PRACTICAL

AFFIL rema

You know his type...always blowing hot and cold.. getting overheated just when you need him to be controlled and efficient. It's the same with some people's soldering irons.

Hopelessly inefficient heat control can make soldering operations a nightmare; if this is what soldering means to you it's time you woke up to Antex.

Choose a new model from the comprehensive Antex range of soldering instruments, with low-leakage characteristics,
unique construction advantages and really precise heat control.

$220-240$ Volts or $100-120$ Volts. The leakage current of the NEW $\times 25$ is only a few microamps and cannot harm the most delicate equipment even when soldered "live". Tested at 1500 v . A.C. This 25 watt iron with its truly remarkable heat-capacity will easily "out-solder any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages. Fitted long-life iron-coated bit $1 / 8^{\prime \prime} .2$ other bits available $3 / 32^{\prime \prime}$ and 3/16" Totally enclosed element ceramic and steel shaft. Bits do not "freeze" and can easily be removed. PRICE $£ 2.05$
(rec. retaıl) P \& P 1 Op. Suitable for production work and as a general purpose iron.

MODELSK. 1 KIT

Contains 15 watt miniature ron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink. solder, stand and
"How to Solder" booklet. PRICE $£ 3.48$ (rec. retail)

Please send the following:
ALL PRICES
VAT at 10%

MODEL MLX KIT
Batery operated 12 v .
25 watt iron fitted with
15' lead and 2 heavy clips for connection to car battery. Packed in strong plastic wallet with booklet "How to Solder" PRICE £2.54

MODEL SK. 2 KIT
Contains 15 watt minature ron
fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and 3/32' heat sink, solder, and "How to Solder" booklet. PRICE $£ 3.25$ (rec. retail)

$P \& P 10 p$

ST3 Stand - This stand is made from high gradeinsulation material with a chromium plated strong steel spring. It is suitable for all models and replaces all previous stands. The two sponges at the side which are easily replaceable serve to keep the soldering bits clean. Spare bits can be accommodated as shown on the illustration

I enclose cheque/P.O./Cash (Gro No. 2581000)

VE 10 No. 4 APRIL 1974

NEWS AND COMMENT

EDITORIAL—Liberated Design 317
READOUT
Readers who need help 322
POINTS ARISING
Connoisseur BD1 kit 322
SPACEWATCH by Frank W. Hyde Military and Space-Venus and Mercury Probe 323
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Comments on contemporary sounds 328
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 332
PATENTS REVIEW
A look at the effects that the EEC will have on British Patents 353
ESP, etc. by B. H. Baily
Unexplained happenings and phenomena 355
SPECIAL 8-PAGE SUPPLEMENT CAMERA ELECTRONICS 1-8

Our May issue will be published on Wednesday, April 10, 1974

[^0]M210 (Case (1.25) 20k/V 5 limline de luxe 66.75 THL33D $2 \mathrm{k} / \mathrm{V}$ Robust, $\mathbf{6 7 . 5 0}$
$U 437 \mathrm{lOk} / \mathrm{V}$ Steel case. A.C. up to $40 \mathrm{kHz}, 64.95$
U432420k/V with A.C. current ranges, fis. 00
AFI05 (Case fl.90) $50 \mathrm{k} / \mathrm{V}$, £ 11.95
U4313 $20 \mathrm{k} / V$ A.C. currenc. Steel case, $£ 10.50$
U4341 Plus built in transistor tester, $£ 10.50$
Mod 61500 (Case fl 95) $30 \mathrm{k} / \mathrm{V}, 59.95$
OTHER EQUIPMENT
SE2508 Pocket Signal Injector, 62. 10. Carr. 15p SE500 Pocket Signal Tracer, $£ i \cdot 70$. Carr. I 5 p TEI5 Grid Dip Meter 440 kHz 280MHz. $£ 15.00$. TE40 A.C. Millivoltmeter $1 \cdot 2 \mathrm{MHz}, 619.75$. Carr. 30p TE65 28 Range Valve Voltmeter, $22 \cdot 50$. Carr. 40p Te220 20Hz 200kHz Audio Generator Carr. 40 p Carr. 40p SE150A Deluxe Signal Tracer, © 12.50 . Carr. 20p
SE400 Volts/ohms/R-C sub./RF field/RF gen., Cl4.75. SE400 Volts/ohms/R-C sub./RF field/RF gen., Cl4.75.
New Revolutionary Supertester 680R 600R Multi-tester, fis 50

Transistor tester	41.00
Electronic voltmeter	618.00
Ampclamp	E11.95
Temperature probe	C11.95
Gauss meter	611.95
Signal Injector	65.95
Phase sequence	65.95
EHT Probe	45.95
Shunts	¢4.50

A SELECTION OF INTERESTING ITEMS

 C 3025 Compact transistor tester, 66.95. P. \& P. 15p Q4002 Photoelectric System, $£ 13 \cdot 70$ E1310 Stereo mag cart preamp, 44.80. P. \& P, 25p Easiphone Di201 telephone amplifier, $\mathbf{E 7} \cdot \mathbf{5 0}$. DI203 Teleamp with PU coil, 44.95, P. \& P. \& P. 2 Fp LLI Door Intercomm. and chime, $\mathbf{8 8 . 4 0}$. P \& P . US50 Ultrasonic switch tranime, E8.40, P. \& P. 25p 1 kW Dimmer/controller, \$3.00, P. \& P. 10 p 16 in Twinspring unit, for Reverbs, C6.85. P. \& \& P. 25 p VHF Aireraft band convertor, ©4.50. P. \& P. 15 p B 20054 Ch . mic. mixer, 44.20. P. \& P. ISpB 20042 Ch stereo mixer, $\mathbf{4 6} 75$, P. \& P. 15 p B2004 2 Ch. stereo mixer, f6.75, P. \& P. 15p PK3 Kit. Etch your own printed circuits, ©1.95. C 3041 I- 250 MHz 44.25

C 3043 SOH . I. $300 \mathrm{MHz} £ 5.75$

EXCLUSTVE: SPECIAL OFFERS

MW/LW CAR RADIO + or - earth with
speaker and fixings. 4 $6.30 \mathrm{carr} / \mathrm{packg} .30 \mathrm{p}$. 8 TRACK CAR STEREO (-earth)
with with speakers, in pods and fixings Porrable Bartery Cassette tape player 67.25 Car Lighter Plug and adapror for all cassette and radio $6 / 7 \frac{1}{1} 9$ volt output (state width).
\& 1.95 each. E. 95 each.

Rotel Stereophones RH630
RH700
RH430 $\begin{array}{lll}\text { RH700 } & . . & . .6675 \\ \text { RH430 } & . . & . . \\ \text { R } 3.30\end{array}$
Rotel RA310 $15+15$ Watt Stereo Amplifier
(List $£ 52.00$) $\mathbf{~} 34.52$. 4.52. Wein W500 Battery/ Mains Cassette Recor Mains Cass
der $\neq 12.75$

AKAI GXC40 stereo cassecterrecorder Pair Akackg. SOp Pair Akai ADM
microphones. 66.95 carr/packg. 20p. PGOR T A B LAEE CASSETTE TAPE PLAYER - for car or
carry around. 67.25 carry around. 67.25
carr/packg. 20p. HANIMAX BC8OB POCKET CALCULA TOR with \% key Hanimax Hanimax BC8IIM Memory Version Mains Unit for BC808. BCBIIM E285 (state model).
Hanimax HIOI Stereo Compact Record Player $2 \times 7 w$. Completewith speakers (List E54-50) Price 639.95 . Plus free

BUILD THIS RADIO PORTABLE MW/LW RF/IF module. Features MW-bandspread for extra selectivity. Slow motion tuning. Fibre glass PVC parts 77.98 (battery 22p). Car

SPECIAL PURCHASES

UFH TV TUNERS Brand new transistorised. grand new transistorised geared tuners for 625 Line
Receiver IF output. $\mathbf{6 2 . 5 0}$. Post 20p.

EASY TO BUILD KITS BY

 AMTRON-EVERYTHING SUPPLIED
Model No.

310 Radio control receiver
300 4-channel R/C transmitter
455 AM signal generator
65 Simple rransistor tester.
15 6W amplifier
20 12W amplifier
25 Stereo control uni
130 Mono control unit
605 Power supply for 115
615 Power supply for 120
230 AM/FM aerial amplifier 120
240 Auto packing light
275 Mic. preamplifier
570 LF generator 10 Hz - 1 miHz
575 Sq . Wave generator $20 \mathrm{~Hz}-20 \mathrm{kHz}$
590 SWR meter
620 Ni-CAD Charger $i \cdot 2-12 \dot{\mathrm{~V}}$
630 STAB. Power supply 6-12V $0 \cdot 2 \dot{5}-0-1 A$
700 Eiectronic Chaffinch
705 Windscreen wiper timer
760 Acoustic switch
780 Meral Detector (electron
790 Capacitive burglar alarm
335 Guitar preamp
840 Delay car alarm
(-Ve Earth)

80 Scope calibrato
255 Level indicat or
525 120- 160 mHz VHF time
525 120- $160 \mathrm{mHz}_{\mathrm{V}} \mathrm{VH}$
715 Photo cell switeh
795 Electronic continuity tester
860 Phototimer
871 Slide profector auto feed control
35 Acoustic alarm for driver
65 Quartz XTAL checker
20 Signal Injector
390 VOX
70 Buffer Battery Charger
885 Capacitive Contact Alarm
820 Electronic Digital Clock

BUILD THIS TUNER

MWILW Radio tuner to use with any amplifier. Fearures Mullard RF/IF module Ferrite aerial, built-in battery. Excellent results. Size: 7in $\times 2 \neq i n$

MULTI-USE AND RADIONIC KITS

10-1 10 Projects
 3.60
 $50-150$ Projects

Telephone Communicator
Kelephone Communicator
$\times 2020$ (Elec)
X 4040 (Eradio)
(Carr./Packing 40p)
ALL KITS OFFERED SUBJECT TO STOCK AVAILABILITY

Prices correct at time of preparation, subject to change without notice.
(Carr.facking 40p)
ALL TRANSISTOR CIRCUITS WITH HANDBOOKS
All types offered subject to availability. Prices correct at time of prese E \& OE. $10^{\circ}{ }_{0}$ VAT TO EE ADDED TO ALL ORDERS. UK post, etc.

drys

UK'S LARGEST RANGE OF TRANSISTORS, IC'S RECTIFIERS, ALL SEMICONDUCTOR DEVICES

FREE BOOKLET
All types of BRIDGES • SCR's • TRIACS INTEGRATED CIRCUITS F.E.T. - LIGHT DEVICES OVER 1500 DIFFERENT DEVICES

BEST PRICES
RETAIL TRADE•EXPORT \& INDUSTRIAL

MORE DEVICES | TBA 8005 WATT I.C. |
| :--- |
| Suitable alternative to |
| NEW PRICES |
| SEW RANGES |
| SL403D $5 / 30$ volt oper- |
| ated. $8 / 16$ ohm 5 watt |
| outpur. |
| With circuits and data |
| EI.50. |
| Complete with printed circuit board and |
| components, E2.75. |

SENDDFOR YOUR FREE COPY TODAY! INTEGRATED CIRCUITS. VERY IMPORTANT-ONLY BRANDED I.C'S
ARE TO THE FULL MANUFACTURERS' SPECIFICATIONS. ALL OTHERS ARE NOT. HENRY'S SELL ONLY BRANDED INTEGRATED CIRCUITS
FROM TEXAS...I.T.T...FAIRCHILD...SIGNETICS...SO WH FROM TEXAS.. I.T.T. T. FAIRCHILD. SIGNETICS . SIGO WHY
BUY ALTERNATIVES OR UNDER SPEC. DEVICES WHEN YOU CAN PUR. BUY ALTERNATIVES OR UNDER SPEC. DEVICES WHEN YOU CAN PUR-
CHASE THE GENUINE ARTICLE FROM US EX STOCK... NEED WE SAY CHASE
MORE!

TRANSISTORS—A selection

For full list send for booklet 36 today

All types offered subject to availability. Prices correct at time of press. E. \& O.E.

KEEP WARM ATA COOL PRICE.
 Slash central heating costs with AMKIT.

If you can put in electric wiring, you can install Amkit. The unique nylon pipe hot water central heating system, that you install yourself in hours.

Look at these advantages:
No soldering
No 'T' junctions
No special equipment
No leaks, no lagging, no corrosion
No structural upheaval
Just reliable, effective central heating (Guaranteed 25 years) at a saving of between $£ 150 \& £ 250$. This famous system has been successfully marketed since 1968.

Clip the coupon, and we'll tell you more.
To Autocon Manufacturing Co.
Spring House, 10, Spring Place, London, NW5, 3BH Please send your brochure telling me all about Amkit. Name
Address Open Mon-Fri $9.30 \mathrm{am}-5-30 \mathrm{pm}$. Sat $9 \mathrm{am}-1 \mathrm{p} . \mathrm{m}$.

learn how to become a radio-amateur in contact with the whole world. We give

Erochure, without obligation to:
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL
P.O. BOX I56, JERSEY
NAME:
ADDRESS:
EB44
BLOCK CAPS please

DP 1.ـ. \quad (Electronics) Litd

SECOND GENERATION 25 WATT HYBRID

A brand new hybrid fabrication technique, recently perfected in our laboratories, has enabled us to achieve ou
We have now finally reduced the modular audio amplifier to a simple input/output device equiring only the addition of a basic unstabilized (split line) power supply.
the and without additional chassis sinking. All this without significantly increasing the size of the Consistent with modern thinking a triple rated output circuit with a load fuse allows for peak transient response without distortion but ensures the necessary protection.

OUTPUT POWER:
LOAD IMPEDANCE:
INPUT SENSITIVITY
INPUT IMPEDANCE
TOTAL HARMONIC DISTORTION
FREQUENCY RESPONSE
REQUENO RESPONSE
SUPPLY VOLTAGE
Price $55 \cdot 80$ mono $£ 11 \cdot 60$ stereo
SPEC.
25W RMS, 50W peak music power.
$4-16 \Omega$ into 8Ω
OdB (0.775 V RMS)
$47 \mathrm{k} \Omega$.
Less than 0.1% at 25 W typically 0.05 .
$10 \mathrm{~Hz}-50 \mathrm{kHz}+1 \mathrm{~dB}$.
$10 \mathrm{~Hz}-50 \mathrm{kHz}+1 \mathrm{~dB}$
$105 \times 50 \times 25 \mathrm{~mm}$.

NEW HY5 PREAMPLIFIER

Unchallenged for two years, the HY5, our unique multifunction preamplifier/tone hybrid, has been brought into line with the advancements in our power hybrids.
Like the HY50, the new HY5 has no external components and has been redesigned to run off a split power line with improvements in signal/noise. overload eapability and reduced distortion. The output has been increased to match the power module (OdB), and share the same power supply.
Overall size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the earlier device
Overall size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the earlier device. When combined with the HY50 and power supply only potentiometersare required to complete a simple mono amplifier with input and output facilities
The combination of two HYS's two HY50's sharing a common power supply (PSU50) are linked by a balance control toform a complete stereo system

spec.
Magnetic Pick-up $3 \dot{m} V$ (within ItB R|AA curve)
Ceramic Pick-up up to 3 mV . Microphone 10 mV co 3 mV . Tuner 250 mV Auxiliary 3-100my Input impedance $47 \mathrm{k} \Omega$ । kHz OUTPUTS Tape 100 mV Main output. odB (0.775 V).

Price $\mathbb{4} \mathbf{8 5}$ mono E9-70 stereo. Price Inclusive of VAT and P. \& P

POWER SUPPLY PSU50

The new PSU50 has a low profile look being only 2 tin high and can be used for either mono or stereo systems.
SPEC.
OUTPUT VOLTAGE +25 V .
INPUT VOLTAGE $210-240 \mathrm{~V}$.
SIZE: L. 70 D. 90 H .60 mm .
Price $\mathbf{4 5} \mathbf{2 3}$. Price inclusive of VAT \& P. \& P

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT

CANTERBURY 63218
Please note we reserve the right to substitute at our discretion updated versions of advertised designs where applicable.

THE P.E. LIDIII HNUSTAI GIIGN

* 12 or 24 hour operation

Hours and Minutes to
Minutes and Seconds at a
touch

- Audible Electronic Alarm
- Liquid Crystal Display
- Visual Alarm Set - Extra "Snooze" Time Alarm - Radio On/off facility - MOS I.C. Clock Chip

A complete set of parts to build this up-to-the-minute (sorry) project at a special price. All parts
NEW available separately. Ask for Price List.

NEW
Mullard
LP1400

 $P \& P$
 ONE ELEVENTH.

for fast, easy
 reliable soldering

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No exira flux is required

EASY-TO-USE DISPENSERS

Size 5

Savbit alloy
18 swg.24p
(illustrated)
Size 19A
60/40 alloy
18 swg, 25p
Size 15
60/40 alloy
22 swg, 28p

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons in 40/60, 60/40
 and Savbit alloys in 7 gauges 36p

Size 12 REEL for Service Engineers and Electricians 18 swg

Savbit alloy. £1.16

BIB WIRE STRIPPER AND CUTTER

Deluxe Model 9 Automatic opening spring, locking catch, plastic-covered handles. Case hardened and precision ground. Adjusts to most wire sizes. Cuts and strips flex, splits plastic twin flex. 75p

[^1]
*STILL AT £42.50
 Solartron CD 71/S.2 Double Beam Oscilloscope D.C.- 9 Me / s; $3 \mathrm{MV} / \mathrm{cm}$: trigger delay; crystal calibrator; 4 in flat faced tube. In good working con-

NEW WIDE RANGE WOBBULATOR $5 \mathrm{MHz}^{2}$ to 150 MHz up to 15 MHz sweep width. Only 3 controls preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied minutes of receiving. All this for ONLY E5.75p. P. \& P. 25p. (No cased, not calibrated.)

20 Hz to 200 kHz WB.
SINE and SQUARE GENERA. TOR. Four ranges. Independent amplitude controls, thermistor stabilised. Ready to use, $9 V$ supply required. 67.85 each. P. \& P. 25p (Not cased, not calibrated.)
GRATICULES. $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic ISpeach. P. \& P. 5p. 12* Long Persistence Crt, full spec Price $\mathbf{6 7 . 5 0}$ to include V.A.T. \& earr © 1 WORTH OF "UFS", Six brand new capacitors all between not less than $7,000 \mathrm{mF}$. P. \& P. 45p PHOTOMULTIPLIER type 931A 63.25 each. P. \& P. 25p.

ROTARY SWITCH PACK. Six brand new switches (I ceramic 1 off 4 pole, 2 way, etc.), 50p. P. \& P. 20 p.

COMPONENT PACK consisting of 5 pors, various, brand new; 250 resistors $\frac{1}{2}$ and $\frac{1}{2}$ watt, many high stabs, eic. Fine value at 50p. P. \& P. 17 P
P.C.B. PACKS 5 \& D. Quantity 2sqft P.C.B. PA tiny pieces. 50p plus P. \& P. 20p. FIBRE GLASS as above $C 1$ plus P. \& P. 20p. Ferric Chloride Resistance Pen FREE (whilst stock lasts) on all purchases of our El Fibre Glass pack.
5 CRYSTALS 70 to 90 kHz . Our choice, 25p. P. \& P. 15 p.
5 MOVING COIL METERS various E2. P. \& P. 37p.
CAPACITOR PACK-50 Brand new components only 50p, P. \& P. POTS-10 different values. Brand new-50p, P. \& P. 17p.
TRIMMER PACK. 2 Twin 501 200pF ceramic 2 Twin $10 / 60 \mathrm{pF}$ ceramic; 2 min. strip with 4 preset $5 / 20 \mathrm{pF}$ on each; 3 air spaced preset $30 / 100$ NF on ceramic base P. \& P. 10 p.

FLAT FACED 4* Twin Beam Tube type CV2193 Green trace Tube, new 64 each. P \& P 37P. Brand IIGHT EMITTING
(Red) from Hewlert-Pack DIODES New 38p each. Holder Ip each Information 5p.
PHOTOCELL equ. OCP7I, 13p each.
PHOTO RESISTOR type Clare 703. Two for 50p.

MODERN TELEPHONES type 706. Two-tone grey, $\{3.75$ each. Two-tone green, $\$ 3.75$ each. Black, 62.75 each. P. \& P. $25 p$ each. Also TOPAZ YELLOW $\mathbf{6 4} 50$ each. P. \& P. 25p
IDEAL EXTENSION Telephones with standard GPO type dial, bell and lead coding. $\{1.75$ each. P. \& P. 25p.

DELIVERED TO YOUR
DOOR I cwt of Electronic Rubbish. FOR ONLY £3.50,

£ $51 \cdot 00$

40 Watt Amplifier.
Viscount III-R102 now 20 watts per channel. System I includes.
Viscount lill amplitier - volume, bass. treble and balance controls. plus switches for mono/ stereo on/off function and bass and treble filters. Plus headphone socket. Specification
20 watts per channel into 8 ohms Total distortion@10W@1kHzO.1\%.P.U.t for ceramic cartidges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) 4 mV ® 1 kHz into 47 K equatised within 1 dB R.I. A.A. Radio 150 mV into 220K. (Sensitivities given at full power) Tape out facilities : headphone socke1. power out 250 mW per channel. Tone controls and fifter characteristics. Bass: $-12 \mathrm{~dB} 10-17 \mathrm{~dB}$ @ 60 Hz . Bass filter: 6 dB per octave cut. Treble control treble-12dB to-12dB@15kHz Treble filter: 12 dB per octave. Signal to noise ratio: (all contiols at max.) -58dB. Crosstalk better than 35 dB on all inputs. Overload characteristics better than 26 dB on all inputs. Size approx. $133_{4}^{\circ} \times 9^{\prime \prime}$. $3 \frac{3}{4}^{\prime \prime}$ Garrard SP25 deck. with magnetic cartidge, de luxe plinth and hinged cover.
Two Duo Type II matched speakers Enclosure size approx. $177^{\prime \prime}$ i $10 \frac{1_{2}^{\prime \prime}}{2} \times 6 \frac{1^{\prime \prime}}{}$ in simulated teak. Drive unit $13^{\prime \prime}$ " $8^{\prime \prime}$ with parasitic tweter. Complete System E51.00

£69.00

System II
Viscount III amplifier (As System I)
Garrard SP. 25 (As System I)
Two Duo Type IIIA matched speakersEnclosure size approx. $31^{\prime \prime} \times 13^{\prime \prime} \times 11^{\frac{1}{2}}$ Finished in teak veneer. Drive units approx.
$13 \frac{1^{\prime}}{2} \times 8 \frac{1}{\frac{1}{4}}$ with $3 \frac{x^{\prime \prime}}{4} \mathrm{HF}$ speaker. Max. power 20 watts, 8 ohms. Freq. range 20 Hz to 20 kHz

Complete System $\mathbf{E 6 9 . 0 0}$
PRICES: SYSTEM 1
Viscount III R 102 amplifier $£ 24 \cdot 20-\mathrm{f1} p$ \& p 2 Duo Type Il speakers $\mathrm{f} 14.00+\mathrm{f} 2 \cdot 20 \mathrm{p} \& \mathrm{p}$ Garrard SP25 with
MAG. cartidge de luxe plinth and hinged cover
$\mathrm{f} 21.00+\mathrm{f} 1.75 \mathrm{p} 8 \mathrm{p}$
total $\mathbf{f 5 9 . 2 0}$
Available complete for only $\mathbf{£ 5 1 . 0 0 + £ 3 5 0} \mathrm{p} .8 \mathrm{p}$
PRICES: SYSTEM 2
Viscount R 102 amplifier $\quad \mathbf{~} 24 \cdot 20+\mathbf{£ 1} \rho$ \& p 2 Duo Type III A|speakers $\quad £ 39.00+\mathbf{f 4 . 0 0} \boldsymbol{p} 8 p$ Garrard SP25 with
MAG. cartridge de luxe plinth $\mathrm{f} 21.00+£ 1.75 \rho$ \& p and hinged cover
total $£ 84.20$
Available complete for only $\mathbf{f 6 9 . 0 0 + 5 4}$ p\&p.

OUALITY SOUND* FOR LESSTHAN£19.00
 Stereo 21 easy tu assemble audio sysiem kit, - no soldering

 equired. Includes:-BSR 3 speed deck, automatic, manual facilities together with ceramic cartridge.
Two 8" 5 "speakers with cabinets.
Amplifier module. Ready built with control panel, speaker leads and full, easy to follow assembly instructions.

for the iechnically minded:-

Specifications
Input sensitivity 600 mV : Aux. input sensitivily 120 mV : Power output 2.7 watts per channel: Output impedance $8-15 \mathrm{ohms}$. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio. tape, etc, and outputs for taping discs. Overall Dimensions. Speakers approx.
$15 \frac{1}{2}$ " $8^{\prime \prime} 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15^{\frac{1}{3}}{ }^{\prime \prime} 12^{\prime \prime} \times 6^{\prime \prime}$. Complete only $\mathbf{1 8 . 9 5}$ Extras if required. $\mathbf{f 1} 37 \quad+\mathbf{£ 1} .60 \mathrm{p} 8 \mathrm{p}$ Optional Diamond Stylif1.37
Specially selected pair of stereo headphones with individual level controls and padded earpieces 10 give optimum performance, 13.85.

8TRACK CARTRIDGE PLAYER*

Elegan! self selector push button player for us with your own stereo system. Compatible with Viscount III system, the Stereo 21 and the Unisound maduie.
Technical specification
Mains input. 240V. Output sensilivity 125 mV Comparable unit sold elsewhere at $£ 24.00$ approx.

Yours for only $110.95+90 p$. p\&

BUILD YOUR OWNSTEREO AMPLIFIER

For the man who wants to design his own stereo -here's your chance to start. with Unisound-pre-amp. power amplifier and control panel. No soldering-jusi simply screw together. 4 watts per channe) into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum 240v. AC only. $\quad \mathbf{f 7} \cdot 64+55 p . p \& p$

$\left.\cdot \frac{1+2+5}{2+5} \right\rvert\,$ DTSCO AMPLIFIER

Reliant MkIV Mono Amplifier, ideal for the small disco or house parties
Outputs 20 watts R.M.S. into 8 ohms (suitable for 150 hms).
Inputs *5 Electrically Mixed Inputs. *3 Individual Mixing controls. *Separate bass and treble controls common to all 5 inputs. * Mixer employing F.E.T. (Field Effect Trañisistors). *Solid State Circuitry. *Altractive Styling. INPUT SENSITIVITIES

1) Crystal Mic or Guitar 9 mV , 2) Moving coil Mic or Guitar 8 mV . 3), 4), 5) Medium output equipment (Gram, Tunet, Monitor, Organ, etc.) all $250 \mathrm{~m} V$ sensitivity.
AC Mains 240 V . operation.
Size approx. $12 \frac{1}{2}$ ins <6 ins $\times 3 \frac{1}{2}$ ins $\mathbf{f 1 3 . 5 0}+\mathbf{6 0 p}$. postage $\&$ packing.

A suitable 3 speed tape deck, less heads. Caters up to $5 \frac{3}{4}$ ins. spools. 240 V AC mains Unused but store soiled hence no warranty. $\mathbf{£ 4 . 0 0}+\mathbf{£ 1 . 0 0} p \& p$

THE ULTIMATE COMPLETE SPEAKER SYSTEM EMI LE 315

Recommended retail selling price, $\mathbf{£ 8 6} \mathbf{0 0}$. Our price $\mathbf{£ 4 5 . 0 0 +}$ £3.50 postage \& packing.

A professional standard five way speaker system with enclosure giving top quality performance
Enclosure Dimensions approx. ($3 \mathrm{ft} . \times 2 \mathrm{ft} . \times 1 \mathrm{ft}$.). Drive Units
Hand built - $15^{\prime \prime}$ diameter bass with $3^{\prime \prime}$ voice coil. - two 5" diameter Mid Range units,

- two 31 ${ }^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{HF}$, units, plus matching crossover panel with two variable potentiometers for mid and high frequency adjustment. Powder Handling Continuous rating 35 W rms., Peak power rating 70 W .
Frequency Response $20 \mathrm{~Hz} 20,000 \mathrm{~Hz}$. Impedance 8 ohms

EMI SPEAKERS

15"14A/780. Bass unit on a rigid diecast chassis. Superior cone material handles up to 50 watts RMS. and is treated to give a smooth frequency response. Resonance 30 Hz . flux density 360.000 Maxwells. Impedance at 1 kHz is 8 ohms. $3^{\text {" }}$ voice coil.

Recommended retail price f40.80.
OUR PRICE $£ 18.70$ + f1.50p\&p

950 Kit - Five matched speakers and crossover unit for handling up to 45 watts, frequency response from 20 to 20.000 Hz .
Huge 19"^14" (approx.) high efficiency Bass-Speaker with 16.500 -gauss magnet built on a heavy diecast frame.
The four 10,000 gauss tweeters. each $3 \frac{1}{4}$ dia. approx., are fed by the crossover which critically adjusts signal for maximum fidelity. Impedance at 1 kHz :s 8 ohms. Bass coll $2^{\prime \prime}$. others 0.5 . Recommended list price $£ 4400$ OUR PRICE $£ 25 \cdot 00$ + f1-50p\&p Special Offer.

Radio and TV Components (Acton) Ltd.
21 High Street, Acton, London W3 6NG(D) 323 Edgware Road, London W2
Edgware: 9 a.m. -5.30 p.m. Half day Thurs. Acton: 9.30 a m. -5 p.m. Closed all day Wed.

标

StixON Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORY

Better built
 Better performance Better value

SAXON HI.FI POWER AMPS IN THREE USEFUL SIZES FOR DOMESTIC \& COMMERCIAL
APPLICATIONS
New versions using 3 A
Transistors now available
To meet demand, we have included a more powerful module in our well-established and proven range. Are carefully assembled, tested and guaranteed. They offer superb

SA35 ${ }^{35 W}$ NMS wes

SA50 50 watt RMs
 7 transistors, 7 diodes
 $$
\text { Carr. paid } \mathbf{6 5} 65
$$

SAIOO makes an ideal
unit in disco assemblies A real glutton for work, Reliable,
zough and compact II transistors,
6 diodes. Carr. paid.

BRIE:F SPEC. FOR ALL THREE MODULES

Freq. $\quad 15-40,000 \mathrm{~Hz}$ t IdB All modules
reaponse
Disto-tion 0.2% at 1 kHz
Loads 4 to 16 ohms
Quiercent 15 mA
curent
Noise
Suppl,
vole
voltage
size
Better than -75 dB
SA3S-45V SA50
SA3S-45V SAS0 45/65V
$4+\mathrm{in} \times 4 \mathrm{in} \times 1$ in ($\$ \mathrm{SA} 100$)
$4 \operatorname{in} \times 4$ in $\times \operatorname{lin}(\$ A 100)$
4 in $\times 3$ in $\times \operatorname{lin}(\$ A 35 / 5 A 50)$ All morporate
OPEN AND SHORT CIRCUIT PROTECTION, plus proof against overdissipation and faulty inductiv SA100

Circuits, connecting instruction and application data are supplied free with all modules.

POWER SUPPLIES

FOR THE SA35, SA50 AND SAIO POWER AMPS. ABOVE
PU45 Unstabilised supply for 2 SA35's $\quad \leq 4.90$
PU70 Unstabilised supply for one or two
Stabilised module for two SA35
or one SA50 $E 3.50$ carr, free
C $2 \cdot 85$ carr. 20p
MT30 Transformer for unstabilised supply complete Transformer for unstabilised supply complete
with rectifier diodes mounted \&3.50 carr. 20p
PS70 Stabilised supply module for one op two
MT70 Transformer for P570 $\mathbf{~ 4 . 9 0}$ arr. Pre ALL MODULES ARE BUILT ON GLASS FIBRE P.C BOARD AND SUPPLIED FULEY TESTED

SAXON PA MIXERCONTROL UNITS
In extra slimiline easy-fit case.
Using grouped pairs of inputs (high Z and low Z inputs) with individual bass, ereble and volume controls on each pair, plus mascer concrol on output of M6HL. These low-noise units will feed all makes of amplifiers. making them ideal for clubs, discos, etc. Standard jack sockets, compact design. In strong metal cases. All Units guaranteed for 3 year
HIGH AND LOW IMPEDANCE INPUTS

- BASS/TREBLE/VOLUME ON EACH PAIR
* MASTER CONTROL ON OUTPUT
building your own: modules. fo building your own: gain- $16 \times$
(24dB). Tone conerols-18dB (24dB). Cone con
swing. Carr. paid $13 \cdot 50$
V.A.T.

CONTROL UNITS UNBEATABLE FOR QUALITY AND VALUE EXCITING NEW STEREO
VERSION MK II wirh Stereo over-ride and case. $\{\mid 9 \cdot 75$
(Carr. 30p). Mono (as sh For 9 v . battery operation. As stereo model, lessmic. $\mathbf{\{ 6 . 5 0}$
input. Carr. $20 p$.

Two decks, and full headphone monitoring. The unit 15 mains operated and measures $17 \frac{1}{2}$ in deck fader, volume, bass, rreble. Headphone Selert black racia. The controls are: Left/Right treble. mains on/off.' Comparable to units at over twice the price.

AKG HEADPHONES

World famous D. 190 C the one the professionals use at special bargain price
of $\mathbf{1 9 . 5 0}$ Plus GENERAL PURPOSE MIC. Dynamic professional
quality. Carr. pd. $\mathbf{~} 9.90$

120 W HEAVY DUTY MODULE

 Rugged class A driver stage This module will run from all our mixers, etc, and most other makes, Delivers 120 W into an SPECIFICATIONPower outpur, 120 W into 8 ohms Module and
 Input sensitivity, 200 mV into 10 K (Carr, 40p) Construction, Fibreglass board - 160 watts version Size, Bin 4 in $\times 4$ in (5 in with supply) with power Low distortion parallel push-pull $\begin{aligned} & \text { supply } \\ & \text { output stage. }\end{aligned}$
(Carr. 50p) £27.90

SOUND AND LIGHT UNITS

Our popular 3 channel model handies up to $3 \mathrm{~kW}(3.000 \mathrm{~W})$ of lighting and incorporates versatile sound control arrangemens to enable professional standards to be achieved. Both units are

3 CHANNEL UNIT

Includes bass, middle and treble as well as master controls, 2 amplifier sockets eliminate
need for split leads. Up no 3 kW W lighting load.
Suitable for freestanding or panel mounting. Carr. 30p.

COMPLETE AMPLIFIERS CSE 100

This versatile unit is now available in a black vynide
case and so represencs even better value than ever
deliverine speech and music powers of up co 100 W RMS and continuous signal outputs of 70W. Two and treble controls.

$$
\begin{aligned}
& <c c c c \\
& -<\text { SAXON }
\end{aligned}
$$

SAXON $100 £ 48.50 \mathrm{carr}$. free
With an RMS ourput of 120 W speech and music, loow concinuous power. four individually contreble controls, chis amplifier has eseablished itself as a unit offering quality and reliability at low cost.

LOUDSPEAKERS British made bargains!! 12 in $25 \mathrm{~W} 8 / 15$ ohms 66.95 carr .30 p . I Sin 50 W 50p. 12 in 40W 15,000 gauss magnet system $8 / 15$ ohm fl 11.50 . 40 carr
V. Please add 10% to total value of order (including carr.) for Value Added Tax.

Please include S.A.E. with written enquirie Prices subject to alteration without notice. E. \& O.E

.
 SAXON ENTERTALNWENTS LTD., 329 Whithorse Road, w. Groydon, Surrey CRO 2ns
 Telephone 01-684.6385
 From 9.30 a.m. -5.30 p.m.
 viac auoted do not include cotil 10% muat bo addad onse ENQUIRIES INVITED
 TERMS OF BUSINESS
 Cegh with order (C.W.O.). For C.O.D. plesse add 35p ontra, eash by raci. Iettor plane.

YOU AIN'T HEARD NOTHIN' YET!!

UNTIL YOU TUNE IN TO STEREO PERFECTION WITH 'VARICAP

'p.e.' f.m.
varicap stereo tuner
Size approx

This elegant and practical stereo tuner features push button spot-on tuning with up to five simple pre-set stations (no difficul? tuning dial and drive cord). Its easy no problem construction requires only a few simple setting adjustments with a D.C. Voltmeter. It incorporates NEW pre-set modules for R.F and IF circuits this eliminates the need for the usually difficult circuit alignment.
All this. coupled with the latest Motorola high efficiency integrated Circuit phase lock loop stereo decoder and automatic stereo lamp indicator ensures perfect stereo reception
The Varicap is in our opinion. THE most easily constructed stereo tuner available which will achieve professional results. The kit comprises Fibre glass P.C. board elegant slimline teak veneer cabinet, brushed aluminium front panel push buttons. instructions, in fact everything you need
We also supply any of these kit components as separate items.
Total kit price ONLY £28. 50 (Inclusive of VAT and postage).

IDEAL FOR USE WITH THE 'TEXAN', 'GEMINI' OR ANY OTHER GOOD QUALITY STEREO AMPLIFIER.

PARTS FOR PRACTICAL WIRELESS PAOJECTS
After many requests. Electro Spares are supplying ists of components for ALL projects featured in Practical Wireless trom July 1973 issue onwards. We regret that we cannot supply lists for projects published belore this date
All you have to do is send us a stamped addressed envelope. not less than
$9 " \times 4$ stating which project is 9×4. stating which propect is of interest to you. We will then forward
you an individually priced list of the components required. there is. of you an individually priced list of the components required. there is. o
course. no necessity to purchase a full kit. you may purchase only the parts you require at any one given time.
We belleve this method of one source buying can save you lime and We belleve this method of one source
ALL COMPONENTS SUPPLIED YY ELECTRO SPARES ARE NEW BRANDED PRODUCTS OF REPUTAELE MANUFACTURERS and therefore carry the makers full guarantee
-P.E.' GEMINI' STEREO AMPLIFIER
The Gemini is a quality hi-fi stereo amplifier for the home constructor. featuring a genuine 30 watt R.M.S. per channel output into 8 ohms. Total
harmonic distortion of 002% and a frequency response (-3d8) $20 \mathrm{~Hz}-100 \mathrm{kHz}$, at all power levels
We are continuing to supply components for this tabulous amplifier which is now recognised as practically THE ultimate in High. FIdelity We know no better unit for the home constructor-hundreds have been supplied throughout the wofld.
Electro Spares have avalable a booklet containing fuli speecification. compuide etc The price
LOW PRICE LISt, Price list avallable separately on receipl ot a large S. A. E Our new Mail Order department address is set below. We aim for quick efficient service-or why not pay us a call, we make all enthusiasts welcome and there are no parking problems

ELECTRO PARES

288 Ecclesall Road, Sheffield S11 8PE. Tel: (0742) 668888
 'THE COMPONENT CENTRE OF THE NORTH

Polished wooden cabinet $14 \times 13 \times 9$ in containing a senstive (20 uV) 4 valve amplifier with tone and volume conspeaker Also included is a nonstandard tape deck Supplied in good working condition with cifcuit. Mains operated £3 ($£$) up to 200 miles $£ 1$ - 25 over) Suitable cassette $£ 1$ (30p). spare head 30pi tape (ex-computer) 68p tested ($2 \times$ ECC83 ELB4 EZ80) speaker $\& 2(40 \mathrm{p})$ motors 35 p (30p)

7Ib BARGAIN PARCELS

Hundreds of hew components resistors capacitors crystals switches. pots. PC boards with transis. tors diodes etc.. also loads of odds and ends Amazing value at $£ 1.65$

COMPONENT PACKS

500 assorted resistors $\mathbb{\text { \& }}$ (20p). 2.500 §4 (40p) 10.000 £ 12 ($£ 1$ 1), $100,0005800+$ boxed $100^{\circ} \mathrm{s}$ offers. 300 capacitors all types $£ 1$ (30 p) 150 poly ceramic. mica etc. 60 p (10p) 2510 X crystals 1 (30p) 60 (10p) 25 crystals

COMPUTER PANELS

 31 b asstd panels \&i (30p):7b E2 (40p). 561 l \& 13 (c pd). 12 high quality boards with power transistors tim pots. IC's. etc £2 (30p) 100 panels $\mathbf{\$ 1 2}$ (\$1) Pack of boards with at least 500 components Inc at least 50 1ransisiors 600 (20) Pant 20 p (10p) Pack with 25 lal-pack IC's ino info.) 30 p (10p) 2.000 boards £100 - carr
NEW COMPONENTS

400V 5A SCR s 60p; 200V 5A 40p: OC 16 20p: OC45 Ap: OC71 8p; OC140 25p $2 N 3055$ 35p $\times C 121 \quad 5 p: 2 N 3708$ Ap ${ }_{741 \mathrm{C}}$ Q In DI OI TO99 32 p .

> ? ? ? ? ? ? ? ? ? ?
$80+80+20 \mu \mathrm{~F} 350 \mathrm{~V}$ 10p, 10 for 75 p (30p) $8 \mu \mathrm{~F} 2.500 \mathrm{~V} £ 2(50 \mathrm{p}) ; 4 \mu \mathrm{~F} 2.000 \mathrm{~V}$ £1 (40p) $10 \mu \mathrm{~F} 236 \mathrm{~V} 40 \mathrm{p}$ (15p) 1 HF 35 V tantalum 12 for 50p: $\mathrm{k} \Omega$ Resistors 2 W ${ }^{40} \mathbf{p}$, 10 W . $30 \mathrm{p}(10 \mathrm{p}), 4$ pole 8 -way Yaxiey switches 20k 210 turn Colvern WW pots 75 p 20ks turn Colvern WW pots 75 p caps $22 p \mathrm{~F}-1.000 \mathrm{pF} 2 \mathrm{p}$; Heavy duty aluminium heat sinks 6 . 5 , 3 In with 2 power transistors 80p (30p). 230 V Fans. 2.800 ppm $6 \$ 1 \mathrm{n}$ dia blades complete with grill and mounting plate $\mathrm{c2} \cdot 50$ (40 p) Min plug in relays 60 p (8p) Microphone matching trans. tormer $20 \Omega-100 \mathrm{k}$ fully screened single hole mounting 60p (8p) Scopes in stock for callers details

Carr in brackets small parts 5p ADD 10% VAT. SAE LIST
GREENWELD ELECTRONICS (PE1)
24 Goodhart Way. West Wickham. Kent SHOPS AT 21 Depiford Broadway SE8 (Tel 01-692 2009) and 38 Lower Addiscombe Road Croydon

All above prices include 10% V.A.T. Please add 10 p for P. \& P. on orders under f5. LARGE S.A.E. for List No. 6. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

The Sinclair Cambridge... no other calculator is so powerful and so compact.

Complete kit-£24•95!

The Cambridge - new from Sinclair

The Cambridge is a new electronic calculator from Sinclair, Europe's largest calculator manufacturer. It offers the power to handle the most complex calculations, in a compact, reliable package. No other calculator can approach the specification below at anything like the price - and by building it yourself you can save a further $£ 5.50$!
Truly pocket-sized With all its calculating capability, the Cambridge still measures just $4 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11^{\prime \prime}}{16}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of life before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

Total cost? Just $\mathbf{£ 2 7} \mathbf{4 5}$!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 32.95$ - so you're saving $£ 5 \cdot 50$! Of course we'll be happy to supply you with one ready-assembled if you prefer-it's still far and away the best calculator value on the market.

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge.
Assembly time is about 3 hours.
Contents

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book - free! If you just use your Sinclair Cambridge for routine arithmetic-for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.

But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How ? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how you can use the Sinclair Cambridge to carry out complex calculations

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a verylong experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 60 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.
And you benefit !
Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return yourkit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.
Price inkit form : $\mathbf{£ 2 4 . 9 5}+\mathbf{£ 2} \mathbf{5 0}$ VAT. (Total : $\mathbf{£ 2 7 . 4 5}$)
Price fully built: $£ 29.95+\mathbf{£ 3 . 0 0 ~ V A T . ~ (T o t a l : ~} £ \mathbf{£ 2} .95$)

WILMSLOW AUDIO
 THE Firm for Speakers!

SPEAKERS

Baker Group 25. 3, 8 or 15 ohm Baker Group 35. 3. 8 or 15 hm Baker Group 50/12. 8 or 15 hm Baker Deluxe
Baker Major
Baker Superb
Baker Regent
Celestion PST8 (for Unilex)
Celestion MF1000, 8 or 15 ohm Celestion HF1300 Mk. II
Celestion G12M, 8 or 15 ohm
Celestion G12H, 8 or 15 ohm Celestion G15C, 8 or 15 hm Celestion G18C. 8 or 15 ohm EMI $13 \times 8 \mathrm{in}, 3$. 8 or 15 ohm EMI $13 \times 8 \mathrm{in} \mathrm{d} / \mathrm{c}, 3,8$ or 15 ohm
EMI 13×8 in t/tw. 3.8 or 15 ohm
EMI 13×8 in type 350,8 ohm
EMI $8 \times 5 \mathrm{in}$. cer, mag. 8 ohm EMI $8 \times 5 \mathrm{in}, 10$ watt. d/c roll, surr., 8 ohm
EMI $6 \frac{1}{2} \mathrm{in}$. 93850 . 4 or 8 ohm
EMI 5 in, 98132CP. 8 ohm
Elac $9 \times 5 \mathrm{in}$. 59RM109 15 ohm .
59RM1148 ohm
Elac $6 \frac{1}{2}$ in d / c roll surr. 8 ohm
Elac $6 \frac{1}{2}$ in d/cone. 8 ohm
Elac Tweeter TW4 4 in
Elac 10 in .8 ohm
Fane Pop 100 watt, 18 in
Fane Pop 60 watt. $15 i n$
Fane Pop 50 watt, 12in
Fane Pop 25/2. 12in
Fane Pop 15 watt, 12in
Fane Crescendo 12A or 12B
Fane Crescendo 15
Fane Crescendo 18
Fane $807 \mathrm{~T} 8 \mathrm{in} \mathrm{d/c}$ roll surr. 8 or 15 ohm
Fane 808T 8 in d/c. 8 or 15 ohm
Goodmans 8P, 8 or 15 ohm
Goodmans 10P. 8 or 15 hm Goodmans 12P. 8 or 15 ohm Goodmans 15P. 8 or 15 ohm Goodmans 18P. 8 or 15 ohm Goodmans 12P-D. 8 or 15 ohm Goodmans 12P-G. 8 or 15 hm Goodmans Audiom 100
Goodmans Axent 100
Goodmans Axiom 401
Goodmans Twinaxiom 8.8 or 15 ohm Goodmans Twinaxiom 10.8 or 15 ohm Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN12
Kef DN13
Aichard Allan 12in d/c. 3 or 15 ohm
Richard Allan CG8T 8in d/c 8 ohm
WMT1 speaker match trans. 315 oh $\mathbf{~} 6.35$

£6. 60

£7.50
£ 12.50
£9.75
£7.50
£12.00
87.00
£2.55
£ 10.45
E6. 16
$\mathbf{E} 12.00$
£12.00
£15.00
£24.00

Wharledale Super 10 RS/DD
ع9.80

Aichard Allan Super Triple (each
Goodmans DIN 20 (each)
Fane Mode 1 (each)
Peerless 20-2 (each)
Kefkit 2 (each)
Ketkit 3 (each)
Helme XLK25 (pair)
Helme XLK50 (pair)
534.00

Baker Major Module
£37.18
P.A. and Hi-Fi speaker cabinets, Send for Fre booklet "Choosing a Speaker'. Carr. and insurance 75 p per kit ($£ 1$ - 50 pair).

PA/Disco Amplifiers
(Carriage and Insurance £1) Baker Major 100 watt
£46. 00
Linear 30/40
Linear 40/60
£25.00
Linear 80/100
§55.00

Radios/Cassettes

Grundig Solo Boy	£16.00
Grundig Top Boy	£17.75
Grundig Party Boy 500	¢.22.75
Grundig Melody Boy 500	£26.75
Grundig Elite Boy 500	£26.75
Grundig Signal 500	£26.50
Grundig Yacht Boy 210	£34.00
Grundig Melody Boy 1000	£38.75
Grundig Satellite 2000	£121.00
Grundig C410 Cassette	¢28.50
Grundig AF 430 mains radio	¢26.75
Grundig RF310 mains radio	£22.00
Tanberg TP41	£ 43.00
ITT Weekend Auto	£18.00
ITT Golf Preset	£24.50
ITT Colt	£11.50
ITT Europa	£20.50
ITT SL53 cassette	£25.75
ITT Studio 60 M cassette	£32.75
ITT Studio 73 cassette	\$48.00
Bush VTR178, 5 band (inc. air)	£29.00
Koyo KTR1770 11 band	£58.95
Koyo KTR1663 or 1664, 8 band	¢42.00
Koyo KTA1883, 5 band	¢22.00
Murphy BA209 radio/cassette	£32.75
Carriage and Insurance 75p. FAEE with each radio-World radio stations book.	

radio-World radio stations book.

Free with speaker orders over £7-

"Hi-Fi Loudspeaker Enclosures" book. All units guaranteed new and perfect. Prompt despatch.
Carriage $35 p$ per speaker (tweeters and crossovers 20p).
ALL PRICES QUOTED INCLUDE VAT

WILMSLOW AUDIO

Loudspeakers: Swan Works, Bank Square, Wilmslow, Cheshire, SK9 1HF.
Radios, etc.: 10 Swan Street, Wilmslow, Cheshire. Telephone: Wilmslow 29599

TIME SWITCH
smith's mains driven clock with 15 amp switch. also notes showin how you can wake up with music home to a warm house, warn of burglars. keep pets warm. halve your heating bills. etc $\mathbf{E 1 . 9 5}$.

RECORD PLAYBACK HEADS
(TRUVOX)
Individual prices of these are: ? track record playback heads 50 p each: 4 track record playback heads 72 p each Erase heads are also available separately-2 track 33 p f track SSp: MV metal mounting shields 39 peach; - track fl-22 E1.22.

RADIO STETHOSCOPE

ULTRA-SONIC REMOTE

CONTROLLER

As featured in this issue' Our 1974 catalogue hsts hundreds of bargains and probably many of the parts needed for this project 66p brings the
catalogue and the ne $3 t$ monthly supplements

SLIDE SWITCHES

Slide Switch. 2-pole changeover pane mounting by two \&BA A screws. Size approv lin x in rated 250 V lamp. 8p each. 10 fo 73 p . Ditto as ahove but for printed circuit 6 p each. 10 for 6.3p. Sub-Miniature side Switch DPDT 19 mm (fin approt.) between fixin sentres 20 p each or 10 for $\mathrm{E} 1 \cdot 90$. SP Changeover sprin return $3 \mathrm{~s}(\mathrm{OV} 1 \mathrm{amp}$ lp.

MAINS TRANSISTOR P.P.
Designed to operate transistor sets and amplifiers Adjustable output 6 V . 9 V . 12 volts for up to $\$ 00 \mathrm{~m}$. (class B working). Takes the place of any of the following batteries: PP1. PP?. PP4. PPR. PP1. PPY, and others and load resisior condensers and instructions Real snip and load resistor condensers and instructions Real snip at only £1-10

TREASURE TRACER
Complete Kit (except wooden batiens) Complere the metal detector as the circuit in Practical Wireless. August issue $83 \cdot 30$ plus 20 p post and insurance

THYRISTOR LIGHT

DIMMER

For any lamp up 10 lkW . Mounted on Fwitch plate to fit in place of standard Price $\mathbf{5 2 . 9 5}$. plus 20 p pont and insurance Industrial model $5 \mathrm{~A} \mathbf{E 3} \cdot \mathbf{3 0}$. Not on plat

U.V. LIGHTING

Useful for flaw derection in metals and for looking for water marks. etc, also for fitting over tropical fish tanks-African violets and other indoor plants whic must have U.V for healthy growth. The oulfit com prises hav Price $\mathbf{5 2} 20$ tube ends. Price $£ 2 \cdot 20$ plus 30 p pos

```
ADD 10% VAT
and 25p post and service
charge if order under £5
```


J. BULL (ELECTRICAL) LTD.

(Dept. P.E.), 7 Park St., Croydon CRO 1YD Callers to: 102/3 Tamworth Rd., CROYDON

PREAMPLIFIERS

FET transistors together with H.S carbon film glass fibre P. C. board are ready assembled and fully tested. Low noise silicon and range tone control circuits producing superb sound quality from any signol Extensive research has gone into the varlous wide VA08 Vol. Treb, Mid and Bass Controls. HI IMP. FET I/P. Suitable Mic. Guifar. Radio Crystal/Ceramic'P U

VA06 Vol. Treb and Bass Controls. 8 mV sensitivity. Treb $+28-15 \mathrm{~dB}$ at 12 kHz . Sass $\pm 18 \mathrm{~dB}$ at 40 Hz
AMF01 Tuac Auto Fade Unit fades muslc when you soesk. Auto Mic Over-ride tor Disco use Feed Deck and Mic Pre-amps in. Auto tade OP to main Amp $38 \mathrm{mV} \quad \mathbf{~} 5 \cdot 00$ operating level Depth and Vol Controls.

NEW TUAC POWER MODULES. Now in their second successful year offering more power and quality than ever before.
TP100 $\quad \star 125$ Watts RMS continuous sine wave output
Illustrated $\star 4$ RCA 150 Watt 15 Amp output transistors
A F $\boldsymbol{H E}^{\star}$ * Special layer wound driver transformer
4.2, 4 Short, open. and thermal overload protection

TL6

* 60 Watts RMS sine wave
$29: 75$
\star RCA 115 Watt output transistors
* Only six connections to make
\star Same size as TL100

Specification on all four power modules
All output power ratings $\pm 1 \mathrm{~dB}$. Output impedance $8-15$ Ohms. THD at full power 1% typically 0.5%
Input sensitivity 60 mV into $10 \mathrm{k} \Omega$. Frequency response $10 \mathrm{~Hz}-25 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Hum and noise better than -75 dB
Power supplles vacuum Impregnated Transformers with supply board incorporating
pre-amp supply
pre-amp supply:
PS 125 ± 50 volts for one TP100
PS 100 ± 45 volts for one TL 100
PS 60 ± 40 volts for one TL60
PS 30 ± 50 volts for one TL30
PSU 2 for supplying Disco Mixer

tUAC DISCOTHEQUE MIXER WITH AUTO FADE
Designed for the discerning D J of professional standard
$£ 25.50$ Offering a vast variety of functions
Controls: Mic Vol, Tone. Over-ride depth, Auto Manual Sw Tape Vol. L \& R Deck Faders Deck Volume. Treb and Bass H. Phon Vol. Selector. Master Vol, on/off sw. Max output IV RMS Specification as VA06 PANEL SIZE $18^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$ DEPTH ${ }^{3}$

ALL PRICES INCLUDE V.A.T. AND POSTAGE AND PACKING access \& barclay cards accepted, just send us your number. h.p. arranged through paybonds.

VA08 ILLUSTRATED

SIZE $6 \frac{1}{2}{ }^{\prime \prime} \times 2^{\prime \prime} \times 1$
UAC HIGH POWER AMPLIFICATION-bultt to high standards,
 and built to last

50 WATT RMS SINE WAVE
ALL PURPOSE AMPLIFIER
Suitable for Disco. PA, Guitar. 4 inputs, 2 volume controls. Master volume, treble middle and bass controis. Rugged circuit. rugged leathercloth covered case short and open circuit protection. Tone control speci-
ficatlon as VAOB pre-amp FULUY FUSED ficatlon as VA08 pre-amp. FULLY FUSED

$$
\begin{array}{ll} { }_{\text {WATT }}^{50} & £ 44 \cdot 00 \\ \text { WATT } & £ 66 \cdot 00 \end{array}
$$

 WATT $£ 44.00$

 WATT $£ 44.00$

 watt $£ 66.00$

 watt $£ 66.00$}LARGE S.A.E. WITH ALL ENQUIRIES PLEASE

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT
SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT
OPEN 6 DAYS A WEEK. 9.30 a.m. - 6.00 p.m

TUAC MAIN DEALERS

BRISTOL DISCO CENTRE, 86 Stokes
Croft, Bristol 1. Tel. Bristol 41666.
CALBARRIE AUDIO, 38 Cromwell Road, Luton, Beds. Tel. Luton 411733.
SOCODI, 9 The Friars, Canterbury, Kent. Tel. Canterbury 60948.
G. WALKER AUDIO, 61 South Street, St. Andrews, Flie.

Liquid-Crystal Clocks

MM5316 DIGITAL ALARM CLOCK CHIP-
1 As in P.E. April 74 issue $\begin{array}{lr}\text { MM5316 Chip - data } & \mathbf{£ 1 5 \cdot 0 0} \\ \text { 40-pin D.I. L. socket for MM5316 } \\ \text { LM3900 } & \mathbf{~} 1.35 \\ \text { LO.69 }\end{array}$
LM3900
3M Display Film 3 in $\times \frac{1}{2} \frac{1}{2}$
£0. 50
KIT PRICE
£17.00
VAT
DIL2-4 switch
£0. 80
2 Bywood 5316-LC Kit
MM5316 Chip + data
£15.00
40-pin socket
£1.35
RCA Liquid Crystal Display $\quad £ 13.00$
PCB £2. 50
3M Display Film 3 in $\times 1 \frac{1}{2}$ in
£0. 50 KIT PRICE $£ 30.00$

VAT
Please note that Siemens and RCA L-Cs are not pin compatible. Other kits chips displays available

BYWOOD HAS TIME FOR YOU!

Clock oata sheets-sae aduice-phone 0422-62757
POST \& PACKING- YO OVERSEAS (MIRMALL) SOP VAT-ALL PAICES EXCLLOEG VAT
PAYMENT C WO OI ACCOUNT ACCESS ORDERS \& PAYMENTS BY DHONE ACCEPTEC QUANTITY O SCOUNTS ON MOST TTEMS-STATE REDUIREMENTS FOR QUOTATION
a woood electronics 181 EBBEANS ROAD
HP3 SRDS TEL 0442-62757
24 HOUR ANSAPHON
24 HOUR ANSAPHONE ON-LINE
 \section*{ENGINEERS
 \section*{ENGINEERS
 Hill
 YOURSELF FORA BETTER JOB ..
 ㄹeㄹ
 MORE PAY!}

Do you want promotion, a better job.
higher pay? "New Opportunities shows you how to get them through a low-cost B.I.E.T. home atudy course. There areno books to buy and you can pay-as-you-

The B.I.E.T. guide to success should be read by every ambitious engineer. now. No obligation 76 page FREE on you. It could be the best thing you

ALL PRICES INCLUDE V.A.T.

gPEAKER BARGAING

TWEETER AND CROSSOVER	Dome Tweeter 8 ohm, 30w	4-85
EMI 3fin, 3 or 8 ohm C/Mag. 1.00	Croshovers CN 23 (3 ohm), CN28	
Cone Tweeter 8 or $15 \mathrm{ohm}, 10 \mathrm{~W} 2.40$	(8 ohm), CN216 (16 ohm)	1.05
Cone Tweeter 8 ohm. $3 \mathrm{~W} \quad 1.40$	P. \& \boldsymbol{P}	$0 \cdot 10$
Horn Tweeter 8 obm, 20w 5.85		
EIT FORM CABINETS, TEAK	$13 \mathrm{in} \times \sin$ cutout$18 \mathrm{in} \times 11 \mathrm{in} \times 9$ in with 13 in \times	3.50
VEMEER. $12 \mathrm{in} \times 12 \mathrm{in} \times 6 \mathrm{in}$ with 8 in ,		
$8 \mathrm{in} \times 5 \mathrm{sin}$ or 8 z in and 3 in	8 in cutout for EMI 350	4.25
cutout 2.45	P. \& P. each	0.35

$17 \mathrm{in} \times 10 \mathrm{in} \times 9$ in with 8 in or

MICROPHONES		TW206	5.76
	0.50	CONDENSER MIKE 600 ohm,	
		uni-dir	7-90
gwitch crystal	1.55	Cassette Stick Mike with R.	
DM160 Dynamic uni-dir, bal!		Control on/off owitch (2.5	
metal	3.85	and 3.5 mm J/Ply)	1.88 0.15
UD130 $50 \mathrm{~K} / 600 \mathrm{ohm}$, uni-dir, ball metal	4.50	\underline{T}	
SOLDERTNG IRONS		日pare Bib, etc.)	2.65
ANTEX CN24015W	1.80	X25 26 W (low leakage)	1.60
SKI Kit (15 watt iron, 2		P. \& \mathbf{P}	$0 \cdot 10$
CARTRIDGES		BSR SC5M Btereo ceramic	2.26
ACOA GP91/2SC or GP91/38C		SX5\% Stereo crystal	1.60 1.60
Stereo comp	1.00	SX5M Stereocrystal X (Hi Mono/atereo	1.60 1.26
QP93/1 Stereo orystal	1.35	X5M Mono/atereo	1.25
QP94/1 8tereo crystal	1.75	GOLDRING G800	8.85
GP95/1 GP96/1	1.35 1.75	G850 ${ }^{\text {a }}$	2.95
GP101	0.75	P. \& P	0.05
SONOTONE 9THAC Btereo		Sapphire 35p D. Diamond	1.26
ceramic, dian.	1.80	GOLDRING G800/G850	1-95
19-TI Stereo cryatal	0.80		
BATTERY ELIMINATORS		socket.) 6, 75 or 9 d.c. output	
240 V input 6,75 or 9300 mA	$2 \cdot 20$	at 300 mA	$2 \cdot 20$
12 V d.c. input (fits in car lighter		P. \& P	$0 \cdot 10$

Sond $25 p$ for COMPLETE CATALOGUE, relundable upon frtt order, ALL OUR MERCHARDISE IS FULLY GUARANTEED

Riverstale Electronios Mail Order Department E/4
 P.O. Box 470, Manchester M60 4BU

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT OVER

40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit. computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c.experiments, d.c. experiments, simple counter, time delay circuit. servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test. service and maintain all types of electronic equipment, radio and TV receivers, etc

To BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, P.O, BOX I56, JERSEY. Please send your free brochure, without obligation, to: we do not employ representatives

LIBERATED DESIGN

THIS month we speak up for those good old liberal attributes of compromise and tolerance, as opposed to analytical exactitude. All in relation to circuit design, we hasten to add.

Without doubt very many constructors (sometimes regardless of extensive practical experience) view the origination of electronic circuits as something of a mystic art indulged in only by mathematical geniuses who have undergone the necessary rigorous training. Textbooks aimed at satisfying the requirements of examining bodies help to preserve such a myth. Of course, a detailed analytical approach to circuit design is appropriate for the student who is hoping to make a career as a designer in the industry, or intent upon following some academic role in this same field. But it is likely that the deep mathematical treatment, with an inevitable attachment to the "equivalent circuit", which forms the keystone of standard textbooks and technical college syllabuses is off-putting, if not downright frightening, to quite a number of those who indulge in electronics purely as a hobby.

This is a pity, for clearly the ability to design from scratch -if only at a modest level-can add enormously to the enjoyment and satisfaction derived from constructional activities alone.

It has to be appreciated that the amateur designer has his own particular needs to meet, and he operates in an entirely different environment to the professional designer. The latter generally works in a commercial world where cost effectiveness often counts more than technical perfection. The amateur by contrast is able to adopt a freer, more realistic approach to certain aspects of electronic circuit design. For, after all, in the end it amounts to this: real components are never perfect, so production spreads and tolerances have to be allowed for, necessitating some compromise between calculated and practical values.

This month sees the appearance of the opening part of a specially commissioned series entitled First Steps in Circuit Design. This series is strongly recommended to all those who have previously limited their efforts just to the building of equipment from published designs. Nothing off-putting or frightening here, not even for the beginner (Readers of our companion magazine Everyday Electronics please note). Our author has an uninhibited down-to-earth approach and treats the subject of circuit design as an entirely practical operation based upon well known circuit devices, and not as a .cold academic exercise. He dispells some misconceptions. like the need for a high degree of arithmetic accuracy in all calculations, and presents a number of "home truths" with which experienced commercial designers will, we guess, quietly concur.

First Steps in Circuit Design will conclude with a fully worked-out, step-by-step design procedure for a useful project. A strictly practical design, of course.
F.E.B.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor S. R. LEWIS B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial Advertising Offices:
Fleetway House, Farringdon St.,
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

THIS article describes the theory and construction of a digital alarm clock, with all the basic but complicated circuitry built into the main clock i.c. The only additions required are peripheral circuits to control power, drive the clock chip, activate radio turn-off, generate the alarm noise, link up the liquid crystal, and control the various facilities.
lts difficult to estimate a precise cost for the complete clock, but it will undoubtedly compare favourably with much earlier digital clocks based on 20 or more i.c.s, but lacking the comprehensive facilities provided by this one.

THE CLOCK CHIP

The integrated circuit used is a National Semiconductors ${ }^{\circ}$ M M5316. It provides four display possibilities, any single one of which can be selected by switch at the user's choice. They are actual time in hours and minutes; the minutes and seconds counting linked with that time; the time at which the alarm is set; and the time remaining in minutes before the radio turn-off circuit operates.
The i.c. will interface directly with either liquid crystal displays or with seven-segment fluorescent tubes. The former is employed in this project.

The timekeeping function will operate from either 50 or 60 Hz mains frequencies, according to the way in which the i.c. is wired, and the display format can be either 12 or 24 hour format. In the former case, leading zeroes are blanked and an a.m. or p.m. indication is provided on both main time and alarm
set displays. This is important, of course, in order to make sure the alarm goes off at, say, 7 a.m. rather than 7 p.m.!

The a.m./p.m. indicator in the display also serves as a visual warning if there has been any form of power interruption. In such a situation, the i.c. causes it to pulse at a 1 Hz rate, which ceases automatically when the time is reset. This indication is important, because even a momentary power failure will cause the i.c. to reset and display an inaccurate time, which could easily mislead if the power failure had been brief, and the ensuing time indicated were taken at face value.

The device operates over a very wide power supply range of anything between 8 and 29 volts, and this need not be regulated. It is in the familiar d.i.l. package and has 40 pins.

OPERATION

An operational block diagram of the clock chip is shown in Fig. 1 and the pin connections in Fig. 2.

The 50 or 60 Hz input at pin 35 is passed through a shaping circuit to square the incoming sine wave. This is a Schmitt trigger designed to provide about 6 volts of hysteresis. A simple external RC filter is employed with the i.c. to remove any possible line voltage transients that could either damage the device or cause it to gain time.

The output of the shaper then passes to a counter chain which performs the actual timekeeping function. The first part of this consists of a programmable prescale counter, set by external wiring to divide the incoming frequency by either 50 or 60 .

The resulting 1 pulse per second is then divided by 60 to obtain 1 pulse per minute, and again by 60 to obtain 1 pulse per hour.
The outputs from each of these dividing chains goes to the code converters and output drivers, and the alarm comparator circuits.
The alarm comparator senses coincidence between the alarm counters-which is the set alarm time in hours and in minutes-and the time counters-which is the actual time in hours and minutes. When coincidence is sensed, the comparator output is used to set an internal latch in the alarm circuit. The output of the latch turns on the external alarm driver transistor, which in its turn controls the external circuitry of the alarm noise generator.
The alarm latch remains set for 59 minutes, during which time the alarm noise will continue. If the latch is not manually reset before the 59 minutes are up, it will automatically reset at that point.

The "Alarm Off" control will reset the alarm for a full 24 hours, when it will once again operate at the preset time, or at whatever new time may have been set. The "Snooze" control, on the other hand, turns the alarm noise off for approximately 8 minutes, after which it starts again.
The "Snooze" control can be operated as often as the user wishes during the 59 minutes for which the alarm latch remains set. Clearly the most reluctant getter-up will be able to have seven or eight extra snoozes before he either rises, or abandons himself for the full 24 hours before the alarm sounds again!

RADIO TURN-OFF

The sleep down counter operates with the sleep output to turn a radio (or any simple appliance) off after a preset time of anything up to 59 minutes. The sleep counter display (like all the other display possibilities) is selected by switching to be described shortly. It naturally counts down from 59 to 0 as the clock continues to count up.

As long as the sleep down counter has a minutes output, rather than " 0 ", an internal latch in the sleep circuit remains set. 'The latch output holds the external sleep driver transistor on, which in its turn maintains continuity in a simple relay circuit for the battery power of a radio.

Fig. 9. Block diagram of the MM5316 clock integrated circuit

LIQUID CRYSTAL DRIVE

All of the display output drivers are open-drain devices with their sources common to pin 23, the output common source connection.

This facilitates the generation of the vital square wave drive voltages which are essential for liquid crystal displays. This is external circuitry which will be described later in the article.

Full control of the display possibilities is obtained by five different switching arrangements, all of them simple. First, time setting is achieved via the slow or fast set inputs. These, like the other three to be mentioned shortly, are obtained simply by applying the supply voltage (V_{ss}) to the appropriate pin. "Slow set" causes the clock to advance at 2 minutes per second. "Fast set" speeds up the advance rate to 60 minutes (or I hour) per second.
Normally the clock will display the actual time. To change the display to the alarm set time, V_{gs} is applied to the "alarm display" pin. The sleep time is displayed by the same method. With either of these displays, the "Slow" and "Fast" setting controls operate as described, excepting of course that the sleep time counts down rather than up.
When sleep time is being manually controlled, rather than coming under the control of normal clock operation, it will recycle at " 00 " straight back to " 59 " and continue counting down for as long as the manual control is applied. It will not do this when controlled normally by the clock-when " 00 " is reached, the counter becomes inactive, the output is removed, and the radio turns off.
This is obviously necessary if an attached radio really is to be turned off, rather than being momentarily interrupted during the one minute of " 00 " before coming on again to play merrily for another 59 minutes, and so on through the night!

The final display option is minutes/seconds, rather than hours/minutes. When this option is chosen, the units of minutes being displayed moves to the units of hours position, and the two-digit minutes display is replaced by a two-digit seconds display. With this display, the operation of the "Fast" and "Slow" set controls is automatically changed. The "Fast set" control now causes the seconds count to reset to " 00 " without a carryover to minutes, and

Fig. 2. Pin connections of clock chip

Fig. 3. Complete circuit diagram of the Liquid Crystal Clock. The diagram at top left shows the LM3900 i.c. The MC3401P is an equivalent to this and has the same pin connections.
further prevents any operation of the counting circuits until the control voltage is removed. The "Slow set" control, on the other hand, merely inhibits the input to the counters for as long as the control is applied, but does not cause any reset of seconds.

As will be seen later, this facility is invaluable for accurate setting of the clock against a known time source, such as the Greenwich time signal.

ALARM CONTROL SWITCHING

As in the switching arrangements mentioned above, alarm control is achieved by a momentary or semi-permanent connection of $V_{s s}$ to the appropriate pin on the i.c.

It is worth mentioning that the alarm will remain off for as long as $V_{s i}$ remains applied. However, this project employs a push button to momentarily apply $V_{s s}$, rather than a toggle switch to apply it until the switch is operated again. The author has found it's only too easy to forget to turn the alarm back on, with disastrous effects the next morning! Those with good memories, on the other hand, may well wish to use a switch instead of the push button.

ALARM NOISE CIRCUIT

Fig. 3 shows the full circuit for the clock. The alarm circuit uses three of the four available amplifiers in the quad amplifier i.c., and have been labelled in the circuit as A1, A2 and A3. A1 and A2 have been designed to operate as oscillators. R22 and R17 provide positive feedback in A1 and A2 respectively. Negative feedback in Al comes from R24 and C3, while in A2 it is provided by R20 and C4.

In A1, the slowly rising voltage on C3 is translated into current by R23, which causes the amplifier to switch when the value exceeds that provided by R14. C3 begins to discharge when this happens, and the process is then repeated. Al is operating as a low-frequency square wave oscillator with the component values chosen.

The operation of A 2 is almost identical, in that the voltage on C 4 causes, via the current-translating effect of R19, the amplifier to switch. This allows C4 to discharge, and the operation to continue repetitively. The frequency of operation is modified by injecting a current into it via R21, which couples the output of A1 into A2. Thus the oscilla-
tion of A2 has superimposed on it the oscillatory output effect of A1.
The total output is taken, via R18, to A3 which is serving in this application as nothing more than a loudspeaker driver. It is biased by R16 and overdriven by R18, so that its resultant output is a hard clipped square wave. This is capacitively coupled via C5 to the sound output device, which in this case is a simple crystal microphone insert.

Under normal conditions, the entire circuit is prevented from oscillating by injecting a relatively large current via R8 and D4. This current will flow when TR3, the transistor driven by the alarm output from the clock, is not conducting. However, when this is turned on by the alarm output, the junction of R8 and D4 is pulled down, and current is prevented from flowing into the amplifier, which allows oscillation to commence.

POWER SUPPLIES

One simple power supply derived from a miniature 20-0-20 transformer (TI) is all that is required for the entire circuit. Normal rectification is provided by D1 and D2, with smoothing provided by capacitor C2.

RI and Cl form the external filter to guard the i.c. against any possible line voltage transients, which could either cause the clock to gain time or, in extreme cases, actually damage the i.c. It is from the junction of R1 and C1 that the synchronising mains frequency input to the clock comes.

LCD DRIVE GENERATOR

TR1 and TR2 form a pulse generating circuit, triggered by the mains frequency via R2.

Diode D3 is used between the base of TRI and ground, rather than a mare conventional resistor, so that a smaller value can be used for R2. This ensures that turn on occurs very quickly at the start of the mains half cycle, and equalises the pulse lengths at the collectors of TRI and TR2.

The reason for two separate resistors R3 and R4 in the collector of TR1 is to reduce the amplitude of the pulse which is fed from their junction to the "b" segment of the I.c.d. tens of hours digit in the 24 hour version of the clock. This makes sure the amplitude of the directly supplied " b " segment pulse is the same as that on the common connection to the 1.c.d. from the collector of TR2. This, in turn, matches the amplitude of the signals from the clock chip to the l.c.d. There is, of course, no connection at the junction of R3 and R4 in the 12 hour version of the clock.

CHIP OUTPUT SWITCHES

Both TR3 and TR4 are acting as simple switches, under the control of the alarm and sleep outputs from the clock chip. Under normal circumstances, the base/emitter resistors R10 and R13 hold the transistors off. When either the alarm output or sleep output from the chip is activated, however, TR3 or TR4 is immediately turned on.
In the case of TR3 this immediately allows the alarm noise generator to operate. In the case of TR4, the transistor's operation is used to activate a simple reed relay, which will close the battery supply circuit to an external radio, whose power is being derived from its own battery, but only via the jackplug connected in series with the relay.

LIQUID CRYSTAL DISPLAY

Time indication for the clock is provided by a Siemens liquid crystal display. Such displays are very new, but are now being used in a growing number of applications. They have several enormous advantages. For instance, they have extremely small power requirements, which means they can be used extensively in battery-driven circuits. Again, the low voltage and current needs means they can usually be addressed directly by m.o.s. circuits, without intermediate driver stages.

If we are to be fair, the two possible disadvantages of liquid crystal displays should also be mentioned here. First, they produce no light of their own, unlike l.e.d.s, luminescent anode tubes, Nixies and the like. That is to say, the display can only be seen if there is a light source of some sort available to illuminate it. For this reason, two small neon lights have been built into the project (LP1, LP2) at the base of and immediately behind the liquid crystal. These serve to light the digits up with a

COMPONETIS . . .

Resistors					
R1	100k Ω	R9	22k Ω	R17	$1.5 \mathrm{M} \Omega$
R2	47k Ω	R10	22k Ω	R18	33k Ω
R3	$4.7 \mathrm{k} \Omega$	R11	5.6k Ω	R19	$560 \mathrm{k} \Omega$
R4	820Ω	R12	$4.7 \mathrm{k} \Omega$	R20	39k Ω
R5	680k Ω	R13	$4.7 \mathrm{k} \Omega$	R21	$6.8 \mathrm{M} \Omega$
R6	$4.7 \mathrm{k} \Omega$	R14	$2.2 \mathrm{M} \Omega$	R22	$1.5 \mathrm{M} \Omega$
R7	$1 \mathrm{k} \Omega$	R15	$1.5 \mathrm{M} \Omega$	R23	270k Ω
R8	22k Ω	R16	$100 \mathrm{k} \Omega$	R24	22k Ω
All $\frac{1}{2}$ W 10\% carbon					

Capacitors
 C1 $0.01 \mu \mathrm{~F}$

C2 $50 \mu \mathrm{~F}$ elect. 40 V
C3 $15 \mu \mathrm{~F}$ elect. 40 V
C4 $6,800 \mathrm{pF}$
C5 $125 \mu \mathrm{~F}$ elect. 40 V
Transistors
TR1-TR4 BC107 (4 off)
Integrated Circuits
IC1 MM5316
IC2 LM3900 or MC3401P (Motorola)
Diodes
D1-D4 1N4001
Liquid Crystal Display
L.C.D.-AN4132 (Siemens)
including socket
Relay
RLA1 Reed relay, $1 \mathrm{k} \Omega$ coil, 9-12V (R.S. Components)

Switches
S1 2-pole 4-way d.i.I. switch type DS-16A
S2-S5 Single pole push to make switches (4 off)
Miscellaneous
T1 $20-0-20 \mathrm{~V}, 30 \mathrm{~mA}$ miniature mains transformer LP1, LP2 mains neons (2 off), Eddystone diecast box $7 \frac{1}{2}$ in $\times 4 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}$.
1-40 pin d.i.l. i.c. socket, $1-14$ d.i.l. i.c. socket, 14, 12BA $\frac{3}{4}$ in bolts, 42, 12 BA nuts, 3 M display film 3 in $\times 1 \frac{1}{4}$ in, 0.03 in thick, 28 degree angle JK1-miniature jack socket and plug to suit.
gentle red glow, if the clock is at the bedside at night. If the clock is being used in normal lighting, there will be no difficulty in seeing the digits. In fact, they have the advantage of being considerably larger than most comparable display methods.

The other disadvantage, if it can be called that, lies purely in circuitry. Liquid crystal displays must be driven with a reasonably symmetrical alternating voltage. Sine, square, sawtooth; almost any waveform will do, the aim being to avoid any d.c. element in the driving voltage as this will shorten the l.c.d. life, often dramatically.
L.c.d.s use a nematic liquid crystal film, sandwiched between two parallel glass plates. An electric field applied to this film causes it to become milky immediately. The field is produced very simply by applying a voltage to a transparent conductive coating on the inside of the glass plates. The opacity of the liquid crystal under the influence of the charge can be increased by increasing the voltage. Eventually, however, a saturation point is reached, after which no increase in the contrast ratio between the opaque and clear areas occurs.

The process reverses as soon as the driving voltage is removed when almost instantly the liquid crystal reverts to its normal completely transparent condition.

Two types of Siemens liquid crystal display are available for use, according to whether the ambient illumination is expected to come from in front or behind of the l.c.d. The transmissive type is normally completely transparent and is used with rear illumination. The reflective type has a thin mirror coating built in, and is used when the ambient lighting is from the front.

This project uses the transmissive Siemens l.c.d., but the two are quite interchangeable, and if anyone wished to use the reflective type there is no reason why this should not be done. Both have been tried, and the transmissive seems to be the better.

DISPLAY FILM

Display film is a development from the 3 M Company, and is again extremely new. It is a thin (between 01 and 03 of an inch, according to type) plastic film, made of cellulose acetate butyrate. Actually inside the plastic are a large number of very closely spaced louvres, all at the same angle to each other. In other words, it is exactly like a tiny venetian blind. Placed behind an l.c.d., it allows natural light falling on the plastic at angleperhaps from a window, or a lamp behind and above the l.c.d.-to pass through the plastic and illuminate the active segments of the display.

When the display is viewed normally from the front, however, it appears to be backed by a completely opaque black sheet, against which the illuminated segments stand out very clearly indeed. The effect is quite clear in the introductory photographs.

The display film is not an essential, since the clock design places it in a case which is sprayed matt black, and has the l.c.d. mounted well forward on the top of the case. Thus the display is normally seen against a matt black background, and is clearly visible. Nevertheless, the project is considerably enhanced by using the film, and it is both inexpensive and obtainable from several of the outlets supplying the l.c.d.

Next month: Full constructional details of the clock will be given.

Rodidutr

Information please

Sir-We belong to a group researching new techniques of energy provision, conservation and use in domestic dwellings.

In our new proposals we aim to make a maximum use of ambient solar energy by using simple. easy to construct systems for collection, storage and application.

During the past 12 months; operating an integrated prototype dwelling we have built and tested solar water heaters, recycling systems for liquid and solid wastes, various food production systems and for electrical generation using wind power, both high-speed propellers and slow-speed rotor devices.

We would welcome any advice on electrical generation, control circuitry and storage systems. We are interested in the possibility for using small electric motors, ex-car parts, surplus equipment (alternators and dynamos), and the winding of generators for power supplies ranging from $18 \mathrm{~W}-2 \mathrm{~kW}$.

Derek Taylor and John Shore. 36. Bedford Square, London, WC1B 3ES

Group One

Sir-May I through the courtesy of your columns bring to the attention of Component Retailers the way we are attempting to deal with an urgent problem which affects all of us. I refer to the shortage of Electronic Components.

There are many buying Groups operating successfully in commodities ranging from Groceries to Television Sets. but we believe we are the first (and perhaps the only one) dealing in Electronic Components. We are the poor relation of this industry and it is the manufacturer who can buy bigger quantity who comes first. "Group One" has been functioning for about three years during which time it has prevented the total disappearance of many vital components by large purchases. To give us more buying power we would like to recruit more members. Would any Electronic Component Retailer who is interested please contact the writer at the following address.
A. Sproxton (Director),

Home Radio (Components) Ltd..
234-240 London Road, Mitcham, Surrey.

POUNIF RAIFInT

CONNOISSEUR BD1 KIT (February 1974, page 35)

The kit is available from most hi fi stockists throughout the country. It is not obtainable direct from the manufacturers, A. R. Sugden \& Co, as stated in our. report. This company wishes it to be made clear that they do not supply goods other than through the usual trade channels.
100W INVERTER/CHARGER (February 1974)
Veritronics supply the Printed Circuit Board only. Transformers and Inductors can be obtained from Zeta Windings.

THE OTHER SIDE

It has not been the custom to report on the military side of the space activities. In doing so now it is a reminder that though the programmes for the future are not definite, with many astronauts and' technologists wondering about their future, the space activities will be kept alive for defence and offence Apart from the space shuttle and the Mars programmes nothing is definite for the rest of the 70 's, though this could change rapidly.
lt is a sad reflection that continuance on a grand scale for peaceful purposes should depend upon thoughts of aggression.

Last year Russia launched a whole series of spy satellites in the space of two weeks in October. There is little doubt that these satellites were directed to the events in the middle east.

Again, some of the more sophisticated equipment comes from the requirements set by the services. The returned film capsules must show details not otherwise needed for more formal research. This presupposes that the cameras alone will have had considerable development. These will be available later for peaceful purposes.

When thinking of the missiles and counter missiles it is usual to do so in the terms of a bomb or similar one-off device. The reality is now somewhat different. Taking the United States who do publish figures, the data shows that up to 1970 some 4,000 warheads were available. By 1975 this figure will have risen to something of the order of 10,000 .

As this target has more than halfway reached the number stated it is of interest to consider the type of vehicle which carries the warheads. By far the most advanced is the Multiple Independently Targeted Re-entry Vehicle, MIRV. This system enables a single vehicle to carry a number of warheads, which can be directed independently and at different intervals of firing, on a number of separate targets.

Details of Russian devices have not been released by Russia but America believes that a MIRV device has been tested.

ACCURATE PICTURE

A knowledge of control devices enables a fairly accurate picture of the system to be made up. The multiple unit vehicle which carries several small satellites appeared quite early, by 1963 in fact. This system has been used for scientific purposes. The first experimental vehicles were not in fact related to defence directly.

B Y FRANK W. H Y DE
In the Able-Star system, which was to be a second stage to the Thor booster, the first stop-start control was tested. The Able-Star had restarting facilities with guidance control, an accelerometer and a programmer. The first test in space was as early as 1960 . In April of that year two satellites were launched by this type of vehicle. These were a Naval Research Laboratory satellite for solar studies and a Transit satellite.
By 1963 another system of vehicles was under way. This was the Allas-Agena combination. This time there was an entirely different programme for the satellites and they were placed in widely different orbits. In 1963 there was a Test Ban Treaty to be observed and the system was used to monitor that the signatories were complying with the ban. The satellites were called $V e l a$ and a pair of these were placed in orbits between 62,000 and 72,000 miles high and 180 degrees apart.

In the early 60 's the Titan $I I I$ was the largest of the United States booster rockets. A system called Transtage was used in 1966 to put eight satellites in different equatorial orbits. Each satellite weighed about 100 pounds and the orbits were at an altitude of 21,000 miles. This was an ingenious experiment and the procedure adopted was to achieve near circular orbit of the "mother" system using the stop start facilities. This near circular orbit gave a period of slightly more than $22 \frac{1}{4}$ hours. The successive releases resulted in longer periods decided by the amount of boost that each one received.

The system was proven by three further launches of a similar nature at intervals of several months. It was this series of successes that led to final stepping up of these programmes.

Without pursuing the reasons for the strategy or endeavouring to discover the exact situation by a detective exercise, the future progress is such that by 1978 the MIRV system will be able to carry up to 24 warheads of increased size and by 1980's larger warheads still.

A few investigators are seeking the answers as to what is being done where, but the only comfort so far, if indeed that is a correct term, is that the technology will not stagnate from lack of funds.

VENUS AND ON TO MERCURY

The sling-shot Mariner 10 mission to Venus and Mercury has a special place in the Mariner series. Before the original planning for more sophistication than Mariner 9 could be implemented, a severe cut back of funds in 1969 made rethinking necessary.

A number of problems arise in the Mariner 10 programme for the reason that in approaching Mercury the thermal increase has to be taken into account without reducing the Venus activity value. For one thing a thermal shield or sunshade of Teflon impregnated glass was required.

Since the solar flux is three times as high in this mission there was no need for the usual four solar power panels and these were reduced to two. However, within the budget allowed ingenuity has made a number of new approaches possible. The weight of the vehicle is of the order of half a ton of which 170 pounds is the scientific payload.

The path of the vehicle will be highly elliptical taking about 170 days and the vehicle will visit Mercury twice. There will be two new cameras for television which will have wide and narrow angle facilities each with three times the original focal length of the Vidicon units. This is mainly because of the "real time" television transmissions. This scheme also required a much higher gain aerial.
The seven experiments mounted on the probe include two magnetometers. So far there has been no evidence of the two planets having magnetospheres and in consequence this is a vital experiment.

There is a charged particle telescope to observe the solar bombardment of Mercury and two ultraviolet spectrometers to scan the airglow of the Earth and also for atmospheric analysis. Other instrumentation deals with the protons and electrons in the solar wind and an infra-red radiometer is used to check Mercury for hotspots.

The results are important-for a number of well-known astronomers have made predictions with differing

THE DESIGN of equipment to commercial production standards requires wide experience, strong mathematical ability, and an almost encyclopaedic knowledge of current component prices.

A production line design must not only satisfy the specification claimed, it must also make money. This causes the designer to approach all products with a cost effective bias. He must often resist the temptation to include extra components which he, as an
eagineering purist, feels should be present, because of the watchful eye of the accounts department.

The amateur designer is free from most of these restrictions because he will be concerned with a "one-off" circuit. It will not matter the slightest if he pops in a 1 per cent tolerance resistor where a 20 per cent would hawe been sufficient. Neither will it matter if a potential divider chain carries a few more milliamps than it needs.

1.1. GETTING STARTED

A stock of resistors and capacitors can be purchased very cheaply from various component suppliers and as for transistors and diodes, they are almost as cheap.

A would-be designer should not be put off by the feeling that his mathematics is not good enough. It is possible to achieve reasonably predictable design even if your mathematical qualifications are G.C.E. "O" level (failed). The vast majority of design work entails little more than elementary arithmetic with a sprinkling of algebra as taught to 13 -year-olds.

WHY SHOULD I LEARN TO DESIGN?

There is certainly no need to design your ows equipment because of the hundreds of constructional projects published in magazines. Most of these are contributed by old hands at the game who have often come up the hard way and such designs can be safely taken as thoroughly tested pieces of work.

However, there are a few of us who like "doing our own things". There is a tremendpus feeling of
satisfaction in creating even a simple piece of cireuitry particularly after a few voltage checks confirm that the predictions were correct. Practice in simple design is the finest way to get the real feel of electronics.

A word of warning: keep off complex circuitry until experience is gained-too many frustating failures in the early stages of a hobby can lead to a change of interests.

TEST EQUIPMEMT

It is rather pointless designing without being able to test. The following items of test gear should be gradually acquired:

1. Electronic multimeter-This very useful item is quite cheap nowadays and well worth the investment. 2. Audio Signal Generator-Excellent construction kits are available.
2. Oscilloscope-Not essential but increases the fascination of electronics to an almost unbelievable degree. Well worth the $£ 30$ or $£ 40$ spent.

1.2. HANDLING THE ARITHMETIC

Answers to resistor calculations are seldom required to more than two figures. Transistors are subject to wide variations in specification and any so-called constants like h_{PE} are seldom guaranteed to within 50 per cent (unless a higher price is paid for selected specimens).

Bearing these factors in mind we can state the number one rule of circuit tesign :

Don't be toc fussy with arithmetic, and if you are, don't expect your voltmeter readings to reflect this or you will be disappointed.

Experience will soon teach you to distinguish beiween a normal variation due to toierances and an abnormal condition.

HANDLING ROWS OF NOUGHTS

It is an unpleasant fact of life that amps and ohms are comparatively rare units in transistor circuitry. Most stages operate with currents in the milliamp or microamp range and resistors in the kilohm or megohm range.

To save writing rows of noughts after decimal points, remember that

$$
\text { volts }=\text { milliamps } \times \text { kilohms }
$$

and \quad volts $=$ microamps \times megohms
If you are proficient in handing powers of ten, note that $1 \mathrm{~mA}=10^{-3} \mathrm{~A}, 1 \mu^{2}=10^{-6} \mathrm{~A}, 1 \mathrm{k} \square=$ $10^{3 \Omega}, 1 \mathrm{M} \Omega=10^{68} \Omega$.

It is sometimes necessary to handle time constants, in which the formula is $t=C R$ in seconds, farads and ohms. It is usually more convenient to use $\mu \mathrm{F}$ and MI.

1.3. CHOICE OF TRANSISTORS

For amateur design work, almost any silicon transistor can be used, providing it is the smallsignal type usually classified as being in the "under $1 W^{\prime \prime}$ class.

It is best to keep away from germanium specimens as they suffer from severe leakage problems which complicate circuit calculations.

With regard to high power transistors, these again are best avoided until experience is gained with the smaller types. The design of power amplifier stages is not advisable in the early phases of the hobbythey are a little pricey and require considerable design know-how to counteract their intrinsic suicidal tendencies

The BC107, BC108 and BC109 or their equivalent "lockfit" versions BC147, BC148 and BC149 are perhaps the best bet for the beginner. They are available for a few pence each and large stocks.
particularly of the EC108 are held in most radio component shops or mail-order departments. The following notes are based on using the BC108 but it is not essential to use these, in fact a good design philosophy is to make circnits which are almost insensitive to transistor species. This is not possible in all cases but it is still a good guiding principle.

CHOICE OF CIRCUITRY

Simple voltage amplifiers are ideal to practice with and can quickly be hooked up and tested out.

As mentioned above, power amplifiers should be left alone, but it is rather important to have one available to provide loudspeater drive. Very efficient and cheap power amplifier modules are advertised in mail-order columms of this magazine. They seldom require more than a few hundred millivolts to drive them to full power output.

1.4. HOW TO TREAT A TRANSISTOR

Superficially, a transistor is a crystal blob with three wires sticking out. How it is treated as an electronic device depends on your sense of curiosity.
If you are a stickler for mathematical rigidity and enjoy complexity, this harmless blot will be analysed by means of its equivalent circuit, which is a frightening array of fictitious generators, feedback loops, resistive networks and the odd capacitor or two.
Fortunately the amateur designer (and, if the truth was told quite a few professionals) will have little need to probe so deeply.

THE VARIABLE RESISTOR MODEL

An absurdly simple, but in many cases quite adequate, way to visualise a transistor is shown in Fig. 1.1. Although the diagram shows an npn transistor the explanation below is equally valid for pnp types.

ACTION OF THE SIMPLIFIED TRANSISTOR

The collector and emitter wires are the two ends of a resistor. The ohmic value of this resistor can be varied by "moving" the base up cr down. The movernent is obviously not a mechanical movement but a voltage movement.

Fig. 1.1. A simple model of transistor action. The collectoir to emitter resistor is varied by the voltage on the base

As the voltage on the base is moved downwards towards the emitter the resistor becomes larger; if the base voltage moves upwards towards the collector the resistor becomes smaller.

Thus the transistor passes a larger current when the base is up thatn when it is down. The veltage across the ends (collector and emitter) have little effect on the current through the "resistor".

To avoid the mistake of treating this simple analogy too literally, the resistor becomes almost infinite (open circuit) if the base is very low but never becomes zero ohms (short circuit) even if the base is very high.
The range of movement allowed on the base is seldom more than 100 mV or so.

COLLECTOR AND EMITTER CURRENTS ARE EQUAL

The collector current and the base current added together equals the emitter current:

$$
i_{\mathrm{e}}=i_{\mathrm{c}}+i_{\mathrm{b}}
$$

However. in most transistors, with the exception of large power output types, the base current is so small in relation to the collector current that it can be safely ignored. This is because h_{YE}, which is the ratio $I_{\mathrm{c}} / I_{\mathrm{b}}$ is usually greater than 50 and can reach 300 in some cases.

In virtually all arithmetic calculations it is quite in order to treat I_{μ} and I_{e} as identical values. Transistor data manuals seldom give emitter currents, only collector currents.)

1.5. WHEN TO IGHORE GOMPONENTS

If a network contains, say, a $1 \mathbf{k} \Omega$ resistor and you sliap a $10 k$!? or higher value across it, the network will hardly notice the difference.

For practical purposes the ten times rule may be used, i.e. ignore resistors in parallel which are ten or more times larger.

SMALL RESISTORS IN SERIES

Slipping in an extra $1 \mathrm{k} \Omega$ in series with an existing 10k!? or higher will not make much difference.

For practical purposes the ten times rule can again be used, i.e. ignore resistors in series which are tea or more times smaller.

IGNORING CAPACITORS

The ten times rule can be nsed to simplify capacitor calculations but the application of the rule is the reverse to that of resistance: i.e. ignore small capacitors in parallel with large ones and large capricitors in series with small ones.

1.6. THE IMPORTANCE OF THE VOLTAGE DIVIDER CHAIN

However a group of semiconductors is arranged, they will all require various voltages to set the d.c. operating conditions. It is inconvenient and costly to provide separate power supplies or batteries for each veltage and the usual solution to the problem is to use one common supply and tap various intermediate voltages by means of voltage dividers.

A voltage divider consists of two components which are usually (but not necessarily) resistors connected in series across a supply. The junction of the two is the output voltage tapping (see Fig. 1.2).

THE RESISTOR CHAIN

The chain R1, R2 is the divider which produces the voltage V_{z}. The intention is to supply the load with voltage. The load is drawn as a black box which in practice could be the base emitter terminal, a diode, or indeed any two terminal device which requires some specific operating voltage.

Don't be misled by the apparent simplicity of the arrangement. It is important enough for its design to be treated as a very important operation. The predictability and stability of any complex circuit is, to a large extent, dependent on the correct choice of values for R1 and R2.
A common mistake is to imagine that V_{2} remains the same value when the load is connected as when it was not. Suppose for example that the load requires 5 V but the supply rail is 10 V . Sticking a couple of $1 \mathrm{k} \Omega$ resistors across the rail will certainly deliver 5 V at the junction; the disappointment comes when the load is connected. If you are lucky the voltage may be nearly 5 V but the odds are that the value will hurtle down to a prohibitively low value.

Fig. 1.2. A simple voltage divider using two resistors

DEFINE THE LOAD

The correct starting point should always be the load itself. It is vital to know not only the voltage it requires but the current it will draw at this voltage.
Assuming this knowledge is available, the basic principle is to ensure the current drain down the chain is much greater than the current required by the load.

As an example, suppose the load requires lmA and the divider chain is calculated to drain 1A from the supply. It is not too difficult to see that V_{2} will remain rock solid whether the load is connected or not. The extra 1 mA drain in relation to 1 A would only cause negligible change in the output voltage.
This example (particularly with regard to values) is not intended to be a practical one. The wastage on 1A to supply a 1 mA load is carrying the principle too far. The examples which follow show how intelligent compromises can be made.

1.7. DESIGN OF A DIVIDER CHAIN

All design work is based on compromise. The voltage divider, because of the insistence on passing much greater current down the chain than is required to feed the load, is a classic example of design compromise.

How great is "much greater"? Since there is no absolute answer to this question, all that can be done is to examine the evils at both ends of the range.

Remembering that the only purpose of a divider chain is to supply the load with a reasonably fixed voltage, the following limits can be noted.

NOT ENOUGH CURRENT DOWN R1, R2

Voltage at tap will fall appreciably when load is connected. Also if the load current is continuously changing, the voltage across the load will vary too much. This is because the current to the load comes from the supply rail via R1 and any changes in current demand will cause significant changes in volts drop across R1.

TOO MUCH CURRENT DOWN R1, R2

This is excellent as far as stability of load voltage is concerned. Any change in current required by the load will be negligible in relation to the large drain current and voltage variations across R1 will be quite insignificant.

The heavy current drain in the divider, however, must be paid for in battery life. Even if the supply is a mains power pack, several dividers in a circuit, all tating excessive currents will mean an increase in the cost of the unit.

There is also another reason why the current should be kept within bounds. In amplifier circuits the signal input is often applied to the centre tap of the divider, which means the resistors will be across the signal input and obviously these will be low in value if they have been designed to pass a lage current. A low resistance shunted across a weak signal source will tend to short circuit the poor thing to ground before it is even given the chance to be amplified.

The compromise which strikes a reasonable balance between these two conflicting requirements is normally stated as follows:

Current down the divider chain should be at least five and preferably ten times the current required by the load.

If the load current normally varies the term "load current" should be taken to mean the largest value expected, i.e. worse case conditions.

In future the value ten times will be used as a rule of thumb except where special demands require it to be overridden.

1.8. WORKED EXAMPLE OF A DIVIDER CHAIN

Calculate suitable values for R_{1}, R_{2} if the divider is to jeed $2 V$ to the base of a transistor. The transistor base current is about 0.1mA and the supply rail is 10 V .

First draw the circuit as shown in Fig. 1.3 including all known voltages and currents. The 2 V dop across R 2 is given and the 8 V follows from the knowledge that the total voltage drop along the chain must add up to the supply voltage.

The load on the divicer is the transistor base current, 0.1 mA . Adopting the ten times rule the current down the chain should be at least 1 maA . An extra little annoyance, however, is that the top resistor must also carry the 0.1 mA to the base, which means it should carry 11 times 0.1 mA which equals 1.1 mA .
Simple application of Ohm's Law now leads to values for R_{1}, R_{z}

$$
\begin{aligned}
& R_{1}=\frac{8 \mathrm{~V}}{1 \cdot 1 \mathrm{~mA}}=7 \cdot 27 \mathrm{k} \Omega \text { (approx) } \\
& R_{r}=\frac{2 \mathrm{~V}}{1 \mathrm{~mA}}=2 \mathrm{k} \Omega
\end{aligned}
$$

APPROXIMATION

It may be mentioned, however, that allowing for eleven times instead of ten times for R1 current is, in most practical applications, a case of being too fussy. After all, it is a little pointless to perform tiresome arithmetic with 11 in the bottom of a division rather than ten when the answer still has

Fig.1.3. Voltages and currents in divider chain and transistor, for example mentioned in text
to be rounded up or down to suit the nearest prefarred resistor value (try finding a $7.27 \mathrm{k} \Omega 2$ resistor!). The nearest you will probably find is $7.5 \mathrm{k} \Omega$ and even that is in the 5 per cent range.

In fact, the only reason for considering the $0 \cdot 1 \mathrm{~mA}$ in R1 is to guide you when searching for the nearest resistor amongst those available.

For practice purposes, try calculating R, and R, in the following cases:

1. A transistor base requires 002 mA at 4 V . The supply rail is 20 V .
2. The load is a resistor of $1 \mathrm{k} \Omega 2$ requiring 5 V . The supply rail is 50 V .

Continued Next Month

by K. Lenton-Smith

THE dividing line between music and pure noise, as generated electronically, is difficult to define these days. Much of the material in the "Top of the Pops" list is ambivalent in this respect, with white noise being widely used.
"What I enjoy most at the Disco"', said a friend recently, "is that the volume is so high that it goes right through your chest!' Being a mere male, he was not fitted with the shock absorbers that dissipate some of this power where the fair sex is concerned. It would seem that this love of decibels, together with an equally oppressive attack on the vision by strobes and frequency-controlled coloured lighting is a fate worse than deaf!
The reader will have noticed, no doubt, that certain security organisations are working on crowd control devices that have strikingly similar characteristics. In this case the stroboscope is geared as a weapon to interfere with brainwaves: low frequency sound at high power is also being used for its crowdstopping potential. This may explain how discotheque managements keep their patrons-by control!

HYPNOSIS

There is no doubt that a regular and rhythmic beat has a mild hypnotic effect on most people: South American rhythms are fascinating, whilst Reggae is compelling. Western civilisation's jungle drums are welcome, in moderate doses, as a mild soporific to relax the listener. Primitive graphic art and music were mainly rhythmic and there has been little change over several millenia.

No doubt the psychologist can explain why patterns appeal aesthetically, whether to the audio or visual senses. Foot-tapping is a human trait that is by no means the prerogative of the jazz addict: concert orchestra musicians are equally prone-perhaps because of the need to count sixty-four bars rest!
In his day, Bach was a composer of popular music. Those who
attempt his works will appreciate that his patterns of both harmony and rhythm are extremely wellordered. He felt strongly enough to write his 24 preludes to underline the importance of equaltemperament tuning-and working to the twelfth root of two calls for the utmost regularity.

Perhaps all this is explained by the fact that we live by patterns?

POLYPHONIC GENERATION

Whenever a group of enthusiastic organ builders get together, one topic of conversation is inevitable-the merits of various types of generators.
Divider organs, such as the P.E. Organ (no issues available), have much to commend them in terms of cost, weight, and relative simplicity. Assuming the use of discrete components, the principle is to use 12 master oscillators (probably Hartley) tuned through the top chromatic octave, each being followed by its own string of cascaded bistable frequency dividers. Because tuning is controlled by the master oscillator, each divider stage is identical and the shopping list is simplified. The waveform is normally square, though it is possible to produce sawtooth outputs from multivibrators. Blocking oscillators will also give a sawtooth waveform but the coil-winding involved makes this an unpopular project: the instrument would be hardly portable, either.
Phase relationship of any divider string will be locked and serious musicians criticise divider organs on this count for their lack of chorus effect. In practice, this disadvantage is less noticeable when reverberation is employed: the light organist will further break up the clinical divider signals with Leslie speakers and other gadgets and, bearing in mind that keying and couplers are easier to arrange, both the home constructor and commercial manufacturer tend to choose divider systems on economic grounds.

FREE PHASE

The closest equivalent to the pipe organ is obtained with free phase generators. A separately tuned oscillator is used for each frequency throughout the organ and there is no phase relationship between octaves. A good pipe organ will never be precisely in tune, primarily because of temperature/humidity effects, and free. phase systems can duplicate the resulting chorus effect realistically.

A piano or organ tuner usually makes each octave progressively and slightly sharp: the brilliance this imparts to a newly-tuned instrument is particularly noticeable. Free phase generators can also be tuned this way, but this is impossible with a divider system employing divide-bytwo stages after each oscillator. A trained musician will hear the difference between the two systems despite the tuning deviation being very small.
Sine waves are, of course, pure fundamentals: these have to be mixed in free phase systems to produce complex waveforms such as reed and string tones. Each oscillator's supply is usually keyed (rather than the signal itself) as it is easy to insert a time-constant at this point to control attack and decay to simulate the speech of a pipe. Keying becomes somewhat complex where several pitches have to be keyed simultaneously for resistive mixing.
The many inductances required make this type of organ less usual in the popular commercial field as portability is a selling point. However, the serious musician embarking on building his own instrument would probably choose free phase as the nearest counterpart to a pipe organ.

MOS MASTER

The constructor now finds organ construction simpler than ever. In the December issue, the Hammond "Concorde" and "Regent" were mentioned. The top 12 notes are, in fact, obtained from one oscillator which tunes the complete instrument simultaneously.

A new 16-pin DIL device, type AY-1-0212, is now available to organ builders and, fed with a 2 MHz signal, produces the complete top octave between $8368 \cdot 2 \mathrm{~Hz}$ and $4434 \cdot 6 \mathrm{~Hz}$. The chromatic outputs may each be fed into a seven-stage i.c. divider (such as type AY-1-5050 in a 14 -pin DIL encapsulation) to complete an eightoctave generator system. For a cost of around $£ 35$, this competes strongly with discrete components: the 13 devices and single 2 MHz oscillator could be made compact and would generally seem to be the answer to the constructor's prayer-unless he happened to be a free phase addict!

YATES ELECTRONICS (FLITWICK) LTO. DEPT. PE, ELSTOW STORAGE DEPOT KEMPSTON HAROWICK

BEDFORD
C.W.O. PLEASE. POST AND PACKING PLEASE ADD 10 D TO ORDERS UNDER E 2. Catalogue which contains data sheets for most of the components listed will be sent free on request. 10p stamp appreciated.

AESISTORS

W lakra high scability carbon film-very low noise-capless construetion W Mullard CR25 carbon film-very small body size $7.5 \times 25 \mathrm{~mm}$ 2\% ELECTROSIL TR5

Values
available
E24
E12
E24
E12
E12
E12

Price	
1-99	$100+$
Ip	$0.8 p$
Ip	$0.8 p$
$3.5 p$	$3 p$
1p	$0.8 p$
Ip	$0.8 p$
6p	$5.5 p$

Quantity price applies for any selection. Ignorefractions on total order.

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 470 to 1 Ma

E12 pack 325 resistors $\mathbf{6 2 \cdot 4 0}$. E24 pack 650 resistors $\mathbf{6 4 . 7 0}$

POTENTIOMETERS

Carbon track 5k』 to 2Mn, log or linear (log $\frac{1}{2} W$, lin $\frac{1}{2} W$). Single, 12p. Dual gang (stereo), 40p. Single D.P. switch 24p

SKELETON PRESET POTENTIOMETERS

Linear: 100, 250, 500 n and decades to 5 M 月. Horizontal or vertical P.C Sub-miniature 0.1 W, sp each. Miniature $^{2} .25 \mathrm{~W}, 7 \mathrm{p}$ each

TRANSISTORS

ACl07	15p	AFI39	32p	BF\|77	28p	OC45	12p	2N3710	$11 p$
ACl26	12p	AFI78	32p	BF178	32p	OC70	12 p	2N3711	$11 p$
AC127	15p	AFI80	40p	BFI79	32p	OC7I	12p	2N3819	32p
ACI28	15p	AFIBI	40p	BFI80	32p	OC72	12p	2N4062	12p
AC131	12 p	BCI07	12p	BFI81	32p	OC81	12 p	2N4286	20p
ACl32	12p	BC108	12p	BFI94	14p	OC820	12p	2N4289	20p
AC176	15p	BC109	12p	BFI95	14 p	2N2646	60p	40360	35p
ACI87	22p	BC147	12p	BF197	15p	2N2904	20p	40361	35p
ACI88	22p	BCI48	12p	BF200	32p	2N2926	10p	40362	40p
ADI40	50p	BCI49	12p	BFY50	20p	2N3054	58p	40408	40p
ADI49	45p	BC157	14 p	BFY51	20p	2N3055	60p	ZTX108	15p
AD161	33p	BC158	14p	BFY52	20p	2N3702	13 p	ZTX300	15p
ADI62	36p	BC159	14p	BUYIO5		2N3703	12p	ZT×302	20p
AFII4	20p	BC187	22p		62-25	2N3704	13 p	Z $\mathrm{T} \times 500$	15p
AFII 5	20p	BD131	75p	OC26	45p	2N3705	12p	ZTX503	20p
AFII6	20p	BD132	$75 p$	OC28	50p	2N3706	11p		
AFll 7	20p	BDI33	75p	OC35	50p	2N3707	12p		
AFl18	38p	BFIIS	25p	OC42	12p	2N3708	10 p		
AFI 26	20p	BFI73	20p	0 C 44	12p	2N3709	$11 p$		

ZENER DIODES 12 V WIRE WOUND POTS, 3W, 10,25, $400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to $30 \mathrm{~V}, 12 \mathrm{p} . \quad 50 \Omega$ and decades to $100 \mathrm{k} \Omega, 35 \mathrm{p}$

\section*{DIODES

DIODES

DIODES

RECTIFIER				SIGNAL
BY127	1250 V	1 A	12p	OA85
IN4001	50 V	1 A	7p	OA90
1N4002	100 V	IA	8	OA91
IN 4004	400 V	1 A	8 p	OA202
IN4006	800 V	+A	10p	IN4148
IN 4007	1000 V	1 A	10p	BAII4

BRUSHED ALUMINTUM PANELS
$12 i n \times 6 i n=25 p ; 12 i n \times 2 \frac{1}{2} i n=10 p ; 9 i n \times 2 i n=7 p$

SLIDER POTENTIOMETERS
 SINGLE IOK, $25 \mathrm{~K}, 100 \mathrm{~K}$ log. or lin. 40p.
KNAL GANG, IOK + $10 K$ ete. log. or lin. 60 p . KNOB FOR ABOVE 12p
8 Gauge panel 12 p.
18 Gauge panel 12 in $\times 4$ in with slots cut for use plete with fixings for 4 pots

ALUMINIUM BOXES			
AB7	21	$\times 5 \frac{1}{2}$	$\times 1 \frac{1}{2}$ in
AB8		$\times 4$	$\times 1 \frac{1}{2}$ in
AB9		$\times 27$	$\times 1 \frac{1}{2}$ in
ABIO		$\times 5$	$\times 1 \frac{1}{3}$
ABII		$\times 2 \frac{1}{2}$	$\times 2 \mathrm{in}$
AB12		$\times 2$	\times lin

HEATSINKS

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \frac{1}{2} \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 71 \mathrm{p}$. $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}$ 3 $\frac{1}{2} \mathrm{p} .0 .15 \mu \mathrm{~F} 4 \frac{1}{2} \mathrm{p}$. $0.22 \mu \mathrm{~F}, 5 \mathrm{p} . \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 71 \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p}, 10 \mu \mathrm{~F}, 13 \mathrm{p}$.
MULLARD POLYESTER CAPACITORS C280 SERIES
250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$, 3p, $0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $3 \frac{1}{2} \mathrm{p}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \frac{1}{\mathrm{p}}, 0.47 \mu \mathrm{~F}, 81 \mathrm{p} .0 .68 \mu \mathrm{~F}, ~ 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$ I-5 $\mu \mathrm{F}, 20 \mathrm{p} .2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAR FILM CAPACITORS IOOV $0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$, 21p. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 31 \mathrm{ip}$.

CERAMIC DISC CAPACITORS 100 pF to $10,000 \mathrm{pF}, 2 \mathrm{p}$ each.

ELECTROLYTIC CAPACITORS—MULLARD O15/6/7
($\mu \mathrm{F} / \mathrm{V}$) $1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40$, 5/63, 22/10, 22/25, 22/63, $33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16$, $100 / 4,100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6-3.220 / 16,330 / 4.6 \mathrm{p} .47 / 63,100 / 40$ $150 / 25,220 / 25,330 / 10,470 / 6 \cdot 3,7$ p. 68/63, 150/40, 220/40, 330/16, 1,000/4, 10p. 470/10, 680/6 3. 11p, $100 / 63,150 / 63,220 / 63,1,000 / 10,12 p .470 / 25,680 / 16,1,500 / 63,13 p$. $470 / 40,680 / 25,1,000 / 16,1,500 / 10,2,200 / 6 \cdot 3,18 p .330 / 63,680 / 40,1,000 / 25,1,00 / 16$,
$2,200 / 10,3,300 / 6 \cdot 3,4,700 / 4,21$, 2,200/10, 3,300/6'3, 4,700/4, 21 p .

SOLID TANTALUMBEAD CAPACITORS

$0.1 \mu \mathrm{~F}$	35 V	$2.2 \mu \mathrm{~F}$	35 V
$0.22 \mu \mathrm{~F}$	35 V	$4.7 \mu \mathrm{~F}$	35 V
$0.47 \mu \mathrm{~F}$	35 V	$2 \mu \mathrm{~F}$	25 V

$22 \mu \mathrm{~F}$	16 V
$33 \mu \mathrm{~F}$	10 V
$47 \mu \mathrm{~F}$	6.3 V
$100 \mu \mathrm{~F}$	3 V

SMOKE AND COMBUSTIBLE GAS DETECTOR-GDI
The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreasesits electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane, propane, alcohol, North Sea gas, as well as carbon-dust concaining air or moke. This decrease is usually large enough to be utilized withour amplification Detector GDI, E2. Kit of parts for detectors including exeluding case. Mainsoperated detector $\mathbf{6 5} \cdot 20.12$ or 24 V bI and P.C. board but excluding case. Mains operated detector $65 \cdot 20$. 12 or 24 V battery operated audible PRINTED BOARD MARKER
Draw the planned circuit onto a copper laminate board with the P.C. Pen, allow to dry, and immerse the board in the etchant. On removal the eireuit remains in high relief.

METERS E $\quad 1.90$

I $\frac{1}{2}$ in scale $\quad 500 \mathrm{~mA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}$
BULGIN MAINS CONNECTORS
3 pin $1 \frac{1}{2} A$ chassis plug
3 pin 3A chassis plus chassis plug
line socket
3 pin 5A $\begin{aligned} & \text { line socket } \\ & \text { chassis plug } \\ & \text { line socket }\end{aligned}$
3 pin 5A $\begin{aligned} & \text { line socket } \\ & \text { chassis plug } \\ & \text { line socket }\end{aligned}$

$18 p$
$13 p$
line plug
2 pin 5A line plug
WAVECHANGESWITCH 23p 12W 1p, 4W 3p, 2W 2p, 6W 2p, 3W 4p.

VA1005	$15 p$
VA102S	$15 p$
VA1033	$15 p$
VAl055S	$15 p$
VA1066S	$15 p$
VA1077	$15 p$
R53	et.35

LINEANIC's

70914 pin dil.
7418 pindil
72314 pin dil
74714 pin dil
7488 pin dil.
Dil. sockets 14 pin and 16 pin

GIUM?

SICK OF WAITING FOR COMPONENTS

Try our express service (normally return of post)
Prices very competitive - for example:$1 / 2 \mathrm{~W} 5 \%$ carbon film resistors -1 p . $1 / 2 \mathrm{~W} 2 \%$ metal oxide $-31 / 2 p$.

BC 107/8/9	$-10 p$	$2 N 3704-13 p$.
BC 177	$-17 p$.	2N $3707-13 p$.
2N 1302/3	$-16 p$.	$1 N 4001 / 2-6 p$.
2N 3055	$-53 p$.	$1 N 4003 / 4-7 p$.
2N 3702	$-13 p$.	$1 N 4148-5 p$.
2N 3703	$-14 p$.	$1 N 5401-16 p$.

SINCLAIR CAMBRIDGE CALCULATOR only $£ 26.50$
 PRICES EXCLUDE VAT

Forward 15p. for our illustrated catalogue to:DART ELECTRO SERVICES, 24 South Town, Dartmouth, Devon. Competitive prices and descriptions of hundreds of components, accessories etc.

Name:
Address: \qquad

Mk III Sound to Light Unit Chassis Version The audio drive voltage is derived directly from the amplifier ousput or across the speaker load The unit consets the audio-frequency signals inio a three-coloured light dishlay when used with coloured flood lamps or similar, the colour depending on the frequency of the signal and the intensity on the loudness of the audio source. Hax fower $1.5 k W^{2}$ per channel at 240 N a c Complese sssembly buit and tested Size 9in \times in \times 3in Price E27. 50.	MN3 3 Channel I.C. Mixer Kit Three channel 1.C audio mixer kir MN_{3} is specially designed for the home construcior of educational prolect. Suitable for use in domestic audio, discorheque and simple pa applicstions. The MN_{3} mixer kit has the following fader level controls mounted directiy to f c board, full range bass and treble controls; uses top grade components wath fibreglass ready-drilled and inned printed circuit board and the unir may be operated from twin 9 d batteries (PP^{2}) if required. As opthonal exiras, an arractiveready-punched facia panel and control knobs are avallable The unit is avalable as a ready bull mixer with facia Size: $9 \cdot \sin \times 4 \sin \times t \sin$ (with facia) Construction manual available separately at 25F. Kil Price Eir .
Practical Electronics "Scorpio" Electronic Ignition System KIt This Capacilor-Distharge Electronic Ignition system was described in the November and Decemher issues of Practical Electronics. It is suitable for incorporating in any 12 S ignition sustem in cars, hoats, go-karis, etc Case size $7.25 i n \times 4 \cdot \sin \times 2 i n$ approx Complete assembly and wiring manual 25p Price \& I_{12}. 10 .	AUDIO EFFECTS CREATE "PHASE" EFFECT ON YOLR RECORDS, TAPFS, ETC, UNIQUE CIRCUTTRY ENABLES YOL TO CREATE PHASE EFFECT AT THE TURN OF A KNOB OPERATES FROM gV BATTERY (not supplied) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD AND FLLL INSTRUCTIONS. KIT PRICE \&2-86. All prices quoted include rostage and VAT S.A.E for further details.
DABAR ELECTRONIC PRODUCTS 98 LICHFIELD STREET, WALSALL STAFFS WS1 1UZ	

A SELECTION of the more unusual items from the famous HOME RADIO (Components) CATALOGUE..

nextmonth

Centred around a single, simply conslect unit, but your key eund effect to the other BENDER is not just a single so input and a control signal odulator, or a ic or speech signal to one inpurequen doubler, a ring modur and you can fader.

THE CONTENTS FOR MAY INCLUDE . . .

PROJET An improued BATTERY CHARGER
A fresh look at the Battery Charger. This "fail-safe" design includes short-circuit, reverse-polarity, and overcharge protection-without adding drastically to the costs.
 with all normal and many abnormal exposure conditions for both black-and-white and colour photography.

> Speclal HETURI

FIRST STEPS IN CIRCUIT DESIGN-2

The second article in this new series for Beginners deals with the "parameter jungle', input impedance and voltage gain equations.

PRACTICAL
 卫 E D D D D D D

MAY ISSUE ON SALE APRIL 10, 1974

Subiect to the current National industrial situation at the time of going to press

THE PAN-EUROPEANS

The loud and sour cries of "disaster" from the anti-Common Market lobby are by no means deterring British companies from investing in Europe. As most say, Britain's entry is essentially a longterm strategy as far as real benefits are concerned and there are yet a few years of plodding before the tariffs are finally down.

Of course, at the political level there is still a lot of wrangling. There is bound to be, just as in any free society of any size right down to the local Parish Council. But this need not and should not be a reason for entrepreneurs to hold back their plans for Europe.

You don't need to be a visionary to see the market openings. They are there for all to see as Waldo Thorn, managing director of Celdis Ltd., Reading, pointed out to me recently. Celdis is currently ranking about number five in the UK league table of 100 distributors of electronic components. Turnover is running at $£ 4$ million a year from the UK and subsidiaries in Germany and Italy.

Top priority for Celdis is establishment of a French company and this will be in operation within weeks. The German company, based in Bavaria, is to open further offices not only in other areas of Germany but also in Austria and Switzerland. Scandinavia could be next, followed by Spain and Portugal and Northern and Southern Ireland.

Altogether, 27 Celdis locations throughout the UK and Europe are planned and eventually they will all be linked to each other and to strategically located warehouses by data-link and video display terminals. This means that if a customer, say in Manchester, phones his local Celdis office, the
sales clerk will interrogate the central computer and perhaps establish that supplies are available in the German warehouse. The operation takes only seconds and he quotes price and delivery. The order is then placed over the network and the goods shipped by air-freight.

Unquestionably this will be the pattern of the future and it will become easier stifl when we have a Euro-currency and a Eurolanguage (which I fervently hope will be English!).

Thorn's concept has a touch of the grand design about it. But he is by no means alone. Rival distributors GDS set up a company in Amsterdam last year and have just opened another in Geneva.

Openings in Europe are good for service industries such as component distribution but not, at the moment, for manufacture because in all the main centres there are labour shortages and wage rates are considerably higher than in the UK. In labour-intensive operations it is still far cheaper to manufacture in the UK than in France or Germany, even ltaly, though of course things may well change.

WHAT HAPPENED TO CUSTOM MOS?

When MOS techniques first came into prominence, the big ploy of the semiconductor manufacturers was to offer a custom-built service. For a fat fee they would design a device to meet your special requirements. You could even do a deal by owning your own circuit for which you had paid development costs and get a rake-off if it was sold elsewhere.

The pattern is now changing. When MOS caught on in a big way the usual shortages built up and of all products in short supply in 1973 MOS was among the leaders. And the semi-conductor manufacturers, having developed their own standard lines in MOS have been too busy making these to bother overmuch with the "specials".

The man who was once the most valued customer is now regarded as a fuss-pot and relegated to the end of the queue. Unless, of course, you'd care to order a million-off, in which case you can still expect the red carpet to be put out.

The situation, however, is not quite as bad as it sounds because the number of standard devices available is becoming so great that your circuit needs to be very very special if you can't satisfy your design specification with off-the-shelf units. In 1970 over 80 per cent of production was in custom work. In three or four years time, industry sources suggest, custombuilt circuits could shrink to five per cent of total production.

THE ENERGY PROBLEM
Round about 1960 I was invited to the official inauguration of the Royal Army Pay Corps' computer at Worthy Down. The RAPC had stolen a march over the RAF and Royal Navy by being the first of the armed services to get their pay and allowance accounts onto a computer.

It was a great day and 1 well recall my astonishment at seeing a most beautiful ornamental fountain in the middle of the airconditioned complex in which the installation was housed. Could this be the same British Army I knew all those years ago? Fountains indeed! I soon discovered that the fountain had a deeper purpose than ornamentation. It was part of the heat dispersal network for the megawatts dissipated by the huge YBM valve-model computer.

It is generally supposed that the advent of solid-state eliminated the heat problem. It is much less of course but still there. So much so that a big insurance company in the USA has already had its new building designed to be heated entirely by the IBM computer installation.

The joke is that the design was conceived purely as a financial economy measure before the world fuel crisis. Now the company has all the kudos of appearing to be in the vanguard of the 1974 drive for energy conservation.
Energy re-cycling will be big business from now on-electronicaily controlled, of course. Expect to see air-conditioning experts like Honeywell jumping on the bandwagon with a giant leap.

CRISIS SPIN-OFF

Tough times may be ahead for consumer electronics but the capital goods sector of the industry retains a buoyant outlook. Big business deals in exchange for Middle East oil will keep many factories busy. A huge upsurge in use of nuclear power and an accelerated North Sea oil programme will inject plenty of gold into the industry. The big headache for the industry is not so much orders but shortage of development engineers and shortage of raw materials.

The British export drive rose to mammoth proportions last year. The British Overseas Trade Board reports having financially supported 1,805 businessmen in 105 outward sales missions to 60 countries as well as sponsoring 6,300 firms exhibiting at 322 overseas trade fairs and exhibitions in 1973.

These roving businessmen didn't come home empty-handed. We've got the orders. Can we deliver the goods?

NOW AVAILABLE IN THE U.K!

CORTINA MINOR

33 RANGE'POCKET MULTIMETER

- SENSITIVITY 20.000Ω VOLT (D.C.), $4,000 \Omega / V O L T$ (A,C.)
-3 AANGESD C VOLTS 0-100mV 1.5 V 5 V 15 V 50 V 150 V $500 \mathrm{~V}, 1.500 \mathrm{~V}$. D.C CURRENT $0-50 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}$ 2.5 A . A, C VOLTS, $0.7 .5 \mathrm{~V}, 25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}, 1.500 \mathrm{~V}$ A.C. CURRENT $0-25 \mathrm{~mA}, 250 \mathrm{~mA}, 25 \mathrm{~A}, 125 \mathrm{~A}$. DB RANGES, RANGES IOK Ω IOMO FS.D. CAPACITANCE RANGES $100 \mu \mathrm{~F}$, IF F. S.D.
- ACCURACY-RESISTANCE D.C. VOLTAGE AND CURRENT, 25%. A.C. VOLTAGE AND CURRENT 3.5% PO - BATTERIES.

COMPACT SIZE: $150 \times 85 \times 40 \mathrm{~mm} .350 \mathrm{gr}$

- CLEARLY CALIBRATED DIAL WITH ANTI.PARALIAX

MIRROR.
THROUGHOUT

- FULLY GUARANTEED FORO SPARES FACILITIES
- SUPPLIED WITH ADDITIONAL SHOCKPROOF PLASTICS CARRYING CASE. TWO HIGHLY INSULATED TEST - SPECIAL JOkV PROBE FOR D.C. MEASUREMENT AVAIL

METER PRICE $£ 13.00$ (p \& p 80p) PROBE $£ 7.50$ inclusive of V.A.T. for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :CHINAGLIA (U.K.) LIMITED
19 Mulberry Walk, London S.W.3.
Telephone 01-352 1897
RADE ENQUIRIES WELCOMED

(1) ECA RADIO LTO

 sHOW A new and The tro. leasional dise iockey or to give
be private party atl electric the private party all electric atmos; ;here, a projected kaleidoscope of colour make the minys
you priduce tuare intereationk you pridice thure interent ing
and will appeal to the vigual as weil as the audio senses This budzet syateme coniparex very farourably with the batere suphisticated
uriced numple priced monele
Specifcat ion
convect iow, coroled projected iniage = tift: Motor rev per $\underline{2}$ - min. Liquid
fin tiameter mult colour The Matur milf Projector ani can on Liquid wheel howeyer. The vers popular standard maxiel may he purchase d deparately,
bargaizt I'rojectur witl Motot cesdy for instant use. E15; fin

TRI.VOLT BATTERY ELIMINATOR
Finables you to work your Transistor Ralio, Anplifier or rassette. etc.. from he a.c. matins through this compact Elimatiator. Juat by moving : plup you call relect the voltage you
require. ti, $7!$ or 9 volt. This require ti. fi or 9 volt. This
means abl your transistor power
patck applications can be hanuled

DIGITAL CLOCK KIT "CRESCENT" 100 WATT R.M.S. ALL PURPOSE AMPLIFIER "RESCENT" 100 WATT R.M.S. ALLP
U.BUILD.IT
We supply the three modules for you to build this Group-P'A. amplifier into the cabinet of your choice. * THE POWER AMP MODULE TPIOOW

170 W r.m.s. \&q. wave 300 W intantaneous peak into 8 ohm (60w into 1 ti ohnt). $\mathbf{2 1 4 \cdot 2 8 , ~ c a r r . ~ 4 5 p}$
\star THE PRE-AMP MODULE
Four control ure-amp. Vol., Bas, Treble, Midalle controls. besigned to drive moat ampliery using FET Mrat atage

大 THE POWER SUPPLY MODULE PS100
 Heary duty contacts. $200,500 \Omega$ Heary dity contacts.
coit. All new andu nuse D. P. T. T. mains relaya 50 p + V.A.T. Carr mat
Free.
quatity \quad pecial
240 per 100 relays.

VAT
Please include 10\% VAT on goods plus carriage.

approx. 4°

col $\stackrel{1}{2}$

dis

co

 display ofComplete
control the nont rol the unit is 1 + Bargain your anplifier
If you require more information pleage send S.A.E.

ALL eight percussion generators are contained on a single circuit board with a mixer/preamplifier containing six f.e.t.s. The concentration of components makes it necessary to use some care in construction to insure that everything is properly placed and that nothing is left out.

The only lines coming to and from this board are the eight input lines, one output line and the power and ground lines. Completion of the assembly of this board will make the Rhythm Generator ready for operation except for adjustments of the various percussion generators.

BASS DRUM

The circuit diagram for the Bass Drum generator is shown in Fig. 2.1. The circuit is basically a "twin T ringing oscillator". The frequency selection network is shocked into oscillation by the input trigger and decays at a rate determined by VR3.

Concluding Article

GENERATOR

BY BRICE WARD

A positive five volt input signal is applied to the input end of R7 when the Bass Drum is to sound. Assume transistor TR4 has been biased off and the voltage on the collector is close to the full 18 volts.

When the input signal is applied, TR4 is driven hard on and the collector voltage will drop to near zero almost instantaneously. Capacitor C10 has been charged to the full 18 volts and will immediately discharge in about $1 / 10$ th of the time of one cycle of the natural resonant frequency of the twin T network, shocking the oscillator into operation.

This oscillation will be sustained for a period of time determined by the setting of VR3. The result is a rapidly starting, slowly decaying oscillation at a frequency determined by the frequency selective network composed of C11, C12, C13, R11, R12, R13 and R14. Capacitor C9 will only serve to insure that should the input pulse be removed before C10 has had a chance to discharge com-

Fig. 2.1. Full circuit of the Bass Drum generator
pletely, the voltage will not rise before it is completely discharged.

R18 and C15 furnish some filtering and final shaping. The overall result is a reasonable simulation of a bass drum and is applied across VR4 where the amplitude of the signal going to the mixer can be adjusted.

HIGH AND LOW BONGOS

The High and Low Bongo circuits are shown in Fig. 2.2. Outside of the difference in a single component value, the circuits operate in a manner similar to the Bass Drum circuit. VR5 and 7 control the length of time that oscillations are sustained and VR6 and 8 control the amount of signal going to the mixer.

WOOD BLOCKS

The Wood Block circuit is a little different in construction but accomplishes essentially the same thing as the first three circuits. TR10 and 11 are connected as a Darlington pair (Fig. 2.3) to convert the five volt input pulse to a very square pulse at the collector of TR11. This is applied to a pulse shaping network composed of C30, R49, R48 and R 50 .

The resulting differentiated pulse is applied to the base of TRI2 causing it to oscillate for as long as the pulse is present on the base. The output is taken from the collector, through C35 and applied to VR9 which allows the amplitude of the signal applied to the mixer to be adjusted.

C31, C32, C33, R50, R51 and R52 are the frequency selective phase shift circuits that will determine the frequency of the damped oscillations.

Fig. 2.2. The High and Low Bongo circuits are virtually identical to the Bass Drum circuit

Fig. 2.3. The Wood Block signal is generated using this circuit

SNARE DRUM

Fig. 2.4. The Snare Drum circuit uses a noise diode, D12, to provide the necessary sound

SNARE DRUM

The circuits so far discussed are very simple, damped oscillators and all feed a single input to a mixer. The remaining percussion circuits use either shaped noise, filtered for a particular frequency or shaped but relatively unfiltered noise. Each of these circuits makes use of a Semitron Z1J noise diode for the generation of this.

In the Snare Drum circuit (Fig. 2.4) transistor TR13 serves to step the input pulse of 5 volts up to 18 volts with the input network consisting of C36, R57, D11, C37 and R58 shaping the input pulse as required for operation of the subsequent stage.

R59, C38, D12, R60 and C39 develop and filter the required noise which is applied, for amplification, to the base of TR14. VR 10 adjusts the bias level on the emitter of TR14 to insure that it remains off until the input signal is applied. L1, C40 and C41 are a tank circuit to emphasise certain frequencies.

When a signal is applied, the collector of TR13 drops to near ground potential. The overall effect is to ground the top of R64 removing part of the bias and allowing TR14 to operate for a period determined by C 36 and the resistance in circuit with it.

CYMBAL

In the Cymbal circuit (Fig. 2.5) TR15 and the associated circuitry set up the width of the overall signal, while TR16 controls the decay with its associated circuitry.

The output of these two stages is applied to TR17 as a decaying waveform which gates noise through from the Zener diode and its associated circuitry in a controlled manner. The output resonant circuit, composed of C49 and the OL130, provide a natural sounding cymbal percussive attack.

Circuits of this type are, perhaps, not the best available but they represent a compromise between

CYMBAL

Fig. 2.5. Circuit of the Cymbal generator

LONG AND SHORT BRUSH

Fig. 2.6. The Long and Short Brush circuits are identical apart from C50/56
reasonably good operation and extreme complexity in terms of filtering, shaping and oscillatory circuitry.

LONG AND SHORT BRUSH

The Long and Short Brush circuits are given in Fig. 2.6. Apart from a capacitor value change they are identical. Again, a Darlington pair is used to shape the input pulse and C50 and 56 are used to control the decay to effect the long and short brushes respectively. Beyond that the circuitry is similar to the Cymbal stage.

MIXER AND PRE-AMPLIFIER

The Mixer and Pre-amplifier stages chosen use field effect transistors because of the inherent high input impedance and good signal separation afforded by these devices. Fig. 2.7 is the circuit diagram and illustrates the simplicity of the design.

Each input f.e.t. is fed from a capacitor and preset potentiometer to allow the overall output signal at the f.e.t. drains to be adjusted.

The output stage is arranged as a source follower and matches the high output impedance of the Mixer to the input of the Power Amplifier.

MONITOR AMPLIFIER

The output is taken to VR2 for volume control and from there to a monitor Power Amplifier (Fig. 2.8) for final amplification. An output jack is also provided to allow the output to be fed to an external amplifier.

The amplifier circuit given is adequate in output to provide rhythm accompaniment to a home soloist, but for group work a larger external amplifier should be connected. Additional amplification also enhances the instrumental qualities of the generator.

PERCUSSION GENERATOR BOARD

There is, outside of compactness, nothing difficult about the construction of the Percussion Generator Board. It might be a good idea to take the construction in stages beginning with the Mixer/Pre-ampli-

Fig. 2.7. Circuit of the mixer and pre-amplifier stages which use f.e.t.s to provide both good separation and high input impedance

MONITOR AMPLIFIER

Fig. 2.8. Circuit of $3 W$ amplifier
fier. It would then be possible to build and test each generator as you progress.

The photograph shows the prototype board layout of components which can be followed for grouping the percussion generators.

FINAL ADJUSTMENTS

Before making adjustments, set the volume control on the back panel for a comfortable listening level. Turn the "Stop/Run" switch to "Run" and select the Bass Drum. Press the "Write" switch with the tempo set fast enough to allow a quick program of drum beats to be written into each position. Now reduce the tempo and a steady drum beat should be heard. Adjust VR4 for this.

In a similar manner, select Low Bongos, High Bongos and Blocks. For Low Bongos, adjust VR7 until continuous oscillations occur and then back it off until you have the best sound. For High Bongos, adjust VR5 in a similar manner. Adjust VR6 and VR8 for a level that is compatible with the bass drum. Finally, adjust VR9 with Blocks selected. It will be necessary to fiddle these adjustments to get what you want but the above procedure should have four instruments working.

After adjusting the other four instruments, final volume adjustments can be made on VR4, 6, 8 and 9 with VR5 controlling the overall input to the mixer for these stages.

If, during any of the foregoing adjustments a steady hissing has been heard, VR10 should be adjusted to get rid of it.

Now erase all instruments by putting the instrument selection 'switches to the right and pressing the "Write" switch long enough to wipe out all sound. Adjust VR10 until a hissing noise is heard, then back it off until it just disappears. Now select the Snare Drum and adjust VR11 to make the volume compatible with the other instruments.
The final three instruments are selected in turn and the volume adjusted using VR12, 13 and 14.

PERCUSSION GENERATOR BOARD

Table 2.1

	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	TIME SIGNATURE
VIENNESE WALTZ	a	h			h	h	a	h			h	h					6/8
FOX-TROT	a		h	h	a		h	h	a		h	h	a		h	h	4/4
SAMBA	a		f	a	a		h	h	a		f	a	a		h	h	4/4
QUICK-STEP	g/h		h		h		h		g/h				h		h		4/4
CHA-CHA	a			1	a		c	c	a			1	a		b	b	4/4
RHUMBA	a	d		d	a	d	a	d	a	d		d	a	d	a	d	4/4
BOSA-NOVA	a	c	c	a	a	c	c	c	a	c	c	a	a	c	c	c	4/4
TANGO	a			\dagger	a		a	1	a			1	a		a	1	4/4
ROCK-N'-ROLL	a		b	b	a		b		a		b	b	a		b		4/4
MARCH/POLKA	a		h		a		h		a		h		a		h		4/4
WESTERN	a			c			a			b	b						6/8
BEGUINE	a	g	c	c	b		c		a	g		b	c		c		4/4

Drum-a
High Bongo-b
Low Bongo-c
Blocks-d

Snare Drum-e
Cymbal-f
Long Brush-g
Short Brush-h

RHYTHM PATTERNS

After final "tuning", the Rhythm Generator is ready to use. A layout, Table 1, displays rhythms with the counter number indicated above and the instruments indicated on the left.

Rhythms from various sources are programmed and illustrated here but others can, of course, be extemporised.

The sequence of events for programming is as follows

1. Turn the unit on and adjust the volume for a comfortable level, listening to the random sequence that results at switch on.
2. Set the tempo to a fast rate, place all instrument switches to the right and press "Write", This procedure effectively clears every location in storage.
3. Place the "Stop/Run" switch at stop and press reset. This sets the counter to the beginning of the sequence indicated in the program.
4. Set the instrument switches for those instruments indicated in that position to the left and press "Write" . . . then press "Step" to advance to the next position. Repeat step 4 to the end of the rhythm pattern and return the "Stop/Run" switch to "Run".

PROGRAMMING

Programming the final instrument is not a complex thing and requires perhaps 30 seconds to a
minute once a little practice has been gained. The "Stop/Run" switch is placed in the stop position. This stops the free-running tempo generator and allows the counter to be stepped through its 16 positions manually.

The second step is to push the Reset switch. This resets the counter and associated circuitry. The Minitron will indicate 0 . During the course of programming a $4 / 4$ rhythm, the counter will go through 16 counts but the Minitron will go from 0 to 7 twice for a total of 16 indications.
With the counter reset, place those instrument switches to the left where that instrument should sound on the down-beat and press the "Write" switch. Push the "Step" switch to advance the counter to the next position. To have a musical rest, simply leave all instrument switches at the right and push the "Write" switch. Additionally, to wipe out a complete programme, place all instrument switches to the right, set the "Stop/Run" switch to "Run" and the tempo control fully clockwise. Now press and hold the "Write" switch. The counter will now continue to run but no instruments will sound.
Finally, having programmed the desired rhythm, set the "Stop/Run" switch to run and the tempo control to the desired tempo. The instrument will now repeat the programmed rhythm of any 8 instruments at any of 16 beat positions repetitively until stopped or re-programmed.

P.E. TAKES A LOOK AT ELECTRONIC SYSTEMS IN CAMERAS

LECTRONIC circuits are being used in more and more types of consumer products, i.e. products used by individuals rather than professional people. About twenty per cent of cameras now use some form of electronic circuit, but this percentage is likely to increase significantly in the near future. Some cameras employ discrete electronic components, but, as in other fields, integrated circuits are becoming more widely used in current designs.

APPLICATIONS
The main application for electronics in cameras is for the measurement of light intensity and for the control of mechanical shutter speeds. In many cameras the electronic circuit automatically adjusts the exposure lime according to the amount of light entering the lens.

Most of this article will be devoted to the electronic control of mechanical shutters, but cameras using electronics for other purposes are gradually becoming available.

HISTORY
Although the use of electronic circuits in commerclal cameras is a comparatively recent development, the idea is certainly not a new one. As long ago as 1902, Carl Eisner was granted a German patent entitled "A mechanism for the automatic regulation of exposure time in mid-lens shutters according to the Intensity of the light". The Carl Eisner Company later became part of the Compur Company who are renowned for their shutters.

Some types of shutters driven by electromagnets were designed in the 1930s but they required a large amount of power and were unsuitable for portable cameras. Little further progress could be made untll semlconductors became readily available at economic prices.

ADVANTAGES OF ELECTRONIC SHUTTERS
Modern electronically controlled shutters can provide accurate and reproducible exposure times without the necessity for close tolerance moving parts. The very long exposure times which are often required by prolessional photographers can be obtained more easily with electronic systems than purely mechanical ones.
For the amateur one of the most important advantages of the electronically controlled shutter is its use in automatic and semi-automatic exposure control systems. These make it possible for any user, however inexperienced, to obtain correct exposure times with certainty.

TYPES OF SHUTTER

In cameras with automatic shutter speed control the correct exposure is automatically set according to the intensity of the incident light. A light sensor in the camera feeds information about the light level (as an electric current) to the electronic circuit which controls the speed of operation of a mechanical shutter. In some cases the operator can override the electronic timing.

In semi-automatic exposure control systems the light intensity is measured and indicated on a meter. As the lens aperture and/or the shutter speed is varied an indicator may move past the meter needle to show whether the exposure setting is satisfactory.

In both systems the film speed is set on a dial which is connected to a variable resistor in the circuit. Either mechanically or electronically timed shutters may be used with semi-automatic systems but fully automatic systems use electronically timed shutters.

Semi-automatic systems are easier to use with less probability of error than a separate meter. Automatic systems provide very accurate exposure times at widely differing light intensities.

Amateur cameras using automatic exposure control are very simple to use and no time is wasted making preliminary adjustments.

LIGHT SENSORS

Selenium cells used to be used as light sensors as they produce current directly from the light without the need for a battery. The use of cadmium sulphide (CdS) photoconductive cells is now more common as they are more sensitive at low light levels. Both types of cell are used because their spectral response matches that of the eye and the modern photographic emulsions whose response is similar.

Cadmium sulphide cells have the disadvantage that their response time to a change in light level is rather long; over ten seconds being required for equilibrium to be reached when the light intensity changes by a factor of 100 . This is not normally a difficulty but it should be kept in mind.

THROUGH THE LENS

Almost all cameras have some form of built-in exposure meter. The modern trend is to design cameras in which a fraction of the light entering through the lens is deflected into a photosensitive cell.

Through the lens is often seen referred to as TTL, not to be confused with the electronic abbreviation for transistor-transistor logic.

The Zeiss-Ikon "Contarex Super" is a high class camera which uses a TTL semi-automatic exposure system. The paths of the light beams
are shown in Fig. 1. The main reflex mirror is partially silvered and a fraction of the incident light passes through this mirror and is deflected by a secondary mirror onto a cadmium sulphide photoconductive cell.

The reading of the exposure meter is displayed in the viewfinder and also in an additional exposure meter window.

The light intensity is measured over a fairly narrow angle in the centre of the field of view (about seven degrees when the normal type of 50 mm focal length lens is employed).

The light intensity is measured with the lens aperture wide open. The focusing of the camera can be carried out in this condition where any focusing error shows up most clearly.

OTHER THROUGH THE LENS SYSTEMS

The Leicaflex SL employs a system which is rather similar to the Contarex except that the photocell is differently placed. However, the secondary mirror folds up into the frame of the reflex mirror when
the latter rises, immediately before the exposure is made. During the exposure the secondary mirror prevents light from the viewfinder from passing through the partially silvered reflex mirror into the interior of the camera.

The Leica M5 also employs a CdS cell for semi-automatic exposure control.
The Rolleiflex SL35 is a single lens reflex with a TTL semi-automatic exposure control system using two CdS detectors. One of these cells is placed at each side of the camera in such a way as to give an integrated reading of the light intensity from the viewfinder screen of the pentaprism unit.
The meter reading is a centre weighted one, light at the edges of the field making only a small contribution to the reading.

The Olympus M1 is another single lens reflex with semi-automatic exposure control.

ELECTRONICALLY TIMED SHUTTERS

The electronic shutter timing systems available at the present time employ electronic circuits to con-

Fig. 1. The light paths in the Contarex Super. A fraction of the incident light is deflected by the small secondary mirror onto the photosensitive cell.

Fig. 2. A mechanically timed and a comparable electronically timed shutter. (a) In the mechanically timed system, the time taken for the timing lever to move controls the exposure. (b) in the electronically timed system the exposure is controlled by the time at which an electromagnet releases the armature.
trol the movement of mechanical shutters. The link between the electronic circuit and the shutter blades is normally an electromagnet

The mechanical components in an electronically timed shutter may be very similar to those employed in a comparable mechanical shutter as shown in Fig. 2. The metal sector plates of both types of shutter swing about fixed pivot pins when the sector driving ring rotates through a small angle. Rotation of the sector ring can thus cause all of the sector plates to be removed so as to open the shutter.

The mechanical shutter in Fig. 2a uses the priming lever to operate the shutter driving shaft on which the driving spring is wound.

The shutter closes after an interval which is controlled by the braking force applied by the mechanical timing mechanism.

Fig. 2b shows the mechanical shutter employed in the Compur/ Prontor 500 electronically controlled shutter, this shutter is used in the Vitessa 500AE camera the circuit of which will be described later. The mechanical timing lever is replaced by an electromagnet in the shutter closing mechanism. The return of the shutter driving ring to close the shutter is prevented by a sprung locking lever. The armature is released by the electromagnet at a time determined by the electronics.

When the priming lever of the shutter is operated to prepare for the next exposure the armature moves to touch the pole piece of the magnet. It is held mechanically against the polepiece until the current flows through the electromagnet to delay the shutter closure.

THE AGFA SELECTRONIC

The Agfa-Gavaert "Selectronic" camera is an example of a camera with an automatic exposure system. The intensity of the light passing through a small window near the top of the camera is measured by a photosensitive cell. The settings of the aperture and film speed each determine the value of variable resistors and these together with the photocell determine the exposure time.

The type of display is shown in Fig. 3. The aperture setting is seen at the top. If the amount of light is too large for the shortest exposure time $(1 / 500 \mathrm{sec})$ the needle of the meter will move to a red warning mark. At the other extreme the needle will point to a tripod symbol if the exposure is so long that a tripod would be required

BASIC CIRCUIT

The basic resistance-capacitance timing circuit used in a large number of applications is shown in Fig. 4.
When the shutter is operated switch S1 closes and the shutter

Fig. 3. The appearance in the view finder of the Agfa-Gevaert Selectronic camera. Both the aperture and the exposure time are automatically shown.
opens. The capacitor then commences to charge through the variable resistor VR1. When the voltage on the capacitor is sufficient to trigger the circuit the current to the electromagnet is switched off. A spring then pulls the shutter blades into the closed position.

The variable resistor controls the capacitor charging rate and hence the exposure time.

MAGNET OPERATION

Because the shutter blades must be moved extremely quickly it is generally more satisfactory to use the electromagnet to close the shutter rather than open it. This means just switching off the electromagnet, letting a spring do the work.

The circuit of Fig. 4 may be arranged to do this by causing the trigger circuit to produce a current which opposes the magnetic field. The magnet then releases an iron armature connected to the shutter driving ring.

BLOCKING OSCILLATOR CIRCUIT

The blocking oscillator shown in Fig. 5 is a typical trigger circuit.

When the shutter is operated S1a closes and S1b opens causing the capacitor to charge up and after a predetermined time the circuit to oscillate.

Initially, the output transistor TR2 is conducting, therefore current passes through the electromagnet. When oscillation starts a current is applied to the base of TR2, causing it to stop conducting thus releasing the armature and closing the shutter.

This causes S1a to open and S1b to close causing C 1 to discharge in preparation for the next exposure.

FOUR LAYER DIODE

One of the simplest circuits for timing the closure of a camera shutter is that using a four layer diode. This is a pnpn device which conducts when the potential across it reaches a certain value (about 20 V) and continues to conduct until the current through it falls below a holding level.

When the shutter is operated the shutter is opened and the start switch of Fig. 6 is closed. As the potential across the capacitor C1 rises a point is reached where the four layer diode "fires" and current is passed to the coils surrounding the permanent magnet. The field of the magnet is cancelled and the soft iron armature is released.

FOUR TRANSISTOR CIRCUIT

Another circuit is shown in Fig. 7. It employs four transistor stages in cascade forming a high gain amplifier. When the shutter is released S 1 closes and the shutter opens causing TR4 to conduct, energising the magnet and attracting the armature.

When the base voltage of the first transistor reaches the threshold value for conduction the current is greatly amplified and TR4 is suddenly cut off, releasing the armature and closing the shutter.

Fig. 5. A blocking oscillator timing circuit.

Fig. 6. A simple timing circuit using a four layer diode.

Fig. 7. A timing circuit using four cascaded transistors to provide high gain.

SCHMITT TRIGGER

One of the most commonly used circuits for timing in cameras is the well-known Schmitt trigger. The circuit is used, for example, in the Compur "Electronic 3". The circuit and part of the operating mechanism is shown in Fig. 8.

As the voltage across the capacitor rises a point is reached at which the circuit switches very suddenly by feedback action so that TR2 is cut off and TR1 conducts. The current to the magnet is therefore cut off at this instant.

This type of circuit can provide exposure times over a very wide range of values (typically 10,000 to 1) with a single capacitor.

The shutter exposure scale of the Compur "Electronic 3 " is $1 / 200$ to 32 seconds.

REMOTE OPERATION

The Compur 5FS is a shutter designed for remote operation. The transistor circuit is contained in the, control unit and not in the shutter itself.

The shutter unit itself contains motors for the operation of the shutter and for aperture control. No adjustments are made on the shutter itself. Shutter speeds from $1 / 60$ to 32 seconds are available.

The circuit is shown in Fig. 9. TR1 and TR2 form a Schmitt trigger which switches when the voltage on C2 reaches a preset level. A pulse is then applied to TR3 which causes the magnet to close the shutter spring sectors, and S2 to short circuit C2. The motor tensions the shutter spring automatically. While this is happening the shutter cannot be used and a red warning light appears.

The aperture is controlled by a servo system not described here.

T'HE VITESSA 500AE

The Prontor "Vitessa 500AE' was introduced in May 1968. It employs a circuit which automati-

The Compur 5FS electronic shutter with its remote control unit. (The connecting cable may be much longer than that shown.)

Fig. 8. Diagrammatic representation of the Compur Electronic 3 shutter before operation.

Fig. 9. The timing circuit of the Compur 5 FS remotely operated shutter.
cally sets the exposure over the range $1 / 500$ to 10 seconds.

The timing mechanism is silent so a lamp is used to indicate when the shutter is open. The lamp also functions as a battery tester.

Fig. 10 shows the circuit in its quiescent state. When S1 is closed the light falling on the photoconductive cell PCC1 causes the meter ME1 to deflect by an amount dependent on the light intensity. When the shutter is actuated S2 is switched on so that the current passing through PCC1 is diverted to the time measuring circuit. The shorting switch S3 is operated when the shutter release is pressed so that the current from PCC1 can pass to the capacitor C1.

Switch S1 can now open since the current can pass through S 3. After the preset time the circuit is triggered and current ceases to flow through the magnet, thus closing the shutter.

ULTRA-MINIATURE CAMERA

The Minox C is one of the smallest cameras available. It was introduced in 1969 after five years' development, and is only $13.9 \mathrm{~cm} \times$ $2.8 \mathrm{~cm} \times 1.6 \mathrm{~cm}$.

The basic circuit is shown in Fig. 11. Two magnets are used in this system: one to open and one to close the shutter, this being necessary to obtain the relatively

Fig. 10. The circuit used in the Vitessa 500AE. The photoconductive cell initially provides an indication of the light intensity, but is switched into the timing circuit immediately before the exposure.
high speed of $1 / 1000$ second. Although the magnets themselves take longer than this to operate it is only the time between their actuation which is important.

When the shutter release lever is pressed, the switch S1 closes and electromagnet M2 is actuated, opening the shutter and contacts S3.
When C1 reaches the threshold voltage after charging through PCC1 the amplifier switches on electromagnet M1 which closes the shutter and opens S2.
The light measuring system is a centre-weighted one; more account

The electronic shutter used in the Kodak Instamatic reflex camera with the cover plate removed.
is taken of light in the centre of the field than near the edge.

THE CONTAREX SE

The Contarex "Super Electronic" camera was introduced in February 1969. It is similar to the Contarex Super already described but an electronic shutter is used. The basic Contarex SE is a semi-automatic camera in which an internal CdS photocell is used to measure the amount of light entering through the lens.

The circuit used in the Contarex SE is shown in Fig. 12. When the shutter speed is selected the appropriate shutter timing resistor R1 is switched into the circuit.

When the shutter release is pressed the shutter opens, the battery is connected and contacts S1 close. The electromagnet holds the shutter open.

When the current passing through R1 has charged C1 up to the threshold voltage, the trigger circuit switches off the current to the electromagnet and the shutter closes. Contacts S 2 close to discharge C1.

If the battery fails the shutter operates at only the shortest exposure of $1 / 1000$ second.

REGULA 35

The Regula "Electronic 35 " employs a CdS photocell to provide fully automatic shutter speed control. The aperture is set in the range $1 / 2 \cdot 8$ to $f / 16$ and the shutter closes when the correct exposure has been achieved (in the range $1 / 250$ to 15 seconds).

The circuit of the "Rectormatic $350^{\prime \prime}$ shutter employed in the Regula uses a TAA580 integrated circuit as the trigger circuit (Fig. 13). Initially the capacitor is

Fig. 11. The basic circuit of the Minox C ultra-miniature camera.

Fig. 13. The circuit of the Regula Electronic 35 camera.

Internal view of the Minox C. The electromagnets which open and close the shutter are shown to the right of the batteries and the circuit is near the centre.
shorted by $S 2$, and $S 3$ is in the measuring position. The current passing through the photocell passes through the indicating meter in the viewfinder.

The main switch Si is closed before the timing circuit is used. When the shutter release is operated S2 opens and S3 moves to the timing position so that current through the photocell is passed to the capacitor.

The integrated circuit switches at a predetermined level resulting in the magnet being switched off and the shutter being closed. S2 then shorts the capacitor ready for the next exposure.

POLAROID CAMERAS

The Polaroid Company is well known for its cameras which produce fully developed black and white photos in 15 to 30 seconds or colour in 1 minute after exposure.

Polaroid cameras employ be-tween-lens shutters but they do not use sectors fitted to a driving ring. When the shutter release is pressed one or two metal plates move to let in the light. After the required exposure time an electromagnet releases another metal plate which is pulled by a spring to close the shutter. The exposure time is automatically controlled by the light intensity.

Fig. 12. The shutter timing circuit used in the Contarex SE. Other circuits are employed in the accessories available for use with this camera.

Fig. 14. The circuit used in the Polaroid 340 and 350 cameras.

In the case of model 350 the exposure ranges from $1 / 1200$ to 10 seconds.
The circuit of models 340 . and 350 Polaroid Land cameras is shown in Fig. 14. It consists of a Schmitt trigger circuit which is controlled by current from a photoconductive cell.
Both of these cameras produce pictures $4 \frac{3}{4}$ in $\times 3 \frac{1}{4} \mathrm{in}$ and incorporate an automatic exposure system for flash photographs.

The model 320 is the most economical of the range and model 330 has a non-electronic development timer.

ELECTRONIC DEVELOPMENT TIMER

Model 350 has an electronic development timer which uses two integrated circuits, and a potentiometer to set the required development time. When the exposed film is pulled out the timer is automatically started.

The second integrated circuit forms the timer. A lamp is illuminated during the development period but at the end of this time it is extinguished and the first integrated circuit operates as an oscillator emitting an audible warning.
The Colourpack 82, introduced in April 1973, has a non-electronic development timer and produces pictures $3 \frac{3}{8} \mathrm{in} \times 3 \frac{1}{4} \mathrm{in}$ in colour or black and white. For black and white the aperture is so small that the depth of field is great making focusing unnecessary.

SEIKO ES SHUTTER

The Japanese Seiko ES shutter is a between-lens shutter using interleaving segments and two electromagnets. It is interesting as no iris diaphragm is employed, the shutter sectors themselves acting as the aperture limiting device.

The shutter opens at a definite rate and closes as soon as the correct amount of light has entered the camera.

Fig. 15 shows the components of this shutter arranged around the lens. The shutter blades are opening in this diagram.

At high light intensities the sectors close without ever having fully opened. At lower light levels
they may take about 0.06 seconds to open fully and then remain open until the correct exposure has been attained.

This type of aperture-exposure time system is said to reduce aberrations, provide greater depth of field by using only the minimum necessary aperture, and give clearer images.

THE MINOLTA HI-MATIC E

A Seiko shutter of somewhat similar design is used in the Hi matic E manufactured by the Minolta Company of Japan. The circuit is shown in Fig. 16.

It was found necessary to use two CdS photocells and an external resistor R6 to obtain the required response curve.

When the shutter release button is pressed the shutter sectors are mechanically opened, S2 is closed, the magnet activated and S3 opened. Capacitor C1 charges through the photocell and the Schmitt trigger circuit switches off the shutter release magnet at the end of the correct exposure time. The lamp is used as a battery check and as a warning indicator.

If the light intensity is below a certain level the Hi-matic E operates a flash automatically and shows in the viewfinder that it is going to do so.

MINOLTA 16 QT

The Minolta Company also manufacture a sub-miniature camera, the Minolta QT which measures only $11 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4.5 \mathrm{~cm}$. Although this camera is semi-automatic the circuit is interesting since it uses active devices.

It has two shutter speeds, 1/250 and $1 / 30$ second. The semi-automatic system indicates in the viewfinder the direction in which the aperture must be changed to achieve a suitable exposure. When the correct setting has been made the lamps in the viewfinder flash alternately.

The circuit is shown in Fig. 17. The four transistors and three resistors are contained in an integrated circuit. The circuit is basically a bridge network in which the unbalance voltage between points A and B is fed to a transistor differential amplifier.

When the incident light intensity is high the resistance of the photocell is low and the potential at A is thus nearer to that of point C than that at D. TR2 and TR4 are therefore non-conducting and lamp LP1 is not illuminated. However, TR1 drives TR3 into conduction and lamp LP2 lights. When the aperture is changed the value of VR1 is attered and the bridge can be balanced, i.e. the potentials at A and B are made equal.
At balance the capacitor connected to the unlighted lamp charges and the current through
this lamp increases until it is illuminated and the other lamp extinguished. Thus the circuit is astable, the two lamps flashing alternately.

TL ELECTRO-X

The Yashica "TL Electro-X" is a 35 mm single lens reflex which uses two CdS photocells at each side of a pentaprism unit in a through ,the lens measuring system.

An electronically timed metal focal plane shutter is used to give exposures from $1 / 1000$ to 2 secs.

The circuit uses an integrated circuit. If the amount of light entering the camera as detected by the photocell at the selected aperture is too low for the exposure setting chosen, a lamp is illuminated in the viewfinder, a red arrow indicating the direction in which the correction should be made.

If the light is bright enough to produce over-exposure the integrated circuit switches on another lamp showing an arrow pointing in the other direction.

At the correct exposure setting neither arrow is lit.

When the shutter release button is pressed the front sector of the shutter travels downwards under the action of a spring, and electromagnets are energised to hold the rear section of the shutter in place.

When the threshold voltage on a charging capacitor is reached, current to the electromagnets is cut off and a spring pulls the rear section of the shutter downwards to end the exposure.

ASAHI PENTAX ES

The Japanese Asahi "Pentax ES' is a 35 mm SL.R which uses CdS photocells located beside the viewfinder eyepiece in a through the lens light measuring system.

It employs a horizontally moving focal plane shutter whose speed is set by the light intensity in the range $1 / 1000$ to 8 seconds.

The electronics is fairly complex consisting of an integrated circuit containing 50 transistors, diodes, etc.

The light intensity, aperture setting and film speed are fed into the circuit by a photoresistor and two mechanically set variable resistors. The current passing through each is fed into separate logarithmic compression circuits which generate an output proportional to the logarithm of the input current.

The integrated circuit then takes these values, makes the necessary computation and produces an output current whose value is proportional to the reciprocal of the required exposure time.

The current is fed to a capacitor from the instant the shutter opens. When the capacitor charges up to a threshold value a trigger circuit switches off the current to the electromagnets and the shutter closes.

MEMORY

During the exposure, light does not fall on the photocell so the output from the logarithmic

Fig. 19. The electronic speed control system used in the Leitz "Super 8".

Fig. 18. Aperture control system used in the Moviflex $\mathbf{S 8}$.
Fig. 20. The optical system used in the Leitz Autofocus projector.
generator in the light intensity measuring circuit is fed to a memory circuit which consists basically of a capacitor connected to a field effect transistor, the high input impedance of the f.e.t. preventing the capacitor discharging.

The meter in the viewtinder of this camera provides an unusually wide indication of exposure times: from 1/1000 to 1 second.

CINE CAMERA
 EXPOSURE CONTROL

As an example of exposure control in a cine camera, the principle used in the Zeiss-lkon "Moviflex S8'" will be considered. The system employed is shown in simplified form in Fig. 18. Since the exposure time is partly determined by the speed of the film, it is more convenient to control the aperture.

The light from the object to be photographed passes through the iris diaphragm which controls the aperture. The rotating shutter is a conical sector which is silvered on the outside. It covers the aperture leading to the film during the time that the film is moving between successive photographs. In this period the silvered surface reflects the light onto a photocell.

The photocell forms one arm of a bridge which, when balanced, passes no current to the motor which drives the iris diaphragm.

A fall in light produces an inbalance which causes the motor to be driven in such a direction that the iris diaphragm continues to open until the amount of light reaching the photocell reaches its
previous value, when the bridge is again balanced. An increase in light drives the circuit into unbalance in the opposite direction reducing the aperture.

The other resistors in the bridge circuit are altered to set film sensitivity, the number of frames per second, and exposure if the photographer wishes to alter it for some reason.

ELECTRONIC SPEED CONTROL

As an example of electronic film speed control the system used in the Leitz "Super 8 " will be discussed, the circuit being shown in Fig. 19.

The driving motor has a small tachogenerator connected to it which produces an alternating voltage at a frequency equal to the motor speed.

Transistors TR1 and TR2 produce rectangular pulses of constant amplitude which are fed to the diode pump circuit D1 and D2 which charges C 2 with such a polarity as to tend to cut off TR3. The greater the motor speed the greater the current fed to C2.

A current also flows through VR1 and the switch to C 2 which tends to oppose this current. When the voltage on C2 reaches more than 0.5 V the transistor conducts and reduces the base voltage on TR4 which conducts, thus passing current to the motor.

The current to the motor, and hence its speed, is thus controlled by the current fed into C2 from VR1 minus the current from D2. Resistors 'R3 to R5 are used to select operating speed.

If the motor goes too fast current from D2 is increased and TR3 and TR4 reduce current to the motor.

AUTOFOCUS

The Pradovit-Color-Autofocus is a system designed by the Leitz Company for keeping the image formed by a projector in focus. The first slide (or first frame of a film) is focused manually, after which time a servo system keeps the image in focus.

The optical system is shown in Fig. 20. A subsidiary optical system forms an image of a slit on the reverse side of the film and the light from this image passes through a converging lens and a filter which only allows the infrared frequencies to pass to a photocell. This cell is divided into two parts and uses cadmium selenide which responds to infra-red.

When each half of the cell receives equal light as detected by a bridge circuit the image is focused. Any imbalance causes the electronic circuit to drive a motor which corrects the film-to-objective distance.

THE FUTURE

It is only a few years since electronics began to make an important impact in this field of amateur photography. It is probably too early to speculate on the possibilities it offers for the future, but it seems certain that it will be more widely employed as manufacturers gain experience in what, even to them, is a relatively new development.

The Polaroid 350 Land Camera.

The Zeiss-Ikon M811 cine camera.

The Minox C ultra-miniature camera.

The Regula Electronic 35 camera with automatic shutter timing.

The Yashica TL. Electro X single lens reffex.

Boolean

By B. J. Wood
 Design and construction of a simple adder subtractor

IN PART 1 of this series a number of logic functions and the basic circuit elements needed to carry them into effect were discussed. Now some more complex elements will be considered and the various parts of a simple Adder/Subtractor will be described in function and basic construction.

ADDING THE SINGLE DIGIT

It is an unfortunate fact that none of the simple logic elements so far discussed will actually add two binary bits A and B under all circumstances. Thus for example, the OR works with $\bar{A} . B$ or $A . \bar{B}$ but it gives a 1 output for $\bar{A} . \bar{B}$.

Again, the NAND is similarly satisfactory but gives a 1 output for A.B. It can be seen that if the two outputs are combined with logic 0 taking precedence over logic 1 the correct answer is produced.
If integrated circuits are to be used in a practical application then the OR function is only obtained by using some other element and manipulating either the input or output. They are a 2 -input device.

For example, NANDs are available, in the two input form, four to a package and an OR can be formed by inversion of the NAND inputs as discussed in Fig. 1.2 f in Part I.
This brings us to the Exclusive OR.

EXCLUSIVE OR

In Fig. 2.1 the logic diagram of an Exclusive OR (EX. OR) is shown at "a" with the Truth Table at "b". The element is a combination of two NANDs,
two NOTs and an AND which, as discussed above, now provide the correct conditions for the addition of binary bits A and B. The output is a logic 1 only when one or other of the inputs is a 1 .
When A and B are both at logic 1 the upper NAND output is 0 whilst if A and B are both 0 the output from the lower NAND is 0 . The diode AND which follows will produce a 1 output only when both NAND outputs are at logic 1.

EXCLUSIVE NOR

At Fig. 2.1c the circuit of Fig. 2.1a has been altered to operate the other way about. This gives a logic 0 when the two inputs are different and a logic 1 when they are the same. The Truth Table for an EX.NOR is the reverse of Fig. 2.1b.

The new function is the Exclusive NOR and it is interesting to note that it can be achieved with exactly the same circuit elements.

Reverting to the Exclusive OR, this can be obtained in i.c. form, four to a package. It is what is normally termed a half-adder. That is to say it can only add the bits A and B and produce the sum S.

DECIMAL/BINARY

For simplicity the logic dealing with the decimal number 1 will be called the 1's logic and that dealing with decimal 2 the 2 's logic. Thus as in the conversion from binary to decimal we have binary numbers equivalent to $1,2,4$ and 8 , we have 1 's, 2's, 4's and 8's logic.

(b)

EXCLUSIVE		
OR		
1	0	1
0	0	1
1	1	0

Fig. 2.1. The Exclusive Or (EX.OR) logic diagram together with the NOR version and Truth Table

Thus the Exclusive OR elements which are halfadders are in fact suitable for the 1's position addition, needing only an AND with inputs A and B to provide the carry bit needed for further computation.

TRUTH TABLE

When any binary position above the I's stage is considered it has to cater for the carry bit C which can appear from the preceding stage. The Truth Table 2.1 caters for these positions.

The logic functions inside the dashed box are those of the EX. OR. $C_{\text {in }}$ represents the carry forward from a preceding stage and $C_{\text {out }}$ the carry to be passed on to a following stage. S is of course the sum output.

For A and B the second group of lines is a repeat of the first.
The table shows that when the C_{in} is a logic 1 the sum is inverted and in fact if one writes out a table for S and C_{in} it is found that a further EX. OR function accepting inputs S and $C_{i n}$ will deal with the problem.
In this sense the EX. OR may be described as a conditional inverter since when one of the inputs is held at logic 0 the output becomes a copy of the other input but that when an input is held at logic 1 the output becomes the inversion (complement) of the other input.

Of course, the device for which Table 2.1 is effective is a three-input device. The carry $C_{\text {out }}$ becomes logic 1 if any two of the three inputs are at logic 1 . Now we are approaching a true adder.

SUBTRACTION

Before becoming involved in circuitry for the $C_{\text {out }}$ function, subtraction is important. Table 2.2, which is similar to Table 2.1 in layout, is the Truth Table for a subtraction function. Here, both B and the two carry bits have been given a minus sign. The S should be changed as well.
Comparing the tables, the only difference is in the $C_{\text {out }}$ column. The condition B.C is the same in both tables. In the Add mode the other carries are A.B or A.C. The other borrows on Subtract are $\bar{A} . B$. and $\overline{\mathrm{A}} . \mathrm{C}$.

Fig. 2.2. Basic logic circuit for a simple ones Adder/Subtractor

A CIRCUIT

The logic diagram of Fig. 2.2 shows a simple Adder/Subtractor for 1's.
A NAND cannot output a logic 0 while one of its inputs is held at 0 . The Add/Subtract switch decides which of the NANDs will be disabled so that only appropriate 1's appear in the final output of the 5 -input NAND.

Here a 3 -input NAND is used with extra diodes attached to one of the inputs.

A modification is needed for the 1's adder. On Add, only A.B must produce a carry so that the NAND with inputs A.C is not required. B.C, which is a common factor in the full carry/borrow circuit, must not be allowed to operate on Add and has a third input which is earthed in the Add mode.

Fig. 2.3 is the logic circuit diagram for the simple Adder/Subtractor using elements of the types so far discussed. The carry, add and subtract lines can be identified easily. Additionally, the word borrow will be replaced from now on with the word carry, it being assumed that this means borrow where appropriate.
The carry from the 4 s adder to the 1 ss adder poses a problem. It should be remembered that the top carry must remain available so that we know the sum in digital terms is greater than 7.

As has been noted, an EX. OR is prevented from inverting if one of the inputs is held to logic 0 . Thus

Table 2.1 : Add

A	B	$\mathrm{C}_{\text {In }}$	S	Cout
50	0	$\overline{0}^{-}$	01	0
1	0	0	11	
10	1	0	11	0
11	1	0	01	1
0	0		1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Table 2.2: Subtract

A	$-B$	$-C_{\text {in }} S$	$-C_{\text {out }}$	
0	0	0	0	0
1	0	0	1	0
0	1	0	1	1
1	1	0	0	0
0	0	1	1	1
1	0	1	0	0
0	1	1	0	1
1	1	1	1	1

if the input C to the adder is provided with two diodes in an AND configuration, one fed from the C8 line and one from the subtract line the input will be held at 0 in the Add mode but allowed to take either 0 or 1 in the Subtract mode.

PRACTICAL CIRCUIT

As can be seen, the AND diodes deal with the 4's adder carry problem outlined above.

From the table in Part 1 it will be seen that there are some identical results which are either positive or negative. When they are positive no action needs to be taken as regards the sign of the result. When the answer is negative the fact must be displayed.

If the two input AND connected to the top carry and the subtract line is used it will produce an output \mathbf{N} of logic 1 only when the mode is Subtract and the result is negative. Under other conditions the output will be 0 . This can be used to operate the minus indicator.

It also has another use. When the result is negative the complement of the answer has to be displayed. The complement is an inversion which is conditional on the negative indication N being at logic 1 .

Once again we use an EX.OR element. It is fed with the inputs N and S 1 and will invert only if N is logic 1 .

In fact there are four EX.ORs in the output section fed from S1, S2, S4 and C8 and producing outputs $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 4$ and X 8 .

DECODING

The binary information so far produced is in hexadecimal format. That is it is to the scale 16 , and it gives binary numbers up to decimal 14. In practical terms it is simplest to convert this information to decimal for display by using a binary/decimal decoder, of which a number are available.

But if such a decoder is used it will refuse to give any output if the binary input to it is greater than 9 (binary 1001). Thus when adding, the 8 input to the decoder must be suppressed when the answer exceeds 9.

In fact the output bits $\mathrm{X} 2, \mathrm{X} 4$ and X 8 are in a unique condition when the answer is 8 or 9 . As a result, if X2 and X4 are inverted three 1's will be produced for an 8 or 9 answer. Feeding these to an AND gives a 1 output for 8 or 9 and a logic. 0 for all other conditions. The AND output is fed to the decoder 8 input.

TENS

It is necessary to decide when to display a 1 (decimal) in the tens position. In fact this is when the X 8 output is at logic 1 but the 8 input to the decoder is at logic 0 . That is to say when the number is greater than 7 but is not 8 or 9 .

When the answer is 10 or greater the X2 and X4 bits will in fact supply the wrong information. The X2 will be an inversion and we can use the EX. OR element to clear up this problem.

The X 4 is not so simple. There are two ways of examining the problem. In the first place ask the question-"When will the decoder 4 input be logic 1 ?" or for that matter not 1 . The first seems to be when T (input TR2), X2 and X4 are at logic 1 but this would be wrong because the 4 input might be at 1 when the number is less than 10 .

The second method gives the correct answer. The 4 input must be sunk to logic 0 when T.X2.

Thus the X 4 output is linked to the 4 input of the decoder and a NAND with inputs T and X 2 feeds the 4 input in a similar fashion.

Thus the 4 input is now free to follow the X 4 output unless the answer is 12 or 13 in which case it is pulled down to logic 0.

DOUBLE NEGATIVE

If the logic for the l's adder is redrawn as in Fig. 2.3 it can be seen that the sum of A1 and B1 is inverted when the end-around-carry, C8, is 1 and the mode is Subtract. But it is again inverted when N is 1 . These two conditions always arise together since N is C 8 . Subtract.

In the S columns of Table 2.1 and Table 2.2 the arrangement of 1 s and 0 s is identical for both positive and negative results. So the second and third elements may be replaced by a piece of wire. The end-around-carry is still required to produce a "borrow 2 ". when necessary. In fact these elements are not included in the final circuit.

ALGEBRAIC ADDITION

As it stands, the machine always treats A as positive while B is accepted as either plus or minus according to the position of the Add/Subtract switch. On subtract, the answer is the difference between \mathbf{A} and B and the minus sign comes up when B exceeds A. If the mode is subtract and the signs of $+A-B$

COMPONENTS . . .

Resistors
R1 $1 \cdot 8 \mathrm{k} \Omega \frac{1}{4} W$. See text R3 $12 \Omega 2 \mathrm{~W}$
R2 $1 \cdot 8 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W}$. See text R4 $27 \Omega 2 \mathrm{~W}$
Capacitors
C1 $1,000 \mu \mathrm{~F} 15 \mathrm{~V} \quad \mathrm{C} 21,000 \mu \mathrm{~F} 15 \mathrm{~V}$
C3 $0.01 \mu \mathrm{~F}$ disc ceramic
Transistors
TR1 2N706
TR2 2N706
Diodes
D1 to D39 General purpose miniature silicon diodes, 1 N914, 1S914, OA5
D40 $\quad 750 \mathrm{~mA}, 50 \mathrm{~V}$ PIV
D41 5.1V, 1.5W Zener
Integrated Circuits
1 off 7404
6 off 7410
1 off 7447AN
3 off 7486
Switches
S1 \& S2 SPDT toggle or slide
S3 \& S4 SP, 11-way rotary or similar
Miscellaneous
T1 $6 \mathrm{~V}, 1 \mathrm{~A}$ mains transformer
Display Minitron 3015F, 2 m.e.s. bulbs, 6V, 40 to 60 mA
Veroboard 0.1 in Matrix, $5 \mathrm{in} \times 3.75 \mathrm{in}$ and small offcut $2 \mathrm{in} \times 1 \mathrm{in}$
Bulbholders, case, wire, etc.

are interchanged the numeric answer will be correct but the sign of the answer will be wrong.

If the mode is add and $+A+B$ is changed to $-A-B$ the same applies only the sign is wrong.

Two rules may now be stated-

1. If the signs are alike, add--otherwise, subtract.
2. If the sign of A is minus, invert the sign of the answer.
There are a number of ways of implementing these rules but a fairly simple one is shown in Fig. 2.3. Switch S 1 is the sign of digit A and switch S 2 the sign of digit B. The two switches form an EX.OR with a 1 output when the signs are different and 0 when they are alike. The subtract line (earthed on Add) is fed directly from A / S with an inverter to feed the opposite state to the add line.

If the sign of A is negative, bit R (reverse) is raised to a logical 1 which inverts bit N to give M which now feeds the minus sign for the display. With this arrangement, a zero answer may sometimes be given a minus sign. For example, when the input is $-3+3$ the answer is 0 but the N bit, theoretically logical 0 , is inverted to 1 because the sign of \mathbf{A} is negative.

In practice, this will not always be so. The carries form a loop. On Subtract, with A and B both 7, a negative pulse, applied to any input on a carry output NAND will cause that carry to take on a 1 state. The next carry in the chain, sensing B.C, will turn on and the carries will maintain each other. This can arise with other combinations. It is not important, since N is then 1 and inverts 1110 to $0000-$ the binary 1 bit is not affected-so that the answer still appears as zero.

PRACTICAL DETAILS

The power unit is shown in Fig. 2.4. A small mains transformer T 1 with a secondary giving about 6 volts feeds a half wave rectifier D40 with a smoothed output of 8-9 volts. R3 drops the voltage to feed the i.c.s, with D4I, a Zener diode, as stabiliser.

R4 is purely a dummy load used only for testing the power supply so that the dissipation of the Zener diode is not exceeded. If battery operation is required, two heavy-duty $4 \frac{1}{2}$ volt batteries in series may be used in place of TI secondary.

The capacitors may then be reduced to $10 \mu \mathrm{~F}$ but it is advisable to retain D40 to protect against accidental reverse connection of the battery supply.

The power unit should be built first so that progressive testing may be made on the rest of the equipment.

Fig. 2.4. Circuit diagram for a suitable power supply for the Adder/Subtractor

MAIN BOARD

A suggested Veroboard layout for the logic circuit elements is shown in Fig. 2.5. All the i.c.s and the lamp driver transistors are mounted directly on the Veroboard. For convenience some of the components are mounted on the reverse, copper strip, side of the board.

TESTING

After assembly make a thorough check of all connections, and trace and remove any stray pieces of copper from the board. When this has been done, connect a wire to the Subtract line so that it may be earthed when required. With the meter across the supply connect up the 5 volt supply.

Check the Add line for logic 0 and the Subtract line for logic 1. All A and B bits should be logic 1 so the instruction to the equipment is $7-7$. Check lines C2, C4 and C8. They should be all 1 s or all 0s. Check the 7447 inputs, 1, 2, 4 and 8. They should all be 0 .

With the testmeter on a low ohms range test the 7447 output making sure that the testmeter positive lead is connected to earth. All outputs except g should give continuity. If C 2 etc. are $0, \mathrm{~N}$ should be 0 . If this is the case, briefly earth any input in one of the carry NAND output sections.

All C s should then become $1, \mathrm{~N}$ is then 1 but the inputs to the 7447 should still be zeros. If C 2 etc. are all 1 s , briefly earthing the subtract line should bring them to Os. If there is any difficulty, the value of every bit is checkable-it would be as well to force the carry chain to the all 1 s state because this is the more stable.

When the Subtract test is satisfactory, earth the Subtract line. The Add line should become 1. The set-up is now for $7+7$, all carriers are 1.X2, X4 and $X 8$ are 1 s . T is 1 . On the 7447 inputs only 4 is 1,2 having been inverted by T and 8 is suppressed.

In the foregoing, remember that 1 V downwards is $0,1.6 \mathrm{~V}$ up is 1 , where inputs are concerned.

OUTPUT DISPLAY

The digital display used in the prototype was a Minitron 3015F seven segment type. The connections, from the underside, are given in Fig. 2.6. A small piece of Veroboard is used to mount the 3015F. Pins are inserted to carry the wires from the main circuit board.

With the main circuit board wired up and the a to g connections made between the two units and a 5 V supply to the 3015 F as indicated, a nought should be displayed. The diodes D30 and D39 shown in the transistor circuits in Fig. 2.3 may not be required.

Test M for logical \mathbf{l} if the lamp does not light. Earth pin R if necessary to make M into a 1. Decreasing the value of the $1.8 \mathrm{k}!2$ resistor R1 will increase brightness and vice versa. The Ten lamp is tested with the Subtract line earthed. If either lamp remains on with logical 0 input, insert a diode to control it. When satisfied, wire the board up.

Fig. 2.5. The main circuit Veroboard and component layout for the Adder/Subtractor

Fig. 2.6. Point-to-point wiring and a suggested case layout for the Adder/Subtractor, together with a Veroboard liayout for the display device

INPUTTING

Single-pole, 11-way switches were used for the A and B inputs. This gives three spare contacts to wire the irput diodes up to. Each input switch is the same. After wiring test each 1, 2, and 4 lead with the testmeter on ohms.

Finally, the unit may be tested in toto before mounting in its case. Make all connections between the various units with the strip side of the main board eventually uppermost. Switch on with a meter
in position as before. Set $+0+0$. Run A through to 7. With A at 7 run B through to 7 checking each result. Set the B sign to -. Run B down to 0 . If any answer is wrong, consider by how much. Is it 1, 2 or 4 out? These are the likely errors and give a guide to the cause. If the \mathbf{A} and B inputs are checked, then carry bits, followed by display correcting circuits, any fault should be traceable. The tables and logic diagrams will be a help.

The "Anyone at Home" began life as a simple programming circuit intended to switch on a room light at dusk when there was no-one at home, thus giving potential intruders the impression that the house was occupied

The use of integrated circuits has, however, made it possible to expand the flexibility of the programmer to make allowance for variations in ambient light level and to give a timing function.

Clearly, if someone were actually in occupation of a house, lights would go on at dusk and be switched off some time later when everyone went to bed. Using a synchronous motor controller to effect this is not ideal as power cuts will upset the timing and in any case the switched-on interval is always constant. Both give-away factors to the would-be thief.

LOGIC ELEMENTS

The logic diagram of Fig. 1 illustrates a simple system using readily available logic i.c.s to give flexible control dependent on both available light conditions and a timing function.

The two inputs to the system are a very slowrunning astable with a period of 17 mHz (one cycle per minute) and a light-operated switch which gives an output of 0.2 V during daylight (logic 0) and of between 4 and 5 V during the dark (logic 1).

The most complex items in the circuit are the two 4 -bit binary counters COI and CO2, each a 7493 chip. The two are connected in series so that from their combined 8 -bit output we can obtain 16 sequences of 16 or a total count of 256 .
With these counters, they operate on a negativegoing input pulse fed to input A. Each has two reset inputs and when both are at logic I the counter is reset. This makes all outputs go to logic 0 . With one or both of the resets at logic 0 the counter is enabled and can count incoming pulses.

FUNCTION SEQUENCE

As can be seen, one reset input of each counter is permanently connected to V_{cc} and is thus permantly at logic 1 . Now both counters can be reset simply by connecting the other reset input to a 1 , or can be enabled by connecting the reset to a 0 .
During daylight hours both resets of each counter are at logic 1 . Thus the counters cannot count the input pulses from the multivibrator via gate Gl. The room light relay remains inactivated.
At dusk, when the available light level has fallen sufficiently, the light operated switch changes state and one reset of each counter is switched to a 0 . This enables the counters and, at the same time provides a second 1 input at Gate G6, actuating the room light relay and switching on the controlled lights.

Fig. 1. Logic diagram of the domestic security system provided by six integrated circuits to control operation of electric lights and radio as a deterrent to would-be intruders.

For a period of 4.25 hours the counters count up to 255. At this point in time all eight inputs to gate G3 are at logic 1 and the output will go to 0 .

Gate G6 reverts to the 0 state and the room lights are switched off. Gate Gl is prevented from passing any more pulses to the counters, which remain at 255.

At dawn, as the ambient light increases again the light operated switch reverts to the 0 condition. This resets the counters and logic conditions are now reverted to the original state until the next evening.

The reader may like to work out just what happens if for example there is very heavy cloud during the day, activating the light operated switch or if there is a power cut. It will be seen that the sequence is again back in synchronism by the following dusk, whatever happens.

A PROGRAMMING SWITCH

For the purposes of controlling a radio during the evening the circuit also provides a programming switch function. This is effected via gates G4, G5 and G7.

The radio relay is actuated when G7 output is at 0 which means that G5 must be at 1 and this in turn occurs when first counter D output is at 1 and second counter outputs A and B are at 0 . Reference to the counting table for the SN. 7493 counters indicates that this would occur for a period of 8 minutes (counts 8 to 15 of CO) every 64 min utes, starting from dusk.

As can be seen, it is comparatively easy to alter the periods of time chosen by simply selecting other
sets of inputs for gates G4 and G5. Equally, removal of the inverting gate G7 reverses the sequence of actuation.

The circuit uses several gate types as can be seen. Gates G1, G2 and G3 are all NAND. For G1 and G2 the 7400 chip has been used which carries four gates so we have two to spare. G3 is a 7430,8 -input NAND and all inputs are used.

Gates 4 and 7 are NORs and are two of the four on a 7402. Again we have two to spare. Finally, gate G5 and G6 are ANDs on a 7408 carrying four, so there are two to spare again.

These spare gates may be used as required to wire up other control functions. For example, a tape recorder could be automatically switched on with various household noises recorded to give apparent audible evidence of someone at home. Equally, arrangements can be made for the coffee pot to be switched on at a given instant if required.

Obviously, many ideas will spring to mind.

LIGHT OPERATED SWITCH

A suggested circuit for the light-operated switch is shown in Fig. 2. As can be seen it is simple in the extreme and operates from a 5 volt supply, making it compatible with the logic circuitry.

As shown, reduction in light intensity increases the resistance of the light dependent resistor, X1, lowering the potential applied to the base of TR1. At a value set by selection of R1 the transistor switches off and the output rises to almost positive rail potential, or logic 1 .

Reversing the position of R1 and LDR reverses the effect and switching occurs as light increases if this is required.

Fig. 2. Circuit diagram of the light-operated switch used with the logic system of Fig. 1. Resistor R1 may be replaced by a variable $10 \mathrm{k} \Omega$ resistor if variation of set-point is required.

ASTABLE MULTIVIBRATOR

The multivibrator used in the prototype is shown in Fig. 3. The circuit is conventional but of course uses high values of $\mathrm{R} 5, \mathrm{R} 6, \mathrm{Cl}$ and C 2 to give a rate of oscillation of about 17 mHz (millihertz). As current drain on the circuit, if the counters were fed directly, is too high for convenience, T.R4 forms a buffer which not only cuts down current drain but sharpens up the output pulse as well.

If the periods of operation of the system parts need to be altered then the frequency of the multivibrator can be changed to effect this. For example, extra capacitors can be switched in to Cl and C 2 .

Fig. 3. The slow astable multivibiator which drives the counters in the logic system. C1 and C2 may need selecting for low leakage current in order to ensure the necessary long pulse period.

RELAY CIRCUITS

The relay operating circuits for the room lights and radio or other items can take the form of the circuit of Fig. 4. The relay contacts are not shown as they can take any form required, actuate to make, to break or perhaps changeover. In this way a variety of control functions can be achieved.

Fig. 4. A relay operating circuit which will accept drive from the logic outputs of the main system. Again simplicity is the keynote.

POWER SUPPLY

A suitable power supply is illustrated in Fig. 5. As can be seen, it is conventional and simple. Of course, the equipment can be battery powered if required using a 6 V source.

Alternately, any one of the many published designs for a logic power supply should suffice.

CONSTRUCTION

Fig. 6 shows a suggested Veroboard layout carrying all the logic circuitry, the astable and the lightoperated switch. Construction is fairly straightforward and only a few points need watching. For example note that IC5 and 6 are reversed with respect to the remainder of the i.c.s.

Further, several links are included. These may be made using wire or, in the case of adjacent tracks, using blobs of solder though it is always best to use wire where possible.

The layout is not critical and the constructor may for example juggle the light operated switch components around to make room for more i.c.s if further logic is required for other functions.

The connection points marked "To J" and "To K" are the relay control outputs, J for the lamp and K for the radio.

Probably it is best to assemble the astable first and check its period to see if this suits requirements.

TESTING

The logic used is positive, that is it swings up to +5 V in logic 1 state. Testing the astable is simple, just connect a meter to the collector of TR3. It should indicate about 30 seconds of logic 0 and 30 of logic 1. The period can be altered as suggested earlier if needed.

The light switch output can be tested by looking at the output and covering and uncovering the LDR with the hand. The output should go from a 1 to a 0 state.

The operation of the counters can be checked by looking at the outputs with the counters running. This is achieved by covering the LDR to simulate darkness. The sequence of count should follow the tables published by Texas but a simple test is to ascertain that the outputs of COl will all go to 0 and output A of CO2 will go to 1 on count 16 . It takes 4 hours or so to check through in detail but probably for the first time it is worth the effort.

If any error in sequence is discovered then check all the wiring to make certain there are no open circuits or dry joints, shorts or the like. A persistent

Fig. 5. A suggested power supply for the system. The rectifier diodes can be replaced by a bridge with suitable alteration to the circuit and choke L1. is possibly surplus to requirements.

COMPONENTS . . .

Resistors

R1	$5 \cdot 6 \mathrm{k} \Omega$				
R2	to $10 \mathrm{k} \Omega$	R5	$120 \mathrm{k} \Omega$	R9	$22 \mathrm{k} \Omega$
R2	$33 \mathrm{k} \Omega$		R6	$120 \mathrm{k} \Omega$	R10
R3	$1.5 \mathrm{k} \dot{\Omega}$	R7	$2 \cdot 7 \mathrm{k} \Omega$	R11	56Ω
R4	$2.7 \mathrm{k} \Omega$	R8	$2.7 \mathrm{k} \Omega$		
All $5 \% \frac{1}{4} \mathrm{~W}$ carbon					

Capacitors

C1	$250 \mu \mathrm{~F}$	C	$0.1 \mu \mathrm{~F}$	C	$500 \mu \mathrm{~F}$
C 2	$250 \mu \mathrm{~F}$	C 4	$500 \mu \mathrm{~F}$	C 6	$250 \mu \mathrm{~F}$

Integrated Circuits
IC1 SN7400; Quad, 2-input NAND, G1 \& G2
IC2 SN7493; 4-bit binary counter, CO1
IC3 SN7493; 4-bit binary counter, CO2
IC4 SN7402; Quad 2-input NOR, G4 \& G7
IC5 SN7408; Quad 2-input AND, G5 \& G6
IC6 SN7430; 8-input NAND, G3
Transistors
$\begin{array}{llllll}\text { TR1 } 2 N 2926 & \text { TR3 } & 2 N 2926 & \text { TR5 } & \text { 2N2926 }\end{array}$
TR2 2N2926
TR4 ZXT302

Diodes

D1	1N4148	D3	BYZ13
D2	BYZ13	D4	BYZ88 C5V1

Miscellaneous
RLA Type 40 (Radiospares), 185Ω coil for 6-12V operation Contacts and ratings to suit application
T1 Mains transformer with $10-0-10 \mathrm{~V}$ secondary
LP1 Neon indicator with integral resistor
F1 1 A socket and fuse
F2 1A socket and tuse
S1 DPDT mains toggle switch
L4 $\quad 50 \mathrm{mH}$ choke (use is optional)

- X1 5SP5 (Bi-Pre-Pak)

Veroboard; wire; solder; materials for case

Fig. 6. Veroboard and component layout for the main parts of the system. This unit carries all the logic, the astabie and the light-operated switch. The relay actuator and powersupply may be mounted on smaller Veroboard sections or, for the relay controls, on the relays themselves.
fault may be disposed of by connection of a $0 \cdot 1 \mu \mathrm{~F}$ capacitor between the supply and ground to decouple unwanted spikes.

HOUSING

The total consumption of the unit is only in the region of 150 mA so it does not need to be housed with a view to heat dissipation. Equally, the power supply will be physically small so the whole could be housed together in a fairly small case or box to suit.

As most constructors will wish to effect their own particular version of this flexible device, detailed construction information has been omitted.

OTHER APPLICATIONS

An obvious area of application, for times of better power availability perhaps, is in window display work where the unit could be adapted to actuate a variety of display activities either during dark or, by reversal of the light detection system, during daylight hours.

Of course, other inputs can be applied in place of the light operated switch and the astable making the system suitable for counting applications and other control functions.

Oncicow？

Get theHeathkit Catalogue．．and save

Handcrafted electronics with built－in quality and kit form savings
Hundreds of models to choose from．
Heath offer you outstanding specifications and plus values that will impress you，your family and friends．Want to know more？Send for your personal introduction to the international world of Heathkit electronics ．．．the Free Heathkit Catalogue．

$$
\sin
$$

Free
 Please send me the FREE Heathkit Cata logue $\&$ details of Monthly budget plans

NAME
ADCRESS

HEATH
HEATH（GLOS ）LTD DEPT PE／4／74 Bristol Road．

Schlumberger

\qquad
\qquad

heath	heath（Glos）lto Dept PE／4／74
Schlumberger	Gloucester GL2－6EE

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS Prim．I20／240V．Sec $120 / 240 V$ Centre Tapped and Streened
ALSO AVAILABLE WITH IIF／I20V SEC．WINDING
Ref．
No．
07
149
150
151
152
153
154
155
156
158

Ref．
No．
113
64
4
66
67
84
93
$\begin{array}{ccccc}\text { Ref．} & \text { VA } & \text { Weight } \\ \text { No．} & \text {（Watts）} & 10 & \text { oz } & \\ 07 & 20 & 1 & 8 & 7 \\ 149 & 60 & 3 & 12 & 9 \\ 150 & 100 & 5 & 8 & 9 \\ 151 & 200 & 8 & 0 & 12 \\ 152 & 250 & 13 & 12 & 12 \\ 153 & 350 & 15 & 0 & 14 \\ 154 & 500 & 19 & 8 & 14 \\ 155 & 750 & 29 & 0 & 17 \\ 156 & 1000 & 38 & 0 & 17 \\ 158 & 2000 & 60 & 0 & 21\end{array}$

Sizecm．	$P \& P$	
$7.0 \times 6.0 \times 6.0$	2.32	p
$99 \times$	7.7×8.6	3.45
9.9×86		
$12.1 \times 8.3 \times 10.2$	3.79	52
$12.1 \times 11.8 \times 10.2$	6.45	52
$14.0 \times 10.8 \times 11.8$	11.20	67
$140 \times 13.4 \times 11.8$	16.25	82
$17.2 \times 14.0 \times 14.0$	22.10	
$17.2 \times 16.6 \times 14.0$	29.87	
$21.6 \times 15.3 \times 18.1$	49.25	

AUTO TRANSFORMERS

VA	Weight	Size cm．	Auto Taps		8
（W）	ib oz			C	P
20	10	$5.8 \times 5.1 \times 4.5$	0－115－210－240	1.22	22
75	24	$7.0 \times 6.7 \times 6.1$	0－115－210－240	$2 \cdot 40$	30
150	4	$8.9 \times 7.7 \times 7.7$	0－115－200－220－240	2.89	6
300	64	$9.9 \times 9.6 \times 8.6$	，．．	5.63	2
500	128	$12.1 \times 11.2 \times 10.2$	．．．．	8.36	67
1000	198	$14.0 \times 13.4 \times 14.3$	，	15.19	82
1500	$30 \quad 4$	$14.0 \times 15.9 \times 143$	，．	21.99	
2000	320	$17.2 \times 16.6 \times 14.0$	．．．	28.70	
3000	400	$21.6 \times 13.4 \times 18.1$		39．17	

115500 W enclosed eransformer，with mains lead and two 115
outlet sockets，$£ 9.49, \mathrm{P}$ \＆ P 67 p ． 20 W version， $\mathrm{E2} .02, \mathrm{P}$ \＆ P 22 p ．
LOW VOLTAGE SERIES（ISOLATED）
PRIMARY $200-250$ VOLTS 12 AND／OR 24 VOLT RANGE No． 12 V 24 V ib oz
$\begin{array}{lllllllll}\text { No．} 12 \mathrm{~V} & 24 \mathrm{~V} \text { ib } & \mathrm{o}^{02} \\ 111 & 0.50 .25 & 8 & 4.8 \times 2.9 \times & 3.5 & 0.12 \mathrm{~V} \text { at } 0.25 \mathrm{~A} \times 2 \\ 2131.0 & 0.5 & 4 & 6.1 \times & 5.8 \times & 4 . \mathrm{B} & 0.12 \mathrm{~V} \text { at } 0.5 \mathrm{~A} \times 2\end{array}$
$\begin{array}{lllllllll}131.0 & 0.5 & 1 & 4 & 4.8 \times & 2.9 \times & 3.50 .12 \mathrm{~V} \text { at } 0.25 \mathrm{~A} \times 2 \\ 11 & 2 & 1 & 12 & 7.8 \times & 6.4 \times & 4.1 & 0.12 \mathrm{Vat} 0.5 \mathrm{~A} \times 2\end{array}$
$\begin{array}{lllllllll}18 & 4 & 2 & 2 & 12 & 83 \times & 8.4 \times & 5.1 & 0.12 \mathrm{~V} \text { at } 1 \mathrm{~A} \times 2 \\ 70 & 6 & 3 & 3 & 8 & 89 & 8.12 \mathrm{~V} \text { at } 2 \mathrm{~A} \times 2\end{array}$
$\begin{array}{lllllllll}10 & 6 & 3 & 3 & 8 & 89 \times 8.0 \times & 7.7 & 0-12 \mathrm{~V} \text { at } 3 \mathrm{~A} \times 2 \\ 08 & 8 & 4 & 5 & 8 & 9.9 \times 8 & 8.9 \times 8.6 & 0.12 \mathrm{~V} \text { at } 4 \mathrm{~A} \times 2\end{array}$

17
115
187
28
$\begin{array}{llllllll}15 & 8 \\ 226 & 60 & 150 & 32 & 8 & 140 \times 12.1 \times 1180.12 \mathrm{~V} \text { at } 15 \mathrm{~A} \times 2 & 15.36 \\ 22\end{array}$
$32017.2 \times 15.3 \times 14.0012 \mathrm{Vat} \mathrm{30A} \times 2$ 2 30 VOLT RANGE 28.44
Ref．Amps

ジッが

R
－웅
103
104
105
－
$\begin{array}{rrrrrrrr}118 & 8.0 & 18 & 0 & 14.0 \times 12.7 \times 11.8 & 13.51 \\ 119 & 10.0 & 25 & 0 & 17.2 \times 12.7 \times 14.0 \\ & & \quad 00 \text { VOLT RANGE }\end{array}$

SHOWROOM LONDON：－ 233 Tottenham CI Rd

PRTENTS REDTETM。

The outcome of a patent conference to be held in Luxembourg during early May could well have considerable effect on the future activities of inventors and firms working in the electronics field. Already a patent conference held in Munich last October has decided certain issues that will inevitably have some far reaching effects in the not too distant future.

Because the legal issues are complicated, the practical issues easily pass unrecognised. It is perhaps for this very reason that some legal issues have been agreed rather than more hotly argued by the official negotiators for this country.

CURRENT BRTIISH PATENT PRACTICE

For the last 350 years or so Britain has had its own patents system. Although virtually every other country in the world also has its own national system, the British system is one of the oldest.

No two patent systems in the world are exactly the same but all have in common the feature that a national patent protects an invention for a limited number of years (16 in the UK and 20 in some other countries) for that country only. Thus a British patent is active only in the UK, and so on.

The inventions reported monthly in Practical Electronics are all the subject of British patent applications that have been accepted and published by the British Patent Office but some of them may, of course, be patented in other countries. Patenting in most foreign countries is more expensive than in the UK.

EUROPEAN PATENT SYSTEM ALREAOY AGREED

- In Munich, last October, 21 European countries hammered out and finalised the details for a socalled Europatent scheme to come into force within the next 3 or 4 years. Europatents will be dealt with via a central European Patent Office to be built at Munich.

Under the Europatent Scheme an Applicant will be able to choose between English, German and French as the main language for his application. Once an Applicant has chosen the language for his application it will stay with that application for the rest of its mortal span.

Because British language Europatent applications will originate not only from England but also from USA, Canada, Japan and other countries with English their main language, current estimates are that between 60 and 80 per cent of the applications filed will be in English. This makes a Munich siting look an odd choice and the reasons behind this choice were largely political. Because so few British Patent Office Examiners have so far expressed willingness to live and work in Munich some British language work from Munich will be sub-contracted to the existing British Patent Office to avoid what would otherwise be total chaos. Even so it is now officially regarded as inevitable that some British language applications will be dealt with by foreign speaking Examiners.

An Applicant for a Europatent will be able to choose (or "designate") which of the 21 countries he wishes his Europatent to cover. Because the European scheme will cost a considerable amount of money to run, Applicants selecting only a few countries will pay a disproportionately high fee, but the scheme should be a bargain to Applicants wishing to spread their blanket of protection over most of Europe.

PROPOSED COMMUNITY PATENT

The Luxembourg conference to be held in the near future seeks to establish the wherewithal for a single indivisible community patent for the nine EEC countries. If the UK signs the convention, any British Applicant (e.g. a small electronics company with a new invention) wishing to protect that invention with a Europatent in any one of the nine EEC countries, will be forced automatically to protect it in all nine. Also, to maintain the patent in one country will require maintaining it in all nine.

There is some doubt on the matter of language as applied to EEC patents. It seems clear however that the translation of the patent claims into all Community languages (probably excepting Irish) will be obligatory and it may also be that the application as a whole (i.e. including the descriptions of specific circuits given by way of example, etc) will require translation into English, German and French.

COST

One of the main reasons why interested observers are so off-put by the European schemes (especially the Community scheme) is that the only thing certain about the cost is that it will be high. Because the Munich Patent Office is to be self-supporting and will be built at a cost of around 45 million pounds in loans repayable to the Governments making them, it has been estimated that each Applicant will be contributing something like $£ 1,000$ per patent simply to pay for building the Munich Office. This is quite apart from what it will cost to staff the office and pay for the extensive patent novelty searches which are to be sub-contracted to The Hague.

The cost of applying for a patent via Munich and arguing it through to acceptance is still anybody's guess. But no one has disputed that an estimated cost of maintaining a patent after it has been granted will be around $£ 5,000$. Thus it looks likely that securing and maintaining in force an EEC patent will cost an inventor something in the order of $£ 7,500$. Thus the Community Patent Scheme could well put patenting beyond the pale for anyone but the largest commerclal enterprises.

It is an EEC aim to minimise the effects on the Common Market of national patents (such as we now have in the UK) and thus it seems highly unlikely that relatively cheap British national patents will continue to flourish if and when this country accedes to the community patent scheme. More than likely most inventors will simply deliberately disclose their ideas to the public so as to prevent anyone (including themselves) securing patent rights.

The Scientists Investigate

The subject of ESP has at last become respectable in circles where once it was passed-off as coincidence, freak phenomena or even rubbish. Qualified scientists are now investigating many aspects of ESP the world over. Not only thoughttransference, or telepathy, either. Captain Ed Mitchell, of an earlier Apollo mission, has set up a foundation whose aim is to investigate thoroughly many aspects of ESP and related phenomena.

A while ago John Dunne interviewed Mitchell on the John Dunne Programme, BBC Radio 2, in which Mitchell spoke of the remarkable feats of (then little-known) Uri Geller. He spoke of how Geller had, under strictly-controlled and monitored laboratory conditions, caused a gold ring (stated to have been 18 ct . gold) to fracture merely by concentrating his mind upon it. The ring was later placed on a table and constant watch kept on it for an hour or two, whilst it was seen to twist until it took up a shape like the letter " S ".

More recently, we in Britain have been able to watch Geller in one or two BBC TV programmes, and to hear his original introduction on Jimmy Young's programme. In the latter, phone calls poured in from housewives who said their spoons and forks were curling up before their eyes as they laid their tables for the midday meal.

Again, to apply logic to this last situation, if the facts are true, and Geller can bend by mind power alone, we have experienced something truly remarkable. This accepted, how can we not consider the fact that the energy (or catalyst which releases this energy) may be carried to places afar by the medium of transmitted radio waves. Only a fool, in these circumstances, would reject the slightest possibility of this being possible, having once witnessed, without doubt, the first phenomenon.
TV 亚

Geller's performances were only part of the remarkable series of experiments that Ed Mitchell's team have recorded in their investigations, and at some time in the future the entire findings and results will be published for the World to read! One point that Mitchell made was that he tries to keep all experiments free and easy, yet very carefully scientifically controlled, in such a way that his subjects are not held in a state of tension, which, he believes, is the worst enemy to getting results, as appears to be the case if too many highly-sceptical persons are present.

Now to Plant ESP

Let us now go to another, rather unusual aspect of ESP. This concerns the reaction of plants to . . . yes, thought. All right, you are entitled to your point of view, and I grant you this wholeheartedly. But please continue to read, I was a sceptic. . . once!

A man by the name of Backster, in the United States of America, was carrying out experiments on tomato plants. He had hooked a plant up to a sort of lie-detector circuit, to measure the electrical resistance of a lead, while he intended to carry out various "tortures" on the plant. He expected that the plant would show a reaction of some sort when other parts of it were interfered with or disturbed.

After trying various stimuli, and obtaining resistance changes, which were indicated on his super-sensitive equipment, he suddenly had a brainwave. Surely fire would give a strong reaction, as this, of all elements, must be the most dramatic for plant life. As he reached for the lighter, he noticed the meter deflection give a sudden reaction. Being a scientist, he would have been well aware that his sleeve or other parts involved in his sudden movement might well have caused the reaction, perhaps disturbing an electrode or something. But no, after careful analysis he discovered that whenever he decided to apply a flame to the plant, the plant gave the same reaction to . . . his thoughts!
Backster was apparently so engrossed with the evidence of this experiment, that he, in a typical American fashion, took the subject to the greatest possible extreme by monitoring the resistance of a plant or plants in one room, isolated in all ways from the first room. The contraption consisted of a sort of crane-jib suspending a large container of brine-shrimps (live and kicking) over a vat of boiling liquid.

At one time, unknown to anyone in the plant room, the shrimps were dropped into the boiling vat. Yes, you have guessed it, the meter pretty well wrapped its needle around the end stop of the scale... and at the very instant that the shrimps hit the hot fluid. Dropping dead shrimps into the vat caused no reaction, but the plant would become "numb" to the effect if live ones were killed in quick succession.

$$
\text { O } \quad \sqrt{2} \quad 3
$$

I was personally so taken up by the quoted results of Backster's experiments that I tried out the thought-transference version. I connected a "busy-lizzy" (some call them "wandering sailors" I think) to a high-gain i.c. amplifier, and fed the output to the control line of a voltage-controlled oscillator, which I fed to an audio amplifier. After careful setting of the wire electrodes on one leaf, I adjusted the oscillator frequency to about mid-audio range.

After allowing time for any change in audio pitch to take place. which took about a minute, 1 waited a little longer to be sure that the pitch was as constant as I could determine by ear. Then I concentrated on the thought of dripping battery-acid on to the leaf. I chose this, because I remember from school-day experiments the taste of sulphuric acid and also, there was an old car battery in the workshop under the bench, and I felt able to dwell on the thought better for these reasons. As the taste came back to me, the oscillator pitch rose sharply, and proceeded to rise out of audibility. To those interested, this was due to the increase in resistance of the plant leaf, bearing in mind the way I had phased the circuits at the time.
This was not all. I satisfactorily repeated the experiment with the same results, for no less than six times altogether. But when I tried it out of direct line-of-vision with the plant, it failed, only to work again when I came back and looked at the plant.

$$
\sqrt{3} \quad \sqrt{3}
$$

These experiments were all done in one session, in the evening in Summer, and have not been tried again. Also, I do not know whether Backster found his plants responded with increased resistance like mine. but it would be interesting to find out if the two results tallied.

Next month: "Phantom Photos by Physicists".

Fig. 20c. A $1 \mathrm{M} \Omega$ f.s.d. linear scale ohmmeter

Fig. 20d. A 1Ω f.s.d. Iinear scale ohmmeter

Fig. 21a. Linear voltage to frequency converter

Fig. 21b. Graph of control voltage against output frequency for the voltage to frequency converter

Fig. 21c. Alternative voltage to frequency converter

Fig. 22. Zener diode tester using a constant current source
must be drawn on the meter or a calibration chart must be prepared.

The linear scale ohmmeter circuit shown in Fig. 20b enables a conventional voltmeter to be used without any alteration to the meter scale. For instance, it a 1 mA current generator is used, a 5 V f.s.d. meter will measure resistance up to 5 kilohms.

With the same current, a 1 kilohm scale can be produced by the use of a IV meter. The meter scale is only linear if the current through the resistor is large compared to the meter current. For a maximum error of 2% from this cause the current source must provide 50 times as much current as the meter f.s.d. current. So if a $20 \mathrm{k} \Omega / \mathrm{V}$ meter is employed, the current generator should supply at least 2.5 mA .

HIGH RESISTANCE MEASUREMENTS

If measurements of high resistances are needed, the test current cannot conveniently be more than a few microamps. This imposes a limit of a few nanoamps on the meter current.

A circuit for a $1 \mathrm{M} \Omega$ meter is given in Fig. 20c. The input current is less than 5 nA at $25^{\circ} \mathrm{C}$ and the error caused by nonlinearity in the amplifier is small. The $5 \mathrm{k} \Omega$ potentiometer is used to set zero and the $500 \mathrm{k} \Omega$ resistor is set for f.s.d. with a test resistor of $1 \mathrm{M} \Omega$.

CONNECTION ERRORS

One problem associated with ohmmeters designed to measure low resistances is that the resistance of the test leads and the resistance of the connections made by the clips to the resistor being tested can cause quite large errors.

With the circuit shown in Fig. 20d for measuring resistances up to one ohm these errors are avoided. The voltmeter connections are separate from the current generator connections so that the voltage measured depends only on the current and the resistor being measured.

The contact resistance of the current source connections is thus left out of the measurement.

LINEAR VOLTAGE-TO-FREQUENCY CONVERTER

Another circuit which cannot easily be produced without the use of current sources is a linear voltage to frequency converter. The method used is similar to that described earlier in connection with sawtooth generators.

An example of a voltage to frequency converter is shown in Fig. 21a and in Fig. 21b a graph of control voltage against frequency for this circuit is shown.

EMEEFM

Telephone Corner
conplet titernans NORMAL HOUSEHOLD
 TELEPHONE DIALS
Standard Post oince tope . Waranted in

$$
\text { Only } 271
$$ $1 / 2$ poost \& Packing 168 p

Tested and Guaranteed Paks

B79		IN4007 Sil. Rec, diodes, I,000 PIV I amp. plastic	55p
881	10	Reed Switches, ${ }^{* *}$ long t" dia. Highspeed P.O. type	55p
899	200	Mixed Capacitors. Approx. quantity, counted by weight Post \& packing 15p.	5
H4	250	Mixed Resistors. Approx. quantity counted by weight Post \& packing 15 p	5
H35	100	Mixed Diodes. Getm. Gold bonded, etc. Marked and	

H38 $30 \begin{aligned} & \text { Short lead Transistors, } \\ & \text { NPN Silicon Planar type }\end{aligned}, ~$
H30 6 Integrated circuits 4 gates
H41 $2 \begin{gathered}\text { Eary Plastic Transistors }\end{gathered}$
D Unmarked Untested Paks
-1 $50 \begin{aligned} & \text { Germanium Transistors } \\ & \text { PNP, AF and } R F\end{aligned}$ 55p
B66 $150 \begin{gathered}\text { Germanium Diodes } \\ \text { Min. giass type }\end{gathered}$
B84 $100 \begin{aligned} & \text { Silicon Diodes DO. } \\ & \text { equiv. to OA203s }\end{aligned}$
55p
55p
B86 $100 \begin{aligned} & \text { Sil. Diodes sub. min. } \\ & \text { IN9l4 and IN9i6 type }\end{aligned}$
55p
H16 I5 Experimenters' Pak of
55p supplied
$\begin{array}{ll}\text { H20 } & 20 \begin{array}{c}\text { BY126/7 Type Silicon Recti- } \\ \text { fierst } \\ \text { volts amp. plastic. Mixed }\end{array} \\ \text { 55p }\end{array}$
H34 $15 \begin{aligned} & \text { Power Transistors, PNP. } \\ & \text { Germ. NPN Silicon TO-3 55p }\end{aligned}$

Make a rev counter

for your car
The "TACHO BLOCK". This encapsulated
block will turn an
linear and accurate
any counter with
any car with
normal
innition system
I $1 \cdot \mid I_{\text {peach }}$

Ex EPO PushButton Intercom Telephones

Exactiy as internal telephone systems still in everyday use where automatic internal ex changes have not yet taken over. Avalable in
5 , 10 or 15 ways. Comples wirh circ 5, instruct ons. Necessary 24 pair cable 22p pe
$£ 2.75$
pp
381p
Cable can be sent by Parcel Post. Post and Packing per 50 yds. : 73! p ;
Extension Telephones 7 Extension Telephones 71 jp each, p.p. $277^{1 p}$.
$\mathbf{6 1 . 3 7 \frac { 1 } { 2 } \text { for 2, p.p. } 5 5 p \text { . }}$ These phones are $41.37 \frac{1}{1}$ for 2 , p.p. 55 p. These phones are

A Cross Hatch

 Generator $£ 3.85{ }^{\text {posit }}$a complete kit of parts including Printed Circuit Eoard. A four position switch gives
X-hatch. Dots, Vertical or Horizontal lines. X-hatch. Dots, Vertical or Rorizontal lines
Integrated Circuit design for easy construc tion and reliability. A project in the Sep. 72

Tested \& Guaranteed
H63 4 2N3055 Type NPN Sit. power 55p
H65 440361 Type ${ }^{4} \begin{aligned} & \text { NPN Sil. 55p }\end{aligned}$ to H66
H66 440362 . Type PNP Sil. transistors Untested, Unmarke

$$
\text { H67 } 103819 \mathrm{~N} \text { Channel FET's pl }
$$

Over 1,000,000 Transistors

in stoch

We hold a very large range of fully marked, tested and guaranteed transistors. power cransistors, diodes and rectifiers at very

Our very popular $4 p$ Transistors

TYPE ", A". PNP Siticon Alloy, TO-5 can
TYPE 'AB'." PNP Silicon, plastic encapsulation
TYPE "E" NPN Silicon plastic encapsulation
range. "H
TYPE PNP Silicon, similar $Z T \times 500$
8 nelars for £ $1 \cdot 10_{0}$
High Speed
Magnetic
Counter
4 digit (non-reset)
24 V or 48 V (state which

Plastic Power Transistors

NOW IN
TWO
RANGES
These are 40 W and 90 W Silicon Plastic available in NPN or PNP very latest design. ingly low prices of all time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed
Range I VCE Min. 15 HFE Min. 15
$\begin{array}{cccc}40 \text { watt } & 1-12 & 13-25 & 26-50 \\ 90 \text { watt } & 22 p & 20 p & 18 p\end{array}$ vatt ${ }^{261 p}$ 241p 42 MP
 $\begin{array}{llll}40 \text { watt } & \text { 33p } & 31 p & \text { 29p } \\ 90 \text { watt } & \text { 387p } & 36+p & 33 p\end{array}$ Complementary pairs matched for gain at 3 amps. Ilp extra per pair. Please state NPN or PNP on order.

LM380 AUDIO I.C. as featured in Practical Wireless December issue. Complete with application data, $£ 1 \cdot 10$.
INTEGRATED CIRCUITS. We stock a arge range of I.C.s at very competitive prices FREE Catalogue, see coupon below.
METRICATION CHARTS now available. This fantastically detailed conversion calculator carries thousands of classified
references between metric and British (and U.S.A.) measurements of length, area. volume, liquid measure, weights. etc Pocket Size. 15p. Wall Chart, 18p.

LOW COST DUAL IN LINE I.C.
SOCKETS
$\left.\begin{array}{l}14 \text { pin type at isip each } \\ 16 \text { pin type at } 18 p \text { each }\end{array}\right\} \begin{aligned} & \text { Now new low } \\ & \text { profile type. }\end{aligned}$

BOOKS

We have a large selection of Reference and Technical Books in stock, details are in our latest catalogue,
N.B.-Booke are void of V.A.T.

Our famous P1 Pak

is still leading in value Full of Short Lead Semiconductors and
Electronic Components, approx. I7o. We guarantee at least 30° really high quality factory marked Transistors PNP and NPN and a host of Diodes and Recrifiers mounted on Printed Circuit Panels, Identification Chart supplied to give some information on the
Please ask for or pakk pili..only 55^{p}

Please send the the FREE Bi-Pre-Pak Catologue.

NAME

ADDRESS

ALL PRICES INCLUDE 10% V.A.T.
MINIMUM ORDER 55p. CASH WITH ORDER PLEASE. Add I'p pose and packing
per order. OVERSEAS ADD EXTRA FOR per order. OVERSEAS ADD EXTRA FOR
POSTAGE.

PRICES INCLUDE VAT SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb alid state new amplifler. Brand throughout components transiators 5 silicon power output transiators in push-pull. Full Wave rectiftcation. r.m.s. into 8 ohm Frequency reaponse
$12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$. Fuly integrated pre amplifier stage with separate Volume, Bass boost and Treble cut controls Suitsble for $8-15$ ohm apeakers. Input for ceramic or output. Supplied ready built and tested, with knobs escutcheon panel, input and output pluge. Overall bize 3 in high $\times 6$ in wide $\times 7 \mathrm{jin}$ deep. A.C. $200 / \mathbf{2 5 0 V}$.

DE LUXE STEREO AMPLIFIER

$200-240 \begin{gathered}\text { maine } \\ \text { volte. }\end{gathered}$ Using heavy
duty fully duty fully
isolated inains transformer with
fuli wave ruli wave
rectification quaing ade-
 provided for bass and treble dual potentiometers are reble boost and cut. A dual volume control bass and Baiance of the left and right hand channela is uscd adjusted by means of a separate 'balance' control fitterl at the rear of the chassis. Input sensitivity is approxi mately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watte per channel (8 watto nono), into 3 ohm speakers. Full negative teedback in a carefully calculated circuit. allows high volume levels to be used with negligible distortion. Bupplied complete with knobs, chassis size 11 in . w $\times 4 \mathrm{in}$. x. Overall height including valves 5 in . Ready bullt and
terted to a high standard. Price $\$ 10.45$, P. \& P. 50 p .

NEW! POWER SUPPLY UNIT 200/240V A.C. input. Four awitched fully smoothed D.C. on load. insulated outputterminalasand pilot lamp indicator Hammer Sultable for Translator Radion, Tape Recorder, amplifiers, etc., etc. Ready built and tested

BLACE ANODIRED 16g. ALUMINIUM HEAT BLIES. BLACK ANODIBED 16g. ALUMiNIUM HEAT BLIKS.
For TO3, complete with mica's and bushes. Size 21 in x 3in approx. R8p pair. P. \& P. 6p. BRAND NEW MULTI-RATIO MADS TRANEFORMERS. Giving 13 aiternatives, Primary: $0-210-240 \mathrm{~V}$, secondary combinations: $0-5 \cdot 10-15-20 \cdot 25-30-35-40-60 \mathrm{~V}$ halt wave at 1 amp or $10-0.10,20-0-20,30-0-30 \mathrm{~V}$, at 2 ampa full wave. Size 3 inL $\times 3$ hinW \times 3inD. Price 42 . 81 . P. \& P. 40 p
MAILS TRANSFORMER. For transistor power supplies. Pri. $200 / 240 \mathrm{~V}$ Sec. $9-0-9$ at 500 mA . $21 \cdot 10 \mathrm{P}$. \& $\mathbf{P} .25 \mathrm{p}$. Pri, 200/240V Sec. 12-0.12 at 1 amp . $21 \cdot 21 \mathrm{P}$. \& P . 26p

GRAREAL PURPOSE HIOR 8TABILITY TRANG18TOR PRE-AMPLIFIRR. For P.U. Tape, Mike, Guitar, etc., and suitable for uae with ralve or ranaistor equipment. 9-18V. Battery or from $\mathrm{H} . \mathrm{T}$. Gain 26 dB . Solid encapsulation size $1 \frac{1}{4} \times 11 \times \frac{1}{2} \mathrm{in}$. Brand new - complete with ingtructions. Price 1. P. \& P. 15 p

8 REFEREHCE ENCYCLOPEDIAS FOR ELECTRONIC HGIFEERS AND DEFIGNERS, covering between them, ransistor characteristics, di.sde and transistor equivalents. Many thounands of up-tords Drane Equivalenta

Transiator Characteristics	81.90 p

$\begin{array}{lll}\text { All three together } & \$ 1.20 \\ & 8.60 & \text { POST FREE }\end{array}$
HANDBOOK OF THANSIRTUR EQUIVALENT8
A must for servicemen and home constructors. Including meny 1000's of British, U.S.A., European and Japanese meny 1000's of British, U.S.A., Eiu
tranistors. ONLY 40 p. Post 5p.
8 pole 3 way 2 bank low loss Yaxley type awitches $1 \frac{1}{2}$ sections. Standard apindle. 2 switches $88 \mathrm{p}+10 \mathrm{p}$ P. \& P . NEW I8sUE-Thyristor, Triac, Diac, etc. encyclopedias 95p Poot Free

FOR PERSONAL CALLERS ONLY! Limited number of Ster eo Radiogram chassis covering LW/MW/FM bands. Monoradio and stereo gram. Overall size approx. $161^{* W}$
$6 \mathcal{I}^{* H} 8^{*} \mathrm{D}$. 4 Watts per channe! output. ONLY 18.50 . RECORD PLAYER BARGAIHS Main modela. All brand new in maker's packing. With lateat stereo/mono competible cartridge 9.20 60 p P. \& \mathbf{P}.
SPECIAL BARGAIF OFFER!
Limited number of BSR Cl 23 Auto Changer De Luz with lightweight tubular arm and stereo cartridge. Brand new. 0nLY 88.00 plus P. $\%$ P. 60 p

PRECISION ENGINEERED PLINTHS
Beautifully constructed in heavy gauge "Colorcoat" plastic coated steel. Resonance free, Dealgned to take
Garrard $1025,2000, ~ 2025 \mathrm{TC}, 2500,3000,3500$ 8P20̄ II and III, SL65B, AT60, etc., or B.8.R. C123, C109 C129, A21, etc. Biack leatherette finish. Size 12fin x 14 in x zin high (approx. 7tin high, including rigid smoked acrylic cover). P. \& P. 70p. Now only $£ 4 \cdot 95$ LATEST AOOS GP91/18C Mono Compatble CErtride wlth t/o stylus for I.P/EP/78. Universal mounting bracket 81-50. P. \& P. 15
SONOTONE GTARCCOMPATIBLE GTEREO CARTRIDGE T/0 atylur. Diamond Stereo LP and Rapphire 78. ONLY E8.80. P. \& P. 10p. Also available fitted with twin LATEST BONETTE TO Stereo Compatible Cartides for EP/LP/Stereo/78 e1.68 Ptereo Compatible Cartridge for LATEST RORHETE T1.68. P. \& P. 15p
EP/LP/78 mono/atereo records on mono equipment 21.50 P. \& P. 15 p.

QUALITY RECORD PLAYER AMPLIFIER YEK II A top-quality record player amplifer employing heavy duty double wound mains transformer, ECC88, EL84. and rectitier. Separate Bass, Treble and Volume controls.
 Ipeaker. Size 7 in . W. $\times 3 \mathrm{~d} . \times 6 \mathrm{~h}$. Ready built and teated.
PRICE 25.00 P. \& P. 50 p . ALSO AVAILABIE mounted on board with output transformer and apeaker PRICE \&6 80. P. \& P. 60p.

SPECIAL OFFER!!

HI-FI LOUDSPEAKER SYSTEM

Beautifully made teak fnish enclosure with mont athactive Tygan-vinair front. Size 16 in high
$\times 10$ in wide $\times 6 i n$ deep. Fitted with E.M.I. Ceramic Magnet 13 in $\times 810$ bass unit, two H.F tweeter unith and crossover. Max. power handling . Available 3, 8 or 15 ohm impedance. Our Price $£ 9.25$

Carr. 75 p
CABINETAVAIL. GEPARATELY 84.95. Carr. 65p. Also available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. bass
apeaker with parasitic tweeter. $87 \cdot 15$. Carr. 75 .

HARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifier using a double wound fully pentode valve as audio amplifer and power output stage Impedance 3 ohms. Output epprox. 3.5 watt. Volume and tone controls. Chassis size only 7 in , wide $\times 3 \mathrm{in}$. deep \times 6 in . high overall. AC mains 200/240V. Supplied absolutely Brand New, completely wired and tested with good quality output transforme
OUR ROCK BOTTOM
BARGAIF PRICE $\quad \mathbf{2 3 . 8 5} \quad$ P. \& P

LOUDSPEAKER BARGAINS

$5 \mathrm{in} 3 \mathrm{ohm} 21 \cdot 25$, P. \& P. $15 \mathrm{p} .7 \times 4 \mathrm{in} 3 \mathrm{ohm} 21 \cdot 40, \mathrm{P} . \& \mathrm{P}$ 20 p . $10 \times 6 \mathrm{in} 3$ or 15 ohm $48 \cdot 10$, P. \& P. 30 p . E.M.I $8 \times \sin 3$ ohm with high flux magnet $21 \cdot 70$, P. $\&$ P. 20 p
E.M.I. $13!\times 8$ in with high flux ceramic parasitic tweeter 3,8 , or $1 \bar{o}$ ohm $\$ 3.50$. P. \& P. 30 p . E.M.I. 13×8 in, 3 or 8 or 15 ohm with two inbuilt tweeters and crossover network $84-65$. P. \& P. 30p
EMI CERAMIC MAGNET HEAVY DUTY TWEETER pprox. 3 in. Av. 3 or 8 or 15 ohma. $81 \cdot 85$ plus 20 p p. \& p BRAND NEW. 12 in lā H/D Speakers, 3, 8 or 15 ohm (atate which). Current production by well-known British
maker. Now with Hiflux ceramic ferobar magnet maker. Now with Hiflux ceramic ferrobar magnet
Resembly 89.90 . Guitar models: 25 w 29.90. 35w $\mathbf{2 1 1 \cdot 0 0}$ Resembly 89.90 .
P. \& P. 45 p each.

SPECIAL OFFER!

LDITCED NUMBER OF BRAND LOUDSPEAEERS. With Hert coramic magnet and plasticise cont Earround. 8 ohm impodance.
28.70. P. \& P. 85w. 88.70 and aize 8^{4} round $\$ 2 \cdot 60 \mathrm{P}$. $\& \mathrm{P} .35 \mathrm{p}$
$18 \mathrm{in}^{2}$ "RA" TWIN CONE LOUDSPEAKER
10 watta peak handling. 3,8 or 15 ohm, $22 \cdot 75, \mathrm{P}, \& \mathrm{P} .36 \mathrm{p}$. "POLY PLANAR", WAFER-TYPE, WIDE EAFGE ELECTROMTYAMIC SPEAKER
Size $11 \frac{1}{2} \times 14$ Hin $\times 1 \frac{7}{1}$ in deep. Weight $190 z$ Power handling 20w r.m.s. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with
or without baffle. Send S.A.E. for full details. Only or without baffle. Send S.A.E. for full details. Only

HI-FI STEREO HEADPHONES

Aduutable headbend with comfortable fiexlloam earnulis. Wired and dited with tandard stereo in jack plug. Frequency reaponse converted for mono. PRICE 8.40. P. \& P. 25 p

KEW FURTHER IMPROVED MODEL WITH HIGHER OUTPUT AND INCORPORATING HIGB QUALITY READY DRILLED PRINTED CIRCUIT BOARD WITE
COMPONENT IDRNTIFICATION CLEARLY COMPONENT IDENTIFICATION CLEARLY

A really firat-class $\mathrm{H}_{1}-\mathrm{Fl}$ Stereo Amplifier Kit. Uses 14 transistora including sillicon Transistore in the firat ve atages on each channel resulting in even lower nolse with Bass, Treble and two Volume Controle. Nuitable for use with Ceramic or Cryatal cartridges. (Very simple to modify to suit magnetic cartridge-Ingtructions ncluded). Ontput stage for sny speakers from 5 to 15 ohmas. Compact design, all parts supplied including drilled metal work, high quality ready drlled printed circuft board, amart bruehed anodised anuminum iront panel with matching knobs, wire, solder, lostructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output 14W ri.s. per channel into 5 ohms. Frequency response +3 dB $12-30,000 \mathrm{~Hz}$. Semsitivity better than 80 mV into $\frac{1 \mathrm{Ma}}{\mathrm{M}}$. Full power bandwidth $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Base boost approx, to $\pm 12 \mathrm{~dB}$, Treble cut approx. to -18 dB . Negative feedback 18 dB over main amp. Power requireOverall size 12^{*} wide $\times 8^{\prime \prime}$ deep $\times 2 I^{*}$ blgh.
Pulty detai
ree with lit 7 -page construction manual and parta lint tree with kit or gend 18p plus large B.A.E.
PRICES AMPLIFIRR KIT,
1.6. \& P. 25 p

POWER PACK KIT, 88.60 P. \& P. CABINET
$88-50$ P. $\& P^{35 p}$. (Pont liree if all unita purchased at asme time). Full after sales service. Also available ready built and tested,
Note: The above amplifier is suitablo for feeding two
mono somrces into inputs (e.g. mike, radio, twin record mono sources into imputs (e.g. mike, radio, iwin record factities for medium powered $H i-F i$ Discotheque use, tic.

3-VALVE AUDIO AMP. HA34 MK II Designed for Hi -Fi reproducoperation. Ready built on plated heavy gauge metal chassis, size 7 in in $w . x 4 \mathrm{in}$. d. x 4iln. h. Incorporate ECC83. EL84, EZ80 valves. Heavy duty, double wound mains former matehed for 3 ohm speaker. Bepurate volume control and now with improved wide range tone controls glving basa and treble lift and cut. Negatlve feedback line. Output $4 \frac{1}{t}$ watts. Front panel can be detached and lends extended for remote mountlog of controls. Complete with knobs, valves, etc.,
wired and tested for only E6.00. P. \& P. 45p. wired and teated for only 88.00 . P. \& P. 45p.
HEL "FOUR" AMPLIFIER EIT. Simllar In appearance to HA34 above but employs entirely different and advanced clrcuitry. Complete set of parta, etc. 8450,

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly 6nished monsural amplifie 14 watte from 2 EL84s in puah-pull Super reproduction of both music and speech, with negli
sible hum gible hum. Separal inputs for mike and and announcement
 match 3-160 apeaker aDd 2 independent volume controls, and separate bass and treble controle are provided giving good iff and cut. Valve ine-up 2 ELE4s, ECC83, EF86 an RZ80 rectiffer. SImple instruction booklet 15 p plus $8 . A . E$ (Free with parta). All parts rold separately. ONLY 89.90 . P. \& P.
P. 70 p .
 app, 54 in. wide. Our price $\$ 1.10$ gd. length. P. \& P. 16 p spp, 54 ln. wide, Our price $\$ 1.10$ yd. lengt
per $\overline{\mathrm{y}} \mathrm{d}$. (min. 1 yd.). S.A.E. for samples.

Open 9-5.30 Mon, to Fri.
9-5 Sat. Early closing Wed.
A few minures from South Wimbledon
Tube Stotion.

HARVERSON SURPLUS CO. LTD.
Dept. PE, 170 High St., Merton, London, S.W. 19 Te. 01-540 3995
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write c/early) PLRAgE FOTE: P. \& P. ORARGES QUOTED APPLY TO D.K. ONLY CRARGED EHTRA.

The BC184 transistors act as controlled current sources.
The multivibrator frequency is proportional to the current provided by the BC184 transistors which is proportional to the control voltage. Another voltage to frequency converter is shown in Fig. 21c.

SEMICONDUCTOR TESTING

Another field of application for constant current generators is the testing of many semiconductor devices. For instance, to find the voltage of a Zener diode without a constant current source, it is necessary to measure simultaneously the voltage across the diode and the current through it. The diode is connected to a power supply and the supply voltage is adjusted until the diode current reaches the desired value, when the Zener voltage is read on the voltmeter.

With a current source, the test procedure is simplified. The test circuit is given in Fig. 22. The current generator ensures that the correct current flows through the diode with no need for any adjustment; the Zener voltage is simply read on the meter.

It will be noticed that the circuit of the Zener tester is similar to that of the linear scale ohmmeter and, in fact, the ohmmeter can be used to test Zener diodes provided that the supply voltage of the meter is greater than the sum of the Zener voltage and the knee voltage of the current source.

If a variable current generator is used, the slope resistance of the Zener diode can be found by noting the change in Zener voltage as the current is varied. This circuit can also be used to determine the material from which a semiconductor diode is constructed.
The diode is connected to a current source providing between 1 and 10 mA using the circuit of Fig. 22. The diode should be forward biased. If the voltage across the diode is about 0.1 to 0.3 V at 1 mA or 0.2 to 0.4 V at 10 mA , the diode is made of germanium.
A silicon diode has a forward voltage of about 0.5 to 0.7 V at 1 mA and 0.6 to 0.8 V at 10 mA . The diode, of course, could be one of the junctions of a transistor.

BREAKDOWN VOLTAGES

With only slight alteration, this circuit can be used to measure the breakdown voltages $V_{\mathrm{B}(\mathrm{CEO})}, V_{\mathrm{B}(\mathrm{CBO})}$ and $V_{\mathrm{B}(\mathrm{EBO})}$ of transistors. For these measurements, a current of about $100 \mu \mathrm{~A}$ is required and the supply voltage must be higher than the expected breakdown voltage. Therefore the constant current generator itself must have a breakdown voltage greater than the supply voltage.
Fig. 23 shows a circuit using a cascode current source with a high breakdown voltage.
To measure $V_{\mathrm{B}(\mathrm{CEO})}$ of an $n p n$ transistor, the base is left unconnected, the collector is connected to terminal \mathbf{A} and the emitter is connected to terminal \mathbf{B}.
To measure $V_{\mathrm{B}(\mathrm{CBO})}$ the collector is connected to terminal A, the base is connected to terminal B and the emitter is not connected.
The $V_{\mathrm{B}(\mathrm{EBO})}$ is measured in the same way as $V_{\mathrm{B}(\mathrm{CBO})}$ except that the emitter and collector connections are reversed.
To test pnp transistors the connections to the tester are reversed. The meter requires an amplifier since the test current is so low. A simple emitter follower as shown in the circuit diagram is suitable in this application because the 0.5 V error it causes is unimportant.

MEASURING CURRENT GAIN

Transistor current gain $h_{\text {FE }}$ is the ratio of collector current to base current and is usually measured at a specified collector current. The simple method of measuring h_{FE} by applying a known base current and measuring the resulting collector current is unsatisfactory if transistors with a wide gain spread are being tested.

One solution is the use of a current generator to define the emitter current which is virtually the same as the collector current. The test circuit is shown in Fig. 24. The emitter current is set by the f.e.t. current source and the base current is measured by the microammeter. The h_{FE} can then be calculated from the equation:

$$
\begin{aligned}
h_{\mathrm{FE}} & =\frac{I_{\mathrm{E}}-I_{\mathrm{B}}}{I_{\mathrm{B}}} \\
& \approx \frac{I_{\mathrm{E}}}{I_{\mathrm{B}}}
\end{aligned}
$$

This test circuit has the additional advantage that the collector voltage V_{Cc} can be carried independently to study the effect on the operation of the transistor. If a variable current source is employed, the transistor gain at various currents can be determined.

The circuits described above have necessarily covered only some of the possible applications of constant current generators and many more uses will no doubt occur to the reader.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

SIMPLE TRANSISTOR TESTER

This CIRCUIT (Fig. 1) uses an ACl28 or similar ing an approximate value for the common emitter current gain of small signal transistors, and will also indicate whether the transistor under test is npn or pnp.

When the transistor under test is npn, and the top of the circuit is positive relative to the bottom, the transistor will conduct, its base current passing through R1. Part of its collector current flows through D2, the meter and the base emitter junction of TRI. TRI turns on and l.e.d. D3 lights, indicating npn. The meter is proportional to the gain of the transistor under lest.

When pmp devices are under test conduction occurs via the other half of the bridge causing l.e.d. D4 to light.

Potentiometer VR1 shunts some of the collector current preventing the base currents of TR1 or TR2 becoming excessive whilst the collector current of the transistor under test is kept reasonable.

If ME1 is a $200 \mu \mathrm{~A}$ type calibrated 0 to 500 then the value of the shunt should be a ninth of the entire meter and bridge resistance, the prototype using a 100!2 preset. A transistor of known gain is used to set VR1. TR1 and TR2 are any high gain silicon types. The transformer secondary should not have an output in excess of 2.24 volts.
A. D. Baily, Loughborough, Leics.

Fig. 1. Circuit diagram for'a simple transistor tester

THE switch circuit of Fig. 1 uses an n-channel transistor which should be fitted with a heatsink. The battery takes around 250 mA but varies with the secondary load.

The secondary voltage varies with the load (a load should be present with the battery connected to prevent heating of TR1).

The choice of transformer is not critical but it should have two l.t. windings with L1 at least twice the voltage of $\mathrm{L} 2 . \mathrm{Cl}$ is chosen to have a high reactance at the frequency of operation.
J. Hollis, Derby.

SWITCH-ON SURGE ELIMINATOR

ANUMBER of audio amplifiers suffer from switch-on current surge through the loudspeakers, particularly low impedance speakers.

The circuit of Fig. 1 overcomes the problem by connecting the speakers to the amplifier only after the initial current surge to the output capacitors has occurred.

When the amplifier is initially switched on by SI, Cl starts to-charge. At the same time the amplifier output capacitor C2 charges up through R2. When C1 reaches the potential required to operate the relay coil the contacts are switched over replacing the dummy load R2 with the loudspeaker.

The value of R1 is best found by experiment or can be calculated by dividing the supply voltage by the relay rated current and then subtracting the resistance of the relay coil.

Cl should be about. $2,500 \mu \mathrm{~F}$ so as to allow the relay contacts to remain open long enough for the output capacitors to become fully charged.

This is normally about 3 to 5 seconds. Only one channel is shown here but for stereo the relay should be two-pole and of course of an operating voltage less than the power supply rail voltage.
J. Farrimond, Wigan, Lancs.

ELECTRONIC SWITCH

THE switch circuit of Fig. I uses an n-channel f.e.t. (e.g. 2 N 5457 or MPF102, etc.) to present either a high or a low impedance earth return path to the signal to be switched.

The main advantage of such a system is that it removes the need for audio r.f. signals to be fed to switches, the signal switching can occur on a circuit board whilst the mechanical switch handles only a d.c. signal. This helps reduce hum pick-up and other undesirable strays problems.

As can be seen, in the "off" state the f.e.t. is biased to conduct heavily, thus effectively shorting the a.c. signal to earth. Switching the f.e.t. to the "on" state biases it into the non-conducting region thus presenting a high impedance down the earth path. This allows the a.c. signal to continue virtually unattenuated.
In fact a large number of these switches can be driven from one d.c. switch without risk of crosstalk, thus reducing the number of multiple-pole switches needed. In addition, the control voltage could be obtained from logic outputs.

Fig. 1. Switch circuit diagram
Switch performance can be improved if required by biasing the gate slightly positive, about IV, in the off position.

P-channel f.e.t.s may be used with suitable reversal of the gate voltage. The two capacitors act as d.c. blocks to prevent d.c. appearing at the f.e.t. The stage following the f.e.t. switch should have an impedance in excess of $50 \mathrm{k}!2$ to avoid excess loading. C. G. Louisson,

Imperial College, London.

NEON TESTER

Fig. 1. Circuit diagram for the neon tester
Component values, particularly that of R1 which may be as high as 200 M S2, are selected such that an acceptable neon causes the first timing network to reach its striking voltage prior to the second.

When this happens SCR1 will fire and the accept lamp will light up. Releasing the test switch resets the unit for the next test.
Should the neon be rejected through high leakage current, a cracked glass or too high a striking voltage, C3 will become charged more quickly so as to fire SCR2 and 3 and thus illuminate the reject lamp.

Diode D3 and resistor R6 discharge C3 at the end of a test so that the second timing circuit always

There are many simple timer circuits which make use of neon discharge devices in conjunction with an RC circuit. As is well known, long time delays require large C values and, of course, components with good insulation qualities since the ultimate time period length is usually set by the limitations caused by leakage currents.

The circuit of Fig. I is capable of testing neons to assess their suitability as time delay elements.

With the neon under test connected as shown, supply of power by depressing the push-to-test switch energises two timing circuits. The first is via R1 and C1 whilst the other is via R2, the accept lamp, R3 and C3.
starts from the same condition.
A. J. Woolward,
Roborough, Plymouth.
A. J. Woolward,
Roborough, Plymouth.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid atate timing and triggering circuit. EXPERIMENTERS' ECONOMY KIT $^{\prime}$ Speed adjustable 1 to 30 flash per sec. All lect instructions 6630 Post 30 p . Xen . INDUSTRIAL KIT
INDUSTRIAL KIT
deally suitable for schools, laboratories, etc Speed adjustable $1-80$ f.p.s.
Approx. $\frac{1}{t}$ output of $H y$-Lyght. Price $£ 12,00$ Post 50p.
HY-LYGHT STROBE MK III
or use in large rooms, halls and utilises a silica Light output greater than many (so called Joule) strobes. £12. Post 50p
THE 'SUPER' HY-LYGHT KIT Approx. four times the light output of our well proven Hy-Lyght strobe.

- Variable speed from 1-13 flash per sec.

Reaccor control circuit producing
ROBUST, FULLY VENTILATED METAL CASE. For Hy-Lyght Kitincluding reflector ©4.75. Post 25p.
Super Hy-Lyght case including refiector $\mathbf{4 7}$. Post 60p
tinch POLISHED REFLECTOR
deally suited for above Strobe kits. Price 55p M.f.g. to highest W.D. spec. Auto wound, and capped $-130-160-200-250$ at least 2 KVA . Can aiso be used as $230-240 \mathrm{~V}$ input, His 240 V from 115 V The ideal transformer for making up solid stare constant voltage unit by use of taps the following constant voltage unit, by use of taps the following
voltages may be obtained $30-40-50-70-90 \mathrm{~V}$ at 10 amps . Weight 401 b , length, 260 mm , height 190 mm . width 230 mm . In original maker's wooden case, fB. Carr. $\{1$
PARVALUX TYPE SDI9 230/250 VOLT A.C REVEASIBLE GEARED MOTORS 30 r.p.m. 40 lb. ins.
Position of drive spindle adjustable to 3 different angles. Ex-equip
ment. Tested and first-class running order.
A really powerful motor oHered powerful motor makers' price. 66.30 . Post 60 p

AEfA.C. MOTOR
Smoorh running. powerful
reversible motor $230 / 250 \mathrm{~V}$ a
50 cycle 50 HP RPM 900
50 cycle
0.25 A 63.50 posi SOp

METERS NEW! $2 \frac{1}{2}$ in Flush ron 20 or A.C. Amps 1, $5,10,15,20$,
15,20 . Post $15 p$. Voltmeter
bothtypes $£ 2.00$. Post $0-300$ V A.C. §2. Post 15p

Suitable for Motors. Drills etc., etc. 5 amp. 250 volt

UNISELECTOR SWITCHES

NEW 4 Bank 25 Way. A 소뱅․
 Way 24V die operation 69.50. Pose 40p

TRIACS

GENERALELECTRICPOWER-GLAS TRIACS 10 amp . Glass passivated plastic triac. Latest device from U.S.A. Long term reliability. Type SCl460 10 amp. 400 PIV. E1. Post 5 . Type SCi tion sheet.) Suitable Diac 18p.

All Mail Orders-Callers-Ample Parking
Dept. PE4, 57 BRIDGMAN ROAD
CHISWICK, LONDON W4 5BB Phone 01-995 1560

PROGRAMME TIMERS

$230 / 240 \mathrm{~V}$ a.c. 15 r.p.m. Motors.
Each cam operaces a c/o micro switch. Ideal for lighting effect
animated displays, etc. Ex
animated displays, etc. Ex
tested.
$\begin{array}{cc}4 \mathrm{cam} \text { model. } & \mathbf{6 2 . 5 0} \text { post } 30 \mathrm{p} . \\ 6 \mathrm{cam} \text { model. } & 63.25 \text { post } 30 \mathrm{p} . \\ 12 \mathrm{cam} \text { model. } & \mathbf{6 4 . 0 0} \text { post } 35 \mathrm{p} .\end{array}$
All prices are subject to
10\% VAT. (10p in the E)
To alt orders add 10% VAT to totar value of goods including carriage/ packaging.

SERVICE
TRADING CO

Superior Quality Precision Mad NEW POWER RHEOSTATS

New ceramic construction, vitreous

 enamel embedded winding, heav duty b rated. WATT E1.15. Post 100 fl IS. Post 1Op.50 WATT
WA/5/10/25/50/100/250/500//k/l.5k ohm © $1 \cdot 60$. Post 10 D 10 p. 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 k / 2 \cdot 5 k /$
 alack Silver, Skirted knob calibrated in Nos 22p each.

RELAYS Silemes pitsivi
Col.(1)
Col. (2)
Workin
d.c. volts
Col. 3

Contrasts
Col. (4)
Price
$\mathrm{HD}=$ Heavy duty - |ncl. Base All prices
incl. P. \& P

52	4-6	6M
58	5-9	$6 \mathrm{c} / \mathrm{o}$
150	4-9	$2 \mathrm{c} / 0$
185	8-12	6 M
308	$9-14$	4 clo
410	10-18	$4 \mathrm{c} / \mathrm{o}$
700	16-24	4M 2B
700	16-24	$4 \mathrm{c} / \mathrm{O}$
700	15-35	$2 \mathrm{c} / \mathrm{OHD}$
700	6-12	$1 \mathrm{c} / 0 \mathrm{HD}$
700	20-30	$6 \mathrm{c} / \mathrm{O}$
2,500	36-45	6M
2,400	30-48	4 clo
5,800	24-26	$2 \mathrm{c} / 0$
9.000	40-70	$2 \mathrm{c} / \mathrm{o}$
$15 k$	$85-110$	6M

80p
70p
60p
$75 p^{*}$
$70 p^{*}$
$60 p^{*}$
$80 p^{*}$
$70 p^{*}$
50p
80p
$60 p^{*}$
$60 p^{*}$
$60 p^{*}$
$60 p^{*}$
$60 p^{*}$

VOLTD.C. 1 make contacts 35p. Post 5 p
75p. Post 5 p
9 VOLT D.C. RELAY
3 c/0 5 amp contacts. 70 ohm coil. 75p. Post $5 p$. $3 \mathrm{c} / 05 \mathrm{amp}$ contacts. 75 p . Post 5 p .

CLARE-ELLIOTT TYPE RP764| G8

 10p post paid100 VOLT A.C.
2 clo
Post 10 p
24 VOLT A.C. Mfg by ITT. 2 h.d. c/o contacts. 55p. Post 5p
240 VOLT A.C. RELAY. Mrg. by ITT. 240 V A.C to illustration below). Price 75p. Post 5p
HEAVY OUTY A.C. SEALED RELAYS $230 / 240 \mathrm{~V} .2 \mathrm{clo}, 20 \mathrm{amp}$ contacts, 110
Volt. $2 \mathrm{c} / \mathrm{o} 20 \mathrm{amp}$ contacts. Either type fil.25. Post 10 p.

DRY REED RELAYS
Mfg. by ERG, 12 volt d.c. encapsulated Single c/o $65 p$, post paid. Two c/o 85 p, post paid 60p post paid. Other types available, state your requirement.
"HONEYWELL"P PUSH BUTTON PANEL MOUNTING MICRO SWITC Each bank comprises a clo rated at
loamps 240 V . A.C. Black knobl in. Fixing hole s in. ONE bank 30p; 50p. Quote for quantity.

VERY SPECIAL OFFER
Micro Switch. 5 amp c/o con-
tacts. M.f.g. bg. Honerwell tacts. M.f.g. bg Honerwell.
NEW. Twenty for El.50. Post

HONEYWELL' LEVER OPERATED
MICROSWITCH
10 amps 250 volt A.C, c/con-
tacts. In maker's carton.
PRICE: 10 for El 90 . Post

INSULATION TESTERS
 NEW!

Test construction, suitable for bench or
field work. constant speed clutch. Size L..8 in , W. 4 in , H. 6 in , weight 61 b . $1,000 \mathrm{~V}, 1,000 \mathrm{megohms}$. 634. Post $60 \mathrm{p} .500 \mathrm{~V}, 500 \mathrm{megohms}$ 628. Post 60 p

24 VOLT DC SOLENOIDS

Unit containing I heavy duty solenoid approx. 251b pull 1 inch travel. Two x approx. Ilb pull $\frac{1}{3}$ inch travel. I heavy duty single make relay. Price $£ 2 \cdot 50 \mathrm{~F}+\mathrm{p} 60 \mathrm{p}$ Absolute bargai

Personal collers only. Open Sot.
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Marshall's

A. Marshall \& Son(London) Limited

42 Cricklewood Broadway London NW2 3HD, Telephone 01-452 0161 \& 65 8ath Street Glasgow G2 2BX, Telephone 041-332 4133

Transistors

 \begin{tabular}{ll|ll|l}
$2 G 302$ \& 0.16 \& $2 N 3393$ \& 0.18 \& $3 N^{2} 200$

26303 \& 0.20 \& $2 N 3394$ \& 0.13 \& $3 N 201$

26303 \& 0.20 \& $2 N 3394$ \& 0.18 \& $3 N 201$

26306 \& 0.20 \& $2 N 3402$ \& 0.18 \& 40030
\end{tabular} $\begin{array}{llllll}2(1) 304 & 0.30 & 2 N 3402 & 0.18 & 40050 \\ 20304 & 0.80 & 2 \mathrm{~N} 3403 & 0.19 & 402 \mathrm{~J} 1\end{array}$

 \begin{tabular}{llll|l}
26351 \& 0.18 \& $2 N 3405$ \& 0.24 \& 40309

26310

$2 G 374$ \& 0.15 \& $2 N 3414$ \& 0.10 \& 40313

$2 G 4374$ \& 0.15 \& $2 N 3414$ \& 0.10 \& 40313

$2 N 174$ \& $1.4 U$ \& $2 N 3415$ \& 0.10 \& 40316

$2 N 174$ \& $1.4 U$ \& 2N341i \& 0.10 \& 40316

$2 N 4 U 4$ \& 0.43 \& $2 N 3416$ \& 0.15 \& 40318

 $\begin{array}{llllll}2 \mathrm{~N} 444 & 0.48 & 2 N 3416 & 0.18 & 40318 \\ 2 \mathrm{~N} 455 & 4.75 & 2 N 3417 & 0.91 & 40360\end{array}$ $\begin{array}{llllll}2 N 456 & \text { U.75 } & 2 N 3417 & 0.21 & 40360 \\ \text { iN4 } & \end{array}$

$2 N 456 A$ \& 0.75 \& $2 N 3570$ \& 1.25 \& 40361

$2 N 477 A$ \& 0.80 \& $2 N 3571$ \& $1.12 t$ \& 40362

$2 N 477 A$ \& 0.80 \& $2 N 3571$ \& 1.121 \& 40362

$1 N+491$ \& \hline-68 \& $2 N 3572$ \& 0.97 \& 40363

$2 N 696$ \& 0.15 \& $2 N 3702$ \& 0.11 \& 40389

$2 N 697$ \& 0.15 \& $2 N 3103$ \& 0.12 \& 40394

22^{2} \& 0.
\end{tabular}

 \begin{tabular}{ll|ll|l}
$2 N 706$ \& 0.18 \& $2 N 3704$ \& 0.12 \& 40406

$02 N 70.09$ \& 40407

N 706 A \& 0.18 \& 2 N 3707 \& 0.18 \& 40408

2 N 708 \& 0.145 \& 2 N 3708 \& 0.70 \& 40404

$2 N 3708$ \& 0.145 \& $2 N 3708$ \& 0.70 \& 40404

$2 N 709$ \& 0.38 \& $2 N 3709$ \& 0.11 \& 40410

$2 N 711$ \& 0.30 \& $2 N 3710$ \& 0.12 \& 40410

$2 N 718$ \& 0.21 \& $2 N 3711$ \& 0.11 \& 40414

$2 N$

$2 \mathrm{n}^{2} 718$ \& 0.21 \& 2 N 3711 \& 0.11 \& 40414

$2 \mathrm{~N}^{2} 18 \mathrm{~A}$ \& 0.49 \& 2 N 3712 \& 0.88 \& 40467

$2 N 718 A$ \& 0.49 \& $2 N 3712$ \& 0.98 \& 40467

$2 N 720$ \& 0.50 \& $2 N 3713$ \& 1.20 \& 40468 A

$2 N 3714$ \& 1.88 \& 40600

$2 N 914$ \& 0.28 \& $2 N 3715$ \& 1.50 \& 40601
\end{tabular}

 \begin{tabular}{ll|l|ll|l}
$2 N 918$ \& 0.47 \& $2 N 3773$ \& 2.65 \& 40603

$2 N 929$ \& 0.30 \& 2 N 3779 \& 3.16 \& 40604

\hline 2 N 930 \& 0.48 \& 2

2 N 930 \& $0-48$ \& 2 N 3790 \& $2 \cdot 40$ \& 40636
\end{tabular}

$2 N 1091$	0.32	$2 N 3792$	2.89	AC10
$2 N 1132$	0.54	2 N 3794	0.10	AC1

 \begin{tabular}{cc|cc|c}
2 N

21303 \& $0.18 \frac{1}{4}$ \& 2 N 3820 \& 0.38 \& $\mathrm{AC121}$

2 N 1304 \& 0.24 \& 2 N 3823 \& 1.42 \& AC 126

$2 N 1305$ \& 0.24 \& NN3824 \& 1.42 \& AC12

2N 1306 \& 0.31 \& $2 N 3826$ \& 0.23 \& AC12

$2 N 1307$ \& 0.22 \& $2 N 3854$ \& 0.18 \& AC141

$2 N 1308$ \& 0.25 \& $2 N 3854 A$ \& 0.16 \& AC1 $1:$
\end{tabular}

$1-56$	ASY 24
Y.49	ABY
1.14	ASY

 \begin{tabular}{l}
ABYO

ASY

BCLU

\hline

0.86 \& BCY 22

0.20 \& HCY

0.15 \& BCY 88

0.16 \& BCY

U.15 \& HCZ 10
\end{tabular} - mion óo

18 BFY11 $13 |$\begin{tabular}{l|l}
13 \& BFY

\hline 1 \& BFY

0.16 \& BCY8 \& $\mathbf{2} \cdot 42$ \& BFY18

0.15 \& BCZ \& 0.97 \& BFY19
\end{tabular}

 0.12 BD116 \begin{tabular}{l|ll|l}
0.50 \& BC11J \& 0.15 \& BD12

BC116 \& 0.15 \& BD12

0.98 \& BC1 \& 0.15 \& BD 123 \& 0

0.46 \& HC116A \& 0.18 \& BD 124 \& 0

0.48 \& BU117 \& 0.21 \& BD 131 \& 0
\end{tabular}

 | | 0.67 | BFY 51 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BC118 | 0.21 | BD131 | 0.40 | BFY |
| HC11 | 0.11 | BD13 | 0.60 | BY | 0.86

0.85
0.4
0.38
0.60
0.58

0.68 $\begin{array}{ll}08 & \text { B } \\ .44 & \text { B } \\ 0.33 & \text { H } \\ 0.60 & \text { B } \\ 0.58 & \\ 0.58 & \end{array}$ | BCL 26 | 0.15 | 0.20 |
| :--- | :--- | :--- |
| BDD138 | | |
| BC13: | 0 | BD |
| BC13 | 0.11 | BD | $\mathrm{BC13:}$

BC 134
BC 13. BC13
BC13
BC 2.25
3.55
0.69
0.44

$$
\begin{aligned}
& 0.08 \\
& 0.87 \\
& 0.46 \\
& 0.68
\end{aligned}
$$

0.46
0.68
0.56
1.10

$$
\begin{aligned}
& 0.70 \\
& 0.25 \\
& 0.16 \\
& 0.20 \\
& 0.13
\end{aligned}
$$

$$
\begin{aligned}
& 0.20 \\
& 0.13 \\
& 0.25 \\
& 0.25
\end{aligned}
$$

 \begin{tabular}{ll|ll|l}
$2 N 2192 A$ \& 0.40 \& $2 N 3903$ \& 0.32 \& ACY22

ACY 28

$2 N 2913$ \& 0.40 \& $2 N 3904$ \& 0.27 \& ACY 30

$2 N 2913$ \& 0.40 \& $2 N 3904$ \& 0.27 \& ACY

ACY 30

$2 N 2193 A$ \& 0.81 \& $2 N 390 \overline{0}$ \& 0.24 \& ACY 39 \& 0

$2 N 2194$ \& 0.78 \& $2 N 3906$ \& 0.27 \& ACY 40
\end{tabular}

?

 \begin{tabular}{ll|ll|ll}
N $2219 . A$ \& 0.86 \& $2 N 40.59$ \& 0.09 \& AD 142 \& 0

2N2220 \& 0.48 \& $2 N 4060$ \& 0.11 \& AD143 \& 0

$2 N 22221$ \& 0.41 \& $2 N 4060$ \& 0.11 \& AD 143 \& 0.

2 N 4061 \& 0.11 \& AD 249 V \& 0.6

2 N 2221 A \& 0.88 \& 2 N 4062 \& 0.11 \& AD 150 \& 0.69

$2 N 2222$ \& 0.80 \& $2 N 406 \%$ \& 0.11 \& AD 150 \& 0

$2 N 4302$ \& 0.25 \& AD161 \& 0.

$2 N 2368$ \& 0.31 \& $2 N 4303$ \& 0.47 \& AD162

$2 N 4916$ \& 0.11 \& AD161,
\end{tabular}

 | $2 N 2646$ | $0-77$ | $2 N 4919$ | 0.84 | AF114 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \mathrm{~N}^{2} 2647$ | 1.12 | $2 N 4920$ | 0.99 | AF11 |

 | 2 N 2713 | 0.17 | 2 N 4922 |
| :--- | :--- | :--- | :--- |
| 2 N 492 | | |

 \begin{tabular}{ll|l}
$2 N 2907$ \& 0.38 \& 2 N 5192

2 N 0192

\hline $2 N 2907 A$ \& 0.41 \& $2 N 5195$

2N 2923

\hline
\end{tabular}

 \begin{tabular}{ll|l|l}
$2 N 2925$ \& 0.17 \& $2 N 5458$ \& 0

$2 N 0459$ \& 0

$2 N 2928$ \& \& $3 N 128$

$2 N$ \& 0.7
\end{tabular}

 | | 0.11 | NN 141 | 0.08 | AF2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2N $30 \overline{3} 3$ | 0.82 | 3N 142 | 0.58 | AF28 |

 \begin{tabular}{ll|ll|l}
$2 N 3390$ \& 0.28 \& $3 N 152$ \& 0.82 \& AL103

2N 153 \& 0.81 \& ASY2

2 N 3391 \& 0.28 \& 3 Nl 14 \& 0.81 \& $\mathbf{0 . 8 4}$ \& ASY26

\hline
\end{tabular}

The largest selection

 BRAND NEW FULLY GUARANTEED DEVICES

LINEAR INTEGRATED

CIRCUITS

Type 72702 72

CIRCUITS			
Type No.	-	29	$100+$
72702	50 D	48p	45p
72704	35 D	33p	30p
-2710	450	43p	40p
72741	40p	38p	35 p
52741 C	45D	43D	40D
$72741 P$	38D	36p	34p
72748P	38 p	36D	34]
*L2016	50p	45D	401
SLT016	50D	45D	40p
sL7026	50D	45p	40D
TAA263	80 p	70p	60D
TAA:93	\$1.00	95 p	90p
TAABün	¢1.85	£1.80	¢1.70
$\mu .4703{ }^{\circ}$	28p	26p	240
$\mu \mathrm{A} 709{ }^{\circ}$	35p	33 p	30 p
MA711	45D	430	40]
2N414	£1.20		

NUMERICAL INDICATOR TUBES		
3015 F	Minitron \% Segment	
	Indicator	1.50
MAN 3M	LE.D. 7 SEGMENT DIBPLAY 0.127in	
	High Characters.	1.80
CDi6	Side Viewing "NIXIE	
	TYPE" Tube $16 \mathrm{~m} / \mathrm{m}$	1.87
GR116	Sule Viewing "NIXIE	
	TYPE' Tube $13 \mathrm{~m} / \mathrm{m}$.	1.70

*Av 3M Indicator
*Av 3M Indicator
DIBPLAY 0.127
Side Viewing "NIXIE

$\begin{array}{lrl}\text { Type } & \text { Price } & \text { Type } \\ \text { BC145 } & 50 & \text { MD115 } \\ \text { BC147 } & 11 & \text { BD116 }\end{array}$ $\xrightarrow{7}+$
 88
88

DTL 930 SERIES

LOGIC I.C

BI-P
aOA
Type
74 Series T.T.L. I.C's

400
401
402
7403
7404
7400
7406
7407
7408
7409
7410
 RLL
Quantitie:
25
2.
0.17
0.17
0.17
0.17
0.17
0.17
0.34
0.34
0.18
0.19
0.17
0.27
0.84
0.31
0.44
0.44
0.17
0.53
0.63
0.53
0.46
0.46
0.53
0.17
0.48
0.73
0.68
0.68
0.17
0.71
0.71
1.15
1.15
1.95
1.16
1.07
1.07
0.17

Type \quad Pr
$2 N 130 \overline{1}$
$2 N 1308$

$\begin{array}{cc}\text { p } & \begin{array}{c}\text { Type } \\ \text { 2N39 }\end{array}\end{array}$ Type
2N3906
rice p
30
18 ω_{0}^{∞}

 TIS
UT4
ZN UT46
ZN414
2G301

$2 G 30$
$2 G 30$
$2 G 30$
$2 G 3$
2G30
2G308
2
2
2 G 339
20339
$2 \mathrm{G34}$
2 G 345
2 G 3
2937113
29373
2 G 373
20374
26377
$2 \mathrm{G37}$
$2 \mathrm{G381}$
2 G 388

2 G 41
2 N 388
2 N 38

2 N 404
2 N 404
2N5
2N598
2N598
2N 2 N
$2 N 698$
$2 N 699$
$2 N 706$
2N706
2N706
2N708
2N711
$2 N 718$
$2 N 718$
$2 N 781$
2N718
$2 N 727$
$2 N 727$
2N74
2N914
$2 N 918$
2N92
2N93
2N11
$2 N 113$
$2 N 130$
2N1303
2N 1304
2N 1305
2N 1306

2N1307	88
$2 \mathrm{~N}^{2} 308$	28
2N1309	28
2N1613	28
2N1711	22
2 N 1889	35
2N1890	50
2N 1893	41
2N2147	79
2N2148	88
2N2160	88
2N2192	38
2N2193	89
9N2194	39
2 N 2217	24
2 N 2218	28
2N2218	28
2N2220	24
2N2221	22
2N2222	82
2N2368	19
2N22369	16
2N2369A	16
2N2411	27
2N2412	27
2N2646	52
2N2711	23
2N2712	23
2N2714	23
2N2904	19
2N2904A	23
2N2905	28
2N2905A	88
2N2906	17
2N290fA	20
2N2907	22
2N2907A	24
2N2923	16
2N2924	16
2N2925	18
2N2926(G)	14
2N2926(Y)	12
N2928 ${ }^{\text {O }}$	11

$2 N 30$ 2 N 30
2 N 30
2 N 33 B 2N33
2N 23
2N33 2N3 $2 N 339$
2N339
2N340 $2 N 339$
$2 N 340$
$2 N 340$
$2 N 340$ 2N340
2N 340
2N 340
2 N 341 2 N 340
2 N 341
2 N 34 2 N 34
2 N 34
2 N 34
2 N 34 2N341
2N341
2N352 2N35
2N3R11
2N36 2 N 36
2 N 36
2 N 3 2N36 2N370
2N37
2N370 2N 37
2N 27
2 N 3 2N370
2N37
2N37 2N3707 2N 370
2N 371
2N 371 2N3711
2N3819 2N3820 2 N 3821
2 N 3823
2 N 3903 2N3904 DIODES AND RECTIFIERS

A 1119	0.09	BY114	0.13	BYZ18	0.39
AA120	0.09	[BY 126	0.16	BYZ19	$0 \cdot 31$
AA129	0.08	BY127	0.17	CG63	
AAY 30	0.10	[3Y128	0.17	(0A91 Eq.)	
AAZ13	0.11	HY130	0.18		0.06
BA100	0.11	BY133	0.83	CG651-	
BA11f	0.23	13Y164	0.55	(0A>0-OA79)	
BA129	0.24	$\mathrm{BIX}_{5} \mathrm{C}$	0		0.07
IBA149	0.16		0.48	OAS	0.31
BA154	0.13	EYZ10	0.30	OAüg L	$0 \cdot 23$
BA155	0.16	BYZ11	0.33	OA10	0.89
BA156	0.15	${ }^{\text {B }} \mathrm{YZ} 12$	0.33	0 A 47	0.08
BY100	0.17	EYZ13	0.88	OATO	0.08
BY101	0.13	BYZ16	0.44	0 079	0.08
BY105	0.19	BYZ17	0.89	0.881	0.08

VOLTAGE REGULATORS
TO3 Plastic 1.5 Amps
UA7805. 5 V (Equiv

R.T.L. LOGIC I.C's				DUAL-In-LINE SOCKETS 14 \& 16 Lead Sockets for use with DUAL-IN-LINE I.C's. TWO Ranges PROFESSIONAL \& NEW LOW COST.				
	1-24	25-99	100 up	PROF,	TYPENo.	1.24	5.991	up
UL90n	38p	36p	29p	TSO14	14 pin type	83p	30 p	27 p
L90.	-8p	3 p	28	T8016	16 pin type	38p	$35 p$	320
UL914	20p	36p	28p	BPA14	14 pin type	16p	14p	12D
UL023	55p	51p	490	BP916	16 pin type	17p	16p	130

antition

$2 p$
70
.70
.00
.10
.75
.86
1.85
1.80
1.80
1.90
8.86
8.85
8.00
2.00
3.00
2.80
1.65
1.65
1.85
1.80
4.00
1.75
8.00
2.00
2.00
8.00
2.00
2.75
1.80
1.86
1.85
4.50
4.50

avallable for above series os
ICa in book tormi. Price 86 p .

-the lowest prices!

BRAN	NEW	TE
GERM. TR		
Coded and Guaranteed		
Pak No.		EQ
T 1	$2 \mathrm{C3FI} 3$	0 C 71
T2	D1374	OC7
T3 4	D1216	$0 \mathrm{C81}$
T4	2G3817	$0 \mathrm{C81}$
T5 8 !	$2 \mathrm{Ca382T}$	OC8 ${ }^{2}$
T6 8	$2 \mathrm{C344B}$	0C44
T7 82	2G345B	OC45
T8	20378	0 C 78
$\mathrm{T}_{5} 8$	2G399A	2N130
T10 8	2G417	AF11\%
	p eac	

ND120 NIXIE DRIVER

 TRANSISTORSuitable replacement for

ISX21, C407, 2N1893 20 vel | 0.18 | 0.17 | $100+$ |
| :---: | :---: | :---: |

E. Orgen Metal Eqve. ZTX 300 6D each. Any Quantify

GP100 T08 METAL CABE GERMANIDM C. $=10$ amps. Ptot $=$ 30 W . hfe $=30-170$. Replaces the majority of rermanium power tran. aistors in the OC, AD and NKT range, ${ }_{25} 100+$

0.48	0.44	0.40

PRE SILICON

 CA8E BILICON\qquad C. $=15$ amps. Ptot $=$ $16 \mathrm{~W} . \mathrm{hre}=20.100 \mathrm{fT}=$ 1 MHz . Suitable replace. ment for 2N305
BDY1J or BDY20. $\begin{array}{ccc} \\ 0.55 & 0.58 & 100+ \\ & & 0.51\end{array}$

NEW 8th EDITION 250 page
TRANBISTOR EQUIVALENTS BOOK. A com. plete cross reference and European. American and Japanese Transistora Excluaive to BI-PAK E1.85 each

A LARGE RANGE OF

 TECHNICAL AND DATA BOOKS ARE NOW AVND FOR TPEE LOCKUT46 UNIJUNCTION TRANSISTORS
Direet replacement ior
TIS 43 rand BEN 3000 Direct replacement ior
TIA 43 rand BEN 3000

QUALITY TESTED SEMICONDUOTORS Pal No.

8E
H-
-18
20 Red sput Lrausistors pop
20 Red spet trawsistorn phep
16 White spot K. Rransiatois pup

蔓品 OC 77 type transistorg

Matched transistora OC4 $4 / 45 / 81 / 81$ OC75 transiators
OC72 tranaigtors
4 ACl28 transistors pnp high gain AC126 transistors prp
7 OCR1 type transistors
Q10 7 OC71 type transistors
Q11 2 ACl27/128 Complementary pains pnpinpn
Fllo trpe
Q12 3 Arlif type transistors
Q13 ${ }^{3}$ AF117 type transistors
2 F 292 s Sil. Epoxy transisto
mixed colours
GET880 low

$\begin{array}{cc}\text { Q19 } & 3 \mathrm{MADT} \\ 020 & 121 .\end{array}$

8IL. G.P.	DIODES	\&p
300nil	300	0.55
40PIV(Min.)	100	1.65
Sub-Min.	500	5.50
Full Tester	1,000	9.90
Ideal for Organ Huilders.		

R2400 TO3 NPN
SILICON HIGH VOLTAGE
100V.I.C. $=6$ ceo $=$
amps. Ptot $=30 \mathrm{~W}, \mathrm{hfe}=\mathrm{tyD} .20$
$\mathrm{~T}=5 \mathrm{MHz}$ $1 \mathrm{~T}=5 \mathrm{MHz}$

0.65	0.50	0.44
ADI $61 / 162$		

M/P COMP GERM. TRANG. OUR LOW:
EST PRICE OF 75p PER PAIR.
LOOK
FOR OUR
AUDIO AND
ELECTRONIG
COMPONENTS ADVERTISEMENTS PRACTICAL WIRELESS EVERYDAY ELECTRONICS AND RADIO CONSTRUCTOR Q20 4 OC44 Germaniun transiators A.F. 0.55 Q21 4 AC127 npn Germaninm trantintors 0.55 Q23 10 OA202 Silicon diodes sub-min. $\quad 0.55$

 10 A 600 IJ siljcon rectifiers
18425 R Q23 2 silicon power fectifiers BYZ13 0.55
0.55
 Q30 i sllicion swjtch transistors 2 NTOt 0.55
0.55 Q31 6 Shlicon switch transistors $2 \mathrm{NTO8}$,
Q32
3 pnp Silicontransistore $2 \times 2 N 1131$, Q33 3 Siliconnontra

0.55

$\begin{array}{llll}\text { Q33 } & 3 & \text { Silicon npn transistors 2N17 } & 0.55 \\ \text { Q34 } & 7 & \text { Silicon } n m \text { transigtors } & 0.55\end{array}$ Q35 $\quad 3$ Silicon Mz (cote P397)

Que 3ilicon prop

ELECTRONIC SLIDE-RULE
The MK Slide Rule, designed to simplify Electronic calculations features the foltowing scales: Calculation of L, C Cand to of Tuned Circuita Reactance and Sell Inductance. Area of Circles Volume of Cylinders. Resistance of Condactors. Welght of Conductors. Decibel Calcuiations Angle Frunctions, Natural Logs an! "e"Frunctions Multiplication and Division. Syuaring. Cubing
and Square Roots. Conversion of kW and Ip. and Square Roots. Cotversion of $k W$ and LIp. A must for every electronc engineer and enthusiinstructions.
case and

NEW BI-PAK UNTESTED

 SEMICONDUCTORSHatisfaction GUARANTEED in Every Pak, or money back Pay No.

20 (ilass Sub-Min, (ieneral P'urpose Germanium Diode

60 Mixed Germanium Transistors AF/PF
Gemmaniun (iold Itonded Sub. Min like OA5, OAt? 40 (ie manium Transistors like OC\&I. ACI28
$5 \quad 60$ gotm. Sub- Min. Silicon Biodes

9ja. थn | 0.5 |
| :--- |
| 0.55 |
| 0.56 |
| 0.55 |

 16 Sil. Rectiflers TOP-HAT 7LOMA VLTG. RANGF, up to 10000.58
 20 Mixed Voltages. 1 Watt Zener Diodes
U10 20 BA $\bar{Y} 0$ charge storage Diotes DO. $\overline{7}$ (slass

U12 12 Silicon Rectitiers Epoxy $\overline{500 m A}$ up to 800 PIV $\mathbf{0 . 5 5}$

150 Mixed Silicon and iermaninn biodes
25 NPN Sil. Planar Trans. TO-jlike BFYos, ongot
$10 \overline{3}$ Amp Silicon Rectiflers Stud Type untoj0001¹ $\quad \mathbf{0 . 5 5}$

118 - 80 Amp Silicon hectifiers BYZ13 Type up to 600 PIV $\overline{U 19}$ 25 silicon NPN Transistors like 1SCL08
1215 A Anp Silicon Rectiflers Top Hat up to $\overline{1000 \mathrm{PI}}$ -
 30 MADT'slike Milz Serles PNP Transistors $\quad \mathbf{0 . 6 5}$ U24 20 Germanimm Amp Rectifler (IJM Series up to 300 PIV. 0.55
 U26 30 Fast Switching Silicon Dindes like INQ14 Micro-Min. U29 101 Amp BCR's TO-5 can, up to 600 PIV C $\bar{n} 91 / 25-600$ 15 Plastlo Silicon Planar Trans NPN-2N292e U31 20 Bificon Planar Plastic NPN Trans. Low Noise Amp 2N3707 $\quad 0.55$ $2 \overline{5}$ Zener Diodes $400 \mathrm{~mW} \mathrm{D} 0-7$ case $3-18$ volts mixed $\quad 0.55$
15 Plastic Case 1 Imp Silicon Rectifiera IN 4000 Series
30 Silicon PNP Alloy Trans. TO-5 BCY26.29302/4
U35 $2 \overline{0}$ Silicon Planar Transistors P NP TO-18 2N2406

U38 20 Fast 8whtching Silicon Trans. NPN 100MHz $\overline{2 N 30} 17 \quad 0.55$

04010 Dual Transistors 6 lead To.5 2N2060 - 0.68

U43 25 Sil. Trans. Plastic TO. 18 A. F. BC113/114 \qquad

- 3A SCR. TO66 up to t00 PIV

Code Nus. mentioned above are given as a guide to the type of device in
the pak. The derices thenselves are normally tnmarked

INTEGRATED CIRCUIT PAKS

Manufacturers " "Fall Onta" which include Functional and Part. Functional Unite
These are classed as out-ot-spec' from the maker's
are ideal lor learning about I.C.'p and experimental wo

Pak No. Con	Price	Pek No,		
$1 \mathrm{COO}=$	0.65	UIC	$=5 \times 7446$	
$1 \mathrm{COL}=12 \times 740$	0.55	Ule48	¢ 7448	
$\mathrm{IC} 02=12 \times 740$	0.55	U1	50	
UIC03 $=12 \times 7403$	0.55			
$1 \mathrm{ICO4}=12 \times 740$	0.55			
$1 \mathrm{CO}=12 \times 740$	0.55	53	12×745	
U1C06 $=8 \times 7406$	0.56	${ }^{\text {¢ }}$	12×74	
UIC07 $=8 \times 7407$	0.55	U 1 C60 $=$	$=12 \times 746$	
UIC10 $=12 \times 7410$	0.55	UIC:0	$=8 \times 7470$	
UIC20 $=12 \times 7420$	0.85	UIC72	$=8 \times 7472$	
UIC30 $=12 \times 7430$	0.65	U IC73	$=8 \times 7473$	
C40 $=12 \times 7440$	0.65	U	7474	
C41 $=5 \times 7441$	0.85	IC76	$\times 7476$	
UIC42 $=5 \times 7442$	0.86	UIC80 $=$	$=5 \times 7480$	
$\mathrm{C} 43=5 \times 7443$	0.85	UIC81 $=$	5×7481	
C44 $=5 \times 7444$	0.56	C82	7482	
UIC45 $=5 \times 7445$	0.55	UIC83	5×7483	
Paks				
2 Amp. BRIDGE RECTs. ${ }^{\text {d }}$ (1689 NPA SILICON				
50 v RMS 3	35 p each	DUAL TRANSISTOR	TRANSISTOR	
100 v RMS 4	40p	(Similar to 2N2060)		
$400 \sim$ RMS 8	800	1	25100	00+
ze $18 \mathrm{~mm} \times$			0.8	

Pak No. Contenta	Price	POST OFFICE		
UIC86 $=5 \times 7486$	0.55	TELEPHONE		
UIC90 $=5 \times 7490$	0.55	DIALS	80p	each
UIC91 $=5 \times 7491$	0.55			

$\begin{aligned} & \text { UIC92 }=5 \times 7491 \\ &=5742\end{aligned}$

 UIC92 $=5 \times 7492$UIC93 $=5 \times 749$ UIC 93
$\mathrm{UIC}=54$
$=5 \times 7494$ UIC95 $=5 \times 7495$ UIC96 $=5 \times 7496$ $\begin{array}{ll}\text { UIC100 }=5 \times 74100 & 0.55 \\ \text { UIC101 }=5 \times 74121 & 0.55\end{array}$ $\begin{array}{ll}\text { UIC121 }=5 \times 74121 & 0.55 \\ \text { UIC1 } & 0.55\end{array}$ VIC141 $=5 \times 74141 \quad 0.5$ $\begin{array}{ll}\mathrm{UIC154}=5 \times 74154 & 0.85 \\ \text { UIC103 }\end{array}$ UIC193 $=5 \times 74193$
UIC199 $=5 \times 74199$
0.85 UIC199 $=5 \times 74198$
UICXI $=25$ Assorted $\begin{array}{cc}\text { UICXI }=25 & \text { Assorted } \\ 74 \text { 's } \\ & 1.65\end{array}$

213355

125 WATT SI POWER NPN 56, EACH
full range of JNEW LOW PRICED TESTED S.C.R.'S
ZENER DIODES VOLTAGE RANGE 2-33V 400 mV (DO. 7 Case) 12p es. 1yw (Top-

NEW LOW PRICED TESTED S.C.R.'S						
PIV	50	100	200	400	600	800
	ED	£p	20	\& p	£p	
14 TOE	0.22	0.27	0.27	0.32	0.42	0.63
3A TO66	0.27	0.27	0.32	0.48	0.52	0.70
3A T066	0.38	0.52	0.54	0.58	0.75	0.88
5 A T064	0.38	0.52	0.64	0.82	0.75	0.88
7 A TO48	0.52	0.55	0.82	0.67	0.84	0.98
10 A TO48	0.55	0.63	0.87	0.88	1.07	$1 \cdot 32$
16.4 TO48	0.58	0.62	0.67	0.77	0.97	1.60
30A TO48	1.27	1.54	1.76	1.83		4.40
POST OFFICE		F.E.T.'S				
		$\begin{aligned} & 2 \mathrm{~N} 3819 \\ & 2 \mathrm{~N} 3820 \end{aligned}$		31p	2N5458	36 p
TELEPHONE				D 2	2N5459	440
DIALS 60p	eac	2N3821 300 B			BFW 10 MPF105	
		6N3823 810				410
CADMIUM CELLS ORP1248p			FREE			
				hoice	Pak of	
				value	ed 44 or	

SIL. RECTS. TESTED

PIV 300ma							
	D07	8016	Plas	c SO	8010	\$010	48
50	0.05	0.06	0.05	0.08	0.15	0.21	0.60
100	0.05	0.07	0.06	0.10	0.17	0.23	0.75
200	0.08	$0 \cdot 10$	0.07	0.12	0.22	0.25	1.00
400	0.08	0.15	0.08	0.15	0.30	0.88	1.85
500	0.09	0.17	0.10	0.18	0.36	0.45	1.00
800	0.12	0.10	0.11	0.20	0.88	0.65	8.10
1000	0.14	0.30	0.12	0.25	0.48	0.65	8.80
1200		0.35		0.30	0.58	0.75	8.00
D1ACS				TRIACS			
FOR C'SE WITH triacs. BR100(D32) 41p each							
					40	Ey	sp
10 amp POTTED				100V	38	58	88
BRIDGE RECTIFIER on heat sink.				200 V	55	68	88
100PIV. 99p each				400 V	77	88	1.81

BIP 19/20 TOA NPN PLAgTIC 8ILICON
ebo $=100 \mathrm{~V}$. hfe $=$ typ. $100=50 \mathrm{~T}=3 \mathrm{MH}$.
BIP 19/80 Matched P BIP 19/80 Matched Pair
1
$25 \quad 100+$ $\begin{array}{lr}1 & 25 \\ 0.66 & 0.61\end{array}$ 1 0.68 0.65

P.E. RONDO

FULL SPECIFICATION KITS

	solder included. TOp quality components.
* CBs-80 DECODER Ef. Post Free -	
* READY BuILT E11. Poss Free + §1 10 V	
$\begin{aligned} & \text { * PRE-AMP BOARD, COMPLETE E3. Post Free + } \\ & \text { 30p VAT. } \end{aligned}$	
MABTER VOLTOME/BAL. BD. [8.50. Post Free + 85p VAT.	
* POWER AMP BOARD HEATBINK. Two reqd for Rondo $87 \cdot 50$. Poat Free +75 p VAT.	
* POWER SUPPLY BOARD E5. Post Free + 50p Vat	
* MAIN SMOOTHING CAPS \&1-50 per pair. Po*t Free + 15p VAT.	
* MAINs TRANSFORMER C8.25. Post Free +62 p VAT.	
* PUNCHED CHAssis c3.25. Post Free + 32p Vat	
* HONDO CAsE E1-75. Post Free + 17p VAT.	
* HARDWARE PACK E2. Poat Free + 20p VAT	
	ONTROL SECTION FASCIA es.50. Post 35p VAT
STEREO DECODER KIT $\mathbf{5 5} \cdot 95$. Post Free +59 p VAT.	
* STEREO DECODER BUILT AND TESTED $\mathbf{~ 5 6 . 9 5 .}$ Poat Free + 69p Vat	
	G101/2 TURNTABLE Les: s: §1
DEUTSCHE ELAC CARTRIDGE ST8 144/17 56 -90. Post Free - 69p VAT.	
- READY BUILT LOUDAPEAKER8 (Teak or white 'veneer) per pair £42. Post $\mathrm{E} 2+\mathrm{£} 4$ 40 VAT.	
COMPLETE SPEAKER KIT WITH DRIVE UNITS CROS8 DVEA WADDING. ETC. per pair E35-50. Pot E 2 + E 375 Vat	
- complete speaker kit with drive units CROSS OVER WADDING. ETC. per palr EEZ. Pogt f4 + 56 60 Vat	
- bass orive units i2 per cabinet) $\mathbf{~} 4.25$ each Pot Fre + 42p VAT	
* TWEETERS (2 per cabinet) t1-20 each. Post Free - 12p VAT.	
Detala of ancilliary parts and author a note available soon 8PECIAL ANNOUNCEMENTI ADVANCE ELECTRONICS LTD. have just appointed us distributors for thatr tamousfcalculators. Details S.A.E. please. TRADE GLADLY SUPPLIED	
P.0. B0X No. 18, HARLOW, ESSEX CM18 6SH	
Telephone Harlow (0279) 25457	

ORDER-PLEASE SEND

```
CBS-SO DEC BUIL
PRE-AMP
MASTER VOL
POWER AMPS
POWER SUPPLY
    TRANSFORME
        TRONDO CASE
    HAROWARE
        CONTPOL FASCIA
        STEREO DECODER KIT
    STEREO DECOOER BUH
    BUILT SPEAKER Toak!
        BUILT SPEAKER White
    BASS DRIVE UNITS
    COMPLETE SPEAKER KIT White:
        COMPLETE SPEAKEA KIT TOAK।
        GOLDRING G101.TURNTABLE LEE
    ELAC 144 CARTRIDGE
        Notes
Plesse insert quantly in open brackats
    ENCLOSED &
    NAME
        CHEQUE/P.O
```

ADDRESS

[^2]

SWANLEY IC TOMORROW
The world's most powerful ic amplifier Similar to the IC12 but rated at 10W r.m.s. power. Supplied with data but no printed circuit $82 \cdot 60$ (47p)

DE LUXE KIT FOR THE IC12

Includes all parts for the printed circuit and volume bass and treble controls needed to complete the mono version f1. 5 2.3.50 (46p)

IC12 POWER KIT
Supplies 28VO 5A £2.47 (50p)
LOUDSPEAKERS FOR THE IC12
$\sin 8$ ohm $\mathrm{E1} \cdot 10(27 \mathrm{p})$. Sin $\times \sin 8$ ohm $£ 1.55(37 \mathrm{p})$
PREANP KITS FOR THE IC12
Type 1 for magnetic pickups, mics and tuners Mono model $£ 1 \cdot 30(24 \mathrm{p})$ Stereo model $\mathbf{C 2} \cdot 30$ (34 p). Type 2 for ceramic or crystal pickups Mono 80p (17p) Sterec SEND SAE

IC RADIO CHIP TBAB51
The world's most advanced IC radio chip. Contains RF Amp. osciliator. mixer.
circuitry And voltage stabilizer. With data $\{2 \cdot 10$ (32 p). Send S.A E for tree leaflet. A kit of resistors. capacitors and If filters is available to go with the chip for £1.75 (29p)

$$
\begin{aligned}
& \text { 8-DECS AND T-DECS } \\
& \text { S-DEC } 51-80 \text { (31p) } \\
& \text { T-DEC } £ 3.63 \text { (47p) } \\
& \begin{array}{l}
\text { N-DEC A E E6.99 (81D } \\
\mu \text {-DEC }
\end{array} \\
& \text { ic carriers }
\end{aligned}
$$

ZIPPY CABINETS
Attractive plastic instrument cases in 4 sizes P_{1} $80 \times 50 \times 30 \mathrm{~mm} 00 \mathrm{p}(25 \mathrm{p}) . \mathrm{P} 215 \times 65 \times 40 \mathrm{~mm} 87 \mathrm{p}(30 \mathrm{p})$ 51.50 (45p).

ECONOMICAL OUADRAPHONICS ES -95 (£1-30) Complete self-contained matrix quadraphonic synthe sizer in attractive cabinet. Just feed output of ordinary stereo hi-fi into it and hook up to 4 speakers to obtain the latest experience in sound

SWANLEY ELECTRONICS

P.O. Box 68, Swanley, Kent, BR8 BTQ

Please add the sum shown in brackets after the price to cover the coat of post and V.A.T. Official credit overseas orders which are most welcome.

complete down to measured leads-requires no soldering-ready to assemble

Project 605

No other firm has the same experience and manufacturing facilities as Sinclair for the design and production of modules for àudio systems. That is why they were able to introduce Project 605 a complete pack produced specially for those wishing to assemble a true high fidelity stereo system at an attractively economical price. In the Project 605 you will find two Sinclair power amplifier modules capable of delivering together 30 watts RMS into 4 ohm loud. speakers, a combined control/pre-amp unit, an A.C. mains power supply unit and the Masterlink unit to which inward and outward connections are made Wires, colour-coded and tagged with press-on clips make soldering unnecessary. Assembly is straightforward and very easy when you follow the carefully prepared instructions manual. Provision is made for connecting a stereo or mono radio tuner.

Specifications

Output - 30 watts music power (10 watts per
channel R.M.S. into 3Ω).
Inputs - Mag. P.U. - 3mV. R.I.A.A. correct. Ceramic pick-up, 50 mV . Radio - 50 to 150 mV . Aux. adjustable between 3 mV , and 3 V .
Signal to noise ratio - Better than 70dB.
Disfortion - Better than 0.2\% under all conditions.
Controls - Press buttons for on-off, P.U., radio and
aux: Rotary Treble, Bass. Volume and Stereo Balance.
Channel matching within 1 dB .
Front panel - brushed aluminium with black knobs Project 605 comprises preamp/control unit, two power
amplifiers, power supply unit.
Masterlink, leads and instruc-
tions manual complete in one pack. Post free

р.R.р. £29.95

"SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING
 MOTOR
Type SS15. These
fine motors are fine motors are
easily reversed. easily reversed, starting and stoppling in less than 5^{0} without electrical or mechanical
braking. Simple braking. Simple
relay circuit can be applied to give DC., to winding for a maximum holding torque of $300 \mathrm{oz} / \mathrm{in}$ with 35 v at 0.35 amps through winding. For AC. (synchronous) operation at
$120 \mathrm{r} ., 50 \mathrm{~Hz}$. Speed 60 rpm at 60 Hz .72 rpm . STEPPING. Holding torque at 50 steps per second- 100 oz/in. Can. be wired to give 100 or 200 steps per revolution witn accuracy of 0.1° per step non-cumulative. Torque characterlstics can be modified by simple R.C. circults. $1 t^{\prime \prime} x \frac{37^{\prime \prime}}{1^{\prime \prime}}$ dia. Weight $6 \frac{1}{2}$ lbs. BRAND NEW in maker's packing. Offered at less than $\frac{1}{3}$ maker's price

MAINS SOLENOID by MAGNETIC

 DEVICES LTD.A beautifully constructed solenoid at half normal price. A 2 -sided bracket is Incorporated for vertical or horizontal mounting. Size: $2^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}$, Pull is approximately 21 bs s, plunger travel $1 \frac{1}{\alpha^{\prime \prime}}$. Fixing eye takes up to $\frac{1}{2}$ " boit, plunger non-captive. NEW in
original maker's boxes. $\mathbf{\Sigma 1 - 2 0}$. P. \& P. 20p. Large numoriginal maker's boxes. $£ 1$ 20. P. \& P.
ber available, special price for quantity

SMITHS RINGER-TIMER

Reliable 15 minute times, spring wound (concurrent with time setting) $15 \times 1 \mathrm{~min}$ divisions, approximately $\frac{1}{2}^{\prime \prime}$ between
divisions. Panel mounting with chrome divisions. Panel mounting with chrome
bezel 3 gin $^{\prime \prime}$ dia. $£ 1$. 40 . 150 P. \& P. E (U.S.A.) MINIATURE
KNOWLE (U.S.A.) MINIAT
MICROPHONE CAPSULES
MICROPHONE CAPSULES
Impedance approx. 200Ω, output 60 or 80 DB at 1 Kc . As used in deaf aids, bugging devices, etc. Size (60
 equipment, all tested. $£ 1 \cdot 20$ each. P. \& P. FREE.

OPEN FRAME

shaded pole

GEARED MOTORS
$\begin{array}{lll}\text { (Dural } \\ 240 \text { AC., } & 28 \mathrm{ram} \text {. } & \text { NEW }\end{array}$
HIGH TÓRQUE, approx overall size: $3 \frac{1}{2}^{\prime} \times 3 \frac{1}{4}^{\prime \prime}$ $2 \frac{3}{4}^{\prime \prime}+$ spindle ${ }^{\prime}{ }^{\prime \prime}$ dia. as lllustrated. £2 70. P. \& P. 30p. Simllar to above, 19 rpm . £2.70. P. \& P. 30p. $110 r p m$ with pressed steel gear case (similar to above

NORPLEX

The famous American fibre-glass copper-clad laminate. Finest quality with woven glass base of
Epoxy-resin. Excellent Mech. and Elec. conductive properties. Heat resistant, ideal for P.C.'s etc. THIS IS A SPECIAL PURCHASEAND ONLY AVAILABLE WHILE STOCKS LAST! Sizes: $2^{\prime \prime} \times 12^{\prime \prime} ; 24^{\prime \prime} \times 12^{\prime \prime}$; $24^{\prime \prime} \times 24^{\prime \prime} ;$ FULL SHEET $43^{\prime \prime} \times 37^{\prime \prime}(11$ sq. ft.). Singlesided Copper with thickness of $1 / 32^{\prime \prime}, 3 / 64^{\prime \prime}, 3 / 32^{\prime \prime}$. Also double-sided $1 / 32^{\prime \prime}$, $1 / 16^{\prime \prime}$, $P / 32$. Full Sheet $£ 8$ each. Carr $\mathrm{f1}$ for 4 st sheet plus 250 each additional sheet

SILVANIA
 MAGNETIC SWITCH
 Now complete with reference magnel!
 A magnetically activated switch, vacuum sealed in a glass envelope. Silver Contacts, normally closed. Rated 3amp at 120v. $1 \frac{1}{\text { a amp }}$ at 240 v . Size: (approx.) $1 \frac{1}{6}$ long $x \neq$ dia. Ideal for burglar alarms, securlity systems etc., and wherever non-mechanical switching s required. 10 tor \&2 $10 ;$ P. \& P. 15p. 50

 R

AMPEX $7.5 v$. D.C. MOTOR

This is an ultra precision tape motor designed for use in the AMPEX model AG20 portable recorder. Torque $450 G M / C M$. 60ma on run 600 rom . Draws adjustment. Internal AF/RF aduppression. $t^{\prime \prime}$ dia $x t^{\prime \prime}$ spindle, motor $3^{\prime \prime}$ dia. $x^{x} 1 \frac{1}{\prime \prime}^{\prime \prime}$. Original cost $£ 16.50$. OUR PRICE £3.30. P. \& P. 25p. Large quantities available (special quotations), Mu-metal enclosure available 75p each. FREE P. \& P.

ALL PRICES NOW INCLUDE

V.A.T. UNLESS OTHERWISE STATED
All items are NEW and UNUSED. Postal or carriage charges are for Gt. Britain only. We welcome orders from established companies, educational depts., etc. All orders under $£ 2.50$ C.W.O., please. Company orders under $£ 250$, surcharge 60 p unless C.W.O.

315/317, EDG WARE ROAD, LONDON, W2.
Tel : 01-723 5667 O1-402 5580

Project 80
 the slimmest,most elegant hi•fi modules ever made
 Living with hi-fi takes on new meaning with Project 80 modules They can be assembled virtually anywhere. creating opportunities to install systems hitherto only dreamed about and never before made practical. Quality and reliability are everything vou could wish for. Units are mounted by 6 BA bolts at rear passing through dilled holes, cases are in black with white embellishment

Stereo 80 pre-amplifier and control unit

Each channei has inde. pendent tone and volume slider controls enabling exceptionally good environmental matching to be obtarned A virtual carth input stage forms part of the up-dated circuitry which includes generous overload margins Clear instructions with template are supplied.

RАр $£ 11.95+\underset{\text { VAT }}{\text { ¢1.19 }}$

Size $-260,50: 20 \mathrm{~mm}\left(10 \frac{1}{4}, 2 \times \frac{3}{4} \mathrm{~ms}\right)$ Inputs-Mág. PU 3 mV RIAA corrected. Ceramic P U, Radio, Tape S/Nratio-60db
Frequency range -10 Hz to $25 \mathrm{KHz}+3 \mathrm{~dB}$ Power requirements - 20 to 35 volts Outputs - 100 mV + AB monitoring for tape Controls - Press button for tape, radio and P U.Sliders for Volume. Bass and Treble

Project 80 active filter

 unit

Size-108 • $50 \quad 20 \mathrm{~mm}$ (4.1.2 - 3ins) Voltage gain - mınus 0.2 dB
Frequency response -36 Hz to 22 KHz controls minimum
Distortion - at $1 \mathrm{KHz}-003 \%$ using 30 V HF cut off (scratch) -22 KHz to 5.5 KHz . $12 \mathrm{~dB} /$ oct slope
L. F. cut off (rumble) -28 cB at 20 Hz . $9 \mathrm{~dB} /$ oct slope

Z. 40 \& Z. 60 power amplifiers
Z.40

Size-55 - 80 • 20mm Input sensitivity -100 mV Output-15W RMS continuous $8 \Omega(35 \mathrm{~V})$. Frequency response$10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Signal to noise ratio 64 dB
Distortion - less than 0.1% at 10 W into 8Ω Powerrequirements 12. 35 volts
${ }^{\text {R } . \text { P }} £ 5.45$
$+054 p$
VA.
Z. 60

Size-55. $98 \times 20 \mathrm{~mm}$ Input sensitivity -
100.250 mV

Output-25WRMS 8Ω (45V)
Distortion - typically 0.03\%

Frequency response -
10 Hz to morethan
$200 \mathrm{KHz}+1 \mathrm{~dB}$
S/N ratio -
better than 70dB
£6.95

Project 80
FM tuner and stereo decoder

FM Tuner

Size $-85 \times 50 \times 20 \mathrm{~mm}$
Tuning range -87.5 to 108 MHz Detector - I.C. balanced coincidence
AFC - Switchable
One 26 transistor I.C.
Twin dual varicap tuning
Distortion 0.2% at 1 KHz for 30% modulation
4 pole ceramic filter in I.F. section Sensitivity - 4 microvolts for
30 dB quieting
Output - 300 mV for 75 KH
deviation

Decoder-
With gallium arsenide tuning beacon and 19 -transistor IC Size-47 : 50 : 20mm

Decoder $\subset 745+0.45 p$

Guarantee

If. within 3 months of purchasing any product direct from us, you are dissatisfied with it, your money will be refunded on production of receipt of payment Many
Sinclair apponted Stockisis also offer this guarantee.
Should any defect arise in normal use. We will service If without charge For damage arising from mis use small charge (lypically f1 00) will be made

To SINCLAIR RADIONICS LTD. ST. IVES, HUNTINGDON PE17 4HJ
Please send post paid

$$
\text { for whinch I enclose Cash/Cheque for } \mathrm{f}
$$

including $\vee \mathrm{A} T$.
Name
Address \qquad

[^3]
ELECTRONIC \& AUDIO BARGAINS

INHIIIPLS

MONEY BACK IF NOT SATISFIED Free fabulous NEW catalogue. Send SAE

El BIG ${ }^{\prime}-4$ panelclif \& RED LED 28p. GREIEN \& clip $59 p$
Clut

bat//mains
Minitron type $0-9 \mathrm{dPDIL} £ 1 \cdot 19$. SOCKETS 13 p . IL DiGithl clochichis

Texas etc with 4 displays $£ 12.6$ displays \& chip $£$ Mostek date \& alarm chips with 6 displays $£ 19$. pobel 49 Hit:All parts \& case. National chip. 4 digit $£ 20.6 \times £ 23.1$,

 741:8pin 29p, to99\& 14 p in 27p 748 33p 709 2lp fully $£ 8$ 710 35p 72359 p. 555 timer 79p ZN414 rx. f1-10 buil \& 703 rf if 28 p me $1310 \&$ led $£ 2.76 \mathrm{mc} 1339 \mathrm{fl} \cdot 20$ TADIOO \& if $£ 2$ 1AMP + REGULATOR $7805,5(87-20) \mathrm{V}$.alsol2 $\& 15 \mathrm{~V} £ 1.49$ AUDIO AMPS:mfc4ooo 50p; \& \& 2W£119; 3W £ $1 \cdot 29 ; 6 W$. gates 7400 etc $16 \mathrm{P} 741332 \mathrm{P} 7447 \mathrm{£} 1 \cdot 25$
$7470 / 7232 \mathrm{P} 7474 / 7639 \mathrm{P} 749063 \mathrm{P}$
749269 P 7412149 P \& all others incat. NEW I6pin counter/driver $90 / 47$ £ 2.25

DALO p.b.PEN 69p DII. SOCKETS : I'rofesional/gold P. Pins hior lo Prof ile 8,14,16 Pin $13 p$

2N3055 33 p.four E1. BC107, BC108, BC 109 all 7p ec
 HC2 12/3/4 11p BCY7O 13p BD131/2 35p ea. BFY5 423 15pTIS 43 25p
 CAPACITORS $25 \mathrm{VTO}, 5 \mathrm{C}, 400 \mathrm{Uf} 5 \mathrm{p}$. DISCS 4 p . PRESETS 5 p. CARBON
TEITPDS FLUORESCENT LIGHTS,8WII 12 VOLT \& $2-59^{a}$ A PREオUCIGG P.O. BOX 29,BRACKNELL,BERKS.

F

GIRO NO. 3317056 C.W.O only. P. \& P. 10 p on arders below $£ 5$ iscount: $£ 10-10 \%, 620-15 \%$ (except net items) Export Order enquiries welcome (VAT Iree)
Official Orders accepted from Educational \& Government Departments
ALL PRICES INCLUDE VAT

SPECIAL RESISTOR KITS

 53
5.20
50
net
net $\begin{array}{ll}10 & n e t \\ 20 & \text { net } \\ \text { net } \\ \text { net }\end{array}$

MULLARD POLYESTER CAPACITORS C280 SERIES

250VPP.C. Mounting: $00{ }^{1} \mu \mathrm{FF}, 0015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{D}$. $0.068 \mu \mathrm{~F}$. 51 5F. 23 P. 2 F 25 p
MULLARD POLYESTER CAPACITORS C296 SERIES
 $0.22 \mu \mathrm{~F}, 8+\mathrm{p} .0 .33 \mu \mathrm{~F}, 12 \mathrm{p} .0 .47 \mu \mathrm{~F}, 14 \mathrm{p}$
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 2 \frac{12}{} \mathrm{D} .0 .047 \mu \mathrm{~F} .0 .068 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} 01 \mu \mathrm{~F} .015 \mu \mathrm{~F}, 4 \frac{1}{2} \mathrm{p}$. MINIATURE CERAMIC PLATE CAPACITORS
50 V : (pF) 22, 27, 33, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220, 270, 330, 390, 470. $560,680,820,1 \mathrm{~K}, 1 \mathrm{~K} 5,2 \mathrm{~K} 2,3 \mathrm{~K} 3,4 \mathrm{~K} 7,6 \mathrm{~K} 8,(\mu \mathrm{~F}) 0.01,0.015,0022,0033,0.047$. POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$.

RESISTORS

$\begin{array}{lllllllll}\text { CF-High Stab Carbon Film } & 5 \% & \text { MF-High Stab Metal Film, } & 5 \% \\ \text { W.Type Range } & 1-9 & 10-49 & 50-99 & 100-249 & 250-499 & 500-999 & 1000+\text { Size } \mathrm{mm}\end{array}$	W. Type Range	$1-9$	$10-49$	$50-99$	$100-249$	$250-499$	$500-999$	1000	Size mm
CF	$22-1 M$	0.8	0.65	0.62	0.55	0.5	0.45	2.4×7.5	

For value mixing prices. please refer to our catalogue. (price in pence each)
VALUES AVALLABLE-E12 Series only. Ner prices above 100 .
PRESET SKELETON POTENTIOMETERS MINIATURE 025 W Vertical or horizontal op each SUB-MIN 0.05 W Vertical. 100Ω to $220 \mathrm{~K} \Omega \mathrm{sp}$ each

B. H. COMPONENT FACTORS LTD.

(P.E.) $6 I$ CHEDDINGTON ROAD, PITSTONE,
R. LEIGHTON BUZZARD, BEDS, LU7 9A
Tel.: Cheddington 668446 (Std. Code 0296)

INCORPORATING LASKYS RADIO AND G. W. SMITH \& CO. (RADIO).

LB3 TRANSISTOR TESTER Tests ICO and B.
PNP/NPN. Operates
trom 9V battery,
Instructions supplied Instructions sul
OUR PRICE
£3.95 P\&P 20p KAMODEN HM350 TRANSISTOR TESTER
High quality
ingtrument to
test reverse test reverse lagk
current and DC
current. Amplification factor of
NPN PNP NPN, PNP. diodes. transingtors, SCR
atc. 4 square clear scale mete
Operates from internal batteri Complote with OUR PRICE £12.50 P\&P 30 p S100TR MULTIMETER TRANSISTOR TESTER 100,0000pv, Mirr
cale. Overla protection 0 d 12 protection. $0 / 0.12$
$0.6 / 3 / 12 / 30 / 120 /$ 600 V DC. $0 / 6 / 30 /$ $120 / 600 \mathrm{~V}$ AC. 0/12/600uA/12/ $0 / 10 \mathrm{k} / \mathrm{T} \mathrm{Mag} /$ 100 Meg,
-20 to +50 dB 0.01-0.2 MFD and ICO. Complete with Amstruct Bata batteries and leads. OUR PRICE $£ 15.95$
 TE16A TRANSISTORISED 25 TE16A TRANSISTORISED
SIGNAL GENERATOR
 With instructions and ieads PRP 25p
OUR PRICE E8.97 PGM MODEL TE20 RF SIGNAI
GENERATOR
 variable audio output
Accuracy $\pm 2 \%$. Audit output to 8V. Power fequirements $105-125 \mathrm{~V}, 220-240 \mathrm{~V}$ AC. Size: 193
$\times 265 \times 150 \mathrm{~mm}$. Complete with test leads atc. ARF 300 AF/RF SIGNA GENERATOR Al transistorised
compact fully portable. AF sine
wave 18 Hz to 220 $\mathbf{k H z}$. AF squars
wave 18 Hz to 100 k Hz . Outpui Square/ Sine wave 100 VHz . 200MHz. Output 1V maximum.
$220 / 240 \mathrm{~V}$ AC operation
with instructions and lasds OUR PRICE f29.95 P\&P 50p AT201 Decade ATTENUATOR Fraquency range 0
200 Hz . Attenuato
$0-111 \mathrm{~dB}, 0.1 \mathrm{~dB}$ steps. Impedence 600 ohms. Input
power maximum 30 d (m . Sız : 180 x OUR PRICE E12.50 P\&P 37p MCA220 Automatic Voltage Stabiliser Inpur 88-125V AC or
$176-250 \mathrm{~V}$ AC. OutpuI
120 V AC or 240 V AC 120 V AC or 240 V AC
$200 \mathrm{~V} / \mathrm{A}$ ratiog. PaP 50 OUV/A rating. P\&AC 501
OUR PRICE $£ 11.97$
PS1008 Requlated POWER SUPPLY UNIT

DUR PRICE £11.97 P\&P 25p PS200 Regulated POWER

SUPPLY UNIT

OUP PRICE $\mathbf{1 1 9 . 9 5}$

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC.
Over 200 ranges in stock-other ranges to order. Ouantity discounts available. Send for fuliy illustrated brochure.

CLEAR PLASTIC MODEL S0640.

\begin{tabular}{|c|c|c|c|}
\hline 50 u . . \& ¢3.35 \& \multicolumn{2}{|l|}{\multirow{4}{*}{- \(\mathrm{m}_{\text {mimini }}\)}} \\
\hline \({ }^{10004 A}\)-. .. \& \({ }_{\text {¢ }}^{\text {¢ } 3.30}\) \& \& \\
\hline \& \& \& \\
\hline 50-0-500A
\(100-0.1004\) \& \({ }_{\text {¢ }}^{63.30}\) \& \& \\
\hline 1 mA \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \({ }_{10 \mathrm{max}}^{5 \mathrm{ma}}\)..: \& \({ }_{¢ 53.20}^{\text {¢3. }}\) \& \& \\
\hline 50 mA .. \& \({ }^{\text {c3 }}\) E 20 \& \& \\
\hline \({ }^{1000 \mathrm{~mA}}\)-. \& ¢3.20
E3.20 \& \begin{tabular}{l}
\(20 \vee O C\) \\
\(50 V D C\) \\
\hline..
\end{tabular} \& E3.20
f3.20 \\
\hline \(1 A D C\) \& E3.20 \& \(300 \mathrm{VCC} .\). \& f3.20 \\
\hline \({ }^{51} \times \mathrm{ADC}\) \& ¢ \({ }_{\text {¢ }}^{63.20}\) \& \(15 V\)
\(300 V\)

AC \&

\hline 5VDC \& £3.20 \& VUMeter* \& E3.45

\hline
\end{tabular}

CLEAR PLASTIC
Size: $100 \times 80 \mathrm{~mm}$

MODEL E0107 EOUCATIONAL METER
A range of high quality
moving coil instruments
 idsal for school experi-
ments and otherr bench
 seote. The metrer mave-
ment is assily pecessible to demonstrate internal working

504 A
1000 A
1

50.0 .50 Aa SO-0.50
SA DC
5 SDC

$\underset{\text { Size: } 120 \times 110 \mathrm{~mm}}{\text { CLEAR PLASTIC }}$

50 HA
100 u .

2000 A
500 A
500 A
50.50 Sa $100-0.100 u A$
$500-0.5004 \mathrm{~A}$

1.0 .1 mA
5 ma

10 mA.
50 $50 \mathrm{~m} A . .$.
$100 \mathrm{~m} A$ 100 mA
$500 \mathrm{~m} A$ 500 mA
$1 A \mathrm{DC}$
$5 A \mathrm{DC}$ 5ADC
15ADC
$15 A D C$
$30 A D C$
$10 V D C$
$10 V$ DC
$20 V$
$50 V$ DC
$150 V D C$

OEL 85P

$\begin{aligned} & £ 4.85 \\ & £ 4.70 \end{aligned}$	
£4.45	
¢4.30 $\mathbf{8 4 . 7 0}$	\cdots
¢4.45	
¢4.30	
¢4.30	
¢4.30	
£4.30	
¢4.30	
¢4.30	300V DC $£ 4.30$
¢4.30	15 V AC .. .- $£ 4.35$
¢4.30	300 V AC- $\mathbf{f 4 . 3 5}$
¢4.30	SMrater 1mA .. $\quad \mathbf{f 4 . 3 0}$
¢4.30	VU Meter .. .- . $£ 54.00$
$¢ 4.35$	1A AC * $£ 4.30$
¢4.30	5A AC .. .- : $£ 4.30$
¢4.30	10A AC * £4.30
¢4.30	20A AC * $\mathrm{E}^{4.30}$
¢4.30	30A AC * £4.30

1		12.65	SMeter 1 1 ma	¢2.75
5 S		¢2.65	VUMeter ..	$\underline{53.00}$
10V DC		¢2.65	1 A AC	5
$20 \vee D C$.	£2.65	$5 A$ AC	¢2.65
50 V DC	..	£2.65	10A AC	¢2.65
300 V DC		¢2.65	20A AC	¢2.65
15 V AC		£2.70	30A AC	¢2.6

$\underset{\text { SIze: } 42 \times 42 \mathrm{~mm}}{\text { CLEAR PLASTI }}$

POWER RHEOSTATS
High quality ceramic
construction. Wind-ingsturtion. Wind vitreous onamed.
Hervy duty brush Heavy duty brush
wiper. Continuous rating. Wide range available ex -stock. Single hole fixing. Y" dia
Bult quantities available.
25 WATT 10/25/50/100/250/500/ 1000 Ohms $\quad £ 1.15$ P\&P 10p 50 WATT 10/25/50/100/250/500/ 1000/2500/5000 Ohms. E1.62 P\& P 10p 100 WATT 1/5/10/25/50/100/250/ $500 / 1000 / 2500$ Ohms

ALL PRICES

 EXCLUDE VATAlso see previous page

Carefully machuned top grade steel.
Contains $1 / 2^{\prime \prime}, 5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, 1^{\prime \prime}$, and $11 / 8^{\prime \prime}$ punches complete with gripper OUR PRICE $£ 3.00$

SUPER VALUE tup dualitiv TPIO equipment
TRIO JR599 RECEIVER

Four bands coverang $550 \mathrm{kHz}_{2}$ to 30 MHz continuous and electrical band-
spr aad on $10.15 .20,40$ and 80 mtrs .
 CW, ANL variable BFO. S Meter and
separat band spread dial. IF freqseparate band spread dial. If freq-
uency $445 k H z$, audio ou tpuz 1% watt.
Varisble RF and AF gain controls. Variable RF and AF gain controls
$115 / 250 \mathrm{VAC}$, with instructions.
Our Price $£ 42.50$ catr

Solid state mobite $1 /$ discerver tor 12
volt DC neg. Transmits and receves on any 12 of 28 channels between
144 and 146 MHz . Power output 10 W and 1 W switchable. Controls: On/oft/
volume, squeleh and channel select. or Internal $3^{\text {: }}$. speaker. Complete
with dynamic mic. PTT swith, three sets of cry stais for 144,48, 144.6 and
145 MHz , mounting bracket and ins.
mize $150 \times 70 \times 220 \mathrm{~mm}$. OUR PRICE E75.00 P\&P 50p

OUR PRICE £24.95 per pair P302 Two Channel 300 mW OUR PRICE E52.50 per pair P1003 Throe Channal 1 Watt
OUR PRICE $£ 71.25$ per pair P\&P 50p per pair
NB. Licence required for use in UK KE630 3 Station INTERCOM

Mester and rwo sub-stations. Can be usad on dask or wall mounted. Comp-
lete with cabis and batteries OUR PRICE E5.25 P\&P 50p

INCORPORATING LASKYS RADIO AND G. W. SMITH \& CO. (RADIO).

OUR PRICE E12.95 P\&P 50p
AUDIOTRONIC CRITERION
SPEAKERS High quality
Sobeken quality three way ofen
Bperformance better
per
than more expentsive
with dark fronts.
Frequency ${ }^{\text {rasponse: }}$
$40 \mathrm{~Hz}-20 \mathrm{~Hz}$. 8 oh
Maximum power 20 watts. Size: 476
$\times 232 \times 23$.
OUR PRICE $£ 27.50 \mathrm{Pr}$. P\&Pfi

HIGH QUALITY
CONSTRUCTION KITS WE ARE APPOINTED ALL BRANCHES

All kits ars complete with compre-
hensive easy to follow instructions and covered by full guarantee.
Post and Packing 15p per kit.

AE 100 W Woutpu AE 2 Preamplitier AE 3 Diode receiver
 AE3 Diode receiver. AE4 Flasher.........

AE5 Astable multi-vibrator.... AE7 RC generato
AE8 Bass filter....
AE9 Treble filter,
AE 10 CCIR filter.
AE 10 Mono ampili.....
AF 25 Miner.

AF35 Emitter amplifier-
AF 80 O. 5 W mic. amplifie

AT5 Au tomatic lifhty contro AT25 Window wiper robot
AT30 Photo cell switch uni
A 500400 w triac light

AT 601 channel light controil
AT65 3 channel light control.
GP304 Circuit board...i.i.......
GP310 Stereo pro-ampifier
GP312 Circtitit baord
GU330 Tremolo unit
GU330 Tremolo unit
HF61 Diode detector
HF61 Diode detactor
HF5 FM transmitter
HF3 310 FM tuner
 HF3
HF39 Wh/vht atial amplifier
broadband aerial amp LF380 Quadraphonic device.. M160 Muttivivibrator
M191 VU Meter M191 VU Me ter...........
M192 Stereo balance me M192 Sterso biance me
M1302 Transistan tester. NT 10 Stabisised poser supppiV
170 mA gV
NT300 Stabilise NT300 Stabilised p. supply

Amateur Electronics by sosty-Kit the professional book for the amateur
-covers the subject from basic print cipats to advanced electronit techniq-
ues complete with circuit board for uEs Complete with
AE to AE 10 above.
OUR PRICE £3. 30 (No VAT)
DT55G DIGITAL.CI OCK

alarm sleep switch lllummated ro ary dial with hours. minutes and sec
onds. Automatically turns off radio TV. light etc. and with auto-switch.
ing wilt turn on again when required ing will turn on again when required.
240 V AC operation. Switch rating
250 V -3 Amp OUR PRICE
OUR PRICE £5.95 P\&P 30p

Hegh quality 2 way spaker systems.
25 Watrs.
Size
ohms. $40 \mathrm{~Hz}-18 \mathrm{kHz}$.
. Size: $560 \times 340 \times 255 \mathrm{~mm}$ - approx Wood grain finish with black fronts.
OUR PRICE E26.95 PR. P\& $£ 1$ RUH6 Reflex Horn Speaker

Practical Electronics April 1974

SINCLAIR CAMBRIDGE CALCULATDR To build yourself. Complete kit of parts with stap by step fistuctions to build a full specification pocket sized calculator.	
OUR PRICE £24.95	
ALSO AVAILABLE READY BUILT	
OUR PRICE £27.20 P\&P 25p	
Also available- SINCLAIR EXFCUTIVE	
Recommended Price £39.00	
OUR PRICE E35.45 P\&P 25p	
SINCLAIR EXECUTIVE with MEMORY Recommended Price E49.00 OUR PRICE $£ 44.50$	
SINCLAIR Project 80 Modules	
Z40 Power Amplifier.............. Z60 Power Amplffier............ £6. 95 6.	
Stereo 80 Pre.Amplifier.............. $£ 11.95$	
SINCL AIR Project 80 Packages	
\qquad	
$2 \times 260 /$ Stereo $80 / P 28$............. $£ 30.45$ POST \& PACKING 350 each	

AUDIOTRONIC AHA1OI
 netic, cer
ar tuner
mputs with
twin stereo headphone uutputs and
separate volume controls for aach separate volume controls for each
channel. Operates from 9 V battery INPUTS: 5 mV and 100 mV .
OUTPUT: 50 mV per channel

CALL INTO YOUR NEAREST BRANCH OR ORDER WITH CONFIDENCE BY MAIL ORDER

CENTRAL LONDON
10 TOTTENHAM CT. RD 27 TOTTENHAM CT. RD. $\begin{array}{ll} & 01-6363715\end{array}$ 42/45 TOTENHAM CT. RD $01-6362605$ $\begin{array}{lll}\text { 42/45 TOTENHAM CT. RD. } & 01.6360845 \\ 87 \text { TOTTENHAM CT. RD. } & 01.5803739\end{array}$ $\begin{array}{lll}257 / 8 \text { TOTTENHAM CT. RD. } \quad 01.580 & 0670\end{array}$ 21 OLD COMPTON ST. $\quad 01.4379369$ 3 LISLEST. WC2 01-4378204 34 LISLE St. WC2 of 4379155 $\begin{array}{ll}118 \text { EDGWARE RD. W2 } \\ 193 \text { EDGWARERD. W2 } & 01.7239789 \\ & 01.7236211\end{array}$ $\begin{array}{ll}\text { 193 EDGWARERD. W2 } & 01.7236211 \\ 207 \text { EDGWARE RD. W2 } & 01.7233271\end{array}$ $\begin{array}{ll}\text { 207 EOGWARE RD. W2 } & 01-7233271 \\ 311 \text { EDGWARE RD. W2 } & 01.2620387\end{array}$ 386 EDGWARE RD. W2 01.7234453 109 FLEET ST. EC4 $\quad 01-7234194$ 152/3 FLEETST.EC4 O1-353 5812 $\begin{array}{ll}178 \text { HARROWRD. Wو } & 01-3532833 \\ & 01-2869530\end{array}$

1046 WHITGIFT CENTRE, CROYODN
27 EDEN ST. KINGSTON $\quad 01-6813027$

53/57 CAMDEN RD., TUMBRIDGE WELLS
$0892-23242$

LEICESTERSHIRE

45 MARKET PLACE, LEICESTER
0533.537678

ALL BRANCHES OPEN FROM

 9am to 6pm MON. TO SAT.HEAD OFFICE AND MAIL ORDER DEPARTMENT
AUOIOTRONIC HOUSE THE HYDE INDUSTRIAL ESTATE THE HYDE LONDON NW9 6JJ TELEPHONE: $01.2053735 \& 5651$

$\frac{\text { OUR PRICE E8.50 P\&P } 20 p}{1021 \text { Stereo Listening Station }}$ For balancing
and gain selection
 gair controls, spenkers on off shide
switch, stareo headphone socket. switch, stereo headphone socket.
DUR PRICE £2.25 P\&P 15p

MP7 MIXER-PREAMPLIFIER
5 Microphons inputs each with
individual gain
controls enabling complete mabing facilities. Battery oper ated Size 235
$\times 127 \times 76 \mathrm{~mm}$. Inputs Mics $3 \times 3 \mathrm{mV}$ $50 \mathrm{k} ; 2 \times 3 \mathrm{mV} 600$ ohms. Phono. Mag.
4 mV 50 k ; Phono Ceramic 100 mV i Meg. Output 250 mV 100 k .
OUR PRICE $£ 8.97$ P\&P 20 p
 Your amplifier. Volume conth ol and
dep th of reverberation control Beau-
walnt cabinet. 184×71 OUR PRICE E7.50 P\&P 20p

Model A1018

For use with most amplitiers. Covers
$88-108 \mathrm{MHz}$. Powered by 9 V battery. OUR PRICE $\mathbf{5} 9.65$
ALL PRICES
EXCLUDE VAT

EXPORT Personal exports arranged for overseas visitor at all our branches. Goods despatched to all parts of the world through our Export Immediate attention orders.

CHEQUES ACCEPTED FROM PERSONAL SHOPPERS ONLY WITH BANKERS CARD. All prices correct at
12-2-74 but subject $12-2-74$
to change.

ents
entort

 OUR PRICE E3.62 each P\&P 25p AUDIOTRDNIC
CIO2 CASSETTE
$\begin{array}{lccc}\text { TYPE } & 5 & 10 & 25 \\ \text { CR60 } & £ 3.92 & £ 7.72 & £ 19.12 \\ \text { CR90 } & £ 5.32 & £ 10.46 & £ 25.22\end{array}$ AUDIOTRDNIC
8 TRACK CARTRIDGES
$\begin{array}{lccc}\text { TYPE } & \text { Each } & 5 & 10 \\ \text { 40M } & 85 \mathrm{p} & £ 4.00 & £ 7.50 \\ 80 \mathrm{M} & £ 1.15 & £ 5.40 & £ 10.25\end{array}$ P\&P Cassettes 3 , Cartridges 5 ,
OVER 10 of either POSTFREE

P\& P 30p

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. recision power for the Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) $66 \cdot 35$ p.p. 13 p.

De Luxe Professional Kit with 17 cools 49.40 P.p. 23p. Prices include V.A.T,

Moner ref. g'tee. MERLIN SUPPIY CO.

Dept. PE4D. Nailsea. Bristol BS19 2LP

F.M.Ф. VARICAP TUNER
 LP1185/86 £9.00/pair MC131OP MFC4060
 3.15 each 78 p
 £1.87
 £23.00
 £33.00
 NEW! LP1400 DECODER MODULES
 -LIMITED STOCKS £4.96
 Prices include V.A.T. P. \& P. 25p.
 B. \& B. ELECTRONICS
 64 MANNERS ROAD, BALDERTON, NEWARK, NOTTS. Telephone: NEWARK 6895

AURORA

 4 ch . control (4 k in $\times 10$ in) Mk . 2-also holds rotary or slider pots. E2.50. PCB (4if $\times 5 \mathrm{in}$) Mk. 2-for PSU, Sync Gen. 8 cores, 8 SCRs, 61.30 SCRs-IA, 75p.
BIOLOGICAL AMPLIFIER (PE Jan./Feb. 73). P/A Set-S/c's
 63.20. Output Stages-S/ic's, Rs, Cs. Cardio, Frea. Meter, Vis-Feed, $\mathbf{6 3 . 5 0}$. Set of' PCB's for above OIP Stages C1. 20. Audio Amps: PC7 65.20 ; EA1000 61.20.
63.30.

GEMINI STEREO AMPLIFIER

(PE Nov. 70/Mar. 71). Stereo sets and PCBs. Pre-amp--Rs, Cs, Pots, Sw'swith $\frac{1}{2} W$ MO Rs, 611.32 -with 1 W or $\frac{1}{2}$ W CF Rs 69.60 . PCB (4 tin $\times 10$ zin) © 1.90 . Main Amp-Rs, Cs, Pots, 65.39. PCB ($3 \frac{1}{2}$ in $\times 5 \mathrm{in}$), 61.15 . PSU-Rs, C_{5}, Pot, 63.97. PCB (2in . 4in). 65p.
(PE GEMINI STEREOTUNER © 1.50 .

MICROPHONEMIXER

 (PE Apr. 69) S/c's, Ris, Cs, Pots. PCB (3zin, 4 tin) also holds 6 rotary or 4 slider pots, $\mathbf{3} .70$.ENLARGEREXPOSURE
METER AND THERMOMETER (PE Sept. 73). S/c's, Thermistor,
LDR, Rs, Pots, PCB (2in 2 in in), 63.90.

ELECTRONIC PIANO ELECTRONIC PIANO
(PE Sept. 72/Jan. 73). Details in lists.

8 WATT AMPLIFEER

(PW Nov./Dec. 72). Preamp-S/e's Rs, Cs, Pots, SW-Mono, E2.50 (Stereo) also holds rotary or stider pots, and Sw, Cl.50. Main Amp-
S/c's. Rs. Cs, Pot-Mono. ©3.71: $\begin{array}{ll}\text { Stcs, Rs. Cs, Pot-Mono, } 63.71 \\ \text { Stereo, } 67.42 \text {. PCB (2tin } & \text { Yin) }\end{array}$ Stereo, 67.42. PCB (2 2 in
(Mono), 80 p. PSU- $\$ 3.57$.

LOUDHAILERAND SIREN
(PW Dec. 72). S/c's, Rs, Cs, Pot, PCB ($2 \frac{1}{2}$ in $x 2$ ifin), 62.20. (While stocks last.) Main Amp Modulé PCS + obtainable to special order, ©6-25.

REVERBERATION UNIT
(PW Nov./Dee. 72). S/c's, Rs, Cs, Slider Pors, T/imr, E7.28. PCB (2in (Ifin), also holds sliders, Ei.20. 9in Spring Unit, $\mathbf{6 3 . 7 5}$.

P. \& P.	VAT	S.A.E. for
15 P	ADD 10%	FREE LIST

(THESE TERMS APPLY TO U.K. ONLY-OVERSEAS SEE BELOW)

VAT
ADD 10\%

PHONOSONICS PCB's AND KITS

HI-FI TAPE LINK
(PE Mar./Apr. 73). S/c's, i.c.'s, Rs, Cs, Relay and pe-base, Pot Cores and ps-bases, Sw's, Pots. Panel Lamp-Mono, £12.78; Stereo, E20.41. PSU, ©3.58. 9in) Stereo (also holds relay and cores), El.95. Sub-assembly PCB Mk. 2 ($2 \frac{1}{2}$ in $\times 6 \frac{1}{2} 1 n$), 80p.

PHASING UNIT

 (PE Sept. 73). S/c's, Rs, Cs, Pots PCB ($1 \frac{1}{2}$ in $\times 2$ tin), $\mathbf{E 2} \cdot \mathbf{0 6}$.PHOTOPRINT PROCESS CONTROL
(PE lan./Feb. 72). For Colour and B \& W-finds exposure, controls timing, stabilises mains voltage. S/c's, switch T/fmr, E7.98 PCB (3in \times $5 \frac{1}{2}$ in) also holds pors. Sw, relay, $\mathbb{E} 1.50$ SEMICONDUCTOR TESTER (PE Oct. 73). S/c's, Rs, Cs, Pors, Mal:a-5
65.30.

ULTRASONIC
TRANSMITTER-RECEIVER (PE May 72). S/c's. Rs, Cs, Pot, Relay, Dual PCB (2in $\times 5 \frac{1}{2}$ in), $£ 4.04$ Transducers excluded.

VIBRASONIC GUITAR
W sept. PRE-AMP. Incl. Mic P/A. Guitar P/A, Trem and Tone Controls, Master Volume. S/c's, Rs, Cs, LDR Rotary Pots, Lamps, Coupling T/fmr, C6.97. PCB $\left(3 \frac{1}{2}\right.$ in $\left.\times 10 \neq i n\right)$ Mk. 2,
also holds 7 rotary or slider poes, also holds 7 rotary
E 1.75 . PSU $\mathbb{3} .57$.

MOGICAL RADIO CONTROL (PLLANEC. 7I/Jan. 72)PCBs "2A"', "2B'", Decoder, 50p ea. MODEL SERVO CONTROL (PE Feb./Mar. 72) PCBs '"B". Fail50p ea. MODEL SERVO CONTROL (PE Feb./Mar. 72) PCBs BC
safe, 33p ea. DIGICAL PSU PCB (PE Aug, 72), 50p. OSCILLOSCOPE P/A safe, 33p ea. DIGICAL PSU PCB (PE Aug. 72),
(PE Aug. 72), 33p. TRIFFID PCB (PE Feb. 73), 60 p, DIGITRONIC (PW Mar. 73) Read-out PCB (Ition $\times 3 \frac{1}{2} \mathrm{in}$), 50p.

ALL OUR PRICES INCLUDE BSR HI-FI AUTOCHANGER STEREO AND MONO
Plays 12", 10 " or 7" racords. Auto or Manual. A high
qualty unh backed by Bsh reHablity with 12 month: guarantee. A.c. $200 / 250 \mathrm{~V}$ He t3; x 11 tIn .

 with STEREO and MONO XTAL $56 \cdot 75$ Poat 25p PORTABLE PLAYER CABINET Modern dealgn. Black rexine covered. Sliver front grille, Motor board cut for above BSR deck $\mathcal{E} 4$ - 50 Post 45p COMPACT PORTABLE STEREO HI-FI Two full stze loudapeakere $133 \times 10 \times 33 \mathrm{in}$. Player unit overall alze only $134 \times 10 \times 3+\mathrm{ln}$., 3 watte per channel, playa all recorde $33 \mathrm{r} . \mathrm{p} . \mathrm{m} ., 45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Separate volume and
Sele

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP TIME 8WITCH
O- MINUTES
Single pole two-way. Surface mounting with fixing screws. Will replace
eristing wall switch to glve llaht for roturn home, garage, automatic ant-burgiar loghta, etc. Varlable knob Turn on or off at full or Intermedlate settings. Makera' last Ilat price \&4.50. Brand new and fully guaranteed. Fully Inaulated.
OUR PRICE 51.65 op 53 palt

WEYRAD P50 - TRANSISTOR COILS RA2W Ferrite Aerlal 85p , Driver Trane LFDT4 65p Onc. PSO/1AC Printed Clicult, PCA1 850 I.F. P50/2CC 470 ic 40p rd I.F. P50/3CC
Spare Coreal $\quad .30 \mathrm{p}$

VOLUME CONTROLS

80 Ohm Coax 5p yd. 5 K . ohme to 2 Meg . LOG or STEREO L/S 5 D. D.P. 25p. Edge 5k.S.P. Trensitor 75 p . BRITISH AERIALITE
AERAXIAL-AIR SPACE AERANIAL-AIR SPACED
$40 \mathrm{yd}, \mathrm{E1-75;} 60 \mathrm{yd}, \mathrm{E2} \cdot 60$ FRINGE LOW LOSS
Ideal 825 and colour $\mathbf{1 0}_{\text {pyd }}$
8 in. or 10in. ELAC HI-FI SPEAKER
Dual cone plasticised roll sur round. Large ceramic magnet.
$50-18,000 \mathrm{c} / \mathrm{s}$. Beas resonance $50-18,000 \mathrm{c} / \mathrm{s}$. Base resonance
$55 \mathrm{c} / \mathrm{s}$. ohm impedance $55 \mathrm{c} / \mathrm{s}$. ohm impedence sin 10 watis, 101n $12 \quad £ 3.75$ poat $25 p$
watte mualc power.
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$.

SPEAKER SALE!

And crossover. 10
watt. State 3 or 8 or 24,50
watt. State 3 or 8 or
15 ohm. As Illustrated. Post 25 s
With flared tweeter cone and ceremic
magnet. 10 watt.

Bookshelf Cabinet Teak $10 \times 9 \mathrm{~min}$. $£ 5.50$
SET OF 3 MOTORS FOR COLLARO STUDIO 115 VOLT TAPE DECK £2.50 Post 50p

[^4] PAXOLIN PANEL $10 \times \sin 15 p$.

ANOTHER R.C.S. BARGAIN! 4 TRANSISTOR MONO AMPLIFIER Powerful 3 watt output, 15 ohm. AC malne operated with Trensformer. 3-Controle, volume, freble, base and On/ON with with knobs. Boady made on pinted direut haapd make, alzo in wide x ôn deep x in high. Sultable $7^{\prime \prime} \times 4^{x}$ epe iker, El . $£ 5.95$
R.C.S. STABILISED POWER PACK KITS all parti and Instructlons with Zener Diode, Printed Circult Brldga Mectiliera and Double Wound Malme Traneformer 15 or PLEASE STATE VOI TAGE REOURED PLEASE STATE VOLTAGE REQUIRED
Dotalli S.A.E. SLze $3 \neq 1 \neq 1 \neq 1 \mathrm{ln}$.
£2. 20 Poat
$25 p$
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE
Ideal for Mike, Tape; P.U.t Gutar, etc. Can be uaed with Battery $9-12 \mathrm{~V}$ or H.T. Hine $200-300 \mathrm{~V}$ d.c. operation. Size: for use with valve or tramistor equipment. 08 g oin. Pos For use with valve or tran istor equlpment.
Full Instructione supplied. Detaile S.A.E.

ELECTRO MAGNETIC
 PENDULUM MECHANISM

 1.5 V d.c. operation over 300 hours continuous on SP2 teaching electro magnetiom or fortered. Ideal displays metronome, strobe, etc.

95p ${ }^{\text {Poot }}$

BRITISH FM/VHF TUNING HEART

is to $10 \mathrm{M} / \mathrm{CS}$ British made. 2 Translatore ready allgned requires 10.7 M/CS I.F. Complete with tuning gang casentlal.

Our price $£ 3.95$
1 Port $x \mathrm{p}_{\mathrm{p}}$
MAINS TRANSFORMERS All post
Eagle MT12 12-0-12V 50 mA
$250-0-25080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A} 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A $350-0-35020 \mathrm{~mA}, 6 \cdot 3 V 3-5 A, 6 \cdot 3 V 1 \mathrm{~A}$ or 5 V 2 A
$300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 4 \mathrm{C}$. $1.6 \cdot 3 \mathrm{~V} 2 \mathrm{~A}$
MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A} 21 \times 2 \mathrm{~A} \times 2 \mathrm{n}$ MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A} 2 \frac{1}{2} \times 2 \frac{1}{2} \times 21 \mathrm{n}$
MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 2 \mathrm{~A} 2 t \times 2 \frac{1}{2} \times 21 \mathrm{n}$. HEATER TRANS. 6.3 V 1.5 A $25 p$ eac GENERAL PURPOSE LOW VULTAGE. Tapped output at $2 \mathrm{mmp} .3,4,5,6,4,9,10,12,15,18,24$ and 30 V ह. 3.00 1 amp . 6, 8, $10,12,16,18,20,24,30,36,40,48,60 \mathrm{c3.00}$ amp. 6, 8, 10, 12, 16. 18, 20, 24, 3c, 36, $40,48,60 ~ £ 4.00$
$5 \mathrm{cmp} .12,16,18,20,24,30,36,40,48,60 \mathrm{c9.75}$ 5,8 and $13 \mathrm{~V} ; 5 \mathrm{amp}$. \&1.20. $3 \mathrm{amp} .3,5,8,10$, 13 and $5-0-5 \mathrm{~V}$ $\mathrm{E} 1 \cdot 30$, Ditto 5 amp . $£ 1 \cdot 50 ; 6-0-6 \mathrm{~V} 500 \mathrm{~mA} 90 \mathrm{p} 9 \mathrm{~V} 1 \mathrm{amp}$. 95 p ,
 AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150W E3.00; 500W \&6. 25; 750W E10; 1000W 515
or 6 or 12V, $11 \mathrm{amp} \mathrm{E1} \cdot 50 ; 2 \mathrm{amp}$ £1-80; $4 \mathrm{amp} \mathrm{c} 2 \cdot 50$ BATTERY CHARGERS. Ready bullt with lead and cllpe FULE WAVE BRIDG; 5 ampes \sin.
or 12V Outputa 11 amp 40:ER RECTIFIERS
MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary 0-240V. 3A. 720W. insulated terminals. Varnish Impregnated. Fully enclosed Insteel catewith fixing feet.
Famous make. (Value \&10). OUR PRICE fl0 Carr
50 p Can be used as 100 W a uto tranatormera 240-110
IDEAL FOR COLOUR T.V. OR GARDEN TOOLS.

	NEW	ELECTRO	IC	ONDENSERS	
$2 / 350 \mathrm{~V}$	14p	250/25V	.14p	$50+50 / 300 \mathrm{~V}$	50p
4/350V	...14p	500/25V	20p	$80+100 / 350 \mathrm{~V}$	$85 p$
$8 / 450 \mathrm{~V}$	18p	1000/25V	.35p	$32+32 / 250 \mathrm{~V}$	20p
13/450V	220	1000/50V	47p	$32+32 / 450 \mathrm{~V}$	s0p
32/500V	.50p	$8+1 / 450 \mathrm{~V}$	22p	$350+50 / 325 \mathrm{~V}$	55p
25/25V	10p	$8+16 / 450 \mathrm{~V}$	25p	$100-50+50 / 350 \mathrm{~V}$	55p
50/50V	10p	$16+15 / 450 \mathrm{~V}$.40p	-100-50-50155V	5sp
100/25V	..10p	$32+32 / 350 \mathrm{~V}$	40p		

LOW VOLTAGE ELECTROLYTICS.
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$ $1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 3 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. 2000 mF 8V $25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{P} ; 50 \mathrm{~V} 57 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. 5000 mF ©V 25p; 12V 42p; 25V 75p; 35V 85p; 50V 95p.

CERAMIC, 1pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. SIlver Mice 2 to 5000 pF , 4 p .
PAPER $350 \mathrm{~V}-0.14 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p}$; 2 mF 150 V 15 p . $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.15 \mathrm{p} ; \mathrm{p}-25 \mathrm{Bp} ; 0.4725 \mathrm{p}$.
SILVER MICA. Close tolerance 1%. 2-2-500pF $8 p ; 580$ 2,200pF 10p; 2,700-5,600 pF 20p; 8,000pF-0.01, mfd 30 p each TWIN GANG, " $00-0$ " $242 \mathrm{pF}+17 \mathrm{fpF}, 85 p$; 500pF standard 45 p $35 \mathrm{pF}+305 \mathrm{pF}$ with $25 \mathrm{pFF}+2 \mathrm{zpF}$, slow motion delve 50 p SHORT WAVE SINGLEE, 1pFF, 30p, ${ }^{25 \rho F}$, 55p. 50pF, 55p. RESISTORS. $i W, 1 w, 1 w, 20 \% 10 ; 2 w, 5 p$. 10 ber to 10 p. HIGH STABILITV. WW $2 \%, 10 \% 1 p ; 2 W, 5 p .10 \Omega$ to 10 M Ditto 5%. Preferred values 10 ohms to 10 mm . ${ }^{2} \mathrm{cop}$. WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt, 10 ohms to 100 K 10 e ench; $0-5$ ohm to $8-2 \mathrm{ohme} 10 \mathrm{p}$
TAPE OSCILLATOR COIL Valve type 35 p .
V.A.T.

NEW MODEL "BAKER LOUDSPEAKER", 12IN 50 WATT. FULL RANGE PROFESSIONAL OUALITY. $£ 17.60$
BAKER MAJOR12" 19.90

$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$. doiuble cone, wooter and tweeter cone together whith a BKKER ceremic midgnet aasembly having is fiux denstry of 14,000 geno and total Hux resonance 40 cl . Reted 20 w NOTE: 3 or 8 or 15 ohme mus be iteted.

Module klt, $30-17,000 \mathrm{c} / \mathrm{s}$ with twe eter, cromemer, batile and
£12.50 Please atate 3 or 8 or 15 ohms. Poat free BAKER 'BIG-SOUND' SPEAKERS Pot tree 'Group 25'| 'Group 35'| 'Group 50'
 TEAK VENEERED HIFI SPEAKER TEAK VENEERED HI-FI SPEAKER \& CABINETS For 12 in or 10 in dla. apeaker $20 \times 13 \times 9 \mathrm{in}, 23 \cdot 90$. Post 25 p
 LOUDSPEAKER CABINET WADDING 18 In wide. 15 p t.
GOODMANS $6 \frac{1}{2}$ in, HIFI WOOFER ohm. 10W. Large ceramic magnet. Speclal Cembric cone turround. Frequency reaponae
$30-12,000 \mathrm{c} / \mathrm{s}$. Ideal P.A
Columne. Hi-FI Enclosure Syetoma,
Sultable Coblinet $12 \times 1 \times 6$ \& Sultable Tweeter E 2

ELAC CONE TWEETER

 The moving coll diaphragm glves a good and a emooth extention of total response from $1,000 \mathrm{c} / \mathrm{s}$ to $18,000 \mathrm{c} / \mathrm{s}$. Sl2e $31 \times x$ 34×2 in deep. Rating 10 W .3 ohm . croseover Ei-25. 21.90 pout 20p.SPEAKER COVERING MATERIALS. Samples Large S.A.E. Horn Twester: 2-16kc/s, 10W ohm or 15 ohm $£ 1.95$ De Luxe Horn Tweeters $2-18 \mathrm{kc} / \mathrm{m}, 15 \mathrm{~W}, 15 \mathrm{chm} \mathrm{E3}$. CROSSOVERS, TWOWAY $3,000 \mathrm{c} / \mathrm{a} 3$ or B or $15 \mathrm{ohm} £ 1.25$ LOUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \mathrm{in}$., $£ 1.25 ; 8 \mathrm{fln}$, $£ 1 \cdot 50$

 3 ohm, 2 (n, 2 in, 3 in, $5 \ln$ dIa. ($6 \times 41 \mathrm{n}$ a ohme $\mathrm{E1}$-50.) RICHARD ALLAN TWIN CONE LOUDSPEAKERS, 8 In . DIA METER $4 W \mathrm{E2} \cdot 50$. 10 In diamater $5 \mathrm{~W} \mathrm{E} \cdot 50$; 12in dlamoter, GW, £2-95.
WALVE OUTPUT TRANS. 40p; MIKE TRANS. 50:1 40p. Mike trans. mu metio, 100:1£1.25. 15 ohme 40p.
MAJOR 100 WATT ALL PURPOSE
GROUP
AMPLIFIER
All purpose transilitorlaed Iden for Groups, Diaco and P.A.
4 Inpute apeupe, Daco and P.A.
mixing. Output $1 / 15$ ohm. a.c. Melns Separate treble and banes controle. Guaranleed. De talla SAE.
 BARGAIN AM TUNER. Medlum Weve Transistor Superhet, Ferrtte aerlat. 8 volt.
£4.95
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER. Add mualcal highilghte and sound affecte to recordinge. Whil mix Microphone, tecorde, tepe and tuner $\mathbf{~ w ~ 3 . 9 5 ~}$ Wht separate controla into aingle output. oV.
TWO CHANNEL STEREO VERSION gaRGAIN 3 WATT AMPLIFIER. 4 Tranalator
Puth-Pull Ready bult, with volume. Treble 4.50 Puath-Pull Ready bulit, with vo
and bass controls. 18 volt d.c.
COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18p. OUTLET BOXES, SURFACE 25p. FLUSH 60p. TWIN A5p. JACANCED TWIN RIBBON FEEDER 300 ohms. Sp yd. Chrome Letd-socke 45p. Phono plugs, closed clicult 23p; JACK PLUGS Std. Chrome 15p; 3.5mm Chrome 12p. DiN SOCKETS Chasala 3 -pin 10p. 5-pin 10p. Din SOCKETS Iead 3-pin 18p; 5-pin 15p. DIN pLUGS 3 -pln 18p; 5-pin $25 p$ VALVE HOLDERS, 5p; CERAMICS Ap; CANS 5p.

47. REVERSIBLE 4 POLE MOTOR illustreted. With Coollng Fan. e.c. 240 V . Poot 28 p

E.M.I. GRAM. MOTOR.
£1
2,400 r.p.m. 2 poil 70 mA . $81 z e 27 \times 2 \mathrm{i} \times 2 \mathrm{itn}$. Post 25° SPECIAL OFFER
100 ohm 20W Rheostet 2 In diam. Ceramic Former, screw terminala, fin diam. apindie. 95p, poet 25p.
337 WHITEHORSE ROAD, CROYDON
Open 9-6. Wed. 9-1, Sat. 8-5 (Closed for lunch 1.15-2.30) Buses 50, 68, 158. Rall Solhurst. Tel. 01-6841865

MENI！ $\left.\begin{array}{c}\text { Moy！} \\ \text { mov？}\end{array}\right]$ IBEDUNT PRICES

Newest，neatest system ever
 deris storing smal parts and components．
resistors，capacitors，diodes，transistors， etc．Rigid plastic units interlock together in vertical and horizontal combinations． Transparent plastic drawers have label slots／ ID and 2D have removable space dividers． Build up any size cabinet for wall，bench or table rop．

BUY AT TRADE PRICES！
SINGLE UNITS（ID）（5ins $\times 2$ ifins x 2tins）．El－40 DOZEN．
DOUBLE UNITS（2D）（5ins • 性ins \times 2tins）． $\mathbf{2} \cdot 30$ DOZEN
TREBLE（3D） $\mathbf{6 2 . 5 0}$ for 8.
DOUBLE TREBLE 2 drawers，in one outer case（6D2）， 63.60 for 8，EXTRA LARGE SIZE（6Di）$\angle 3 \cdot 40$ for 8 ．

PLUS QUANTITY DISCOUNTS！ Orders 110 and over DEDUCT 5% in the ε Orders 120 and over DEDUCT $7 \frac{1}{2} \%$ in the f Orders f 50 and over DEDUCT 10% in the \mathbb{L} PACKING／POSTAGE／CARRIAGE：Add 35p to all orders under $\mathcal{C} 10$ ．Orders $£ 10$ and over， packing／postage／carriage free．
QUOTATIONS FOR LARGER QUANTITIES Please add 10% V．A．T．to total remittance

OSMABET LTD．We make trangsprnerx ADTO TRANSFORMERS， $110 / 200 / 220 / 240 \mathrm{~V}$ ． $30 \mathrm{~W}, 41 \cdot 70$ ；j0W， $22 \cdot 40 ; 75 \mathrm{~W}, ~ £ 2.85$ ； $100 \mathrm{~W} .23 \cdot 80$ $500 \mathrm{~W}, 210 \cdot 80 ; 750 \mathrm{~W}, £ 14 \cdot 25 ; 1000 \mathrm{~W}$ ． $218 \cdot 00$ ，et LOW VOLTAGE TRANSFORMERS
Prim．200／240 a．c．631 1．jA，21－20：3A， 21.50 ； 6A，£2．55：12V1－5А，£1．50：3A，£2．55：6AC゙T，es．40； $18 \mathrm{~V} 1 . \mathrm{JA}$ CT， $22.55 ; 241$ JA（＇T，£2－55；3A CT＇ 28．45：5A，£4．80；KA．£7－35：12A，£10．85：40 3． CT，£4．60；$\overline{00 Y}$ 6A CT， $213-50$ ：
£4．90；12V 4 A＋12V 4 A，£4．90，
LTTRANSFORMERS TAPPED SEC．Prim．200／240V LTTRANSFORMERS TAPPED SEC．Prim．200／240V
$0-10-12-14-16-145$
$2 A$
0

 MIDGET RECTIFIER TRANSFORMERS For FW rect．； 2000240 V a．c． $9-0-95$－ $1 \cdot 3 \mathrm{~A}, 12-0-125$

 MAINS TRANSFORMERS

 $0-5-6.31$ A 89.75 ． $250 \mathrm{~V}^{2} 100 \mathrm{Ma}, 6.3 \mathrm{~V} \because \mathrm{~A}, \mathrm{E} / \mathrm{S}, \mathrm{x} 2 \cdot 70$ ．
O／P TRANSFORMERS FOR POWER AMPLIFIERS

 etc．），£15－75；tappeed Multi 0／P＇ 10 W £3．
G．E．C．MANUAL OF POWER AMPLIFIERS
Covering valte anplifiern of 30 W to 400 W .35 p LOUDSPEAKERS FOR AMPLIFIERS
BAKER 25w，£7．60；3．3W，£8．40；111．FI Major Moctule 20W w／tweeter Xover，£11－80：13aker speaker lista；FANE： $20 \mathrm{~W}, \mathrm{£10.50} \mathrm{:} \mathrm{fin} \mathrm{W}, \mathrm{£13.50} \mathrm{;} \mathrm{111-Fl}$
 $21.16: 7 x+$
21.75 each．
LOUDSPEAKERS
2tin 8,16 or
3
8
 6 in $3 \Omega, 8 \times 2113 \Omega, 21 \cdot 25: 10 \times 6$ in $3 \Omega, 51-50$ GPEAKER MATCHING TRANSFORMERS
12W 3 tu H or 15 Ω whr
＂INSTANT＂BULK TAPE／CASSETTE ERASER

tape hearn． 200 MINATURE
RELAYS．SUB－MINIATU
RELAYS．SUB－MINIATURE
12V d．c．FLUORESCENT LIGHTING
Silicon tranaistor im ertrir for：0W t uhe．玉5．75
TAPE RECORDER MOTORS

8．A．E．ENQUIRIES－LISTS，MAIL ORDER ONLY 48 Kenilworth Road．Edgware，Middx．HA8 8YG

A DEXTER

ALLOWS COMPLETE

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch，It is available as a complete＂ready to install＂unit or＂simple to assemble＂kit．Two models are avallable controlling up to 300 W or 600 W of all lights，except fluorescents，at mains $200-250 \mathrm{~V}, 50 \mathrm{~Hz}$ ．All DEXTER DIMMASWITCH models have built－in radio interference suppries－ sion．$\quad 600$ watt $£ 3.52$ Kit form $£ 2.97$

300 watt $£ 2.97$ Kit form $£ 2.42$
All plus 12 p post and packing
Prices include VAT．Please send c．w．o．to：

DEXTER \＆COMPANY

1 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tel：0244－25883

What readers say

To The SELRAY BOOK CO．， 60 HAYES HILL，HAYES， BROMLEY，KENT．BR2 7HP
Please find enclosed P．O．／Cheque value $£$
BASIC ELECTRICITY 5 parts $£ 5 \cdot 30$
BASIC ELECTRONICS 6 parts $£ 6.40$
BASIC TELEVISION 3 parts $£ 3 \cdot 60 \square$
Tick Set（s）required．Prices include Postage
YOUR 100% GUARANTEE．If after 10 days examination you decide to return the Manuals your money will be refunded in full．
NAME ．．．．．．．．．．
FULL POSTAL．．．
ADDRESS

ELEGTROVALUE catalogue 7

Catalogue No. 7

An \mathbf{A} to \mathbf{Z} guide to component buying

On the index page of Catalogue 7, between "Aluminium Boxes" and "Zener Diodes" are over 200 references to contents amounting in all to thousands of items, classified, described, often illustrated, and priced. There is a wealth of technicai diagrams and data. At 25p, Catalogue 7 is excellent value by any standard. With the 25 p Refund Voucher it costs you virtually nothing when you order $£ 5$-worth or more.

25p
 INCLUDING 25p REFUND VOUCHER AVAILABLE

 ON ORDERS $£ 5$ OR MORE LIST VALUE
\star A selection from EV Catalogue 7
 TRANSISTORS
 ELECTROLYTIC CAPACITORS
 RESISTORS $\stackrel{C}{C} \quad 1 / 20$

no semi-conductors of many types from simple lodes to ICs photo-sensitive devices, threshold

MINITRON DIGITAL INDICATORS
Soisif seren segment filament, comparible with standard logic modules. 0-9 and decimal point 9 mm characters in 16 lead DIL, El.20. Now available in 8 mA or 15 mA per segment rating Suitable BCD decoder driver. © $1 \cdot 15$.
(1.20 .

DALY ELECTROLYTIC CAPACITORS

in cons, plastic sleeved
$1,000 \mathrm{mF} / 25 \mathrm{~V}, 28 \mathrm{p} ; \quad 5,000 \mathrm{mF} / 25 \mathrm{~V}, 62 \mathrm{p} ; 1,000 \mathrm{mF} /$ $5,000 \mathrm{mF} / 1^{\prime} 00 \mathrm{~V}, 62.91 \mathrm{mV}, 57 \mathrm{p}: 5,000 \mathrm{mF} / 50 \mathrm{~V}, £ 1 \cdot 18$; POLYESTEA CAPA

POLYESTER CAPACITORS TYPE C280
Radiol leadi for P.C.B. mounting. Working voltage $0.01,0.015,0.022,0.033,0.047,3 p$ each; 0.068 , $0.1,0.15,4_{p}$ each; $0.22,5 p ; 0.33,7_{p} 0.47,8 p ;$ $0.68,11 \mathrm{p} ; 1 \cdot 0,14 \mathrm{p} ; 1 \cdot 5,21 \mathrm{p} ; 2.2,24 \mathrm{p}$.
SILVEREC MICACAPACITORS
Working voltage 500 V d.e
Values in p F- 2.2 to 820 in 32 stages, 6 p each 1,000, 1,5C0, 7p each: 1,800, 8p ; 2,200 10p; $6,800^{\prime} 20$ p; 3,200, $10,000^{25} 2$ p each 2

POTENTIOMETERS

ROTARY, CARBON TRACK
Double wipers for good contact and long working life P20 SINGLE linear 100 ohms 10 4.7M Ω, 14p each. P20 SINGLE log. $4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$, 14 p each
JP20 DUAL GANG linear $4-7 \mathrm{k} \Omega$ to $22 \mathrm{M} \Omega 48 \mathrm{p}$
jP20 DUAL GANG log, $47 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega 48 \mathrm{p}$ JP20 DUA GANG log/antilog $10 \mathrm{~L}, 22 \mathrm{~K}, 47 \mathrm{~K}$, $1 \mathrm{M} \Omega$ only, 8 p each.
JP20 DUAL GANG antilog lok only 48p.
2A DP mains switch with any of above 14 p extra above. SKELETON CARBON PRESETS 6 peach

SLIDER POTENTIOMETERS
Linear or lag, Iok Ω to IM Ω in all popular values
Escurcheon plates, black, whire or light grey, 10 p each.
Conerol knobs blk/wht/red/yel/grn/blue/dk. grey/l grey, 7p each

ONO ANOAN-OTM

This is εV Service

DISCOUNTS
Available on all items except those shown with 5% on orders $E 15$ and over
PACKING \& POSTAGE under, there is an additional handling charge of 10 p . GUARANTEEOF QUALITY
All goods are sold on the understanding that they All goods are sold on the understanding that they
conform to manufacturers' specifications and sacisfaction is guaranceed as such-no rejects. "seconds" or sub-standard merchandise is offered for sale.
Prices quoted do not include VAT, for which 10\% must be added to total nett value of order with written enquiries plen without notice. S.A.E

ELEGTROVALUE LTD

28 ST. JUDES ROAD - EMGLEFIELD GREEN Telephone: Egham 3603 Telex 264475 NORTHERN BRAHCH: G8O BURHAGE LAHE Telephone 061-432 4945

15\% an orders f15 on orders from E5 to El4.99.

FREE in U.K. For mail orders for $£ 2$ list value and

Shop hours-Daily $9-1$ and 2-5.30 p.m. Saturdays 9.1 p.m
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27, Swarthmore PA 1908

Code Watts ohms 1-9 $10-99 \quad 100$ up Mo
WW
WW 82-220K

> Codes: C-carbon film, high stability, low noise. MO-metal oxide, Electrosil TR5, ultra low nois WW-wire wound, Plessey
Values: All El2 except C $+W, C i W$ and $M O \frac{1}{2} W$ at
EI2.
E24, $10,12,15,18,22,27,33,39,47,56,68,62$ 75,91 and plus II, 13, 16, 20, 24, 30, 36, 43, 51, 62, Tolerand their decades.

$10 \% \pm 0.05 \Omega$

Prices and in pennies each for quantities of the same ohmic value and power rating. NOT on total value of (Ignorefractions of one penny apply to units of 100 only.
ZENER DIODES full range E24 values: 400 mW 2.7 V to 36 V , 14 p each; IW: 6.8V to 82 V , 21 p each;
$1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to $75 \mathrm{~V}, 48 \mathrm{p}$ each. Clip to increase 1.5 W rating to 3 watts (type 266 F) 4 p .

VEROBOARD

Copper clad 0.1 in. matrix -2.5×3.75 ins. 24 p 3.75×3.75 ins., 27 p. 2.5×5 ins., 27 p. 3.75×5 ins.,

Copper clad 0.15 in . matrix- 2.5×3.75 ins 18 p . 3.75×3.75 ins., 27p. 2.5×5 ins., 27 p. $3.75 \times$ 5 ins., ${ }^{33} \mathrm{p}$.
Vero spot face cutter (any matrix), 43p. 0.040 pins (for 0.1 matrix) per 100, 30p. 0.052 pins (for 0.15

GIRO ACCOUNT No. 38/671/4002
All postal communications, mail orders, etc., to Head Office at Egham address, Dept. PE4.

EGHAM
SURREY TWZO OHB Shop hours-9.5.30 daily. Soturdoys 9.-1 p.m. BURNAGE - MANCHESTER M19 INA

Practical Electronics Classified Advertisemenls

RATES: 9 p per word (minimum 12 words). Box No. 20 p extra. Semi-Display $£ 7$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

FOR SALE

FIBREOPTICS

Flexible Light Pipe for conveying lights to inaccessible positions. Fibroflex Type I. Glass metre (VAT ine), P \& $P, 10 p$ Any quantity

Polariser Sheat up to $1 \mathrm{sq}, \mathrm{ft}$, max, sixe, 16 ip per sq, in. (VAT inc.), P. \& P. up to 6 in. square 10p; over 6 in . square 30p
\qquad
See those nixie tubes
Cross themfor light control
\star Make your own strain gauge for plastics and glass
Circuit Board Etching Kitw. Full instructions. C1.37! (VAT inc.), P. \& P. 20p

Photographic CDS Light Cells-used (with part of original circuit free), 33p (VAT inc.). Post iree.
All items are strictly C.W.O.

From: ARVIN SERVICE COMPANY 12 CAMBRIDGE ROAD

ST. ALBANS

8EEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and inaterials. S.A.E.K. R WHISTON, Dept. PE, New Mills, Stockport.

```
    TV LIME ODT-PUT TRANSFORMERS
Tidman Mail Order L.td., 236 Sandycomb
    Road, Richmond, Surrey TW9 2EQ
        01-948 3702
```

CATALOGUE NO. 18, Eilcctronic and Mechanical Components and manufacturers surplus ('redit vouchers value 50 p . Price $23 p$ including post. ARTIUR SALLIS RADIO CONTKOL LTH., es (iardner Street, Brighton, Sussex.

MORSE MADE EASY!!
FACT NOT FICTLON. Il you start IRIGH'I you will be reading amateur and commercial Morse within a mooth (normal progress to be expected).
Using scientlically prepared 3.speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's as easy as learning a tune. 18 W. P.M. in 4 weeke guaranteed.
Beginner's Section ondy 83.30 , comblete course 84.50 4p stamp. 01-680 28

8AYE PETROL-Know instantly your mpg with a lBaron mpg Meter. Model 1b now available suitable for $1 \cong \mathrm{~V}$ neg. or pos. earth cars with s. © . electric fuel pump, not $P^{\circ} . l$. models Kit complete with all components p(board and x JC's. requires 1 ma meter P. C'. board and X JC's; requires lma meter
 llease state make, model and year. BAROS
ELE(TROXl' 176 brookhurst Avenue, ELECTRON1C's, 176 brookhurst Avenue, Gronborough, Wirral, L63 0PF.

LIGHT8HOW PROJECTOR8 from only E 17. effect wheels from only 84 . Many lightshow bargains at ROMER SQUIRE's (Jisco (entre), 1-6 Junction Road, Lonton, S.19. Tel. 01-27: 7474

08CILLO8COPE 80LARTRON CD7118. With full instruetion manual. Needs attention. Yorks West Riding. 225. ' McLEMAN, "1 Apley' (lose, Harrogate, Yorks., HG2 8PS.

ULTRA8ONIC AMPLIFIER8. Two M.E.L. Amplifiers 7 TOW £17, 35 W £15. 01-363 4076 (Enfleld).

LADDERS

LADDER8. "special Offer" unvarnished triples. 9 ft 7 in closed-23ft lin extended. £18.90 delivered. HOME SALES LADIDER ('ENTRE (PEE2), Haldane (North), HalesCENTRE (PEE2), Haldane (North), Hates-
fleld (1), Telford, Shropshire. Tel. 0952 fleld (1)
586644.

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON

QUALIFIED OR NOT!

OPPORTUNITIES for challenging work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ExServices technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits. Overtime normally available.
GENEROUS RE-LOCATION EXPENSES available in most instances.

CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$ hour, 5 -day, working week.
WRITE or phone for application forms quoting reference PE744.

MARCONI INSTRUMENTS LTD, Longacres, St. Albans, Herts Tel: St. Albans 59292
Luton Airport, Luton, Beds
Tel : Luton 33866

Tomp
A GEC-Marconi Electronics Company

SERVICE SHEETS

8ERVICE 8HEET8 for Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., from 5 p with froe Fault-Finding Guide. S.A.E. orders/enquiries. Catalogue 15 p . hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 29066 .

8ERVICE SHEET8, Radio, 'TV', etc. 8,000 models. Catalogue 15p. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston

wÁnted

> TOP PRICES PAID NEW VALVES AND TRANSISTORS Popular T.V. and Radio types KENSINGTON SUPPLIES 367 Kensington Street Bradford 8, Yorks.

WAR GAME8 COMPUTER. Urgently wanted. Constructed to Practical Electronics Published Circuit and in working order. Excellent price offered. Rattray 3731424 .

Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct-fromAmerica, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 3.500$ + p.a:
After training, our exclusive appointments bureau-one of the world's leaders of its kind-introduces you FREE to world-wide opportunities. Write or phone TODAY, without obligation.

London Computer Operators

Training Centre

S62, Oxford House
9-15 Oxford Street, W.I
Telephone 01-734 2874

EIECTRONCS VACANCLES

Ministry of Defence Experimental Establishment in the Lake District requires experienced electronics mechanics to instal, maintain and develop a wide range of interesting equipment.

Rate of pay for 40 -hour, 5 -day week $£ 31.03$, plus a productivity bonus of £2.65 per week. A guaranteed week agreement is in force.

The posts are pensionable, there is a sick pay scheme, three weeks' annual paid holiday and an assisted travel scheme: There is a prospect of housing accommodation within a reasonable period for a married man, hostel accommodation is immediately available for single men.

If you have served a recognised apprenticeship or have had equivalent service training and would like to work in a beautiful part of the country, send for an application form to:

Personnel Officer
Ministry of Defence (Procurement Executive) Eskmeals, Bootle Station
Cumberland LA19 5YR
Telephone: Ravenglass 214/5/6

EDUCATIONAL

CITY AND GUILDS EXAMINATIONS

Make sure you succeed with an ICS home study course for C \& G Electrical Installations, Telecommunications Technicians and Radio Amateurs. Free details from: International Correspondence Schools, Dept. 730 E , Intertext House, London, SW8 4UJ.

COLOUR TV SERVICING

Make the most of the current boom. Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by leading manufacturers. Also radio and audio courses. Free details from: International Correspondence Schools, Dept. 730 E 2 , Intertext House, London, SW8 4UJ.

TECHNICAL TRAINING

Get the qualifications you need to succeed. Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering and Programming. Also self build radio kits. Free details: International Correspondence Schools, Dept. 730E3, Intertext House, London, SW8 4UJ.

DIRECT FROM MANUFACTURER-a comprehensive catalogue of IV.H.F. and V.H.F/F.M aerials, fixing brackets, chimney lashings clamps, masts, amplifiers, cable, etc., for the D.I.Y, enthusiast. ('omplete' with useful installation hints. Send 3p stamp to ULAYDEW ENTERPRISEN (1.E.), 261 Hardness Street, London, SEe4

RECEIVERS AND COMPONENTS

(MAIL ORDER ONLY)
77 Hayfield Rd., Salford 6, Lancs.
Veroboard 6×50.1 Matrix, 2 for $£ 1$.
$4 \times 4 \frac{1}{2} 0.1$ Matrix, 4 for El . $12<33_{4}^{ \pm} 0.15$
Matrix, 75p each.
Mullard A.M. Module. I.F. Strip, LPII66,
El. 10 inc. P.P.
FM Tuner with R.F. Stage and A.G.C.
3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with
circuit, $\mathbf{f 1} \cdot \mathbf{3 7} \frac{1}{2}$ inc. P.P.
Crouzet Geared Motors, 30-60 r.p.m.
New, $f 1.54$ inc. P.P.
UHF TV Tuners. Transistorised, $£ 1.65$
inc. P.P.
VCRI38 CRT. New, boxed, $£ 3.30$ inc. P.P.
$\begin{aligned} & \text { Transformers. } 7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 66 \mathrm{p} \text { inc. } \\ & \text { P.P. } 12-0-12 \mathrm{~V}, 100 \mathrm{~mA} \quad 90 \mathrm{p} \text { inc. } \mathrm{P.P} \text {. }\end{aligned}$
$\begin{aligned} & 9-0.9 \mathrm{~V}, 100 \\ & 88 \mathrm{p} \text { inc. P.P. }\end{aligned}$
$\begin{aligned} & \text { 88p inc. P.P. } \\ & \text { Transformers. } 52-0.52 \mathrm{~V}, \mathrm{IA}+22-0.22 \mathrm{~V} \text {, }\end{aligned}$
$200 \mathrm{~mA}, £ 2 \cdot 20$ inc. P.P.
P.C. Board. S/S, $5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10$ for 70 p
inc. P.P.
Panel with 2 SN7490, 2 SN744I counting
circuit with end connector, $\mathbf{£ 2} \mathbf{2 0}$ inc. P.P.
Transistorised Timer. Variable delay. 110
or 250 V A.C. input. With instructions.
Brand new, $£ 2$ inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$
$10^{\prime \prime}$ Speaker in Cabinet, 3Ω with long lead
and jack plug made by Pye. Ex-Govt.
brand new 45.50 inc. P.P.
Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$,
$4 \frac{1^{\prime \prime}}{1} \times 1 \frac{3}{3}^{\prime \prime} 75$ p. inc. PP.
Ampex Tape 7 in . L.P. $1,800 \mathrm{ft}, \mathrm{f} \mathbf{1 . 6 0} \mathrm{inc}$.
P.P.
C.C.s. it sieries. brand new, untested, unmarked. Ideal for experimenters. 25 for 35p. Why not try a pack? SELE('TEI) SEMICONDUC'TORS, 17 ('oniston Way, BIm park, Hornchurch, Essex

PRECISION
POLYCARBONATE CAPACITORS
Close tolerance. High stability Extremaly low

 $\pm 2 \%$ and $\pm 5 \%$. ex. stock

TANTALUM BEAD CAPACITORS: Values available | 0.1 | 0.22. | 0 | 47.1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 35 V | 2 | 2 | 2 | $4 \cdot 7.6$ | 33 uF at 6 V a $16 \mathrm{~V} .47 \mu \mathrm{~F}$ 2 3 V . $22 \mu \mathrm{~V}$ a 100 F a 3 V . 11 10p each, 10 for 95 p ; 50 for $£ 4$.

TRANSISTORS: BC107. BC108. BC109, All at fp each 6 for 51p; 12 for 96p. May be mixed for quantity price BC182 and BC212 at 10p esch AF 178 at 30p each All brand new and marked full spec devices POPULAR DIODES. IN914, 6p each, 8 for 45p; 18 for 90p. IN916, 8p each. 6 for 45p: 14 for 90 p . 1844, 5p each 11 for sop; 24 for $£ 1$. All brand new and marked
NEW LOW PRICE- 400 mW Zeners. Values available 4.7.5 6. 6.8.7.5.8.2. 91.10 .11 .12 .135 .15 V To 6 for 39p; 14 for 4p. Special offer 6 of each voltage
(66 zeners) $£ 3-65$. (66 zeners) £3-65
RESISTORS. Carbon $411 \mathrm{~m} 5 \%$. $\frac{17}{} \mathrm{~W}$ at $40^{\circ} \mathrm{C}$. +W at $70^{\circ} \mathrm{C}$ Range from $2 \cdot 2 \Omega$ to 22 Mn in E12 series. i e 10.12 15, 18, 2227 33. 394756.6882 and their decades High stablue 70 p for 100 at ip each. $8 p$ for 10 o pack- 10 of each value 22Ω to $22 \mathrm{M} \Omega$ (730 resistors ${ }_{5} \mathrm{pack}$.
440V A.C. CAPACITORS: 0 1uF size $1 \mathrm{rIn} \times$ tin 40 p $025 \mu \mathrm{~F}$ (12in \times in $) .55 \mathrm{p} ; 047$ and $05 \mu \mathrm{~F}(1 \mathrm{fin} \times$? in) 66p; $40 \mu \mathrm{~F}(2 \mathrm{in} \times \mathrm{i} \mathrm{in}) 85 \mathrm{p} ; 20 \mu \mathrm{~F}(2 \mathrm{in} \times \mathrm{i} \mathrm{in}) . \mathrm{E} 1-15$. SILICON PLASTIC RECTIFIERS 1.5A. Brand new wire-ended DO27 100PIV at 7p each 4 for 26p 400PIV at 8 p each 4 tor 30 p ; 800 PlV at 11 p each tor 42p.

7p post and packing on all orders below IS
Export orders-please add cost of air/sea ma
PLEASE ADD 10\% VAT TO ALL ORDERS
Send S A E for lisis of other ex-stock items L E D $\$$. disc capaciors. electrolytics ex companies price hists avalable to bona ide companies

MARCO TRADING

Dept. E4, The Maitinge Statlon Rond Tel Nantwich, (Cheshire) 63291

LARGE COMPUTER PANELS. Average 40 transistors. Plenty of components, 84p (25p) AMERICAN PANELS, 2N series transistors. Quality components, 4, 55 p (10p). 7400 SERIES L.C.S. OH PANEL(S) 10, $£ 1$ post paid. M.C. METERS THREE ASSORTED $2 \cdot 3 \mathrm{in}, ~ £ 1.15$ (27 p). 5-FIGURE RESETTABLE COUNTER. 18/22N. Work on $12 \mathrm{~V} .82 \cdot 20$ (20p). SILICON DIODES, 650 V 11A s.c.R's 30V $1 \frac{1}{2}$ A ferrite cores and 12 WITH 10 \&1 (10p). COPPER CLAD PAX. PANELS, $5 \ddagger$ 5 inn 6, 45p c.p. 7 in $\times 9$ in 25p. c.p. 6, 太1.25 c.p $8 \mathrm{im} \times 9 \mathrm{in} .30 \mathrm{p}$ c.p. 6 . 21.35 c.p. $10 \mathrm{in} \times 9 \mathrm{in} 35 \mathrm{p}$ c.p. 6, $£ 1.45 \mathrm{c} . \mathrm{p}$. WIRE ENDED NEONs, 10.50 D (8p). FOUR PIANO KEY SWITCH WITH INTER LOCK, 33p (7p). SILVER MICA CAPACITORS 100 assorted, $55 p$ c.p. 10 ASSORTED MIDGEA $25 p$ io 25 m . 25p to 75 p . Send 10 p stamps for list of these and 71b ASSORTED COMPONENTS
2Ib ASSORTED COMPUTER PANELS E1.65 c.p.
J.W.B. RADIO

2 BARNFIELD CRESCENT, SALE, CHESHIRE M33 INL
Postage in brackets
Mail order only

5 N-CHANNEL FETs. Type 3819 E (2N3819) for $£ 1$ (inc. VAT). Fill spee. transistors com plete with circuit detais for building volt meter, timer, ohmmeter, etc. For complete list of EETs and other transistors available 4nd 10p P.O. REDHAWK SALES LTD., 5 Station Road, (rerrards Cross, Bucks. Mai Order Only:

COMPONENTS GALORE. Pack of 500 mixed romponents. Mannfacturers surplus plus once used. Pack includes resistors, carbon and W. W., capacitors various, transistors, diodes, trimmers, potentiometers, etc. Send $\$ 1+10 \mathrm{~F}$ P. \& P, C.W.O. to: (ALEDONLAN COMPONENTS, Strathore Road, Thornton, Fife.

```
CARBON FILM RESISTORS
High stability, very low noise. ElZ series
4R7-1M. Prices are per ohmic value. Ignore
fractions.
M 1+ 
POLYESTER CAPACITORS
C280 series. 250V PC mounting: 0.01, 0.015.
0.022, 2p; 0.033, 0.047,0.068,0.1, 3p; 0.15
0.22,4p;0.33,5p;0.47,6p;0.68,8p;1.0.10p;
1.5,14p; 2.2, 16p.
All prices include VAT. Please add lop postage
and packing on orders below £2. Fast service.
Cash with order only. Send 5p stamp for our
comprehensive catalogue.
```

C. N. STEVENSON
304 Avery Hill Road, London SE9 2JN

COMPONENT SALE

1,000's of components for disposal following wholesaler closing industrial electronics department.
OVER 200 TYPES OF CAPACITOR: Electrolytic, paper, metallised film at Electrolytic, paper, metalised
knock down prices (e.g. 0.04 mf . 150 V at knock down prices (e.g.
$\mathrm{l} \cdot 5 \mathrm{p}$, 10 mf d 16 V at 3 p).
Also large quantity of switches, fuseholders, semiconductors, variable transformers at unrepeatable prices.

Complete balance of stock must go.
Sand 4p in stamps and address for lists.
O \& M SERVICES (P.E.) 28IA BURY OLD ROAD, PRESTWICH MANCHESTER, LANCS. M25 5JA

```
MAIN8 UNIT FOR
TRAN8I8TOR RADIO ONLY
For single outputs, 6v, 9v, <2.20
For two separate outputs, }6v+6
9v + 9v, 62.75. P. & P. 20p per unit
(Please state outputs reqd.).
All units are completely isolated from mains by
double wound transformer, ensuring 100%
safety. ALL PRICES INCLUDE VAT.
R.C.S. Products (Radio) Ltd. (Dept. P.E.)
36 Raymond Avenue, South Woodford,
lo Raymond Avenu
```

BRAND NEW COMPONENT8 by return Electrolytics $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47,1,2 \cdot 2,4.7$ $10 \mathrm{mFF}, 4 \mathrm{p} ; 22,47,4 \frac{1}{2} \mathrm{p}(50 \mathrm{~V}, 5 \mathrm{p}) ; 100,5 \mathrm{p}$ $(50 \mathrm{~V}, 7 \mathrm{p}) ; 200,6 p(50 \mathrm{~V}, 9 \mathrm{p})$. Subminiature bead-type tantalums $0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.4 \overline{7} /$

 $0.02,2 p ; 0.04,0.05,3 p ; 0.068,0.1,3 \frac{1}{2} p$. Polyst ?rene 63 V E12 series $10-1,000 \mathrm{p} \mathrm{F}, 2 \mathrm{p} ; 1,200-$ $10,000 \mathrm{p} \mathrm{F}^{\prime}$, 3p. Miniature hichstab resistors, 5\%, E12'series- Carbon Film WW, 1』-10M』 (10 over 1 MS) Metal Fimm W, 10Ω
 I'ostage 8p. The C.I. SUPPLY CO., 127 Chesterfield Road, shetbeld, S\& ORN.

RADIO \& TELEVISION AERIAL BO08TERS 22.95, five television valves 45p. 50p bargain iransistor packs, hargain 81 resistor and capacitor packs. [1IF-VHF televisions $\mathbf{5 7 . 5 0}$ Carr. $£ 1.50$. S.A.E. for 3 leaflets. VELCO SLECTRON1CS, Hridge St., Ramsbottom, Bury, Lanes.
74 TTL - Lowrest prices. First grade ceramic packiged devices. 700 10p, 7473 27p. 74 -4 27p. Jatal booklet 10p. Jostate and packing 10p. A. 'TOOTliLL, Mendip ('lose, st. Albans, lerts.

TUNBRIDGE WELL8. Components from TELESLKVICE, 108 Camden Road 'Tunbridge Wells, Kent. Telephone 31803.

MINIATURE CERAMIC CAPACITOR8 50V 25 each Et value 22 p (o $1,000 \mathrm{ph}$. Total 275 £3-75. NEK ELECTRONICS (1'7), 28 Carnegie Road, St. Albans, Herts.

LONDON BOROUGH OF HILLINGDON

BARNHILL COMPREHENSIVE SCHOOL

Barnhill Lane, Hayes, Middlesex

Temporary teacher required as soon as possible for General Subjects which could include English, Geography and/or Mathematics.

APPLY IMMEDIATELY

Application forms from and returnable to the Headmaster/Headmistress.

London Allowance Payable: 75\% removal expenses in appropriate cases and some assistance with temporary accommodation may be possible.

> Build the Mullard C.C.T.V. Camera Kits are now available with comprehensive construction manual (also available separately at $76 \frac{1}{2}$ p)
> SEND $5^{\prime \prime} \vee 7^{*}$ S.A.E. FOR DÊTAILS TO CROFTON ELECTRONICS 15/17 Cambridge Road, Kingston-on-Thames, Surrey KTi 3NG

DON'T LOOK

unless you can resist the temptation to get these super 'attention-getters': * POCKET-SIZED MAXI-VOLT Big finch Spark Generator (instant 15,000 volts!) Ready-made, needs no batteries. Carry it around anywhere. Only weighs about 3 oz (85 g). Send $£ 1.35$ for your Maxi-volt now!

* UNIQUE TRANSMITTER/RECEIVER KIT. No licence examinations or tests required to operate this transisor tests required to operate this transis-
torised equipment. Easy to build. Get transmitting. Send $\mathbf{6 5} 90$ for yours now!
\star PSYCHEDELIC MINI-STROBE KIT. Take a pocket-sized lightning storm to Disco's and Parties. "BRAIN-FREEZE" 'EM with vari-speed stop-motion flashes. includes super case, too. Send $€ \mathbf{£ 2} \mathbf{2 0}$ now! (All prices include VAT, packing \& postage)
Send remittance to:
BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh Ewall, Surrey
(Mail order U.K. only)
Orfor more details, send i5p for lists, plus free design projest sheer

fibre optic suppliers

LOW COST LED-MLED 500, MV 54 ing MV 54 is Tz size, 2 mm , miniarcure mount emit visible red lighe. Current requirement 20 mA , 150 n resistors available for 5 V d.c. (TTL) operation.

2N5777-SILICON PHOTO

DARLINGTON AMPLIFIER Economical, high sensitivity. TO92, LIGHT DETECTOR | MLEDS00 | 22p | 2 | $44 p$ | $£ 1.10$ | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MV54 | 25 | 25 | | | |
| 3.74 | | | | | | $\begin{array}{llllll}150 \Omega & 22 p & \text { 44p } & \text { £1.10 } & 62.09 & 63.52\end{array}$

 TRANSMITTER RECEIVER PAIR 40 kHz for burgular alarm, remote control novelties. Great value at e3. 85 per transi
HNCP $\mathbf{3 7}$-NEUTRAL CIRCULAR
Reduce glare on Crt's, meters
Reduce glare on crt's, merers, displays, panels
$50 \mathrm{~mm} \times 50 \mathrm{~mm}(2 \mathrm{in}), 66 \mathrm{p}$ $50 \mathrm{~mm} \times 50 \mathrm{~mm}(2 \mathrm{in}), 66 \mathrm{p} ; 75 \mathrm{~mm} \times 75 \mathrm{~mm}$ CROFON 1610 - 64 FIL

CROFON 1610-64 FILAMENT 1.8 mm active dGHT CONDUIT length and conduct light where required. For displays, internal illumination, multiple point lighting. I metre, $\mathbf{f 1} 132 ; 2 \mathrm{~m}, \mathrm{E2} .64 ; 5 \mathrm{~m}, 45.50$; $0 \mathrm{~m}, 10.45$.

FP40-PILASTIC OPTICAL MONO. FIBRE, 1 mm DIAMETER
Singie strand unjacketed light guide, simple to use. 5 metres, $£ 1 \cdot 10 ; 10 \mathrm{~m}$, $\mathrm{f} 1.98 ; 25 \mathrm{~m}$, 63.85 .
FP20 (0.5 mm) and FP60 (5 . MARE'S TAILS FOR DECORATIVE DISPLAYS
7,000 fibres, professionally finished, beautiful. Add lamp, stand, cover to make a Fibre Optic Lamp. Eye catching in boardroom, hall or foyer, cill 00 each.
All prices shown include P. \& P., VAT. C.W.O.
please. For full informater please. For full information on our complete ange, send 9in \times bin S.A.E. to
FiBRE OPTIC SUPPL

FIBRE OPTIC SUPPLIERS (PE)
P.O. Box 702 London WI0 6 SL

METER REPAIR8. Ammeters, voltmeters, multi-range mpters, etc. Send to: METER REPAIRS, 30 Chesholm Road, London, N16 oDs.

EXPERIMENTER8! Hundreds of unusual items cheap. 1974 catalogue $5 \frac{1}{\frac{1}{p}}$. GRINSBY ELECTRONICS, 64 Tennyson Road, (llec-

 thorpes, Lines. (Mail Order Only').

ENAMELLED COPPER WIRE

$5, W$. $10-14$ $15-1$ $20-2$ $25-2$ $30-3$ $35-4$

S,W.G.	IIb Reel	$1 / 1 \mathrm{R}$
10-14	\$1.40	8
15-19	61.40	8
20-24	¢1.43	8
25-29	4. 52	9
30-34	f1. 57	97
35-40	\$1.69	1.

Pose add above prices to cover VAT
a a. in K. Supplied by
INDUSTRIAL SUPPLIES
102 Parrswood Rd., Withington, Manchest or 20
Telephone No. 061 -224 3553

```
CABINET FINISHING COMPONENTS
    Mecess catinet handles (plastic-black) 22peach (me'a{
    chrome bar) &1.90 eac
    Cabinet corner pieces (black plastic) 10p each (metal
    Sirap handles (black-chrome ends) 11/n 66p each gein
    55p each
    Cabinet covering cloth (vox type-black) 50til wide &1.75
    per yard
    Speaker cloth (platn or silver stripe Laney type 501% wide
    $1-65 per yard
    Jacksocket recess plates (t)in diameter) 7p each
    Jack sockers (chess plates (tlack plastic) 7p each
    lol
    16p each
    Cabinet castors (rubber lyred 4 hole tixing) 62p each
        (plastic wheel-win
    140z matt black spray paint 90p eac
    l
    Handy trimming knives 10p each
    Plastic piping for baflle edging (black or white) 6p, per yard
    Post and packing orders include var
    Post and packing Orders under £1 20p Orders between
    MAIL ORDER DEPT, P.E.1, HAMILTONS OF
        TEESSIDE
26 Newport Road,Middesbrough, Teesslde. Tel.
```

CLEARING LABORATORY, scopes, V.T.V.M's V.O.M's, H.S. recorders, transcription turn tables, electronic testmeters, calibration units P.S.V.'s, pulse generators, D.C. nullpotentiometers, bridges, spectruns analysers, voltage regulators, sig-gens, M C relays, components, etc. Jower Beeding 236.

BARGAIN LI8TS. Comectors, instrument hoxes, spark generators, silicon diodes, transistors, new items very low prices. S.A.E illustrated lists. FREAR, 2 Richmond Terrare, Clverston, Lancs. T, A12 OB1"

HARDWARE SUPPLIES-Sheet aluminium individual sizes or standard packs, drilled to spec. Nerews, muts, washers, etc., Fascia panels in aluminium individual requirements. Printed circuit boards, one-off or small runs. Printed circuit drafting tapes, etco, $7 p$ for list. RAMAR CONS'KRLCTOR SERVICES, 29 Shelbourne Road, Stratford-on-Avon, Warwks., ('vis 9JP.

LOW COST I.C. MOUNTING. I. ('. pin sockets in lengths of 100 for 60 p (P. © $\mathrm{P}^{\text {P. } 5 p}$). Quantits rates. S.A.E. details and sample. (iASKELI, 'Oak lodge," Tansley, Ierbşhire.

TWO GODDARD 61 NOTE KEYBOARD8, 29 each. Harmonics contact assemblies, 61 note. 4 pitch, $\mathrm{E}^{12:} 2$ pitch, 210 . JAQ'VES, 47 Newstead Road, U'rmston. Manchester.

12 VOLT FLUORESCENT LIGHTS

Beat power cuts. Be independent, Ideal for caravans, tents, emergency lighting, etc Works anywhere where $12 v$ is available. Guaranteed for six months. Ready to use at

12 ins. 8 watt $£ 4$ post paid including V.A.T.
8ALOP ELECTRONICS, 23 WYLE COP 8HREWSBURY; SHROPSHIRE. Callers welcome. For lists or enquiries, large s.a.e. Tel.: Shrewsbury 53206

BUILD OR BUYa

 Micro
 Miniature
 Transmitter

A precision piece of equipment that has been development. The smallest transmitter available in the UK. 2in k lin approv. Fits in the paim of your hand Can pick up and transmit voices and minute sounds. excellent range up to t mile Can be worn found the neck. held in the hand or placed on a shelf Receive on a VHF radio Universal battery connections enable use of PP? battery operates 4 Ia volt no nother connec. tions (completely self-contained) to operate. simpliv switch on Used the world over many applications Fully transistorised printed circuit (iuaranteed for 12 months
Assembled unit ready to use $£ 15 \cdot 50$
Kit with step-by-step assembly
instructions
If required. suitable radio for
receiving transmitter
lns. P \& P 45p
[13-50

MULHALL ELECTRONICS (P.E.) Ardglass, Co. Down, U.K. BT30 7SF (Eyporters to 14 countries) ($R+E$ licence required)

PUBLISHER'S ANNOUNCEMENT

Due to production difficulties existing at the time this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing

BUILD A CHORDING PROFESSIONAL SYNTHESISER

The Synthesiser shown above is the Dewtron "Apollo" A.1. which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you, the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching a thing of the past. VCO-2 voltage-controlled oscillator module has accurale built-in log-law for chording and other professional effects. 3 and 4 octave keyboards and contacts. VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt octave voltage control. £24 each or $£ 27$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals. £17. OFT-1 chording module $£ 9$. Modules (except VCO-1) guaranteed two years.
using ||:
PROFESSIONAL MODULES
LATEST ADDITIONS INCLUDE PITCH-TO-VOLTAGE AND SEQUENCE MODULES! AND MANY OTHERS.

CASH SAVINGS

by buying modules and parts in bulk!
All modules are available separately
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $£ 10.50$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type $\mathrm{WN} 1, £ 7$. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £13. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, $A F 1$, £10. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls $£ 5.50$. REVERB Module and spring unit £15. V.A.T. $10^{\circ}{ }_{n}$ extra. V.A.T. paid orders over $£ 75$.

With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technical developments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to leading groups. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.I. Send 150 for full catalogue of our famous musical effects.

PHOTOELECTRIC KIT

CONTENTS. P.C. Chassis Board. Chemicala. Etching Mannal, Inira-Red Phototransiator, Latching helay, 2 Transistors, Diode. Resistors. Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact everything you need to build a Steady. Light Photo-Britch/Counter/3urglar Alarm, etc. (Project. No. 1) Which

PHOTOELECTRIC KIT €2.85

Postage and Pack. 15p (U.K) Conmonwealth
SURFACE MAIL 25p AIR MAIL \&140 Australia, New Zealand, g. Africa. Canada and U.8.A Also Essential Data Circuite and Plans for Building 10 Advanced Designs

INYISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for himiling: I Invisible-ileam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photeelectric Burglar Alarms Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, 240 -degree wooden blocks. Infra-red filter, pro fector lamp holder, screws, naild. brackets, building plans, etc. Price 11.45 . Postage and Pack. 10p (U.K.). Commonwealth: Surface Mait 20p. Air Mail j0p
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTA: As above. Twice the range of standarl kit. Larger Lenses, Filter Price ticle (U.K.). Commonwealth: Surface 90 p . Air Mail $11 \cdot 15$

BIOFEEDBACX AMPLIFIER KIT

Tunable. General Purpose, Interference-Rejecting Differential Amplitier for experi mental investigation of signals produced liy the brain, heart and rbuscles. When uged with an oscilloscole, or aural indicator, it enablea you to monitor your brain waves, learn to relax, meditate, etc.
CONTENTS: All Capacitors, Resistors, Pots. Semiconductors, I.C., Electrodes, Leads, Chassis, Case, Batteries, Plans and inatrictions. Price 54.75 postage and pack 25 p (U.K.). Commonwealth: Surface 30p. Air Mail t'l.

ALPHA-BETHA.THETA BRAINWAVE MONITOR KIT

Aural Brainwave Indicator for use with a Biofeedback Amplifier. Converts sutmonic brain frequencies into audible signals tor easy recognition.
CONTENTS: Resistors, Pots, Capacitors, Transistorn, Diolea. Leals, Chassis, Case Earphone, Battery, Plans and Instruct ions. Price $88-25$, postage and pack. Iup (U.K.) Commenwealth: Surface 25p. Air Mail 75p

YORK ELECTRICS Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11

[^5]
A Quality 30 MHz

 Counter for under $£ 100$mEMORY DISPLAY 4 GATE TIMES AUTO INPUT LEVEL 10 mV SENSITIVITY
 10 MHz CLOCK 1 Hz RESOLUTION

Shortly available: 200 MHz version at $£ 200$
FOR HIRE OR SALES CONTACT John Tlcehurst
P.H. Electronlcs (Sales) Ltd. Sandwleh Industrlal Estate Sandwlch, Kent CT13 9LN Tal.: Sandwich 2517

BAKER 12" MAJOR E11.55

$30-14,500 \mathrm{cps}$. Double cone woofer and tweeter loudspeaker. Baker ceramic magnet assembly, flux density 145,000 gauss BASS RESONANCE 40 cps 20 watt RMS.
MAJOR MODULE KIT £14.85
30-17,000 cps. woofer, tweeter, crossover and baffle as illustrated. Size $19 \mathrm{in} \times 13 \mathrm{in}$.
NOTE-When ordering state 3 or B or 15 ohms.
BAKER LOUDSPEAKERS 100\% BRITISH MADE
Regent 12 in. 15W\&10.45 Superb 12 in. 20W 218.70 New Group $\mathbf{5 0 / 1 2}$

BAKER LOUDSPEAKER CO., BENSHAM MANOR PASSAGE THORNTON HEATH, SURREY TeI. 01.684.1665 PRICES INCLUDE VAT. HI-FI ENCLOSURE PLANS 42p

Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know about Radio \& Electronics maintenance and repairs for a spare time income and a career for a better future.

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that really interests you? Without losing a days pay, you could quietly turn yourself inte something of an expert. Complete the coupon for write if you prefer not to cut the page). No obligation and noboly will call on yon . . . but it cond be the best thang you ever did.

Others have done it, so can you

"Yosterdar I recesed a letter from the latitution informing that ms appleatom fur Anowate Memberhap had been approved. I can hone-th ay that this ba- been the best value for moner I hase ever obtaned a view erhecel by two colleagne who renently conmenced the couree" Student I.I.B., Yorks. "Completing rour conres, meant sring from a jub 1 detented to a job That I love, with manited properes", Student I.A.O. Dublan. "Mv training with B.I.1: T. quckl- changed my earning rapacity and,

FIND OUT FOR YOURSELF

These letters -- and there are many more on file at . Vidermaston Court speak of the rewards that come to the man who has duen himself the spectialised know-how employers seek. There's mo surer way of getting ahead or of opening up new opportumaties for yourself. It will cost vou a stamp to find out how we can help vou. Write to
B.I.E.T. Dept. BPE 10 Aldermaston Court, Reading RG7 4PF

Tick or state subject of interest.

To B.I.E.T., Dept. BPE 10
QN
Aldermaston Court, Reading RG7 4PF
BPE 10
NAME
Block Capitals Please
ADDRES5

BRITISH INSTITUTE OF ENGINEERING TECHUOLOGY

[^6]1 anry DON'T RELY ON YOUR MEMORY BUY NOW AT BARGAIN PRICES Hi Fi and Transistors - Up to date Brochures on request

BUILD THE NEW

YaT with Henry's Low Prices

Now buit and used by thousands FEATURES design, overall size in cabinet 15 in $\times 2$ in $\times 61$ in IC's. 10 transistors, stabilisers.解 field transformer, Fibre Glass PC Panel, complete chassis work Now available built and tested as well HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES-DEVELOPED TEXAS ENGINEERS FOR PERFORMANCE RELIABILITY AND EASE OF CONSTRUCTION FACILITIES. On/off switch indicator, headphones socket, separate treble, bass, volume and balance contro
Mag. P.U Radio Tuner Aux Can be alteredfor Mic. Tipector.
Mag. . U., Radio tur. Aux. Can be alo
Distributed by Henry's throughout UK
FREE leak cabinet with complete kit.

KII
met $£ 28 \cdot 50$ beled $£ 35 \cdot 00$ (+VAT + 50p carr/packing) or $+V A T+50 p$ carr/packing) as illustrated

EARN YOURSELF EASY

EQUIPMENT
OISCO MINI: A complete portable disco fitted mixer/preamp, 2 decks all facilities. As above but with Slider Controls SDLSIOO: 100 watt mixer
slider controls
$\not \subset 98 \cdot 50$

R50: 50 watt mixerlamplifier
A 100100 watt mixer/amplifie.
mixer/amplifier 40040 watt
80080 watt mixer amp
DISCO MIXER/PREAMPLIFIERS (O/P
or up to 6-100 watt amplifiers)
SDEII (slider controls)
DISCO VOX (slider controls) : The com-
DJI00: 100 watt power amplifier for above DJ30L MkII 3 channel 3 kW sound to light DJ30L MkIII. Slider Controls
lashes:-
flashes.
DIMAMATIC IkNA adjustable speed auio dimme
Disco anti-feedback microphone
Colt 150 wat: liquid wheel proje 150 wate $Q 1$ liquid wheel projector 150 watt Ql cassette wheel projector Spare Effects and Liquid cassettes. large range of patterns
Auto spotbank irted 3 lamps
Auto Trilite (mini with flashers)
MIXERS/MICS/SPEAKERS/LIGHTING
U.K.'slargest range of Disco lighting

Gin iquid wheels $\mathbf{5} .00$ various Cassettes $\mathbf{~} \mathbf{6 . 0 0}$ AKG/RESLO/DJ/CARLSBRO/EAGLE
CHASSIS AND COMPLETE SPEAKER SYSTEMS, MEGAPHONES, TURNTABLES, PUBLIC ADORESS COMPONENTS, MICS. STANES, MIXERS, CABINETS

All prices Barclaycard/Access call, wrice or phone your orde for callers.

EXCLUSIVE DECCA KELLY SPEAKERS
 12 watt speaker Tweeter

 anst Melinex Domed HF crossover $£ 12.50$ per pair iator plus (carr/packg. 40p) or built into vens. eered cabinets, size $18 \times 12 \times 6 \frac{1}{2}$. © 19.50 pair (carr. €1)
HI-FI TAPE

 EQUIPMENT U.K.'s largest rang with discounts and demonstrations for callers. Latest stork lists un request Rel. No. 17). hone Di 4024736 for Barclay/Access TRANSISTORS

SEMICONDUCTORS

U.K.'s largest range for every application. Small quantity discounts. Also Trade, Export and industrial (Ref. No. 36). Including valves on request.

ELECTRONICS SUPPLIES

Specialists in electronics for more than 30 years. Trade and industry supplies - every type of component and equipment

SINCLAIR PROJECT 80

tereo Preamplifier
E11.95
Audio Filter Unit
Z40 IS watt Amplifier
PZ5 Mod. for 1 or 2 Z 20
PZ6 Mod. (5 Tab) 1 or 2
Z40 Mod. (S Tab) I or 2
Z60
PZ8 M-
NEWFMTUNER
All irems post paid.

HENELEC STEREO
FM TUNER

A completely new high stability stereo FM tune
Features variable capacity diode tuning, stabiliser power supply, IC Decoder, high gain low noise. IF stages. LED indicators, Tuning meter, AFC
Easy to construct and use. Mains operated. Slim modern design with fibre etc. Available as a kit to build or ready built Overall size: 8 in $\times 2 \frac{s}{4}$ in $\times 6$ lin. Produced to give high performance with a realistic price. (Parts list Ref. No. S, 30p.) Henry's

Kit Price	£21.00
ot bull and tested	£24.95

LIVING SOUND LOW NOISETOP QUALITY CASSETTES MADE BY EMI TAPES LTD. TO INTERNATIONAL STANDARDSESPECIALLYFOR HENRYS. ALLPOSTPAID CASES.

C60

690	$E 1 \cdot 10$	$E 1.98$

 LEARN A LANGUAGE German French, Spanish, Italian. EI.36 per course. $\mathbf{E S}$ for any 4.

LOW COST HI-FI SPEAKERS

SPECIAL OFPERS

EMI 13 in $\times 8$ in-full range speakers (post 20 p each or 30 p pair); *150TC- 8 ohms Twin Cone 10 watt, $\mathbf{~} 2 \cdot 20$ each or $£ 4$ pair; $\mathbf{*} 45010$ wact clo Twin Tweeters 3. 8 or 15 ohms, $\mathbf{6 3 - 8 5}$ each; EW is watt
ohms c/o Tweeter, $£ 5.25$ each: 35020 watt c/o Tweeters 8 or 15 ohms, $£ 7.80$ each.

Poished wood cabinet $\mathbf{4 - 8 0}$, post 35p
8 ohms full range (post 20 p)
FR4 4in Swatt, 64.15; FR65 $6 \frac{1}{3}$ in 10 watt, 66.30 : FR8 8in 15 watt, $\mathbf{6 8} 50$; FR23 9×6 in 15 watt.

BASS AND MID RANGE—8 ohms (post 20p)
AA 125 in 15 watt, $\mathbf{~ 3 . 7 5 ; ~ B 1 1 0 ~} 5 \frac{1}{2}$ in 15 watt E7.20; B200 8 in 15 watt, $\mathbf{E 8}$.50; B139/2 13 in $\times 8$ in

TWEETERS AND CROSSOVERS (post 20p)

SPEAKERKITS (carr etc. 35p)
$20-2$ in 30 watt, $\mathbf{6 4} \mathbf{2 4 0}$ pair; 20-3 8 in 40 watt, $\mathbf{6 5} .95$ pair: LINTON 2 20 wath, $£ 18.30$ pair; GLENDALE 330 watt, $\mathbf{4 2 . 9 5}$ pair; DOVEDALE

BULLD YOURSELF A POCKET CALCULATOR

A complete kit, packaged in a polystyrene container and taking about 3 hours to assemblethat's the Sinclair Cambridge pocket calculator interface chip, thick-film resistor pack. printed circuit board. electronic components pack. Size: $4 \frac{1}{2}$ in long $\times 2 \mathrm{in}$ wide $\times 3$ in deep. ree of charge with the kit for the more advanced echnologist is a 32-page booklet explaining how

Price $\mathbf{£ 2 4 . 9 5 (+ V A T)}$ Abo asembled $£ 27 \cdot \mathbf{2 0}$ (+ VAT)

ready to use

[^0]: © IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland £3.25, Overseas £3.50. International Giro facilities Account No. 5122007. Please state reason for payment, "message to payee".

[^1]: 6. Prices showinare recommended retail, excluding V AT:

 From Electrical and Hardware Shops. If unobtainable, send $10 p$ p\&p direct to Bib HirFi-Accessories Limited, Hemel Hempsiead, Herts HP2 7EP

[^2]: F TELEPRINTER HANDBOOK
 AN RSGB PUBLICATION Price $\mathbf{6 5} \mathbf{2 5}$

 HANDBOOK OF IC CIRCUIT PRO. JECTS by J. Ashe. Price ©I. 50 .
 HOW TO USEINTEGRATEDCIRCUITS LOGIC ELEMENTS by J. W. Streater. Price \&1.50.
 T.V. ENGINEERS' POCKET BOOK bY P. J. McGoldrick. Price $\mathbf{1 2 . 6 0}$.

 2nd BOOK OF TRANSISTOR EQUIVALENTS AND SUBSTITUTES by B. B. Banbani. Price cil.05.
 SERVICING WITH THE OSCILLO. SCOPE by G. J. King. Price R2.
 BASIC ELECTRONIC TEST PRO. BASIC ELECTRONIC Price
 CEDURES by 1. Gottlieb.
 ELECTRONICS POCKET BOOK by J. P. Hawker. Price 11.70 .
 HI FI YEAR BOOK 1974 by C. Sproxton. Price 11.75 .
 BASIC ELECTRONIC CIRCUITS SIMPLIFIED by N. W. Hibbs. Price 22 . THE MAZDA BOOK OF PAL RECEIVEA SEAVICING by D. J. Seal. Price E4. TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. Price $\mathbf{E l}^{1 / 90}$.

 * All pmices include postage *

 ## THE MODERN BOOK CO.

 BRITAIN'S LARGEST STOCKIST of British and American Technical Books
 19.21 PRAED STREET

 LONDON W2 INP
 Phone 01.723 4185
 Closed Saturday I p.m.

[^3]: R O. London Road, St Ives, Huntingdon, PE174HJ Phone St Ives (O480) 64311 Reg. No. 699483 England

[^4]:
 ALUMINIUM BOXES, $3 \times 3 \times 31 \mathrm{n}$ 60p: $4 \times 4 \times$ 4in 70 p .
 ALUMINIUM PANELS 14 a.w.g. $6 \times 4 \ln 9 p ; 8 \times 8 \ln 15 p$; 16 $\times \sin 24 P$; $14 \times 9 \ln 34 p_{i} 12 \times 12 \ln 40 p ; 12 \times 10 \ln 50 p$

[^5]: send S.A.E. for full details, a brief description of all Kits and Projects

[^6]: Hants Sole Agents for Australia and New healand-Gordon \& Goth Gotch (Adsia) Fleetway House, Farringdon Street. London. E C. 4 Printed in England by Chapel River Press. Andover. E3 25, Overseas $£ 3.50$.
 Practical Electronics is sold subject to the following conditions, namely, that it all not withour
 disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be tent. resold or hired out be lent. resold, hired out or otherwise condition or in any unauthorised cover by way of Trade. or affixed to or as part of any publication or advertising. literary or pictorial matter whatsoever

