

VOLUME 10 No. 10 OCTOBER 1974

CONSTRUCTIONAL PROJECTS

TOUCH SWITCH by J. Andrews

$\begin{array}{ll}\text { A proximity switching device with many applications in the home } & \mathbf{8 6 0}\end{array}$
HOME INTERCOM by L. Wise
$\begin{array}{ll}\text { A two-way domestic communicator using principles described in } & 872 \\ \text { '"First Steps in Circuit Design'" }\end{array}$
P.E, CCTV CAMERA-2 by A. V. Flatman
Assembly of the printed circuit boards 879
VOLTAGE CONTROLLED FILTER by R. Gwinn
VOLTAGE CONTROLLED FILTER by R. Gwinn
An audio effects unit designed specifically for synthesisers, but can be applied to any audio signal to good effect 884
GAS DETECTORS by J. C. Perrett
This concluding article deals with a Boat/Caravan version894
GENERAL FEATURES
FIRST STEPS IN CIRCUIT DESIGN-7 by A. P. Stephenson
The concluding article in this series looks at the design of high power amplifiers 864
INGENUITY UNLIMITED
Varicap Tuner Tuning Indicator-Sound/Light Modulator—Phasing Controller 876
HYBRID COMPUTERS by D. Al-Dabass
Analogue and digital computer techniques discussed 890
NEWS AND COMMENT
EDITORIAL—Our First Decade 859
SPACEWATCH by Frank W. Hyde
Soviet Views of Jupiter-Venus Probes 863
ESP etc. by Brian Baily
Unexplaıned happenings and phenomena 871
BOOK REVIEWS
Selected new books we have received 877
MARKET PLACE
New products, new suppliers and literature news 878
PATENTS REVIEWThought provoking ideas on file at the British Patent Office898
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 905
READOUTA selection of readers' letters and electronic courses906
FREE INSIDE THIS ISSUE: 24-page booklet P.E. TRANSISTOR GUIDE '74

Our November issue will be published Mid-October. This issue will be in big demand and readers are advised to place an order with their newsagent-NOW!

[^0]
hiffi TApE LINR
(PE Mar./Apr 73). S/c's. i.c's. Re. Cs. Relay and pc-basa. Pot Cores and pc-bases 3 tin $\times 9 i n$) Stereo (also holds relay and cores), $£ 2 \cdot 50$. Sub-issembly PCB (2 tin $\times 6$ in) Stereo 88p.

BIOLOGICAL AMPLIFIER
(PE Jan./Feb 73) P/A Set-S/c's. ic's. As Cs. Pots. PCB. 13.45. Output Stages-
S / c s. Rs. Cs. Pots. Rotary Sw's and S/c s. Rs, Cs. Pots. Rotary Sw's and Vis-Feed. 44.96. Audio Amps: PC7. ©5-20: EA1000, $53 \cdot 30$.

ENLARGER EXPOSURE
METER ANO THERMOMETEA
(PE Sept. 73). S/c's. Thermistor. LDR, Rs.

ELECTRONIC PIANO
(PE Sept. 72/Jen. 73). Details in lists

GEMINI STEREO AMPLIFIER

(PE Nov 70/Mar. 71) Stereo Sete and PCEs Pre-smp-Rs, Ca. Pots. Sw s-with \ddagger W MO As $\{14 \cdot 18$ with if CF Rs. $£ 10 \cdot 40$. PCB ss published, $\mathcal{E} \cdot 20$. Main Amp-Rs, Cs.
 65p.

AUOIO MILLIVOLTMETER
(PE Feb. 74). S/c's. Ra. Ce. Pots. Sw a PE FBE. 74
PCEs. 85.17.

PROGRAMME SHEETS
For Sound Synthesitar and Rhythm Generator. Now aveilable

WATT AMPLIFIER
(PW Nov./Dec. 72) Pre-amp-Sic's. Rs. Cs Pots. Sw-Mono. £2.50; Stereo, 86.03
 S/c s. As. Cs. Pot-Mono, [4-18, Stereo 58-36. PCB (2tin $\times 3 \mathrm{in}$) (Mono). 72p. PSU E3. 90 .

SOUND SYNTHESISER

(PE Feb. 73/Feb. 74)
RHYTHM GENERATOR
(PE Mar./June 74)
SOUND BENDER
(PE May 74)
Details of all these in List

REVERBERATION UNIT
OUOHAILER AND SIREN PW Nov (DW Dec 72) Pre-amp and Siren Generator with Rotery Pots cs.4. PCB (2in x-S/c's, Rs, Cs. Pot. PCB (2 tin $\times 2$ itin),

misCELLANEOUS PCB, (While Stocke Lat)

 LOGICAL RADIO CONTROL (PE Dec. 71/Jan. 72) PCE. 2B'. 50p. LOGICN SEAVO CONTROL (PE Fec. Mar 72) PCB F iteafe 13p. DIGICAL PSU PCB (PE Aug. 72). 50p. OSCILLOSCOPE PIA PCB (PE Aug. 72), 33p. GEMINI STEREO TUNER PCE (PE Apr 72). §1.50. TRIFFID PCB (PE Feb. 73). s0p.(The above PCB are as publithed)
CALLERCORD (PE July 72) Ma in Control PCB ($4 \mathrm{in} \times 7 \mathrm{tin}$). $. ~ . ~$

PHOTOPRINT PROCESS
(PE Jan.JFeb. 72). For Colour and B a Winds exposure. controls timing, atabilises mains voltege. S/Cis. SCR, LDR, Rs. Cs.

Pots. Relay. Koyswitch, T/fmr, Es. 85. PCB $(34 \times 54 \mathrm{in})$ lso holds pots. Sw, relay. \begin{tabular}{l}

1. 4.

\hline
\end{tabular}

RONOO
(PE Sept. 73/Fob. 74) Details in List

PROJECT OA

 (PW Oct. 73/Jan. 74). Multisystem Quad raphonic Decoder. S/C's. I/C's. Rs. Cs Sot of PCBs 2 . Set of PCBs. $\{2 \cdot 60$.
PHASING UNIT

(PE Sept. 73). S/c's. Rs. Ca, Pols. PCB (1tin $\times 2$ tin), $\mathbf{1 2} 20$.

AURORA
(PE Apr (Aug. 7t). Multichannel Sound Controlled Light. S/C a (Excl SCRs). Rs. Cs. Pots, Cores-Pre-amp. Sync Generator and 4 Chans $\mathrm{E10-97}$; 4 extra chans, EA-35. Reg. PSU. E4-32. PCB ($44 \mathrm{in} \times 10 \mathrm{tin}$) for Pre-amp and 4 Chans. (also holds pots), e2-50. PCB
($44 \ln \times 5 \operatorname{in}$) for Sync. Gen. PSU. 8 cores. 8 SCRs. £1-25.

AURORA AUXILIARY CONTROL UNIT

2 Variable Frequency Strobe Generators and 4 Variable Amplitude Frequency Generators 2 Variable Frequency Strobe Generators and

SEMICONDUCTOR TESTEA
(PE Oct. 73). S/c's. Rs. Cs. Pots. Make awitches. Sub-a asembly PCB, re-64

ULTRASONIC
TRANSMITTER-RECEIVER
(PE May 72). S/c's. Rs. Ca, Pot. Relay (PE May 72). S/c's, Rs, Ca, Pot. Relsy Dual PCB
excluded.

GIBRASONIC

(PW Sept. 70). Inel. Mic P/A, 2-Guitar P/A. Trem and Tone Controls, Master Volume Sic's. Rs, Ca. LDA. Rotary Pots. Lamps. Coupling T/imr. 57.64. PCB ($3+1 \mathrm{in} \times 10 \mathrm{tin}$) also hoids pots. [1-92. Power Supply, $53 \cdot 90$. while stocks last

TAPE NOISE LIMITER
(PE Fob. 72). S $/ c \cdot$. Rs. Cs. Pot. Sw, PCB (PE Feb. 72). S/c's. Rs. Cs. Pot. Sw, PCB
$(1+i n \times 3 t n), 52 \cdot 30$. Reg. PSU and PCB $(1+i n \times 3+n)$,
$(1+\ln \times 2$ in $), ~$
53.40.

VERSATILE LIGHT EFFECTS Single Channel Sound Controlled Light with bullt-in variable strobe. (PE Jun. 72) S/c's. Rs, Cs. Pots, T/imrs. Koyswitch, §11.24. PCB (3 in x fin) atso hoids poti and switch. 51.70 . SCRs excluded. While stocks last.

VOICE OPERATED FADER
(PE Oac. 73). S/c's. Rs. Cs. Pot. PCB
(P in $\times 3$ in). C 2.95 .
(HE Oct. 73). S/c's (Inci. special noise diode). Rs. Cs. Pots. £1.95

RESISTORS

IW and $\ddagger W$
CARBON FILM CARBON FILM MANUFACTURED BY AEI TO DEF GTI2A E24 SERIES IW 5\% $4 E 7$ to 1 M +W 5° - AE7 to 2 M 2 then 10°. to 10M COMPREHENSIVE STOCKS ACILITATE RAPID PROCESSING AS APPOINTED DISTRIBUTORS WE WELCOME TRADE ANO EXPORT ENQUIRIES Write or Phone Trade Dept.' ERITH 30737

POLYESTER (μ)	
001	30
0015	30
0022	$3{ }^{3}$
0033	$3{ }^{48}$
0047	3,
0068	$3{ }^{40}$
0 :	40
015	50
022	5
033	10
047	${ }^{\text {P }}$
068	110
10	14 p
TANTALUM BEAD ($\mu \mathrm{F} / \mathrm{M}$)	
0135	12p
02235	12 p
04735	12p
¢ 035	12p
1535	15 p
2235	12 p
4735	12 p
1016	12p
1025	110
1563	160
2216	$14 p$
4783	16 p
1003	14 p

ADO 15p P. \& P
ADD 10% VAT to rotal cost (including P. \& P.)

SEND S.AE (Stamped Addressed Enelope) for Free litmised List (and with al enquiries please).
OVERSEAS COSTS P AP will be charged
at cost (mosi kit weights and postal rates re shown in list) Send International Reply Coupon for Fre tist \& with all enquiries VAT does not apoly to exports. EXPORT ORDERS ARE ALWAYS WELCOME
MAILING LIST SERVICE-detals with list. COLOUR COOE identification supplied with most kits and as part of list. PCBs are Fibreglass. Drilled. Tinned, and designed by Phonosonics uniess stated 'as published'
PCB Layout and Circuit Diagram supplied free with Phonosonics-designed PCBs. POTS are rotary unless stated as slider PAICES correct at time of press E \& OE DELIVERIES subject to avaliability.

PHONOSONICS, DEPT. PE29, 25 KENTISH ROAD, BELYEDERE, KENT DA17 5BW MAIL ORDER ONLY

for fast, easy reliable soldering

Ersin Multicore Solder contains 5 cores of non-corrosive flux. instantly cleaning heavily oxidised surfaces. No extra flux is required.

EASY-TO-USE DISPENSERS

Size 5
Savjit alloy 18 swg, 30p (illustrated) Size 19A
60/40 alloy 18 swg .30 p Slize 15
60/40 alloy 22 swg, 34p

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons in 40/60, 60/40 and Savbit alloys in 7 gauges 45 p

BIB WIRE STRIPPER AND CUTTER

Deluxe Model 9 Automatic opening spring. locking catch, plastic-covered handles. Case hardened and precision ground. Adjusts to most wire sizes. Cuts and strips flex, splits plastic twin flex. 90p

SPECIAL OFFER! SINCLAIR CALCULATORS

SAVE £! CAMBRIDGE KIT £13.95!

SAVE £3.60! CAMBRIDGE MADE.UP
£17.95! SAVE OVER £5! SCIENTIFIC £47.90! IN STOCK NOW-ALL FULLY GUARANTEED

7400-5	0.20	7437	0.36	7476	0.42	72702	0.45	1 N 4001	0.06
7406-7	0.48	7438	0.36	7482	$0 \cdot 89$	72709	0.31	IN4002	0.06
7408-9	0.20	7440	0.20	7483	1.25	72710	0.37	IN4003	0.07
7410	0.20	7442	0.68	7485	1.85	72723	0.80	IN4006	0.09
7412	0.26	7445	1.60	7486	0.48	72741	0.30	IN4007	0.12
7413	0.38	7447	1.30	7489	4.95	72747	1.00	IN4149	0.05
7416	0.44	7450	0.20	7490	0.86	72748	$0 \cdot 36$	OA47	0.07
7417	0.30	7451	0.20	7491	$1 \cdot 10$	ZN414	1.25	OA90	0.06
7420	0.20	74.53	0.20	7492	0.70	TAA350	$2 \cdot 10$	OA91	0.06
7422	0.28	7454	0.20	7493	0.66	LM301B	0.75	OA 200	0.06
7425	$0 \cdot 38$	7460	0.20	7494	0.90	CA3046	0.70	OA202	0.09
7427	0.45	7470	0.34	7495	0.82	CA3036	1.90	IN916	0.06
7428	0.45	7472	0.34	7496	0.98	CA3028	1.20	BB105	0.45
7430	0.20	7473	0.45	74.100	2.20	CA30900	4.50	IS44	0.05
7432	0.45	7474	0.42	74141	0.99	NE555	0.85	TIL209	0.27
7433	0.45	7475	0.80	74192	2-12	TAA661B	1.40	OA81	0.07

SEND FOR LISTS, ETC. CWO. MAIL ORDER ONLY. P. \& P. 12p
Vat INCLUSIVE! POST FREE OVER E3!
POWEL ELECTRONIC COMPONENTS
49-51 St. Mary's Road, Oatlands Village Weybridge, Surrey KT13 9PX

"YES YOU'VE GOT THE WHOLE WIDE WORLD IN YOUR HANDS'" 1 Think of 1sth and what might be produced-get the ASTRAD 17 and SEE for yourseff that the Rusalana have done It all NOW! With optional battery eliminator for battery and mains use! OUR price is only a fraction of today's Russian price: Compare with $£ 80$ radios! "Send quickly. test on 7 daye mail order appro. from receipt of goods-refund If not dellghted. Volume from a whisper to a roar. Wider Indicator for pertect tuning senativityl Yes, the Russians have surpassed themselves. proving again their ability in the field of space communications. EVERY WAVEBAND at your fingertips Including Standard Long, Medium, Short and Uttra Short Waves to cover the Earth durlng 24 hours a day. Incl. all normal tranemlaslone. VHF: FM/USW, AM: LW, MW, SW, gets locally. local and now atations not yet operatlonal, and mosesages from all over the world! Expensive TURRET TUNER alde control waveband aelection unlt as used on expensive TVs! Waveband click into position giving incredible ease of station tuning! Genulne push-pull output! ON/OFF Volume and separate Treble and Bass controls for perfection of reproduction and tone! Press-button dial illumination! Take it anywhere-runs economically on atandard batteries or direct through battery eliminator from 220/240v a.c. mains. Internal ferrite rod plus built-in "rotatabie" telescopic aerial extending to 39 in approx. Also a tabulou CAR RADIO. Can also be used through extenalon emplifer, taperecorder or publle address. SIZE $131 n \times 10 \mathrm{~m} x \mathrm{x} 4 \mathrm{ln}$ overall approx. In highly polished cases. Purer and Sweeter tone than ever! U.K. service facilities and sonres available for years to come. With WRITTEN G'TEE. Simple instructions and circuit diagram. PLUS earphone for personal ilstening. ONLY £1s•90 (with Mains/Battery eliminator $£ 2.35$ ex.) Poet, etc. 51p. "BUT WAIT, for 75p ox. you get the "COMPUTERISED' WORLD TUNING GUIDE (zone and time in flash for transmiasions the whole world over. Know when to tune Into U.K. when abroad. NO MESSINGI) PLUS standard "ionglife" batteries and converter plug

THE ONE STEP FORWARD EVERYONE HAS WAITED FOR! Due to cut price we cannot neme makere-but reat ateured you're getting one of the Betell Expenalve 'PIANO KEYBOARD"' CONTAOL PANEL (or lafest MASTER 8WITCH controi) and AUTOMATIC LEVEL CONTROL. No fidding with awkward tape and reels. Just "alap in" a cassette and off you gol (takes 30,60 or 90 minute standard caseette tapes obtalnable overywhere). Amezing performance enauree perfect taping and supert reproduction! Remote control microphone Rapid rowind! Faet forward! Beauthul tone from a whisper to a roar! Complete. cord anywhere, indoors or outl Runs on batteries ANO 20/240V a.c. malns. Separate jacks for remote control microphone. ic. Size $9+$ in $\times \sin \times 2$ in approx. Design can very slightly. With caryng price e26-97) OUR PRICE E11.85, post receipt of goods-refund if not delighted! Or call.
BONUS OFFER:-Caseette tape, standard batterles and microphone tand, 5 sp ex. AL80 avallablel-Super de-luxe model with VHF AM/FM redio (Importers' recommended retail price £44!) Our Pantestic price ع21.55, post tc. 500 (standard batteries and ceasette tape 45 p if required). Shopertunties for Bargalne!

ORDER BY POST TO UXBAIDGE ROAD ADDRESS, OR CALL AT EITHEA STOAE. CALLERS: ACCES8 AND BARCLAYCARDS ACCEPTED.

SHOPERTUNITIES LTD

Dept. PE/NC/37, 164 UXARIDGE RD. (facing Shepherd's Bush Groen). LONDON W12 IAQ. (Thursday 1 p.m., Friday 7 p.m.). Alao 37-39 HICH HOLEORN (Opposite Chancery Lane). LONDON, w.C.1. (Thursday 7). Both stores open Mon. to Sat. 9 a.m. to 6 p.m

NOW AVAILABLE IN THE U.K! CHINAGLIA

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS

One example from the big range of sophisticated instruments

CORTINA MINOR

33 RANGE POCKET MULTIMETER

- SENSITIVITY 20,000n/VOLT (D.C.), 4000 n/VOLT (A.C.).
- ROBUST DIODE PROLEC 33 RANGES D.C. VOLT $0-100 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}$, 500 V . 500 V . 2.5 A . A. C. VOLTS, $0.7 .5 \mathrm{~V}, 25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}, 1,500 \mathrm{~V}$ A.C. CURRENT $0-25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 \mathrm{~A}, 12.5 \mathrm{~A}$, JB RANGES, - 10 to +69 . AF VOLT'S RANGES O-I,500V. RESISTANCE RANGES lok Ω. IOMG F.S.D. CAPACITANCE RANGES IOOLF, IF F.S.D. CURRENT, 2.5%. A.C. VOLTAGE AND CURRENT 3.5\%. - RESISTANCE RANGES POWERED BY INTERNAL BATTERIES.
COMPACT SIZE : $150 \times 85 \times 40 \mathrm{~mm} .350 \mathrm{gr}$
- CLEARLY CALIBRATED DIAL WITH ANTI-PARALLAX
- PROFESSIONAL QUALITY COMPONENTS EMPLOYED THROUGHOUT
FULLY GUARANTEED FOR 12 MONTHS
AFTER SALES SERVICE AND SPARES FACILITIES.
SUPPLIED WITH ADDITIONAL SHOCKPROOF PLASTICS LEADS AND INSTRUCTION BOOKLET.
- SPECIAL 30kV PROBE FOR D.C. MEASUREMENT AVAIL-

METER PRICE $£ 15.40$ (p \& p 80p) PROBE $£ 8.80$ inclusive of V.A.T.
for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :-

CHINAGLIA (U.K.) LIMITED

19 Mulberry Walk, London S.W.3.
Telephone 01-352 1897

9

GIRO NO. 3317056

C.W.O. only, P. \& P. 10p on orders below $\mathrm{E5}$ iscount: f $10-10 \%$, $20-15 \%$ (except net items) Official Orders accepted from ducational \& Government Departments ALL PRICES INCLUDE VAT

SPECIAL RESISTOR KITS (Prices include Post and Packing)
IOEI2 IW KIT: 10 of each E12 value, 22 ohms-IM, a total of 570 (CARBON FILM 5%). 63. 65 net IOEI2 WW KIT: 10 of each EI2 value, 22 ohms-IM, a total of $\$ 70$ (CARBON FILM 5%). E3-85 net $25 E 12+W$ KIT: 25 of each EI2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5%). C8. 35 net
$25 E 12 \frac{1}{2} W$ KIT: 25 of each EI2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5%). ©8. 45 net

 PLEASE NOTE: DUE TO CURRENT WORLD SHORTAGES
CONTAIN BOTH WATTAGE AND VALUE SUBSTITUTIONS.

MULLARD POLYESTER CAPACITORS C280 SERIES

$250 V$ P.C. Mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3, \mathrm{ip}, 0.068 \mu \mathrm{~F}$
 MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}=0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 21 \mathrm{p} .0 .0047 \mu \mathrm{~F}, 3 \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$, $0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 31 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.06 \mathrm{~A} \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 41 \mathrm{p} .0 .15 \mu \mathrm{~F}, 61 \mathrm{p} .0 .22 \mu \mathrm{~F}$, 8ip. $0.33 \mu \mathrm{~F}, 12 \mathrm{p} .0-47 \mu \mathrm{~F}, 14 \mathrm{p}$.
$81 \mathrm{p} V: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 3 \rho, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 31 p .0 .1 \mu \mathrm{~F}, 41 \mathrm{p}, 0.15 \mu \mathrm{~F}, \mathrm{5p}$. $0.22 \mu \mathrm{~F}, 51 \mathrm{p} .0 .33 \mu \mathrm{~F}, 64 \mathrm{p} .047 \mu \mathrm{~F}, 81 \mathrm{p}, 0.68 \mu \mathrm{~F}, 12 \mathrm{p}$. I $\mu \mathrm{F}$, 14 p .
MINIATURE CERAMIC PLATE CAPACITORS
$50 \mathrm{~V}:(\mathrm{pF}) 22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$, $560,680,820,1 K, 1 K 5,2 K 2,3 K 3,4 K 7,6 K 8,(\mu F) 0.01,0.015,0.02,0.033,0.047$ 2tpeach. OI, 30V, 4ip.
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$. (pF) $10,15,22,33$
$4700,10,000,44 p$.

RESISTORS
CF-High Stab Carbon Film $\mathbf{5 \%} \%$. MF-High Stab Metal Film, $\mathbf{5} \%$.

For value mixing prices, please refer to our catalogue (price in pence each).
PRESET SKELETON POTENTIOMETERS Wavechange Switches MINIATURE 0.25W Vertical or horizontal $6 p$ each $\mid P$ I $4 W$; IP, $12 W$; $2 P$, $4 W$; $2 P, 6 W$ SUB-MIN, 0.05 W Vertical. 100Ω to $220 \mathrm{~K} \Omega \mathrm{gp}$ each 3 PP , 3 W ; 4 P , 2 W ; 3 P

B. H. COMPONENT FACTORS LTD.

C. T. ELECTRONICS
 to have areater atecte than we edrealy have. Having ow the compenente under one reet wiwn now

NOW AT 267 \& 270 ACTON LANE, LONDON W4 5DG

All mail order and enquiries to 270 Acton Lane Tel. 01-994 6275

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS SAFETY MAINS ISOLATING TRANSFORMERS
Prim．I20／240V．Sec $120 / 240 \mathrm{~V}$ Centre Tapped and Screened ALSO AVAILABLE WITH IIF／I2OV SEC．WINDING
 CASED AUTO TRANSFORMERS
115500 W enclosed etransformer，with mains lead and two 115 V
outlet sockets， $69.49, \mathrm{P} \& \mathrm{P} 67 \mathrm{p}$ ． 20 W version， $\mathrm{C} 2.02, \mathrm{P}$ \＆ P 22 p ． LOW VOLTAGE SERIES（ISOLATED）
PRIMARY $200-250$ VOLTS 12 AND／OR 24 VOLT RANGE Ref．Amps．Weigh：Size cm．Secondary Windings P \＆P No． 12 V 24 V ib oz $\begin{array}{lllllllll}111 & 0.5 & 0.25 & 8 & 4.8 \times 2.9 \times 3.50 .12 V & 20 & 0.25 A \times 2 & 1.34 & 22\end{array}$ $\begin{array}{llllllll}2131.0 & 0.5 & 4 & 6.1 \times 5 \times 8 \times 4.5 & 0.12 V & 28 & 0.25 A \times 2 \\ 71 & 2 & 1 & 12 & 7.0 \times 5.4 \times 6.1 & 0.12 V & 28 & 0.5 A \times 2\end{array}$ $\begin{array}{lllllllll}71 & 2 & 1 & 12 & 7.0 \times 5.4 \times & 6.1 & 0.12 V a t 1 A \times 2 \\ 18 & 4 & 2 & 2 & 12 & 8.3 \times 7.7 \times & 7.0 & 0.12 V \text { at } 2 A \times 2\end{array}$

ONニ

 $\begin{array}{rrrrrrrr} & 9.9 \times 10.2 \times 8.6 & 0.12 \mathrm{~V} \text { at } 5 A \times 2 & 5 \\ 11516 & 8 & 8 & 12 & 12.1 \times 9.9 \times 10.2 & 0.12 \mathrm{~V} \text { at } 8 \mathrm{PA} \times 2 & 7 \\ 115 & 10 & 10 & 11 & 8 & 14.0 \times 9.6 \times 11.8 & 0.12 \mathrm{~V} \text { as } 10 \mathrm{~A} \times 2 & 9.2\end{array}$ シート

Ref No．	Amps	Weight ib or	t Sizecm．	Secondory Tops	$c^{P \&}$
112	0.5	$1{ }_{1}$	$6.1 \times 5.8 \times 4.8$	0．12－15－20－24．30V	1.56
79	1.0	24	$7.0 \times 6.7 \times 6.1$		$2 \cdot 1136$
3	2.0	34	$8.9 \times 7.7 \times 7.7$		$3 \cdot 1836$
20	3.0	48	$9.9 \times 8.3 \times 8.6$		3.9642
21	40	64	$9.9 \times 9.6 \times 8.6$		$4.67 \quad 52$
51	50	612	$12.1 \times 8.6 \times 10.2$		$5.83 \quad 52$
117	6.0	80	$12.1 \times 9.3 \times 10.2$		6.9452
88	8.0	120	$12.1 \times 11.8 \times 10.2$		9.0067
89	10.0	1312	$14.0 \times 10.2 \times 11.8$		$11.36 \quad 67$
Ref．	Amps．	Weight	t Sixe cm．	50 VOLT RANGE Secondory Tops	
No．		If oz			p
102	0.5	12	$7.0 \times 6.4 \times 6.1$	0－19－25－33－40－50V	2.0930
103	1.0	212	$8.3 \times 7.4 \times 7.0$		3.0836
104	2.0	58	$7.9 \times 8.9 \times 8.6$	＂．	$4.26 \quad 42$
105	3.0	612	$9.9 \times 10.2 \times 8.6$	＂，＂，	$5.79 \quad 52$
106	4.0	100	$12.1 \times 10.5 \times 10.2$	＂．${ }^{\text {．}}$	7.6952
107	6.0	120	$14.0 \times 10.2 \times 11.8$		11.3867
118	8.0	180	$14.0 \times 12.7 \times 11.8$		12.4097
119	10.0	250	$17.2 \times 12.7 \times 14.0$		18.62
Ref．	Amps．	Weight	t Size cm．	60 VOLT RANGE Secondory Tops	
o．		lb oz			10
124	0.5	24	$70 \times 6.7 \times 61$	0－24－30－40－48－60V	2.1236
26	1.0	34	$8.9 \times 7.7 \times 7.7$		$2.97 \quad 36$
127	$2 \cdot 0$	64	$9.9 \times 9.6 \times 8.6$		$4.67 \quad 42$
125	3.0	812	$12.1 \times 9.9 \times 10.2$		7.1152
123	40	1312	$12.1 \times 11.8 \times 10.2$		$9.20 \quad 67$
40	50	1200	$14.0 \times 10.2 \times 11.8$		$10.83 \quad 67$
120	60	158	$14.0 \times 12.1 \times 11.8$		$13.35 \quad 82$
121	8.0	2500	$140 \times 14.7 \times 11.8$		15.01
122	10.0	250	$17.2 \times 12.7 \times 140$	，．．	19.60
189	12.0	2900	$17.2 \times 140 \times 14.0$		21.60

PLEASE ADD 8\％FOR V．A．T．

BMRille clectronics

3，THE MINORIES，LONDON EC3N 1BJ
TELEPHONE：01－488 3316／8
NËAREST TUBE STATIONS ALDGATE \＆ALDGATEEASt

EHPREPAK

strea orcour

Ready built unit，ready for connection to the I．F．stages of existing FM Radio or Tuner：A tell tale light can be con－ nected．The unit is a small printed circuit，no further alignment necessary．L．E．D．is recommended as the indi－ cating light，suitable device available from us at 25 p． Instructions included．

3Wh．m．I．C．AMIP only $£ 1.65$
 On P．C．Board with all components or 2 on one board for $\mathbf{1 2} \mathbf{2} \mathbf{6 0}$ ．Order Code These am let on connecting up，specifications and easy－to－build projects，using the I．C．A．

5W \＆10W AMPS

5 W only E 1.80 10W only £2．26

incl．P．\＆P．
These matchbox size amplifiers have an exceptionally good cone and quality for the price．They are only $2 \frac{1}{4}$ in $\times 1 \frac{3}{4} \mathrm{in}$ ．The 5 W Amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions．Two amplifiers are ideal for stereo．Complete connection details and treble，bass，volume and balance control circuit diagrams are supplied with each unit．Discounts are available for quantity orders．More details on request．Cheapest in the U．K．Built and tested．

Now available for 5 \＆10WAMPS

Pre－assembled printed circuit boards 2 in $\times 3$ in available in stereo only，will fit 0.15 edge connector． Stereo Pre－Amp I（Pre I）．This unit is for use with low gain or ceramic pick－up cartridges． $\neq 1 \cdot 10$ Stereo Pre－Amp 2 （Pre 2）．This unit is for use with magnetic pick－up cartridges．\quad £ 1.55 Stereo Tone Control（STC）．This unit is an active tone control board and when used with the right potentio－ meters will give bass and treble boost and cut．$£ 1 \cdot 10$ Instruction leaflet supplied with all units．Post and packing included in prices．
 ．．．．．．．．．Decoders／．．．．．．．．．．．3W Amps／．．．．．．．．．．．．5W Amps ．．．．．．．．．．．．．．IOW Amps／．．．．．．．．．．．．．．Stereo Pre－Amps I （Please insert quantities and delete those not applicable）．
Name Address
BI－PREPAK
Ca．Regn Na． 820919

600 mA.
$10 / 100 \mathrm{~K} / 1 \mathrm{Meg} / 1$
$-2010 \quad 46 \mathrm{~dB}$.
OUR PRICE E6.97 PGP30p

U4323 MULTIMETER

20,000opv. Simple
oscillator. Suitable
for gernarel raceiver
tuning. Ranges:
$500 / 1000 \mathrm{OC}$.
2.5/10/15/250/500/1000V AC. 0.051 $0.5550 / 500 \mathrm{~mA} D C$ Resistance.
$\times 10 \times 100 \times 1.000 \times 10.000$. 50 c 2. $\times 10 . \times 100$. $\times 1.000 \times 10,000$ (50 s)
$500 \mathrm{~S}, 5 \mathrm{k} \Omega$, 50 k s centre scale) aitery operated. Size: $160 \times 97 \bar{x}$
40 mm . Supplied in carrying case com plete with test leads.

HIOKI $750 \times$ VOLT.OHM. MILLIAMETER 43 ranges: $0-0.3 / 0.6 /$
$1.5 / 3 / 6 / 12 / 30 / 60 / 150 /$ $300 / 500 / 1 / 200 \mathrm{~V}$ DC
$0-3 / 6 / 5 / 3 / 6 / 6 / 120 /$ $300 / 500 / 1,200 \mathrm{VAC}$
Current: $0-3060 \mathrm{~A}$ Current: $0-30 / 604 \mathrm{~A}$
$1.53 / 3 / 30 / 501300$ $0-3 / 300 \mathrm{k} / 3 / 30 \mathrm{Mohms}$.
Decibels: -10 to +17 DB . Output:Decibels: -10 to 1 +17d8. Output:-
$0-3 / 6 / 15 / 30 / 60 / 10 / 300 \mathrm{~V}$ Arcur
 meter. Burlt in protection. SIze $57 \times$
102×153 mim.
OUR PRICE E11.95 P\&P 40p

 $10 \mathrm{k} / 100 \mathrm{k} / \mathrm{I}$ Meg/
10 Meg ohms. OUR PRICE E12.50 P\&P 20p

Model HT100B4 MULTIMETER Overload protectert
shock

mirror scale. Sensitivity
$100 \mathrm{k} V$. Polarity change
 200k/2/20 Meg ohms.
DC current:- $10 / 250 \mathrm{uA} / 2.5 / 25 / 250$ DC current:- 10/250uA/2.5/25/250
mA/10A. AC current:-0-10A. -20 to +62 dB . Operates from $2 \times 1.5 \mathrm{~V}$
batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$. OUR PRICE f 17.50 pgP 40p

OUR PRICE £12.50 p\&p30p.
LB4 TRANSISTOR TESTER
Tests PNP or NPN
tomstors Audio tosis PNP or NPN indication. Operates
on two 1.5 V on two batteries. Complete OUR PRICE
f4.50 P\&P 20p
U4341 Multimeter 8
Transistor Tester. 27 ranges. 16,700opv. Overload protectad. 30/60/150/300/900V DC. 1.5/7.5/30/150/ $300 / 750 V \mathrm{AC}$.
Current: $0.06 / 0.6 /$ Current: $0.06 / 0.6$.
$6 / 60 / 600 \mathrm{mADC}$. $0.3 / 3 / 30 / 300 \mathrm{mAAC}$ Resistance: $0.06 /$
$0.6 / 2 / 6 / 200 / 60 / 200 \mathrm{k}$ ohm $/ 2$ Mohms. Battery operated. Supplied complet: with probes, leads and stom carrying
cass. Size: $115 \times 215 \times 90 \mathrm{~mm}$. OUR PRICE £10.50 P\&P 30p S100TR MULTIMETER TRANSISTOR TESTER

Transistor tester measures Alpha, Bete and ICO. Complete with instructiona OUR PRICE f19,95 P\&P 25p CI5 PULSE OSCILLOSCOPE For display of pule
and periodic wave
forms in electronic and periodic wave
forms in electonic
circuits. VERT. AMP circuits. VER 10 AMP .
Bandwidth:
Sensitivity Sensitivity at 100 kHz
VRMS/mm: $0.1-25 ;$
HOR AMP. Band. HOR. AMP. Band-
width: 500 kHz . width: 500 kHz
Sonsitivity ay 100 kHz
VRMS/mm: $0.3-25$
PRMS/ mm: 0.3-25
Proser triggered aweep
Preset triggered sweap
$\mathbf{1 - 3 0 0 0}$ sec. Free running 20-200 kHz_{2} in nine ranges. Calitrator pipss
$220 \times 360 \times 430 \mathrm{~mm} .115-230 \mathrm{VAC}$ OUR PRICE £39.00 Carr. pard RUSSIAN Cl16 Oouble Beam OSCILLOSCOPE OSCILLOSCOPE
5 MHz pass band.
Separate Y ind and $Y 2$ Separate $\begin{aligned} & \text { and } 1 \text { and } V_{2} \\ & \text { andiers. Reciang- }\end{aligned}$ ular $5^{\prime \prime} \times 4^{\prime \prime} C R T$. Calitbrated triggered
sweeg from 0.2 usec.
 froe running time
byan soHz-1MHz.
Buition time baso Calibrator and amplitude Calibrator. Supplied complote with all accersoric:
and instruction manual.
OUR PRICE $£ 87.00 \quad$ Carr. pion

SWR METER Model SWR3

 Mandy SWR moter for Tranamitep antenna signment, with built in fiedd strength moter. Accuracy
5%, Impedence 52 . 5%. Impedance 52° Indic
ator 100 A DC. Full scale 5 section collapsibla antenna. Size $145 \times 50 \times$
60 mm
(
OUR PRICE $£ 4.25$

MODEL TE15 GRID DIP METER Transistorised. Op
atess as Grid Dip.
, Oncillator, Absorb-
tion Wove Meter and Oscillating Detectar Frequency range
$440 \mathrm{kHz}-280 \mathrm{MHz}$ in six coits 500 uA in six coils.
mater. $9 V$
battery operation. Size:
$180 \times 80 \times 40 \mathrm{~mm}$
OUR PRICE £ 19.95

OUR PRICE £19.95 P\&P

A new portabl excellent range accuracy sitlow

High con ing vitr
 | cons |
| :--- |
| ings |
| Yitre |
| He |
| wi |
| ri |
| ra |
| S |
| B |
| 25 |
| 25 |
| 5 |
| 5 |
| | Heayy wiper. rating.

 Single hole fixing, Y/" diamster shafts.Bulk quantities availabie. 25 WATT 10/25/50/100/500/1000 50 WATT El. 15 P\&P 10 $1500 / 5000$ ohms. \quad f1.62 P\&P 10p 100 WATT $1 / 5 / 10 / 25 / 50 / 250 / 500 /$
2500 ohms. 000 Ohms $\begin{array}{r}\text { E2.34 P\&P 15p } \\ \hline \text { CP110 CHASSIS PUNCH SET }\end{array}$

Carefuly machined, top, qrade steel
Contains $1 / 2^{\prime \prime} .5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, 1$." and
 OUR PRICE $£ 3.00$ P\&P40p KE630 3 Station INTERCOM

Master and two substations Can be
used on desk or wall mounted Co used on desk or wall mounted. CompOUR PRICE
 $\frac{\text { OUR PRICE } £ 17.50 \text { P\&P50p }}{\mathrm{TE}-200 \text { RF SIGNAL }}$ GENERATDR

artenuator adio ourput, Xlal socket for catibration. 220/240V
Brand new with instructions. OUR PRICE $1750 \times 150 \mathrm{~mm}$ TE22 SINE SQUARE WAVE AUOIO GENERATOR

$200 / 250 \mathrm{~V}$
AC operation. Supolied brand new
guaranteed, with instruction manual OUR PRICE C 24.95 P\&P 50p
ARF 300 AF/RF SIGNAL GENERATOR All transistorised
compact fullily
portable Af portabio. AF sine
wave 18 Az
to
2020 kHz . AF squars
wave 18 Hz to 100 k Sine wavit squ

$1 V$ maximum.

Wil instructions and leads.
OUR PRICE £37.50 P\&P 50\%
MODEL MG IOO SINE SQUARE
 Wive 19-100.000 Hz Square Wave. Sire $180 \times 90 \times 90 \mathrm{~mm}$. Operation OUR PRICE £ 19.95

PS200 Regulated POWER SUPPLY UNIT

DUR PRICE £19.95 P\&P50p
AUDIOTRONIC LE-102A INTERCOMS

HIGH QUALITY CONSTRUCTION KITS WE ARE
APPOINTED STOCKISTS AT
ALL BRANCHES

All kits are complete with compre hansive easy to follow instructions and covered by full guarantee.
Post and Packing 15p per ki
AF 20 Mono amplifier..
AF30 Mona preamplifier
AF35 Emitter amplifier.
AF 80
0.5 W mic. amplifie
AF 305 intercom..............
AF310/2 Mono Amplifier ATS Automatic light control. AT30 Photo cell switch unit... AT50 400W triac light AT56 2,200W triac fight
ATmmar/speed contral....... $£ 6.90$ ATG 3 channel light control.. £ 14.55
GP304 Circuit board............. $£ 4.94$ GP304 Circuir board.............. $£ 4.94$
GP310 Stereo preamplifier GP310 Stereo preamplifier
for use with $2 \times A F 310$. GP312 Circuit board. GU330 Tremolo unit... HF61 Diade detector.
HF65 FM transmiter

HF310 FM tunar

$£ 4.80$
$£ 3.60$

HF330 Deluxe FM tuner......... f 15.81 HF380 Dwacoder (HF310/325) f9.96 HF395 broadband arrial amp. $£ 1.77$ M160 Multi-uibrator.......
M191 VU Meter.......................
M192 Stereo balance meter. $\begin{array}{lll}\text { M192 Starao balance meter..... } & \mathbf{6 4 . 5 9} \\ \text { M1302 Transistar tester-....... } & \mathbf{5 8 . 4 5}\end{array}$ NT 10 Stabilised power supply
$100 \mathrm{~mA}, ~ 9 V$
E6.
IS $\begin{array}{lr}\text { NT300 Stabilised p. supply..... } & £ 12.51 \\ \text { NT305 Voitage converter..... } \\ \text { £4.50 }\end{array}$ NT310 Power Supply $240 \vee \mathrm{AC}$ NT3 15 Power supply 240V AC
to4.5/15V
DC, $500 \mathrm{~mA} . . .$.
£9.57 Amateur Electronics by Josty-Kit,
the professional book for the amateur the professional book for the amareur cipals to advanced electronic techniq ues. Complete with circuit bo
AE 1 to AE 10 Iisted below. OUR PRICE £3.30 (No VAT)

AE 1100 mW ou	¢1.50
AE2 Pre-amplif	E1.15
AE3 Diade recuiv	E1.82
AE4 Flasher.	99p
AE5 Astable multi-vibrator..	95p
AE6 Monostable multi-vibrator	93 p
AE7 RC generato	97 p
AEB Bass filter.	
AE9 Treble filter	90
AE 10 CCIR tilter	90

TE1021 Stereo Listening Station For balancing and gain selection of louddseakers with adderitional facility for stereo headphone switching. Two gain controls, spakkers on-off slide switch, steroo headphone sockat. OUR PRICE E2.25

AMPLIFIER
Amplifier output 8 watts per 0.06%. Silicon rransistors. Two pick-up plus radio and tape inputs. tape output and scratch filter. OUR PRICE £27.50 pge 60p.
 AUOIOTRONIC
B TRACK CARTRIOGES

 $£ 2.27$
64.22
$£ 7.35$
$£ 7.58$ 7.66
£2.58
55.82 0

 ing stereo sustem with this special sound into 4 live channels. Book shelf speakers handles 10 watts and
has $70.18,000 \mathrm{~Hz}$ performance. OUR PRICE 1515 Converter availab
£3.95 \& \& 50 p

double tuned
discriminator
For
 OUR PRICE E13.50 P\&P 30p

BH001 HEA
Microphone

FM TUNER

Excellent selectivity and sensi. Evity. Twin dual-varicap tuning.
4 pole ceramic filser. 19 transistor stereo demodulator giving 40 dB separation. Distortion 0.2\%output.
OUR PRICE £27.50 P \& P 60 p .
SINCLAIR ICI2
INTEGRATED
CIRCUIT
AMPLIFIER
completewith
printed circuit
mounting board.
OUR PRICE $\mathrm{f} 1.50 \quad \rho \& \rho 15 p$.

SINCLAIR Project 80 Modules z40 Power Amp: 60 Power Amp. Stereo 80 Pre Amp Active Filter Unit
Project 805 Project 805.
P25 Power Sugoly P25 Power Supply. PZ8 Power Supply ${ }^{2}$... $£ 7.98^{\circ} \mathrm{P}$ \& P . 30_{p} SINCLAIR Project 80 Packages $2 \times$ 240/Stereo 80/PZ5.......... $£ 25.00$ $2 \times 240 /$ Sterto $30 / 20 /{ }_{2} \times 260 /$ Stereo $80 / P 28$
2×26 POST \& PACKING 35 ...

controls enabiling

complete mixing
facilitias, Battrery oper ated. Size: 235
$\times 127 \times 76 \mathrm{~mm}$. Inouts. Mics. $3 \times 3 \mathrm{mV}$ $50 \mathrm{k} 2 \times 3 \mathrm{mV} 600$ ohms. Phono. Mag,
4 mV 50 k ; Phono Cerramic 100 mV i
Meg. Outpur 250 mV 100 k . Meg. Outpur 25 m PRICE 8.97 PRP 20p
AUOIOTRONIC AHA101
Stereo Headphone Amplifier

inputs with headphone outputs and
twin stereo helumd controls for ach
separate volume channel. Operates from $9 V$ battery. INPUTS: 5 mV and 100 mV .
OUTPUT: 50 mV per channe OUR PRICE £8.50 P\&P 30p
Also see previous page.
ALL PRICES EXCLUDE VAT

SEW PANEL METERS ARE STOCKEO AT 3 LISLE ST., 311 EDGWARE RD., \& 152 FLEET ST., or order by post from head office.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure.

CALL INTO YOUR NEAREST LASKY'S BRANCH OR SEND COUPON BELOW BRANCH OR SEND COUPON

481 OXFORD ST.	$01-4938640$
3 LISTE ST. WCR	$01-4378204$
34 LISLEST. WC2	01-4379155
118 EOGWARE RO. W2	01.7239789
193 EDGWARE RD. W2	01.7236211
207 EDGWARE RD. W2	01.7233271
311 EDGWARE RD. W2	01-2620387
346 EDGWARE RD. W2	01.7234453
382 EDGWARE RO. W2	01-7234194
109 FLEET 5T. EC4	01-3535812
152/3 FLEET ST. EC4	01.3532833
10 TOTTENHAM CT. RD.	01.6371232
27 TOTTENHAM CT. RD.	01.6363715
13 IOTTENHAM CI. RD.	01.6362605
41/45 TOTENHAM CT. RD.	01.636045
	01-580 0670
ESSEX	
86 SOUTH ST. ROMFORO	20218
205/206 CHURCHILL WEST, VICTORIA CIRCUS, SOUTHEN (Openina Septent	

[^1]
YATES ELECTRONICS (FLITWICK) LTD.
 DEPT.PPE,ELSTOW STORAGEDEPOT

C.W.O. PLEASE. POST AND PACKING
PLEASE ADD IOP TO ORDERS UNDER E2.

Catalogue sent free on request. 10p stamp appreciated

PLEASE ADD 8% VAT

RESISTORS
WW Iskra high stability carbon film-very low noise-capless construction ELECTROSIL TR5

Power watts	Tolerance	Range	Values available	1-99	$100+$
t	5\%	4.7.0-2.2Mn	E24	1.3p	$1.1 p$
t	10\%	3.3Mn-10Mn	E12	${ }^{1.3 p}$	1.19
1	2\%	$10 \mathrm{n}-1 \mathrm{Mn}$	E24	3.5p	3 p
t	10\%	10-3.90	$E 12$	1.38	$1.1 p$
1	10\%	$4.7 \mathrm{n}-1 \mathrm{Ma}$ $1 \mathrm{n}-10 \mathrm{n}$	${ }_{\text {E12 }}$	${ }^{1.3 \mathrm{p}}$	$1.1 p$

DEVELOPMENT PACK

0.5 watt 5% Iskra resistors 5 off each value 4.7Ω to $1 \mathrm{M} \Omega$

POTENTIOMETERS
Carbon track $5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$, log or linear ($\log \mathrm{t} W$, lin $\ddagger \mathrm{W}$).
Single, 14p. Dual gang (stereo), 49p. Single D.P. switeh 28p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal orvertical P.C. mounting (0.1 matrix).

Sub-miniature $0.1 \mathrm{~W}, \mathrm{sp}_{\mathrm{p}}$ each. Miniature $0.25 \mathrm{~W}, 7 \mathrm{p}$ each.
SMOKE AND COMBUSTIBLEGAS DETECTOR-GDI
The GDI is the world's first semiconductor that can convert a concentration of gas or smoke into an electrical signal. The sensor decreases its electrical resistance when it absorbs deoxidizing or combustible gases such as hydrogen, carbon monoxide, methane, propane, alcohol, North Sea gas, as well as carbon-dust containing air or smoke. This decrease is usually large enough to be utilized without amplification. Full details and circuits are supplied with each detector.
Detector GDI, $£ 2$.

SMOKE AND GAS DETECTOR KITS
Mains operated with audible alarm, $\mathbf{~ S 5 . 6 0}$. Mains operated meter indicator, $£ 7.90$. $12 / 24$ battery operated, $\mathbf{8 8} 40$. 12 V battery operated two remote sensors, $£ 12 \cdot 80$.
NOTE-The battery operated kits incorporate our patented circuit to minimise battery drain. Typically 120 mA for 12 V . These kits contain all parts required operated kits, $£ 5$.

MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}$, 3p, $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{jp}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 5 \mathrm{p}, 0.15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}$, $75 \mathrm{p} \dot{\mathrm{V}}: 0.33 \mu \mathrm{~F}, 11 \mathrm{P}, 0.47 \mu \mathrm{~F}, 13 \mathrm{p}$.
$16 \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{3} \mathrm{p}, 0.15 \mu \mathrm{~F} \mathrm{~F}$ $4 \frac{1}{\mathrm{p}}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, \quad 0.33 \mu \mathrm{~F}, 6 \mathrm{p} .0 .47 \mu \mathrm{~F}, 7$ ip. $0.68 \mu \mathrm{~F}, 11 \mathrm{p}$. $1.0 \mu \mathrm{~F}, 13 \mathrm{p}$.
MULLARD POLYESTER CAPACITORS C280 SERIES 250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 3 \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $31 \mathrm{p}, 0.1 \mu \mathrm{~F}, 4 \mathrm{p}, 0.15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p}, 0.33 \mu \mathrm{~F}, 6 \frac{1}{4} \mathrm{p}, 0.47 \mu \mathrm{~F}, 81 \mathrm{p}, 0.68 \mu \mathrm{~F}, 11 \mathrm{p}$
$1.0 \mu \mathrm{~F}, 13 \mathrm{p} .1 .5 \mu \mathrm{~F}, 20 \mathrm{p}, 2.2 \mu \mathrm{~F}, 24 \mathrm{p}$.
$\begin{array}{lc}\text { MYLAR FILM CAPACITORS IOOV CERAMIC DISC CAPACI. } \\ 0.001 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, & \text { TORS } 100 \mathrm{pF} \text { to } 10,000 \mathrm{pF}, \mathrm{2p}\end{array}$ $\begin{array}{ll}0.001 \mu \mathrm{~F}, ~ 0.002 \mu \mathrm{~F}, ~ & 0.005 \mu \mathrm{~F}, ~ 0.01 \mu \mathrm{~F}, ~ 0.02 \mu \mathrm{~F}, \\ 3 \mathrm{~T} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, & 0.1 \mu \mathrm{~F}, 4 \mathrm{p} .\end{array}$

> ELECTROLYTIC CAPACITORS MULLARD OI5/6/7
$(\mu F / V) 1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40$, $15 / 63,22 / 10,22 / 25,22 / 63,33 / 6 \cdot 3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3$, $68 / 16,100 / 4,100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 \mathrm{p}$.
$47 / 63,100 / 40,150 / 25,220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p}, 68 / 63150 / 40,220 / 40,330 / 16$ $47 / 63,100 / 40,150 / 25,220 / 25,330 / 10,470 / 6 \cdot 3,7 \mathrm{p} .68 / 63,150 / 40,220 / 40,330 / 16$, $1,000 / 4$, $10 \mathrm{p} .470 / 10,680 / 6 \cdot 3$, $11 \mathrm{p} .100 / 63,150 / 63,220 / 63,1,000 / 10,12 \mathrm{p} .470 / 25$, $680 / 16,1,500 / 6 \cdot 3,13 \mathrm{p}, 470 / 40,680 / 25,1,000 / 16,1,500 / 10,2,200 / 6 \cdot 3,18 \mathrm{p} .330 / 63$,
$680 / 40,1,000 / 25,1,500 / 16,2,200 / 10,3,300 / 6 \cdot 3,4,700 / 4,21 \mathrm{p}$. 680/40, $1,000 / 25,1,500 / 16,2,200 / 10,3,300 / 6 \cdot 3,4,700 / 4,21 \mathrm{p}$.
SOLID TANTALUM BEAD CAPACITORS
 VEROBOARD
 PRINTED BOARD MARKER
Draw the planned circuit onto a copper laminate board with the P.C. Pen, allow to dry, then im
 SYNCHRONOUS STEPPING MOTOR Dimensions dia 4". body length 44", spindle length $2 \ddagger$ dia. Waight $6 \frac{\mathrm{l}}{\mathrm{lbs}}$ BRAND NEW in maker's packing Ottered at less than $\$$ maker's price.

NORPLEX

Floreglass copperciad laminate. Finest quality epoxy resin base. Heat resistant. fdeal for PC s. Size: 12 $\quad x$ $12^{\prime 2} \times 14^{\circ}=24^{\prime} \times 24^{\prime}$ FULLSHEET $43^{\prime \prime} \times 37^{\prime \prime}(11 \mathrm{sq} \mathrm{M}$) Single-sided Copper with thickness of $3 / 64$
 (1-10 sq. H) $25 p$. P. \& Full Sheet cs each. Carr. E1 for tst
sheet plus 25 p each additlonal sheet

SMITHS RINGER-TIMER

Reliable is minute times sping wound (concurrent with time seting) $15 \times 1 \mathrm{~min}$ divisions approximately
diviaions. panel mounting with ehrome divisions Pansl mounting with chrome
bezel 34 dia $\{1 \cdot 40$. $15 \mathrm{p} P$ \& P .
KNOWLE (U.S.A.) MINIATURE
MICROPHONE CAPSULES
Impedsance approx 200Ω, output 60 or 80 DB at 1 KC tosted. $\varepsilon 1.20$ each P. \& P FREE " Ex oquipmont all

AMPEX 7.5V. D.C. MOTOR

An ultra precision tape motor designed for use in the AG20 portable Pecorder. Torque
450 GM CM. Stall load at 500 ma . Deaws 60 ma on run. 600 rpm = speed adjustment, InternalAF/RF suppression. ${ }^{\frac{1}{2}}$ dla. \times "'spindie. motor $3^{\prime \prime}$ dle. x $1 t^{\prime \prime}$ Original
cost $\mathbf{E 1 6}-50$, OUR PRICE $\mathbf{3} 30.30$ COst \&16.50. Mu-metal enciosura avaliable 75p each FREE P \& P avaliable

ALL PRICES INCLUDE V.A.T. Whilst we welcome official orders from established com panies and Educational Depart ments, it is no longer practical to invoice goods under $£ 5$. Therefore, please remit cash with orders below this amount.

IP) IL.P.E.Esenoromente

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 ts a complete mono hybrid preamplifiep, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers-the while the second caters for tone control and balance

TECHNICAL SPECIFICATION
Inpuls: Magnetic Pick-up 3 mV RIAA: Ceramic Pick-up 30 mV : Mlarophone 10 rr : Tuner 100 mV : Auxillary $3-100 \mathrm{mV}$ Inpuvimpedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs: Tape 100 mV Main output ofb ($0.775 . V$ RMS). Active Tone Controls: Trable $\pm 12 \mathrm{db}$ at 10 kHz Bass $\pm 12 \mathrm{db}$ at 100 Hz Dlatortion: 0.5% at 1 kHz . Signal/Nolse Ratlo: 68db Overloed Capeblity: 40db on most sensitive Input. Supply Voltage
PRICE $£ 4.50$
 The hrso is amplete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink hermetlcally sealed in biack epoxy resin. Only five connections

TECHNICAL SPECIFICATIO
Output Power: 25W RMS 1nto Bkの. Load Impedance: $4-16 \mathrm{k} \cap$. Input Sensitvity Oab (0.775 V RMS). Input Impedence: $47 \mathrm{k} \Omega$. Distortion: Less than 0.1% at 25 W typically 0.05%. Signal/Noise Ratlo: Better than 75 db . Frequency ค 0 ponse: $10 \mathrm{~Hz}-50 \mathrm{kHz}=3 \mathrm{db}$. Supply Voltage $\pm 25 \mathrm{~V}$ Ske: $105 \times 50 \times 25 \mathrm{~mm}$
PRICE £5.98
48 p VAT
P. \& P. free

The PSU50 can be usad for either mono or stereo syatems TECHMICAL SPECIFICATIONS
Output voltage: $\pm \mathbf{2 5 V}$. Input voltage: $210-240 \mathrm{~V}$. SIze: L. 70 0.90 H .60 mm

- ABE \&

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

CROSSLAND HOUSE•NACKINGTON•CANTERBURY•KENT

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

Type P	Price ${ }^{\text {P }}$	Type Pr	Price p
AC10	22	AD162	39
ACl13	20	AD1618	and
$\mathrm{ACl15}$	22	AD16：M	MP 75
ACl17k	K 32	ADT 140	$0 \quad 55$
ACl22	13	AF114	27
ACl25	10	AF110	27
AC126	19	AF116	27
AC127	20	AF゙117	27
AC128	20	AFI18	39
AC132	16	AFl24	33
ACl34	18	AF120	33
ACl3	16	AF126	31
ACt41	20	AFl27	31
AC141K	K 32	AF139	83
AC14：	20	AF178	55
AC142K	－ 28	AF179	55
A © 10	17	AF180	55
AClout	22	AF181	55
ACliju	22	AF186	55
AC1ā6	22	A F23 ${ }^{\text {c }}$	41
ACl_{5}	27	AL10：	72
AC165	22	AL103	72
ACl66	22	ASY：6	28
AC16i	22	ASY2\％	33
AC168	27	AsYud	28
AC169	16	ASY24	28
AC176	28	A．SY50	28
$\mathrm{AC17}$	27	Asyol	28
AC178	31	ASYO2	28
AC179	31	ASYO4	28
AC180	22	ASYOS	28
AC180K	－ 32		28
AC181	22	AsYa 7	28
AC181K	－ 32		28
AC187	24	A8Y73	28
AC187K	－ 25	Aszel	44
AC188	25	BC107	14
AC188K	25	13Cros	14
ACY15	28	13 ClOg	15
ACY18	22	BC113	11
ACY19	22	BCLI4	17
ACY20	22	BCIL	17
ACY： 1	22	BC116	17
ACY\％	18	13C117	20
ACY27	20	BCIIH	11
ACY28	21	$13 C 119$	33
ACY24	89	$13 \mathrm{Cl20}$	88
ACY30	31	18 Cl 25	13
ACY31	31	13C125	20
ACY34	23	13C13：	13
ACY3	23	BC134	20
ACY 36	31	BC130	18
ACY40	19	BC136	17
ACY4］	20	13 Cl 37	17
ACY 4	38	BC139	44
4 D130	42	BC140	33
AD140	53	BC141	33
AD14：	53	BC142	33
AD143	42	13C143	33
AD149	55	HCl^{45}	50
$4{ }^{\text {A }} 161$	38	BC14	11

Type
BCl48 BCl 48
BCl
BCl BC149
BC160

분

Type
C4t： C444
C4AT MAT10 MAT10
MAT1
MAT1 MAT12 MJE30ã
MJE3440 MPF102
MPF104
OCl
0 C .20 OC 20
0 CO 23
0 C 23 OC
OC
OC

Type Pric

TIB43 | Type | Price p | Type Pric | |
| :--- | ---: | :--- | ---: |
| TIB43 | 33 | 2N1309 | 28 |
| UT46 | 30 | $2 N 1613$ | 28 |

㿻 3010

Type
2×396 Brice ${ }^{p}$

$2 \mathbf{N} 4058$ 9N 40 as	
2 N 4058	
2 N 4061	
2 N 4062	
2N4283	
	2N428
2N4287	
	$\underline{2 N 428}$
2N4289	
2 N 4291	
2 N 4293	
2N0172	
9 NO 45	
2 N 5458	
	$2 \mathrm{Nfil2}$
28301	
28302 A	
28302	
	28303
28304	
$\underline{28308}$	
	28307
28321	
${ }^{28322}$	
28323	
28324	
28325	
	28326
28327	
	28701
	40361
	40362

ice p
30
ω_{0}
77
16
18
51
55
16
18
16
18
16
19
23
93
31
46
17
17
31
31
83
74
82
82
10
13
13
14
13
13
14
09
10
10
10
31
55
39
31
31
33

31 \begin{tabular}{l}
11

11

13

13

13

19

13

80

35

35

44

75

85

48

48

81

77

86

86

86

68

48

46

82

77

77

77

77

46

44

50

\hline

GG302

\hdashline$G 303$

\hline
\end{tabular} 2G304 26308

$2(1309$登第 $2 \mathrm{G3} 344$
$2(3345$ $2 \mathrm{G371}$
$2 \mathrm{G3} 1 \mathrm{~B}$
2 G 373
$2 \mathrm{Ga74}$ $2 G 377$
29378 2G381
2G38＂
\qquad
$2 G 414$
$2 G 417$
$2 N 384$
2 N 388
-2 N 40
$2 \mathrm{~N}=2$
2 N 598
2 N 599
2 N 59
2 N 69
2 N 69
$2 N 69$
$2 N 69$
$2 N 69$
2N69
2N70
2N70

$2 N 706 A$	10	$2 N 2926 G$	14
$2 N 708$	13	$2 N 2926 \mathrm{Y}$	12
2 N 711	33	2 N 29260	11
2 N 717	39	2 N 2926 K	11

2 N 743
2 N 74
2 N 914
2 Ns
2N
2 N 9
2 N 1
2 N 1
2 N 1
2 N 1
2 N 1
2N1
2 N 1
2 N 1

74 Series T．T．L．I．C＇s

GI－PAK 8TILL LOWEST IN PRICE．FULL SPECIFICATIOK

 GUARANTEED．ALL FAMOUS MANUFACTURERS| Type | Quantities | | | Type | Qumbities | | | Type | Quantilies | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 起 | \＆ p | \＆ p | | E 1 | \＆ p | cp | | ） p | ¢ p | ${ }^{2} \mathrm{p}$ |
| | | 20 | $100+$ | | 1 | 25 | $100+$ | | 1. | | 100 |
| 7406 | 0.39 | 0.34 | $0-31$ | 7475 | 0.60 | 0.58 | 0.58 | 74151 | 1.10 | 1.05 | 1.0 |
| 7407 | 0.39 | 0.34 | 0.31 | 747 h | 0.44 | 0.43 | 0．42 | 74153 | 1.20 | 1.10 | 1.00 |
| 7408 | 0.25 | 0.24 | 0．23 | 7480 | 0.74 | 0.71 | 0.64 | 74154 | 1－98 | 1.90 | 1.75 |
| 7409 | 0.25 | 0.24 | 0.23 | 7481 | $1 \cdot 30$ | 1.25 | 1.20 | 74150 | 1.80 | 1.15 | 1.10 |
| 7411 | 0.28 | 0.87 | 0.28 | 7482 | 0.90 | 0.85 | 0.80 | 74156 | 1.20 | $1-16$ | 1.10 |
| 7412 | 0． 30 | 0.29 | 0.28 | 7483 | 1.20 | 1.15 | 1.05 | 74157 | 1.20 | $1-15$ | 1.10 |
| 7413 | 0.32 | 0.31 | 0.30 | 7484 | 1.10 | 1.05 | 1.00 | 74160 | 1.73 | 1.70 | 1.85 |
| 7416 | 0.40 | 0.38 | 0．38 | －485 | 2.00 | 1.90 | 1.80 | 74161 | 1.73 | 1.70 | 1.65 |
| 7417 | 0.40 | 0.39 | 0.38 | 7486 | 0.35 | $0 \cdot 34$ | 0.33 | 74162 | 1.73 | 1.70 | 1.85 |
| 742＇2 | 0.30 | 0.29 | 0.28 | 7489 | $4 \cdot 00$ | 3.75 | 3.50 | 74183 | 1.73 | 1.70 | 1.65 |
| 7423 | 0.40 | 0.39 | 0.38 | 7490 | 0.74 | 0.71 | 0.64 | 74164 | $2 \cdot 20$ | 2.10 | 2.0 |
| 7425 | 0.40 | 0.39 | 0.38 | 7491 | 1.10 | 1.05 | 1.00 | － 4160 | 2.20 | 2.10 | 2.0 |
| 7426 | 0.40 | $0 \cdot 38$ | 0.38 | $74 \% 2$ | 0.74 | 0.71 | 0.84 | 74166 | $2 \cdot 35$ | $2 \cdot 30$ | $2 \cdot 8$ |
| 74.27 | 0.40 | 0.38 | 0.36 | 7493 | 0.74 | 0.71 | 0.64 | 74174 | 2.00 | 1.95 | 1.80 |
| 7428 | 0.45 | 0.42 | 0.40 | 7494 | 0.85 | 0.82 | 0.75 | 74175 | 1.40 | 1.35 | $1 \cdot 3$ |
| 7432 | 0.40 | 0.38 | 0.38 | 7495 | 0.85 | 0.82 | 0.75 | 74176 | 1.60 | 1.55 | $1 \cdot 5$ |
| 7433 | 0.42 | 0.40 | 0.38 | 74919 | 0.96 | 0.83 | 0.86 | 74177 | 1.80 | 1.55 | $1 \cdot 6$ |
| 7437 | 0.45 | 0.42 | 0.40 | 74100 | 1.50 | 1.45 | 1.40 | 74180 | 1.60 | 1.55 | 1.50 |
| 7438 | 0.45 | 0.42 | 0.40 | －1104 | 0.70 | 0.68 | 0.86 | 74181 | 5.00 | $4 \cdot 50$ | 4.00 |
| 7441 | 0.74 | 0.71 | 0.64 | 74105 | 0.70 | 0.68 | 0.66 | 74189 | 1.50 | 1.45 | 1.40 |
| 7442 | 0.74 | 0．71 | 0.64 | 74107 | 0.44 | 0.42 | 0.40 | 74184 | 2.40 | 2.30 | 2. |
| 7443 | 1.20 | 1.15 | 1.10 | 74110 | 0.80 | 0.55 | 0.50 | 74190 | 2.15 | 2 L 10 | 2.0 |
| 7444 | 1.20 | 1.15 | 1.10 | 74111 | 0.95 | 0.92 | 0.80 | 74191 | 2.15 | 2.10 | 2.0 |
| 7445 | 1.08 | 1.95 | 1.80 | 74118 | 1.10 | 1.05 | 1.00 | 74192 | 2.15 | 2.10 | 8. |
| 7446 | 1.20 | 1.15 | 1.10 | 74119 | 1.50 | 1.40 | 1.30 | 74193 | 2.18 | 2.10 | 2.0 |
| 7447 | 1.10 | $1-07$ | 1.05 | 74121 | 0.50 | 0.48 | 0.45 | 74194 | 1.80 | 1.80 | $1 \cdot 7$ |
| 7448 | 1.10 | 1.07 | 1.05 | 74129 | 0.88 | 0.88 | 0.84 | 74195 | 1.60 | 1－50 | 1.4 |
| 7470 | 0.32 | 0.29 | 0.27 | 74123 | 1－58 | 1.54 | 1.50 | 74196 | 1.73 | 1.70 | 1 |
| 7472 | 0.32 | 0.29 | 0.87 | 74141 | 0.85 | 0.82 | 0.79 | 74197 | 1.73 | 1.70 | 1. |
| 7473 | 0.41 | 0.38 | 0.35 | 74145 | 1．58 | $1 \cdot 54$ | 1.50 | 74198 | 3.45 | 3．35 | $3 \cdot 2$ |

DUAL－IN－LINE SOCKETS 14 \＆ 16 Lead Mockets for use with
DU．AL－IN－LINE I．C＇s．TWO Ranges PROFESEIONAL \＆NEW LOW COBT． PROF．TYPE No．1－24 25－99 100 up $\begin{array}{lllll}\text { T8014 } & 14 & \text { pintype } & 38 p & 30 p \\ \text { T8016 } & 16 \text { pintype } & 38 p & 35 \mathrm{p} & 38 \mathrm{p}\end{array}$ $\begin{array}{lllll}13 P S 14 & 14 \text { pintype } & 16 p & 14 p & 12 p\end{array}$ BPS16 16 pintype 17p 15p 18p

DTL 930 SERIE

Type	Price		
	1	25	100＋
BP930	15p	140	18p
BP932	18p	15p	14p
BP933	16p	15p	14D
BP935	16p	16p	14p
BP936	16D	168	14D
BP944	16p	15p	140
BP945	30p	28p	250
BP946	15p	14p	18p
BP948	300	28p	25 D
BP96］	70p	$65 p$	80p
BP96\％	150	140	18D
H P9093	40p	43p	40D
HP9094	45p	48D	400
BP9097	450	48p	40 p
BP9099	450	48p	400
Devicen may be mixed to quality for quantity price．Larger quantity prices on application．（DTL 930 Series only．）			

voltage regulators TOS Platic 1.5 Ampt MVRJV）
 MVRIJV） MA $7815 / 2$
MVR15V）

TRIPLE 86 －bit DYNAMIC SHIFT REGISTER EDSR3166
Comprises three iff－bit 20 dynamic hit registers with independent patibility and buffered clock lines o reduce the capacitive load pre－ sentell at the clock pins．A boot． swing at the 62.50 each

LINEARINTEGRATED CIRCUITS

Typeno．	1	$\because 5$	$100+$
72702	50p	48 p	45p
72709	35D	38 p	30p
72710	45D	48p	40p
72741	40p	38p	35p
72741 C	450	430	40p
72741 P	38p	38 p	34 p
72748 P	38p	36D	34 p
SL201C	50p	45 D	40p
SL701C	50p	46p	40p
SL70\％C	50p	45D	40p
TAA263	80p	700	800
TAA293	£1．00	95p	90p
TAA350．	21.85	41.80	81.70
HA703C	28p	26p	24p
${ }^{14.4096}{ }^{\circ}$	35 y	830	80 D
$\mu \mathrm{A} 711$	450	48p	40p
NUMERICAL INDICATOR TUBES			
CD66			21.87
（ilil16			81.70
3015 F Minitron			11．50
MAN 3M．L．E．D． 7 －seguent 0．127＊			
All indicatora $0.9+$ Decimal point．			
All side sjewing Full data for all			
types available on request．			
2N414． 4.20 each			

－the lowest prices！

MAMMOTH I．C．PAK

APPROXIMATELY 200 PIECES ASSORTED MANUFACTURERS＇FALL－OUT INTE－ GRATED CIRCUITS INCLUDING LOGIC 74 SERIES LINEAR and AUDIO AMPLI－

TRANBISTOR EQUIVA LENTS BOOK．A com equivalents book to European，American ant Excluase tranaistors． exilnaive
－

Pak No
Desctiption
0 Glaam Bub－Min．fieneral Purpose fiermanium Diode すこ \quad 万人 Mixed Germanium Transistors AF／P\＆
U 375 Gerinanium Uold Bonled Sub－Min．like OA5，OA4 $\mathrm{U}+40$ Germaniun Transistors like OC81，AC128
U है 130% man Sub－Min．Silicon Diodeq
$06 \quad 30$ Sil．Planar Trana NPN like Rgy95A．ON70f 16 SHI Rectifier TOP－HAT $\overline{50} \mathrm{~mA}$ VI．TG．RANGF，up to $1 \overline{000} \overline{0.55}$ ［ 8 50 Sil．Planar Diotes DO－7 Glans 250 m A like OA200／202 U 9 20 Mixed Voltages． 1 Watt Zener Diodes
$010 \quad 20 \mathrm{~J}$ AY 50 charge storage Diodes DO．7（ilass
Ni sil Planar Trans．TO－5 the 2N1132， 2 N 3904
U13 30 PNP－NPN SII．Transistors OC 200 \＆ 2810
$\overline{114} \quad 150$ Mixed Silicon and Germaniun Diodes
$\overline{U 15} 2 \overline{5}$ NPN Sil．Flanar Trans．TO－5 like BFY $51,2 \mathbb{N} 697$
U16 103 Amp Silicon Itectiflers stud Type up to 1000 P 1
U17 30 Germanium I＇NP AP Transiators TO－5 like ACY $17-3$
UI9 25 Silicon NPN Tratislators like BCl08
U20 12 I－A Ampsilicon Rectitiers Top that up to 1000 PIV
U21 30 AF ．Germanium Alloy Transistors 2G300 Series \＆OC7
U23 $3 \overline{0}$ MADT＇s like MIIz Series PNP Transistors
U24 LO Germanium 1 Amp Rectiflers fJM Series up tio $30 \overline{0} \overline{\text { PI }} V$
U．5 25300 MHz NPN Silicon ransistors 2 N 708 ，13SY27

U 26	30	Fast Switching Silicon Diodes fike IN914 Micro－Mtn．
U 29	10	1 Amp SCR＇s TO－5 can，up to 600 I＇IV CRBl／25－600

U32 25 Zener Diodes 400 mW DO． 7 case 3 － 18 volts mixel
U34 10 Plastic Case 1 Amp Silicon Rectifiers IN 4000 S
$1 \overline{3} 5$－$\frac{35}{25}$ Silicon Planar Transintors PNP TO－18 $2 \mathrm{~N}^{2} 2900^{\circ}$
U36 $\quad 25$ Silicon Planar NI＇N Transistors TO－5 13 FY $50 / 51 / 52$
J37 30 Silicon Alloy Tranaistors $80 \cdot \overline{2}$ PN P OC200， 28322
U38 $\overline{20}$ Fast Suritching Silicon Trans．NPN $400 \mathrm{M} H z 2 \overline{\mathrm{~N} 301}$
U39 30 LRF．（ierm．P＇NP Transistors 2N $1303 / 5$ TO－
U40 10 Dilal Transistore 6 lead TO－5 3 N 2060
U43 25 Sil Trans．Plastic TO－1 A．F゙．MC113／114
U44 20 Sil．Trans．P＇astic TO－ 5 BC1 15／NPN
3 A BCR．TO66 up to 600 PI
U46 ： 20 Unijunction Transistors simllar to TIB43
U47 10 TO220AB plastic triacs 50 V 6 A
U48 9 NI＇N Sil power transiatiors like 2 N 3055
$2 \mathrm{~N} 5294 / \mathrm{C} 296$
1.10

Code Nos．mentioned atove are given a a quicle to the ty
he pak．The tlevices themselves are normally unmarked．

FIERS．MANY CODED also SOME UNKNOWN TYPES－YOU TO IDENTIFY．

PAK NO．M．I．C． 200

PRICE $\mathbf{t} 1 \cdot 25$ per PAK including P ．\＆P ．and VAT

INTEGRATED CIRCUIT PAKS

EChnical and data BOOKB ARE NOW ABAILABLEEESTOCK．

1974 CATALOGUE
NOW READY 10p
NEW LOW PRICED TESTED S．C．R．＇S
Mannfacturers＇＂Fall Onts＂which include Functional and Part－Functional Units，
These are classed as＇out－of－spec＇from the maker＇s very rigid specifications，bu
are ideal for learning about I．C．＇s and experimental work
Pak No．Contents Price
UIC00 $=12 \times 740$
$U 1001=12 \times 7401$
$U C 01$ UIC02 $=12 \times 7402$
UIC03 $=12 \times 7401$ UIC03 $=12 \times 7403$
UIC0 $=12 \times 7404$ UIC04 $=12 \times 7404$
IIC05 $=12 \times 7405$
 $1 \mathrm{IC} 06=8 \times 7406$

$11 \mathrm{C} 07=8 \times 7407$ IC10 $=12 \times 7410$ $11 \mathrm{IC} 20=12 \times 7420$ IC30 $=12 \times 7430$ IIC40 $=12 \times 7440$ UIC41 $=5 \times 7441$ $\begin{array}{ll}1 C 42=5 \times 7+42 & 0.55\end{array}$ $-1 \mathrm{C43}=5 \times 7443 \quad 0.55$ UIC44 $=6 \times 7444 \quad 0.55$ | UIC44 $=5 \times 7444$ | 0.55 | UIC82 $=5 \times 7482$ | 0.55 |
| :--- | :--- | :--- | :--- |
| UIC45 $=5 \times 7.445$ | 0.55 | UIC83 $=5 \times 7483$ | 0.55 | Paks cannot be split，but

Pas No．Contents Price UIC46 $=5 \times 7446$ UlC48 $=5 \times 748$ $\begin{array}{ll}140 & 0.55\end{array}$ U1C50 $=12 \times 74500.55$ UTC51 $=12 \times 7.51 \quad 0.55$ UIC5 $3=12 \times 7453 \quad 0.55$ | $\mathrm{UIC} 54=12 \times 7454$ | 0.55 |
| :--- | :--- |
| $\mathrm{UIC60}=12 \times 7460$ | 0.55 |
| UIC70 | 8×7470 |
| 0.55 | | $\mathrm{UIC70}=8 \times 7470$ U1C72 $=8 \times 7472$ UIC74 $=8 \times 7473$ UIC76 $=8 \times 7414$ U1C76 $=8 \times 7476$ UIC81 $=5 \times 748$ U1C83 $=5 \times 1483$

Pak No．Contents Price $\mathrm{U1C86}=5 \times 7484$ $\mathrm{U1C90}=5 \times 7490$ $11 \mathrm{CN}=5 \times 7491$
$1 \mathrm{IC92}=5 \times 7492$ $11 \mathrm{C92}=5 \times 7492$
UIC93 $=5 \times 749.3$ UIC94 $=5 \times 7494$
U1C45 $=5 \times 7444$ $171045=5 \times 7445$ UIC96 $=5 \times 7496$ $\mathrm{U1C100}=5 \times 74100$ UIC121 $=5 \times 74121$ $\begin{array}{lll}\mathrm{UIC141}=5 \times 74141 & 0.55 \\ \text { U1C15 } & 0.5 \times 74151 & 0.55\end{array}$ $\begin{array}{ll}\text { U1C151 }=5 \times 74151 & 0.55 \\ \text { UIC154 }=5 \times 74154 & 0.55\end{array}$ $\begin{array}{ll}\mathrm{UIC154}=5 \times 74154 & 0.55 \\ \mathrm{UIC193}=5 \times 74193 & 0.55\end{array}$ $\begin{array}{lll}\text { UIC193 } & =5 \times 74193 & 0.55 \\ \text { UIC199 } & =5 \times 74194 & 0.55\end{array}$ UICXI $=25$ Assorted

2 Amp．BRIDGE RECTS． 00 －RMA $200 \vee \mathrm{RMS}$ 400 y FMS 1,000 ：RMS

50 ）
D1698 NPN SILICON
DUAL TRANSISTOR $35 p$ eac
40 p
45 c 45p＂． 45 p
50 p
55 p
（Similar to en 2060）

LINEAR INTEGATED CIRCOIT PAKN

FREE
One 65p Pak of your
own choice 1 ree with orders valued 44 or oye

CADMIUM CELLS
OR1＇1248p

SIL．RECTS．TESTED

PIV 300 mA 700 mA 1A $1-\mathrm{e} \mathrm{A}$ 3A 10 A 30 A （DO7）（SO16）Plastic（ 8016 ）（ SO 10 ）（ 8010 ）（TO48）

						p		p
50	05	06	1N4001	05	08	15	21	60
100	05	07	1 N4002	08	10	17	23	75
200	08	10	1N4003	07	12	22	25	1.00
400	08	15	1 N 4004	08	15	30	38	1.35
600	09	17	IN 400 s	10	18	36	45	1.90
800	12	19	IN 4006	11	20	38	55	$2 \cdot 10$
1000	14	30	1N4007	12	25	48	65	2－50
1200		35			30	58	75	3.00
$\begin{aligned} & \text { DIACS } \\ & \text { FOR USE WITH } \\ & \text { TRIACB. } \\ & \text { [BR100 (D32) 25p each } \end{aligned}$				TRIACS				
				3		6.4		10 A
				TO．f TO．66 T0．48				
10 amp POTTED BRIOGE RECTIFIER on heat sink． IOOPIV．99p each					p		p	£p
				100V	33		55	88
				200 V	55		86	90
				400 V	77		83	1.21

All prices include V．A．T．Giro No．388－7006
Please send all orders direct to warehouse and despath department

P．O．BOX 6，WARE．HERTS
 Portage and packing add 15p．Overseds add extro for airmail． Guarantecd Satisfaction or Money Back

An

Announcement of Importance

to all those connected with

Films, Television, Music and related industries

STUDIO FACILITIES AVAILABLE ON A DAILY BASIS OR LEASE AT THE

 20 ACRE SHEPPERTON STUDIO CENTRESHEPPERTON HAS BEEN COMPLETELY REORGANISED
Film Producers can rent the big scale stages without incurring overheads which are associated with traditional big time studios. Service companies. producers. directors. writers composers. etc.. can rent stages. workshops. offices. cutting rooms. post production facilities. etc.. and so be based where the action is!
FULL TIME MANAGEMENT STAFF ARE BASED AT THE STUDIOS TO LOOK AFTER TENANTS AND PROVIDE CENTRAL SERVICES
SHEPPERTON STUDIOS-HOME OF MANY FAMOUS PRODUCTIONS-IS IDEALLY SITUATED IN A PLEASANT ENVIRONMENT 18 MILES FROM THE CENTRE OF LONDÓN. 6 MILES FROM LONDON AIRPORT AND M4. AND ONLY 2 MILES FROM THE M3
Quotes.
A modern and realistic approach to fitm making -Director David Butts of BBRK Lid
I can recommend it '—Jules Levy. producer of "Brannigan' with John Wayne
These are opportunities not to be missed-Come to Shepperton Contact
The Estate Manager. The Shepperton Studio Centre. Squires Bridge Road. Shepperton. Middx Tel. Chertsey 62611

VARIABLE VOLTAGE TRANSFORMERS

300 VA ISOLATING TRANSFORMER

115/230-230/230 volts. 5ereened. Primary two separate 115 V at 150 VA each for 115 or 230 volt output. Can te used in series or parallel connections. Fully tropicalised. Length 13.5 cm . Width 11 cm . Height SPECIAL OFFER PRICE E5. Carr. 80p

A.C. MAINS TIMER UNIT

25 am

 25 amp. single pole switch which can be preset for any to switch on for any ahead of time, from 10 mins. to6 hrs, then switch off. An 6 hrs then switch off. An
 timer is also incorporated. Ideal Electric Blankets, etc. Atcractive satin copper finish. Size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}$.
20p. (Total inel. VAT and Post $£ 2 \cdot 38$).

PROGRAMME TIMERS

$230 / 240 \mathrm{~V}$ a.c. 15 r.p.m. Motors

 Each cam operates a c/o micro switch. Ideal for lighting effectanimated displays, etc.Ex eq

tested model. $£ 2.50$ post 30 p p 6 cam model 63.25 post 30 p
 6 cam model $t \cdot 25$ post 30 p

6 cam model 3 r.p.m. $E 3.25$ post 30 p .
MINIATURE UNISELECTOR SWITCHES 2 Bank, 11 position. 24 volt D.C operation, full wiper with an2.50. Post 20p
with 5 Bank,
$\mathbf{4} 3 \cdot 50$. Post 20 D

COIN MECHANISM (Ex London Transport) Unit containing, selector mechanism for 1p. 2p and ocoins. Micro switches, relays, solenoidoperated ard. Incredible VALUE at only $\mathbf{6 2 \cdot 5 0}$. Post 60 p.

24 VOLT DC SOLENOIDS

UNIT containing I heavy duty solenoid approx. 251b pull 1 inch travel. Two X approx. Ilb pull $\frac{1}{3}$ inch travel i heavy duty single makerelay. Price 62.50 . Post 60 p . ABSOLUTE BARGIIN.

230 V FAN ASSEMBLY

Continuously rated, removable
luminium blades. Price \mathcal{G}

PRECISION CENTRIFUGAL BLOWER Mfg. Airflow Developments Ltd.
Heavy Duty continuously rated. Heavy Duty continuously rated. moror. Size: $16 \times 14 \mathrm{~cm}$ (case only) OAL 15 cm . Ape
$6 \quad 6 \mathrm{~cm}$. 66.50 . Post 50 p .
230/240 VOLT A.C. EXTRACTOR FAN KIT
Comprising of impeller, continuously rated motor, motor housing and fixings as illustrated. Price $\notin 1 \cdot 75$. Post

All Mail Orders-Caliers_Ample Parking
Dept. PEI0,57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

STROBE! STROBE!. STROBE !

Build a Strobe Unit, using the latest type Xenon
white light flash tube. 5 olid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation. EXPERIMENTERS' ECONOMY KIT EXPERIMENTERS' ECONOMY KIT. Al
5 peed adjustable 1 to 30 flash per sec. Al epeed adjustable to 30 flash Per sec. Tube and instructions $\mathbf{6 6} 30$. Poss 30p.
INDUSTRIAL KIT
Ideally suitable for scho
Approx t output of Hy.Lyghs Price $\mathbf{4} 14.00$
Approx.
Post 50 p
HY-LYGHT STROBE MK III
For use in large rooms, halls and ucilises a silica rube, princed circuit. Speed adjustable 0-20 f.p.s. Light output greater than many (so calied Joule) strobes. (14. Post 50p
THE 'SUPER" HY-LYGHT KIT
Approx. four times the light output of our well proven Hy-Lyght strobe

- Variable speed from 1.13 flash per sec.
- Reactor control circuit producing an intense WOBIte light. ONLY £22. Post 75p. CASE. For Hy-Lyght Kit including reflector $\mathbf{E} 5.75$ Pose 25p.
Super Hy-Lyght case including reflector $\mathbf{4 8}$. Pos 60p
7-inch POLISHED REFLECTOR
ldeally suited for above Strobe kits. Price 55p Post 15 p.

BIG BLACK LIGHT Powerful source of U.V. P.F. ballast is essential Price of matched ballast and bulb £16. Post 61. Spare bulb $£ 7$. Post 40p.
BLACK LIGHT FLUORESCENT U.V. TUBES 4 ft 40 watt . Price $\mathbf{5} 5 \mathbf{5 0}$. Pose 30 p . 2 ft 20 wate 64.25. Post 25 p . (For use in standard bi-pin MINI. 12 in 8 watt, $£ 1.60$. Post 15 p . gin 6
watt. $£ 1.30$. Post $15 p$. Complete ballast watt. £1.30. Post $15 p$. Complete ballast
unit and holders for 9 in and 12 in tube, unit and holders for 9 in and $2 i n$ tube
E .70 . Post 25 p . (9in and 12 in measures approx) U.D.I. SINGLE CHANNEL 750 WATT MANUAL/AUTO DIMMER 750 W Solid State Fader, with threc functions.
Manual fade: Auro fade-up: Auto fade-down. Automatic cycling up and down. Function selected with 'three-position' rocker swisch. Two ranges of cycling for 'Flashing' or 'Slow blending'. Ready buile module $6^{\circ} \times 3^{\prime \prime}$ glass
fibre board incorporating 10 amp TRIAC. fibre board incorporating Two or more modules for top quality colour
blending and flashing effecis PRICE \&IS.
Post 30 .

INSULATION TESTERS NEW! Test to I.E.E. Spec. Rugged meral
construction, suitable for bench or construction, suitable for bench or
field work. constant speed clurch. Size L.8in. W. $4 \mathrm{in}, \mathrm{H} .6 \mathrm{in}$, weight 61 ib ,000 500V 500 megohs, 234 . Po 60p. 500V, 500 megohms, E28. Post

TRIACS
GENERALELECTRICPOWER-GLASTRIACS 10 amp. Glass passivated plastic triac. Latest devic rom U.S.A. Long term reliability. Type SC1460 10 amp .400 PIV. E1. Post 5p. Type SCI46E 10 amp 500 PIV, $f 1.30$. Post 5 p. (Inclusive of data and applica-
tion sheet.) Suitable Diac 18 p .

HIGH VISIBILITY PANEL MOUNTING LED's. 0.25 inch mounting, 0.16 inch lens. Typical parameters $2 \mathrm{~V}, 20 \mathrm{M}$ amps all type. Supplied complete with snap in mountings and data. Red 4 for $£ 1$, Green
3 for $£ 1$, Yellow 3 for $£ 1$. Post lop. (in order) (\mathbb{K})).
LED READOUTS
7 series, L / H d.p. one-third hig
character. 14 pin D.I.L. Available in
RED or GREEN. Price \&i.65. Post lop
4 for E6. Post paid.
All prices are subject to
8% VAT. (8 p in the $£$)
To ail orders add 8% VAT to total value of goods including carrizge/ packaging.
packaging.
$\square B A B C O$

Superior Quality Precision Made NEW POWER RHEOSTATS

New eeramic construction, vitreous

 enamel embedded winding, heavyduty brush assembly, continuously
raced $\begin{array}{ll}\text { rated. WATT } \\ 25 \\ f 1.15 \text {. POst } & 10 / 25 / 50 / 100 / 150 / 500 / 1 \mathrm{k} / \mathrm{ohm}\end{array}$
 ohm El-60. Post 10p.
$100 \mathrm{WATT} 1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$. $3.5 \mathrm{k} / 5 \mathrm{k}$ ohm E2.35. Post 15 p
Black Silver, Skirted knob calibrated in Nos 1-9. I $\frac{1}{2}$ in. dia. brass bush. Idealfor above Rheostats

RELAYSSIEMENS, PLESSEY, Et MINIATURE RELAYS
Col.(1)
Coil ohm Col. (2) Working
d.c. volts Col. 3 Coneracts Col. (4)
Price HD =
Heavy duty
*Incl. Base

1
58
150
185
308
100
700
700
700
2.500
2,500
9,000
$15 k$

5-9	$6 \mathrm{c} / 0$
4-9	$2 \mathrm{c} / 0$
8-12	6M
$9-14$	$4 \mathrm{c} / \mathrm{O}$
12-20	4 c 10
16-24	4M 2B
16-24	$4 \mathrm{c} / \mathrm{O}$
20-30	$6 \mathrm{c} / \mathrm{o}$
31-43	$2 \mathrm{c} / 0 \mathrm{HD}$
36-45	6 M
40-70	$2 \mathrm{c} / 0$
85-110	6 M

\qquad

All prices
6 VOLT D.C. I make contacts 35p. Post 10 p
6 YOLT D. 2 make contacts 75 p . Post 10 p
9 VOLT D.C. RELAY
3 c/0 5 amp contacts. 70 ohm coil. 75p. Post 10 p
3 c/o 5 amp contacts. 120 ohm coil. 75 p . Post 10 p
24 VOLTD.C. $3 \mathrm{c} / 075 \mathrm{pp}$. Post 10 p
DIAMOND 'H' Heavy Duzy
$230 / 240 \mathrm{~V}$ a.c. 2 c/o. 25 amp RES at 250 V a.c. E_{2}
CLARE-ELLIOTT TYPE RP764I G8

Miniasure rela 70p post paid
 70p post paid

100 VOLT A.C. 2 c/o sealed type, octal base f1. Post 10p.
24 VOLT A.C. Mrg. by ITT. 2 h.d. c/o contacts 55p. Post 10p.
240 VOLT A.C. AELAY, Mfg. by ITT. 240 V A. C $10 \mathrm{amph.d}$ c/o contacts. Octal plug in base. Price 75 p . Post 10p.
220/240 VOLT A.C. RELAY
3 c/o 5 amp consacts. Sealed. Incl. II-pin base EI.25. Post 10p.
HEAVYDUTYA.C.SEALEDRELAYS

DRY REED RELAYS

Mig. by ERG, 12 volt d.c. encapsulated.
Single e/o 65p. post paid. Two c/o 85p, post paid. STC 280 ohm coil $6 / 12 \vee$ d.c. 3 make metal shrouded.
60 p post paid
Other types available, state your requirement
"HONEYWELL" PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY Each bank comprises a c/o rated at Each bank comprises a ch rated at
10 amps 240 V . A. C. Black knobl in fixing hole in. ONE bank 30p; TWO bank 40p; THREE bank 50p. Quote for auantity
VERY SPECIAL OFFER MINIATURE ROLLER MICRO SWITCH. 5 amp. c/o contacts. Mig. BONNELLA. NEW. Price 10)
EI-50. Post 10p. (Min. order 10)

FOOT SWITCH

Suitable for Motors, Drills,
etc., etc. 5 amp. 250 volt Price 75p. Post 15p.

600 WATT DIMMER SWITCH
Easily fitted. Fully guaranteed by makers.
Will control up to 600 W of lighting
except fluorescent at mains voltage.
Complete with simple instructions.
6. 2.75 . Post 25p.

INSULATED TERMINALS Available in black, red, white, yellow, blue and green. New. 2 c

METERS
METERS NEW! $2 \frac{1}{2}$ in. Flush
round. Available in D.C. Amps, , 5,10,
15,20 or A.C. Amps $1,5,10,15,20$,
Voltmeter $0-j 00$ VA.C. All types $\mathrm{E2}$.
Post 15p.
Personal collers only. Open Sot.
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

ELEGTROALIVE Present top quality components for price-minded constructors

Guaranteed to spec. Genuine discounts - Free postage in U.K.

TRANSISTORS

ACI53K pnp germanium low power 37p
ACl76K npn germanium low power 38p
AD161 npn germanium medium power 42p
AO162 pnp germanium medium power 40p AF139 Pnp germanium UHF 57 p

Standard groupings available
BDI35 np med. power 37p
BDI 36 pnp med. power 39p
DIODES
OA90, OA91, OA95 each 6p
OA202 11p
Other amiconductor
ACl28 17p;
BFYSI 23p
full lists and technical data will be found in Cotologue No. 7.

RESISTORS
Code Watts Ohms I to 9 10 to 99 100 up

Code						
C	1/3	4.7-470K	1.3	$1 \cdot 1$		nett
c	1/2	4.7-10M	1.3	1.1		nett
C	3/4	4.7-10M	1.5	1.2		nect
C	1	4.7-10M	3.2	2.5		nett
MO	1/2	10-1M	4	3.3	2.	nett
WW	1	0.22-3.9	11	10	8	nett
WW	3	I-IOK	9	8	6	nett
WW	7	1-10K	11	10	8	nett

$\mathrm{C}=$ carbon film, high stability low noise.
$M O=$ metaloxide, ElectrosilTR5, ultralow noise.
Values: All El2 except $C \not W, C+W$, and $M O+W$
E12: $10,12,15,18,22,27,33,39,47,56,68,82$ and their decades.
24: as El2 plus II, 13, 16, 20, 24, 30, 36, 43, 51 olerances:
0.05% except WWI 10%
0.05 n below $10 n$ and MO if 2%

Prices are in pence each for quantities of the
same ohmic value and power rating. NOT mixed values. (Ignore fractions of one penny on total value of resistor order.) Pricesfor 100 up In unite of 100 only.

MINITRON DIGITALINDICATORS
301545 Seven sesment filament, compatible with $8 t a n d a r d ~ l o g i c ~ m o d u l e s . ~ 0-9 ~ a n d ~ d e c i m a l ~ p o i n t ~$
9 mm eharacters in 16 lead DIL, $\mathrm{C} 1-20$. Nowayailable in 8 mA or 15 mA per segment rating. Now avalable in 8mA or 15 mA per segment rating.
3015 G showing + or - and I and dec. pt , A1-20.

This is EV Service

DISCOUNTS

Available on all items except those shown with
NETT PRICES. 10% on orders from $E 5$ to $£ 14.99$. 15% on orders $£ 15$ and over

PACKING AND POSTAGE FREE

and under, there is an additional handling charge of 10 p .

GUARANTEE OF QUALITY

All goods are sold on the understanding that they conform to manufacturers' specifications and satisfacton is guaranteed as such-no remens. or sub-standard merchandise is offered for sale.
PRICES QUOTED DO NOT INCLUDE VAT, for which 8% must be added to total nett value of order. Every effort is made to ensure correct ness of information and prices at time of going to press. S.A.E. with written enquiries please.

GIRO ACCOUNT No. 38/671/4002

CAPACITORS

DALY ELECTROLYTIC
 $50 \mathrm{~V}, 41 \mathrm{p} ; 2.000 \mathrm{mF} / 50 \mathrm{~V}, 57 \mathrm{p} ; 5,000 \mathrm{mF} / 50 \mathrm{~V}$, $61 \cdot 18$ $50,00 \mathrm{mF} / 100 \mathrm{~V}, 62.91 ; 2.200 \mathrm{mF} / 100 \mathrm{~V}$, El 1.56 .

POLYESTER TYPE C280

Rodiol leods for P.C.B. mounting. Working voltoge
$\begin{aligned} & 240 \mathrm{~V} \text { d.c. } \\ & 0.01,0.015,\end{aligned} 0.022,0.033,0.047,3 \mathrm{p}$ each; 0.068 , $0.1,0.15,4 p$ each; $0.22,5 p ; 0.33,7 p ; 047$, $8 p$; 0.68 , 11 p ; $1.0,14 \mathrm{p}$; 1.5, 21p; 2-2, 24p.

SILVERED MICA
Working voltage 500 V d.c
Values in pF-2.2 to 820 in 32 stages, 6 p each: ${ }^{1}, 700,1,500$, 7p each; $1,800,{ }^{8 p}$; 2, 200, 10 p ; 6,800, 20p; 8,200, $10,000,25_{p}$ each.
TANTALUMBEAD
$0.1,0.22,0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 14 \mathrm{p}$ each. $2.2 / 16 \mathrm{~V}$ $2.2 / 35 \mathrm{~V}, 47.7 / 16 \mathrm{~V}, 10 / 6 \cdot 3 \mathrm{~V}$, 14 p each. $4.7 / 35 \mathrm{~V}$ 0/16V. $22 / 6 \cdot 3 \mathrm{~V}$, 18 p each. $10 / 25 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6 \cdot 3 \mathrm{~V}$

POLYCARBONATE TYPE B 32540
Working Voltage 250 V
Values in mF: 0.0047, 0.0068, U.0082, 0.01, 0.012 $0.015,3 \mathrm{~B}$ each. $0.018,0.022,0.027,0.033,0.039$ $0.047,0.056,0.068,0.082,0.1$. 4 p each
CERAMIC PLATE
Working voltage 50 V d.c.
In 26 values from 22 pF to $6,800 \mathrm{pF}, 2 \mathrm{p}$ each.

ELECTROLYTIC Axial Leads

uF	V	6.3 V	10V	16 V	25 V	40 V	63	00v
	-	-	-	-		110	1	$8_{8}^{8 p}$
2.2	二				$11 p$		8 p	9 p
4.7	-	-	-	$11 p$		8 p	9 p	9 p
10	-			-	8 p	9 p	${ }^{8} \mathrm{p}$	8 p
22		-	8 p		9 p	${ }^{8 p}$	${ }_{8 p}$	10p
47	8 p	-	9	8 p	8 p	8 p	10p	13p
100	9 p	8p	8 p	8 p	${ }^{9} \mathrm{p}$	10p	12p	19p
220	8 p	$8 \mathrm{8p}$	$9 p$	10p	10p	$11 p$	17p	18p
470	9 p	10p	10p	$11 p$	130	17p	24p	45p
1.000	$11 p$	13 p	13p	17p	20p	25p	41p	
2,200	15p	18p	23p	26p	37p	4ip		
4,700	26p	30p	39p	44p	58p		-	
10,000	42p	46p		-				

POTENTIOMETERS

ROTARY, CARBON TRACK

Double wipers for good contoct and long warking life. P20 SINGLE linear 100 ohms to 4.7Mn. 14p each.
 each. DUAL GANG linear $4.7 \mathrm{k} \Omega$ to 2.2 Mn . 48p
JP20 DUAL GANG log. $4.7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$, 48p
JP20 DUAL GANG log/antilog 10K, 22K, 47K, IM@ only, 48p each.
IP20 OUly, 48p each.
IP 20 GANG antilog lok only 48 p .
2A DP mains switch with any of above i4p extra. abque. SKELETON CARBON PRESETS 6peach. SLIDER
Linear or log, $4.7 \mathrm{k} \Omega$ ro $1 \mathrm{M} \Omega$ in all popular values, 30peach.
Escutcheon plates, black, white or light grey, $10 p$ Control knobs blk/wht/red/yel/grn/blue/dk. grey/lt

ELECTROVALUE LTD

JACKS AND PLUGS

2-circuit, unswirched, SI/SS
2-circuit/2 break contacts, $S 1 / \mathrm{BB}$
3-circuit, unswitched (not GPO), S3/SSS 3 -circuir with 3 break contacts, S3/BBB
$11 p$
20p
green or arev chrome nut and black/white/red
circuit with chrome nue and black/white/red green with 2 break contacts, S5/BB 17p Miniaeure. 3.5 mm , 2-circuit (black), 2 br . cont. Plugs
2 circ. screened, top entry, P.
2 circ. screened, top entry, P. SEPI
Line socker, mono, 231
Line socket, stereo, 244
-circuit, unscreened, bl/grey/wh. P.4 46p
P2 18p
-circuit, screened, top entry, P3
Miniature, 3.5 mm , side entry, SEP3
Minature, 3.5 mm , 2-cir.. screened, PS 13p Miniature, 3.5 mm, 2-circ., unscreened, various INSULATED SCREW TERMINALS
In moulded polypropylene, with nickel plate on brass. With insulating set. Washers, tag and nuts 15A/250V. In blk/brwn/red/yel/grn/blgrey/wh. Type TP.I. 14p each
ZENER DIODES full range E24 values: 400 mW $2-7 \mathrm{~V}$ to 36 V . 14 p each; IW: 6.8 V to 82 V , 21 p each Clip to increase 1.5 W rating to 3 watts (type 266F) 5p.

VEROBOARD

Copper clad 0.1 in. matrix -2.5×3.75 ins. 32p. 3.75×3.75 ins., 35 p. 2.5×5 ins.. 35 p. $3.75 \times$ Copper clad 0.15 in. matrix -2.5×3.75 ins., 24 p . 3.75×3.75 ins., 35p. 2.5×5 ins., 35 p. $3.75 \times$ Vero spor face cutter (any matrix), 53p. 0.040 ping (for 0,1 matrix) per 100, 35p. 0.052 pins (for 0.15 matrix) per 100,35 p.

KNOBS

In a great variety of modern eypes, for zin. shaft per pack of two (Catalogue 7, page 62)

CONNECTORS

DIN from 2-way to 7 -way plugs and sockets; phono SIEMENS THYRISTORS
$0.8 \mathrm{~A} 400 \mathrm{~V}, 65 \mathrm{p} ; 600 \mathrm{~V}, 94 \mathrm{p}$; 3A $400 \mathrm{~V}, \mathrm{El} .06 ; 600 \mathrm{~V}$ C 1.50.
DESOLDERING BRAID
6ft, 66p; Reels, 25 m, 67.15.

EV CATALOGUE 7

2nd Printing (Green and veliow cover) 112 pages, thousands of items, illustrations, dia grams, much useful technical information. The $2 n d$ printing of this catalogue has been updated as much as possible on prices. Uc costor 25 p for spending when ordering goods list value $£ 5$ or more.

All postal communications, mail orders, etc., to Head Office at Egham address, Dept. PE9.
28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB
Telephone: Egham 3603 Telex $264475 \quad$ Shop hours-9.5.30 daily. Soturdays 9-1 p.m.
Northern Branch: 680 BURNAGE LANE, BURNAGE, MANCHESTER MI9 INA
Telephone 066-432 4945
Shop hours-Doily $9-1$ and $2-5.30$ p.m. Saturdays $9-1$ p.m.
ECTROVALUE AMERICA, P.O. Box 27 , Swarthmore PA 190 B .

Brochure, without obligation to: BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept., P.O. Box 156, Jersey, Channel Islands

ALL OUR PRICES INCLUDE

BSR HI-FI AUTOCHANGER

 STEREO AND MONOPlays 12", 10" or 7" recordt. Auto or Manual. A high quallty unit backed by DeR rallablity with 12 monthe'
guarantee. A.C. $200 / 250 \mathrm{~V}$ quarantee. A.c.
Lre 13y $\times 11$ fin. XTAL 20 -75 Pont 4 PORTABLE PLAYER CABINET
Modern deaign. Back rexine covered
Bilver front bille. Chrome ittinge.
Motor board cut for above BsR deck £4.50 Pont 45p.
COMPACT PORTABLE STEREO HI-FI
Two tult alze loudepeakere $134 \times 10 \times 3$ in. Player unit cllpe to loudapeakers making it artromoly compact ovarall alze ony $134 \times 10 \times$?n., 3 watta per channe

WEYRAD P50 - TRANSISTOR COILS

RA2W Forrlte Aerlal	85p	Driver Trans. LFDTA
1.F. P50/2CC $470 \mathrm{kc} / \mathrm{s}$	40p	Printed Clreult, PCA1
65p		

............ 3p J.B. Tunling Ging . .65p Weyrad Bookiet10p $6 \times+1 \mathrm{In}, 20 \mathrm{p}, 3 \times 1 \mathrm{in}, 10 \mathrm{p}$. VOLJNE CONTROLS 80 Ohm Coax $5 p$ yd. 5 K . ohm to 2 meg . LOG or BRITISH AERIALITE
 Edge 5K SP Tranalion 25 . $40 \mathrm{yd}, \mathrm{f1} .75$; $60 \mathrm{yd}, \mathrm{E2} \cdot 60$ Ideal 625 and colour 10 p yd
8in. or 10×6 in. ELAC HIFFI SPEAKER
Oual cone plasticleed roll sur. round. Large ceramic magnet.
$50-16,000 \mathrm{c} / \mathrm{s}$. Bass resonance $55 \mathrm{c} / \mathrm{s}$. 8 ohm impedance.
£3. 75 port 25p
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$.

SPEAKER SALE!
With twin twoetere
And crossover. 10
watt. State 3 or or 24.50
15 ohm. Ae hlluetrated. Poat 25p
With flarad tweeter cone and ceramle
magnet. 10 watt.
Bass res. $45-50 \mathrm{c} / \mathrm{s}$.
Fux 10,000 geues.
E State 3 or 1 or 15 ohm . Poet 25p $16 \times 10 \times 2 \mathrm{f}$. 60 Bookshelf Cabinet Toak finlah
 $13 \mathrm{in} \times 8 \mathrm{In}$ Base Woofer, 20 watte, 15 ohms, $\mathbf{~ C 5 - 5 0}$

SET OF 3 MOTORS FOR COLLARO STUDIO
115 VOLT TAPE DECK ع2. 50 Post 50p
BLANK ALUNINIUM CHASSIS. 16 s.w.g. 2yin aldo

 $6 \times 4 \times 4 \mathrm{n}$ tep; $\mathrm{x} \times 4 \times 4 \ln \mathrm{E1} ; 12 \times 4 \times 4 \mathrm{ln} \mathrm{E} 1.30$. ALUNINIUM PANELS 12 2.w.g. $6 \times 4 \mathrm{nc} 12 \mathrm{p}$; $8 \times \sin 19 p$;
 S.F.P.B. PAXOLIN PANEL $10 \times$ aln 20p.

ANOTHER R.C.S. BARGAIN!

ELAC 9×5 in HI-FI SPEAKER TYPE 59RN This famous unlt now evailable, 10 watts, 8 ohm Pico $£ 3$ - $30{ }_{20}^{\text {Pos. }}$

R.C.S. STABILISED POWER PACK KITS

 All parts and instructions with Zener Diode, Printed Clicult, input 200/2 cov a.c. Output voltage trallable Transformer 15 or 18 or $20 V$ d.c. al 100 mA or less. $9 ?$ Pont RCS POWER PACK KIT
12 VOLT, 750 mA . Complete wlth
printed circult board and isiembly 29.95 Post
instructons.
12 VOLT 300 m
R.C.S. GENERAL PURPOSE TRAANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P.U., Gultar, if. Can be Used with
 For use whith valve or transistor equipment. 98
Full Instructions suppiled. Detalls S.A.E.

ELECTRO MAGNETIC

PENDULUM MECHANISM

1.5V d.c. operatlon over 300 hours continuous on SP2 bettery, fully aduatable swing and speed. Ideal displays, teaching electro magnetism or for matronome, strobe, etc. 95p ${ }_{200}^{\text {Poat }}$
BRITISH FM/VHF TUNING HEART
88 to $100 \mathrm{M} / \mathrm{CS}$ British made. 2 Trenalators ready aligned requires 10.7 M/CS t.F. Complete whth tunlng gang. Connectiona auppied but some technical experience - eseential.

Our price $£ 3.95$
MAINS TRANSFORMERS ALL POST
25p each Eagle MT12 12-0.12V 50 mA
$250-0-25060 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A} .6 .3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A $350-0-35030 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ of 5 V 2 A
$300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{C}$. T . 6.3 V 2 A $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A}$ C.T.; 6.3 V 2 A
 MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{AA}$ HEATER TRANS. B-3V 1.5A GENERAL PURPOSE LOW VOLTAGE, Tapped esp it $2 \mathrm{amp} .3,4,5.6,8,9,10,12,15,18,24$ and 30 V 53.00 $1 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{c3.00}$
$2 \mathrm{amp} .6,8,10,12,18,16,20,24,30,38,40,40,80$

4.00 | $3 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$ |
| :--- |
| 56 |
| 56 |

 $12 \mathrm{~V} 100 \mathrm{~mA} \quad 75 \mathrm{p}$,
40 V 1 mp.
si 1.75.
40 V 1 amp . $£ 1.75$.
AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V
 SOW \&3.00; 500W \&5 25; 750W 110; 1000 W §15
CHARGER TRANSFORMERS. Input $200 / 250 \mathrm{~V}$,
for 6 or $12 \mathrm{~V}, 11 \mathrm{amp} \mathrm{si} \cdot 50 ; 2 \mathrm{amp} \mathrm{E1} \cdot 80 ; 4 \mathrm{mp} \mathrm{m} 2 \cdot 50$ BATTERY CHARGERS. Ready bulh with leads and cllpe 1/ amp Ez ; 4 Amp $\mathrm{E4}$; 5 amp E4. 50 .
FULL WAVE BRIDGE CHARGER RECTIFIERS 6 of 12V outpuls, $1 \frac{1}{\frac{1}{3}} \mathrm{amp} 40 \mathrm{p}$; 2 amp 55p; 4 amp 85p. MAINS ISOLATING TRANSFORMER Primary 0-110-240V. Secondary 0-240V, 3A. 720W. Insulated terminals. Varnien impregnated. Fully enclosed In ateel case with flixing feet.
Famous mate. (Value fig). Can be used an BOOW suto tranaformers 240-110V
IDEAL FOR COLOUR T.V. OR GAROEN TOOLS.

	NEW ELECTROLYTIC CONDENSERS				
$2 / 350 \mathrm{~V}$...14p	250/23V		$50+50 / 300 \mathrm{~V}$	50p
4/350V	14p	500/25V	20p	$60+100 / 350 \mathrm{~V}$	25p
$8 / 450 \mathrm{~V}$	11p	1000/25V	35p	$32+32 / 250 \mathrm{~V}$	20p
16/450V	20p	1000/50V	47p	$32+32 / 450 \mathrm{~V}$. 600
$32 / 500 \mathrm{~V}$.50p	d $+3 / 450 \mathrm{~V}$	2 p	$350+50 / 325 \mathrm{~V}$. 55
$25 / 25 \mathrm{~V}$.10p	$8+16 / 450 \mathrm{~V}$	25p	$100+50+50 / 350 V$	55p
$50 / 50 \mathrm{~V}$	10p	1tis + $1 / 450 \mathrm{~V}$	40 p	$32+32+32 / 350 \mathrm{~V}$	
100/25V	10p	$32+32 / 350 \mathrm{~V}$			

LOW VOLTAGE ELECTROLYTICS

, 2, 4,5, B, 16, $25,30,50,180,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p}$; 50 V 30 p .
1000mF 12 V 17p; $2 \mathrm{yV} 3 \mathrm{sp} ; 50 \mathrm{~V} 47 \mathrm{p}$; 100 V 7 pp .
2000 mF 8V 25p; 25V 42p; 50 V 57 p.
600mF $50 \mathrm{~V} 02 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 65p.
5000 mF हV 25p; 12 V 42p; 25 V 75p; 35V 85p; 50V 95 p
TRIMMEAS 10pF, 30pF, $50 \mathrm{pF}, 5 \mathrm{~F}$. 100 pF , $150 \mathrm{pF}, 10 \mathrm{p}$. CERAMIC, 1 pF to 0.01 mF , 4 p . Sitrer Mica 2 to 5000 pF , 4 PAPER 3S0V $0.14 \mathrm{p} ; 0.513 \mathrm{p}: 1 \mathrm{mF}$ 150V 15p; 2 mP 150 V 15 p. MICAO SWITCH LEVER ACTION 20 P : 0
SUR-MIN MICRO SWITCH 250
TWIN GANG, "0-0" 201pF +17 EpF , 65p; 500pF atunderd 750 $35 \mathrm{pF}-335 \mathrm{p}$ f with $25 \mathrm{pF}+25 \mathrm{pF}$, Slow motion drive 50 p 8HOAT WAVE SINQLE. 10pF, 30p, 35pF, 55p, 50pF, 55 p . NEON PANEL INOICATOR\& 250 V AC/DC. Amber 30 p . AESISTOAS. ${ }^{+} \mathrm{W}, \ddagger \mathrm{W}, 1 \mathrm{~W}, 20 \% 1 \mathrm{p} ; 2 \mathrm{~W}, 5 \mathrm{p} .10 \mathrm{n}$ to 10 M HIGH 8 TAEILITY, iW $2 \% 10$ ohms to 8 meg., 10p. WIAE-WOUND RESISTOAS 5 watt, 10 watt, 15 wett, 10 ohms to 100K 10 p 甲ach.
V.A.T.

GAOUP RANGE PROFESSIONAL OUALITY.		
BAKER MAJOR12' 29.90		
Plegos state 3 or t or 15 ohms. Pont trau		
BAKEA "BIG-SOUND" SPEAKERS Pom troe Group 25'\| 'Group 35'। 'Group 50/12'		
	${ }_{3}^{127}$ \% 59.90	${ }_{\text {sow }}^{12 \mathrm{n} .} \mathrm{E} 16$
teak veneered hl-fi speaker and cabinets		
为		
Fof Gin end Twester $12 \times 8 \times 61 \mathrm{n}$, \& 4.50 . Posi 25 p LOUDSPEAKER CABINET WADDING 18 in wide. 20 p ft		
GOODMANS 51/n. HI-FI WOOFER		
40 hm or $\mathrm{I}^{2} \mathrm{ohm}$. 10 W . Large ceramic magnet. spectal Cambric cone surround. Frequency reaponae. 30-12,000 c/s.		
ldeal P.A. Columne.		
ELAC CONE TWEETER The moving coll diophragm gives igood radiation pathern to the higher frequencles from $1,000 \mathrm{c} / \mathrm{s}$ to $18,000 \mathrm{c} / \mathrm{s}$. Size $3 \times$ $3{ }_{3} \times 2 \mathrm{zin}$ deep. Rating 10 w .3 ohm . 		

SPEAKER COVERING MATERIALS. Samples Lerge S.A.E. Horn Tweeter $2.16 \mathrm{kc} / \mathrm{s}$, 10 W हhm or $15 \mathrm{ohm} \& 2.25$

CROSS DVERS, TWO-WAY $3,000 \mathrm{c} / \mathrm{s} 3$ or or $15 \mathrm{ohm} \mathbf{~} 1.25$ LOUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \mathrm{in}$., $£ 1.25 ; \mathrm{t} \mid \mathrm{In}$., $\mathrm{£1} \cdot 50$;
 BPECIML OFFER: so ohm, $2 \mathrm{iln}, 2 \mathrm{ln}$: 35 ohm. $2 \mathrm{ln}, 3 \mathrm{ln}$ 25 ohm, 2 in die. $3 \ln$ dile., 5 In dit.
15 ohm , 3 fin dia, $8 \times 41 \mathrm{n}, 7 \times 41 \mathrm{n}, 8 \times 5 \mathrm{nn}, \mathrm{f1}$ enech
 AICHARD ALLAN TWIN CONE LOUDSPEAKERS. in diameter iW $\mathrm{E} 2 \cdot 50$. 10 in diameter 5 F ع2 - 50 ; VALVE OUTPUT TRANS. 40p; MIKE TAANS. $50: 140 \mathrm{P}$ Mike trans. mu motel $100: 1 \mathrm{\$ 1} \cdot 25$.
oudspeaker Volume Control 15 ohme low with one inch long threaded bush for wood panel mounting. the spindle. 65p each, Post 15 p.
MAJOR 100 WATT
ALL PURPOSE
GROUP
AMPLIFIER
All purpose trenslatorised.
al for Groupa, Disco end P
inpute apeech and music. 4 way
mining. Output $8 / 15$ ohm, a.c. Maln:
Guparate troble and baea controls.
ROF

$249_{\text {Carr }}^{\text {C1.0 }}$

DARGAIN CHANMEL TRANSISTOA MONO MIXER. Add musical highilghte and wound aflecte to recordings. Will mix Merop hone, recorde, tape and tuner £4.50 TWO CHANNEL STEREO VERSION
25.95

BAGGAIN 3 WATT AMPLIFIER. 4 Tranneleor $£ 4 \cdot 50$ Pueh-Puli Ready bulth, with volume. Treble and basa controle. is volt d.c.
COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18p. OUTLET BOXES, SURFACE 25p. FLUSH 60 p . TWIN 85 p . BALANCED TWIN RIBBON FEEDER 300 ohma. 7p yd. JACK SOCKET Std, open-circult 14p, closed clrcult 23p; Chrome Lead-Socket 45p. Phono Ptuge 5p. Phono Sock ot 5p JACK PLUGS Std. Chrome 20p; 3.5 mm Chrome 12p. OIN 3OCKETS Chasals 3-pin 10p. 5-pin 10p. DiN SOCKETS lopd 3 pin 10p; 5 -pin 15p. OIN PLuGS 3 -pin 1tp; 5 -pin $25 p$. VALVE HOLOERS, $5 p$; CERAMICS 10p; CANS 50

DISCO, SHOP, SOUND TO LIGHT, STAGE PHOTO-FLOOD LIGHT FITTINGS

TYPE B 3-BANK UNIT
Has two brackets to accept P/C Board. Transformers. Also has holes in ends for Potentiometers. Jack Socket Cable. etc. Ideal for making Sound to Light and Strobes. Base Cover included. Less Lamps, only £6. 50
inc VAT P \& P 40p

SOUND TO LIGHT

Three channel, using Type B unit. Ideal for small discos and home entertainment. Complete with Lamps Ready wired
£25
inc VAT P \& P. 40p
STROBE UNIT
Using Type B unit. Adjustable frequency. Single knob control Complete with Lamps. just plug into mains-that's it.
$£ 25$
complete inc. VAT P. \& P. 40p
100 WATT SPOT LAMPS
Red. Pink Green Yellow. Blue Violet Clear Only
80p
each Minimum 3 Lamps $\{2 \cdot 40$ inc. VAT, P. \& P P 25p

SPARMRITE MkII Electronic Ignition... Better on all points

The SPARKRITE MK. 2 is a full capacitive discharge electronic system. Specifically designed to retain the points assembly - with all the Spectically designed to retain the points assembly - with all the breaker bounce is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high rpm. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of norm, thus avoiding arcing. But you can still revert to normal ignition if need be. In seconds. If points go (verv unlikely) you can get replacements anywhere. All these advantages.

- Fitted in 15 minutes. Up to 20% better fuel consumption. Instant all weather starting. - Cleaner plugs - they last 5 times longer without attention. - Faster acceleration. Faster top speeds. - Coil and battery last longer. Efficient fuel burning with less air pollution
The kit comprises everything needed
Ready drilled scratch and rust resistant case metalivork, cables, coil connectors, printed circuit board, top quality 5 year guaranteed transformer and components, full insiructions to make positive or negative earth system, and 6 page installation instruction leaflet
WE SAY IT IS THE BEST SYSTEM AT ANY PRICE!
minem

A. Marshall (Londoni) Ltd. Dept. PE

42 Cricklewood Brnadway London NW2 3HD Telephone 01-452 0161/2 Telex 21492
\& 65 Bath Streel Glasgow G2 2BX Telephone 041-382 4133

Everything you need is in our New Catalogue
 available now price 20p (100 pages of prices and data)

Cáll in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries weicome

Popular Semiconductors

0150

 0.630.45

0.45 \begin{tabular}{l|l}
.63 \& BC

.45 \& BC

BC 171

BC172

BC 182

BY182

0.13 \& $B D$

0.11 \& BD

0.12
\end{tabular}

 -000000 | 1.05 | BC183 | 0 |
| :---: | :--- | :--- |
| 0.40 | BC183L | 0 |
| 0.24 | BC184 | 0 |
| 0.25 | BC184L | 0 |
| 0.20 | BC186 | 0 |
| 0.50 | BC187 | 0 |

∞ $\underset{\sim}{\infty}$ $\vec{\omega}$

 01350.3136
0.37
0137 80136
80137
80138 BD 138
BD139
BD14 80139
80140
$8 D Y 20$
BF 115 BD14
BDY20
BF 115
BF 116

0.43	BFY 19			
0.49			0.43	BFY
:---	:---			
0.49	BFY		49	BF
:---	:---			
55	BFY			
		$\begin{array}{ll} & 0.33 \\ \text { BFY20 } & 0.50 \\ \text { BFY29 } & 0.40\end{array}$		

正

Teletennis
Played on your own TV S.A.E for 1974-Special Discounts

Llquid Crystals- 13.
Ex stock. S.A.E for details of CMOS battery operated clock kit using LCDS
Scorplo Car Ignition Kitf 11.50 + VAT
BSTBO246 $£ 1.05$ Transformer $£ 2.75$
$\begin{array}{ll}\text { I } 1440 \mathrm{E} & \mathrm{£1.10} \text { MINITRON } \\ \text { OL707 } & \mathrm{C2} .35 \text { or } 4 \text { for } £ 8\end{array}$

Resistors			Tant Beads	
W	Tol	Price	Valve	Price
'	5\%	1p	0.1/35	14p
$\frac{1}{4}$	5\%	1/p	$022 / 35$	14p
t	5\%	2p	0.47/35	14 p
1	10\%	219 p	2. $2 / 35$	${ }^{14} p$
2	10\%	6p	4 7/35	$18 p$
2	5\%	7 P	1016 V	18p
5	5\%	9 p	$47 / 63 \mathrm{~V}$	20p
10	5\%	10p	1003 V	20p

Veroboard				
	01	0.15	0	0.15
2.5×3 in	28p	20p	-	14p
$25 \times 5 \mathrm{in}$	30 p	30p	-	14p
$3 \mathrm{t} \times 3 \mathrm{fin}$	30 p	30p	-	
$37 \times \sin$	34 p	35p	-	${ }^{24} \mathrm{p}$
$2 \frac{1}{3} \times 17 \mathrm{n}$	51.21	95p	76p	69p
$\begin{array}{rlrl} \text { Pins } \times 36 & 24 p & 24 p \\ \times & 200 & 89 p & 92 p \end{array}$				
Trade and Retall supplied.				

Potentiometers-Linearor Log Single Double
Rotary Pots
50p 80p
Full range of capacitors
stocked. See catalogue for detalls
Presets-Horizontal or Vertical
$0.2 W$ 6p $0.3 W$ 6p

Construction Kits
AV7 Aerial Amps
MUE7 Recelver for above
MUE7 Receiver for above
EW18 Electronics dice
EW18 Electronics Electronic Sensor
$\begin{array}{ll}\text { EX20 Electronic Sensor } & \mathbf{8 7 . 7 9}\end{array}$
Mall Order
VAT All prices exclusive
P. \& P. 15p

Trannies

4 Bush House, Bush Fair, Harlow, Essex.

Retail Shop open 9 to 5.30 Mon. to Sat.

* Post \& Package 15p. - 1974 Catalogue 20p.

TRANNIES DISCO UNIT

DS 100 W discotheque amp. with full mixing and PFL facilities

- Stereo headphone with boom microphone. ©9.90
* Trannies disco console with

* Pair 50W Speakers $\{47 \cdot$ tw OR COMPLETE SYSTEM 6189.97 carriage $55-00$. Terms available. deposit. $\mathrm{f} 10 \cdot 16$ monthly for 2 month
We stock a tull range of Disco Equip ment. Send for list or pay a visit.
§1 BARGAIN PACKS
10 Silicon NPN Power transistors (like 2N3055). Below spec. 30 Plastic FET's unmarked untest showed good yield).
\&1 20 TOS transistors NPN or PNP. tols. BC 178. BC179 etc U/ested 30 Plestic Power NPN 30 Plastic Power NPN iransistor
TO220 case like 2 N 3055 . Uirested 10 General Purpose fully lested 10 General Purpose fully tested
f1 200 mixed capacitors
11500 mixed resistors.
Posupackage 10p per pack

Resistors
\ddagger watt 5% carbon + watt 5% carbon 1 watt 10% carbon range 10 ohms to 4.7 megohms
t watt m/o 2%
range 10 ohms to 1 megohms.

VEROBOARD		
	$0 \cdot 1$	$0 \cdot 15$
竐 $\times 17$	24 p	19p
24×5	${ }^{27 p}$	$23^{23 p}$
34×34	27p	23 p
314	31 p	$31 p$
17×24	82 p	6.3 p
17×34	¢1.10	87 p
17×5 (Plain)		90p
Pin insertion tool	$57 p$	57p
Spot face cutter	46p	46 p
Pk. 36 Pins	20 p	20p

Electrolytic Capacitors

CRESCENT RADIO LTD.
$11-15$ \& 17 MAYES ROAD, LONDON N22 6TL (also) I3 SOUTH MALL, EDMONTON, N. 9 MAIL ORDER DEPT.
II MAYES ROAD, LONDON N22 6 TL Phone 8883206 \& (EDM.) 8031685

ADD LUXURY
 TO YOUR CAR WITH A MOTOR DRIVEN CAR

 AERIALSpec.: $\begin{aligned} & \text { Extended Length } 100 \mathrm{~cm} \\ & \end{aligned}$ Length under Fender 40 cm Cable Length 120 cm Supplied complete with Fixing Bracket and
Control Switch. $\mathbf{6 6 7 5}$ Plus 25p

UK92 Transistor Tester $\begin{array}{ll}\text { UK115 } & \text { Telephone Amp } \\ \text { Hi-Fi Anp-sW }\end{array}$ UK130 Monn Control Uuit UK145 Amp-1.5W UK165 HIAA Equalised Stereo A inp UK220 $\begin{array}{ll}\text { Signai Injector }\end{array}$ UK230 AM-FM Aer. Anj, UK275 Mike Pre-Amp UK300 4 Channel Radio Control T.X UK310 Kadio Control Receiver UKtiō MW Kadio Keceiver UK520 AM Tuner
UK710 4 Channel A.F. Mixer UK715 Photoelectric Cell \&with UK835 quitar Pre-Amp $\begin{array}{ll}\text { UK875 Cap. Discharge Ignition } \\ \text { VK915 } & \text { R.F. Anp lge } \\ \text { UKOM }\end{array}$
 UK935 Wide Band Amp 20 Hz to $1 \mathrm{jOMHz} E 2.66$
TRI-VOLT CAR SUPPLY

Enables you to work your Transistor Raylio, Amplitler ur cascette, ete. from the lo volt car size -2 in $x 3$ in x tilin. This converter
 A real money saving device for $28 \cdot 50$. 10p P. \& P.

Loud buzzer mounted in a miatal box complete With two U2 battery size holler.
Designed and can be used as a fire alarm but is ineal as a loor or morse code pract ise buzzer. OUR PRICE 50p

Hanuly bones for construction projects. Mondet extrusion raila for P.C. or ehassis panels. Fitten with limin front janels. $1000,100 \mathrm{~mm} \times 53 \mathrm{~mm} \times$ 40 mm 51 p ; $1006,150 \mathrm{~mm} \times 7 \mathrm{~mm} \times 47 \mathrm{~mm} 66 \mathrm{p}$ $1007,1 \times 6 \mathrm{~mm} \times 124 \mathrm{~mm} \times 60 \mathrm{~mm} \cdot 98 \mathrm{p} ; 1021$.
$10 \mathrm{Gmm} \times 74 \mathrm{~mm} \times 4 \mathrm{~mm}$ (sloping front) 50 p.

BARGAIN BOARDS

Components galure for the experimenter. Fis Computer boarids with resistorn, capacitors al Flie hoarils $\mathrm{E1}$.

2in. PANEL METERS

size 59mun	$\times 4$ binm
$0.50 \mu \mathrm{~A}-\mathrm{ME} 6$	0.100 ml - - ME13
$0 \cdot 100 \mu \mathrm{~A}-\mathrm{ME} 7$	11.500 mA - ME14
0. $500 \mu \mathrm{~A}-\mathrm{MEs}$	$0 \cdot 1 \mathrm{~A}$ ME15
$0 \cdot 1 \mathrm{~mA}$ - MEY	0.50Va.c. -ME1i
0.5 mA ME10	$1 \cdot 300 \mathrm{~V}$ a.c. --ME17
$0 \cdot 10 \mathrm{~mA}$ - MEII	s meter -MEIA
$0 \cdot 50 \mathrm{~mA}$ - ME12	V.V. meter-MEIS
£3 each. 10 p P. \& P.	

LOW VOLTAGE

 AMPLIFIER 5 transistor amplifier complete with volurne control, is ruitable Will give almut $1 \mathrm{w}^{\text {for }}$ at 8 olm outputWith high 1M1'inpu dhis amplifier will work as a recor player, baby alarm, etc. amplitier
 STOP PRESS

BHA000: 1:W Amp Molnle

N EJ55 Timer 1.C
MC1310P Sterew Decoder $1 . c$
8805 Regulator
TIP 29A
TIP 30A
BC107
BC104
$\mathrm{BC104}$
$\mathrm{BC} 10!$

	10 p
ZN414 Radio Circuit l.C.	21.30

MINI LOUDSPEAKERS
-3tin 80 ohin, 50 p ; 9 in 40 ohm,
50p. Please include 5p P. \& P. on
eact L.S.

U.K. CARRIAGE

15p UNLESS
OTHERWISE STATED
SEND 20p FOR A CRESCENT catalogue

Sound has come a long way. Just look at the magnificent equipment you can buy today! It achieves feats of precise fidelity you only dreamed of a few short years ago.

Sound doesn't stand still. To keep up with all the new developments you need to hear the newest dimensions in sound. You need to talk to the experts
and listen to what the
innovators have been up to.
You can do all this at the 1974 International Audio Festival and Fair.
It gives you the chance of getting on top of your favourite subject. And gives you an opportunity to test the latest equipment for yourself.

Come see and hear it all. Bring along your friends, too

Every day of the week we've arranged for special lectures to be given by technical experts. Attend the lectures, you can pick up helpful ideas and useful information.
THE 1974 INTERNATIONAL AUDIO FESTIVAL\& FAIR. OLYMPIA, LONDON. 28 OCT.-3NOV.
Sponsored by the Sunday Mirror. Admission 50p. (incl. VAT) Monday: 12 noon to 9 p.m. Tuesday-Saturday: 10a.m. to 9 p.m. Sunday: lla.m. to 7p.m.

For further information, please write to: Audio Festival and Fair Limited, 9 Argyll Street, London WIV 2HA

TUAC DISCOTHEQUE MIXER WITH AUTO FADE

Designed for the discerning D.J of professional standard. Offering a vast variety of functions Controls: Mic Vol; Tone, over-ride depth; auto Manual Sw: Tape Vol; L \& R Deck Faders; Deck Volume: Treble and Bass; H. Phon Vol Selector: Master Vol On/Off Sw. Max output IV RMS

Specification: Deck Inputs- 50 mV into $1 \mathrm{M} \Omega$; Deck Tone Controls-Treble $+28-15 \mathrm{~dB}$ at 12 kHz , Bass $+22-15 \mathrm{~dB}$ at 40 Hz ; Mic Input-200 ohms upwards, $2 m \mathrm{~V}$ into $10 \mathrm{k} \Omega_{;} \mathrm{Mic}$ Tone Control-Total Variation Treble 15 dB . Total Variation Bass 10 dB ; Tape Input -30 mV into $47 \mathrm{k} \Omega$; Power Requirements-30-45 volts at 150 mA .
£26.50
PANEL SIZE $18 \times 4 \frac{1}{2} i n$ DEPTH 3in

TUAC MAIN DEALERS

BRISTOL DISCO CENTRE, 86 Stokes Croft, Bristoi 1. Tel. Bristol 41666.
CALBARRIE AUDIO, 38 Cromwell Road, Luton, Beds. Tel. Luton 411733.
SOCODI, 9 The Frlars, Canterbury, Kent. Tel. Canterbury 60948.
WEC LIGHTING, 35 Northam Road, Southampton, Hants. Tel. Southampton 28102.
CALLERS ONLY

NEW! 3 CHANNEL LIGHT MODULATOR

R.C.A. 8 Amp Triacs 1000W per channel Each channel fully suppressed and fused

- Master control to operate from 1W to 100W Full wave control-12 easy connections

Or

 SERIOUS

 SERIOUS}

55p. plus 22p packing

Send off the coupon today. It's your flrst step to solving your component buylng problems.

[^2]Over the years we've turned out lots of 'silly' advertisements, using cartoon characters, tongue-in-cheek copy and a joke or two here and there. Over the years we ve also turned out lots of serious adverts-packed with facts and figures, illustrating typical components. giving details of our catalogue and the service we offer Some folk like one kind of ad., some like the other. But whether you like the silly or the serious we hope we've put over the fact that we are a family firm with a 'human' outlook and a staff who share your enthusiasm for the world of electronics. We hope too that we've made it obvious that we go out of our way to help you to obtain your components with a minimum of fuss expense and delay
The basis of our business is our famous catalogue. Of course we're always delighted to see customers who can call on us. But if Mitcham is not up your street, with our catalogue in your lap you can order all you need from the comfort of your armchair. Incidentally, the catalogue contains 10 free vouchers, each worth 5 pence when used against orders, so you soon get most of the price of the catalogue back! To get your catalogue use the coupon below enclosing remittance for 77 pence.

4 234-240 London Road. Mitcham, Surrey CR4 3HD 912966 London

HOME RADIO (Components) LTD., Dept. PE,
Regd No

OUR FIRST DECADE

WHEN this magazine was launched ten years ago, we were confident that a bright and stimulating future was in store for the home constructor. The transistor had by then revolutionised radio receiver design and was patently crying out for further useful exploitation in other areas. This was to be our main objective.

Yes, our early years were exciting enough, with those original germanium devices soon to be all but superceded by those of silicon. Then a seemingly endless procession of new semiconductor devices for a variety of applications, including power control, as well as optoelectronic devices, emerged.

This technological explosion brought about almost an embarrassment of possibilities for designers and builders alike. Those first two or three years kept us all very busy and yet few of us then realised that another tremendous breakthrough in solid state technology was on its way. The integrated circuit was written about and talked about for some time before the first few devices trickled through to the amateur market. A cautious start was made with these devices-firstly linear amplifiers. Then gradually the full potential of i.c.'s became apparent-this was a revolution within a revolution! Now, over the last three years or so, the i.c. has become as universally popular and commonplace with amateurs as its discrete ancestor.

Those who have followed technical progress over the last ten years will agree that the pace has been hot, each new device developed inspiring, in its turn, a variety of new and frequently highly versatile project designs. Thus the frontiers of electronics have been pushed on and out in all directions, and today the amateur can become involved in practically any area that takes his fancy.

Ten years ago we were convinced that electronics would become the most versatile, exciting, and rewarding of spare time pursuits for those with a technical and a practical bent. The latest technology would be brought literally right to the table top, and the opportunities for its use would be almost limitless.

This has become true. And we like to feel that Practical Electronics has been responsible in some degree for this opening up of new vistas to Mr. Everyman. But any credit in this respect must be shared with those many designers and authors who have contributed to these pages. Amongst these contributions have been many unique and trail-blazing projects and ideas.

Also it is right to acknowledge the great service provided by those most essential people the component suppliers, without whom there would be no hobby and whose support as advertisers has been vital to a magazine such as P.E.

Finally, to all our regular readers we express our thanks for their loyal and enthusiastic support-and we know quite a number have been with us since our very first issue.

Yes, we are all ten years older. However, electronics is a great rejuvenator; it keeps us all on our toes in eager anticipation of what tomorrow may bring forth. So we look towards our second decade with confident expectation of a continuance of exciting and stimulating developments that will contribute to our enjoyment of life and help keep our minds young and active.

Editor

F. E. BENNETT

Editorial
R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
S. R. LEWIS B.Sc

Art Dept.
J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-6344301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.,
London EC4A 4AD
Phone: Editorial 01-634 4452 Advertisements 01-634 4202

TOUCH SWITCH
 By J. ANDREWS

THE radio frequency Touch Switch to be described operates by hand capacity, that is to say, it operates by sensing hand proximity to a metal plate. Low r.f. leakage coupled with sensitivity and speed of operation make this unit suitable for many applications.

The large touch plate area and speed of operation suggests use as an emergency stop on machinery such as lathes or drills or as a safety interlock. Applications at home include touch operation of lights, heating or ventilation.

- Apart from novelty value the unit does enable switching operations to be readily carried out, even in the dark. Other applications could include s:curity systems for use in cars.

R.F. LEAKAGE

Many touch or capacity switches use an r.f. oscillator, the tuned circuit of which is damped by the object to be sensed; this causes a current change in the oscillator which after suitable amplification is used to drive a relay or other switching device. A disadvantage here is the amount of r.f. radiated by the oscillator which could cause interference.

The circuit to be described overcomes this objection by allowing the oscillator to run continuously, and arranging that upon being touched, the touch plate reduces the level of r.f. fed to a detector, the output of which drives a Schmitt trigger. This approach allows a much smaller level of r.f. to be present on the plate, typical levels being from 75100 millivolts.

CIRCUIT ACTION

TR! in Fig. 1 forms with T1 a 470 kHz oscillator. D.c. bias conditions to TRI are set by R1 and R2 and feedback occurs via LI to base of TR1. Due to the high Q of Tl a sine wave of over 20 volts appears at the collector of TR1. The phase of the winding of L.l is important, and if the oscillator fails to operate then the connections should be reversed.

R3 is not bypassed; this introduces negative feedback and helps to maintain a good sine wave at the collector of TR!. The output of the collector is

COMPONENTS . . .

Resistors	
R1	$4.7 \mathrm{k} \Omega$
R2	$39 \mathrm{k} \Omega$
R3-R4	$1 \mathrm{k} \Omega$ (2 off)
R5	$5 \cdot 6 \mathrm{k} \Omega$
R6	$3.3 \mathrm{k} \Omega$
R7	10Ω
R8	680Ω
R9	$100 \mathrm{k} \Omega$
R10	$2.2 \mathrm{k} \Omega$
R11-R12	$47 \mathrm{k} \Omega$
R13	$2.2 \mathrm{k} \Omega$
R14	$100 \mathrm{k} \Omega$
R15	$33 \mathrm{k} \Omega$
R16	220Ω
All $\frac{1}{4}$ watt 10% carbon	

Capacitors

C 1	$0.01 \mu \mathrm{~F}$
$\mathrm{C} 2 *$	Integral to i.f. transformer can
C^{*}	See text
C 4	$1,000 \mathrm{pF}$
C 5	$0.1 \mu \mathrm{~F}$
$\mathrm{C} 6-\mathrm{C} 7$	$2,000 \mathrm{pF}$ (2 off)
C 8	$0.1 \mu \mathrm{~F}$

Transistors

TR1-TR6 BC108 (6 off)
TR7 BFY51
Diodes
D1-D5 OA91 (5 off)

Miscellaneous

T1 470 kHz i.f. transformer, RLA $6 v 410 \Omega$ coil (type 912 R.S.) Metal box $4 \mathrm{in} \times 4 \mathrm{in} \times 1 \frac{1}{2} \mathrm{in}$, plastic sleeving (see text)

View of the touch switch showing the
sensitivity capacitor $C 3$
fed via C3 to the detector circuit formed by D1/D2 but because of loss introduced by these components and the stray capacity associated with the touch plate, the result is only a low level signal appearing at the latter.

Now, if the touch plate is approached, the loss increases, and the voltage from the detector falls, operating the following Schmitt trigger circuit.

Because the value of C3 sets the signal level on the touch plate, this means that its value determines
the sensitivity of the switch. An increasing value results in lower sensitivity as greater loss must then be introduced at the touch plate, to reduce the output of the detector, to a point where the Schmitt trigger operates.

When using a small touch plate the total loss is small. In order to reduce the signal level at the detector, a very low value of C 3 is required; $1-2 \mathrm{pF}$ approximately.

This is conveniently achieved with a twisted wire capacitor made up of two $1 \frac{1}{2}$ in lengths of 20 s.w.g. tinned copper wire sleeved with neoprene or plastic sleeving and twisted together for a length of about lin. To adjust the capacity carefully, untwist from the end.

If a larger touch plate were used then the value C3 will need to be increased, a Philips "Beehive" trimmer of $3-30 \mathrm{pF}$ should prove satisfactory. A little experimenting will reveal the most sensitive setting.

C4 is provided to prevent hum operating the circuit.

SCHMITT TRIGGER

The output current of the detector holds the Schmitt trigger transistor TR2 on, this means TR3 is off. and the collector voltage is high. Now, when the touch plate is approached the voltage output of the detector falls, this causes TR2 to turn off. As TR2 turns off the collector voltage rises and TR3 turns on so that the trigger produces a rapid negative going output pulse. When the hand is removed

Fig. 1. Circuit diagram of touch switch

Fig. 2. Veroboard component layout. Note that the chassis connection is made by using a solder tag (shown dotted) held in position by one of the board mounting screws
the current output of the detector is restored and the trigger returns to its former state.

BISTABLE

If the Schmitt trigger output were connected directly to R15, any load at the collector of TR7 would be switched off if the touch plate was approached. This state of affairs is obviously wasteful of battery power so a bistable, or toggle, switch

Interior view of the touch switch showing positioning of the Veroboard and capacitor C3. Note that the touch plate (lid) must be insulated from the edges of the case
is interposed giving a positive on/off action to the output load as required.

The load driver consists of a pair of compound connected transistors to obviate loading the bistable and affecting its operation.

CONSTRUCTION

The basic Veroboard construction for the switch is shown in Fig. 2. This layout should be adhered to for correct circuit operation.

The completed circuit board was mounted in a 4in $\times 4$ in $\times 1 \frac{1}{2}$ in metal box. Although this is a prototype, dimensioning the whole thing could be arranged to fit into a wall conduit box. A plastic blank could then carry a touch plate made of aluminium foil. This would make a novel and attractive wall switch.

In the prototype the touch plate is formed by the box lid. This means that the lid must be electrically insulated from any connections to the circuit apart from C4. This is achieved by running thick plastic sleeving around the lip of the box by carefully slitting it along its edge. The lid is held in place by nylon screws.

Since final testing means having access to C3, a hole should be cut in the box to facilitate this.

TESTING

When assembly is complete a final check should be made on correct dicde and transistor polarities.

To test, adjust C3 for minimum capacity and screw in the core of Tl to ensure that the oscillator frequency is not a 470 kHz i.f.

Connect the 9 V supply and connect a voltmeter to TR3 collector. When set to 10 V d.c. if all is in order this should read about 0.5 V .

Now adjust C3 until a point is found where the level rises to about 9 V which indicates the trigger changing state and correct functioning of the oscillator and detector.

C3 should now be backed off until TR3 collector voltage falls to 0.5 V . If this is now advanced carefully the voltage should rise. This should be the most sensitive point of operation. Upon approaching the touch plate the collector volts at TR3 should fall and with the hand removed rise again.

A SOVIET VIEW OF JUPITER

One of the greatest difficulties in setting up new theories of the Solar System origin is the amount of angular momentum in the planetary paths. In fact, almost all the angular momentum is in the planetary section while the Sun itself continues to rotate quite slowly.

From the Physical-Technical Institute of the Academy of Sciences of the USSR, a celestial dynamicist E. M. Drobyshevski has revived the theory that Jupiter was the original core of a primordial nebula. There is a tendency to think that the Sun must be the core mainly because it is now at the centre of the system. Drobyshevski suggests that a binary system composed of the Sun and Jupiter appeared.
Such a binary system would form by reason of the convective processes in the nebula as it condensed. When the matter concentrates toward the centre there will be a change in the outer layers. The speed of the concentration would result in centrifugal forces causing the immense outer ring to separate. This is possible because the centrifugal force exceeds the gravitational force. However, there is a stage where the ring becomes unstable and the matter may disintegrate to form separate bodies.

Drobyshevski is of the opinion that the amount of condensed matter was such that a body the size of the Sun could be formed as one of those bodies. These other bodies would have, therefore. become the other planets. Under these conditions Jupiter would have been made up of the original condensation caused by gravity.

If these two bodies formed a binary pair then since Jupiter is less massive than the Sun the centre of rotation would be nearer to the Sun than to Jupiter. Thus Jupiter would appear as a planet of the Sun. This theory gets round the difficulty of the angular momentum and puts the Sun as the centre of the system and allowing it the slower rotation.
The rest of the planets and satellites would have been formed from the debris when matter would be flung out from the ring as it disintegrated. This also offers an explanation for both the positions and the composition of the planets.

MULTI-PROBE VENUS MISSION

Two Pioneer spacecraft will visit Venus in 1978 if the plans of NASA are successful.

Both the vehicles will be spin stabilised and derive their power from the Sun. The mission is complex and will be directed toward studies of the Venusian atmosphere.

One of the two vehicles will be an orbiter which will go as close as 125 miles to the planet. It will arrive about a week earlier than

Ts companion and will act as preliminary surveyor of the prevailing conditions. The orbiter, which is lighter than the companion spacecraft. is expected to reach Venus 190 days after launch. The companion spacecraft will carry four probes and will take some 125 days to reach the planet. Data from the first vehicle will be received before the second is launched.

The four probes carried by the second vehicle will be ejected some ten to twenty days before arrival. They will consist of one large probe carrying about 62 lb of equipment and three small probes with about 5 lb of instruments.

The probes will take about an hour to drop through the dense atmosphere to the surface. These probes have an extensive task to look at the composition of the atmosphere, to examine the structure of the total height of the atmosphere, and the circulation of the gas envelope. They will also measure the intensity of radiation from outside the planet at the various levels.

The equipment aboard the probes will include temperature and pressure sensors, an accelerometer, a gas chromatograph and various spectrometers. A special piece of apparatus called a "nephelometer" will measure the cloudiness of the atmosphere.

The orbiter will have its own onboard equipment such as particle probes, a magnetometer, a cloud photo-polarimeter, a solar wind gauge, an electric field detector, a mass spectrometer and equipment to measure gamma-ray transients. One of the important instrumental experiments will deal with the radio occultation measurements and the radar altimeter.

The vehicle that carries the probes will itself continue to send back data until it finally burns up in the Venusian atmosphere.

Altogether a most sophisticated mission and an extension to the new generation of technology of getting more data from multiple units. Some 39 scientists have been invited to design the experiments. including one each from France and Germany.

MAN ON THE MOON

The official report of the Apollo programme offers certain conclusions about the Moon.

Before man landed on the Moon two explanations for the craters on the Moon, both hotly defended. were that they were of volcanic origin. or caused by impacting matter from outside. These theories were limited by the fact that only Earth based instruments could be used.

Looking back over the six landings on the lunar surface certain facts emerge. It can be said with some confidence that the filling of the maria took place some 3,200 million to 3.800 million years ago. Since these maria represent a major feature of the lunar surface, it has been inferred that the time of formation of about 90 per cent of craters on the Moon, was at least 4,000 million years ago. The oldest rocks so far discovered on Earth are not older than 3,000 million years.

There is strong evidence that there may well be rocks on the Moon which approach 4,600 million years though not many rocks so far recovered have shown this possibility.

It would seem that from the heat caused by the intense bombardment of the surface by "projectiles" which ranged in size from microscopic to tens of kilometres, was effective in "setting" the "clocks" which determine the absolute age of rocks. It would also seem certain that the dark maria contain underlying lava flows. Generally, it would seem that all or almost all the craters were from bombardment. In this sense volcanism is not answered.

Generally, the moon is quiet seismically but does have miniature quakes which originate at depths of 800 kilometres below the surface. At a depth of 1,000 kilometres the Moon is slightly molten. This is consistent with the theory that volcanism and tectonic movement are rare from about 2 or 3,000 million years. Seismology has shown that the crust is about 60 kilometres thick or more. It would seem from these facts that there was a time when the Moon was very active.

It is very unlikely that the Moon was formed from part of the Earth. The rocks are too dissimilar.

In this, the concluding articie of the series, we take a look at high power amplifiers and the special techniques necessary for their successful operation.

As a practical follow-up to this series the Home intercom, also in this issue, has been designed using the principles outlined in these articles.

LAST month the general principles of class B amplifier design were described and so we begin this month with a design example and the teshniques necessary for successful operation.

Though designs under 1 W are relatively easy to produce, more problams occur as the output power is raised. We will take a look at some of these problems and how they are overcome in a practical design.

7.1. DESIGN EXAMPLE

Problem: Design suitable component values for a class B stage delivering 150 milliwatts into 35 ohms load.

Step 1. Calculate currents required in the output transistors

We require 0.15 watts into a 35Ω load.
Therefore the r.m.s. voltage across load $=$ $\sqrt{\mathrm{P} \times \mathrm{R}_{\mathrm{L}}}=\sqrt{0.15 \times 35}=2.3 \mathrm{~V}$
Peak voltage across load $=\sqrt{ } 2 \times 2.3=3.25 \mathrm{~V}$
Peak-to-peak volts $=6.5 \mathrm{~V}$, and since we have a 9 V rail there is a comfortable voltage margin.

Peak power $=$ twice average power $=0.3 \mathrm{~W}$
Therefore peak current required $=$

$$
\begin{aligned}
\sqrt{\text { Peak power } \div R_{\mathrm{L}}} & =\sqrt{0 \cdot 3 \div 35}=0.09 \mathrm{~A} \\
& =90 \mathrm{~mA}
\end{aligned}
$$

A BC108 could just about make with it and a suitable $p m p$ version for its opposite half, say a BC214.
Step 2. Calculate currents in the driver transistor TR3

The h_{FE} of a BC108 is much lower at an $/ \mathrm{c}$ of 90 mA so we had better be pessimistic and assume it is 100 worse case.

Thus we require at least 0.9 mA base currents for the outputs which means the collector current of TR 3 must be capable of supplying, say, 1 mA .

This fixes R 1 at $3.9 \mathrm{~V} \div 1 \mathrm{~mA}=3.9 \mathrm{k} \Omega$.
VR1 must be large enough to drop at least 0.6 V at 1 mA so, allowing for suitable range of adjustment, make VRI $=2 \mathrm{k} \Omega$ (anything from $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$ would do).

Step 3. Calculate R2

The base current of TR 3 would be $1 \mathrm{~mA} \div h_{\text {FE }}$.
Using a BCl 108 at 1 mA we can take this to be $I_{\mathrm{b}}=$ $1 \mathrm{~mA} \div 200=5 \mu \mathrm{~A}$.
The voltage across $\mathrm{R} 2=4.5-0.6=3.9 \mathrm{~V}$
Hence R2 $=3.9 \mathrm{~V} \div 5 \mu \mathrm{~A}=800 \mathrm{k} \Omega$

Step 4. Calculate sensitivity and voltage gain A

 Input resistance of the output transistors is$R_{\text {IN }}=h_{\text {FE }} \times$ speaker resistance $=$

$$
100 \times 35=3,500 \Omega
$$

($h_{\text {FE }}$ rather than $h_{\text {re }}$ because this is a "large signal" swing)
This resistance is the signal load of TR3 thus the gain of TR3 is
$A=R_{\mathrm{IN}} \div r_{\mathrm{e}}=3,500 \div 25 / I_{\mathrm{C}}(\mathrm{mA})=$
$3,500 / 25=140$
Sensitivity for full output $=$

$$
\text { peak oulput volts } \div A=4.5 \div 140
$$

$=32 \mathrm{mV}$ peak
Input resistance $=h_{\mathrm{fe}}:<r_{\mathrm{e}}=200 \times 25$

$$
\begin{aligned}
& =50 \mathrm{k} \Omega \text { in parallel with R2/A } \\
& =800 \mathrm{k} \Omega / 140=6 \mathrm{k} \Omega \text { (approx.) }
\end{aligned}
$$

The complete circuit is shown in Fig. 7.1.

7.2. SETTING-UP PROCEDURE

Before switching on it is vital to set VR1 to its minimum resistance value. Check and double check this because of the dangerously high quiescent current which can flow. (BC108's are cheap but not cheap enough to use as room heaters!)

Measure the d.c. output volts to ground to confirm the half-way resting position (i.e. around $4 \cdot 5 \mathrm{~V}$).

If an oscilloscope is available and a signal generator apply a sine wave at about 1 kHz and adjust VR1 slowly until the crossover distortion disappears. Do not increase VR1 above this point.

If no such test equipment is available the setting up must rely on the ear.

7.3. HIGHER POWER AMPLIFIERS

Although the design of high power amplifiers is strictly an expert's job there are always a few adventurous amateurs willing to risk a few pounds for the sake of personal satisfaction or pride.

Let us suppose for example thit we are thinking in terms of supplying 50 W r.m.s. power into an 8 ohm load.

Preliminary calculations will reveal rather disquieting figures for supply rail voltage and collector currents.

Supply rail voltage required $=2 \sqrt{2} \sqrt{P R}$ (where $P=$ r.m.s. power and $R=$ speaker impestance)

$$
V_{\mathrm{CC}}=2.82 \sqrt{50 \times 8}=2.82 \times 20=56.4 \mathrm{~V}
$$

However, some safety margins must be included to allow room for the collectors to swing within the limits of saturation. Allowing at least three or fcur volts for
this, and the same for possible tolerance variations in power supply, we arrive at the round figure of 65 V (minimum).

The r.m.s. current required is $I=\sqrt{P / R}=\sqrt{50 / 8}$ $=2.5 \mathrm{~A}$ and peak current $=3.53 \mathrm{amps}$.

High power transistors are notariously low in $h_{\text {FE }}$. As a typical example the complementary pair with the type number 2 N 3055 (which would be suitable for the above requirements) has $h_{\text {FE }}$ between 20 and 70 . Using "worst-case" principles the minimum value of 20 must be assumed and the base drive current must be $3 \cdot 53 / 20=180 \mathrm{~mA}$.

This is a lot of base current and will require a small power stage again to supply it!

We cannot hope to produce this kind of drive current by simple circuits previously described.

7.4. POWER DARLINGTONS

The base current for the outputs can be buffered or "geared down" by using small power transistors in Darlington configuration. Fig. 7.2 shows typical $h_{\text {FE }}$ and current values.

A very useful device has recently appeared in the semiconductor data manuals called the "power Darlington".

As far as the user is concerned, they behave as a single high power transistor having an $h_{\text {Fe }}$ in the order of 1,000 . (In reality they are integrated Darlington pairs with two bleeder resistors across base and emitter to improve the stability.)

They can be purchased in npn or pnp (and in matched pairs) so are really the answer to a designer's prayer. Fig. 7.3 shows the internal construction.

Although the devices are not cheap, they compare favourably in cost with discrete pairs (remember that no current driver transistor is required).

Fig. 7.2. A Darlington pair showing typical currents and transistor gains

Fig. 7.3. Internal construction of an integrated Darlington pair transistor type MJ3001

Type	Power Dissipation	$I_{\text {C(max })}$	$V_{\text {ceo }}$	$h_{\text {FE(min) }}$	$V_{\text {CB(sat) }}$
Metal Case $\left\{\begin{array}{ll}\text { BD266 } & \text { prp } \\ \text { BD267 } & \text { npn }\end{array}\right\}$	50W	12A	60 V	750	2V
$\begin{aligned} & \text { Plastic } \\ & \text { Case } \end{aligned}\left\{\begin{array}{l} \text { MJE1100 npn } \\ \text { MJE1090 pnp } \end{array}\right\}$	70W	5A	60 V	750	2V
$\begin{aligned} & \text { Metal } \\ & \text { Case } \end{aligned}\left\{\begin{array}{l} \text { MJ3001 npn } \\ \text { MJ2501 } \end{array}\right.$	150W	10A	80 V	1,000	2 V

Table 7.1 is a guide to current types.
Be careful that you do not fall into a trap when choosing power transistors-the power dissipation column, even though it may appear simple is not
sufficient in itself. For example, the MJE1 100/1090 can dissipate 70 watts, but only for voltages not eaceeding 60 volts. To safely drive 50 watts into 8 ohms requires at least 65 V as shown in previous calculations.

7.5. TEMPERATURE EVILS

High power output stages generate considerable quantities of heat. Unless this heat is dissipated by adequate heatsinking, the temperature of the semiconductor junctions will rise higher and higher, eventually entering the fatal region of "thermal runaway".
It is necessary for designers to be well acquainted with the mechanism of thermal runaway in general and, in particular, the special problems it creates for Class B amplification.

All silicon semiconductors "leak" a little even at room temperatures, but the current (due to the release of thermal electrons from the crystal lattice) is small enough to be neglected.
The leakage, unfortunately, rises sharply with increase of temperature which means more current and therefore yet more heat. In other words, the process is a kind of thermal chain reaction which could turn expensive transistors into useless blobs of metal.
Such disasters can be prevented by bolting the output transistors to a large area of metal which radiates most of the heat and keeps the temperature below the thermal runaway zone.
The metal heatsink should be large in area and preferably matt black to aid radiation. There must
be no rough edges around the drill holes or the surfaces will not be in good thermal contact; silicone grease helps to increase the effective contact area.
One important point which must be mentioned is the electrical connection between the outer metal case and the collector. The heatsink must therefore be insulated or alternatively a mica insulation dise must be fitted between the case and the heatsink.

TRANSISTOR TURN-ON VOLTAGE

Having dealt with the general effects of temperature, there now remains a rather more subtle problem which we have discussed previously but only in connection with relatively low power output stages.

The turn-on voltage of a silicon transistor, l^{\prime} be is about 0.6 V at normal room temperature but decreases by 2 mV for every degree C rise. For example, suppose the output transistors are being driven fairly hard by a large signal. The junction temperature, if such a condition was maintained, could easily and quite safely reach a temperature $50^{\circ} \mathrm{C}$ higher which would cause the required V_{BE} for this particular collector current to be only 0.5 V . This is another vicious circle which could be described as "thermal modulation" of the signal.

7.6. DIODE TEMPERATURE TRACKING

To avoid crossover distortion in large power amplifiers, the quiescent current (output stage under zero signal input) should be in the order of 20 mA . The forward bias on the bases of the Darlingtons must be around 1.2 V instead of 0.6 V because there are two $V_{B E}$ drops to account for. The voltage difference across the two bases is therefore about 2.4 V at room temperature.

However, as we have seen, this voltage must be automatically reduced as the temperature rises to ensure the stability of the quiescent current. In small power stages, such as our earlier example using BC108's the automation was accomplished using one silicon diode and a variable resistor to adjust the quiescent current. If a pair of Darlingtons are used we could use three diodes and a resistor as shown in Fig. 7.4.

Fig. 7.4. One method of stabilising the bias on a Darlington output stage using three diodes and a preset potentiometer

Providing the diodes are on the same heatsink as the cutput transistors the forward bias will tend to fall in the same manner as the Darlington V_{BE}

With "tongue in cheek" it is hoped that the $V_{B E}$ drops will temperature track equally.

The diode method of temperature tracking, although reasonably efficient, lacks the essential finesse demanded by hi-fi addicts.

What is needed is a more delicate control method. Can we, for instance, use a transistor as a temperature variable resistance and benefit from its amplification properties? Such a device is quite commonly employed as an alternative to diode tracking and may be aptly described as a "V'BE multiplier".

7.7. THE VE MULTIPLIER

The circuit of a V_{EE} multiplier is shown in Fig. 7.5.
A voltage, dependent on the setting of VR1, is developed across the resistor chain and the transistor.

Assume VR1 is adjusted under cold, zero signal conditions for the correct 20 mA quiescent current in the outputs. The normal voltage across the two output base drives will be $2-4 \mathrm{~V}\left(4 \times V_{\mathrm{BE}}\right)$.
As the temperature rises, the required $V_{\text {be }}$ for this current is reduced and more base current flows. The collector current will rise $h_{\text {FE }}$ times as much, causing a heavier shunt load across the resistor chain. The original 2.4 V is now reduced and the quiescent current is prevented from rising. Providing the outputs and the V_{BE} multiplier are close logether on the same heatsink, the system tracks beautifully over the complete temperature range.

DESIGN DETAILS

Current down the resistor chain should be less than one tenth quiescent output transistor current, whict means less than $20 \mathrm{~mA} \div 10$ - say $\frac{1}{2} \mathrm{~mA}$ as a reasonable figure.
The voltage across R2 should be at hallf-way (ignoring the transistor).

Fig. 7.5. The $V_{\text {be }}$ multiplier-a more economical and efficient method of stabilsing output bias

So $R 2=1 \cdot 2 \mathrm{~V} / 0 \cdot 5 \mathrm{~mA}=$ $2 \cdot 4 \mathrm{k} \Omega(2 \cdot 2 \mathrm{k} \Omega$ nearest preferred value).
Allowing for VR1 "Iwiddle factor", R1 $=1.8 \mathrm{k} \Omega$ and VR1 $=1 \mathrm{k} \Omega$ completes the chain.

Any silicon transistor is suitable providing its h_{FE} is at least 100 .

7.8. THE CONSTAHT CURRENT SOURCE

To keep distortion low, the base current drive to the output transistors should be derived from a high impedance source (ideally a constant current source) The method of obtaining this by bootstrapping has already been covered. There are, however, some objections to this.
Firstly, bootstrapping increases the gain by using some positive feedback which tends to increase the distortion.

Secondly, the frequency response is slightly reduced.
A far more elegant method is to achieve a high impedance drive by using a transistor connected as a constant current source to replace the collector resistor in the drive chain.

It is more convenient to use a pnp driver when this method is used.

7.9. DETAILS OF 50W AMPLIFIER

The circuit Fig. 7.6 shows a simple power amplifier capable of detivering 50 W into 8 ohms and embodying most of the techniques described.
Transistor TR4 is the constant current source because the base voltage is held constant by two stabilising diodes. This stage can be considered as a very high collector resistor for TR2 which prevents the current down the chain TR2, TR4 from changing when the signal is causing large voltage swings.

The centre rail is maintained at 32.5 V above ground by heavy d.c. negative feedback. Notice that the first amplifier stage TR1 is placed between the 65 V rail and the centre rail.

The open loop gain of the amplifier is high, most of it coming from TR2 which has no emitter resistor. Its open loop gain is thus about $20 \times V_{\mathrm{cc}}=20 \times 55$, or around 60 dB .

The signal gain of the amplifier is determined simply by the ratio of R_{E} and R_{x} in the emitter circuil of TR1. Since R_{E} is fixed for d.c. purposes at $566 \mathrm{k} \Omega$ the gain can be decided by the choice of R_{x}.

It is not good design practice to squeeze high gain from a power amplifier-be satisfied with a sensitivity of 1 V for a 28 V peak output swing. A gain of 28 is required which would mean $R_{\mathrm{x}}=5 \cdot 6 \mathrm{k} \Omega / 28=200 \Omega$.

The relevant voltage drops are shown and serve as a

Fig. 7.6. A complete 50W amplifier using the principles described in the article. All voltages and currents are measured under quiescent (no-signal) conditions

AMPLIFIER SPECIFICATION

Input sensitivity for 28 V peak output

	$=1 \mathrm{~V}\left(R_{\mathrm{x}}=200 \Omega\right)$
	$=50 \mathrm{k} \Omega$ (approx)
Input resistance	$=0.2 \%$
Maximum total harmonic distortion at all	
power levels	$=0.2 \%$ to 50 kHz
Frequency response	$=20 \mathrm{~Hz}$ to
Idling current	$=25 \mathrm{~mA}$ total

valuable exercise for the amateur designer to try out on paper to see if his calculations agree.

Because TR2 has a large gain there is an instability problem which requires a 50 pF capacitor across the
base and collector to restrict the upper frequency limit to about 50 kHz .

CHOICE OF TRANSISTORS

The outputs could be MJ3001 (pnp) and MJ2501 (pnp).
TR 3 should have a very high $h_{\mathrm{FE}}-$ MPSA13 is a low power Darlington having $h_{\mathrm{FE}}=1,000$.

TR1 and TR4 could be any 80 V general purpose types, MPSA06 would do well.
TR2 should be pnp complement of TR4-MPSA56. The double diode on the base of TR4 is obtainable as the MZ2361.

SEE US AT
 The 1974 INTERNATIONAL AUDIO FESTUAL AIID FAIR OLYMPIA,LONDON

October 28 - November 3

PRAGTIGAL ELEGTRONICS STAND B13 (Ground Floor)

NEW MUSICAL INSTRUMENTS AND

A NEW STEREO AMPLIFIER WILL BE ON DISPLAY
Douglas Shaw will discuss Sound Synthesis for the Amateur and introduce the P.E. Minisonic* in the Hi Fi Theatre, Tuesday, October 29th and Sunday, November 3rd.

NOTE THESE DATES!

[^3]
Come and hear aThousand Pound Sound at Lindair...

STLuII 100 O

Studio $1000+$ is just the beginning of a whole complex of facilities serving the sounds enthusiast - Stereo, 4 -channel and Home Tape Studios. All the best - and all at Lindair.

Come in soon and sound us out.
have a demonstration in the relaxed atmosphere have a demonstration in the relaxed atmosphere
of Studio $1000+-$ and you'll hear what we mean. If Quadrophonic takes your fancy-our 4-channel demo studio is just next door to Studio 1000+.
At Lindair House, 227 Tottenham Court Road, you'll find 3.500 sq.ft, of demonstration studios with all that's best in Hi-Fi. And now we've added Studio $1000+$ - a demo studio totally devoted to the top line in stereo equipment.

With names like TEAC, Revox, JBL, Tannoy, Marantz and others, you can hear systems which cost over $£ 1,000$ and which sound like a million.

Only Lindair give you the sort of service to match this standard of equipment. Come and

Lindair House, 227 Tottenham Court Road, London W1. 01-580 7383

Telephone orders accepted. Access
and Earclaycard weicome.
 avallable toill caller
Financial Services.

What Is Your Potential?

This month 1 am going to offer some more food for thought, which some of you may be able to combine with a practical experiment or two. Unfortunately, the material on this page does not form a complete subject, as research into its possible implications is not yet complete. However. 1 thought you may care to hear of the results obtained to date.

It all started when I had the fortune to be offered an AVO digital multimeter at an extremely reasonable price. The meter is powered by rechargeable internal batteries, making it quite portable and useable completely isolated from the mains.

Normally, this last feature would not have interested me, since most of my work involves mains-powered test equipment and a good earth is all you need to avoid hum effects. But it occurred to me that for ESP verification one needs to eliminate all likely (and unlikely) sources of interference. or there is still the chance of some red herrings creeping in. At best. some sceptic is likely to suspect the mains of causing the witnessed "paranormal" effect.

Mind you. I invite such suggestions. as it is the duty of the investigator to rule out every possible normal cause of unusual effects.

I took the digital meter along to the Paraphysical Laboratory at Downton on more than one occasion. and the first time we busied ourselves comparing one another's body potentials. Body potentials have received much serious treatment in recent years. perhaps the better-known measurements being ECG and EEG (heart and brain electrical rhythms in layman terms). But there are also other measurements of a d.c. form, and some of very low-frequency which merit attention. On the occasion mentioned we satisfied ourselves with d.c. voltage measurements taken from hand to hand of the subject. I set the DMM to its lowest d.c. voltage range. and set to divide-byten, so enhancing the range by a further decade.

Method Of Measurement

The method adopted for measurement was to ask the subject to take the two test leads from the meter, one in either hand. The leads were fitted with the crocodile clip terminations, but these were not used in their normal mode (fortunately for the subject). Instead, they were held firmly in the hands with reasonable grip pressure. The clips, being of identically-plated metal and uninsulated, provided a good electrical contact with the palms of the hands. but not touching signet rings. if worn. The identical metal plating is of considerable importance. since if the clips were dissimilar in this respect. an electrical cell action would be produced by the perspiration acting upon the two dissimilar metals, so producing a small. but significant potential difference which might mislead us in our results.

My own hand-to-hand potential was about 10 millivolts. with positive at the left hand. This was in keeping with one or two others whose potential was measured. Oddly enough. some people displayed a reversed polarity, but I was unable to relate this to lefthandedness.

Human Battery

The most startling reading obtained that evening was that of a young lady I have mentioned before in this series. Suzanne Padfield. This young lady seems to possess remarkable abilities in the field of mind over matter. Her reading on this occasion was first of all iust over 100 mV , positive on left hand. "Gosh," I said, "you make ten of each of us!"
It was then that someone had the idea that we form a "human battery" by joining hands, each positive hand to the next subject's negative hand and so on. and comparing results with the individual readings taken previously.
Like good scientists, we decided to take this step by step, so as to detect any errors as they occurred. So Suzanne and I held hands, her right and my left. and the spare hands held the meter clips. We expected to get something like $10 \mathrm{mV}+100 \mathrm{mV}=110 \mathrm{mV}$. Well, try as we might, we got only a row of zeros.
1 then took both leads to check my own potential. and this checked o.k. as before. I then handed the leads to my partner and we noted that her reading was very much lower than 100 mV . but was climbing. When it had reached about 100. I asked her for one lead. and in reaching for it touched the back of her hand. Almost immediately the meter fell!
Now, it is not unusual to find sudden discharges of electricity
when charged objects are touched with the hand of an earthed body, but this was ridiculous, as we were not measuring electrostatic charge, but a definite "terminal potential difference" across a (relatively) lowimpedance source (possibly on average 30 kilohm or so, allowing for contact area of crocodile clips and pressure exested). So how could my touching the lady's hand cause the voltage to drop? (Incidentally, the impedance of the meter even at the low range setting is still extremely high, so contact resistance would play very little part in readings in the millivolt range. This was borne out by experiment.)

To return to the falling reading, I noted what had happened and took my hand away from hers. The meter reading slowly returned to her "normal" 100 mV . Thinking that the strange effect might possibly be something to do with me, in particular. I suggested that another male present should take my place. I must say that I was relieved when the same result was obtained.

Power From The Healer

The lady involved in these experiments happens to be a well-known healer, and she performs this feat by placing her hands near to, or actually on, the patient. It would seem reasonable to assume that, given that there is a positive healing effect (which I would not doubt in view of evidence received) she produces some sort of energy or power which flows, perhaps like an electric current, from her to the sick person, whose "health potential" may be lower.

Again, referring back to an earlier article in this series, the "Phantom Photos" of the Kirlians. It has been observed that the points of overexposure on the film around the fingers of a healer after he/she had performed healing on a patient are greatly diminished in intensity. I have seen reproductions of such photographs (1973, Daily Telegraph Magazine). I wonder if our findings of hand-potentials could possibly indicate the transfer of power from a healer, when touched by someone with lesser power?

It is noteworthy that the use of conventional voltmeters would lead to difficulties and severe inaccuracies in the mentioned experiments: partly because of sensitivity, but mainly because the internal resistance of such meters is comparatively low. Hence, the contact resistance between electrodes and skin, which would vary with pressure and moisture present, would be comparable or even exceed greatly the internal resistance of the meter, and pressure would vary readings considerably. Only meters with electronic circuitry of very high resistance are suitable for the kind of experiments described here.

AN INTERCOM is a device which can be put to many uses throughout the home: as a simple room-to-room communicator; as a doorphone whereby one can speak to callers before opening the door; or as a remote baby-minder.

The simple master/slave intercom to be described uses circuits whose principles were described in the series First Steps in Circuit Design.

THE INTERCOM SYSTEM

Before describing circuit details, a brief summary of the overall system should help to clarify matters.

The intercom consists of two units known as "master" and "slave", which can be separated by up to 50ft.

Simultaneous two-way conversations are not possible with the intercom described: the direction of communications is controlled by a LISTEN/TALK switch on the master unit. This saves a large number of components since each loudspeaker takes on a dual role depending on the position of the switch: either as a speaker or a microphone (see Fig. 1). The master unit has an ON/OFF switch but the slave unit cannot speak to the master even with the other switch in the listen position. This problem is overcome by leaving the master unit in a state whereby its amplifier will oscillate when a call button on the slave unit is pressed.

Fig. 1. Block diagram of Intercom system

REQUIREMENTS OF THE AMPLIFIER

As well as the two speakers the other main unit is the amplifier which must be capable of taking the tiny signal from the "microphone" (in fact a speaker)

COMPONENTS . . .

Resistors

R1 390k Ω
R2 180Ω
R3 $2 \cdot 2 k \Omega$
R4 $1 \mathrm{k} \Omega$
R5 $10 \mathrm{k} \Omega$
R6 330Ω
R7 330Ω
R8 $56 \mathrm{k} \Omega$
All $\pm 5 \% \pm W$ carbon

Potentiometers

VR1 $4.7 \mathrm{k} \Omega$ sub-miniature vertical skeleton preset
VR2 250Ω sub-miniature vertical skeleton preset

Capacitors

C1, C2 $0.01 \mu \mathrm{~F}$ disc ceramic (2 off)
C3-C5 $25 \mu \mathrm{~F}$ 10V elect (3 off)
$\mathrm{C} 6, \mathrm{C} 7 \quad 0.01 \mu \mathrm{~F}$ disc ceramic (2 off)
C8, C9 $25 \mu \mathrm{~F} 10 \mathrm{~V}$ elect (2 off)
C10 $22 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum

Semiconductors

TR1-TR3	BC108 (3 off)
TR4	BC214L
D1	1N914

Switches

S1 Double pole changeover slide
S2 Double pole changeover biased push button
S3 On/off push button
Speakers
LS1, LS2 35Ω 2 $\frac{1}{4} \mathrm{in}$ (2 off)
Miscellaneous
Veroboard, 0.1 in matrix, 2.7 in $\times 2.5$ in
B1 9V PP6 battery and connector
Two plastic boxes
Lightweight twin core connecting wire
and amplifying it sufficiently to produce an easily audible sound in the other speaker.
It was decided to design the amplifiers with an output of 100 mW . This is more than loud enough for domestic use. The next thing to be decided which influences circuit design is battery voltage. For convenience this was set at 9 V .
Speaker impedance is a vital factor also. Too high an impedance means a large output voltage swing is necessary while too small an impedance means high output transistor currents. Therefore 35 ohms was chosen as a good compromise.
We require the amplifier to be efficient, i.e. to draw current only when needed, thus a class B output seemed the obvious choice.

PRELIMINARY CALCULATIONS

Having decided on 100 mW output and 35Ω speakers we can calculate the required output current and voltage. Using $P=V^{2} / R$ we obtain $V=\sqrt{P \bar{R}}$ where P and V are r.m.s. power and voltage respectively.

This gives $V=\sqrt{0.1 \times 35}=\sqrt{3.5}=1.9 \mathrm{~V}$.
Now in a class B output each of the transistors produces half the output voltage so the peak voltage produced by each is $\sqrt{2} \times 1.9=2.7 \mathrm{~V}$ peak or 5.4 V peak-to-peak. This is well within the limits of the 9 V supply rail.

Using $P=I^{2} R$ we obtain $I=\sqrt{P / R}$. Again I and P are r.m.s. values.

Hence $I=\sqrt{0.1 / 35}=54 \mathrm{~mA}$.
The peak current i.e. the maximum current to be supplied by each of the output transistors is $\sqrt{2} \times 54=75 \mathrm{~mA}$.

Table 1: VOLTAGE MEASUREMENTS

Location		Voltage
TR1	b	0.7 V
	c	4.5 V
TR2	b	0.7 V
	c	3.8 V
TR3	e	4.5 V
	b	5.2 V
	c	9 V
TR4	e	4.5 V
	b	3.8 V
	c	OV

The $I_{\mathrm{C}(\max)}$ of a BC 108 is 100 mA so we may use it in the output. Its near complement the BC214 also with an $I_{C(\max)}$ of 100 mA can form the other output.

We have calculated the peak-to-peak output required as about $5 \cdot 4 \mathrm{~V}$. Now, when used as a microphone the speakers used had an r.m.s. output of about 2 mV . Thus we require an amplifier with a gain of at least 1,000 .

Since speaker outputs do vary it was decided to include a preset gain control. This also makes design less critical.
 The components within the dotted line are in the slave unit

Photograph showing the completed Intercom

CIRCUIT DESIGN

The final circuit can be seen in Fig. 2. It will be seen that it consists of two main stages: a class A voltage amplifier comprising TR1 and associated components. and a class B output comprising TR2 to TR4. The two are linked by the gain control VRI

Taking the input stage first we see that TR1 has simple collector-to-base bias. The collector current was chosen at 2 mA and the quiescent collector voltage as 4.5 V . This gives $\mathrm{R} 3=(4.5 \div 2) \mathrm{k} \Omega=$ $2 \cdot 2 k!2$ (nearest preferred value). Taking the typical $h_{\text {FE }}$ as 200 we obtain RI $=$

$$
\frac{3.8 \times h_{\mathrm{FE}}}{2} \mathrm{k} \Omega=390 \mathrm{k} \Omega
$$

(nearest preferred value).
Now the input impedance of this stage is
$h_{f \mu} \times r_{\mu}$ where $r_{\rho}=25 / I_{\mathrm{E}}=25 / 2=129$. So typically the input impedance is $100 \times 12=1200$ s. The "microphone" has a source impedance of about $35!2$ so the $R_{1 N}$ of TRI will have very little attenuating action.

As in section 4.2 "First Steps" the gain of this stage is 180 (though this will vary since changes in h_{re} will mean that the quiescent collector will not be exactly 4.5 V). This gain will also be reduced by the shunting effect of the gain control and class B input impedance.

This first stage is decoupled from the supply line by C4 and R2. This prevents oscillation caused by feedback from the output stage.

Capacitors Cl and C 2 prevent radio frequency pickup and eliminate the risk of high frequency oscillation.

OUTPUT STAGE

Moving now to the output stage we see that bootstrapping of TR2 collector resistor is used. This increases gain and reduces the effects of gain variations in TR3 and TR4.

The maximum output current was calculated as 75 mA which, assuming a maximum h_{FE} of 100 , means that the base current that must be supplied by TR2 is 0.75 mA .

TR2 must also supply base current required to establish the quiescent current needed to overcome crossover distortion.

We do not want TR2 current to be high as this will only drain the battery and since we can stand some distortion in voice communication, a choice of 5 mA TR2 collector current was made.

This gives $\mathrm{R} 6=\mathrm{R} 7=3.8 / 2 \div 5=380 \Omega$. In fact 330 s was used.

The preset VR2 must produce 0.7 V at 5 mA so at centre setting (where there is greatest freedom of adjustment) its resistance $=0 \cdot 7 / 5=140 \Omega$. A 250Ω preset was used.

Resistors R5 and R8 form a divider chain which set the output voltage at $9 / 2=4 \cdot 5 \mathrm{~V}$. Their ratio is about $5 \cdot 5: 1$ which equals $3 \cdot 8: 0 \cdot 7,3.8 \mathrm{~V}$ being the voltage across R 8 and 0.7 V across R 5 .

The value of R 8 is made as high as possible (whilst supplying sufficient base current for TR2) since the gain of the output stage is roughly $R 8 / R_{\mathrm{s}}$ where R_{s} is the source impedance of previous stages.

We now come to the choice of gain control resistance and R4. If VRI is too high the gain of the output stage will be reduced (R_{s} increased); if it is too small the gain of TRI will be reduced.

The $4 \cdot 7 \mathrm{k} \Omega \Omega$ value finally chosen gives an overall gain of over 4,000 . This can be reduced by means of VR1.

All coupling capacitors were chosen as $25 \mu \mathrm{~F}$ for convenience. At the lowest frequency of interest (in the voice about 300 Hz) these have an impedance of less than 3052 which is sufficient for use in all positions.

OSCILLATOR

The only components not forming part of the amplifier proper are C6 and C7. When the switch is put in the ofF position C7 is connected from the collector of TR1 to the input and C6 across R1. This causes the amplifier to produce a penetrating oscillation when the battery is connected.

The call button on the slave could be connected by using a third wire from the master but it is cheaper to use twin-core wire.

To overcome the problem it was found that by placing the coupling capacitor in series with the slave speaker only a tiny leakage current would flow; not enough to drive the amplifier. When this

Photograph of the component layout on the Veroboard and other components in the master unit

Fig. 3. Layout of the components on the Veroboard and interwiring details
was shorted out by the call button the amplifier would receive the full battery potential and the call tone would be produced.
A tantalum capacitor was used to reduce leakage current.

CONSTRUCTION

The amplifier was built up on a piece of Veroboard as shown in Fig. 3.
The master unit was mounted in a plastic case approximately 5 in $\times 3$ in $\times 2$ in which comfortably holds Veroboard, battery, and speaker and switches.

Switch S2 was a "press-to-test" two-pole changeover type but should this prove hard to obtain a

Fig. 4. Photograph showing the disposition of components within the slave unit
biased toggle could be used. An ordinary toggle could be used providing it is always left in the listen position when switched off.

Holes were drilled for the speaker and covered with a piece of foam which generally improves the appearance.

Speaker LS1, C10 and S3 are mounted in a plastic box in the slave as shown in the photograph (Fig. 4).

Lightweight twin-core wire is used for interconnections.

Speaker impedance is not critical any value between 25Ω and $40 \Omega 2$ being sufficient.

Transistor type is not critical either; any transistors with a gain of 200 or more will do. Note that lead connections for a BC214L are shown in Fig. 2. If the "L" type is not obtained base and collector leads are reversed.

TESTING

Before testing VR2 must be set to minimum resistance. Set the gain control to about mid-way. The two units should be separated or oscillation will occur due to acoustic feedback.

VR2 is adjusted to give the minimum quiescent current consistent with low distortion. The quiescent current through TR3 and TR4 in the prototype was about 5 mA . This can be simply measured by putting a milliameter in the battery lead, remembering the TR2 takes about 5 mA , anything greater than this being in TR3 and TR4.

Do not turn VR2 to maximum setting for any llength of time as this will damage the output transistors.

VR1 is adjusted to give enough gain without causing clipping-audible as a harshness in the output. Test the call facility by switching the master off and pressing the call button.

If any faults are found they can be easily located using the quiescent voltages given in Table 1.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?

VARIGAP TUNER TUNING INDICATOR

AFTER the publication of my article last May (Push-button Varicap Stereo Tuner. May 1973) I received many letters requesting details of a cuning indicator of some description. Criticism has been aimed at the small tuning potentiometers used for tuning on the domestic prototypes, non-technical personnel have found tuning difticult, more so using an a.f.c. on/off switch:
Obviously with the a.f.c. on the cuning is broader than with it off due to the pull in and holding range Multiturn potentiometers have been tried but the cost of these is around ± 1 each and represents a 15 per cent price increase on a complete tuner.

Kecently Motorola have introducer a luning indicator i.c.. the MC1335P for f.m. and colour TV purposes. To devise a method of operation from the LP 1185 was not too easy and it was necessary that i! did not interfere with the a.f.c. loop and the circuit of Fig. I was evaluated. The MC1335P is a differential amplifier with lamp drive and the lamp illuminates when inputs 2 and 3 are balanced at the same voltage any unbalance extinguishes the lamp.

A d.c. voltage appears at the audio output of the LP1185 which reaches a maximum on tune. This voltage varies with the signal level and may not operate on weak stations. Conversely the lamp may light if the noise level between stations is high.

The level of d.c. on tune with a good signal is about 2 V . This is fed to input 3 via a blocking resistor RI to prevent unnecessary loading of the audio. R2 is chosen to provide a balancing current to input 2. thus subject to tolerances the lamp will illuminate on a tuning peak providing $1 \frac{1}{2}$ to 2 V .

Those wishing to add this to an existing tuner should use an l.e.d. consuming very low currents as the mains transformer may not provide enough output for this and the stereo pilot lamp.

A few further words about tuner problems dealt with so far may be useful to intending constructors or those with any difficulties.

If the a.f.c. is erratic and the noise level seems high. 58 dB is not unusual with a good signal, check the following. Any a.f.c. switch wiring should be done in single screened cable. Add extra decoupling to the station selector wiring. for example connect a $0 \cdot 1 \mu \mathrm{~F}$ between the common tuning line and chassis on the pushbuttons.
S. R. Beeching

Notts

SOUND/LIGHT MODULATOR

The three-channel light modulator circuit of Fig. 1 uses 3 BFY51's to modulate current through the secondaries of sub-miniature mains transformers. The mains sine-wave is therefore modulated in sympathy and so the voltage to the gates of the thyristors is varied.

Transformers T2, T3, T4. should all be l.t. transformers with 6.3 V or 9 V secondaries, and a minimum current of 250 mA . Instead of having the normal treble, middle and bass. the circuit was designed to have one channel responding to any
frequencies, in fact responding to the most predominant.

Transformer Tl must be a 6.3 V mains transformer with a minimum rating of 2 A . The bridge rectifier should be 2 A 50 p.i.v. The circuit will work off amplifiers of 5 to 10 W output. For using higher powers more resistance must be added in series with the bases of the transistors.

With the specified thyristors, 500 W of light can be used on each terminal.

> P. R. Strute

Tibenham. Norfolk

PHASING CONTROL

THE enclosed diagram Fig. 1, is for a control circuit for the Phasing Unit (Sept. 73).

Two ORP 12 photocells are wired in place of the ganged potentiometer VR2a. b. The resistance of these is then controlled by the lamp LPI which is made to switch gradually on and off. TR 1 and TR2 form a multivibrator which gives a square wave output of about 1 to 2 s mark, 1 to 2 s space. TR3 is used as a buffer amplifier so the pulses may be used without affecting the multivibrator.

These square pulses appearing at the collector of TR3 are allowed to charge and discharge the large capacitor C 3 via the diode and resistor network D1. D2. VR3. VR4. The diodes allow separate adjustment of charge and discharge times of the capacitor, as it will charge via D1. VR3 and discharge via D2, and VR4.

The 6.8 ks ! resistor R 4 is to lengthen the discharge time to compensate for the load of TR4 which switches slowly on or off as the capacitor is slowly charged and discharged. The lamp LPI is thus controlled by TR5 from the rising and falling collector current through TR4.

D1 and D2 were silicon diodes from the junk box, their characteristics are not critical. LP! is a miniature 6 V "pea bulb" from a panel indicator light.

The power supply was 6 V winding of a mains transformer with half wave rectification and simple RC smoothing. A separate 9 V winding, bridge rectifier and smoothing capacitor was used to supply power to the phase unit itself.

The complete unit was assembled on Veroboard. The photocells and bulb were secured by their connecting wires, and positioned so that the cells were either side of the bulb. just touching. A small piece of aluminium foil was glued to the Vero and folded over the bulb as a reflector.

SETTING UP

Set VR1 and VR2 to maximum. Adjust VR3 and VR4 till the bulb is gradually but regularly brightening and darking.

Now VR1 and VR2 can be adjusted to alter the speed and ratio of the multivibrator, if necessary. Best results will be obtained when the bulb just reaches full brightness and full darkness but lingers in either state no longer than the thermal inertia of the bulb demands.

Final adjustments should be made with the unit running and music being played through it. bearing in mind that the unit can take two or three cycles to settle down after an adjusiment has been made.
R. J. Goodivin

Stockport

Fig. 1

BuOK $\square 2$

ELECTROTECHNOLOGY - 3rd EDITION

By M. G. Say

Published by Newnes-Butterworths
176 pages, $14 \times 22 \mathrm{~cm}$. Price cased £1.70

T- HIS book of basic theory and circuit calculations for electrical engineers is primarily directed to second and third year electrical engineering students but similar level students in other allied arts will find it equally of value, as will professional engineers and all others looking for a useful source of reference.

The avowed aim of the book is to present the fundamental concepts of electricity, electric and magnetic fields and basic electrotechnology in as concise a form as possible. In this it succeeds admirably with an opening chapter devoted to the various main and derived SI units, a must for all at present.

A great deal of the book is devoted to networks starting from the simplest concepts and working through to a series of examples demonstrating the solutions discussed. To anyone not too happy with this area alone the book will be useful, setting aside the value of the other reference material it contains.
R.D.R.

HIGH FIDELITY DESIGNS

Prepared and Published by Wireless World, IPC Business Press Ltd.

112 pages, A4 format. Price £1-00

THis soft-backed A4 format booklet is a bound set of reprints of some of the most popular articles published in Wireless World in the last few years on the subject of Audio. Including as it does articles by such well-known names as NelsonJones, Bailey, Linsley-Hood, Stuart and Ockleshaw it will certainly fill the requirements of many for intormation on such areas as tape recording, loudspeaker design, amplifier and pre-amplifier design and so on.

In view of the problems facing many of us today in obtaining back numbers of our favourite publications or articles from those publications, any effort such as this to supply the more demanded items in bound form must meet with approval.

However, it is perhaps just a very small shame that whilst each item has been reprinted in full together with any follow-up material in both article or "Letters to the Editor" form, no real effort has been made to rationalise the texts into one cohesive unit. Thus the reader is still faced with the requirement that he read all, but all, of any particular text in order to be certain of clarifying that particular exercise.

One is forced to ask if it would not have been possible to present each article in a more unitary form. After all the only reason for the inconsistency in the first place is chronological and in a reprint this no longer matters.
R.D.R.

MARHE PLACE

ftems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

AMPLIFIER MODULES

For the reader who likes to experiment with amplifier construction, a range of four new Sanken audio amplifiers, suitable for hi fi and power amplifier output stages, is available from Armon Products Ltd, should prove most useful

These amplifiers are available with class B output powers of 10 to 50 W r.m.s and are contained in a small flat-pack package. Coded types SI-1010G (10W), SI-1020G (20W) SI1030G (30W) and Sl-1050G (50W), the amplifiers are claimed to give $\pm \frac{1}{2} \mathrm{~dB}$ response from 20 to $100,000 \mathrm{~Hz}$ and less thàn 0.5 per cent harmonic distortion at full power.
The 30 and 50 W circuits have built-in current limiting and differential input stages, and feed 4 to 8 ohm output loads. The 10 and 20W versions do not have differential inputs and are for 8 ohm loads only. All four amplifiers can operate from single or split power supplies and all versions claim an input impedance of $40 \mathrm{k} \Omega$.

The latest retail prices (time of going to press), of these amplifier modules is: 10 W version $£ 3 \cdot 30$ each: 20 W version $£ 6.60 ; 30 \mathrm{~W}$ $£ 8.40$; and 50 W version $£ 13$; all prices subject to VAT.
Full technical details and units may be obtained from Armon Products Ltd, 54 George Street, London, W.1.

COMPONENTS

Component availability is an ever-present problem for the constructor. Be he professional or amateur he always needs ready access to parts for his latest project. Thus any commercial venture which might ease the situation with a reliable and constant flow of components is to be welcomed.

The latest supply house to enter the field of small-order component business is RS Components Ltd., who have launched a companion company, Doram Electronics Ltd.

The new company will operate from Wellington Road Industrial Estate in Leeds on a postal basis. They expect to be able to offer not only the basic RS range of products but an extension of this range into
the type of component more often used by the amateur, such as the less common values of resistor and capacitor.

The aim is to create a "by return of post" cash with order mail service for components, kits and accessories. Something in the region of 4,000 product lines will be stocked and a catalogue is now available to the customer at a charge of 25 pence including postage. There will be no minimum order charge.

It is understood that the catalogue will include information on products such as operating parameters, photographs and drawings and, where necessary, circuit details. In addition it is hoped to include kits of many of the projects published in various technical and leisure area journals as soon after their publication as possible.

Information on pricing is not available at present but it is understood that most if not all prices will bear comparison with other suppliers.

With the announcement of Doram it now seems to indicate the willingness of suppliers to acknowledge the existence of a growing market in the amateur and leisure area. Indeed. RS are not the first to show a willingness to deal in this area, several of the semiconductor distributors already accept small orders now and it is to be hoped that the trend will continue.

LITERATURE

It is at this time of the year that most readers will be taking stock of their components and searching for the new catalogue releases before ordering items for their autumn projects.

Unfortunately, this year industrial disputes, component price increases. and now VAT changes have delayed many of these catalogues appearing. Readers are advised to keep a close eye on all advertisements for latest releases and where possible price changes.
So far only the Electrovalue Catalogue No. 7 has arrived at the office. This catalogue does not contain any of the new VAT price adjustments.
This excellent catalogue contains 112 pages and lists a very large stock of i.c.s and transistors together with their case outlines, and in many cases their working parameters. Other items available vary from a fuse to complete soldering kits.

Copies of the Electrovalue No. 7 Catalogue can be obtained from: Electrovalue Lid., 28 St. Judes Road, Englefield Green, Egham, Surrey, TW20 0HB.

As an introduction for the first time buyer of hi fi equipment, Sinclair Radionics have recently published a 12-page booklet entitled "The Sinclair Introduction to "The

The object of the booklet, apart from advertising the well known range of Sinclair products, is to help unravel the often baffling technical terms thrown at the would be purchaser by salesmen.

The booklet is divided into five sections starting with a page devoted to a simple explanation of the difference between hi fi and stereo. Subsequent sections cover what equipment is needed and how much will it cost?, where to locate the equipment, and can the equipment be built? The final part of the booklet is an alphabetical glossary of the 20 most common words and phrases used to describe hi fi equipment.

Copies of the free booklet are available from your local hi fi dealer or direct from Sinclair Radionics Ltd.. Hi Fi Division, London Road, St. Ives, Huntingdonshire, PEI7 4HJ.

Also just released is the new Heathkit Catalogue. This 64-page catalogue is claimed to contain details of the world's largest range of electronic kits, many available for the first time in this country.
This comprehensive catalogue talks about kit building and lists kits ranging from a large selection of audio equipment, electronic calculators, digital clocks, thermometers, an ultrasonic burglar alarm. to a large range of test gear for the home and car.
New kits include an f.m. tuner with digital readout and "computer tuner", a 4-channel SQ amplifier and a digital electronic clock with a larm.
The catalogue is available free from: Heath (Gloucester) Ltd., Bristol Road, Gloucester, GL2 6EE.

PRINTED CIRCUIT BOARD SERVICE

We understand that W.K.F. Electronics are now able to offer a printed circuit board service to readers for most of our current projects.

For further details readers should write to W.K.F. Electronics at 42 Welbeck Street. Whitwell, Worksop. Notts.

Sanken amplifiers from Armon Products

PE CCTV

 MONOCHROME CAMERA EY A.V. FLATMAN * b.sc.
Ideally suited for:

\% Home Entertanment

THis month we give constructional details for the composite video signal circuitry together with the remaining power supplies and scanning circuits.

P.C.B. 1

The printed circuit board P.C.B. I is designed to hold the Master Logic, Video Amplifier, Sync Mixer and Cathode Switch circuits and is shown in Fig. 2.2. Component placement is detailed in Fig. 2.1. Due to the high packaging density of parts on the board area it is somewhat unfortunate that a series of wire links have had to be made to complete the circuitry. For reasons of economy these are preferred rather than a double-sided board.

VIDICON SCANNING

The EMI 9677 Vidicon is manufactured to close tolerances and is therefore quoted as being "selfcentring". This statement simply means that the electron beam will be accurately focused onto the centre of the photoconductive target in the absence of any deflection force. Self-centring Vidicons are indeed convenient when considering the design of

:\%\%: Remote Monitoring

\% Surveillance

suitable deflection systems, as no centring adjustment is necessary.

Deflection of the electron beam relies upon the force produced by a magnetic field. In practice, this is implemented by the use of two pairs of coils, situated outside the Vidicon tube, to provide radial fields (outward from the tube axis) at right-angles to one another. Horizontal and vertical beam deflection distances are then governed by the current passed through each pair of coils.

In TV terminology, coils concerned with vertical deflection are known as field scan coils, whilst coils concerned with horizontal deflection are called line scan coils. As highly inductive coils generally resist the passage of high frequency currents, the line scan coils are designed to possess low inductance. This design aspect enables the high line scanning velocity we require. The field scanning velocity is, however, less demanding, and proportionately higher inductance field scan coils may be used.

LINE GENERATOR

The simplest technique of producing the linear sawtooth current waveform necessary to scan an

Fig. 2.1. Component layout for P.C.B. 1

[^4]

Fig. 2.2. P.C.B. 1 copper side conductor pattern
active line and flyback is to apply a voltage step to the line scan coils. This stems from the integrating property of an inductor, which is expressed as -
Coil current $=-\int \frac{1}{L} V \mathrm{dt}$, where L is the scan coil inductance and V is the applied voltage.

In simple terms, if a d.c. potential is applied to a coil, then the current in that coil is initially zero and will increase linearly with time, reaching saturation at V / R amps, where V is the applied potential and R the d.c. resistance of the coil.

Let us now examine the operation of the Line Generator circuit, shown in Fig. 2.3, with the help of the waveforms shown in Fig. 2.4.

Line sync pulses are used to drive TR10 as a current switch, allowing drive current derived by R30 to be sinked to earth for the duration of the line sync pulse, and into the base of TR11 in the absence of line sync pulses.

The leading edge of the line sync pulse marks the completion of an active line scan and initiates a flyback. Now TRII is switched off in the presence of line sync pulses, causing the current in the scan

Fig. 2.11. P.C.B. 2 copper side conductor pattern

coils to collapse freely, the time required to do this may be calculated as being-

$$
t=\frac{L}{R} \text { seconds. }
$$

Where L and R are the inductive and resistive components of the coils.
t then becomes $\frac{1 \mathrm{mH}}{2.6 \Omega}$, or $400 \mu \mathrm{~S}$ (equivalent to about 6 lines of a 625 -line picture).

This surprisingly long recovery time is shortened to several microseconds by the action of C 20 , which

Fig. 2.3. Circuit of Line Generator

Fig. 2.4. Line Generator waveforms
acts with the circuit inductors to give a criticallydamped oscillation at a frequency of approximately 200 kHz . The current is in fact returned to its starting level within one cycle of the frequency of oscillation.

The back emf induced by this rapid flyback may be estimated from Lenz's Law to be of the order of 100 volts above the working collector voltage of TR11. This feature obviously then has some bearing upon the choice of TR11.

When the line sync pulse has ended, and its level fallen to $0 \mathrm{~V}, \mathrm{TR} 11$ will be biased to conduct. However, at this point in time, the current flowing in the line scan coils will be negative and TR11 conduction is impossible. Alternatively, D6 will conduct to enable a controlled potential to be developed across L1. The current in L1 will increase linearly with time until it crosses the zero axis, where TR11 will take over conduction as D6 becomes reversebiased for the remainder of the line scan. In this way, conduction is achieved over the required period of time.

CURRENT GRADIENT

The gradient of the current waveform, or the line scanning width, is determined by the potential developed across L 1 during the conduction of D6 and TR11. This potential is set by the combination of R31 and VR4, and is given a signal eanth by C19 to ensure that the scanning current is devoted wholly to L1.

Fig. 2.12. Component layout for P.C.B. 2. Note that VG1, VG2, etc., refer to the grids on the Vidicon tube (See Fig. 1.5)

Pin assignments for Master Logic i.c.s given in Part 1

Fig. 2.5. Circuit of Field Generator

The transformer comprising L1 and L2 is designed to match the low impedance line scan coils to the line drive transistor TR11, and are wound on a ferrite core to ensure efficient operation at working line frequencies of up to 15.625 kHz (625 lines at 25 times per second).
As conduction for 50 per cent of the active line scan is performed solely by D6, the apparent efficiency of the line drive transistor TR11 is increased. A BF178, video transistor is employed in the line drive stage to cater for the large e.m.f.s induced within the scan coils and deliver sufficient power to enable the required beam deflection. The use of diode D6 is a generally accepted technique in the television circuitry world, and, for obvious reasons, carries the title of efficiency diode.

FIELD GENERATOR

As the field scanning rate is as low as 50 fields/ second, no difficulties are experienced in driving the field scan coils. The field scan coils have 52 mH inductance and 150 ohms resistance and may therefore be safely considered as a resistive load to a voltage waveform generator. Such a circuit and its relevant waveforms are shown in Figs. 2.5 and 2.6 respectively.

Switch TR12 is non conducting in the absence of field sync pulses and capacitor C21 is allowed to charge via the constant current generator, comprising TR 13 and associated components. The potential across C21 during charging will rise linearly with time until the arrival of a field sync pulse, when

Fig. 2.6. Field Generator waveforms

Fig. 2.10. (right) Supply circuit for focus coil

Fig. 2.7. Power supply circuit for camera. Transformer T2 provides high potentials for the Vidicon tube

switch TR12 will conduct to rapidly discharge C21 Active field scanning corresponds to the charging of C21, whilst flyback corresponds to the rapid discharge.

The directly coupled f.e.t. TR14 acts as a high input impedance source follower and develops an exact replica of the charging potential across its load, R35. This sawtooth waveform is finally buffered into a low impedance output impedance by the emitter follower, TR15 and R36.

The voltage waveform present at TR15 emitters (Fig. 2.6) is seen to have only a positive going sense. This is not yet suitable to drive the field scan coils, as drive requirements call for a sawtooth waveform which is symmetrical about the zero axis. Coupling the output voltage to the field scan coils via C22 will perform the necessary level shifting and enable the field scan coils to be driven correctly.

As field scanning time and C21 are fixed, the gradient of the resultant waveform depends solely upon the current delivered by the constant current source. Field height adjustment is therefore simply accommodated by VR5.

VIDICON SUPPLIES

All the high potentials required to operate the Vidicon are derived from transformer T2 (Fig. 2.7). Positive mesh, wall anode, limiter anode and target potentials are obtained from different points of the +300 V potential divider, comprising R37, R38 and VR6. Sufficient smoothing is made possible by C24 alone.

Fig. 2.8. 15V Regulator circuit

The beam current control potential must be negative and possess a greater degree of smoothing due to the sensitive nature of the control grid electrode. This supply is derived via D13 and smoothed by a π filter

Both the +15 V and +5 V Regulator circuits (Figs. 2.8, 2.9) are standard series voltage regulators with the possible exception of R41 and R46.

These resistors are designed to share the power dissipation demands of the control devices TR16 and TR18, and introduce a maximum current availability to the TV Camera circuitry.

The BFY51's used in both Regulators operate near their region of maximum power and therefore require additional cooling. Small, clip-on heatsinks are found to cool these devices sufficiently, whilst maintaining the general compactness of component layout.

A d.c. focus coil current of approximately 100 mA is made available from the unregulated 20 V supply by the combination of R50 and VR10. Due to the possible high power dissipation, the potentiometer should carry a 1 watt rating (Fig. 2.10).

P.C.B. 2

The second printed circuit board, P.C.B. 2 (Fig. 2.11) is designed to hold the electronic circuitry required to complete our TV Camera System-the line and frame generators and various power supply circuits. Component disposition for the board is shown in Fig. 2.12.

Next month : Camera enclosure, final wiring and setting up procedure

Fig. 2.9.5V Regulator circuit

Avoltage controlled filter can be used to alter dramatically the tonal quality of any sound put through it. It does this by removing some parts of the frequency spectrum and boosting others.

The filter to be described was specifically designed for use in a synthesiser but it can also be used for guitar treatment or in modifying any audio signal not necessarily electronic in origin. It is basically a low-pass filter, the frequency of which can be voltage controlled.

LADDER FILTER

The heart of the filter is a ladder of diodes D3 to D16 in the collectors of the differential pair TR2 and TR3 (Fig. 1). This arrangement is popular with commercial synthesisers because it is efficient and has a very wide range.

Ignoring the feedback for the moment, the signal enters via Cl and TR2 and tries to make its way up the ladder. If it is a high frequency, the reactance of the capacitors C2 to C5 is small in comparison with the dynamic resistance of the diodes and it is lost after four stages of filtering. If it is a low frequency, however, it can climb the ladder with relatively little attenuation.

The actual cut-off frequency is that at which the reactance of the capacitors equals the dynamic resistance of the diode. This can be changed over a very wide range by controlling the current through the ladder, which changes the dynamic resistance of the diodes. The current through the ladder is proportional to its cut-off frequency.

LOGARITHMIC FREQUENCY CONTROL

For musical purposes a logarithmic function is required so that a voltage change at the input corresponds to a musical interval change in cut-off frequency. Use is made of the logarithmic properties of TR4 where the \log of the collector current is proportional to V_{BE}. It is also temperature sensitive but, unlike oscillators where stability is very important, no temperature compensation has been found necessary. However, if this circuit is used with the P.E. Synthesiser keyboard, there is a spare temperature stabilised transistor, Q3, in the ML3046P IC, which may be used as TR4, see Figs. 10.2 and 10.6, November 1973, Practical Electronics.

RESPONSE

The response control VR3 in the feedback loop of IC3 has the effect of changing the characteristics of the filter from low-pass, when fully anticlockwise, to low-pass with a peaking response at the cut-off frequency. Turning it fully clockwise forces the filter into oscillation.

VIRTUAL EARTH MIXING

The control signal is processed by IC1 and IC2 to give a virtual earth at the control input. This is very useful as it enables any number of control voltages to be mixed in without any interaction. This is a current input and all voltages must be fed in via a resistor R23, the value of which determines their individual gain.
The manual frequency control voltage is fed via R23 into this input and is mixed with any external control voltages.
If a patchboard is being used, the virtual earth is connected to the filter control input busbar and

Photograph of board assembly

the $2.7 \mathrm{k} \Omega$ resistor is contained in the patchpin so that many inputs can be mixed without interaction.

USE WITH A SYNTHESISER

If the filter is used with a keyboard the note voltage, as well as going to the oscillators, should
go to the filter. If it did not, the higher harmonics of higher notes would be lost and low notes would have more harmonics present.

The preset VR2 adjusting how much effect the note voltage has on the filter should be set so that one octave on the keyboard shifts the filter frequency by an octave.

Fig. 1. Circuit diagram of the v.c.f.

Fig. 2. Details of Veroboard component layout and copper track breaks required

This need not be too precise and is most easily set by ear, listening for the same harmonic structure for both low and high notes. The value of VR2, nominally $10 \mathrm{k} \Omega$, may need to be changed depending on the keyboard arrangement with which it is used.

CONTROL INPUT

Putting the trapezoid output of an envelope into the control input produces the typical "Moog sound" when the filter is given an input rich in harmonics

COMPONENTS

Resistors

R1	$27 k \Omega$	R9	$2 \cdot 2 k \Omega$	R 17	$12 k \Omega$
R2	$15 k \Omega$	R 10	$12 \mathrm{k} \Omega$	R 18	$2 \cdot 7 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$	R 11	$15 \mathrm{k} \Omega$	R 19	$390 k \Omega$
R4	$22 \mathrm{k} \Omega$	R 12	560Ω	R 20	$390 \mathrm{k} \Omega$
R5	$10 \mathrm{k} \Omega$	R 13	$12 \mathrm{k} \Omega$	R 21	$56 \mathrm{k} \Omega$
R6	$12 \mathrm{k} \Omega$	R 14	$2 \cdot 7 \mathrm{k} \Omega$	R 22	$56 \mathrm{k} \Omega$
R7	$3 \cdot 3 \mathrm{k} \Omega$	R 15	$22 \mathrm{k} \Omega$	R 23	$2 \cdot 7 \mathrm{k} \Omega$
R8	$3 \cdot 3 \mathrm{k} \Omega$	R 16	$39 \mathrm{k} \Omega$		
All $5 \% \frac{1}{4}$ watt					

Potentiometers
VR1 $10 \mathrm{k} \Omega$ lin
VR2 $10 \mathrm{k} \Omega$ preset
VR3 $500 \mathrm{k} \Omega$ lin
VR4 $5 \mathrm{k} \Omega \log$

Capacitors

$\mathrm{C} 1 \quad 4.7 \mu \mathrm{~F}, 10 \mathrm{~V}$ electrolytic
C 2 to $5 \quad 0.01 \mu \mathrm{~F}$ (4 off)
C6 $\quad 4.7 \mu \mathrm{~F}, 10 \mathrm{~V}$ electrolytic
C 7 to $8 \quad 0.22 \mu \mathrm{~F}$ (2 off)

Semiconductors

IC1 to 3741 (8-pin) (3 off)
D1 to 16 1N1418 or equivalent (16 off)
TR1 to 4 BC109 (4 off)

Miscellaneous

Veroboard $2 \frac{1}{2}$ in $\times 5 \mathrm{in}$, wire, solder, etc.
such as a square or pulse waveform. The sound is even brighter when there are two square waves either in unison or an octave apart.

As the filter cuts out all sound when the cut-off frequency is below the lowest frequency present in the input, it can be used between the oscillators and the output, without a v.c.a., and it is completely silent during pauses.
Other possible control inputs are slow-running oscillators of any waveform. This produces effects from an automatic Waa-Waa at 5 Hz , to a bubbling sound with several oscillators at about 20 Hz . When the control frequency is in the audio range, modulation effects are produced.

CONSTRUCTION

In the prototype Veroboard was used and a layout and cutting diagram is supplied in Fig. 2. All components shown outside the dotted area of Fig. 1 should be mounied, ideally, on a control panel.

What does the future hold in store for electronics in general, and for electronics constructors in particular?

Your views and predictions concerning likely developments in the next 10 years are invited.

Due to delayed publication dates readers' contributions will now appear in our December and January issues to mark the completion of this magazine's first 10 years of publication.

Contributions (not exceeding 300 words and entitled "The Next Decade"') should be addressed to The Editor, Practical Electronics, Fleetway House, Farringdon Street, London, E.C. 4 and posted in time to reach our offices by November 1, 1974.

A payment of $£ 5$ will be made for each letter published. Selection will be based upon originality of thought, technical credibility and general presentation.

Next Month...

 we enter our Second Decade R130 with the PE \mathbb{N} Vil| $\mid \mathbb{N}$

breaking the "Sound Barrier"

... its down in size!

 ... it's down in cast.Next month we mark ten years of lusty existence with the "Minisonic", a miniature battery operated synthesiser for the experimenter, which can provide endless varieties of sound.

Not a toy but a creative instrument with two log v.c.o.s, two envelope shapers and v.c.a.s with variable attack and decay. A voltage controlled low-pass filter, ring modulator, white noise generator and two 250 mW amplifiers with monitor speakers complete the circuit line-up.

A novel stylus operated integral keyboard provides control of the v.c.o.s. Alternatively, this can be achieved-by adding a 'normal' keyboard or applying external control voltages.

For less than $£ 50$ you can programme your own kaleidoscope of exciting syrithi-sounds.

A Syuthesiser for less than

 also in this issue:

- CAR ANTI-THEFT SYSTEM - NOVEL TRANSISTOR TESTER
- BATTERY ELIMINATOR FOR CASSETTE RECORDERS

An advanced 4-function calculator in kit form

The Cambridge kit is the world's largestselling calculator kit.
It's not surprising - no other calculator matches the Sinclair Cambridge in functional value for money; and buying in kit form, you make a substantial saving.
Now, simplified manufacture and continuing demand mean we can reduce even the kit price by a handsome $£ 12 \cdot 50$. For under $£ 15$ you get the power to handle complex calculations in a compact, reliable package - plus the interest and entertainment of building it yourself!

Truly pocket-sized

With all its calculating capability, the Cambridge still measures just $4 \frac{1}{3}{ }^{\prime \prime} \times 2^{\prime \prime} \times \frac{11}{16}{ }^{\prime \prime}$. That means you can carry the Cambridge wherever you go without inconvenience - it fits in your pocket with barely a bulge. It runs on ordinary U16-type batteries which give weeks of normal use before replacement.

Easy to assemble

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our service department will back you throughout if you've any queries or problems.

Total cost ? Just £14.95!

The Sinclair Cambridge kit is supplied to you direct from the manufacturer. Ready assembled, it costs $£ 21 \cdot 95$ - so you're saving $£ 7$! Of course we'll be happy to supply you with one readyassembled if you prefer - it's still far and away the best calculator value on the market.

Features of the Sinclair

 Cambridge * Uniquely handy package. $4 \frac{1_{3}^{\prime \prime}}{} \times 2^{\prime \prime} \times \frac{11^{\prime \prime}}{6}$, weight $3 \frac{1}{2}$ oz. *Standard keyboard. All you need for complex calculations. * Clear-last-entry feature.* Fully-floating decimal point. *Algebraic logic.
*Four operators $(+,-, x, \div)$, with constant on all four.
* Constant acts as last entry in a calculation.
*Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than $£ 15$. *Calculates to 8 significant digits. *Clear, bright 8-digit display. *Operates for weeks on four U16-type batteries

A complete kit!

The kit comes to you packaged in a heavy-duty polystyrene container. It contains all you need to assemble your Sinclair Cambridge. Assembly time is about 3 hours.
Contents:

1. Coil.
2. Large-scale integrated circuit.
3. Interface chip.
4. Thick-film resistor pack.
5. Case mouldings, with buttons, window and light-up display in position.
6. Printed circuit board.
7. Keyboard panel.
8. Electronic components pack (diodes, resistors, capacitors, transistor).
9. Battery clips and on/off switch.
10. Soft wallet.

This valuable book-free!

If you just use your Sinclair Cambridge for routine arithmetic - for shopping, conversions, percentages, accounting, tallying, and so on - then you'll get more than your money's worth.
But if you want to get even more out of it, you can go one step further and learn how to unlock the full potential of this piece of electronic technology.

How? It's all explained in this unique booklet, written by a leading calculator design consultant. In its fact-packed 32 pages it explains, step by step, how.you can use the Sinclair Cambridge to carry out complex calculations.

Why only Sinclair can make you this offer

The reason's simple : only Sinclair - Europe's largest electronic calculator manufacturer - have the necessary combination of skills and scale.
Sinclair Radionics are the makers of the Executive - the smallest electronic calculator in the world. In spite of being one of the more expensive of the small calculators, it was a runaway best-seller. The experience gained on the Executive has enabled us to design and produce the Cambridge at this remarkably low price. But that in itself wouldn't be enough. Sinclair also have a very long experience of producing and marketing electronic kits. You may have used one, and you've almost certainly heard of them - the Sinclair Project 80 stereo modules.
It seemed only logical to combine the knowledge of do-it-yourself kits with the knowledge of small calculator technology.

And you benefit!

Take advantage of this money-back, no-risks offer today
The Sinclair Cambridge is fully guaranteed. Return your kit within 10 days, and we'll refund your money without question. All parts are tested and checked before despatch - and we guarantee a correctly-assembled calculator for one year.
Simply fill in the preferential order form below and slip it in the post today.

To: Sinclair Radionics Ltd, London Road,

 St Ives, Huntingdonshire, PE1 7 4HJ
Please send me

\square a Sinclair Cambridge Calculator kit at $£ 13.59+£ 1.36$ VAT (Total: $£ 14.95$)
\square a Sinclair Cambridge calculator ready built at $£ 19.95+£ 2.00 \mathrm{VAT}$ (Total: £21-95)
*I enclose cheque for f. \qquad made out to Sinclair Radionics Ltd, and crossed.

Name
\qquad
Address
*Please debit my *Barclaycard/Access account. Account number \qquad
\qquad *Delete as required.

PE/10/74 PLEASE PRINT

Sinclair Radionics Ltd, London Road,
St Ives, Huntingdonshire
Reg. no: 699483 England
VAT Reg. no: 213817088

HYBRID

 PART ONEBY D.AL-DABASS*

Abstract

To many the computer is still a source of mystery, a box which magically produces information from fact's fed into it. This series should dispel much of the haze whicn exists particularly in that area deafing with the hybrid, the marriage of the digital and analogue machine

Computers are now a firmly fixed part of our way of life and whilst most people still tend to associate them with the issue of gas bills and things economic there is in fact a massive area of technology in which they are used to great advantage both for basic design and in research.

Indeed, in these areas the computer forms a very important tool since it can, in its va-ious forms, take over both much of the tedium of lengthy mathematical operations and provide hypothetical models of an engineering design without the labour of actually building the equipment.

ANALOGUE AND DIGITAL

There are two basic types of compufer or computing machine, the digital version which tends to have massive powers as a "Number crunching" device. That is, it is capable of dealing with endless mathematical activities such as addition or subtraction and, through these, multiplication or division, which would normally be totally beyend a man's ability simply because of the sheer time-consuming work involved.
The second sort of machine is the analogue device which, whilst not at all as apparently complex as the digital machine, is in fact capable of carrying out wery complex abstracı mathematical functions with the aid of the now fairly well accepted operational amplifier. Whilst an analogue machine is not anything like as powerful as a digital in terms of sheer numbers it does have distinct advantages in cost and flexibility terms.
Of course, with the advent of the integrated circuit and the extension of this art into the realms of large scale integration some of the mathematical functions can be handled quite easily in digital terms but the cost is still high and often flexibility is lacking.

[^5]
IN APPLICATION

For example, a car manufacturer eriba-king on the prodaction of a new suspension system might wish to study the behaviour of his system prior to finalisation of engineering plans. A set of differential equatiors representing his suspension sysiem can be set up on a computer and then the behaviour studied in terms of the spring and shock-absorber parameters as well as varying road surface conditions anci lead. Optimum spring stiffess and absorber damping are then determined before committing material and labour to the actual manufacturing of the system.

The suitability of the analogue computer to simuLate the sets of differential equations needed in this sort of work stems from the unherent characteristics of the operational amplifier, the heart of the general purpose analogue computer. These characteristics are represented by the ease with which the operational amplifier can be made to perform mathematical integration. function generation and summation of quantities represented by voltage potential and current.

Fig. 1.1 shows the operational amplifier used in three applications; summing, integration and function ganeration.

The general purpose analogue computer contains many hundreds of these amplifiers allocated to dedicated units, e.g. summers integrators, multipliers, function generators, and so on. In order to simulate a given equation, the outputs and inputs of these nnits are suitably interconnected, as for example in Fig, 1.2 which shows a typical set-up for a second order differential equation.

To assist the engineer in his study of the system the cutput at various stages of the solution may be displayed on a CRT or recorded on a $\mathrm{X}-\mathrm{Y}$ recorder.

In this way a continuous display can be obtained by iterating the solution between an initial condjtions mode and a compute mode using a suitable limer to switch all amplifiers to thei- initial state after the solution has run for a preser time interval. The solution is then started all over again and the whole cycle repeated to generate a continuous display.

The displayed parameters of any simclated system are related to actual system parameters by use of

scaling factors worked out prior to setting up the equations on the computer. This enables the engineer to quickly convert computer units to physical units.

DIGITAL SIMULATION

The simulation of differential equations using a digital computer differ both in concept and implementation from analogue methods. While the analogue computer utilises the natural ability of the operational amplifier to perform mathematical integration, the digital computer depends on numerical analysis techniques in breaking down the integration into a series of simple steps using the basic arithmetic operations of addition and multiplication.

A large number of numerical formulae are available for this purpose ranging from the well known Runge-Kutta to predictor-corrector, and extrapolation methods. These formulae can either be programmed by the engineer using a high level language such as Fortran, or may form a permanent feature of a language specifically written for simulation such as the XDS SLI, and Simulation Council CSSL.

In both cases, however, the engineer has to write a programme to handle his own specific problem, such as the setting up of initial conditions, the listing of output results, changing parameters between runs, etc.

THE ANALOGUE MACHINE

Perhaps the most outstanding features of the general purpose analogue computer stem from its natural ability to perform integration as well as its inherent parallel nature. These two basic features combine to yield a multitude of advantages that has always given the analogue computer an edge over
the general purpose digital computer in the simulation of differential equations. These advantages may be divided into two categories, namely operational and technical.

In the first category fall such advantages as those pertinent to the problem-solving designer. Perhaps the most obvious of these is the ease of interaction between problem and designer giving the latter a direct insight into the problem.

Fig. 1.2. (a) An analogue computer simulation of the second order LCR circuit shown at (b)

The form of presentation of results gives the engineer a direct contact with the problem behaviour, enabling him to thoroughly investigate the system for a wide range of parameter values, and initial conditions.

Other features include ease of programming which mainly consist of substituting analogue computing elements, such as integrators, multipliers, etc. for corresponding elements of the system under study. This usually entails providing analogue elements whose transfer characteristics are analogous to those of the physical system.

HARDWARE INVOLVEMENT

This feature easily facilitates the inclusion of some of the actual system hardware in the simulation to enable a more accurate estimation of the overall system behaviour.

The main advantage of the analogue computer, however, is its speed of operation. Due to its parallel nature of operation, complexity of simulated equations has little or no effect on the time required to obtain the solution.
This enables the computer to handle non-linear and time-varying equations just as easily as linear equations, any added function complexity being tackled by additional computing elements. The significance of this advantage cannot be over emphasised particularly in simulations requiring real-time operations such as in aircraft and space vehicle pilot trainers.

ANALOGUE LIMITATIONS

Like any other machine, the analogue computer has many limitations. The most obvious of these is the level of accuracy achievable in obtaining the solution to a differential equation. This limitation stems from the combined effect of two reasons, the first being the manufacturing tolerances of the basic components used in the design of the analogue computing elements such as resistors, capacitors, and the like.
Although big advances have been made in recent years in the design and manufacture of these components in an effort to minimise the uncertainty in their values, the combined effect of the large number of these components that are required to make each individual analogue computing element have not been greatly reduced.

As a result linear computing elements such as summers and integrators have an accuracy of the order of 0.01 per cent, while those exhibiting nonlinear characteristics such as multipliers, square root elements and diode function generators have at best an accuracy of some 0.1 per cent of full scale.

NOISE

The second factor affecting accuracy is that of noise in electronic elements. No component in the analogue computing world whether passive or active escapes this plague. Advances in the design and manufacture of units have nevertheless managed to reduce the overall effect of uncertainty due to noise to a level compatible with that due to manufacturing tolerances of the values of these components.

As a result it is now possible to resolve voltages down to a level of 0.01 per cent of full scale. This level, however, is only sufficient to give a dynamic range of four decades for the system variables. For systems requiring more accuracy analogue computers are obviously inadequate.

This applies equally well for time scales, resulting in a limitation on the dynamic range of the frequency domain to some three or four decades at the most. Due to these limitations the problem of scaling the variables in voltage and time becomes very important indeed. This is particularly so where the magnitudes of the variable vary greatly from one stage to another.
In large systems this requires a great deal of time and effort in the formulation and checking of scale factor to obtain the best possible accuracy out of the computing units.

Another group of limitations of analogue computers includes the storage of intermediate results between runs. Simulation of long time delays and generation of functions of more than one variable are very tedious to implement and plagued by the usual limitation in accuracy and available computing units.

But perhaps the most serious limitation of all is the analogue system's inability to carry out complicated chains of logical decisions and parameter modifications which are required in many aspects of computation in simulation and optimisation.

THE DIGITAL MACHINE

The multitude of advantages associated with the general purpose digital computer can be traced back to two basic features that characterise these machines. The first of these is of course its digital nature which leads directly to the fact that the accuracy of variables expressed within the computer is not so much a function of the electronic hardware tolerances but rather the number of bits used to define the variable. A twenty-four bit word will yield an accuracy of some 10^{-5} per cent of full scale, while a thirty-two bit word gives an accuracy of the order of 10^{-7} per cent. Accuracies of this order are beyond present and foreseeable future generations of analogue computers.

One common form of expressing quantities in a digital computer is that of floating-point arithmetic. This form enables quantities greatly varying in magnitude (the range 10^{-100} to 10^{+99} is usually taken as standard) to be expressed in the same high order of accuracy mentioned above throughout the range. This eliminates one of the most tedious and time consuming operations associated with analogue computers. namely that of scaling factors.

The second group of advantages stems from the stored-programme nature of digital machines. Many thousands of words of data and instructions can be stored indefinitely and subsequently called when and where necessary.

This gives the digital computer, perhaps above all, the flexibility to execute long and complicated chains of instructions to perform hundreds of mathematical and logical tasks.

As far as the simulation of engineering and scientific systems is concerned a number of benefits are directly evident from these features. Numerical and logical data can be memorized indefinitely over many simulation runs and used to alter parts of the system or switch from one set of parameters to another.
Furthermore the limit on the amount of stored data is very large indeed enabling a great multitude of results to be stored for subsequent calculations and analysis which can be carried out by an additional programme written, for example, to sieve
through these results to find an optimum set of parameters for a given set of conditions.

The storage capability is also very useful in generating pure delays of signals over precisely controlled durations needed in the simulation of. say, communication lines.

DIGITAL LIMITATIONS

Like the analogue computer, the general purpose digital computer suffers from a number of limitations in the simulation of dynamic systems.

These can be divided into two categories, operational and technical. The first of these include those factors pertinent to the problem designer such as programming techniques and the form of communication with the problem. These two features have always formed in one way or another a barrier between the problem and the designer that have come to characterise the use of digital computers in simulation.

The range of programming techniques is very wide and covers machine code and assembly languages, high level scientific languages (such as Fortran), high level simulation languages (such as CSSL) and more recently special purpose languages for interpreting block diagrams representing the problem into one of the other high level languages.

This last technique represents perhaps the closest the digital computer will ever come to replacing the operational convenience of the analogue computer.

ON- AND OFF-LINE

The second feature of the operational limitations of the digital computer is that of the form of communication between the designer and his problem. This can either be in the "off-line" mode, or the "online" mode.

As the title indicates, in the off-line mode the designer is almost completely divorced from the way in which the problem is actually run on the computer. The designer prepares the problem in the form of a flowchart or a program, which he then passes to the data processing staff, who then run his program and return the results in the form of a printed program listing. As the turn-round time in this process can be of the order of 24 hours any additional insight into the problem that is usually gained by working with analogue computers is completely lost in this case. Moreover the ease with which the response to parameter variation is observed using analogue computers is non-existent in this mode of simulation.

In the on-line mode of simulation, however, these limitations are greatly reduced as the designer is able to feed the problem into the computer and get his results back within a few minutes. This is usually carried out using a tele-typewriter, and in computers used specifically for simulation, a graph plotter and a CRT. Perhaps the most advanced form of communication is that where the designer defines his problem on the CRT (using a light pen) in the form of block diagram representation of the system to be simulated.

THE SPEED FACTOR

The second group of limitations associated with digital computers stem from the speed limitation of this machine. Two causes are generally taken to attribute to this.

The first is that the digital computer is a serial
machine only capable of executing one instruction at a time. Secondly it is only able to perform a very limited number of arithmetic operations, typically addition and multiplication.

This latter feature means that integration, differentiation and function generation $(\sin x, \log x$, etc.) must be performed using numerical techniques which break down these functions into a long and time consuming chain of simple addition and multiplication. This is made even worse by the serial nature of the machine limiting it to perform one addition or multiplication at a time.

Furthermore, numerical techniques such as integration formulae have their own weaknesses, particularly as far as the stability of the solution is concerned. In general this means that small integration step sizes have to be used to ensure stability, leading to a substantial increase in total computation time.

THE HYBRID MACHINE

It should be evident from the foregoing that some form of combination should be possible that will enhance the advantages and reduce the limitations.

The major advantages of analogue machines are ease of interaction with the designer; ease of integrating actual system hardware in the simulation and finally speed.

Those of the digital machine are ease of performing logical and mathematical operations and accuracy.

Perhaps the most obvious justification for hybrid computers is that of combining the speed of the analogue with the accuracy of the digital computer. This situation often arises where the system to be simulated can be partitioned into fast dynamic equations requiring moderate accuracies, and slow response equations requiring very high accuracy.

Another justification exists where the performance of a part of the actual system hardware is to be studied. The autopilot of an aircraft, for example, can be connected to the set of aircraft dynamics equations patched on the analogue part of a hybrid computer system.

The flexibility of the digital computer in performing logical and mathematical operations is valuable, particularly in cases where the modest accuracy of the analogue machine is sufficient but a more elaborate control procedure is required. Optimisation is one area where this is so,

The car suspension example mentioned earlier is typical, where the differential equation representing the suspension is set up on the analogue computer while the digital computer may be programmed to optimise the spring stiffness, the shock absorber damping factor, and friction coefficient to produce the most comfortable ride in terms of the amplitude and frequency of bounce.

Other motivations for hybrid computers include those where a high speed analogue sub routine is used in an essentially digital simulation. Partial differential equations representing chemical reactions and transmissions lines may be solved using this technique. Finally, in telemetry applications where signals come both in analogue and digital forms, and high speed processing is required, both analogue and digital computers are used to process the data simultaneously.

Next month: Hybrid computing systems

By J. C. PERRETT

Several circuit variations using state-of-the-ärt catalytic gas/smoke detectors to indicate the presence of such dangerous materials as methane, propane or butane and the setting up procedure for all units.

The circuit of Fig. 9 has been designed for boats, where protection is required in more than one place. For example a sensor is necessary where Calor gas is used, usually in the galley, and protection is also required in the engine room where a petrol leak or carbon monoxide might be present. The unit has been designed so that the alarm may be placed remote from the sensors, perhaps on the bridge or in a cabin.

Here only one alarm is used, common to both sensors. This may be a bell or horn. Also fitted to the control unit are two lamps which indicate which sensor is activating the alarm.

STAND-BY

Whilst the detector is warming it assumes a low impedance state which will cause the alarm to sound. To prevent this during the warming period a "standby" switch $S 2$ is fitted which removes the supply from the alarm and also lights a warning lamp as a reminder that the alarm is turned off. The warming period takes approximately 2 to 3 minutes.

An additional circuit has been added to monitor the functioning of the chopper supply. Signals are sampled at the collector of TR4 by passing a portion of waveform through $\mathrm{C} 5,1,000 \mu \mathrm{~F}$, and d.c. restoring the a.c. coupled waveform. The resulting waveform is applied to an l.e.d., LP4 and as long as the circuit functions LP4 remains alight. This is only capable of "Go-No Go" information about the chopper supply.

The circuit, wired for use from 12 V batteries, will accept inputs which extend up to 17 V . This is necessary as some large batteries may well reach 15 V when undergoing strong charging, particularly from alternators. At the other extreme the device will continue working with the battery voltage falling to 10 V , the sensitivity only reducing slightly. In fact tests show the oscillator continues running until the supply falls below 4 V .

BOAT/CARAVAN GAS/SMOKE DETECTOR

Fig. 9. Circuit diagram of the boat/caravan system incorporating two sensors and double indication of alarm

Resistors

R1	$2.2 \mathrm{k} \Omega$
R2	$2.2 \mathrm{k} \Omega$
R3	$10 \mathrm{k} \Omega$ for 12 V supply, $22 \mathrm{k} \Omega$ for 24 V supply
R4	2.2k Ω
R5	$39 \mathrm{k} \Omega$
R6	$18 \mathrm{k} \Omega$
R7	$0 \cdot 5 \Omega 4 \mathrm{~W}$
R8	15Ω
R10	470Ω for 12 V supply, $1 \mathrm{k} \Omega$ for 24 V supply
R13	100Ω
R14	100Ω
R15	560Ω
	W unless otherwise specified

Potentiometers

VR1 $25 \mathrm{k} \Omega$ pre-set
VR3 $2 \cdot 5 \mathrm{k} \Omega$ pre-set
VR4 $2.5 \mathrm{k} \Omega$ pre-set

Capacitors

C1	$2,500 \mu \mathrm{~F}, 25 \mathrm{~V}$
C2	$0.22 \mu \mathrm{~F}, \mathrm{C} 280$
C3	$0.01 \mu \mathrm{~F}, \mathrm{C} 280$
C4	$0.22 \mu \mathrm{~F}$
C5	$1,000 \mu \mathrm{~F}, 16 \mathrm{~V}$

Diodes

D1 $11 \mathrm{~V}, 400 \mathrm{~mW}$ Zener for 12 V supply,
15 V 400 mW for 24 V supply
D6 1N4148
D7 1N4001
D8 1 N4001
D9 1N4001
Transistors

TR1	2N2904	TR4	2N3055
TR2	BFY50	TR5	2 N3055
TR3	BFY50	TR6	BFY50

Fig. 10. Details of interwiring between external sensors at stations I and II and the B7G plug engaging with the board mounted socket of Fig. 7 (last month)

Thyristors

CSR1 TIC 106
CSR2 TIC 106

Lamps

LP4 Light emitting diode
LP5 12 V bulb and SL90 holder
LP6 12V bulb and SL90 holder
LP7 12 V bulb and SL90 holder

Miscellaneous

GD1 TGS 308 and holder
GD2 TGS 308 and holder
S1 SPDT on/off switch
S2 SPDT change-over switch
Alarm bell or Klaxon; 4 test resistors, $1.8 \Omega \frac{1}{8} \mathrm{~W}$; case; p.c. board; fuses and holders; B7G plug and socket, tag strips, wire, etc.

However, under approximately 6 V current does tend to rise quite quickly.

It is therefore not advisable to test the circuit by slowly increasing the supply from zero on a bench supply. When wired for 24 V operation, with the component changes noted in the parts list, the unit will function between the limits of 16 to 32 V .

TWO-STATION UNIT

The p.c.b. for the circuit of Fig. 9 is the same as for the last unit. However, a few component changes are required.
Cl should be increased to $2,500 \mu \mathrm{~F}$ and the sensitivity controls VR3 and VR4 are pre-set and fitted to the p.c.b. Note that for full sensitivity VR3 must be set fully anti-clockwise and VR4 fully clockwise. Extension lead resistance must be kept negligible at 0.552 max. total resistance of the two wires used for heater connection per station, and both sensors. There are tolerances on the heater elements and if there are differences in lead resistance the sensors may be changed between stations to help balance the circuit. The highest resistance heater should be placed in the circuit with the shortest cable run.
The circuit of Fig. 10 shows details of the wiring for the double detector system of Fig. 9.

SETTING UP UNITS

After a careful inspection of all wiring for the circuit of Fig. 4 (last month), a $1.8 \Omega 2$ CR25 $\frac{1}{8} \mathrm{~W}$ resistor should be fitted in the place of the heater (pins 1 and 6 of valve base). An ammeter (1 A range) should be connected between point A of the board and battery +ve . Several test and connection points on the board have been lettered for convenience. Set VR. 1 fully clockwise, turn on the battery supply by moving the selector switch to position 2 . If the l.e.d. circuit has been included it should immediately light.
Now move VRI anti-clockwise until battery drain current is 120 mA at which point the test resistor should be getting warm. Next reduce the current flow in the resistor by turning VR1 clockwise, check the circuit for bad joints. These will show by either the current flow fluctuating or by the test resistor burning. Check the temperature of all transistors on the panel-they should be at room temperature (TR5 may be slightly warm). The references to clockwise and the reverse apply to the p.c.b. layout shown.

When checks are completed, disconnect supply and test resistor. Insert jack plug into socket, reconnect supply and adjust VRI to give 120 mA current drain.

The sensor should become warm after a short time. Move the selector switch to position 3 and turn the attenuator clockwise to give a high reading on the meter. If sufficient time has been allowed for heating, the meter reading will be low or falling; if the meter reading is increasing some additional time is required for warming up (using a type 308 sensor this will take approximately 2 minutes).

The sensor may now be placed 2 to 3 inches above a cigarette or cigar (non-smokers may wish to use a glass of brandy for this test-recompense for giving away the cigar) and as the smoke curls through the sensor, rapid movement of the meter should be observed. If the readings change very slowly or remain high, slight adjustment of VRI may be necessary.

Fig. 11. Modifications of the circuit of Fig. 9 to accept experimental 4-station operation

In general if on turning on the instrument the meter reading increases and stays high even after two minutes, the sensor requires more heater power.
The drain current may be finally set by adjusting VR1 between 100 mA and 120 mA to obtain the fastest sensor reaction time.

TESTING BOAT/CARAVAN VERSION

The caravan/boat battery driven version of Fig. 9 should be tested under 12 V operation by connecting two test resistors in parallel (1.8Ω each) across pins 1 and 6 of the B7G base. Turn VR1 fully clockwise. Insert an ammeter (1 A range) in series with point A of the board, and battery +terminal. Ensure the remote sensors are disconnected and the alarm switch is off (stand-by position) and remove stand-by bulb from holder.
Turn on the power switch SI. The l.e.d. should light. Slowly move VRI in an anti-clockwise direction until a reading of 220 mA is obtained. The resistors should be getting hot; reduce current to prevent the resistors from burning and check for poor connections.
When satisfied with this test, disconnect the test resistors and connect both sensors to the barrier strip.

Adjust VR3 and VR4 to minimum sensitivity (VR3 clockwise, VR4 anti-clockwise). Reconnect battery and adjust VR1 for 220 mA . Switch off. Disconnect the meter and reconnect it across VR3, set to the 10 V range. Reconnect the battery. As the sensor warms up the voltage across VR3 will rise, after a short time the reading will start to fall, when the reading becomes stationary (approximately 2 to 3 minutes) reconnect the meter across VR4, the reading by now should be minimum and steady.

Submit Station II to smoke or gas, the meter reading should rise smoothly to at least 5 V returning quickly to a low value when the influence of smoke is removed. Reconnect the meter to VR3 and repeat the test using Station I.

Adjust VRI to obtain the best results within the limits of 210 mA to 230 mA . Too much or too little battery current will cause sluggish results.

After completing the test, disconnect the meter and insert the "stand-by" bulb. Move the alarm

Fig. 12. Wiring details for the four leads of Fig. 11
switch S2 to the Off position and switch on S1. Both l.e.d. and stand-by bulbs should light. Move the alarm switch to the On position, the stand-by light should now extinguish.

Slowly increase VR3 anti-clockwise, if the alarm sounds move VR3 clockwise, turn the alarm off and wait for a further short time for the sensor to become fully warm. Repeat this operation, it should be possible to turn VR3 to full sensitivity without the alarm being triggered.
Next submit Station I to gas or smoke, the alarm should sound, and turn on Station I alarm light. Reset the alarm by moving the switch to stand-by position. Station I alarm light should extinguish and the stand-by light should come on. After a short time move the alarm switch back to alarm On position, the stand-by light should go out. Repeat the test for Station II by setting VR4 to maximum sensitivity.
If the audible alarm is a bell then interference from the contact breaker may trigger both alarm
lights when only one sensor detects smoke. This may be overcome by fitting a capacitor C 4 directly across the points of the bell (suggested value $0 \cdot 22 \mu \mathrm{~F}$).
If using a bell or buzzer for audible warning of danger make sure the bell or any other device which uses a contact breaker is not in a position where it may be subjected to gas. This includes petrol fumes and the like as any spark source is, of course, an explosion risk. For 24 V operation, R10 becomes $1 \mathrm{k} \Omega$. D1 becomes $15 \mathrm{~V}, \mathrm{R} 3$ becomes $22 \mathrm{k} \Omega$, and LP5, LP6 and LP7 become 24V.

The same test procedure applies as in the 12 V version except that VR! should be adjusted for 120 mA nominal. If the circuit of Fig. 9 is used for single station work, wire LP5 in parallel with the alarm and dispense with R14, VR4, D8, D9, LP6, CSR2.

The battery current for 12 V operation will be 120 mA and for 24 V approximately 85 mA .

EXPERIMENTAL WORK

The p.c.b. of Fig. 8 (last month) was developed with sufficient room to accept the components for Fig. 4 (last month), Fig. 9 and an experimental 4 detector unit, useful perhaps in industrial environments. It must be emphasised that such an arrangement is experimental and any errors would be costly. It is not recommended for the beginner:

A number of points are identified on the p.c.b. by letters A to M . The following connections apply for the 4 -detector unit.

Fig. 11 shows modifications to Fig. 9 and on the board D2, D3, D4, D5, are redundant, but $1,000 \mathrm{pF}$ ceramic capacitors may be added to these positions to help prevent accidental triggering of the thyristors, caused by severe electrical interference.

Cl should be increased to $5,000 \mu \mathrm{~F} / 25 \mathrm{~V}$ to meet the increased current demands. TR4 and TR5 must be mounted remote from the board on heatsinks; the transistors mounted on mica washers (TO3 type).

Drive for TR4 may be increased by reducing R8 to 10Ω.

To improve efficiency R7 reduces to 0.22Ω. For 24 V use TR4 is very close to its current limit and should, therefore, be changed to type BDY57 but must have a minimum $h_{f e}$ of 30 . R8 becomes 122 .

As the pulse currents are large when using four stations, lead resistance balance becomes very important and the user must carefully calculate the mark / space ratio required for his own particular situation so that the battery drain current may be calculated from the examples given in the article.

The use of four stations has not been fully tested but it was thought worthwhile having the facility on the board. Fig. 12 shows a suggested circuit wiring for interconnecting the 4 leads to the p.c.b. The reader will, of course, appreciate the necessity for extra indicator lamps and associated components not discussed here.

PRIENTB REDEWMO

TUNIING CIRCUIT

The International Standard Electric Corporation of New York describes in BP 1347707 a tuning circuit for radio or television which uses voltage variable capacitors.
In Fig. 1 the decoupling diodes D2, D3, D4 are connected together and to the sliders of potentiometers VR1, VR10, VR20. The potentiometers are fed at A1, A2, A3 (to An) with the outputs of any conventional switch bank. The common connection between the diodes goes to voltage variable capacitors VD1, VD2, etc. A compensating diode D1 at the common connection of the "pots" compensates for the temperaturedependent component of the voltage drop across the decoupling diodes. A load resistor R1 enables current to pass through the diodes whatever the direction of operation of VD1, VD2.

The physical location of all the diodes, including the compensating diode, is such that they are all exposed to the same temperature. e.g. all on the same chip.

The inventors suggest that an almost complete compensation for the effect of temperature on the decoupling diodes will follow whenever the slider of an associated potentiometer is nearest the common connection point between the potentiometers. In the opposite position, where the slider is as far remote from the common connection point as possible, there will be very slight compensation, if any. Hence, degree of compensation depends on slider position; compensation is usually arranged to be optimum at the point of greatest voltage sensitivity of the voltage variable capacitors.

BP 1347707

SOUHD COHTROL

 BP 1329518In BP 1 Electric Industrial Co. describes a contactless control system which can be used for both volume and on/off control of a sound circuit. In practice this is most likely to be used in radio or TV receivers.

A microphone, sensitive to ultrasonic waves, is mounted on the set side and feeds an amplifier and filters having different passbands.

A remote ultrasonic transmitter is selectively operated (when it is wished to switch the set off) and when the signal is received and fed to the amplifier and one filter a transistor is switched on caus. ing a gradual charging of a capacitor. When the transmitter is switched off again the transistor is cut off to open the charging loop for the capacitor.
With the charging and discharging of the capacitor the drain source impedance of a field effect transistor (f.e.t.), and hence the drain voltage is changed which alters the amplification degree of a sound amplifier. Thus, it is possible to gradually change the volume.

To achieve on/off switching an oscillator is connected to the circuit. The ultrasonic signal is then used to switch this oscillator on or off and the oscillator signal is used (after signal amplification and rectification) to control an on/off power supply switch.

In a combination system the patent describes a method where the on/off control is achieved by utilising the control signal for the volume control, the volume being always reduced to minimum at the time of turning off the power and rising again from this minimum when power is restored.

CAR IMMOBILISATION

In BP 1333060 an arrangement which, if incorporated in a car, would make it impossible for a driver to start the engine if he had more than the legal limit of alcohol in his bloodstream is described by General Motors. Thus, the temptation to drive after drinking would be removed.
The block diagram, Fig. 1, shows an ignition cut out device (such as a relay or solid state switch) inserted between the car battery and primary winding of the car ignition
coil. The power stabiliser is connected between the battery and two resistors R1 and VR1 of a Wheatstone bridge. The other two bridge resistors R2, R3 are connected to earth.

The junctions between resistors R1, R2 and VR1, R3 are connected to the input of a d.c. amplifier. The d.c. amplifier output is connected via a time delay switch to the control terminal of the cutout device.

The stabiliser also feeds power to the amplifier and the time switch. An alarm indicator (e.g. a buzzer or flashing light) is also connected to the output of the d.c. amplifier.

Resistor R1 of the Wheatstone bridge is a wire coated with finely divided platinum. In the presence of alcohol vapour an exothermc oxidation reaction occurs which heats up and changes the value of the resistor.
In practice R1 is mounted in the head lining of the vehicle or in the vehicle steering wheel and VR1 is adjusted to give a pre-set stable condition. If the amount of alcohol breathed by a driver on to the sensitive resistor causes its resistance to change significantly, the bridge will go out of balance and produce a signal which is amplified and passed via the delay circuit to the cut out device. After the delay introduced by the delav switch the ignition circuit of the vehicle will be interrupted and the vehicle immobilised. The delay introduced enables the warning indicator to operate ahead of ignition interruption.

A soldering iron and a screw driver. If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course. This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you
how easily the subject can be mastered and add a new dimension not only to your hobby but also to your earning capacity.
This course is accepted by and used in a large number of schools and colleges and forms an invaluable grounding for professional training in the subject. All the training is planned to be carried out in the comfort of your own home and work in your own time. You send them in when you are ready and not before. These culminate in a final test and a certificate of success.

Read, draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams. understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures. only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over"buying a similar piece PLUS
ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CONTAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE AN EXCELLENT EXAMPLE OF CURRENT ELECTRONIC PRACTICE

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

SUPERSOUND I3 HI-FI MONO

 AMPLIFIERA superb solid atate audio amplifier. Brand new com ponents throughout. \$ silicon transistors plus 2 power Output approx. 13 watts r.m.s. into 8 ohm. Frequency response $12 \mathrm{~Hz}-30 \mathrm{KHz} \pm 3 d \mathrm{~B}$. Fully integrated pre amplifer stage with separate Volume, Bass boost and Treble cut controls. sultable for 8-15 ohm speakers. Input for ceramic or crystal cartridge. Senaitlvity approx. 40 mV for full output. Supplied ready built and ested, with knobs, escutcheon panel, input and output lugs. Overall size 3° high $\times 6^{*}$ wide $\times 7 I^{\circ}$ deep.

DE LUXE STEREO AMPLIFIER A.C. mains 200-240V. Using heavy duty fully daolated malns tranaformer with full wave rectification giving adequate smoothing with negligible hum. Valve fine up: $2 \times$ ECL 86 Triode Pentodes, $1 \times$ EZ 880 as rectifler. Two dual potentiometera are provided for bass and treble control, giving bass and treble boost and cut. A dual hand channels can be adjusted by means of a separate "Balance" control fitted at the rear of the chassis. Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per channel (8 watts mono), into 3 ohm speakers Full negative feedback in a carefuily calculated circuit. allowa high volume levels to be used with negligible distortion. suppled complete with knobs, chassis aize $11^{*} \times 4^{*} \mathrm{~d}$. Overall height including valvcs 5°. Ready built and teated to a high standard. PRICE $\mathbf{8 1 0 - 2 0 .}$
P. \& P. 50 p.

LOUDSPEAKER BARGAINS

 5 ln 3 ohm 81.25, P. \& P. $15 \mathrm{p} .7 \mathrm{in} \times 4 \mathrm{in} 3 \mathrm{ohm}$ ti. 40 P. \& P. 20p. $10 \mathrm{in} \times 8 \mathrm{in} 3$ or $15 \mathrm{ohm} 53 \cdot 10$, P. \& P. 30p. E.M.I. 8 in \times Fin 3 ohm with high flux magnet, 21.70 , magnet with parasitic tweeter 38 or 15 high fux ceramic inbuilt tweeters and crossover network, $44 \cdot 65, P$, $\& \mathbf{P}$. 30 p . EMI TWEETER Approx. $3 \frac{1}{2} \mathrm{in}$. Av. 3 or 8 or 15 ohms 81.25, P. \& P. 20p

QUALTTY RECORD PLAYER AYPLIFIER ME, II A top quadity record player amplifer employing heavy duty double wound mains transformer, ECC83, EL84, and rectifier. Separate Bass, Treble and Volume controls. speaker. Size 7in. wide $\times 3$ in. deep $\times 6$ in. high. Ready speaker. size
buill and teated. PRICE $84 \cdot 91$, P. \& \times. 50 p .

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday Tube Stotion

HARVERSON SURPLUS CO. LTD
(Dept. P.E.), I70 HIGH ST., MERTON, LONDON, S.W.I9 Tel. 01-540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

KEW FURTEER IMPROVED MODEL WITH HIGHER OUTPUT AND INCORPORATINO PRINTED CIRCUIT READY DRARD WILLED OMPONENT IDENTIFICATION CLEARLY MARKED FOR EASIER CONSTRUCTION

A really frot-class Hi-Fl Stereo Amplifier Kit. Unes 4 transistors including silicon Transietors in the frat ve alages on each channel reaulting in even lower noise evel with improved ensitivity. Integrated pre-amp uge with Ceramic or Cryatal cartridges. Nery to modify to suit marnetic rartridge (Very sinaple ncluded). Output stage for any apeakers trom 8 to 16 ohms. Compact design, all parts supplled ibeludios rilled metal work, high quality ready drilled printed circuit board, smart brushed anodised aminium front panel with matching knobs, wire, solder auts, bolts-no extras to buy, Simple step by step attructions enable any constructor to build an amplifer the proun or. Brief specification: Power output 14W .m.s. per chanaelinto 5 ohrns. Frequency response $\pm 3 \mathrm{dM}$ Ru, 00 Hz . Senaikivity better than 80 mb into 1 Ma . ull power bandide \# $3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$. Bass woost Tegative feedback ledB over main anip. Power lodB ments 35 V at 1.0 amp . Overall slze- 12^{*} wide $\times 8^{*}$ तeep $\times 2 I^{\prime \prime}$ high. Fully detalled 7 -page construction manu
ree with kit or send 18 p plus large B.A.E. PRICES AMP. KIT, \&11-8A P. \& P. 30p. (Mag. input com onents 33pextra). POWER PACK KIT, $\mathbf{e 8 . 4 6 \text { P. \&P. 40p. }}$ AABINET, 88.48 P. \& P. 40p
Post Iree if all units purchayed at same ilme). Full after

10/14 WATT HI-FI AMPLIFIER KIT

A styllshly inished monaural amplifer with an output of 14 wat ts from 2 EL84s in push-pult. Super reproduction pouts for mike and ram, wilh negligible hum. Separate menta to follow each other Fully shrouded section ound output transformer to match 3-150 speaker and independent volume controls, and separate bass and reble controls are provided giving good lift and cut. Valve line-up 2 EL848, ECC83, EF86 and EZ80 rectifier. simple instruction booklet 15p plus S.A.E. (Free with parts). Ail parts eold separataly. ONLY 89.60 . P. \& P. 60 p . Alao avail. ready built \& tested $812 \cdot 1$. P. P. P. 70 p .
made by krershed and Vignoles Ltd. Mesares from I ohm to 200,000 ohms in 2 awitched ranges. Used ut in perfect condition. Complete with teat probes. only $9-00+P$ case and 4 volt atandard battery.
(Please write clearly)
PLEABR MOTE: P. \& P. CEARGES QUOTED APPLY TO U.E. ONLY. P. \& P. OA OVRRSEAS ORDERS

Precision LaLARTRON
 Precision Laboratory Oscillo- scope type CD 643 OC. cope type CD 643. O.C.- 15 45 each Carr. fl. 50

NEW WIDE RANGE WOBBULATOR 5 MHz to 150 MHz up ro 15 MHz swetp width. Only 3 controls preser RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3V A.C. and use within minutes of receiving. All this for
ONLY f6.75. P. \& P. 25 p . (Not cased, not calibrated.)

20 Hz to 200 kHz WB. SINE and SQUARE GENERATOR. Four ranges. Independen amplitude controls, thermistor stabilised. Ready to use, $9 V$ supply
required. $\& 8.85$ each. P. \& P. 25 p required, 28.85 each. P. \&
(Not cased, not calibrated.) GRATICULES. $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high Quality plastic 15 p each. P \& P hig $12^{\text {" Long Persistence Crt, full spec }}$ Price \&7.50 to include V.A.T. \& carr \&I WORTH OF "UFS". Six brand new capacitors all between 15 V and 100 V . Total capacitance
not less than $7,000 \mathrm{mF}$. P. \& P. 45p.

Large quantity of good quality CRADE - so we offer 3 lb of for ©l. 50 post paid

ROTARY SWITCH PACK. Six brand new switches (1 ceramic; P. \& Pf. 40 po

P. \& P. 20p

COMPONENT PACK consisting of 5 pots, various, brand new; 250 resistorst and $\frac{1}{2}$ watt, many high stabs, etc. Fine value at $50 p$
P. \& P.C.B. PACKS S \& D. Quantity 2 sqft tiny pieces. 50 p olus P. \& P 20p.

FIBRE GLASS as above 41 plus 5 \& CRYSTALS 70 to 90 kHz . Our choice, 25p. P. \& P. 15 p
METERS. Ernest Turner Model 402, 100 micro amp. Brand new. Lousy scale-hence $\mathbf{4} \mathbf{2} \cdot \mathbf{2 5}$ each. P. \& P. 25 p. METERS by sifam type M42. 25-0-25 micro amp. Scaled 25-0-25 green: $250-0-250$ red. Linea
new. $53-50$ each. P. \& P. 37p.
ELECTROSTATICVOLT ELECTROSTATIC VOLT. requirements. CAPACITOR PACK-50 Brand new comps. only 50 p. P. \& P. 20p. POTS- 10 different values. Brand new-50p. P. \& P. 20p
TRIMMER PACK. 2 Twin $50 /$ 200pF ceramic 2 Twin 10/60pF ceramic: 2 min. strip with 4 preset reser $30 / 100 \mathrm{pF}$ on ceramic base ALL BRAND NEW. 25p the lot. P. \& P. IOp.

CRT. 5" sype CVI385/ACRI3. Brand New with spec. sheet 63 p each P. \& P. 37p. Modern Version of VCRI38. Side connectors PDA. E2.50 each. P. \& P. 37p. BASES for both tubes 20p each. P. \& P. 15p.
LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New 38p each. Holder Ip each nformation 5p.
PHOTOCELL equ. OCP7I, 13p
Mullard OCP70, 10p. Mullard OCP70, 10p
CRYSTALS. Brand New. 4.43 MHz \& 1.25 each, P. \& P. IOp.
MODERN TELEPHONE
706. Two-tone grey 706. Two-tone grey, green or IDEAL EXTENSION Telephones lead coding, 11.75 each P ial, bell

DELIVERED TO YOUR DOOR cwt of Eiectronic Scrap chassis, boards, etc. No
Rubbish. FOR ONLY E3.50.

Relays 24 V 50 MA coil contacts $2 \mathrm{P} \mathrm{C} / \mathrm{O} 250 \mathrm{~V}$ a.c. $10 \mathrm{~A} \mathrm{£} 1 \cdot 20$ each All devices full spec. by leading manufacturers. $30+$ prices apply to mixture of TTL types. Prices include VAT. Minimum order value $\mathrm{s} 1+10 \mathrm{p}$ P. \& P. Send S.A.E. for free TTL Project details.

CHILTERN ENGINEERING

KINGWOOD, HENLEY-ON-THAMES, OXON RG9 5NB

PARKERS SHEET
 METAL FOLDING MACHINES HEAVY VICE MODELS

With Bevelled Former Bars
No. I. Capacity; 18 gauge mild steet \times 36in. wide $\ldots \quad € 21$ carr. free No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide No. 3. Capacity 16 gauge mild stee $\times 24 \mathrm{in}$. wide eis carr. free
fis carr. free Also new bench models. Capacities 36 in . $x 18$ gauge 640 . 24 in . $\times 16$ gauge 638. Carriage free. Add 8% VAT to total price of machine.
End folding attachments for radio chassis. Tray and Box making. Steel Angle 36 in . model, 40p per. ft. Other models 30p. The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.
One year's guorontee. Money refunded if not satisfied. Send for details.
A. B. PARKER, Folding Machine Works, Upper George St., Heckmondwike, Yorks. Telephone 403997

YOUR TEST CARD isit working for you?

How much does your test card tell you about receiver performance? Is it highlighting the defects? Can it take over where some test equipment leaves off? A special fullcolour feature in the October Television shows you how to get the very best out of this simple yet invaluable aid . . . how it can help you set up a TV picture correctly and down to the finest pin-sharp detail. This feature is an absolute 'must' for TV experimenter and service engineer, and it is published exclusively in Television.

ALSO
* Practical Aspects of Touch Tuning * Solid-State Video

TELEUISION

October issue on sale mid-September 25 p*
*Subject to current situation at the time of going to press

INTEGRAL SYSTEMS PRESENT THE A1679 PULSE GENERATOR

Using integrated system techniques INTEGRAL SYSTEMS present one of the most versatile low cost pulse generators ever produced.

Features: * Wide frequency range- 10 Hz to 10 MHz * Wide pulse width-50ms down to 50 ns * Single shot facility

* Exceptionally fast rise and fall times * LED indicator
\star Battery operated or mains operated (A1679M)
Ideal for development, laboratory, amateur or educational requirements. Can be used for:
* Testing logic systems
* Checking ICs
* Computers.
* Oscilloscope testing
* Pulse responses of amplifiers.
* Signal injection for medical research

Price: A1679—£30 A1679M-£35 + P \& P + VAT

Obtainable from

INTEGRAL SYSTEMS

2-4 HUNGER HILL, DURSLEY, GLOUCESTERSHIRE

* SPECIAL OFFER *

Available to readers of Practical Electronics-only whilst stocks last.

Cut out this coupon and send with cash, postal order or cheque to obtain a $£ 5$ discount.

Price, inclusive

| enclose £
NAME
ADDRESS

PE SCORPIOMk2 ignition systemkit ncw rom ELECRO SPARES

* 6 OR 12 VOLT
* + VE AND - VE GROUND

Here's the new. improved version of the original PE Scorpio Electronic ignition System - with a big plus over all the other klts - the PE Scorpio Kit is designed for both positive and negative ground automotive electrical systems. Not just + ve ground. Nor just --ve ground. But both! So if you change cars, you can be almost certain that you can change over your PE Scorplo Mk. 2 as well.
Containing all the components you need, this Electro Spares PE Scorpio Mk. 2 Kit is simply built, using our easy to follow instructlons. Each component is a branded unit by a reputable manufacturer and carries the manufacturer's guarantee. Ready drilled for fast assembly. Quickly fitted to any car
When your PE Scorpio MK. 2 is installed, you instantly benefit from all these PE Scorpio Mk. 2 advantages:
\star Easier starting from coid \star Firing even with wet or oiled-up plugs \star Smoother running at high speed \star Fuel saving \star More power from your engine \star Longer spark piug life * No more contact-breaker burn.

Electro Spares prices:
De luxe Kit only $£ 11.50$ inc. VAT and $p \& p$. Ready Made Unit $£ 14.75$ inc. VAT and p \& p. State 6V or 12 V system.
Send SAE now for details and free list.

FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics'. Superb Hi-Fituner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I. F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge). Electro Spares price only $£ \mathbf{2 8 . 5 0}$ inc. VAT and $p \& p$.

'GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere 0.02%, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now! Depending on your choice of certain components, the price can vary from $£ 50$ to $£ 60$ inc. VAT and $p \& p$.
\star All components as specified by original authors, and sold separately if you wish.

* Full constructional data book with specification graphs, fault finding guides, etc. 55p plus 4p postage.
\star Price List only. Please send S.A.E. (preferably 9×4 minimum) for full details.

Dimmit

range of light

 dimmers and lighting control systemsIllustrated is the popuiar PMSD 1000 module. A 1000 W professional quality dimmer. linear operation. interference suppressed. 60 mm slider range, size $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low cost stage and disco lighting. Used by schools, theatres, studio, etc. Complete schools, theatres, studio, etc. Complete
with scale plate, fixing screws and full with scale plate, fixing screws and
instructions. Also available in 2000 W .
lllustrated is the DD61 dimmer system. Contains: six 1000 W slider dimmers type PD 1000. six outlet sockets, a master control and a mains on/ off switch. Size $59 \times 22 \times 12 \mathrm{~cm}$. A complete system in one unit for stage or disco lighting, etc Other systems avaitable with 1000 W or 2000 W dimmers up to 10 channels with 2-preset and master controls.

The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for industrial heating applications, etc. Rotary and slider control versions. Ratings: 1000 W ; $2000 \mathrm{~W}: 3000 \mathrm{~W}: 110 \mathrm{~V}$ and 240 V

Model SL800 sound to light converter. Modulates the light in time with sound. Built in microphone. Just place unit near any sound source -radio. hl.fi. TV, human voice, etc. No connections to speaker required. simple wiring-similar to dimmer. Rating 800 W . Complete with full instructions.

For full information on all modules and lighting control systems send $15 p$ for our illustrated catalogue and price list. Personal callers walcome, visit our showroom for a demonstration of any of the modules or systems

YOUNG ELECTRONICS LTD.

184 Royal College Street, London NW1 9NN.
Tel. 01-267 0201

ENGINEERS

YOURSELF FOR A

Do you want promotion. a better job,
higher pay? "New Opportunities" shows you how to get them through a low-cost B.I.E.T. home atudy course. There are no books to buy and you can pay-as-you-
learn.

The B.I.E.T. guide to success should be read by every ambitious engineer. send for this helpful 76 page FREE book now. No obligation and nobody will call
on you. It could be the best thing you
ever did.

POS NOY CHOT OUT THIS COUPON EHOSE ABAND NEW FUTURE HERE! Tck or

Practical Radio and \square Electronics (Techпатron) Electronic Engineer. \square ing Tele vision Mainte ance and Servicing General Radio and \square TV Engineering RadioServicing. Main- \square tenance and Repairs

LEGE
Dept. BPE95 Reading RG7 4PF
NAME (Block Capitats Pleate)
ADDRESS
Other sublects
Accrealted by C.A.C C

PC ETCHING KIT

Contains 116 forric chloride. 100eq. in copper-clad board. DALO otchreaist pen. abrabive cleanar. otching dien and inetructions. all for only c3. 30.
FERAIC ChLORIDE
Anhydrous tectinical quality to Mil anec in 116 double maled pack
 10010 c3s.
VEROBOARD
100eq.in meorted sizes and pitches (no tiny piecen) $51 \cdot 10$.
3W TAPE AMPLIFIERS
Poliehed wooden cmbinet lin x 13in * gin containing a sonstive $(20 \mu \mathrm{~V}) 4$ valve amplifier with tone and volume controle Given 3 watte output to the 7 in $\times 4$ in 3Ω apeaker Aleo non-atandard tape deck Supplied in good working condition with circult. Standard maine operathon e4.50. Suitable cmasotte E1.10 Spare head 33p. Tape (ex-computer) 75p. Amplifier chamie only. com plete and tentad ($2 \times$ ECC83. EL84 EZ80) and apeaker £3.
SLOTMETER
Ex-Pay TV, takes 100 piecee, hat E-digit T, rakes 10p piecea, hat counter Sangamo-weeton impule counter. Sangamo-wonton impule movement. nylon gearing. awitch. ene Only 81 . 20
RESISTORS AND CAPACITORS
500 essorted resistors E1.35. 2500 c4.70. 150 poly. ceramic. mica. stc capacitor: sop.
MULTIMETERS-good range in stock. from \&3. 50 .

PO AMPLIFIEA UNIT
Contained in ateel cone $54 \mathrm{in} \times 51 \mathrm{n} \times$ 34 in are $2 \times$ GETil6 transiatops on hent elnke 3 pot cores 230 V zeners adio trentormers. 1% resietors. and caps. With circuit diagram 51 .

Ib BARGAIN PARCELS

Hundrede of now components-pota. resiators. capacitors. switches olus PC boards with trandelors and diodes, and loads of odds and ends. Amazing value at only $\mathrm{E} 2 \cdot 30$.
LEO III COMPUTER
Arriving mid-October. All parts avallable, including 3.000 reels tape. in decks. power units. etc

COMPUTER PANELS

3b assid. $£ 1$-40; 716 \&2.65; 561 b \&15. Pack containing 500 components with at least 50 transistors 95 p . 12 high quality panels with power ransistors trimpots. ICs. atc $\mathrm{E2} 50$. 24 FCH181 ICs f1. Thousands of pords at shoos for callers from 5 p

VERSATILE POWER UNIT
Contains mains transformer. 2A thermal cut-out and bridge rectifier, Will give 1 7-10.5V output with 2 extra capacitors (aupplied) $\$ 1.20$. Also suallable model garage with swith. Iamp, jack plug. etc (used for 'Hot Whesle') $\mathbf{E 1} 70$.

MISCELLANEOUS

Transformer. mains pri. 16-0-16V with 9V tap eec $1+\mathrm{A}$ e2. Post OHice 4 digit counters 60 p . Balanced armature eappieces. use as mic. or sokr. 20 n impedance 30 p . 2N3055 34p. $80+$ $80+20 \mu$ F 350V 15p; 10 for E1-15.

Mail order dept., wholesale/retail shop: 51 Shlriey Park Road, Southampton (Tel. 0703 772501). Other retail shops at: 21 Deptford Broadway SE8 (Tel. 01-692 2009) and 38 Lower Addiscombe Road. Croydon. Callers Welcome
Electronic components and equipment wanted for cash

With a kit as complete asthis, all you need add is a little time.

You may have found, from past experience, that your definition of 'complete' is not quite the same as other people's. And your so called complete kit comes minus a cabinet, or knobs, or a multitude of other bits and pieces.
 That won'thappen with a Heathkit.
 clock kit. Every part you need will be there, right down to the solder. And you'll also receive a very easy to understand instruction manual that makes light work of assembly.

In fact all you need are a few basic tools and a few enjoyable hours of your time.

After which you may like to try your hand at (ourn AR-1214 stereo receiver. Or even TV. And how about an ultrasonic burglar alarm disguised as a book? Or,for a bookful of otherideas, just clip the coupon and we'll send you the Heathkit catalogue.

Otherwise call in and see us at the London Heathkit Centre, 233 Tottenham Court Road. Or at our showroom in Bristol Road, Gloucester. You'll find it well worth your time.
Heath (Gloucester) Limited, Dept. PE-104,

VAY INCLUSIVE PRICBS

HONOURS

In these days of giant corporations and large research teams it is seldom that individual effort is allowed to shine through. I was pleased, therefore, to see that Donald Pay, head of a design team at Marconi Communications Systems Ltd., has won the Phil Bekeley Award presented by the British Kinematograph Sound and Television Society for work on the B3404 Integrated Telecine.

The equipment has so many ingenious features that it would take the whole of this page to list them and do them justice. Let it suffice that Donald Pay's work and that of his assistants has aleady clocked up more than $£ 2$ million of orders for the B3404.

Equally gratifying to me has been the astonishing success of the EMI Brain Scanner. Checking up on progress of this equipment I discovered that in the two years since its introduction to a startled medical world it has won more than £14 million worth of orders, with the great bulk of them from the United States. Just what the doctor ordered for our balance of payments!

The equipment is unique in the medical field being the only com-puter-aided brain X-ray system in the world. And its latest development quadruples the picture resolution, giving higher accuracy of examination as well as a faster speed of operation.

This great earner of foreign currency was the work of Godfrey Hounsfield of the EMI Central Research Laboratories at Hayes and it won him the MacRobert Award, described as the Nobel

Prize for engineering. Hounsfield, who led the design team on Britain's first solid-state business computer, the EMIDEC 1100 (now of hallowed memory), developed the techniques used on the EMIScanner from work he was doing on electronic pattern recognition. One thing certainly leads to another.

It was EMI who made the submission for the award adding, after the technical details, "Mr. Hounsfield has been the guiding expert throughout all aspects of the work. The EMI-Scanner was as much a one-man invention as anything can be these days". A nice public tribute from an employer. The MacRobert Award Committee, in awarding the $£ 25,000$ prize, included in the citation that, "No comparable discovery has been made in this field since Röntgen discovered X-rays in 1895.'

UPLIFT

Röntgen's was a chance discovery as still often happened in the 19th century. He was actually studying fluorescence at the time when he observed that if objects were placed between his cathode ray source and the fluorescent screen they cast shadows. Writing of his discovery he tells of '
the exultant feeling that comes with a victory of the mind, which alone can compensate the discoverer for all the struggle and effort, and lifts him to a higher plane of existence."

One wonders how much of that "exultant feeling" is experienced today. Röntgen published his findings within six weeks. Nowadays, when whole teams of researchers are not so much searching for new phenomena but expanding known technology, the time period is nearer six years. But there are exceptions, such as the flutter of excitement in 1967 when Jocelyn Bell, a young lady scientist in the radio astronomy observatory at Cambridge first noticed in the chart recordings the peculiar and precisely timed signals from outer space which, conceivably, were from some other civilisation but were later found to be pulsars.

Four years earlier in 1963 the English scientist J. B. Gunn working in the United States must have got some uplift when he discovered the effect which today is commercially exploited in the Gunn diode and which has transformed microwave technology. I heard Gunn read a paper on his work at a conference in Cambridge soon after his discovery. What enthusiasm! And his name is now immortalised in the device.

Let us give more honours, prizes, distinctions to those who
deserve them. Let us encourage that exultancy that I experienced in the 1930's when my first homebuilt bread-board two-valve shortwave receiver pulled in the famous US station at Schenectady. I had bridged the Atlantic! Nonsense, of course, because nothing was new about it but it was the sort of thrill which I hope is still shared today by thousands of readers when they switch on their newly-built gear for the first time and Eureka-it works.

BIG BAD WOLF?

Although the multinational ITT Corporation appears to be still under a cloud in the United States I can report that ITT Components Group Europe is not only alive and well but prospering mightily. The Group employs some 16,000 people in Europe and current turnover is about 0.5 billion dollars which could double by 1980. In the UK, 6,250 employees are headed by Ken Walton, based in Harlow and, as a regional director. he also looks after Group operations in Spain, Portugal and Scandinavia. And if you add in the UK locations at Harlow. Paianton. Rhyl, Taunton, Milford Haven, Foots Cray and Leeds it's quite an assignment.

During the past three years the biggest expansion has been in capacitor production which will top £10 million in the UK this year. The valve Division which might reasonably have been expected to run down slightly as solid-state devices infiltrate the market is, in fact, being boosted by new product lines such as fibre-optic laser systems and a big increase in demand for night vision equipment. Thick films are booming, a recent single order for heart pacemaker circuits being worth almost £1 million.

The most exciting commercial area of development is in displays. Production facilities are at Leeds where pilot and small-scale production has already started on light-emitting diodes with full production promised next year. Following on will be liquid crystal displays and other devices which could boost the labour force from its present strength of under 150 to, perhaps, 1,000 people. Good news, indeed, when there is so much talk of stagnation rather than growth.

And if you are imagining that ITT Components Group Europe hums with Yankee or Deep South accents, forget it. In 16,000 people there are only two Americans and neither is a line manager. And who bosses the whole show from Brussels? Doug Stevenson, another Enalishman.

Ridadone A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical querles on the telephone.

Improvements to car

monitor

Sir-Mr. Perry's circuit for the "Car Systems Monitor" in the July issue takes no account of the so called automatic voltage control fitted to many British cars. including the B.L.M.C. Mini and 1100 .

The automatic voltage control interrupts the current through the instruments by switching off automatically for short periods of time when the voltage from the baitery/ ignition circuit rises above a predetermined level. The instruments are connected and disconnected bv a bi-metallic strip about 3 times a second with some longer "off" pulses.

As Mr. Perry's device is intended to warn of low voltages and as these short low voltage pulses have to be ignored, a diode and a large capacitor are needed if the device is to be made reliable for all makes of car. The input to the circuit should be modified as shown in Fig. 1.

Fig. 1. Circuit alterations to the car systems monitor

The diode 1 N 4002 is needed to prevent the charge leaking away through the car's temperature probe (thermistor) during these "off" pulses. Even with this modification the input impedance is still rather low. so that a very long "off" pulse from the a.v.c. may still cause a spurious warning pulse.

A second electrolytic. C2 may be needed to get rid of noise coming from the sparking coil. I also note that the author does not include any hysteresis in the form of feedback from TR3. that he needs 3 transistors to make his vibrator, and that he makes no allowance for positive-earth cars!

L. J. Bell, Worcs.

Sticky end

Sir-With reference to the "LightOperated Lamps" mentioned in the Patents Review page May 1974 issue, I would like to point out that these same lamp adaptors were on sale in Zambia shops almost $2 \frac{1}{2}$ years ago. They were made in Hong Kong and were not very successful.

The selling price to start with was approximately $£ 1.50$ but in the end shops were selling them off for 5 p each-I bought four just for the light sensitive resistors.

The fault with the units were the bi-metal contacts came together and parted so slowly that the light flickered for a good 60 to 90 seconds before going on or off.
F. J. Brown,

Wirral, Cheshire.

Magnesium-not lron

Sir-I read with interest the letter from your correspondent P. Watson (Bedfordshire) in P.E. July 1974. His theory is interesting but I must take issue with one of the basic reasons quoted.

The green pigment present in plants involved in the process of photosynthesis exists in several forms: chlorophylls a, b, c, d, etc., all the molecules being very similar and all having magnesium and not iron as the central metal atom. The confusion may have arisen from the fact that iron is the central metal atom in hæmoglobin, the red pigment of human blood.
The magnetic susceptibilities of the metallic elements are different, iron exhibiting an extreme form of paramagnetism known as ferromagnetism. The magnetic properties of the elements are, however, modified when they occur in complex porphyrin molecules such as the chlorophylls. In addition, there is evidence showing that during the process of photosynthesis a number of free radicals are involved. These are chemical entities with unpaired electrons and consequently exhibit the property of paramagnetism. All these magnetic properties may well be additive and contribute to the
observed phenomenon of plants aligning themselves with a magnetic field.

With reference to the final paragraph of P. Watson's letter where he refers to the possibility of thought controlled machines for the physically handicapped: we may not be very far from such reality. The U.S.A. Defence Department has recently released information regarding thought controlled firing and guidance of rockets from fighter aircraft. Simple "thought commands" are computer interpreted and radio-transmitted to the guidance control mechanism of the rocket.
D. B. Gordon, ph.d., A.R.I.C., M.R.S.H.,

Whitefield, Manchester.

Exciting future for the Amateur

Sir-I have been engaged in active construction of various types of electronic gear now for around twelve years. Not I admit as long as Mr. Kitchen (see Readout, July issue "Good Olde Days!") but long enough to have been able to start my experience during the latter stages of the valve era. Also, when l began, the most significant factor was finance which was very low and therefore meant that I had to do a lot of "making do", as a result of which a lot of used components had to be used and used and reused.
First ventures were, predictably enough, such things as simple single-ended amplifiers, t.r.f. sets, oscillators, etc., progressing on to try things more complex and sophisticated such as an oscilloscope and a s.w. set. While I admit that the enjoyment and excitement obtained from these ventures was enormous, there were certain snags which were apparent at the time and now, in retrospect, even more so.

I refer firstly to the need for having repeatedly to solder and unsolder components, either after having made a test circuit or when pulling a previously made piece of gear apart to release the bits for use in another project. However careful one is during this operation, accidents do occur and besides which no component really benefits from heat, heat and yet more heat. So, we have the problem of damage to parts because of this and as a result of that of course, further expenditure in order to replace them.

Secondly, and perhaps more important, is the matter of all those juicy volts lurking round every corner. Mr Kitchen in fact made

sexOON Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORY

gUaranteed tested high performance MODULES-now better value than ever SA35 $\quad \mathbf{6 5 . 4 5}$ Carriage $\mid \star 25 \mathrm{~Hz}-25 \mathrm{kHz}$ 35 W RMS 25-50V
SA50 66.9
66.90

Carriage
iree
50W RMS 25-65V
SAIOO $\quad \mathbf{1 0 . 9 0}$ 100W RMS 45-70V 11 transistors, 6 diodes 120 watt module: complete with builtin supply-extra heavy duty $£ 19.75 \begin{gathered}\text { carr } \\ \text { cop }\end{gathered}$

THE SA 100 MODULE

POWER SUPPLIES

UNSTABILISED

PU45		¢4.90
P U70	Suits S SA50 or	¢7.75

STABILISED

PS45	SSuiss 2 SA 3 or	63.50	$\underset{\substack{\text { Carriage } \\ \text { rree }}}{ }$
MT45	Transformer for	E3.50	${ }_{\substack{\text { carfiage } \\ 308}}$
PS70	Suits	¢4.90	
MT70	Tranta	¢4.90	Carriage

Mk II STEREO DISCO MIXER E19.75 This well tried unit mixes two decks, handles any ceramic cartridge, and features mic over-ride plus separate full range bass and ereble controls on both mic and deck inputs. Ample headphone power is available for P.F.L. May be used for mono and is mains operated. Fitted with sturdy screening case. volume, bass, treble, h/phone select, vol, Mains. Size

DISCO MODULE $88.00{ }^{\text {carr. }}$
Thousands sold of this extremely popular mono version. A mic input may
Thousands sold of $V A 30$ (see below). Low consumption from a 9 V battery Features the same high standards of reproduction as the Stereo version Controls: H/phone select, vol, Left deck vol. Right deck vol, bass, treble master vol. Size $12 \frac{3}{4}$ in $\times 3 i n \times 2$ in deep.

3-CHANNEL SOUND-LITE E22.50 Carr.

Only SAXON can supply such incredible value for money. This unit fearures 3 kW power handling, full-wave control, bass, middie, treble AND master controls. Twin loudspeaker jacks or ehrough connections. It may be used ree standing or will panel mount next to either of the above. Also features unique Professional standards for extra wide range response. Size $12 \mathrm{in} \times 3 \mathrm{in} \times 2 \frac{1}{2}$ in deep. Professional standards at a price you can afford!
SINGLE CHANNEL Recently reduced in price Add VAT 10\% to all orders

VERSION $£ 7.50$ due to increasing sales, Carr.free operation
MULTI-PURPOSE MIXERS

M4HL

fl8.50
M6HL
Fenp $\quad \mathbf{2 7 . 5 0 ~ 5 0 p}$
Featuring multiples of our VA 30 module, the M4HL and M6HL fulfilthe requirements of all elubs, groups: etc. Where a high quality mixer is required. Each
channel has one high and one low impedance input olus volume, treble and bass controls. Input impedances may, if required, be easily changed The MAHL has four channels, and one output, and the M6HL six channels (12 inputs) and a master control and two outputs. Either unit may be used free-standing or panel mounted. These mixers wilt feed all types of amplifier. Recommended for their versatility and high performance, and excellent value for moner.

VA30 CHANNEL $\{3.50 \underset{\text { Cree }}{\text { Carr. }}$
This is the basic channel module in the above mixers and may also be used for extra inputs on either the mono or stereo mixers. Firted with volume, bass and treble controls, requires just a jack and supply ($9-100 \mathrm{~V}$)

SAXON	100W of speech and music-Two
CSE	separately conerolled inputs. Wide range
100	bass and treble
100	conerols. Sturdy and attractive yynide
COMPLETE	case. Twin outpurs.
AMPLIFIER	Ideal for groups. discos, etc. Fully
	tested and guaranteed.
¢34.90	guaranteed. 50W version identical
	appearanc

£29.50 Carr.irce

Four individually controlled FET input stages
wide range bass and treble controls. l20W of output from win loudspeaker sockers. Sturdy case. and an ateractive facia make this
socellent value for money. Hundreds in use by groups. excellent value for money. Hundreds in use by groups, discos, crubs, erc.
50 W version identical in appearance.

SnXON

CALLERS AND MAIL ORDER:

SAXON ENTERTAINMENTS LIMITED 327.333 WHITEHORSE ROAD - CROYDON CRO 2HS
the above piroducts.
TDRMS OF BUSHESS: c.w.0. or C.O.D on receipt of 50 p C.O.D. charge. Please include S.A. . with ill enquiries. vat at 10% must be added to all orders including postage and carriage charges.

CUSTOM CABINETS

328/30 The Banks, Rochester, Kent. Tel : Medway (0634) 404199

SPEAKER CABINETS IN HUGE SAVINGS KIT FORM REPRESENT

$2^{\prime} \times 12^{\prime \prime}$ Cabinet

$4^{\prime} \times 12^{\prime \prime}$ Cabinet

Disco Console (includes lid not shown) Takes two slaves

For a long time now a large number of customers have asked us to produce cabinets in kit form, and above we show examples of cabinet styles and these are now available either fully built or in kit form ready for you to produce a professional finish in a very short time!
Kits are available in all specifications and all the kits contain everything you need as follows:-

1) 4 sides with handle cutouts, front edges rounded, 1 back with jack socket hole, and1 baffleboard with speaker cutout
2) P.V.C. cut to size for frame and back, plus false front and back timbers, white front piping and speaker cloth
3) Recessed handles with fixing screws, jack socket, all fixing screws, corner plates, glue, and full instructions !

PRICE \& TYPE LIST

Type	Size	Price manufactured	Kit price
$2 \times 12^{\prime \prime \prime}$ (illustrated above)	$36^{\prime \prime} \times 18^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	¢19.50	£12.50
$4 \times 12^{\prime \prime \prime}$ (illustrated above)	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	¢24.50	£17.50
$4 \times 12^{\prime \prime}$ P.A. Column	$48^{\prime \prime} \times 27^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	f 30.00	£21.50
$1 \times 18^{\prime \prime}$	$31^{\prime \prime} \times 31^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£24.50	£17.50
$1 \times 15^{\prime \prime}$ with two top horn cutouts	$36^{\prime \prime} \times 20^{\prime \prime} \times 13^{\prime \prime} \times \frac{3}{4}$	£21.00	£13.50
Mini Disco (state deck cutout BSR, GARRARD etc.)	$33^{\prime \prime} \times 20^{\prime \prime} \times 8^{\prime \prime} \times \frac{1}{2}$	£20.00	$£ 13.00$
Maxi Disco (illustrated) (state deck cutout BSR, GARRARD etc.)	$42^{\prime \prime} \times 20^{\prime \prime} \times 10^{\prime \prime} \times \frac{1}{2}$	£25.00	£18.50

Please ask for quotation on any other type or size of cabinet you may require.

* 100 w RMS slave amp for Disco
* 100 w RMS continuous sine wave output
* Short and open circuit protection
* Built to highest industrial spec.
* Price $\mathbf{£ 3 7 . 0 0}$ complete

* Stereo studio disco mixer
* Full PFL and Monitor facilities
* As used by John Peel, Mark Wesley. Paul Burnett, DLT, Dave Christian, Tony Prince
* Price f120.00

* Concorde mono M400 mixer
* Full PFL and Monitor facilities
* Mike overide
* Magnetic inputs
*Broadcasting quality £85.00

ALL OUR PRICES INCLUDE VAT AND UK DELIVERY

ERC 100 watt power amplifier

* Electrolytic capacitors and second generation ICs
* Fully protected against short or open circuit
* Less than 0.1% distortion at all powers
* Rise time 4muS-stabilityUnconditional Price $£ 66.50$

Disco imp projector 150 watt tungsten unbeatable price $£ 19.75$
Includes liquid wheel and postage
Normally £24-£27.50
reference to his need for hospital attention after a valve "bit" hard. Naturally one takes care with any piece of equipment which has high voltages present but mistakes can and unfortunately do happen, the risk potential (so to speak) being at worst lethal. I had a 1 kV shock from my first oscilloscope and that sent me a few feet in the other direction but no harm was done and learned a good lesson. Had it been a higher voltage or had a bit more current handy things may not have been so trivial. However, and let's face it, you have to delve into gear at times if only to take readings for servicing purposes and the like.

Having given the valve era a bashing I should say that I derived enormous pleasure from all my various ventures and were it not for the fact that nowadays there are other alternatives I daresay I would be quite happily continuing in the same vein. But there are alternatives and I must say that I'm very glad to have them.

Consider the transistor, what a remarkable device this is. When you compare the relative sizes of the valve and the transistor and think that the latter can be as good an amplifier in almost all respects (including even the GHz frequencies now) it must be admitted that size for size the transistor is a winner. Consider also the relative cost factors; you can buy a general purpose transistor now for less than the cost of many capacitors but valves can cost you as much or more.

Another factor which I personally find a great boom is that I can "breadboard" my new circuits with great ease and find out, long before putting the soldering iron in use, whether or not the circuit is going to prove satisfactory and if not I can modify it umpteen times until l've got it right. The end result is maintained sanity and fully intact components; I can then go on to solder up the final, proven circuit, and expect it to work first time without the need for further "messing"

Finally I would take Mr Kitchen up on his idea that things are made too simple and that it would be difficult to make up anything that was unique any more. I would say the exact opposite and suggest that with the availability of large scale integrated circuits nowadays there is a vast new field of experiment open to the amateur. There may be the need to learn new facts and ways of thinking but basic principles of electronics are the same.

With a bit of patience it is possible to learn all the necessary facts regarding i.c. theory and then one can go on, quite justifiably, to regard integrated circuits as "black boxes" and use them as building blocks to make many times more sophisticated pieces of equipment than was ever possible in the valve
days. The list is endless but the whole point is that the modern amateur does not need to feel that everything is done for him; instead he can cash in on what is made easier and so extend his scope more than has ever been possible.

Let me say in closing that I still have a certain nostalgia for the old valve days but find the present-day possibilities so exciting that I can only look ahead and continue to enjoy the much greater flexibility that is now possible. In order to soften the effect of my words on Mr. Kitchen I will amaze him by saying that not only do I still have a store of some two thousand valves still in my attic but a couple of months ago completed a new oscilloscope-yes, you guessed it, using valves!
A. C. Beglin,

Dorking, Surrey.

Too easy !

Sir-l certainly was not trying to imply that less ingenuity or technical skill is now required for clearly this is not true. If Mr. Seddon (see letter in last month's Readout page) cares to read my letter again, he will see that I referred to the passing of both the early valve days, as well as the early transistor days. I do not. of course know Mr. Seddon's abilities or qualifications. but I would venture to state that some of the early transistors required quite a bit ol skill to coax into working not to mention downright perseverance and bloodymindedness-sorry Mrs. W. I am not old enough to remember 2 LO , but 1 do remember the pioncering thrill of listening to the l.JGHT programme as it was then through a little point-contact regenerative receiver.

One other point that Mr . Seddon seems to have taken wrongly is that of the DIY side. Here I will stick to my guns-in spite of the danger of being outgunned!! The point, Mr. Seddon, is that things are made too easy so that only the true enthusiasts and folk with proper moral fibres take the trouble-and it can be troublesome-to really explore the possibilities that are present. The others-like Instamatic users! with apologies to Kodak-just flirt with a marvellous hobby and can't be bothered to learn a little of what can do them much good. And they have the effrontery to call themselves enthusiasts.

And I still maintain, in closing, that things will not get any better for the true enthusiast. By the nature of progress it is inevitable that more and more will be incorporated into IC's and the individual will have less and less to do for
himself. We will end up with my "cubular models". mark my words. we will. You may not like it, I certainly don't like to think about it; the Editor-bless him-might not like it, after all what will there be for him to edit? but we have no choice. Progress dictates what we do to a great extent, and progress is inevitable. Remember Jonah Kitchen's cubular modules when they arrive. for if I'm still around. I'll tell you so.
H. Kitchen.

Bulkington, Warks.

Durhum on the Air

Sir-It is proposed to start an amateur radio society at the Durham University and the call sign of G4DUR has been provisionally reserved.
Any readers who are interested in joining our club should contact me at the address below or during term time at the St. Chad's College, South Bailey, Durham.

Peter Whittle, G4BBU (QTHR)

1. Blinco Road. Urmston,

Manchester, M31 INF.

COURSES . . .

EASTBOURNE

September, 7 p.m. Radio
Amateurs' Course, at Eastbourne College of Further Education, St. Annes Road, Eastbourne, Sussex.

GLASGOW
September 10, 7 p.m. Radio Amateurs' Course (Fee £3, free if under 18) at Glasgow
College of Nautical Studies,
21 Thistle Street, Glasgow, C.5.
GOSFORTH
September, 7 p.m. Radio Amateurs'
Course, at Gosforth Evening Institute, Gosforth Secondary
School, Regent Avenue,
Gosforth, Northumberland.

LONDON

September, 7 p.m. Radio
Amateurs' Course, at Grafton Radio Society, Archway School, Arciway Annex, Highgate Hill, London, N. 19.

Enrolment, September(commences
October) 6.30 p.m. Colour
Television Receivers, Opto-
electronics (Fee £3 per course) at South London College, Knight's Hill, West Norwood, London, SE27 OTX.

Project 80

a brilliant new concept in modular hifi

Project 80 is going to be the ultimate in modular hi- fi construction for a very long time to come. It combines the qualities most demanded of any modern domestic system - good circuitry, reliability and fine performance - with other features to be
found nowhere else in the world. For example, compactness - Project 80 control units are $\frac{3}{4}$ " deep $\times 2^{\prime \prime}$ high, and each one is completely self-contained.
Elegance - all of Sinclair's design leadership has been concentrated on producing designs of outstanding functional elegance unsurpassed for styling and simplicity. Flexibility -
the size and styling of Project 80 modules makes them the most versatile units ever. Combine them how you will, where you will, the Project 80 System
of your choice gives you the best.

Sinclair Project 80

technically the world's most advanced

Project 80 gives you choice from a range of 9 different modules for combining in a variety of ways to suit your requirements. The Stereo 80 is a versatile pre-amp control unit designed to meet all domestic hi-fi requirements including tape monitoring, high sensitivity magnetic cartridge input, and of course, individual slide controls on each channel for precise output matching. By separating the F.M. tuner and stereo decoder, useful economies can be effected where stereo radio reception is not needed. Two power amplifiers - Z.40 (18 watts RMS continuous into 4 ohms using 35 V) and $Z .60$ (25 watts RMS continuous into 8 ohms using 50 V) are available with choice of 3 different power supply units. The PZ. 8 with its virtually indestructible circuitry is particularly recommended. For the final word in system building, the Active Filter Unit puts the finishing touch of quality to what are easily the world's most technically advanced hi-fi modules. Any further units likely to be added to Project 80 range will be compatible with those already avallable.

Note:-VAT chargeable at standerd current rate

Guarantee

If within 3 months of purchasing amy product direct from us you are dissat stit d with it vour monev will be refunded on production of recept of pavment Maris, Sinclar appointed stockists also offer this guaralitee Should anv defect aris in normal ust we will service it without charge

Stereo 80 Control Unit size-260-50-20mm (102, 2. 2 zns) Finish - Black with white indicators ane transparent sliders Inputs - Magnetic pick up 3 mV RIAA corrected. Ceramic pick up 350 mV Radio 100 mV . Tape 30 mV Signal/nose ratio - 60 dt Frequency range -20 Hz to 15 KHz . $1 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 25 kHz . 3 dB Power requirements -20 to 35 volts Outputs $100 \mathrm{mV} A B$ monitoring for tape Controls - Press button tape radio and $P U$ Siders on each channel for volume bass treble \quad, add $£ 119 \mathrm{VAT}, \mathrm{E} 11.95$
Project 80 FM Tuner size - $85 \cdot 50 \cdot 20 \mathrm{~mm}(3$ ($3 \cdot 2 \cdot 2 \cdot 2 \mathrm{~ns}$) Tuning range Dual varicap - 875 to 108 MHz Detector - I C balanced concidence One I.C. equal to 26 transistors Distortion - 02% at 1 KHz for 30 \% modulation 4 pole ceramic filter in I.F. section Aerial impedance - 75Ω or 240300Ω Sensitivity - 5 microvolts for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratıo Output -300 mV

Project 80 Stereo Decoder size-47.50.20mm (11 - 2 . $\frac{3}{4}$ ins) One 19 transistor I.C Channel separation greater than 30 dB Power

Active Filter Unit Separate conttols on each channel size $1085020 \mathrm{~mm}\left(4 \frac{1}{4} 2\right.$ 2, $\left.\frac{3}{4} \mathrm{ins}\right)$ Voltage gain - minus 02 dB Frequency response -40 Hz to 22 KHz controls minimum Distortion - at $1 \mathrm{KHz}-003 \%$ using 30 V supply H.F cut off (scratch) -22 KHz to $55 \mathrm{KHz} 12 \mathrm{~dB} / \mathrm{oct}$ slope LF. cut off (rumble) -28 dB at $20 \mathrm{~Hz}, 9 \mathrm{~dB}$ /oct slope RRP f $\begin{array}{r}\text { (add } 69 \mathrm{pVAT} \text {) } \mathrm{E} .95\end{array}$
 transistors Input sensitivity 100 mV Output 18 watts RMS continuous into $4 \Omega(35 \mathrm{~V})$ Frequency response $30 \mathrm{D}+12100 \mathrm{KHz} \cdot 3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio -64 dB Oistortion - a1 10 watts into 8Ω less than 01% Power requirements - 12 to 35 voits. bult in protection against overload $($ add 54 R VAT) $£ 5.40$
Z.60 Power Amplifier suze-55 $98 \quad 15 \mathrm{~mm}\left(2 \frac{1}{5} \cdot 33 \cdot \frac{3}{4} \mathrm{~ns}\right) 12$ transistors Input sensitivity - 100250 mV Output -25 watts RMS continuous into $8 \Omega(50 \mathrm{~V})$ Distortion - tvpically 003% Frequency response -15 Hz to more than $200 \mathrm{KHz} .3 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio - better than 70 dB Built-in protection

Power Supply Units pz 8 Stabilised Re entrant current limiting makes damage from overload or even direct shorting impossible Nomal working voltage (adjustable) 50 V R R P $£ 798790$ VAT Without mans transformer PZ. $6 \quad 35 \mathrm{~V}$ stabilised R RP $\mathbb{E} 7.98 \quad 79 \mathrm{~F}$ VAT PZ 5 30V un stabilisnd R R P £4 98 49pVAT

To Sinclair Radionics Ltd. St. Ives Huntingdon PE17 4HJ
Pleast send post paid \qquad
for which l inclos, Cesh Cheque tor E_ inchuding $V A$ \qquad
Nan
Actares
PE10

R

 T-v

 T-v

 FOR AUDIO

 FOR AUDIO ON A BUDGET

PUSH BUTTONCAR RADIOKIT
 The TouristII

NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO

Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly.
Fine tuning push button mechanism is fully built and tested to mate with printed circuit board.

Car Radio Kit $£ 7.70+55 p$ p \& p

Tourist Mk. 1 kit still availableprice $\mathbf{f 6 . 6 0 + 5 5 p .} \mathbf{p \& p}$.
See July issue for full specification
echnical specification
(1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth.
(2) Integrated circuit output stage, pre-built three stage IF Module.
Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands.
Size chassis 7 " wide, 2 " high and $4 \frac{5}{16}{ }^{\prime \prime}$ deep approx
Speaker including baffle and fixing strip $£ 1.65+23 p$. p\&p. Car Aerial Recommended - fully retractable and locking £1.37+20p. postage \& packing

STEREO
 QUALITY SOUND FOR LESSTHAN $£ 19 \cdot 00$

Stereo 21, easy to assemble audio system kit. No soldering required. Includes:- BSR 3 spoed dock, automatic, manual facilities together with ceramic cartridge. Two speakers with cabinets.
Amplifier moduls, Ready built with control panel, speaker leads and full, easy to follow assembly instructions. Spacifications: For the technically minded:-
Input sensitivity 600 mV . Aux. input sensitivity 120 mV , Power output 2.7 watts per channel. Output impedance $8-15 \mathrm{ohms}$. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping discs. Overall Dimensions. Speakers approx. $15 \frac{1}{2}{ }^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1^{\prime \prime}}{2} \times 12^{\prime \prime} \times 6^{\prime \prime}$. Complete only $\mathbf{£ 1 8 . 9 5}+\mathbf{1 1 . 6 0 p}$ \& p. Extras if required. Optional Diamond Stylif1.37. Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance, $\mathbf{f 3 . 8 5}$.
De-luxe model available in white PVC. Incorporates BSR deck with cue/pause control. price $\mathbf{f} \mathbf{2 0 . 5 5}+\mathbf{1 1 . 6 0 p} \mathrm{p}$ p.

Elegant self selector push button player for use with your stereo system. Compatible with Viscount III system, Unisound module and the Stereo 21. Technical specification Mains input. 240V, Dutput sensitivity 125 mV Comparable unit sold eleswhere at t24.00 approx. Yours for only f10.95 90 p \& p

COMPLETE* STEREOSYSTEM

System 1. $651 \cdot 00$

40 Watt Amplifier. Viscount III - R102 now 20 watts per chantel
System I includes:
Viscount III amplifier - volume, bass, treble and balance controls, plus switches for mono stereo on/off function and bass and treble lilters. Plus headphone socket. Specification
20 watts per channel into 8 ohms. Total distortion@ 10 W @ $1 \mathrm{kHz} 0.1 \%$. P.U. 1 (for ceramic cartridges) 150 mV into 3 Meg . P. U. 2 (for magnetic cartridges) 4 mV a 1 kHz into 47 K . equalised within 1 dB R.I.A.A. Radio 150 mV into 220 K . (Sensitivities given at full power). Tape out facilities: headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: -12 dB to -17 dB a 60 Hz . Bass filter: 6 dB per octave cut. Treble control reble -12 dB to -12 dB a 15 kHz . Treble filter: 12 dB per octave. Signa/ to norse ratio (all controls at max.) - 58 dB . Crosstalk better than 35 dB on allinputs. Dverload characteristics better than 26 dB on all inputs. Size approx. $13^{\frac{3}{4}}{ }^{\prime \prime} \times 9^{\prime \prime} \times 3^{\frac{3}{4}}$
Garrard SP 25 Mk III deck with magnetic cartridge, de luxe flinth and hinged cover
Two Duo Type II matched speakers - Enclosure size approx. $17 \frac{1^{\prime \prime}}{} \times 10 \frac{3}{4}^{\prime \prime} \times 6^{\prime \prime}$ in simulated teak. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. 10 watts handling.
Complete System $\mathbf{£ 5 1 . 0 0}$

System2.f61.00

Viscount III amplifier (As Systeml)
Garrard SP 25 Mk III deck (As System I)
Two Duo Type IIIA matched speakers - Enclosure size approx. $31^{\prime \prime} \times 13^{\prime \prime} \times 11^{\frac{1}{2}}$ Finished in teak veneer. Drive units approx. $13 \frac{1_{2}^{\prime \prime}}{} \times 8 \frac{1^{\prime \prime}}{}$ with $3 \frac{1^{\prime \prime}}{4}$ HF speaker. Max. power 20 watts, 8 ohms. Freq. range 20 Hz to 20 kHz .
Complete System f69.00

PRICES: SYSTEM 1

Viscount III R102 amplifier	¢2
2 Duo Type II speakers	$\mathrm{f} 14.00+\mathbf{5} 2.2$
Garrard SP 25 with Mag. cartridge de luxe plinth and hinged cover	$\mathrm{f} 21.00+\mathrm{f1.75p}$

total: $£ 59.20$
Available completefor only:
$\mathbf{£ 5 1 \cdot 0 0}+\mathbf{£ 3 . 5 0 p} \% \rho$

PRICES: SYSTEM 2
Viscount III R102
amplifier
$\mathrm{f} 24.20+\mathrm{f} 1 \mathrm{p} \& \mathrm{p}$
2 Duo Type III A speakers $£ 39.00+£ 4.00$ p \& p
Garrard SP 25 with
Mag. cartridge
de luxe plinth
and hinged cover
$\mathrm{f} 21.00+\mathrm{f} 1.75 \mathrm{p}$ \& p
total: $£ 84.20$
Available complete for only:
$\mathbf{f 6 9 . 0 0}+\mathbf{f 4 . 0 0} \mathrm{p} \& \mathrm{p}$

EMI SPEAKERS AT FANTASTIC REDUCTIONS

20 WATT

SPEAKER SYSTEM
System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ (approx) eliptical woofer unit with a $8^{\prime \prime} \times 5^{\prime \prime}$ (approx.) mid range unit incorporating parasitic tweeter and crossover components.
Technical Specification Bass Unit
Flux density-100 K, speech coil- $1 \frac{1}{2}^{*}$, Cone, Triple laminated paper with P.V.C. surfound

Mid Range Unit
Flux density-33K, speech coil-1" with parasitic tweeter.
Power Hand ling
20 watts R.M.S., impedance - 8 ohms,
frequency response - 20 Hz to
$18,000 \mathrm{~Hz}$
OUR PRICE
£6.60. Complete
$+90 \mathrm{p} \& \mathrm{p}$.

15" 14A/780 BASS UNIT
Bass unit on a rigid diecast thassis. Superior cone material handles up to 50 watts RMS. and is teated to give a smooth trequency response. Resonance 30 Hz . flux density 366.000 Maxwells. Impedance at 1 kHz is 8 ohms. 3^{3} " voice coil.
Recommended retail price $£ 40.80$ OUR PRICE $£ 18.70+£ 1.50$ p $\%$ p

Five matched speakers and crossover unit for handling up to 45 watts, frequency response from 20 to $20,000 \mathrm{~Hz}$
Huge $19^{\prime \prime} \times 14^{*}$ (approx.) high efficiency Bass-Speaker with 16.500 -gauss magnet built on a heavy diecast frame.
The four 10.000 gauss tweeters, each $3 \frac{1}{4}$ dia. approx., are fed by the crossover which critically adjusts signal for maximum idelity Impedance at ! kHz is 8 ohms Bass coil 2", others 0.5". Recommended list price f44-00
Special Offer OUR PRICE $19.50+$ E1.50 pqup

1 Parys
 Q CASH \& CARRY PRICES
 For CALLERS or BY POST

TRANSISTORS, VALVES AND SEMICONDUCTOR DEVICES ANY QUANTITIES UK'S LARGEST STOCKISTS

Ceromic Fitera
Ministure Ministure 10.7 mHz filters $40 p$ pair
IC IF UnH CA 308910.7 mHz IC 2.9 IC Clock MM 5314 single CCTEs. SInclalr IW IC IC12 with data
end PC board E2. 10.
Radio IC Chip
ZN414 Redio
ZN414 Redio IC with circult

Stereo Cassette Tape Hoed
Replecement for
Replacement
recorders t2.00 PC Panal 50p. transducers Transducers
With dala/ circuits
55.00 pair.

Strobe tubes
ZFTBA (s / mA

laF
c 4.
y

Z4.
ZFTi2AEs
7 eegmen
feegmen
indicetors
3015F with
deta
\&1.70
$3015 F$
dsta
data
QUALITYCASSETTETAPES
"Living Sound" made specially for Henry's by EMP Tapes Lid. 5 screw type with library case Post paid (G.B.)

	E	ε	E	£
	3 for	6 for	10 for	25 for
C60	1.10	2.00	3.15	7.50
C90	1.47	2.85	$4 \cdot 85$	11.37
C120	1.43	$3 \cdot 54$	$5 \cdot 0$	14.00

SPECIAL OFFER CASSETTE STORAGE
Rotating unit up to 32 cassettes stackable £3-60 (P \& P 15p). Car unit with bracket for 0

AMTRON KITS

Model No.

127 Noise reduction unit
707 Windscreen wiper time 707 Windscreen wiper timer
157 Private TV Ioop trans. 525 C 120-160 mHz VHF tuner

310

ELECTRONIC COMPONENTS AND EQUIPMENT
More selection-bigger stocks of electronic components and equipment for supply purposes.
requirements. (Piease enclose large SAE with athenquirios)

ع p c3. 29 6. 11 6.81 6.61 1.68

Power

8upply $0.25-0.14$ 6

690 DC motor speed
Gov
700 Electronic Chat-

1. 24
3.31
7.92
12.57

760 Acoustic switch
(electronics
only) Civactive Burg.
lar alarm
835 Guitar preamp $\quad \begin{aligned} & 7.92 \\ & 4.99\end{aligned}$ 840 Delay car alarm 6.9 ignition for car gnition forcar
(-Ve engine
Earth)
80 Scope Calibrator 2.6
255 Level indicitor
525 120-160mHz VHF
525 120- 160 mHz VHF
timer
715 Photo cell switch $\begin{aligned} & 11.31 \\ & 8.97\end{aligned}$ 795 Electronic conPhoto timer 235 Acoustic Alarm 15.51 465 Quartz XTAL checker XTAL 220 Signal Injector 390 vox
432 Testakit Battery
670 Bufter
670 Buffer Battery 7.59
850 Electronic Keyer 16.37

TEST

EQUIPMENT

MULTI-
 METERS

(Carr/pecking 35p)
$4432420 \mathrm{k} V$ with cese :. 25 U435 20k/V with steel case
U4313 20 kN
with steal ${ }^{\text {case }} 12.50$
 - 16.50 U434133k V plue tran-
siator leaster steel case
caser $\begin{array}{ll}14323 \\ 1 \mathrm{kHzd} \\ & 465 \mathrm{kHz} \text { plus } \\ \text { OSC }\end{array}$ with case
ITH-2 20k/V slim type
THL 33 D (L33DX) $2 \mathrm{~K} / \mathrm{V}$ Robuet THL 33D (L33DX) 2k/V
TP5SN $10 \mathrm{k}, ~(\mathrm{Case}$ ع $)$

GENERAL TEST EQUIPMENT
(\uparrow Carr. packing 50p Carr packing
$\dagger 3100$ IMA Strip chart recorder tTh40 AC Multivoltmater
\uparrow Tk 15 G id dip meter $440 \mathrm{kHz}-28 \mathrm{mHz}$
tTk65 28 Range valve voltmeter
个Tk200 AF Generator $120 \mathrm{kHz}-500 \mathrm{mHz}$
t Tk22D AF Generator $20 \mathrm{~Hz}-200 \mathrm{kHz}$
-HM350 in circuit transistor tester - C3025 Compsct irensistor tester $+\mathrm{G} 3-36$ la/C osc. $20 \mathrm{~Hz}-200 \mathrm{kHz}$ ${ }^{-}$C3042 SWR Meter

- SE350A Deluxe signal tracer -SE 400 Nimi-lab all in one tester C1-5 Scope 500.000 kHz (carr £ 1) -C3043 5 CH F/A meter $1-300 \mathrm{mH}$ Resistance sub
Capecitar (20p)
24 veriable transtormers (carf $£ 1$) Radio activity counter (-10r (can

PA-DISCO-LIGHTING EQUIPMENT

Without doubt U.K. s best range of moduiar and complete equipment Lighting mixing. microphones. accessories speakers amplifiers jenses eic etc (Ref. No. 18) on request. CALL
FREE stock lists (R) IN AND SEE FOR YOURSELF at 309 (see below)

8\% TO BE ADDED TO ALL ORDERS (EXPORT V.A.T. FREE) FOR MORE ELECTRONICS SEE BACK PAGE
G. F. MILWARD, 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

12 VOLT FLUORESCENT LIGHTING

INVERTER TRANSFORMERS 13/15W (CIRCUIT INCLUDED)			70p
"'CURRENT ECONOMY" TRANSISTOR (600 ma.)			50p
'"MAXIMUM LIGHT"' TRANSISTOR (1-3A)			50p
RESISTORS/CAPACITORS TO SUIT			15p
LAMPHOLDERS (LONG LEAD)			30p PAIR 20p PAIR
WHITE ENAMEL CASE, 18 in or 21 in			70p
TUBE, 18in-15W or $21 \mathrm{in}-13 \mathrm{~W}$			45p
(NOTE:- TUBE ONLY SUPPLIED IF CASE ORDERED, TO PREVENT POSTAL DAMAGE)			
13W FITTING TUBE	READY BU	AND TESTED	$\begin{array}{r} \text { NCLUDING } \\ £ 3 \cdot 75 \end{array}$
ALL GOODS PLUS 8% V.A.T.			
	TORS		CUTTER 15 baands D PIECES'
POSTAGE 25p	PACK No. 1	POSTAGE 25p	PACK No. 3
100 मesis 100 CERAM CAPACITO CAPACITO	As RENE	21100 RESISTO 100 CERAMMC CAPACITOR 50 MULLARD CAPACITOR	YESTER
POSTAGE 25p	PACK No. 2	POSTAGE 25p	PACK No. 4

MAPLIN ELECTRONIC SUPPLIES

ORGAN BUILDERS

Keyboards: High quality adjustable type Sloping frant 49 -note \mathbf{C} to $\mathbf{C} . \mathbf{\varepsilon 1 4 . 3 5}$ Flat front 48 -note F to E. $£ 14-35$. Contact blocks GB-2 (2 make contacts). 190 Palladium earth bar per octave length. 15 p . Stop tabs rocker type nol engraved (white red grey or black) with DPDT switch 49p. Golid-clad phosphor-bronze contact wire per
yard. 25p.

BASIC ORGAN CIRCUIT

Leaflet MES 5 t shows a complete circuit for a basic fully polyphonic organ. Send only 15 p for leaflet and start building
now REMEMBER-when you have built this organ you will now REMEMBER-when you have huil this organ you win basis of a laree sophisticated instrument with all the facilities you want. Y'arch our ads for details.

REVERBERATION UNIT

Enhances the sound of any electronic musical instrument Ready built spring line driver module suitable tor use with alme any spring line. $\mathbf{8} 3 \cdot \boldsymbol{\mu}$.
Two types of spring line available
Short line. 83.05.
Long line, in 59.

MES announce the very fatcat development in organ circuitry. THE DMO2
13 Master Frequencies on ONE tiny circult board. LOOK AT THESE AMAZING ADVANTAGES * 13 frequencies from C8 to C9. \star Esch frequency digitally derived from a gin w en master osclinator SIMPLE ADJUGTMENT. Relative tuning NEVER DRIFTS A ERteral control allowe instant tune-ap DRIFTS ! Erternal control sllowi instant tune-a to otber of dividers including the BAJ110. $*$ And each output can also be used as a direct tone source. A Variable DEPTH AND RATE tremulant optional extra. * Gold-plated plug-in edge connexion. $\$$ Completc dbre glass board (including tremulant if required) ONL $7 \mathrm{in} . \times 4.5 \mathrm{in}$. \star Very low power consumption. * EXTREMELY ECONOMICAL \star B.a.e. please PRICE. * Ready built, teated and fully guaranteed. DMO2T (with tremulant) ONLY 14.25.

DMO2 (without tremulent) 12.25 7-stage frequency divider in one 14 pin DIL package. sine or equare wave input anows operation DMO2 amost any type of master osciliator including the DMO2 (when 97 notes are available). Square wave outputs may be modified to asw-tooth by the addition of a fer components.
*SAME

P.E. SOUND SYNTHESISER

If this pro PRICES

We are stocking all the parts for this exciting project. from the special I.C's right down to the nuts bolts and spacers for mounting the Veroboards
Send S.A.E now for our detailed price lists

E.T.I. SYNTHESISER

We stock atl the parts for the "Electronics Today International synthesiser including all the P.C.B 's required and all the metalwork including a drilled and printed frompanel for a truly professional finish.
Some of the circuits in this mrilliant design are entirely original. Independent authoritative opinions agree the E. T. I International Synthesiser is technically superior to practically alf synthesisers SA.E pleare

CAPACITORS

Sub-miniature
Axial lead electrolytic Mfd V Price Mil V 63 6p Mfd V Price 1.63
1.563 1.26
2.3
3.3 3.363
4.763
6.840 4.763
6.840
6.863
10
10 $\begin{array}{cc}6.8 & 63 \\ 10 & 25 \\ 10 & 63 \\ 15 & 16\end{array}$

LINEARS

CA3046 Transistor array LH0042C TO99 (TO5). FET i/p Op Amp
 LM30iA. 8-pin DiL. Op Amp
 LMC 1303L. 14-pin. Stereo Preamplifier

MC1310P 14-pin DIL FM Sterco Decoder (no coils needed) MFC 4000 B . \&W Audio Amp
MFC6040 Electronic attenuator
MFC8010. 8-pin case. TW Audio Power Amp
MFC 9020 . 10-lead case. $2 W$ Audio Power Amp
NESSSV. 8-pin DIL. Precision Time
NE561B. 16-pin DIL. Phase Locked loop
SG1495D. 14 pin DIL, Four Quadrant Analogue Multiplier
SG3402N Amplifier /Multiplier
HA723C. TO99 (TOS), to 37 V Voltage Regulator
HA741C. 8-pin DIL Op Amp
HA741C. 14pin D1L. Op Amp
HA747C. 14 pin DIL. Dual Op Amp
MA748C. 8-pin DIL, Op Amp
ZN414. TOS. TRF Radio
Full data. pin connexions. 16 on nearly all types above in 20 catalogue. Price 25p

SWITCHES

Rotary u ith adjustable stop 1 pole 2 to 12 way
3 pole 2 to + uay' 4 pole ? or 3 way
Mains rotary DPST 250 V 2A. 20p.
Mains rotary
Slide
Sub-miniature Sub-min
DPDT

non-locking

Toggle 250 V 1.5A
with ON/OFF
plate 250 .
VAT
Please add 8% tothe find lotal.

PLUGS AND SOCKETS

WE KNOW YOU NEED IT !
The MES 1874 IS STACKED

OMNIUM GATHERUM

PP3. 6. etc. battery clip dual min. 9 p.
PP 1. . etc. battery clip separate per pair $6 p$.
Pair crocodile clips Pair crocodile clips । red. | black insulated sleeve 10p.
Solder Multicore 22 s. H g. 10 metres $\mathbf{2 5} \mathrm{p}$
Silicone grease in special dispenser 20 ml 54p Silicone grease in special dispen
Terminal Block $12-$ way 5 A 14 p . Probe clips spring loaded per pair 30 p . Panel fuse holders 20 mm 20 p : Itin 35p
Tranaformers
 Sec $9 \Omega 200 \mathrm{~mW} 50 \mathrm{D}$
Sub-main. Maint Transtormer
$6 \rightarrow 0-6 \mathrm{~V}$. $100 \mathrm{~mA} 95 \mathrm{p}, 12-0-12 \mathrm{~V} \quad 50 \mathrm{~mA} 9.5$. Size Both appros. $30 \times 27 \times 25 \mathrm{~mm}$
Min. Mains Transformer
Size $46 \times 31 \times 18 \mathrm{~mm}$
$0.12 \mathrm{~V} 250 \mathrm{~mA} .0-12 \mathrm{~V} 250 \mathrm{~mA} 51 \cdot 36$
Malns Transformer MT 3AT
Pri $200-220-240 \mathrm{~V}$ Sec 12-15-20-2+30V $1+£ 3.31$.

Mains Traneformer MT206AT

 Pri. $200-20-240 \mathrm{~V}$$0-15-20 \mathrm{~V} 1.4 £ 3.88$.
Hook-up wire, 7 strand 0.2 mm PVC covered tinned copper wire for light general connexions up to 1.4 A . 11 colours black blue trown yellow, 10 metres of any one colour 20 p . Pac of 11 (1 of each colour) 10 m coils $\mathbf{5 2} \mathbf{2} \mathbf{0 5}$. Single core screened op per metre. Twin individually screened $10+p$ per metre thigh qualty single screened son 100pF per

POTENTIOMETERS

Rotary miniature carbon track $\mathbf{t}^{\prime \prime}$ spondle Single gang with DP swich
250 V 2A Log or Lin 5 k to 2 M as above

Dual gang
(Siereol Dual gang
(Siereo) withou switch Log or L
s ito 2 M as bove 49 p .

Single gang Lin or 1.08 $5(\mathrm{k}) \mathrm{k}$. 1 M 2 2 M (and 1 k k in) 16 p

PRESET8

Sub-miniat ure 0.1 W
Vert or Horiz
$100,250,500$.
$100,250,500,1 \mathrm{k}$, $2.5 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, $500 \mathrm{k}, 1 \mathrm{M}, 250 \mathrm{k}$.

RESISTORS

Carbon Film 1 W $6 \% 1 / 2$ to 1M; 10% 12M to 10 M E12 Carbon Film tW 5% in to $10 \mathrm{R} ; 10 \%$ 1.2M to 10M E12 Carbon Film fW 5\% 11Ω to 910 k Carbon Film IW $5 \% 10 \Omega$ to 10 M Metal Oxide $\mathrm{FW}^{2} 2 \% 10 \mathrm{~S}$ to 1 M Wirewound $2 t$ W 10% o-s-2ohms to 0.47 obm Wirewound $24 W 5 \%$ lohm to 270 ohms
E12 values 10, 12, 15, 18, 22, 27, 33, 39, 47, 66, 68, 82 and decadea
metre, ideal for high grade audio connexions
154 p per metre $154 p$ per metre
 covered 19 strand 0.1 mm per conductor. 7! P covered 19
per metre. DPDT 3A 240 V a.c. 77 p Four Pole DT 3A 240 V a.c.

Goodbye to the long wait

for electronic components.

Now there's Dorama completely professional electronics service for the amateur.

7-day service.

Ifyou've been buying electronic components long you'll know all about the long wait.

Somehow the things you really need never turn up on time.

Well, OK, now things have changed. Now there's Doram.

Doram is a brand-new deal for serious amateurs. li's a complete door-to-door components service operated by mail order.

Millions of components.

You iust buy the Doram catalogue for 25 p that's a yearly reference book forthe price of a pint oflagerl and then you orderfromit.

We can offeryou stocks of millions of components. With a choice of over 4,000 different lines.

And we're so confident of our senice that if we can't supply the part you want within 7 days of receiving your order, well give you your money back. Immediately.

So you know just where you stand. You'll neverwaste time hanging around while we re-order.

No-quibble guarantee.

It's just about impossible to buy a defective part from us. Because our checking is so pains-taking.

Buteven if the unthinkable does happen-and you're unlucky-then

we'll still make you happy quickly.
Because we offera no-quibble replacement part service.

And our guarantee is guaranteed by the fact that we belong to the biggest electronics distribution Group in Britain.

All the goods supplied are branded goods. Produced by bigname manufacturers like RS, Mullard, SGS-ATES, Ferranti, Siemens etc.

E5 Vouchers.

As an added incentive we're giving free purchase vouchers away. To the first 50 catalogue buyers whose applications are pulled out of the sack at 12 noon on the 31st October 1974.

At that time, at the Amateur Radio Traders Exhibition at Granby Hall, Leicester, comedian Brian Rix will open our correspondence sack and make the winning selections.

The first voucher out will be a $£ 10$ voucher. The next 49 will be $£ 5$ vouchers.

All catalogues will be despatched upon receipt of coupon and remittance; coupons will then go into the correspondence sack for the draw.

So don't delay. Use the coupon. Send today for yourfirst Doram catalogue. It can make your life a whole lot easier. And you could win a voucherifyour order is one of the first 50 out an October 3lst.

		COMPONENT KITS FOR THESE EXCITING PROJECTS 41p STAMP BRINGS DETAILS		RHYTHM GENERATOR SYNTHESISER
			POTENTIO. Mint MouldedCARBON $24 m \mathrm{~m}$ dia. M. LOG. 10k R 2 25K Sok ill SEMI PRECISION kR日.1w 52p PRECISION 10 CAPACITORS PRINTEDCIRCUIT 23p oach	

PUBLISHER'S ANNOUNCEMENT

Due to production difficulties existing at the time this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing

POCKET CALCULATOR

8 DIGIT DISPLAY WITH IOO DIGIT STORE CAPACITY

* NEVER LOSES INFORMATION OR OVERFLOWS
\star CALCULATIONS FROM $10^{-99}-10^{99}$ ACCOMPLISHED
\star FULL BUSINESS, SCIENTIFIC AND BASIC MATHS FUNCTIONS
\star FLOATING DECIMAL-CONSTANT (RANDOM ACCESS MEMORY)
\star CORRECTION OF ENTRY AND FUNCTION ERRORS
* RECALL OF LAST ENTRY
\star FULL REPLACEMENT SERVICE FOR 6 MONTHS
* WORKS FROM A 9V RADIO BATTERY
\star COMPLETE WITH CASE AND INSTRUCTIONS

OUR PRICE
 4 $5 \cdot 64$

"SHARP 12"

THE ARISTOCRAT OF PORTABLE TELEVISIONS
\star FROM THE INTERNATIONALLY FAMOUS SHARP AUDIO \& ELECTRONICS CORPORATION
\star INSTANTLY TUNABLE IN ALL U.K. AREAS
\star MAINS OR I2V BATTERY

* ALL SOLID STATE CIRCUITRY FOR RELIABILITY AND INSTANT WARM-UP
\star REMOVABLE SUN SHIELD
* IMPECCABLY STYLED CASE IN OFF-WHITE HIGH IMPACT ACRYLIC WITH FOLDAWAY HANDLE
* COMPLETE WITH MAINS LEAD. PERSONAL EAR PHONE AND UHF AERIAL
* GUARANTEED FOR I YEAR
\star RECOMMENDED RETAIL PRICE £75.95 (Inclusive of V.A.T.)

INEW
 BAS F CASSETE RECORDER

* THE LATEST HIGH QUALITY PRODUCT FROM THE RENOWNED GERMAN BASF COMPANY
* STYLISH, COMPACT MAINS OR BATTERY OPERATION
* SUPERB TONE AND PROVISION FOR EXTERNAL LOUDSPEAKER
* BUILT-IN HIGH SENSITIVITY CONDENSER MICROPHONE AND PROVISION FOR EXTERNAL MICROPHONE * PIANO KEY CONTROLS, RECORD METER AND AUTOMATIC RECORD LEVEL CONTROL
* SUPPLIED WITH CARRYING CASE, MAINS

LEAD AND 3 PIN DIN-DIN LEAD

* RECOMMENDED RETAIL PRICE $£ 36.35$
(Exclusive of V.A.T.)

TERMS (TRADE AND BULK ENQUIRIES WELCOME)

* PRICES DO NOT INCLUDE V.A.T.
* PAYMENT WITH ORDER ONLY
\star TOTAL PAYMENT $=$ COST OF GOODS $+\mathrm{P} / \mathrm{P}+8 \%$ V.A.T

POSTAGE AND PACKING TELEVISION- $£ 1.25$ CASSETTE RECORDER-£I
CALCULATOR - 35 p
P.O. BOX 14 . ABINGDON

OXON

Sensational lighting effects at prices you can afford!

FEATURING:-

Our 3-Channel Sound-LightSystem.

With controls for each channel and a master sensitivity control. It has a metal case. $11^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ and 1500 W per channel

All for only $£ 16$-80.
Introducing also our Single Channel Version for either bass, middle or treble frequencies.

And that's only $£ 6.95$.
Of course, things get more exciting with our Bass Triggered Variable Strobe Effect. With this unit you get the basic sound to light effect or an adjustable strobe effect.

But the mostamazing thing is that this unit can combine these effects. This gives you a strobe effect whose flashing rate is controlled by the changes in music intensity!
This effect is truly Sensational and it costs only $£ 25 \cdot 00$.
Want to know more? Send aS.A.E.to Soundlite Systems for full details of the rest of our extensive range of strobe effects, spot banks and sound to light converters.

515

Professional standards at competitive prices.
Terms C.W.O. mail order only to J. Tate. 17 St. Andrew's Crescent. Harrogate, Yorks. HG2 7RT. Postage included.

NEW PE
 SCORPIO
 Mk. 2

Following the phenomenally successful Scorpio Capacitor-Discharge ElectronicIgnition system introduced in 1972 and proved by many thousands of sacisfied motorists, we are happy to announce availability of all parts for the PE SCORPIO Mk. 2-

- Now with added R.F.I. suppression.
- Fully machined and painced die-cast case with AMP termination connector block
- Custom wound transformer.
- NOW AVAILABLE IN $6 V$, and 12 V .
- Suitable for all types of Cars, Boats, Go-Karts, etc
- Promotes easier starting-even under sub-zero conditions
- Improves acceleration, gives better high speed performance and quicker engine warm up.
- Eliminates excessive concact breaker burning and pitting
- PROMOTES FUEL ECONOMY.

Construction of the unit can easily be completed in an eveninginstallation should take about half an hour. A complete complemen of components is supplied with each kit together with ready drilled, roller tinned professional quality fibreglass printed circuit board. -Uses original plugs, points and coil.-No special parts or extras required.

Case size: 7 it $\mathrm{in} \times 4 \frac{1}{2}$ in $\times 2 \mathrm{in}$

- All components available separately,-S.A.E. with enquiries.
* Construction manual availabie separately 25 p.

Cost $\mathbb{£ 1 1 . 7 8}$ incl, carr, and ins. or ready built and tested $\mathbb{1} 14 \cdot 10$.
Conversion kit from Mk. I to Mk. 2. For constructors already possessing Mk. I Kits.-Miniature P.C. assembly \&I incl. carr. and ins. With full conversion instructions.

PLEASE ADD VAT TO ALL U.K. ORDERS
(Carriage at cost outside U.K. - Export enquiries welcome.)
DABAR ELECTRONIC PRODUCTS
98 LICHFIELD STREET
WALSALL, Staffs WSI IUZ

Sond 25 p for COMPLETE CATALOGJE, refundable apon arat order. ALL OUR MERGEANDISE IS POLLY GUARANTEED 8abject to manafacturera' inorease and a vailability
Riversidale Electronics Mail Order Department PE/s ${ }^{3}$ P.O. Box 470, Manchester M60 4BU

COMPLETE NEW RANGE
 RAPID ORDER

(please tear out

Calculators by Advance 88-2 memory, \%, $\sqrt{ }$, etc. complete set with batteries and charger 162-desk machine-2 memory Limited offer £115 inc. VAT £145 inc. VAT Digital Clocks 6 digit 12/24 hr. All solid stateprofessional presentation Kit Fully Built Frequency Counters 6 digit 30 MHz Kit

$|$| $£ 29 \cdot 50+$ VAT |
| :--- |
| $£ 33 \cdot 50+$ VAT |

Built
New type-high reliability 6 digit 220 MHz Kit
£75 + VAT
Built ${ }^{\mathbf{£} 97+\text { VAT }}$
All items for PE Rondo are available from us - as are Metal Boxes, Components and all sorts of things.

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now. With over 10 years experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 15p for full catalogue to:

```
D.E.W. LTD.
254 Ringwood Road, Ferndown
    Dorset BH22 9AR
```


Practical Electronics Classified Advertisemenls

RATES: 11 p per word (minimum 12 words). Box No. 30p extra. Semi-Display $£ 8.50$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

SITUATIONS VACANT

WIRELESS TECHNICIANS

There are vacancies at the Home Office Central Communications Establishment and London Region Depot both of which are situated at Headstone Drive, Wealdstone, Harrow, Middlesex, also at Rochester Row, London, SWI for Wireless Technicians to assist with the installation and maintenance of VHF and UHF systems. Ability to drive a car and possession of current driving licence is desirable.
PAY: inclusive of an optional interim addition is $£ 1,370$ (at 17) and $£ 1,965$ at 25 rising to $£ 2,309$ (plus $£ 110$ Outer London Weighting at Harrow and $£ 228$ Inner London Weighting at Rochester Row). Generous leave allowance, good pension scheme and good prospects of promotion.
QUALIFICATIONS: City and Guilds, Intermediate Telecommunications Certificate or equivalent.

Vacancies also occur from time to time in various parts of the country.

For further details phone or write to:
MR. C. B. CONSTABLE
Directorate of Telecommunications 60 Rochester Row, London, SWIP IJX
(Telephone Number 01-828 9848. Extension 734)

SERVICE SHEET8

SERVICE 8HEET8, Radio, TV, etc. 8,000 models. Catalogue 20 p . S.A.K. enquiries. TELIRAY, 11 Maulland Bank, L'reston.

SERVICE SHEETS for over 6000 models of Televisions, Radios, Transistors, Stereo, Tape Recorders, Record Players, etc, at only 30p, plus S.A.E. with free Fault-Finding Guide. Over 50,000 sheets in stock for 10,000 nodelels. S.A.E. enguiries. Cataloque 20 p plus S.A.E. HAMIITOX RAllo, 47 Rohemia Road, st. Leonards, Sussex. Telephone Hastings 429066.

WANTED

TOP PRICES PAID NEW VALVES AND TRANSISTORS Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.

BOOKS AND PUBLICATIONS

UFO CHARTS: Wave Prediction, 49p; Daily Flight Patterin, 44p; Map, 44p TV'lFO Detection, 2 Optical circuits, 55 p . Propulsion Theory, 55p; "Anti-gravity", 55p; Detection C'ircuits: Transistor Optical, 66p; Radiation/ Optical, 40p; Microdetector (memory, L\&I Optical, 40p; Nicrodetector (memory,
Auto-record), $75 \mathrm{p} ;$ Radiation Counter/Timer, Auto-record),
$85 p$; $\quad 18 \mathrm{H}$, Highlands, Needham, Suffolk.

- -

P.E. 1965-1970 INCLU8IVE, with binders. P.W. 1961-1970 inclusive. Offers to R . JOHNSOX, Oxclose Frarm, West Rounton, Northallerton, Iorkshire. Tel. East Harlsey 417 .

MEN!
 \&70 p.w. can be yours

> Jobs galore! 144,000 new computer personnel needed by 1977. With our revolutionary, direct-fromAmerica, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 3,500+$ p.a.
> After training, our exclusive appointments bureau one of the world's leaders of its kind introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
> London Computer Operators Training Centre T62, Oxford House 9-15 Oxford Street, W.1 Telephone $01-7342874$

PROFESSIONAL SERVICES

PATENTS AND TRADE MARK8. K1N(iS PATENT AGENCY LIMHLED (Est. 18\&6). B. T. King, Director, M.I.Meelt.E., Registereil Patent Agent, 146a (bueen Victoria street, London, EC4Y 5AT. llooklet on request. Tel. 01-2486161. Telex $\times 8380$.

EDUCATIONAL

Take a past-time Physics Degree

CNAA courses with flexible entry requirements in Science or Engineering which are suitable for mature students are available at the polytechnics below. Transfer between courses is possible. Write for details to the Physics Department of your nearest Polytechnic, quoting reference PDI/1
Brighton Polytechnic
Moulsecoomb Brighton BN2 4GJ Tel (0273) 67304 Hatfield Polytechnic
PO Box 109 Hatfield ALIO 9AB Tel Hatfield 68100
City of Leicester Polytechnic
PO Box 143 Leicester LEI 9BH Tel (0533) 50181
Liverpool Polytechnic
Byrom Street Liverpool L3 3AF Tel (051) 2073581
Manchester Polytechnic
Chester Street Manchester M1 SGD Tel (061) 2367784
Newcastle upon Tyne Polytechnic
Ellison Place Newcastle upon Tyne NE1 8ST Tel (0632) 26002
North Staffordshire Polytechnic
College Road Stoke on Trent ST4 2DE Tel (0782) 45531
Preston Polytechnic
Corporation Street Preston PR1 2TQ Tel (0772) 51831
Polytechnic of the South Bank
Borough Road London SEI OAA Tel (01) 9288989
Thames Polytechnic
Woolwich London SE18 6PF Tel (01) 8542030

C AND G EXAM

Matre sure you succeed with an ICe home study course fop C and G Eloctrical Inctaliation Work and Techniciani. Technicians and Aesto Amatours.

COLOUR TV SERVICING

Make the most of the current boom Learn the techniquee of servicing Colour and Mono TV ant through now home study coursee. epproved by

TECHNICAL TRAINING

Mome aludy courees in Electronice and Electrical Engineering, Maintonance. Padio. TV. Audio. telf-bulld redio kite
Get the qualificatione you need to auccese. Free

International Correspondence Sehools, Dept, 730 , Intertext House, London
SW8 4 UJ. Or phone $01-622991!$

FOR SALE

SEEN MY CAT 7 s,000 items. Mechanical and lilectrical (iear, and materials. S.A.E. K. R WHISTON, Dept. l'E, New Mills, stockport.

LIGHTSHOW PROJECTOR8 from mly E 17 effect wheels from only 84 . Many lightshow bargains at deoctek squilib's (Diseo ('entre). 1 lif Junction Road, Lomion, N. 19 Tel 01-2゙こ T474

8UPERB JN8TRUMENT CA8E8 luy bazelli, manlfactured from heary duty i'Ve faced thed. "hopier of 212 tyes, send for free list BAKELAM NSTRTMLET (ASEs, Dept. 23 , st. Wilfrids, Fommery Lame, Hatton, lade fle' Ni. lammater

BACK NUMBER8, December 1969 onwiards Por details phone oi-455 79:32, evenings.

VALVE8, VALVE8 AND MORE VALVE8, langertorks 1930-197t, many obsolete. Also wainhle many typers of transistors and st vit prien lists aviabible lap. (OX RADIO, The Parule, bist Witterimg, sussex. West Wittering 20:2

BACK 188UE8 OF P.E. AND P.W. for sale No 1972 . (ower price plus post. Mr. 1) NON it Beechwood Road, Nunciton, Warwieks.

RECEIVERS AND COMPONENTS

UNIT IN SMAMT ALI CABE. $11 \times 11 \times 4 \mathrm{in}$. contains 8 aificon diodes 600 V 20A. B SCRe 3 OR 400 V 16 A . Vinkors. 4 amall. 2 large. together with other componente, te-40(60p). M.C. METERE, 3 assorted 2-3in. I 1.30 (30 p). S FIOUAE MESETTAELE COUNTER. $10 / 22 \mathrm{~V}$. works on 12 V . $22 \cdot 25$ (25p). D.I.L. ICE ON PANELS, 10 for 00 (10p). COPPEA CLAD PAX. PANELS. 54×5 fin.. 6 for $50 \mathrm{p} ; \mathbf{6} \times 9 \mathrm{in}$. . All poet paid 8 MALL UNIT WITH 4EFYS1 with heat anks. ${ }^{4}$ Blicon diodes 650 V 1 1 A . Ap c.p. THAEE TAANSISTOM AUDIO AMP. Tranaiefors equiv. to AC128. OC72. 40 p (10 p); 3 for $\mathrm{E1}$ c.p. 22-way STEPPING SWITCH WITH RESET. A c. mains operated. 51 (25p). VALUPAK8. P9. 100 smice cape. 55p. P11. 100 polyatyrene caps. 75p. P16, 3 small panels with 3 unt iransiators on anch. 30p. Post 12p. Any number of paks Send 10 p stampe for liet of valupake. Computer Panela, etc. Ref und on purchese. 7IV AESONTED COMPONENTS 3b COMPUTER PANELE $\$ 1.75 \mathrm{c} . \mathrm{p}$. 51-50 c.p. J.W.B. RADIO 2 Barniteld Crescent, Sale, Cheshire M3s 1NL Postage in brackets.

NEW AND GUARANTEED $A C 127, A C 12 R$, AC $188,9 p$ each inclusive VAT. $(. W . O$.
plus P. 1 . $10 p$ to S.IR. INTERSATION.IL, 25 Clovelly Avenuc, Jondon, Iv'9 6 I'T.

PRECISION POLYCARBONATE CAPACITORS
all high stability-extremely low leagage

TANTALUM BEAD CAPACITORS-Values available $0 \cdot 1,0 \cdot 24,0.47,1 \cdot 0,2 \cdot 4,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V ; $10 \cdot 0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or 35 V : $22.0 \mu \mathrm{~F}$ at $6 \mathrm{~F} / 10 \mathrm{~V}$ or 16 V ;
 ALL at 10 p each. 10 for $95 \mathrm{~g}, 50$ for 84.

$\mathrm{BC} 147 / 8 / 9$	10 p	BC647/558A	12 p	AF178	80p
BC153/7/	12 p	BF194	12 p	OC71	18 p

 6p. IN4003
LOW PRICE ZENER DIODES- $400 \ldots \mathrm{~W}$, Tol. $\pm 5 \%$ at JmA. Valuen available: 3V, 3.6V,4.7V, 5.1V, 6.6 V , $13.5 \mathrm{~V}, 16 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, \mathrm{ALL}^{2} \mathrm{~V}$, $7 \mathrm{peach}, 6$ for 89p 14 for 84p. SPECIAL OFFER: 100 Zenera ior \&6-50, 1W at $40^{\circ} \mathrm{C}$, 1 W at $70^{\circ} \mathrm{C}$. Ele meries ouly-from $2 \cdot 2 \mathrm{D}$; io $2 \cdot 2 M \Omega$. ALL at 1 l each, 8 p for 10 of any one values. Op tor 100 of ally one value. APECIAL PACK: 10 ofteach

SILICON PLASTIC RECTIPIERS- I-5 Anp, brand new wire ended DO27: 100 P.I.V. 7 p (4 for 26p); 400 P.I.V. 8 p BRIDGE RECTIFIERS- $\because 4$ any 000 V
 SUBMINIATURE VERTICAL PRESETS-O.IW OHI ALL at op each: $50 \Omega, 100 \Omega, 420 \Omega, 470 \Omega, 680 \Omega, 2.5 \mathrm{M}$, $5 \mathrm{M} .1 \mathrm{k} \Omega, 2 \cdot 2 \mathrm{k} \Omega, 4 \cdot \mathrm{k} \Omega, 7 \cdot 8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 20 \mathrm{k} \Omega$, $47 \mathrm{kR}, 100 \mathrm{k} \Omega, 400 \Omega, 680 \mathrm{k} \Omega$, $1 \mathrm{M} \Omega$
PLEABE ADD 10p PORT ANI PACKING ON ALL ORDRRS BELOW EŌ. ALL EXPORT ORDERS NDH COBT OF EEAIAIRMAIL.

PLEASE ADD AO' V.a.T. TO ORIERA
Aend S.A.E. for lists of additions! ex-stock items.
Wholesale price lints available to bona fide cuna

MARCO TRADING
 Dept. E.10, The Old School, Edstaston, Tel: Whi Wram. 8hrophite 464 (8TD 09

Tel: Whixall 64 (BTH 094 872)
(Propirs.: Minicost Trading Lti.)

BUILDING YOUR OWN HR-FI AMPLIFIER?

WHY NOT USE A PMOPESBJONAL CABE?
We have limited number of high qually case cembile valued ar orer eis.00 which muth be sold. LOOK AT TMESE FEATUAEE

Apady punched ateel chesel

- perecen printed frent end ree

Full compllment of hardwear plato
F \quad ONT PANEL
Function wwith for P.U./TAPE solection. MONO/ STEREO and SCRATCH FILTER witches. Bese BACK PANEL
P.U. Input socker. Tuner input socket. Tepe inlout cocket. MAGNETIC/CERAMIC ewitch. Speaker out put sockets. Headphon output socket. A.C. outiol socket. fuee hoider and mains lead
HARDWAME COMPLIMENT Include:
Push button switeh ralle. sockete, nobs. plastic feet, Plide sith, heon indicator, scraws. nuta etc. COMPLETE KIY OF FARTS ONLY LH.N FOST FREE, READY BUILT and TESTED ESE PO
(10 watte R.M.S. Per CHANNEL)
B.A.E. for full Ilst

SOUND ELECTRONICS
(NEWCASTLE) LIMITED
43 Heston Grove Newcastle upon Tyne, NE SNP Tol. (0832) 650108

R.T. SERVICES (MAIL ORDER ONLY)

77 Hayfield Rd., Salford 6, Lancs. Veroboard $7^{\prime \prime} \times 5^{\prime \prime}$ app, $0 \cdot 1$ Matrix, 2 for $£ 1 \cdot 10$ P.P, 12×33

12 Volt I Amp Trickle Charger. \&l-85 P.P. FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\left\{1 \cdot 37 \frac{1}{2}\right.$ inc. P.P.
Crouzet Geared Motors, 30 r.p.m. New. 61.54 inc. P.P.

UHF TV Tuners. Transistorised, £1.65 inc. P.P.
Panels with I.C's on $7 \frac{1}{2} p$ per I.C. min. order 10 I.C's.
Trensformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 88 \mathrm{p}$ inc, $\mathrm{P} . \mathrm{P}$. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, 90 \mathrm{p}$ inc. P.P, $9-0.9 \mathrm{~V}$, $100 \mathrm{~mA}, 90 \mathrm{p}$ inc. P.P. $29 \mathrm{~V} 50 \mathrm{~mA}, 70 \mathrm{p}$ inc, P.P. Brand new Boxed Rola Celestion Reentrant Speakers SD 25 with loov line transformer fitted 15Ω without transformer $£ 14$ inc. P. P.
Transformer. $\quad 45-0-45 \mathrm{~V}$, approx. 2 amp, t2.50 inc. P.P.
P.C. Board. S/S, $5 \frac{1}{2} \times 5 \frac{1}{2}$ in, 10 for 70 p inc. P,P. 3EGI Scope Tubes with base and connections, $\& 3$ inc. P.P.
Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions. Brand new, $£ 2$ inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$. Power Unit Components Transformer. 18 volt $1 \mathrm{amp} F / W$ bridge rectifier, 21250 mfd capacitors, all new $\mathbf{E l} \cdot \mathbf{2 5}$ per kit. P.P. Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$ $4 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{4}{ }^{\prime \prime} 75$ p. inc. P.P.

BRAND NEW GOMPONENTS BY RETURN, Electrolytics, $15 \mathrm{Y}, 25 \mathrm{Y}, 50 \mathrm{~V}-0.47,1,2 \cdot 2$ $4 \times 7,10 \mathrm{mF}, 4 \mathrm{p} ; 22,47,41 \mathrm{p} ;(50 \mathrm{~V}, 5 \mathrm{p}) ; 100$, $5 \frac{1}{2} \mathrm{p} ;(50 \mathrm{~V}, 7 \mathrm{p}) ; 220,6 p ;(50 \mathrm{~V}, 9 \mathrm{p})$. Subminiature bead-type tantalums $0.1 / 35 \mathrm{~V}, 0.22 \cdot / 35 \mathrm{~V}$, $0.47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4 \cdot 7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}$ $22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}$, 9p. Mylar Film 100 V $0.001,0.002,0.005,0.01,0.02,21 \mathrm{p} ; 0.04,0.05$, 3p. Mullard Tubular Polyester 400 V E6 series, $0.001-0.022,3 p ; 0.033-0.1$, 4p. Mullard miniature (333 ceramies E. 12 series $2 \% 1.8 \mathrm{pF}$ $47 \mathrm{pF}, 2 \frac{1}{2} \mathrm{p} ; 56 \mathrm{p} \mathrm{F}-330 \mathrm{pF}, 3 \mathrm{p}$. Polystyrene 63 V . E12 series $10 \mathrm{pF}-1000 \mathrm{pF}$, 2ipi 1200 pF 10000 pF , 3ip. Miniature Highstab Carbon Film Resistors dW EIU series $5 \% \quad 1 \Omega-10 \mathrm{M} \Omega(10 \%$ over $1 \mathrm{M} \Omega$), 1p. Postage 8 p . Prices VAT inclusive. THE C.R. SIPPLY CO., 127 Chesterfield Road, Sheffield, S8 ORN.

8UPER 8PACER PACK8 containing 150 assorted spacers \int_{-3}^{4} and $\frac{1}{2}$ in long. 4 and 6 BA clearance and threaded through types, plus 150 mixed 4 and $63 A$ screws, nuts and washers to fit. 600 brand new top quality components for only 22.50 plus 20p postage. Lists 7 F ELECTRO-MECH PROI)['TN, \quad ('lantry Avenue, Bideford, Devon.

COMPONENT8 AND P.C.B.s. Glass P.C.B.s drilled and tinned to your 1:1 master, 20p per sq. in. up o 4 sq. in., $6 p$ per sq. in. above Single glass board, $2 p$ per sq. in. P. \& P. all orders $15 p$, VAT inclusive. S.A.E. for commonents list. FIBER (IRCUITS, c/o Irchester ponents list. FIBER ('IRCUITS,
Post Office, irchester, Northants.

TURN YOUR 8URPLU8 capacitors, transistors, etc., into cash. Contact COLES-HARDING it CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement

MISCELLANEOUS

filbre optic suppliers

NEW SHORT FORM DATA
LENSES. For photoelectric devices, intruder detectors, short-range optical communication, experimental and laboratory use. Diameters $7-50 \mathrm{~mm}$
ULTRASONIC TRANSDUCERS. Remote control-TV. radio. lights. doors; burglar alarms; acoustic wave experiments.
LINEAR POLARISERS. Light valves. psychedelic light shows. stress analysis, 3-D pictures.
CIRCULAR POLARISERS. Red, amber. green, neutral for glare reduction. contrast ration enhancement of displays and instruments.
FIBRE OPTICS. A complete range for industrial, experimental, modelling, display systems. Monofibre 10 thou to 60 thou; bundles $1-2 \cdot 3 \mathrm{~mm}$
MARE'S TAILS. For beautiful fibre optic displays
LIGHT EMITTING DIODES. Infra-red, red, amber, green. TO92 and miniature.
PHOTODETECTORS. Silicon phototransistors and Photodarlington.
SPECIAL FREE OFFER. During the month of October only we will send a FREE RED LED with our data/price list to readers of "Practical Electronics
Send 9×6 in stamped addressed envelope to:
FIBRE OPTIC SUPPLIERS Dept PE, PO Box 702, London W106SL

\section*{ENAMELLED COPPER WIRE
 | S.W.G. | 116 Reel | 116 Ree |
| :--- | :--- | :--- |
| $10-14$ | 61.90 | 61.05 |
| $15-19$ | 62.00 | 61.10 |
| $20-24$ | 62.05 | 61.15 |
| $35-29$ | 62.10 | 61.20 |
| $35-40$ | 62.20 | 61.3 |}

All the above prices are inclusive in U.K. IND USTRIAL SUPPLIES

102 Parrswood Rd. Withington, Manchester 20
od Ro., Withington, Ma
Telephone $061-224353$

SLOW 8PEED MOTOR8 required (about 1 r.p.m.) any quantity considered. Phone Mr. SM1TH, 061 -63:3 3527.

MORE RANGES FOR LESS MONEY!
AC/DC Muttimeter type U4324
A-DC $0.08-3 A-8$ Ranges
 V-AC 3-800 V-8 Rangas. V-ac 3-900 V-8 Ranges.
Frequency In the range of 45 to
20kHz. Resletance: 500 ohm to requency Asiatance: 500 ohm to
20 kHz .
$5 \mathrm{Mohm}-5$ rangese Decibel: -10 5 Monm-5 ranges. Decibel: -10
to +12 dB . Accuracy: $\pm 2.5 \%$. DC $+4 \%$ AC. Dlmansions: 167×98
$\times 63 \mathrm{~mm}$ Only $\mathbf{8} 8.00$

SUPERTESTER 680 RICE
SUPERTESTER 680 R ICE
10 Fields-80 Ranges: Plus
a lot of accessories tor a lot of accessories tor
measurements of 500 A . measurements of $500 \mathrm{~A}-\mathrm{AC}$
100 ADC- Temperature 100 ADC- Temperature-
-50 C to +200 C - Magnetic $\begin{array}{llll}-50 \mathrm{C} & \text { to } & 200 \mathrm{C}- & \text { Magnetic } \\ \text { fields up to } 15 & \text { KGauss- }\end{array}$ Phase indicator- EHT 25 kV
Phats Electronic Volt Ohm- meter ransistor Diode Tester, etc
 ALPHANUMERIC NIXIE TUBES B7971 The Alphanumeric NIXIE tube has the all the letters of the alphabel numerals 0 thru 9 and special characters in a single tube
From the standFrom the standpoint of both read ability and electics the Alpha numeric NIXIE tu
 provides many unique benefits line characters of equal height \star Memory with simple solid state drive circuits * Readability in high ambient light 200 footlamberts brightness \star Long life with no loss of brightness * Character height 2 fin
Price only 99p leach plus 16p P./P.

SPECIAL OFFER

The SInclali Sclentific.
Logs, trig and arithmetic.
All at the touch of a button.
Al iast there a pocket calculator which gives you log and irig functions instantly. ull 12 function machine

With the functions available on the difectly $\log _{10}$. antilog re $_{6}$. in and arcein.
cos and arcos. tan and arctan, sutomatic squaring automatic doubling, x^{7} (including square and other roots). plus of course, ddition, subtraction, multipli cation. division and any calculations based on them7 -digit scientific notation, 200-decade range, Reverse Polish logic and 25 -hour battery life. Send for further information $£ 29.50$
Add $\mathrm{a} \%$ VAT to all Items +35 p pap ELECTRONIC BROKERS LTD 49-53 Pancras Road, London NW1 2 QB Tel. 01-837 7781

METER REPAIRs. Ammeters, voltmeters, multi-range meters, etc. Send to: METER REPAIRS, 39 Chesholm Road, London, N16 ODS.

Build the Mullard C.C.T.V. Camera kits are now available with comprehensive construction manual (also available separately at 80p).
SEND $5^{\prime \prime} \times 7^{\prime \prime}$ S.A.E. FOR DETAILS TO:
CROFTON ELECTRONICS
15/17 Cambridge Road, Kingston:
on-Thames, Surrey : KT1 3NG

PSYCHEDELICATESSEN

is the only way to describe the paradise of FREAKY gear now available from Boffin. LOOK!

Kits

NO LICENCE EXAM. Transmitter/
Variable-rate, BRIGHT-FLASH, Pocket
Mini-Strobe
Maxi-Volt SPARK GENERATOR (1 inch
spark), 15,000
Experimental
ORATOR Mini DREAM-LAB-
SENSITIVE non-anatomical electronic
STETHOSCOPE
GHOST-HUNTING AID
PEOPLE DETECTOR
Experimental WATER-FONE
PSYCHEDELIC MEDITATION
PSYCHEDELIC MEDITATION AID
Bird-Watehers' REMOTE MONITOR
Psychological CROSS-EYED EARS
$\begin{array}{ll}\text { Super SOUND-CATCHER } & £ 4.40 \\ \mathbf{~ 2 ~} 20\end{array}$
(All prices include VAT, packing \& postage)
Send remittance to:
BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh Ewell, Surrey
(Mail order U.K. only)
Or for more details, send 20 p for lists, plus free design project sheet

HARDWARE 8UPPLIE8-Sheet aluminium individual sizes or standard packs, drilled to spec. Screws, nuts, washers, etc., Fascia panels in aluminium individual requirenments. Printed circuit boards, one-off or small runs. Printed circuit drafting tapes, etc., $7 p$ for list. RAMAR ('ONSTRI'UTOR NEIVICEN, 29 Shelbourne Road, Stratford-on-Avon, W゙arwks., ('V'37 9J P.

AUDIO8CAN, the "do-it-rourself" speaker mail-order sprecialists, High flelity speaker kits, chassis units, sound absorbent, grille fabric and much more. Send s.a.e. for hargain list to: ALDOOSCAN, Dept. DE5, 4 Primees Square, Marrogate, Forkshire.

CLEARING LABORATORY, seopes, recorders, testmeters, bridges, audio, R. F . generators, turntables, tapeheads, stabilised P.N.U.s, sweep generators, test equipusent, etr. Lower Beeding $2: 36$.

PRINTED CIRCUIT MANUFACTURER8 offer any I'. F . Project I^{\prime}.' ready drilled. One Price 65p. C.W.O. Also P.C'. prorluction, Design, Art-Work and Photography undertaken. Send basic circuit, P.C. layout or P.('. Master stating quantity required for estimate by return or Phone: W.K.F. ELECTRONICS, by return or Phone: W.k.F. ELECTRONICS, Dept. P.C., Welbeck Street, whitwell, work-
sop, Note's., s80 4 TW . Telephone Whitwell (Derbys) 695.

LADDERS

LADDER8. "Special Offer" Invarnished †riples. 9 ft Tin rlosed to 23 ft lin extended, 18.52, delivered. Tel. Telford 586644 , order, and pay cash on delivery.

SPEAKERS
Baker Group 253.8 or 15 ohm Baker Group 353,8 or 15 ohm Baker Group SO12 8 or 15 ohm Baker Deluxe $12 \ln$ d/cone
Baker Major 12 in d cone
Baker Regent
Baker Auditorium 12
Colestion MH1000. B or 15 ohm
Celestion PST8 for Unilex Celestion G12M 8 or 15 ohm Celestion G12H 8 or 15 ohm Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 ohm Coral 5 in dicone roll surf 8 ohm Coral 8 in d/cone roll surr 8 ohm
EMI $13 \mathrm{in} \times \sin 3.8$ or 15 ohm EMI 13in $\times \sin 150$ dic 3 or EMI $13 \mathrm{in} \times 8 \mathrm{in} 450$ Vtw 3.8 or 15 ohm EMI $13 \mathrm{in} \times 8$ in type 3508 or 15 ohm
EMI 13 in $\times 8$ in 20 W bass
EMI 6 tin 938504 or 8 ohm
EMI $6 y$ in 938504 or 8 ohm
EMI 5 in 98132CP 8 ohm
EMI $8 \times 5 \mathrm{~d} /$ cone, poll surr. 10 W
EMI 2tin tweeter 97492AT
Eagle DT33 30W tweeter
Eagle HT 15 horn tweeter
Eagle CT5 cone tweeter
Eagle CTy tweeter 8 or
Eagle MHT 10 hiorn tweeter
Eagle crossover CN23, CN28, CN216
Eagle FR4
Eagle FR65
Eagle FR8
Elac 9×5 59RM109 15 ohm. 59RM114 8 ohm Elac 6tin 6RM171 d/c roll sur
Elac 6tin 6RM220 dicone
Elac 6tin 6RM220 dico
Elac 10 in d/cone 10RM239 8 ohm
Elac 8 in 8CS175 3 ohm
Fane Pop 15 W 12 in
Fane Pop 25/2 25W 12ln
Fane Pop 40W 101 n
Fane Pop 50W 12 in
Fane Pop 55 gow 12 in
Fane Pop 60W
Fane Poo 100 W lin
Fane Crescendo 12 A 100 W 12in
Fane Crescendo 12 B bass
Fane Crescendo 15 in 100 W
Fane Grescendo 18in 150W
Fane 80it bind/c foll supr
fane 807 T sin d/c roll surp
Fane 808T Bind/c
Fane 701 twin pibbon horn
Fane 920 horn
Goodmans 8P 8 or 15 ohm

WILMSLOW AUDIO

THE Firm for speakers!

Goodmans 10P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm

Goodmans Audiomax 12AX 100 W
Goodmans 15P 8 or 15 ahm
E15.75

Goodmans 15P 8 or 15 ohm
Goodmans Midax 750
539.65
$542 . \infty$

Goodmans Axent 100 tweeter
c42.
C15
50

Goodmans Audiom 100 12in
133. 00
$5 \div 5$

Goodmans Axiom 401 12in
Goodmans Twinaxlom 8
Goodmans Twinaxiom 10
Kef T15
Ket B110
Ket B200
Ket B139
Ket DN8
Kef DN12
Ket ON13
STCA001G supar tweeter
Wharfedale Super 10RS DO
$2 t \mathrm{in} 64 \mathrm{ohm}, 70 \mathrm{~mm} 80 \mathrm{ohm} .70 \mathrm{~mm} 8 \mathrm{ohm}$
7 in $\times 4 \operatorname{in} 3$ or 8 ohm
$10 \mathrm{in} \times 6 \mathrm{in} 3.8$ or 15 ohm

SPEAKER KITS

Baker Major Module	each $£ 10.75$
Fane Mode One	each 59.80
Goodmans DIN 20	each 50.75
Helme XLK25	pair 522.00
Helme X 4 K 30	pair 514.95
Helme XLK50	pair 539.85
Kefkit 2	each 523.50
Kefkit 3	each 54.00
Richard Altan Twinkit	each ct 25
Richard Allan Triple 8	each £13.00
Richard Allan Triple	日ach 514.50
Richard Allan Super Triple	each E21.50
Wharfedale Linton 2 kit	pair ¢19-25
Wharfedale Glendale 3 kit	pair E34.50
Whartedale Dovedale 3 kit	pair ¢52.50

PA/DISCO AMPLIFIERS

FREE with speaker orders over £7

Hi-FI Loudspeàker Enclosures" book
All units guaranteed new and perfect. Prompt despatch. Carriage and packing speakers 3op each, speaker kits 750 each (E1.50 pair). tweeters and crossovers 20p

Send stamp for free booklet Choosing a Speaker
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works, Bank Square. Wilmslow, Cheshire, SK9 1HF
Discount Radio. PA, Hi-Fi: 10 Swan Street Wilmslow

The
best buy!

10 SWAN STREET, WILMSLOW, CHESHIRE, SK9 1HF
Cut-price prerecorded cassettes-send stamp for list

parts and components
resistors, capacitors, diodes, transistors etc. Rigid plastic units interlock together in vertical and horizontal combinations Transparent plastic drawers have label slots ID and 20 have space dividers. Build up any size cabinet for wall, bench or table top

BUY AT TRADE PRICES!
SINGLE UNITS (ID) (5ins $\times 2$ tins x $2 \frac{1}{4}$ ins). $\& 2$ DOZEN
DOUBLE UNITS (2D) (5ins $\times 4 \frac{1}{2}$ ins \times $2 \frac{1}{4}$ ins). $£ 3 \cdot 50$ DOZEN.
TREBLE (3D) $\mathbf{6 3} 50$ for 8
DOUBLETREBLE 2 drawers, in one outer case (6D2), $£ 4.90$ for 8 .
EXTRA LARGE SIZE ($6 D 1$) $£ 4.50$ for 8
PLUS QUANTITY DISCOUNTS!
Orders 115 and over DEDUCT 5% in the $£$ Orders $£ 30$ and over DEDUCT $7 \frac{1}{2} \%$ in the f Orders 450 and over DEDUCT 10% in the \pm PACKING/POSTAGE/CARRIAGE: Add 40p to all orders under $£ 10$. Orders $£ 10$ and over packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES
Please add 8% V.A.T. to total remittance
FLATDLHNR (Dept.PEIO) 124 Cricklewood Tel. O1-450 4844

OSMABET LTD. We make transformer

 AUTO TRANSFORMERS, $110 / 200 / 220 / 240 \mathrm{~V}$ AOW, £1.70; $50 \mathrm{~W}, 22 \cdot 40 ; 75 \mathrm{~W}, 42-85 ; 100 \mathrm{~W}, 28 \cdot 80$ $50 \mathrm{~W}, ~ £ 1.70 ; 50 \mathrm{~W}, 22 \cdot 40 ; 75 \mathrm{~W}, 42.85 ; 100 \mathrm{~W}, 28.80$ LOW VOLTAGE TRANSFORMERSPrim. 200/240V a.c. 6.3V 1.5A, 21.20; 3A, 81.50 BA, 22.65 ; $12 \mathrm{~V} 1.5 \mathrm{~A}, ~ £ 1.50$; 3A, $22.65 ; 6 \mathrm{ACT}, 88.40$ 18 V 1-5A CT, $22-55$; 24V 1.5A CT, $22.55 ; 3 \mathrm{ACT}$ $28.45 ; 5 \mathrm{~A}, 24.80 ; 8 \mathrm{~A}, 87.85 ; 12 \mathrm{~A}, 210.85 ; 40 \mathrm{~V} 3 \mathrm{~A}$ CT, $24.50 ; 50 \mathrm{~V} 6 \mathrm{~A}$ CT, $218.50 ; 25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$, LT,90; $12 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V}$ 4A, 44.90 .
LTTRANSPORMERS TAPPED SEC. Prim. 200/840V $0-10-12-14-16-18 \mathrm{~V}$ 2A, $£ 2 \cdot 60 ; 4 \mathrm{~A}$, 88.75 ; $0-12-15-20-24-30 \mathrm{~V}$ 2A, 23.40 ; 4A, 54.60 : $0-40-50-60-80-90-100-110 \mathrm{~V} 1 \mathrm{~A}, 84 \cdot 80$. MIDGET RECTIFIER TRAMSFORMERS
For FW rect. $200 / 240 \mathrm{~V}$ a.c. $9-0-9 \mathrm{~V} 0 \cdot 3 \mathrm{~A} ; 12-0-12 \mathrm{~V}$ $0.25 \mathrm{~A} ; 20-0-20 \mathrm{~V} 0.15 \mathrm{~A}, 6 \mathrm{~V} 0-5 \mathrm{~A}+6 \mathrm{~V}$ 0.5A; 9 V $0.35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A} ; 12 \mathrm{~V} 0.25 \mathrm{~A}+12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20 \mathrm{~V} 0.15 \mathrm{~A}+12 \mathrm{~V} 0.15 \mathrm{~A}$ at $\mathbf{2 1 . 8 5}$ each; $9-0-9 \mathrm{~V} 1 \mathrm{~A}$,
 MANS TRANEFORMERS
Prim. 200/240V a.c. TX 6 sec., $425-0-425500 \mathrm{Ma}$, 6.3V CT 6A, 6.3 V CT 6A, 0-5-6.3V 3A, 616.50 ;
 $250 \mathrm{~V} 100 \mathrm{Ma}, 6.3 \mathrm{~V} 2 \mathrm{~A}, \mathrm{E} / \mathrm{S}, ~ £ 2.70$. O/P TRANEFORMERS FOR POWER AMPLIFIERS P.P. sec, tapped $3-8 \sim 150 \mathrm{hms}$, A-A 6.6 K g 30 W
 etc.). $215 \cdot 75$; tapped Multl 0/P 10 W 28.
G.E.C. MARUAL OF POWER AMPLIFIER

Covering valve ampliffers of 30 W to 400 W 35 p .
LOUDSPEAEERS FOR AMPLIPIERS
BAKER 25W, $87.60 ; 35 \mathrm{~W}$, $88-40 ;$ HI-FI Major Module 20W H : tweeter Xover, E11.80; Baker speaker Bpeakers, EMI bass 13×8 in 3 or $150,49.00$, 510 21.15; $7 \times 4 \operatorname{in} 150,21 \cdot 60 ; 8 \times 5 \ln 3,8,15,25$ or 80 , E1.75 each.

LOUDSPEAKERS

$2 \ln 8,16$ or 75Ω, 2 tin 8 or 25 日, 3 in $8,8,25$ or $35 \Omega, 3$ in 8,15 or 800 80p each; 5 in 3,8 or 250 $5 \times 3 \operatorname{lor} 8 \Omega, 2106,7 \times 4 \mathrm{in} 3$ or $15 \Omega, 8 \ln 3 \Omega$. $51 \cdot 25 ; 10 \times 6$ in 30 . 11.50 .
SPEAKER MATCHDG TRANSFORMERS "12W 3 to 8 or 15 n up or down 31.30
LSATAFT"BULK TAPE/CASSETTE ERASER
Instant erasure, any diameter tape spools, cassettes SYRCHRONOUS GEARED MOTORS, \&SO/240V Brand new, Smlths. Built-in gear box, 2 RPH 75p each.

Carriage and Vat on all orders.
B.A.E. EMQUIRIES-LIBTS, MALL ORDER ONLY 46 Kenilworth Rosd, Edgwart, Middx, HA8 8YG Tel. 01.9589314

That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home-equipped them for higher pay and better. more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-youlearn.

Why not do the thing that really interests you? Without losing a day's pay. you could quietly turn yourself into something of an expert. Complete the coupon (or urite if you prefer not to cut the page). No obligation and nobody will call on you ... but it could be the best thing you ever did.

Others have done it, so can you

\because Yesterday 1 received a letter from the Institution informing that my application for Associate Membership had been approved. I can honesily say that this has been the best value for money I have ever obtained. a vieu echoed by two colleagues who recently commenced the course."-Student D.I B.. Yorks
Completing your course.. meant going from a job I detested to a job that I love. with unlimited prospects. "-siudent J A.O.. Dublin.
"My training quickly changed my earning capacity and. in the next few years my earnings increased fourfold ."-Student C.C.P.. Bucks.

FIND OUT FOR YOURSELF

These letters, and there are many more on file at Aldermaston College. speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out hou we can held you. Write to Aldermaston College, Dept. BPE80, Reading RG74PF.

Practical Radio \& Electronics Certificate course includes a learn while you build

3 transistor radio kit.

Everything you need to know about Radio \& Electronics maintenance and repairs for a spare time income and a career for a better future.

[^6]

[^0]: (C)IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland $£ 3 \cdot 25, ~ O v e r s e a s ~ £ 4 \cdot 10$. International Giro facilities Account No. 5122007. Please state reason for payment, "message to payee".

[^1]:
 NO DEPOSIT TERMS
 available on most goods for personal callers Cheques to the value of c30.
 ACCEPTED fROM PERSONAL SHOPPERS ACCEPTED FROM PERSONAL SHOP PERS
 WITH BANXERS CAAD. IN DIHER CASES AND FOR AMOUNTS IN EXCESS OF g30. bankers drafts acce pred.
 A menuber of the
 Autrotion
 Croun of Comianes

[^2]: The price of 77p applies only to customers in the UK. and to G.F.P.O. addrasses

[^3]: * see page 887

[^4]: * North Staffordshire Polytechnic

[^5]: *North Staffordshire Polytechnic

[^6]:

