PRACTICAL

반
 MAY 1974
 ESp

 DESIGN CHART\rightarrow

MODEL X25
220-240 Volts or 100-120 Volts. The leakage current of the NEW $\times 25$ is only a fow microamps and cannot harm the most delicate equipment even when soldered "live". Tested at $1500 v$. A.C. This 25 watt iron with its truly remarkable heat-capacity will easily "out-solder" any conventionally made 40 and 60 watt soldering irons, due to its unique construction advantages. Fitted long-lite iron-coated bit $1 / 8^{\prime \prime} .2$ other bits available $3 / 32^{\prime \prime}$ and 3/16" Totally enclosed element ceramic and steel shaft. Bits do not "freeze" and can easily be removed. MODEL G
18 watt 18 watt

You know the type . . . whenever you need him to do one thing he'll want to do the other. And nothing will make him change his mind.
It's the same with some people's soldering irons.
Hopelessly inefficient heat control can give an iron a will of its own and make soldering operations a nightmare. If this is what soldering means to you it's time you woke up to Antex. Just choose a new model from the comprehensive Antex range of advanced soldering instruments, with unique constructional advantages . . . Iow leakage characteristics, interchangeable bits to match solder-joint requirements, and really precise heat control.
Choose ANTEX-the warm hearted iron
miniature iron,
 fitted with long-life
iron-coated bit $3 / 32^{\prime \prime}$ Voltage 240,220 or 110 2 other spare bits available $1 / 8^{\prime \prime}$ and $3 / 16^{\circ}$
PRICE f2. 26 (rec. retail) P\& P10p.

- MODEL CCN 220 volts or 240 volts.
The 15 watt miniature model CCN also has negligible leakage. Test voltage 4000 v . A.C. d keep yourcool)
elosed element in ceramic shaf MODELC Miniature 15 watt soldering iron titted 3/32' iron-coated bit. Many other bits available from $3 / 64^{\prime \prime}$ to $3 / 16^{\prime \prime}$ Voltages $240,220,110$ 50 or 24. PRICE $£ 2.05$ (rec. retail) P\& P 100 .
other bits availab-coated bit $3 / 32^{\prime \prime}$. and $3 / 64^{\prime \prime}$ including Heat Shield. PRICE E2.48 (rec, retail) P \& P 10 p .

PRICE £2.05
(rec. retail) P \& P $10 p$. Suitable for production work and as a general purpose iron

MODEL SK. 1 KIT
Contains 15 watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, heat sink, solder, stand and "How to Solder" booklet

for connection to car batterv Packed in strong plastic wallet with booklet "How to Solder". PRICE £2.54 PRICE $£ 2.54$
(rec. retail) $\& P 12 p$.

MODEL MLX KIT
Battery operated 12 v 25 watt iron fitted with 15' lead and 2 heavy clips

MODEL SK. 2 KIT
Contains 15 watt miniature iron fitted with $3 / 16^{\prime \prime}$ bit, 2 spare bits $5 / 32^{\prime \prime}$ and 3/32" heat sink, solder. and "How to Solder" booklet. PRICE $£ 3.25$ (rec. retail) P \& P $10 p$.

ST3 Stand - This stand is made from high gradeinsulation material with a chromium plated strong steel spring. It is suitable for all models and replaces all previous stands. The two sponges at the side which are easily replaceable serve to keep the soldering bits clean. Spare bits can be accommodated

> as shown on the illustration.
 isto
 $230 / 24 \mathrm{CV}$
\square Please send the
ANTEX colour catalogue.

CONSTRUCTIONAL PROJECTS

*SOUND BENDER by D. Bollen
Design Chart feature for a versatile sound effect unit, based on a simply 412
constructed audio modulator
ELECTRONIC FLASH METER by J. TubbyObtain good black-and-white and colour results with this simple to operate416flash exposure meter
AN IMPROVED BATTERY CHARGER by J.N. Watt
A low cost "fail safe"' design which incorporates short-circuit, reverse polarity 434 and overcharge protection
LIQUID CRYSTAL CLOCK by S. Garrett
Final constructional details and setting-up instructions 444
GENERAL FEATURES
FIRST STEPS IN CIRCUIT DESIGN-2 by A. P. Stephenson
The second part of this instructional series looks at transistor parameters and 426
their effect on circuit design
INGENUITY UNLIMITED
Waa-Waa effects circuit-Universal Flasher 430, 438
LIQUID CRYSTALS by G.P. Stenning
A look at a new development in display techniques 431
NEWS AND COMMENT
EDITORIAL-Growth Rate 411
NEWS BRIEFS
British National Data Buoy-Solid-State TV Camera-Oxford Street Store 422
SPACEWATCH by Frank W. Hyde
Energy from Space 425
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 439
ESP, etc. by B. H. Baily
Unexplained happenings and phenomena 442
MARKET PLACE
Interesting new products 453
PATENTS REVIEW
Thought provoking ideas on file at the British Patent Office 454
READOUT
A selection of readers' letters 457
POINTS ARISING
P.E. Rondo-100W Inverter/Charger-Auto Charger-Regulator 457
*SPECIAL FREE DESIGN CHART
P.E. SOUND BENDER

Our June issue will be published on Friday, May 10, 1974

[^0]9GIRO NO. 3317056
C.W.O. only. P. \& P. 10p on orders below C5 Export Order enquiries welcome (VACt items

Offlcial Orders accepted from
Educational \& Government Departments
ALL PRICES INCLUDE VAT

Abstract

SPECIAL RESISTOR KITS (Prices include Post and Packing) IOEI2 IW KIT: 10 of each EI2 value, 22 ohms- 1 M, a total of 570 (CARBON FILM 5%). $\mathbf{~} 3.65$ net IOE12 WW KIT: 10 of each E12 value, 22 ohms-IM, a total of 570 (CARBON FIM 5%). $\mathbf{~} 3.85$ net $25 E 12$ W KIT: 25 of each El2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5%). $£ 8.35$ net $25 E 12$ W KIT: 25 of each EI2 value. 22 ohms-IM, a total of 1425 (CARBON FILM 5%). $£ 8.45$ net $15 E 12$ IW KIT: 15 of each EI2 value, 22 ohms-2M2, a cotal of 1220 (METAL FILM 5%), Ell.05 net

MULLARD POLYESTER CAPACITORS C280 SERIES $250 V$ P.C. Mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 31 \mathrm{p} .0 .068 \mu \mathrm{~F}$ $15 P$ I $5 \mu F, 23 P 22 \mu F, 26 p$. 24 CAPACITORS C296 SERIES
MULLARD POLYESTER CAPA
400V: 0.001μ F, $0.00 \mid 5 \mu$ F, 0.0022μ F, 0.0033μ F, 21 p. 0.0047μ F, $3 p, 0.0068 \mu$ F, $0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3$ ip $0.047 \mu \mathrm{~F}, 0068 \mu \mathrm{~F}, 01 \mu \mathrm{~F}, 4 \frac{1}{2} \mathrm{p}$. $0.15 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} \cdot 0.22 \mu \mathrm{~F}$ $8 \frac{1}{2} \mathrm{p} \cdot 0.33 \mu \mathrm{~F}, 12 \mathrm{p} \cdot 0.47 \mu \mathrm{~F}, 14 \mathrm{p}$.

MINIATUAE CERAMIC PLATE CAPACITORS
$50 \mathrm{~V}:(\mathrm{DF}) 22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$,
$560,680, ~ B 20, ~ K$

$\mathbf{2}$ POEACh.
POLYSTYRENE CAPACITORS $160 \mathrm{~V} 5 \%$
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$. 4700, 4p $10,000,4 \frac{1}{1 p}$.

RESISTOAS CF-High Stab							
W.	Type	Range	$1-99$	100-499	500-999	$1000+$	Size mm
t	CF	22-1 M	1	0.75	0.60	0.55	2.4×7.5
$\frac{1}{4}$	CF	22-2M2	1	0.75	0.60	0.55	3.9×10.5
$\frac{1}{2}$	CF	22-1 M	1	0.75	0.60	0.55	5.5×16
$\frac{1}{4}$	MF	10-2M7	2	154	1.32	1.1	3×7
$\frac{1}{2}$	MF	$10-2 \mathrm{M} 2$	2	1.43	1.21	0.99	4.2×10.8
1	MF	10.10 M	3	1.98	$1 \cdot 81$	1.65	6.6×18
2	MF	10-10M	4.5	3.52	3.08	2.75	8×17.5

For value mixing prices, please refer to our catalogue (price in pence each).
VALUES AVAlLABLE.
PRESET SKELETON POTENTIOMETERS MINIATURE 0.25 W Vertical or horizontal $6 p$ each $1 K, 2 K 2,4 K 7.10 K$, ete. up to $1 \mathrm{M} \Omega$
SUB-MIN. 0.05 W Vertical. 100Ω to $220 \mathrm{~K} \Omega \mathrm{sp}$ each

Wavechange Switches $1 \mathrm{P}, 4 \mathrm{~W} ; 1 \mathrm{P}, 12 \mathrm{~W}, 2 \mathrm{P}$,
$2 \mathrm{~W}: 2 \mathrm{P}, 4 \mathrm{~W} .2 \mathrm{P}, ~$

B. H. COMPONENT FACTORS LTD.

Miniature Mullard El			VEROBOARD 0.10 .15				POTENTIOMETERS					
1.04F63V	61p	68, F $16 \mathrm{~V} 6 \frac{1}{1} \mathrm{p}$	$2 \frac{1}{21}$.			$\begin{aligned} & 28 p \\ & 19 p \end{aligned}$	5 witch 26p			ors, 10K. 100 K .500 K .30	0mm, 3	
1. $5 \mu \mathrm{~F} 63 \mathrm{~V}$	${ }^{61 p}$	$68 \mu \mathrm{~F}$ \% $63 \vee 12 \mathrm{p}$				33p ${ }^{38 p}$	DIO					
$\frac{2.2 \mu \mathrm{~F}}{3} \mathbf{3} \mathrm{~F} 63 \mathrm{~V}$		$100 \mu \mathrm{~F}$ $100 \mu \mathrm{~F}$ 25 V 10 p 1 p				${ }^{7}$			2 Pin 12 p	(μ F/V) : $1 / 25,2 / 25,4 / 25$	4.7110	25, 8/25, 10/10, 10/50. $16 / 25$,
$40 \mu \mathrm{~F} 40 \mathrm{~V}$	$6{ }^{6}$	$100 \mu \mathrm{~F} 63 \mathrm{~V} 14 \mathrm{p}$	$2{ }^{2} \frac{5}{5}$	Plain)		14p	IN4002 7ip		${ }^{3}$ Pin 13p	22/63, 25/25. 25/50, 32/2	25, 50/25	100/10, 100/25, $6 \frac{1}{2} \mathrm{p} .50 / 50,8 \mathrm{p}$.
$4.7 \mu \mathrm{~F} 63 V$	$6{ }^{19}$	$150 \mu \mathrm{~F}$ 16V 6 ¢p	21 ${ }^{\frac{1}{2}} \cdot 3 \frac{3}{3}$	(Piain)		12p	IN4003 9p		in 180° 15p	100/50, 200/25, 11p. 25	50/50, 18	p. $500 / 10,11 \mathrm{p} .500 / 25,15 \mathrm{p}$.
$68 \mu \mathrm{~F} 53 \mathrm{~V}$	${ }_{61 p}$	$150 \mu \mathrm{~F} 63 \mathrm{~V} 15 \mathrm{p}$	5 3z			${ }_{59}^{22}$	IN400491p		5mm Jack $14{ }^{\text {dip }}$	500/50, 18p. 1000/10, 15		5, 22p. $1000 / 50,40$ p. 2000/10,
8. $0 \mu \mathrm{FF} 20 \mathrm{~V}$	$6{ }_{6} 6$	$220 \mu \mathrm{~F} 64 \mathrm{~V} 6 \frac{1}{2} \mathrm{p}$	Insertio		59p	54p	iN4005 12p		hono jack $5 \frac{1}{1} \mathrm{p}$	$20 \mathrm{p} .1000 / 100.90 \mathrm{p} .200 \mathrm{p}$	80/25. 300 p	2000/100, 95p. 2500/25. 38p.
$10 \mu \mathrm{~F}$ $10 \mu \mathrm{~F}$ 25 V	$61 p$ $6 . p$		Pins, Pk			$\begin{aligned} & 44 p \\ & 10 p \end{aligned}$	$\begin{aligned} & \text { IN4006 14p } \\ & \text { NNI } \end{aligned}$			251-VO, $62 \mathrm{p}-300 / 50$ H. $4450,14 \mathrm{p}$.	80p. 813500	
$10 \mu \mathrm{~F} 63 \mathrm{~V}$	$6{ }^{6}$	$220 \mu \mathrm{~F} 63 \mathrm{~V} 21 \mathrm{p}$					IN916 70		2 Pin	16/450, 23p. 32/350, 33	p. 50/25	20p. $100 / 500,88 p$.
$15 \mu \mathrm{~F} 16 \mathrm{~V}$	$61 p$	$330 \mu \mathrm{~F} 16 \mathrm{~V} 12 \mathrm{p}$		STO					3 Pin 10p	METALLISED PAPE	ER CAP	CITORS
$15 \mu \mathrm{~F}$ $16 \mu \mathrm{~F}$ 10 V		$\begin{aligned} & 330 \mu \mathrm{~F} \\ & 470 \mu \mathrm{~F} \\ & 64 \mathrm{~V} 9 \mathrm{P} \end{aligned}$	ACI26	16 ${ }^{\text {p }}$ p			$\begin{array}{ll} O A 5 & 42 p \\ O A A 7 & 9 p \end{array}$		Pin $180^{\circ} 12 \mathrm{p}$	$250 \mathrm{~V}: 0.05{ }^{\prime} \mathrm{F}$. $0.1 \mu \mathrm{~F}, 6 \mathrm{p}$.	0.25, 6p.	0. $5 \mu \mathrm{~F}, 7{ }^{\frac{1}{2} \mathrm{p}}$. $1 \mu \mathrm{~F}$
$22 \mu \mathrm{~F} 25 \mathrm{~V}$	$6{ }^{6} \mathrm{p}$	$470 \mu \mathrm{~F} 40 \mathrm{~V} 20 \mathrm{p}$	AC128	22 p	BC213L	12 p	OAB1 110		d. Jack 14tp	$500 \mathrm{~V}: 0.025 .0 .05,6 \mathrm{p} .0 .1$ $1000 \mathrm{~V}: 0.01 \mathrm{p} .0 .022$	1, 6p. 0.25	
$22 \mu \mathrm{~F} 63 \mathrm{~V}$	${ }_{6} 6$	$680 \mu \mathrm{~F} 16 \mathrm{~V} 15 \mathrm{p}$	BC107	$11 p$	BCC214L	$17 p$	OA200 8p		5inmalack $5 \frac{1}{3}$	$\begin{aligned} & 1000 \\ & 28 p . \end{aligned}$		
$32 \mu \mathrm{~F}$ $33 \mu \mathrm{~F}$ 16 V	${ }_{6} 1$		BC108 BC	${ }_{12 \mathrm{p}}$	OC41	18 p	Integrat		5 cr			
$33 \mu \mathrm{~F} 40 \mathrm{~V}$	${ }_{6}^{6+p}$	$1000 \mu \mathrm{~F} 25 \mathrm{~V} 25 \mathrm{D}$	BC148	12 p	OCal	16p	Circuits		Twin Scree	Wire, Metre	12 p	film 5\%.
$32 \mu \mathrm{~F}$ 63V	${ }_{61 p}$	$1500 \mu \mathrm{~F} 5.415 \mathrm{p}$	${ }^{8 C 1} 49$	12 p	$\mathrm{OCl}^{\text {Cl }}$	${ }^{23} \mathrm{p}$	$\mu \mathrm{A} 709 \mathrm{C}$	50 p	Stereo Screen	ed Wire, Metre	12 p	Ultra low noise new resistors.
$47 \mu \mathrm{~F}$ lov	${ }^{61 p}$	$1500 \mu \mathrm{~F} 16 \mathrm{~V} 25 \mathrm{D}$	${ }^{8 C 182 L}$	12 p	T1543	${ }^{311}$	$\mu A 741 C$	$55 p$	Connecting	Wire, All colours. Metre		ith full
$47 \mu \mathrm{~F} 25 \mathrm{~V}$	${ }_{6}{ }^{1 / p}$	$2200 \mu \mathrm{~F} 10 \vee 25 \mathrm{p}$	${ }^{\text {BCl }} 831$	12 p	2 N 2926	11 D	$\mu \mathrm{A} 723 \mathrm{C}$	1	Neon Bulb,	\checkmark Wire Ended	5 for 24 p	each E12 value. 10Ω-IM.
$47,2 \mathrm{~F} 63 \mathrm{~V}$	610	$3300 \mu \mathrm{~F} 6.426 \mathrm{p}$	BC184L	$13 p$	3702	p	14	35p	N	40 V . Red, Amber, Clear	$18 \frac{1}{2} \mathrm{P}$	total $305 . \quad$ ¢2.75

PHOTOELECTRIC KIT

Contentr. P.C. Chassia Boaril. Chemicals, Etching Manual. Infra-Red Phototransistor, Latching Relay. : Transistors, Diole, Resistors, Gain Control. Terminal Block, Elegant Cgse. Screw e, etc. In fact everything you need to build a Steadymodithed for inodulated-light operation with a lew additional cornponents.

PHOTOELECTRIC KIT $£ 2.85$

INYISIBLE BEAM OPTICAL KIT Photocell Receiver (as illustrated). Suitahle for ali Photolectric Burglar Alarms, Counters, Door Openera, etc.
CONTENTS: \because lenses, 2 mirrors, $2,4 \bar{d}$-degree wooden blocks. Infra-red filter, projector lamp holder. screws, nails, hrackets, building plans, etc. Price $£ 1-45$. Postage and Pack. 10p (C.K.), Conmonwealth: Surface Mail 20 p, Air Mail $50 p$.
LONG RANGE INYISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of atandard kit. Larger Lenses. Filter, BIOFEEDBACK AMPLIFIER KIT
Tunable, General Purgose. Interference-Rejecting Differential Amplifier for experi. mental inveatigation of signals produced by the brain, heart and muscles. When used with an uscilloscope, or aural indicator, it enatbles you to monitor your brain. waves, learn to relax, meditate, etc. \qquad
Pots,
Semtcondu
CONTENTS: All Capacitors, Resistors, Pots, Semiconhuctors, I.C., Electronles,
 ALPHA-BETHA-THETA BRAINWAVE MONITOR KIT
Aural Brainwave Indicator for uge with a Biofecthack Amplitier. Converts subsonic brain frequencies into auditile signals for easy recognition.
CONTENTS: Resigturs, Pots, Capacitors, Transistors, Diodes, Lealis, Chansia, Case,
Earphone, Battery, Plans and Instructions. Price £3.25, bostage snd pack. 15 p (U. K.) Esphone, Battery, Plans and Instructions. Pr
Commonwealth: Surface 25p. Air Mail i5p.

YORK ELECTRICS Mail Order Dept. 335 BATTERSEA PARK ROAD, LONDON, S.W. 11 Send S.A.E. for full detailt, a brief description of all Kits and Projeets

NWIWN PRACTICAL PAPERBACKS FRENA FOULSHAM-TAB

125 TYPICAL ELECTRONIC CIRCUITS ANALYSED AND REPAIRED, by Art Margolis $£ 1.45$

UNDERSTANDING AND USING THE OSCILLOSCOPE, by Clayton Hallmark
£1-70
PICTORIAL GUIDE TO COLOUR TV CIRCUIT TROUBLES, by Forest Belt $\$ 1.60$ HOW TO REPAIR SMALL PETROL ENGINES, by Paul Dempsey
TROUBLESHOOTING SOLID STATE AMPLIFIERS, by Ben Gaddis

FUN WITH ELECTRICITY, by
Tom Kennedy. Jnr. .. $£ 1.30$
TRANSISTORS-HOW TO
TEST-HOW TO BUILD, by Tab Editorial
§1-20
HOW TO FIX RADIOS AND PRINTED CIRCUITS, by Leonard C Lane
HANDBOOK OF MAGNETIC RECORDING, by FInn Jorgen sen
§1. 45

LANDSAILING FROM RC MODELS TO BIG ONES, by George Sipposs
§1. 45
SMALL APPLIANCE REPAIR GUIDE, by Lemons and Montgomery
BASIC COLOUR TV COURSE by Stan Prentiss
§1. 50

ELECTRONICS HOBBYIST IC PROJECT MANDBOOK, by Robert M. Brown
£1. 40
RADIO COMMUNICATION TRANSRECEIVER SERVIC. ING, by Burns and Sands £1.45 99 WAYS TO USE THE OSCILLOSCOPE, by Albert Saunders

ON THE COLOUR TV SERVICE BENCH, by Jay Shane
BASIC RADIO COURSE, by HOW TO REPAIR HOME AND CAR AIR CONDITIONERS, by Lemons and Price $£ 1.45$ COMPLETE MINI BIKE MANDBOOK, by Paul Dempsey

DON'T RELY ON YOUR MEMORY BUY NOW AT BARGAIN PRICES Hi Fi and Transistors - Up to date Brochures on request

SPECIAL PURCHASES

EASY TO BUILD KITS BY AMTRONEVERYTHING SUPPLIED

Lenrys
 (9)
 TEST EQUIPMENT MULTIMETERS
 (carr. etc. 30p)
 |T1-2 $20 \mathrm{~K} / \mathrm{V}$ olt Slimline $\mathbf{6 5 . 9 5}$ M210 (Case © 1.25) 20 Slimline deluxe 66.75
 TLH330 $2 \mathrm{~K} / \mathrm{V}$ olt Robust $\mathbf{6 7 . 5 0}$
 U437 10K/Volt Steel case. AC AFIO5 (Case $£ 1.90) 50 \mathrm{~K} / \mathrm{Volt}$ $\begin{array}{r}40 \mathrm{kHz} \\ \quad 11.95 \\ \\ \hline\end{array}$ $\begin{array}{lll}\text { AF } 105 \text { (Case } £ 1.90) & 11.95 \\ \text { U4313 } & 20 \mathrm{~K} / \mathrm{Yolt} A \mathrm{AC} \text { current. Steel case } & 10.50 \\ \text { U } 4341 & \text { Plus Built-in transistor tester } & 10.50\end{array}$ Model 500 (Case E1.95), 30K/Vols
 OTHER EQUIPMENT SE250B Pocket Signal Injector 2.10 carr. 15p TE 15 Grid Dip meter $440 \mathrm{kHz} 280 \mathrm{mHz} / 5.00 \mathrm{carr}$. 30 p
 TE40 AC Millivalemeter 1.2 mHz TE6S 28 Range valve voltmeter TE200 $120 \mathrm{kHz}-500 \mathrm{mHz}$ RF Gen. 19.75 carr. 35p 22.50 earr. 40p $\begin{array}{lll}\text { TE220 } 20 \mathrm{~Hz}-200 \mathrm{kHz} \text { Audio Gen. } & 18.95 \mathrm{carr} .40 \mathrm{p} \\ \text { TE2 } & 19.95 \mathrm{carr} \text { 40p }\end{array}$ SE 350 A Deluxe Signal Tracer 12.50 carr . 20p New Revolutionary Supertester 680 R 680R \& 18.50

A SELECTION OF INTERESTING ITEMS
C 3025 Compact transistor tester 6.95 p \& p 1 Q4002 Photoelectric System $£ 13.70$ El 310 Stereo mag. cart. preamp. $4.80 \mathrm{p} \& \mathrm{p} 25 \mathrm{p}$ Easiphone D1201 relephone amp LLI Door Intercomm, and chime IkW Dimmer/controller
9* Twin spring unit For
US50 Ultrasonic Switch Trans/Rec $\mathbb{1 2 5} \mathrm{P}$. $30411-250 \mathrm{mHz}$

5 $1-300 \mathrm{mHz}$
020054 Cherait Band Convertor $4.50 \mathrm{p} \& \mathrm{P} \quad 15 \mathrm{p}$ 820054 Ch . mic. mixer
82004 ch . Stereo mixer
4.20 p \& p $15 p$ PK3 Kic \&i.95p \& p 20p
6.75 p \& P 15 P

EXCLUSIVE: SPECIAL OFFERS

| MWILW CAR RADIO |
| :--- | :--- | :--- |
| + orte recorder. $659.95 \mathrm{c} / \mathrm{Earth}$ withspeaker |
| 50 p . Pair Akai ADM | and fixings. 66.50 c/P 30p. microphones. $66.95 \mathrm{c} / \mathrm{p} 20 \mathrm{p}$ a TRACK CAR STEREO PORTABLE CASSETTE (- Earth) with speakers in TAPE PLAYER-for car

Pods and fixings $£ 12.50$
or carry around. $£ 7.25 \mathrm{c} / \mathrm{p}$. c/o 40p. Portable Batt/Cass 20 p . HANIMAX BC80B Tape Player $£ 7.25$. adaptor for all cassette and HANIMAX BCsilm. ME. radio $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ output MORY VERSION 537.50 (state width) $£ 1.95$ each. MAINS UNIT for BCBOB. Rotel Stereophones RH630 BCIIM $£ 2.85$ (state model) 64.50. RH700 £6.75. RH430 HANIMAX HIOI STEREO E3.30. Rotel 9A310 $15+15$ COMPACT RECORD Watt 5 tereo Amplifier PLAYER 2 with watts. W500 Battery/Mains Cass.
ette Recorder $\mathbf{6} 12.75$. ette Recorder 12.75.
AKAI GXC 40 Stereo cass- Phones.

BUILD THIS RADIO

 22p), carr. etc. 32p

FIBRE OPTICS

0.01 diam. Mono filament $\mathbf{6 3 . 0 0}$ per 50 metre reel 0.11 diam. 64 Fibres Sheathed $\$ 1.00$ per metre. SPRAYS 15 mm diam. (Mare's Tail Spray $\mathbb{E} 10 \cdot 50.7 \mathrm{~mm}$ diam. (5-00).

310 Radio

300 345
 455 65

115
12
125
130
605
610
8
8
8
8

24
275
570
570
590 SWR meter 12
620 NI-CAD Charger
630 STAB Power
supoly $6-1$
$0.25-0.1 A$
690 DC motar 8.15
Gov.
Chaffinch
705

BUILD THIS TUNER MN/LW Radio Tuner to use with any amplifier.
Features Mullard RF/IF module Ferrite aerial. Features Mullard RF/IF module Ferrite aeria
built in battery. Excellent results. Size 7 built in battery. Excellent results.
$2 \frac{1}{}^{\prime} \times 3 \frac{1}{4}^{*}$. All parts $£ 4.85$, carr. ISp.

MULTI-USE \& RADIONIC KITS
$\begin{array}{lll}10.1 & 10 \text { Projects } & \mathbf{3 . 6 0} \\ 50.1 & 10 \text { Projects } & 8.00\end{array}$
$\begin{array}{llr}50.1 & 10 \text { Projects } & \mathbf{8 . 0 0} \\ 150.1 & 150 \text { Projecs } & 13.20\end{array}$
$\begin{array}{lr}\text { 150.1 } & \text { 150 Projects } \\ \text { Telephone Communicator } & 7.20\end{array}$
$\begin{array}{lll}\left.\begin{array}{ll}\text { Telephone Communicator } \\ \times 20 & 20 \\ \times 40 & 40 \\ \times & \text { (Elec.) } \\ \times 40 & 4.95 \\ & \end{array}\right\} \text { Projects } & 9.45\end{array}$
(carr./packing 40p)
All eransistor circuits with handbooks
TBAB00 5 WATT I.C. 1030
$5 / 30$ volt operated. 8/16 ohm
5 watt output.

With circuits and data 6150

STROBETUBE ST2 (D32)DIAC25p $\begin{array}{lll}\text { ZFT4A Suitable for } & \text { CRSV/40SCR 45p } \\ \text { ZFT4 }\end{array}$ | Dec. ${ }^{7} 73$ Pract. | ZFT4 | ZFTB |
| :--- | :--- | :--- |
| | 63.00 | ZFT12 |
| | | 64.50 | Electronics. $\quad \mathbf{6 3 . 0 0}$ ZFTI2 $\quad £ 4.50$

All types offered subject to availability Prices correct at time of press E \& OE. 10% VAT TO BEADDEDTOALLORDERS

TRANSISTORS \& DEVICES
JUST A SELECTION
*TBABOO SWIC EI.50 *3015F7SEG
*Sinclair ICR 6WIC Indicator El.70

- ZNAIAIC Radio 41.20 22p each per 10 - Ulerasonic *With circuits/data Transducers 65.90 pr . sheet.

OVER I, 500 DIFFERENT SEMI-
CONDUCTOR DEVICES IN STOCK
Free stock list-latest edition (Ref, 36) on request. Includes radio valves. I.C. s, rectifiers, triacs. 5CR's, LED's, etc. More types-better prices-

GARRARD BATTERY TAPE DECK
GARRARD 2 speed 9 volt tape decks. Fitted record/ play and oscillacor/erase heads. Wind and rewind soools. Brand new complete with head circuits, $\mathbf{6 9 . 5 0}$ carr. 30p.
TOP OULITY

SLIDER
CONTROLS
60 mm strake high quality concrols com. quality controls com

MARRIOT TAPE
HEADS
4 TRACK MONO
2 TRACK STEREO
17 High impedance 18" Med. Impedance - $36^{\prime \prime}$ Med. Impedance Singles Log and Lin $\mathbf{6 5 \cdot 0 0}$ R730/E732 track mono Record/Er
75p pair
Ganged Lor and Lin
Erase Heads for " 17
"18" and " 36 " $10 \mathrm{~K}, 22 \mathrm{~K}$. $50 \mathrm{~K}, 100 \mathrm{~K}$ 250K. 65p eac
(Quantity discounts
High ! ${ }^{2}$ High lmp.

available)

-

SINCLAIR MINIATURE AMPLI

 FIERS \& TUNER/DECODERAMPLIFIERS (carr., etc. 20p
4.300, $03 w 9$ volt $1.75 \quad$ SACI4, $7+7$ watt
104 . 1 watt 9 volt 3.10 $\begin{array}{ll}\text { 104. I watt } 9 \text { vole } 3.10 & \text { Stereo with } \\ 304.3 \text { wate } 9 \text { vole } 3.95 & \text { controls }\end{array} 11.75$ 555 . 3 wate 12 vole $4.10 \quad$ SAC $13.15+15 \mathrm{w}$ 608 , 10 W 24 volt 4.95 siereowith 14.95 408 . 10 w 24 volt 4.95 El206, 30 w 45 volt 9.95 E1210. $2 \frac{1}{7}+2 \frac{1}{2} \quad 7.75$ RESOO. 5 watt IC 7.75 mains operated Amplifier with \qquad SP40-5 2240
 SP40-6 $2 Z 40$ Controls Wizh 3. 30 5P60 2260

POWER
 SUPPLIES FOR

 EVERY PURPOSE
$470 \mathrm{C} 6 / 7 \frac{1}{2} / 9$ volt 300 MA (includes Multi-Adapto for Tape Recorders. etc.) 215 post 20p Car Lighter Voltage Adaptors 300 mA (State C202 3/6/7+19 vol 400 m HC 244 R Stabilised version P500 9 volt 500 mA ea. pos: 25

3.65 carr. 30 p PII 24 volt 500 mA (chassis) $\quad \mathbf{3 . 2 0}$ post 20 p P15 26/28 volt 1 amp (chassis) $\quad 2.90$ post 20p | |
| :--- | :--- | 1080 I2V 1 (chassis) $\quad \mathbf{2 . 9 0}$ post 20 p P1081 $\quad 7.50$ post 20 p P12 4t-12 volt $0.4-1$ amp 7.15 post 30 p SE101A $3 / 6 / 9 / 12$ volt 1 amp (Stab.) 12.50 pose $25 p$

EDGWARE ROAD, LONDON W2

404-406 Electronic Components and Equipment 01-402 8381 309 PA - Disco-Lighting High Power Sound 01.7236963
303 Bargains Stora (Callers only) 303 Bargams Store (Callers only) Home and Cat Entertamment Cerites London and brancre
120 Shaftesbury Avenue. London W1 01-437-9692 104 Eurnt Oak Groadway, Burnt Oak. Edgware 01-952 7402 190-194 Station Road. Harrow. Middesex $01.6637788 /$
354.356 Edgware Road, London W2 $01-4025854 / 4736$

for fast, easy
reliable soldering
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required

EASY-TO-USE DISPENSERS

Size 5
Savbit alloy 18 swg. 24p (illustrated) Size 19A 60/40 alloy 18 swg, 25p Size 15 60/40 alloy 22 swg. 28p

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons in 40/60, 60/40
 and Savbit alloys in 7 gauges $36 p$

Size 12 Reel for Service Engineers and Electricians. 18 swg Savbit alloy $£ 1 \cdot 16$ <

BIB WIRE STRIPPER AND CUTTER

Deluxe Model 9 Automatic opening spring. locking catch, plastic-covered handles. Case hardened and precision ground. Adjusts to most wire sizes. Cuts and strips flex, splits plastic twin flex. 75p
Prices shownare recommended retail, excluding VA.T. From Electrical and Hardware Shops. If unobrainable, send 10 pp p p direct Bih Hi-Fi Accessorie's Limited. Hemel Hempstead, Heris HP2 7EP

COMPREHENSIVE HOME CONSTRUCTOR KITS

 ASSPECIFED INTHEPE. RONDO COMPLETE QUADRAPHONIC HI-FI SYSTEM| CBS SO*MATRIX DECODER *TM CBS
 mplete kit. Post Free. Inc. CBS Licence Fee + VAT B0p | ¢8.00 | rondo case | Post free. + VAT 19 P | ¢ 1.92 |
| :---: | :---: | :---: | :---: | :---: |
| | ¢3.30 | hardware pack | Post Free. + VAT 22 D | \&2.20 |
| | 49.35 | CONTROLSECTION FASCIA | Post Free + VAT 38p | ¢3.85 |
| POWEF. AMP BOARD AND HEATSINK (Stereo Pair) Completekit. Per Board. Post Free + VAT 82p | ¢8.25 | STEREO DECODER KIT WITH BEACON | Post Free. + VAT $65 p$ | \&6.54 |
| POWERSUPPLY BOARD COMPLETE P POSt Free. + VAT 55D MAIN SMOOTHING CAPACITORS (TWO Read.) 16 post free. +VAT | $\begin{aligned} & £ 5.50 \\ & £ 1.65 \end{aligned}$ | STEREO DECODER READY BUILT AND TESTED Post Free. + VAT 76p | | ¢7.64 |
| MAINS TRANSFORMER Post free + VAT 68p | £6.87 | | | ¢23.90 |
| | ¢3.57 | | | £7.90 |

All component parts for "Rondo" loudspeaker assemblies are available, including special precision machined wrapround cabinets for very easy construction and perfect professional finish—as shown in fig. 5.9 of January 1974 issue.

```
READY BUILT LOUDSPEAKERS
```

¢42.00

BASS DAIVE UNITS (2 per cabinet)	Post Free. + VAT 42p	世4. 25
EACH		

COMPLETE SPEAKER KIT WITH 4 DRIV
WADDING, ETC. (F

PLEASE SEND ME
CBS SQ DECODER
PREAMPLIFIER BOARD
MASTER VOLUME BOARD \square
POWER AMP BOARDS
POWER SUPPLY BOARDS \square
SMOOTHING CAPACITORS \square
MAINS TRANSFORMER \square
CHASSIS
STEREO DECODER KIT
STEREO DECODER BUILT \square
READY BUILTLOUDSPEAKER
TEAK CABINET
READY BUILT LOUD-
SPEAKEES WHITE ,
CABINET EDMONTON LONDON, N. 18

TRADE ENOURRIES WELCOME

$01-8075544$

PLEASE SEND ME
CBS SQ DECODER

MASTER VOLUME BOARD \square
POWER AMP BOARDS POWER SUPPLY BOARDS \square SMOOTHING CAPACITORS \square MAINS TRANSFORMER

SPENCER HOUSE

BRETTENHAM ROAD

NAME
ADDRESS
Please insert quantity in open brackets

PLEASE TICK BOX RONDO CASE
HARDWARE PACK
CONTROL SECTION
FASCIA

MONEY
ENCLOSED

£

CHEQUE
P.O.

MONEY ORDER

BLOCK CAPITALS PLEASE DETAILS OF ANCILLARY KITS AND AUTHOR'S ADDITIONAL NOTES

The largest selection

EX COMPUTER BOARDS Packed with tranisiators，diodes．capaciturn
and resistors component valiry 1.80 3 for ONLY $55 \mathrm{p}+\mathrm{p}$ \＆ p 30 p ） gPECIAL，As above PLUS Pow
STABMISED POWER MODULES Complete with circuit diagrame，etc． 98 p PAXOLINE BOARDS
for $20 \mathrm{p}+\mathrm{p} \& \mathrm{p} 20 \mathrm{p}$
FIBRE－GLASS PRINTED CIRCUIT BOARDS
DECON－DALO 33pC Marker 90 p each

VEROBOARDS
Packs contaning appro
wizes，all 0.1 matric 55p

REPANCO CHOKES \＆COILS

HH1 2．5mH 25p CH2． 50 mH 25 p H3．$\overline{7} \mathrm{JHH}$ 25p CH2． 10 mH 25p O1Ls
DRXI Crymal set 31p thif He llaal range 45p
COIL FORMERS \＆CORES
NORMAN Cores d Formern 8p
SWITCHES
IIP／DT Toggie 25p HP／ST Toggle 18p
FUSES
$1!"$ and 20 mun， $100 \mathrm{~m} A$ ， $200 \mathrm{~mA}, 200 \mathrm{HA}$ ．
$300 \mathrm{~A}, 1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{~A}$

EARPHONES

Cryatal 3．5anit plug 33p
А оһни 3 －Јыни plug 22 p

DYNAMIC MICROPHONES

3－WAY STEREO HEAD－ PHONE JUNCTION BOX

2．WAY CROSSOVER
NETWORK

SELECTED RESISTORS
CAR STEREO SPEAKERS
BI－PAK
CATALOGUE AND LISTS
Send S．A．E．and 10p．
INSTRUMENT CASES

Black Vingl covered

Nu，Jethy		Hjulth		Heirht		$\begin{aligned} & \text { Price } \\ & \text { gOD } \end{aligned}$
		\times	析	\times	＂゙	
ばき	11^{-}	\times	if^{-}	\times	3 3	21.20
ALUMINIUM			BOXES			
13， 1	ら！	\times	－3\％	\times	$1{ }^{\text {\％}}$	42D
13．4．2	$4 *$	\times	4	\times	11^{-}	41p
13．43	1	\times	$2{ }^{2}$	\times	11^{-1}	410
BA4	$5{ }_{4}{ }^{\circ}$	\times	$4 *$	\times	$1{ }^{-1}$	470
BAO	4	\times	21－	\times	？	41p
BAF	3	\times	2＂	\times	1＂	34 p
13.5	－	\times	\square^{*}	\times	：1	68p
11.88	8^{*}	\times	6^{*}	\times	3	84 p
1349	i^{*}	\times	$4{ }^{-}$	\times		54p

BIB HI－FI ACCESSORIES

De Luxe Groov－Kleen
Model 42 £1－84
Chrome Finish Model $60 £ 1$ •50

Ref．36A．Record／Stylus Cleaning Kit 28p Ref．43．Reeard Care Kit $\mathbf{2 2 . 3 5}$ Kef，31．Cassette Head Cleancr 54D Model 4 ．Wire Stripper／Cutter 83p

ANTEX SOLDERING IRONS x25 25 watt 21.93
（4：240．15 watt 82.15
Molel（： 18 watt $\boldsymbol{2 2} \mathbf{1 5}$
NK．Sulderink Kit $£ 2.86$
STANDA：ST1 \＆1．21．8T：77p
Solber， 188 （：Muiticure 70282 p

2．2世W：Tube 22p
ANTEX BITS and ELEMENTS
102 For mardel CN： 40 多
10：2 For model CN240
100 For model $\operatorname{CCN} 240 \frac{8}{32}$
101 For model CON240
1102 For momel CCN 240 ：
1020 For model 6240 is
1021 for model G240
Re1．P．Hi－Fi Cleaner 31p
Ref．32A．Styhus Balance $\mathbf{2 1 - 3 6}$
Ref．J．Tape lleall Cleaning Kit 51 p
Hef．34．Cassette Cave $\mathbf{\$ 1 . 2 \%}$
Rel．Jit．Hi－Fi Stereo Hints s Tips 32p

PLUGS

ANTEX HEAT SINKS 10p
VAT included in all pricen．Pleare add 10p P．\＆P．（U．K．only）．Overseas ordera－

NEW COMPONENT PAK BARGAINS
Pack
No．Qty

VISIT OUR COMPONENT SHOP
18 BALDOCK ST．，WARE，Herts．（A10）
Open Mon．－Thura，9．15．6 p．m．Sat．9．15－5．30．Late Night Sbopping until 7 Yri．Tel． 61693
$\begin{array}{llll}\text { ISt } & \mathfrak{z} & \text { D．I．N．} 3 \text { Pin } \\ \text { PS } & 3 & \text { D．I．N．} 4 & P_{11}\end{array}$PA 4 D．I．N．FPin 180
$\begin{array}{lll}\text { Ps 5 } \\ \text { PG } & \text { D.I.N. A Pin } 240^{\circ}\end{array}$
PS \quad D.I.N. f Piri
PS.I.N. 7
PS \& Jack ? Jum soreened

PS 11 Jack :- Plantic
PS 12 Jack :* Acreenel
$\begin{array}{ll}\text { PS } 13 & \text { Jack Ster } \\ \text { PS } 14 & \text { Phono }\end{array}$
PS 14 Phono
PS 15 Car Aerial
PS lfi Co-Axial

CABLES

CP I Single Lapped Acreen Twin Conmon Screell Stereo Screenel
Four Core Common Screen Four Core $\quad 0.23$ Hir Corp fithindually sereened 0.30 Three Core Mains Cable Twin Owal Manss（＇able Apreaker c＇able

CP 10 Low Loss Co－Axial

CARBON

POTENTIOMETERS

$47 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$

1M，23 M VC

Sing
Sing
Gingle ${ }^{\text {Suitch }}$
Tanf
VC 4 IK Lin Lers Switeh
VCe 100 K Latg anti－Log

HORIZONTAL CARBON

 PRESETS0.1 watt 0.06 each
$100,220.470,1 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$

JUMBO

SEMICONDUCTOR PACK
Trangistore，Germ．snd silicon Rectifers． Diodes．Triacs，Thyristors，I．Cs and Zeners． NEW AND CODED
APPROX． 100 PIECES
Mering the amateur a fantastic bargsin Pak and an enormous saving－identification and

ONLY E2 P．\＆P．Nop
EX－COMPUTER BOARDS－ BY THE BOXFULL！
20 Boards packed with Semiconductors and other Electronic Conmponents．Each board approx．size 8 inx in．Alt know：type

FANTASTIC VALUE AT
62．20 per Box．I＇\＆P．Jip．

SPECIAL PURCHASE
2N3055．Silicon Power Transiators Fanolls mannfacturers out－uf－apec devices ree：11－w Tos Metal Case erery one

OUR SPECIAL PRICE 8 for £1
LOW COST CAPACITORS
$0.01 \mu \mathrm{~F} 400 \mathrm{~V}$ ．
$500 \mu \mathrm{~F}=30 \mathrm{~V}$ ．Elect．
3p esch
10p each
RECORD STORAGE
CARRY CASES
EP， $181 \mathrm{in} \times$ Zin $\times 8$ in（ 50 records） 82.10

CASSETTE CASES
Holds $12.10 \mathrm{in} \times 3$ in \times jin．Lock and
handle． $21 \cdot 30$ ．

8－TRACK CARTRIDGE

CASES
Holds 14． 13
handle， 11.85.
Holds 24． 13 int $\times \sin \times$－3in \quad and
havisle， 22.70 ．
hath \times in \times ifll Lock and
COLOURS：Red，b／ack and tan，
please state preference

REPANCO TRANSFORMERS
240V．P＇riuary．Secondary voltagen avail able from selected tappings $4 \mathrm{~V}, 7 \mathrm{~V}, \mathrm{HV}, 10 \mathrm{~V}$ ． $14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 10 \mathrm{~V}, 2 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~N}, 33 \mathrm{~V}$ ． Type MTSO／
MTs0／1
MTS0／2
rice
81.93
89.48

CARTRIDGES

 ACOS（iP93－1．280nV at $1 \mathrm{~cm} / \mathrm{sec} \quad \mathbf{2 1 . 6 5}$ Acos ap96－1． 10011 M at $1 \mathrm{~cm} / \mathrm{sec} \quad 28.65$ TTC J•200ũ．Cryatal／ıi Output
TTCJ－2010C Crystal／Hi Output Compatlble
TTCJ．200 CS Stereo／HiOutput \quad E1．80 TTC J－2105 Ceranic／Med．Output
81.64

CARBON FILM RESISTORS
The E12 Range of Carbon Film Resiators， uatt available in PAKS of 50 piece R1 50 Mixed 100 ohms－ 820 ohms 400 R：2 Mixed 1 K ohms－8． 2 K ohns：s 40 p
 THESE ARH UNBEATABLE PRICES－ LESA THAN 1p EACH INCL．V．A．T．

BI－PAK SUPERIOR QUALITY LOW－NOISE CASSETTES C60，32D；C90，41p；C120，52p

-the lowest prices! BI-PAK QUALITY COMES TO AUDIO!

AL10/AL20/AL30 AUDIO AMPLIFIER MODULES

The AL10. ALi20 and AL30 units are similar in their appearance and in their general speciffeation. However. careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M. 8.
The versatility of their design makes them inleal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home

Parameter	Conditions	Performance	
HARMONIC DISTORTIOS	Po $=3$ WATTS $\mathrm{f}=1 \mathrm{KHz}$	0.25\%	
LOAI IMPEDANCE	-	8-168	
InPUT IMPEDANCE	$\mathrm{t}=1 \mathrm{~K} \\|_{2}$	$100 \mathrm{k} \Omega$	
Frequency response -3dB	$\mathrm{Po}=2$ WATTS	$50 \mathrm{Hz-25K} \mathrm{~Hz}$	
sensitivity for Rated o/p		75 mV . RMs	
DIMENSIONS	-	$3^{*} \times 22^{* *}=1^{\prime \prime}$	

The above table relates to the AL10. AL20 and AL30 modules. The following table outlines the differences
in their working conditions.

Parametes	Alio	AL20	AL30
Maxitnum Supply Voltage	25	30	30
Power out for 2% T.H.D. $(\mathrm{RL}=8 \Omega \mathrm{I}=1 \mathrm{KHz}$)	3 watts RMS Min.	5 watts RM8 Min.	10 watts RMS Min.

AUDIO AMPLIFIER

 MODULESAL 10. 3 watts
AL 20.
5 wot
AL 30. 10 watts
POWER SUPPLIES
 FRONT PANELS PA 12 with KIt 23.25

PA12 PRE-AMPLIFIER SPECIFICATION

The PAls pre-amplifer has lieen designed to match into most budget stereo systems. It is compatible with the AL 10, AL 20 and AL 30 audio power ampliflers and it
can be supplied from their associated power supplies. There are two stereo inputs, one has been designed for use with *Ceranic cartridges while the suxiliary input will suit most pMagnetic cartridges. Full details are given in the speciflication table. The four controls are, from left to right: Volutne and on/off switch, balance, bass and treble. Size $152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$

LOOK FOR OUR

SEMICONDUCTOR ADVERTISEMENTS IN Practical Wireless and RADIO CONSTRUCTOR

ALL PRICES INCLUDE VAT

The STEREO 20

The "'Stereo 20 ' amplifer is mounted, ready wired and tented This compact unit comes complete with on/oft awitch volume control, balance, bass and treble controls, Tranaformer, Power supply and Power amps. Attractively printed front panel and match ing control knols. The 'Stereo 20'' has heer designed to fit into most turntable plinths without interfering with the mechaniem or alternatively, into a separate cabinet Output power $30 \mathrm{w}^{2}$ peak. Input 1 (Cer-) Input 2 (Aus.) 4 mv into 30 K . Harmonic diatortion. Bass control $\pm 1^{2} 2 \mathrm{~dB}$ at 60 Hz typically $0.2 \% \%$ at 1 uptt. Treble con $\pm 14 \mathrm{~dB}$ at 14 kHz .

PRE-AMPLIFIERS

PA 12. (Use with AL10 \& ALi20) £4-35 PA. 100. (Use with AL30 \& AL.j0) $£ 13.15$

TRANSFORMERS

T461 (Use with AL10) 81.38 P \& P 1 tip T538 (Use with AL20) \&1.83 P \& P 151 ,

NOW WE GIVE YOU
50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION!
The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

- Max Heat Sink temp $90^{\circ} \mathrm{C}$.
- Frequency Response

20 Hz to 100 K Hz

- 0.1% Distortion
- Distortion better than 1% at 1 KHz
- Supply voltage $10-35$ volts
- Thermal Feedback
- Latest Design Improvements - Load - 3, 4, 8 or 16 ohms
- Signal to noise ratio 80 dB - Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ 13 mm
Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F enthusiast. fully built - TESTED and GUARANTEED

STABILISED POWER MODULE SPM80

AP80 is especially designed to power 2 of the AL50 Amplifters, up to in watt (r .m. .) per channel simul. taneousiy. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer MT80. the unit will provide outpute of up to $1 \cdot 5$
amps at 35 volts. Size: $63 \mathrm{~mm} \times 10 \mathrm{~mm} \times 30 \mathrm{~mm}$. umpes at 35 volts. Size: $63 \mathrm{thm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$.
These units enable yon to build Audio Systems of the highest quality at a hitherto unobtainable price. Also tueal for many Intercom Units, etc. Handbook available 10p PRICE £3-25
TRANSFORMER BMT80 £2•15 p. \& p. 28p

STEREO PRE-AMPLIFIER TYPE PA100

Buint to a syecification and NOT a price, and yet atill the greatest value on the market
the D'Aloo stereo pre-ampliffer has been concelved from the lateat circuit techniques. Designed for use with the ALJ0 power amplifier system, this quality made unit incorporates no less than eight silicon planar transistors, two of these are specially selected low noise WinN devices for use in the input stages.
Three switched sterer inputs, bass and treble controls.

SPECIFICATION
Frequency Rearon

Frequency Response
Harmonic Disturtion
Inputs: I. Tape Heal
Radio. Tune
$20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
3. Magnetic P.U.
1.25 mV into $50 \mathrm{~K} \Omega$

35 mV into $50 \mathrm{~K} \Omega$
$1.5 \mathrm{~m} V$ into $00 \mathrm{~K} \Omega$
All input voltages are for an output of 250 mV . Tape and P.U. inputs equalisel to RIAA curve within $\pm 1 \mathrm{~dB}$. from 20 Hz to 20 KHz Bass Control
Treble Control
Fillerm: Rumble (High Pass)
Scrateh (Low Pass)
Signal/Noise Ratio
Input overload
Dimensions
10 dB at 20 Hz
151 B at 20 K Hz
100 Hz
8 KHz
hetter than -65d
$+261 B$
+35 volta at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £13.15
SPECIAL COMPLETE KIT COMPRISING 2 AL50's, 1 SPM80, 1 BMT80 \& 1 PA100 ONLY £25•30 FREE p. £ p.

would you pay twi the mo for only the performance?

Which is the best version of Brahms' 3rd Symphony \ldots or the Rolling Stones at their greatest ? It may not be the $£ 2.45$ version. . . it could be $99 p$! This outstanding guide, lists Audio's 100 great records—and the reason why ... classic . . . rock ...jazz... pop...
CARL PALMER of ELP First—and only-man with a synthesized drum kit.

Build your own HI-FI cabinet

Specially designed equipment storage unit.
MANY OTHER FEATURES—MAY ISSUE

on sale mid-April 25p
the hi-fi magazine for leisure listening

PRICES INCLUDE VAT
SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid state audio amplifier. Brand throughout. componen illicon transiators plus 2 power output tranalatore in pusb-puil. Full wave rectifestion.

Output approx. $13 W$ | Output approx. |
| :--- |
| t.m.s. into 8 |
| ohm | Frequency responge $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 \mathrm{db}$. Fully integrated pre ampllfer stage witb

aeparate Volume, Basm boont add Treble cut controle. Suitable for $8-1 \overline{0}$ obrn apeakers. Input for ceramic or crystal cartridge. Sensitivity approz. 40 mV for full output. Supplied ready buif and kested, With knobs, eacutcbeon panel, input and output plugs. Overail size
$3 \operatorname{lin}$ high $\times 6$ in wide $\times 7$ in deep. A.C. $200 / 250 \mathrm{~V}$.

PRICE E12.00 Pisop. ${ }^{\text {P. }}$.
DE LUXE STEREO AMPLIFIER
and

NEW! PQWER SUPPLY UNIT $200 / 240 \mathrm{~V}$ A.C. input. Four witched fully smoothed D.C. outpute giving 6 V and 71 V and 9 V and 12 V at 1 amp on load.
Fitted insulated out nut terminals and pilot larmp indicator. Hammer finish metal cane, overall size $6^{\prime \prime} \times 31^{\prime \prime} \times 21^{\prime \prime}$
Buitsble for Transintor Radioa Tape Auitslie for Transintor Radioa, tetc, etc, Ready built and teated.

HI-GRADE COPPER LAIMATE BOARDS. $8^{\prime \prime} \times 6^{\circ}$. Five for 60 p plua 30 p P. \& P .
BRATD MRW MULTI-RATIO YAIIS TRAESYORMERS. Glving 13 alternatives. Primary: $0-210-240 \mathrm{~V}$, Becondary combinations: $0 \cdot 5-10-15-20 \cdot 25-30-35-40-60 \mathrm{~V}$ half full wave. 8 ize 3 inL $\times 3$ inW $\times 3 i n D$. Price $\$ 8-91$. P. 4 P. 40 p

MAINE TRAEAFORTRR. For tranalstor power supplles, Pri. 200/240V gec, 9-0-9 at 500 mA . 21.10 P. \& P. 26 p .

GEIT HSTOR PRE-ATPLUIER, For P.U. Tape, Mike, Guitar, etc., and auitable for use with valve or tranalistor equipment. 9-18V. Battery or from H.T, Iine 2001300 V . Frequency reaponse $15 \mathrm{~Hz} z-25 \mathrm{~K} \mathrm{~Hz}$. Grand new - complete with Instructiong. Price Brand new
R. $\mathrm{P}, \mathrm{A} P .15 \mathrm{p}$.

3 BETEREMCE EMCYCLOPEDIAS TOR ELFOTROIIC herirests AnD Desiantes, covering betweon them, tranaintor characteristlcm, di.xde and transistor equivalenta Many thousande of up-to-date European typea listed. Diode Equivalents
Tranaistor Equiralents
Transiator Characteriatica 900
All three together
900
31.20
BATDBOOE OF THATEIGTOR ROUTV AT AMD 8UBETITUTKE
A must for aervicemen and home constructors. Including many 1000's of British, U.B.A., European and Japaneae tranalitors. ONLY 40p. Post 5 p

95) Poat Free

 8 pole 3 way 2 bank low loas Yaxley type switcbes $1 \neq$sections. 8tandard epindle. 2 awitches $86 p+10 \mathrm{p} P$. \& P .

FOR PERSOMAL CALLERS ONLY! Limited number of Btereo Radiogram chaseis covering LW/MW/FM bands. Mono radio and aterec gram. Overall size approx. $161^{\prime \prime} \mathrm{W}$.
$6 y^{\prime} \mathrm{H}, 8^{\circ} \mathrm{D}$. 4 Watts per changel output. ONLY 818.50 .

SPECIAL BARGAIN OFFER!

Limited number of BBR CI23 Auto Changer De Luxe with lightweight tubular arm and atereo cartridge. Brand Dew. ORLT 88.00 plus P. AP. 60p.

PRECISION ENGINEERED PLINTHS

 Beautifully constructed in heavy gauge "Colorcoal platic coated ateel. Resonance free. Denigned to tak garrard 1025, 2000, 2025TC, 2500, 3000, 3500, 5100 SP25 II and III, 8L65B, AT60, etc., or B.8.R. C123, C109, 141 in x jin bigh (approx 74 in bigh including rigid moked acrylle cover). P. \& P. 70p. Now only \&4-95 FFW OMLT. High grade maibs transformers with grain orientated larnination. Primary 200/240 secondary 18.8 volts at $0 \cdot 6$ amps and $4 \cdot 6$ volte at $0 \cdot 3$ amps. Size$\times 2 f^{\prime \prime} \mathrm{W}, \times 2^{\circ} \mathrm{D}$ overail. $\$ 1 \cdot 25$ plus 25 P . \& P .
LATEST ACOS GP91/18C Mono Compatible Cartridge with //o stylue for LP/EP/78. Universai mounting bracket 1.50. P. \& P. 150

BONOTONE GTAHC COMPATIBLE ETEREO CARTEIDGE T/O atylus. Dlamond Rtereo LP and Rapphire 78. ONLY 28.80. P. \& P. $10 p$. Also available fitted with twin Diamond TOHETTE TH EP/LP/Stereo/78, 21-68. P. \& P. 15p. LATEST RONETYE T/O Mono Compatible Cartridge tor EP/LP/78 mono/atereo records on mono equipment $\$ 1.60$ P. \& P. 15 p .

QUALITY RRCORD PLAYER AMPLIFIER ME II top-quality record player amplifier employing beavy duty double wound mains tranaiormer, ECCBs, EL84 and rectifier, Aeparate Bass, Treble avd volutne controlis. speaker. Size 7in. w. $\times 3 \mathrm{~d} . \times 6 \mathrm{~h}$. Ready built and teated
 mounted on board with output trangormer and apeaker PRICE \&6-30. P. \& P. 60p.

SPECIAL OFFER!! HI-FI LOUDSPEAKER SYSTEM

Beautifully made teak fidiah encloaure with most attractive Tygan-v ynair front. 8ize 16 In hlgh $\times 101 \mathrm{in}$ wide $\times 6 \mathrm{in}$ deep. Fited with E.M.I. Ceramic Magnet $13 i n \times 8 i n$ basa unit, two H.F tweeter units and cromover. Max. power bandlin

Qur Price $£ 9.25$ carr. 75 p .
CABINETAVAIL. \&EPARATELY \&4'95. Carr. 65p. Also available in 8 ohm with EMI $13 \mathrm{in} \times 8 \mathrm{in}$. basy Apeaker with parasitic tweeter. 27.16. Carr. 75p.

HARVERSON'S SUPER MONO AMPLIFIER A cuper quality gram amplifier using a double wound fully pentode valve al audio amplifier and power output stage. Impedance 3 ohrns. Output approx. $3 \cdot 5$ watto. Volume and tone controls. Chassia size only 7in. Wide $\times 3 \mathrm{jn}$. deep $6 \mathrm{in}, \mathrm{bigh}$ overall. AC mains $200 / 240 \mathrm{~V}$. Supplied absolutely Brand New, completely wired and tested with goo qua roct bommo
OUR ROCK BOTFON
BAROAD PRICE
$\{3.85$ P. \& $\underset{40 \mathrm{p}}{\mathrm{F}}$

LOUDSPEAKER BARGADIS

jtn 3 ohm 21.85, P. \& P. 15p. $7 \times 4 \mathrm{in} 3 \mathrm{ohm}$ 21.40, P. \& P . 30 p . $10 \times 6 \mathrm{in} 3$ or 15 ohm 82.10 , P. \& P. 30p. E.M.I. 8×5 in 3 ohm with high fux magnet $81-70$, P. \& P. 20p.
 E.M.I. $13 \times 8 \mathrm{in}, 3$ or 8 or 15 ohm with two inbuilt tweeters and crossover network $44-65$, P. \& P. 30p.
EMI CKRAMIC MAGRET HEAVY DUTY TWEETER. pprox. 3 in. Av. 3 or 8 or 15 ohma. 21.25 plum 20 p p. \& p RRAMD NEW. 12 in 15w H/D 8peskers, 3, 8 or 15 ohm (otate which). Current production by well-known Britinh maker. Now with Hiflux ceramic ferrobar magnet assembly 29.90 . Gultar models: 25 w 20.00. 35w $211 \cdot 00$ P. \& P. 45 p each.

SPECIAL OFFER!
LYITED YOMBER OF BRADD TEW SLAC 10° TWL COIE LOUDSPEAKRRS. With larse coramic marround. 8 ohm inmpedance.

28-70. P. © P. 85p.

[^1] <21" bigh. $285 \cdot 10$. Post Free.

HI-FI STEREO HEADPHONES

Adjubtable beadiband with comiortable desiloam earmulfs. Wired and Atted with randard stereo hin jack plug. Frequebcy reeposise $30-15,000 \mathrm{HA}$. Makebiog impedance $8-16$ ohms. Easily converted for mono. PRICE
88.80 . P. d \mathbf{P}. 2 jp .

HAVERSONIC SUPER SOUND

$10+10$ STEREO AMPLIFIER KIT

MEW PURTEER MPROVED MODEL WITH HIGHFR OUTPUT AND INCORPORATING
HIGH QUALITY READY DRILLED HIGH QUALITY READY DRILLED
PRINTED CIRCUIT BOARD WITH COMPONENT IDENTIFICATION CLEARLY MARKED FOR EABIER CONSTRUCTION
A really firat-class Hi-Fi Stereo Amplifer Kit. Ubee 14 transistors including Silicon Transistors in the Arat five atages on each channel resulting in evenlower noise
level with improved sensitivity. lntegrated pre-amp with Bass, Treble and two Volume Controls. Sultable for use with Ceramic or Crystal cartridges. (Very simple use with Ceramic or Crystal cartrarges. (o suit magnetic cartridge-ingtructiona included). Output stage for any speakers from 5 to 15 ohms. Compact design, all parts aupplied includiog drilled metal work, high quality ready drilled printed ctrcuit board, smart brusbed anodieed aluminium front panel with matching knobs, wire, wolder, nuts, bolts-no extras to buy. Simple atep by ated abtructions enable any conatructor to build an amplifiet on proud or. Briel specincation: Power output 14W $12-30,000 \mathrm{~Hz}$. Sensitivity better than 80 mV into 1 MQ . Full power bandwidth + 3dB $12-15,090 \mathrm{~Hz}$. Basm boont approx. to $\pm 12 \mathrm{~dB}$. Trebie cut approx. to -16 dB . Negative feedback 18 dB over main amp. Power require ments 35 V at 1.0 amp . Overall size- 12° wide $\times 8^{\prime \prime}$ deep
Fully detailed 7 -page construction manual and parta llat free with kit or send 18p plus large 8.A.E.
PRICES AMPLIFIFR KIT, \&11.55 P. \& 1'. 20p.

 (Poat Free it all units purchased at aame time), Full alter sales aervice. Also available ready built and teated,

Note: The above omplifier is suitable for feeding two mono sources into inpuit (e.p. mike, radio, twin record deck a, etc.) and will then provide mixing and fading facililies for medium powered Hi-Fi Discotheque use, ele.

AMP. HA34 MK II
AMP. HA34 MK II
Deaigned for Hi-Fi reproduc-
tion of records. A.C. Mains tion of recorde. A.C. Maina
operation. Ready bulit on operstion. Ready bulit on
plated hesvy gauge metal plated hesvy gauge 4in. h. Incorporatea ECC83 duty. double wound maini transformer and output transtormer matched for 3 obm spenker. Separate volume cookrol and now with lift and cut. Negative leedback Jine. Output it watts. Fron panel can be detached and leadi extended for remote mount and tented for only $8 \mathbf{8}-00$. P. \& P. 45 p.
HSL "YOUR" A o HA34 above but employs entirely different and dvanced circuitry. Complete pet of parta, etc. $5^{\circ} 00$. 4 P. 45 p .

10/I4 WATT HI-FI AMPLIFIER KIT

 A atyllahiy finished modaural amplifer with an output ELSA Watt in puah-pul! Super reproduction of both tnusic and speech, with negli. gible hum. Separate inputa for mike and gratm allow records and announcements
wound gulput trantormer to Fully shrouded aection wound output tranatormer to and separate base aud teeble controls are provided giving and separate base aud trebe controls are ECC83, EF86 and EZ80 rectiffer. Simple instruction booklet 150 plus B.A.E (Free with parts). All parts sold separately. ONLY 89.00 P. \& P. 60p. Also available ready built and tested $\boldsymbol{1 8} \mathbf{8} .00$

VYEAR \& RETIME 8PBAEERS \& CABINET FABEIC8
 app. 54 in . wide. Ont price 81.10 gd. lengt
per yd. (min. 1 yd.). S.A.E. for samples.

Open 9.30-5.30 Mon, 20 Fri. 9.30-5 Sar. Closed Wod.

A few minutes from South Wimbledon
Tube Stotion.
(Please write clearly) PLEAAR MOTE: P. P. CBARGES QOOTED APPLY TO D.E, OILI. CRARGED EXTRA.

COMPLETE* STEREO SYSTEM

£ $51 \cdot 00$

40 Watt Amplifier
Viscount III-R102 now 20 watts per channel. System lincludes.
Viscount lll amplifier - volume, bass. treble and balance contiols, plus switches for mono, stereo onfoff function and bass and tweble filters. Plus headphone socket. Specification
20 watts per channel into 80 hms . Total distortion@ 10W@ $1 \mathrm{kH}_{2} 0 \cdot 1 \%$ PUf (for ceramic cartridges) 150 mV into $3 \mathrm{Meg} . P . U .2$ (for magnetic cartidges) 4 mV ล2 1 kHz into 47 K equalised within ldB R.I.A.A. Radio 150 mV into 220x. (Sensitivities given at full power). Tape out tacilises headphone socket. power out 250 mW per channel. Tone contro/s and fifter characterisfics. Bass: 12d8 to-17dB @ 60 Hz . Bass filter 6 dB per octave cut. Treble control: treble 12 dB to -12 dB a 15 kHz . Ireble tilter 12 dB per octave. Signal to norse ratio: (ait controls at max.) -58 dB Crosstalk better than 35 dB on all inputs. Dvetload characteristics better than 26 dB on all inputs. Size approx. $13_{4}^{3 .} \quad 9{ }^{3} \quad 3_{4}^{3}$ Gairard SP25 deck, with magnetic castridge. de luxe plinth and hinged cover.
Two Duo Type II matched speakers Enclosure suze approx. 17 " $10 \frac{1}{2} \quad 6 \frac{1}{2}$ " in simulated teak. Orive unit $13^{\prime \prime} \wedge 8^{\prime \prime}$ with parasittc tweeter. Complete System $£ 51.00$

$669 \cdot 00$

System II
Viscount III amplifier (As SystemI)
Garrard SP. 25 (As System I)
Two Duo Typa IIIA matched spaakersEnclosure size approx. $31^{\prime \prime} \times 13^{\prime \prime} \times 11^{\frac{1}{2}}{ }^{\prime \prime}$ Finished in teak veneer. Drive units approx.
 20 watts, 8 ohms. Freq. range 20 Hz 1020 kHz .

Complete System $\mathbf{£ 6 9 . 0 0}$
PRICES: SYSTEM 1
Viscount III R 102 amplifier \quad f24.20-E1p\&p
2 Duo Type ils speakers $\quad £ 14.00+£ 2.20 p$ \& p
Garrard SP25 with
MAG cartridge de luxe plinth
and hinged cover
$£ 21.00+£ 1.75 \rho \boldsymbol{\delta} \rho$
total $\{59.20$
Available comptete for only $\mathbf{£ 5 1 . 0 0 + £ 3 . 5 0 \text { p. \& p }}$
PRICES: SYSTEM 2
Viscount R 102 amplifier $\quad £ 2420+£ 5 p \& \rho$ 2 Duo Type 川IFA;speakers $\quad £ 39.00+£ 4.00 \mathrm{p} \delta \mathrm{p}$ Garrard SP25 with
MAG. cartridge de luxe plinth $\mathrm{f} 21.00+\mathbf{f 1 . 7 5 p \& p .}$ and hinged cover
total $£ 84.20$
Available complete for only $\mathbf{f 6 9 . 0 0}+\underline{\mathrm{f}} \mathbf{4} \mathrm{p} \underline{\underline{6}} \mathrm{p}$.

QUALITY SOUND* FOR LESS THAN $£ 19 \cdot 00$
 Stereo 21 easy to assemble audio system kit, - no soldering

 required. Includes:-BSR 3 speed deck, automatic, manual facilities toge ther with ceramic cartridge.
Two 8 5" speakers with cabinets.
Amplifier module. Ready built with contiol panel. speaker leads and full, easy to follow assemtly instructions.

For the technically minded:-
Specifications
Input sensitivity 600 mV : Aux. Input sensitiviiy 120 mV Power output 2.7 watts perchannel: Dutput impedance $8-15$ ohms Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping discs. Overall Dimensions. Speakers approx. $15 \frac{1_{2}^{\prime \prime}}{} \quad 8^{\prime \prime}, 4$. Complete deck and cover in closed position approx. $15 \frac{1}{2}{ }^{\prime \prime} 12^{\prime \prime}{ }^{\prime \prime} 6^{\prime \prime}$. Coroplete only $\mathbf{£ 1 8 . 9 5}$ Extras if required.
Extranal Diamend Styli
Op 1.37
$\mathrm{f1} .60 \mathrm{p}$ \& p
Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance, $£ \mathbf{~} \mathbf{3 . 8 5}$.

8TRACK CARTRIDGE PLAYER*

Elegan: self selector push button player for use with your own stereo system. Compatible with Viscount ill system. the Steteo 21 and the Unisound module.
Technical specification.
Mains input. 240 V . Output sensitivily 125 mV Comparable unit sold elsewhere at $£ 24.00$ approx. Yours for only $£ 10.95+90 p . p \& p$

$\left(\begin{array}{c}2^{2}<2 \\ x^{2}\end{array}\right.$BUILD YOUR OWNSTEREO AMPLIFIER*
For the man who wants to design his own stereo -here's your chance to start, with Unisound-pre-amp. power amplifier and control panel. No soldering-just simply screw together. 4 watts per channel into 8 ohms. Inputs: 120 mV for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240V. AC only. $\quad \mathbf{f 7} \cdot 64+55 p . p$ \& p

Remember! one of the Top Ten Accessory Awards from Motor magazine PUSH BUTTON CAR RADIOKIT
 NOTE: The ability to solder on a printed circuitboard is

BUILD YOUR OWN TOURIST PUSH BUTTON CAR RADIO

Technical specification
1.) Output 2.5 watts R.M.S. into 8 ohms. For 12 volt operation on negative or positive earth.
2.) Integrated circuit output stage, pre built three stage IF Module.
Controls Volume, manual luning and five push buttons for station selection, illuminated tuning scale covering full medium and long wave bands. Size Chassis 7 ins. wide, 2 ins. high and $4, \frac{5}{6}$ ins. deep approx. necessary to complete this kit successtully. Circuit diagram and comprehensive instructions 55 p free with kit .
Car Radio Kit
$£ 6.60-55$ p. postage 8 packing.
Speaker including baffle and fixing strips £1.65 +23 p. postage $\&$ packing. RecommendedCar Aerial - fully retractable and locking. f1. 35 post paid.

THE ULTIMATE COMPLETE SPEAKER SYSTEM EMI LE 315

Recommended retail selling price, $\mathbf{\text { f } 8 6 . 0 0}$
Our price £45.00 + £3.50 postage \& packing.

A professional standard five way speaker system with enclosure giving top quality performance. Enclosure Dimensions approx. ($3 \mathrm{ft} . \times 2 \mathrm{ft} . \times 1 \mathrm{ft}$) Drive Units Hand built-15"diameter bass with 3 " voice coil. - two $5^{\prime \prime}$ diameter Mid Range units.

- two $3 \frac{1}{4}$ " HF. units. plus matching crossover panel with two variable potentiometers for mid and high frequency adjustment. Powder Handling Continuous rating 35 W rms., Peak power rating 70 W .
Frequency Response $20 \mathrm{~Hz} 20,000 \mathrm{~Hz}$. impedance 8 ohms

15"14A/780. Bass unit on a rigid diecast chassis. Superior cone material handles up to 50 watts RMS, and is treated to give a smooth frequency esponse. Resonance 30 Hz . flux density 360.000 Maxwells. Impedance at 1 kHz is 8 ohms. 3 " voice coil

Recommended retail price f40.80
OUR PRICE $£ 18.70$ + $\mathrm{f} 1 \cdot 50 \mathrm{p}$ \& p

950 Kit - Five matched speakers and crossover unit for handling up to 45 watts. frequency response from 20 to 20.000 Hz .
Huge 19"، 14 (approx.) high efficiency Bass-Speaker with 16.500 -gauss magnet buit on a heavy diecast frame.
The four 10.000 gauss tweeters, each $3 \frac{1}{3}$ dia. approx., are fed by the crossover which critically adjusts signal for maximum fidelity. Impedance at 1 kHz :s 8 ohms. Bass coll 2°. others $0.5^{\prime \prime}$. Recommended list price $\mathbb{£ 4 4 0 0}$
OUR PRICE £25.00 + f1.50p\& p Special Offer.

Radio and TV Components (Acton) Ltd. 21 High Street, Acton, London W3 6NG(D) 323 Edgware Road, London W2
Edgware: 9 a.m.- 5.30 p.m. Half day Thurs. Acton: 9.30 a.m.- 5 p.m. Closed all day Wed
＂SLO－SYN＂3－LEAD SYNCHRONOUS STEPPING MOTOR

Type SS 15 These fine motors are starily reversed starting and stop． ping in lass than
without electrical or mechanical
braking Simpla hoiding torque of 200 to winding for maximum hrough winding for $A C$ in with $35 v$ at 0.35 amps 20 r 50 Hz Speed 60 rpm at 60 Hz .72 rom STEPPING holding torque at 50 staps per sacond－ 100 oz／In Can accuracy of 0.9 per stop non－cumulative Torque characteristics can be modiffed by simple R．C circults Dimensions dia 4^{4} body iength $4^{\prime \prime}$ ．spindle length $2_{\bar{\tau}}$ ．$\frac{1}{7}$ die Weight $6 \ddagger$ lbs BRAND NEW in maker s packing Offered at less than if maker＇s prlce
OUR PRICE ONLY $\{15$

NORPLEX

Fibreglass coppar－clad laminate Finest quality epoxy
 Single－sided Copper with thickness of $137^{\prime \prime}\left(11\right.$ sq． $1 / 64^{\prime \prime}$ ． Also double－sided 1－10 5q it 250 P \＆P Fult Sheot is each Cair © for 1st
sheet plus 25 peach additional sheat
SMITHS RINGER－TIMER
Rellable 15 minute times．spring wound （concurrent with time setting） $15 \times 1 \mathrm{~min}$
divisions．approximately divisions panel mountling with chrome bezel 34 dia 51 －40．15p P \＆P
KNOWLE（U．S．A．）MINIATURE MICROPHONE CAPSULES
Impedance approx 200 n ．output 60 or 80 DB at 1 Kc As used in deal sids，bugging devices etc Size（60 DB） tested C 120 each P \＆ P PFRE

Ultra PRECISION
 CENTRIFUGAL BLOWER

 by Air Control Ltd

30 segments individually balanced in heavy cast alloy case． $2,300 \mathrm{r} . \mathrm{pm} .240 \mathrm{~V}$
 $5 t$ dia． $3^{\prime \prime}$ Inlet dia．Outlet tlange $3^{\prime \prime} \times 2^{4}$ Limited number only Es－95．P \＆P 40p

MAINS SOLENOID This little unit glves mately，＂through hinged

 bibow Bracket incor porates 2 fixing screws Length of arm，2\％ $240 \mathrm{~V} A C$ Special quotes for quantities
SOLENOIDS by WESTOOL 240 AC type MM6 31 b pull． 24 ．${ }^{\text {M＂}}$ ．

 1\％．Travel 90 p each．P \＆P 10p240 AC 240AC type MM4 216 pull． $1 /$
oach P \＆P Travel 4 70p discounts： $10-50 \quad 30^{\circ} \% 50$ wards $25^{\circ} \%$

OPEN FRAME

shaded pole
GEARED MOTORS
（Dural gear case）
240 AC $28 r p m$ NEW HIGH TOROUE GOprox overall size i $\times 3_{7} x$ $24+$ spindle die as illustrated è．70．P \＆P 30 D Similar to ebove． 19 rpm ¢2．70．P．\＆P． 300 $\begin{array}{ll}\text { SLIGHTLY SMALLER }) ~ E 2.70 . ~ F . ~ \& ~ P ~ P ~ & \text { 30p }\end{array}$

SILVANIA

MAGNETIC SWITCH
Now complete with reference magner
A magneticsily activated switch，vacuum sealed in a glass envelope Silver contacts，normally closed．Rated 3amp at 120 V ．Itamp at 240 V burglar alarms．security systoms etc and wherever non－mechanical switching is required
10 for $£ 2-10 ;$ P．\＆P 150.50 for $£ 8: 100$ for $£ 55 \cdot 50$ FREE P \＆P over 10

AMPEX 7．5V D．C．MOTOR

An ultra precision tape motor esigned for use in the AG20 $450 \mathrm{GM} / \mathrm{CM}$ ．Stali lond at 500 ma Draws 60 ms on run $600 \mathrm{rpm}=$ speed adjustment．InternalAF／RF suppression $t^{\prime \prime}$ dia $\times 1$＂spindie cost 196.50 ．OUR PRICE $\mathbf{~} 3.30$ P \＆P ． 25 p Quantities avaliable Mu－motal enclosure avaliable

ALL PRICES INCLUDE V．A．T． Whilst we welcome official orders from established com－ panies and Educational Depart ments，it is no longer practical to invoice goods under £5．There－ fore，please remit cash with orders below this amount

ELECTRO－TECH
 COMPONENTS LTD

315／317．EDGWARE ROAD．
LONDON，W2
Tel：01－723 $566701-4025580$

Digital Clach hits

 CHOOSE FROM TWO
 0 0莫国

EASY TO BUILD KITS－

KIT 0
including P．C．B designed for easy home assembly－Bright and clear digits．Tough A．B．S． plastic case with contrasting front panel．
PRICE－$£ 23.00$ plus $£ 2.30$ V．A．T．

MTVM Smaller digits than that in kit O ．All components and steel case covered in blue and white plastic（as made up in illustration）
PRICE $-£ 21.00$ plus $£ 2 \cdot 10 \mathrm{~V}$ A． T ． Total £23．10
inc．post and package
Only our advanced designed techniques make these low prices possible． Both kits are tested before they leave us and are covered by the P．E．A
money back guarantee．

P．E．A．Ltd． 35 High Street WELWYN

NAME
ADDRESS

Herts．ALG 9EE

PSYCHEDELIC LIGHTING UNIT IN KIT FORM
Make this fascinating three－channel unit from a kit which contains all components needed to produce an ever changing lighe display．Takes or portable radio．Will drive a tocal of 2 kW of coloured lamps at 240 volts．Supplied complete with PVC covered steel cabinet with holes ready punched for controls and cable outlets．Master control included． Coloured lamps not supplied．

鲜

METAL CABINETS

These attractive steel cabinets are PVC covered in a range of colours and offer an economically priced unit for the home construccor．The building area，with an incegral fascia panel．The cabiner is supplied complete with stick－on feet． Colours available include Gre effort will be made to supply a selected colour，but please give Blue．Ever if possible．

to your own requirements．Please send S．A．E．for quotation．
FIXED VOLTAGEREGULATORS
TO3 case．Gives stabilised supply．MVR 5 V ，MVR 12 V ，MVR 15 V.
Alf priced at $\mathbf{i} 1.65$

VEROBOARD

		0.1	0
	$\times \operatorname{lin}$	7p	7 p
	$\times 3$ in	27p	20p
	$\times 5 \mathrm{in}$	29p	29p
	$\times 3$ in	29p	29p
	$\times 5 \mathrm{in}$	$31 p$	32p

D．I．L．REED RELAY
Operares direct from 5 volt TTL logic elements．Normally open contact rated at
$0 \cdot 25 \mathrm{~A}, 100 \mathrm{~V}$ d．c．
Price each Kl .50

Our CATALOGUE，priced at 25p post free in U．K．，shows most of the R．S．range of professional components．Prices include VAT All orders over 50p POST FREE－U．K．only．Overseas postage at cost

CELECTRON－E
P．O．Box No．I，Llantwit Major，Glamorgan，Wales CF6 gYN

Trannies

All orders to be sent to our new retail shop at:

4 Bush House, Bush Fair, HARLOW, ESSEX

Telephone 37739

P. \& P. 10 p.

74 Series TTL
(National Semiconductors and I.T.T.)
LOW PRICES, HIGH QUALITY

- 100 plua less 10% on the $25+$ colurnn			No's	$\begin{gathered} 1+ \\ \mathbf{~} \end{gathered}$	$\begin{gathered} 25+ \\ f \\ 1.39 \end{gathered}$	No'	$\begin{gathered} 1+ \\ \mathbf{f} \\ 3.35 \end{gathered}$	$\begin{gathered} 25+ \\ \mathbf{e} \\ 3.28 \end{gathered}$	Linear		
No's	$1+$	$25+$	7447	1.48		74123					
	\pm	f	74.48	1.98	1.81	74141	1.10	0.89			
i400	0.20	0.18	$74 \overline{0} 0$	0.20	0.16	74145	1.65	1.48	ก	gra	ed
7.101	0.20	0.18	7451	0.20	0.19	74100	3-30	2.75			
7402	0.20	0.18	-453	0-20	0.10	74151	1.21	1.15			
7403	0.20	0.18	74.4	0.20	0.18	74153	1.32	$1-15$	CII	dit	
7404	0.21	0.18	74tio	0.20	0.18	-1154	2.20	1.87			¢
7405	0.21	0.19	7470	0.33	0.27	74155	$1 \cdot 65$	1.21	301	D1L	0.50
7406	0.54	0.48	7472	0.33	0.30	74106	1.85	1.21	301	T099	0.55
7407	0.54	0.48	7473	0.46	0.42	74157	1.54	1.43	301	8 PIN	D1L 0.48
T 708	0.29	0.24	7474	0.44	0.40	71150	2.18	2.05	301 A	DIL	$0 \cdot 69$
$\bigcirc 409$	0.29	0.24	7175	0.83	0.57	74161	2.18	2.05	301 A	T049	0.69
7410	0.20	0.18	7476	$0 \cdot 55$	0.51	7+162	4.84	4.54	301 A	8 PIN	DIL 0.66
7411	0.23	0.21	7480	$1 \cdot 10$	0.89	74163	4.84	4.54	307	DIL	0.69
7412	0.40	0.33	7481	1.37	1.26	$7+164$	2.73	$2 \cdot 63$	\$07	T09!	0.69
7413	0.31	0.28	$748:$	1-10	0.89	7+165	2.73	$2 \cdot 63$	307	8 P15	D1L 0.68
741i	0.49	0.47	7483	1.32	1.29	74166	4.28	$3 \cdot 94$	308	T099	6.45
7417	0.57	0.53	7484	$1-32$	1.21	74174	2.78	2.66	308 A	T090	8.40
74:30	0.20	0.18	7485	2.75	2.84	74175	1.84	1.81	709c	DIL	0.35
74:2	0.60	0.58	7489	0.49	0.41	74176	1.99	1.87	709 c	TO99	0.31
74.3	0.60	0.58	7489	4.95	4.29	74177	2.75	$2 \cdot 64$	723 c	DIL	0.98
7425	0.60	0.53	7490	0.82	0.71	74180	2.75	2.64	723 c	T099	0.95
74.5	0.35	0.31	7492	0.84	0.65	74181	6.49	6.05	741 c	8 PIN	DIL 0.38
7427	0.55	0.51	7493	0.82	0.68	7418:	2.16	2.02	i41c	14 1'1	- DIL, 0.39
74.8	0.85	0.78	7494	1.04	0.83	74184	2.68	2.42	itlc	T099	0.41
7430	$0-20$	0.18	7495	1.14	1.03	74190	3.08	2-98	$74 \% \mathrm{c}$	D1L	0.46
7.432	0.42	0.33	7496	1.25	1.15	7i191	$2 \cdot 30$	2.24	$7+88$	D11.	0.38
7433	0.97	0.91	$7+100$	2.75	2.58	74192	2.53	2.30	748 c	TO49	0.41
7437	0.77	0.74	74104	1.18	1.14	T+193	$2-53$	2.30	2N+1		1.38
74.88	0.77	0.74	71105	1.18	1.14	71194	3.27	3.15	MC13	$10 \mathrm{P}^{2}$	$3 \cdot 38$
7440	0.20	0.18	74107	0.48	0.48	74190	2.42	2.30	-	寿	
7441	0.81	0.78	74110	0.67	0.65	74196	2.18	2.08			
7442	0.81	0.78	74111	1.52	$1-40$	74197	$2 \cdot 18$	2.08			
7443	1.40	$1 \cdot 32$	74118	1.10	0.80	74198	6.85	8.05			
7444	1.57	1.52	74119	1.84	1.54	74199	86.65	8.05			
74.45	2.31	2.18	741:21	0.47	0.42	74200	26.40	21.12			
7446	2.31	$2 \cdot 18$	74122	1.70	1.58						

Resistors	VEROBOARD		
f watt 5% carton 10		${ }^{0.1}$	${ }^{0} 15$
watt 5% carbon ${ }^{1 / \mathrm{p}}$	14838	27p	${ }_{23 \mathrm{p}}^{19 \mathrm{p}}$
1 watt 10\%\% carbon	33 $\times 38$	${ }_{27 \mathrm{p}}$	${ }_{23 \mathrm{p}}$
	31×5	31 p	31 p
range 10 cutus to 1 megohms.	$17 \times 2 \frac{1}{17}$	${ }^{82 \mathrm{p}}$	${ }^{63 p}$
	$17 \times 3:$	£1.10	87p
MIINITRON DIGITAL	Pin insertion tool	57 p	${ }_{570}$
INDICATOR TYPE 3015F	Spot face cutter	$4{ }^{\text {d }}$	46 p
Read 0.9 and decimals. ONLY $£ 1.95$	Y's 36 Pins	20 D	20 p

Electroiytic				~ 4		VOLUME CONTROLS Potentiometers		
Capacitors						Cathon track 500Ω to $22 \mathrm{M} \Omega$		
				Sirgle 13p. Dual gang (atereo) 44p.				
${ }_{4}^{47 \mu \mathrm{~F}}$	6.		16 VOLT			40 VOLT		Single type with D.P. switch extra.
	${ }_{61 p}$	${ }_{33}{ }^{4} \mathbf{4}$	63, D	$68 \mu \mathrm{~F}$	10 p			
$100 \mu \mathrm{~F}$ $\begin{array}{l}200 \mu \mathrm{~F} \\ 300 \mu \mathrm{~F}\end{array}$	83 p	150 10		$100 \mu \mathrm{~F}$	${ }^{9 p}$			
		150,		$220 \mu \mathrm{~F}$	${ }_{11 p}$	CARBON SKELETON		
$3 \times 0 \mu \mathrm{~F}$ $100 \mu \mathrm{~F}$		${ }^{220 \mu \mathrm{~F}}$	9 p	${ }_{6}+0 \mu \mathrm{~F}$	19p	PR		
$4700 \mu \mathrm{~F}$	28 p	$680 \mu \mathrm{~F}$		$680 \mu \mathrm{~F}$ $1000 \mu \mathrm{~F}$	${ }_{25 p}^{25 p}$	Strall high quality type dinear		
	6.3 VOLT	$\begin{aligned} & 1000 \mu \mathrm{~F} \\ & 1500 \mu \mathrm{~F} \end{aligned}$	17p	$1000 \mu \mathrm{~F}$ $2200 \mu \mathrm{~F}$	${ }_{44 \mathrm{p}}^{25}$	only). Ail yalves 100.5 meg ohris.		
$33 \mu \mathrm{~F}$	6ip	$2000 \mu \mathrm{~F}$	43p			$\begin{array}{ll}-1 \text { watt } \\ -2.5 \text { watt } & 6 \frac{10}{2} \text { peach }\end{array}$		
	${ }^{61}{ }^{81} \mathrm{p}$	25 V						
$150 \mu \mathrm{~F}$ $470 \mu \mathrm{~F}$	11 p	$10 \mu \mathrm{~F}$	${ }_{6}^{6} \mathrm{p}$					
$680 \mu \mathrm{~F}$ $1500 \mu \mathrm{~F}$	${ }^{13 \mathrm{p}}$		${ }_{6} 61 \mathrm{p}$	63 V				
$1500 \mu \mathrm{~F}$ $2200 \mu \mathrm{~F}$		${ }_{100 \mu \mathrm{~F}}^{+17 \mathrm{~F}}$	${ }_{80}^{81}$	$1 \mu \mathrm{~F}$	61p	kit Available		
$3300 \mu \mathrm{~F}$	28 p	150		$2.2 \mu \mathrm{~F}$	${ }_{81}^{61} \mathrm{P}$			
10 VOLT		${ }^{22} 470$	10 p	. ${ }^{4.7 \mu \mathrm{~F}}$	${ }^{6}+1$	SLIDE SWITCH		
$22 \mu \mathrm{~F}$	6\}p	$680 \mu \mathrm{~F}$		$10 \mu \mathrm{~F}$	${ }_{6}^{6}+\mathrm{P}$			
$47 \mu \mathrm{~F}$	81 P	1000 $/ \mathrm{F}$	22 D	2i $\mu \mathrm{F}$	${ }^{6.1} \mathrm{D}$	SPST llp each. D.P.D,T. 13		
$100 \mu \mathrm{~F}$	$6{ }^{6} \mathrm{P}$	${ }^{2200 \mu \mathrm{~F}}$	${ }_{680}^{380}$	${ }^{68 \mu \mathrm{H}}{ }^{600 \mu \mathrm{~F}}$	110			
${ }_{3}^{220 \mu \mathrm{~F}}$	${ }_{10 \mathrm{p}}$			$150 \mu \mathrm{~F}$	18p	MINIATURE NEO		
$470 \mu \mathrm{~F}$	10p	40 V	LT	$220 \mu \mathrm{~F}$	19 p	LAMPS		
$1000 \mu \mathrm{~F}$	${ }_{200}^{11 p}$	(${ }^{6.8 \mu \mathrm{~F}}$		${ }^{330 \mu \mathrm{~F}}$	${ }_{28 \mathrm{p}}^{22 \mathrm{p}}$	240 V or 110 - 1-4 5 p. 5 plus 49		
$1500 \mu \mathrm{~F}$ $2200 \mu \mathrm{~F}$	24p	$\mathrm{P}=15 \mu \mathrm{~F}$		${ }^{1}$	${ }_{44}{ }^{28}$			
Mullard Polyester Capacitors								
C280 SERIES								
C296 SERIES								
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015,0022$,				0.033, 0		$1 \mu \mathrm{~F} 149 \mathrm{p} . \quad 15 \mu \mathrm{~F} 22 \mathrm{p} .22 \mu \mathrm{~F} 24 \mathrm{p}$.		

£1 BARGAIN PACKS

N 3055), tested/unnarke

 30 Plastic FET'S, unnarked/unteated Sumilar to 2 N 3819.$$
20 \text { TO5 transiatore }
$$

unterted/ummarked.
20 TOly transistors pup like BCles BC179, etc., untested/unmarked 30 Plastic 2 N 305 s , ummarked/un .
10 General purpose, fully tetsed FETs.
500 Cartion resistors, $\frac{1}{2}, \frac{1}{1}$
etc., condensers.
250 rolyester, polycartronate, paper etc., contensers.
25 Potentiometers, assorted
250 bigh Stab. $1 \%, 2 \%, 5 \%$, re Rintors.
11h A Asorted nuts, holts, washers, apracers, etc.
25 Assortell switches, rotary, lever, 50 Presets Potent
any 5 P'ack $\& 4$. P. \& P. 10p for
any 5 packs $£ 4$

Transformers

50V transformers

Prim, 200-2,0-240, secondary
 $\begin{array}{lllll}13 T 606 & 100 \mathrm{~mA} & 6-0-6 \mathrm{y} & 0.98 & 15 \mathrm{p} \\ \text { BT409 } & 100 \mathrm{~mA} & 9-0-9 \mathrm{~V} & 0.88 & 15 \mathrm{p} \\ \text { BT12012 } & 100 \mathrm{~mA} & 12-0-12 \mathrm{~V} & 1.08 & 15 \mathrm{p}\end{array}$ $\begin{array}{lllll}\text { BT12012 } & 100 \mathrm{nA} & 12-0-12 \mathrm{~V} & 1.08 & 15 \mathrm{p} \\ \text { BT24024 } & 100 \mathrm{n} \mathrm{A} & 24-0-24 \mathrm{~V} & 1.85 & 15 \mathrm{p}\end{array}$
Se

Semiendetrs.		OC3ti	50p	Bridge	Rect.
AC12ti	14p	OC4:	18p	1 amp	
AC127	18p	OC45	10 p	100 V	22p
AC128	15p	OC71	$11 p$	200 V	24 p
ACl41K	26p	0 O81	12p	600 ${ }^{+}$	27p
AC142K	26p	2×706	$14 p$	Thyrist	
AClib	18p	2N1131	24 p	l amp	
ACls 7	24p	2N1132	28p	$50 \mathrm{~V}$	29p
AC188	24p	2 N 2904	20p	100 V	32p
ACl87K	28p	2N2926	11p	200 V	34 p
ACl88K	28p	2N30J3 2N 3004	26p 55 p	$400{ }^{\text {d }}$	44p
AD149	$48 p$ $38 p$	2N3004	55p 49 p	3 amp	
AD161 AD162	38 p 40 p	2×300\%	49p 14 p	50 V	39 p
AD162	40p	2N3703	13p	100 Y	44 p
Ak110	20p	2N3704	140	200 V 400 V	p
AF116	20p	2N3705	13p	400 V	
AFll	20p	2N3706	12D	$5 \mathrm{Sax}^{\text {a }}$	$46 p$
BCa 07	13p	2N3707	13 p	100V	570
13 C 108	13p	2\$3708	11 D	200 V	68 p
BC109	13p	2N3709	12p	400 V	77 p
BC147	18p	2N3710	12 p		
BC148	13p	2N3711	12p	Trisce	
HC149	13p	2N3819	35 p	2 amp	
HC182	13p	40301	55p	100 V	33p
BC183	11p	40352	55 p	200 V	65p
13C18:	14p	40536	88 p	400%	770
10212	13p	1N914	8D	6 amp	
BC2 13	13p	IN916	8 p	100 V	68p
P($)^{2} 14$	13p	1) 4001	7 p	200 V	88 p
160131	68p	IN4002	8 p	400 V	99p
13D132	90p	[N4003	10p	10 amp	
BF194	10p	1) N 4004	10p	100V	98p
BF 145	17p	1×4006	15p	200V	£1.32
13FL44	27p	IN4148	8p	400 -	£1.43
ISFY50	18p	IN5400	16p		
BFY51	18p	IN5401	17 p	400 m	
B1Y54	17 p	1 N 5402	19 p	Zener	Diodes
MP8111	38 p	IN5404	24 p	$3 \cdot 3$ to	

BIG DISCOUNTS

PLUS full 12 months' guarantee and after sales service. * All prices INCLUDE VAT
\star Callers welcome - listen and look at our new retail premises.

Amstrad 4000 stereo System watt RMS

 Iiltone speakers, Carrard SP2̄̆ Mk. urntable, G800 cartidge. \mathbf{P} and \mathbf{C}. R.R.P. E112 Our Price $£ 69.80$ (carr £1.50) or 41.08 weekly for 78 week Amstrad 2000 Systemncludes IC 2000 amp Mk. II 20 wath RMS, litone $20+20$ speakers, Garrard
SP 25 Mk. IV turntable, G800 cartridge. P and \mathbb{C}
R.R.P 1112
Our Price $£ 84$ 20 (cart \&1-j0) Di Plice eo 20 (cari 104 week

Hiltone $10+10$ System
inclules Hiltone 10 watt RMS amp. Hiltone speakers, Garrard 2025 TC table complete cartridge. P^{P} and C. R.R.P. $£ 8: 3$

Our Price $£ 54.80$ (cart $£ 150$) or $\mathfrak{\text { \& }} 1.32$ weekly for 52 weeks
Hiltone $20+20$ System
Includes Hiltone 20 watt 12 MS amp, Hiltone speakers, $\$ \mathrm{P}^{2} 25$ Mk. IV turntable, © 800 cartrilge. l^{\prime} and C .
 our Price x r8. 60 farr 104 weeks
Hiltone TA 100 Sc stems
Hiltore 10 watt tuner amp. Hiltone heakers. Garrar artridge and P and Our Price $£ 8450$ (carr $£ 1.80$) or 2121 reekly for 62 week:

TRANNIES DISCO UNIT

cludes

- DJ 100 watt discotherue amp with full miring and PKL Stereo headphones with boom micro-
Trannier Disco Console-with 2 Gatrard SP25 MK. IV turntables with G800 cartridges.
- Pair 50 watt apeakers. or Complete $8 y$ atem $£ 182 \cdot 50$ carr $£ 3$
\star terms $£ 2 \cdot 38$ weekly over two years (total t.2:25) \star
he stock a full range of Disco

1P I.L.P.(Electronics)Ltd

SECOND GENERATION 25 WATT HYBRID

A brand new hybrid fabrication technique, recently perfected in our laboratories, has enabled We to achieve our lacest range of completely integrated devices.
We have now finally reduced the modular audio amplifier to a simple input/output device The HY50 hiy the addition of a basic unstabilized (split line) power supply.
hearsink which is derm power modes co their logical conciusion by incorporating with it a heatsink, which is designed in special high conductivity alloy sufficient for normal audio use module comparable chassis sinking. All this without significantly increasing the size of the Consistent with modern thinking a triple rated ourpurgarcuis.
Consistent with modern thinking a triple rated output circuit with a load fuse allows for peak

Price f5-80 mono 511 - 60 etereo

NEW HY5 PREAMPLIFIER

Unchallenged for two years, the HY5, our unique multifunction preamplifier/tone hybrid, has been brought into line with the advancements in our power hybrids.
Like the HY50, the new HY5 has no external components and has been redesigned to run off a split power line with improvements in signal/noise, overload capability and reduced distortion. The output has been increased to match the power module (OdB), and share the same power supply. Overall size is reduced by the use of a new thin film circuitry while the device still retains all the functions of the earlier device.
When combined with the HY50 and power supply only potentiometers are required to complete a simple mono amplifier with input and output facilities expected to be found on $\mathrm{Hi}-\mathrm{Fi}$ amplifiers.
The combination of two HY5's two HY50's sharing a common power supply (PSU50) are linked by a balance control toform a complete stereo system.

SPEC,

INPUTS
Masnetic Pick-up $3 m \vee$ (within IdB RIAA Ceramic Pick-up up to 3 mV Tuner 250 mV
Auxiliary $3-100 \mathrm{mV}$.
Input impedance $47 \mathrm{k} \Omega$ । kHz
OUTPUTS
Tape 100 mV .
Main output. OdB (0.775 V).
Price $[\mathbf{4} . \mathbf{8 5}$ mono $\mathbf{i g} .70$ atereo

ACTIVE TONE CONTROLS
Treble $\pm 12 \mathrm{dBat} 10 \mathrm{kHz}$
Bass $\pm 120 \mathrm{~B}$ at 100 Hz
OYERLOAD CAPABILITY
(equalization stage) 40 dB on most sensitive input.
OUTPUT NOISE LEVEL
(below 10 mV magnetic input) 68 dB .
DISTORTION 0.05% at 1 kHz
SUPPLY VOLTAGE $\pm 16-25 \mathrm{~V}$
SUPPLY CURRENT 15 mA .

Price inclusly of VAT and P. A.

POWER SUPPLY PSU50

The new PSU50 has a low profile look boing only 2 tin high and can be used for either mono or stereo systems.

SPEC.
OUTPUT YOLTAGE $\pm 25 \mathrm{~V}$,
INPUT VOLTAGE 210-240V
SIZE: L. 70 D. 90 H. 60 mm .

NOW AVAILABLE IN THE U.K!

ONE OF ITALY'S LEADING TEST EQUIPMENT MAKERS PRESENT THE CORTINA MINOR

One of a range of professional quality instruments now available to U.K. users

- SENSITIVITY 20,000 م/VOLT (D.C.), 4,000 ח/VOLT (A.C.) ROBUST DIODE PROTECTED PRECISION MOVEMENT - 33 RANGES D.C. VOLTS $0-100 \mathrm{mV}, 1.5 \mathrm{~V}$. 5 V , 15 V , 50 V , 150 V . 500 V , 1.500 V . D.C. CURRENT $0-50 \mu \mathrm{~A}$. $5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}$. 2.5 FA . A.C. VOLTS, $0-7.5 \mathrm{~V}$
 10k Ω. $10 M \Omega$ F.S.D. CAPACITANCE RANGES $100 \mu F$, IF F.S.D - AC CURAEY-RESISTANCE, DC. VOLTAGE AND CURRENT, 2.5% A.C. VOLTAGE AND CURRENT 3.5% OHMS RANGES POWERED BY INTERNAL BATTERIES - COMPACT SIZE: $150 \times 85 \times 40 \mathrm{~mm} 350 \mathrm{gr}$ - CLEARLY CALIBRATED DIAL WITH ANTIPARALLAX MIRROR - PRO FUSY GUAANTYED FOR IT MONTHS AFTER SALES SERVICE AND SPARES FACILITIES SUPPLIED WITH ADDITIONAI SERVICE AND SPARES FACILITIS S SUSE, TWO HIGHLYINSULATED TEST LEADS AND INSTRUCTION BOOKLET - SPECIAL 30kV PROBE FOR D.C. MEASUREMENT AVAILABLE AS AN OPTIONAL EXTRA PRICE £13 (p \& p 80p) PROBE $\mathbf{5 7} \mathbf{7 0} \mathbf{~ i n c . ~ o f ~ V A T ~}$
For full details of the Chinaglia range contact
CHINACLIA (U.K.) LTD.
19 MULBERRY WALK, LONDON, S.W.3
Tel. 01-352 1897

Are you an inventor?

Newnes-Butterworths, the technical publishers, invite you to enter for-

THE

NEWNES-BUTTERWORTHS PRIZE

- Worth $£ 250$
- Awarded for the "most novel application of an electronic device"
- Judged by a distinguished panel of experts.

Entry forms should be available at your local trookseller, but in case of difficulty please contact the publisher direct.

Newnes-Butterworths

The big name in technical publishing
BJough Cireat, Sevenoaks. Kent TN 15 8PH

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS Prim. $120 / 240 \mathrm{~V}$. Sec $120 / 240 \mathrm{~V}$ Centre Tapped and Screened ALSO AVAILABLE WITH $115 / 120 \mathrm{~V}$ SEC. WINDING Ref.
 p
c
1.22
2.40
2.89
5.63
8.36
1519
21.99
28.70
39.17 1
22
30
36
52
67
82
8
\vdots $\begin{array}{ll}73 & 3000 \quad 40 \text { O } 21.6 \times 13.4 \times 18.1 \quad \ddot{O} \quad \ddot{ } \\ \text { CASED AUTO TRANSFORMERS }\end{array}$

LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLTS 12 ANDIOR 24 YOLT RANGE Ref. Amps. Weight Size cm. Secondory Windings P \& P $\begin{array}{lll}1110.5 & 0.25 \\ 16\end{array} 8^{0 z}$

108
72
116
1772
116
17

115| 226 | 60 | 30 | 32 | 0 |
| :--- | :--- | :--- | :--- | :--- | $17.2 \times 15.3 \times 140012 V$ at $30 A \times 2 \times 28$.Ref. Amps Weight Size cm. Secondory Taps$C^{P \&} P$

1.42
1.92
112
79
3 $\times 5.8 \times 4.8$
$\times 6.7 \times 6.1$

$$
\begin{aligned}
& 7.0 \times 6.7 \times 6.1 \\
& 8.9 \times 7.7 \times 7.7 \\
& 9.9 \times 8.3 \times 8.6 \\
& 0.9 \times 8 \times 8.6
\end{aligned}
$$

$\begin{array}{r}21 \\ 51 \\ 117 \\ \hline 99\end{array}$
89
0.5
10
2.0
3.0
へ

$$
\begin{array}{r}
9.9 \times 8.3 \times 8.6 \\
9.9 \times 8.6 \times 8.6 \\
12.1 \times 8.6 \times 10.2
\end{array}
$$

Ref. Amps. Weight
No.
103
105
106
107
118
119RRef. Amps. Weight $5 i z e \mathrm{~cm}$. Secondory Taps
No.
124
126
127
\square

?${ }_{122}^{122}$
MINIATURE TRANSFORMERS WITH SCREENS
Ref.

$\begin{array}{llll}100,330 & 4 & 3.9 \times 2.6 \times 2.9 & 9.0 .9 \\ 330,330\end{array} \quad 4.8 \times 2.9 \times 3.5 \quad 0.9,0.9$
$\begin{array}{llll}500 \\ 1 A & 14.1 \times 5.4 \times 4.8 & 0.8-9.0-8-9 \\ 7.0 \times 6.4 \times 6.1 & 0-8.9 & 0.8-9\end{array}$$\begin{array}{lrll}1200.200 & 12 & 4.0 \times 66 \times 6.1 & 0-8.9,0.8 \\ 20.9 \times 2.9 \times 3.5 & 0.15,0-15\end{array}$$\begin{array}{lll}200,300 \\ 1 & 4 & 4.8 \times 2.9 \times 3.5 \\ 6.1 \times 5.8 \times 4.8 & 0-20,0.20\end{array}$206 IA.|A $212 \quad 8.3 \times 7.7 \times 7.0 \quad 0.15 .20,0-15-20$$203500.500218 .3 \times 7.0 \times 7.0$ 0.15-27.0.15-27204 IA,IA 3 - $8.9 \times 7.7 \times 7.7$$\begin{array}{cc}P & \& \\ 1 & p \\ 31 & 10 \\ 52 & 22 \\ 12 & 10 \\ 52 & 10 \\ 03 & 22 \\ .73 & 30 \\ .52 & 10 \\ .80 & 22 \\ .41 & 30 \\ .08 & 38 \\ .82 & 38 \\ .86 & 38\end{array}$
PLEASE ADD 10\% FOR V.A.T.
BABRIIE electronics3,THE MINORIES, LONDON EC3N IBJTELEPHONE: 01-488 3316/8

NEAHEST TUBE STATIONS ALDGATE \& ALOGATE EASI

UR PRICES INCLUDE V.A.T.

BSR HI-FI AUTOCHANGER STEREO \& MONO
Plays $12^{-}, 10^{-}$or 7^{*} records. Auto or Manual. A high quality unit backed by BSR guarautee. AC $200 / 250 \mathrm{~V}$ Size $13!\times 114 \mathrm{jn}$.

Above motor board 3 in. Below motor board $2 \frac{1}{3}$ in with STEREO and MONO XTAL $\mathbf{1 6 . 7 5}$ Pont 25p.

PORTABLE PLAYER CABINET Modern deaign. Black rerine covered. Silver tront grille.
Padded Lid. Chrome fittings.
Size $17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{zin}$. $\begin{array}{lr}\text { Padded lid. Chrome fittinge. } & \text { Size } 17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in} \\ \text { Few only ia red rexine. } \\ \text { Motor board cut for BSR deck } & \mathbf{4 4 . 5 0} \text { Post } 25 \mathrm{p}\end{array}$
Motor board cut for BSR dech

4 Transistor Mono Amplifier

Powerful 3 watt output, 15 ohm. AC mains operated with translormer. 3-Controls, volume, treble, basa and On/Off switch with knobs. Ready made on printed circait board. Fused inputs and outputs. Famous make. Size \sin wide $\times 4$ in deep $\times 3$ in high.
Suitable 7 in $\times 4$ in
$\mathbf{6 5 . 9 5} \begin{gathered}\text { Pont } \\ 25 p\end{gathered}$

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop. A cos stereo/mono cartridge. Baseplate

 Size 11 in $\times 8$ ijn. Turnta ble. Size 7 in diameter. AiC main.200250 V motor has a separate winding 14 volt to power a 200250 V motor

£5.50

METAL PLINTH AND PLASTIC COVER Cut out for moat Garrard or B.S.R. Most will play with cover in position. $12 \frac{1}{2} \times 14 \frac{1}{2} \times 7$ in.
 Covered in black leatherette.

ALSO AVAILABLE IN SOLID NATURAL MAHOGANY
COMPACT PORTABLE STEREO HI-FI
Two full size loudspeakers $131 \times 10 \times 3$ inn. Plager unit clips to loudapeakers making it extremely compact, all records 33 r.p.m., 45 r.p.m. Separate volume and tone

SPECIAL OFFER!

 SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0 TO 60 MINUTESSingle pole two-way Surface mounting with fixing screwa. Will replace existing

garake, automatic anti-burglar lights, etc. Variable knob Turn on or of at lull or intermediate settings. Fully insulated. Makers' last list price $\mathbf{2 4 \cdot 5 0}$. Brand new and fully kuaranteed.

OUR PRICE ≤ 1.65 Pont 25 p
BLANE ALUMINIOM CHASSIS. 18 s.w.g. 2tin gides 6×4 in $45 p ; 8 \times 8$ in $53 \mathrm{p} ; 10 \times 7$ in $65 \mathrm{p} ; 12 \times 8 \mathrm{gin} 85 \mathrm{p}:$ 14×9 in $90 \mathrm{p} ; 16 \times 6 \mathrm{in} 90 \mathrm{p}: 12 \times 3 \mathrm{in} 50 \mathrm{p}: 16 \times 10 \mathrm{in} \mathrm{f1}$.

 14×3 in $20 \mathrm{p}: 10 \times 7$ in $24 \mathrm{p} ; 12 \times 5 i n 25 p: 12 \times 8 \mathrm{in} 34 \mathrm{p}$
$18 \times 8 \mathrm{in} 34 \mathrm{p} ; 14 \times 9$ in $40 \mathrm{p} ; 12 \times 12 \mathrm{in} 47 \mathrm{p} ; 18 \times 10 \mathrm{in} 60 \mathrm{p}$ PAXOLIM PANEL $10 \times 8 \mathrm{in} 20 \mathrm{p}$.
1 P inch DIAMETER WAVECEANGE SWITCEES, 30p ea. 2 p. 2-way. or 2 p. 6-way. or 3 p. 4 -way.
1 p.1. 2 -way, or 4 p. 2 -way, or 4 p. 3 -wey.
1p.1. 2-way, or 4 p. 2-way, or 4 p. 3-wey
TOGGLE SWITCHES, sp. $14 p$; dp. 22p; dp. dt. 25 p

BRITISH FM/VHF TUNING HEART

 88 to $108 \mathrm{Mc} / \mathrm{s}$ British made. 2 Transiators ready aligned -requiret 10.7 Mc/s I.F. Complete with tuning gang espential. Our Drice 23.95 experienceR.C.S. STABILISED POWER PACK KITS All parta and inatructions with Zener Diode, Printed Circudt, Bringe Rectiflers and Double Wound Mains Transformer inpat $200 / 240$ a.c. Output voltages evailable 6 or 9 or 12
 PLEASE STATE YOLTAGE REQUIRED.
Detaili B.A.E. gize $3 \frac{1}{1} \times 1 \frac{1}{2} \times 1 \| \mathrm{in}$.
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.U., Gaitar, etc. Can be used with Battery $8-12 \mathrm{~V}$ or H.T. line $200-300 \mathrm{~V}$ d.c. operation. Size If It I in. Reaponse $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}, 26 \mathrm{~dB} \mathrm{gain}$. For use with velve or transistor equipment.
Full inatr uctions anpplied. Details S.A.E. 2
2
8
1
3
2
5
1
1
1

NEW	ULA	ELECTROL	TICS	CAN TYPE8	
$2 / 350 \mathrm{~V}$	14p	250/25V	14p	$50+50 / 800 \mathrm{~V}$	50p
4/350V	14p	500/25V	20p	$80+100 / 3500$	85 p
$8 / 450 \mathrm{~V}$	18p	1000/257	35p	$32+32 / 250 \mathrm{~V}$	20p
18/450V	22p	$1000 / 50 \mathrm{~V}$	47p	$32+82 / 450 \mathrm{~V}$	60p
32/500V	50p	$8+8 / 450 \mathrm{~V}$	22 p	$360+50 / 325 \mathrm{~V}$	55p
25/25V	10p	$8+16 / 450 \mathrm{~V}$	25p	$18+18+16 / 275$	45p
$50 / 50 \mathrm{~V}$	10p	$16+16 / 450 \mathrm{~V}$	40p	$32+32+32 / 350$	85p
$100 / 25 \mathrm{~V}$	${ }^{10} 10$	$32+32 / 360 \mathrm{~V}$	40p		

$1,2,4,5,8,16,25,30,60,100,200 \mathrm{mF} 16 \mathrm{~V} 10 \mathrm{p}$
 $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V}$ 47p; 100 V 70 p. 2000mF 6V 25p; 25V 42p; 50V 57p.
2500 mF 50 V 62p; $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
5000 mF BV 25p; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$ CERAMIC 1pF to 0.01 mF , 4p. Silver Mice 2 to $5000 \mathrm{pF}, 4 \mathrm{p}$ PAPER 350V $0.14 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$ SILVER MICA. Close tolerance 10 . 2-2-500pF $8 p ; 560$. $200 \mathrm{pF} 10 \mathrm{p} ; 2,700-5,800 \mathrm{pF} 20 \mathrm{p} ; 6,800 \mathrm{pF}-0.01$, mfd 30 p each TWIN GANG " $0-0$ " $208 \mathrm{pF}+176 \mathrm{DF}, 65 \mathrm{p}$.
Slow motion drive $385 \mathrm{pF}+366 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$; 00 pF standard 65p; mall 3-geng 500 pF \&1. 60 .

- -

SHORT WAVE single GANG. Precinion Sllver Plated Gangable Tuning Condensers.

50p oach
Values ap to 100 p .
more ganga.
NEON PANEL IADICATORS 250V AC/DC. Amber 20p.
RESISTORS. $1 \mathrm{~W}, \frac{1}{2} \mathrm{~W}, 1 \mathrm{~W} .20 \% 1 \mathrm{p} ; 2 \mathrm{~W}, 5 \mathrm{p}$. 10Ω to 10 M GIGH STABILITY. $1 \mathrm{~F} 2 \% 10$ ohms to $6 \mathrm{meg}, 10 \mathrm{p}$.
Ditto 5\%. Preferred Faluea 10 ohms to 10 meg., 4 p .
WIRE-WOUND RESLSTORS 5 watt, 10 watt, 15 watt, 0 ohms to 100 K 10 p each: 2 watt, 0.5 ohm to $8 \cdot 2$ ohme 10 p FERRITE ROD $8 \times$ in $20 p$; $6 \times$ in 20p;

MAINS TRANSFORMERS
 25D Past
 25D each

Eagle MT12 12-0-12V 50 mA
 $360-0-35080 \mathrm{~mA} 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 F 2 A
 MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6.3 V 1 \mathrm{~A} 21 \times 2!\times 2 \mathrm{i}$ 820
62.50
83.00 HEATER TRANS 0.3%,
E.M.I. $13 \frac{1}{2} \times 8$ in. SPEAKER SALE! With twin twesters.
And crossover. 10
watt. 8 tate 3 or 8 or watt. 8tate 3 or 8 or
15 ohm . As illustrated. Pont 25 p With flared tweeter cone and ceramic magnet. 10 Watt. Bars res. $45-60 \mathrm{c} / \mathrm{s}$.
Flur $10,000 \mathrm{ge}$ £2.75 State 3 or 8 or 15 ohm. Poat 25p
E.M.I. $6 \frac{1}{2} \mathrm{in}$. HI-FI WOOFER

8 ohm. 10w. Largo ceramic magnet. Special Rubber cone surround. Frequency response $30-12,080 \mathrm{c} / \mathrm{A}$. IdesI P.A. Colamin. Hi-ri Encloare Syatems, etc
8atable cabinet $12 \times 8 \times 8$ \& 4 Suitable Tweater 28

ELAC CONE TWEETER

GOODMANS

 8 in . WOOFER 8 ohm 18 watt. Deep cone. Heavy cersmic megnet, Bass renponse $30-8,000 \mathrm{cps}$ Ideal bass unit forHi-Fi syatem.

SPECIAL OFFER LOUDSPEAKERS

ALL BRAND NEW

3 obm, 2 2 in; 2 名in; 3 hin; $5 i n$.
8 ohm, 2tin; 2tin; sin $\times 3 \mathrm{in}$; sin
 25 ohm, $21 \mathrm{in} ; 3 i \mathrm{in} ; 5 \times 3 \mathrm{in}$; 5in. $35 \mathrm{ohm}, 2 \mathrm{in}$; 3in; Sin

LOUDSPEAKERS P.M. 3 OHM8. $7 \times 4 \mathrm{in}$ E1.25: 64in $81 \cdot 50$: 8×5 in 21.60 ; 8 in 21.75 ; 10×8 in $21.90 ; 10$ in 22.50 RICHARD ALLAN TWIN CONE LOUDSPEAKERS. 8in dismeter 4W \&2.50, 10 in diameter 5W e2-50; Pont 25p.

The moving coil diaphragm gives a good radiation pattern to the highor frequenciea and a mooth ertenalon of total responpe $3 \pm \times$ Rin deep. Rating 10 W , 8 ohm. Cromover $41 \cdot \mathrm{e} 5 \quad E \mid \cdot 90$ Post 20p.

\& $\left.\right|_{\text {each }}$ 12in diameter, $6 \mathrm{~W}, \mathrm{f2} \cdot 95 ; 3$ or 8 or 15 ohm models.
SPEAKER COVERING MATERIALS. Samplea Large 8.A.E. Hora Tweeters $2-16 \mathrm{Kc} / \mathrm{s}$. 8 F 8 ohm or 15 ohm $8 \mathrm{e} \cdot \mathrm{eO}$. De Lure Horn Tweetery \&-18Kc/s, $15 \mathrm{~W}, 15$ ohm 29.50 .
GENERAL PURPOSE LOW VOLTAGE. Tapped outpate $1 \mathrm{amp}, 6,8,10.12,16,18,20,24,30,36,40,48,60 \mathrm{E8} \cdot 00$ 2 amp, $6,8,10.12,18,18,20,24,30,36,40,48,80 \varepsilon 4 \cdot 00$
5 amp, $6,8,10,12,16,18,20,24,30,36,40,48,6080 \cdot 75$
 $3,5,8,10,13$ and $5-0-5 \mathrm{~V}$ \&1.30, Ditto 5 amp .81 .50 ;
$6-0-6 \mathrm{~V} 500 \mathrm{~mA} 90 \mathrm{p} 9 \mathrm{~V} 1 \mathrm{amp} 95 \mathrm{p} 12 \mathrm{~V} 300 \mathrm{~mA} 75 \mathrm{p} 12 \mathrm{~V}$ $8-0-6 \mathrm{~V} 500 \mathrm{~mA} 90 \mathrm{p} 8 \mathrm{~V} 1 \mathrm{amp} 85 \mathrm{p} 12 \mathrm{~V} 300 \mathrm{~m}$.
500 mA 85 p 12 V 750 mA 95 p .40 V 1 amp 81.75.
AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 160 W £2.80; 500 W 26. 25 ; 750W $110 ; 1000 \mathrm{~W}$ £15
CHARGER TRANSFORMERS. Input $200 / 250 \mathrm{~V}$
tor 6 or $12 \mathrm{~V}, 1 \mathrm{I}_{\mathrm{amp}} \mathrm{E} 1.50 ; 2 \mathrm{amp} £ 1.80 ; 4 \mathrm{amp} \mathrm{m} .50$ BATTERY CHARGERS. Ready built with leads and clipu 1t amp $\varepsilon 8: 4$ amp $44: 5 \mathrm{gmp}$. $54 \cdot 50$.
FULL WAVE BRIDGE CHARGER RECTIFIERS:
6 or 12 V outputa. $1 \mid \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 86 \mathrm{p}$. MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary $0-240 \mathrm{~V} 3$ ampz 720 watte. Insulated terminala. Varnish impregnated. Folly enclosed in steel case with fixing leet.
Famous mare (Value 219) OUR PRICE $\mathbf{O}_{50 \mathrm{p}}^{\mathrm{Carr}}$
Can be used as 800 watt auto traniformers 240-110V.

SET OF 3 MOTORS FOR COLLARO STUDIO
 II5 VOLT TAPE DECK

£2.50 Post 50p

VOLUME CONTROLS 80 ohm Coax 5 p yd.

Long spindles. Midget size BRITISH AERIALITE
BK. ohma to 2 Meg. LOG or
LIN. L/8 15p. D.P. 25p.
STEREO L/S 55p. D.P. 75p. AERA XIAL-AIR SPACED Edge5K. S.P.Transistor 25p. 40 yd £1-40; 60 yd 22 . Wire Wound controla idin diteal 625 and colour. 10 pyd Britigh Made with long apindles tin Wistri. 10 ohms to 100 K HELICAL POT 10K LIN. List \&3. Bargain 75p.
DUAL CONCENTRIC POT 500K LOG AND 500K LIN D.P. swisch. Inner spindle 3 fin; outer spindle 2tin 75p.

TWO.WAY CROSSOVER NETWORK $3,000 \mathrm{c} / \mathrm{s}$ With variable tweeter attenuator giving accurate high/low Irequency balance. Mounted on panel sin $\times 4$ in with control knob, tweeter and woofer leadiand input $\mathbf{~} \mathbf{3 - 8 0}$ Pont
terminals. Sudtable for 3 to 8 ohm impedance.

VALVE OUTPUT TRANSFORMER 40p
MIKE TRANSFORMER MU metal 100 -1 21.25 .
PUSE-PULL VALVE OUTPUT TRAN8FORMERS.

ELECTRO MAGNETIC

PENDULUM MECHANISM
1.5V d.c. operation over 200 bourr continoona on spr battery, inlly adjuatable awing and apeed. Ideal diaplayi, tesching electro magnetism or for metronome, 95 P Post
strobe, etc.

R.C.S. RECORD PLAYER AMPLIFIER

2 stage triode pentode valve. 3 watts output. Volume on/ofl and tone controls. Printed circuit
$\pm 4 \cdot 50{ }^{\substack{\text { Ponf } \\ \text { 25p }}}$
Coaxlal plug 10p. pankl gockets 10p. lise 18p OUTLET BOXES, SURFACE MOUNTRTG 25 D .
BALANCED TWIN RIBBON FEEDRE 300 ohms, 7p yd. JACE SOCKET SId, open-circuit 14 p . closed circait 28 p ; Chrome Lead Socket 45p. Phono Plngi 7p. Phono \&ocket 7 p JACK PLDGS std. Chrome 20p; 8.5mm Chrome 18p DI SOCKETS Chamin 8-pin 10p; 5-pin 10p DIN 80CKET8 Lead 3-pin 18p: 5-pin 25p. DN PLUGS 3-pin 18p; 5-pin 25p.
VALVE HOLDERS 5p; CERAMIC 10p; CANS 5p.
E.M.I. WOOEfR AND
 (Available, Pont 25p,
Woparstely. 21.90)

Comprising a fine erample of a Woofer $10 \frac{2}{8} \times 8_{i} \mathrm{jn}$ with a mativive Ceramic Magnet, 44oz Gausa 13,000 lines. Alumininm Cone centre to improve middle and tup reaponse. Also the E.M.I Tweeter 3 in square hat a specia lightweight paper cone and msgnet fux 10,000 lines. Croseover condenser and full instructions supplied. Impedance Stendard 8 ohms
 Basi fellonance $45 \mathrm{cps} 8,000 \mathrm{cps}$ SUTTABLE ENCLOSURE $80 \times 13 \times 9$ in.

69.90 MODERA DRSIGN. TEAK WOOD FLISEB. Poat 45p

BAKER MAJOR $12^{\prime \prime} \mathbf{1 9 . 9 0}$

$30-14.500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$. donble cone, woofer and tweeter cone together with a BAKER ceramic magnet asmombly heving a fiox density of 14,000 ganas and a total fux of 145,000 Marwelle. Bass resonance $40 \mathrm{c} / \mathrm{s}$ Rated 20 watte. NOTE: 3 or 8 or 15 ohms mast be stated.

Module rit, $30-17,000 \mathrm{c} / \mathrm{s}$ with tweeter, crossover, bane

Oin round 8.50.
$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI-FI SPEAKER
Dasl cone plasticised roll aurround. Large ceramic magnet. 65 cpH 8 ohm impedence 65 cpI .8 ohm impedsnce.
10 watt.

TEAK VENEER HI-FI SPEAKER CABINETS Fluted Wood Fronts MODEL "A". $40 \times 13 \times 9$ in | For 12 in. dia, or |
| :--- |
| Oin mpeaker. |
| 9.90 |
| Post | MODSL "B". $16 \times 10 \times 9 \mathrm{in}$ For 18×8 in. or $\{6.60$ Post 8 in apeakgr 2 ditto. Triangular Corner Version.

TEREDO VERSION OF ABOVE 25.05 BARGAIN FM TUNER. Ss-108 Mc/s 8 iz Tranaistor Calibrated slide dis! tuning Walnat Cahinet. f12.8 size $7 \times 5 \times 4$ in. $\& 12.85$ BARGAIN FM TUNER. $\{8.85$ As above lesi cabine
BARGAIM 3 WATT AMPLIFIER. 4 Transisto Push-Pull Ready bailt with volnme, treble and bass controls. 18 volt bsttery operated.

TEE "INSTANT" BULK TAPE
ERASER \& HEAD DEMAGNETISER suitable for cassettes, and all sizes of spe reel. A.C. maing 200/250V Leaflet 8.A.E. $\quad \mathbf{3} \cdot 50$ Pont

WAFER HEATING ELEMENTS

OFPERING 1001 DSES for every type of heating and drying applications in the home, garage, gremhouse, factory (svailable in manutacturing quantities); Approx. size $107 \times 81 \times$ is in. Opersting valtage $200 / 250 \mathrm{~V}$. a.c. 250 watts approx. Printed circuit element enclosed in anbestos ftted with connecting wires, Completely flezible providing safe Black heat. British-made lor use in photo copiers and print drying equipment
for Heating Pads, Food Warmers, Conzector Hesters, etc Must be clamped between two sheets of metal or asbeatos, etc., to make effcient clothes dryers, towel rails-ideal for airing copboards. Ideal for anti-frost device for the garage -preventing frozen radiatory or acting af oil nump heater. Use in greenhouse for seed raising and plant protection. Invaluable sid lor bird houses, incubators, atc., etc. Can be ased in eeries for lower heat. Or in parallel for higher heat applications.
ONLY 40 EACH (FOUR FOR EI.50) ALL POST PAID-Discounts for quantity

BAKER HI-FI SPEAKERS
HIGH QUALITY-BRITISH MADE REGENT
I2in. 15 watts
An inexpensive nait for the beginner in high fidelity and ured to imprope any Radio, Amplifer, Bi-Fi or Tolevinion receiver.
Bast Resonance 45cpe Flux Density 12,000 Esass Useful response $45-18,000 \mathrm{cpi}$ 8 or 8 or 15 ohm modela.

£8.80 룰․․

DE-LUXE Mk II

I2in. 15 watts
Especially deaigned to provide full range reproduction at an oconomical ont high fidelity ryatem. Built-in concentric iwetter cone.
Bans Remonance 30 cps Flux Deneity 14,000 gauit Uteful response $25-16,000 \mathrm{cps}$ 8 or 15 ohme models.

£ 11 器

SUPERB

I2in. 20 watts
A high quality loudspeairer, refonamee onitabes cone reprodaction of the deapent bass. Fitted with a special copper drive and concentric tweter cone retulting in finl range reproduction with remarkable efinciency in the Besa Regonsice Flux Density $18,500 \mathrm{gang}$ $\begin{array}{ll}\text { Flux Density } & 16,500 \mathrm{gaun} \\ \text { Deeful reaponte } & 20-17,000 \mathrm{cpI}\end{array}$ 8 or 15 ohme model.

£16.50

AUDITORIUM

I2in. 25 watts
A iull range reprodacer for high power, Electric Guitara, pnblic address, muiti-ipeaker Iystema, for Hi-Fi and Disensotheques. thequer.
Flux Denaity 15,000 35cpa Fiax Denaity $\quad 15,00,0$ gen 8 or 15 ohmi modelif.
$\ddagger 15 \cdot 40$
Free

AUDITORIUM

ISin 35 watts
A high wattage loudspeaker of exceptionsl quality with a 8,000 cpi. Ideal for Public Addre:s Discotheques, Electronic instruments and the home.
Bases Resonance
35 cp Flux Dennity 15,000 gans Useful reaponse $20-14,000 \mathrm{cps}$ 8 or 15 ohmi models.

$$
£ 22 \text { 영․ }
$$

Hi-Fi Enclosure Mauasl containing 20 plant, decigns, crospover deta and cubic tablea. 42p. Pont Pree.
E.M.I. GRAM MOTOR

180 F or 240 V s.c. $2,400 \mathrm{rpm}$. 8 -pole
£1.00
Port 85p

WOW! A FAST EASY WAY TO LEARN BASIC RADIO \& ELECTRONICS

Abstract

Build as you learn with the exciting new TECHMATRON Outftl No mathematics. No soldering-you learn the practical way.

Learn basic Radio and Electronics at home-the fast, modern way. Give yourself essential technical "know-how"-like reading circuits, assembling standard components, experimenting, building-quickly and without effort, and enjoy every moment. B.I.E.T.'s simplified study method and the remarkable TECHNATRON Self-Build Outfit take the mystery out of the subject, making learning easy and interesting.

Even if you don't know the first thing about Radio now. you'll build your own Radio set within a month or so!

Abstract

and what's more, you will understand exactly what you are doing. The TECHNATRON Outfit contains everything you need, from tools to transistorseven a versatile Multimeter which we teach you to use. All you need give is a little of your spare time and the surprisingly low fee, payable monthly if you wish. And the equipment remains yours, so you can use it again and again. You LEARN-but it's as fascinating as a hobby.

Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus. This is first and last a teaching course, but the treining is as fascinating as any hobby and it could be the springboard for a career in Radio and Electronics.

FREE

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

A 14-year-old could understand and benefit from this clourse-but it teaches the real thing. The easy to understand, practical projects-from a burglar-alarm to a sophisticated Radio set-help you master basic Radio and Elec-tronics-even if you are a "nontechnical" type. And, if you want to make it a career, B.I.E.T has a fine range of courses up to City and Guilds standards.

Specialist Booklet
If you wish to make a career in Electronics, send for your FREE copy of "NEW OPPORTUNITIES". This brand new booklet -just out-tells you all about TECHNATRON and B.I.E.T.'s full range of courses.

Dept. BPE2, ALDERMASTON COURT, READING RG7 4PF

SPARKRITE MK II ELECTRONIC IGNITION KIT

COMPRISES Everything
Ready Drilled Case and Metalwork. Cables. Coil Connectors. Silicon Grease. Printed Circuit Board, 5year guaranteed components and a full 8-page instruction leaflet.

WHEN COMPLETE THE UNIT CAN BE FITTED TO YOUR CAR IN ONLY 15 MINUTES USING THE STANDARD COIL AND CONTACT BREAKER POINTS TO GIVE YOU
Instant all weather starting. Up to 20% fuel saving Longer battery life. Higher top speed. Faster acceleration Spark plugs last about five times longer. Misfire due to contact breaker, bounce electronically eliminated Purer exhaust emission resulting in less air pollution. Contact breaker burn eliminated.
Suitable for all petrol engines up 108 cyllinders.
PRICE ONLY $£ 12.65$
Ready Bullt Unlt £14.85. Single WHEN ORDERING Coil/C.B. Motor Cycle Unit £17.60. Please state negative or Twin Coil/C.B. Motor Cycle Unit positive earth and 6 V or Unit $£ 2750$

SEND FOR YOUR UNIT OR FULL BROCHURE NOW

From
ICE ELECTRONIC SYSTEMS, Dept. PE 114 PARK FARM ROAD. BIRMINGHAM B43 70 CH

INATITPIS
 MONEY BACK IF NOT SATISFIED

all brand new, full spec. Top grade
Free fabulous NEW catalogue Send SA.E
red
data
demper pill LED`s 17p? Til209

BIGi/4 panel clip \& RED LED 28p. GREEN \& clip 22 p INFRA RED LED £I. ICphoto amp 44 p. \& amp/switch $85 p$
 Minitron type 0-9dPDIL El•19. SOCKETS 13 p . IL DIGITAL ELDEHchips
Texas etcwith 4 displays $£ 12.6$ displays $\&$ chip $£ 14$
 Hit:All parts \& case. National chip. 4 dig it $£ 20.6 \times £ 23.1$
 741: 8pin 29p, to99 \& 14pin 27p 748 33p 709 2lp K1T £469 710 35p 72359 p. 555 timer 79 p ZN414 rx.£f10 ${ }^{2}$ huili $£ 8$ 703 rf if 28 P mcl 310 \& led £ $2.76 \mathrm{mc} 1339 £ 1 \cdot 20$ TADIOO \& if £2 1AMP + REGULATOR $7805,5(\& 7-20) \mathrm{V}$.also $12 \& 15 \mathrm{~V} \mathrm{f} 1 \cdot 49$ AUDIO AMPS:mfc4000 50p; 1\&2W £1.19; 3W £ $1 \cdot 29 ; 6 \mathrm{~W} .$. gates 7400 etc $16 \mathrm{P} 741332 \mathrm{P} 7447 \mathrm{fl} \cdot 25 \quad 7 \mathrm{P}$. $7470 / 7232 \mathrm{P} 7474 / 7639 \mathrm{P} 749063 \mathrm{P}$ TTL
NEW I6pin counter/driver $90 / 47$ § 2.25 . DIL SOCKETS : Prof esional £2.25 DALO pch. PEN 69 p. (gold P. Pins hior lo Prof ile 8,14, 6 Pin 13p
2N3055 33p.fourf1. BC107, BC108, BC109 all 7p ea
 BC212 $1 / 4$ P 2N2926 N3904/6 i4p HEATSINKS 5f/T05 18f/TO18 5p.T03:4YL 29 p TV3 ea CAPACITORS 25VAT, ST, TOOUF 5p. DISCS 4 P. PRESETS 5p. CARBON POTS IIP.Switch +1 IPDual 55 P ULTRASONIC TRANSDUCERS £ 2 ea
Trin TJS FLUORESCENTLIGHTS,8W. 13 12VOLT £2.59

Telephone Corner

COMPLETE TELEPHONES NORMAL HOUSEHOLD Only $\mathrm{f} \cdot 05_{\mathrm{p}}^{\mathrm{g} \text { sasm }}$ TELEPHONE DIALS

.

Only 27
$1 / 2$ p POST \& PACKING $16 \not 20$

Tested and Guaranteed Paks

$378 \quad 4 \begin{aligned} & \text { IN } 4007 \text { Sil, Rec. diodes. } \\ & \text { I, } 000 \text { PIV } \mathrm{amp} \text {. plastic }\end{aligned}$ 55p
Esi $10 \begin{aligned} & \text { Reed Switches, } \\ & \text { dia. Highspeed P.O. Onge }\end{aligned}$
se9 $200 \begin{aligned} & \text { Mixed Capacitors. Approx. } \\ & \text { quantity, counted by weight } \\ & \text { 55p }\end{aligned}$
H4 250 Mixed Resistors. Approx. quantity counted by weig Post \& packing 15 p.
H35 100 Mixed Diodes, Germ. Gold Unmarked
H33 $30 \begin{aligned} & \text { Short lead Transistors, } \\ & \text { NPN Silicon Planar types }\end{aligned}$
H39 6 Integrated circuits 4 gates
H41 $2 \begin{aligned} & \text { BDI } 31 / B D 132 \text { Comple } \\ & \text { tary Plastic Transistors }\end{aligned}$

Untested Paks

$$
\begin{aligned}
& \text { B1 } 50 \text { GNP. AF and RF } \\
& \text { BAs } 150 \text { Germanium Diodes } \\
& \text { B84 } 100 \text { Silicon Diodes DO.7 glas }
\end{aligned}
$$

Make a rev counter

for your car

The "TACHO BLOCK". This encapsulated block will turn any
linear and accurate

Ex CPO PushButton Intercom Telephones

Exactly as internal relephone systems still in everyday use where automatic internal ex 5 . 10 ges have not yet taken over. Available instructions. Necessary 24 pair circuirs and yard. Price of each instrument is independen

£2.75 p. 381 p

Cable can be sent by Parcel Post. Post and Packing per 50 yds.: $73!\mathrm{P}$;
Extension Telephones 71 p each, p.p. 27 !p
(1-371 for 2, p.p. 55p. extensions and do not contain bells.
A Cross Hatch Generator $£ 3$. 85 baid A complete kit of parts including Printed Circuit Board. A four position switch gives
X-hatch, Dots, Vertical or Horizontal lines. Xrhatch, Dots, vertical or Horizontal lines,
Integrated Circuit design for easy construc tion and reliability. A project in the Sep. 72

Tested \& Guaranteed
H63 42 2N3055 Type NPN Sil. power 55p
H65 $440361 \quad$ Type transistors TO. 5 NPN sil. 5 can comp. 5 p
H66 440362 Type PNP Sil Untested, Unmarked

H87 10

Plastic Power Transistors
NOW IN TWO
RANGES
These are 40 W and 90 W silicon Plastic ower Transistors of the very fatest design ingly low prices of all time. We have been selling these successfully in quantivy to all parts of the world and we are proud to offer them under our Tested and Guaranteed
terms. VCE Min. 15 HFE Min. 15
40 watt $\begin{array}{lccc}1-12 & 13-25 & 26-50\end{array}$

$\begin{array}{llll}40 \text { watt } & \text { 33p } & 31 p & \text { 29p } \\ 90 \text { watt } & 381 p & 36 i p & 33 p\end{array}$ Complementary pairs matched for gain 3 amps. IIp extra per pair. Please state NPN or PNP on order.

LM380 AUDIO I.C, as featured in Practical Wireless December issue. Complete'with application daca, $f 1 \cdot 10$.
INTEGRATED CIRCUITS. We stock a large range of I.C.s at very competitive prices FREE Catalogue, see coupon below.
METRICATION CHARTS now available, This fantastically detailed conversion cat
culator carries thousands of classified references between metric and British (and U.S.A.) measurements of length. area. volume, liquid measure, weights, etc Pocker Size. 15p, Wall Chart, 18p.

SOCKETS
$\left.\begin{array}{l}14 \text { pintype at 16ip each } \\ 16 \text { pin type at 18p eath }\end{array}\right\} \begin{aligned} & \text { Now new } \\ & \text { profile type }\end{aligned}$

BOOKS

We have a large selection of Reference and fechnical Books in stock, details are in our the coupon below
N.B.-Book are void of V.A.T

Dur famous PIPak

is still leading in value Full of Short Lead Semiconductors and Electronic Components, approx. 170. W factory marked Transistors PNP and NPN and a host of Diodes and Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors
Please ask for Pak P. 1. only 55p
range.
TYPE "H" PNP silicon, similar $Z T \times 500$
8 nears son $£ 1 \cdot 10$ High Speed Magnetic Counter
4 digit (non-reset)

Af home soldering..? \& Citesultas You could be with the LITESOLD CONQUEROR. A superbly handling lightweight iron, fully insulated and earthed for complete safety -

 yours and your components. Interchangeable non-selze bits are available in five tip sizes $\mathbf{n}^{\prime \prime}$, $\boldsymbol{H}^{\prime \prime}$, ($\mathrm{h}^{\prime \prime}$ standard fitting), $t^{\prime \prime}$ and $\frac{t^{\prime \prime}}{}$ allowing this one iron to cover a range of work normally needing several different irons.A special spring stand gives safe, easy location of the iron and spare bits. The heavy base of heat resistant Bakelite is complete with non-slip pads and bit wiping sponge.
Attachments are available to convert the iron into a suction de-soldering tool and also to remove D.I.L. ic's.

Send cheque/P.O. direct or ask for Leaflet 1016/1.
Conqueror Iron £2.24
Spring Stand $£ 1.98$
Iron Stand and set of bits $£ 5.63$
De-Soldering Attachment $£ 3.32$
De-Soldering Head
for D.I.L. ic's £2.72
(Prices include 10\% VAT and p \& p)

LIGHT SOLDERING DEVELOPMENTS LTD

97-99 Gloucester Road, Croydon, Surrey

FERRANTI

* ALL DEVICES BRAND NEW, TOP GRADE AND TO FULL SPECIFICATION. We sell only best quality stamped devices from the maker's current production.
* WE HAVE STOCKS OF ALL DEVICES FOR IMMEDIATE DELIVERY.
t WE CAN SUPPLY ANY FERRANTI DEVICE TO ORDER. Send S.A.E. for quotation.
* WE ARE SPECIALISTS IN FERRANTI SEMICONDUCTORS, WITH A STAFF OF EXPERIENCED ENGINEERS.

FULL KIT OF SEMICONDUCTORS $44 \cdot 70$ (State 6 V or 12 V)
BFS59 15p ZTX310 9p ZTX504 43p ZS170 100

$Z T \times 213$	$14 p$	ZTX384	$18 p$	ZS 121	$10 p$	ZS 276	26p
$Z T X 214$	$15 p$	ZTX450	$17 p$	ZS 122	$13 p$	ZS278	37p

$\begin{array}{llllll}Z T X 301 & 13 p & \text { ZTX } \\ \text { ZTO } & 12 p & \text { ZSI } \\ \text { ZTX }\end{array}$
$\begin{array}{llllll}\text { ZTX } & 17 p & \text { ZTXSO } \\ \text { ZTX }\end{array}$

MOTOROLA MJE2955 \&1.30, MJE3055 75p each.
RCA PRICES SLASHEDI CA $3090 \mathrm{Q} £ 3.25$ each
PE TRIFFID ZTI7II 24p. 2 NII 32 25p.
ZN4|4 $\boldsymbol{1} / \mathbf{3 2}$ WITH CIRCUITS AND DATA
FPET Our comprehensive catalogue giving data and connection diagrams for a wide range of Ferranti semiconductors. diagrams for a Wide range of Ferranti semicondur
just send an S.A.E. Copy sent with every order
POSTAGE \& PACKING 10p. FREE ON ORDERS OVER E2 ALI OUR PRICESINCIUDE V.A.T.
DAVIAN ELECTRONICS
P.O. BOX 38, OLDHAM, LANCS. OL2 6XJ

KEEP WARM ATA COOL PRICE. Slash central heating costs with AMKIT.
 If you can put in electric wiring, you can install

 Amkit. The unique nylon pipe hot water central heating system, that you install yourself in hours.Look at these advantages:
No soldering
No 'T' junctions
No special equipment
No leaks, no lagging, no corrosion
No structural upheaval
Just reliable, effective central heating (Guaranteed 25 years) at a saving of between $£ 150 \& £ 250$. This famous system has been successfully marketed since 1968.

Clip the coupon, and we'll tell you more.
ToAutocon Manufacturing Co.
Spring House, 10, Spring Place, London, NW5, 3BH
Please send your brochure telling me all about Amkit.
I Name
Address
PE9 AMC

- or see for yourself at: THE AMKIT D.I.Y. CENTRE,

15, Procter St., London, W.C.1. (opp Holborn Undgnd). Open Mon-Fri $9.30 \mathrm{am}-5-30 \mathrm{pm}$. Sat $9 \mathrm{am}-1 \mathrm{p} . \mathrm{m}$.

L.T. TRANSFORMERS

All primaries 220-240

600 WATT DIMMER SWITCH
Easily fitred. Fully guaranteed by
makers. Will control up to 600 W of all
lights except fluorescent at mains
voltage. Complete with simple in-
somer

2000 WATT POWER CONTROL
For Power toois. Heating. Sewing Machines, Lighting. etc 88.00 . Post 27 p .

VENNER TIME SWITCH TYPE MSQP
200/250 Volt 2-ON/2-OFF every 24 hours at any manually pre-set time. 20

FOOT SWITCH

Suitable for Motors. Drills

UNISELECTOR SWITCHES

TRIACS

GENERALELECTRICPOWER-GLASTRIACS 10 amp . Glass passivated plastic triac. Latest device $10 \mathrm{amp}, 400$ PIV, $f 1$. Post Sp. Type SCI 46 E 10 amp . 500 PIV, $\mathrm{f} 1 \cdot \mathbf{3 0}$. Post 5 p. (Inclusive of data and applicacion sheer.) Suitable Diac 18p.

All Mail Orders-Callers-Ample Parking
Dept. PE5, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone $01-995$ |560

Build a Strobe Unit, using the latest type Xenon
white light flash tube. Solid state timing and triggering circuit. 230/250V a.c. operation
EXPERIMENTERS' ECONOMY KIT
lecr adic and instructions $\mathbf{6 6} \mathbf{3 0}$. Post 30p.
INDUSTRIAL KIT
Ideally suitable for schools, labotratories, ere. Speed adjustable 1-80 f.p.s.
Approx. I output of Hy-Lyght. Price $\mathbf{8 1 2 . 0 0}$ Post 50p
HY-LYGHT STROBE MK III
For use in large rooms, halls and utilises a silica tube, printed circuit. Speed adjustable 0-20 f.p.s. Light output greater than
Joule) strobes. $\& 12$. Post 50 p .
THE 'SUPER' HY-LYGHT KIT
Approx. four times the light output of our well proven Hy-Lyght strobe

- Variable speed from I-13 flash per sec.
- Reactor control circuit producing an intense

ROBUST, FULLY VENTILATED METAL
CASE. For Hy-Lyghe Kirincluding reflector $£ 5.75$ Post 25p
Super Hy-Lyght case insluding reflector $\mathbf{4 8}$. Pos
Post 60p.
7-inch POLISHED REFLECTOR
ideally suited for above Strobe kits. Price 33p.
Post 15 p.

PROGRAMME IIMERS
$230 / 240 \mathrm{~V}$ a.c. 15 r.p.m. Motors
Each cam operates a c/o micro switch. Ideal for

animated

4 cam model. $£ 2.50$ post 30 p
6 cam model. $\quad \mathbf{~} 3.25$ post 30 p
2 sam model. 44.00 post 35 p
All prices are subject to
10% VAT. (10 p in the E)
To all orders add 10% VAT to total
value of goods including. carriage/
packaging.
SERVICE
TRADING CO

Superior Quality Precision Made NEW POWER RHEOSTATS
New ceramic construction, vitreous enamel embedded winding, heavy duty brush assembly, continuously 25 WATT $10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k} / \mathrm{ohm}$
 ohm £1.60. Post 10 p.
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ 100 W ATTI $5 / 10 / 25 / 50 / 100 / 250$
Black Silver, 5 kirted knob calibrated in Nos 1-9. I $\frac{1}{3}$ in. dia, brass bush. Idealfor above Rheostats
-nem.
RELAYS
SIEMENS, PLESSEY, EE
Col.(1) Col. (2) Working
d.c. volts d.c. Volts
Cot. 3 Contracts Col. (4) $\mathrm{HD}=$ Heavy duty *Inel. Base All prices

52	4-6	6M	$60{ }^{\text {p }}$
58	5-9	$6 \mathrm{c} / 0$	80 p
150	49	$2 \mathrm{c} / 0$	70p*
185	8.12	6 M	60 p *
308	$9-14$	$4 \mathrm{c} / \mathrm{o}$	75p*
410	10-18	$4 \mathrm{c} / \mathrm{o}$	70p*
700	16-24	4M 2 B	60p*
700	16-24	$4 \mathrm{c} / \mathrm{o}$	80p*
700	15-35	$2 \mathrm{c} / 0 \mathrm{HO}$	70p*
700	6-12	$1 \mathrm{c} / \mathrm{O}^{\text {HD }}$	50p*
700	20-30	$6 \mathrm{c} / \mathrm{O}$	$80 p$
2.500	$36-45$	6 M	60p*
2,400	30-48	$4 \mathrm{c} / \mathrm{o}$	60p
5.800	24-26	$2 \mathrm{c} / \mathrm{O}$	60p*
9.000	40-70	$2 \mathrm{c} / \mathrm{O}$	60p*
15k	85-110	6M	60p*

6 VOLT D.C. 1 make contacts 35p. Post 5p
6 VOLT D.C. 2 make contacts 75p. Post 5p
9 VOLT D.C. RELAY
12 COS amp contacts. 7 ohm coil. 75 p . Post 50
3 c/0 5 amp contacts. 75 p. Post 5p.
24 VOLT D.C. 3 c/o 75p. Post 5p.

CLARE-ELLIOTT TYPE RP764I G8

Miniature relay. 675 ohm coil. 24 Volt D.C. 2 clo
70p post paid.C
100 VOLT A.C
2 c/o sealed type, octal base $\& 1$
Post 10p
24 VOLT A.C. Mfg by ITT. 2 h.d. c/o contacts
55p. Post 5p.
240 VOLT A.C. RELAY. Mig. by ITT. $240 V$ A. 10 amp h.d. e o contacts. Octal plug in base. (Simila to illustration below). Price 75p. Post 5p.
HEAVYDUTYA.C.SEALEDRELAYS Volt. 2 c/o 20 amp contacts. Either type (1.25. Post 10 p

DRY REED RELAYS
Mrg by ERG, 12 volt d.c. encapsulated. Single c/o $65 p$, post paid. Two c/o $85 p$, post paid

60p post paid.
Other types available, state your requirement.
"HONEYWELL" PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY Each bank comprises a clo rated at Fixing hole $\frac{1}{}$ in. ONE bank 30 p ; Fixing hole $\frac{10}{}$ in. ONE bank 30p; s0p. Quote for quantity
HIGH VISIBILITY PANEL MOUNTING LED's. 0.25 inch mounting. 0.16 inch lens. Typical parameters 2V, 20 M amps all type. Supplied complete with snap in mountings and data. Red 4 for $£ 1$. Green
3 for $£ 1$, Yellow 3 for $\in 1$. Post Sp. (in order) (1).
'HONEYWELL' LEVER OPERATED MICROSWITCH
10 amps 250 volt A.C
tacts. In maker's carton.
PRICE: 10 for Cl.90. Po
INSULATION TESTERS
NEW!
Test to l.E.E. Spec. Rugged metal construction. suttable work, constant speed cluteh. Size L.8in, W.4in, H.6in, weight 61 b . $1,000 \mathrm{~V}, 1,000$ megohms, 634 . Post 60 p. $500 \mathrm{~V}, 500 \mathrm{megohms}, 628$. Post

24 VOLT DC SOLENOIDS

Unit containing I heavy duty solenoid approx. 251 b
pulf I incheravel. Two x approx. Ilbpull $\frac{t}{3}$ inch eravel. 6 approx. $40 z$. pull $\frac{1}{j}$ inch travel. One 24 volt d.c. i heavy duty single makerelay. Price $£ 2 \cdot 50 \mathrm{P}+\mathrm{p} 60 \mathrm{p}$
ABSOLUTE BARGAIN.

Personal callers only. Open Sat
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Phone 01-437 0576

PROJECT CASES

BUILD IT IN A PROJECT CASE

ALL ALUMINIUM - EASIER TO CUT AND DRILL FEET AND FOUR VERO P.C.B. MOUNTING POSTS WITH EACH CASE. FACIA: BRUSHED. MATT BLACK OR SILVER. TOP SIDES: RICH BLUE HAMMER FINISH

Type	Height	Width	Depth	
SA1	$2^{\prime \prime}$	$8^{\prime \prime}$	$4^{\prime \prime}$	$\varepsilon 1.20$
SAZ	$2^{\prime \prime}$	$10^{\prime \prime}$	$6^{\prime \prime}$	$E 1.50$
SA3	$3^{\prime \prime}$	$10^{\prime \prime}$	$6^{\prime \prime}$	$E 1.75$
SA4	$4^{\prime \prime}$	$10^{\prime \prime}$	$6^{\prime \prime}$	$E 2.00$

Including VAT and P. \& P. Cash with order
Special Sizes? Send S.A.E. for quosation by return
SOUNDSYSTEMS, 30 FOXHOLES ROAD, BOURNEMOUTH BH6 3AT

CARBON SLIDE POTENTIOMETERS

60 mm Twin Track, including black knob 60 p (inc. V.A.T.) 60 mm Single Track, including black knob 50 p (inc. V.A.T.) $1 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K},{ }^{4} 4 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K}$ Ohms Log, Lin. Antilog. Metal Case
3.2 dB matched track

15 mV nominal noise (BS2122)
Life exceeds 20,000 cycles
Fixing holes $2 \times \mathrm{M} 3$ on 80 mm centres
Designed, Manufactured and Supplied by:
RIVLIN INSTRUMENTS LTD.
DOMAN ROAD
CAMBERLEY, SURREY GUI5 3DJ
Send cash with order to above address. Postage and packing 15p per order. Trade enquiries invited.

AURORA
Multichannel Sound Controlled Light (PE Apr./Aug. 7I). S/c's (excl. SCRs), Rs Cs. Pots, Cores-8 ch. \&19.32; 4 ch . 110.97 . Reg. PSU, 3.95 . PCB-
 S2.50. PCB 14 in

PE BIOLOGICAL AMPLIFIER c. 's. Rs. Cs, Pors, PCB (1 in $3 / \mathrm{C}$
 Pots and Rotary Sw's for Alphaphone, Cardio, Freq. Meter, Vis-Feed, 13.76 . Ser of PCB's for above O/P' Stages c1. 20. Audio Amps: PC7 15.20 ; EA1000 63.30.

ENLARGEREXPOSURE METER AND THERMOMETER (PE Sept. 73). S/C's, Thermistor, \$3.90. Rs, Pors, PCB (2in $\times 2 \frac{1}{2}$ in)

ELECTRONIC PIANO (PE Sept. 72/jan. 73). Desails in lises.

GEMINI STEREO AMPLIFIER

(PE Now. $70 / \mathrm{Mar}$. 71). Stereo sets and PCBs. Pre-amp-Rs, Cs, Pots, Sw'swith $\frac{1}{2}$ W MO Rs. 112.65 with 1 W or $\frac{1}{2} W$ CF Rs \&10.40. PCB (4tin $x 104 \mathrm{in}$) 2.20. Main Amp-Rs, Cs, Pots, 85.88. PCB (3tin \times Sin). \&l.28. PSU—Rs, Cs, Pot, 44.56. PCB ($2 \mathrm{in} \times 4 \mathrm{in}$), 65p.

GEMINI STEREO TUNER

 (PE Apr./Jun. 72). PCB as publ.,\& 1.50 .

MICROPHONE MIXER
(PE Apr. 69). S/C's, Rs, Cs, Pots, CB (3tin $\times 4$ in also holds 6 rotary
(PW 8 WATT AMPLIFIER (PW Nov./Dec. 72). Preamp-S/c's,
Rs, Cs, Pots, Sw-Mono Rs, Cs, Pots, Sw-Mono, 2.50 ;
Stereo, 46.03 . PCB (3tin 7 tin) Stereo, 46.03. PCB (3tin x Jtin)
(Stereo) also holds rotary or slider pors, and Sw, \&1-66. Main AmpS/c's. Rs, Cs, Pot-Mono, 44.18 : Stereo, 88.36. PCB (2tin $\times 3 \mathrm{in}$)
(Mono), 60p. PSU- 3.90 .

LOUDHAILER AND SIREN
(PW Dec. 72). S/c's, Rs, Cs, Pot, PCB (2tin $\times 2$ 2fin), $22 \cdot 20$. (While stocks last.) Main Amp Module PC5 + obtainable to special order, £6.25.
(PW Nov./Dec. 72). S/c's. Rs, Cs, Slider Pots, T/fmr, c7.28. PCB (2in x IItin), also holds sliders, ki .20. Sin Spring Unis, 44.95 .

(PE Már./Apr. 73). S/c's, HI-FI', Rs, Cs, Relay and pc-base, Pot Cores and pc-bases, Sw's, Pots, Panel Lamp-Mono, ©12.78; Stereo, E20.41. PSU, E3.51 Main Circuit PCB (37 in x gin) Stereo (also holds relay and cores), $£ 2.10$.
Sub-assembly PCB Mk. 2 ($2 \frac{1}{2}$ in $\times 6 \frac{1}{2} i n$), 80 p.
(PE PEPASINGUNIT
(PE Sepr. 73). S/cis. Rs, Cs, Pots, PCB ($1 \frac{1}{3}$ in $\times 2$ itin), $E 2 \cdot 20$.

PHOTOPRINT PROCESS (PE jan./Feb. 72). For Col
(PE Jan./Feb. 72). For Colour and B \& W-finds exposure, controls siming, stabilises mains voltage. S/c's, SCR, LDR, Rs, Cs, Pots, Relay, Keyswitch, T/fmr. 7.98 . PCB (3tin x
$5 \frac{1}{2}$ in) also holds pots, Sw , relay, fl 1.60 . $\frac{5 \text { in) also holds pots, Sw, relay, } 21.60 .}{\text { SEMICONDUCTOR TESTER }}$ SEMICONDUCTOR TESTER
(PE Oct. 73). S/c's, Rs, Cs, Pots, Maka-switches, Sub-assembly PCB, K5.30.

TRANSLTRASONIC
TRANSMITTER-RECEIVER PE May 72). S/C's, Rs, Cs, Pot, Relay, Dual PCB (2in \times Stin), c4.40. Transiducers excluded.

VIBRASONIC GUITAR

PW Sepr PRE-AMP

uitar Pid. 70). Incl. Mie P/A, 2Master PjA, Trem and Tone Consrols, Rotary Polume. S/c's. Rs, Cs, LDR, Rotary Pots, Lamps, Coupling T/fmr. 47.64. PCB (3 in $\times 10 \frac{1}{2}$ in) Mk. 2, also holds 7 rotary or slider pots,
Cl .92 . PSU 83.90 .
(PW Ock. 73/Jan. 74). Muftisystam Quadraphonic Decoder. S/c's, i.c.'s, PSU, $\mathbf{2 2} .92$. Set of 5 PCB's, $\mathbf{E} 2.60$.
(PE series commencing Sept. 73) Details in lists.

> SOUND SYNTHESISER.
(PE Feb. 73/Feb. 74). Derails in lists.
TAPE NOISE LIMITER
(PE Feb. 72). S/e's, Rs, Cs, Pot, Sw PCB (Itin x 3in), ER.30. Res. PSU and PCB $\left(1 \frac{1}{2}\right.$ in $\times 2 \frac{1}{2}$ in $), 63.40$.
VERSATILELIGHT EFFECTS
Single Channel Sound Controlled Light with built-in variable strobe. T/fmrs, Keyswitch. Ell.38. PCBMk. 2 ($3 \frac{1}{2}$ in $x ~$
coupling also holds pots, SW,
elfme coup.
$75 p$.
WIND AND RAIN EFFECTS (PE Oce. 73), i.c., Rs, Cs, Pots

LOGICAL RADIO CONTROLELEANEOUS PCBs "2A", "2B", Decoder. $50 p$ ea. MODEL SERVO CONTROL (PE Feb./Mar. 72) PCBs "A ${ }^{\prime \prime}$. Fail(PE Aug. 72), 33p. TRIFFID PCB (PE FEb. 73), 60p. 50p. OSCILLOSCOPE P/A (Above PCBs as published)
W Mar. 73) Read-oue PCB (Itin $\times 3$ in), 50p.

[^2]

* A selection from EV Catalogue 7

TRANSISTORS
and yemi-conductors of many types from simple diodes to ICs photo-sensitive devices, threshold witches, etc., etc.
MINITRON DIGITAL INDICATORS
$30151 F$ Seven segment filament, comparible with tandard logic modules. $0-9$ and decimal point 9 mm characers in 16 lead DIL, 41.20 . Now available in 8 mA or 15 mA per segment rating.
1015G showing + or - and 1 and dec. pr, \&1.20.
DALY ELECTROLYTIC CAPACITORS
in cons, plastic sieeved $5,000 \mathrm{mF} / 25 \mathrm{~V}, 62 \mathrm{p} ; 1,000 \mathrm{mF}$ $50 \mathrm{~V} .41 \mathrm{p} ; 2,000 \mathrm{mF} / 50 \mathrm{~V}, 57 \mathrm{p} ; 5,000 \mathrm{mF} / 50 \mathrm{~V}, £ 1 \cdot 18$; $5,00 \mathrm{CmF} / 100 \mathrm{~V}, \mathrm{E2} .91$.
POLYESTER CAPACITORS TYPE C2BO
Radial leads for P.C.B. mounting. Working voltoge $0.01,0.015,0.022,0.033,0.047,3 p$ each: 0.068 0.1 0.15, 4p each; $0.22,5 p ; 0.33$ 7p: 0.47 , हp $06 \mathrm{~B}, 11 p ; 10,14 p ; 1 \cdot 5,21 p ; 2 \cdot 24 \mathrm{p}$.

SILVERED MICA CAPACITORS
Working voltage 500 V d.c
Values in pF-2.2 to 820 in 32 stages. $6 p$ each 1,000. 1,500, 7p each; 1,800, 8p, 2,200 10p 2,700, 3,600, 12p each, 4,700, 5,000, 15p each; $6,800 \cdot 20 \mathrm{p}: 8,200,10,000$ 25p each.

POTENTIOMETERS

ROTARY, CARBON TRACK
Double wipers for good contact and long working life. P20 SINGLE linear 100 ohms to 4.7Mn, 14p each JP20 DUAL GANG linear $4 \cdot 7 \mathrm{kQ}$ to $2 \cdot 2 \mathrm{Mn} 48 \mathrm{p}$ each. DUAO GANG log, $4.7 \mathrm{k} \Omega$ to $2.2 \mathrm{M} \Omega 48 \mathrm{p}$ eact. DUAL GANG log/antilog 10L, $22 \mathrm{~K}, 47 \mathrm{~K}$, IMO only, 48p each
1 P20 DUA 1 GANG antilog IOk only 48p
2A JP mains switch with any of above 14p extra Decades of 10,22 and 47 only available in ranges

SLIDER POTENTIOMETENS
Linear or log, lok Ω ro IM Ω in all popular values 30p each.
Escutcheon plates, black, white or light grey, 10 p each.
Conitrol knobs blk/whi/red/yel/grn/blue/dk. grey/lt grey. $7 p$ each.

ELECTROLYTIC CAPACITOR

Axial Lead

This is EV Service

DISCOUNTS

Avaitable on all items except those shown with NETT PRICES. $10^{\circ} \circ$ on orders from 15 to C14.99. 15° on orders $\mathcal{E} 15$ and over.

PACKING POSTAGE

FREE in U.K. For mail orders for $£ 2$ list value and unser, there is an additional handling charge of 10p. GUARANTEE OF QUALITY
All goods are sold on the understanding that they conform to manufacturers' specifications and "seconds" or sub-standard merchandise is offered forsale.
Prices quoted do not include VAT, for which 10% must be added to total nett value of order Prices subiect so alrerarion wirhour notice SA. with written enquiries please.

ELEGTROALUE LTD

 RESISTORSCode Watts ohms 1-9 10-99 100 up C $120 \quad$ 82-220K (seenote below) | C |
| :--- |
| C |
| C |
| C |
| C |
| $M O$ |
| $W W$ |
| $W W$ |
| $C O$ |
| $M O$ |
| W |
| $V a$ |
| $E .1$ |
| $E D$ |
| $E 2$ |

28 ST. JUDES ROAD . ENGLEFIELD GREE Telephone: Egham 3603 Telex 264475 HORTHERN BRANCH: 680 BURNAGE LANE Telephone 061-432 4945

Shop hours-Daily 9-1 and 2-5.30 p.m. Soturdoys 9.1 p.m.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27, Swarthmore PA 1908-

look
 electronics really mastered

RAPY

BUILD,-SEE AND LEARN
step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT

OVER
40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :
valve experiments, transistor experiments amplifiers, oscillators. signal tracer, photo electric circuit, computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter, time delay circuit, servicing procedures

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc.

FBEEL POST NOW $\begin{gathered}\text { for } \\ \text { BROCHURE }\end{gathered}$

To BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, P.O. BOX I56, JERSEY. Please send your free brochure, without obligation, to:
we do not employ representatives
NAME
ADDRESS
BLOCK CAPS
PLEASE EL54

GROWTH RATE

wHILST economic growth may hold the key to the nation's problems, there is another area of growth which is more directly our concern and perhaps the cause of a little uneasiness among some constructors. We refer to the prevalent pattern of electronic design: a trend towards expansion in circuitry, though not necessarily increased complexity in strictly constructional terms since much of current circuitry is usually accounted for by i.c.'s.

We sympathise with those who view with some apprehension this continuing circuit growth rate. Yet it has to be said that designers must, within reason, be allowed their heads, and the truly exciting progress that has been made in new and ever widening fields during the last decade or so would not have been achieved without an uninhibited approach to devices and circuits.

It also has to be said that cost-effectiveness is a vital matter so far as the majority of constructors is concerned. So we try in our contents to achieve something like a fair balance between the big and the small in constructional projects. As an example, this can be demonstrated very effectively if we take a look into a field which has undergone intensive cultivation by musically orientated designers these last few years.

One of the original roots of the now strongly flourishing creative sound branch of electronics was the pop music world, for it has rapturously seized upon every novel distortion effect the electronic designers could devise, since the earliest solid state days. So we have experienced a rash of effects units some bearing such unashamedly honest descriptive titles as fuzz and wha wha, and others of a more conventional musical character such as tremolo and vibrato.

In the meanwhile, the whole impediment of the audio laboratory has been pressed into service for rather more serious musical purposes, and to the established form of signal generators have been added new breeds of circuits, some designed specifically for the creation of artistic sounds. The synthesiser is the ultimate result of the amalgamation of an assortment of signal generating and processing circuits. So from simple pop effects units to sophisticated synthesiser. A story of electronic expansion and growth that has its parallel in other fields, of course.

Yet entry into the field of creative sound does not depend upon the possession of an expensive and complex instrument, desirable though this might be. There are easier ways to make a start. For instance the Sound Bender featured on this month's free Design Chart provides an admirable opportunity for anyone to commence experimenting, at no great cost. Use of this uncomplicated unit in conjunction with other simple circuits and with standard items of audio equipment will "open another window" and encourage active exploration of the fascinating possibilities of sound creation and manipulation.
F.E.B.

Editor

F. E. BENNETT

Editorial
R. D. RAILTON Assistant Editor D. BARRINGTON Producion Edilor G. GODBOLD Technical Editor S. R. LEWIS B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Adverlising Offices:
Fleetway House, Farringdon St., London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

AMONG the many electronic effects featured with modern "sounds" are those obtained by modulation, such as a tremulous wavering, percussive shaping, certain rhythms, machine-like voices, and controlled fading. Modulation is the varying or shaping of one signal by another, as distinct from mixing which merely superimposes signals.

The intention with the Sound Bender described here is to offer a basic unit which can be adapted for use with electronic musical instruments and audio equipment to create a wide range of effects. The modulator will handle input signals in the range 20 to 500 millivolts r.m.s., is powered by a nine volt battery or mains unit, and has a $\pm 3 \mathrm{~dB}$ frequency response of 30 Hz to 20 kHz .

MODULATOR ACTION

The basic unit is an audio modulator whose action is best understood by referring to the block diagram of Fig. 6. The modulator is shown as an envelope shaper, with a continuous sinewave tone on Input 1,
and a control pulse on Input 2. The control pulse defines the amplitude and duration of the tone output, and hence the envelope shape.

Depending on tone, frequency and waveform, and control pulse attack and decay rates, the resulting output signal can be made to sound like a guitar, double-bass, piano, tympani or bongo, to mention only a few.

With other input signal combinations, the characteristic sound output could be unique or imitative of other kinds of musical instrument.

It will be noticed in Fig. 6 that modulator output amplitude is zero when the voltage on Input 2 is zero. The audio modulator takes advantage of the principle that two signals of equal amplitude but opposite phase will cancel to give a null output when mixed.

PRINCIPLE OF OPERATION

A simplified circuit of the modulator is shown in Fig. 1. The signal to be modulated (Input 1) is fed

Photograph of the completed audio modulator

ALL DIAGRAMS APPEAR ON THE SPECIAL DESIGN CHART INCLUDED WITH THIS ISSUE

By D. BOLLEN

to a phase splitter stage which gives a pair of output signals (A and B) of similar amplitude and opposite phase.

Signal A is passed straight to the mixer after undergoing a fixed attenuation by R_{A}, while signal B is given a similar attenuation by the potential divider formed by R_{B} and the source-drain resistance of a field effect transistor TRA. A voltage on the gate of TRA will vary the source-drain resistance and hence the degree of attenuation given to signal B.

If the A and B signals are of equal amplitude at the mixer input when TRA has a zero gate voltage, then any subsequent change of gate voltage, positive or negative, will give a proportional increase of output from the mixer. It is also possible to adjust the modulator for, say, half maximum output when the voltage on TRA gate is zero, then the output amplitude will be increased and decreased by positive and negative gate voltages respectively.

CIRCUIT DESCRIPTION

In the complete circuit of the modulator Fig. 2, transistors TR1 and TR2 function as a long-tailed pair phase splitter. An input signal applied to TR1 base via R1 and C1 will give rise to a pair of output signals of opposite phase at the collectors of TRI and TR2. R7 then attenuates the signal from TR2 collector while R8 and TR3 give a variable attenuation to the signal from TR1. Both signals are mixed and amplified by TR4.

With no voltage or signal on Input 2, TR3 gate is held at earth potential by R9, and the sourcedrain resistance of TR3 is set by a positive bias of about 2 volts applied by way of R11 and VR1 to the source of TR3. This arrangement allows direct coupling to Input 2 , and modulation by very slow waveforms; such as ramps and squarewaves of many seconds duration.

In the Fig. 2 circuit, C6 offers a low impedance path to a.c. signals across source resistor R12. Modulator input impedances are approximately 33 kilohms for Input 1 and 1 megohm for Input 2.

MODULATOR CONSTRUCTION AND TESTING

Modulator components may be assembled on a piece of $0 \cdot 1$ in matrix Veroboard 36 holes long by 18 holes wide. Cut the Veroboard to size, break the copper strips with a spot face cutter at the locations shown in Fig. 3, and solder the six terminal pins in position.
When soldering components to the circuit board, use a small soldering iron and take care not to bridge adjacent copper strips with blobs of solder. A useful tip is to run a sharp knife along the gaps between strips to break any stray whisps of solder, and to remove surplus flux.

Check that electrolytic capacitor polarities are as shown in Fig. 3, and that transistor leads are correctly orientated.
The following checks can be carried out with a testmeter when the completed modulator is connected to a nine volt battery. Approximate voltages relative to battery negative: TR1 can 5 V ; TR3 source with VRI slider set mid-way 1.5 V ; and TR4 can 5 V . Current consumption should be in the region of 17 mA .

If there is a serious discrepancy in any of the above test voltages, check for incorrect component location, short circuits, or dry joints.

Now test the modulator with a music or tone signal of about 200 mV r.m.s. applied to Input 1, and the modulator output connected to the tape or tuner input of an audio amplifier. The signal should be heard loud and clear with VR1 set to midtrack.

Rotate VR1 slider clockwise and trim carefully for a null in sound output. In practice, the modulator will not completely suppress the audio signal at null point and a faint sound will still be heard. Having obtained a null, it should now be possible to bring up the sound output to full strength by applying approximately +0.5 V d.c. to Input 2 ; derived from a 1.5 V battery with a 2.2 megohm resistor in series with the positive battery terminal.

TREMOLO UNIT

Tremolo is a smooth and regular variation of sound amplitude produced by a very low frequency modulation, of ten heard with individual musical instruments, but also capable of being applied overall to the total sound output of a group or orchestra. In addition, voices can be made to sound interestingly "nervous" by the judicous application of tremolo. The musical term "rate" is used to denote tremolo modulation frequency, and "depth" the level of modulation applied.

Block diagram Fig. 4 shows a typical tremolo setup, where a signal is modulated by the output from a very low frequency sinewave oscillator, before being fed to a power amplifier and loudspeaker. The signal source in Fig. 4 could be a guitar pick-up, a microphone pre-amplifier, or a tape recorder.

The design of a variable rate low frequency tremolo oscillator is not as straightforward as it might seem. Conventional methods of controlling oscillator amplitude (i.e. thermistor or filament lamp) tend to cause serious amplitude "bounce" at low frequencies, and this can take several seconds to die down.

A bounce-free performance can be achieved, however, at the expense of some waveform distortion, by applying "soft" diode limiting to the oscillator. Fortunately, distortion is of secondary importance with tremolo modulation, and something approximating to a sinewave shape will suffice.

TREMOLO OSCILLATOR

A suggested circuit for a tremolo oscillator is shown in Fig. 5, which employs a Wein network (Cl, C2, VR1, R1 and R2) with diode amplitude limiting introduced between C2 and VRla.

With the combined gain of TR1 and TR2 held down to about five by the ratio of R4 and R5 values, positive feedback is applied from the collector of TR2 to the gate of TR1 via one arm of the Wein network.

There is sufficient loop gain to ensure reliable oscillation over the full frequency range without excessive waveform distortion.

Ganged potentiometer VR1a and b in Fig. 5 gives an approximate frequency coverage of 1 to 20 Hz , and maximum oscillator output is in the region of 400 mV r.m.s. VR2 should be adjusted for six volts between the can of TR2 and the common rail. Capacitors Cl and C 2 can be of moulded polyester type.

When setting up the tremolo oscillator and modulator, with a signal on modulator Input 1, VR1 in the modulator is first adjusted for an output null with oscillator depth control VR3 at minimum output, then modulator VR1 is rotated clockwise with VR3 at maximum for an undistorted signal with full depth tremolo.

Thereafter, no further adjustments to the modulator will be necessary. Various signals can now be applied to modulator Input 1 and the result of varying rate and depth controls noted.

ENVELOPE SHAPING

Envelope shaping is a very fruitful source of sound effects, and this has been touched upon briefly in connection with Fig. 6. A music or voice signal applied to modulator Input 1 can be chopped and shaped to create interesting percussive rhythms and notes which seem to be unrelated to the original sound. Alternatively, musical instruments can be imitated electronically with an envelope shaper by careful choice of control pulse shape and tone waveform.

Obviously, the need here is for a simple and flexible control pulse generator which can be coupled to the modulator to achieve a variety of envelope shaping requirements.

CONTROL PULSE GENERATOR

The suggested control pulse generator circuit of Fig. 7 will offer variable attack and decay of pulses of 20 milliseconds to one second duration at repetition rates of 1 to 25 Hz .

With S2 in the repeat position, C2 charges through VR1 and R2, and discharges through VR2 and R3 when the unijunction TR1 conducts. The cycle then repeats. TR2 is switched off during capacitor discharge.

In the manual mode, single-shot operation can be initiated by pressing the key switch (or one of several keyboard switches wired in parallel) and a tone on Input 1 of the modulator will then be sustained for as long as the key remains closed and will decay after the key is released.

If the pulse generator is to be used only for manual operation, R1, TR1, and VR1 may be omitted from circuit, with R2 wired straight to the positive supply rail.

The basic envelope shapes given by the control pulse generator and modulator are listed A to E in Fig. 7. Other shapes can be generated by adjusting the modulator preset VR1.

RHYTHM GENERATOR

A novel rhythm generator can be made by combining the tremolo and envelope shaper units as shown in Fig. 8. Unlike standard "dance" rhythm generators based on switching circuits, which provide pre-determined beat patterns, the principle here is to allow two independent modulating frequencies to interact and give a slowly changing relationship of amplitudes and intervals. The result can be "jungle drum" rhythms of great subtlety and variety.

Looking at Fig. 8, a steady tone input applied to the tremolo stage is modulated by the sinewave output from the tremolo oscillator; this yields a tone of varying amplitude which is then applied to the input of the shaper stage.

The control pulse generator "chops" the tone and imparts to it a percussive envelope shape (A in. Fig. 7). Tone frequency and waveform will determine the pitch and character of the drum sound, while the relative frequencies of tremolo oscillator and pulse generator will establish the rhythm.

AUDIO RING MODULATOR

The audio modulator can be converted into a ring modulator quite simply by nulling a music or voice signal on Input 1 , and applying a tone signal from an audio oscillator to Input 2, see Fig. 9. Depending on the frequency of the tone, voices are made to sound like "Daleks" or are unintelligibly scrambled, while music is invested with a bell like or warbling quality. For best results, the signals on both modulator inputs should be kept below 100 mV .

FREQUENCY DOUBLER

Fig. 10 shows the audio modulator employed as a frequency doubler. The modulator is first adjusted for a null output, then Input 2 is connected to Input 1 in series with a $0.1 \mu \mathrm{~F}$ capacitor.

Frequency doubling is of limited usefulness with complex audio signals because the ear interprets a strong second harmonic signal as severe distortion, but a small amount of frequency doubled signal could be mixed back in to achieve a deliberate discordancy.

The case is somewhat different, however, with tone signals lacking in character. For example, if the doubler is added to a simple electronic organ, and adjusted for a partial null, the sound output could be made more interesting. Guitar notes might also benefit from the addition of some second harmonic content.

AUTOMATIC FADER

A smooth fade up or down, without clicks or scratching noises, gives a professional touch to amateur recordings and home disco sessions. With a few extra components, the audio modulator can be converted into a switch operated fader, with fade up times of 0 to 15 seconds, and fade down times of 0 to 30 seconds, see Fig. 11.

The modulator is adjusted for a null output with S 1 held in the fade down position. When S 1 is switched to FADE UP, Cl slowly charges to nine volts via VR1, and a proportion of the capacitor voltage, appearing at the junction of R1 and R2, is applied to Input 2 to increase the output level from the modulator.

For fade down, Cl slowly discharges through VR2 and returns the modulator output to its original null level.

VOICE OPERATED FADER

Voice operated faders are often used by radio disc jockeys to suppress the music signal while talking, this leaves the hands free for cueing discs, and allows bursts of music to punctuate the voice during awkward pauses.

In the circuit of the voice operated fader Fig. 12, the capacitor C 2 controlling the voltage on modulator Input 2 is quickly discharged by TR1 at the commencement of a voice signal, thus "killing" the music signal. When the voice ceases, C 2 is allowed to charge through R1 and fades up the music in about 1.5 seconds.

TR1 is switched hard on by an intermittent d.c. bias obtained by rectification of the a.c. signal voltage from the microphone pre-amplifier. The fluctuations of base bias are smoothed out by C2. To adjust the fader, VR1 in the modulator is adjusted for a null whilst blowing into the microphone.

ELECTRONIC flash equipment is now available to one and all at quite reasonable prices and can be used with almost all types of camera. However, the only information normally available to a user about exposure details is in the form of so-called "guide numbers" which relate the flash unit to particular film speeds and camera-subject distances.

This can provide quite usable black-and-white pictures when using direct flash where the flash and camera both point in the same direction, but is not really ideal for use with colour film, which is much more sensitive to exposure conditions, or with "bounce" flash.

What is needed here is a meter which will measure the value of light produced by the flash under any circumstances and indicate to the user the aperture required for a given film speed.

Commercially available flash or "strobe" meters fulfil this function. However their prices tend to be somewhat high, some simpler ones starting at near $£ 40$ and the more sophisticated running into hundreds of pounds.

Fig. 1. The basic circuit concept of the flash meter

The present design evolved from a critical need for something to fulfill the strobe meter function as reasonably as possible. There are probably ways in which the circuit could be made more sophisticated but when calibrated the present equipment, can be accurate to within less than half a stop in measuring incident light. This is more than satisfactory for use with colour reversal film. The component cost should be in the region of £14-£16.

PRINCIPLE OF OPERATION

The circuit use three 741 operational amplifiers as main active components. These amplifiers were developed for use in analogue computers and the meter is in fact just such a computer. Fig. 1 shows, in block form, the heart of the unit.

Capacitor Cl is connected to the operational amplifier ICl to form an operational integrator. In such an arrangement current flowing from the inverting (-) pin of the amplifier induces a voltage across the capacitor that is proportional to the total current flow in relation to time. When the flow of current is stopped the capacitor will retain its charge, and hence the voltage across it, for some considerable time.

The output of the integrator will now be a positive voltage which provokes a steady current to flow through the meter MEI. The reading on the face of this meter will be an analogue integral of the current flow from the inverting terminal of the amplifier for the duration of that flow.

Diode DI is a silicon photodiode (reverse biased) that allows a reverse current to flow through it in proportion to the level of light falling upon its sensitive junction area at any instant in time. Being a silicon diode its normal reverse leakage is infinitesimal and can be ignored.

Switch S1 is included in the circuit since we are only interested in a pulse of current flowing as a result of a flash discharge acting on D1. SI is

Fig. 3. A linear (above) and a curved (right) scale for the display meter. The lower figures are the actual scale values in microamps on a $100 \mu \mathrm{~A}$ meter
normally open, closes at the commencement of, or slightly before, the flash discharge and re-opens again soon afterwards thereby isolating the integrator from any current flow produced as a result of ambient light striking D1.

CIRCUIT DETAILS

Fig. 2 shows the full circuit in block form. Here the integrator is formed by amplifier IC3 and the isolating switch (S1 of Fig. 1) is a transistor, TR1, that is normally biased off. TR1 conducts for a brief period dictated by the monostable. The monostable is fired by closing S3 and as well as switching TR1 it also triggers the thyristor, CSR1 which is connected into the trigger circuit of an external flash unit by means of a long synchronising lead. This provides the necessary synchronism with the flash for exposure determination.

The inclusion of amplifiers IC1 and IC2 considerably increases the usefulness and flexibility of the unit. Both operate strictly as amplifiers in this case.
Thus a useful range of apertures in photograhy could be considered to be those from $\mathbf{f} 2.8$ down to f22. Each f-stop is equivalent to a change in light level by a factor of two and in the range just mentioned there are six such steps. In practical terms this means that a scene requiring a lens aperture setting of f 2.8 is in fact $1 / 64$ th as bright as a scene requiring an aperture of f22 for correct exposure of the film. If one tried to display all this range on one scale one would arrive at a very cramped bottom end on a meter display face, a reading of only 1.5% of full scale representing f 2.8 and 6% f.s.d. representing f5.6.
$f 8$

TWO RANGES
Amplifier ICl overcomes this problem by providing two switched gains. The meter face is altered to display two ranges, a high range from $\mathbf{f} 22$ down to f 8 and a low range from f 8 down to f 2.8 . When the flash pulse is sufficient to use the high range S1 is switched to VR1 but if the light level registered on the meter falls below f8 then S1 is switched to VR2, which is set to increase the gain of the amplifier. This allows the lower light level (obviously of a repeated identical flash) to be displayed well up the scale.

Thus the lowest marking on the scale is as much as 12% of f.s.d. and the half stop divisions are easy to see.

A brief inspection of Fig. 3, which shows two specimens for the face markings. will make the whole thing clear. Resistors VR1 and VR2 are made variable and are adjusted in practice such that a pulse of light producing a reading of f 8 on the Low range, i.e. at the top of the scale, will produce, when repeated, a reading of $f 8$ at the bottom of the High range. In this way continuity is assured.

FILM SPEED VARIATION

The flexibility of the instrument is further increased by the inclusion in circuit of amplifier IC2. This has an input resistor R1 and a parallel arrangement of nine switched feed-back resistors, R2 to R10, which control the gain of the amplifier.

Any one of these resistors can be selected by the nine-way single-pole rotary switch S 2 . The function of this amplifier is to process the signal passing from ICI to the integrator IC3 in such a way that the final analogue display of the aperture required for correct exposure is a function of the sensitivity to light of the particular film in use.

Put more simply, one can set the meter for a particular ASA film-speed and the display will be suitably adjusted.

The relationship of the feed-back resistor values to the input resistor Rl is of course important. If one assumes that $\mathrm{R} 2=25 \mathrm{ASA}$ and let it have a value equal to R1 then R10 $=400 \mathrm{ASA}$ and has a value of $\mathrm{RI} \times 16$. So we have a table of relative values as follows:-

R2	25 ASA	,
R3	35 ASA	$\mathrm{R} 1 \times 1.4$
R4	50 ASA	$\mathrm{R} 1 \times 2$
R5	70 ASA	$\mathrm{R} 1 \times 2.8$
R6	: 100 ASA	$\mathrm{R} 1 \times 4$
R7	140 ASA	R 1×5.6
R8	200 ASA	R1-8
R9	280 ASA	R1×11
	400 ASA	RI

This might appear confusing but a short explanation should clear the matter.

Assume. for arguments sake, that you wish to photograph a scene in colour and black and white. In one camera you have Kodachrome (25 ASA) and in another you have Tri-X (400 ASA). Setting the meter for 25 ASA (R2) sets amplifier IC2 in the
unity-gain mode. Tripping the flash gives you (let us say) a reading on the low scale of $\mathrm{f} 5 \cdot 6$. If you now set the meter to 400 ASA (R10) amplifier IC2 will be operating with a gain of sixteen (R10 divided by RI equals 16), and will amplify the through signal from another flash discharge by this amount to give a displayed reading on the high scale of f 22 . In both cases the correct exposure is indicated for the relevant film.

In Fig. 2, switch S4 acts as a reset control which shorts out any charge on capacitor Cl after a reading has been taken, leaving the circuit ready for a further reading to be made. Variable resistor VR3 allows the scale of meter ME1 to be suitably set during calibration.

THE PRACTICAL CIRCUIT

Fig. 4 shows the full practical circuit. TR1 and TR2 constitute the monostable, the pulse width of which is about $1 / 60$ th second determined by C2 and R5. In its quiescent phase the junction of R2, R3 and TR6 base are at positive rail potential and hence TR6 is biased off.

The junction of R6, C2 and TR3 base via R8 are at ground potential so TR3 is also biased off. The monostable is triggered by closing S 2 thus raising TRI base to the positive potential on Cl and thereby turning TR1 off.

The system now changes state. TR6 base goes to ground allowing it to pass current via R24 to the base of TR5, to bias TR5 on for the duration of the pulse. TR5 acts as the isolating switch for IC3

Fig. 4. Full circuit diagram of the flash meter
and allows it to "see" the light sensing circuit for this short time.

Also during this active phase the potential at the junction of R 6 and C 2 rises to the positive rail. This has the effect of throwing TR3 into a state of conduction and allowing $C 4$ to discharge rapidly through R9 and the thyristor CSR1. This pulse of current triggers the thyristor into conduction which in its turn completes the flash-unit trigger-circuit and the flash discharges immediately.

```
GOMPONENTS
Resistors
```


Potentiometers

VF1 500 ! skeleton preset

VR2 2.7 k ! skeleton preset
VR3 10k\& skeleton preset
VR4 10 k IS helical precision pot
VR5 10 k ! skeleton preset
VR6 100k !? skeleton preset

Capacitors

C1 $0.04 \mu \mathrm{~F}$
C2 $0.68 \mu \mathrm{~F}, 20 \mathrm{~V}$
C3 $4 \mu \mathrm{~F}, 10 \mathrm{~V}$ elèctrolytic
C4 $\quad 0.47 \mu \mathrm{~F}$
C5 $\quad 250 \mu \mathrm{~F}, 10 \mathrm{~V}$ electrolytic
C6 $-250 \mu \mathrm{~F}, 10 \mathrm{~V}$ electrolytic
C7 $22 \mu \mathrm{~F}$. Tantalum. 16 V

Diodes

D1 BPY68 Phofodiode (A. Marshall)
D2 6.2V Zener, $\frac{1}{4} \mathrm{~W}$

Transistors

TR1, 2 and 6	2N3702 (3 off)
TR3	2N2926
TR4	ZTX501
TR5	ZTX300

Integrated Circuits
IC1; 2 \& $3 \quad 741$ operational amplifiers (3 off) and 3 i.c. sockets (8-pin)

Switches

S1 SPDT slide
S2 Friedland bell push (modified)
S3 DPST slide
S4 SP 9-way rotary
S5 friedland bell push (modified)

Miscellaneous

Veroboard, battery connectors (2), batteries, meter ($100 \mu \mathrm{~A}$ 3 $\frac{3}{4}$ in face), case (aluminium 2in 4 in . 6in), nuts and bolts, glue, resin, table-tennis ball, camera flash sync socket.

Photograph showing the completed flash meter

The remainder of the circuit is fairly straightforward. D1 is a BPY68 photodiode and has a Zener (D2) stabilised negative voltage across it of 6.2 V nominal. The High and Low ranges are selected by switch SI which is in circuit with the feed-back resistors VR1 and VR2. RII is the input resistor to IC2 and S 4 is the nine-way switch in circuit with the ASA feed-back resistors R13-R21.

TR4 and R22 constitute an emitter-follower connected into the feed-back loop of IC2. The purpose of this is to avoid possible loading of $I C 2$ output and consequent distortion of the through-signal. R23 is a current-limiting resistor in the event of a possible short-circuit of the output to ground.

R25 is the input resistor for IC3. C7 is the integrator charge-storage capacitor which can be discharged by switch 55 thus annulling any meter reading. VR6 is a skeleton preset which limits the current output from the integrator to the $100 \mu \mathrm{~A}$ meter. VR3, VR4, VR5 are preset resistors to balance current off-sets in the 741's. C5 and C6 are large electrolytic smoothing capacitors.

C3 is a stabilising capacitor for the monostable. Some electronic flash units produce quite violent voltage irregularities during charging and if the resulting spikes get to the meter circuit this can cause triggering of the monostable. This of course would fire the flash which would be triggered by each following spike in a never-ending cycle. C4 thus acts as an anti-"hiccup" device.

Switch S3 is of the double-pole variety and is inserted in the positive and negative supply rails as at a and b. Power is supplied by two PP3 batteries in series and centre-tapped. They will have virtually shelf-life since the unit in use is usually not kept switched on for more than a half-minute or so at a time.

CONSTRUCTION

Circuit construction is straightforward. A piece of $0 \cdot 1$ in matrix Veroboard $3 \frac{3}{4}$ in $\times 2 \frac{1}{2}$ in is used with the copper strips running the length of the board. The practical layout is shown in Fig. 5.

The breaks in the strips should be made first, the i.c. sockets soldered in place, and then the wire links attached. The other components can then be assembled and soldered in as their positioning is more easily determined if this order is adhered to.

Fig. 5. Veroboard component layout complete with lead details

Solder in C5 and C6 last of all as these lie over other components. D1 should be left on longish leads ($\frac{3}{5}$ in to $\frac{1}{2}$ in) to allow it to be angled horizontally above the board in final assembly. This component is a reversible diode so there are no polarity checks to be made before soldering in place. Keep all flying leads of a good length. say 3 inches, pending final assembly.

Resistors R13 to 21 are mounted on the back of swich S4. VR4 is a 10 k !2 precision helical preset potentiometer which is mounted on the instrument case so that final calibration adjustments can be made after assembly.

In practice VR1 and VR2 might have to be components of slightly different value. The values quoted are those used in the prototype and were found to give sufficient range of adjustment with the actual diode D1 and light-diffusing dome employed. Similarly a value of $22 \mu \mathrm{~F}$ was used for C 7 but this is not critical. A capacitor of (say) $4 \cdot 7 \mu \mathrm{~F}$ would be equally suitable: the only difference it would have on circuit characteristics is that it would tend to charge to a correspondingly higher voltage but even so is still unlikely to "saturate" under operating conditions, i.e. ramp as far as supply potential limits.

The prototype unit was housed in an aluminium box measuring 2 in deep, with the lid retained by two screws. On the front ("bottom" of the box) were mounted the display meter (a $3 \frac{1}{8}$ in squarefaced $100 \mu \mathrm{~A}$ meter was used for large-scale ease of legibility), the On/Off switch S3, the High/Low switch S1, the Flash and Reset buttons S2 and S5, and the nine-way rotary ASA selection switch S4. The illustrations show the general arrangement and Letraset markings-the latter varnished after application for protection. On the "top", that is the face towards the target area, of the case are mounted the flash co-axial socket, the helical preset potentiometer VR4 and a light-collecting diffusion dome behind which is situated the BPY68 (D1).

The size of case selected is dictated mainly by the size of meter used. Equally, if a smaller meter is used then the size and location of the switches becomes critical. As can be seen from the illustrations, the prototype layout follows current commercial practice with all the controls and the meter on an "upper" face and the light sensitive zone facing away from the operator using the instrument. Of course, a constructor can vary this arrangement to suit his needs and parts availability.

COMPONENT MOUNTING

The mounting of most of the items is straightforward. The co-axial socket SK1 can be taken from a flash extension synchronising lead which can be bought at photographic shops. Use the "male" end and glue it into a wooden or plastic collar about lin long that has sufficient surplus at either end for mounting bolts to pass through, In the prototype the collar was of plywood and mounted on spacing columns so that the socket terminated just flush with the surface of the case. The socket was inserted into a tight-fit hole through the collar and made fast with Bostik quick-setting epoxy resin. Screened (co-axial) cable was used to connect it to the thyristor CSR1.
The prototype flash and reset buttons were adapted from Friedland bell-pushes. These have a fairly deep "box" moulded onto their bases which were carefully sawn off with a hacksaw so that only a thin platform of plastic (which holds the actual make/break assembly) remained. The sawn-off portion of each switch, that is the parts that normally sleeve the mounting screws, can be saved. These serve as spacing pillars on the front of the switches and allow them to be mounted with bolts so that they lie flush with the surface of the case. The effect is neat. Again, other push or toggle switches may be used if desired.

LIGHT RECEPTOR

An important item that has to be specially adapted for the instrument is a light-collecting diffusion hemisphere. For this the prototype used half a table-tennis ball. This in itself is fragile but it can be strengthened.

Cut a table-tennis ball not quite into halves with a hot knife. Ensure that the larger to be used portion. is clean and free from any printed matter. Mix about a teaspoonful of clear epoxy resin with hardener and accelerator (resin such as is used for embedding objects or else the clear resin to be found in fibre-glass repair kits is suitable), and pour this into the ball half.

Roll it around so that it coats the whole of the inside surface of the ball and continue to move it thus as it sets so that it is distributed in an even layer.

Repeat this two or three times so that the resin is built up to a thickness of about $\frac{1}{8}$ in. Moderate warmth such as is provided by a fan heater will speed setting.

Now take a piece of coarse wet and dry abrasive paper, wet it and place it face-up on a flat surface and press the cut edge of the table-tennis ball gently on the abrasive surface. Steady, circular movements with moderate pressure will soon wear away the resin and the ball itself.

Cease grinding when you have a hemisphere, and the abraded surface is clean and flat. Dry off the hemisphere, varnish the outside surface with a clear varnish and glue it firmly with Bostik over the aperture in the case through which the BPY68 "looks".

The aperture itself should be about lin diameter. On the inside surface of the case fix one or two layers of translucent diffusing material. This should preferably be plastic and have similar diffusing properties to grease-proof paper. Unfortunately grease-proof or tracing papers are not suitable as they might "yellow" in time and their light-transmitting properties change. The BPY68 should be positioned about $\frac{1}{4}$ in behind this translucent screen and facing towards its centre.

FINAL ASSEMBLY AND SETTING-UP

When the circuit has been built and checked and the case completed, the two can be connected together. Take especial care that the flying leads are connected up correctly, that the meter polarity is observed and that the power switch (S3) is off. Connect up the two PP3 batteries and switch on.

Set VR1 to approximately its mid position and select the High range with SI. Working in a low level of light, measure the voltage at the output (pin 6) of IC1. Adjust VR3 until the output is zero with respect to 0 V .

Press the Reset button S5 and observe the $100 \mu \mathrm{~A}$ meter that serves as the display. The pointer should come to rest at zero but may start to drift up or down the scale. Adjust VR5 until the drift over a period of 10 to 15 seconds is negligible.

Place the back on the case temporarily, press the Reset button in order to zero the pointer again, select 400 ASA with S4 and give the Flash button S2 a jab, do not hold it down. The pointer will probably jump up or down the scale and hold a new position. Reset, adjust VR4 and repeat.

Continue this procedure until pressing the Flash button causes the pointer to move not more than 1

Photograph showing light-collecting diffusion dome
or 2 micro-amp divisions in either direction-ideally it should not move at all. This completes the preliminary setting up of the equipment and the time has come to calibrate it.

THE METER-FACE

First the meter-face must be adapted. Remove the front cover and carefully move the upper scale and stop wire across to the right so that if the pointer were to swing across against the stop it would be indicating about $115 \mu \mathrm{~A}$. Next undo and remove the small bolts that hold the meter face in position and carefully slide it up and away.

Do not lift it until it is well clear of the pointer as otherwise the meter bearings might be damaged if the pointer is snagged. A new set of characters can now be drawn on a sheet of white paper, using a tracing of the original meter face as a guide and glued accurately in position on the meter face-plate. This is now slid back into position, secured with its bolts and the meter cover replaced.

It must be emphasised that care should be taken in this in fact comparatively simple but rather delicate operation.

The actual calibration of the meter might seem somewhat hit-and-miss, relying initially on the guide number system (the very system we are trying to supersede); however it is quite satisfactory to start with and small adjustments can be made later.

CALIBRATION

Set up an electronic flash unit and position the flash meter, with the hemisphere pointing towards the flash, at such a distance (computed from the guide number) that an exposure of $f 8$ using 400 ASA film will be correct. Set VR6 to roughly mid-position. Set the ASA to 400 and connect up the meter to the flash-gun via a long trailing extension sync-lead.
Switch on and press the flash button. If the flashgun does not fire reverse the polarity of the synclead (the thyristor is polarity conscious). The easiest way is by using a two-pin connector in the sync lead line.

Reset, switch to the Low scale and press the Flash button again. Adjust VR2 until the pointer comes to rest at f 8 on the top end of the scale, the adjustments being made between flashes.

If, regardless of high VR2 settings, the pointer does not swing as high as f 8 but consistently comes to rest somewhat lower on the scale then do not

Fig. 6. Graphic representation of clipping of the pulse
reset and in fact reduce the value of VR6 so that the pointer tries to move well off the top of the scale. That is to say it is seated firmly against the end stop.

Now reset and continue flashing and adjusting VR2 as before until the pointer comes to rest centrally on f8 at the top of the scale.

CLIPPING

When this has been achieved switch to 200 ASA , reset and flash again. Check that the pointer stops at 556 . If it does not and comes to rest higher than f5.6 it means that the signal at the output of IC2 is being clipped to the rail potential at the higher ASA settings. In Fig. 6 "A" represents the optimum pulse characteristics whereas " B " shows clipping of the signal.

If clipping does occur then first reset and reduce the effective resistance of VR6 slightly. Now switch back to 400 ASA and adjust VR2 so that once again a flash gives the correct reading of 88 .

When this has been achieved again reset, switch to 200 ASA and confirm that the indicated exposure is f5.6. It might prove necessary to repeat this procedure two or three times to get the relationship correct.

CORRELATION

When it is correct move on to correlating the High scale with the Low scale. To do this, reset, switch to 400 ASA and switch to the High scale. Adjust VRI between flashes until the pointer comes to rest on f 8 at the bottom of the scale.

Finally do all the checks again: zero voltage at pin 6 of 741 (1) (adjustments on VR3), pointer drift over 10 secs (adjustments on VR5), pointer jump when Flash button depressed and flash-gun not connected in circuit (adjustment externally on VR4) and then the calibration checks should be run through as outlined. From time to time as the meter is in use carry out the pointer jumping test and make adjustments to VR4 as necessary. The adjustments should not be very great.
If, after a period of use, the meter seems to be reading slightly high or low then small adjustments should be made to VR6 to compensate. It should not be necessary to adjust VR1 or VR2 since again the correction required will probably be very small.

THE BATTERIES

The two PP3 batteries specified will adequately power the unit for several months provided the unit in use is not left switched on for any great length of time. When the batteres are replaced always fit two fresh ones together: never use one fresh and the other exhausted.

SOLID-STATE TV CAMERA

What is claimed to be the world's most sensitive solid-state television camera has been developed by engineers at General Electric Company in the USA.

The new camera is light and compact and is capable of taking pictures by the glow of a candle.

The heart of the camera is a quarter-inch square, metal-oxide semiconductor chip. It is covered with 10,000 pairs of miniature capacitors, each pair functioning as an individual light-sensing device. As light strikes the chip each capacitor pair collects a charge proportional to the light striking it. Each pair of capacitors is then addressed by scanning circuits to release the charge into the base of the chip.

The tiny chip does the same job as the tube in a conventional camera.

Potential applications for the camera include use in surveillance systems and eventually it could find its way into consumer electronics, possibly combined with a small video recorder and television set to form a home TV studio.

BRITISH NATIONAL DATA BUOY

Acontract to design and develop the Department of Trade and Industry's national data buoy has been awarded to the SEATEK group of companies which includes Hawker Siddeley and EMI Electronics.

Based on the original design by the Institute of Oceanographic Sciences, this 25 ft diameter wave-riding buoy is the first large oceanographic and meteorological sensor-carrying buoy devised entirely in Britain.

The buoy will be moored off the Norfolk coast and data will be transmitted via a telemetry link to a shore station at Lowestoft.

The major function of the buoy is to provide a platform for development of advanced sensors to monitor both oceanographic and meteorological parameters. The buoy will also form Britain's contribution towards the proposed European network of data buoys.

OXFORD STREET STORE

THE opening in April of a new store in London's Oxford Street marks the integration of two top names in the radio and hi-fi business G. W. Smith $\&$ Co. (Radio) Ltd. and Laskys Radio Limited who merged in 1972.

Claimed to be the first of its kind in Europe the store will cover 14.000 sq ft of selling area, have 70 specially trained staff and will be stocked with a wide range of consumer electronic products including audio, tape recorders, television receivers and associated video equipment, in-car equipment and calculators.

There will be fully equipped stereo and 4 -channel demonstration rooms and accessory bars where items such as replacement styli, cartridges and record cleaning equipment may be purchased. Other departments stock d.i.y, accessories and records, pre-recorded cassettes, and 8-track cartridges.

This showpiece store is to be the forerunner of a series of hi-fi centres around Britain.
89-91 Wardour St., London, W1V 3TF.

Send this coupon and $4^{\prime \prime} \times 9^{\prime \prime}$ stamped addressed envelope for comprehensive free price list.
Please print
NAME...
ADDRESS \qquad
\qquad

A FULL RANGE OF RADIO AND AUDIO INTEGRATED CIRCUITS GUARANTEED TO MANUFACTURER'S FULL SPECIFICATIONS.

Please send cash with order. Prices include VAT. P \& P for U.K. $12 p$ per order. Overseas add airmail charge.
£0.94
£2.14
£2.39
£1.20
f1.14
£1.45
£1.28
£1.19
£1.07
Complete circuit conmection diagram and characteristics supplied free with each circuit type.

Only 55p.
plus 22p $\begin{gathered}\text { POSTAND } \\ \text { PACKING }\end{gathered}$

-

The Catalogue you MUST have!

Details of our popular Credit Accaunt Service and our Easy Ordering System are included in the catalogue.

NEW SCORPIO
 Mk. 2

Following the phenomenally successful Scorpio Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce availability of all parts for the PE SCORPIO Mk. 2-

* Now with added R.F.I. suppression.
* Fully machined and painted die-cast case with AMP termination connector block.
* Custom wound transformer.
- NOW AVAILABLE IN 6V. and 12 V
* Suitable for all types of Cars, Boats, Go-Karts, ete.
- Promotes easier starting-even under sub-zero conditions.
- Improves acceleration, gives better high speed performance and quicker engine warm up.
* Eliminates excessive contace breaker burning and pitting.
* PROMOTES FUEL ECONOMY.

Construction of the unit can easily be completed in an eveninginstallation should take about half an hour. A complete complement of components is supplied with each kit together with ready drilled, roller tinned professional quality fibreglass printed circuit board. -Uses original plugs, points, and coil.-No special parts or extras required.
(Case size 7 t in , $4 \frac{1}{2} \mathrm{in}$: 2 in)

* All components available separately.-S.A.E. with enquiries.
* Construction manual available separately 25 p.

Cost $\mathbb{E} \mathbf{2} .95$ incl. carr., ins. and VAT. (Carriage at cost outside U.K. -Export enquiries welcome.)
CONVERSION KIT FROM Mk. I to Mk. 2. FOR CONSTRUCTORS ALREADY POSSESSING Mk. I KITS.-Miniature P.C. assembly Cl. 10 incl. Carr., Ins. and VAT with full conversion instructions.

DABAR ELECTRONIC PRODUCTS 98 LICHFIELD STREET
 WALSALL, Staffs WSI IUZ

ENVIRONMENT AND SPACE

Nearly seventeen years have passed since the first artificial satellite went into orbit and looking back through the literature that has now accumulated it is clear that much new knowledge is now on record. Side by side with space developments there has been much speculation as to how the techniques can be turned to the benefit of the human race.

Not least of these endeavours is the attempt to assess the Earth's resources. At the same time the doom mongers prophesy dire problems of over population, shortage of food supplies while at the same time and almost in the same breath they talk of the decimation of the population from pollution and other hazards.

Since the boundaries are now not merely the Earth but the Solar system it is necessary to readjust thinking of the environment. The Earth is but a part of a composite whole which includes near space, middle space and beyond the Solar system outer space. Much has been learned of the effects of the Sun upon the Earth and the time is ripe for a good look at what technology can do.

It is inevitable that certain areas come in for most attention. These are the areas where there appears to be a lack of the necessities of life. Yet most of this is because technology is not used to the best advantage, or that an intermediate technology is more appropriate to certain situations. Since all these things are a part of a whole, some
of the new thinking must revolve around the use of natural resources and the application of man's ability to readjust to a situation.

A good deal has been written on some aspects of space dangers but little of a constructive nature about adaptation. It is proposed that some of the effects of space exploration side effects should be examined. To do this, separate aspects of some of the present problems must be examined.

ENERGY FROM SPACE

One of the activities which will naturally be to the fore is the harnessing of energy. It is within the parameters of Spacewatch to do this and also within the electronics field. It is fitting then to start with a method of utilising the power of the Sun, which for the human race is an almost limitless source (12,000 million years anyway), of energy.

Many years ago ideas were put forward, for the setting up in space of a vast reflector of sodium which would beam the rays of the Sun down to the Earth in a concentrated ray. Speculation was rife as to how this could be used by one power or another to burn up the cities of the enemy.

The first of a similar type of reflector to beam power derived from the Sun and transmit it to Earth, for peaceful use, has already been funded, see Fig. 1.

The National Aeronautics and Space Administration of the United States have awarded nearly 200,000 dollars to a consultancy working with three American firms. These firms specialise in space platform engineering, solar cells and microwave equipment.

Experiments have already been carried out in America with the transmission of power by microwaves. A microwave beam was used to keep a model helicopter aloft by this means. The new project study is now being set up in space in a geostationary position. The basic idea is to set up a collector for the solar energy. The power would be transferred to a converter by cable where microwaves would be generated.

On the same unit would be the control system which would enable an aerial to be kept facing the Earth and the collector facing the Sun. An aerial on the Earth covering an area six by six miles would collect the microwave energy for distribution. The effective amount of energy that would be available for distribution would be 10^{7} kilowatts.

Proposed space power station

This may well seem to be an extremely ambitious project but it is not beyond the present technology. The improvement in solar cell performance is enough to justify the feasibility study, and since the effects of the beam of microwave power would cause less disturbance than a direct beaming of solar energy it would seem to be a better choice.

The microwave beam. however. could raise certain difficulties. Apart from the fact that some precaution would be needed to avoid passing through the beam, space vehicles would need to avoid it (particularly space shuttles with passengers) and the fact that the ionosphere would have its temperature raised.

Some work has already been carried out from Aricebo in firing about a hundred kilowatts at one layer of the ionosphere and raising the temperature thereby. This was reported in Spacewatch some time ago. The effect of megawatts might well cause changes. No doubt the doom mongers will have much to work on here.

EARTH BASED SOLAR POWER STATIONS

The method of utilising natural resources just described may be the extreme end of the scale of new endeavour but is nevertheless to be considered. A more immediately possible alternative is the utilisation of solar energy at ground level.

Later Spacerwath articles will deal with the practical systems in use at the present time and those projected for the future.

By A. P. Stephenson

This series, spocially written for the beginner, takes you step-bystep through transistor circuit design in a simple, nonmathematical way.

Design of a small signal ampliffer will be followed by a Class B amplifier and the series will conclude with a constructional project so that your theoretical knowledge can be put into practice.

LAST MONTH some of the general principles of transistor circuit design were described. This month we will look more closely at the transistor itself and examine how the characteristics of this device influence carcuit design.

We shall also look at the main circuit components which influence voltage gain.

As mentioned in the previous part the principles to be discussed refer only to small signal amplifiers, power amplifiers requiring a different approach.

2.1. THE 0.6V VOLTAGE DROP - VBE

The transistor requires the base/emitter diode to be forward biased. In the case af silicon transistors the voltage drop across the junction will appear "locked" at about 0.6 V . Germanium "locks" at about 0.2 V .

This voltage is an intrinsic value and is predictable from a rather involved discussion on the physics of the $p n$ junction.

EFFECTS OF TEMPERATURE

The figure is almost, but not quite, a constant because at normal ambient temperature (usually specified as 25 degrees C) the variation is typically berween 0.55 V and 0.72 V .

The effect as temperature increases is a reduction in this voltage according to the following scale:

For every degree C rise, V_{BE} falls by 2 mV

For example, a transistor operating at 125 degrees C will have a $V_{\text {Be }}$ of about 200 mV less than normal, i.e. 0.4 V .

For the majority of design work, however, transistors are running at the 25 degrces C norm, the only exception being the larger power stages.

Vee AND CIRCUIT DESIGN

It is very important for the amateur designer to fully appreciate the significance of the 0.6 V lock and to ram home this point the circuit in Fig. 2.1 may be used.

Large variations in VR1 will not have much effect on the voltage V_{BE}. However, if VR1 is reduced to too low a value, the dreaded "thermal runaway" will soon cause the death of the transistor.

In fact, if you are measuring V_{FE} with a voltmeter and you notice a reading approaching, say, IV the transistor is either already dead or soon will be!

Fig. 2.1. Changes in VRf will have little effect on the base to emitter voltage

2.2. THE COLLEGTOR SATURATION VOLTAGE -Vge(sat)

It is easier to define collector saturation voltage by reference to Fig. 2.2. As the slider of VR1 is moved towards the IOV line, Ic increases and the collector voltage falls because of the voltage drop across $R \mathrm{c}$.

At some point on the slider the output voltage stops falling, becoming locked at a certain lower limit. At this limit the collector current can rise no further, in spite of rises in the slider.

DEFINITION

The collector saturation voltage, $\gamma_{\text {CEisat }}$ may be defined as follews:
The collector becomes "saturated" or "bettemed" when the collector current has reached its maximum possible value because its vollage has reached its minimum possible value.

> This minimum voltage to which the collector can fall is called the collector saturation voltage - VCE(sat).

A typical figure to indicate the order of magnitude would be 0.5 V . The actual value for $V_{\text {CE(sat) }}$ is dependent on the value of $I \mathrm{c}$ at this voltage which in turn is clearly dependent on R_{s}.

MANUFACTURERS' FIGURES

It is inconvenient for a transistor manufacturer to give $V_{\mathrm{C}(\text { Isui }}$ values in terms of R_{c}, because the supply voltage would also have to be quoted. Instead the V czassal) figures are quoted for a given Ic.
For example in the case of the ECLO8:
$V_{\text {CE(sst }}=90 \mathrm{mV}$ for I_{c} at 10 mA measured but $V_{\text {CEIssit }}=200 \mathrm{mV}$ for I_{C} at $200 \mathrm{~mA} 4 \begin{aligned} & \text { with } \\ & I_{\mathrm{C}} / I_{\mathrm{B}}=20\end{aligned}$
Note that $V_{\text {CE(sat) }}$ rises with larger collector currents, which may be taken as a general rule. It also rises with increase in temperature.

Fig. 2.2. As the slicer of VR1 is moved upwards, VEETalls to minimum of VCE(eat)

2.3. THE PARAMETER JUNGLE

The academic way of explaining and measuring what goes on inside a transistor is to use a sel of "network parameters" which are supplied by the manufacturer for each type of transistor. A few years ago a system called "T-network parameters" were in use.

T-NETWORK PARAMETERS

These parameters consisted of strange little resistances which were alleged to inhabit the corridors of the crystal lattice and given names such as r_{e}, r_{0}, r_{c} which stood for the emitter resistance. base resistance and collector resistance respectively.
In addition to these little resistances there was a ratio called "alpha" (symbol xi which was a current gain desperately trying to equal unity but never quite making it.

H-PARAMETERS

T-parameters gradually became unfashionable and gave way to a modernised set known as "h-para-
meters", the term " h " meaning hybrid. There were originally four in the set: i_{11}, the input resistance: h_{21}-the current gain; h_{12}-the voltage feedback ratio; and h_{22}-the output admittance. It is not difficult to see why they are called hybrid!

A breakaway group was formed causing a change in symbolism. The general symbol h_{12} tecame $h_{\text {ie }}$, $h_{h_{i t}}, h_{\text {ic }}$ according to whether the transistor is used with grounded emitter, base or collector.
Similarly h_{21} became $h_{\mathrm{fa}}, h_{\mathrm{rb}}$ or $h_{\mathrm{fe}} ; h_{12}$ became h_{re}, h_{tb} or $h_{\mathrm{rc}} ; h_{22}$ became $h_{\text {se, }} h_{\text {mb }}$ or $h_{\text {oc }}$.
To reassure the amateur designer, we shall try to avoid any further reference to any of them with the exception of h_{t} which is the most generally useful of all h -parameters and r_{e} which is still a most useful term because it can so easily be calculated from the collector current.

The design of any circuit, within the capabilities or the amateur, can be carried out with those two alone the rest of the tribe will be left to the academic types.

2.4. THE RATIOS $h_{\text {F }}$ AND $h_{\text {fo }}$

The ratio h_{FE} is one of the important pieces of information given in the manufacturers' literature. Its full title is "large signal forward current transier ratio in grounded emitter configuration" which is a bit of a mouthful and is simply collector curreat divided by base current thus:

$$
h_{\mathrm{FE}}=\frac{I_{\mathrm{C}}}{I_{\mathrm{B}}}
$$

It is useful in setting up the d.c. bias conditions because for a given collector current and $h_{\text {FE }}$ the required base current can be found.

RANGE OF VARIATION

Unfortunately it is not a very reliable constant and shoulc not be taken at its face value. This is net to say that manufacturers issue false information, in fact ihey always stress that their figures for $h_{\text {Fe }}$ are typical
and often give minimum and maximum expected values. The production line spreads however are very large as carn be seen from the example of the BCl 08 where $h_{\mathrm{FE}}=125$ to 5010 which means that picking one of these at random the hec could be anything within this range.

In addition to the production line spreads there is also another variation which is an added annoyance for the designer. The mean collector current also affects h_{re}.

This means that manufacturers always specify the mean collector current when stating $h_{\mathrm{r}} \mathrm{E}$. In the
above example for the BCl 08 the collector current was taken as 2 mA .
In general the $h_{\text {re }}$ increases as mean collector carrent increases up to a certain upper limit and then tends to fall again

THE RATIO hte

The ratio $h_{\text {fe }}$ is similar to $h_{\text {fe }}$ but is strictly a small signal ratio. All the remarks above appiy except for this difference. The values given for $h_{\text {te }}$ and $h_{\text {FE }}$ are usually atout the same anyway.

2.5. THE 25/Jc EQUATION

The base-emitter junction in a transistor must be forward biased in order to operate the device as an amplifier.

Since forward bias causes the junction to pass current it is a relevant question to ask what is the resistance across the base-e mitter junction when it is conducting.

THE INTERNAL EMITTER RESISTANCE

The answer is not straightforward, because most of the emitter current ignores the base altogether and flows upwards to the collector.

It is not altogether surprising therefore to learn that the value for r_{e} is not a constant but depends on the collector current 'c.

In fact the formula is complea involving logs to the base e, Bolteman's constant and various other unpleasant things including the absolute temperature. Fortunately, for most practical purposes at room temperature the formula can te reduced to a very simple form:

$$
r_{\mathrm{e}}=\frac{25}{I_{\mathrm{C}}} \quad \begin{aligned}
& \text { where } I_{\mathrm{c}} \text { is in milliamps, } \\
& \text { and } r_{\mathrm{e}} \text { in ohms. }
\end{aligned}
$$

$$
\text { Fer example } \begin{aligned}
I_{\mathrm{C}} & =1 \mathrm{~mA}, r_{\mathrm{e}}=25 \Omega \\
I_{\mathrm{C}} & =10 \mathrm{~mA}, r_{\mathrm{e}}=2.50 \\
I_{\mathrm{C}} & =0.1 \mathrm{~mA}, r_{\mathrm{e}}=250 \Omega .
\end{aligned}
$$

DYNAMIC RESISTANCE

Note that one should not make the mistake of thinking that r_{e} is a simple resistance which can be measured with multimeter set to ohms. It is a "dynamic small signal value" which only comes to life when the transistor is passing collector current.

From the designer's viewpeint, the equation is very useful because it shows how to make t_{e} any desired value by suitable choice of collector current.

However, it is not r_{e} itself which is important but the fact that it appears in equations for voltage gain and input resistance.

2.6. THE LOAD WHICH THE SIGNAL SEES

For a grounded emitter amplifier circuit the signal is applied betweer the base and ground (see Fig. 2.3).
The input resistance, r_{in}, is the load which the signal sees. Superficially this would appear to be simply $r_{\mathbf{e}}$. However, it musi te remembered that only a small fraction of the total emitter current is supplied by the base, the actual fraction being $1 / h_{\text {te }}$. The apparent input resistance, as far as the signal is concerned is thereiore much higher than r_{e}, in fact the equation is

$$
r_{\mathrm{IN}}=h_{\mathrm{e}} \times r_{\mathrm{e}}
$$

For example if the collector current is 1 mA , $r_{e}=25 \Omega$ which makes $r_{\text {IN }}=$ hife $\times 25$. If the transistor has an $h_{\text {re }}$ of 100 , the input resistance is $2 \cdot 5 \mathrm{k} \Omega$.

It is unusual in practice to ground the emitter directly. For stability purposes, an external emitter resistor $R_{\mathbf{E}}$ is commonly employed, see Fig. 2.4

Since r_{0} and R_{E} are in series across the signal, the modified equation for $r_{1 N}$ is

$$
r_{\mathbf{I N}}=h_{\mathrm{re}}\left(r_{\mathrm{e}}+R_{\mathbf{E}}\right)
$$

Fig. 2.4. The addition of RE increases the load

2.7. THE STAGE INPUT RESISTANGE

Although the equation $r_{\mathrm{IN}}=h_{\mathrm{f}}\left(r_{\mathrm{e}}+R_{\mathrm{E}}\right)$ will describe the load presented to a signal by the transistor, this is not the complete story.

Before an amplifier can amplify, the base must be supplied with forward bias, which means extra resistive networks. These extra resistors are a nuisance because they form an additional load on the signal.

For example the forward bias is often provided by a voltage divider chain R1, R2 as shown in Fig. 2.5 .

The problem now is to obtain an overall equation for the total resistive load on the signal, in other words the stage input resistance $R_{\text {in }}$.

SERIES OR PARALLEL?

It appears fairly obvious that $r_{I N}$ and $R 2$ are in parallel but the position of R 1 is not quite so easy. Is it in series with R2 or in parallel?

From the d.c. bias viewpoint there is no doubt that R 1 is in series with R 2 .
From the signal viewpoint, however, $R \|$ is in parallel with R2 because of the large smoothing capacitor Cs (shown dotted in the diagram because it is part of the power supply). The capacitor is a short circuit as far as varying signals are concerned, which makes the supply rail a ground line.

The input circuit which the signal finally sees is shown in Fig. 2.6. From this it is clear that
$R_{\text {IN }}=R_{1}, R_{2}$ and $r_{\text {IN }}$ in parailel

Fig. 2.5. The divider chain resistors add to the load which the siginal sees

Fig. 2.6. The stage inpút resistance $R_{\text {IN }}$ is effectively R_{1}, R_{z} and $r_{1 N}$ in parallel

2.8. VOLTACE GAIN EQUATIONS

The voltage gain of a grounded emitter stage is the ratio of the output voltage swing (measured between collector and ground) to input voltage swing (applied between base and ground).

The symbol " A " will in future be used to represent this ratio thus

$$
A=\frac{V_{\text {out }}}{V_{\mathrm{in}}}
$$

The strictly relevant components which decide this gain are shown in the skeletal diagram of Fig. 2.7.

An equation for finding the voltage gain which has the merits of simplicity and reasonable accuracy is the following:

$$
A=\frac{R_{\mathrm{C}}}{r_{\mathrm{e}}+R_{\mathrm{E}}}
$$

Although this equation is true as far as the amateur design is. concerned there are times when an even simpler pair of equations are good enough.

If. R_{E} is chosen to be very much larger than r_{e}, then the following equation is allowable:

$$
A=\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}}
$$

Fig. 2.7. Skeletal diagram showing components which control voltage gain

If R_{E} is not there at all, either short circuited or bypassed the equation reduces to

$$
A=\frac{R_{\mathrm{C}}}{r_{\mathrm{e}}}
$$

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
This is YOUR page and any idea published will be awarded payment according to its merits.

UNIVERSAL FLASHER PANEL

ORiginally designed for Christmas-tree illumination. the unit here described provides a method of turning each of four lamps or relays on and off in continuous sequence. But the unit has a surprising variety of other applications.

Using cheaply priced semiconductors, the circuit shown in Fig. 1 combines a clock-pulse generator: a divide-by-four counter and a decoder which drives the lamps. With the value of Cl given, the "on"
put will be low. But if either one or both inputs is low, then the output will be high.

In order to interpret the bistables' four states, each pair of inputs is arranged to go high in turn so that the four outputs go from high to low and back again in sequence to give the count. Whichever output is low then produces base current through its association AC128 thereby turning on a lamp.

Fast rise time clock pulses for driving the SN7474 are generated by a type of oscillator developed by the author.

Briefly, the circuit operation is that C1 charges via R1 and the base/emitter junction of TR1 thereby turning TRI hard on and TR2 off. But when the initially high charging current decreases, the $V_{\text {ce }}$ of TR1 rises and begins turning on TR2.

The capacitor then begins discharging via the path TR2, VR1, R2, but in so doing, develops a positive feedback voltage across VR1, R2 which completely turns off TR1 in a rapid, cumulative action. But a negative feedback voltage developed across R4 while TR2 is conducting eventually becomes greater than the falling positive feedback and re-initiates the cycle by turning TR1 on again in another cumulative process.

VR1 controls the repetition rate and R2 is simply a value greater than the minimum necessary to sustain oscillation.

Ideally, the supply voltage should be +5 V but for children's toys, battery operation is obviously desirable. The unit will operate from either a $4 \frac{1}{2} \mathrm{~V}$ or a 6 V battery but the supply is best kept below 7 V .

Fig. 1. Complete circuit diagram for the universal flasher unit. The arrangement for connecting relays in the circuit is shown dotted
time of each lamp is variable from about $0 \cdot 2 \mathrm{sec}$ to 0.8 sec but increasing the value of Cl allows this time to be extended to minutes.

The divide-by-four function is accomplished by serial connection of the two edge-triggered bistable circuits contained within the SN7474.

The outputs of the two bistables will continuously sequence through all of four possible states so long as clock pulses are applied.

The logic of any NAND gate in the SN7400 used for decoding, is that if both inputs are high, the out-

Where long repetition times are required, VR1 may be replaced with a $25 \mathrm{k} \Omega$ pot. This will allow smaller values of Cl electrolytics to be used at some loss of time consistency.

If relays are employed (shown dotted) an OA202 or similar diode should be connected across each relay coil.

N. Naughton,
Moston,
Manchester.

An introduction to a new technology

LIQUID crystal materials have been known for some 80 years. However, it is only in recent years that their special property of turning a clear liquid into a milky liquid under the influence of an applied electric field has been exploited to produce information displays.

These displays are basically a sandwich of liquid crystal material between two sheets of glass. The exceptionally low power requirements of these displays gives them a considerable advantage where power is at a premium. The purpose of this article is to introduce the reader to this new and interesting technology.

WHAT ARE LIQUID CRYSTALS?

Liquid crystals are materials which over some part of their temperature range have properties intermediate between a solid and a liquid state. This special state is known as the mesophase or anisotropic liquid state.

solid phase	liquid phase		
solid crystalline state	anisotropic liquid state ('Mesophase'")	isotropic liquid state	
Melting Point	Clearing Point	Temperature	

Fig. 1. Showing what happens to a liquid crystal material as its temperature is increased

Anisotropic materials have a rather peculiar property in that they exhibit different refractive indices to light which passes through them from different directions. By comparison a normal liquid is isotropic which means that it has no special optical properties. Light behaves the same no matter from what direction it passes through the liquid.

The anisotropic property of liquid crystal materials is the feature which is exploited to produce the change from a clear liquid to a milky liquid on the application of a voltage.

Fig. I shows diagrammatically what happens to a liquid crystal material as its temperature is increased.

The material is solid at low temperatures. If the temperature is then slowly increased its melting point will be reached after which it enters the mesophase state. Further increase in temperature brings the liquid to its clearing point when it loses its special properties and behaves like an ordinary liquid.

If the temperature is now reduced the material will pass back through the same states until it is again a solid material. In other words the temperature effect is reversible.

The materials of particular interest are those which exhibit a mesophase range which covers our normal range of ambient temperatures.

LIQUID CRYSTAL MATERIALS

There are three main types of liquid crystal material. In all cases the molecules have an elongated form and can best be considered as microscopic greasy transparent sausages. Fig. 2 shows diagrammatically the three types of material.
(a) Smectic type. In this type of material the molecules exist in discrete parallel layers.
(b) Nematic type. The molecules all have their long axes parallel to each other but are free to move in any axial direction.
(c) Cholesteric type. Adjacent molecules appear to be similar to the nematic type but if the material is examined over a greater distance it will be found that a continuous twist is superimposed on the parallel arrangement.

Fig. 2. Three main types of liquid crystal

[^3]The materials in current practical use are organic compounds of the nematic type.

DESCRIPTION OF BASIC DISPLAY

Fig. 3 shows a simple cell consisting of two glass plates separated by insulating spacers which also serve to retain the liquid in the sandwich. The inside surfaces of the glass are coated with transparent conducting electrodes. The Siemens AF25250 is an example of such a simple cell.

Fig. 3. Simple liquid crystal cell in section
Typical dimensions for a working cell would use glass 2 or 3 mm thick with an extremely thin conducting layer on its surface. The thickness of the liquid crystal material in the sandwich between the two glass plates will be in the range of about 6 to $25 \mu \mathrm{~m}$ depending upon the application.

At this stage another property of the liquid crystal molecules which make up the nematic liquid crystal material must be introduced. This is that the individual molecules in the cell also have electrical dipole axes which are at 90 degrees to the molecule axis. This is shown diagrammatically in Fig. 4.

Fig. 4. Molecule and dipole axes

Fig. 5. What happens in the cell when a voltage is applied

We now have to consider what happens when a potential is applied across a cell. Fig 5 is a simplified representation of what in reality is a very complex interaction of conflicting forces in the cell.

Because the individual molecules are all individual dipoles when a potential is applied the molecules are turned at right angles to the field so that their dipoles lie in line with the field. However, things are not as simple as this and free ions present in
the liquid start to migrate to the electrodes with the result that in the liquid they locally neutralise the electrical field set up by the electrodes. This then allows local groups of molecules to return to their perpendicular state.
This flow of ions and the resulting turbulence in the liquid is what gives us the practical applications of liquid crystal materials.

REFRACTION

Now it will be remembered that earlier on we referred to the property of liquid crystal materials known as the anisotropic liquid state. In this condition the liquid has different refractive indices depending on the direction in which light passes through it.

A beam of light passing through the turbulent liquid in the cell of Fig 3 encounters local differences in refractive index because of the different orientations of the different groups of molecules and hence is randomly scattered. This scattering of the light beam leads to the milky or "ground glass" appearance of the material when a potential is applied to it.

Fig. 6. Two types of display. From the left: transmissive and reflective

TYPES OF DISPLAY

There are two basic types of display. Those that operate by transmitted light and those which operate by reflected light.

Fig. 6 left shows a cell designed for use by transmitted light. It is shown with two separate conducting sections. One without voltage applied which allows the light to pass straight through it without scattering. The end of the cell which has been activated by the application of a voltage causes the light entering it to be scattered.

Similarly Fig. 6 right shows the operation of a cell designed to operate by reflected light. These cells have integral mirrors which are preferably designed so that they do not give direct reflections of objects and light sources in front of them. The reflective type of display is particularly attractive for use in battery powered equipment as no internal light source is required.

TYPICAL DISPLAYS

Fig. 7 shows a typical seven bar display which can be a single unit on a panel such as the Siemens AN1301 or a unit in a row of units on one panel such as the Siemens AN4131. A particular digit is displayed by applying a potential between the required bars on one glass plate (usually the front) and the other glass plate which will normally be a common electrode to all the bars.

Fig. 7. Typical seven bar digit

A potential of about 0.5 V per $\mu \mathrm{m}$ is required to initiate the onset of the milky effect in the liquid crystal material. The cloudiness becomes more intense and reaches a saturation level at about 5 V per $\mu \mathrm{m}$. Fig. 8 shows how the milkiness or contrast ratio increases with applied voltage for a typical display.
The electrical power consumed by typical displays is only in the order of $100 \mu \mathrm{~W} / \mathrm{cm}^{2}$ of character area. To quote a practical example the AN4131 display referred to above will take about $2 \mu \mathrm{~A}$ per bar of the display at an operating voltage of 25 volts peak (50 volts peak to peak).

Fig. 8. Effect of voltage on contrast ratio

TYPICAL APPLICATIONS

Typical applications for liquid crystal displays are:

1. Portable equipment where low power consumption is essential.
2. For information display in situations requiring low power, intrinsically safe circuits (circuits in which voltages and currents are limited to values below which they are capable of producing an explosion initiating spark).
3. Aircraft, car and similar situations in which varying light conditions make other forms of display unsuitable. A major advantage of liquid crystal displays over other forms of display is that when using either transmissive or reflective displays an external light source however bright will not mask the display. This is because the display works by scattering light and a bright external source of light such as sunlight will automatically give a bright display.
4. Coloured displays are possible by use of coloured light sources or coloured filters.
5. Direct interface with mos and cos/mos integrated circuits.
6. Digital instruments, cash registers, calculators clocks.
7. Analogue displays such as thermometer strips in which successive elements are activated. These have applications in temperature instruments, speedometers and tuning dials.

Fig. 9. A typical viewing arrangement for viewing a transmission display

A typical arrangement for viewing a transmission display is shown in Fig. 9. In this it will be noted that the light source is located outside the field of view of the user and that a matt black background is used.

METHOD OF OPERATING DISPLAYS

A brief mention must be made here about the way in which the displays are operated. In the examples given earlier d.c. circuits were implied or shown for simplicity of explanation.

In practice crystal displays of the types considered here should always be operated with a.c. as d.c. across the cells will polarise them and seriously shorten their operational lives.

To run the displays on a.c. a sinusoidal supply as such is not essential. It is only necessary for the display to "see" a.c. This is usually arranged to be a square wave a.c. as this is both easy to produce and gives the most efficient form of drive.

ADVances in the design of battery chargers have been minimal since their introduction many years ago. Modern components have helped to reduce the size and to increase the reliability but otherwise no significant improvements have been made.

The design presented here seeks to bring the humble charger up to date.

CONVENTIONAL CHARGER

First consider the conventional battery charger of Fig. 1. A more basic circuit could not be imagined. However, there are a number of drawbacks.
For example, if the output leads should be wrongly connected to a battery to be charged, that is changed over positive for negative, a heavy short circuit current will flow. This can occur even with the charger switched off if there is no switch in the output lines as here.

Fig. 1. A conventional battery charger circuit

Fig. 2. Circuit of the basic concept used in the new battery charger

Although a fuse, if included, can give a measure of protection, replacement of this item is tedious and some damage can often occur due to heavy surge currents flowing before the fuse blows.

If the output leads of the charger become connected together while the unit is switched on, then once again a short circuit current will flow, and previous remarks concerning fuse protection apply here also.

Lastly, a simple charger will carry on charging after the battery is fully charged, leading to excessive gassing and perhaps battery damage.

A FRESH LOOK

The charger design presented here incorporates reverse connection and output short circuit protection, and cuts the charging rate down heavily when the battery reaches its fully charged potential.
In this way an unskilled person can connect up the charger to the battery without danger and it will not matter if, for example, the charger is inadvertently left connected all night when perhaps only a few hours charge was required.

THE SYSTEM

The block diagram of Fig. 2 shows the new charger in principle whilst Fig. 3 shows the full circuit diagram.
In Fig. 2 a switch S1 is operated in time with the output of an oscillator which is itself controlled by the voltage at the tap on a potential divider connected across the battery to be charged. Power to the oscillator is fed via a diode. The switch, when closed, connects the output of the transformer secondary, via a rectifier, to the battery under charge.
Until a battery is connected with the correct polarity to the output terminals, the oscillator will not run and the switch will remain open so that no charging takes place. Charging starts when a partially discharged battery is correctly connected to the output terminals, and stops when the correct battery voltage is reached by switching off the oscillator.

In fact, two silicon controlled rectifiers CSR1 and 2 are used for the switch, and these, together with two diodes D1 and D2 also form a bridge rectifier as in Fig. 3.

With the mains applied but no battery connected, CSR1 and 2 are unable to conduct as long as no triggering voltage is fed to their gates. Without $\operatorname{CSR} 1$ and 2 conducting, the remainder of the circuit is unable to provide any triggering potentials.

BATTERY CONNECTION

This apparent stalemate is circumvented by introducing a battery at the output terminals.
A partially discharged battery of correctly connected polarity is required to bring the unit to life. Whilst it might be thought that this is a drawback as a completely flat battery can apparently not be re-charged with this charger, a completely flat battery occurs very rarely indeed. Even if a vehicle's lights have been accidentally left switched on for a day or so, so that there is apparently no output from the battery, removing the load and allowing a period for the battery to recover usually results in there being sufficient output to switch the charger on in the way to be described.

In addition, a simple modification will be described which enables conventional charging to be done.

CIRCUIT OPERATION

As soon as positive battery volts appear at the supply rail, diode D6 conducts. If the battery is connected reversed then D6 does not conduct and the unit remains dormant. With D6 conducting, C3 charges through R7 and within a few milliseconds the voltage at TR3 emitter exceeds the voltage at the slider of VR1.

Both TR3 and TR4 then conduct very heavily, discharging C3 through R10 thus giving a short positive pulse at the bases of TR2 and TR1. These
latter are connected as emitter-followers and so convert the pulses to a suitable low impedance for driving CSR1 and CSR2 gates. They also provide isolation between the gates.

A positive pulse at a CSR gate converts it to a conducting state. Thus, the bridge network, consisting of D1, D2, CSR1 and CSR2 becomes fully conducting and current passes to the battery for the remainder of the mains half-cycle.

As soon as C3 discharges, it starts to recharge again through R7 and soon another output pulse is generated. This has no effect whilst the CSRs are already conducting, but at the end of each mains half-cycle they revert to a blocking state as the supply voltage is passing through zero. Consequently, fresh pulses are required early in each mains half-cycle and these the unit generates at a rate of about 1.4 kHz , so keeping the CSRs conducting as required.

Eventually with rising battery voltage the voltage at TR3 emitter balances that at VR1 slider because of the action of the Zener diode D5 which limits the voltage to which C3 charges to 10 V .

Thus TR3 and TR4 do not conduct, no pulse output is generated and the two CSRs are not triggered into condition. Charging ceases at a voltage determined by the setting of VR1.

As soon as charging stops the battery voltage will momentarily fall and charging will re-start only to be stopped again by the mechanism described. This leads to the charger giving a trickle charge of less than 1A, which causes no overcharging while at the same time ensuring that the battery is maintained in a fully charged condition.

The two resistors R1 and R2 provide an external d.c. connection from CSR gate to cathode to ensure reliable triggering. Diodes D3 and D4 prevent any spurious negative pulses from being applied to the gates which could otherwise lead to device destruction.

Fig. 4. Veroboard and component layout for the battery charger

The lamp LP2 lights whenever a battery is con ${ }^{2}$ nected with correct polarity. If the battery is connected in reverse the diode D7 is reverse biased and no current flows. In the prototype, a 6 V lamp of $0 \cdot 1 \mathrm{~A}$ rating was employed, together with an appropriate resistor acting as a voltage dropper. This mode of operation is preferable to the use of a 12 V lamp connected directly since a nominal 12 V battery on charge can reach over 14 V and this could lead to shortened lamp life. Here, the value of R11 is chosen to apply no more than 6 V to the lamp with a 14 V supply.

An ammeter ME1, scaled $0-5 \mathrm{~A}$, is connected in series with the positive output. The use of this is really optional. In the prototype, the cheapest to be found was employed for the meter is at best required only to give an approximate indication of the level of charging current, and to show that the unit really is charging.

CONSTRUCTION

Constructional details follow a conventional pattern. A suitable housing for the charger is a metal case (see parts list) measuring $6 \frac{1}{2} \mathrm{in} . \times 5 \mathrm{in} . \times 4 \frac{1}{2} \mathrm{in}$. If readers prefer to employ an alternative, then it is suggested that this should be no smaller than that used here to avoid possible cramping and heating problems.

PRECAUTIONS

Make certain that all mounting holes for diodes and CSRs are free of burrs which could puncture any mica insulation used when mounting to heat sinks.

Photograph showing the layout of the components within the case

In the prototype the diodes were mounted using p.t.f.e. washers and two mica washers supplied, and each CSR was mounted on its own individual heat sink. These were insulated, using one mica washer and two insulating bushes on each CSR.

If available, a light smear of silicone grease should be applied to either side of each mica washer before tightening up. This ensures better thermal contact.

Before proceeding further use an ohmmeter to check that there is no electrical contact between heat sink and any part of the diodes and CSRs.
When the appropriate components have been located on the Veroboard layout of Fig. 4, this latter should be mounted on the diode heat sink and both large sinks are then fixed down to the case bottom, again using silicone grease at metal-to-metal joints for best thermal contact.

All wires that are to carry output current must be of at least 5A rating. Wires to the Veroboard and the indicator lamp can be lighter gauge if found convenient.

TESTING

When wiring up and assembly are finished, testing can be carried out. Two precautions are worth taking at this stage. An "automobile ", type fuseholder fitted with a 5A fuse should be included in one of the leads to the battery to guard against accidental short circuits of the battery when the leads are disconnected from the charger. It is probably worth leaving this fuse in circuit during later use.

The second precaution need be included only during initial testing. Quite simply-it consists of a 12 V bulb of 2 A or similar rating, connected temporarily in one output lead. Thus the greatest current that can flow in any circumstances, even with faults present will be the current appropriate to the bulb selected.

Connect a 12 V car battery to the charger observing polarity. The indicator lamp should light. Now switch on the mains supply to the charger and advance the setting of VR1. A charge, at a rate depending on the actual transformer employed, the state of the battery and the setting of VR1, will be indicated.

Back off the setting of VR1. The charge rate will fall, and further slight rotation will cause it to cease altogether. The actual setting of VR1 must be found by experiment. If a fully charged battery is to hand, set VR1 so that a small, trickle charge flows. Otherwise, set VR1 to give a charge in the range 2 A to 4 A and monitor the rate over a period of a few hours. When the battery is gassing freely, re-set VR1, again to give a trickle charge.

Some additional slight re-adjustment of VR1 setting may be called for, but experience will soon dictate this.

After some hours of supplying an output of 2A or more, the heat sinks will be warm to the touch and so too will the bottom of the case to which they are bolted. Accordingly, ensure that nothing obstructs the free flow of air through the holes in the rear panel.

The rectifier diodes and CSRs employed in the prototype were obtained as " $50 \mathrm{~V}, 3 \mathrm{~A}$ " devices. Alternatives of similar rating may have different physcal characteristics, e.g. the CSRs may be stud mounting, but will probably prove to be suitable since the circuit shown is very tolerant of component variations.

It is suggested that all major components be obtained before drilling any holes.

The Zener diode D5 specified is rated at 10 V but a 12 V type was also found to function satisfactorily, although resulting in a different setting of VRI. It was noted that R 7 could be any value from about $33 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$? and that a C3 of twice the value, i.e. $0 \cdot 02 \mu \mathrm{~F}$ functioned adequately.

The use of such variations is left to constructors of an experimental turn of mind; others should employ the values given.

Fig. 5. Alternative wiring to compensate for a completely flat battery

THE FLAT BATTERY

The possibility of a completely flat battery being unable to activate the charger's circuitry was mentioned earlier.

Accordingly, the modification shown in Fig. 5 is suggested. The resistors R12 and R13 provide sufficient gate current to the CSRs to cause them to conduct without the presence of gating pulses. Consequently, charging takes place regardless of the state of the battery and the setting of VR1, when the switch S2 is closed.
The switch S2 should be opened to return the charger to normal operation as soon as possible.
Constructors may find that the initial charging period includes a time during which the charge-rate fluctuates fairly violently. Where this has happened it has died out after a short time and in any case appears to be a function of the state of charge of the battery and also is physical condition.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought
This is YOUR page and any idea published will be awarded payment according to its merits.

VOLTAGE CONTROLLED SELECTIVE AMPLIFIER

THE unit shown in Fig. I was constructed with the P.E. Synthesiser in mind. It provides a versatile Wha-Wha effect in conjunction with the synthesiser and keyboard.

The filter can be described as bandpass, suitably modified for voltage control. If used in conjunction with the envelope shaper some unusual effects can be obtained.

VR3, 1M12, is a gain (bandwidth) control and the user will discover that this provides interesting results in manipulation. VR2 is a skeleton preset and to set this up VRI should be set to maximum whilst listening to the filter output with either headphones or an amplifier. VR2 is adjusted so that the output whistle is at its highest frequency. and then is backed off slightly.
N. Campbell,

Lee Park, Liverpool.

Fig. 1. Circuit diagram for the Waa Waa effects unit. The i.c. pin connections are shown on the right

MICROWAVES

Now when it comes to microwave technology this really is one of the black arts. All that waveguide plumbing and strip-line circuitry, the exotic vacuum glassware, the strangely named solid state devices, the newest associated developments such as surface acoustic waves, the exciting application such as satellite communications, the secretive ones such as electronic warfare, not to mention culinary ones such as microwave ovens, are now adding up to a sizeable industry though as yet fragmented. On a world scale the business in microwave parts of complete systems is running at about $£ 1,000$ million and employs some 50,000 qualified engineers.

But again there are signs of greater togetherness emerging from international conventions and exhibitions. The world's biggest ever microwave get-together is at Montreux next September and while in Switzerland recently, I had the opportunity of a long chat at the Federal Polytechnic, Lausanne, with Professor Freddy Gardiol who is Chairman of the "Microwave '74"' Conference which, although the fourth in a European series, is the first one to have a full-scale commercial exhibition grafted on to it.

The new innovation has caused some controversy in academic circles but Gardiol, now an academic himself but with plenty of industrial experience in the United States (during which he got a master's degree from the famous M.I.T.) is unrepentant. He believes in the highest level of University/ Industry interface and full-blooded co-operation.

As chairman of the conference he guides the programme selection
committee and it is clear that "Microwave '74", while in no way neglecting the more academic aspects of the technology, will have a fine selection of down-toearth practical applications papers plus a potent hardware exhibition where delegates can see and handle the latest developments as well as merely talking about them.
Sitting in Gardiol's office a hundred metres from the shore of Lake Geneva I could see, looking out of the window into the grounds of the Polytechnic, a beautifully constructed test track for linear motors on which the Electrical Department is conducting much research. Gardiol, as well as teaching, leads a microwave research team investigating loaded waveguides, microstrip circuits and industrial applications of microwave technology. His team of seven workers come from five different countries in three continents, an example to us all in our world of conflict. He is also a conservationist, being a member of the Swiss League for the Protection of Nature and of the World Wildife Fund.

SET-BACK

Britain's Skynet II military comsat didn't get into earth orbit properly, let alone arrive at its designated position in outer space. There was a fault in the second stage firing of the Delta launcher from the Eastern Test Range at Cape Canaveral.

It was really tough luck for the dedicated team of Marconi men who built the satellite under a Ministry of Defence contract at Marconi Space and Defence Systems Ltd. works at Portsmouth. I have seen such satellites being built and tested. No human child has more loving care, no parents are more proud of their progeny, and no nursery is so immaculately clean as the air-filtered final assembly bay.

But there was a crumb of comfort for the designers and craftsmen involved. After six days of being "lost", a tracking station in the Pacific picked up strong telemetry signals which showed that the Skynet on-board systems were still functioning despite the 60G forces and overheating imposed by the faulty launch.

The satellite was now in a severely elliptical orbit, only 65 miles from earth at perigee. An attempt to fire the on-board apogee boost motor to get the satellite well clear of the earth's atmosphere failed because although the motor fired successfully the attitude of the spacecraft was wrong and it descended even lower and is presumed burnt up in the atmosphere.

The programme is now delayed some months but a second flight model is nearing completion and will be launched, one hopes with better success, later in the vear. Nevertheless, the failure of the launch vehicle was a bitter blow to all concerned.

But off-setting the bad news of Skynet II, Marconi Space and Defence Systems has won important new contracts for radar "blindfire" trackers for the British Rapier surface-to-air missile. Rapier, produced by British Aircraft Corporation, is a huge success story with over $£ 200$ million worth of orders, half of this for export. Sharing in the bonanza for electronic sub-contracts are Decca Radar (primary radar and command link) and Cossor Electronics (IFF system).
Why big exports of weapons systems are desirable (though in many people's eyes deplorable) is the extremely high export value for a very low import content, even more important with today's high commodity values for Britain's balance of payments.

AEROSPACE STILL TOPS

Rapier, of course, is still only one product in a whole range of British aerospace projects which are doing well. Redifon has taken £9 million of orders for flight simulators from Japan, China and Singapore alone within the past twelve months.

Plessey has $£ 7$ million of orders in hand for navigation aids and has formed a completely new business for this sector under the management of Stan Kyte, an old hand in Plessey Radar who joined the company from Decca in 1965. One of Kyte's new activities in Plessey Navaids will be selling airfield electrical and electronic packages which average $£ 4$ million a shot. Nice work if you can get it!

Then there's the Multi-Role Combat Aircraft (MRCA) with nine prototypes readying for flight test. This huge multinational project with its on-board electronics complexes and ground support equipment will keep many a factory busy in the years ahead.

that three day week

My own researches last January and February showed the electronics industry as ingenious in keeping production going as in the design and execution of its products.
I can report practically no loss of production and where some people were laid off it was shortage of components, not of power, that did the damage.

Congratulations to all these wonderful assembly workers who buckled to in difficult, sometimes uncomfortable conditions!

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT
OPEN 6 DAYS A WEEK． 9.00 a．m．$-6.00 \mathrm{p} . \mathrm{m}$ ．

TRANSISTOR UNIVERSAL AMPLIFICATION COMPANY LTD． DEPT．E
163 MITCHAM ROAD，LONDON SW17 9PG 01－672 3137／9080

TUAC POWER MODULES

TP125 illustrated
£15．25
TL100
$\$ 11.50$

TL60
$50 \cdot 5$
TL30
27.51

125 watts RMS continuous sine wave output 4 RCA 150 watt 15 amp output transistors Special layer wound driver transformer
Short，open，and thermal overload protection \star Compact size： $7 \times 6 \frac{1}{2} \times 3$ in．
＊ 100 watts RMS sine wave ＊ 2 RCA 15 amp output transistors Rugged transformer driver
Full thermal overload protection \star Compact size： $5 \times 5 \times 3$ in．
＊ 60 watts RMS sine wave
RCA 115 watt output transistors
＊Only six connections to make
＊Same size as TL100
＊ 30 watts RMS sine wave
＊Rugged transformer driver
＊Short，open and thermal overload protection ＊ 2 RCA output transistors

Power supplies vacụum Impregnated Transformers with supply board incor－ porsting stabllised pre－amp supply： PS 125 ± 50 volts for one TP125 PS 100 ± 45 volts for one TL100 PS 60 ± 40 volts for one TL60 PS $30+50$ volts for one TL30 PSU 2 for supplying disco mixer
c8－75
ع8． 00
ع6．75
86.75
84.50
84.50
83.50

4．STATION INTERCOM

4statioo Iranaistor Intercom systell（1 manter and 3 Sabs）．til rebust wantic cabinets for deak or wall mounting．Coll／talk／listen frum Manter to Subs and Sabs to Master．Ideally buitable for lusiness．Bur－ gery，Nchools，Hospital，Otfice and Horne．Operates
on one 05 hatcery．Onfoff switch．Volume control． on one 95 hatery．Onfof switch．Colume eontrol
connplete with i ronnecting wires each fifit and

MAINS INTERCOM（new model） Mo batteries－no wires．Just plug in the mains for instant two－way，lout and clear comnunication On／ot ewitch and volume control with lock
Price \＆28．95 per jair．P．\＆P，60p extra． WiLencoumbibialanu

£6．50
Same as 4．Station Intercom for two－way instant communication．ldeal as lsaby Alarm and Door Phone．Complete with 66 ft connecting
Complete with battery．P．\＆P． 35 p．

Specification on all four power modules：
All output power ratings $\pm 1 \mathrm{~dB}$ ．Output impedance $8-15 \mathrm{ohms}$ ．THD at full power I^{\prime} ，typicaily 0.5 ：，Input sensitivity 60 mV into $10 \mathrm{k} \Omega$ ．Frequency response $10 \mathrm{~Hz}-25 \mathrm{kHz}$ $\pm 2 \mathrm{~dB}$ ．Hum and noise better than -75 dB ．

ALL PRICES INCLUDE V．A．T．AND POSTAGE AND PACKING

 ACCESS \＆BARCLAY CARDS ACCEPTED，JUST SEND US YOUR NUMBER． H．P．ARRANGED THROUGH PAYBONDS．
OSMABET LTD．we make trantorner：

 AUTO TRANSFORMERS，110／200／220／240V． $30 \mathrm{~W}, 21.70 ; 50 \mathrm{~W}, 28.40 ; 75 \mathrm{~W}, 82.85 ; 100 \mathrm{~W}, 48.80$ ； $500 \mathrm{~W}, 810.80 ; 750 \mathrm{~W}, 814.25$ ； $1000 \mathrm{~W} .218 \cdot 00$ ，etc． LOW VOLTAGE TRANSFORMERS
 28．45；JA，84．80；8A，27．35； 12 A，£10．86； 40 V CT， 3 A ，
 24．90；12V：4A＋12V＋A，24．80．
LT TRAN8FORMERS TAPPED 8EC．Prim．200／240V $0-10-12-14-16-145$ $0-12-15-20-24-30 \mathrm{~S} \quad 2 \mathrm{~A}, \quad 23-40 \vdots$ A， 24.50 ：
 $0-40-50-60-80-90-100-1101$ 1A． 4.90 ．
MIDGET RECTIFIER TRABSEORMERS
For FW rect． $00 / 340 \mathrm{~V}$ E． $0-0-9 \mathrm{~V} 0$－
For FW rect．； $200 / 240 \mathrm{~V}$ a．c． $9-0-9 \mathrm{~V} 0-3 \mathrm{~A}, 12-(1-12 \mathrm{~V}$
 MAINS TRANSFORMERS
Prirn．200／240 ac．TXf sec．，420－0－42．5 000 Ma 63 V CT 6A， 63 V CT 6A， $0-5-6 \cdot 3 \mathrm{~V}$ 3A，$£ 16.50$ TX1 420゙－0－425ゝ 250 Ma 6－3V CT 4А， 63 V CT 4А $0-5-6.3 V 3 A, 29.75$ ；MT3 Prim． 0 － $110-24(1 \mathrm{~V}$ sec
 O／P TRANSFORMERS FOR POWER AMPLIFIERS P．P．вec，tapped $3-8-1$ whblls，A－A $6 \cdot 6 \mathrm{KK} \Omega 30 \mathrm{~W}$
 G．E．C．MANUAL OF POWER AMPLIFIERS Covering valve allpilifiers of 30 W to 400 W .35 p ． LOUDAPEAKERS FOR AMPLIFIERS
BAKER 25W，£780：35W，E8－40：H！－ドI Major Module 20 W w／t weeter Xoxer， $211 \cdot 80$ ：Baker npeaker lists；FANE J0W， $210-50$ ：foW． 213.50 ：HI－FI speakers，EMI bass $13 \times$ fin 3 or 15Ω ， $22 \cdot 00 ;$ in 8Ω
 81.76 each．

LOUDAPEAKERS

 BPEAKER MATCHING TRANSFORMERS
＂2W 3 to 8 or 15Ω up ，down $£ 1-30$ ．
＂INSTANT＂BULK TAPE／CASSETTE ERASER Instant erabure tape spools，casecter．demarnetimets tape heads．200／2401 a．c．£3－25． RELAY8，SUR－MINIATURE

12V d．c．FLUORESCEAT LIGHTING Bilicon transist or invertor fur
TAPE RECORDER MOTORS
New，Blowers，fans，etc．， 110 V．a．c． 50 p ．
S．A．E．ENQUIRIES－LISTS，MAIL ORDER ONLY 46 Kenilworth Road，Edgware，Middx．HA8 8YG Tel．01－908 9314

The DEXTER DIMMASWITCH is an attractive Dimma unit which simply replaces the normal light switch．It is available as a complete＂ready to install＂unit or＂simple to assemble＂kit．Two models are available controlling up to 300 W or 600 W of all lights，except fluorescents，at mains $200-250 \mathrm{~V} .50 \mathrm{~Hz}$ ．All DEXTER DIMMASWITCH models have built－in radio interference suppies－ sion．$\quad 600$ watt $£ 3.52$ Kit form $£ 2.97$

300 watt $£ 2.97$ Kit form $£ 2.42$
All plus 12 p post and packing
Prices include VAT．Please send c．w．o．to

DEXTER \＆COMPANY
1 ULVER HOUSE
19 KING STREET
CHESTER CH1 2AH
Tel：0244－25883
4 sumplig

MANUFACTURERS OF ELECTRONIC AND AMPLIFICATION EQUIPMENT SPECIALISTS IN QUALITY TRANSISTOR EQUIPMENT
OPEN 6 DAYS A WEEK, 9.00 a.m. $-6.00 \mathrm{p} . \mathrm{m}$.

TRANSISTOR UNIVERSAL AMPLIFICATION COMPANY LTD. DEPT. E
163 MITCHAM ROAD, LONDON SW17 9PG
01-672 3137/9080

TUAC DISCOTHEQUE MIXER WITH AUTO FADE Designed for the discerning D.J. of professional standard.

NEW! 3 channel Light Modulator

* 1,000 watts per channel
\star Operates from $\frac{1}{8}$ watt to 100 watts
\star Full wave control
\star Fully fused and suppressed
$\star 12$ easy connections
£17.25

Single channel version $£ 6 \cdot 50$
ALL PRICES INCLUDE V.A.T. AND POSTAGE AND PACKING ACCESS \& BARCLAY CARDS ACCEPTED, JUST SEND US YOUR NUMBER. H.P. ARRANGED THROUGH PAYBONDS.

Fascinating to build Fantastic improvement to your car's performance. Complete Capacitive Discharge ignition system, fully proven, components fully guaranteed Printed circuit design All metalwork drilled ready fitted to car in 15 minutes when built.

- Sustained peak performance. Up to 20\% fuel saving. - Instant all-weather starting. Faster acceleration, highar top speed. Suitable for all engines up to 8 cyls . Longer spark plug life. Longar battary life. Contact breaker burn eliminated. - Purer exhaust gas emission.
A new development from the manufacturers of Gunton ignition Price $£ 11.62$ inc VAT and postage. (12 volt only State Pos or Neg. eatith). Ready built unt aiso avalatio $£ 14.85$ inc. VAT and posiage GUARANTEED 5 YEARS
ORDER NOW-send P.O./Cheque direct to:
ELECTRONICS DESIGN ASSOCIATES, Dept. PE5
82 Bath St., Walsall WS1 3DE. Phone: 33652

Phantom Photos

Another off-beat subject which just fringes on ESP. in my opinion. concerns the existence of an "aura" around living things. The subject has been in dispute for centuries. and until comparatively recently only clairvoyant persons could be depended upon to detect it. Not any more, apparently.

In the 1950's some Russians claim to have discovered a way of photographing something which seems to resemble the so-called aura, or, as it might be termed. a living force-field. Claim. I say. because I am sure I have heard of earlier reports of the technique used in photography.

Ordinary film is placed on top of an insulating layer laid on a metal base plate. A volunteer's hand is then placed on another insulating layer. The bottom plate is connected to one pole of a highvoltage. high-frequency generator. and the other pole of this generator is connected to the subject's body. High-frequency energy is turned on in bursts.

All this is done in darkness, to avoid the film being exposed by any light from the room. The film is then developed in the normal way. and. if it is a negative, then prints are taken. The results are quite astounding. Details of the hand are shown up on the film, and curiously enough, the entire outline of the hand is surrounded by an overexposed border which shows distinct "prickles" of concentrated exposure at certain points, e.g. around the finger tips. When colour film was used. the prickles appeared in different colours. depending on the temperament and mood of the subject.

Certain physicists at first thought this to be only an electrostatic concentration of electrical discharge. which might well be expected to take place around the edge of an object in such highly concentrated field conditions. Until, that is, the experiment was performed with a living leaf. Results with leaves
showed all types of detail. far greater than would be seen under lighted conditions. But they also revealed a very mysterious fact. A leaf with a clipped-out portion from one edge was exposed by the "electrography" method, as it is called. The result showed the over-exposed border, but this was unbroken at the point at which the piece of leaf should have been. were it intact! Under colour electrography, the area displayed red blotches, almost as if the wound had bled.

The electrography experiments continue in Russia, where the techniqued is termed "Kirlian photography". after the discoverers. And in the United States, Dr Thelma Moss is engaged in similar researches. Strangely, her team obstinately use different voltages and frequencies from those used by the Russians. This seems strange. because in her reports. which I have read, she often uses these differences as a possible reason for her results not agreeing 100 per cent with the Russian findings.
I think both teams should be congratulated on their perseverence in a subject so frowned upon by people who, in my opinion, should know better. After all. a scientist is not supposed to know it all. His job is to find out more, and this is not achieved by a closed mind.

Psychokinesis

Research is going on into the field of paranormal phenomena in England too. One such experimenter is Benson Herbert. who is the man behind the Paraphysical Laboratory (or Paralab for short) near Downton, Wilts.
Recently, I was a close observer during a psychokinesis experıment (termed P.K.) in which a very gifted yound lady set her mind to influence the falling of soluble crystals through a glass flask of water.

Two identical glass jars, similar to those used for boiled sweets in sweet shops. were filled almost completely with clean, cold water. and allowed to settle for some hours on the table on which they were to stay, undisturbed, until and during the experiment. Two small quantities of soluble crystals of "viride nitens" were made ready on creased pieces of paper and carefully handled just prior to the experiment. Note: Crystals of viride nitens are very poisonous. but were used because of their dark blue dye-like characteristics when dissolved in water.
A hardboard screen was erected between the two bottles, so that only one bottle could be seen by the "medium", the other bottle
acting as a control, with which any observed effect could be compared The word "medium" is shown in quotation marks simply because it is not known that a spiritual medium is the only type of person who could perform the experiment satisfactory, though Miss Suzanne Padfield, who did the concentrating of mind in this instance, is well known for her abilities to heal, and perform "psychometry" (detection of facts from the past history of inanimate objects by handling them ... to be discussed in a future article in this series).

The medium sat in a chair such that she could see only one of the bottles. and two assistants carefully shook the crystals from the creased papers into the respective bottles simultaneously. The subject was asked to influence, by thought, the falling of the crystals in the bottle she was observing. The crystals took a minute or so to become sufficiently wetted to fall slowly through the water, when they left dark blue "smoke trails"

Both sets of crystals commenced their falling at about the same time. and both bottle tops were at eyelevel, to avoid breath interference. On completion of the leading crystal's fall in Miss P's bottle, the trail could be seen to be prominently "S"-shaped, as viewed from behind the medium. The first trails in the "control" bottle were quite vertical. After some dozen trails had been noted in each bottle, and in each case these were straight in the control bottle and " S "'shaped in the other bottle, we took time to chat, during which time it was noticed that further falls of crystals in both bottles were quite vertical.

We then asked Miss P. to concentrate on "spreading" the falls of crystals in her bottle. which. for the next few minutes. she was able to do simply by concentrating on the bottle once more. Again the control bottle traces continued to be vertical. New trails were easily identified at all times by the expansion of earlier ones, rather like vapour trails in the sky.

Accounts of this experiment, and of many others conducted at the Paralab are published in the "Journal of Paraphysics", obtainable from the Paralab. Downton. Wilts.

The experimenter may care to try the experiment for himself. If so. it would be wise to use less-toxic crystals. e.g. potassium permanganate. which give a purple colour when dissolved in water.

Next month: More Experiments

m.P.P.G. METER

Know just how thirsty your car really is ! Build this miles per gallon meter and keep your car fuel consumption under constant surveillance. Only suitable for cars with electric fuel pumps.

THEATRE CUEING IICHT

We cannot guarantee actors will remember their lines, but at least they will know when to appear on stage. A very useful device for Amateur Dramatic Societies.

TELEBELL

A phone bell repeater-gives instant audible indication of a ringing bell anywhere you need it without wiring to a phone.

JUNE ISSUE ON SALE MAY 10, 1974

PRACTICAL

G-HTRONIEG

THis month constructional details for the Crystal Clock are given complete with instructions for final testing.

CONSTRUCTION

All the circuitry, with the exception of the control buttons and switches, is built on a $3 \frac{3}{3}$ in $\times 5$ in $0 \cdot$ lin matrix Veroboard.

The first thing to do is make all the cuts in the strips on the reverse as shown in the component layout of Fig. 4. Do this with care, and double check before going any further. In fact, if enthusiasm tempts you to hurry along at this or any other of the construction stages, remind yourself that two of the components account for just on 90 per cent of the project's total cost, and both can be remarkably sensitive to constructional errors.

The 14 -pin di.i.l socket won't cause any problems in assembly but do be quite sure it goes in the right way round. IC2 is very sensitive indeed to reversal. and getting the socket the right way round is half the battle. The 40 -pin socket for the clock chip can be quite tricky to fit. The big secret is making sure all the socket pins are quite straight before starting. Any that prove reluctant to go into the Veroboard holes should be gently coaxed into position with a very small screwdriver or something similar.

Do not, under any circumstances, put either i.c. into its socket at this point. This is especially true for the clock i.c. which should be put safely to one side until much later in the construction process.

NEON, RADIO AND ALARM WIRING

First. take two 10 in lengths of wire of any two differing colours, twist them together, and solder into D50 and G50, following Fig. 4. These wires will eventually carry the mains to the pair of neons mounted behind the 1.c.d. Twist another two 10 in lengths and solder into P19 and P36. These will eventually go to the radio jack plug JKI on the side of the clock case.

Now, take another two differently coloured 10 inch lengths, twist together, and solder into R14 and Z17. These will go to the crystal microphone insert serving as an alarm loudspeaker.

INPUT FUNCTIONS WIRING

The next stage concerns the preliminary wiring for the various display possibilities, and control of the alarm/snooze operation.

First, take eight differently coloured 12 inch lengths of wire and solder them into the board as described below.

Solder a brown wire into EE41; a red wire into CC41; a white wire into AA41; a pink wire into Y41; a purple wire into X41; a yellow wire into W41; a green wire into V41; and a blue wire into U41.

Check that these soldered positions correspond to pins $24,26,28,30,31,32,33$ and 34 respectively.

If this is so, then these wires have become: brown-snooze input; red-alarm off input; white-

$V_{\text {ss }}$ to control the functions; pink-sleep display input; purple-alarm display input; yellow-seconds display input; green-slow set input; and blue-fast set input.

L.C.D. OUTPUT WIRING

The final wiring on the Veroboard is the most extensive, and provides the outputs from the clock chip which will drive the liquid crystal display.

The following 12 inch lengths of wire will be required: four lengths yellow; four lengths pink; four lengths brown; four lengths een; three lengths white; three lengths blue; four ngths purple; one length red.

Before commencing solderi.ng n, it is suggested that approximately $\frac{1}{4}$ inch of innlation is stripped from each wire at each e,d. the exposed wire twisted, and the ends tinne. 1 tis will enable the wiring process to proceed more quickly, and will also reduce the possibility of error.

The yellow wires should now be soldered into O49, Q49, X49 and DD49 a pink wire and a brown wire together into P49, with the three remaining pink wires going to T49, AA49. and G(349, and the three remaining brown wires going to U49, CC49, and GG41; the four green wires to R49, Y49, EE49 and U38 (the latter forming the l.c.d. common input); one white wire and blue wire together into Z49, with the two remaining white wires going to S 49 and FF49, and the two remaining blue wires going to U49 and HH41; the purple wires to W49, BB49, HH49 and O41; the single red wire to P41.

This wiring has now provided inputs for the only two segments required for the tens of hours digit; all seven segments for the units of hours, the tens of minutes and the units of minutes; a.m. and p.m. indicators; a colon (which will pulse at a 1 Hz rate) between the minutes and hours; and the l.c.d. common connection.

Rear of unit showing microphone insert and S1 switch positions.

CLOCK DISPLAY CONSTRUCTION

Soldering the liquid crystal display socket into a piece of Veroboard is the first step, and is basically illustrated in Fig. 5. It will be noted that the cut in the Veroboard does not follow usual practice, and lie along the holes. It runs between them instead. This is because the l.c.d. socket pins are in two rows, each of them on $0 \cdot 1$ inch centres along their lengths. Unfortunately, the rows are also only $0 \cdot 1$ inch apart, which means the pins must go into immediately adjacent holes on the board. Thus the cut on the board to insulate the two rows of pins from each other must be done in the way shown.

The photograph of the interior of the prototype shows the looming that was done. Basically, the wires for the various digits were grouped together by digit, and loomed like that, while the function output wires were also loomed together. The result is five separate wire looms, a neat appearance, but most important of all, ease of handling in the stages to come.

Immediately before starting to connect the wires to the l.c.d. board, make sure it is lying the right way round, as in Fig. 5. In other words, the shoulder

Fig. 5. Upper left shows pin diagram for l.c.d. Related digit segments are on right. To conform with the Veroboard when mounting one layer of pins should be bent by 0.05 in . Pin h connects to a colon which separates the two pairs of digits in the display.
on the socket, against which the shoulder on the l.c.d. lies, should be closest to you underneath the board.

When wiring, note that the wires go straight to the underside (copper strip side) of the l.c.d. board, and are soldered there, rather than passing down through the board from the top. The connections are as follows. The notation is for the l.c.d. Veroboard; the pins mentioned are those on the clock chip.

Solder the yellow wire from pin 1 to segment f at G4; the purple wire from pin 40 to segment e at H 7 ; the pink wire from pin 2 to segment c at 16 ; the brown wire from pin 2 to segment b at J6. This completes the tens of hours digit, plus the a.m. and p.m. indicators.

Solder the yellow wire from pin 3 to segment f at N4; the blue wire from pin 7 to segment d at O4; the green wire from pin 4 to segment g at $P 4$; the white wire from pin 5 to segment a at Q 4 ; the purple wire from pin 9 to segment e at 07 ; the brown wire from pin 8 to segment c at P 7 ; the pink wire from pin 6 to segment b at Q7. This completes the wiring for all seven segments of the units of hours digit.

Now solder the yellow wire from pin 10 to segment fat U4; the blue wire from pin 12 to segment d at V4 (leave the white wire from pin 12 for a moment); the green wire from pin 11 to segment g at W4; now take the remaining white wire from pin 12 to segment a at X 4 ; the red wire from pin 39 to the l.c.d. colon at U7; the purple wire from pin 9 to segment e at $V 7$; the brown wire from pin 15 to segment c at $W 7$; the pink wire from pin 13 to segment b at $X 7$. This completes the wiring for all seven segments of the tens of minutes digit, and also for the colon in the display.

Solder the yellow wire from pin 16 to segment f at BB4; the blue wire from pin 21 to segment d at CC4; the green wire from pin 17 to segment g at DD4; the white wire from pin 18 to segment a at EE4; the purple wire from pin 20 to segment e at CC7; the brown wire from pin 22 to segment c at DD7; the pink wire from pin 19 to segment b at EE7. This completes the wiring for all seven segments of the units of minutes digit.

Finally. make two small wire links-first, from F5 to F6; second, from FF5 to FF6. Then link F7 and FF7 with a longer wire. Lastly, connect the green wire from U38 on the clock board to F4. This has linked in the l.c.d. common connection. The wiring to the liquid crystal display board is now complete.

Fig. 6. Veroboard wiring detail for the d.i.l. switch S1.

THE DISPLAY FUNCTION BOARD

The display function board contains the two-pole four-way switch used to control the display on the liquid crystal. It consists of a small piece of $0 \cdot 1$ in matrix Veroboard as in Fig. 6. The switch is a very small two-pole four-way, built to correspond exactly to a 16 pin dual in-line package, and thus capable of being soldered directly into Veroboard or a printed circuit having holes at a $\cdot 1$ inch matrix. Manufactured by ERG Industrial Corporation of Dunstable, the switch is remarkably small and remarkably neat. It comes in a number of the standard variations more often found in the much larger rotary wafer switches. The correct description for the switch used in the project is "DIL" DSI6A switch- 2 pole, 4 way.

The wiring of the Veroboard is very straightforward. Note that all wires go to the underside (copper strip) of the Veroboard, just as in the l.c.d display board.

First, take the white wire from pin 28 of the clock chip to position $C 9$ on the board. Before soldering, check that C9 corresponds to one of the poles, and not one of the "ways" of the switch. This can be easily seen by turning the board over and examining the switch. The two poles on one side, joining together two sets of four pins, are very obvious, as are the two sets of four "ways" on the other. Yet another advantage of this miniature switch.

Interior of crystal clock.

Soldering the white wire to $C 9$ connects $V_{B B}$ to the board, ready to control the functions.

Now connect the pink wire from pin 30 on the clock chip to C3; the purple wire from pin 31 to D3: and the yellow from pin 32 to E3. This has now completed the control wiring for sleep countdown display, alarm set time display, and minutes/ seconds display. The last position on the switch is not connected, because this will correspond to normal true time display.

CLOCK OPERATION CONTROLS

The prototype uses four push buttons to control operation of the clock. They are of the simple push-to-make variety, and each one will eventually receive one of the remaining four unconnected wires from the clock chip. The push buttons will also, of course, receive $V_{s \%}$ as their other connection. However, it will prove more convenient to finally wire the buttons after the various boards are in position in the clock case, and so the various electronic assemblies can now be laid aside, so that work can begin on the case itself.

CLOCK CASE CONSTRUCTION

Construction is really a misnomer here, for the basic metal box into which the electronics go, and on which the l.c.d. is mounted. is a readily available standard size die-cast box. measuring a nominal $7 \frac{1}{4}$ in by $4 \frac{1}{2}$ in by 2 in . It has a lid, which will become the base in the project, held in position by six small bolts.

It seemed a shame to hide the l.c.d. away inside a box, merely letting the digits be visible, when it would then start to look like almost any other digital clock, with little novelty value. And, of course, there would also be a positive need to illuminate the digits in some way, since they generate no light of their own. It was for this reason that the display was mounted on top of the box.

It should be remembered that the four holes on the top for the push buttons must be drilled with diameter of the intended buttons in mind. No indication has been given of size because of the large number of different push buttons available. The same applies to the holes for the small neons behind the l.c.d.

In the same way, no size has been given for the much larger hole behind which the crystal microphone insert will go for the alarm tone. The type of insert used is unimportant, but again they vary in size.

The insert is held in place with an epoxy resin adhesive, so the hole should be less in diameter than the insert by at least a $\frac{1}{4}$ inch, if not a little more. It should be cut as neatly as possible-a tank cutter is ideal for the job-because this is the only hole in the case in which the edges will be clearly visible.

The dimensions given for the rectangular opening, through which the l.c.d. socket will emerge, are correct for the socket in the prototype, but it might be wise to check carefully against the socket actually obtained. Dimensions are unlikely to vary greatly, but the neatest result is obtained if the box opening fits very snugly round the socket. Modify the dimensions if necessary, therefore.

The four small holes round the l.c.d. socket, the four small holes round the d.i.I. switch opening,
and the six small holes in the base are all of a size to take 12 B.A. bolts.

PAINTING AND LABELLING

After all the metalwork has been completed, the box should be very thoroughly rubbed down with wet-and-dry paper. It may be necessary first to use a coarse glass paper, or even a fine file, to remove any particularly bad rough edges. It is possible to get a singularly smooth finish finally, before painting. When the metal is completely smooth, it's a good idea to give the box a thorough wash in warm water and washing-up liquid. This will get rid of all remaining dust.

The paint used for the prototype was initially matt black. All the openings were sealed from the inside by masking tape, and the box was sprayed with the base screwed in position. Three coats were given, following the instructions on the spray can.

After allowing a three day drying period following the final coat of matt black, the various controls were labelled with Letraset. This was immediately followed with the first of three coats of matt polyurethane varnish, each coat being allowed to dry before applying the next. The aim, of course, is to give protection to the original matt black, as well as the Letraset.

When the final varnish coat is completely dry, assembly work can commence.

ASSEMBLING THE CLOCK

The first step is to mount the four feet on the underside of the base. This will keep it away from the working surface, and prevent unnecessary damage to the paint. Mount the feet in the normal way, using appropriately sized bolts and nuts.

Now the clock board can be placed on the base. First, take six 12 B.A. bolts and nuts, and mount them firmly in the six small holes in the base. Then take another six nuts and screw each one down on a bolt until it is approximately $\frac{1}{4}$ inch from the base. The Veroboard will rest on these.

Now take the main clock board and gently ease it onto the six bolts, sliding it down until it is resting on the six secondary nuts. Make any minor adjustments to the nuts to ensure the board is seated firmly without warping.

The board should now be removed from the base for a time, in order to complete the last wiring connection on it, before it is finally mounted. This is the mains input.

Normal three core mains wire should be used, with the earth connection going to the screen tag on the transformer input and case.

PRELIMINARY POWER TESTING

A point has now been reached in the construction and assembly at which it is advisable to carry out a preliminary test of the power supplies to the board, and on the board.

First, securely tape the ends of the miniature wires from the mains input side of the transformer which will eventually go to the neons. These will, of course, be live when the mains is turned on. Second, make sure the main clock board is standing on a non-conducting surface, and arrange the two subassemblies (l.c.d. display and display control boards) so that they are not shorting to any of the components on the main board.

Finally, remember that neither the clock chip or the alarm noise i.c. are to be inserted at this stage.

The mains can now be applied to the board, so that the voltage between V_{ss} and $V_{\text {dd }}$ can be measured, in order to make sure that it is approximately the correct value, and therefore unlikely to damage either i.c. when the final tests are done later.

There are a number of convenient points on the top of the main clock board at which this measurement can be done. Probably the best is across the two wire links which run between G2/AA2 ($V_{s,}$) and between $\mathrm{L} 1 / \mathrm{Zl}\left(V_{\text {dd }}\right)$. The reading should be approximately 30 volts. Anything at all higher than 31 volts, or significantly lower than about 27 volts almost certainly indicates a fault in the power supply circuitry, which should be investigated and put right before going any further.

Assuming the voltage readings are correct, the mains can now be turned off, and the main clock board replaced on the six 12 B.A. bolts on the base. A further six 12 B.A. nuts are now screwed on to the bolts, thus holding the board firmly in position.
At this stage, the base can be laid aside, and some preliminary work done on fitting components to the main part of the case. First, put the four push buttons, the two neons, and the radio jack plug in their respective positions, and fix them securely. Next, the crystal microphone insert can be glued into place, using an epoxy resin adhesive.
Now the basic $V_{s s}$ wiring for the push buttons can be done. This involves a ring common connection to one of the terminals on each of the push buttons. V_{ss} will eventually be connected to this ring.

FINAL ASSEMBLY AND TESTING

The three pairs of leads from the main clock board for the neons, the crystal microphone insert, and the radio jack plug should be connected to their respective components inside the main case first. Check back to Fig. 4 to make sure the right pair goes to the right place. The function control subassembly board, bearing the d.i.l. switch, should now be fitted.

The fitting of the function control board is done in exactly the same manner as the main clock board was fitted to the base. The optimum position for the d.i.l. switch is sufficiently far through the side wall of the main case to be easily operated, but not so far as to possibly short out the external tags on the side of the switch.

The next step is to wire in the other ends of the only four leads from the clock chip so far unconnected.
These are the brown wire from pin 24 (snooze input); the red wire from pin 26 (alarm off or reset input); the green wire from pin 33 (slow time set input); and the blue wire from pin 34 (fast time set input).

These wires go to the vacant terminal on each of their appropriate push buttons. Rather than attempt a complicated explanation of which button is which when viewed from underneath, the pictures of the outside and inside of the case make the push button positions quite clear.
V_{ss} must now be supplied to the common ring connection round the four push buttons, and this can be most handily obtained from the display
control board, which is now in position and conveniently close to one of the buttons. $V_{s s}$ is, as will be known, at the point where the white wire is connected to the display control board, and thus another very short lead needs to come from here to the push button common ring connection. The final assembly step comes with the mounting of the 1.c.d. display board into the main case. Again, the mounting procedure is exactly the same as that for the main clock board on the base. Care should be taken, however, to make sure the board is the right way round, though this is virtually guaranteed by the small cut-outs to clear the neons.

FINAL TESTING OF THE CLOCK

The time has now come for the two i.c.s to be put in position, and a great deal of care should be taken at this stage when fitting the clock chip. To start with, it has 40 pins instead of the more familiar 14 or 16 , and this makes fitting very much more difficult. Secondly, it is extremely sensitive to any small charge of static which may have built up. This is why the chip will probably have been supplied with the pins in a material to prevent this. Handle the chip cautiously therefore, and try to avoid shorting any of the pins out, either with the fingers or a component. The loomed wires each side of the clock chip socket will need to be carefully parted to allow the chip to be slid in to rest on the socket. Once this has been done, make a last check to be sure the chip is the right way round, and then ease the pins home into their respective holes. Once they start to go in, there will be no further problem. The chip should be pushed well down and should finally lie flat.

The smaller i.c. for the alarm noise will present no problem, but it is worth repeating that it is especially sensitive to any accidental reversal in the socket. The normal check to avoid this becomes even more essential therefore.

If the 1.c.d. was tested in position earlier but then removed, it should now be replaced.

FIRST SWITCH-ON

Once both i.c.s and the display are in position, the mains can be turned on.
This should cause at least two things to happen -first, the neons should light, confirming the presence of power; second, and much more rewarding, the l.c.d. should show some form of display.

If it is showing some form of display, but this appears to be a collection of unrelated segments, then the display is slightly off-centre. Merely slide it fractionally left or right, holding it by the ends, until recognisable digits appear. If the l.c.d. started in the approximate centre of the socket, only a tiny movement will be necessary.

If, by this stage, (a) the neons have not come on or (b) the 1.c.d. display is either non-existent or cannot be made recognisable or (c) the p.m. indicator is not pulsing or (d) the colon between hours and minutes is not pulsing or (e) there is a combination of any of these symptoms, then there is a fault somewhere which must be located and cured before proceeding further.

One point which should be checked without delay is the position of the function display di.i. switch. It should, of course, be set for normal time display.

All other fault-finding will follow the traditional path of checking soldered joints, checking for bridges between the Veroboard strips, checking the polarity and operation of components, and so on. If construction has been done carefully, however, there should be no problems at this point.

PRESS BUTTONS

Assuming that all is well therefore, the "Set fast" button can now be pressed. This should cause the time to count rapidly forward, at one hour per second, and cancel the pulsing "power interruption" indication, replacing it with a steady indication of either a.m. or p.m. time status. Releasing the button will stop the time movement and normal time counting will begin.

The "Set slow" button should now be tried, and should give exactly the same results, excepting that the time will now count up at two minutes per second.

Showing control button legends and neon placement for best contrast

The display control switch can now be moved to the "seconds" display position. This should result in the previously displayed units of minutes digit moving to the units of hours position, and the total minutes display being replaced with a steadily counting seconds display.

With the display control switch still in the "seconds" position, the "Set fast" and "Set slow" buttons should be tried again. The former should result in the seconds count reverting to " 00 " and holding there, while the latter will merely hold the seconds count at whatever point it is when the button is pressed. This ability is invaluable if the clock is to be set accurately against a known time source, as will be explained shortly.

ALARM

The display control switch should now be moved to the "alarm" position. This should result in the display changing immediately to " $12: 00$ ", which is the alarm set time until changed. The "Set fast" and "Set slow" buttons can now be used as they were with a normal time display, in order to set
the alarm. It is suggested that the alarm be set two or three minutes ahead of whatever the time display happens to be.

When this is done, and as the normal time display reaches the alarm set time, the alarm should sound. Instead of pressing the "Reset alarm" button, press the "Reset snooze" button. The alarm noise should stop immediately, but should come on again approximately 8 minutes later. This preset time may vary slightly but not a great deal.
When the alarm sounds again, press the "Reset alarm" button, which should turn it off for a full 24 hour period.

SLEEP

Finally, move the display control di.i. switch to its "sleep" position. This should immediately result in the display changing to a two digit figure. There should be no colon or a.m./p.m. indicator. This display shows the time remaining in minutes before the continuous circuit available via the radio jack plug will be cut.

The "Set fast" and "Set slow" buttons will now have a reverse effect on the display, in that they will cause it to count down, rather than up, but at the normal speeds for each button. When the display reaches " 00 ", it will recycle immediately to "59". However, in normal operation, when it reaches " 00 ", it will latch there and not recycle.

RADIO

The device is used to control a radio very simply by connecting one side of the radio's battery power via the jack plug. Providing the sleep display shows a time in minutes, the radio will play. When " 00 " is reached, the radio will go off.
If every operation described in this section is achieved, the checking process is completed, as is also the entire project, and the constructor now has a fully operating liquid crystal display clock of which he can reasonably be proud!

ACCURATE SETTING OF TIME

For ease of explanation, it is assumed that a telephone is handy. The process will be identical, however, for setting the clock against the Greenwich time signal from a radio, or the clock displayed on TV from time to time. The only problem with the latter two methods is the inconvenient times at which the time signals seem to be made available!

First, set the clock to a point several minutes ahead of what the true time is believed to be. Then switch to "seconds" display and press the "Fast set" button, holding it down. This will hold the - time count, and revert the seconds ingredient in the time count to zero. In other words, the clock is being held on a precisely set minute.

Then, while still holding the "Fast set" button down, use the other hand to dial the Post Office Speaking Clock. It is at this point that the final choice of switches for some functions on the clock, but buttons for others, will become abundantly clear!
The rest is obvious-as soon as the third stroke is heard for whatever precise minute is being held, the "Fast set" button is released, and the clock is set to the second.

Post to ADCOLA PRODUCTSLTD. ADCOLA HOUSE GAUDEN ROAD LONDONSW4 6LH VAT REGD No. 235615372 REGD No. 442762

GLUM?

SICK OF WAITING FOR COMPONENTS

Try our express service (normally return of post)
Prices very competitive - for example:$1 / 2 \mathrm{~W} 5 \%$ carbon film resistors - 1 p . $1 / 2 \mathrm{~W} 2 \%$ metal oxide $-31 / 2 \mathrm{p}$.

BC 107/8/9	- 10p	2N 3704	13p.
BC 177	- 17p.	2N 3707	13p.
2N 1302/3	- 16p.	1 N 4001/2-	6 p .
2N 3055	- 53p.	1 N 4003/4 -	7 p .
2N 3702	- 13p.	1N 4148	5 p .
2N 3703	- 14p.	1N 5401	16p.

> SINCLAIR CAMBRIDGE CALCULATOR only £ 26.50
> PRICES EXCLUDE VAT

[^4]
Name

Address

Wo you want promotion, a better fob
Mo you want promotion, a better job, you how to get them througha low-cost B.I. E. T home ztudy course There areno
books to buy and you can pay-as-you-
 \section*{Marshall's
 \section*{Marshall's

 A. Marshall \& Son(London) Limited

 A. Marshall \& Son(London) Limited

 42 Cricklewood Broadway London NW2 3HD, Telephone 01-452 0161

 42 Cricklewood Broadway London NW2 3HD, Telephone 01-452 0161

 \& 65 Bath Street Glas'gow G2 2BX Telephone 041-3324133}

 \& 65 Bath Street Glas'gow G2 2BX Telephone 041-3324133}

Memorex MRX2 cassette tape

SECURITY LIGHT DIMMER

Apart from being able to control the amount of lighting power being used, the latest light dimmer now being marketed by Rendar Instruments Ltd. also acts as an intruder deterrent.

Designed as a direct replacement for the existing light switch, the Secureye embodies a manual on/off switch, dimmer and an automatic on/off switch operated by ambient light.

As light falling upon the cell is reduced, power is allowed to flow through the switch progressively until approximately half brilliance is achieved. When ambient light level is increased the control automatically operates as a dimmer until power is cut off completely.

Capable of carrying a load of up to 500 W a.c., the dimmer is suitable for use with any type of incandescent lighting. The automatic action is claimed to produce surge-free switching at up to 50 per cent of normal power, thus prolonging lamp life.

The Secureye is ideally suited as a standby lighting; control of home or office lighting during absence; and maintenance of illumination level in hospitals, on stairways and in other areas where safety considerations apply.

The recommended retail price for the Secureye is $£ 5.60$ plus VAT. Addresses of nearest stockists can be obtained from Rendar Instruments Ltd., Victoria Road, Burgess Hill, Sussex.

CASSETTE TAPE

With so many different processes and differing claims for the large number of tapes now appearing on the market, it is difficult to

market PLALE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned.
choose one tape from another. However, we can certainly recommend the new cassette tape from Memorex U.K. Ltd.

By using a highly concentrated iron oxide particle method, the Memorex MRX2 cassette tape is claimed to give better frequency response and signal/noise ratio performance than most current tapes. Using a tape recorder in the $£ 100$ range, recordings on various cassette tapes, including chrome oxide types, showed that the Memorex MRX2 tapes gave better high note performance and in many cases far less tape noise.

The cassettes are available from most audio stores with playing times from 30 to 120 minutes. Prices vary from 62 p for 30 minutes to $£ 1.60$ for 120 minutes, plus VAT.

EMERGENCY DESK LAMP

Whilst on the subject of power and lighting, readers may be interested in an ingenious desk lamp produced by Industrial Instruments Ltd.

Called the Kleverlite the lamp has a five position selector switch which enables the light to be used during power cuts and also charges the internal nickel cadmium battery during mains operation.

The five positions of the selector switch are as follows: 1. Unit off; 2. Charger only on; 3. Low light intensity; 4. High light intensity; 5. Low light intensity on when mains fail. Should the mains fail, the light will also continue to function if the light is in positions 3 or 4.

The low light position enables approximately four hours' operation under power cut conditions, while the high light position gives normal desk working lighting for approximately two hours.

The built-in charger is a transistor controlled, constant current type, which ensures a high current to recharge the battery as quickly as possible when the mains is restored. Once the battery is charged, the charger reverts automatically to trickle charging.

Kleverlite desk lamp Irom Industrial Instruments

The bulbs used in the light are 6 V 6 W low light and 6 V 18 W high light; replacements being readily available from motor accessory shops. The bulbs are deliberately under run from the 4.5 V battery to ensure long life.

The Kleverlite is available from Harrods or Hastings Lighting Centre, price $£ 49 \cdot 50$. Further information can be obtained from Industrial Instruments Ltd., Stanley Road, Bromley, Kent, BR2 9JF.

SOLDERING TIPS

It is generally recognised that soldering iron efficiency is largely dependent upon the design and shape of the soldering iron bit, so this year Adcola Products Ltd. are concentrating on producing almost 100 different soldering tip designs as standard off-the-shelf items.

The range includes both copper and iron plated long life bits in a variety of shapes; standard, taper, reduced chisel, conical, screwdriver and special printed circuit types.

In addition to soldering bits for their own tools, the range has been extended to cover other manufacturers' soldering irons.

Further details of the complete range of tips can be obtained from Adcola Products Ltd. Adcola House, Gauden Road, London, SW4 6LH.

NOTE

With regards to the Radio \& TV Components Stereo 21 System announcement on page 218 of the March issue. The postage and packing should be $£ 1 \cdot 60$ not 16 p as stated. We apologise for this printing error.

PRTENTE REDTEW

PRIHTED CIRCUITS

BP 1329770

Printed circuits conventionally take the form of a network of electrically conducting lines on a nonconductive substrate. Often the substrate is a resin or ceramic material and the conductors are of silver or a precious metal such as platinum, palladium or gold. Application is by painting, stamping or screen printing. The outstanding disadvantage is of course the cost of the precious metal.

In BP 1329770 NL Industries Inc. of New Jersey, USA, suggests an inexpensive alternative approach. Conducting lines or paths, the inventors say, can be formed from liquid compositions which consist of the reaction product of aluminium powder with a liquid vehicle which contains a phos-phate-chromate reaction product.

The base plate or substrate is of conventional type and in one specific example given, a substrate of high density, sintered alumina is taken and a circuit of lines painted on one face.

A composition containing 80 parts of fine aluminium powder mixed with an aqueous slurry containing $32 \cdot 3$ parts $\mathrm{H}_{3} \mathrm{PO}_{4}, 9 \cdot 1$ parts CrO_{3} and 7.1 parts MgO in water is used for painting, the water being in sufficient quantity to permit reaction of the ingredients and allow easy application of the mix to the substrate. After application the substrate with applied composition is fired to $705^{\circ} \mathrm{C}$ in air and then cooled. It is claimed that this gives a workable printed circuit with good adherence of the lines to the substrate and low electrical resistance. But it is admitted that it is very difficult to solder connections to such lines.

The answer proposed to the soldering problem is that small amounts of conventional silver electrical paste be applied to those points on the conductive lines at which it is desired to solder up connections. The bod is then refired in an oxidisins atmosphere (air will apparently do at a temperature of about $650^{\circ} \mathrm{C}$

It is found that soldered connections can now be easily made at the points where the silver paste has been applied.

If the various claims are justified, the resultant printed circuit board should be relatively cheap to produce.

LIBHT-OPERRTED LAMPS

Lamps which turn themselves on and off according to the strength of ambient illumination are fairly well known. These, of course, rely on light sensitive switching, but a problem is the confusion which can arise from the lamp light falling on the photosensitive switch. Elaborate shielding is possible but this may cause overheating which causes switch degradation.

In BP $1 \quad 325810$ Kabushiki Kaisha Sankosha of Tokyo describes one way of overcoming these problems. Although the patent claim is obviously directed to a fairly simple elaboration over what is known, the description taken as a whole contains useful information.

In Fig. 1 a lamp is screwed into an adaptor with a screw fitting intended to screw into the mains socket. Obviously UK style bayonet connections could be used instead.

A heat sensitive switch S1 is located inside the hollow body of the adaptor and a light sensitive element is mounted in a torch-like head remote from the adaptor and connected to the adaptor by a fairly long flexible 2 -core cable. The photosensitive head is placed in any convenient position so that its photosensitive surface is screened from receiving direct light from the lamp.

As shown in Fig. 2 the make and break contacts of the heat sensitive switch S1 are in series with the power supply to the lamp and its heater element is permanently connected across the mains supply in series with the Light Dependent Resistor (LDR). This element is of the cadmium sulphide, cadmium selenide or similar type of which the resistance varies with incident light.
While the photosensitive surface of PCC1 is bathed in ambient light, its resistance will be low and a substantial amount of current will pass through the heater element. The switch contacts S1 are open in this condition. When the amount of light falling on the LDR reduces, the electrical resistance of the element increases and the current flow through the heater drops. The switch contacts close and the lamp lights.

Provided that the light sensor has been properly positioned and is sufficiently directional in its characteristics, it will not receive sufficient light from the lamp to re-open the switch.

Fig. 2

SWANLEY IC TOMORAOW

The world's most powertul iC amplifier Similar to the IC 12 but rated at $10 \mathrm{~W}, \mathrm{~m} . \mathrm{s}$ power. Supplied with data but no printed circuit, $\{2.60$ (47p). 20% discount on $10+$ quantities

DE LUXE KIT FOR THE IC12

Includes all parts for the printed circuit and volume. bass and treble controls needed to complete the mono version. $51.55(2$,
troi. $£ 3.50$ (46p).

IC12 POWER KIT

Supplies 28V O.5A. $\mathbf{2 2} .47$ (50 p)
LOUDSPEAKERS FOR THE IC 12
5 in 8 ohm. $£ 1 \cdot 10$ (27p). 5 in $\times \sin 8$ ohm. $\mathbf{\Sigma 1 - 5 5 (3 7 p)}$
PREAMP KITS FOR THE IC12
Type 1 for magnetic pickups. mics and tuners Mono model. $11 \cdot 30$ (24 p). Stereo model. $\mathbf{~} 2 \cdot 30$ (34 p) Tyne 2 for ceramic or crystal pickups Mono 60p (17p) Stereo $51 \cdot 20$ (23p)
SEND SAE FOR FREE LEAFLET ON KITS

ZIPPY CABINETS

Attractive plastic instrument cases in 4 sizes $80 \times 50 x$ 90 mm . 60 p (25p), $115 \times 65 \times 40 \mathrm{~mm} .87 \mathrm{p}(30 \mathrm{p})$. 155

ECONOMICAL OUADRAPHONICS $\mathbf{~} 9.95$

 ($£ 1.30$)Complete self-contained matrix quadraphonic synthesizer in attractive cabinet. Just feed output of ordinary stereo hi-fi into it and hook up to 4 spesker for free leafle

SWANLEY ELECTRONICS

P.O. Box 68, Swanley, Kent BR8 8 TQ

 Please add the sum shown in brackets atter the price to cover the cost of post and VATOfficial credit orders from schools. etc., welcome No VAT charged on overseas orders

WILMSLOW AUDIO

THE Firm for Speakers!

SPEAKERS

Baker Group 25, 3. 8 or 15 ohm Baker Group 35. 3. 8 or 15 ohm Baker Group 50/12. 8 or 15 ohm Baker Deluxe
Baker Major
Baker Superb
Baker Regent
Celestion PST8 (for Unilex)
Celestion MF1000. 8 or 15 ohm Celestion HF1300 Mk. II
Celestion G12M. 8 or 15 ohm
Celestion G12H. 8 or 15 ohm Celestion G15C. 8 or 15 ohm Celestion G18C. 8 or 15 ohm EMI $13 \times 8 \mathrm{in}, 3,8$ or 15 ohm EMI $13 \times 8 \mathrm{in} \mathrm{d} / \mathrm{c}, 3,8$ or 15 ohm EMI $13 \times \sin \mathrm{t} / \mathrm{tw}, 3.8$ or 15 ohm EMI $13 \times \sin$ type 350.8 ohm EMI $8 \times 5 \mathrm{in}$. cer, mag.. 8 ohm EMI $8 \times 5 \mathrm{in}$. 10 watt. d/c roll. surr., 8 ohm EMI $6 \frac{1}{2}$ in. 93850,4 or 8 ohm EMI 5in, 98132CP. 8 ohm
Elac $9 \times 5 \mathrm{in}, 59 \mathrm{RM} 109$ is ohm.

59RM114 8 ohm

£6. 60
$\mathbf{8} \cdot 60$
$\mathbf{~} 7.50$
£12.50
£9. 75
£7. 50 £12.00
(ac $6_{\frac{1}{2}} \mathrm{~d} / \mathrm{C}$ roll surr. 8 ohm
Elac $6 \frac{1}{2} \mathrm{in}$ d/cone. 8 ohm
Elac Tweeter TW4 4 in
Elac 10 in .8 ohm
Fane Pop 100 watt. 18 in
Fane Pop 60 watt, 15 in
Fane Pop 50 watt. 12 in
Fane Pop 25/2. 12 in
Fane Pop 15 watt. 12in
Fane Crescendo 12A or 12 B
Fane Crescendo 15
Fane Crescendo 18
or 50 hm £3.85
Goodmans 8P 8 or 15
Goodmans 10P. 8 or 15 ohm
Goodmans 12P, 8 or 15 ohm
Goodmans 15P. 8 or 15 ohm
Goodmans 18 P . 8 or 15 ohm
Goodmans 12P-D. 8 or 15 ohm
Goodmans 12P-G. 8 or 15 ohm
Goodmans 12AX Audiomax 8 or 15 ohm $\mathbf{~} \mathbf{E 9 . 5 0}$ Goodmans Audiom 100
Goodmans Axent $100 \quad$ £6.60
Goodmans Axiom $401 \quad £ 15 \cdot 10$
Goodmans Twinaxiom 8.8 or 15 ohm Goodmans Twinaxiom 10.8 or 15 ohm Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN12
Kef DN13
Richard Allan 12 in d/c. 3 or 15 ohm $\mathbf{~} 2 \cdot 50$
Aichard Allan CG8T 8 in d/c 8 ohm $\mathbf{~} 6.35$
WMT1 speaker match. trans. 3-15 ohm $\$ 1 \cdot 10$

Wharfedale Super 10 RS/DD
[9. 80
$2 \frac{1}{2}$ in 64 ohm, 70 mm 8 ohm. $70 \mathrm{~mm} 80 \mathrm{ohm} \quad 65 \mathrm{p}$
7×4 in, 3,8 or $15 \mathrm{ohm} \quad \mathrm{E1.38}$
8×5 in 38 or 15 hm
10×6 in, 3 . 8 or 15 ohm
S.T.C. 4001G Super Tweeter 51.38
£6.19

Speaker Kits

Whariedale Linton 2 (pair)	£19. 25
Wharfedale Glendale 3 (pair)	£34.50
Wharfedale Dovedale 3 (pair)	£52.00
Richard Allan Twinkit (each)	£8. 25
Richard Allan Triple 8 (each)	£13.00
Fichard Allan Triple (each)	£18.00
Richard Allan Super Triple (each)	£21.50
Goodmans DIN 20 (each)	88.75
Fane Mode 1 (each)	E9.90
Peerless 20-2 (each)	£10.41
Kefkit 2 (each)	£23.50
Kefkit 3 (each)	£34.00
Helme XLK25 (pair)	£18.17
Helme XLK50 (pair)	£37-18
Baker Major Module	E9.50

PA and Hi-Fi speaker cabinets. Send for Free booklet "Choosing a Speaker". Carr. and insurance 75 p per kit ($£ 1+50$ pair).

PA/Disco Amplifiers

(Carriage and insurance \&1)

Baker Major 100 watt	£46.00
Linear $30 / 40$	£25.00
Linear $40 / 60$	$\mathbf{£ 3 0 \cdot 0 0}$
Linear $80 / 100$	$\mathbf{£ 5 5 \cdot 0 0}$

Radios/Cassettes

Grundig Solo Boy $\quad \mathbf{1 6 . 0 0}$
Grundig Top Boy $£ 17.75$

Grundig Party Boy $500 \quad$ £22.75
$\begin{array}{ll}\text { Grundig Melody Boy } 500 & £ 26 \cdot 75\end{array}$
Grundig Elite Boy $500 \quad$ £26.75
Grundig Signal 500
£26.50
Grundig Yacht Boy $210 \quad$ £34.00
Grundig Melody Boy $1000 \quad$ £38.75
Grundig Satellite $2000 \quad$ £121.00
Grundig C410 Cassette \quad £28.50
Grundig RF430 mains radio $£ 26.75$
Grundig RF310 mains radio $\quad \mathbf{~} 22.00$
Tanberg TP41
ITT Weekend Auto
ITT Golf Preset
ITT Colt
ITT Europa
ITT SL53 cassette
ITT Studio 60 M cassette
ITT Studio 73 cassette
Bush VTA178, 5 band (inc. air) $\quad £ 29.00$
Koyo KTA1770 11 band $£ 58.95$
Koyo KTR1663 or 1664,8 band $\quad \mathbf{8 2 . 0 0}$

Koyo KTR1883. 5 band	$\mathbf{£ 2 2 . 0 0}$
Murphy BA209 radio/cassette	$\mathbf{£ 3 2 . 7 5}$

Murphy BA209 radio/cassette $\mathbf{£ 3 2 . 7 5}$
Carriage and Insurance 75p. FREE with each radio-World radio stations book

Free with speaker orders over $£ 7-$

"Hi-Fi Loudspeaker Enclosures" book. All units guaranteed new and perfect. Prompt despatch.
Carriage 35p per speaker (tweeters and crossovers 20p)
ALL PRICES QUOTED INCLUDE VAT

WILMSLOW AUDIO

Loudspeakers: Swan Works, Bank Square, Wilmslow, Cheshire, SK9 1HF.
Radios, etc.: 10 Swan Street, Wilmslow, Cheshire. Telephone: Wilmslow 29599

EIPREPAK
 STEREO
 DECODER 84.95
 incl. P. \& P. and V.A.T

Ready built unit, ready for connection to the I.F. stages of existing $F M$ Radio or Tuner. A tell tale light can be connected. The unit is a small printed circuit, no further alignment necessary. L.E.D. is recommended as the indicating light, suitable device available from us at $36 \frac{1}{2} p$. Instructions included.

OnP.C. Board with all components or 2 On one board for \&2.86. Order Code I.C.A.I/S. These amps.aresupplied with afree book. ler on connecting up. specifications and
 les on con easyreo-bui

5W \& 10W AMPS

5Wonir £1.98 10W owiy $£ 2.49$

These matchbox size amplifiers have an exceptionally sood tone and quality for the price. They are only 2 tin x ligin. The 5 W Amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection details and treble, bass. volume and balance control circuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested.

Now available for 5 \& 10W AMPS

Pre-assembled printed circuit boards $2 i n \times 3$ in available in stereo only, will fit 0.15 edge connector.
Stereo Pre-Amp I (Pre 1). This unit is for use with low gain or ceramic pick-up cartridges. E1-21 Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges.

61-69
Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut. $\mathbf{~} 1 \cdot 21$ instruction leaflet supplied with all units. Post and packing and V.A.T. included in prices.
enclose f..for Decoders/...........3W Amps/............5W Amps IoW Amps/..............Stereo Pre-Amps Stereo Pre-Amps 2............Stereo Tone Controls (Please insert quantities and delete those not applicable). Name

Address

SPEAKER BARGAIM8

 Plain X Co-Axial Tweeter Twin Tweeter
Type 360, 8 ohm. 20W or 15 W $63 \mathrm{in}, 8$ ohm, 10 W $8 \mathrm{in}, 8 \mathrm{ohm} .10 \mathrm{~W}$ $12 \mathrm{in}, 8$ ohm, 20W 8in \times öln. C/Mag. 5 w ${ }_{10}$ in $^{10} \times 5 \mathrm{in}$, Dual cone 8 ohm . ELAC 8 in 8 ohm Dual cone

TWEETER AND CROSSOVER EMI 31in, 3 or 8 ohm C/Mag. $\quad 1.00$
Cone Tweeter 8 or 15 obrn, 10 W 2.40 Cone Tweeter $8 \mathrm{ohm}, 3 \mathrm{~W} \quad 1.40$

EIT YOR㖖
GEREER. $12 \mathrm{in} \times 12 \mathrm{in} \times 6 \mathrm{in}$ with 8 in $\times \sin$ or $61 / 2 \mathrm{in}$ and 3 in wh cutout

1 \mathbf{T} ICROPHONE8

CM20 Crystal Hand
ewitch crystal
DM160 Dynamtc uni-dir, ball umetal ball metal

SOLDEREIG IRONS		spare Bib, etc.)	2.65 1.80
ANTEX CN24015W	1.60	X25 25 W (low leakage)	1.60
SK1 Kit (15 watt iron, 2		P. \& P	$0 \cdot 10$
CAETRIDGRS		BER SC5M Stereo ceramic	2.25
		8X5H Stereo cryatal	1.60
Stereo comp.	1.00	8X5M Stereo crystal	1.60 1.25
OP93/1 stereo cryatal	1.35	X 5 H M Monolstereo	1.25
QP94/1 Stereo crystal	1.75	X5M Mono/atereo GOLDRING 0800	1.25
GP95/1	1.85	GOLDRING ${ }_{\text {G850 }}$	3.85 2.95
GP96/1	1.75	9850 P. \& \mathbf{P}.	2.98 0.05
GP101	0.75	STYLI FOR ABOVE P.\&P.	0.05
SONOTONE 9THAC Stereo		Sapphire 35p D. Diamond	. 25
ceramic, diam.	1.80	GOLDRING $6800 / \mathbf{8 8 0}$	1.95
19.TI Stereo cryatal	0.80		
BATTERY ELIMIEATORS 240 V input $6,7.5$ or $9300 \mathrm{~mA} \quad 2 \cdot 2$ 12 V d.c. input (fits in car lighter		socket) $6,7.5$ or 9 d.c. output 2.20	
		P. \& P	$0 \cdot 10$

TAPES	Stnd	LP	DP	7 in	70p	1.00	1.80
5 in	45p	55p	70p	P. \&	3 each		0.09
5tir	55 p	65p	95p	4 or			0.30
				Cass	ead Cl		0.85
			11-20	P. \&	5 each		0.03
C60	35 p	38p	30 D	6-10			0.15
C90	45p	43p	40 p	11-2	free		
C120	55D	52p	50 p				

PLASTIC LIBRARY CASES Ior
${ }_{5} 5 \ln$ Reels

$0.18 \quad 7 \mathrm{in}$ Reels

BIB ACCESSORIES

Tape Editing Kit, Ref $23 \quad 1 \cdot 30$ | Recording Tape Bplicer. Ref, 201.16 |
| :--- |
| Casaette Tape, Editing, Ref. 241.40 | $\begin{array}{ll}\text { Casaette Tape, Editing, Ref. } 24 & 1.40 \\ \text { Cassette Balvage Kit. Ref, } 29 & 0.40\end{array}$ $\begin{array}{ll}\text { Cassette Balvage Kit. Ref. } 29 & 0.40 \\ 12 \text { 's Casaette Case, Re1. } 34 & 1.00\end{array}$ Stylus Balance, Ref. 32A Spirit Level, Rei. 46 Hi-FI Stereo Test Cassette Groove-Kleen Record Cle $\quad 1.90$ $\begin{array}{ll}\text { Cleaner } & \mathbf{1 . 8 0} \\ \boldsymbol{P} . \& P & 0.10\end{array}$

GOODMANS 6tin 8 ohm DualFANE, 7 in $\times 4 \mathrm{in}, 3$ or 8 ohm81 n Dual cone 8 obmCELESTION $81 \mathrm{~m}, 15 \mathrm{ohm}$

ADASTRA 10in, 8 or 15 ohm ,
10W
BAKER GROUP 25 12in, 8 or 15 ohm, 25 W
$5 i n, 8$ obm, $5 \mathrm{~W} \mathrm{C} / \mathrm{Mag}^{\boldsymbol{F}}$
$2 \frac{1}{2} \mathrm{in}, 8 \mathrm{ohm}$ or 64 ohm

Dome Tweeter 8 ohm, 30 W 4.86 (8 obm), CN216 (16 ohm) 1.0

13 in $\times 8$ in cutout
$18 \operatorname{in} \times 11$ in $\times 9$ in with 13 in x gin cutout for EMI 350

TW206	
CONDENSER MIKE $600 ~ o h m . ~$	
Casaette Stick Mike with R. .	
Control on/off switch ($2 \cdot 3$	

Riadiant A SELECTION FROM OUR POSTBAG

P.E. RONDO

Sir-Forgetting the price increase and maybe putting the E.S.P. article to some use, perhaps you could tell me what happened to the "RONDO" series. I started this unit at a slow steady pace-looking forward to each article as it appeared. only to find it comes to an abrupt end with no further mention of it. After searching the February and March issues to see if there is a temporary postponement of the series. I came up with nothing.

Can you tell me the solution; will it be concluded in later articles?
G. E. Heslop. Carlisle.
In view of the current power crisis it was decided to insert items such as the "100W Power Inverter", lamp inverter and the like, rather than continue the Rondo series which had, in any case, reached the completion of the audio stages.

This series will be resumed next month.

What-phonic?

Sir-Is it not a little odd that we have "progressed" from stereophony to quadraphony when the former is superior to the latter? Should we perhaps consider the possibility that engineers, who have devised words and used them without regard to their meaning, might have betrayed confusion of mind?
A. D. Blumlein, who is generally regarded as having "invented" stereophony, didn't use the word in his famous patent. He did describe how several loudspeakers might be fed from two channels to restore a measure of three-dimensional repro-duction-suggesting that four loudspeakers might be sufficient. Good engineers are precise, Blumlein was both. He said (in effect)-that two loudspeakers could restore a measure of binaural effect-insofar that azimuth separation, instrument from instrument or instrument from reverberation, could be restored to a certain extent; this is not stereophony because "stereo" means:-"Solid in the sense of three dimensional." As far as I am aware, stereophony has yet to be invented.
A lot depends upon whether the "phony" (meaning voices!) relates to the number of loudspeakers or
to the voices being reproduced; if the latter is intended then monophonic reproduction will become rather boring. If the former is intended, stereophony has been known for years: it has recently been revived and demonstrated by the Sennheiser dummy-head. disk which is able to provide binaural headphone listening. What the fuss is all about is how the binaural signals should be presented through loudspeakers.
With the exception of Blumlein's patent, the remaining technical literature reveals little sign of coherent theory or rigorous experimentation. Quadraphony does have a genuine objective: it is to create a better stereophonic effect. It would hardly be fair to say that the consumer is being "conned" although he is most certainly participating in a mass-experiment to determine which particular system will "win". The effects of advertising and muddled explanations could hardly be seen as beneficial towards ensuring that the experiment is a fair one.
It would be a pity if those of use who are less sensitive to the defects of a particular quadraphonic system should "vote it in" as acceptable, denying others, and ultimately themselves, the benefit of further development because a low-grade commercially acceptable system has been found to provide sufficient turnover without the need for further research or investment. By all means say to the recording companies, "your quad isn't yet good enough for me to buy it" or-"it is so good that I can't tell I'm not in the concert-hall". Some of the uninformed all-black/all-white insensitivities in "Readout" remind me of a bar-room brawl. There are those who swear that beer makes a piano sound better-it doesn't have the same effect in an organ.
A last word: Eric Partridge, in "Usage and Abusage" gives: Quadra-; Quadri-; Quadru-. The first is always wrong

Peter J. Unwin Rochdale.

Charger/Regulator

Sir-After reading the article on the "Auto-Charger Regulator". (Feb. 1974), I decided to investigate the material presented.

1. Every mechanical regulator irrespective of manufacture (e.g. Lucas, CAV, Bosch, Hitachi, etc.) has current regulation incorporated.
2. Use of a solid state voltage regulator without the current regulator will burn out the dynamo. On test with the battery voltage down to 10 V a C40 dynamo produces 40 amps at the regulation voltage. Max. safe current for C40 is 22 A .
3. Voltage regulation figures vary from 13.8 V to 16.5 V , not about 15 volts.
4. Current output at a safe level for dynamos fitted to very ordinary cars varies from 22A to 34A according to type. Only one is quoted at the 20 A average mentioned.
5 All cable has been supplied in metric sizes for a considerable time.
5. Spade terminals are readily available so there is no need to knock them out of bits of plumbers' copper.
6. The method illustrated is definitely not the way to solder Lucas terminals to cable.
7. No car ever had a connector in the dynamo leads as standard equipment.
8. Positive earth went out with the Ark so why give it as a first choice?
9. A current sensing resistor is available from CAV or any scrap yard.
10. No protection is provided on the unit against voltage surges produced by the vehicle equipment or a worn dynamo.
It would appear, therefore, that whilst the project will work to a limited extent, the application on cars could have been more thoroughly researched. This comment is also applicable to other car projects and I would suggest some form of pre-publication critique to avoid serious mistakes.

May I stress that I welcome car orientated projects and hope that you will include many more as I know from my involvement with the motor trade that these arouse a very great interest.
H. D. Briggs, Telford.

The answers to the points raised are as follows:

1. The article clearly states that if a vehicle having a current and voltage regulator is to be fitted with the solid state unit, then the current/voltage solid state unit should be used.
2. Current limits given for dynamos are continuous rating. Intermittent, or short term rating is considerably higher.

Any battery which cannot be raised from 10 V to regulation voltage within the allowed time before generator heating occurs must be faulty, and probably would not start the engine. Remember that the generator would be starting from cold in this case, and so would have greater thermal capacity. Your reader forgets that with a conventional regulator the output of say 20A is created by a far from constant pulsed current whose peak value is probably well over 30A.
3. The article quite clearly refers the constructor to the maker's manual to set the voltage accurately.
4. The current rating | quoted was that for my own vehicle. I did not dispute that other capacity generators exist but I imagine that any reader who knew enough about the vehicle to fit my circuit to it would be aware of the fact, and would soon find out if-as I sug-gested-the manual was consulted to find the voltage setting; the current capacity would probably be found on the same page.
5. Cable has been available in metric sizes for some time, this does not mean that all "Imperial" stocks were destroyed at the day of changeover. I still have quite a lot of "old" wire. The size 14/0076 was quoted only for robustness, as it actually carries 1 milliamp the application is hardly critical. The main current carrying cable was quoted as " 50 A " which is neither metric nor imperial.
6. I was unable to purchase $\frac{7}{8}$ in. spade terminals from Southampton's main Lucas agent. In my design, construction is simplified by making the spades part of the diode bracket so I see no sense in the comment at all. As for "knocking them out of plumbers' copper', surely that is all the commercial article is! Why not do it yourself and save money?
7. I did not draw the illustration, but, as an engineer, I find that any method which achieves a satisfactory result will not cause me as much indignation as it does to your reader. I would be interested to know what the British Standard way of soldering a Lucas connector is.
8. The only answer to this is "Mine has!" In the age of mass production, when an engine descends into a vehicle, all of the relevant electrics, including the generator cable, are connected up
with one multi-pole plug, to save time. This is the case with mine.
9. I expected the average reader to understand that either polarity version could be built. If your reader is so scornful of the positive earth system then he is under no compulsion to build it. It occurs to me that most of the techniques used in modern cars went out with the Ark, but are still used for economic reasons.
10. So what! Why buy one when the cable can be used? The cable-voltage-drop technique has been used commercially with alternators. (Incidentally my circuit will also work with alternators, simply by omitting the cutout diode. I intend to do this quite soon).
11. My circuit does not allow a worn dynamo to create voltage surges sufficient to cause damage. $A \quad 2 \mu \mathrm{~F}$ capacitor is incorporated to suppress transients, so I hardly consider that there is "no" protection. In my vehicle, the voltage waveform produced is so smooth that the CD inverter spillback masks any other irregularities.
। am pleased that your reader admits, despite its shortcomings, that my unit will work. Mine has been working for 18 months now and has covered about 15,000 miles. I consider that to be adequate research.
I think I have answered any technical queries raised. I feel, however, that I must make a reply also to the tone of the letter, which was, in my opinion, rather provocative. I do not see any valid scientific purpose served by "having a go" in this manner, as to my mind, criticism couched in these terms loses some of its credibility. I assure you that my article is based on sound principles, and 1 avidly await the publication of an article by Mr. Briggs!
J. R. Watkinson, B.Sc., M.Sc.

Inverter/Charger

Sir-l am writing in connection with Mr Verrill's article (100W Inverter/Charger) in February P.E. There seems to be some error under the section entitled "Transformer Calculations" regarding average and peak values of rectified sinewaves. The first two paragraphs do not make sense.

More serious though is the implication that a transformer designed for mains to low voltage and not vice versa, may be used freely in this or any other inverter circuit. The fact is that unless a transformer has been specifically designed for such an application it is possible
for the inductance of the "new" primary (LT side) to be so low as to allow a large magnetising current to flow. This means that an inverter may take several amps when unloaded, only being reasonably efficient on full load.
Another point regarding the published circuit is the use of 2N3055 transistors which have a high $V_{\text {ce(sat) }}$ when handling high collector currents. Silicon may well be "à la mode" but germanium would save precious watts, thanks to their low on resistance.
Both these points lead me to ask either the magazine or the author to clarify the following points.

1. How many amps does the inverter take when no load is connected?
2. How many hard-earned watts are lost when the inverter is drawing, say 10 amps , in each 2N3055 transistor?
3. How many amps are drawn from the battery to illuminate 80 watts of filament lamps to full brilliance?
In conclusion I should like to point out that these are meant to be constructive criticisms intended to enable constructors to eke the last amount of useful energy out of their batteries in the most efficient manner possible. As such I hope those concerned will reply to these points fully.
L. Cook,

Prescot, Lancs.

LOW PRIMARY INDUCTANCE

Contrary to Mr. Cook's statement, a low primary inductance is an advantage since a transformer designed with a higher inductance to give lower magnetising current would need more turns of wire and hence would have a higher resistance giving greater losses to load current. This is made clear by the following example :
$\begin{aligned} 12 \mathrm{~V} \text { winding resistance } & =0.1 \Omega \\ \text { Magnetising current } & =2 \mathrm{~A} \\ \text { Load current } & =10 \mathrm{~A} \\ \text { Total current } \bumpeq \sqrt{2^{2}+10^{2}} & =10.2 \mathrm{~A} \\ I^{2} R \text { loss } & =10.4 \mathrm{~W}\end{aligned}$
If the number of turns is now doubled the inductance is multiplied by 4 and the resistance is also multiplied by 4 since for a given volume of wire, twice the length at half the thickness is required.

$$
\text { Totalcurrent } \simeq \sqrt{0.5^{2}+10^{2}}=10.012
$$ $\therefore I^{2} R$ loss $=40 \mathrm{~W}$

To this must be added the increased loss due to the doubled number of secondary turns.

The foregoing calculations refer to the untuned square wave version. It is correct to take the square root of the sum of the squares of the two components of current, since the

$$
\begin{aligned}
& \therefore 12 \mathrm{~V} \text { winding resistance } \quad=0.4 \Omega \\
& \text { Magnetising current }=0.5 \mathrm{~A} \\
& \text { Load current }=10 \mathrm{~A}
\end{aligned}
$$

 Prices include P^{\prime} \& P ana VAT Less for quantities Also available less panel and screws Minimum order

WEST MYDE DEVELOPMENTS LTD. RYEFIELD CRESCENT. NORTHWOOD MLLS. NORTHWOOD. MDDX. HAE 1NN.
Tel. Northwood 240N1 of 27732 Tetex: 923231

Get the Heathkit Catalogue...and

 saveHandcrafted electronics with built-in quality and kit form savings.
Hundreds of models to choose from.
Heath offer you outstanding specifications and plus values that will impress you, your family and friends. Want to know more? Send for your personal introduction to the international world of Heathkit electronics . . . the Free Heathkit Catalogue.

C. T. ELECTRONICS
 267 Acton Lane, London W4 5DG
 Tel. 01-994 6275
 MAIL ORDER DEPT./REGISTERED OFFICE/COMPONENT COUNTER

semiconductors

	74 SERIES I.C.'s (TTL)					SN7446 SN747	51.00 15	SN7481 SN7482	$\begin{array}{r} \text { E1.25 } \\ 40 \mathrm{p} \end{array}$
SN7400	21 p	SN7411	24 p	SN7430	30p	SN7448 SN7450	22.00 $25 p$	SN7483 SN7484	51.00 $95 p$
SN7401	33 p	SN7412	42 p	SN7432	45	SN7451	25p	SN7486	45p
SN7402	21 p	SN7413	60p	SN7433	70p	SN7454	2tp	SN7490	75 p
SN7403	2 p	SN7416	40p	SN7437	70p	SN7460	25p	SN7491	11.20
SN7404	40 p	SN7417	40 p	SN7437	70p	SN7470	30p	SN7492	75p
SN7405	40 p	SN7420	20p	SN7438	65p	SN7472	30 p	SN7493	$75 p$
SN7406	40 p	SN7422	44 p	SN7440	35p	SN7473	57p	SN7494	80p
SN7407	56 p	SN7423	520	SN7441	$75 p$	SN7474	50p	SN7495	sop
SN7408	55p	SN7425	$43 p$	SN7442	$79 p$	SN7475	$96 p$	SN7496	[1.00
SN7409	45p	SN7427	48 p	SN7443	¢1.05	SN7476	60p	SN7497	c8. 25
SN7410	2tp\|	SN7428	50p	SN745	C2.00	SN7480	80p	SN74100	C2.50

2N2907

 30 p

TAIACS	
TXL228B 8A 400V	95p
SC400	[1.40
SC40E	[1. 85
SC450	[1.70
SC45E	c2. 10
SC500	C2. 42
SC50E	[2:70
OIAC	25p

\author{[^5]}
S.C.R.'s

40p 56p 60p $65 p$ $90 p$ $62 p$ $62 p$ $90 p$ 1.00 $85 p$ $90 p$ 11.60 $45 p$ $70 p$ $90 p$ $35 p$ 11.90

WAREHOUSE

20-24 BEAUMONT ROAD, W. 4
SURPLUS COMPONENTS TEST EQUIPMENT etc etc THOUSANDS OF BARGAINS
Tesi Equipment * Oscilloscopes * Signal Generators * Counters Cabinets \star Bridges $*$ Meters \star Transmitters \star Receivers \star Power Supplies Laboratory Equipmens * Galvanometers * Audio Equipment * Video

20 TONS OF ELECTRONIC EQUIPMENT
Resislors * Relays * Capacitors * Switches * Transformers * Meters Potentiometers * Component Panels * Serniconductors * Cable \# Valves Etc. * Etc * Etc
Regret no lists avaidable Personal callers only. Cash and Carry only.

AUDIO ACCESSORY SHOP

17 TURNHAM GREEN TERRACE, CHISWICK, W. 4
VALVE AMPLIFIERS

HEXINE COVERED SPEAKER CABINETS
Sultable for PA or DISCO use takes 12 in speaker unit Size approx 18in = 18in - Bin

SPEAKER CLOTH
Avalable in Black or Green approx width 54 in
51.75/yd

MEADPHONES
Type H-202 Features Mono stereo switch Volume controls on each channel Freq response $20-20.000 \mathrm{~Hz}$ Impedance $4-16 \mathrm{ohms}$

ELECTRONIC COMPONENTS BARGAIN COMPONENT PACKS Pac
No

1500 Carbon resistors. i i. 1. 2 watt
2100 Electrolytic Condensers
3250 Ceramic. Polystyrene. Sitver Mica. etc Condensers
4250 Polyester Polycarbonate. Paper. etc. Condensers
525 Potentiometers assorted
6250 High -stab. $1 \%, 2 \%, 5 \%$ resistors
750 Assorted Tagstrips
811 A Assorted nuts bolts washers. spacers. etc. 925 Assorted switches rotary. lever. micro toggle, etc.
1050 Preset Potentiometers
1330 Unmarked OC71 Transistors
1425 Unmarked 250 mW Zener Diode. 4.7V. 5.1V
$6.2 \mathrm{~V} 7.5 \mathrm{~V}, 9.7 \mathrm{~V}$. 10V. Measured and tested.
Please state voltage required
15 50,GE Diode OA47 Equivt.
ALL COMPONENTS NEW AND UNUSED E1 + 25p p.p per pack. $£ 5$ for 5 packs p/tree

SPECIAL OFFERS

MINIATURE MAINS TRANSFORMER: Pri. 240 V Sec. 12 V , at 100 mA . Manuf. Hinchley. Size: $36 \mathrm{~mm} \times$ $45 \mathrm{~mm} \times 40 \mathrm{~mm}$. F.C. 53 mm . Price. $165 \mathrm{p} ; 10060 \mathrm{p}$ ea. 1,000 50p ea.; 10,000 40p ea.
3 CORE PVC INSULATED MAINS CABLE. Grey ML.6650. $3 \mathrm{~mm} \times .710 \cdot 2 \mathrm{~mm}$. Price: $100 \mathrm{~m} \mathrm{£4.50;} \mathrm{1.000m} \mathrm{£35;}$ $10,000 \mathrm{~m}$ £ 330 .
0.47 mld . 50 V . MYLAR FILM CAPACITOR. Size: $1 \mathrm{in} \times$ $0.55 \mathrm{in} \times 0.65 \mathrm{in}$ P.C. Mount. Price: 1006.8 p ea.; 1.000 5p ea.; 10,000 4.3p ea.

240V a.c. SOLENOID. Reversible operation: twin coil. Size: approx. $2 \frac{3}{4}$ in $\times 1 \frac{1}{2}$ in $\times 1 \frac{13}{}$ in 90pea.
magnetising current lags 90 degrees behind the load current. The fact that the input is a square wave of voltage does not alter this rule, since the 90 degree lag also applies to the harmonics of the square wave.

Note that the 12 V battery does not supply $12 \mathrm{~V} \times 2 \mathrm{~A}=24 \mathrm{~W}$ of power due to magnetising current since this power is effectively an oscillating component which flows in and out of the battery with only a very small nett loss due to the increased copper loss.

In the tuned version the magnetising current is supplied in the secondary (240V) winding by the tuning capacitor C7. The foregoing arguments on increased power loss if the number of turns is increased still apply, but here there is an added advantage in having a high magnetising current since this increases the Q of the tuned circuit giving a better sine wave. It is equivalent to the experiment mentioned in the article, where extra inductance and capacitance was added in parallel with the output.

USE OF SILICON TRANSISTORS

It is true that Germanium transistors saturate better than Silicon but a 2N3055 carrying 10A with 1A base drive saturates to less than 0.5 V , typically, giving less than 5W power loss from this cause. The 2 watts or so improvement obtained by using Germanium could well be lost by increased leakage current.

The major power losses are $I^{2} R$ losses in the transformer and inductor and approximately 12 W in the base drive circuitry. In this type of circuit where the power transistors are driven by a separate oscillator transformer iron loss is very small.

Some commercially available inverters use a saturating core type of free running oscillator; in these circuits the transformer is 甘riven hard into saturation in alternate directions giving in many cases a low efficiency due to the high hysteresis loss. Such circuits are notoriously difficult to start under load and have a tendency for both transistors to latch on in the output in some cases causing them to burn out.
R. Verrill

INCREASING THE POWER

Sir-May I congratulate you on the timely and very helpful constructional article on the above. I am building this as an urgent project and would ask you if there is a simple way to increase the output wattage.
I have a fairly massive 200 watt mains transformer which I would like to press into service and while leaving the earlier stages as they are could I fairly easily use additional 2N3055's in place of TR6 and 7? You mention the direct coupling method without using R15 and R17 and would prefer this if possible.

Also is it feasible to double the battery voltage to the output stage only i.e. to 24 volts while leaving the earlier stages as they are on 12 volts, if this would simplify a 200 watt output?

I would be most grateful for a little guidance on the above and any comment if it would then be suitable for running a domestic television set. John S. Aston,

Dorchester, Dorset.

I have had a report from one person who simply connected two 2N3055's in parallel and was able to run a 140 W colour television with some reduction in performance. For optimum results it is necessary to duplicate the drive circuitry, i.e. everything from the collectors of TR3 and TR4 onwards to the bases of a second pair of 2N3055's with parallel collectors and emitters.

If you wish to go to 24 V input it is not necessary to leave the earlier stages at 12 V ; simply increase R15 and R17 to 22 ohm at 12 watts. If you have a few 2N3055's to spare you could probably risk using them but there is a danger of them breaking down with the increased voltage. A higher voltage type which is suitable is the 2N3442 (RCA or Ferranti) but this is considerably more expensive. R.V.

NOTES

With reference to the first and third queries raised by Mr. Cook, the no-load current of the inverter appears to vary with the quality of
the driver and switching transistors and the nature of the "tuning" selected for a particular application. We have measured values between 1.04 and 3.04 .

As to current drawn under load, we have not measured this with 80W of filament load alone since an BoW bulb is not standard. However, using a 100W bulb as load again gives varying conditions dependent apparently on the condition of the components and the funing but it should be emphasised that full brilliance (measured by eye in the absence of an accurate photometer) has been obtained with à load current under 10A.

In the section dealing with transformer calculations on page 135 of the February issue a line was printed twice in error. Thus the line " winding is 12 V because of the equal number of" should be replaced with " winding of T1 is a rectified sine wave and since". Additionally, the reference to 12 V in the next paragraph should, of course, be to 2 Vm .

From information received and our own experiments it seems that one or two basic precautions are needed. For example, peak voltages as high as 1,200V have been measured at the output in the inverter mode with the circuit not tuned but using the choke. Thus clearly it is not to advantage to try switching the a.c. output as arc formation can occur at the switch with consequent further spike generation and the risk of component damage.

In fact there seem to be several sources of "spike" and it is suggested that the driver transistors and switching transistors might benefit from protection diodes and the 12 V d.c. rail from the use of a 1W Zener of around 18V rating. One constructor who has met with switching problems has solved noload switching by using a 100W 12 V projector lamp in the d.c. line during switching on and then subsequently shorting it with a switch after all is running smoothly.

NBW VAF INCDUSIVE PRBCHES
 ONE ELEVENTH.

74 Series 77 NTERNATIONALIY
kNOWN BRANOS
ROCK BOTTOM PRICES

SN7400	200	SN7447	81.45
SN7401	200	SN7473	${ }^{19}$
SN7402	200	SN7474	41 p
SN7404	200	SN7475	${ }^{39} 9$
SN7408	250	SN7476	$4{ }^{4}$
SN7410	20 p	SN7490	12p
SN7413	31 p	SN7492	${ }^{22}$
SN7420	20 D	SN7493	278
SN7430	200	SN74100	${ }^{2} 2.37$
SN7441	4 p	SN74121	45p
SN7442	$81 p$	SN7414	\&1.10
		SN74192	¢2 15

ARIDGE RECTIFIERS

PIIV 1 amp R.M.S 2 amp

100V	20 p	R.M.S	2 amp
200 V	22 p	10 V	35 p
600 V	25 p	200 V	45 p
1000 V	38 p	400 V	50 p
	RECTIFIER		

OR
FIIAMENT INOICATOR
MOINTRON \&G

PRICE AARRIER SLASHED
Ito
LITRONIX
DL707
READOUTS SERIES 0 3in high

14 pin Dit

Rel teot

ALSO $+1$ LED1A
£ $1.99+20 p$ VAT $=£ 2.19$

DIGITAL CLOCK

just imagine one MOS LSI I.C. aliminating ponents. Either

12 or 24 hour. 4 or 6 digit
50 or 60 Hz operation
leading zero supression
single voltage supply
similar to DIGITRONIC in
P.W. March 1973 .
Only

With 4 LED's $\mathbf{~ 1 6 . 5 9}$
With 6 LED's $£ 20.75$
I.C. SOCKETS

OUAL IN LINE. 8 pin $13 \frac{1 p}{} 14$ pin 15 tp , 16 pIn
17tp. 24 pIn $26 \mathrm{tp}, 28$ pin $39 \frac{1 p}{} 36$ pin 41 p 174p, 24 pin $26 \frac{1}{5} p, 28$ pin $39 \frac{1}{4} p .36$ pin 41p, ZIG ZAG is pin $194 p, 16$ pin 21p.

HEAT SIWKS
 $\begin{array}{llr}\text { TV2 for TO-66 } & 15 p & \text { 5F for TO-5 } \\ \text { TV3 for TO-3 } & 16 p . & 18 F \text { for TO-18 }\end{array}$

EUROMASOMTE electronics

VEII INVOCEBS ON REDDEST

$\because=$

Millard LP 1186
Varactor diode tuned FM tuning heart 84.15, as described in P.E May 1973 P1185 matching I strip $£ 4.85$.

SEE EA1000

20 - 20 Watt Integrated Stereo Amplifier Kit Superb state-ot-the-art design by engineers of Texas Instruments 531.35 - P \& P. 49p

TE IT TRiM

A1005S

FM tuner chassis fully transistorised 9 Volt positive earth operation
Our Price 58.20

A1005 MS
Multiplex Stereo Decoder, fully built and aligned, to match A1005S. Our Price \mathbf{E}^{6}.60.

the component people

Dept. 2.
56. Fortis Green Road. London. N1O 3HN telephone: 8833705

Wanted. by May 20th.

35 intelligent, young minded people who

Want to earn really good salaries. Must have a job which uses their talents and satisfies them.
Would like to become Computer Maintenance Engineers

We make computers. the biggest and fastest in the world-yet we are probably the most open minded of computer manufacturers.
We are searching for interesting able people whatever their paper qualifications and whatever they are doing now.

The people we find will be trained by Control Data and help to find new jobs by Control Data-with-all of the backing which a Company of our size and influence can give them. They will then be working in a growth industry which is at the forefront of human advance.
By May 20th we need 35 people, aged 19-35 with a mechanical aptitude and the ability to think logically.
They must be prepared to earn their selection by training hard for 6 months and repaying the cost of their training out of their subsequent salary.
We believe a lot of people have got talents that are not being used. and a lot of people are smothered by traditional occupations. That's why we decided, as a manufacturer to make this scheme available. If you feel it is an opportunity worth examining. give us a call and arrange to discuss it.

For further information and to arrange an interview

Phone John Price 01-637 2171

Any weekday 9 am - 8 pm or Saturday $9.30-12.30 \mathrm{pm}$.

CONTROL DATA

LIMITED
Control Data Institute 77/79 Wells Street, London, W.1.

TUNE IN TO BROADCAST AND AMATEUR RADIO \& TV TRANSMISSIONS

TO LONG RANGE

RECEPTION OF

RADIO AND TV
Many millions of people enjoy the fascinating hobby of tuning in to broadcast and amateur transmissions from many parts of the world via short wave, medium wave, long wave, VHF/FM, and television. Now you too can become a 'DXer' by following this important fact-packed feature on tinted paper in Practical Wireless this month. No special experience or equipment is needed other than a radio or TV receiver of good sensitivity!
Also of special interest this month...

Medium wave 'mini-pop' receiver

...brings in the popular radio stations on medium waves.

Audio booster and power converter

... allows you to hear your car radio or cassette clearly without being drowned by the noise of the car.
IMPORTANT: ADVANCED INFORMATION OF OUR FUTURE ISSUES ARE INCLUDED IN THE MAY ISSUE

MAY ISSUE OUT APRIL

PARTRIDGE MAIFS ISOLATION TRANSPORMER 215．carr pach（u） GARDNER＇S POTTED TRANSFORMER，P＇II，$\because 00$－ Ojov．Sec．INV ：500mfa
RIPLEY MAINS TRANSFORMER，IPri： $110 \mathrm{C} \because 40 \mathrm{I}$
祭 80 p ． F ． 1
MAIMS TRANSFORMER，Pri：IN14．240N a TRAFSISTOR OUTPUT TRANSFORMER，Rati，

WODEN MAIMS TRANSFORMER，Autu wombl
Carf en
BADDON KAINS TRANSFORMER，Jri 30
Sec：01 1 amp， $21 \cdot 80, p . p$ ．if，

 SMOOTHING CROKE，IIMH， $1, \ldots \times 1$ in $\times 11$
20p．Fp．81
FIMEED ALUMINIUM HEATSINK， 4 itn x fin \times
$11 \mathrm{n}, 2 \times 2 \times 30 \mathrm{y}, \mathrm{E} 1,1, \mathrm{p} .13 \mathrm{p}$
GOODMAFS 8 in SPEAKERS 3Ω
LOUDSPEAKER 2 in Dia． 40Ω ， $500 \mathrm{n} / \mathrm{watts}, 50 \mathrm{p}$ p．p．\％1
FINEED ALUMINIUM HEATSIRK，x ，Nin \times

GARRARD MAG．TAPE DECKS： $1, i, p$, on mwtore $\& 7.50$ each．リ．j．fiop，
10 REED SWITCHES
oper
aml magnet $*$ ，SOp，μ
COMPONENT PANEL，ti NET $\$(3001,1-\operatorname{ti} 3)$ be eond 12 renimiorn，in dimlen，45p．p．p．Ni
 CONPONENT PANEL． 1 Ner： $\operatorname{lo(1)}, 1 \bar{u}$ alup， 1 dinte

VEEDER ROOT ELECTRICALIMPULSE COUNTER

GEC MAIKS CIRCUIT BREAKERS，：aHp
LEVER ACTION P， 0,1000 TYPE SWITCHES loch a folle charmeuber， $15 p$ ．p．p． $4 p$ Fix equip， MULLARD＊MALLORY SCREW TERMINAL CAPACITORS W00 F＇ MULLARDTULLWAVE RECTIFIERS MOLLARDFULLWAVE REC
Ci．4RS 1F almp．75p．F．p．IOH
BELLIKG LEE 1 ，itup in－line
RUBEER 3 PIN 5 AMP NON－REVERSIBLE CABLE

SOLENOIDS 12 VOLT PULL ACTION

 13．
SOLENOIDS 2401
1 1if， $50 \mathrm{p}, \mathrm{F}, 14$

SOLENOIDS．Manf，By Bensuln．tho ace Pull action $=3$ in $\times 1$ in $\times 1$ in，75p．P－
OMRON MK2 MIDGET POWER RELAY，I：V d．
Double pole changeover Nem，70p，p．p．ip．
8 TC VARLEY，miniature rpiays jou $2,17.7$
POTTER BRU畳FIELD $12 y$ A．e．coil 3 pole e／b
whiacteratel 7 antlo．21．3．p．Top
I．T．T．LOW PROFILE RELAYS．＋pule c／overn

MAIMS RELAYS， 40 thol a．t． 2 thakes．Heary KEYSWITCH RELAY． 12 ，I C Coil 3 N．PC：O．80p， TELESCOPIC AERIALS
 luintel bask．23p．p．p．Jן new
PRINTED CIRCUIT BOARD／19 ACY 1sw 10 OAㄹ00
 resiatıren．
a．c．， 21,

TAPE POSITION INDICATOR
Re－settable 3 digits， $30 \mathrm{p}, \mathrm{p}$ ．f．
All orders add 10% V．A．T．

FIELD ELECTRIC LIMITED

3 Shentey Road
Borehamwood，Herts．
Tel．01－9536009
 parts and components：
resistors，capacitors，diodes，transistors， etc．Rigid plastic units interlock together in vertical and horizontal combinations． Transparent plastic drawers have label slots． Build up any size cabinet for wall，bench or table top．

BUY AT TRADE PRICES！

SINGLE UNITS（ID）（5ins 2i／ins 21 ins）． $\mathbf{6} 1.75$ DOZEN．
DOUBLE UNITS（2D）（5ins 4iks 2！ins）$£ 3$ DOZEN．
TREBLE（3D）$£ 2.90$ for 8 ．
DOUBLE TREBLE 2 drawers，in one outer case（6D2），$£ 4.25$ for 8 ．EXTRA LARGE SIZE（6Di） 6390 for 8

PLUS QUANTITY DISCOUNTS！
Orders $f 10$ and over DEDUCT 5° in the f Orders $£ 20$ and over DEDUCT $7 \frac{1}{2} \%$ in the f Orders $£ 50$ and over DEDUCT 10% in the $£$ PACKING／POSTAGE／CARRIAGE：Add 35p to all orders under $£ 10$ ．Orders $£ 10$ and over． packing／postage／carriage free．
QUOTATIONS FOR LARGER QUANTITIES
Please add 10 ＂，V．A．T．to total remittance
－ITRLIN（Dept．PE5）i24 Cricklewood Tel．Ol－450 4844

BEAT THE BUDGET AT ZIGGY＇S 2001

Multimeter AC－DC Type U－437
A－d．c． 0.1 ．iA－5 precision A－d．c． $0.1 .1 A-5$ ranges
V －d．c．la．c． 2.5 to $1,000 \mathrm{~V}$－ 6 ranges．
Ohms－ 100 to $1 M \Omega-4$ ranges．
Frequency：$\quad 45-40 \mathrm{kHz}$ TAUT SUS SUSENSIONS MOVEMENT． Complete with steel ONLY $\mathbf{C 4} 95$ inc．VAT

－3 ${ }^{2}$	

ENAMELLED COPPER WIRE
S．W．G．16，18，20，22，24，26，20z reels，26p． 28，30，32，34，36，38，40．2oz reels，36p Postage 1－5，10p． 6 plus，15p
ANTEX SOLDERINGIRON BITS Chrome type for 15 watt models
$\frac{3^{\frac{3}{2}} \text { in，} \frac{3}{10} \mathrm{in}, \mathrm{G}^{3} \text { in．All 16p each．Postage 5p．}}{\text { MAINS TRANSFORMER }}$
MAINS TRANSFORMER
 Eagle Type MT2806－0－6．250M／A All 1.43 MT150 12－0－i2， $150 \mathrm{M} / \mathrm{A}$ plus 12 p MT 100 24－0－24． $100 \mathrm{M} / A / P$ \＆P
R／S I 3V $05 \mathrm{amp} C . T$ ．$\} 1.40$
$16.3 \vee 0.3 \mathrm{ampCT}$ ．Jplus 12 pP ．\＆P．
Charger Types 9V， 17 V ．
$\begin{array}{lll}1 \text { Amp } & \& 1.20 & \text { P．\＆P．} 12 p \\ 2 \text { Amp } & \& 1.65 & \text { P．\＆P．} 12 p\end{array}$
$\begin{array}{lll}2 \mathrm{Amp} & £ 1.65 & \text { P．\＆P．12p } \\ 4 \mathrm{Amp} & \ell 1.95 & \text { P．\＆P．20p } \\ 6 \mathrm{Amp} & £ 2.62 & \text { P．\＆P．} 35 p\end{array}$
POTENTIOMETERS
log or lin less switch（and ik Ω lin）｜－5 12p
6－10 11p each．II plus 10p each．
$\begin{array}{lll}5 \mathrm{k} \Omega & 50 \mathrm{~kg} & 500 \mathrm{k} \Omega \\ 10 \mathrm{k} \Omega & 100 \mathrm{k} \Omega & 1 \mathrm{~m} \Omega\end{array}$
$\begin{array}{lll}10 \mathrm{k} \Omega & 100 \mathrm{k} \Omega & 1 \mathrm{~m} \Omega \\ 25 \mathrm{k} \Omega & 250 \mathrm{k} \Omega & 2 \mathrm{~m} \Omega\end{array}$

plus 20p．
dual less switch 1－5 39p．5－10 37p． 10 plus
$35 p$ ．Anymix for Quantity Prices P．\＆P 7p
QUALITY MONO SLIDER POTS FROM
JAPAN FON MONO SLIDER POTS FROM
RAPAN lokg．RRG look Ω ．RRT $500 \mathrm{k} \Omega$ ． Track Length： 30 mm ．Fixing Centres： 50 mm ．
HS16 Heavy gauge tapered copper jaw heat sink clip on to the leads of heat sensitive
components to ensure that they are not damaged when soldering or de－soldering． 50 p each．P，\＆P．Sp．
MINI LOUDSPEAKERS
$2 \frac{1}{2}$ in 8Ω 50p． $5 p$ P．\＆P ．
TP26G． 70 mm 80 ohm replacement transistor
radio loudspeaker．70p．P．\＆P．5p．
TURNTABLE SERVICES
Headshells
Garrard SP25 Mk．I \＆II．Type M7
SM．E．S2 Shell
Thorens TPSO for TDiso
Thorens TP60 for TD160
Goldring PH7 for GL85
Head Slides Postage 5 p 63.80
Garrard CI for SL75，etc．
Garrard C2 for SP25 Mk．III．SL95，etc．50p
B．S．R．for MP60， $310,510,610$
jocker Wheels
Garrard SP25 Type，e
McDonald MP60，etc
55p
50p
Styli Diamonds for Sonotone 50p
9TA／HC LP／78 65p 9TA／HC LP／LP 95p NSW210 210 pieces，assorted nuts，screws and washers．55p．P \＆P．5p．
TRANSISTORS
BC107，108，109，all 9p each．Any six 50p P．\＆P．4p
EAGLE LT700 TRANSFORMER
40p．P．\＆P． $5 p$ ．
NEW MUS
NEW MULLARD DATA BOOK 1973／74
30p．P．\＆P．Sp．
FOR SPEEDY
FOR SPEEDY DELIVERY OF THESE
MINT CONDITION COMPONENTS PLEASE SEND C．W．O．To ZIGGY＇S 200 34MABLEY STAEET，LONDON，E，9． 34 MABLEY STREET，LONDON，E，9．
All prices inciude VAT．please add postage All prices includ
where indicaced．

AUOIOTRONIC Model ATM1 Top value 1,000
opy pocker multiopy pocker multi-
meter, Rangs:0/10/50/250/ 1.00 volt $A C$ and DC,
$O C$ current 0.1 mA 100 mA . Resistenc 0/150k ohms. Decibets: $-10{ }^{\text {t }}$
+22 dB . Size 90 $60 \times 28 \mathrm{~mm}$,
Complete Complete
OUR PRICE $£ 2.95$

P\&P15p

AUOIOTRONIC Model ATM5
ottractivaly mould case with edgwise Rans mj: $0.3 / 15 / 150$ / (2500 opv). $0-6 / 30$ / $300 / 600 \mathrm{VDC}$, (50000 opv). 0.300
UA 0.300 m
 $\times 100 .-10$ to +16 dB
Supplied with batter cost losds sind data OUR PRICE E3.50

MOOEL C1092
 jowel movement and a pood selection of ran ohms adjustment. Ranges: - 0-3/15/150/ 300/1, 200 AC (2,500 pple 6-6/33/300/600 irrent. $0-300 \mathrm{H}^{A}$

300 mA . Resistence:
$R_{\times 10}, R_{x} 1000.0$ to +16 dB . Complete with bsttery, test leads and
dets booklet. Size: $120 \times 73 \times 28 \mathrm{~mm}$. OUR PRICE E3.75 P\&P 35p

+50dB.
OUR PRICE $55.95 \quad$ P\&P $15 p$

MODEL PL436 20,000 opv DC.
8000 opv AC. Mirror acala -6/3/12/30/120/ 600 V C. $3 / 30$.
$120 / 600 \mathrm{VC}$. 50/600 12 A/ 80 / 600 mA .
10/100K/1 Meg OUR PRICE f6.97 P\&P15p.

U4323 MULTIMETER 20,000opv. Simpla
unit with audio/IF
oscillator. Suitable

2.5/10/15/250/500/1000V AC. 0.05/
$0.5 / 5 / 50 / 500 \mathrm{~mA}$ DC. Resistance: $5 /$ $0.5 / 5 / 50 / 500 \mathrm{~mA}$ DC. Resiskance: $5 /$
$50 / 500$ ohms $/ 5 / 10 / 100 \mathrm{t}$ $50 / 500$ ohms/5/10/100k ohms $/ 1 \mathrm{Meg}$
Gertiery operated. Size: $160 \times 97 \times$ Battory operated. Size: $160 \times 97 x$
40 mm . Suppliad in carry ing case comDlote with test lasids.
OUR PRICE £7.00 P\&P 20p

P\&P 15 p .

OUR PRICE E7.50 P\&P 15p

3A AC. Resistencis: $167 \times 98 \times 63 \mathrm{~mm}$. Supplied comptete with test leads, spare diode and instructions. OUR PRICE E8.00 P\&P 20p

 OUR PRICE £8.50
 ohms. Size: $205 \times 110 \times 84 \mathrm{~mm}$. Sup-
plied complete with leads, crocodile clips and steel carrying case.
OUR PRICE $£ 8.75 \quad$ P\&P 20p

\section*{| 1 |
| :--- |
| |
| |
| 1 |
| 1 |
| 1 |
| 1 |
| |
| 2 |
| |}

U4312 MULTIMETER

1.5/6A AC. 0/200/3k/30k ohms. DC

 accuracy 7%. AC 1.5\%. Knife edge pointer, mirror scale. Complete withsturdy metal carrying case, leads and OUR PRIC
ove
tion
0/0 $0 / 0.5 / 2.5 / 10$
$100 / 250 / 50$
$1000 \mathrm{~V} / 00$ 1000 V DC.
$0 / 2.5 / 10 / 25 / 100$ $250 / 500 / 1000 \mathrm{~V}$
$\mathrm{AC}, 0 / 50 \mathrm{u} / 5 / 50 /$ $500 \mathrm{~mA} .12 \mathrm{~A} D C$.
$0 / 60 \mathrm{k} / 6 \mathrm{meg} / 60 \mathrm{~m}$
OUR PRICE E 13.95 Carr. paid HIOKI 750X VOLT.OHM-
 $0-3 / 301 \mathrm{~s}$: 10 to +17dB. Output:-
Deciber
$0-3 / 6 / 15 / 30 / 60 / 120 / 300 \mathrm{~V}$ acy $\pm 3 \% \mathrm{DC}, \pm 4 \% \mathrm{AC}$. Sensitivity:
50,000 opv DC, 5,000 opv AC 4 inch mater. Built in protection. Size: $57 \times$
$102 \times 153 \mathrm{~mm}$. OUR PRICE E11.95 P\&P 40\%
HIOKI MOOEL 700 X HIOKI MOOEL 700X

Model HT100B4 MULTIMETER

 Overload protected,\$hock proot circuits.
\$क्ष ock prool circuits.
9.5uA Mater with
mirror scale. Sens:
miokror scale. Sens:tivity
switch. Polarity chang
s. $0.5 / 25$.
switch. Ranges: $0.5 / 2.5$
$1 . / 50 / 250 / 500 / 1,000$ $1 . / 50 / 250 / 500 / 1,000$
Volts DC. $2.5 / 10 / 50 /$

$$
\begin{aligned}
& \text { DC resistance } 0-20 / \\
& 200 \mathrm{k} / 2 / 20 \mathrm{Mog} .0 \mathrm{hms}, \\
& \mathrm{DC} \text { current:- } 10 / 25 \text {. }
\end{aligned}
$$

$200 \mathrm{k} / 2 / 20$ Mog. ohms. . .
 to +62 dB . Operates from $2 \times 1.5 \mathrm{~V}$
batteries. Size: $180 \times 134 \times 70 \times 2 \mathrm{l}$ batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$.
OUR PRICE $\mathrm{f} 15.00 \quad$ P\&P 40p MOOEL AS. 100 D VOM
100,000 opv.
Mirror scale.
1
1
6
0
6
1
2
2
0
0 protection. D

12/60/120/30 600/1200V DC | $0 / 6 / 30 / 120 / 300$ |] |
| :--- | :--- |
| 800 V AC. $0 / 10 \mu \mathrm{~A}$ | | $6 / 60 / 300 \mathrm{~mA}$ 12 Amp. 0/2K

$200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{Me}$ OUR PRICE f17.50 P\&P 20p KAMODEN HM720B FET VOM Input impedance 10
Megorhmi Rangs:-
$0 / 25 / 1 / 2.1050$ $0 / 25 / 1 / 2.5 / 10 / 50 /$
1000 V D. $0 / 2.5 / 10$
$50 / 250 / 1000 \mathrm{~V}$ AC. $50 / 250 / 1000 \mathrm{~V}$ AC.
$0 / 25 \mathrm{~A} / 2.5 / 25 / 250$ $0 / 25 \mathrm{uA} / 2.5 / 25 / 250$
mADC
$0 / 5 \mathrm{k} / 50 \mathrm{k} / 500 \mathrm{k} / 5 \mathrm{M}$ 0/5k/50k/500k
500 Meyotins
OUR PRICE
E2t.00 P\&P30p

KAMOOEN 72.200 Multitester

-

 600 $0 / 1$ +63 2 M

 600$0 / 1$
+63
2 M} $2 \mathrm{Meg} / 200$ Mroohms.
OUR PRICE 22.50 PaP 30p
U4317 MULTIMETER High sersitivity
instrument for field
and liboratory work.
Knife edpe pointer.
86 mm. mirror scoie.

Ranfad: 100mV/
$0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ VDC. $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 /$ $500 / 1000 \mathrm{~V}$ AC. Current: $50 \mathrm{U} / 10.5 /$
$1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 \mathrm{~A}$ DC.
$0.25 /$ $1 / 5 / 10 / 50 / 250 \mathrm{~mA} 1 / 5 A$ DC. $0.25 /$
$0.5 / 1 / 5 / 10 / 50 / 250 \mathrm{~mA} 1 / 5 A$ AC. Res. istance: $0.5 / 10 / 100 / 200$ ohms $/ 1 / 3 /$ $30 / 300 \mathrm{k}$ ohms. Decibels: -5 to +10 dB
Rattery Battery operated. Size: $210 \times 115 \times$
90 mm . Suphied in cierying case com90 mm . Supplied
plete with leads
OUR PRICE 15.00 P\&P 20p
TMK IOOK LAB TESTER
100,0000py. $6 \% / 2$
scale. Buzzer scale. Buzzer
short circuit check. Short circuit chack.
Sonsitivity 100.000
opy DC. $5 / / V A C$ DC Voits: $0.5 / 2,5 /$ AC. $3 / 10 / 50 / 250 /$
 current 10/100va/10
 Decibels: -10 to +49 d . Plagtic case with carrying handis. Size: 190×172
$\times 99 \mathrm{~mm}$. $\times 99 \mathrm{~mm}$
OUR PRICE £19.95 P\&P 25p
MODEL U4311 Sub-standard Multi-range Volt-Ammeter

MODEL AF. 105 VOM $50,000 \mathrm{opv}$. Mi
scale. Matar protection. 0/-3/3/12/80/120/ $300 / 600 / 1200 \mathrm{~V}$ DC 0/8/30/120/ $300 / 600 / 1200$
$0 / 30 \mu \mathrm{~A} / 8 /$ $0 / 30 \mu \mathrm{~A} / 8 /$
$60 / 300 \mathrm{~mA}$
$12 \mathrm{Amp} .0 / 10 \mathrm{~K}$
$12 \mathrm{Amp} .0 / 10 \mathrm{O}$
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$
 OUR PRICE E12.50 PAP 20p. LB4 TRANSISTOR TESTER Tents PNP or NPN
transigtors. Audio indication. Operater on two 1.6 V pern with instructions ate. OUR PRICE

U4341 Multimeter 8

 Resigtince: $0.0 /$ O
 with probes, loade and stem carrying
case Size: $118 \times 215 \times$ shm. OUR PRICE E10.50 PRP20p KAMOOEN HMG500 insulation resistanes tester Renge 0-1,000
Magohms, $\$ 00 \mathrm{~V}$. Qertery operated.
 Complote with OUR PRICE f18.95 PBP 30p S100TR MUL TIMETER TRANSISTOR TESTER
 0/12/600uA/i2 $300 \mathrm{~mA} 6 / 12 \mathrm{~A} D C$ $0 / 10 \mathrm{k} / 1 \mathrm{Mog} /$
100 Mm
$100 \mathrm{May}$.
-20 to +50 dB
$0.01-0.2 \mathrm{MFD}$
Transistor tester meamures Alpha, Bets
and ICO. Complete with inflructions butteries and leads.
OUR PRICE E15.95 PEP 25p CIS PULSE OSCIL LOSCOPE
 $0 / 25 / 150 / 300 / 750 \mathrm{mV} / 1.5 / 3 / 7.5 / 15 /$
$30 / 75 / 150 / 300 / 750 \mathrm{~V}$ DC. $0 / 750 \mathrm{mV} /$ 1.5/3/7.5/15/30/75/150/300/750V AC. Auromatic cut out device. Supp-
lied complete with test leads, manual OUR PRICE E49.00 P\&P 50p

TE40 HIGH SENSIT
AC VOLTMETER 10 Meg input.
$10 \mathrm{rang} \mathrm{ms} 0.001 /$
$0.03 / 0.1 / 0.3 \mathrm{j}$ $0.03 / 0.1 / 0.3 /$
$1 / 3 / 11 / 30100 /$ $5 \mathrm{cps}-1.2 \mathrm{MH}_{2}$ $-40+0+50 \mathrm{~dB}$ supplied complete
with leads and with leads and
instructions.

OUR PRICE £17.50 P8P 25p

Prasot trigared swoep kHz in nine ranges. Cefibritor pipa
$220 \times 380 \times 430 \mathrm{~mm}$. $116-230 \mathrm{VAC}$. DUR PRICE E38.00

Calibrator and amplitude Calibentor.
Supplied complete with oll tecensories ond
OUR PRICE E87.00 Cerr. paid MODEL TE15

OUR PRICE £19.95 PRP 20p
Also see following pages
AL \rightarrow B $=9$ EXCLUDE VAT

SEW CLEAR PLASTIC PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC.

CLEAR PLASTIC MDDEL SD640
50 uA
100 uA
200 uA
500 uA
$50-0.50 \mathrm{uA}$
$100-0.100$
1 mA
5 mA
10 mA
50 mA
100 mA
500 mA
1 ADC
$5 A \mathrm{DC}$
10 DC
5 VDDC

*Items with asterisk are Moving Iron
type, all others are Moving Coil type, all others are Moving Coil
CLEAR PLASTIC MODEL SD830

$\underset{\text { Size. } 42 \times 42 \mathrm{~mm}}{\text { CLEAS PLIC }}$

CALL INTO YOUR NEAREST LASKYS BRANCH OR ORDER WITH CONFIDENCE BY MAIL ORDER

481 0xford St. (Opening lase April)	
10 fottenham Ct. RD	01-637 2232
27 tottenham ct. RD	01.6363715
33 TOTTENHAM CT. RD	01.6362605
4245 TOTtENHAM Ct RD.	01.6360845
87 TOTTENHAM CT. RO.	01.5803739
257:8 TOTTENHAM CT. RO.	$01-5800670$
3 HSLEST WC2	01-4378204
3 W LISLE ST. WC2	01.4379155
118 edgware rd. W2	01.7239789
193 Edoware ro. W2	01.7236211
207 edgware ro. W2	01-723 3271
$3!$ EDCWARE RD. W2	01.2620387
346 EDGWARERD. W2	01-723 4453
382 EDGWARE RD. W2	01.7234194
104 fleEt St ECA	01-3535812
152/3FLEETST.EC4	01.3532833
ESSEX	

LEICESTERSHIRE

45 MARKET PLACE. LEICESTER $0533-537678$

SURREY

1046 WHITGIFT CENTRE, CROYOON
27 EOEN ST. KINGSTON $\quad 01-6813027$
0

27 EDEN ST. KINGSTON	$01-5467845$
32 HILLST. RICHMOND	$01-9481441$

WARWICKSHIRE

ALL BRANCHES OPEN FROM

HEAD OFFICE AND MAIL ORDER DEPARTMENT
AUDIOTRONIC HOUSE.
THE HYDE INDUSTRIAL ESTATE
THE HYOE, LONDON NWG $6 J J$. TELEPHONE $01-20537358551$

CHEQUES ACCEPTEO FROM PERSONAL SHOPPERS ONLY WITH BANKERS CARD.
All prices correct at 13.3 .74 but

SWR METER Model SWR3
 5\%, Impedence 52^{2} Ind
ator $100 \mathrm{uA} \mathrm{DC}$,Full scale 5 section coll apsible
antenna. Size $145 \times 50 \times$ antenna.
60 mm .
OUR PRICE $£ 4.25$

AT201 Decade ATTENUATOR
Frequency range 0-
200 kHz . Atencator $0-111 \mathrm{~dB}, 0.1 \mathrm{~dB}$ steps. Impedence 600 ohms. Input $90 \times 55 \mathrm{~mm}$.
\qquad TRANSISTORISED L.CR AC BR/8 MEASURING BRIDGE

Ranges +19 Rances 2

 Ranges. 1% Bridge voltage ar 1000
cps Operated from 9 volts 100 A Meter indication Altractive 2 tone OUR PRICE $£ 25.00$ P\&P 25 p
TE16A TRANSISTORISE 0 SIGNAL GENERATOR
 Size: $149 \times 149 \times 92 \mathrm{~mm}$.
with instructions and leads. OUR PRICE £8.97 P\&P 25p MODEL TE20 RF SIGNAL GENERATOR
 output to 8 VV . Power requirements:
$105-125 \mathrm{~V}, 220-240 \mathrm{~V}$ AC. Size: 193 $\times 265 \times 150 \mathrm{~mm}$. Complete with tes OUR PRICE E17.50 P\&P 40p TE-20D RF SI
GENERATOR Accurate wide signal ganerator covaring 120 kHz .50
MHz on 6 bands Directly callibrated Variable R \qquad tor calibration 220240 V a
Brand new with inatructions Brand now with inatructions OUR PRICE EI7.50 P\&P 300
 15 maximum. with instructions und lear OUR PRICE E29.95 P\& P 50 p MODEL MG 100 SINE SQUARE

	WAVE AUDIO GENERATOR Range 19. 220.000 Hz Sine
19-100,000	H2 Square Wave
Output Sine or Squa	re wave 10v P to
Size 180×90	90 mm Operation
20/240v A C	
JR PRICE £19.95	P\&F 379

 OUR PRICE C11.97 PS200 Regulated
SUPPL Y UNIT Solid state. Variable
output $5-20 \mathrm{~V}$ OC up to 2 Amp. Inde. pendent meters to
monitor voltage and current. Output
$220 / 240 \mathrm{~V}$ AC Size: $190 \times 136 \times$
 OUR PRICE £19.95
 Single hole fixing. Y/" diam
Bulk quantities avalable.
25 WATT 10/25/50/100/250/500/ 10002500 Ohms E1.15 P\&P 10p 50 WATT $10 / 25 / 50 / 100 / 250 / 500$ /
$1000 / 2500 / 5000$ Ohms.

〔1. 62 P\&P 10p
100 WATT $1 / 5 / 30 / 25 / 50 / 100 / 250$ $500 / 1000 / 2500$ Ohms
£2.34 P\&P $15 p$
AUTO TRANSFORMERS
$0 / 115 / 250 \mathrm{~V}$. Step up or step down.
Fully shrouded.
80 WATTS $£ 2.75 \quad$ P\&P 18p
150 WATTS $£ 3.50$ P\&P18p
300 WATTS $£ 4.50$ P\&P 23p
500 WATTS $\quad 66.95$ P\&P 33p $\begin{array}{lrr}1000 \text { WATTS } & \mathbf{£} 9.50 & \text { P\&P 38p } \\ 1500 \text { WATTS } & \mathbf{£ 1 2 . 5 0} & \text { P\&P 43p }\end{array}$ 2250 WATTS $£ 20.95$ P8P 50p 5000 WATTS $\mathbf{5 4 4 . 9 5}$ P\&P@1 CP110 CHASSIS PUNCH SET

Carefulty machined top grade steel.
Contains $1 / 2^{\prime \prime}, 5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, .^{\prime \prime}$ and $11 / 8^{\prime \prime}$ punches' complete with gripper OUR PRICE £3.00 P\&P40p YAMABISHI VARIABLE
VOLTAGE TRANSFORMERS VOLTAGE TRANSFORMERS MODEL S260 BENCH MOUNTING

BVD5 Vernier TUNING DIAL App. 7.1 ratio planetary
drive verner diai. Loo
scale $0-180$ deqrees.
Blank scales $9-5$. Oial size $128 \times 76 \mathrm{~mm}$. Overall size
$190 \times 117 \times 41 \mathrm{~mm}$. deep including knob and coupling. V" diam shaft OUR PRICE £1.62 P\&P 15f

SK Y FON 100 mW OUR PRICE $\mathbf{E} 24.95$ per pair P302 Two Channel 300 mW OUR PRICE $£ 52.50$ per pair P1003 Three Channel 1 Watt OUR PRICE f 71.25 per pair NB. Licence required for use in UK

OUR PRICE E4.9

Four bands covering 550 kHz to 30 MHz continuous and electrical band.
spread spread valve plus 7 diode circuit 4 to 8 . ohm output and phone jack. SSBB-
CW . ANL, variable BFO. SMeter and separate band spread dial. IF freq. Uency as V aniable $R F$, and $A F$ gain controls.
$115 / 250 \mathrm{AC}$. With nsisucuctions
Our Price $£ 42.50$ falio

ector, mic. socket, earphone/external speaker socket. Complete with mutro
phone and 144.48 p144.72 145.32 phone and $144.48,144.728145 .32$
crystals. Size: $134 \times 58 \times 180 \mathrm{~mm}$. OUR PRICE $£ 79.50$ Carr.pand

BELTEK W5400 CAR TRANSCEIVER
 volt DC neg. Transmits and receives on any neg. 12 of 28 channels between
144 and 146 MHz . Power output 10 w 144 and 146 MHz . Power output 10 W
and iW switchable. Controls. On/of $/ /$ and $1 W$ switchable. Controls. On/oif/f
volume, sauelth and channel select volume, squelch and channel select
or. Internal $3^{\prime \prime}$ speaker. Complete
with dynamic PTt. with dynamic, mic. PTT switchplethree
sets of crystals for $144.48,1446$ and 145 MHz , Mounting bracket and ins
tructions. Size $150 \times 70 \times 220 \mathrm{~mm}$ OUR PRICE E75.00 P\&P 50p

DT55G OIGITAL ClOCK MECHANISM
Features
24

alarm 'sleep' switch. Illuminated rot alarm sleep' switch. Illuminated rot. onds. Automatically turns oft radio. 2 mg will turn on again when required. $240 \mathrm{~V} A C$ operation. Switch rating
$250 \mathrm{~V}-3$ Amp. OUR PRICE E5.95 P\&P 30p

KE630 3 Station INTERCOM

Master and two substations. Can be
used an desk or wall mounted. CompMaster and desk or wall mounted. Comp-
usete with cable and batteries OUR PRICE E5.25 P\&P 50p

and excellent
performance
combined. Ad
aombined. Adju
able head band.
Impedence 8 oh
1 mpedence 8 oh
$20-12,000 \mathrm{~Hz}$.
Complete with
lead and plug.

OUR PRICE £2.50 P\&P 30p
TE1035 Stereo HEADPHONES
 OUR PRICE E2.60 P\&P 30p
SH8OV MONO/STEREO
HEADFHONES
 colled lead and jack plug. P\&P 30p
DUR PRICE E4.97

BH001 HEADSET and Boom

 MirrophoneMoving coll. Moving coul. Id
for language for language
teaching.
commun.

Headphone impedence 16 ohms. Mic
rophone impedence 200 ohms
OUR PRICE $£ 5.95$
EMI LOUDSPEAKERS
Model $35013 \times 8^{\prime \prime}$ with
singif tweeter /crossover.
$20-20,000 \mathrm{~Hz}$. 15 watts
RMs
RMS. Avallable 8 or OUR PRICE C7.25 each P\&P 37p Modet $45013 \times \mathbf{B}^{\prime \prime}$ wi twin tweeter/crossover
$55-13000 \mathrm{~Hz} 8$ watts
RMS. Avallable 8 or 15 OUR PRICE E3.62

high quality construction KiTS
APPOINTED STOCKISTSAT
ALL BRANCHES

All kits are complete with compre hansive easy to follow instru
covered by full guarante.
Post and Packing 15 p perkit.
$\frac{\text { Post and Packing 15p per kit. }}{\text { AF } 20 \text { Mono amplifier............ }}$ £4.80
AF 25 Mixer.....................
AF35 Emitter amplifier.
AF 800.5 W mic. amplifier
AF305 Intercom............
AF310 Mono amplifier.
ATS Automatic light control
ATS Au Window wiper robot...
ATS W0 Photo cetl switch unit.
AT
AT30 Photo cetl switch unit.
AT50 400 W triac ligh:
AT $562,200 \mathrm{~W}$ triac ligh:
AT60 1 channel hight control
AT60 1 channel hight control.
GP304 Circuit board control.. $£ 14.5$
GP310 Stereo pre-amplifie
GP312
GP312 Circuit board.
HF61 Drode detector
HF65 FM transmitter
HF75 FM recerver....
HF310 FM tuner...
HF310 FM tuner................
HF325 Deluxe FNi
HF3 30 Decoder (HF310/325
HF380 Iw/unf aertal amplifier
HF395 broadband aerial amp.
LF380 Quadraphonic device..
MF380 Quadraphonic dev
M191 VU Meter.
M192 Stereo balance meter.
M1302 Transistor tester..................
NT 10 Stabilised power suppl
100 mA , 9 V
NT 300 Si abilised p . supaly.

NT315 Power supply 240 V AC
to $4.5 / 15 \mathrm{~V}$ DC, 500 mA .
Amateur Electronics ${ }^{29.57}$ the professional book for the amateu -covers the subject from basic prin
cipals to advanced electronic technicues. Complete with crrculi board for OUR PRICE $£ 3.30$ (No VAT)
P\&P 25p plus VAT.
AE 2 Pre-amplifier....
AE3 Diode recelver...
AE5 Astable multi-vibrator.
AE6 MOnostable 1
AE8 Bass filter....
2 TRANSISTOR RADIO KIT
 No Soldering required. All connect-
made with spring clips Kit includes all parts and wire including ear-piece.
Will receive all normal broadcasts on Medium Wave $535-1605 \mathrm{kHz}$. Oper. ates from standard 9 V battery or Solar Cell included. OUR PRICE £ 1.30 P\&P 30p SPECIAL BARGAIN !!
STEREOSOUND SPEAKERS STEREOSO U stereo book shelf
speakers. Deluxo
teak veneered finush. S12e:
$368 \times 229 x$ 190 mm . 8 ohms.
8 wates RMS 16 8 watts RMS,
watts peak. Complete with
OUR PRICE £12.

OUR PRICE £12.95 P\&P50p
BPECIAL
FERGUSON
3406 HI-FI

SPEAKERS
Hegh quality 2 way speaker sy stems.
25 Watts. $4-8$ ohms. $40 \mathrm{~Hz}-18 k H z$ Size. $560 \times 340 \times 255 \mathrm{~mm}$. approx Wood grain finish with black fronts OUR PRICE E26.95 PR. P\&P £1
Model A101
FM TUNER
quality unit -
3 IF
double tuned

For use with most amplifiers. Covers OUR PRIGE E13.50 P\&P 30p
Stereo muluplex adapter f 595 extra.
ALL PRICES
EXCLUDE VAT

Jermyn now offer a stereo decoder module that simply and easily converts your existing mono tuner for stereo reception. Multiplex output equipped tuners simply have the module plugged in. older types need the de-emphasis capacitor disconnected.

The unit will do justice to the most expensive equipment and has the following specification.
Channel separation: Typically 40dB
Distortion: Typically 0.3% at 560 mV RMS
Composite input signal
Stereo switching: Automatic with lighted indicator
Power supply: $10-16$ volts.
Assembled and fully tested with a no-strings 12 month guarantee the module costs an astonishing £6.90. Excluding VAT. (Also available as a Kit at £4.90.) Beat that!
To Jermyn Industries Please rush me $\overline{1 K i t(\bar{s}) .1}$ made up $\overline{\text { Stereo }} \overline{\text { decoders. }}$ 148 vestry Road
Sevenoaks. Kent
barclaycard
-aksom rate
PHFI

Liquid-Crystal Clocks

MM5316 DIGITAL ALARM CLOCK CHIP-

1 As in P.E. April 74 issue
MM5316 Chip + data $\quad \mathbf{£ 1 5 . 0 0}$
40 -pin D.I.L. socket for MM5316 $£ 1 \cdot 35$
LM3900 10.69
$3 M$ Display Film $3 i n \times 1 \frac{1}{2} i n$
KIT PRICE $\mathbf{8 0 . 5 0}$ £17.00 + VAT
DIL2-4 switch
10.80

2 Bywood 5316-LC Kit MM5316 Chip + data
£15. 00
40-pin socket E1. 35
RCA Liquid Crystal Display $£ 13.00$
PCB
E2. 50
$3 M$ Display Film 3 in $\times 1 \frac{1}{2} \mathrm{in}$
£0. 50
KIT PRICE
$\mathbf{5 3 0 \cdot 0 0}$ + VAT

Please note that Siemens and RCA L-Cs are not pin compatible. Other kits. chips, displays available.

BYWOOD HAS TIME FOR YOU!

CLOCK DATA BHEETS-SAE ADVICE-PHONE 042262757
POST \& PACKING - IOP OVERSEAS IAIRMALLI SOP VAT-ALL PRICES EXCLUOE VAT PAYMENT C WO OI ACCOUNT ACCESS OROERS \& PAYMENTS BY PHONE ACCEPTED OUANTITY DISCOUNTS ON MOST ITEMS-STATE REOUIAEMENTS FOR OUOTATION

Ef:TXON Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORY

GUARANTEED TESTED HIGH PERFORMANCE
MODULES-now better value than ever Carriage $\star 25 \mathrm{~Hz}-25 \mathrm{kHz}$ $\underset{\text { frree }}{ }$ 7 transistors, 7 diode
SA50
65.65

50W RMS 2565 V
7 transistors. 7 diode
SAIOO $£ 10.90$
100 W RMS 45-70V 120 watt module complete with builtin supply-extra heavy duty $£ 19.75$

THE SA100 MODULE

POWER SUPPLIES UNSTABILISED

PU45		¢4.90	Carrize
PU70	${ }_{\text {S Suits } 2 \text { SA50 or }}^{\text {2 }}$	¢7.75	Carriage
$\begin{aligned} & \text { STABILISED } \\ & \text { PS45 } \end{aligned}$	${ }_{\text {S }}^{5} 5$	£3.50	
MT45	${ }_{\substack{\text { Transformer for } \\ \text { above }}}$	¢3.50	
PS70	Suits 2 SA100	¢4.90	Carriage

MT70 Transformer for

N.B. PS70 is not suitable for the SA50

Mk II STEREO DISCO MIXER $£ 19.75$ This well tried unit mixes two decks, handles any ceramic cartridge, and features mic over-ride plus separate full range bass and treble controls on both mic and deck inputs. Ample headphone power is
available for P.F.L. May be used for mono and is mains operated. Fitted with sturdy screening case. Controls: Micvol, bass, tréble. Left/Rightfade, deck volume, bass, treble, h/phone select, vol, Mains. Size
iptin 3 in $y ~ 4 i n ~ d e e p . ~$

DISCO MODULE 88.00 Car.

Thousands sold of this extremely popular mono version. A mic input may be fitted using the VA30 (see below). Low consumption from a $9 V$ battery.
Features the tame high seandards of reproduction as the Seereo bersion Concrols: H/phone select. vol, Lefr deck vol. Right deck vol, bass, treble master vol. Size 12 zin $\times 3$ in $\times 2$ in deep

3-CHANNEL SOUND-LITE $£ 22 \cdot 50$ carr.

Only $S A X O N$ can supply such incredible value for money. This unic features 3 kW power handling, full-wave conerol, bass, middle, treble AND master controls. Twin loudspeaker jacks for "ehrough " connections. It may be used free standing or will
panel mount next to either of the above. Also features unique CUT-BACK circuirry panel mount next to either of the above. Also features unique CUT-BACK circuitry
for extra wide range response. Size 12 in 3 in $2 \frac{1}{2}$ in deep. Professional standards for extra wide range respo
at a price you can afford!
SINGLE CHANNEL Recencly reduced in price VERSION $\mathbf{6 7} \cdot \mathbf{5 0} \begin{aligned} & \text { due to } \\ & \text { handes } \\ & \text { tincreasinn } \\ & \text { tikW }\end{aligned}$
MULTI-PURPOSE MIXERS
M4HL
M6HL

Featuring multiples of our VA30 module, the M4H: and $\mathbf{M 6 H L}$ fulfilthe requirements of all clubs, groups, etc. Where a high quality mixer is required. Each plus volume, treble and bass controls. input. impedances may, if required, be easily changed, The M4HL has four channels. and one output, and the M6HL six channels (12 inputs) and a master control and two outputs. Either unit may be used
free-standing or panel mounted. These mixers will reed all types of amplifier. Recommended for their versatility and high periormance, and excellent

value for moner

VA30 CHANNEL $\mathbf{1 3 . 5 0} \underset{\text { Caree }}{\text { CaOL }}$
This is the basic channel module in the above mixers and may also be used for extra inputs on either the mono or stereo mixers. Fitted with volume, bass and treble controls, requires just a jack and supply (9-100V)

Sinclair Project 80

Stereo 80 pre-amplifier/control unit

only $\frac{3^{\prime}}{4}$ ' deep $\times 2^{\prime \prime}$ high

Living with hi-fitakes on new meaning with Sinclair Project 80 . The electronics of these revolutionary new modules are all contained within elegantly designed matching cases no more than three-quarters of an inch deep. They are designed for mounting on any appropriate flat surface by means of 6BA bolts extending from the rear of each module and which pass through suitably drilled holes. Connections are taken away out of sight in a similar manner. The possibilities opened up by Project 80 are endless - superb hi-fi systems can be installed in ways hitherto only dreamed about and never before made practical. No more cutting out and shaping to put modules in position. A few holes drilled with the aid of templates supplied and the job is done. Now you need never again be faced with problems of keeping the hi-fi from clashing with carefully thought-out furnishing schemes. (That will surely please wives!) Slider controls have been introduced in place of knobs and all modules in the range incorporate new up-dated circuitry with emphasis on performance standards and built-in protection against overload and shorting. The aim was to re-think modular construction completely - to make it infinitely more versatile, even simpler and more reliable - the result - Project 80 - another triumph for Sinclair, and the most exciting construction modules ever.
the slimmest,most elegant hi-fi modules ever made

System	The Units to use	Units cost
Simple battery record player	2.40	$\begin{aligned} & \mathbf{£ 5 . 4 5} \\ & +54 p \text { V.A.T } \end{aligned}$
Mains powered record player	Z.40, PZ. 5	$\begin{aligned} & \mathbf{£ 1 0 . 4 3} \\ & +£ 1.04 \vee \text {. } . T . \end{aligned}$
30W. RMS continuous sine wave stereo amp.	$\begin{aligned} & 2 \times Z .40 \mathrm{~s}, \text { Stereo } \\ & 80: P Z .6 \end{aligned}$	$\begin{aligned} & \mathbf{£ 3 0 . 8 3} \\ & +£ 3.08 \vee \text { A.T. } \end{aligned}$
50W (8Ω) RMS continuous sine wave de luxe stereo amp	$\begin{aligned} & 2 \times Z .60 \mathrm{~s}, \text { Stereo } \\ & 80 ; \text { PZ. } 8 \end{aligned}$	$\begin{aligned} & £ 33.83 \\ & +£ 3.38 \text { V.A.T. } \\ & \hline \end{aligned}$
Indoor P.A.	Z.60, PZ.8	$\begin{aligned} & \mathbf{£ 1 4 . 9 3} \\ & +£ 1.49 \text { V.A.T. } \\ & \hline \end{aligned}$

Project 80 FM tuner, decoder, and A.F.U. may be added as required

Mount Project 80 on a bookshelf, a loudspeaker, a lampshade base a false wall with two 0.16 loudspeakers ... almost anywhere.

new thinking in modular hi.fi

Stereo 80 pre-amplifier

 and control unit

Each channel has its own separate tone and volume controls or fixing sliders, enabling ideal environmental matching to be obtained. A virtual earth input stage forms part of the up-dated circuitry that ensures the finest possible quality from all signal sources. Generous overload margins are allowed on allinputs. Clear instructions with template are supplied. TECHNICAL SPECIFICATIONS
Size $-260 \cdot 50 \times 20 \mathrm{~mm}\left(10 \frac{1}{4} \times 2 \times \frac{3}{4} \mathrm{~ms}\right)$
Finish - Black with white indicators and transparent SIIders
inputs - Magnetic pick-up 3 mV RIAA corrected. Ceramic pick-up 300 mV Radro 300 mV : Tape 30 mv
Signal/noise ratio - 60 dL
Frequency range -20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB} .10 \mathrm{~Hz}$ to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$
Power requirements - 20 to 35 volts
Outputs $-100 \mathrm{mV}+\mathrm{AB}$ monitoring for tape
Controls - Press button for tape radio and P U. Sliders for volume
bass (12 dB to -14 dB at 100 Hz) treble (+11 dB to -12 dB at 10 KHz)
R.R.P. f11.95 +f1.19

Project 80 FM tuner

Making the Project 80 F.M. tuner and decoder available separately gives a wider chorce of systems and saves moriey where stereo receptron may not be required. The tuner is a triumph of electronic design and assures excellent performance. The decoder gives a 40 dB channel separation with 150 mV output per channel. Both units may be used with other than Project 80 systems.
TECHNICALSPECIFICATIONS OF TUNER
Size $-85 \times 50 \times 20 \mathrm{~mm}\left(3 \frac{1}{2} \times 2 \times \frac{3}{4} \mathrm{~ns}\right)$
Tuning range -87.5 to 108 MHz
Detector-I.C. balanced coincidence for good A. M. rejection
One I.C. equal to 26 transistors
Distortion -0.2% at 1 KHz for 30% moduiation
4 pole ceramic filter in I.F. section
Aerial impedance-75 Ω or $240-300 \Omega$
Sensitivity - 4 microvolts for 30 dB culeting
Output -300 mV for 30% modulation
Power requirements -23 to 33 volts
DECODER
Size $-47 \times 50 \times 20 \mathrm{~mm}\left(1 \frac{7}{6} \times 2 \times \frac{3}{4} \mathrm{~ns}\right)$
One 19 transistor I.C.
R.R.P. $f 11.95+$ VA. 19
R.R.P. $£ 7.45+0.74$

Guarantee

If, within 3 months of purchasing any product direct from us, you are dissatisfied with it, your money will be refunded on production of recerp of payment. Many Sinclair appointed stockists also offer this guarantee. Should any defect arise in normal use, we will service it without charge For damage arising from mis-use a charge (typically $\mathrm{f} 1 \cdot 00$) will belmade.

Sinclair Radionics Ltd. London Road, St. Ives, Huntingdon PE17 4HJ Telephone St. Ives (0480) 64646

Z. 40 \& Z. 60 power amplifiers

 totally short-circuit proof

Intended for use in Project 80 installations, these modules readily adapt to an even wider range of applications. Both incorporate buit-in protec tion against short circuiting and risk of damage from mis-use is greatly reduced.
Z.40 TECHNICAL SPECIFICATIONS

Size $-55 \times 80 \times 20 \mathrm{~mm}\left(2 \mathbf{i} \times 3 \mathbf{t} \times \frac{3}{4} \mathrm{~ns}\right) 9$ transistors
Inpui sensitivity -100 mV
Output -15 watis RMS continuous into $8 \Omega(35 \mathrm{v})$
Frequency response $-10 \mathrm{~Hz}-100 \mathrm{KHz}+1 \mathrm{~dB}$
Signal/noise ratio -64 dB
Distortion - at 10 watts into 8Ω less than 01%
Power requirements - 12 to 35 volts
Z.60 TECHNICAL SPECIFICATIONS

Size $-55 \times 48 \times 95 \mathrm{~mm}\left(2 \mathrm{t} \times 3 \frac{3}{4} \times 3 \mathrm{ins}\right) 12$ transistors
Input sensitivity - $100-250 \mathrm{mV}$
Output -25 watts RMS continuous into $8 \Omega(45 \mathrm{~V})$. Distortion - typically 0.03%
Frequency response -10 Hz to more than $200 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Signal/noise ratio - better than 70 dB
Built in protection against transient overioad and short circuiting Load impedance - 4Ω min, max safe on open circuit

$\mathbf{Z . 4 0 R R . P . £ 5 . 4 5 - 0 . 5 4 V A T . ~ Z . 6 0 R R P . ~} \mathbf{£ 6 . 9 5}+069 \mathrm{~V}$ VA.T.

Project 80 active filter unit

Makes a highly desirable part of any worthwhile system where inputs may be from record, radio or tape. As with Stereo 80. separate controls applied to each chamnel make it easier to obtain ideal stereo balance TECHNICAL SPECIFICATIONS Size $-108 \times 50 \times 20 \mathrm{~mm}\left(4 \frac{1}{4} \times 2 \times\right.$ Fins $)$ Voltage gain - minus 0.2 dB
 Frequency response -36 Hz to 22 KHz controls minimum Distortion - at $1 \mathrm{KHz}-0.03 \%$ using 30 V supply HFcut off (scratch) -22 KHz to $5.5 \mathrm{KHz}, 12 \mathrm{~dB} /$ oct. slope

- For scratch and L.F. cut off (rumble) -28 dB at 20 Hz . $9 \mathrm{~dB} / 0 \mathrm{oct}$. Slope rumble control
R.R.P. $66.95+0.69$
- Transistorised active circuitry

Power supply units

PZ. 8
Stabilised. Re-entrant current himiting makes damage from overload or even direct shorting impossible. even direct shorting impossible.
Normal working voitage (adjustNormal wo
able) 45 V .
R.R.P. $£ 7.98+0.79 p$ V.A.T.

Without mains transformer
PZ. 5 30V unstabilised
PZ.6 35V. stabilised
R.R.P.f7. $98+0.79 p$ V.A.T.

To Sinclair radionics LTD. ST. IVES, huntimgdon PE17 4HJ
Please send post paid
for which I enclose Cash/Cheque for E \qquad including V.A.T.
Name
Address

Practical Electronics Classified Advertisements

RATES: $9 p$ per word (minimum 12 words). Box No. 20 extra. Semi-Display $£ 7$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

SITUATIONS VACANT

TECHNICIANS AND ENGINEERS FOR ST. ALBANS AND LUTON

QUALIFIED OR NOT!

OPPORTUNITIES for challenging work on testiag and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ExServices technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits. Overtime normally available.
GENEROUS RE-LOCATION EXPENSES available in most instances.
CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$ hour, 5 -day, working week.
WRITE or phone for application forms quoting reference
PE745.

MARCONI INSTRUMENTS LTD. Longacres, St. Albans, Herts Tel : St. Albans 59292 Luton Airport, Luton, Beds Tel : Luton 33866

the Gurths smand

GATALOGUE NO. 18, Electronic and Mechanical Components and manufacturers' surplus. Credit vouchers value 50 p. Price 23p, incluCredit vouchers value 50p. Price ${ }^{23 p}$ including post. ARTILUR SALLIS RADIO
CONTIROL LTD., 28 Gardner Street, Brighton, CONTIR
Sussex.

LIGHTSHOW PROJECTORS from only $£ 17$, effect wheels from only \&4. Many lightshow bargains at ROGER SQUIRE'S (Diseo (Centre), 176 Junction Road, London, N. 19. Tel. 01-272 7474 .

PHILIPS eassette recorder spares. S.A.E. with enquiries. sUEWAY LTD., 94 Derby Lane, Liverpool, L13 3DW.

PRACTICAL ELECTRONIC8: No. 1 to date except: Feb., Oct. 1966. Jan., Nov. 1967. Jan., Feb., Apr. 1968. Apr. to Sept. 1969. July 1971. Offers: CUMMING, 8 Scotstown Road, Peterhead, AB4 6LU

IN8TRUMENT8 for Sale. Solartron CD711 S. 2 double beam oscilloscope. \&35. Marconi TF 868/1 universal bridge 820 . Cintel square wave and pulse generator, 5 Hz . to 250 kHz . £10. Handbooks available. Phone evenings 01-428 13:38 (Pinner).

SERVIGE SHEETS

SERVIGE 8HEET8 for televisions, radios, transistors, record players, tape recorders, etc. from 5 p with free fault-finding guide. Over 10,000 nodels available. S.A.E. enquiries. Catalogue 20p and S.A,E. HAMILTOS RADIO, 47 Bohemia Road, st. Leonards, Sussex. Telephone Hastings 429060 .

8ERVICE 8HEET8, Radio, TV, etc. 8,000 models. Catalogue 15p. S.A.E. enquiries. TElRAy, 11 Maudland Bank, Preston.

LADDERS

LADDER8. "'special Offer" unvarnisherl triples. Gft 7in closed-23ft lin extended. \&18.90 delivered. HOME SALES LADDER CENTRE (PEEQ), Haldane (North), Halesfield (1), Telford, Shropshire. Tel. 095^{2} 580644.

EDUGATIONAL

CITY AND GUILDS EXAMINATIONS

Make sure you succeed with an ICS home study course for C \& G Electrical Installations

Telecommunications Technicians and Radio Amateurs. Free details from: International Correspondence Schools, Dept. 730 F , Intertext House, London, SW8 4 UJ.

COLOUR TV SERVICING

Make the most of the current boom. Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by leading manufacturers. Also radio and audio courses. Free details from: International Correspondence Schools, Dept. 730F2, Intertext House, London, SW8 4UJ.

TECHNICAL TRAINING

Get the qualifications you need to succeed. Home study courses in Elec. tronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering and Programming. Also self build radio kits. Free details: International Correspondence Schools, Dept. 730F3, Intertext House, London, SW8 4UJ.

TELEVISION TBAINING

If MONTH S' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners.
13 WEEKS' fult-time Colour TV Servicing course (including Mono revision) for men with a good electronics background.
Next two sessions commence on April 16th and September 9th.
Prospectus from London Electronics College, Dept. A4, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

WANTED

TOP PRICES PAID
 NEW VALVES AND TRANSISTORS Popular T.V. and Radio types KENSINGTON SUPPLIES (B) 367 Kensington Street Bradiord 8, Yorks.

WANTED-AEI Control unit type FKI PB (Form AI) Stereo or Mono. Jetails and price to: (1. KENYON, 26 Princes Drive, Colwyn Bay, North Wales.

RECEIVERS AND COMPONENTS

UNIT IN SMART ALI CASES. $11 \times 11 \times 4$ in.. contains 8 silicon diodes, $600 \mathrm{~V}, 20 \mathrm{~A}, 8 \mathrm{SCRs} 30 \mathrm{R}$ 400 V 16 A , Vinkors, 4 amall, 2 large, together with other components, 86 (45p). M.C. METERS. 3 assorted $2-3 \mathrm{in}$, $51-15$ (27p). 5 FIGURE REETTABLE COURTER, $18 / 22 \mathrm{~V}$, works on 12 V ,
 COPPER CLAD PAX. PANELS, $5 \frac{1}{2} \times 5$ post \quad paid 45pe.p., 71×9 in, 6 for 21 - 25 c.p. FIBREGLASS, $12 \times 41 \mathrm{in}$ 30p c.p. SMALL UNIT WITH BILICON DIODES, $6000 \mathrm{~V}, 1 \frac{1}{\mathrm{~g}} \mathrm{~A}, 4 \mathrm{BFY51}$ with heat Binkg plus resistors, 55 p c.p. TAGBOARD with BCY 39, pup 250 mA (thege are over \&i esch new), 4 silicon diodes, resistors, 55 p c.p. VALUPAK8, P9, 100 zasorted s/mica caps, 55p: P11, 100 assorted polystyrene caps, 75p: P13, 10 wire ended neons, stamps for list of Valupske together with computer panels, etc. Refund on purchase.
panels, etc. Refund on purchase.
7 LB
A8BORTED COMPONENTS, $21.65 \mathrm{c} . \mathrm{p}$
2LB FIRSTS COMPUTER PANELS, E1-65 c.p
8LE SECONDS COMPUTER PANELS, $11.40 \mathrm{c} . \mathrm{p}$
J.W.B. RADIO

2 BARNFIELD CRESCENT, SALE, CHESHIRE M33 INL Postage in brackets. Mail order oaly

STEREO FADERS

78 mm fixing centres. 64 mm travel.
1,000 long Egen moulded slide faders, $10 \mathrm{~K} \log$ stereo, only 39p each including post and V.A.T.
Cash with order to:
CHYMES
P.O. Box 87, Reading, Berks.

PRECISION
 POLYCARBONATE CAPACITORS

Close tolerance Hign stability Extremely low

 $\pm 2 \%$ and $\pm 5 \%$ ox stock.
TANTALUM BEAD CAPACITORS: Values available $\left.\begin{array}{lll}1 & 0 & 22 \\ 0 & 47.1 \cdot 0.2 \cdot 2 & 4 \\ 7\end{array}\right) 6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 F . 2 HF at 1620 V or 25 V . $22 \mathrm{\mu F}$ at $6: 10 \mathrm{~V}$ or 16 V . $33 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} .47 \mu \mathrm{~F}$ at 3 V or 6 V . $100 \mu \mathrm{~F}$ at 3 V All at 10p each, 10 for $95 p ; 50$ tol $\mathrm{E4}$.
TRANSISTORS: BC107 BC10
TRANSISTORE: BC107. BC108. BC109. All at op each. 6 for 51 p ; 12 for 2 p. May be mixed for quantity price C182 and BC212 at 10p each AF178 at 30p each Opuld oiones ine1s, ep spec devices
 90p. N814, ip each. 6 for 45p; 14 for 90p. IS44, $5 p$ eac
11 for 50p: 24 for $£ 1$. All brand new and marked NEW LOW PAICE- 400 mW Zoners. Values available
 6 for 390 ; 14 tor 840 . Special mater 6 orice 7 p each. (66 zeners) 83.65 . Special offer 6 of each voltage 160 zentrs) \& $\mathbf{6}$. 6.
RESISTORS. Carbon film 5%. WW at $40^{\circ} \mathrm{C}$ fW at $70^{\circ} \mathrm{C}$ Range from $22 n$ to $22 \mathrm{M} \cap$ in E 12 series it 10,12 High stabulity. Iow noise All at lp each so for 10 of any one yalue. 70p for 100 of any ench 8 p for 10 of pack-10 of each value 22Ω to 2 M (2 l (730 resistors)

 SILICON PLASTIC RECTIFIERS $1 \cdot 54$. Brand new 4 wireended DO27. 100PIV at 7_{p} each 4 for 24 p . 4 for 42p.

7p post and packing on orders below £5
PLEASE ADD 10% vat cosi of air/sea mal
PLEASE ADD 10\% VAT TO ALL ORDERS Send S A E for lists of other ex-stock items. LE E S available to bona fide companies

MARCO TRADING

Dept. E5, The Maltinge Station Road Tel. Nantwich '(Cheshire) 63291

Overall length $1.85^{\prime \prime}$ (Body length 1.1°), Diameter 0.14° Max. ratings 250 v D.C. and 500 mA . Gold clad normally open contacts. 69p
per dozen: $64 \cdot 12$ per 100 : $630 \cdot 25$ per 1.000 : E275 per 10,000 . VAT and post paid. G.W.M. RADIO LTD.

40/48 Portland Rosd, Worthing. Susser 090334897

R.T. SERVICES

(MAIL ORDER ONLY)
77 Hayfield Rd., Salford 6, Lancs.
Memory Array Panels. Full of ferrite rings. $C 1 \cdot 10$ inc. P.P
Veroboard $6 \times 5 \quad 0.1$ Matrix, 2 for $\mathbb{C 1}$. $4 \times 4 \frac{1}{4} 0.1$ Matrix, 4 for $\mathbb{1}$. $12 \times 3 \equiv 0.15$ Matrix, 75p each.
Mullard A.M. Module. I.F. Strip, LPII66, \&1.10inc. P.P.
FM Tuner with R.F. Stage and A.G.C., 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\mathbb{E l} \cdot \mathbf{3 7} \frac{1}{2}$ inc. P.P.
CrouzetGeared Motors, 30 or 60 r.p.m New, 41.54 ine. P.P
UHF TV Tuners. Transistorised, © $\mathbf{C l} 65$ inc. P.P.
250Ω Miniature Uni-selectors with base, 43 inc. P.P.
Transformers, $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 88 \mathrm{p}$ inc. P.P. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, 90 \mathrm{p}$ inc. P.P. $9-0-9 \mathrm{~V}, 100 \mathrm{~mA}, 90 \mathrm{p}$ inc. P.P. 20V, |A, 89p inc. P.P.
Transformer. 45-0-45V, approx. 2 amp, P.C. Board. $S / S, 5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10$ for 70 p inc. P.P.
Panel with 2 SN7490, 2 SN7441 counting circuit with end connector, $\mathbf{1 2} 20$ inc. P.P. Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions. Brand new, 12 inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$. Woods 5'fans. Very good quality. $\mathbf{6 3 \cdot 3 0}$ inc. P.P.
Electrolytic Capacitors, 4,000 MF, 50 VW , $4 \frac{10}{\prime \prime} \times 1^{\prime \prime} 75$ p. ine. PP.

TUNBRIDGE WELL8. Components from TELESERVICE, 108 Cainden Road, Tunbridge Wells, Kent. Telephone 31803.

5 N-CHANNEL FETs. Type 3819E (2N3819) for E 1 (inc. VAT). Full spec, transistors com plete with circuit details for building voltmeter, timer, ohmneter, etc. For complete list of F'E's and other transistors available 4nd 10p PO. RFDHAWK SALES LTD. 5 Station Road, Gerrards Cross, Bucks. Mail Order Only.

COMPONENTS GALORE. Pack of 500 mixed components. Manufacturers' surplus plus once used, Jack includes resistors, carbon and W'.W., capacitors various, transistors, diodes, trimmers, potentiometers, etc. Send $\mathrm{et}+10 \mathrm{p}$, P.\& P. U.W.O. to: CALEDONIAN COMPONENTS, strathore Road, Thornton, Fife.

RADIO \& TELEVIBION AERIAL BOOBTER8 22.95, flve television valves 45p. 50p bargain transistor packs, bargain et resistor and cap acitor packs. UHF-VHF televisions $\mathbf{2 7 . 5 0}$. Carr. $£ 1.50$. S.A.A. for 3 leaflets. VEI,CO ELECTHONICS, Bridge St., Hamsbottom, Bury, Lanes.

VALVE8. Large stock many types 1930 to 1974. S.A.E. for quotation, COX RADIO The larade, Jast Wittering, Sussex.

NEW AND U8ED COMPONENTB, hardware and audio gear. S.A.E. for list. 1)AVIl COULAM, Tathwell, Louth, Lines, LN11 9sR

BRAND NEW COMPONENT8 by return, Electrolytics $16 \mathrm{Y}, 25 \mathrm{~V}, 50 \mathrm{~V}-0 \cdot 47,1,2.2,4 \cdot 7$ $10 \mathrm{ML}, 4 \mathrm{p}, 22,47,4 \frac{1}{2} p$ (50V, 5p); 100, $6 \frac{1}{2} \mathrm{p}$ $(50 \mathrm{~V}, 7 \mathrm{p}) ; 220,6 \mathrm{p}(50 \mathrm{~V}, 9 \mathrm{p})$. Subminiature bead-type tantalums $0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.47 /$ $35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4 \cdot 7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}, 22 / 16 \mathrm{~V}$, $4 / / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 8_{p}$. Mylar Film $100 \mathrm{~V}, 0 \cdot 001$, $0 \cdot 002,0 \cdot 005,0 \cdot 01,0 \cdot 02,2 \frac{1}{2} \mathrm{P} ; 0 \cdot 04,0 \cdot 05,3 \mathrm{p}$. Polystryrene 63 Y Lis series $10 \mathrm{pF} .-1000 \mathrm{p} \mathrm{F}^{\prime}$ 2p; 1,200pド $-10,000 \mathrm{p} \mathrm{F}^{\prime}$., 3p. Miniature Highstab. resistors 5%, E12 series carbon flin $\frac{1}{} \mathrm{~W}$. | stab. ress |
| :---: |
| $1 \Omega-10 \mathrm{M} \Omega$, |
| $(10 \%$ | W, $10 \Omega-2 \cdot 2 M \Omega$ and $1 \mathrm{~W}, 27 \Omega-10 \mathrm{M} \Omega$ all ip rach. Postage 8p. The C.R. SUPPLY C'O., 127 f'hesterfleld Rd., Shetfield, ss 0RX.

MINIATURE GERAMIC CAPACITOR8. 50 V 25 each E6 value 22 pl to 1000 pF , total 275 \$3.75. NEK ELECTRONI('s (P'8), 28 ('arnegie Road, St. Albans, Herts.

MISCELLANEOUS

ENAMELLED COPPER WIRE

S.W.G.	I/b Reel	\% 16 Ree
10-14	C1.40	80
15-19	C1.40	80
20-24	C1.43	83
25-29	61.52	9
30-34	41.57	97
35-40	41.69	$11^{\circ} 0$

Pleage add 10% to all above prices to cover VAT
above prices cover P. \& P. in U.K. Supplied by
INDUSTRIAL SUPPLIES
102 Parrswood Rd., Withington, Manchester 10
Telephon. No. 061-224 3553

MK III meat locitor

> - Varicap tuning - Wergha only 220 z
> - Speaker and sarphone of
> - Probuilt search coil 17 in - Five transistor cercul:
> - Theroughly protessionsal finish

- You only nesd soldering ish You only need stidering iron
pliers and

MINIIIS ELECTAONICS, 359 LANGLEY DRIVE,
Build the Mullard C.C.T.V. Camera
Kits are now available with compre-
hensive construction manual (also
available separately at 76 tip)
SEND $5^{\prime \prime} \times 7^{\prime \prime}$ S.A.E. FOR DETAILS To:
CROFON ELECTRONICS
15/17 Cambridge Road, Kingston-
on-Thames, Surrey

MULTIMETER AC-DC Type U-437 10kOnmeV 25% Precisio $V-D C / A C 25$ to $1000 \mathrm{~V}-6$ Ranges Ohme- 100 to 1 NogOhm- 4 Rianges AUT SUSPENSIONS MOVEMENT Complete with steel case Dimentions without case

AC/DC Multimeter type U4324
A.DC 0 O6.3A- 6 Ranges

A-AC $003-3 A-5$ Ranges
V-DC $06-1200 \mathrm{~V}-9$ Ranges
V-AC $3.500 \mathrm{~V}-8$ Renges
V.AC 3.900 V - 8 Ranges

Frequency 45 to $20 \mathrm{kHz}-2$ Rangea
Realietance 500 Ohm to 5 MOhm 5 Ranget Decibel -10 to +12 dB
 Onl £8.00

SUPERTESTER 650 RICE
 10 Fieldo- 80 Ranges: Plus a lot of acceesorles for
measurements of $500 \mathrm{~A}-\mathrm{AC}$ 100 ADC- Temperature--50 C to $+200 \mathrm{C}-\mathrm{Magnalic}$
fisids UP to 15 KGaussPhese indicotor- EHT 25kV Electronic Volt Ohm- meter
Transistor Disde Tester sic Dimensioni $20128 \times 95 \times 32 \mathrm{~mm}$ -
1% DC Ask for free catalogure
£18-50

AC-CLAMP Type U-91
$\begin{array}{ll}7 \text { RANGES } & 10-500 \times \mathrm{A} \\ \text { Dimenalon: } & 203 \times 94\end{array}$
Dimenalons 283×94
$\times 36 \mathrm{~mm} 680 \mathrm{grams}$
cime $£ 10.50$

Add 10% VAT to all Items $+35 p \mathrm{P}: P$ ELECTRONIC BROKERS LTD.
49-53 Pancres Road, London NW1 2OB. Tel: 8377781

FIBREGLASS PRINTED CIRCUITBOARD
有"-h2". Your size cut. No extra. No V.A.T. single, 5 p
Oouble 8 p
12 sq sq. ins.
ins. 70 p
sq. post 10 p per sq. ft
EASY PRINTED CIRCUIT MAKING Dalo 33 Marker (spare Tip included) 80p post free.
From: B.R.B. (P.E.)
17 Southbreck Rise, Worksop, Notts S80 2 UP

DON'T LOOK

unless you can resist the temptation to get these super 'attention-getters': \star POCKET-SIZED MAXI-VOLT Big $\frac{1}{6}$ inch Spark Generator (instant 15,000 volts!) Ready-made, needs no batteries.
Carry it around anywhere. Only weighs about 3 oz (85 g). Send $£ 1.35$ for your Maxi-volt now!
太 UNIQUE TRANSMITTER/RECEIVER KIT. No licence examinations or tests required to operate this transis torised equipment. Easy to build. Get transmitting. Send $\mathbf{\Sigma 5} 90$ for yours now !
\star PSYCHEDELIC MINI-STROBE KIT.
Take a pocket-sized lightning storm to Disco's and Parties. "BRAIN-FREEZE" 'EM with vari-speed stop-motion flashes,
Includes super case, too. Send $£ 2 \cdot 20$ now! Ineludes super case, too. Send $£ 2 \cdot 20$ now!
(All prices include VAT, packing \& postage)
Send remittance to
BOFFIN PROJECTS
4 Cunliffa Road, Stoneleigh Ewell, Surrey (Mail order U.K. only)
Orfor more details, send 15 p for lists, plus iree design project sheet

NEW LENSES OPTIKIT L5 5 convex lenses for photoelectric devices, detector beams, tachometers, sensors. I of each diamerer/focal
$45 / 50 \mathrm{~mm}, \mathbf{6 2} 20$.
LIGHT'SOURCES, DETECTORS: MV54 miniature $(2 \mathrm{~mm})$ red LED: MLED500 TO-92 PC mounting red LED; MLED92 TO-92 infrared emitter: 2 N5 777 high sensitivity silicon photo-dartington amplifier. Response Time 200 sec, $25 V$ max. Superior to CdS cell.
OCP7I. MRDISO miniature $(2 \mathrm{~mm})$ silicon phototransistor. Fast response $2 \mathrm{sec}, 40 \mathrm{~V}$ max.

MV54
MLED500
$\begin{array}{llllll}\text { MLEO92 } & \text { 22p } & 44 p & £ 1.10 & 62.20 & 63.74 \\ & 33 p & 66 p & £ 1.54 & 62.86 & 66.60\end{array}$ $\begin{array}{lllllll} & \text { NL577 } & 55 p & £ 1.10 & 62.53 & £ 4.62 \quad & 69.90\end{array}$
 remote control 40 kHz TXANX pair 63.85 .
CIRCULAR POLARISERS for glare reduc-fion-enhance contrast ratio from LEO display, nixies, 'scope. HRCP7 red. HACP24 amber, HGCP24 green, HNCP37 neutral. 50 mm
$50 \mathrm{~mm} 86 \mathrm{p}: 75 \mathrm{~mm} \times 75 \mathrm{~mm} \in 1.21: 150 \mathrm{~mm}$ $50 \mathrm{~mm} 66 \mathrm{p}: 75$
150 mm 64.40 .
CROFON is 1064 strand plaseic lighe conduit, bundle dia. 1.8 mm . 0.0 .3 .3 mm . $1 \mathrm{~m} \in 1.32$; $5 \mathrm{~m} 65.50 ; 10 \mathrm{~m} 610.45 ; 25 \mathrm{~m} \in 22$.
PLASTIC OPTICAL MONOFIBRE for easy light circuitry, displays, effects. Diameter
0.5 mm -FP20; $1.0 \mathrm{~mm}-\mathrm{FP} 40 ; 1.5 \mathrm{~mm}$-FP60. $\begin{array}{llllll}\text { Length m 5 } & 10 & 25 & 50 & 100 & 200\end{array}$

FP40	$£ 1.10$	$£ 1.98$	$£ 3.85$	$€ 6.60$
FP60	$€ 1.98 .10 € 22.00$			

 OPTIKIT 103: Experimenter pack, 2 metres
Crofon $1610+5 \mathrm{~m}$ each FP20, FP40. FP60FIBR
FIBROFLEX SIZE I: Glass light conduit, (p.v.c. iacket). 5 m E2.97; $10 \mathrm{~m} \quad 63.85 ; 25 \mathrm{~m}$ $66.60 ; 50 \mathrm{~m}$ E $11.00 ; 100 \mathrm{~m}$ ¢ 17.05 , all inc. 10 ferrules + epoxy resin for terminations.
MARE'S TAlLS: Decorative effects. 7,000 fibres in 18 mm 0.0 . ferrule. Professionally finished. 22 in diamerer in use. Add lamp. stand, cover to make Fibre Optic Lamp. Eye catching in boardroom, hall or foye
All prices include p. \& P. VAT and data. Send 9 in $\times 6$ in S A Eforderails.
FIBRE OPTIC SUPPLIERS (Dept, PE), P.O. Box 702, London W10 6SL

CLEARING LABORATORY, scopes, V.T.V.M's,

 V.O.M's, II.S. recorders, transeription turntables, electronic testmeters, calibration units,P.S.U.s, pulse generators. I.C. nullpotentioneters, bridges, spectrum analysers, voltage regulators, sig-gens, MC relays, components, etc. Lower Beeding 236.

BARGAIN LIST8. Connectors, instrument boxes, spark generators, silicon diodes, transistors, new items very low prices. S.A.E. illustrated lists. FREAR, 2 IRichmond Terrace, CJverston, Lames. Lat 2 OBC ${ }^{*}$

reminerimors

,
Handbook of Tested Transisto
Radio Servicing for Amateurs.

Practical Radio Inside Out

Cor Design and Construction Manual Boys BK af Crystal Sets and Simple Circuits Transistor Cricures Manuat No Transisior Circuits Manual No 4
Transis Cifcuits for Radio Controlled Models Fad \& Electr Colour Codes and Data Chart. Handbk of Transistor Equiva and Substitutes. Hi FI. PA \& Disco Amplifief Design Hidbk Radio Servicing Problems Electronic Circuits for the Amat Photographer Handbook of Simple T ransistor Circuits. Modern Transistor Circults for Beginners.
Sound and Loudspeaker Manua
Practical Car Radio Handbook.
Fadio TV and Industrial Tube \& Valve Equiv.

Know Your Oscilloscone

Television Serviaing Vol No 1
Television Servicing Vol No 3
Using an Oscibloscope
Servicing Transistor Radio Rece
NEW TITLES NOW AVAILABLE
na Book of HiFILoudpeaker Enclosures
Manuat of Electronic Circuits for the Horm
Modern Crystal Set Circuits for Beginner
2nd Book of Transistor Equiv. \& Substitutes.
Handbook of Electionic Musical Novelties.
Transistorised Novelties for $H_{1} F_{1}$ Enthusiast.
Fault Location Exercises in Rad. \& TV Vol. 1.
Fault Location Exercises in Rad. \& TV Vol. 2.
Colour TV Picture Faults.
99 Ways to Improve your Sh. Wave Listering. Semi-conductors from A-Z
Modern Electronic Troubleshooting.
104 Ham Rad. Proj for Novice \& Technician
How to Solve Solid State Circuit Troubles.
regrated Circuits Equiv \& Substitutes Hbk

PLEASE ADD 10% FOR POSTAGE \& PACKING

RADIOBOOK SERVICE
 DeptA40Ew will Way:Beckenham Br32Rz

LOUDSPEAKER KITS for hi-fl stereo by Helme, the speaker kit people, all complete with full instructions. I'riefs from as little as £14.95 per patir including VA'T! Send now for free illust rated brochure and stockist list to: JEA- 4 , Nummerbridge, Harrogate, Yorkshire. Tel: Inarley g79.

HARDWARE SUPPLIES-Nheet aluminium individual sizes or standard packs, drilled to spec serews nuts washers, ete Fascia vanels in aluminium individual requirements Printed circuit boards, one-off or small runs. Printed circuit boards, one-off or small runs RAMAR (")NSTRU("TOR SFRVICRN, 29 R.AMAR (ONSTRL("TOR SERVICLN, 29
Shelbourne Road, Stratford-on-Avon,

LOW CO8T I.C. MOUNTING. I.('. pin sockets in lengths of 100 for $60 p$ (P. \& P. $5 p$). Quantity rates. S.A. Li details and sample. (iANKELL, "Oak Lodge," Tansley, Derbyshire

AUDIO8CAN, the "do-it-yourself" speaker mail-order sperialists. Hligh fidelity speaker kits, chassis mits, sound absorbent, grille fabric and much more. Send s.a.e. for bargain list to: A['D)OSCAN, 1)ept. PE1, 4 Princes Square, Harrogate, Yorkshire.

REWARD for information leading to the recovery of the following stolen instruments: Cossur oscilloscope C'I)U' 110, Nerial No. 1213. Solartron DVM A2:3, serial No. 401238. Avo meter Mk 8 , Sprial No. 34813. Tel. 01-35: 562:3.

METER REPAIRS. Immeters, voltneters, multi-range meters, rtc. Send to: METER REPAIRS, 39 Chesholm Road, London, N16 ODS.

SLOW SPEED MOTORS ruquired (abult 1 r.p.mi) ant yhantity considereal. I'hone Itr. 太MITH

STYLI

STYLI

 Maphiare at lowest priats Onick service
 Theadle, (hes

WORLD RADIO \& T.V. HANDBOOK 1974
A COMPLETE DIRECTORY OF INTERNATIONAL RADIO \& T.V Price $\mathbf{6} \mathbf{2 0}$

TRANSISTOREQUIVALENTSEUR/AM JAP. Price 61.95
HIGH FIDELITY AUDIO AMPLIFIER CIRCUITS by Texas Inseruments Pric DIGITAL LOGIC BASIC THEORY AND PRACTICE by J. H. Smich. Price \&1.60. UNDERSTANDING SOLID-STATE ELECTRONICS by Texas Instruments Pricell-40. DIGITAL ELECTRONICS by B. Ward Price $\mathbf{1} 1.45$. UNDERSTANDING AND USING THE C 1.80 . FOUNDATIONS OF WIRELESS AND E2. HOW TO LISTEN TO THE WORLD by 110 THYRISTOR PROJECTS USING SCRS AND TRIACS by R. M. Marscon Price El:50.
HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by J. W. Sereater Price El-50.
RADIO COMMUNICATION HAND

* all prices include postage

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of Brizish and American Technical Bo 19-2I PRAED STREET LONDON W2 INP

Phone $01-723418 \mathrm{~S}$

YOU AIN'T HEARD NOTHIN' YET!!

- UNTIL YOU TUNE IN TO STEREO PERFECTION WITH 'VARICAP'

'p.e.' l.m. Slze approx.
varicap stereo tuner
$84^{\prime \prime} \times 24^{\prime \prime} \times 6 \frac{1}{2}$

This elegant and practical stereo tuner features push button spot-on tuning with up to five simple pre-set stations (no difficult tuning dial and drive cord). Its easy 'no problem construction requires only a few simple setting adjustments with a D:C. Voltmeter. It incorporates NEW pre-set modules for R.F. and I.F. circuits, this eliminates the need for the usually difficult circuit alignment
All this, coupled with the latest Motorola high efficiency, Integrated Circuit phase lock loop stereo decoder and automatic stereo lamp indicator, ensures perfect stereo reception.
The Varicap is, in our opinion. THE most easily constructed stereo tuner available which will achieve professional results. The kit comprises, Fibre glass P.C. Doard, elegant slimline teak veneer cabinet, brushed aluminium front panel, push buttons, instructions, in fact everything you need
We also supply any of these kit components as separate items.

Total kit price ONLY 228.50 (Inclusive of VAT and postage).

IDEAL FOR USE WITH THE 'TEXAN', 'GEMINI' OR ANY OTHER GOOD QUALITY STEREO AMPLIFIER.
"P.E." SCORPIO MK. II IGNITION SYETEM
We are now providing complete kits of parts for this latest design elsctronic Ignition system, as specified in Practical Electronics. Price if. 0 complete
We can also aupply DE-LUXE KIt, with ready-wound transformer drilled box, tc. ready to assemble. Price $\mathbf{\$ 1 1 - 5 0 \text { . Also a ready built }}$ and tested unit, for immediate installation in your vehicle. Price E14.75.
ALL ABOVE PRICE INCLUDE VAT AND POSTAGE. Send your order now (please state whether 6 volt or 12 volt version required) or forward a S.A.E. for fully descriptive itemised pifce list. ALL PARTS AAE AVAILABLE SEPARATELY
'P.E. 'QEMINI' STEREO AMPLIFIER
The Gemint is a quality hi-fi stereo amolifler for the home constructor. fealuring a genuine 30 watt R.M.S per channel oulput into 8 ohms. Total harmonic distortion of 0.02% and a trequency response (-3dB) $20 \mathrm{~Hz}-100 \mathrm{kHz}$, at all power levels.
We are continuing to supply components for this tabulous amplifier which is now recognlsed as practically THE ultimate in High-Fidelity We know no better unit for the home constructar-hundreds have been supplied throughout the world.
Electro Spares have avallable a booklet containing full speciflcation, complete constructional information, wiring diagrams and fault finding quide. atc.
The price is $55 p+4 p$ postage, along with which we will send you our new LOW PRICE LIST. Price list available separately on receipt of a large S. A. E Our new Mait Order department address is set below. We aim for quick. efliclent service-or why not pay us a call, we make all enthusiasts welcome
and there are no parking problems.

SELECTRO

288 Ecclesall Road, Sheflield S11 8PE. Tel: (0742) 668888 'THE COMPONENT CENTRE OF THE NORTH

BUILD A CHORDING PROFESSIONAL SYNTHESISER

The Synthesiser shown above is the Dewtron "Apollo" A.1. which we sell ready-built to professionals. Believe it or not, it uses the SAME precision modules as we sell to you, the Constructor, to build any kind you like. The revolutionary Modumatrix system of routing makes old-fashioned patching a thing of the past. VCO-2 voltage-controlled oscillator module has accurate built-in log-law for chording and other professional effects. 3 and 4 octave keyboards and contacts.
VCO-2 STABLE, PRECISION V/C OSCILLATOR gives SINE, TRIANGULAR AND SQUAREWAVE outputs, 1 volt/ octave voltage control. £24 each or $£ 27$ each 2 or more matched. SHE-1 SAMPLE, HOLD AND ENVELOPE MODULE gives variable attack, sustain, touch sensitive playing when used with VCO-2 signals. £17. OFT-1 chording module £9. Modules (except VCO-1) guaranteed two years.
using Dewtion
(Regd. Trademark)
PROFESSIONAL MODULES
LATEST ADDITIONS INCLUDE PITCH-TO-VOLTAGE AND SEQUENCER MODULES! AND MANY OTHERS. CASH SAVINGS
by buying modules and parts in bulk! All modules are available separately:
Ring Modulator RM2, £8. Voltage-controlled Oscillator VC01, $\mathbf{£ 1 0 \cdot 5 0}$, giving sawtooth and squarewave outputs. Envelope shapers, ES1, selftriggered or ES2 keyboard-triggered, either type £13. White noise type WN1, £7. Voltage-controlled amplifier VCA1, £10. Voltage-controlled selective amplifier (filter for waa-waa, etc.) SA1, £13. Voltage-controlled Phase PH1, £17. Automatic Announcement Fader module for fading of music by microphone announcement, $A F 1, £ 10$. etc., etc. ALL MODULES ARE BUILT, TESTED AND SEALED FOR LONG LIFE. Simply connect coloured wire connections as per easy instructions, build cabinet and wire in controls and patchboard connections! Joystick controls $£ 5.50$. REVERB Module and spring unit £15. V.A.T. 10% extra. V.A.T. paid orders over $£ 75$.

With over 7 years' unblemished reputation in these pages, Dewtron continues to lead in new technicaldevelopments in electronic sound effects! Ask any of our customers. See our products in the music stores, too. Suppliers of special equipment to leading groups. Our modules are used in professional equipment by other manufacturers and in our own built synthesisers, e.g. "Gipsy" G.l. Send 150 for full catalogue of our famous musical effects.

D.E.W. LTD.

254 Ringwood Road, FERNDOWN, Dorset BH22 9AR

NEW WIDE RANGE WOBBULATOR $5 \mathrm{MHz}^{2} 150 \mathrm{MHz}$ up to 15 MHz sweep width. Only ${ }^{3}$ controls preset RF level, sweep width and
frequency. Ideal for 10.7 or TV if alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V A.C. and use within minutes of receiving. All this for ONLY 65.75 p. P. \& P. 25p. (Not cased, not calibrated.)

20 Hz to 200 kHz WB.
SINE and SOUARE GENERA. TOR. Four ranges. Independent amplitude controls, thermistor stabilised. Ready to use. 9V supply (Nor cased, not calibrated.)
GRATICULES, $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each. P. \& P. 5p. $12^{\prime \prime}$ Long Persistence Crt, full spec.
fI WORTH OF "UFS", Six brand new capacitors all between 15 V and 100 V . Toral capacitance not less than $7,000 \mathrm{mF}$. P. \& P. 45p. PHOTOMULTIPLIER type 931A \&3. 25 each. P. \& P. 25p
ROTARY SWITCH PACK, Six brand new switches (1 ceramic P. \& $\dot{P} .20$ pole, 2 way, etc.), 50p.

COMPONENT PACK consisting of 5 pors, various, brand new; 250 resistors \ddagger and $\frac{1}{2}$ watt, many high stabs. etc. Fine value at 50 p .

PLEASE ADD
P.C.B. PACKS S \& D. Quantity 2eqft -no tiny pieces. 50 p plus P. \& P. 20p. FIBRE GLASS as above 11 plus P. \& P. 20p. Ferric Chloride
Resistance Pen FREE (whilst scock Resistance Pen FREE (whilst scock lasts) on all purchases of our fl Fibre Glass pack.
5 CRYSTALS 70 ro 90 kHz . Our choice, 25p. P. \& P. 15p
5 MOVING COIL METERS various E2, P. \& P. 37p.
CAPACITOR PACK- 50 Brand
new components only 50p. P. \& P. 17 p .
POTS-1 10 different values. Brand new-50p. P. \& P. 17p
TRIMMER PACK. 2 Twin $50 /$
200pF ceramic 2 200pF ceramic 2 Twin 10/60pF $5 / 20 \mathrm{pF}$ on each: 2 min. strip with 4 preset preset $30 / 100 \mathrm{pF}$ on ceramic base ALL BRAND NEW, 25p the lot. P. \& P. 10 p .

FLAT FACED 4* Twin Beam Tube ype CV2193. Green trace. Brand new $£ 4$ each. P. \& P. 37 p.
LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38p each. Holder Ip each. Information 5p.
PHOTOCELL equ. OCP7I, I3p each.
PHOTO RESISTOR type Clare 703. Two for 50 p .

MODERN TELEPHONES type 706. Two-tone Rrey, \&3.75 each Twotone green, $\{3.75$ each. Black 2.75 each. P. \& P. 25 p each. Also TOPAZ YELLOW $£ 4.50$ ach. P. \& P. 25p
DEAL EXTENSION Telephones with standard GPO type dial, bell and lead coding. $\mathbf{f 1 . 7 5}$ each. P. \& P 25p.

$$
\begin{aligned}
& \text { DELIVERED TO YOUR } \\
& \text { DOOR I cwe of Electronic } \\
& \text { Scrap chassis, boards, etc. No }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Scrap chassis, boards etc. No } \\
& \text { Rubbish. FOR ONLY \&3.50. }
\end{aligned}
$$

$$
\text { OPEN9 a.m. to } 6.30 \text { p.m. ANY DAY }
$$

(rear Tech. College)
Tel.: Reading 582605/65916

Dimmit
 range of light dimmers

llustrated is the popular PMSDIO00 module
1000W professional A 1000 W professional quality dimmer. linear operation. interference suppression, 60 mm slider and disco lighting. Used by schools, cost stage and disco lighting. Used by schools, theatres. and fuli instructions. $£ 6.50$ inc. VAT, add $10 \mathrm{p} P$. \& P Also available in 2 kW , with separate heatsink.

The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for use on lamps, heaters, motors, etc, Rotary and Slider controlversions. Ratings: 1.000 W .2 .000 W

NEW addition to Dimmit range-Model 5 L800 sound to light converter. Modulates the light in time with sound. Built-in microphone. Just place unit near any sound source-radio, hi-fi, tv, human voice. etc. Raking 800 watt. Full instructions. $\mathbf{7} 7.60$ inc. VAT, add 10 p P. \& P. Send

YOUNG ELECTRONICS

Mail Order Dept.
54 Lawford Road, London NW5 2LN, Telephone 01-2670201

involves radical departures in conception.
\star Class A performance with Class B economy.
\star T.H.D. $<0.05 \%$ at all frequencies and power levels.
\star No crossover distortion.
\star Unsurpassed stability into reactive loads.
$\mathbf{6 7 . 2 8}+$ VAT. $\mathbf{E l 5}$ per stereo pair inc.
Full spec. on written request.
Sydney House, 35 Villiers Road, Watford

F.M. \varnothing. VARICAP TUNER

LP1185/86 MC1310P MFC4060 P.C. BOARDS
£10.25/pair c3.15 each READY BUILT BOARDS 78p £1.87 COMPLETE TUNERS IN CABINETS $£ 33.00$
NEW! LP1400 DECODER MODULES
-LIMITED STOCKS £4.96
Prices include V.A.T. P. © P. 25p.

64 MANMERS ROAD, BALDERTON, NEWARK, NOTTS. Telephone: NEWARK 6895

YATES ELECTRONICS (FLITWICK) LTD.
 DEPT, PE, ELSTOW STORAGEDEPOT KEMPSTON HARDWICK BEDFORD

C.W.O. PLEASE. POST AND PACKING PLEASE ADD 10p TO ORDERS UNDER 22. Catalogue which contains data sheers for most of the components listed will be sent free on request. 10p stamp appreciated.
CALLERS WELCOME Mon.-Sar. 9 a.m. 5 p.m. PLEASE ADD 10% VAT

resistons

$\frac{1}{2}$ W Iskra high stabilicy carbon film-very low noise-capless construction iW 2% ELECTROSIL TR 5

Power watts	Tolerance	Range	Values available	Price	
				$\begin{array}{r} \mathrm{Pr} \\ 1-99 \end{array}$	$100+$
	5\%	4.7n-2.2M@	E24	1p	0.8 p
$\frac{2}{2}$	10\%	3.3Mn-10Mn	E12	1 p	0.8 p
$\frac{1}{2}$	2\%	10n-1Mn	E24	$3.5 p$	3 P
$\frac{2}{1}$	10\%	$10-3.90$	E12	Ip	0.8 p
,	5\%	4.7n-1M	El2	ip	0.8p
4	10\%	$1 \Omega-100$	E12	$6 p$	5.5p
antic	ice app	ny selecrion.	Cracti	tota	

DEYELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 47Ω to $1 M \Omega$.
E12 pack 325 resistors $\mathbf{6 2} \mathbf{4 0}$. E24 pack 650 resistors $\mathbf{4 . 7 0 .}$

POTENTIOMETERS

Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$, log or linear (log $\frac{\mathrm{W}}{\mathrm{W}}$. in $\ddagger \mathrm{W}$).
Single, 12p. Dual gang (stereo), 40p. Single D.P. switeh 24p.

SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C.
mounting (0.1 matrix).
5 ub-miniature 0.1 W, Sp each. Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each

BRUSHED ALUMINIUM PANELS
$12 i n \times 6 i n=25 p ; 12 i n \times 2 \frac{1}{} \mathrm{in}=10 \mathrm{p} ; 9 \mathrm{in} \times 2 \mathrm{in}=7 \mathrm{p}$

SLIDER POTENTIOMETERS

$86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}$, length of track 59 mm OUAL GANG, IOK + loK etc. log. or lin. 60 p KNOB FOR ABOVE $12 p$.
FRONT PANEL 65p
18 Gauge panel 12 in \times in with slots cur for use with slider pots. Grey or matt black finish complete with fixings for 4 pots

THYRISTORS

2N5060 50V O.BA 65p. 2N5064200V0.8A80p. 106F 50V 4A 55p.
1060400 V 4 A 80 p .

MULLARD POLYESTER CAPACITORS C2\% SERIES $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, \quad 21 \mathrm{p}, \quad 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu F, 02 \mu, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p}, 0.22 \mu \mathrm{~F}, 7 \mathrm{fp}$. $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F} 3 \frac{1}{2} \mathrm{p}, 0.15 \mu \mathrm{~F} 4 \mathrm{tp}$. $0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \mathrm{p}, 0.47 \mu \mathrm{~F}, 7 \frac{1}{2} \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p}, 1.0 \mu \mathrm{~F}, 13 \mathrm{p}$. MULLARD POLYESTER CAPACITORS C280 SERIES 250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$, 31p. $0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{2}{2} \mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .10 \mu \mathrm{~F}, 13 \mathrm{p}$. $1.5 \mu \mathrm{~F}, 20 \mathrm{p}, 22 \mu \mathrm{~F}, 24 \mathrm{p}$.

MYLAR	FILM	CAPACITORS $100 V$
$0.001 \mu F$,	$0.002 \mu F$,	$0.005 \mu F$,
$2001 \mu F$,	$0.02 \mu F$,	

CERAMIC DISC CAPACITORS $0.001 \mu \mathrm{~F}, \quad 0.002 \mu \mathrm{~F}, \quad 0.005 \mu \mathrm{~F}, \quad 0.01 \mu \mathrm{~F}, 0.02 \mu$ 100pF to 10,000pF, 2p each

ELECTROLYTIC CAPACITORS—MULLARD OI5/6/7
$(\mu \mathrm{F} / \mathrm{V}) 1 / 63,1.5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40$, $(\mu \mathrm{F} / \mathrm{V}) 1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,3 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,4 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3,68 / 16$, $100 / 4,100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 p .47 / 63,100 / 40$ $150 / 25,220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p} .68 / 63,150 / 40,220 / 40,330 / 16,1,000 / 4,10 \mathrm{p} .470 / 10$, $680 / 6 \cdot 3,11 \mathrm{p} .100 / 63,150 / 63,220 / 63,1,000 / 10,12 \mathrm{p} .470 / 25,680 / 16,1,500 / 6 \cdot 3,13 \mathrm{p}$. $470 / 40,680 / 25,1,000 / 16.1,500 / 10,2,200 / 6 \cdot 3$, 18p. $330 / 63,680 / 40,1,000 / 25,1,500 / 16$, 2,200/10, 3,300/6 3, 4, 700/4, 21 p.

SOLID TANTALUM BEAD CAPACITORS $0.1 \mu \mathrm{~F} \quad 35 \mathrm{~V}$
$\begin{array}{ll}0.22 \mu \mathrm{~F} & 35 \mathrm{~V} \\ 0.47 \mu \mathrm{~F} & 35 \mathrm{~V}\end{array}$
$\begin{array}{ll}2.2 \mu \mathrm{~F} & 35 \mathrm{~V} \\ 4.7 \mu \mathrm{~F} & 35 \mathrm{~V} \\ 6.8 \mu \mathrm{~F} & 25 \mathrm{~V}\end{array}$
$\begin{array}{ll}6.8 \mu \mathrm{~F} & 25 \mathrm{~V} \\ 10 \mu \mathrm{~F} & 25 \mathrm{~V}\end{array}$
$\begin{array}{ll}22 \mu \mathrm{~F} & 16 \mathrm{~V} \\ 33 \mu \mathrm{~F} & 10 \mathrm{~V} \\ 47 \mu \mathrm{~F} & 6.3 \mathrm{~V} \\ 00 \mu \mathrm{~F} & 3 \mathrm{~V}\end{array}$

Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know

That's how long it will take you to fill in the coupon. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that reatly interests you? Without losing a day's pay, wou could quictlv turn seorself into something of an expert. Complete the compon (hr write if you prefer not to cut the
 the lest thing you ever did.

Others have done it, so can you

"Souterday 1 recenved a letter from the lutitution informine that me
 -ay that thin ha been the beet value for money I hate ever ohtamet - a siew echeed by two colle unues who recently commenced the "oume". Student 13.1.13, Yorks.
"Completing your course, meant gaing from a joh) 1 detested to a job

 C.C.P., Buck-

FIND OUT FOR YOURSELF

These letters - and thereare many more on file at . Vdermaston Court - speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's mon surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to B.I.E.T. Dept. BPE 1, Aldermaston Court, Reading RG7 4PF.
about Radio $\mathcal{\&}$ Electronics maintenance and repairs for a spare time income and a career for a better future.

To B.I.E.T., Dept. BPE 1,
QN
Aldermaston Court, Reading RG7 4PF
BPE 1.

```
NAME
Block Capitals Please
```

ADDRESS

OTHER SUBJECTS

Accrodited by C.A.C C

Published approximately on the 15 th of each month by 1PC Magazines Lid.. Fleetway House, Farringdon Sureet./ London. E C. 4 Printed in England by Chapel River Press. Andovet, Published approximately on the
Hants. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia) Lid.: South Africa-Central News Agency Lid Publishers' Subscription Rate (including postage)' Inland £3.25. Overseas $£ 3 \cdot 50$.
Practical Electronics is sold subject to the following conditions, namely, that it thall not, without the written consent of the Publishers first given. be lent. resold, hired out or otherwise
disposed of by way of Trade at more than the recommended selling price shown on the cover. and that it shall no be lent, resold or hired out on disposed of by way of Trade at more than the recommended selling price shown on the cover. and that it shall nor be lent, resold or hired out of otherwise disposed of in a mutilated
condition or in any unauthorised cover by way of Trade. or affixed to or as part of any publication or advertising. literary or pictorial matter whatsoever

Hanrye DON'T RELY ON YOUR MEMORY BUY NOW AT BARGAIN PRICES MiFi and Transistors - Up to date Brochures on request

You pay less VAT with Henry Low Prices

FEATURES: slim design, overal size in 6-IC's. 10 transistors stabilisers $\times 6$ Gardeners low field transformer Fibre Now Panel, complete chassis work HIGH QUALITY \& STABILITY ARE PREDOMINATE FEATURES-DEVELOPED TEXAS ENGINEERS FOR PERFORMANCE RELIABILITY AND EASE OF CONSTRUCTION FACILITIES. On/oH switch indicator, headphones
socket, separace treble, bass, volume and balance controls,

scratch and rumble filters, mono/stereo switch, in put selector
Mag. P.U., Radio tuner, Aux. Can be altered for Mic. Tape, Tape-head, etc.
Distributed by Henry's throughout UK.

FREE Teak catinet with complete kit.
KIT
PRICE
citise $£ 35 \cdot 00$

1. VAT + 50p carr/packing) or
(. VAT + 50p carl/packing) as illustrated

EARN YOURSELF EASY MONEY, WITH
PORTABLE
DISCO
EQUIPMENT

DISCO MINI: A complete portable disto fitted mixer/preamp. 2 decks all facilities. As above but with Slider Controls 100 watt amplifier for above
SDLSI00: 100 watt mixer/amplifier with slider controls
R50: 50 watt mixer/amplifier
R100 100 watt mixer/amplifier
DISCO AMP: 100 watt mixer/amplifier
Northcourt
80080 watt mixer amp
DISCO MIXER/PREAMPLIFIERS (O/P
for up to 6-100 watt amplifiers):
SDLill (slider controls)
DISCO VOX (slider controls): The com plere disco preamp.
DJ 100 : 100 watt power amplifier for above DJ30L. Mk II 3 channel 3 kW sound to light DJ DISCLITE. As 300 Controls
DJ DISCLITE. As 30L/II + Variable speed
DIMAMATIC. IkW adjustable speed auto dimmer
Carisbro Raverberation Unit
Colt 150 watt liquid wheel projector 150 watt Q1 liquid wheel projector 150 watt Ql cassette wheel projector Spare Effects and Liquid cassettes, large range of patterns
6 in liquid wherls 85.00 Various Cassettes Mini spot bank fitted 3 lamps
Auto Trilite (mini with flashers)
MIXERS/MICS/SPEAKERS/LIGHTING
M1XERS/MICS/S
FREESTOCK LIST Ref. No. 18 ON REQ UEST AKG/RESLO/DJ/CARLSBRO/EAGLE
CHASSIS AND COMPLETE SPEAKER SYSTEMS, MEGAPHONES, TURNTABLES, PUBLIC ADDRESS COMPONENTS, MICS. STANDS, MIXERS. CABINETS

All prices carr. paid (UK) (VAT EXTRA). Barclaycard/Access call, write or phone your order 1-723 6963-easy terms for callers.

EXCLUSIVE

 DECCA KELLY SPEAKERS12 watt speaker Tweeter systems. Min Bass/Midrobe and Melinex $\mathbf{D o m e d} \mathrm{HF}$ radiator plus
crossover $\mathrm{E} \mid 2 \cdot 50$ per pair of systems (carr/packe. 40p) or built into veneered cabinets, size $18 \times 12 \times 6$ in . $\mathbf{6} 19 \cdot 50$ pair (carr. $\mathbf{f 1}$).

HI-FI TAPE EQUIPMENT
U.K.'s largest range
with discounts and
demonstrations for
callers. Latest stock lists on request (Ref. No. 17).
Phone 01-402 4736 for Barclay/Access Card, Direct orders and latest prices.

TRANSISTORS

SEMICONDUCTORS

U.K.'s largest range for every appliCation. Smal! quantity discounts. enquiries invired. Latest stock list (Ref. No. 36). Including valves on request.

ELECTRONICS SUPPLIES

Specialists in electronics for more than 30 years. Trade and industry supplies - every type of component and equipment.

SINCLAIR PROJECT 80

Stereo Preamplifier Audio Filter Unit Z 6025 watt Amplifier PZ5 25 watt Amplifier PZ6 Mod. (S Tab) I or 2 PZ6 Mod. (S Tab) 1 or 2 PZB Mod. (S Tab) I or 2 Z60
TRANSFORMER FOR PZ8 NEW FMTU STEREO DECODER
STEREO DECOD

BUILD THE NEW

 HENELEC STEREO
FM TUNER

A completely new high stability stereo FM tuner.
Features variable capacity diode tuning, stabiliser power supply, IC Decoder, high gain low noise. If stages. LED
Easy to construct meter, AFC
Mains operated. Slim modern design with fibre glass PC, reak cabinet, ete. Available as a kit to build or ready built. $\times 6$ in. Produced to give high performance with a realistic price. (Parts list and constructional details Ref. No. 5, 30p.) Henry's
 are sole distributors UK and Europe.
Kit Price
£21.00 (+VAT)
or built and tested
£24.95 (+ VAT)

\section*{LIVING SOUND LOW NOISE TOP OUALITY CASSETTES MADE BY EMI TAPES LTD. TO INTERNATIONAL TANDARDSESPECIALLYFOR HENRY'S. ALL FOSTPAID LESS THAN + REC. PRICES. COMPLETE WITH LIBAARY CASES
 | | 3 for |
| :--- | :--- |
| C60 | 41.10 |
| C90 | 41.46 |
 | 10 |
| :---: |
| 46 |
 6 for

61.98
62.80

63.45
 | 10 for |
| :--- |
| $\mathbf{4 . 0 0}$ |
| 64.60 |
| 65.50 |
 2510

47.4
411.25

 Quantity and trade enquiries invited.}

French, Spanish, Italian. EI.36 per course. $\mathbf{5} 5$ for any 4.

LOW COST HI-FI SPEAKERS

SPECIAL OFFERS

EMI $13 \mathrm{in} \times$ in full range speakers (post 20 p each or 30p pair):
 ohms 10 Tweerer, 65.25 each; 35020 watr c/o Tweeters 8 or 15 ohms, 67.80 each.

8 ohms full range (post 20p)

FR4 4 in 5 watt, 44.75 ; FR65 $6 \frac{1}{2}$ in 10 watt, 68.30 R8 8 in 15 watt $£ 8.50$; FR23 9×6 in 15 watt C8. 40 .

BASS AND MID RANGE-8 ohms (post 20p) AA12 5 in 15 watt, $63.75 ;$ B110 $5 \frac{1}{2}$ in 15 watt.
$67.20 ; B 2008$ in 15 watt, $68.50 ;$ B139/2 13 in $\times 8$ in C7.20; B2008in 15 watt. ©8.50; B139/2 $13 \mathrm{in} \times$ 8in

TWEETERS AND CROSSOVERS (post 20p)
K2006 10 watt 8 or 15 ohms, $\mathbf{C 2}$-10; FHT6 15 watt 8 ohms, $\mathbf{C 3 . 3 5 ;}$ K201 K2006 10 watt 8 or 15 ohms, C2.10; FHT6 15 watt 6 ohms, $\mathbf{6 3 \cdot 3 5 ;} \mathbf{K 2 0 1}$
30 watt 8 ohms, 44.80 ; T27 KEF, 55.50 ; Axent 10030 watt 8 ohms C5.50; K $4009 \mathrm{lkHz} / 5 \mathrm{kHz} \mathrm{c} / \mathrm{o}$, $\mathbf{6 2} \cdot 70$; SN75 3 kHz var. $\mathrm{c} / \mathrm{o}, \mathrm{63} \cdot 10$.

SPEAKER KITS (carr. etc. 35p)
20-2 $\sin 30$ watt, $\mathbf{6 4 - 5 0}$ pair; $20-38$ in 40 watt. $\mathbf{4 5} 95$ pair; LINTON 2 20 watt, 418.30 pair; GLENDALE 330 watt, $\mathbf{4 2 . 9 5}$ pair; DOVEDALE 50 watt, $\mathbf{5 1} \cdot 50$ pair; KEF KK2 $£ 55 \cdot 00$ pair: KEFKK3, $\mathbf{7 8} \cdot \mathbf{0 0}$ pair

BUILD YOURSELF A POCKET CALCULATOR

A complete kit, packaged in a polystyrene container and taking about 3 hours to assemblethat's the Sinclair Cambridge pocket calculator interface chip. Some of the many features include circuit board, electronic components pack. Size: $4 \frac{1}{2}$ in long $\times 2$ in wide $\times H$ in deep.
Free of charge with the kit for the more advanced technologist is a 32 -page booklet explaining how to calculate Logs. Tangents, Sines, exc.
Price $\mathbf{£ 2 4 . 9 5}$ (+ VAT)
mi*2 now

$\theta \pi$
9 옹
\% 8 x
 Also sasembled $£ 27 \cdot \mathbf{2 0}$ (+ VAT)
10% VAT TO BE ADDED TO ALL ORDERS. EXPORT SUPPLIED. Prices and descriptions correct at time of proof. Subiect to change without notice Like a dermanent iob at Henry's? Experienced and trainee salesmen required. Tel. 01-402 879

[^0]: (e) IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. Alt reasonable precautions are taken b; PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland £3•25, Overseas £3-50. International Giro facilities Account No. 5122007. Please state reason for payment, "message to payee".

[^1]: Also available specification as above but
 18 in "RA" TWDI CONE LOUDSPRAKMR pert bendling 3, 8 or 15 ohm , 起-75, P. \& P, 36p. "POLY PLAMAR" WAPER-TYPE, WIDE RAEGE ELECTEO-DYEAILC SPEAKER Size 11 in $\times 14$ in $\times 1$ 名in deep. Wejght $190 z$. Power handling 20W r.m.... (40 W peak). Impedance 8 ohm only. Reaponse $40 \mathrm{~Hz}-20 \mathrm{kHz}$, Can be mounted or without baffle. Send 8.A.E. for full detaile. Only $\mathbf{4 6} \mathbf{8 5}$ each. P. 4. P. 34 p o follow each other P. \& P. 70D.

[^2]: PHONOSONICS, DEPT. PE25, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW

[^3]: *Siemens Ltd.

[^4]: Forward 15p. for our illustrated catalogue to:DART ELECTRO SERVICES, 24 South Town, Dartmouth, Devon. Competitive prices and descrip tions of hundreds of components, accessories etc.

[^5]: CRS1 05
 CRS 110
 CRS 120
 CRS1 40
 CRS1 60
 CRS3 10
 CRS3 20
 CAS3 40
 CRS7 400
 CRSi6 100
 CRS 16.200
 CRS16. 200
 CRS16/60
 C1068
 C106D
 40669
 2N4444

