PRACTICAL

G-ETRONICE

JANUARY 1975
25p

FOA EनाTILLATINE SOUND build the

CONSTRUCTIONAL PROJECTS

LIGHT PIPE by R. Gwynn
A novel flexible lighting effect for the home, discotheque, or shop 28
DIGITAL LEAF by J. S. Haggis
Grow better greenhouse plants with this automatic moisture control circuit 32
P.E. ORION-1 by D.S. Gibbs \& I. M. Shaw
A high quality low cost $20+20 \mathrm{~W}$ stereo amplifier 46
P.E. MINISONIC-3 by G. D. Shaw
Details of the keyboard controller, ring modulator, noise generator, h.f. detector and oscillator, and power amplifiers 58
GENERAL FEATURES
SURFACE ACOUSTIC WAVES by T. S. Fisher
Is this the technique of the future? 41
INGENUITY UNLIMITED
Sound-to-Light Modulator--Serial Connection Multivibrator 66
NEWS AND COMMENT
EDITORIAL-The Triumphs of Radio Astronomy 27
SPACEWATCH by Frank W. Hyde 37
NOBEL PRIZE FOR CAMBRIDGE RADIO ASTRONOMERS by Frank W. Hyde 38
ELECTROMUSE by Ma/colm Pointon
Electronics and Music 53
THE NEXT DECADE
Final selection of readers' predictions for the future 54
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 69
MARKET PLACE
Constructional Aid, Tapes, and News Briefs 70
BOOK REVIEWS
Selected new books we have received 73
NEWS BRIEFS
Audio Fair-Link-Up--Price Cut 73
READOUT
A selection of readers' letters 74

Our February issue will be published on Friday, January 10, 1975

[^0]

\star ELECTRONIC PIANO KIT
 \star SYNTHESISER KIT
 \star ELECTRONIC ORGAN KITS

There are five superb Electronic Organ kits specially designed for the D-F.Y enthusiast. With the extreme flexibility allowed in design you can build an organ to your requirements.
which will compare with an organ commercially built costing double the price.
*Portable organ with 4 octave keyboard, $\{145 \cdot 29$. . Console organ with 5 octave keyboard, $£ 269 \cdot 90$. \#Console organ with 2×4 octave keyboards and 13 note pedal board, \&470.65. *Console organ with 2×5 octave keyboards and 32 note pedal board, $£ 665$. \star Console organ with 3×5 octave keyboards and 32 note pedal board, $£ 770$. $\star \mathrm{W} / \mathrm{W}$ Sound Synthesiser Kit, £130. \star W/W Touch Sensitive Electronic Piano £100.
All components can be purchased separately, i.e., semiconductor devices. M.O.S. master oscillators, coils. keyboards, pedal boards stop tabs, draw bars key-contacts. etc
Send 50 p for catalogue which includes $5 \times 10 \mathrm{p}$ vouchers or send your own parts list enclosing S.A.E. for quotation.

ELVINS

ELECTRONIC MUSICAL INSTRUMENTS
Designers and component suppliers to the musical industry. 12 Brett Road, Hackney, London, E8 1JP. Tel. 01-986 8455

Phoenix Electronics (Portsmouth) Ltd.
 139-141 Havant Road

Drayton. Portsmouth. Hants PO6 2AA

Full member of AFDEC-the industry's association of franchised electronic component distributors.

Our prices include VAT at the current rate-and carriage on all goods is free
Send for our catalogue and price list-we'll mail that to you free, too.

THIS MONTH'S BARGAIN OFFER!
Small signal silicon transistor kit-5 each BC108, BC178, BC205, BC208, BFY51, ME1120, ME8003. 2N2924, 2N2926, 2N3394, ACY28.-Catalogue value $£ 7$. Bargaln pack PEP2A, £4.90.

Please send your catalogue-free!
Name
Address
PEP/1A

TMK 200 MULTIMETER KIT Build yourself a quality 20000 opv sevemoney. Complete mez . movementsind rotary range melector ready
mounted in mounted in batteries, test prods and instructions. Ranges : $0 / 0.6 / 6 / 30$ / 120/600/1200V D.C. 0/6/30/120 600/1200V A.C. Current:0/0.6/6. 60/600mA. Resistance: $0 / 10$ 100K/1/10 Meg ohms. Decibsis: -20 to +83 db . Size: $90 \times 150 \times$
36 mm

OUR PRICE 17.95 P\&P30p.

AUDIOTRONIC Model ATM1 Top value 1,000
opy pocket multi
 OUR PRICE E3.25 P\&P 15p AUDIOTRONIC Model ATMS
jewrel movemont. case with edgwise ohme edjustmant Ranos: $0-3 / 15 / 150$.
$300 / 1200 \mathrm{AC}$ (2500 opv). $0.6 / 301$ $300 / 800 \mathrm{~V}$ DC,
$(5000 \mathrm{opv})$. $0-300$ (5000 opv). $0-300$
$\mathrm{uA} 0-300 \mathrm{~min}$ DC. UNO-300tiA DC
Resistance: $\times 10$ a
$\times 100,-10$ to $+18 d \mathrm{~B}$ $\times 100 .-10$ to +16 dB.
Supplied with betta
 tent leads and data OUR PRICE E3.95

U4323 MULTIMETER

$500 / 1000$ V DC. $2.5 / 10 / 15 / 250 / 500 / 1000 \mathrm{~V}$ AC. $0.05 /$
$0.6 / 6 / 50 / 500 \mathrm{~mA}$ DC. Resiatance $\times 10$, x $100, \times 1,000$, x 10,000 (50Ω. $500 \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ centre 8 cale $)$ 8intery opersted. Size: $160 \times 97 \times$
40 mm , Supplied in cerrying case com40 mm . Supplied in carry ing case com
plete with test leads.
HIOKI 730X

MODEL 500 30,000 opv with overlosd protact.
tion. Mirror scale. 0/0.5/2.5/10/25 100/250/500 0/2.5/10/25/100/
$250 / 500 / 1000 \mathrm{~V}$ $250 / 500 / 1000 \mathrm{~V}$
AC. $0 / 50 \cup \mathrm{~A} / 5 / 50$ 500 mA . 12 A DC
 0/60k/6 meg/60 DUR PRICE E13.95 Carr. psid Case for above $£ 1.75$

HIOKI 750X VOLT.OHMMILLIAMETER M-

 OUR PRICE E12.50 P\&P 20p

HIOKI MOOEL 700X

OUR PRICE E14.95 P\&P30p
Model HT100B4 MULTIMETER
Overload protected,
shock proof circuiti
9.5 uA Meter with
9.5uA Meter with
mirror scals. Sensivivit
mirror scals. Sensitivity
100 kV . Polarity change
100kV. Polarity change,
switch. Ranges $0.5 / 2.5 /$
$7 . / 50 / 250 / 500 / 1.000$,
switeh. Ranges: 0.012 .5
$7 . / 50 / 250 / 500 / 1,000$
Volte DC. $2.5 / 10 / 50 /$ Volta DC, $2.5 / 10 / 50 /$
$250 / 1,000$ Volts $A C$. $250 / 1,000$ Volts $A C$.
$0 C$ resisterce' $0-20 /$
$200 \mathrm{k} / 2 / 20$ Meg. ohms.
DC current:- $10 / 250 \mathrm{uA} / 2.5 / 25 / 250$
 to +62 dB . Operstes from $2 \times 1.5 \mathrm{~V}$
batteries. Size: $180 \times 134 \times 79 \mathrm{~mm}$.
OURPRICE 17.50 P\&P 40p

MODEL AS. 1000 VOM

100.000 opv .
Mirror scale.

Mirror scale.
protection. 0/3/
protection. 0/3/3/
12/60/120/300/
$600 / 1200 \mathrm{~V}$ DC.
$0 / 6 / 30 / 120 / 300 /$ 600 V AC. $0 / 10 \mu \mathrm{~A}$ $6 / 60 / 300 \mathrm{~mA} /$ $12 \mathrm{Amp} .0 / 2 \mathrm{~K}$ / $200 \mathrm{~K} / 2 \mathrm{M} / 200 \mathrm{Meg}$
OUR PRICE E17.50 PEP 30 p.
 KAMODEN HM720B FETVDM Input impedanca 10
Mepohms. Ranges:-
$0 / 25 / 1 / 2.5 / 1050 /$ $0 / .25 / 1 / 2.5 / 10 / 50 /$
$1000 \mathrm{~V} \mathrm{CC} 0 / 2.5 / 10$
$50 / 250 / 1000 \mathrm{~V}$ AC. 50/250/1000V AC.
$0 / 25 \mathrm{~A} / 2.5 / 25 / 250$ mA5/5. $/ 5 / 500 \mathrm{k} / 5$
$0 / 5 \mathrm{k} / 50 \mathrm{Mmohms}$
500 M OUR PRICE
£21.00 P \& P 40p KAMODEN 360 MULTIMETER High samsitivity.

5verload
ovi, Rar
2.5/10//
1000 V
$50 / 250 /$
AC. Cur
0.01 mA
1000 V DC. $5 / 10$
$50 / 250 / 1000 \mathrm{~V}$ C. Current: $0.01 \mathrm{~mA} / 0,5 / 5$ Resintance: $0.1 /$
$/ 10 / 100$ ohms/ $1 / 10 / 100 \mathrm{k}$ ohms/ 10/100M ohms. +62 dB, Battery operated. Size: $180 \times$
$140 \times 8 \mathrm{Bmm}$. Suppliad complete with test leads etc.
OUR PRICE 17.50 P \& P40p TMK MOOEL 117 FET
ELECTRONIC VOLTMETER Battery operated.
11 Meg input, 26 ranges. Large " 4\%', mirror se ale. Size: $149 \times 117 \times 60 \mathrm{~mm}$.
$0.3-12000 \mathrm{DC}$
$3-300 \mathrm{~V}$ RS AC. 8-800V P-P. DC current 0.12-
12 mA . Resistence

to 2000MOthns. Decibels: -20 to and instructions
 complete with leads

TMK 100K LAB TESTER

 100,000 opv. 6%scale. Buzzer
 AC. $3 / 10 / 50 / 250 /$
$500 / 1000 \mathrm{DC}$.

currint $10 / 100$ a $10 / 100 / 2.5 / 10 \mathrm{~A}$. Resigtance

$1 / 100 / 2.5 / 10 \mathrm{~A}$ - Resistance:
$1 \mathrm{k} / 10 \mathrm{k} / 10 \mathrm{k} / 10 \mathrm{Med} / 100$ Mer ohms.
Oecibels: -10 to +49 dB , Plastic cass Oect bas: -10 to *49dB, Plastic casgo
with carying handia. Size: 190×172
OUR PRICE E19.95 P\&P 30p
370WTR MULTIMETER
Features AC current

OUR PBICE £19.95 P\&P 30p KAMODEN 72.200 Multitester High sansitivity
tarter, 200,000 opy
 Rangest $0 / .06 /$
$3 / 30 / 120 / 600 /$ $1200 \mathrm{VOC}, 0 / 3$
$12 / 60 / 300 / 11200$ VAC. $0 / 64 \mathrm{~A} /$
$1.2 \mathrm{~mA} / 120 \mathrm{~mA}$
/ $1.2 \mathrm{~mA} / 12 \mathrm{mmA}$
$600 \mathrm{~mA} / 12 A D C$
$0 / 12 A A C-20$ $0 / 12 A$ AC, -20 to
$+63 \mathrm{~dB}, 0 / 2 \mathrm{~N} / 200 \mathrm{~K} /$
$2 \mathrm{Meg} / 200 \mathrm{M}$
OUR PRICE £22.50 P\&P 30p

04317 MULTIMETER

High wensit ivity
instrument for fiel and laboratory work
and
Knife eige pointer
 86 mm . mir por teale. Overload prote
fangas: 100 mV
Ranjas: $100 / 5 / 5 / 50 / 100 / 250 / 500 / 1000$ $\mathrm{VDC}, 0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 \mathrm{~J}$ 5001000 V AC. Current: $50 \mathrm{UA} / 0.5 /$ 1/5/10/50/250mA/1/5A DC. $0.25 /$
$0.5 / 1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 A A C$. Reisismep: $0.5 / 10 / 100 / 200$ ohms $1 / 3 /$ $30 / 300 \mathrm{k}$ ohms. Decibels: -5 to +10 dB
Betiery opersted. Size: 210×115 Bettery opproted. Size: $210 \times 115 \times$
90 mm . Supplied in carry ing case com$90 \mathrm{mm}$. Supplied
plete with lands.
OUR PRICE E16.50

MODEL C720
30,000 opv DC
15,000 opv AC.
$6 / 3 / 15 / 60 / 300 / 600 /$ $6 / 3 / 15 / 60 / 30 / 60$ V.
$1200 \mathrm{~V} . \mathrm{DC}^{2} .30$ 120/600/1200 V OCResistance $\times 1$. (50 O centre acala) OC Current 30uA/ $3 / 30 / 600 \mathrm{~mA}$. -20 to +63 dB OUR PRICE E8.95 P \& P 30p MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity 330
Ohms/Vol $A C$ Ond DC. Accuracy 0.5%
DC. 1% AC. Scall longth:
165 mm.
$0 / 300 / 750 \mathrm{~A}$ 30/75/150/300/ $750 \mathrm{~mA} / 1.5 / 3 /$
$7.5 A$ DC. $0 / 3 /$
$7.5 / 15 / 30 / 75 /$
$150 / 300 / 750 \mathrm{~mA}$
1.5/3/7.5A AC. $30 / 75 / 150 / 300 / 750 \mathrm{~V}$ OC. $0 / 750 \mathrm{mV} /$ 1.5/3 /7.5/15/30/75/150/300/750V AC. Automatic cut out device. Supp-

- lied complete with test lesds, manual and test cortificatea.
DUR PRICE E52.00 P\&P 50p MODEL AF. 105 VOM 50,000 opv. M
scale. Meter protection.
$0 / 3 / 3 / 12 / 80 / 120 /$ 300/600/1200V DC 0/6/30/120/.
300/600/1200V DC. $0 / 30 \mu \mathrm{~A} / \mathrm{B} /$
$60 / 300 \mathrm{~mA}$
12 Amp. 0/101
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$
Mieg Ohms.
OUR PRICE E12.50 PEP 30p. LB3 TRANSISTOR TESTER Tests ICD and B. from 9V battery.
instructions.
OUR PRICE
E3.95 P\&P 20p
LB4 TRANSISTOR TESTER
Tests PNP or NPN
transistors. Audio tramsitzors. Audio
indication. Oper ateas indication. Oper ates
on two 1.5 V
batteries. Complete
with instructions ente.
OUR PRICE
£4.50 P\&P 20
KAMOOEN TT35
TRANSISTOR TESTER High quality
intrument to instrument to test reversa lack
current and DC
current Ampli. current. Ampli. fication fector of
NPN, PNP, diodes, transistors, SCR's Clapr seale mete Operatel from internel batteries. ingructions, leads
OUR PRICE E17.50 P \& P 40p
U4341 Multimeter \&
Transistor Tester 27 ranges. $16,700 \mathrm{opv}$ Overlosd protected.
Anges $0.3 / 1.5 / 6 /$. 3nnges: $0.3 / 1.6 / 90 / 300 \mathrm{~V}$
DC. $1.5 / 7.5 / 30 / 1501$ DC. $1.5 / 7.5 / 30 / 150 /$
$300 / 750 \mathrm{~V} \mathrm{AC}$ Current: $0.06 / 0,8$ $6 / 60 / 600 \mathrm{~mA}$ DC. 0.3/3/30/300mA

Rasigtance: $0.08 / 200 \mathrm{k}$ ohme/2 Mohms.
$0.6 / 2 / 6 / 20 / 60 / 200 \mathrm{k}$ Betrely operated. Supplied complete with probes, lesds and ntoel carrying OUR PRICE E10.50 PEP 30p S100TR MULTIMETER
TRANSISTOR TESTER
100,000opv. Mirror
protection. 0/0.12/
$0.6 / 3 / 12 / 30 / 120 /$
600 V DC. $0 / 6 / 30 /$
$120 / 600 \mathrm{~V}$ AC.
$0 / 12 / 600 \mathrm{UA} / 12 /$
$300 \mathrm{~mA} / 6 / 12 \mathrm{DC}$
$0 / 10 \mathrm{k} / 1 \mathrm{Meg}$ /

100 Meg.
-20 to +50 dB

Transistor tertar mesaures Alphe, Bet and ICO. Complete with insituctions.
OUR PRICE $£ 19.9$

Also see following pages

\square STMES ST., BRANCHES or order by post.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC.
Over 200 ranges in stock-other ranges to order. Quantity discounts available. Send for fully illustrated brochure.

CALL IMTO YOUR NEAREST
 LASKYS BRAMCH OR SEND COUPON BELOW
 FOR MEW 32 PAGE
 HI-FI PRICE LIST

CENTRAL LONDON	
481 OXFORD ST.	01-4938641
3 LISLE ST. WC2	$01-4378204$
34 LISLE ST. WC2	$01-379155$
118 EDGWARE RD. W2	01-7239789
193 EDGWARE RD. W2	$01-7336211$
207 EDGWARE RD. W2	$01-7333271$
311 EDGWARE RD. W2	$01-2620387$
. 346 edoware ro. W2	$01-7234453$
382 EogWARE RD. W2	$01-7234194$
109 FLEET ST. ECA	01.3535812
152/3 FLEET ST. EC4	$01-3332833$
10 уоttemham ¢. RD.	01-637 2232
27 tottenham cr. RD.	01-636 3715
33 тотtenham ct. nd.	01-636 2605
	$01-636045$
257/8 TOTTENHAM C. RD.	$01-5800670$
ESSEX	
${ }^{66}$ SOUTH ST. ROMFORD	0218
205/206 CHURCHILL WES YICTORIA CIRCUS, SOUTH	0702612241
KENT	
53/57 CAMDEN RD., TUMBRIDGE WELLS $\begin{aligned} & \text { 0892-23242 }\end{aligned}$	
LEICESTERSHIRE	

45 MARKET PLACE, LEICESTER $0533-53747$
 NORTHAMPTON 0604-35753

STAFFORDSHIRE	
30 WULFRUM WAY, WOLYERHAMPTON	
SURREY	
1046 WHITGIFT CENTRE, CROYDON	
27 EDEN ST. KINGSTON	a1-546 7nat
.35/40 EDEN ST.. KIMGSTON	$01-5461271$
32 HILL ST. RICHMOMO	01.9481441
WARYICKSHIRE	
116 CORPORATION ST. BIRMINGHAM02I-216, 3503	
ALL BRANCHES OPEN FROM 9am to 6pm MON. TO SAT	

OUR CUSTOMER
SERVICES DIVISION at head office will answer all your enquiries just ring 01-200 1321

EXPORT Personal exports arranged tor overseas visi
Goods specially packed. insured and despatched to all
parts of the world at minimum cost exclusive of VAT. Payment by bank transfer,
certified cheque, postal order or money order in any

NO DEPOSIT TERMS

 available on most goods for personal callersChEDUES TO THE VALUE OF G3Q.
ACCEPTED FRD
ACCEPTED FRDM PERSONAL SHOPPERS
AMD FOR AMOUNTS IN EXCESS OF CH AMD FOR AMOUNTS IN EXCESS OF CSE. bamkers dratts accepteg.
All pricas corract at $6 / 11 / 74$ but A member of inge
Autiotrontic Groug of Compantes

NOW AVAILABLE IN THE U.K! CHINAGLIA

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS

One example from the big range of sophisticated instruments

CORTINA MINOR

33 RANGE POCKET MULTIMETER

- SENSITIVITY 20,000 $/$ VOLT (D.C.). 4,000 R/VOLT (A.C.).
- ROBUST DIODE PROTECTED PRECISION MOVEMENT. 33 RANGES D.C. VOLTS O-100mV $1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}$,
$500 \mathrm{~V}, 1,500 \mathrm{~V}$. D.C. CURRENT 0 -50, $5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}$, 2.5 A . A.C. VOLTS, $0-7.5 \mathrm{~V}, 25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}$, $1,500 \mathrm{~V}$, A.C. CURRENT $0-25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 A, 12.5 A$, dB RANGES, -10 to +69. AF HOLTS FANG CAPACITANCESISHNCE RANGES IOK Ω, IOMO F.S.D. CAPACITANCE RANGES ACCURACYB.
CURRENT, 2.5%. A.C. VOLTAGEAND CULTAGE AND
- RESISTANĊE RANGES POWERED BY INTERNAL BATTERIES.
- COMPACT SIZE: $150 \times 85 \times 40 \mathrm{~mm} .350 \mathrm{gr}$
- CLEARLY CALIBRATED DIAL WITH ANTI-PARALLAX MIRROR.
- PROFESSIONAL QUALITY COMPONENTS EMPLOYED THROUGHOUT
ATER SALES SERVED FOR 12 MONTHS.
SUPPLIED WITH ADDITIONAL SHOCKPITIES
CARRYING CASE TWO HIGHLY INSUOF PLASTICS LEADS AND INSTRUCTION BOOKLET.
- SPECIAL 30 kV PROBE FOR D.C. MEASUREMENT AVAILABLE AS AN OPTIONAL EXTRA.

METER PRICE $£ 15.40$ (p \& p 80p) PROBE $£ 8.80$ inclusive of V.A.T.
for further information on the "Cortina Minor" or other instruments from the exciting Chinaglia range write or telephone :-

19 Mulberry Walk, London S.W.3.
Telephone 01-352 1897
TRADE ENQUIRIES WELCOMED

parts and components
resistors, capacitors, diodes, eransistors, etc. Rigid plastic units interlock rogether in vertical and horizontal combinations. Transparent plastic drawers have label slots. ID and 20 have space dividers. Build up any size cabinet for wall, bench or table top.

BUY AT TRADE PRICES! SINGLE UNITS (ID) (5ins - 2i九ins x 2눈오). $\angle 2$ DOZEN.
DOUBLE UNITS (2D) (5ins $\because 4 \frac{1}{2}$ ins \times

TREBLE (3D) 43.50 for 8.
DOUBLE TREBLE 2 drawers, in one outer case (6D2), 44.90 for 8.
EXTRA LARGE SIZE (6DI) 4450 for 8.
PLUS QUANTITY DISCOUNTS! Orders 615 and over DEDUCT 5\% in the f Orders $£ 30$ and over. DEDUCT $7 \frac{1}{2} \%$ in the $£$ PACKING/POSTAGE/CARRIAGE: Add 40p to all orders under $f 10$. Orders $£ 10$ and over packing/postage/carriage free.
QUOTATIONS FOR LARGER QUANTITIES Ploses add 8% V.A.T. to total remittance

Filan Dlline (Dept.PE1), 124 Crickiewood Tel. $01-4504844$

OSMABET LTD. We make transtormers

 AUTO TRAISFORMERS, 110/200/280/240V $30 \mathrm{~W}, 81.70$; $50 \mathrm{~W}, 88 \cdot 40 ; 75 \mathrm{~W}, \mathrm{E2.85}$; 100 W , 88.80 $500 \mathrm{~W}, 810.80 ; 750 \mathrm{~W}, 814 \cdot 25 ; 1000 \mathrm{~W}, 218 \cdot 00$, etc LOW VOLTAGE TRANSFORMERSPrim. 200/240V a.c. $6 \cdot 3 \mathrm{~V}$ 1.5A, 21-20; 3A, 81.50 ; $6 \mathrm{~A}, 22.55 ; 12 \mathrm{~V} 1 \cdot 5 \mathrm{~A}, 21.50 ; 3 \mathrm{~A}, 4 \mathrm{~s} .55 ; 6 \mathrm{ACT}$, 8.40 . $18.4 \cdot \mathrm{JA}$ CT, 22.55 ; 24 V '1.5A CT, $22.55 ; 3 \mathrm{~A} \mathrm{CT}$ 28.46; 5A, $24.80 ; 8 \mathrm{~A}, 87.35 ; 12 \mathrm{~A}, 210-85 ; 40 \mathrm{~V} 3 \mathrm{~A}$ CT, $84 \cdot 50$; 50 V 6A CT, $813 \cdot 50$; $25 \mathrm{~V} \cdot 2 \mathrm{~A}+2 \overline{5} \mathrm{~V} \cdot 2 \mathrm{~A}$, 84.90; 12V 4A + 10V 4A, 84.90 .

LT TRANSFORMERS TAPPED 8EC. Prim. 200/240V $0-10-12-14-16-18 \mathrm{~V}$ $\begin{array}{lllll}0-12-15-20-24-30 V & 2 A, & 88.40 ; & 4 \mathrm{~A}, & 24.50 ; \\ 0-5-20-30-40-60 \mathrm{~V} & 1 \mathrm{~A} & 88.40 ; & 2 \mathrm{~A}, & 84.50 \text {; }\end{array}$ $0-5-20-30-40-60 \mathrm{~V} \quad 1 \mathrm{~A}, \mathrm{ES}-40: 2 \mathrm{~A}, \quad 24 \cdot 50$;
$0-40-50-60-80-90-100-110 \mathrm{~V} 1 \mathrm{~A}, ~ 44.90$. MIDGET RECTIFIER TRANBFORMERS.
For FW rect. 200/240V a.c. $9-0-9 \mathrm{~V} 0.3 \mathrm{~A} ; 12-0-12 \mathrm{~V}$ For FW rect. $200 / 240 \mathrm{~V}$ a.c. $9-0-9 \mathrm{~V} 0 \cdot 3 \mathrm{~A} ; 12-0-12 \mathrm{~V}$
$0.25 \mathrm{~A}: 20-0-20 \mathrm{~V} 0.15 \mathrm{~A} .6 \mathrm{~V} 0-5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A}: 9 \mathrm{~V}$ $0.25 \mathrm{~A} ; 20-0-20 \mathrm{~V} 0.15 \mathrm{~A} ; 6 \mathrm{~V} 0.5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A} ; 9 \mathrm{~V}$
$0.35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A}: 12 \mathrm{~V} 0.20 \mathrm{~A}+12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20 \mathrm{~V} 0.15 \mathrm{~A}+12 \mathrm{~V} 0 \cdot 15 \mathrm{~A}$ at $\mathrm{fl} \cdot 65$ each; $9-0-9 \mathrm{~V} 1 \mathrm{~A}$, s1.35; $12-0-12 \mathrm{~V}$ IA or $20-0-20 \mathrm{~V} 0.75 \mathrm{~A}$: 1.50 each. MAINS TRANSFORMERS
Prim. 200/240V a.c. TX6 sec., $425-0-425500 \mathrm{Ma}$ 6.3 V CT $6 \mathrm{~A}, 6-3 \mathrm{~V}$ CT 6A, $0-5-6.3 \mathrm{~V}, 3 \mathrm{~A}, 216.50$ TX1 $425-0-425 \mathrm{~V} 250 \mathrm{Ma}, 6 \cdot 3 \mathrm{~V}$ CT $4 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ CT 4 A $0-5-6.3 V$ 3A, 29.75 ; MT3 Prim. $0-110-240 \mathrm{~V}$ sec $250 \mathrm{~V} 100 \mathrm{Ma}, 6.3 \mathrm{~V} 2 \mathrm{~A}, \mathrm{E} / \mathrm{B}, 22.70$.
O/P TRANSFORMERS FOR POWER AMPLIFIERS P.P. sec, tapped 3-8-150hms, A-A 6.6 K a 30 W 8.70; A-A $3 \mathrm{~K} \Omega 50 \mathrm{~W}$, $29 \cdot 00 ; 100 \mathrm{~W}$ (EL34 KT88 etc.), 515.75 ; tapped Multi $0 / \mathrm{P} 10 \mathrm{~W}$ \&3.
G,E.C. MANDAL OP POWER AMPLIFIERS Covering valve amplifiers of 30 W to 400 W 35 p . LOUDGPEAKERS FOR AMPLIFIERS
BAKER 25W, $87.60 ; 35 \mathrm{~W}, 88.40$; HI-FI Major Module 20 W w/tweeter Xover, $811 \cdot 80$; Baker speaker Hists; FANE; 50W, $210.50 ; 60 \mathrm{~W}$, $\mathrm{E12-50}$; HI-F speakers, EMI bass $13 \times \sin$, 28.00 ; 15 in 8,215 $7 \times 4 \ln 15 \Omega, 81.60 ; 8 \times 5 \ln 3,8,15,25$ or 80 @ L1.75 each
$2 \ln 8,16$ or 750 , 2 in 8 or 250 , 3 in $3,8,25$ or $35 \Omega, 3$ in 8,15 or $80 \Omega 900$ each; sin 3,8 or 25Ω 5×3 in 3 or 8Ω, $21 \cdot 0 \mathbf{0} ; 7 \times 4$ in 3 or $1 \overline{0} \Omega, 6 \frac{1}{2}$ in 3Ω, $21-26 ; 10 \times 6 \operatorname{in} 3 \Omega, 21.50$.
SPEAKER MATCEING TRANSFORMERS 12W 3 to 8 or 15Ω up or down 81.80 .
"IHSTANT" BULK TAPE/CASSETTE ERABER Instant erasure, any diameter tape spools, cabset tes, demagnetises tape heads. 200/240V a.c. 88.25. Brand new, Smiths. Built-in gear box, $\cong \mathrm{RPH}$ $75 p$ each.

Carriage and VAT extra on all ordera S.A.E. ENQUIRIES-LISTS, MAIL ORDER ONLY 46 Kenilworth Rond, Edgware, Middx. HA8 8 YG Tel. 01-958 9314

SUPERSOUND 13 HI-FI MONO

 AMPLIFIER amplifier. Brand new components throughout. componente throughout. plus 2 power out-put transistorain push-pull. Full wave rectifica. tion. Output approx.13 wates r.m.s. into ohms. Frequency response 12 Hz . 30 KHz
+3 db , Fully Integrated $\pm 3 \mathrm{db}$, Fully Int pre-amplitier stage with Treble cut controls. Suitable for $8-15$ obm speakers.
Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready bullt and teated, with knobs, escutcheon panel, Input and out put

DE LUXE STEREO AMPLIFIER
 A.C. maing
$200-240 \mathrm{y}$
$\mathrm{U}=1 \mathrm{n}$ heavy duty fully isola. ted mains
transforms er with full er with tull
wave rectifleation
giving adelie line-up:-: \times gCL 86 Triode Pentodes. $1 \times$ Fz80 as rectifler. Two dual potentiometers are provjded for bass and treble control, giving bass and treble boost and cut. A dual volume control ls used. Balance of the left and right hand channels can be adjusted by means of a sepaInput senaitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peak output of 4 watts per channel (8 watts mono), into 3 ohm speakers. Full uegative feedback in a carefully calculated
circuit, allows high volume levela to be used with negligible distortion. Supplied complete with knobs, chassis size $11^{\prime \prime} w \times 4{ }^{\prime \prime} \mathrm{d}$. Overall height including valven \bar{s}°. Ready
built and tested to a high standard. $10-22$. P. \& P. 50 p . POWER SUPPLY UNIT $200 / 240 v$. A.C. Input. Four switched 9 ully smoothed D.C. output
71 v . and 9 v , and 12 v . at 1 amp on lead.
Flited Insulated output terminals and pil
Hammer finlah metal case overall size $6^{\prime \prime} \times 3^{\prime \prime} \times$ indicat Suitable for Transintor Radios, Tape Recorders, Ampliflers etc. etc. Ready
bullt and teated. Price \&4.90. P. \& P. 35 P.
VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 54 in . Wide. Our price $£ 1.10$ yd. lengt
per yd. (min. 1 yd.). $8 . A . E$. for samples.

HARVERSON'S SUPER MONO AMPLIPIER A super quality gram amplifier uning a double wound fully pentode valve as audio amplifter and power output stage. Impedance 3 ohms. Output approx. 3.5 watts. Volume and tone controls. Chassta size only 71 In . Wide
$\times 3 \mathrm{in}$. deep $\times 6 \mathrm{in}$, high overall. AC malns $200 / 240 \mathrm{v}$, 8upplied absolutely Brand New completely wired and tested with good quality output transformer. $¢ 3.78$
P. \& P. 40p. BARGAIN PRICE
BRAND NEW MULTI-RATIO MAINS TRANSFORMERS. Giving 13 siternatives. Primary: $0-210-240 \mathrm{v}$. Secondary conibinations $0-5-10-15-20-25-30-35-40-60 \mathrm{v}$. half wave at 1 amp. or $10-0-10,20-0-20,30-0-30 \mathrm{x}$. at
2 amps fuils wave. Size 3 in . long $\times 3$ in. wide $\times 3$ in. 2 amps fuils wave. Size 3in. long
deep. Price $42.81, P$ \& P. 40 p .
MAINS TRANSFORMER. FOF (ransistor power dupplies Pro. 200/240v. Sec. 9-0 9 at 500 mA . E1.10. P. \& P. 25 p Pri. 200/240v. Sec. $12-0-12$ at 1 amp . 21.g2. P. \&P. 26 p .
Pri. 200/240v. Sec. $10-0-10 \mathrm{at} 2 \mathrm{amp}$. 21.82. P. $\$$ P. 35 p .
HI-GRADE COPPER LAMLSATE BOARD8
$8^{\prime \prime} \times 6^{*}$. Five for 60p plus 30p P. \& P
GENERAL PURPOSE BIGR STABEITY
TRANSISTOR PRE-AMPLIFIER For P.U. Tape, Mike, Guitar, etc. And suitable for use with valve or transistor equipment 9-18v:
battery or from H.T IIne $200 / 300 \mathrm{v}$. Frequency response $16 \mathrm{~Hz}_{2}-20 \mathrm{KHz}$, Galn 26 dB . Solid encap. sulation size $11^{\prime \prime} \times 1 f^{\prime \prime} \times{ }^{\prime \prime}$. Brand new complete
w!th instructions. Price 98 p . P. \& \mathbf{P}. 15p.

EANDEOOK OF TRANSISTOR EQUTVS. AND SUBS. A must for servicerten and home constructors. Including
many 1000^{\prime} e of British, U.S.A. European and Japanese transistors. ONLY 40p. Post 5p.
3 Roference Encjclopedial Ior Electronic Engineera and Designers, covering between them transistor character istic, diode and tranalstor equivalents. Many thousands of up to date European types Insted.
Dlode Equivalent 80p. Traneistor Equivalents 90p All three together $22 \cdot 60$.
NEW ISSUE
Thyristor, Triac, Diac etc. encyclopedias 95p. Post Free.
8 pole 3 way 2 bank low loss Yaxley type switches it
harversonic malns operated SOLID STATE STEREO FM TUNER

Enjoy Fabulous Stereo Radio at this Low Introductory Price! Designed and styledto match our $10+10$ amplifler but will sult any other standard stereo amplifier The design incorporates the very latest eircuitry Automatic frequency control to "lock on" atation and prevent drift. IC stereo decoder for maximums atereo separation. I.E.D. for atereo beacon indicator. Nominal output of tuner 100 mV , Approximatesize 12 inn wide x gin deep, by $2 \neq$ in high. Supplled resdy built, fully Price 22l.60. Post and Packing 50p. STEREO-DECODER SIZE $\mathbf{2}^{\prime \prime} \times \mathbf{3}^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ Ready but. $20.560 \mathrm{~m}{ }^{\text {B }}$ for 9.16 V , neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted required. Full details and structions (inclusive of hinta and tips) stereo beacon light if required 40 p

PRECISION ENGINEERED PLINTHS

Beautifully constructed in heavy gauge "Coloreoat" plastic coated steel. Resonance free. Designed to take SP20. II and III, SL65B, AT60 etc. for B. B.R. C109 SP20. II and III, SL65B, AT60 etc. for B.S.R. C109,
C120, A21 etc. Black leatherette finish. Size $121^{\circ} \times \mathbf{x}$ $141^{\prime \prime} \times 3 \frac{1}{2}^{\circ}$ high (approx. 71° high, including rigid
smoked acrylic cover). NOW ONLY \&4.78. P. \& P. 70 p . LATEST ACOS GP91/1SC mono compatible cs ritidge with t/o stylus for LP/EP/78. Universal mounting bracket. SONOTONE PTAHCCOMPATIRLE STEREO CARTRIDGE T/O at ylus Diamond Stereo LP and Sapphire 78. ONLY £2.27. P. \& P. 10 p . Also available fited with tain Diamond T/O stylus for stereo LP. £2.78. P. ※PATEPR LATEST RONETTE T/O STEREO/COMPATIBL LATEST RONETTE T/C MONO COMPATIBLE CABTRIDGE for playing EP/LP/78 mono or stereo on mono equipment. Only si.47. P. \& P. 10p. A top quality record player amplifier employing lieavy duty double wound mains transformer, ECC83, EL84, and rectifier. Separate Bass, Treble and Volume controls. Complete with output transiormer matched for 3 ohm speaker. Bize 7 in wide $\times 3$ 3in deep $\times 6 i n \mathrm{hi}$
built and tested. PRICE $£ 4 \cdot \theta 1$. P. \& P .50 p . ALSO AVAILABLE mounted on board with output tratisiormer and speaker. PRICE $£ 6 \cdot 20$. P. \& P. 60 p .

HI-FI LOUDSPEAKER SYSTEMS

Beautifully made teak finiah enclosure with most attractive Tygan-Vynalr front. Size $16^{\circ} \mathrm{high} \times 10 \frac{1}{\circ}^{\circ}$ wide $\times 6^{\circ}$ deep. Fitted with E.M.I. Ceramic Magriet $13^{\circ} \times 8^{\circ}$ bass unit, two H.F. tweeter unita and
crosover. Maximuma power handling 10 watts. crosiover. Maximum power handing
Available 3 or 8 or 15 ohins impedance.
Carr. URP PRICE ©9.10. Carr. 75p Cabinet Available Separately £4-86, Carr. 65 p. Also avallable in 8 ohms with EMF $13^{\circ} \times 8^{\circ}$ bass speaker with paraitic tweeter $£ 7 \cdot 60$.
LOUDSPEAKER BARGAINS
5in. 3 ohm 21.25, P. \& P. $15 p$. $7 \times 4 \mathrm{in} .3 \mathrm{ohm} 21.40$. P. \& P. $20 \mathrm{p} .10 \times 6 \mathrm{in}$. 3 or 15 ohm 22.10 , P. \& P. 30p. E.M.I. $8 \times \times \ln .3$ ohm with high dux tiagnet \&1.70, P. \& P. 20p. E.M.I. 131×81 n. with high flux ceramic magnet with
parasitic tweeter 3,8 or 15 ohm 43.50 , \mathbf{P}. \mathbf{P}. $\mathbf{3 0 p}$.
 E.3.I. $13 \times 8 \mathrm{in} \mathrm{3,8}$ or 15 ohm with two inb.
and crossover network 84.65, P. \& P. 30 p . and crossover network $44-65$, P. \&. P. 30 p .
E.M.I.tweeter. Approx. $31^{\prime \prime}$. Available 3 or 15 ohns E.M. +20 . P. $\& P$.
ERAND NEW. Bakers Loudspeakers at aubstantlal disERAND NEW. Bakers Loudspeakers at aubstantial dis-
counts. 12 in . $15 \mathrm{w} . \mathrm{H} / \mathrm{D}$ Speakers, 3,8 or 15 ohms. State which. Current production by Well-known British maker. Now uith Hiflux ceramic ferrobar magnet
assembly $87 \cdot 50$. Guitar models: $25 w .87 .50$. 35 w. $£ 8.50$. $\frac{\text { P. \& P. } 45 \text { p. }}{\text { 12in. "RA" TWIN CONE LOUDSPEAKER. } 10 \text { watt }}$ peak handling. 3 or 8 or 15 ohm (atate which) 22.70 . "POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMAC SPEAKER
Size $\left.111^{\prime \prime} \times 14 H^{\prime \prime} \times 1\right\}^{\prime \prime}$ deep. Weight 19 oz , Power handilng 20 W r-m.s. (40 W peak). Impedance 8 ohm only. Responae $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, baffle. Send B.A.E. for full details. Only $£ 6.48$ each. baffle. Send
P. \& P. 34p.

SPECLAL BARGAD OPFER!

Limited number of BSR Cli23 Auto Changer De Luxe with lightwelght tubular arta and stereo cartridge.
HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifter Kit. Usen 14 transistora including Silicon Transistors in the first flve tages on each channel resulting in even louer noise Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Cryatal cartridgea. Y'ery almple to modify to suit magnetic cartridge-Instructions included Outputntage for any speakers from 8 to 15 ohms. Compact design, all parts aupplied including drilled metal work, high quality ready drllled printed circuit board with component identincation cleariy marked, smart brushed wire, solder nuts, bolts-no extras to buy, Slople step ire, solder, nuts, bols-no extras to buy. slmple step amplifier to be proud of. Briet specitcations: Powe output: 14 watts r.m.m. per chaninel into 5 ohms. Fre quency reaponse $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Sensitivity; better than 80 mv int ${ }^{\text {I }} 1 \mathrm{M} \Omega$. Full power bandwidth: $\pm 3 \mathrm{~dB}$ $12-15,000 \mathrm{~Hz}$. Bass, buost approx to $\pm 12 \mathrm{~dB}$. Treble cut. approx. to - 16 dB . Negative feedback 18 dB over main amp. Power requirements 35 v . at 1.0 amp Overall Size $12^{\circ} w, \times 8^{\circ} \mathrm{d} . \times 28^{\circ} \mathrm{h}$.
Fully detailed 7 puge construction hanual and part list free with kit or aend 18 p plus large $8 . \mathrm{A} . \mathrm{E}$. P . 30 P
AMPLIFIER K1T Magnet ic input components 33p extra) CABINET ACK KK (Post Free if all units purchased at same time) Also available ready built and teated $£ 24.80$. Post Free Note: The above amplifier is sultable for feeding two mona and willino inpute (e.g. mike, radio, fein recordie for'med and willthen provide mixity and foding
iun pouered H i-Fi Diseotheque use, ete

3-VALVE AUDIO
AMPLIFIER EA34 MK II Deaigned for Hi-Fi reproduc tion of records. A.C. Malos operation. Ready built on plated heavy gauge metal
 ELR4, Ez80 valves. Heavy duty, double wound main former matched output transpeaker. Separate volume formier matched for 3 ohn wide range tone controls giving bass and treble lift and panel can be detached and leads extended for remote mounting of controls. Conglete with knobs, valves, etc wired and tented for only $\mathbf{2 5} 90$. P. A. P. 45p HSL "FOUR" AMPLIFIER KIT, Similar in appearance to HA34 sbove but employs entirely different and advanced circuitry. Complete set of parta, etc. $\mathbf{2 4 . 9 2}$ P. s P. 45 p .

10/14 WATT HI-FI AMPLIFIER KIT monsural amplifler with an output o 14 watts from 2 EL84s in push-pull super reproduction of both music and speech, with negligible hum. Scparate inputa for mike and gram allow record
 match $3-15 \Omega$ speaker and 2 independent polume cont rols, and separate base and treble controly are provided giving good lift and cut. Valve line-up 2 EL84s, ECCB3. EF86 and EZ80 rectifier. Simple ingtruetion bookle ON X 8AE (Free with parta). All parts sold separately ONLY 29.80. P. \& P. 60p. Also available ready built and
tested 212.75 , P. \& $\mathbf{~ 7 0 p}$.

HI-FI STEREO HEADPHONES

Adjustable headband with comfortable aexifomm ear plug. Frequency fted with standard stereo tin jack impedance 8-16 ohme. Easlly converted for Mono PRTCE \&8-24. P. \& P. 25p.

PRICES INCLUDE VAT AT 8\%

PLEASE NOTE:P. \& P. CEARGES QUOTED APPLY TO U.E. ONLY P. \& P. ON OVERS
CHARGED EXTRA

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS Prim. $120 / 240 \mathrm{~V}$. Sec $120 / 240 \mathrm{~V}$ Centre Tapped and Screened ALSO AVAILABLE WITH $115 / 120 \mathrm{~V}$ SEC. WINDING

CASED AUTO TRANSFORMERS
115 V mains lead input and U.S.A. 2 -pin outlers, 20VA $\mathbf{E 2} \cdot 85, \mathrm{P}$ \& P 38 p . $500 \mathrm{VA} 69.50, \mathrm{P} \& \mathrm{P}$ B0p. 1000 VA \& 15.92 , via, B.R.S.
PRIMAR VOLTAGE SERIES (ISOLATED)
200-250 VOLTS 12 ANOIOR 24 YOL)
PRIMARY $200-250$ VOLTS 12 AND/OR 24 VOLT RANGE
Ref. Amps. Weight Size cm . Secondory Windings P \& Ref. Amps. Weighe Size cm. Secondary Windings P \& $P \cdot$
No. 12 V 24 V ib ox $\begin{array}{ll}\text { No. } 12 V & 24 V \\ 111 & 0.5 \\ 0.25\end{array}$ $\begin{array}{llll}111 & 0.5 & 0.25 \\ 213 & 1.0 & 0.5\end{array}$

18 70 108
 \section*{116 17

} | 1 |
| :--- |
| 30 |
| 38 |
| 38 |
| 38 |
| 45 |
| 53 |
| 53 |
| 60 |
| 67 |
| 73 |

ff. Amps. Weight Sizecm. 60 VÖLT RAANGE Secondory Tops P\&P

PLEASE ADD 8\% FOR V.A.T.
BARRII electronics
3, THE MINORIES, LONDON ECBN 1BJ
TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIÓNS ALDGATE \& ALDGATE EAST

NEW PE SCORPIO Mk. 2

Following the phenomenally successful Scorpio Capacitor-Discharge Electronic Ignition system introduced in 1972 and proved by many thousands of satisfied motorists, we are happy to announce availability of all parts for the PE SCORPIO Mk. 2-

* Now with added R.F.I. suppression.
* Fully machined and painted die-cast case with AMP termination connector block.
* Custom wound transformer
* NOW AVAILABLE IN 6V. and 12 V .
* Suitable for all types of Cars, Boats, Go-Karts, etc
* Promotes easier starting-even under sub-zero condicions.
- Improves acceleration, gives better high speed performance and quicker engine warm up.
- Eliminates excessive contact breaker burning and pitting.
- PROMOTES FUEL ECONOMY.

Construction of the unit can easily be completed in an eveninginstallation should take about half an hour. A complete complement of components is supplied with each kit together with ready drilled, roller tinned professional quality fibreglass printed circuit board. \rightarrow Uses original plugs, poines and coil.- No special parts or extras \rightarrow Uses original plugs, points and coil.-No special parts or extras
required.
(Case size: $7 \frac{1}{2}$ in $\times 4 \frac{1}{2}$ in $\times 2$ in)

* All components available separately.-S.A.E. with enquiries.
- Construction manual available separately 25 p.

Cost $\mathbf{f 1 1} \cdot 78$ incl. carr. and ins. or ready built and tested $£ 14.49$
Conversion kit from Mk. I to Mk. 2. For conseructors already possessing Mk. I Kits.-Miniature P.C. assembly $\mathbf{f l}$ incl. carr. and possessing With full conversion instructions.

```
                PLEASE ADD VAT TO ALL U.K. ORDERS
```

(Carriage at cost outside U.K. - Export enquiries welcome.)
DABAR ELECTRONIC PRODUCTS 98 LICHFIELD STREET Fi, WALSALL, Staffs WSI IUZ

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence

 rices cofrect at time of pireparation. Subject to change without notice. E. 60

The largest selection

EX COMPUTER BOARDS
Packed with translators, diodes, capacitors
and resistora-COMPONENT VALUE 21.50 . $\begin{aligned} & \text { and resistora-COMPONENT VALUE } 21.50 \text {. } \\ & 3 \text { for ONLY } \\ & 85 D\end{aligned}+\mathrm{P}$. 3 for ONLY B5p + P. \& P. 30p sPECIAL one as above PLUS Power Tran. sistors ONLY 55p each + P. \& P. 15 p . PAXOLINE BOARDS $77^{\circ} \times 9^{\circ}$ approx 4 for $30 \mathrm{p}+\mathrm{P} . \&$ P. 20p.

FFBRE-GLASS PRINTED CIRCUIT BOARDS
$161 \times 4^{\prime \prime}$ approx. 2 for 56 p
DECON-DALO 33PC Marker 99p each

VEROBOARDS

Packs containing approx. josi, in. various sizes, all 0.1 matric 55 p .

REPANCO CHOKES \& COILS RF Choke
CH1.2.5mH29p CH2.5.0mH 30 p CH3. $7.6 \mathrm{mH} 31 \mathrm{p} \quad \mathrm{CH} 4.10 \mathrm{mH} 33 \mathrm{p}$ COILS
DRXI Crystal set 31p DRR2 Dusl range 45p
COIL FORMERS \& CORES
NORMAN ${ }^{\prime}$ Cores \& Formers Bp
1 Cores \& Formera 10p
SWITCHES
DP/DT Toggle 36p sP/BT Toggle 30D

FUSES

$1 \frac{1}{2}^{\circ}$ and $20 \mathrm{~mm} .100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$ 500 mA . $1 \mathrm{~A}, 1 \cdot 5 \mathrm{~A}, 2 \mathrm{~A}$
QUICK-BLOW gD each

EARPHONES
Crystal 25 mm plug 42 D
Crystal 3.5 mm plug 42D
8 ohme $3 \cdot 5 \mathrm{~mm}$ plug 28D
DYNAMIC MICROPHONES
B1223. 200 ohms plus on $/$ off switch and
2.0 mm and 3.5 mm plugs 21.85
3-WAY STEREO HEADPHONE JUNCTION BOX

H1012 $\quad 1.87$

2-WAY CROSSOVER
NETWORK
K 4007.80 ohms Imp. Insertion loss 3bB \&1-21
CAR STEREO SPEAKERS
(Angled) $23-85$ per pair

BI-PAK

CATALOGUE AND LISTS
Send S.A.E. and 10p.
INSTRUMENT CASES

(Black Vinyl covered)

ALUMINIUM BOXES

De Luxe Groov-Kleen
Madel-42 £!-95 Chrome Finish

Model 60 £1-50

Ref. 36A. Record/Stylus Cleanding Kit 33p Ref. 43. Record Care Kit 22.42 Ref. 31. Cassette Head Cleaner 58 Model 9. Wire Stripner/Cutter 83p Ref. 46. Spirit Level 620

ANTEX SOLDERING IRONS $\times 25.25$ watt $\mathbf{~} 22.05$
CCN 240.15 watt $£ 2-48$ Model G. 18 watt $\mathbf{f 2}$.26 SK2. Soldering Kit £3-25 STANDS: ST 3, auitable for all models 81 SOLDER: 188WG Mutticore 7 oz $£ 1$-61 23WG 7 oz £1-61. 188WG 22ft 51p 22SWG Tube 33p

ANTEX BITS and ELEMENTS

its N

102 For model CN 240 参
104 For model CN240 A*
1100 For model CCN240 s $\frac{3}{3}$
1101 For model CUN240 ${ }^{\prime \prime}$
102 Por model CCN240 t"
1020 For model $\mathbf{G 2 4 0}$ s.
1021 For model G240 ${ }^{\text {F }}$
022 For model ($240 \mathbf{n}^{\circ}$
50 For model $\times 25 \frac{3}{32}$
1 For model X20
52 For model X25 in
ELEMENTS ECN 144021.30 ECCN 240 £1-38 EG 240 \&1-07 EX 25 \&1-16

ANTEX HEAT SINKS 10p

VAT included in ali prices. Please add 10p P. \& P. (J.K. only). Oversess ordersplease add extra lor postage.

NEW COMPONENT PAK

 BARGAINSPacs
No. Qty. \qquad
C2 150 Capacitors mixed values approx.
C3 30 Preciaion Resiatora $0.1 \%, 0.01 \%$ mixed values
C4 75 Ith W Resistors mized preferred
Pieces assorted Ferrite Rods 0.55 Tuning Gangs, MW/LW VHF 0.55 Pack Wire 50 metres sssorted colours Reed Switches
Micro Switcher $\begin{array}{lll}\text { C9 } 3 & \text { Micro Switches } \\ \text { C10 } 10\end{array}$ Assorted Pote \& Pre-Sets 11 - Jack 8ockets $3 \times 3 . \overline{5} 0.55$ gtandard Switch Type $\quad \underset{0.55}{\times}$ Paper Condensera preferred types mixed values
C13 20 Electrolytica Trans. types
Ci4 1 Pack assorted Hardware Nuts/Bolte, Grommeta, etc. 0.65 Mains Slide Switches Cl6 20 Assorted Tag Strips \& Panels Assorted Control Knobs Rotary Wave Change 8 witches 0.55 Relays 6-24V Operating 0.55 $\begin{array}{cr}\text { Pack Sheeta of Copper Laminate } \\ \text { approx. } 20 \text { sq. ins. } & 0.55\end{array}$
$\frac{\text { P. } \& \text { P. 10p on each box }}{\text { VISIT OUR COMPONENT SHOP }}$
18 BALDOCK ST, WARE, Herts. (A10)
Open Mon.-Sat. 9-6.30 p.m. Tel. 61693

BIB HI-FI ACCESSORIES

- B:

Ref. B. Stylus and Turntable Cleaning Kit Ref. P. Hi-Fi Cleatier 81p
Ref. 32A. Stylus Balance $51-37$
Ref. J. Tape Head Cleaning Kit 82p
Ref. 56. Hi.Fi Stereo Hints and Tips 42p Ref. 45. Auto Changer Groove Cleaner $\$ 1-08$

PLUGS AND SOCKETS plugs
PS 1 D.I.N. 2 Pin (Speaker)
PS 2 D.I.N. 3 Pin
PS 3 D.I.N. 4 Pin
Pg 4 D.I.N. 5 Pin 180°
PS 5 D.I.N. 5 Pin 240°
PS 6 D.I.N. 6 Pin
$\begin{array}{lll}\text { PS } & 7 & \text { D.I.N. } 7 \text { Pin } \\ \text { P8 } & 8 & \text { Jack } 2.5 \mathrm{~mm} \text { Screened }\end{array}$
$\begin{array}{lll}\text { PS } & 8 & \text { Jack } 2.5 \mathrm{~mm} \\ \text { PS Sereened } \\ 9 & \text { Jack } 3.5 \mathrm{~mm} \text { Plastic }\end{array}$ $\begin{array}{ll}\text { PS } 9 & \text { Jack } 3 \cdot 5 \mathrm{~mm} \text { Plastic } \\ \text { PS } 10 & \text { Jack } 3 \cdot 5 \mathrm{~mm} \text { Bereened }\end{array}$ $\begin{array}{ll}\text { PS } 10 & \text { Jack } 3.5 \text { mm Bere } \\ \text { PS } 11 & \text { Jack 1- Plastic }\end{array}$
PS 12 Jack I'screened PS 13 Jack Stereo Screened PS 14 Phono
PS 15 Car Aeria
PS 16 Co-Axial

INLINE SOCKETS

PS 21 D.I.N. 2 Pin (Speaker) P8 22 D.I.N. 3 Pin
PS 23 D.I.N. $5 \operatorname{Pin} 180^{\circ}$ PS 24 D.I.N. 5 Pin 240°
PS 25 Jack 2.5 mm Plastic
PS 26 Jack 3.5 mm Plastic
Pg 27 Jack fo $^{\prime}$ Plastic
PS 28 Jack 1" Screened
PS 29 Jack Stereo Plastic
PS 30 Jack Stereo Screened
P's 31 Phono Screened
PS 32 Car Aerial
PS 33 Co-Axial

SOCKETS

PS 35 D.I.N. 2 Pin (8 peaker)
PS 36 D.I.N. 3 Pin
PS 37 D.I.N. 5 Pin 180°
PS 38 D.I.N. 5 Pin 240°
PG 39 Jack 2 -5mn 8 witched
Pg 40 Jack 3.5 mm Switched Pg 41 Jack $t^{-S w i t c h e d ~}$
PS 42 Jack Stereo Switched
PS 43 Phono single
PS 44 Phono Double
PS 46 Co-Axial Surface
PS 47 Co-Axial Flush

LEADS

LB 1 Speaker Lead 2 pin D.I.N. plug to

CABLES

CP 1 Single Lapped Screen
CP 2 Twin Common Screen
Cl 3 Stereo Screetied
CP 4 Four Core Common \&creen
Four Core Common Sereen
Four Core Individually Scre
Four Core Individually Screened 0.30 Mierophone Fully Braided Cable 0-10 Three Core Mains Cable Twin Oval Mains Cable
CP 9 Apeaker Cable
CP 10 Low Loss Co-Azial

CARBON

POTENTIOMETERS
Log and Lin
$4 \cdot 7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$ 1M, 2M
VC1 Single Less 8 witch
VC: 2 Single D.P. Switch
VC 3 Tandern Less Switch
VC 41 K Lín Less Switch

HORIZONTAL CARBON

PRESETS

0.1 w.att 0.08 each

0.1 watt
$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4 \cdot 7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$,

IT'S NEW

IT'S POWERFUL

($15+15 \mathrm{w}$ R.M.S.) AND IT LOOKS GOOD!

THE

LEGIONAIRE
STEREO
AMPLIFIER
ORDER NOW-
ONLY £39.95 p. \& p. 50p
OR Write for full details

WORLD SCOOP

JUMBO

SEMICONDUCTOR PACK
Tranalstors, Germ. and silicon Rectifers. Diodes, Triacs, Thyristors, I.Cs and Zenera Diodes, Triacs, Thyristors,
NEW AND CODED.

APPROX 100 PIECES

Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data aheet in every Pak.

Only \&2 p. \& p. 20p
RECORD STORAGE/
CARRY CASES
7in EP. 18 in $\times 7 \mathrm{in} \times \sin \left(50\right.$ records ${ }_{22}$.10

CASSETTE CASES
Holds 12. $10 \mathrm{in} \times 3$ itin $\times 5 \mathrm{in}$. Lock and handle, $£ 1.30$.

SPECIAL PURCHASE
2N8055. Sillicon Power Transistors NPN. Famous manulacturers out-of-spec devicen iree from open and short defects-every one ablel 115W. TO3. Metal Case.

OUR SPECLAL PRICE 8 for 21

LOW COST CAPACITORS

$0.01 \mu \mathrm{~F} 400 \mathrm{~V}$
$500 \mu \mathrm{~F} 50 \mathrm{~V}$. Elect
8p each

REPANCO TRANSFORMERS
240V. Primary. Secondary voltages avail240 V . Primary. Secondary volcages avain
able from selected taping $4 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$, able from selectet tappings
$14 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 3 \mathrm{VV}, 33 \mathrm{~V}$. 40,50 and $2 \overline{5} \mathrm{~V}-0-25 \mathrm{~V}$

Price P. \& P.

CARTRIDGES
acos
GP91.18C 200 mV at $1.2 \mathrm{~cm} / \mathrm{sec}$
GP93. 1280 mV at $1 \mathrm{~cm} / \mathrm{sec}$ GP96-1 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$
J. 2010C Crystal/Hi Output Compatible

$\mathrm{J}-2203 \mathrm{Magnetic} 5 \mathrm{mV} / \overline{\mathrm{cm}} / \mathrm{sec}$, Ineluding
stylus
J-2203S Replacement atylus for above $\left.\begin{array}{l}\text { 84.98 } \\ 88.00\end{array}\right)$

CARBON FILM RESISTORS
The E12 Range of Carbon Film Resistors,
A watt available in PAKs of 50 pleces,
R1 50 Mixed 100 ohms- 820 ohms
$\mathrm{R}_{2} 50 \mathrm{Mixed} 1 \mathrm{k} \Omega-8.2 \mathrm{k} \Omega$
R3 50 Mixed $10 \mathrm{k} \Omega-82 \mathrm{k} \Omega$
R4 50 M1xed $100 \mathrm{k} \Omega-1 \mathrm{M} \Omega$
THESE ARE UNBEATABLE PRICES-
SUBT 1p EACH INCL. V.A.T.
BI-PAK SUPERIOR QUALITY
LOW - NOISE CASSETTES
C80, 36p; C90, 48p; C120, 80 p.

-the lowest rrices!

BI-PAK QUALITY COMES TO AUDIO!

AL10/AL20/AL30 AUDIO

 AMPLIFIER MODULES| | The AL10, AL20 and AL30 units are similar in their appearance and in their general specification. However, careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watte R.M.B.
 The verastility of their design makes them Ideal for uae in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home. | |
| :---: | :---: | :---: |
| Parameter | Conditiona | Porformance |
| HARMONIC DISTORTION | Po $=3$ WATTS $\mathrm{t}=1 \mathrm{l} \mathbf{K H z}$ | 0.25\% |
| LOAD IMPEDANCE | - | 8-16n |
| INPUT IMPEDANCE | $1=1 \mathrm{KHz}$ | $100 \mathrm{k} \Omega$ |
| FREQUENCY REAPONSE -3dB | Po $=2$ WATts | $50 \mathrm{Hz-25KHz}$ |
| SENSITIVITY for Rated o/p | $\mathrm{V}_{\mathrm{s}}=25 \mathrm{~V} . \mathrm{R1}=8 \mathrm{Q} \quad \mathrm{f}=1 \mathrm{KHz}$ | 75 mV . RM8 |
| DIMENSIONE | - | $3^{*} \times 2{ }^{\text {a }}$ |

The above table relates to the AL10, AL20 and AL30
modules. The following table outlines the differences
in their working conditions.

Parameter	Allo	Al20	ALSO
Maximum Supply Voltage	25	30	30
$\begin{aligned} & \text { Power out for } 2 \% \text { T.H.D. } \\ & (\mathbf{R L}=80 \mathbf{I}=1 \mathrm{KHz}) \end{aligned}$	$\begin{aligned} & 3 \text { watts } \\ & \text { RMS Min. } \end{aligned}$	5) watta RMS Min.	$\begin{aligned} & 10 \text { watts } \\ & \text { RM8 Min. } \end{aligned}$

AUDIO AMPLIFIER MODULES
 AL 20.5 watts 5 watts
 AL 30. 10 watta

POWER SUPPLIES

P8 12. (Use with AL10, AL20, AL30) $85 p$
SPM 80. (Une wlth AL60) SPM 80. (Use with AL60) FRONT PANELS FP 12 with Knobs

PRE.AMPLIFIERS		
PA 12.	(Usewith AL10, AL20 and AL30)	14.35
PA 100.	(Use with AL80)	218.15

TRANSFORMERS
T461 (Use with ALI0) $21 \cdot 60$ P \& P 15p T538 (Ure with AL20, AL30) $42 \cdot 30 \mathrm{P}$ \& P BMT80 (Use with AL60) $29.75 \quad 15 \mathrm{p}$

PA12 PRE-AMPLIFIER SPECIFICATION

The PAI2 pre-amplifer has been designed to match into mo buaget stereo aystem. It AL 10, al 20 and AL 30 audio power amplifers and it
can be supplied from thelr associated power aupplies. There are two stereo inputa, one has been designed for use with *Ceramic cartridges while the auxiliary input will oult most tMagnetic cartridges. Full details are given in the specification table. The four controls are, from left to right: Volume and on/oft switch, balance, bass and treble Size $162 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$.

Look for our

SEMICONDUCTOR ADVERTISEMENTS in
Practical Wireless Wireless World Radio Constructor
ALL PRICES INCLUDE V.A.T.

The STEREO 20

The "Stereo 20" amplifier is mounted, ready wired and tenter on a one-piece chassia meseuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$. This compact unit comes complete with on/off awitch Transf control, balance, bass and treble controls Attractiner, Power supply and Power amps. ing control knobs. The "Stereo 20 " has been designed to fit into most turntable plinth without interferlng with the mechanism or, alternatively, into a separate cablaet, 300 mv power 20 w peak. Input 1 (Cer.) Input 2 (Auz) 4 mV into 0 K Hermiz distortion. Baas control +12 dB at 60 Hz typlcally 0.25% at 1 watt. Treble con $\pm 14 \mathrm{~dB}$ at 14 k Hz .

TC20 TEAK VENEERED CAEINET

For Stereo 20 (front board undrilled) Slze $101^{\prime \prime} \times 88^{\prime \prime} \times 3^{\prime \prime}, 83.95$ plus 30 p postage SHPRO STEREO HEAOPHONES
4-16 ohms impedance. Frequency response 20 to $20,000 \mathrm{~Hz}$. Stereo/mono switch and volume controte, E4-95

NOW WE GIVE YOU

 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95- Max Heat Sink temp $90^{\circ} \mathrm{C}$. - Frequency Response 20 Hz to 100 KHz
- Distortion better than 0.1% at 1 KHz
- Supply voltage $\mathbf{1 5 - 5 0}$ volts
- Thermal Feedback - Latest Design Improvements - Load - 3, 4, 8 or 16 ohms
- Signal to noise ratio 80dB
- Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ $\times 13 \mathrm{~mm}$

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

STABILISED POWER MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simul taneously. This module embodies the lateat component and circuit techniques incorporating complete short circuit protection. With the addition of the Maina Transformer BMT80, the unlt will provide outpute of up to $1 \cdot 5$ amps at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 30 \mathrm{~mm}$.
These units enable you to bulld Audio Bystems of the highest quaility at a hitherto unobtainable price. Also ideal for many other applications including:-Disco Systems, Public Address, Intercom Units, etc. Handbook available 100 PRICE E3-25
TRANSFORMER BMT80 £2.15 p. \& p. 28p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a price, and yet atill the greatest value on the market the PA100 stereo pre-amplifier has been concelved from the latest circuit techniques. no less than eight silicon A L60 power amplifier system, this quallty made unit incorporates NPN devices for use in the input transist
Three switched atereo inputs, and rumble and scratch filters are features of the PA100, which also has a 8 TEREO/MONO switch, volume, balance and continuoualy varlable base and treble controls.

spercification
Frequency Response
Harmonic Distortion
Inputs: 1. Tape Head
2. Kadio, Tuner

All input voltages are for an output of 250 mV . Tape and P.U. inputs equalised to RIAA curve within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 KHz . Bass Control
Filtera : Rumble (High Pass)
Scratch (Low Pass)
Signal/Nolse Ratio
Input overload
8upply
Dlmensions
$20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
better than 0.1%
3.25 mV into $50 \mathrm{~K} \Omega$

75 mV into 50 K
$\pm 15 \mathrm{~dB}$ at 20 Hz
100 Hz
8 KHz
better than -65 dB
+26 dB
+35 FO
+35 voits at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £13.15
MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times$ SPM80, $1 \times$ BTM80, $1 \times$ PA 100, 1 frout panel, 1 kit of parts to include on-ofi switch, neon indicator, stereo headphone sockets plus instruction booklets. Complete Price: $\mathbf{2 8 8} \cdot 75$ plus 30p postage

TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet size $163^{\prime \prime \prime} \times 111^{\prime \prime} \times 33^{\prime \prime}$, other parts iaclude aluminium chasais, heataink and front panel bracket, plus back panel and appropriate socketa, ete Eit price: 29.95 plus 30 p postare.

 AERial spec.: 5 section Extended Length 100 cm Length under Fender 40 cm Supplied complete with

"CRESGEMT BEAT BRIT CHANE Chande to SoUND TO
Thish UNIT
Thatatic
\times liftie box box
approx. $4^{\circ "} \times 3^{\prime \prime} \times 24^{*}$ when
connected to the output of a sonnd source from 1 to 100 watts produces a psychedelic light
display of up to 1000 watts Complete with a sensitive control the unit is fused and can. not harm your amplifier. A Bargain at $£ 7.50$ plus 10p.

MINIATURE RELAYS

Brand new range of British made relays, size: 1 in \times in \times in. $1.5 A$ contacts and suitable for Atting on 0.1 lm veroboard. $\begin{array}{lll}\text { Type Volts } & \text { Current Ohms } \\ 27 / \mathrm{A} & 12 \mathrm{~V} & 17 \mathrm{M} / \mathrm{A} \\ 700\end{array}$ $\begin{array}{lllll}27 / \mathrm{A} & 12 \mathrm{~V} & 17 \mathrm{M} / \mathrm{A} & 700 & \text { All } \\ 21 / \mathrm{A} & 12 \mathrm{~V} & 28 \mathrm{M} / \mathrm{A} & 430 & 8130\end{array}$ $\begin{array}{llll}21 / \mathrm{A} & 12 \mathrm{~V} & 28 \mathrm{M} / \mathrm{A} & 185 \\ 12 / \mathrm{A} & 6 \mathrm{~V} & 3 \mathrm{ch}\end{array}$ $200 / 8507$ yaing Reley Heary duts contacts $2,500 \mathrm{ohm}$
coll. All new and unused coil. All new and unured free. Special quantity fit per
100 oft.
MIDGET
MAINS TRANSFORMER
Varnith Impregnatind
Size $45 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}$ PRI 240V
$\begin{array}{lll}\text { Bec } & 3.0 \cdot 3 & 100 \mathrm{~mA} \\ \text { Sec } & 6.0 .6 & 100 \mathrm{~mA}\end{array}$ $\begin{array}{lcc}\text { Bec } & 3.0 .0 .6 & 100 \mathrm{~mA} \\ \text { Sec } & 6 \cdot 0.6 & 100 \mathrm{~mA} \\ \text { Sec } & 9 \cdot 0 \cdot 9 & 100 \mathrm{~mA} \\ \text { Sec } & 12 \cdot 0 \cdot 12 & 100 \mathrm{~mA} \\ \text { Sec } & 20 \cdot 0.20 & 100 \mathrm{~mA}\end{array}$ $\begin{array}{lll}\text { Sec } & 20 \cdot 0.20 \quad 100 \mathrm{~mA} \\ 81.28 & 10 \mathrm{p} \text { P. } & \mathrm{P} \text {. }\end{array}$
CRESCENT BUBBLE LIGHT SHOW This budget system compares very
favourably with more sophisticated and higher priced models.
8pecification:
Projector-150W
cooled. At 30 ft the $\begin{aligned} & \text { convection } \\ & \text { image is } 16 \mathrm{ft} \text {. }\end{aligned}$. image is 16 ft .
Motor-1
Lev. per 2
Wheol-6in
multi colour
The motor is fitted to the projector single unit.
The Jiquid wheel is our standard model and may be purchased
separately.
A bargain at: Projector, 45 ;
Wheel, 25 ; Total 420 . Plus 75p carr.

\qquad OUDSPEAKER
A top quality
speaker ideal where
smail size is importsmail size is import-
ant. Manufactured by F.M.1. for a well-
known hi-fi get mown hi-f ge 4 in. Impedisace: 8 obme. Flux:
38,000 . Max. Free range: 90 Hz to 38,000 . Max. Free range: 90 Hz to
12 kHz . Power handling: 5 W . 12 kHz Power handling: 5W.
Unbeatable. Price: ± 1.60. Free postage on this item.
"CRESCENT" 100 WATT R.M.S.
ALL PURPOSE AMPLIFIER U.BUILD. IT

We aupply the three modules for you to build
this Disco-Group-P.A. amplifier into the cabinet this Dlsco-Group-P.A. amplifier into the cabine
of sour choice.

t THE POWER AMP MODULE

 170 W r.m.s. 8 qq . wave 300 W ininto $8 \mathrm{ohm}(60 \mathrm{~W}$ into 16 ohm$)$.

* THE PRE-AMP MODULE Four control pre-amp, Vol. Bass, Treble. Middle using F.E.T. Arat otage.
t THE POWER SUPPLY
If aupplied complete with the maina trantormer. technical knowledge fo required to connect the three ready wired modules. A fantastic bargain. 225, carr. 75p. Send S.A.E. for further details
on this or our ready built ampliffers. on this or our ready built amplifiers.

240 V primary transiormer bargain. Approx, size: $60 \mathrm{~mm} \times 40 \mathrm{~mm} \times 50 \mathrm{~mm}$: fixing centres: 75 mm Our price 21.20
$18 \mathrm{~V} 500 \mathrm{M} / \mathrm{A}$
240 V primary. Approx, size: $60 \mathrm{~mm} \times 40 \mathrm{~mm} \times$
B0 mm, Axing centres: 75 mm . Our Price $\frac{81}{}$ each
BARGAIM BOX
Loud buzzer mounted in a metal box complete With two U2 battery aize holder.
Designed and can be used as a Are alarm but
ideal as a door or morse code practise buzzer gize: $2 \mathrm{im} \times 6$ in $\times 1 \mathrm{in}$
OUR PRICE 60 m
ABS PLASTIC Boxss
Handy boxes for construction projects. Moulded extrusion rails for P.C. or chassis panels. Fitted With 1 mm front panele. $1005,105 \mathrm{~mm} \times 73 \mathrm{~mm} \times$
$45 \mathrm{~mm} 51 \mathrm{p} ; 1006,160 \mathrm{~mm} \times 76 \mathrm{~mm} \times 47 \mathrm{~mm} 66 \mathrm{p}$ $1007,184 \mathrm{~mm} \times 124 \mathrm{~mm} \times 60 \mathrm{~mm} \times 8 \mathrm{~m} ; 1021$
$106 \mathrm{~mm} \times 74 \mathrm{~mm} \times 45 \mathrm{~mm}$ (sloping (ront) 50 p .
$\frac{106 \mathrm{~mm} \times 74 \mathrm{~mm} \times 45 \mathrm{~mm} \text { (sloping } \mathrm{fr}}{\text { BARGAIH BOARDS }}$
Components galore for the experimenter. ExComputer boarde with resistors, capacitors and useful transisto
Five boards El

Three Channal: Bass, Middle, Treble. Each channel has its own sensitivity control. Just connect the input of this unlt to the loudspeaker terminals of an amplifier, and connect three 250 V
up to 1000 w lamps to the output terminale of the unit, and you produce a fascinating sound-light diaplay. (All guaranteed.)
f18.50 plus 38 p P. \& P.
MINI LOUDSPEAKERS
2 in 80 obm,
include 5 p P. \& P. on each L.s.
U.K. CARRIAGE

I5p UNLESS
OTHERWISE STATED

VAT
8\% vat to be added TO ALL ORDERS

SEND 20p FOR A
CRESCENT catalogue

VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE Express postage 5p for first transissor, ip thereafzor, over
ten post Iree. NTEGRATED CIRCUITS $6 \mathrm{p}+1 \mathrm{peach}$ added

ETROMASOMNE electronics

Dept. 2
56, Fortis Green Road. London, N1O 3HN
telephone: 01-883 3705

国 COR AUDIO ON A BUDGET

PUSH BUTTON CAR RADIOKIT

The
 TouristII

NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO

Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly.
Fine tuning push button mechanism is fully built and tested to mate with printed circuit board.
Car Radio Kit $\mathbf{£ 7 . 7 0 + 5 5 p} \mathbf{p}$. \& p
The Tourist I Kit For the experienced constructor If you can solder on a printed circuit board you can build this model. Same technical specification as Tourist II
Price $\mathbf{£ 6 . 6 0 + 5 5 p p \& p .}$

Technical specification:
(1) Output 4 watts R.M.S. output. For 12 volt operation on negative or positive earth.
(2) Integrated circuit output stage, pre-built three stage IF Module.
Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands. Size chassis 7 " wide, $2^{\prime \prime}$ high and $43 / 4^{\prime \prime}$ deep approx

Speaker including baffle and fixing strip $£ 1.65+23$ p. p\&p. Car Aerial Recommended - fully retractable £1.37+20p. postage \& packing

S*TEREO1 QUALITY SOUND FOR LESSTHAN $£ 20 \cdot 00$

Stereo 21, easy to assemble audio system kit. No soldering required. The unit is finished in white P.V.C. and the acrylic top presents an unusually interesting variation on the modern deck plinth. Includes :- BSR 3 speed deck, automatic, manual faciifities together with ceramic cartridge. Two speakers with cabinets.
Amplifier module. Ready buili with control panel, speaker leads and full, easy to follow assembly instructions. Specifications: For the technically minded :-
Input sensitivity 600 mV . Aux. input sensitivity 120 mV . Power output 2.7 watts per channel.
Output impedance 8-15 ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping dises. Overall Dimensions. Speakers approx. $15 \frac{1}{2}^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1^{\prime \prime}}{} \times 12^{\prime \prime} \times 6^{\prime \prime}$.

Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance, $\mathbf{£ 3 . 8 5}$. BUILD YOUR OWN*
STEREOAMPLIFIER
For the man who wants to design his own stereo - here's your chance to start. with Unisound - pre-amp, power amplifier and control panel. No soldering just simply screw toge ther. 4 watts per channel into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure very low distortion over the audio spectrum. 240V. AC only.
$\mathbf{£ 7 . 6 4 + 5 5 p p \& p}$

Elegant self selector push button player for use with your stereo system. Compatible with Viscount III system, Unisound module and the Stereo 21 Technical specification Mains input, 240 V , Output sensitivity 125 mV Comparable unit sold eleswhere at £ 24.00 approx. Yours for only
$\mathbf{f 1 1 . 9 5 + 9 0 p p \text { \& } p . ~}$

COMPLETE * STEREO SYSTEM

System1. $£ 51 \cdot 00$

40 Watt Amplifier. Viscount III-R102 now 20 watts per channel.
System I includes
Viscount III a mplifier - volume, bass, treble and balance controls, plus switches for mono/ stereo on/off function and bass and treble filters. Plus headphone socket.
Specification
20 watts per channelinto 8 ohms. Total distortion@10W@ $1 \mathrm{kHz} 0.1 \%$.P.U. 1 (for ceramic cartridges) 150 mV into $3 \mathrm{Meg} . P . U .2$ (for magnetic cartridges) $4 \mathrm{mV} @ 1 \mathrm{kHz}$ into 47 K . equalised within $=1 \mathrm{~dB}$ R.I.A.A. Radio 150 mV into 220 K . (Sensitivities given at full power). Tape out facilities: lieadphone socket, power out 250 mW per channel. Tone controls and fifter characteristics. Bass: +12 dB to -17 dB a 60 Hz . Bass filter: 6 dB per octave cut. Treble control: treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12 dB per octave. Signal to noise ratio: (all controls at max.) -58 dB . Crosstalk better than 35 dB on all inputs. Overload characteristics better than 28 dB on all inputs. Size approx. $133^{3 \prime \prime} \times 9^{\prime \prime} \times 3 \frac{3^{\prime \prime}}{4}$
Garrard SP 25 Mk III deck with magnetic cartridge, de luxe plinth and hinged cover.
Two Duo Type II matched speakers - Enclosure size approx. $17 \frac{1^{\prime \prime}}{} \times 103^{3 \prime \prime} \times 6^{\prime \prime}$
in simulated teak. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. 10 watts handling.
Complete System $£ 51 \cdot 00$

System2.f $6 \cdot 0 \cdot 00$

Viscount III amplifier (As System I) Garrard SP 25 Mk 111 deck (As System I)
Two Duo Type III matched speakers-Enclosure size approx. $27^{\prime \prime} \times 13^{\prime \prime} \times 11 \frac{1_{2}^{\prime \prime}}{}$ Finished in teak veneer. Drive units $1^{\prime \prime} \times 8^{\prime \prime}$ bass driver, and two $3^{\prime \prime}$ (approx.) tweeters. 20 watts R.M.S., 8 ohms frequency iange -20 Hz to $18,000 \mathrm{~Hz}$.
Complete System $£ 69.00$

PRICES: SYSTEM 1
Viscount III R102
amplifier $\quad \mathbf{f 2 4 . 2 0}+\mathbf{f 1 p} \boldsymbol{f} p$

2 Duo Type II speakers $\mathrm{f} 14.00+\mathbf{f 2 . 2 0 p} \mathrm{f} p$
Garrard SP 25 with
Mag. cartridge
de luxe plinth
and hinged cover
$21.00+\mathrm{f1.75} \mathrm{p} 8 \mathrm{p}$
total: $\mathbf{f 5 9 . 2 0}$
Available complete for only:
$\mathbf{f 5 1 . 0 0}+\mathbf{f 3 . 5 0 p} \mathrm{p} p$

PRICES: SYSTEM 2
Viscount III R102
amplifier
$\mathbf{f} 24.20+\mathbf{f 1} \mathrm{p}$ ¢ p
2 Duo Type III speakers $£ 39.00+£ 4.00 p \& p$
Garrard SP 25 with
Mag. cartridge
de luxe plinth
and hinged cover
$\mathrm{f} 21.00+\mathbf{f 1 . 7 5 p} \mathrm{f} \mathrm{p}$
total: £84.20

Available complete for only:
$\mathbf{f 6 9 . 0 0}+\mathbf{〔 4 . 0 0 p \& p}$

EMI SPEAKERS AT FANTASTIC REDUCTIONS

20 WATT
 SPEAKER SYSTEM

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ (approx) eliptical woofer unit with a $8^{\prime \prime} \times 5^{\prime \prime}$ (approx.) mid range unit incorporating parasitic tweeter and crossover
components.
Technical Specification:
Bass Unit
Flux density-100 K, speech coil-1 $\frac{1}{2}$
Cone. Triple laminated paper with
P.V.C. surround.

Mid Range Unit
Flixx density- 33 K , speach coil- $\mathbf{1}^{\prime \prime}$ with parasitic iweeter.
Power Handling
20 watts R.M.S., impedance -8 ohms,
frequency response -20 Hz to 18.000 Hz .

OUR PRICE

£6.60. Complete
+90 p р \& p .

15" 14A/780 BASS UNIT

Bass unit on a rigid diecast chassis.
Superior cone material handles up to 50 watts RMS, and is treated to give a smooth frequency response. Resonance 30 Hz . flux density 360.000 Maxwells. Impedance at 1 kHz is 8 ohms. $3^{" v}$ voice coil.
Recommended retail price $\mathbf{£ 4 0 . 8 0}$. OUR PRICE $£ 18 \cdot 70+\mathbf{f 1} \cdot 50 \mathrm{p} \& \mathrm{p}$

Five matched speakers and crossover unit for handling up to 45 watts, frequency response from 20 to $20,000 \mathrm{~Hz}$.
Huge $19^{\prime \prime} \times 14^{\prime \prime}$ (approx.) high efficiency Bass-Speaker with 16,500 -gauss magnet built on a heavy diecast frame
The four 10.000 gauss iweeters. each $3 \frac{1}{6}$ dia. approx., are fed by the crossover which critically adjusts signal for maximum fidelity. Impedance at 1 kHz is 8 ohms Bass coil 2". others 0.5" Recommended list price 944.00 .
Special Offer OUR PRICEf19.50 + f1.50pfp

45 WATT R.M.S. MONO DISCOTHEQUE AMPLIFIER Ideal for Disco Work. Dutput Power: 45 watts R.M.S. Frequency Response 3 dB points 30 Hz and 18 KHz . Total Distortion: less than 2% at rated output. Signal to noise ratio: better than 60 dB . Bass Control Range: 13 dB at 60 Hz . Treble Control Range: 12 dB at 10 KHz . Inputs: 4 inputs at 5 mV into 470 K . Each pair of inputs controlled by separate volume contral. 2 inputs at 200 mV into 470 K Size : $19 \frac{1}{4}{ }^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime} \times 8^{\prime \prime}$ (approx.) Amplifier $\mathbf{E 2 7 . 5 0}+\mathbf{5 1 . 5 0} \mathbf{p} .8 \mathrm{q}$

DISCO AMPLIFIER

Reliant Mk IV Mono Amplifies, ideal for the small disco or house parties. Outputs 20 watts R.M.S. into 8 ohms (suitable for 15 ohms).
Inputs * 4 elactrically mixed inputs. *3 individual mixing controls.
*Separate bass and treble controls common to all 4 inputs.
*Mixer employing F.E.T. (Field Effect Transistors) *Solid State circuitry.
*Attractive styling.

input Sensitivities

-Input - 1.) Crystal mic. guitar or moving coil mic, 2 and 10 mV .
(Selector switch for desired sensitivity).
-Inputs - 2), 3). 4). Medium output equipment - ceramic cartridge, tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1^{\prime \prime}}{} \times 6^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$.

$\mathbf{£ 1 5 . 0 0}+\mathbf{6 0 p}$. post \& pack.

DO NOT SEND YOUR CARD

Just write your order giving your credit card number

Mall orders to Acton. Terms C.W.O.
All onquirles Stamped Addressed
Envelope. Goode not despatched
outside U.K.
All prices Include VAT at 8% rate
Leaflets available for all items listed
thus *
Send stamped addressed envelope.

Madio and TV
Components
(Acton) Ltd.

21 High Street, Acton, London W3 6NG 323 Edgware Road, London W2

Personal \qquad Edgware Road: 9a.m. -5.30 p.m. Half day Thurs. Shoppers Acton: 9.30a.m.-5p.m. Closed all day Wed.

GPAIMMNIIE Mk II Electronic Ignition．．．

 Better on all points Because you keep your points！Specifically designed to retain the points assembly with all the advantages and none of the disadvantages．No misfire because contact breaker bounce is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high rpm．Contact breaker burn eliminated by reducing the current to about $1 / 50$ th of norm，thus avoiding ar cing．But you can still revert to tormal ignition if need be in seconds．If points go（very unlikety）you can get replacements anywhere．All these edvantages．
－Fitted in 15 minutes．Up to 20\％better fuel consumption．Instant all weather starting．Clean plugs－they last 5 times longer without attention． －Faster acceleration．Faster top speeds． －Coil and baltery last longer．Efficient fue
The kit comprises
everything needed
Ready drilled scratch and rust resistant case． metalwork，cables，coil connectors，printed circult board，top quality 5 year guaranteed transformer and components，full instructions to make positive or negative earth svstem．and
WE SAY IT IS THE BEST SYSTEM AT ANY PRICE！
PRICES
D． 1 Y Kit onty $\{10.83$ incl VAT and P \＆P
Ready Buith Unit t 13 ． 84 incl．VAT and P \＆P
（Both to itt all care with colldiatilibutor ignition up to
8 cylindere）
We can sup motorcycle etcl with coul／contact breaker venicle loo Delails on request Call in and see us for a demonstranc

ELECTRONICS DESIGN ASSOCIATES
（Dept PE1）， 82 Bath Street，Walsall WS1 30E Phone 33652

Ready－built unit，ready for connection to the IF stages of existing FM Radio or Tuner．The very latest 2 nd Gener－ ation rail less integrated circuit design，operating on this phase locked loop system，offering even better stereo separation．
Only owing to our bulk buying capacity are we able to offer this at the old price．LED stereo indicator lights available，RED at 25p；GREEN at 40p

$1 / 2$ easy－to－build projects using the I．C．A．I．

5W \＆10W AMPS

These matchbox sixe amplifiers have an exceptionally good tone and quality for the price．They are only $2 \mathrm{tin} \times 1 \frac{3}{\text { in }}$ ．The 5 W Amp will run from a 12 V car battery making it very suitable for portable voice reinforcement such as public functions．Two amplifiers are ideal for stereo．Complete connection details and treble，bass，volume and balance control circuit diagrams are supplied with each unit．Discounts are available for quantity orders．More detzils on request．Cheapest in the U．K．Built and tested．

Now available for 5 \＆10WAMPS

Pre－assembled printed circuit boards 2 in $\times 3$ in available in stereo only，will fit 0.15 edge connector． Stereo Pre－Amp I（Pre I）．This unit is for use with low gain or ceramic pick－up cartridges．

E1－10 Stereo Pre－Amp 2 （Pre 2）．This unit is for use with magnetic pick－up cartridges．$£ 1.55$ Stereo Tone Control（STC）．This unit is an active tone control board and when used with the right potentio－ meters will give bass and treble boost and cut． $\mathbf{~} 1110$ Instruction leaflet supplied with all units．Post and packing included in prices．

[^1]

FREE RESIST COATED CIRCUIT BOARD
For every order placed for any of the products listed below, each order will receive a piece of flbre glass circuit board, approx. size $6 \mathrm{in} \times 6 \mathrm{in}$, coated with negative resist. DRILLING MACHINES AND DRILL KITS
Speclally designed for engineers, lab workers, jewellers, engravers, sculptors, model makers and hobbyists. These powerful, low power, drilling machines are capable of drilling holes up to 3 mm in diameter in any material. They will DRILL. SAW, GRIND, BURR, BRUSH AND POLISH
Reliant Drill with 3 collets, 9,000 r.p.m. 53.68 (50 p)
Reliant Drill Kit as illustrated 3 collets, 20 tools $\mathrm{Es} \cdot 34$ (97 p).
Drill Stand, used horizontally or vertically for drilling, sawing, buffing, or as a miniature lathe for lurning small components between centres 85 -34 (97p).
MAJOR DAILL KIT "for the man with everything". Contains 9.000 r.p.m. super drIII, power unit, drill stand, 40 assorted tools, presentation box, normally $£ 34 \cdot 76$ only $£ 27 \cdot 81$ (£3.22). SOLDERLESS MODULAR BAEADBOARDS
These DEC breadboards are used throughout the world for making prototype and production working circuits. The patented contact allows components to be inserted over and over again without soldering.
S DEC. Discrete components only. Normally $£ 1.98$ only $£ 1 \cdot 32$ ($25 p$).
T DEC. Station for one integrated circuit normally $£ 3.63$ only $£ 2 \cdot 43$ (39p).
U DEC A. Discrete and I.C. components normally $£ 3.99$ only $£ 2 \cdot 67$ (40 p).
Each Dec is boxed and has instructions, carriers, plugs, coloured leads are also avaliable.
COPPER CLAD GLASS-FIBAE CIRCUIT BOARD
If n Single sided normally 85 p per 89 . ft. only 55 p per sq. ft. (29p).
$\frac{1}{\text { f }}$ in Double sided normally 93 p per sq. ft. only 60 p per sq. ft. (30p).
Hin Single sided normatly $£ 1.52$ per sq. ft . only 75 p per 8 q . ft . (31 p).
Jitin Double sided normally $£ 1$-60 per sq. ft . only $\mathbf{s 0 p}$ per sq. ft . (31p)
RESIST COATED FIBRE GLASS CIRCUIT BOARD
Coated with positive or negative resist, we will cut fibre glass board to any size asked for, and will coat with negative or posifive resist. The price of resist coated circuit board is 1 p per sq . in.
Example positive or negative coated 4×3 in $12 p$ each + VAT \& post. 5×5 in 25 peach + VAT \& post. Please quote if positive or negative coated and size. Ferric chloride 5 litre etchant mix $£ 1 \cdot 50$ (35 p). Temperature controlled, air agitated etching tank $\mathbf{\varepsilon} 05 \cdot 00$ ($£ 6 \cdot 96$). Car Radio, L.W., M.W., with speaker ع7-50 (64p).
Prease add to the sum shown in brackets after the price to cover the cost of post and VAT.

P.B. PRODUCTS LTD.

ELECTRONIC • SCIENTIFIC
INSTRUMENTS
57 HIGH STREET • SAFFRON WALDEN
Telephone: Satfron Walden 22876
ESSEX CB10 2DP
ENGLAND

> for fast easy reliable soldering EASY TO USE DISPENSERS AND REELS IDEAL FOR HOME CONSTRUGTORS

Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

SAVBIT handy

solder dispenser

A coil of Ersin Multicore Savbit Solder in a dispenser 7 ft 6 in of 18 s.w.g. (2.2 metres of 1.22 mm). The Solder that reduces the wear of soldering iron bits.

Size 5 32p

SAVBIT solder
for general purpose work

A handy plastic reel of SAVBIT alloy. 63 tt of 18 s.w.g. (19.2 metres of 1.22 mm)

Size 12 £1.72

ALU-SOL or

 soldering aluminlum New Multicore Alu-sol New Multicore Alu-solflux-cored solder in 16 flux-cored solder in 1
s.w.g. No extra flux s.w.g. No extra flux
needed. Plastic reel holds 36 ft . Supplied with full instructions. Also available in solder dispenser.

Size 4 £2.32

Fine gauge solder for soldering small components
Fine gauge solder for soldering small components $1381 t$ of 22 s.w.g. (42.0 metres of 0.71 mm) Ersin Multicore 5 cole solder wound on a plastic reel. Suitable for intricate work and small components.

NEM BIB WIRE STRIPPER \& CUTTER

Fitted with unique 8 gauge
selector with handle locking device and easy grip handies. Spring incorporated for automatic opening. Strips insulation from fiex and cables in seconds and can also be used as a cutter.

Model 8B. 70p

SOLDER WICK
Absorbs solder instantly, from tags and circuits. Onfy needs 40 to 50 Wat soldering iron. Quick and easy to use. Does not need flux and is non-corrosive.

Size 18 90p
For soldering
fine joints
Dispensers
of Ersin
Multicore
Solder make
those small
fobs easier.
$21 f$ of 22

Size 15 36p
Or size 19A for kit wiring or Radio and T.V. repairs 7 ft . (2.1 metres) of 18 s.w.g. (1.22 mm) Ersin Multicore Solder. Size 19A 34p

[^2]Prices shown are recommended retail excluding V.A.T.
From Electrical and Hardware Shops. If unobtainable, send 15 p P\&P.
Prices and specifications subject to change without notice.

ELEGTROMALIE

Present top quality electronic components for price-minded buyers

112p. CATALOGUE • FREE POSTAGE (U.K.) - ATTRACTIVE DISCOUNTS • SPECS. GUARANTEED

A 100 OF THE BEST From our transistor stock

OOB MOAE IN CAT

BAXANDALL SPEAKER.KIT

As designed by P. J. Baxandall and described originally in "Wireless Worid." Simple to essamble, fantestically good results and a greater money saver. Carries 10 watts RMS. 15 ohms impedence. Size 18in x $12 \mathrm{in} \times 10 \mathrm{in}$. Complete kit, Including pack-flat cablnet. c14-90.
The slze and weight of this product obliges us to charge 70p part cos: of carr. in U.K. Equeliser Aasembly, $\mathbf{2 2} 30$
Loudspakar Unit 59RM909, E2.45.
Cabinet Kit (to Bexandell design), 110.45 Cross-over choke for additional woofer to above, £1-50.

DISCOUNTS
availabie on all tema xcept those shown with orders prom $£ 5$ to $£ 14$. 99 15\% on orders E15 and FREE
POSTAGE
ordere. for mail ordern orcers. For mall orderi thare is value and under handiing charge of 100 Oversess orders-cer iage charged

ELECTROVILUE LTD

 All postal communications mail orders etc. to Head Office at Egham address, Dept. PE1: S.A.E. with enquiries requiring answers.28 St. JUdES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone: Egham 3603 Telex 264475 Shop hours 9-5.30 daily; Sat. 9-1 p.m. NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M19 INA Telephone (061) 4324945 Shop hours 9-5.30 daily; Sat. 9-1 p.m.
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P.O. Box 27. Swarthmore PA 19081.

RESISTORS

ELECTROLYTIC CAPACITORS								
Axtal Leed								
μF	3V	6.3 V	10 V	16 V	25 V	40 V	63V	100 V
0.47	-	-	-	-	-	-	11p	1 p
1.0	-	-	-	-	-	11p	-	8p
2.2	-	-	-	-	11p	-	${ }^{1}$	9p
4.7	-	-	-	$11 p$	-	Ip	p	${ }^{8 p}$
10	-	-	-	-	${ }^{1}$	9p	${ }^{0}$	${ }^{10}$
22	-	-	p	-	9p	P	8 p	10p
47	${ }^{8}$	-	9	8 p	${ }^{\text {p }}$	${ }^{8}$	10p	13p
100	1 p .	${ }^{\text {P }}$	8 p	1 p	9p	10p	12p	13p
220	${ }^{8} \mathrm{p}$	tp	3 P	10p	10p	11p	17p	24p
470	9 p	10p	10p	11p	13p	17p	24 p	45p
1.000	11p	13p	13p	17p	20p	25p	41p	-
2.200	15p	14p	23p	25p	37p	41p	-	-
4.700	24 p	30p	30 p	$44 p$	stp	-	-	-
10,000	42p	48p	-	-	-	-	-	-

MINITAON DIGITAL INDICATORS
3015 F Seven segment filsment compatible with standard ogic modules. 0-9 and decimal point: 9 mm characters in Sultable 8CO decoder driver 7447
30150 showing - or - \& 18 dec p
LEDS (Light Emitting Diodes)
Photo Colls cadmium sulphide oich
ANTEX Soldering Irons

CN340
2.35 Spare blt

Order if from
E.V. for de- DESOLDER BRAID
pandablo ser
CAPACITORS
DALY ELECTAOLYTIC in cans, piastic
$1000 \mathrm{mF} / 25 \mathrm{~V} 2 \mathrm{mp} \quad 2200 / 100^{\prime} \mathrm{s} 1 \cdot 5 \mathrm{~s}$ $5000 / 100$ E2. 97 $5000 / 25 \mathrm{~V}$. 2 p

POLYESTER TYPE C.200. Radial loeds for P.C.B. mounting. Working voltage 250 V o. C
$0.01,0.015,0.022,0.033,0.047$, asch 3p $0.068,0.1,0.15$ each 4p $0.225 p ; 0.337 p ; 0.47$ 4p;0-68 11p; 1.0 14p; 1.5 21p; 2.2 24p
SILVERED MICA. Working voitage 500 V
d.c.

8-2:2 to 820 in 32 etages 1000. 1500 7p; 1800 6p; 2200 10p; 2700. 10.000 25p

TANTALUM BEAD
$0.1,0.22,0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 1.5 / 20 \mathrm{~V}$. $\begin{array}{llll}2.216 \mathrm{~V}, & 2.2 / 35 \mathrm{~V}, & 4.7 / 16 \mathrm{~V}, & 10 / 6.3 \mathrm{~V}\end{array}$ $4.7 / 35 \mathrm{~V}, 10 / 18 \mathrm{~V}, 22 / 6.3 \mathrm{~V}$ each 18p $\begin{array}{ll}10 / 25 \mathrm{~V}, & 22 / 16 \mathrm{~V}, \quad 27 / 6 \cdot 3 \mathrm{~V}, \\ 6 \cdot 8 / 25 \mathrm{~V}, 15 / 25 \mathrm{~V}\end{array} \quad \begin{gathered}100 / 3 \mathrm{~V}, \\ \text { each } 20 \mathrm{p}\end{gathered}$ BOYCAR息ONA
Type B42540 Working Voltage- 250 V values in MF: $0.0047 ; 0.0088 ; 0.0082 ; 0.01 ; 0.012 ; 0.015$ $0.018 ; 0.022 ; 0.027 ; 0.033 ; 0.039 ; 0$ 0.047, 0.056: 0.088; 0.082; 0.1 each 4p CEAAMIC PLATE
Working voltage 50 V . d.c.
In 26 values from 22 pt to 68
(n 26 vain 20
otherbip 88p WAVECHANGE SWITCHES 1 pole 12 way: 2 pole 6 way 3 pole 4 way 4 pole 3 way each $29 p$
TAG STRIP 28 way NUTS, SCREWS, etc.
in lots of 100 each
4BA NUTS 24p: 6BA NUTS 23p " 4 B Scrows 23p: ${ }^{\prime \prime}$ 6BA Screws 24p Plain spacers $t^{\prime \prime}$ round Other sizes available ENAMEL COPPER
WIRE In 2 ounce reels
16. 18. 20, 22 SWG 44 p

32,34 SWG 46p. $36,38,40$ SWG 54p DIN CONNECTORS

	Socket	Plug
2 way loudspenkor	10p	12p
3 way audio	10p	12p
5 way audio 180	12p	15p
5 way audlo 240	12p	15p
6 way audio	13p	15p

EV CATALOGUE 7
2nd printing-Oreen and yellow Cover 112 pages, thousands of iteme- inustretions, diagrams; much useful tochnicel updermation. The 2nd printing has been it cond as much as possible on prices. refund only 25p post iree. including when ordering goods list volue 85 or more

QUALITY

GUARANTEE
Al goods are sold on the understending that they conform to manufacture res specifications and satiafaction is rejecte 'seconds" or -no tandard merchandiso is offered for sele.
Prices quated do not include V.A.T. for which o\% must ba added to total notf value of order. Every effort is made to ensure the correctrase of of going to prese Prices subfect to afteration without notice. Wration whour

ALL OUR PRICES INCLUDE V.A.T.

BSR HI-FI AUTOCHANGER STEREO \& MONO

Playi $18^{\prime \prime}, 10^{\prime \prime}$ or 7" records. Auto or Manual. A high quality unit backed by BSR relisbility with 12 monthn' Euarentee. AC 200/250V

ise las x lif
Above motor board 8 in. Below motor board $2 \frac{1}{3} \mathrm{in}$. with 8TEREO and MONO XTAL $\mathbf{6 7 . 9 5}$ Poat 45p.

PORTABLE PLAYER CABINET Modern dosign. Rerine covered. Large front grille. Fow only in red rexine.
Motor board cut for BSR deck $\quad \mathbf{£ 4 . 5 0 \text { Post 50p }}$

BSR JUNIOR SINGLE PLAYER
 Heavy duty 4-speed motor with separate pick-up arm fitted
 compatible cartridge. $£ 4.95$ post 25 p

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop. Stereo/mono cartridge. Baseptate. 8 Size $11 \mathrm{in} \times 8$ in. Turntable. Size 7in diameter. A/C main. $200 / 250 \mathrm{~V}$ motor has a separate winding 14 volt to power a small amplifior. Three apeeds. Plags all records.

£5•50

SOLID MAHOGANY PLINTH post 45p With P.V.C. Cover, Cut out for most Bize 181 or Garrard deck
8ize 18! $\times 14!\times 7!$ in £6.50

COMPACT PORTABLE STEREO HI-FI Two fúll size loudspeskers 18 q $\times 10 \times 3$ lin. Player unit clipa to loudapeakers malsing it extremely compact, overall size only $13\{\times 10 \times 8$ in., 3 watts per channel, plays

SPECIAL OFFER!
 SMITH'S CLOCKWORK
 15 AMP TIME SWITCH 0 TO 60 MINUTES

Single pole two-way Surface mounting

with fring screws. Will replace existing
wall ewitch to give light for return home,
garage, automatic anti-burglar lights, etc. Variable knob. Turn on or off at inll or intermediate settings. Fully insuaranteed. guaranteed. OUR PRICE $\mathbf{f 1 . 9 5}$ Post 25p

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 21 in sides
 ALUMINIUMBOXES $3 \times 3 \times 3$ in $60 p ; 4 \times 4 \times 4$ in 70 p; $6 \times 4 \times 4$ in $80 p ; 9 \times 4 \times 4$ in $21 ; 12 \times 4 \times 4$ in $21-30$. ALUMINIUM PANELS 18 s.W.K. 6×4 in $12 p ; 8 \times 6$ in $10 p$; $14 \times \sin 20 p ; 10 \times 7$ in $24 \mathrm{p} ; 12 \times 5 \sin 25 p ; 12 \times 8$ in $34 p ;$ $16 \times \operatorname{Bin} 34 p ; 14 \times \operatorname{in} 40 \mathrm{p} ; 12 \times 12$ in $47 \mathrm{p} ; 16 \times 10 \mathrm{in} 60 \mathrm{p}$. PAXOLINPAHEL 10×8 in 30 p .
$1!$ inch DLAMETER WAVECHANGE SWITCHES, 45 pea $2 \mathrm{p} .2-\mathrm{wf}$ gy, or $2 \mathrm{p}$. 6-way, or $3 \mathrm{p}$. . 4 -way.

BRITISH FM/VHF TUNING HEART 88 to $108 \mathrm{Mc} / \mathrm{a}$ British made. 2 Transistors resdy aligned requires 10.7 Mc/s I.F. Complete with tuning gang. essential. Our price $\mathbf{- 3 . 9 5}$ Post 20p SUITABLE I.F: 8TRIP $\mathbf{8 4 . 9 5}$. DECODER $44: 95$

R.C.S. STABILISED POWER PACK KITS

All parta and instructions with Zener Diode, Printed Circuit inpuit $200 / 240 \mathrm{Y}$ end Double Wound mains Tranalormer or 15 or 18 or 20 V d.c. at 100 mA or lens PLEASE STATE VOLTAGE REQULRED. Detaily 8.A.E. 8ize $3 \frac{1}{2} \times 1 \frac{1}{1} \times 1$ in. 2012010 R,C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal tor Mike, Tape, P.D., Guitar, etc. Can be used with Battery $9-12 \mathrm{~V}$ or H.T. line $200-300 \mathrm{~V}$ d.c. operation. 8 ize

R.C.S. POWER PACK KIT

18 VOLT, 750 mA . Complete with printed
circuit board and assembly instructions. $\mathbf{2 . 9 5} \begin{aligned} & \text { Pout } \\ & \mathrm{Kyp}\end{aligned}$ 12 VOLT 300 mA KIT, $22 \cdot 75$. θ VOLT 1 AMP KIT, $22 \cdot 95$.
NEW TUBULAR ELECTROLYTICS CAN TYPES
2/350V $14 \mathrm{p}|250 / 25 \mathrm{~V} \quad 14 \mathrm{p}| 50+50 / 300 \mathrm{~V}$
$4 / 350 \mathrm{~V} \quad 14 \mathrm{p}|500 / 26 \mathrm{~V} \quad 20 \mathrm{p}| 32+32 / 350 \mathrm{~V}$
$8 / 350 \mathrm{~V} \quad 22 \mathrm{p} 1000 / 25 \mathrm{~V} \quad 35 \mathrm{p} \quad 32+32 / 450 \mathrm{~V} \quad 35 \mathrm{p}$

$18 / 350 \mathrm{~V}$	80 p	$1000 / 50 \mathrm{~V}$	47 p	$32+350+50 / 325 \mathrm{~V}$
$32 / 500 \mathrm{~V}$	50 p			
$8+8 / 450 \mathrm{p}$	22 p	$18+18+16 / 275 \mathrm{~V}$		

$32 / 500 \mathrm{~V}$	50 p	$8+8 / 450 \mathrm{~V}$	22 p	$18+18+16 / 275 \mathrm{~V} 45 \mathrm{p}$
$25 / 25 \mathrm{~V}$	10 p	$8+16 / 450 \mathrm{~V}$	25 p	$38+32+32 / 850 \mathrm{~V} 85 \mathrm{p}$

$25 / 25 \mathrm{~V}$	10 p	$8+18 / 450 \mathrm{~V}$	25 p	$32+32+32 / 850 \mathrm{~V} 85 \mathrm{p}$
$50 / 50 \mathrm{~V}$	10 p	$18+18 / 450 \mathrm{~V}$	40 p	$900 / 350 \mathrm{~V}$

$50 / 50 \mathrm{~V}$	10 p	$16+18 / 450 \mathrm{~V}$	40 p	$900 / 380 \mathrm{~V}$
$100 / 25 \mathrm{~V}$	10 p	$38+32 / 350 \mathrm{~V}$	40 p	95 p
$4700 / 63 \mathrm{~V}$	85 p			

$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mq} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
2000 mF BV 25p; 25 V 35p; 50V 47p; 100V 70p.

5000 mF BV $25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p}$; 25 V 75p; 35 V 85p; 50 V 95 p. CERAMIC 1 pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. Silver Mica 2 to 6000 p , 4 p . PAPER $350 \mathrm{~V}-0.17 \mathrm{p} ; 0.518 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 8 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$ $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.1$ 10p; $0.252 \mathrm{p} ; 0.4725 \mathrm{p}$ TWIN GANG. " 0.0 " $208 \mathrm{pF}+176 \mathrm{pF}$, 1.10 p . Slow motion drive $365 \mathrm{pF}+365 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 60 \mathrm{p}$; Twin 500 pF 75p. Twin 410pF 50p. Twin 120pF 50p
GHORT WAVE SHGLE. 25pF, 45p; 50pF, 55p.

SHORT WAVE SINGLE GANG. Precinion Silver Plated

 Gengeble Tuning Condensers. 100 pF .50 p еасh
NEON PANEL INDICATORS 250V AC/DC. Amber 30p. RESISTORS, $1 \mathrm{~W} . \frac{1}{2} \mathrm{~W} .1 \mathrm{~W}, 20 \% \mathrm{1p}$; 2W, 5 p . 10 n to 10 M HIGH STABILITY. $\frac{1}{2}$ W $2 \% 10$ ohms to 8 meg., 10 p . WIt 5\%-WOUND REESISTORS 5 watt, 10 watt. 15 wat 10 ohms to 100 K 10 p each.
TAPE OSCILLATOR COIL Valve type $85 p$
FERRITE ROD $8 \times \operatorname{lin} 20 \mathrm{p} ; 6 \times$ in $20 \mathrm{p} ; 3 \times \operatorname{lin} 10 \mathrm{p}$.

\section*{MAINS TRANSFORMERS | ALL Post |
| :---: |
| 250 pach |}

$250-0-25080 \mathrm{~mA} .6 \cdot 3 \mathrm{~V} 2 \mathrm{amp}$
$250-0-25080 \mathrm{~mA}$. $8 \cdot 3 \mathrm{VV} 3.5 \mathrm{~A} 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2A $350-0-35080 \mathrm{~mA} 6.3 V 8.5 A, 6.3 V$ IA or $5 V$ 2A $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.8 \mathrm{~V} 4 \mathrm{~A}$ C.T.; 6.3 V 2 A . MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6-3 V 1 \mathrm{~A} 24 \times 2 \frac{1}{2} \times 2 \mathrm{in}$ MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A} 21 \times 21 \times 2 \mathrm{in}$
HEATER TRAN8. $6.3 V$ amp $85 \mathrm{p}, 3 \mathrm{amp}$ GENERAL PURPOSE LOW VOLTAGE Teppe. 81.80 p at 2 amp. $3,4,5,6,8,9,10,12,15,18,24$ and 30 V thent $1 \mathrm{smp}, 6,8,10,12,16,18,20,24,30,36,40,48,6024 \cdot 00$ ${ }_{2}$ smp, $6,8,10,12,16,18,20,24,30,36,40,48,6026-00$
 or $5-0-5 V 5$ amp. $1150 ; 6-0-6 \mathrm{~V} 500 \mathrm{~mA} 80 \mathrm{p} ; 8 \mathrm{~V} 1 \mathrm{smp}$ $95 \mathrm{p} ; 12 \mathrm{~V} 300 \mathrm{~mA} 75 \mathrm{p} ; 12 \mathrm{~V} 500 \mathrm{~mA} 85 \mathrm{p} ; 12 \mathrm{~V} 760 \mathrm{~mA} 95 \mathrm{p}$. AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150 W 24.00; 500W $27.50 ; 750 \mathrm{~W} 215 ; 100 \mathrm{~W} 218$. for 6 or 12 V , if $\operatorname{smp} \mathrm{Em} 2.00 ; 2 \mathrm{smp} \mathrm{m} 2.50 ; 4 \mathrm{amp} 24-00$
 $11 \mathrm{amp} 22 ; 4 \mathrm{smp} 84 ; 5 \mathrm{smp}$. $84 \cdot 50$.
11 amp $22 ; 4$ amp $84 ; 5 \mathrm{amp}$. $84 \cdot 50$.
FULL WAVE BRIDGE CKIRAGER RECTIFIERS: 6 or 12 V outpute. 11 amp 40 p ; 2 amp 55 p ; $4 \mathrm{amp} \mathrm{85p}$
MAINS ISOLATING TRANSFORMER Primary $0-110-240 V$. Secondary $0-240 V$ a amps 780 watts. Inaulated terminals. Varnish impregnated. Fully
 Can be used as 800 whtt auto transformera 240-110V.

SET OF 3 MOTORS FOR COLLARO STUDIO 115 VOLT TAPE DECK fl. 50 Post 50p

VOLUME CONTROLS 80 ohm Coax 5 p yd.
Long spindles. Midget Size BRITISE AERIALITE 5 K. ohms to 2 Meg. LOG or \mid AERAEIAL-AIR SPACED LIN. L/S 20p. D.P. 35p. Edge 5K. S.P.Trangistor 25p Wire Wound controle $1 \frac{1}{4}$ in dism. 3 Watts. 10 ohms to 100 K Britigh Made with long spindles fin dia. 85p each.
DUAL CONCENTRIC POT 500 K LOG AND 500 K
DUAL CONCENTRIC YOT \$00K LOG AND 500K LIN D.P switch. Inner spindle 34 in ; onter spindle $2 \nmid i n 75 p$.
E.M.I. $13 \frac{1}{2} \times 8$ in. SPEAKER SALE!
Wit twin weebriti $£ 4.50$ watt. 8tate 3 or 8 or

Past 2 With Hared tweeter cone and ceramic
 Bastres, $43-60 \mathrm{c} / \mathrm{s}$.
Flux 10,000 gauas.
n. Poat 25

Stato 8 or 8 or 15 ohm. Poat 25 p
13×8 in Bass unit 20 wattrubber cone surround 15 ohm e5-60
LOUDSPEAKER FRONT GRILLES
Teakwood strips monnted on cloth backing, easily glued on to bafile to modernise cabinets.
size $18 \frac{1}{2}$ in $\times 10$ in. 75 p or size $10 \frac{1}{3}$ in $\times 7 \mathrm{in} .45 \mathrm{P}$
E.M.I. $6 \frac{1}{2}$ in. HI-FI WOOFER

8 ohm. 10W. Large ceramic magnot 8pecisl Rubber cone urround. Frequency response Columns c / s. Ideal P.A. uitable Hi-Fi Enclosure Syatems, etc antable Cabinet $12 \times 8 \times 8 \mathrm{ft} 8 \mathrm{uitable}$ Twater 22
 radiation pattern to the higher frequencies and a smooth extendion of total response $3!\times$ zin deep. Rating $10 \mathrm{~W}, 3$ ohm. Crossover $21.25 \leq 1.90$ Post 20p.

GOODMANS

 8 in . WOOFER 8 ohm 12 watt. Deep cone.Heavy ceramic magnet. Bass retonance 35 cps . Frequency ollponse 30-8,000 cp deat bass unit for $£ 3 \cdot 75$
Hi-Fi syitem.

SPECIAL OFFER LOUDSPEAKERS

3 ohm, $21 \mathrm{in} ; 2$ in; $31 \mathrm{in} ; 5 \mathrm{in}$,
ohm, 2tin; 2tin; 5 in $\times 3 i n ; 3 i n ; 4 i n ; 5 i n$.
5 ohm, 31 in; 5 in $16 \times 4 \operatorname{lin} ; 5 \times \sin ; 7 \times 4 \mathrm{in} ; 8 \times 6 \mathrm{in}$.
$5 \mathrm{ohm}, 24 \mathrm{in} ; 5 \times 3 \mathrm{in}$; 5in.
$35 \mathrm{obm}, 3 \mathrm{in}$; 5 in
$80 \mathrm{ohm}, 21 \mathrm{in} ; 2 t i n .120 \mathrm{ohm} 8 \mathrm{in}$.
f|EACR
LOUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \mathrm{in} 21$-25: 6 in 81.50 ; $\times 5 \mathrm{in} 21.60 ; 8 \mathrm{in} 41.75 ; 10 \times 6 \mathrm{in} 21.90$; 10 in 82.50 RICHARD ALEAN TWIN CONE LOUDGPEAKER8. 8 in iameter 4W 82.50, 10 in diameter SW 82.95 ; Post 25p. 3 or 8 or 15 ohm models.
SPEAKER COVERING MATERIALS. 8amples Large 8.A.E Horn Tweeters 2-18Kc/a. 8 W 8 ohm or 15 ohm $22-20$. TWO-WAY 8,000 c.p.s. CROSSOVERS 3. 8 or 15 ohm 21.25
CASSETTE MACHINE MOTOR. 6 Volt.
Will replace many typer 21 -25.

R.C.S. 3 WAY CROSSOVER

Completo with 12 ft . twin lead fitted with din speaker plog. Ready assembled with leads for spakers, bass, mid and weetar. Crossover Irequencies- 950 cps and f .95

VALVE OUTPUT TRANSFORMER 50p.
MIKE TRANEPORMER MU mets 100-1 51.25. PUGH-PULL VALVE OUTPUT TRANSFORMERS. 50 witt..............212.50 100 watt .
$125 \cdot 00$

ELECTRO MAGNETIC PENDULUM MECHANISM

1.5 V d.c. operation over 200 hours continuous on SP2 battery, iully adjustable swing and speed. Ideal displaya, teaching electro magnetism or for metronome, 95 P Pos
atrobe, otc.

R.C.S. RECORD PLAYER AMPLIFIER

2 stage triode pentode falve. 3 watto output. Volume on/or and tone controls. Printed circuit ≤ 4.50 Poa Complate with speaker.

COAXIAL PLUG 10p. PANEL SOCKETS 10D. LIHE 18 OUTLET BOXES, SURFACE MOUNTLIG 255 .
BALANCED TWIN RIBBON FEEDER 300 ohms, 7 p yd JACK SOCKET Std. open-circuit 14p. closed circnit $28 p$; Chrome Lead Socket 45p. Phono Pluge 7p. Phono Socket 7p JACK PLUGS Std. Chrome 20p; 3.5 mm Chrome 15 p DIN SOCKETS Chasis 8-pin 10p: 5-pin 10p DII 80CKET8 Lead 8-pin 18p; 5-pin 25p. DIN PLUGS 3-pin 25p; 5 -pin 25p
VALVE HOLDERS $6 p$; CERAMIC 10p; CAN8 5p.

ALL PRICES INCLUDE VAT 20p MINIMUM POST AND PACKING CALLEAS WELCOME RADIO COMPONENT

[^3]E.M.I. wooker and - TWEETER KIT 45*75 $\begin{aligned} & \text { TRE PARR, Post 45p. } \\ & \text { (Available } \\ & \text { meparately. }\end{aligned}$ (Available ${ }^{\text {meparately. }}$ Woote
21.90)
Compriaing a fine example of a Woofer 104×61 in with a makive Ceramic Fagnet, 4402 Gaum 18,000 lines. Alnminium Cone centre to improve middle and top reaponse. Also the E.M.I. Tweter stin equare has a specis. ightweight paper cone and magnet fitu 10,000 lines. Crossover condenser and oll instructions applied.
mpedance Standard 8 ohms
Uselul Reaponser 85 to $18,000 \mathrm{cpa}$ $45 \mathrm{cps}, 000 \mathrm{cp}$ UITARLE ENCLOSURE $80 \times 18 \times 9 \mathrm{in}$.
IODERS DESIGN. TEAK $W 00 \mathrm{D}$ FLIISH.

$£ 10.50$

ANOTHER R.C.S. BARGAIN !

ELAC $9 \times$ Sin. HI-FI SPEAKER TYPE 59RM
This famous undt now availsble, 10 watts, 8 ohm. Price $\mathbb{E 2 . 9 5}{ }_{25 \mathrm{p}}^{\text {Pont }}$

$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI-FI SPEAKER

Dusl cone plasticised roll surround. Large ceramic magnet. $50-16,000 \mathrm{cps}$. Bass magnet. $50-16,000 \mathrm{cps}$. Bass remonsince 55 eps.
10 wette.
£3.75
l0in round 64:50.
TEAK VENEER HI-FI SPEAKER CABINETS
Fluted Wood Fronts
MODEL "A". $20 \times 13 \times 8$ in For 12 in. dia. or $\{10-50 \underset{75 p}{\text { Post }}$
101 n apeairer.
MODEL "B". $16 \times 10 \times$ gin For $18 \times 8 \mathrm{in}$. or $\mathbf{8 6 . 6 0}$ Post MODEL "B"
Corner Version.
MODEL "C". $18 \times 8 \times 6 \mathrm{in}$.
For $8 \times 5 \mathrm{in}$. \quad (pesker
COUDSPEAKER CAEDYET
WADDING 18 in wide, 20 p It
DECCA DOME TWEETER
siin. diam. 18,000 C.P.S. 26 WATTs 8 st $\leq 3 \cdot 30$
BARGANT 4 CHANNEL
TRANSISTOR MONO
MIXER. Add munical
highlights and sound effects to recordings. Will mix Microphone, records, tape and tuner with separate
 $\begin{aligned} & \text { controle into ingle output. } \\ & 9 \text { volt battery }\end{aligned} \leq 4.50$
8TEREO VERSION OF ABOVE 25.95
BARGAII 8 WATT AMPLIFIER. 4 Tranaistor
Push-Pull Ready built with volume, treble and basa controls. 18 polt battery operated.

THE "Imstant" BULE TAPE
ERASER \& HEAD DEMAGMETISER.
suitable lor cassettes, and all sizes of
Lspe reeli. A.c. maini 200 .200.
Leatlet S.A.E.
$€ 3.75{ }_{20 \mathrm{p}}^{\mathrm{Pont}}$
WAFER HEATING ELEMENTS
OFPRRLN 1001 D8Res for every type of heating and drying applications in the home, garage, greonhouse lactory (available in manufacturing guantities). Approx sive $10 \frac{7}{6} \times 8 \frac{1}{8} \times$ hin. Opersting voltage $200 / 250 \mathrm{~V}$. s.c. 250 walts approx. Printed circuit eloment onclozed in sbbestos fltted with connecting wires. Completely fexible providing asfe Black heat. British-made for rase in photocopieri and print drying equipment.
Ideal for home handymen and experimenters. Suitable Lor Hesting Pade, Food Warmers, Convector Heaters, ete ote., to msko eftcient clothes dryers, towel rails-idesil for airing cupboards. Ideal lor anti-front dovice for the garage -preventing frozen radiators or acting as oil sump hestor. Use in greenhonse for seed raiaing and plant protection. Invalusble aid for bird housen, incubatort, otc., etc. Can be used in series for lower heat. Or in parallel for higher heat applieations.
ONLY 40 EACH (FOUR FOR GI.50) ALL POST PAID-Discounts for quentity.

BAKER MAJOR 12" $£ 8 \cdot 50$

80-14,500 c/s, 1 Rin. double cone, wooler and tweeter cone together With a BAKER ceramic magnet ansombly 14,000 gans and a total finx of 146,000 Marwells. Bats resonance $40 \mathrm{c} / \mathrm{a}$ Reted 20 watte. NOTE: 3 or 8 or 15 ohms muat be atated.

Module kit, $30-17,000 \mathrm{c} / \mathrm{B}$ with tweeter, crossover, bs筬e and instructions. $\mathbf{4} 10.95$

BAKER 66:3 (SPEAKERS

Robratly constructed to stend up to long pariods of electronic power. Usefal responge $30-18,000 \mathrm{cps}$. Basi Resonance 55 cps.
GROUP " 25 " 12in 25 watt 8,8 or 15 ohms

GROUP "35"
12in 35 watt
3, 8 or 15 ohma

GROUP "50"
16 in .50 watt
8 or 15 ohms.
MAJOR 100 WATT
ALL PURPOSE
TRANSISTOR
AMPLIFIER
All purpose tranaiatorised.
Ideal for Groups, Disco and P.A.
4 inpute speech and music. 4 way
Separate treble sand bess controls.
Gparanteed. Details S.A.E.

NEW MODEL MAJOR 50 WATT 4 inputa, 2 way miring, 239 95. Cafr. \&1. Ideal diaco amp. CALLERS ONLY! DE-LUXE 100 WATT AMPLIFIER CHASSIS, 7 Valve vertion, 4 inputs, 10 wide range controls. For Mirob, Discos, Organs, Guiterz, etc. 4. 8 and 15 ohm Loudipeaker matching.669

QUALITY LOUDSPEAKER ENCLOSURE
Test veneered in thick wood cabinet. Size
181 in $\times 18$ in $\times 8$ tin. Weight 231 bs . Thi csbinet festures s wide mesh siver Gril covering a separate compartment for mounting Tweeters or Mid-Range Horn. The fully sealed bass compartment is cut out for Rosewood Version $48 \cdot 50$. Carr, 85 p

SPECIAL OFFER 95p. Post 25p.
100 Ohm 20 watif Rheostat 2 in dis. Ceramic Former.
Screw Terminals tin. dia. apindle.
20 Whtt 100 ohm Rheostst 2 hin die. Ceramic former screw terminals tin dia. spindle. 95p. Poat 25 p .
R.C.S. STEREO DECODER

British made. Ready aligned and tosted. Complete $\mathbf{1 4 . 9 5}$ with instructions, Sise 3 in $\times 2$ in.

WEYRAD COILS

P50/2CC	40p		RA2W
P50/1AC	60 p	85p	
P50/3CC	40 p	OPT1	65 p
PCA1	85 p		LPDT4

DELUXE 4 POLE MOTOR

1,400 r.p.m. reverrible 42 Wa th
spindle itin x 7/88in, size $8 \frac{1}{2 i n} x$ 3 in . As illustrated. 240V s.c. mains.
$£ 2.25$ Post 25p
E.M.I. GRAM MOTOR

120 F or 240 F s.c. $2,400 \mathrm{rpm}$. 2-pole
70 mA . Size $27 \times 24 \times 2 \frac{1}{2} \mathrm{in}$.
E1-00
Post 25p

BAKER HI-FI SPEAKERS
high quality - british made REGENT
I2in. 15 watts
An inerpenaive unit for the beginner in high fidelity sad Ior general purposes, May be Ampliter Hi-ri or Telericion Ampliter, Hi-Ei or Television Bege Reso
Batiz Reanosace 12,000 (5epa Uselul respone $45-18,000 \mathrm{ep}$ 3 or 8 or 15 ohm models.

£7.75

DE-LUXE Mk II I2in. I5 watts Especially designed to provide full range reproduction at an oconomical cost. Suitable for use whem Bniltoin concentric tweeter cone. tweeter cone.
Plax Dannity 14,000 30cpise
 8 or 15 ohma models.
$£ 9.75$

SUPERB

I2in. 20 watts A bigh quality loudspescer, ita romarkable low cone resonance enaures clear roproduction of the doopent
basa. Fitted with s special bass. Fitted with s specitl copper drive snd concentric range reprodaction with remarkable effeiency in the upper register.
Bata Resonance
Flux Dengity 1850 cps Treful rensity 16.500 ganss 8 or 16 ohms modele.

£ $13 \cdot 80$

AUDITORIUM

I2in. 25 watts
A full range reproducer for high power, Flectric Guitarı, public address, malti-lpesker syitems, electric organs, Idesl for Hi-Fi and Discotheques.
Bass Resonance 85 cps $\begin{array}{ll}\text { Flux Dentity } & 15,000 \text { gstur } \\ \text { Usefol response } & 25-16,000 \mathrm{cps}\end{array}$ Useful reaponse $25-16,000 \mathrm{cps}$ 8 or 15 ohme modela

£12.95

AUDITORIUM

I5in 35 watts

A high watiage loudrpeaker of exceptional quality with a lovel response to sbove $8,000 \mathrm{cps}$, Ideal for Public Addreas, Dincotheques, Electronic instruments and the home.
Basin Remonance $15,00035 \mathrm{cps}$
Flux Denalty $\begin{array}{ll}\text { Flux Density } & 15,000 \text { gaps } \\ \text { Useful response } & 20-14,000 \mathrm{cps}\end{array}$ 8 or 15 ohmi models.
£17.80

Hi-Pi Enclosure Manual containing plans, deaign, croasover data and cubic tables. 6Bp.

DISCO, SHOP, SOUND TO LIGHT, STAGE PHOTO-FLOOD LIGHT FITTINGS

TYPE B 3-BANK UNIT
Has two brackets to accept P/C Board. Transformers. Also has holes in ends for Potentiometers, Jack Socket, Cable, etc. Ideal for making Sound to Light and Strobes. Base Cover included. Less Lamps, only £6. 50
inc VAT, P \& P. 40p

SOUND TO LIGHT

Three channel. using Type B unit. Ideal for small disco's and home entertainment Complete with Lamps. Ready wired
$£ 25$
inc. VAT. P. \& P. 40p

STROBE UNIT

Using Type B unit. Adjustable frequency. Single knob control. Complete with Lamps. just plug into mains-that's it.
£25
complete, inc VAT P \& P 40p
100 WATT SPOT LAMPS
Red. Pink. Green Yellow, Blue, Violet. Clear Only 80p each. Minimum $\mathbf{3}$ Lamps $=\mathbf{£ 2} \cdot 40$ inc. VAT, P. \& P. 25p
TRAFALGAR SUPPLIES
Dept H.T. Standish Street - Burnley - Lancs

ENGINEERS

YOURSELF FOR A BETTER JOB "m

Do you want promotion. a better job. higher pay? "New Opportunities" shows you how to get them through a low cost home study course. There are no books to buy and you can pay-as-you-learn.

This helpful guide to success should be

 read by every ambitious engineer. Send for this helpful 76 page FREE book now. No obligation and nobdy will call on you. It could be the best thing you ever did.
10 WATTS PER CHANNEL RMS STEREO AMPLIFIER

at less than 0.1% distortion. Max. RMS output in excess of 15 watts per channel.

* 4-16 ohm Load
* 40 dB NFB
- $15-50 \mathrm{kHz}(-\mathrm{ddB})$
* 150 mV inpu

Completely assembled PCB using top grade components (plus backplate/heatsink) including balance volume and tone controls plus mono-stereo switch. Operates from 22-24V d.c. Board also includes a single 2 -stage mic. or guitar pickup preamp. ($2 \times \mathrm{BCl} 49$). Instructions are included for a simple mod. to adapt this for stereo operation giving 150 mV at 1 M ohm sensitivity. Full circuit supplied.
FANTASTIC AND UNREPEATABLE BARGAIN. 69.90 plus 60 p P. \& P., me. VAT. Power supply components to operate from the mains available, add $£ 2.90$ inc. VAT.

> EDRICK ELECTRONICS LTD.
> (DEPT. P6)
> 164 HIGH STREET, BARNET, HERTS.

Marshall's

Everything you need is in our New Catalogue
available now price 20p
(100 pages of prices and data)
Call in and see us 9-5.30 Mon-Fri
A. Marshall (London) Lid. Dept. PE
42 Crikklewood Broadway London NW2 3DH Telephone 01-452 0161/2 Telex 21492
$\& 85$ West Regent Street. Glasgow G2 2GD Telephone 041-332 4133

9-5.00 Sat
 Trade and export enquiries welcome

Popular Semiconductors

2N456	0.80	2N2907	0.22	2N4061	0.11	AD150
2N456A	0.85	2N2907A	0.24	2N4062	0.11	AD161
2N457A	1.20	2N2924	0.14	2N4126	0.20	AD162

2N457A
2N490
2N490
2N491
2N491
2N492
$2 N 492$
$2 N 493$
2N696
2N696
2N697
2N697
2N698
2N698
2N699
2N699
2N706A
2N708
2N706A
2N708
2N708
2N709
2N711
2N711
2N718
2N718A
2N718A
2N720
2N720
2N721
2N914
2N914
2N916
2N918
2N918
2N929
$\begin{array}{ll}\text { 2N1302 } & 0 \\ \text { 2N1303 } & 0 \\ \text { 2N130 }\end{array}$
$\begin{array}{ll}\text { 2N1304 } & 0 \\ \text { 2N1305 } & 0\end{array}$
$\begin{array}{ll}\text { 2N1306 } & 0 \\ \text { 2N1307 } & 0\end{array}$
2N1308
2N1309

2N1671A
2N 1671 B
2N 9671 C
2 N 9671 C
2N $\uparrow 111$
2N1907
2N2102
2N2147
2N2148
2N2148
2N2160
2N2192
2N2192 A
2N2193
2N2193A
2N2194 0
2N2194A
2N2219
2N2219A
2N2220
2N2221
2N2221A
$2 N 2222$
$2 N 222 A$
2N2368
2N2369
2N2369
2N2647
2N2904
2N2904
2N2905
2N2905A
2N2905A
2N2906
2N2906A

2N2924
2N2925
$\begin{array}{ll}\text { Green } \\ \text { Yellow } & 0.11\end{array}$

ED 135
BD136

0.11
:---
BD 138
:---
.12
.09
.09

Integrated CIrcults-TTL Reductions !

							0.16	SN7480 SN7481	0.75 1.25	SN7495 SN7496	$\begin{aligned} & 0.80 \\ & 1.00 \end{aligned}$	SN74151 SN74153	1.10 1.09	SN74175 SN74176	1.28
	0.16	SN	0.16	SN7432	0.45	SN7451	0.16	SN7482	0.87	SN74100	2.16	SN74154	1.64	SN64180	1.44
SN7401A		SN7411	0.25	SN7437	0.35	SN7453	0.16	SN7483	1.20	SN74107	0.43	SN74155	1.55	SN74181	5-13
	0.38	SN7412	0.23	SN7438	0.35	SN7454	0.16	SN7484	0.95	SN74118	1.00	SN74157	1.09	SN74190	1-95
SN7402	0.16	SN7413	0.50	SN7440	0.18	SN7460	0.16	SN7485	1. 58	SN74119	1.92	SN74160	1.50	SN74191	1.95
SN7403	0.18	SN7416	0.45	SN7441	0.85	SN7470	0.30	SN7486	0.45	SN74121	0.57	SN74161	1.50	SN74192	2.05
SN7404	0.24	SN7417	0.30	SN7442	0.85	SN7472	0.38	SN7490	0.65	SN74122	0.80	SN74162	1.54	SN74193	$2 \cdot 30$
SN7405	0.24	SN7420	0.14	SN7445	1-59	SN7473	0.44	SN7491	$1 \cdot 10$	SN74123	0.72	SN74164	2.01	SN74196	1. 50
SN7406	0.45	SN7423	0.37	SN7446	2.00	SN7474	0.48	SN7492	0.75	SN74141	1.00	SN74165	2.01	SN74197	1.58
SN7407	0.45	SN7425	0.37	SN7447	1.30	SN7475	0.59	SN7493	0.65	SN74145	1.44	SN74167	$4 \cdot 10$	SN74198	3. 16
SN7408	0.	SN7427	0.45	SN7448	1.50	SN7476	0.45	SN7494	0.85	SN74150	1.4	SN7417	1.	SN74100	2.88

PE SCORPIO Mk2 ignition system kit naw rom EIECIRO SPARES
 * 6 OR 12 VOLT
 * + VE AND - VE GROUND

Here's the new, improved version of the orlginal PE Scorpio Electronic Ignition System - with a blg plus over all the other kits - the PE Scorplo KIt is designed for both positive and negative ground automotive electrlcal systems. Not just + ve ground. Nor Just -ve ground. But both! So if you change cars. you can be almost certain that you can change over your PE Scorplo Mk. 2 as well.
Contalning all the components you need, this Electro Spares PE Scorplo Mk. 2 KIt is simply bult, using our easy to follow instructions. Each component is a branded unlt by a reputable manufacturer and carries the manufacturer's guarantee. Ready drllled for fast assembly. Quickly fitted to any car.
When your PE Scorpio Mk. 2 Is installed, you instantly beneflt from all these PE Scorpio Mk. 2 advantages:
\star Easier starting from cold $\$$ Firing even with wet or oiled-up plugs \star Smoother running at high speed \star Fuel saving * More power from your engine \star Longer spark plug life \star No more contact-breaker burn.
Electro Spares prices:
De luxe Kit only $£ 11.50$ ínc. VAT and p \& p.
Ready Made Unit $£ 14.75$ inc. VAT and $p \& p$. State 6 V or 12 V system.
Send SAE now for details and free list.

FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics' Superb Hi-Fi iuner Kit now available from Electro Spares Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge) Electro Spares price only $\mathbf{E} 28.50$ inc. VAT and p \& p.

'GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere 0.02%, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms . Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now 1 Depending on your choice of certain components, the price can vary from $£ 50$ to $\mathbf{£} 60$ inc.
VAT and $p \& p$.

* All components as specified by original authors, and sold separately if you wish.
* Full constructional data book with specification graphs, foult finding guides, etc. 55 p plus $4 p$ postage.
\star Price List only. Please send S.A.E. (preferably 9×4 minimum) for full details.

The: Comproment Cumpe: of the Nentir 288 ECCLESALL RD., SHEFFIELD S11:8PE (D) Tel: Sheffield (0742) 668888

MULTIMETER Model C.7081 GN Range Doubler 50,000 ohm/ volt High Sensitivity Meter \& 14.40 . 20p P. \& P.

TAPE
RECORDER
Level
METER
$500 \mu \mathrm{~A}, 70$ P. 5 P P. \& P.

CARDIOID MICROPHONE

Model UD-130. Fre. quency response 50$15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, C6.55. IIp P. \& P.

4 itin $\times 3$ tin METER. $\quad 30 \mu \mathrm{~A}$, $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, \mathrm{E} 3.65$. IIP P. \& P.

3 WATT STEREO AMPLIFIER
\&430. 10 P P. \& P.

All above prices include 8% V.A.T. LARGE S.A.E. for List No. 10. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

CALCULATOR OFFER!

SINCL Camb Cam. Execu Exec Scient	AlR idge Memo ive Hemory fic		$\begin{aligned} & £ 17 \cdot 25 \\ & £ 24 \cdot 00 \\ & £ 23 \cdot 90 \\ & £ 28 \cdot 45 \\ & £ 25 \cdot 00 \end{aligned}$		$\begin{aligned} & \text { EXAS } \\ & 11500 \\ & 12000 \\ & 12550 \\ & 13500 \\ & \text { R10 } \end{aligned}$		$\begin{aligned} & £ 26 \cdot 25 \\ & £ 13.95 \\ & £ 29.95 \\ & £ 35 \cdot 00 \\ & £ 31.85 \end{aligned}$		BUY IT WITH ACCESS, etc.		
BC107	10p	BC184L 10p			TIP2955	85p	IN914		5p	7474	42p
BC108	10p	BC212L		12p	TIP3055	90p	INS16		$5 p$	7475	60 p
BC109	10p	BC213L		12p	TIS43	15p	IN4148		5p	7476	42p
8C177	22p	BC214L		12p	Tis74	50p	7400-5		0 p	7483	E1. 25
8C178	22p	BC182k		10p	$2 \mathrm{~T} \times 304$	26p	7410		p	7486	46p
BC179	24p	BC183K		10p	2TX504	35p	7413		8p	7490	66p
BC182	10p	BC184K		10p	OA10	30p	7420		0p	7492	70p
BC183	10p	BC212K		12p	OA47	7 p	7430		Op	7493	68p
BC184	10p	BC213K		12p	OA73	6p	7440		p	74107	45p
BC212	12p	EC214K		12 p	OA81	6p	7442		8p	74121	51p
BC213	12p	TIP29A		52 p	OA90	$5 p$	7447			74141	£1.00
8C214	12p	TIP30A		62p	OA91	5p	7470		4p	74151	£1.00
BC182L	10p	TIP41A		$85 p$	OA200	6p	7472		4p	CA3026	90p
BCi83L	10p	TIP42A		95p	OA202	9p	7473		5p	CA3046	$82 p$
70214 pin Dil 45 p			7418 pin DIL 38p			2N3242	[1.45		EFY52		22p
			741 To-9974888 pln DI		36p	2N3819				24	50p
			7488 pin DIL 38p	2N3820		45p		28	70p		
			74714 pinOSL3018		- 90p	2 N 4442		80 p			75p
70914 pin OIL 38p 71014 pin DIL 39p					75p	BCY70		14p		30	60 p
$\begin{aligned} & 710 \text { 14pin DIL 39p } \\ & 710 \text { TO-99 } \end{aligned}$			SL3018		12p	BCY71		14p		35	60p
73314 pin DIL ${ }_{\text {E1.35 }}$			2N1304		13p	BCY72		13p		44	20p
			2N30532N3055		18p	BFY50		25p		45	20p
74114 pin DiL 39 p					$48 p$	BFY51		$21 p$		76	20p

 AESISTORS: TRS 2% E24, $2 \ddagger$; W.W. 2\&W 10p, 6W 10p, 9W 12p, $12 \mathrm{~W} 15 p$.
DALO PEN: 770 .
DISC CERAMICS, all values 10p. TANTALUMS 13p. I.C. SOCKETS 8 pin $15 p$; 14 pin 15p; if pin 16p. SOLDER, 18 S.W.G. £1-60 per \ddagger kg: 22 S.W.G. £1. 90 per 1 kg

VAT INCLUSIVE! POST FREE OVER£3!

49-51 ST. MARY'S ROAD, OATLANDS VILLAGE WEYBRIDGE, SURREY. TEL. WALTON 21324 Mall Order Only. C.W.O.

VARIABLE YOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V SHROUDED TYPE
200 watt (1 amp) 69.00
0.5 KVA (21 amp) (MAX) $\& 10.00$ 2 KVA (10 amp) (MAX) $£ 28.10$ 3 KVA (15 amp) (MAX) 131.25 4 KVA (20 amp) (MAX) $\leqslant 72.50$ ARRIAGE AND PACKING EX

OPEN TYPE I amp (panel mount) $£ 9.00$
300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts. Sereened. Primary two separate $0-115 V$ for 115 or 230 volt. Secondary two Can be used in series or 115 or 230 volt output ropicalised Length 13.5 cm Width 11 cm . Heigh 13.5 cm . Weight 15 fb .

SPECIAL OFFER PRICE 65. Carr. 80p
A.C. MAINS TIMER UNIT Based on an electric clock, with 25 amp. single pole switch, which can be preset for any
period up to 12 hrs , ahead to switch on for any length 6 time, from 10 mins. to additional 60 min . audible for Tape Recorders, Lights
 Electric Blankets, etc. Attractiv,

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon
white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation EXPERIMENTERS' ECONOMY KIT Speed. adjustable to 30 flash Per sec. All
electronic components including Xenon Tube and instructions $66 \cdot 30$. Post 30p.
INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Speed adjustable 1-80 f.p.5.
Approx. I output of Hy-Lyght. Price $\mathbf{5 1 4 . 0 0}$. Post 50p
HY-LYGHT STROBE MK II
Hor use in large rooms, halls and utilises a silica tube, printed circuit. Speed adjustable 0-20 f.p.s Light output greater than
THE ‘SUPER' HY-LYGHT KIT
Approx. four times the light output of our well proven Hy-Lyght strobe

- Variable speed from $1-13$ flash per sec.

Reactor control circuit producing an intense
ROBUST FULLY VENTILATED METAI CASE For HY Lysh Kitincluding reflector 65.75 Post 25p. super
-inch POLISHED REFLECTOR deally suited for above Strobe kits. Price 55p. Post 15p.

INSULATION TESTERS NEW!

 Test to I.E.E. Spec. Rugged metal construction. suitable for bench or Size L.8in. W.4in. H. Sin^{2}, weight $\$ 1 \mathrm{l}$ $1,000 \mathrm{~V}$, 1,000 megohms, E^{24}. Pos $60 \mathrm{p} .500 \mathrm{~V}, 500$ megohms, 428. Post

'GENTS' 6" ALARM BELL

 200/250V AC/DC. Brand New. Price 55 . Post 60p.'STC' 6" RED ALARM BELL
24/48 volt DC. Brand New. Price f4. Post 50p

All prices are subject to
 8% VAT. (8p in the 8)
 To all orders.add 8% VAT to total value of goods including carriage, packaging.
 SERVICE
 TRADING CO

Superior Quafity Precision Made

25 WATT $10 / 25 / 50 / 100 / 150 / 500 / / \mathrm{k} / \mathrm{ohm}$

 E1.15. Post 10 P .50 WATT
1/5/10/25/50/100/250/500 1.5k ohm $£ 1 \cdot 60$. Post $10 p_{\text {. }}$. 100 WATT I/5/10/25/50/100/250/500/1k/1.5k/2.5k 100 WATT $1 / 5 / 10 / 25 / 50 / 1015$.
Black Silver skirted knob calibrated in Nos 1-9. Itin. dia. brass bush. Idealfor above 22p each.
RELAYS SIEMENS. PLESSEYY Etc
Col.(1)
Coil oh
Col. (2) Working d.c. volt Contracts Col. (4) Price HD= Heavy duty

-	2	3
58	5-9	$6 \mathrm{c} / \mathrm{o}$
150	4-9	$2 \mathrm{c} / \mathrm{O}$
185	8-12	6M
308	9-14	$4 \mathrm{c} / \mathrm{o}$
410	12-20	$4 \mathrm{c} / \mathrm{o}$
700	16-24	4M 2B
700	16-24	4 clo
700	20-30	6 clo
2.500	31-43	$2 \mathrm{c} / \mathrm{OHD}$
2.500	36-45	6 M
9,000	40-70	$2 \mathrm{c} / \mathrm{o}$
15k	85-110	6 M

$70 p^{*}$
$60 p^{*}$
$75 p^{*}$
$80 p^{*}$
$60 p^{*}$
$80 p^{*}$
$50 p^{*}$
$60 p^{*}$
$60 p^{*}$
$60 p^{*}$
$60 p^{*}$
6 VOLT D.C. I make contacts 35p. Post IOp 6 VOLT D.C. 2 make contacts 75 p . Post 10 p
VOLT D.C. RELA
c/O 5 amp contacts. 70 ohm coil. 75p. Post 10 p .
12 VOLT D.C. RELAY c/o 5 amp contacts. 120 ohm coil. 75p. Post 10 p

DIAMOND 'H' Heavy Duty
$230 / 240 \mathrm{~V}$ a.c. $2 \mathrm{c} / 0,25 \mathrm{amp}$ RE
$230 / 240 \mathrm{~V}$ a.c. $2 \mathrm{c} / 0,25 \mathrm{amp}$ RES. at 250 V a.c. 62.
CLARE-ELLIOTT TYPE RP764I G8
Miniature relay. 675 ohm coil. 24 Volt D.C. 2 c/o 70p post paid
100 VOLT A.C. 2 c/o sealed type, octal base 1. Post 10p.

14 VOLT A.C. 3 c/o. 75p. Post 10 p .
$\mathbf{2 4}$ VOLT A.C. Mfg. by ITT. 2 h.d. c/o contacts 55 p. Post 10 p .
240 VOLT A.C. RELAY. Mfg. by ITT. 240 V A.C 10 amph.d. c/o contacts. Octal plug in base. Price 75 p . Post lop.
$230 / 240$ VOLT A.C. RELAY. Mfg. by Arrow 2 h.d. 15 amp c/o contacts. Amp connectors. Price E Post 10p.
220/240 VOLT A.C. RELAY
3 e/o 5 amp contacts. Sealed. Incl. Il-pin base 1.25. Post 10p

HEAVY DUTY A.C. SEALED RELAYS
VERY SPECIAL OFFER MINIATURE ROLLER MICRO SWITCH. 5 amp. c/o contacts. Mig
(Min, order 10). Ditto press to make
20 for $£ 1 \cdot 50$. Post 10p. Ditto press to break 20 for \&1.50. Post iop. As above less roller lever, 20 fo E20. Post. 10p.
$230 / 240$ VOLT A.C. MINIATURE MOTOR.
20 R.P.M. Price \& Post 10p
BODINE TYPE N.C.I.

GEARED MOTOR

(Type J) 71 r.p.m. torque 10 lb . in
Reversible lifoth h.p. cycle 0.38
amp. (Type 2) 28 r.p.m. torque 20
lb. in Reversible / 80 th h.p. 50 cycle 0.28 amp.
The above two precision made U.S.A. motors are $115 v$ A.C. Supplied complete with transformer for $\mathbf{2 3 0 / 2 4 0 v}$ A.C. input. 25 . Post 50p or less trans former $\mathbf{E 3 \cdot 7 5}$. Post 40p.
'FRACMO' 240 VOLT A.C.
50 cycle SINGLE PHASE GEARED MOTOR
33 r.p.m. 30 lb . ins. Reversible

$$
\begin{aligned}
& \text { Fitted with mounting fe } \\
& \text { Brand New. \&14. Post 60p. }
\end{aligned}
$$

615•77).

HIGH VISIBILITY PANEL MOUNTING
LED's. 0.25 inch mounting, 0.16 inch lens. Typical parameters $2 \mathrm{~V}, 20 \mathrm{Mamps}$ all type. Supplied complet with snap in mountings and data. Red 4 for $£$, Green
3 for $£ 1$. Yellow 3 for $£ 1$. Post 10 . (in order)' (Eil).

LED READOUTS

harter, one-third high
RED or GREEN. Price El.65. Post 10 p
4 for E6. Post paid

Personal callers only. Open Sa

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Phone 01-437 0576

ACOS FOR SOUND ENJOYMENT

Cosmocord Ltd, Eleanor Cross Rd, Waltham Cross, Hertfordshire EN8 7NX
Telephone: Waltham Cross 27331, Telex 24294.
Please send me full details of

THE TRIUMPHS OF RADIO ASTRONOMY

THE charting of unimaginable depths of space has been assiduously carried out by radio astronomers in a number of countries since this science was formally established some 30 years ago. In Britain we can be especially proud of the achievements of our own radio astronomers, in particular those at Mullard Radio Astronomy Observatory, Cambridge, who have reached out to the furthermost parts of the Universe. And now has come international recognition and reward. Two scientists chiefly responsible for the significant discoveries at Cambridge have been awarded the 1974 Nobel Prize for Physics (see page 38).
The triumphs of radio astronomy are scintillating examples of pure science working hand in hand with technology in the quest for knowledge of the very Universe itself. Undoubtedly this young science does deserve more general recognition.

Lacking any dramatic dynamic action and readily assimilatable evidence like, for example, that which accompanies each Space Shot, radio astronomy has remained a distant and little understood or appreciated science so far as the general public is concerned. Radio telescopes in the popular mind are parabolical structures that can be rotated and aimed at any desired part of the sky, as exemplified by the very familiar Jodrell Bank telescope. In reality, radio telescopes can take diverse forms, and as often as not consist of static arrays of aerials bearing no resemblance to the general conception of a "telescope"..

The emissions received from the far-off radio sources are recorded and provide data for computers and mathematicians to digest. It is only after the scientists have performed their analysis that the results can be presented in more tangible form that will be meaningful to the non-expert. This is of course in contrast to optical astronomy. Armed with even a modest telescope, anyone can make observations from his back garden. The results obtained will differ, essentially, only in degree of magnitude of resolution and distance covered with those of the professional optical astronomers.

With radio astronomy, as we have indicated, the observer has to be an expert interpreter, while the apparatus employed will comprise complex aerial arrays and highly sensitive receiving equipment-often unique and specially developed by members of a radio astronomy observatory staff for particular kinds of observations. Thus at both levels, science and technology, radio astronomy is almost exclusively the domain of the professionals. And in addition, so far as the larger observatories are concerned, generous financial backing is essential, from government or industrial bodies.

This does not mean that the amateur is precluded from undertaking any investigations in radio emissions from extraterrestrial bodies. But it does mean that from practical considerations he is restricted to observations of the Solar System, our own Galaxy, and the more powerful sources of nearby galaxies. Here he will be following in the footsteps of the professionals, whose early work included extensive examination of these regions and, we should note, they themselves were following the pioneer investigations made by an American amateur named Grote Reber. It is indeed all too easy to assume that no significant discoveries are likely to reward amateur efforts today. But does one really know for sure?
F.E.B.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor G. GODBOLD Technical Ed/tor S. R. LEWIS B.Sc.

Art Dept.
J. D. POUNTNEY Art Editor
J. A. HADLEY
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classifled

Phone: 01-634 4301
Editorial \& Advertişing Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorlal 01-634 4452 Advert/sements 01-634 4202

MOBile light displays a ee all the rage nosadats w th mu ti-eclcured disple ys drizer oy amplifiers a commor feature of partias and dances. The flexisility of elect-onics hes ot yet been entloited fulls in this area but this uticle. describ.rg a plastic pipz dowr which licht can be made to seem to flow. shews the potential available to constructors witi imasination.

The light pipe consists 0^{-}a plastic tube 24 ft long. containing 144 miniatore light talbs whish are flashad in a sequence wh.ch make barcs of light appear to move dow the tube.

The bults are colrected in four se-ies chains of 36 bulbs. and at ayy tre twa adjacent bulx ase or and wo are off. Th is pattern is rejeated 36 times dowr the lube ind to give the efifec of motier, the rear bulb of a pur is urned ofi and the $t, j b$ in frort is turned o7. T lis sequence s spowr in Fig. 1.

SEQUENCING LOGIC

The generatior of the sequefce switchirg \bar{z}-performed by five TTL ic.s. In Tact a variable pulse generator clocks two flip-fops whish count up to four. oroviding ine four posibie states. The two-bit binary is decoded inte ons-of-four by icur Mand gates in al 7400 .

Hes des decoding, these metes aiso invert the outputs. This is corbeniart bealuse he neat operation requ res OR gatirg to turn on contral chapaels for two $=$ onsecutive staces. This can be cone with AAND gates as these effectively becunce wor gates in nagative layic. thich st the csult of the coe-of-iour outputs being inverted.

Fig. 1. The first ten tulbs in the Light Pace shewig the four switching sates, 0 being the off conditionand 1 the on concition. The diaganal patterr indieates the apparent direction of light motion

THE CIRCUIT

The c rclit diagrim of oig. 2 indizifer the basic simplicit, of the light pipe Matins pewer drives he logic via a powe- supply ci-cuit and a valtable pulse generato-, whilst the strings of bulbs in the lethe pe are switched by thyristors CSRI, 2, 3 and 4 -nder control of the logis output from IC5.

INTERFEREMCE SUPPIESSION

IC4 gates through the formation ta 185 orly when the supp y 0 the lamps. which it can be seen is pulsating d.c., is low. This is to reduce itterference which could be c: used if a la rge curren: was swizhad on very quichly by a thyristor.

As the jipe can oedraped round lourspzikers and amplifiers which of badly screened car pick up in objectionable clickirg. it is good pretiax nC 0 generate interference in the first placz ra har thin try to eliminite it later.
 system showing the four columns of bulbs in dashed line. Note that the live side of the mains supply is connected to the logic $0 V$ line through D4 and thus care is required in ensuring insulation of the circuitry from the case and controls

Check the board carefully for shorts between adjacent strips and for strips not cut in the right place. Note that there are not always seven cuts underneath i.c.s as sometimes it is necessary to join the opposite pins.

The thyristors used in the prototype had their anodes connected to their heat sinks. The wires to the output socket were soldered to the heat sinks rather than to the anode wire on the Veroboard, as this was more convenient.
The five-way connector used for the output should be as non-standard as possible for safety. A five-pin DIN would work but is almost bound to be connected to audio equipment at some time.

THE PIPE

The bulbs used in the prototype pipe were 8 V , 150 mA , 11 mm diameter, Vitality type no. G537. A supplier for these is mentioned in the components list. They are a tight squeeze in the pipe, but once installed, the pipe may be bent round fairly sharp corners without danger of them breaking.

If a smaller bore pipe is being used, there is an electrically similar type, the $676 \mathrm{~W} / \mathrm{E}$, which is wire ended and much smaller. They are, however,

Fig. 3. Component layout and Veroboard cuts and interconnections for the Light Pipe showing connections to unmounted components
more expensive, and come in packs of 200. These are available from the same supplier.

As the lamps are somewhat inaccessible in the pipe it is important that there are as few failures as possible. The lamps are considerably underrun to increase their life. This also reduces light output and hence temperature. The pipe should be mildly warm after a few minutes running, but there is no danger of the plastic melting.

CONSTRUCTION OF THE PIPE

First, solder the bulbs into four chains of 36 bulbs. There should be 8 in between each bulb for an overall length of eight yards. The connecting wire should be as thin as possible and multistranded. Some sort of jig to hold the bulbs while soldering is of great help in speeding up the operation.

The chains should be tested on the mains at this stage to find any, blown or broken bulbs, or dry joints.

Fig. 4. Sketch showing the method of tying the light bulbs to draw them through the pipe. Note that particularly with the wire-ended bulbs the taping of the various conductors between each bulb is important in protecting the bulbs during installation

The four chains should be laid out so that there is 2 in between each bulb, and taped together at intervals with a fifth common wire. The pipe is prepared for insertion by blowing takum powder down it.

This reduces friction which otherwise might impose too great a strain on the bulbs during insertion.
To thread the lights, a piece of string must first be put through the pipe, using a piece of iron or steel and a magnet to pull it through. The string is used to pull the light chain back through. The bulbs should be pulled through with great care in order to avoid damaging them where the lead-out wires emerge from the envelope if the 676 type is used.

It is easier to fix the string at the far end of the pipe, and pull the pipe over the lamps, with liberal addition of talcum powder if it is difficult to pull.

The common wire should be joined at one end to the four other wires and held at the end by tying a piece of wire round the joint and tying this to a piece of plastic which is glued over the end of the pipe.

The wire leading to the pipe is two yards of fivecore (four-core + screen audio will do), with a suitable plug, of which any metal parts should be well
insulated from the pins. The joint between it and the pipe is hidden by wide insulating tape wrapped round the pipe. The far end is similarly covered to improve appearance.

FAULT FINDING

In the event of a lamp failure, it is easier to cut into the tube and replace the lamp in situ rather than pull out all the lamps and deal with it externally.
The bulbs which have gone out should be marked on the outside of the tube with a felt pen. Then by pushing a pin through the tube it is possible to make contact with one side of the bulb and the continuity between it and the common line can be tested. If the first test is done in the centre, further tests can be made to subdivide the faulty section until the blown bulb is found.

Whilst cutting the tube might seem drastic it is certainly simple and providing a sharp knife or scalpel is used to give a clean cut it is not difficult to re-glue the cut faces using one of several fast

COMPONENTS . . .

Resistors	
R1	$100 \Omega \Omega$
R2	$470 \mathrm{k} \Omega$
R3	$4.7 \mathrm{k} \Omega$
R4	$1 \mathrm{k} \Omega$
R5	$1.2 \mathrm{k} \Omega$
R6	$3.3 \mathrm{k} \Omega$
R7	$10 \mathrm{k} \Omega$
R8	$1.2 \mathrm{k} \Omega$

Potentiometer
VR1 $220 \mathrm{k} \Omega$ linear with double pole mains switch
Capacitors
C1 $\quad 640 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic C2, C3 $4 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic (2 off)

Transistors
TR1-4 BC108 (4 off)
Diodes
D1-4 1N4005 (4 off)
D5-8 1N4001 (4 off)
D9 5.6 V Zener
Integrated Circuits
IC1 SN7473
IC2-5 SN7400 (4 off)
Thyristors
CSR1 to 4 CRS1/40 (1A, 400V)
Miscellaneous
144 type 6537 8V 0.15A bulbs (Vitality) (Townsend-Coates Ltd., Coleman Road, Leicester, LE5 4LP. Valiant Electrical Wholesale, 20 Lettuce St., Fulham, London. Farnell Electronic Components) 8 yards green polythene tube (o.d. 2.3 cm , i.d. 1.6 cm) (Transatlantic Plastics, Surbiton) Aluminium box type AB13 Veroboard 24 strips $\times 36$ holes Transformer Eagle MT280 6V, 280 mA
Suitable 5 -pin socket and plug assembly. 1A fuse and fuseholder

Fig. 5. Interwiring diagram

0NE requirement for greenhouse owners whether amateur or professional is a system for keeping leaf surfaces moist. This is achieved by spraying the leaves, at intervals, with a fine water mist. The timing of the intervals depends on the rate of evaporation att any one time. This article describes the principle. theory. and construction of a device that will atutomatically control this process.
The system uses a sensor which consists of two electrodes placed approximately $\frac{1}{2}$ in apart and cast in and Araldite block. The surface of this block is machined flat so that when it is sprayed with water the two electrodes eventually become bridged with a blob of water. If no further spray is directed at the surface. evaporation soon starts to reduce the amount of water bridging the electrodes, until finally the bridge is broken. The time taken for this to happen depends on the rate of evaporation. On a hot summer day the time will be short, whereas on a damp cloudy day the time will be longer.

PRACTICAL CIRCUIT

The making and breaking of the sensor circuit can be used to operate the electronic circuit of Fig. 1. At first sight this might seem rather complex for such a simple operation, but as will be seen later the system allows for quite a degree of control, coupled with sound operation and reliability.

The object of the circuit is to actuate a standard mains operated solenoid water valve to feed water to a mist propagator when required, and to do this with no moving parts except the solenoid valve, i.e. relays, thus eliminating any trouble from corroded contacts which can easily happen in the greenhouse environment.

Electrode making and breaking is sensed by TR1 and here one of the prime requirements is to keep the current that flows through the sensor, when covered with water, as low as possible to reduce the effect of electrolysis which would soon fur-up the two electrodes.

With no water bridging the electrodes TR1 base is open-circuit therefore the collector is almost at supply potential. As soon as the electrodes are bridged the base goes high turning TR1 on, the collector then going to 0 volts.

At this stage it could be argued that no further circuitry is required other than a relay or thyristor to switch the mains. This would be fine if water behaved to our liking, but in fact this is not so. Once the sensor has been exposed to the attnosphere for some time the surface becomes slightly greasy. This causes the water droplets to have greater surface tension which means in practice that the sensor must be fully covered with water before the spray is stopped or intermittent operation of the circuit will take place, settling down once the surface has accumulated enough water.

TIMER

However, to overcome this problem and to give more choice of control a timer has been added. This takes the form of the now well-known 555 i.c. (IC2) discussed in depth in June 1973 Practical Electronics.

The 555 is used in the monostable mode and thus the trigger pulse must be shorter than the timing period. Differentiation of the input signal is achieved by R4 and C3. In order to provide a sharp pulse edge a Schmitt trigger is required and this also provides jitter-free operation.

The Schmitt used is a monolithic integrated, 14 pin package, type SN 7413 (IC1). The package contains two identical triggers. Each circuit functions as a four input NAND gate. All four inputs are held high by internal resistors and in this condition the output is held at logic 0 . Any one input going to $\operatorname{logic} 0$ sends the output to logic 1 level, i.e. 5 V .

If any constructor wishes to omit the timer circuit and chance any intermittent switch-off, he can do so by leaving out the timer package and associated components.

Fig. 1. Circuit diagram of the complete plant moisture control system. Note that the earth line is connected to the case of the control valve if possible and to any metal case parts if these are used

CIRCUIT DESCRIPTION

As can be seen, the power supply is not special. The 5 volt rail is Zener stabilised whilst the mains transformer T 1 is an R.S. Components Ltd., sub. $\mathrm{min} .3-0-3 \mathrm{~V}$ device rated at 200 mA . The total circuit consumption is 45 mA . Even so the transformer gets quite warm but long tests have been given to the prototype with no ill effect.

As stated earlier, when the sensor X1 is bridged with a blob of water the collector of TR1 is at 0 V . This state is fed to that trigger input whose output under these conditions is high. The requirement is to have a high output on C3, because the timer is started by a falling voltage.

When the blob of water has evaporated sufficiently to break the contact between the electrodes of the sensor, the base of TRI becomes open circuit and the collector goes high. Thus the output of the Schmitt goes low and starts the timer, the output of which goes high, to approximately 5 V . This is applied through a resistor to the gate of CSRI thus turning it on.

The time the output of the timer remains in this state is determined by the setting of S1 which selects the series resistors R9 to R18.

The electrodes can be bridged again with the spraying water with no further effect on the timer. Once the time sequence is ended the circuit is set for the next sequence when evaporation dictates.
A brief look at the circuit diagram will reveal a direct connection through diode D2 and resistor R8 from the output of the second Schmitt to the gate of CSR1.
This has two functions, the first being if the operator wishes the sensor to control the "off" time as well as the "on", and accept the possibility of an unstable switch-off, he can do so by turning the time

COMPONENTS . . .

Resistors			
R1	56Ω	R6	$10 \mathrm{k} \Omega$
R2	$6.8 \mathrm{k} \Omega$	R7	180Ω See text
R3	$1 \mathrm{k} \Omega$	R8	180Ω See text
R4	$2 \cdot 2 \mathrm{k} \Omega$	R9 to R18	See text
R5	$10 \mathrm{k} \Omega$		
All $\frac{1}{2}$ watt carbon			

Capacitors

C1 $220 \mu \mathrm{~F}$ elect. 40 V printed circuit type
C2 $\quad 0.22 \mu \mathrm{~F}$ disc
C3 $1 \mu \mathrm{~F}$ non-elect 63 V Wima
C4 $\quad 0.2 \mu \mathrm{~F}$ disc
C5 $0.01 \mu \mathrm{~F}$ disc
C6 $100 \mu \mathrm{~F}$ electrolytic 63 V Wima
Semiconductors

TR1	2N 2926
CSR1	$2 N 6073$
IC1	SN 7413
IC2	NE 555 V
D1	$4.7 \mathrm{~V}, 1.3 \mathrm{~W}$ Zener BZX61 series or
	IS2000A, IS7000A series (Doram)
D2 and D3	1S44 (2 off)
D4 to D7	Rec 70 (800mA 400V) Doram (4 off)

Miscellaneous

T1 3 V type 200 mA . Doram
SK2/PL2 Jack and socket min.
Case Sarel Ref. No. 308 from Hawnt and Co. Ltd., Pritchett Street, Birmingham B6 4EN.
Mains cable 3 core P.V.C. Circuit board. Rubber flex connector (Woolworths). Neon indicator 250 V miniature. Knob and dial skirt ' C ' $\frac{3}{4} \mathrm{in}$. Doram. Midget rotary switch 1 pole 12 , way. Miniature toggle ON/OFF switch. Mains fuse and socket. Materials for sensor. Solenoid valvesee text.

Fig. 2. A completed sensor (above) showing the dimensions in mm and simplicity of construction

Fig. 3. Manufacture of the sensor is also simple using this jig made up from a bit of scrap wood (left)
carbons and even roll off the surface if the design is not correct.

SENSOR CONSTRUCTION

The sensor is best cast in a piece of plastic pipe with a lin inside diameter. This has two advantages, the first being ease of casting and the second and more important being that the plastic edge surrounding the sensor surface tends to prevent the blob of water from rolling off.

The two carbon rods can be obtained from any used-up U2 type battery, the metal cap ends being used to solder the wire connections.

Cut the two carbon rods at 1 in long from the metal cap end. Drill two holes $\frac{5}{16}$ in dia, at $\frac{s}{8}$ in centres, $\frac{1}{4}$ in into a piece of scrap softwood. Drill a third hole to one side, as indicated in Fig. 3 to accommodate a No. 6 plastic knitting needle.

Push the two carbon rods into the holes as far as possible. Acquire a $4 \frac{3}{4}$ in length of No. 6 knitting needle (sharp end if possible) and insert the blunt end into the third hole as far as it will go. Next place a $1 \frac{1}{4}$ in length of lin inside dia. plastic tube over the carbon rods and needle. All is now ready to attach the wires. Any twin cable with a plastic outer sheath is suitable. Solder one wire each onto the metal caps of the carbon rods. Ensure that the cable sheath is below the edge of the tube so that it will be well covered with Araldite.

When all is ready mix the Araldite resin as directed and heat until it runs quite freely, then pour it into the plastic tube ensuring that air bubbles are not trapped. Rotate the tube a little and position correctly round the carbons. Leave to set over night. One packet of Araldite is sufficient.

Fig. 4. Component layout on the prototype printed circuit board

Once the Araldite has hardened the timber can be split from around the ends of the carbon rods. Saw the carbons and needle flush across the surface of the sensor and then sandpaper the surface flat, finally finishing with a very fine sandpaper. Wipe the surface with methylated spirits. The sensor is now ready for use.

CIRCUIT CONSTRUCTION

In the prototype all components were mounted on one printed circuit board, including the mains transformer as shown in Fig. 4 and using the circuit layout of Fig. 5. If any constructor wishes to alter this arrangement there is no problem, the layout is not critical other than the necessity to adequately separate adjacent conductors carrying 230 V a.c.

It might be noted here that the whole circuit is connected to the mains neutral line and care should be taken when handling the circuit board when switched on as full mains potential is on the board. Preferably the board should not be handled at all when power is connected.

The board is housed in a Sarel box measuring $4 \frac{1}{4}$ $\times 2 \frac{3}{4} \times 2 \mathrm{in}$. The Sarel boxes are made from a tough plastic and are waterproof which makes them safe when containing mains in possibly damp conditions.

The three core mains lead enters the box through a tight fitting grommet and may either be wired direct into a fused distribution box or connected to the mains via a fused standard square pin 13A plug. It is suggested that this cable be black.

The cable to the load, in this case a water valve, again leaves the box through a tight fitting grommet and is terminated with a three pin rubber flex connection to which the water valve may be connected. It is suggested that this cable be white to eliminate any possible confusion.

The sensor X 1 is plugged into the box using a normal jack plug PLi and socket SK1. To enable the circuit to be tested or as a convenient way of
operating the water valve manually, the jack socket is wired such that when the jack is withdrawn the base of TRI is left open circuit, thereby turning on CSR1 for as long as the jack remains out of the socket.

C2 should be mounted as closely as possible to the Schmitt input. This is best achieved by soldering it directly onto the package pins.

SETTING UP

First ensure that the circuit has the correct d.c. voltage, 5 V , and if not change the value of R1 accordingly. For most practical purposes a maximum time value of 100 seconds in 10 second steps

Fig. 5. Printed circuit master as used in the prototype Leaf

is quite adequate. But if longer or shorter time intervals are required it is only necessary to change the value of C6, and or the values of R9 to R18 on the rotary switch Sl .

Si is a midget rotary 12 way switch set to give 11 positions and assembled with knob and dial skirt " C " in order to give indications from 0 to 10.

With C6 at $100 \mu \mathrm{~F}$ and a maximum time of 100 seconds required, the total value of R9 to R18 is approximately 500 k !. This will vary according to tolerance spread of different condensers.

In order to test and set-up the circuit, connect a 60 W mains bulb in the load position SKI, pins 1 and 2. This gives clear indication of the operation of the circuit. Then stand the sensor up and cover the sensing surface with a small piece of very wet blotting paper. Turn the rotary switch to the 0 position, plug in the sensor. apply the mains and switch on.

If all is working correctly the bulb should light up as soon as the wet blotting paper is removed and remain lit as long as the paper is off the sensor. Replace the blotting paper and the light should extinguish about I second later.

If when the bulb is lit. it appears to flicker and not to be at full brilliance it is because CSR1 is not switched fully on. This could happen because of variations in sensitivity of individual devices and can be rectified by reducing the value of R 7 and R 8 .

TIMING RESISTORS

If all is well up to this stage it now only remains to fit the individual timing resistors around SI. Solder into the first position a $47 \mathrm{k} \Omega$ resistor and select 1 on the dial (remember all these numbers on the dial are $\times 10$). Then with a suitable time piece handy, remove and replace the blotting paper and note the length of time the bulb stays illuminated. With preferred resistor values it may be difficult to time precisely, but times within 10 per cent can be achieved. If for instance, the $47 \mathrm{k} \Omega 2$ gives 11 seconds instead of the required 10 seconds, then in the next position solder a $33 \mathrm{k}!?$; this should then bring the 20 second timing to about 18 or 19 seconds. It is possible by carrying on in this manner to stay quite close to the required timing. More accuracy can be gained, if required, by making use of resistor tolerance spread.

The repeatable timings of the circuit are very good and this is what matters most. It does not matter much that a time of 62 seconds is given when 60 is wanted as long as it repeats.

INSTALLATION

Securely mount the control box and connect the circuit to the mains through a fuse box or a 13 A square pin fused plug fitted with a 3 A (or thereabouts) fuse. Connect up a suitable mains operated water valve for the spray system.

CSR1 is rated at 4 A and this load should not be exceeded or damage will occur. There is little advantage in fitting a fuse because in general CSR1 will blow before a fuse. If it is required to switch greater loads it will be necessary to select a different CSRI.

Stick the sensor spike into the soil at a convenient spot amongst the plants to be sprayed, but not covered by them. Wipe the top of the sensor with some methylated spirits to remove any grease. Select position 0 and switch on noting the length of time required for the sensor surface to become covered and the system to switch off.

It is unlikely that subsequent operations will take as long as the first because the subsequent operations will not be starting from a dry surface, but an idea of the time required can be gained. The unit can now either be left on " 0 " and control its own switch off time as stated earlier, or set to a time interval as suggested by the initial timing. Experience will soon enable a useful setting to be found.

MAINTENANCE

The only maintenance required is an occasional wipe of the sensor with meths.

If at any time it is required to test the unit it is only necessary to remove the sensor jack and replace it again and the system will operate for as long as the selected time interval set.

SOLENOID VALVE

The choice of valve used depends on the water pipe system in use, water pressure and availability. The author used one from C. W. Wheelhouse \& Sons, 9-13 Bell Road, Hounslow, Middx. which had $\frac{1}{2}$ in B.S.P. fittings.

The EVJD10 and the EVD15 are $\frac{1}{2}$ in B.S.P. male and female fitting valves from Danfoss (London) Ltd., 6 Wadsworth Road, Perivale, Greenford, Middx. Both cover most water pressures which will be met and are available from stockists at around £12.

A d.c. operated valve could be accommodated by using a transformer to supply the correct voltage and a suitable rectifier.

MERCURY AGAIN

The second visit to Mercury by Mariner 10 confirmed the previous assessment generally. The second fly-by was $50,000 \mathrm{~km}$. More than 500 high resolution pictures have been received, all of excellent quality. This pass was entirely on the sunlit side of the planet and covered some areas that had been checked on the first pass in March last year There were no startling new discoveries.

The hemisphere observed showed that the planet has only one large impact basin. This area known as the Colaris Basin was on the terminator at the first pass. The floor of the crater would seem to be about the size of the Mare lmbrium of the Moon.

Many craters seem to have a central peak which suggests that the terrain was extremely soft at the time of impacts. There are also many craters within craters. A number of rayed craters exist and there is one large area near the south pole with the rays extending out through other craters. The south pole is inside a large crater.

There seem to be two distinct types of configuration of craters, those which are concentric and those which are in long chains. The concentric craters seem to be of the order of 200 km in diameter

Another feature is the large number of random scarps hundreds of kilometres long and of heights of the order of one to three kilometres. The stresses shown are compressional and the result of the compression produces these scarps. They appear to be random in direction and do not follow any particular pattern. The scarps appear to be antipodal to the Colaris Basin and a similar situation is indicated on the Moon in relation to Mare Imbrium.

It would appear that the condition in which Mercury is now found fits in very well with the current theories of early development of the Solar system. This means that there was a huge infall of large bodies on the emerging planets followed by a period of high internal heating with volcanic activity. This takes care of the changing' surface features leaving the primordal conditions hardly discernible.

OPTICAL NAVIGATION IN SPACE

Another important experiment carried out by Mariner 10 was to test the optical techniques for navigation. These techniques are vital to the missions to outer planets. The need to be able to dodge the satellites of Jupiter, Saturn and

By FRANK W. HYDE

Uranus is imperative because of the sparse data as to the exact ephemerides of these bodies.

Previous navigation of deep space missions have relied on Earth-based radio measurements. Mariner 10 carried out a real-time experiment as it approached Mercury. Over a hundred pictures were taken to show the angular between Mercury and the nearby (optically) stars. The experiment was successful and this means that spacecraft on long distant missions will be able to continuously monitor the space ahead and therefore automatically adjust course.

Provided Mariner 10 can limit its fuel for modifying its course and not suffer another distraction because fast particles interfere with the sensor which is locked on Canopus, it should be possible for the spacecraft to make another pass of Mercury in 1975.

MORE FROM SKYLAB

Adding to the preliminary reports that have appeared about the effect of weightlessness and the general ability of the astronauts to be in a condition to carry out their tasks, some particular findings are now available. These were released at a symposium arranged by the American Astronautical Society.

Altogether there were 171 days of free orbital flight during the Skylab mission and not only has it been demonstrated that man can adapt indefinitely to the weightless environment, it has also shown that provided there has been adequate exercising during the mission the return to normal gravity presents no
problem. The state of the individual readily adapts to the return to Earth with no resultant effects. This settles the problems that were thought to exist for long missions into space.

Many ways of overcoming the weightless condition have been investigated and these are no longer required. All that is needed for an astronaut is a programme of physical exercises for 90 minutes each day during the flight.

ASTRONAUT PERFORMANCE

In each of the Skylab missions there was a progressive improvement in astronaut performance. This was due mainly to the increased exercise taken. The first crew were so occupied with the various technical problems that arose; little time was available for an intense study of the exercise aspect. Even when the extra vehicular activities continued to six hours at a stretch there were no "clinical" events to record.

No signs of heart deterioration appeared but there was the usual loss of red cell mass, this reduced as the exercising was extended and the flights were longer. Thus the first mission crew lost 14 per cent, the second crew $12 \cdot 3$ per cent but the third crew loss was down to 6.8 per cent. As on the Apollo missions there was a wide variation between individuals.

Post recovery was better in the case of the last mission of 84 days. The astronauts on the last mission lost least weight. Most of them gained in height, this averaged about an inch. There was a shifting of the body fluids. Some of the crew experienced slight malaise for the first two or three days. However, all got their "space legs" in a day or so and thereafter were immune.

The calorific requirements proved to be the same or thereabouts as their normal routine on Earth.

Testing the ability of these men as observers of the Earth from space, an analysis made of the observations and the ability to carry out the tasks allotted showed that in 850 observations and some 2,000 hand held camera shots, during the 84 days' mission covering 83 widely varied categories, led to these conclusions. The ability to recognise objects and patterns, to integrate these observations from a wide range of aspects and lighting angles, to reason, to make selected observations and describe them brings a new dimension into play. This ability transcended anything that could be programmed or made automatic.

NOBEL PRIZE FOR CAMBRTOEE RADIO ASTRODOWEESS By Frank Hyde

The announcement that the Nobel Prize for Physics had been awarded to Professor Sir Martin Ryle FRS, now the Astronomer Royal, and Professor Anthony Hewish FRS, is a fitting reward for the work of these two quiet and unassuming men from the Mullard Radio Astronomy Observatory. It is a far cry from the angle iron and wire structures, which began a series of programmes more than two decades ago, to the 5 km radio telescope now in operation at Lord's Bridge near Cambridge.

The official citation for the award ends with these words "for their pioneering research in radioastrophysics: Ryle for his observations and inventions, in particular the aperture-synthesis technique and Hewish for his decisive role in the discovery of pulsars".

Ryle, together with Hewish and Graham-Smith, were the original team. Hewish has stayed on but GrahamSmith moved to a Professorial Chair at Manchester and on the 1st January 1975 takes up the position of Director of the Royal Greenwich Observatory.

INTERFEROMETRY

The techniques of interferometry formed the basis of the work at Cambridge. The first telescopes were simple interferometers but very soon the phase switched interferometer came into being; the details of this were published about 1950 by Ryle and Vonberg.

From the early beginning the resolution obtained by these methods was better than the single aerial systems. The interferometer developed into a number of variations and gave rise to the more advanced technique of aperture synthesis for which Cambridge is famous. Digitation of observations led to a number of advances.

The first aperture synthesis aerials consisted of one long corner reflector and one movable one about forty feet long. In those days it was quite a sight to see the small reflector being carried to its new position by the observers and technician. This was followed by a more sophisticated cylindriçal parabola driven in attitude by synchronous motors and the smaller complementary aerial fitted to a bogey on a railway system. Here the long aerial was set up east and west and the smaller one could travel on the rails north and south.

APERTURE SYNTHESIS

The technique of aperture synthesis can be described simply as two apertures moving relative to each other in such a way that they sweep out a narrow ring of large diameter. The apertures are the aerials and the rotation of the earth varies their orientation such that seen from the sky, one aerial appears to trace out an ellipse relative to the other. The interference patterns which are made by superimposing the signals of the two aerials are then synthesised. From this a chart of the structure of a source can be deduced.

The next major step was the One Mile Telescope which came into operation at the end of 1964. This was the first complete aperture synthesis purpose-built telescope. The sensitivity was extremely high. It was able to detect faint objects near the edge of the observable universe.

At that time the cosmologica! debate was in full flow. The first results from the new telescope showed quite clearly that the count of the sources at great distances (and therefore very old) was less than the number required by the "steady state" theory, but consistently supported the "big bang" theory. For most of the theorists this fact, together with discovery of the microwave background. which appeared universal, marked the end of support for the "steady state" protagonists.

MAPPING RADIO GALAXIES AND QUASARS

Leading on from the far-distant-source discoveries, the next successful objective was the mapping of the radio galaxies and quasars. The properties of the galaxies were of particular interest because they are enormous wasters of energy and among the largest objects known.

The detailed mapping of the galaxies and quasars enabled some conclusions to be drawn as to their birth, evolution and final demise. In this area Ryle not only made the initial discoveries but also showed that the exploding galaxies threw out on each side large clouds. These clouds appear to interact with the inter-galactic medium. These great radio clouds seem to continue to receive energy from the optically observable nucleus of the original galaxy or quasar for millions of years.

In 1964 at the International Astronomical Union meeting in Hamburg, Anthony Hewish released the details of his method of finding quasars by their scintillation. A quasar is to the radio telescope a small object of high intensity. The interplanetary medium gives ,changes of density with the same effects as the atmosphere on light coming toward the Earth. The small apparent diameter of a quasar is comparable with the variations. In consequence a quasar is revealed by the amount of scintillation that takes place.

The preliminary work on this problem was undertaken with three stations, Cambridge, Thetford, and Clacton, roughly in an equilateral triangle. The particular quasar studied was 3C 48. This showed nearly 50 per cent scintillation: The pilot experiment was successful and the triangle was extended between Cambridge, Jodrell Bank, and Malvern.

DISCOVERY OF PULSARS

It was during the testing of the 18,000 square metre aerial at Cambridge that Jocelyn Bell first noticed the regular pulses. Later observations showed that the regularity and accuracy of the pulses was more reliable than any clock available. The team went to great lengths to establish what these pulses really were and what mechanism was involved. It became clear that what had been discovered were the playthings of the theoretical astronomers, the neutron stars. This discovery was extremely exciting, opening up as it did new possibilities in gravitational physics, the behaviour of very dense matter, and the effect on radiation physics.

SUPER-SYNTHESIS

The reward for enterprise had already been given by the Science Research Council in approving the setting up of the 5 km aerial with its eight parabolas on the site of the old railway axed by Beeching. This system of aerials went one step further than aperture synthesis. It reached the stage of super-synthesis.

The principal task was to be the examination at the new high level of resolution, of quasars and radio galaxies. This was an opportunity to resolve some of the problems. In some of the observations there were more than two radio clouds associated with the explosions that took place. There were also bridge-like links between the areas of activity. The radio emission may come from the highly charged particles moving at speeds near that of light and trapped in a tangled magnetic field. They may well be accelerated by the gravitational collapse of groups of stars near the centres of visible galaxies.

All these problems and many others should respond to the high resolution of the 5 km telescope. Since 1972 the telescope has already shown that its inception was more than justified.

THE MAKING OF HISTORY

The history of radio astronomy as made at the Mullard Radio Astronomy Observatory at Cambridge includes many activities which need a whole volume for description, but the story will go down in history of the time when two men, mainly responsible for that history, were honoured while still making it.

Wiht hee Doram catalogue, even the guarantee is guaranteed.

Doram is an entirely new way of buying electronic components.

So, to succeed, it's got to have something going for it, right?

We agree with you. And where Doram scores is in the security it gives the amateur buyer.

We'll give you peace of mind three ways.

No-quibble guarantee.

Firstly, we guarantee to replace any component which arrives faulty. Absolutely free of charge.

And secondly, our guarantee is backed by the biggest electronics distribution Group in Britain.

7-day service.

Thirdly, we guarantee you'll have your components within 7 days from our receipt of your orders.

We're so confident of our service that if we can'tsupply
the partyou want within 7 days we'll give you an immediaṭe refund.

So you'll never geta tedious wait.

Youknow just where you stand with Doram.

All branded goods.

All goods supplied by Doram are made by big-name manufacturers. And they're all to manufacturer's specifications. They're the best money can buy.

In fact, Doram gives the amateur the sort of service only professionals have enjoyed before.

Millions of components.

All in all, we're big enough to offeryou stocks of millions of components, on over 4,000 product lines.

> All you do is buy the Doram catalogue for $25 p$ Ithat's a yearly reference book for the price of a pint of lagerl and then take your pick from it.

Use the coupon now. Send today for the first-ever Doram catalogue. It can take a lot of worry out of amateur components buying.

And for 25 p that's not bad, is it?

IENCLOSE 25p*: PLEASE SEND ME THE NEW DORAM CATALOGUE.
Name
Address

Doram Electronics Limited,

 POBoxTR8,Wellington Rood Industrial Estate,
Wellington Bridge, Leeds LS12 2UF.
*This will be refunded on orders of $£ 5$ (less VAT) or more received by us before March 3lst, 1975 .

ALL PRICES INCLUDE V．A．T．

gPEAEER BARGAIK8 EMT $13 \mathrm{in} \times \operatorname{Bin} 3,8$ or 15 ohm			\pm	ELAC 10in 8 ohm Dual cone	8．50	
				GOODMANS 61 in 8 chm Dual		
Plain			8.05	cone	2－15	
8 uhn	With Co－Axial Tweeter	weeter	2．20	FANE， $7 \mathrm{in} \times 4 \mathrm{in}, 3$ or 8 ohm	1.00	
Twin Tweeter			8.70	ADABTRA $10 \mathrm{in}, 8$ or 15 ohm ，	8.45	
Type 35	， 8 obm		7.50			
$6{ }^{3} \mathrm{in}$ ．	ohm， 1		2.40	BAKER GROUP $2512 \mathrm{in}, 8$ or		
$8 \mathrm{in}, 8$	ohm， 10		3.75			
12 in ，	ohm， 2		6.70	P，\＆	7.85 0.30	
8 in \times	5in， C / h	5W	1.25		0	
$\begin{aligned} & 8 \text { in } x \\ & 10 \mathrm{~W} \end{aligned}$	\sin , Du	one 8 ohm ，	2.45	$51 \mathrm{n}, 8 \mathrm{chm}, \mathrm{C} / \mathrm{Mag}$. $24 \mathrm{in}, 8 \mathrm{ohm}$ or 64 ohm	0.85 0.50	
ELAC	n 80 omm	ual cone	$2 \cdot 25$	P．\＆P	0.15	
TWEETER AND CROSSOVER				Dome Tweeter $8 \mathrm{ohm}, 30 \mathrm{~W}$ Crossovers CN23（ 3 ohm ），CN28 （ 8 ohm ），CN216（ 16 ohm ）	$5 \cdot 40$	
EMI $3 \geq 1 \mathrm{~m}, 3$ or 8 ohm C／Mag．			1，20			
Cone Twecter 8 or 15 ohm， 10 W			2.40		1.20	
Cone Tweeter 8 ohm，3W			1.45	P．P	0.15	
Horn T	eeter 8	n，20W	8.40			
KIT FORM CABITETS，TEAK				13 in $\times 8$ in cutout 18in $\times 11$ in \times gin with 13 in \times 8 in cutout for EMI 350 P．\＆P．each	8.60	
VFHEBR． $12 \mathrm{in} \times 12 \mathrm{in} \times 6 \mathrm{in}$ wit Bin $\times 5$ in or $6 \frac{1}{4}$ in and 3 in cutout 17 in $\times 10$ in $\times \sin$ with 8 in or			h 8 in			
			2.45		$\begin{aligned} & 4.25 \\ & 0.45 \end{aligned}$	
M108OPHOKES				TW209 CONDENBER MIKE 600 ohm ， uni－dir	5.75	
CM70 Planet stick metal， switch cryatal					0.85	
DM160 Dynamic omni－dir，ball metal				8.85	Crasette stick Mike with R． Control on／ofl switch（2－5	
$\begin{gathered} \text { UD130 } \\ \text { ball } \end{gathered}$	$\begin{aligned} & 0 \mathrm{~K} / 800 \\ & \text { etal } \end{aligned}$	$\mathrm{m}, \text { uni-dir, }$	5.95	$P . \& P$	$\begin{aligned} & 1.45 \\ & 0.20 \end{aligned}$	
SOLDERLIG IRONS ANTEX CN240 15W SKI Kit（15 watt iron． 2			$1 \cdot 90$		8.80	
			X25 25 W （low leakage）	$1 \cdot 90$		
			P． 1	0.10		
CARTRDGES AND 8TYLII				gONOTONE 9TAHC or 9TAHC／G		
ACOS GP91／2SC or 3SC Atereo comp．				${ }_{3509}$ diam．${ }^{\text {a }}$（ereo ceramic diam．	1.801.90	
QP93／1 or $95 / 1$ Stereo crystalGP94／1 or $96 / 1$ Stereo ceramic				1.35	GOLDRING G850	2.95
			c 1.75	G800E	3.95	
GP101 Crytal comp．			0.80		$0 \cdot 10$	
GP104 Stereo ceramic			$1 \cdot 65$	D．Diamond stylii for above	1．25	
BSR X ${ }^{\text {SM }}$ orjX H Crystal comp．			1.70	G800／G850	1.95	
			1.90	6800E P．\＆	3.950.05	
			2.60			
BATTERY ELTMEATORS 240 V input $6,7,5$ or 9300 mA 12V d．c．input（please speclfy			2.85	output） 6,75 or 9 d．c．output		
			at 300 mA	2.800.15		
			P．\＆P			
TAPES 5 in 7 in	Stad．	LP		$\begin{aligned} & \text { DP } \\ & 1.95 p \\ & 1.45 p \\ & 1.80 \mathrm{p} \end{aligned}$	PLASTIC LIBRARY CASES	
	50 p	85p				
	65p	80 p				
	85p	1－10p	P．d P．1－39p each． 4 or more lo			
LOW NOISE CAS8ETTES			11－80	Cassetie Head Cleaner Casserle Cases	0.35	
	1－5	6－10			$0 \cdot 10$	
C60	35p	38p	80p	P．\＆P．I－5 each	0.03	
C90	45p	48．	40D	6－10 iot	0． 15	
C120	55 p	52 p	50p	11－20 post free		
BIB ACCESSORIES				CALCULATORS		
Tape Editing Kit，Re1． 23 Recording Tape Splicer，Re1． 20			1.35	gINCLAIR CambridgeScientific	$\begin{aligned} & \varepsilon 19 \cdot 00 \\ & \varepsilon 29.00 \end{aligned}$	
			1．15			
Cassette Tape，Editing，Ref． 24			1.30	WHARPEDALE SPEAEER		
Cassette galvage Kit，Ref． 29			0.45	BARGAINS		
12＇s Cassette Case．Het． 34			1.50	$\begin{array}{lll}\text { Linton } 2 \mathrm{Kit} \text {（pr．）} & 18.00 \\ \text { Glendale 3 Kit（pr．）} & 33.50 \\ \text { l－j0 }\end{array}$		
Stylus Balance．Ref．32A			1.20	Dovedale 3 Kit （pr．）$\quad 52.001 .30$		
Splrit Level，Ref．to			0.50	Denton es Speaker（pr．）$\quad 30.002 .00$		
Hi－Fi Stereo Test Cassette			2.10	$\begin{array}{lll} \text { Linton } 2 \text { Speaker (pr.) } & 38.50 & 2.00 \\ \text { Dovedale } 3 \text { Speaker (each) } & 42.00 & 2.00 \end{array}$		
Groove－Kleen Record Cleaner			1.80	Glendale 3 Speaker（pr．） $57.00 \quad 3.00$		
P．\＆P． 0.10				Kingsdale 3 Speaker（each） 58.95 3．00		

Send 85p for COMPLETE CATALOGUE，refundable upon firat order． ALL OUR MERCEANDISE IB FULLY GUARANTEED Subject to manulacturera＇increase and availability

Riversdiale Electronics

Mail Order Department PE1
P．O．Box 470，Manchester M60 4BU

With a kit as complete asthis， all you need add is a little time．

You may have found，from past experience， that your definition of＇complete＇is not quite the same as other people＇s．And your so called complete kit comes minus a cabinet，or knobs，or a multitude －maースー．．．．of other bits and pieces．
 ｜ 1 P1 1 ｜ 1911 Take our very popular digital alarm clock kit．Every part you need will be there，right down to the solder．And you＇ll also receive a very easy to understand instruction manual that makes light work of assembly．

In fact all you need are a few basic tools and a few enjoyable hours of your time．

After which you may like to try your hand at （aym） our AR－1214 stereo receiver．Or even a TV． And how about an ultrasonic burglar alarm disguised as a book？ Or，for a bookful of other ideas，just clip the coupon and we＇ll send you the Heathkit catalogue．

Otherwise call in and see us at the London Heathkit Centre， 233 Tottenham Court Road． Or at our showroom in Bristol Road，Gloucester．

You＇ll find it well worth your time．
Heath（Gloucester）Limited，Dept．PE－15，

So you've never heard of surface acoustic waves. Well you soon will. Progress has been astonishing in the last five years. Devices have moved from starry eyed physicists' dreams to commercial evaluation in electronic systems-a real case of fantasy to fact.

Imagine you are standing on your favourite holiday beach looking out to sea; a yacht rocks peacefully at the end of the breakwater whilst the waves are gently lapping the sand at your feet. You are witnessing the analogy of surface acoustic waves (S.A.W.).

Transfer the sea waves to the surface of a piece of flat polished crystal and you have S.A.W. Thin metal films deposited on the crystal surface enable the transfer between electrical and S.A.W. energy to be effected. By manipulating these waves on the crystal surface, oscillators, amplifiers, signal processors and delay lines have been constructed.

HISTORICAL VIEWPOINT

Lord Rayleigh is accredited with the identification of the surface acoustic wave. In 1885 he described waves travelling along the earth's surface after an earthquake, and subsequently a great deal of information has been gathered by seismologists.

It was not until the early sixties that the propagation of high frequency sound waves through a solid crystal was demonstrated. The development of a means of conversion between electrical energy and S.A.W. energy, the Interdigital Transducer (I.D.T.) in the mid and late sixties, meant that the breakthrough had come. S.A.W. exploitation was here.

THE NATURE OF S.A.W.

Surface Acoustic Waves are only one in a family of wave motions identified in crystalline materials. The property of all these waves is that of transferring acoustic energy from one part of the crystal structure to another.

In crystalline materials the particles are arranged in an orderly lattice type of structure, each particle being held in place by an elastic force generated between itself and its neighbours (imagine a lattice of billiard balls coupled by pieces of rubber band).

The longitudinal wave travels through an elastic material by alternately expanding and compressing the crystal lattice. This is definitely a bulk wave not found on the surface of the crystal.

The second type, the shear wave, vibrates the lattice at right angles to the direction in which the wave is travelling. The layers of the lattice slide up and down past each other. Again a bulk wave not found on the crystal surface.

The third type is the S.A.W. (Fig. 1a). It is a combination of the longitudinal and shear waves and is only associated with the surface of a crystal. To tie up the analogy with the waves on the surface of the sea, mentioned earlier, it is interesting to note that the motion of a particle travelling in a S.A.W. is also retrograde elliptical (Fig. 1b).

To digress for a moment; bulk waves occur in the familiar, so called, crystal oscillators which are widely used for highly stable frequency sources in, amongst other things, communications equipment.

It is easy to appreciate early fears that the frictional forces generated by this mechanical vibration of the crystal lattice would absorb the acoustic wave energy excessively when the frequency of oscillation got too high. Fortunately crystals of quartz and lithium niobate have been found to transmit frequencies from 30 MHz to 10 GHz acceptably.

Fig. 1(a). Surface Acoustic Waves distort the crystal lattice as the wave moves along. A particle near the surface exhibits retrograde elliptical motion (b) directly analagous to waves in water

THE SPEED OF S.A.W.

We now come to one of the outstanding properties of S.A.W.--the velocity with:which the waves travel along the crystal is around 10^{5} times slower than the velocity of electromagnetic waves, i.e. the velocity of light. In other words an electronic signal that would occupy a cable one mile long could be contained on the surface of a piece of crystal only half an inch long. This means that the time taken for the signal to travel one mile in the cable would be the same as the time taken for it to travel just half an inch on the crystal.

It is now possible to glimpse how a delay line of incredible compactness might be constructed. But first a means of transferring the electrical signal to the surface of the crystal (into a S.A.W.) is needed. Ideally the process should be reversible so that the electrical signal can be recovered after it has been delayed. A transducer is required. Fig. 2 shows a delay line with input and output transducers.

THE TRANSDUCER

The transducing action for converting electrical energy to S.A.W. energy occurs in two parts. The first stage is a conversion of the incoming electrical signal to an electrical field which varies in strength and polarity as the incoming signal.

The second stage takes advantage of the property of piezo-electric materials to mechanically vibrate in sympathy with an applied electric field.

As mentioned above, suitable crystals for the transmission of S.A.W. are quartz and lithium niobate, both of which are also piezo-electric. Thus, all that is necessary to excite a S.A.W. is to apply a suitable temporally varying electric field to the piezo-electric crystal substrate which will also transmit the S.A.W. This is done using an Interdigital Transducer (I.D.T.).

THE INTERDIGITAL TRANSDUCER

Imagine the fingers of your left hand interleaved with your right and you have the form of an I.D.T. This shape is laid down on the crystal substrate as a thin aluminium film.

The incoming electrical signal is applied with each hand (in analogy only of course!) acting as the terminals. The electric field will be generated between the finger of each hand since there will be a time dependent potential between them due to the electric signal (Fig. 3).

The spacing between each of the fingers is equal to half the wavelength of the S.A.W. and the width of the fingers is typically a quarter wavelength. The wavelength is determined from a precise knowledge of the velocity of the S.A.W. on that particular crystal substrate and the frequency of the incoming electrical signal.

The aperture of the transducer (see Fig. 3) determines the impedance seen by the incoming electrical signal and where possible is made to match the line impedance, e.g. 50 ohms. This typically means an aperture of 20 to 100 wavelengths.

The transducer described generates a bi-directional S.A.W. The bandwidth of this I.D.T. is inversely proportional to the number of finger pairs in the transducer (see Fig. 3). The inverse of this same process of S.A.W. generation is used to detect S.A.W., i.e. to generate an electrical signal from an incoming S.A.W.

Fig. 2. A delay line consists of a crystal substrate with transducers separated by a distance depending on the delay required

Fig. 3. An interdigital transducer is used to induce the S.A.W. into the crystal. At the instance depicted the polarity of the signal and the lines of force between two points of a finger pair are as shown. An alternating electric signal produces an alternating field.

Fig. 4(a). Detailed structure of a delay line showing I.D.T.s and wax which absorbs waves so preventing unwanted reflections from the ends of the crystal. (b) shows the delay line in cross section.

DELAY LINES

Delay lines are perhaps the most fundamental S.A.W. devices. Their function is simply to provide a delay between the receipt of a signal and its onward transmission. leaving its form unchanged.

They comprise of an I.D.T. at either end of a crystal substrate. The length of the crystal determines the delay (see Fig. 4).

Since the I.D.T. is bi-directional, half the S.A.W. energy is radiated in the wrong direction and if not stopped would reflect back from the edge of the crystal thus causing an interfering signal. Thinking of the sea shore analogy, mentioned above, imagine the waves hitting the wall of a cliff or promenade and being reflected back out to sea.

Black wax is used to absorb these unwanted S.A.W. It is painted on the crystal surface and the effect can be likened to the sand of the sea shore which tends to dissipate the waves' energy.

Omni-directional transducers can be constructed but these have only two thirds the bandwidth of the bi-directional transducer. The delay possible with lithium niobate, for instance, is 2.88 microseconds per centimetre.

FABRICATION

The method of construction is common to most forms of S.A.W. device. Having selected the crystal required, cut and polished it, the I.D.T. thin metal films are deposited using conventional integrated circuit techniques.

Electrical connection to the I.D.T. is made via extremely fine gold wires bonded to the metal film. These wires are typically one to two thousandths of an inch in diameter.

The formation of the I.D.T. requires only one vacuum deposition stage and, once the master mask defining the areas to be covered with metal is made, mass production of devices is possible.

Obviously the cost of such a procedure is minimal and complete standardisation is assured. This compatibility with micro-electronic techniques and promise of inherently economic production are major reasons for the present flurry of keen commercial interest.

VARIABLE DELAYS

A variable delay line is clearly now possible using a multiplicity of output l.D.T.'s to give varying delays; electronic switching being used to select the delay required.

It can easily be appreciated that just as a wave on the sea is damped a little by a ship riding on top of it, so an I.D.T. riding on a S.A.W. will reflect some of the incident acoustic energy, i.e. attenuate the ongoing wave. This can give rise to unwanted signals as they bounce between adjacent I.D.T's. Special techniques have been developed to overcome these problems.

The variable delay line mentioned will give only discrete delays and for a linearly variable delay two crystal substrates are used. From Fig. 5 it will be seen that if the lower substrate is held stationary while the upper one is moved mechanically, a continuously variable delay is possible.

An alternative to using longer and longer crystal substrates to obtain larger delays, and incidentally the larger the crystal the more difficult it is to obtain, is to use the helical delay line (Fig. 6).

This is so called because the delay path is a helix, the signal travelling round and round a specially prepared crystal many times. As can be seen from the diagram, transducers are placed along the S.A.W. path giving many temporally spaced outputs. These outputs can be up to several milliseconds after the original input pulse.

Fig. 5. A linearly variable delay line can be created by having a moveable substrate in contact with a fixed substrate

Fig. 6. For very long delays a specialiy prepared crystal substrate can be used to give a helical multiple-tap delay line

Fig. 7. A tapped delay line can be used in a radar system to give marker pips on a display screen

RADAR SYSTEMS

Applications for these types of delay lines include radar systems. Here the devices would provide range calibration and in featureless terrains simulate a background, i.e. clutter generation. Fig. 7 shows the simplified block diagram of such a radar range calibration system.

A pulse generated by the r.f. pulse generator is transmitted via the radar dish to the atmosphere. If an object such as a plane is encountered a reflection of that pulse is returned to the dish some time later.

The sensitive receiver amplifier then generates a pulse on the plan position indicator (p.p.i.) the distance of which, from the centre of the screen, indicates the distance of the plane from the radar dish. The r.f. generator also passes a pulse simultaneous with the transmitted pulse, to the S.A.W. delay line. The delay line then gives delayed outputs which correspond, when displayed on the p.p.i., to specific distances from the radar dish. Thus range calibration of the radar system is achieved.

FILTERS

The bandwidth of the I.D.T. can be closely controlled as mentioned earlier by varying the number of fingers.
Since the bandwidth is inversely proportional to the number of finger pairs, a filter, which allows only a limited range of frequencies through either side of its designed centre frequency, can be easily constructed.

The centre frequency is determined by the spacing between each finger, which is made equal to half the wavelength of the desired centre frequency. The resulting filter is of the bandpass type.
Filters with these characteristics are essential in every TV and radio, in the i.f. section for instance. The markets are obviously just right for a simple mass-produced device which requires no tuning up after fabrication. Enormous efforts have been turned in this direction and the complex requirements for a TV receiver are close to being obtained.

SIGNAL RECOGNITION

Suppose that we require a system whereby a plane flying around an airport control tower is able to tell the controller automatically that it wants to land. Let the plane have a transmitter which gives out a signal on a particular frequency.
The signal could be coded so that it is unique to that aircraft. A digital code would be suitable, i.e. a series of 1 s and 0 s . let these be modulated on the carrier as a bi-phase coding. This means that the carrier unchanged represents a 1 and a phase change of 180° of the carrier is a 0 . If the code were four bits long, e.g. 1001 and two cycles of carrier are allotted to each bit, then the coded signal would be as shown in Fig. 8.

How can this signal of known form be recognised immediately it occurs notwithstanding the presence of much interference? Naturally S.A.W. come to our aid in the form of a tapped delay line or correlator.
The signal is first converted into a S.A.W. by the input I.D.T. As the signal feeds in it is compressed in length until it all lies along the substrate.

For simplicity the output I.D.T.s are made up of single finger pairs called taps. These taps will give a maximum output when a 1 or 0 bit of the S.A.W. appears beneath them, depending to which sum line the fingers are connected (Fig. 8). Thus if the taps are arranged 1001, as in the diagram, a S.A.W. of exactly that form at the correct frequency will cause them all to give a maximum output, simultaneously, when it appears beneath them.

Fig. 8(a). A S.A.W. correlator may be used for detecting a particular sequence by arranging the taps to coincide with the desired signal. A typical output is shown in (b)

(a)

(b)
(G.E.C. Hirst Research Centre)
Fig. 9(a). Photograph of an actual S.A.W. correlator which is capable of recognising a particular 127 bit sequence. The output transducer is inclined to minimise distortion due to its length. Photograph (b) shows the large peak produced when the sequence is recognised

The sum lines add these tap outputs to give a large pulse which indicates the signal has been recognised. Since the S.A.W. signal travels along the substrate under the taps it will cause small spurious signal's before and after it is in the correct position to cause a large pulse; these are shown in Fig. 8b.

The photographs show a more ambitious example of a tapped delay line (Fig. 9a). It has 127 taps each

Fig. 10. By varying the spacing between taps as shown a "chirp" signal can be recognised

Fig. 11. The structure of an amplifier using S.A.W. principles

Fig. 12. A S.A.W. oscillator is produced by combining a bandpass filter with an external amplifier, the frequency of oscillation being determined by the spacing between taps on the S.A.W. crystal
of six finger pairs. Fig. 9b shows the output obtained from the large centre transducer, when the coded sequence is fed into the device. The detection pulse is easily recognised.

CHIRP DETECTION

If instead of bi-phase modulation a pulse of signal is used which is rising in frequency with duration, see Fig. IO. This could be detected by appropriately spacing the taps on a transducer as shown. The chirp system is common in radar systems.

AMPLIFIERS

The need for S.A.W. amplifiers is apparent in, say, a long delay line where attenuation of the wave by the crystal becomes the limiting factor in the achievable delay time.

The amplifier to be described makes use of the electric field generated by the S.A.W., travelling along a piezo-electric material, by causing it to interact with electrons travelling through this electric field.

Since the electric field is localised to the surface of the crystal, a conducting medium for the electrons has to be placed very near the surface, yet not touching. since this would distort the waves. Fig. II shows such an amplifier arrangement; a semiconductor film is used to conduct the electrons.

If the electrons are moving faster than the S.A.W. energy passes to the wave. Gains of up to 10^{-}times are being achieved at present. These require voltages of several kilovolts across the semi-conductor film.

It is interesting to note that if the electrons in the semi-conductor film are travelling slower than the S.A.W., energy is removed from the S.A.W. and the electrons benefit. This property is useful in absorbing unwanted signals.

OSCILLATORS

The oscillator structure (Fig. 12) combines the filter layout mentioned earlier with an external amplifier. This amplifier returns the signal taken from the filter output I.D.T. to the input I.D.T. with an excess of gain. The frequency of oscillation is determined by the output I.D.T. and the spacing of the two transducers (D).

The number of finger pairs in the output I.D.T. determines the bandwidth whilst the spacing of the fingers sets the centre frequency. This bandpass filter then selects one of the many possible frequencies of oscillation, which are determined by the distance between the input and output I.D.T.s.
The range of frequencies presently possible is 20 MHz to 1 GHz . Oscillators above 300 M Hz will be small enough to fit inside transistor type TO-8 cans complete with their i.c. amplifiers.

Applications for these small, cheaply produced oscillators include TV tuners, low noise microwave sources and strain gauges.

SUMMING UP

It is seldom that one technique can achieve so much in such a short time. It is easy to see that this could be an area scheduled for intense activity and immense growth.

The combination of minimal power requirements (or none at all), microminiature construction, cheap mass production combined with a powerful signal processing capability must ensure the future of this branch of technology.

THis amplifier has been designed on a value for money basis to give the highest standard of performance compatible with a small case and a components budget of about $£ 30$. The result is a circuit with an output of over $20+20$ watts into 8 ohm loads at less than $0 \cdot 12$ per cent distortion, in a case measuring only $14 \mathrm{in} \times 6$ in $\times 2 \mathrm{in}$.

This has been made possible by the use of a toroidal mains transformer, by the small size of the latest electrolytic capacitors and by the use of the case of the amplifier as a heatsink.

PRE-AMPLIFIER

The circuit of the pre-amplifier is shown in Fig. 1.1. Here TR1 and TR2 form a complementary feedback pair. This arrangement has excellent bias stability due to the d.c. feedback through R12. Both transistors are low noise types and TR1 is run at a bias current of only $150 \mu \mathrm{~A}$ to minimise noise.

The equalisation components are connected in the feedback loop. R14, R15, C9 and C10 provide equalisation for magnetic pickups to within $\pm 1 \mathrm{~dB}$ of the R.I.A.A. curve, between 20 Hz and 20 kHz , whilst R13 and C8 give a flat frequency response for the tuner and auxiliary inputs. No special equalisation has been provided for ceramic pickups as these seem to be falling out of favour nowadays, but ceramic pickups can be used with the magnetic equalisation by connecting passive matching networks of the type shown in Fig. 1.3 inside the record player plinth.

The frequency response of the disc, tuner, and auxiliary inputs is shown graphically in Fig. 1.2.

Emitter follower TR3 provides a high input impedance for the tape input and also enables a tape A/B facility to be provided. This is of particular value with tape recorders having separate recording and playback circuits as it enables one to make a direct<omparison between the signal source and the
recording. For example, if one wishes to make a recording of a radio programme the input selector is set to "Tuner" and the signal passes through the input stages and out to the recorder. The signal is recorded on tape and the tape playback signal appears at the emitter of TR3. By operating S2 one can then make a direct comparison between the input and the output of the tape recorder.

The tone control circuit is of the Baxendall type and uses an integrated circuit operational amplifier. The very high gain and large output voltage swing of this i.c. are advantageous in obtaining very low distortion and a good dynamic range, whilst the signal level in this stage is sufficiently high to make the noise negligible.

The characteristics of the bass and treble controls are shown in Fig. 1.4. With the tone controls flat the circuit has an overall gain of 2 and gives an output of 200 mV .

The scratch filter is a second order type and gives an initial slope of 12 dB per octave from its 3 dB point at 5 kHz . The response of the filter and its effect on the treble control is shown in Fig. 1.5.

MAIN AMPLIFIER

The main amplifier has a number of interesting features.

A long tail pair has been used at the input which increases the loop gain and reduces distortion, but more important it provides an accurate ground reference for the output. The d.c. potential on the output terminal will normally be less than 50 mV and this will ensure that any d.c. current through the loudspeaker is of negligible proportions. However, if an output transformer, or a loudspeaker containing a matching transformer (such as the Quad electrostatic) is used the d.c. resistance is then very

[^4]
Continuous Output Power

Load	Both channels driven	One channel driven
4 ohms	$31+31$ watts r.m.s.	44 watts r.m.s. 8 ohms
$23+23$ watts r.m.s.	30 watts r.m.s.	
15 ohms	$17+17$ watts r.m.s.	19 watts r.m.s.

Measured at 1 kHz

Toneburst Output Power

Load	Both channels driven	One channel driven
4 ohms	$52+52$ watts r.m.s.	57 watts r.m.s.
8 ohms,	$36+36$ watts r.m.s.	42 watts r.m.s. 15 ohms $21+21$ watts r.m.s.
22 watts r.m.s.		

Measured with a 1 kHz tone burst of 8 cycles on and 512 cycles off.

Distortion

15 ohm load-Less than 0.1 per cent at any power level up to 15 watts between 100 Hz and 10 kHz . Less than 0.02 per cent below I watt output.
8 ohm load-Less than 0.12 per cent at any power level up to 20 watts between 100 Hz and 10 kHz . Less than 0.02 per cent below I watt output.
4 ohm load-Less than 0.5 per cent at any power level up to 30 watts between 100 Hz and 10 kHz . Less than 0.05 per cent below I watt output.

Frequency Response

Tuner and Aux. inputs $\left\{\begin{array}{l}-1 \mathrm{~dB} \text { at } 28 \mathrm{~Hz} \text { and } 15 \mathrm{kHz} \\ -3 \mathrm{~dB} \text { at } 17 \mathrm{~Hz} \text { and } 30 \mathrm{kHz}\end{array}\right.$
Tape input $\left\{\begin{array}{l}-1 \mathrm{~dB} \text { at } 25 \mathrm{~Hz} \text { and } 30 \mathrm{kHz} \\ -3 \mathrm{~dB} \text { at } 14 \mathrm{~Hz} \text { and } 60 \mathrm{kHz}\end{array}\right.$
Disc input-Within IdB of the RIAA curve between 20 Hz and 20 kHz

Tone Control

Bass $\pm 12 \mathrm{~dB}$ at $100 \mathrm{~Hz}, \pm 18 \mathrm{~dB}$ at 30 Hz
Treble $\pm 12 \mathrm{~dB}$ at $10 \mathrm{kHz}, \pm 16 \mathrm{~dB}$ at 20 kHz

Scratch Filter

-3 dB at 5 kHz . Slope 12 dB per octave

Inputs

Disc -3.5 mV at $47 \mathrm{k} \Omega$ RIAA equalised
Tuner- 100 mV at $100 \mathrm{k} \Omega$ Flat response
Aux. -100 mV at $100 \mathrm{k} \Omega$ Flat response
Tape -100 mV at $100 \mathrm{k} \Omega$ Flat' response
Tape Output
100 mV at $4.7 \mathrm{k} \Omega$ Tape A / B facility

Signal to Noise Ratios

Unweighted figures measured with a bandwidth of 20 kHz .
Weighted figures follow CCIR C curve. Volume control at max.

Tuner, Aux. Unweighted -68 dB ,
Weighted -72dB
Disc. Unweighted -62 dB ,
Weighted -76 dB
Tape Unweighted -76 dB ,
Weighted -82 dB
(Figures are relative to an output of 20 watts into 8 ohms)
MAIN AMPLIFIER ONLY \int Unweighted-96dB
(volume control at min.) $\{$ Weighted $-100 \mathrm{~dB}$

Balance Control

Full rotation cuts off either channel

Dynamic Range

Disc input at $1 \mathrm{kHz}=32 \mathrm{~dB}$ (i.e. input of 150 mV)

Interchannel Crosstalk

$-50 \mathrm{~dB}$

Stability

Unconditionally stable. Will drive electrostatic loudspeakers

Output Impedance

Less than 0.1 ohms

Dimensions

$14 \times 6 \times 2 \mathrm{in}$.
much lower than the speaker impedance and it is advisable to connect a resistor of about 0.5 ohms in series with the output of the amplifier.

This will reduce the output power by a few per cent but will minimise the d.c. current. In practice the resistance of the speaker leads will often be sufficient to provide the 0.5 ohm required.

The d.c. coupled output ensures that the speaker damping is maintained right down to d.c. giving a clean solid bass response. Normally, when a
speaker coupling capacitor is used, the reactance of this capacitor starts to become appreciable at low frequencies just when the most damping is required. The d.c. coupled output is made possible by the use of balanced positive and negative supply rails, and these also assist in obtainin clean symmetrical limiting under all load conditions.

The constant current source TR8 helps in obtaining low crossover distortion by providing a rapid transition of drive current between the two output

TO L/H CHANNEL

COMPONENTS . . .

Resistors

R1, R101	$400 \mathrm{k} \Omega$	R25, R125	$10 \mathrm{k} \Omega$
R2, R102	4.7ks	R26, R126	$10 \mathrm{k} \Omega$
R3, R103	$100 \mathrm{k} \Omega$	R27, R127	39 k)
R4, R104	$4.7 \mathrm{k} \Omega$	R28, R128	$4.7 \mathrm{k} \Omega$
R5, R105	$1 \mathrm{k} \Omega 2$	R29, R129	$4.7 \mathrm{k} \Omega$
R6, R106	$47 \mathrm{k} \Omega$	R30, R130	$22 \mathrm{k} \Omega$
R7, R107	470S2	R31, R131	$1 \mathrm{k} \Omega$
R8, R108	$100 \mathrm{k} \Omega$	R32, R132	$2.2 \mathrm{k} \Omega$
R9, R109	$47 \mathrm{k} \Omega$	R33*	$470 \Omega 1$ W
R10, R110	$1.5 \mathrm{k} \Omega$	R34*	$470 \Omega 1 \mathrm{~W}$
R11, R111	4.7 kS	R35, R135	$100 \mathrm{k} \Omega$
R12, R112	470ks	R36, R136	$1 \mathrm{k} \Omega$
R13, R113	10ks)	R37, R137	$22 \mathrm{k} \Omega$
R14, R114	10ks	R38, R138	$4.7 \mathrm{k} \Omega$
R15, R115	470ks	R39, R139	$3.3 \mathrm{k} \Omega$
R16, R116	220ks)	R40, R140	$1 \cdot 2 \mathrm{k} \Omega$
R17* 150S		R41, R141	$100 \mathrm{k} \Omega$
R18* $150 \Omega 2$		R42, R142	$4.7 \mathrm{k} \Omega$
R19, R119	$4 \cdot 7 \mathrm{k} \Omega$	R43, R143	100@
R20, R120	100ks?	R44, R144	$1.5 \mathrm{k} \Omega$
R21, R121	$1 \mathrm{k} \Omega$	R45, R145	$1 \mathrm{k} \Omega$
R22, R122	10kS	R46, R146	$0.33 \Omega 2.5 \mathrm{~W}$
R23, R123	220ks	R47, R147	$0.33 \Omega 2.5 \mathrm{~W}$
R24, R124	$2.2 \mathrm{k} \Omega$	R48, R148	$10 \Omega 1 \mathrm{~W}$

All $\frac{1}{2} \mathrm{~W} 5 \%$ carbon film unless otherwise rated
Note: R17*, R18*, R33* and R34* are common to both channels; similarly for all other components asterisked

Potentiometers

VR1, VR101 $100 \mathrm{k} \Omega$ twin gang linear law (RS)
VR2, VR102 $100 \mathrm{k} \Omega$ twin gang linear law (RS)
VR3. VR103 $10 \mathrm{k} \Omega$ twin gang log law (RS)
VR4*
$25 \mathrm{k} \Omega$ single gang linear law (RS)
VR5, VR105 $1 \mathrm{k} \Omega$ skeleton preset (RS)

Capacitors

C1, C101	$1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C2, C102	$33 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C3*	$150 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C4*	$150 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C5, C105	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
C6, C106	$33 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C7, C107	22pF 160 V polystyrene
C8, C108	470 pF 160 V polystyrene
C9, C109	$6,800 \mathrm{pF} 400 \mathrm{~V}$ polyester
C10, C110	-022 $\mu \mathrm{F} 160 \mathrm{~V}$ polyester
C11, C111	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
C12, C112	$1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C13, C113	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
C14, C114	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
C15, C115	-022 2 F 160 V polyester
C16, C116	1,500 pF 160 V polystyrene
C17, C117	1,500pF 160V polystyrene
C18, C118	22 pF 160 V polystyrene
C19, C119	$4,700 \mathrm{pF} 400 \mathrm{~V}$ polyester
C20, C120	$4,700 \mathrm{pF} 400 \mathrm{~V}$ polyester
C21, C121	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ tantalum
C22*	$0.1 \mu \mathrm{~F} 30 \mathrm{~V}$ disc
C23*	$0.1 \mu \mathrm{~F} 30 \mathrm{~V}$ disc
C24*	$470 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C25*	$470 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C26, C126	$1 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum
C27, C127	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C28, C128	22pF 160 V polystyrene
C29, C129	33 pF 160 V polystyrene
C30, C130	$\cdot 1 \mu \mathrm{~F} 250 \mathrm{~V}$ polyester
C31, C131	$22 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C32, C132	$22 \mu \mathrm{~F} 63 \mathrm{~V}$ elect.
C33. C133	- $1 \mu \mathrm{~F} 250 \mathrm{~V}$ polyester
C34**	$3,400+3,400 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C35*	$3,400+3,400 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C36*	$\cdot 01 \mu \mathrm{~F} 750 \mathrm{~V}$ disc

Semiconductors

Recommended type
TR1, TR101 ZTX239 Ferranti TR2, TR102 ZTX213 Ferranti

TR3, TR103 ZTX239 Ferranti TR4, TR104 ZTX213 Ferranti
TR5, TR105 ZTX213 Ferranti
TR6, TR106 BFS61 Ferranti TR7, TR107 ZTX108 Ferianti

TR8, TR108 BFS98 Ferranti TR9, TR109 BD699 Motorola TR110, TR110 BD700 Motorola D1*, D2* KS150B Ferranti D3, D103 KS120B Ferranti D4, D104 ZS170 Ferranti

D5, D105 ZS170 Ferranti
D6*, D7*, D8*, D9* ZS271 Ferranti

IC1, IC101 UA748CV Signetics

Switches
S1A, S1B, S101A, S101B 4-pole 3-way rotary (Lorlin)
S2, S102 2-pole changeover pushbutton (RS)
S3* 2-pole changeover pushbutton (RS)
S4, S104 2-pole changeover pushbutton (RS)
S5 D.p.s.t. rotary mains switch (RS)

Miscellaneous

T1 Gardners mains transformer type SL8, 20.5-0 20.5 volts

LP1 Neon panel lamp with internal resistor
Case-H.M. Electronics type GB3
Stereo jack socket, 4-DIN 5 way sockets, four 4 mm sockets, five control knobs, three pushbutton switch buttons (RS), two Eagle 20 mm fuseholders, 1 A fuse, 2A fuse, four Lektrokit spring clips type LK2791 ($1 \cdot 5 \mathrm{in}$), five way tagstrip. screws, spacers, grommets, aluminium angle, connecting wire.
A glass fibre printed circuit board printed with component locations, and a kit of semiconductor devices for this project are available from Davian Electronics, PO Box 38, Oldham, Lancs.
transistors. Bias transistor TR7 operates in the "amplified diode" mode and is thermally coupled to the output transistors by being clamped to the heatsink. This gives a great improvement in bias stability as any increase in heatsink temperature is compensated for by a reduction in bias.

OUTPUT TRANSISTORS

The output transistors TR9, TRIO on the circuit diagram are shown as single transistors for simplicity. but they are in fact monolithic Darlington pairs with a minimum current gain of 750 at 3 amps. These transistors have proven themselves to be electrically very robust and we have found that a 2 amp fuse in the positive rail'is adequate to protect them against short circuits on the output.

Note that the fuse should be connected in the positive rail and not the negative rail. When the positive supply is removed the whole main amplifier is turned off because the bias is removed from the constant current source TR8, and also from the input stage TR4 and TR5. This in turn turns off TR6.

Fig. 1.2. Frequency response of disc, tuner and aux inputs

Fig. 1.4. Frequency response of the tone controls

Fig. 1.5. Frequency response of the scratch filter

Fig. 1.3 (a). Circuit giving approximate matching for most types of ceramic pick-up ; (b) circuit for matching the Decca Deram ceramic pick-up; (c) circuit for matching the Sonotone 9TAHC ceramic pick-up

POWER SUPPLIES

When one is designing a small, low cost amplifier the first refinement that one has to do without is the use of a stabilised power supply. This introduces a number of problems; but there are compensating advantages.

The problems arise because of the lack of stabilisation. To get 20 watts output into an 8 ohm speaker we need a power supply which will deliver 45 volts on load. But when the amplifier is not giving any output and there is only a light load on the power supply, its voltage can easily rise to 60 V . If we allow for mains voltage variations, then under the worst conditions the supply voltage could reach nearly 70 V . With a stabilised power supply output transistors rated at 50 V would have been satisfactory, but with our unregulated supply we need output transistors which will stand at least 70 V . Not only this but all the electrolytic capacitors need to be conservatively rated as well.

The unregulated power supply does however have one very great advantage. A musical signal has a low average power level with occasional peaks of high power. For a short period (until the power supply voltage drops).an amplifier with an unregulated supply can deliver a power output very much greater than its continuous rating. This amplifier will deliver 23 watts per channel continuously into 8 ohms, but on a musical signal it is almost as good as a 35 watt amplifier.

Lastly it might be as well to clear up exactly what we mean by continuous power. With 15 ohm loads the power dissipation is sufficiently low for the amplifier to be run at full sinewave power continuously. With 8 ohm loads it will also safely run continuously provided that it is placed in a well ventilated position where air can circulate freely around it, but the back of the amplifier tends to become rather hot after about 30 minutes of full sinewave power. With 4 ohm loads the amplifier should not be run at full sinewave power for more than about 10 minutes at a time, or the temperature of the output transistors may become excessive.

One does not normally listen to sinewaves of course and with a normal music or speech input the amplifier can be run continuously at full volume without any reservations.

DISTORTION

At full output the distortion introduced by the other components in the hi-fi system will be much greater than that of any reasonable amplifier. Moving coil loudspeakers can generate up to 10 per cent distortion and even electrostatic types can give 0.5 per cent. A good modern f.m. tuner can generate $0: 5$ per cent., a tape recorder about 2 per cent, and a gramophone pickup can reach as much as 20 per cent on the inner grooves. Compared to these figures the performance of all but the most mediocre amplifiers is adequate at full output.

There lies the snag. All the signal sources may have considerable distortion at full output, but the distortion falls rapidly at lower levels. This is not necessarily the case with an amplifier. If crossover distortion is present the distortion may be only 0.1 per cent at full output but may easily rise to 1 per cent or more at low levels. Crossover distortion is particularly unpleasant because it generates high order harmonics, which are discordant and easily perceived.

For crossover distortion to be negligible it should be less than 0.1 per cent at all power levels. Low order harmonic distortion is less objectionable and up to 0.5 per cent can be tolerated. So we can say that our amplifier should have a distortion specification of no worse than 0.5 per cent at full output, and below 0.1 per cent at all power levels below 1 watt.

The use of a constant current source in this amplifier has helped us to achieve a very low level of crossover distortion-typically about 0.01 per cent at 1 watt-and with 8 or 15 ohm loads the harmonic distortion is below about $0 \cdot 1$ per cent at all power levels up to full output. With 4 ohm loads the performance does not reach quite the same standard, but it is still below 0.1 per cent at 1 watt and 0.5 per cent at full output.

FREQUENCY RESPONSE

Many constructors are firmly convinced that a very extended frequency response is a good thing. This is a complete fallacy because-

1. Human hearing extends from about 20 Hz to 20 kHz at the best. There is some evidence that transients containing harmonic components above 20 kHz can be distinguished but there is certainly nothing to be gained by extending the response past $40-50 \mathrm{kHz}$.
2. There are very few loudspeakers with any useful response below 30 Hz or above 20 kHz .
3. There are no radio signals with any audio above 15 kHz .
4. There are no records or cassettes with any audio above 20 kHz .

In fact the only audio signal available which might have anything above 20 kHz would be a very high quality tape recording of a live performance.

A very extended frequency response can be a very bad thing. If the low frequency response is very extended then low frequency noise from turntable rumble, warped or off centre records, or tape recordings can get through the system and cause the

Fig. 1.6. Distortion against output power for 15 ohms measured at 1 and 10 kHz

Fig. 1.7. Distortion against output power for 8 ohms measured at 1 and 10 kHz

Fig. 1.8. Distortion against output power for 4 ohms measured at 1 and 10 kHz
speaker cone to flutter violently. If the h.f. response is very extended then h.f. noise and multiplex sideband components can intermodulate with each other and with h.f. audio signals to produce audible distortion and noise. So what is the ideal response? Probably something like 20 Hz to 50 kHz $\pm 3 \mathrm{~dB}$.
This amplifier has been designed so that the frequency response falls rapidly below 10 Hz , and so

FIg. 1.9. Output waveform of the amplifler when slightly overdriven with a 1 kHz sinewave showing the clean symmetrical IImiting wlth freedom from latch-up

Flg. 1.10 (a). 1 kHz square wave response with 8Ω resistlve load; (b) 10 kHz square wave response with 8Ω resistive load; (c) 10 kHz square wave response with load of 8Ω and $0.1 \mu \mathrm{~F}$; (d) 10 kHz square wave response with a load of 8Ω and $2 \mu \mathrm{~F}$

Fig. 1.11. Headphone attenuator circuit if required. Note that resistors have been omitted from Components List

Fig. 1.12. Connections for quadraphonic decoder.
DIN socket connections are as follows:-

1. Left channel front input from decoder
2. Earth
3. Left channel output to decoder
4. Right channel front input from decoder
5. Right channel output to decoder
a separate rumble filter is not necessary. The h.f. response of the tape input extends to 50 kHz but the radio input has been restricted to 30 kHz to attenuate multiplex and carrier components. With the scratch filter switched in all the inputs are 3 dB down at 5 kHz .

TRANSIENT RESPONSE

For good reproduction it is essential that the amplifier should have a good transient response with as little ringing as possible, even when fed into a highly reactive load such as an electrostatic loudspeaker.

In this amplifier a particular effort has been made to achieve a good transient response and Fig. 1.10 shows the performance of the amplifier under various load conditions. Note that with a $2 \mu \mathrm{~F}$ capacitive load the ringing is of very low amplitude and soon dies away. If a 0.5 ohm resistor is connected in series with a $2 \mu \mathrm{~F}$ load (as we recommended for the Quad speaker), then even this small amount of ringing is completely eradicated.

QUADRAPHONICS

No special provision has been made for quadraphonics in the prototype, mainly because of lack of space, but it is a simple matter for the enthusiast to adapt the circuit for use with a quadraphonic decoder.

All that is necessary is to break the connection between the preamplifier and the main amplifier and replace it with a switch and a DIN input socket, as shown in Fig. 1.12. The two front channels can then be fed back into the Orion main amplifiers whilst the back channels are fed to another amplifier. An additional pair of Orion main amplifiers would be ideal for this purpose.

Next month: Constructional details and setting up.

RE-READING one of the earliest publications on electronic music recently I came across the following statement made by Herbert Eimert, founder of the Cologne Radio Electronic Music Studio:
"That-electronic music cannot be performed on Instruments is due to the fact that the number of individual sound elements is so great that any attempt to find means of instrumental realisation is doomed to failure."
One's immediate reaction is to wonder whether he would have ventured to say this now, in the age of the synthesiser, when many pop groups have some kind of synthesiser.
Perhaps even twenty-odd years ago, when Eimert's article was written, there was little excuse for such a statement; the electronic and electrophonic instrumental field was by then quite sophisticated. A little relatively recent history may be pulled in here to support, or maybe excuse, his apparently negative remark.

The Years Between

In the years between the two world wars Arnold Schoenberg, Austrian composer, systematised the 12 notes of the traditional chromatic scale to produce music which did not rely on key (i.e. the predominance of one note over any other) but used all the available pitches equally. Amongst his pupils was Anton Webern who went a stage further than his master; rather than treating the 12 notes in a fairly conventional linear manner he perfected a style of writing which laid weight on each. individual note as and when it occurred in the musical flow.
The dynamic levels, pitch and timbre were carefully controlled in his sparsely written aphoristic instrumental and vocal compositions.

Lionised Webern

After the war a group of young German musicians picked up the almost submerged threads of these revolutionary concepts and made Webern their idol. Reinforced by similar pre-organised, or serial, ideas put forward in works by the French composer Olivier Messiaen, these young intellectuals went on to produce a new music in which all the parameters available to music were fully exploited, almost mathematically. The musical results were often impossible to perform by human beings, yet the European scene rapidly became thick with "avant-garde" concerts, many of dubious integrity.

That any worthwhile music has survived this.period is a minor miracle, given the arrogance of the exponents and the loud raspberries

of the musical press.
It was during this babel of activity that the tape recorder came into general use, and with it the very latest in sensational sound, electronic music. Anything essentially of an acoustic nature was taboo. Needless to say electronic compositions were meticulously edited and fixed for all time on magnetic tape.

Colouristic Effect

Meanwhile in France there was another little sonic revolution taking place. Whilst those who whored after strange gods studied the latest serial techniques in Germany, others stayed behind to practice the art of colouristic effect for which the French have always been renowned.

Pierre Schaeffer founded a studio in Paris dedicated to the study of the physics and psycho-physics of acoustic phenomena and to the production, on discs initially, of musical compositions which took raw, natural sounds as their starting point. Plain aural effect was the ambition; Schaeffer and his colleague Pierre Henry had little time for the intricate number games which the Germans were playing. The search for "musique concrete" [natural or non-abstract music] ended with the arrival of the tape recorder and the simplicity of editing magnetic tape.

Partisan Factions

So electronic music began lite in two partisan factions: the Germaninfluenced found the French "musique concrete" positively naive and artless, whilst the French considered the Germans inhumanly mathematical
and equally artless. Both came together, however, in considering their respective tape compositions to be one-off, once-and-for-all performances.

Live electronics

So Eimert was right. Given the complexity of a totally serial composition with its rapidly changing rhythmic, pitch, spatial, dynamic and timbre elements, only a taped sequence could do justice to a particular concept. No amount of juggling around with electronic organs and peripheral sound effect units would reproduce on the concert platform what could be realised on tape.

The same applies to Schaeffer's collages, where natural sounds, recorded wherever they existed, were processed electronically, the result defying any musical instrumentssave perhaps the Melotron, which is nothing more than a filing cabinet of tape recordings with a piano keyboard attached. Eimert lacks credence in his underlying assumption that Electronic Music is a style rather than a medium of expression.

Today's Electronic Music

In today's Electronic Music the factions have largely disappeared; Stockhausen has cast off the straitjacket of total serialisation and in his taped works uses the human voice, gramophone records, short-wave radios and acoustic instruments. Schaeffer and his colleagues rely quite heavily on purely electronic sound producers.

Along with this fusion of two differing approaches to taped material came the feeling that performers ought to take some share in the interpretation of this kind of music; hence "Live electronics".

Pop Sounds

By far the largest purveyors of live electronics are the pop groups. (Only a pedant would argue that their music is not strictly electronic.) Electronic instruments work admirably here since most of the music performed is geared to the traditional pattern of twelve notes to the octave and is old fashioned enough to use fairly common juxtapositions of these notes. Above all, pop-music is primarily melodic music and this means that a given instrumental line is unlikely to require rapid changes of timbre.

To some extent "serious" live electronic groups have taken a lead from the pop world; the music they perform is no more complex to realise than an equivalent piece of acoustic instrumental music. Should they require complex arrangements of sound these still have to be prerecorded on tape.

THE NEXT DE CA D E

Final selection of readers' predictions

ARMCHAIR VIEWING

BELIEVE that in the next decade we could well see many changes in our everyday life due to electronics. Instead of travelling to conferences, businessmen might stay at home and "attend" the conference via video and audio links to a central conference control, through which they would be able to see and hear their colleagues. They would also be able to "look up" relevant information through the conference control and have it displayed on their screens for as long as they wish.
We could watch any television (if it could rightly be called this) programme whenever we pleased.

The printing world can throw away its presses, for we will be able to dial for, say, the front page of today's newspaper and have it displayed on our "newscreens." Yes! even our beloved Practical Electronics will come to us like this. (Don't worry Ed., you will still be needed.)
No-one will have to think as much, for we will all have our own computer calculators, and musical instruments will be replaced by synthesisers, so that the Pablo Casals' of tomorrow will play upon streamlined keyboards instead of peculiarly shaped pieces of wood
All this sounds rather unlikely? Well, you wait and see.
S. J. Baxendale.

COMMON PLACE

N the next ten years no progression is forseeable in the direction of component miniaturisation, owing to the impossibility of decreasing pin and encapsulation size. It is likely that more will be fitted into a single module-Mr. Shaw's synthesiser on a chip, for example.

Specialisation of these circuits is almost inevitable, specifications going further and further towards the extreme, with fantastic power handling and even more fantastic frequency ranges, now only the dream of hi-fi enthusiasts. Technology cannot be underrated in sorting out the problems which may make these two characteristics (now) incompatible.

For the home constructor, today's high-powered technology may be tomorrow's workbench experiment. A home made integrated circuit kit for example; which is not such a far fetched idea if one looks at the basic simplicity
of overlaying the semiconducting layers, assuming there will be enough semiconducting material left by tomorrow!

Soon one may be able to leaf through a catalogue of "surplus" equipment, which at present is described as a technological breakthrough. Basic techniques could soon be outmoded, soldering and the printed circuit board might soon be replaced by the plug-in module.

In conclusion, it could be said that in the next decade, though there may not be the advances of the like of the integrated circuit in the last ten years, technology will push its usage to the limits. Also, present technology will be commonplace to the constructor in not so many years.
N. J. Eastaugh

MAN AND HIS ELECTRONIGS

THE philosophy of electronics in the next decade is summed up by "digital is best, and smaller is better".
Compromised by cost, and using the results of researches into the nature of human perception, manufacturers will set lower standards of sound and image reproduction.
Enthusiasts will reconstruct the electronic achievements of the 1920's with antique components or replicas made by new cottage industries.
A wide range of games-machines designs will be published for the constructor. At best, they will be war games, or a form of Monopoly in which the players are relieved of the arithmetic of accounting and cannot break the rules.

The power of present-day minicomputers will be available in a single i.c. costing $£ 20$, or less.

The military applications of microelectronics will shock and horrify us, but the constructor will find light relief from the problems of the day by assembling the parts of a micro-computerised mouse for his cat to play with.

There will be great interest in the generation of special effects. Today's Wind and Rain generator will be supplemented by tomorrow's Thunder and Lightning, the degree of authenticity rising according to ingenuity and the size of purse.

Electronic musical inseruments will have substantial computer power, and the constructor will spend more time in programming than constructing his
creations, having purchased programmes from the lists in the advertisement pages of his favourite journal, P.E.
Seated at the console of his electronic organ, engaged in extempore musical invention, such will be the interaction between man and his electronics that the player may well exclaim from the profundity of philosophical doubt, "Just who is playing this machine?" The folly of the decade will be an attachment for colour TV receivers to permit the display of electronically simulated goldfish.
D. Letts

HIGHER QUALITY

TH
HE next decade will not unveil any major electronic breakthroughs but instead, in a time of financial instability, manufacturers will concentrate on improving the quality of goods already available, the risks being too great for a large scale venture into something radically new. Maximum profit being essential, the fear of failure in a component would be too daunting.
Transistors and integrated circuits will continue to be the main "workbench" of electronics, both on an amateur and professional scale. The valve will still command itself a place but will always run a poor second to the modern semiconductor, as 1 feel it does now.

With everybody striving to attract the prospective customer to their particular line of components there will inevitably be many new i.c.s on the market, having better power handling capacities and such-like in an effort to better their predecessors, but none of them will be fundamentally different.

A shortage of raw materials, evident at the present time, will mean price rises and delivery delays (nothing new!) This could also result in the amalgamation of many small component retailers who would otherwise be forced into liquidation by the bigger concerns cornering all the custom

The overall trend will be to encapsulate the components in plastic containers which constantly seem to diminish in size.

Finally, the high degree of competitiveness between manufacturers will result in a higher quality of components-which can only be to the good of the constructor in the end.
M. S. Johnson

ELEGTRONIC LABEL.

THE present trend of improvement in electronic technology is likely to provide some new and perhaps exciting uses of the circuits as we know them. It may be taken for granted that they will reduce in size, become more reliable and presentable, and who can say how long they would last.
The reading of domestic meters by remote computer, preparation of account, and even automatic payment of the bill by pre-arrangement, is but one aspect.
It is likely that television receivers will be used in the dual role of entertainment or access to information, such as availability of goods or prices. The telephone line perhaps, would be switchable to a number of facilities, with a "back up" visual display.

One possible change is in the use of pocket, or desk calculators. It is quite feasible to envisage these being used as mini computers without major circuit change. For instance, with a microfilm attachment, and "access code" operation using the same styled keypad, the film could be rotated by the command word, and illuminated on a slightly enlarged screen.
Finally, how about the "Electronic Label", a microcircuit, so small that it could be incorporated into almost any article at the manufacturing stage, and with its own identity calling signal, quiet, unless called by a master beacon. Nasty though, if you want to go into a pub for a quick one and the wife is looking for you!
A. J. Williams

DIGITAL TRACKS

THE next decade will be dominated by political change, which will include higher taxation for the individual, and wage rates so high that the cost of maintenance and repair will often exceed the value of the article to be repaired.
The first item will make it unlikely that the colour television boom will be repeated with video cassette recording or the Ceefax/Oracle system. However, this may well give rise to a new system of video recording towards the end of the period using digital methods with about 150 narrow tracks instead of the helical scan system with its mechanical complexity.

Such a change would be less likely if a large number of helical scan recorders were already in use.
The lack of money in the hands of individuals will be compensated by more in the hands of government, who will spend more on electronics.
One possibility taken at random could be a distress calling system for old and disabled people. The caller presses a button that activates a device to send a high frequency signal into the local mains electricity network. This signal is modulated by a series of pulses representing a number allocated to the caller.

A warden who has a receiver on the same local mains ring is alerted that the caller is in trouble.

A second is the introduction of automated speed traps, made necessary by increasingly restrictive speed limits due to overcrowding and fuel shortages. These would photograph offenders' cars showing the speed on a print-out. An official would collect the photographs every so often. To avoid the possibility of malfunction causing injustices, offenders would be prosecuted if caught more than once in a set period of time.

The second item, wages, will lead to novel methods of improving reliability of electronic goods. Touch-operated integrated circuit sub-systems will replace potentiometers and switches, and possibly i.c. optical modulators and demodulators coupled with optical fibres will replace plugs and sockets for connecting audio discrete units.
J. de. Rivaz

INTEGRATED I.C.'s

TEN YEARS is not a long time, but I believe that man will advance more in the next ten years than in the last ten. After long consideration I came to the conclusion man's advancement was of a logarithmic nature and not a linear one. Our greatest advancement will be in the field of i.c.s and their interconnection.
Soon we will see the inductor being incorporated in i.c.s and midway through the decade we will see the key to a new kind of electronics. No more will i.c.s be coupled by wires, coupling will be similar to the lecher lines used in u.h.f. tuners. Simply placing the i.c.s one on top of another, rather like the child's building bricks only in a miniature form. From this giant leap electronics will virtually know no bounds. The solid state power pack recharging itself from air, light, heat, or vibration, for example.

Air and light may be used, as in plants. to create chemical changes. These we can change into electrical energy. Heat given off due to power loss will be channelled back to the power pack to help recharge power cells. Vibration as used in self winding watches, used to generate power.

These advancements will lead to vast developments, such as the pocket computer, rather similar to the pocket calculator we have today, only thousands of times better and incorporating an audio output.

Programme cartridges will also be solid state, as in microfilm one small block containing many hundreds of hours of information.
Such an instrument would place the home constructor almost on a par with the professional.

Roll on 1984.
A. Tannock.

DIODES AND ALL

EXPERIENCE shows that the development of technology follows something akin to a log. law curve. In semiconductor technology there has been a veritable explosion of new ideas and techniques. If interpolation of this curve is attempted then the results can be somewhat surprising.

Today's computers using holographic or ferrite memory stores are far too cumbersome, slow and expensive. Development of heavy metal organo compounds already well under way should bring about the production of high temperature (in excess of $100^{\circ} \mathrm{K}$) superconducting memory stores:-possibly a very primitive forbear of Asimov's positronic brain!

For constructors, I.s.i. circuits are already available, the question remains how large (or small) can they get and for what purpose. Pocket calculators already have chips containing thousands of active elements, and I rather think that today's constructor in ten years will be in much the same boat as those are now who lament the passing of the valve, we shall be lamenting the passing of the discrete transistor.

Looking back, most developments seem to stem from the humble diode, the latest being the ubiquitous I.e.d. so the logical development of this would be the "light emitting transistor"-alter the base bias and "hey presto"'; modulated light output.
E. J. Marchant.

SIMPLIFIGATION

THE following decade, for myself and fellow constructors, should bring simplification in the form of reduced wiring and soldering for more complicated circuits with increasing use of i.e.s.

With spiralling cost of most products, the hope of continued amateur construction may lie in continued progress in i.c. technology to reduce manufacturing costs.

For the home constructor whose use of i.c.s was exclusively bipolar (TTL), he may find himself making adjustments in the not too distant future towards a different form (CMOS). In this increasing energy-conscious world, the life of the bipolar form of logic could be drawing to an end, with less power consuming logic forms such as CMOS becoming more and more popular.

Amateurs and professionals over the coming years will be made more power conscious and a tendency towards battery supplies in contrast to more expensive a.c./d.c. Transformation will be encouraged as a practical şep for the home constructor.

Manufacturers will be responsible for this trend, as they become more aware of producing the form of logic which will be more financially secure for the future.
S. Naismlth

Now-two fascinating ways to enjoy saving money! NEW! Sinclair Scientific kit

Britain's most original calculator

 now in kit formThe Sinclair Scientific is an altogether remarkable calculator.
It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair Scientific costs a mere $£ 32.35$ (including VAT).
And as a kit it costs under £20!
Forget slide rules and four-figure tables!
With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin,
cos and arccos.
tan and arctan,
automatic squaring and doubling,
$\log _{10}$, antilog ${ }_{10}$. giving quick access to x^{γ} (including square and other roots),
plus, of course, addition, subtraction, multiplication, division, and any calculations based on them.

In fact, virtually all complex scientific ormathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?
No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.

All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer - they're still exceptional value. Use the order form.

Components for Scientific Kit (illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific

At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

Inless than a year, the Cambridge has become Britain's most popular pocket calculator.

It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge Kit

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

Take advantage of this

 money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question.All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today.

Scientific

Price in kit form $£ 19.95$ inc. VAT. Price built $£ 32.35$ inc. VAT. Cambridge
Price in kit form $£ 14.95$ inc. VAT. Price built $£ 21.55$ inc. VAT.

[^5]

THis month the remainder of the electronic circuitry in the synthesiser is described which includes keyboard controller, ring modulator, NOISE (iENERATOR and POWER AMPLIFIERS.

THE KEYBOARD CONTROLLER

The keybuard controller as illustrated in Fig. 3.1 is a relatively simple means of providing a range of voltages which. when applied to the input of a vco, caluse it to oscillate over a range of pitches normally associated with a chromatic scale or, allernatively, over a range of pitches quite outside what might be termed normal musical acceptance.

IC1 and IC2 are inverting operational amplifiers whose outputs are linked by a chain of resistors the junctions between which are connected to the keyboard contacts. R5 and VRI form a divider between the positive rail and ground such that the swing of the potentiometer covers a range of about 4.7 volts.

The wiper of VRI is linked to both i.c.'s so that the output of these devices will track, in unison, the setting of VRI. R1 and VR2 form a second divider between the negative rail and ground with the wiper linked to ICI only. Thus VR2 is able to provide an offset to ICI which is variable over 4.5 volts.

The purpose of the voltage difference between the swings of the two potentiometers, is so that, under normal conditions, the key contact voltages can never go positive and thus drive the vco's into saturation.

SPAN AND TUNE CONTROLS

The keyboard controller can be matched to a wide range of keyboard sizes and vco control voltages.

If, for example, a two octave keyboard is to be used and the required control voltage for the vco's is 600 mV per octave, then VR2 (the "Span" control) will require to be offset by $1 \cdot 2 \mathrm{~V}$ with respect to the inverted value of VRI's setting. Once this has been used and the required control voltage for the vco's are able to reproduce a chromatic octave by making
a series of consecutive key contacts, then VR1 may be adjusted over a wide range without affecting the "tune" of the vco's.

In simple terms the "position" of the two-octave keyboard may be varied over the audio frequency range and the "white" notes may be made to play in any required key signature. This latter feature will commend itself to those "play-it-by-ear" musicians who may sometimes find difficulty in translating a well known melody in the key of C into its correct signature.

For more serious applications, however, the ability to swing the keyboard "position" enables the Minisonic to play in tune with a number of conventional acoustic instruments which may, themselves, not be precisely "spot-on" as far as tuning is concerned.

KEYBOARD RESISTOR CHAIN

No setting-up is required for the KEyboard conTROLLER other than to check that the outputs of both ICI and IC2 respond correctly to the settings of VRI and VR2. Fig. 3.1 gives a table of resistor values which may be used for the divider system on keyboards of various sizes.

It will be noted that the overall value of resistance in each case is approximately the same in order that the loading on the i.c.'s will vary by a minimum amount regardless of the size of keyboard employed.

THE "HOLD" OR ANALOGUE MEMORY

Although covered by the general heading of KEYbOARD CONTROLLER the HOLD circuit is a quite separate entity which fulfils an important function in the scheme of the synthesiser.

Last month it was indicated that the envelope SHAPER could give a decay characteristic lasting up to 16 seconds. In other words, from the instant the key contact is broken, the audio signal will continue -at a diminishing level-for the prescribed period. It is obvious therefore that, for the best effect to be achieved, the vco frequency must remain constant for the period over which the decay is taking place.

With the key contact broken so too is the vco programming voltage disconnected unless there is some means by which the vco can continue to be programmed regardless of key contact condition. The hold circuit provides the means whereby the VCO can continue to oscillate at the frequency prescribed by the last programmed voltage either until the envelope shaper completes its cycle or until another voltage is programmed in.

HOLD CIRCUIT

The circuit of the hold facility is shown in Fig. 3.2a. IC3 is an operational amplifier in which the output signal is divided by means of VR4, R8 and R9 to provide balanced levels of positive and negative feedback.

When the balancing is carefully done the circuit is theoretically capable of presenting an infinite impedance to incoming signals. In practice, however, it is more usual to calculate the input impedance on the basis of the parallel value of the feedback resistors times the open loop gain of the amplifier. Thus the input impedance is of the order of 2,500 megohms.

The hold capacitor (C2) is, ideally, a low leakage type. A charge applied to C2 is reflected at the output of IC3 with any drift at the output due to a combination of capacitor leakage and minor thermal effects within the i.c.

KEYBOARD CONTROLLER AND HOLD

Resistors

R1	$10 \mathrm{k} \Omega$	
R2-R4	$47 \mathrm{k} \Omega$	(3 off)
R5	$9 \cdot 1 \mathrm{k} \Omega$	
R6, R7	$47 \mathrm{k} \Omega$	$(2$ off)
R8, R9	$20 \mathrm{k} \Omega$	(2 off)
R10	$47 \mathrm{k} \Omega$	
R11 et seq	See text	

Potentiometers

$$
\begin{array}{lll}
\text { VR1, VR2 } & 10 \mathrm{k} \Omega & \text { linear carbon (2 off) } \\
\text { VR3 } & 10 \mathrm{k} \Omega \text { sub-miniature } & \\
\text { skeleton preset } & \\
\text { VR4 } & 10 \mathrm{k} \Omega & \text { horizontal } \\
& &
\end{array}
$$

Capacitors

C1 1,000pF
C2 $1 \mu \mathrm{~F} \quad 63 \mathrm{~V}$ polycarbonate
Integrated Circuits
IC1-IC3 Type 741 8-pin d.i.l. (3 off)

Miscellaneous

SK1 2 mm socket

KEYBOARD CONTROLLER

Fig. 3.1. Circuit of the KEYBOARD CONTROLLER (excluding the HOLD circuit). The table (below) shows values of resistors (R11 et seq) and numbers required for various length keyboards. This applies to both printed circuit and conventional keyboards

KBD DIVIDER RESISTORS

Size	Resistor	Number off
1 octave	150Ω	13
2 octave	82Ω	25
3 octave	51 or 56Ω	37
4 octave	39 or 43Ω	49
5 octave	33 or 36Ω	61

Fig. 3.2(a). The circuit of the HOLD section of the KEYBOARD CONTROLLER. (b) It is important that this circuit should be adopted when nulling the HOLD offset. Temporary links are shown dashed. The feedback resistor should be $10 \mathrm{M} \Omega$ or more

It is possible to balance the circuit such that the output drift is better than $1 \mathrm{mV} / \mathrm{sec}$ but to do so requires considerable patience and care, particularly when nulling the offset. The circuit for this latter procedure is shown in Fig. 3.2b. The component assembly should be as shown on the circuit board layout but the wiper of VR4, instead of being linked direct to the output of IC 3 , is temporarily connected to the 0 V rail.

A second temporary feature is the inclusion of a high value feedback resistor (ideally 10MS or more) as shown hatched in Fig. 3.2b.

Adjust VR4 so that its wiper is close to the centre of travel and, with power on, adjust VR3 until the output of IC3 is precisely zero volts. The temporary links and feedback resistor may now be removed and the circuit completed as shown in Fig. 3.2a.
Minimising the drift in the hold circuit is best done by ear, i.e. using the Minisonic vco's rather than an oscilloscope as part of the test equipment. Details of this procedure will be included as part of the final setting up.

Fig. 3.3(a). Wiring of the edge connector strip as used on the prototype. Resistors are wired in from the conductor side of the board. Excess wire on the other side of the p.c.b. should be trimmed off and filed flush so that the board may be glued to the front panel

THE KEYBOARD

The Minisonic offers the possibility of being operated with a number of keyboard options, the cheapest being the edge-connector type. Other options will be discussed next month.
A printed circuit keyboard was adopted in order that the instrument could be both compact and fully self-contained. In the prototype a three-octave keyboard was made up using a standard edge-connector strip as shown in Fig. 3.3a but satisfactory operation could only be achieved after much practice due to the narrow conductors involved. Mounting of the divider resistors should be generally as shown in the diagram.

COMPONENTS . . .

STYLUS

In the first prototype the stylus employed two contacts and was illustrated on the front cover of the November issue. The double contact, however, greatly added to the difficulties of playing the instrument and thus modifications were carried out so that a single contact stylus could be employed.

Perhaps the simplest stylus involves the adaptation of a ball-point pen (see Fig. 3.3b). If this method is chosen it is important that all traces of ink are removed from the ball end using an organic solvent before any attempt is made to solder in the wire

Fig. 3.3(b). A suggested construction method for the stylus using an old ball-point pen

Note that organic solvents should be treated with caution since most of them give off a vapour which can be harmful if inhaled continuously. The assembly when completed should be potted within the lower half of the pen by means of Araldite or Silicon Rubber Compound.

Those constructors having access to a lathe could make up a stylus from a piece of tin brass rod. If this method is used it is important that the extreme tip of the stylus should be rounded off and well polished to ensure a good contact.

ULTRASONIC TRIGGER SYSTEM

(The circuitry in this section is the subject of a Patent Application)
The changeover from a double-contact to a singlecontact stylus presented a difficult problem simply because the signals required to set the hold circuit and to trigger the envelope shapers are essentially incompatible. Direct coupling between the inputs of these two circuits was therefore not possible since, once the hold capacitor was charged, the d.c. level would remain on the stylus lead and the envelope SHAPER in the "on" condition, until the charge on the hold capacitor had leaked away.

This would occur quite rapidly in the circumstances thereby giving rise to an undesired portamento effect. Similarly it was not possible to decouple the envelope Shaper from the stylus lead since so doing would restrict the "attack" phase to one rate only-and that very fast. The solution proved to be the application of a principle which is believed to be unique in electronic musical instruments.

HF OSCILLATOR

A high frequency oscillator is coupled directly into the KBD CONTROLLER in such a way as to distribute the signal evenly across the divider. The stylus lead which now goes direct to the hold capacitor is also connected through a decoupling capacitor to an a.c. detector circuit which, through an integral switch, is used to trigger the ENVELOPE SHAPER.

Four components only go to make up the hF oscillator which is shown in Fig. 3.4.
VRI controls the frequency of operation by.prescribing the proportion of positive feedback and thereby varying the peak to peak value of the output signal. With the component values given the frequency range is from 2 kHz at 18 V peak-to-peak, to 250 kHz at 80 mV peak-to-peak. Output waveforms are also shown in Fig. 3.4.

OSCILLATOR FREQUENCY

The optimum setting of the hF oscillator is 40 kHz at 6 V p-p as measured at point "AA." The attenuating effect of C1, R10 and VR1 in the KbD controller will combine to reduce the signal to 500 mV p-p measured on the keyboard contacts.

It should be noted however that the setting of VRI in the controller will affect the level of the h.f. signal-the lower the setting of VR1 the lower will be the level of the signal on the contacts. This is not really a problem since the detector sensitivity is around 50 mV and also, for most applications, it will be found that VR1 will require to be at a relatively high setting.

HF DETECTOR

The circuit of the detector is shown in Fig. 3.5. IC2 is a high gain follower decoupled from the stylus lead by means of C2. C1 provides additional decoupling for the stylus lead thereby ensuring that hum signals which may be included in the lead do not cause triggering of the envelope shapers. C4 and C5 provide frequency compensation for IC2 which is a 709 operational amplifier to give the advantage of the higher gain bandwidth offered by this device.

The output of IC2 provides drive to TR1 the collector of which is coupled through R6 to the bases of TRI and TR2 on both envelope shapers. (Note that this latter coupling is via the DIN socket and JKI on both envelope shapers.) C6 blocks any d.c. appearing at the output of IC2 while R5 sets a current limit.

Under quiescent conditions the output of IC2 is nominally zero volts and TR1 is off. An a.c. signal of sufficient level on the sty̆lus lead will cause IC2 to follow and each positive excursion of IC2 output will switch TR1 on causing the collector to go to about -8.5 volts. The envelope shapers thus start to attack and C7 receives a negative charge.

H.F. OSCILLATOR AND DETECTOR

Fig. 3.4. Circuit of the HF OSCILLATOR. Components in the dotted box are on KBD CONTROLLER circuit and are mounted on main board. Typical waveforms at different settings of the VR1 are also shown

Fig. 3.5. Circuit of the HF DETECTOR. Resistor R7 is for isolation and was $20 \mathrm{k} \Omega$ in the prototype. The DIN socket is for external keyboard attachment and wiring options will be described next month. C1 is mounted on the DIN socket

COMPONENTS . . .

HF OSCILLATOR

Resistors
R1 $10 \mathrm{k} \Omega$
VR1 $100 \mathrm{k} \Omega$

subminiature
preset

Capacitor
C1 1000pF
Integrated Circuit
IC1 Type 7418 -pin d.i.l.

HF DETECTOR

Resistors					
R1 $200 \mathrm{k} \Omega$ R5 $3.9 \mathrm{k} \Omega$		Ω R5	3.9k Ω		
	$10 \mathrm{k} \Omega$	R6	$22 \mathrm{k} \Omega$		
R3 -1.8k Ω R 7 20k Ω (see text)	$1.8 \mathrm{k} \Omega$	Ω R7	20k Ω	(see text)	
R4 $1.2 \mathrm{M} \Omega$					
Capacitors					
		$0.01 \mu \mathrm{~F}$ (3 off)	C6	$0.01 \mu \mathrm{~F}$	
C 4		68 pF	C7	$0 \cdot 1 \mu \mathrm{~F}$	
C5		10pF		$470 \mu \mathrm{~F}$	16 V elect.
Semiconductors					
D1 1 N914					
IC2 Type 7098 -pin d.i.l.					

Fig. 3.6. Dimensions of the keyboard cover which was made from 3 mm card

The time constant of C7 is such that it will lose only a small proportion of its charge during the negative half cycle of the h.f. signal. The result is that an effectively constant negative signal is presented to the envelope shapers during the period that the stylus and/or key contacts are made.

ISOLATION RESISTOR

In addition to the components making up the detector Fig. 3.5 also shows a resistor, R7, in series with the stylus lead and hold circuit. The purpose of this resistor is to provide a degree of isolation for C2 in the hold circuit so that its relatively large capacity will not over-attenuate the signal on the stylus.

R7 ($20 \mathrm{k} \Omega 2$ in the prototype) also provides a delay in the d.c. charging rate of C2 with the result that there is a 20 ms portamento effect. This effect is not really too noticeable unless consecutive KBD voltages are programmed from opposite ends of the KBD but it could perhaps be a source of irritation for the constructor wishing to use the Minisonic for serious musical purposes.

In these circumstances R7 could be replaced by an inductance which would provide the degree of a.c. isolation required whilst presenting only a nominal resistance to d.c. A suitable choke could be made up from a small ferrite ring toroidally wound with about 20 to 30 turns of $34 \mathrm{~s} . w . g$. enamelled copper wire.
Some experimenting will possibly be required to get just the right value and it would be best to start with the greater number of turns and reduce these as necessary to get the best balance between a.c. isolation and d.c. resistance.

PORTAMENTO

As a modification to the prototype circuits some constructors may wish to incorporate a variable portamento control. In view of the lack of space on the front panel the best way to do this is to mount a miniature edgewise volume control-such as is used on some transistor radios-inside the upper edge of the printed circuit keyboard cover.

The cover is shown in Fig. 3.6. The wire from the stylus socket on the side of the KBD cover would then be routed to one end of the potentiometer while the slider would go via R7, or inductor as mentioned above, to pin I on the DIN socket.

RING MODULATOR

The Minisonic ring modulator is an improved version of the circuit which originally appeared in the P.E. Sound Synthesiser (August 1973). The essential features of the circuit have been retained however and the circuit is shown in Fig. 3.7.

The ring modulator produces a unique output waveform which comprises, at the same instant, the sum and difference between any two applied input frequencies. This function is carried out in a purpose-built integrated circuit, the SG 3402 N . With one of the input frequencies fixed, variation in the other will ring the changes in the output frequencies as shown in Table 3.1.

Referring to Fig. 3.7, R1 and R2 form an input attenuator on the so-called carrier input (pin 7) such that, when driven from a vco, the input signal level at Cl will be about 40 mV .

Similarly R3 and R4 attenuate the modulator or control input so that, when driven by a vco, the input at C2 is about 200 mV . This procedure results in an output signal of about 1.5 volts at pin 4 and the same signal in antiphase at pin 11. The antiphase signals are amplified differentially by IC2 to give a peak output signal of three volts which is then attenuated by R9 and R10 to a level compatible with the remainder of the Minisonic circuits.

SETTING UP THE RING MODULATOR

Setting up the ring modulator is very simple. With the circuit completed link the modulator input to the 0 V rail and connect the output to a suitable power amplifier. Apply a signal of about 1 kHz to the carrier input (normally connected direct to vcol) and adjust VR1 until the output signal reduces to the lowest possible level. This should, with a correctly wired circuit, be 50 dB or more below the peak signal level. At this point the ring modulator is correctly balanced with minimum carrier breakthrough.

NOISE GENERATOR

The noise generator is built round the highly successful ZIJ noise diode manufactured by Semitron Ltd., and is shown in Fig. 3.8. Output from the Z1J

Table 3.1 : OUTPUTS FROM THE RING MODULATOR

Frequency							
Carrier	700	600	500	400	300	200	100
Modulator	400	400	400	400	400	400	400
Sum	1100	1000	900	800	700	600	500
Difference	300	200	100	0	100	200	300

RING MODULATOR

Fig. 3.7. Complete circuit of the RING MODULATOR
is amplified by the high gain follower IC1 and led, through decoupling capacitor C 5 , to the volume control VR1.

The noise generator is the only circuit in the Minisonic which does not operate completely successfully down to a battery voltage of ± 7.5 volts.

COMPONENTS . . .

```
RING MODULATOR
Resistors
    R1 1.8k\Omega
    R2-R4 200\Omega (3 off)
    R5-R8 47k\Omega (4 off)
    R9 1ks
    R10 470\Omega
Potentiometers
    VR1 100k\Omega subminiature horizontal skeleton
        preset
    VR2 10k\Omega log carbon
Capacitors
    C1-C4 10\muF 6.3V tantalum (4 off)
    C5 10\muF 16V tantalum
Integrated Circuits
    IC1 SG3402N
    IC2 Type 741 8-pin d.i.l.
```


Miscellaneous

```
SK1, SK2 2 mm sockets (2 off)
```

In the prototype the noise generator ceased to work when the battery voltage had reduced to $\pm 7.8 \mathrm{~V}$. This situation may be corrected to a certain extent by shorting out R2 and R3 and/or by reducing the value of R 1 to, say, $82 \mathrm{k} \Omega$. No setting up is required for this circuit.

NOISE GENERATOR

COMPONENTS . . .

NOISE GENERATOR

Resistors

R1	$91 \mathrm{k} \Omega$	R5	$200 \mathrm{k} \Omega$
R2, R3	22Ω (2 off)	R6	$56 \mathrm{k} \Omega$
R4	$470 \mathrm{k} \Omega$	R7	$1.2 \mathrm{k} \Omega$

Potentiometer
VR1 $10 \mathrm{k} \Omega$ linear carbon
Capacitors
C1 $0.01 \mu \mathrm{~F}$
C2 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C3 $0.01 \mu \mathrm{~F}$
C4 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C5 $0.01 \mu \mathrm{~F}$
Integrated Circuit and Diode
IC1 Type 7418 -pin d.i.l.
D1 Z1J noise diode (Semitron)

Miscellaneous

SK1 2mm Socket

Fig. 3.8. Circuit of the NOISE GENERATOR

Fig. 3.9. Circuit of the CONTROL ENVELOPE INVERTER. This is fed with the output of ES/VCA1 via VR4 (see last month)

COMPONENTS . .

R1, R2	47k Ω (2 off)
IC1	Type 7418 -pin d.i.I.
SK1, SK2	2 mm sockets (2 off)

POWER AMPLIFIER

Fig. 3.10. Complete circuit diagram of one of the POWER AMPLIFIERS with integral two-input mixers. Note that the mixer stages are mounted on the main circuit board

Fig. 3.11. The Veroboard panel which carries the NOISE GENERATOR, HF OSCILLATOR AND DETECTOR, CONTROL ENVELOPE INVERTER, AND POWER AMPLIFIERS

COMPONENTS . . .

POWER AMPLIFIERS AND MIXERS (2 off)

Resistors
R1-R3 $47 \mathrm{k} \Omega$ (3 off)
R4 $1.5 \mathrm{k} \Omega$

R5 910Ω
R6 $1 \mathrm{k} \Omega$
R7 $4.7 \mathrm{k} \Omega$
R8 $10 \mathrm{k} \Omega$

Potentiometer
VR1 $10 \mathrm{k} \Omega \log$ carbon

Capacitors
C1 $4.7 \mu \mathrm{~F} \quad 35 \mathrm{~V}$ tantalum
C2 $0.005 \mu \mathrm{~F}$ ceramic
C3 3300 pF
C4 $220 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
(or $470 \mu \mathrm{~F} 16 \mathrm{~V}$)
Integrated Circuits
IC1 Type 7418 -pin di.il.
IC2 MFC4000B

Miscellaneous

LS1 3in 15 speaker
SK1 2mm socket
JK1 3.5 mm jack socket

Fig. 3.12. The layout on the main Veroboard panel, the majority of which was shown last month

CONTROL ENVELOPE INVERTER

Shown in Fig. 3.9, the CONTROL ENVElope INVERTER represents a modification to the prototype instrument and has been included, principally, so that the VCF may be programmed automatically from envelope shaper 1. The inverter itself is a simple unity-gain inverting amplifier which requires no setting up procedure.

POWER AMPLIFIERS

The complete circuit of the power amplifiers, which includes a two-input inverting mixer, is shown in Fig. 3.10. As with all the virtual earth circuits in the Minisonic the mixer has the minimum number of inputs and almost any number of additional inputs may be applied by following the basic details given in Part 1 of the series.

The slider of the volume control (VR1) at the mixer output is wired directly to a jack socket from which may be taken a signal suitable for driving an external power amplifier, tape recorder, external mixer, etc.

CIRCUIT BOARD LAYOUT

The control envelope inverter, hF oscillator and detector, noise generator, and power ampliFIER stages are carried on a separate circuit board which is illustrated in Fig. 3.11.

The Keyboard controller, ring modulator and POWER AMPLIFIER/MIXER stages are all included on the main circuit board part of which was illustrated last month. The remainder of the board is shown in Fig. 3.12.

Next month: Final wiring-up and adjustments. Keyboard options, as well as circuit additions for more ambitious constructors will be discussed.

Stop Press: The author has developed a printed circuit board to carry all the Minisonic electronics. More details next month.

NEXT
 MONTH...

markin spetometit

Solid-state electronics provide an easy-to-make solution to the measurement of boat speed - suited to both motor and sail environments and giving reasonable accuracy at sensible cost.

ac:CC MILIVOITMEIER

A fully protected voltmeter which will read a.c. voltages down to 5 mV r.m.s. but will withstand overloads of up to 250V. Operates at all audio frequencies.

PROBABIITTY ANOMALY DEECETOR

Investigate your powers of extra-sensory perception with this specially designed unit. A meter registers your influence on the random noise in a Zener diode the greater your power the higher the reading.

emacticat
 ELECTRONICS

fEBRUARY ISSUE ON SALE JANUARY 10, 1975

A selection of readers' suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?
negative going transition at the collector of TR2 is communicated via the bootstrap connection of C2 to the base of TR1. This results in TR1 being cut off and C3 now acts as an effective collector potential for TR2. Therefore C3 discharges through R3 until the emitter potential of TR1 is again negative with respect to the base. Thus TRI conducts and thereby completes the cycle and the whole sequence will start again.

If the time constants $\mathrm{R} 1-\mathrm{C} 1$ and R2 C2 are sufficiently large, the frequency of oscillation is predominantly determined by C3/R3 and C3/R4. Current consumption from a 9 V battery is only 0.7 mA since the circuit only consumes current during one half period of the cycle.

A SERIAL CONNECTION mULTIVIBRATOR

ASIMPLE square wave generator with equally fast rise and fall times is always useful. The conventional astable multivibrator has the disadvantage that although one edge of the output waveform is fast, the other edge is comparatively slow. This is due to the fact that the collector of the off transistor has to recover to the potential of the supply in a time determined by the capacitor associated with the collector and the value of the collector load. Improving the output waveform by the use of extra diodes or perhaps an extra transistor are solutions but a novel approach is a serial connection.
Consider the circuit shown and let TR1 be fully conducting and TR2 cut off with C3 fully discharged. It will be evident that C3 has a charging path via R4 and

Fig. 1

so this capacitor charges exponentially allowing the emitter of TR2 to approach ground.
When the charging current has decreased sufficiently so that the base potential of TR2 is again more positive than its emitter, then this transistor promptly conducts. This

Unlike its more conventional counterpart the serial connection is always self starting. The output amplitude with the circuit shown is 5.5 V peak-to-peak.
M. Harding,

Cheadle, Cheshire.

SOUND/LIGHT MODULATOR

A VERY simple sound/light A modulator is shown in Fig. 1 which may be of use to experimenters. Input signals can be taken from the output (loudspeaker) of an audio amplifier since in most pop or disco environments the small amount of distortion introduced using this method will hardly be noticed.

Sensitivity is controlled by VRI whilst the transformer provides isolation and the drive for triac

MAC 11-6. This is possible as the triac drive pulses need not be shaped.

Fig. 1

To provide frequency sensitivity and/or other channels, capacity can be inserted in the triac gate circuit. Using $100 \mathrm{~V} 1 \mu \mathrm{~F}$ capacitors. bass response can be selected by inserting the capacitor in parallel with the secondary of the transformer. For the treble the capacitor is in series with the gate and for the mid ranges two capacitors are used, one in each of the foregoing positions.
In this way three circuits can be built up to control three separate lamps if desired.
P. Vleck

Cheltenham.

C electronics really mastered

RAPY

BUILD, SEE AND LEARN step by step, we take you through all the fundamentals of electronics and show how easily the subject can be mastered. Write for the free brochure now which explains our system.

1/ BUILD AN OSCILLOSCOPE

You learn how to build an oscilloscope which remains your property. With it, you will become familiar with all the components used in electronics.

2/ READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS

as used currently in the various fields of electronics.

3/ CARRY OUT OVER
40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS \& SEE HOW THEY WORK, including :
valve experiments, transistor experiments amplifiers, oscillators, signal tracer, photo electric circuit. computer circuit, basic radio receiver, electronic switch, simple transmitter, a.c. experiments, d.c. experiments, simple counter, time delay circuit. servicing procedures.

This new style course will enable anyone to really understand electronics by a modern. practical and visual method-no maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of electronic equipment, radio and TV receivers, etc.

WILMSLOW AUDIO

THE Firm for speakers!

SPEAKERS
Baker Group 253.8 or 15 ohm Baker Group 353.8 or 15 ohm Baker Group 50/128 of 15 ohm Eaker Deluxe 12 in d/cone
Baker Regent
Baker Superb
Baker Auditorium 12
Celestion MH1000. 8 or 15 ohm Celestion PST8 for Unilex Celestion G12M 8 or 15 ohm Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 ohm Coral 6 in d/cone roll surr. 8 ohm Coral 8 in d/cone roll surr. 8 ohm EMI 13in \times Bin 3.8 or 15 ohm EMI $13 \mathrm{in} \times 8 \mathrm{in} 150 \mathrm{~d} / \mathrm{c} 3.8$ or 15 ohm EMI $13 \mathrm{in} \times \operatorname{Bin} 450 \pm / \mathrm{tw} .3 .8$ or 15 ohm EMI 13in $\times \operatorname{Bin}$ type 3508 or 15 ohm
EMI $13 i n \times 8 i n 20 W$ bass
EMI 64 in 938504 or 8 ohm
EMI 5 in 98132CP 8 ohm
EMi 8×5 d/cone. roll surp. 10W EMI 24 in tweeter 97492AT Eagle DT33 30W tweeter Eagle HT 15 horn tweete
Eagie CTS cone tweeter
Eagle CT 10 tweeter 8 or 16 ohm
Eagle MHT 10 horn tweeter
Eagle crossover CN23, CN28. CN21
Eagle cross
Eagle FR4
Eagle FR65
Elac 9×5 59RM109 15 ohm . 59RM114 8 ohm Elac 6tin 6RM171 d/c roll surr
Elac 6 in 6RM220 dicone
Elac 4 in tweeter TW4
Elac 10 in d/cone 10 RM 2398 chm
Elac Bin 8CS 1753 ohm
Fane Pop 15W 12 in
Fane Pop 25/2 25W 12 in
Fane Pop 40W loin
Fane Pop 5560 W 12in
Fane Pop 60w 15 in
Fane Pop 100W 18 in
Fane Crescendo 12A 100W 12in
Fane Crescendo 128 bass
Fane Crescendo 15 in 100W
Fane Crescendo 18 in 150 W
Fane bort bin dic roll sur
Fane 807 T 8in d/c rolt sur
Fane 701 twin ribbon
010 hor ribbon horn
Fane 920 horn
Goodmans 8P 8 or 15 ohm

Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G8 or 12 AX 100 W Goodmans Audiomax 12 AX 100 W Goodmans 15P 8 or 15 ohm Goodmans 18P 8 or 15 ohm Goodmans Midax 750 Goodmans Axent 100 tweete
Goodmans Audiom 10012 in
Goodmans Axiom 401 12i
Goodmans Twinaxiom 8
Gcodmans Twinaxiom 10
Kef T15
Kef B110
Kef B200
Kef E139
Kel DN8
Kof DN12
Ket DN13
STC4001G super tweete
Richard Alran CG8T Bin d/c r/sur
2 tin 64 ohm .70 mm 80 ohm .70 mm 8 ohm
$\times 4$ in 3
$8 \operatorname{lin} \times \operatorname{Sin} 3$ or 8 ohm
$10 \mathrm{in} \times 6 \mathrm{in} 3.8$ or 15 ohm

SPEAKER KITS

Baker Major Module	日ach E10.75
Fane Mode One	sach 59.90
Goodmans DIN 20	each 99.75
Helme XLK25	pair 522.00
Helme XLK30	paif 114.95
Helme XLK50	pair [39.95
Ketkit 2	each 524.75
Kefkit 3	each 536.75
Richard Allan Twinkit	each [8.95
Richard Allan Triple 8	each [13.75
Richard Altan Triple	bach 119.95
Richard Altan Super Triple	each $\mathbf{1 2 3 . 7 5}$
Wharfedate Linton 2 kit	pair 19.25
Wharfedaie Glendale 3 klt	pair 134.50
Wharfedale Dovedale 3 kit	pair $\mathbf{5} 52.50$

PA/DISCO AMPLIFIERS

£1)	
Baker Major 100 walt	[49.75
Linear 30/40	530.00
Linear 40/60	235.00
Linear 80/100	[59.75
Linear 100 watt slave	[44.00

Linear 80/100
Eagle PA range in stock-ask for catalogue

FREE with speaker orders over £7

All units guaranteed new and perfect Prompt despatch Carriage and packing: speakers 38peach. speaker kits 75p aach ($£ 1.50$ pair), tweeters and crossovers 20p.

Send stamp tor free booklet "Choosing a Speake
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works, Bank Square, Wilmslow. Cheshire, SK9 1HF Discount Radio. PA, Hi-Fli: 10 Swan Street. Wilmslow.

COLOUR TELEVISION WITH PARTICULAR REFERENGE TO THE PAL SYSTEM

by G. N. Patchett
Price $\mathbf{6 5} 10$

ELEMENTS OF TRANSISTOR PULSE

 UNDERSTANDING IC OPERATIONAL AMPLIFIERS by R. Melen. Price $\mathbf{1 2} 20$. BEGINNER'S GUIDETO ELECTRONICS ELECTRONIC EQUIPMENT RELIA. ELECTRONIC EQUIPMENT RELIA-BILITY by J. C. Cluley. ELECTRONIC HOBBYIST'S IC PRO. JECTS HANDBOOK by B. Brown.

DIGITAL ELECTRONIC CIRCUITS AND
SYSTEMS by N. M. Morris.
RADIO CONTROL HANDBOOK by H. G. McEntee.

DIGITAL LOGIC BASIC THEORY AND
UNDERSTANDING AND USING THE VOM AND EVM by J. Cunningham.

GE TRANSISTOR MANUAL Pricefl-30.
\star TOTAL PRICE INCLUDES POSTAGE *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-2I PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m.

CALCULATORS

save money! buY dinect from THE SPECIALISTS

VATMAN

£14.91+VAT
45p P \& P. and please add

Model

 Declmo 9202
Anlta 819
Bohn Omiltrex*
Bohn Omnitrex SO1*
Just out
Bohn Anetric:
, M. J.i,C,M, V, U
K2. H. I. M. C. Valso 12 conversions insicms, fumetres
yds/metres
 Bowmer mx mas.
39.97 T. M. (A). R. BD. E. F. K Sowmer MX100* E5.98 T, M, 80. E, true scientific 20 functions for algebra, geometry.
log calculus. integrals. etc
Ricomac 121MD $\quad 44.16 \mathrm{~S}, 120$ [A], E, F.M. M (W)

$$
\begin{aligned}
& \text { H-1. J. item count. } \\
& \text { Print-Outa }
\end{aligned}
$$

$\begin{array}{ll}\text { Alcomac 1000P } \quad 14.97 & 2 \text { colour print-out. A. } 100 \\ & \text { F/S. K4. M. sub total. }\end{array}$ Ricomac 1220 $\quad 124 \cdot 19 \begin{aligned} & \text { Ditio. plus } 12 \mathrm{D},[\mathrm{A}], 2 \mathrm{M} . \\ & \text { rounding. [W] silent. }\end{aligned}$
Code
attery (contage. B - battery (mains adaptor extra). BM = $\mathrm{E}=\mathrm{C}$ (mains adaptor incl), $\mathrm{C}=$ carrying case. $\mathrm{D}=$ digits. point and eelect, $F 2=$ fing point and select. F2 $=$ floating point and 2 placea,
floating peint and 7 places. $G=$ green display, $H=x^{2}$ $i=X . J=H_{i} K^{2}-$ constant $X+, K^{4}=$ green $=$ constant x
L5 $=50 \mathrm{hr}$. Dattery lite. L10 $=100 \mathrm{hr}$ battery lito, $\mathrm{M}=$ memory. $N=$ negative entry, $P=$ pocket. $R=$ prorating $S=$ deak model. ${ }^{T}=$ hand and desk. $U=$ display blanking.
$V=$ rechargeable. $W=$ exchange. $X=\sqrt[x]{ } . \mid i=$ extra separate keys. * = positive toel.

STANLEY HOUSE, 1115 FINCHLEY ROAD
STANLEY HOUSE, 1115 FINCH
LONDON. NW11

EASIER SERVICING

Colour television is easily the most complicated box of tricks in the home. Healthy competition has kept prices low, despite inflation. And that same competition, in effect the struggle for market share, is still spurring manufacturers to give the buying public more and more value for money.

It follows that the more complex a machine is the more it costs to service. And TV sets, by their very nature, have a fine in-built monitor, the screen itself, which instantly shows up defects or deterioration in performance. The broadcast authorities are even kind enough to transmit test patterns designed to highlight imperfections.

Every manufacturer has nightmares over servicing. Apart from losing goodwill, every time a set goes wrong during guarantee another chunk of profit goes down the drain. So in their own interests, manufacturers do genuinely try to make sets that are reliable and there has been a strong move over the past few years to build sets in modules to allow servicing by module replacement.

Now Grundig in Germany has gone one step further by building in a rapid diagnosis system in every set. Grundig had switched to a nearly fully modular system some three years ago in which 75 per cent of the circuitry is split among a dozen plug-in modules, each with a defined function. If any one module failed it was fairly obvious to the service engineer and he just plugged in a replacement. Now the diagnostic adaptor enables an instant check of the non-modular circuits.

Key check-points of the circuits are all brought to a single 13-way
socket into which the service engineer plugs his monitor. The monitor has 13 led's and if any one of these fails to light up there is an indication of a specific fault. It costs very little extra on each set to provide the facility and the saving in engineer's time can be enormous. And, of course, with soaring labour costs, time saved is very important, not to mention customer satisfaction. The plug-in diagnostic aid costs the dealer under £10. Quite a bargain. And the customer benefits, too. Other set makers are expected to follow the trend.

EXPORTS

If you've ever thought that export promotion is not given enough priority in Britain, reflect for a moment on the current trading quarter which ends on December 31, 1974. The British Overseas Trade Board is giving support to 1,360 British companies at 76 overseas trade fairs in 27 countries. In addition there are 54 outward trade missions representing 730 companies and involving 45 countries. These group activities are in addition to hundreds of "private" promotions by individual companies.

One of next year's big trade drives is to be centred on Western Canada and seminars are already being held in Britain which will brief exporters on trade opportunities in advance of parties of exporters visiting the two big growth areas of Alberta and British Columbia. In the direct field of electronics, one of our biagest 1974 efforts was at Munich's Electronica Exhibition at which 57 British companies took part in a joint venture.

PACEMAKER BOOM

It was only a few years ago that we were all marvelling at the way microelectronics had made possible the heart pacemaker which has done so much to extend human life. With improved techniques in implant surgery and technical advances in pacemakers this single branch of medical electronics has now blossomed into an industry in its own right with world sales this year expected to top $£ 25$ million and reach over $£ 200$ million by 1980.

The technical problem which has been engaging pacemaker researchers is how long they can be kept working without recourse to further surgery to replace the battery. One approach was to use nuclear power to give infinite life.

Another was a rechargeable unit that could be recharged by induction through an external unit. But both these solutions are losing favour, mainly expense in the nuclear field and susceptibility to outside interference with rechargeable units, apart from the occasional inconvenience to the user.
It seems now that long-life batteries will do the job quite well. Reasons are that in the early days pacemakers were more powerful than they needed to be, the new active devices using technologies such as CMOS take far less current, and battery technology itself has improved.

With current drain reduced to less than 20 micro-amps a threeyear life can be obtained from mercury-oxide-zinc units and possible developments in sodiumbromine and lithium cells could give a battery life of seven years or more. This figure ties in well with the life-expectancy of pacemaker users who statistically have an average age at implant of 67 years and can expect another 5-7 years of life.

HUMBLE HARDWARE

Racks, panels, instrument cases hardly ever hit the headlines. Yet they are still big business in electronics clocking-up European sales of over $£ 30$ million a year and double that if you add in PCB edge connectors and other interconnection devices. So don't despise the metalwork in electronics. It might not make so much profit as glamour products but the commercial risk is much lower. Provided, of course, that you can get your materials. One prominent manufacturer, lamenting recently on production hold-ups, commented that "screws have seemingly ceased to exist, and costs have gone up alarmingly'. And steel, plastics and paint have also been hard to get.

TAKE OFF

Great sighs of relief that the European Multi Role Combat Aircraft has received the go-ahead for its final development phase. This is the project that is exercising the best brains in electronics. It's costing the earth, of course, but how else do you keep ahead in technology?

At a more mundane level it's good to see Plessey has started delivering ILS systems for Chinese airfields in a contract worth £850,000. And British aerospace companies as a whole are doing well with exports worth more than £2 million every working day with our best customer still being the United States followed by France and Germany.

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

MOUNTING PILLARS

A useful new product for the constructor has just been released by West Hyde Developments Ltd. Called Ilex pillars, they are designed to insulate circuit boards from cases or chassis and at the same time support them either vertically or horizontally one on top of another.

Made from moulded nylon, they have a rigid girder-shaped supporting section with a spring loop fastener at the top and tension feet together with a push-in clip at the base.

Suitable holes are drilled in the chassis and boards and the pillars are simply pressed into place and any subsequent boards mounted on the top of the pillars, see photograph. The sizes of the pillars vary from $\frac{1}{1}$ to $1 \frac{1}{2}$ in and cost approximately $3 p$ each for a minimum order of 10 (for $\frac{1}{2}$ in size).

Full particulars and sizes together with price list can be obtained from West Hyde Developments Ltd., Ryefield Crescent, Northwood Hills, Middlesex, HA6 INN.

ON TAPE

Two new cassette tapes have been announced recently by EMI Ltd and 3M United Kingdom Ltd.

The new X1000 ferric oxide cassette from EMI is claimed to give as good reproduction as chrome dioxide cassettes. A C60 cassette is expected to retail at $99 p$ (excluding VAT).

The main technical improvements claimed for the X 1000 are: an increase of $3-4 \mathrm{~dB}$ in the $8-15 \mathrm{kHz}$ frequency range, compared to low noise tapes. A wider dynamic range due to the tape's increased magnetic remanence, resulting in less tape hiss. Improved high frequency response ensures a low level of intermodulation distortion.

When used with good quality audio equipment the tape is claimed to give excellent performance down to 25 Hz and up to 15 kHz .

Undoubtedly the new Scotch Classic tapes from 3M's, with a C90 cassette at $£ 2 \cdot 16$, is aimed at the "serious" end of the market.

This new double coated or dual layer tape indicates the trend
towards the use of a product compatible with existing tape and equipment rather than the current trend of using metallic dioxide tape. It is claimed that the new tape combines the high frequency abilities of chromium dioxide with the bias characteristics and low frequency response of the low-noise ferric oxide tape.

Both the above tapes are available from all good audio shops and large stores.

LITERATURE

A comprehensive 724-page data book covering Motorola's range of linear i.c.s is available from Semicomps Ltd. The book contains not only full data but, in many cases, valuable application information on over 300 devices.

The range includes op. amps, drivers and line receivers, d / a and a/d converters, comparators, voltage regulators, timing and power control units, consumer TV, audio and radio circuits, r.f. amplifiers and automotive circuits.

For easy reference the data sheets are arranged in alpha numeric sequence without regard to product category.

The book costs $£ 1.26$ and is obtainable from Semicomps Ltd., Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex, HAO 1SD.

NEWS BRIEFS

Readers who are building the "P.E. CCTV Camera" may be interested to know that Crofton Electronics are now able to offer a complete kit of parts for this project. They can also supply lenses,
coils, tubes and printed circuit boards separately.

For full details readers should write to Crofton Electronics at 124 Colne Road, Twickenham, TW2 6QS.

We understand that Re An Products Ltd are able to supply all the control knobs (19 with skirts and one without) for the P.E. Minisonic synthesiser. These knobs have a translucent numbered skirt and are available with coloured caps.

It has been suggested that by using a colour code system for the knobs the front panel layout of the Minisonic can be identified in colour groups (i.e. envelope shapers, voltage controlled oscillators and amplifiers, etc.), which can make the instrument easier to use.

A price list for the knobs, type R62, is obtainable from Re An Products Ltd, Burnham Road, Dartford, Kent, DA1 5BN.

What is believed to be a unique service for the private constructor, has been announced by SCS Components.

Now, branded guaranteed components are being offered at very competitive "one-off" prices, in fact the same as applying to industrial users. Included in this offer is a very large range of integrated circuits and transistors.

A complete price list (free) is obtainable from SCS Components, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex.

To help beat rising costs Amtron U.K. Ltd. are now able to supply direct to the customer many of their more expensive electronic kits.

A full list of the construction kits available is obtainable from Amtron U.K. Ltd., 4 Castle Street, Hastings, Sussex TN34 3DY.

3M's Classic cassette tape

HEADPHONES, CALCULATORS, DIGITAL CLOCKS, QUADRAPHONIC RECORDS, TECHNICAL BOOKS, TESTGEAR, SQ. LOGIC DECODER, FREQUENCY COUNTERS, RECORD/TAPE ACCESSORIES, TURNTABLES, INSTRUMENT CASES-NOW 6 SIZES, METAL BOXES—LARGE STOCKS

SOUND SPHERES

Unique listening experience, these sound as though they were many times larger-try them and hear them-only $4 \frac{3}{4}$ in diameter! $£ 24 \cdot 75$ per pair. Available in black, white and orange

NEW PROJECTS

We will be supplying kits for the PE Joanna Electric Piano, the PW Electronic Organ, and PW Ascot Cassette Recorder.
All the above, and many other items are in our new 1975 catalogue available FREE NOW! A large S.A.E. (7p in stamps) would be appreciated.
Trade and export customers are invited to apply in writing for distribution terms of business.

SUPERB QUADRAPHONIC SYSTEM

P.E. Rondo

Complete kit with 4 speakers, u/c decoder, FM tuner and turn-
$\mathbf{£ 1 9 5}+\mathbf{£ 1 5 \cdot 6 0}$ VAT table. Value approx. $£ 209+£ 16.72$ VAT.
Fully built Rondo, complete as above. Value $£ 266+£ 21$ VAT.
$\mathbf{£ 2 4 5}+\mathbf{£ 1 9 . 6 0}$ VAT
Delivery on complete systems may be $6 / 8$ weeks from date of order.
Set of 4 speakers fully to specification with pre-built cabinetsvery professional finish. Very comprehensive kits.
We supply all Rondo parts and modules.
Quadraphonic headphones-a new experience!
Stereo Headphones-padded with volume controls.

ALL ITEMS ARE POST FREE.

We are appointed distributors for Uher quality tape recorders and Videosonic Dolby processors.
Have you had our book list?

The Elite of Scandinavian Loudspeakers

High Quality High Fidelity Loudspeaker Kits

INTRODUCTORY OFFER INCLUDES VAT AT 8\% AND POSTAGE (UK ONLY)
 (ALL KITS INCLUDE FULL WIRING DIAGRAM AND CABINET DRAWINGS)

PRICE LIST (Excl. VAT)

The following include High Compliance Bass Units and Cone Middle/Treble Units
KIT 91H: 2 way and crossover ($1 \times 6 \frac{1}{2}$ " plus $1 \times 3 \frac{1}{\prime \prime}$) ($8-18$ litre box) 10 watts $60-20,000 \mathrm{c} / \mathrm{s}$. $£ 7 \cdot 35$ each. KIT 94H: 3 way and crossover ($1 \times 11 \times 6 \frac{1^{\prime \prime}}{}$ plus $1 \times 3 \frac{1}{2}$ " plus $1 \times 2^{\prime \prime}$) $(25-40$ litre box) 25 watts $45-20,000 \mathrm{c} / \mathrm{s}$. £13. 25.

The following include Neoprene Edge Bass Units and Dome Middle/Treble Units. Outer connecting lead and all internal wiring with mechanical push-on connectors.
KIT 10-2: 2 way and crossover ($1 \times 6 \frac{1}{2}$ " plus $1^{\prime \prime}$ dome) ($8-12$ litre box) 20 watts $45-20,000 \mathrm{c} / \mathrm{s}$. £15•35.
KIT 18: 2 way and crossover ($1 \times 8^{\prime \prime}$ plus $1 \frac{1}{1}$ " dome) ($15-20$ litre box) 30 watts $35-20,000 \mathrm{c} / \mathrm{s}$. $£ 16 \cdot 30$.
KIT 30: 2 way and crossover ($1 \times 10^{\prime \prime}$ plus $1 \frac{1}{2}$ " dome) ($25-35$ litre box) 35 watt $30-20,000 \mathrm{c} / \mathrm{s}$. £16.95:
KIT 35: 3 speakers and crossover ($2 \times 8^{\prime \prime}$ plus $1 \frac{1}{2}$ " dome) $(30-40$ litre box) 60 watts $30-20,000 \mathrm{c} / \mathrm{s}$. £23. 30 .
KIT 60: 4 speakers and crossover ($2 \times 10^{\prime \prime}$ plus $1 \times 6 \times 4^{\prime \prime}$ plus $1 \frac{1}{2}{ }^{\prime \prime}$ dome) (50-70 litre box) 25-20,000 c/s. £34•95.

the book

ROBOTICS

By John F. Young Published by Butterworths 300 pages, $8 \frac{1}{2}$ in $\times 5 \frac{1}{2}$ in. Price $£ 6.00$

THERE is nothing mythical about this book. It is concerned with hard facts of engineering. Robots have a very real existence, and in various forms perform many useful tasks in industry and elsewhere. Tasks which range from the mundane and repetitive to those of a highly specialised and skilled nature.

All this is clearly brought out in Robotics. The author, who has had a long experience in this field, describes notable developments in robot design which have been or are currently being undertaken in various advanced countries. Some of the devices mentioned will be familiar, like the Lunakhod, the Robotug, and the mobile robot used by the army to explode bombs left in cars. But there are many other significant developments in robotics which this book now brings to the attention of a wider audience.

Underlying all this activity are unmistakable signs of the eventual appearance of the General Purpose Robot for domestic use. The idea of an automated housewife is not just wishful thinking; it is the target of many designers in a number of countries. Indeed, according to the author, the Japanese are already well advanced with plans for a G/P Robot suitable for mass production with the inevitable economic advantages this will bring.

This book does not cover the "brain" of the robot, but concentrates upon the engineering of the "body". Hydraulic, pneumatic, and electrical techniques for actuation of the "limbs" are discussed. Electronics comes into its own with the imitation of the human senses, and all the commonplace sensoring devices are considered. Character and voice recognition pose greater problems; some indication of recent work by the author and his associates at Aston University in devising circuitry to solve some of the difficult problems in this frontier area of electronics is given.

Extensive lists of references accompany each chapter. Valuable as sources for the specialist researcher, these items provide additional evidence of the determined efforts that have already been made in this field of Robotics, and indicate how the robot has already become usefully employed in so many and varied everyday activities.
F.E.B.

ELECTRONICS - AN ELEMENTARY INTRODUC. TION FOR BEGINNERS (SI UNITS)

By L. W. Owers
 Published by Publication Mailing Services 120 pages. Price $£ 1 \cdot 45$

N LINE with the current tendency, this book is perfect bound between linen covers to keep costs to a reasonable level. It is nonetheless a valuable introduction to electronics for any beginner. particularly those meeting this type of subject for the first time.

Diagrams are used extensively with the addition of formulae where necessary and these latter are spelt out in S1 units to conform to international practice.

The reader is led by the hand through complexities of fundamental particles, atoms, energy in its various forms, static and current electricity and the basic raw materials of electronics from theory to simple example.

Finally. the theory is exemplified by discussions of the valve and semiconductor and their use in radio and television and other areas.
R.D.R.

NEWS BRIEFS

G. D. SHAW LECTURES AT AUDIO FAIR

T he tremendous interest in synthesisers was reflected by the massive attendance at the two lectures at this year's Audio Fair by G. D. Shaw, the author of P.E. Minisonic articles currently appearing in Practical Electronics
Entitled "Sound Synthesis for the Amateur", the lectures described synthesisers ranging from the simplest, in the form of the Minisonic, to the synthesiser of the future in the form of a digitally organised instrument having full polyphony (the ability to play more than one note simultaneously), and a memory facility.

The part of the lecture dealing with the Minisonic was illustrated with some impressive tape recordings made, using the Minisonic, by Malcolm Pointon. Most people were amazed at the range of effects that could be produced by such a simple instrument.

In the realm of digital synthesisers, Mr Shaw hopes to be the first to produce a design suitable for the amateur, a formidable task when one appreciates the complexity of such a system. The instrument is to be designed in such a way as to allow expansion from a basic unit simply by plugging in printed circuit boards as and when they are needed (or can be afforded).

This was not the only area where P.E. scored a "sound" success. On our stand the "P.E. Joanna" piano, exhibited for the first time, created enormous interest amongst the public. This unique instrument, ideal for the modern home, features piano, harpsichord and honky tonk facilities with true touch sensitive operation.

The P.E. Joanna is a future project and full details will be published in the next few months.

LINK(S) UP

AN almost unbelievable 5 watts of transmitted power was used, in conjunction with a satellite, to beam a transmission over a distance of more than 50,000 miles recently in America.

In an experiment involving a simple antenna made from a golfer's umbrella, an engineer from the General Electric Company of USA used a low power "walkietalkie" radio to prove that even with such rudimentary equipment the only important requirement for longrange communication is the presence of a satellite overhead.

To be fair, the antenna was specially made up from the golfer's umbrella but nonetheless a morse message was beamed from the NASA headquarters to a geostationary satellite $A T S-3$ and then to $G E$ (USA)'s Radio-Optical Observatory near Schenectady, New York.

The demonstration shows all too clearly just how easy it would be for almost world-wide coverage to be provided for some form of search-and-rescue system based on a simple man-carried emergency transmitter. It is also envisaged that the system could carry phone signals, not just morse.

PRICE CUT

N this period of constantly rising prices it is heartening to know that at least some items are becoming cheaper. Motorola have recently announced their second price reduction in the CMOS device area.

This second reduction, worth an average of 25 per cent, applies to standard MCI4000 and the in-house MC14500 devices. When applied to MSI the new pricing will give an individual gate function cost at around just a few pence and when this is coupled to the saving in power supply requirements and package count the total effect is a distinct improvement when using CMOS.

Requdart A SEEECTON FROM OUR POSTBAG

Gus Detectors

Sir-As the comment appearing on page 794, September 1974 issue, may raise doubts as to the life of the TGS sensors, we trust the following brief outline of the operating principles of the sensor will indicate why we claim that their life is comparable to that of other semiconductor devices, rather than the catalytic type of gas detector.

Molecules of flammable or deoxidizing gases are absorbed on the surface of the Taguchi sensors, resulting in electron transfer between absorbate and the solid sensor surface. In the case of hydrocarbon gases the reaction is related to the ionization potential of the gas absorbed on the surface of the pellet. The lower the ionization potential, the more readily is the gas detected. Hence isobutane (ionization potential 10.79 eV) is detected more easily than methane (ionization potential 13.04 eV).

The change in conductivity of the sensor is not caused by heat resulting from the combustion of a gas at its surface. The lack of combustion and relatively low operating temperature, $250^{\circ} \mathrm{C}$, eliminates deterioration of the inert 82 per cent Palladium +18 per cent Iridium filaments encapsulated in the bead.

The Taguchi gas detectors have been in continuous use in Japan for six years, and the only noticeable change in performance has been an increase in sensitivity with time, up to a maximum of 30 per cent when a levelling-off occurs.

Damage can occur to the sensor if it is exposed for long periods to high concentrations of gases containing sulphur or lead, and such gases will in any case inhibit the performance of most gas detectors.

There are of course, many applications where the catalytic type sensor is superior to the Taguchi especially in the areas of selectivity and long term repeatability, but where a pre-set low level long-life sensor is required, the Taguchi have found good acceptance. More than two million have been put in service to date.

From the design point of view, it is essential that a current limiting resistor be included in series with the sensor, or else the sensor may
be destroyed by excessive current at switch-on. For example. if a low voltage 6 V to 24 V circuit is used then the minimum value of load resistor is $2 \mathrm{k} \Omega$. A variable resistor alone should not be used in this position as it is possible for the unit to be switched on with the variable resistor set to the low end of its range.
D. Lahiff,

Manager, Figaro Engineering.
Shannon, Ireland.

Gus Sense (or)

Sir-In the circuit of the "Boat/ Caravan Gas Detector" (October 1974) the fact that the l.e.d. is alight proves that the heater side of the gas detector is connected and conducting. A dangerous situation could arise if the alarm circuitry, or more likely the wire connecting it to the detector, were to become opencircuited. This problem could arise from corrosion of the B7G socket or the gas detector pins (and boat bilges are known to be very damp places).

The simple modification shown in the enclosed diagrams will enable the detector to be fully tested each time it is turned on. The resistor R16 corresponds to a concentration of approximately 0.2 per cent of Butane or Propane in air, well below the inflammability range of 1.8 to 9 per cent.
R. A. Wood, Wolverhampton.

Growing Upwards !

Sir-With reference to Mr. Crilly's letter (Rcadout, September), I feel that I in turn must draw attention to two points.

Firstly, the magnetic properties of a material are determined by the spin configurations of the constituent atoms or ions. The vast majority of elements and compounds are said to be paramagnetic-this means that unbalanced spins among the electrons leave a nett magnetic moment on the atom. In the presence of a magnetic field, at low temperatures so that thermal vibrations do not upset things, a degree of alignment can occur.

In the case of iron and certain other materials, ferromagnetism is observed. This means that over small regions of the crystal the magnetic moments (which are due to the same mechanism as above) are aligned by an internal crystal field. These regions are called "domains". and may themselves be aligned by an external field. Thus, ferromagnetism is a bulk property of iron. and it is inaccurate to speak of ironcontaining molecules as being more "magnetic" than magnesium containing ones without considering the nett spins for the molecules concerned.

Secondly, Mr. Crilly states that strong magnetic forces radiate from the centre of the earth. This is not strictly true; the earth's field is not a monopole but approximates to a dipole. As a result of this there are regions of the earth's surface at the geomagnetic equator, where the field is parallel to the surface-in fact it is vertical only at the geomagnetic poles.

The suggested mechanism of tropisms would, therefore, not work in general, producing horizontal roots at the geomagnetic equator, and roots inclined to the vertical in most regions. I should also point out that plants transplanted from the Northern hemisphere to the Southern would develop into roots growing upwards at an angle to maintain their accustomed orientation with respect to the field.
C. R. Francis, Sheffield.

$=-1=-1$
 SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

TELEPHONE DIALS

$$
\begin{aligned}
& \text { Scandard Post OHfice tepee Guaranteed in } \\
& \hline
\end{aligned}
$$

$$
\text { Only } 25^{\text {worl }}
$$

Tested and Guaranteed Paks

879
4 IN4007 Sil, Rec. diodes.
50p
 H35 $100 \begin{gathered}\text { Mixed Diodes. Germ, Gold } \\ \text { bonded ere. Marked and } \\ \text { Sid }\end{gathered}$ 50p H38 30 Snmarked
 H4I $2 \underset{\text { tary Plastic Transistors }}{\text { BD }} 13 /$ PDI 132 Compen- 50 p H65 $4 \begin{gathered}40361 \\ \text { transistors Type TO } 5 \text { can comp. }\end{gathered}$
 A Unsis Unmarked

Untested Paks

B1 $50 \begin{aligned} & \text { Germanium Transistors } \\ & \text { PNP, AF and RF } \\ & \text { 50p }\end{aligned}$

B66	150	Germanium Diodes Min. glass type	50p
B83	200	Transistors, manufacturers'	50p

B84 $100 \begin{aligned} & \text { Silicon Diodes DO-7 glass } \\ & \text { equiv. to OA200, OA202 }\end{aligned} \quad$ 50p
B86 $100 \begin{aligned} & \text { Sil. Diodes sub. } \min ^{2} \\ & \text { IN914 and IN9i6 types }\end{aligned} \quad 50 \mathrm{p}$
$\begin{array}{ll}\text { H20 } & \left.20 \begin{array}{c}\text { BY126/7 Type Silicon Recti- } \\ \text { fiers }\end{array}\right] \text { amp. plastic. Mixed }\end{array}$

H34	15	$\begin{array}{l}\text { Power Transistors, PNP: } \\ \text { Germ. NPN Silicon TO-3 }\end{array}$
	50p	

H67 $10 \begin{aligned} & 3819 \mathrm{~N} \text { Channel FET's plastic } 50 \mathrm{p} \\ & \text { case rype. }\end{aligned}$

Make a rev counter

for your car
The "TACHO BLOCK". This encapsulated block will turn any 0.1 mA meter into a
linear and accurate rev. counter for any car with normal coil ignition system.

Electronic Transistor

 minute" electronic ignition system. Simple
to make, full instrucrions supplied with these to make, full instructions supplied with these
outstanding features. Transistor and conventional switchability, burglar proof lock-up and automatic alarm, negative and positive compatibility.

Extension Telephones

Ideal for children's toys, 70p each. P. \& P. 25p.

New X Hatch
 Our new vastly improved Mark Two Cross

 Hatch Generator is now available. Will align the colour guns on a colour TVreceiver. Featuring plug-in ICs and a more sensitive sync, pick-up circuit. The case is virtually unbreakable-ideal for the engineer's coolbox-and only measures 3 in $x 5 \frac{1}{4}$ in $x 3 i n$.
 (includes P. \& P. but no batteries)

Plastic Power Transistors

NOW IN
TWO
RANGES
These are 40 W and 90 W Silicon Plastic Power Transistors of the very latest design, available in NPN or PNP at the most shatter. ingly low prices of all cime. We have been parts of the world and we are proud to affer phem under our Tested and Guaranteed
Range I VCEMin. 15 HFE Min. 15
40 watt $\begin{array}{cccc}1-12 & 13-25 & 26-50 \\ & 20 p & 18 p & 16 p\end{array}$
 Range 2 VCE Min. 40 HFE Min. 40 , $\begin{array}{cccc}40 \text { watt } & 30 p & 13-25 & 26-50 \\ 90 \text { watt } & 38 p & 28 p & 26 p\end{array}$

Please state NPN or PNP on order
HIGH-SPEEDMAGNETIC COUNTERS EX G.P.O. 4 digit (non-reset) $4 \times 1 \times 1 * 30 \mathrm{p}$.

INTEGRATED CIRCUITS. We stock a large range of I.C.s at very competitive prices, These are all listed in our FREE Catalogue, see coupon below.

METRICATION CHARTS now available. This fantastically detailed conversion cal culator carries thousands of classified U.S.A.) measurements of length. area, volume, liquid measure, weights, etc Pocket Size, 12p, Wall Chart, 18p.

LOW COST DUAL IN LINE I.C
SOCKETS
14 pin typeat 15p each Now new low
type at I7p each $\} \begin{aligned} & \text { Now new lo } \\ & \text { profile type. }\end{aligned}$

BOOKS

We have a large selection of Reference and Technical Books in stock, details are in our latest catalogue, send for it TODAY using
N.B,-Bool
.

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconducrors and Electronic Components. approx. 170 . We guarantee at least 30 really high quality and a host of Diodes and Rectifiers mounted on Printed Circuit Pancls. Identification Chart supplied to give some information on the Transiszors.
Please ash for Pak P.1.only 50 D

Please send me the FREE Bi-Pre-Pak Catalogue. 1 enclose large S.A.E. with $5 p$ stamp
Please add V.A.T, at Current Rate
NAME....
ADDRESS

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE. Add $15 p$ post and packing
per order. OVERSEAS ADD EXTRA FOR POSTAGE.
BUY THESE GOODS WITH ACCESS

5nx0n

Money saving high

performance audio equipment DIRECT FROM OUR OWN FACTORIES

GUARANTEED TESTED HIGH PERFORMANCE MODULES-now better value than ever

 7 transistors, 7 diodes $\quad \star 500 \mathrm{mV}$ into 20 K
 50W RMS 25-65V 7 transistors, 7 diodes
SA100 $\mathbf{E 1 2 . 5 0} \begin{gathered}\text { Carriage } \\ \text { free }\end{gathered}$ 100W RMS 45-70V 10 transistors, 7 diodes 120 watt module complete with builtin supply-extra heavy duty $£ 22.500_{\substack{\text { carr. } \\ \text { G0p }}}$

THE SAIOO MODULE

PO WER SUPPLIES
UNSTABILISED-READY WIRED

PU45		¢5.45	${ }_{\text {carcoing }}^{\text {cap }}$
PU70		¢8.45	${ }_{\substack{\text { cap } \\ \text { cariage }}}^{\text {cap }}$
STABILISED			
PS45		¢4.45	$\underset{\substack{\text { Carriage } \\ \text { free }}}{\text { ceide }}$
MT45	Trastormer for	63.50	${ }_{\substack{\text { carriage } \\ \text { 30p }}}^{\text {criol }}$
PS70	Suits	¢5.45	
MT70	Transformer for	$¢ 4.90$	${ }_{\text {Carriase }}$

Mk II STEREO DISCO MIXER $£ 22.50$
This well tried unit mixes two decks, handles any ceramic cartridge, and features mic over-ride plus separate full range bass and treble controls on both mic and deck inputs. Ample headphone power is available for P.F.L. May be used for mono and mains operated. Fitted with sturdy screening case,
Controls: Micvol, bass, treble. Left/Right fade, deck volume, bass, treble, h/phone select, vol, Mains. Size volume, bass, treble, h/phone select, vol, Mains. Size
$17 \frac{1}{\text { in }} \times 3$ in $\times 4$ in deep.

DISCO MODULE 69.50 carr

Thousands sold of this extremely popular mono version. A micinput may be fitted using the VA30 (see below). Low consumption from a 9 V battery Features the same high standards of reproduction as the seereo version. Controls: H/phone select, vol, Left deck vol, Right deck vol, bass, treble master vol. Size 12 in $\times 3$ in $\times 2$ in deep.

Only SAXON can supply such incredible value for money. This unit features 3 kW power handling, full-wave control, bass, middle, treble AND master controls. Twin loudspeaker jacks for "' through " connections. It may be used free standing or will panel mount next to either of the above. Also \quad for extra wide rangeresponse. Size 12 in $\times 3$ in $\times 2$ in deep. Professional standards at a price you can afford!
SINGLE CHANNEL Recently reduced in price VERSION $\mathbf{~ 7 / 5 0}$ handes ikW. Full wave

MULTI-PURPOSE MIXERS

MODULE 3 - 50 free
This is the basic channel module in the above mixers and may also be used for extra inputs on either the and treble controls, requires just a jack and supply and treble controls,
$(9-100 \mathrm{~V})$

Add 8\% VAT to all orders

SAXON loow of speech and
CSE
100
COMPLETE
AMPLIFIER
£34.90
Carr. free

CSE 50
629.50 Carr. free

sockers. Sturdy case, and an attracrive facia loudspeaker excellent value for money. Hundreds in use by groups, excellent clubs, ete
50 W version identical in appearance.

Four individually controlled FET input stages plus wide range bass and treble controls. 120 W of speech and music twin loudspeaker

SAXON 100 COMPLETE AMPLIFIER〔53.00
Carr.free SAXON 50 <37.50
Carr, iree

CALLERS AND MAIL ORDER:

SAKON ENTERTANNENTS LMTTEB

 327-333 WHITEHORSE ROAD - CROYDON CRO 2HS

Parapsychic phenomena

Sir-Sometimes 1 read your articles about "ESP" in PRACTICAL ELECTronics with great interest. I'm working in parapsychic phenomena as a "hobby" and I have some results, which may interest you and your readers.

During the spring and summer I discovered that a magnetic field stimulates germination and even growth of seeds and plants. I made experiments with lobelia, bindweed, pea, lentil and various other plants. In all cases germination increases about 20-30 per cent, germination time was shortened by approximately 30 per cent and plants were 50 per cent higher than in control tests. In addition, it is interesting that the same effect was caused by hand movement, so called "magnetisation", known 200 years ago and used by Mesmer for healing with "animal magnetism"

It is my opinion that these effects are caused by water polarisation in both casces. The same effect is obtainable by using "magnetised" water, activated by passing through a strong magnetic field.

These two phenomena will be discussed and published in two parapsychological magazines.
V. Patrovsky,

Czechoslovakia.

A Boolean Breakiası

Sir-l was recently having breakfast in an hotel and reading a book on Boolean Algebra. I had reached a point where the author stated that $A+(A \cdot B)=A$, when I realised that the waitress was looking over my shoulder. She asked whether I would like egg, or egg and bacon. My natural glatony lead me to order egg and bacon. I continued reading and learnt that the expression above was read as "A or A and B equals $A^{\prime \prime}$, and that if either A or \mathbf{B} is present it is given a value of 1 and if absent its value, reasonably enough, is 0 . The author proved the statement by a truth table.

At this moment the waitress placed in front of me a plate on which there was an egg but no bacon. Of course, I pointed out with maximum natural charm that I had ordered egg and bacon. I was surprised. even dismayed, when she said that what she had served was the same as egg and bacon, the book had just proved it by a truth table-egg, or egg and bacon equals egg.

Later, when the management presented me with the bill for bed and breakfast, 1 pointed out that the bill for bed, or bed and breakfast, should be the same. In the tariff, breakfast was a separate item, and although I had just eaten it, like the
bacon I could prove by Boolean Algebra that it did not exist. One could not be charged, even in these times of rampant inflation, for something that did not exist whether one ate it or not. The cost of breakfast should therefore be deleted.

The Manager appeared to have an entirely mistaken grasp of Boolean Algebra, and the adviser he called in had not even heard of it. Possibly Boolean Algebra does not form part of a constable's training.
Perhaps some of your more erudite readers can point out where the fallacy lies.

R. Parfitt.
Croydon.

Make an offer

Sir-Before my husband's death in May 1974 he had started to buy various parts for the "Electronic Piano", described in your Magazine some time ago. He already bought two manual contact assemblies, two C-C keyboards, digital master oscillator and other parts. Is it possible for you to help me to dispose of these items?

Mrs. E. Szwimer.

CEETMDDTETED 58-60 GROVE ROAD, WINDSOR,BERKS. PAST SERVICE. SEND C.H.O. ADD VAT TO ALL PRICES IN U.K. PAP 15P. GUROPE 25P. OVERSEAS 65P.					MONEY BACK IF NOT SATISFIED. LARGE STOCXS. LOW PRICES. ALL BRAND NEW TOP GRADE FULL SPEC DEVICES.CALLERS WELCOME. CATALOGUE/LIST FREE SEND S.A.E.
Dinition Disnlays					
ME8ther MINTRON 3015	$\begin{array}{ll} 702 \text { OPA } & 69 \mathrm{p} \\ 703 \mathrm{RF} / \mathrm{IF} & 28 \mathrm{p} \end{array}$	MFC 4000 1W AF 35 p MFC 4060 54 p	SPECIAL OFFERS		VERO PINSx36 25p.
0-9DP 12.15 ea	$\begin{array}{lll}709 & 1099 & 21 p \\ 709 \text { DIL } 14 & 29 p\end{array}$	$\square \mathrm{MFC6030}$ S2p	741 29p MFC4000 35p		$2 \times 5 \text { " } 27 \mathrm{p} .2 \mid \times 3{ }^{\prime \prime} 24 \mathrm{p} .3 \times 3$
ED O.3" digit	710 DIL 14 14.36 p	MFC6040 £1.10	7p 2 N414 11.09		$3 \pm \times{ }^{\prime \prime} 29 \mathrm{p} .3 \frac{1}{4} \times 17^{\prime \prime} 51.50$
-9DP 51.49 ea	720 Radio $£ 1.39$	HFC8040 §1			DIL IC's BOARDS 6×4 ', $£ 1.50$ 24 way edge connector 60 p
$\begin{array}{ll} \text { JUMBO LED } 0.6^{\prime \prime} \\ 0-9 D P & £ 2.25 \text { ea } \end{array}$	723 Regulator67p 741 T099 29p		$115 \mathrm{~W} / \mathrm{TO} \mathrm{T}^{\text {or }} 90 \mathrm{~W}$ plastic		way edge connector 60p 6 way 90p. PLAIN 3 l'x $\times 17$ ¢1
	741 DIL8 31p	NES40 Driver IL^{1}	2N3819E 16p 2N3053 17pBFY50/51/52/53 all 18 p		FACE CUTTER 43p. FEC ETCHANT
$6 \text { digit } 518$	741 747 Dual 741 189		1A50Vrect 4p ea IN914 4p		1) \triangle]f Fin
	748 DIL 8 36p	NE55, TIMER 67p			PRINTED CIRCUIT BOARD KIT $£ 1: 69$ COPPER BOARD $6 \times 4^{41} 40 p$.
(@) 01	1505 IC A/D ${ }^{\text {Converter } £ 7}$	NE556 Dual"§1.30	Price each:-	TIP2955 90p	
	78051 ASV £1.59		AC187/188 19p	TIP3055 55p	desolder braid reel 59p HEATSINKS
MINI PIN SOURCE OR RED DIFFUSE	$78081 \mathrm{~A} \mathrm{~V}^{2} \mathrm{~V}$ ¢1.69		AD161/162 ${ }^{\text {B }}$ (107/8/9 9 p		
LEDS. 209 STYLE.NO CLIP. 14 P ea	A12V 11.69	NE565 PLL 12.69	BC132/4/7 18p	IN4004 6 6p	Sf/TOS \& 18f/TO18 5p ea. TV4 12p.TV3/TO3 16p.4Y1/TO3 29p.
TIL209 RED LED \& CLIP 17p e	76009 年 AF 75p	NE566 Gen 52.49	$\mathrm{BC} 147 / 8 / 9$ 10p	IN+148/914 ${ }^{4} \mathrm{p}$	
BIG ${ }^{\frac{1}{4}}$ R RED LED \& CLIP 18P ea	76013 6W AFF1. 39	NE567 code 12.69	BC157/8/9 12p	2N697 ${ }^{\text {N }}$ (3p	CAPACITORS
	$8038 \mathrm{Sig}_{\mathrm{g}} \mathrm{Gen} 53$	SN72709 709 29p	BC 177/8/918p	2N2646 ${ }^{\text {N }}$	
MINI 25P ea.BIG \& CLIP 33P	CA3046 69p	$\begin{array}{llll}\text { SN772741 } \\ \text { SN72748 } & 748 & 310 & 36 \mathrm{p}\end{array}$	$\begin{aligned} & \mathrm{BC} 182 / 3 / 4 * 11 \mathrm{p} \\ & \mathrm{BC} 212 / 3 / 4 * 12 \mathrm{p} \end{aligned}$	2N2904/5 20p	25V $2 / 10 / 50 / 100$ uf 6 p. 1000uf 20 p PRESETS VERT:5p.RESISTORS5\& $1 \frac{1}{2} p$
D LED	LM307 OPA	SN76131 [1.20		2N2926royg 9p	
	LM308 HiB OPa	SN76660 FMIF £	*A or 1	2N3053 17p	
Plioto 1C/	LM309K Reg. 52.29	SN76611 1F S1.25	BCY70/1/2 15p	$2 \mathrm{~N} 3055 \quad 39 \mathrm{p}$	POTS ABor EGIN
QAEATRLEDEH	LM371 RF/LF §2	TAD 1008 IF § 2	BFY50/1/2 18BFY 3	2N3702/3 9p	ROTARY:12p.SWITCH 13p. DLAL 38 p .
MOS INTEGRATED CIRCUITS.	LM373 AFME 5	2N402T 51.75		2N3704/5 10p	SLIDERS:SINGLE 26p. DOUBLE 48p.
AY51224 4 DIGIT CLOCK supplie	LM377 $2 \times 2 \mathrm{HIS} 2.69$	2N403 Servos 2.50	BS $\times 20 \quad 12 \mathrm{p}$	2N3706/7 ${ }^{\text {N }}$ 2p	SWITCHES:SPST 18p.DPDT 25p. MINI ${ }^{\prime \prime}$ ":SPST 39p.PUSH 39p.
with 14 pin socket \& data $\$ 4.25$	LM380 2W AF 99p	N414 AM Rx§1.09	$\begin{array}{ll}\text { MJE2955 } & 95 p \\ \text { MJE3055 } & 62 p\end{array}$	2N3710/11 9p	
MM5311/14 6 DIGIT CLOCK with 28 pin socket \& data $\$ 7.50$	LM3 82) amp \&2		MPUl3lput 49p	2N3563/642N3566/6716p	BENCH POWER SUPPLY 3-12V 55. DIN PLUGS all 13p ea. Sockets 9p
			$0 A 91$ $8 p$ T1P29A $48 p$		
310IGIT DVM AY53500 $\$ 7.50$			TIP30A 57 p	2N3641/2 16p	TRANSFORMERS 1A $6 / 12 \mathrm{~V} \$ 1.34$ BHA 0002 MODULE 15 THATT AMP $£ 5$ EA1000 4W AF MODULE $\$ 2.49$ $8 \mathrm{~W} / 12 \mathrm{~V}$ FLUORESCENT LIGHT $£ 3$.
4DIGIT COUNTER/DRIVER $\$ 7.50$	MC1303 11.20	7400 etc gates 16p	TIP31A 61p	2N3819E $16{ }^{\text {p }}$	
cASSET	MC1310 \& LED £2.69	7413 schmitt ${ }^{744}$ driver 51.09	TIP32A 73p	2N3832E 17p	
	MC1312 SQamp 12.50	7470/72 32p	T1P4IA 78p	2N3904/6 14p	
etinmits	MC1339 ${ }^{\text {MC13 }}$	$7473 / 74 / 76$ $39 p$ 7475 $48 p$	B2Y88 400mw	TAG $1 / 40055 \mathrm{P}$	Dil sochets
Stereo casset Te michanism.	MC1350 55p	7490 Counter 63p	2ENERS 9p	C107D1 SCR	
	MC135 ${ }^{\text {P }}$ (1p	7492 Counter 69p	BRIDGE RECT	4A/400V 55p	GOLD PLATED \& GREY NYLON. 8,14 or 16 PIN ONLY 15p each.
costing ¢100.0nly requires	$\begin{array}{ll}\text { MC1352 } \\ 4 C 1357 & \text { ¢1p }\end{array}$				
a case \& electronics. Heads	MC1358 £1		GAS SENSOR £2	SC146D TRIAC	
supplied. Send for data 15 p .	WC1375 $\$ 1.25$	Full range in Cat	GAS " KIT 15	10A 400V 75p	

Forward with Project 80 into

Everything you want in one pack to build the world's most
advanced modular hi-fi WITHOUT SOLDERING

1 Stereo 80 Control Unit
For mag. and ceramic cartridges, radio and tape.
2 Project 80 power amplifiers
Two Z.40s to give 8/8 watts R.M.S.
output per channel.
3 Power supply unit One PZ.5.
4 Connecting wires
All wires plus nuts, bolts, screws etc.
5 Project 805 Masterlink
For input and output connections.
6 Mains switch block and instructions manual (not illustrated).

SINCLAIR RADIONICS LTD
London Rd, St. Ives, Huntingdon PE174HJ
Telephone St. Ives (0480) 64646

This is Project 80 made even easier to build

Abstract

You have seen how the marvellously compact Project 80 modules (only $2^{\prime \prime}$ high $\times \frac{3}{4}^{n}$ deep) are so adaptable and easy to install. Now, with Project 805, this wonderful system is made easier still to put together. In this, you have not only all the Project 80 modules in one pack for building an $8 / 8$ watt R.M.S. hi-fi amplifier - there is also a loom of colour coded wires cut to lengthand tagged forclippingon so that you don't even have to solder ! Input and output connections go via the 805 Masterlink panel. With the explicit stage-by-stage large 32 page instructions manual included, it becomes easy for anyone, no matter how inexperienced to install an ultra-modern assembly so advanced in appearance and design that it sets, brand new concepts in domestic hi-fi- and of course you can convert to quadraphony just whenever you wish by adding 805SQ. Only Sinclair know-how and manufacturing facilities could hope to bring yousuch quality and versatility

TAGGED WIRES CUT TO LENGTH•NO SOLDERING

Project 805

the complete ready-to•build hi-fi STEREO AMPLIFIER

Project 805 comprises a Stereo 80 Pre-amp/Control Unit with input for both magnetic and ceramic cartridges, radio, tape; separate bass and treble cut/ lift, and volume controls $2 \times Z .40$ power amplifiers, PZ. 5 power unit, 805 Masterlink, wire loom, instructions manual, etc. down to nuts, bolts and washers. For technical specifications, see third page of this advertisement
£39.95
+£3.20 VAT (R.R.P.)

true quadraphonics... NOW!

The most effective and economical way to enjoy this spectacular breakthrough in hi-filistening

1. Project 80SO decoder with controls.
2. Two $Z .40$ power amplifiers.
3. PZ.5 power pack
4. Project 800 Masterlink unit.

5 Wire loom, with clip-ontags - NO SOLDERING!
6. (Not illustrated) Instructions manual, nuts bolts, washers, etc.

Add a fourth dimension to your stereo sound

It's so simple to convert to quadraphonics when you already have Project 80 , or are about - Frequency response $\pm 3 \mathrm{db} 15 \mathrm{~Hz}-25 \mathrm{kHz}$ 10 start with Project 805 . Project 805 SQ is a complete add-on system at the heart of which is the Project 80SQ decoder. It uses the CBS.SQ matrix principle, by now the widest used method of containing four sound channels within the groove of the record. Project 805SQ includes two power amplifiers, power supply unit, connecting wire loom, 8050 Masterlink, switch block and instructions manual. The 80SQ decoder (also obtainable separately) has independent tone and volume slider controls on the two rear channels for matching true four channel sound to domestic environment. Project 805SQ is money saving too since you do not have to scrap existing Project 80 equipment to enjoy the newest and most exciting form of home listening in the entire history of sound, and your Project 80 quad-- Rated output 100 mV raphonic assembly is compatible with stereo and mono records.

- S / N ratio 58 dB
- Distortion 0.1\%
- Power requirements 22-35 volts
- Phase shift network $90^{\circ} \pm 10,100 \mathrm{~Hz}-10 \mathrm{kHz}$
- Adaptable to discrete (CD4) use

Project805SQ

The output from any good stereo cartridge feeds into Stereo 80 and passes via the tape outlet to the 80SQ decoder. Here the signal is separated into its constituent 4 channels, those for the front being accepted by the Stereo 80 , those for the rear going from the decoder to the two additional power amplifiers and speakers.

$+£ 3.60$ VAT (R.R.P.)

Guarantee If, within 3 months of purchasing any product direct from us, production of rece dissatisfied with it. your money will be refunded on guarantee Should any defect arise in normal use within 2 years, we will service it without charge. For damage arising from mis-use a nominal charge will be made.

Project 80 quadraphonic modules may be purchased separately if required. The Project 80SQ decoder may be used with any other amplifier having tape and monitoring facilities. Z40 or Z60 power amps can be used as required.

The Project 80 programme to date

KEEP THIS PAGE FOR HANDY REFERENCE USE THE PRIORITY ORDER FORM IN GASES OF DIFFICULTY

Stereo 80 pre-amp/control unit

$260 \times 50 \times 20 \mathrm{~mm}$ ($10 \frac{1}{2} \times 2 \times \frac{3}{3}$ ins.) separate slider controls on each channel for treble. bass and volume. INPUTS - Mag. P.U 3 mV (RIAA corrected) Ceramic -300 mV , Radio 100 mV , Tape 30 mV S $/ \mathrm{N}$ ratio 60 dB . Frequency range -20 Hz to $15 \mathrm{KHz} \pm 1 \mathrm{~dB}$ OUTPUTS -25 V rms max (30 V supply) and tape plus $A B$ monitoring. PRESS BUTTONS for P.U. Radio and Tape Operating power -20 to 35 V . Black case with white indications
£13.95
Project 80 F.M. tuner

Size $85 \times 50 \times 20 \mathrm{~mm}$ ($3 \frac{1}{2} \times 2 \times \frac{3}{4}$ ins.). Tunes 87.5 to 108 MHz , DE TECTOR - I.C balanced coincidence (I.C equivalent to 26 transistors) Distortion -0.2% at 1 KHz for 30% modulation. SENSITIVITY - 5 microvolts for 30 dB quieting. Output - 300 mV for 30% modulation. Aerial imp. - 75Ω or $240-300 \Omega$. Dual Varicap tuning. 4 pole ceramic filter. Switchable A.F.C. Operating power 23-30 volts

$$
\text { f13. } 55 \underset{\text { VAT (R.R. } 12}{ }
$$

Project 80 stereo decoder

Size $47 \times 50 \times 20 \mathrm{~mm}$ For adding to Project 80 FM tuner. With one I. C equal to 19 transistors, and LED indicator which glows on tuning in stereo signal.

Project 80 active filter unit (A.F.U.)

Size $108 \times 50 \times 20 \mathrm{~mm}$. Useful where there is need to eliminate unwanted high frequencies (scratch, whistle, etc) or low (rumble). Voltage gain 'minus $0 \cdot 2 \mathrm{~dB}$. Frequency response (filter at zero) 36 Hz to 22 KHz . H.F cut (scratch) variable from 22 KHz to 5.5 KHz 12 dB /octave slope. L.F cut (rumble) -28 dB at 28 Hz , slope 9 dB /octave
$€ 7.45^{\text {VAT }}$

Project 80 power amplifiers

Intended for use in Project 80 installations, these modules readily adapt to an even wider range of applications. Both incorporate built-in protection against short circuiting and risk of damage from mis-use is greatly reduced
2.40

Size $55 \times 80 \times 20 \mathrm{~mm}$
9 transistors
Input sensitivity $\mathbf{- 1 0 0 m V}$
Output - 12 watts RMS continuous into 8Ω (35 v)
Frequency response $-10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
S/Nratio-64dB
Distortion - 0.1% at 10 watts into 8Ω at 1 KHz
Power requirements -12 to 35 volts

2.60

Size $-55 \times 98 \times 20 \mathrm{~mm}$
12 transistors
Input sensitivity $-100-250 \mathrm{mV}$
Output - 25 watts RMS
continuous into $8 \Omega(50 \mathrm{~V}$).
Distortion- 0.02% at $10 \mathrm{~W} / 8 \Omega / 1 \mathrm{KHz}$
Frequency response -10 Hz to more than $200 \mathrm{KHz} \pm 3 \mathrm{~dB}$ S/Nratio-better than 70 dB
Built-in protection against transient overload and short circuiting Load impedance - 4Ω min; max. safe on open circuit

Power-supply units
PZ. 5 Unstabilized. 30 volts. Suitable for $Z .40$ assemblies, etc.

PZ. 6 Stabilized. Output voltage adjustable between 20 and 50 volts approx. Protecting fuse.
$£ 8.95_{\text {Vatif }}^{\text {tig. }}$
PZ. 8 Stabilized. Output adjustable from 20 to 60 V . approx. Reentrant current limiting makes damage from overload or even shorting. impossible. Without mains transformer.
£ $8.455_{\text {VАТ (R.А.Р.) }}^{68 \text { P. }}$

Project 805 (previous pages) $£ 39.95_{\text {VAT }(R . R . \text {. P. }}^{+ \text {f3.20 }}$
Project 805SQ quadraphonic add-on kit $£ 44.95+{ }^{\text {E5 } 3.50}$

Project 80SQ quadraphonic decoder

Size $260 \times 50 \times 20 \mathrm{~mm}$, matching Stereo 80 in style. Connects with tape socket on stereo 80 or similar facility on any stereo amplifier. Frequency response 15 Hz to $25 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Distortion 0.1%. S / N ratio 58 dB , Rated Output -100 mV . Separatẹ bass and treble slider controls on each channel, also volume. Phase shift network $90^{\circ} \pm 10,100 \mathrm{~Hz}$ to 10 KHz . Operating power-22-35V
f18.95 + 18.52
Sinclair Q. 16 loudspeaker
An original and uniquely designed speaker of outstanding efficiency. Balanced sealed sound chamber and special driver assembly. Loads up to 14 W./R.M.S. 8 ohms imp. Size 248 mm square $\times 120 \mathrm{~mm}$ deep. Pedestal base. All-over black front, teak surround.

Sinclair Radionics Ltd.,
London Road St. Ives
Huntingdonshire PE174 HJ
Telephone St. Ives (0480) 64311
R.O. St. Ives: Reg No 6994583 Eng.

USE THIS PRIORITY ORDER FORM IN CASES OF DIFFICULTY

To Sinclair Radionics Ltd
Please send, (carriage paid in U.K.)
NAME

ADDRESS

PHONOSONICS

SOUND-TO-LIGHT

The over-popular AURORA-4 or 8 channels each responding to a different sound frequency and eontrolling its own light. Can be used with most audio systems end lamp intensities. A mus! for any Disco, and a fascinating visual display for the nome
4 channel component set (excl. thyristors) 8 channel component set (excl. thyristors) Power supply component set
PCB for power supply and 8 lamp drivers

P.E. CCTV CAMERA
 Details in List

VOICE OPERATED FADER

for automatically reducing music volume durn 'talk-over'- Darticularly useful for Disco work, or for home-movie shows.
Component set, incl. PCB

P.E. GEMINI 30W STEREO AMPLIFIER

An exceptionally high quality Stereo Amplifier system, specifications for which are shown in detall in our list. together with semiconductor requirements.
Maln Ampifler:
Set of resistors, capacitors and presets $\quad \mathbf{5 5} \cdot 96$ Stereo printed
Sets of resistors. capacitors, potentiometers
and switehes-
Standerd Tolerance Set
Send
Ste 57
Superior Tolerance Set
Stereo PCB (as Pubilshed)
Regulated Power Supply:
Set of resistors, capacitors and preset
Printed circuit board
16.04
52.20

HI-FI TAPE LINK

Designed for use with reasonable quality tape decks this high performance pre-amp includes record, playback and metering circuits.
Stereo component set (excl. panel meter)
Mono component set (excl. parel meter)
Power supply component set
Stereo main PCB
Stereo sub-assembly PCB

TAPE-NOISE LIMITER

Very effective circuit for reducing the hiss found in mos tape recordings.
Component set (incl. PCB)
Regulated power supply (including printed circuit
Rogurd)
PROJECT O4
Multi-system Quadraphonic Decoder
Decoder component set

SEMICONDUCTOR TESTER

Essential test equipment for the enterprising home constructor.
Set of resistors, capacitors, semiconductors, potentiometers, makaswitches and sub-assembly (fuller details in list) \quad E6.06
PCB

PHASING UNIT

A simple but effective manually controiled unit for introducing the "phasing'" sound into live or recorded music.
Component set (incl. PCB)
C2. 20
P.E. SOUND SYNTHESISER

The well-acclaimed and highly versatile Synthesiser published in P.E. Feb. 1973 10 Feb. 1974.

Component sets and printed eircuit boards: Full details in list.

RHYTHM GENERATOR
Programmable for 64.000 rhythm patterns from 8 effects circuits (high and low bongos, bass and gnare drums ang and short brushes, blocks and cymbal). and with variable time signatures.

Tompo, TIming and Logle Clrcult
Component set (excl. switehes)
Double-sided PCB for above
517.25
52.30

Mixer, Pre-amp and Effecta Cliculto
Component set
PCB (illustrated)
Monltor Amplifier
Component set and PCB
Power Supply
Component set and PCB

AUDIO MILLIVOLTMETER
 Wide-ranges and pood accuracy. Component
 et (excl. meter) while stocks las
 C5. 23
 ULTRASONIC TRANSMITTER-RECEIVER
 A highly sensitive and long range "invisible beam detection circuit with numerous applications.
 Component set with PCBs, but excluding transducers
 \&4. 40

P.E. RONDO POWER SLAVES

PCB detaits in List. PCB details in List.
P.E. ELECTRONIC PIANO

Details in List.
home intercom
Detais in List.

SOUND BENDER

A multi-purpose sound controller, the functions of which include envelope shaper, tremolo. voice operated fader. automatic fader and frequency doubler.

Component set
55.83
51.44

Printed circuit board
©1.44

REVERBERATION UNIT

A high-quallty unit having microphone and line input pre-amps, and providing full control over reverberation level.
Component set (excl. spring unit)
58.44
51.40

P.E. MINISONIC
 Details in List

8W AMPLIFIER

A moderately powered amplifier of more than average performance.
Maln Amplifior
Mono component set
Stereo component set
Mono printed circuit bo
Pre-mpinifier
Mono component set
Mono component set
Stereo component set
Stereo PCB
Power Supply
Component set c4-18
ci
726
-23.90

EIOLOGICAL AMPLIFIER
Multi-function circuits that, with the use of other external equipment. can serve as lie detector, alphaphone, cardiophone, etc.

Pre-Amplifler Module
Component set and PCB
Combined component set with PCBs, for alpha-
phone, cardiophone, frequency meter and visual
feed-back lamp driver circuits .
Audio Amplifier Module
.

PHOTOPRINT PROCESS CONTROL

For colour and B a W an
For colour and B \& W, an indespensible dark-room unit for finding exposure, controlling enlarges timing, and

Component set (excl. meter)
Printed circuit board
c8-85
$\mathbf{8 1}-80$

ENLARGER EXPOSURE
METER AND THERMOMETER
Dual-purpose dark-room unit with good accuracy
Component set with PCB, but excluding meter \quad \& 4.00

WIND AND RAIN UNIT
A manually controlled unit for producing the above-named sounds.

Component set incl. PCB
12.40

PCB LAYOUT AND CIRCUIT DIAGRAMS SUPPLIEO WITH ALL PCBS DESIGNED BY PHONOSONICS			P. \& \mathbf{P}. Add 18 p to all orders			VA Add rate total
Semiconductora						
$4{ }^{4} 128$	20p	MJE3055	15p	$2 \mathrm{N3823E}$	39p	709
${ }^{\text {ACLI78 }}$	${ }^{20 p}$	NKT0033	112	$2 \mathrm{Na870}$	${ }^{36 p}$	723
${ }^{\text {ach }} 107$	${ }^{13 p}$	OCza	${ }^{\text {85P }}$	${ }^{2 N 48871}$	${ }^{36 p}$	741
8 Ct 108	13 p	0 C 71	${ }^{148}$	2N5771	45p	747
BC109	${ }^{13}$	${ }^{0} \mathrm{CPA} 4$				748
BC147	12 p	ORP^{12}	S5p	Dlodes		748
BC148	12 p	27×107	12 P	in914	4	748
${ }_{8}^{\text {BC15 }}$	${ }_{129}$	2TX531	${ }_{23} 3$	$1{ }^{1 \times 4001}$	p	7402
${ }_{8 C 158}$	13 p	2 N 706	130		0	7420
BC159	13p	$2 \mathrm{N914}$	220	in4005	0	7447
BC182L	12 p	${ }^{2} 11304$	${ }^{229}$	10D6	\%p	7473
- ${ }^{\text {c } 204}$	14p	${ }^{2} \mathrm{~N} 2219$	27p	BA145	$33 p$	7469
BC209c	14 p	2N2905	${ }^{27 p}$	OA91	7p	HA78
BC212L	${ }^{150}$	${ }^{2} \mathbf{2 N 2 9 0 7}$	${ }^{22 \mathrm{p}}$	- azoo	p	${ }_{4}$
${ }_{\text {BCry }}$	${ }_{229}^{298}$	2N3054 2N305	30p	cicp		CAF
BFY50	22 p	2 N 3702	12 p		15 p	paz
BFY52	230	${ }^{2} 13703$	${ }^{12 \mathrm{p}}$			SG3
${ }^{\text {8SY93A }}$	1120	${ }^{2} \mathbf{N 3 7 0 4}$	${ }^{12 \mathrm{P}}$			
MJE2955	110p	2N3819	35p			

PHONOSONICS, DEPT. PE2D, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW MAIL ORDER ONLY

IP
 I.L.P.(Efectronicestro

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifers-ite hite the second caters for tone control and balance.

EECHNICAL SPECIFICATION
inpute: Magnetic Pick-up 3mV RIAA: Ceramic Pick-up 30 mV : Microphone 10 mV ; Tuner 100 mV ; Auxillary 3-100mV nput/impedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputs: Tape 100 mV Main output 00D (0.775 V RMS). Actlve Tone Controla Treble $\pm 12 \mathrm{db}$ at 10 kHz . Bass $\pm 12 \mathrm{db}$ at 100 Hz . Dlstortion 0.5% at 1 kHz . Signol/Nolse Retlo: 68db. Overlose Capa bility: 40 db on mest sensitive input. Supply Voltege $\pm 16-25 \mathrm{~V}$
PRICE 14.50
The HY50 is complate solid state hybrid Ha-Fi amplifler Incorporating its own high conductivity heatsink her-
 meror prines and earth.

TECHNICAL SPECIFICATION
Output Power: 25W RMS into $8 \mathrm{k} \Omega$. Load Impedence. $4-16 \mathrm{k} \Omega$. Input Soneltivity 00 b (0.775 V AMS). Input Impedance: 47 ñ. Distortion: Less than 0.1% at 25 W typically 0.05%. Signal/Noles. Ratlo: Better than 75 ab . Frequeney Response: $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{ab}$. Supply Voltage: $\pm 25 \mathrm{~V}$. Size: $105 \times 50 \times 25 \mathrm{~mm}$

The PSU50 cen be used for sither mono or atereo systoms

TECHNICAL SPECIFICATION

Output voltage: $\pm \mathbf{2 5 V}$. Inpul voltege: $210-240 \mathrm{~V}$. Size: L. 70

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Lid.
 Crossland House, NackIngton, Canterbury, Kent CT4 7AD.

Tel. (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature

Practical Electronics January 1975

FERRANTI

+ ALL DEVICES BRAND NEW, TOP GRADE AND TO FULL MANUFACTURERS SPECIFICATION. We do not sell seconds or rejects.
* WE HAVE STOCKS

IMMEDIATE DELIVERY. ALL DEVICES FOR
WE CAN SUPPLY ANY FERRANTI DEVICE TO ORDER. Send S.A.E. for quotation.

* WE ARE SPECIALISTS IN FERRANTI SEMICON DUCTORS, WITH A STAFF OF EXPERIENCED ENGINEERS.
 (State 6 V or 12 V when ordering) BFS60 18p ZTX $\begin{array}{lll}2 T \times 530 & 29 \mathrm{p} & \text { ZS172 22p }\end{array}$

 $\begin{array}{lllllll}\text { BES98 } & \text { 23p } & \text { ZTX } \\ \text { ZTX107 } & 12 \mathrm{p} & \text { ZTX } \\ \text { ZTX108 } & \text { 2p } & \text { 2Tp } & \text { 2N3055 } & \text { 76p } & \text { ZS270 } & \text { 15p } \\ \text { ZS271 } & \text { 22p }\end{array}$ ZTX
ZTX $\begin{array}{llllllll}\text { ZTX } & \text { 14p } \\ \text { ZTX } & \text { ZTX } & \text { 1483 } & \text { 19p } & \text { ZS120 } & \text { 15p } & \text { ZS274 } & \text { 29p }\end{array}$
 $\begin{array}{lllllll}\text { ZTX } & \text { 16p } & \text { ZTX451 } & \text { 25p } & \text { ZS123 } & \text { 25p } & \text { Z ZENERS }\end{array}$ $\begin{array}{llllll}\text { ZTX } & \text { 16p } & \text { ZTX } \\ \text { ZTX }\end{array}$

MOTOROLA BD699 £1-10, BD700 £1.22, MJE2955 〔1.30, MJE3055 75p ACA PRICES SLASHED! CA30900 stereo decoder 「3-25 each.
ZN414. THE FAMOUS FERRANTI RADIO I.C. ONLY $\$ 1 \cdot 32$ with data
ORION. High qualify printed circuit £2.95. Set of semiconductors 59.95 . SIGNETICS. UAT48CV Operational amplifier 55p.
AMPLIFIE AVAN KITS FOR GEMINI AMPLIFIER AND PW DERBY HEADPHONE
FPE Our comprehonsive price list glving data and connection diagrams tor a wide range of Ferrantil semicond
POSTAGE \& PACKING IOD. FREE ON ORDERS OVER 33

DAVIAN ELECTRONICS

P.O. BOX 38, OLDHAM, LANCS. OL2 6XJ

12in LONG PERSISTENCE CRT. Ful spec. Price 56.50 to Include V.A.T. and Carriage.
maKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 Hz to 8 MHz . Hook up to a 9 volt battery and connect to your scope and have two traces for ONLY E8-25, P, \& P. 25p. (Not cased, not callbrated.)
wide pange wobbulator. 5 MHz to 150 MHz up to 15 MHz sweop width. Only 3 controis. preset RF leveli, sweep width 3 controis, preset RF level. sweep wiy alignment, fillers, recelvers. Can be used alignment, fillers, recelvers. Can be used with any general purpose scope, Fuh instructions supplied. Connect 6 .3v All this for ONLY E5.75, P \& P. 25p (No cased, not calibrated.)
20 Hz to 200 kHz WB, SINE and SQUARE GENERATOR. Foup ranges. Independent amplitude controls, thermistor stabillsed. Ready to use. 9 V supply required. E8.85 each, P. \& P. 25p. (Not cased, not callbrated.)
GRATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quallity plastic 15p each, P. \& P. Sp.

Large quantity of good quality com-pOnents-NO PASSING TRADE-SO wo other 3Ib of ELECTRONIC GOODIES for $£ 1 \cdot 50$. Post psid.

ROTARY SWITCH PACK-6 brand new switches (1 ceramic; 1 ott 4 pole. 2 way, swltches (1 ceramic; 1
ete.). 50 p, P. \& P. 20 .
P.C.B. PACKS. S\& D . Quanlity 2 sq. $\mathrm{H}-$ no thy pieces: 50p, P. \& P. 20p.
CAPACITOR PACK-50 brand new components, only 50p, P. \& P. 20p.

TRIMMEA PACK. 2 twin 50/200pF coramic. 2 twin 10/60pf ceramic: 2 min atrip with 4 proset 5/20pF on pach: 3 air spaced preset $30 / 100 \mathrm{p}$ F on ceramic base. ALL BRAND NEW. 25p the tot, P. \& P. top.
PHOTOCELL equ. OCP71, 13p each. mULLARD OCP70, 10p each.

DELIVERED TO YOUR DOOA, Icwl of Electronic Scrap chassif, boarde otc. No rubbiah. FOR ONLY E4.

MODERN TELEPHONES. Type 706. Two tone grey, E3.75 ench. Twotone green [3.75 each. Black 53.75 each, P. \& P. 35 p. Ideal EXTENSION TELEPNONES with standard GPO type dilal, bell and lead coding. $£ 1.75$ each, P. \& P. 35p.
HANDSETS. COmplete with 2 inserts and lead, 75 peach, P. \& P, 37p.
DIALS. ONLY 75p each, P. \& P. 25p
MIOH VALUE-PAINTED BOARD PACK, Hundreds of components, transistors. etc. - No 2 boards the same. No short laded transistor computer boards. [1-75, post pald
BEENIVE TATMMER $3 / 30 \mathrm{pF}$. Brand now. Qty 1-9 13p each, P. \& P. 15p; 10-99 10p each, P. \& P. 25p; 100-999 7p each, P. \& P. free.
HE CAYSTAL DRIVE UNIT. 19In rack mount. Standard 240 V input with superb crystal oven by Labgear (no crystals) [5 each. Carr. $\{2$.
1,000pF FEED THRU CAPACITOAS. Only sold In packs of 10, 30p, P. 8 P. 10p.
ALWAYS SOME CHEAP SCOPESAVAIL ABLE-or build your own. Send for our tube list with a S.A.E

CUSTOM CABINETS

331 High Street, Rochester, Kent. Tel: Medway (0634) 404199 SPEAKER CABINETS IN HUGE SAVINGS KIT FORM REPRESENT

$2^{\prime} \times 12^{\prime \prime}$ Cabinet

$4^{\prime} \times 12^{*}$ Cabinet

Disco Console (includes lid not shown) Takes two slaves

For a long time now a large number of customers have asked us to produce cabinets in kit form, and above we show examples of cabinet styles and these are now available either fully built or in kit form ready for you to produce a professional finish in a very short time !
Kits are available in all specifications and all the kits contain everything you need as follows :-

1) 4 sides with handle cutouts, front edges rounded, 1 back with jack socket hole, and1 baffleboard with speaker cutout
2) P.V.C. cut to size for frame and back, plus false front and back timbers, white front piping and speaker cloth
3) Recessed handles with fixing screws, jack socket, all fixing screws, corner plates, glue, and full instructions!

PRICE \& TYPE LIST

* 100w RMS slave amp for Disco
* 100w RMS continuous sine wave output
* Short and open circuit protection
* Built to highest industrial spec.
* Price £37.00 complete

* Stereo studio disco mixer
* Full PFL and Monitor facilities
* As used by John Peel, Mark Wesley, Paul Burnett, DLT, Dave Christian, Tony Prince
* Price f120.00

ERC 100w power amplifier

* Electrolytic capacitors and second generation ICs
* Fully protected against short or open circuit
* Less than 0.1% distortion at all powers
* Rise time 4muS-stabilityUnconditional Price 666.50

Disco imp projector 150 watt tungsten unbeatable price
Includes liquid wheel and postage Normally sold between $£ 24$ - $£ 27 \cdot 50$

UNBEATABLE NOW ONLY £18

ELECTRONICS

92 Warwick Road, Ealing, London W5 5PT Telephone: 01-567 0424

* Includes large black anodised heatsink-no further heatsinks required.
\star Top grade glass-fibre P.C.B.
* Uses high quality components.
* Fully protected-short/open circuit proof.
\star Only 5 external connections.
\star Fully guaranteed.

TECHNICAL SPECIFICATIONS

\star Power output

* Distortion
* Frequency response
* Signal to noise
\star Input sensitivity
* input impedance
\star Supply volts

106W R.M.S. Into 8Ω
0.8% at full O/P. Typ. 0.4\%
$15 \mathrm{~Hz}-23 \mathrm{kHz}$
Better than-96dB
OdB (0.775V)
$10 \mathrm{k} \Omega$
45-0-45V

Price $\{15.12$ inc. VAT. (ready built)
OR
Complete kit (including P.C.B. and all components) £11.88 inc. VAT. Enclose 50p postage \& packing. . Power supply for HE 100 (including transformer, capacitors, rectifier) 88.95 inc. VAT. Postage \& packing 85p.

Pre-amps etc., also available. SAE for details.

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now. With over 10 years' experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to 'play itself' in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix"' patching system makes other patching a thing of the past! Send just 15p for full catalogue to:

254 RIngwood Road, Ferndown

 Dorset BH22 9AR
Dimmit

range of light dimmers and lighting control systems

Illustrated is the popular PMSD 1000 module. A 1000 W professional quality dimmer, professional quality dimmer,
linear operation, interference suppressed, 60 mm slider range, size $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low cost stage and disco lighting. Used by schools, theatres, studio, etc. Complete with scale plate, fixing screws and full instructions. $£ 7.25$ inc. VAT and P. \& P.

Illustrated is the DD61 dimmer system. Contains: six 1000W slider dimmers type PD1000, six outlet sockets, a master control and a mains on off switch. Size $59 \times 22 \times 12 \mathrm{~cm}$. A complete system in one unit for stage or discolighting, etc. Oth'er systems available with 1000 W or 2000 W dimmers with 2 -preset and master controls.

The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for industrial heating applications, eic. Rotary and slider control versions. Ratings: 1000W; 2000 W ; 3000 W ; 110 V and 240 V .

Model SL800 sound to light converter. Modulates the light in time with sound. Built in microphone. Just place unit near any sound source -radio, hi-fi, TV, human voice, etc. No connections to speaker required, simple wiring-similar to dimmer. Rating 800 W . Complete with sull instructions

For full information on all modules and lighting control systems send 15 p for our illustrated catalogue and price list. Personal callers welcome, visit our showroom for demonstration of any of the modules or systems.
YOUNG ELECTRONICS LTD.
184 Royal College Street, London NW1 9NN.
Tel. 01-267 0201

NOW AT 267 \& 270 ACTON LANE, LONDON WA 5DG

AUDIO ACCESSORY SHOP, 17 TURNHAM GREEN TERRACE, CHISWICK, W. 4

All mail order and enquiries to 270 Acton Lane Tel. 01-994 6275

SYNCHRONOUS STEPPING MOTOR Type SSt5 These fine motors are easily reversed starting and stop		
		freet P \& P ovar io
		com
	and 	ments, it is no invoice goods under $£ 5$. Therefore, please remit cash with orders below this amount.

ELECTRO-TECH components LTd.

315/317, EDGWARE ROAD,
LONDON, W2.
Tel: 01-723 5667 01-402 5580

Pructicul Electronics Classified Advertisements

RATES: 11 p per word (minimum 12 words). Box No. 30 p extra. Semi-Display $£ 8.50$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

RECEIVERS AND COMPONENTS

> COMPONENTS GALORE. Pack of 500 mixed components manufacturers' surplus plus fall out. Pack includes resisiors, carbon and W.W., capacitors, various, transistors, diodes, trimmers, potentiometers, etc.
> Send \&I plus $15 p$ P.\& \&. C.W.O. To: CASCADE COMRONENTS COMPANY Bankhead Farm, Soyth Queensferry, West Lothian

BRAND NEW COMPONENTS BY RETURN, Electrolytics, $15 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47,1,2,2$, $4.7,10 \mathrm{mF}, 4 \mathrm{p} ; 22,47,41 \mathrm{p} ;(50 \mathrm{~V}, 5 \mathrm{p}) ; 100$, ${ }_{52} \mathrm{p} ;(50 \mathrm{~V}, 7 \mathrm{p}) ; 220,6 \mathrm{p} ;(50 \mathrm{~V}, 9 \mathrm{p})$. Subminiature bead-type tantalunis $0 \cdot 1 / 35 \mathrm{~V}, 0 \cdot 22 \cdot 35 \mathrm{~V}$, $0.47 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V}, 2.2 / 35 \mathrm{~V}, 4.7 / 35 \mathrm{~V}, 10 / 16 \mathrm{~V}$ $22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 9 \mathrm{p}$. Mylar Film 100 V $0.001,0.002,0.005,0.01,0.02,2 \frac{2}{2} ; 0.04,0.05$, 3p. Mullard Tubular Polyester 400 V EB series, $0.001-0.022,3 p ; 0.033-0.1$, 4 p . Mullard miniature C333 ceramics E. 12 series $2 \% 1.8 \mathrm{pF}$ 47pF, $2 \frac{1}{2} \mathrm{p} ; 56 \mathrm{pF}-330 \mathrm{pF}, 3 \mathrm{p}$. Polystyrene 63V E12 8eries $10 \mathrm{pF}-1000 \mathrm{pF}, 21 \mathrm{p}$; $1200 \mathrm{pF}-$
$10000 \mathrm{pF}, 3 \frac{1}{2} \mathrm{p}$. Miniature Highstab Carbon Film $10000 \mathrm{pF}, 3 \frac{1}{2}$ p. Miniature Highstab Carbon Film
Resistors $\frac{1}{1 W}$ E12 series $5 \% 1 \Omega-10 \mathrm{M} \Omega(10 \%$
 inclusive. THE C.R. SUPPLI CO., 127 Chesterfield Road, Sheffield, $\$ 8$ ORN.

3ass. M.C. Meters $51.30(30 \mathrm{p})$. Firat Grade C/Ciad Fibre Glass
 41 I 1 in. 3 for £1; post paid. T.V. Convergence Panel. $2 x$ AC12e. 3 aiugged coils. 3 alide awitches. 11 W.W. Pote.
 Pg, 100 s/mice caps, 78p, e.p. Send $10 p$
plus panels. otc. Rafund on purchase.

0
J.W.B. RADIO

2 Barntleld Crescent, Sale. Chumbre M33 1NL
Postage in brackets
RE8I8TOR8. $\frac{1}{2}$ W Carbon Film, Type UPM 050 1 peach phus VAT, post free. GREENBANK ELECTRONICS, 94 New Chester Road, Wirral, Merseyside, L62 5AG.

TURN YOUR 8URPLU8 capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement.

PRECISION POLYCARBONATE CAPACITORS

ALL HIGH STABILITY-EXTREMELY LOW LEAKAGE 440 V AC ($\pm 10 \%$)

-	50p 59 p			p 36p
0.25	62p	$1 \cdot 0 \mu$	68 D	58p 46p
$0.47 \mu \mathrm{~F}$ (1) ${ }^{\text {* }}$ X	71p	$2 \cdot 2 \mu$	80	65 p 55p
$5 \mu \mathrm{~F}$ (11*×	75 p	4.7μ	81.80	1.0585
$68 \mu \mathrm{~F}$ ($\mathbf{2}^{\prime \prime} \times{ }^{\prime \prime}$	80p	$6.8 \mu \mathrm{~F}$	21.64	$\mathbf{2 1 . 2 9 ~} \mathbf{2 1 . 0 9}$
$1.0 \mu \mathrm{~F}$ ($2^{\prime \prime} \times \frac{1}{1}$	91p	$10.0 \mu \mathrm{~F}$	42.00	$\mathbf{1 . 6 0}$:1.40
${ }^{2} \cdot 0 \mu \mathrm{~F}$ ($\mathbf{2}^{\prime \prime} \times 1^{\prime \prime}$)	21.22	$15.0 \mu \mathrm{~F}$	22.75	22.15 81.9

TANTALUM BEAD CAPACITORS-Values available $10.0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 35 V $33 \cdot 0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100 \cdot 0 \mu \mathrm{~F}$ at 3 V . ALL at 10 p each. 10 for $95 \mathrm{p}, 50$ for 84.

TRANBI8TORS: \mid BC183/183L 11p|rys 20 pFY \begin{tabular}{lr|ll|ll}
BC107/8/9 \& 8p \& BC184/184L \& 18 p \& BFY \& B1

BC114 \& 12 p \& BC212/212L \& 14 p \& BFY 52 \& 20 p

BC

BC114 \& 12 p \& BC212/212L \& 14 p \& BFY52 \& 20 p

BC147/8/9 \& 10 p \& BC547/558A \& 12 p \& AF178 \& 30 p

BC153/7/8 \& 12 p \& BF194 \& 12 p \& OC71 \& 12 p

BC153/7/8 \& $12 p$ \& BF194 \& $12 p$ \& 0C71 \& 12p

BC182/182L \& $11 p$ \& BF197 \& 18p \& 2N3055 \& 50 p
\end{tabular} POPULAR DIODES-1N914 6p, 8 for $45 \mathrm{p}, 18$ for 90 p IN916 8p, 6 for $45 p, 14$ for $90 p ; 18445 p, 11$ for $50 p, 24$ for

il: $1 \mathrm{~N} 41485 \mathrm{p}, 6$ for $27 \mathrm{p}, 12$ for 48 p ; IN4001 5 p ; IN4002 6p. IN 4003 6 pp; IN 40047 p ; IN 40057 pp ; IN 40068 p ; IN 40078 8p.
LOW PRICE ZENER DIODES -400 mW , Tol. $\pm 5 \%$ at 5 mA . Values ayailable: $3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V}$, $6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}$ 7 p each, 6 for 89 p 14 tor 84 p . SPECIAL OFFER: 100 7 D each, 6 for 30
Zeners for 25.50 .
RERSISTORS-Hjgh stability, low noise carbon film 5% $+W$ at $40^{\circ} \mathrm{C}$, iW at $70^{\circ} \mathrm{C}$. E12 series only-from $2 \cdot 2 \Omega$ to for 100 of any one value. SPECIAL PACK: 10 of each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ (730 resiators) ${ }^{2} 5$.
sILICON PLASTIC RECTIFIERS- 1.5 amp, brand new
wire ended DO27: 100 P.I.V. 7 p (4 for 26 p); 400 PIV. 8 p wire ended DO27: 100 P.I.V. $7 \mathrm{p}(4$ for 26 p); 400 P.I.V. 8 D (4 for 80 p); 800 P.I.V. 11 p (4 for 42 p).
BRIDGE RECTIFIERS- 21 amp: 200 V
BRIDGE RECTIFIERS- $21 \mathrm{mmp}: 200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$; 600 V 5 D
UBMIMIATURE FERTICAL PRERETS-0.IW only 5M, 1k $\Omega, 2 \cdot 2 \mathrm{k} \Omega=4.7 \mathrm{k} \Omega \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 2.5 \mathrm{M}$ $5 M \mathrm{k}, 1 \mathrm{k} \Omega, 2 \cdot 2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 6 \cdot 8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$ PLEASE ADD 10 p POST AND PACKING ON ALL ORDERS BELOW E5. ALL EXPORT ORDERS ADD COBT OF SEA/AIRMAIL.

PLEASE ADD 8\% V.A.T. TO ORDERS
Send S.A.E. for tiats of additional ex-stock items.

MARCO TRADING

Dept. E.1, The Old school, Edetaston.

Tel.: Whixall 464/465 (STD 0948 72)
(Proprs.: Minicost Trading Ltd.)

R.T. SERVICES

(MAIL ORDER ONLY)
77 Hayfield Rd., Salford 6, Lancs. 12 Volt I Amp Trickle Charger. Al.85 P.P. FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\mathrm{fl} \cdot 37 \frac{1}{2}$ inc. P.P.
Crouzet Geared Motors, 30 r.p.m. New E1.54 inc. P.P.
UHF TV Tuners. Transistorised, fl. 65 inc. P.P.
Panels with I.C's on $7 \frac{1}{2} p$ per I.C. min. order 10 I.C's.
Transformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V} \frac{1}{2} \mathrm{~A}$, fl inc. $\mathrm{P} . \mathrm{P}$ $12-0.12 \mathrm{~V}, 100 \mathrm{~mA}, \& 1 \cdot 10$ inc. P.P. $9-0-9 \mathrm{~V}$ 100 mA , $11 \cdot 10$ inc. P.P. 29 V 50 mA , 85 p inc. P.P. $6-0-6 \mathrm{~V}, 100 \mathrm{~mA}$, $1 \cdot 10$ inc. P.P.
Brand new Boxed Rola Celestion Re entrant Speakers SD 25 with 100 V line trans former fitted 15Ω without transformer $\mathbf{K} 14$ inc. P.P.
Transformer. 20 volt, I amp, fl•10 P.P
Transformer. 45 volt, 2 amp, 22.75 P.P.
Pot Cores. LA1225. Brand new. 4 for El-10 P.P.
P.C. Board.S/S, $5 \frac{1}{2} \times 5 \frac{1}{2}$ in, 10 for 85 p inc. P.P. 3EGI Scope Tubes with base and connections, $\mathbf{3}$ inc. P.P.
Transistorised Timer. Variable delay. 110 or 250 V A.C, input. With instructions. Power Unit Components Transformer 18 volt I amp F/W bridge reccifier, 21250 18 volt amp FjW bridge receifier, 21250
mfd capacitors, all new $\mathrm{El} \cdot 25$ per kit. P.P. mfd capacitors, all new $\mathrm{El} \cdot \mathbf{2 5}$ per kit. P.P.
Electrolytic, Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$,
$4 \frac{1}{2} x+75$ p.ine. P.P.
Mixed Pack of C 280 series Mullard capacitors, 100 for $\mathrm{Et} \cdot 15$ inc. P.P.
4 Panels each with XN3 type Nixie tube ON $1.65^{\text {tinc. P.P. Mina order } 4 .}$

TTL AT LOW PRICES!

"EX-EQUIPMENT COMPONENTS. Indicators modiflable to aerial direction monitors, chokes, relays, switches, instruments, fuseholders, push buttons, caps., etc. S.A.E. for list. ELDITN ELECTRONICS, 16 Raven Road, Timperley, ('heshire.'

A.C. DELCO BUZZER8 $12 \mathrm{~V}, 100 \mathrm{~mA}$ approx lin. Lucar blade terninations, 95p each post paid. CWO. FELLOWS, 1 Park Crescent Doveridge, Derby, DE6 5NE. Tel, 088-93 3060.

DRY REED INSERTS

Overali lenggh 1.85° (Body lengzh $1.1^{\prime \prime}$). Diameter 0.14°. Max. ratings $250 v$ D.C. and 500 mA . Gold clad normally open contacts. 69p per dozen; $\mathbf{6 4 \cdot 1 2}$ per 100 ; $£ 30-25$ per 1,000 ;
$\mathbf{6 2 7 5}$ per 10,000 . VAT and pose paid.

G W MADIO LTD
$40 / 42$ Portland Road. Worthing. Sumex 090334897

SERVICE SHEETS

BELL'S TELEVISION SERVICES for service sheets, manuals, books on radios, T.V.s, etc. Nervice sheets 40 p plus S.A.E. Free book lists on request. Back issues of P.W., P.E., E.E., TV available $25 p$ plus $7 p$ post. S.A.E. with encuiries: B.T.S. (Mail Order Dept.), 190 Kings Road, Harrogate, Yorks. Telephone (0423) 55885.

SERVICE SHEET8 for over 6000 models of Televisions, Radios, Transistors, Stereo, Tape Recorders, Record Players, etc., at only $30 p_{0}$ plus S.A.E. with free Fault-Finding Guide. Over 50,000 sheets in stock for 10,000 models. S.A.E. enquiries. Catalogue 200 plus S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex. Telephone Hastings 429066.

SERVICE SHEET8, Radio, TV, etc. 8,000 models. Catalogue 20p. S.A.E. enquiries. TELRAY, 11 Maudland Bank, Preston.

your practical experience into a career in Technical Sales

Our specialist sales support team provides a complete technical sales service to industrial and research laboratories. Some of our latest scientific weighing apparatus incorporates sophisticated electronic equipment and this is where your background comes in.
As long as you can understand the technical capabilities of our advanced equipment then we can train you to sell it.
The training is tough, so are our standards, that's why we are only looking for those who can be highly professional in this specialised and individual field of selling.
As well as a technical background in electronics we are looking for good organisation ability and plenty of self motivation.
In return we offer excellent opportunities to develop into management. Benefits include a Cortina 1600 Estate.
Write to your potential boss - W. Fergus Roy, Sales and Marketing Director, A. Gallenkamp \& Co. Ltd., Christopher Street, London EC2P 2ER.

Europe's largest laboratory supply house

MEN! S70 p.w. can be yours

Jobs galore! Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks! Pay prospects? $£ 3,500+$ p.a. You know you can rely on us as we are the only computer school recognised by the Government backed National Computing Centre.
After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators Training Centre Y31, Oxford Hse. 9-15 Oxford St., W.1.Tel. 01-734 2874

METER REPAIR8. Ammeters, voltmeters multi-range meters, etc. Send to METER, REPAIRS, 21 Mount Road, Thundersley, Benfleet, Essex, ss7 IHA.

FOR 8ALE

SEEN MY CAT? 5,000 ltems. Mechanical and Electrlcal Gear, and materlals. S.A.E. K. R. WHISTON, Dept. PE, New Mills, Stockport.

VALVE8, VALVE8 AND MORE VALVE8. Large stocks 1930-1974, many obsolete. Also available many types of transistors and styli. Price lists available 15p. COX RADIO, The Parade, East Wittering, Sussex. West Wittering 2023.

BEAUTIFUL P.E. "GEMINI" AMPLIFIER all components as specifled by designers in reconmended cases built and working, 240 . Buyer Collects. Tel, 0702 77189 evenings. Box 57.
P.E. SYNTHESI8ER PROJECT. Brand new unbuilt keyboard and most components available, Send S.A.E. for details, FRANK MORTON, 65 Malmsey House, Vauxhall Street, London, SE11 5LU
P.E. JAN. 1968 TOO JULY 1974 (4 missing)* Offers. Tel. Egham (Surrey) 2234.

8OLATRON DOUBLE BEAM O8CILLOSCOPE. Type CD1400 incorporating amplifiers. Type CX1441 bandwidth to $15 \mathrm{Mc} / \mathrm{s}$. 885 O .N.O. Maidenhead 31339.

EAGLE K1400 AVOMETER for sale. New, under guarantee, £32. Write J. MVERE, 208 Sussex Gardens, London, W2.

3in. 08cILLO8COPE hone built but little used, e20. Bramley, Eastrille, Eastfleld, Pickering. Tel. $73270 \mathrm{~W} / \mathrm{Es}$ only.

LADDERS

LADDER8, timber and aluminium. Tel, Telford 586644 for brochure.

B00K8 AND PUBLICATIONS

ELECTRONIC8 MEN. You are worth more than a measly $£ 40$ or $£ 50$ a week. Last year I earned $£ 3,600$ for six months work, the other six I had off. You could do similar, my booklet explains how. It's $65 p$ from ALBEN, 3 Church explains how. It's 65 p fr
Street, Diss, IP22 3DD.

YOU NEED
 COMPREHENSIVE TV REPAIR MANUALS

Colour TV 2—ITT/KB to 1973 plus foreign; inc. Sony, Nordmende, etc. Colour TV 1-All other British manufacturers models to end 1973. Mono TV 1-British sets to end 1973 covering from Alba to Ultra. Mono TV 2-All Philips. Pye. Ekco and RBM models to end of 1973. Mono TV 3-Due winter. Main British and Foreign portables used in UK Full money back assurance. Thousands of faults-hundreds of models. All written in a practical, easy to follow symptom, cause and cure style. Invaluable to amateurs and students as well as to practising engineers. Written for minimum use of instrumentation. $£ 3$ each ($\mathbf{P} . \& \mathbf{P} .35$ p under 4).
SPECIAL OFFER TO READERS: First two mono and colour for $\mathbf{f 1 1}$.
COLOUR TV SIGNAL INJECTOR. A portable instrument capable of replacing both oscilloscope and colour bar generator. Traces quickly and simply faulty components, etc. Complete manufacturing instructions with full operating procedures. Manual price $£ 1.20$ (P. \& P. 10p). printed circuit 75p post free. Easily made in under an hour.

TV TECHNIC PUBLICATIONS

Freepost, Larkhall, Lanarkshire, Scotland ML9 1BR No postage needed

SINTEL
add 10p P. \& P. for ordera under E 2 Data. and cifeulte where appropriste. eupplied with orders, or avaliable separately $(4 t p$ stamp anch).
3 Digit DIP LED calculator display $\quad \varepsilon 1.20-$ VAT $=81.20$
 8end for our now elmple MK50250N clrcutt diegrame Soldercon IC sockel pine - 300 ping for $\$ 1.50+$ VAT $=\$ 1.62$ MK50250N $+4 \times$ DLPO4 0 3in $\begin{aligned} & 1.000 \text { pins for } £ 4.00-\text { VAT }\end{aligned}=\$ 4.32$ MK50256N + $4 \times$ DLPO4 0 3in LED \& $\quad £ 10 \cdot 20-$ VAT $=£ 11.01$ Complete circuils and spacisal pricet for
Minitrons or SP352
N.

SINTEL, 53B ASTON STREET. OXFOMO. Tel (0805) 43203

PRINTED OIRCUIT MANUFACTURER8 offer any P.E. Project P.O. ready drilled. One Price 65p. C.W.O. Also P.C. production, Design, Art-Work and Photography undertaken. Send basic circuit, P.C. layout or P.C. Master stating quantity required for estimate Master starn or Phone: W.K.F. EL,ECTRONICS, Dy return or Phone: W.K.F. Welbeck Street, Whitwell, WorkDept. P.C., Welbeck Street, Whitwell, Work-
sop, Nott's., 580 4TW. Telephone Whitwell (Derbys) 695 .

THE CHIP8 ARE DOWN! AY-5-1224 digital clock chip now 83.95 inc. VAT, post free. Circuit and details B.A.E. GREENBANK ELECTRONICS, Dept, 320, 94 New Chester Road, Wirral, Merseyside, L62 5 AG .

PSYCHEDELICATESSEN

is the only way to describe the paradise of FREAKY gear now available from Boffin. LOOK!
Kits

NO LICENCE EXAM, Transmitter/ Receiver
Variable-rate, BRIGHT-FLASH, Pocket
$\mathbf{~} 6.90$
Mini-Srrobe
$\mathbf{V 2 . 9 0}$
Ready-Made Experimental Modules
Maxi-Volt SPARK GENERATOR (1 inch spark), 15,000 Voles.
Mini DREAM-LABORATORY
SENSITIVE non-anatomical electronic
STETHOSCOPE
Electronic 'VOICE-THROWER'
Electronic VUTING AID
GHOST-HUNTING AID
SPEAK-THRU-WATER-FONE
PSYCHEDELIC MEDITATION AID Bird-Watchers' REMOTE MONITOR Psychological CROSS-EYED EARS Pycholog 83.20
$\mathbf{~} 3.10$
$\begin{array}{ll}\text { 'Big Ear' SOUND-CATCHER } & \mathbf{6 6} 40 \\ \mathbf{4} 20\end{array}$
(All prices include VAT, packing \& postage)
Send remittance to:
BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh Ewell, Surrey (Mail order U.K. only)
Or for more details, send 20p for lists, plus free design project sheet

AERIAL BOOSTER8 83. We make three types of aerial boosters: L45-UHF625, L12-VHF405, L11-VHF radio. TELEVISION VALVES. Most types. Any $545 p$. S.A.E. leaflets. LANCASHIRE MAILORDER, 6 William Street, Stubbins, Ramsbottom, Bury, Lancs.

MORE RANGES FOR LESS MONEY!
AC/OC Multimeter type U4324
A.DC 0.06-3A-6 Ranges.
$A-A C \quad 0 \cdot 3-3 A-5$ Ranges.
$V-D C O \cdot G-1200 ~ V-9$ Rang
$\mathrm{V}-\mathrm{AC} 3-900 \mathrm{~V}-8$ Ranges.
Frequency in the range of 45 to
20 kHz . Resitunce: 500 onm 20 kHz . Resiatunce: 500 ohm to
$5 \mathrm{Mohm}-5$ rance: 5 Mohm-5 renges. Docibot: - 10 to +1208 . Accuracy:
$+4 \% \mathrm{AC}$. Dimenalo
\times.
$\times 63 \mathrm{~mm}$.
only $£ 8.85$

SUPERTESTER 680 RICE 20.000 Ohm per Volt sensitivity
. Fully acreened against external magnatic fielas Scale width and mall case dimensions (128 x $95 \times 32 \mathrm{~mm})$ Accuracy and
stability $(1 \%$ in D.C. 2% in A.C. atability (1% in D.C.. 2\% in A.C.) and enen of uso and readability - 1.000 times overloed Printed
circuit board is removable without

£18.50

 other meter. Ask for free catalogue Accessorias avalible to convert Supartester 6B0R into following: SIGNAL INJECTOR. GAUSS METER, ELECTRONIC VOLTMETER. AMPERCLAMP, TRANSIS. TOA TESTER. TENPERATURE PROBE. PHASESEOUENCE INDICATOR-Send tor detalls.
ALPHANUMERIC NIXIE TUBES 87971
The Alphanumeric
NIXIE tube has the
ability to display
ability to display
the alphabet
numerais 0 thru 9
and spectal
characters in a
single
From the standpoint of both readability and elec-
trical characteris.
tics. the Alpha.

numeric NIXIE tube provides many unique bensfits including * $17 \mathrm{~V} \cdot 21 \mathrm{~mA}$ * All d c. operation * Unitorm. continuous line characters of qual height \star Memory with simple soiid state drive circuits t Readsbility in high ambient light 200 footlamberts brightnass * Long lite

Beses for above 50p each.
Price only 99p each plu: 16p P./P.

JUST ARRIVED!!

NUMERIC INDICATOR TUBES
Ulitra tong ilite high quality, $0-9$ and 2 independent deei mal points. Supply voltage 200 V d.c. Current 14 mA Pulso duration 100 us Character height 0.51 . overai Birze 1.4
Brand
Brand new, guaranteed. Surplus to manufacturer a requirements Type B5853s
$1-25 \varepsilon 1 \cdot 00 ; 25+90 p ; 100+80 p ;$
$1,000+$ price on application.
add 8\% VAT to all homs + 35p Pap
ELECTRONIC BROKERS LTD
49-53 Pancras Road, London NW1 208 Tel. 01-837 7781

AUDIOsCAN, the "do-it-yourself" speaker mail-order specialists. High fidelity speaker kits, chassis units, somnd absorbent, grille fabric and much more. Send $7 p$ in stamps for bargain list to: AUDios(AN, Dept. J'iss, 4 Princes Square, Harrogate, lorkshire.

SUPERB INSTRUMENT CASES by Bazelli, manufactured from heary duty P.i. (C. faced steel. Hundreds of radio, electronic and hi-fi pnthusiasts are choosing the case they require from our range of over 200 models. Generous trade discount. Prompt despatch. Free literature, BAZELLI, Department So. 23, st. Wilfrid's, loundry Lane, Halton, Lancaster, LA2 6LT.

[^6]
fibre optic suppliers

MARE's ralle. Bulld decorative display with this professionally finished unit, $221 n$
fibres. Looke immaculate. Es-70.
FIEAOFLEX SIZE 1. Floxtble 440 atrand glase light conduit, bunde dis 1.14 mm . 40p per metre ($\mathbf{5 3}$ per 10 m)
FIBROFLEX 8IZE 4.2 .28 mm bundio dia. IT. 50 per metre (I12 per 10m).
CROFON 1510.64 -strand plattc light condult, bundle dia. $1.8 \mathrm{~mm}, 0 . \mathrm{D} .3 \cdot 3 \mathrm{~mm} .51 \cdot 20$ par motre ($\Sigma 5 \cdot 30$ per 10 m) PLASTIC OPTICAL MONOFIBRE. FOR muttiple Illumination
optical coupling. otc.
FP20 10.5 mm die. 50 p per 10 m : E 4 per 100 m
FP40 (1 mm dla.) $\mathrm{E2} \cdot 20$ per 10 m ; c 14 per 100 m
FP60 (t.5mm dia)OPTIKIt 103. Containe 2 m Crofon 1610 plus 5 m each FP20,
FP40. FP60 plus pollshing compound A handy pack for the experimenter $\mathrm{C4} .70$.
LENSES AND REFLECTORS. We stock a range of 6 lensen and 5 rellectors for use in proximity delectors. Intruder detectors. batch counters. tachometers. short renge optical communications.
OPTIKIT LE. 1 ench ot 6 lenses. $\mathbf{2} \mathbf{2} 50$.
OPTKIIT RAS. 1 bech of 5 reflectors. E1.50.
CIRCULAR POLAAISERS. Cut that glare Reduce apecular roffection by up to $20 \times$-onhance contrast on cris. LED
 green/neutral 50 mm square siop: 75 mm 玉1.20; 150 mm \& LINEAA POLAMISER8. For light valves. strost annlyals.
type HN32. Type KN42 is for high temp. use in projectors. type HN32. Type KN42 is for high tomp. use in projectors, circular polarlisers.
LIGHT SOURCES ANO DETECTOR8: MV54 Minlature $(2 \mathrm{~mm})$ Red LED. $20 \mathrm{p}(10+18 \mathrm{p})$. MLEOS00 TO92 Red LED.
 Photodarlington Sllicon Detector. gain $\times 2.500$, 50p $(10+45 p)$, MRD 150 silicon Phototransiator-high speed. 4us good sénsitivity. 70p ($10+67 p$).
*NEW MLsze3. Latest Motorola Light Actlvated SCA. High sensitivity $10 \mathrm{~mW} / \mathrm{cm}^{2}:$ hign current 400 mA (5 A peak)
sov. Switch mall motori or relay direct from optical 60 V . Switch tmall motore or relay direct from optica
control. up to 24 W power $\mathrm{EN} \cdot 20(10+\mathrm{E1} \cdot 10)$. CONTIO UD SEOSB ULTRASONIC TM
40 kHz . Tx/Rx palr, E3. 50 .

Plosese add 8% VAT to prices above
Send $91 n \times 6$ in S.A.E. for short form list

FIBRE OPTIC SUPPLIERS

(Dept. PE), P.O. Box 702
London W10 6SL

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236 .

P.C. BOARDS FOR THE P.E. CCTV

 CAMERAManufactured from highest grade glass fibre material, drilled, roller tinned and ready to assemble.

PCBI- $\mathrm{Cl} \cdot 10$ plus 9p VAT
PCB2-90p plus $7 p$ VAT.
Or supplied cut to size but undrilled. $\mathbf{4} 1 \cdot 25$ the pair plus 12p VAT. All Post Eree.

WASCO ELECTRONICS
Queen Street, Lancaster LAIIRX

P.C. ETCHING KIT

Contains 100 sq in copper laminate board. Dalo etch reaist pen. itb terric chloride, etching dish. abrasive cleaner. and instructions. all for onty $£ 3 \cdot 30$.
RESISTORS AND CAPACITORS
500 ASSORTED RESISTORS. $51.35 ; 2.500$. E5. 200 poly. mice. ceramic capacitors. E1. 250 hi-atad resistors, $1 \%, 2 \%$ and 5\%, 51.20 . 15 ditferent airspaced and compression trimmers up to $1,250 \mathrm{pF}$. $\mathrm{E1}$.

VEROBOARD

too sq. in assorted sizes and pitches. About 8 pieces, $\mathbf{\varepsilon 1} \cdot 10$. 3W TAPE AMPLIFIERS
Polished wooden cabinat $14 \times 13 \times 9$ in containing a sanaltive (20uV) 4-valve ampilfier with tone and volume controls: 3 watts output to the 7×4 n. 3n loudspeaker. Also a nonstandard tape deck. Supplied in good working condition with circuit. Standard mains operation, I4.50. Suitabie 75 c . Amplifier chassis only, complato and tostod $(2 \times$ ECC83. EL84, EZ80) and speaker. \&3.
VERSATILE POWER SUPPLY
Contains mains transtormer, 2 amp thermal cut-out and bridge rectitior in neat plastic case. Will give $1-7-70.5 \mathrm{~V}$
output with 2 extra capacitors (provided). Supolied complete with date sheet. Only $51 \cdot 20$.

SPECIAL OFFER OF 741s

Full spec. solldev devices 8-pin DIL
10 for $£ 2 \cdot 60 ; 25$ for $\Sigma 5 \cdot 75$; 100 for E21.

AMERICAN II-POWER LOUSPPEAKERS

These powerful loudspeakers are ideal for disco, organ, P.A., guitar, etc., and are available in 8 or 16 hm versions. The ' C ' types incorporate an aluminium centre dome which extends the treble response.
MI2A. 12" 50W R.M.S. ... \&19.50
MI2C. 12" 50W R.M.S. ... $£ 21.00$
MI5E. $15^{\prime \prime}$ IOOW R.M.S. ... $£ 32 \cdot 40$
MI5C. 15" IOOW R.M.S. ... $634 \cdot 00$
Please state whether 8 or 16 ohm required when ordering.
All prices include V.A.T. and carriage.
Mail order to:

N. M. MUSIC

36 Ipswich Road • Debenham Stowmarket • Suffolk IPI4 6BH

8LOW 8PEED MOTOR8 required (about 1 r.p.m.) any quantity considered. Phone Mr. SMITH, $061-6333527$.

HARDWARE. Comprehensive range of screws, nuts, washers, etc. in small quantities, and many useful constructors' items. Sheet aluminium to individual requirements, punched, drilled, etc. Fascia panels, dials, nameplates in etched aluminium. Printed circuit boards for this magazine, and other individual requirements, one-off's and small rums. Machine engraving in metals and plastics, contour nilling. Send $24 t p$ stamps for catalogue. IAMAR CONSTAUOTOR SERVICES, Masons Road, stratford on Ayon. Warwicks, CV37 9NF.

\section*{ENAMELLED COPPER WIRE
 | s.W.G. | 116 Reel | llb Reel |
| :---: | :---: | :---: |
| 10-14 | 61.90 | ${ }_{6} 1.05$ |
| 15-19 | \$2.00 | \&1.10 |
| 20-24 | 62.05 | C1.13 |
| 25-29 | E2. 10 | <1. 20 |
| 30-34 | 62. 20 | 61.28 |
| 35-40 | ¢2.35 | ¢1.35 |

COPPER SUPPLIES

102 Parrswood Rd., Withington, Manchester 20 Telephone 061-2243533

P.O. AMPLIFIER UNIT

Contained in steal case $5 \ddagger \times 5 \times 3$ in are 2 GET116 rran. siators on hear sinks. 3 pot cores. 2 ave zeners. 4 sudio tranatormers. 1% resistors and capacitors with circuit diagram. E 1

71b BARGAIN PARCELS

Hundreds of new components-pots. resistors. capecitors. switches plus P.C. boards with transistors and diodes. Also loads of odds and ands, Contenta always changing as new
stocks arrive. Amazing value at $£ 2 \cdot 30$.

COMPUTER PANELS

31b as sorted £1, 40; 710 £2.85; 5610 £15. Pack: containing 500 components. including at loast 50 transistors, sop. 12 high quality paneis with power tran sistors. trimpots. ICs, etc.. 2.50. Pack with 20 trimpols ius other per 24 FCH181 or (MC1818), 11

MISCELLANEOUS

Transformers (all mains pri.); $16-0-16 \mathrm{~V}$ with 9 V tap at $1+\mathrm{A}$. £2; $6-0-6 \mathrm{~V}$ at 100 mA . $85 \mathrm{p} ; 9-0-9 \mathrm{~V}$ at 100 mA 80p; $12-0-12 \mathrm{~V}$ at 100 mA . 95 p . Balanced armature oirpiece. use as mic.

 FERRIC CHLORIDE
Anhydrous technical quality to Mil-spec in lib double sealed packs. IID sop; 31b £1. 60 ; 101b $£ 4$-45; $1001 \mathrm{~L} £ 33$.

SUAPLUS COMPONENTS AND EQUIPMENT WANTED FOR CASH.

All prlewe quoted include vat and postage (mainiand onty) B.A.E. Het, anquirios

GREENWELD ELECTRONICS (PE10)

Mail Order Dept., wholesale/retail shop: 51 Shirley Park Road, Southampton SO1 4FX (Tel. (0703)
772501). Other retail shops at: 21 Deptford Broadway SE8 (Tel. 01-692 2009), and 38 Lower Addiscombe Road, Croydon (Tel. 01-688 2950)

Build the Mullard C.C.T.V. Camera Kits are now available with comprehensive construction manual (also available separately at 80p) SEND $5^{*} \times 7^{*}$ S.A.E. FOR DETAILS TO: CROFTON ELECTRONICS 124 Colne Road, Twickenham Middlesex TW2 6aS

EDUCATIONAL

TELEVISION TRAINING

I6 MONTHS' full-time practical and theoretical trainIng course in Radio and TV Servicing (Mono and Colour) for beginners.
I3 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.

NEXT SESSION commences on January 2nd.
Prospectus from London Electronics College, Dept. AI, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

WANTED

TOP PRICES PAID

NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.

4-Station Transistor Intercom system (I master and a subs), in robust plastic cabinets for desk or wall mounting. Call/talk/Iisten from Matter to Subs and 8 abs to Master. Ideally suitable for Business, surgery, Bchools, Hospital, Office and Home. Operates on one 9 V battery. Onjoff switch. Volume control Complete with 3 connecting wires each 661t and
other accessorles. P, \& P. 50 p . P. \& P. 50 p

MAINS INTERCOM (new model) No batteries-no wires. Just plug in the malns for instant two-way, loud and clear communication On/off switch and volume control with lock system

£6.50
Same as 4 -Station Intercom for two-way Instant communication. Ideal as Baby Alarm and Door
Phone. Complete with 66 ft connecting wire. Phone. Complete with 66 ft connecting wir
Complete with battery. P. P . 40 p . Complete with battery. P. \& P. 40p.
 eiency with thts incredible Telephone Amplifier. Take down long telephone messages or converse Without holding the handset. A useful once aid. On of switch. Volume control. Complete with battery,
P. \& P. 30 p. Full price refunded If not satisfled In P. \& P. 30p. Full price retunded if not sas (PETH
days.
WEST LOKDON DIRECT SUPPLIES (PE/I)

WEST LONDON DIRECT SUPPLIES (PE/1)
169 KENBLITTON HIGH 8TREET, LONDON. W.

COMPONENT KITS NOW AVAILABLE. $4 \frac{1}{2} \mathrm{P}$ STAMP BRING DETAILS. ASK ALSO FOR "POWER SLAVE" DETAILS.

Exclusive to Eaton Audio. PE minisonic demonstration cassettes. Hear the sounds produced at the Audio Fair 1974. C20 Morio Cassettes.
\& 1.15 each inc. VAT\& postage

NEW SINCLAIR IC20
Migh power IC audio amplifier $\quad \mathbf{1 8} .45 \quad$ ($£ 1.05$)

DELUXE KIT FOR THE IC12

Includes all parts for the printed circuit and volume. bass and treble controls needed to complete the mono version $\varepsilon 1 \cdot 70$ (26p). Stereo model with balance control £ 3.70 (43 p).
IC12 POWER KIT
Supplies 2av 0.5A £2.97 (52p)
LOUDSPEAKERS FOR THE IC12

PREAMP KITS FOR THE IC12
Type 1 for magnatlc pickups, mics and tuners. Mono model, £1-40 (25p). Stereo model, $£ 2 \cdot 50$ (33p). Type 2 Stereo. 11.40 (24 p)

SEND S.A.E. FOR FREE LEAFLET ON KITS

BATTERY ELIMINATOR BARGAINS

The most versatile battery
eliminator ever offered. eliminator ever offered.
Switched output of 3,4 Switched output of 3.4 k . $6.7 \%, 9$ and
c3.90 (57 p).
c3.90 (57 p
Other olim
ther eliminators stocked: $250 \mathrm{~mA}-3$ way switched E2-25 (55p).

TV casselte type. E2.50(40p). Doubie $4 \mathrm{~V}+4 \mathrm{~V} \cdot \mathrm{E2} \cdot 75$ $(43 \mathrm{p}) .6 \mathrm{~V}+6 \mathrm{~V} £ 2.75(43 \mathrm{p}) .9 \mathrm{~V}+9 \mathrm{~V}, \mathrm{\Sigma}_{2} .75$ (43p). 500 mA - Heavy duity deluxe models $6 \mathrm{~V}, \mathrm{\Sigma 2} .78$ (55 p) 7V, $£ 2.78$ (55p). 9V, $£ 2.78$ (55p)

S-DECS AND T-DECS

S-DEC $£ 1.98(31 \mathrm{p})$

μ-DEC B \quad E6.99(81p)
carriers: 16 dil-plain
10 (15p). With socket, $£ 1.77$
(25p). 10 TOS—plain. 78 p
(15p). With socket. $[1.68$
(24p)
xperlment guides-A, \&1.50 (26p); B, $£ 1.77$ (29p) C.

SWANLEY ELECTRONICS

P.O. Box 68, Swanley, Kent BR8 BTQ
lease add the sum shown in brackets after the price to cover the cost of post and naw VA
Official credit orders from schools, etc. welcome no vat charged on overseas orders

MAPLIN ELECTRONIC SUPPLIES

ORGAN BUILDERS

Keyboards: High quality adjustable type Sloping front 61-note C to C. $118 \cdot 50$. Flat front 48 -note F 10 E, $\{14+35$. Contact blocks GB. 2 (2 make contacts), 22p Palladium earth bar per octave length. 15 p . Stop tabs rocker type not engraved (white ed, grey or black) with DPDT switch. 49p. Gold clad phosphor-bronze contact wire per

BASIC ORGAN CIRCUIT

Leaflet MES 51 shows a complete circuit for a basic fully polyphonic organ. Send only 15 por leaflet and start building ter behen -when you have haitit this organ you wil hasis of a torge sophisticated in strumerat with al! the tacijities ou want. V.'aich our ads for de'ails.
LEAFLET MES $\$ 2$ shows how to extend your MES 51 basic organ to two keyboards with lots more stops. Just send Sp_{p}
(stamp) with an S.A.E. and we will send you a copy.

REVERBERATION UNIT

Enhances the sound of any eiectronic musical instrument Ready built spring line dnver module suitable for use with alment
Two iypes of spring line available
Shori line. 63.05.
S. A. E. please for details. Leaflet MES 24

MES announce the very latest development in organ circuitry.
13 Mater Frequencles on ONE tipy circult board. LOOK AT THESE AMAZING ADVANTAGES * 1s irequencles from Ca to C9. A Eacb irequegey Initial tunine for the wHOLE OROAN: ONE
 DRIPTS । Externas control alowe lastant tune-np to nther mupicians. © Outputs will directly drive roont types of dividere includin: the sajlio. t And each output can also be used an a direct tone source. \dagger Varl. able DEPTH AND RATE tremulant optional extra. t Gold-plated plus-la edse connexion. Complete abre glasa board (inctuding tremulant if required) ONL 3.71n. $\times 4.51 \mathrm{n}$. \star Vert low power consumption.

PRICEREMELY ECONOMICAL A Sa.e. please PRICE. \star Ready built, tested and fully guaranteed. DMO2T (witb tremulant) ONLY 14.85 DMO2 (without tremulant) $218-25$ details.
Trade enquiriet SAJllo 7 -stage frequency divider in one 14 pin DIL package. Sine or square wave laput sllows operation from simost any type of master oschlator including the DMO2 (When 97 notes are available). Square wace of a few componeot 8AJ110: 12.83 each OR special price for pack of 12 : 525-00. 8.a.e. please for data sbeet.

P.E. SOUND SYNTHESISER

If this pro PRICES:

 PRICESWe are stocking atl the parts for this exciting profect, from the special I.C.'s right down to the nuts. bolts and spacers for mounling the veroboards
Send S. A.E. now for our detailed price lists.

E.T.I. SYNTHESISER

We stock all the parts for the "Electronics Today International synthesiser including all the P.C.B.s iequired and all the metalwork including a drilled and printed front panel for a truly protessional finish.
Sorre of the circuits in this brilliant design are entirely original. Independent author itative opinions agree the E. T.I. International Synthesiser is technically superior to practically all synthesisers availatle today.

CAPACITORS

Sub-ministure
Anial lead electrolytic
Mid V Price Mid V Price $\begin{array}{ccccccccc}1 & 63 & 6 p & 68 & 6 & 6 p & & & \\ 1-5 & 63 & 6 p & 68 & 16 & 6 p & & & \\ 2 \cdot 2 & 63 & 6 p & 68 & 63 & 14 p & & & \\ 3-3 & 63 & 6 p & 100 & 4 & 6 p & \text { Mid } & \text { v } & \text { Price } \\ 4 \cdot 7 & 63 & 6 p & 100 & 10 & 6 p & 470 & 6 \cdot 3 & 6 p \\ 6 \cdot 8 & 40 & 6 p & 100 & 25 & 6 p & 470 & 10 & 14 p \\ 6.8 & 63 & 6 p & 100 & 40 & 6 p & 470 & 25 & 16 p \\ 10 & 25 & 6 p & 100 & 63 & 16 p & 470 & 40 & 25 p \\ 10 & 63 & 6 p & 150 & 6 & 6 p & 680 & 6 \cdot 3 & 14 p \\ 15 & 16 & 6 p & 150 & 16 & 6 p & 680 & 16 & 16 p \\ 18 & 40 & 6 p & 150 & 25 & 6 p & 680 & 25 & 25 p \\ 15 & 63 & 6 p & 150 & 40 & 14 p & 680 & 40 & 28 p \\ 22 & 10 & 6 p & 150 & 63 & 16 p & 1000 & 6 & 14 p \\ 22 & 25 & 6 p & 220 & 4 & 6 p & 1000 & 10 & 16 p \\ 22 & 63 & 6 p & 220 & 10 & 6 p & 1000 & 16 & 25 p \\ 33 & 6 \cdot 36 p & 220 & 16 & 6 p & 1000 & 25 & 28 p \\ 33 & 16 & 6 p & 220 & 25 & 14 p & 1500 & 6 \cdot 3 & 16 p \\ 33 & 40 & 6 p & 220 & 40 & 16 p & 1500 & 10 & 25 p \\ 47 & 4 & 6 p & 220 & 63 & 25 p & 1500 & 16 & 28 p \\ 47 & 10 & 6 p & 330 & 4 & 6 p & 2200 & 6 \cdot 3 & 25 p \\ 47 & 25 & 6 p & 330 & 10 & 6 p & 2200 & 10 & 28 p \\ 47 & 40 & 6 p & 330 & 16 & 14 p & 3300 & 6 \cdot 3 & 28 p \\ 47 & 63 & 6 p & 330 & 63 & 29 p & 4700 & 4 & 28 p\end{array}$

LINEARS

LM301A. 8-pin DIL. Op Amp
MC1303L. 14-pin. Stereo Preamplifier
MC1310P. 14 -pin DIL. FM Ste
MFC 4000 B

PLUGS AND SOCKETS

div PLUGS	Malvs	RS8 way	ssls	Sid t stereo plug
? pin ll flati 8p	P360 3 pin 159	socket	${ }^{68} \mathrm{p}$	Plastic 13p
3 pin	chassls plug with			Screened 30p
4 pin. 5 pin A	line socket. Per			Open mono socket
(180 ${ }^{\circ} 1.5$ pin B	pair ${ }^{30}$, ${ }^{3}$			
$\left(240^{\circ}\right) .6$ pin 10 p	SA ${ }^{2} 190{ }^{3} \mathrm{l}$ pin 5A			mono socket \&゙ with
120). 6 pin lop	chassis plug 22p	Picg screened	12p	${ }_{2}$ mono socket contacts
	SA 1862 Line socket		4p	14p: Moulded stereo
DIN Sorkets	for above $\quad \mathbf{2 5}$ p			socket ${ }^{\text {d }}$ with ${ }^{\text {a }}$
2 pin - op		JaCK		break contacls 18p:
${ }^{3}$ pin. ${ }^{4}$ pin. 5 pin	MEMURDO	Std t mono	- plug	3. 5 mm , plug plastic
A (180 0°) 5 pin B	$\begin{aligned} & \text { RP8 \& way chassis } \\ & \text { plug } \\ & 52 \mathrm{p} \end{aligned}$	Plastic Screened	${ }^{13 p}$	op: screened 15p: open sockel 9 p .

WE KNOW YOU NEED IT!

OMNIUM GATHERUM

Pp i. .elc baitery clip dual min. op.
pP y elc. battery clip separate per pair $6 p$. Pair crocodile elips. I red. I black insulated Sleeve 10 p .
Solder Multicore $225 . \psi \cdot g$. 10 metres 25 p
Silicone grease in special dispenser 20 mi 54p Silicone grease in special dispen
Terminal Block 12 . Way 5 A 14 p . Terminal Block 1. way SA 14p. Panel fuse holders 20 mm 20 p : 1 in 11
MFC8010. 8-pin case. I W Audio Power Amp
MFC 9020 , 10 -lead case. 2W Audio Power Amp
NES55V. 8-pin DIL. Precision Timer
SGi49sD I4 pin DII Four Quadrant Analoguc Mutiplier 4 .
SG3402N Amplifier/Muhtiplier
4A723C. TO99 (TOS), 2 to 37 V Voltage Regulator
$\mu \mathrm{A} 723 \mathrm{C}$. 14 -pin DIL. 2 to 37 V Vollage Regulator
μ A741C. 8-pin DIL Op Amp
HA741C. 14 -pin DIL. Op Amp
A747C. 14-pin DIL. Dual Op Amp
2N748C. 8.pin DIL, Op Am
Full data. pin connexions

catalogue. Price 25p.

SWITCHES

Rotery with adjustable stop 1 pole 2 to 12 w
3 pole 2 to 4 way: 4 pole 2 or 3 way. each 36 p
3 pole 2 to 4 way: 4 pole 2 or 3 ws
Manns rotary DPST 250 V :A 20 p .

Tranalormer

Tranatormers outpul transformet Pri 1.2 kn
IT mino min.
Bec 50200 mW 50 p. Sob-mpin. Meins Transformer
$6-10-6 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p} \cdot 12-0-12 \mathrm{~V} 5 \mathrm{~mA} 95 \mathrm{p}$ Sice Both approx, 10×2
Min. Maina Transforme
(17e, 12 V 250 mA . 0.12 m 2 $250 \mathrm{~mA} \mathrm{EI} \cdot \mathrm{k}$
Malns Tranaformer MTI 3 AT
Pri $200-220-240 \mathrm{~V}$

Mains Tranuformer MT206AT Pri. $200-220-240 \mathrm{~V}$
$0-15-20 \mathrm{~V}$ iA $£ 3.88$.
Hook-up wire, 7 strand 02 mm PVC covered tinned copper wire for light general connexions up 101.4 A 11 colours black, blue brown. preen. grey. orange, pink. red. vioiet. White. yellow 10 metres of any one colour 20 p . Pack
of 11 (1 of each colour) 10 m coils $\$ 2.05$.
Single core screened Ip per metre
Twin individually screened 10 HP per metre. Pagh qualty single screened son 100 pF per
metre. ideal for high grade audio conne rions metre. ideal fo
Malns 3-core sub-minialure IA black PVC covered 19 atrand 0.1 mm per conductor. 71 p covered
per metre

POTENTIOMETERS

Rotary ininiature carbon track $\boldsymbol{k}^{\prime \prime}$ spiodle
 s(0)k iM 2M tand I 1 lim lop

Single gang with DP switch as above Log or t in $5 k$ to $3 \mathrm{~S}_{\mathrm{m}}$

PRESET

Sub-miniature 0.1 W
100, 250,600
$2.5 \mathrm{k}, ~ 6 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$. b0k. $100 \mathrm{k}, 250 \mathrm{k}$,

RESISTORS

Carbon Fijm $\frac{\Sigma}{} 5 \% 1 \Omega$ to $1 \mathrm{M} ; 10 \% 12 \mathrm{M}$ to 10 M E12 Carbon Pilm if s\% 110 to 910 k Eln \& E2t Carbon Film iw o\% in Metal Ozide iw 2% ins to 1M Wleqound $2 f$ W $10 \% 0$?20hms to 0 470hms Wirewound 21 W 8% lohm to 270 obm
E12 value $10,12,15,18,22,27,33,39,47,86,88,82$ a E24 valuea 11, 13, 16, 20, 24, 30, 36, 43, 61, 62, 76, 91 and decade:

High quality "sub-miniature" Toqele switches.	DPDT	3 A	240 V a.c.
10 P			Four Pole DT 3 A 240 V a.c. TD_{D} . 81.37

Toggle 250V1.5A
witb $\mathrm{ON} / \mathrm{OF}$
piate 25 p .
piate 25p.

जुण

Pon-locking

14p

Please add 8\% to the final total.

Post and Packing FREE in U.K.
(15p handling charge on orders under £1)
Orders and enquirien for catalogues to MAPLIN ELECTRONIC SUPPLIES, P.O. Box 3, Rayleigh, Essex. Tel. Southend-on-See 070244101

BY CHANTICLIEP

* READ: TIME AND ALARM
* ELECTRONIC ‘BEEP’'ALARM TONE
* TEN MINUTE 'SNOOZE' FEATURE
* BRIGHT, CLEAR DISPLAY
* NO MOVING PARTS
* EXECUTIVE STYLING
* SOLID STATE RELIABILITY

Digital clock

The heart of the CHANTICLEER is a tiny electronic package containing thousands of transistors which divide the 50 cycles/second mains frequency into precise time units. The clock "'movement"' in fact has no moving parts to wear out or tick or tock or hum or click

COMPLETELY ELECTRONIC NO MOVING PARTS

Has a.m. or p.m. setting with alarm on/off indicator. A gentle electronic 'beep' tone with special snooze feature that resets the alarm for ten-minute intervals. The snooze is activated by simply tilting the clock forward and then releasing. Upon cancelling, the alarm can be immediately, reset for the same time next day.
RECOMMENDED
PRICE
G. F. MILWARD, 369 Alum Rock Road, Birmingham B8 3DR. Tel. 021-327 2339

12 VOLT FLUORESCENT LIGHTING
 BRAN TUB!!!

INVERTER TRANSFORMERS $13 / 15 \mathrm{~W}$ (CIRCUIT INCLUDED)
"CURRENT ECONOMY" TRANSISTOR (600 ma.) " MAXIMUM LIGHT"' TRANSISTOR (1.3A) RESISTORS/CAPACITORS TO SUIT LAMPHOLDERS (LONG LEAD) (SHORT LEAD)

30p PAIR
20p PAIR
WHITE ENAMEL CASE, 18 in or 21 in (POSTAGE 30p) 70p TUBE, 18in-15W or 21in-13W

45p
(NOTE: TUBE ONLY SUPPLIED IF CASE ORDERED. TO PREVENT POSTAL DAMAGE)
13W FITTING READY BUILT AND TESTED-INCLUDING TUBE (POSTAGE 30p)
£3. 75
POST/PACKING, 25p PER ORDER EXCEPT WHERE SHOWN

	tors	1 VEROBOARD CUTTER 52 in in $x 1$ in $\times 015$ BOARDS 50 sa ins ODDPIECES VERO	
postage 25p	PACK No. 1	POStAGE 25p	PACK NO. 3
100 RESISTORS 100 CERAMIC CAPACITORS 100 POLYSTYRENE POSTAGE 25p CAPACITORS		100 RESISTORS 100 CERAMIC CAPACITORS 50 MULLARD PO CAPACITORS POSTAGE 25p	
	PACK No. 21		PACK No. 4

NEW IMPROVED CIRCUIT!

Drives 21in 13W 18in 15 W or adaptable for
$2 \times 12 i n 8 W$

20 ASSORTED UNUSED
MARKED. TESTED
TRANSISTORS
BC10BETC.
PAGE 25 p

- Resistors-wire-wound and carbon
- Capacitors-silver-mica, paper. ceramic, polyester and electrolytic.
- Controls-volume, pre-set. carbon. wire
- Diodes-silicon. germanium. zener.
- Transistors-silicon, germanium. All the above are new and unused stock
We have made up packs of 2lb gross weight, all are different in content. and contain a mixture of com ponents from the above list This is a fantastic. unrepastable offer that will enable you to get a good stock of spares at a tiny fraction of normal price
To make things even more interest ing-TWENTY OF THESE BAGS ALSO CONTY CUSTOMERS WILL WERY PLEASED INDEED EA PLEASED NDEE
And the price that we are asking? Only 1.50 including both postage an
Rush your order now' This offer sock' lt is unlikety that in these day of ritino prices we shall evar of re prep able to repeat

NOTE: ALL GOODS PLUS 8\% VAT (EXCEPT OVERSEAS)

That's how long it will take you to fill in the coupon. Mail it today and we ll send you full details and a free book. We have successfuliy trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-youlearn.

Why not do the thing that really interests you? Without losing a day's pay. you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you ... but it could be the best thing you ever did.
Others have done it, so can you
Yesterday I received a letter from the Institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have cver obtained. a view echoed by two colleagues who recently commenced the course."-Student D.I.B.. Yorks. Completing your course . meant going from a job I detested to a job that I love. with unlimited prospects."-Student J.A.O.. Dublin.
My training quickly changed my earning capacity and. in the next few years. my earnings increased fourfold."-Student C.C.P.. Bucks

FIND OUT FOR YOURSELF

These letters. and there are many more on file at Aldermaston College, speak of the rewards that come to the man u ho has given himself the specialised knowhou employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to:

ALDERMASTON COLLEGE
 Dept. TPE01, Reading GR7 4PF
 HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know about Radio \& Electronics maintenance and repairs for a spare time income and a career for a better future.

SUPPLIERS OF ELECTRONICS FOR OVER 30 YEARS. 8% VAT TO BE ADDED TO ALL ORDERS. VAT-UK ONLY.

[^0]: © IPC Magazines Limited 1975. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, inland £3•25, Overseas $£ 4 \cdot 10$. International Giro facilities Account No. 5122007. Please state reason for payment, "message to payee".

[^1]: PLEASE ADD VAT AT CURRENT RATE

 ．．．．．．．．．．．stereo Pre－Amps \ldots. Stereo Pre－Amps 2．a．．．．．．．．．Stereo Tone Controls （Please insert quantities and delete those not applicable）．
 Name ．
 Address
 i）Bicalil
 Dopt．A，${ }_{\text {Wost }}^{222 / 224}$ Wort Road，
 Ca．Regn Na 820919

[^2]: Bib Hi-Fi Accessories Limited,
 Sole U.K. Sales Concessionaires, P.O. Box 78 Hemel Hempstead, Herts. HP2 7EP

[^3]: Illustrated Brochure, Radio Books \& Component Lists 10p Written guarantee.

[^4]: *Ferranti Ltd.

[^5]: Sinclair Radionics Ltd, FREEPOST St. Ives, Huntingdon, Cambs, PE174BR.

[^6]: Lighting Modules and Kits Bought DD From The Manufacturers SOUND TO LIGHT: $3 \times 11 \mathrm{~kW}$ channels with unit was designed for use by hire firms and has proved to be very reliable.
 MODULE (ready built), $\mathbf{1 1 6 . 9 9 .}$ KIT, $£ 14 \cdot 99$. DIMMERS: 2-way wallmounting units, 89 ip THEATRE AND DISCOICLUE DIMMERS Written enquiries and Mail Orde 21 Priors Road, Windsor, Berks. SL4 4PD

