

PRACTICAL
E L E C

CONSTRUCTIONAL PROJECTS

P.E. JOANNA-1 by A. J. Boothman
A multiple-voiced instrument with touch-sensitive keying 384
TOUCH TUNING UNIT by R.J. Bonffeld
Auto-touch-tuning for the P.E. Varicap Tuner 392
CAR INDICATOR/EMERGENCY FLASHER by J. B. Dance
Single-chip auxiliary car flasher for negative earth vehicles 410
I.C. PULSE GENERATOR by A. C. Ainslie
Versatile design for a t.t.l.-compatible variable frequency pulse source 414
GENERAL FEATURES
NEW DEVICES . . . APPLICATIONS
Ultrasonics in TV remote control applications 398
LOUDSPEAKER EREAKTHROUGH
An old idea made possible using modern techniques 400
TRANEDUCERS-2 by P.R. Allcock
Thermometers and Strain Gauges 404
HIGH INPUT IMPEDANCE TECHNIQUES by R. A. Penfold
Obtaining high input impedances with modern semiconductors 420
INGENUITY UNLIMITED
Telephone Bell Synthesiser-Two-wire Signalling System-Counter System- Seven-segment To BCD Decoder--Sound Switch/Trigger-TTL Oscillator 425
NEWS AND COMMENT
EDITORIAL-Discordant Voices 383
SPACEWATCH by Frank W. Hyde 1975 Space Programme 391
NEWS BRIEFS
Radio System-Hot Wind-Symbol for Safety-Scramblers Abroad-Tubeless Cameras 397, 421
BOOK REVIEWS
Selected new books we have received 403
MILD \& BITTER by A.P.S.
The Calculator Bore 413
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 422
PATENTS REVIEW
The EEC industrial property law and its effect on British Patents 430
READOUTA selection of readers' letters431
Our June issue will be published on Friday, May 9, 1975

[^0]
\otimes CHINAGLIA

MINOR

TEST EQUIPMENT

WITH

33 RANGES
$20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $4 k \Omega / V$ a.c.

- ROBUST CLASS 1.5 PRECISION MOVEMENT - ACCURACY 2.5% D.C. AND 3.5% A.C - 12 MONTH GUARANTEE
- SELF-POWERED AND POCKET-SIZED
- OPTIONAL 30kV D.C. PROBE

PRICE $£ 16 \cdot 30$ inc. VAT (P. \& P. 80p)
PROBE $18 \cdot 80$

For details of this and the many other exciting instruments in the Chinaglia range, including multimeters, component measuring, automotive and electronic instruments please write or telephone

CHINAGLIA

TRADE ENQUIRIES WELCOMED

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence
free

bRTISS Mational RaIO \& Electrouncs shhool Dept. EB55, P.O. Box 156, JERSEY

StMON
 Money saving high performance audio equipment DIRECT FROM OUR OWN FACTORIES

guananteed tested high performance
MODULES-now better value than ever SA35
 35W RMS 25-50V
7 transistors, 7 diodes

7 eransistors, 7 diodes		+ 500 mV into 20K
5 S0 +8.50	Carriage	+ 4-16 ohms
		+ Simple wirins
7 transistors, 7 diodes		Short and ope circuit proof
A10 $\quad 12.50$	Carriage free	\star Continuously rated
100W RMS 45-70V		- Top-grade

THE SA100 MODULE

POWER SUPPLIES
UNSTABILISED - READY WIRED AND FUSED

STABILISED

PS45	Suits 2 SA35 or 2 SA50 (4 ohm)	$\mathbf{5 5 . 5 0}$	Carriage free
MT45	Transformer for above	13.90	$\begin{gathered} \text { Carriage } \\ 50_{p} \end{gathered}$
PS70	Suits 2 SA 100	£6.50	Carriage free
MT70	Transformer for above	\$5.50	Carriage 60

N.B. PS70 is not suitable for the SA50

Mk II STEREO DISCO MIXER $\mathbf{2 9 . 5 0}$

Carr. 50p eramic cartidge, and mixes two decks, handes any separate full rane, bass and treble controls on both mic and deck inputs. Ample headphone power is available for P.F.L. May be used for mono and is Controls: Mic vol, bass, treble. Left/Right fade, deck volume, bass, treble, h/phone select, vol, Mains. Size
$17 \frac{1}{2}$ in $\times 3$ in $\times 4$ in deep.

\section*{DISCO MODULE E12.50 | carr. |
| :---: |
| sop |}

Thousands sold of this extremely popular mono Pre.Amp. A micinput may befitted using the VA30 (see below). Low consumption from a 9 V battery Features the same high standards of reproduction as the stereo version Controls: H/phone select, yol, Left deck vol, Right deck vol, bass, treble master vol. Size $12 \mathrm{zin} \times 3$ in $\times 2$ in deap.

3-CHANNEL SOUND-LITE $£ 24.75 \mathrm{c}_{30 \mathrm{~s} \text {. }}$

Only SAXON can supply such incredible value for money. This unit features 3 kW power handling, full-wave control, bass, middle, treble AND master controls. Twin loudspeaker jacks for "through" connections. It may be used free standing or will for extra wide range response. Size 12 in $\times 3$ in $\times 2 \frac{1}{2}$ in deep. Professional standards at a price you can afford!
SINGLE CHANNEL High sensitivity, compact, Add 8% VAT to all orders
VERSION $\mathbf{1 7} \cdot 0$ handles 1 kW . Full wave

MULTI-PURPOSE MIXER

M4HL
 M6HL

£25.00 Carr. $£ 35.00$ Car
Featuring multiples of our VA 30 module, the M4HL and M6HL fulfil the requirements of all clubs, groups, etc. where a high quality mixer is required. Each channel has one hish and one low impedance input, plus volume, treble and bass controls. Input impedances may, if required, be easily changed, The M4HL has four channels, and one output, and the M6HL six channels (12 inputs) and a master control and two outputs. Either unit may be used feed all types of amplifier. Recommended for their versatility and high. performance, and excellent value for money.

VA30 CHANNEL $\mathbf{~} 3.90$ Carr.

This is the basic channel module in the above mixers and may also be used for extra inputs on either the and treble controls, requires just a jack and supply ($9-100 \mathrm{~V}$)

SAXON 100w of speech and
CSE
100
COMPLETE
AMPLIFIER
$€ 39 \cdot 90$
Carr. 60p
music-Two separately controlled inputs. Widerange bass and treble controls. Sturdy and attractive vynide case. Twin outputs. Ideal for groups,
discos, etc. Fully tested and guaranteed 50 W version identical in appearance.

CSE 50
〔33.00 Carr. 60p

NEW!!

SAXON MULTIMIX $100 £ 57 \underset{\substack{\text { CARR } \\ \text { CAR }}}{\text { SOR }}$
IOOW RMS SLIDER controls PLUS master slider Wide range bass and treble controls-fantastic value. Ideal for complete Disco's, Groups, Clubs, etc. SAXON MULTIMIX 50 EXACTLY ASABOVE $£ 45$

CALLERS ANO MAIL ORDER

SAXON ENTERTAINMENTS LIMITED
 327-333 WHITEHORSE ROAD - CROYDON CRO 2HS

Picse quotemigizine when orderin

SHOP MOUA's 9 a m 5 p.m LUNCM 12301.30 p.m. LUAIL ORDER DESK: 10 a.m. -3 p.m. 24 HOUA ANHWER SERVICF, TEL OI 684 6385. TECMNICALENEUIRIES OI-684 0098

SEND 15p FOR OUR NEW 26-PAGE MANUAL-full circuits and details. TPRMS OF BUSESDES: C.W.O., C.O.D. of ACCDSE (junt send in card number). Seni 50p. for C.O.D. Please include S.A. \mathbf{D}. with all engniries VAT at 8% must be added to all orders including carriage charges:

TRANSFORMERS

 SAFETY MAINS ISOLATING TRANSFORMERSPrim. $120 / 240$ V. Sec $120 / 240$ V Centre Tapped and Sereened ALSO AVAILABLE WITH $115 / 120 V$ SEC. WINDING

Ref.	$\begin{gathered} \text { VA } \\ \text { (Wot(s) } \end{gathered}$		Weight16 oz				P \& P					
			E	p								
07		20					18		0×6.0	$\times 6.0$	2.80	38
149		60	312		9×7.7	$\times 8.6$	4.37	45				
150		100	58		9×8.9	-866	4.89	45				
151		200	80		1×9.3	$\times 10.2$	8.13	53				
152		250	1312		1×11.8	$\times 10.2$	9.83	73				
153		350	150		0×10.8	$\times 11.8$	11.88	73				
154		500	198		0×13.4	$\times 11.8$	$13 \cdot 65$	91				
155		750	290		2×14.0	$\times 14.0$	20.51	-				
156		000	380		2×16.6	$\times 14.0$	29.15	-				
157		500	460	21.	6×13.4	+18.1	33.23	,				
158		000	600		$6 \times 15 \cdot 3$	$\times 18.1$	37.07	*				
			AUTO TRANSFORMERS Size cm. Auta Tops				$P \& P$					
$\begin{aligned} & \text { Rof. } \\ & \text { No. } \end{aligned}$	(Watts)	3) Ib oz					$\underline{1}$	a p				
113	20	10	5.8×5.1	1×4.5	0.115-2	10-240	1.67	30				
64	75	24	7.0×6.7	$\times 6.1$	0-115-2	10-240	2.90	38				
4	150	34	8.9×7.7	+ 7.7	0-115-2	00-220-240	4.12	45				
66	300	6.4	9.9×9.6	¢ $\times 8.6$	-	"	5.82	53				
67	500	128	12.1×11.2	2×10.2	"	,	8.82	67				
84	1000	198	14.0×13.4	4×14.3	+	.	13.68	91				
93	1500	304	14.0×15.9	9×14.3	"	,	18.31	*				
95	2000	320	17.2×16.6	6×14.0	"	"	24.20	*				
73	3000	400	21.6×13.4	4×18.1	,	,	35.09	*				

CASED AUTO TRANSFORMERS
115 V mains lead input and U.S.A. 2-pin outlets, 20VA $\mathbf{6 3} \cdot 13$. P \& P 38p $500 \vee \mathrm{VA}$ \& $10.45, \mathrm{P}$ \& P 80 p . $1000 \mathrm{VA} £ 17.51$, via B.R.5.

The best of all! CATALOGUE 7 ISSUE 3

With 25p refund voucher

Up-dated Price and Product Information

112 pages plus cover. As comprehensive and up-to-the-minute as possible. Thousands of items from vast ranges of semi-condutors including ids to components, tools, accessories, technical information and diagrams are value £5 or more SEND NOW FOR YOUR COPY BYRETURN 30 post

PRICES as shown in our latest catalogue (No. 7 , issue 3), having been maintained until March 31 st, are now reviewed only at 3-monthly intervals as from April 1st. This is instead of making day-to-day price changes.
DISCOUNTS apply on all items except the few where prices are shown NETT. 5% on orders from $£ 5$ to £14.99; 10% on orders list value $£ 15$ or more.
FREE POST AND PACKING in U.K. for pre-paid mail orders over $£ 2$ (except Baxandall cabinets). If under there is an additional handling charge of 10 p .
QUALITY GUARANTEE. All goods are sold on the understanding that they conform to maker's specification. No rejects, seconds or sub-standard merchandise

ELEGTROLITE LTD

All communications to Section $1 / 5,28$, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OMB, Telephone Egham 3603, Telex 264475. Shop hours: 9-5 30 daily, 9-1 pm Sats.

NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1NA. Telephone (061) 4324945 . Shophours: Daily $9-5.30$ pm; $9-1$ pm Sats.

Phoenix Electronics (Solent) Ltd.

139-141 Havant Road. Drayton. Portsmouth. Hants PO6 2AA
You already know us-get to know us better! Our catalogue is now only 20p-returnable on your first order.
Our prices on a wide range of semiconductors, i.c's and passive components include VAT, and, despite rising postal costs, carriage is only 20 p . too:

THIS MONTH'S BARGAIN OFFER

The Emihus GEMINI 1 POCKET CALCULATOR with the expensive specification-five function operation-percentage key-automatic constant-full floating or fixed decimal point-8 digit display-carrying case-overflow/error indicator.
Our ultra-low price of $\mathbf{\Sigma 1 4 \cdot 9 5}$ even includes batteries
Please send your catalogue-now!

Name

Address

ALL ITEMS ARE NEW, MARKED, TESTED FUNCTIONAL - SATISFACTION GUARANTEED
The prices as listed are in British pounds and pence. Send bank cheque (U.S. funds) with order. If international postal money order is used, send receipt with order. Minimum order $£ 2-50 \mathrm{p}$.

INTERNATIONAL ELECTRONICS UNLIMITED P.O. BOX 1708 MONTEREY, CA. 93940 USA PHONE (408) 659-3171

*COMPLETE STEREO SYSTEM

System 1a. $\mathbf{£ 6 2 . 0 0}$

40 Watt Amplifier. Viscount III - R102 now 20 watts per channel (40 watts peak) All systems include:
Viscount III amplifier - volume, bass, treble and balance controls, plus switches for mono stereo. on/oH function and bass and treble filters. Plus headphone sacket Specification:
20 watts per channel into 8 ohms 40 W peak. Total distortion @ 10 W @ $1 \mathrm{kHz} 0.1 \%$. P.U. (for ceramic cartridges) 150 mV into 3 Meg . P.U. 2 (for magnetic cartridges) 4 mV at 1 kHz into 47 K . equalised within $\mp 1 \mathrm{~dB}$ R.IA.A. Radio 150 mV into 220 K . (Sensitivities given at full power). Tape out facilities: headphone socket, power out 250 mW per channel. Tone controls and fitter chargcteristics. Bass: $+12 \mathrm{~dB} 10-17 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Bass filter: 6 dB per octave cut. Trable control: treble +12 dB to $-12 \mathrm{~dB} @ 15 \mathrm{kHz}$. Treble filter: 12 dB per actave Signal to noise ratio: (ail controls at max.) -58 dB . Crosstalk better than 35 dB on all inputs. Overload characteristics better than 260 B on all inputs. Size approx 13 1" $^{\prime} \times 9^{\prime \prime} \times 3$ 3"
Garrard SP 25 deck with magnetic cartridge. de luxe plinth and cover
Two Duo Type Ila matched speakers - Enclosure size approx. $19 \frac{1^{\prime \prime}}{} \times 9 \frac{1^{\prime \prime}}{} \times 7 \frac{3^{\prime \prime}}{4}$ in simulated teak. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with $3^{\prime \prime}$ tweeter. 15 watts handling.
Complete System with these speakers $£ 62.00+£ 5.50 p \& p$.

System 2. $\mathbf{8} 82.00$ Viscount III amplifier (As System 1a)

Garrard SP 25 deck (As System la) in teak simulate. Drive units $13^{\prime \prime} \times 8^{\circ}$ bass driver, and two $3^{\prime \prime}$ (approx.) tweeters 20 watts RMS. 8 ohms frequency rarige -20 Hz to 18.000 Hz . Complete System with these speakers $\mathbf{f 8 2 . 0 0}+\mathbf{f 6} 50 \mathrm{p} \& \mathrm{p}$

PRICES: SYSTEM 1a

Viscount III R102 amplifier	
2 Duo Type lla speakers	£26.00 + £5.50 p \& ρ
Garrard SP 25 with Mag. cartridge de luxe plinth	
and cover	£21.00 f 2.80 p \& p
total: $£ 74.00$	
Available complete for o	aly: $\mathbf{6} 62.00$

PRICES: SYSTEM 2

Viscount III R102

amplifier
$£ 27.00+£ 1.60 p \& p$
2 Duo type III speakers $£ 39.00+£ 640 \rho \&$
Garrard SP 25 with Mag, cartridge
de luxe alinth

and cover	$£ 21.00+£ 2.80 \mathrm{p}$ \& p

total: $\mathbf{f 8 7 . 0 0}$
Available complete for only: $\mathbf{£ 8 2 . 0 0}$

EMI SPEAKERS AT FANTASTIC REDUCTIONS

LE-4 SPEAKERS

Superb performance and beautifully finished in selected teak veneers. A professional standard four-way speaker system giving 25 watts RMS powet handling. Bass unit is $14^{\prime \prime} \times 9^{\prime \prime}$ with $8^{\prime \prime} \times 5^{\prime \prime}$ unit for mid-range and twin $3^{\prime \prime}$ high frequency units to give manitor type quality and performance
Specification - Size $33^{\prime \prime} \times 14^{\prime \prime} \times 16^{\prime \prime}$ approx. Impedance 8 ohms. Power handling 25W RMS. (Peak 50 watts.) requency range $35 \mathrm{~Hz}_{2}-20 \mathrm{KHz}$
Our Price $£ 29.00$
(normally $\mathfrak{f} 56.97$) $+\mathfrak{f} 5 p$ \& p

EASY TO BUILD SPEAKER KITS

These superb simulated teak-tinished speaker kits have been specially designed by RT-VC for the cost-conscious hi-fi enthusiast who wants top quality speakers but doesn't want to spend the earth. Built to EMI's exacting specification, these new RT-VC speaker kits (350 type kit) incorporate $13^{\prime \prime} \times 8^{\circ}$ wooter, $3 \frac{1}{4}^{\prime \prime}$ tweeter and matching crossover.
Easily put together with just a few basic tools. Specification (each speaker): Impedance 8 ohms Power handling 15 watts RMS (30 watts peak). Response $20-20,000 \mathrm{~Hz}$. Size $20^{\prime \prime} \times 11^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}$ approx. Comparable built units (EMI LE3) sold elsewhere for over $£ 45$ pair.
£18.95 pair complete

[^1]Componenis and cricult duagran

System consists of a 13×8 approx. woofer with a $3^{\prime \prime}$ tweeter crossover components and circuit diagram. Frequency response: 20 Hz to 20 KHz . Power handling 15 watts RMS into 8 ohms (Peak 30 watts.)
$£ 5.50+£ 1 \rho \& p$.

20 WATT SPEAKER SYSTEM*

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) eliptical woofer unit with a $8^{\prime \prime} \times 5^{\prime \prime}$ (approx.) mid-range unit incorporating parasitic iweeter and crossover components and circuit diagram
Technical Specification: Bass Unit: Flux density 100 K , speech coil - $1^{\frac{1}{2} \text {. }}$. Cone Triple laminated paper with P.V.C. surround. Mid-Range Unit: Flux density 33 K, speech coil - ${ }^{\prime \prime}$ with parasitic tweeter. Power handling: 20 watts RMS. impedance - 8 ohms. frequency response -

Our Price $£ 7.50$ 20 Hz to $18,000 \mathrm{~Hz}$.

Complete +f 1.35 p \& p.

DECCA STEREO AMPLIFIER CHASSIS

Specification: $4+4$ watts into 8 ohms. Input Sensitivity 4 mV into 47 K (for magnetic cartridges). AC Mains only 240V. Controls - volume, bass, treble, onoff. mono/stereo switch. Chassis size $11^{\prime \prime} \times 5 \frac{1^{\prime \prime}}{} \times 3 \frac{1^{\prime \prime}}{4}$ approx.
$\mathrm{f} 5.95+\mathrm{f} 10 \& 0$

PUSH BUTTON CAR RADID KIT- THE TOURIST TT*

NO SOLDERING REQUIRED

NOW BUILD YOUR OWN

 PUSH BUTTON CAR RADIOEasy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly.
Fine tuning push button mechanism is fully built and tested to mate with printed circuit board. TECHNICAL SPECIFICATION: (1) Output 4 watts RMS output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built three stage IF Module

Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full. medium and lang wave bands. Size chassis 7 " wide $2^{\prime \prime}$ high
and $4 \frac{3}{4}$ " deep approx $\quad \mathbf{~ 8 . 0 0}+90 p$. $p \& p$ Speaker including baffle and fixing strip $£ 1.65$ +37 p p \& p. Car Aerial Recommended - fully retractable $£ 137+32 p \rho$ \& p
The Tourist I Kit For the experienced constructor If you can solder on a printed circuit baard you can build this model. Same technical specification as Tourist TT. Price $\mathrm{f} 7.00+90 \rho \rho \& p$

Stene2] puality sound for LESS THAN £20.00

'8 TRACK HOME CARTRIDGE PLAYER

Elegant self selector push button player for use with your stereo system. Compatible with Viscount III system, Unisound module and the Stereo 21 . rechnical specification Mains input 240V. Output sensitivity 125 mV . Comparable unit sold elsewhere at £24.00 approx. Yours for anly £12.95 £1.45 p \& p

> Stereo 21 , easy to assemble audio system kit. No soldering required.
> The unit is finished in white P.V.C. and the acrylic top presents an unu su ally interesting variation on the modern deck pinth.
> Includes - BSR 3 speed deck. automatic. manual facilities together with stereo cartridge.
> Two speakers with cabinets.
> Amplifier module. Ready bu ilt with control panel, speaker ieads and full. easy to follow assembly instructions.
> Specifications - for the technically minded
> Input sensitivity 600 mV . Aux input sensitivity 120 mV . Power output 2.7 watts per channel. Output impedance 8-15 ohms. Stere paadphone socket with automatic speaker cutout Provision for auxiliary inputs - radio, tape. etc. and ou touts for taping discs.
> Overall Dimensions. Speakers appsox $151^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1}{2}^{\prime \prime} \times 12^{\circ} \times 6^{\prime \prime}$
> Complete only $£ 19.95+\mathrm{f} 260 \mathrm{p}$ \&
> Extras if required. Optional Diamond Styli 1137.
> Specially selected pait of stereo headphones with individual level controls and padded earpieces to give optimum performance $£ 5.00$

"IISCO AMPLIFIER

Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Output 20 watts RMS into 8 ohms (suitable for 15 ahms).
Inputs * 4 electrically mixed inputs. * 3 individual mixing controls. "Separate bass and treble controls common to all 4 inputs. "Mixer employing F.E.T (Field Effect Transistors). "Solid State circuitry. - Attractive styling

INPUT SENSITIVITIES - Input - 1) Crystal mic guitar or moving coil mic. 2 and 10 mV . (Selector switch for desired sensitivity.) - Inputs - 2), 31, 4). Medium output equipment - ceramic cartridge. tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 6^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$
$\mathrm{f} 17.00+\mathrm{f} 1.15 \rho \& p$

BUILD YOUR OWN * STEREO AMPLIFIER

For the man who wants to design his own stereo here's your chance to start, with Unisound pre-amp. power amplifier and control panel. No soldering - just simply screw together 4 watts per channel into 8 ahms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high etticiency I.C. monolithic nower chips which ensure very low distortion over the audio spectrum. 240V. AC only.
Also available with 2 speakers $\left\{7^{\prime \prime} \times 4^{\prime \prime}\right\} £ 9+£ 1.50 p \& p . £ 7.64+90 p p \& p$

PORTABLE DISCO CONSOLE*

WCORPORATES: Pre-Amp with full mixing facilities, including switched inpu for mic with volume control. switched input for auxiliary with volume contral. bass and reble controls, volume contral and blend control for turntables. Two B.S.A. MP60 type single play professional series decks, fitted with crystal cartridges.

DO NOT SEND CARD

Just write your order giving your credit card number

Mail orders to Acton. Terms C.W.O. All enquiries stamped addressed envelope Goods no: despatched outside U.K. Leaflets available for all items listed thus Send stamped addressed envelope. Ali items subject to availability. Prices correct at 1 st March 1975 and subject to change without notice.
All prices include V.A. T. at 8% rate.

TECHNICAL SPECIFICATION: Pre-amp - Dutput - $200 \mathrm{mV}{ }^{\prime}$ Auxiliary inputs - 200 mV and 750 mV into. 1 meg. Mic input -6 mV into 100K. 240 volt operation. Turntables capacity - 7". 10 or 12 " records. Rumble, wow and flfutter Rumble Better than -35 dB Wow Bettes than 0.2% Flutter 8etter than 0.06% (Gaumont kalee meter).
Finish - Satin black mainplate with black furntable mat inlaid with brushed aluminium trim. Tonearm and controls in black and brushed aluminium

Console size -

 This disco console is ideally matched for the Reliant IV and Disco 50 or any other quality amplifier
The unit is finished in black PVC with contrasting simulated teak edging. diamond spun control knobs with matching conitol panel.

Yours for only
£49.00

21D HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2
Personnal Shoppers EDGWARE RD: 9 a.m. $-5.30 \mathrm{p} . \mathrm{m}$. Half day Thurs ACTON : 9.30a.m.-5p.m. Closed all day Wed

SPECIAL AESISTOR KITS (Prices include post \& packing)
10E12 \&W KIT: 10 of exth E12 value, 22 ohms-IM, a total of 570 (CARBON FILM 5\%), 63.58 net IOEI2 \ddagger W KIT: 10 of each E12 value. 22 ohms- 1 M , a total of 570 (CARBON FILM 5\%), c3.77 net $25 E 12$ IW KIT: 25 of each E12 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5\%), $\mathbf{6 8} \cdot 19$ net $25 E 12+W$ KIT: 25 of each EI2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5\%). 68.28 net $5 E 12 \ddagger$ W KIT: 5 of each E12 value, 10 ohms-IM, a total of 305 (METAL FILM 5%). $\mathbf{E 2} \cdot 80$ net Due to current world shortages, resistor kits may contain some wattage and value substitutions.

MULLARD POLYESTER CAPACITOAS C280 SEAIES

250 V P.C. Mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3 \mathrm{p}$. $0.068 \mu \mathrm{~F}$ $0.1 \mu \mathrm{~F}, 4 \mathrm{ip}, 0.15 \mu \mathrm{~F}, 4 \mathrm{i} \mathrm{p}, 0.22 \mu \mathrm{~F}, 5 \frac{1}{2} \mathrm{p}, 0.33 \mu \mathrm{~F}, 8 \mathrm{p}, 0.47 \mu \mathrm{~F}, 9 \mathrm{p} .0 .68 \mu \mathrm{~F}, 12 \mathrm{p}, \mathrm{I} \mu \mathrm{F}$ $15 \mathrm{p} .1 .5 \mu \mathrm{~F}$,
MULLARD POLYESTER CAPACITORS C296 SERIES
$400 \mathrm{~V}, 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 21 \mathrm{p}$. $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 31 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 41 \mathrm{p} .015 \mu \mathrm{~F}, 6 \geqslant \mathrm{p}$. $0.22 \mu \mathrm{~F}$ ${ }^{8} 1 \mathrm{p} \cdot 0.3 \mu \mathrm{~F}, 12 \mathrm{p} .0 .47 \mu \mathrm{~F}, 14 \mathrm{p}$.
$160 V: 0.01 \mu \mathrm{~F} .0 .15 \mu \mathrm{~F} .0 .022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \frac{3}{3} \mathrm{p}$. $0.1 \mu \mathrm{~F}, 41 \mathrm{p}$. $0.15 \mu \mathrm{~F}, 5 \mathrm{p}$ $0.22 \mu \mathrm{~F}, 5 \frac{1}{2} \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \neq \mathrm{p} .0 .47 \mu \mathrm{~F}, 8 \frac{1}{\mathrm{p}} \mathrm{p} .0 .68 \mu \mathrm{~F}, 12 \mathrm{p} .1 \mu \mathrm{~F}, 14 \mathrm{p}$.
MINIATURE CEAAMIC PLATE CAPACITORS
SoV: (pF) 22, 27, 33, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220, 270, 330, 390, 470. $560,680,820,1 \mathrm{~K}, 1 \mathrm{~K} 5,2 \mathrm{~K} 2,3 \mathrm{~K} 3,4 \mathrm{K7}, 6 \mathrm{~K} 8$, ($\mu \mathrm{F}$) $0.01 .0 .015,0.022,0.033,0.047$ 21 p. each. $0.1,30 \mathrm{~V}, 5 \mathrm{p}$.
POLYSTYAENE CAPACITOAS $160 \mathrm{~V} 5 \%$
(PF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$, $(0 F) 10,15,22,33,47,6$
$4700,6800,10,000,4 \frac{1}{2} \mathrm{p}$.

RESISTORS

For value mixing prices, please refer to our catalogue. (Price
VALUES AVAILABLE-EI2 Series only. (Net prices above 100.)
PAESET SKELETON POTENTIOMETERS
MINIATURE 0.25 W Vertical
4 K 7 , IOK, erc. up so $1 \mathrm{M} \Omega$
4K7, IOK, etc. up to IM Ω
SUB.MIN 0.05 W Vereical
SUB-MIN 0.05W Vereical, 100Ω to 220K Ω 5p each.
B. H. COMPONENT FACTORS LTD.
(P,E.), LEIGHTON ELECTRONICS CENTAE, S9 NORTH STREET, LEIGHTON BUZZARD, L5253). CATALOGUENo. 3, 20p.

Miniature Mullard Electrolytics $\begin{array}{llll}1.0 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \frac{1}{\mathrm{p}} \mathrm{p} & 68 \mu \mathrm{~F} 16 \mathrm{~V} \\ 1.5 \frac{1}{2} \mathrm{p} \\ 1.5 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \frac{2}{2} \mathrm{p} & 68 \mu \mathrm{~F} 3 \mathrm{~V} \\ 122 \mathrm{p}\end{array}$ $\begin{array}{lll}1.5 \mu \mathrm{~F} & 63 V & 6 \frac{1}{2} \mathrm{p} \\ 2.2 \mu \mathrm{~F} & 63 V & 68\end{array}$

 $4.0 \mu \mathrm{~F}$
40 V
4.7 F 63 V
$6.8 \mu \mathrm{~F}$
63 V
$6 \frac{1}{2} \mathrm{P}$

$\begin{array}{lllll}10 \mu \mathrm{~F} & 25 V & 6 \frac{1}{1} \mathrm{p} & 220 \mu \mathrm{~F} & 16 V \\ 10 \mu \mathrm{P} \\ 10 \mu \mathrm{~F} & 63 V & 6 \frac{1}{p} & 220 \mu \mathrm{~F} & 63 V \\ 15 \mu \mathrm{~F} & 16 V & 6 \frac{1}{p} \mathrm{p} & 330 \mu \mathrm{~F} & 16 \mathrm{~V} \\ 12 \mathrm{p} \\ 15 \mu \mathrm{~F} & 63 V & 6 \frac{1}{4} \mathrm{p} & 330 \mu \mathrm{~F} & 63 V \\ 25 \mathrm{p}\end{array}$

$\begin{array}{llll}22 \mu \mathrm{~F} & 63 \mathrm{~V} & 6 \frac{1}{p} \mathrm{p} & 680 \mu \mathrm{~F} 16 \mathrm{~V} \\ 22 \mu \mathrm{~F} & 15 \mathrm{p} \\ 32 \mu \mathrm{~F} & 10 \mathrm{~V} & 6 \frac{1}{2} \mathrm{p} & 680 \mu \mathrm{~F} 40 \mathrm{~V} \\ 25 \mathrm{p}\end{array}$
$\begin{array}{llll}32 \mu \mathrm{~F} & 10 \mathrm{~V} & 6 \frac{1}{1} \mathrm{p} & 680 \mu \mathrm{~F} 40 \mathrm{~V} \text { 25p } \\ 33 \mu \mathrm{~F} & 16 \mathrm{~V} & 6 \frac{1}{\mathrm{p}} \mathrm{p} & 1000 \mu \mathrm{~F} 16 \mathrm{~V} 20 \mathrm{p} \\ 33 \mu \mathrm{~F} & 40 \mathrm{~V} & 6 \frac{1}{2} \mathrm{p} & 1000 \mu \mathrm{~F} 25 \mathrm{~V} 25 \mathrm{p} \\ 32 \mu \mathrm{~F} & 63 \mathrm{~V} & 61 \mathrm{p} & 1500 \mu \mathrm{~F} 6.4 \mathrm{~V} 15 \mathrm{p}\end{array}$
$\begin{array}{lll}32 \mu \mathrm{~F} & 63 \mathrm{~V} & 6+\mathrm{P} \\ 47 \mu \mathrm{~F} & 10 \mathrm{~V} & 6150 \mu \mathrm{p} \\ 4 & 1500 \mu \mathrm{~F} & 6.4 \mathrm{~V} 15 \mathrm{p}\end{array}$
$47 \mu \mathrm{~F} 10 \mathrm{~V} \quad 6$

$47 \mu \mathrm{~F}$	25 V	$6 \frac{1}{3} \mathrm{p}$	$2200 \mu \mathrm{~F} 10 \mathrm{~V}$	25 p	BC 183 L	12 p	2 N 2926
47 F	63 V	8 p	$3300 \mu \mathrm{~F}$	4 V	26 p	BC	

22 Ran MULTIMETER U432
tor 20.000 R $\mathrm{R} / \mathrm{Volt}$.

Vdc $0.5-1000 \mathrm{~V}$ in 7 ranges | Vac $-2.5-1000 \mathrm{~V}$ in 6 ranges |
| :--- |
| $1 d c-0.05-500 \mathrm{ma}$ | Ide- $0.05-500 \mathrm{~mA}$ in 5 ranges

Resistance $5 \Omega-1 M \mathrm{M}$ in 4 ranges.

ranges.
 Accuracy- 5% of F.S.D

$465 \mathrm{KHz}(A, M)$,KHz and Size $160 \times 97 \times 40 \mathrm{~mm}$. Supplied complete with carryin
case, test leads and battery. case. test leads and battery
PRICE E8.30 net P. \& P. 25p 34 Ranges. High sensitivity. $20,00060-1200 \mathrm{~V}$ in 9 ranses $\mathrm{Vac}-3-900 \mathrm{~V}$ in 8 ranges. ide- $0.06-3 \mathrm{~A}$ in 6 ranges lac- $0.3-3 A$ in 5 ranges. Resistance- $25 \Omega-5 M \Omega$ in 5 ranges Accuracy- $d c$ and $R-2 \frac{1}{2} \%$ of $F . S . D$.
ac and $d b-4 \%$ of F.S.D. Size- $167 \times 98 \times 63 \mathrm{~mm}$. Supplied complete with storage case test leads spare diode, and
PRICE $\mathbf{6} 95$ net P. \& $\mathbf{P} .25$.nd

VEROBOARD

Pins, Pkt. 25
TRANSISTORS
AC127 16:p BC212L 12p
$\begin{array}{lll}A C 128 & 22 p & B C 213 L \\ \text { BC } & 12 p\end{array}$
BC107 11p \quad BC214L 17p
$\begin{array}{lll}\mathrm{BC} 108 & 12 \mathrm{p} & \mathrm{BC} 214 \mathrm{~L} \\ \mathrm{BC} & 17 \mathrm{p}\end{array}$
$\begin{array}{llll}\text { BC109 } & 13 p & \text { OC44 } \\ \text { 18p }\end{array}$

77 MULTIMETER U434
27 Ranges prus Transistor Tester.
16,700 I 33 ranges. Knife edge with mirror scale.
$20,000 \Omega / V$ itt. High accuracy. mV dc- 75 mV

 Ide $-0.06-600 \mathrm{~mA}$ in 5 ranges. lac $-0.3-300 \mathrm{~mA}$ in 4 ranges.
Resistance $-2 K R-2 M$ in 4 ranges. Accuracy-dc- $2 \downarrow \%$ ac- 4% of F.S.D. hfe- 10 of 350 in 2 ranges
Size- $115 \times 215 \times 90 \mathrm{~mm}$. $U 4323$ Complete with steel carrying
case, test leads, and batcery case, test leads, and battery.
PRICE $\mathbb{l} \mid \mathrm{IJ} .30$ net P. \& P. 30p. 33 ranges. Knife edge with mirrors Vde-1.5-600V in ? ranges. $\mathrm{lac}-1.5-600 \mathrm{~V}$ in 9 ranges.
Idd $-60-120$ microamps in 2 $1 \mathrm{de}-60-120 \mathrm{microamps}$ in 2
$\mathrm{de}-0.6$ - 1500 mA in 6 ranges lac- 06 - 1500 mA in 6 ranges. Resistance-IK $\Omega-1 M \Omega$ inges. 4 range db scale- $10 \mathrm{to}+12 \mathrm{db}$. Accuracy-dc- $1 \frac{1}{2} \%$ ac- $2 \frac{1}{2} \%$
5 ize- $115 \times 215 \times 90 \mathrm{~mm}$ 5 ize- $115 \times 215 \times 90 \mathrm{~mm}$.
test leads, and battery
PRICE $£ 13.40$ net P. \&

44341

$\begin{array}{ll} 0.1 & 0.15 \\ 36 p 38 p \\ 33 p & 25 p \end{array}$	POTENTIOMETERS Carbon Track 5K Ω to $2 \mathrm{M} \Omega, \log$ switch 26 p. Slider Pots. IOK,	
$42 p 46 p$	DIODES	P
$\begin{array}{r} 36 p \text { 36p } \\ 9 p \text { pp } \end{array}$	IN4001 6:P	Din 2 Pin. 12p
- ${ }^{\text {P }}$ 9p	IN402 $7 \frac{1}{3} \mathrm{P}$	3 Pin 13p
-16p	IN 4003 9p	5 Pin $180^{\circ} \quad 160$
29p	IN4400 9p	Std. Jack 20p
3p 73 p	IN4005 12p	2.5 mm jack 13 p
56p 56p	IN4006 14p	Phono 6p
22p 22p	IN914 Ip	SOCKETS
	1N916 7p	Din 2 Pin 10p
	BA100 10p	3 Pin 10p
	OAS 42p	5 Pin 180 ${ }^{\circ}$ 12p
212L 12p	OA47 9p	Sed. Jack 15p
213L 12p	OABI llp	2.5 mm Jack 13 p
214L 17p	OA200 8p	Phono 6p

or lin (and $1 K$ lin). Single, $16 \frac{1}{2} p$ Dual Gang 46p. Log single with $0 \mathrm{~K}, 500 \mathrm{~K}$, semi log $30 \mathrm{~mm}, 34 \mathrm{p} .45 \mathrm{~mm}, 47 \mathrm{p} .60 \mathrm{~mm}, 55 \mathrm{p}$. ELECTROLYTICCAPACITORS. Tubular \& Large Cans (uF/V) $1 / 25,2 / 25,4 / 25,4.7 / 10,5 / 25,8 / 25,10 / 10,10 / 50,16 / 25$,
$22 / 63,25 / 25,25 / 50,32 / 25,50 / 25,100 / 10,100 / 25,6 / p .50 / 50,8 p$. $22 / 63,25 / 25,25 / 50,32 / 25,50 / 25,100 / 10,100 / 25,61 p, 50 / 50,8 \mathrm{p}$. 100/50, 200/25, 11 p. 250/50, 18p. 500/10. 11 p. $500 / 25,15 p$.
$500 / 50,18 p .1000 / 10,15$ p. $1000 / 25,22$ p. $1000 / 50,40$ p. $2000 / 10$ $200 / 50,18$ p. $1000 / 10,15 p .1000 / 25,22 p-1000 / 50,40$ p. $2000 / 10$, 20 p. $/ 500 / 100.88 p .2000 / 25,30 p .2000 / 100,9$
$2500 / 50,61$ p. $5000 / 25,65 p .5000 / 50, ~ f i \cdot 08$.
HI.VOLT: $4 / 350,14$ p. $8 / 350,19$ p. $100 / 100,20$ p. $16 / 350,22 \mathrm{p}$. $16 / 450,23$ p. 32/350, 33p. 50/250, 20p. 100/250, 30p. METALLISED PAPER CAPACITORS

PLEASE NOTE OUR NEW ADDRESS.

NEW KIT $5 E 12 \downarrow W$ Metal Film. each value $10 \Omega-1 \mathrm{M}$, total of 305 total of

Our New Electronics Centre is now open in Leighton Buzzard
and all callers are welcome. As well as our normal stock of over and all callers are welcome. As well as our normal stock of over 2,000 products we have a large range of surplus bargains and

NEW CAPACITORKITS
C280 Kit-PC Mounting Dolyester $250 \mathrm{~V}, 5$ of each value: 0.01
$0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ of $0.47,1 \mu \mathrm{~F}$. $£ 1.30$ ner.
C296 $0.022,0.047,0.1,0.22 \mu \mathrm{~F} .2$ of $0.47,1 \mu \mathrm{~F}$. $£ 1.30 \mathrm{ner}$.
C 296 Kit-Tubular polyester, 400 V , 5 of each value: C296 Kit-Tubular polyester,
$0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ of $0.47 \mu \mathrm{~F}$. el. 30 nalue: 0.01 ,,$~$ Ceramic Kit-square plaquetre 50 V . 5 each value: 22, 33, 47, $100,220,330,470,1000 \mathrm{pF}, 2200,4700 \mathrm{pF}, 0.1 \mu \mathrm{~F}, \mathrm{Cl} \cdot 30$ 250 V Pet. Paper kit-Tubular metal case. 3 of each value: $0-05,0.1$ 500 V Paper Kit-Tubular metal case. 3 of each value; 0.025. $0.05,0.1,0.25,0.5 \mu \mathrm{~F}, 90 \mathrm{p}$ net,
1000 V Paper Kit-Tubular metal case. 3 each value: 0.01,

\section*{| S-DeC | MULTIMETER U435 |
| :--- | :--- | :--- |}

 on tiny gas cylinder. Complete with 2 cylinders and instruction book

E2. 92 inc. VAT, P \& P
1010 Soft-solder bit for Cub 32 p per 2

CRAFTSMAN'S' TORCHES
up to $6.000^{\circ} \mathrm{F}$

A range of mini-torches for all gases. incl. Oxy/Acetylene. Operate from standard gas cyls, or our own minipacks. for all ultra-fine welding. brazing, fusion or cutting, incl steel, glass, ceramics, in labs. or for leaflet and price list.

Until recently, if you wanted a first-class hi-fi system you had two ways to get it.

You could buy the individual electronic components and build a system from scratch. If you were an electronics genius - fine.

Or you had to buy ready-made units. Expensive - and dull. About the only creative pleasure you'd get would be matching your amp and your speakers, or making your speaker enclosures.

So what's new?
A comprehensive hi -fi system, combining the enjoyment and satisfaction of build-it-vourself (without too much struggle) ... a real value-for-money feeling ... and results of the highest quality.

It's the new Sinclair Project 80.

How does Sinclair Project 80 work?

Project 80 is a comprehensive set of hi-fi modules, or sub-assemblies. Amps ... pre-amps ... FM tuner ...stereo decoder ... control units . . . everything you need to assemble hi-fi units. They're all designed to look alike and they're all completely compatible with each other. Simply decide on the specifications of the unit you want to build... buy the necessary modules ... connect them ... and house them.

No need to buy everything at once for your eventual set-up. All the modules are designed so that vou can add to them as your system grows - whether or not it's based on Project 80.

This applies to refinements, like filters... to up-grading, adding a second set of amps, say, for greater output ... or to real innovation, like quad. (Add a Project 80 quad decoder, a power supply, a pair of amps, and a pair of speakers - and your stereo's gone quad.)

Is it difficult to build?

Not at all. The modules are complete in themselves. All you do is connect them to your turntable ...your speakers... or to each other. It's absorbing, but if you can solder wires to a 5-pin DIN plug, you can build a complete system with project 80.

And if you're not so hot with a soldering iron? Use Project 805 . Project 805 uses Project 80 modules, but provides special clip-on tagged wire connectionsabsolutely no soldering required.

And, of course, both Project 80 and Project 805 come complete with instructions for easy, step-by-step assembly. But if you do run into problems, just call our Consumer Advisory Service who are always happy to help.

OK. Where do I go from here?
Over the page! There vou'll see for yourself the exacting specifications to which Sinclair Project 80 modules are made, and you'll see some suggested systems.

As you skim the suggestions, remember all Project 80 modules are backed by the remarkable no-quibble Sinclair guarantee. Shouldany defect arise from normal use withina year, we'll service the modules free of charge. What could be fairer than that?

Choose the Project 80 modules that are right for you.

Project 80 pre-amp/control unit

The control centre of Project 80. Withits distinctive white-on. matt-black styling and plastic control sliders, it s a pleasure to look at, as well as to use.
specification
19'. In X 2 in X : in. separate slider controls on each channel for treble, bass and volume. Inputs: PU magnetic - 3 mVIRIAA correctedi, ceramic -350 mv ;

Project 80 FM tuner

Excellent reception from a tuner only $31 / 2$ in long $x 3 / 4$ in deep!
Styled to match Project 80 controlunit.

specification

13': in $\times 2 \ln \times$'s in. Tunes 87.5 MHz to 108 MHz . Detector: IC balanced

Project 80 stereo decoder
Designed for use with Project 80 FM tuner sold separately to

Project 80 active filter unit
Eliminates scratch and rumble (hign and low.frequency noise).

Radıo 100 mV , Tape 30 mV . S/Nratio: 60 dB. Frequency range: 20 Hz to $15 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Outputs: 100 niv and tape plus AB monitoring press buttons for PU, radio and tape. Operating voltage: $20 \mathrm{~V}-35 \mathrm{~V}$. Price E1395 + VAT
coincidence IIC equivalent to 26 transistors) Distortion: 0 3\% at 1 kHz for 30% modulation. Sensitivity: $5 \mu \mathrm{~V}$ for 30 dB signal to nose output: 100 mV for 30% modulation. Aerial imp: 75Ω or 240-300 Ω. Features: dual Varicap tuning, 4-pole ceramic filter. switchable AFC. Operating voltage: $23 \mathrm{~V}-30 \mathrm{~V}$.

Price. £13.95 + VAT
keep down the price of a mono FM system, but also to make the stereo decoder available for use with existing mono FM tuners.
specification
(1, in $\times 2$ in x in.) 1 IC equivalent to 19 transistors LED stereo indicator glows red.

Price. $£ 895+$ VAT
specification
($41 / 4$ in $\times 2 \mathrm{in} \times \mathrm{s}_{4}$ in) voltage gain: -02 dB Frequencyresponse: filter at zero: $36 \mathrm{~Hz}-22 \mathrm{kHz}$, HF (scratch) out variable 22 kHz to $5.5 \mathrm{kHz}, 12 \mathrm{aB} /$ octave slope, LF (rumble) out. -28 dB at 28 Hz , $9 \mathrm{~dB} /$ octave slope.

Price: $£ 7.45$ + VAT

Project 80 power amplifiers
Two different amplifiers, desıgned to be used separately or combined, with Project 80 modules or as add.ons to existing equipment Protectedagaınst short circuits and damage from mus use

240 specification
(2', in x 3 In x 4 in) 8 transistors. Input sensitivity: 100 mV Output: 12 WRMS continuous into 8Ω i 35 v) Frequency response: $30 \mathrm{~Hz}-100 \mathrm{kHz} \cdot 3 \mathrm{~dB}$. S $/$ N ratio: 64 dB Distortion: 0.1\%
at 10 W into 8Ω at 1 kHz . Voltage requirements: $12 \mathrm{~V}-35 \mathrm{~V}$ Loadimp: $4 \Omega-15 \Omega$. safe on open circuit Protectedagainst short circuit

Price E 595 + VAT
260 specification
$12^{1 / 4}$ in $\times 3^{\frac{3}{4}}$ in $\times{ }^{3}$, in. 112 transistors Input sensitivity: $100 \mathrm{mv}-250 \mathrm{mv}$. Output: 25 W RMS contınuous into $8 \Omega(50 \mathrm{~V}$) Frequency response: 10 Hz to modre than $200 \mathrm{kHz}+3 \mathrm{~dB}$ S/N ratio: better than 70 dB Distortion:lessthan 01% at 12 W into 4Ω at 1 kHz . voltage requirements: $12 \mathrm{~V}-50 \mathrm{~V}$. Loadimp: 4Ω min max safe on opencircuit Protectedagainst shortcircuit

Price. $£ 745+$ VAT

power supply units

Range of power supply units to match desired specification of finalsystem.

P25 Specification
Unstabilised 30 voutput Includıng mains transformer.

Price £5.95 + VAT

P26 Specification
Stabilised 35 voutput. Including mains transformer

Price $£ 895$ + Vat
Pz8 Specification
Stabilised Output adjustable from 20 V to 60 V approx Re.entrant current liniting makes damage from overioad or evenshorting virtually impossible Without mains transformer

Price $£ 8.45+$ VAT

Project 80 SO quadraphonic decoder

Combines with and exactly matches Project 80 control unjt for true quadraphonics. This unit is based on the CBS 50 system andis a complete quadraphonic decoder, rear channel pre-amp and control unit.
specification
191. In $\times 2$ in \times in.l Connects with tape socket on Project 80
control unit or simılar facility on any stereo amplifier Separate slider controls on each channel for treble, bass and volume. Frequency response: 15 Hz to $25 \mathrm{kHz}=3 \mathrm{~dB}$. Distortion: 0.1\%. S/N ratio: 58 dB . Rated output: 100 mv . Phase shift network: $90 \pm 10 \cdot 100 \mathrm{~Hz}$ to 10 kHz . Operating voltage: $22 \mathrm{~V}-35 \mathrm{~V}$.

Price: $£ 18.95$ + VAT

Some system suggestions from Sinclair

Sinclair 016 speaker
Original and uniquelv desigried speaker of outstariding quality.
specification
(103/8 in square $\times 4^{3}$ sin deep.) Pedestal base. All-over black front Teak surround Balanced sealed sound chamber. Special driver assembly. Frequency response: 60 Hz to 16 kHz . Power handling: up to 14 W RMS. Impedance: 8Ω
Price: $£ 8.95+$ VAT

Project 805 amplifier kit

Contains following Project 80 units:

Project 80 control unit 2×240 power amplifier modules $1 \times$ P25 power supply unit Masterlink unit
On/off switch
plus pre-cut wiring loom with clip-on tagged wire connections, nuts and bolts, instruction manual.

Price: $£ 39.95$ + VAT

Project 8050 quadraphonic add-onkit

Converts your existing stereo hi-fi system to quad using solderless connections.
Contains following Project 80 units:

Project 80 SQ quad decoder/rear channel pre-amp and control unit
2×240 power amps
PZ5 power supply unit
Masterlink unit
On/offswitch
plus pre-cut wiring loom with clıp-on tagged wire connections, nuts and bolts, instruction manual.

Price $£ 44.95+$ VAT

1. Ouadraphonic system: 25 W per channel RMS

Pre-amp/control unit + quadraphonic decoder $+4 \times 260$ amps $+2 \times$ PZ8 mains power supplies $+(2 \times$ mains transformers) $+(4 \times$ equivalent speakers $)+($ turntable $)$. Total Project 80 cost: $£ 79.60+$ VAT.

2. Stereo amplifier: $12 \mathbf{W}$ per channel RMS

Pre-amp/control unit + 2×240 amps + P26 power supply + $2 \times$ Q16 speakers. Total Project 80 cost: $£ 52.70+$ VAT.
3. Stereo tuner/amplifier: 12 W per channel RMS

Pre-amp/control unit + FM tuner + stereo decoder $+2 \times 240$ amps + P26 power supply $+2 \times 016$ speakers. Total Project 80 cost: $£ 75.60+$ VAT.

Other applications

4. PA system
(Mic) + pre-amp/control unit + 240 amp + P26 power supply $+2 \times$ Q16 speakers. Total Project 80 cost: $£ 46.75$ +VAT.
5. Convert existing mono record-player to stereo Pre-amp/control unit + 240 amp + Q16 speaker. Total Project 80 cost: $£ 28.25+$ VAT.

What more can we tell you?
The basic facts are covered on these two pages. And you'll find Project 80 at stores like Laskys and Henry's.
But before you look, why not get really detailed information? Clip the FREEPOST coupon for the fully. illustrated Project 80 folder - today!

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ. Telephone: St Ives (0480) 64646.

for fast easy reliable soldering EASY TO USE DISPENSERS AND REEELS IDEAL FOR HOME CONSTRUGTORS
 Ersin Multicore Solder contains 5 cores of non-corrosive flux instantly cleaning heavily oxidised surfaces No exira flux is required

SAVBIT solder
for general purpose work

A handy plastic reel of
SAVBIT alloy 63 ft of $18 \mathrm{~s} . \mathrm{w} . g$ (19.2 metres of 1.22 mm)

Size 12 £1.72
The Solder that af soldering iron bits.

Size 5 32p
A coil of Ersin Multicore Savbit Solder in a dispenser 7tt 6 in of 18 s.w.g. 2.2 metres of 1.22 mm) duces the wea

NEW BIB WIRE STRIPPER \& CUTTER

ALU-SOL tor

 soldering aluminium New Multicore Alu-sol flux-cored solder in 16 S.w.g. No extra flux needed. Plastic reel holds 36 ft . Supplied with full instructions. Also available in solder dispenser.Size 4 £2.32

Fine gauge solder
for soldering small components
Fine gauge solder for soldering small components 138 ft of $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. (42.0 metres of 0.71 mm) Ersin Multicore 5 cor solder wound on a plastic reel. Suitable for intricate work and small components.

Size $10 £ 1.44$

For soldering fine joints Dispensers A. of Errin Solder make those small those small
jobs easler 2111 ol 22 s.w.g. (6.4 s.w.g. $(6.4$
metres of metres of
0.71 mm) solder, specially suitable for soldering tine
wires, small components and for repairing printed citcuits.

Bib Hi-Fi Accessories Limited,

Prices shown are recommended retail excluding V.A.T.
From Electrical and Hardware Shops. If unobtainable, send 15p P\&P Pices and specifications subject to change without notice.

IIO OPERATIONAL AMPLIFIER-PROJECTS FOR THE HOME CONSTRUCTOR

by R. M. Marston

Price $\mathbf{C 1} \cdot 90$

THE AUDIO HANDBOOK by G. J. King. COLOUR T.V. SERVICING by G. I. King. THE RADIO AMATEUR'S HANDBOOK 1975 by A.R.R.L. AN INTRODUCTION TO DIGITAL
LOGIC byA. Potton. ELECTRONICS SELF-TAUGHT WITH EXPERIMENTS AND PROJECTS by 1. Ashe. Price $E 2.05$. BASIC ELECTRONICS PROBLEMS WORKING WITHTHEOSCILLOSCOPE WORKING WITHTHE OSCILLESCOPE
By A.C. W. Saunders. TOWERS INTERNATIONAL TRAN. SISTOR SELECTOR by T. D. Towers.

* PRICE INCLUDES POSTAGE *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books 19-2I PRAED STREET LONDON W2 INP Phone 01-723 4185 Closed Saturday I p.m

All mail order and enquiries to 270 Acton Lane, Chiswick W4 5DG. Tel. 01-994 6275

OIGITAL INTEGRATED CIRCUITS						SN74107	55p	SN74167	84-25
SN7400	18 p	SN7428	p	SN7473	40p	SN74110 SN74118	$80 p$ 81.90	SN74170	54.10
SN7401	10 p	SN7430	20 p	SN7474	40p	SN74119	[1.90		12.00 $\$ 1.35$
SN7402	20 p	SN7432	42p	SN7475	55p	SN74t21	${ }^{65}$	SN74175	£1.35 $\$ 1.80$
SN740	20 p	SN7433	70 p	SN7476	$45 p$	SN74t22	\$1.35	SN74176	¢1.80 $\$ 1.60$
SN7404	20p	SN7437	50p	SN7480	80 p	SN74123	\$2.00	SN74180	£1.55
SN7405	200	SN7438	50 p	SN7481	\$1.25	SN74141	\$1.00	SN74181	E6.00
SN7406	30 p	SN7440	20p	SN7482	87 p	SN74145	\$1. 50	SN74182	£2.00
SN7407	30 p	SN7441AN	75p	SN7483	51.00	SN74150	\$1.35	SN74184	E2.45
SN7408	200	SN7442	75p	SN7484	90 p	SN7415	\$1. 10	SN74185A	E22.40
SN7409	$40 p$	SN7443	11.00	SN7486	45p	SN74153	¢1.35	SN74190	22.40 $\$ 1.95$
SN7410	18 p	SN7445	\$1.70	SN7490	75p	SN74154	c2. 20	SN74191	11.95
SN7411	23 p	SN7446	12.00	SN7491A	151.00	SN74155	11.55	SN74192	22.00
SN7412 SN7413	22p	SN7447	$\$ 1.50$ 1.75	SN7492 SN7493	75p	SN74456 SN74157	11.55 1. 1.80	SN74192	22.00 52.00
SN7416	30 p	SN7450	200	SN7494	80p	SN74160	11.60 $\$ 1.60$	SN74194	12.50 51.85
SN741*	30 p	SN7451	20 p	SN7495	sop	SN74161	\$1.60	SN74195 SN74196	11.85 $\$ 1.50$
SN7420	${ }^{20 p}$	SN4753	200	SN7496	\$1.00	SN74162	\$1.60	SN74197	$\$ 1.50$ $\$ 1.50$
SN7422	38 p	SN7454	200	SN7497	12. 25	SN74163	\$3.40	SN74198	\$3.00
SN7423	38 p	SNT460	20p	SN74100	22.00	SN74164	¢2.75	SN74199	22. 60
SN7425	380	SN7470	30 p	SN74104	¢ 1.45	SN74465	\$2.00		
SN7427	42p	SN7472	30 p	SN74105	11.00	SN74166	\$4.00		

CRS $1 / 05$
CRS1
CRS1
CRS1
CRS1
CRS 1
CRS3
CRS3
CRS3
CRS 1
CRS 1
CRS 1
CRS1
C106B
C106D
40669
TIC 44
2N444
BT10
CRS $1 / 20$
CRS $1 / 60$
CRS3/10
CRS3
CRS3/
CRS7
CRS1
CRS1
CRS 18
C106
C106D
40669
TIC4
2N4

BRIDGE
RECTIFIERS W02 1A 200 V
Br164 1.4A
200V
MDA $952 / 26 A$

ZENER DIODES BZY8B Series 400 mW

$3.3 \mathrm{~V}-33 \mathrm{~V}, 5 \% \quad 11 \mathrm{p}$ | 10W range | 45p |
| :--- | :--- |
| TIL209 L.E.D. | $38 p$ | | MA2082R | $\begin{array}{l}28 p \\ \text { 20p }\end{array}$ |
| :--- | :--- |
| ORP12 $^{\text {L.D.R. }}$ | $60 p$ |

Tatacs	
TXL228	85
SC400	\$1.40
SC40E	51.65
SC450	\$1.70
SC45E	¢2.10
SC50D	$\mathbf{5 2 . 4 2}$
SC50E	E2.70
DIAC	25p

INEAR I.C.: LM30SK 5V IA Voltage Reg
LM723C 27 V LM723C 2 37V 150 mA Voltage
Reg.
$\Sigma 1.05$ MFC 4000250 mW
Audio
TBAB00 5 Watt Audio $£ 1$. 709 C Oo Amp D.I.L./
TO99 1099
74100
41C Oo Amp $8 / 143$
D.I.L./TO99 D.I.L. 7 747C Dual OP Amp $51 \cdot 20$
C. $51 \cdot 25$ TAD100 Redio I.C $\begin{array}{ll}\text { inc. Filter } & \mathbf{5 1 . 9 0} \\ \text { CA3014 } & \$ 1.55 \\ \text { CA3018 } & 11.00\end{array}$

NE555 Timer	800	$\begin{aligned} & \text { MC1303L } \\ & M C 1310 P \end{aligned}$	$\begin{aligned} & \mathbf{\Sigma 2} .20 \\ & 52.80 \end{aligned}$
TO3 VOLTAGE REGULATORS			
1005 5V 650mA			
L036 12V 500mA	ach		
L037 15V 450 mA			

\star * SPECIAL OFFERS
MULTICORE CABLE. 25-way. individually screened. 14/0076. £1.00 per yard + VAT. Postage by weight.

IMHOF 19In RACKING CABINETS. 13 tin high, 22 in wide, 13 in deep. Brand new. $£ 10.00$ each + VAT. Carriage $£ 1.00$

SIEMENS CONTACTORS. Over $\mathbf{~} \mathbf{8}, 000$ in stock. All types. hrme or wite for datails.
METAL OXIDE RESISTORS TR4/5/6 in stock. All Values, 1-off price 3 peach. Discount on quantity
10 TURN TRIMPOTS by Bourns, Mac. Painton, atc. All values
In atock. 50p each. Discount on quantity

9-WAY FULLY STABILISED BATTEAY CHAAGERS. 24 in L . 7 tin H. 7 in D. Price $\mathbf{£ 1 4} \cdot \mathbf{0 0}$ each. Carriage $£ 1 \cdot 00+V A$

DEAC RECHARGEABLE BATTERY CASSETTES. $13.4 V$ (nom.). Type B/SA $80359 / 108$ Heavy duty encapsuleted DEAC supply. Size $3 \downarrow$ in $\times 2$ in $x 1$ if in Price $\mathbf{5} 5-00+$ VAT.

8-WAY BATTERY CHARGER. Type CC 999. Charges up to 8 of the abova battery cassettes. Price $\mathbf{5 1 4 \cdot 0 0}$ - VAT.
12.WAY BATTERY CHARGER. Type CC 999 . Charges up to 12 of 13 -4V DEAC batteries. Metered battery condition check. Price E 25.00 - VAT

We are open from 9.30 a.m. -6.00 p.m. Monday-Saturday
We have the largest retall selectlon of components avallable. Phone or write if you are in dificulties obtaining a particular component.
C.O.D. Bervice welcome. All mall order by return. Offlclal orders welcome by Governmentestablishments, Educatlon authorities, etc. Tel. 01-994 6275

FROM WORLD FAMOUS MAKERS! The greatest Watch offer since time began! Everyone who sees it is faselnated by it! It's unbelievable! Continuous digital reading-hours and minutes AND second Pulsator miraculously transmits before your very eyes like continuously changing TV Picture! A new "dimension" in time! Now YOU cen join the elite few-the proud owners of a watch that is utterly different from any other timepiece you've over known! THEY'RE NEWS! THE WATCH OF TOMORROW-TODAY! AND you buy at a price that's just a fraction of what you could have paid! But remember-you can only buy at this amazing price from Shopertunities. \star UNBELIEVABLY ACCURATE TO WITHIN SECONDS A YEAR! The system excelled in eccuracy only by the Atomic frequency tandard! Now TIM can phone you for a time check! * NO MOVING PARTS! * NO MAINTENANCE! * ABSOLUTELY SILENT! * BUILT TO GIVE A LIFE* TIME OF SERVICE! * 18CT GOLD PLATED CASE! * BRAND SPANKING NEW ADVANCE 1975 MODEL! WRITTEN GUARANTEE. Developed from the fantastic "space-age" techniques that first put men on the moon. this incredible watch is baeed on the natural action of Quartz Crystal, that vibrates approx. 32,768 times per second! A veritable miracle of micro-circuitry! An "electronic brain' ' with 1500 Transistors! You could even spend £400 or more for Quartz Crystal watch! OUR fantastic cash price for thle masterpiece is ONLY E57.95, regletered post, pack, etc. 50p, Including expenslve matehing adjustable safety bracelet and presentatlon casket. Send quickly and test for yourself on 7 days mail order approval from receipt of goods. REFUND IF NOT DELIGHTED. Or send only $£ 12 \cdot 50$ deposit, balance by 6 monthly payment of $\mathbf{5 9 . 4 7}$ (total credit price $\mathbf{2 8 9} \mathbf{3 2}$ plus post). Please hurry! Limited quantity! THIS is the greatest investment you'll EVER make! Or call at either store and see this fabulous watch for yourself! At this price you just can't lose

Order by post to Uxbridge Road. or call at wher store Callors: ACCESS \& BARCLAY CARDS ACCEPTED Bargains gatore at both mores-
COMMERCIAL TRAVELLERS NOTE Merchandising office at Holborn.

Dept. PE/42, 164 UXBRIDGE ROAD (facing Shepheras Bush Green), LONDON W12 sAQ. (Thurt. 1, FrI. 7). Also al $37 / 39$ HIGH HOLBORN OPEN MON. TO SAT. g A.M. THLL EP.M.

12In LONG PERSISTENCE CRT. FuII
spec Price E6-50 to include VAT and Carriage
MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW INTO A DOUBLE WITH OUR NEW LOW
PRICED SOLID STATE SWITCH. 2 Hz to PRICED SOLID STATE SWITCH. 2 Hz to
8MHz Hook up 10 a 9 volt battery and 8MHz hook up 10 a 9 volt battery and
connect to your scope and have two connect to yout scope and have two
traces for ONLY ES-25,P \& P 25p iNo: traces for ONLY es-25,
cased nol calibrated ;

WIDE RANGE WOBBULATOR. $5 M H_{2}$ to 150 MHz up to 15 MHz sweep width Only 3 controls preset AF level sweep width and frequency ldeal for 107 or TV IF alignment. filters receivers Can be used with any general purpose scope Full instructions supplied Connect 63 V a c and use within minutes of receiving All this tor ONLY E6.75, P \& P 35p (Not cssed. not calibrated)
20 Hz to 200 kHz WB, SINE and SQUARE GENERATOA. Four ranges Independent amplitude controls. thermistor stabilised Ready to use 9 V supply required Es . 85
each P \& P 35 p (Not cased not calteach P
brated)
GAATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each. P \& $P 8_{p}$

Large quantity of good quality com-ponents-NO PASSING TAADE-SO we offer 31b of ELECTRONIC
GOODIES for $51 \cdot 70$. POSt paId

ROTAAY SWITCH PACK-6 brand new switches (1 ceramic 1 off 4 pole. 2 way. etc 1. 50p, P \& P 37p
P.C.B. PACKS. S\& D Quantity 2 sq tt no tiny pieces 50p, o \& P 37 F
CAPACITOO PACK-50 brand nen com penents, onlv $50 \mathrm{p}, \mathrm{P}$ \& $P 370$.

TRIMMER PACK. 2 iwin 50/200pF ceramic, 2 twin 10/60pF ceramic. 2 min strip with 4 presel $5 / 20 \mathrm{pF}$ on each, 3 air spaced preset $30,100 \mathrm{pF}$ on ceramic base. ALL BRAND NEW. 25p the lot. P. \& P. 15p
PHOTOCELL equ. OCP71. 13p each. MULLARD OCP70. 10 p each.
DELIVEREO TO YOUR DOOA, ICwt of Electronic Scrap chassis. boards.
elc No rubbish FOR ONLY 84 .

MODERN TELEPHONES. Type 706 twotone grey or black, $\{3.75$ each. Type 7006 two-tone grey or green. $£ 3.75$ each. Siyle similar to Type 746 grey, green or black. \&3 each. P. \& P. all types 45p each
Ideal EXTENSION TELEPHONES wilh slandard GPO type dial, bell and lead coding. 11.75 each, P \& P 4Sp
HAN OSETS. Complete with 2 inserts and lead. 75 peach. P \& P 37p
DIALS. ONLY 75p each, P \& D. 25p.
HIGH VALUE-PRINTED BOARD PACK. Hundreds ct components, transistors etc -No 2 boards the saine No shor caded Transistor computer boards £1-75, post paid
BEEMIVE TAIMMEA $3 / 30 \mathrm{pF}$. Brand new Oty 1-9 13p each. P \& P 15p, 10-99 10p each. P \& P. 25p. 100-999 7p each P. \& P free
HE CAYSTAL DAIVE UNIT, 19in rack mount Standard 240 V input with superb cryslal oven by Labgear (no crystals) 55 each Carr $£ 2$.
1,000 pF FEED THRU CAPACITORS. Only sold in facks of $10,30 \mathrm{p}, \mathrm{P}$ \& P 15p
ALWAYS SOME CHEAP SCOPES AVAIL. ABLE-or buld your own Send tor our tube list with a SAE

VEROBOARD

Approx. 8 pieces, total 100 sq.in assorted sizes and pirches $\mathbb{\text { E }}$. 15 .

CAPACITORS

200 Mica, ceramic, poly, etc. Él, $15,000 \mathrm{E42}$. 15 diff. trimmers, air1250pF. Only fl .

8 PIN DIL 741's

FULL SPEC. OF COURSE $10+26 p$; 25 + 23p; 100 + 21p; 250 +20 p.
PCETCHING KIT
Contains llb ferric chloride. 100sq.in. copper clad board, DALO etch resist pen. abrasive cleaner, FERRIC CHLORIDE
Anhydrous to Mil-spec in 11 b
double sealed packs. 11 b 90p: 3lb $\mathbf{E l} .80$; $101 \mathrm{l}, \mathrm{E} 4.65$.
COMPUTER PANELS
Large quantity always avaifable.
31 b assorted $\& 1.60$: 711 b E2.85: 31b assorted $\mathbb{1 1 . 6 0 ;} 711 \mathrm{~b}$ E2.85; $561 \mathrm{C} \mid 5$
12 high quality panels with IC's. trimpots, power transistors, etc. t2.65.
Pack with 5014 pin DIL DTL IC's rimpors plus with 20 multi-turn trimpots plus orher parts Elus 60
Pack with 5 IA 200 V SCR's plus 60 orher parts 60p.

JIIb BARGAIN PARCELS

Hundreds of new componentsresistors, capacitors, pots, switches diodes, also loads of odds and ends. Contents always changing as new srocks arrive, E2.60.

TRANSFORMERS

All mains primary. 6-0-6V at $100 \mathrm{~mA} 85 \mathrm{p} ; 9-0-9 \mathrm{Vat} 100 \mathrm{~mA} 90 \mathrm{p}$; $12-0-12 \mathrm{~V}$ at 100 mA 95 p : 24-0-24V at $500 \mathrm{~mA} \in 2$. Ex-equip: $22:-0-221 \mathrm{~V}$
ar $\mid \mathrm{A} \in 2 \cdot 10: 18 \mathrm{~V}$ at $5 \mathrm{~A} \in 3 \cdot 40 ; 55 \mathrm{~V}$ at $1 \mathrm{~A} \mathrm{E2} \cdot 10$; 18 V at $5 \mathrm{~A} \mathrm{E} 3 \cdot 40$; 55 V at 5 A 44.50 .
HEAT SINKS
$6 \times 5 \times 3$ in. linned aluminium with $2 \times$ OC 29 or $2 \times$ OC 35 . Only $\mathbb{1} 1 \cdot 20$. POWER SUPPLIES
G101: Mains transformer, 2A Will give $1.7 V-10.5 \mathrm{~V}$ ourput with 2 extra capacitors (provided). ${ }^{2}$ extra capac
7 SEGMENT LEDS
14 PIN DIL PACKAGE
$19 \times 11 \mathrm{~mm}$
4 for 63.60
6 for $\mathbb{E 5 \cdot 2 0}$
MICROPHONES
V996 dynamic microphone, 50k impedance, on/off switch, heavy 63.30. Crystal microphone insert lin. dia. 35p.

555 TIMERS

3-9 60p; 10-24 50p; 25-99 46p; $100+43$ p.

Price increases, which we regret, are due to higher postal, packaging and advertising costs. Prices include 8% VAT and inland postage. S.A.E. list Computers, components and equipment always wanted for cash.

GREENWELD ELECTRONICS (PE5)

Mail order dept., retail/wholesale shop
51 SHIRLEY PARK ROAD, SOUTHAMPTON SOI 4FX. Tel. (0703) 772501
Also callers welcome at 21 Deptford Broadway, SE8. Tel. 01-692 2009, and 38 Lower Addiscombe Road. Croydon. Tel. 01-688 2950.

MarshallisEverything you need is in our New 1975 Catalogue available ncw price 25p (180 pages of prices and data)

Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome
A Marshall (London) Lid. Dept. PE
42 Cricklewood Broadway London NW2 3DH Telephone 01-452.01612 Telex 21492
\& 85 West Regent Streel Glasgow G2 2OD Telephone $041-3324133$
Top 500 Semiconductors From the Largest Range in the U.K 2N456
2N456A 2N456A
2N457A 2N490
2N 491 2N491
2N 492 2 N 492
2 N 493 2N493
2N696 2N696
2N697 2N698
2N699 2N699
2N706 2N706 2N708
2N709 2N709
2N711 2N711
2N718
2N71EA 2N71EA
2N72C: 2N72E
2N914 2N914
2N91E
2N916 2N91E
2N916
2NG29 2N929
2N930 2N930
2N 1302 $2 \mathrm{~N}_{13} \mathrm{~N}_{2}$
$2 \mathrm{~N}_{1303}$

$2 \mathrm{~N}_{3} \mathrm{O}_{4}$ | $2 \mathrm{~N} 13 \mathrm{~N}_{4}$ |
| :--- |
| $2 \mathrm{~N} 13 \mathrm{O}_{4}$ |
| 2 N | $2 N_{1305}$

$2 N 1305$
$2 N 1307$ $2 N 1304$
$2 N 1305$
$2 N 1308$
$2 N 1308$ 2N1308
2N1309
2N1671 2N1671
$2 N_{1} 167_{14}$
$2 N 16710$ 2N1671B
2N1711 2N1711
2N1997 2N21.32
2N2147 2N2147
2N2148
2N2180 2N2160
2N2218A
2N2219 2N2219
2N2219A 2N2220
2N2221 2N2221A 2N2222
2N2 222 2N2 2 Z 68
2N239 2N2369
2N2269 2N2E46
2N2E47 2N2 $2 \mathrm{~N}^{2} 04$
2N204A 2N2904A
2N2905 2N2905A 2N2906 2N2907 2N2924 2N2924
2N2925 2N2926

 . LM308 LM309K LM 209 K
LMSTI
 $0 \mathrm{OC35}$
$\mathrm{OC42}$ $\mathrm{OC4}$
$\mathrm{OC45}$

TTL Integrated Circuits-Quality and Prices You Can't Beat | | 0.16 | SN7409 | 0.22 | SN7430 | 0.16 | SN7448 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SN7401 | 0.16 | SN7410 | 0.16 | SN7432 | 0.28 | SN7450 |

 \begin{tabular}{ll|ll|l|llllllll}
SN7402 \& 0.16 \& SN7413 \& 0.35 \& SN7440 \& 0.16 \& SN7454 \& 0.16 \& SN7483 \& 0.95 \& SN74100 \& 1.25

SN7403 \& 0.16 \& SN7416 \& 0.35 \& SN7441AN \& SN7460 \& 0.16 \& SN7494 \& 0.95 \& SN

SN7404 \& 0.19 \& SN7416 \& 0.35 \& SN74417 \& SN \& SN7460 \& 0.16 \& SN7484 \& 0.95

SN \& SN74107 \& 0.36

SN740 \& 0.19 \& 0.85 \& SN7470 \& 0.33 \& SN7485 \& 1.25 \& SN74118 \& 1.00

SN7405 \& 0.19 \& SN7420 \& 0.16 \& SN7442 \& 0.65 \& SN7470 \& 0.33 \& SN7485 \& 1.25 \& SN74118 \& 1.00

SN7472 \& 0.26 \& SN7486 \& 0.32 \& SN77419 \& 1.92
\end{tabular}

 | SN7407 | 0.45 | SN7425 | 0.29 | SN7446 | 0.95 | SN7474 | 0.36 | SN7491 | 0.85 | SN74122 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.50

SN74145	0.85	SN74167	4.10
SN74174	1.25		

SN77450 1.90 .SN74174 $1 \cdot 25$ SN74151 0.95 SN74176 1.44 \begin{tabular}{ll|ll}
SN74151 \& 0.85 \& SN74176 \& 1.4

SN74153 \& 0.85 \& SN74180 \& 1.4

SN74153 \& 0.85 \& SN74180 \& 1.40

SN74154 \& $\mathbf{1 . 5 0}$ \& SN74181 \& 1.95

SN74154 \& $1 \cdot 50$ \& SN74181 \& $1 \cdot 95$

SN74155 \& $1 \cdot 50$ \& SN74190 \& $2 \cdot 30$

SN774155 \& 1.50 \& SN74190 \& $2 \cdot 30$

SN74157 \& 0.95 \& SN74191 \& 2.30

SN74157 \& 0.95 \& SN74191 \& $\mathbf{2} \cdot 30$

SN74160 \& 1.10 \& SN74192 \& 1.15

SN74 \& SN \& $1 \cdot 10$ \& SN74193

SN74 \& 1.1

SN74 \& $1 \cdot 10$ \& SN74106 \& 1.60

SN74162 \& $1 \cdot 10$ \& SN74196 \& 1.60

SN74163 \& 1.10 \& SN74197 \& 1.5

SN74164 \& 2.01 \& SN74198 \& 1.58

SN74165 \& 2.01 \& SN74198 \& 2.25
\end{tabular} $\begin{array}{lllll}\text { N74165 } & 2.01 & \text { SN74198 } & 2.25\end{array}$

Diodes and Rectifiers-A Selection from our range

IN34A	0.10	in1199	0.47	IN5400	0.17	AA116	0.08	BA156	0.15	BYZ13	0.40
IN914	0.07	\|N1200	0.55	IN5401	0.17	AA118	0.08	BAX13	0.08	OA9	0.27
IN916	0.07	\|N1202	0.67	IN5402	0.20	AA119	0.08	BAX 16	0.10	OA10	0.45
IN1183	0.84	+N1204	0.97	\|N5404	0.22	AA129	0.15	88103	0.25	OA47	0.06
IN1184	0.92	(N1206	1.37	IN5406	0.25	BA102	0.25	BB104	0.45	OA70	0.07
IN 1186	1.18	in4001	0.06	IN5408	0.30	BA115	0.10	BY 100	0.27	OA73	0.10
IN 1790	2.52	IN4002	0.65	IN1544	0.06	BA142	0.17	BY126	0.12	OA81	0.18
(N1191	0.59	IN 4004	0.07	IN15132	0.25	BA144	0.12	BY127	0.15	OA85	0.14
IN1192	0.80	IN4006	0.09	IN15134	0.25	BA145	0.18	BY182	1.00	OA90	0.06
IN1194	1.06	IN4007	0.10	IN15920	0.07	BA148	0. 20	BYZ10	0.60	OA91	0.06
IN1196	1.64	IN4148	0.07	IN15921	0.08	balsa	0.12	BYZ11	0.51	OA95	0.0
IN1198	2.40	IN5054	0.18	IN15922	0.08	BA155	0.12	$8 Y Z 12$	0.51		

Bridges and SCRs

Potentiometers
Linear or Log Single Double
Rotary Pois
$\operatorname{Singlem}_{20 \mathrm{p}}^{\text {Double }}$
Rotary Switched 30p

Full range of capacitors
stocked. See catalogue for detalls
Presets-Horizontal or Vertical 8p o. 3W

10p

[^2]
The langest selection

EX-COMPUTER STABILISED POWER MODULES

90p each plun 上!p P. \& P
LOW COST CAPACITORS $0.01 \mu \mathrm{~F} 400 \mathrm{~V}$. $300 \mu \mathrm{~F} 50 \mathrm{~V}$. Elect

3p esch
10 pesch

FIBRE-GLASS PRINTED

 CIRCUIT BOARDSDECON-DALO 33PC Markèr Fteli res
Op each

VEROBOARDS

Packs containing appro
izes, all 0.1 matric 55 p

REPANCO CHOKES \& COILS

R
EHI. $2.2 \mathrm{mH} 29 \mathrm{p} \quad \mathrm{CH} 2.50 \mathrm{mH} 30 \mathrm{p}$ CHO. 1.5 mH 28p
COIL8
Cilan set 31p DRR2 Dual range 45p
COIL FORMERS \& CORES
NORMAN ? Cores \& Formers 8p
$:-$ Corea \& Formers 10 D

SWITCHES

DP/DT Toggle 38p sP/ST Toggle 30p

FUSES

11° and 20 mm . $100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$. QUICK-BLOW Sp each.

EARPHONES

Cryatal 2.0 mm plug 48p
Crystal 3.0 mm plug 42
8 obme 2.5 mm plug 22D
8 ohma 3.5 mm plug 22p
DYNAMIC MICROPHONES
B1223. 200 ohms plun
2.5 mm and 3.5 mm pluga E 1.8 B
3-WAY STEREO HEAD. PHONE JUNCTION BOX

2-WAY CROSSOVER
NETWORK
K 4007. 80 ohrni Imp. Insertion loss 3bBe 21 -21
CAR STEREO SPEAKERS
(Angled) 83.85 per pair
BI-PAK
CATALOGUE AND LISTS Send S.A.E. and 10p.

INSTRUMENT CASES

BIB HI-FI ACCESSORIES

De Luxe Groov-Kleen Model 42 £1-95 Chrome Finish Model 60 £1-50

Ref. 36A. Record/Stylus Cleaning Kit 88p Ret. 43. Record Care KIt 28.48
Ref. 31. Cassette Head Cleaner 58 p Rel. 3:. Tape euiting Klt $£ 1 \cdot 68$ Model 9. Wire Stripper/Cutter 88p Ref. 46. Spirit Level 68p

ANTEX SOLDERING IRONS X25. 2 L watt 22.08
 CCN 240 . 1 ; wat $£ 2.48$
 Morle) (f. 18 watt 28.28
 SK‥ Soldering Kit $£ 3.85$
 STANDS: ST 3, suitable for all models 21 SOLDER: I88WG Multicore 7oz £1.61 Peswa 7 oz f1.81. 18swg 23ft 51p 2esw Tube 33p

ANTEX BITS and ELEMENTS Bits No.
102 For model CNe40 ${ }^{3}$
104 For model CN240 A
1100 For model CCN240 3 3
1101 Por model CCN240 3°
1102 For model CCN240
1020 For model G240 $\frac{3}{32}$
1021 For model G240 ${ }^{1 *}$
1022 For model $\mathbf{G} 240$ at
50 For model $\times 255_{3}^{3}$
51 For model X25 !
52 For model X 2 s a
nLements
ECN 240 £1-30
ECCN 240 : 1.32 EG 240 \&1.07

EX $25 \mathbf{2 1 . 1 6}$

ANTEX HEAT SINKS 10p

Vat included in all prices. Please add 10p P. \& P. (U.K. only). Overseas orderspleane add extra for postage.

NEW COMPONENT PAK BARGAINS
Pack
No. Qty.

Oty.	Description
Resistors mixed	
count by weight	

$\frac{\mathrm{R}}{\mathrm{R}}$
Ref. B. Stylis and Turnta
Re1. P. Hi-FiClener Ret. 32A. Stylus Halance 11.37
Ret. J. Tape Head Cleaning Kit 62p
Ref. 56. Hi-Fi Stereo Hints and Tips 48p
PLUGS AND SOCKETS PLUGB
PS 1 D.I.N. 2 Pin (Speaker)
PS 2 D.I.N. 3 Pin
Pg 4 D.I.N. 4 Pin 180
PS 5 D.IN. 5 Pin 240°
Ps 6 D.I.N. 6 Pin
PS 7 D.I.N. 7 Pin
P8 8 Jack 2.5 mm Screened P8 9 Jack 3.5 mm Plastic PS 10 Jack $3.5 \check{m m}$ Screened P8 11 Jack f° Plastic PB 12 Jack !* Screened PS 13 Jack Stereo Screened Ps l4 Phono PS 10 Car Aerial P8 16 Co-Axial

NLINE SOCKETS

P8 21 D.I.N. 2 Pin (Speaker) PS 22 D.I.N. 3 Pin Pg 23 D.I.N. 5 Pin 180° PS 24 D.I.N. 5 Pin 240° P8 25
Jg 26
Jack 2.5 mm Plastic
P-5mm Plastic PS 26 Jack 3 -5mm Plasti P8 27 Jack If Plastic PS 29 Jack Stereo Plastic PS 30 Jack Stereo Screened Ps 31 Phono Screened P8 32 Car Aerial PS 33 Co-Axial

SOCKETS

PS 35 D.I.N. 2 Pin (Speaker) P8 36 D.I.N. 3 Pin Pg 37 D.I.N. 5 Pin 180° P8 38 D.1.N. 5 Pin 240° P8 39 Jack 2 5mm Switched 8840 Jack $3 \cdot 5 \mathrm{~mm}$ Switched PS 41 Jack f° Sultched P8 42 Jack Stereo Switched PS 43 Phono Single PS 44 Phono Double P8 46 Co-Axial Burfac Pg 47 Co-Axial Flush

LEADS

LS 1 Speaker Lead 2 pin D.I.N. plug to
open ends approx 3 metres long

CABLES

 CP 2 Twin Common Screen Stereo Screened Four Core Common Screen Four Core Individually 8 0.23 Microphone Fully Braided Cable 0.10 Three Core Mains Cable $\quad 0.09$ Twin Oval Mains Cable Speaker Cable CP 10 Low Loss Co-Axial
CARBON

POTENTIOMETERS

Log and Lin

$4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 290 \mathrm{~K}, 470 \mathrm{~K}$ 1 M .2 M

YC 2 Single D.P. 8witeh
VC 3 Tandem Less 8 witch
VC 41 K Lin Less switch
VCJ 100 K anti-Log

HORIZONTAL CARFON

 PRESETS
0.1 watt 0.06 each

$100,220,470,1 \mathrm{~K}, 2-2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$ $47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}, 4.7 \mathrm{M}$

SOLVE THOSE STICKY PROBLEMS!
with

CYANOACRYLATE C2 ADHESIVE
The wonder bond which works in secondsond plastic, rubber, metals, transistors components, permanently, immedlately.

OUR PRICE ONLY 54p

 for 2 gm . phial
BATTERY HOLDER

Takes 6, HP't's complete with terminal, clip and lead. 34p.

WORLD SCOOP

JUMBO
 SEMICONDUCTOR PACK

Transistors, Germ. and Silicon Rectifiers Diodes, Triacs, Tbyriators, I.Cs and Zeners.

APPROX. 100 PIECES
Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data sheet in every Pak.

Only $\leqslant 2$ p. \& p. 20p
RECORD STORAGE/ CARRY CASES
7 in EP. 187 in $\times 7$ in $\times 8$ in (50 records) 12 in LP. $13 \frac{3}{2} \mathrm{in} \times 7 \frac{1}{8} \mathrm{in} \times 12 \mathrm{in}\left(50 \begin{array}{r}£ 2.10 \\ \text { records }\end{array}\right)$

CASSETTE CASES £1-30 Holds 12, $10 \mathrm{in} \times 3$ in $\times 5$ in. Lock and hanile 8-TRACK CART. CASES Hold $14.13 \mathrm{in} \times \sin \times 6$ in $\varepsilon 1.95$
Holds $24.13 \operatorname{in} \times 8 \operatorname{in} \times 5 \sin \varepsilon 2.70$ Holds $24,13 \operatorname{lin} \times \sin \times 5$ kin $\varepsilon 2 \cdot 70$ Both with lock and handle.

SPECIAL PURCHASE

QN3055. Silicon Power Transistors NPN. Famous manufacturers out-of-spec device iree from open and short defec
able! 110W. TO3. Metal Case.

OUR SPECIAL PRICE 8 ior fl

REPANCO TRA NSFORMERS
240V. Primary. Sceondary voltages available fromiselected tappings $4 V, 7 V .8 V, 10 V$ $4 \mathrm{~V}, 15 \mathrm{~V}, 17 \mathrm{~V}, 19 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}, 31 \mathrm{~V}, 33 \mathrm{~V}$
$\begin{array}{llll}\text { Type } & \text { Amps } & \text { Price } & \text { P. \&P }\end{array}$

$\mathrm{MT50/1}$	1	$£ 2 \cdot 42$	48 D
MT50/2	2	$£ 8.30$	60 D

CARTRIDGES

ACOS
GP91-18C 200mV at $1.2 \mathrm{~cm} / \mathrm{sec} \quad \mathbf{~} 1.35$
GP93. 1280 mV at $1 \mathrm{~cm} / \mathrm{sec}$
GP96+1 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$
J-2005 Crystal/Hi Output
J.20100 $\quad £ 1.05$ J. 20068 Stereo/HI Output

J-2203 Magnetic $5 \mathrm{~mW} / \mathrm{scm} / \mathrm{mec}$ £1-95
atylus
J-22038 Replacement stylus for above $\mathbf{8 3} \mathbf{~ - 0 0}$

CARBON FILM RESISTORS
The El2 Range of Carbon Film Resiators,
4 watt a wailable in PAK8 of 50 piecea
R1 50 Mixed 100 ohms- 820 ohms
R2 60 Mixed $1 \mathrm{k} 0-8.2 \mathrm{k}$?
R3 $50 \mathrm{Mixed} 10 \mathrm{k} \Omega-80 \mathrm{k} \Omega$
R4 50 Mixed 100 k の-13 0
50p
50 p
$\mathbf{5 0 p}$
THESE ARE UNBEATABLE PRICESJUET 1p EACH INCL. V.A.T.

BI-PAK SUPERIOR QUALITY LOW - NOISE CASSETTES C60, 36p; C90, 48p; C120, 60p.

-the lowest prices! BI-PAK QUALITY COMES TO AUDIO!

AL10/AL20/AL30 AUDIO AMPLIFIER MODULES

The AL10, Al20 and Al30 unite are simlar in their appearance and in their
general apecification. However, careful general specification. However, careful
selection of the plastic power devices has selection of the plastic power devicem has
resulted in a range of output powers from 3 to 10 watte R.M.
The versatility of thelr design makes them The versatility of thelr design makes them
ideal for use in fecord players, tape recorders, ideal for use in record players, tape recorders,
stereo amplifiers and cassette and cartridge tape players in the car and at home.

Parsmeter	Conditions	Pertormance
HARMONIC DIETORTION	$\mathbf{P o}=3$ WATTS $\mathbf{I}=1 \mathrm{KHz}$	0.25\%
LOAD IMPEDANCE	-	8-160
INPUT IMPEDANCE	$\mathrm{f}=1 \mathrm{KHz}$	$100 \mathrm{k} \Omega$
FREQUENCY REGPONSE - 3 dB	Po $=2$ WATTS	$50 \mathrm{~Hz}-25 \mathrm{KHz}$
SENSITIVITY for Rated 0/P	$\mathrm{Vi}=25 \mathrm{~V}, \mathrm{Rl}=8 \Omega \mathrm{t}=1 \mathrm{KHz}$	7 mmV , RMS
DIMENSIONS	-	$3^{\circ} \times 21^{\prime \prime}=1^{*}$

The above table relates to the AL10, AL20 and AL30
modules. The following table outlines the diferences
modules. The following table outlines the diferences in their working conditions.

Parsmoter	AL10	AL80	AL80
Marimum Supply Voltage	25	30	30
Power out for 2\% T.H.D. (RL=8日f=1KHz)	3 watts RMS Min.	5 watts RMS MIn.	10 watts RMS Min.

AUDIO AMPLIFIER
 \section*{MODULES}

$\begin{array}{cc}\mathrm{AL} \text { 10. } 3 \text { watts } \\ \mathrm{AL} 20 . & 5 \text { watts }\end{array}$
AL 30. 10 watts
22.50
82.85
82.85
83.20

POWER SUPPLIES

PE 12. (Uae with AL10, AL20, AL30) 95p
SPM 80. (Use with AL60) FRONT PANELE FP 12 with Knobs

PA12 PRE-AMPLIFIER SPECIFICATION

The PAl2 pre-arrpifier has been designed to match into most budget stereo syatems. It is compatible with the can be supplied from their associated power supplies. There are two stereo inputs, one has been designed for use with Ceramic cartridgea while the auxillary input will suit most †Magnetic cartridges. Full detalls are given in the spectication table. The four controls are, from left to right: Volume and on/off switch, balance, bass and treble Slze $162 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$

Look for our

SEMICONDUCTOR ADVERTISEMENTS in
Practical Wireless Wireless World Radio Constructor

ALL PRICES INCLUDE V.A.T.

The STEREO 20

The "Btereo 20 " amplifier is mounted, ready wired and tested On a one plece chassis measuring $20 \mathrm{~cm} \times 14 \mathrm{~cm} \times 5.5 \mathrm{~cm}$ This compact unit comes complete with on/off switch Transformer, Power supply and Power amps. Attractively printed front panel and match. ing control knobs. The "Stereo 20 " has been deaigned to at into most turntable plintbs without interfering with the mechanism or, alternatively, into a separate cabinet. Output power 20 w peak. Input 1 (Cer.) 300 mV into 1 M . Freq. res. $25 \mathrm{~Hz}-25 \mathrm{kHz}$. Input 2 (Aux.) 4 mV into 30 K . Harmonic typically 0.25% at 1 watt. Treble con $\pm 14 \mathrm{~dB}$ at 14 kHz .

Frequency response$20 \mathrm{~Hz}-50 \mathrm{KHz}(-3 \mathrm{dD})$ asa control- 12 dB at 60 Hz Treble control-
$\pm 14 \mathrm{~dB}$ at 14 KE *Input 1. Impedance 1 Meg. ohm \dagger Input 2. Impedance Input 2. Impedance
30 K Sensitivity 4 mv

TC2O TEAK VENEERED CABINET

For Stereo 20 (front board undrilled) Size $10 \xi^{\circ} \times 8 z^{*} \times 3^{\circ}$, 83.96 plus 40 p postage. SHP80 STEREO HEADPMONES
4-16 ohms imped ance. Frequency response 20 to $20,000 \mathrm{~Hz}$. Stereo/mono switch and volume
controls, $44-95$

NOW WE GIVE YOU

 50w PEAK (25w R.M.S.)
PLUS THERMAL PROTECTION!

 The NEW AL60 Hi-Fi
Audio Amplifier FOR ONLY £4:25

- Max Heat Sink temp $90^{\circ} \mathrm{C}$. Thermal Feedback - Frequency Response 20 Hz to 100 KHz
- Distortion better than 0.1% at 1 KHz
- Supply voltage 15-50 volts

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

STABILISED POWER

MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 wstt (r.m.a.) per channel simultaneously. This module embodien the latest components and circuit techniques incorporating complete short tormer BMT80, the unit will provide outputs of up to 1.5 former BMT80, the unit will provide outputs of These units enable you to build Audio Systems of the highest quality at a hitherto unobisinable price. Atso ideal for many other applications including:-Disco syatems. Public Address, Intercom Units, elc. Handbook available 100 PRICE $£ 3.25$
TRANSFORMER BMT80 £2.75 p. \& p. 40p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a apecification and NOT a price, and yet still the greateat value on the market, the PA 100 atereo pre-amplifter has been conceived from the latest circuit technilques. Deaigned for une with the ALbo power amplifier systern, this quality made unit incorporatea
no less than eight silicon planar transistors, two of these are specialiy aelected low nolse NPN devices for use in the input stages. Three awitched stereo inputs, and rumble and acratch filters are features of the PAl00, Which also has a STEREO/MONO switch, volume, balance and continuously variable bass and treble controls.

SPECLFICATION F'requency Response Harmonic Distortion Inputa: 1. Tape Head 2. Radio, Tuner
$20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
3. Magnetic P.U.
3.25 mV into $50 \mathrm{~K} \Omega$

75 mV into $50 \mathrm{~K} \Omega$
3. Magnetic P.U. 3 mV into $50 \mathrm{~K} \Omega$
All input voitages are for an output of 250 mV . Tape and P.U. inputs
equalised to RIAA curve within $\pm \mathrm{ddB}$. from 20 Hz to 20 KHz .
 Treble Control
$\pm 15 \mathrm{~dB}$ at 20 Hz
Filters: Rumble (High Pasa)
$\frac{100 H z}{8 K H z}$
better than -65dB
Scratch (Low Pasa)
Signal/Noise Ratlo
Input overload
Supply
Dimensions
$+26 \mathrm{~dB}$
+35 volta at 20 mA
$292 \mathrm{~mm} \times 82 \mathrm{~mm} \times 35 \mathrm{~mm}$
ONLY £14•25

MK 60 AUDIO KIT

Comprising: $2 \times$ AL60, $1 \times$ 8PM80, $1 \times$ BTM80, $1 \times$ PA 100,1 front panel, 1 kit of parta to include on-off switch, neon indicator, atereo headphone sockets plus inatruction booklets. Complete Price: $\mathbf{8 2 9 . 7 5}$ plus 45 p postage.

TEAK 60 AUDIO KIT

Comprising: Teak veneered cabinet aize $163^{\circ} \times 11 \frac{1}{4}^{\circ} \times 33^{* *}$, other parta include sluminium chasais, heataink and front panel bracket, plus back panel and appropriate sockets, etc Kit price: $\mathbf{1 9 . 9 5}$ plua 46 p postage.

Postoge ond pokking add $20 p$ Overseas odd extre for armall.
Mrnimum order SSp. Cash with order please. Guaranteed Satisfaction or Money Back

RSI
VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE

Express postage 10_{p} per order.

1 N 21	$\begin{aligned} & 2 p \\ & 0.17 \end{aligned}$		$\mathrm{BY} 213^{\text {Ep }}$ 0.25	0.42205	$\begin{aligned} & 8 p \\ & 0.45 \end{aligned}$	28170	i_{0}
1 123	0.35	AFZ12 2.00	BYZ10 0.45	0.42206	0.45	28271	0.18
1 NAS	0.88	A8Y26 0.25	BYZ11 0.4	OAZ207	0.45	ZT43	0.28 0.25
1 N263	0.50	AsY27 0.33	$\begin{array}{lll}\text { BYZ12 } & 0.40\end{array}$	OAZ208	10	ZTX107	0.12
1N256	0.50	ABY28 0.25	BYZ13 0.48	-		ZTX108	0.08
1N645	0.18	A8Y29 0.30	BYZ15 1-25	OAz210	40	2TX300	0.18
1N725A	0.20	ABY $36 \quad 0.25$	BYZ16 0.60	OAZ211	0.40	ZTX 304	0.24
1 N 914	0.06	ABY50 U. 40	BZY88 0.10	- Az222	0.45	$\operatorname{ZTX} 000$	0.18 0.18
1N4007	0.12	A8Y51 4.40	$\mathrm{CR11}_{\text {CRS105 }}{ }^{0.55}$	0Azz23	0.45	$\begin{aligned} & \text { ZTX503 } \\ & \text { ZTX531 } \end{aligned}$	${ }_{0}^{0.18}$
18113	0.25	A8Y53 0.20	CR81/05 0.30	0Az224	0.45	21×631	
1S202	0.28	A8Y 50 ASY 62 0.20 185		0AZ241	0.85	INTEGRATED CLRCUITS	
$2 \mathrm{Ca71}$	0.40	$\begin{array}{lll}\text { ASYY66 } & 0.88\end{array}$	$\begin{array}{ll}\text { C810B } & 1 \\ 3.60\end{array}$	OAZ242	0.15 0.85		
20381	0.22	ASZ21 1.00	DD000 0.15	OAZ246	0.15	7400	0.16
$2 \mathrm{CH14}$	0.30	AsZ23 0.76	DD003 0.15	OAZ29	0.88	7401	0.16
20417	0.85	AU104 1.00	DD006 0.25	OC16	1.00	7402	0.16
2N 404	U.22	AUY10 1.00	$\mathrm{DDO07}^{0.40}$	OC162	1.00	7403	0.18
\%N697	4.10	${ }^{\text {BCLIO7 }} 0$	DD008 0.38	0C14	0.50	7404	0.88
2N698	0.30	${ }_{\text {BC108 }} 0.13$	GD3 0.83	OC22	1.00	7405	0.28
2N706	0.12	BC109 0.14	GD4 $\quad 0.10$	$\mathrm{OC}^{\text {2 }}$	1.25	7408	0.48
2 N 706.4	$0 \cdot 12$	$\mathrm{BC113}^{0.16}$	GD5 0.38	OC24	1.10	7407	
2 N 708	0.15	${ }^{\text {BC115 }} 0$	GD8 00.25	OC25	0.40	7408	0.28
2 N 709	U. 40	${ }_{\text {BC116 }} \quad 0.20$	GD12 0.10	OC26	0.40	7408	
2 N 1091	U. 56	${ }_{\text {BC118A }} \quad 0.23$	GET102 0.60	${ }^{0} \mathrm{Cl}_{28}$	0.88	7410	0.18
2 N 1131	$0 \cdot 25$	BC118 0.20	GET103 0.40	${ }^{\mathbf{0 C 2}}{ }^{\text {c }}$	0.85	7411	0.25
2 N 1132	U.24	BC121 0.20	GET113 0.85	OC30	0.40	7412	0.80
2 N 1302	U.18	$\begin{array}{ll}\mathrm{BC122} & 0.20\end{array}$	GET114 0.80	${ }_{0} \mathbf{0} 35$	0.65	${ }_{7413}$	0.88
2 N 1303	0.18	${ }^{\text {BCl25 }} 0$	GET115 0.90	OC36	0.60	7416	
2 N 1304	0.28	$\begin{array}{ll}\text { BC126 } & 0.65\end{array}$	GET1150 0.85	0C41	0.85	7417	0.88
2 N 130	U.	$\begin{array}{ll}\text { BC140 } \\ \text { BC147 } & 0.55 \\ 0.10\end{array}$	GET120 0.50	0 O	O	74	
2 N1306	0.28	$\begin{array}{ll}\text { BC148 } & 0.08\end{array}$	GET872 0.80	OC43	0.70	7422	0.87
2 N 1307	4.48	$\begin{array}{ll}\text { BC149 } & 0.10\end{array}$	$\begin{array}{ll}\text { GET875 } & 0.40 \\ \text { GET880 } & 0.60\end{array}$	${ }_{0}^{0} \mathrm{OC44}$	${ }_{0}^{0.20}$	${ }^{7425}$	0.87
2 N 1308	0.28	BC167 0.14	GET881 0.25	0 C 45		7427	0.37
2N2147	0.88	BC158 0.12	$\begin{array}{lll}\text { GET8922 } & 0.35\end{array}$	0 C 45	0.18	7428	0.40
2 N 2160	0.78	$\mathrm{BCl}^{\mathbf{3} 60} 0.63$	OET885 0.40	OC46	0.27	7430	
2 N 2218	0.28	${ }^{\text {BC169 }}$	GEX44 0.08	OC57	0.60	7432	0.87
2 N 2219	0.85	${ }^{\text {BCY31 }}$	GEX45/1 0.46	$0 \mathrm{CD8}$	0.80	7433	
2 N 2369 A	0.18	$\begin{array}{ll}\text { BCY32 } \\ \text { BCY } 31 & 0.85 \\ 0.38\end{array}$	GEX941 0.48	OCDO	0.60	7437	0.37
2 N 2444	1.98	BCY33 0.38 BCY34 0.45	GJ3M 0.50	0c66		7438	
2 N 2613	0.28	BCY38 0.55	GJ4M 0.50	OC70	0.18	${ }_{7} 7414$	0.22
2N2856	0.50	BCY39 ${ }^{1.50}$	$\begin{array}{ll}\text { GJ5M } & 0.20 \\ \text { G7M }\end{array}$	0c71	0.18	${ }_{7442}$	${ }^{0.92}$
2 N 2804	0.80 0.85	BCY40 0.80	$\begin{array}{ll}\text { HG100̇ } & 0.60\end{array}$	${ }_{\text {OC72 }}$	0.28 0.50	7400	0.18
$\begin{aligned} & \mathbf{2 N} 2904 . \\ & 2 \mathrm{~N} 2908 \end{aligned}$	0.25 0.20	BCY42 0	HS100A ${ }^{\text {He }} 0.20$	${ }_{0} 074$	${ }_{0}^{0.30}$	7451	0.18
2N2907	0.23	BCY70 0.18	matleo 0.20	0c75	0.30	7453	0.18
2 N 2924	0.18	BCY72 0.28	MAT101 0.25	OC76	0.30	7454	
2N2925	0.15	${ }^{\text {BCZ } 10} 0000$	Mat120 0.20	0 C 77	0.54	7460	8
2 N 2926	0.12	${ }_{\text {BCZ11 }}{ }_{\text {BD121 }}$	MAT121 0.25	0C78	0.25	7470	88
2 N 3054	0.48	${ }_{\text {BD121 }} \stackrel{1}{1.00}$	MJE520 0.83	OC79	0.30	7472	0.88
2 N 3055	0.45	BD123 BD124	MJE2955 1.27	$0 \mathrm{C81}$	0.29	7473	
2 N 3702	0.11	BD124 0.88	MJE3055 0.77	OC81D	0.28	${ }^{7474}$. 48
2N3705	0.15	${ }_{\text {BDY11 }} 1.45$	MJE340 0.47	OC81M	0.20	7475	8
2 N 3706	0.11	${ }^{\text {BF115 }}$	MPF102 0.40	0c81DM	0.18	7476	8
2N3707	0.13	${ }_{\text {BF17 }}{ }^{\text {BF }} 167{ }^{0.25}$	MPF103 0.86	0c812	0.45	7480	0.60
2N3704	0.10	$\begin{array}{lll}\text { BF } 173 & 0.28 \\ 0.85\end{array}$	MPF104 0.35	0C82	0.28	7482	0.87
2 N 3710	0.11	${ }_{\text {BF181 }}$	MPF105 0.36	OC82L	0.26	7483	$1 \cdot 10$
2 N 3711	0.11	BF184 0.282 BF185	NKT128 0.45	0C83	0.27	7484	1.00
2N3819	0.38	BF185 0.28 8 F 194 0.10	NKT129 0.80	OC84	$0 \cdot 30$	7486	
2N4289	0.30	$\begin{array}{ll}\text { BF194 } & 0.10 \\ \text { BF195 } & 0.13\end{array}$	$\begin{array}{lll}\text { NKT211 } & 0.25\end{array}$	$\mathrm{OCll}^{0} 4$	0.38	7490	0.65
2 N 5027	0.53	$\begin{array}{ll}\text { BF195 } & 0.13 \\ \text { BF198 } & 0.15 \\ 0\end{array}$	NKT213 0.85	${ }^{0} \mathrm{Cl122}$	1.00	7491A	1.00
2N5088	0.33	BF198 0.15 BF197 0.15 8	NKT214 0.24	OC123	$1 \cdot 10$	${ }_{7}^{7492}$	0.70
23301	0.59	$\begin{array}{ll}\text { BF197 } & 0.15 \\ \text { BFS61 }\end{array}$	$\begin{array}{lll}\text { NKT216 } & 0.40 \\ \text { NKT217 }\end{array}$	${ }_{\text {OCl }} \mathrm{Cl} 39$	0.40	7493 7494	0.70 0.80
28304	1.15	$\begin{array}{ll}\text { BFS988 } & \\ \text { BFS98 } & 0.25 \\ 0.25\end{array}$	$\begin{array}{ll}\text { NKT217 } & 0.48 \\ \text { NKT218 } & 1.18\end{array}$	OC140 OC141	1.14 0.80	${ }^{7494}$	0.80 0.80
28501 28703	0.75 1.00	$\begin{array}{lll}\text { BFs98 } & \\ \text { BFX12 } & 0.20 \\ 0.20\end{array}$	$\begin{array}{lll}\text { NKT218 } \\ \text { NKT219 } & 1.18 \\ 0.33\end{array}$	${ }_{0}^{0} \mathrm{OC141}$	0.80 0.20	${ }^{7495}$	0.80 0.85
AA129	0.80	BFX13 0.26	NKT222 0.80	OC170	0.30	7497	3.87
AAZ1:	0.75	${ }_{\text {BFX }}$	NK T224 0.28	0C171	0.30	74100	1.80
AAZ 13	0.12	BFX30 0.28	NK T251 0.24	OC200	0.64	74107	0.45
AC107	0.51	$\mathrm{BFX}^{\text {BF }} 350.88$	NKT271 0.20	0c201	1.00	74110	0.58
AC126	0.25	BFX63 0.50	NKT272 0.20	OC202	0.80	74111	0.88
AC127	0.25	${ }_{\text {BFX84 }} 00.25$	NKT273 0.20	-C203	0.65	74118	0.80
AC128	0.15	${ }_{\text {BFX } 85} 0.28$	NKT274 0.20	OC204	0.85	74119	1.68
AC187	0.21	${ }_{\text {BFX }} 86$	NKT275 0.25	OC205	1.00	74121	0.50
AC188	0.20	${ }_{\text {BFX88 }}$	NKT277 0.20	OC206	1.10	74122	0.70
ACY17	0.40	BFX88 0.24	NKT278 0.25	OC207	1.00	74123	1.00
ACY18	0.27	${ }_{\text {BFY }}{ }^{\text {BFY }} 10{ }^{1} 10.00$	NKT301 0.85	0 C 460	0.20	74141	0.80
ACY19	0.27	BFY11 BFY17	NKT304 0.75	OC470	0.80	74145	1.26
ACY20	0.22		NKT403 0.70	OCP71	1.20	74150	1.75
ACY21	0.22	$\begin{array}{ll}\text { BFY18 } & 0.45 \\ \text { BFY19 } & 0.55 \\ 0 .\end{array}$	NKT404 0.86	ORP12	0.80	74151	1.00 0.00
$\mathrm{ACY}^{\text {ACY } 27}$	0.18 0.25	${ }_{\text {BFY } 24}{ }^{\text {BFY19 }}$	$\begin{array}{lll}\text { NKT678 } & 0.30 \\ \text { NKT713 } & 0.30\end{array}$		0.55 0.48	74154 74165	
ACY 27 ACY 28	0.25 0.25	$\begin{array}{ll}\text { BFY } 24 \\ \text { BFY44 } & 0.45 \\ 1.00\end{array}$	$\begin{array}{ll}\text { NKT713 } & 0.30 \\ \text { NKT773 } & 0.25\end{array}$	ORP61	0.48 0.20	74155 74156	1.00 1.00
ACY39	0.78	BFY50 0.21	$\begin{array}{lll}\text { NKT777 } & 0.38\end{array}$	SX631	0.45	74157	0.85
ACY40	0.22	BFY51 0.20	OAS 0.78	SX635	0.55	74170	2. 62
ACY41	0.22	BFY52 0.20	$0 \mathrm{A6}$ 0.12	SX640	0.75	74174	1.57
ACY44	0.32	BFY53 0.17	OA47 0.08	SX641	0.75	74175	$1 \cdot 10$
AD140	0.50	BFY64 0.88	OA70 0.10	8X642	0.60	74176	1.26
AD149	0.50	$\begin{array}{ll}\text { BFY80 } & 0.81 \\ \text { BSX } 27\end{array}$	0.A71 0.20	SX644	0.85		2.00 2.00
AD181	0.44 0.44	$\begin{array}{ll}\text { B8X27 } & 0.50 \\ \text { BSX60 } & 0.83\end{array}$	$\begin{array}{ll}\text { OA73 } & 0.15 \\ \text { OA74 } & 0.15\end{array}$	sX644 3X645	0.85	74191 74192	2.00 2.00
${ }_{\text {ADIC2 }}$	0.44 0.30	$\begin{array}{ll}\text { B8X60 } \\ \text { BSX } 76 & 0.83 \\ 0.18\end{array}$	$\begin{array}{ll}\text { OA74 } & 0.15 \\ \text { OA79 } & 0.10\end{array}$	TIC44	0.85 0.29	74192 74193	2.00 2.00
AF114	0.25	B8Y26 0.17	0.881 0.18	V15/30P	0.75	74194	$1 \cdot 80$
AF115	0.25	B8Y27 0.20	OA85 0.15	V30/201P	0.75	74196 74198	1.10 1.20
AF116	0.25	B8Y51 0.50	$\begin{array}{ll}\text { OA86 } & 0.18 \\ 0.0885\end{array}$	V60/201	0.50	74198	1.20
AF117	0.24 0.67	$\begin{array}{ll}\text { B8Y95A } & 0.12 \\ \text { BSY95 } & 0.12\end{array}$	$\begin{array}{ll}0.886 \\ 0.490 & 0.18 \\ 0.07\end{array}$	V60/201P	0.75	74197 74198	1.20 2.72
AF119	0.20	BT102/500R	OA.91 0.07	XA101	0.10	74199	2.62
AF124	0.30	0.75	0 A 950.07	XA102	0.18		
AF125	0.30	BTY42 0.92	OA200 0.08	XA151	$0-15$		
AF126	0.30	BTY79/100R	OA202 0.06	XA152	0.15	Plug in sockets -low profile	
AF127	0.30	0.75	OA210 0.20	XA161	0.25	$\begin{aligned} & 14 \text { pin DIL } \\ & 16 \text { pin DIL } \end{aligned}$	
AF139	0.41	BT Y79/400R	0 OA211 0.35	$\mathrm{X}^{\mathbf{x} 162}$	0.25		
AF178	0.55	1.10	OAZ200 0.50	x 8101	0.43 0.30		
AF179	0.65	$\begin{array}{ll}\text { BY100 } & 0.27\end{array}$	OAZ201 0.45	${ }^{\times 1} \times 102$	0.30 0.35		
AF180	0.55	BY126 0.14	OAZ202 0.45	$\times 8103$	0.35		
AF181	0.50	BY127 0.12	OAZ203 0.45	X8113	0.30		
AF186	0.48	BY182 0.85	OAZ204 0.45	XB121	0.43		
Open daily to callers: Mon.-Fri. 9 a.m. 5 p.m. Valves, Tubes and Transistors . Closed Sat. 1 p.m.- $\mathbf{3}$ p.m. Terms C.W.O. only - Tel. O1-677 2424-7 orders subject to V.A.T. at 8% rate. This must be added to the total order including postage.						Prices correct when going to press.	

IP

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono hybrid preamplifier, ideally uitiod for both mono and stereo applications. Internally the device consists of two high quality amplifiers-the irst contains frequency equallsation and gain correction. while the second caters for tone control and baiance

ECHNICAL SPECI
npute: Magnetic Pick-up 3 mV RIAA; Ceramic Fick-up 30 mV : Microphone 10 mV , Tuner 100 mV ; Auxillary $3-100 \mathrm{mV}$ Main output Odb (0.775 V RMS). Active Tone Controle Treble $\pm 12 \mathrm{db}$ at 10 kHz : Bass $\pm 12 \mathrm{db}$ at 100 Hz . Dlatortion: 0.5% at 1 kHz . Signal/Noise Ratlo: 68db. Overload Capa bilty: 40db on most sensitlve input. Supply, Voltage $\pm 18-25 \mathrm{~V}$.
PRICE $£ 4.50$
$+36 p$ VAT P \& P free

The HY50 is a complate solid state hybrid Hi-Fi amplifier incorporating its own high conductlvity heatsink hermetically sealed in black epoxy resin. Only five connections are provided. input, output. power lines and earth.
TECHNICAL SPECIFICATION
Output Power: $25 W$ RMS into 8Ω. Load Impedance: $4-16 \cap$. Input Senalitulty: Odb (0-775V RMS) Inpui
Impedance: $47 \mathrm{k} \Omega$. Dlatortion: Less than 0.1% at 25 W fypically 0.05%. Signal/Nolae Ratlo: Better than 75 db Frequency Assponse: $10 \mathrm{~Hz}-50 \mathrm{kHz}=3 \mathrm{db}$. Supply Voltage $\pm 25 \mathrm{~V}$ SIze: $105 \times 50 \times 25 \mathrm{~mm}$
PRICE 15.98
$+48 p$ VAT P. \& P.free

The PSU50 incorporates a speclally designed transformer and can be used for either mono or stereo systems

TECHNICAL SPECIFICATIONS
Output voltage: $\pm \mathbf{2 5 V}$. Input voltage: 2 to-240V Sle : L. 70 D.90. H. 60 mm
$\square \circ \mathrm{CB}+48 \mathrm{p}$ VAT
$+48 p$ VAT
P. \& P. FREE

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury, Kent CT4 7AD.

Tel. (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
SIgnature

ALL OUR PRICES INCLUDE V.A.T.

BSR HI-FI AUTOCHANGER STEREO \& MONO

Plays $12^{\circ}, 10^{*}$ or 7° records. Aato or Manual. A high quality unit backed by BSR cusrantee AC $200 / 250 \mathrm{v}$ Size $13!\times 11$ in.

Above motor board 3 3in. Below motor board 21 in. with STEREO and MoNo XTAL $£ 7.95$ Posi 45 p.

PORTABLE PLAYER CABINET Modern design. Resine covered. Large front grille. Lift-up Ld. Chrome Attiags. Approx. Eize 17in $\times 15 \mathrm{in} \times$ Fin. Few only in red and black rexine.
Motor board cut tor Garrard deck $\quad \mathbf{4 . 5 0}$ Post 50p

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop. Compstible cartridge. Baseplate

 Size $1 \mathrm{lin} \times 8 \frac{1}{2}$ in. Turnta ${ }^{2} l e$. Size 7 in diameter. A/C mains. 200/250V motor has a separate winding 14 volt to power a small amplifier. Three speeds. Plays all recordsE5.50
SOLID MAHOGANY PLINTH Post 45p

With P.V.C. Cover. Cut out for mos

 Size $123 \times 143 \times 7$ deckCOMPLETE STEREO HI-FI SYSTEM Two Iull size loudspeakers $13 i \times 10 \times 32 \mathrm{in}$. Plager unit clips to loudnpeakers making it extremely compact, verall size only $13!\times 10 \times 8!\mathrm{in}$. 3 watts per channel. plays

SPECIAL OFFER!

 SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0 TO 60 MINUTESSingle pole two-way Surface mounting
 wall inwlich to give light for return exing garage, automatic anti-burglar lights, etc. Variable knob Tura on or of at full or intermediate setting Fult mulated. Makers' last list price $£ 4 \cdot 50$. Brand new and fully quaranteed. OUR PRICE $\mathbf{1 2} 20$ Post 25p

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2 tin gides

 $\times 4$ in 45p: 8×6 in 53p: 10×7 in 65p: 12×8 in $85 p$ 14×9 in $80 p: 16 \times$ in $90 p: 12 \times 3$ in $500 ; 16 \times 10$ in $£ 1$ ALUMINIUM BOXES $3 \times 3 \times 3 \mathrm{in}$ 60p: $4 \times 4 \times 4 \mathrm{in} 70 \mathrm{p}$: $6 \times 4 \times 4 \mathrm{in} 80 \mathrm{p} ; 8 \times 4 \times 4$ in $£ 1 ; 12 \times 4 \times 4$ in $£ 1.30$. ALUMINIUM PANELS $18 \mathrm{~s} . \mathrm{w.g} .6 \times 4 \mathrm{in} 12 \mathrm{p}: 8 \times 6 \mathrm{in} 19 \mathrm{p}$ $14 \times 3 \ln 20 p: 10 \times \operatorname{in} 24 p ; 12 \times \sin 25 p: 12 \times \sin 34 p$ $6 \times$ in $34 p: 14 \times$ 9in $40 p: 12 \times 12 i n 47 p ; 18 \times 10 \mathrm{in} 80 \mathrm{p}$ p. 2 DIAMETER WAVECHANGE SWITCHES, 45p es p. 2 -way, or 2 p. 6 -way, or 3 p. 4 -why.p.1. 2-way, or 4 p. 2 -way, or 4 p. 3 -way.

TOGGLE SWITCHES, $3 p .20 \mathrm{p}$: dp. 25 p : dp. dt. 30 p .

BRITISH FM/VHF TUNING HEART

 88 to $108 \mathrm{Mc} / \mathrm{s}$ British made. 2 Transistors ready aligned Coquires 10.7 Mc/s I.F. Complete with tuning rang curantial: Our price $£ 3.95$ Por 200 stitable I. .f. stRP 5495 . DECODER $£ 4.95$R.C.S. STEREO FM TUNER BRITISH MADE

This completely cased mains powered Hi-Fi €23 made using the latest circaitry.
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape. P. $\overline{0}$. Guitar, etc. Can be used with x 1 t It in. Reaponse $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{ke} / \mathrm{s}$. 28 dB gain For use with valve or transistor equipment.
Full instructions supplled. Details S.A.E. Full instructions supplled. Details S.A.E. \&/'/4 10p
R.C.S. POWER PACK KIT
${ }^{12}$ voircuit, 750 mA . Complete with printed $\mathbf{E 2 . 9 5}$ Post

NEW TUBOLAR ELECTROLYTICS

CAN TYPES

$2 / 350 \mathrm{~V} \quad 14 \mathrm{p} 250 / 25 \mathrm{~V} \quad 14 \mathrm{p} 50+50 / 300 \mathrm{~V}$ $\begin{array}{llllll}4 / 350 \mathrm{~V} & 14 \mathrm{p} & 500 / 25 \mathrm{~V} & 20 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 35 \mathrm{p}\end{array}$ $8 / 350 \mathrm{~V} \quad 22 \mathrm{p} \quad 100+100 / 275 \mathrm{~V} 85 \mathrm{p} \quad 32+32 / 450 \mathrm{~V}$ $16 / 350 \mathrm{~V} \quad 30 \mathrm{p} \quad 150+200 / 275 \mathrm{~V} 70 \mathrm{p} \quad 350+50 / 325 \mathrm{~V} 55 \mathrm{p}$ | $32 / 500 \mathrm{~V}$ | 50 p | $8+8 / 450 \mathrm{~V}$ | 22 p | $16+16+16 / 275 \mathrm{~V} 45$ |
| :--- | :--- | :--- | :--- | :--- |
| $25 / 25 \mathrm{~V}$ | 10 p | $8+16 / 450 \mathrm{~V}$ | 25 p | $32+32+32 / 550 \mathrm{~V}$ | $\begin{array}{lllll}25 / 25 \mathrm{~V} & 10 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 25 \mathrm{p} & 32+32+32 / 350 \mathrm{~V} 65 \mathrm{p} \\ 50 / 50 \mathrm{~V} & 10 \mathrm{p} & 16+16 / 450 \mathrm{~V} & 40 \mathrm{p} & 900 / 350 \mathrm{~V}\end{array}$ $100 / 25 \mathrm{~V} \quad 10 \mathrm{p} 32+32 / 350 \mathrm{~V} \quad 40 \mathrm{p} 4700 / 63 \mathrm{~V}$ LOW VOLTAGE ELECTROLYTICS

$1,2,4,5,8,16,25,30.50,100,200 \mathrm{mF} 15 \mathrm{~V} 10$ $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p}: 25 \mathrm{~V} 35 \mathrm{p}: 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$ 2000 mF 6V 25p; 25V 42p; 50V 57p.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p}: 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$
5000 mF 6V $25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$. CERAMIC 1 pF to 0.01 mF , 4 p . Silver Mica 2 to 5000 pF , 4 p PAPER $350 \mathrm{~V}-0.17 \mathrm{p} ; 0.518 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$ 15p $300 \mathrm{~V}-0.001$ to $0.05 \mathrm{4p} ; 0.110 \mathrm{p} ; 0.25 \mathrm{8p}: 0.4725 \mathrm{p}$ TWIN GANG. $0-0^{\circ} 208 \mathrm{pF}+176 \mathrm{pF}$, 1.20 p Slow motion drive $365 \mathrm{pF}+385 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$ SHORT WAVE SINGLE. $25 \mathrm{pF}, 45 \mathrm{p} ; 50 \mathrm{pF}, 55 \mathrm{p}$. NEON PANEL INDICATORS 250 V AC/DC. Amber 30 p RESISTORS. !W. $\frac{1}{3} \mathrm{~W} .1 \mathrm{~W} .20^{\circ} 1 \mathrm{p}: 2 \mathrm{~W} .5 \mathrm{p} .10 \Omega$ to 10 M HIGH STABILITY. $\frac{1}{2}$ W $2 \circ_{n} 10$ obms to 6 meg., 10 p . HIGH STABILITY. $\frac{1}{2} W$
Ditto $5^{\circ}{ }_{\mathrm{o}}^{\circ} 10$. Preferred values 10 ohms to 106 meg., 4 p . WIRE-WOUND RESISTORS 5 matt 10 watt WIRE-WOUND RESTSTOR
0 oL
TAPE OSCILLATOR COIL Valvetype 35 p
FERRITE ROD $8 \times$ in $20 p ; 6 \times$ in $20 p ; 3 \times$ in 10p.

MAINS TRANSFORMERS $\underset{2 S_{p}}{\operatorname{ALL} \text { posch }}$

$250-0-25080 \mathrm{~mA} .6 \cdot 3 \mathrm{~V} 2 \mathrm{amp}$

 $350-0-35080 \mathrm{~mA} 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2
$300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6-3 \mathrm{~V} 4 \mathrm{C}$ $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6-3 \mathrm{~V} 4 \mathrm{~A}$ C.T.; B-3V 2 A.
MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6-3 \mathrm{~V}$ IA $2 \cdot \times 2!\times 21 \mathrm{n}$ MINIATURE $200 \mathrm{~V} 20 \mathrm{~mA}, 6-3 \mathrm{~V} 1 \mathrm{~A} 23 \times 2 \frac{1}{2}$
MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, \mathrm{~B} \cdot 3 \mathrm{~V} 2 \mathrm{~A} 2 ; \times 2, \times 2 \mathrm{in}$. MIDGET 220V $45 \mathrm{~mA}, \mathrm{~B} \cdot 3 \mathrm{~V} 2 \mathrm{~A} 2, \times 2 \times 2 \mathrm{x}$
HEATER TRANS. 6.3 Y amp $85 \mathrm{p}, 3 \mathrm{smp}$
$\varepsilon 2 \cdot 50$
$£ 4.00$ HEATER TRANS. $8 \cdot 3$ amp 85p, 3 amp
$\begin{array}{r}84.00 \\ .5500 \\ \hline\end{array}$ at 2 amp . 3, 4, 5, 6, 8, $9,10,12,15,18,24$ and $30 \mathrm{~V} \mathrm{f}_{\mathrm{L} .00}$ $1 \mathrm{amp}, 6,8,10,12,16,18,20,24,30,36,40,48,60 £ 4.00$ 2 amp. $6,8,10,12,16,18,20,24,30,36,40,48,60 £ 6 \cdot 00$
5 amp. $6,8,10,12,16,18,20,24,30,36,40,48,60 £ 9.75$ $10,30.40 \mathrm{~V} 2 \mathrm{amp} . £ 2.20 ; 20 \mathrm{~V} 3 \mathrm{amp} . £ 2.5,8,13 \mathrm{~V} .5$ amp . $£ 1.50 ; \mathrm{F}=0-6 \mathrm{~V} 500 \mathrm{~mA} 90 \mathrm{p} ; 9 \mathrm{~V} 1 \mathrm{mmp} .95 \mathrm{p}: 12 \mathrm{~V}$
$300 \mathrm{~mA} 75 \mathrm{p}: 12 \mathrm{~V} 500 \mathrm{~mA} 85 \mathrm{p}: 12 \mathrm{~V} 750 \mathrm{~mA} 95 \mathrm{p}: 40 \mathrm{~V} 3$ amp. £2.50; 22-0-22V 4 amp . £ 3 : 16 V : amp. $95 \mathrm{p}: 18 \mathrm{~V}$ $2 \mathrm{amp} . £ 185 ; 5 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}, 16 \mathrm{~V}$ a mp el 60 . ADTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150W £4.00: 500 W £7.50; 750W $£ 15$: 1000 W £ 18. CHARGER TRANSFORMERS. $200 / 250 \mathrm{Y}, 4$ amp E4.00 BATTERY.CHARGERS. Ready built with leads and clips 4 amp 4 : 5 amp. £4-50.
6 or 12 V outputs, $1 \frac{1}{1} \mathrm{amp} 40 \mathrm{p}: 2 \mathrm{amp} 55 \mathrm{p}: 4 \mathrm{amp} 85 \mathrm{p}$.
MAINS ISOLATING TRANSFORMER Primary $0-110-240 \mathrm{~V}$. Secondary $0-240 \mathrm{~V} 3 \mathrm{amps} 720$ Watts. Insulated terminals. Varnish impregnated. Full enclosed in steel case with fixing leet, $C \mid 2$ Carr
Famous make (Value £19) OUR PRICE Can be used as 800 watt auto transiormers 240.110 V

VOLUME CONTROLS
Long spindles. Midget Size LIN. ohms to 2 Meg. LOG or TEREO L/S 55. D.P. 35p. Edge 5K. S.P.Transistor 25p.

80 ohm Coax 5p yd.
BRITISH AERIALITE AERAXIAL-AIR SPACED $0 \mathrm{yd} £ 2 \cdot 00 ; 60$ yd $£ 3.00$. FRINGE LOW LOSS ${ }^{\text {Ideal }} \mathbf{6 2 5}$ and colour. $0_{\text {p yd }}^{\text {per }}$

Wire Wound controls lin diam. 3 Watts. 10 ohms to 100 K British Made with long spindles tin dia. 85 p each. DUAL CONCENTRIC POT 500K LOG AND 500K LIN D.P witch. Inner spindle ${ }_{3} \frac{1}{2}$: outer spindle 2 tin 75 p .
E.M.I. $13 \frac{1}{2} \times 8$ in. SPEAKER SALE!

With twin tweeters.

 wath. State a or 8 or Post 25p With His red tweeter cone and ceramic masat i. .iat £2.95

tate 3 or 8 or 15 ohm . Post 25

13×8 in Bags unit 20 wattr ubber cone gurround $\mathbf{£ 5} 50$
LOUDSPEAKER FRONT GRILLES
Tealwood strips mounted on cloth backing, easily glued on to batfle to modernise cabinets.
Size $18 t$ in $\times 104$ in. $75 p$ or size $101 \mathrm{in} \times 7 \mathrm{iin} .45 p$
E.M.I, $6 \frac{1}{2} \mathrm{in}$. HI-FI WOOFER
ohm. 10W. Large ceramic magne Special Rubber cone surround
requency response
30-12,000 c / s. Ideal P.A.
Columns. Hi-Fi Enclosure Systems, etc. Suitable Cabinet $12 \times 8 \times 6 £ 4$ Suitable Tweeter 22

ELAC CONE TWEETER

The moving coll diaphragm gives a good radiation pattern to the bigher frequencie trom 1.000 c e $18,000 \mathrm{cta}$ $3 \frac{1}{2} \times 2$ in deep. Rating $10 \mathrm{~W}, 3$ ohm. Crossover 21.60 \& 90 Post 20p.

GOODMANS

 8 in. WOOFER 8 ohm 12 watl. Deep cone Heavy ceramic magnet. Bass resonance 35 cps . Frequency esponse $30-8,000 \mathrm{cp}$ deal bass unit for $£ 3.75$Hi-Fi system

SPECIAL OFFER LOUDSPEAKERS

ohm, $2 \frac{1}{2} \mathrm{in} ; 2$ Sin; 3 Iin; 5 in
 ohm, 21 $\mathrm{n} ; 2 \mathrm{zin} ; 5 \mathrm{in} \times 3 \mathrm{in} ; 3 \mathrm{in} ; 4 \mathrm{in} ; 5 \mathrm{in} ; 6 \times 4 \mathrm{in}$.

 5 ohm, 3 in: $\sin ; 6 \times 4 \mathrm{in} ; 5 \times 3 \mathrm{in} ; 7 \times 4 \mathrm{in} ; 8 \times 5 \mathrm{in}$ $35 \mathrm{ohm}, 3 \mathrm{in} ; 5 \mathrm{in}$.$80 \mathrm{ohm}, 24 \mathrm{in} ; 2 \mathrm{in} .120 \mathrm{ohm} 3 \mathrm{in}$.
E\|EACH LOUDSPEAKERS P.M. 3 OHMS. 7×4 in $21-25$; 6 in $£ 1.50$;
 ICRAR 4 W . 50 WW CONE 50 W E9.95. PRS. 85 2in diameter 8 W , 10 in diameter 5 W £2.95; Post 25 p SPEAKER COVERING MATERIALS. Samples Large S.A.E Horn Tweeters $2-16 \mathrm{Kc} / \mathrm{s}$. 8 W 8 ohm or 15 ohm £2.50. De Luxe Horn Tweeters $2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~W}, 15$ ohm $£ 4.00$ TWO-WAY 3,000 c.p.s. CROSSOVEKS 3,8 or 15 ohm $£ 1 \cdot 60$

CASSETTE MACHINE MOTO Will replace many types $\& 1 \cdot 25$.

R.C.S. 3 WAY CROSSOVER

Complete with 12 ft. twin lead fitted with din speaker plug. ready assembled with leads for speakera, bass, mid an weeter. Crossover irequencies- 950 cps and ≤ 1.95

VALVE OUTPUT TRANSFORMER 50p.
MIKE TRANSFORMER MU metal $100-1$ £1-25.
USH-PULL VALVE OUTPUT TRANSFORMERS
50 watt.
£12.50 100 watt
£15.00

ELECTRO MAGNETIC PENDULUM MECHANISM

1.5 V d.c. operation over 200 hours continuous on SP2 eacbing electro manle swing and speed. Ideal disp strobe, etc.

R.C.S. RECORD PLAYER AMPLIFIER

2 stage triode pentode palve. 3 watts output. Volume on/off and tone controls. Printed circuit
A.C. mains complete and tested. $\quad £ 4.50{ }_{35 \text { p }}^{\substack{\text { Post } \\ \text { 35 }}}$ a.c. mains complete and tested. Complete with speaker.

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 18 OUTLET BOXES, SURFACE MOUNTING 40 p .
BALANCED TWIN RIBBON FEEDER 300 ohms, 7p yd JACK SOCKET Std. open-circuit 14 p . closed circuit 23 p ; Chrome Lesd Socket 45p. Pbono Plugs 7p. Pbono Socket 7p ACK PLUGS Sid. Chrome 20 p ; $3 \cdot 5 \mathrm{~mm}$ Chrome 150 DIN Lead 3-pin 25p; 5-pin 25p. DIN PLUGS 3-pin 25p; 5-pig 25 p. VALVE HOLDERS 5p; CERAMIC 10p; CANS 5p: 5-pin 25 p

E. WOOFER AND

EETER KIT
 Wooler $£ 4 \cdot 25$; Tweeter 21-80)

Compriains a dine erample of a Wooler $10{ }^{3} \times{ }^{2}$ in with masive Ceramic Aluminiam Cone centre to improve middle and top response. Also the E.M.I Tweeter 3tin aquare has a special lightweight paper cone and magnet finx 10,000 lines. Crossover condenser and Iull inatructions sepplied. Impedance Standard 8 obms Maximem power 12 watts | Oseful Responae | 35 |
| :--- | :--- |
| Beas Resonance | $18,000 \mathrm{cpa}$ |
| 5 | | SUTTABLE ENCLOSURE $20 \times 13 \times 9 \mathrm{in}$. £ 10.50 MODER DESIGE TEAK WOOD FIEISH

Post 75p

BAKER MAJOR $12^{\prime \prime}$ \&8.50
$30-14,500 \mathrm{c} / \mathrm{a}, 12 \mathrm{fa}$ double cone, wooler and tweeter con together with a BAKER herang a fax density of 14,000 gauss and a total five of 145,000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{a}$ Rated 20 wstre. NOTE: 3 or 8 or 15 ohms must be stated.

Module Hit, $30-17,000 \mathrm{c} / \mathrm{s}$ and instructions. $£ 10.95$

ANOTHER R.C.S. BARGAIN!

ELAC $9 \times$ Sin. HI-FI SPEAKER TYPE 59RM
Thin famous unit now available, 10 watts, 8 obm. Price $£ 2.95_{25 \mathrm{p}}^{\text {Post }}$

$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI-FI SPEAKER

Dual cone platycised roll surround. Large ceramic magnet. $50-16,000$ cps. Bass revonance
55 cps .8 ohm impediace $\begin{aligned} & 55 \\ & \\ & 10 \text { watts. } 8 \text { ohm impedance. } \\ & \leq 3.75\end{aligned}$ loin round $\mathbf{E 4} 50$

TEAK VENEER HI-FI SPEAKER CABINETS Fluted Wood Fronts MODEL "A". $20 \times 13 \times 9$ in
 MODEL "B". $16 \times 10 \times 7 \mathrm{in}$
 MODEL " 4 C ". $30 \times 20 \times 12 \mathrm{in}$. Reflex cabinet will accept $1-12 \mathrm{in}$. bass unit, 1-5in. mid range, 1 -3in tweeter. Teak Anith. Grooved front \quad El $8 \cdot 50_{\text {cirr. }}^{\text {Cat }}$
LODDSPEAKER

GOODMANS CONE TWEETER

 $3 \ddagger \mathrm{in}$. diam. 18,000 C.P.S. 25 Watts $8: \$ 3 \cdot 30$BARGAIN 4 CHANNEL
TRARSISTOR MONO
highlights and sound musica
to recordings. Will mix
Microphone, records, tape and tuner with separate controls into single output.
9 于olt battery $\quad £ 4.50$
operated.
GTEREO VERSION OF ABOVE $£ 5.95$
BARGAIN 3 WATT AMPLIFIER. 4 Transistor $\mathbf{P u s h - P u l l ~ R e a d y ~ b u i l t ~ w i t h ~ v o l u m e ~} \mathbf{~} \mathbf{3} 95$
basi controls. 18 volt battery operated. Mains Supply $£ 3$
THE "IASTANT" BOLK TAPE
ERASEE \& HEAD DEMAGNETISER Suitable for cassettes, and all sizes of Leaflet S.A.E.
$£ 3.75{ }_{\substack{\text { Pos } \\ 200}}$

WAFER HEATING ELEMENTS

 THIN drying applications in the bome, garage, greenhouse factory (avalable in manufacturing quantities). Approx size $10 \% \times 81 \times$ in in. Operating voltage 200/250V, a.c.250 watt approz. Printed circuit element enclosed in asbestcs fitied with connecting wires, Completelp ferible providing safe Black heat. British-made for use in photo copiers snd print drying equipment.
Ideal lor home hamdymen and experimenters. Suitable tor Hesting Pads, Food Warmeri, Convector Hesters, etc. Must be clamped between two sheets of metal or ashestos, etc., to mine encient clothes dryers, towel rails-ldesl for airing cupboards. Ideal for anti-frost device for the garage -preventing rozen radistors or acting as oil sump beater Invalusble aid for bird be used in series for lower heat. Or in parallel ior higher heat applications.
only 40p each (four for el:50) ALL POST PAID - Diacounts for quantity
 Screw Termingls din. dia. spindle.
R.C.S. STEREO DECODER

Britishmade. Ready aligned and tested. Complete $£ 4.95$ with instructions. Size 3 in $\times 2$ in

S

P50/2CC	40p	RA2W	85p
P50/1AC	$60 p$	OPT1	$85 p$
P50/3CC	40p	LFDT4	65 p
PCA1	85p	Twin Eank	£1-20

DELUXE 4 POLE MOTOR
1,400 r.p.m. rezersible 42 Wath.
£2.25
3 in . As imlustrated. 240 V a.c. mains.
Post 25p
E.M.I. GRAM MOTOR

120 V or 240 V в.c. $2,400 \mathrm{rpm} .2$-pole
f 1.00
Post 25p

BAKER HI-FI SPEAKERS
HIGH QUALITY-BRITISH MADE REGENT

I2in. 15 watts

An inerpensive unit for the beginner in high fidellty and for general parposes. May be used to improve any Radio, Ampliter, Hi-Fi or Television receiver
 Ureful reaponse $45-13,000 \mathrm{cpa}$ 3 or 8 or 15 ohm models.

£7.75

DE-LUXE Mk II I2in. I5 watts
 Eapecially derigned to provide full range reproduction at an economical cont. Saitable for use with any high Bdelity tweeter cone tweeter cone. Basa Resonence Vlur Density $\quad 14,000$ gacpa Usolut reaponse $25 \cdot 16,000 \mathrm{cps}$ 8 or 15 ohmi models.
 £9.75
 SUPERB

12 in. 20 watts
A high quality loudspeaker, its remsrkable low cone resonsnce ensures clear reproduction of the deepest bass. Fitted with a secial tweeter cone resulting in lult tweeter cone resulting in iuh remarkable entiency in the upper register.
Basa Resonance 25 cps Flux Density 16,500 gauas Uselul response $20-17,000 \mathrm{cp}$ 8 or 15 ohms models.

£13.80

AUDITORIUM

I2in. 25 watts
A lull range reproducer for high power. Electric Guitars high power. Electric Guikars. public addresi, multi-spesker
syatems, electric organs. Ideal for $\mathrm{Hi}-\mathrm{Fi}$ and Discotheques.
Basi Remonance 35 cpa Flux Density $15,000 \mathrm{ge}$ uls Orelul response $25-16.000 \mathrm{cp}$ 8 or 15 ohme models.

£ 12.95

AUDITORIUM

I5in 35 watts
A high wattage loudspeaker of exceptional quality with a level response
8,000 cps. Ideal lor Public Address, Discotheques, Electronic instruments and the home Hi-Fi.
Bass Resonanco 35 cps Fluy Density 15,000 Rauss Dseful response $20-14,000 \mathrm{cps}$ 8 or 15 ohms mode

£ $17 \cdot 80$

New. Sinclair IC20. 20 watts stereo amplifier kit for only $£ 7.95_{\text {wiskux }}$

A build-it-yourself stereo power amplifier with latest integrated circuitry... 10 W RMS per channel output... full short-circuit and overheat protection.

Latest from Sinclair - the brand new IC20 power amp. It incorporates state-of-the-art integrated circuits 2 monolithic silicon chips each containing the equivalent of over 20 transistors! These deliver 10 W per channel into 4Ω speakers. And the IC20 has integral short-circuit protection and thermal cut-out-it's virtually indestructible!

A complete kit! 6 resistors
15 capacitors
21 Cs
2 heatsinks Printed circuit board Nuts and bolts

How should I use the IC20?
Use the IC20 for converting your mono record player to stereo... for upgrading your existing stereo... for improving your car radio/tape player. The IC20 runs off a 9-24 V power supply. If you're running the IC20 off the mains, simply add a Sinclair PZ20 power supply ($£ 4.95$ plus VAT).

Using the IC20 to improve your car radio/tape player's quality and volume? Run the IC 20 off the car battery direct. You don't need a separate power supply, and you're reducing the drain on the player's dry batteries.

Improve your audio equipment - today

Both the IC20 and the PZ20 are covered by the Sinclair one-year, no-quibble guarantee - if absolutely any defect arises, Sinclair will replace the whole unit - unconditionally.

You can find both the IC20 and the PZ20 at stores like Laskys and Henry's. But if you have any difficulty, send us a cheque direct and we'll send you an

IC20 and/or a PZ20 at once. 14-day money-back undertaking, naturally.

Sinclair Radionics Ltd, London Road, St Ives,
Huntingdon, Cambs., PE17 4HJ. Tel : St Ives (0480) 64646

VAT Registration number: 213817088.

DISCORDANT VOICES

ALL is not harmonious in the musical world, as students of electronics are likely to be well aware. Opinion among musicians is certainly found to be sharply divided when the involvement of electronic techniques is discussed. Is there any real danger that traditional musical styles will suffer, or even be swept away, in the future by the new sounds and tonal expressions electronics alone is capable of producing? Fears of such an impending catastrophe are sometimes expressed by the more conservative minded.

The technology of electronics and the art of music have long been intermeshed one with the other. As a sound reinforcing agency, electronics has an extremely long association with traditional music and instruments. But ever since the infinite capabilities of tone pattern generation became recognised by circuit designers, innovation in sounds has become as important, and even more exciting, a role for electronics in the music field. From then on, it seems, a dilemma emerged. For some at any rate. Which is the right road for music-electronics to pursue: using electronic techniques to imitate or to reinforce without altering the essential character of traditional instrument sounds; or using electronic circuitry freely without limitations to create sounds that are original or, at least, do not have to be considered mere imitations of the voicing of acoustical instruments.

Undeniably there are two distinct paths; but each is clearly signposted. Both obviously have important parts to play in the development of the musical art and its wider appreciation. But the territory between these two well defined paths has become rather mudded and some state of confusion has been created in the minds of certain travellers who have become bogged down in this ill-defined area. So arguments and protests have arisen from upholders of the pure traditional approach to music, with counter arguments from the protagonists of uninhibited exploitation of electronic means and ends in the whole area of music, from composition to performance.

The non-specialist in musical affairs can leave the finer points of the debate to those who are academically or commercially involved in the musical arts. Sufficient to say electronics is a ready and willing servant of unquestionable value always at the disposal of the guardians of the muse, whensover they make the call.

A good concrete example of the first line of approach as mentioned above is the electronic piano, where electronic techniques are employed to imitate a classical type of musical instrument. The great advantage over the conventional piano is less bulk and weight. Factors of considerable importance in the modern home. In regard to performance electronics is here paying the conventional instrument a compliment, since modern circuit techniques are applied to the task of simulating as closely as possible the characteristics of a normal piano. Though extra voicing facilities are incorporated in the case of the PE Joanna as a bonus. A small electronic indulgence which should not offend even the purists among piano players.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor

Art Dept.
J. D. POUNTNEY Art Editor
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices: Fleetway House, Farringdon St. London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

A new generation electronic piano with an exciting specification

High degree of piano tone simulation
Fully touch sensitive keyboard
Alternative voicing of Honky-Tonk and Happsichord
Simple tuning with a high degree of accuracy
Soft and sustain pedals
Lightweight, attractive styling with amplifier incorporated in stool

Cost to build £120 approx.

SINCE the first publication of an electronic piano design, which was in Practical Electronics over the period September 1972 to January 1973, the instrument has been the subject of a sharp increase in popularity. A number of commercial versions have become available on the market, whilst many organ manufacturers now include a piano stop on a large part of their range. Many of the types on offer are not touch sensitive, which, although being an advantage when used in conjunction with an organ, is a distinct drawback when a full piano substitute is required. Other designs have questionable tone or voicing which can soon become unacceptable. The PE. Electronic Piano had a very small degree of touch sensitivity and a basic functional tone, and has now grown into the "Joanna" which combines a very wide range of touch with a good piano tone, whilst achieving a further decrease in size. In addition to its ideal adoption as the family instrument this therefore makes it very convenient to sit on top of an organ as an extra manual with or without touch sensitivity.

In establishing the new design the standard piano was investigated in more detail and the following facts and comments will be of interest to the reader.

PIANO HISTORY

According to past literature on the subject the first stage in the evolution of the piano was the clavichord, which used the impact of metal blades on horizontally stretched wires. The other notable predecessor was the harpsichord in which a mechanically coupled plectrum was used to pluck the strings. Instruments of the latter type can still be obtained, and in the "Joanna" a harpsichord tabswitch is provided.

The pianoforte, in which the wire is struck by a felt covered wooden hammer which is allowed to quickly fall back, has evolved into two basic types, namely the grand and the upright. The latter, which is of course the most common type, covers a wide range of tonal qualities, many of which have their

P.E. PIANO SPECIFICATION

MUSICAL COMPASS

Five Octaves C to C 61 Notes

FREQUENCY COMPASS

Fundamental Frequency Range	60 Hz to 2 kHz
	approx
Master Oscillator	$50 u k H z$ approx

NOMINAL OUTPUT LEVELS

External Amplifier 1 V into $1 \mathrm{M} \Omega$ 400 mV into $10 \mathrm{k} \Omega$ 100 mV into $2 \mathrm{k} \Omega$ 50 mW into 4Ω

TOUCH CHARACTERISTICS

Dynamic Range $>27 \mathrm{~dB}$
Key Action <10z
MAINS INPUT
240 Volts 50 Watts

SOUND ENVELOPE (nominal times)

Touch Range 2 to 40 mS
Attack Period $<1 \mathrm{mS}$
Early Decay 500 mS
Sustain Period 3 to 5 S (varies over compass)
TREMOLO FREQUENCY (nominal)
Slow 5 Hz
Fast 10 Hz
DIMENSIONS AND WEIGHT

Case
Height of legs
Weight
$38 \mathrm{in} \times 14 \mathrm{in} \times 5 \mathrm{in}$
24in
201 bs
CONTROLS
Level Control/On-Off Switch
Piano Tab
Honky-Tonk Tab
Harpsichord Tab
Tremolo Slow Tab
Tremolo Fast Tab
Sustain Foot Pedal
Soft Foot Pedal

SOCKETS

Mains Supply Socket
Pedal Socket
External Amplifier Socket
Headphone Socket
Stool Amplifier

POWER

Output Power 15-25 Watts
own individual appeal. Apart from the rich full piano sound obtainable from a high quadity instrument. the other most characteristic variation, which is usually associated with age, is the honky-tonk The "Joanna" provides a honky-tonk tabswitch, and by using all three tabs in combination a wide range of tone is available to the performer.

COMPASS AND SIZE

A normal piano covers $7 \frac{1}{5}$ octaves, with some smaller versions having a limited availability. The stringing of the piano is necessarily complex and takes up a considerable amount of space, fold-over techniques being used to minimise the volume where possible. Limiting the compass to five octaves greatly assists in reducing the size of the electronic instrument to minute proportions when compared with the conventional instrument. and is convenient from the electronic component point of view in simple economic tone generation. The choice of compass is an individual matter, but the author now prefers to use C-C in the general home environment, whereas F-F has been used for group work. In order to give some compensation for the loss of bass noter it has been simple to arrange for a slight enhancement of the level of the bottom two octaves, and the result has been assessed to be a good compromise by a number of pianists with widely differing styles.

TOUCH ACTION

The keyboard dynamic range of a piano is in the range $50-60 \mathrm{~dB}$, but this level of touch sensitivity is not often available in the average instrument, and the 30 dB or so offered by the "Joanna" should be pleasing to most pianists. The principle of touch action is the subject of much discussion but suffice it to saly that the majority opinion is that the final hammer velocity is the only determining factor in the resulting sound. In the conventional piano the velocity defines the level of output and the tonal quality. and the means by which this velocity is achieved. e.g. a gradual build up of key speed. effects neither parameter.
In the "Joanna" the level of output is varied by the average speed of the key over the depression period, and the tone is not altered, other than through the normal effect in the ear of the listener where perceived tone varies with level. The level control is used to limit the maximum volume achievable to suit the environment and is not operated during the execution of a musical score. The final aspect of touch is the key-weight which is considerably less than the normal 20 . This gives a very fast action, but does of course feel different to a normal piano keyboard, and requires time to become adjusted.

ENVELOPE

Many resonance effects are present in a piano which result in a complex decay portion of the envelope, both in terms of level and harmonic content. A large influencing factor is the use of multiple stringing and the way in which sympathetic resonances can be initiated by the note being struck. Simulation of these effects could be achieved by extensive electronic synthesis, but to produce a polyphonic instrument by such techniques is outside the

Control switches and voicing tabs

economic scope of the large area of interested constructors who are also prepared to accept that a full detailed synthesis of a piano is not of the utmost importance, whilst an improvement on presently available designs is welcome. The "Joanna" offers a decay characteristic which varies in length across the compass. and is in the region of five to three seconds.

VOICING

Two tonal aspects are mentioned above where simulation is not attempted, i.e. variation of the harmonics content with key velocity and over the decay period. The harmonic content of the basic note differs over the range of the board, and the voicing circuits are designed to give a greater level of high harmonics at the lower end of the piano to match the conventional instrument. The voicing circuits allow the constructor some freedom of fine adjustment to suit his own taste, and are split into three groupings across the keyboard.

PEDAL ACTION

The soft pedal of a grand piano operates the hammer action mechanism to move it into a position whereby the number of strings hit on the multi string sections is reduced, whereas the upright system is to reduce the hammer travel and thus its terminal velocity. The "Joanna" by simultaneously reducing the output level from all notes is similar to the upright action. The sustain pedal raises all dampers, and is directly simulated in the electronic version.

ENVIRONMENTAL ACOUSTICS

As with all sound sources, the acoustics of the environment can have a very great effect on the overall result obtained from a piano. The first
noticeable effect is the difference in tone experienced at varying distances from the sound source which occurs with both the conventional and electronic piano. The second is the way in which the size of the room influences the bass response of the instrument.

Reverberation can enhance the piano tone considerably as would be experienced by comparing the result on a high quality piano in the average living room, with the same instrument located in a concert hall. The "Joanna" can easily be fed into a spring line reverberation unit, which if used to a very small degree can give a pleasing sound in a small room. Headphones can be plugged into the instrument for silent practice, or to create your own sound stage without any influence from the room environment.

TUNING

The conventional piano requires tuning at least once a year, and is often left considerably longer. The use of the master tone generator in the "Joanna" ensures that the relative tuning of all notes is extremely accurate and not subject to variation. Compared with some two hundred tuning adjustments on the normal piano, the "Joanna" has only one.

COST

As stated earlier it is not beyond the reach of electronics to completely synthesise the action and sound of a piano, but the value of attempting such a project is extremely questionable. We are not going
to see a concert pianist changing to an electronic piano for major performances and the project should be judged against the background of the average domestic upright. taking up considerable room space and having a present day cost of at least $£ 400$. For an outlay of approximately $£ 120$, depending on the amount of effort which the constructor wishes to apply, an attractive practical instrument can be provided for the use of all the family which will give many hours of pleasure.

OVERALL SYSTEM

The block diagram Fig 1.1 shows the way in which the various sub-units are interconnected to make up the "Joanna" and from the diagram the overall principles of operation can be understood.

The keyswitch assembly, linked to the five octave keyboard, consists of 61 single pole changeover switches, operating between ground potential when at rest and a rail voltage of approximately 20 volts when the key is depressed. Touch resistors are mounted on the keyswitch assembly as indicated.

The switch outputs are routed to 12 boards, each containing five envelope circuits, such that all octaves of one semitone go to one board. Three outputs are taken from the Envelope Boards, grouping the bottom two octaves, the middle two octaves, and the top octave, and lead to the Preamplifier Board. This contains separate voice filters for each of the groupings mentioned. feeding to a preamplifier the gain of which is determined by a voltage controlled amplifier in the feedback loop. The latter has both tremolo and soft pedal control inputs. A direct output is taken from the preamplifier for

Fig. 1.1. Block diagram of the "Joanna"

Bulk Component List

To take advantage of any concess. ions offered by retailers for bulk purchases the following quantity list is included.

Individual component lists will appear as usual with circuit diagram as they occur.

Integrated Circuits

ZN7404	2
ZN7472	1
ZN7493	12
μ A741 (8-pin d.i.l.)	5
MFC6040	1
MFC4000	1
μ A7805	1
AY-1-0212	1

Transistors
Z.TX108 77

2TX501 1
Diodes
Cheap silicon diodes 20 volts 183
(e.g. 1S44, OA200 types)

Capacitors
$4.7 \mu \mathrm{~F}$ Electrolytic 25 Vmin 61
$4.7 \mu \mathrm{~F}$ Electrolytic 12 Vmin 61
Resistors

56Ω	61	$120 \mathrm{k} \Omega$	122	$270 \mathrm{k} \Omega$	12
$2.2 \mathrm{k} \Omega$	12	$150 \mathrm{k} \Omega$	50	$330 \mathrm{k} \Omega$	12
$33 \mathrm{k} \Omega$	61	$180 \mathrm{k} \Omega$	24		
$47 \mathrm{k} \Omega$	170	$220 \mathrm{k} \Omega$	26		

All $\frac{1}{3}$ watt carbon 5% tolerance
The above list includes all semiconductors, 80% of the resistors, and approximately 50% of the capacitors
use with an external power amplifier and a low power output stage is included to drive headphones when required. The Preamplifier Board also contains a sustain pedal circuit. the output of which is linked to the Envelope Boards.

Generation of the 12 semitones in the top octave is carried out by one integrated circuit fed by a 500 kHz input frequency. This is mounted on the Master Tone Board which also carries the envelope circuit for the top note of the piano. The dividers for the lower four octaves are included on the Envelope Boards.

The voice switching is performed between the voice circuits and the preamplifier. The use of a single tab gives the pure sound for that instrument, whilst more than one tab can be used simultaneously in order to provide tonal variations to suit the performer. The tremolo switching offers two speeds of tremolo as required.

PIANO ACTION

The fundamental piano action is obtained from the envelope shapers which are shown in block form in Fig 1. 2.

The time taken for the keyswitch to travel between the two busbars is converted by the touch sensor into a reducing voltage which is passed onto the sustain storage circuit as a fast leading edge to the envelope. The early decay circuit emphasises the percussive nature of the sound, and the damper operates in the normal piano manner, where it can be overidden by the sustain pedal. The resulting envelope is shown in Fig 1.3.

The final decay is obtained from the loading of the chopper on the sustain storage circuit. The chopper is fed from the divider circuits and feeds an output to the signal busbars.

INTEGRATED CIRCUITS

It can easily be envisaged that an electronic piano is an ideal equipment for total integration, and this will be achieved when a special i.c. is designed for the envelope circuit. At present it would seem that different circuits, in discrete form, are used by each

Fig. 1.3. Envelope shapes

Fig. 1.2. Block diagram of envelope shapers. 61 are required

Interior of piano showing location of sub-assemblies
manufacturer of commercial equipment, but eventually one configuration would be expected to dominate, and the design of a hex or quintuple envelope i.c. will emerge. The "Joanna" uses i.c.s for master tone generation, dividers, voice circuits, preamplifier, headphone amplifier, and power supply.

PHYSICAL CONSTRUCTION

The prototype was housed in a teak veneered cabinet, mounted on chromium plated tubular legs. The pedals are fixed to a similar tube which spans the supporting feet which are made of solid teak. Whilst this combination gives a very attractive finish, a cheaper cabinet could be produced using a mixture of ordinary chipboard and blockboard, covered in a heavy vinyl material, which would also be more suitable if portability is required.

All the controls, except for the pitch adjustment, are mounted on the narrow strip immediately above the keyboard, in an easy playing position. The pitch control is revealed by removal of the music stand and lid.

Referring to the photograph of the interior details, the Power Supply is built on its own separate chassis, whilst the cabinet is designed to provide natural support for all the printed boards. Plug in connectors have not been used, in order to keep the cost to the minimum. The socket panel, sunk into the rear of the instrument, provides external amplifier, and headphone outputs, mains and pedal inputs, and carries the mains fuse. The keyboard is mounted directly to the base of the cabinet. This has the particular advantage, when used as an extra manual in an organ, of reducing the height between the keyboard and the top surface of the organ. The base of the cabinet is designed to give very easy access to the keyswitch assembly, without removal of the keyboard.

The piano stool has been designed to accommodate a power amplifier and 12 in heavy duty loudspeaker. A mains socket has also been provided to give a neater appearance to the necessary interconnecting leads between piano, stool, and wall socket.

KEYBOARD AND KEYSWITCH

The "Joanna" cabinet design is based on the use of the five octave Kimber-Allen Swedish keyboard type S.K.A., and the Clef Products keyswitch type CPS 1027, which is specially designed for use with this keyboard. The high quality Kimber-Allen unit has been adopted due to its relatively low weight and high mechanical rigidity which also simplifies cabinet construction.

BUILDING SEQUENCE

The recommended sequence for construction is to commence by building a simple jig as shown in Fig. 1.4. This allows accurate construction of the final cabinet to be carried out in parallel with the electronic work, thus avoiding the delay associated with high standard woodwork and the possibility of damaging the cabinet during the testing of the sub-assemblies.

If finances allow the purchase of the keyboard and keyswitch at the start of the project, they can be mounted in the jig immediately and used later in testing out the envelope boards, but an alternative is to make a set of five single pole two-way switches as shown in Fig. 1.5, and mount them on the front base-panel of the jig. This will allow the testing of one Envelope Board at a time.

The first electronic units to build are the Power Supply and Tone Generator Board, which can be placed in their appropriate positions in the jig. Any power amplifier can be used to test the outputs from the Tone Generator Board, and the Socket panel can be used to give a permanent connection to the amplifier, with a test lead connected to the output socket via a $47 \mathrm{k} \Omega$ resistor and a $0.5 \mu \mathrm{~F}$ capacitor. The next step will be to build the Envelope Boards, which after insertion into their allotted places in the jig can be tested using the experimental keys and the test lead described earlier.

The final board to construct will be the Preamplifier, which will then allow testing of the complete system to be carried out. At this point the tested system, including the Keyboard, can be transferred to the completed cabinet.

EXPERIMENTAL KEYS

I_{i}^{f} it is decided to leave purchase of the keyboard until later in the programme, the experimental key system shown in Fig. 1.5 can be constructed.

The five spring strips should be biased to press against the top screws, which are linked together and returned to ground potential. The five lower screws are also linked and returned to the supply voltage. In order to test the touch action the touch resistors should be wired as shown in the diagram.

[^3]
TEST/CONSTRUCTION JIG DETAILS

The base of the jig is split into two parts, the front part 4 in wide. and the rear part $8 \frac{3}{4}$ in wide. This leaves a gap of $3 \frac{1}{4}$ in which is spanned by the keyboard. The two base panels are held together by timber end cheeks, screwing from underneath. Four p.c.b. supports are mounted on the rear base panel in the positions shown. Two of the supports require slots cutting on both sides.

The Keyboard and Power Supply are fixed in the positions indicated. The p.s.u. chassis carries atl plugs and sockets, and will provide the anchor point for the test lead. Four standard legs can be screwed onto the jig which produces a very useful work bench for the period of the project.

1975 SPACE PROGRAMME

One of the most noticeable developments of the space era is that each year there is more and more international co-operation. The benefits of space science and earth applications from space activities. are becoming more widely recog nised. This attitude is being reflected in the increasing number of launches.

The number of USA launches planned for 1975 was set at 25 . Of these no less than 15 were to be from other countries or from international missions.

All the missions except one are unmanned. The manned mission is the joint USA and USSR A polloSoyus docking for which the training is almost complete. The Russian final field (space) trial took place in January with two astronauts living for 31 days in space. During this period they practised docking and moving from one vehicle to the other.

The link-up mission between the Russian and American astronauts is scheduled to take place on July 15. The crews will exchange visits and perform some scientific experiments. It is planned that the two spacecraft will be joined up for two days.

Altogether, there have been 25 joint planning meetings which began in 1972. In February the final arrangements were completed leaving only the final training of the crews. The final tests of the control communications between the two centres in Soviet Union and Houston has been successful.

Professor Bushuyev said at the last meeting that the Soyus spacecraft was fully prepared. Some special modifications have been made to the spacecraft in order that conditions may be more compatible. They have lowered the air pressure and raised the oxygen content. This brings the Soyus craft more in line with the system used by the USA.

Other modifications include the installation of new antennae and communication equipment together with flashing beacons, lights and an approach target which will assist the docking of the Apollo craft with Soyus.

The joint crews will have trained together and separately for five months before launch date. Some of this will take place in the USA and some in the USSR. The Russian crews. each of two men are, Commander Aleksey Leonov and Valeriy Dubasov the first crew with Anatliy Filipchenko and Nikolay Rukavishnikov of the second crew. The American team are Commander Thomas Stafford. Command Module Pilot Vance Brand, and Module Pilot Donald K. Slayton.

\author{

- Y FRAMK W. H Y DE
}

The joint mission of the USSR and the USA represents an important point in space history. The success of this mission will establish that it will be possible to affect rescue from space. Of course. it has always been possible to do this from the Apollo facilities but now the first steps in international facilities will be taken.

The ten day mission of ApolloSoyus Test Project (ASTP) will commence with the launch from Baikonor, Kazakhstan on July 15. Some $7 \frac{1}{2}$ hours later a three man Apollo will be launched from the Kennedy Space Centre. Various activities will take place during which the crews will visit each other's quarters, and remain as one group for about two days. The Soyus spacecraft will then undock and return to Earth. The A pollo will remain in orbit six more days while the crew carry out some special scientific experiments.

OTHER MISSIONS

Of the remainder of the missions planned two are for the study of the Sun, nine for communications and navigation. Three are devoted to the study of the Earth's atmosphere and the environment and another four will study climate and air pollution. Two more are for astronomy and another for oceanographic research.
Twelve of the spacecraft to be launched by NASA are owned variousy by other nations or other government agencies and private agencies. These pay NASA for the ilaunches. West Germany and France have the Symphonie 2. Two satellites are for Intelsat, the consortium of 80 nations. The European Space Research Organisation has one satellite for the study of cosmic rays.

RESOURCES SATELLITE

The second Earth Resources Satellite ERTS 2 will it is hoped repeat the enormous success of ERTS / which surpassed the most ambitious hopes of the planners. During the 29 months of activity prior to the launch of ERTS 2 in January, the first of the satellites sent back more than 100,000 images covering the whole of the United States and most of the rest of the world.

The satellites are inter-nations in scope and mission. Any nation can obtain data taken over its own territory. The orbital time is 103 minutes with an observation band 115 miles wide. The data covers the observation of agriculture. forestry, marine resources and biology, water resources and air pollution. The data can be processed into images or other forms for computer assessment. These observations over any particular territory are repeated every 18 days.

The sensors on the ERTS 2 are the same as those on ERTS 1. The return beam vidicon sub-system is a complement of three cameras sensitive to different regions of the electromagnetic spectrum. Full colour images can be constructed from the data. when each separate image is superimposed in its respective colour in a single frame. Every item found in nature reflects solar energy in a different way often invisible to the naked eye, and this situation is overcome by the system used in the satellite. Thus desease of plants can be "seen" as well as many other changes.

The multispectral scanner collects similar data by scanning the Earth directly below the satellite. Another. the data collector sub-system, collects and relays from some 1,000 ground based platforms located in remote areas. These platforms measure ground temperature, moisture content, winds and pressure and is correlated with the data recorded on the spacecraft.

THROUGH THE COMET'S TAIL

Comet Kahoutek revealed some of its secrets when the Helios satellite encountered space debris from the comet. Only a few particles were detected by the micrometeorite detector, but the implications are extensive.
The team responsible for the data suggest that the second Helios probe should be held back so that it can intercept Comet Encke which is due to return to our vicinity in 1977. This could have important consequences with regard to the theory of comet construction. Most workers lean toward the theory that conglomerate and icy particles fit the data so far available.

Iחा|ни| Wint UNII By R.J.BONFIELD

ApuShbutton varicap stereo tuner was described in the May 1973 issue of Practical Electronics which was designed to overcome the problem of the nechanical tuning capacitors and the associated pulleys and pointers.

The pushbutton arrangement adopted solved these problems to a certain extent, but did not eliminate them altogether since the pushbuttons are mechanical devices. The requirement is a completely electronic method of tuning, namely a system of touch-operated switches, as is to be described

PRINCIPLE OF OPERATION

When the base of any one of the Darlington pairs (Fig. 1) is touched a minute current will flow which is amplified. This current causes the voltage on the corresponding collector line to drop and one of the flip-flops in ICI will switch on. As the i.c. contains six flip-flops, six pre-tuned stations are available.

To ensure that only one station is selected at any one time, diodes D1-D6 reset all the flip-flops when any one is selected.

The voltage at the output of the selected flip-flop will rise to 7 V and appear across the preset potentiometer used for tuning. This voltage is not sufficient for most varicap tuners, so it is amplified by the operational amplifier IC2.

L.E.D. DISPLAY

The circuit of the l.e.d. station readout is shown in Fig. 2. The 7 -segment l.e.d. displays a station from 1 to 6 . When the unit is initially switched on,

Table 1: Allocation of stations

Touch Button	Station Selected
1	BBC local radio (Radio London)
2	BBC Radio Two
3	BBC Radio Three
4	BBC Radio Four
5	\{ Alternative IBA or BBC
$6\}$	\{ local radio stations

COMPONENTS...

Resistors

R1-R6	$10 \mathrm{k} \Omega$ (6 off)
R7	470Ω
R8-R9-R10	(see Table 2)
R11	$82 \mathrm{k} \Omega$
R12	$100 \mathrm{k} \Omega$
R13-R15	$1 \mathrm{k} \Omega$ (3 off)
R16	(see Table 2)
R17-R24	150Ω (8 off)
All 10\%, $\frac{1}{2}$ W carbon except where otherwise stated	

Capacitors

C1 $680 \mu \mathrm{~F}$ elect. 16 V
C2 $10 \mu \mathrm{~F}$ elect. 16 V
C3 $2,200 \mu \mathrm{~F}$ elect. 6.3 V
C4 $0.1 \mu \mathrm{~F}$ polyester
C5 $1 \mu \mathrm{~F}$ elect. 16 V
C6 $10 \mu \mathrm{~F}$ elect. 16 V
C7 $1 \mu \mathrm{~F}$ elect. 16 V

Potentiometers

VR1-VR6 $10 \mathrm{k} \Omega$ trimpots or skeleton presets
Diodes

D1-D6	IN914 or OA200 (6 off)
D7	(see Table 2)
D8	BZY88 C6V8 6.8 V 400 mW Zener
D9-D16	IN914 or OA200 (8 off)
D17	BZY88 C5V1 5.1 V 400 mW Zener
D18-D26	IN914 or OA200 (6 off)
D27	BZY88 C5V1 5.1 V 400 mW Zener

Transistors
TR1-TR12 BC109C (12 off)

Integrated Circuits

IC1 SN74118N
IC2 741C
IC3 SN7447A
IC4 DL709 (Bywood Electronics)

Miscellaneous

Pegboard, Veropins, wirt, 8 and 16 pin i.c. sockets, six metal buttons

Fig. 1. Circuit diagram of basic Touch Tuner. Note the inclusion of the large electrolytics C1 and C3. These are for ripple suppression if a stabilised mains supply is used
the figure " 0 " appears until a station is selected. The user must remember which station corresponds to each number.

A suggested method of station identification is shown in Table 1. A similar table could be printed on the front of the tuner using Letraset, or similar transfers.

VOLTAGE STABILISATION

If the supply voltage is derived from the mains it is essential that stabilisation is included. To adapt to various supply voltages as shown in Tabie. 2, the requisite component changes are given. Total power requirement is about 5 W .

Fig. 2. Circuit for decoder and readout

Component layout for Touch Tuner. Keep lead lengths from transistor board short. Other layouts can
be attempted on Veroboard or p.c.b. if so desired

COMPONENTS

Diodes D1 to D6, D11 to D16 and D18 to D26 can be any silicon types. The six preset potentiometers are ideally trimpots for ease of tuning, although carbon skeleton types may be used. In this case it may be desirable to add padding resistors between each preset and ICl , the value of these resistors may be in the range $4.7 \mathrm{k} \Omega$ to $27 \mathrm{k} \Omega$ depending on the tuning spread required.

The values of R8, R9, R10 and the voltages of Zeners D7 and D17 should be selected from Table 2. Where they are not required, resistors must be replaced by short-circuits and diodes by open circuits.

Resistor R16 will become hot when a high supply voltage, i.e. 24 V or 35 V , is used. In these cases it must be a 5 W component and must be mounted where it will not damage other components, preferably off the main circuit board.

The decimal point on the 7 -segment display can be employed as the stereo beacon, by connection to pin 6 of the MC1310 stereo decoder i.c.

The l.e.d. may be glued to the rear of the tuner's front chassis, behind a rectangular hole. Connections would then be made by wires several inches long from the circuit board to an i.c. socket which is plugged onto the l.e.d.

The pin numbers shown in Fig. 2 for the l.e.d. apply to the Hewlett Packard $5082-7730$ or the Data Lit 707. Other types, such as the DL747, can be used, but the pin connections must be checked. IC 3 is the 7 -segment decoder.

CONSTRUCTION

It is recommended that i.c. sockets are used, in particular for ICl and IC3. The input transistors must be mounted close to the touch buttons on a separate board, as shown in the photograph. It is important that the touch buttons are not connected to the transistors by long leads.

The preset potentiometers should be mounted away from the circuit board, in a position convenient for
adjustment. If the maximum output voltage is too low, it can be increased by changing R12 to $120 \mathrm{k} \Omega$ or $270 \mathrm{k} \Omega$.

In the prototype, six metal buttons were Araldited to Bakelite, otherwise any small metal objects are suitable.

TESTING

To test the unit connect V_{s} and 0 V to any one of the recommended power supplies given in Table 2, making sure that the appropriate component amendments are made.

Connect the output, V_{0}, to pin C of the LPI186 tuner module. It is not necessary to make a connection between the touch circuit and pin E of the LP1186. Check that R17 is connected if it is external to the board and check the connections to the 7 -segment l.e.d. if fitted.

Turn each preset to its lowest voltage position and switch on. The l.e.d. should read " 0 ". Touch each panel in turn and the readout should change each time. If this is not so, check the connections to IC1. If incorrect segments are illuminated, check diodes D18 to D26 and the l.e.d. connections.

Locate the preset for the selected station. The voltage across this potentiometer should be 4 V to 5 V . The output should be 1.5 V to 2 V . Rotate the potentiometer to its maximum position and the output should be 8 V to 10 V . Check these voltages with a voltmeter.

As the preset is rotated from its minimum position, the first station to be tuned in should be Radio 2. If it is Radio 3 or Radio 4, and Radio 2 cannot be tuned in, then the voltage across D9 and D10 is too high, so one of these diodes should be removed or replaced. If no stations can be tuned in, and the voltage across D9 and D10 is less than 1.5 V , check whether one of the diodes is faulty and if so replace it, otherwise add a third diode in series with the first two.
 This could lead to something big.

A soldering iron and a screw driver If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course. This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory. You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you
how easily the subject can be mastered and add a new dimension not only to your hobby but also to your earning capacity.
This course is accepted by and used in a large number of schools and colleges and forms an invaluable grounding for professional training in the subject. All the training is planned to be carried out in the comfort of your own home and work in your own time. You send them in when you are ready and not before. These culminate in a final test and a certificate of success.

Read, draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

PLUS
over buying a similar piece of essential equipment.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

WAA
Brochure without obligation to:
BRITISH NATIONAL RADIO \& ELECTRONICS
SCHOOL, Dept. EL55

[^4]

FREE with speaker orders over $£ 7$

MI-FI Loudspeaker Enclosures book.
All units guaranteed new and perfect Prompt despatch. Carriage and packing: speakers $38 p$ each, speaker kits 75 p Send stamp fo ALL PAICES OUOTED INCIUDE VAT Saker
WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works. Bank Square, Wilmslow, Cheshire, SK9 1HF Discount Radio. PA. Hi-Fi: 10 Swan Street, Wilmsiow.

4:STATION INTTERCOM

Solve your communica ion problems with thi 4-Station Transistor Intercom system (1 master and 3 Subs), in robust plastic cabinets for desk or wall mounting. Call/talk/Ifsten from Master to Subs and gery, Schools Hospital, Office and Home Busess, Sur on one 9 y battery. On/off switch. Voluine control Complete with 3 connecting wires each 66ft and other accessortes. P. \& P. 50p.

 TELEPHONE AMPLIFIER

Latest translatorised Telephone Amplifier with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the haudset Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for "conference" calts: lcaves the user's hands free to make notes consult filea. No long walting, naven time with loug-distance calls. On/ofy switch, volume. Direct tape recording model at 512.95 .
P. \& P. 50p. $10 \cdot$ day price refund guarantee

WEST LONDON DIRECT SUPPLIES (PE/5 169 KENSINGTON HIGE STREET, LONDON, W. 8

P.E. JOANNA

Electronic Piano

ALL PARTS WILL BE AVAILABLE

Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors, Resistors, Capacitors
Complete kits or easy stages Send $5 \frac{1}{2} p$ stamp for details

Clef Products

31 Mountfield Road, Bramhall Stockport, Cheshire SK7 1LY

NEWS BRIEFS

Symbol for Safety

The British Standards Institution is to adopt a distinctive safety certification mark in addition to its famous Kitemark.
This is necessary because under article 10 of the EEC Low Voltage Directive. Community Members are required to conform to the safety requirements of the Directive in the field of electrical equipment by providing safety marks or certification or declarations of conformity.

Bodies authorised to grant such marks or issue such certificates have to be nominated by member governments. BSI, with other certification bodies, has been nominated by the UK Government for certain categories of electrical products.

To be considered for nomination in terms of the schemes for which currently the Kitemark operates, BSI needed a mark concerned only with safety requirements.

This has now been designed and is being registered by BSI. The new mark, based on a triangle incorporating the letters BSI in stylised form, will be a mark of conformity with a British Standard dealing only with safety, or with those parts which relate to safety characteristics in British Standards of wider application.

The stringent Kitemark testing and surveillance methods will be used in the certification of product safety. It is intended that, as with Kitemark procedures. a separate scheme will be devised for each standard, discussed and agreed with manufacturers, and then lodged with the Registrar.

Tubeless Cameras

Employing an advanced type image sensor, called a charge-coupled device (CCD). that performs the functions of Vidicon tubes in TV cameras, RCA are proposing to market two solid state tubeless black and white TV cameras in Europe in 1976.

The new RCA camera "eye" is claimed to be the first solid state image sensor to be fully compatible with present TV monitors and accessories. eliminating the need for equipment modification. The CCD image sensor produces standard pictures with a resolution comparable to images made from a two-thirds inch silicon Vidicon tube in present use.

The picture resolution of these tubeless cameras indicates that charge-coupled devices are now practical for a wide range of applications extending from surveillance cameras to more highly sophisticated use in industrial and military equipment.

Scramblers Abroad

RECENT events have highlighted the difficulties of protecting business and commercial information. and it is recognised that the complexity of modern telephone networks makes them particularly vulnerable

The portatole Privateer telephone scrambler
to accidental or deliberate eavesdropping. It is claimed that this security risk can be overcome by using the EMI Privateer, designed to be linked to the telephone system in a manner fully approved by the British Post Office.
To promate overseas sales of the EMI EMISOUND Privateer telephone scrambler equipment, the company has entered into an agreement with Communications Security Limited. security consultants with world wide connections.
Basing their activities on the marketing techniques which have secured a rapid rise of interest in Privateer in the UK the new agents will initially be concentrating on opening and developing outlets in the Middle East, South America, and certain African states.

Hew CCD tubeless TV camera

ULTRASONIC REMOTE CONTROL

wITH the growing availability of ultrasonic transducers suited to various applications this as yet generally unused area of radiation is now coming in for much greater investigation.

Last month an ultrasonic system for the remote control of T.V. sets was announced, based on two purpose-built integrated circuits. The new system, made by ITT Semiconductors, uses multi-frequency coding, one frequency per channel, which has overcome many of the interference problems associated with earlier attempts to use ultrasonic energy in this type of application.

Of course, any system dependent on a frequency for operation must suffer from ageing effects, component drift causing frequency drift and subsequent system failure. However, the circuits developed by ITT overcome this by locking the transmitted and received signals to a crystal. In the primary application this is a colour sub-carrier crystal since one is available in the T.V. receiver and only one more is required for the remote transmitter.

Such crystals exhibit a tight frequency tolerance, a very slow ageing rate, and a small temperature coefficient. In this way no trimming is needed at either end of the system for satisfactory operation.

Two basic systems have been developed, a 15command system and a 30 -command system. Each has
transmitter and receiver chip, and the associated circuitry required for both ends is fairly simple.

The 15 -command system can be used for switching up to eight T.V. channels and additionally controlling three analogue functions such as volume, colour and briltiance. For each analogue function two channels are used, one to initiate upward and the other downward movement of the function concerned. In addition, in the system developed and displayed by ITT the commands could be given both at the receiver and on the remote control unit by means of touch switches.

The 30 -command system carries other function controls such as up to 16 channels, a sound mute button, a "granny" button which centralises all main analogue controls and other commands.

OPERATION

A 15-command system is shown in Figs. 1 and 2, Fig. 1 being the circuit of the SAA1000 transmitter circuit. A diode matrix is required to provide the correct coding input to the pins a to g and since the input impedance at these pins is in the region of 10^{12} ohms touch operation is possible using suitably selected external pull-up resistors. Such a circuit is shown in Fig. 3.

Fig. 1. Block diagram for the SAA1000 transmitter integrated circuit

Fig. 2. Circuit diagram for $\mathbf{1 5}$-channel receiver

Fig. 3. Proposed circuit for an ultrasonic transmitter

Normally all the inputs a to g rest at the positive rail voltage, held there by external pull-up resistors and an input is detected whenever one of the lines is pulled down to below half the voltage supply rail. Validity checking is supplied by making any valid input either any one of the lines a to e alone or jointly with lines f or g.

As soon as a valid input is detected the rate multiplier is set and the oscillator becomes operative to give a continuous ultrasonic output from the transmitter i.c. as long as the input is activated. A single transistor amplifier is sufficient to power the capacitive transducer used via a broadband step-up transformer.

The receiver circuit is shown in Fig. 2. This is identified as the SAA1010 chip and it operates by counting the local crystal-derived clock against the incoming ultrasonic signal and then decoding the count into the relevant channel.

Frequencies of less than 27 kHz or greater than 54 kHz are automatically invalidated internally and in any case an external band-pass amplifier reduces the strength of any unwanted signals.

Apart from these built-in immunity checks the receiver circuit contains a memory capable of storing the last value of each of the analogue conditions it controls. A small battery actuates this memory section during switch-off periods.

The analogue information is put out as a mark-space ratio variable between $1: 30$ and $30: 1$ in 30 steps. At switch-on and without the extra battery for the memory these ratios are preset on the chip to predetermined values. If, however, the battery is used then the ratios are as last set during use.

On-chip decoding of the analogue controls into markspace ratios is provided on the receiver i.c.s but, so as to reduce the number of pins, programme channel information is not stored on the chip but is delivered instead in pulsed b.c.d. form whilst transmission is under way.

Four basic chips are available, the 15 -command transmitter SAA1000 and receiver SAA1010, a silicon gate m.o.s. chip, the SAA1024 30 -command transmitter and finallv the SAA1025 30 -command receiver. The first is in a 14-lead package whilst the rest are all 16 -lead packaged.

For further details contact ITT Semiconductors, Foots Cray, Sidcup.

LOUDSPEAKER BREAKTHROUGH

A new look at an old concept in loudspeaker design

ALmost forty years ago two gentlemen. C. W. Rice and E.W. Kellogg. invented the loudspeaker construction which has ever since been the standard form used by almost every manufacturer.

Called the "mass and compliance" type of diaphragm, their loudspeaker design has changed little in the intervening years. The modern loudspeaker uses a small resistive or damping component to control the movement of the diaphragm and. at this time, the only way to come anywhere near achieving a frequency-independent system is as we all know to our cost, to use a multiplicity of units and associated crossover circuits.

A great deal of technology, effort and discussion has been put into current loudspeaker design, with, in the eyes of many. still questionable results. However, it seems possible that now yet another of the Rice \& Kellogg ideas might provide a better solution to the whole problem anyway.
When making their original proposals they suggested that a resistive diaphragm. that is one which damps or absorbs the sound energy, would be the only type in which the electrodynamic forces would be directly proportional to the desired diaphragm velocity. Of course, at the time they were unable to make such a diaphragm through lack of materials and thus they settled. like all sensible inventors, for the working solution.

NEW MATERIALS

Now, using modern materials and techniques, Josef W. Manger. a radio retailer from Germany, has managed to create a loudspeaker which embodies the basis of the Rice \& Kellogg resistive diaphragm concept (reported last month in Practical Electronics).
The new loudspeaker has been demonstrated to both an I.E.E. audience and some members of the technical press. and there is no doubt whatsoever that the Manger device is a serious contender for quality loudspeaker applications. Whilst all such demonstrations are open to attack on the grounds of location, suitable comparison examples and so on, the use of the new loudspeakers in an acoustically "bad" hotel room, but able to produce sounds very comparable with the original noises recorded, can only speak in their defence.

All such tests are, of course, subjective and often very personal but this is the first time the writer has seen any loudspeaker capable of demonstrably producing a square-wave output from a square-wave input over a frequency spectrum from 40 Hz to 40 kHz .

LOUDSPEAKER CONSTRUCTION

Even if the quality of the demonstration had been poor, and it certainly was not that, the construction of

FOR THE

Abstract

WORLD FAMOUS MANUFACTURERS CARDFRAME/CASE SYSTEM DESIGNED WITH THE AMATEUR MARKET IN MIND ... Precision made, elegantly styled and guaranteed to enhance any project lending itself to modular construction-synthesisers, mixers, test equipment, monitoring systems and for countless professional and industrial applications too. 19in rack mounting or free standing, the system comprises a range of modular inserts, panels, circuit boards, plugs and sockets. Illustrated leaflet and price list on request.

With a kit as complete as this, all you need add is a little time.

You may have found, from past experience, that your definition of 'complete' is not quite the same as other people's. And your so called complete kit comes minus a cabinet, or knobs, or a multitude -............ of other bits and pieces.
enomen That won'thappenwith a Heathkit
 clock kit. Every part you need will be there, right down to the solder. And you'll also receive a very easy to understand instruction manual that makes light work of assembly.

In fact all you need are a few basic tools and a few enjoyable hours of your time.

After which you may like to try your hand at

our AR-1214 stereo receiver. Or evena TV.
And how about an ultrasonic burg lar alarm disguised as a book?
Or,for a bookful of other ideas, just clip the coupon and we'll send you the Heathkit catalogue.

Otherwise call in and see us at the London Heathkit Centre, 233 Tottenham Court Road. Or at our showroom in Bristol Road, Gloucester.

You'll find it well worth your time.
Heath (Gloucester) Limited, Dept.' PE-55,

ALL PRICES INCLUDE V.A.T.
APEAKER BARGAINS

CM70 Planet stick metal,
switch crystal
DM160 Dynamic omnj-dir, ball
metal
U130 50K/600 ohm, uni-dir metal
ball ball metal

CONDENSER MIKE 600 ohm
Cass. Stick Mike with R Control on/off switch (2-5 and 3.5 mm J/Ply) Cass. Stick Mike with R Control (Philips type)

TAPES	Stnd.	LP	DP	PLASTIC LIBRARY CASES	
5 In	50 D	65p	$1.25 p$		
5 3ir	$85 p$	80 p	1.450	5 in Reels 18p. 5iln. 22p. 7in. 25p. P. \& P. 1-3 9p each. 4 or more Jot 35p	
7 in	80p	1.10p	$1.80 p$		
LOW HOLSE CA88ETTES				Cassette Head Cleaner	
	1-5	6-10	11-20	P. \& P. 1-5 each	0.85
C60	35 p	83p	30p	6-10 lot	0.20
C90	65 p	48 p	40p	11-20 post tree	0.20

C120 $\quad \frac{75 p}{}$

Tape Editing Kit, Ref. 23
CALCULATORS

Recording Tape Splicer, Ref. $201 \cdot 15$
Cassette Tape, Editing, Ref. 241.50 Cassette Salvage Kit, Ref. $29 \quad 0.45$ Styius Balance, Ref. 32A 1.20

Splrit Level, Ref. 46
Hi-Fi Stereo Test Cassette sINCLAIR Cambridge INCLAIR Cambridge 212.95 INCLAIR Cambridge
Scientifle
818.85

HEARYEDALE SPEAKER

BARGAMS (pr) P\& \mathbf{P}
Liaton 2 Kit (pr.) $\quad 10.00 \mathrm{P} .50$ $\begin{array}{ll}\text { Hendale } 3 \text { kit (pr.) } & 33.50 \\ 2.00\end{array}$ Dovedale 3 Kit (pr.) $\quad 58.002 .00$ Denton 2 spacaker (pr.) $\quad 30 \cdot 00 \quad 2.50$ Linton 2 Speaker (pr.) $\quad 38.50 \quad 2.50$ Dovedale 3 Speaker (each) $42.00 \quad 2.50$ Glendale 3 Speaker (pr.) $\quad 57.00 \quad 3.50$ Kingsdale 3 Speaker (each) 58.954 4.00
Sond 25 p for COMPLETE CATALOGUE, rolandeble upon firt order. ALL OUR HERGHARDISE IS FULLY GUARANTEED
subject to manufacturers' inerease and availabilisy
Riversidale Electronics
Mail Order Department PE5
P.O. Box 470. Manchester M60 4BU
the new loudspeaker would evoke interest in any exhibition of audio equipment. At first glance, the driver unit looks rather as if it were intended to be a chemical filter as the construction of the framing is light and open.

An outer ring (see the photographs) supports the outer edge of the diaphragm via a foam-plastic section of variable width. An inner ring, supported on thin webs just a little behind the outer ring, carries a large-diameter speech coil magnet and a central support point on which a foam-plastic pillar stands to which the centre of the diaphragm is attached.

DIAPHRAGM

So far, so good. It looks at least somewhat like a loudspeaker, if a rather shallow one. However, an examination of the diaphragm puts paid to the similarity ideas. It is soft, rather like a cross between old-style oilskin and putty, and a spare diaphragm was used to demonstrate just how pliable it really is. Forcing a finger into the material to make a deep "dent" which would normally ruin a cone only resulted in the dent slowly disappearing and the material resuming its original shape.

This ability to totally absorb at least slowly applied mechanical loads is achieved by the use of a knitted fabric coated in a suitably elastic material to provide a sound "piston".

To further assist in avoiding the usual problems of resonance, reflections from the outer cone edge, and cone break-up, the centre and the outer edge are both supported by foam plastic which is provided with a symmetrical but irregular edge. This absorbs most if not all of the energy which would otherwise be thrown back at the cone.

With the centre damping construction, it can be seen that the cone, if one can call it that, is vibrated at a ring spaced between the outer edge and the middle. This gives a larger radiating area whilst avoiding break-up problems. Indeed, the driver coil is itself interesting.

It is formed from two independent coils which, whilst driven in-phase in so far as the input signal is concerned, can be biassed with a d.c. signal so as to prevent massive excursions of the cone with any violent transients.
A ceramic ring magnet is used and the field energy is quite low, only of the order of 150 mWb which compares with values of twice to three times this value for most modern units.

EFFICIENCY

There is no doubt that the new units are not quite as efficient as normal cone equipments. The relationship is of the order of 80 per cent, or where one uses 3 W with a normal cone to obtain 96 dB , the new unit requires 5 W .

Apart from the nature of the edge and centre supports, the main secret of the new units seems to lie in the material of the diaphragm. In fact it does not act as a piston at all but, because of its viscoelastic nature, it operates in a bending mode. The attenuation factor of the material is very high, almost 1 , and in practice the effective diameter of the unit decreases with increasing frequency.

One drawback so far experienced is that the lower resonant frequency of the unit varies with the power applied. At zero power it is d.c. but this rises to about 40 Hz at full power with the units shown which were demonstrated handling up to around 25 W peak.

Currently the units are being made individually by hand in Germany but soon mass production is to be instituted and it is understood that the manufacturers may well licence a suitable manufacturer here for local operation.

The man responsible for this novel application of an old idea is Josef W. Manger, manager of JWM, D 8725 Arnstein, P.O. Box 4, Karlstadter Strasse 3-5, and anyone interested should contact him direct.

COLOUR TELEVISION SERVICING (2nd Edition)

By Gordon J. King
Published by Newnes-Butterworths
342 pages, $26 \mathrm{~cm} \times 16 \mathrm{~cm}$, plus fault procedure chart.
Price £4.40

HIS revised edition of the book first published in 1971 is aimed at a range of readers, from the technician changing from black and white to the enthusiastic amateur endeavouring to obtain the best performance from his set.

The eighteen chapters cover the basics of colour science, cameras and tubes, with details of the receiver from aerial to display. Chapter eleven onwards, test instruments, fault locating, field servicing and tube symptoms are especially helpful as is the new chapter seventeen-Receiver Design Trends, with information about some of the many developments in thyristor power supplies.

As a whole this book is extremely readable with a minimum amount of mathematics and minimal references to N.T.S.C. The illustrations and photographs (four pages in colour) are excellent and the detachable fault procedure chart should give a good start in locating the general area of trouble.
R.J.G.

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR

By R. M. Marston
Published by Newnes-Butterworths 123 pages, $5 \frac{1}{2} \times 8$ in. Price $\mathbf{£ 2 . 8 0}$, cased

T[HE operational amplifier is probably doing more to alter the face of practical electronics, both domestic and industrial, than almost any other single item of technology. Thus any document which helps to expand our knowledge of this particular area of electronics is bound to be helpful.

The present book is filled with useful circuits culled from a broad spectrum of arts including audio, measurement and signal generation to mention but three. Whilst some will be familiar the fact that they are gathered in one volume is in itself an aid to location.

An introduction takes the reader through the basics of operational amplifier techniques and introduces one to the universally acceptable 741 device which is used throughout the book. This is followed by five chapters dealing with subjects such as a.c. and d.c. amplifiers. instrumentation projects. oscillators and multivibrators, sound generators and alarms and finally, relay driving and switching circuits.

All the projects are provided with discussion of the operational methods used and the various forms of circuit selected. Whilst one may find that one's favourite circuit is missing, as is the fate for analogue thermometry, for example, there is certainly sufficient information present to make up a circuit from the elements in the book.
One point is perhaps important. This is not a wiring diagram/p.c.b. layout textbook. The circuits are given with some design information and construction is left to the reader. Nonetheless it is still a very useful book.
R.D.R.

TRAMSDMCERSed Fo PART Qun weasuring Temperatures Light Force Load Sound Frequency Distance Heat

MANy materials have the property that their resistance changes with temperatures and some of these find application as temperature-sensing devices. For metallic conductors the changes are very small when compared with, say, negative temperature coefficient thermistors, but metals have the advantage that their resistance variation is nearly linear over wide temperature ranges. Thermometers based on this variation are usually called resistance thermometers. Semiconductor thermometers based on germanium, silicon and carbon exhibit negative temperature coefficients of resistance similar to the thermistors already mentioned.

RESISTANCE THERMOMETERS

These devices usually employ a. wire element made of platinum, tungsten, nickel or nickel alloy, or special metallic films. The platinum resistance thermometer is the most accurate available and is used as the calibration standard in the International Practical Temperature Scale. Resistance values range from about $0 \cdot 1 \Omega$ to $10 \mathrm{k} \Omega$ and the useful temperature range is approximately $-260^{\circ} \mathrm{C}$ to $1,000^{\circ} \mathrm{C}$. .Less expensive and widely used in many industrial applications are the nickel and nickel-alloy resistance thermometers which can be used over a temperature range of about $-100^{\circ} \mathrm{C}$ to $+320^{\circ} \mathrm{C}$.

The unknown temperature is obtained from measurements of the resistance of the thermometer element in conjunction with published calibration curves, either for the individual thermometer or for the particular class of thermometer. For platinum, the properties are sufficiently well known that mathematical expressions have been devised to permit the user to determine the temperature from the resistance value.
For accurate work an iterative solution is usually necessary because of the complex nature of the expression. For temperatures within the range -180 to $+620^{\circ} \mathrm{C}$ the empirical relationship known as the Callendar-Van-Dusen equation is normally used.

For more sophisticated applications a more accurate power series having 20 terms is available and carefully compiled computer programs are necessary to handle the calculations.
Over the range $0^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ the resistance variation for a platinum type thermometer is about 2 to 1 compared to a variation of about 1,000 to 1 for the resistance of a thermistor element over the same temperature range.

SEMICONDUCTOR MATERIALS

Silicon-crystal thermometers have been used for the temperature range $-50^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$ and offer a reasonably linear relationship but require individual calibration. Germanium crystals with closely controlled impurity levels have also been used in cryogenic
(very low) temperature measurements, especially below 25° Kelvin, and also require individual calibration.

NULL METHODS

For constant or slowly changing temperatures the usual method of resistance measurement involves a Wheatstone bridge circuit arrangement whereas for more rapid readings a direct readout method is necessary. The thermometer element is usually remote from the measuring point and connection is therefore made by means of a three- or four-wire cable to provide compensation for the resistance of the connecting leads.

Fig. 2.1 shows one possible circuit arrangement. Terminals A, B, C of the bridge are joined to leads 1,2 , and 3 respectively and a balance is obtained by adjustment of R_{V}. At balance we find that $R_{v}+r_{1}=$ $R_{\mathrm{T}}+r_{3}+R_{\mathrm{B}}$ where r_{1} and r_{3} represent the resistance of leads 1 and 3 respectively. Rearranging this equation we have $R_{T}=\left(R_{\mathrm{V}}-R_{\mathrm{B}}\right)+\left(r_{1}-r_{2}\right)$.

Ideally the term $\left(r_{1}-r_{2}\right)$ should be zero as this will then minimise error due to temperature variations along the connecting cable. Resistor R_{B} can be set to any convenient value compatible with the adjustment range of R_{V} and the variation of $R_{\mathbf{T}}$ over the temperature interval of interest. The null sensitivity of a bridge is greatest when all four arms have the same resistance value and for this circuit this would imply that $R_{\mathrm{V}}+r_{1}$ $=R_{\mathrm{B}}+r_{3}+R_{\mathrm{T}}=R$.

This last equation can be used to indicate a suitable nominal value for R_{B}. Since $R_{\mathbf{T}}$ varies with the temperature being measured the choice of R_{B} is a compromise.

By switching points A, B, C to leads 4,3 and 2 respectively as shown dotted, a second reading can be taken and the two results averaged to minimise error due to lead resistance variation.

JUNCTION ERRORS

Thermo-electric voltages at the junctions of any dissimilar metals can cause errors when the bridge is used with a d.c. supply. The use of a low frequency a.c. supply can help in this respect but introduces problems of its own. As with the thermistor bridge, self-heating due to current flow must be minimised as otherwise systematic error could be introduced.

An alternative approach is to pass a constant known current through the thermometer resistance element and to measure the resulting potential difference by, say, a digital voltmeter. This method is used in some semiconductor thermometer systems where the relatively large resistance change partly compensates for the low sensitivity of the method.

[^5]
THERMAL INERTIA

The most significant problem that the instrumentation engineer must solve is that of ensuring that the temperature sensing element or device is in fact at the same temperature as the subject for measurement. Often it is necessary to either protect the sensing element from the environment in which it operates or to cement or otherwise secure it in place. Materials commonly used for both these purposes have low thermal conductivity and consequently there is a significant temperature difference between the element and its environment.

In some situations the sensing element may absorb significant amounts of heat energy from the environment or the device to which it is attached, thus causing a change in the temperature being measured. Thermal inertia effects may also be a problem when rapid temperature fluctuations are being examined.

REFERENCE VALUES

Temperature reference points relating to specific states of matter are currently used to define the International Practical Scale of Temperature. Some of the states used are shown in Table 2.1.

Table 2.1

Temperature in degrees Kelvin	Physical "State"	
20.28	Boiling point of hydrogen at standard pressure	at
90.188	Boiling point of oxygen standard pressure	at
	Sriple point of water	

STRAIN GAUGES

Yet another application of the "change of resistance" principle is in the field of strain measurement. Strain gauges are transducers in which the resistance of a wire or foil element is varied by physical means. The most universal type is the bonded foil gauge but bonded semiconductor gauges are also available and find increasing applications.

The basic construction of two types is shown in Fig. 2.2. The gauge is usually cemented to the surface of some part or member in which a strain will be produced by an applied stress. In the usual arrangement two or more gauges, are employed and arranged in such a way that the stress-induced resistance changes combine to cause an output whilst allowing cancellation of resistance change due to, say, temperature effects.

The foil gauge for example has a metallic pattern which gives a larger resistance change when stressed along the preferred axis. This usually occurs when the stress increases the foil path length and decreases the cross sectional area, both of which cause an increase in gauge resistance. The semiconductor gauge experiences a change in crystalline structure which leads to a change in resistance due to the piezo-resistive effect. The effect is much greater than that obtained with wire or foil gauges but the variation is less uniform.

WIRE GAUGE

A further type is the unbonded wire gauge such as the biradial gauge shown in Fig. 2.3. In this type the

Fig. 2.1. One form of null bridge for temperature measurement

BONDED FOL GAUGE

Fig. 2.2. The basic physical form of the foil and the semiconductor strain gauge

Fig. 2.3. The biradial wire strain gauge where resistance changes are additive because of the physical arrangement
resistance elements consist of fine wire wound round the small posts and connected in a bridge circuit. Pressure applied to the centre of the diaphragm causes a tilting of the four posts in such a way that the elements on one side of the diaphragm increase resistance whilst those on the other side decrease. The resistance changes are additive in that they both act to cause the bridge to become unbalanced in the same sense. Temperature induced resistance changes affect all four arms of the bridge equally and consequently errors due to temperature are minimised.

OTHER RESISTIVE CHANGES

Strain is not the only measurand that can be used to cause a change in resistance. For example electrolytes, in general, exhibit a resistance which varies with the degree of concentration, within certain limits. Elastomers and special paints have also been developed in which the applied pressure gives rise directly to a change in resistance of the material.

Strain gauges are sometimes used as the electrical transduction stage of more complex devices in which an electrical output is desired. Unbonded gauges find application in pressure measurement, accelerometers and similar devices. The dimensional deformation or strain of an "elastic" material is related to the force or stress by Hooke's Law and the proportionality is constant over a restricted range. However, excessive inputs can damage or alter the characteristics of many types of gauge.

FOIL GAUGES

The bonded foil gauge is widely used as it is cheap and readily cemented to the workpiece. The gauge must be aligned so that the strain coincides with the axis of the gauge. The resistance change occurs for two distinct reasons. Resistance can be defined by $R=\rho \frac{L}{A}$ where ρ is the material resistivity, L is the material length and A is the cross-sectional area of the material.

When the wire or foil is in tension, L increases and A is reduced, both effects giving rise to an increase in resistance.

The second reason is due to the change of resistivity when the material is under stress. Strain gauges can

Table 2.2

Nominal gauge factors for some common	
materials	

be used in both compression and tension and two of the commonly used arrangements are shown in Fig. 2.4 .

The output of strain sensitive devices is usually specified in terms of a so-called gauge factor.: This is the relationship between the change in resistance, the basic resistance, the change in length and the basic length.

This can be expressed as $\frac{\Delta R / R}{\Delta L / L}$ where ΔR and ΔL represent the changes of resistance and length respectively and R and L_{L} represent the unstrained values of resistance and length.

The gauge factor is really a measure of the sensitivity of the transducer and a typical gauge might have a resistance of 100Ω to 150Ω and a gauge factor of approximately $2 \cdot 0$. Nominal gauge factors for some common materials are given in Table 2.2.

The main problems met with strain gauges are the requirement for care in mounting, the fragility and the need for temperature compensation.

Mounting requirements are usually specified by the manufacturer and the instructions should always be followed if reliable results are to be obtained. It is the quality of the cement bond that determines the coupling between the resistance element and the workpiece. A dummy gauge, positioned to experience the same temperature as the working gauge is a useful technique for temperature compensation although multiple gauge systems achieve the same result and give a greater output due to the "additive" resistance changes.

Thermal-potential effects can be avoided by using a.c. for the bridge supply and amplification of a.c. signals is easier than d.c. Self heating effects must be kept small and pulse excitation has been used in some applications to give a greater peak output voltage whilst keeping the average heating effect to a minimum.

ELECTROCHEMICAL CELLS

Special electro-chemical cells are now available that can be utilised for the measurement of total charge flow or time. The cells rely on the movement of ions between a silver case and an inner gold electrode; Fig. 2.5.

The direction of ion movement depends on the direction of current flow and when the gold inner electrode is free of ions the resistance of the cell and hence its voltage drop rises.

During the "plating" process the cell behaves essentially like a low value resistor of around 30Ω and for normal current levels this implies a voltage drop across the cell of a few millivolts. This state continues during the clearing or de-plating period until the gold
electrode is completely free of silver ions. The cell voltage-drop then increases rapidly to about $1 \cdot 2 \mathrm{~V}$. An approximate equivalent circuit is shown in Fig. 2.6.
The switch S opens when the gold electrode is unplated and the cleared cell then behaves as a low voltage Zener in shunt with a large capacitor of about $200 \mu \mathrm{~F}$. Whilst not strictly a transducer the device behaves as a variable voltage cell and can be used in event counting, timing and related applications.

THERMOCOUPLES

Thermocouples are heat-input/electrical-output self generating transducers and depend for their operation on the fact that if two different metal conductors are joined at their extremities to form a loop, a current will flow round the circuit dependent on the temperature difference between the two junctions.

This phenomenon of thermo-electricity was discovered by Seebeck in 1821 and named after him. The corresponding reverse action, whereby current flow through a junction of dissimilar metals gives rise to the liberation or absorption of heat, was not discovered until 1834 by Peltier. From the proportionality of the Peltier effect one might assume that the Seebeck e.m.f. would also be proportional to the temperature difference between the respective junctions, but this is not so.

A third effect, known as the Thomson effect, which is that of heat being liberated or absorbed when a current flows along a conductor in which there is a temperature gradient, accounts for the discrepancy and is similar to the Peltier effect but occurs in homogenous conductors rather than at a junction. These effects are in addition to the normal $I^{2} R$ heating that occurs when a current I flows in a resistance R.

THERMOCOUPLE BEHAVIOUR

To understand the behaviour of thermocouples it is necessary to understand that the nett e.m.f. in a circuit of homogeneous conductors depends only on the nature of the metals and temperatures of the metal junctions. From this, if the junctions are at the same temperature, the circuit has zero nett e.m.f. In a circuit containing several dissimilar conductors and junctions the e.m.f. generated by any one junction is uniquely related to the temperature of that junction if all other junctions are kept at some constant reference temperature.

These situations are illustrated in Figs. 2.7 and 2.8. Assume that the temperature of the lower junction in Fig. 2.7 is T_{2} and that T_{2} is greater than T_{1} the temperature of the upper junction, the nett Seebeck voltage will cause a current I to flow. The current will depend on the circuit resistance and the nett voltage. For the copper-constantan combination with $T_{2}=100^{\circ} \mathrm{C}$ and $T_{1}=0^{\circ} \mathrm{C}$ the nett voltage is approximately 4.2 mV .
The nett voltage versus temperature difference relationship is not perfectly linear and at $T_{2}=300^{\circ} \mathrm{C}$ the voltage would be approximately 14.6 mV . Fig. 2.8 illustrates the case where a measuring device has been incorporated and it can be seen that two additional junctions have been introduced at A and B. If A and B are maintained at the reference temperature T_{1} no error is introduced by the meter even though the circuit between A and B may not be entirely made of copper. (If other junctions of dissimilar metals exist within M these should also be at the temperature T_{1}.)
Present day thermocouples cover a very wide range of temperatures from about $-250^{\circ} \mathrm{C}$ to $+1,600^{\circ} \mathrm{C}$ with

Table 2.3
THERMOCOUPLE CHARACTERISTICS

Temperature	IronConstantan	ChromelAlumel	CopperConstantan	PlotimemPlatinum Rhedium
${ }^{\circ} \mathrm{C}$	mV	mV	mV	$m V$
-100	-4.63(41)	- (-)	$-3.35(28)$	- $(-)$
0	0 (50)	0 (40)	0 (38)	0 (5.6)
+25	+1.28(52)	+1.00(40)	$+0.99(41)$	+0.14(6-0)
+50	2.58(53)	+2.02(41)	+2.04(43)	$+0.30(6.5)$
$+100$	5-27(54)	4.10(42)	4.28(47)	$+0.64(7.3)$
$+200$	10.78(56)	8.13(40)	9-29(53)	+1.44(8.5)
+400	21.85(55)	16.40(42)	- (-)	+3.25(9.5)
+1,000	- (-)	41-13(39)	- (-)	+9.57(11.5)

Figures in brackets represent the rate of change of voltage with temperature in $\mu \mathrm{V} / \mathrm{deg} \mathrm{C}$
Reference junction is $0^{\circ} \mathrm{C}$ for all types

Approximate Useful Temperature Range	
Iron-Constantan	$-200^{\circ} \mathrm{C}$ to $+900^{\circ} \mathrm{C}$
Chromel_Alumel	$-180^{\circ} \mathrm{C}$ to $+1,100^{\circ} \mathrm{C}$
Copper-Constantan	$-250^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$
Platinum-Platinum Rhodium	$0^{\circ} \mathrm{C}$ to $+1,500^{\circ} \mathrm{C}$

-

Fig. 2.6. The equivalent circuit for the electrochemical cell

Fig. 2.7. Thermocouple current with dissimilar conductors and a temperature difference between the two junctions

Fig. 2.8. Effect of introducing a measuring device and associated extra junctions

thermoelectric potentials of 10 to $70 \mu \mathrm{~V} / \mathrm{deg} \mathrm{C}$. Long term stability is not as good as that obtainable with the best resistance thermometers and at high temperatures many thermocouple materials suffer gradual embrittlement due to oxidation or reduction.

Thermocouples can be made up from base metals, rare metals or non-metals such as semiconductor materials. The most commonly used thermocouples are listed in Table 2.3 and the variation of output voltages with temperature is illustrated in Fig. 2.10. As with resistance thermometers, a wide range of protection sheaths are available for thermocouples. These are often of steel or ceramic depending on whether imperviousness to hot gases or chemicals, protection from oxidising or reducing agents and mechanical strength are required. Sheaths tend to slow the response due to increased thermal inertia.

REFERENCE JUNCTIONS

The reference junction in a laboratory can be provided by using melting ice in a thermally insulated flask but for industrial environments a specially made temperature-compensated junction is often used. The thermocouple is often well-removed from the point at which the information is required and special compensating leads are available for this purpose. These may be simply finer gauge wires of the same materials as the thermocouple wires, or special alloys which match the thermocouple characteristics over restricted temperature ranges.

In the latter case the compensated leads must be correctly connected to the thermocouple leads as each wire only "matches" one of the thermocouple materials.

Three possible arrangements for connecting a thermocouple to the measuring device are shown in Fig. 2.9a, b and c, and the position of the "cold" reference junction is clearly indicated for each case. Method (a) is suitable when the indicator is close to the point at which the measurand exists.

Method (b) avoids the need for long lengths of expensive thermocouple material but requires the two reference junctions to be at the same temperature and fairly close to the environment being investigated.

The third method, (c), uses extension leads having thermoelectric properties that are vitually identical with the actual thermocouple leads to which they are connected. The two reference junctions can now be well removed from the environment being measured but must still be held at the same temperature.

For accurate measurements the voltage measuring device should impose negligible loading on the thermocouple circuit. High input-resistance digital voltmeters are taking the place of the earlier potentiometer voltage measurement systems and in automated systems analog-digital convertors change the low-level thermoelectric voltages to a form more suited to the computer or other data-processor.

THERMOPILE

A thermopile is simply a series arrangement of several thermocouples to give a higher output. In some applications the multiple structure is used to sense the average temperature over a particular region of interest. Some types have blackened hot junctions to provide better absorption of radiant energy and are sealed into a container with transparent windows and lens to form a radiation pyrometer. Other types of pyrometers use mirrors to avoid the wavelength restrictions that occur with the lens type.

BIMETALLIC DEVICES

If strips of two metals having different coefficients of expansion are bonded together to form a composite leaf or spring, any subsequent change in temperature will tend to deform the original shape. The effect is increased by selecting metals with widely different coefficients of expansion and the resulting deformation is monitored by means of a displacement sensor, as shown in Fig. 2.11.
The arrangement is widely used in thermostats and similar temperature sensing devices. Careful control of the material properties is essential for reproducible results. In some types, electrical heating elements are also utilised to minimise mechanical hysteresis effects in the switching action.
Next Month: Inductance Transducers

For use In examinimg the human arimat speed of teaction in Various situations.

High input limpedance efectronic mullimelof with a wide range of application ar ata:

Noxt nonth E isue will inctucts a tres Inclay for Walune 10 (t974)

PRACTICAL

JUNE ISSUE ON SALE MAY 9 - PRICE $30 p$

For negative earth vehicles only

ALMOST all vehicles in current production employ a hot wire thermal switch for controlling the yellow direction indicator flashing lights. The failure \mathfrak{o} : a flasher bulb produces an increased flashing rate which warns the driver that the signal is not being given by one of the lamps.
This article describes how the conventional thermal flasher unit can be replaced by a simple electronic circuit. The only semiconductor device required is an ITT integrated circuit which has been especially designed for automobile applications.

ADVANTAGES

The electronic circuit to be described has some advantages over conventional thermal flasher circuits, namely:
(a) When the direction indicator of the electronic unit is operated, the first flash occurs immediately. In systems using thermal flasher units, the operation of the direction indicator switch produces an initial "lamps off" state which precedes the first flash.

An electronic flashing circuit can therefore assist road safety by eliminating the short waiting period before the driver's intentions are made clear to other road users.
(b) If the relay is placed under the dash board, the clicking noise produced by the operation of its contacts provides a good audible indication that the flasher is operating. The normal warning lamp is also included in the circuit.
(c) A further advantage of the electronic system is the inclusion of an emergency flashing facility in which all four flasher lamps at the corners of the vehicle operate simultaneously. This facility is found on very few cars at present, although breakdown and other vehicles likely to attend accidents have it available.
(d) The conventional thermal switching system is quite reliable, but the use of a carefully constructed electronic system should improve reliability and, therefore, road safety.

The electronic circuit to be described provides all of the facilities offered by a conventional thermal flasher, including a much increased flashing rate when an indicator bulb filament has broken or has a broken connection in its wiring. The rapid clicking of the relay also provides an audible warning in these circumstances.

INTEGRATED CIRCUIT

The integrated circuit required is a TAA 775 G power oscillator. This is a dual-in-line device, but three of the pins on each side of a conventional 14 pin dual-in-line device have been replaced by a small metal tab. One or both of these tabs must be connected to the negative (0 V) power supply line.
The circuit used is shown in Fig. 1. The connections to the i.c. shown are those when the device is viewed from the top with the pins and tabs pointing downwards. The use of this device enables much simpler circuits to be employed than if discrete transistors were to be used.

CIRCUIT OPERATION

In the circuit, the capacitor Cl charges through R 1 from pin 6. When the voltage across Cl has risen to a predetermined level, an internal voltage comparator (the input of which is connected to pin 5) will switch the states of the internal circuits of the device.

The voltage at pin 6 is now switched to a value which is little higher than that of the negative line (actually about +0.2 V). Cl therefore discharges through R1 until the potential across this capacitor reaches a value which is low enough for the device to be switched back to its former state.

The voltage at pin 6 now rises rapidly to its former value of about +4.6 V and Cl therefore commences to charge again through R1. Hence the oscillatory cycles are repeated.

When the potential at pin 6 is in its higher voltage state of about +4.6 V , it is stabilised by an internal voltage stabiliser circuit. This ensures that
the frequency of operation is almost unaffected by reasonable variations in the power supply voltage.

The capacitor C2 prevents any transient voltage changes in the car electrical system from affecting the circuit by causing spurious switching.

OUTPUT CIRCUIT

The output transistor in the i.c. is connected to pin 10 of the device. When the -potential at pin 6 is high (that is, about +4.6 V), the output transistor is non-conducting. The current passing through the relay coil to pin 10 is then less than $1 \mu \mathrm{~A}$.

When the circuit is switched, however, so that the potential of pin 6 is about +0.2 V , the output transistor conducts. A current then flows through the relay to pin 10 . The maximum permissible value of this current is 150 mA , so the resistance of the relay coil should not be much less than about 100 ohms, since the battery voltage can reach about 14 V on charge and one must allow for normal tolerances.

The circuit has been designed to operate satisfactorily from supply voltages in the range 9 V to 15 V .

In most circuits a protective diode would be required across the relay to prevent damage to the integrated circuit when voltage spikes are formed across the relay coil. These spikes occur when the current ceases to flow through the coil. However, the i.c. contains its own internal protective diode and no further diode is needed across the relay when this device is employed.

CONTROL VOLTAGE

The i.c. operates in one of three states, according to the control voltage applied to pin 7. The control voltage affects the circuit only when the output transistor is non-conducting. The three states are:
(a) When the potential at pin 7 is equal to (or slightly less than) the positive supply potential applied to pin 1, the oscillation is blocked.

COMPON:NTS

Resistors
$\begin{array}{ll}\text { R1 } 5.6 \mathrm{k} \Omega \frac{1}{4} \mathrm{~W} \\ \text { R2 } \\ 82 \Omega & 2 \mathrm{~W}\end{array}$
All 10\% carbon

Capacitors

C1 $100 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C2 $0.5 \mu \mathrm{~F} 6 \mathrm{~V}$ polyester
Integrated Circuit
IC1 TAA 775G
(Phoenix Electronics Ltd., 139 Havant Road, Portsmouth, Hants)

Relay
RLA 12 V relay, 10 A contacts, coil resistance 110Ω (8 pin relay Doram)

Miscellaneous

S2 T.p.s.t. 4A toggle switch
International octal valve socket. LP6-12V 1.2 W emergency flasher monitor tamp

As the potential of pin 5 rises, no switching occurs and the relay is never energised.
(b) When pin 7 is earthed or when its potential does not exceed about +0.35 V , the circuit oscillates at a frequency given by the equation :

$$
\mathrm{f}=\frac{800}{\mathrm{R} 1(\mathrm{k} \Omega) \mathrm{Cl}(/ 4 \mathrm{~F})} \mathrm{Hz}
$$

(c) When the pin 7 potential is between about +0.45 V and +5 V . the circuit switches earlier as the potential across Cl rises. The frequency is thus increased by a factor of about 2.2 above its previous value when pin 7 was earthed. The duty cycle (time on/time off) is also increased from about 0.8 to 1.1 .

Fig. 1. The circuit of the direction indicator and emergency flasher unit. The connections of the TAA 775G are shown as viewed from above

Abstract

Prototype assembly of the Car Indicator / Emergency Flasher. Since the wiring layout is not critical and so few components are involved, no interwiring details are given. The unit should be installed under the dashboard and all connections to existing circuitry should only be made after examining the car's wiring diagram

It should be noted that the frequency of oscillation rises very suddenly as the potential of pin 7 rises from +0.35 to +0.45 V . There are only the two frequencies of oscillation for any given values of RI and Cl.
The values of R1 and Cl shown will result in a flashing rate of about 85 per minute when the pin 7 potential is less than +0.35 V . Tolerances in component values (especially in that of Cl) will produce some variation in frequency between similar circuits with the same nominal component values, but the flashing rate obtained should always be well within the legally permitted limits.

FUNCTIONING

The car power supply voltage is always applied to the integrated circuit whenever the ignition is switched on. The quiescent current consumption is only about 8 mA .

When S1 and S2 are both open, pin 7 has a potential of about +12 V , since it is returned to the positive supply line via R2. This potential at pin 7 prevents oscillation from occurring.

When S1 is switched to the "left" position, the resistor R2 forms a voltage divider with the parallel connected lamps LP1 and LP2. The lamps have a very low resistance and therefore the potential at pin 7 falls to less than +0.35 V . The relay closes immediately and the lamps LP1 and LP2 are illuminated, but are extinguished when the relay opens. Flashing continues as Cl repeatedly charges and discharges.
Similarly, if $S 1$ is switched to the "right" position, LP4 and LP5 will flash. With S1 in either the 'left' or 'right' position, the monitor lamp LP3 inside the vehicle will flash with the other lamps to indicate to the driver that the flashers are working.

If $S 1$ is in the "left" position and either LP1 or LP2 has a broken filament, the potential divider consisting of R2 and the remaining good lamp will apply a voltage exceeding +0.45 V to pin 7 . The monitor lamp LP3 and the good flasher will therefore flash at a much increased frequency (about 180 flashes per minute). Similarly, if S1 is switched to the 'right' position and LP4 or LP5 has a broken filament, the same high flashing rate will occur.

EMERGENCY FLASHING

If the emergency flashing switch S2 is closed, the lamps LP1, LP2, LP4 and LP5 will all flash simultaneously at the normal rate of about 85 flashes per minute. This is an excellent way of warning other road users that a road hazard (such as an accident) is present near the vehicle.

The lamp LP6 is a warning lamp inside the vehicle which flashes with the emergency tamps. It should be noted that if one or two of the flasher lamps have broken filaments, there will be no change of flashing frequency in the emergency position. However, any broken filaments should have been previously detected when the flashers are used as direction indicators, since their use as emergency flashers is likely to be a very rare occurrence.

The direction indicator monitoring lamp, LP3, does not flash when the switch S2 is closed for emergency warning flashing.

The emergency flashing system of Fig. 1 will operate only when the ignition is switched on.

POTENTIAL DIVIDER TOLERANCE

The value of R 2 is by no means critical, but a widely incorrect value can result in an incorrect flashing rate. In the prototype it was found that if the value of this resistor exceeded about 110 ohms, the normal flashing rate occurred even if a butb had a broken filament. On the other hand, if the value of R1 was less than about 50 ohms, the high flashing rate occurred even when all of the flasher butbs were good ones.

CONSTRUCTION

The TAA 775 G is best mounted on a printed circuit board specially designed for the purpose with slits for the tabs of the device. However, most readers will not have the facilities for making such a board. It is therefore normally convenient to carefully bend the tabs of the device upwards so that the pins of the device can be inserted into a "Lektrokit" board whilst the tabs remain above the board. One can solder the connections directly to the pins and this will hold the device in position on the board.

The relay is fitted into a standard "international octal" type of valve socket. Pins 2 and 7 are connected to the relay coil, whilst pins 1 and 3 are the pair of normally open contacts used in the circuit
being described. The other contacts are not connected in the circuit of Fig. 1.

The relay contacts have to switch a current of some $3 \cdot 7 \mathrm{~A}$ (or about $7 \cdot 1 \mathrm{~A}$ when the emergency flashers are used), so a relay with an adequate contact rating is essential for high reliability and hence road safety. The surge current at switch-on is even higher than the above values owing to the low resistance of the bulbs used when their filaments are cold. The use of a miniature relay should not therefore be contemplated.

FITTING

The switch S1 is already fitted in the car and can be used together with the existing lamps LP'1 to LP5 inclusive and their wiring. The emergency switch S2 should be installed well away from other switches so that it is not likely to be operated accidentally. LP6 can be fitted at any convenient place where its flashing light is not likely to remain unnoticed by the driver.

The circuit board is conveniently fitted under the dash board where the driver can hear the clicking of the relay contacts clearly. It may be convenient to place the whole circuit in a thick polythene bag before placing it under the dash board.

THE POCKET CALCULATOR BORE By A.P.S.

| T is unfortunate that new ideas always generate over enthusiastic responses, leading eventually to the emergence of a unique class of bore. The poor, innocent pocket calculator has unwittingly become the host of two particularly virulent strains which have gained a foothold in the home counties and appear to be spreading as far north as Merseyside.

These have been identified as "Borus-calculatii-simplex" (found in patients who have purchased the so-called "Four-function" calculators) and a related, but more lethal variety called "Borus-calcu-latii-sciencus" (found in the owners of the "Scientific" calculators.)

To be forewarned is to be forearmed, so it is well to have some knowledge of their habits and modus operandi.

They could be found almost anywhere but tend to favour workers' canteens, fashionable London clubs, pubs and public transport vehicles.

A slight rectangular shaped swelling in the region of the breast pocket is normally considered to be a positive diagnosis.

If any luckless member of the public wanders too close, the procedure which follows is fairly well established.

The calculator is withdrawn with a casual air and the fiery red digits will begin to blink and splutter in a hypnotic way, almost certainly attracting a glance of interest. The damage is done!

The ordeal begins with some torturous descriptive details of the particular model.
"Of course this has fully floating decimal point, a double re-entry constant button, facilities for extended multiplication and many other unique features which I won't bore you with old boy."

Then follows a demonstration of the number-crunching powers, during which the far reaching discovery could be made that 356 divided by $2 \cdot 3$ squared is "approximately" 67-29678639.

The fingers flash gracefully over the keys (with the dexterity of a Liberace) serving as a prelude to the next lecture which is concerned with some remarkable properties of the solid dodecahedron. Apparently all that is required is five sides, three angles and some cunning use of the aforementioned CONSTANT button. Some properties of pi and epsilon may then be discussed and of course rigidly demonstrated with worked examples.

Blessed relief finally comes when the batteries expire.

There is little doubt that the disease is on the increase and is particularly prevalent on the London Underground, more so on the Metro Line.

During the rush hour, little knots of people may be seen, one hand hanging on to the strap, the other holding the calculator. They use their noses to operate the buttons in a ierky sparrow-like manner, much to the consternation of the other travellers.

The answer to the steadily growing menace has yet to be found. In the meantime, the only advice is attack! Buy one yourself and strap it prominentlv around the chest but do make sure it has a CONSTANT button, facilities for... etc., etc., etc.

I.C. PULSE GENERATOR By A.C. AINSLIE

ALL WORK carried out with digital integrated circuits involves the generation or processing of pulses or pulse trains. Complex pulse generators are now available for industrial or development laboratories where a wide range of complex pulse systems are needed, but for the home constructor there is rarely any need for anything other than a simple repetitive pulse train.

SPECIFICATION

Pulse Rate 0.1 Hz to 100 kHz (in six decade ranges)
Period is to $1 \mu s$ (in six decade ranges)
Output Two TTL compatible outputs available; "NORMAL" and "INVERT". The "NORMAL" output is high during the mark period. High is 4 V and low is 0.5 V .
FAN OUT of 10 for each output. The "CONTACT" output closes during the mark period. Maximum ratings: $\mathbf{1 0 0 V}$ (a) 200 mA d.c. Maximum usable PRF approximately 200 Hz .
Gate Input TTL compatible-high or floating to enable the pulse train. Sink current to stop the pulse train is less than $\mathbf{2 m A}$.

The generator to be described was developed for TTL investigations and only a TTL-compatible output is provided. In order to increase the range of applications to cover other output requirements the pulse generator output can drive a small reed relay, the contacts being brought to the front panel to enable external voltages to be controlled up to a rate of a few hundred cycles. Alternatively some form of emitter-follower circuit can be used.

The generator is capable of a wide range of operating frequencies but with readily available switches the limit is six decade ranges. Although capable of operation in excess of 1 MHz , pulse width of 100 ns with a rise time of better than 20 ns , the faster ranges were abandoned in favour of a slow range of 1 Hz to 0.1 Hz . This is handy for industrial process control and also enables digital counters to be seen counting at this low rate.

ELECTRONIC CIRCUIT

The complete circuit of the generator is shown in Fig. 1. Although it looks fairly complex it can be broken down into four sections, the period generator, timing pulse shaper, monostable pulse width and output circuit, and power supply. The first three are shown in Fig. 2 in block form.

Before describing the circuitry in detail we should perhaps see how these parts fit together to form a generator of variable period and width. Fig. 3 shows how the period generator, timing pulse generator and width monostable waveforms are interrelated to form the complete generator.

The waveform at A is the output from the period generator which can be a free-running multivibrator or astable. Variation of the duration of one cycle of the waveform varies the output period, P. In the present instance the period generator is made up from three of the four gates in an SN7400 (IC1).

If at an instant the inputs to G3 (Fig. 1) are at logic 1 then the output of gate G3 is at logic 0 , and so the output of G1 is at logic 1 . The output of G2 must therefore be at logic 0 and so the capacitor C 1 to C 6 selected by S1A will charge through VR7 and the preset VR1 to VR6 introduced by S1B. Thus the input to G3 will be high as the charging current is high but as the capacitor becomes charged, G3 inputs will fall to logic 0 , sending G1 output to logic 0 and G2 output to logic 1 discharging the capacitor until the input to G3 once again goes to logic 1, repeating the cycle.

The duration of the cycle is dependent on the value of the charging capacitor and VR7 plus the preset selected by SIB. This preset is to enable each range to be calibrated in decade steps when VR7 is at zero resistance-i.e. shortest period for each range. The capacitors are arranged to give decade ranges of is to $10 \mu \mathrm{~s}$. The slowest range could be deleted and a faster range ($1 \mu \mathrm{~s}$) added with a $4 \cdot 7 \mathrm{nF}$ capacitor.

The open circuit input of G1 naturally acquires logic 1 when left floating and so the circuit operation is normal with no connection to the Gate. When gate is taken to logic 0 or ground however the period generator stops operating, enabling fully gated operation.

G4 (the last gate in IC1), C7 and R1 form the timing pulse. C7 and R1 ensure that when the output of G3 goes to logic 1 the input to G4 only

goes to logic 1 for about 70 ns . G4 output therefore goes to logic 0 for 70 ns during each period. This logic 0 pulse applied to IC2 inputs, A1 and A2, starts the monostable cycle.

Fig. 1. Complete circuit diagram of the pulse generator. Period is controlled by switch S 1 , variable resistance VR7 and the presets VR1 to VR6. Width is controlled by S2, VR14 and presets VR8 to VR13

Fig. 4. Suggested p.c.b. pattern (full size) and component layout for the pulse generator, including the reed relay but excluding current sinking resistors

PULSE WIDTH

S2A and S2B select the time-determining components as previously. VR8 to VR13 are presets to enable the widths to be calibrated when VR14 is at minimum resistance. $R 2$ is to limit the timing resistor values as required in the device specification.
The monostable chip, IC2, produces a pair of complementary outputs that are taken directly to the front panel sockets. R3 serves to ensure that input B of IC 2 is maintained at logic 1.

At one point during the period generator waveform, the timing pulse generator produces a brief pulse as at B in Fig. 3. This point is usually the leading edge of the period waveform as shown.

D2 $20 \mathrm{~V}, 1 \mathrm{~A}$ bridge rectifier

Switches

S1 2-pole, 6-way
S2 2-pole, 6-way
S3 1-pole, on/off
S4 1-pole, on/off
Miscellaneous
RLA1 D.i.I. reed relay incorporating D1 (Doram)
T1 $\quad 6 \mathrm{~V}, 100 \mathrm{~mA}$ output mains transformer
LP1 Neon indicator
FS1 1A mains fuse
Sockets, case, wire, solder, p.c.b. etc. to suit

Thus the timing pulses are spaced by the period set by the period generator. The timing pulses are usually arranged to be far shorter than the minimum output width required, in the present case about 70 ns .

The timing pulses initiate the width monostable which gives a pulse on receipt of a timing pulse of length determined by the monostable's time constants. This gives an output pulse of duration, W, the pulse width. Thus the output train consists of a series of pulses of width, W, separated by period P.

The only power required by the circuit is +5 V at pin 14 of each of the two i.c.'s. This is provided by an integrated voltage regulator fed from a conventional power supply. RLA1 is a miniature reed relay that can be switched to the output by S3. The contacts of RLAI are taken to the front panel at SK3 and SK4 and can be used to control any external circuitry as required.

FAN-OUT

The basic unit supplies TTL-compatible pulses to a fan-out of ten per output. However if the outputs are required to source current then a resistor of 330:2 should be connected between each output line and the +5 V bus. This reduces the fan-out but precludes the possibility of damage from shorting the outputs.

Of course the reed relay requires sourcing so it is advisable to connect a 330 S resistor between the relay side of S 3 and the +5 V bus. This maintains TTL compatibility with S 3 open.

CONSTRUCTION

Several methods will suggest themselves for the construction of this project but the author can only recommend a printed circuit board. A board of $88.9 \times 152.4 \mathrm{~mm}\left(3 \frac{3}{8} \mathrm{in} . \times 6 \mathrm{in}\right.$.) will accommodate all the main components without too much crowding. Fig. 4 shows a suitable print layout-drawn full size.

It is recommended that fibreglass board is used both for stability of performance and, because of the greater strength of fibreglass board, the mains transformer can be built onto the board.

The board can easily be made by constructors using the following recommendations. First of all the copper side of the board must be clean and free from scratches and grease. The design can now be copied onto the board using one of the marker pens now available. Etching is carried out in a saturated solution of ferric chloride.

The author has found that difficulty can be experienced when etching large boards due to uneven etching. The best way to overcome this is to float the board copper side down on the surface of the etchant. In this way all of the sludge falls from the board instead of staying on the surface. When completely etched, the board is washed and the resist removed with a solvent.

Most of the holes in the board can be drilled with a number 60 drill but as in. holes look neater for small components.

The i.c.s can be mounted on small sockets for ease of replacement. The relay can be purchased as a d.i.l. type and should be mounted on a socket

as, being a semi-mechanical device, it is prone to failure. The diode Dl is included in the di.i. package if the recommended component is used.
There are no special points to watch during the construction of the board, except perhaps that the i.c.s are the right way round.

The front panel and case layout are shown in the accompanying photographs but they depend on the components used. The use of ten-way ribon cable considerably eases the connection of the switches. In general all wiring should be short and direct otherwise "ringing" may occur on transients, spoiling the normally very clean output.

TESTING

When the construction has been completed and all the wiring checked, the generator can be tested.

When switched on, the voltage on pin 14 of both i.c.s should be 5 V , within about 0.1 V or so. An oscilloscope connected to the generator will verify correct operation.
If no output appears the scope probe should be connected to G3 output to verify that the period

stage is working. The output of G4 should be a series of 70 ns pulses.

These pulses can be difficult to see on some "ordinary" oscilloscopes which have low e.h.t. and not too wide a bandwidth. However, with Y amplifier set to $\mathrm{IV} / \mathrm{cm}$ and the trig set to " - ve, fast a.c." the stability control can be adjusted so that the scope just does not scan with no input. Applying the 70 ns signal should now start up the timebase.

CALIBRATION

In order to calibrate the generator, the period and width controls, VR7 and VR14, are turned to minimum resistance. Then with S 1 and S 2 set to the fastest ranges, the period is set up on a calibrated scope using VR6. The width is then set with VR13.

S1 and S2 are then turned onto the next range and the process repeated with VR5 and VR12. This is continued until all of the ranges have been covered.

The value of VR7 at maximum resistance can be too high to enable G3 input to drop to logic 0 . This is shown by the period oscillator stopping on the longer pulse widths on each range. If this occurs. VR7 should be shunted with a small resistor of value in the region of $3.9 \mathrm{k} \Omega$ so that the oscillator functions correctly over the whole range of VR7.

In use the generator should present no problems as the operation is self-explanatory. However, a little care is needed as regards the output connections to avoid cable reflections and ringing. Generally, if 75Ω co-ax connectors are used together with 75Ω cable, no reflections will be experienced unless a cable of several yards' length is used. Experience will dictate the best loading for each situationusually co-ax can be fed directly to a TTL gate input without any trouble at all.

THIS montrin

THE MAGAZINE FOR BEGINNERS

SUPPIEMENT... USING MULTTIMETERS Complete guide for this most useful piece of test equipment.

 A must for all beginners.
EASY
 TO BUILD PROJECTS
 MARNING MMNKER

A low current indicator for battery powered equipment.

THE MINSTREL
A single octave stylus operated miniature organ.

MTM/4MTME:

Superhet design for use with almost any amplifier.

MAY ISSUE ON SALE FRIDAY APRIL 18

IT is common practice to design any piece of test equipment which is to draw current from the apparatus under test, to have an input impedance as high as possible. Thus the minimum current is drawn from the apparatus, and the test rig will have virtually no adverse effect on it. An accurate result is therefore obtained.

Recently a few items of commercial test gear have been put on the market, offering input impedances as high as 1,000 megohms.

F.E.T. CIRCUIT

A circuit diagram of a preamplifier using a field effect transistor in the source follower mode is shown in Fig. 1. This uses an inexpensive junction f.e.t. type 2 N 3819 , and has a calculated input impedance of over 100 megohms. Resistors R1, R2, and R3 bias the transistor, and R4 is the source load. Cl is the input coupling capacitor, and C 2 is the bootstrapping capacitor.

It is the use of bootstrapping, plus of course the very high input impedance of the f.e.t., which gives the circuit such a high input impedance, as, if C2 is removed, the input impedance will be only approximately 6.9 megohms. The source follower is the f.e.t. equivalent of the emitter follower in bipolar transistor circuitry.

Like an emitter follower, a circuit such as this has 100 per cent negative feedback and has unity (slightly less in practice) voltage gain.

The input and output are in phase. Therefore, if an input voltage is appled to TRI gate, the voltage at TRI source will alter by an almost identical amount. C2 couples this change to the junction of R1-R2-R3.

As the input signal causes a change in the potential at one end of R 3 , the signal via C 2 will cause a similar change at the other end. Theoretically there will be no change in the current passing through R3, and to the input signal this will appear to possess an infinite resistance.

TRANSISTOR GAIN

In practice this is not so, as the gain between TR1 gate and the junction of R1-R2-R3 is less than unity. The gain of TRI is only about 0.95 , and there is also a small loss through C2, although this is only small compared to the 5 per cent loss through TRI.

The effective resistance of R3 will be increased to approximately 20 times its actual value, or 136 megohms. When one takes into account the input impedance of the f.e.t. itself. the input impedance of the amplifier is still in excess of 100 megohms.

Fig. 1. An amplifier having an input impedance of over 100 megohms

Fig. 2. This circuit using an operational amplifier i.c. has a typical input impedance of 400 megohms

When dealing with input impedances as high as this, the input capacitance of the circuit must be borne in mind, as even at audio frequencies this will noticeably reduce the input impedance.

The input capacitance of the circuit shown in Fig. I is about 8 to 12 pF , and the exact figure will depend upon the individual f.e.t. used, and the component layout used.

OPERATIONAL AMPLIFIER CIRCUIT

Operational amplifier i.c.s can be used very effectively to obtain ultra high input impedances. Fig. 2 shows a circuit which uses a 741 C or similar device, and a typical input impedance of $400 \mathrm{M} \Omega$ shunted by 1 pF .

As the output is coupled to the inverting input the circuit has unity voltage gain. The i.c. is intended to operate from two equal supplies, one being positive, and the other negative, with respect to earth. A biasing resistor is normally connected between the non-inverting input, and earth. As this circuit operates at a.c. only, this normal arrangement can be modified slightly. R1, and R2 form the centre tap on the supply, and R3 is the biasing resistor.

In order to prevent the biasing resistor from shunting the input, bootstrapping is applied via C2. The gain of the circuit is so close to unity that the bootstrapping is very effective, and the shunting effect of R3 is, to all practical purposes, non-existent.

D.C. CIRCUIT

A d.c. version of the circuit of Fig. 2 is shown in Fig. 3. Here equal positive and negative supplies are used. The biasing resistor is split into two parts (R1 and R2), and the output is coupled to the junction of the two halves. Bootstrapping is thus applied to R2, and the biasing resistors have very little shunting effect upon the input impedance.

The circuit uses the two offset null connections to the i.c. The offset null is adjusted by VRI, which is set with the slider half way along the track at first, and is then adjusted to give zero volts across the output terminals.

Both the circuit of Fig. 2. and that of Fig. 3 have good linearity and a low output impedance. The output has short circuit protection controlled by the i.c. itself.

Fig. 3. A d.c. version of the circuit of Fig. 2

NEWS BRIEFS

New Plessey Radio System

NEW experimental radio communication system, which provides two-way speech contact between underground workers and the surface, was successfully used in rescue operations at the Moorgate Tube disaster. The system. known as "Fire Ground" radio. is being developed by Plessey Avionics and Communications. under a contract from the Home Office Directorate of Telecommunications. for use by fire fighting services.
With this equipment. communication can be fully maintained from within steel-framed buildirigs. cellars. tunnels, caves, mines and similar locations. Each rescue worker is permanently in two-way contact with the base station and a talk-through facility is available which permits person-to-person contact. The degreee of penetration is quite outstanding.

The equipment consists of a number of special waistcoats. containing portable transmitter-receivers and a mobile base station, all of which may be rushed to the scene of a fire or other disaster.

It's A Hot Wind

Free power from the wind is one of the "in" subjects nowadays so it is no surprising that a company has been formed specifically to make use of current technology to develop ways of utilising this free energy source.
The new company, called Wesco Ltd.. is a joint venture of Control Technology of Peacehaven and Servotec of Redhill and technology for the generation of heat energy from the wind is said to be already in exislence.
Wesco will manufacture wind systems embodying the latest in solar dynamics and design. and a new form of compact heat energy storage. Applications are legion and include greenhouse healing la requirement which. it is claimed. in the UK alone uses three quarters as much energy as British Rail). agricultural heating and drying. and heating on large estates.
It is interesting to note that use has been made of helicopter expertise gained by Servotec and it is understood that the basic units to be made will be modular in concept.

PRACTICAL ELECTRONICS

- P.E. INDEX FOR 1974

Next month's issue will include a FREE index for Volume 10 .

BINDERS

Easi-binders with a special pocket for storing blueprints and data sheets, etc., are available price $£ 1.34$ including VAT and postage. State required volume, e.g., Vol. I, 2, 6.
Orders for Binders should be addressed to the Post Sales Department, IPC Magazines Ltd., Carlton House, 66 Gt . Queen Street, London, W.C. 2.

SAFETY AT SEA

Like other companies with a big stake in consumer electronics, Decca is feeling the chill wind of the economic recession. But the company is holding up well in capital goods with turnover up 23 per cent at $£ 32$ million and profits up from £3 million to $£ 36$ million. Almost half the business is in professional navigation equipment in which Decca is still a world leader both in technology and volume of production.

Increasing pressure on shipping to observe the new mandatory traffic lanes in the English Channel has brought Decca a $£ 350,000$ order for improved surveillance radar which will extend the present 15 miles radius of the "policing" system to 50 miles. Some 35 ships a day are still breaking the traffic rules that are supposed to keep east-bound ships to the French side of the Dover Straits and westbound ships to the British side. Ships straying from the traffic lanes are reported and in some cases are fined. The new installation is to follow the success of a pilot installation which has been monitoring channel traffic for the past three years. The "police" are H.M. Coastguards.

It isn't only the safety of ships and crews that is causing concern. It's pollution as well, especially from oil, and a major accident rould do untold damage. The Government has recently set up a new Standing Committee on Pollution Clearance at Sea to keed constantly under review the arrangements for pollution clearance following a disaster. But prevention is better than cure and, here again, Decca Radar has taken a lead by producing a portable aid for bringing supertankers more
safely into harbour. The equipment is currently being tested at a major oil port and an official announcement is expected soon together with some technical details.

Also doing well with their Situation Display radar which employs television techniques to give a bright radar display is Kelvin Hughes. The 45,000 ton P\&O cruise ship "Canberra" has just been fitted with one in preparation for a busy cruise season.

When 'Canberra"' was launched in 1961 she had the then revolutionary system developed by Kelvin Hughes in which the radar picture was projected on to the plottina table and which was the forerunner of the KH "Photoplot" system. The new installation has the main display forward on the bridge and a slave monitor just aft in the navigation console. A video recorder may be used to take a complete record of the exact sequence of events as the ship is leaving and entering harbour.

The marine electronics business remains buoyant both in civil and defence applications and in defence, of course, there is new business in the protection of the oil rigs in the North Sea.

MICROWAVE LANDING SYSTEM

A first-class row has developed over the U.S. Federal Aviation Administration's decision to recommend a scanning beam microwave landing system in preference to the doppler system which is claimed to be technically superior. Plessey, who has been working hard on the doppler system in conjunction with RAE and with British government support, has gone into the attack with a strongly worded protest. The Hazeltine Corporation, also a proponent of the doppler technique, has gone further and has won a court order restricting the FAA proposal and charging the FAA with illegally excluding Hazeltine from further work in the competition for the final system.

Few of the companies involved in the competition for the best system (which will replace present ILS systems and bring millions of dollars of business in the next 20 years) is happy with the FAA recommendation except Texas Instruments and Bendix who appear to be on a winning streak. Hazeltine, ITT/Gilfilan and Plessey are clearly enraged. The present squabble has all the aspects of international bad feeling generated over the respective merits of the Decca Navigator and VOR systems of some 15 years ago.-Watch out for the next thrilling instalment.

PACKET SWITCHING

The Post Office Experimental Packet Switched Service (EPSS) is now virtually full up. F. W. Woolworth has now joined the scheme and major users will be nearly all the computer hardware manufacturers, BICC, Joseph Lucas and, possibly, Cambridge University who will investigate the value of EPSS to its growing network requirements.

Altogether, some 38 firms are taking part in the experiment, including Ferranti whose Argus 700 E computers are used in the packet switching exchanges and for network monitoring.

ECONOMIC SEESAW

All business eyes are turned east these days. The fabled treasures of the east are now a reality with Iran, for example, trebling real income per head in the five years 1973 to 1978, while we in the west are hard put to it to maintain zero growth. Saudi Arabia is planning similar growth. So, it seems, is everyone else in the area.

It is an odd reflection of the times that while the BBC is making savage cuts in expenditure the tiny Sultanate of Oman has just ordered another $£ 2$ million of broadcast equipment from Pye TVT on top of the recent $£ 7 \cdot 7$ million contract for a complete TV system and over a million for odds and ends, bringing Pye .TVT orders from this one source to over 210 million in under nine months.

The population of Oman is 700,000 , that of Glasgow is 900,000.-It makes you think!

DYNAMO

Ray Brown, the human dynamo who built up Racal in its early days (he was the RA part of the invented name) is top news again. Now Sir Raymond Brown, he is the new President of the Electronic Engineering Association, succeeding G. A. Smith of Plessey whose sudden death is regretted by all.

Sir Raymond relinquished his interest in Racal when he became the first Head of Defence Sales, Ministry of Defence, in 1966. He is now chairman and managina director of Muirhead, the facsimile transmission experts whose 3,000 installations world-wide include a number for Interpol and useage by over a dozen national police forces, as well as in more mundane applications. Sir Raymond got his start in electronics in 1934 as an engineering apprentice with Redifon.

Kit inspection

STUDIO ELECTRONICS EASIKIT

We invite your closest inspection of our loudspeaker kits. Here at last is a kit which doesn't require you to be either an electronic genius or a master carpenter. The assembly is simplicity itself, taking barely 15 minutes and requiring only a soldering iron, screwdriver and our easy to follow instructions, the cabinet being already built. 4 drive units provide excellent reproduction free from colouration, cabinet resonance and listening fatigue. Beautifully finished in teak or white.

SPECIFICATIONS

simpedance 4-8 ohms.
Power Handling 20W r.m.s.
Crossover Frequencies $250 \mathrm{~Hz}, 5 \mathrm{kHz}$.
Frequency response 30 Hz to $20 \mathrm{kHz} \pm 5 \mathrm{~dB}$
4 Drive units, Bass, Bass/Mid-range, 2 Tweeters.

£42.50 per pair. Post free.

ready assembled $£ 49 \cdot 50$ per pair. Post free
Both plus 8% VAT.
Trade enquiries welcomed.

SOUND SPHERES

The littie speaker with the big soundl Only $4 \frac{3}{2}$ in dinmeter and weighing 700 grams, it is capabie of handling low. A very versatlle little performer ideally suited to rear channel systems, in the car, extension speakers etc. The magnetic base etc. The magnetic base enables them to be
mounted virtually anywhere. Superbly finished in black, white or orange

Demonstrations by telephone appointment.

SPECIFICATIONS

Impedance 4-5 onms
Power Handling 10W
Response 100 Hz to 16 kHz .

£19.95 per pair. Post free.

Plus 8\% VAT

Sound to Light Master Unit TypeB 3BANK

600 watts per channel Connects to your loudspeaker sot. The speaker socke. Tonnected to your existing spotlight fittings or

to our type A or B fittings.
 Special Introductiory

ncluding channel output plugs and Rear
B.C.fitting (Iess lamp)

TTL AT LOWEST PRICES!

Rapld dellvery by 1st class post
All prices include VAT (at 8%) All full speciliteatlon by famous manufacturers

Type	1/24	25/99	$100+$	Type	1/24	25/99	$100+$
SN7400	0. 14	$0 \cdot 13$	0.12	SN7460	0. 14	0. 13	$0 \cdot 12$
SN7401	0. 14	0.13	0. 12	SN7472	0.28	0.25	0.23
SN7402	- 14	$0 \cdot 13$	0.12	SN7473	0.33	0.31	0.28
SN7403	0. 14	0.13	0.12	SN7474	0.33	0.31	0.29
SN7404	0. 16	0.15	0.14	SN7475	0. 50	0.45	0.42
SN7405	$0 \cdot 16$	0.15	0.14	SN7476	0. 34	0.31	0.29
SN7408	0.16	0.15	0.14	SN7480	0.47	0.42	$0 \cdot 39$
SN7410	0. 14	0.13	0.12	SN7483	0.89	0.80	0.74
SN7412	0.16	0.15	0.14.	SN7486	0.30	0.26	0.25
SN7413	0. 32	0.31	0.30	SN7489	3.50	3.20	2.90
SN7417	0. 30	0.29	0.28	SN7490	0. 48	0.44	0.41
SN7420	0. 14	(1. 13	$0 \cdot 12$	SN7491	0.83	0.77	0.69
SN7427	0.27	0.25	0.22	SN7492	0.51	0.46	0.42
SN7430	0. 14	0.13	0.12	SN7493	0. 48	0.44	0.41
SN7432	0.27	0.25	$0 \cdot 22$	SN7495	0.68	0.61	0.57
SN7437	0-29	0.26	0.24	SN7496	0.77	0.69	0:65
SN7440	0.14	$0 \cdot 13$	$0 \cdot 12$	SN74107	0. 34	0.31	0.29
SN7442	0.69	0.63	0.58	SN74121	0.34	0.31	0.29
SN7445	0.89	0.82	0.76	SN74123	$0 \cdot 68$	0.61	0.57
SN7447	0.89	0.79	$0 \cdot 76$	SN74141	0.79	0.72	0.67
SN7450	0.14	0.13	0. 12	SN74145	0.86	$0 \cdot 78$	0.70
SN7451	0-14	0. 13	0. 12	SN74157	0.87	0.79	0.72
SN7453	0.14	0.13	$0 \cdot 12$	SN74175	0.99	0.90	0.84
SN7454	0.14	0.13	0. 12				

DIODES/TRANSISTORS

J. C. JONES

Dept. PE5, 46 Burstellars, St. Ives, Huntingdon, PE17 4 XX (Mall Order only)

TELEPHONE BELL SYNTHESISER

DEVEloped for use as a novelty in toy telephones or intercoms, the circuit of Fig. 1 gives a reasonable imitation of the normal telephone bell ring although the pulse periods to non-signal periods are evell.

The Post Office system uses two rings of roughly 0.5 s separated by a silence period of three times that amount. For simplicity the present circuit uses a count of four timing rather than a count of five which the Post Office system would need.

The basic multivibrator TR1, TR2 forms the clock for the unit. After the waveform has been given the current rising form so as to suitably trigger the 7474 i.c. by the Schmitt trigger TR3, TR4, it assumes the shape as at Fig; 2a.

This wàveform is fed to a divide-by-four counter, IC1, which is positive-going edge triggered. 'This provides the waveform 2b, Fig. 2.

IC2 provides a warbling note, rather than a bell ring, and gates G1 and G2, capacitors C3 and C4, and resistors R10 and R11, form a multivibrator running at a few Hz .

The multivibrator switches a similar but much higher-pitched multivibrator formed by G3 and G4 to produce the warbled tone shown in Fig 2c. This is pulsed as shown by utilising the spare gate input to G4 and it is also switched slowly on an off by applying the Fig. 2b waveform to one of the inputs of gate G1.

The final output waveform is as at Fig. 2d and this is fed directly to a crystal microphone insert, adequate for most purposes but amplifiable if required.

If the unit is used in equipment containing a 4.5 to 6 V supply the battery B1 can be omitted, together with R9 and D1.

A selection of readers. suggested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?

Fig. 1

Fig. 2

two-WIRE SIGNALLING SYSTEM

The five devices used in the circuit of Fig. 1 make up a very simple signalling system which can give four indication states using only two wires.

The circuit is battery-powered and operation is as follows. With point L at -6 V w.r.t. point E bulb 1 is driven through the forward-biased Zener diode. Bulb 2 does not light. With point I , at 0 V neither bulb lights.

With L at +6 V , bulb 2 lights, the base of TR1 being driven by the very small current through bulb 1 .

Finally, with L at +12 V , bulb 1 is driven by the 6 V supplied by the reverse-biased Zener and bulb 2 is connected to TR1 as an emitterfollower so as to receive the 6 V across the Zener.

Both bulbs should be small 6 V types and whilst other component types are not critical the Zener must obviously be of the correct voltage and capable of carrying the necessary current. The circuit can be reversed to accommodate a $p n p$ transistor.

THE advent of cheap l.s.i. circuits such as clock and calculator i.c.s has opened up the possibility of using these devices in more complicated circuitry; for instance the calculator i.c. could form the basis of a small computer.
The one drawback to using these i.c.s in logic systems is that their output is usually designed to drive seven-segment displays. This output is, of course. no use for feeding into other logic circuitry so the following circuit was designed to convert seven-segment outputs into standard binary coded decimal (BCD) form.

The decoder is shown in Fig. 1. This circuit is designed on the assumption that the l.s.i. chip to be used gives a 0 to 0.8 V level for a segment off and an open circuit or 1.2 to 5 V level for a segment on. This is of course a rather vain hope and some kind of interface circuitry will probably be required. P. Northover, Breaston, Derby

SEVEN-SEGMENT TO BGD DECODER

SOUND SWITCH/TRIGGER

THE circuit of Fig. 1 consists of three basic units, an amplifier. a monostable and a bistable. The amplifier produces a signal large enough to trigger the monostable when it receives a small voltage from the loudspeaker and transformer which form the input. TRI is biased by the voltage divider in the emitter lead of TR2. As the amplifier is also reasonably sensilive to mains hum, the unit can be
used as a touch-sensitive switch provided the transformer is first removed. Sensitivity is controlled by VR1.

The monostable prevents unwanted triggering within its own time limits which are sel by varying VR2. Finally the bistable acts as a memory. remembering and maintaining TR7 in an on or oft condition. D3 and C5 ensure triggering of the bistable by creating a negative pulse. The output is used
as shown here to operate a mains controlling triac and lamp load.

The circuit can be made into a sound trigger by reducing the time constant of the monostable to a minimum 250 ms and omitting the bistable. If beat music is now played into the loudspeaker the lamp in series with the output will be modulated in time with the beat.
N. E. Smith.

Newcastle upon Tyne.

ETROWRFONTE Electronics

Dept. 2
56, Fortis Green Road. London. N10 3HN telëphone: 01-883 3705

PE SCORPIO Mk2 ignition systemkin new trom GIECRO SPARES

\author{

* 6 OR 12 VOLT
 * + VE AND - VE GROUND
}

> Here's the new, improved version of the origInal PE Scorpio Electronlc Ignition System - with a big plus over all the other kits - the PE Scorplo Kit is designed for both positive and negative ground automotive electrical systems. Not just + ve ground. Nor just -ve ground. But both! So If you change cars you can be almost certain that you can change over your PE Scorplo Mk. 2 as well.
> Containing all the components you need, this Electro Spares PE Scorpio MK. 2 Kit is simply built, using our easy to follow Instructlons. Each component is a branded unit by a reputable manufacturer and carrles the manufacturer's guarantee. Ready drilled for fast assambly. Qulckly flited to any car.
> When your PE Scorpio Mk. 2 is Installed, you instantly beneflt from all these PE Scorplo Mk. 2 advantages
> \star Easier starting from cold \star Firing even with wet or oiled-up plugs \star Smoother running at high speed \star Fuel saving \star More power from your engine \star Longer spark plug life \star No more contact-breaker burn.
> De luxe KIt only $£ 10 \cdot 85$ Inc. VAT and p \& p.
> Ready Made Unit £13.65 Inc. VAT and p \& p. State 6 V or 12 V system.
> Send SAE now for details and free list.

FM VARICAP STEREO TUNER

As featured in the May 1973 issue of 'Practical Electronics'. Superb Hi-Fi tuner Kit now available from Electro Spares. Including cabinet and all components - pre-set Mullard modules for R.F. and I.F. circuits. Motorola I.C. Phase Lock Loop Decoder for perfect stereo reception. No alignment needed. Guaranteed first time results - or send it back, and we'll return it in perfect order (for a nominal handling charge) Electro Spares price only $£ 28.50$ inc. VAT and p \& p.

'GEMINI' STEREO AMPLIFIER

A superb unit with a guaranteed output of 30 watts RMS per channel into 8 ohms. Full power THD is a mere 0.02%, and frequency response is -3 dB from 20 Hz to 100 kHz into 8 or 15 ohms . Electro Spares have already sold 100 s and 100 s of these Kits. Get yours now! Depending on your choice of certain components, the price can vary from $£ 50$ to $\mathbf{£ 6 0} \mathbf{i n c}$. VAT and p \& p

* All components as specified by original authors, and sold separately if you wish.
- Full constructional data book with specification graphs fault finding guides. etc. 55p plus 9p postage
\star Price List only. Please send S.A.E. (preferably 9×4 minimum) for fuli detalis. The! Compument Centre: of the: Nowth 288 ECCLESALL RD., SHEFFIELO S11 8 PE (D) Tel:Sheffield (0742) 668888

$4 \frac{1}{\mathrm{in}} \times 3 \frac{1}{\mathrm{i}} \mathrm{in}$ METER. $\quad 30 \mu \mathrm{~A}$. $50 \mu \mathrm{~A}$ or $100 / \mathrm{A}, \mathrm{E3} .85$. Ifp P.\& P.

TAPE RECORDER LEVEL METER

500μ A , 70p. 5 P P. \& P.

CARDIOID DYNAMIC MICROPHONE
Model UD-I30. Frequency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, 66.55. I 1 P P. \& P .
$42 \times 42 \mathrm{~mm}$ meters $100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$, $\operatorname{ImA}, 500 \mathrm{~mA}, 62.76$. 11 p P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and I mA VU meter, $62 \cdot 92$. IIp P. \& P.

Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$ ImA. 63.40. I 1 p P. \& P.

MULTI. METER Model 200 H 20,000 ohm/ vole, $£ 7.65$. 15p P. \& P.

3 WATT STEREO $\left(1 \frac{1}{2}+1 \frac{1}{2}\right)$ PER CHANNEL AMPLIFIER
£430. 10 P P. \& P.

All above prices include 8% V.A.T. LARGE S.A.E. for Lise No. II. Special prices for quantity quoted on request

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 IBA

ENGINEERS

Do you want promotion, a better job. higher pay" "New Opportunities" shows you how to aet them through a low-cost home study course. There are no books to

MORE PAY!
This heipful guide to success
read by every ambitious engineer. read by every ambitious engineer.
Send for this helpful 76 page F
Send for this heipful 76 page FREE book now. No obligation and nobody will call on
you. It could be the best thing you ever did.

```
Practical Radio and [
Electronics (Tech
natron)
Electronic Engineer- 
Elect
Television Mainten. 
ance and Servicing
ance and Servicing
General Radio and \square
TV Engineering
Radio Servicing. Main. 
tenance and Repairs
```

C. \& G. Radio. TV \square Electronics. Mechanics Radio Amateurs Practical TV Colour Television Computer Electronics C. \& G. LI Radio.TV Servicing cert.
Post Master General \square
1st \& 2nd class certs
C. \& G. Electrical

Engineering Practise
C. \& G. LI Instalia. \square tions and Wiring General Electrical \square Engineering Society of Engineers (Electrical Engineering) Electrical I
C. \& G. Electrical \square Technicians (Ptimary) C. \& G Telecommunications

ALDERMASTON COLLEGE
Dept. EPE05, Reading RG7 4PF
NAME (Block Capitals Please)
ADORESS
Other subjects
Accreathea by C A C.C.

THis counter system was originally devised for frequency synthesis for an amateur radio transmitter but it can be modified simply to produce any "divide-by" ratio and should accept any input frequency up to the limit (about 18 MHz) set by the counting flipflops (SN7493's).

The circuit Fig. 1 is based on a simple binary counter system which is reset after reaching a predetermined count. By way of example, Fig. 1 shows a count of eleven, this being achieved by connecting the 8,2 and 1 outputs of the binary counter to the reset gate.
The circuit operates as follows. The binary counter operates in normal fashion until a count of eleven (binary $8+2+1$) is reached. At this instant (point X on the timing diagram, Fig. 2) the reset gate is satistied and the reset signal sets the J-K flip-flop, FF. The FF ' Q ' output resets the counter to zero so that the counter contains the value eleven only for a few nanoseconds whilst the FF is triggering.
The \bar{Q} output of FF sets the fliplatel (FL) which allows gate A to reset the FF when the input next goes high (point Y on the timing diagram). Finally, when the input next goes low (point Z on the timing diagram) the FL is reset and the counter recommences counting from zero. Thus, one output pulse from the FL is obtained for eleven input pulses, i.e. a divide-by-eleven arrangement.
To change the "divide-by" ratio, it is only necessary to connect the appropriate counter outputs to the reset gate. and if a multiway switch is used this ratio can be changed at will.

Suppose we wish to divide the 50 Hz mains frequency by 3000 to

A "DIVIDE BY ANYTHING" COUNTER SYSTEM

Pig. 1

obtain 1 pulse per minute, for timing purposes. Twelve counter stages are needed with outputs 2048, 512 , $256,128,32,16$ and 8 connected to the reset gate. The cost of such a system $3 \times 7493,1 \times 7430,1 \times$ $7400, \frac{1}{2} \times 7473$ is roughly equivalent to a fixed divide system using a $7492(\div 1000)$.

For a low-cost system the keen experimenter could try reject 7493 's, available at $55 p$ for five. A sample test of 25 yielded a 50 per cent usage.
C. J. Brewitt,

Plymouth,
Devon.

TTL OSGILLATOR

AS Can be seen from the circuit diagram of Fig. 1 this TTL oscillator uses but one gate, albeit a 7413 Schmitt trigger, instead of the more common three gates in a self oscillating ring.
The basic circuit operation is as follows: At switch on Cl is discharged and will begin to charge positively as a result of the gate input current and the current flowing through R1 and VR2 from the gate output high voltage. The voltage against time curve for Cl will be a close approximation to an exponential and when it reaches the positive going input threshold voltage the gate output will switch low.

Cl will then begin to discharge towards a nominal 0.3 V through R1, VR2 and the gate output transistor. When the voltage on Cl reaches the negative-going input threshold the
gate output will switch high allowing Cl to charge positively again, and so the cycle repeats in sustained oscillation.

The voltage appearing at the positive side of Cl will have the general form as shown in Fig. 2, the output
waveform being as shown below.
The unused half of the 7413 may of course be used as a $4 \mathrm{i} / \mathrm{p}$ NAND gate elsewhere in the system if required.
T. C. Rogers, Ontario, Canada.

PRTENTS REDTETK

COMMON PATENT?

With a referendum on our entry into the Common Market now due in the not too distant future, manufacturers in the electronics field may like to consider how EEC industrial property law affects their rights under British law.

It is only now becoming widely understood that the Treaty of Rome, which governs the EEC, can often override established national laws. Traditionally, the layman seeks legal advice from an expert, who gives that advice on the basis of his past experience with precedents or judgments handed down by courts over recent decades. Unfortunately, because the Luxembourg European Court has had occasion so far to hand down only relatively few judgments, legal experts can seldom give laymen the crisp and straightforward advice that they seek. The situation is further confused by the fact that the Treaty of Rome contradicts itself over the value of national industrial property laws in the Common Market

To reduce the problem to words of one syllable, Articles 30, 85 and 86 of the Treaty of Rome make it clear that there shall be no restrictions or barriers to distort free trade between separate countries in the EEC. The whole point of industrial property rights (patents, trade marks and design registrations) is, however, to create barriers to distort free trade! So the Treaty (in Articles 36 and 222) specifically exempts industrial property rights of this type from its other Articles. Which articles of the Treaty, therefore, is a manufacturer to rely on?

It may help readers to have a brief résumé of the few hard facts that have now been established and how they may apply to everyday marketing in electronics.

One reported case has shown that under certain special circumstances the European Court will allow the same trade mark to be used on the same goods in the same EEC state, although those goods originate from different companies. What this coud mean is that under certain circumstances a range of components, such as transistors, made under a brand
name by one company could be sold alongside an exactly similar range of components, under the same brand name, but originating from an entirely different manufacturer.

PRIEE CONTROL

Whatever the Treaty may require in terms of harmonised price control between member states of the Community, the same goods sell at widely differing prices throughout Europe. Spirits such as brandy and whisky are taxed by different amounts in different countries and goods such as domestic electronic equipment are usually cheaper in the UK than anywhere else. For instance, although most Philips' audio gear is imported both into the UK and France, it costs about 50 per cent more in France thar here. Likewise, Trio gear, also imported into both countries, costs about twice as much in France. BASF (German) tapes are around 50 per cent more expensive in the French shops than ours.

The crunch is that where a price differential exists between two EEC states, a manufacturer holding national patents will be powerless to stop a third party opportunist bulk buying a patented product in the country where it is cheap and selling it at a slightly higher price to make a profit in the country where it is much more expensive. If a manufacturer has patents in France and England and charges more for his amplifier in France than in England, there is probably nothing that he can do to prevent an entrepreneur buying up those amplifiers in bulk in England and selling them at a half-way price to make a killing in France. Of course, ordinary national laws, if they were not affected by the Treaty of Rome, would usually enable the manufacturer to use his patents to block such sales.
Some inventors with really important new ideas are now being advised that they should file patent applications in all nine EEC countries to be sure of solid protection in any of them. This advice is, however, probably incorrect, because the Commission itself, in a written answer (Official Journal of the Communities, Vol. 17, C90. July 29, 1974, p. 10) has said
otherwise. Although the words of the Commission answer are rather tortuous, they add up to a confirmation that an inventor holding a patent in only one, or only a few, of the EEC states should be able to use his patent to prevent the importation of infringing articles made elsewhere in the EEC without his permission

What this means in practice is that existing laws hold good and although a manufacturer with a patent on a component or piece oí equipment in only this country will not, of course, be able to prevent a competitor making the article in another EEC country (which the competitor can do legally if there is no patent there), he will be able to stop him importing it into this country for sale. This reassurance from the Commission will be welcomed by manufacturers and inventors with a budget far too low to cover the cost of filing patents in all the EEC countries.

However, it is far from certain what will happen if a British electronics manufacturer, through choice or lack of hard cash. patents a new development in this country only but manufactures it elsewhere in the EEC. He is of course free to do this. but if his wares are cheaper on the Continent (which is possible if he is in a very competitive specialised market there), can he prevent an opportunist buying up those chean wares and importing them into this country for open sale at under the normal British price? No one is yet sure of the answer to this question.

INFORMATION OFFICE

British researchers and manufacturers with questions like these should not forget that there is in this country a European Communities Commission Information Office. The address to write to is 20 Kensington Palace Gardens, London W8 4QQ

One function of the Office is to help us understand the Treaty of Rome and what it means to us. also businessmen with an industrial property problem should try putting it to the Commission. There is no guarantee that they will know the answer; but if they do not, then who in the EEC does?

Rifallout
 A SEEETON RROM OUR POSTAAG

Reader requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

Excellent platiorm

Sir-l apologise sincerely if my letter (Readout, Dec. '74) caused any upset. In replying, Mr Shaw (February issue) was of course right; 1974 was marked by hundreds of others like me acquiring a synthesiser. This is what 1 intended to imply and it serves me right for being facetious that the meaning did not come across.

To Mr Shaw's credit is that he gave us more than mere synthesiser circuits; the clarity of his explanations gave the "P.E. Synthesiser" series a terrific educational inuendo. Credit to P.E. also; being the first to publish synthesiser circuits in such a comprehensive way, the series must have been an all-time giant in amateur constructors' projects.

Mr Shaw, however, also highlights what will be the real breakthrough so far as synthesisers are concerned; the recognition of a work of musical power. In agreement with Mr Watson (February). I see this as a work of the ilk of "Silver Apples . . ." or "Touch" (Substnick rather than Kubrik's ninth symphony (original version clockwork, new version electronic) by Walter Carlos.

To Mr Pointon (also February). If I were carried away by "quite a few red herrings" in his article, they had to be there to carry me away. I still contend that too much is being made out of the synthesiser. One need look no further than such electronic classics as "Kontakte" and "Telemusik" (Stockhausen) to see that electronic music was doing nicely, thank you very much, before Robert Moog set up production.

But 1 certainly must praise Mr Pointon's efforts in presenting so broad a view of musical history so well in such a small space, particularly when it comes to the complexities of twentieth century music. Anyone who has attempted any research in depth will appreciate the difficulties involved. Periodicals such as "Die Reike" (covering German-influenced work in the fifties and sixties) are not the easiest to read.

I am sure many readers who have carried out such research would agree that Mr Pointon's articles provide an excellent platform from which to launch for the lesser initiated. Given choice, I would read them in preference to many others. So, Mr Pointon, we look forward to more . . . and by the way, can I borrow your 24 -, or is it 32 -track recorder sometime? Thanks!

Ivor Stuart-Colwill,
London, S.W. 16.

Time and motion

Sir-I have been for many years a regular reader of Practical Electronics, and was particularly interested in the February issue's article on transistorising battery driven electric clocks, because I have gone into this in some detail for a number of years, and built several suiccessful units, for both balance clocks such as the Jaeger car alock, the one 1 think Mr Cooper had in mind, and for pendulum clocks such'as the Bulle.

I was disturbed to find that the method and circuit suggested by Mr Cooper (if I have understood the article correctly) seems to destroy one of the most important design features of such clocks-their inherent automatic compensation for varying supply voltages. vital for car clocks where the battery voltage varies between 12 and 15 volts, and for certain wear-and-tear defects in the movement. The author's very last sentence seems to me to be the most revealing.
The reason for modifying these clocks is to avoid arcing at the contacts and the pitting and wear that follows, so that the clock behaves as if it had perpetually clean and new contacts. This arcing cannot be avoided otherwise. owing to the relatively high self-inductance of the coil; it is extremely minute and generally quite invisible, but its presence can easily be detected by a radio brought close to the clock.
when the r.f. signal radiated is heard as a regular "click".

The compensating action is best understood by noting that the balarce has to swing through a minimum arc so that each tooth of ihe escapement may be cleanly released and the next tooth impulsed. An extra amount of swing is allowed for, to take care of random variations in supply and possible slight irregularities in the machining of the escapement. A maximum swing of about 360° is normal.

Suppose now that the arc of swing tends to decrease owing to fall in supply voltage, inadequate contact. or increasing friction; the "contacts closed" time will increase, and therefore the magnetic field. Consequently the balance will receive more drive and the arc will increase. If on the other hand the are tends to increase, as with a rise in supply voltage, the reverse takes place. Thus the balance will maintain a broadly constant arc irrespective of variation in the conditions.
The problems about the circuit proposed is that it appears to abolish the vital dependence on contact time; once any sort of contact is made. full current flows for a fixed time dependent on a given CR combination and Mr Cooper actually says that the period for which the contacts are closed is not important. If this current is sufficient to maintain a proper arc on a low voltage, it will be too great on a higher voltage; the swing will increase to an unacceptable degree and "overbanking" will take place.
The balance will swing so far in either direction that at the end of one or both swings the escapement will strike a mechanical obstruction such as a guard pin. or in the case of the Jaeger car clock, the end of the helical escapement channel on the balance staff. Apart from anything else. the balance will be bounced back on its next swing sooner than it should be, and the clock will gain. This is just what the author says could be expected.
A. far more serious consequence will be rapid wear of escapement and pivots. "Overbanking" can be heard. if at the end of one swing only as "tick-a-tick-a-tick". This cannot be cured as suggested by altering the normal regulator acting on the hairspring effective length (the mean time of the overbanked swing can be reduced so that the clock will cease to gain, but at the cost of ruined timekeeping) because if for any reason overbanking stops for a while, the clock will loose heavily. If the current supply to the clock is as it should be, the timekeeping cannot possibly be affected.

What these clocks need is a transistor as an instantaneous inertia-less relay, whereby the clock contacts only break the minute base current in a noninductive circuit, while the power to the clock is supplied by the collector circuit. In this way the compensation function is preserved unimpaired. This can be done very simply with far fewer components cone transistor, one resistor, and a protective diode across the clock coil) see Fig. 1. It may be thought wise to protect the transistor against any accident by adding two more resistors. but I have not found this necessary.

The clock should be run out of its case on the bench for a day or so and the balance swing watched, in the horizontal orientation it will have when installed from a power supply of 8 dry cells giving a voltage of about $12 \cdot 8$ volts. The movement will run itself in again and its efficiency may well increase, particularly if advantage has been taken of the dismantling to clean it and to oil the moving parts with watchmaker's oil. It may therefore be necessary, if the swing increases to over 360°, to increase the value of the base resistor some what.
A great improvement is to be had by stabilising the power supply. The circuit suggested in the article is rather inadequate. since while it supplies a power reservoir to tide the clock over momentary large falls in voltage such as when the starter is operated, it offers no protection against surges of high voltage. An improvement is the use of a normal Zener diode stabiliser. which will maintain a constant supply voltage, whatever happens to the battery circuit.
Since these clocks will run perfectly well on 11 volts. or even less.
the diode should be selected for this voltage, and should be of adequate wattage. since it will be passing some current most of the time and must not overheat-at least 1 watt.

The value of the series resistor should be found by temporarily substituting a 5.000 ohm wirewound potentiometer, then connecting up the clock, and reducing the resistance from maximum till the clock continues to run; place a voltmeter across the smoothing capacitor. and the reading will be found to fluctuate in time with the clock pulses. Reduce the resistance till the voltage reading remains constant. showing that supply just balances demand. Then measure the resistance of the potentiometer at this setting and substitute a 1 watt fixed resistor of that value.

It is not advisable to mount any components inside the clock case. with the possible exception of the protective diode across the coil. as space is generally very limited and damage might unwittingly be done when screwing the movement back into the case. It is better to mount all the components on to a strip of Veroboard which can be suspended in the supply wires and protected by a wrapping of polythene film.

S. A. R. Guest.
 Cornwall.

We hope to publish the author's reply next month

Millivoltmeter

Sir-Constructors of the A.C./D.C. Millivoltmeter (P.E. February 1975) may be interested in a couple of points concerning a.c. operation of the instrument.

The circuit shown with the article can accurately measure symmetrical square wave alternating voltages, but certain qualifications must be borne in mind in measuring sinusoidal voltages. For pure sine wave voltages or currents. two main types of measurement may be distinguished. the average ($E_{a v} . I_{a t}$) and the root mean square ($E_{\text {rms }}$ etc) which is
often abbreviated to a.c. The former is analogous to the effect of d.c. on a moving coil meter and the latter to resistor power dissipation.
If it is wished to measure r.m.s values with the circuit indicated. the following correction should be applied:

$$
E_{\text {rins }}=\text { scale reading } \times 1 \cdot 11
$$

A second point arises in the extent of scale deflection for sinusoidal measurements. For full scale deflection to occur 11 V r.ms must be applied to the bridge rectifier; this implies a peak to peak swing of

$$
11 \times 2 \sqrt{3}=31 \text { volts }
$$

With the power supply voltages used for the amplifier, a linear input/output response may not be expected above
$\frac{2 \times 12}{31}=0.77$ of full scale.
Dr J. H. Wood.
Bingley.
W. Yorks

Dr Boole vindicated

Sir-May I thank Messrs. Thompson. Tozer. Dickson and Everett for their amusing and extremely helpful remarks in Rcodoul. March 1975. The two salient points which emerge are. firstly. that Boolean Algebra deals solely with the presence or absence of things. and secondly that the sign $=$ should be read as "if .. then"

Dr Boole would have read his equation $A+A \cdot B=A$ as. "If A is present, or both \mathbf{A} and \mathbf{B} are present. then A is present." This. put into breakfast-time English. says that if there is an egg on a plate, whether there is bacon with it or not, there is still an egg on the plate.

This, no one can dispute, but if I am served breakfast again by the same waitress, who may not have read this correspondence. I shall play safe and order cornflakes.
R. Parfitt.
Croydon

BACK NUMBERS WANTED
Anyone who can supply the undermentionad ara asked to communicate directiy with the reeder,

April, May 1974
Mr. H. Coates, 60 Ounsdale Road, Wombourn,
Wolverhampion.
September 1970
Mr. B. Dickson, 17 Craigrownie Gardens, Kil-
creggan, Dunbartonshire, G84 OHY, creggan, Dunbartonshire, G84 OHY.
January 1970. September 1972, November 1973
Mr, B. Fernandez, B Munchen 83, Kafkastr. S2. W. Germany.

February, April, May, July, October, November. December 1973, Fobruary 1974 Mathews, 39 Maes-y-Gornel, Rhos, Wrexham, Clwyd.
November 1973
Mr. D. Prestage, 47 Knighton Road, Oiford, Kent TNI4 SLD.

April, May, June, July 1971
Mr. R. Stannard. B.i. House, Marlborough College, Wilts.
May 1974
Mry Gilyard, 15 Barfield Crescent, Leeds Mrior R G
LSil
March. Aprif 1974
Mr. M, S. Evans, 33 House Farm Road, Alverstoke, Gosport, Hants.
March, December 1973, Fobruary, March,
Mprit ig74 Gember Gilpin. Dept. of Agriculture for Northern Ireland. Fisheries Research Labora. cories, The Cucts, Coleraine. Co. Londonderry.
January. June, August 1968
January. June, August 1968 Lion Mansion, Po Kong Village Road, Wong Tailsin, Hong Kong.

October 1972
Mr. M. A. Telford. Officers' Mess, RAF Chivenor Barnstaple, North Devon.
January, February 1973
Mr. J. Fillis, 42 Upion Road. Upzon. Torquay. Devon.
March, November 1972
Mr. J. B. Hansen. 44 5t Christopher's Drive Romiley, Stockport, Cheshire.
Novernber, December 1973. March 1974
Mr. R. A. Yeomans. New Park Drive, Kilkenny Cisy, Ireland.
October 1973, February 1974
October 1973, Februery 1974
Mr. M. Zammir. Dolpin House, Felice Street.
Zabbar. Malea.
February to Autust 1973
Mr. E. Moxnes, 7170 Aa $;$ Aafjord, Norway.

Extronerin

Bargains in Semi-Conductors, components, modules \&equipment. baAGAINS FROU OUR FREE CATALOGUE 6th edition. 20 large pages filled with real bargains in transistors,
I.C.s, components, equipment. etc. Send large S.A.E. with 6 stamp for your FREE copy by return. Meanwhile, for prompt delivery order from our ad. thls month NOW

X.HATCH GENERATOR MK. 2

Rotary selector switch provides choice of four patterns-essential for colour TV alignment. Featuring plug in IC s and a more sensitive sync. pick-up circuit. The reinforced fibreglass case is virtually unbreakabledeal for the engineer's $100160 x-$ Operates from three U-2-type batteries (extra).
Meady built 99.93
Complete
£7.93

PLASTIC POWER TRANSISTORS

40 WATT SILICDN

Type No.	Galn	vce	Potarlity	Price	Type No.	Galn	VCE	Polarity	Price
40 N 1	15	15	NPN	20p	90 N 1	15	15	NPN	25p
40N2	40	40	NPN	30p	90N2	40	40	NPN	35p
40P1	15	15	PNP	20p	90 P 1	15	45	PNP	25p
40.92	40	40	PNP	30p	90P2	40	40	PNP	35p

TRANISTOR PACKS-ALL AT 5Op EACH

TESTED AND GUARANTEED
a79 $\quad 4$ IN4007 Silt. Rec. diodes. 1,000 H39 $\quad 6$ Integrated circuits dgates 6 BMC 962.2 flip fiods BMC 945
$88110 \begin{aligned} & \text { Reed Switches. lin long } \\ & \text { in dia. Highspeed P. O. Fppe }\end{aligned}$
H35 $100 \begin{aligned} & \text { Mixed Dtodes, Germ. Gold } \\ & \text { bonded sic. Marked and }\end{aligned}$ Unmarked 30 Short lead Transistors. NPN 2 BD131/BD132 Complementary
2 Plastic Transistors
H65 440361 Tyoe NPN Sil, iransig-

- lors To-s can comp. to he6

4 40362. Type PNP Sil. transis-
tors TO-5 can como. to H65

Silicon Planar types Ex-equipment
 30 Silicon Planar types

UNMARKED AND UNTESTED

B1 50 Germanium Transistors PNP, H34 15 Power Translstors. PNP.
B66 150 Germanium Diodes Min.
B84 100 Siticon Diodes DO-7 glass
B86 100 Sit. Diodes min. iN 1014 glass
H20 $20 \begin{aligned} & \text { 日Y126/7 Type sificon Rect. } \\ & \text { fiers }\end{aligned}$ fiers 1 amp plastic. Mixed

10 | $\substack{319 \mathrm{~N} \\ \text { case yhpe }}$ |
| :---: |

OVER A MILLION TAANSISTORS IN STOCK-All mont-need日d typer MARKED - TESTED - GUARAN teED-SEE catalogue volts

TO CLEAR

and AM tuning. Ideal tor experimenters. All in going order, but no \mathbf{f} Instructions. or luning drives. A cheap way to make a radio se

Each

MAINS TRANSFORMERS
Type $A-18 \mathrm{~V} / 1 \mathrm{~A}$ (suit SS. 103) $\mathbf{E 1 . 5 0}$.
Type B-25V/2A (sult SS. 110) 2.00 Type B-25V/2A (sult SS. 110) E2.00. Type C-30V/2A (sult SS. 140) $\$ 3.25$. Bridge Rectiflers: Type A 27p; Types B
C 38p. C 38p.

ELECTRONIC IGNITION KIT

Easy to make | and fitiow with |
| :---: |
| instructions. |
| E7. |
| 10 |

TERMS OF BUSINESS

V.A.T. Prices shown do not include V.A.T. Please add 8% to total value of your order including postage. No V.A.T. on overseas orders
POSTAGE ExCeDt where stated, add 15p for postage and perking in UK Overseas-add $£ 1$. any difference being charged or refunded.
PAYMENT Cash with order Cheque or money order Minimum
You can also pay by ACCESS.
IMPORTANT-Every ettort is made to encure accuracy of prices and descripiton at time of preparing this advertisement and going to press. Prices are ."bject to alleration without notice.

CHALLENGING VALUES! Surinn Sund

STIRLING SOUND AUDIO MODULES come to you as basic units assembled on P.C.B.s enabling you to add required components in layouts of your own choice. Modules are tested and boxed before despatch and include well printed instructions.

AMPLIFIER MODULES

Pre-ampliflers; tone contro

SS. 100 Active tone control unit to provide bass treble, balance and volume controls
SS. 101 Pre-amp for ceramic cartridge. tape and radio
SS. 102 Pre-amp for low output magnetic cartridge tape and radio. With R.I.A.A. correction $\pm \dagger d \mathrm{~dB}$ at $1 \mathrm{k} \Omega$
$£ 1 \cdot 60$
£1. 60
£2-25

POWER AMPLIFIERS

S. 103 Compact I.C. amp. with 3 watts R.M.S output. Operating voltage $6-22$. Size $\operatorname{3in} \times 2$ in S.103-3 Stereo version of above using one I.C on each channel
SS.105 A compact and useful all-purpose amplifie which will run excellently on a 12 V supply
With 5 watt output, two make a good stereo amp. Size 2 tin $\times 14 \mathrm{in}$
SS. 110 Similar in size to SS. 103 but with a 10 watt output. Ideal for many domestic and small-size PA. applications. Operates from $25-32 \mathrm{~V}$.
SS. 140 Excellently designed 40 watt R.M.S. (into ohrns) hi-fi amplifler. S/N ratio better than 75 dB . T.H.D. better than 0.2%. Power require-ments- 45 V d.c. With 0.15 in centre edge con nectlons. Two can be bridged to give 80 watts R.M.S. into 4 ohms

TUNER MODULES

SS. 201 Ganged tuning condenser with accurately engineered slow-motion drive in rugged housing
Excellent sensitivity. Tunes $88-108 \mathrm{MHz}$. With A.F.C. facility. Operates from 6-16V

SS. 202 I.F. Stage (with I.C.). Pre-tuned. A.F.C connection. Operates from 4.5-14V
SS. 203 Stereo Decoder. Designed essentially fo use with SS. 201 and SS.202, this module can also be used on most mono F.M. tuners. A L.E.D

POWER SUPPLY STABILISER

SS. 300 Add this to an unstabllised supply (say typically 45 V output) to obtain a steady powerful working output adjustable from 12 to 60 V Essentiai for your audio and special systems Money saving and very reliable.

ALL MODULES TESTED AND GUARANTEED

* WITH WELL PRINTED INSTRUCTIONS

FULL RANGES OF ANCILLARY COMPONENTS AVAILABLE-SEE FREE CATALOGUE
£3-25
£1.75
£3. 25
£1.95
£2-40
£3. 60

£6.25
£5. 25
£5.62

Have you

had your
FREE
ATALOGUE?

222224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO SDF. TEL EPMONE: SOUTHEXD (0702) 46344.

Make light work of wiring with the IITI sithavisul Winfliplis

Countless uses in industry and offices * Quick and easy to apply even in awkward places

* saves damage to wood and paintwork *STICKS ON INSTANTLY: HOLDS WIRE FIRMLY
You'll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clips over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs - it's wonderfully easy for fitting in those awkward corners. Send now for details to:

SPECIAL PRODUCTS DISTRIBUTORS LTD.

 81 Piccadilly, London WIV OHL. Tel:01-629 9556.

ADVANCED DESIGN
 - DUAL-GATE MOSFET FIRST STAGE

COVERS: AIRCRAFT WEATHER SATELLITES AMATEURS VARICAP TUNED. INPUT 114-150 MHz 1. F OUTPUT 10.7 MHz

A high performance front-end com-
Alning high gain with low noise factor (8 dB
typ.). Each unit is fully tested and aligned before leaving the factory
PRICE $£ 9.85$ (includes VAT and P. \& P.)
Sole Agents: REEDHAMPTON LTD., 182-184 Addington Road, Selsdon, Surrey, CR2 8LB

GLADSTONE RADIO

66 Elms Road, Aldershot, Hants. GU11 1LP
Callers welcome (closed Weds.). VAT inc. Add 10% post unless given in brackets
FADER for Interlor car courtesy light (delay 5 sec after closing door), resin
 (17p) ceramic caps, e0p (10p): aliv. micie, 35p (10p): w.w. resist., e3 (20p): mixed tap strips up to 10 tege, 50 p (17p). 5×5 yd pve covered flex and solld wire 20p (10p). MANS RELAY by ITT. 3-pole c.O. With 11 pin base and holder, perapex cover, $4 \mathrm{k} \Omega$ coll, $\mathrm{\Sigma 1} \mathrm{\cdot 20}$ (15p); Mullard LP1173 amp. module $10 \mathrm{~W}, ~ £ 2 \cdot 20$ (15p): 20 eeoorted witiches E 2 (45 p). 51 b bargaln parcel olectronic surplus parts. all unused. £1. 40 (60p), 101b dito, £2. 50 (80 p). P.E. elactronic ignifonkl. FORMERS 240 V : E- $250 \mathrm{~V} 50 \mathrm{~mA}, 6.3 \mathrm{~V} 1+\mathrm{A}$, $1(35 \mathrm{p})$; $-37 \mathrm{~V} 2 \mathrm{~A} .24-0-24 \mathrm{~V} 150 \mathrm{~mA}$ $\mathrm{C} 4(850): 0-100 \mathrm{~V} 100 \mathrm{~mA}, 25 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 1 \mathrm{~A}$. $\mathrm{F} 1(35 \mathrm{p})$: $\mathrm{A}-230 \mathrm{~V} 60 \mathrm{~mA} .6 .3 \mathrm{~V} 2 \mathrm{~A}$, $£ 1.25$ (35p); W-230V $50 \mathrm{~mA}, 22 \mathrm{~V} 1 \mathrm{~A}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}, \mathrm{E} 1(35 \mathrm{p}): X-300-0-300 \mathrm{~V} 70 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}$

Any excese postanen muftiole andere will hon runded

SUPERSOUND 13 HI-FI MCNO AMPLIFIER

\section*{Btate audio} components throughout omponents throughout plus 2 power out-put cransistorsin push-pult Full wave rectifica tion. Output approx ohms r.m.s. into response 12 Hz .30 KH | +3 db . Fully integrated |
| :--- |
| | amplifer stage with Treble cut controls. Suitable for 8-15 ohm speakers nput for ceramic or cryatal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built and fested, With knobs, escutcheon panel, input and output hlugs. overall size 3^{*} high $\times 6^{\circ}$ wide $\times 7!^{\circ}$ deep

AC 200/250V. PRICE 212-50. P. P. 65p.
DE LUXE STEREO AMPLIFIER

00. 14 S sin healy duty ted main er with full Wave recti
licatlo glving ade oothing with negligible hum Falve line up:-2 \times ECL86 Triode Pentodes. $1 \times$ EZ80 as rectifier. cut. A duaivolume control is used band treble boost and ight hand channels can be usilusted by means of aft and rate 'Balance' control fitcel at the rear of the chassis Input sensilivity is approximately $300 \mathrm{~m} / \mathrm{s}$ for full peak output of 4 watts per channel (8 watts mono), into 3 ohm peakers. Full negative feedback in a carefully calculated clicuit, allows high volune fevels to be used with negligible distortion. Supplied complete with knobs, chasels mize $1{ }^{*} w \times 4^{\prime \prime} \mathrm{d}$. Overall height including valves $\overline{0}{ }^{*}$. Ready huilt and tested to a high standard, 210.75. P. de P. 85p awitched fully moothed D.C. outputs giving fv. and If alld 9 v . and $12 v$. at 1 anip on lead.
Hantedinsulated output terminals and pilot lampindicator Hanmer finlah metal case overall aize $6^{\prime \prime} \times 3 \|^{\prime \prime} \times 2 \jmath^{\prime \prime}$
Suitable for Transistor Radion, Tape Recorters, Ampli fiers etc. etc. Ready Price $\mathbf{5 5 \cdot 2 0}$. P. \& P. 55p VYNAR \& REXINE SPEARERS \& CABINET FABRICS pp. 54 in. Wide. Our price $21-30 \mathrm{yd}$. leng
$\frac{\text { HARVERSON'S SUPER MONO AMPLIFIER }}{\text { MR }}$ A super quality gram amplifier using a double wound fully olated mains transformer, rectifier and ECL82 triode pentode valve an alldio amplifier and power outpu
stage. Impedance 3 ohns. Output approx. $3 \cdot 5$ wat stage. Impecance 3 ohnls. Output approx. $3 \cdot 5$ watts $\times 3 \mathrm{in}$. deep $\times 6 \mathrm{ith}$, high overall. AC mains $200 / 240 \mathrm{~F}$ supplied absolutely Brand New completely wired and tested with good quasity output transformer. $\mathbf{\& 4 . 2 0}$
FEW ONLY. High grade mains transtorme
with gra orlentated lamination. Primury $200 / 240$. Necondary vin. long $\times 2 \frac{1}{2}$ in. wide \times tin. deep operall. $£ 1.35$ plus
GRAND NEW MULTI-RATIO MAIRS TRANSFORMERS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{v}$ Secondary combinations 0-5-10-15-20-25-30-35-40-60v half wave at 1 amp. or $10-0-10,20-0-20,30-0-30 v$, at deep. Price $82-60$. P. d. P. 64 p .
Meep. Prine TRANSFORMER 64p
Pro. 200/240v. Sec. 9-0-9 at 500 mA . 11.0 s . P supplies Pro. $200 / 240 \mathrm{v} .8 \mathrm{sec} .9-0-9$ at 500 mA . $21 \cdot \&$. P. \& P. 30 p
Pri. 200/240v. Sec. $12-0$ 12 at 1 amp . $21 \cdot 40$ P. \& P. 30 p Pri. 200/240v. Sec. 10 0-10 at 2 amp . \&2.00. P. P P. 40 p 3 VOLT RELAY. $100 \mathrm{in} / \mathrm{a}$ single pole iormally closed for 60p. P. \& P. 1up.
GEAERAL PURPOSE BIGH STABILITY
TRANSISTOR PRE-AMPLIFIER
For P.U. Tape, Mike, Guitar, etc. and auitable for
battery or from H.T line $200 / 300 \mathrm{v}$. Frequency
response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26dB. Solid encap-
sulation size $1 \|^{*} \times 11^{*} \times{ }^{\frac{2}{2}}$. . Brand new complete

HAKDBOOK OF TRARSIGTOR EQUIVS. AND SUBS. A must for servicemen and home constructors. Including
many 1000 's of British, U.B.A. European and Japanese many 1000 's of British, U.S.A.
trangistors, ON LY 40 p. Post 5 p .
3 Relerence Encyclopedian lor Electronic Engineers and Designers, covering between them transistor character istic, diode and tranmintor equivalents. Many thousands of up to date European types listed.
Diode Equivalent 90p. Transigtor Equivalents el All three together 23 .
Thyristor, Triac, Diac ete ISSUE
pole 3 . pole 3 way 2 bank low loss Yaxley type switches 14

HARYERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Enjoy Fabulous Stereo Radio at this Low Introductory Price! Designed and styled to match our $10+10$ ampliffe but will suit any other atandard stereo amplifier The deaign lncorporates the very latest circuitry techniques with high-grain. low thoise IF stages. Automatic frequency control to lock on station and peparation. I.E.D. for stereo beacon indicator Nom nal output of tuner 100 mV . Approxinate size 121 in wide $\times 8$ in deep by :ifin high. Supplied realy built, fully tested and fully garanteed (not available in kit formi). Price $£ 23.00$. Post and Packing $£ 1 \cdot 00$. STEREO-DECODER SIZE $\mathbf{2 "}^{\prime \prime} \times \mathbf{3 "}^{\prime \prime}$ Ready built. Pre-allgned and teated Sens. 20.560 mV for 9.16 V neg. almost any FM VHF゙ radio or tuner. Btereo beacon light can be fitted if required. Full details and In
atructions (inclusive of hints and tips supplied. $25 \cdot 40$ plus $10 p$ P. \& P Btereo beacon light it required 40 p extra.
LATEST HI SENSITIVITY UAI-DIRECTIONAL SLIMLINE CONDENSER MICROPEONE professionals. Very low gcoustic reedback mpedance or low impedance. State which reqle £13:50. P. \& P. 25p

LATEST ACOS GPO1/18C nono compatible cartridge with /o stylus for LP/EP/78. Untversal mounting bracket CEARAMIC STEREO CARTRIDGE. LHiversal mounting brackets and turnover atylus. 70 mV per channel output. SONOTONE GTAHCCOMPATIBLE STEREO CARTRIDGE OO stylus Diamond Stereo L.P and Sapphire 78 .
ONLY $\mathrm{Ez-27}$. P. \& P. 10p. Atso avalable fited with twin Diamond TjO stylun for stereo LP. \&2-76. P. \& P. 15 p LATEST RONETTE T/O STEREO/COMPATIBLE CATEST playing EP/LP/7R mono or stereo records on mono equipment. Only $81-47$. P. A P. 15p.
QUALITY RECORD PLAYER AMPLIFIER MK. II A top quality record player amplifier employing heavy duty double wound mains transtormer, ECCA3, ELB4 and rectither. Separate liass, Treble and Volunse controls, speaker. glze 7 in wide $\times 3$ in deep x fin high. Ready built and tested. PRICE $\mathbf{2 5 - 5 0}$. P. \& P. 7ip. ALSO AVAILABLE transformer and speaker. PRICE: $£ 6 \cdot 70$. P. \& P. 7Jp.

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made simutated teak findan enclosure no with most attractive slatted front. Slze 161° high \times
$10^{\prime \prime}$ wide $\times 9^{\prime \prime}$ deep (approx.). Fitted with E.M.I 104^{*} wide $\times 9^{*}$ deep (approx.). Fitted with E.M.I nit and crossover. AVAILABLE IN NOMINAL ohm, 8 ohm or 16 ohm impedance (state whicb)
OUR PRICE 99.50 each. Carr. 90p Cabinet Arailable Separately £5.00. Carr. é1-00. Also available it 8 ohms with EMI $13^{\circ} \times 8^{\prime \prime}$ bas
speaker with parasitic tweeter $£ 8.00$. Carr. $£ 1.00$.

LOUDSPEAKER BARGAINS

5 in .3 ohm $£ 1.25$, P. d P. $15 \mathrm{p} .7 \times 4 \mathrm{in} .3$ ohm $81.40, \mathrm{P} . \& \mathrm{P}$ 25p. $10 \times 6 \mathrm{in} .3$ or 15 ohm $£ 2 \cdot 10$, P. \& P. 35p. F. M. 1 E.M.I. $13 \times \times$ in, with liggh fiux ceramic inagnet with parasitic tweeter 3.8 or 15 ohm $23 \cdot 50$, P. \& P. 35 p.
E.M.I. $13 \times 8 \ln 3,8$ or 15 ohm with inbuilt tweeter and crossover network $£ 4 \cdot 65, P$. $\&$ P. $35 p$.
E.M.I.tweeter. Approx. $3^{* *}$. Available 3 or 8 or 1 ohms BRAND NEW. B BRAND NEW. Bakers Loudspeakers at substantial discounts, 12in. liw. H/D Speakera, 3, 8 or 15 ohtna. State which. Current production by well-known British assembly $87 \cdot 50$. Fuitar modele: $\mathbf{2 5}$ w. $\mathbf{2 7} \cdot 50.35 \mathrm{w} \cdot \mathbf{8 8} \cdot \mathbf{5 0}$. P. \& P. 75
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walle, doors, under tables, etc., and uned with or without baffie. Send S.A.E. Tor details. Only $£ 6 \cdot 60$ each. P. \& P. 60 p .
NOW ALSO AVAILABLE 8 in . 10 W rma 20 W pealk $40 \mathrm{~Hz}-20,000 \mathrm{~Hz}$. 0 verall depth 1 In . Ideal for $\mathrm{Fi} \cdot \mathrm{Fi}$ or

8PECLAL BARGAI OPFER
Limited number of B8R C123 Auto Changer De Luxe with Ightweight tubuiar arm and atereo cartridge Brand new. ONLY $88 \cdot 00+$ p. \& p. 60 p.
HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

really first-class $\mathrm{Hi}-\mathrm{Fi}$ stereo Amplitier Kit. Lisea 1 tranaibtora including silicon Transiatora in the frat five stagen on each channel resulting in even lower noise Bass, Treble and two Volune Controls. Suitable for une with Ceramlc or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instruct ions inclided Outputstagefor any speakers from 8 to lis ohms. Compact design, ali parts supplied including drilled metal work high quality ready drilled printed circult board with anodised sluninfum front panel with matching knobe, $\underset{\text { wire }}{ }$ ander, nuts, bolts \rightarrow no extras to buy simple tep by step instructions enable any constructur to build a amplifier to be proud of. Brief spectications: Power output: 14 watts $z . m . s$. per channel into o ohma. Fite quency response $\pm 3 \mathrm{~dB} \mathbf{i},-30,000 \mathrm{~Hz}$ Senalilvity: better than 80 mV into $1 \mathrm{M} \Omega$. Full power bandwhith: $\pm 3 \mathrm{~d} \mathrm{l}$ $12-15,000 \mathrm{~Hz}$. Bass, boost approx. to $工 1 \geqslant \mathrm{~dB}$. Treble cut approx. to -16 dB . Negative feetback 18 d oter main amp. Power requirementa 3 Jv . at 1.0 amp

Fully detalled 7 page construction manual and parts tlat free with kit or aend ojp plun large S.A.E.
AMPLIFIEK KIT
\&1\&.88 P. \& P. J0p AMPLIFiER KIT POBINET
 (Post Free if all units purchased at same time) Full after malen mervice Aleo available ready built and tested 228.08. Post free Nove: The above amplifier is muituble for feeding cwo and will then provide mixing and fading factlities for med. ium ponered Hi.Fi Discotheque use, elc.

3-VALVE AUDIO AMPLIPIER HA34 MK II thesigned for Hi-Fir reproduc operation. Heady bullt on plated heavy, gauge meta
 ELSt, EZ80 valres. Heavy luty. louble wound main former matched for trant speaker. Separate volume control and now with inproved wide range tone controls giving bass and treble lift and cut. Negative feedback line. Output it watts. Front mounting of controls. Complete with knobu, valves, ete wired and tested for only $£ 6-60$. P. \& P. 70p HSL "FOUZ" AMPLIFIER KIT. Similar In appearanc to HA34 above but employs entirely different and advanced circuitry. Complete set of parts, etc. 85.50 .
P. \& P. 70 p.

10/14 WATT HI-FI AMPLIFIER KIT monaural amplifier with an output of EL84s in push-pn 8uper reproduction of both music and speech, with negli gible hum. Separat inputs for mike and gram alow recorda
 to follow each othe
Fully shroudel section wound output transformer match 3-150 mpeaker and 2 independent volume controla and separate base and treble controls are provided giving good lift and cut. Valre line-up 2 EL84s, ECC83, EF86 and EZ80 rectifer. Blmple instruction bookle $25 p \times 3 A E$ (Free with parts). All parte sold geyarately ONLY £10-25. P. \& P. \&1.00, Also available ready bull

HI-FI STEREO HEADPHONES

 Adjustable headband with comfortable flexifoam earmuffs. Wired and fitted with standard stereo fin jack plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matching impedance 8-16 ohms. Easily converted for Mono

PRICES INCLUDE VAT

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday
Closed Wednesday.
Prices and specifications carrect
ot time of Dress. Subject to
at time of press. Subject to
alteration without notice

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

PLEASE ROTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. P. \&P ON OVERSEAS ORDERB
CEARGED EITRA.

Middlesex Polytechnic
 Teaching Craft and Design

(Woodwork, Metalwork, Technology, Technical Drawing)

- One-year or three-year full-time courses leading to qualified teacher status and possibly BEd degree
* Special Entry possible for mature students without academic qualifications
- Apply now for September 1975

There is an urgent demand for men and women teachers of Craft and Design in secondary schools. teaching woodwork, metalwork, technology and technical drawing. If you are looking for job satisfaction and a new career then why not consider teaching Craft and Design?

These courses are based at our Trent Park, Cockfosters site. which is situated in 300 acres of parkland only is miles from the centre of London

Entry requirements

- One-year course: Minimum age 23: HND. HNC or City and Guilds full technological certificate
- Three-year course: Minimum age 18: five O levels fincluding English): mature students (over 24) can take Special Entry tests.

Please write or telephone for further details and application forms. stating whether you are interested in the one-year or three-year course. to: The Admissions Office, Ref PE/5, Middlesex Polytechnic, Trent Park, Cockfosters, Barnet, Herts EN4 0PT, telephone: 01-449 9691.
108

* ELECTRONIC PIANO KIT
 * SYNTHESISER KIT \star ELECTRONIC ORGAN KITS

There are five superb Electronic Organ kits speclally designed for the D-I-Y enthusiast. With the extreme flexibility allowed in design, you can build an organ to your requirements, which will compare with an organ commercially built
 costing double the price.

* Portable organ with 4 octave keyboard, £145.29. © Console organ with 5 oclave keyboard. $\mathbf{2 5 0} 0 \cdot 93$. \star Console organ with 2×4 octave keyboards and 13 note pedal board. $\{470 \cdot 65$. \star Console organ with 2×5 octave keyboards and 32 note pedal board, $£ 680$. \star Console organ with 3×5 octave keyboards and 32 note pedal board, £960. \star W/W Sound Synthesiser Kit. £149. * WIW Touch Sensitive Electronic Piano £110.
All components can be purchased separately, i.e., semiconductor devices, M.O.S. master oscillators, coils, keyboards, pedal boards stop tabs, draw bars, key-contacts, etc. Lesley type speaker units from $\mathbf{5 0}$ Send 50 p for catalogue which includes $5 \times 10 p$ vouchers or send your own parts list, enclosing S.A.E. for quotation.

Elvins Electronic Musical Instruments

12 Brett Road. Hackney, London E8 1JP (Tel. 01-986 8455); 8 Putney Bridge Road, London SW18 1HU (Tel. 01-870 4949); 40a/42a Dalston Lane, Dalston Junction, London E8 (Tel 01-249 5624).

Business hours: Open 10 a.m. 107 p.m. Monday to Saturday. Closed all day Thursday. Open 10 a.m. 101 p.m. Sunday

6PRivinollemsz

CAPACITIVE DISCHARGE

 EEETTROMII IGIITION RIT" Sparkrite MK 2". is a high performance, high quallty, capacitive discharge, electroni Ignition system. Sparkrite completely eliminates problems of the contact breaker. Misfire due to contact breaker bounce is electronically eliminated, contact breaker burn is eliminated, the condition of the contacts is not relevant to the performance of the ignition, and the system is no longer dependant on the dwell period for recharging.
Sparkrite wilf give you: Up to 20% better fuel consumption, instant all weather starting, cleaner plugs, faster acceleration, higher top speed, longer coil and battery life, efficient fuel burning and less air polution, smoother running, continual peak performance.
The Kit comprises evorything needed. Already dillied and guaranteed components and parts.

Prices: D.I.Y. assembly kit $£ 10.93^{*}$. Ready built unlt $£ 13.86^{\circ}$. (Both to fit all vehlcles with coil/distributor Ignition up to 8 cylinders.) Switch for instant changeover front "Sparkrite" Ignition to conventional Ignition $£ 2.79^{*}$. R.P.M. limiting control $£ 242^{*}$. Detalls of more specialised units on request. CALL IN AND SEE US FOR A DEMONSTRATION.

ALUMINIUM

FLUORESCENT

 LIGHIKTPrices include lids, screws and -A.T. (IG 8%. Add 18 p to the total order value for postage and packing
 No. $94^{\prime \prime} \times 2 z^{\prime \prime \prime} \times 1$ " high No. $105 t^{\prime \prime} \times 4^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ high No. $114^{\prime \prime \prime} \times 21^{\prime \prime \prime} \times 2^{\prime \prime}$ high No. $136^{\prime \prime \prime} \times 4^{\prime \prime \prime} \times 2^{\prime \prime \prime}$ high $\begin{array}{llll}\text { No. } 15 & 8^{\prime \prime} & \times 6^{\prime \prime \prime} & \times \\ 3^{\prime \prime} & \text { high } \\ \text { No. } 16 & 10^{\prime \prime} \times 7^{\prime \prime} \times 3^{\prime \prime} & \text { high }\end{array}$ 47p
$48 p$
$46 p$
$49 p$
$46 p$
$38 p$
$58 p$
$75 p$
$93 p$
14

STHPPMTIE?

132 Blg Pages inctudes dozens of useful and Interesting circuite you can bulld: data: hundreds of pictures: transistor quivalents list and hundreds of new Ines. Packed with Information ONLY 40D.

- RESISTORS

CARBON FILM

 11Ω to $910 \mathrm{k} \Omega$: 5% E12 and E24 1p each.
METAL OXIDE
WW 10n to $1 \mathrm{M} \cap$: 2% E12 and E24 4p aach WIREWOUND
 1 Ω : 5% 17p each
1.2 n to 270 n : 5% E12 13p each

Other ranges stocked. See our catalogue Por detalis. E12 10. 12. 15, 18. 22. 27. 33. 39, 47, 56. 68 32 and decades. E24: 11, 13, 16, 20

- TRANSISTORS AND DIODES

AC 127	18p	BY126	13p
AC128	18p	BY127	13p
AC176	$17 p$	BY164	49p
AD161/		BZY88	
162MP	93p	series	13p
BA100	9p	MPF102	36p
BA145	22p	OA91	${ }^{6 p}$
BC107	10p	OA200	$7 p$
BC108	10p	OC71	20p
BC109	13p	SC146D	88p
BC109C	15p	T1S43	20p
BC142	23p	woos	30p
BC143	26p	WO4	33p
BC147	10p	iN914	4p
BC148	10p	1 N 4001	6p
BC149	12p	1N4002	$81 p$
BC168C	12p	1 N 4003	7 p
BC169C	12p	1N4004	7 p
BC178	17p	1 N 4005	8 p
BC182L	10p	1N4006	8ip
BC183L	12p	1 N 4007	9p
BC184L	12p	1 N 4148	4p
BC212L	14p	2N 1302	20p
BC213L	15p	2N1303	20p
BC214L	16p	2N1304	30p
BCY71	22p	2N1711	24p
80131	45p	2N2219	25p
BD132	$54 p$	2N2646	45p
BD131/2M	MP	2N2905	33p
	1-20	2N2926	
BD135	36p	Or	10p
BD139	49p	Ye	12p
BD140	69p	Gn	13p
BF258	35p	2N3053	18p
BF259	25p	2N3055	49p
BFX29	30p	2N3819	22p
BFX30	33p	2N5459	51p
BFX84	30p	7400	18p
BFX85	36p	7413	39p
BFX87	30p	7447	¢1. 10
BFX88	25p	7473	54 p
BFY50	20p	7474	45p
BFY51	22p	7490	$82 p$
BFY52	20p	7493	93p
L.E.D. RED			
2 mcd tin			15p

INTEGRATED

CIRCUITS
CA3046 (14-pin DIL)

wn

H0042CH (TO99)

MC 1496 (14-pln DIL) MFC 4000 B
NE555V (8-pin DIL)
SG1495 (14-pin DIL)
SG3402 (14-pin DIL) TBAB01S
$\mu \mathrm{A} 741 \mathrm{C}(8$-pin DIL)
$\mu A 74 \nmid \mathrm{C}(14$-pin
HA741C (14-pin DIL) HA747C (14-pin DIL)
HA 748 C (8-pin DIL) ZN414 (TO18)
VOLTAGE REGULATORS HA7805 5V Y-5A (TO3) $\mathbf{~ 1 . 7 5}$ MVR $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} .500 \mathrm{~mA}$ (TO3)
 HA78M15 $15 \mathrm{~V} 500 \mathrm{~mA} \quad \$ 1.05$ $\mu A 78 L 055 V 100 \mathrm{~mA}$ (TO92) 60p HA $78 L 15$ L
$\mu A 723 \mathrm{C}$ Variable 2 to 37 V HA723C Variable 2 to 37 V
(TO99 or 14-pin DIL) Our catalogue contains application circuita and data for all the above I.C.s and many more.

DISCOUNTS

Dotals in our catalogue. stan

bCD OÚTPUT SlIDE SWITCH Marks the end of the old ashioned thumb-whee swltch. With 7 -segment type ead-out. Full de

PLUGS AND SOCKETS

PHONO

Plastlc-topped plug
Chassis socket single
$6 p$
12p

Chassls socket twin \qquad
MAINS CONNECTORS
P360 3-pin $1.5 A$ Chassis
plug with line socket SA2190 3-pin 5A Chassis plug
SA1862 Line socket for
SA 190
437 3-pin 5A Chassis
3-pin 5A Chassis

TRANSFORMERS

T700 min. output. Pri. Tkh mains $6-0.6 \mathrm{~V} \quad 100 \mathrm{~mA} 95 \mathrm{p}$ $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 95 \mathrm{p}$ (Size both approx. $30 \times 27 \times 25 \mathrm{~mm}$) Min. mains $0-6 \mathrm{~V} 500 \mathrm{~mA}$, $0-6 \mathrm{~V}$ $\begin{array}{llll}500 \mathrm{~mA} & \mathrm{El} .55 ; & 0-12 \mathrm{~V} & 250 \mathrm{~mA} \\ 0-12 \mathrm{~V} & 250 \mathrm{~mA} & \mathrm{ET} .55 & 0-20 \mathrm{~V}\end{array}$ $150 \mathrm{~mA} \quad 0-20 \mathrm{~V}$ ह1.55; $150 \mathrm{~mA} \quad 0.20$ $0-24 \mathrm{~V} \quad 125 \mathrm{~mA}$. $0-25 \mathrm{~V} \quad 125 \mathrm{~mA}$ E1.55. Malns MT3AT: Sec: 12-15-20-24-30V 2A E3.98
Mains MT206AT: Sec: $0-15-20 \mathrm{~V}-1 \mathrm{~L}$ 1A, O-15-20V 1A \&3.08.

ORGANS

Full Scale Elecironic Organ That You Can Build To Your Own Specification

FULL CONSTRUCTIONAL
DETAILS IN OUR LEAFLETS Leaflet MES51: Price 15p. describes a fully polyphonle basic organ which can later be used as the basis of a large so
Leatiet MES52: Price 15p continues the description of the MES50 serles organs and shows you how to add a second keyboard with lots more stops.

THE AMAZING DMO2

A ready-built. zested and guarantead digital master oscillator. Accurately generates the top 13 notes for your organ system and reduces the adjustment. New design gives selectable C to C output ranges of (approx.) $4 k \Omega$ to $8 k \Omega$ (highest) or $2 \mathrm{k} \Omega$ to $4 \mathrm{k} \Omega$ or $1 \mathrm{k} \Omega$ to $2 \mathrm{k} \Omega$. stc. right down to 16 Hz to 32 Hz ! And this naw compatible design is even smaller: only $3.5 \ln \times 3-7$ in including goldDMO2T includes built in
DMO2T includes built in variable depth and rate DMO2 $£ 12$ - 25

DMO2T £14.25 SAJ110: 7 -stage frequency divider in 14-pin DIL
package. Sine or square wave input. Square wave output may be converted to saw-footh 51.80 each or 6 for 59.94 or 12 for $£ 18 \cdot 18$. Kayboards high quality, fully sprung
Flat-front 48 -note \mathbf{F} to E
Sloping-front 49-note C to C
Swell pedal with $10 \mathrm{k} \cap$ log pot -Spring Line Unit (short) - Spring LIne Unit (long) *Reverberation Driver Module
515.95
$\begin{array}{ll}\text { Reverberation Driver Modulo } & \text { £8.29 } \\ \text { \&.34 }\end{array}$ Gold-ciad phosphor-bronze wire 30 per per yd Palladum eaph bar 15 per octave iength Contact Blocks 2-make (GB2) 22p Siop Tabs rocker fype not engraved (white.
red, grey or black) with DPDT switch

SPECIAL OFFER

 15 BC108Cs
£1

All brand new marked I.T.T. Guaranteed full spec. highest gain group.
"ELECTRONICS TODAY INTERNATIONAL'

4600 SYNTHESISER

We stock all parts for this brilliantly designed

 synthesiser. This includes all the P.C.B.s. metalwork and drilled and printed front panel giving a truly protesstonat finish. Authoritative opinions agree the E.T.I. International Synthesiser istechnically superior to most of today's models. Complete construetional detalis in our booklet. available shortly. S.A.E. please for price list and specification. We also stoek all parts for the P.E. Synthesiser, and Minisonic.

P.O. Box 3, Raylelgh, Essex. Tel. Southend-on-Sea (0702) 44101

SHOP NOW OPEN: 284 LONDON ROAD, WESTCLIFF-ON-SEA, ESSEX
VAT Please add 8% to the final total. Post and Packing FREE in U.K (15 p handling charge on orders under $£ 1$)
First-class post pre-paid envelope supplied free with every order

IMTEGRATED CIRCUITS

MM5311/4 6 DIGIT CLOCK
CASSETTE mechanics
NFW BtK CARTRIDGE MECHANISM 88 STEREO CASSETTE MECHANISU \& 13.75 with heads etc.SEND 15 p for DATA

TRANSISTORS \& DIODES

Price each		MATCHIN		
AC127 * 128	16p	INS, BUS		SETIOp
AC187 \& 188	19p			
AD149	43p	TIP 41		70p
AD161 162	33p	TIP 42		88p
BC107 \& 108	9 p			p
BC109	10 p			
BC147/8/9	10p	TIS43	ee 2 N	2N2646
BC157/8/9	12p	ZTX1098	301	1 13p
BC157/8/9	12p	1N4001		4 p
BC177/8/9	$18 p$	1 N 4004	\& 7	7 7p
BC182/3/4A6L	10 p	1N4148	891	914 4p
BC212/3/4A $L^{\text {L }}$	11 p	2N697		14p
BCY70/1/2	17p	2N706R8		$11 p$
BD131 \& 132	39p	2N2646	UJT	T 32p
BFR51		2N2904	\& 5	5 20p
BFR50/51	23p	2 N 2926 r	royg	B 9p
BFR50/51	23p	2N3053		17p
BFR88 250 V	29p	2N3055	115 W	5W 37p
BFY50/1/2	$15 p$	2N3563	2 64	$6416 p$
BSK19/20/21	$16 p$	2N3614	\& 3	349p 9 p
MJE2955	90p	2N3704	\& 5	510 p
MJE3055	65p	2N3706	\& 7	7 9p
MPU131 PUT	490	2N3708	89	98 p
OA91 OA81	6 p	2N3710	\& 11	
0181 \& 0491	6 p	2N3819E	FET	ET 16p
TIP 29830	52p	2N3823E	FET	ET 17p
TIP 31 \& 32	69p	2N3904/	/5/6	
FULL SELECTION IN OUR FREE LISTS,				

NEW TRAMPUS FULL SPEC PAKS

 PAK A 10 RED LEDS our choice 11 $\begin{array}{llllllll}\text { PAK } & \text { C } & 4 & 2 N 3055 & \text { £1. D } & 12 & \text { BC109 } & \text { § } 1 \\ \text { PAK } & \text { E } & 10 & \text { BC182 } & \text { \&1.F } & 11 & 2 N 3704 & \text { \& } 1\end{array}$ | PAK | G | 8 | BFY 51 | £1. H | 9 | $2 N 3819 e 〔 1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PAK | J | 9 | $2 N 3053$ | £1.K 40 | $1 N 914$ | £ 1 |

BZY88 400 mk
$\begin{array}{llll}\text { ZENER DIODES } 9 p & \text { TA/50V SCR } & 36 \mathrm{p} \\ \text { TAG1/400 } & 55 \mathrm{p}\end{array}$ $\begin{array}{ll}\text { BRIDGE RECT } & \text { C106 } 8700 \text { SCR D1 }\end{array}$ 1A 50V 20p $\quad \begin{aligned} & 4 A / 400 \mathrm{~V} \\ & \text { SC1 } \\ & \text { 2 } \\ & \text { TRIAC }\end{aligned}{ }^{53 p}$ ER100 DIAC $25 \mathrm{p} \quad 10 \mathrm{~A} 400 \mathrm{~V} \quad 75 \mathrm{p}$

COPPER CLAD VEROBOARD O.1

 3)"x5" 31p 3ix 17" $\$ 1.50$

DIL IC's BOARDS $6 \times 43^{\prime \prime} £ 1.50$ 24 way edge connector 60 p.
36 way 90 . PLAIN $3{ }^{\prime \prime} \times 17 "$ FACE CUTTER 45p. FEC ETCH PAK 50 D

PRINTED CIRCUIT BOARD KIT £1.69 DECON NO MESS ETCH PAK NEW 69p HEATSINKS
SF/TOS \& 1 RF/TO18 5 F en.TV4 15 p
 TGS308 GAS DETECTOR $£ 1.80$ ea. logic probe ttl tester pen s 5 capacitors
CERAMIC 22pf to 0.1 uf 50 v 5 p , ELECTROLYTIC: $10 / 50 / 100$ uf 1 n
 POTENTIOMETERS (POTS) AB or EGIN LIN or LOG ROTARY 13p. SWITCH 14 p KNOBS 7P. PRESETS GPRESISTORS 1 IP SWITCHES: SPST 18p. DPDT 25p.
Din plugs all 12p, SOCKETS 1月p, ALI CASES AB5/AB7 50p, AB13 65p TRANSFORMERS 1 A 6 v 6 v or 12 v 12 v
DH sochets

TEXAS GOLD

LOW PROFILE ea
SOLUERCON STAISS.
100 PINS 50 p .1 K

INSULATED TERMINALS Available in Black, Red White, Yellow, Blue, and Green. Brand New I3p each Post Paid.	
METERS NEW! 2 fin. Flush round. Available in D.C. Amps 1,5 10, 15, 20 or A.C. Amps 1, 5, 10, 15. 20. Voltmeter 0-300V A.C. Alltypes $\mathbf{6 2} \mathbf{5 0}$. Post 20p.	
600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. Will control up to 600 W of lizhting except fluorescent at mains voltage. Complete with simple instructions. 62.75. Post 25p.	
SIEMENS, PLESSEY. Etc, MINIATURE REL.AYS	
Col. (1) Coilohms	3 4
Col. (2) 58 $5-9$ Working 185 $8-12$	
d.c. volts 230 $9-18$ $2 \mathrm{c} / \mathrm{o}$	
Col. 3 430 $15-24$ $4 \mathrm{c} / \mathrm{o}$ Contacts 700 $12-24$ $2 \mathrm{c} / \mathrm{l}$	
Col. (4) 700 $16-24$ 4 M 2 O	
Price 700 $16-24$ 1,250 $18-36$ 4 c/o c/o	4 2 2 c/o
$\mathrm{HD}=\quad \begin{array}{lll}\text { 2,500 } & 31-43 & 2 \mathrm{c} / \mathrm{OHD}\end{array}$	2 clo HD 60
Heavy duty ${ }^{2.500}$ 年 $36-45$	
9,000 $15 k$ $40-70$ $10-110$	
*Incl. Base. All pricesincl. P. \& P.	
OPENTYPERELAYS 6 VOLT D.C. I make contacts 35p. Post 15p. 9 VOLT D.C. RELAY	
3^{3} c/10 ${ }^{5}$ amp contacts. 70 ohm coil. 75p. Post 15p.	
ENCLOSED TYPERELAYS	
24 VOLT A.C. Mfg. by ITT. 3 h.d. c/o contacts. 55p. Post 100. Base 15 p.	
55 VOLTA.C. RELAY ${ }^{\text {a }}$	
$3 \mathrm{~h}, \mathrm{~d} . \mathrm{clocontacts} .\mathrm{Price} \mathrm{5Sp}$.Post 10 p . Base 15p.100 VOLT A.C. 2 closealed type. 75p. Post10p.	
3 h.d. c/o contacts. Price 75p. Post 15p. Octal	
$230 / \mathbf{2 4 0}$ VOLT A.C. RELAY. Míg. by Arrow 2 h.d.	
Post 15 p \% $20 / 240$ OLT A.C, RELAY	
Miniature relay. 675 ohm coil. 24 Volt D.C. $2 \mathrm{c} / \mathrm{o}$. 70p post paid.	
$110 \mathrm{~V} .2 \mathrm{c} / \mathrm{o}$. 20 amp contacts. $\mathrm{fl} \cdot 25$. Post 10 p . Many others from stock-phone for details.	
VERY SPECIAL OFFER	
MICRO SWITCH. 5 amp. c/o contacts. NEW. 20 for $\mathbf{C 2}$. Post 15p. (Min. order 20). Ditto press	
SUB-MINIATURE REED RELAY $3-9$ volt d.c. 1 make, size $1 \frac{x}{x} \times$ ilin. Outstanding value only © 1 for six, $\mathrm{E} \mid, 50$ for ten. Past 15 p . (Min. order six.)	
TRIAC	
Raytheon Tag symmerrical Triac. Type TAG. riac swiss precision product for long term reliability K 1.00 . Post 10 p . (Inclusive of Data and application sheet.) Suitable Diac IBp.	
230/250 VOLT A.C. SOLENOID	
Price 61.00 . Post 15p.	
24 VOLT DC SOLENOIDS	
UNIT containing I heavy duty solenoid approx. 25Ib pull I inch travel. Two x approx. llb pull $\frac{1}{2}$ inch travel. $6 x$ approx, $40 z$. full $\frac{1}{2}$ inch travel. One 24 volt d.c., 1 heavy duty single make relay. Price 62.50. PoSt 75p. ABSOLUTE BARGAIN.	
CENTRIFUGAL BLOWER Mfg. Airflow Developments Led. Precision continuously rated. smooth running. $230 / 240 \mathrm{~V}$ a.c. motor 80 c.f.m. As illustration but with round aperture. E6.50, Post 50p.	

All Mail Orders-Callers-Ample Parking
Dept. PE5,57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

VARIABLE VOLTAGE TRANSFORMERS INPUT $230 / 240 \mathrm{~V}$ a, c. 50/60 OUTPUT VARIABLE O-260V
SHROUDED TYPE SHROUDED TYPE
$200 \mathrm{watt}(1 \mathrm{amp}) € 10.00$
$0.5 \mathrm{KVA}\left(2 \frac{1}{\mathrm{tamp}}\right)(\mathrm{MAX}) € 11.50$
1 KVA (5 amp) (MAX) 16.50
2 KVA (10 amp) (MAX) 30.00
$3 \mathrm{KVA}(15 \mathrm{amp})$ (MAX) 33.00
37.5 amp (MAX) 102.50

CARRIAGE AND PACKINGEXTRA
OPEN TYPE I amp (panel mount) $£ 10.00$
L.T. TRANSFORMERS $\begin{array}{ll}0,6,12 \text { Volt at } 10 \mathrm{amp} \\ 0.10,17,18 \text { volt at } 10 \text { amp. } & \mathbf{6 5 . 6 0 .} \text { Post 70p. } \\ 0.90 . & \text { Post } 70 \mathrm{p}\end{array}$ $\begin{array}{ll}0.10,17,18 \text { Volt at } 10 \mathrm{amp} . & \text { ¢7.90. Post 70p } \\ 0,4,6,24,32 \text { Volt at } 12 \mathrm{amp} . & \mathbf{~} 9.90 .\end{array}$ 0.6 .12 Volt at 20 amp . 69 . Post 70 p . $0.12,24$ Volt at 10 amp . 99.20 . Post 70p $0,6,12,17,18,20 \mathrm{Volt}$ at 20 amp . $\mathbb{1} 10.40$. Post 70p. Other types to order at short notice-.Phone your

AUTO TRANSFORMERS

 Step up step down$0-115 / 200 / 220 / 240$ Volts. 75 watt $\mathbf{\text { C2.64. Post } 4 0 p} \begin{aligned} & 150 \text { watt } £ 3.50 \text {. Post } 50 \mathrm{p} \text {. } 300 \text { watt } \mathrm{C6} .20 \text {. Post }\end{aligned}$ 60 p . 500 watt $£ 9.20$. Post 75 p . 1000 watt $£ 12.00$. Post 90p
300 VA ISOLATING TRANSFORMER 115/230-230/230 volts. Screened. Primary two separate $0-115 \mathrm{~V}$ for 115 or 230 volt. Secondary two
115 V at 150 VA each for 115 or 230 volt output. Can be used inseries or parallel connections. Fully 13.5 cm . Weight 15 lb . 5 Carr. 80 p . $230 / 240$ VOLT A.C. MINIATURE MOTOR. 20 R.P.M. Priceti.' Post 15 p.
BODINE TYPE N.C.I GEARED MOTOR (Type J) 71 r.p.m. torque 10 lb . in.
Reversible $1 / 70 \mathrm{th}$ h.p. evcle 0.38 amp. (Type 2) 28 r.p.m. torque 20 tb. in Reversible $1 / 80 \mathrm{th}$ h.p. 50 cycle 0.28 amp The above two precision made U.S.A. motors a offered in 'as new' condition. Input voltage of motor 115 V A.C. Supplied complete with transformer for
$230 / 240 \mathrm{~V}$ A. C. input. 230/240V A.C. input.
former $£ 3.75$. Post 50p.
'FRACMO' 240 VOLT A.C 50 cycle SINGLE PHASE GEARED MOTOR
 Brand New \&14. Post $\mathbb{C l} .00$

FRACMO' 240 VOLT A.C.

Total price incl VAT \& 15.77). 9.12 VOLT D.C. GOVERNED REVERSIBLE MOTOR
Machine cut gear train, giving
final speed of 2 r.p.m. with cam driving 3 sub-miniature microswitches (removable). Spindle 12 mm long 6 mm dia. Builr to

POWER RHEOSTATS : : !
Superior Quality Precision Made NEW POWER RHEOSTATS New ceramic construction, vitreous
enamel embedded winding, heavy duty brush assembly, continuously
25 WATT $10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ ohm. Cl.70, Post 15p.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}$ ohm E2.10. Post 20p. 100 WATT //5/10/25/50/100/250/500/Ik/1.5k/2.5k Bikk ohm E3-30. Post 25p. Black Silver, Skirted knob calibrated in Nos. I-9
$1 \frac{1}{3} i n$. dia. brass bush. Ideal for above 22p each. INSULATION TESTERS NEW! Test ro I.E.E. Spec. Rugged meral construction, suitable for bench or
field work. constant speed clurch. Size L.Bin, W.4in, H.6in. weighr 61b

All prices are subject to
8% VAT. (8 p in the ε)
To all orders add 8% VAT to total value of goods including carriage/

STROBE! STROBE! STROBE!
Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and RANGE OFFOUR STROBE KITS FROM STOCK. PRICES FROM $\mathbf{6 6 . 3 0}$ to $\mathbf{6 2 2}$

COLOUR WHEEL PROJECTOR

PROGRAMME TIMERS

$230 / 240 \mathrm{~V}$ a.c. 15 r.p.m. Motors
Each cam overates a clo micro switch. Ideal for lighting effects tested.
2 cam model. ©2.00 post 35 p .
4 cam model. 62.50 post 35 p
8 cam model. $\mathbf{4} .75$ post 40p
M.f.g. by Magneric Devices. $\$ 7.50$. 6 r.p.m
A.C. MAINS TIMER UNIT

Based on an electric clock, with
25 amp. single pole switch, which can be preset for any period up to 12 hrs. ahead
to switch on for any length to switch on for any 1
of time. from 10 min
6 hrs . then switch off.
additional 60 min . audible
for Tape Recorders, Lights

Electric Blankets, erc. Attractive satin copper finish. 40p. (Total inct. VAT and Post E2.38).

REVERSIBLE MOTOR

 A.E.I. th h.D. reversible motor 100 120 volt A.C. $50 / 60$ cycle $1400 / 168$.
New. Price E2:50. Post 50 p . Suit
 able $110 / 240 \mathrm{~V}$. 150 watt Auto Transformer $£ 3.50$. Post 50p. (Post for both items together 75 p .)

COIN MECHANISM (Ex London Transport) Unit containing, selector mechanism for Ip, 2p and sp ard. Incredible VALUE at only E2,50. Post 70p.
'STC' 6" RED ALARM BELL
$24 / 48$ volt DC. Brand Now.
'GENTS' 6" ALARM BELL
200/250V ACIDC. Brand Now.
Personal callers only. Open Sat.
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

Dimmit

range of light dimmers and lighting control systems

Illustrated is the popular PMSD 1000 module. A 1 kW slider control dimmer. interference suppressed, 60 mm slider range size $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc. Complete with scale plate, fixing screws and full instructions. E7-25 inc. VAT and P. \& P.

Illustrated is the DD61 dimmer system. Contains: six 1 kW slider dimmers type PD1000. six outlet sockets. a master control and a mains on/off switch. Size $59 \times 22 \times 12 \mathrm{~cm}$. A complete system in one unit for stage or disco lighting, etc.
Also available DD261 dimmer system, as above, but with 2-preset arrangement. Future systems available with 2 kW dimmers. Specials made. DD61 £97-20 inc. VAT and P. \& P. DD261 $£ 117.72$ inc. VAT and P. \& P.

The Dimmit range includes standard wall mounting models for home end office. etc. Professional modules for industrial heating applicatlons, etc. Rotary and slider control versions. Hatings $1000 \mathrm{~W}: 2000 \mathrm{~W} ; 3000 \mathrm{~W}: 110 \mathrm{~V}$ and 240 V .

Model SL800 sound to light converter. Modulates the light in time with sound. Built-in microphone. No connections to speaker required Simple wiring-similar to dimmer. Rating 800 W .

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given

For full information on all modules and lighting control systems

Abstract

Whether your project is electrical or electronic, SCS Components have a complete professional service for the non-professional. We are franchised distributors of Mullard components and Motorola, Ferranti,Signetics, G.L. and Monsanto,too.Our Trade Counter can supply you with all you need, including first-class technical advice. Or simply send cash with your order:

Never before have you been able to get top quality, guaranteed components so quickly, so inexpensively. Send for a free copy of our latest price list.

Try us; we think you'll notice the difference.

SCS Components
\qquad

New calculator IIs lowerpriegesfromThurlby

General description
Increasing demand for the XE series high performance calculator chips has resulted in increases in scale allowing us to offer even better value for money.

Thurlby Electronics offer you the opportunity to build yourself an advanced electronic calculator at amazingly low cost using one of the XE series MOS single chip calculator I.C's.

Every IC is brand new, tested and guaranteed. It comes complete with full data, circuit diagrams and wiring details covering the use of different types of displays, describing how to construct both very simple and more elaborate keyboards, and explaining the operation of the calculator - both in normal calculations and in more complex operations.

Full money back guarantee. Cash with order.
Postage and packing 20p per order. Please add 8% VAT to total order value

XE303 Calculator IC New XE303 series with memory and \%

- 5 functions, $+-x \div$ with automatic constant facility on all 4 plus live $\%$ key.
- Full performance memory, store-recall-exchange, or automatic accumulating.
- Full 8 digits with floating decimal point and algebraic logic
- Built-in clock generator, single power supply.
- Direct segment drive, suppression of non-significant zeros.

XE202 Calculator IC XE202 series 4 tunction and constant

- Full 8 digits with floating decimal point and algebraic logic
- Powerful keyed constant facility on all 4 functions
- Enormous exponent range: 10^{-20} to 10^{+79}
- Single strobe line facilitates very simple keyboard construction
- Direct segment drive, suppression of non-significant zeros

Display driving interface chips

TK9 9 digit driver IC suitable for use with XE303 series.
71058 digit driver IC suitable for use with XE202 series.
$95 p+V A T$
$75 p+V A T$

frimpm

Special magnified LED displays

9 digit suitable for use with XE303 series. $£ 3.75$ + VAT
8 digit suitable for use with XE202 series. $£ 3-25$ + VAT

ECBC(SSCES

To Thurlby Electronics
Church Farm House
Church End, Over
Cambs. CB4 5NH

Please supply
for which I enclose cash/cheque/PO for \&
including VAT \& postage
Name
Address

PHONOSONICS

SOUND-TO-LIGHT (P.E. Apr./Aug. 71)
The ever-popular AURORA-4 or 8 channels each responding to a different sound frequency and controlling its own light. Can be uned with most udio systems and lamp intenaities. A must for any Disco. and a fascinating visual display for the home.

4 channel component set (excl. thyristors) 8 channel component set (excl. thyristors) Power supply component set
PCB for 4 frequency channels
PCB for power supply and 8 lamp drivers

P.E. SYNTHESISER Details in List

VOICE OPERATED FADER (P.E. Dec. 73)

For automatically reducing music volume during "talk-over'-particularly useful for Disco work, or for home-movie shows
Component set, incl. PCB

P.E. GEMINI 30W STEREO AMPLIFIER

An exceptionally high quality Stereo Amplifier system, specifications for which are shown in detail in our list. together with semiconductor requirements. Whiie stocks last

Maln Amplifler:
Set of resistors, capacitors and presets
Stereo printed circuit board
Sets of resistors, capacitors, potentiometers and switches

Standard Tolerance Set
Superior Tolerance Set
Stereo PCB (as Published)
Regulated Power Supply:
Set of resistors. capacitors and preset
Printed circuit board

HI-FI TAPE LINK (P.E. Mar./Apr. 73)
Designed for use with reasonable quality tape decks. this high performance pre-amp Includes record, playback and metering circuits.
Stereo component set (excl. panal meter) $\quad 22.0$ Mono component set (excl. panel meter) $\quad £ 13.31$ Power supply component set
Stereo main PCB
Stereo sub-assembly PCB
TAPE-NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings.
Component set (incl. PCB)
Regulated power supply (including PCB)
PROJECT O4 (P.W. Oct. 73/Jan. 74)
Multi-system Quadraphonic Decoder. While stocks last
Decoder component set
Power supply components
Printed circuit board

SEMICONDUCTOR TESTER (P.E. Oct. 73) Essential test equipment for the enterprising home conatructor.

Sot of resistors, capacitors, semiconductors potentiometers, makaswltches and PCB

REVERBERATION UNIT (P.W. Nov./Dec. 72) A high-quallty unit having microphone and line input pro-ampa, ano providing full control over reverberation level.
55. 96
10.57
16.04
12. 30
13.31
$£ 3.72$
5.50 2.50 8fp

PHASING UNIT (P.E. Sept. 73)
 A simple but effective manually controlled unit for introdueing the "phasing" sound into live or recorded music.

Component set (incl. PCB)
22-20
PHASING CONTROL UNIT (P.E. Oct. 74)
(for use with above Phasing Unit
23.50

P.E. SOUND SYNTHESISER

The well-acclaimed and highly versatile Synthesiser published in P.E. Fab. 1973 to Feb. 1974.

Component sets and printed circuit boards. List shows fuil details including discounts.

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
Component set Printed circuit board

RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects circuits (high and low bongos. bass and snare drums, long and short brushes, blocks and cymbal), and with variable time signatures. See list for discount.

P.E. JOANNA
 Send S.A.E. for our details

ULTRASONIC TRANSMITTER-RECEIVER

A highiy sensitive and long range "invisible beam" detection circuit with numerous applications.

Component set with PCBs, but excluding transducers
P.E. RONDO

PCB details in Lis
POWER SLAVES
PCB details in List.
P.E. ELECTRONIC PIANO HOME INTERCOM Details In List.
(While Stocks Last)
Details in List.

SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which
include envelope shaper, tremolo, voice operated fader automatic fader and trequency doubler.
E3.72
2. 22
$\$ 2.60$

PCB LAYOUT AND
CIRCUIT DIAGRAMS
SUPPLIED WITH ALL
PCBS DESIGNED BY
PHONOSONICS

Send S.A.E. for free list giving fuller details of kits. PCBs, and other components.

Semiconductors		$\begin{aligned} & \text { BFY50 } \\ & \text { BFY51 } \end{aligned}$	22p ${ }_{2}$	$\begin{array}{r} 2 \mathrm{~N} 3702 \\ 2 \mathrm{~N} 3703 \end{array}$	$\begin{aligned} & 12 p \\ & 12 p \end{aligned}$
		BFY52	24p	2N3704	12p
$\begin{gathered} A C 128 \\ A C 176 \end{gathered}$	20p	BSY95A	22p	2N3819	35p
BC107	13p	M, JE^{2955}	110p	2N3823E	$3 \mathrm{3p}$
BC 108	13p	MJE3055	75 p	${ }_{2 N} \mathbf{N} 40671$	129
BC109	13p	NKT0033	112p	2N5245	510
BC147	12p	OC28	60 p	${ }^{2 N} 51777$	45 F
BC148	12p	0 C 71	14p		
BC149	12p	0 C 72	14p	Diodes	
BC 157	13p	OC84	25p		
8C158	13p	ORP12	60p	1N4001	8 c
BC159	${ }^{13 p}$	$2 T \times 107$	12p	1N4002	7 p
BC182L	12p	21×503	15p	1 N 4004	8 p
BC184	12p	2T×531	23p	1 N 4005	8 p
BCO^{204}	14 p	2N706	13p	1N4007	${ }_{10 \mathrm{p}}$
BC209C	14 p	2 N 914	22p	OA.91	7 p
BC212L	15p	2 N 1304	22p	- azoo	8p
8 BC 213	15p	2N 2219	${ }^{27}$ p	-a 202	8 p
BC478	29p	2 N 2905	27p	1GP7	12 p
BCY71	22p	2N 2907	22p	1SJ50	110
BF978	40p	2N3054	66p	2W (ZIL)	700

Component eet (excl. spring unit)
Printed circull board
E. 12

P.E. MINISONIC
 Details in list (inc. discounts)

8W AMPLIFIER (P.W. Nov. 72)
A moderately powered amplifier of more than average performance. (While stocks last.)

Maln Ampilfier

Mono component sel E4.11
Stereo component set Pre-Ampitfler
Mono component set
Stereo component est

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73) Multh-function circuits that, with the use of other external equipment, can serve as lie detector, alphaphone. cerdiophone. etc.

Pre-Amplliter Module
Component set and PCB
Component set and PCB
Basle Output Clrcults
Combined component set with PCंBs, for alpha-
phone, cardiophonent set with PCBs, for alphaphone. cardiophone. Irequency meter and visual feed-back lamp driver circuits

54-*
Audlo Amplifier Module
c5. 50
PHOTOPRINT PROCESS CONTROL
(P.E. Jan./Feb. 72)

For colour and B. \& W. an indispensable dark-room unit for finding exposure, controlling enlarger timing. and stabilising mains voltage.

Component set (excl. meter)
Printed circuit board

ENLARGER EXPOSURE METER AND THERMOMETER (P.E. Sept. 73)

Dual-purpose dark-room unit with good accuracy.
Component set with PCB, but excluding meter §4-00
WIND AND RAIN UNIT (P.E. Oct 73)
A manually controlled unit for producing the above-named sounds.

Component set incl. PCB

PHONOSONICS, DEPT. PE35, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW MAIL ORDER ONLY

DON'T FORGET VATI

Pructicul Electronics Classified Advertisements

RECEIVERS AND COMPONENTS

7-8EGMENT LED's. led and (ireent, $£ 1.30$ ea 4 for $£ 4.50$, ine, p. dip. and VAT. (C.W.O. Io INDI'sTRIAI, ELECTRONIG SUPPLIEA ($\mathrm{STOCKPORT)}$ LTD., 18la Bramhall Lane, stockport, SK2 6JA

PROBLEM GETTING AWKWARD OR UNUSUAL COMPONENTS? Let us hely you find them. Also "one off" P.C.B.'s by return of post service. IORKE ELECTKONICS Tel. 02 $7-588$ (Bitton) 2707

Abstract

COPPER CLAD FIBRE GLASS PANELS $121 / \mathrm{m} \times 7 \mathrm{f}$ $80 \mathrm{p} ; 18 \mathrm{In} \times 41 \mathrm{n} .70 \mathrm{p}$. Double sided $12 \frac{1}{2} \mathrm{In} \times 7 \mathrm{in} .90 \mathrm{p}$ $11 n \times{ }^{13 i n}, ~ £ 1 \cdot 30$. All post paid. MC METERS, PANELS, $35-50$ Transistors. Lone leads, $85 p$ (40 p). 7 SERIES D.I.L. IC: ON PANELS. 10 for 80 p (10 p) COPPER CLAD PAX. PANELS, Bin $\times 91 \mathrm{in}$. 3 for $£ 1$ $12 \mathrm{tin} \times 9 \mathrm{in}, 2$ for $90 \mathrm{p} .16 \mathrm{in} \times 9 \frac{\mathrm{in}}{} \mathbf{2} 60 \mathrm{p}$. Double sided 12 in $\times 12$ tin, 0 p. All post paid. 22 -wAY STEPPIN SWITCH WITH RESET. A.C. malns operaled, \&1 (30p) to AC128, OC72, 40 p (10p). 3 tor $£ 1$, c.D. VALUPAKS P9, $100 \mathrm{~s} / \mathrm{mica}$ caps 55 p . P3. 10 silicon diodes 650 V 1+A. 50p. Post $12 p$ for one. 20 p any multiple. Send $12 p$ stamps for full list plus computer panels, etc. Fefund on purchase

Ib ASSORTED COMPONENTS $£ 2$ c.p 3Ib COMPUTER PANELS 11.75 c.p.

J.W.B. RADIO

2 Barnitield Crescent, Sale, Cheshlre M33 1NL Postage in brackets Mall order only

TURN YOUR 8URPLUS capacitors, transistors, etc., into cash. Contact COLES-ILARDING \& CO., P.O. Box 5 , Frome, Somerset Immediate cash settlement

PRECISION POLYCARBONATE GAPACITORS
all high stability-extremely low leakage

44		$63 V^{6}$ Range		$\pm 2 \% \pm 5 \%$	
$0.1 \mu \mathrm{~F}$	50 D		1%		
0.22 H	59p	0.47	56p		
$0.25 \mu \mathrm{~F}(11 \times$	62 D	$1.0 \mu \mathrm{~F}$	${ }^{66 p}$	56口	
$0.47 \mu \mathrm{~F}\left(11^{\circ} \times\right.$	71 p	2.9	80 p	5 p	p
$0.5 \mu \mathrm{~F}$ (11. $\times 1{ }^{\text {\% }}$)	750	$4 \cdot \mathrm{H} \mathrm{F}$	£1-30	41.05	5 D
0.68 F $\mathrm{F}^{\left(2^{\circ} \times!^{\prime \prime}\right)}$	80 p	6.814 F	E1.64	f1.29	
1.0, $\mathrm{F}^{\text {F }}$ ($2^{-} \times \mathrm{i}^{-}$)	91 p	10.0μ	£2.00	£1.60	
H μ F ($2^{+} \times 1^{-}$)	\$1.22	15.04 F	£2.75	82.15	11.80

TANTALUM BEAD CAPACITORS-Valuea avallable $1,0 \cdot 22,0 \cdot 47,1 \cdot 0,2 \cdot 2.4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $155 / 25 \mathrm{~V}$ or 35 V $33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47 \cdot 0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100 \cdot 0 \mu \mathrm{~F}$ at 3 V ALL at 10p each. 10 for 95p, 50 for 14.

TRANSISTORS: ${ }^{\text {BCI }} 83 / 183 \mathrm{~L}$ 11p BFY50 20 p \begin{tabular}{lr|lllll}
BC107i8/9 \& 9p \& BC184/184L \& 12 D \& BFY51 \& 20 D

BC114 \& 12 D \& BC212/212L \& 14 p \& BFY5 \& 20

BC147/8/9 \& 12p \& BC212/212L \& 14 p \& BFYS \& BC54:/558A

BPD \& AF178 \& 30 p

BC153/7/8 \& 12 p \& BF194 \& 12p \& OC71 \& 12p

BC182/182L \& 11 p \& BF197 \& 13p \& $2 N 3055$ \& 50 p
\end{tabular}

POPULAR DIODES-1N9146p, 8 for 45p, 18 for 90p N9168p, 6 for 45p, 14 for $80 \mathrm{p}, 1 \mathrm{Si4} 5 \mathrm{p}, 11$ for 50p, 24 to 41: $1 \mathrm{~N} 41485 \mathrm{p}, 6$ for $27 \mathrm{p}, 12$ for 48 p ; INi 400151 p ; 1 N 400
 IN4007 81 p .
LOW PRICE ZENER DIODES -400 mW , Tol. 5% at mA. Falues a vallable. $5 \mathrm{~V}, 3.3,3.6 \mathrm{~V}, 4.7 \mathrm{~V}$, $6-2 \mathrm{~V}, 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}$,
$13.5 \mathrm{~V}, 16 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}$. ALL at $7 p$ emet, 6 for $39 p$, 14 tor 84 p. $8 P E C L A L O F F E R$ 100 Zeners for $\mathbf{2 5} 50$.
RESIETORS-High stability, low noise carbon film 5% iW at $40^{\circ} \mathrm{C}$, tW at $70^{\circ} \mathrm{C}$. E12 series only-from $2 \cdot 20$ to $2-2 M 0$. ALL at 1 p each, 8 p tor 10 of any one ralue, 70 p for 100 of any one ralue. SPECIAL PACK: 10 of each value 2.2 a $202-2 \mathrm{Mn}$ (r30 resistors) is.
uicon (1 for 30 p). SUBMIMIATURE VERTICAL PRESETS-0-IW only
 $2.2 \mathrm{k} \Omega, 4.7 \mathrm{k}$ n, $6.8 \mathrm{k} 9,10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k}$ n 100 k 日, $250 \mathrm{G}, 680 \mathrm{kn}$. $1 \mathrm{Mn}, 2.5 \mathrm{M}, 5 \mathrm{M}$.
PLEABE ADD 10p POBT AND PACKING ON ALL CORT OF BEA/AIRMA1L

PLEASE ADD 8\% V.A.T. TO ORDERS
Send S.A.E. for lists of additional ex-atock itema

GUARANTEED BRAND NEW SEMI CONDUCTORS, BC:10; Transistors (general purpose $n \mathrm{~m} \|$), 9p. 13('1iT Transistors (general purpose $p_{m} \mu$), 11 p . $2 \mathrm{~N}: 3055$ Transistors (high jower), 45p. 1×4004 jionde 400 V PIV $1 \mathrm{~A}, 5 \mathrm{p}$ 1. $\mathrm{N}+143$ Diode, 4p. Wata sheets for each of
 (.W.O. All orders despatched same day send large s.A.k. for full lists of semiconductors, caps, res., muts, serews, etc. NEsTRA ELECTROXIC'S LTI)., Scott itreet, Bognor Regis, Sussex

BETA DEVICES FOR BETTER PRICES										
TRANSISTORS	Diodes		1.C. 5							
AC 187/8pr $\quad 0.41$		- 04	709C 70.99	0.30						
BC10\%		-14		$0 \cdot 30$						
BClos 0.09	eri? \|N400	?		709 C D L.L. 741 C to.	0.36					
BC 109C 0.11	INTMOI	:011	741 C D.ILL 0.36							
$\begin{array}{ll} \mathrm{BC} 113 & 0.14 \\ \mathrm{BC} 126 & 0.13 \end{array}$	Sc.5 in3099		$\begin{aligned} & \text { 723C D.I.L. } \\ & 747 \mathrm{C} \text { D.IL } \end{aligned}$	0.80						
BCY70/71/72			$0 \cdot 58$							
				748C D I.L. 0.36						
$\begin{array}{ll}\text { BFX88 } & 0.20\end{array}$			BRIDGES							
BFYS0 0.18	D.I.L. SOCKETS		IA 100VIA 600 V	0.20						
$\begin{array}{lll}\text { BFYS } 1 / 52 & 0.12\end{array}$		O. 12		0.302.00						
${ }_{2 N}^{2 N 646} 00.30$			20 A 200 V							
$2 \mathrm{~N} 3053 \quad 0.14$	$10 . \mathrm{Pan}$ O. 0.14		ZENERS							
TIP29.A 0.49										
$\begin{array}{ll}\text { TiP3\|A } & 0.61 \\ \text { TiP4\|A } & 0.74\end{array}$			BZYR8 3-3V-							
ALUMINIUM ELECTROL VTICC CAPACTTORS										
$\begin{array}{ll}16 \mathrm{~V} & 0.07 \\ 25 \mathrm{~V} & 0.07\end{array}$	$\begin{array}{ll}0.07 & 0.07 \\ 0.07 \\ 0.00\end{array}$. 10	. 12 0.14	22						
			$\begin{array}{llll}3 & 0 & 16\end{array}$							
C.W.O PLUS P.P. 15p TO BETA DEVICES										
Abbey Chamb	4 Highbridge		Street.							

L.E.DS. Red 12p; 13T119 gold bonderl 75p; BT119 unmarked tested 35p; 10A 400 V thyristors \&V 35 mA gate 35 p ; 5A 300) 24 p ; 10 A 400 V stud diodes 27 p ; 5 A 300V 22p numerical read out tubes type G.N4A 95p; EX-TV panels damaged some colour fantastic value 10 for $\$ 1.65 \mathrm{P}$. \& P. 650; 10 compute panels 11 P. © P. 30p; 10 uncompleted circuit various on veroboard 11 P. © P. 30p. S.A.E for lists. We have Lots of otlier cheap and ohsolete gear in nur retail shop at INDI'STRIAL RF SERVICMA, 51 Deptford Kroadway, Lomlon, sE8 4 PH . Tel. 01-692 4284
VALVES 1930 TO 19752,000 types in stock many obsolete. List 15p, Transistor list 15p We buy new and hoxed valves also transistors COX RADIO (SUSSEX) lid., The Parade East Wittering, Sussex. Tel. West Wittering 2023

R.T. SERVICES MAIL ORDER ONLY

 77 Hayfield Rd., Salford 6, Lancs Tapped Auto Transformer, $240 \mathrm{~V}-110 \mathrm{~V}$ 80 watts, 11.75 P.P. New.Tapped Auto Transformer, 240V-115V, 200 watts, E4 P.P. New.
, 00 Watt Valve Output Transformer KT88s, ete. 8 or 15Ω or 100 vole line out put, E12P.P
M Tuner with R.F. Stage and A.G.C 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\left\{1.37 \frac{1}{2}\right.$ inc. P.P.
Crouzet Geared Motors, 30 r.p.m. New, fl. 54 inc. P.P.
UHF TV Tuners. Transistorised, $£ 1 / 85$
Panels with I.C's on $7 \frac{1}{2}$ p per I.C. min
order 10 I.C's. $7.5 V+7.5 \mathrm{~V}+\mathrm{A}, £ 1$ inc. P.P $12-0.12 \mathrm{~V}, 100 \mathrm{~mA}, \mathrm{f} 1.10$ inc. P.P. $9-0.9 \mathrm{~V}$ $100 \mathrm{~mA}, \mathrm{~F} 1 \cdot 10$ inc. P.P. $29 \mathrm{~V} 50 \mathrm{~mA}, 85$ p inc. P.P. $6-0-6 \mathrm{~V}, 100 \mathrm{~mA}, \varepsilon 1 \cdot 10 \mathrm{inc}$. P.P.
Transformer. 24 volt, approx. I amp 6.3 V CT approx. $500 \mathrm{~mA}, 61.40$ inc. P.P. Transformer. 20 volt, 1 amp, $f 1 \cdot 25$ P.P Transformer. 45 volt, 2 amp, $\varepsilon 3$ P.P. P.C. Board. $/ / 5,5 \frac{1}{2} \times 5 \frac{1}{2}$ in, 10 for $~ \$ 1$ inc. P.P. Transistorised Timer. Variable delay 110 or $250 V$ A.C. input, With instructions.
Brand new. $£ 2$ inc. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ Power Unit Components Transformer. 18 volt I amp F/W bridge rectifier, 21250 mfd capacitors, all new $\mathrm{El} \cdot 40$ per kit. P.P. Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$, $4{\frac{1}{}{ }^{\prime \prime}} \times 1{ }^{17^{\prime \prime}} 80 \mathrm{p}$. inc. P.P
Mixed Pack of C280 series Mullard capacitors. 100 for $\in 1 \cdot 15$ inc. P.P
4 Panels each with XN3 type Nixie tube ON $\mathbf{1 1} \cdot 85$ inc. P.P. Min. order 4

CLEARING DISTRIBUTOR STOCKS, tran sistors, diodes, components, etc. Sample pack 65 incl. postage or send stamp for list REDHAWK SALES LTD., 10 Maple Lodge Close, Rickmansworth, Herts. Mail order only.

A AXIAL	oduc		DEPT. 25 23 aveay avenue HIGH WYCOMBE BUCKS	
AERIALS 4 ELEMENT FM STEREO $53.80+$ VAT +50 P P. \& P 18 ELEMENT TV $52 \cdot 00+V A T+50 \rho P . \& P$ 10 ELEMENT TV £1.75 - VAT + 50D P. \& P Now design. superior quality. including mounting bracket and fuil instructions				
AC127	20 p	BCY70	18 p	1 N 4148
${ }^{\text {ACC }} 107$	${ }^{\text {P }}$	${ }_{2} \mathbf{2} 2925$	${ }_{12 \mathrm{P}}$	-00mv
AC108 BC109	${ }^{\text {g }} 10$	$2 N 3055$ 1×4001 1	${ }_{50}{ }_{5}$	${ }_{3}^{\text {Olosiones }}$
${ }^{8 \mathrm{BC} 113}$	${ }^{10}$	iN4002	${ }_{5 p}$	741
	18p	${ }_{\text {in }}$ in 40003	${ }_{6 p}{ }_{\text {Sp }}$	${ }_{37 \mathrm{p}}{ }^{\text {c/m }}$
ADD 8\% VAT + 10 p P. \& P. per ε under $£ 5$ C.W.O. MAIL ORDER ONLY				

BRAND NEW COMPONENTS BY RETURN, Electrolytics, $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 0.47,1.0,2 \cdot 2$, $4 \cdot 7,10 \mathrm{niF} ., 4 \mathrm{p} ; 22,47,4 \frac{1 p}{}(50 \mathrm{~V}, 5 p) ; 100,6 p$ ($50 \mathrm{~V}, 7 \mathrm{p}$) ; 220, $7 \mathrm{p}(50 \mathrm{~V}, 9 \mathrm{p}$); $500,9 \mathrm{p}(50 \mathrm{~V}$ $14 \mathrm{p}) ; 1000 / 25 \mathrm{~V}, 15 \mathrm{p}$. Subminiature bead-type 14p); $1000 / 25 \mathrm{~V}, 15 \mathrm{p}$. Subminature bead-type $\begin{array}{ll}\text { tantaluns, } \\ 1.0 / 35 \mathrm{~J}, & 2.2 / 35 \mathrm{~V}, \\ 4 .-135 \mathrm{~V}, & 10 / 20 \mathrm{~V}, 22 / 16 \mathrm{~V},\end{array}$ $47 / 6 \mathrm{~V}, 100 / 3 \mathrm{~V}, 9 \mathrm{p} . \quad$ Mylar Film $100 \mathrm{~V}, 0.001$, $0.002,0.005,0.01,0.02,2 \ddagger \mathrm{p}: 0.04,0.05,3 \mathrm{p}$ Mullard tubular polyester 400 V E6 series $0.001,0.022,3 p ; 0.03: 3-0.1,4 \mathrm{p}$. Mullard polyester 160 V tubular or 250 V miniature for vertical mounting, E 6 series, $0.01-0.047,3 p$ $0.068,0.1,4 p ; 0.15,0.22,5 p ; 0.33,6 p ; 0.47$ $8 \mathrm{p} ; 0.68,10 \mathrm{p} ; 1.0,12 \mathrm{p}, 1.5 / 250 \mathrm{~V}, 16 \mathrm{p} ; 2.2$ 250 Y , 19p. Mullard mhiniature C' 333 ceramics 63 V E12 series $2 \% 1.8 \mathrm{pF}-47 \mathrm{pF}, 2 \frac{1}{2} \mathrm{p} ; 56 \mathrm{pF}-$ $330 \mathrm{pF}, 3 \mathrm{p}$. Plate ceramics 50 V E6 series $470 \mathrm{pF}-47,000 \mathrm{pF}, 2 \mathrm{p}$. Polystyrene 63 V E12 series $10 \mathrm{pF}-1,000 \mathrm{pF}, 2 \frac{1}{2} \mathrm{p}, 1,200 \mathrm{pF}$ $10,000 \mathrm{pF}, 3 \frac{1}{2} \mathrm{p}$. Niniature highstab. carbon film resistors $\frac{1}{1 W}$ E12 series 5\% (10\% over $1 \mathrm{M} \Omega) 1 \Omega-10 \mathrm{M} \Omega, 1 \mathrm{p}$; $1 \mathrm{~N} 4148,34 \mathrm{p}$; 1 N 4002 5p: $1 \times 4006,7 p$. Postage 10p. Prices VAT inchusive. THE C.R. SUPPIM CO., 127 Chestertield Road, Sheffield, S8 ORN

with Data clip 1p			0125	02	$\begin{aligned} & \text { D } 1 \text { L } \\ & \text { SOCKET } \\ & \text { 8 pin } \\ & 12 \mathrm{p} \\ & 14 \mathrm{pin} \\ & 13 p \end{aligned}$	
	RED		15p	19p		
	GRE	EN	27p	33p		
	YEL	OW	27p	33p		
INFRA-RED LEDS with Data		$550 \mu \mathrm{~W}$ axial lead, 49p $1 \cdot 5 \mathrm{~mW}$ TO46, $£ 1 \cdot 10$				
OPTO-ISOLATORS wilh Data IL74 1.5kV, 150 kHz $43502 \cdot 5 \mathrm{kV}, 5 \mathrm{MHz}$ ع1 ع2. 25						
$\begin{aligned} & \text { THYRISTOR } \\ & \text { TOS 1A } \\ & \text { TO66 } 3 \mathrm{~A} \end{aligned}$		$50 \mathrm{~V}$	400 V	NE 555 2N4 14 7400 Dalo		
		27 p				
Mlca + AC127/8 AFT17 BC107 BC108 BC109C BC147/8/9/ BC169C BC177/29: BC182/3/4L BC212/3/4L BCY70 BCY71 BCY72 BFY50/51 OC71 2N706 2N2094/6	bushe	TO	066			
		$\begin{array}{ll}\text { 2N } 2926 \text { (G) } \\ \text { 2N3053 } & 12 \mathrm{p} \\ \text { 120 }\end{array}$				
	10 p					
		2 N 3055		INa001 IN 4002		
	${ }_{100}^{12}$	${ }_{\text {2N3702/4 }}^{\text {T1S }}$		in4002 IN4004		
	12p	2N3819		INA148OA47		
	$17 p$	2N3823 30p		OA91		
	11 p	voltage regs.		OA95		
	15p	Voltage regs.		${ }_{\text {OA202 }}$		
	12 p			bridge fects.		
		$600 \mathrm{~mA} \quad \$ 1.40$				
	10 p	2ENERS ${ }_{\text {2.7-33V }} \begin{gathered}\text { B2Y88 } \\ 98\end{gathered}$				
	16 p			$\begin{aligned} & 2 \mathrm{~A} 200 \mathrm{~V} \\ & 2 \mathrm{~A} 400 \mathrm{~V} \end{aligned}$	- 4*p	
PRICES INCLUSIVE + 15p P. \& P. (1st class)						
ISLAND DEVICES, P.O. Box 11, Margate, Kent						

SERVICE SHEETS

SERVICE SHEET8, Radio, TV, etc. 8,000 models. Catalogue 20 p . S.A.E. enquiries. telfay, 11 Maudland Bank, Preston.

BELL'8 TELEVIBION 8ERVICE8 for service sheets, manuals, books on radios, T.V.s, etc. Service sheets 50 p plus S.A.E. Free book lists on request. Back issues of P.W., P.E., E.E., TV available $25 p$ plus $9 p$ post. S.A.E, with enquiries: B.T.S. (Mail Order Dept.), 190 Kings Road, Harrogate, Yorks. Telephone (0423) 55885.

LADDERS

LADDER8, timber and aluminium. Tel. Telford 586644 for brochure.

FOR SALE

INCOMPLETE P.E. SYNTHE8ISER. Details: S. MALIK, "Punjaby", Lime Walk, Dibden Purlieu, soton, Hants.

WOW AND FLUTTER METER (Tecnica WF971). Vnused, as new, £275. Tplephone MIKE YORKE 027-588 (Bitton) 2707 (daytime) or 0249 (Corsham) 713283 (evening).

08CILLOSCOPE (Cossor (iDU 110) T/B reconditioned, as new, £255. Telephone M1KE YORKE 027-58* (Bitton) 2707 (laytime) or 0249 (Corsham) 713283 (evening).

THE PE SOUND SYNTHESISER, fully built, PCB's throughout also Telly Tennis game, fully built. Offers. All letters replied. MR CHANDLER, \& Cilhaul Terrace, Mountain Ash, Glanorgan, South Wales, CF45 3ND.

WANTED

BTUDENT, very'little time, no equipment, would like to buy completed or alnost conpleted P.E. koyboard synthesiser-Offers please. Will attempt to answer all correspondence, refunding postage. (4. S. HOBSOX, 3 Grange Crescent Road, Sheffield, 11.

TOP PRICES PAID

NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.
"RADIO \& TV SERVICING" books wanted from 1961 onwards, any quantity. 22 paid per copy by return of post. BELL'S TELEcopy by return of post. BELLON KICES, 190 Kings Road, Harrogate, Yorks. Tel. (0423) 55885.

MISCELLANEOUS

LIGHTING CONTROL UNITS

$3 \times 1 \mathrm{~kW}$ per channel sound-to-light converter using isolated control circuitry for maximum safety. The unit comes in kit or ready bullit form and teaturas
individual senstivity controls, sensitivity range awitch and dimming switch. (Bypass controls as an optional
 Details of dimmers, sequencers and other lighting Details of dimmers, aquencers
control unita avaliabie on request.
Mail order or written enquifies only to:
SELEKTRON
21 Prlor's Road, Windsor, Berks. SL4 4PD

METER REPAIR8. Ammeters, voltmeters, multi-range meters, etc. Send to: METER mePAIRS, 21 Mount Road, Thundersley, Bentleet, Essex, SS7 1HA.
BE PROUD OF YOUR WORK AND BUILD

The PE OAION HI-FI STEREO AMPLIFIER Uses Our GB1 Bec cabinet (Illustrated in Jan. 1975,
Practical ElecIronics). Unpunched 4.58 ; Punched with lettered front panel $\mathbf{5 6} \mathbf{5 3}$. S.A.E. with enquires please.
H.M. ELECTRONICS (PE), 275a Fuiwood Road, Sheffield S10 3BD (Behind Broomhill P.O.)

DIGITAL CLOCK CHIP, AY-5-1224, with data and circuit diagram, $\mathbf{2 3} 66$ plus VAT. "Jumbo" LE1) digits (16 mm high), type ILL-747, only $\{2.04$ each plus VAT, post free. GiREENBANK ELECTRONICA, 94 New ('hester Road, Wirral, Merseyside, L62 5 Al (t.

ENAMELLED COPPER WIRE $\begin{array}{lll}\text { S.W.G. } & 116 \text { Reel } & \text { 11b Reel } \\ 10-14 & 61.05 & 615\end{array}$ ${ }^{35-40}$ All the above prices are inclusive in U.K.

 COPPER SUPPLIES102 Parrswood Rd., Withington, Manchester 20 Telephone 061-2243553

AERIAL BOOSTER8 \&3.20 P. \& I^{2}. 20 p . We make three types of boosters: L11-VHF radio; L12-VHF tos TV. Please state channel numbers. L45-UHF 625 TV. S.A.E. leatlets. BARGAIN PACK POLYESTER (C280) CAPAGITOR8 $250 \mathrm{~V} / \mathrm{W}$ and $400 \mathrm{~V} / \mathrm{W}$ Very yood mixed selection from 0.014 F to 2.24 F . Price 100 \&1. 1' \& P, $15 p$ (our choice). LANCASHIRE MALL ORDER, 6 William street, Stubbins, Rausbottom, Bury, lianes.

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

BULK OFFERS

All goods full specification and marked
1 1 4001 £2.50/100; 1N4002 $£ 2 \cdot 80 / 100$; 1N4003 ع3-20/100; 1N4004 $83 \cdot 60 / 100 ; 1$ 1N4005 $\mathrm{E4}$-30/100: 1N4006 £4. 70/100; 1N4007 £5.00/100; 1N914 £3/100: BC116A E8/100; BC267 E6/100: 741C E19/100; NE555V £39/100.
400MW Zeners, most values $85 / 100$.
Assorted computer panels $£ 25 / \mathrm{cwt}$.
Assorted small value caps-mica ceramic, etc. ع26/10.000.
Farric Chlorlde $£ 30 / 10011 \mathrm{~b}$ bags.
Miniature mains transformers. all 100 mA Sec: $6-0-6 \mathrm{~V}$ £5/10; $9-0-9 \mathrm{~V} \varepsilon 5 \cdot 50 / 10 ; 12-0-12 \varepsilon 6 / 10$. fin ex-computer tape on 10\$in NAB spools ع100/100.
Veroboard offcuts 10 lb £22.
Minimum order £5; Carriage Free. Add VAT at appropriate rate.

JUNIPER ELECTRONICS (PE1)

P.O. Box 61, Southampton

HARDWARE. Comprehensive range of screws, nuts, washers, etc. in small quantities, and many useful constructors' itens. Sheet aluminium to individual requirements, punched, drilled, etc. Fascia panels, dials, nameplates in etched aluminium. Printed circuit boards for this magazine, and other individual requirements, one-off's and small runs. Machine engraving in metals and plastics, contour milling. Send $24 \frac{1}{2} p$ stamps
 for catalogue. RAMAR SERVIGE, Masons Road, Stratford on Avon, SERVIGES, Masons Road, Stratford on Avon,
Warwicks. CVB7 9NF.

Add top P. \& P. for orders undur $£ 2$.
Data, and circuliss where approptiate Data, and circ ulis where appropriate.
supplied with orders. or aveilisble sapa. rately (send gin x 4 in S.A.E.). ADD VAT ot 0%.

Economy 0 L 704 Red 03 in LED 7 Segment diaplay Common Calhode

 solse $54-90 ; 3.000$ pina for $\Sigma 18 \cdot 50$ (instructions eupplied) Sond S A.E for zample Nyion Nu
Nylon supports availabo--Samplas encloved with any pin order ACA CMOS Owte
SINTEL, S3B ASTON STREET, OXFORD. TEI, (0865) 43203

SUPERB INSTRUMENT CASE by Bazelli, manufactured from heary duty PVC faced steel. Hundreds of radio, Electronics and $\mathrm{Hi}-\mathrm{Fi}$ enthusiasts are choosing the case they require from our range of over 200 models. Largest choice at highly competitive prices, why pay more? Fast despatch. Free literature (stamp would be appreciated). BAZELLI, Department No. 25 , St. Wilfrid's, Foundry Lane, Halton, Lancaster, LA2 6LT.

TRIAC8 (plastic) 10A/400V 64p (60 p for $3+$). Diac 19p. NE555y 58p (55p for 3+). LFI)'s 0.2 in. dia. red 20 p ; amber, green. yellow, 25 p . 1. \& P. 10 p . Add VAT. ('WV.O. T. K.
ELETRONIC, 106 Studey (irauge Road, London, W7 21 x .

filbre optic suppliers

MARE'S TAILE. Bulid decorative displey with thle professlonally piniahed unit.
FlenoFLEX 81zE 1 . Flexiole 440 , atrand olate light condult bundie dia. 1.14 mm . 40 p per metre ($\mathbf{E} 3$ Der 10 m).
FIBROFLEX SIZE 4. 228 mm bundie dia. $51-50$ per metre (E12 per 10 m)
CROFON $1610.64-$ strand platic light condult, bundie dia
1.8 mm , 0.0 .3 .3 mm . $£ 1.20$ per metre $(59.30$ per 10 m). 1.8 mm . O. 0.3 .3 mm . 21.20 per moire (2.30 per 10 m). PLASTIC OPTICAL MONOFIBRE. For multiple illumination

OPTIKIT 103. Contalne 2 m Crofon 1640 plu 5 m ench FP20. OPTIKIT 103. Contalne 2 m Crofon 1610 plua 5 m each FP20.
FP40. FP60 plut pollshing compound. A handy pack for the experimenter. $84 \cdot 70$
LENBES AND AEFLECTORs. We stock a range of 8 lensen
and 5 raflectors for uee in proximity detectors. intruder detectors, batch countera. proximity detectors. inituder optical communicetiona.
OPTIKIT LE. 1 ench of 6 ienses. c2-50.
OPTIKIT RRS. 1 ench of 5 reflectors, E1-50.
CIRCULAR POLARISERS. Cut that glare. Reduce specuiar refloctlon by up $8020 \times \rightarrow$ nhance contrast on cris. LED green/neutral. 50 mm squere $10 \mathrm{p} ; 75 \mathrm{~mm}$ E1. $20 ; 150 \mathrm{~mm} \mathrm{e4}$. LINEAR FOLAMI8ER8. FOr light valves, stresa analyste. type HN32. Type KN42 is for high tomp use in projectore.
Use palr to make a paychedelic light show. Price as for Use opatr to make
circular polarleere.
LIGHT SOURCES AND DETECTORS: MV54 Miniature (2 mm) Red LED. 20 P (10 - 14 p): MLED500 TO92 Red LED.
 Yellow/Green. 30 p ($10+27 \mathrm{p}$): 2N5777 High Senaitivity Photoderlington Silicon Detector. gain $\times 2.500$, 50 p
($10+45 \mathrm{p}$) MRD (10 - 45 p): MRD150 Sllicon Phototranaletor-high apeed. (s) good cenalitivlty. 70p $(10+87 p)$
*NEW MLs203. Lateat Motorole Light Activated SCA. Migh sensitivity $10 \mathrm{~mW} / \mathrm{cm}^{2}$; high current 400 mA (5 A peak).
BoV. Switeh amall motors or relay direct from optical BoV. Switeh argil motors or roley direct
control. up to 24 W power. $\mathbf{1} \cdot 20(10+\mathrm{i} \cdot 10)$.
SEOSE ULTRABONIC TRANEDUCER. For remote control 40 kHz . Tx/Rx pair, $£ 3.50$.

Ploase add 8% VAT to prices above
Send $\operatorname{gin} \times 81 \mathrm{I}_{\mathrm{S}} \mathrm{S}$ A.E. for short form liet
FIBRE OPTIC SUPPLIERS
(Dept. PE), 2 Loudoun Rond News London NW: ODN
(Plesee note change of addreas)

MISCELLANEOUS
 CONTINUED PAGE 446

C AND G EXAMS

Make sure you succeed with an ICS home study course for Cand G Electrical Installation Work Telecomms Technicians and Radio Amateurs.
COLOUR TV SERVICING
Make the most of the current boom! Learn the techniques of servicing Colour and Mono TV sets through new home study courses, approved by leading manufacturers.
TECHNICAL TRAINING
Home study courses in Electronics and Electrical Engineering, Maintenance, Radio, TV, Audio, Computer Engineering and programming. Also self-build radio kits. Get the qualifications you need to succeed
Free details from
INTERNATIONAL
CORRESPONDENCE SCHOOLS
Dept. 730, Intertext House, London SW8 4UJ
Or phone 01-622 9911 (All hours)

TELEVISION TRAINING

I6 MO NTH S' full-time practical and theoretical trainIng course in Radio and TV Servicing (Mono and Colour) for beginners.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.
NEXT SESSION commences on April 2lst.
Prospectus from London Electronics College, Dept. A5, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

SITUATIONS VACANT

CITN
 gSOp.ut
 can be yours

Jobs galore! Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America course, you train as a Computer Operator in only 4 weeks!
It can pay around $£ 35 \mathrm{p} . \mathrm{w}$. as a starter and can reach over $£ 90$ p.w. After training, our exclusive ap pointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators Training Centre Y35, Oxford Hse. 9-15 Oxford St., W.1.Tel. 01-734 2874

APPOINTMENTS

ELECTRONIC CRAFTSMEN

Is your present job routine and uninteresting?

We are a research establishment and our craftsmen are engaged on a wide variety of work in the fields of prototype and small batch wiring and assembly, test and inspection, maintenance fault finding and repair. Why not join us and enjoy working in first class conditions in the country.
You can expect gross earnings including overtime of £45 per week, and we can offer good housing at low rental (for applicants who reside outside the radius of our Assisted Travel Area) together with 3 weeks' paid holiday with holiday bonus, free pension and excellent sick benefit scheme.
Applicants who should have served a recognised apprenticeship or have had equivalent training together with experience in one of the fields detailed should 'phone Tadley. 4111 (STD 073-56 4111) Ext. 5230, or write to:
Industrial Recrultment Officer
(PA/77/PE) Procurement Executlve
Ministry of Defence
AWRE Aldermaston
Reading, Berks. RG7 4PR

ELECTRONICS VACANCIES

Ministry of Defence Experimental Establishment in the Lake District requires experienced electronics mechanics to build, develop and diagnose a wide range of instrumentation.

Rate of pay for 40 hour, 5 day week $£ 33 \cdot 41$ plus Productivity Bonus of $£ 4$ and Cost of Living Allowance of $£ 4.40$ per week.
The posts are pensionable, there is a sick pay scheme, three weeks' annual paid holiday and an assisted travel scheme. There is a prospect of housing accommodation within a reasonable period for a married man, hostel accommodation is immediately available for single men.
If you have served a recognised apprenticeship or have had equivalent service training and would like to work in a beautiful part of the country, send for an application form to:

Personnel Officer
Ministry of Defence (Procurement Executive)
Eskmeals
Bootle Station
CUMBRIA LA19 5YR
Telephone: Ravenglass 214/5/6

Oil Exploration

G.S.I. Lid, a subsidiary of Texas Instruments requires technicians with approximately four years experience in maintenance and repair of digital and analogue electronic equipment and qualified to ONC/HNC or City \& Guilds (F.T.C.).

The openings available are in overseas marine seismic operations and are based on a 26 month contract with opportunities for home leave during this period.

The type of people we are looking
for are single men who want a career that involves travel, work on shipboard Texas Instruments navigation and seismic digital recording equipment but will still be prepared to get their hands dirty.

If you feel that you fit the qualifications listed and are looking for a job that is not " 9 a.m. to 5 p.m." contact David Kennedy, Personnel Department, G.S.I. Ltd, Canterbury House, Sydenham Road, Croydon, Surrey.Tel:01-6866511, ext 257.

Geophysical Service International Lid.

MISCELLANEOUS CONT'D

P.E. MINISONIC HOUSING with ready drilled front panel teak finish, $\mathbf{8 5} 50$ inclusive p. \& p. Other cabinets built on request and specification from: D. M. BAILEY, 49 The Glen, Rainham, Essex.

IC SOCKET PIN8 for low cost mounting of 8 to 40 pin DILs. $50 p(+4 p$ VAT) for strip of 100 , $\mathrm{E1} \cdot 50(+12 \mathrm{p}$ VAT), for $3 \times 100, \mathbf{8 4}(+32 \mathrm{p}$ VAT) for 1,000 . Instructions supplied-send S.A.E. for sample. 10 p P. \& P. for orders under £2. SINTEL, 53b Aston Street, Oxford. Tel. 086543203.

STEREO Pickup Pre-amp RiAA.

Suitable p.u.'s $2-10 \mathrm{mv}$ output. Features ultra low noise IC 70dB. type. Max. output up to Iv. rms. (dep. on input). Frequency Response $20 \mathrm{~Hz}-100 \mathrm{KHz}$. Mains powered for easy installation.
\&5-95 incl. VAT. P. \& P. I5p.
S.A.E. for details of other modules.

P. F. STEVENS Electro-Acoustics 8A CLARENCE ROAD

 SOUTH BENFLEET, ESSEXLOW COST I.C. MOUNTING. 100 I.C. pin sockets 60p. Quantity rates. S.A.E. details and sample. 7 and 8 hole plastic supports $5 \mathrm{p} / \mathrm{pair}$. (P. \& P. 5p/order). LED (MLED500) $20 p$ each post free. Quantity rates. P.K.G. ELECTRONICS, Oak Lodge, Tansley, Derbyshire, DE4 5FE.

PRINTED CIRCUIT BOARDS. Manufacturer's offer: PCB's for ALL "P.E. and P.W." projects published after June, 1974 , at ONE price, 70p each. Any 5 \$2-85. PRODUCTION SPACE available for: PCB Production, PCB and Electronic Design to Spec.: electroplating, silk-screening, roller and electro tinning. All art-work and photography undertaken. Send basic circuit, P.C layout or P.C. naster stating quantity required for estimate by return, or phone: W.K.F. ELECTRONICS, Dept. 1,0., Welbeck Street, Whitwell, Worksop, Notts., S80 4 TW . Tel.: Whitwell (Derbys.) 695.

FANTASTIC NEW MICROTEST 80

MEASURES
ONLY
$90 \times 70 \times 18 \mathrm{~mm}$ ELECTronic zeron
Amazing Value at $£ 11.95$ 8 fields of measurement and 40 ranges

PRINTED CIRCUIT BOARD IS REMOVABLE WITHOUT SOLDERING

Volte d.c. th ranges: 100 mV . $2 \mathrm{~V} .10 \mathrm{~V}, 50 \mathrm{~V}, 200 \mathrm{~V}, 1.000 \mathrm{~V}$ (20kn/V). 2% precision on d.c. and a.c. Volta a.c. 5 ranges: $1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}(4 \mathrm{k} \cap / \mathrm{V})$ Amp. d.c. 6 ranges: $50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}$ Amp. A.c. 5 ranges: $250 \mathrm{HA}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}$. $250 \mathrm{~mA} .2 \cdot 5 \mathrm{~A}$ Ohms iranges:
di Ω until 5 Mn).
\vee Output 5 ranges: $1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1.000 \mathrm{~V}$. Decteols 5 renges: $+8 \mathrm{~dB},+22 \mathrm{~dB},+36 \mathrm{~dB},+50 \mathrm{~dB}$ $+62 \mathrm{~dB}$
Capaclity 4 ranges: $25 \mu \mathrm{~F}, 250 \mu \mathrm{~F}, 2,500 \mu \mathrm{~F}, 25,000 \mu \mathrm{~F}$

SUPERTESTER 680R ICE 20.000 Ohm per Volt sennitivity Fully screanad againstextornal
magnotic fields Scale width magnotic fieldo Scalo width
and small cate dimensions (128 x and small cata dimenslons ($128 \times$
$95 \times 32 \mathrm{~mm}$) Accuracy and $95 \times 32 \mathrm{~mm}$) Accuracy and
stability $(1 \%$ in D.C. 2% in A.C.)
of indiceted rading of indicated raading Simplicity - Full ranges of accessories 1.000 times overload Printed
circult board is removable without
\& 18.50 de-soldering Morerangesthanany Acceasorles Extre Accessories (extra) svailable to conver Microtest 80 and Supertester 680R into following. LIGHTMETER CLAMP, TRANSISTOR TESTER. TEMPERATURE PROBE, PHASE SEQUENCE INDICATOR, $\cap \times 100 \mathrm{k} \cap$ Multiplier. SIGNAL INJECTOR-Send for details
MORE RANGES FOR LESS MONEY! AC/DC Muitimeter type U4324 A-DC 0.06-3A-6 Ranges A-AC $0 \cdot 3-3 A-5$ Ranges.
V-DC $0.6-1200$ V \rightarrow A Aenges. V-DC $0.6-1200 \mathrm{~V}-9$ Reng
V-AC $3-900 \mathrm{~V}-\mathrm{Ranges}$. Frequency in the range of 45 to
20 kHz . Resistance: 500 隹 20 kHz . Resistance: 500 ohm to
 \times 63mminly $£ 8.85$

ALPHANUMERIC NIXIE TUBES B7971 The Alphanumeric
NIXIE tube has the NIXIE tube has the ablity to display
all the letters of the alphabet. numerals o 1 hru 9 and special
characters in a Fingle tube. From the standpoint of both read-
ability and elactrical charactaris. tics, the Alph numeric NIXIE

including $\star 170 \mathrm{~V}-21 \mathrm{~mA}$ provides many unique benelits continuous line characters of equal height \& Memory with simple solid state drive circuits * Readablity in high ambient light 200 footiamberts brightness t Long lite with no loss of brightness * Character haight $2 \downarrow$ in.
Bases for above 80p each.
Price only $99 p$ each plus 16 p P./P.

JUST ARRIVED!!

NUMERIC INDICATOR TUBES

Ultra-long life. high quality. $0-9$ and 2 independent deci mal points. Supply voltage 200 V d.c. Current 14 mA
Putse duration 100 ms . Character height 0.51 , overall Putse duration 100 us . Character height 0.51 , overall
size i. size 9.4
Brand
Brand now, guaranteed. Surplus to manufacturer's
requirements. Type 85853 st
1-25 £1.00; $25+90 p ; 100+80 p$ $1,000+$ price on application.

49-53 Pancras Road, London NW1 2Q8 Tel. 01-837 7781

EVEREST INSTRUMENTS LIMITED
34 Shakespeare Streef, Nottingham Tel. (0602) 45466
All prices quoted include P \& P and VAT Min order
£1. C.W.O. only. 12×10 in $\&$ A E for full lists Trade

TRANSFORMERS

¢ 47 mF	4V	${ }_{7}{ }_{\text {p }}$	$\begin{array}{ll}200 \mathrm{mF} \\ 470 \mathrm{mF} & 25 \mathrm{~V} \\ 25 \mathrm{~V}\end{array}$	1 P
330 mF	4 V	$7{ }^{7}$	1250 m	P
${ }^{33 \mathrm{mF}}$	$6.3 V$ $6.3 V$	78	5000 mF	${ }^{4}$
470	${ }_{6}^{6} 3 \mathrm{~V}$	${ }^{\circ}$	${ }^{10000}+$	
1000 mF .		11.	2500 mFY Y 30 V	320
22 mF	10 V	70	6.8mF 40 V	70
25 mF	lov	7	15 mF -40V	p_{p}
mF	10 V	7p	100 mF 40 V	
100 mF	10V	$7{ }^{7}$	$1000 \mathrm{mF}{ }^{\dagger}$ 5 50V	5
220 mF	10v	7	1 mF 63 V	$7 p$
${ }^{330} \mathbf{m F}$	10V	\%	$2.2 \mathrm{mF} \quad 63 \mathrm{~V}$	$7 p$
15 mF	16 V	$7 p$	4.7 mF 63V	$7 p$
33 mF	18 V	7	10 mF 63V	${ }_{p}$
	165	${ }_{90}$	15 mF 63V	7 p
330 mF	16 V	12p	${ }_{32 \mathrm{mF}}^{22 \mathrm{mF}} \quad 63 \mathrm{~V}$	
1000 mF	16 V	20	$000 \mathrm{mF}+{ }^{53 \mathrm{~V}}$	
10 mF	25 V	T	$2500 \mathrm{mF}+{ }^{\text {a }}$ 63V	35
22 mF	25v	7	droemFt c3v	14.45
100 mF	25 V		- Singta aná o c	ng
150 mF	25 V	${ }_{\text {Pp }}$	Sin	
	clear: cans cans			
$60+250 \mathrm{mF}$ 0.03 m 0.03 mf at	$\begin{aligned} & 350 v e \\ & v \operatorname{ctan} t a i \end{aligned}$			${ }_{50}{ }_{50}$
SPEAK				
$2 \ddagger$ in EMI 8	m twee	er 97	92AT	$8{ }^{0}$
${ }_{3} 3$ in Goodm	58 ohm	Twees	¢ 51040 57×18	c1.43
Sin Audax	nm bas	HIFI		[4.17
Sin EMI 8	Dass	4728W		${ }^{25.38}$
Sin EMI ${ }^{\text {a }}$	14N5	4		¢1.18
${ }_{6}^{62} \times 2 \mathrm{in}$ EM1	${ }^{\text {ne }} 8$	$m 938$	300C	¢4. 54
$8 \times \sin$ EM	cone 4		$n 10$ watt	22
10×6 in EM	onm 9	3970 K	H	${ }_{22} 2.26$
$10 \times \sin$ EMI	ohm	iderar	ge 93870CH	5. 36
$10 \times \sin$ EMII	8 ohm 2	ati		611.90
$10 \times \operatorname{Bin}$ El	8 ohm	cone	610 PM59	[3. 57
8 In Elac ${ }^{\text {a }}$	ARM			[3. 57
		, cone	PS6 9858	
12in EMI 2	att 8 on	${ }^{1} 14 \mathrm{~A}$	1200 CP	[13.69
- 13×8 in EM	20 watt	ohm	92390GK H	c6. 55
MISCEL	ANEO	US		
SWR 10 sw	Ingle m			
SWA 50 3w	nd pow	twin	meter	c12. 20
liluminated	V) edg	mote	r $130 \mu \mathrm{a}$	
5×7 leda	nume	Ic ma	trix 14 dil	
B813 trip	vericaps			30 p
BC177 com	mentar	B	$2{ }^{2}$	${ }^{40} 9$
AC 128				14p
10 kn lin 1	- pots			390
100k 100	reo pote	glua	OP switen	$45 p$
${ }_{1}^{250}$ ohm lin	ots plus	S.P	awith in shatt	20 p
110 V solen				5p
8280 A BCO	cado co	untor		1.05
T Twin tunin	00 + 25	pF w	th ganged 100kn	
${ }^{\text {3. }} 7.70 \mathrm{popF}$	compr	saton	trimmers	p
0.47 mF at	\checkmark polyc	bon		
10 mFat	polyce	bona		2 T
0.01 mF at	tubul			$4 p$
0.04 mF at	V			
033m	500			
${ }_{250 \mathrm{~V}} 2280 \mathrm{ml}$	bottios	or sta	hing solution	15p
${ }_{0} 01.00$	0.022.	047		2 p
$\bigcirc 1$				p
033				\%
10				12p
22				20 p

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now With over 10 years' experience in mail-order, we have supplied many famcus people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 15 p for full catalogue to:

254 Ringwood Road, Ferndown Dorset BH22 9AR

P.E. ORION

Complete kit of semiconductors $£ 9.95$ High quality printed circuit
£2.95
this glass fibre p.c.b. is roller tinned and SCREEN PRINTED WITH COMPONENT LOCATIONS.

FERRANTI

8FS59	18 p	27×304	29p	2TX504	55p	ZS170	14p
BFS60	21p	27×310	12p	27×510	25p	2S171	16p
BFS61	21p	2T $\times 311$	14p	27×530	290	2S172	22p
BFS96	19p	21×312	$14 p$	27×531	34 p	ZS174	26p
BFS97	23p	27×313	16p	2 TX550	25 p	ZS176	33p
BFS98	23p	ZTX314	$17 p$	$2 \mathrm{X} \times 551$	27p	2S178	58p
ZTX107	12p	27×330	21p	2N3055	760	ZS270	15p
2TX108	9 p	27×331	23p			2S271	22p
2TX109	14p	${ }_{2 T} \times 382$	15p	* DIODES *		ZS272	25p
2 TX212	14p	27×383	19p	2S120	15p	ZS274	29p
2TX213	15p	27×384	23p	2 C 121	16p	ZS276	38 p
21×214	19p	21 $\times 450$	23p	2S122	19p	ZS278	$61 p$
27×239	16p	TX451	25p	2S123	25p		
21×300	16p	21×500	16p	2S124	29p	* ZENERS	
2 ZX 301	17p	27×501	17p	2S140	26p	KSO30A to	
21×302	23p	$2 \mathrm{X} \times 502$	23p	2\$141	40p	KS180A	28p
27×303	18p	ZTX503	18p	2S142	39p	BZV19 series	15p

MOTOROLA BD699 £1-10, BD700 £1•22, MJE2955 £1•30, MJE3055 75p SIGNETICS UA748CV operational amplifier 55p each.
RCA PRICES SLASHED! CA30900 stereo decoder only $\mathbf{5} \mathbf{3} \mathbf{2 5}$ each ZN414 THE FAMOUS FERRANTI RADIO I.C. Only $£ 1 \cdot 32$ with data.
SCORPIO Mk. II Complete kit of semiconductors $\times 5 \cdot 65$ (State 6 V or 12V)
ALL DEVICES SOLD BY US ARE TOP GRADE. BRAND NEW AND TO FULL MANUFACTURER S SPECIFICATION. We do not sell seconds or rejects. We are specialists in FERRANTI semiconductors and can supply any device to order S.A.E. for quote. Send S.A.E. for our free data sheet and price list for FERRANT semiconductors.

POSTAGE AND PACKING 10p. FREE ON ORDERS OVER 23 ALL OUR PRICES INCLUDE VAT

DAVIAN ELECTRONICS
PO BOX 38, OLDHAM, LANCS, DL2 EXJ

92 Warwick Road, Ealing, London W5 5PT Telephone: 01-567 0424

HE 100

100 WATT POWER AMP MODULE

* Includes large black anodised heatsink-no further heatsinks required.
\star Top grade glass-fibre P.C.B.
\star Uses high quality components.
\star Fully protected-short/open circuit proof.
\star Only 5 external connections.
\star Fully guaranteed.

TECHNICAL SPECIFICATIONS

\star Power output
\star Distortion
\star Frequency response
\star Signal to noise

* Input sensitivity
\star Input impedance
* Supply volts
: 106W.R.M.S. into 8Ω
: 0.8% at full O/P. Typ. 0.4% $15 \mathrm{~Hz}-23 \mathrm{kHz}$ Better than -96dB OdB (0.775V) $10 \mathrm{k} \Omega$ 45-0-45V

Price $£ 20.64$ inc. VAT/P. \& P. HE300 (POWER SUPPLY FOR HE100) Price £12.95 inc. VAT/P. \& P.
NOTE: Power supply HE300 supplied only in kit form. i Power supply cannot be supplied with transformer outside United Kingdom. Cost less transformer: £7-25.
CASED AMPLIFIERS (Slave type for P.A. and disco use). PRX100, 100W Mono, $\mathbf{5 7 5 . 0 6}$ (inc. VAT) PRX200, 200W Mono, $£ 142.51$ (inc. VAT) PRX100S, 100 W per channel stereo, $£ 142 \cdot 51$ (inc. VAT) PRX200S, 200W per channel stereo, $£ 253 \cdot 80$ (inc. VAT)
Front panels complete with in/out sockets and level control, etc. for use with modules. Please ask for details.

[^6]MAIL ORDER,ONLY

N-TE R L Q CK-INEE PIASTIC STORAGE DAWERS

devised for storing smal parts and components
resistors, capacitors, diodes, transiscors, in vertical and horizoncal combinations. Transparent plastic drawers have label slots 10 and 20 have space dividers. 8 uild up any size cabinet for wall, bench or table top

BUY AT TRADE PRICES!
SINGLE UNITS (ID) (5ins $\times 2 \frac{s}{s}$ ins x $2!$ ins). $\angle 2$ DOZEN.
DOUBLE UNITS (2D) (5ins $\times 4 \frac{1}{2}$ ins \times 2!ins). C3.50 DOZEN.
TREBLE (3D) $\$ 3.50$ for 8.
DOUBLETREBLE 2 d
case (6D2), $44 \cdot 90$ for 8 .
EXTRA LARGE SIZE (
DDI) 44.50 for 8.
PLUS QUANTITY DISCOUNTS!
Orders C 15 and over DEDUCT 5% in the f
Orders C 30 and over DEDUCT 71% in the \mathbb{C}
PACKING/POSTAGE/CARRIAGE: Add to all orders under (10. Orders ClO and ovap. packing/postage/carriage free
qUotations for larger quantities please add $\%$ V.A.T. to sotal remittance
FLAADRDNAEE (Dopt. PE5), 124 Cricklewood

OSMABET LTD

We make rranatormere

LOW VOLTAGE TBA WSEOAMEMS

 $4 \mathrm{~A}+12 \mathrm{~V}$ AA. $\mathrm{ct}-40$.
LT TRANEFONMEAE TAPDED EIC. Prin $\sin / 240 V$

MOGET RECTIFIEATHANBFOGMEDS
For FW rect, $200 / 240 \mathrm{~V}$ a.c. $6-0-6 \mathrm{~V} 1.5 \mathrm{~A}$ or $9-0-9 \mathrm{~V} 1 \mathrm{~A}$

MAINS TRAMEFORMERS

OIP TBANBFORMEISS FON POWEA AMPLIFIEMS
 MRT/10. tapped multi O/P IOW E4.
G.E.C. MANUAL OF DOWEN ANPLIFIEAE

LOUDBPEAKEAS FOM AMPLIFIEAB
0; 35W 5I-40; Hi-FI Major Module
 7×4 in $150,51-60 ; 8 \times 5 \ln 3.8$, 15 or 80 ก. $\mathrm{t} 1-75$ each LOUDBPEAKERS
$2 j \ln 8$ or $75 \Omega .2 t \ln$ B or 25Ω. 3 in 3. o. 25 or 35Ω. 3 in 8 op

SPEAKEA AUTO MATCHING THANBFORMED
12W 3 to 8 or $15 n$ Up or down, E1. 50 .
"INSTANT" OULK TAPE/CABAETTI ©MABE日 instant ersbure, gny diemeler tipe ppoole, cest
EYHCNRONOUS GEARED MOTORs, $200 / 240 V$ a.c.

46 Kenllworth Road, Edgwere, MIddx. HAB 3 YG Tel. 01-958 9314

THE RADIO SHOP

16 Cherry Lane, Bristol, BS1 3NG Tel. Bristol 421196. STD Code 0272 Your West Country shop tor electronic components and solld state devices

TRIACS WITH INTERNAL TRIGGERS $\begin{array}{lcccccc}\text { PIV } & 1.6 A & 3 A & 6 A & B A & 10 A & 16 A \\ 100 & 0.27 & 0.30 & \sum^{2} & \sum & \sum & \sum \\ 200 & 0.30 & 0.36 & 0.58 & 0.52 & 0.63 & 0.90 \\ 400 & 0.40 & 0.52 & 0.84 & 0.97 & 1.09 & 0.95 \\ 600 & 0.55 & 0.70 & 1.05 & 1.20 & 1.34 & 1.85\end{array}$

Quantity prices on appllcation S.A.E
LOCK CHIP CT7001
£4.95
The unique CT7001 represents a major breakthrough In clock chip design: incorporating many features available for the first time 365 day calendar- $12 / 24$ hour op.-starmsnocze alarm-six digit capability-direct drive to L.E.D. display-continuous operation during mains fallure.
Copy of data 15 p ; Socket 75 p
SPECIAL KIT comprising $1 \times$ CT7001 $\times 4$ L.E.D. 7 seg. displays data sheets and socket. 110.
704

LIQUID CRYETAL $\$$ digit display, $\mathrm{c7}$ - 49 NE555 Timer IC 8 pin DIL with dala. 00 . 741 Op emp. I.C. a pin DIL with data. 40p.
Please add 8% VAT to all listed prices-P. \& P $15 p$ per order. Send $13 p$ for latest catalogue. Callers welcome

Practical Radio \& Electronics Certificate course includes a learn while you build

3 transistor radio kit.

 Everything you need to know about Radio \&Electronics maintenance and repairs for a spare time income and a career for a better future.

find out how in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast-makes learning easier and something to look forward to. There are no books to buy and you can pay-as-youlearn.

Why not do the thing that really interests you? Without losing a day's pay. you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you ... but it could be the best thing you ever did.

Others have done it, so can you

Yesterday 1 received a letter from the Institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever obtained. a view echoed by two colleagues who recently commenced the course."-Student D.l.B.. Yorks. "Completing your course. meant going from a job I detested to a job that llove with unlimited prospects..-Student J.A.O.. Dublin.
My training quickly changed my earning capacity and. in the next few years. $m y$ earnings increased fourfold - Stueten C. C. Bucks.

FIND OUT FOR YOURSELF

These letters, and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to:

ALDERMASTON COLLEGE

Tick or state subject of interest.
Post to address below.

RADIO \& TV		General
Gien. Radio and		Draughtsmanship
TV Eng.	ㅁ	Architectural
Radio Servicing.		Draughtsmanship
Maintenance and		Technical Drawing
Repairs	\square	
Practical Radio \&		
Electronics (with		
self-build kit)	\square	CONSTRUCTION
Radio Amateurs ${ }^{\text {c }}$		* BUILDNG
Exam.	\square	institute of
		Building
		Construction
ELECTRONIC		Surveyor's Inst.
ENGINEERING		Clerk of Works
Gen. Electronic		Diploma
Eng. Practical Electronics		C. \& G. Building
		Quantities \square
(with kit)	\square	General Building \square
		General Civil Eng. \square
AGRICULTURAL ENG.		\& Air Conditioning
REFRIGERATOR		Joinery \square
SERVICING		
		Decorating \square
		Plumbing
		C.E. 1 (Part 1) \square
MECHANICAL		
ENGINEERING		Management
Society of Engineers \square		Accountanis
Inst, Engineersand Technicians		Works Management \square
	\square	
General Mechanical		
Eng.	\square	
	-	
Maintenance Eng. \square		
General Diese! Eng	\square	G.C.E.
		-58 'O' \& 'A'
DRAUGHTSMANSHIP		Level Subjects-
Institute of		over 10,000 Group
Engineering		Passes!
Draughtsmen \&		
Designers	\square	

POST TODAYFOR A
BETTERTOMORROW

[^7]
TEvey ERETO

You can build the Texan and Stereo FM Tuner
 TEXAN 20 - 20 WATT IC STEREO AMPLIFIER

 former, 6-1Cs, 10 -transistors plus diodes. etc. Designed by Texas Instruments engineers for Henry's and P.W. 1972 Supplied with full chassis work, detailed construction facilities. Stabilised supply. Overall size 15 fin $\times 2$ fin $\times 6$ if mains operated Free toak sleeve with every kit
£ $31 \cdot 00$ (Carriage 50 p) (aliso buill and tasted c37.50)
STEREO FM TUNER Features capacity diode tuning. lead and tuning meter indicators, stabilised power supply-mains operated. High performance and sensitivity with unique station sleeve $\sin \times 2$ in $\times 6 t$ in . Complete kit with teak sleeve $£ 21.00$ (Carriage 50p)

JOIN THE LARGE BAND OF HAPPY CONSTRUCTORS

NEW SPECIAL PU
 AMIFM TUNER MODULES

 Capaciliors and and wite
LPM

MULLARD MODULES

$\begin{array}{ll}\text { LP1157 } & \text { AM/TyPE. Unit } \\ \text { LP } 1185 & 10-7 \\ \text { LP1186. } & 10.7 \text { F/M Tuner }\end{array}$

Amplliters with controls
E1210 $\quad 12$ volt $2 \frac{1}{2}+2 \downarrow$ watts 8 ohms
SAC14 Mains $7+7$ watts 8 ohms
SAC30 Mains $15+15$ watts 8 ohms
CAO38 9 vott $1 \frac{1}{2}+1+$ watts 8 ohms
CAO68
12 volt $3+3$ watts 8 ohms
POWER SUPPLIES MAINS INPUT
Chassis-rest cased)
$470 \mathrm{C} 6 / 7+/ 9 \mathrm{~V} 300 \mathrm{MA}$ with ad rs
P500 9V 500 MA
HC244R $3 / 6 / 7 / / 9 \mathrm{~V}, 400 \mathrm{MA}$ stabilised
P11 24V í 3 30
*P15 28V, $\ddagger \mathrm{A}$
P1080 12V 1A 4.70
*P1081 45V 0.9A
SE101A $3 / 6 / 9 / 12 V$ 1A stabilised
SE101A 3/6/9/12V 1A sta
SE800A $1-15$ VOLT $0-\frac{1}{2} A$ stabilised

FM \& AM TUNERS \& DECODERS

FM5231 (TU2) 6 volt FM tuner
TU3 12 volt version (FM use with De coder)
SD4912 Stereo Decoder for TU3 12 volt
SP62H 6 volt stereo FM tuner
A1007 9 volt MW-AM tuner
A1018 9 volt $F M$ tuner in cabinet
A1005M (S) 9-12 volt Stereo decoder FM for above
067 12V Stereo decoder gen. purpose Gorler Permeablity FM tuner (front end) 10.7 MHZ O/P

SINCLAIR MODULES \& KITS

 SINCLAIR PROJECT 80 ST80 Stereo preamplifier Audio Filter UnitZ40 15 Watt Amplifier
Z60 25 Watt Amplifier
PZ5 Power Supplies for 1 or 2 Z40

PZ6 Power Supplies (S Tab) for 1 or 2 Z40 pZ8 Power Supplies (S Tab) for 1 or 2 Z60 | for | |
| :--- | ---: |
| TRANSFORMER FOR PZ8 | |
| | $\mathbf{7 . 9 8}$ |
| .00 | | FM TUNER

EMI SPEAKERS SPECIAL PURCHASE 13 in \times Bin chassis speakers (Cartpack
ing 30 p each or 50 p ing 30 peach or 50 p
pf.)
"150TC 10 watts 8 ohms twin cone $£ 2 \cdot 20$ 150A Built In tweeter 8 ohms 53.45 EW 15 watt 8 ohm with tweeter $\$ 5 \cdot 25$ 35020 watt B. 15 ohm with tweeter $57-80$ each

- Polished wood cabinel 4.80 carr etc. 35 p each or 50 p part

UHF TV TUNERS

625 line receiver UHF transistorised tuners UK operation. Brand new tuners UK operation. (Post/packing 25p each).
TYPE C variable funing $£ 2.50$ TYPE B 4 -bution push-button (adJustable) ©3-50
TYPE D 6-button UHF/VHF $£ 4.50$

PA discotheque LIGHTING EQUIPMENT

Without doubt U.K.s best range of modular and complete equipment. Lighting, mixing, microphones. accessories. speakers. amplifiers lenses, eic., otc.
FREE stock lists (Ret. No 18) on request. CALL IN AND SEE FOR
YOURSELF at HENRY S DISCO CENTRE, 309 EDGWARE ROAD TEL. 01-723 6963

TEST EQUIPMENT MULTIMETERS
(Carr/packing 35p)
$1432420 \mathrm{kS} / \mathrm{V}$ $1432420 \mathrm{k} \Omega /$
with case $1431320 \mathrm{k} / \mathrm{N} / \mathrm{V}$ with steel case
J4317 $20 \mathrm{kn} / \mathrm{N}$ with case 17.00

U4341 33kふV plus tran-
sistor stee
case
sistor
case
$0432320 \mathrm{kCN} / \mathrm{plus} 1 \mathrm{kHz}$ OSC with case
T $1.220 \mathrm{k} \Omega \mathrm{V}$ slim type
THL33D (La3DX) 2k $/ \mathrm{V}$ Robust
TP5SN 20kniV (Case E2)
TP10S $2 \mathrm{k} \Omega . \mathrm{V}$
TW20S 20 k T/
U4311 Laboratory meter
U4312 20kn/v with case
U4315 20 kriN with case U4317 20kn/V with case S100TR 100k $\cap \mathrm{N}$ plus transis. tor tester

NEW REVOLUTIONARY
NEW REVOLUTIONARY
SUPERTESTER GB0R 680R Mulki-tester
TE4 AC Mulitivaltmeter
TE15 Grid dip meter 440 kHz
28 mHz
TE65 28 Range valve volt
meter
TE20D RF Generator 120 kkHz
500 mHz
TE22D AF Generator 20 Hz -
HM350 in circuit transisto
$\begin{array}{lr}\text { lester } \\ \text { C } 3025 \text { Deluxemeter } 1-300 \mathrm{mHz} & 19.50 \\ 6.95\end{array}$ TT145 Compact transistor G3-36 RC osc. ' 20 Hz 200 kHz - SE350A Deluxe signal tracer *SE400 Mini-lab. all in on Clester Scope 500.000 kHz (cart E1) Radio activity counter 0-10 (cart. E1)
Mains unit for above (carr. 50 p) $\begin{array}{r}9.97 \\ 3.75\end{array}$
TAPE HEADS
Marriot XRSP/17 \& Track High $\quad 2.50$ Marriot XRSP/18: Track Med 3 -50 Martiot XRSP/36 Track Med Marriot XRSPi63 \ddagger Track High Marriot Erase Heads
XRSP 17/18/36 (XES11) Marriot BX12E 343 § Track
Erase
P/RPI Record/Play $\frac{\text { Track }}{}$ H/RP Single Track Rec/Play Bogen Type UL290 Erase Miniature Stereo Cassette Rec/Play
(P.P. 15p)

EXCLUSIVE
5 WATT IC
AMPLIFIERS
Soecial purchase 5 wat ount
Special purchase 5 watt output 2-16 ohm load. 30 volt max. c c. operation or 2 for E2-65. Printed Circuit Panels
50 p .
CALCULATORS
8 DIGIT POCKET ELECRoNics Calculators Sinclair Cambridge Buile. E11.00 Sinclair Cambridge Kit. Sinclats Cambridge Sinclats
Memory Built, $\{17.50$ Sinclair Selentitic Buil
ع16.00
Sinclair Scientitic K

18.50 19.75

VAT 8\% EXTRA ON ALL ITEMS
 FREE SEND NOW FOR OUR NEW FREE LIST NO. 36 FOR OUR COMPLETE RANGE OF OVER 10,000 SEMI-CONDUCTOR DEVICES AT NEW LOW PRICES.

TRANSISTORS \& INTEGRATED I/C's
TTL 7400 series" I.C. s from 16p each
Cosmos 4000 series I.C. s from 40p each Linear op-amps from 40p each. Signotics phase lock I.C. s. RCA linear I.C. s.
TO3 power devices in PNP and NPN
BC107 and "BC range" from 12p.
Range of $0 \mathrm{OC71}$ types 18p.
Power regulator I.C.'s and many others Plastic power devices. rectifiers. zener diodes up to tow
DIL SOCKETS
8 pin
14 pin
16 pin 16 pin 24 pin $14 p$
$15 p$
$17 p$
$£ 1.15$
$£ 1.25$

NOMBREX TEST EQUIPMENT
MODEL 35 STABILISED POWER SUPPLY

A short circuit proof power supply delivery up to

 30 V at 1 A . Built-in Volts and ammeters
MODEL 40 WIDE RANGE AUDIO SIGNAL

GENERATOR

A high stability signal generator using the low distortion Wien bridge principle. Covering 10 Hz to 100 kHz in 4 ranges. Adjustable output from 1 mV to 1 V . Sine and square wave output. \quad §34.00

MODEL 41 RF SIGNAL GENERATOR

Covering 150 kHz to 220 MHz in 8 ranges. Built-in in AM mod. Output up to 50 mV . Crystal calibration facilities. Large linear scale with slow motion drive.
[38-00

WODEL 42 WIDE RANGE RF SIGNAL GENERATOR

 Covering 150 kHz to 300 MHz in 8 ranges. Highest range in harmonic. Built-in AF mod. Output up to 50 mV . Circular scale
MODEL 43 RC BRIDGE

Null indicating bridge for resistors and capacitors Resistance range 10 R to $10 \mathrm{M} \pm 2 \%$ at centre scale Capacity range $10 \rho \mathrm{~F}$ to $100 \mu \mathrm{~F} \pm 2 \%$ centre scale except 1pF to $10 \mu \mathrm{~F}$ range $\pm 5 \%$. Power factor measurement $0-70 \%$.

MODEL 44 INDUCTANCE BRIDGE

Measures $1 \mu \mathrm{H}$ to 100 H in 4 ranges $\pm 5 \%$ accuracy,
Q measurement from 0.1-1.000 $\pm 10 \%$
£34-00
MODEL 45 DIRECT READING FREQUENCY
METER
10 Hz to 100 kHz in 4 ranges. Input from 10 MV to 5 V
All models except Model 35 are Internally powered from 9 V battery (extra). Carrlage and packing all models 37p.

NOW OPEN SUPERMARKET
Come and browse round the new components
supermarket at 404 Edgware Road. Bargains galore. Goodie bags. Components, otc
WATCH FOR FURTHER DEVELOPMENTS

EXTRA DISCOUNTS

Seml-conductore. Any one type ormixed SN 74 Serles

[^0]: © IPC Magazines Limited 1975. Copyright in all drawings, photographs and articies published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year. Inland £3.85, Overseas $£ 4 \cdot 70$. USA and Canada $\$ 13 \cdot 00$. International Giro facilities Account No. 5122007. State reason for payment, "message to payee".

[^1]: Complete with crossove

[^2]: Construction Kits AV7 Aerial Amps 52.04
 52.79 MUE7 Recelver tor above MUE7 Recelver for above EX20 Electronic Dice + Sensor 52.79
 53.22 EX20 Electronic Dice + Sensor $\quad \varepsilon 7.79$ Mall Order

 TRY OUR NEW GLASGOW SHOP

[^3]: Next month: Power Supply, Tone Generators and

[^4]: NAME .
 \qquad ADDRESS.

[^5]: - North Staffordshire Polytechnic

[^6]: Minimurti uider L 2
 All prices exclusive of VAT
 P. \& P 15p.

[^7]: Published approximately on the 15 th of each month by IPC Magazines Lid.. Fleetway House. Farringdon Strect. London, EC4A 4AD. Printed in England by Chapel River Press AndoHants. Sole Agents for Australia and New Zealand-Gordon \& Gotes (A/sia) Ltd.: South Africa-Central News Agency Lid.
 Publisher's Subscription Rate including postage
 International Giro facilities Account No. 5122007 . Please state reason for paymenseas f4•70, U.S.A. and Canada $513 \cdot 00$.
 International Giro facilities Account No. 5122007 . Please state reason for payment. message to payee
 Practical Electronics is sold subject to the following conditions, namely, that it shall not. without the written consent of the Publishers first given. be lent, resold, hired out or otherwise
 disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Fire or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade where the selling price is subject to V.A.T.. and that it shall not be lent, resold matter whatsoever.

