spectrogram for some elementary sounds

The human speech system comprises several resonant cavities which have the ability of superimposing variable formants upon the complex sounds issued from the vocal cords. One particular vocal sound, with suitable formants to produce certain yields of frequency, will acoustically represent the vowels.
Consonants, on the other hand, are a little more complex in formation. Some consonants are purely breathing noises, from the roof (sound " CH "), teeth (sound " S ") or in between the teeth and lips (sound " F "); whilst others may be explosive noises produced by sudden releases, from the roof (sound "K"), teeth (sound "T") or lips (sound "P").
Spoken messages may be analysed pictorially with the aid of the acoustic spectrograph. However there are two characteristics of speech which present difficulties. Firstly, speech has a continuous appearance and is rather difficult to segment into its various phonemes. Secondly, the useful or semantic information in speech is modified somewhat by a "tone of speech" reflecting the speaker's mood.

THE KRATZENSTEIN RESONATORS

One of the earliest efforts at speech synthesis was made by Kratzenstein at the Imperial Academy of St. Petersburg in 1779 . This mechanical speaking machine comprised a set of acoustic resonators somewhat similar in size and construction to the human mouth. With a vibrating reed similar to that used in the harmonica, he mimicked the vocal chords by interrupting the airstream in each of the resonators to synthesise the five vowels with tolerable accuracy.

THE KEMPELEN SPEAKING MACHINE

Kempelen's speaking machine, which was made in Vienna in 1791, is shown in Fig. 4. One can observe the relative simplicity of the results of Kempelen's research into the problems of speech synthesis. After some practice, the operator could manipulate this machine to synthesise a somewhat limited vocabulary. Whistles are used to give the " S " and " CH " sounds and a reed to give the " R " sound, whilst the rubber mouthpiece is controlled alone to generate the vowels and in conjunction with the bellows to produce a variety of explosive consonants.

Fig. 3. Diagram of the human speech apparatus

Fig. 4. Cross sectional diagram of Kempelen's speaking machine

(a) Fixed formant on fixed spectrum
(b) Fixed formant on variable spectrum
(c) Variable formant on fixed spectrum
(d) Variable formant on variable spectrum
(e) Variable formant on continuous spectrum (noise)

Fig. 2. Some different ways of representing formants

Fig. 5. Cross sectional diagram of Faber's speaking machine

THE MACHINE OF FABER

Faber, professor of mathematics at Vienna, finished a speaking machine in 1835 , which created a vast amount of interest and curiosity throughout Europe. Faber put into practice many of Kempelen's theoretical suggestions for improvement, which subsequently contributed to the success of the new machine. The strongest aspect of Faber's research was, however, his consideration of the operator in the use of a keyboard selection technique as shown in Fig. 5. For a century afterwards, many scientists attempted to expand upon the theory of Faber, unfortunately without much success.

THE VODER

The first electrical analogue speaking machine was built by Dudley in 1939. The Voder (VOice DemonstratOR), shown in Fig. 6, comprises ten filters whose passbands are uniformly distributed between 300 and $3,300 \mathrm{~Hz}$. The filters are stimulated with white noise or with a signal rich in harmonics. A keyboard controls the frequency and amplitude of the stimulus as well as the filter selection. Manual operation of the machine was again rather complex, and although the phonemes were relatively accurate in reproduction, they could not be linked efficiently to synthesise continuous speech.

Nevertheless, the Voder represents a new and promising approach in speech synthesis. We will examine in sequence the four types of synthesisers which are used at present: the Vocoder; the Analogue Synthesiser: the Playback; and the Units of Verbal Response.

ELECTRONIC SPEECH SYNTHESIS

Dudley's invention of the Voder marked the beginning of several decades of intense research on both sides of the Atlantic. The new understanding of information theory demonstrated that the telephone bandwidth (300 to $3,300 \mathrm{~Hz}$) was exceedingly large for transmitting the semantic information of

Fig. 6. Diagram showing the basic principles of the Voder

Fig. 7. Block diagram showing the principle of Dudley's Vocoder

TERMS Retail mail order subject to $£ 1.00$ minimum order. Cash with order only Trade and educational establishments M/AC on application (minimum $\mathbf{\Sigma 5 . 0 0}$). Postage 10p inland, 25p. Europe.
GUARANTEE: All goods carry full manufacturer's warranty. Get in touch today for a complete run-down of devices available from SCS (include SAE).
S.C.S. Components Lid., P.O. Box No. 26, Wembley, Middlesex HAO 1 YY

Registered in London No. 888454

Device of the Month NE540L

35Watt Amplifier The Signetics 540 is a monolithic, class AB power audio amplifier designed specifically to drive a pair of complementary output transistors
This device features: internal current limiting; low standby current; high output current capability; wide power bandwidth; low distortion - features which make this deviceideal for use as an audio power amplifier.

Signetics power diver NE540L Yours for just

Compatible device
 MCI339P

From Motorola, a monolithic dual stereo preamplifier for low noise
preamplification of stereo audio signals. Just look at some of these features:

* Low audio noise
* High channel separation
* Single powèr supply
* High input impedance
* Built-in power supply filter * Emitter follower output

Motorola monolithis duel stereo preamplifier
including applications notes.

The new 1973 VAT edition of Lasky's famous Audio-Tronics Catalogue will be available in early April-FREE on request. The 48 tabloid size pages - many in full colour -have been reprinted with VAT price changes for your convenience, together with many new items. Over half, the pages are devoted exclusively to every aspect of Hi-Fi (including Lask'y's budget Stereo Systems and Package Deals), Tape Recording and Audio Accessories. Send for your copy now and see for yourself that VAT can mean a saving on many of the lo00's of stems, we offer.

ALL OUR PRICES INCLUDE V.A.T.

BSR LATEST SUPERSLIM STEREO \& MONO

Playn 12*, $10^{\prime \prime}$ or $7^{\prime \prime}$ records Auto or manual. A high quality unit becked by E8B rellability with 12 month guarantec. $A C$
Aberef
Above motor board 83 in. below motor board 2$\}$ in with STEREO and MONO XTAL $\mathbf{1 8 \cdot 2 5}$ Pont 25 p.

SUITABLE PORTABLE CABINET
Modern design. Black rezine covered. silver front grille. £4.50 Pout 25b
E.M.I. WOOFER AND $\mathbb{T} \mathbf{~ W 5 E T E R ~ K I T}$ Available saparately Wooler 24.25 Tweoter $\$ 1.90$ comprieing a fine example of a Wooter $101 \times 6 \frac{1}{1} \mathrm{in}$. With a massive Ceramic Magnet, 440s. Gausa 18,000 lines. Alumininm Cone centre to improve middle and top renponse. Also the E.M.I. weikht paper cone and magnet fux 10.000 linell Crossover condenser and tall instructions supplied. all netruction applied Maximam Power Uetul Repponse $\cdots 35$..... 12 watt Base Resonance to $18,000 \mathrm{c} / \mathrm{s}$ SUITABLE ENCLOSURE 20 I 18×9 in MODERN DESIGN. TEAK WOOD PLIISH ≤ 9.90 Post SPECIAL OFFER!
SMFTH'S CLOCKWORE 15 AMP TIAE SWITCH
with fixing two-way. Surface mounting fithting wall switch to give ligh for return home, garage, a atomatic anti-burglar lights, atc. Variable knob.

$$
\begin{aligned}
& \text { Turn on or ofl at full or intermediate } \\
& \text { tettings. } \text { Two types svailable } 0 \text { to }
\end{aligned}
$$

settings. Two types available 0 to 60 minutes or 0 to 6 hours. Makers last list price 84.50. Brand new and Iully guaranteed. Fally ingulated.
OUR PRICE 81-50. P. \& P. 15p or 28 pair.
(PLEASE STATE TYPE A OR B WHEN ORDERITG)
WEYRAD P50 - TRANSISTOR COILS
RAEW Perrite Aerial .-72p Spare Corea
Osc. P50/1AC
I.F. PS0/2CC $470 \mathrm{kc} / \mathrm{z}$ 3rd I.F. P50/3CC $33 p$

$38 p$ P51/1 or P51/2 | 36 p |
| :--- |
| 38 p |36p Diver S^{2} ans. LFDT4 Printed Circuit, PCA1 J, B, Tuning Gang Werta

OPTI
 Mallard Forrite Rod $8 \times 1 \mathrm{in}$, $20 \mathrm{p} .6 \times 1 \mathrm{in}, 80 \mathrm{p}$. VOLUME CONTROLS 80 obm Coax $4_{\text {py }}$ 5 K . ohme to 2 Meg. LoG or \quad BRITLSH AERIALIME
LIN. L/S 16p. D.P. \&5p. AERAXIAL-AIR 8PACED STEREO L/S 55p. D.P. 75p. Edge 5K.S.P. Transiator 85p.

AERAXIAL-AIR SPACED
40 Fd, $51.40 ; 60$ yd, $4 \&$. FRINGE LOW LOSS
Ideal 6RS and colour

8in. or IOin. ELAC

HI-FI SPEAKER
Dual cone plasticied roll surround. Large ceramic magaet. $55 \mathrm{c} / \mathrm{s}$. 8 ohm impedance $8 \operatorname{in} 10$ watts, 10 in 12
watis mugic power. $\mathbf{3 . 7 5}$ Post 25p
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. SPEAKER SALE!
 15 ohm. As illustrated. Post 25p With flared tweeter cone and ceramic magnet. 10 watt.
Banaren. $45-60 \mathrm{c} / \mathrm{g}$.
Flux 10.000 gensg.
. Post 25

State 3 or 8 or 15 ohm. Post 25
TEAK CABINET ${ }^{16} \times 10 \times$ 9in. 65.50

BRITISH MADE STEREO

MULTIPLEX DECODER

Brand New. 7 transistors Plas integrated circuit. Fibre-Glass printed circuit board. Size $9 t \times 6!\times \$$. Pre-Aligned. ComOntputfor 100 mV Inpat. Fullinatructions tor any $\mathbf{8 . 9 5}$ FM Tuner. some technical experience essential. 1695
BLANE ALUMINTUM CHASSIS, 18 , w.g. $2 \frac{1}{4} \mathrm{in}$ siden $6 \times 4 \ln 45 p ; 8 \times 8 i n ~ 58 p ; 10 \times 7$ in $65 p ; 12 \times 8 i n$
14×9 in $90 p ; 16 \times 6 i n 90 p ; 12 \times 3 i n 60 p ; 16 \times 10 i n ~$
81 ALUMINIUM PANELS 18 A.w.R. $6 \times 4 \mathrm{in} 9 \mathrm{p} ; 8 \times 6 \mathrm{in} 15 \mathrm{p}$; $14 \times 8 \mathrm{in} 16 \mathrm{p} ; 10 \times 7 \mathrm{in} 19 \mathrm{p} ; 12 \times 5 \mathrm{in} 20 \mathrm{p} ; 12 \times 8 \mathrm{in} 28 \mathrm{p}$; $16 \times$ bin $28 \mathrm{p} ; 14 \times \sin 34 \mathrm{p} ; 12 \times 12 \mathrm{in} 40 \mathrm{p} ; 16 \times 10 \mathrm{in} 50 \mathrm{p}$. Pazolin Panel 10×8 in 15 p .

ANOTHER R.C.S. BARGAIN!

4 TRANSISTOR MONO AMPLIFIER

Powerinl 3 watt ontpat, 15 ohm. AC main: operated with writch with sponar, volame. on printed circuit board. Futed inputs and outputs. Famons make, size 8 in wide $\times 4$ in deep $\times 3$ in high.
Suitable
£5.95 Pont 950

R.C.S. STABILISED POWER PACK KITS

 All parts and inutructions with Zener Diode, Printed Circuit, Bridge Rectifers and Double Wound hain cransormer or 15 or 18 or 20 V d.c. at 100 mA or less ©? $?$ PLEASE STATE VOLTAGE REQUIRED. 22.20 Post Details \&.A.E. Size $3 \frac{1}{1} \times 1 \frac{1}{5} \times 1 \mathrm{in}$. PRE-AMPLIFIER BRITISH MADE Idesl for Mike, Tape, P.U., Guitar, etc. Can be used with Battery $9.18 V$ or H.T. line $800-3007$ d.c. operation. 8 ise : 14 I Iz z in. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$. 28 dB gatn . For use with valve or transistor equipment. $99 p$ Post 10pPull ingtractions upplied. Detailı S.A.E.
Fall instrnotions tupplied. Details s.A.E.

	$\begin{aligned} & \text { DIS } \\ & £ 18 \end{aligned}$

BRITISH FM/VHF TUNING HEART
88 to $108 \mathrm{M} / \mathrm{CS}$ British made. 2 Transiators ready aligned -require 10.7 M/CS IF. Complete with taning gang. Oentill. Our price $£ 3.95$ Pot 200

MAINS TRANSFORMERS

Eagle MT12 12-0-12V
250-0-250 $80 \mathrm{~mA} 6.3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$, or 5 V 2 A All poat
$26 p$ each 90 p
$£ 2.50$ 50-0.30 $30 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6 \cdot 8 \mathrm{~V} 1 \mathrm{~A}$, or $5 \vee 2 \mathrm{~A}$ MINIATURE $200 \mathrm{~V}, 80 \mathrm{~mA}$. 6.3 V iA, $8 \frac{1}{2} \times 2 \frac{1}{2} \times 8 \mathrm{in}$ MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}, 2\} \times 21 \times 2 \mathrm{in}$ HEATER TRANS. 6.3V 3A
GENERAL PURPOSE LOW at $2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24$ and $30 \mathrm{~V} . \ldots$... 22.25 $1 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{~V}$ 22.25 $2 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{~V}$ 23-25 $5 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{~V}$ 28.75 $3 \mathrm{~A}, 5,8,18 \mathrm{~V}$ E1.00, Ditto 5A $21-20,3 \mathrm{~A}, 5,8,10,18 \mathrm{~V}$ 5-0-5V \&1-30, Ditto 5A $\& 1-50$.
A UTO TRANSFORMERS. 115 V to 230 V or 880 V to 115 V . 150W 22-25; 500W 86-25; 750W $210 ; 1000 \mathrm{~W}$ 215
CHARGER TRANSFORMERS. Input 200/250V.
 FULL WAYE BRIDGE CHARGER RECTIFIERB 3 or 12 V outpuis. $1 \frac{1}{\mathrm{~A}} 40 \mathrm{p} ; 2 \mathrm{~A} 55 \mathrm{p} ; 4 \mathrm{~A} 85 \mathrm{p}$. LUCAS 2DS500 Full wave Bridge $70 \mathrm{~V}, 5 \mathrm{SA} 95 \mathrm{p}$.

MAINS ISOLATING TRANSFORMER
Primary 0-110-240V. Secondary 0-240V. 3A. 720W. Insulnted terminals. Varnish impregnated. Pully enclosed in s.iel case with fixing feet. OUR PRICE $\mathbf{C | O} \quad \underset{50 \mathrm{p}}{\text { Carr }}$ Famous make. (Value el19)
Gan be naed as 800W auto transformers $240-110 \mathrm{~V}$

NEW ELECTROLYTIC CONDENSRRS

$2 / 850 \mathrm{~V}$.

$8 / 450 \mathrm{~V}$ 14p

$16 / 450 \mathrm{~V}$	15 p	$1000 / 50 \mathrm{~V} \ldots$	47 p	$38+32 / 250 \mathrm{~V}$	\ldots	18 p

$38 / 450 \mathrm{~V}$	20 p	$8+8 / 450 \mathrm{~V}$	18 p	$32+32 / 450 \mathrm{~V}$	\ldots	83 p
$95 / 95 \mathrm{~V}$	10 p	$8+18 / 450 \mathrm{~V}$	90 p	$350+50 / 825 \mathrm{~V}$	\ldots	50 p

$25 / 25 \mathrm{~V} .$.	10 p	$8+16 / 450 \mathrm{~V}$	20 p	$38+80 / 32 / 1350 \mathrm{~V}$	48 p
$50 / 50 \mathrm{~V} .$.	10 p	$16+16 / 40 \mathrm{~V}$	25 p	$38+38+32 / 35$	

$50 / 50 \mathrm{~V}$	10 p	$16+16 / 50 \mathrm{~V}$	20 p	120
$100 / 25 \mathrm{~V}$	10 p	$32+32 / 350 \mathrm{~V}$	25 p	$100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$

LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V}$ 20p; 50V 30p.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
2000 mP 6V 25p; $25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}$.
8500 mF 50 V 62p; $8000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.

CERAMIC, 1 pF to $0.01 \mathrm{mP}, 4 \mathrm{p}$. Silver Mice 2 to 5000 pF , 4 p . PAPER $350 \mathrm{~V}-0.14 \mathrm{p}, 0.518 \mathrm{p} ; 1 \mathrm{mP} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$. $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}$. SILVER MICA, Close tolerance 1%. 2.2-500pF 8p; 3602,200pF 10p; $2,700-5,600 \mathrm{pF}$ 20p; $6,800 \mathrm{pF}-0.01$, mid 30p each. TWIN GANG, "0-0" $208 \mathrm{pF}+176 \mathrm{pF}, 65 \mathrm{p} ; 500 \mathrm{pF}$ standard 45p. $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}$, Slow motion drive 50 p ;
 RESISTORS. ${ }^{2} \mathrm{~W}, \frac{1}{2}, 1 \mathrm{~W}, 20 \% 1 \mathrm{p}$; 2W, sp . 10Ω to 10 M . HIGH STABIIITY. IW $2 \% 10$ ohme to 6 meg., 10 p . Ditto 5%. Prelarred walues 10 ohma to 10 meg., 4 p .
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohmi to $100 \mathrm{~K} 10 \mathrm{p} \mathrm{each} ; 0.5 \mathrm{ohm}$ to 8.2 ohme 10 p . TAPE OSCILLATOR COIL Valve type 35 p .

ALL MODELS "BAKER SPEAKERS" IN STOCE Hi Fi Enclosure Manual containing 20 plane, derigns,
crostover data and cubje tables
42p Pont Frees BAKER I2in. MAJOR $£ 10$

$30-14,500 \mathrm{c} / \mathrm{m}, 12 \mathrm{in}$. double cone, wooter and tweeter cone together with a BAKER ceramic magnet assembly baving a flux denaity of 14,000 ganse and a total fux of 145,000 Maxwelli. Basa resonsance $40 \mathrm{c} / \mathrm{s}$. Rated 20 W . SOTE: 8 or 8 or 15 ohme munt be stated.

BAKER "BIG-SOUND" APEAKERS Poat 25p
'Group 25' ${ }^{\prime}$ 'Group 35' ${ }^{\prime}$ 'Group 50'

20 w		
8 or or 15 ohm	3 or 8 or 15 ohm	8 or 15 ohm

LODDSPEAKER CABMIET WADDIVG 18 in wide, 15 If . GOODPANS 6 $\frac{1}{2}$ in. HI-FI WOOFER
8 ohm. 10 W. Large ceramic m
Special Cambric cone zut-
ound. Frequency reaponse
$30-12,000 \mathrm{c} / \mathrm{s}$. Ideal P.A. $\mathrm{C}, 4$

Suitable Cabinet $12 \times 8 \times 6 \times 4$ Snitable Twoeter \& 24

ELAC CONE TWEETER

The moving coil diaphragm gives a good radiation pattern to the higher Irequencies and a smooth extention of total response trom $1,000 \mathrm{c} / \mathrm{s}$ to $18,000 \mathrm{c} / \mathrm{s}$. size $3 \frac{3}{3} \times$ $38 \times 2 i n$ deep. Rating $10 \mathrm{~W}, 8$ ohm or 15 ohm models.
\& 1.90 Post 10p. Crossover 85p
SPEAKER COVERLING MATERIALS. Samplea Large 8.A.E. Horn Tweeters 2-18kc/a, 10W 8 ohm or 15 ohm el.95. De Lure Horn Tweetera $2-18 \mathrm{kc} / \mathrm{s}, 15 \mathrm{~W}$, 15 ohm 28.
WAY $3,000 \mathrm{c} / \mathrm{s}$. CROSSOVERS 3 or 8 or 15 ohm 95 p . LODDSPEAKERS P.M, 3 OHMS. 7x4in., $81 \cdot 25$; $61 \mathrm{in}, \mathrm{El} .50$; $8 \times 5 \mathrm{in}, ~ £ 1.60 ; 10 \mathrm{in}, 88.00 ; 8 \mathrm{in}, 81.75 ; 10 \times 6 \mathrm{in}, 81.00$, SPECIAL OPFER: 80 ohm, $21 \mathrm{in}, 2\} \mathrm{in}$; $35 \mathrm{ohm}, 2 i n, 3 i n$, $25 \mathrm{ohm}, 8 \mathrm{in} \mathrm{iia} ., 3 \mathrm{in}$ dia., Sin dia.
$15 \mathrm{ohm}, 8 \mathrm{in} \mathrm{dia}, 6 \times 4 \mathrm{in}, 7 \times 4 \mathrm{in}, 8 \times 5 \mathrm{in}$.

E\| EACH $3 \mathrm{ohm}, 8 \mathrm{in}, 2 \mathrm{zin}, 81 \mathrm{in}, 5 \mathrm{Sin}$ dia. $8 \times 4 \mathrm{in} 8$ ohme 21.50
 diameter 4W; 10in diameter 5W; 12in diameter, 6W; 3 or 8 or 15 ohm models, 22 -20 each. Pont 15 p
VALTE OUTPUT TRANS. 25p; MIKE TRAN8. $50: 1 \mathrm{\%} \mathrm{~m}$ 5 WATT MULTI-RATIO, 3,8 and 15 ohms 80 p
Mike trans. mu metal 100:1 81.25.

MAJOR IOO WATT

ALL PURPOSE
TRANSISTOR
AMPLIFIER
4 inputs speach and music, 4 way mixing.
Response $10-30,000 \mathrm{c} / \mathrm{s}$. Matches
loudaperikers, $8 / 15 \mathrm{ohm}$. A.C. $200 / 250 \mathrm{~V}$
separate Treble and Bats controle.
BARGAIN AM TUNER. Medium Wave.
£49 pos.
Tranistor Superhet, Ferrite aerial. 9 volt.
$\Varangle 4.95$
BARGAIN 4 CHANMEL TRANSISTOR MONO MIXER.
Add musical highlights and sonnd effecta to recordings
Will mix Microphone, record, tape aud toner $\quad \mathbf{3 . 9 5}$
Will mir Microphone, recordd, tape aud taner
with
\mathbf{m}
STEREO VERSION OF ABOVE 25.95.
BARGAIN FM TUNER 88-108 Mc/: Six Tranaintor. 87. Printed Circuit. Calibrated alide dial toning. $\quad \leq 14.85$
Walnut Cabinet. Sive $7 \times 5 \times 4$ in.

BARGAIN FM TUNER as above less cabinet £4.50 BARGAIN S WATT AMPLIPIER. 4 Traniator Push-Pull Ready built. with volume control and on/of switch, 9 volt.

COAXIAL PLUG 10p. PANEL SOCKET8 10p. LINE 18p. OUTLET BOXES. 8URFACE OR FLUSH 25p.
BALANCED TWLN RIBBON FEEDER 300 ohms. 5D yd. JACK 80CKET Std. open-circnit 14p, clowed circuit 88p; Chrome Lead-socket 45p. Phono Plugs 5p. Phono Socket 5p. JACK PLUGS 8td. Chrome 15p; 3.5 mm Chrome 12p. DIN SOCEET8 Chasain 3-pin 10 p ; 5-pin 10. DN SOCEETS Lead 3-pin 18p; 5-pin 15p. DDI PLUGS 3-pin 18p; 5 -pin 25p.
VALYR HOLDERS, 5p; CERAMICS 8p; CANS 5p.

1 RPM MOTOR
Ideal for displays/discos.

speech. The telephone allows a data transfer rate of 20,000 binary bits per second, whilst that of the semantic content of speech rarely exceeds 100 bits per second. Speech synthesis then discovered a new field of application in communication system bandwidth reduction, by suitable phoneme encoding.

THE VOCODER

Dudley expanded upon the principle of his Voder to develop a system which greatly reduced the bandwidth of a communication channel. The Vocoder (VOice CODER) analyses incoming speech by initially splitting it into ten frequency bands by suitable filtering and then obtains the modulation "envelopes" of each band by rectifying and low-pass filtering.

Fig. 7 shows how ten separate channels are used to link the analysed or "encoded" speech to the corresponding filters in a Voder. Incoming speech pitch is sensed in a similar way and an eleventh channel is used to select the appropriate energy source in the Voder system.

The Vocoder transmission bandwidth is within 300 Hz (1 l channels each of 25 Hz) and represents a great saving in this respect. Synthesis takes place in the established Voder system, which is now operated electronically to reproduce intelligible speech with tolerable continuity.

THE ANALOGUE SYNTHESISER

The principle of this machine consists more of simulating the function of the phonetic organs, rather than synthesis via analysis. The pharynx and buccal cavities of the human speech apparatus are firstly considered as the three damped resonators shown in Fix. 8: X, Y and Z respectively. Sound is emitted from the vocal cords into the first resonator X, then via the narrow passages to the resonators Y and Z, to result in the emergence of the combined sound, Un + Um.

Fig. 8. Analogue synthesis of phonemes by simulation of three formants

Fig. 9. Diagram showing the principle of the Icophone

Fig. 8 also shows the electrical analogue of the resonators X, Y and Z , where electrical properties of resonance; damping, etc., are matched to the properties of the acoustic resonators. The circuit will then act in a similar way to the phonetic organs if stimulated by the appropriate electrical signals, Ug. - Bell Telephone Laboratories have recently developed an extremely useful aid in the study of speech synthesis. It is a simulator in which the value of each component in the electrical analogue is controlled by a computer, at the same time a cross- ${ }^{-}$ section of the corresponding phonetic organ state is displayed on a screen.

Programmes have subsequently been written to electrically simulate the phonetic organs with some degree of success. Unfortunately, the rate at which the electrical circuit will deal with successive phoneme simulation is not fast enough for continuous synthesis; however, this technique appears to be very interesting for the physiological study of phonetics.

THE PLAYBACK

Acoustic engineers have demonstrated that all information in speech may be detected on the acoustic spectrogram. Conversely, speech may be reconstructed by careful manipulation of a suitable acoustic spectrogram, as seen in the playback synthesiser. The Icophone, whose principle is shown in Fig. 9, is the most recent synthesiser to use the playback technique.
The principle of the Icophone is quite simple. Opaque zones of the acoustic spectrogram represent zero speech content and allow transmission of a narrow beam of light to the corresponding photoelectric cells. Each cell, in turn, represents a spectrographic frequency zone and controls the continuity between each of the 44 oscillators and the blender. Intonation of the synthesised speech is controlled by the adjustment of each oscillator output level and the switching thresholds.

Accurate feeding speeds of the acoustic spectrogram result in intelligible synthesis of phonemes and prepared speech. The ultimate and most flexible system of "real time" synthesis from a library of prerecorded phonemes, however, proves to be somewhat inefficient due to the time taken in phoneme selection

To overcome the inherent drawbacks of electromechanical synthesisers, digital computers have been used to synthesise speech by the playback principle. Semantic information of the basic library of 40 phonemes is digitised in the frequency, time and amplitude domains and held in a digital store (corestore. magnetic drum or dise).

The computer is then programmed to "empty" the contents of certain parts of the store sequentially with sub-millisecond speed. to synthesise a more efficient or continuous speech. Computer synthesis techniques have produced the most accurate subjective results to date, but unfortunately the amount of computing power required is both demanding and costly.

VERBAL RESPONSE UNITS

Certain large makers of calculating machines have commercialised some units of verbal response. These machines allow a computer to answer, in verbal form a question put by the user in coded form. using, for example, the ordinary telephone dial. This system has an immense future in some applications.

Words and phrases are prerecorded on tape and "linked" by computer programme to form a verbal output of a wide range of systems. Having a somewhat limited flexibility one would usually find this type of synthesiser performing specialised tasks of varying complexity, from the "speaking clock" to verbal instruction generator in an arcraft flight simulator

THE FUTURE

We have progressed from the relatively inarticulate, mechanical experiments of Kempelen and Faber to the "talking computers" of today. The recent appearance of electronics and the computer have somewhat altered the design philosophy of speech synthesisers. Dexterity, a prominent operator requirement of the past, has been replaced by the modern tool of computer programming

Nevertheless there rematins much room for improvement of today's synthesisers. Imagine the potential of an efficient, flexible, compact and inexpensive "text to speech converter"! It not only has applications in business and education, but think of the way in which it could make the lives of dumb or blind people that bit more bearable.

Speech recognition, an associated field of speech synthesis, is still relatively unconquered. The automatic recognition of speech is a much more difficult task due to the fact that a machine must cope with the enormous amount of variation in human speech. whereas synthesis of different pronunciations of words is normally not required. Obvious differences occur in accent, but considerable variety in pronunciation is present even with the same speaker. Further problems arise in recognition because the speech wave cannot easily be segmented into appropriate words or phonemes.

ELEMENTS OF LINEAR MICROCIRCUITS F. D. Towers, M.B.E., M.A., B.Sc., M.I.E.R.E. Published by lliffe Books (Butterworth \& Co. Lid.) 108 pages, 6 in $\times 8 \frac{1}{2} \mathrm{in}$. Price $\mathbf{E 2} .80$

AMAJOR growth area is represented by linear microcircuits. After a late start. following the digital devices that really established the microelectronics industry, the linear form of integrated circuit is now well established and the future holds promise of ever increasing varieties of circuit for all kinds of application.

Therefore, this book is welcome. It is based on a series of articles published in Wireless World and provides a compact, readable digest of the subject. Because the rate of development in this field is so rapid it cannot include the very latest developments; nevertheless it is a very useful reference book. It includes practical information in the form of lists of manufacturers. component coding methods, and advice concerning the handling and use of these devices.

A chapter is devoted to each of the major categories of device, e.g. a.f. amplifiers, operational amplifiers, r.f. \& i.f. amplifiers, and voltage regulators. The circuit configurations of many typical commercial devices are illustrated and described in considerable detail.
D.D.R.

ELECTRONICS-A COURSE BOOK FOR STUDENTS
G. H. Olsen, B.Sc., M.I.E.R.E., M.Inst.P. Published by The Butterworth Group 351 pages, 6 in $\times 8 \frac{1}{2} \mathrm{in}$. Price $£ 2 \cdot 60$

WITH the continuing movement of electronics into almost every other walk of life it is becoming increasingly important for students of all disciplines to be aware of the vagaries of the art. Thus any volume which eases this understanding is to be welcomed and the present document is specifically designed with this end in mind.

In fact the book is a shortened version of the successful "Electronics: A General Introduction for the Non-Specialist" and it manages to take the reader through basics right up to the complexities of integrated circuit operation without any noticeable reference to mathematics and abstruse formulae.

Included, of course, are suitable references to matters of measurement and suitable indicators, power supplies and their construction, amplifiers and oscillators.

Wherever possible the author has illustrated his text with sufficient clarity for the competent to construct many of the items discussed. Indeed, much of the equipment discussed by way of application details is culled from component manufacturers application notes.

The author is principal lecturer in the Department of Physics and Physical Electronics at the Newcastle upon Tyne Polytechnic and he is concerned with the electronic content of C.N.A.A. degrees, organising post-graduate courses in electronics, and with consultancy in the field of electronic design.
J.v.

3/ CARRY OUT
 OVER
 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :

[^3]valve experiments, transistor experiments amplifiers. oscillators, signal tracer, photo electric circuit. computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter, time delay circuit. servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

YATES ELECTRONICS (FLITWICK) LTD.
 ELSTOW STORAGE DEPOT KEMPSTON HARDWICK

 BEDFORD

 BEDFORD}
C.W.O. PLEASE. POST AND PACKING LEASE ADD 10D TO ORDERS UNDER 42.
Catalogue which contains data sheets for most of the components listed will be sent free on request 10p stamp appreciated.

OPEN ALL DAY SATURDAYS
ALL PRICES SUBJECT TO V.A.T

EESISTORS

tW Iskra high stabilicy carbon film-very low noise-capless construction. W Mullard CR25 carbon

Power			Values		
watts	Tolerance	Range	available	1-99	$100+$
$\frac{1}{1}$	5\%	4.7n-2.2Mn	E24	Ip	$0 \cdot 8 p$
$\frac{1}{1}$	10\%	3.3Ms-10M Ω	E12	$1 p$	$0.8 p$
$\frac{1}{2}$	2\%	10』-IM	E24	3.5 p	3p
1	10\%	$1 \Omega-3.9 \Omega$	E12	Ip	$0 \cdot 8 \mathrm{p}$
,	5\%	4.7n-1M	E12	1 p	0. 8p
4	10\%	$10-10 \Omega$	El2	6p	5.5p

Quantity price applies for any selection. Ignore fractions on total order.
DEVELOPMENT PACK
0.5 watt 5% iskra resistors 5 off each value $4.7 \Omega 2$ to 1 M Ω.
12 pack 325 resistors $\mathbf{~ 2 . 4 0 . ~ E 2 4 ~ p a c k ~} 650$ resistors $\mathbf{4} 4.70$.

POTENTIOMETERS
Carbon track $5 k \Omega$ to $2 M \Omega$, log or linear $\left(\log \frac{1}{d} \mathrm{~W}, \operatorname{lin} \frac{1}{2} W\right)$
Single, 12p. Dual gang (stereo), 40p. Single D.P. swiech 24p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 M \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TRANSISTORS | | | | |
| ACI07 | $15 p$ | AFI25 | 20p | BDI32 |
| ACI | | | | |

DIODES

DIODES						
BY 127	1250 V	14	12p	OA85	7p	
bzylo	B00V	6A	25p	OA90	5p	
BZY\|3	200 V	6A	20p	OA91	$5 p$	
IN 4001	Sov	IA	7p	OA202	7p	
IN4004	400 V	1 A	8p	\|N4	48	5p
IN4007	1000 V	1 IA	10p	BAl14	8ρ	

BRUSHED ALUMINIUM PANELS $2 i n \times 6 i n=25 p ; 12 i n \times 2 \frac{1}{2} i n=10 p ; 9 i n \times 2 i n=7 p$
SLIDER POTENTIOMETERS
$36 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$. length of track 59 mm ingle
UAL GANG. $10 K+$ lok etc. log. or lin. 60 p NOB FOR ABOVE 12 p
I B Gauge panel 12 in , 4 in with slots cut for use wish slider pots. Grey or matt black finish complete with fixings for 4 pots.

THERMISTORS VAIOS5S $15 p$ $\vee A 1066 S$
$V A 1077$
RS3

THYRISTORS

2N5060 50V 0.8A 30p 2N5064 200V 0.8A 47p. CRSI/40 400V IA 25p, 106F 50V 4A 40p, 1060 400 V 4A 55p

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2, \mathrm{p}, \quad 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}, 7 \nmid \mathrm{p}$. $0.33 \mu \mathrm{~F}, 11 \mathrm{p}, 0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F} 4 \frac{1}{2} \mathrm{p}$ $022 \mu \mathrm{~F}, 5 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p}$. $0-47 \mu \mathrm{~F}, 7 \frac{1}{1 \mathrm{p}} .068 \mu \mathrm{~F}$, 11 p . $1.0 \mu \mathrm{~F}$, i3p
MULLARD POLYESTER CAPACITORS C280 SERIES $3 \frac{1}{2} \mathrm{p}$. $0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{1}{3} \mathrm{p}$. $0.68 \mu \mathrm{~F}, ~ 11 \mathrm{p}$. $1.0 \mu \mathrm{~F}, 13 \mathrm{p}$ 1.5 $1 \mathrm{~F}, 20 \mathrm{p} .2 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAR FILM CAPACITORS 100 V $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, \quad 0.005 \mu \mathrm{~F}, \quad 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$

CERAMIC DISC CAPACITORS 2is. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.06 \mathrm{~B} \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 33 \mathrm{~F}$

00pF to $10,000 \mathrm{pF}, 2 \mathrm{peach}$

ELECTROLYTIC CAPACITORS—MULLARD OI5/6/7 RANGE REPLACES C426 C457 RANGES
($1 / \mathrm{F} / \mathrm{v}$) $1.0 / 63,1.5 / 63,2 \cdot 2 / 63,3.3 / 63,47 / 63,6.8 / 40,10 / 25,10 / 63,15 / 16,15 / 40,15 / 63$
 $470 / 6 \cdot 3,5 p$ each. $68 / 63$, 150/40, 220/25, 330/16, 470/10, $680 / 6 \cdot 3,1,000 / 4,9$ p. $100 / 63$
 $1,000 / 16,1,500 / 10,2,200 / 6 \cdot 3,15 p, 330 / 63,680 / 40,1,000 / 25,1,500 / 16,2,200 / 10$, 3. $300 / 6 \cdot 3,4,700 / 4,18 \mathrm{pp}$.

SOLID TANTALUM BEAD CAPACITORS				
$0.1 \mu \mathrm{~F}$	35 V	$2.2 \mu \mathrm{~F}$	35 V	
$0.22 \mu \mathrm{~F}$	35 V	$4.7 \mu \mathrm{~F}$	35 V	$32 \mu \mathrm{~F}$
$0.47 \mu \mathrm{~F}$	35 V	$6.8 \mu \mathrm{~F}$	25 V	10 V
$1.0 \mu \mathrm{~F}$	35 V	$10 \mu \mathrm{~F}$	25 V	$47 \mu \mathrm{~F}$

VEROBOARD		JACK PLUES AND SOCKETS			
0.1	0.15	Standard screened		2.5 mm insulated	8 p
$2 t \times 3 \frac{2}{2}$ 22p	16p	Standard insulated	12 p	3.5 mm insulated	8 p
$2 \frac{1}{1} \times 5$ 24p	24p	Stereo screened	35p	3.5 mm screened	$13 p$
$3 \frac{3}{} \times 3 \frac{2}{4}$ 24p	24p	Standard socket	$15 p$	2.5 mm socker	8p
33×5	$27 p$	Stereo socket	18p	3.5 mm socket	8 p
$17 \times 2 \frac{1}{2}$ 175p	5718				
17×34 100p	78p	D.I.N. PLUGS AND SOCKETS			
17×5 (plain)	82 p	2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin 240°, 6 pin			
$17 \times 3 \pm$ (plain)	60p	Plug 12p. Socket 8p.			
$17 \times 2 \frac{1}{2}$ (plain)	42p	4 way screened cable, 15p/metre 6 way screened cable 22p/metre.			
$2 \frac{1}{2} \times 5$ (plain)	$12 p$				
2 ${ }^{\frac{1}{2} \times 34}$ (plain) ${ }^{\text {a }}$	11 p				
Pin insercion tool Spot face cutter 42p	52p	BATTERY ELI	NAT	OR	1.5
Pkt. 50 pins 20 p	20p	9 V mains power su	ply.	Same size as PP9	

LARGE (CAN) ELECTROLYTICS

$1600 \mu \mathrm{~F}$	64 V	74 p	$2500 \mu \mathrm{~F}$	64 V	80 p	$4500 \mu \mathrm{~F}$	16 V
$\mathbf{2 5 0}$	50 p						
$2500 \mu \mathrm{~F}$	40 V	74 p	$2800 \mu \mathrm{~F}$	100 V	62.60	$4500 \mu \mathrm{~F}$	25 V
$2500 \mu \mathrm{~F}$	50 V	58 p	$3200 \mu \mathrm{~F}$	16 V	50 p	$5000 \mu \mathrm{~F}$	50 V
61.10							

HIGH VOLTAGE TUBULAR CAPACITORS-I,000 VOLT
$0.01 \mu \mathrm{~F} \quad 10 \mathrm{p} \quad 0.047 \mu \mathrm{~F} \quad 13 \mathrm{p} \quad 0.22 \mu \mathrm{~F}$

POLYSTYRENE CAPACITORS I60V $2 \frac{1}{2} \%$

SMOKE AND COMBUSTIBLEGAS DETECTOR-GD
The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreasesits electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane. propane, alcohol. North Sea gas, as well as carbon-dust containing air or full details and circuits are supplied with each detector. Detector GOI, 62 . Kit of parts for detectors including GDI and P.C. board but excluding case. Mains operated detector $\mathbf{£ 5} 20$. 12 or 24 V battery operated audible alarm $\mathbf{6 7 . 3 0}$. As above for PP9 battery, 66.40
PRINTED BOARD MARKER
Draw the planned circuit onto a copper laminate board with the P.C. Pen, allow to dry, and
relief.

LARGE RANGE ITT/TEXAS IC's NOW IN STOCK

PRICES ARE CALCULATED ON TOTAL NUMBER ORDERED REGARDLESS OF MIX

RINGS OF SATURN

Once again a theory has been challenged by a practical test. The original theoretical study of Saturn's rings was made by Clark-Maxwell. He gave as his opinion that these rings must be dis-continuous and made up of discrete particles.

This view was accepted by astronomers and until recently the generally recognised explanation was that the particles were ice crystals or accretions of dust. This appeared to be a satisfactory conclusion since the thickness of the rings is around 1.0 km . although the diameter reaches some $85,000 \mathrm{~km}$.

Now as a result of studies made at Goldstone. California, two researchers R. Golstein and G. Norris. have suggested that the rings consist of boulders approximately 1.0 m in diameter

They used the large Goldstone radio dish and a power of 400 kW to direct a beam to the planet 700 million miles away. The beam. using a wavelength of 12.5 centimetres, calculated boulder size from the reflected signal.

This new finding represents a considerable hazard to spacecraft and it may well be that there are scattered lumps of rocks at higher and lower latitudes. The discovery prompts the thought that perhaps the rings are after all the debris of a former satellite.

The approach of the present programmed probes will be close enough to check the conclusions that have been made and possibly even photograph the rocks.

ASTEROID BELT

The safe journey of Pioneer 10 through the asteroid belt has caused a sigh of relief from the scientists planning the missions. The knowledge that the density of the belt and the size of the particles which differs considerably from the former conjectures will enable plans for future probes to go forward with confidence.

The size of the particles in the belt were between 100 mic memetres and 1.0 mm . Nothing larger than 1.0 mm was encountered all the way out from the earth's orbit. Even those of 1.0 mm size were rare. It seems, therefore, that the belt is composed of the 17,000 to 20.000 identified asteroids and very fine dust. During the whole period of the transit through the belt Pioneer 10 did not have one of the known asteroids in view.

COMPUTER INTEGRITY

A short time ago the possibility of a tenth planet was raised again. Observers have been unable to locate it and computation did not supply sufficient information for a search.

A new attempt at the three body problem was tackled again recently

BY FRANK W. HYDE
and out of this exercise came the conclusion that residual errors. which are unavoidable in a computer analysis of data. will always predict a planet or body. It seems therefore that this situation rebuts computer integrity for problems such as this.

TECHNICAL EUTHANASIA

At the press of a switch Sir Brian Flowers FRS. Chairman of the Science Research Council put an end of the life of Atlas 1. This computer, the most advanced design in the world when it was installed. had come to the end of a useful life because it was old and its transistors germanium. The availability of spares and the high cost of maintenance made the euthanasia decision imperitive.

The computer which dealt with the pilot data from weather satellites, retrieval of data from UK 3, and other space projects was designed by a team at Manchester University under Dr (now Prof.) T. Milburn. It contained a supervisory system which has only quite recently been emulated.

The work will now be taken over by a 1906 A and a $370 / 195$ which is already dealing with UK 4 and Essa 8. These two computers are, of course, much faster than Allas l. The main activities of Atlas have been concerned with theoretical chemistry and crystallography. There is no doubt that the decision to set up the enterprise of the Atlas Laboratory by the Research Council was a wise one and the original investment justified by results.

ORANGE SOIL OF THE MOON

The excitement of the discovery of the orange soil on the moon. thought to be iron oxide. has now been rather dashed by the findings of the investigators. It seems that
the soil is made up of grains of glass.
It is thought that the soil has only been exposed to cosmic rays on the surface for about X to 10 million years. When the material was formed, which would be about 3.700 million years ago. it was buried deeply and not exposed to cosmic rays. It was thrown up later by meteoric impact and not by volcanic action of the Shorty crater even though it is of recent formation.

The orange soil is the finest grained that has been found on the moon and consists of coloured glass in droplets and fragments. Chemically the samples from the Apollo 17 mission are the same as those from the Apollo $1 /$ mission which was several hundred miles away There is, however. a difference in that the A pollo $1 /$ samples were not so rich in zinc.

LUNAN PROBE

In the March issue of Spacencatch mention was made of the work of D. A. Lunan regarding the possibility of a probe being situated in the orbit of the Moon. This was suggested to have originated from Epsilon Boötes a star in the constellation of that name and at a distance from the Earth of approximately 105 light years. The whole matter has caused some stir and the paper was given before a large audience in Caxton Hall in March this year.

There has been a further development in this matter and America has now taken an interest in the project. Originally a project named $O S M A R$ was initiated by Frank Drake and Carl Sagan in America. This was subsequently abandoned but a new project for which a very large Radio System is being set up is to be undertaken. This involves a system of aerials in a line 25 miles long.

A more modest project is being set up in this country based on Lunan's suggestions. It is called GOLDE (Ground Observations of Long Delayed Echoes) and is to be operated under the aegis of the British Interplanetary Society. This is a project in which the help of amateurs is required.
The principle of operation is to send a strong signal to the place where calculations show that the probe should be and time the echoes which may come back. EMI have loaned a special set of equipment to help the project, which will be in operation for a long time. From America has come an offer to par*cipate in the programme. This is from Stanford University where a large dish is available.

The British team is lead by D. A. Lunan and A. T. Lawton who would welcome amateurs who are interested to take part in this experiment.

勻

 TheTransistor and BeyondBy Prof. G. D. Sims, o.b.E, phid. Head of Dept. of Electronics, Southamplon Universty)

an appreciation of the changes EVALUATION OF FUTURE PROSPECTS

Abstract

1973 marks the 25th anniversary of the announcement of the transistor and few in 1948 would have forecast the immeasurable impact which it was to make on the evolution of our society. Since that time "electronics" has seen the appearance of a continuous stream of new devices and "systems" for communications, data processing and control, and our pattern of living has been affected by these developments in a multitude of ways.

FROM SMALL BEGINNINGS TO A SMALLER FUTURE!

Looking back. it was clear that once the junction transistor had been produced, the day of the thermionic valve was limited, though the uptake of the new technology by U.K. industry was relatively slow. Certainly, at that time, both the educational and practical problems associated with its use were formidable, but since, there has been a steady adaptation to solid state devices in almost all low-power applications.

The new "active devices" were no longer necessarily expensive and as the new "systems" emerged, they grew in complexity, bringing new problems associated with "statistical" device and wiring failures. A solution had to be found and once planar technology had been mastered, the ultimate emergence of the microcircuit was inevitable: this, in its turn. brought still lower cost. greater reliability and, as a bonus. yet smaller size. We were now able to buy a complete amplifier, in a single can, while even more significantly logic families and complete integrated digital sub-systems, such as counters and shift registers were also available.

SYSTEMS

At this point. the revolution in basic electronic techniques took a new turn. for now quite massive systems could be envisaged. of which the control systems for the Apollo missions were perhaps the most challenging and spectacular.

In parallel with these developments new information storage techniques were emerging and "memory", whether in semiconductor or magnetic form. is now another readily purchaseable item.

Memory, together with faster digital techniques, now enables us to envisage future "super-systems"

ALREADY BROUGHT ABOUT AND AN
capable of working at data processing rates which were quite inconceivable in 1948. Whereas at that time a microsecond pulse was short, now nanosecond pulses are everyday things and picosecond pulses are beginning to be considered for the communication systems of the future.

These have all been direct effects of the development of the transistor and have often diverted attention from some equally important side-effects, not the least of which was the awakening of interest in the properties of "pure" materials generally.

MATERIALS

The development of semiconductor materials, which first took us from germanium to silicon, soon turned to other materials such as gallium arsenide. This has since given us power devices at microwave frequencies and possibly, of even greater importance, useful infra-red solid state lasers. Subsequently, gallium phosphide has arrived and using much the same $p n$-junction techniques as those employed at low frequencies, we now have compact alpha numeric indicators in this material and its derivatives.

We came to realise, too, that glass could be an important material and "Ovonic" storage devices using switching properties in glass offer great potential, even though, at the moment, they remain little understood and unreliable. We had already accepted that ceramics had their uses, too, whether for substrate materials or in more esoteric combinations such as with ferroelectric glasses, whose interesting optical and piezo electric properties suggest many potential applications.

It would be no exaggeration to say that all of the major device developments which have taken place since 1948 have arisen either from the utilisation of new materials or from improvements in materials technology which enabled us to use already known materials properties more efficiently than before.

DESIGN CONSIDERATIONS

In order to exploit our devices, in the new systems, it became necessary to marshal a whole new battery of design techniques: the simplest of these were concerned with the design of logical systems, and switching theory has now become an important tool in the hands of almost all electronic engineers. Further, as systems have grown in capability, the designer has
had to find other means for carrying out the kind of routine calculations which hitherto had been his main occupations.

If a computer aided design programme could provide details of how to design a filter, or a feedback circuit, it was clearly sensible to use it rather than to waste valuable professional time on "chores".
With the bigger systems, it is seldom practicable to "bread-board" everything in the initial design stages. Thus simulation techniques, in which systems are modelled on computers, have also developed apace.

Finally, and perhaps most important. is the growing pre-occupation with systems reliability, and design for maintenance ("terotechnology"). These considerations have to be taken into account at the outset of the design process and wherever possible systematic calculations must be performed to put realistic limits on component life.

Long component life is an expensive commodity and whilst it is essential that the system is reliable enough, it is seldom that excessive reliability can be justified. Perfectionism is all very well but it costs money!

THE YEARS TO COME

What then of the future?
At the system level we have already spoken of the "super-system" which will provide a communicating power, exceeding by orders of magnitude that are available at the moment. This, using faster digital techniques and optical fibre waveguides, will open up the almost unlimited bandwidths available at optical frequencies and will allow many new possible applications of video systems, such as information retrieval from the local data bank or library and generatly "instant-optical communication".

At the device level it is not easy at the present time to envisage a replacement for the silicon integrated circuit, though as technologies evolve. we are already seeing a noticeable movement from bi-polar techniques to MOS processes, particularly in relation to the new forms of solid state memory.

VACUUM TUBE SURVIVORS

In the area of general electronics, the cathode ray tube and imaging tubes remain apart, as almost the sole survivors of the vacuum tube era-but for how long?

We are already seeing important developments by way of self-scanned solid state silicon arrays which may soon challenge vacuum image tubes for some applications: new ideas are continually emerging in the use of new materials for image storage: new techniques also appear for writing, both with light and electron beams, either on photochromatic materials or thin films, for data recording purposes.

At the moment, notwithstanding, the cathode ray tube as a "picture tube" appears to be secure, for as yet nothing fast enough can challenge it. The same remains broadly true of "power" tubes where as yet solid state devices have made a limited impactthough undoubtedly their time will come, too!

THE ENGINEER AND TECHNICIAN

Implicit in our discussion above is the suggestion that the roles of the engineer and the technician in electronics have also changed. The subjects of fundamental importance to either remain much the same,
but the achievable level of complexity is now so great that many engineers must be less-concerned with circuit detail than with the properties and specification of the overall system and its organisation. The technician at the same time has a task which, although it may in some respects be simplified through the microcircuit, is in other ways more complicated, requiring a greater overall understanding of electronics as a whole.

EDUCATION

For those in education, the scene has been changing continually and the challenge is unrelenting. Graduate courses remain at three-years and, somehow or other, competently educated engineers must be produced in that time. As always, the education has to be mainly concerned with fundamentals and with developing. within the student, the ability to continually self-update his knowledge, in his subsequent professional life in Industry. At the same time, however. he requires an awareness of the attitudes and practices of the contemporary world and the task of balancing these needs is a delicate one.

THE VITAL AREAS

The areas above all in which more effort is needed. if the student is to cope with the changes which the future will bring, are probably the two mentioned above, viz. "Materials" and "Systems".

For the man who is going to be concerned primarily with devices, materials have assumed an importance many times greater than was appreciated 25 years ago: while for the designer of "capital goods", the systems considerations which could be overlooked when the radio set represented the ultimate challenge in complexity, are now at the forefront!

Circuit theory, of course, remains as important as ever, but, to it, we have had to add logic design and some indication of how we can check our ideas and translate them into practical terms through CAD and simulation.

Thus the education sector has had to learn and adapt rapidly, too, and it is vital that it should continue to do so. for the industry is critically dependent on an assured inflow of high quality personnel.

PROSPECT

Despite the recession, the half-million strong electronics industry of this country has been remarkably successful and will be of key importance both nationally and to the EEC, in the years to come.
Just as the development, successively, of the telephone. radio. television. and the computer have all marked stages in a revolution which has been social as well as technical, the super-systems of the future will change our habits still more. It has been, above all, the invention of the transistor which has accounted for the continually accelerating pace of this social revolution, which began, so innocently, with the invention of the thermionic valve at the turn of the century!

This month the module containing the Sample and Hold circuitry and Noise Generator is described together with application details.

SAMPLE AND HOLD

The Sample and Hold shown in block form in Fig. 5.1 is another programming device which is capable of producing formalised staircase waveforms (Fig. 5.2) or random staircase waveforms. In both cases the "rise" of each step in the staircase is dependent upon the amplitude of the voltage being sampled while the "tread" of each step is governed by the sampling rate set by the clock.

The clock itself consists of two separate circuit forms as shown in the theoretical circuit diagram Fig. 5.3. The first is an astable multivibrator (ICI) in which the rate of oscillation is variable between 0.25 Hz and 50 Hz . The circuit switches alternately between its positive and negative saturation levels so that, for 15 volt supply rails, the output voltage swing is of the order of 28 volts.
The second circuit form is a monostable multivibrator (IC2) which is triggered by the negative going steps of the astable squarewave thus producing a pulse train of the same frequency. This circuit also switches between its positive and negative saturation levels. In the stable condition the output is positive. The introduction of a negative trigger pulse at the input. C3. causes the output to switch to its negative saturation level and to remain there for a period determined by the components R12 and C4.

PRECISION GATE

Clock pulses from the monostable are used to trigger an analogue gate (IC3) which has two summing inputs. One is coupled internally to a d.c. source and the other directly to an external sample socket. The gate will only recognise negative inputs.

If the trigger input to the gate is left open circuit or is grounded the gate behaves like a unity gain inverter but only for negative going signals. A positive input signal would tend to swing the output of the gate negative, a tendency which is prevented by the bounding action of diodes D6 and D7.

Under normal conditions overriding control of the state of the gate depends upon the polarity of the signal presented at the trigger input. As has been explained. the gate is closed, that is, passing inverted negative signals, when the trigger input is open circuit or grounded. The same situation exists when the polarity of the trigger signal is negative.

When the trigger signal is positive however the gate opens and its output is zero provided that the potential of the sample input is less than the potential of the trigger signal. This latter situation exists for all conditions of internal sampling where the maximum d.c. level attainable is determined by the divider R26-VR4, and for all conditions of external sampling from a single programming source.

When the d.c. and external sampling sources are combined, providing a single programming source only is used, the maximum sampling potential will never exceed 11.5 V as compared to a trigger potential of 14 V . and thus the closed period of the gate will never exceed 560 microseconds.

In circumstances where two or more programming sources are combined cither with, or without, amplification, the situation can exist where the sample potential exceeds the trigger potential. Under these conditions the closed period of the gate is solely dependent upon the period of "high" sample potential.

PE Sound Synthesiser 5 5AMPLE-HOLD and nOISE GEIERATOR By G.D.SHAW

INTEGRATOR

Output from the gate is led to the programming input of an integrator/comparator (IC4/IC5) arrangement which is basically similar to the ramp generator described in last month's article. In this case, however, the time constant of the integrator is much shorter resulting in an extremely rapid integration.

This feature is necessary in order to provide the steep rise between steps if a crisp tone change is to be achieved.

Further additions to the basic ramp generator circuit include an indicator lamp switched by TR1 which serves to indicate the "on" period of the staircase, a clamping diode D1 which serves to limit the integrator output to approximately 650 millivolts in the event that the integrator tends to go into positive saturation, and an input bias control provided by R1, VR1, R2. Input bias is required to compensate for integrator capacitor leakage during the periods of hold between samples, particularly when the sampling rate is low. It also serves to allow the Sample and Hold to be used as another Ramp Generator if required. This is achieved by disabling the trigger socket (JK1) by the insertion of an opencircuit jack plug and setting the ramp rate by adjustment of the d.c. and bias controls. Very high ramp rates may be achieved by this means.

CONSTRUCTION

The circuit board layout of the Sample and Hold is shown in Fig. 5.4. Layout is not critical although space problems may occur if relative component

Fig. 5.1. Elements of Sample and Hold in block form

Fig. 5.2. Staircase waveform produced by Sample and Hold circuit. The rise of each step is dependent on the amplitude of the sampled voltage while the tread depends on the clock rate

Fig. 5.3. Sample and Hold circuit

SAMPLE AND HOLD BOARD

COMPOUENTS

Resistors

R1	$110 \mathrm{k} \Omega$	R15	$100 \mathrm{k} \Omega$
R2	$1 \mathrm{M} \Omega$	R16	680Ω
R3	$24 \mathrm{k} \Omega$	R17	680Ω
R4	51Ω	R18	$1 \mathrm{k} \Omega$
R5	$20 \mathrm{k} \Omega$	R19	$200 \mathrm{k} \Omega$
R6	$10 \mathrm{k} \Omega$	$R 20$	$200 \mathrm{k} \Omega 2$
R7	$3.3 \mathrm{k} \Omega$	R21	$10 \mathrm{k} \Omega$
R8	$82 \mathrm{k} \Omega$	R22	$200 \mathrm{k} \Omega$
R9	$1 \mathrm{M} \Omega$	R23	$200 \mathrm{k} \Omega$
R10	82Ω	R24	$10 \mathrm{k} \Omega$
R11	$9.1 \mathrm{k} \Omega$	R25	$75 \mathrm{k} \Omega$
R12	$1.2 \mathrm{M} \Omega$	R26	$10 \mathrm{k} \Omega$
R13	$100 \mathrm{k} \Omega$	R27	10Ω
R14 $1 \mathrm{M} \Omega$	R28	10Ω	
All $5 \% \frac{1}{2}$ watt carbon			

Potentiometers

VR1 $\quad 5 \mathrm{k} \Omega$ lin. miniature moulded
VR2 1 MS 2 lin. miniature moulded
VR3-VR4 $10 \mathrm{k} \Omega \mathrm{lin}$. miniature moulded (2 off)
Transistors
TR1 2N2907
TR2 OC140

Capacitors

C1	$2.2 \mu \mathrm{~F}$	35 V Tantalum
C 2	$10,00 \mathrm{pF}$	polystyrene
C 3	10 pF	polystyrene
C 4	$3,300 \mathrm{pF}$	polystyrene
C 5	$4.7 \mu \mathrm{~F}$	40 V tantalum
C 6	50 pF	polystyrene
C 7	50 pF	polystyrene
$\mathrm{C} 8-\mathrm{C} 9$	$470 \mu \mathrm{~F}$	25 V elect. (2 off)

Diodes
$\begin{array}{ll}\text { D1 } & \text { ISJ50 } \\ \text { D2 } & \text { ISJ50 }\end{array}$
D3 IN914
D4-D7 ISJ50 (3 off)
Integrated Circuit
IC1-IC5 741C (5 off)

Miscellaneous

LP1-28V sub-miniature indicator lamp SK1-SK3 2 mm miniature sockets (3 off)
JK1, JK2 3.5 mm jack socket (2 off)
0.1 in matrix Veroboards as required

Fig. 5.4. Component layout and wiring of Sample and Hold Board
sizing differs appreciably from those shown. The power supply decoupling electrolytics present the biggest hazard as far as cramping of the board is concerned and these components should not be larger than 32 mm in length by 16 mm in diameter. R.S. Components Tube type are suitable and comply with the dimensions given.

EXPERIMENTAL CIRCUITS

The Sample and Hold provides the principal means by which the Synthesiser offers its most fascinating feature, that of "playing" by itself. Coupling the output to a v.c.o. and careful adjustment of the sample sources can provide a range of repetitive tone sequences the repeat period of which may be varied from a few seconds to several minutes.
Whether the sequence is truly repetitive or entirely random depends very largely on the choice of sample source. An article in the February issue of Hi-Fi News reviewed a recently issued record in which the "music" had been derived from computer stored data relating to changes in the Earth's magnetic field measured at a series of selected points.
In a similar manner existing data sources may be used to provide sample information. Crystal clocks. binary counters, ring counters, old non-erased computer tape and other digital data sources of various kinds, signal generators-even legitimate recorded music may be pressed into service, amplified, attenuated and blended together in various ways to serve the cause of random programming.
The discerning constructor will have noted that whatever the source of sample information the overall effect of the Sample and Hold is to turn this into a voltage which is progressively increasing, in steps. to a predetermined level at which point it returns to zero only to commence climbing once again. In practice the feature of a regular return to zero of the Sample and Hold output does not become obtrusive except at relatively slow sampling rates when the sample voltage shows very little variation between successive samples.

NOISE GENERATOR

White noise, defined in some circles as unwanted sound, is a very useful addition to the aural facilities provided by the synthesiser. It is a known fact that a great many sounds otherwise considered to be "pure" actually contain a relatively high noise content. The edge-tone in a wind organ is a typical example.
For imitative synthesis the addition of noise in greater or lesser degree is essential if the greatest approach to realism is to be achieved. This factor applies particularly to the synthesis of naturally occurring sounds such as rainfall, surf on the beach, storms, etc., and also to certain man-made sounds such as gunfire, explosions, train whistles. steam engines and so on.
Fig. 5.5 shows the theoretical circuit of the noise generator. The circuit is really quite simple. R5-R9; C3-C4 and D1 represent the noise generation section. The noise diode D1 is a specially selected noisy Zener marketed only by Semitron Ltd., and in the circuit configuration shown provides an output of about 75 mV .
The noise bandwidth and level may be adjusted to a certain extent by varying the values of C4 and R6 respectively although it will be found, in practice, that the values shown are suitable for most purposes. C3 serves to decouple the noise diode from the inverting amplifier based around ICI.

Cost reduction can be achieved by omitting the offset adjustment preset VR3 and substituting a capacitor between the values of 0.01 and $0.1 \mu \mathrm{~F}$ in the output of the operational amplifier as shown dotted.

LOW-PASS FILTER

R1, VR2 and C2 serve as a simple yet severe lowpass filter in order to provide a degree of control over the colouration of the noise. With VR2 at its minimum setting the output of the noise generator is reduced to a rough triangular waveform with a frequency in the region of 6 kHz . Under these con-

Fig. 5.5. Circuit diagram of Noise Generator
ditions the loading on the output of the operational amplifier is quite heavy and R3 is therefore included to limit the output current drain. Power supply decoupling is essential if noise is to be prevented from leaking back to the power distribution busbars.

In the circuit shown the current requirements are 2.5 mA per rail and the addition of 200 ohm decoupling resistors will therefore result in a voltage drop of about 0.5 V . If noise leak-through continues to be a problem these latter resistors may be increased in value quite considerably although if values over 500 ohms are used some adjustment of the values of R8 and R9 may be necessary to maintain their junction voltage at about +20 V with respect to the negative rail.

Fig. 5.6 shows the circuit board layout of the noise generator. A piece of Veroboard or similar of 17×34 ways is suitable. Note that screened leads are used to connect this board's cutputs with its associated components on the front panel. These leads should go direct to their respective components and not be bound into the wiring harness.

CONSTRUCTION

In general the construction of this module should follow the pattern adopted with those already described. The wiring harness for the Sample and Hold should pass out at the top of the front panel and down the length of the circuit board support plate to join the circuit board which is mounted adjacent to the McMurdo plug. The noise generator
circuit board should be mounted over the lower pair of supports adjacent to the base of the front panel Details of the front panel layout and module wiring are given in Fig. 5.7

SETTING-UP

It is recommended that setting-up and testing be established as a continuing process during construction of this module. With the noise generator, for example, it is suggested that the noise generating section consisting of R5-R9; C3-C4 and Dl be built first and tested by making temporary connections to the power supply rails and observing the output by connecting an oscilloscope between point " P " and the negative rail

The expected output of the noise amplifier can be calculated at this stage by measuring the noise output of the diode with respect to signal ground and multiplying this by the gain of the amplifier

In the prototype the total noise output was 3.5 V maximum which is more than adequate. If the performance of this stage is satisfactory construction of the amplifying section can go forward being similarly tested on completion and before mounting the finished board into the module

There is no actual "setting-up" to be done with the Sample and" Hold and the purpose of testing is merely to establish that the circuit performs within the previously described limits.

Fig. 5.7. Front panel component assembly with details of mounting and disposition of board on the module support plate. The small ringed X on the board edges indicates orientation. (See board assembly figures) For direct programming from the v.c.o. module connect SK11/4 to SK8/2

USING THE SAMPLE AND HOLD

It is best to confine initial experiments with the Sample and Hold to the formation of relatively simple staircase patterns, derived from the sampling of fixed d.c. voltages, in order to become familiarised with the effect of the adjustment of the various controls. Adjustment of the bias control, for example, can be quite critical when slow sample rates are being used and it is helpful to observe the output waveform on the oscilloscope so that drift between successive samples can be more easily balanced out.

When the Sample and Hold is programming a v.c.o. changes in "tread" voltage can be clearly discerned by ear but this becomes progressively more difficult as the sampling rate is increased. Note that it is difficult, if not impossible, to eliminate drift on the first step of a multi-step staircase due to the low charge on the integrating capacitor. This is not necessarily a disadvantage since it is possible to programme out the first step of the staircase by means of the envelope shaper which is to be described in a future article.
Progression to the sampling of varying voltages is the next logical step. Fig. 5.8 shows the effect of sampling a negative ramp having a period of about 0.1 Hz . Note how the "rise" between "treads" increases in proportion to the increase in the ramp voltage. Variation in the ramp level by means of the input amplifier can cause remarkable changes in the output rhythm. A low ramp level and rapid sampling rate gives rise to an arpeggio-like sound in which the separation between the first few "treads" is barely discernible.

A high ramp level, on the other hand, causes the output of the integrator to reach its reset point fairly rapidly but since the sampling is continuing on an ever increasing ramp level the next staircase will have fewer steps and reach its reset point even more quickly. If the second reset is still well within the ramp period the third staircase will demonstrate even fewer steps while the fourth and subsequent staircases may consist of only one step, i.e. a square wave.

Variation of the sample voltage (ramp level) and sampling rate can ring the changes over a very wide range and produce some very interesting results.

SAMPLING A POSITIVE RAMP

Fig. 5.9 illustrates the effect of sampling a positive going ramp. In this case an initial condition of sampling fixed d.c. should be set and the ramp level adjusted so as not to exceed the d.c. sample voltage.

Fig. 5.8. Variable voltage programming. Note how the rise on consecutive steps at the output increase in proportion to the ramp level. Here d.c. level is zero

Fig. 5.9. Variable voltage programming. Here consecutive rises on the staircase output decrease with increase in ramp level. D.C. level is equal to or greater than the ramp level

The effect of these settings is shown, i.e a relatively large "rise" on the first few samples which gradually decreases as the ramp level rises. In other words a reversal of the situation illustrated in Fig. 5.8.

FURTHER EXPERIMENTS

Further experiments may be carried out in which the sample voltage is derived from two or more sources simultaneously and a typical arrangement is shown in Fig. 5.10.

The sample sources used need not, of course. be centred within the Synthesiser itself. Almost any
device producing a varying output voltage may be used providing that the voltage amplitude concerned is compatible with the devices used in the synthesiser.
The output from a pick-up cartridge, tape recorder or radio can be amplified to a suitable level and used as sample material. Music which has wide and fairly rapid changes in dynamic range gives the best results.

Next month: Some general views on the establishment of an experimental sound studio and the construction of the Tone Control module will be described.

Sound 73 international, organised by the Association of Public Address Engineers and held again this year at the Bloomsbury Centre, London, ran from 13 to 15 . March under what can only be described as "Luxury" conditions with deep pile carpets, a warm inviting atmosphere and the sound of happy music welling up around one.

In addition to the main exhibition, the event included lectures on each day, a number of social activities. and public demonstrations of some of the available equipment.

It is as well that the environment was conducive to communications since the sheer quantity of microphones. loudspeakers, amplifiers, Discos and so on to be seen must have led many into a feeling of confusion.

To add to this, the growing availability of semiconductor equipments and the adoption of current stylings have certainly led to a degree of similarity of gear from stand to stand.

On the lecture front the subjects covered included microphones and their circuitry; limiters and compressors, their application and use; the industrial design of PA equipment; and finally the marketing of this equipment. Of course the event is basically directed to the professional sound engineer and the manufacturer but for all that there is invariably something of interest for the casual visitor at such an event.

FROM THE PAST

An interesting contrast with the past was provided in the presence of a public address caravan once the property of Cecil Clarabut of Bedford. The van. equipped with horn speakers, a rack of amplifiers and associated microphones and 78RPM turntables, started
operating in 1927 and although the current amplifiers and other items to be seen in the van were installed in the mid 1940's the contents are no less interesting for that.

Apparently the outfit was used as recently as June of 1958 and since then it has been in store. Now it has been restored and Mr. Clarabut has donated it to the Association for Museum purposes.

Returning to a more modern theme, two points come to mind from the show. In the first place the fairly universal adoption of slider controls in tone and volume circuits. This has tended to give much of the equipment similarity of appearance which is emphasised with items like a Disco unit where the layout can be little else but symetrical if it is to work successfully.

A second point is the tendency to place wattage ratings at 100 or 200 nowadays. Apart from the obvious dangers to the listener's hearing when faced with power at this level coming from one speaker, there seems to be the question of this type of high level being fashionable rather than necessary. One or two of the loudspeaker suppliers made this point with surprise but no doubt at the same time with a degree of pleasure at increased sales.

Whilst much of the equipment was of the type one might see in any Discotheque or audio supply house. one or two items caught the eye. For example there was a portable speaker unit intended for indoor or outdoor use mainly in PA applications.

Called the Electrovoice Sonocaster portable extension speaker, the unit uses an 8 -inch transducer. can handle up to 30 watts peak and. whilst limited in frequency response to 70 Hz to 13 kHz , gives a very good showing in comparison to a $£ 400$ unit from the same source, Goulton Europe Ltd. Priced at between $£ 11$ and $£ 16$ (figure not yet finalised) this plastic-housed unit will no doubt collect its fair share of interest.

The latest news from the APAE is that John Robins. MD of SNS Communications Ltd.., has been elected President. This year's President elect is Keith Monks of Fleet and John Weed of Uxbridge is again Treasurer.

PRTENTS REDTEW

MABIC WIPERS

Motorists who like the idea of triggering their windscreen wipers as if by magic should read BP 1287752 from Joseph Lucas Industries.

The Lucas circuit Fig. 1 shows a vehicle battery supplying power to an oscillator coupled to a transmitting aerial. Usually the aerial will be in the form of a wire loop built into the driver's seat belt. The receiver aerial, in the form of an electrode built into the vehicle dashboard, is connected to the gate of the field effect transistor TR1.

The circuit is physically and electrically constructed such that the coupling between aerials is insufficient to cause TRI to conduct. To operate the load (e.g. the windscreen wipers) the driver touches the receiver aerial to increase capacitive coupling between the two aerials. Transistor TRI conducts, base current reaches transistor TR2 and thereby also transistor TR3. Relay RLA then latches, due to the rectified current flow through the transistor, and "Hey Presto!" the wipers start up.

Because a self-latching relay is used it will hold the wipers workind until next time the aerial is touched. A non-latching relay could of course be used for on/off touch control.

ULTRASONIC GUIDE STICKS FOR THE BLIND

Geoffrey Mowat in BP 1284027 provides interesting details for the construction of a walking stick for the blind with ultrasonic guide capabilities. In his patent Mowat shows a transmitter formed from an oscillator, TR7, and amplifier, TR8, see Fig. 2. These produce ultrasonic electrical oscillations which are converted into ultrasonic sound waves by transducer X2.

No details are given of this fairly routine arrangement, but it is suggested that initially oscillation trains should be transmitted 8 times per second. The transducer X2 is directional in that it transmits only over a beamed path.

For reception a transducer X1 converts received ultrasonic soundwave pulses into electrical pulses and applies them to the receiver amplifier, TR1, 2 and 3. The amplified echo pulses are

Fig. 1
then fed to an astable multivibrator (TR5, 6) which, when no reflected signal is received, is free running.

When an object is close enough to the transducers to cause the latter to receive a reflection, the multivibrator will be triggered from its original to its alternative state for a predetermined length of time, and in which state it is insensitive to any subsequent pulses. When the multivibrator reverts to its original state it will cause the transmitter to emit a train of pulses again. Simultaneously an indicator amplifier TR10 will activate a vibrator which the subject can feel.

Thus when the transducer X1 receives a reflected pulse, the multivibrator will "flip" over and control a fixed cycle of events. As
the transmitted pulse will be received back in a shorter time as the reflecting object qets closer, the repetition rate felt at the vibrator will vary with the distance of the reflecting object, i.e. the vibrator will vibrate at a frequency which increases as the object gets closer. And, of course, because the multivibrator is triggered by the first received pulse, the unit as a whole will respond only to the nearest object in its dath. Transistor TR4 attenuates direct path (non reflected) pulses.

The inventor claims that with the arrangement fitted in a walking stick, the system will allow ready distinction between objects such as a telegraph pole and a building behind it.

BP 1284027

Fig. 2

Signetics International Corporation has recently introduced a new economical integrated circuit, the 555 , which can be employed in simple timing circuits for an extremely wide range of applications and is equally suitable for use by both the professional equipment designer and the amateur enthusiast.

The 555 devices can be employed to provide accurate time delays from microseconds to hours. The time delay is almost independent of the power supply voltage. The device can also be employed as an astable oscillator for pulse-width modulation as one of a series of timers or a frequency divider.

THE INTEGRATED CIRCUIT

The integrated circuit and its mode of operation will be described in some detail so that readers may gain an understanding of the circuit and thus be able to devise their own applications. Full constructional details of a general purpose timer appear on page 486 of this issue and show how this monolithic integrated circuit can be employed for automatically timing the exposure in photographic enlarging or as an industrial timer.

TYPES

The 555 timer is available in two types of package. An eight lead dual-in-line encapsulation with a silicon moulded body material is used for the NE555V, and the NE555T has a circular TO-99 case with eight leads. The connections to both types are shown in Fig. 2. The electrical characteristics of the two types are identical.

The SE555T is a close tolerance version of the 555 device and is available only in the circular TO-99 package at present. The connections are as in Fig. 1. The SE device can operate over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, whilst the NE types can operate only over the narrower temperature range from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The SE555T is considerably more expensive than the NE types and it generally provides a somewhat smaller drift of the time delay with the supply voltage and with temperature.

The writer feels that the dual-in-line construction of the NE555V is rather more convenient to use than the TO-5 encapsulation and it is the cheapest type of 555 .

Timer It By J.B. DANCE m.sc.

Fig. 1. General schematic of the 555 timer chip showing external circuit connections for monostable operation

1 Ground
2 Trigger
3 Output
4 Aeset
5 Control volt age
6 Threshold
7 Discharge
$8+V$ CC

Fig. 2. Pin number connections for 8 -pin DIL and TO99 can

The NE555V has therefore been used in the applications which will be described, but the NE555T or the SE555T are equally suitable.

MONOSTABLE OPERATION

In the monostable mode the timer is triggered by an input pulse or by the operation of a switch. This causes the output voltage to change for a pre-determined time (the delay) after which this voltage returns to its former value. The delay is determined by the product of the values of a capacitor and resistor connected externally to the integrated circuit.

The integrated circuit is shown connected as a monostable in Fig. 1 with the operational functions of the timer shown as blocks.

Initially the external capacitor, C_{1}, is kept in a discharged state by the transistor TR1 inside the timer. This transistor is held in a fully conducting state by the bias applied to its base by the flip-flop stage.

Fig. 3. Waveforms associated with the operation of the circuit of Fig. 1

Fig. 4. Time delays obtainable with various values of C_{1} and R_{A}

The point B is held at a potential of $V_{e c} / 3$ by the potential divider containing three resistors of equal value R. When a negative-going trigger pulse causes the potential of pin 2 to fall below the value $V_{\mathrm{cc}} / 3$, comparator 2 causes the flip-flop to be switched. This results in the output voltage rising and in TR1 being cut off.

This sequence of operations may generally be started by momentarily connecting pin 2 of the timer to ground instead of applying a negative-going pulse to it. However, triggering will then normally occur at the instant the connection with ground is broken and this may introduce an appreciable error if the delay period is short.

WAVEFORMS

The voltage across C_{1} now increases exponentially with a time constant $R_{\mathrm{A}} C_{1}$ as current flows to it via R_{A}; the waveforms are shown in Fig. 3. When the voltage across C_{1} becomes equal to that at point A (that is, to $2 V_{\text {cc }} / 3$), comparator 1 of Fig. 1 resets the flip-flop. The output from the latter causes the voltage at the output (pin 3) to return rapidly to its quiescent low value. In addition, TR1 is biased so that it conducts and the capacitor C_{1} is rapidly discharged.

SUPPLY VOLTAGE

If the value of the supply voltage, $V_{c c}$, is increased, the potential of point A and the rate of charge of the capacitor C_{1} at any given point in the charging cycle are both increased in proportion. The time at which the two inputs to comparator 1 become equal (that is, the time at which the end of the delay occurs) is therefore almost unaffected by the value of V_{ec}.

RESET

Once the circuit has been triggered by a negative going pulse to pin 2 , it will remain in this state until the pre-set time has elapsed, no matter whether it is triggered again during this time or not. If, however, a negative going pulse is applied to the reset terminal, pin 4 , before the circuit has returned to its quiescent state, the capacitor C_{1} will be discharged and the circuit will be reset.

The output is in its low voltage state during the time the reset pulse is applied to pin 4. Resetting can also be effected by momentarily connecting pin 4 to ground. The reset current is about $100 \mu \mathrm{~A}$.

In applications where the reset terminal will not be used, it is advisable to connect it to the positive supply line to avoid any possibility of undesired resetting.

TIME DELAY

The time, t sec, for which the output is in its high voltage state is given by the equation:

$$
t=1 \cdot 1 R_{\mathrm{A}} C_{1}
$$

Equation 1 where R_{A} is expressed in ohms and C_{1} in farads.

Equation 1 may be deduced in the following way. When a capacitor C_{1} charges from a voltage $V_{c c}$ through a resistor $R_{\text {A }}$, the voltage V across the capacitor after a time t is given by the equation:

$$
V=V_{\mathrm{c}}\left(1-\mathrm{e}^{\left.-t / R_{\mathrm{A}} C_{1}\right)}\right.
$$

In order to find the delay, t. we put $V=2 V_{c c} / 3$, since this is the voltage at which the flip-flop is reset.

$$
\begin{gathered}
2 V_{\mathrm{cc}} / 3=V_{\mathrm{cc}}\left(1-\mathrm{e}^{\left.-t / R_{\mathrm{A}} C_{1}\right)}\right. \\
\mathrm{e}^{\left.-t / R_{\mathrm{A}} C_{1}\right)=1 / 3} \\
t / R_{\mathrm{A}} C_{1}=-\log _{e}(1 / 3)=\log _{e} 3 \bumpeq 1 \cdot 1
\end{gathered}
$$

If one requires the output to remain in its high voltage state for one millisecond $\left(10^{-3} \mathrm{~s}\right)$, one may choose a reasonable value of C_{1}, say $0 \cdot 1 \mu \mathrm{~F}\left(=10^{-7} \mathrm{~F}\right)$, and calculate R_{A} using equation 1 to see if a reasonable value is obtained:

$$
R_{\mathrm{A}}=t / 1 \cdot 1 C_{1}=10^{-3} /\left(1 \cdot 1 \times 10^{-7}\right) \bumpeq 9 \cdot 1 \mathrm{k} \Omega
$$

Similarly, if $R_{\mathrm{A}}=100 \mathrm{k} \Omega$ and $C_{1}=100 \mu \mathrm{~F}, t=$ $1 \cdot 1 \times 10^{5} \times 10^{-4}=11$ seconds. The chart of Fig. 4 shows the time delays obtainable for values of C_{1} from $0.001 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ and for values of R_{A} from $1 \mathrm{k} \Omega 2$ to $10 \mathrm{M} \Omega$.

It should be noted that reasonable values of R_{A} and C_{1} must be selected. A typical current of $0.1 \mu \mathrm{~A}$ (maximum $0.25 \mu \mathrm{~A}$) flows through R_{A} to pin 6 of the 555 timer. If R_{A} is $20 \mathrm{M} \Omega 2$, this current alone will produce a voltage drop of up to 5 V (typically 2 V). Thus this value of R_{A} is about the maximum which should be employed.

If R_{A} is chosen as $10 \mathrm{M} \Omega$ and C_{1} as $10,000 \mu \mathrm{~F}, t$ can be calculated as about 30 hours. However, the leakage current passed by the capacitor might well be so large that a much longer delay occurs before the voltage across the capacitor reaches a value of $2 V_{\mathrm{cc}} / 3$.

Apart from the fact that capacitor leakage current can affect the calculated time values, one should remember that the values marked on many capacitors are only very approximate. This is especially true in the case of electrolytic and $\mathrm{Hi}-\mathrm{K}$ ceramic capacitors. The actual value may exceed the marked value by as much as 50 per cent.

Fig. 5. Circuit of the 555 connected for astable operation

CONTROL VOLTAGE

In the previous discussion it has been assumed that pin 5 of the timer circuit has been left unconnected. However, the time delay may be changed over a range of about 10:1 by applying various control voltages to this pin. The impedance at pin 5 is a few thousand ohms. The time delay will still be independent of the value of $V_{c r}$ if the control voltage is derived from $V_{\text {ce }}$ by means of a potential divider so that it is proportional to V_{cc}.

OUTPUT

If one merely requires an output pulse at the end of the delay time, one may connect the output pin 3 to a resistor (perhaps $4 \cdot 7 \mathrm{k} \Omega$) which is returned to the positive supply line, as in Fig. 1. The output pulses are taken directly from pin 3 .

When the output voltage is high, it is near to that of $V_{\text {ce }}$. When it is low it is only very slightly greater than the ground potential of the negative supply line. If the output voltage is low and the current passing to pin 3 is 10 mA or less, the output voltage will normally be within 0.2 V of the ground potential. At output
currents of 100 mA , the output voltage is usually within 2 V of the potential of one of the supply lines.
An output current of up to 200 mA can be obtained in either the high or low voltage states.

The output pulses rise and fall rapidly, typical rise and fall times being $0 \cdot 1 \mu \mathrm{~s}$. The output pulses can be used to drive a high power transistor (such as the common npn type 2 N 3055 or the somewhat smaller npn types 2N3054 or RCA 40250). The high power transistor can then control a high current.

RELAY OPERATION

If the delay time exceeds about 0.1 sec , a small relay connected between pin 3 of the 555 and one of the supply lines can be operated directly from the timer circuit. The relay coil should be designed so that it operates from a voltage approximately equal to V_{cc} at a current which does not exceed 200 mA .

Fig. 6. Variation of frequency with component values in the astable mode

It is necessary to connect a diode across the relay so that the back e.m.f. generated when the current ceases to flow through the inductive relay coil is shorted out by the diode. This prevents possible damage to the timer circuit by the fairly high reverse transient voltage which appears across the relay coil. The diode must be connected so that it is reverse biased when the relay conducts. A fast switching diode is ideal.

TRIGGERING

The writer has found that the use of an inductive load (such as a relay) can cause the timing circuit to automatically re-trigger itself at the end of the delay time. This occurs so rapidly that the output voltage appears to stay quite constant and the relay remains closed. In the general purpose timer to be discussed, this problem is avoided by connecting pin 2 of the 555 through a resistor to the $+V_{\text {ce }}$ line.
The triggering action in the 555 is extremely sensitive. If one touches pin 2 with one's finger, triggering will occur. Even moving one's hand near to a wire connected to pin 2 is adequate to trigger the circuit by a capacitive effect. The trigger current required is only about $0.5 \mu \mathrm{~A}$ for a period of $0.1 \mu \mathrm{~s}$.

T) $N^{\prime} E S S S N X T=4 . S_{v} \rightarrow 16 v$ ent SE ing T_{0} ISv.

POWER REQUIREMENTS

The integrated circuit itself requires a current of about 3 mA (maximum 6 mA) from a 5 V supply, increasing to about 10 mA (maximum 15 mA) from a 15 V supply. Any current passed by the load is additional to the current shown. The absolute maximum permissible power dissipation is 0.6 W , but this should not be reached if the correct voltage is applied even if the maximum permissible output current of 200 mA is passed.

The NE555V sand NE555T should be operated from a su!
de:
rating vi.u.. . curw...,s.... $\leq \mathrm{cd}$ 15 V as the upper limit so as to allow for suppiy voltage tolerances.

Variations of the delay time with the supply voltage are typically 0.01 per cent per volt and with temperature 0.005 per cent, per deg C.

Fig. 7. Using the 555 for pulse width modulation

ASTABLE OPERATION

- If a 555 timer circuit is connected as in Fig. 5, it will "free run" and operate as an astable multivibrator. The trigger pin 2 is connected to pin 6 so that when C_{1} discharges the resultant negative going pulse is used to trigger a new cycle automatically.

The current required to charge the capacitor C_{1} flows through $R_{\text {A }}$ and R_{13} in series. However, when TR1 (see Fig. 1) conducts, a current from C_{1} flows through R_{13} into pin 7 . Thus the charging time is proportional to $\left(R_{\mathrm{A}}+R_{13}\right) C_{1}$, but the discharging time is proportional to $R_{13} C_{1}$. The charging time cannot be made smaller than the discharging time.

TIMING

In the astable mode of operation, the capacitor C_{1} charges and discharges repeatedly between the potentials $V_{\mathrm{cc}} / 3$ and $2 V_{\mathrm{cc}} / 3$ provided that pin 5 is left unconnected. The charge and discharge times (and therefore the frequency of operation) are almost independent of the supply voltage, $V_{\text {re }}$. The output
voltage is high during the charging time.

$$
\begin{aligned}
& \text { Charging time }=t_{\mathrm{c}}=0.693\left(R_{\mathrm{A}}+R_{\mathrm{B}}\right) C_{1} \\
& \text { Discharging time }=t_{\mathrm{A}}=0.693 R_{\mathrm{B}} C_{1} \quad \begin{array}{l}
\text { Equation } 2 . \\
\text { Equation } 3 \\
\text { Total period }=t_{\mathrm{c}}+t_{\mathrm{d}}=0.693\left(R_{\mathrm{A}}+\begin{array}{l}
\left.2 R_{\mathrm{B}}\right) C_{1} \\
\text { Equation } 4 \\
\text { Frequency }=1 / t=1.44 /\left(R_{\mathrm{A}}+2 R_{\mathrm{B}}\right) C_{1} \\
\text { Equation } 5
\end{array}\right.
\end{array} . \begin{array}{l}
\text { Equan }
\end{array} \\
&
\end{aligned}
$$

The variation of frequency with component values is shown in Fig. 6.

Equation 2 can be deduced using the equation $V=$ $V_{c s}\left(1-\mathrm{e}^{-t / R C}\right)$ for a capacitor C charging through a resistor R from a voltage source $V_{\text {cc. }}$. One requires the time for V to increase from $V_{\text {er }} / 3$ to $2 V_{\mathrm{cc}} / 3$ when charging through a resistor of value $R=R_{\mathrm{A}}+R_{\mathrm{R}}$. The discharging time is the time for V to decrease from $2 V_{\mathrm{cd}} / 3$ to $V_{\mathrm{rc}} / 3$ when a resistor R_{B} is connected across the capacitor.

The charging and discharging times can be altered by the application of a control voltage to pin 5. Both of these times are affected, since an alteration of the potential of point A in Fig. 1 will affect the potential of point B.

OTHER APPLICATIONS

The astable mode of operation can be employed when a series of operations must be repeated at preset intervals many times. For example, one application occurs when one wishes to have the windscreen wipers of a car make single sweeps with a certain delay between successive sweeps. The circuit continues to operate with this delay until the timing is adjusted or until the current is switched off. Another application using the 555 in the astable mode involves the periodic switching of lights.

If a series of regularly spaced pulses is fed into pin 2 of Fig. 7, the mark/space ratio of the output from pin 3 is dependent on the instantaneous modulating voltage applied to pin 5 . As the voltage at pin 5 increases, the time for which the output remains in its high voltage state increases until it becomes so long that alternate input pulses produce no output.

A number of the 555 timers can be connécted in the monostable mode so that the output of the first triggers the second and the output of the second triggers the third, etc.

The operation of the first timer is started by connecting pin 2 momentarily to earth or by applying a negative pulse to it. The first 555 returns to its quiescent state after 1 sec (see equation 1) and triggers the second timer. This circuit produces an output pulse perhaps 100 sec later (owing to the higher values of R_{3} and C_{3}) and triggers the third 555 circuit.

The output pulses from each of the timer circuits can be used to carry out any desired operation at the preset times after the first timer is started. If desired, the output from the last circuit may be used to trigger the first circuit so that output pulses continue to be generated at set intervals indefinitely.

On page 486 a general purpose timer constructional article discusses the use of the 555 in practical circuitry suitable for use in, say, a darkroom timer.

polnis nilisme

NOVEL BATTERY ELIMINATOR (April 1973)
To prevent the possibility of any electrical accidents the cover and base of this unit should be made up of $18 \mathrm{~s} . \mathrm{w.g}$. aluminium. Alternatively an EverReady 3 -way 13 A adaptor can be used.
For 6 V use a 6.2 V 400 mW Zener diode can be substituted such as the BZY88.

CAMERA SHUTTER TESTER (August 1972)

In Fig. 4; page 643, there should be a break in the copper strip between the end of R1 and the link wire which is close to VR1. The presence of this
incorrect link will probably damage the integrated circuit. Fig. 3, page 642, the reference to the integrated circuit as 7410PA should in fact read 741 operational amplifier.

GEMINI TUNER (April 1972)

The Gemini Tuner described over a year ago, in April 1972 has raised considerable interest and several hundred tuner heads have been supplied. Unfortunately these are made in Japan for an American company (thus keeping the cost down) who has now withdrawn the line because of shortage of some components and a changing product line. Both the importers and Practical Electronics have made extensive investigations to discover an alternative source or replacement prodfuct. Neither

LOGIC TUTOR EKPERTMENTS

SOMETIMES one finds it necessary to invert logical functions-particularly when interfacing one stage of a piece of equipment to another. Logic inversion simply means that whenever we get a logical I we have to convert it to a level 0 . The simplest way of doing this is by means of a grounded emitter amplifier stage (Fig. 2.1). Using our convention of positive logic a logical 1 on the input is represented by +5 V at point A -this causes base current to flow in the transistor and hence collector current is drawn and the output at the collector Q falls to approximately zero volts, or logic level 0 .

DEMONSTRATING IT

A simple application of inversion can be demonstrated on the Logic Tutor. Normally a level I will cause the lamps to be illuminated. Let's say we want a level I to extinguish a bulb; the first thing that has to be done is convert the I level to a 0 . We have no simple transistor stages available to us on the tutor but we can simulate inversion by using one of the 2 -input NAND gates. All you have to do is short both inputs together (next month's description of the NAND gate will make the reason for this clearer).

Connect the shorted inputs to one of the toggle switch outputs and also connect this node to one of the indicator lamps: also connect the output of the NAND to another lamp (Fig. 2.2). Set the switch to I and LPI will indicate level I at the input but LP2 will be extinguished indicating 0 . Apply a 0 on the input and you will see a 1 appear at the output.
The symbol for invert is shown in Fig. 2.3 and we say that the output Q is \bar{A} (said NOT A). The truth table is very straightforward-whatever A is, Q is the opposite.
Invert is often used in logic systems but its occurence is sometimes disguised by the fact that it is mainly used in conjunction with AND gates to give us the NOT AND or NAND function that will be explained fully in the next issue.

by M. Hughes

In Part I last month the figures given should be transposed.

Fig. 2.1. A grounded emitter stage acts as a logic inverter

Fig. 2.2. The NAND gate with logic inputs shorted demonstrates the invert function

Fig. 2.3. The symbol and truth table for the invert function

Electronic Music Production

Alan Douglas

The author describes the tremendous potential of electronic music which is free from the limitations of conventional instruments and notation. The three principal methods of synthesizing music electronically are discussed, with examples of the latest available equipment. Excerpts from the writings of the world's leading researchers and other previously unpublished material are also included. This practical guide will be welcomed by all working in this field.
£2 • 75 net

Pitman Publishing

Would you spend an hour a day

to earn more money

in Eleatronios-Telavision-Radio?

If you're willing to give up one hour or more a day we can help you get into the lucrative growth industries of electronics, television, radio.

And if you're already in, we can help you get on!

With our know-how and wide experience in teaching, plus your determination to study, we can turn your interest into the technical knowledge you need for success. Once you've got the qualifications you need, you'll be in a good position to take full advantage of the opportunities which exist today in all fields of electronics-In television (colour and black/white) and in sadio. (We teach you the theory and practice of valve and transistor portable circuits while you build your own 5 valve receiver, transistor portable and high grade test instruments.)

With ICS you study at home-at your own pace, when you choose, in the time you've got available. Your ICS tutors will give you all the help and encouragement you need to pass any exams you want to take.

Don't waste another day. Take your flrst step now towards a better paid, more assured future. Send for your FREE Careers Guide today.

PRACTICAL ELECTRONICS "SCORPIO" ELECTRONIC IGNITION SYSTEM

[^4]PSYCHODELIC LIGHTING UNIT Mk. 3

This unit represents a natural progression from our phenomenally successful Mk. I and 2 Units. As before the drive voltage is derived or across the speakers. The unit converts the audio frequency signals into a three-coloured light display: the colour depending on the frequency of the signal and the intensity on the loudness of the audio source
The unit is constructed on profes sional fibre-glass printed-circui board material and uses latest full
wave triac circuitry. There is master-tevel control, together with independent sensitivity concrols for each channel. The original minimum ambient light level controls have been redesigned permitting their use as faders; allowing dimming from max. to zero at the turn of a knob. R.F.l. suppression is now incorporated as standard as well as provision fre
controls. The chaice of two inputs enables operation from both high and low power amplifiers. Max power 1.5 kW per channel at 240 V a.c.
Complete assembly built and rested Size 9 in $\times 7$ in $\times 3 i n$. Price E25 carr. paid.
Please note all the above PRICES ARE SUBJECT TO V.A.T.

DABAR ELECTRONIC PRODUCTS
98a Lichfield Street, Walsall, Staifs. WSI IUZ
TEEEPHOWE: WALSALL 34365 TELECRAMS: DABELEC Walsall Stete.

P.E. SOUWD SYTIUESSER

SIMPLY SEND EXACT DETAILS OF NAME AND NUMBER COPIED FROM THE FACE OF YOUR ACCESS CARD AND LEAVE THE REST TO US.

Get away to a flying start with this exciting Space Age project. Precision cut metal parts to form modular units as described in the March issue are available NOW
A. Power supply subframe with tab drillings only $£ 1.35$ (P. \& P. 25p).
B. Circuit board support plates fully drilled, 94p.

Panels drilled with locating holes only: C. $20 \mathrm{~mm}, 18 \mathrm{p}$: D. 38 mm , 21p; E. $60.5 \mathrm{~mm}, 28 \mathrm{p}$; F. 64 mm , 31p; G. Module locking rods complete, $\mathbf{£ 1 . 2 0}$ ea. SAVE MONEY by obtaining a complete kit of hardware which comprises I off each A, C, D. F, 5 off E, and 7 off B, G £ 17.42 , Post Free. REGULATED POWER SUPPLY fully assembled and GUARANTEED by 'SCOPE' Designs \& Mfg. Ltd. Voltage rails adjustable from 8-I7V. Nom. $15-0-15 \mathrm{~V}$ at 500 mA per rail. Stab. ratio 250 : 1 ; Ripple and Noise $500 \mu \mathrm{~V}$ at full load. Load regulation $<1 \%$ zero to full load, line regulation $<\frac{1}{2} \%$ for 10% change in mains voltage. Size $4 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in} \times 7$ in fits easily into power supply subframe. Terrific value at $£ 19.50$ Post Free. (Include 15p for insurance if required.)
High Quality components for individual modules from date of publication. Send $4 p$ stamp for lists.

ERTR PTIPP.O. Box No. 3, ST. NEOTS HUNTINGDON PEI9 31B

TERMS: MAIL ORDER ONLY. C.W.O. Cheques or crossed P.O. payable to Eaton Audio. Minimum order $£ 2$

Where P. \& P. charges are not shown please add 10 p in the $f 1$ to orders under $£ 5$. Orders over $£ 5$ will be sent free of P \& \& . All prices subject to V.A.T. increases from Ist April.

FAMINE AHEAD?

It seems to be a flaw in our human character, perhaps even an immutable law, that we are unable to govern our affairs smoothly and sensibly. Atter the glut comes the famine-at least in professional components. Delivery times are lengthening all the while and prices are hardening and this trend is noticeable throughout Europe and the United States. The trend is that much more irritating because it is in such contrast to even a few months ago.

The Paris Components Show, still the world's biggest and best, showed a buoyancy in April unmatched since the boom vear of 1969. And the London show which opens on May 21 will, according to pre-show gossip, be a much happier business event than the last, two years ago.

Some reports give lead times for deliveries of up to six months for capacitors, five months for potentiometers, up to four months for transistors.

Much of the trouble in Europe stems from the big upsurge in colour TV demand which has created an almost unprecedented call on components. And component manufacturers who burnt their commercial fingers bv overexpanding production facilities and then had to cut back with heavy losses are quite naturally cautious about expanding again to meet what might only be a temporary boom period.

Component distributors in Britain who belong to the Association of Franchised Distributors of Elec. tronic Components and therefore subscribe to an ethical standard in
their businesses, are almost as embarrassed by the present upsurge in business as when it was bad. The more sensitive of them are tormenting themselves on the ethics of switch selling (i.e. the supply of an equivalent component from a different manufacturer from that actually ordered) and suchlike niceties. Another of their problems is the so-called wheelerdealer who scours the world for job lots and then unloads them on a component-hungry market. The maxim is let the buyer beware and to trade only with reputable suppliers.

UNION CARBIDE EXPANSION

The solid tantalum capacitor was a hard-to-make sophisticated com. ponent which sold almost exclusively to the exotic space and defence market where price is secondary to performance and retiability. I was somewhat surprised, therefore, to discover on a visit to the Union Carbide plant at Aycliffe, Co. Durham, that the big expansion just completed is largely the consequence of tantalums having penetrated the consumer electronics market. Here is another company that has benefited from colour TV.

They have spent $£ 250,000$ beefing up production with new machinery and processes, much of it developed at the US production base at Greenville, South Carolina. The Aycliffe plant now turns out 2.5 million capacitors a month, a threefold expansion over one year ago. Marketing manager, Andy Thomson, was in jubilant mood explaining that the big takeoff was in low-cost dipped resin types which had opened up an entirely new and still expanding market.

The Aycliffe, plant opened in 1952 with 17 employees and now has 230. Watch out for further developments. In the pipeline is a new range of monolithic ceramic capacitors which is forecast to make an important contribution to Union Carbide's European operations. Ceramic and tantalum chips will be included to meet the demands of the fast-growing hybrid market.

Jogging along in the background is a little-publicised activity-the manufacture of barium getters for TV tubes and radio valves which Aycliffe workers can turn out at the rate of 120 miflion a year, phew!

STILL DROPPING

The huge mark-ups of some manufacturers of pocket calculators are slowly being eroded as more types come on the market,
competition increases, production problems are ironed out and the cost of expensive tooling is amortised. This is one area where prices are not hardening.

Nearly 40 models are currently on sale in London shops, most of them carrying big discounts from the "recommended" price. One British manufacturer has chopped his "recommended" price by $£ 20$, and it is generally aqreed that the simpler types will ultimately become available for a little over £20.

Shrewd buyers are holding off waiting until the market bottoms and some even shrewder people have been working on how to solve complex calculations on the simpler machines which are basically only four functions, add, subtract, multiply and divide.

Square roots, cube roots and other calculations are possible by using a number of discrete stages according to extensive correspondence in the US journal "Electronics" which has printed a number of ingenious methods of expanding calculator capability without paying for it.

POCKET BREATH ANALYSER

The annual Physics Exhibition in London is not normally the best place to look for good commercial ideas. But one item I spotted this year has good commercial prospects if the price is right.

It is a pocket breath alcohol meter which uses a fuel cell developed at the University of Wales Institute of Science and Technology, Cardiff. Breathing into the cell develops a potential which is amplified and displayed on a voltmeter. Accuracy is claimed to be within 5 per cent and sensitivity is such that 0.005 mg of alcohol per litre of air can be detected. Size is a modest $6 \times 10 \times 2 \mathrm{~cm}$ and weight is only 60 g -a truly pocket sized instrument.

I also noted that Standard Communications Laboratories are gamely pressing on with optical waveguide communications. A liquid core fibre using tetrachlorethylene as the transmission medium is said to have sufficiently low attenuation for practical use and another solution is to use a single glass fibre waveguide instead of the conventional fibre optic bundle.

The single fibre, say STL engineers, is better from all points of view from production which can be carefully monitored during extrusion through to more robust connection to the laser source and detection unit.

Wide Range

PULSER

By M.J.Trand

ACOMPACT and lightweight source of fast pulses is frequently required for testing. Integrated circuits can meet this need and the pulse generator described here uses only TTL i.c.s as active devices with the addition of a few extra resistors and capacitors. The unit may be powered by a standard mains supply, but a battery operated version can easily be adopted without any modifications to the circuitry.

INTEGRATED CIRCUITS

As mentioned, two 74 series i.c. chips produce the rectangular shaped pulses. Type SN7404, which is a sextuple single-input inverter, uses three of its inverters as part of the oscillator section. The second circuit block. type SN74121, is a monostable multivibrator connected to provide pulses of variable widths. These two integrated circuits can be obtained for well under fl from many electronic components distributors.

It should be mentioned at this stage that although several firms market i.c.s of the 74 series. similar
devices such as the Mullard FJH241 and FJK101 will do equally well.

CIRCUIT

The block circuit diagram of the pulse generator is shown in Fig. 1. On switching on, the output of inverter A tends to go up to a logical 1 while the output of inverter \mathbf{B} is pulled down to a logical 0 , charging the capacitor Cl . The speed of this action will be governed by the time constant $C_{1} R_{1}$ in the circuit. The output of inverter C will then gradually go to a 1 and also transmit the transient to the input of inverter A, whose output in turn follows to a 0 , and so on, thus producing an oscillatory action. The fourth inverter D in the line acts simply as a buffer stage.

The pulses are next fed to a monostable block which will vary their duration according to the value of the external time constant applied by C2 and R2.

At the last stage pulses from the monostable complementary outputs are passed on to the remaining two inverters E and F, providing simultaneous positive and negative going pulses.

Fig. 1. Block schematic of the pulse generator with the i.c. SN7404 split for ease of illustration

WIDE RANGE PULSE GENERATOR Noz0/6

Fig. 2. Circuit diagram of the comoonents external to the integrated circuits. VR1 is, in the final model, a $2 \cdot 2 \mathrm{k}$! linear potentiometer with an $8 \cdot 2 \mathrm{k}$! resistor connected from wiper to the end proximate R1

Fig. 3. Physical wiring diagram for board and mounted components

Components

GENERATOR
```Resistors RT \(68 \Omega\left(\frac{1}{4} W\right)\) Potentiometers VR1 \(2 k \Omega\) Lin VR2 20kS: Lin Cap \(=\) citors C1 \(0.001 \mu \mathrm{~F}\) C2 \(0.01 \mu \mathrm{~F}\) C3 \(0.1 \mu \mathrm{~F}\) C4 \(1.0 \mu \mathrm{~F}\) C5 \(10 \mu \mathrm{~F}\) C6 \(100 \mu \mathrm{~F}\) C7 47pF C8 470pF C9 4700pF \\ Swit=hes \\ S1 Rotary, single pole, 6-way \\ S2 Rotary, single pole, 3-way \\ Integrated circuits \\ IC \({ }^{4}\) SN7404 \\ IC2 SN74121```   Miscellaneous   Die-cast box and suitable knoos



## Resiztors

R. $2270 \mathrm{k} \Omega$ ( tW )

F3 $2.2 k \Omega\left(\frac{1}{2} W\right)$

## Caparitors

C10 $500 \mu \mathrm{~F} .25 \mathrm{~V}$ elect.

## Diodes

D1-4 WO2 (Bridge)
D5 5.6V Zener
Transistors
TRi BFY50

## Transformer

T1 12V output mains transfarmer

## Miscellaneous

FS1 100 mA fuse and panel-mcunting holder
L?1 Neon indicatcr and panel-mounting holder


## CONSTRUCTION

A circuil diagram is shown in Fig. 2. and a wiring diagram in Fig. 3. In practice the two 14-pin ic. holders are soldered on a small piece of perforated p.c.b. as shown. keeping wiring lengths small. The value of poientiometer VRI should not exceed 2 kS , as this would attenuate the feedback signal and stop oscillations.

A series resistor R1 of about $80 \Omega 2$ increases the stability of the oscillator when VRI is at minimum. The value of capacitors Cl to C 6 can be chosen from $0 \cdot 101 \mu \mathrm{~F}$ to $10 \mu_{\mu} \mathrm{F}$ giving 3 frequency range from 1 Hz to above 1 MHz in six steps.
To fit in with the frequency range chosen, C7 10 C9 can have any reasonable value between 10 pF and $10,000 \mathrm{pF}$ giving pulse durations from $0 \cdot 1$ us 10 $10 \mu \mathrm{~s}$.

If longer pulse durations are needed at lower frequencies then larger values of capacitor can be added. When electrolytic capacitors are used connect the negative terminal to pin 11 of the monostable.

The switches SI and S2 are ordinary single-pole rotary type

## SETTING UP

Calibration of the pulse generator, particularly VR1 the repetition rate fine control and VR2 the pulse dulatior preset control, can easily be done with a reference source such as the time base of commercial oscilloscope. This should be sufficiently accurate to enable a fairly precise marking of the front panel

Pulses of 4 V amplitude with a rise time of 40 ns . and fall time of 20 ns into about $150 \Omega$ are obtained provided stray capacitance is kept at a minimum. If necessary pulses with smaller amplitudes can be obtained using a set of plug-in attenuators.

## POWER SUPFLY

A positive $5 V$ stabilised d.c. supply is required. The diagram of such a circuit is shown in Fig 4 The series transistor Zener diode (TR1-D5) arrangement provides sufficient stabilization against mains variations of $\pm 10$ per cent (nominal 230 V a.c.). The d.c. current requirement is about 30 mA .

If the instrument is to be battery operated it is recommended that the low power types of TTL be used (e.g. 74 L ) in conjunction with a rechargeable battery-nickel cadmium for instance.

The new EMI 1515 stereo amplifier and smaller EMI SQ1500 quadraphonic decoder shown here with two LE2 15 W loudspeakers forming a complete "add-on" package for converting an existing stereo system for SQ quadraphonic operation


The Saba 544 G stereo reel-to-reel unit illustrates the modern styling current in today's equipment

PProbably the main theme of this year's Sonex exhibition, Sonex 73. held at the Excelsior Hotel, London Airport, was quadraphonic or 4 -channel sound. Of course. much of the exhibition and the associated lectures was concerned with the more mundane things of life like the mechanics of disc reproduction, listening room acoustics, and so on.

But, as at any gathering of $\mathrm{Hi}-\mathrm{Fi}$ enthusiasts, and Sonex was certainly that, the tendency is to discuss the latest development available on the market. Currently quadraphonics falls into this category, with all the usual arguments as to benefits of different systems and methods.

Many of the exhibitors were prepared to comment on the validity of 4 -channel sound but only a few offered equipment and, of course, in the small hotel rooms used by the exhibitors it was impossible to demonstrate the effects available decently.

In fact, this is one of the problems with using a hotel for an event of the nature of Sonex 73. Unlike RECMF or IEA or, for that matter any show held in a large hall-type space, not only is it difficult for the visitor to scan the field in general for his particular interest but hotel corridors have a habit of all looking the same.
Thus there is a tendency to miss items of interest and to get "lost" or disoriented. The only solution being the heavy reliance on the hand book. And we all know how impossible it is for all the information to be present there.
Of course, the hotel environment does have advantages. As the sound-making equipment was housed in separate rooms it was possible for the exhibitor to give an almost private demonstration of his gear. The usual problem of interference from stand to stand was avoided.
Really Sonex is directed to the audiophile with the desire to purchase already-built equipment. with only a scattering of items such as Richard Allan speaker kits and Connoisseur turntable products for the more practically minded. However, it is always interesting to see how the professionals do things.

## LOUDSPEAKERS

It is an accepted fact that the loudspeaker is one of the weakest links in the chain of sound reproduction and many of the exhibits showed just how far one can go with money and good intentions to put the orchestra in the sitting room. Anything up to several hundred pounds per unit can be spent. However, there must be a rational level between TV sound standards and using the dining room as a sound box for the rest of the house.
An interesting demonstration of loudspeaker performance was given by Acos using the Martin range from America. At the low price end was the Micro Dan, a prototype baby unit which is expected to sell here for about $£ 30$ plus VAT per pair. The Mini Dan, already available here at $£ 56.28$ plus VAT per pair also gave a good performance for the price. But most impressive were a pair of Laboratory Mk. 2 units and although these sell at $£ 57.95$ each plus VAT the performance was perhaps more "musical" than anything else at the show.

Of course, these comments are governed by personal hearing to a degree but when it is remembered that the Laboratory Mk 2 units include three speakers and controls to set mid and high frequency balance, allowing "tuning" of the equipment to a room, a hearing test is in the"end, the only valid method left.

In fact it was commented by someone at the show that if you provided an audience with "flat" response speakers then most people would not appreciate the resulting sound at all.

Again on the subject of speakers, Richard Allan were displaying their well-known range of kits and assembled $\mathrm{Hi}-\mathrm{Fi}$ units. Whilst they have not added to the kit range they were demonstrating an interesting professional/monitor unit, still in the prototype stages, called the Academy. This is physically a large item and not at all of the kittable type. It is expected to appear on


The Phillips N2510 stereo cassette unit, to DIN 45500 standards, is intended for use with Chromium Dioxide tapes
the market some time in July when the price will be settled. At the moment it is envisaged that $£ 70$ to $£ 80$ will be about right.

## MADE OVERSEAS

Much of the equipment on show is made overseas. We have already mentioned American sourcing. From Norway comes the Tandberg line handled in the UK by Farnell-Tandberg Ltd. Included are a wide selection of tape and deck units, loudspeakers, separate amplifiers, tuner units and composites of various denominations. It is interesting to note the adoption by Tandberg, as almost everyone else, of a cassette deck which meets 45500 DIN requirements and includes a Dolby noise reduction system.

Japanese equipment was fairly in evidence and, as is to be expected, set a standard of appearance which some sources near home are having difficulty meeting. Again the emphasis was on 4 -channel sound with specially designed controllers for remote handling of the output of each channel and special headphones designed for quadraphonics.

Of course, the Japanese exhibits included many examples of casette units, some claiming performances equal if not superior to reel-to-reel equipments.

## SIDE SHOW

Perhaps one of the problems of an event of this type is the consistency of the exhibits. Whilst not quite an "If you've seen one you've seen them all" situation, there is certainly a tendency to feel this after a matter of hours looking at the exhibits.

Thus it was somewhat of a relief to vacate the Excelsior for a while and go to see a demonstration of quadraphonics put on by EMI at a separate hotel. Intended to launch two of their latest products for the $\mathrm{Hi}-\mathrm{Fi}$ market, the EM 1515 stereo amplifier and the SQ 1500 quadraphonic decoder, this side-show (as it were) took the cake as a demonstration of the abilities of quadraphonics to enhance the realism of reproduced sound.
In addition to announcing and displaying the amplifier and decoder, EMI showed a new small eliptical speaker unit which is expected to come on the market soon at about $£ 30$ /pair cased.

The amplifier is to sell at $£ 46.50$ including VAT and includes a claimed performance in excess of most equipments in this mid-price area. 15 watts per channel at 0.2 per cent distortion, and the ability to control power supply to ancillary equipment are some factors of interest.

The decoder is designed to give one the ability to handle the new $S Q$ 4-channel records in conjunction with four channels of amplification. The 1515 is suited to this and EMI are to offer a kit including the decoder and one amplifier to those already possessing a stereo

NEWS BRIEFS

## Advanced Motorway Communication System

A new data transmission system to control the roadside telephones on the M2 has been ordered by the Northern Ireland Ministry of Development. Designed and manufactured in Britain by AP Electronics of Chiswick. the system will be capable of replacing a 185 core cable with just two wires.

The heart of the system is a complex logic network constructed from Motorola MCMOS units. With the new system the operator will be able to dial any of the roadside telephones so that emergency situations can be handled before the less urgent breakdowns.

## Underwater Detection of Aircraft Wreckage

Trials to improve the techniques for the detection of aircraft wreckage by sonar have just been carried out in Torbay. Designed to test the limitations of sonar detection, the trials covered a four-week period and the results should help in developing more effective systems.

A unique feature of the trials is the use of magnetic tape for the recording of the raw data required later for numerical analysis. More sensitive magnetic tape allows easier measurement of signal strength and hence easier differentiation between different types of wreckage.

Apart from the underwater detection of aircraft wreckage the techniques under trial could also be useful in such areas as location of ship wrecks, tracking of oil pipes and the assessment of inshore sediment accumulation.

## Aircraft Tactical Simulator Takes Off

What is described as the world's most advanced simulator is now being "flown" by RAF crews after completion by the manufacturers, Marconi Space and Defence Systems. Built as the first of a number to be supplied to RAF Strike Command under a Ministry of Defence contract worth approximately $£ 5$ million, the simulator will reproduce for all 12 trainee crewmen, every operational facet of the world's most advanced anti-submarine aircraft, the Hawker-Siddeley Nimrod.

All operational equipment, including the radar, sonar, tactical navigation and weapon delivery systems. is fitted in a replica NImROD, to reproduce actual missions, even down to engine noise and low-level buffeting.

## PO Contracts for 120 Mbit/s Digital Line System

As a first step to developing a digital trunk network and preparing for new facilities, the Post Office has placed contracts with STC. GEC and Plessey to develop digital transmission systems enabling pulse code modulation (PCM) to be used on Britain's trunk network.

The decision to develop a digital system for the UK trunk network stems from the results of feasibility studies carried out for the Post Office by GEC and Plessey in 1970-71. These studies confirmed that it is technically possible to introduce a digital system using the standard $1.2 / 4.4 \mathrm{~mm}$ coaxial cable already in use for multichannel frequency division multiplex transmission.

Under development contracts STC, GEC and Plessey have been commissioned to design, develop, manufacture and install systems transmitting information at a rate of $120 \mathrm{Mbit} / \mathrm{s}$. Links between Guildford and Portsmouth, and Portsmouth and Southampton are to be set up. each system capable of transmitting up to 1.680 telephone conversations simultaneously.


# MAPLIN ELECTRONIC SUPPLIES 



This beautifully produced fullv illustrated catalogue is yours for the asking. Absolutely free, no obligation. Write now for your copy or phone 037-42 79033
Out of office hours please leave your name and address on our answering machine.
EVERYTHING GUARANTEED BRAND NEW MARKED BY THE MANUFACTURER


MAPLIN: Projected site of London's third airport

RESISTORS Carbon film $5 \%$ from ar to Mn, $10 \%$ from $12 \Omega$ to 10 Ma E12 series. IW Ip WW 12p.
Metal Oxide $2 \% 10 \Omega$
to IMR. E24 series
AW 4PiW
low tw 2fW sW
HoW types stocked
7 SEGMENT
DISPLAY
Minitron 3015 F

```
POTENTIOMETERS Miniature carbon rack with tin spindles. \(5 \mathrm{k} \Omega\). \(10 \mathrm{k} \Omega\) 25k 几, 50k \(\Omega\), 100k \(\Omega\) 250k \(\Omega\). Sook \(\Omega\). \(1 \mathrm{Mn} \Omega\) 2 Ma log or lin (and iks) lin). 12p. Log or switch 23p. 38p.
```


## P.E. SOUND SYNTHESISER

If this project seems expensive YOU HAVEN'T SEEN OUR PRICES
We shall be stocking all the parcs for this exciting project from the special I.C.'s right down to the nuts, bolts and spacers for mounting the Veroboards
Send S.A.E. NOW for our decailed price lists.
YOU SIMPLY MUST SEE OUR PRICES

## 741 C

8 pin DIL OP AMP PRICE REDUCED ON THESE TOP QUALITY I.C.S 36p.

McMURDO Socket. RSE, 52p Plug. RPB. 36 p . (As, used in P.E
Sound Synthesiser.)

SEMI-
CONDUCTORS We stock a large ange or transistors and I.C.s, for details please see our free catalogue. LOOK! These popular devices at amaxingly $910 p$ each. BCI69C 20. BFYSI 160. TIS43 (SS43) 28p. 2N706 10p. $2 N 2646$ 45p. 2 N3055 49p. 2 N 381924 p .

DIN PLUGS. 3 pin, 9p. 5 pin A ( $180^{\circ}$ ). 5 pin B ( 240 ). 10p each.
DIN SOCKETS. 3 pin, 5 pin A, 5 pin $B$. 7p each.

Din loudspeaker. 2 pin plug. 8 p . Sockec 6p.
JACK PLUGS standard tin plastic barrel, 13 p . Stereo. 25p.
Bright metai barrei, Bright metal barrel, 17p. Stereo, 29p.

ROTARY SWITCHES
Adiustable stop, 1 pole $2-12$ way, ${ }_{2}$ 2 pole 2 way Way. 3 pole $2-4$ way. 4 pole

SPECIAL IC, for organ builders. 7 stage frequency divider in one 14 pin for pack of 12, 625 or special price for pack of 12, $\mathbf{E 2 5}$.
Why not ask us to slip a dato sheet in with your catalogue.

## NUDES!

Clothe those naked projects with our superb instrumenc cases. We are sole Centurion
range. designed for the professiona market, now available to you at special low prices. S.A.E. please for

HARDWARE Wide range of nuts and bolts, plated brass and nylon types plus solder tags shakeproof washers, ete. SOLDER
core, 20p.
Insulating sleeving 3 sizes, 6 colours.

Miscellaneous
-T700 Eagle sub-miniature O/P transformer $1200 / 5 \Omega 200 \mathrm{~mW}$ max., 35p. Slide switch DPDT, 12p.
silicon grease in special dispenser. 20 ml , 38p.

SEE OUR CATALOGUE for details of how you can obtain $f 1$ worth of com-
ponents ponents.

ABSOLUTELY FREE
V.A.T. Please add $10 \%$ V.A.T. to final cotal.

Orders and enquiries for catalogues to
MAPLIN ELECTRONIC SUPPLIES P.O. Box 3, Rayleigh, Essex SS6 BLR

## We've written this book on kits

You can get a copy free
Below are just a few of the large selection of kits fully illustrated in the NEW HEATHKIT CATALOGUE - kits for every interest, every budget, stereo hi-fi systems and accessories, intercoms, transistor radios, tool kits, electronic calculators, automotive ignition analysers and checkers, electronic testing and measuring equipment, amateur and short-wave radio gear, metal locators - even a powerful battery charger.


Please send me the FREE Heathkit catalogue
Name -
Address
HEATH
:---
Heath (Gloucester) Limited
Bristol Road, Gloucester GL2 6EE



A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

## VARIABLE STABILISER FOR POWER SUPPLIES

Tне need often arises for a stabilised power supply having an output which is continuously variable between two predetermined limits.

Considering the circuit in Fig. 1 and for the moment ignoring the inclusion of VRI and VR2, it can been seen that we have a conventional stabiliser consisting of a voltage reference source, a differential amplifier TR1 and TR2, a power output stage TR3 and TR4 and a negative feedback loop provided by R5 and R6 in conjunction with the setting of VR2.

The ideal conditions for stability are as follows. The current through R3 should be equally divided between TR1 and TR2, thus implying that the base potential of TR2 should be the same as that of TR1. namely $V_{1 . . f}$. From this we can deduce that

$$
\begin{aligned}
& V_{\mathrm{rcf}}=V_{0} \frac{R_{5}}{R_{5}+R_{6}} \\
& V_{0}=V_{\mathrm{ref}} \frac{R_{5}+R_{6}}{R_{5}}
\end{aligned}
$$

From the last equation it can be seen that there are two alternative methods of varying $V_{n}$; both are shown in Fig. 1. Firstly we can vary the ratio of $R_{\text {, }}$ to $R_{r}$ by means of VR2. This suffers from the disadvantage that as $V_{0}$ changes so does the loop gain, invariably to the detriment of circuit performance.

The second alternative is to vary the value of $V_{1+1}$ by means of VR1. However. examination of the circuit discloses yet another disadvantage. For low values of $V_{\text {ref }}$ the current through TRI is relatively low but there must be a large voltage drop across R4 thus implying a high current through TR2. The converse applies for high values of $V_{r+f}$ and it should not be difficult to see that there is only one setting of VRI that fulfills the fundamental condition for stability.

If, however, we replace R4 with another transistor stage TR5 (Fig. 2), which receives its base bias via the collector load resistor R8 of TRI (Fig. 2) then this problem is resolved. If for all settings of VR1, the voltage across R 8 is large compared with the emitter-base voltage of TR5 and the value of R8
is roughly the same as $R 4$, then the current flowing through these two resistors will be substantially the same.

This circuit has the inherent advantage that TR2 has for its load the intrinsic collector resistance of another transistor which, having an extremely high incremental resistance, increases the loop gain to a value of several hundreds.
Since, at high frequency the base emitter junction of a transistor can be regarded as an RC network there will be a frequency at which this circuit will oscillate. although the frequency of oscillation is difficult to predict, depending largely on component layout and the types of transistors used. Instability can be prevented by making the output the dominant time constant by means of a capacitor the minimum value of which in the prototype was found to be around $100^{\mu \mathrm{F}}$.

This circuit has an output which is continuously variable from 6 V to 18 V at currents up to 1 amp with the output transistor suitably mounted on an adequate heat sink.
J. Davies, London W. 14.


Fig. 1. Circuit for a conventional stabiliser


Fig. 2. Final circuit for a variable stabiliser for power supplies

|
BUILT the lamp strobe (Ingenuity Unlimited, April 1972) but found the multivibrator in my circuit was unstable and tended to lock at mains $(50 \mathrm{~Hz})$ frequency. This was overcome by decoupling the supply and adding two more diodes to the bridge rectifier allowed pulsating d.c. to reach the gating transistor and hence trigger the thyristor. See Fig. 1.

The speed control circuit was also modified and now gives a range of about $2-12 \mathrm{~Hz}$, with $10 \mu \mathrm{~F}$ timing capacitors, which gives a good strobe effect when using several low power lamps in parallel. Coloured

15W "pigmy" bulbs are very suitable for this application, giving a fair amount of light when mounted in simple reflectors.

A "one-shot" facility was added by switching out the multivibrator and arranging for a microswitch S2 to discharge a capacitor through the gate giving one bright light pulse from the lamp for every press of the micro-switch.

Transformer T2 is a $1: 1$ isolating transformer consisting of about 20 turns of $36 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire wound on a ferrite core twice, preferably overlapping.
H. N. Jarman, Tunbridge Wells.


Fig. 1. Lamp strobe circuit diagram

## TIMING CIRCUIT

THE main requirements of the timing circuit in Fig. I were that it should be cheap to build and run, while retaining reasonable accuracy.

In circuits of this kind it is usual to see a field effect transistor in the place of TR1, the main objection to a bipolar transistor being the low input resistance. In this circuit a bipolar transistor has been used for economy, the input resistance being increased by R2. Although this does not offer an input resistance comparable with that of a field effect transistor, the timing is accurate enough for many applications. The value of R2 should be found by experiment, but should not lie below $2 \mathrm{M} \Omega$.

When SI is pressed TR1 will conduct, driving TR2 into saturation. This energises the relay which disconnects R1 and connects the emitter of TR2 to the power supply. Cl charges up through VR1 at a rate depending on its setting. When C1 has charged up enough, TR2 will no longer be able to hold the relay on, and the circuit will reset itself, Cl being discharged via R1.

The components specified will give a maximum timing period of a few minutes. If longer periods are required, the value of C 1 can be increased.

The maximum current consumed by the prototype is about 25 mA just after switching on, this value decreasing as the timing cycle progresses. The current consumed depends mainly on the relay chosen, one with a large coil resistance being most suitable.

The choice of power supply is left up to the constructor; the circuit can be run ecnomically from a small 9 V battery if desired.
P. Chappell,

Weston-Super-Mare


Fig. 1. Simple timing circuit

## MAIL ORDERS: Some items have a postage and handling charge shown against them. Where p. \& p. is not shown the eharge is 13p for any selection When both clarses of goods are ordered the charie is 13p plus any p. $\boldsymbol{A} \mathrm{p}$. charges shown. (Overseas extra). Tclephone 01-692 4a12. <br> GARLAND BROS. LTD deptrond sronoway, londow, ses san



MINIATURE SPEAKERS

$2 \operatorname{tin} 8 \Omega$
$2 \operatorname{tin} 8 \Omega$
$2 \operatorname{tin} 80 \Omega$
All at 68p each
GROOV-KLEEN


## STEREO HEADPHONES

 Eagle SE5. $8 \Omega$ $40-16,000 \mathrm{~Hz}$ Complete with cableand stereo jack plug and stereo jack plug
63.43 Plus 24 p p. 8 p

## PLINTH

to suit Garrard 2025, 5P25 etc. Teak finish, complete attractive appearance 63.95 plus 55p p. \& p.


EA 1000 BARGAIN!

This popular 3W AMPLIFIER complete with comprehensive data book showing circuits for mono, stereo, tone controls power supply, ete. Ourprice
only 22.35 plus 13 pp. \& p

## DYNAMIC MICROPHONE

 UD130HL
uni-directional and is complete with plug $100-12000 \mathrm{~Hz}$ 隹 $600 \Omega$ and $50 \mathrm{k} \Omega$.

## MICROPHONE HOLDER

with swivel (as supplied with the mic.
above). Fits most tubular mics. and MICROPHONE
FLOOR STAND

## MINIATURE ELECTROLYTICS

1-0ıF	63 V	7p	$150 \mu \mathrm{~F}$	25 V	8 p
$1.5 \mu \mathrm{~F}$	63 V	7p	$150 \mu \mathrm{~F}$	40 V	13p
$2 \cdot 2 \mu \mathrm{~F}$	63 V	7p	$150 \mu \mathrm{~F}$	$63 V$	15p
$3 \cdot 3 \mu \mathrm{~F}$	63 V	7p	$220 \mu \mathrm{~F}$	4 V	7p
4.7 ${ }_{\mu} \mathrm{F}$	63 V	7p	$220 \mu \mathrm{~F}$	10 V	7p
$6.8 \mu \mathrm{~F}$	40 V	7p	$220 \mu \mathrm{~F}$	16 V	8p
$6 \cdot 8 \mu \mathrm{~F}$	63 V	7p	$220 \mu \mathrm{~F}$	25 V	$13 p$
$10 \mathrm{\mu F}$	25 V	7p	$220 \mu \mathrm{~F}$	40V	15p
$10 \mu \mathrm{~F}$	$63 V$	7p	$220 \mu \mathrm{~F}$	63 V	22p
$15 \mu \mathrm{~F}$	16 V	7p	$330 \mu \mathrm{~F}$	4 V	7p
15, 15	40 V	7p	$330 \mu \mathrm{~F}$	10 V	8p
$15 \mu \mathrm{~F}$	63 V	7p	$330 \mu \mathrm{~F}$	16 V	13 p
$22 \mu \mathrm{~F}$	10V	7p	$330 \mu \mathrm{~F}$	63 V	16p
$22 \mu \mathrm{~F}$	25 V	7 p	$470 \mu \mathrm{~F}$	6.3 V	8p
$22 \mu \mathrm{~F}$	63 V	7p	$470 \mu \mathrm{~F}$	10 V	${ }^{13} \mathrm{P}$
$33 \mu \mathrm{~F}$	$6 \cdot 3 \mathrm{~V}$	7 p	$470 \mu \mathrm{~F}$	25 V	15p
$33 \mu \mathrm{~F}$	16 V	7p	$470 \mu \mathrm{~F}$	40 V	22p
$33 \mu \mathrm{~F}$	40 V	7 p	$680 \mu \mathrm{~F}$	6.3 V	$13 p$
$47 \mu \mathrm{~F}$	4 V	7p	$680 \mu \mathrm{~F}$	16 V	15p
$47 \mu \mathrm{~F}$	10 V	7p	$680 \mu \mathrm{~F}$	25 V	22p
$47 \mu \mathrm{~F}$	25V	7p	$680 \mu \mathrm{~F}$	40V	26p
47aF	40 V	7 p	$1000 \mu \mathrm{~F}$	4 V	13p
$47 \mu \mathrm{~F}$	63V	8p	$1000 \mu \mathrm{~F}$	10 V	$15 p$
$68 \mu \mathrm{~F}$	$6.3 V$	7p	$1000 \mu \mathrm{~F}$	16 V	22p
$68 \mu \mathrm{~F}$	16 V	7 p	$1000 \mu \mathrm{~F}$	25 V	26p
$68 \mu \mathrm{~F}$	63V	13p	$1500 \mu \mathrm{~F}$	$6.3 V$	15p
$100 \mu \mathrm{~F}$	4 V	7p	$1500 \mu \mathrm{~F}$	10 V	22p
$100 \mu \mathrm{~F}$	10V	7p	$1500 \mu \mathrm{~F}$	16 V	26p
$100 \mu \mathrm{~F}$	25 V	7p	$2200 \mu \mathrm{~F}$	$6.3 V$	22p
$100 \mu \mathrm{~F}$	40 V	${ }_{8 p}^{8 p}$	$2200 \mu \mathrm{~F}$	10 V 6.3 V	26p
$100 \mu \mathrm{~F}$	63 V	15p	$3300 \mathrm{\mu F}$	$6.3 V$	26p
$150 \mu \mathrm{~F}$	6.3 V	7p	$4700 \mu \mathrm{~F}$	4 V	26p

Single for mics, audio leads, etc. $5 \frac{1}{2} p$ yd
Twin, as above, common screen 10 p yd Twin, as above, common screen lop yd Four core with common screen 23p yd. Four core, individually screened 30 p yd Coiled screened leads, 20 feet long Eli.05 each.

## PLUGS

Caraerial
D.I.N. 2 pin (speaker)
D.I.N. 3 pin
D.i.N. 4 pin $180^{\circ}$
D.I.N. 5 pin, $240^{\circ}$
lack, $2 \ddagger \mathrm{~mm}$ unscreened
ack, 2 fmm screened lack, $3 \frac{1}{2} \mathrm{~mm}$ unscreened ack, $3 \frac{1}{2} \mathrm{~mm}$ screened ack, tin unscreened ack, tin screened ack, stereo, unscreened ack, stereo, screened Phono, plastic top Wander red or black Banana 4 mm , red or bla

## LINE SOCKETS

 Car'aerialD.I.N. 2 pin (speaker) D.I.N. 3 pin
D.IN 5 pin, $180^{\circ}$
D.IN. 5 pin, $240^{\circ}$

Jack, $3 \frac{1}{2} \mathrm{~mm}$
Jack, stereo, screened

J-BEAM FM4S AERIAL
4 element, all
channel aerial
for stereo radio. $\quad \$ 6 \cdot 10$ plus 50p p. \& p.


## BATTERY HOLDERS

for $4 \times \mathrm{HP7}$.
Long or short-22p
Press studs, ready
wired PP3 size-
lop; PP9 size-13p.

## CONSOLE CASES

in plain aluminium, ideal for mixers,


b $\underbrace{|d|}_{1} \bar{C}$
PLASTIC BOXES
for constructional
projects. Whit.
with lid and screws.
BPI 4tins $x$ 3ins $\times$
Itins $37 p$.
BP2 6 ins $\times$ ins $\times$
2tins- $37 p$.

## EQUIPMENT CASES

## 

 $\begin{array}{lllll}\text { Type } & \text { H. } & \text { W. } & \text { D. } & \text { Price } \\ \text { P. \& }\end{array}$ALUMINIUM BOXES

with lids and	screw	D.	Price p, 息p.
GB7* 5tin	2tin	1 tin	42p 16p
GB8* 4 in	4 in	1 l in	42p 16p
GB9* 4 in	2tin	1 tin	42p 14p
GB10* 5 tin	4 in	$1 \frac{1}{3}$ in	49p 19p
GBil 4 in	2tin	2 in	42p 14p
GB12 3in	2 in	lin	36p 15p
GBi3 6 in	4 in	2 in	57p 20p
GB14 7in	5 Sin	$2 \frac{1}{2}$ in	69p $21 p$
GBI5 8in	6 in	3 in	89p 29p
GBI6 10in	7 in	3 in	41.00 29p
			These sizes fit standard veroboards


VEROBOARD				
	0.1	0.15		
Sixe	Matrix	Matrix		
$2 \mathrm{tin} \times 3$ in	25 ${ }^{2}$ p			
	$18 \frac{1}{2} \mathrm{p}$	28.		
3 in $\times 5$ in	32p	${ }^{35} \mathrm{p}$		
17in $\times 2$ tin	87p	66p		
Pins, either size, pack of 36-11p				
Edge connectors:	36 way. $0 \cdot 1-48, y^{\text {P }}$ (16 way $0.15-25 p$			
24 way, 0.15-37 ${ }^{\text {2 }}$ p				
BONDED ACRYLIC FIBRE   B.A.F. wadding, 18 in wide, lin thick. The ideal lining for speaker enclosures. 33p per yard.				
CONTROLS				
Lag. or Lin.				
Single, less switch, 15pSingle, D.P. switch, 26p				
Tandem, less switch, 44 p , $10 \mathrm{k} \Omega .250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega$.				
N				
suitable for transistor radios and similar light eurrent equipment. Input 240 V . A.C.				
eurrent equipment. C.;PP9-9V D.C.				
Price il 65 plus 15p	\& $p$.			

## CASSETTE OWNERS!

For Philips and similar cassette recorders.
PU12 power unit for connection to $12 \mathrm{~V}+$ or - E cars, giving $7 \frac{1}{2} V$ stabilised output- $63 \cdot 55+16$ p p. \&
PP75 mains power 62.15 + 16p P. \& P. Both units

## CASSETTE MICROPHONE

 Low impedance dynamic with remote control switch. Fitted $2 \frac{1}{2} \mathrm{~mm}$ and $3 \frac{1}{2} \mathrm{~mm}$, plugs. $\mathbf{2 2} 20$ plus 15p P. \& p.
## ELECTROLYTICS



# TRANNIES 

DOCKYARD, STATION ROAD, OLD HARLOW, ESSEX Phone Harlow 37739

P/P 10p. Price list S.A.E. (Saturday callers welcome) all PRICES INCLUDE VAT

This 4 digit 24 hour clock is available to readers at this special price for I month only. Parts would normally cost over 625 . Kit of parts includes twelve IC's, indicators, and a smart white plastic case.

74 Series TTL

	1	25		1	25		1	25		1	25
8N 3.400	16p	15p	SN7403	55p	50p	SN7450	18p	15p	SN7489	$6 \cdot 05$	85p
$8 \mathrm{NF401}$	16 p	15p	8N7425	55 p	50 p	8N7451	16 p	15 p	8N7490	74 p	72p
8 S 7402	16 p	15p	8N7427	49p	48p	8N 7453	18 p	15p	$5 N \% 491$	1. 10 p	1-04p
8 N 7403	16 p	15p	SNi428	770	72 p	$8 \mathrm{~N} \mathbf{4} 454$	18 p	15 p	SN74192	74p	72p
8N7404	18 p	$15 p$	8N7430	16p	15p	8N: 460	18 p	15 p	8N7403	74 p	72 p
8NT405	16 p	15p	8NT 432	49p	48 p	8NT470	33 p	29p	8 NT 494	$85 p$	72 p
SN7406	38p	35 p	8NT4333	94 p	82 p	SN7472	33p	29p	3N7495	85 p	72p
SNi407	38p	35p	SN7437	72 p	60 p	8N3473	$41 p$	39p	8N-496	95 p	92 p
8N7408	20 p	18p	$\mathrm{SNT}^{+} 438$	72 p	68p	8N747:	41 p	$38 p$	8N74100	$1 \cdot 80 \mathrm{p}$	$1.75 p$
8N7409	20p	18p	6N7440	16p	15p	SN7475	50 p	47 p	SN:74104	1.09 p	1.06 p
9NT410	17p	15p	SNT441	74p	70p	SN7476	44D	43p	SNT4105	1.09 p	$1 \cdot 06 \mathrm{p}$
AN7411	27p	25p	SNT442	74p	$70 p$	$8 N 7480$	73p	70 p	8N74107	44p	42p
SNTH12	38 p	35p	$8 \times 7443$	$1 \cdot 48 \mathrm{p}$	$1 \cdot 370$	SN74R1	$1 \cdot 32 \mathrm{p}$		SN7410	$81 p$	58p
8Nitl3	32p	29 p	$85 \times 744$	1.43 p	1.370	EN748:	97p	95D	SN74!11	$1 \cdot 37 \mathrm{p}$	1.27p
SN7+16	47p	43p	SN7445	2.00p	1-92p	SN7403	1.20 p		SN7418	$1 \cdot 10 \mathrm{p}$	
$\mathrm{gNT}^{\text {did }}$	47p	43p	SN7446	1.07 p	1-02p	SN7484	1.10 p	1.05p	-857419	$1.47 p$	1.37 p
SN7420	16p	15p	$8 \mathrm{~N}_{7} 447$	1.10 p	1-03p	SN7485	3-96p	$3 \cdot 85 p$	SNT4121		41p
SNT422	55 p	50 p	8N7448	1.10 p	1.03p	$8 \mathrm{~N}^{7} 48 \mathrm{t}$	36p	35p	$\mathrm{ANT}+12 \mathrm{y}$	1.54 p	1.43 p

Linear Integrated Circuits

\(\begin{array}{ll}301 \& \mathrm{DIL}<br>301 \& \mathrm{TO} 9 \mathrm{~S}\end{array}\)<br>301 301 3014<br>TO99<br>PIN DIL<br>T099<br>8 PIN MIL<br>TO99<br>8 PIN DIL<br>T099<br>A To99<br>\(\begin{array}{ll}09e \& D1L<br>09 \mathrm{c} \& TO99\end{array}\)



## Electrolytic Capacitors



## Transistors

$A C$
$A D$
$A P$
$A F$
$A F$
$A P$
$A F^{2}$
$A P$
$A B$
$A F$
$A D$

C127	16 p	BG38	36p	13260	29 p	OC44	14 p										
										$13 p$	BCl42	33p	BF329	18 p	OC45	14 p	Rectifiers
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllll}C 128 & 13 p & \text { BCl44 } & 30 \mathrm{p} & \text { BF390 } & \mathbf{3 7 p} & \text { OC70 }\end{array}$								

























 SY:6 31p IBD 123 68p NKT613G $\quad 2 N 3663$ 57p










 \begin{tabular}{ll|llll|ll|l}
$\mathrm{BC134}$ \& 16p \& BF194 \& 15p \& OC35 \& 38 p \& 2 N 3819 \& 28p \& OA9 <br>
\hline 10361 \& 50 p \& OA91

 

Cl 35 \& 16 p \& 13 F 195 \& 17 p \& OC3 \& 38 p \& 38 p \& 40362 \& 50 p \& 0.495 \& 8 p
\end{tabular}

AUTO-ELECTRIC CAR AERIAL
with dashboard control awitch-fully extendable to 40 in or fully retractable. Suitable for 12 V pasitive or with fitting inatructions and ready wired dashboard switch. 88.35 plus 25 p post and insurance.

RECORD PLAYBACK. HEADS Individual prices of these are- 2 track record playback heads 50 p each. 4 track record playable separately - 2 track 17p, 4 track 28p.
I R.P.H. MOTOR
Made by the farnous Smith Compang. 240 V 50 cycle mains working. Ideai motor to drive clock mechanigma. Price 81.10 each or 10 for 2.90.

MULTISPEED MOTOR Six apeeds are available: 500 ,
850 and $1.100 \mathrm{r} . \mathrm{p} . \mathrm{m}$, and 8,000 , 12,000 and $15,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Shaft is $\frac{1}{8}$ in dlameter and approx. lin long. $230 / 240 \mathrm{~V}$. Its speed may be further controlled with the use of our Thyristor controller. Very powerful and useful motor, Price 97p plus 23p post and insurance.

## MAINS OPERATED CONTACTOR

 $220 / 240 \mathrm{~V} 50$ cycle solenoid with laminated core so very clrcuits each rated at 10 A . Extremely well made by a German Electrical Company. overall size $21 \times 2 \times 2 \mathrm{in}$. $\$ 1.85$ each.

## TELESCOPIC AERIAL

for portable, car radio or transmitter, Chrome plated47 in . Hole in bottom for 6BA screw. MAINS CLOCK \& TIME SWITCH Smith's main's driven clock with 15 A programmable wwitch also notes showing how you can use this to wake up with music playing, kettle boiling or come home to a warma house, warn-off burglers, keeps pets warm halves your hesting hllis
etc., etc. $\mathbf{~} 2.20^{+20 p}$
PP3 BATTERY CHARGER
Almost 3 times the life can be obtalned from PP3 battery lf you re-charge it from the mains-this ready to use charger
only 55 p .


## IMMERSION HEATERS BY



Company. Comple
Fith sealing washers suitable for $900-240 \mathrm{~V}$ a.c. 40 p each post and insurance

NEED A SPECIAL SWITCH?
Double Leaf Contact. Very slight pressure closes both contacts. 7p each,
10 for 68p. Plastic pushrod $100]$ ${ }^{8 p}$ each, 10 for $54 p$.

## 事 $\begin{aligned} & \text { Continuousl } \\ & \text { sensor bulb } \\ & \text { tubing. On }\end{aligned}$

HIGH ACCURACY THERMOSTAT Uses differential comparator I.C. with thermistor as probe. Designer claims temperature control to within l/7th of a degree. Complete kit with powe pack 26-25.

## NUMICATOR TUBES

For digital inatruments, counters, timers, clocks, etc. $\mathbf{H j}$-vac. XN. 3 . Price $\$ 1.59$ each.

12-WAY SUB-MINIATURE MULTI-CORE CABLE 7.0076 copper cores each core. P.V.C. insulated and of different colour. P.V.C. covered overall and approx, $3 / 16 \mathrm{in}$ thick.
Price 22p per yard.

STANDARD WAFER SWITCHES
Standard aize liein wafer-silver-plated 5 amp contact, atandard in spindle 2 in long-with locking washer and nut


EXAACTOR FAN
Cleann the air at the rate of 10,000 cubic it per hour. Suitable for kitchens, bath rooms, factorjes, changing rooms, etc., it's \%o quiet it cal atin casing with 5 tin tan blades. Kit comprisea motor fan blades, sheet steel casing pull switch, mains connector 30p post and ins

## QUICK CUPPA

Mini Immersion Hpater, 350 W two minutes. Use any socket or lamp holder. Have at bedside for tea, baby's food, etc. 81.25 , post and insurance 14 p . lov car mode] aleo available same price. J
heater $£ 1.75$ plusp. \& p. 14 p .

## MAINS TRANSISTOR POWER

PACK
Designed to operate transistor sets and amplifiers. Adjustable output $6 \mathrm{~V}, 9 \mathrm{~V}$, 12 V for up to 500 mA (class B working). Tqkes the place of any of the
following batteries: PP1, PP3, PP4, PP6, PP7, PP9, and others. Kit comprises: mains trangformer, rectifler, smoothing and load resiator condensers and instructions. Real snip at only $82-10$ plus 20p postage.

TREASURE TRACER Complete Kit (except wooden battens) to make the metal
detector as the circuit in Practical Wireless, August issue. 23-30 plus 20p post and insurance.
WINDSCREEN WIPER CONTROL Beat dirt.y roads, irizzle, tog, etc. Kit of parts to make thin useful accessory with circuit details. 42.50.


## 12 VOLT It AMP <br> POWER PACK

Thls comprises doublewound $230 / 240 \mathrm{~V}$ mains transformer with tull wave $2000 \mathrm{~m} / \mathrm{t} / \mathrm{l}$ rectifler and smoothing. Price 22 - 20 plus port \& packing. ONE CHIP RADIO Ferranti's latest devicc ZN414-gives results better than superhet. Supplied complete with technical notes and circuits. $\$ 1-35$ each. 10 for 12.

HI-Q TUNER COMPONENTS
For experimenting with the ZN414
Kit Mo. 1-Plessey Miniature Tuning Condenser with built in LW switch and 3in ferrite slab and Litz wound MW coil. 78p.
Kit No. 2-Airspaced tuning condenser bin ferrite rod, lity wound MW and LW coils, 99p.
Kin ferrite rod, with Litz wound LW and MW coils, $21 \cdot 10$.
Eit No - -Permesbility tuner with fast and elow motion drive and $L W$ loading coits, 50 p .
DRY FILM LUBRICAMT
In aerosol can for easy appli-
cation and for putting lubricant into places where the normal oll can cannot reach. Home and everyday uses. We have purchased a largc
quantity of these from the quantity of these from the Liquidator and are able to
offer them to you for about half of the original list price. $88 p$ per ( 8 oz ) can or 12 cans for $23 \cdot 80$, post paid. The
lubricant is I.C.I. finon L169. PHOTO TRANSISTOR
OCP70-deal for burglar
alarms and aimilar applica
tions. Price 72p each.

## SOLDER GUN

A must for every busy man, gives almost instant heat also illumi-
nated job. 100 w e2-50 plus post and ins. 20p.
MAINS OPERATED SOLENOIDS


Model'TT10 1 in pull, size $3 \times 2 \frac{1}{2} \times 2$ in 81.98 plua 20 p post and inturance.
3 STAGE PERMEABILITY TUNER
 Made originally for Radiomobile
car ratios. This is a medium car ralios. This is a medium
wave tuner with a frequency wave tuner with a frequency
coverage $16 \mathrm{kc}-\mathrm{j}_{2} .5 \mathrm{kc}$. Aerlal, RF coverage lilator fections (long wave coil arailable) small size, only $2 i \times 3 \times 1 \mathrm{in}$. Can be used with our IF module and AF module
ond a few inter connection components to make a complete compact receiver. ponents to make a complete compact rece

A parcel of integrated circuits made by the famoua Plessey Company. A once-in-a-lifetime offer of Micro-electronic devices well below cost of namufacture. The parcel contains 5 ICs all new and perfect, first-grade device, definjtely not sub-standard or sathic NPN matched pair. Regularprice of parcel well over $£ 5$. Full circuit details of the ICs are included and in addition you will receive a list of many different ICa available at bargain prices 85 p upwards with circuits and technical data of each, Complete parcel only 21 Poat paid. and technical data of each, Complete parcel on.

TERMS:- $10 \%$ discount if ten of an item ordered, send postage where quoted-other items post tree il order for itoms is over 48 otherwive add 20 p .
J. BULL (ELECTRICAL) LTDD.
(Dept. P.E.), 7 Park Street, Croydon CRO IYD

Now available from one company are kits for many of the articles published in the Electronics, Radio and TV Journals. Examples of our range are:

SCORPIO IGNITION SYSTEMS (P.E. Nov, 1971), £9.50. This kit includes all the parts for the assembly of this popular and reliable system. The hardware and the construction data are included.

DRILL SPEED CONTROLLER (E.E. Aug. 1972). Kit consists of resistors, rectifiers, thyristor and tag board as specified in the article, price $£ 1 \cdot 15$. Kit with M.K. box, switch and plate included, $\mathbf{£ 2} \mathbf{3 0}$.

ELECTRONIC PIANO (P.E. Sept. 1972). We can supply the various sections for this article in kit form:

Power Supply, $\mathbf{8 6 6 0}$, including all semic onductors, resistors, capacitors, transformer, heat sink and hardware less P.C.B.
Preamp and Tremelo, £3.20, complete with switches, hardware and electronic components, less P.C.B.
Main Amp., £4.20, complete with IC-12, electronic components and P.C.B.

13 Pitch Boards, £39.50. Kit contains all the resistors, capacitors and semiconductors as published, but not the P.C.B.'s or the inductor.


12 Lauderdale Road, London W.9. Telephone 01-286 0011 Telex 28479

## NEW COMPONENTS

Post and packaging free for orders over $£ 1 \cdot 50$, include $10 \rho$ P\&P for each single pack under 61.50 .
single pack under 61.50 .
200 Mixed Resistors all rypes, 50 p. 100 Mixed Modern and Miniąture Resistors, 50 p 10 mF 64 V Electrolytic Caps, 5 for 25 p ; 12 for 50 p . 640 mF 16 V Electrolytic Caps, 3 for 30 p ; 7 for 60 p . 10 mF 63 V WIMA non-electrolytic, 15 p each. 3200 mf 10 V , 15 p ; 3 for 77 p ; 5 for 60 p .
SEMICONDUCTORS
Any 6 of the following, 50 p , or 10 p each. OC71, BFY50, 2N3702, CV8615, BSY95A, NTG885, 2N930, OA81, $2 \times$ IN914. (OR P60 50p).


Subminiature Omron 12 V d.c. relays mounted on CCT board, 3 for 60 p . P\&P $9 p$; mounted on CCT board with components, 2 for $60 \mathrm{p}, \mathrm{P} \& \mathrm{P} 7 \mathrm{p}$, GPO Relays, various 200s2-7000S2, 30p aach. Uniselectors, 10 pole, 25 way, GI each, P\&P 25p. Heavy Duty Foot Pedals, 50p, P\&P 20p. 6 V 5 digit High Speed Counters, $\mathrm{C1}$-50, 15p P\&P.

## DICTATING MACHINES

62.50 each-ideal for spares, motor, power pack, record/replay, electronics with mike 63-25.

## TRANSFORMERS

Mains-13V 2.5A and I5V 0.75A \&1.45, 20p PaP. Mains-13V IA 12V $0.5 \mathrm{~A}, \mathrm{6} 1.25,20 \mathrm{p}$ P\&P. Mains-13V 5A and 24V 2A, 62, 25p. P\&P Mains- 24 V 100 mA and $6 \mathrm{~V} 100 \mathrm{~mA}, 75 \mathrm{p}, 10 \mathrm{p}$ Pg P
Power Pack-suitable to run Transistor Radio or Cassettes Recorder, $5.5 \mathrm{~V}, 100 \mathrm{~mA}$, smoothed d.c. output $\mathbb{I}-20,20 \mathrm{p}$ P\&P.
EX COMPUTER CIRCUIT BOARDS
10 Boards, 50p, 8p P\&P: 25 Boards, \&1, 18p P\&P.
2 Boards with 2 power transistors, IE $4 \times 0 \mathrm{OC28}$ type, 50 p , 7 pPRP (HI-FI AND COMPONENTS SPECIALISTS) 18 HIGH RD., SWAYTHLING, SOUTHAMPTON Telephone: Southampton 58479 No Half Day Closing Discount and Credit Terms Available

LIGHT DIMMER. Kit contains all parts including circuit and construction data, 480 watts, fully suppressed. Price $£ 2.10$.
MUSIC MAKER ELECTRONIC ORGAN (P.W. Nov. 1972). Complete kit £4.40 or kit less resistors, P.C.B. and plastic box, £2.80. Stylus not supplied.

MIGHTY MIDGET (P.W. Jan. 1973). Kit contains all parts, less the battery, box and knob, £2.25.

TRIFFID RADIO (P.E. Feb. 1973). Kit includes all parts listed, less "tuning coil" and "miscellaneous components", £4.95. Ferrite rod and wire optional extra at 50 p. P.C.B. optional extra at 65p.

We shall be offering kits for most articles published in the popular electronics magazines and will be pleased to quote prices.

Please note, prices shown do not allow for V.A.T. Please add $10 \%$ to your order.

Send for details of kits available (please enclose S.A.E.). All kits sent POST FREE within the limits of the U.K.

Please note. We reserve the right to withdraw kits without prior notification.

## Electrakit

## Build yourselfaTRANSISTOR RADID <br> WITH AFTER SALES SERVICE

## ROAMER 10 WITH VHF INCLUDING AIRCRAFT

10 TRAMSISTORS. 9 TUNABLE WAVEBANDS, $[W 1$, MW2, LW, SW1, SWE, SW3, TRAWLER BAND, VHF AND LOCAL STATIONS ALSO AIRCRAFT BAND
Built-in ferrite rod aerial for MW/LW. Retractable, chrone plated 7 section telegcopic aerial, can be angled and rotated for peair ahort wave and VHF listening. Push-pull output using 600 mW transistors. Car Aerial and tape record sockets. 10 transistora plus 3 diodes. Fine tone moving coil speaker. Ganged taning condenser with VBF section. Separate coil for Aircraft Band. Volume/on/off, wave change and tone controls Attractlve case in black with silver blocking. Size $9 \mathrm{in} \times 7 \mathrm{in} \times 4 \mathrm{in}$.
Easy to follow instructions and diagrams. Parte price list and easy build plans 30 p (FREE with parts).

TOTAL BUILDING costs
£9.35
P.P. 县 INS. 52p (OVERSEAS P. © P. ©I-05)
$\rightarrow-\infty$
ROAMER EIGHT
Mk. I
NOW WITH VARIABLE TONE CONTROL
7 TUNABLE WAVEBANDS: MW1, HW2, LW, SW1, SW2, SWS AND TRAWLER BAND. Built-in ferrite roid serial for MW and LW. Retractable chrome plated telescopic aerlal for short waves. Push-pull output using
600 mW transistors. Car aerial and tape record sockets. G00m
Selectivity switch. 8 transistors plus 3 diodes. Fine tone moving coil opeaker. Air spaced ganged tuning condenser. Volume/on/of, tuning, wave change and tone controls. Attractive case in rich chestnut shade with gold blocking. Size $9 \mathrm{jin} \times 7 \mathrm{in} \times 4 \mathrm{in}$ approx. Easy to follow instructions and diagrams. Parts price list and easy build plans 25p (FREE «rith parts)
TOTAL T T O P. P. \& INS. $47 p$ TOTAL
BUILDING COSTS 2$)^{\circ}$ (OVERSEAS
P. \&P. $£ 1 \cdot 05$ )

## POCKET FIVE

3 TUNABLE WAVE-
TRAWLER MW. BAKD
WITH EXTENDED
MW BAND FOR EASIER TUNING OF LUXEMBOURG, ETC. 7 stages-5 transistors and 2 diodes aupersensitive ferrite rod aerial, fine tone moving coil speaker. Attractive black and gold case. Size 5 ! in $\times$
ltin $\times 3$ in. Eamy build plang and parts price list 10 p (FREE with parts).

Torth $92 \cdot 50^{\text {popamp } 20_{0}}$


ROAMER SEVEN
Mk. IV
7 TUHABLE WAVEBANDE:
WW1, WW8, LW, MW1, MW8, LW,
SW1, SW8, BW8 SW1, 8W\&, SW8 AND TRA WLER medium waveband provides easier tuning of Radio Luxembourg, etc. Built-in ferrite rod aerial for MW and LW, Retractable 4 section 24 in chronne plated telescopic aerial for gW . Socket for car aterial. Power ful push-pull output. ${ }^{7}$ tramsiats and ${ }^{2}$. including micro-alloy R.F. transistors. Fine tone moring coil speaker. Air apaced gangeu tuning condenser
Volume/on/off. tuning and wave change controls Volume/on/off. tuning and wave change controls.
Attractive case with carrying handle. Size 9 in $\times 7$ in $\times$ 4 in approx. Gasy to follow instructions and diagraths. Yarts price list and easy build plans $\bar{p} p$ (FREE with parts). $\quad$ P.P. INS. 47 p TOTAL BUILDING COSTS EO \& (OVERSEAS


ROAMER SIX

6 TUNABLE


WAVEBANDS:
MW. LW,
SW1, SW2.
TRAWLER EXTRA MW BAND FOR EAGIER BAND PLUS AN EXTRA MW BAND FOR EASIER TUNING OF LUXEMBOURG, ETC. Hensitive ferrite rof acrial and telescopic aerial for slort waves. apeaker. 8 stapes - tratisistors and Attractive black case with red grille. dial and black knoles with polished metal inserts. Nize 9 in $\times$. $\lim _{2} \times 2$ in approx. Easy build phans and parts price lint $\because 5 \mathrm{p}$ ( (FREF: with parts).
tOTAL
$44 \rightarrow \begin{aligned} & \text { P. P. I INS. } 31 \mathrm{p} \\ & \text { (OVERSEAS }\end{aligned}$
BUILDING COSTS 243(P.\&P. \&1.05)


## RADIO EXCHANGE LTD

61a HIGH ST., BEDFORD MK401SA. Tel. 023452367
Reg. no. 788372
I enclose £
please send items marked

ROAMER TEN	$\square$	ROAMER SEVEN	$\square$
ROAMER EIGHT	$\square$	TRANS EIGHT	$\square$
TRANSONA FIVE	$\square$	ROAMER SIX	$\square$
POCKET FIVE	$\square$	EDU-KIT	$\square$

Parts price list and plans for
Name
Address

RSI
VALVE MAIL ORDER CO. I6a WELLFIELD ROAD, LONDON SWIG 2 BS SPECIAL EXPRESS MAIL ORDER SERVICE

Express postage I $p$ per transistor, over ten postfre
INTEGRATED CIRCUITS $5 p+1 p$ each added


Open daily to callers: Mon.-Fri. 9 a.m.-5 p.m. Valves, Tubes and Transistors - Closed Sat. 1 p.m. -3 p.m.

Terms C.W.O. only Tel. O1-677 2424.7
All orders subject to V.A.T. at $10 \%$ rate. This must be added to the total order including postage.


Allitems advertised in previous numbers of this magazine stillavailable. There is $10 \%$ V.A.T. charge on all items. Please add 10 p for P. \& P. on orders under 65. LARGE S.A.E. for List No. 5. Special prices for quantity quoted on request.
M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA


## SUPERSOUND 13 HI-FI MONO AMPLIFIER

 audioamplifter. Brand throughout, 5 silicon transistors phis ${ }^{2}$ tors in push-pull. Fult wave rectification. Output approx. 13W r.nns. into 8 ohm. Frequency response
$12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$. Fully integrated pre. amplifier stage $w$ ith separate Volume, Bass boost anid Input for ceranic or Suitable for 8-15 ohni speakers. Input for cerainic or
crystal cartridge. Sensitivity approx. 40mv for full output. Supplied ready bullt and tested, with knobs, escutcheon panel, input and output plugs. Overall size $3 \ln$ high $\times 6 \mathrm{in}$ wide $\times 7$ in deep. A.C. $200 / 250 \mathrm{~V}$.

## DE LUXE STEREO AMPLIFIER


A.C. 200-240 volts. duty fally isolated mains trans. full wave rectification
giving adequate smoothing EZ80 LCLE86 Trlode Pentolles. provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and right hand channela can be at the rear of the chassis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per chammel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Supplied complete with knobs, charsis size 17 in . W $\times 4 \mathrm{in}$. $x$. Overal hejght including valven sid. Ready buit and
tested to a high standard. Price $\mathbf{1 9 . 9 0 . ~ P . ~ \& ~ P . ~} 45 p$.

NEW! POWER SUPPLY UNIT $200 / 240 \mathrm{~V}$ A.c. input. Four switched fully smoothed D.C.
outputs giving 6 V and 74 V and ov and 12 V at 1 amp continuous ( $1 \frac{1}{2}$ amp intermit tent).
Fitted insulated out put terninals and pilot lanp inticalor. Fitted insulated output terninals and pilot lanip intical or.
 Suitable for Transistor Radios,
Amplifers, etc., etc. Ready built and tested

BLACK AMODISED 16g, ALUMIMIUM EEAT SNKKS. 3in approx. 28p pair. P. \&P. zp.
HIGH GRADE COPPER LAMINATE BOARDS.
5 for 55p. P. \& P. 13p
BRAND NEW MOLTI-RATIO MAINS TRANSFORMERS. Giving 13 alternatives. Primary: 0-210-240ソ. Secon. wave at 1 amp or $10 \cdot 0 \cdot 10,20 \cdot 0 \cdot 20,30-0 \cdot 30 \mathrm{~V}$, at 2 amps
 P. \& P. 30p.

MADIS TRANSFORMER. For $\operatorname{transistor~power~supplies.~}$ Pri. $200 / 240 \mathrm{~V}$ Sec. $\mathbf{9 \cdot 0 . 9}$ at 500 mA . \&1 P. \& P. 13 p . Pri. 200/240V Sec. $1: 0 \cdot 0-12$ at 1 amp. $£ 1 \cdot 10$ P. \& P. 131
Pri. 200/240 V Sec. $10 \cdot 0-10$ at 2 anp. $21-65$ P. \& P. 30 p.
GENERAL PURPOSE EIGH STABILITY TRAN-
SISTOR PRE-AMPLIFIER. FOr P.U. Tape, Mike,
Guitar, etc,, and suitable for use with valve or
transistor equipment. $9-18 \mathrm{~V}$. Battery or from H.T.
line $200 / 300 \mathrm{~V}$. Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$.
Gain 26dB. Solid encapsulation size $1 \| \times 11$ Kin.
Gain $26 d \mathrm{~B}$. Bolid encapsulation size $1 \mathrm{l} \times 11$ Sin.
Brand new - complete with instructions. Price
Brand ${ }^{\text {oew }}$ - com
21. P. \& P. 13p.
REPERETCE ENCYCLOPEDIAS POR ELECTRONIC ENGINERRS AND DESIGNERS, covering between them ranslacor charach Many thousands of up-to-date European types Diode Equivalents
Transistor Equivalents
Transistor Characteristice
All three together
POST FREE
80 p
90 p
6120
42.80

HANDBOOX OF TRAMBISTOR EQUTVALENTS AID SUBSTITUTES
A must for servicemen and home constructors. including many 1000's of Britigh, U.B.A., European and Japanes rangistors. ONLY 40 p . Post 5 p
CEATRE ZRRO MIMLATURE MOVING COIL METER
$100 \mu \mathrm{~A}$ for balance or tuning. Approx. вize $1 \mathrm{in} \times$ lir
Open 9-5.30 Mon. to Fri. 9-5
Sat. Early closing Wed. ip.m.
A few minutes from South Wimbledon
Tube Stotion.
PRICES NOW INCLUDE VAT

HARVERSON SURPLUS CO. LTD.
Dept. PE, 170 High St., Merton, London, S.W. 19 rel. $01-5403985$
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE MOTE: P. \& P. CHARGES QUOTED APPLY TO U.E. OMLY CHARGRDEXTRA

## Sinclair Project 60

# Now-the Z.50 Mk. 2 

## with built-in automatic transient overload protection


#### Abstract

When originally introduced, the Sinclair $Z .50$ proved how it was possible to design and produce a popularly priced modular power amplifier having characteristics to challenge the world's costliest amplifiers. Many thousands of 2.50 s are now giving excellent service day in, day out. But we have also learned that constructors do not always use their 2.50 's ideally. That is why we have introduced modifications whereby risk of damage through mis-use. is greatly reduced and performance further enhanced. The Z.50 Mk 2 has improved thermal stability. more accurately regulated D.C. limiting to ensure more symetrical output voltage swing and clipping and still less distortion at lower power. Z.50 Mk. 2 is compatible with all other Project 60 modules, and may be incorporated to advantage in existing systems. Eleven silicon epitaxial planar transistors are now used two more than in the original 2.50 ; circuitry has been re-designed making this versatile high performance amplifier better than ever




## Z. 30 the power amplifier for quality and economy


with
free manual
£4.48

Brilliant new technical specifications

Input impedance $100 \mathrm{~K} \Omega$
with free
manual
$£ 5.48$
Input (for 30 w into $8 \Omega$ ) 400 mV
Signal to noise ratio, referred to full o/p at 30 v HT 80 dB or better
Distortion 0.02\% up to 20W at $8 \Omega$. See curve Frequency response 10 Hz to more than
$200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Max. supply voltage $45 v$ ( $4 \Omega$ to $8 \Omega$ speakers) ( $50 \vee 15 \Omega$ speakers only)
Min. supply voltage 9 V
Load impedance - minimum : $4 \Omega$ at 45 V HT
Load impedance - maximum : safe on open
circuit


## Typical Project 60 applications

System	The Units to use	together with	Units cost
Simple battery record player	Z. 30	Crystal P.U.. 12 V battery volume control, etc.	£4.48
Mains powered record player	Z.30. PZ.5	Crystal or ceramic P.U. volume control. etc.	¢9.45
12 W . RMS continuous sine wave stereo amp for average needs	$\begin{aligned} & 2 \times Z .30 \mathrm{~s} \text {. Stereo } \\ & 60 ; \text { PZ. } \end{aligned}$	Crystal. ceramic or mag P.U., F.M. Tuner, etc.	£23.90
25W. RMS continuous sine wave stereo amp. using low efficiency (high performance) speakers	$\begin{aligned} & 2 \times \text { Z.30s, Stereo } \\ & 60 ; \text { PZ. } 6 \end{aligned}$	High quality ceramic or magnetic PU. F.M. Tuner. Tape Deck. etc.	£26.90
80W. (3 ohms) RMS   continuous sine wave de luxe stereo amplifier. (60W RMS into 8 ohms)	$2 \times 2.50$ s. Stereo 60; PZ.8, mains transformer	As above	£34.88
Indoor P.A.	Z.50, PZ.8, mains transformer	Mic., guitar, speakers. etc., controls	£19.43

[^5]
## Guarantee

If, within 3 months of purchasing any product direct flom Sinclatr Radionics Lid., you are dissatisfied with it, your money will be refunded at once. Many Sinclair appointed Stockists also offer this same guarantee in co-oderation with Each Proleci 60 mod
Each Prolect 60 module is tested,before leaving our tactory and Is quaranteed to work perfectly, Should any defect arise in normal use, wo will service it at once and without any of purchase. Outside this period of guarantes small charge (typically E1.00) will be mede No charge is mede for postage by susface mail. Alr Mail is cherged at cost.

[^6]
# the world's most advanced high fidelity modules 

## Stereo 60 Pre-amp/control unit



Designed specifically for use on Project 60 systems, the Stereo 60 is equally suitable for use with any high quality power amplifter. Since silicon epitaxial planar transistors are used throughout, a really high signal-to-noise ratio and excellent tracking between channels is achieved. Input selection is by means of press buttons, with accurate equalisation on all input channels. The Stereo 60 is particularly easy to mount
SPECIFICATIONS—Input sonsitivities: Radio - up to 3 mV . Mag. p.u. 3 mV : correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}: 20$ to 25.000 Hz . Ceramic p.u. -up to 3 mV . Aux - up to 3 mV . Output: 250 mV . Signal to noise ratio. better than 70 dB . Channal matching: within 1 dB . Tone controls: TREBLE +12 to -12 dB at 10 KHz . BASS +12 to -12 dB at 100 Hz . Front panel : brushed aluminium with black knobs and controls Size: $66 \times 40 \times 207 \mathrm{~mm}$

Buift, rested and guaranteed
£9.98

## Project 60 Stereo F.M. Tuner




The phase lock loop principle was used for receiving signals from space craft because of its vastly improved signal to noise ratio. Now. Sinclair have applied the principle to an F.M. tuner with fantastically good results Other advanced features include varicap diode tuning. printed circuit coils, an I.C. in the specially designed stero decoder and switchable squelch circuit for silent tuning between stations. In terms of high fidelity this tuner has a lower level of distortion than any other tuner we know. Stereo broadcasts are received automatically, a panel indicator lighting up as the stereo signal is tuned in. This tuner can also be used to advantage with most other high fidelity systems
SPECIFICATIONS-Number of transistors: 16 plus 20 in I.C. Tuning range: 87.5 to 108 MHz . Sensitivity: $7 \mu \vee$ for lock-in over full deviation. Squelch level: Typically $20 \mu \mathrm{~V}$. Signal to noise ratio: $>65 \mathrm{~dB}$. Audio frequency response: $10 \mathrm{~Hz}-15 \mathrm{KHz}( \pm 1 \mathrm{~dB}$ ). Total harmonic distortion: $0.15 \%$ for $30 \%$ modulation. Stereo decoder operating level : $2 \mu \mathrm{~V}$. Cross talk: 40 dB . Output voltage: $2 \times 150 \mathrm{mV}$ R.M.S. maximum Operating voltage: 25-30VDC. Indicators: Stereo on. tuning. Size: $93 \times 40 \times 207 \mathrm{~mm}$.

Built and tested. Post free.

## Super IC. 12 <br> Integrated circuit <br> high fidelity amplifier



Having introduced Integrated Circuits to hi-fi constructors with the $1 C 10$, the first time an IC had ever been made available for such purposes we have followed it with an even more efficient version, the Super IC 12 a most exciting advance over our original unit. This needs very few ex ternal resistors and capacitors to make an astonishingly good high fidelity amplifier for use with pick-up. F.M. radio or small P.A. set up, eto The free 40 page manual supplied. details many other applications which this remarkable $1 C$ make possible it is the equivalent of a 22 tran
sistor circuit contained within a 16 lead DI package. and the finned heat sink is sufficient for all requirements. The Super IC. 12 is compatible with Project 60 modules which would be used with Project 60 modules which Would be $Z .50$ and $Z .30$ amplifiers. Complete with with the 2.50 and 2.30 amplifiers. Co

## SPECIFICATIONS

Output power: 6 watts RMS continuous (12 watts peak), 6-8 $\mathbf{\Omega}$. Frequency Response: 5 Hz 0 $100 \mathrm{KHz}+1 \mathrm{~dB}$ Total Harmonic Distortion ess than $1 \%$ (Typical $0.1 \%$ ) all out ess than $1 \%$. (Typical $0.1 \%$ ). at all outpu powers and frequencies in the audio band (28V) Load Impedance: 3 to 15 ohms. Input Impedence: 250 Kohms nominal. Power Gain 90 dB (1,000.000.000 times) after feedback Supply Voltage: 6 to 28 V . Quieacent current: 8 mA at 28 V . Size: $22 \times 45 \times 28 \mathrm{~mm}$ in cluding pins and heat sink
Manual available separately 150 post free
With FREE printed circuit board and 40 page manual
$£ 2.98$ Post free

Power Supply Units
The new
PZ. 8 Mk. 3

The most reliable power supply unit ever made avarlable to constructors Brilliant circuitry makes failure from over load and even direct shorting of the output impossible. This is due to an ingenious re-entrant current limiting principle which, as far as we know has never before been available in any comparable unit outside the most expensive laboratory equipment Ripple and residual norse have been reduced to the point of almost tota elimination. This is of course, the perfect unit for Project 60 assemblies, particularly where the new Z.50 MK. 2 amplifiers are used Nominal working voltage-45
PZ.8 Mk 3-f7.98
(Mains transformer. if required) £598
PZ. 5 30v. unstabilised
(not suitable for Project 60 tuner) $£ 4.98$
PZ. 6 35v. stabilised
(not sutable for IC. 12) £7.98

## Project 605

the easy way to
buy and build
Project 60
without

soldering
Project 605 in one pack contains one PZ.5, two Z.30's, one Stereo 60 and one Masterlink, which has input sockets and output components grouped on a single module and all necessary leads cut to length and fitted with clips to plug straight on to the modules thus eliminating all soldering
Complete with comprehensive
£29.95
manual, post free
All you need for a superb 30 watt
high fidelity stereo amplifier
)

## Order form

Please send
I enclose cash/cheque/money order
Name

Address

PE/6/73

SINCLAIR RADIONICS LTD, LONDON ROAD ST. IVES. HUNTINGDONSHIRE PEI7 4HI


Add $10 \%$ V.A.T. to all prices quoted on page opposite and above

BELLDGO LEE IMBULATED TERMMALS. Red or Black, 5 amp max. 10 p patr, p.p. 4 p
BERCOSTAT WIREWOUMD RHEOSTAT. 50 volt, $800 \Omega, 2 \overline{5}$ watts, 2 in dia. 28 p, p.p. 7p.
FIMRED ALUMintum heatsink. 9 in $\times 1$ gin Ready drllied. 20p, p.p. 7 p
SUB-MTE. CROC. CLIPS. Red or Black, insulated 4p. Min, quantity, 6, p.p. $3 p$.
Garrard mag. Tape decers: $17 i . p .8 .$, jov solenold operated brakes, etc. Maina voltage

4in PLANHAIR FANs. Complete, capacitor, e equip. 2,800 r.p.m. $23 \cdot 60$, p.p. 40 p.
ELECTRIC MOTORS, HOOVER OR CROMPTOA
PARKin 80 N. 2501. 8ingle phase a.
h.p., 1.440 r.p.m., 88.75, p.p. $£ 1$.

1 h.p., $1.425 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or 2.800 r.p.n., 28.76 .
p.p. $\mathbf{2 1 \cdot 2 \overline { 3 } .}$
$t$ h.p., 1,440 r.p.m., 22.85. p.p. Tsp.
AUDIO CONMROTORS
3 pIn Din Plug
5 pin Din Plug A type, B type
$\frac{2}{3}$ pin Din Speaker Pluk/ isocket
3 pin Din Line socket
3. Jinn Jack Plug Screened
8tandard Jack Plag

Standard Jack Plug
Screened staniart Jack Pluga
Stereo Jack Plug
Phono Pings: Red or Flack apeach. $\qquad$
Phono Piofs: Red or Fl
P.p. on abuve ftems 3 p .
HANS HEONS
Mains heons
 LEVER ACTION P.O. 1000 TYPE SWITCEES Lock 4-pole changeover. 150, p.p. 4p. Ex equip. Lock 2-pole changenver, 10p, p.i. 4p. Ex equip. aUdio leads
Gcreened Phono Leads 46 in long, 18 p.
3. Jmm JACK/3.änm JACK 7ft 6in lonk. 40p.

5 -Pin in A Type, o-PIN A TYPE. Approx. jtt long, 70p.
P.p. on above items öp.

MULLARD \& mallory serew thrminal CAPACITORS $4,500 \mu \mathrm{~F} 64 \mathrm{~V}, 77,100 \mu \mathrm{~F} .40 \mathrm{~V}$. 50 D each. $20,00030 \mathrm{~V}, 2 \mathrm{~L}, 00025 \mathrm{v}, 35.001 \mathrm{l} 15 \mathrm{v}$, 80 p each.
p.p. 16 p. p.p. 16p.
guLLARD pJLLWAVE RECTIFIERS
$6-48 \mathrm{~V}, 15$ amp. $76 \mathrm{p}, \mathrm{p} . \mathrm{p} .10 \mathrm{p}$.
belling Lee is amp in-line rubber covered Interterence supprensor, 2sp, p.p. Ap
RUBBER 3 PIK 5 AMP NON-REVERBIBLE CABLE CONMRETORS, 20p, p.p. 5p.
SOLENOIDS 12 VOLT PULL ACTION
$\sin \times \operatorname{lin} \times \sin , 40 \mathrm{p}$, p.p. 8 p .
$14 \mathrm{in} \times 1$ in, 50 p, p.p. 8 p .
10 REED SWITCHES WITH MAGNETS. Operated by 10 push buttons $10 \mathrm{in} \times \sin \times 61 \mathrm{n}$. $\mathrm{BOp}, \mathrm{p} . \mathrm{p} .21 \mathrm{p}$. biemens manatjer relay. Four pole changeover dust cover/base 48 V , 2500, 50 p , p.p. 3 p
OMRON BKR MIDGET POWER RELAY. 12 V d.c. Double pole changeover. New, 20p, p.p. 5 p. STC Mimiature RELAY
Two pole changeover $\sigma-15 \mathrm{~V}$
new,
36p, p.p.
GARDEER'G POTTED TRANSFORMER, $0-250 \mathrm{~V}$, Input: $18 \mathrm{~V} 500 \mathrm{~m} / \mathrm{h}, 60 \mathrm{~V} 150 \mathrm{~m} / \mathrm{m}, 6 \mathrm{~V} \div 20 \mathrm{~m} / \mathrm{a}$ output. Size: 3 in $\times 24 \mathrm{in} \times 24 \mathrm{in}, 21$, p.p. 20 p . Ex equip. Size:
teated.
RIPLEY TRAMSPORMERS. Primary 115 and 250 Y , Rec. $12 \cdot 5-0-12 \cdot 5$ at $750 \mathrm{~m} / \mathrm{A} . \quad 75-0-7 \mathrm{~V}$ at 1 smp . $2 \ddagger$ in $\times 2 \neq$ in $\times 2$ in. Price 21 . p.p. 21 p . telescopic akrials
Chrorned 7in clopell, 2ain ex
Chrorned 1 in Alosen, 2rin extended, $f$ section ball
MOLLARD 4 DM 100 mPDICATORS in platle holder/cover, ex equip., aize npprox. 1 in $\times 1 \neq$ in $\times$ in, 36p, p.p. Ap.
PRDSTED CIRCUIT BOARD/19 ACY 19's 10 OA200
 resistors. Power supply $22 \mathrm{~V}, 200 \mathrm{~m} / \mathrm{A}$ d.c. Out put
240 V a.c. 21, p.p. 20 p . Ex equip. WIRING CABLE
WIRMEG CABLE
Size: 1.020 . Various coloure, 350 yd, 60p. p.p. 28 p . PAIMTON PLUG sockets. Type 159 nerleq. Working voltage $3 j 00 \mathrm{~V}$ s.c./d.c. current, rasx. 3 amp a.c./d.c. 7 pln plug and socket, 60 p , p.p. 6 p . ${ }^{15} \mathrm{pin}$ plug and socket. 21, p.p.6p.
socK ET, 21.50, p.p. 6p. PLEASE MCLUDE $10^{\circ} \%$ V.a.t. on all orders cabh with order please

## FIELD <br> ELECTRIC LIMITED

## 3 Shenley Road

Borehamwood, Herts.
Adjacent Elstree Mainline Station Tel.: 01-953 6009

## ELECTRONIC BARGAINS

COMPAKS
Manufacturers' fall-outs which include functional and part-functional unies. Ideal for learnipe and experimenting
PAK I 13 mixed 7400 series PAK 210 unijunction TIS43 PAK $3 \quad 6$ S.C.R.'s
PAK 450 silicon and sermanium NPN and PNP transistors

Valve Equivalent Book

- 40p

List over 3,000 equivalents

## ACOUSTIC WADDING

Bonded Acrylic Fibre $\frac{1}{2}$ in thick. Per square yard 50p
VYNIAR SPEAK量R CLOTH
Black-Black and Silver-Black and Gold
18 in $\times 25$ in
$36 \mathrm{in} \times 25 \mathrm{in}$ Sizes:

Sin $\times$ SOin $60 p$
62.20

SOLDERING IRONS

	Retail Price	Our Pric
Antex CCN240	$£ 1.98$	$£ 1.58$
Antex CN240	$£ 1.87$	$£ 1.49$
Antex $\times 25$	$£ 1.92$	$£ 1.54$

FERRANTI RADIO CHIP ZN414 41.23
AMPLIFIER MODULE
5 watt, 9 volt supply, 4,8 or $16 \Omega$ speaker, $\mathbf{6 3} 30$
Fully Guaranteed. Mail order only. P. F. P. 13p. V.A.T. included. Cheque or
T. F. J. ELECTRONICS 25 EASTBURY COURT. LEMSFORD ROAD ST. ALBANS, HERTS.

## A DEXTER ann isuran

 ALLOWS COMPLETE

1

LIGHTING CONTROL

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch. It is available as a complete "ready to install" unit or "simple to assemble" kit. Two models are available controlling up to 300 W or 600 W of all lights, except fluorescents, at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$. All DEXTER DIMMASWITCH models have built-in radio interference suppression. $\quad 600$ watt $£ 3.52$ Kit form $£ 2.97$

300 watt $£ 2.97$ Kit form $\mathbf{£ 2 . 4 2}$
All plus 12p post and packing
Prices include VAT. Please send c.w.o. to :


LOUDSPEAKER BARGAINS
Fane Pop $100 \mathrm{~W}, 18^{*}, 8 / 15$ ohm Fane Pop $60 \mathrm{~W}, 15^{*}, 8 / 15$ ohm Fane Pop 50W,
Fane Pop $25 / 225 \mathrm{~W}, 8 / 15 \mathrm{ohm}$ Fane Pop $1512^{\prime \prime} 15 \mathrm{~W}, 8 / 15 \mathrm{ohm}$ Fane 122/10a or 122/12
Fane Crescendo $15^{\sim}, 8$ or 15 ohm Fane Crescendo $12^{*}, 8$ or 15 ohm Fane $8^{\prime \prime}$ d/cone 8087,8 or 15 ohm Fane $8^{\circ}$ d/cone, roll surr. 807T, 8 or 15 ohm
Baker Group 25, 3, 8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm
Baker Major
EMI $13^{\circ} \times 8^{\circ}, 3,8$ or 15 ohm
EMI $13^{\prime \prime} \times 8^{\prime \prime}$ type 150 d/cone, 3,8 or
15 ohm
EMI $3^{* *} \times 8^{*}$ type t/tw, 3,8 or 15 ohm
EMI $3^{* *} 8^{* \prime 2}$ type 350,8 ohm

EMI $6 \frac{1}{2} 93850,4$ or 8 ohm
lac 9" 5.59RMLi, 15 ohm
Elac $6 t^{*}$ d/cone 6RM220 8 ohm
Elac $6 \frac{1}{2}$ º d/cone, roll surr. 6RMI7I,
8 ohm $4^{* \prime}$.weer TW4 8 or 15 ohm
Elac 4" tweeter Thyio
Celestion MFL000 25 W horn
8 or 15 hm
Elac $5^{\prime \prime}$
Elac $7^{-}$
ohm
$4^{*}, 3$
or 8 ohm
$\begin{array}{ll}\text { Elac } 4^{\circ} \\ \text { Elac } 8^{\circ} & 5^{\prime}, 3 \text { or } 8 \text { or } 15 \mathrm{ohm}\end{array}$
Wharfedale Bronze 8 RSIDD
Wharfedale Super 8 RSIDD
Wharfedale Super 10 RSIOD
Goodmans 8P, 8 or 15 ohm
Goodmans 10P, 8 or 15 ohm
Goodmans 12P. 8 or 15 ohm
Goodmans 15P. 8 or 15 ohm
Goodmans IBP. 8 or 15 ohm
Goodmans Twinaxiom 8
Goodmans Twinaxiom
Eagle DT33 dome tweeter, Bohm
Eagle HT15 tweeter, 8 ohm
Eagle CTS tweeter, 8 ohm
Eagle MTIO tweeter
Eagle CTIO tweeter
Eagle Xovers CN23, 28, 216
Kef T27
Kef T27
Kef T15
Kef B1 10
Kef B1
Kef B200
Kef BL39
Kefkit 2
Richard Alian $12^{\prime \prime}$ d/cone, 3 or 15 ohm Richard Allan $8^{* \prime}, 3,8$ or 15 ohm
$10^{*} \times 6^{\prime \prime} 3^{3,8}$ or 15 ohm
$8^{*} \times 5^{\prime \prime} 3$ or 8 ohm
$7^{\prime \prime} \times 4^{*}, 3$ or 8 ohm
$3^{\prime \prime}, 8 \mathrm{ohm}$ or 80 ohm
$2 \frac{1}{3}$ ", 64 ohm
Speaker matching transformer,
Adastra Hiten $10^{\circ} .10 \mathrm{~W}, 8$ or 15 ohm Adastra Top 20 12*, 25 W , 8 or 15 ohm 821.45
Stephen speaker kits and cabinets-send for illustrated brochure and list of recommended speakers.
Car stereo speakers-ask for leaflet.
PA/Disco amplifiers (carr, and ins. ©1): Baker loow
646.00
Linear $30 / 40$
Linear 40/60
630.00

FREE with speaker orders over $£ 7$-"Hi-Fi Loudspeaker Enclosures" book.

All units guaranteed new and perfect. Prompt despatch.
Carriage and insurance 25p per speaker.
(Tweeters and Crossovers 15p each.)
All prices quoted inclusive of V.A.T.

# WILMSLOW AUDIO, oept. Pe 

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE SK91HF

## denrys YOUR COMPIETE AUDIO-ELECTRONIC STORES <br> More of everything at the right price. All your alectronic requirements within 200 yards - call and see for yourself.



## PCB'S FROM PHONOSONICS

All PCB's Fibreglass. Drilled, Roller Tinned Circuit and Layout Diagrams Free with each PCB. Rotary Pots supplied as standard except where stated PCB's designed by Phonosonics except where stated otherwise.

## DESIGNS PUBLISHED IN P.E.

AURORA (Apr./Aug. 7I) Multichannel Sound Controlled Light S/c's (excl. SCRs), Rs, Cs, Cores, Pors., 8 ch. $£ 17.75$; $4 \mathrm{ch} ., \mathrm{f} 10.15$. Stabilised Power Supply (supplies 8 chans.), 63.65 PCB ( $4 \frac{1}{2}$ in 11 lin ) for P/A and 4 chans. incl. pots, 62.35 . PCB ( 4 in $\times$ Sin $)$ for PSU, Sync. Gen, 8 cores
8 SCRs. $£ 1.35$.
A.F.SIGNAL GENERATOR (Nov. 72)

S/c's. Rs, Cs, Pots, Sw's. PCB ( $2 \frac{1}{2}$ in 4in) also holds Sw's, $\mathbf{£ 3} \cdot 15$
AUDIO MIXER (Jan. 72)
Rs, Cs, Pots, PCB (1 in $\times 2$ in), $\mathbf{E 1} 55$. (I.C. Excl.)
BIOLOGICAL AMPLIFIER (Jan./Feb, 73)-Pre-amp Set
DOOR BELL YODELLER (Apr, 71)-S/c's, Rs, Cs, Pots, Transformer Loudspeaker, PCB ( $\mathbf{3}$ in $3 \frac{1}{2}$ in), $\mathbf{E 7} 70$.

ELECTRONIC PIANO (Sept, 72/Jan. 73)—Details in lists.
GEMINI STEREO AMP (Nov. 70/Mar. 71 ) Stereo Sets and PCBs Pre-Amp- $\$ / c^{\prime}$ s, $£ 1.85$. Cs. Pors, Maka-Sw's-with $1 \mathbf{W} 2 \%$ M.O. Rs, $£ 11.60$
 10tin) for kits with M.O. or $\frac{1}{2}$ W C.F. Rs. Holds pots and Maka-5w's, $\in 2$ IO
Main Amp-Rs, Cs, Pots, $£ 5 \cdot 40$. PCB $\left(3 \frac{1}{2}\right.$ in $\left.\times 5 i n\right), ~ £ 1.40$ PSU-Rs
 GEMINISTEREO TUNER (Apr./Jun. 72)

HI-FI TAPE LINK (Mar./Apr. 73)
S/e's, le's, Rs, Cs, Relay and PC=base, Pot Cores and PC-bases, Sw's, Pots, Panel Lamp-Mono £10.80, Stereo £16.70. Power Supply 62.50. PCBs Main Control $\mathrm{PCB}(38 \times 9 \mathrm{in})$ holds $2 \mathrm{R} / \mathrm{C}, 2 \mathrm{P} / \mathrm{B}, 2$ Meter circuits incl. relay and pot cores 61.85 . Sub-assembly PCB ( $2 \frac{1}{2}$ in $\times 6 \frac{1}{2}$ in) for switch and pot associated Rs and Cs-mounts on Maka-switch 80p.
LOGICAL RADIO CONTROL (Dec. 71/Jan. 72)-Details in lists
MODEL SERVO CONTROL (Feb./Mar. 72)-Details in lists.
MICROPHONEMIXER (Apr. 69) - $\$ / \mathrm{C}$ 's, Rs, Cs, Pots, PCB $\left(3 \frac{4}{4} \mathrm{in} \times 4 \frac{1}{2} \mathrm{in}\right)$ also holds pots. $64 \cdot 10$.
PHOTOPRINT PROCESS CONTROL (Jan./Feb. 72)
S/c's. SCR. LDR, Rs. Cs. Pots. Relay. Keyswitch, T/former. PCB ( $3 \frac{1}{2}$ in $\times$ $5 \frac{1}{2}$ in) also holds pots, relay, keyswitch, 88.80 .
SOUND SYNTHESISER (Current Series)-Details in lists.
TAPE NOISE LIMITER (Feb. 72)-Mono Circuit
S/c's, Rs. Cs, Pot. PCB ( $1 \frac{1}{2}$ in $\times 3$ in), E2.20. Regulated Power Supply (will leed 2 units) and PCB ( $1 \frac{1}{\frac{1}{2}}$ in $\left.\times 2 \frac{1}{2} i n\right), \mathbf{6} 30$
TRIFFID (Feb. 73)-PCB As Published, 60p.
ULTRASONICTRANSMITTER-RECEIVER (May 72)
Rs, Cs. Pot, S/C's, Relay. Dual PCB ( 2 in $\times 5 \frac{1}{2}$ in), 63.90 .
VERSATILE LIGHT EFFECTS UNIT (Jun. 72) - Single Channel Sound Controlled Light-also has built-in variable strobe. $5 / \mathrm{c}$ 's (exel. SCR), Rs, Cs,
Pots, T/formers, Keyswitch, 68.85 . PCB ( 3 in 7 in) also holds Pots, Sw, Pors, T/formers, Keysw
T/former (T/T7), fl . 50

## SOME OTHER DESIGNS AVAILABLE

VIBAASONIC GUITAR PRE-AMP, (Practical Wireless Sept, 70)Incl. Mic $P / A$, 2 -Guitar $P / A$, Tremulant and Tone Controls, Master Volume S/c's, Rs. Cs, Rotary Pots, LDR. Lamp, Coupling T/former, 67.75 . PSU 62.80. $\mathrm{PCB}(3 \operatorname{lin} \times 10 \mathrm{zin})$ also holds rotary or slider pots, $\mathbf{£ 2 . 3 0}$.

REVERBERATION UNIT (Practical Wireless Nov.-Dec. 72 ) S/c's, Rs, Cs, Stider Pors T/former, 66.80. PCB ( 2 in $\times 11 \frac{1}{8}$ in) also holds sliders (compatible with publ. panel) $\mathbf{f 1} \mathbf{2 0}$.
8 WATT AMPLIFIER (Practical Wireless Nov. 72)
Main Amplifier- $S / c^{\prime} s$, Rs, Cs, Pot (Mono Ser), $\mathbf{3} .90$. PCB ( $2 \frac{1}{2} \mathrm{in} \times 3 \mathrm{in}$ ) (Mono) 60p. Pre-amp-S/e's, Rs, Cs. Pots, Maka-Sw., Mono, E2.50\% Stereo, $\mathbf{6 5 . 2 0}$ PCB ( $3 \frac{1}{2}$ in $\times 7 \frac{1}{2}$ in) (Stereo)-also holds all pots and Maka-Sw., $\mathbf{E l} \mathbf{I} 50$.
AURORA AUXILIARY CONTROL UNIT (2 variable freq; strobe gens, and 4 variable amplitude freg. gens.), Rs, Cs, Pots, S/e's, $\mathbf{6 3} \mathbf{2 5}$ gens. and 4 variable amplitude freg. ge
PCB ( $3 \frac{3}{2} i n$
$5 \frac{4}{4}$ in), also holds all pots, El. 35 .
THYRISTORS (400V P.I.V.), IA 50p. 3A 55p.
SLIDER POTS (PCB Mounting), Mono. 40p; Dual, 60p.
S.A.E for Free Lists of these and other designs.

Orders: U.K. 10p P. \& P. Overseos P. \& P. ot cose
Orders: U.K. 10p P. \& P. Overseo
V.A.T.-Add $10 \%$ to U.K. orders.

## GUNTON ELEGTRONIO IGNITION KII <br> 39.35 法

## READY BUILT UNIT <br> $£ \| \cdot 55$ NAT

Patents Pending. 12 volt only-state pos. or neg. earth
Capacitive discharge ignition is recognised as being the most efficient system and will give you

* Continual Peak-Tuned Performance
* Easier All.weather Starting
* Increased Acceleration and Top Speed * Longer Spark Plug Life
* Elimination of Contact Breaker Burn
* Purer Exhaust Gas Emission


Kit includes absolutely everything for assembly: Ready drilled Case and Hardware Printed Circuit Board, Cables. Coil Connectors. Silicon Grease Nuts and Bolts. etc. 6 page illustrated instructions cover fitting of all types of tachomerers. Cal 3365 2 (Many letters from satisfied cuseomers) SCORPIO: Transformer $\mathbf{6 2} \mathbf{4 2}$. Printed Circuit Board 83p

## ALUMINIUM BOXES

Complete with baseplate and screws
AT DIRECT FROM MANUFACTURERS' PRICES WITH RETURN OF POST SERVICE
Type No

PNO	L	$W$
$8^{*}$	$5 \frac{1}{4}$	$2 \frac{3}{4}$
$8^{*}$	4	4
$9^{*}$	4	$2 \frac{3}{4}$
$10^{*}$	$5 \frac{1}{4}$	4
11	4	$2 \frac{1}{2}$
12	3	2
13	6	4
14	7	5
15	8	6
16	10	7

Price 44p 44 p
44 p 53p 44p 39p 59p $68 p$
$88 p$ 96 p

* These sizes accept standard veroboard range.

All prices include carriage and V.A.T. $20 \%$ discount on 10 or more boxes. $30 \%$ discount on orders over $f l l$

Dept. PES, ELECTRONICS DESIGN ASSOCIATES 92 BATH STREET, WALSALL WSI 3DE

cassette projector $£ 36.95$.
Supplied complete with one effect post free.
M.V. AMPLIFICATIONS

ORCHARD MEADOW, UFFINGTON ROAD, STAMFORD, LINCS.

## PARKERS SHEET

## METAL FOLDING

 MACHINES HEAVY VICE MODELSWith Bevelled Former Bars


No. 1. Capacity 18 gauge mild steel 36 in . wide $\ldots$... 17 carr .50 p No. 2. Capacity 18 gauge mild steel 24 im . wide $\quad \mathrm{f} 12$ carr. 38p No. 3 Capacity 16 gauge mild steel 18 in . wide $£ 12$ carr. 38 p Also new bench models. Capacities $36 \mathrm{in} . \times 18$ gauge $\mathbf{£ 3 5} .24 \mathrm{~nm} . \times 16$ gauge $\mathbf{6 3 2}$. Carriage 75 p.
End folding attachments for radio chassis. Tray and Box making for 36 im model, $27 \frac{1}{2} p$ per $f t$. Other models $17 \frac{1}{2} p$. The two $\$$ maller models will form flanges. As supplied to Government Departments, Universities, Hospitals

One year's guarantee. Money refunded if not satisfied. Send for details.
A. B. PARKER, Folding Marhine Works, Upper George St. . Heckmondwike, Yorks. Heckmondwike 3997


## AN RTVC EXCLUSIVE DESIGN

UNISOUND MODULES ONLY $27.64+55 p$. p. \& p For the man who wants to design his own stereo-here's your chance to start. with Unisound-pre-amp. power amplifier and control panel. No soldering--just simply screw together. 4 watts per channel into 8 ohms inputs: 120 mV (for ceramic high efficiency I.C. monolithic power chips which
very low distortion over the audio spectrum

## AN INCREDIBLEBUY ONLY FROM 回TV <br> (SSBD PUSH-BUTTON CAR RADIO KIT

The Tourist PB is suitable for 12 volt working on both negative and positive earth vehicles. it covers the full medium and long wave bands. It is permeability tuned and sturdily constructed. Output is a full 2.5 watts into an 8 ohms speaker. But the Tourist PB will operate into any loudspeaker from 8 to 15 ohms
Apart from the output slage. which is an integrated circuit, the only other electronic components that need soldering are some capacitors, resistors. etc. The kit includes a pre-built RF tuner unit, and fully modulised IF stages which are pre-aligned before despatch. As well as electronic components this kit also contains 2 diamond-spun aluminium knobs. elegant matching front panel, dial washers, screws and wire
The Tourist PB can be mounted in any standard size dash panel and it has an illuminated tuning scale. Chassis size is: 7 in wide, 2 in high and $4 \frac{\mathrm{i}}{\mathrm{i}} \mathrm{i}$ in deep


## RELIANT MkIV

*5 Electrically Mixed inputs. *3 Individual Mixing controls. *Separate bass and treble controls common to all 5 inputs. *Mixer employing F.E.T. (Field Effect Transistors). *Solid State Circuitry *Attractive Styling. INPUTS 1. Crystal Mic or Guitar 9 mV . 2. Moving coil Mic or Guitar 8 mV Inpuis. 3, 4\& 5 are suitable for a wide range of medium output equipment (Gram. Tuner. Monitor, Organ, etc.) All 250 mV sensitivity. Output 20 watts into 8 ohms (suitable for 15 ohms). Size approx. $12 \frac{1}{5} \times 6 \times 3 \frac{1}{2}$ ins.

If you can solder on printed circuit board, you can build this push-button car radio kit. It's simple-just follow the step-by-step instructions.
 55p free with parts

* Fully retractable and lockable car aerial £1.37 post paid

CAR RADIO KIT ONLY £7.70 p. and p. 55p

## SOUND 50 <br> 45 WATT MONO AMPLIFIER. Ideal for Disco. Output Power: 45 wats A.M.S. (Sine Wave) Frequency Response 3 dB points 30 Hz and 18 KHz . Total Distortion: less than $2 \%$ at rated output Signal to nolse ratio: better than 60 dB . Bass Contro Range: 13 dB at 60 Hz . Treble Control Range: 12 dB at 10 KHz . Inputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume control  $\varepsilon 1 \cdot 65 p$ and $p$ <br> 



PE TAPE LINK CONSTRUCTORS
Suitable 3 speed tape deck, less heads. Caters up to 7ins. spools. Unused but store soiled
hence no war $\mathbf{8 8} \mathbf{8} \mathbf{8 0}$
ranty.
60 p packing \& 50 p post.


## G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR.

Tel. 021-327 2339

## SPECIAL OFFER ! ! !

## SMALL ELECTROLYTICS

Ref. No.	Capacity	Voltage	Price	Ref. No.		Capacity	Voltage	Prise
H8/I	$1 \mu \mathrm{~F}$	150 V	4p	H7/4A		$64 \mu \mathrm{~F}$	35 V	5p
HB/IA	$2 \mu \mathrm{~F}$	150 V	20	H7/5		$80 \mu \mathrm{~F}$	16 V	4p
H8/2	$2 \cdot 2 \mu \mathrm{~F}$	25 V	4p	H7/6		$100 \mu \mathrm{~F}$	25 V	5p
H8/2A	$3 \cdot 3 \mu \mathrm{~F}$	25 V	4p	H7/6A		$100 \mu \mathrm{~F}$	15 V	4p
H8/3	$3 \mu \mathrm{~F}$	50 V	4p	H7/7		$100 \mu \mathrm{~F}$	25 V	4p
H8/3A	$4{ }^{\text {LIF }}$	50 V	4 p	H7/8	$\cdots$	$125 \mu \mathrm{~F}$	16 V	5p
H8/4	$47 \mu \mathrm{~F}$	25 V	4p	H7/8A	4	$100 \mu \mathrm{~F}$	35 V	6p
H8/4A	$5 \mu \mathrm{~F}$	64 V	4p	H7/9	0	100 HF	63 V	6p
H8/5	$5 \mu \mathrm{~F}$	10 V	4p	H7/9A	-	$125 \mu \mathrm{~F}$	4 V	4p
H8/5A	$5 \mu \mathrm{~F}$	150 V	4p	H7/10	$\underline{0}$	$125 \mu \mathrm{~F}$	25 V	6p
H8/6A	$10 \mu \mathrm{~F}$	10 V	4p	H7/10A	$\bigcirc$	$160 \mu \mathrm{~F}$	2.5 V	3p
H8/7	$10,4 \mathrm{~F}$	70 V	4p	H7/11		$160 \mu \mathrm{~F}$	25 V	6 p
H8/8	$16 \mu \mathrm{~F}$	35 V	4p	H7/11A	$\stackrel{*}{*}$	$150 \mu \mathrm{~F}$	16 V	5 p
H8/8A	$16 \mu \mathrm{~F}$	16 V	4p	H7/13A	$\underline{11}$	$200 \mu \mathrm{~F}$	25V	8p
H8/9	$20 \mu \mathrm{~F}$	6 V	2p	H7/14	a	$220 \mu \mathrm{~F}$	50 V	10p
H8/9A	$20 \mu \mathrm{~F}$	70 V	4p	H7/14A		220,1F	16 V	6p
H8/10	$22 \mu \mathrm{~F}$	50 V	4p	H7/15	©	$220 \mu \mathrm{~F}$	25 V	5p
H8/IOA	$22 \mu \mathrm{~F}$	100 V	4p	H7/15A	14	220 1 F	35 V	10 p
H8/II	$25 \mu \mathrm{~F}$	12 V	4p	H6/1A	-	$250 \mu \mathrm{~F}$	4 V	3p
H8/l\|A	24.15	275 V	4p	H6/2		$250 \mu \mathrm{~F}$	25 V	3p
H8/12	$32 \mu \mathrm{~F}$	15 V	4p	H6/3A	**	$320 \mu \mathrm{~F}$	2.5 V	3p
H8/12A	$30 \mu \mathrm{~F}$	10 V	4p	H6/4	W	$320 \mu \mathrm{~F}$	10 V	4p
H8/13A	$32 \mu \mathrm{~F}$	50 V	4 p	H6/4A	0	$330 \mu \mathrm{~F}$	16 V	5p
H8/14	$40 \mu \mathrm{~F}$	25 V	5p	H6/5	4	$330 \mu \mathrm{~F}$	25 V	10 p
H8/14A	$40 \mu \mathrm{~F}$	16 V	4p	H6/5A		$330 \mu \mathrm{~F}$	35 V	15p
H8/15	$47 \mu \mathrm{~F}$	50 V	4p	H6/7	$\cdots$	$400 \mu \mathrm{~F}$	15 V	5p
HB/15A	$40 \mu \mathrm{~F}$	35 V	4p	H6/8	0	$470 \mu \mathrm{~F}$	25 V	10p
H7/1	$50 \mu \mathrm{~F}$	6 V	3p	H6/BA	$\bigcirc$	$470 \mu \mathrm{~F}$	35 V	20p
H7/IA	$50 \mu \mathrm{~F}$	10V	4p	H6/9	0	$500 \mu \mathrm{~F}$	15 V	4p
H7/2	$50 \mu \mathrm{~F}$	50 V	4p	H6/9A		$400 \mu \mathrm{~F}$	40 V	20p
H7/2A	$64 \mu \mathrm{~F}$	2.5 V	2p	H6/10		$750 \mu \mathrm{~F}$	12 V	5p
H7/3A	$64 \mu \mathrm{~F}$	25 V	4p	H6/13A		$1000 \mu \mathrm{~F}$	25 V	16p
H7/4	$64 \mu \mathrm{~F}$	15 V	4 p	H5/2A		$2200 \mu \mathrm{~F}$	16 V	$15 p$

## MULLARD ELECTROLYTIC CAPACITORS 071 and 072 Series



## £1

```
100
100 Ceramic
Capacitors
```

POSTAGE 15p $\overline{\text { PACK }} \bar{K}$ No. 1
2 $\begin{aligned} & 100 \text { Resistors } \\ & 100 \text { Ceramic Capacitors } \\ & 100 \text { Polystyrene }\end{aligned}$
Capacitors $52 \frac{1}{8}$ in $\times$ lin $\times 15$ Boards 50 sq.ins "Odd Pieces'

## - $\quad \begin{aligned} & 20 \text { Assorted Unused } \\ & \text { Marked, Tested }\end{aligned}$ <br> Transistors

POSTAGE 15p _ PACK NO. 3
100 Resistors
100 Ceramic Capacitors
50 Mullard Polyester Capacitors

POSTAGE 15p _ _ PACK No. 5 £1 Transisto
Tracer Kit I Transistorised Signal Injector Kit

6 Computer Panels
containing masses o Inductors, Resistors and Capacitors POSTAGE 25p 100 Resistors 100 Capacitors (Assorted types)

## Give us sixmonths, and well tumy your hobby into a career:

You have a hobby for a very good reason. It gives you a lot of pleasure.

So if you can find a job that involves your hobby, chances are you'll enjoy your work more, and you'll do better work

Now CDI can help you find such a job. A job where you'll be responsible for the maintenance of a computer installation. A job that pays well too. If you're interested in mechanics or electronics (without necessarily being a
mathematical genius), have a clear, logical mind and a will to work, then we can train you to be a Computer Engineer inside six months.
So give us a call. CDI. We're the Training Division of one of the world's largest computer manufacturers. And we have the experience to know if you can make it. A ten minute talk with us, and you could be on the way to spending the rest of your life with your hobby.

## Ring <br> 

between 9 a.m. and 9 p.m. and ask for Mr PLAISTER


## Practical Electronics Classified Advertisemenis

RATES: 9p per word (minimum 12 words). Box No. 20p extra. Semi-Display $£ 7$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

## SITUATIONS VACANT

## HERTFOMTSHIRE

## DESIGN, CRAFT AND TECHNICAL STUDIES TEACHING COULD OFFER YOU SECURITY AND INVOLVEMENT

APPLICATIONS ARE INVITED FROM MEN AND WOMEN WHO HOLD THE FOLLOWING QUALIFICATIONS AND WHO WOULD LIKE TO BECOME TEACHERS OF DESIGN, CRAFT AND TECHNICAL STUDIES IN SECONDARY SCHOOLS. SUCCESSFUL APPLICANTS WILL BE PROVIDED WITH A SHORT COURSE OF PROFESSIONAL TRAINING ON FULL SALARY.
(a) GRADUATE especially in a Technological field.
or
(b) H.N.D. plus two years' appropriate industrial experience after the age of 21 .
or
(c) H.N.C. plus five years' appropriate industrial experience after obtaining O.N.C.
or
(d) Dip.A.D. awarded by the National Council for Diplomas in Art and Design especially in Three Dimensional Design related to Furniture Design, Product Design, Silversmithing, Jewellery or other forms of Metalwork.
(e) Dip.Tech. awarded by the National Council for Technological Awards or the Council for National Academic Awards (last awarded in 1969).
Appropriate industrial or commercial experience would be accepted for incremental purposes. A starting annual salary of $£ 1,900$ approx. on a basic scale which extends to $£ 2,279$ ( $£ 2,445$ for first or second class honours graduates) would be payable to a non-graduate aged about 35 and with 12 years' appropriate experience in addition to the requirements set out in (b) or (c) above. A similarly experienced graduate would receive a salary of over $£ 2,000$ on appointment. There may be prospects for promotion to Scale 5 max. $£ 3,277$. Hertfordshire schools in the Metropolitan Police area qualify for the London Allowance, at present f 118 a year. Scales under review. Contributory Pension Scheme.
Enquiries which will be treated in strict confidence are invited, and an assessment of starting salary made in the light of details submitted with no obligation on the part of the enquirer.
Please write to: County Education Officer (Ref.: PRD/PE) Education Department County Hall, HERTFORD, Herts.
or telephone : Hertford 4242, Ext. 5047 to arrange an informal interview.

## SERVICE SHEETS

sERYICE 8HEETS, Radio, TV, ete 8,000
models. Catalogue $15 p$ S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

ERVICE 8HEET8 for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., from ${ }^{5} p$ with free Fault-Finding quide. S.A.E. orders/inquiries. Catalogue 15p. HAMILTON RAJIO, 47 Bohemia Road, St. I.eonards, Sussex. Telephone Hastings 29066.


Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct-fromAmerica, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 2500+$ p.a. After training, our exclusive appointments bureau-one of the world's leaders of its kind-introduces you FREE to world-wide opportunities. Write or phone TODAY, without obligation.

London Computer Operators Training Centre
M86, Oxford House
9-15 Oxford Street, W.1
Telephone 01-734 2874
127 The Piazza, Dept. M86
Piccadilly Plaza, Manchester 1 Telephone 061-2362935

## SHOP ASSISTANTS

16-23 years WANTED
ODEON RADIO HARROW 4275778

## SPECIALISTS IN COMPONENTS

## COURSES

FULL TIME COURSES in Blectronics and Thelevision. These are nime-month courses, starting september 1973, leading to City and Guilds Certiticates. Extensive laboratory work is inchuded, and there are, in most cases, no fres for those under $1 \times$ enrolment. Full details from: NECTION 2\%2, Electrical amd Electronic linginering j)fpartment, southall college of Technology, beaconstieht Road, southatl, Middx.

## EDUCATIONAL

ENGINEERS. (ien it techuical certificate. postal courses in Engineering, Jilectronirs, Radio, TV, ('omputers, J)raughtsmanship. Buildings, ete., FREDE book from: BIET (bept. Zo: BD'E 27), Aldermaston ('ourt,



## BOOKS AND PUBLICATIONS

THOSE 1，000 BANBURY UFO＇s！Details our prediction（map，data），list，S．A．E．Charts， map，new micro－circuit（multi－purpose）detec－ tor． $\boldsymbol{R}$ \＆E PUBLICATLONS，Highlands， Feedham Market，Suffolk

DIGITAL COMPUTER Logic and Electronics A four volume Self－instructional course，22．99 post free．Money back assurance．CAM－ BRIDGE LEARNING，8a Rose Crescent， Cambridge．

8TOP PRE8S：FIBRE OPTIC 8UPPLIERS． New booklet now available including optikits， photo－transistors and full range of fibre optics． send 10p stamps please to P．O．Box 702， London，W10 6SI

## FOR SALE

8EEN WY CAT ？5，000 items．Mechanical and Electrical Gear，and materials．S．A．E．K．R WHISTON，Dept．PE，New Mills，Stockport．

> TV LINE OUT－PUT TRANSFORMERS Tidman Mail Order Led．， 236 Sandycombe Road，Richmond，Surrey TWO 2EQ 01－948 3702

```
 FIBREOPTICS
Flexible Light Pipe for conveying light to in-
ccessible positions. Fibroflex Type 1.Glass
merre, (VAT inc) P & P IOP. Any quantitr
Polariser Sheat up to l sq.ft. max, size, 16 to
per sq. in. (VAT inc.), P. & P. up to }6\mathrm{ in, square
10p; over 6 in, square 30p
 Cut down glare
 See those nixie tubes
 Cross themfor light control
 Make your own strain gauge for plastics
 and glass
Circuit Board Etching Kite. Full instructions.
 &1.371 (VAT inc.), P, & P. 14p
Photographic CDS Light Cella-used (with
Dast free.
 All items are strictly C.W.O
From: ARVIN SERVICE COMPANY
 12 CAMBRIDGE ROAD
 ST. ALBANS
```

LOW－COBT I．C．MOUNTING．I．C．socket pins in lengths of 100 for 60 （ P．\＆I＇． 5 p ）．S．A．E． details and sample．GASkELI，Dak Lodge， Tansley，Derbyshire．

MULTI－CORE screened cable， 6 core， 50 metres， 44．50．Armoured telephone cable， 4 core on 440 yard reels． 225 per reel．Samples available． HERTING，The Bungalow，Leaveland，Faver－ shan．Challock 482 ．

YOLUME8 of Practical liectronics，Television and Practical Wireless，1968－19i2．20p per issue．Phone Newbury 3795.

MORSEMADEEASY：！ FACT NOT FICTION．It gou start RIGHT you will be reading amateur and commercial Morso within a month（normal progrese to be expected）．
Using ecientifically prepared 3 －epeed recorde you automatically learn to recogolae the code RHYTHM without trangiating．You can＇t heip it，it＇g as easy as Beginner＇思 Section only $83-30$ ．complete course 84. （Overseas \＆I extra）details only，4p stamp．01－680 2896 G3HSO（Box 19）， 45 GREEN LANE，purley，surrey

## WANTED

## TOP PRICES PAID

for new valves and components
Popular T．V．and Radio types
KENSINGTON SUPPLIES
（B） 367 Kensington Street Bradford 8，Yorks．

## RECEIVERS AND COMPONENTS

## Trampus alagtronin

Add $10 \%$ VAT，品）to all prices All brand new，no rejects．Money By DIGITAL INDICATOR （1－610P sucket and thiter £1－45． LED TYPE $\left.5^{-0} 0-91\right)$ P IDL 22.25 ach；tix 82.18 each． 4 ＂hgit ype
LiGHT EMITTING DIODES．． 1



33p．（ireen 75p．
1NFRARED bean LED E1－10．
GAS iletectur £1－69．I＇ltrasomic tiannducel 82. DALO PCB resist marking pen 69p．Colper brard $12 \times 6^{*} \times R B P 40 \mathrm{p}$ ．Fet reth l＇AK 19 p ． INTEGRATED CIRCUITS：with data if required IC LITE SWITCH：Photo anmp／tigger 4 min．$/ 11$－201

## IL digital cloch


 £1－24，

 RECEJVER 2N゙414 £1．19．Min K Kit 21.99 ，



 45 p ； $7+1+1$ 99p； $7+190 / 91 / 22 / 53 / 9 \mathrm{ni}$ £2－39．101L Plagyit＇eave Ihatu high 16 pin 35p DIL SOCKETS：tow or high protile N／14／16 pin 13 p ． SEMICONDUCTORS


 NTOt $11 \mathrm{p} ;$
 $\therefore 3 / 02 / 3 / 4 / \overline{5} / 6 / 18 / 9 / 10 / 11$ All $9 p$ each
 23p；A 55p．TRASAFORMER：A 1 and MOE El．

 CARBON POTS 12p tach．Dual 40p，Nuitch +12 p ．


RRIO＂an fily mote diffuer
CoDAR＂onmmmeations and li－Ft PW ELECTRONIC CAR IGNITION KIT $86 \cdot 67$
VAT：1＇OU MLisl ADD $10 \%$（ $\quad$ ）torall price＇n
FREE CAT．S．A．E．Data sheets 8 p each．P．\＆$P$ ．
$8 \mathrm{p}, \mathrm{C} . \mathrm{W} . \mathrm{O}$ ．
P．O．BOX 29，BRACKNELL，BERKS．

COMPUTER PANELS．9in $\times 7$ 7iju long lead trang and comps．，EA， 8 trans．，27p（10p）；E45， 16 trans． $44 p(10 \mathrm{p})$ ；E47， 10 trans， $88 \mathrm{p}(10 \mathrm{p})$ ．Panels with fC METERS， 2 in or 3 in，three absorted， $81 \cdot 15$（ 25 p ） FIRE ENDED NEONS $10,50 \mathrm{p}(8 \mathrm{p}) ; 20,82 \mathrm{p}$（ 8 p ）， WIRE ENDED NEONS 10 ， 50 p （ 8 p ）；20， $82 \mathrm{p}(8 \mathrm{p})$ ）
Bank of 5 with 6 C407 driver Trans．， $50 \mathrm{p}(8 \mathrm{p})$ Bank of 30 ditto $82.20(15 \mathrm{p})$
MAMs 8TEPPIMG SWITCE
8Sp（15p）．RESETTABLE COUNTER， 5 flet．
$18 / 22 \mathrm{~V}$ ．will work on $12 \mathrm{~V}, 22 \cdot 20$（15p）．

$35 \mathrm{p}(5 \mathrm{p})$ ．New 800 F． 3 A .6 tor 25 p （ 5 ）
7400 SERIES I．C．ON PANEL（S）．10，82p（8p）．
COPPRR CLAD PAX．PANELS． 5 in $\times 5$ in．
quantity 6 for $88 p$（ 10 p ）．
MIXED POLY8TYRENE／S，MICA CAPS．100，50p．
716 ASSORTED COMPONENTS of Assorreb componearo 21.60
S．A．E．9in $\times 4$ in for list of computer panele，
J．W．B．RADIO
75 Hayfield Road，Salford 6，Lancs
Postage in brackets Mail order only

8URPLUS to Industrial requirements Packs of 50 mixed miniature Electrolytic Capacitors． \＆1 per pack of 50 plus 10p P．\＆P．C．W．O 13LORE－BARTON LTD．，Reedham House， Burnham，Bucks．

8INCLAIR 1612 with P．C．Components，all mounted E2．78 P．\＆P．10p．S．A．E．for list of kits．（Mail Order Only．）J．K．ALLEN， 7 Pandfield Crescent，St．Albans，Herts

## 74IC，28p

8 pin DIL， $50+, 26 p ; 100+$ ，28p．brand new full spec．devices，BC107－9，9p；12 for E1；2N3055， 85p；1N914，4p；25＋，8p；1N4003，7p；1N4006， 11p．Resistors：＇Mullard CR25 min．carbon film E12 series， $1 \Omega-1 \mathrm{M} \Omega 5 \%, \mathrm{~J} \cdot 2 \mathrm{M} \Omega-10 \mathrm{M} \Omega 10 \%$ 1p or 750 per 100 any selection．Capacitors，min． ceramic plate $50 \mathrm{~V} \quad 22 \mathrm{pF}-1,000 \mathrm{pF}$ ． 2 p or $21 \cdot 50$ per 100．Veroboard： $17 \times 32 \times 0.1,21 ; 17 \times 34 \times$
$0.15,75 p$ ：Ferric Choride $2 n h y d r o u s$ $1 \mathrm{~b}, 40 \mathrm{p}$（ 15 p ）； $101 \mathrm{~b}, \mathbf{2 3} \cdot \mathrm{s0}$（ 50 p ）．

## COMPUTER PANELS

R，A，C，s，diodes，transistors inc．power types，pot cores，trimpots，etc．Some boards broken，but good value at $311 \mathrm{~b}, 21(25 \mathrm{p})$ ； $71 \mathrm{~b}, 22(40 \mathrm{p})$ ．

## CASED AMPLIFIERS

$2 \times$ ECC83，EL84，EZ80 valves on $12 \times 5 \times 3$ in chassis in $14 \times 13 \times 9$ in cablnet with $7 \times 4$ in $3 n$ speaker and non－standard deck using special cas ettes． $\$ 1$（25p）Spare tape heads 40 p ．

## 1，000 COMPONENTS $£ 3$

This parcel contalina at leaat 1,000 resistors and capacitors including carbon Alm，metal oxide，hi－ atabs， $1,2,5 \%$ ， $\mathrm{t}, \mathrm{t}, 1$ and 2 W ，1em wiremound， ceramic，electrolytic，polystyrene，naper，mica，etc All brand new and unused $\mathbf{8 3}$（30p）．Post in brackets，Small parts 3p．8．A．E．list．Please

GREENWOOD（PE9）
24 Goodhart Way • W．Wickham Kent
Shop at 21 Deptiord Broadway，S．E． 8 Tel．01－692 2009

U．K，ORDERS＇－ADD VAT TO TOTAL
MICROCIRCUITS： 709 28p； 710 36p；723 57p 74132 p ； $748 \mathrm{37p}$ ；PA230 70p；SL402A 19 ！；FET OP． Amp． 43.62.
TRANSISTORS：2N696 14p；2N697 14p；2N706A
 RED 6p：ORANGE 7P：YELLOW8P：GREEN9P $2 N 3053^{\prime} 15 \mathrm{p}$ ；2N3054 40 p ； $2 N 3055$ 35p； $2 N 3702$


 15p；ACY17 23p；ACY21 17p；AF11414p；AF115 7p；BCI09B 8p；BCI09C 8p；BCI2S 14p；BC147A

 BCY71 22p；BD142 35p；BFIIS 20p；BF194 13p；
BFX29 24p；BFX84 20p；BFX86 15p；BFX87 24p； $\begin{array}{lllll}\text { BFX29 24p；BFX84 20p；BFX86 15p；BFX87 24p；} \\ \text { BFX88 15p；BFY50 15p；BFY5i 15p；BFY52 15p；} \\ \text { BLY47A } 40 \mathrm{p} ; & \text { BSX20 12p；OC44 12p；OC45 } 12 \mathrm{p} ;\end{array}$ OC7I 12p；OC72 12p；OC81 18p；OC83 24p．
ME SERIES AVAILABLE．
RECTIFIERS：I amp－50V 3ip；100V 4p；200V 4苗； $400 \mathrm{~V} 5 \mathrm{p} ; 800 \mathrm{~V} 6 \mathrm{p}$ ； $1,000 \mathrm{~V} 7 \mathrm{p}$ ．
ZENERS BZY88 SERIES：2－7V to 33V，8p each．
DIODES：IN916 4p；OA90 6p；OA200 7p； OA202 8p．SCR IR122D（400V 5A）41．14． LED PANEL LAMP with Bush and Data 28p $22 \Omega$ to $2 \cdot 2 \mathrm{Ma}$ Ip each or 7 p Per 10 of ONE VAlues $22 \Omega$ to $2 \cdot 2 \mathrm{M}$ Ip each or 7p per 10 of ONE VALUE
DALO ETCH RESIST FILLED FIBRE TIP PEN 80p． IINIATURE METAL GLAZE RESISTORS $W$ W $5 \%$ 4！p each，ikn THERMISTOR 9P；2N3819 26p． BOOKLET 40p．ITT POCKET MULTIMETER， 27 anges，$f 17$ ．
（Above prices on April 2nd．Check our list．）

## JEF ELECTRONICS（P．E，6）

York House， 12 York Drive，Grappenhall
Warrington WAd $2 E J$ arrington Watzed

C．W．O．P．\＆P．at cost． 10 p min．List free

## BRAND NEW COMPONENTS by return．

 bectrolytics $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0 \cdot 47,1,2 \cdot 2,4 \cdot \frac{7}{7}$ $10 \mathrm{mF}, 4 \mathrm{p} ; 22,4 \frac{1}{2} 4 \mathrm{p}(50 \mathrm{~V}, 5 \mathrm{p}) ; 100,6 \frac{1}{3} \mathrm{p}$ （ $50 \mathrm{~V}, 7 \mathrm{7p}$ ）．Subniniature bead－type tantalums $0 \cdot 1 / 35 \mathrm{~V}, 0 \cdot 22 / 35 \mathrm{~V}, 0 \cdot 47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}$ $4.7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}$ ， 8 p. Mylar Film $100 \mathrm{~V}-0-001$ ， $0.002,0.005,0.01,0.02,2 p ; 0.04,0.05,3 p$ ； $0 \cdot 068,0 \cdot 1,3 \frac{1}{2} p$ ．Jolystyrene 63 V E 12 series $10-10,000 \mathrm{pF}, 2 \mathrm{p}$ ．Miniature highstab resistors E 12 series $5 \%$ ，$\frac{1}{3} \mathrm{~W}$ carbon film $1 \Omega-10 \mathrm{M} \Omega$ $10 \%$ over 1 Meg．）．Metal film $\frac{1}{1} W, 10 \Omega-$ $2 \cdot 2 \mathrm{M} \Omega$ and $1 \mathrm{~W}, 9 \pi-10 \mathrm{M} \Omega$ all $\frac{3}{4}$ each． Postage 8p，The（I．R．SUPPLY CO．， 127 Chesterfield Road，Sheftield，S8 ORNCOMPONENTS GALORE．Pack of 500 mixed components manufacturers surplus plus once used．Pack includes resistors，capacitors， transistors，diodes，I．C．，gang，pots，etc． Tremendous value，Send $£ 1$ plus $10 p$ P．\＆P． （！W．O，to CALEDONIAN COMPONENTS， Fosterton Firs，Strathore Road，Thornton， Fife．

## DRY REED INSERTS

Overall length $1.85^{*}$ (Body length $1-1^{\prime \prime}$ ),
Diameter $0.14^{*}$ to switeh up to 500 mA at up to to $250 \vee \mathrm{D}$. C. Gold clad contacts. 69 p per doz 64.12 per 100; 630.25 per 1,000: $£ 275$ per 10.000 . All carriage paid.
G.W.M. RADIO LTD.

40/42 Portlsnd Road. Worthing. Sussex 090334897

## PRECISION

POLYCARBONATE CAPACITORS
Closetolerance. High stability. All 63 V d.c.
$0.47 \mu \mathrm{~F}: \pm 5 \% 80 \mathrm{D}: \quad \pm 2 \% \quad 40 \mathrm{p} ; \pm 1 \% \quad 80 \mathrm{D}$
 TANTALUM BEAD CAPACITORS. Values available 0 . $, 0 \cdot 22,0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at
$35 \mathrm{~V}, 10 \mu \mathrm{~F} 25 \mathrm{~V} .15 \mu \mathrm{~F}^{2} 20 \mathrm{~V}, 22 \mu \mathrm{~V} \mid 5 \mathrm{~V}, 33, \mu \mathrm{~F} 10 \mathrm{~V}$, $47 \mu \mathrm{~F}^{*} 6 \mathrm{~V}, 100 \mu \mathrm{i}^{*} 3 \forall$-all at 9 p each; 6 for 50 p 44 for $\& 1$. Special pack 6 off each value ( 78 capaciters) 45 .
NEW:-TRANSISTORS. BCIO7, BCIOB, BCl09. All at 9 p each; 6 for 50 p ; 14 for 11 . All brand new and marked. Full spec. devices. May
be mixed to qualify for quantity prices. AFI78 -40p each; 3 for $\$ 1$
POPULAR DIODES. IN $914,7 \mathrm{P}$ each; 8 for 50p; IB for 61 . IN916.9p each: 6 for 50p; 14 for 61. 1544, 5p each: il for 50p; 24 for fl . Al brand new and marked
NEW LOW PRICE -400 mW Zenors.
Values available $47.5 .6 .68 .7 .5,8.2,1.10 .11$..$~$ Values available $47,56.68,7.5,8-2$. 9.1 . 10, .
$12,13.5$, 15 V . Tol. 5 m at 5 mA . All new and
 marked. Price $10 \mathrm{peach}: 6$ for 50 ; 14 for (l.
Special offer 6 off each voltage ( 66 zeners) $\mathbf{4 . 5 0}$. RESISTORS. Carbon film $5 \%$. $\frac{1}{2} W$ at 40 C , 3 W at $70^{\circ} \mathrm{C}$. Rangefrom 2.2 A to $2.2 \mathrm{M} \Omega$ in El 2 series. i.e. $10,12,15,18,22,27,33,39,47,56,68$, 82 and their decades. Hiph stability, low noise. All at 100 of any one value. Special pack - io oti eash value 2.20 to 2.2 Mn (730 resistors) 65 440V A.C. CAPACITORS. O.1/ FF, size 1 bin $X$ tin, 25p; 0.25.f. size 1 in $\times$ in $30 p$; 0.47 and $0.5 \mu \mathrm{~F}$ size $16 \mathrm{in} \times \operatorname{in}$. $35 \mathrm{p} ; 1.0 \mu \mathrm{~F}$, size $2 \mathrm{in} \times \operatorname{in}$. 45p; 20 0 FF, size 2 in $\times \operatorname{lin} 75 \mathrm{p}$.
SILICON PLASTIC RECTIFIERS $15 A-$ Brand new wireended DO27. 100PIV at 8 p each or 4 for 30p: 400PIV at $9 p$ each or 4 for 34p; 800PIV at 14 peach or 4 for 50 p

Please add 10 VAT to all orders
MARCO TRADING
(Formerly V. ATTWOOD)
Dept. E6, The Maltings, Station Road Wem, Shropshire

## BELFORD ELETRONIES

2 Grove Place • Bedford Bedford 51961
YOUR LOCAL COMPONENTS SUPPLIER

FREE CATALOGUE ON REQUEST

## 100 WATT AMPLIFIER

Fully protected, transformerless, 9 transis* tor circuit. Input 500 mV . Output into 8 ohms. $0.1 \%$ distortion.
Printed circuit board and full instructions. £ 1.45 p +10 p P. \& P. S.a.e. for list of component bargains.
EDMUND8 COMPONENT8, 134 NORTHFND ROAD, LONDON, W14.
(Mail order only)

5-N-Channel FETs 38 I9E-EI
Full specification devices complete with circuit detaits for building voltmeter, timer, ohrm meter, etc
Send $10 p$ for full list of field effect transistors and other top q
gain prices.
REDHAWK SALES LTD.
45 Station Road, Gerrards Crose, Bucks. MAIL ORDER ONLY

TUNBRIDGE WELL8. Components from TELESERYICE, 108 Camden Road, Tunbridge Wells, Kent. Telephone 31803.

## P.E. SYNTHESISER

 KNOB KITComplete kit as Feb. issue
43 knobs, 7 calibrated dises. $\quad \mathbf{\$ 3 . 9 1}$ post
43 knobs, 7 calibrated dises. $\mathbf{E 3 . 9 1}$ free DE LUXE KIT as above but
calibrated for programming. $\quad \mathbf{~} 5.89 \begin{aligned} & \text { post } \\ & \text { free }\end{aligned}$ calibrated for programming.

Inclusive postage and
Burnham Road, Dartford, Ken
Tel.: Dartford 20785
RADIO \& TELEVISION AERIAL BOOSTERS £2.95, flve television valves 45p. 50p bargain transistor packs. Jargain $£ 1$ resistor and capacitor packs. UMF-VHF televisions $\mathbf{8 7 . 5 0}$. carr. $£ 1.50$. S.A.E. for 3 leaflets. VELCO ELACTRONICS, llidge St., Ransbotom, Burs, Lancs.
VISIT AUTO TRACTION. Thousands of barpains in surphus radio equipment. Meters, motors, relays, TR/TX, telephone equipment, aireraft equipment. S.A.E. enquiries. 27a Arragon Road, Twickenham, Middx. 01.8929489

## LADDERS

LADDERS, 24ff $\mathbf{6 9 . 8 0}$, carr. 80p. Leaflet (bept. IDE), HOME NALES LADDER
('ENTRE, Batdwin Road, Nourport, Wores.


## MISCELLANEOUS

AT LAST YOU CAN TRANSMIT AND FORGET ABOUT LICENCE EXAMINATIONS because this Ministry approved transmitter/receiver kit does not use R.F
Your transmissions will be virtually SECRET since they won't be heard by conventional means.
Actually it's TWO KITS IN ONE because you get Actually it's the printed-circuit boards and components for both the transmitter AND receiver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGEhas obvious applications for SCHOOL PROJECTS,
LANGUAGE LABORATORIES, SCOUT CAMPS, Ct.

GET YOURS! SEND $\mathbf{5 5}$-80 (inc. VAT) NOW
S. A.E. fordetails) S.A.E. fordetails 'BOFFIN PROJECTS'

TO: 'BOFFIN PROJECTS
STONELEIGH, EWELL, SURREY

HARDWARE-Screws, nuts, washers and other useful items in small quantities. Sheet athminimm to individual requirements, aluminimm to individual requirements, punched/drilded. Send bp for list, RAMAR
consTRU'TOR SERVTCEES 29 shebourne Road, strattord-on-Avon, Warwickshise


## ELECTRONICS FANATICS

whether beginner or advanced-we offer

## eck

Mave you ever wanted to build A MACHINE THAT LEARNS? Or perhaps mancy the idea of an ELECTRONIC FANTASY MACHINE? How about a "Thing" capable of REPRODUCING ITSELF? Whatever your electronic turn. of-mind, there's just GOT TO BE LOADS TO INTEREST YOU in the science-fiction. world of BOFFIN.
GET YOUR CATALOGUE - SEND JUST 15p NOW!

## TO: BOFFIN PROJECTS

4 CUNLIFFE ROAD
STONELEIGH, EWELL SURREY
Designs by GERRY BROWN and JOHN SALMON and presenced on TV.

Build the Multard C.C.T.V. Camera Kits are now available with comprehensive construction manual (also available separately at $76 \frac{1}{2} p$ )
SEND 5" $7^{* \prime}$ S.A.E.FOR DETAILS TO: CROFTON ELECTRONCS
15/17Cambridge Road, Kingston-
on-Thames, Syrrey
KT1 3NG

## SWITCHES UNUSUAL

PRESSUREMAT-flexible, hard-wearing plastic mat containing 180 contacts. Contacts close when
pressed, open when released. Rating 50 V , 1 A . pressed, open when
Size 30 in $\times 24 \mathrm{in}$. 63.50
MINI MAT-size $24 i n \times$ 7in. 62. (Construction as above but more sensitive). Suitable for burglar alarm, counter, foot switeh, games, seat belt andicator, car alarm by imagination.

POSTAGE I50 PER ITEM. C.W.O.
ELECTRONIC SWITCHING DEVICES
P.O. Box IO, Aspley, P.D.O. Nottingham

For further details send S.A.E.

## MUSIC

If your interest is in SYNTHESISERS and other ELECTRONIC MUSIC projects, you need our 1973 catalogue of circuic assemblies with project layouts Send 20 p P.O. complete TAYLORELECTRONICMUSICDEVICES P.O. Box 42, Chester CHI 2PW

CONSTRUCTION AIDS. Screws, muts, spacers, etc., in small quantities. Aluminium panels punched to spec. or plain sheet supplied, Fascia panels etched aluminium to individual requircments. Printed circuit boards-mastors, negatives and boards, one-off or small numbers send op for list. RAMAR CONSTRUCTOR sERVICES, 29 Shelbourne Road, stratford-on-Ivon, Warwks

CLEARING LABORATORY, scopes, V.T.V.M's, V.O.M's, M.S. recorders, transeription turntables, electronic testmeters, calibration units, 1'S.U.'s, pulse generators, D.C. nullpotentiometers, bridges, spectrum analysers, voltage regulators, sig-gens, MC relays, components, etc. Lower Beeding 236.

ENAMELLED COPPER WIRE

S.W.G.	116 Reel	$11 / 8$ Reel
10-14	4.15	65p
15-19	\%.1.15	65p
20-24	41.18	68p
25-29	11.25	75p
30-34	¢1.30	80p
35-40	11.40	85p

INDUSTRIAL SUPPLIES
102 Parrawood Rd, Withington, Manchester 20

## PSYCHEDELIC MINI-STROBE <br> A very POWERFUL, POCKET-SIZED STROBE-LIGHT that is SELF-CONTAINED and really BRAIN.FREEZE them with DAZZLING PSYCHEDELIC EFFECTS and STOP-MOTION FLASHES. Boffin's new MINI-STROBE kit constitutes a fully solid-state electronic device which is COMPLETE with FUTURISTIC case/ reflector unit. prinzed-circuit board, electronics, and source-lamp-t the only extra is a battery which you can buy locally. The whole <br> A veritable FLICKERING FASCINATOR! Adjustable flash-rate. <br> GET ONE (or two) NOW and BEGIN STEALING THE THUNDER at DISCOS and PARTIES with your own POCKET. LIGHTNING <br> SEND C2.10 (inc. VAT) for YOUR <br> To: Boffin Projects <br> 4 Cunliffe Rd., Stoneleigh, Ewell, Surrey

## FIBRE OPTIC SUPPLIERS

P.O. BOX 702 . LONDON W 10 6SL

FLEXIBLE LIGHT CONDUIT is used almost like wire to convey light to inaccessible positionsfor inspection, panelindicators, photo electric and other applications.
FIBROFLEX SIZE I glass fibre flexible light conduit, 1.14 mm active dia. bundle sheathed in io ferrules. Prices: 5 metres, 2.97 : 10 It
 CROFON 16101.80 mm active dia., 64 filamen plastic light conduit. Prices: 1 metre, $\mathbb{C 1} 43$; $2 \mathrm{~m}, \mathrm{E2} \cdot \mathbf{8 6} ; 5 \mathrm{~m}, \mathrm{C6} 60 ; 10 \mathrm{~m}$. $411 ; 25 \mathrm{~m}$, $\mathrm{C22}$; 50 m , C42.35.
PLASTIC OPTICAL MONOFILAMENT. TYPE FP 20, 0.5 mm dia. unsheathed. 100 mP .43 .85 $200 \mathrm{~m}, 46 \cdot 60 ; 500 \mathrm{~m}, ~ \subset 13.75$. Type FP $40,1 \cdot 0$ mm dia. Unsheashed. $10 \mathrm{~m}, \mathcal{C 2} \cdot 20 ; 25 \mathrm{~m}, 4440$ 50 m ,'्S TAlls: Spray of
fibres ready to use as peral thousand glass displays. rill each. HN 32 LINEAR POLARIZER $0.030^{\circ}$ thick. $32 \%$ luminous transmittance, $0.005 \%$ extinction Applications leaflet, inc. light intensity control, stress analysis, glare reduction, etc., supplied with orders. $2^{\prime \prime} \times 2^{\prime \prime}$ square, 11.43 per pair $3^{\circ}$ sq.' $\mathbf{2} 2.75$ per pair; $4^{4}$ sq., 44.40 per pair. Prices shown above include V.A.T., postage and packing. Send $10 p$ Stamps for full range of
products, price list and samples.

## DIMMIT

range of light dimmers

* attractive standard wall mounting models for home and office, etc.
$\star$ commercial modules for studio, stage, disco and clubs, etc.
$\star$ professional modules for industrial use on heaters, lamps, motors, etc.
Rotary and slider control versions.
Ratings available: $400 \mathrm{~W}, 1 \mathrm{KW}, 2 \mathrm{KW}$.
Send 10p for complete catalogue and price list. Trade enquiries invited.

DEPT. 11
YOUNG ELECTRONICS
54 Lawford Road, London NW5 2LN Tel, 01-267 0201

GLA8s FIBRE P.C. BOARD-large supplies a vailable. $\frac{f}{6}$ in single sided one ounce copper, $2 p$ per 3 sq in (under 1 ft ); 75 p per sq ft (over 1 ft ). $\frac{1}{16}$ in double sided one ounce copper, 1 p per sq in (under 1 ft ); $\$ 1$ per sq , ft (over 1 ft ). Please add 10 p per sq ft postage and packing. We can cut to your size at 1 p per cut. SOLID STATE LIGHTING, The Firs, Snallworth Lane, Garboldisham, Diss, Norfolk.

EXPERIMENTERS! Hundreds of unusual items cheap. 1973 catalogue 5p. (Mail Order Only.) GRIMSBY ELECTRONICS, 64 Tennyson Road, Cleethorpes, Lincs.

METER REPAIRS. Ammeters, voltmeters, multi-range meters, etc. Send to METER REPAIRS, 39 Chesholm Road, London, N 160 DS .
FIBRE GLA88 BOARD. $\frac{1}{6}$ in single sided 2p per square inch. Double sided $3 p$ per square inch. Minimum order 50 p . F. H. FREEMANTLE, 18 Pennine Road, Millbrook, Southampton.

## 12 VOLT FLUORESCENT LIGHTS



Beat power cuts. Be independent. Ideal for caravans, tents, emergency lighting, etc Works anywhere where $12 v$ is available Guaranteed for six months. Ready to use at
$\lfloor 2$ ins. 8 watt $£ 3.86$ post paid ) including 21 ins. 13 watt $£ 4 \cdot 82$ post paid $\}$ V.A.T.
Callers welcome.
For lists or enquiries, large s.a.e.
SALOP ELECTRONICS, 23 WYLE COP SHREWSBURY, SHROPSHIRE


ALUMINIUM 8HEET to individual sizes or in standard packs, 3p stamp for details. RAMAR COSSTR C'TOR NERVICEN, 29 shelbourne Road, itratford-on-Avon, Warwks.

## ZIGGY's 2001 ELECTRONICS Co. Ltd RARE BARGAINS



SPECS. MULTIMETER U4324. Sensitivity 20,000 OPV ${ }_{3}$ D. Usually high current ranges AC3 ${ }^{\text {amps }} 900 \mathrm{~V}$ d.c. $0 . \mathrm{c}$ Voltages
to 1200 V . Resistance 500 ohms-20-200 $2.000 \mathrm{k} \Omega$. Transmission leve -10 to +12 dB . This high quality instrument has diode protection. Complete with test eads, batteries, etc.
MULTIMETER 4313. Similar to above bu special features include 3 amp current range and instrument is housed in metal case witp request.) ONLY $\& 9.50$ plus 25 p P. \& P.
SANWA JP-5D. Diode protected. D.C. and AANWA JP-5D. Diode protected. D.C. and O-1M』. ©5.95. P. \& P. 20 p .
EAGLE LT700 TRANS., LT44 TRANS, Our price 32p each, postage 6p
ARE YOU HUMBLE ABOUT YOUS RUMBLE? SP25 drive wheels, 65p plus 5 , SUBMINIATURE Theels, 65p plus -very useful, very small. S/P, 25p, DP/ST, $\mathbf{3 3 p}$. Postage 5p each, over 10, postfree.
SUBMINIATURE MAINS TRANSFORMERS. Eagle MT6, 6-0-6, $100 \mathrm{M} / \mathrm{A} .80 \mathrm{p}$ postage lop.
MINIATURE TYPE MAINS TRANS FORMERS. Eagle Type MT280, 6-0-6 280 M/A, 11.20 ; MT150, $12-0-12$, $150 \mathrm{M} / \mathrm{A}$ <1.20, MT100, 24-0-24, $100 \mathrm{M} / \mathrm{A}$, C। 20 . R/S types, $13 \mathrm{~V}, 0.5 \mathrm{amp}, \mathrm{C}_{\text {. Tapped, } \mathrm{Cl} .06,16.3 \mathrm{~V},}$ $0.3 \mathrm{amp}, \mathrm{C} . \mathrm{T} ., \mathrm{Cl} .06$, Post 15 p on min. size. DIAMOND STYLI FOR SONOTONE 9 TAHC, LP/78, 65p plus $5 p$ P. \& P. LP/LP, 95p plus 5p P \& $P$
FOR SPEEDY DELIVERY OF THESE MINT CONDITION COMPONENTS PLEASE SEND C.W.O. to ZIGGY'S 2001 34 MABLEY STREET, LONDON, E.9. N.B.-Please add $10 \%$ for VAT--Sorry.

## Beginner's Guide to Colour Television

znd Edition

Gordon J. King
RTechEng, MIPRE, FSRE. MRTS, FIST(

The reader is guided through the principles of NTS' 'and PALto an understanding of the method of operation of the PAL system from aerial to display tube. The anthor, who is noted for his crisp and lucid style, has completely revised this edition. It will be of immense value to, all who wish to understand how colour television works.

1973 208 pages illustrated
0408 (0)l01 1 £l-9\%

## Elements of Linear Microcircuits

## T. D. Towers

MBE, MA, BNic, MIERE
Based on a series of articles written for Wireless World, the book gives practical guidance concerning selection of commercially available linear microcircuit devices and on the handling of these sensitive circuits within an assembly. The emphasis throughout is on applications and on everyday problems of design as opposed to production technology.
$1973 \quad 116$ pages illustrated $0.59200077 \mathrm{X} \quad £ 2.80$

## Television Engineers' Pocket Book <br> 6th Edition

Revised by P. J. McGoldrick, ('Eng, MIEE. MSMPTE

The present boons in sales of colour receivers and the continuing use of monochrome sets are placing considerable demands on the knowledge, skills and abilities of the servicing engineer. Extensively revised and updated, the sixth edition of this popular book provides an essential summary of all the basic facts, circuit techniques and technical data that are usually required for servicing either type of receiver.

1973376 pages illustrated 040800102 X £2:50

A vailable throwgh any bookseller or from the publisher
The Butterworth Group 88 Kingsway
London WC2B 6AB
shouroom and trade
counter: 4-5 Bell Yard, WC2

# BUILD A CHORDING PROFESSIONAL SYNTHESISER 



3 and 4 octave keyboards and contacts.
The Synthesiser shown above is the Dewtron "Apollo" A.9, which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you, the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching a thing of the past. VCO-2 voltage-controlled oscillator module has accurate built-in log-law for chording and other professional effects.
VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt octave voltage control. £22 each or $£ 25$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals. £15. OFT-1 chording module £7.50. Modules (except VCO-1) guaranteed two years.

## using <br> Dewtion

 (Regd. Trademark)
## PROFESSIONAL MODULES

## CASH SAVINGS

by buying modules and parts in bulk!
All modules are available separately:
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $£ 10 \cdot 50$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £12. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, AF1, £9. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls £4.50. REVERB Module and spring unit £15. V.A.T. $10^{\prime \prime}$ " extra. V.A.T. paid orders over $£ 75$.

With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to a leading group. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.l. Approved by the Association of Musical Instrument Industries. Send 150 for full catalogue of our famous musical effects.

## PHOTOELECTRIC KIT

CONTENTS PC Chasgin board, Chenicals, Etching Manual, 1nfra-Red PhotoContents. P.C. Chassis Boart, Chensalas, Latching Relay, Tranistors, Disule. Remistors, Gain Control. Terminal tranatutot, Latching Elegant 'ase, Screwn, ete. In fact everything you need to build a Stead yLlght Photo. Switch/Connter/Burglar Alarm. ete. (1roject Nu. 1) which modified for modntated-light uneration with a few adintomal componentm.


PHOTOELECTRIC KIT $£ 2 \cdot 85$
ostage and Pack. 15p (U.K.) Conmotwealth SURFACE MAIL 2J3, AIR MAlL $£ 140$ Australia, New Zeatand, B. Africa, Canada and U.S.A. Also Essential Data Circuits and Plans for Building intisible beam optical kit

10 Advanced Desigris
fur buidding I In wigible-Heam Projector and I
 fominta, Dour Openers, etc.


LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of stamlats kit. Latger Lenwes, Filter
 BIOFEEDBACK AMPLIFIER KIT
Tunable, Genpral-Purpose, Gnterferance-Rebecting Ditierential Amplitier for experimental in an signals produced by the liratit, heart ant unscles, When used with an oscilloser, ph, or aural indicator. It enables yout to monitor your brain wares, learin tor relax, moditate. etc. Learts, Chawsis, ('ase, Satteries, Plans and Instructions. P'rice $\mathbf{£ 4 . 7 5}$ portage and park

ALPHA-BETHA-THETA BRAINWAVE NONITOR KIT
Aural hrainaze Indicator for use with a Biofeduack Amplitier. Converty subsonic brain frexpencies into andible signala for easy recogtition. CONThene, Battery 12lansand Inatructions. Price £3-25, pastage Leans, Chassis, Case Comphone, Batth. Surface 25p. Air Mail 7 inp.

YORK ELECTRICS Mail Order Dept.
335 BATTERSEA PARK ROAD, LONDON, S.W. 11

## A.M. E. EEETRONICS LTD. SCORPIO ELECTRONIC IGNITION UNIT <br> complete kit with all parts and COMPREHENSVE COHSTRUCTION and fallt finding data <br> COMPLETE KIT £10.95 including V.A.T. and postage. DATA $10 p$ including V.A.T. and postage TRANSFORMER $£ 2.53$ including V.A.T. and postage. PCB. GLASS FIBRE 70 p including V.A.T. and postage. LATEST NEWS - P.E. TRIFFID. P.C.B. 70p including post and V.A.T Please add $15 p$ to orders under $£ 1.50$. Send S.A.E. for other itemised prices. <br>  MAL ORDER

## BAKER 12in. MAJOR £9

$30-14,500 \mathrm{cps}$. Double cone woofer and tweeter combination. Baker ceramic magnet assembly, flux density 145,000 gauss. BASS RESONANCE 40 c.p.s. 20 watt RMS. máor module kt $\mathbf{E 1 1 . 5 0}$
30-17,000 cps. with tweeter, crossover and baffle.

BAKER LOUDSPEAKERS			V.A.T.-ADD 10\%
Regent 12 in. 15 W	48	Superb 12 in. 20W fls	Group
Major 12 in . 20W	\& 8	Auditorinm 12 in .25 W £14	Grou
Delure 12 in. 15 W	¢10	Auditorium 15 in .35 W f20	Group 5
BAKER LOUDSPEAKER CO., BENSHAM MANOR PASSAGE			
THORNTON HEATH, SURREY Tel. 01-684 1665			

Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit.
Everything you need to know

## Over 150 <br> about Radio \& Electronics

 ways to engineer a better future HIGHER PAY A BETMERJOBSECURITY
find out how
in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E,T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that really interests yom? Without losing a day's pay, you could quietly turn yourself intos something of "an expert. Complete the coupen (or write if you prefer not to cut the page). No obligation and nobody will call on yon . . . hut it could be the best thing you ever did.

Others have done it, so can you
"Yesterday I received a letter from the Institution informing that me applicationi for Associate Menbership had been approved. 1 ran hometh. ay that this has been the best value for monev I have ever obtainecl-a view echued by two colleagnes who recently commenced the conren". Student ID.I.13., Yorks.
"Completing your course, ineant going from a joll I detected to a job that I love, with unlimited prospects'. - Student J.A.(). Dublin
My training with B.I.E.T. quickly changed my carning capacity and, in the next few sears, my caringe increased fourfold". -student C.C.P., Bucks

## FIND OUT FOR YOURSELF

These letters - and there are many more on file at IIdermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help vou. Write to B.I.E.T. Dept. BPE05 Aldermaston Court, Reading RG7 4PF.
maintenance and repairs for a spare time income and a career for a better future.


To B.I.E.T., Dept, BPE05 Aldermaston Court, Reading RG7 4PF BPE05 NAME
Block Capitals pleas
Block Capi
ADDRESS

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

## YOUR COMPLETE AUDIO-ELECTRONIC STORES

More of everything at the right price. All your electronic requirements within 200 yards - call and see for yourself.

## BUILD <br> THE TEXAN

FREE TEAK CASE with

## 20 WATT INTEGRATED I.C. STEREO AMPLIFIER



SLIM DESIGN
WITH
SILVER TRIM
Overall chanio tise
14if in. $x 6$ in. $\times 8$ in. bigh Designer approved kits distributed by Henry's!

LOW COST HI-FI SPEAKERS
 E.M.I. Size $13 \frac{1}{2} \mathrm{in} \times 8 \frac{1}{\mathrm{i}}$ in and Ceramic Magner



POLISHED CABINETS 150 , 150 TC, 450 64.60. Post 30 p ASSEMBLED IN POLISHED CABINETS (BOHM) SERIES 8 (Assembled 450) per pair $£ 18.95$. Post 70p.


HL3 MW LW TUNER TO BUILD

Uses Mullard Module. Slow motion tuning. Built-in battery. Ferrite aerial. Overall size 7in $x$ $2 t i n \times 3$ tin. TOTAL COST TO BUILD 4.85 . Post $15 p$. All parts sold separately-Leaflet No. 6.
"BANDSPREAD" PORTABLE TO BUILD
 Princed circuit all transistor design using Mullard RF/IF Module. Medium and Long Wave bands plus Medium 600 mW Wind 600 mW push-pull output, fibre glass Actractive appearance and performance. TOTAL COST TO BUILD E7.98, D.D 32p (Batr. 22p).

CATALOGUE


Fully detailed and flustrated covering every plus data, circuits and information.
10,000 Stock lines at Special Low Prices and
Fully Guaranteed
PRICE 55p (40p FOR CALLERS) PLUS! FIVE IOp VOUCHERS

## Send to this address

 Henry's Radio Ltd. (Dept London, E.C.I-forcatalogue by post or catalogue by post only.
All other mail and callers to " 303 ', see above.

TEST EQU\|PMENT Just
\$E250B Pocket Pencil Signal Injector, fl 90 SE250B Pocket Pencil Signal Injectori il.90 SE500 Pocket Pencil Signal Tracer,
THL 330 Robust 2 K Volt. $£ 4.55$; with case $£ 4.95$ TEIS Grid Dip Meter 440 KHz 280 $50030 \mathrm{~K} / \mathrm{V}$ olt Multimeter, 69
with leather case, f 10.50 $200 \mathrm{H} 20 \mathrm{~K} / \mathrm{Volt}$ Multimeter, $\mathbf{4 4 . 2 0 \text { ; with case } 4 4 . 9 5}$ AF105 $50 \mathrm{~K} / \mathrm{V}$ Multimeter, 68.50 ; with case, $\mathbf{6 9 . 5 0}$ U431 AC/DC Multimeter with tester with steel case. $£ 10.50$
TE200 RF Generator $120 \mathrm{KHz} \mathrm{H} 00 \mathrm{MHz}, \mathbf{£ 1 5 . 9 5}$. TE22D Audio Generator $20 \mathrm{~Hz}-200 \mathrm{KHz}, \mathbf{£ 1 7 . 5 0}$. Carr. 35p CI-5 $3 i n$ Pulse Scope 10 Hz - 10 MHz , $\mathbf{3 9} \cdot 00$. Carr. 50 p ALL NOMBREX MODELS IN STOCK

```
B TRANSISTORS 300k TUNER
``` 5 TRANSISTORS \(300 \mathrm{ke} / \mathrm{s}\) BANDWIDTH PRINTED CIRCUIT, HIGH FIDELITY
MONO AND STEREO. A pOpular VHF FM Tuner for quality and VHF FM Tuner for quality and
reception of mono and stereo. reception of mono and stereo. VHF FM gives the REAL sound.
 Free Leaflet No. 3 \& 7. TOTAL 66.97, p.p. 20p.
 unit 41.75 ,
Mains unit (optional) Model P5900 \(42 \cdot 47\). Post 20p.
Mains unit for Tuner andior Decoder PS6/12 \(£ 3 \cdot 25\). Post 20p.
PA-DISCO—LIGHTING UK's Largest Range-Write phone or call in. Detals and Ds30L 3 Channel sound
 gight unit, 3 k
D 40 L 3 Channe
uilt-in) to
- light.
DJ70S 70 watt Disco amp/mixer, \(\mathbf{6 4 9 . 7 5}\) Discoamp 100 watt Disco amp mixer. 665.85
FIBRE OPTICS D 1105 S 30 watt Disco amp/mixer \(€ 32.25\) Anti-Feedback Quality Mic., \(\mathbf{f 1 1} 50\) DJ700 70 wate 152.75 Group 300150 wa
Portablediscos-details on request

rr. 35 p```


[^0]:    (c)IPC Magazines Limited 1973. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2.65$.

[^1]:    Open Monday to Saturday $\mathbf{3 . 3 0}$ a.m. to
    6 p.m. LATE NIGHT FRIDAY 7 p.m
     Mail. CALLERS: Ploase note that chequas can only be acceptod rogether
    with choque cifds (not Garctoy Cerd).

[^2]:    ea. 41 REVERBERATION EA.4 REMPLIFIER
    Self contained, transistor-
    simply plug in micro.
    phone, gnitar, etc., and
    output into your anhpli-
    ner. Volunue control,
    depth of reverberation control
    walnut cabinet. $\quad 7!$ in $\times 3$ in $\times 4 \mathrm{j} \mathrm{in}$. $\quad \$ 5.97$.

[^3]:    

[^4]:    

    This Capacitor-Discharge Electronic Ignition system was described in the Practical Electronics. It is suitable for incorporating in any 12 V ignition system in cars, boats, go-karts, etc. of either pos. or neg. earth and up to six cylinders. The original coit, plugs, points and contact-breaker capacitor fitted in the vehicle are
    used. No extra or ponents are required. special com ponents are required.
    (even under sub-zero conditions) improved acceleration, better highspeed performance, quicker engine warm-up and improved fuel economy. Eliminates excessive con-tact-breaker point burning and the need to adjust point and spark-plug gaps with precision. Construction of the unit can easily installation should take no eveng and than half an hour. A complete complement of components is supplied with each kit together with ready-drilled roller-tinned professional quality fibre-glass printed-circuit board, customwound transformer and fully machined die-cast case. All components are available separately.
    Case size 7 tin $\times 4$ in $\times 2 i n$. approx.
    Complete assembly and wiring manual 25p, refundable on purchase of kit. Price: $£ 10.50$ plus 50p P. \& P.

[^5]:    F.M. Stereo Tuner ( $\mathbf{( 2 5}$ ) \& A.F.U. ( $\mathbf{( 5 . 9 8 )}$ ) may be added as required

[^6]:    Sinclair Radionics Ltd., R.O. London Rd., St. Ives, Huntingdonshire PEI74H| (Phone: St. Ives 643|I). Regd. Bus. No. England 699483

