PRACTICAL

= =ertrance

NOVEMEER 1974
25p

VOLUME 10 No. 11 NOVEMBER 1974

CONSTRUCTIONAL PROJECTS

P.E. MINISONIC by D. Shaw
A miniature, battery-operated sound synthesiser 952
ANTI-THEFT ALARM by B. A. Anderson
Protect and immobilise your car with this simple-to-build security device 959
A.F. ATTENUATOR by H. T. Kitchen
A useful addition to your test-gear for simple voltage measurements 975
NOVEL TRANSISTOR TESTER by D. C. Blackford Gives instant indication of transistor type and approximate gain 979
P.E. CCTV CAMERA-3 by A. V. Flatman
Final construction and setting-up procedure 986
CAR CASSETTE POWER UNIT by A. Russe/l
Enables your cassette player to run from the car battery 991
GENERAL FEATURES
INGENUITY UNLIMITED
Pulsed Pendulum-Bass Booster-Voltage Controlled Oscillator-Random Impulse Generator 963
NEW DEVICES ... APPLICATIONS
Voltage controlled oscillator/precision waveform generator 967
HYBRID COMPUTERS—2 by D. Al-Dabass
The hybrid system considered in detail 971
NEWS AND COMMENT EDITORIAL-Sonic Spin-off 951
NEWS BRIEFS
Carphone expansion-Radio licence plates-ATC in Scotland 958
BRITISH MUSICAL INSTRUMENT TRADE FAIR by G. M. Harvey
A look at some of the most interesting items at this year's fair 982
SPACEWATCH by Frank W. Hyde Jupiter Orbiter—More about Mercury—infra-red Telescope—Sunspot Cycles 994
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 998
PATENTS REVIEWThought provoking ideas on file at the British Patent Office 1001
MARKET PLACE
Interesting new products 1002

Our December issue will be published mid-November. This issue will be in large demand and readers are advised to place an order with their Newsagent NOW!

[^0]

BRITISH MADE, HAND BUILT, PRECISION INSTRUMENT
'Invader' low leakage, high efficiency professional soldering instruments as used in industry worldwide, and why not you! Precision designed handle moulded of flame resistant material (SE1) and european safety standards. Stainless steel construction throughout with elements precision wound, earthed at two points, test run and finally flash tested at $2,000 \mathrm{v} \mathrm{A} / \mathrm{c}$. Low cost internally fitted bits with large range of bit faces for your future use Can you afford not to have the 'Invader'.
MODEL $706 £ 2.88$. $646 £ 3.13$. $1076 £ 3 \cdot 22$
in Bit 19W

ADCOLA MULTI-CHANNELLED SOLDER IN HANDYSIZES!

Adcola have designed solder packs to fulfil all your needs-manufactured to B.S.I. 44.1 $60 / 40 / 18 \mathrm{swg}$. Multi channelled resin cored. If your need is small the dispenser or the three oz reel will do you if you are keener try the $\frac{1}{2}$ kilo reel.
Dispenser O8p. 302 57p. 1/2Kilo £2.58
It makes sense to use the best!postyour coupon now

ADCOLA PRODUCTS LTD. GAUDEN RD. LONDONSW4 6LH VA.T Regd. No 235615372

Regd No. 442762
Please send me

MODEL 706

MODEL 646
MODEL1076
SOLDER Dispenser
3oz.REEL
1/2KiloREEL
Price includeV.AT. Add 10p for postage and packing Inclosing $P O$. cheque for E

NAME
ADDRESS \qquad
\star ELECTRONIC PIANO KIT \star SYNTHESISER KIT
\star ELECTRONIC ORGAN KITS

There are five superb Electronic Organ kits specially designed for the D-I-Y en thusiast. With the extreme flexibility allowed in design
you can build an organ to your requirements.
which will compare with an organ commercially built costing double the price.
\#Portable organ with 4 octave keyboard. £145.29. * Console organ with 5 octave keyboard, £289.90, \#Console organ with 2×4 octave keyboards and 13 note pedal board, [470.65. \#Console organ with 2×5 octave keyboards and 32 note pedal board. £685. *Console organ with 3×5 octave keyboards and 32 note pedal board, $\Sigma 770$. \star W/W Sound Synthesiser Kit, £130. \#W/W Touch Sensitive Electronic Piano. £100.
All components can be purchased separately, i.e.. semiconductor devices. M.O.S. master oscillators, coils. keyboards. pedal boards. stop tabs, draw bars. key-contacts. etc.

Send 50 p for catalogue which includes $5 \times 10 \mathrm{p}$ vouchers or send your own parts list, enclosing S.A.E. for quotation.

ELVINS

ELECTRONIC MUSICAL INSTRUMENTS
Designers and component suppliers to the musical industry. 12 Brett Road. Hackney, London, E8 1JP. Tel. 01-986 8455.

INTRODUCTORY OFFER A V.C.O. by Fhachi

1 Hz to 100 kHz
FOR £3-85. P. \& P. 15p
Size: 2 in long $\times 1 \frac{1}{t}$ in wide $\times \frac{\text { tin }}{}$ high.
Input: 12-24V d.c. (not centre tapped). 18V input giving 10 volt constant amplitude output.
Requires only a $1 \mathrm{M} \Omega$ pot to tune entire range-or can be swept with a saw tooth input.
Enormous possibilities-music; synthesisers; filters; communications; frequency modulation, etc.
Detailed application sheet with all purchases.
Sole Distributor.

LOW FREQUENCY WOBBULATOR

Primary intended for the alignment of AM Radios; Communication Receivers; Filters, etc., in the range of 250 kHz to 5 MHz , but can be effectively used to 30 MHz . Can be used with any general purpose oscilloscope. Requires 12V a.c. input. Three controls-RF level; sweep width and frequency. Price 88.50.
A second model is available as above but which allows the range to be extended down in frequency to 20 kHz by the addition of external capacitors. Price £11 50.
Both models are supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

PLEASE ADD V.A.T. AT 8\%
OPEN 9 a.m. to 6.30 p.m. ANY DAY

$7 / 9$ ARTHUR ROAD, READING, BERKS. (rear Tect. College) Tel.: Reading 582805/85916

GIRO NO. 331 7056

C.W.O. only. P. \& P 10 p on orders below $\& 5$ iscount: $10-10 \%$. $\mathbf{E} 20-15 \%$ (except net items)
Export Order enauiries welcome (VAT (ree) Official Orders accepted from
Educational \& Government Departments

ALL PRICES INCLUDE VAT

SPECIAL RESISTOR KITS (Prices inciude Post and Packing)
$10 E 12$ IW KIT: 10 of each EI2 value, 22 ohms-IM, a total of 570 (CARBON FILM 5\%). 43.65 net 25 EI2 WW KIT. 25 of each EI2 value, 22 ohms-IM, a total of 570 (CARBON FILM 5\%\%. 63. 85 net

 PLEASE NOTE: DUE TO CURRENT WORLD SHORTAGES THESE KITS MAY TEMPORARILY CONTAIN BOTH WATTAGE AND VALUE SUBSTITUTIONS.

MULLARD POLYESTER CAPACITORS C280 SERIES

 $250 V P$.C. Mounting: $0.01 \mu F, 0.015 \mu F, 0.022 \mu F, 0.033 \mu F, 0.047 \mu F, \quad 1 p$. $0.068 \mu \mathrm{~F}$ MULLARD POLYESTEA CAPACITORS C296 SERIES $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 21 \mathrm{p} .0 .0047 \mu \mathrm{~F}, 3 \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $400 V: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 21 \mathrm{~F} .0 .0047 \mu \mathrm{~F}, 3 \mathrm{p} .0 .0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$
$0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 31 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 41 \mathrm{p} .0 .15 \mu \mathrm{~F}, 6 \nmid \mathrm{p} .0 .22 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{P}$.
$81 \mathrm{p} .0 .33 \mu \mathrm{~F}, 12 \mathrm{p} .0 .47 \mu \mathrm{~F}, 14 \mathrm{P}$. $160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}, 3 \mathrm{p}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3$ ip. $0.1 \mu \mathrm{~F}, 4$ ip, $0.15 \mu \mathrm{~F}, 5 \mathrm{p}$

MINIATURE CERAMIC PLATE CAPACITORS
50 V : (pF) $22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$
$560,680,820,1 \mathrm{~K}, 1 \mathrm{~K} 5,2 \mathrm{~K} 2,3 \mathrm{~K} 3,4 \mathrm{~K} 7,6 \mathrm{~K} 8,(\mathrm{HF}) 0.01,0.015,0.02,0,033,0047$ 2ipeach. 01. 30V, 41p.
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$.
$4700,10,000,44 \mathrm{p}$.

RESISTORS CF-High Stab Carbon Film 5\%. MF-High Stab Metal Film,								
w.	Type	Range	1.99		100-499	500.999	$1000+$	Size mm
t	CF	22-1M	1		0.75	0.60	0.55	2.4×7.5
\pm	CF	22-2M2	1		0.75	0.60	0.55	3.9×10.5
$\frac{1}{2}$	CF	22.1 M	1		0.75	0.60	0.55	5.5×16
\pm	MF	10.2 M 7	2		1.54	1.32	1.1	3×7
$\frac{1}{2}$	MF	10-2M2	2		1.43	$1 \cdot 21$	0.99	4.2×10.8
1	MF	10.10M	3		1.98	1.81	1.65	6.6×18
2	MF	10-10M	4.5		3.52	3.08	2.75	8×17.5

For value mixing prices, please refer to our catalogue (price in pence each).
VALUES AVAILABLE-EI2 Series Only. Net prices above 100 .
PRESETSKELETON POTENTIOMETERS Wavechange Switche MINIATURE 0.25 W Vertical or horizontal $6 p$ each $1 P, 4 W:: P, 12 W ; 2 P$
$2 W: 2 P, 4 W: 2 P, 6 W$
$3 P$

B. H. COMPONENT FACTORS LTD.
(P.E.) 61 CHEDDINGTON ROAD, PITSTONE,
NR, LEIGHTON BUZZARD, BEDS, LUTOAQ Tel.: Cheddington 668446 (Std. Code 0296) Tel.: Cheddington 668446 (Std, $\mathbf{C A T A L O G U E}$ No. 3 p.

Miniature Mullard Electronic:

$1.0 \mu \mathrm{~F} 63 \mathrm{~V}$	6pp	$68 \mu \mathrm{~F}$	$16 \vee$ ofP
1.54F63V	$61 p$	$68 \mu \mathrm{~F}$	$63 \vee 118$
2.2 $\mu \mathrm{F}$ 63V	$61 p$	$100 \mu \mathrm{~F}$	10V6p
$3 \cdot 3 \mu \mathrm{~F} 63 \mathrm{~V}$	61p	$100 \mu \mathrm{~F}$	25V6 ${ }^{\text {p }}$
4.0رF ${ }^{\text {4 }}$ 40V	61 P	$100 \mu \mathrm{~F}$	63 V 14 p
$4.7 \mu \mathrm{~F} 63 \mathrm{~V}$	6 \%	$150 \mu \mathrm{~F}$	16V 6p
6.8رF $\mathrm{F}^{63 V}$	61 P	$150 \mu \mathrm{~F}$	63V 13p
$8.0 \mu \mathrm{~F} 40 \mathrm{~V}$	$61 p$	220رF	6.4V6tp
$10 \mu \mathrm{~F} 25 \mathrm{~V}$	$61 p$	$220 \mu \mathrm{~F}$	lov 6 p
10رF 63 V	$61 p$	$220 \mu \mathrm{~F}$	16 V p
$15 \mu \mathrm{~F}$ 16V	6 p	$220 \mu \mathrm{~F}$	63 V 21 p
$15 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$	$330 \mu \mathrm{~F}$	16V 12p
$16 \mu \mathrm{~F} 40 \mathrm{~V}$	$6{ }^{1 p}$	$330 \mu \mathrm{~F}$	63V 25p
$22 \mu \mathrm{~F} 25 \mathrm{~V}$	61 p	$470 \mu \mathrm{~F}$	6.4 V 9 p
$22 \mu \mathrm{~F} 63 \mathrm{~V}$	6 P	$470 \mu \mathrm{~F}$	$40 \vee 20 p$
$32 \mu \mathrm{~F}$ IoV	61 p	$680 \mu \mathrm{~F}$	16 V 15p
$33 \mu \mathrm{~F}$ 16V	6 \%	$680 \mu \mathrm{~F}$	40V 25p
$33 \mu \mathrm{~F} 40 \mathrm{~V}$	61P	$1000 \mu \mathrm{~F}$	16 V 20p
$32 \mu \mathrm{~F} 63 \mathrm{~V}$	61p	$1000 \mu \mathrm{~F}$	
$47 \mu \mathrm{~F}$ IoV	61p	$\begin{aligned} & 1500 \mu \mathrm{~F} \\ & 1500 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 45 p \\ & 6 \vee 25 p \end{aligned}$
$47 \mu \mathrm{~F} 25 \mathrm{~V}$	61p	$2200 \mu \mathrm{~F}$	OV 25p
$47 \mu \mathrm{~F} 63 \mathrm{~V}$	$61 p$	$3300 \mu \mathrm{~F}$	6.4 26p

VEROBOARD

POTENTIOMETERS
Carbon Track 5K Ω to 2 Ma . Iog or lin. Single, $16 \neq \mathrm{p}$. Dual Gang 46 p . Log Single with
Switch 26 p .
Switch 26p. Slider Pots, $10 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K} .30 \mathrm{~mm}, 34 \mathrm{p} .45 \mathrm{~mm}, 47 \mathrm{p} .60 \mathrm{~mm}, 55 \mathrm{p}$. DIODES PLUGS

 \begin{tabular}{ll|l|l}
IN914 \& 7p

IN916 \& 7p \& SOCKETS \& $100 / 100,20 \mathrm{p}, 100 / 250,30 \mathrm{p} .4 / 45014 \mathrm{p} .16 / 45023 \mathrm{p}$.

BA100 $10 p$ \& DIN 2 Pin \& $10 p$ \& METALLISED PAPER CAPACITORS

BAS
\end{tabular}

$$
\begin{aligned}
& \text { Integrated } \\
& \text { Circuit: }
\end{aligned}
$$

$$
\begin{array}{l|l}
\hline \text { Integrated } & \text { Screened Wire. Metre } \\
\text { Circuit: } & \text { TwinScreened Wire, M } \\
\text { MA709C } & \text { s0p } \\
\text { Stereo Screened Wire, }
\end{array}
$$

$$
\begin{array}{l|l|l}
\text { Integrated } & \text { Screened Wire. Metre } \\
\text { Circuite } & \text { TwinScreened Wire. Metre } \\
\text { MA7099C } & 50 p & \text { Stereo Screened Wire, Metre } \\
\mu A 741 C & 55 p & \text { Connecting Wire. All colours }
\end{array}
$$

HA741C 50 p Stereo Screened Wire, Metre 55p Connecting Wire. All colours, Metre
¢1. 32 Neon Bulb, 90 V Wire Ended 5 for 24p

SPHYYMIIEMkII Electronic Ignition.

 Better on all points Because you keep your points!The SPARKRITE MK. 2 is a full capacitive discharge electronic system
Specifically designed to retain the points assembly with all the breaker bounce ìs eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high rpm. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th o norm, thus avoiding arcing. But you can still revert to normal lgnition if need be. In seconds. It p
go (very unlikely) you can get replacements anywhere. All these advantages

- Fitted in 15 minures. Up to 20% better fuet consumption. Instant all weather starting. Cleans plugs - they last 5 times longer without at tention. - Faster acceleration. F Faster top speeds. - Coil and battery last longer. Efficient fuel buminaw less air pallution
The kit comprises everything needed
Ready drilled scratch and rust resistant case metalwork, cables, coil connectors, printed circuit board, top quality 5 year guaranteed transformer and components, full
instructions to make positive or negative
earth system, and 6 page installation earth system, and 6
instruction leaflet.
instruction leaflet.
WE SAY IT IS THE BEST SYSTEM AT ANY PRICE!
PRICES
D.t.Y Kit only $\{10.93$ incl. VAT and P \& P P

Heady Built Unit 513 - 11 incl. VAT and P \& P
(Both' to fit all carl with coll/distributor Ignition up to
we cyanders) subly unhs for any pertol-engined vehicle foud
motorcycle etch with conlcontact breaker ignilion.
Detals on request Call in and see us for a demonstration
ELECTRONICS DESIGN ASSOCIATES
(Dept PE11). 82 Bath Street. Walsall WS1 3DE Phone 33652

P. F. RALFE

10 CHAPEL ST, LONDON NW1
Phone 01-723 8753

MUFFIN INSTRUMENT

FANS
Dimensions $4.5 \mathrm{in} \times 4.5 \mathrm{in} \times 1.5 \mathrm{in}$. Very quiet running, precislon tan specially designed for cooling electronic equip ment, amplifiers etc. For 110 V , a.c operation (practise is to run from split primary of mains wanstormer or use suitable mains-dropper). CC only it watts. List price over $£ 10$ each. Our price in brand new conditlon, is $£ 3.50$.

ITT METRIX

Model 1018 miniature oscilloscope. D.C. 10 mHz Sensitivity 100 mV . Single beam. Dimensions $20 \mathrm{~cm} x$ $14 \mathrm{~cm} \times 13 \mathrm{~cm}$ Waight $5 \neq 1 \mathrm{~b}$ Sold brand now at nearly one half maker's list price Only $E 50$.
> avo Valve testers
> Briet-case type 160 . Full working
> condition throughout. £65

500MH: FREQUENCY DIVIDER TCD 500. Sensitivity $10 \mathrm{mV}(1-300 \mathrm{MHz}), 50 \mathrm{mV}(300-$ 500 MHz). The TCD500 is designed to extend the range of existing frequency counter by 10 or 100 times to a maximum of 500 MHz . Completely seff-contained, no external standards required. The TCD500 is suitable for any rype frequency counte over 5 MHz . Solid-state, small size. Brand new

AEAIAL CHANGE-OVER RELAYS of current manufacture designed espec lally for mobile equipments, coil voltage 12 V . frequency up to 250 MHz at 50 watts Small size only, 2 in \times in Offered brand new boxed Price $£ 1-50$, inc. P \& F

dIGITAL FREQUENCY METER

Type 'FT300'
Reads as frequency meter up to 99.99 kHz in three ranges or as tachometer 99,990 r.p.m. Solld-state instrument Clear read-out. Size only $\sin \times 5 \operatorname{in} \times 24 \mathrm{in}$. Weight 4itb. BCD outputs. Operating voltage $110 / 240 \mathrm{~V}$ a.c. Made by famous manufacturer. These unlts are brand new original makers cattons. Our price L5S.

Large selectlon of
RF PLUGS AND SOCKETS
Available ex-stock: BNC plugs 50 30p: BNC sockets 5025 p ; N type piug 5050 p ; Burndept plugs 40 p ; Burndept sockets 20p; All plugs and sockets are brand new Please add appropriate amount to postage.

EDDYSTONE 7TOR RECEIVER
Range $19-165 \mathrm{mHz}$ As new, $\mathbf{1 2 5}$
DURATRAK VAAIACS
Type 100 L . 230 V input. 0-230V a.c. output. 8 amps. Brand new minus contro knobs. Price only $£ 15$, carriage £ 1

PLEASE ADD 8\% VAT TO THE TOTAL AMOUNT WHEN ORDERING. INCORRECT AMOUNTS WILL CAUSE DELAY IN DESPATCH.

For a long time now a large number of customers have asked us to produce cabinets in kit form, and above we show examples of cabinet styles and these are now available either fully built or in kit form ready for you to produce a professional finish in a very short time!
Kits are available in all specifications and all the kits contain everything you need as follows:-

1) 4 sides with handle cutouts, front edges rounded, 1 back with jack socket hole, and baffleboard with speaker cutout
2) P.V.C. cut to size for frame and back, plus false front and back timbers, white front piping and speaker cloth
3) Recessed handles with fixing screws, jack socket, all fixing screws, corner plates, glue, and full instructions !

PRICE \& TYPE LIST

Please ask for quotation on any other type or size of cabinet you may require.

ERC 100 watt power amplifier

* Electrolytic capacitors and second generation ISs
* Fully protected against short or open circuit
* Less than 0.1 \% distortion at all powers
* Rise time 4muS-stability-

Unconditional Price $\mathbf{f 6 6 . 5 0}$

* Stereo studio disco mixer
* Full PFL and Monitor facilities
* As used by John Peel, Mark Wesley. Paul Burnett, DLT, Dave Christian, Tony Prince
* Price fl 20.00

* Concorde mono M400 mixer
* Full PFL and Monitor facilities
* Mike overide
* Magnetic inputs
* Broadcasting quality £85.00

ALL OUR PRICES INCLUDE VAT AND UK DELIVERY

Disco imp projector 150 watt tungsten unbeatable price 119.75
Includes liquid wheel and postage Normally $£ 24$ f $£ 27.50$

UNBEATABLE NOW ONLY $£ 18 \cdot 00$

The largest selection

EX COMPUTER BOARDS Packed with transistors, diodes, capacito 3 for ONLY $55 \mathrm{p}+\mathrm{P}$. \& P. 30p
sPECLAL one as above PLUS Power Tran istor ONLY 55p each + P. © P. 15p PAYOLINE BOARDS
4 for $30 \mathrm{p}+\mathrm{P}$. \& P . 20 p .

FIBRE-GLASS PRINTED CIRCUIT BOARDS
$164 \times 4^{-}$approx. 2 for 85 D
DECON-DALO 33PC Marker Etch resis

VEROBOARDS

Packs containimg appr
izes, all 0.1 matric 55 p
REPANCO CHOKES \& COILS
RF Chokes
$\mathrm{CH} 1.2 .5 \mathrm{mH} 29 \mathrm{p} \quad \mathrm{CH}^{2} 2.50 \mathrm{mH} 30 \mathrm{p}$ $\mathrm{CH}_{3} 7.5 \mathrm{mH} 81 \mathrm{D} \quad \mathrm{CH}_{5} 10 \mathrm{mH} 33 \mathrm{D}$ coils
DRX1 Cryatal aet 31p DRR2 Dual range 45p
COIL FORMERS \& CORES
NORMAN t^{*} Cores \& Formers 8p
$\mathrm{I}^{\prime \prime}$ Cores d Formeta 10p

SWITCHES

DP/DT Toggle 36p SP/ST Toggle 30p

FUSES

(18. snd $20 \mathrm{~mm}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$ $000 \mathrm{~mA}, 1 \mathrm{~A}, 1.5 \mathrm{~A}, 2 \mathrm{~A}$
QUICK-
RLOW

EARPHONES

Cryatal 2.5 mm plug 42 p
Crystal 3.5 mm plug 42p
3 ohme 2.5 mm plug 22p
OYNAMIC MICROPHONES
B1223. 200 ohms plua
2.5 mm and $3 . \mathrm{Fmm}$ plugs $£ 1-85$

3-WAY STEREO HEAD. PHONE JUNCTION BOX H1012 \quad 21.87

2-WAY CROSSOVER
NETWORK
K 4007.80 ohnis Imp. Insertion loss 36 B 81.21
CAR STEREO SPEAKERS
Angled) 23.85 per pair

BI-PAK

CATALOGUE AND LISTS
Send S.A.E. and 10p.
INSTRUMENT CASES

(Black Vinyl covered)
 ALUMINIUM BOXES

BIB HI-FI ACCESSORIES

De Luxe Groov-Kleen Model. 42 £1• 95 Chrome Finish Model 60 E $1 \cdot 50$

Ret. 38A. Record/Stylus Cleaning Kit 33p Ref. 43. Recoril Care Kit 28.42 Ref. 31. Cassette Head Cleaner 58 D Ref. 32. Tape editing Kit 21 .68 Model 9. Wire 8tripper/Cutter 83p Ref. 46. Spirit Level 82p

ANTEX SOLDERING IRONS
Xe5. 25 watt $£ 2.05$
CCN 240.15 watt $£ 8.48$
Model G. 18 watt 22.26
SK2. Soldering Kit $\mathbf{4 3} \mathbf{2 5}$ STANDS: ST3, anitable for all models 21 SOLDER: $188 W$ M Multicore $70 z$ 21.61 22SWG 7oz 21.61.188WG 22ft 51p 22SWC Tube 33p

ANTEX BITS and ELEMENTS

 Bits No102 For molel CN240 s
104 For model CN240 A
1100 For model CCN240 $\frac{5}{38}$
1101 For model CCN $240 \mathrm{I}^{\circ}$ 1102 For model CCN240 t'
1020 For model G240 3 3 1021 For model G240 1" 1022 For model (9240 A"
50 For model X 25 多
51 For model X25 i"
52 For model X25
ELEMENTS
ECN 240 21-30
EG 240 £1.07
N 240 21

ANTEX HEAT SINKS 10p

FAT included in all prices. Please add VAT included in all prices. Please add
10p P. \& P. (U.K. only). Overseas ordera10 p P. \& P. (U.K. only). 0
please add extra for postage.

NEW COMPONENT PAK

 BARGAINSPack
No. Qty. Deacription Price
Cl 200 Resistors mixed values approx.
C2 150 Count by weight 0.56
Cepacitors mixed
count by welg
C3 $\mathbf{5 0}$ Precision Resistors $0.1 \%, 0.01 \%$
mixed values
C4 To th W Re
C5 ju Pieces assorted Ferrite Rode 0.5
C6 ${ }^{2}$ Tuning Ganga, MW/LW YHF 0.85
C7 $1 \begin{gathered}\text { Pack Wire } \\ \text { colours }\end{gathered} 50$ metres assorted 0.55
C8 10 Reed 8 witches
C9 3 Micro Switches
C10 15 Assorted Puts Pre.8eta 0.55
C11 5 Jack Sockets $3 \times 3 \cdot \mathrm{~m} / 2 \times$ Standard Switeh Type $\quad \begin{array}{ll}0.55\end{array}$ Paper Condensers preferred types
mixed values
0.55 mixed values
Cl3 20 Electrolytics Trans. types
C14 1 Pack askorted HardwareNuts/Bolts, (Frommets, etc. 0.55
Nuthert Mains slide Switches
Cli 20 Assorted Tag Strips \& P C17 10 Assorted Control K hobs C18 4 Rotary Wave Change 8 wi $\begin{array}{lr}\text { Relaye 6-24V Operating } & 0.55\end{array}$ $\begin{array}{cr}\text { Pack Shects of Copper Laminate } \\ \text { approx. } 20 \text { sq. ins. } & 0.55\end{array}$

VISIT OUR COMPONENT SHOP

18 BALDOCK ST., WARE, Herts, (A10)

Open Mon -Sat. 9-5. 30 p.n. Tel. 61693

Ref. B. Stylus and Turntable Cleaning Kit Ref. P. HI-FiCleaner ${ }^{1}{ }^{1}$ Ref. 32A. Stylua Balance $£ 1.3$? Ref. J. Tape Head Cleaning Kit 82p
Ret. 56. Hi-Fi Stereo Hints and Tips 48p Ref. 45, Auto Changer Groove Cleaner $\$ 1-08$

PLUGS AND SOCKETS

PLUGS

PS 1 D.I.N. 2 Pin (Speaker)
PS 2 D.L.N. 3 Pin
PS 3 D.I.N. 4 Pin
PS 4 D.I.N. 5 Pin 180°
PS 5 D.I.N. 5 Pin 240°
PS 6 D.I.N. 6 Pin
PS 7 D.I.N. 7 Pin
PS 8 Jack $2 \cdot 5 \mathrm{~mm}$ Screened
PS 9 Jack $3 \cdot 5 \mathrm{~mm}$ Plagitic
PS 10 Jack 3.5 mm Screened
PS 11 Jack ${ }^{10}$ Plastic
$\begin{array}{ll}\text { PS } 12 & \text { Jack }{ }^{2} \text { " Screened } \\ \text { PS } 13 & \text { Jack Stereo Screened }\end{array}$
PS 13 Jack Stereo Screened
PS 14 Phono
$\begin{array}{ll}\text { PS } 15 & \text { Car Aeris. } \\ \text { PS } 16 & \text { Co-Axial }\end{array}$

INLINE SOCKETS

PS 21 D.I.N. 2 Pin (Apeaker) PS 22 D.I.N. 3 Pin PS 23 D.I.N. 5 Pin 180° PS 24 D.I.N. 5 Pin 240° $\begin{array}{ll}\text { PS } 25 & \text { Jack } 2.5 \mathrm{~mm} \text { Plastic } \\ \text { PS } 26 & \text { Jack } 3.5 \mathrm{~mm} \text { Plastic }\end{array}$ PS 26 Jack 3.5mm Plasti PS 27 Jack \%" Plastic
PS 29 Jack Stereo Plastic
Pg 30 Jack Atereo Screened
0.11

ONLY £39.95 p. \& p. 50p
OR Write for full details

WORLD SCOOP

JUMBO

SEMICONDUCTOR PACK
Transistors, Germ. and Silicon Rectifiern Diodes, Triscs, Thyrintors, I.Ca and Zeners. ALL NEW AND CODED

APPROX 100 PIECES

Offering the amateur a fantastic bargain Pak and an enormous saying-identification and data sheet in every Pak.

Only $\leqslant 2$ p, \& $p .20 p$

RECORD STORAGE/

 CARRY CASES7 in EP. $18 \frac{1}{3} \mathrm{in} \times 7$ in $\times 8$ in (50 records)
12 in LP. $13 \mathrm{jin} \times 7 \mathrm{in} \times 12 \mathrm{in}$ (50 records 8

CASSETTE CASES

Holds 12. $10 \mathrm{in} \times 3$ in \times iln. Lock and handle, $£ 1 \cdot 30$.

SPECIAL PURCHASE

2N8055. Silicon Power Transiators NPN Famous manufacturers out-of-spec device free from open and short defects-every on
blei 110w. TO3. Metal Case
OUR SPECLAL PRICE 8 Iot El

LOW COST CAPACITORS

$0.01 \mu F 400 \mathrm{~V}$.
$500 \mu \mathrm{~F} 50 \mathrm{~V}$, Elect
8 p esch
10p each

REPANCOTRANSFORMERS
240V. Primary. Secondary voltagea avail
able from selected tappings $4 \mathrm{~V}, 7 \mathrm{~V}, \mathbf{8 V}, 10 \mathrm{~V}$ $14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~V}, 33 \mathrm{~V}$ 40, 50 and $25 \mathrm{~V}-0-25 \mathrm{~V}$
Type
MTE0
MT50/
MT50/1
MT50/1
MT50/2

CARTRIDGES

ACOB
$\begin{array}{ll}\text { GP91.18C } 200 \mathrm{mV} \text { at } 1.2 \mathrm{~cm} / \mathrm{sec} & 21.85 \\ \text { GP93.1280mV at } 1 \mathrm{~cm} / \mathrm{sec} & 81.85\end{array}$
GP081280m at $1 \mathrm{~cm} / \mathrm{sec}$
GP96-1 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$
J-2005 Crystal/Hi Output

CABLES
CP
CP 3 Stereo Screened
Four Core Common Scree
Four Core Individually Screened 0.30
CP 6 Microphone Fully Bralded Cable 0.10
CP 7 Three Core Main Cable $0-08$ CP 8 Twin Oval Maina Cable

J-2010C Crystal/HI Output
$\mathrm{J}-20068$ Stereo/Hi Output
$\mathrm{J}-2105$ Ceramic/Med Output
-2203 Magnetic 5 onv/5em/sec, including
J-22038 Replacement stylus for above $\mathbf{2 3 . 0 0}$ AT-55 Audio-technica magnetic cartridge
$\mathbf{4 m V} / 5 \mathrm{~cm} / \mathrm{sec}$

CARBON POTENTIOMETERS

$47 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, 1M, 2M
VC 1 Single Less Switch
VCe Single D.P. Switch
VC 3 Tandem Less Switch
VC $4-1 \mathrm{~K}$ Lin Less $\$$ witch

HORIZONTAL CARBON

PRESETS

0.1 watt 0.06 each
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$

STEREO

AMPLIFIER mectic:
ORDER NOW-

PS 3I Phono Screened
PS 32 Car Aerial

CARBON FILM RESISTORS

The Et2 Range of Carbon Film Resistors,
t watt available in PAKS of 50 pleces, R1 50 Mixed 100 ohms- 820 ohms
R1 50 Mixed 100 ohms-820 ohm $\begin{array}{ll}\text { R2 } & 50 \mathrm{Mixed} 1 \mathrm{k} \Omega-8.2 \mathrm{k} \Omega \\ \mathrm{R} 3 & 50 \mathrm{Mixed} 10 \mathrm{k} \Omega-82 \mathrm{k} \Omega\end{array}$
R4 50 Mixed $100 \mathrm{k} \Omega-1 \mathrm{M} \Omega$
THESE ARE UNBEATABLE PRICESJUST ID EACH INCL. V.A.T.

BI-PAK SUPERIOR QUALITY
LOW - NOISE CASSETTES
C60, 86p; C90, 48p; Cl20, 60p.

IT'S NEW IT'S POWERFUL

-the lowest prices!

 BI-PAK QUALITY COMES TO AUDIO! AL10/AL20/AL30 AUDIOAMPLIFIER MODULES

	FIER MODULES The AL10, AL20 and AL30 unita are similar in their appearance and in their general apeciffeation. However, careful selection of the plastic power jevices has resulted in a range of output powers from 3 to 10 watts R.M.s. The versatility of their design makes them ideal for use in record players, tape recorders, stereo ampliflers and cassette and cartridge tape playera in the car and at home.	
Parameter	Conditions	Performance
HARMONIC DIStORTION	PO $=3$ WATTS $1=1 \mathrm{KHz}$	0.25\%
LOAD IMPEDANCE	-	8-16
INPUT IMPEDANCE	$1=1 \mathrm{KHz}$	$100 \mathrm{k} \Omega$
FREQUENCY RESPONSE-3dB	P'o $=2$ WATTS	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
SENSITIVITY for Rated 0/P	$\mathrm{V}_{\mathrm{B}}=25 \mathrm{~V} . \mathrm{Rl}=8 \mathrm{n} \quad \mathrm{t}=1 \mathrm{KHz}$	75 mV . RMS
DIMENSIONS	-	$3^{\circ} \times 2 \frac{1}{3 *}^{*}=1^{*}$

The sbove table relates to the AL10, AL20 and AL30
modules. The following table outlines the differences in their working conditions

Prameter	AL10	AL20	AL30
Msximum Supply Voltage	25	30	30
Power out for 2% T.H.D. $(\mathrm{RL}=8 \Omega t=1 \mathrm{KHz})$	3 watts RMS Min.	5 watts RMS Min.	10 watt RMS Min.

AUDIO AMPLIFIER MODULES
$\begin{array}{lll}\text { AL 10. } & 3 \text { watts } \\ \text { AL 20. } & 5 \text { watts }\end{array}$
$\begin{array}{ll}\text { AL 20. } & 5 \text { watte } \\ \text { AL 30. } & 10 \text { watta }\end{array}$

POWER SUPPLIES

P8 12. (Use with AL10, AL20. AL30) 88 p
8PM 80. (Use with AL60)
FRONT PANELS PA 12 with Knobs

PRE-AMPLIFIERS
 PA 12. (Use with AL10 \& AL20) 84.36

 PA 100. (Use with AL30 \& AL60) :18-15
TRANSFORMERS

T461 (Use with AL10) $51-38$ P \& P 15p T538 (Use with Al.20, AL30) 21.93 P \& \mathbf{P}
BMT80 (Use with AL60) \&2.15 $P \& P 25 p$

PA12 PRE-AMPLIFIER SPECIFICATION

The PAl2 pre-amplifier has been deaigned to match into AL 10, AL 20 and AL 30 audio power amplifiers and it can be supplied from thelr associated power supplies. There are two stereo inputs, one has been designed for use with *Ceramic cartridges while the auxiliary input will suit most \dagger Magnetlc cartridges. Full details are given in the specifcation table. The four controls are, from left to right: Volume and on/off switch, balance, bass and treble Size $152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$

Frequency reaponee $20 \mathrm{~Hz}-50 \mathrm{KHz}(-3 \mathrm{dD})$ Bass control-
Treble control $\frac{ \pm}{} 12 \mathrm{~dB}$ at 60 Hz Treble control -Input 1. Impedance 14 KHz -Input 1. Impedance
l Meg. ohm
Sensitivity 300 mV \dagger Input 2. Impedance Impedance
30 K ohms
Sengitivity 4 mV
Sensitivity 4 mV

LOok for our

SEMICONDUCTOR ADVERTISEMENTS in
Practical Wireless Wireless World Radio Constructor

ALL PRICES INCLUDE V.A.T.

The STEREO 20

The "Stereo 20° " amplifier is mounted, ready wired and tested This complece chassis measuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$ This compact unit connes complete with on/off switch volume control, balance, bass and treble controls, Transformer, Power supply and Power amps. Attractively printed front panel and matchdesigned to fit into most turntable plinths without interfering with the mechaniam or alternatively, into a separate cabinet. Output power 20 w peak. Input 1 (Cer) 300 mV into 1 M . Freq. res. $25 \mathrm{~Hz}-25 \mathrm{kHz}$. Input 2 (Aux.) 4 mV into 30 K . Harmonic distortion. Bass control $\pm 12 \mathrm{~dB}$ at 60 Hz typically 0.25% at 1 watt. Treble con.
$\pm 14 d B$ at 14 kHz .

TC20 TEAK VENEERED CABINET

For 8tereo 20 (tront board undrilled) Size $101^{\prime \prime} \times 83^{\prime \prime} \times 3{ }^{\prime \prime} .23 .95$ plus 30 p postage SHP80 STEREO HEADPHONES
4-18 ohms impedance. Frequency reaponse 20 to $20,000 \mathrm{~Hz}$. Stereo/mono switch and volume

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

- Max Heat Sink temp $90^{\circ} \mathrm{C}$
- Frequency Response 20 Hz to 100 KHz
- Distortion better than 0.1% at 1 KHz
- Supply voltage $15-50$ volts
- Thermal Feedback
- Latest Design Improvements - Load - 3, 4, 8 or 16 ohms - Signal to noise ratio 80 dB - Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ $\times 13 \mathrm{~mm}$

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

STABILISED POWER MODULE SPM80

GPM80 is especially designed to power 2 of the AL60

 Amplifiers, up to lõ watt (r.m.n.) per channel aimultaneously. This module embodies the lateat components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 Theap unite enable you to build Audio Systems of the highest quality at a hitherto to build Audio Sybtems or for many other applications including:-Disco Systems, Public Address,,
TRANSFORMER BMT80 £2.15 p. \& p. 28p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a speciffeation and NOT a price, and yet atill the greatest value on the market, the PA100 ateren pre-amplifier has been conceived from the latest circuit techniques. Deaigned for use with the ALb0 power aumplifier system, this quality made unft incorporates no less than eight silicon planar transistors, two of these are specially selected low noise NPN devices for use in the input stages.
Three switched stereo inputs, and rumble and scratch fliters are features of the PAl00, which also has a STEREO/MONO switch, volume. balance and continuously variable
bass and treble controls.

SPECIPICATION

Frequency Response
Harmonic
Inputs: 1
Tape Head
Radio, Tuner
3. Magnetic P.U. $\quad 35 \mathrm{mV}$ into $50 \mathrm{~K} \Omega$

Alliput voltages are for an output of into $50 \mathrm{~K} \Omega$
equalised to RIAA curve within $\pm 1 \mathrm{~dB}$. Irom 20 Hz to 20 K . Inpu Base Control
Filters: Rumble (High Pass)
Scratch (Low Pass)
Signal/Noine Ratio
Input overloat
Supply
8 KHz
better than -65dB
$+26 d B$
Dimensions
+35 volta at 20 m A
$292 \mathrm{~mm} \times 821 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £13.15
MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times$ SPM80, $1 \times$ BTM80, $1 \times$ PA 100,1 front panel, 1 kit of parts to include on eff switch, neon Indicator, stereo headphone sockets plus instruction booklets. Complete Price: £88.75 plus 30p postage.

TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet size $16 q^{* *} \times 1 l^{\prime \prime} \times 3\left\{^{*}\right.$, other parts include aluminium chassis, heatsink and front panel bracket, plus back panel and appropriate sockets, etc
Kit price: $\mathbf{2 9 . 9 5}$ plus 30p postage

35 intelligent，young minded people who

Want to earn really good salaries．
Must have a job which uses their talents and satisfies them．
3
Would like to become Computer Maintenance Engineers

We make computers．the most powerful in the world－yet we are probably the most open minded of computer manufacturers
We are searching for interesting able people．whatever their paper qualifications and whatever they are doing now．
The people we find will be trained by Control Data and helped to find new jobs by Control Data with all of the backing which a Company of our size and influence can give them．They will then be working in a growth industry which is at the forefront of human advance．
We need 35 people．aged $19-35$ with a mechanical aptitude and the ability to think logically．
They must be prepared to earn their selection by training hard for 6 months and repaying the cost of their training out of their subsequent salary．

We believe a lot of people have got talents that are not being used． and a lot of people are smothered by traditional occupations．That＇s why we decided to make this scheme available．If you feel it is an opportunity worth examining，give us a call and arrange to discuss it．

For further information and to arrange an interview

Phone John Price 01－637 2171

Any weekday 9 am－ 6.30 pm

CONTROL DATA
 LIMITED

Control Data Institute 77／79 Wells Street，London，W．1．

VALVE MAIL ORDER CO． I6a WELLFIELD ROAD，LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE Express postage $5 p$ for first transistor，Ip thereafter，over

1N21	${ }_{0}^{20} 17$		BY213	$\operatorname{lp}_{0.25}$	OAZ：20］	$\begin{aligned} & \ell_{0} \\ & 0.45 \end{aligned}$	28170	${ }_{0}^{\text {ep }} 0$
1N23	0.85	AFZ12 8．04	BYZ10	0.45	OAZ206	0.45	28271	0.18
IN8J	0.88	A8Y26 0．25	BYZ11	0.40	OAZ：207	0.45	ZT21	0.25
1N253	0.50	ASY．24 0.80	BYZ12	0.40	OAZ208	0.40	ZT43	0.25
1 N256	0.50	$\begin{array}{ll}\text { ASY28 } & 0.25 \\ \text { A．} \\ 0.30\end{array}$	BYZ13	0.85	OAZ209	0.40 0.40	ZTX107	${ }_{0}^{0.18}$
IN645	0.18	$\begin{array}{ll}\text { ASY29 } & 0.80 \\ \text { ASY } 36 & 0.85\end{array}$	BYZ10	1.25	OAZ211	0.40	ZTX 300	0.14
1N745A	0.20	$\begin{array}{lll}\text { ASY50 } & 0.80\end{array}$	BYZ16	0.80	OAZ222	$0 \cdot 45$	2TX304	0.24
1N914	${ }_{0}^{0.08}$	$\begin{array}{ll}\text { ASY51 } & 0.40\end{array}$	BZY88	0.10	OAZ223	0.45	ZTX 500	0－15
${ }^{1 N 4007}$	0.12 0.25	ASY53 0.20	c111	0.65 ！	vaz224	0.45	2TX503	0.16
$\begin{aligned} & 18118 \\ & \text { IR131 } \end{aligned}$	0.25 0.15	A8Yこう 0.20	CRS1／05	0.80	OAZ241	0．25	ZTX531	0.25
1820.2	0.23	$\begin{array}{ll}\text { ASY62 } & 0.25\end{array}$	CRS1／40	0.45	OAZ24：	0.15		
20371	0.40	ASY66 0.38	${ }_{\text {csiob }}$	3.50	OAZ	0.26		
20381	0.22	$\begin{array}{ll}\text { ASZ21 } & 1.00 \\ \text { ASZ23 } & 0.75\end{array}$	DD000	0.15	OAZ290	0.15	Cra	
20414	0.80	$\begin{array}{ll}\text { ASZ23 } & 0.75 \\ \text { AU101 } & 1.50\end{array}$	DD003	0.15	${ }_{0}{ }_{0}$	0.38 1.00	7400	0.30
20417	0.95	$\begin{array}{ll}\text { AU101 } & 1.50 \\ 1.00\end{array}$	DD006	0.25	${ }_{0} 0$ C16T	1.00	7401	0.20
2 N 404	0.28	${ }_{\text {AC107 }}{ }^{\text {A }} 0.12$	DD007	0.40	OC19	0.50	7402 7403	0.20
${ }^{2} \times 1697$	0.15	BCl0y 0.12	DD008	0.38	OC20	2.00	7404	0.20
${ }^{2} \mathrm{~N}$ N798	0.10	BC109 0.12	GD3	0.38	OCx2		7405	0.20
$2 \mathrm{2N706A}$	0.12	$\begin{array}{ll}\text { BCII3 } & 0.16\end{array}$	GD4	0.10	${ }_{0}^{0 \mathrm{CL} 23}$	1.105	7406	0.40
2N708	0.15	$\begin{array}{ll}\text { BCl1J } & 0.80 \\ \text { BCili } & 0.80\end{array}$	GD8	0.88	${ }^{\mathrm{OC}_{2}} \mathrm{O}$	1.10	7407	$0 \cdot 40$
2N709	0.40	$\begin{array}{ll}\text { BC116A } & 0.28\end{array}$	GDly	0.10	OC－5	$\stackrel{0}{0.40}$	7408	0.85
2N1091	0.65	$\begin{array}{ll}\text { BC118 } & 0.80\end{array}$	GET102	0.50	OC28	0.70	7409	0.88
2 N 1131	0.25 0.25	$\begin{array}{ll}\text { BCL21 } & 0.20\end{array}$	GET103	0.40	OC29	0.85	7411	0.20
${ }^{2} \mathrm{~N} 1132$	0.25 0.18	BC122 0.20	GET113	0.85	0c30	0.40	7412	0．28
${ }^{2} \mathrm{~N} 13 \mathrm{~N} 1302$	0.18 0.18	BC125 0.68	GET114	0.30	OC3s	0.55	7413	0.80
2N1304	0．22	$\begin{array}{ll}\text { BC126 } & 0.65 \\ \mathrm{BC} 140 & 0.55\end{array}$	GET110	0.75 0.85	${ }_{0}^{0 C 36}$	0.85 0.85	7416	0.30
2 N 1305	0.28	$\begin{array}{ll}\text { BC140 } & 0.55 \\ \mathrm{BC147} & 0.12\end{array}$	GET120	0.60	${ }_{0}^{0 C 4}$	0．80	7417	0．80
2 N 1306	0.28	$\begin{array}{ll}\text { BC148 } & 0.10\end{array}$	GET872	0.30	0 OC 4	0.70	7420 7422	0.20
2 N 1307	0.28	BC149 0.12	GET875	0.40	OC44	0.18	7423	0．20
2N2147	0.75	$\begin{array}{ll}\text { BCLOT } & 0.14\end{array}$	GET880	0.55	OC44M	0.17	7425	0－87
2N2148	0.60	$\begin{array}{ll}\text { BC158 } & 0.12\end{array}$	GET881	${ }_{0}^{0.85}$	${ }_{0}^{0 \mathrm{OC} 45}$	0.18 0.18	7427	0.37
$2 \mathrm{~N}^{2} 160$	1.00	${ }^{\text {BC160 }}$	GETシ80	0.40	${ }_{0}^{0} \mathrm{OC45}$	0.27	7428	0.48
2 N 2218	0.08	BCY31 0.45	GEX44	0.08	0 C 57	0.60	7430	0．80
2N2219	0.25	BCY32 1.20	GEX4i／1	0.45	0 C 58	0.60	${ }_{7433}$	0.87
2 N 2369 A	0.16 1.99	BCY33 0.88	GEX941	0.45	${ }^{0} \mathrm{C} 59$	0.60	${ }_{7437}$	0．48
2N2444	0.28	$\begin{array}{ll}\text { ВСY34 } & 0.45\end{array}$	GJ3M	0.60	OC66	0.50	7438	0.48
2N2613	0.50	BCY38 0.55	GJ4M	0.50	0C70	0.18	7440	0.80
2N2904	0.20	BCY39 1.00	GJJM	0.25	$0 \mathrm{OC7} 1$	0.15	7441AN	0.85
2N2904A	0．25	BCY40 0.80	${ }^{\text {GJG7 }}$	0.50 0.60	0c72	0.85	7442	0.85
2 N 2906	0.20	$\begin{array}{ll}\text { BCY42 } \\ \text { HCY70 } & 0.80 \\ 0.15\end{array}$	HS100A	0.80	OC73	0	7450	0.80
2N2907	0.18	$\begin{array}{ll}\text { BCY71 } & 0.20\end{array}$	Mat100	0.20	0 C 75	0.80	7451	0.20 0.20
2 N 2924	0.0	BCZ10 0.60	matiol	0.25	0 C 76	0.80	7453	0.20
2N2925	0.16	BCz11 0.65	Mat120	0.20	0c7\％	0.55	7460	0.20
2N 2926	0	$13121 \quad 1.00$	MAT121	0.25	0C78	0.25	7470	0.83
2 N 3055	0.60	$\begin{array}{ll}\text { BD123 } & 1.00 \\ \text { BD124 }\end{array}$	MJES20	0.65 1.10	0C79	0.80 0.88	7472	0.88
2 N 3702	0.11	$\begin{array}{ll}\text { BD124 } \\ \text { HDY11 } & 0.80 \\ 1.45\end{array}$	MJE3055	1.75	${ }_{0}^{0} 0 \mathrm{C81} 1$	${ }_{0}^{0.28}$	7473	0.44
2N3705	0．15	$\begin{array}{ll}\text { BDY11 } & 1.45 \\ \text { BF115 } & 0.28\end{array}$	MJ E340	0.50	OC81M	0.20	7474	0－48
2 N 3706	0.11	$\begin{array}{ll}\text { BF115 } \\ \text { BF117 } & 0.28 \\ 0.50\end{array}$	MPF102	0.40		0.18	7475	0.59
2N3707	0.13	$\begin{array}{ll}\text { BFF167 } & 0.50 \\ \text { 16 }\end{array}$	MPF103	0.86	0С812	0.45	7476 7480	0.45
2 N 3709	0.10	$\begin{array}{ll}\text { BF173 } & 0.28\end{array}$	MPF104	0.85	0C82	0.28	7480 7482	0.80
2 N 3710	0.11	BF181 0.35	MPF105	0.46	0C82 ${ }^{\text {D }}$	0.25	7483	1．20
2N3711	0.11	$\begin{array}{ll}\text { BF184 } & 0.22\end{array}$	NKT128	0.45	0 C 83	0.25	7484	1.00
2N4．289	0.20	BF185 0.22	NKT129	0.80	$0 \mathrm{C84}$	0.30	7486	0.50
2N6027	0.53	$\begin{array}{ll}\text { BF194 } & 0.13 \\ \text { BF195 } & 0.13\end{array}$	NKT213	0.2	${ }_{0}^{0 \mathrm{OCl14}}$	0.88 1.00	7490	0.76
dN6098	0.39	$\begin{array}{ll}\text { BF193 } & 0.13 \\ \text { BF190 } & 0.15\end{array}$	NKT214	0.24	${ }_{0}^{0} \mathrm{OC123}$	1.10	${ }_{7492}{ }^{7}$	1.10
29301	0.59	$\begin{array}{ll}\text { BFF197 } & 0.15\end{array}$	NKT216	0.40	$\mathrm{OCl}^{1} 9$	0.40	7492	O．75
28904	1.15 0.75	${ }^{\text {BFF61 }} 0$	NKT217	0.45	OC140	0.65	7493 7494	0.75
288501	0.75 1.00	BF698 0.25	NKT218	1.13	OC141	0.80	7493	0.85
28703	0.20	BFX12 0.20	NKT219	0.88	OC169	0.20	7496	1.00
AAIZ ${ }^{\text {A }}$	0.75	$\begin{array}{ll}\text { BFX13 } & 0.25\end{array}$	NKT222	0.80	－C170	0.25	7497	4.82
AAZ13	0.10	BFX29 0.28	NKT224	0.25	${ }_{0}^{0} \mathrm{Cl} 171$	0.80	74100	\％－16
A0107	0.85	$\begin{array}{ll}\text { BFX } 30 & 0.28 \\ \text { BFX } 35 & 0.98\end{array}$	NKT271	0.20	${ }_{0} \mathrm{OCL}^{200}$	0.55 0.80	${ }^{74107}$	0.51
AC126	0.25	$\begin{array}{ll}\text { BFX } 35 & 0.98 \\ \text { BFX } 63 & 0.50\end{array}$	NKT272	0.20	OC2013	0.80 0.90	74110	0.57
10127	0.25	$\begin{array}{ll}\text { BFXX84 } & 0.55 \\ 0.25\end{array}$	NKT273	0.20	$\mathrm{OC}^{2} 203$	0.55	74111	0.86
AC128	0.20	$\begin{array}{ll}\text { BFX8 } & 0.28\end{array}$	NKT274	0.20	OC204	0.85	74119	1.92
ACli87 AC188	0.20	HFX86 0.25	NKT276	0.25	Oc20	1.00	74121	0.57
$\mathrm{AOP17}^{\text {d }}$	0.35	${ }^{\text {BFX } 87} 00.25$	NKT277	0.20 0.25	$\mathrm{OCO}_{0} 26$	1.10	74122	0.80
AOY 18	0.27	$\begin{array}{ll}\text { BFX88 } & 0.22 \\ \text { BFY10 } \\ 1.00\end{array}$	NKT278	0.25 0.85	0 C 207 $0 \mathbf{C 4 6 0}$	1.00	71123	1.44
ACY 19	0.27	$\begin{array}{ll}\text { BFY10 } \\ \text { BFY11 } & 1.00 \\ 0.50\end{array}$	NKT304	0．75	OC460	0.20 0.80	74141	1.00
AOY20	${ }_{0}^{0.22}$	${ }_{\text {BFY }}{ }^{\text {BFY }} 170$	NKT403	0.70	OCP71	1.00	74150	8.48
ACY21	0	BFY18 0.45	NKT404	0.80	ORP12	0.55	74151	1.15
ACY22	0．25	BFY19 0．55	NKT678	0.30	ORP60	0.45	74154	2.80
ACYa8	0.25	BFY24 0.45	NKT713	${ }^{0.80}$	${ }_{\text {ORPFis }}$	0.48	74150	1－15
LCY39	0.65	$\begin{array}{ll}\text { BFY44 } \\ \text { BFY } & 1.00 \\ 0.20\end{array}$	NKT7\％3	0.25 0.88	8X68 8×63 8	0.20	74156	1.15
AOY40	0.22	$\begin{array}{ll}\text { BFY50 } \\ \text { BFY51 } & 0.20 \\ 0.20\end{array}$	$\mathrm{O}^{078 \mathrm{~B}}$	0.88	8×631	0.55	74157	$1-09$
AOY41	0.82	$\begin{array}{ll}\text { BFYY02 } & 0.20 \\ \text { BF }\end{array}$	OA5	0.60	8X640	0.75	74170	2.88
ACY 48	0.65		OAf	0.18	8X641	0.75	74174	1.80
AD1s0	0.50 0.60	BFY64 0.45	OAs ${ }^{\text {a }}$	0.08	8X6412	0.60	74175	1.29
AD101	0.89	BFY90 0.75	OA70	0.10	SX ${ }^{644}$	0.85	74176	1.44
$4{ }^{4} 162$	0.89	$\begin{array}{ll}\text { B8X }{ }^{\text {a }} & 0.50 \\ \text { BgX } 60 & 0.98\end{array}$	－${ }^{\text {O／3 }}$	0.15	SX ${ }^{\text {TIC4 }}$	0.85	74190	$2 \cdot 30$
AF108	0.80	$\begin{array}{ll}\text { B8X60 } \\ \text { B8X76 } & 0.98 \\ 0.18\end{array}$	OA74	0.15	${ }_{\text {TIC4 }}$	0.29	74191	2－30
AF116	0.85	$\begin{array}{ll}\text { BSY } 26 & 0.17\end{array}$	OA79	0.10	V15／30P	0.75 0.75	74192	$2 \cdot 30$
AFI18	0.25	B8Y27 0.20	OA81	0.10	Ve0／201P	0.75	74193	2.80
AF117	0.20	B8Y61 0.50	OA85	0.15	V60／201	0.50	74194	1－72
AF118	0.50	${ }^{\text {B8Y95A }} 0.12$	OA86 OA90	0.15 0.07	${ }^{\mathbf{V} 60 / 201 P}$	0.75 0.10	74195	1.44
AF19	0.80	${ }^{\text {BRY }}$ B $102 / 500 \mathrm{R}$	OA91	0.07	XA101	0.10 0.28	74196	1.58
AF194	0.80	BT102／500R．75	OA95	0.07	XA151	0.15	74197	1.68
AF186	0	BTY42 0．02	OA200	0.08	X A 15.2	0.15	74198	8.16
${ }_{4}^{4} 1227$	0.80	BTY79／100R	OA202	0.10	XA161	0.25	74199	2.88
AP199	0.85	0.75	OA210	0.20	XA162	0.25		
$4{ }^{1 / 78}$	0.55	BTY79／400R	OAP11	0.25 0.50	XB101	0.48	Plug in	ckets
AF179	0.65	HY100 $\quad \begin{aligned} & 1.10 \\ & 0.15\end{aligned}$	OAZ200	0.48	X B 102	0.80	－14 pin prof	
AF180	0.55	BY126 0．14	OAZz02	0.45	X X 103	0.85	14 pin	0.15
AFI8＇	0.40	BY127 0.15	0Azz03	0.45	XB113	0.80	16 pin Dl	
AFY19	1.18	BY182 0.85	OAZE04	0.48	XB121	0.4		0.1

[^1]Priees correel
when going to press．

MAPLIN ELECTRONIC SUPPLIES

ORGAN BUILDERS

Keyboards: High quality adjusiable type Sloping front 49 -note C to $C, f 14 \cdot 35$ Contact blocks GB-2 (2 make contacts). 19p Palladium earth bar per octave length. 15p. Stop tabs rocker type not engraved (white.
red. grey or black) with DPD'T switch. 49p. red. grey or black) with DPD' switch. 49p.
Goid-clad phosphor-bronze contact wire per Gold-clad phosphor-bronze contact wire per yard. $\mathbf{2 S p}_{\text {p }}$.

BASIC ORGAN CIRCUIT

Leaflet MES $\$ 1$ shows a complete circuit for a basic fulty polyphonic organ. Send only 15 p for leaflet and start building now! REMEMBER-when you have buitt this organ you uill later be able to use the same top quame compone the facilities you want. V'atch our ads for details

REVERBERATION UNIT

Enhances the sound of any electronic musical instrument. Ready built spring line driver module suitable for use with almos
Two types of spring line avallable:
Short line, $83-05$.
S. A.E. please for details Leaflet MES 24

CAPACITORS

Sub-miniature
Axial lead electrolytic Mid V Price Mfd V Price $\begin{array}{ll}1 & 63 \\ 1563\end{array}$

 $\begin{array}{ll}\text { 8p } & 68 \\ 8 p & 68 \\ 6 p & 68 \\ 6 p & 100 \\ 8 p & 150 \\ 6 p & 220 \\ 6 p & 220 \\ 8 p & 220 \\ 6 p & 330 \\ 6 p & 330 \\ 6 p & 330 \\ 6 p & 330\end{array}$ 6.36 p
16 p 166 p $\begin{array}{ll}63 & 63 \\ 0 & 10\end{array}$ $106 p$
25
$6 p$ -
 $M 4 d$

470 V Price $\begin{array}{lr}10 & 10 \\ 70 & 25\end{array}$ | Price |
| :---: |
| 6p |

MEA announce the very jateat development in organ circultry. THE DMO2
13 Master Frequenclee on ONE tiny circult board. LOOK AT THESE AMAZING ADVANTAGES W 13 frequencies from C8 to C9. t Each frequency digitilly derived from single b.f. master ogcillator-
 DRIFTS! A External control alow: Inatant tune-ap to other musicians. \& Outputs will directly drive most types of dividera Including the 8AJIl10. H And each out put can alao be used asadirect tone source. thari-
able DEPTH AND RATE tremulant optlonal extra. - Gold-plated plug-in edge connezion. + Complete Abre glass board (including tremulant if required) ONLY 3.7 in . $\times 4.5 \mathrm{in}$. Very low power consumption.

+ EXTREMELYECONOMICAL | \boldsymbol{t} B.a.e. plesse FRICE. t Ready built, tested for full technical and full g guaranteed. DMO2T (with tremulant) ONLY E14.25.
DMO2 (wlthout tremulant) 21225.
details.
weicome.
Sajlio 7-stage frequency divider in one 14 pin DIL packsge. slae or square wave input alowa operation from almont any type of master oncillator including the
DMO2 (when 97 notes are available). Square wave outputs may be moditied to sam-tooth by the addition of a few components. SAJ110: 22-63 each OR special price for pack of 12 ; 25.00 . B.a.e. please for data sheet.

PLUGS AND SOCEETS

miv plugs

 Divelugs2 pin (l flat ${ }_{3}^{2} \mathrm{pin}$

YSAME
${ }^{\text {© }}$ DAY
SERGVICE

P.E. SOUND SYNTHESISER

fthis pro

special 1.C.'s right down to the nuts, bolts and spacers for mounting the Veroboards
Send S.A.E now for our detailed price lists

E.T.I. SYNTHESISER

We stock all the parts for the "Electronics Today International ynthesiser including all the P.C.B.'s required and all the metalwork includin
Some of the circuits in this brilliant design are entirely original Inde pendent authoritative opinions agree the E.T.I. International synthe siser is lechnically soperior io prachically all synthe sisers
Saailable today

WE KNOW YOU NEED IT!
The MES 1974

POTENTIOMETERS

OMNIUM GATHERUM

Pp 3. 6. etc. battery clip dual min. 9p.
ppi. 4. etc battery clip separate per pair 6 p . Pair crocodile clips. I red I black insulated
sleeve 10p.
Solder Multicore 22 s.w. g. 10 metres 25 p
Silico Silicone grease in special dispenser 21 ml 54 p . Terminal Block 12-way 5 A 14 p. Probe clips spring loaded per pair 30p.
Panel fuse holders 20mm 20p; $1+$ in 35 p .

Tranaformers

LT700 min, output transformer Pri, 2 kg Sec $5 \Omega 200 \mathrm{~mW} 50 \mathrm{D}$.
 Sire: Both approx $30 \times 27 \times 25 \mathrm{~mm}$
Mn. Maina Transformer
Size $46 \times 31 \times 38 \mathrm{~mm}$.
$012 \mathrm{~V} 250 \mathrm{~mA} \quad 0-12 \mathrm{~V} 250 \mathrm{~mA}$ \& $1 \cdot 3 \mathrm{~m}$.
Melns Transtormer MT 3AT
Pri. $200-220-240 \mathrm{~V} \quad \mathrm{Sec}$
1A $£ 3.31$.
Malns Trendormer MT206AT
Pri. $200-220-240 \mathrm{~V}$
$0-1 \leq-20 \mathrm{~V}$ 1A $\mathrm{f3} 88$.
Hook-up wire, 7 strand 0.2 mm PVC covered finned copper wire for light general connexions up to 1.4 A 11 colours black blue hrown. green. grey. orange pink. red. viole1. White, yellow 10 metres of any one colour 20p. Pa
of 11 (of each colour) 10 m . coils $\kappa 2.05$. Single core screened sp per metre.
Twin individually screened $104 p$ per metre. Heht qualty single screened so ρ 100p F per metre. ideal for high grade audio connexions 15tp per metre
Mains 3 -core sub-miniature IA black PVC covered 19 strand 0.1 mm per conductor $7 \frac{1}{2} \mathrm{p}$

Rotary miniature carbon track $\boldsymbol{k}^{\prime \prime}$ apinite
 as above 33 p

PREGETS

Vub-miniature 0.1 W
Vert or Horiz
$100,250,500,1 \mathrm{k}$
$2.5 \mathrm{k}, ~ 8 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$,
$80 \mathrm{k}, ~$
100 k,
250 k
$\begin{array}{ll}80 \mathrm{k}, & 100 \mathrm{k}, \\ 500 \mathrm{k}, & 250 \mathrm{k}, \\ 8 \mathrm{~m} & 8\end{array}$

RESISTORS

Carbon Film \ddagger W $5 \% 1 \Omega$ to $1 \mathrm{M} ; 10 \% 12 \mathrm{M}$ to 10 M E12
Carbon FIIm iW $5 \% 1 \Omega$ to $10 \Omega: 10 \%$ 1.2M to $10 M \quad E 12$ $\begin{array}{cc}\text { Carbon Fitm tW } & 3 \% \\ \text { Carbon Film iw } \\ 5 \% & 10 \Omega \text { to } 910 \mathrm{k}\end{array}$ Carbon Film 1W 5% 10 Ω to 10M
Metal Oxide IW 2% 10 Ω to 1M Wirewound 2tW $10 \% 0220 \mathrm{hms}$ to 0.470 hm Wirewound 21 W 5% lohm to 270 ohm
E12 values 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 08, 82 arid decadea E24 valuen 11. 13. 16. $20.24,30,36,43,31,82,75,91$ and decade:

'SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR Type SS15. These tine motors are easiling and stop	Ultra PRECISION CENTRIFUGAL BLOWER by Air Control Ltd \qquad heavy cast alloy cass. 2.300 r . a.c. Very powertut and silen Limited number only EO.95. P (20.95. P. \&	
	MAIS	
NORPLEX Fibre-glass copper-clad laminate Finos! qualty opoxy esin base Heat resistant, ideal for P.C.s Size: $12^{-1} \times$ Singie-sided Copper with inlckness of h", $3 / 64^{\prime \prime}$, ${ }^{3}$ \qquad	and	
	OPEN FRAME shaded pole GEARED MOTORS	ALL PRICES INCLUDE V.A.T. Whilst we welcome official orders from established com panies and Educational Depart ments, it is no longer practical to invoice goods under 55 . Therefore, please remit cash with orders below this amount
ELECTRO-TECH components LT		

IP
 IL.P.t.testronestes

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono hybrid premplifier. ideally sulted for both mono and stereo applications. Internally the device consists of two high quality amplifiers-the first contains frequency equalisation and gain correction. while the second caters for tone control and balance
TECHNICAL SPECIFICATION
Inpute: Magnetic Pick-up 3mV RIAA: Ceramic Fick-up 30 mV . Microphone 90 mV . Tuner 100 mV : Auxillary $3-100 \mathrm{mV}$, Main output odb 10.775 V RMS . Actlve Jone controls: Treble $\pm 12 \mathrm{db}$ at 10 kHz ; Bass $\pm 12 \mathrm{db}$ at 100 Hz . Distortion: 0.5% at 1 kHz Signal/Nolee Ratlo: 68 db . Overload Capa. bllity: 40 db on most sensitive input. Supply Voltage: $\pm 16-25 \mathrm{~V}$

The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity meatsink herincorporating its own high conductivity healsink herare provided input output, power lines and earth.

TECHNICAL SPECIFICATION
Ouiput Power: 25W RMS into $8 k \Omega$. Load Impedance 4-16k Ω. Input Sensitivity $0 d b$ (0.775 V RMS). Input Impadance: 4%. Frequency Responee: $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$. Suppty Voltage $\pm 25 \mathrm{~V}$ Size: $105 \times 50 \times 25 \mathrm{~mm}$
PRICE 15.98

+ 48p VAT P. \& P. free

The PSU50 can be ueed for either mono or atereo systeme.
TECHNICAL SPECIFICATIONS
Output voltage: $\pm \mathbf{2 5 V}$. Input voltege: $\mathbf{2 1 0 - 2 4 0 V}$. Size: L. 70 D. $90 . \mathrm{H} .60 \mathrm{~mm}$.

PRIGE\&ER $\begin{aligned} & \text { + } 40 p \text { VAT } \\ & \text { P. \&P free }\end{aligned}$

ONA BUDGET

PUSH BUTTONCAR RADIO KIT

Technical specification:
(1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth.
(2) Integrated circuit output stage, pre-built three stage IF Module.
Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands.
Size chassis 7" wide, 2" high and $4 \frac{5}{16}$ " deep approx
Speaker including baffle and fixing strip $\mathbf{f 1 . 6 5 + 2 3 p . p \& p}$. Car Aerial Recommended - fully retractable and locking f1.37+20p. postage \& packing

NO SOLDERING REQURED!

NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO

Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly.
Fine tuning push button mechanism is fully built and tested to mate with printed circuit board.
Car Radio Kit $\mathbf{f 7 . 7 0 + 5 5 p p \& p}$
The Tourist I Kit for the experienced constructor If you can solder on a printed circuit board you can build this model. Same technical specification as Tourist II
Price $\mathbf{f 6 . 6 0 + 5 5 p p} \mathrm{p} \mathrm{p}$.

Š*ERED QUALITY SOUND FOR LESSTHAN $\AA 20 \cdot 00$

Stereo 21, easy to assemble audio system kit. No soldering required. Includes:- BSR 3 speed deck, automatic, manual facilities toget ther with ceramic cartridge. Two speakers with cabinets.
Amplifier module. Ready built with control panel, speaker leads and full, easy. to follow assembly instructions. Specifications: For the technically minded:-
Input sensitivity 600 mV . Aux. input sensitivity 120 mV . Power output 2.7 watts per channel. Output impedance $8-15$ ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping discs. Overall Dimensions. Speakers approx. $15 \frac{11}{}{ }^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{11^{\prime \prime}}{} \times 12^{\prime \prime} \times 6^{\prime \prime}$. Complete only $£ 19.95+£ 1.60 \mathrm{p} q \mathrm{p}$. Extras if required. Optional Diamond Stylif1. $\mathbf{£ 1}$. Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance $\mathbf{£ 3 . 8 5}$.

COMPLETE STEREO SYSTEM

System1. $£ 51 \cdot 00$

40 Watt Amplifier. Viscount III - R102 now 20 watts per channel.
System I includes
Viscount III amplifier - volume, bass, treble and balance controls, pfus switches for mono/ stereo on/off function and bass and treble filters. Plus headphone socket. Specification
20 watts per channel into 8 ohms. Total distortion @ 10 W @ $1 \mathrm{kHz} 0 \cdot 1 \%$. P.U. 1 (for ceramic cartridges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within \pm 1dB R.I.A.A. Radio 150 mV into 220K. (Sensitivities given at full power). Tape out facilities : headphone socket, power out 250 mW per channel. Tone contro/s and fifter characteristics. Bass: +12 dB to $-17 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Bass filter: 6 dB per octave cut. Treble control: reble +12dB 10-12dB@15kHz. Treble filter: 12dB per octave. Signal to noise ratio: (all controls at max.) - 58 dB . Crosstalk better than 35 dB on all inputs. Overload characteristics better thàn 26 dB on all inputs. Size apprnx. $13 \frac{33^{\prime \prime}}{} \times 9^{\prime \prime} \times 3 \frac{3}{2}$ ".
Garrard SP 25 Mk III deck with magnetic cartridge, de luxe plinth and hinged cover Two Duo Type II matched speakers - Enclosure size approx. $17 \frac{1}{\frac{1}{2}} \times 10^{\frac{3}{4} "} \times 6^{\prime \prime}$ in simulated teak. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic twester. 10 watts handling. Complete System £51-00

System 2.f69•00

Viscount III a mplifier (As SystemI)
Garrard SP 25 Mk III deck (As System I)
Two Duo Type III matched speakers-Enclosure size approx. $27^{\prime \prime} \times 13^{\prime \prime} \times 11 \frac{1}{2}$ " Finished in teak veneer. Drive units $13^{\prime \prime} \times 8^{\prime \prime}$ bass driver, and two $3^{\prime \prime}$ (approx.) tweeters. 20 watts R.M.S., 8 ohms frequency range -20 Hz to $18,000 \mathrm{~Hz}$.
Complete System $£ 69.00$

PRICES: SYSTEM 1

Viscount III R102 amplifier	$£ 24.20+£ 1 p \& p$
2 Duo Type II speakers	$£ 14.00+£ 2.20 p \& p$
Garrard SP 25 with Mag. cartridge de luxe plinth and hinged cover	$£ 21.00+£ 1.75 p \& p$

total: $\mathbf{f 5 9 . 2 0}$
Available complete for only:
$\mathbf{5 5 1 - 0 0}+\mathbf{5 3 . 5 0 p \& p}$

PRICES : SYSTEM 2
Viscount III R102
amplifier
$24.20+\mathrm{f} 1 \mathrm{p}$ \& p
2 Duo Type III speakers $£ 39.00+£ 4.00 p \& p$
Garrard SP 25 with
Mag. cartridge
de luxe plinth
and hinged cover
$£ 21.00+\mathbf{£ 1 . 7 5 p} \% p$
total: $\mathrm{f84} .20$
Available complete for only:
$\mathbf{f 6 9 . 0 0}+\mathbf{f 4 . 0 0 p \& p}$

EMI SPEAKERS AT FANTASTIC REDUCTIONS

20 WATT SPEAKER SYSTEM

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ (approx) eliptical woofer unit with a $8^{\prime \prime} \times 5^{\prime \prime}$ (approx.) mid range unit incorporating parasitic tweeter and crossover components.
Technical Specification: Bass Unit
Flux density-100 K. speech coil-1 $\frac{1}{2}$ Cone, Triple laminated paper with P.V.C. surround.

Mid Range Unit
Flux density-33K, speach coil-1" with parasitic tweeter
Power Handling
20 watts R.M.S., impedance - 8 ohms, Frequency response - 20 Hz to $18,000 \mathrm{~Hz}$.

OUR PRICE

E6.60. Complete +90 p p 8 p .

15" 14A/780 BASS UNIT
Bass unit on a rigid diecast chassis.
Superior cone material hand les up to 50 watts RMS, and is treated to give a smooth frequency response. Resonance 30 Hz . flux density 360.000 Maxwells. Impedance at 1 kHz is 8 ohms. $3^{\text {" }}$ voice coil.
Recommended retail price $£ 40 \cdot 80$. Special Offer OUR PRICE $£ 18.70+\mathbf{f 1} 50$ p\&p OUR PRICE $£ 19.50+\mathbf{f 1} \cdot 50$ p\&p

DO NOT SEND YOUR CARD

Just write your order giving your credit card number

0
Mail orders to Acton. Terms C.W.O. All enquires Stamped Addressed Envelope. Goods not despatched outside U.K.

Leaflets available for all items listed thus *
Send stamped addressed envelope.

Radio and TV Components (Acton) Ltd.

NOW AVAILABLE IN THE U.K! CHIN A GL|A

CORTINA MINOR
 33 RANGE POCKET MULTIMETER

- SENSITIVITY 20,000 RIVOLT (D.C.), A,000 /VOLT (A.C.)
- ROBUSTESIC. VOLTS O- 100 mV I 1.5 V SV ISV SOV ISOV $500 \mathrm{~V}, 1,500 \mathrm{~V}$. D.C. CURRENT $0-50 \mu \mathrm{~A}, 15 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}$ 2.5 A . A.C. VOLTS, $0-7.5 \mathrm{~V}, 25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}$, 750 V , $1,500 \mathrm{~V}$, A.C. CURRENT $0-25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 \mathrm{~A}, 12.5 \mathrm{~A}$. dB RANGES, -10 to +69 . AF VOLT'S RANGES 0-1,500V. RESIST ANCE RANGES IOkB, IOMO F.S.D. CAPACITANCE RANGES 100μ F. IF F.S.D.
- ACCURACY-RESISTANCE, D.C. VOLTAGE AND - RESISTANCE RANGES POWERED BY INTERNAL
- RESISTANC
- COMPACT SIZE $: 150 \times 85 \times 40 \mathrm{~mm} .350 \mathrm{gr}$.
- CLEARLIY CALIBRATED DIAL WITH ANTI-PARALLAX
- PROFESSIONAL QUALITY COMPONENTS EMPLOYED THROUGHOUT.

NTEED FOR 12 MONTHS.

- FULLY GUARANTEED AND SPARES FACILITIES
- AFTER SALES SERVICE AND SPARES FACILITIES.

SUPPLIED WI CASE TWO HIGHLY INSULATED TEST CARRYING CASE, TWO HIGHLY INSULATED TEST LEADS AND INSTRUCTION BOOKLET.

- SPECIAL 3OKV PROBE FOR D.C. MEASUREMENT AVAIL-
ABLE AS AN OPTIONAL EXTRA.

METER PRICE $£ 15 \cdot 40$ ($p \& p$ 80p) PROBE $£ 8.80$ inclusive of V.A.T. for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :-

CHINAGLIA (U.K.) LIMITED

trade enouiries welcomed

BEGINNER'S GUIDE TO ELECTRONICS

by Squires
Price $£ 2 \cdot 10$

ELECTRONIC SECURITY SYSTEMS

 UNDERSTANDING SOLID STATE ELECTRONICS by Texas. Price $£ 1 \cdot 30$ TELEVISION ENGINEERS POCKET BOOK by P. J. Goldrick. Price $£ 2.70$ HANDBOOK OF IC CIRCUIT PRO. ECTS byJ. Ashe. Price El. 60 TAANSISTOR AUDIO AND RADIO TEST EQUIPMENT FOR THE RADIO AMATEUR by Gibson. Price $£ 2$ HOW TO USE INTEGAATED CIRCUIT by J. W. Sereater. Price \&1.60. MAZDA BOOK OF PAL RECEIVER HIGH FIDELITY DESIGNS by Wireless HIGH FIDELITY DESIGNS by WirelessWorld. ELECTRONIC ORGAN SERVICING GUIDE by R. G. Middleton. Price ©2.45.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Sacurday 1 p.m.

CJL PRICES INCLUDE P\&P AND V.A.t.

DCOMBINATION TRY \& MITRE SQUARE

(Rabone Chesterman), Cabinet/chassis work, etc. One tool combining, Try and Mitre Square. Depth, Height and Marking Guages. $300 \mathrm{~mm} / 12$ in Rule. Spirit Level/Plumb and Steel Scriber.
THAND DNILL (Leytool), Compact and beautifully balanced drill. Accurate $5 / 16^{\prime \prime}$ (8 mm) capacity self centring chuck-alf gears precision cut and totally enclosed. Self lubricating bearings and ball thrust race.

INTEGRATED CIRCUITS

IVOLTAGE REGULATOR (Fairchild) UA7805 IVOLTAGE REGULATOR (Signetics) NE550A DAUDIO POWER AMPLIFIER(National) LM380 [A.M.RADIO RECEIVER(RCA) DF.M. STEREO DECODER (Motorola) II/C TIMER (Signetics) or multiple leads to the A.C. mains. Built-in safety switch, neon light and 13A fuse, Ideal for production, test, equipment demonstrations,etc. £3.20 CLOCKFLEX RULE (Rabone Chesterman), $3 \mathrm{~m} / 10 \mathrm{ft}$ precision rule .Easy to read, $13 \mathrm{~mm} / \mathrm{h}$ in wide metric/imperial steel tape. Catch mechanism locks the blade anywhere along its length-power return. \qquad $\frac{10.93}{220-}$ 240 V Very low leak curent canhot had nit delicate equipment. Fitted long life $1 / 8$ "bit. Interchangeable $3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$ bits available.
£1. 85 $\square 3 / 32^{\prime \prime}$ bit E0. $38 \quad \square 3 / 16$ "bit £0. 38

DElement 50.95 \square SOLDERING IRON STAND (Antex), Model ST3. ᄃ0.90 Please tick box. Crossed cheque/P. O.for £. enclosed NAME ADORESS

CJL LTD. RO. BOX 34, CANTERBURY, KENT.

forfast,easy reliable soldering

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

IDEAL FOR HOME CONSTRUCTORS

Size 1 cartons in 40/60, 60/40 and Savbit alloys in 7 gauges 46p

Size 12 REEL for Service Engineers and Electricians. 18 swg Savbit alloy, $£ 1$ - 46

BIB WIRE STRIPPER AND CUTTER

Deluxe Model 9 Automatic opening spring, locking catch, plastic-covered handles. Case hardened and precision ground. Adjusts to most wire sizes. Cuts and strips flex, splits plastic twin flex. 90p

[^2]
PHONOSONICS

SOUND-TO-LIGHT
The ever-popular AURORA-4 or 8 channels each responding to a different sound frequency and controlling its own hight. Can be used with most audio and a tascinating visual display for the home
channel component set (excl thyristors) 8 channel component set (excl. thyristors) PCB tor 4 frequency channels
PCB for power supply and 8 lamp drivers
511.49

CCTV CAMERA
 Details in List

VOICE OPERATED FADER

For automatically reducing music volume dufing home-movie shows Component set. inci PCB

- 95

GEMINI 30W STEREO AMPLIFIER An exceptionally high quality Stereo Amplifier system.
specifications for which are shown in detall in our list. together with semiconductor requirements

Wain Amplifier:

Set of resistors capacitors and presets
Stereo printed circuit board
Pre-Amplifler:
Sets of resis
Sets of resistors. capacitors. potentiometers
Standard Tolerance Set
Superior Tolerance Set
Stereo PCB (as Published)
Aegulated Power Supply
Set of resistors, capacitors and prese printed circuit board

HI-FI TAPE LINK

Designed for use with reasonable quality tape decks. this high performance pre-amp includes record. playback and metering curcuits

Stereo component set (excl panel meter)
222.05
$\mathbf{~} 13.31$

Mono component set (excl panel meter)
Power supply component sei
Stereo main PCB
Stereo sub-as sembly PCB
ع10.57
516.04
52.20

TAPE-NOISE LIMITER
Very effective circutt for reducing the hiss found in mos: tape recordings

Component set (incl PCB)
Regulated power supply (including printed circuit board)
E.2. 30
53.71

PROJECT O4

Multi-system Quadraphonic Decoder	
Decoder component set	$£ 13.74$
Power supply components	$£ 3.22$
Set of PCBs	$\Sigma 2.60$

Power supply components
Set of PCBs

SEMICONDUCTOR TESTER

Essential test equipment for the enterprising home
constructor
Set of resistors. capacitors. semiconductors. potentiometers makaswitches and sub-assembly

PCB LAYOUT AND		VAT

CIRCUIT DIAGRAMS SUPPLIED WITH ALL PCBS DESIGNED BY PHONOSONICS

PHASING UNIT
A simple but effective manually controlled unit for introducing the phasing sound into live or recorded music.
Component set (incl PCB)
2.20

SOUND SYNTHESISER
The well-acclaimed and highly versatile Synthesiser The well-acclaimed and highiy vers

Component sets and printed circuit boards Full details in list.

RHYTHM GENERATOR

Programmable for 64.000 phythm patterns from 8 effects crrcuits (high and low oongos bass and snare drums. long and short brushes. blocks and cymbal), and with variable time signatures
Tempo, Timing and Logle Circult Component sel (excl switches)
17.25
82.30 Mixer, Pre-mpand anfects Circult
Component set
Comp (illustrated)
Monltor Amplifior
Component set and PCB
Power Supply
Component set and PC
E2. 67
[5.65

AUDIO MIL LIVOLTMETER
Wide-ranges and good accuracy Component
set (excl meter)

ULTRASONIC TRANSMITTER-RECEIVER
A highly sensitive and long range invisible beam
Companent set with PCBs but excluding transaucers
. P.
Add 18 p to all orders

SOUND BENDER

mulit-purpose sound controller. The functions of which include envelope shaper, tremolo, voice operated fader automatic fader and trequency doubler

Component set Printed circuit board

REVERBERATION UNIT

A high-quality unit having microphone and line inpui pe-amps, and providing full control over reverberation level

Component set (excl spring unit)
E .44
E .40

MINISONIC
 Details in List

8W AMPLIFIER

A moderately powered amplitier of more than average performance

Main Amplifier

Mono component set
Mono printed circuit board $\quad \begin{aligned} & \text { 28.36 }\end{aligned}$
Pre-Amplitier
Mono component set
tereo component set
tereo PCB
Component set

BIOLOGICAL AMPLIFIER

Mult-function circuits that with the use of other external equipment. can serve as lie detector, alphaphone. cardiophone. etc.
Pre-Ampilfier Module
Component set and PCB
53.48
asic Output Circults
ombined component set with PCBs. for alpha
hone. cardiophone, requency meter and visua
Audlo Ampliller Module
24-96
Type PCT
55.20

PHOTOPRINT PROCESS CONTROL
For colour and \mathbf{B} \& W . an indespensible dark-room unit or finding exposure, controling enlarger timing. and stabilising mains voltage
Component set (excl meter)
58.35
51.60

ENLARGER EXPOSURE
METER AND THERMOMETER
Dual-purpose dark-room unit with good accuracy
Component set with PCB. but excluding meter $\quad \mathbf{4 - 0 0}$
WIND AND RAIN UNIT
arounds controlled unit for producing the above-named sounds
Component set incl PCB
12.40

PHONOSONICS, DEPT. PE2N, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW MAIL ORDER ONLY

SUPERSOUND 13 HI-FI MONO amplitier components Brand new Somponent.s throughout. blus plus 2 power out-put transistorsin push-pull
Full wave tion. Output approz13 watta r.m.s. into ohms Frequency 3 db . Fully integrated
pre-amplifier stage with Treble cut controls. Suitable for 8 -15 ohn speakers Input for ceramic or erystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready huilt and tested, with knobs, escutcheon panel, input and output plugs. Overall size $3^{* \prime}$ high $\times 6^{\circ}$ wide
AC $200 / 250 \mathrm{~V}$. PRICE $£ 11.80$. P. \& 501

Galve line-up:-2 \times Hoblhing with negligible hum as rectifier. Two tual potentioncters are provided for bass and treble control, giring bass aml treble boost and right Aanal channe control is used. Balance of the lett and rate 'Baldnce' control fittel at the rear of the chassis output of 4 watts per channel (8 watts mono) for full peak speakers. Full negative feedback in a carefull into 3 ohm circuit, allows high volume levels to be used with calculated diatortion. Eupplied complete with knolis, chassis size 11 "w $\times 4^{*} \mathrm{~d}$. Overall height including valves 5 " Ready built and tested to a high atandard. 210-22. $\mathrm{H} . \mathrm{P}^{2} \mathrm{P}, 50_{\mathrm{H}}$. witched dully amoothed
Fiv. and φ_{x}. and $12 v$, at 1 amp on lead
Hammer facerl output terminals and pilot lamp inticator Suitable for Transistor Radios, Tape Recorilers, Anmpli built and tested. Prily Price $\mathbf{4 4 9 0}$. P. \& P. 35P. VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 04 in. wide. Our price $£ 1 \cdot 10 \mathrm{yd}$. length. P . \& P. 15 p

HARVERSON'S SUPER MONO AMPLIFIER A super quality gramamplltier using a double wound fully
isolated mains transformer, rectifler and FCL8: triode pentole valve as autio anuplifier and power output stage. Impedance 3 ohns. Output approx. 35 watts. Volume and tone controls. Chasais size only 7in. wide $\times 3 \mathrm{in}$. deep $\times 6$ 6in. high overall. AC mains $200 / 240$ v.
Supplied absolutely Brand New cotnpletely wired and tested with good quality uutput transformer $\mathbf{~} 3.78$
BRAND NEW MULTI-RATIO MAINS TRANSFORMERS. Giving 13 alternatives. Primary: 0-210-240
 2 amps folls wave. Hze 3in. long $\times 3$ in. wide $\times 3$ in deep. Price $£ 2.31$. P. \& P. 40 1 .
MAINS TRANSFORMER. For transintor power supplies Pro. 200/240v. Sec. 9-0 9 at 500 mAA . $£ 1-10$. P. \& P. 25 p
Pri. $200 / 240 \mathrm{v}$. Sec. $1^{2} 2-0-12$ at 1 amp. \&l.21. P. \& P. 26 p . Pri. 200/240r. Sec. 12-0-1"? at 1 amp. \&1.21. P. \& P. 26 p
Pri. 200/240v. Sec. 10-0-10 at 2 amp. £1.82. 1'. \& P. 35 p HI-GRADE COPPER LAMINATE BOARDS
$8^{*} \times \mathrm{f}^{*}$. Five for 60p plus 30 p P. $\& \mathbf{P}$.
For personal callers only! Limited number of stereo radlogram chassis, covering LW/MW/FM bands. Mono

GENERAL PORPOSE HIGH STABMLTY TRANSISTOR PRE-AMPLIFIER
For P.U. Tape, mike, Ginitar, etc, and suitable for battery or from H.T line $200 / 300 \mathrm{r}$. Frequency reaponse $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26 dB . Solid encaysulation size $1^{* *} \times 11^{\circ} \times{ }^{*}$. Brand new complete
with instructions. Price 88 p. P. \& P. 15 p .

HANDBOOK OF TRANSISTOR EQUIVS. AND SUBS. A must for servicemen and home constructors. Including many 1000's of British. I'S.A. European and Japanese
transistors. ONLY 40p. Post ofp.
3 Reference Encyclopedias for Electronic Engineers and Designers, covering between thetn transiator characteristic, diode and transistor equivalents. Many thousands
of up to date European types listed. of up to date European types listed.
Diode Equivalent
80 p . Transisto
Diode Equivalenta Tranaiator Characterigtica 21.15
NEW IssUE
NEW ISSUE
Thyristor, Triac, Diac etc. encyclopedias 95p. Post Free. 8 pole 3 way 2 bank low lons Yaxley type awitches I ${ }^{2}$
sections. Standard spindle. 2 switches $840+10 \mathrm{p}$. \& P sections. Standard spindle. 2 swi Friday. 9.30-5 Saturday

Closed Wednesday.

A few minutes fram South Wimble don Tube Station

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Enjoy Stereo Radio at this Fabulous Low Price
Designed and styledto match our $10+10$ amplifier but will suit any other stantard stereo amplifier. The design incorporates the very lateat circuitry
techniques with high-grain, low noise if stages, Automatic frequency control to "lock on" station and prevent Ilift. It stereo Ilecosief for maximum ntereo
separation. I.E.D. for stere) theacon indicator. Nomseparation. I.E.D. for steren heacon indicator. Nom-
inal output of tuner 100 H . Approximatesize 12 m wide inal output of tunet 100 ml . Approxinate size 12 in winde
\times sin deep isy ${ }_{2}^{x}$ in high. Supplied realy built, fully Price $\mathbf{2 1} \mathbf{1 6 0}$. Post and Packing 50p.

STEREO-DECODER SIZE $\mathbf{2}^{\prime \prime} \times 3^{\prime \prime} \times \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$

Ready built. Pre-aligned and tested Sens. $20 \cdot 560 \mathrm{mV}$ for $y-16 \mathrm{~V}$ neg.
earth operation. (an be fitted to almost any FM VIFF rallid or tusier.
Sterew beacon light cals be fltteil Stereo be
required.
atructions (inchasive of himisant tips)
supplied. E 5 pilus 10

PRECISION ENGINEERED PLINTHS
Beautifully constructell in heary gange "Culurcuat" plastic coated steel. Resunance free. Denigued to take
(harrarl $1025,2000,2025 \mathrm{TC}, 200, ~ 1000,200$, 100
 C120. A21 ete. Hlack leatherette tivigh Size ly! x $141^{\circ} \times 3^{\circ}$ high (aplurwx. 7 high, inelading rigid LATEST ACOS GP91/1SC nono compatible cartridge with
 SONOTONE ${ }^{2}$ TAHC COMPATIBLE STEREO CARTR
T/O stylus Diamont Stereo LI ant Sauphire 78.
 Diamond T/O styluw for sterey LP. \&2.76. P. \& P. Itp.
LATEST RONETTE T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stero 78. £1-60. P. de P. 15 LATEST RONETTE T/C MONO COMPATIBLE CART RIDGE for playing EP/LP/78 mono or sterey record QUALITY RECORD PLAYER AMPLIFIER MK. II A top quality record player amplifter employing heavy luty louble wound mains transformer, ECC83. EL84. and rectifier. Separate liass, Treble and Volnme controls Complete with output transforiner watchell for 3 ohn sleaker. Size \quad in widle $\times 3$ in teep \times tinh hig
built and tested. PRICF: $£ 4-91$. P. \& P. 0 p. ALSO AVAHLABLE mounted un hourd with output trangformer and speaker. PRICE £6.20. $^{\prime}$, \& 1 , 60p

HI-FI LOUDSPEAKER SYSTEMS
Beautifully made teak finish enclosure with must attractive Tygan-Vynair front. Size $13^{\prime \prime}$ high $\times 101^{\circ}$
wide $\times 6^{\prime \prime}$ deep. Fitted with E.M.I. Ceramic Magnet wide $\times 6^{\prime \prime}$ deep. Fitted with E.M.I. Ceramic Magnet
$13^{\circ} \times 8^{-}$basa unlt, two H.F. iweeter unith and $13^{\prime \prime} \times 8^{\circ}$ bass untt, two H.F. Iweeter unith and
crossover. Maximun power handling 10 watth. crossoter. Maximum power handling
A vailable 3 or 8 or 15 ohms invedance.

OUR PRICE \&9.l0. Carr. 75 p Cabinet Available Separately $84 \cdot 86$. Carr. 8 .
Also available in 8 ohms with EMI I $3^{*} \times 8^{\circ}$ ba Also a vailable in 8 ohms with EMI $13^{*} \times 8^{\circ}$ bass
speaker with yarasitic tweeter $£ 7.60$. Carr. 701%.

LOUDSPEAKER BARGAINS

Sin. 3 ohm $£ 1-25$, P. dP. 15 p . $\mathrm{F} \times 4$ in. 3 ohm $£ 1-40$, P , \& P
 E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. with high flux ceramic magnet with parasitic tweeter 3,8 or 10 ohm $£ 3 \cdot 50, P$. de P. 30 p .
E.M.I. 13×8 in 3,8 or 15 ohn withtwo and crossover network $\mathbf{4 4}-85, \mathrm{I}^{2}, \& \mathrm{P} .30_{1}$
E.M.I. tweeter. Approx. 3 !" A A ailable 3 or 8 or $1 \overline{5}$ oluns, £1. $25+20 \mathrm{p}, \mathrm{P} \cdot \stackrel{\&}{ } \mathrm{P}$.
BRAND NEW. 12 in . 15 w . H Slyeakers, 3.8 or $1 \bar{J}$ ohms. State which. Current production by well-known British
maker. Now with Hiflux ceramic fer
 P.\& P. 45 p . 12in. "RA" TWIN CONE LOUDSPEAKER, 10 watts "POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $113^{3} \times 14$ if $\times 17^{*}$ deep. Weight $190 z$. Power handling 20W r.m.s. (40 W peak). lmpeusnce 8 ohnt only. Reaponse $401 \mathrm{fz-20kHz} \mathrm{} .\mathrm{Can} \mathrm{be} \mathrm{mounted} \mathrm{on} \mathrm{ceilinga}$. walls, doors, undertables, etc., and used with or withou
thaftle. Senil S.A.E. for full details. Only £6-48 each.

SPECIAL BARGAIN OFFER
imited number of BSR C123 Auto Changer De Luye with lightweight tubular arm and stereo cartridge
Brand new, ONLY $27.86+$ p. $\&$ p. 60 p .

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

A teally Hrat-claws Hi-Fi Stereo Amplitier Kit. Lises I ransistors including Silicon Transistors in the flrst Aty ctages int each chanmel restinng in even hower home Bass, Treble and two Vulume Controls. Suitable for use with Ceralinic or Crystal cartridgex. Viry simple to monify to suit magnetic cartrdge-ingtructions included Output stage for any sueakers frombto nonns. Compact design, all parts supplien molnding drilled metal work high quality resdy trilled printed circuit boards "itiz component ituentification clearly marked, smart brushed anodigen ahminium front janel with matching knobs wire. solder, mits, boits-min extras to buy. simple step y step instructions enable any constructor to build an anplifier to the prowi of. Brief speciflcations: Power quency respumae $3,1 \mathrm{~B}$ i $2-30,000 \mathrm{~Hz}$ Sensitivity: better
 $12-1 \bar{u}, 000 \mathrm{I} / \mathrm{z}$. Bass, buost a pprox to 12 dits . Treble cut approx.
main amp. Fower requirements $3 \overline{3}, ~ a t ~$
Overallsize 10

 Magnetic input compurents 3 多 CABINET £3.46 F \& \& ${ }^{40 \mathrm{p}}$
(Post fret figl wins phrchasen at same tme)
Also avallable realy built abll tested $\mathbf{£ 2 4} \mathbf{- 6 0}$. Pust free Note: The abore amplifier is suitable fur feeding two mono and willuen propide mixing and fading facilities for med

3-VALVE AUDIO AMPLIFIER HA34 ME II hesignert for Ht-Fireproduc
tion of recurds. A.C. Maln operation. Ready buile on
plated heavy gauge metal
 +1"h. Incorporates ECC83
ELS4, EZ80 valves. Heavy ELL84, EZ80 valves. Heavy
elnty, Houble wumd mains etuty, houble "vand mains.
transformer and out put trans. former matclied for 3 ohn speaker. Beparate vulutue control and now with huproved wut range tone controls giving bass and treble ift Front panel can he letached and leads extended for remote mounking of curtrils. Conplete with knobs, valves, ete. wired and tested for unly e5.80. P. \& P. P $4 \bar{p}$
HSE "FOUR" AMPLIFIER KIT. Similar in appearance w"anced circuitry Complete et of parta etc $£ 4.92$ 10/14 WATT HI-EI AMPLIFIER KIT A stylishly finished with an output of EL84s in wush-pull EL84s in push-pull, siper reprosuction
of both nuaic ally speech, with negli. gible filin. Separate inputs for mike and gram allow records and announcements
 to follow each ot her Fully shrouded section wound output transformer to mateh $3-10 \Omega$ ni/eaker and independent volumie controls giving goonl lift and cut. Valve line-up 2 EL844, ECC83, giving good lift and cut. Valve line-up? EL84, ECC83,
EF8ti and bZ80 rectifier. Simple instruction booklet op \times \&AE (Free with parta). All parts sold separately ONLY £9.80. P. \& P. 60p. Also available ready built and tester £12.75. P. \& P. 70 p

HI-FI STEREO HEADPHONES

nulfg Wired and fitted with plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching mpenaree 16 ohms. Hasity conserted for Mono.

PRICES INCLUDE VAT AT 8\%
(Please write clearly) PLEASE NOTE: P. \& P.CHARGES QUOTED APPLY TO U.K. ONLY. P \& P. ON OVERSEAS ORDERS

The incredible new 004 ＂MEMORY＂Calculator heralds the beginning of a new era in pocket－size electronics！And，thanks to a special arrangement we have made with the suppliers，you can be among the first In thls country to own one AND SAVE OVER 536 INTO THE BARGAIN！Brilliantly designed！Manufactured to the highest stan dards！So much is incorporated into this in－ credibly compact product of advanced modern science it＇s almost unbelievable！Only $2 \frac{1}{4} \times 4 \frac{1}{2} \times \frac{3}{4}$ in overall approx．So small and lightwelght you can slip it into your pocket or handbag and not know it＇s there at all！Yet wonderful also on desk top． in the office，shop or home．Extremely reliable and robust．Designed to give years of perfect service．Bold．clear visual display reading．Large， well－spaced keys for fast accurate use with utmost ease．The most incredibly complicated catculations completed in a wink with miraculous＂space－age electronic accuracy！Everything worked out with utter simplicity！Accountant．schoolboy or pro－ fessor，the 004 Memory Calculator has a virtually limitless capacity to solve your every mathematical problem！Works off standard batteries cobtainable everywhere）also works off $220 / 250 \mathrm{~V}$ a．c．mains using mains battery eliminator（available as optional extra）．Brand spanking new．Complete with Owner＇s Manual，Quick Reference Guide， simple instructions with working examples，and WRITTEN GUARANTEE，ONLY £15．47，post etc． 50p．Standard battery and speclal protective carry case 50 p extra．Mains battery ellminator £2．50 extra，If required．Buy one，or buy as many as you like！What an investment！At this incredible price you just can＇t lose．You save effe＇s and exer＇s！Send quickly，test on 7 day＇s Mall Order approval from recelpt of goods．Refund it not dellghted．Or call at either store．
－Order by post to Uxbridge Road，or call at either store Callers：ACCESS a BARCLAY CAROS ACCEPTE Callers：ACCESS \＆BARCLAY CAROS ACCEPTEO Bargains galore at both stores
COMMERCIAL TRAVELLERS NOTE Merchandising
oftice at Holbor Oept．PE／38， 164 UXBRIOGEROAO（facing Shepherds Buen Green） SHOPERTUNITIES LTD

ENGINEERS
 号
 YOURSELFFORA 1）
 The BI ET Guide to success ohould

Do you want promotion，a better job，
higher pay？＂New Opportunities＂＇shows you how to get them through a low－cost B．1．E．T．home atudy course．There areno
books to buy and you can pay－as－you－

Tead by every ambito success shous Send for this helpful 76 page FREE book now．No obligation and nobody will cal on you．It could be the best thing you on you．It

```
Practical Radio and 口
```

Practical Radio and 口
Electronics (Tech-
Electronics (Tech-
natron)
natron)
Electronic Enginecr-
Electronic Enginecr-
ing
ing
T\mp@code{ing}
T\mp@code{ing}
ance and Servicing
ance and Servicing
ance and Servicing
ance and Servicing
TV Engineering
TV Engineering
Radio Servicing.Main-
Radio Servicing.Main-
tenance and Repairs

```

C．\＆G．Radio．TV Electronics．Mechanics Radio Amateurs Practical TV
Cobour Television Computer Electronics a C．\＆G．LI Radio TV 口 Servicing cert． Post Master General 口 st \＆2nd class certs． Engineering Practice

C．\＆G．LI Installa tions and Wiring General Electrical Enginecring Enginecring Society of Engineers （Electrical Engineer ing）
Electrical Installations－ and Wiring
C．\＆\(G\) Electrical
Technicians（Primary） C．\＆Telecom munications

To Aldermaston college
To B．I．E．T．Dept BPE95 Reading RG7 4PF
NAME（Bloch Capials please）
ADDRESS


CAUTION MAX VOLTS： 16 rde


Jermyn now offer a stereo decoder module that simply and easily converts your existing mono tuner for stereo reception． Multiplex output equipped tuners simply have the module plug－ ged in，older types need the de－emphasis capacitor disconnected．

The unit will do justice to the most expensive equipment and has the following specification．
Channel separation：Typically 40dB
Distortion：Typically \(0.3 \%\) at 560 mV RMS
Composite input signal
Stereo switching：Automatic with lighted indicator
Power supply： \(10-16\) volts．
Assembled and fully tested with a no－strings 12 month guarantee the module costs an astonishing £6．90．Excluding VAT． （Also available as a Kit at £4．90．）Beat that！
To Jermyn Industries Please rush me \(\square\) Kit \(\overline{(s)} \square\) made up Stereo decoders． 169 Vestry Road I enclose cheque／postal order for \(£\)
Sevencaks Kent
BARCIAYCARD
Name
arclaycard
Address
BARCIAYCARD
 Size 13! \(\times 11\) !in
Above motor board 3 in. Below motor bord 2 in. with STEREO and MONO XTAL \(\mathbf{~} 6 \cdot 75\) Post 45p.

PORTABLE PLAYER CABINET Modern design. Black rexine covered. Silver Iront grille.
Padded Lid. Ghrome fittings. Size \(17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}\).

Motor board cut for BS

\section*{}


\section*{R.C.S. DISCO DECK SINGLE RECORD PLAYER}

Fitted with auto stop. Stereo mono cartridge. Baseplate. Size 11 in \(\times 8!\mathrm{m}\). Turntable. Size 7in diameter. A; mains. \(200,250 \mathrm{~V}\) motor has a se parate winding 14 volt to power small ampliter. Three apeeds. Playsall records.

SOLID MAHOGANY PLINTH
With P.V.C. Cover. Cut out for most B.S.R. or Ga
\(149 \times 7: \mathrm{in}\) \(€ 5 \cdot 95\) Post 45p
COMPACT PORTABLE STEREO HI-FI clipa size loudspearers \(13, \times 10 \times\) inn. Player unit overall size only \(13!\times 10 \times 8!\) in., 3 watts per channel. plays all records 33 r.p.m.. \(45 \mathrm{r} . \mathrm{p} . \mathrm{m}\). Separate volume and tone


\section*{SPECIAL OFFER! \\ SMITH'S CLOCKWORK \\ 15 AMP TIME SWITCH 0 TO 60 MINUTES}
ingle pole two-way Surlace mounting with fixing screws. Will replace existing
warage, utomatic anti-burglar lights, etc. Variable knob Turn on or off at iull or intermediate settings. Fully insulated. Makers' last list price £4-50. Brand new and fully guaranteed. OUR PRICE \(\mathbb{E} 1.95\) Post 25p

\section*{BLANK ALUMINIOM CHASSIS. 18 s.W.g. 2tin gide} \(6 \times 4\) in \(45 p ; 8 \times 6\) in \(53 p ; 10 \times 7\) in \(65 \mathrm{p}: 12 \times 8\) in \(85 p\)
 ALUMINIUM BOXES \(3 \times 3 \times 3 \mathrm{in} 60 \mathrm{p} ; 4 \times 4 \times 4 \mathrm{in} 70 \mathrm{p}\)
 ALUMINIUM PANELS 18 s.W.R. \(6 \times 4 i n 12 p: 8 \times 6\) in 19 p
\(14 \times 3\) in \(20 \mathrm{p}: 10 \times 7 \mathrm{in} 24 \mathrm{p}: 12 \times \sin 25 \mathrm{p}: 12 \times 8\) in 34 p \(14 \times \operatorname{3in} 20 p: 10 \times 7\) in \(24 \mathrm{p}: 12 \times \sin 25 p: 12 \times 8 i n 34 \mathrm{p}\)
\(16 \times 6 \ln 34 \mathrm{p}: 14 \times 9\) in \(40 \mathrm{p}: 12 \times 12 \mathrm{in} 47 \mathrm{p}: 16 \times 10 \mathrm{in} 80 \mathrm{p}\) PAXOLIN PANEL \(10 \times 8\) in 20 p .
1 P inch DIAMETER WAVECHANGE SWITCHES, 45 pea. 2 p. 2-way, or \& p. 6-way, or 3 p. 4-way.
TOGGLE SWITCHES. sp. 20p: dp. 25 p : dp. dt. 30 p
Sub-miniature, sp. 33p; dp. dt. 50 p .
BRITISH FM/VHF TUNING HEART 88 to 108 Mc , British made. 2 Tranaistors ready aligned requires \(10.7 \mathrm{Mc} / \mathrm{s}\) I.F. Complete with tuning Rang.
Connections supplied but some technical experience exemilial. Our price \(£ 3.95\) por 20p SUITABLE I.F. STRIP \(£ 4.85\)

OUR PRICES INCLUDE V.A.T.
R.C.S. STABILISED POWER PACK KITS

All parta and instructions with Zener Diode, Printed Circuit. Bridge Rectiflers and Double Wound Mains Transformer
input \(200 / 240 \mathrm{y}\) a.c. Output voltages available 8 or 9 or 12 input \(200 / 240 \mathrm{~V}\) a.c. Output voltages available 6 or 9 or 12 or 15 or 18 or 20 V d.c. at 100 mA or less
PLEASE STATE VOLTAGE REQUIRED. 2.20 Po Detaila S.A.E. Size \(3 \frac{1}{2} \times 1 \frac{1}{3} \times 1\) in. C.S. GENERAL PURPOSE TRANDIST eal for Mike. Tape, P.O., Guitar, etc. Can be used with Battery \(9-12 \mathrm{~V}\) or H.T. line \(200-300 \mathrm{~V}\) d.c. opetation. Size \(1 \ddagger \times 1 \ddagger \times i \mathrm{in}\). Response \(25 \mathrm{c} / \mathrm{s}\) to \(25 \mathrm{kc} / \mathrm{s}, 26 \mathrm{~dB} \mathrm{ksin}\). For use with valve or tranaistor equipment.
Full instructions supplied. Details S.A.E. \(11 \begin{aligned} & \text { Post } \\ & \text { Lop }\end{aligned}\)
R.C.S. POWER PACK KIT

12 VOLT. 750 mA . Complete with priated \(\mathbf{6 2 . 9 5}\) Post 12 VOLT 300 mA KIT, \(£ 2 \cdot 75\). 9 VOLT 1 AMP KIT, 22.95. NEW TUBULAR ELECTROLYTICS CAN TYPES \(\begin{array}{llllll} & 14 \mathrm{p} & 250 / 25 \mathrm{~V} & 14 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} \\ 2 / 350 \mathrm{~V} & 14 \mathrm{p} \\ 4 / 350 \mathrm{~V} & 14 \mathrm{p} & 500 / 25 \mathrm{~V} & 20 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 35 \mathrm{p}\end{array}\) \(\begin{array}{llllll}4 / 350 \mathrm{~V} & 12 \mathrm{p} & 500 / 25 \mathrm{~V} & 20 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 35 \mathrm{p} \\ 8 / 350 \mathrm{~V} & 22 \mathrm{p} & 1000 / 25 \mathrm{~V} & 35 \mathrm{p} & 32+32 / 450 \mathrm{~V} & 80 \mathrm{p}\end{array}\) \(\begin{array}{lllllll}16 / 450 \mathrm{~V} & 30 \mathrm{p} & 1000 / 50 \mathrm{~V} & 47 \mathrm{p} & 350 & 50 / 325 \mathrm{~V} & 55 \mathrm{p} \\ 32 / 500 \mathrm{~V} & 50 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 22 \mathrm{p} & 16+16+18 / 275 \mathrm{~V} & 45 \mathrm{p}\end{array}\) \(\begin{array}{lllll}32 / 500 \mathrm{~V} & 50 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 22 \mathrm{p} & 16+18+18 / 275 \mathrm{~V} 45 \mathrm{p} \\ 25 / 25 \mathrm{~V} & 10 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 25 \mathrm{p} & 32+32+32 / 350 \mathrm{~V} 65 \mathrm{p}\end{array}\) \(\begin{array}{llllll}25 / 25 \mathrm{~V} & 10 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 25 \mathrm{p} & 32+32+32 / 350 \mathrm{~V} & 65 \mathrm{p} \\ 50 / 50 \mathrm{~V} & 10 \mathrm{p} & 16+18 / 450 \mathrm{~V} & 40 \mathrm{p} & 900 / 350 \mathrm{~V} & 95 \mathrm{p}\end{array}\) \(100 / 25 \mathrm{~V} \quad 10 \mathrm{p} 32+32 / 350 \mathrm{~V} 40 \mathrm{p} \quad 4700 / 63 \mathrm{~V}\)
LOW VOLTAGE ELECTROLYTICS
\(1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}\).
500 mF 12 V 15 p ; 25 V 20 p : 50 V 30 p
2000 mF 6V 25 p ; \(25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}\); 100 V 70
\(2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}\); 50 V 65p.
5000 mF 8V 25p; 12V 42 p ; 25V 75p; 35V 85p; 50 V 95 p . CERAMIC 1pF to \(0.01 \mathrm{mF}, 4 \mathrm{p}\). Silver Mica 2 to \(5000 \mathrm{pF}, 4 \mathrm{p}\).
PAPER \(350 \mathrm{~V}-0.14 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}\). PAPER \(350 \mathrm{~V}-0.14 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}\).
\(500 \mathrm{~V}-0.01 \mathrm{~m}^{2}\) \(500 \mathrm{~V}-0.001\) to \(0.054 \mathrm{p} ; 0.15 \mathrm{sp} ; 0.258 \mathrm{p} ; 0.4725 \mathrm{p}\). TWIN GANG "0-0" motion drive \(365 \mathrm{pF}+365 \mathrm{pF}\) with \(25 \mathrm{pF}+\) Slow motion drive \(365 \mathrm{pF}+365 \mathrm{pF}\) with \(25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}\); SHORT WAVE SINGLE: \(10 \mathrm{pF}, 30 \mathrm{p} ; 25 \mathrm{pF}, 55 \mathrm{p} ; 50 \mathrm{pF}, 55 \mathrm{p}\). SHORTT WAVE SINGLE GANG. Pracision Silver Plated Gancable Tuning Condensers. 100 pF . 50 p each

NEON PANEL INDICATORS 250 V AC/DC. Amber 30 p . RESISTORS. \({ }^{2} \mathrm{~W}, \frac{1}{2} \mathrm{~W}, 1 \mathrm{~W}, 20^{\circ} 1 \mathrm{p}: 2 \mathrm{~W}, 5 \mathrm{p}\). \(10 \Omega\) to 10 M . HIGH STABILITY. \(\frac{9}{3}\) W \(2{ }^{\circ} 010\) ohms to 6 meg., 10 p . Ditto 5 . Preferred values 10 ohms to 10 mes., 4 p . WIRE-WOUND RESISTORS 5 wall, 10 Watt, 15 watt, 10 ohms to 100 K 10 p each: 2 watt, 0.5 ohm to 8.2 ohms 10 p FERRITE ROD \(8 \times\) in \(20 \mathrm{p} .6 \times 3\) in 20 p

\section*{MAINS TRANSFORMERS \(\begin{gathered}\text { ALL PosT } \\ 25 \mathrm{p} \text { each }\end{gathered}\)}

Eagle MT12 \(12-0-12 \mathrm{~V} 50 \mathrm{~mA}\)
\(250-0-25080 \mathrm{~mA}\). \(6-3 \mathrm{~V} 3.5 \mathrm{~A}\)
6.3 V
\(1 A\) or 5 V 2 A \(350-0-35080 \mathrm{~mA} 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}\) or 5 V 2 A \(300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6-3 \mathrm{~V} 4 \mathrm{~A}\) C.T.: 63 V 2 A . MINIATURE \(200 \mathrm{~V} 20 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A} 21 \times 2!\times 2 \mathrm{i}\) 80 p
.82 .50
.83 .00 MIDGET 220V \(45 \mathrm{~mA}, 8.3 \mathrm{~V} 2 \mathrm{~A} 2: \times 2: \times 2 \mathrm{in}\) .82 .50
\(\mathbf{8 3 . 0 0}\)
\(\mathbf{8 4 . 2 5}\) MIDGET 2ROV 45mA, 90 p
\(£ 1.20 \mathrm{p}\) GENERAL PURPOSE LOW VOLTAGE. TapDed outputs at 2 amp . \(3,4,5,6,8,8,10,12,15,18,24\) and 30 V es 300 at 2 amp . \(3,4,5,6,8,9,10,12,15,18,24\) and \(30 \mathrm{~V} £ 3.00\)
\(1 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{E3-00}\) 1 amp. 6, \(8,10,12,16,18,20,24,30,36,40,48,60 £ 3-00\)
2 amp, \(8,8,10,12,16,18,20,24,30,36,40,48,60 £ 4 \cdot 00\) \(5 \mathrm{amp}, 8,8,10,12,18,18,20,24,30,36,40,48,60 \mathrm{zg}-75\) \(12,36,48 \mathrm{~V} 2 \mathrm{amp} .42 .20 ; 20 \mathrm{~V} 3 \mathrm{amp} £ 2.3,5,8,10,13\)
or \(5-0-5 \mathrm{~V}\) 5 amp. \(£ 1-50 ;\) A-0-8V \(500 \mathrm{~mA} 90 \mathrm{p} ; 9 \mathrm{~V} 1 \mathrm{mp}\) or \(5-0-5 \mathrm{~V} 5 \mathrm{amp} .11-50 ;\) A-0-6V \(500 \mathrm{~mA} 90 \mathrm{p} ; 9 \mathrm{~V} 1 \mathrm{amp}\)
\(95 \mathrm{p}: 12 \mathrm{~V} 300 \mathrm{~mA} 75 \mathrm{p} ; 12 \mathrm{~V} 500 \mathrm{~mA} 85 \mathrm{p} ; 12 \mathrm{~V} 750 \mathrm{~mA} 95 \mathrm{p}\). AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150W £2-80; 500W £6-25; 750W £10: \(1000 \mathrm{~W} £ 15\) GHARGER TRANSFORMERS. Input 200/250

 6 or 12 V outputs. \(1!\mathrm{amp} 40 \mathrm{p}: 2 \mathrm{amp} 55 \mathrm{p}: 4 \mathrm{amp} 85 \mathrm{p}\) MAINS ISOLATING TRANSFORMER Primary \(0-110-240 \mathrm{~V}\). Secondary 0 0-240V 3 smps 720 watts. Insulated terminals. Varnish impregnated. Full enclosed in steel case with tixing leet.
Famous make (Value fig) OUR PRICE Cen be used as 800 watt auto tranglormers 240-110

\section*{SET OF 3 MOTORS FOR COLLARO STUDIO 115 VOLT TAPE DECK} €|. 50 Post 50 p
VOLUME CONTROLS 80 ohm Coax 5p yd. Lonk spindles. Midget Size BRITISH AERIALITE 5 K . ohms to 2 Meg . LoG or IN. L/S 20p. D.P. 35p. dge 5 K. S.P. Transiator 25p. AERAXIAL-AIR SPACED 40 yd \(£ 1 \cdot 75\); 60 yd \(£ 2 \cdot 60\) FRINGE LOW LOSS 10 per
Ideal 625 and colour. Wire Wound controls 1 in diam. 3 Watts. 10 ohms to 100 K British Made with long spindles tin dia. 45 p each.
DUAL CONCENTRIC POT 500K LOG AND 500 K LIN D.P. switch. Inner spindle 3 din; outer spiudle 2lin 75 p .
E.M.I. \(13 \frac{1}{2} \times 8\) in.

\section*{SPEAKER SALE!}

\section*{Witb twin tweeters.
And croskover.
10 \(\quad \mathbf{f 4 . 5 0}\)}

15 obm . As illustrated. Post 25 p
With flared tweeter cone and ceramic magnet. 10 watt.
Bass res. \(45-60 \mathrm{c} / \mathrm{s}\). lux \(10,000 \mathrm{gauss}\).
State 3 or 8 or 15 ohm . Post 25p
\(13 \times 8\) in Bass unit 20 watt \(\mathrm{r} u \mathrm{bber}\) cone surroand \(\mathbf{8 5} 50\)
LOUDSPEAKER FRONT GRILLES Teakwood strips mounted on cloth baching, easily glued on to baffe to modernise cabinets.
Size \(18 \pm\) in \(\times 10 \pm i n\).

Or aize 10 !in \(\times 7\) in. \(45 p\)
E.M.I. \(6 \frac{1}{2}\) in. HI-FI WOOFER

8 obm 10 W Large ceramic magnet 8 obm . 10 W . Large ceramic marn Special Rabber con
Frequency response
\(30-12.000 \mathrm{c} / \mathrm{s}\). Ideal P.A
Columns. Hi-Fi Enclosure Systema, etc Suitable Cabinet \(12 \times 8 \times 6 £ 4\) Suitable Tweeter \(£ 2\)


\section*{ELAC CONE TWEETER}

The moving coil diaphragm gives a good radiation pattern to the higher frequencies and a smooth extengion of fotal response
from \(1,000 \mathrm{c} / \mathrm{s}\) to \(18,000 \mathrm{c} / \mathrm{a}\). Size \(31 \mathrm{x} \times\) \(3 \frac{1}{3} \times 2\) in deep. Rating \(10 \mathrm{~W}, 3\) ohm. Crossover \(£ 1-25<1.90\) Post 20 p .

\section*{GOODMANS}

8 in. WOOFER
8 ohm 12 watt. Deep cone. Heavy ceramic magnet. Bass resonance 35 cps . Frequency response \(30-8,000\) cDJ Hi-Fi system.
£ 3.75


\section*{SPECIAL OFFER LOUDSPEAKERS ALL BRAND NEW}

3 ohm, 2in: 2tin; 3!in: 5in
\(8 \mathrm{ohm}, 2 \mathrm{in} ; 2 \mathrm{in}\); \(5 \mathrm{in} \times 3 \mathrm{in}\); 3 in ; \(4 \mathrm{in} ; 5 \mathrm{in}\)
\(15 \mathrm{ohm}, 3 i \mathrm{in} ; 5 \operatorname{jin}: 6 \times 4 \mathrm{in}: 5 \times 3 \mathrm{in} ; 7 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}\). \(25 \mathrm{ohm}, 2!\mathrm{in} ; 3 \mathrm{in} ; 5 \times 3 \mathrm{in} ; 5 \mathrm{in}\).
\(35 \mathrm{ohm}, 3 \mathrm{in} ; 5 \mathrm{in}\).
\(80 \mathrm{ohm}, 2!\mathrm{in} ; 2 \mathrm{in} .120 \mathrm{hm} 3 \mathrm{in}\).
\& \(\left.\right|_{\text {еасн }}\)
LOUDSPEAKERS P.M. 3 OHMS, \(7 \times 4\) in \(£ 1.25\); 8 in \(£ 1.50\) \(8 \times 5 \mathrm{in} £ 1 \cdot 60 ; 8 \mathrm{in} £ 1.75 ; 10 \times 6 \mathrm{in} £ 1 \cdot 90 ; 10 \mathrm{in} 82.50\) RICHARD ALLAN TWIN CONE LOUDSPEAKERS. 8in diameter \(4 W\) £2-50, 10 in diameter 5 W £2.50: Post 25 p . 12 in diameter, 6 W , \(\mathrm{£2} 2.95 ; 3\) or 8 or 15 ohm models.
Horn Horn Tweeteri \(2-18 \mathrm{Kc} / \mathrm{s} .8 \mathrm{~W} 8\) ohm or 15 obm \(82 \cdot 20\),


\section*{R.C.S. 3 WAY CROSSOVER}

Complete with 12 it. twin lead fitted with din speaker plug.
Ready assembled with leads for speahers, basa mid and tweeter. Crossover Irequencies- 950 cps and \(\mathcal{f 1} .95\) \(3,000 \mathrm{cps}\).

VALVE OUTPUT TRANSFORMER 40p.
MIKE TRANSFORMER MU metal 100 D . 21.25
PUSH-PULL VALVE OUTPUT TRANSFORMERS 50 watt..... .... . \(£ 12.50\) 100 watt ... .... \(£ 15.00\)

\section*{ELECTRO MAGNETIC} PENDULUM MECHANISM \(1.5 V\) d.c. operation over 200 hours continuous on SP2 battery, fully adjustable swing and speed. Ideal diaplaya. teaching electro magnetism or for metronome, \(95 \mathrm{P} \begin{aligned} & \text { Post } \\ & \text { strobe, etc. }\end{aligned}\)

\section*{R.C.S. RECORD PLAYER AMPLIFIER}

2 stage triode pentode valve. 3 watts output. Volume on/os and tone controla. Printed circuit
A.C. mains complete and tested. \(\quad \mathbb{4} 50 \begin{aligned} & \text { Post } \\ & 25 p\end{aligned}\) Complete with speaker.

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18 OUTLET BOXES, SURFAGE MOUNTING \(25 p\).
BALLANCED TWIN RIBBON FEEDER 300 ohms, 7p yd. SALA SECK TWIN RIBBON FEEDER 300 ohms, 7 p yd. Chrome Lead Socket 45p. Phono Plugs 7p. Phono Socket 7p JACK PLUGS std. Chrome \(20 \mathrm{p}: 3.5 \mathrm{~mm}\) Chrome 15 p DIN SOCKETS Chassia 3 -pin 10 p : 5 -pin 10p DIN SOCKET8 Lead 3-pin \(18 p\); 5 -pin 25p. DIN PLUGS 3 -pin 25p; 5-pin 25p. VALVE HOLDERS 5p; CERAMIC 10p; CANS 5p. THE PAIR, Post 25p. (Available separately.
Wooler 84.25 ; Tweeter Wooter
e1.90)
Comprising a fine example of a Wooler Magnet, 4402 Gauss 18,000 lines. Aluminium Cone centre to improve middle and tup response. Also the E.M.I. Tweeter 8 lin gutire has a pecial lightweight paper cone and magnet fux 10,000 linez. Crospover condenser and lull instructions supplied. Impedance Standard 80 hmg \(\begin{array}{ll}\text { Usinmum power } \\ \text { Usense } & 35 \text { to } 18,000 \mathrm{eps}\end{array}\) SUITABLE ENCLOSURE \(20 \times 13 \times 9\) in


\section*{ANOTHER R.C.S. BARGAIN !}

ELAC 9 : 5in. HI-FI SPEAKER TYPE 59RN This famous unit now spails ble, 10 watts, 8 ohm. Price \(£ 2.95{ }_{2}^{\text {Past }}\)

\(8^{\prime \prime}\) or \(10^{\prime \prime} \times 6^{\prime \prime}\) ELAC HI-FI SPEAKER

Dual cone platticised roll surround. Large ceramic magnet. \(50-16,000\)
55 cps . Bess resonance
8 55 cps .8 ohm impedsnce.
10 watti.
10in round \(\mathbf{\varepsilon 4}^{2} 50\).
teak veneer hi-fi speaker cabinets Fluted Wood Fronts MODEL "A". \(20 \times 13 \times\) 9in For 12 in, dia. or \(\mathbf{C} \mid 0.50\) Pos 10in speaker. E 10.5075 p MODEL "B". \(16 \times 10 \times 8\) in Por \(13 \times 8 \mathrm{Bin}\). or
8 in. speaker \(\mathbf{6 . 6 0}{ }^{\text {Post }}\) MODEL "B" 2 ditto. Triangular Corner Version.

MODEL " C ". \(16 \times 8 \times 6 \mathrm{in}\).
 LOUDSPEAKER CABINET WADDING 18 in wide, 20 p it.
BARGAIN AM TUNER. Medium Wave.

BARGAIN 4 CHANNEL
BARGAIN CHANNEL TRANSISTOR MONO MIXER. Add mavical to recordings. Will mix Microphone, records, tape and tuner with separate controls into single ontput. 9 volt battery \(<4 \cdot 50\)
opterated. VERSION OF ABOVE e5.95
BARGAIN 3 WATT AMPLIFIER. 4 Transiator
Punh-Pull Ready built with volume, tre ble and
base controls, 18 volt battery operated.


Thes controls, 18 volt battery op
ERASER \& HEAD DEMAGNETISER. Suitable for cassettes, and all sizes of tape reels. A.C. mains \(200 / 250 \mathrm{~V}\). Leaflet S.A.E. \(\quad \leq 3.50 \begin{gathered}\text { Post } \\ 20 \mathrm{p}\end{gathered}\)

\section*{WAFER HEATING ELEMENTS THIN drying spplications in the home, garage, greenhouse
 aize
250 wtt
wit
approx. Printed circuit element enclosed in asbestos fitted with connecting wires. Completely flerible providing safe Black heat. British-made for use in photocopiers and print drying equipment. \\ Ideal for bome handymen and experimenters. Suitable Ior Hesting Pads, Food Warmers, Convector Heaters, etc Must be clamped between two sheets of metal or anbestor,
 airink cupboards. I preventing frozen radiators or acting as oil sump heater Ute in greenhouse for seed raising and plant protection. Invaluable aid for bird houses, incubators, etc., etc. Can be used in series for lower heat. Or in parallel for higher heat applicetions. \\ ONLY 40 P EACH (FOUR FOR \(£ 1 \cdot 50\) ) ALL POST PAID-Discounts for quantity.}

BAKER MAJOR \(12^{\prime \prime}\) £8.50


30-14,500 c/s, 12 in . double cone, wooler and tweeter cone together with a BAKER ceramic magnet assembly having a fux denity of 14,000 gauss snd a total flux of 145,000 Marwello. Bans resonance \(40 \mathrm{c} / \mathrm{s}\) Rated 20 15 ohmi must be stated.

Module kit, \(30-17,000 \mathrm{c} / \mathrm{s}\) with tweeter, crosiover, bafle and inatructions. \(\mathbf{~} \mathbf{1 0} 0.95\) Post Frea

\section*{BAKER}

\section*{"BIG SOUND"} SPEAKERS

Roburtly constructed to atand up to long periods of electronic power. As used by leading groupl. Bass Resonance 55 cpa .

GROUP "25"
\(12 i n 25\) watt
£7.75
3,8 or 15 ohms.
Posi Free
GROUP "35"
\(12 i n 35\) watt
3,8 or 15 ohms.

\section*{£8.50} Post Free
GROUP "50"
\(15 i n .50\) watt
8 or 15 ohma.
50 watt 12 in VERSION \(£ 12.95\)
MAJOR IOO WATT ALL PURPOSE TRANSISTOR
AMPLIFIER
All purpose tranaistoriaed.
Ideal for Groupa, Disco and P.A.
4 inputa speech and music. 4 way mixing. Output \(8 / 15\) ohm a.c. Mains. Separate treble and bass controls. Guaranteed. Detaila S.A.E.


CALLERS ONLY: DE-LUXE 100 WATT AMPLIFIER Cungis. O Wize Dion,
4,8 and 15 ohm Loudspeaker matching.


Q MAX CHASSIS CUTTERS

\section*{A die, punch and Allen Screw} Size: :"


20 Watt 100 ohm Rheoatat 2!in die. Ceramic former acrew terminals !in dia. spindle. 95 p . Post 25 p .
R.C.S. STEREO DECODER

British made. Ready aligned and teated. Complete \(\mathbf{4 . 9 5}\) with instructions. Size \(\operatorname{Bin} \times 2 \mathrm{in}\).

\section*{WEYRAD COILS}
\begin{tabular}{lllr} 
P50/2CC & 40 p & RA2W & 85 p \\
P50/1AC & 60 p & OPT1 & 65 p \\
P50/3CC & 40 p & LFDT4 & 65 p \\
PCA1 & 60 p & Twingang & \(\mathbf{4 1} .10\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline  & \({ }_{\text {Poit }}^{\mathbf{~} 25.25}\) \\
\hline \multirow[t]{3}{*}{E.M.I. GRAM MOTOR 120 V or 240 V a.c. \(2,400 \mathrm{rpm}\). 2-pole 70 mA . Size \(2, \times 2!\times 2!\mathrm{in}\)} & \\
\hline & ¢ \(1 \cdot 00\) \\
\hline & Pont 25p \\
\hline
\end{tabular}

\section*{BAKER HI-FI SPEAKERS \\ HIGH QUALITY-BRITISH MAEE REGENT}

I2in. 15 watts
An inerpenaive unit for the beginner in bigh fidelity and for general purpones. May be used to improve sny Radio, Amplifler, Hi-Fi or Televidion receiver.
Bass Resonance 45 cps Flax Density 12,000 gaus Usel ul response \(45-18,000 \mathrm{cp}\) 3 or 8 or 15 ohm modelis.

\subsection*{67.75}

Post
Free


DE-LUXE Mk II 12in. 15 watts

Especially designed to provide ull range reproduction at ad conomicel cost. Suitable tor use with any high fidelity aystem. Builtoin concentric tweeter cqne.
Basa Remonance
fetul response \(25-16,000 \mathrm{cp}\) 8 or 15 ohms models.
E9.75

\section*{SUPERB}

I2in. 20 watts
A bigh quality loudspezzer, its remartable low cone resonance ensures elear reproduction of the deepest bass. Fitted with a special copper drive sind concentric
tweeter cone resulting in fall range reproduction with range reproduction with upper register. 25 cps \(\begin{array}{ll}\text { Bass Resonance } & \begin{aligned} 25 \mathrm{cps} \\ 16,500 \\ \text { gatugs }\end{aligned}\end{array}\) \(\begin{array}{ll}\text { Flux Density } & 16,500 \text { gauss } \\ \text { Useful response } & 20-17.000 \mathrm{cps}\end{array}\) Useful response \(20-1\)
8 or 15 ohms models.

\section*{£ \(13 \cdot 80\)}
\(\underset{\substack{\text { Poat } \\ \text { reet }}}{ }\)


\section*{AUDITORIUM}

I2in. 25 watts
A full range reproducer for high power, Electric Guitara, public address, multi-spealer syatems, electric organs, Ideal for Hi-Fi and Discotheques.
Bass Resonance 35 cps Flux Denaity 15,000 gaun Uatil reaponie \(25-16,000 \mathrm{cp}\) 8 or 15 obms modela.
£ \(12 \cdot 95\)
\(\underset{\text { Pree }}{\text { Post }}\)


\section*{AUDITORIUM}

15 in 35 watts
A high wattage loudapeaker of exceptional quality with a level renponse to above 8.000 cps . Ideal for Public Address, Discotheques, Electronic instruments and the bome.
Bass Resonance
Flux Density
35cps Uselul reaponse \(20-14,000 \mathrm{cp}\) 8 or 15 ohms models.


Hi-Fi Enclosure Manual contajning 20 plans, deaigna, crossover data and cubic tables. 63p.

CUSTOMERS FREE CAR PARK
OPEN 9.6 p.m. WEDNESDAYS 9-1 p.m., SATURDAYS 9.5 p.m. (Closed for Lunch 1.15-2.30)

\section*{SPECIALISTS 337 whitheorse road - crovoon}


Splashed out? Invested is more the word! It cost me just 98 pence (including packing and postage) and I saved more than that on my first order. And if I take into account the satisfaction l've gained from using such a comprehensive, clearly set out, well illustrated production, I've saved the outlay many times over. Think l'm exaggerating? Why not test it for yourself? The coupon below is just waiting to be filled in and sent off with your cheque or postal order. No need to keep it waiting any longer.

By the way, the catalogue contains 14 free Vouchers, each worth 5 pence when used against orders-so you can soon get the price of the catalogue back anyway, plus \(5 p\) towards the postage!

Over 6,000 items Nearly 2,000 pictures
\(65 p\) plus 33p \begin{tabular}{c} 
Post and \\
PACKING
\end{tabular}

Send off the coupon today. It's your flrst step to solving your component buying problems.

The price of 98 p applies only to customers in the U.K. and to The price of \(98 p\) app
B.F P.O. addresses.


\section*{SONIC SPIN-OFF}

AGREAT and thriving audio industry has been built up based upon the almost universal enjoyment derived from listening to well reproduced music, whatever the brow level. However, just "listening" does not offer the ultimate in pleasure or satisfaction for those of a musically creative mind. To such "actively" inclined persons electronics offers a number of paths for exploration. Experimenting with the composition of electronic music, for example. This particular activity received a tiemendous boost with the arrival of the synthesiser. Coupled with multi-track recording, the synthesiser offers musically inspired adventurers the chance to create original sound and musical patterns with comparative ease-something that would have been beyond their wildest dreams a mere five years ago.

Also worth noting is the fact that active music making is very much part of life for the younger generation. Nol surprisingly among today's younger people is to be found a real awareness of the exciting possibilities of synthesised sound. So the future of this new form of musical art seems well assured.

But synthesisers are generally complex and costly instruments. Thus they have not reached all those hands that are eager to experiment. We certainly know that many of our readers have been intrigued by the P.E. Sound Synthesiser series, although being unable for various reasons to take on the commitment of building this grand assemblage of electronics. What they learnt from these articles must have made them envious of those able to participate in this rapidly developing form of musical art.

The likely occurrence of such thoughts and aspirations did not escape us. So during the latter stages of development of the P.E. Sound Synthesiser consideration was given to the feasibility of a much simpler synthesiser to meet an obvious popular demand. The aim was to produce an instrument that would be relatively inexpensive and not unduly complicated circuit-wise, but that would embody certain essential features to make it sufficiently versatile for serious experimental work in the fields of music composition and sound effects production, and also to serve as a useful teaching aid.

The outcome of this endeavour has been a great success and it is now revealed for all to see and, of course, to build for themselves. The P.E. Minisonic is unique and unprecedented, the first miniature battery operated instiument fully warranting inclusion in the ranks of synthesisers and in all truth a first class constructor's item. Incidentally, critics of the larger kind of project might like to ponder the fact that the Minisonic is a practical example of spin-off from a much larger and more complex design. This exciting compact instrument is a direct beneficiary of the development work expended on the P.E. Sound Synthesiser and of operational experience gained in its subsequent use in an artistic role.
F.E.B.

Editor
F. E, BENNETT

\section*{Editorial}
R. D. RAILTON Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor S. R. LEWIS B.Sc.

Art Dept.
J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301

\section*{Ed/torial \& Advertising Offices}

Fleetway House, Farringdon St., London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

THE P.E. Minisonic is a synthesiser in miniature and contains the necessary circuitry to produce all the basic forms of modulation which have come to be associated with its larger brethren. Thus a ring modulator is incorporated together with the means for producing frequency, amplitude and harmonic modulation.

Being battery operated the P.E. Minisonic is safe for the younger enthusiast to build and
operate and can expect to give up to \(\mathbf{5 0}\) hours of entertainment from one pair of PP9 batteries.

Although an entirely self-contained instrument which includes two 250 mW monitoring channels and loudspeakers, the P.E. Minisonic may be connected to a range of external apparatus including power amplifiers, tape recorders, signal generators, etc.

The overall cost to build the P.E. Minisonic is under \(\mathbf{£ 5 0}\).

\section*{SPECIFICATION}

Two Voltage Controlled Oscillators (VCOs) Sawtooth waveform. Ten octave range, logarithmic law control

Two Envelope Shapers with Voltage Controlled Amplifiers (VCAs)
Envelope shapers have variable attack and decay. VCA has up to 54 dB attenuation

\section*{Keyboard Controller}

Incorporates "hold" or analogue memory
White Noise Generator

\section*{Ring Modulator}

Voltage Controlled Filter (VCF)
Passband variable over 5 Hz to 15 kHz with a 54 dB dynamic range

Two 250 mW output amplifiers with input mixer stages

The VCOs and Envelope Shapers are controlled from the keyboard by means of a stylus, but provision is made for plugging in an external keyboard for the benefit of those constructors more musically inclined

\title{
A MINIATURE BATTERY OPERATED SOUND SYNTHESISER
}

\author{
By G. D. SHAW
}

THE popularity of the synthesiser is not in any doubt-the phenonenal growth rate of some of the synthesiser manufacturers, particularly during the 1972-73 period and the great interest shown in various "do-it-yourself" designs which have appeared in the meantime only go to underline the wide. general appeal of the instrument

Although the synthesiser may be employed in an enormously diverse range of applications under the general heading of sound manipulation, specifically within the field of music it may be rightly said that the instrument has provided the greatest dynamic to have occurred for centuries. In fact, we, as the listening public. have scarcely begun to feel the impact in terms of new compositions and effects which may be achieved

As far ats the individual is concerned. probably the greatest bar to synthesiser ownership has been the relatively high cost of the commercially available instruments and even the "do-it-yourself" designs which have so far appeared. although significantly lower in cost than their commercial brothers. are by no means cheap to construct. There can be few
electronics enthusiasts who would willingly set aside a hundred pounds or so to finance a complex project on which there was no firm guarantee of performance.

Since the P.E. Sound Sunthesisey first appeared the author has received many requests to design a simpler. low-cost instrument which could possibly be considered suitable for a schools project and which would serve to introduce to the younger members of our society the fascination inherent in the electronic manipulation of sound.

The P.E. Minisonic is therefore presented with the view of complying with the requests received although it is by no means suggested that it is the complete answer.

\section*{DESIGN CRITERIA}

Most synthesisers rely on a duplication of circuits in order that the most exotic elfects may be achieved but such duplication can only he accommodated in terms of additional expense. Consequently there were wo pafncipal criteria which governed the design of the P.E. Minisonic.


Fig. 1.1. Block diagram of the P.E. Minisonic showing the internal connections between modules

Firstly, the instrument should be able to produce the four forms of modulation, under controlled conditions, which are generally associated with the synthesiser. Thus there are facilities for amplitude, frequency and harmonic modulation, and a ring modulator is included in the scheme. Secondly, to comply with the possible requirement for duplication of circuits, each circuit within the basic instrument to be described can operate quite independently of the remainder.

The second criterion means that the constructor is offered the option of either tackling the project in accordance with the details to be published or of selecting individual circuits and building these separately for experimental purposes.

As with most synthesiser designs the possible permutations of circuits are legion and there are no hard and fast rules governing the numbers of circuits of a particular type which are to be included within a particular scheme.

\section*{THE SYNTHESISER EXPLAINED}

For the benefit of those readers who may, as yet. be unsure of what a synthesiser actually does, the following brief explanations are included.

In general, all sounds may be defined in terms of three parameters: the first being pitch or frequency; the second the amplitude or volume of the sound in relation to the period over which it is audible; and the third the timbre or harmonic content of the sound.

Most naturally occurring sounds and many of those produced by acoustic instruments tend to have fairly complex structures. In the case of acoustic instruments the harmonic content, for any defined pitch, generally varies over the audible duration of the produced sound and can be made to change deliberately depending on whether the instrument is played loudly or softly.


These characteristics are not usually built in to electronic musical instruments and consequently the unchanging pitch and harmonic relationship of any particular sound produces a rather bland effect.
In the synthesiser all parameters governing the produced sound are continuously variable and, indeed, may be varied throughout the duration of a sound. This means that the instrument may be used to imitate conventional acoustic instruments with great exactitude or, on the other hand, it may be used to create totally unique sounds which can range from the amusing to the horrendous.

\section*{VOLTAGE CONTROL}

The circuits in the synthesiser are operated by means of voltage control, a system which has been utilised by electronics designers for quite a number of years.
Robert A. Moog is generally credited with being one of the first designers to bring voltage control into the realms of electronic music and since the inception of his first voltage-controlled oscillators (VCO) and voltage-controlled amplifiers (VCA) the overall principle has been adopted for an ever widening circle of applications.
The great advantage of the system is that, although the controlling voltage may be derived from within the controlled circuit, it may also be derived from an external source. This, in turn, offers the advantages that differing types of circuit can control one another in various ways and also that, since control and signal paths are quite separate from one another, remote control operation becomes a practical possibility.
In the case of the P.E. Minisonic, control voltages are used in the oscillators to vary the pitch, in the VCA's' to vary the sound volume and in the filter to vary the harmonic content.

These examples, of course, relate to the use of voltages of varying levels but there is another form of application in which pulses of fixed polarity voltage can be employed to command the initiation of an event. Again in the P.E. Minisonic this application is utilised in the envelope shaper to signal the start of the envelope which is, in turn, used to drive the VCA.

\section*{MINISONIC DESIGN}

The overall scheme of the P.E. Minisonic is shown in Fig. 1.1.

Two independent channels are provided each comprising a VCO, an Envelope Shaper/VCA, a mixer stage and a 250 mW power amplifier. A white noise generator gives an alternative sound source, whilst a ring modulator and voltage controlled filter (VCF) may be incorporated for additional effects.
To satisfy musical requirements a stylus operated "keyboard" is provided together with a keyboard controller which incorporates an analogue memory. The purpose of this latter circuit is to provide a series of voltages which define the VCO frequencies in terms of musically related tones.
As with the P.E. Sound Synthesiser a variable "Tune" and "Span" facility is available and this means, in practical terms, that the upper and lower frequency limits of the three octave, printed-circuit keyboard can be varied at will either in tune or with a range of semitonal frequency increments.


Fig. 1.2. An operational amplifier used in the inverting mode

It is appreciated that a stylus operated "keyboard" is far from ideal in the sense that it requires a great deal of skill to play it satisfactorily and also from the point of view that problems of contact oxidisation can present themselves after a period of use.

Provision is thus made for the connection of a keyboard of conventional design and it is worth pointing out that, with a little ingenuity, a discarded doll's piano can have contacts fitted and be made to perform quite creditably.

There is also an output point for connection to external amplifier or tape recorder. A tape recorder having "sound-with-sound" facilities is particularly useful in that it facilitates the whole potential of the synthesiser being realised.

Within limits imposed by the specific recorder a number of successive recordings can be made and overlaid in such a way as to result in the production of quite complex sound structures.

\section*{OPERATIONAL AMPLIFIERS}

With the exception of three different types of special purpose integrated circuit which will be described in detail in the appropriate articles, the overall functions of the synthesiser are based on a combination of discrete semiconductors with the ubiquitous 741 operational amplifier.

Where these latter devices are used as part of an input stage for either control or audio signal applications, they are employed in the inverting mode as shown in Fig. 1.2.

In this type of circuit the junction of \(R_{1}\) and \(R_{4}\) is known as the virtual earth point. This is because current into the inverting input via \(R_{1}\) is balanced by an equal and opposite current through the feedback resistor \(R_{4}\).

The implication is that, when \(R_{1}\) and \(R_{4}\) are equal, the gain is unity and, in fact, the gain of such a stage may be expressed as \(R_{4} / R_{1}\). The impedance seen by the input signal is effectively the resistance of \(R_{1}\) and this will not change if additional inputs are provided as shown dotted in Fig. 1.2.

Where more than one input is required the gain of the individual stages is determined in terms of the ratios of the input resistors with the feedback resistor as shown above and the output signal of the operational amplifier, at any instant, is equal to the sum of the signals times the gain.

This point is made in some detail because, in the P.E. Minisonic, the minimum numbers of inputs are provided in order to comply with the requirements of simplicity.

\section*{PROGRAMMING}

In the case of the VCO, four separate inputs are routed to the control stage. One of these provides a fixed voltage bias which sets the minimum operating frequency of the oscillator; another gives a manually variable voltage which will set the oscillator frequency at any point within its working range; a third routes in a voltage derived from the "keyboard" memory circuit; whilst the fourth is used for external modulation.

All four inputs may be driven at the same time and, in combination, "programme" the oscillator to give a specific frequency or effect. When all the inputs are d.c. the output frequency of the oscillatoris unvarying but if, say, a sine wave signal is applied to the external modulation input then the output frequency of the VCO will rise and fall in time with the frequency of the modulating signal and in proportion to its amplitude. This particular scheme is illustrated in Fig. 1.3.

The term used to describe the programming of one oscillator by another is "frequency modulation" and in the specific case where the frequency of the programming oscillator lies between 6 and 8 Hz , the overall effect is known as "vibrato".

Where additional modulating inputs are included in the scheme and each is coupled to external oscillators having differing frequencies and output waveforms, then it is possible to create some very complex effects. Careful manipulation of the programming frequencies such that each are multiples of the other, or fractionally related, will give rise to repetitive rhythm patterns covering a wide frequency range.

Whereas programming the VCO results in the production of a fixed frequency or frequency pattern, somewhat similar effects may be achieved by programming the VCF, although, in this case, the effect is based on changing harmonic relationships rather than the creation of discrete frequencies.

As with the VCO, the filter is provided with three sontrol inputs, two of them for bias and manual


Fig. 1.3. By connecting a sine wave oscillator to the VCO, frequency modulation is obtained. The other inputs are permanently wired. The manual control sets the centre frequency and the preset bias control sets the minimum operating frequency; the remaining connection is from the "hold" circuit via the stylus

\section*{HOUSING - CUTTING DETAILS}

Hardwood Strip
\begin{tabular}{llll} 
A & 4 ft & 3 in & \(\frac{3}{\mathrm{I}} \mathrm{in}\) \\
B & 5 ft & \(1 \frac{1}{2} \mathrm{in}\) & \(\frac{1}{4} \mathrm{in}\) \\
C & 1 ft & & 3 in \\
\hline
\end{tabular}

Cut A into two pieces 1 ft in length and two pieces 11点in length

Cut B into four pieces \(10 \frac{1}{8} \mathrm{in}\), one piece \(11 \frac{1}{6}\) in and two pleces 2 in length

\section*{Cut C into four pieces \(2 \frac{3}{4}\) in length}

\section*{Hardboard}

Two pieces measuring \(11 \frac{5}{\frac{5}{9} \text { in }} 11 \frac{5}{\frac{5}{g} \text { in }}\) will be required. The hardboard should be \(\frac{1}{8}\) in ( 3 mm ) thickness and should ideally be faced with white plastic on one or both sides

The type which is faced on both sides is slightly more expensive but shows less tendency to warp.


Fig. 1.4. Details of the case assembly. Major dimensions are shown in inches (1in

\section*{}


Fig. 1.5. Details of the front panel drilling required for use with scheme shown in block form in Fig. 1.1
control, whilst the third is from the "keyboard" memory circuit so that the filter pass-band range may be "played".

The VCF is a ladder network filter based on the design originally devised by Moog but very much simpler in circuitry and operation. Even so it is extremely efficient and it is quite an easy matter to "lose" the audio signal within the filter unless some care is taken with its operation.

\section*{ENVELOPE SHAPER}

The envelope shaper is a circuit which produces a voltage which varies with time in a manner prescribed by two controls.

The "attack" control adjusts the period over which the output voltage of the envelope shaper rises to its peak whilst the "decay" control adjusts the period taken by the output to return to zero again.

This so-called "envelope" when applied to the input of a VCA ensures that the audio signal follows, in terms of volume, the prescribed pattern, i.e. with the envelope at its peak; so too is the volume of the audio signal.

Programming of the envelope shaper is not quite as simple as with the VCO and VCF since its operation is dependent upon the application of a pulse of at least -IV which has a duration at least as long as that set by the attack control.

In the P.E. Minisonic two control inputs are provided on the envelope shaper, one coming direct from the keyboard stylus and the other from a manual push button. However, the same basic principles governing the use of additional inputs may be followed although the result is never quite so predictable.

Further details on the programming of the various P.E. Minisonic circuits will be given in the appropriate articles together with instructions for obtaining specific effects.

\section*{CONSTRUCTING THE MINISONIC HOUSING}

In the interests of simplicity the case of the P.E. Minisonic is constructed from a framework made up of standard hardwood strips which are normally available from most "do-it-yourself" stores or timber yards. Fig. 1.4 gives details of the case assembly.

The top and bottom panels of the case are made from white faced hardboard or similar material and are secured into the case by four corner screws as shown. Fig. 1.5 gives details of the front panel drillings which are required for use with the scheme shown in block form in Fig. 1.1.

The case should be assembled with panel pins and adhesive (Araldite is probably the best type to use) and can be sprayed a suitable colour on completion. During assembly care should be taken to ensure that the case is assembled with absolutely square corners and it is a good idea to use the top and bottom panels as a guide in this respect.
- Both front and rear panels are secured to the housing by means of four corner screws.

The front panel, once assembled with components, is normally a permanent fixture whilst the rear panel has to be removable to allow for changing the batteries.

\section*{Next month: The VCO, Envelope Shaper/VCA, and Voltage Controlled Filter}

NEWS BRIEFS

\section*{OH CALL}

With the opening last month of a further Carphone centre for the Midlands. motorists whose cars are equipped with car radiophones are now able to make calls over a much extended area.

Now they can call from a new 3,000 square mile area which includes Wolverhampton, Coventry, Birmingham. Rugby, Northampton and Banbury. This is the first of five new centres to be completed and the station, located in Birmingham, is able to handle 300 users.

The other four areas will be opened up over the next two years but what is perhaps more important to users is the fact that now any user from one area can also operate in another area. Up to the present this has not been possible but the Post Office have now modified the system suitably.

\section*{LICENCE FOR SAFETY}

The car licence plate could well perform a somewhat more complex role in the future if scientists at RCA Corporation have their way.

Using a complex antenna capable of receiving at one frequency and retransmitting at another, twice the first. they propose that an electronic "number plate" can be created which will be capable of interrogation at will on instruction transmitted to it.

Apart from this "big brother" aspect. the system can, of course. also be used for much more apparently useful purposes such as simple radio communication to and from a vehicle or perhaps operation as a transponder in collision-avoidance radar.

With suitable devices buried in the road at intervals, traffic could be examined not only as to quantity but also as to quality, with identification of such items as ambulances and fire engines being used to control traffic lights.

This basic idea is not new but the means for doing it cheaply is, and here RCA scientists reckon the cost could be in the "few dollars" region when manufactured in quantity.

\section*{HIGH FLYER}

AIR traffic control systems were well in the news last month with the announcement of two large orders, one to Plessey and the other to Marconi.

The first is an export order from Mexico and involves an automated radar air traffic control system at Monterrey Airport and instrument landing systems for Puerto Vallarta and Tijuana airports. The equipments form part of the first stage in a multi-million pound programme for the complete modernisation of air traffic operations in Mexico.

The second contract is for the supply of a radar data processing system for Scotland. This is a major contract. worth something in the region of \(£ 1.25\) million, and involves equipment capable of monitoring both civil and military aircraft in the 2 million cubic miles of airspace above Scotland. Northern England and the North Sea.
Based on the new Marconi Radar Systems Locus I6 processor, one of the first systems in the world to use synthetic "clutter free" radar presentation exclusively, the system will provide an automated radar presentation, simplifying the control of aircraft in the Scottish terminal area which includes the areas round the rapidly expanding Glasgow and Edinburgh airports.


\section*{ANTI-THET ALARM By B.A.ANDERSON}

DeSpIIE steering locks, "Krookloks", and the like, car stealing is still a thriving business. A possible reason for the apparent failure of many commercial anti-theft devices is the need for a mechanical key to deactivate them. Thieves have been accustomed to mechanical keys for centuries, and it is thus not unduly surprising to hear of vehicles being stolen despite locks of various kinds.

The anti-theft system described here uses an electronic key in the form of a specific value of resistanse for deactivation. The system measures the resistance electronically and deactivates only if the value is correct. With careful installation the security offered by this design is exceptionally high. and with a cost of around \(£ 3.00\) it is good insurance for a possession which may be worth over \(£ 1,000\).

\section*{THE CIRCUIT}

As may be seen from Fig. 1, resistors R1, R2, R3 and R4 comprise a Wheatstone bridge with a removable element RI, which connects to the bridge via a plug and socket. With R1 connected, opening a car door operates a courtesy light switch and connects the battery to the circuit. Since the values of R1 to R4 are all equal, the bridge is balanced, TRI and TR2 remain off, and relay RLA is off. The car can thus be used normally.

If R1 is disconnected however, or is replaced with an incorrect value of resistance, the bridge is unbalanced and an out-of-balance voltage appears between the junctions of R3/4 and R2/incorrect R1. Depending on whether the incorrect value of RI is too high or too low, this out-of-balance voltage may be positive or negative. Diodes D1 to 4 are thus connected as a bridge rectifier to render the out-of-balance voltage a constant polarity and this is applied to TR1 with positive to base and negative to emitter.
Hence, unbalancing the bridge will always turn on TRI, which in turn switches on TR2 and RLA. The end result is immediate operation of RLA on opening a car door when R 1 is incorrect.

The contacts on RLA are arranged to disconnect the starter switch and earth the starter solenoid (RLA4), to sound the horn (RLA3), and to short out the contact breaker points in the distributor (RLA2). In addition contacts RLAI bypass the triggering door switch so that reclosing the door after setting of the alarm has no effect.

Once triggered, the alarm can be immediately deactivated with the correct RI by the owner, or by disconnection of the battery by the thief. However, battery disconnection precludes stealing the car, and any attempt at reconnection will result in retriggering of the alarm when the door is reopened.

With RI inserted, and the doors closed, the alarm is disconnected from the battery, and hence draws no current when the car is parked. Removal of RI will then activate the alarm, although still no current will be drawn until a door is opened by a thief. Thus the car can be left parked and protected for long periods with no drain whatsoever on the battery.

\section*{CONSTRUCTION}

The components of the alarm may be assembled on a small piece of Veroboard using the layout of Fig. 1, the relay being mounted separately. A small plastic lunch box may be used as a container for the alarm, and the Veroboard may be glued to a piece of foam rubber and then to the box, and the relay may be glued directly to the box. Connections from the relay and the circuit board may be brought out to a terminal block on the outside of the box for connecting to the car.

Alternative components to those specified may of course be used, however it should be noted that TR1 and TR2 have been chosen for their high \(V_{\text {cbo }}\) and complimentary gains. Alternatives may be more prone to failure due to voltage spikes from an inductive or capacitive discharge ignition system, and the sensitivity and selectivity of the bridge may be adversely affected.

Diodes D1 to 4 must be of the specified types. since alternatives may have a higher turn-on voltage which would severely restrict the sensitivity of the bridge. If using a different relay, ensure that the coil


Fig. 1. Circuit diagram of the Anti-theft alarm (above) and the Veroboard and component layout (below)


\section*{COMPONENTS . . .}
Resistors
R1 to \(4 \quad\) See Text, \(5 \%, \frac{1}{4} W\)
Semiconductors
TF1 \(\quad\) ME4102
TR2 ME0411
D1 to D5 OA81
Miscellaneous
RLA Omron type MY4, 12V d.c.
Veraboard, wire, terminals, terminal strip if
required, box, etc.

chosen will not exceed the dissipation of TR2, and that the contacts are of adequate rating for the circuits to be controlled.

\section*{INSTALLATION}

By reference to your car's wiring diagram, determine whether it is negative or positive earth. Additionally determine whether the horn push operates the horn by earthing or by connecting to the "live" side of the battery. Connections to the contacts of RLA vary for negative and positive earth, and for earthing and live horn pushes, and the four possible connections are given in Fig. 2 for an Omron relay. Other reliay types can be determined from the interconnecting point routes.

Whatever the polarity of your car's system, if the horn push is of the earthing type, check that it can be sounded with the ignition switched off. If it cannot, it will be necessary to disconnect the live supply horn lead from its ignition switched terminal at the fuse box, and reconnect it to a terminal that is unswitched by the ignition switch, i.e. a terminal that connects directly with the battery. Make certain the fuse ratings are suitable.

\section*{TESTING}

Having wired RLA correctly, and having connected the Veroboard, the alarm should be tested by connecting 12 V , positive to terminal I and negative to terminal 6 . The relay should operate immediately, and drop out as soon as the correct value of RI is connected.
With this test satisfactorily completed, seal the container (lunch box) against moisture. and mount it in the car. It should ideally be in the passenger compartment somewhere, well hidden, and in most cars a suitable place can be found up behind the dash panel, the box being secured with adhesive.

Connections to the car wiring harness are shown for positve and negative earth systems in Fig. 3, and both possible types of horn push circuit are shown.

\section*{WIRING-IN}

All connections should preferably be soldered, well insulated and waterproofed with good quality PVC tape. Wires can be run back to the alarm along the existing harness, and should be bound
over with PVC tape to match the rest of the harness for concealment when installation is complete. Connections particularly prone to tampering by the thief are the horn connection, the contact breaker connection, and the live battery connection, and these wires should be carefully concealed.

If utmost security is needed, the wires may be run in metal conduit and all terminations sheathed in metal terminal boxes. The fitment of air horns in place of the standard horn is an excellent measure, and suitable types including relay are available from Ivoryet Limited, 124 Cricklewood Broadway, London, N.W.2, at prices varying from \(£ 4\) to \(£ 12\), according to the number of trumpets with which you wish to disquiet the thief.

If you really want to induce cardiogenic shock in the criminal you can fit an air siren in place of the horn. A suitable type, the Mono 12 V siren, is available from Klaxon Limited, Warwick Road, Tyseley, Birmingham, price about \(£ 10\). Persons of a delicate constitution are warned not to set this device off accidentally.

If your car has a mechanically operated starter switch, and hence no starter solenoid-the early British Leyland Minis have such an arrangement, then terminal three of the alarm may be taken to the petrol pump, and terminal two should receive the wire formerly connected to the pump. The alarm will then immobilise the petrol pump in place of the starter motor.

\section*{OUT OF SIGHT}

If you regularly leave your car out of earshot of yourself and passers-by, then there is little point in having the horn operated by the alarm, since it will only flatten the battery in time. The thief will not be able to steal your car with a flat battery, but clearly it will cause you inconvenience, and thus an on/off switch may be wired between terminal four and the horn, and hidden somewhere in the car. Switching it off will prevent the horn being sounded by the alarm, but the immobilising features will be retained.

The connection between RI and the alarm is by a plug and socket of the constructor's choosing. R1 is mounted inside the plug, and the socket is mounted somewhere on the exterior of the car. If you do not wish to drill the bodywork directly to


Fig. 3. Interconnections to the car wiring harness for negative (left) and positive (right) earth systems, showing the two variations of horn wiring as well
mount the socket, on the majority of vehicles it can be mounted in an air-grille or mounted in the centre of a badge. Removal of the socket at a later date can be concealed by a new badge. If mounting has to be done directly through the body. if the hole is in an unobtrusive position it may be sealed with a grommet on removal, and nine times out of ten will not be noticed

The type of plug and socket chosen and the value of RI are individual choices which ensure the security of the design.

The author has used connectors varying from Post Office jacks to multi-way edge connectors with success. If a multi-way connector is used additional security results since any two contacts may be used.

Values of RI have varied from 479 to \(4.7 \mathrm{k} \Omega\) w wh equal success, but \(5 \%\) tolerance or better should be used. Temperature drift offers no problems, but if the car is kept outside, values much above \(2 k \Omega 2\) should be avoided since condensation can give problems with higher values.

When mounting the socket, remember it must be accessible to the driver who removes and replaces RI each time the car is used, and the socket must also be mounted away from direct road spray. In the choice of type of connector, use only high quality professional types that will withstand the constant use and the elements.

\section*{HOW MANY}

Three plugs and three RI's are required. One to use and carry in the pocket; one spare on the car key-ring: and another spare in the wallet or purse.

If your car does not have courtesy light switches, or if it lacks them on the rear doors. extras are easily fitted and cost about 13p from garages. They mount via spring clips in a \(\frac{1}{2}\) in hole in the door pillars, and should be fitted to the boot and bonnet too if it can be opened from outside the car. Wire all switches in parallel and to the appropriate terminal on the alarm.

\section*{USE}

Park the car, close all doors, and remove R1 in its plug. The alarm is now set. If it is triggered by a thief or accidentally the horn will sound, the ignition will be immobilised and the starter motor will not operate. Reclosing the triggering door will have no effect. Triggering by accident may be quickly silenced with the insertion of R1, and if you forget to insert the plug, unlock the door, and set off the alarm, the spare plug on the key-ring is readily available to stop the false alarm. Removal and replacement of RI soon becomes automatic, and since it is removed on parking, no-one can tamper with the resistor. The car is of course driven with the resistor in place.

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?

\section*{555 CHIP IMPULSES PENDULUM}
\(R\) eaders interested in horology \(R\) may find this circuit. using a 555 i.c. to impulse a pendulum, handy. The reed switch S1 of Fig. 1 is closed when the magnet swings near the reed. proximate the end of the pendulum swing.

The timer is triggered and stays high for \(1 \cdot 1 \times \mathrm{Cl} \times\) VR1 seconds


Fig. 1
and there can be no re-triggering until the output has again gone low. Period adjustment is by VR1.

The period should be adjusted until the l.e.d. just goes on when the pendulum is vertically over the solenoid so that the pendulum is pulled towards the centre and when it reaches the centre the force is removed.

If required, a TTL output for counters or the like can be taken from pin 3 of the chip via a potentiometer. Changes in supply voltage make little or no difference to the time period of the chip but will change the force exerted by the solenoid. The circuit may be operated from between 5 and 18 V depending on the type of solenoid and amplitude needed.

Component values are not critical and were selected more because they were to hand. For example Cl was selected at \(1000 \mu \mathrm{~F}\) but can be something smaller with suitable alteration of VR1. The solenoid used came from Henry's Radio and the reed switch from Electrovalue Ltd.
R. J. Wylde Eton College Windsor

\section*{BASS BOOSTER}

MOST of the popular slanted front-facing speakers used in car stereo systems have a very poor bass response. One way around this problem. without sacrificing the stereo image, is by mounting a third speaker in-between, flush mounted from the inside of the car boot. An Elac 8 in \(\times 5\) in was used.

This third speaker can be fed by crossover components, but this
method was found unsatisfactory and expensive. Instead, the circuit of Fig. 1 was used, which proved to be cheaper, and offered much more flexibility.
The first stage can be fed directly from the speaker lines of the tape unit as shown in Fig. 1. This stage serves as both mixer and Miller integrator. The capacitor of the integrator was chosen to be 10 nF so as to pass only real Bass and very little of the middle range, preventing shrinking of the stereo stage; this value is not too critical.

The next stage recovers the big loss of the first stage, and feeds the signal into a power amplifier through the Bass control. The amplifier used was Sinclair's super IC 12, but any other cheap package will do. The decoupling capacitor \((400 \mu \mathrm{~F})\) should be mounted as close as possible to the first transistor stage, which is prone to the pick up of low frequency engine noise. The IC12 module has its own decoupling capacitor, which should also be oí a similar value.
M. Greenfeld,

Leeds.


Fig. 1

\section*{VOLTAGE CONTROLLED OSCILLATOR}

Witit the current interest in voltage controlled oscillators, it seemed to me that they were all rather complicated. Perhaps the readers will be interested in this circuit.
It is a linear device giving about 1 kHz per volt. It can be built for less than \(£ 2\).

Integrated circuit ICI acts as an integrator and IC2 as a threshold circuit. The input signal is applied to both inputs of ICI. The f.e.t. acts as a switch controlled by the output of IC? When the outpul of IC2 is near the positive rail TRI acts as a near short circuit so the input is applied to the non-inverting input of ICI giving a positive going output.

The non-inverting input of IC2 is ai appproximately 6.3 V and as soon as its inverting input rises above this level 1 C 2 rapilly switches to -6.3 V

\section*{RANDOM IMPULSE GENERATOR}

THE circuit described here was designed as a novelty light llasher, but it may be used to control higher power devices. or in conjunction with a TTL divider to replace a low frequency impulse generator. Noise pulses are generated at about 1 to 10 Hz

The noise generator TRI (Fig. I) is a transistor which generates a low frequency flicker noise. All transistors do this to some extent.

The best source of suitably noisy transistors appears to be the widely advertised packs of unmarked. untested transistors. The type used in the prototype were BFY50/51/52.


Fig. 1
causing TRI to act as a near open circuit. The ouput of \(I C t\) then be gins ramping in the opposite direction.

Thus the frequency of oscillation depends on the input voltage.

To obtain a log law there is no reason why the transistor oven described in PE could not be adapted to drive this VCO.
J. S. Broadhurs! \(\begin{array}{r}\text { Winnington } \\ \text { Cheshire }\end{array}\)

Sutable transistors may be selected using the circuit of Fig. 2; they generally have a leakage of a few microamps to \(\operatorname{ImA}\) and the ficker noise is visible as a very slight irregular vibration of the meter needle.

Resistor R1 (Fig. 1) is selected to give a collector voltage of about 6 V for TRI. Cl removes high frequency noise and the signal is coupled to the amplifier by C2.

The emitter follower TR2 presents a high impedance to the signal.

Negative pulses from TR2 emitter cut off TR3 and illuminate l.e.d. 1)! which provides a visual display. Negative feedback via D2 and R6 provides thermal stability for the
amplifier and also limits pulse length (determined by R6. C2 and VRI). VRI adjusts the bias of TR3 providing some measure of threshold and therefore repetition rate. If the degree of control provided by VRI is insufficient. R6 must be altered.

TR5 and R5 may be added as shown if the circuit is to drive TTL in which case a Schmitt trigger (e.g. 7413) should be used to obtain fast rise and fall times. If TRS is connected as an emitter follower, a power transistor, thyristor or triac may be driven to control larger loads.
J. S. Jolley

Preston
Lancs


Fig. 2

\title{
If you're looking \\ for trouble you needn'tlook
any further.
}


It's not only technicians who can see the finer points of Eagle multi-meters.

Every handyman notices them too.
They're easy to read.
They're tough.
Their construction comes up to laboratory standards.

Even our inexpensive pocket sized models have features you'd usually only find on professional equipment.

Take a look through our catalogue.
You'll see over twenty models.
Specifications that would impress the most experienced technician.

And a price range that takes in amateurs as well as professionals.

We guarantee every one for two years
With parts to service them in no time.
So you can confidently find fault in anything.

\section*{Eagle}

The name on Britain's widest range of electronic equipment.
\(\left\{\begin{array}{l}\text { Please send me the Eagle electronics } \\ \text { catalogue containing the complete range } \\ \text { of test equipment. } \\ \text { Name } \\ \text { Address } \\ \begin{array}{l}\text { Eagle international Precision Centre Heather Park Drive } \\ \text { Wembley HAO } 1 \text { SU Telephone } 01.9030144\end{array}\end{array}\right.\)


\section*{YATES ELECTRONICS \\ (FLITWICK) LTO. \\ DEPT PE, ELSTOW STORAGE DEPOT KEMPSTON HARDWICK BEOFORD \\ GAS AND SMOKE DETECTOR KITS}

As described in Sept./Oct. edition of PE.

KIT 1-Mains operated (Fig. 1),
\(£ 5 \cdot 60\)
operating audible alarm
£7.90
detector with meter indicator (Fig. 3)

KIT 5—Portable gas/smoke detector \(£ 12 \cdot 60\)
mains/battery operated \((\mathrm{Kg} .4)\)

KIT \(6 \mathrm{~A}-12 \mathrm{~V}\) or 24 V gas detector for use
in boats/caravans complete with
\(£ 12.80\) 2 remote sensors

These kits include all parts to build a complete smoke and gas detevor, but to keep cost as low as possible the case is excluded. All parts including detectors, printed clrcult board and cases are available separately.

\section*{CASES}

\title{
KIT 1-Ali. Box AB15 [1.18 \\ Or Fibreglass Box \(\quad £ 1 \cdot 60\) \\ KITS 3 and 5-Ali. Box AB17 £1.18 \\ KIT 6-Control Box 55.00 \\ Remote sensor £1.00 \\ \\ P.C. BOARD \\ \\ P.C. BOARD \\ Fibreglass-tinned and drilled \\ \(£ 1.45\)
}

\section*{SENSORS}

TGS 105-Smoke detector \(£ 2.00\)
TGS 109-General Purpose Gas/Smoke
Detector
TGS 308-Similar to 109 but for low voltage TGS 102-Smoke and Carbon Monoxide Detector
GS 202-Similar to 102 but for low voltage application £2. 00 £2. 00

Full details of these and other Gas Detector Kits will be sent free on request.

Catalogue sent free on request. 10 p stamp appreciated.
PLEASE ADD 8\% V.A.T.


\title{
PRECISION WAVEFORM GENERATOR/VOLTAGE CONTROLLED OSCILLATOR
}

WHAT WILL probably prove to be a very useful integrated circuit has been produced by Intersill, the 8038 precision waveform generator and voltage controlled oscillator. This is a monolithic device capable of providing the user with square, sine, triangle, sawtooth and pulse outputs of high accuracy with a minimum of external components.
As the frequency or repetition rate can be varied from 0.001 Hz up to above 1 MHz and is stable over a wide temperature range, this device will doubtless see applications in audio waveform generation as well as in instrumentation and control circuitry.
The output frequency can be voltage controlled so this makes for simple swept frequency provisions and indeed the frequency can be programmed digitally using either resistors or capacitors.
One important application which will doubtless be usefu in view of the current interest in phase locked loops is the ability of the 8038 to interface with such circuitry to reduce temperature drift to below 50 parts per million.


Fig. 1. A simplified block schematic of the 8038 integrated circuit

\section*{CIRCUIT DESCRIPTION}

A simplified block schematic of the 8038 is shown in Fig. 1. The full circuit includes over 100 devices; it is somewhat complex to reproduce here.

The 8038 can operate from a single or a double power supply of up to \(\pm 18 \mathrm{~V}\) or 36 V max., whilst the dissipation is only 750 mW . Input to any pin should not exceed the supply voltage and the input current to pins 4 and 5 (those governing duty cycle frequency) should not exceed 25 mA .

In fact the duty cycle can be varied between 2 and 98 per cent which means that whilst the chip outputs are in fact basically three, sine, square and triangle, the modification of the square and the triangle by duty cycle variation provide pulse and ramp waveforms. The symmetry of all three basic shapes is varied at the same time so that the sine output is also altered as can be seen in Fig. 2 which shows first a 50 per cent duty cycle (squarewave) and then the effect of adjustment to a 20 per cent duty cycle. The phase relationship of the waveforms remains constant throughout such alterations.

There are several ways in which the timing function can be adjusted dependent on requirements for adjustment of the duty cycle and accuracy of the various components.

Thus Fig. 3 shows a suitable circuit for adjusting the frequency and duty cycle with most accuracy. Here the two timing resistors \(R_{A}\) and \(\boldsymbol{R}_{B}\) are kept separate. \(\boldsymbol{R}_{A}\) controls the rising portion of the triangle and sine wave and the 0 portion of the square wave.

The magnitude of the triangle waveform is set at \(1 / 3 V_{c c}\) so that the rising portion of the triangle becomes:


Fig. 2. The waveforms available from the 8038 using a 50 per cent duty cycle and a 20 per cent cycle. The small blips on the sinewave are switching transients from the square wave

The falling portion of the triangle and sine wave and the 1 state of the square wave is:
\[
t_{2}=\frac{C \times V}{I}=\frac{C \times \frac{1}{5} \times V_{c c}}{\frac{2}{5} \times\left(\frac{V_{c c}}{R_{B}}-\frac{1}{5}\right) \times \frac{V_{c c}}{R_{A}}}=\frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A}-R_{B}}
\]

Thus a 50 per cent duty cycle is achieved when \(R_{A}=R_{B}\). If the cycle is to be varied over a fairly small range then the circuit of Fig. 4 can be used and finally if no adjustment of the duty cycle is needed then the circuit of Fig. 5 suits. With this last suggestion there is an inherent variation of the duty cycle which exists which may cause problems.
With two separate timing resistors the frequency is given by:
\[
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{5}{3} R_{A} C\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
\]

If \(R_{A}=R_{B}=R\) then:
\[
f=\frac{0 \cdot 3}{R C}
\]
for Fig. 3. If a single timing resistor is used as in Figs. 4 and 5 then:
\[
f=\frac{0.15}{R C}
\]

As both currents and thresholds are direct linear functions of the supply voltage their effects cancel out and neither time or frequency are dependent on supply voltage.

\section*{SINEWAVE OUTPUT}

If the most important output is sinewave then perhaps the circuit of Fig. 6 should be used. Here the \(81 \mathrm{k} \Omega\) resistor wired between pins 11 and 12 is made variable ( \(100 \mathrm{k} \Omega\) ) so that a distortion of less than 1 per cent can be achieved. In fact the introduction of the second \(100 \mathrm{k} \Omega\) potentiometer feeding pin 1 takes the reduction in distortion down to around 0.5 per cent.

\section*{SELECTING THE TIMING COMPONENTS}

The timing components \(R_{A}, R_{B}\) and capacitor \(C\) can be selected from quite a wide value range bearing in mind one or two constraints which must be applied. The charging current should be controlied for optimum performance so that at the low end it does not fall below \(1 \mu \mathrm{~A}\) and at the upper end it does not rise above a few milliamps.

In the first place the lower current limit is placed by the effect of other circuit leakage currents and at the upper end the transistor betas and saturation voltages will introduce errors at above 5 mA . Thus the best range is between \(10 \mu \mathrm{~A}\) and 1 mA . If pins 7 and 8 are shorted together the charging current for \(R_{A}\) can be determined from:
\[
I=\frac{R_{1} \times V_{c c}}{R_{1}+R_{2}} \times{ }_{R_{A}}^{1}=\frac{V_{c c}}{5 R_{A}}
\]
and a similar equation holds for \(R_{B}\).

\section*{VOLTAGE LEVELS}

Using a single power supply the average levels of triangle and sine output will be at one half of the supply voltage whilst the square output will move between \(+V\) and ground. Using. a split supply the waveforms are symmetrical about ground.

As the square output is, not committed it may be fed to a different power-supply as long as the applied voltage remains within the breakdown capacity of the chip (30V). Thus the chip may give a TTL compatible square wave output with its load resistor connected to +5 V whilst being fed from a much higher voltage.

\section*{FREQUENCY MODULATION}

As the frequency generated is a direct function of the voltage at pin 8 as measured from \(+V_{c c}\) frequency modulation can be achieved by altering this voltage suitably.

Small frequency deviations up to say 10 per cent can be generated by using the circuit of Fig. 7 in which the devia-. tion voltage is fed to pin 8 , decoupled with a capacitor. The resistor connected from pin 7 to pin 8 serves to increase input impedance and can be ignored in which case the pins are shorted when the input impedance becomes \(8 \mathrm{k} \Omega\).

For larger deviations or for frequency sweeping the sweep signal is applied between pin 8 and \(+V_{c c}\). Pin 7 is ignored and the circuit is otherwise identical to Fig. 7.

Quite large sweeps can be obtained up to 1,000:1 but care must be taken to regulate the supply voltage since in this configuration the frequency becomes dependent on the supply voltage. The potential on pin 8 can be swept from \(\mathrm{V}_{c c}\) to \(2 / 3 \mathrm{~V}_{c c}\).

\section*{APPLICATIONS}

The 8038 has very obvious applications in signal generation areas such as music synthesis, the more so as it lends itself to simple voltage/frequency control and could easily form the basis of a monophonic system as a simple instrument in its own right or in a synthesiser used in conjunction with other envelope.generating equipment.

In phase locked loop systems: such as are used in f.m. reception it has a valuable role used in conjunction with a phase detector and an amplifier, both of which are available in i.c. form. Whilst several steps have to be taken to assure the alignment of the parts of such a system the benefits are useful.

Not only is a free-running frequency with very low temperature drift provided but a large reconstituted sinewave is available with the frequency of the input.

Finally there are many areas of instrumentation and measurement where the chip should prove invaluable, particularly to the cost-sensitive experimenter and amateur.

These devices and further information are available from Celdis Ltd., 37/39 Loverock Rd., Reading, Berks, priced at £2•85, post and packing 25 pence plus VAT.


Figs. 3 to 5. Three basic circuits giving various control configuration for the 8038


Fig. 6. The way to obtain minimum sinewave distortion

Fig. 7. Using this configuration frequency sweeping is easily obtained



RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

\section*{1/ BUILD AN OSCILLOSCOPE}

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

\section*{2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS}

as used currently in the various fields of electronics.

\section*{3/ CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including:}

This new style course will enable anyone to really understand electronics by a modern practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc

\title{
ELEGTROVLIVE \\ Pameen comomess soo an RELY ON FOR QUALITY AND VALUE
}

\section*{Genuine discounts • Free postage in U.K. • Brand new \& guaranteed}

\section*{A 100 OF THE BEST \\ from our vast transistor stocks}
\begin{tabular}{|c|c|c|c|}
\hline 2N1307 & 47p & BCI49C & 14p \\
\hline 2N2646 & \(51 p\) & BC158B & 15p \\
\hline 2 N 3053 & 26p & BC159 & \(15 p\) \\
\hline 2N3054 & 60p & BC167B & 13p \\
\hline 2 N 3055 & 60p & BC168B & 12 p \\
\hline 2N3702 & \(11 p\) & BC169B & 12p \\
\hline 2N3703 & 10p & BC169C & \(13 p\) \\
\hline 2N3704 & \(11 p\) & BC1798 & 26p \\
\hline 2N3705 & 10p & BCI82L & \(11 p\) \\
\hline 2N3794 & 18p & BC184L & \(11 p\) \\
\hline 2N3819 & 25p & BC212L & 12p \\
\hline 2N4062 & \(11 p\) & BC214L & 14p \\
\hline 2N4443 & 93p & BC257A & 14p \\
\hline 2N5062 & 42p & BC259B & 14p \\
\hline 2N5163 & 20p & BCY58 & 30p \\
\hline 2N5459 & 32p & BD130 & 90p \\
\hline 40361 & 48p & BDI31 & 48p \\
\hline 40362 & 44p & BD132 & 52p \\
\hline 40602 & 46p & BO135 & 37p \\
\hline 40636 & 61.36 & BD136 & 39p \\
\hline 40669 & 61.10 & BOY20 & 83 p \\
\hline \(A C 128\) & 17p & BFI94 & 15p \\
\hline ACI51R & 23p & BFR39 & 23p \\
\hline ACI53 & 27p & BFR79 & 23p \\
\hline AC153K & 37p & BFX29 & 33p \\
\hline AC176 & 24p & BFX84 & 27p \\
\hline AC176K & 38p & BFY51 & 23p \\
\hline ACI87K & \(31 p\) & BRY39 & 45p \\
\hline ACI88K & 29p & BY164 & \(51 p\) \\
\hline ADI33 & \(¢ 1.92\) & C106B1 & 42 p \\
\hline ADI36 & 61.11 & C10601 & 62 p \\
\hline AD149 & 65p & C1406 & 78p \\
\hline ADI61 & 42p & MJ481 & C1. 20 \\
\hline ADI62 & 40p & MJ491 & \(\mathrm{Cl}_{6} .35\) \\
\hline AF200U & 70p & MJ2955 & \(80 p\) \\
\hline AF239 & 60 p & MJE371 & \(89 p\) \\
\hline B1906 & 36p & MJES21 & \(81 p\) \\
\hline BA138 & \(31 p\) & MJE2955 & 61.12 \\
\hline B8103 & 24p & MJE3055 & 68 p \\
\hline BB105 & 34p & OA91 & 6p \\
\hline BB109 & 18p & SO4 & \(8^{8 p}\) \\
\hline BC107A & \(15 p\) & TIP3IA & 70p \\
\hline BC107B & 15p & TIP32A & 89p \\
\hline BC108B & 14p & TIP4IA & 80 p \\
\hline BC108C & 14p & TIP42A & \(\underline{C 1.00}\) \\
\hline BC1098 & 18p & WO2 & 30 p \\
\hline BCIO9C & \(18 p\) & ZTX300 & \(14 p\) \\
\hline BCI47A & 12p & ZTX304 & 23p \\
\hline BCl 478 & 13p & ZTX500 & 14p \\
\hline BCl48B & 12p & ZTX504 & 45p \\
\hline \multicolumn{4}{|l|}{VEROBOARD} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
Copper clad 0.1 in. matrix- \(2.5 \times 3.75\) ins. \(32 p\). \(3.75 \times 3.75\) ins., 35 p. \(2.5 \times 5\) ins., 35 p. \(3.75 \times\) 5 ins., 39 p. \\
Copper clad 0.15 in . matrix- \(2.5 \times 3.75\) ins., 24 p . \(3.75 \times 3.75\) ins.. 35 p. \(2.5 \times 5\) ins.. 35 p. \(3.75 \times\) 5 ins., 44p. \\
Vero spot face cutter (any mateix), 53p. 0.040 pins (for 0.1 macrix) per 100,35 p. 0.052 pins (for 0.15 matrix) per \(100,35 p\).
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}

\section*{EV CATALOGUE 7}

Second printing (green and yellow covers), 112 pages. Hundreds of items, diagrams, information, \(25 p\), post DISCOUNTS

Available on all items except those shown \(10 \%\) on orders from 65 orders C15 and over

\section*{FREE POSTAGE}

\section*{n U.K. for pre-paid} mail orders, except Baxandall. For order list value \(\mathcal{E 2}\) and under handiling charge of 10 D .

ELECTROLYTIC CAPACITORS Axial Lead

p

\section*{MINITRON DIGITAL INDICATORS}

30154 F Seven segment filament, compatible with standard logic modules. \(0-9\) and decimal point 9 mm charactersin 6 lead DIL, \(\mathrm{Cl} \cdot \mathbf{2 0}\). Now available in 8 mA or 15 mA per segment rating.
3015 G showing + or - and I and dec. pt, ©1.20.

INSULATED SCREW TERMINALS
In moulded polypropylene, with nickel plate on brass. With insulating set, washers, tag and nuts
\(15 \mathrm{~A} / 250 \mathrm{~V}\). In b/k/brwn/red/yel/grn/bl/grey/wh Type TP.I, 14p each.

RESISTORS
Code Wotts Ohms 1 to 10 to 99 , 100 up

\section*{HYBRID
}

\author{
BY D.AL-DABASS*
}


IN the first article on hybrid computers the advantages and limitations of both analogue and digital computers were outlined in some detail. From this it is obvious that some combination of these two types of computer would be desirable and the motivations for hybrid computers were then identified and set out in detail. In this part the spectrum of hybrid computing techniques is outlined and the "balanced" hybrid computer is deseribed. Applications are then dealt with in some detail.

\section*{THE RANGE OF HYBRID TECHNIQUES}

In the broad sense the term "hrybrid computing" can be used to envelop a wide variely of computing systems that combine some aspects of beth analogue and digital rechniques.

The techniques can be broadly divided into three major calegories, namely those that are predominantly digital. those that are predominantly analogue, and those having a balanced zombination of both computers.

Systems in the first two categories can be further sub-divided into three types, nameiy those that are purely of one type. those that ecntain aspects of the other type in concept. and those that contain aspects of the other type in hardware.

\section*{PURE DIGITAL COMPUTERS}

These include all the large, midi, and mini type machines made by such manufacturers as ICL, IBM, Boroughs. Digital Equipment Corporation. Computer Automation. Scientific Data Systems, and so on. The larger type is often providec with a number of remate keyboard terminals to provide a timeshared service to schools, colleges and other users. They are generally provided with programme packages to enable users to write their problem in a high level language such as Fortran, Algol, PLI. Basic. etc. A high level language approaches the written word, the higher-the nearer. The lower the language the more like a machine code it becomes. This latter is the language of the computer itself Those that have remoie terminals are usually operated "on-line" so that the user can feed his problem and get the results in a natter of minutes.

\section*{DIGITAL WITH ANALOGUE LANGUAGES}

Some of the large computers mentioned above are supplied with high level simulation languages that caln perform integration. This enables the user to write his problem as a set of differential equations without the need to write integration routines himself. Among the many such languages are Speed. SLI, and CSMP

\section*{DIGITAL CIFFERENTIAL ANALYSERS}

These are digital compulers deigned to perform integration in a similar way to a alalogue compurers. "digital hardware integrator" is another term used to describe thern. They include the serial, parallei and hybrid lypes. The serial type handles ane integration at a time, while the parallel type is provided with a number of these integrators to perform many integrations simultaneously in a similar way to an analogue computer. The hybrid type include both digital and aralogue hardware for faster integration.

\section*{DIGITAL WITH ANALOGUE ELEMENTS}

These are conventional general purpose digital computers connected to a number of analogue integrators and other analogue elements to speed up simulation.

\section*{DIGITAL WITH ANALOGUE SUBROUTINES}

This is a further extension of the previous type where a complete porticn of analogue simulation is connected to the digital computer. The analogue simulation acts as a subroutine in this case, which is then called up by the digital computer programme when required.

\section*{BALANCED HYBRID}

This is perhaps the most powerful combination of hybrid computers, consisting of a general purpose digital computer connected to a general purpose analogue computer. Both computers can be used on their oven to solve a variety of problems, and by interconnecting them an even more powerful computer systeni is created.

Most modern hybrid computers employ the smaller type digital computer due to their lesser cost and ease of interfacing to analogue computers.

\section*{ANALOGUE USING DIGITAL FOR SPECIAL TASKS}

In such systems an extensive analogue computer utilises the mathematical power of a small digital computer to perform special calculations.

\section*{ANALOGUE WITH DIGITAL SUBUNITS}

The' majority, if not all. of modern analogue computers are provided with digital voltmeters for precise measurements of variables. Digital memory devices and function generators are used occasionally to supplement the power of the analogue computers.

\section*{ANALOGUE WITH DIGITAL CONTROL LOGIC}

Most modern analogue computers include digital logic circuits to control the analogue simulation. These include counters, flip-flops, gates, comparators, etc. which are terminated in an auxiliary patch board to facilitate, connections.

\section*{ANALOGUE PROGRAMMED BY DIGITAL}

In simulations involving a large number of equations the problem of scale factor calculations becomes somewhat tedious. To overcome this, special digital computer programs have been developed to process the given set of equations and produce scale factors, potentiometer settings, patchboard connections etc, Examples of these programs are Apache and Apse, standing for analogue programming and checking, and analogue programming and scaling of equations, respectively.

\section*{ANALOGUE USING NUMERICAL ANALYSIS}

The majority of modern analogue computers include facilities for operating in a repetitive mode. They often include provisions for memorising data from one repetitive cycle for use in subsequent cycles. This permits the use of numerical analysis techniques. such as derivative calculation, in pure analogue computers.

\section*{PURE ANALOGUE COMPUTERS}

These include the basic forms of analogue computers such as the one-shot type, and the repetitive type mentioned above. They are mainly used as teaching aids for the general principles of analogue computing theory.

\section*{BALANCED HYBRID COMPUTERS}

The words "balanced" and "true" are some of the terms used when the hybrid system consists of an appreciable amount of digital and analogue hardware, particularly when the system contains general purpose digital and analogue computers linked together. A typical form of this link, or interface, is shown in Fig. 2.1.

As can be seen the interface between the two computers must allow for the passing of data and control signals in both directions. Data processed within the digital computer must be passed. on to the analogue computer, together with control signals, such as the setting of potentiometers and analogue mode selection.

Similarly the solution of the equations patched on the analogue computer must be easily accessible to
the digital computer. Control signals generated within the analogue computer such as results of comparisons. logic outputs, and interrupts requesting the attention of the digital programme, must all be passed to the digital computer in a fast and reliable manner.

To convert the data from analogue to digital forms and the reverse, analogue-to-digital (A-to-D) and digital-to-a alague (D-to-A) convertors are employed. Generally only one of each of these convertors is employed, but extensive use is made of multiplexers and demultiplexers to provide multi-channel communications between the two computers.

Analogue sample-and-hold devices are usually used with the A-to-D convertors to maintain the signal level at a constant value for a sufficiently long enough time to permit reliable conversion. Hold devices are also employed at the output of the D-toA convertor to provide a continuous signal level between successive conversions.

Buffers are used to adjust the level of the signals to be compatible with that of the signals within the digital and analogue computers. Control and timing circuits are also required to synchronise the overall communications of data and control signals between the various units of the hybrid system.

\section*{HYBRID SOFTWARE}

Another important aspect of hybrid computers is that of the "software". This is the programme that converts the electronic hardware into a usable entity. The user is not so much interested in how the computer actually works, but in getting results in a convenient and speedy way.

This, in general, means that either the user has to know the machine code, the most basic of programming techniques, or the machine has to understand the user's language.

High level computer languages, such as Fortran, present an attempt to make the machine easier to use by the problem designer. Similarly, in hybrid computers suitable software must be provided. This will have the prime function of operating and maintaining the analogue part of the system, as well as the usual facilities of performing mathematical and logical operations within the digital computer.

One such language is that based on Fortran and named Hytran (Hybrid Fortran). Apart from the usual features of a high level language, a hybrid language performs operations that can be said to belong to one of two areas, namely operational and diagnostic.
Operational features include communication of data and control information, and synchronisation of the operations of the analogue and digital computers. In advanced hybrid installations special programme packages are written to optimise computation time. This is very important in "realtime" simulations, such as missile and spacecraft simulators.
The optimisation programme carries out a process of partitioning the set of differential equations between the analogue and digital parts in order to achieve the best possible combination of speed, accuracy and stability of solution.

\section*{DIAGNOSING TROUBLE}

The diagnostic aspect of hybrid software enables the servicing engineer and problem designer to easily locate hardware and programming faults in the sys-


Fig. 2.1. A typical balanced hybrid system showing the interlinking between the various parts
tem. The hardware faults will generally fall into one of three areas namely, digital computer, interfacing hardware, and analogue computer. The diagnostic programme helps isolate the faulty sub-unit by a gradual process of elimination. Programme faults will either be digital or hybrid in nature.

The diagnostic programme will enable the problem designer to examine memory locations and introduce break points in the digital programme to test the response to parameter changes. It will also enable him to test portions of the analogue programme online, to modify the programme and change variables as necessary.

The digital computer part of the hybrid language may contain special facilities for simulation. These may include integration routines, function generators, and variable time delay. These are often needed when the analogue computer is fully utilised and more integration capacity is required. Another use is to provide the solution to very slowly varying equations, where the analogue integrator usually suffers from low signal-to-noise ratio due to integrator drift.

\section*{HYBRID APPLICATIONS}

Simulation of engineering and scientific systems is perhaps the most widespread application for hybrid
computers. The essence of simulation is the formation of a mathematical model representing the system under study by a set of differential equations. These equations are then solved on the hybrid computer for varying initial conditions, parameter values, input excitations, and so on to provide a detailed knowledge of the behaviour of the system under study.

\section*{OPTIMISATION}

The car suspension example referred to in Part 1 is typical of those in the area of system optimisation. Optimisation is generally used for the determination of a set of values for system parameters which will minimise, or maximise, a given function. Here this involved the determination of a set of values for the spring stiffness, shock absorber damping, and friction coefficient that will minimise the extent and duration of car bounce.

In general, the function to be minimised, or maximised, is called the performance or cost function, and can indeed in some cases represent f's and P's such as the cost of fuel. An example of this is that of moving a satellite from one orbit to another with the minimum of fuel. The sequence of manoeuvres that will achieve this can be determined by using a hybrid computer.

The satellite dynamic equations are set up on the
analogue part. while the digital computer is programmed to carry out a series of optimisation procedures to deduce the best sequence of manoeuvres in terms of minimum fuel.

\section*{SPACE VEHICLE GUIDANCE}

The determination of the trajectory of a long range ballistic missile represents a formidable task to engineers and scientists. Hybrid computers are used extensively in the simulation of these systems to study, as well as the complete trajectory. the behaviour of on-board control units. The high frequency dynamic equations requiring only modest accuracy are generally patched up on the analogue computer. while those slowly varying equations representing the trajectory and requiring very high accuracy. are solved numerically by the digital computer.
The division of the problem between the digital and analogue computers will therefore depend on the speed and accuracy of the individual equations. as well as the availability of sufficient units on the analogue computer. and sufficient memory and computing time on the digital computer.

\section*{SIMULATORS FOR MAN/MACHINE SYSTEMS}

Many hybrid computer systems are specially designed to behave as the "real" machine in a man/machine system. Examples of man/machine systems range from driver/car. captain/ship. engineer/power-station. to pilot/aircraft and astronaut/spaceship. The value of these simulators in the training of human operators cannot be over estimated, particularly in situations where human safety and/or high cost are involved.
The training of new aircraft pilots will involve both risk and cost. which can be reduced or eliminated by the use of aircraft simulators. Fig. 2.2 shows a typical flight simulation.

Similarly submarine and tank simulators are used in the training of operators to avoid the high cost and general inconvenience incurred in these operations. Inconvenience to the general public is avoided by using simulators when training pilots for supersonic aircrafts creating sonic booms, or low flying aircrafts generating an unacceptable high level of noise. Power station simulators are used in the training of operating engineers to cope with abnormal and other situations. such as various faults on the Grid. start-up and shut-down sequences of generators and turbines. and other procedures.

\section*{RANDOM DISTURBANCES}

The ability to determine the effect of manufacturing tolerances of components on the overall behaviour of a system is useful. By modelling the system with a suitable set of equations, and patching those up on the analogue part of the hybrid computer the response of the system can be examined when various parts of the model are subjected to random effects.

These effects can in general be in the form of random initial conditions. random excitation on the input, or random parameter variations. Examples of such randomness may arise in the study of the variations of aircraft engine thrust with small deviations in fan blade angle due to manufacturing and assembly tolerances. or in investigation of the effects of thrust misalignment on the path of a missile.


Fig. 2.2. Use of a hybrid system in a man/ machine environment showing the various linkages allowing communication

\section*{OTHER APPLICATIONS}

A large number of other applications exist for hybrid computers including both theoretical and practical aspects of engineering and science. Solutions of problems represented by partial differential equations can be conveniently carried out using hybrid computers. In non-linear equations of more than one independent variable considerable advantages in speed and accuracy can be achieved over the purely analogue and digital computer solutions.
The simulation of industrial process control systems is ideally suited to hybrid computers. In such simulations the equations representing the process under consideration, e.g. a chemical reactor, a steel mill, etc, are patched on the analogue computer. while the control system hardware is simulated by a programme in the digital computer.

The control system parameters can then be investigated by easily modifying the digital programme to obtain an optimum design of the control system.

\section*{MEDICAL AND ECONOMIC STUDIES}

Applications of a lesser engineering nature include the study of biological and economic systems. Studies of the chemical reactions and dynamic forces taking place in animal muscles can be carried out on a hybrid computer as both discrete and continuous signals are involved in live tissues. Analysis of medical records and electrocardiogram (ECG) signals can be speeded up, and even performed in real-time, by the use of hybrid computers.
"Analogue Pre-processing" carried out on ECG signals on-line enables the reduction of data to eliminate redundant information and thus facilitate data storage in moderate memory sizes.

Simulation of economic systems is another area of application in hybrid computing techniques. Mathematical economic models are formulated to represent the state of a company, a country, or even recently the entire resources and drains of the economy of the whole world. These models are usually characterised by a set of difference differential equations ideally suited for hybrid computer solution.


MANY of the measurements that have to be made on audio equipment involve the use of ratios, usually of one voltage to another, and for this purpose many engineers prefer the use of a calibrated attenuator to a millivoltmeter.

An indicator is required, but it does not have to be particularly accurate, provided it has a flat frequency response over the bandwidth to be measured. A datum point has to be established, but then the attenuator takes over, and it is surprising how quickly and easily measurements can be made simply by adjusting the attenuator to re-establish the datum every time it changes, whatever the reason.

The attenuator to be described was built to fulfil such a function, and has been found to be a most useful instrument.

\section*{THE PI NETWORK ATTENUATOR}

The attenuator is based on a series of \(\pi\) (pi) networks in cascade; the elements of this are shown in Fig. 1. The attenuation afforded by a single section is dependent on the ratios of R1 to R2, and R2 to R3, and can be calculated by the following expressions:
\[
\mathrm{R} 1=\mathrm{R}\left(\frac{\mathrm{n}+1}{\mathrm{n}-1}\right) \text { and } \mathrm{R} 2=\mathrm{R}\left(\frac{\mathrm{n}^{2}-1}{2 \mathrm{n}}\right)
\]

When the input impedance is equal to the output impedance, as it usually is, then R1 \(=\) R3, and there are only two resistances to calculate.

When these expressions are used, R is equal to the characteristic impedance required, i.e. 600 ohms , and n is the attenuation required, i.e. \(V_{\mathrm{i}} / V_{0}\), where \(V_{\mathrm{i}}\) is the voltage being fed into the attenuator, and \(V_{0}\) is the voltage coming out of the attenuator. The output will therefore be less than the input, and is always expressed as a ratio in terms of decibels.

\section*{ATTENUATORS IN CASCADE}

A single attenuator, as described, can be fairly easily constructed and is sometimes used to provide any given amount of attenuation. It is more usual, however, to use a number of such attenuators to provide a number of attenuation ratios, and if the characteristic impedance remains fixed, and the
attentuation ratios are in equal steps, then it is a fairly simple matter to connect a number of individual attenuators in cascade.

If we consider the case of a nulaser of attenuators of the Fig. 1 type in cascade, then, since there are now two resistors of equal value (R1 and R3) connected in parallel, all that is required is to replace them with a single resistor having half the value, giving Fig. 2.


Fig. 1. Simple pi network whose attenuation and imped ances are determined by the following relationships:
If \(Z_{i}=Z_{0}\), then \(R_{1}=R_{3}=R\). \(\frac{n+1}{n-1}\) and
\[
R_{2}=\frac{n^{2}-1}{2 n}
\]
where \(R\) is the characteristic impedance \((=600 \Omega\) ) and \(n=V_{1} / V_{0}\)


Fig. 2. Connecting attenuators in cascade produces further steps of attenuation. This type of compound attenuator is found in the output stages of signal generators giving ratios of 10: 1, \(100: 1,1,000: 1\) etc.


Fig. 3. Circuit of the complete attenuator giving attenuation in 1 dB steps from 0 dB to 31 dB . If \(\frac{1}{2} \mathrm{~dB}\) accuracy is required an extra stage may be added at the input end using resistor values given in the components list

Such a compound attenuator is often found in the output stage of a signal generator giving attenuation ratios of \(20 \mathrm{~dB}, 40 \mathrm{~dB}\), and 60 dB , i.e. \(10: 1\), 100:1, and 1,000:1.

\section*{VARIABLE STEP ATTENUATOR}

For frequency response plotting purposes, such an attenuator has to be replaced with a different type of attenuator in which the steps are not of the constant variety, but must be variable in much smaller steps, each step being different from the preceding, and following one. This is the attenuator illustrated in Fig. 3.

In this, the smallest step is 1 dB , the next is 2 dB , doubling up to a maximum of 16 dB , giving a total attenuation of 3 IdB , more than adequate for its intended purpose.

The smallest step of 1 dB is not small enough for really precise measurements, although it is possible to make an educated guess as to the precise attenuation when it falls outside the 1 dB limit.
The reader who decides to construct the attenuator, can, if he so feels inclined, include the \(\frac{1}{2} \mathrm{~dB}\) step.

\section*{CONSTRUCTION}

The attenuator was constructed in an aluminium cabinet \(10 \frac{1}{2}\) in long, \(3 \frac{1}{2}\) in deep, and 2 in high, all the switches and the terminal posts being mounted on an L-shaped piece of aluminium. This forms the top and front of the cabinet, and was given an attractive "brushed" appearance by means of a piece of steel wool drawn repeatedly across the aluminium. The rest of the cabinet was painted matt black.

\section*{COMPONENTS . . .}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{ll} 
Resistors & \\
R1, R3 & \(10 \mathrm{k} \Omega\) in series with \(470 \Omega\) (2 off) \\
R2 & \(68 \Omega\) \\
R4, R6 & \(5 \cdot 1 \mathrm{k} \Omega\) in series with \(150 \Omega\) (2 off) \\
R5 & \(100 \Omega\) in series with \(39 \Omega\) \\
R7, R9 & \(2 \cdot 4 \mathrm{k} \Omega\) in series with \(240 \Omega\) (2 off) \\
R8 & \(270 \Omega \Omega\) in series with \(18 \Omega\) \\
R10, R12 & \(1 \cdot 2 \mathrm{k} \Omega\) in series with \(180 \Omega\) (2 off) \\
R11 & \(560 \Omega\) in series with \(75 \Omega\) \\
R13, R15 & \(820 \Omega\) (2 off) \\
R14 & \(2 \mathrm{k} \Omega\) \\
R16 & \(1 \cdot 2 \mathrm{k} \Omega\) in parallel with \(1 \cdot 2 \mathrm{k} \Omega\) \\
All resistors \(2 \% \frac{1}{2} W\) carbon \\
For \(\frac{1}{3} \mathrm{~dB}\) section use circuit of Fig. 1 with R1, R3 \\
\(=68 \Omega\) in parallel with \(68 \Omega\), and \(\mathrm{R} 2=18 \mathrm{k} \Omega\) in \\
series with \(3 \mathrm{k} \Omega\) (or \(21 \mathrm{k} \Omega\) )
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Switches \\
S1-S5. Double pole double throw, toggle (5 off) S6 Single pole on/off
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Miscellaneous Insulated terminal posts (4 off) Aluminium for case} \\
\hline
\end{tabular}

Toggle switches were used, as these are much more easily operated than the much cheaper slide switches, and were mounted in a straight line configuration; this has the advantage of greatly reducing stray capacitances between sections, and the response at 100 kHz was only \(\frac{1}{d B}\) down compared to that at 1 kHz .
An 18 s.w.g. busbar runs from end to end, connecting the two earth terminals. All the resistors are connected directly to the switches, their earthy ends connecting conveniently to the busbar (see Fig.


Fig. 4. Construction of the attenuator showing the layout of the resistors and the busbars
4). This form of construction also reduces stray capacitances, this time to earth (cabinet), thus preserving the high frequency response.

\section*{RESISTOR VALUES}

The resistance values, as calculated, are sometimes non-standard, but a very close approach to the required value can be obtained by series connecting easily available two per cent carbon film resistors.

Any discrepancies between measured and calculated values will be slight, and should be easily restored by a change in one or more of the associated resistors. This is clearly a valuable facility, as it enables a very accurate attenuator to be constructed, the ultimate accuracy then being dependent on the checking facilities available.

For checking, say, tone control response the procedure is to set the attenuator at zero attenuation and then feed in a signal at 1 kHz to provide a suitable output from the amplifier, and the meter reading. or index mark, is noted. The tone controls must be set at the position supposed or believed to provide a level response.

One of the tone controls, let us say the bass control, is turned to the position providing maximum boost.

If the turnover frequency is around 1 kHz , the output should not alter significantly.

The oscillator frequency is then reduced in steps of an octave to the lowest frequency of interest. At each octave reduction, the meter reading will increase, and the attenuator must be adjusted to


Fig. 5. Block diagram showing placement of attenuator in a set-up to measure frequency response of an audio amplifier

When the resistors are being connected into the switches. the use of a heat shunt is essential: overheated resistors are liable to change in value, even if by only a small amount.

The attenuator was designed to work into a load of 600 ohms, as most of them are. Since such a load is not always available, it was decided to build one in: this is R16, switched in and out of circuit. as required, by \(S 6\).

\section*{CHECKING THE ATTENUATOR}

When complete, the attenuator must be checked for overall accuracy: any discrepancy can be corrected by a resistance change as described earlier. An accurate a.c. voltmeter is essential, to monitor the attenuation ratios actually produced.

An a.f. signal generator is also desirable: failing this the 50 Hz mains can be used, suitably reduced by a transformer. The voltage input, whilst testing. and in subsequent use, must never exceed the rating at which the resistors will be damaged, bearing in mind that they are half watt types, and that wattage is given by \(E^{2} / R\).

If, after due calculation of the voltages required in testing, it is found that half watt types are not sufficiently rated, then it is essential that one watt types, or even higher if required, are used. The attenuation ratios that should be obtained are shown in Table 1.

\section*{THE ATTENUATOR IN USE}

In use, the attenuator is placed between the oscillator and the equipment under test, with the equipment output feeding the voltmeter, and, if required, a suitable dummy load. The set up for measuring an a.f. amplifier is shown in Fig. 5.
return the meter reading to its original mark. The amount of attenuation required is also noted at each reduction. The bass control is then returned to its original position.

The treble control is then turned to provide maximum treble boost. This time the frequency is increased in octave steps to the maximum frequency of interest.

At each increase of frequency, the meter reading will increase, and, as before, the attenuator is adjusted to restore the original meter reading, and the amount of attenuation noted.

\section*{BASS AND TREBLE CUT}

Bass and treble cut can be checked in exactly the same way, only this time the attenuator is set to provide a predetermined amount of attenuation before any measurements are made. This is because bass and treble cut effect a reduction in output and therefore attenuation-via the attenuator-must be removed in order to determine the amount of cut.

The overall frequency response of an amplifying system, or part of a system, can also be checked in exactly the same way, by setting up a datum point

Table 1: ATTENUATION RATIOS
\begin{tabular}{cl}
\(-\frac{1}{2} \mathrm{db}\) & 0.944 \\
-1 dB & 0.891 \\
-2 dB & 0.794 \\
-4 dB & 0.631 \\
-8 dB & 0.398 \\
-16 dB & 0.159 \\
\hline
\end{tabular}
at 1 kHz . and then increasing and decreasing the frequency in octave steps. Since any given system may contain both peaks and troughs in its response. it is customary to introduce a small amount of attenuation at the commencement of the test; this can then be removed if troughs exist, or increased if peaks exist.

\section*{UNDERSTANDING THE DECIBEL}

The first fact to firmly grasp is that the decibel, or dB , is a ratio of something to something else. The ratio can be relative sound levels, relative voltages, or currents, or powers. But it is a ratio, and to mention " \(x\) " number of \(d B\) 's without saying in relation to what can be grossly misleading, since a listener can interpret the "dB's" in his own way.

Possibly the simplest way of using decibels is by reference to dB tables, or to a dB graph of which a typical example is shown in Fig. 6.

Thus, if a ratio is known, it is simply a matter of looking up the table, or running a rule from one axis to the other, and it is at this point that uncertainty can arise, for there are two lines on the graph, one for power (watts) only, and the other for voltage or current.

\section*{CALCULATING DECIBELS}

If two power ratings are given by \(P_{1}\) and \(P_{2}\) then the ratio between the two (in decibels) is given by Power gain \((\mathrm{dB})=10 \log P_{1} / P_{2}\)
However for current or voltage ratios the formula becomes
\[
\begin{aligned}
\text { Voltage gain }(\mathrm{dB}) & =20 \log E_{1} / E_{2} \\
\text { or Current gain }(\mathrm{dB}) & =20 \log I_{1} / I_{2}
\end{aligned}
\]

The difference in magnitude is due to the equation for power \(\mathrm{P}=\mathrm{I}^{2} \mathrm{R}\) (or \(\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}\) ). When logs are taken one obtains \(\log I_{1}^{2} / I_{2}^{2}=2 \log I_{1} / I_{2}\) (similarly with voltage).

Where the ratio is less than unity there is a loss and the dB figure is preceded by a minus sign; if greater than unity the decibel figure is positive.

The graph of Fig. 6 is a straight line because one axis (the decibel) has been made logarithmic.

\section*{HANDLING DECIBELS}

Supposing two amplifiers are connected in cascade, one having a gain of 30 and the other a gain of 40 . To get the total gain we simply multiply the two giving a total of 1,200 .

Looking at the situation in terms of decibels we see from the chart that a gain of 30 equals 30 dB and 40 is 32 dB . As with logs, to get the total gain we simply add the two figures giving a total gain of 62 dB which, on checking with the graph is seen to equal 1,200 .
Similarly, if we had two attenuators in series, one with a "gain" of \(1 / 30\) and the other with a "gain" of \(1 / 40\), to \(\sim\) ot the total gain we again add the relevant decibel figures (which are now negative quantities). Thus total gain is \(-30 \mathrm{~dB}+-32 \mathrm{~dB}\) which is -62 dB (i.e. \(-1 / 1,200\) ).

To generalise, we can calculate the total gain of a number of stages in cascade by simply adding all the gains, remembering that stages which produce a loss will have a negative decibel figure.

The vital point to always remember is that the datum point, the 0 dB level, is an arbitrary level that can be set anywhere it is desired, and that after that


Fig. 6. Graph showing conversion of ratios into decibels for power and current or voltage
everything else is in relation to this. OdB can be zero output. or it can be maximum output, or anywhere in between.

This makes it delightfully versatile, but danger lies hidden under the cloak of versatility, for misunderstandings can so very easily arise unless 0 dB is clearly defined.

\section*{THE IMPORTANCE OF IMPEDANCE}

The equation for voltage gains and losses of 20 \(\log E_{1} / E_{2}\) applies only when the impedances across which \(E_{1}\) and \(E_{2}\) are measured are the same, and this is a point which is so very easily overlooked, but one which can nullify any results obtained.

If the impedances are different the equation becomes \(20 \log E_{1} / E_{2}+10 \log R_{2} / R_{1}\) where \(R_{1}\) and \(R_{2}\) are the resistive parts of the impedances.

This correction must be applied when attempting to measure the dB gain of a high input impedance amplifier with a low output impedance, an exercise as futile as it is misleading.


What does the future hold in store for electronics in general, and for electronics constructors in particular?

Your views and predictions concerning likely developments in the next 10 years are invited.
Due to delayed publication dates readers' contributions will now appear in our December and January issues to mark the completion of this magazine's first 10 years of publication.
Contributions (not exceeding 300 words and entitled "The Next Decade") should be addressed to The Editor, Practical Electronics, Fleetway House, Farringdon Street, London, E.C. 4 and posted in time to reach our offices by November 10, 1974.

A payment of \(£ 5\) will be made for each letter published. Selection will be based upon originality of thought, technical credibility and general presentation.

MOST constructors have a box of odd transistors with a lack of markings or dubious working capability. Add to this the fact that bargain packs containing, for example, " 50 . untested and unmarked transistors for 55 p" are widely adyertised, and it can be seen that a quick and simple transistor tester would be of great value.

The device described in this article has the ability to determine the polarity of the transistor under test ( \(p n p\) or \(n p n\) ) and to show the approximate d.c. gain ( \(h_{\mathrm{FE}}\) ) in four groups: under 20 , over 20 , over 60 and over 120. Diodes can also be tested and their cathode ends identified.

The device may be constructed for under \(£ 5\) including case and using all new components.

\section*{CIRCUIT DESCRIPTION}

The circuit consists of two main parts: the type indicator and the gain indicator. The type indicator is shown in Fig. Ia and the gain indicator in Fig. Ib.

The two inverters ICla and b are connected to form a multivibrator running at about 2 kHz . The two outputs are buffered by the second two inverters ICIc and d. The emitter and collector of the transistor under test is connected to the outputs of these two inverters.

The signal applied to the base of the transistor via IC2a and R3 is always of the same phase as the signal applied to the collector so that the transistor, whether it is \(p n p\) or \(n p n\), will always be turned hard on every half cycle of the clock pulse.

The 7400 series of logic i.c.s are current limited by means of resistors in the positive side of the pushpull output stage. Therefore if, as in this circuit with the transistor under test turning on every half cycle, a positive output is connected to an output driven to 0 V then the positive going output will be pulled down to 0 V .

With an \(n p n\) transistor in the test position, the transistor will be on when the emitter is connected to 0 V by the circuit so that the collector of the transistor will be at almost 0 V ; on the second half of the clock cycle the collector will be switched to 0 V by the circuit and the emitter to the supply voltage. Thus it can be seen that the collector will
always be near 0 V if a working \(n \mathrm{pn}\) transistor is connected in the circuit.

With a prp transistor in the circuit the action will be similar except that the emitter terminal will be held near to 0 V .

The final two inverters, ICle and \(f\) are used to detect which terminal is being held at 0 V and then to drive one of the l.e.d.s D1 or D2 via the appropriate current limiting resistor R4 or R5.

The polarity detector could have been constructed using a single \(S N 7404 \mathrm{~N}\) hex inverter but since a spare inverter was available in IC2 it was decided to buffer the base drive to the transistor under test.

\section*{GAIN INDICATOR}

The gain indicator part of the circuit shown in Fig. 1b uses a Zener diode and resistor (D3 and R6 or D4 and R20, depending on the polarity) to give a base current of about \(100 \mu \mathrm{~A}\) for the transistor under test. A current sensing chain consisting of three resistors each connected to the base of a transistor forms the collector load.

If the transistor is npn and has a gain of over 20, insufficient voltage to turn on TR1 and TR2 will be developed across R8 and R9 but the total voltage across R8, R9 and R10 will turn on TR3 causing a logic 1 to be applied to the input of IC3c so that its output falls to near 0 V causing l.e.d. D7 to conduct and light.

If the transistor has a gain of over 60, both TR2 and TR3 will conduct so the logic gate IC3b lights D6 but the connection to pin 9 inhibits IC3c so that only one l.e.d. lights.

Similarly for a gain of over 120 all three transistors conduct but the logic ensures that only D5 lights.

Operation of the circuit for \(p n p\) transistors is similar except that the outputs from the transistors are inverted before being fed to IC3 because of the opposite voltages being used.

The standard resistor values will give reasonable accuracy even allowing for the variation in baseemitter voltages of the transistors.

Switching is shown in Fig. 1c. Two outputs are provided to a transistor under test, one via a standard socket and the other via three sockets to flying leads.


Fig. 1a. Circuit diagram of the polarity indicator


Fig. 1b. Circuit diagram of the gain indicator. In both the above diagrams the circled designations are connections from the circuits to the switching in Fig. ic


Fig. 1c. Power supply and switching system. The battery can be used to make the unit self-contained or an external power source can be used


Fig. 2. Layout of the components on the perforated board

\section*{CONSTRUCTION}

The layout of the components on a piece of perforated board is shown in Fig. 2 and the arrangement of the components on the front panel can be seen in the photographs. A standard diecast box measuring \(3 \frac{1}{2}\) in \(\times 4 \frac{1}{2}\) in was used to house the board.

\section*{COMPONENTS . . .}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Resistors} \\
\hline R1, R2 \(2 \cdot 2 \mathrm{k} \Omega\) (2 off) & R11-R16 \(1 \mathrm{k} \Omega\) (6 off) \\
\hline R3 1k \(\Omega\) & R17-R20 \(330 \Omega\) ( 40 off ) \\
\hline R4-R6 \(330 \Omega\) (3 off) & R21 33k \(\Omega\) \\
\hline R7 \(33 \mathrm{k} \Omega\) & R22, R23 \(51 \Omega\) (2 off) \\
\hline R8, R9 \(51 \Omega\) (2 off) & R24 \(200 \Omega\) \\
\hline R10 \(200 \Omega\) & R25-R30 \(1 \mathrm{k} \Omega\) (6 off) \\
\hline All \(\frac{1}{4} \mathrm{~W} \pm 5 \%\) carbon & \\
\hline \multicolumn{2}{|l|}{Capacitors} \\
\hline C1, C2 \(0 \cdot 1 \mu \mathrm{~F}\) (2 off) & \\
\hline \multicolumn{2}{|l|}{Semiconductors} \\
\hline \multicolumn{2}{|l|}{D1, D2 TIL209 (2 off)} \\
\hline \multicolumn{2}{|l|}{D3, D4 3.9 V 400 mW Zener (2 off)} \\
\hline \multicolumn{2}{|l|}{D5-D7 TIL209 (3 off)} \\
\hline D8-D10 1N914/(3 of & \\
\hline \multicolumn{2}{|l|}{D11, D12 1N4001 (2 off)} \\
\hline \multicolumn{2}{|l|}{TR1-TR3 2N722 or similar (3 off)} \\
\hline \multicolumn{2}{|l|}{TR4-TR6 2N3700 or similar (3 off)} \\
\hline \multicolumn{2}{|l|}{IC1, IC2 SN7404N (2 off).} \\
\hline \multicolumn{2}{|l|}{IC3 SN7410N} \\
\hline \multicolumn{2}{|l|}{Switches} \\
\hline \multicolumn{2}{|l|}{S1 4-pole 3-way rotary} \\
\hline \multicolumn{2}{|l|}{S2 Push on, release off pushbutton} \\
\hline \multicolumn{2}{|l|}{Miscellaneous} \\
\hline \multicolumn{2}{|l|}{SK1 Transistor socket} \\
\hline \multicolumn{2}{|l|}{SK2-SK6 2mm sockets (5 off)} \\
\hline \multicolumn{2}{|l|}{\(0 \cdot 1 \mathrm{in}\) matrix perforated board \(3 \frac{3}{4}\) in \(\times 3 \frac{1}{4}\) in} \\
\hline \multicolumn{2}{|l|}{Diecast box \(4 \frac{1}{2} \mathrm{in} \times 3 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in}\)} \\
\hline \multicolumn{2}{|l|}{14 pin integrated circuit sockets (optional)} \\
\hline \multicolumn{2}{|l|}{2 mm plugs and leads} \\
\hline B1 6V battery (see t & text) \\
\hline
\end{tabular}

\section*{POWER SUPPLY}

The unit draws a maximum current of approximately 110 mA and since the power is only used for short periods at a time, batteries would be fairly economical to use. However, the prototype has always been used within easy reach of a 6 V power supply so the unit was fitted with external sockets rather than a battery holder. The constructor can choose which method better suits his purpose.


The layout of the front panel showing arrangement of l.e.d.s and sockets

The unit will function with 4.5 V to 6 V at the board \((5 \mathrm{~V}\) to 6.5 V at the input terminals of the safety diodes D11 or D12).

\section*{OPERATION OF THE TRANSISTOR TESTER}

When the wiring has been checked and the power supply or battery connected, the operation of the unit may be checked in the following manner.

Set the function switch Sl to TYPE and connect a transistor to the test sockets. When the power button is pressed either the NPN or the PNP lamp should light indicating the polarity of the transistor.

Now set the function switch to whichever type of transistor was indicated and again press the POWER button. One of the lamps should light indicating the approximate gain of the transistor. If none of the lamps light this could be due to the fact that the transistor has a gain of below 20 .

If, with the function switch in the TYPE position, both the NPN and the PNP lamps light, it indicates that the transistor under test is open-circuited; if neither lamp lights then it is short-circuited.

\section*{TESTING DIODES}

A diode may be tested by connecting it between the emitter and collector sockets and setting the function switch to TYPE. If the PNP lamp lights then the end of the diode connected to the collector socket is the cathode and if NPN lights then the cathode is to the emitter. As with the transistor, if both or neither lamp lights then the device is openor short-circuited.


THe move to Brighton this year of the British Musical Instrument Trade Fair（7th llth July）has added more than just a breath of sea air．In previous years covering the show meant an exhausting ＂walkabout＂of hetels in the envir－ ons of Russell Square．The present liting at the well equipped and spa－ cious exhibition hall of Brighton＇s Hotel Metropole was evidently Welcomed by the trade as demon－ trated by the number of exhibitors 45 companies－and volume of musieal merchandise on diaplay．

\section*{AMPLIFIERS}

Judging by product representation the solid state low or mediun power ＂combo＂amplifier（a complete inte－ grated amplifying system in one box）is a significant sales growth area．Most of these have reverb． tremelo and sustain either singly or in combination．For the amateur group musician these are attractive buys combining portability with typical power ranges from 30 to 130W．Some companies such as Hornby Skewes and Carlsbro offer beginners practice amplifiers in the 3 to 25 W range．

There are still many musicians who refuse to be weaned off the ＂bottle＂to solid state as indicated by the number of valved power amps available．Top Gear，which handles Peavey amplification，intro－ duced three new valved amplifiers in the 100 W plus range．On the other side of the coin．Cleartone Musical Instrument have converted their CM1 line of valved amps to solid state which probably indicates where the future lies．

\section*{SYNTHESISERS}

Last year Boosey and Hawkes provided a scintillating display of what man，three ARP synthesisers and an organ could accomplish．To have repeated this performance this year with the addition of the new ARP＂Explorer＂would have defeated the ability of the most agile demonstrator，I am sure．

Of the ARP range to my mind the most fascinating is the Pro－ Soloist．This provides 30 preset instrumental and electronic effects at the touch of a key．Using memory circuits the recreated instru－ mental sounds are truly amazing． Used with an organ it is an ideal ＂second＂solo keyboard．

With an eye to the obvious market Yamaha have introduced a similar instrument，the \(\mathrm{SY}-\mathrm{I}\) ．The three octave keyboard provides touch control for vibrato，wah－wah and volume．Instrumental voices available number 26 ，but synthesiser ＂sounds＂can be readily created with either selectable presets or con－ tinuously adjustable controls． Although I marvel at all things Japanese I still prefer the Pro－ Soloist．

The Bentley Organ showcase included the Solina String－Ensemble described as a polyphonic portable ＂mini－orchestra＂．Voices offered are viola，violin，trumpet，horn，contra－ bass and cello．The instrument name derives from the fact that violin and viola registers can be played poly－ phonically as can trumpet and horn． Contra－bass and cello are mono－ phonic only．

Tone generation is digital with only one master oscillator which enables easy transposition with other instruments．

\section*{PIANOS}

Of the electronic pianos probably the most interesting is the new Compton－Edwards Pianotron．It offers as much as the genuine article with an 88 note keyboard，velocity sensitive key action and soft and loud pedals with all the additional advantages that electronics can add such as three additional voices： Honky－Tonk，Harpsichord and Synthesiser all with a vailable vibrato and reverberation effects．

Keeping the instrument in tune should never be a problem as a pitch slider enables this to be done over the whole keyboard in one adjustment．

As a musician who finds trans－ posing at sight a difficult task，I found the 12 －position switch trans－ poser very gratifying．Each step of this changes the pitch by a semi－ tone．

The internal amplifier provides a cracking peak power of 150 W （？）．

Bentley were also showing a new piano covering six octaves with an additional Harpsichord voice and pitch control．This，however，is an add－on unit to a main console．

\section*{ORGANS}

Every year one expects more ＂Easy－Play＂organ gimmicks to be added to the now considerable list．

\section*{回回回回回回回回回回回回回回回回回回回回}

\section*{The Compton－Edwards Pianotron home model}


With so much organ sales litera－ ture aimed at making the most callow amateur sound like a pro，we have seen，a whole new vocabulary grow up．

There have been＂Autochord＂ just make a chord and the organ does the rest for you；＂Walking Bass＂．．．play the root note on the pedal and all of the rest of the notes are automatically produced in sequence in perfect pitch and tempo to the music being played on the keyboard；＂Fantom Fingers＂ providing cascades of arpeggios for little effort：＂Musi－Computer＇ this is a form of electronic piano roll．A computer tape records digital pulses on playing and on playback these voltages are applied to the key contacts so that the sounds are re－ produced．Obviously this is a use－ ful teaching aid particularly as the notes that are sounding can be visually indicated and new registra－ tions added at will．

There are other novelty features aimed at selling self－generated home entertainment．

New entrants to this market include the Lowrey．Teenie Genie organ with an accompaniment offering＂Genie Chords＂which can be played with one finger of the left hand and the Baldwin Fun Machine．

Baldwin also include a new＂Real Rhythm＂feature on their Encore and Bravo organs．This I found particularly exciting as the strict tempo feature of the electronic rhythm box has been modified．Here manually selected rhythm voices

The new SY－1 solo synthesiser from Yamaha
are programmed to follow playing on the accompaniment manual and pedals．Alternatively automatic patterns may be played or complex patterns with the automatic and manual facilities．
In the＂Easy－Play＂market，Wurlit－ zer were strongly represented with seven models incorporating＂Spec－ tra－Sound＂，illuminated keyboard， notefinder，bass riff，walking bass， touch tone programmed accom－ paniment．＂Swingin＇Rhythms＂， etc．，etc．

Hammond had their＂dynamic duo＂Regent and Concorde on dis－ play and two new models，the 7100 and 5200 models．

\section*{EFFECTS}

I discovered a box which pro－ duced some very satisfying noises when hooked to an organ on the Kentucky stand．This，the Multi－ mate，provided controlled frequency
shifting proportional to input frequency which when re－mixed with the original input provided a curious spatial effect completely different from reverberation．Ken－ tucky state that the device would be compatible with any input．

A stunning effects box in combin－ ation with an organ is the Mellotron 400 from Dallas Musical．This is best described as a tape machine manipulated by a keyboard．The standard instrument provides three basic sounds of flutes，violins and cellos recorded on tape．However， other tape frames can be easily added to extend the repertoire to provide a unique instrument as evi－ denced by the many famous groups using it．

\section*{可回回回回回回回回可回回回回回回回回回回回回}

The new Compton－Edwards Symphonia organ


The new CSY－1 Electone organ from Yamaha with synthesised instrumental sounds and shaping controls


\title{
Now-two fascinating ways to enjoy saving money! NEW! Sinclair Scientific kit
}

\section*{Britain's most original calculator now in kit form}

The Sinclair Scientific is an altogether remarkable calculator.

It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around \(£ 100\) or more.
Yet even ready-built, the Sinclair Scientific costs a mere £ 32.35 (including VAT).
And as a kit it costs under f20!

\section*{Forget slide rules and four-figure} tables!
With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin,
cos and arccos,
tan and arctan,
automatic squaring and doubling,
\(\log _{10}\), antilog \({ }_{10}\), giving quick
access to \(x^{Y}\) (including square and other roots),
plus, of course, addition, subtraction, multiplication, division,
and any calculations based on them.
in fact, virtually all complex scientific or mathematical calculations can be handled with ease.

\section*{So is the Scientific difficult to assèmble?}

No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.
All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we'll happily supply the Scientific or th Cambridge already built, if you prefer - they're still exceptional value Use the order form.

Components for Scientific Kit (illustrated)
1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons,
windows and light-up
display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.


Features of the Sinclair Scientific
\(\qquad\)
 Basic logs and trig functions fand their inverses), all from a keyboard as simple as a normal arithmetic calculator's. 'Upper and lower case' operation means basic arithmetic keys each have two extra functions.

- S
Scientific notation Display shows 5 -digit mantissa, 2 -digit exponent, both signable.

200-decade range \(10^{-99}\) to \(10+{ }^{99}\).

\section*{Reverse Polish}
logic Post-fixed operators allow chain calculations of unlimited length--eliminate need for \(a n=\) bution.

25-hour batterylife 4 AAA manganese alka-
line batteries (e.g. MN2400) give. 25 hours continuous use. Complete independence from external power.
- Genuinely pocketable \(41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}\) Weight 4 oz. Attractively styled in grey blue and white.

\section*{Sinclair Cambridge kit}

At its new low price, the original Sinclair Cambridge kit remains unbeatable value.
In less than a year, the Cambridge has become Britain's most popular pocket calculator.

It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge Kit
1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch 10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge


Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question.
All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)
Simply fill in the preferential order form below and slip it in the post today.

\section*{Scientific}

Price in kit form \(£ 19.95\) inc. VAT.
Price built \(£ 32.35\) inc. VAT.
Cambridge
Price in kit form \(£ 14.95\) inc. VAT.
Price built \(£ 21.55\) inc. VAT.


Sinclair Radionics Ltd, FREEPOST St. Ives,
Huntingdon, Cambs. PE174BR.


Ideally suited for:

Drevious articles in this series have discussed all the electronic aspects of the C.C.T.V Camera. This month case construction, final wiring and setting up procedures are discussed. The Modulator required for interfacing with a domestic Television receiver will be described next month.

THE LENS
Several factors are to be considered in the choice of a lens for a TV Camera. The fundamental requirements of the lens which is to transmit the viewing scene to the Vidicon may be summed up by considering the following four points-
(a) the dimensions of the maximum usable area of the photoconductive target,
(b) the sensitivity of the Camera tube,
(c) the viewing angle required,
(d) the depth of focus required.

EMI specify a maximum usable area of their type 9677 Vidicon target as being the central \(\frac{1}{2}\) in \(\times \frac{1}{2}\) in, and a minimum illumination of 2 lux for full video signal current. Factors (a) and (b) are hereby fixed by the Vidicon characteristics, however, flexibility of factors (c) and (d) is made possible by the optical properties of the chosen lens.

Illumination of the required scene must be controlled before it is transmitted to the Vidicon target by the lens. Only when this is achieved will the video signal faithfully represent the dynamic range of the picture. An aperture stop is incorporated in all camera lenses expressly for this purpose, and a target illumination of approximately 2 lux is made possible by a simple manual adjustment.

The chosen lens is required to produce an image of the scene onto the specified \(\frac{1}{2}\) in \(\times \frac{1}{2}\) in area of the target, and therefore calls for precise positioning in relation to the target. The lens must be either a 16 mm , or 35 mm size and have a relatively short focal length.

One point to remember when using any lens is that a deeper depth of focus is obtained by using smaller apertures, e.g. f11, f16, f22). To achieve this, of course, we require brightly lit scenes.


䟢 Remote Montrorimg

CAMERA ENCLOSURE
All the mechanical details of the enclosure are shown in Fig. 3.1. The chassis is made from 18 s.w.g. aluminium and strengthened by four square cross section bars which run front-to-back near the corners of the enclosure. Each herizontal bar has two 6BA tapped holes to enable the p.c.b.s to be mounted vertically at the sides of the chassis and provide a good chassis earth p.c.b. connection.

Standard photographic tripod mounting is facilitated by introducing a further strengthening bar to the base of the chassis. A \(\frac{1}{4}\) in \(\times 1\) in cross sectional bar of aluminium is mounted at the centre of gravity of the TV Camera for a well-balanced \(\frac{1}{4}\) in BSW thread tripod attachment. The lens is screwed into a square aluminium block which is then mounted onto the front panel by 4BA bolts. These four mounting bolts will clear the aluminium front plate and screw into the scan coil assembly.

Four additional holes are drilled in the base of the chassis and countersunk from the bottom to

*North Staffordshire Polytechnic


Fig. 3.1. Mechanical details of camera enclosure



TABLE 3.1
Pin No.
Connection
\begin{tabular}{cc}
1 & Heater \\
2 & Modulator \\
3 & Mesh G4 \\
4 & Internally connected \\
5 & Limiter G2 \\
6 & Wall anode G3 \\
7 & Cathode \\
8 & Heater \\
Index pin & Internally connected
\end{tabular}

Pin details for (left) vidicon tube and transistors (above)
enable the two mains transformers to be firmly secured at the rear of the Vidicon and scan coils. The relative positioning of these components is quite critical due to the sensitive nature of the camera lube and the magnetic fields generated by the iransformers.

The cover is made from 20 s.w.g. aluminium and secured with 6 BA self-tapping screws.

\section*{WIRING DETAILS}

The majority of connections exist at the rear of the Camera assembly-between the p.c.b.s, control pancl. Lransformers and along to the Vidicon pin connector (Fig. 3.2). Fortunately, a large percentage of the system wiring is not critical and a series of bundled cables may be used to give very neat results. In the prototype, for example, the full colour range of solid, p.v.c. covered \(1 / 024\) in wire was used (the coloured wire certainly helped in tracing connections!)

There are, however, four connections within the system that should be made to the following instructions in order to prevent undesirable signal pickup-
(a) The composite video output signal should be connected from the Video Amplifier to the coax socket via coaxial cable, whose outer braiding is earthed at both ends.
(b) The line and field scan coil connections should be made with tightly twisted cable and be as short in length as possible.
(c) The Vidicor, target connection should be the shortest possible length (ie. made with P.C.B. I screwed in position).


Fig. 3.3. Target connection details

\section*{handling the vidicon}

As the Vidicon is enclosed in a thin glass envelope, this device must be handled with care during the construction of the project. No harm should come to this rather expensive and fragile component if the following hints are observed-
(a) Take great care not to scratch the target window -this is made of a very soft glass and would scratch very easily.
(b) Never solder any connections to the electrode pins of the Vidicon-use the available pin connector and refer to Fig. 3.3 for target connection details.
(c) Do not overtighten the metal clamp located on the coil assembly-this could contract in low temperatures to break the neck of the camera tube.
(d) Never operate the Vidicon in a face-down position--small granules sometimes break free from the cathode and may collide with the target with detrimental effect.

The target connection may be made by carefully wrapping a length of thin wire around the metal target connector ring, adding a few tiny drops of adhesive to secure the wire.

\section*{SETTING UP}

It would be a shame to damage the Vidicon, or for that matter-any component at this final stage. So upon the initial application of power, with the Vidicon pin connector carefully disconnected from the tube, check that all electrode potentials are reaching their designated points. Once you are confident that this is so, then replace the connector and proceed' with the setting-up of the TV Camera.

The first aspect of setting up is the adjustment of the power regulators, so-
(a) Set both +15 V and +5 V levels by adjusting presets VR8 and VR9 respectively. Camera alignment may then be achieved by suitable coupling to a TV Monitor/Receiver.
(b) Choose a well illuminated scene of a large, well defined, dark shape (a square for example) against a light background and direct your TV Camera toward it from a distance of \(10-20 \mathrm{ft}\).
(c) Set the lens focus to correspond with the scene distance and adjust the aperture setting to f4.
(d) Adjust presets VR2, VR3, VR4, VR5 and focus and beam current controls to their midpositions.
(e) Adjust the vertical hold control on the TV Monitor/Receiver to synchronise the camera fields.
(f) Adjust the line frequency preset VRI to synchronise the scanning lines and achieve a fully synchronised raster on the Monitor/Receiver screen. If any difficulty is experienced in synchronising the camera picture to the Monitor/Receiver, adjust the sync level preset VR3 clockwise to increase the height of the sync pulse outputs.



Showing rear panel controls used for setting up camera
(g) With the TV Monitor/Receiver brightness and contrast controls turned to their maximum positions, iadjust the camera target voltage control to give the Vidicon a workable sensitivity to light. The camera should now be able to sense moving objects.
(h) Adjust the width preset VR4 and height preset VR5 to their fully clockwise positions. In doing this you should obtain a TV picture of the greater portion of the Vidicon. target-showing dark areas in each corner of the Monitor/Receiver screen.
(j) Now carefully adjust presets VR4 and VR5 to enlarge the TV picture of the Vidicon target (by reducing the actual scanned area of the target) until the dark areas in the corners have completely disappeared. This adjustment ensures that all scanning is performed within the target working area.
( \(k\) ) Adjustment of the lens focus and electrical focus should now enable the scene to be focused quite sharply.
(1) Suitable adjustment of beam gurrent, brightness, contrast and aperture controls will then give a well defined picture with a good dynamic range (reproduction of halftones or shades of grey).
(m) The perspective of the TV picture may now be adjusted by using a straight piece of wood (a 12 inch rule). Position the wood at a convenient distance in front of the TV Camera and focus it sharply. Turning its direction from horizontal to vertical, adjust presents VR4 and VR5 to give equal lengths of wood in the TV Camera. In doing this adjustment, try not to deviate too much from the seltings achieved in (j).
(n) Set the focal length of the lens to infinity and point the TV Camera to a distant object (greater than 50 feet away). Adjust the, target voltage and aperture to obtain good contrast and brightness and carefully move the Vidicon along the scan coil assembly in order to obtain a sharp focus of the distant object. The focal distances marked on the lens should now be calibrated, so lock the Vidicon tube firmly in this position-remember, not too tight.

\section*{CAMERA OPERATING HINTS}

Once the TV Camera has been aligned and is boxed up and ready for use, we then consider the correct settings of the camera unit controls to suit a wide variety of scenes.

Beam current and electrical focus controls have been set during the alignment process and should remain at their established positions. The remaining one electrical and two optical controls are then set to establish good picture brightness, contrast and focus.

\section*{Brightly Lit Conditions}

You will have to prevent most of the light intensity from reaching the Vidicon target by limiting the aperture size of f11-f22. Assuming the target image to be correctly illuminated to give a good dynamic range (contrast) the brightness may be set by adjusting the target voltage. Again, you will probably have to operate a brightly-lit scene at ininimal sensitivity (target voltage control more clockwise).

Avoid rapid panning with the TV Camera under bright-light conditions, as the bright highlights may cause picture lag (a smearing effect as the scene moves across the screen).

One distinct advantage of using well lit scenes is the large depth of focus which results from small operating apertures.

\section*{Poorly Lit Conditions}

For indoor use under average domestic lighting conditions, for example, the lens aperture will have to be increased towards f1.9. The sensitivity of the Vidicon may also have to be increased (an anticlockwise movement of the target voltage control) to give sufficient picture brightness.

If a good depth of focus is required' for a poorly lit scene, the aperture may be decreased in size and target voltage increased accordingly' to give the same working sensitivity.

\section*{Night Light Conditions}

The camera video amplifier has been designed to have sufficient gain to operate the Vidicon in very poorly-lit conditions.

To enable operation under moonlight conditions, turn the video gain preset VR2 fully clockwise, open the lens aperture to fI .9 and turn the target voltage control anticlockwise. It may also be necessary to make full use of the brightness and contrast controls in the TV Monitor/Receiver.

\section*{TV MONITOR/RECEIVER}

As previously mentioned, we are faced with using our TV Camera in conjunction with either a TV Monitor or domestic TV Receiver (via a u.h.f. Modulator). The TV Monitor has the advantage of being devoted to the use of displaying camera pictures, whilst the domestic receiver presumably already exists and simply becomes twofold in application.

The TV Monitor is an expensive but useful item to add to your CCTV equipment-lapanese models being available in the price range \(£ 50-£ 100\).

In Fig. 2.8 R44 (680 ) should be connected between \(V R 8\) and the 15 V line

Because of imperfect reproduction of printed circuit board Fig. 2.2, we have decided to make available a free reprint of this diagram. Readers requiring copies should send a large stamped addressed envelope to the Editorial Offices.

Next month: The modulator will be described

| \(T\) is often required to run a cassette recorder during long car journeys. This can prove very expensive in dry batteries and it would obviously be desirable to run the recorder from the car battery if possible. The unit to be described here gives a stabilised 7.5 V output at just over 1 A (suitable for most cassette recorders) from a standard 12 V car battery.

The prototype was built for about \(£ 1 \cdot 50\), approximately half the cost of the cheapest available commercial unit.

Instructions are also included for modifying the unit to operate from the mains, or to give a 9 V stabilised output, suitable for operating some transistor radios.

CIRCUIT DESCRIPTION
The circuit is based on the 723 voltage regulator integrated circuit, using a 2 N 3055 external current pass transistor (Fig. 1). The prices of these components have fallen rapidly recently, and it should be possible to obtain both for less than fl .

The 723 has three separate internal sections; a voltage reference amplifier providing a stable reference voltage of nominally 7.15 V , an error amplifier, and an internal current pass section (with a current limiting transistor) which will give an output current of up to 150 mA . As we require an output current of up to 1 A , we must use this output to drive an external current pass transistor, TR1.


Fig. 1. Circuit for p.s.u.

COMPONENTS . . .
\begin{tabular}{lll}
\multicolumn{3}{l}{ Resistors } \\
R1 & \(0.56 \Omega\) & \(1 W\) \\
R2 & \(100 \Omega\) & \(\frac{1}{4} W\) \\
R3 & \(2.2 \mathrm{k} \Omega\) & \(\frac{1}{8} W\) \\
All & \(10 \%\) & \\
&
\end{tabular}

Potentiometers
VR1 \(470 \Omega\) linear horizontal preset
Capacitors
C1 470 pF polystyrene
Semiconductors
TR1 2N3055
IC1 723 voltage regulator
Miscellaneous
0.1 in Veroboard \(3.75 \mathrm{in} \times 1.75 \mathrm{in}\), Heatsink for TO3 transistor


The reference voltage (pin 6) is connected directly to the non-inverting input (pin 5) of the error amplifier, while R2, VR1 and R3 form a resistive divider to tap off a portion of the output to feed to the inverting input (pin 4). Variations of this voltage compared to the reference cause IC1 to vary the current applied to TR1 base, so tending to hold the output voltage constant. Hence, varying VR1 allows us to set the output to precisely \(7 \cdot 5 \mathrm{~V}\).

Current limiting is accomplished by R1 and the internal current limiting transistor. This turns on so preventing any further current being drawn, in the event of a short circuit on the output. Here the voltage across R 1 is about 0.65 V , and so the maximum available current in the design will be approximately \(1 \cdot 1 \mathrm{~A}\). This should be more than adequate for most portable recorders.

\section*{CONSTRUCTION}

The unit is constructed on a piece of \(0 \cdot 1\) in matrix Veroboard, \(3 \frac{3}{3}\) in \(\times 1\) in. The layout is shown in Fig. 2.

A small heatsink was used for TR1 in the prototype, although this is probably not strictly necessary since a 2 N 3055 should be able to dissipate up to 10 watts without a heatsink, and it is only required to dissipate about 5 watts maximum in the present design. However, without the heatsink, there would be a fairly large temperature rise when running at full output, which would not be desirable, especially if the unit was mounted in a hot place, for example near a heater outlet, or possibly near the engine, and so the heatsink was used as a safety measure.

A


Fig. 2. Component layout and wiring detail


The cassette p．s．u．complete with connectors

Provision is normally made on the recorder for an external 7.5 V supply to be connected via a five pin DIN plug：no details of pin connections are included，however，since these may vary with different makes of recorder．

\section*{TESTING}

After rechecking the board the unit can be con－ nected to a 12 V supply and tested．The output should be somewhere near 7.5 V ．This can then be set precisely by adjusting VRI．The unit should then be ready for installation．

No details of casing for the unit have been given， since the board is small enough to be hidden away unobtrusively somewhere behind the dashboard or possibly in the glove compartment．A 12 V supply may also be conveniently available from a cigar lighter，if one is fitted．


Fig．3．Rectifier circuit for mains use

\section*{MODIFICATIONS FOR 9V}

The unit can be readily modified to give a 9 V output by changing the values of R2，R3 and VR1 to \(750!2.2 \cdot 7 \mathrm{k}!\) and \(1 \mathrm{k}!2\) respectively．

Either the 7.5 V or 9 V version can be operated from the mains by use of a simple rectified power supply，as shown in Fig． 3.

\section*{We don＇t miss anything out，so you won＇t miss out．}

Our 1214 Series stereo equipment comes to you in kit form．And，as you would expect，coming from Heathkit， they are absolutely complete kits．With nothing left out．

So youill have all you need to build our superbAR－1214 stereo receiver．Or，if you＇d prefer，a separate annplifier and tuner（the A A－1214 and AJ－1214）．

The casy to understand instruction manual you＇ll get makes assembly beautifully straightforward．

And very enjoyable．
And the high perfornance of the 1214 Series means you won＇t miss out on listening pleasure in any way either．

From the stereo receiver，or separate amplifier，you＇ll get 15 watts rmbsa channel，with reproduction so good it makes many ready－made systems really sit up and listen．

For full details of the 1214 Series，the rest of our audio range，including speakers，and our many other kits，just post the coupon now for your free Heathkit catalogue．

Or call in at the London Heathkit Centre， 233 Tottenham Court Road．

Heatlı（Gloucester）Ltd．，Dept．PE－114，Bristol Roach， Gloucester GL2 6EE．Tel：（0452） 29451.


\section*{JUPITER ORBITER}

The success of the Pionser 10 mission has led to a study, by the NASA-ESRO group, of the possibilty of launching an orbiter spacecraft to Jupiter. It seems that they are of the opinion that the back up facilities that are provided for the Pioneer missions could be employed for this purpose

Data already examined showed that there were two parts to the magnetic field and that this alone could justify a closer look. There are a number of problems raised by this anomalous magnetic field While the off-set field, first noted by Warwick and confirmed by others explains some of radiation phenomena. Pioneer (1) also confirmed these data but in addition detected a field reaching out to 10 s Jupiter radii. This field has a special re lationship with the equator of the planet.

The high energy electrons and protons that were measured by the spacecraft indicated a magnetosphere quite different from that of the Earth. The sudden burst of elec trons from Jupiter remains unexplained at the moment. An orbiting vehicle could help to resolve this The design of such a craft would have to take into account the high radiation hazard. shielding would be important for the vehicle will be in the magnetic belt a long time. The spin stabilised Pionerer is a better choice than the Marimer type for this project.

It is thought that the gravitational fields of Jupiter's satellites would help to retard the spacecraft and could also be used to change trajec tory. The payload could consist of detectors for particles and fields These would make up about 70 per cent of the total payload. The remainder would provide for visual. ultra-violet and infra-red monitor ing. The vehicle would also carry a probe that could be dropped through the Jovian atmosphere launching would need to await a favourable Jupiter position. The probable time would be during the 1980's

\section*{MORE ABOUT MERCURY}

Some of the data received from Mariner 10 on Mercury has now been processed and adds to our understanding of this planet. The magnetic field of Mercury seems to be very much weaker than that of the Earth. Though a magnetosphere was recognised as being like that surrounding the Earth there are certain peculiarities.

Particle detectors on Mariner 10 indicated that there were protons at energy levels of 550 keV and electrons at levels of 300 keV , inside the magnetosphere. These particles were not trapped in the magnetosphere but seem to respond to some special mechanism.


BY FRAMK W. HYDE

There are large oscillations in the electron density having an apparent period of change of the order of 6 seconds. Sometimes there are active burst of protons at the same time The weak field of the planet precludes the trapping of radiation in the form of belts around it. The presence of the magnetic field was rather a surprise for the small size and the slow rotation period of 5 N .5 days did not seem to support the idea.

However, the field does not seem to be generated by the effect of the solar wind and must therefore be intrinsic. If this is the case then it could be that there was once a core like the Earth's and that a dynamo system exists now or there are the remains after an original active dynamo ceased to function If this should prove to be the case it would mean that Mercury once rotated much faster on its axis.
The planet is found to have an extremely high density of 5.44 \(\mathrm{g} / \mathrm{cu} . \mathrm{cm}\). This points to the condi tion of Mercury being more akin to the Earth and Venus than Mars or the Moon. From the density of the planet, and the strength of the field it would seem likely that Mercury has a core which extends out from the centre to as much as 70 per cent of its radius

\section*{MAGNETIC FIELD}

The magnetic field is almost parallel to the axis of rotation but offset by a quarter of the planet's diameter. This fact could have a very significant bearing on the history of the Solar System. The solar wind measurements showed that "ram pressure" of the wind was equal to a field strength of 170 gammas. The magnetometer recorded at nearest approach a field of 98 gammas.

The ultra-violet analysis of the atmosphere showed that it is made
up of inert gases such as helium neon, argon and xenon. Perhaps the first two of these have been captured from the solar wind. Some at least could come from radioactive min erals in the crust. The pressure of the atmosphere is extremely low being about \(2 \times 10^{9}\) millibars
The surface of Mercury seems to be dry powdery silicates, very similar to the Moon. The craters also resemble those of the Moon and are filled with lavas. It is possible that the silicates go down for 500600 km . The possible age of the planet is of the order of 4 to 4.5 thousand million years. The cameras have shown unusual ridges and scarps and this could mean tha there have been internal shrinkages, causing buckling of the crust

\section*{INFRA-RED TELESCOPE}

The Science Research Council will build and operate 3.8 m (152in) infrared flux collector on Mauna Kea in Hawaii. There is already an obser vatory on the summit of the moun tain which rises to \(4,200 \mathrm{~m}\) ( \(13,780 \mathrm{ft}\) )

The telescope will be the largest purpose built unit in the world and the site is probably the best in the world. The water vapour, an absorber of infra-red radiation is far less at this site and the position allows the galactic centre to be ob served. The cost will be about £1 25 million at present day prices.

The infra-red region lies between 1 micron and 2 millimetres. Over the last ten years or so research activity has increased steadily in this area. The technology mainly responsible for these advances has been solid state electronics. cryogenics and thermal detectors.

The science of infra-red astronomy is still in its infancy yet some dra matic discoveries have been made There is already a 1.5 m flux collector on Tenerife. This was designed and built by Imperial College with the aid of funding from the S.R.C. Valuable experience has been gained on this project apart from the scientific experiments

The design of the 3.8 m flux collector makes use of the 1.5 m experience and also the design studies by Sir Howard Grubb Parsons and Dunford Hadfields Lid. The improvement in facilities of the 3.8 m instrument will be considerable, not least the fact that observation times will be reduced by a factor of 40 . This will give considerable improvement in angular resolution.

The Director of the Royal Observatory, Edinburgh (Professor H. A Bruck) is in overall control of the project, the project manager being G. J. Carpenter of ROE. The project manager will be advised by a steering committee under the chairmanship of Professor J. Ring of Imperial College. It is expected that the construction phase will last about three years.

\section*{Dimmit}

\section*{range of light dimmers and lighting control systems}

Illustrated is the popular PMSD1000 module A 1000 W professional quality dimmer inear operation. suppressed. 60 mm slider range. size \(12 \times 5 \times 4 \mathrm{~cm}\). Ideal for low cost stage and disco lighting. Used by schools, theatres. studio etc. Complete with scale plate, fixing screws and full instructions. Also available in 2000W
llfustrated is the DD61 dimmer system Contains: six 1000W slider dimmers type PD1000, six outlet sockets, a master control and a mains on off switch. Size \(59 \times 22 \times 12 \mathrm{~cm}\). A complete system in one unit for stage or discolighting, etc Other systems available with 1000 W or 2000 W dimmers up 1010 channels available with 1000 or 2000 -preset and master controls

The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for industrial heating applications, etc. Rotary and slider control versions. Ratings: 1000 W \(2000 \mathrm{~W}, 3000 \mathrm{~W}: 110 \mathrm{~V}\) and 240 V

Model SL800 sound to light converter. Modulates the light in time with sound Built in microphone. Just place unit near any sound source -radio, hi-fi. TV, human voice. etc. No connections to speaker required simple wiring-similar to dimmer. Rating 800 W . Complete with full instructions.

For full information on all modules and lighting control sysiems send 150 for our illustrated catalogue and price list. Personal callers welcome. visit our showroom for a demonstration of any of the modules or systems

Full member of AFDEC-the industry's association of franchised electronic component distributors
Our prices include VAT at the current rate-and carriage on all goods is free
Send for our catalogue and price list-we'll mail that to you free, too
COMPONENTS FOR I.C. APPLICATIONS BY
MR. J. B. DANCE
\begin{tabular}{llllll} 
SAJ110 & \(£ 1.96\) & SAJ180 & \(£ 1.96\) & SAK110/115 & \(£ 1.23\) \\
TAA775G & \(£ 1.23\) & TAA930A & \(£ 1.23\) & TBA790KSD & \(£ 1.96\) \\
TBA800 & \(£ 1.96\) & TBA950 & \(£ 1.76\) & TCA250 & \(£ 1.96\)
\end{tabular}

Please send your catalogue-free!
Name
Address


Brochure, without obligation to:
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept.,
P.O. Box 156, Jersey, Channel Islands.

NAME

A. Marshall (Londori) Ltd. Dept. PE

42 Cricklewood Eroadway London NW2 3DH Telephone ©01-452 0161/2 Telex 21492
885 West Regent Street Glasgow G2 2CD Telephone 041-382 4133

\section*{Everything you need is in our New Catalogue available now price 20p (100 pages of prices and data)}

Call in and see us.9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome

\section*{Popular Semiconductors \\ ors}

\section*{2N456
2N456A
\(2 N 457 A\) \\ 2N 457 A
2N490
2N491}

2N491
2N492
2N493
2N696
2N696
2N697
2N698
2N698
2N699
2N699
2N706
2N706
2N706A
2N70B
2N709
2N711
2 N 7
2 N 7
2N71
2N72
2N72
2N
2N721
2N914
2N916
2N916
2N918
2N929
2N929
2N1302
\(\begin{array}{ll}\text { 2N1302 } & 0 \text { - } 19 \\ \text { 2N } 1304 & 0.1 \\ \text { 2N } 1304 & 0.24\end{array}\)
\(2 N+304\)
\(2 N 130\)
\(2 N+3\)
\(2 N 1307\)
2N1307
2N1308
2N 1309
2N 1671
2N 1671 A \(2 N 16718\)
\(2 N 1671 \mathrm{C}\)
2N1711
2N1907
2N2102
2N2147
2N2148
2N2160
2N2192
2N2192A
2N2193
2N2193A
2N2194
2N2194A
2N2218A
2N2218A
2N2219A
2N2220
2N2221
2N2221A
2N2222
2N222A
2N2368
2N2369
2N2369
2N2369
2N2646
2N2647
2N2904
2N2904
2N2904A
2N2905
2N2905A
2N2906
2N2906
2N2906A
\begin{tabular}{l|ll|l}
85 & \(2 N 2907\) & 0.22 & \(2 N 4061\)
\end{tabular} \begin{tabular}{l|l} 
B5 & 2N2907A \\
20 & 2N2924 \\
16 & 2N2925 \\
.58 & 2N2926
\end{tabular} N2926 Green
Yellow Orange
2N3053 \begin{tabular}{l|l}
0 O & \(\begin{array}{l}\text { 2N3054 } \\
\text { 2N3055 } \\
\text { 2N3390 }\end{array}\) \\
\hline
\end{tabular}
 2N3393
\(2 N 3394\)
\(2 N 3402\)
\(2 N 3403\)
\(2 N 3440\)
 2N3440
2N3441
2N3442
 르N 2N34
2N 241
\(2 N 36\) \begin{tabular}{l|l}
24 & \(\begin{array}{l}\text { 2N36 } \\
\text { 2N36 } \\
\text { 2N36 }\end{array}\) \\
2N
\end{tabular} \(\begin{array}{ll}22 & \text { 2N36 } \\ \text { 2N } 37\end{array}\) 36 2N3703 \begin{tabular}{l}
2 N 370 \\
2N370 \\
2N \\
\hline
\end{tabular} \(\begin{array}{ll}32 & 2 N 37 \\ 2 N 37 \\ 2 N\end{array}\)

\(\qquad\) 2N 37
2N37 2N3715
2N3716 \({\underset{v}{2}}_{2}^{2} Z_{n}^{m}\) 2N37
2N37 2N3791
2N3792
N
 2N3900 \(\begin{array}{lll}51 & \text { NN39 } \\ \text { 2N390 }\end{array}\) \(\begin{array}{ll}12 & \text { 2N3905 } \\ \text { 2N3906 }\end{array}\) 2N4036 2N4037
2N 4058 2N4059
2N4060
\({ }^{1} 150\)
\begin{tabular}{l|ll|l}
.22 & \(2 N 4061\) & 0.11 & AD150 \\
.24 & \(2 N 4062\) & 0.11 & AD 161 \\
.14 & \(2 N 4126\) & 0.20 & AD162
\end{tabular} \begin{tabular}{l|ll|l|}
14 & \(2 N 4126\) & 0.20 & \(A D\) \\
17 & \(2 N 4289\) & 0.34 & \(A D\) \\
12 & \(2 N 4919\) & 0.84 & \(A D\) \\
12 & \(2 N 4920\) & 0.99 & \(A F\) \\
11 & \(2 N 4921\) & 0.73 & \(A F\)
\end{tabular}


Integrated CIrcults-TTL Reductions
\begin{tabular}{|c|c|c|c|c|c|}
\hline SN7400 & \(0 \cdot 16\) & SN7409 & 0.33 & SN7430 & 0.16 \\
\hline SN7401 & 0.16 & SN7410 & 0.18 & SN7432 & 0.45 \\
\hline SN7401A & & SN7411 & 0.25 & SN7437 & 0.35 \\
\hline & 0.38 & SN7412 & 0.28 & SN7438 & 0.35 \\
\hline SN7402 & 016 & SN7413 & 0.5C & SN7440 & 0.16 \\
\hline SN7403 & 0.16 & SN7416 & 0.45 & SN7441 & 0.85 \\
\hline SN7404 & 0. 24 & SN7417 & 0-30 & SN7442 & 0. 85 \\
\hline SN7405 & 0.24 & SN7420 & 0.16 & SN7445 & 1.59 \\
\hline SN7406 & 0.45 & SN7423 & 0.37 & SN7446 & 2.00 \\
\hline SN7407 & 0. 45 & SN7425 & 0.37 & SN7447 & 130 \\
\hline SN7408 & 0.25 & SN7427 & 0.45 & SN7448 & \(1 \cdot 50\) \\
\hline
\end{tabular}



\section*{Diodes and Rectifiers}





Potentlometers
Linear or Log Single Double Rotary Pots 18p
280
Rotary Switched 28 p
Full range of capacitors
stocked. See catalogue for detalls
Presets-Horizontal or Vertical

 \(5^{1 \cdot 12}\)


\(\begin{array}{ll} \\ \text { SN74175 } & 1 \cdot 29 \\ \text { SN74176 } & 1 \cdot 44 \\ \text { SN64180 } & 1 \cdot 44 \\ \text { SN74181 } & 5 \cdot 18 \\ \text { SN74190 } & 1.95 \\ \text { SN74191 } & 1.95 \\ \text { SN74192 } & 2 \cdot 05 \\ \text { SN74193 } & 2 \cdot 30 \\ \text { SN74196 } & 1 \cdot 56 \\ \text { SN74197 } & 1 \cdot 58 \\ \text { SN74198 } & 3 \cdot 16 \\ \text { SN74100 } & 2 \cdot 88\end{array}\)


Construction Klts
AV7 Aerial Amps
£2 04
UH57 Transmitter
MUE Receiver for above
EW1a Electronics dice 52.74
53.22
\(\begin{array}{ll}\text { EX20 Electronic Dice-Sensor } & \mathbf{5 6 . 5 3} \\ \mathbf{8 7 . 7 9}\end{array}\)
Mall Order
AT All pice exclualye \(P\) a \(P\) 15p
OUR NEW GLASGOW SHOP IS
NOW OPEN

I.C.PULSE GENERATOR

A very simple project giving a flexible circuit capable of providing the various basic puises needed to operate and test i.c. logic.

OUDE TEMPERATURE PROBE
Make up a thermometer or temperature controller using the circuits and suggestions in this constructional project.


Includes the circuit details and construction of the VCO's, Envelope Shapers, VCA's and Voltage Controlled Filter.


DECEMBER ISSUE ON SALE NOVEMBER 15, 1974


\section*{SLOWDOWN?}

While reporting increased sales and earnings, Fairchild Camera and Instrument Corporation gives warning that tough times may lie ahead. Fairchild's views are worth noting because they were learnt the hard way. In the mid-1960's Fairchild was the greatest in semiconductor technology and a huge producer but it still got itself in a mess. So much so that \(C\). Lester Hogan, then heading up the commercially successful Motorola semiconductor operation, was invited to take over at Fairchild and put matters to right. When he joined Fairchild he took with him no less than seven top managers from Motorola, which caused quite a stir in semiconductor circles.

When Hogan joined Fairchild with his ex-Motorola team in 1968, Fairchild was still the leader in technology but was heavily dependent on digital circuits and the computer industry with a base of only 600 customers and a bank balance well in the red. This year's results show Fairchild back again in the black, and with a much wider product range selling to 5,000 customers so that the company is no longer too dependent on any one market sector which might suffer temporary setbacks.

Hogan, his major task completed, has just stood down as Chairman and promoted one of his ex-Motorola proteges, Wilfred J. Corrigan, into the hot seat. Hogan remains with Fairchild as vicechairman so will still be available for advice and it could be that Corrigan wilt need it.

For Corrigan, in his first annual report as Chief Executive, is already talking of a slowdown in growth. The forward order book is declining and therefore there are
already steps to cut back employment, production rates, stocks and to spread capital investment over a longer period.

Prudent measures, no doubt, especially as some market analysts are already predicting a fall in demand for semiconductors of as much as 25 per cent by mid-1975 which could lead to yet another big round of competitive pricecutting as device manufacturers struggle to keep their production lines filled.

\section*{CAKE NOW}

Company reports in the UK still make good reading though, here again, there are many warnings for the future. Thorn reported record turnover and record profits, helped considerably by overseas operations, but see a "very difficult trading year in the UK'. GEC had record profits, improved productivity and good order intake but Lord Nelson is forced to conclude that ' \("\). . . we are surrounded by so many uncertainties that it is virtually impossible to predict the future'.

Smaller companies, too, have been doing well. Multitone had a record turnover, largely from increased business in pocket paging. Unitech, who control a number of bright young companies, has never had it so good. Membrain, another vigorous stripling building automatic test equipment report deliveries up to 80 per cent during the first half of 1974.

We can say for certain that companies with a major interest in consumer electronics will have a tough time ahead. Those with widely spread exports will be less badly hit. One silver lining to the cloud overhead is that a slump in home demand for colour TV could well put British electronics balance of trade back in the black because many observers believe that a very large proportion of the components currently imported go into domestic TV sets and, of course, many TV sets, tape recorders and domestic radios are imported as complete units.

\section*{SALVATION?}

With so much uncertainty at home there is more emphasis on consolidating overseas. Thus, Plessey now has a good base in the United States, in Australia and elsewhere in the Commonwealth and ex-Commonwealth, and is stiffening up its businesses in South America including establishment of a new telecommunications plant in Venezuela.

Ferranti is moving into Brazil in a joint deal to set up an indigenous computer industry. Those who shout down exports of military equipment should note that Fer-
ranti moved into this important commercial activity on the back of - exports of FM1600 military computers supplied to the Brazilian Navy for action information systems on submarines and warships.

Expect to see more companies expanding into overseas manufacturing. It may not be complete salvation but it's a step in the right direction and it's right in fashion these days. It happens in reverse, too, with the Japanese in particular. Sony started its TV production line in Wales last July and Matsushita will be churning out colour TV sets in Wales by early 1976.

\section*{HARBOUR RADAR}

Decca Radar have long been the world's major supplier of marine radar on ships. The total score of deliveries is now well over 60,000 and the current order rate is something like 10,000 sets a year. Over 90 per cent of the orders are from overseas.

What is not so well publicised is Decca's equally effective stranglehold on the harbour radar industry. The score here is over 200 installations world wide and increasing fast. Some of them are big installations involving up to three radars with raw radar data being fed by microwave link to an operations centre where there are multiple displays and com-puter-assisted tracking systems. Others are less complex but all need careful planning and design to meet the peculiar needs of the pattern of traffic, the local topography and navigable channels.

The overseas list is a real Cook's tour. Installations just being completed are at Halifax, Vancouver, Placentia Bay, Capetown, Ras Tanura, Doha, Malmo, Hvasser and Tanager, but the total list is as long as your arm.

The reason for Decca's remarkable success in this specialised field is speed. The policy is to use off-the-shelf radars and displays as used at sea and re-package them for shore use. The radars are generally mounted on towers, perhaps 100 ft tall, on headlands so that the whole area is covered with good overlap. The microwave links for transmitting radar data and VHF radio systems for talking to the ships are all bought-in items. So Decca can quickly tailor a system for an individual port or harbour.
A change of circumstances can suddenly demand a fairly quick installation. Who would have imagined five years ago that Aberdeen would need a harbour radar? The huge upsurge in traffic movements now comes from North Sea Oil. Decca harbour radar marshall's the traffic, safely and, one imagines, to the profit of all.

\section*{Come and hear aThousand Pound Sound at Lindair...}

\section*{57411010018}

At Lindair House, 227 Totenham Court Road, you'll find 3.500 sq.ft of demonstration studios with all that's best in H -Fi. And now we've added Studio \(1 \mathbf{C O O}+\) - a demo studio total \(y\) devoted to the top line in stereo ecuipment.

With names like TLAC, Revox, JBL, Tannoy, Marantz anc cthers, you ca7 hear systems which cost over \(£ 1,000\) and which sound ike a million.

Only Lindair give you the sort of service to match this standard of equipment. Come and have a demonstration \(r\) the relaxed atmosphere of Stucio \(1000+\) - and you'll hear what we mean. f Quadrophonic takes your iency - our 4-charne demo studio \(s\) just next Joor to Studio 10004.

Studio 100C+ is just the beginning of a whole conplex of facilities serv ng the sounds enthusiast-Sterea, 4-channel and Home Tape Stud os. All the best-and all at -indair.

Ceme in socn and sound as out.


Lincair House, 227 Totterhan Ccurt Pead, Endon W1.01-580 7383


\section*{Audio Bargains STEREO DECODER \(\Sigma 4.50\) \\ incl. P. \& P.}

Ready-built unit, ready for connection to the IF stages of existing FM Radio or Tuner. The very latest 2 nd Generation rail less integrated circuit design, operating on this phase locked loop system, offering even better stereo separation.
Only owing to our bulk buying capacity are we able to offer this at the old price. LED stereo indicator lights available. RED at \(\mathbf{2 5 p}\) GREEN at \(40 p\)

\section*{\(1 / 1\)}

\section*{5W \& 10W AMPS}


\section*{5 W omy E 1.80} 10W
onve £2.26
incl. P. \& P
These matchbox size amplifiers have an exceptionally good tone and quality for the price. They are only \(2 \frac{1}{4} i n\) | \(\frac{3}{4} \mathrm{in}\). The 5 W Amp will run from a 12 V car batery making it very sutable for portable voice reinforcement such as public functions. Two amplifiers are ideal for stereo. Complete connection detalls and treble, bass, volume and balance control circuit diagrams are supplied with each unit. Discounts are available for quantity orders. More details on request. Cheapest in the U.K. Built and tested. |

\section*{Now available for 5 \& 10WAMPS}

Pre-assembled printed circuit boards 2 in \(\times 3\) in available in stereo only, will fit 0.15 edge connector. Stereo Pre-Amp I (Pre 1). This unit is for use with low gain or ceramic pick-up cartridges. \(£ 1 \cdot 10\) Stereo Pre-Amp 2 (Pre 2). This unit is for use with magnetic pick-up cartridges. £1.55 Stereo Tone Control (STC). This unit is an active tone control board and when used with the right potentiometers will give bass and treble boost and cut. \(£ 1 \cdot 10\) Instruction leaflet supplied with all units. Post and packing included in prices. 3W Amps/. Decoders.amps/...............ereeo Pre-Amps ..for Stereo Pre-Amps 2............Stereo Tone Controls (Please insert quancities and delete those not applicable).

Ca. Regn Na 820919 Telephone: Southend (0702) 46344.


ALL PRICES INCLUDE V.A.T.

\section*{SPEAKER BARGAINS} EMI \(13 \mathrm{in} \times 8\) in 3,8 or 15 ohm
Plain Co-Axial Tweeter
With Co-Axia
8 uhm only
Type 350,8 ohm. \(20 \mathrm{w}^{\prime}\)
Type 350,8 ohm. 20
\(61 \mathrm{in}, 8\) ohm, 10 W
\(6 i \mathrm{in}, 8 \mathrm{ohm}, 10 \mathrm{w}\)
\(8 \mathrm{in}, 8 \mathrm{obm}, 10 \mathrm{~W}\)
\begin{tabular}{l}
\(8 \mathrm{n}, 8\) \\
\(12 \mathrm{in}, 8 \mathrm{ohm}, 10 \mathrm{~W}\) \\
\hline
\end{tabular}
8in \(\times\) Sho, C/Mag. 5 W
\(8 \mathrm{in} \times 5 \mathrm{in}\), Dual cone 8 ohm
ELAC Bin 8 chm Dual cone
TWEETER AND CROSSOVER
 \(\begin{array}{llll}\text { Cone Trecter } 8 \text { ohm, } 3 W & 1.45 & (80 \mathrm{ohm}), \mathrm{CN} 216(16 \mathrm{ohm}) & 1.20 \\ \text { P. \& P. } & 0.10\end{array}\) Horn Tweeter \(8 \mathrm{ohm}, 20 \mathrm{~W}\)
KIT FORM CABINETS, TEAK \(13 \mathrm{in} \times 8\) in cutout \(\quad \mathbf{9 . 5 0}\) VENEER. \(12 \mathrm{in} \times 12 \mathrm{in} \times 6 \mathrm{in}\) with 8 in . \(18 \mathrm{in} \times 11 \mathrm{ln} \times 9 \mathrm{in}\) with \(13 \mathrm{in} \times\) \(\sin \times \sin\) or 6 in and 3 in cutout
\(\times 10 \mathrm{in} \times 9\) in with 8 in or


Send 25p lor COMPLETE CATALOGUE, refondable upon first order ALL OUR MERCHANDISE IS FULLY GUARANTEED

\title{
Riversidale Eectronics
}

Mail Order Department PE11
P.O. Box 470, Manchester M60 4BU

\section*{PMTENTI}

AUTOMATIC CHOKE CONTROL FOR CARS

In BP 1334532 Joseph Lucas (Industries) Ltd. describes circuitry suitable for alternately operating a pair of electromagnets to allow the step-by-step movement of a car choke cable back into an "off" position depending on engine temperature

In Fig. 1 operation of electromagnets 1 and 2 is dependent on the temperature sensed by thermistor R1, the resistor having af sharply decreasing resistance with increasing temperature.

When the choke knob is pulled out the wipers of the rotary switch S1a and S1b move into engagement with fixed contacts. When the engine starts, the generator speed increases and the vehicle voltage regulator closes contact S2 in conventional manner. Electromagnet 1 is now energised by contact 5, S1a wiper and moves the choke cable back towards its inoperative position. Aaditionally the wiper is moved onto contact 4 a and S1b wiper onto contact 4 b . Thus the circuit to electromagnet 1 is broken; electromagnet 2 is effectively inoperative because the current flowing through it via resistors R2 and R3, diode D1 and VR2 is insufficient to energise it.

When the temperature sensed by R1 rises further its resistance falls and transistor TR1 turns off. Current now flows via R6 and D2 to turn on thyristor CSR1. The current flows through D4 to energise electromagnet 2 and the

BP 1334532


Fig. 1
choke cable now moves further back towards its inoperative posiiion. At the same time the wiper oi S1b is moved onto contact 3b and the wiper of S1a onto contact 3a. This breaks the circuit to electromagnet 2 and electromagnet 1 receives insufficient current to energise it via VR4. The thyristor is "off", its circuit being broken upon movement of S1b away from contact 4

When the engine temperature rises further the resistance at R1 drops further and the CSR1 turns on". Electromagnet 1 is energised, via D6, and S1a. b moves onto the contacts 2 a and 2 b . The sequence continues with electromagnet 2 energised via D3 when the engine temperature rises further and the S1a and S1b move into the position shown in Fig. 1.

As a final step, electromagnet 1 is energised, via D5, bringing the choke cable into its inoperative position.

The setting of potentiometers VR1 to VR4 determines the temperature at which the cable moves back step by step; a thermistor R5 compensates for changes in ambient temperature.

\section*{VarIABLE TONE AUOBBLE ALARM}

Various audible alarm generators are known but few of them have the facility to produce a wide range of different sounds. But a tonal range may be highly desirable, for instance, to signal different conditions, e.g. smoke warning, flame warning, gas warning.

In BP 1 and Company (Manufacturing) Ltd. describes a fairly simple circuit which will emit different sounds depending on the condition of any suitable external switching system.

The circuit, Fig. 1, uses a relatively low frequency multivibrator. a high frequency multivibrator, an output amplifier and a loudspeaker.

The two multivibrators and amplifier are of known type except that the second multivibrator has a gate in the form of TR4 arranged between the base of TR3 and the negative line. Thus, when a sufficient voltage is applied to TR4 base to drive it into conduction, the operation of the multivibrator is inhibited.

The frequency of the multivibrators is adjusted by potentiometers VR1 and VR2. The alarm circuit can function in five different manners depending on the externally switched inter-connections between the inputs.

A slow warbling sound will be produced when input 3 is switched to input 4 so that the square wave output of first multivibrator causes a periodic frequency shift in the second multivibrator. In this condition the mean or basic frequency of the sound produced is adjustable by potentiometer VR2 and the frequency of warble by VR1

A fast warbling sound is produced by connecting input 2 to input 1 to short out VR1. The mean or basic frequency can still be adjusted by VR2 although the frequency of warble can no longer be adjusted.
A slow intermittent pipping sound is produced if inputs 5 and 3 are connected so that the operation of the second multivibrator is periodically inhibited by the operation of the first multivibrator. The frequency of the sound is adjustable at VR2 and the frequency of the pip at VR1. For a fast pipping sound input 2 is switched to input 1 to short out VR1.

Finally a continuous note may be produced by connecting input 6 to the positive supply line to cause continuous operation of the second multi-vibrator, TR3/5. The frequency of the note is adiusted at VR2. In this mode diode D1 prevents operation of the first multivibrator.


Fig. 1

\title{
marie PLACE
}
one of the cheapest calculators of its kind on the market. The price of the calculator includes a mains adaptor unit.

Full details of its capabilities can be obtained from Decimo Ltd., Park House, 96-98 Park Street, Luton,

Items mentioned in this feature are usually available from electronic equipment and comDonent retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

\section*{WIRIMG AID}

It is always rewarding to bring to the attention of readers a new product that will be used just as much, if not more, by the amateur as the professional.

This should certainly be the case with the new self-adhesive wiring staples from Special Products Distributors Ltd. Known as the Brandauer staple they are ideal for all types of wiring both domestic and equipment wiring.

By peeling off the protective backing from the adhesive pad the staples can be positioned and pressed into place. The adhesive pad is such that it will adhere to most surfaces. Once in position the wire is placed across the clamping fingers which are easily bent up over the wire to hold it in place.

In use the staples have been found particularly useful where groups of wires have to be routed to control panels. Also, they helped to improve wiring layouts and made it far easier for lead tracing when using this method.

One obvious use for these staples that comes to mind is for tidying up the masses of wiring used in projects like an electronic piano or an electronic organ.

Further details and addresses of nearest stockists can be obtained from Special Products Distributors Litd. 81 Piccadilly, London, WIV OHL.

\section*{VAT CALCULATOR}

Readers who have trouble with VAT may be interested in the Vatman pocket calculator from Uecimo Ltd.

Aimed at the businessman who needs to save time working out his VAT returns when doing his monthly accounts. the calculator is a four function machine with a fairly large. clear readout display. Operation of the percentage kev gives an instant per cent readout and can cover any percentage should the present \(8^{\prime \prime}\) ", rate change.

With the incorporation of the percentage key it is claimed that at E 21.95 (plus VAT) the Vatman is

LUl 3RX.


The Vatman calculator with a percentage key from Decimo

\section*{LOUDSPEAKER KIT}

Designed to suit a choice of different cabinet sizes from bookshelf to floor standing types the XLK-30 Super loudspeaker kit from Helme Audio Products seems to be a reasonable investment at just over \(£ 16\).

The heart of the kit is an 8 in bass/mid-range driver which has a special plastics coated cone claimed to give a much better bass response than previous kits. The kit also includes an 4 in tweeter, ready-built crossover network, fixing screws. terminal panel, connecting leads and one piece of BAF sound absorbent material. Full assembly instructions are also included.

According to size of enclosure. the kit has a claimed frequency response of 40 to 18 kHz , and a maximum power output of 20 to 30 watts. The impedance of the speakers is 8 ohms.

The kit does not include a cabinet or speaker grille fabric. Should you not want to make your own enclosure and are prepared to spend more on the cabinet than on the speakers a cabinet kit consisting of. a teak veneer finished cabinet shell, a ready-cut front baffle and all materials is available as an extra. The price of the speaker cabinets (types XLC- 30 and XI.C-22) is approximately \(£ 30\) to \(\mathfrak{£ 4 0}\).

Further information and full details of the complete range of speaker kits and enclosures can be obtained from Helme Audio Products Ltd., Summerbridge, Harrogate. HG3 4DR.

\section*{LOW VOLTAGE FLUORESCENT LIGHT KIT}

It now seems to be an annual event at this time of the year for industrial relations to become very strained and an investment in any form of emergency lighting is a wise precaution against any power cuts. With this in mind Electronic Design Associates are now producing an 8W 12V fluorescent lighting kit.

The kit consists of a printed circuit board, components, pre-drilled metalwork, clips, end caps, cable, the tube, nuts and bolts and full constructional instructions

The light is ideally suited as a caravan and camping light, for garage or workshop lighting, as an inspection light, and for general home use. In use the light is reverse polarity protected and takes approximately 0.6 A from the battery.

Available from Electronic Design Associates, 82 Bath Street, Walsall, WSI 3DE, the cost of the kit is \(£ 3.19\) including VAT, postage and packing. A light diffuser is a vailable as an extra for 59 p including VAT and p\&p.

It is only fair to point out that several of our advertisers also produce excellent 12 V fluorescent lighting kits from 8 W to 13 W .


Helme speaker kit type XLK-30


8W Fluorescent light from Electronic Design Associates

sex.00yMoncy saving high performance audio equipment DIRECT FROMOUR OWN FACTORIES

\section*{GUARANTEED TESTED HIGH PERFORMANCE MODULES-now better value than ever SA35 35 W RMS 2S-50V \\ SA50 \\ 50 W RMS \(25-65 \mathrm{~V}\) \\ 7 transistors. 7 diodes \\  100W RMS 4S-70V \(\quad \star\) Top-grade} 120 watt module complete with builtin supply-extra heavy duty \(£ 22.50{ }^{\text {carr }} \mathrm{Cop}\)

POWER SUPPLIES UNSTABILISED-READY WIRED PU45 Suits 2 SA 35 or \(\quad £ 5.45\)
 STABILISED
\begin{tabular}{|c|c|c|c|}
\hline PS45 &  & ¢4.45 & \(\underset{\substack{\text { Carriage } \\ \text { free }}}{\text { cee }}\) \\
\hline MT45 & Transfor
aborer for & £3.50 & \({ }_{\text {carrige }}\) \\
\hline PS70 & Suits 2 SA100 & E5.45 & Carrize \\
\hline MT70 & Transtormer for & ¢4.90 &  \\
\hline
\end{tabular}

Mk II STEREO DISCO MIXER \(£ 22.50\) This well tried unit mixes two decks, handles any separate full range bass and treble controls on both mic and deck inpurs. Ample headphone power is available for P.F.L. May be used for mono and is mains operated. Fitred with sturdy screening case. Controls: Mic vol, bass, treble. Left/Right fade, deck volume, bass, ereble, h/phone select, vol, Mains. Size
\(i 7\) tin \(\quad 3\) in \(4 i n d e e p\). \(17 \frac{1}{2} \mathrm{in} \times 3 \mathrm{in} \times 4 \mathrm{in}\) deep.

\section*{DISCO MODULE 19.50 Carr.}

Thousands sold of this extremely popular mono version. A mic input may be fitted using the VA 30 (see below). Low consumption from a \(9 V\) battery Features the same high standards of reproduction as the Stereo version, mastervol. Size \(12 \frac{1}{2}\) in 3 in 2 in deep


\section*{3-CHANNEL SOUND-LITE \(£ 22.50\)\begin{tabular}{c} 
carr. \\
30 p \\
\hline
\end{tabular}}

Only SAXON can supply such incredible value for money. This unit fearures 3 kW power handling. full-wave control, bass, middle, treble AND master controls. Twin loudspeaker jacks for "through" connections. It may be used free standing or will panel mount next to either of the above. Also features uniaue Cuferack circuitry for extra wide range response. Size \(12 \mathrm{in} \times 3\) in \(\times 2 \frac{1}{2}\) indeep. Professional standards

SINGLE CHANNEL Recently reduced in price Add 8\% VAT to alt orders
VERSION 〔7.50 due to increasing sales,
MULTI-PURPOSE MIXERS

\section*{M4HL}

M6HL
£ \(19.50 \underset{50 \mathrm{p}}{\mathrm{Carr}}\)
Featurine mup \(229.500^{50 \mathrm{p}}\)
Featuring multiples of our VA 30 module, the M4HL and M6HL fulfilthe requirements of all clubs, groups, etc. Where a high quality mixer is required. Eact
channel has one high and one lows impedance inpur plus volume, treble and bass controls. Inpui impedances may. if required, be easily changed The M4HL has four channels, and one output, and the M6HL six channels ( 12 inputs) and a master control and two outputs. Either unit may be used free-standing or panel mounted. These mixers will feed all types of amplifier. Recommended for their versatility and high performance, and excellent VA30 CHANNEL \(\mathbf{~} \mathbf{3} \mathbf{3} 50 \underset{\text { Prér }}{\text { Car }}\)
This is the basic channel module in the above mixers and may also be used for extra inputs on either the mono or stereo and trebie controts. requires just a jack and supply
\((9-100 \mathrm{~V}\) ) (9-100 V)

SAXON CSE
100
complete
AMPLIFIER
£34.90
Carr.free
toow of speech and
music-Two
separately controlled inpurs. Wide range bass and treble
controls. Sturdy and attractive vynide case. Twin outputs. Ideal for groups, discos. ere. Fully guaranteed guaranteed. in appearance.


CSE 50
<29.50 Carr.free

sockets. Sturdy case, and an atractis twin loudspeaker excellene value for money. Hundreds in use by groups. discos, clubs, etc.
50 W version identical in appearance. controlled stages plus COMPIETE 50W version identical in appearance

Four individually SAXON 100 wide range bass AMPLIFIER and treble con- 120 W of \(\mathbf{5 3 . 0 0}\) speech and music Carr.free output from SAXON 50

SEND 10p FOR OUR NEW 26-PAGE MANUAL-full circuits and details. TEBATS or Busijgss: c.w.0., c.0.D. o Access (jat send in card namber). Send
S0, for cho.D.
Plense inclade S.A.E. with all enguiries.
Vat at \(8 \%\) must be added to all orders including carriage charges.


\section*{SANYO 2W Audio I.C. Amp LA4031P}

\section*{Ex-stock}

\section*{24 HOUR SERVICE}

PRICES (inc. VAT and P \& P)
1 off \(£ 2.125 \quad 2\) for \(£ 3.79\)
3 for \(£ 5.41\) 4+ for \(£ 1.62\) each.


\section*{Guest Distribution}

Send cheque or P.O. with order to:
Redlands, Coulsdon, Surrey, CR3 2HT. United Kingdom.
Tel: 01-668 7151

Please mention

\section*{PRACTICAL}

ELECTRONICS
when replying to ADVERTISEMENTS

\section*{Digital Cloch hits SPACE RESEARCH gRINES YOUA WrTH NO MOVNG \\  \\ KIT D All components, including P.C.B. designed tor} easy home assembly. Bright and clear digits. Tough A.B.S plastic case with contrasting front panel PRICE \(£ 23.00\) plus \(£ 184\) VAT Totat \(£ 24.84 \mathrm{inc}\) postupkg Onty our advanced design rechniques make this now price Only our advanced design before they leave us and are possible. Kits dre tested before they leave us and are
covered by the PE. A. morney-back guarantee.



\section*{PESCORPIOMK2 ignition systemkit ncw trom ELERO SPARES}

\section*{* 6 OR 12 VOLT}
* + VE AND - VE GROUND

Here's the new, improved version of the original PE Scorpio Electronic Ignition System - with a blg plus over all the other kits - the PE Scorpio Kit is designed for both positive and negative ground automotive electrical systems. Not just + ve ground. Nor just - ve ground. But both! So If you change cars you can be almost certaln that you can change over your PE Scorplo Mk. 2 as well.
Containing all the components you need, this Electro Spares PE Scorplo Mk. 2 KIt is simply bulitt. using our easy to follow instructions. Each component is a branded unit by a reputabie manufacturer and carfles the manufacturer's guarantee. Ready drilled for fast assembly. Quickly fitted to any car
When your PE Scorpio Mk. 2 is installed, you instantly benefit from all these PE Scorpio Mk. 2 advantages:
\(\star\) Easier starting from cold \(\star\) Firing even with wet or oiled-up plugs \(\star\) Smoother running at high speed \(\star\) Fuel saving \(\star\) More power from your engine \(\star\) Longer spark plug life \(\star\) No more contact-breaker burn.

Electro Spares prices:
De luxe Kit only \(£ 11.50\) inc. VAT and \(p\) \& \(p\). Ready Made Unit f14.75 inc. VAT and p \& p. State 6V or 12 V system.
Send SAE now for details and free list.

\section*{FM VARICAP STEREO TUNER}

As featured in the May 1973 issue of 'Practical Electronics' Superb Hi-Fituner Kit now available from Electro Spares Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge) Electro Spares price only \(£ 28.50\) inc. VAT and \(p \& 1 p\).

\section*{'GEMINI' STEREO AMPLIFIER}

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere \(0.02 \%\), and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms. Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now I Depending on your choice of certain components, the price can vary from \(£ 50\) to \(\mathbf{£} 60\) inc VAT and \(p\) \& \(p\)
\(\star\) All components as specified by original authors, and sold separately if you wish.
* Full constructional data book with specification graphs, fault finding guides, etc. 55 p plus \(4 p\) postage.
\(\star\) Price List only. Please send S.A.E. (preferably \(9 \times 4\) minimum) for full details

\section*{REVERSIBLE ASSEMBLY FRAME FOR PRINTED CIRCUITS Simply assemble,turn over and solder}


\section*{PC. ETCHING KIT}

Contains ferric chloride. 100 sa in copper clad board. Dato etch resist and instructions. all for only \(5.3 \cdot 30\).

\section*{FEARIC CHLORIDE}

Anhydrous technical quality to Mil-spec- in 11b double sealed packs
110 80p; 31b \(£ 1-65 ; 101 \mathrm{E} 4.45\).

\section*{VEROBOARD}

100sq in assorted sizes and pitches (no tiny pieces) E1 10.

\section*{3W TAPE AMPLIFIERS}

Poltshed wooden cabinet \(14 \times 13 \times 9\) in contalining a sensitive ( \(20 \mu \mathrm{~V}\) ) 4 -valve trols Glves 3 watts output to the trols, Glves 3 watts output to the non-standard single motor tape deck. Supplied in good working condition with circuit. Standard mains operation. E4-50. Suitable cassettes. \(51 \cdot 10\). Spare head, 30p. Tape (ex-computer). 75p. Amplifier (2 x ECC83. EL84. EZ80) complete and tested with speaker. E3.

Ex-Pay TV takes 10 p pieces. has 3-digit mechanical counter, a coin counter. Sangamo Weston impulse movement. nylon gearing, switch.
etc. Only \&1. 20 .

\section*{RESISTORS ANO CAPACITORS}

500 assorted new resistors. 51 - 40: 200 poly, mica. ceramic. etc. capacitors. E1.
LEO III COMPUTER
Paper tape readers. Ampex TM2 tin tape decks, card readers. Analex writers plus sottware. All avallable late-October

\section*{UNISELECTORS}

25 way. 4 bank inc one continuous. toon coil. Ex-equipment in good condition E2.50

\section*{71b EARGAIN PARCELS}

Hundreds of new components-pots. capacitors, resistors, switches plus P.C. boards with ransistors and diodes. loads of odds and ends. goods come in Amazing value at ¢2-30.

\section*{P.O. AMPLIFIER UNIT}

Contained in steel case \(51 \times 5 \times 3 \frac{1}{2}\) n are \(2 \times\) GET116 transistors on heat sinks. 3 pot cores. 230 V zeners. 4 audio transformers, \(\%\) resistors and
caps. With circuit diagram, 1.

\section*{COMPUTER PANELS}

31b assid 51 -40; 71b E2.65: 56ib E15. Pack containing 500 components with at least 50 transistors 95p. 12 high quality panels with power transistors, ICs and trimpots, etc, \&2.50. Thousands of boards at shops for callers

\section*{VERSATILE POWER UNIT}

Contains mains transformer. 2A thermal cut-out and bridge rectifier. Will glve \(1 \cdot 7-10 \cdot 5 \mathrm{~V}\) output with 2 extra capacitors (provided). \(£ 1 \cdot 20\)

\section*{MISCELLANEOUS}

Transtormer. mains pri.. \(16-0-16 \mathrm{~V}\) with 9 V tap at \(1+4\) sec. \(£ 2,40 \mu \mathrm{~F} 150 \mathrm{~V}\) paper capacitor 60p. D- Ir.p.m. moto with cam and microswitch. 51.30 \(0 \cdot 2 r . p . h\) motor, 51

ALL PRICES QUOTED INCLUDE 8\% VAT AND MAINLAND CARRIAGE

\section*{GREENWELD ELECTRONICS (PE8)}

Mail Order Dept., wholesale/retail shop: 51 Shirley Park Road, Southampton (Tel, 0703 772501). Also callers at: 21 Deptford Broadway SE8 (Tel. 01-692 2009), and 38 Lower Addiscombe Road. Groydon (Tel. 01-688 2950)


Latest transistorised Telephone Amplifer with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the hamdset, Many people can listen at a time. Increase efficiency in oltice, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notes, consult fles. No long waiting, saver time with long-distance calls. On/Off switch, volume. Direct tape recording model at \(£ 12.95\).
P. FI. 48 p . 10 -day price refund guarantee

WEST LONDON DIRECT SUPPLIES (PE11) 168 KENSINGTON HIGH STREET, LONDON, W. 8



\section*{WILMSLOW AUDIO}

\section*{THE Firm for speakers!}

\section*{SPEAKERS}

Eaker Group 253.8 or 15 ohm Baker Group 353.8 or 15 ohm Baker Group 50128 or 15 ohm Baker Deluxe 12 in d/cone Baker Major 12 in d/cone Baker Regent
Baker Superb
Baker Auditorium
Celestlon MH1000. 8 or 15 ohm Celestion PST8 for Unilex Celestion G12M 8 or 15 ohm Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 ohm Coral 6 tin d/cone roll surr 8 ohm Coral \(\sin\) d cone roll surr 8 ohm EMI 13 in : 8 in 3.8 or 15 ohm EML \(13 \mathrm{in} \times \sin 150 \mathrm{~d} / \mathrm{c} 3.8\) or 15 ohm EMl 13 in . 8 in \(450 \mathrm{t} / \mathrm{tw} 3.8\) of 15 ohm EM. 13 in \(\times 8\) in type 3508 or 15 ohm EMI 6 tin 938504 or 8 anm
EM 5in 98132CP 8 ohm
EMI \(8 \times 5\) d/cone, roll surf 10 W
EMI 21in tweeter 97492AT
Eagle DT33 30W tweeter
Eagle HT 15 horn tweete
Eagle CTS cone tweeter
Eagle CT 10 tweeter 8 or 16 ohm Eagle MHT 10 horn tweete
Eagle crossover CN23. CN28. CN216
Eagle FR65
Eagle FR65
Elac 9 . 5 59RM109 15 ohm 59RM114 8 ohm Elac 6tin 6RM171 dec roll surt
Elac 5tin 6RM220 d/cone
Elac sin tweeter TW4
Elac 10 in d/cone 10RM239 8 ohm
Elac Bin BCS 1753 ohm
Fane Pop 15W 12 in
Fane Pop 40W 10 in
Fane Pop 50W 12 in
Fane Pop 55 60w 12 in
Fane Pop 60W 15 in
Fane Pop 100W 18in
Fane Crescendo 12A 100W 12 in
Fane Crescendo 12 B bass
Fane Crescendo 15 in 10 CW
Fane Crescendo 18 in 150 W
Fane 801 T gin d/c roll surr
Fane 807T 8 ind c roll surr
Fane 808T Bin d/c
Fane 701 iwin ribbon horn
Fane 910 horn
Fane 920 horm
Goodmans 8P 8 or 15 ohm

Goodmans 10 P 8 or 15 ohm
Goodmans 12 P 8 or 15 ohm
Goodmans \(12 P 8\) or 15 ohm
Goodmans \(12 \mathrm{P} . \mathrm{G} 8\) or 15 ohm
Goodmans Audiomax 12AX 100 W
Goodmans Audiomax 12 AX
Goodmans Audiomax 15 AX
Goodmans 15 P 8 of 150 hm
Goodmans 18P 8 or 150 hm
Goodmans Midax 750
Goodmans Axent 100 iweeter
Goodmans Audiom 100 12in
Goodmäns Axiom \({ }^{\text {Goodmans Twinaxiom }} 8\)
Goodmans Twinaxiom
Goodmans Twinaxiom 10
Kef T15
Kef B110
Ket B200
Ket 3139
Ket DN8
Kef DN12
Kef DN13
STC4OCIG super tweete
Richard Allan CGBT Bind \(\mathrm{c}+/ 5 \mathrm{sur}\)
Wharfodale Super 10RS/DD
\(2 \frac{1 \mathrm{in}}{} 64 \mathrm{ohm} .70 \mathrm{~mm} 80 \mathrm{ohm} .70 \mathrm{~mm} 80 \mathrm{hm}\)
2.in 75 ohm

7in. 4 in 3 or 8 ohm
\(10 \mathrm{in} \times 6 \mathrm{~m} 3.8\) or 15 ohm

\section*{\(55 \cdot 30\)
512.95 \\ 512.95
516.75 \\ \([16.75\)
\([15.75\) \\ \([15.75\)
\([39.65\) \\ \([39.65\)
542.00 \\ \(\Sigma 21.00\)
\(£ 36.00\) \\ \(£ 36.00\)
\(£ 16.00\) \\ \(\begin{array}{r}〔 7.25 \\ \text { ᄃ12. } \\ \hline\end{array}\) \\ £12.00
\([17.25\) \\ ER. 25
e9. 00 \\ \(£ 9.00\)
\(£ 5.25\)
\(£ 6.00\) \\ 56.00
57.00 \\ 59.00
512.75 \\ \(£ 2.00\)
5.50 \\ £2.75
\(£ 6.19\) \\ 86.35
8.35 \\ \(£ 9.80\)
50.65 \\ £0. 65
£ 50 \\ E. 50
51.50}

\section*{SPEAKER KITS}
\begin{tabular}{|c|c|}
\hline Baker Major Module & each 510.75 \\
\hline Fane Mode One & each 59.90 \\
\hline Goodmans DIN 20 & each 99.75 \\
\hline Helme XLK25 & pair E 11.00 \\
\hline Helme XLK30 & pair 514.95 \\
\hline Helme XLK50 & palr \(£ 39.95\) \\
\hline Kefkit 2 & each 523.50 \\
\hline Kefkit 3 & each ¢ 34.00 \\
\hline Richard Altan Twinkit & each ¢8.95 \\
\hline Aichard Allan Triple 8 & each [13 75 \\
\hline Richard Allan Triple & each 519.95 \\
\hline Richard Aklan Super Triple & each \(\mathbf{2 3} 75\) \\
\hline Whartedale Linton 2 kit & pair ¢ 19.25 \\
\hline Wharfedale Glendale 3 ktt & pair \(¢ 34 \cdot 50\) \\
\hline Whartedate Dovedale 3 kit & pair [52-50 \\
\hline
\end{tabular}

\section*{PA/DISCO AMPLIFIERS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{(carr and ins [1)} \\
\hline Baker Major 100 watt & [49.75 \\
\hline Linear 30/40 & ¢ 30.00 \\
\hline Linear 40/60 & ¢ 35.00 \\
\hline Linear 80/100 & \$59.75 \\
\hline Lineat 900 watt slave & [44. 00 \\
\hline Eagle PA range in stock-ask & \\
\hline
\end{tabular}

\section*{FREE with speaker orders over \(£ 7\)}

All units guaranteed new and perfect. Prompt despatch Carriage and book each ( \(£ 1.50\) palr). tweeters and crossovers 20p

Send stamp tor free booklet Choosing a Speaker
include vat
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works. Bank Square. Wilmslow Cheshire. Sk9 1HF Discount Radio. PA. Hi-Fi: 10 Swan Street. Wilmslow


\section*{\(=1:-1=-1\)}

\section*{Telephone} Corner complet titermes NORMAL HOUSEHOLD Only 99p 45 peach
TELEPHONE DIALS Standard Past Office Evpe. Guranteed Only 25 D pornin oster \& packing 160

\section*{Tested and Guaranteed Paks \\ }

B81 \(10 \begin{aligned} & \text { Reed Switches. 1- long } \\ & \text { dia Highspeed P.O. type }\end{aligned}\)
H35 100 Mixed Diodes, Germ. Gol
bonded. etc. Marked and Unmarked
H38 \(30 \begin{aligned} & \text { Short lead Transistors. } \\ & \text { NPN Silicon Planar types }\end{aligned} \quad\) 50p
H39 \(6 \begin{aligned} & \text { Integrated circuits } 4 \text { gates } \\ & \text { BMC } 952,2 \text { flip flops BMC } 945 \\ & 50 p\end{aligned}\)
H41 \(2 \begin{aligned} & \text { BDI } \\ & \text { tary Plastic Transistors }\end{aligned}\) 50p
H65 \(4 \underset{\substack{\text { transistors TO-5 } \\ \text { tan comp. } \\ \text { to }}}{\text { Sil. }} 50 \mathrm{p}\) transist
to H 66
H66 \(4 \begin{aligned} & \text { 40362. Type PNP sil. tran. } \\ & \text { sistors } \\ & \text { tho- } 5 \text { can comp. to }\end{aligned}\)
 Untested Paks
B1 50 Germanium Transistors \(\quad\) PNP, AF and RF
B66 150 Germanum Diodes
50p
\(883200 \begin{gathered}\text { Transistors, manufacturer } \\ \text { rejects, AF, RF, Sil. and }\end{gathered}\) Germ.
B84 \(100 \begin{aligned} & \text { Silicon Diodes } 00-7 \text { glass } \\ & \text { equir to OA200, OA202 }\end{aligned}\)
50p
B86 \(100 \begin{aligned} & \text { Sil. Diodes sub, min. } \\ & \text { ingl4 and IN9i6 types }\end{aligned}\)
50p
\(\begin{array}{ll}\text { H2O } & 20 \begin{array}{l}\text { BYI26/7 Type Silicon Recti- } \\ \text { fiers } 1 \text { amp. plastic. Mixed }\end{array}\end{array}\)
50p
H34 \(15 \begin{aligned} & \text { Power Transistors, PNP. } \\ & \text { Germ. NPN Silicon TO-3 } \\ & \text { Can }\end{aligned}\) 50p
H67 \(10 \begin{aligned} & 3819 \mathrm{~N} \text { Channel FET's plastic } 50 \mathrm{p} \\ & \text { case type. }\end{aligned}\)
Make a rev counter
for your car
The "TACHO BLOCK". This encapsulated block will turn any 0.1 mA meter into a rev. counter for
any
normal
ormal col
ition system.
each

\section*{Electronic Transistor Ignition £6.60 Ready built and tested unit \(E 9 \cdot 90\) incl. V.A.T. Now in kit form, we offer this "up-to-the.
minute", electronic ignition system. Simple to make, full instructions supplied with these outstanding features. Transistor and conventional switchability, burglar proof lock-up
and automatic alarm, negative and positive 2nd automatic
compatibility. \\ Extension Telephones. Idealfor children's}

\section*{New X Hatch}

Our new vastly improved Mark Two Cross Hatch Generator is now available. Will align the colour guns on a colour TV
receiver. Featuring plug-in iCs and a more sensitive sync. pick-up circuit. The case is virtually unbreakable-ideal for the engineer's Ready built \(\mathrm{f} 0.05 \quad\) Complete C 7.75
 (includes P, \& P. but no bateries)


Wehave just received a large consignment of higher grade and are marked with the number SL60745.
This fantastic litrle 3 wadio IC only requires two capacitors and two potentiometers to make an amplifier with volume and tone con-
trol. The quality is good and has to be heard to be believed
\[
\begin{aligned}
& \text { to be believed. } \\
& \text { Oar apecisi dy each complete with data } \\
& \text { price }
\end{aligned}
\]

Over 1,000,000 Transistors

\section*{in stock}

We hold a very large range of fully marked, tested and guaranteed transistors. power

\section*{Our very popular Ap Trmesistors}

TYPE ' 'A"' PNP silicon Alloy, TO- 5 can.
TYPE " \(B\) ". PNP Silicon, plastic encapsulation TYPE 'EE', PNP Germanium AF or RF. TYPE "F'' NPN Silicon plastic encapsulation.
TYPE "G" NPN silicon, similar ZTX 300
Trange. "H" PNP Silicon, similar \(\mathbf{Z T} \times 500\)
8 relars for \&1

\section*{UHF TV Tuner Units}

Brand new by a famous manufacturer
Datasupplied \(£ 2.50\)

Plastic Power Transistors
NOW IN TWO
RANGES
These are 40 W and 90 W Silicon Piastic Power Transistors of the very latest design,
available in NPN or PNP at the most shatter. ingly low prices of all time. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed
terms.

\(\begin{array}{cccc}40 \text { watt } & 20 p & 18 p & 16 p \\ 90 \text { watt } & 24 p & 22 p & 20 p\end{array}\)
Range 2 vCE \({ }^{\text {24P }}\) Min. 40 HFEMin. \(40{ }^{22 p}\)
\(\begin{array}{cccc}40 \text { watt } & 1-12 & 13-25 & 26-50 \\ & 30 p & 28 p & 260\end{array}\)
\[
\begin{array}{llll}
\text { wat } & 35 p & 33 p & 30 p
\end{array}
\]

Please state NPN or PNP on order
HIGH-SPEED MAGNETICCOUNTERS 4 digit (non-reset) \(4 \times 1 \times 1\) 30p.
INTEGRATED CIRCUITS. We stock a large range of \(1 . C\) is at very compesisive prices (from lop each). These are all listed in our
FREE Catalogue, see coupon below
FREE Catalogue, see coupon below
METRICATION CHARTS now available.
This fantastically detailed conversion cal-
culator carries chousands of classified references between metric and British (and U.S.A.) measurements of length, area,
volume, liquid measure, weights, ete.

Pocket Size. 15 p. Wall Chart, 18 pp .
LOW COST DUAL IN LINE I.C.
SOCKETS
6 pin type at 15p each Now new low
\(\qquad\)

\section*{BOOKS}

We have a large selection of Reference and Technical Books in stock, details are in our the coupon below.

\section*{Dur famous P1 Pak} is still leading in value
Full of Short Lead Semiconductors and guarantee at least 30 really high quality factory marked Transistors PNP and NPN. and a host of Diodes and Rectifiers mounted on Printed Circuit Panels, Identification Chart supplied co give some information on the
Please ask for Pak P.1. only 5010
\(=-2 .-2\) Ienclose large S.A.E, with 5p stamp
NAME..
ADORESS

Please add V.A.T. at Current Rate
MINIMUM ORDER 50p. CASH WITH ORDER PLEASE. Add I5p post and packing
per order. OVERSEAS ADO EXTRA FOR POSTAGE
UY THESE GOODS WITH ACCESS

AUDIOTRONIC Model ATMI Tap vilue 1,000
opr porket mult Mpreer. F anges:0/10/50/25011,000
volt AC and OC
DC current 0.1 mA 100 mA . Resistence: \(0 / 150 \mathrm{k}\) ohms.
Decibel \(\mathrm{s}-10\) t Decibels: -10 to
+220 ClB . ize
\(90 \times\) \(60 \times 28 \mathrm{~mm}\). Complete
OUR PRICE £3.25 P\&P 15p


\section*{AUDIOTRONIC Model ATM5}

Jewel movernent, caso with odgwize
ohms adjustment. ohms adjustment.
Ranges: \(0.3 / 15 / 150 /\) \(300 / 1200 \mathrm{~V}\) AC,
\((2500 \mathrm{opv}), 0 / 30 /\) \(300 / 600 \mathrm{~V}\) DC, UA/O-300 mA DC. ResistancG: \(\times 10\) \& \(\times 100-10\) to +16 dB
Supplied with batter Supplied with bat OUR PRICE \(53.95 \quad\) P \& P 20p



\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
MODEL PL436 \\
20,000 op DC. 8000 opv AC.
\end{tabular} & \begin{tabular}{l}
sturdy metal carrying case, leads and insiructions. \\
OUR PRICE \(£ 10.25\)
\end{tabular} \\
\hline Mirror acale & \multirow[t]{9}{*}{\begin{tabular}{l}
U91 Clamp VOLT AMMETER \\
For measuring AC voltaqe and cursent withour breaking circuit. Ranges: \(300 / 600 \mathrm{~V}\) AC. Current: 10/25/100/250/500A. Accuracy 4\%. Size 283x \(94 \times 36 \mathrm{~mm}\). Complete with carrying case, leads and fuses. \\
OUR PRICE \(£ 13.50\)
\end{tabular}} \\
\hline \(6 / 3 / 12 / 30 / 120 /\)
800 V DC. \(3 / 30 /\) & \\
\hline 120/600V DC. & \\
\hline 50/600 \(\mu \mathrm{A} / 60 /\) & \\
\hline 600 mA . \({ }^{\text {a }}\), & \\
\hline 10/100K/1 Meg/10 Meg Ohm. -20 to \(\cdot 46 \mathrm{~dB}\). & \\
\hline OUR PRICE E6.97 PEP30p. & \\
\hline U4323 MULTIMETER & \\
\hline 20,0000pv. Simple & \\
\hline unit with audio/IF oscillator. Suitatio & MODEL 500 \\
\hline for general rectiver & 30,000 opv with \\
\hline tuning. Aanges: & overlosd protect. \\
\hline \(0.5 / 2.5 / 10 / 50 / 250 / \sim-1\) & tion. Mirror scale. \\
\hline 2.5/10/15/250/500/1000V AC. 0.05/ & \[
\begin{aligned}
& 0 / 0.5 / 2.5 / 10 / 25 / \\
& 100 / 250 / 500
\end{aligned}
\] \\
\hline 0.5/5/50/500mA DC. Resistance: & 1000 V DC. \\
\hline \(\times 10, \times 100 \times 1,000 \times 10,000(500\). & 0/2.5/10/25/100/ \\
\hline \(500 \% 2 \mathrm{k} \Omega .50 \mathrm{k} \Omega\) centre scaie) & 250/500/1000V/5/ \\
\hline Bettery operated. Sizt: \(160 \times 97 \mathrm{k}\) & \(500 \mathrm{~mA}, 12 \mathrm{CDC}\). \\
\hline plete with test leacts. & 0/60k/6 mag/60 mego \\
\hline OUR PRICE \(\mathbf{5 7 . 7 0}\) P8P30p & OUR PRICE \(£ 13.95\) Carr. pard \\
\hline
\end{tabular}

KAMOOEN 360 MULTIMETER
 \(10 / 100 \mathrm{M}\) ohms. Dacibels - 20 to +62dB. Battery operated. Size: \(180 \times\)
\(140 \times 80 \mathrm{~mm}\), Supplied complete with \(140 \times 80 \mathrm{~mm}\).
190st leads otc. OUR PRICE £17.50 P\& P40p TMK MOOEL 117 FET ELECTRONIC VOLTMETER

HIOKI 750X VOLT.OHM MILLIAMETER A/6/12A. Resistence:
 Decibels: -10 to +17 dB . Output: -z-y \(\pm \%\) OC, \(\pm 4 \%\) AC. Sensitivity:
50,000 opv DC, \(5,000 \mathrm{opV}\) AC. 4 inch meter. Built in protection. Size: \(57 \times\)
\(102 \times 153 \mathrm{~mm}\). OUR PRICE £11.95 PgP 40p

46 rangas, mirror
scale \(50 \mathrm{k} / \mathrm{V} D \mathrm{DC}\)
\(50 \mathrm{~F} / \mathrm{VAC}\)
OC Volts:
 1.5/3/5/10/25/50/
\(125 / 250 / 500 /\) 1000 . DC current
\(25 / 50 \mathrm{~A} / 2.5 / 5 / 25\) \(50 / 250 / 500 \mathrm{~mA} / 5\) / 10A. Ressistence:
\(10 \mathrm{k} / 100 \mathrm{k} / 1 \mathrm{Meg} /\)
10 Meg
 10 Meg ohms. -20 to +81.5 dB . OUR PRICE E12.50 P\&P 20p

\section*{ OUR PRICE £14.95 PgP30p
}

MODEL AS. 1000 YOM
100.000 opv
Mirror scal

Built-in meter
protection.0/3/
12/60/120/300/
\(600 / 1200 \mathrm{~V}\) DC. 0/6/30/120/300/
 0 P\&P 30p.
MDDEL C7202E 0.000 0.p. DC

10,000 o.p. \(\mathrm{V} . \mathrm{AC}\)
Mirror Scale.
5/25/50/250/500/ \(1000 / 2500\) V. DC.
\(10 / 50 / 100 / 500 / 1000\) V.AC. DC Resistancer
\(\times 10 . \times 1000(30 \Omega\) centrescale) DC
Current 50 u A/

\section*{\(25 \mathrm{~m} . \mathrm{A} / 250\)
to +68 dB .}
\(0+68 d \mathrm{~d}\)
OUR PRI

Battory operated.
11 Meg input, 26 ranges. Large 4 \(4 \mathrm{~K}_{6}\) mirror scale. Size:
\(149 \times 117 \times 60 \mathrm{~mm}\). \(0.3-12000 \mathrm{~V}\) DC. \(3-300 \mathrm{~V}\) RMS AC \(8-800 \mathrm{~V}\) P.P.
OC current 0.12
12 mA . Resistence
up 10 2000MOMm

up 10 200.
+51 dB . Supplied complete with leads and instructions.
OUR PRICE \(£\)

\section*{TMK IOOK LAB TESTER}
\(100,000 \mathrm{opv} .6 \% / 2\)
scale. 3uzzer
scale. 3uzzer
shori circuit check.
Sensitivity 100,000
pov DC. \(5 \mathrm{k} / \mathrm{V}\) AC
DC Volts: \(0.5 / 2.5 /\)
\(10 / 50 / 250 / 1000 \mathrm{~V}\) AC. \(3 / 10 / 50 / 250 /\) \(500 / 1000 \mathrm{~V}\) OC.
current \(10 / 100 \mathrm{uA}\)
10/100/2.5/
/ Resigrence
10/100/2.5/10A. Resigyence:
\(1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10 \mathrm{Meq} / 100\) Meg ohrre
Decibels: -10 to +49 SB . Plastic case Decibels: -10 to +49 dB . Plastic cass
with carrying hande. Size: \(190 \times 172\) \(\times 99 \mathrm{~mm}\). 37 OWTR MULTIMETER


OUR PRICE \(£ 19.95 \quad\) P\&P 30p KAMODEN 72.200 Multitester High sensitivity
tester. 200.000 opv
Overiod protected.
Mirror scalt.
Ranges: \(-0 / .06 / .3\) Ranges: \(-0 / .06 / .3\)
\(\mathbf{3 / 3 0 / 1 2 0 / 6 0 0 / .}\) 1200 V DC \(0 / 3\) 12/610/300/11200
V AC \(0 / 5{ }^{2}\) V AC. \(0 / 6 \mathrm{GA} /\)
\(1.2 \mathrm{~mA} / 120 \mathrm{~mA} /\) \(60 \mathrm{~mA} / 120 \mathrm{~mA} /\)
\(6012 \mathrm{~mA} / 12 \mathrm{AC}\)
\(0 / 20\) \(0 / 12 \mathrm{~A} \mathrm{AC},-20 \%{ }^{2}\),
\(+63 \mathrm{~dB}, 0 / 2 \mathrm{k} / 200 \mathrm{k} /\) OUR PRICE \(£ 22.50 \quad\) P\&P 30p U4317 MULTIMETER
High sensitivity
instrument for fietd and laboratory work \(K\) nife edge pointer.
86 mm . mirror scale. 06mm. mirror scale. -
Ranges: 100mV/
\(0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000\) \(\checkmark D C\) 0.5/2.5/10/25/50/100/250/ \(500 / 1000 \mathrm{~V}\) AC. Current: 50 u A/0.5/
\(1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 \mathrm{D}\) DC. \(0.25 /\) 0.5/1/5/10/50/250mA/1/5A AC. Res. istance: \(0.5 / 10 / 100 / 200\) ohms \(/ 1 / 3 /\) \(30 / 300 \mathrm{k}\) ohms. Decibels: -5 to +10 dB
Battery operated Size: \(210 \times 115 \mathrm{x}\) Bartery operated. Size: \(210 \times 115 \times\)
90 mm . Supplied in carrying case complote with teads.
OUR PRICE \(\mathbf{\$ 1 6 . 5 0 ~ P R P 4 0 p}\) MODEL U4311 Sub-standard
Multi-range Volt-Ammeter Sensitivity 330
Ohmsivolt AC
Onms/Vo
and DC.
and DC.
Accuracy \(0.5 \%\)
DC. \(1 \%\) AC.
Scsie length:
165 mm .
\(0 / 300 / 750 \mathrm{u}\)
\(0 / 30 / 750115 /\)
\(1.5 / 3 / 7 / 50 / 150 / 30 /\)
\begin{tabular}{l}
\(750 \mathrm{~mA} / 1.5 / 3 /\) \\
75 DOC \\
\hline
\end{tabular}
\(7.5 A D C, 0 / 3 /\)
\(7.515 / 30 / 751\)
150/300/750mA/

\(1.5 / 3 / 7.5 \mathrm{~A}\) AC.
\(0 / 75 / 150 / 300 / 750 \mathrm{mV} / 1.5 / 3 / 7.5 / 15 /\)
\(30 / 75 / 150 / 300 / 750 \mathrm{~V}\). 0/75/150/300/750mV/1.5/3/7.5/15/
\(30 / 75 / 150 / 300 / 750 \mathrm{~V} 0 \mathrm{C} 0 / 750 \mathrm{mV} /\)
\(15 / 3 / 7.5 / 15 / 30 / 75 / 150 / 300 / 750 \mathrm{~V}\) AC. Auromatic cut out device. Supp. lied complate with test lends, mantal OUR PRICE \(£ 52.00\) PAP 50p

\section*{AL PO}
zic C D B 1/4


MODEL TE15 GRIO DIP METER
 Oxillator, Absorb Son Wel Mation end Fsomianc rais in six coils. \(500 \mathrm{u} . \mathrm{A}\)
moter. 9 V batt
operation, Size:
\(130 \times 80 \times 40 \mathrm{~mm}\)
OUR PRICE \(£ 19.95\)

TRANSISTORISED L.C.R. A.C BR/8 MEASURING BRIOGE


\section*{A new portabl
bridge offering} oxcoltont range and accuracy at low \begin{tabular}{c} 
ohm-11.1 megohm \\
\(\pm\) \\
\hline rages: 0.1 \\
Induct
\end{tabular} ance: 6 ranges: 1 microhenry- 111 henries \(\pm 2 \%\) Capacity: 6 ranges:
10pf-1110 mfd \(\pm 2 \%\) Turns Ratio: 10pf-1110 \(\mathrm{mfd} \pm 2 \%\) Tufns Ratio:
6 ranges: \(1: 1 / 1000-1: 11100 \pm 1 \%\) Bridge Voltage at 1.000 cps . Operaamp meter indication. Size \(7 z^{\prime \prime} x\) \(5^{*} \times 2\) " OUR PRICE \(£ 25.00\) P\&P 30D

TE16A TRANSISTORISED SIGNAL GENERATOR
 Sodur: \(149 \times 149 \times 92 \mathrm{~mm}\). C
with instruetions and leads. OUR PRICE \(\mathbf{E 8 . 9 7}\) P\&P30p


Yariable R.F. for calibration, 220/240V a.c.
Brand new with instructions.
OUR PRICE E 17.50 PRIP50p

TE22 SINE SQUARE WAVE AUDIO GENERATOR
Sine 20kpt
on 4 barids.
Squara 20
Squarat 20
eps to 30
cps to 30
kHz. Output
impedence
impedance
AC operation
ac operation. Supplied brand new Ind lasds.
OUR PRICE E24.95 P\&P 50p

\section*{ARF 300 AF/RF SIGNAL GENERATOR All transistorise compact fully porvabis. AF sine 18 Hz to 220
kHz . AF square kHz . \(A F\) square
wavi 18 Hz to 100 k Hz , Output Square/ Sine wave 10 V . P.PRF 100 kHz to \\ 200 MHz . Output \\ \(220 / 240 \mathrm{~V}\) AC operstion. Complete OURPRICE f 37.50 P\&P 50p \\ MODEL MG 100 SINE SQUARE WAVE AUDIO GENERATOR Range 19 .
220.000 Hz 220.000 Hz Sine \\ Output Sine or Square wave \(10 \mathrm{v} P\) io Sizo \(180 \times 90 \times 90 \mathrm{~mm}\) Operation OUR PRICE £ 19.95 \\ SPECIAL \\ BARGAIN! \\ FERGUSON \\ 3406 HI-FI
SPEAKERS \\  \\ High quality 2 way speaker systems
25 Watts. \(4-8\) ohms. \(40 \mathrm{~Hz}-18 \mathrm{kHz}\) Size. \(560 \times 340 \times 255 \mathrm{~mm}\) approx. OUR PRICE \(£ 22.50\) PR. P\&P £ 1 useful in the home, affice or shop and is suitable for use as baby alarm Wall or desk mounting
57 mm speaker/mic gives clear 2 way communication with on/o
and volume control on master unit Operates on \(9 \vee\) batt Apprax 60 ft lead. \\ OUR PRICE E3.95 P\&P30p \\ TRITON 4318 PORTABLE \\ 8 TRACK CARTRIDGE \\  \\ medtum and long wave bands. Volume and tone controls operation \\ OUR PRICE E11.95 P\& P50p \\  Simply plug in \\ microphone, quitar etc. snd ou tput to your amplifieg. Voume, sind output to
depth of reverberation control. Bean. depth of reverberation control. Beau.
walnut cabinet. \(184 \times 77 \times 108 \mathrm{~mm}\). OUR PRICE \(\mathbf{E 7 . 5 0}\)}



AUDIOTRONIC LE-102A
INTERCOMS


Beautifully made and finished in

LHO2S STEREO HEADPHONES


OUR PRICE E1.97 P\&P 30p
DHO2S STEREO HEADPHONES Wonderful value and excellent
performanca combined. Adjus able head band. Impedence 8 oh
\(20-12.000 \mathrm{~Hz}\).
Complete with OUR PRICE E2.25 P\&P 30\$


\section*{BHOO1 HEADSET and Boom}

Mowing coil. Ideal
for for languag.
teaching.
comme
cations atc.
Rophone impederice 200 ohms.
OUR PRICE E5.95 P\&P 30p
HANIMEX HRC 3075
CASSETTE RADIO

 OUR PRICE E9.95 \begin{tabular}{cc}
\(\substack{\text { Eatphone } \\
\text { P\&P50 } \\
\hline}\) \\
\hline
\end{tabular} SPECIAL BARGAIN !!
STEREOSOUND SPEAKERS STEREOSOUN


 watts paek.
Complete with Compleate


OUR PRICE E12.95PAIRP\&P 50p
FM TUNER CHASSIS


Ample outpui to feed most amplifiers Operates on 9 V battery. Covers \(88-\) 108 MHz . Aeady built, ready for use.
Fantastic value for money. OUR PRICE \(\mathbf{8} 8.95\)

SPECIAL OFFER! SAVE OVER 50\%

AMSTRAD 8000/2 Stered amplitier 7 watts per channel ims. Inputs for tunar tape. phono. Headphone OUR PRICE 12.95 p \& \(P\) 60p

SPECIAL OFFER! CONVĖRT YOUR STEREO SYSTEM TO 40 SOUND FOR UNDER f16.


Exclusive offer of GOODWIN 4 Exclusive Offer of GOOD WN CONVERTER and a pair of AD15 10 watt 8 ohm bookshelf
speakers enables you to add 40 speakers enables you to add 4D
sound to your existing system. Complete with simple connection details. Normal retail value E25.50. OUR PRICE f15.80 p \& p et. GOODWIN CONVERTER available separately f 3.95 P\& P 50p

Model A1018 FM TUNER G wansis tor high
quality unit
3F stages and double tuned


For use with most amplifiers. Covers 88- 108 Mith . Powwered by 9 V battery.
OUR PRICE \(\begin{array}{ll}\text { OUR PRICE } £ 13.50 & \text { P\&P 30p } \\ \text { Stereo multiplex adapter } \mathrm{C5} \\ 95 \text { extra. }\end{array}\)
ELECTRONIC CALCULATORS


We carry atremendous range of both pocket and desk calculators from as little as 69 .
Owing to the demand it is not
possible to include them in this possible to include them in this latest price list or call into any branch.

SINCLAIR SYSTEM 2000 STEREO AMPLIFIER AND TUNER


\section*{AMPLIFIER}

Amplifier output 8 watts per
channel RMS Distortion lass than channel RMS Distortion less than \(006 \%\) Silicon transistors. Two
pick-up plus radio and tape inputs, pick-up plus radio and rape inputs,
tape output and scratch filter. Excellent Value OUR PRICE E27.50 P\&P60p


\section*{FM TUNER}

Exivity Twin dualiy, and sensi4 pole cera dual-varicap tuning. stereo demodulator giving 40 dB separation. Distortion \(02 \%\) output OUR PRICE \(\mathbf{f} 27.50\) P\& P60p.

\section*{SINCLAIR ICI2}

INTEGRATED
CIRCUIT
AMPLIFIER
complete wit

mounting board

\section*{SINCLAIR Project 80 Modules}
 Sterso 80 Pre. Amp
Active Filltr
Project 805.
p25 Power
PZ5 Power Supply
P26 Power Supply

SINCLAIR Project 80 Packages
 \(2 \times 260 /\) Streo 80/PZ8............
POST \& PACKING 35p each.

YE1021 Stereo Listening Station
For balancing
ond ganin seisetio with additional hecilith for sterec

grin controls, spaskers on-otf slide OUR PRICE £2.25 P\&P 15 p AUDIOTRONIC LOW NOISE CASSETTES
 P\&P Cassettes 3D. OVER 10 POSTFREE!

MP7 MIXER-PREAMPLIFIER 5 Microphone inputs each with
individual pain controls anabling

complete mixing
facilitios. Battery operated. \(\$\) in w: 235
\(\times 127 \times 76 \mathrm{~mm}\). Inputs: Mics. \(3 \times 3 \mathrm{mV}\) \(\times 127 \times 76 \mathrm{~mm}\). Inputs: Mics. \(3 \times 3 \mathrm{mV}\)
\(50 \mathrm{k} ; 2 \times 3 \mathrm{mV}\) 600 ohms. Phong. M. 4 mV 50 k ; Phono Corsmic 100 mV I OUR PRICE \({ }^{100}\) OUR PRICE E8.97 P\&P 20p

\section*{AUDIOTRONIC AHA101} Stereo Headphone Amplifier All silicon
transistor

or tuner
inputs with
twin stoveo hasdphone outputs and separate volume controls for asch channet: Operates from 9 V battery
INPUTS: 5 mV and 100 mV
OUTPUT: 50 mV pet channel.
OUR PRICE E8.50


All kits are complete with compre hansive easy to follow instructions and covered by full guarantes.
Post and Packing 15p per kit
AF20 Mono amplifier......
AF25 Mixer............ifier
AF25 Mixer............ilifier
AF.35 Emitter amplifier....
AFBO 0.5 W mic. amplifier
AFB00 0.5 W mic. amplifier.
M160 Multi-vibrator
M1302 Transisfor tester...
M191 VU Meter.................
M192 Stereo balance meter.
F380 Ouadraphonic device. AT30 Phomatic light control.. £375 AT50 400 W triac light
ATS6 \(2,200 \mathrm{~W}\) eriac light
dimmer/speed control...... £6 75
AT60 1 channel 1 ght control.. \(£ 1082\) AT65 3 channeel light control. © 1082 GU330 Tremolo unit.
HF65 FM transmiter
HF75 FM receiver...
HF310 FM tuner.

GP310 Stereo pre amplifier
for use with \(2 \times A F 310 \ldots\)
GP3 12 Circuit board.
GP304 Circuit board............
HF380 Iw/vht zerial amplifier
HF388 Iw/vht arial amplifier \(£ 602\)
HF395 broadband aerial amp. 210 NTIOStabilised power supply 100 mA .9 V ..
NT300 Stabilised D. supply..... £ \(\mathrm{E}_{13} \mathrm{~S}_{16}\) NT310 Power Supply \(240 \vee \mathrm{AC}\)
or \(2 \times 18 \vee \mathrm{C}\) at 2 amps 564 or \(2 \times 18 \vee D C\) at 2 amps \(\quad\) f 564
NT 305 Voltage converter..... 564 NT315 Power suply 240 V AC
to4.5/15V OC, \(500 \mathrm{~mA} \ldots .\). £ 120

Amateur Electronics by Josty-Kit, the professional book for the amateur
-coverg the subject from basic prin. -covers the subject from basic prin.
cipals to advanced electronic lechniq. ues, Complete with circuit board for
AE, to AE 10 listed below.
OUR PRICE £3.30 INo VAT
AE 1 100mW output stage......... \(£ 1.55\)
AE2 Pre-amplifier................. 132 AE3 Diode receiver.
AE4 Flasher ......................
AEG Monostable multi-vibrato AE7 RC generatu AE9 Treble filter.
AE10 CCIP filter

\section*{Also see previous page}
all prices exclude vat

\section*{\(\square\) DTM DINE WME EDO \\ SEW PANEL METERS ARE STOCKED AT OUR 3 LISLE ST., 311 EDGWARE RD., \& 152 FLEET ST., BRANCHES or order by post.}

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
CLEAR PLASTIO MODEL SO640 \\
Size: \(85 \times 64 \mathrm{~mm}\)
\end{tabular}} \\
\hline 50 A A & f3.80 & & \\
\hline 100 uA & f3.78 & & \\
\hline 2004A .. & f3.70 & & \\
\hline 500uA & 63.65
\(\mathbf{5 3 . 7 5}\) & & \\
\hline 100-0.100 A & f3.70 & & \\
\hline 1 mA & f3.65 & & \\
\hline 5 mA & f3.65 & & \\
\hline 10 mA & f3.88 & & \\
\hline 100 mA & f3.88 & 20 & 63.65 \\
\hline 500 mA & f3.65 & 50 V DC & ¢3.65 \\
\hline 1 A DC & ¢3.65 & 300 V DC & £3.65 \\
\hline 5 SAC & 83.85 & 15 V AC & ¢ 3.75 \\
\hline 10A DC & 13.65 & 300 V AC & f3.75 \\
\hline 5 V DC & f3.65 & VU Meter & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
CLEAR PLASTIC MODEL SW100 \\
Size: \(100 \times 80 \mathrm{~mm}\)
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{9}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
EDGWISE MODEL PE70 \\
Size: \(90 \times 34 \mathrm{~mm}\)
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{8}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{MODEL ED107 EDUCATIONAL METER Size: \(100 \times 90 \times 150 \mathrm{~mm}\) including terminals}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{5}{*}{A range of high quality moving coil instruments ideal for school experiments and other bench applications. \(3^{\prime \prime}\) mirror cale. The meter movemont is ensily accessibite to demonstrate internal working.}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lllll}
500 A &.. \\
100 A &. &.. & 88.50 \\
\hline 1.90
\end{tabular}}} \\
\hline & & & \\
\hline \(50-0.50 \mathrm{Na}\) & 67.90 & & \\
\hline 1 mA & ¢7.60 & 50 V & 6760
87.60 \\
\hline \(1.0-1 \mathrm{~mA}\).. & c7.60 & 300 V DC & 67.60 \\
\hline \(1 A^{\circ} \mathrm{DC}\) & & \(500 \mathrm{~mA} / 5 \dot{A} \mathrm{D}\) D & 18.60 \\
\hline 5ADC .. & 67.60
87.60 & \(5 \mathrm{SV} / 50 \mathrm{~V}\) DC & 88.60 \\
\hline 10VDC .. & \[
\begin{aligned}
& 67.80 \\
& 87.60
\end{aligned}
\] & 6V/15V DC & 68.60
\(\mathbf{E 8 . 6 0}\) \\
\hline \(15 \cup D C\) & ¢7.60 & 1/5A DC & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CLEAR PLASTIC MODEL MR 85P Size: \(120 \times 110 \mathrm{~mm}\)}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\({ }_{1004}\)} \\
\hline 100uA & 15.40
\(\mathbf{1 5 . 3 5}\) & - & \\
\hline \multicolumn{4}{|l|}{500uA \({ }^{2}\)} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\(500-0.5004 \mathrm{~A}\).. 55.20} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{lllll}
5 ma \\
10 ma &.. &.. &. \\
\hline 15.20 \\
\hline
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{10ma ..} \\
\hline \multicolumn{4}{|l|}{100 mA . .. ... 55.20 300V DC .. .. 55.20} \\
\hline 500 mA .. .. & 15.20 & 15 V AC & f5. 30 \\
\hline \multicolumn{4}{|l|}{1 DDC .. ... 55.20 300V AC ... .. 55.30} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(5 A D C\).. .. 65.20 S Meter 1mA .. \(\quad\) C5.20}} \\
\hline 154 DC & & & \\
\hline \multicolumn{4}{|l|}{30A DC .. .. 55.40 1A AC .. .. . 1520} \\
\hline \multicolumn{4}{|l|}{10V DC .. .. \(£ 5.20\) 5AAC .. .. \(\mathrm{f}^{5} 5.20\)} \\
\hline \multicolumn{4}{|l|}{20V DC .. .. 55.20 10A AC .. .. 15.20} \\
\hline 150V DC .. & 15.20 & 30A AC .. & ¢5 20 \\
\hline
\end{tabular}
 \\ 受 \\ \(\begin{array}{ll}100 \mathrm{~mA} & . . \\ 50 \mathrm{~mA} & . . \\ 1 \mathrm{ADC} & . .\end{array}\)}


\(240^{\circ}\) Wide Angle 1 mA METERS MW1-6 \(60 \times 60 \mathrm{~mm}\)
 f6.90 P\&P 15p YAMABISHI VARIABLE VOLTAGE TRANSFORMERS Exedilent guality at low cost, input:
\(230 \mathrm{~V} 50 / 6 \mathrm{H}\). MODEL S260 EENCH MOUNTING


\section*{ALL PRICES EXCLUDE MAT}

\(\qquad\)

TO LASKYS CUSTOMER SERVICES DIVISION
Audiotronic House, The Hyde. London NW9 6JJ Tel. 01-200 1321


BAKELITE MODEL MR 65 Size: \(\mathbf{B 0} \times 80 \mathrm{~mm}\)
5
5
5
5


CALL INTO YOUR NEAREST LASKYS BRANCH OR SENO COUPON BELOW FOR NEW 16 PAGE HI-FI PRICE LIST

\section*{CENTRAL LONDON}

\section*{481 oxforo st.}

3 LISLE ST. WCI
34 LISLE ST. WC2
118 EDGWARE RD. W2
193 EDGWARE RD. W2
207 EDGWARE RD W2 W2 \(\begin{array}{ll} & 01.7179759 \\ 0 P-7236211\end{array}\)
\(\begin{array}{ll}311 & \text { EDGWARE RO. W2 }\end{array} \begin{aligned} & 01.7233171 \\ & 01.2620387\end{aligned}\) 346 EDGWARERD. W2 01.7234453 \(\begin{array}{ll}382 \text { EDGWARE RO. W2 } & 01-7234194 \\ 109 \text { FLEET ST. ECA } & 01.3535912\end{array}\) \(\begin{array}{ll}152 / 3 \text { FLEET ST. EC4 } & 01.3335812 \\ 01.3532833\end{array}\) \(\begin{array}{ll}10 \text { TOTTENHAM CT. RD. } & \begin{array}{ll}01.6372332 \\ 27 \text { TOTENHAMCT. RD. } \\ 01-636 \\ 3715\end{array}\end{array}\)
 257/8 TOTTENHAM त. AD. O1-580 0670 ESSEX
20218
\(205 / 206\) CHURCHILL WEST,
VICTORIA CIRCUS, SOUTHEND
KENT
\begin{tabular}{c} 
53/57 CAMDEN RD., YUNBRIDGE WELI \\
0892-23242
\end{tabular}
LEICESTERSHIRE

45 MARKET PLACE, LEICESTER \(0533-537678\)
NORTHAMPTONSHIRE 73 ABINGTON STREET,
NORTHAMPTON (Opering lute Octioter)
STAFFORDSHIRE
30 WULFAUM WAY, WOLYERHAMPTON
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SURREY} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1046 WHITGIFT CENTRE, CROYDOM}} \\
\hline & \\
\hline 27 EDEN ST. KIngston & 01.546784 \\
\hline 38/40 EDEN ST., KINGSTON & 01-546 127 \\
\hline 32 HILL ST. RICHMOND & 01.94814 \\
\hline \multicolumn{2}{|l|}{WARWICKSHIRE} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{116 CORPORATION St., BIRMINGHAM} \\
\hline
\end{tabular}


NO DEPOSIT TERMS available on most goods for personal callers
 CCEITTED FROM PERSOMAL SHOPPEMS AnO FOA AMOUMFS IM EXCISS OF CFS. PLEABE ALIOW TIME FOR CLEARAMCE gamkers orafts accepted.
All prices correct at 11, inve but
Allprices correct th 11,937 but
A member of ine

VARIABLE VOLTAGE TRANSFORMERS


300 VA ISOLATING TRANSFORMER
15/230-230/230 volts. Sereened. Primary two separate \(0-115 V\) for 115 or 230 volt. Secondary two
\(115 V\) at \(150 \vee \mathrm{VA}\) each for 115 or 230 volt output. Can te used in series or parallel connections. Fully ropicalised. Length \(13,5 \mathrm{~cm}\). Width 11 cm . Height SPECIAL OFFER PR

\section*{A.C. MAINS TIMER UNIT} based on an electric clock, with which can be preset for any
period up to 12 hrs . ahead o switch on for any length of time, from 10 mins. to
6 hrs. then switeh off. An additional 60 min . audible mer is also incorporated. Lighes
 Electric Blankets, etc. Attractive Size \(135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}\).
20 p . (Total incl. VAT and Post \(\mathbf{C 2} \mathbf{2 8}\) )

\section*{PROGRAMME TIMERS}
\(30 / 240 \mathrm{~V}\) a.c. 15 r.p.m. Motors. Each cam operates c/o micro switch. Ideal for lighting effects nimated displays, etc. Ex equ
cam model. \(£ 2,00\) post 30 p
cam model. 52.00 post 30 .

MINIATURE UNISELECTOR SWITCHES 2 Bank, I I position, 24 volt D.C. operation, full wiper with an 62.50. Post 20p. As above but 63.50. Post 20 p

COIN MECHANISM (Ex London Transport)
Unit containing, selector mechanism for Ip, 2p and p coins. Micro 24 Precision built to hint hopper. \(\mathbf{2 4}\) volt V.C.UErecision built to high standible VALUE at only \(\mathbf{£ 2} \mathbf{5 0}\). Post 60 p.
\(230 / 250\) VOLT A.C. SOLENOID Approximately 16
Price \(\& 1,00\). Post \(15 p\)

\section*{24 VOLT DC SOLENOIDS}

UNIT containing I heavy duty solenoid approx. 251b pull l inchtravel. Two \(x\) approx. Ilb pull t inch travel. I heavy duty single makerelay. Price \(\mathbf{E 2} 50\). Post 60 p. ABSOLUTE BARGAIN
\(\mathbf{2 3 0 V}\) FAN ASSEMBLY
Continuously rated, removable Continuously rated, removable Post 20p

PRECISION CENTRIFUGAL BLOWER Mfg. Airflow Developments Led. Heavy Duty continuously rated, mooth running. \(230 / 240 \mathrm{~V}\) a.c moty) 15 cm Apertur
only).
\(6 \times 6 \mathrm{~cm}\). E6.50. Post 50 p .
\(230 / 240\) VOLT A.C. EXTRACTOR

\section*{FAN KIT}

Comprising of impeller, continuously ated motor, motor housing and fix ngs as illuscraced. Price \(\mathbb{E} 1 \cdot 75\). Post
25p. (Total inel. VAT and Post \(\mathbf{\text { 2 } 2 \cdot 1 6 ) ~}\)


All Mail Orders-Callers-Ample Parking
Dept. PEII,57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

\section*{STROBE! STROBE! STROBE!}

Build a Strobe Unit, using the latest eype Xenon white light flash tube. Solid state timing and triggering circuit. \(230 / 250 \mathrm{~V}\) a.c. operation
EXPERIMENTERS' ECONOMY KIT
Speed adjustable 1 to 30 flash per sec. All electronic components including Xenon Tube and instructions 66.30. Post 30p.
INDUSTRIAL KIT
Ideally suitable for schools, laboratories, et
 Approx.
HY-LYGHT STROBE MK HI
For use in large rooms, halls and utilises a silic tube, printed circuit. Speed adjustable 0-20 f.p. Joule) strobes. EI4. Post 50p
THE 'SUPER' HY-LYGHT KIT
Approx. four times the
- Variable speed from 1-13 flash per sec
- Reactor control circuit producing an intense ROBUST, FULLY VENTILATED METAL CASE. For Hy-Lyght Kitincluding reflector ©5.75 Post 25p. 60 p
7-inch POLISHED REFLECTOR
ideally suited for above Strobe kits.
Post I5p.

\section*{COLOUR WHEEL PROJECTOR
Complete with oil-
filled colour wheel.
100 watt lamp. \(200 /\)
240 V AC. Features
exrermely efficient op
tical system. \& 18.50 .
Post 50 p.
6 INCH COLOUR WHEEL
As used for Disco
lighting effects, etc. Price 44.50 , Post 30p. \\ BIG BLACK LIGHT \\ 400 Watt. Mercury vapour ultra violet lamp Powerful source of U.V. P.F ballast \&16. Post C!. Spare bulb EY. Post 40p. ft 40 watt. Price 65.50. Post 30 . Personal callers only). 2 ft 20 watt, \(£ 4.25\). Post \(25 p\). (For use in standard bi-pin. MINI
12 in 8 watt, 41.60 . Post \(15 p\). gin 6 watt EI.30. Post 15p. Complete ballast unit and holders for 9 in and 12 in tube, \(£ 1,70\)
25 p . ( 9 in and 12 in measures approx) 25 p . (9in and 12 in measures approx.) \\ U.D.I. SINGLE CHANNEL 750 WATT MANUAL/AUTO DIMMER 750W Solid State Fader, with three functions Manual fade; Auto fade-up; Auto fade-down
Automatic cycling up and down. Functions selected with 'three-position' rocker switch selected with three-position' rocker switch. blending. Ready buit module \(6^{\prime \prime} \times 3^{\prime \prime}\) glass Two or more modules for top quality colour blending and flashing effects. PRICE EIS Post 30p.}

INSULATION TESTERS NEW! Test to I.E.E. Spec. Rugged metal onstruction, suitable for bench or size L.Bin, W.4in. H. Sin, weight 6 lb ,000V, 1,000 megohms, 434, Pos 60 p. \(500 \mathrm{~V}, 500 \mathrm{meg}\) ohms, \(£ 28\), Pos 60 p .

\section*{TRIACS}

GENERALELECTRICPOWER-GLASTRIACS 0 amp. Glass passivated plastic triac. Latest device rom U.S.A. Long term reliability. Type SCI 46 E \(10 \mathrm{amp}, 500\) PIV, \&I.00, Post Sp. (Inclus
application sheet.) Suitable Diac I8p.
HIGH VISIBILITY PANEL MOUNTING LED's. 0.25 inch mounting, 0.16 inch lens. Typical parameters \(2 \mathrm{~V}, 20 \mathrm{M}\) amps all type. Supplied complete with snap in mountings and data. Red 4 for \(\mathcal{C}\), Green
3 for \(£ 1\), Yellow 3 for \(£ 1\). Post 10 . (in order) ( \(\mathcal{C l}\) ).

\section*{LED READOUTS}
series, \(L / H\) d.p. one-third high
character. 14 Pin D.I.L. Available in
RED or GREEN. Price \(£ 1.65\). Post 10 p .
4 for 16 . Post paid
All prices are subject to
\(8 \%\) VAT. ( 8 p in the E )
To ail orders add \(8 \%\) VAT to total value of goods including carriag \({ }^{\text {/ }}\) packaging.

SERVICE
TRADING CO

Superior Quality Precision Made NEW POWER RHEOSTATS New ceramic construction, vitreous duty brush assembly, continuously
\(\xrightarrow{2}\)
 50 WATT. 1/5/10/25/50/100/250/500 l.5k/ ohm \&1-60. Post 10p. 100 WATT \(1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} /\) \(3.5 k / 5 \mathrm{k}\) ohm 62.35. Post 15p.
Black Silver, Skirted knob calibrated in Nos 2p each. dia. brass bush. Ideal for above Rheostats

Col.(1)
Col. (2)
Working
d.c. volts
Col. 3

Contracts
Col. (4)
Price
HO =
Heavy duty
*Incl. Base All prices incl. P. \&
\begin{tabular}{|c|c|}
\hline \(6 \mathrm{c} / \mathrm{o}\) & \({ }^{80} \mathrm{p}\) \\
\hline \(2 \mathrm{c} / 0\) & 70p* \\
\hline 6 M & \({ }^{60}{ }^{\text {c }}\) \\
\hline 4 clo & 75p* \\
\hline \(4 \mathrm{c} / \mathrm{O}\) & \(80{ }^{\circ}\) \\
\hline 4M 2B & 60p* \\
\hline \(4 \mathrm{c} / \mathrm{O}\) & \(80{ }^{\text {P* }}\) \\
\hline \(6 \mathrm{c} / 0\) & 50p* \\
\hline \(2 \mathrm{c} / 0 \mathrm{HD}\) & 60p* \\
\hline 6 M & 60 p \\
\hline \(2 \mathrm{c} / \mathrm{o}\) & \(60{ }^{*}\) \\
\hline 6 M & 60 p * \\
\hline
\end{tabular}

VOLT D.C. I make contacts 35p. Post 10p.
VOLT .C. 2 make contacts 75p. Post 10p.
VOLT D.C. RELAY
3 c/o 5 amp contacts. 70 ohm coil. 75p. Post \(10 p\)
12 VOLT D.C. RELAY
\(3 \mathrm{c} / 05 \mathrm{amp}\) contacts. 120 ohm coil. 75p. Post 10 p
VOLT D.C, 3 c/o \(75 p\). Post 10p
DIAMOND 'H' Heavy Duty, at 250 V a.c.
\(230 / 240 \mathrm{~V}\) a.c. \(2 \mathrm{c} / \mathrm{o}, 25 \mathrm{amp}\) RES. at 250
CLARE-ELLIOTT TYPE RP7641 G8
Miniature relay. 675 ohm coil. 24 Volt D.C. 2 c/o
0p post paid.
100 VOLT A.C. \(2 \mathrm{c} / 0\) sealed type, octal base
24 VOLT A.C. \(3 \mathrm{c} / 0.75 \mathrm{p}\). Post 10 p .
24 VOLT A.C. Mrg. by ITT. 2 h.d. c/o contacts.
55p. Post 10p.
240 VOLT A.C. RELAY. Mfg. by ITt. 240 V A.C. 10 amp h.d. c/o contacts. Octal plug in base. Price 5p. Post 10 p.

Polt A.C. RELAY
c. 5 . Pamp contacts. Sealed. Incl. Il-pin base

HEAVYDUTYA,C,SEALED RELAYS
IoV. \(2 \mathrm{c} / \mathrm{o} .20 \mathrm{amp}\) contacts. \(\mathrm{fl} \cdot 25\). Post 10 p .
DRY REED RELAYS
Mfg. by ERG, 12 volt d.c. encapsulated.
ingle c/o 65p, post paid. Two c/o 85p, post paid TC 280 ohm coil \(6 / 12 \mathrm{~V}\) d.c. 3 make metal shrouded 60p post paid.
"HONEYWELL" PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY each bank comprises a c/o rated at
10 amps 240 V . A.C. Blagk knob 1 in Fixing hole s in. ONE bank 30p; TWO bank 40p; THR
50p. Quote for quantity.

VERY SPECIAL OFFER
MINIATURE ROLLER MICRO SWITCH. 5
ONNELLA
10p. (Min. order 10)
\(330 / 240\) VOLT A.C. MINIATURE MOTCR 20 r.p.m. Price \(f 1\). Post 100

FOOT SWITCH
 etc., esc. 5 amp .
Price 75 p . Post 15 p


600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. Will control up to 600 W of lighting except fluorescent at mains voltage. C2.75. Post \(25 p\).

INSULATED TERMINALS Available in black, red, white,
yellow, blue and green. New. \(12 p\) each inct. P. \& P. Minimum order 6


METER
round. Available in D.C. Amps 1. 5, 10
15,20 or A.C. Amps I, 5,10 , is, 20 ,
Voltmeter \(0-300 \mathrm{~V}\) A.C. All types 62 .
Pose 15p.

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

NEW PE
SCORPIO
Mk. 2


Following the phenomenally successful Scorpio Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce avaitability of all parts for the PE SCORPIO Mk. 2-
* Now with added R.F.I. suppression.
* Fully machined and painted die-cast case with AMP termination connector block
* Custom wound transformer.
* NOW AVAILABLE IN 6 V . and 12 V
- Suitable for all types of Cars, Boats, Go-Karts, etc.
* Promotes amier starting-even under sub-zero conditions.
* Improves accaleration, gives better high speed performance and quicker engine warm up.
* Eliminates excessive contact breaker burning and pitting
- PROMOTES FUEL ECONOMY.

Construction of the unit can easily be completed in an eveninginstallation should take about half an hour. A complete complement of components is supplied with each kit together with ready drilled, roller tinned professional quality fibreglass printed circuit board. -Uses original plugs, points and coil.-No special parts or extras required.

Case size: \(7 \operatorname{tin} \times 4 \operatorname{tin} \times 2 i n\)
* All components available separately.-S.A.E. with enquiries.
* Construction manual available separately \(\mathbf{2 5 p}\).

Cost \(£ 11.78\) incl. carr. and ins. or ready built and tested E 14 - 19
Conversion kit from Mk. I to Mk. 2. For constructors already possessing Mk. I Kits.-Miniature P.C. assembly fl incl. carr. and ins. With full conversion instructions.
PLEASE ADD VAT TO ALL U.K. ORDERS
(Carriage at cost outside U.K. - Export enquiries welcome.)

\section*{DABAR ELECTRONIC PRODUCTS}

98 LICHFIELD STREET maver wan WALSALL, Stafis WSI IUZ

\section*{FERRANTI}
* ALL DEVICES BRAND NEW, TOP GRADE AND TO FULL MANUFACTURERS S'PECIFICATION. We do not sell seconds or rejects.
\(\star\) WE HAVE STOCKS IMMEDIATE DELIVERY. ORDER. Send S.A.E. for quotation.
WE ARE SPECIALISTS IN FERRANTI SEMICON. * WEARES WITH A STAFF OF EXPERIENCED ENGINEERAS.


BFS59
BFS60
BFS60
BFS61
BFS96
BFS97
BFS97
BFS98
BTX
ZTO
ZTX108
ZTX109
ZTX 109
ZTX212
\(\mathrm{ZTX} \times 212\)
\(\mathrm{ZT} \times 213\)
\(2 T \times 214\)
\(Z T \times 219\)
ZTX239
ZTX
Z
ZTX300
ZTX
ZTX
ZTX302
ZTX303
\(\begin{array}{lll}\mathrm{ZT} \times 303 & \text { 18p } & \text { ZTX502 23p } \\ \text { Z }\end{array}\)
ZN4|4 £ 1.32 WITh circuits and data
MOTOROLA MJE2955 \&1.30, MJE 3055 75p.
RCA PRICES SLASHED! CA 3090 stereo decoder, £3.25.
SEMICONDUCTOR KITS FOR GEMINI AMPLIFIER AND PW DERBY HEADPHONE AMPLIFIER AVAILABLE. Send S.A.E. for details
5 P Our comprehensive catalogue giving data and connection diagrams for a wide range of Ferranti semiconductors just send an S.A.E. Copy sent with every order.
POSTAGE \& PACKING IOp. FREE ON ORDERS OVER \(£ 3\) ALL OUR PRICES INCLUDE V.A.T.

\section*{DAVIAN ELECTRONICS}
P.O. BOX 38, OLDHAM, LANCS. OL2 6XJ

\section*{GET IT WHILE IT'S GOING}

This is the first ever Wireless World Annual. It's got \(140^{\circ}\) pages of features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include : A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual) ; Constructional Design for a Small Boat Echo Sounder by John French ; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
\(\mathbf{£ 1}\) from newsagents or \(£ 1.35\) inclusive by post from the publishers.

\section*{Wireless World Annual 1975}

To: General Sales Department, Room 11, Dorset House,
Stamford Street, London SE1 9LU.
Please send me copy/copies of Wireless World Annual 1975 at \(£ 1.35\) each inclusive. I enclose remittance value \(£\) (cheques payable to IPC Business Press Ltd).
Name (please print)
Address

Company registered in England No. 677128
Regd, office : Dorset House. Stamford Street. London SE1 9LU

\section*{wireless world annual 1975}


COMMUNICATIONS • ELECTRONICS


G. F. MILWARD, 369 Alum Rock Road, Birmingham B8 3DR.

\section*{12 VOLT FLUORESCENT LIGHTING}



NEW IMPROVED CIRCUIT!

Drives 21in 13 W 18in 15W or adaptable for
\(2 \times 12\) in \(8 W\)



Tel. 021-327 2339

\section*{YATES ELECTRONICS (FLITWICK) LTD. DEPT. PE, ELSTOW STORAGE DEPOT}

Catalogue sent free on request, 10 D stamp appreciated.

\author{
PLEASE ADD 8\% VAT
}

\section*{RESISTORS}
\(\frac{1}{3} W\) and \(\ddagger W\) PIHER.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{ower} & Values & \multicolumn{2}{|c|}{Price} \\
\hline watts & Tolerance & Range & available & 1-99 & \(100+\) \\
\hline \(\frac{1}{2}\) & 5\% & \(4 \cdot 7 \Omega-2 \cdot 2 M \Omega\) & E24 & \(1 \cdot 3 p\) & \(1 \cdot 1 p\) \\
\hline \(\frac{1}{2}\) & 10\% & \(3 \cdot 3 \mathrm{Mn}-10 \mathrm{M} \Omega\) & E12 & \(1 \cdot 3 \mathrm{p}\) & 1.1p \\
\hline \(\frac{1}{3}\) & 2\% & \(10 \Omega-1 M \Omega\) & E24 & \(3.5 p\) & 3p \\
\hline t & 10\% & \(1 \Omega-3.9 \Omega\) & E12 & 1.3 p & \(1.1 p\) \\
\hline t & 5\% & \(4 \cdot 7 \Omega-1 \mathrm{M} \Omega\) & E12 & \(1 \cdot 3 \mathrm{p}\) & 1.1p \\
\hline 4 & 10\% & \(10-10 n\) & E12 & 8 p & 7p \\
\hline
\end{tabular}

\section*{DEVELOPMENT PACK}
0.5 watt \(5 \%\) Piher resistors 5 off each value \(4.7 \Omega\) to \(1 M \Omega\)

\section*{POTENTIOMETERS}

Carbon track \(5 k \Omega\) to \(2 M \Omega\), log or linear (log 1 W. lin \(\frac{1}{2} W\) ).

\section*{SKELETON PRESET POTENTIOMETERS}

Linear: \(100,250,500\) a and decades to 5 M \(\Omega\). Horizontal or vertical P.C.mounting Sub-miniature 0.1 W . 6 p each. Miniature 0.25 W . 7 p each
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{TRANSISTORS} \\
\hline AC107 & 16p & BC109 & 14p & BD115 & 75p & BF337 & 46p & ZTX300 & 18p \\
\hline AC126 & 18p & BCII 5 & \(16 p\) & BD116 & 60p & BFYSO & 22p & ZT×302 & 20p \\
\hline AC127 & 18p & BCll & 15 p & BD1 24 & \(81 p\) & BFY51 & 220 & ZTX341 & 18p \\
\hline AC128 & 18p & \(\mathrm{BCl17}\) & 23 p & BD131 & 60p & BFYS2 & 22p & ZT \(\times 500\) & 18p \\
\hline ACl41K & 22p & BC125 & 15p & BO132 & 64p & BRY39 & 41 p & ZT×503 & 25p \\
\hline ACl42 & 25p & BCI42 & 24p & BDI 40 & 66p & MJE340 & 47p & 2N2646 & 60p \\
\hline AC165 & 20p & BCl43 & \(21 p\) & BOY32 & 57p & MJE370 & 68p & 2N2904 & 28p \\
\hline AC176 & 18p & BC147 & 12 p & BF 115 & 32p & OC26 & 90p & 2 N 2905 & 32p \\
\hline AC187 & 22p & BC148 & 12 p & BF158 & 22p & OC28 & 90p & 2N2926 & 12p \\
\hline ACIB8 & 22p & BC149 & 12 p & BFI59 & 22p & OC35 & 90p & \(2 N 3053\) & 31 p \\
\hline ACl93K & 28p & BC153 & 18p & BF160 & 23 p & \(\bigcirc \mathrm{OC42}\) & 16p & 2 N3054 & 60p \\
\hline ADI40 & 53p & BC154 & 18p & BF161 & 26p & OC44 & 12 p & 2N3055 & 60p \\
\hline ADI43 & 73p & BC157 & \(15 p\) & BF164 & 22p & OC45 & 12 p & 2 N 3702 & 15p \\
\hline AD149 & 70p & BC158 & 15p & BF173 & 28p & OC70 & 12p & 2N3703 & 14p \\
\hline AD161 & 42p & BC159 & 14 p & BF177 & 29p & OC71 & 12 p & 2N3704 & 20p \\
\hline ADi62 & 42p & BC169 & 15 p & BF178 & 43p & OC72 & 12 p & \(2 N 3705\) & 20p \\
\hline AFl14 & 25p & BC171 & 13 p & BFI79 & \(41 p\) & 0 O 75 & 12p & 2N3706 & 19p \\
\hline AFI 15 & 25p & BCI72 & 22p & BFI80 & 42p & OC81 & 12p & 2N3707 & 20p \\
\hline AFI 16 & 25p & BCI77 & 20p & BFIB1 & 32p & OC82 & 12 p & 2N3708 & 20p \\
\hline AF117 & 25p & BC182 & 15p & BFI82 & \(41 p\) & OCP71 & 35p & 2N3709 & 19p \\
\hline AFII8 & 50p & BC182L & 16p & BFI83 & 43p & ORP12 & 65p & 2N3710 & 19p \\
\hline AF121 & 50p & BC183 & 15p & BFI84 & 32p & TIP29A & 49p & \(2 N 3711\) & 19p \\
\hline AF126 & 50p & BC183L & 16p & BF185 & 32 p & TIP30A & 58p & 2N3819 & 32p \\
\hline AF127 & 50p & BC184 & 18p & BF194 & 14p & TIP31A & 62p & \(2 N 4062\) & 25p \\
\hline AF139 & 53 p & BC186 & 25p & BF195 & 170 & TIP32A & 74 p & 40360 & 46p \\
\hline AF178 & 48p & BC187 & 25p & BFI96 & \(15 p\) & TIP33A & 98p & 40361 & 43p \\
\hline AF180 & 50p & BC212 & 13p & BFI97 & 16p & TIP34A & 148p & 40362 & 45p \\
\hline AF| 86 & 390' & BC212L & \(15 p\) & BF200 & 40p & TIP41A & 79p & 40363 & 88p \\
\hline AF239 & 48p & BC214L & 19p & BF259 & 25p & TIP42A & \(90 p\) & 40406 & 44p \\
\hline BC107 & 13 p & BCY70 & \(21 p\) & BF262 & 26p & T1P43 & 35p & 40486 & 90 p \\
\hline BClog & 13 p & BDII2 & 52p & BF263 & 26p & ZTX108 & 18p & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
ZENER DIODES \\
\(400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}\) to \(30 \mathrm{~V}, 12 \mathrm{p}\).
\end{tabular}} & & \multicolumn{5}{|l|}{WIRE WOUNOPOTS. \(3 \mathrm{~W}, 10,25\), \(50 \Omega\) and decades to \(100 \mathrm{k} \Omega\). 50 p .} \\
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
DIODES \\
RECTIFIER
\end{tabular}} \\
\hline BY127 & & 1250 V & & 1 A & \(12 p\) & & & & 7p \\
\hline IN400| & & 50 V & & 1 A & 7 P & & & 90 & 5p \\
\hline IN 4002 & & 100 V & & 1 A & 8p & & & & 5p \\
\hline IN4004 & & 400V & & 1 IA & 8p & & & 202 & 7p \\
\hline IN4006 & & 800 V & & IA & 10p & & & 148 & 5p \\
\hline IN4007 & & 1000 V & & IA & 10p & & & 14 & 8 p \\
\hline
\end{tabular}

\section*{MULLARD POLYESTER CAPACITORS C2BO SERIES}

250 V P.C. mounting: \(0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}\). 3ip \(: 0068 \mu \mathrm{~F}, 4 \mathrm{P}\); \(0.1 \mu \mathrm{~F}, 4 \frac{1}{2} \mathrm{p} ; 0.15 \mu \mathrm{~F}, 5 \mathrm{p} ; 0.22 \mu \mathrm{~F} .51 \mathrm{p} ; 0.33 \mu \mathrm{~F} .7 \mathrm{p} ; 0.47 \mu \mathrm{~F}, 9 \mathrm{p} ; 0.68 \mu \mathrm{~F}, 12 \mathrm{p}\); 1.0 FF, \(14 \frac{1}{3}\) p; \(1.5 \mu \mathrm{~F}\), \(22 \mathrm{p} ; 22 \mu \mathrm{~F}, 26 \mathrm{p}\).

\section*{MYLAR FILM CAPACITORS TOOV CERAMICDISC 3p. \(0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 6 \mathrm{p}\). \\ CAPACITORS \\ 100pF to 10,000 pF, 2p each}

\section*{ELECTROLYTIC CAPACITORS}
( \(\mu\) F/V) \(1 / 63,1 \cdot 5 / 63,2 \cdot 2 / 63,3 \cdot 3 / 63,4 \cdot 7 / 63,6 \cdot 8 / 40,6 \cdot 8 / 63,10 / 25,10 / 63,15 / 16,15 / 40\) 15/63, \(22 / 10,22 / 25,22 / 63,33 / 6,3,33 / 16,33 / 40,47 / 4,47 / 10,47 / 25,47 / 40,68 / 6 \cdot 3\), \(68 / 16,100 / 4\). \(100 / 10,100 / 25,150 / 6 \cdot 3,150 / 16,220 / 4,220 / 6 \cdot 3,220 / 16,330 / 4,6 \mathrm{p} .47 / 63\) \(100 / 40,150 / 25,220 / 25,330 / 10,470 / 53,7\) p. \(68 / 63,150 / 40,220 / 40,330 / 16,1000 / 4\), \(10 \mathrm{p} \cdot 470 / 10,680 / 6 \cdot 31 \mathrm{p} \cdot 1 / 20,100 / 16\), \(1500 / 10,2200 / 6 \cdot 3\), 18p. 330/63, \(680 / 40\), \(1000 / 25\), \(1500 / 16,2200 / 10,3300 / 6 \cdot 3,4700 / 4\), \(21 \rho\).



\section*{PRINTED BOARD MARKER}

97p
Oraw the planned circuit onto a copper laminate board with the P.C. Pen. allow to
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{BRUSHED ALUMINIUM} \\
\hline \multicolumn{4}{|l|}{PANELS} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
12 \mathrm{in} \times 6 \mathrm{in}, 37 \mathrm{p}
\]}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Sin \(\times 2 i n, 12 p\)} \\
\hline \multicolumn{4}{|l|}{THYRISTORS} \\
\hline 2N5060 & 50 V 0 & 0.8A & \(65 p\) \\
\hline 2N5064 & 200 V & 0 OA & 80p \\
\hline 106F & 50 V & 5A & 55p \\
\hline 1060 & 200V & 5 A & 80p \\
\hline
\end{tabular}

SLIDER POTENTIOMETERS
\(86 \mathrm{~mm} \times 9 \mathrm{~mm} \times 16 \mathrm{~mm}\). length of track 59 mm .
SINGLE \(10 \mathrm{~K}, \mathbf{2 5 K}, 100 \mathrm{~K}\) log. or lin. 50p.
DUAL GANG, \(10 K+10 K\) etc. log. or lin. \(60 p\) KNOB FOR ABOVE, 12p.
FRONT PANEL, 90p.
IB Gauge panel Min \(x 4\) in with slots cut for use with
slider pots. Grey or matt black finish complete with fixings for 4 pots.
HEATSINKS-REDPOINT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2 W & 24p & \(4 W\) & 45p & TO5 & Clip & 5p & TOI & Single \\
\hline 3 w & 36p & 6 W & 60p & TOIB & Clip & Sp & TOI & Double \\
\hline
\end{tabular}

TRANSFORMERS All have 240 V primary

\section*{MT30/2
MT50/t}

MT50/
MT50/1
MT50/2
MTSO/2
MT60/1
MT60/2
\[
\begin{aligned}
& \text { A have } 240 \mathrm{~V} \text { pri } \\
& 0-12-15-20-24-30 \mathrm{~V} \\
& 0-19-25-33-40-50 \mathrm{~V} \\
& 0-19-25-33-40-50 \mathrm{~V} \\
& 0-19-25-33-40-50 \mathrm{~V} \\
& 0-24-30-40-48-60 \mathrm{~V} \\
& 0-24-30-40-48-60 \mathrm{~V} \\
& 0-24-30-40-48-60 \mathrm{~V}
\end{aligned}
\]

\section*{先}
\(2 A\)
1
1
\(1 A\)
\(2 A\)
1
1
1
\(2 A\)
\(2 A\)
dry, and.
relief.
\(\qquad\)
METERS \(\quad 2^{*}\) Scale- \(500 \mu \mathrm{~A}, 1 \mathrm{~mA} .10 \mathrm{~mA}, 100 \mathrm{~mA} \quad\) £3.30


\section*{TRANSFORMERS}

\section*{SAFETY MAINS ISOLATING TRANSFORMERS} Prim．120／240V，Sec 120／240V Centre Tapped and Screened ALSO AVAILABLE WITH H5／120V SEC．WINDING Ref．
No．
07
149
150
151
152
153
154
155
156
188

Aef．
No．
113
64
4
66
67
84
93
95
73
VA
（Wotts）
20
60
100
200
250
350
500
750
1000
2000

\(7.0 \times 6.0 \times 6.0\)
\(9.9 \times 7.7 \times 8.6\)
\(9.9 \times 8.9 \times 8.6\)
\(12.1 \times 9.3 \times 10.2\)
\(12.1 \times 11.8 \times 10.2\)
\(14.0 \times 10.8 \times 11.8\)
\(14.0 \times 13.4 \times 11.8\)
\(17.2 \times 14.0 \times 14.0\)
\(17.2 \times 16.6 \times 14.0\)
\(21.6 \times 15.3 \times 18.1\)



\section*{SPECIAL OFFER！} SINCLAIR PRODUCTS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{SYSTEM 2000 AMPLIFIER \(£ 35 \cdot 00\) SYSTEM 4000 AMPLIFIER £43．00} & TUNER £35．00 TUNER \(\mathbf{E 3 5} .00\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & PZ8 \({ }^{\text {．U．}}\)［7－35 \\
\hline \multicolumn{3}{|l|}{Calculators} \\
\hline SINCLAIR CAMBRIDGE & E17．00 & \\
\hline SINCLAIR SCIENTIFIC & £24．95 & \\
\hline SINCLAIR EXECUTIVE & 224.95
\(\mathbf{2 8 . 7 5}\) & Buy it with \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 7400－5 & 0.20 & 7437 & 0.36 & 7476 & 0.42 & 72702 & 0.45 & IN4001 & 0.06 \\
\hline －7406－7 & 0.46 & 7438 & \(0 \cdot 36\) & 7482 & 0.89 & 72709 & 0.31 & IN4002 & 0.06 \\
\hline 7408－9 & 0.20 & 17440 & 0.20 & 7483 & 1.25 & 72710 & 0.37 & IN4003 & 0.07 \\
\hline 7410 & － 0.20 & 7442 & 0.86 & 7485 & 1.65 & 72723 & 0.80 & IN4006 & 0.09 \\
\hline 7412 & 0.26 & 7445 & 1.60 & 7486 & 0.46 & 72741 & 0.30 & IN4007 & 0.12 \\
\hline 7413 & \(0 \cdot 38\) & 7447 & 1.30 & 7489 & 4.95 & 72747 & 1.00 & ｜N4148 & 0.05 \\
\hline 7416 & 0.44 & 7450 & 0.20 & 7490 & 0.66 & 72748 & 0.35 & OA47 & 0.07 \\
\hline 7417 & 0.30 & 7451 & 0.20 & 7491 & 1.10 & ZN414 & 1.25 & OA90 & 0.06 \\
\hline 7420 & 0.20 & \({ }_{7453}\) & 0.20 & 7492 & 0.70 & TAA350 & 2.10 & OA91 & 0.06 \\
\hline 7422 & 0.28 & 7454 & 0.20 & 7493 & 0.86 & LM30ヶ日 & 0.75 & OA200 & 0.06 \\
\hline 7425 & 0.38 & 7460 & 0.20 & 7494 & 0.90 & CA3046 & 0.70 & OA202 & 0.09 \\
\hline 7427 & 0.45 & 7470 & 0.34 & 7495 & 0.12 & CA3036 & 1.00 & INS 16 & 0.06 \\
\hline 7428 & 0.45 & 7472 & 0.34 & 7496 & 0.99 & CA 3028 & 1．20 & B8105 & 0.45 \\
\hline 7430 & 0.20 & 7473 & 0.45 & 74100 & 2.20 & CA30900 & 4.50 & 1 S 44 & 0.05 \\
\hline 7432 & 0.45 & 7474 & 0.42 & 74141 & 0.99 & NE555 & 0.85 ， & TIL209 & 0.27 \\
\hline 7433 & 0.45 & 7475 & 0.50 & 74192 & 2.12 & TAA661日 & 1.40 i & OAB1 & 0.07 \\
\hline
\end{tabular}

ALL HONDA GENERATORS AND ENGINES SUPPLIED SEND FOR DETAILS－FREE DELIVERY IN U．K．

VAT Inciusive！Post free over £3！
FOWEL ELECTRONIC COMPONENTS 49－51 ST．MARY＇S ROAD，OATLANDS VILLAGE，WEYBRIDGE，SURREY KT139PX MAIL ORDER ONLY


\section*{OUTSTANDING OFFER!}

For one month only* we are offering to PE readers the opportunity to own a superb British-made calculator by Advance Electronics.


Advance 88 - a fully user-orientated hand-held machine with 2 independent memories, \(\%, \sqrt{ }, 16\) digits. Algebraic logic.

Advance \(161 R_{-}\)a first-class desktop machine with full 16 digits, \(\%, \checkmark\), independent memory and full algebraic logic (enter the problem as you would write it).

All other Advance machines available. Also full program service.
* Offer ends November 30.

We also stock calculators by Mortek, T.I., National, etc.
New 6 digit frequency counter kits from \(£ 45\) !

\section*{P.E. Rondo}

Complete kit with 4 speakers, u/c decoder, FM tuner and turntable. Value approx. \(£ 209+£ 16 \cdot 72\) VAT.
Fully built Rondo, complete as above. Value £266 \(+£ 21\) VAT. Delivery on complete systems may be \(6 / 8\) weeks \({ }^{\text {'.. }}\) )m date of order.
Set of 4 speakers fully to specification with pre-built cabinetsvery professional finish. Very comprehensive kits.
We supply all Rondo parts and modules.
Quadraphonic headphones-a new experience!
Stereo Headphones—padded with volume controls.
ALL ITEMS ARE POST FREE.
We are appointed distributors for Uher quality tape recorders and Videosonic Dolby processors.
Have you had our book list?


Tekephone: Hantow (std0279)25457
88-complete set with desk stand, charger, rechargeable batteries and case. List price \(£ 115+\) VAT.
Offer price only
\(£ 89\)
\(+\mathbf{x} 7.12\) VAT
161R-List price £130+ VAT.
Offer price only
\(\mathbf{1} 100\)
\(+£ 8\) VAT
£195 + £15.60 VAT
\(\mathbf{£ 2 4 5}+\boldsymbol{£ 1 9 . 6 0}\) VAT
\(£ 62+£ 4.96\) VAT
\(£ 18.50+£ 1.48\) VAT
\(\mathbf{£ 4 . 8 0}+\mathbf{3 8 p}\) VAT

NAME

ADDRESS.

\title{
Pructical Electronics Classified Advertisements
}

RATES: 11 p per word (minimum 12 words). Box No. 30 p extra. Semi-Display \(£ 8.50\) per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

\section*{SERVICE SHEETS}

SERVICE SHEETS, TRadio, TV, etc. 8.090 models. (atalogue 20p. S.A.K. entuiries. TELRAY, 11 Mandhad Bank, Preston.

SERVICE 8HEET8 for over 6000 models of Televisions, Radios, Transisturs, Stereo, Tape Televisions, Radios, Transistors, Stereo, Tape
Recorders, Record Players, ete., at only 30p, Recorders, Rerord Players, ete., at only \(30 p\),
plus S.A.E. with free Fault-Finding Guide plus S.A.E. with free Fault-Finding Guide. Over 50,000 sheets in stock for 10,000 models.
S.A. K. emuinies. ('atalogue 20p plus S.A.H. S.A.K. embiries. Catalogue \(20 p\) plus S.A.E
HAMLLTOS RADIO, 47 Bohemia Road, St Leonards, Nussex. Telephone Hastings 429068 .

\section*{WANTED}
```

TOP PRICES PAID
NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street
Bradford 8, Yorks.

```

WANTED-P.E. COPIE8. Jan. to Junf 'is, 60p per copy offered plus postage. LI'MLEY Léman, o12こ0, Divonne, Franer.

\section*{FOR SALE}

8EEN MY CAT? 5,000 items. Mechanical and Electrical Gear, and materials. S.A.E. K. K. Whiston, Dept. PE, New Mills, Stockport.

VALVES, VALVES AND MORE VALVE8. Latgenterks 19:30-1994, many ohsoldte. Also available many typers of transistors and styli. price lists availathe 15p. (o)X RADOO, The Parade. Gast Wittering, sussex. West Wittering 202:3.

SUPERB INSTRUMENT CASE8 by Bizelli, manufactured from hemy duty jve faced sterl, rhoice of 212 types, send for free list. BAZNLLJ 1NSTRUMEST (ASLE, bept. Q3, st. Wilfrids, Foundry lame. Halton, Lad GldT, Xi. Lancaster.

THE P.E. SOUND 8YNTHE8I8ER. Completely and professionally huilt in perfect condition offers please (Ali letters answered) to: S . H WkatiklL, 39 Accrington Road, Whalley, Mr. Blatkburn, Lan's. Tel. Whalley 3769.

\section*{BOOKS AND PUBLICATIONS}

UFO CHART8: Wave Prediction, 49p; Daily Flight Pattern, 44p; Map, 44p TV IFO Detec tion, 2 Optical (ircuits, 55 p . Propulsion Theory, \(\mathbf{5 5 p}\); "Anti-gravity", 55pi Detection Gircuits: Transistor Optical, 66p; Radiation/ Optical, 40pi Nicrodetector (memory, LSI Anto-record), 75 p ; Radiation (ounter/Timer, 85p. \(R \mathbb{d}\) E, Highlands, Needham, Sufolk.

\section*{LADDERS}

LADDER8. "Sperial Offer" Invarnished LADDER8. 9 ft rin closed to 23 ft lin extended, triples. 9 ft in closed to 23 ft im extended, £18.52, delivered. Tel. Telford 586644 , order,
and pay cash on delivery:

\section*{RECEIVERS AND COMPONENTS}

\section*{PREGISION POL YMRBONATE GAPAGITORO}

ALL HIGH STABILITY-EXTREMELY LOW LEAKAGE

TAMTALUM BEAD CAPACITORS-Valuen available \(0 \cdot 1.0 \cdot 22,0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}\) at \(15 \mathrm{~V} / 25 \mathrm{~V}\) or 35 V
\(10 \cdot 0 \mu \mathrm{~F}\) at \(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} ; 22 \cdot 0 \mu \mathrm{~F}\) at \(6 \mathrm{~V} / 10 \mathrm{~V}\) or 16 V \(10.0 \mu \mathrm{~F}\) at \(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}\) at \(6 \mathrm{~V} / 10 \mathrm{~V}\) or 16 V
\(33.0 \mu \mathrm{~F}\) at 6 V or \(10 \mathrm{~V} ; 47 \cdot 0 \mu \mathrm{~F}\) at 3 V or \(6 \mathrm{~V} ; 100.0 \mu \mathrm{~F}\) at 3 V \(33 \cdot 0 \mu \mathrm{~F}\) at 6 V or \(10 \mathrm{~V} ; 47 \cdot 0 \mu \mathrm{~F}\) at 3 V or 6 f
ALL at 10 p each. 10 for \(95 \mathrm{p}, 50\) for ef .
TRANSISTORS: \(\mid\) BC183/183L 11p| BFY 0 20p
 \begin{tabular}{ll|ll|ll}
\(3 \mathrm{BC114}\) & 12 p & \(\mathrm{BC} 212 / 212 \mathrm{~L}\) & 14 p & BFY52 & 80 p \\
\(\mathrm{BC} 147 / 8 / 9\) & 10 p & BC547/558A & 12 p & AF178 & 80 p
\end{tabular} \begin{tabular}{ll|ll|ll} 
BC147/8/9 & 10 p & BC547/558A & 12 p & AF178 & 80D \\
BC163/7/8 & 12 p & BF194 & 12 p & OC7I & 18 p
\end{tabular} BC182/182L 11p BF197 18p \(12 \mathrm{~N} 30 \overline{\mathrm{~L}}\) 50 POPULAR DIODES-1N914 8p, 8 for 45p, 18 for 90 p ;
IN916 \(8 \mathrm{p}, 6\) for \(45 \mathrm{p}, 14\) for 90 p ; \(1544 \mathrm{Bp}, 11\) for 50 p .24 for 1N9168p, 6 for \(46 p, 14\) for \(80 p ; 18445 p, 11\) for \(50 \mathrm{p}, 24\) for 6p; IN4003 61p; IN4004 7p; IN4005 71 D ; IN4006 8p 8p, IN4003
1N 40078 lp .
LOW PRICE ZENER DIODES -400 mW , Tol. \(\frac{1}{5} \%\) at \(6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}\) \(13.6 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}\), ALL at 7p each, 6 for \(30 p 14\) for 84 p . SPECIAL OFFER: 100 Zeners for e5. 50 .
RESISTORB-High atability, low noise carbon flim \(5 \%\) fW at \(40^{\circ} \mathrm{C}\), \(1 W\) at \(70^{\circ} \mathrm{C}\). E12 series only-from \(2-2 \Omega\) to \(2 \cdot 2 \mathrm{Ma}\). ALL at \(1 \mathrm{peach}, 8 \mathrm{p}\) for 10 of any one value, 70 p tor 100 of any one value. SPEtine 2.20 to \(2 \cdot 2 \mathrm{Mn}\) ( 730 resistors) 25 .
Value \(2 \cdot 2\) n to \(2 \cdot 2 \mathrm{Mn}\) ( 730 resiators) 25
wire ended D027: 100 P.I.V. 7 p ( 4 for 260); 400 P.I.V. 8 p (4 1or \(80 p\) ); 800 P.I.V. 11 p (4 for 48 p )
BRIDGE RECTIFIERS-21 amp: \(200 \mathrm{~V} 40 \mathrm{D} ; 350 \mathrm{~V} 45 \mathrm{p}\)
SU0V 55 p . . ALL at 5p each: \(50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 2.5 M\) 5M. \(1 \mathrm{k} \Omega, 2 \cdot 2 \mathrm{k} \Omega, 4 \cdot 7 \mathrm{k} \Omega, 6 \cdot 8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega\) \(47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 200 \Omega, 680 \mathrm{k} \Omega\). 1 Mn

ND PACKING ON ALL ORDERS BELOW \&5. ALL EXPORT ORDERS ADD COBT OF GEA/AIRMAIL.

PLEASE ADD 8\% V.A.T. TO ORDERS
Send S.A.E. for lista of additional exortock items.
Wholesale price liste available to bona fide companles

> MARCOTRADINC
> Dept. E.11, The Old School, Edataton,
> Tel.: Whixall 464 (BTD 094872 )
> (Proprs.: Minicost Trading Ltd.)
UNIT WITM 25V D.C. MOTOA, 2 relays, 2 motorised
\(\begin{aligned} & \text { Witches, msse of geare, stc., E2.5 c.p. NEONS, } \\ & \text { ANK OF FIVE, with 5-C407 driver tranaistors. } 200\end{aligned}\)
c.p. W.C. WETERB. 3 assorted \(2-3 i n ., ~ c 1-30(30 p)\).
5 FIGURE RESETTABLE COUNTER. 18/22V, WOFKE
on 12V, E2.25 (25p). D.I.L. IC. ON PANELS. 10 for
H0p (TOp). COPPEA CLAD PAX. PANELS. \(54 \times 54 \mathrm{~m}\).
6 for \(50 p ; 8 \times 9\) in., 3 tor \(50 p ; 11+\times 91 \mathrm{n} .3\) for \(\mathrm{E} 1 ; 12 \frac{1}{} \times\)
12.n.. 2 lorci. All post paid. smali, UNIT with 4spysi
THAEE TRANBISTOR AUDIOIAMP. Tranaistors equlv.
to AC128, OC72, 10 p (10p): 3 for E1 c.p. 22-WAY sTEP.
PING SWITCH WITM REsET. A.c. maina oporated, E1
(25p). VALUPAKS. P8, 100 a/mica capa, 55p. P11, 100
polyatyrane caps, 75p, P16, 3 emall panels with 3 uht
ranslatore on esch, 30p. Post 12p. Any number of
\(\begin{aligned} & \text { paks. Send } 10 \mathrm{p} \text { stemps for list of Valupaks. Computer } \\ & \text { Panals. Atc. Refund on purchase. }\end{aligned}\)
\(\begin{array}{ll}\text { T1b ASSORTED COMPONENTS } & \text { E1.75 c.p. } \\ \text { It } \\ \text { It } \\ \text { COMPUTEA PANELS }\end{array}\)
J.W.B. RADIO

2 Bernfleld Crescent, Sale, Cheshlfe M33 iNL. Postage in brackets. Mall order only.

\section*{DRY REED INSERTS}

Overall length \(1-85^{\circ}\) (Body length \(1.1^{\circ}\) ). Diameter \(0.14 *\) Max. ratings 250 V D.C. and 500 mA . Gold clad normatly open contacts. 69p per dozen; \(\mathbf{E 4} \cdot 12\) per 100 ; \(\mathbf{6 3 0}-25\)
per 10,000 . VAT and post paid.
40/48 Portland Road. Worthing, sussez 000384897

\section*{R.T. SERVICES \\ (MAIL ORDER ONLY)} 77 Hayfield Rd., Salford 6, Lancs. Veroboard \(7^{\prime \prime} \times 5^{\prime \prime}\) app. \(0 \cdot 1\) Matrix, 2 for \(\mathrm{E} 1 \cdot 10\) P.P. \(12 \times 3{ }^{3} 0.15\) Matrix, 75 p each. 12 Volt I Amp Trickle Charger. \&l. 85 P.P. FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, \(2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}\) in with circuit, El.37 \(\frac{1}{2}\) inc. P.P.
Crouzet Geared Motors, 30 r.p.m. New, El. 54 inc. P.P.
UHF TV Tuners, Transistorised, \(£ 1.65\) inc. P.P.
inc. P.P.
Panels with I.C's on \(7 \frac{1}{2} p\) per I.C. min Panels with
order 10 I.C's.
order 10 I.C's.
Transformers. \(7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}, 88 \mathrm{p}\) inc. \(P\). \(P\) \(12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, 90 \mathrm{p}\) inc. P.P. 9-0-9V, \(100 \mathrm{~mA}, 90\) p inc. P.P. \(29 \mathrm{~V} 50 \mathrm{~mA}, 70\) p inc. P.P. Brand new Boxed Rola Celestion Reentrant Speakers SD 25 with 100 V line transformer fitted 150 without transformer 614 inc. P.P.
Transformer. \(45-0-45 \mathrm{~V}\), approx. 2 amp, £2.50 inc. P.P.
P.C. Board. S/S, \(5 \frac{1}{2} \times 5 \frac{1}{2}\) in, 10 for 70 p inc. P.P. 3EGI Scope Tubes with base and connections, \(£ 3\) inc. P.P.
Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions. Brand new, \(\mathbf{E} 2\) inc. P.P. Size \(3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}\). Power Unit Components Transformer. 18 volt \(1 \mathrm{amp} F / W\) bridge rectifier, 21250 mfd capacitors, all new \(\mathbf{t} 1 \cdot \mathbf{2 5}\) per kit. P.P. Electrolytic Capacitors, \(4,000 \mathrm{MF}, 50 \mathrm{VW}\) \(4 \frac{1}{2}^{\prime \prime} \times 1 \frac{3^{\prime \prime}}{4^{\prime \prime}} 75\) p. inc. P.P.

\section*{BUILDING YOUR OWN HI•FI AMPLIFIER?}


WHY NOT USE A PROFESSIOMAL CABE? Wo have a limited number of high quality case LOOK AT THESE FEATURES

3 plece, tenk vencerred case
screon printed front and rear piates
* Full compliment of hardware FAONT PANEL
Function switch for P.U./TAPE selection, MONO/ STEREO and SCRATCH FILTER witchem. Bass treble, volume
DACK PANEL
BACK PANEL
P.U. Input socket. Tuner input socket. Tape inlou socket. MAGNETIC/CERAMIC switch. Speaker out cocket. Fuse holder and mains lead.
HAADWARE COMPLIMENT inelude
Push button switch rilis. eockets. knobs. plastic feet. alide switch. noon indicator, screws. nute stc. COMPLETE KIT OF PARTS ONLY LA. 80 POST FAEE. READY BUILT and TESTED Las POST FREE (10 watte R.M.S. par CHANNEL)
```

3.A.E. for fulliat

```

\section*{SOUND ELECTRONICS}
(NEWCASTLE) LIMITED
43 Meiton Grove, Newcaatle upon Tyne, NEA SNP Tel. (0632) 650108

BRAND NEW COMPONENTS BY RETURN Electrolytics, \(15 \mathrm{~V}, 25 \mathrm{~V}, \quad 50 \mathrm{~V}-0.47,1,2 \cdot 2\) \(4 \cdot 7,10 \mathrm{mF}, 4 \mathrm{p} ; 22,47,41 \mathrm{Pi}(50 \mathrm{~V}, 5 \mathrm{p}) ; 100\), \(8 \frac{1}{2} \mathrm{p} ;(50 \mathrm{~V}, 7 \mathrm{p}) ; 220,6 \mathrm{p} ;(50 \mathrm{~V}, 9 \mathrm{p})\), Subminiature bead-type tantalums \(0 \cdot 1 / 35 \mathrm{~V}\),
\(0.47 / 35 \mathrm{~V}\),
\(0 \cdot 22 \cdot / 35 \mathrm{~V}\),
\(2 \cdot 2 / 35 \mathrm{~V}\),
\(4 \cdot 7 / 35 \mathrm{~V}\),
\(10 / 16 \mathrm{~V}\), \(0.47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2 / 2 / 35 \mathrm{~V}, 4 \mathrm{~V}\)
\(22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 9 \mathrm{p}\). Mylar Film 100 V \(0.001,0.002,0.005,0.01,0.02,21 \mathrm{P} ; 0.04,0.05\), \(\begin{array}{ll}0.001, & 0.002,0.005,0.01,0.02,2 \\ 3 p & \text { Mullard } \quad 0.04,0.05 \\ \text { 3pubular Polyester } 400 \mathrm{~V} & \text { E6 }\end{array}\) \(3 p\).
series, Mulard Tubular Polyester \(0.001-0.022,3 p ; 0.033-0.1,4 p\). Mullard series, \(0.001-0.022,3 p ; 0.033-0.1\), 4p. Mullard
miniature C333 ceramics E.12 series \(2 \% 1.8 \mathrm{pF}-\) \(47 \mathrm{pF}, 2 \frac{1}{2} \mathrm{p}\); \(56 \mathrm{pF}-330 \mathrm{pF}, 3 \mathrm{p}\). Polystyrene 63 V . E12 series \(10 \mathrm{pF}-1000 \mathrm{pF}, 2 \mathrm{LP}\); \(1200 \mathrm{pF}-\) \(10000 \mathrm{pF}, 31 \mathrm{p}\). Miniature Highstab Carbon Film Resistors +W E12 series \(5 \% 1 \Omega-10 \mathrm{M} \Omega(10 \%\) over \(1 \mathrm{M} \mathrm{\Omega}\) ), 1 p . Postage 8 p . Prices VAT inclusive. THE C.R. SUPPLY CO., 127 Chesterfleld Road, Sbeffield, S8 ORN.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & &  \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{BC109
BCY70}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\({ }_{\text {BCY }}\)} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Prices inclusive＋P．\＆P．10p CWO} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{ISLAND DEVICES，P．O．BOX 11 Margate，Kent CT9 10X}} \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
ALLARD ELECTRONICS \\
Branded Components－Full Specification
\end{tabular}} \\
\hline TRANSISTORS Price ea． & SCR＇s Price & DIODES lorice \\
\hline 25／8／7／8 0.15 & ClRSl／05 \(\quad 0.30\) & 1N914 0.05 \\
\hline AD140／149 0.48 & CRS \(/ 110\) 0－56 & 1N \(4001 / 2 / 3 / 4\) \\
\hline \(\begin{array}{lll}\text { AD161／162 } & 0.37\end{array}\) & CRS \(1 / 200000\) & 1500 0.08 \\
\hline AFIL4／5／6／7 0．15 & CRS \(1 / 40 \quad 0.45\) & \multirow[t]{2}{*}{1N4005／i／7／8 0.06} \\
\hline AF118 0.35 & CRA3／40 0.55 & \\
\hline BC107／8／9 0.09 & Cl2s7／400 00.98 & \multirow[t]{3}{*}{\begin{tabular}{l}
FREE \\
INTRODUCTORY
\end{tabular}} \\
\hline \(\begin{array}{ll}\mathrm{BC14} & 78 / 9\end{array} 0.10\) & CRS \(16 / 10000.85\) & \\
\hline BC182／3／4 0.10 & CRS16／200 0.88 & \\
\hline \(\begin{array}{ll}\mathrm{BC}^{2} 212 / 3 / 4 & 0.11\end{array}\) & \(\begin{array}{ll}\text { C11816／600 } & 1.50\end{array}\) & OFFER \\
\hline ［3C 170／71／720．15 & I．\({ }^{\text {＇1 }}\) & 20 Metres \\
\hline \(13 \mathrm{D} 131 / 132 \quad 0.85\) & TBA800 1.35 & \multirow[t]{4}{*}{Connecting Wire with every order （ \(5 \times 3 \mathrm{~m}\) in varlous colours）} \\
\hline BF194／5／6 0.18 & fre & \\
\hline BFY00／51／52／53 & \multirow[t]{3}{*}{SPECIAL
OFFER OFER} & \\
\hline 0.16 & & \\
\hline BY127 0.25 & & \\
\hline MJE370 0．62 & RADIo 1／C & \multirow[t]{2}{*}{ULL RANGE} \\
\hline MJE3TL 0.73 & 1 Free circuit & \\
\hline \(0 \mathrm{C28} \quad 0.50\) & & SN゙7400 beries， \\
\hline OC35 \(\quad 0.50\) & ZENEF & Veroboard，Pots， \\
\hline \(0 \mathrm{C83}\)－0．20 & & \multirow[t]{2}{*}{Cajs，etc．，etc． Send for Free List} \\
\hline T1L209 0．22 & All roltages & \\
\hline 2N2218 0.18 & B2X61 нeries 0.17 & S．A．E．please \\
\hline 2N2906 0.13 & \multicolumn{2}{|l|}{0.17} \\
\hline 2N2926 all 0.11 & \multicolumn{2}{|l|}{BRIDGE RECTIFIERS} \\
\hline 2N3053 0．15 & \multicolumn{2}{|c|}{Price each} \\
\hline 2N3054 0.50 & D．i．v．1A 2A & 4 A 6A \\
\hline 2N3055 0.44 & \(50 \mathrm{~V} 0.24 \quad 0.34\) & 0.64 \\
\hline 2N3702／3／4 0 0．10 & \(10060.24 \quad 0.38\) & \(0.54 \quad 0.69\) \\
\hline 2N3705／6 0.10 & \(200 \mathrm{~V} 0.27 \quad 0.44\) & 0.58 0．79 \\
\hline 2N3707／8／9 0．10 & \(400 \mathrm{~V}^{2}-\quad 0.48\) & \(0.64 \quad 0.89\) \\
\hline 2 N 381300 & 600V゙ 0.28 & 0.74 \\
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
299／301 BALLARDS LANE \\
LONDON N128NP \\
ORDER ONLY Telephone enquiries： 5188 Cash with order．Add V．A．T． rders under 62 plus 12p P．\＆P．
\end{tabular}} \\
\hline
\end{tabular}

COMPONENTS GALORE．Pack of 500 mixed components manufacturers＇surplus plus fall out．Pack includes resis：ors，carbon and W．W．，capacitors，various，transistors，diodes， trimmers，potentiometers，etc．
Send \＆plus 15p P．\＆P．C．W．O．To
CASCADE COMPONENTS COMPANY Bankhead Farm，South Queensferry， West Lothian

\footnotetext{
TRANSISTOR TESTER An easy to use Go／No Go device for rapid testing of low－power PNP and NPN transistors and diodes．Specially designed for the amateur market．Will not damage transistors if con－ neeted incorrectly．Can be used to determine PNP or NPN and identify leads of unknown transistors．Reads gain directly
Price \(66 \cdot 50\) ．P．\＆P．15p．
S．A．E．details．
VIKiNG，Oak Lodge，Tansley，Derbyshire
}

RE8I8TOR8． 1 W Carbon Film，Type I＇PM 050 1p each plus VAT，post frec．（iREENBANK ELECTRONICS， 14 New Chester Road， Wirral，Merseyside，L62 5AG

AB8OLUTELY UNBEATABLE VALUE．OUR quality pack of 550 components is a must．for every experimenter．Pack comprises loads of transistors，diodes，potentiometers，resistors， capacitors，etc．，plus 2 free panels packed with components．Send only \(£ 1.50\) for speedy delivery to CAPITAL COMIONENTS，BCM 3276 ，LONDON，WC1V 6XX．

8］NCLAIR CALCULATORS，lowest ever prices． Cambridge，ready built，\(£ 18-95\) ；Scientifle， £26．95；Lxecutive Memory，231．Irices fully inclusive．Mail order only．VALENCE BLECTRONIC＇S，2a Canal Street，Droylsden， Lanes．

TURN YOUR SURPLUS capacitors，transistors， etc．，into cash．Contact COLES－HARDIN（； d CO．，PO．Hox 5，Frome，Somerset． Immediate cash settlement．

\section*{MISCELLANEOUS}
\begin{tabular}{|c|}
\hline TREASURE TRA MK III metal Locator \\
\hline \\
\hline \\
\hline and \\
\hline \\
\hline \\
\hline \\
\hline  \\
\hline Shoinc \\
\hline
\end{tabular}

\section*{PSYCHEDELICATESSEN}
is the only way to describe the paradise of FREAKY gear now available from Boffin LOOK！

NO LICEN
Receiver
Kits

Variable－rate，BRIGHT－FLASH，Pocket
Mini－5trobe
Ready－Made Modules
Maxi－Volt SPARK GENERATOR（ 1 inch
spark）， 15,000 Volts．
spark）， 15,000 Volts．
Experimental Mini DREAM－LAB－
Experimental
f1． 35
SENSITIVE non－anatomical electronic
Electronic＇VOICE－THROWER＇
GHOST－HUNTING AID
PEOPLE DETECTOR
Experimental WATER－FONE
PSYCHEDELIC．MEDITATION AID Bird－Watchers＇REMOTE MONITOR Psychological CROSS－EYED EARS Super SOUND－CATCHER
（All prices include VAT，packing \＆postage） Send remittance to
BOFFIN PROJECTS
4 Cunliffe Road，Stoneleigh Ewell，Surrey （Mail order U．K．only）
Or for more details，send 20 p for lists，plus free design project sheet
enamelled copper wire

\(30-34\)
\(35-40\)
61.90
82.00
62.05
62.20
62.35

All the above prices are inclusive in U．K．
IND USTRIAL SUPPLIES
102 Parrswood Ad．，Withington，Manchester 20
Telephone 061－224 3553

> Build the Mullard C．C．T．V．Camera Kits are now available with compre－ hensive construction manual（also available separatély at 80p）．
> SEND \(5^{\prime \prime} \times 7^{\prime \prime}\) S．A．E．FOR DETAILS TO： CROFTON ELECTRONICS 124 Colne Road，Twickenham MYddIesex TW2 6＠S

MORE RANGES FOR LESS MONEY！
AC／DC Multimeter type U4324 A－DC 0．00－3A－6 Ranges A．AC \(0 \cdot 3-3 \mathrm{~A}-5 \mathrm{Fanges}\)
\(\mathrm{V} . \mathrm{OC} 0.6-1200 \mathrm{~V}-9 \mathrm{Aang}\) \(\mathrm{Y}-\mathrm{AC}\) C－900 V －8 月anges．
 \({ }^{20 \mathrm{kHH}} \mathrm{H}\) Resitance 500 ohm to 5 Mohm－5 ranges．Decibel：-10
to +120 B ．Accuracy：\(+25 \%\) DC to +12 dB ．Accuracy：\(\pm 25 \% . \mathrm{DC}\)
\(+4 \% \mathrm{AC}\) ．Dimenalons： \(167 \times 98\)
\(\times\) azmm Only \(£ 8.85\)
SUPERTESTER 680 R ICE
 10 Fields－ 80 Ranges．Plus a mot of accessories lor
measurements of \(500 \mathrm{~A}-\mathrm{AC}\) measuraments of 500A－AC
100 ADC－Temparature \(\begin{array}{llll}-50 \mathrm{C} & \text { to }+200 \mathrm{C}- & \text { Magnetic } \\ \text { fields up to } 15 & \text { KGauss－}\end{array}\) Phase indicator－EHT 25 kV Electronic Volt Ohm－meter
Transistor Diode Tester．etc
 300 grams \(20 \mathrm{kOhm} V\) Accuracy

\section*{ALPHANUMERIC NIXIE TUBES B7971}

The Alphanumeric
NHXIE tube has the
abilitue to thas
all the letters of
the alphabet．
numerals 0 thru 9
and
special
and
chara
charact
single
From the stand
point of both read－
ability and elec－
trica characteris

numeric Nixite tube provides many unique benefits including＊All d co operation＊Uniform continuous
line characters of equal height＊Memory with simple line characters of equal height＊Memory with simple
solid state drive circuits＊Readability in high ambient light 200 footlamberts brightness＊Long life with no loss of brightness＊Character height 2 fin
Price only 99 p each plus \(16 p\) P．／P
SPECIAL OFFER
The SInclalr Sclentiflc．
Logs，trig and arlthmetic．
All at the touch of a button．
At last there a a pocket calculator whic
gives you log and trig func
With the functions aveitabie on the directly keyoosrd．you can handie
directly \(\log _{10}\) antilog \({ }_{\text {ra }}\) sin and arcsin
cos and afcos．tan and arctan，automatic squaring roots）plus of course addition．subtraction multipli－ cation．division and any calculations based on them． 7－digit scientific notation， 200 －decade pange Reverse Polish logic and 25 －hour battery life
Send for further information
Add \％\％VAT to all teme＋35p Pap
ELECTRONIC BROKERS LTD
49－53 Pancras Road，London NW1 2QB Tel．01－837 7781


SLOW 8PEED MOTOR8 required（about 1 r．p．m．） any quantity considered，Phone Mr．SMITH， 061－633 3527

\section*{fibre optic suppllers}

\section*{NEW SHORT FORM DATA}

LENSES. For photoelectric devices. intruder detectors. short-range optical communication, experimental and laboratory use. Diameters \(7-50 \mathrm{~mm}\).
ultrasonic transducers. Remote control-TV, radio. lights, doors: burglar alarms; acoustic wave experiments.
LINEAR POLARISERS. Light valves, psychedelic light shows. stress analysis. 3-D pictures.
CIRCULAR POLARISERs. Red, amber, green, neutral for glare reduction, contrast ration enhancement of displays and instruments.
FIBAE OPTICS. A complete range for industrial. experimental. modelling display systems. Monofibre 10 thou to 60 thou: bundes \(1-2.3 \mathrm{~mm}\).
MARE'S TAILS. For beautiful fibre optic displays:
LIGHT EMITTING DIODES. Infra-red, red. amber, green. TO92 and miniature.
PHOTODETECTORS. Silicon phototransistors and Photodarlington.
SPECIAL FREE OFFER. During the month of October only we will send a FREE RED LED with our data/price list to readers of "Practical Electronics
Send \(9 \times 6\) in stamped addressed envelope to:
FIBRE OPTIC SUPPLIERS
Dept PE, PO Box 702, London W106SL


Add 30 p P. \& P. for ordars under 52 . Date, and circults where appropriate. supplied with orders. or availabie eeparately (4pp stamp
each). Ax Mintiron dileplays for only
Calculator Keyteard (to order) Cakculator Koypoard to order Mumestan Alam Cloek IC CTrove Colipndar/Alarm/Cloek IC Mintron 3015F 9 mm 7 eeg. diaplay Pistercon IC socket pins-3 strips of Complete circuits and special prices \(100 \mathrm{cI} \cdot 50+\) VAT \(=[14.32\) Minítrons or SP352

StNTEL. 539 AETON THEET, OXFOMD

> GADGETS GALOREI! Alarms-Test Gear-Musical Instruments Timers-Audio-Disco Sound Effects READY BUILT AND TESTED Sample prices: Signal Injector G1.95 SRIGnal Tracer E2.95 PRICES INCLUDE U.K. POSTAGE AND BATTERIES Mail Order Only S.A.E. Iist to: G. K. SERVICES B3 Westdale Road, LondonSEI8 3BQ
```

LOW-COST I.C. MOUNTING DIL 14 MOUNTING 81p (or less) Easy to use. Easy to remove.
100 I. . Pin-sockets for 60 p . Plastic supports for use with. Plastic supports for use with pin-sockets where S.A.E. details and sample. Quantity rates. P. \& P. 5p/order.
L.E.D's (MLED500) 20p each (Post Free)
P.K.G. ELECTRONICS
Oak Lodge, Tansley, Darbyshire

```

AUDIO8CAN, the "do-it-yourself" speaker mail-order specialists. High fidelity speaker kits, chassis units, sound absorbent, grille fabric and much more. Send s.a.e. for bargain list to: AVDIOSCAN, Dept. P'E6, 4 Pritices Square, Harrogate, Vorkshire.
P.C.Bs. Limited number, \(\frac{1}{1}\) in glass fibre, ready drilled: Scorpio Mk. 11, 80p; P.E. Power Slaves ( 3 boards), \$2. M. G. PY'WELIL, 16 Goverton Square, Bulweil, Nottinghim.

PRINTED CIRCUIT MANUFACTURERE offer any P.J. Project P.C. ready drilled. One Price 65p. C.W.O. Also P.C. production, Design, Art-Work and Photography undertaken. Send basic circuit, P.C. layout or P.C. Master stating quantity required for estimate by return or Phone: W'. K.F. ELECTRONICS, Dept. P.C, Wetbeck street, Whitwell, Worksop, Nott's., Ss0 4 TW . Telephone Whitwell (Derbys) 695 .

HARDWARE 8 UPPLIE8-Sheet aluminium individual sizes or standard packs, drilled to spec. Screws, nuts, washers, etc., Fascia panels in aluminium individual requirements. Printed circuit boards, one-off or small runs. Printed circuit drafting tapes, ete., 7p for list. RAMAR CONSTRUCTOR SERVICES, 29 shelbourne Road, stratford-on-Aven, Warwks., CV37 9JP.

CLEARING LABORATORY, soropes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheals, stabilised P.S.U.s, sweep generators, test equipment, etc. lower leeding 236 .

100-500 YARD ROLL8 WHITE PVC insulated 14/0076 double tinned copper wire (1)EF' 121)). Sensible offer required to clear the lot. PALMER, 6x C'lyst Valley Road, ('lyst st. Mary, Exeter

IC 8OCKET PINE for low cost mounting of \% to 40 pin DILs, 70p (plus 5p VAT) for strip) of \(100 ; 81.50\) (plus 12p VAT) for \(3 \times 100 ; 24\) (plus \(32 \mathrm{p}-\mathrm{VAT}\) ) for 1,000 . Instructions supplied. 10p \(P\) \& \(P\). for orders under \(£ 2\). SINTEL, \(5: 3 \mathrm{~b}\) Aston Street, Oxford.

METER REPAIR8. Ammoters, voltmeters, multi-range meters, ete. Send to METER REPAIRS, 2l Mount Road, Thunderaley, Benfleet, Essex, ss7 1HA.

\section*{MEN! £70 p.w. can be yours}

Jobs galore! Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks! Pay prospects? \(\{3,500+\) p.a.
After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators Training Centre T63, Oxiord House 9-15 Oxford Street, W. 1
Telephone 01-734 2874

\section*{ELECTRONIC ORGANS}

Experienced Electronics Engineer required for field and bench service work by leading retailers of home and church organs.
High Salary and generous car allowance (or vehicle supplied). Excellent prospects for suitably qualified applicants prepared to take responsibility.

For further details write or phone:
RIVERSIDE ORGAN STUDIOS LIMITED
4 RICHMOND ROAD
KINGSTON UPON THAMES
SURREY KT2 SEB
Tel. 01.5461231

\section*{SITUATIONS VACANT}

\section*{NATIONAL PHYSICAL LABORATORY, DIVISION OF MARITIME SCIENCE}

\section*{VACANCIES}

\section*{AT TEDDINGTON, MIDDLESEX AND HYTHE, HAMPSHIRE}

\section*{ELECTRONIC DEVELOPMENT}

A number of interesting posts with a wide range of duties are available at the above locations.
We use analogue and digital circuits, audio and radio frequencies. land and sea based equipment, together with computers to \(h\) andle our results.
Assistant Scientific Officers, with an interest in electronics, are required to join small teams at both sites to help us maintain and develop our systems, and to assist in trials on ships and offshore structures.
Excellent opportunities exist to obtain broad practical experience and to study for higher qualifications leading to a worthwhile career.
The minimum qualifications are 4 GCE or CSE Grade 1 subjects, to include Maths, Science and English Language.
Salary ranges from \(£ 887\) (at age 16) to \(£ 1,547\) (at age 25) rising to \(£ 1,899\).
If you would like further details you may telephone Mr R. F. Johnson or Mr R. W. Cuffe at the numbers shown.
Mr R. F. JOHNSON: 01-977 3222 Ext. 4165 during working hours or Woking 65942 evenings and weekends.
Mr R. W. CUFFE: Hythe (Hants) 3065 (STD 042-14) in working hours, or Hythe 6804 evenings and weekends.
Alternatively, write to Mr H. B. Boyle. Officer-in-Charge, Department Of Industry, National Physical Laboratory, Division of Maritime Science, St John's Street. Hythe, Southampton. Hampshire, SO4 6YS, quoting Reference MSINST.

\section*{The Hatfield Polytechnic}

\section*{TECHNICIAN}
for Psychological Laboratory
for maintenance and construction of a variety of electronic, mechanical, audio-visual and medical equipment. The person appointed will work with a Senior Technician.
Applicants should preferably hold an appropriate Intermediate or National Certificate or City and Guilds qualification, but this is not essential. Further study is encouraged and day release facilities are available.

Salary on a scale rising to \(£ 1,889\) per annum including a local weighting allowance and threshold agieement.
Application form and further details from the Staffing Officer, The Hatfield Polytechnic, P.O. Box 109, Hatfieid, Herts. or ring Hatfield 68100, Extn. 309. Please quote ref.: 542.

\section*{EDUCATIONAL}

\section*{TELEVISION TRAINING}

I6 MONTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.
NEXT SESSION commences on January 2nd.
Prospectus from London Electronics College, Dept. All, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

\section*{C AND G EXAM}

Moke eure you eucceed with an ICS nome mitudy course for C and Q Eldctricat Inetallation Work and Techcomm: Techniclans and Radio Ametpure

\section*{COLOUR TV SERVICING}

Make tho moat of the eurrent boom' Learn the techniques of sorvicing Colour and Mono TV sete heading manufacturers

\section*{TECHNICAL TRAINING}

Homs itudy coursen in Electronice and Enctrice Engincering, Maintenance. Aadio. IV. Audio. Compuiter Engineering and Programming. Abo alf-build redio kit
Get the qualifications you need to wuccent Free detaile from.
Internetlonal Correspondence Schoole, Dept. 730X, Intertext House,
London SWi 4UN. Or phone 01-622 9811


\section*{OSMABET LTD. We mato tanatormer:} ADTO TRA吾8FORMCR8, 110/800/200/8407.
 \(600 \mathrm{~W}, 510 \cdot 80 ; 750 \mathrm{~W}\), , 14-85; 1000 W, 118.00, eto. LOW VOLTAGE TRABSFOR LERE
Prim. 200/240V a.c. 6.3 V 1.5A, 21.20 ; 3A, 11.60 ;
 15-45; 5A, A. 0 : BA, 7.85 ; 12 CA , 10.95 ; 40 V 8A CT \(1.50: 50 \mathrm{~V} 6 \mathrm{CT} .18 .50: 25 \mathrm{~V} 2 \mathrm{~A}+28 \mathrm{~V}\) \(\mathrm{CI} \cdot 90 ; 12 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V} 4 \mathrm{~A}, 54.90\). \(20 \mathrm{~A}+2 \mathrm{~V}\) A
 \(0-10-12-14-16-18 \mathrm{~V} \quad 2 \mathrm{~A}, \quad 88.60\); 4 A , 86.75: \(\begin{array}{lllll}0-12-15-20-24-30 \mathrm{~V} & 2 \mathrm{~A}, & 48 \cdot 40 ; & 4 \mathrm{~A}, & 84 \cdot 60 \\ 0-5-20-30-40-60 \mathrm{~V} & 1 \mathrm{~A} & 88.40 ; & 2 \mathrm{~A}, & 4.50\end{array}\)


MDGET REOTHIER TRANBFORMER
For FW rect. \(200 / 240 \mathrm{~V}\) a.c. \(9-0-9 \mathrm{~V} 0.3 \mathrm{~A} ; 12-0-12 \mathrm{~V}\) \(0.95 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A}: 12 \mathrm{~V} 0.28 \mathrm{~A}+12 \mathrm{~V} 0.25 \mathrm{OV}\) \(20 \mathrm{~V} 0.15 \mathrm{~A}+12 \mathrm{~V} 0.15 \mathrm{~A}\) at 21.85 esch; \(\mathrm{g}-0-0 \mathrm{~V}\) iA \(11.85: 12-0-12 \mathrm{~V} 1 \mathrm{~A}\) or \(20-0-20 \mathrm{~V} 0.75 \mathrm{~A}\) ! 1.60 emeh TANTS TRAMBPORMRR:
Prim. 200/240V a.c. TX8 nec., 425-0-428 500 Ma 8.8V CT 6A, 6.3 V CT 6A, \(0-6-6.8 \mathrm{~V}\) 8A, 816.50 TX1 425-0-425V \(250 \mathrm{Ma}, 6.3 \mathrm{~V}\) CT \(4 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}\) CT 4 A \(0-5-6.3 \mathrm{~V}\) 3A, 59.75 ; MTS Prim. \(0-110-240 \mathrm{~V}\) ece o/P TRAMgTORMERS FOR POWR
O/P TRAKBIORME YRR YOWRR AMPLITREI P.P. bec, tapped \(3-8-1\) ohmm, A-A \(6.8 \mathrm{~K} \cap\) 30W otc.), sig-75; tapped Multi O/P 10W 鲇.
G.E.C. MAXTUAL OF POWRE AXPLITIRRA

Covering valve amplifiers of 90 W to 400 W 85 LOUDGPRAEERS YOR AMPLTIARES
BAKER \(25 \mathrm{~W}, 5760\); \(35 \mathrm{~W}, 48+40\); HI-FI Major Module 20W W/tweeter Xover, ill-go; Bakerspeske liats ; FANE; 60 W , \(418-50\); HI-FI apeakers, EMI bat \(13 \times 8 \operatorname{la} 3\) or \(150,48.00 ; 5 \ln 80\). \(1.15 ; 7 \times 4 \ln 15 \Omega\) (00)

K
\(2 \ln 8\), 16 or \(75 \Omega, 2\) in 8 or \(25 \Omega\), 3 in \(8,8,25\) or \(5 x \sin 8\) or 80 , 80090 p each; 5 in 8,8 or 950 \(1.25 ; 10 \times 6\) in \(80,51.50\).
OPEAKRR MATOELG TRADETORMIRS \(12 w 3\) to 8 or 180 up or down 1.80 .
 Instant eracure, any diameter tape apoola, casiattea demagnetisen tape heads. \(200 / 240\) g.c. 8 gis. Brand new, Smitha. Bullt-in gear box, 2 RPH Brand ne
\(75 p\) emch.

Oarriage and VAT extra on all ordarn
8.A.E. ENGUIRIEG-LISTS, MAIL ORDER OHLT 46 Enatiworth Road, Edfwart, 1idix. HAs Exa Tel. 01-058 981


Cambridge Memory
C20. 85 ( 81.95 )
Cambridos Assambled
Sinclair Scientific
Executive
Executive
 22.45
\(\mathbf{2 5 2}\) ( 2.53 .

FERRANTI ZN41A
IC radio chip with data E1. 20 (22p). Also available kit o extra parts to complete a radio, 22.45 (42p). Send S.A.E. Ior froe leaflet.


Decoder \(\mathbf{E} 6.45\) (75p). Trans for P28. ©3-35 (50p). Tune ce.g5 (£1.08). Sterto 80. Et. 55 ( \(\mathbf{1} 1.08\) ). Project 805 ECONOMICAL
QUADRAPHONICS
Introducing the Napolex
QA10 self-contained matrix
quadraphonic synthesizer.
stereo system (including Proiect 80 or 60 ) into it hook on 4 speakers to obtain the tateat experience in sound. Send S.A.E. forfree leaflet. Onty £10-15 (£1-10)

SINCLAIR SUPER IC12
6Wrms power
With 44 page
booklet and
\(\mathrm{C} 1.50(40 \mathrm{p})\).

NEW SINCLAIR IC20
High power IC audio amplitier chip. P.O.A

\section*{DELUXE KIT FOR THE IC12}

Includes all parts for the printed circuit and volume bass and treble controts needed to complete the mono veralon, \(£ 1.60(25 p)\). Stereo model with balance control, e3. 60 (42p)
IC12 POWER KIT
Supplies 28V 0.5A. \&2. 67 (47p).
LOUDSPEAKERS FOR THE IC12
\(\sin 8\) ohm, \(\mathrm{f} 1 \cdot 10\) (27p), \(5 \operatorname{in} \times \sin 8\) ohm, \(£ 1.55\) (37p). PREAMP KITS FOR THE IC12
Type 1 for magnetic pickups, mics ançituners. Mono model. \(\$ 1 \cdot 35\) (24p). Stereo model, \(22 \cdot 40\) (32p). Type or coramic or crystal pickups. Mono. 65p (18p) Sterso, \(51 \cdot 30\) (24p)
SEND S.A.E FOR FREE LEAFLET ON KITS
 \(50 \mathrm{~mA}-6 \mathrm{~V} .51 \cdot 95\) (40p). 9 V 81.95 (40p). 74V cassett ype. \(\mathrm{f2} \cdot 50(40 \mathrm{p}\) ). Double \(6 \mathrm{~V}+6 \mathrm{~V} . \mathrm{c2} \cdot 50(40 \mathrm{p}) .9 \mathrm{~V}+9 \mathrm{~V}\) 7 (55p)



\section*{SWANLEY ELECTRONICS}
P.O. Box 68, Swanley, Kent BR8 ETO Prease add the sum shown in bracketa after the price to cover the cost of post and new vat.
Official credit orders from schools. etc. walcome No VAT charged on overseas orders

\section*{SYNTHESISER Modules by Dewtron \({ }^{\text {B }}\)}


The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now. With over 10 years experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design. e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 15 p for full catalogue to

\section*{D.E.W. LTD.} 254 RIngwood Road, Ferndown Dorset BH22 9AR
* SPECIAL LOUDSPEAKER SALE * BAKER 12" MAJOR E8.50
30-14,500 cps. Double cone woofer. Baker ceramic magnet 145,000 gauss. BASS RESONANCE 40 cps 20 watt RMS
MAJOR MODULE KIT £10.95
30-17,000 cps. woofer, tweeter, crossover and baffle as illustrated. Size \(19 \mathrm{in} \times 12 \frac{1}{2} \mathrm{in}\). NOTE-Whan ordering state 3 or 8 or 15 ohme.


RADIO COMPONENT SPECIALISTS 337 Whitehorse Road, Croydon
prices include vat and post. all goods in stock

If you have difficulty in obtaining

> PRACTICAL ELECTRONICS

Please place a regular order with your newsagent or send I year's subscription (£3.25) to Subscription Department, Practical Electronics, Tower House, Southampton Street, London WC2E 8QX

\section*{DISCO, SHOP, SOUND TO LIGHT, STAGE PHOTO-FLOOD LIGHT FITTINGS}

TYPE B 3-BANK UNIT
Has two brackets to accept P/C Board. Transformers. Also has holes in ends for Potentiometers. Jack Socket. Cable. etc. Ideal for making Sound to Light and Strobes. Base Cover included Less Lamps only £6. 50
inc VAT. P \& P 40p

\section*{SOUND TO LIGHT}

Three channel, using Type B unit. Ideal for small disco's and home entertainment Complete with Lamps. Ready wired
£25
inc VAT P \& P 40p
STROBE UNIT
Using Type B unit. Adjustable frequency Single knob control Complete with Lamps. just plug into mains-that sit.
\(£ 25\)
complete inc VAT P \& P 40p
100 WATT SPOT LAMPS
Red Pink Green. Yeliow, Blue, Violet, Clear. Only 80p
each. Minlmum 3 Lampa \(£ 2.40\) inc. VAT, P. \& P. 25p
TRAFALGAR SUPPLIES
Dept H.T. • Standish Street • Burnley • Lancs

\title{
C. T. ELECTRONICS
}

Now open-our now components thop. These promlese ate very much larger and wlif enable us o have greater atocke than welready have. Having all the components under one roof wh now ponge of componente to choote from. Hy you are having peoblema getting you componente then come slong. We are open from 1.30 a.m. through thin i.e p.m. Monday to 8 aturday. The neareat

NOW AT 267 \& 270 ACTON LANE, LONDON W4 5DG


AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK, W. 4


All mall order and enquirles to 270 Acton Lane Tel. 01-9946275


Minimum order \(\{2\)
All prices exclusive of VAT.
P. \& P. 10p for orders below \(\{5\)

Export inquiries welcome
Inquiries from trade. OEM. Colleges welcome.

All goods brand new and guaranteed to manufacturers specifications. Money refunded if not satisfied Callers, by appointment, welcome Catalogue on request, 15p.

Technomatic Ltd
54 Sandhurst Road, London, N.W. 9
Telephone 01-204 4333

\section*{SOLID STATE TIME! DIGITRONIC II}

- Reads: Hours, minutes, seconds. Bright. clear display. - No moving parts. Executive styling. Solid state reliability.
KIT-Complete with all components, case, etc., plus full instructions, \(229 \cdot 65^{*}\)
CLOCK-Built, tested and fully guaranteed, £33.65*
- Prices exclude Vat

Other Digitronic clocks, fully built: DII/4 Four-digit version, £29.95; DIII7 Seven-digit version, \(536 \cdot 65\); DII/S Stopwatch version, 154.45; DII/6P cased in clear Perspex, 539.95 ; DII/7P cased in clear Perspex, £42-95.

Quartz Xtal available on built versions of all DIl clocks. \(89 \cdot 85\). Dill Time/Date/Alarm, E4. 50.
Digitronic clocks are also available through many other retail outets including: Henry's Radio Lid., Edgware Road; Studio Electronics. Harlow; Goddards Components. St. Albans.
Payment by Cash-reg letter, Cheque. PO MO: Access-simply quote your number.


Bywood Electronics, 181 Ebberns Road, Hemel Hempstead HP3 9RD. Tel. 044262757

\section*{VARICAP TUNER \\ LP1185/86 \\ MC1310P Decoder I/C £3.15 \\ LP1400 Decoder Module £5•15 \\ MFC4060 Regulator I/C £0.78 \\ P.C. BOARDS MC131OP or LP1400 .. £1.87 SPEAKER BRACKETS 2-way swivel .. \(£ 8.00 /\) pair READY BUILT BOARDS \(£ 24\)-25 (l/C) or £25-25 (LP1400) \\ Prices include V.A.T. P. \& P. 25p. \\ B. \& B. ELECTRONICS \\ 64 MANNERS ROAD, BALDERTON, NEWARK, NOTTS. \\ Tel.: NEWARK 6895 (Anytime)}

\section*{PUBLISHER'S ANNOUNCEMENT}

Due to production difficulties existing at the time this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing

```


[^0]: (c) IPC Magazines Limited 1974. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland $£ 3 \cdot 25$, Overseas $£ 4 \cdot 10$. International Giro facilities Account No. 5122007. Please state reason for payment, "message to payee".

[^1]: Valves，Tubes and Transistors．Closed Sat I p．m．
 Terms C．W．O．only：Tel，O1－677 2424－7
 All orders subject to Y．A．T．at 8% rate．This must
 be added to the total order including postage．

[^2]: Prices shown are recommerided retail excluding V AS.
 From' Electrical and Hardwaré Shops. If unotranable send 10 p p $\& \mathrm{p}$ direct to: Bib Mi.Fi Accessories Limited, Hemel Hempstead, Herts HP2 7EP

