PRACTICAL

JULY 1975

CONSTRUCTIONAL PROJECTS
P.E. PORTABLE GAS IGNITOR by R. Bullen Ignite town, bottle and natural gas with this simple project 552
GUITAR EFFECTS PEDAL by R. Gwinn Eight variable sound treatments in one unit 559
P.E. JOANNA-3 by A. J. Boothman
Envelope generation systems 572
SINE/SQUARE WAVE SIGNAL GENERATOR by J. Smith
General purpose a.f. test instrument 582
GENERAL FEATURES
TRANSDUCERS-4 by P. R. Allcock
Concluding section on the inductive transformer 562
INGENUITY UNLIMITED
Tunnel Diode B.F.O./l.F. Marker-Adding Circuit—Random Number Generator-Desoldering Components 567
SYMBIOSIS-2 by M. Pointon
Concluding article on composing with the P.E. Minisonic 578
NEW DEVICES . . . APPLICATIONS
Solid-state power control 580
NEWS AND COMMENT
EDITORIAL—An Indiscriminate Tax 551
NEWS BRIEFS
Electronics For School Teachers-Queen's Award 557
SPACE.WATCH by Frank W. Hyde
A new X-ray source 558
MARKET PLACE
Interesting new products and a V.A.T. announcement 571
POINTS ARISING
Ultrasonic Intruder Alarm—Light Pipe-Thermometer/Controller 576
INDUSTRY NOTEBOOK
A look at the American scene 589
PATENTS REVIEW
Thought provoking ideas on file at the British Patent Office 590
READOUT
A selection of readers' letters 593

Our August issue will be published on Friday, July 11, 1975

[^0]
Sound to Light Master Unit

600 watts per channel
Connects to your loudspeaker or loudspeaker socket. The unit can be connected to your existing spotlight fittings or to our type A or B fittings.

Special Introductiory

 1 Including channel o
Oncl VAT plus p\&p $£ 1.00$

100 WATT Red, pink, yellow, SPOT green, blue, clear. Only $£ 1.00$ each
B.C. fitting Type A (less lamp) $\begin{gathered}\text { (0incl VAT plus } \\ \text { p\&p 25p each }\end{gathered}$ p\&p 25p each. LAMPS 3 lamps $£ 3.00$ B.C. fitting plus p\&p 25p. TRAFALGAR SUPPIISS Dept.H.T., STANDISH STREET'SS.
BURNLEY, LAN

ENGINEERS

HRI:
 YOURSELF FORA it
 Do you want promotion. - better job. higher pay" New Opportunities" shows you how to get them through a low cosi hame study course. There are no books so

This heipful guide 10 success should bs read by every ambitious engineer Send for this helpful 76 page FREE book now. No obligation and nobody will call on

Colbert Pana-Vise WORK The required work position is POSITIONERS are specially firmly secured with a patented designed to quickly and easily ONE KNOB CONTROL, a achieve the mOSt CONVENIENT, unique feature of COLBERT COMFORTABLE and TIME- POSITIONERS SAVING work position.
Available with vacuum clamp or A, series of special holders is screw-on base. They can be available for various types of ROTATED, TIPPED, TILTED, work.
ANGLED, ELEVATED, Full details available on'request Distributors:
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 PICCADILLY, LONDON, W1V OHL
Tel. 01-629 9556
Cables: SPECIPROD LONDON

ETMROMASOMTE electronics

CRESCENT RADIO LTD.
 II-15 \& 17 MAYES ROAD, LONDON N22 6TL (also) 13 SOUTH MALL, EDMONTON, N. 9
 MAIL ORDER DEPT
 11 MAYES ROAD, LONDON N22 $6 T L$ Phone 8883206 \& (EDM.) 8031685

WITH A MOTOR DRIVEN CAR

CCRESCENT GEAT BR
SINGLE LHANNE SOUND TO
LIGHT UN This fantastic
apprus. $4^{n} \times 3^{*} \times 2^{\prime \prime}$ when
connected to the output of consected to the output of a
sound source from 1 to 100 wat ts produces a peychedelic light display in up to 1000 watts. control the unit is fused and cannot harm your amplitter. $\begin{aligned} & \text { A Bargain at } £ 7 \cdot 50 \text { Hus } 10 \\ & \text { P. \& P. }+8 \% \text {. }\end{aligned}$
MINIATURE RELAYS Brand new range of British miad Brand new range of British nia
relaye, size: 11 in $x \operatorname{lin} x$? in
All two changeovers wieh $1 \cdot 5.4$ contacts and suitable for hitting on 0.1 m veroboard.
Type Volts Current Ohms
$27 / \mathrm{A}$
12 V
$17 \mathrm{M} / \mathrm{A}$
700
$\begin{array}{lllll}27 / \mathrm{A} & 12 V^{\circ} & 17 \mathrm{M} / \mathrm{A} & 700 & \mathrm{AlI} \\ 21 / \mathrm{A} & 12 \mathrm{~V} & 28 \mathrm{M} / \mathrm{A} & 430 & \mathrm{El} \cdot 80\end{array}$ $12 / \mathrm{A} 6 \mathrm{~V} \quad 33 \mathrm{M} / \mathrm{A} 1 \mathrm{AJ}$ esch Leavy duty contacts 2.500 ohm
Hen D.P.D.T. mains and unused free. Special quantity $\mathbf{2 4 0}$ per
100 onf. $+8 \%$.

2in. PANEL METERS
Size $59 \mathrm{~mm} \times 46 \mathrm{~m}$ m

Three Channel: Bass, Middle, Treble. Each
channel has its own sensitivity control. Juat connect the input of this unit to the loudspeaker terminals of an amplitier, and connect three 250
up to 1000 W lamps to the output terminals of the up to 1000 W lamps to the output terminals of the
unit, and you produce a fascinating sound-light unit, and yult produce a
display. (All guaranteed.)

in man clude	MINI LOUDSPEAKERS whill. 50p: 21 in 40 ohm. 50 f . pP. \& P. on each L.S. $+25 \%$

U.K. CARRIAGE
 20p UNLESS
 OTHERWISE STATED

$\left|\begin{array}{l}\text { VAT-AAl priceas are exclud- } \\ \text { ing VAT Plese and to ench } \\ \text { item the } \\ \text { VAT } \\ \text { cated. }\end{array}\right|$
SEND 30p FOR A CRESCENT catalogue

VALVE MAIL ORDER CO. 16a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE

[^1]Prices correct
when going
to pross.

Kit inspection

Dimensions

$410 \times 260 \times 190 \mathrm{~mm}$

STUDIO ELECTRONICS EASIKIT

We invite your closest inspection of our loudspeaker kits Here at last is a kit which doesn't require you to be either an electronic genius or a master carpenter. The assembly is simplicity itself, taking barely 15 minutes and requiring only a soldering iron, screwdriver and our easy to follow instructions, the cabinet being already built. 4 drive units provide excellent reproduction free from colouration, cabinet resonance and listening fatigue. In teak or white Based on an original design as also selected for the outstanding Practical Electronics Rondo Quadraphonic system.

SPECIFICATIONS

Impedance 4-8 ohms
Pqwer Handling 20W r.m.s
Crossover Frequencies $250 \mathrm{~Hz}, 5 \mathrm{kHz}$.
Frequency response 30 Hz to $20 \mathrm{kHz} \pm 5 \mathrm{~dB}$
4 Drive units. Bass (13 cm dia,), Bass/Mid-range (13 cm dia.), 2 Tweeters (6.5 cm dia.).

SOUND SPHERES

The little speaker with the big sound! Only $4 \frac{1}{4}$ In dameter and weighing 700 grams. it is capabie of handling 10W. A very versatile little performer, ideally suited to rear channel systems. In the car. extension speakers, etc. The magnetic bees enables them to be mounted virtually anywhere. Superbly finished in black, white or orange.

£42. 50 per pair. Post free. Plus VAT.

ready assembled £49•50 per pair. Post free.
Plus VAT.
Trade enquiries welcomed.
Demonstrations by telephone appointment.

SPECIFICATIONS

impedance 4-5 ohms
Power Hàndling 10W.
Response 100 Hz to 16 kHz

£19.95 per pair. Post free.

THE RADIO SHOP

16 Cherry Lane, Bristol BS1 3NG Tel.: Bristol 421196. STD Code 0272

Your West Country shop for electronic components and solld state devices						
		THYRISTORS				
PIV	1.6A	4A	6A	8A	10A	16A
50	0.25	0.28	0.37	0.41	0.45	0.50
100	$0 \cdot 25$	0.30	0.42	0.47	0. 50	0.58
200	0.31	0.38	0.50	0.59	0.65	0.73
400	0.40	0.57	0.77	0.85	0.97	1-15
TRIACS						
PIV	1.6A	3.54	64	8 A	10A	15A
100	0.28	0.52	0.61	$0 \cdot 68$	0.72	0.80
200	0.29	0.55	0.65	0.76	0.76	1.02
400	0.38	0.67	0.70	0.85	0.09	1.51
600	0.45.	..0-63	0.78	$1 \cdot 08$	1.24	1-84

7047 seg. LED display $0 \cdot 3 \mathrm{in}$ high, $\mathrm{£1} \cdot 10$. 7077 geg. LED display 0.3 high. common
7477 seg. LED display $0.6 i n$ high. common anode. $\mathbf{E 1} \cdot 75$.
NE555 Timer I.C. 8-pin DHL with diata, ssp . 741 Op. amp. I.C. 8-pin DIL with data. Alpp.
ZN414 This is a 10 transistor TRF circuit
ZN414 This is a 10 transistor TRF circuit in
TO18 can with data and circult, 75 p .
TBA800 Linear integrated circuit audio power amplifter, 2W with data, sop.
LATEST Decon-Dalo PC33, Quick Dri, etchresist pen, sop.
1000MFD 35 V wire ended $f \mathrm{in} \times 1$ in. Only 20p. 2200MFD 18V wire ended ith $\times 1 \frac{1}{\mathrm{f}} \mathrm{in}$. Only 12p.

Catalogue 15p post pala.
Please add 25% VAT to all listed prices Postage and packing 15p per order. Callers weicome.

GETTING THE MOST OUT OF YOUR ELECTRONIC CALCULATOR
 by W. L. Hunter
 Price $\mathbf{E 2} \mathbf{1 0}$
 IC OP-AMP COOKBOOK by W. G. jung. THE AUDIO HANDBOOK by Grice $\mathbf{G} 5 \cdot 2$. COLOUR T.V. SERVICING by G. J. King. THE RADIO AMATEUR'S HANDBOOK 1975 by A.R.R.L. DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS bY N. Morris. Price $£ 2 \cdot 50$. ELECTRONICS SELF-TAUGHT WITH ELECTRONICS SELFTMPROIECTS by BASIC ELECTRONICS PROBLEMS BASIC ELECTRONICS PROBLEMS SOLVED by D.A.Smith. WORKING WITH THE OSCILLOSCOPE by A.C.W. Saunders. Price $£ 1 \cdot 75$. TOWERS' INTERNATIONAL TRANSISTOR SELECTOR by T. D. Tower $\$$.
 \star PRICE INCLUDES POSTAGE \dagger
 THE MODERN BOOK CO.
 BRITAIN'S LARGEST STOCKIST
 of British and American Technical Books
 19-21 PRAED STREET
 LONDON W2 INP
 Phone O1-7234185
 Closed Saturday 1 p.m.

Bargains in Semi-Conductors, components, modules \& equipment. BARGAINS FROM OUR FREE CATALOGUE
6th edition. 20 large pages filled with real bargalns in transistors, I.C.s, components, equipment, etc. Send large S.A.E. whth 7p stamp for your FREE copy by return. Meanwhile, for prompt delivery order from our ad this month NOW.
X.HATCH GENERATOR MK. ${ }^{2}$

Rotary selector switch provides choice of four patterns-essential plug in IC's and a more sensitlve sync. pick-up circuit. The reinforced ilbreglass case is virtually inbreakabledeal for the engineer's toolboxOnly measures 3 in $\times 5 \operatorname{lin} \times 3$ in Operates from three U-2-type batterles
(extra). (extra).
Ready built 59.93
unit only
unit only P. \& P. add 30 p
Complete 87.93

PLASTIC POWER TRANSISTORS

40 WATT SIL					att Silicon				
Type No.	Galn	vce	Potarity	Price	Type No.	Galn	vCE	Polarity	Price
40N1	15	15	NPN	20p	90N1	15	15	NPN	25p
40 N 2	40	40	NPN	30 p	90N2	40	40	NPN	35p
40P1	15	15	PNP	20p	90P4	15	15	PNP	25p
40P2	40	40	PNP	30p	90 P2	40	40	PNP	35p

TRANSISTOR PACKS-ALL AT 50p EACH TESTED AND GUARANTEED
4 Na4007 Sil. Rec. diodes 1000 Mr limp plastic Reed Switches, 11 n long
tin dra. Highspeed 0 . 0 tope
 Mixed Diodes. Germ Gold bonded. etc Marked and Unmarked
H38 $30 \begin{aligned} & \text { Short lead Transistors. NPN } \\ & \text { Sulicon Planar types }\end{aligned}$ En-equlpmen
UNMARKED AND UNTESTED

TO CLEAR

Hundreds of various portable transistor radio chassis FM and AM. Ideal for experimenters. Components electronically sound chassis not all perfect. No instructions. of tuning drives. A cheap way to make a padio sel

MAINS TRANSFORMERS
P. 8 P. add 35p per unit

Type A-18V/1A (suit SS. 103) £1.50. Yype B-25V/2A (suit SS.110) E2.00. ype C-30V/2A (suit SS.140) £3.25.
Brldge
38p.

> CAPACITOR DISCHARGE IGNITION KIT ${ }^{\circ}$

Easy
assemble and
it to your car. $\mathbf{2 7}$. 50
12 V With $\mathbf{Z}=50$
instructions. $(P, \& P$.add 30 p)

TERMS OF BUSINESS

V.A.T. Prices shown do NOT include V.A.T. Please add 25% to total value (8%) for which the V A postage for V.A.T. except for items marked
Overseas-add $\mathbf{5 1}$, any difference being charged or retunded
PAYMENT Cash with order, Cheque ormoney order. Minimum value- $£ 1$. You can also pay by ACCESS.
IMPORTANT-Every affort is made to ensure accuracy of prices and description af time of preparing this advertisement and going to press. Prices are subject to aftoration without notice

AMPLIFIER MODULES

Pre-amplifiers; tone control

SS. 100 Active tone control unit to provide bass treble, balance and volume controls
SS.101 Pre-amp for ceramic cartridge, tape and radio
SS. 102 Pre-amp for low output magnetic cartridge tape and radio. With R.I.A.A. correction $\pm 1 d B$

POWER AMPLIFIERS

S. 103 Compact I.C amp. with 3 watts R.M.S output. Operating voltage $10-20$. Size 3 fin $\times 2$ in s.103-3 Stereo version of above using one I.C on each channel
SS.105 A compact and useful alf-purpose amplifier which will run excellently on a 12 V supply With 5 watt output. two make a good stereo amp. Size $3 \mathrm{t} \mathrm{in} \times 2 \ln$. New Mk. 2 version
SS. 110 Similar \ln slze to SS. 105 but with a 10 watt output. Ideal for many domestic and small-size P.A. applications. Operates from $26-32 \mathrm{~V}$

SS. 140 Excellently designed 40 watt R.M.S. (into 4 ohms) hi-fi amplifier. S / N ratio better than $75 d B$. T.H.D better than $0 \cdot 2 \%$. Power requirements 45 V d.c. With 0.151 n centre edge connections. Two can be brldged to give 80 watts R.M.S into 6 ohms
£1. 60
£1.60
£2. 25
£1. 75
£3. 25
£2. 25
£2.70
£3.60

BUILD A STEREO F.M. TUNER!

SS. 201 Front end with ganged tuning and geared
slow-motion drive in rugged housing. Excellent sensitivity. Tunes $88-108 \mathrm{MHz}$. With A.F.C facility. Operates from 6-16V
£6. 25
SS. 202 I.F. stage (with I.C.). Pre-tuned. A.F.C. connection. Operates from $4.5-14 \mathrm{~V}$
$\mathbf{5 S . 2 0 3}$ Stereo Decoder. Designed essentially for use with SS. 201 and SS.202. this module can also be used on most mono F.M. tuners. A L.E.D. may be attached. Operating voltage 9-16V d.c.
£5. 25
£5-62

SPECIAL MONEY SAVING OFFER!

Save £5-buy all 3 units (SS.201, SS. 202 and SS.203) together for
£12•12
POWER SUPPLY STABILISER
\$5.300 Add this to an unstabilised supply (say typically 45 V output) to obtain a steady powerful working output adjustable from 12 to 60 V Essentlal for your audio and special system
£3. 25
 Money saving, very reliable and ideal for the workbench

STIRLING SOUND DISCO MINOR

Win turniable console with cross-fade mic (with over-ride) and headphone monitor jacks, etc plus unique "AMPOWER 40 " speaker with built in 40 watl R.M.S. power amp rou can add up to ten to give 400 watts! Portable console and one AMPOWER 100 plus E3. 50 carr. U.K., plus VA

Have you had your FREE

 CATALOGUE?

目田时 VISCOUNT IV STERED SYSTEM

System 1a． $\mathbf{£ 6 9 . 0 0}$

The naw $20+20$ want Steree Amplifies incorporating the latest silicon transistor solid state circuitry the RT－VC VISCOUNT IV gives you a powerful 20 watts RMS per channet into 8 ohms．Superb teak－ finished cabinet，with anodised tascia to harmonise with any decor．Polished trim and knobs．
The VISCOUNT IV has a comprehensive range of controls－volume，bass，treble，balance，mono／stereo． mode selector，and scratch filter
Fiont panel socket for stereo headphones．And a host of sockets at the rear－for lett and right speakers，tape recorder，auxiliary，tuner，disc and microphone．
SPECIFICATIDN： 20 watts RMS per channel 40 watts peak．Suitable 8－15 ohms speakers．Total distontion 10 watts better than 0.2% ．Six switched inputs：1．Magnetic P．U．－ 3 millivolts 47 K ohms（R．IAA．）：2．Crystal／ceramic P．U．－ 50 millivolts－ 50 K ohms（R．IA．A）：3．4．6．Tape Tuner／Aux．－ 140 millivalts 50 K ahms（flat frequency respense）； 5 ．Microphone－ 3 millivatts 50 K ohms \｛flat frequency responsa）．
CONTROLS：Push bution ON／OFF．stereo／mono，scratch filter． 6 position rotary selector．Individual rotary controls for treble，bass，balance and volume．Headphone socket．tape out socket．Aux．mains output．Frequency response： 25 Hz to 25 KHz efult rated output．Signal to noise rato：better than -50 dB on all inputs．Tene control range：Bass $\pm 15 \mathrm{~dB}$－ 50 Hz ：Treble $\pm 12 \mathrm{~dB}$ © 10 KHz ． Power requirements：200－250V A．C．mains 60 watts．Approx．size： $154^{\prime \prime} \times 3^{-2} \times 10^{\prime \prime}$ Garrard SP 25 deck with magnetic cartridge，de luxe plinth and cover
Two Duo Type Ila matched speakers－Enclosure size approx． $191^{\prime \prime} \times 10 \frac{1}{1 "}^{\prime \prime} \times 77^{* \prime}$ in simulated Two Ouo Type lla matched speakers－Enclosure size approx．19y $\times x$ teak．Drive unit $13^{\prime \prime} \times 8^{-1}$ with $3^{\prime \prime}$ tweeter． 15 watts handing．
Complete System with thase speakers $\mathrm{f} 69.00+f 6.50 \mathrm{p}$ p

System 2．£85．00

Viscount IV amplifier（As System 1a） Garrard SP 25 deck（As System 1a） Two Ouo Type III matched speakers －Enclosure size approx． $27^{\circ} \times 13^{-}$ $x 111^{-}$．Finished in teak simulate． Orive units $13^{\prime \prime} \times 8^{\circ}$ bass driver，and two $3^{3 "}$（approx．）tweeters 20 watts RMS． 8 ohms frequency range－ 20 Hz to $18,000 \mathrm{~Hz}$ ．
Complate System with these speakers $£ 85.00+\mathrm{f} 7.60 \mathrm{p} \& \mathrm{p}$ ．

PRICES：SYSTEM to
Viscount IV R103
mpllifer $\quad £ 25.00+£ 1.90 \mathrm{p} \& \mathrm{p}$ ． 2 Duo Type lla
speakess $£ 30.00+\mathrm{f6} .50 \mathrm{p}$ \＆ p ． Garrard SP 25 with Mag，cartididge Je luxe plinith
and cover $£ 24.50+£ 3.30 \mathrm{~B} \& \mathrm{p}$ ． Total if purchased separatelly： $\mathbf{6 7 9 . 5 0}$ Availstle complete lor only： $\mathbf{E 6 9 . 0 0}$
f6． 50 p \＆p．

PRICES：SYSTEM 2
Viscount IV R103
amplifer $£ 25.00+£ 1.90 \rho \&$ p 2 Duo Type III
peakers $\quad ~ 446.00+£ 7.50 \mathrm{p} \&$ Garrard SP 25 with Mag．cantridge
d luxe plinth
and cover $\mathrm{f} 24.50+\mathrm{f} 3.30 \mathrm{p}$ \＆ p
Total it purchased
separataly： $\mathbf{9 5 6} .60$
Availabte complete for only $\mathbf{6 8 5} .00$
20×20 SYSTEM

Scotland P \＆P Surcharge

EMI SPEAKERS AT FANTASTIC REDUCTIONS

LE－4 SPEAKERS

Superb performance and beautifully finished in selected teak veneers．A professional standard tour－way speaker system giving 25 watts RMS power handling．Bass unit is $14^{\prime \prime} \times 9^{\prime \prime}$ with $8^{\prime \prime} \times 5^{\prime \prime}$ unit for mid－range and twin $3^{\prime \prime}$ high frequency units to give monitor type quality and performance．
Specification－Size $33^{\prime \prime} \times 14^{\prime \prime} \times 16$ approx．Impedance 8 ohms．Power handling 25W RMS．（Peak 50 watts．） Frequency range $35 \mathrm{~Hz}-20 \mathrm{KHz}$ ．
Our Price $£ 34.00$
（normally $£ 66.00$ ）$+£ 5.80 p \& p$

EASY TO BUILD SPEAKER KITS

These superb simulated teak－linished speaker kits have been specially designed by RT－VC for the cost－conscious hi－fi enthusiast who wants top quality speakers but doesn＇t want to spend the earth．Built to EMI＇s exacting specification， these new RT－VC speaker kits（ 350 type kit） incorporate $13^{\prime \prime} \times 8^{\prime \prime}$ woofer， $3 \frac{1}{4}^{\prime \prime \prime}$ iweeter and matching crossover
Easily put together with just a few basic tools． Specification（each speaker）：Impedance 8 ohms． Powet handling 15 watts RMS（ 30 watts peak） Response $20-20,000 \mathrm{~Hz}$ ．Size $20^{\prime \prime} \times 11^{\prime \prime} \times 9 \frac{1}{2}{ }^{\prime}$ approx．Comparable built units（EMI LE3）sold elsewhere for over £45 pair
£22．00 pair complete
Complete with crossave
Components and circuit diagran

EMI 350 KIT
System consists of a $13^{\prime} \times 8^{\prime \prime}$ appror．wooter with a $3^{\prime \prime}$ tweeter crossover components and circuit diagram．Frequency response 20 Hz to 20 KHz ．Power handling 15 watts RMS into 8 ohms． （Peak 30 watts．）
Complate with crossover Components and circuit diagram $\mathbf{~} 6.50+£ 1.20 p \& p$ ．

20 WATT SPEAKER SYSTEM＊

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$（approx．）eliptical woofer unit with a $8^{\prime \prime} \times 5^{\prime \prime}$（approx．）mid－range unit incorporating parasitic tweeter and crossover components and circuit diagram
Technical Specification：Bass Unit：Flux density－ 100 K．speech coil $-1^{\prime \prime}$ ．Cone．Triple laminated paper with P．V．C．surround．Mid－Range Unit：Flux density－ 33 K，speech coil－ $1^{\prime \prime}$ with parasitic tweeter．Power handling： 20 watts RMS，impedance -8 ohms， frequency response－Our Price $\mathbf{£ 8 . 7 0}$ 20 Hz to $18,000 \mathrm{~Hz}$ Complete $+£ 1.60 \mathrm{p}$ \＆ p ．

DECCA STEREO AMPLIFIER CHASSIS

Specification： $4+4$ watts into 8 ohms．Input Sensitivity 4 mV into 47 K （for magnetic cartridges）．AC Mains only 240 V ．Controls－volume． bass，treble，onjoff，mono／stereo switch．Chassis size $11^{\prime \prime} \times 5 \frac{1}{2}^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{}$ approx．
$\mathbf{f 6 . 9 0}+\mathfrak{f 1 . 2 0 p \& p .}$

PUSH BUTTON CAR RADIO KIT- THE TOURIST TT*

NO SOLDERING REQURED

NOW BUILD YOUR OWN PUSH BUTTDN CAR RADID
Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine tuning push button mechanism is fully buil and tested to mate with printed circuit board. TECHNICAL SPECIFICATION: (1) Outpu 4 watts RMS output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built three stage IF Module

Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands Size chassis 7" wide 2" high
and $4 \frac{3}{4}^{n}$ deep approx $\quad \mathbf{f} 9.50+£ 1.05 p \& p$. Speaker including baffle and fixing strip $£ 2.00$ +45 p $\&$ p. Car Aerial Recommended - fully retractable $£ 1.60+40 \mathrm{p} \mathrm{p} \& \mathrm{p}$.
The Tourist I Kit For the experienced constructor. If you can solder on a printed circuit board you can build this model. Same technical specification as Tourisi TT. Price $\mathbf{f 8 . 2 0}+£ 1.05$ p \& p.

Sterep qualit Sound For LESS THAN £24.00

Stereo 21. easy to assemble audio system kit. No soldering required.
The unit is finished in white P.V.C. and the acrylic top presents an unusually interesting variation on the modern deck plinth.
Includes - BSR 3 speed deck, automatic, manuał lacilities together with stereo canridge
Two sparkers with cabinets
Amplifier module. Ready builf with control panel, speaker leáds and full, easy to follow assembly instructions.
Specifications - For the technically minded:
Input sensitivity 600 mV . Aux input sensitivity 120 mV . Power output 2.7 watts per channel. Output impedance 8-15 ohms Stereo haadphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs tor taping discs Overall Dimensions. Speakers approx $15 \frac{1^{\prime \prime}}{2} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$
Complete only $£ 23.20+$ £3.00 $\mathrm{p} \& \mathrm{p}$.
Extras if required. Optional Diamond Siyli $\mathbf{£ 1 . 6 0}$.
Specially selected pair of stereo headphones with individual level controls and padded earpieces to give optimum performance $f 5.80$.
*IISCO AMPLIFIER

$\sqrt{\text { 50, a } 4,64}$

Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Output 20 watts RMS into 8 ohms (suitable for 15 ohms).
Inputs " 4 electricaily mixed inputs. " 3 individual mixing controls. "Separate bass and treble controls common to all 4 irputs. Mixer employing F.E.T. (Field Effect Transistors). Solid State circuitry. *Attractive styling.
INPUT SENSITIVITIES - Input - 1). Crystal mic. guitar or moving coil mic. 2 and 10 mV . (Selector switch for desired sensitivity.) - Inputs - 2). 3). 4). Medium output equipment - ceramic cartridge. tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1}{2}{ }^{\prime \prime} \times 6^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime}$
$\mathrm{f} 20.00+£ 135 \mathrm{p} \& \mathrm{p}$.

8 TRACK HOME CARTRIDGE PLAYER
 Elegant self selector push button player for use with your stereo system. Compatible with Viscount IV system, Unisound module and the Stereo 21 Technical specification Mains input. 240 V . Output sensitivity 125 mV . Comparable unit sold elsewhere at £24.00 approx. Yours for only
 $\mathbf{£ 1 6 . 2 0}+£ 1.70 p \& p$
 PORTABLE DISCO CONSOLE*

BUILD YOUR OWN STEREO AMPLIFIER

For the man who wants to design his own stereo here's your chance to start, with Unisound - pre-amp, power amplifier and control panel. No soldering - just simply screw together. 4 watts per channel into 8 ohms. Inputs: 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ęnsure very low distortion over the audio spectrum. 240 V . AC only.
Also available with 2 speakers $\left(7^{\prime \prime} \times 4^{\prime \prime}\right) £ 10+£ 1.75$ p \& p. $£ 8.95+£ 1.05 p$ \& p.

INCORPORATES: Pre-Amp with full mixing facilities, including switched input for mic with volume control, swithed input for auxiliary with volume control. bass and treble controls, wolume control and blend control for turntables. Two B.S.R. MP60 type single play professional series decks, fitted with crystal carridges.

TECHNICAL SPECIFICATION: Pre-amp - Output - 200 mV Auxiliary inputs - 200 mV and 750 mV into 1 meg . Mic input - 6 mV into 100K. 240 volt operation. Turntablas capaciry - $7^{\prime \prime} .10$ or $12^{\prime \prime}$ records. Rumble, wow and flutter Rumble Better than -35dB. Wow Better than 0.2%. Flutter Better than 0.06% (Gaumont kalee meter).
Finish - Satin black mainplate with black furntable mat inlaid with brushed aluminium trim. Tonearm and controls in black and brushed aluminium.

DO NOT SEND CARD
Just write your order giving
your credit card number

Mail orders to acton. Terms C.W.O. All enquiries stamped addressed envelope. Goods not despatched outside U.K.
Leaflets available for all litems listed thus" Send stamped addrassed anvelope. All items subject to availability. Prices correct at 1 st May 1975 and subject to change without notice. All prices include VA.T. at $\mathbf{2 5 \%}$ rate

Console size -
Unit Closed-17t" $\times 13\}^{\prime \prime} \times 8$ " (app.) Unit Open -35$\}^{\prime \prime} \times 13$ l" $\times 4$ lil $^{\prime \prime}$ lapp.l This disco console is ideally matched for the Raliant IV and Oisco 50 or any other quality amplifier.
The unit is finished in black PVC with contrasting simulated teak edging, diamond spun control knobs with matching control panel

Yours for only
f57.00 + £6.50 p \& p.

21D HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2
Personnal Shoppers EDGWARE R D: 9 a.m. $-5.30 \mathrm{p} . \mathrm{m}$. Half day Thurs. ACTON: 9.30a.m.-5p.m. Closed all day Wed.

SPECIAL RESISTOR KITS (Prices include pOSt \& packing)
$10 E 12 \mathrm{tW}$ KIT: 10 of each E12 value, 22 ohms-IM, a total of 570 (CARBON FILM. 5%). $\mathbf{£ 3} \cdot 85$ net 10E $12 \frac{1}{2}$ W KIT: 10 of each E12 value, 22 ohms-IM, a total of 570 (CARBON FILM 5%), $\mathbf{6 3 . 9 5}$ net $25 E 12 \mathrm{dW}$ KIT: 25 of each EI2 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5\%), $\mathbf{6 9 . 0 0}$ net $25 E 12$ IW KIT: 25 of each E12 value, 22 ohms-IM, a total of 1425 (CARBON FILM 5\%), $\mathbf{6 9 . 0 0}$ net SE12 $\frac{1}{2}$ W KIT: 5 of each EI2 value. 10 ohms-IM, a total of 305 (METAL FILM 5%. Due to current world shortages. resistor kits may contain some wattage and value substitutions.

MULLARD POLYESTER CAPACITOAS C280 SERIES
250 V P.C. Mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 3 \frac{1}{\mathrm{p}}$. $0.068 \mu \mathrm{~F}$ $0.1 \mu \mathrm{~F}, 4 \frac{1 \mathrm{p} .}{} 0.15 \mu \mathrm{~F} .5 \mathrm{p}$. $0.22 \mu \mathrm{~F}, 6 \mathrm{p} .0 .33 \mu \mathrm{~F}, 8 \mathrm{p} .0 .47 \mu \mathrm{~F}, 10 \mathrm{p} .0 .68 \mu \mathrm{~F}, 13 \mathrm{p}$. 16 p. 1. $5 \mu \mathrm{~F}, 24 \mathrm{p}$. $2.2 \mu \mathrm{~F}, 27 \mathrm{p}$
MOLLARD POLYESTER CAPACITORS C196 SERIES $40015,0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 3 \mathrm{p}, 0.006 \beta_{\mu} \mathrm{F}, 0.01 \mu \mathrm{~F}$ $0.014 \mathrm{~F}, 0.022 \mu \mathrm{~F} .0033 \mu \mathrm{~F}$. 3 pp. $0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4$ pp. $0.15 \mu \mathrm{~F}, 7 \mathrm{p}$. $0.22 \mu \mathrm{~F}$, $9 p .0 .33 \mu \mathrm{~F}, 13 \mathrm{p} .0 .47 \mu \mathrm{~F}, 15 \mathrm{p}$.
160V: $0.01 \mu \mathrm{~F}, 0.15 \mu \mathrm{~F} .0 .022 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \frac{1}{2} \mathrm{p} .0 .1 \mu \mathrm{~F}, 4$ pp. $0.15 \mu \mathrm{~F} .5 \frac{1 \mathrm{p}}{} \mathrm{p}$. $0.22 \mu \mathrm{~F}, 6 \mathrm{p}, 0.33 \mu \mathrm{~F}, 7 \mathrm{p} .0 .47 \mu \mathrm{~F}, 9 \mathrm{p} .0 .68 \mu \mathrm{~F}, 13 \mathrm{p}$. $1 \mu \mathrm{~F}, 15 \mathrm{p}$
MINIATURE CERAMIC PLATE CAPACITORS
$50 V:(\mathrm{PF}) 22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390,470$
$560,680,820,1 K 1 K 5,2 K 2,3 K 3,4 K 7,6 K 8, F) 0,01$ $560,680,820,1 \mathrm{~K}, 1 \mathrm{~K} 5,2 \mathrm{K2}, 3 \times 3.4 \mathrm{~K}, 6 \mathrm{~KB},(\mu \mathrm{~F}) 0.01$. $0.015,0.022,0.033,0.047$, 21 p . each. $0.1,30 \mathrm{~V}, 5 \mathrm{p}$.
POLYSTYAENE CAPACITOAS $160 \mathrm{~V} 5 \%$
(pF) $10,15,22,33,47,68,100,150,220,330,470,680,1000,1500,2200,3300$ 4700, 6800. 10,000, 4ip.

RESISTOAS

PRESET SKELETON POTENTIOMETEAS
MINIATURE 0-25W Vertical or horizontal 7 p each $1 \mathrm{~K}, 2 \mathrm{~K} 2$,
4K7, IOK, etc. up to IM Ω
SUB-MIN $0.05 W$ Vertical, 100Ω to $220 \mathrm{~K} \Omega 7_{p}$ each.

B. H. COMPONENT FACTORS LTD.

(P.E.), LEIGHTON ELECTRONICS CENTRE, 59 NORTH STREET, LEIGHTON BUZZARD, LU7 TEG. Tel.: Leighton Buzzar
05253). CATALOGUE No. 4, 20p.

SUPERSOUND 13 HI-FI MONO AMPLIFIER superb nolid state audio
ampliffer. Brand new components throughout. components throughout. pius 2 power out-put pius transistorsin push-pull. Full wave rectifica-
tion. Output approz 13 watts out approx. 13 watts r.m.s. into
8 ohms. Frequency response $12 \mathrm{~Hz}, 30 \mathrm{KHz}$ -amplifier sully integrated Treble cut controls. Suitable for 8 -15 Basm boost and Input for ceramic or erystal cartridge. Sensitivity approx. 40 mD for full output. Supplied ready built and tested, with knobs, escutcheon panel, input and output
pluga. Overall size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7!^{\prime \prime}$ deep.

DE LUXE STEREO AMPLIFIER

A.C. main
 heavy duty
fully isola. ted mains transform.
er with full wave rectilication
giving ade-
 bass and treble control, giving bass and treble boost and cut. A dual volume cont rol is uned. Balance of the left and right hand channels can be adjusted by neans of a separate 'Balance' control fitted at the rear of the chassis.
Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{y}$ for full Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{s}$ for full peak
output of 4 watts per channel (8 watts mono) into 3 ohm output of 4 watts per channel (8 watts mono), into 3 ohm
speakers. Full negative feedback in a carefully calculated speakers. Full negative feedback in a carefully calculated
circuit, allowa high volume levels to be used with negligible circuit, a
distortion. Supplied complete with knobs, chassis size 11 "w $\times 4^{4}$ "d. Overall height including valves 5°. Ready ALI PTR POSE to a high standard. $412 \cdot 50$. P. \& P. 85 p . ALL PURPOSE POWER SUPPLY UNIT $200 / 240 \mathrm{v}$, A.C.
input. Fourswitched fully smoothed D.C. outputs giving input. Fourswitched fullysmoothed D.C. outp
6 v. and $7 \frac{1}{2} \mathrm{v}$. and 9 v . and 12 v . at 1 amp on lead. Fitted insulated output terminals and pilot lamp indicator. Hammer finiah metal case overall size $6^{\circ} \times 3 \frac{1}{}^{\circ} \times 2 \frac{1}{2}^{\prime \prime}$. Ready built and Price f6.35. P. \& P. 55 p.
teated. VYNAIR A REXINE SPEAKERS \& CABIDET FABRICS app. 54 In . wide. Our price $£ 1.30$ yd. rength. P. \& P. 30 p
per yd. (mln. 1 yd.). S.A.E. for samples. per yd. (imin. 1 yd.). S.A.E. or samples.

EARVERSON'S SUPER MONO AMPLIFIER A super quality gram amplifier using a double wound fuily
solated mains trans former, rectifler and ECL8\% triode pentode valve as audio amplifier and power output ptage. Impedance 3 ohms. Output approx. $3-5$ watte. Volume and tone controls. Chasis size only 7in. Wide
\times 3in. deep \times Gin. high overall. AC mains $200 / 240 \mathrm{y}$. $\times 3 \mathrm{in}$. deep $\times 6 \mathrm{in}$. high overall. AC mains $200 / 240 \mathrm{v}$.
Supplied absolutely Brand New completely wired and Supplied absolutely Brand New completer
tested with good quality output transformer. $\mathbf{5 - 0 0}$
FEW ONLY. High grade mains transformer with grain orientated lamination. Primary $200 / 240$. Secondary 18.5 volts at 0.6 amps and 4.6 volts at 0.3 amps. Size
2 in . long $\times 2 \mathrm{tin}$. wide $\times 2 \mathrm{in}$. deep overall. \&1.40 plus BRAND NEW MULTI-RATIO MAIHS TRANSFORMERS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{v}$. Secondary combinations 0-5-10-15-20-25-30-35-40-60\%. 2 amps fulla wave. Size 3 in . long $\times 3$ in in , wide $\times 3$ in deep. Price 82.75 . P. \& P. 65 p
MAINS TRANSFORMER. For power supplies
Pro. 200/240v. Sec. 9-0-9 at 500 mIA . $£ 1.35$. P. \& P. 30 p.
Pri. $200 / 240 \mathrm{v}$. Sec. $12-0-12 \mathrm{at} 1 \mathrm{amp} . £ 1.50$. P. \& P. 30 p . Pri. 200/240v. Sec. $12-0-12$ at 1 amp . £1.50. P. \&P. 30 p .
Pri. 200/240v. Sec. $10-0-10$ at 2 amp . $£ 2.20$. P. \& P. 40 p . 3 VOLT RELAY. $100 \mathrm{~m} / \mathrm{a}$ single pole normaily closed 2 for 00 p . P. \& P. 15 p

GENERAL PURPOSE HIGH STABILITY
For P.U. TRANE, Mike, Guitar, etc, and s
use with value or transistor equipment. 9.18 y battery or from H.T line $200 / 300 \mathrm{v}$. Frequency reaponse $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26 dB . Solid encap.

HAFDBOOK OF TRANSISTOR EQUIVS. AND SUBS. A muat for servicemen and home constructors. Including
many 1000^{\prime} s of British, U.S.A. Kuropean and Japanese many tranaistors. ONLY 40 p . Post 7 p . 3 Reference Encyclopedias for Electronic Engineera and Designers, covering betweelı thenl trathistor character-
istic, diode and transistor equivalents. Many thousands of up to date European types listed.
Diode Eqaivalente E1. Transistor Equivalents $£ 1 \cdot 80$. Tranaistor Characteristica 21-40. POST FREE
All three together $£ 3.20$

HEW ISSUE

Thyristor, Triac, Diac etc. encyclopedias £1-70. Post Free. 8 pole 3 way 2 bank low loss Yaxley type awitches 1

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Enjoy Fabulous Stereo Radio at this Low Introductory Price! Designed and styled to match our $10+10$ ampliieer
but will suit anly other atandard sterea but will suit any other standara stereo amplifier
The deelgn incorporates the very
lateent
circuitry
 Automatic frequency control to "lock on" station and prevent drift. IC stereo decolier for maximum stereo
semaration. L.E.D. for atereo beacon indicator. Nomseparation. L.E.D. Tor atereo beacon indicator Nom-
 ested and tully guaraik Price $£ 27.50$. Post and Packing $£ 1 \cdot 00$.

STEREO-DECODER SIZE 2

Ready built. Pre-aligned and tested.
Sens. 20.560 mV for $9-16 \mathrm{~V}$ neg parth operation. Can be fitted to almost any FM VHF radio or tuner.
Stereo beacon light can be fitted if required. Fult details and structions (inclusive of hints and tipp) supplied. $26 \cdot 25$ plus 15 p P. ${ }^{\&} \mathrm{P}$.
Stereo beacon licht if required 45 p extra.

LATEST HI SENSITIVITY UNI-DIRECTIONAL SLIE LATEST HI SENSITIVITY UNI-DIRECTIONAL SLIM professionals. Very low acoustic feedback. A vailable Hi impedance or low
$£ 16.25$. P. \& P. 25 p .
LATEST ACOS GP91/1SC mono compatible cartridge with /o stylus for LP/EP/78. Universal mounting bracket CERAMIC STEREO CARTRIDGE. Universal mounting brackets and turnover atylus. 70 mV per channel output.
 T/O stylua Diamond Stereo LP and Bapphire 78.
ONLI f2.62. P. \& P. 10p. Also available fited with twin Diamond T/O stylus for Stereo LP. es.18. P. \& P. 15 p . LATEST RONETTE T/O 8TEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. £1.88. P. \& P. 16p. playing EP/LP/78 mono or stereo records on mono equipment. Only $£ 1-75$. P. \& P. 15 p .
QUALITY RECORD PLAYER AMPLIFIER MK. II A top quality record player amplifier employing heavy,
duty double wound mains transformer, WCC83. EL84, duty double wound mains transformer, EDCE83. EL8A,
and rectifler. Separate Bass, Treble and Volume controls. Complete with output transformer matched for 3 ohm speaker. Size 7 in wide $\times 3 \mathrm{in}$ deep $\times 6 \mathrm{in}$ high. Ready
 ALSO AVAILABLE mounted on board with output

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made simulated teak finish enclosure now with most attractive elatted front. Size $161^{\prime \prime}$ high \times
101° wide $\times 9^{\circ}$ deep (approx.). Fitted with E.M.I. Ceramic Magnet $13^{\circ} \times 8^{*}$ bass unit, H.F. tweeter unit and crossover. AVAllable IN Nominal
OUR PRICE \&! 25 each. Carr. \& 1.25 Cabinet Available Separately $\mathbf{8 6 \cdot 2 5}$. Carr. $£ 1 \cdot 10$.
Also available in 8 ohms with EMI $13^{\circ} \times 8^{\circ}$ base Also available in 8 ohms with EMI $13^{\prime \prime} \times 8^{*}$ bass
speaker with parasitic tweeter $£ 10.00$. Carr, $£ 1.25$.

LOUDSPEAKER BARGAINS

in. 3 ohm $£ 1.45$, P. \& P. 15p. $7 \times 4 \mathrm{in} .3 \mathrm{ohm} £ 1 \cdot 69$, P. \& P. ${ }^{2} \overline{5}$ p. $10 \times 6 \mathrm{in} .3$ or 15 ohm $82.50, \mathbf{P} . \&$ \&. ${ }^{35 \mathrm{p}}$. E.M.I. $8 \times 5 \sin .3$ ohm with high llur magnet £2.08, P. \& P. 25 p .
E.M. 13 x . $\mathrm{8in}$. with high flux ceramic magnet with E.M.1. $13 \frac{1}{} \times 8 \mathrm{in}$. with high lux ceramic magnet with
parasitic tweeter 3.8 or 15 ohm $84.12, P$. \& P. 35 p. parasitic tweeter 3.8 or 15 ohm 24.12, P. \& P. 35 p .
E.M.I. 13×8 in 3.8 or 15 olam with inbuilt tweeter and crossover network $\mathbf{~ 5 . 5 0 , ~ P . ~ \& ~ P . ~ 3 5 p . ~}$
E.M.1.tweeter. Approx. $31^{\prime \prime}$. Available 3 or 8 or 15 ohms

ER.00 + 25p, P. \& P. counts. 122 in . 1 jw. H/D Speakers, 3, 8 or 15 ohims. State which. Current production by well-known Britiah maker. Now with Hiflux ceramic ferrobar magnet
assembly $£ 9.50$. Guitar models: $25 w$. £ $5 \cdot 50.35 w, 511 \cdot 50$. P. \& P. 75 p .
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Bize $117^{* * *} \times 14 \mathrm{H}^{*} \times 1 \frac{7^{*}}{6^{*}}$ deep. Weight $190 z$. Power handling 20W r.m.s. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without baffle. NOW ALSO AVAILABLE Bin. 10 W rms 20 W peak
40 Hz - $20,000 \mathrm{~Hz}$. Overall depth lin. Ideal for Hi-Fior $40 \mathrm{~Hz}-20,000 \mathrm{~Hz}$. Overall depth 1 li
for use in cars. $85 \cdot 18$. P. \& P. 40 p .

SPECLAL BARGAIN OFPER
Limited number of BSR C123 Auto Changer Def Luxe with lightweight tubular arm and atereo cartridge Brand new. O
HARVERSONIC SUPER SOUND $10+10$ STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Usee 14 transistors including silicon Transistors in the first five stages on each channel regulting in even lower noise Bass, Treble and two Volume Controls. Suitable for use Bass, Treble and two Volume Controls. Suitable for use
with Ceramic or Crystal cartridges. Very aimple to with Ceramic or Crystal cariridges. Very aimple to Outputatage for any apeakers from 8 to $1 \overline{\mathrm{v}}$ ohms. Compact deaign, all parts supplied including drilled metal work, thigh quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs; wire, solder, nuts, bolts-no extras to buy. Simple step by step inatructions enable any constructor to build an ampliger to be proun . output: 14 watts r.m.s. per channel into \bar{y} ohms. Fre-
quency response $+3 d \mathrm{~B} 12-30,000 \mathrm{~Hz}$ Sensitivity: better quency response $\bar{I} \mathrm{MB}$. Full power bandwidth: $\pm 3 \mathrm{~dB}$ $12-15,000 \mathrm{~Hz}$. Bass, boost approz. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16dB. Negative feedback 18dB ove main amp. Power requirements 35 v , at 1.0 amp Overall size $12^{*} w . \times 8^{\prime \prime} \mathrm{d}, \times 2$ n $^{\prime \prime} \mathrm{h}$.
Fully detailed 7 page construction
Fully detailed 7 page construction manual and parts IIst free with kit or send 25 p plus large S.A.E.
AMPLIFIER KIT

 CABINET
(Post Frec if all units purchased at same time) Full after sales service
Also available ready built and teated $\mathbf{2 3 2} \mathbf{5 0}$. Poat Free. Note: The above amplifier is suitable for feeding (wo mono sources into inputs (e.g. mike, radio, twin record decks, etc.)
and willthen provide mixing and fading facilities for medand willthen provide mixing and fading facilities for med ium powered $H i-F i$ Discolheque use, etc

3-VALVE ADDIO AMPLIFIER HA34 MK II Designed for Hi-Fi reproduc operation. Ready built on plated heavy gauge metal chassis, size $7 I^{\prime \prime} w . \times 4{ }^{\prime \prime} \mathrm{d}$. \times 41"h. Incorporates ECC83
ELB4, EZ80 valves Heav ElL84, Ez80 valves. Heavy
duty, double wound maina duty, double wound mains
transtormersad output transtransiormer sind outputtrans-
former matched for 3 ohm speaker. Separate volume control and now with improved wide range tome controls giving bass and treble lift and panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etc wired and tested for only \& ${ }^{7} 75$. \mathbf{P}. \& \mathbf{P}. 70p HSL "FOUR" AMPLIFIER KIT. Similar in appearance advanced circuitry. Complete set of parts. etc. 86.50 . advanced circuin
P. \& P. 70 p.

10/14 WATT EI-FI AMPLIFIER KIT A otylishly fanlobed
monaural ampliffer with an output of 14 watts from 2 EL84s in push-pull. Super reproduction
of both music and of both music and giblehum. Separat inputs for mile and gram allow record
 and announcements
to follow each other. to follow each other Fully shrouded section wound output transformer to match 3 -15 Ω speaker and 2 independent volume controls, and separate base and treble controls are provided
giving good lift and cut. Valve iine-up 2 EL84s, ECC83 FFSG and EZ80 rectifier. Simple tostruction booklet $25 \mathrm{p} \times$ SAE (Free with parta). All parts sold separately ONLY £12.00. P. \&P. \&1.00. Also available ready bulit

HI-FI STEREO HEADPHONES

Adjutable headband with comiortable flexifoam carAduatable headband wired and fitted with standard stereo fin iack plug. Frequency response $30-15,000 \mathrm{~Hz}$. Matehing impedance 8-16 ohirs. E
PRICE $£ 4.05$. P. \& P. 25p.

PRICES INCLUDE VAT

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday. Prices and specifications corre
ot time of press. Subject to alteration without notice

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) I70 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: 0I-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE NOTE: P. \& P.CEARGES
QUOTKD APPLY TO U.K. ONLY. $P, \& P$ ON OVERSEAS ORDERE
CHARGED EXTRA.

\star ELECTRONIC PIANO KIT

* SYNTHESISER KIT * ELECTRONIC ORGAN KITS
There are five superb Electronic Organ kits specially designed for the D-l-Y enthusiast. With the extreme flexibility allowed in design. you can builld an organ to your requirements, which
will compare with an organ commercially built

costing double the price.
\star Portable organ with 4 octave keyboard, £145.29. * Console organ with 5 octave keyboard, $£ 250 \cdot 93$. $*$ Console organ with 2×4 octave keyboards and 13 note pedal board, $8470 \cdot 65$. * Console organ with 2×5 octave keyboards and 32 note pedal board, 8680 . \star Console organ with 3×5 octave keyboards and 32 note pedal board, 8960. \star W/W Sound Synthesiser Kit, £149. \star W/W Touch Sensitive Electronic Piano, \&110.
All components can be purchased separately, i.e., semiconductor devices, M.O.S. master oscillators, coils, keyboards, pedal boards, stop tabs, draw bars, key-contacts, etc. Lesley type speaker units from $£ 50$.
Send 50 p for catalogue which includes 5×10 p vouchers or send your own parts list. enclosing S.A.E. for quotation.
Elvins Electronic Musical Instruments
12 Brett Road, Hackney, London E8 1JP (Tel. 01-986 8455); 8 Putney Bridge Road, London SW18 1HU (Tel. 01-870 4949); 40a/42a Dalston Lane, Dalston Junction, London E8 (Tel 01-249 5624).

Business hours: Open $10 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$. Monday to Saturday. Closed all day Thursday. Open $10 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$. Sunday
Vacancy for shop assistant with electronic knowledge

$4 \mathrm{tin} \times 3 \mathrm{tin}$ METER. $30 \mu \mathrm{~A}$. $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, \mathrm{EJ} .85$. I 3 p P. \& P.

$500 \mu \mathrm{~A}, 70 \mathrm{p} .10 \mathrm{p}$ P. \& P.

CARDIOID

 DYNAMIC MICROPHONEModel UD-I30. Frequency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, E6.55. 13p P. \& P.
$42 \times 42 \mathrm{~mm}$ meters $100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$, $\operatorname{ImA}, 500 \mathrm{~mA}, \mathbf{6 2} 76$. 11 p P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and ImA VU meter, $\mathbf{6 2} 92$. IIP P. \& P.

Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$ 1 mA . $63 \cdot 40.13 \mathrm{p}$ P. \& P.

3 WATT STEREO $\left(1 \frac{1}{2}+1 \frac{1}{1}\right)$ PER CHANNEL AMPLIFIER
64.30. 12 \& P P. \& P.

All above prices include 8% V.A.T. LARGE S.A.E. for List No. II. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton • Lancs. BL2 IBA

ORDER DIRECT FROM THE U.S. AND SAVE

SHIPMENT MADE WITHIN 3 DAYS FROM RECEIPT OF ORDER VIA AIR MAIL - POSTAGE PAID

The prices as listed are in British pounds and pence. Send bank cheque or personal cheque with order. If international postal money order is used, send receipt with order. Minimum order $£ 2-50$ p.

INTERNATIONAL ELECTRONICS UNLIMITED P.O. BOX 1708 MONTEREY, CA. 93940 USA

The Shop Window for the Very Best...

Department PE 194-200 North Rd, PrestonPR1 1 YP Tel:55034 Telex:677122.

toshiba valves		Type	$\begin{aligned} & \text { Price } \\ & \text { Each }(p) \end{aligned}$	Typs	$\begin{array}{r} \text { Price } \\ \operatorname{Each}(p) \end{array}$	$\begin{aligned} & \text { DIODES } \\ & \text { Type } \end{aligned}$	integrated cifcuits	
Type	Price (p)	20149	40	8D124	75	${ }^{\text {BAP } 15}$, 7	Type	Price
DY87 OY802	30.0 30.0	${ }^{9} \mathrm{D} 161$	38	BD131	45	$\begin{array}{ll}\text { BA } 4.45 & 14 \\ B A A_{*}^{48} & 19\end{array}$	TAA550	499
Ecc82	28.0	9 D 162	${ }_{24} 8$	80132	- 39	BA-54/201 11	YaA700	${ }^{\text {c } 2.95}$
Ef80	29.5	${ }^{\text {a }}$ F114	24	${ }_{80160}$	c1. 39	BY126 11	traizas	${ }^{11.00}$
EF183	34.5	${ }_{\text {aFl }}^{4.15}$	21 22	BD235 80237 808	49	BY127 ${ }^{12}$	TBA4800	c1.00
EFIP4	34.5	${ }_{4 F 117}$	19	80×32	C2.40	Bri99 27	t8A5200	${ }_{\text {E2, } 35}$
EH90	35.5	4 F 118	50	8 F115	20	${ }^{81}$	t ${ }^{\text {da5300 }}$	81.75
${ }^{\text {PCP900 }}$	24.5	aF139	35	BF160	15	Bra 0	tBA540C	c1.75
${ }^{\text {PCCC89 }}{ }^{\text {PCC189 }}$	40.0	Q F $1789^{\text {a }}$	45	8F 167	20	0490 - 6	tbas60co	¢2.40
PCC189		QF180	45	BF173		OA202 7.5	твa800	[1. 50
	31.5 39.0	181	45	8F178	35	INGOVOAS1	T8A9200	
PCF86,	39.0 42.0	aF239	40	8F179	40	NEW TOSHIBA TUBES	900	.90
PCF801	42.0	a 4240	so	8F180	31		TCA2700	¢2.90
($\mathrm{PCF8802}$ PCL82	49.0	вC107	11	8F181	32	20-5100JB22	ETTR6016	E2.00
PCL822	39.0	aC108	10	BF184	25	22-A56/120X 554.25	SN76013N	E1.50
	39.0	BC109	14	${ }_{\text {BF1 }} 185$	25	EHT MULTPLIERS MO	OCHROM	(thC)
PCLE5	44.5	8C109C	14	8F194				Esch
${ }^{\text {PCLI86 }}$	41.0 59.5	act13	13	8F195	8	2HD 950M×1. 960		${ }_{\text {Each }}$
${ }_{\text {PLL }}{ }^{\text {P6 }}$	55.5	${ }_{\text {aC }} 116 \mathrm{~A}$	19	BF196	10	$270950 \mathrm{Mk2,1400}$		
${ }_{\text {PL8 }}$	${ }_{25}^{55.5}$	3C117	14	BF197	12	20ak 1500 (i7- \& 19\%)		${ }_{\text {¢1.85 }}$
${ }_{\text {PLL504 }}$	25.0 84.5	${ }_{3 C 1258}$	15	${ }^{\text {BF }} 1988$	${ }^{23}$	2TAK 1500 (23° \& 24*)		C2.00
${ }^{\text {PLL504 }}$	${ }_{67.0} 8$	3 C 132	25	BF200	25			
${ }^{\text {PL519 }}$	¢1.50	${ }^{\text {a }} 13135$	15	$8 \mathrm{F218}$	30	EHT MULTPLIERS - Coid	Lour	
PY88	35.5	${ }^{3} \mathbf{C 1 3 7}$	19	BF224	23	11 TAOOITT CVCl, 2 \& 3		C4. 50
PY800	33.0	${ }^{\text {BC138 }}$	26	258	34	ITN GEC/Sobell		c4. 50
PY500A	85.0	$3{ }^{142}$	23	日F336	28	11 TAZ GEC 2110		[4.85
		${ }^{\text {SC143 }}$	25	BF337	35	11 Tam Pmilips 68		E4.50
		${ }^{8147}$	11	日F355	54	11730 Phulios 550		£4.50
SEMI CONDUCTORS		3C147A	11	$8 \mathrm{Bx} \times 6$	28	31CW Pye 691/693		50
Typa	Esch (p)	${ }^{3 C 148}$	10	BFY50	19	1 TH Decca 30 Series		$¢^{\text {¢ }} .50$
${ }^{\text {ACi }}$	17	${ }_{3}^{3 C 149}$	15	${ }^{85552}$	${ }^{20}$	1rad decca slatiora		
AC141K	25	${ }_{5 C 154}$	15	${ }_{\text {BTL }}$	c1.20	11 Hat		. 0
${ }^{\text {ACliak }}$	25	${ }^{3}$	14	BU105/02	${ }_{\text {c. }} 95$	1 HAB		
${ }^{\text {A Cl142K }}$	25	${ }^{3 C 157}$	14	${ }^{\text {BU10 }}$	${ }^{1 / 29}$	1 HAAB Thorn 8500		4.25
${ }^{\text {AC151 }}$	20	${ }^{3} 158$	1	8408	c2. 10			
${ }^{\text {AC154 }}$	${ }_{18}^{18}$	${ }_{3 \mathrm{cc} 173}$	18	${ }_{E 1222}$	${ }^{22.95}$	PAICES SUEJECT	25\% V.A.T	
AC556	20	${ }_{3 C 1788}$	20	M 5 E340	45	All goodi zubiect ${ }^{\text {discount of } 5 \%}$	Hetriema	
AC17\%	22	3C182L	12	$0 \mathrm{C74}$	15	discount of $5 \% 7$ da	-nd 2\%	
${ }_{\text {AC1 }}{ }^{\text {C }}$ 87 78	19	${ }^{3 C 1835}$	12	\bigcirc	16	No postego charge	or minim	
${ }_{\text {AC188 }}{ }^{\text {ACP187 }}$	17 18	${ }_{9 C 214 L}$	15 15	${ }_{\text {R20108 }}$	¢2.00	order values.		
AC188K	26	9¢328	${ }^{28}$	${ }_{\text {RCA }} \mathrm{RCA} 16334$	${ }_{80} 8$	Write or phone for	uli dotalle now	
A0142	45	3C337	19	RCA16335	80			

un In Prices, Quality and Service

P.E.
 "VARICAP" STEREO PUSH BUTTON F.M. TUNER

The p.E. "Varicap" Stereo Tuner uses the latest Mullard modules for R.F. and I.F. circuits-highly sensitive and pre-aligned for ease of construction.
This superb kit has everything to enable you to construct this highly sensitive F.M. Stereo Tuner, with instant push button station selection, self contained regulated power supply. stereo decoder, etc., etc. Easy to construct, highest quality reproduction.
Price only $£ 34 \cdot 50$, including VAT and postage and packing. Please send stamped addressed envelope for our free brochure on the Varicap, which gives performance figures, detailed description, etc., etc.

P.E.
 "GEMINI" STEREO AMPLIFIER

Output genuine 30W R.M.S. per channel!
Distortion 0.01\%(maximum)!
Frequency response-3dB, 20 Hz to 100 kHz into 8 ohms! Fully comprehensive inputs, disc, tape, MIC, etc.!
Yes, we are still supplying all components for this superb Stereo Amplifier, since we have not yet found a better one!
Fully comprehensive constructional booklet available, containing full specification, performance graphs. step-by-step assembly instructions, photographs, fault finding guide, etc. etc. Price 55p plus 9p postage and packing. For itemised price list only please forward stamped addressed envelope.

ELECTRO SPARES, 288 ECCLESALL ROAD, SHEFFIELD S11 8PE
Please allow 14 days minimum for delivery, for postal delays, cheque clearance, etc.

GUARANTEED TESTED HIGH PERFORMANCE MODULES-now better value than ever
 35W RMS 25-50V
SA50 $£ 8.50$
50W RMS 25-65V
7 transistors, 7 diodes

100 W RMS 45-70V
120 watt module complete with builtin supply-extra heavy duty $£ 24.75 \begin{gathered}\text { capr } \\ \text { copr }\end{gathered}$

THE SA100 MODULE

POWER SUPPLIES

| UNSTABILISED | —READY | WIRED AND FUSED |
| :--- | :--- | :---: | :---: | :---: |

N.B. PS70 is not suitable for the SA50

Mk II STEREO DISCO MIXER $£ 29.50$ This well tried Pre-Amp mixes two decks, handles any ceramic cartridge, and features mic over-ride plus separate full range bass and treble controls on both mic and deck inputs. Ample headphone power is
available for P.F.L. May be used for mono and is avains operated. Firted with sturdy screening case. mains operated. Fitted with sturdy screening case.
Controls: Micvol, bass, treble. Left/Right fade, deck volume, bass, treble, h/phone select, vol, Mains. Size $17 \frac{1}{2}$ in $\times 3$ in $\times 4$ in deep.

DISCO MODULE $\mathbb{1} 12.50 \underset{\substack{\text { carr. } \\ \text { sop }}}{\substack{\text { a }}}$

Thousands sold of this extremely popular mono Pre-Amp. A mic input may be fitted using the VA30 (see below). Low consumption from a 9 V battery Features the same high standards of reproduction as the Stereo version
Controls: H/phone select, vol, Left deck vol, Right deck vof, bass, treble master vol. Size $12 \frac{z}{2} i n \times 3$ in $\times 2$ in deep.

3-CHANNEL SOUND-LITE $£ 24.75{ }_{50}^{\mathrm{C}_{50 \mathrm{p}}}$

 Only SAXON can supply such incredible value for moniey. This unit features 3 kWpower handling, full-wave control, bass, middle, treble AND master controls. Twin power handling, full-wave control, bass, midde, treble AND master controls. Twin
loudspeaker jacks for "through" connections. it may be used free standing or will panel mount next to either of the above. Also features unique CUT-BACK circuitry for extra wide rangeresponse. Size $12 i n \times 3 i n \times 2$ in \times deep. Professionalstandards at a price you can afford!
SINGLE CHANNEL High sensitivity, compact, Add 8\% VAT to all orders VERSION $\mathbf{£ 7 . 9 0}$ operation

MULTI-PURPOSE MIXERS

M4HL M6HL

 Featuring multiples of our VA30 module, the M4HL and M6HL fulfil the requirements of allclubs, groups. ete. where a high quality mixer is required. Each channel has one high and one low impedance input, plus volume, treble and bass controls. Input impedances may, if required, be easily changed, The M4HL has four channels, and one output, and control and two outputs. Either unit may be used free-standing or panel mounted. These mixers will feed all types of amplifier. Recommended for their versatility and high performance, and excellent value for monay.
VA30 CHANNEL 13.90 Carr
This is the basic channel module in the above mixers and may also be used for extra inputs on either the mono or stereo mixers. Fitted with volume, bass and treble controls, requires just a jack and supply (9-100V)

The largest selection

EX-COMPUTER STABILISED POWER MODULES

LOW COST CAPACITORS

Filent
Sp each
10 p each

DECON-DALO 33PC Marker Fitch roniatatu printed eipenit Marker pen 99 реас

VEROBOARDS

racks romithind apprin

REPANCO CHOKES \& COILS

 -
DRXU Cryatal set 31p DRRE Dual range 45p
COIL FORMERS \& CORES
NORMAS : Coren w formern 8 D

SWITCHES

HP/1PT Togkle 36p AP/ST Tuggle 30p

FUSES

(10 and $20 \mathrm{~mm} .100 \mathrm{~mA} .200 \mathrm{ma}, 250 \mathrm{~ms}$ पUICK-BLow sp each

EARPHONES

Cryatal $\because 5$ thm plug 42D
5 ohms 5 mmin
4 ohms 3 Enua plue 2RD
DYNAMIC MICROPHONES

3-WAY STEREO HEAD.
3-WAY STEREO HEAD-
PHONE JUNCTION BOX
H1012 81.87
2.WAY CROSSOVER

NETWORK

CAR STEREO SPEAKERS Angled) 53.85 per pair.

BI-PAK

catalogue and lists Send S.A.E. and 10p.

INSTRUMENT CASES

Black Vingl covered

ALUMINIUM BOXES

BIB HI-FI ACCESSORIES

De Luxe Groov-Kleen
Model 42 £1. 95
Chrome Finish
Model $\mathbf{5 0} £ 1 \cdot 50$
Rel. 3fA. Recoril/Stylus Cleaning Kit 33p Ref. 43. Reenrid Care Kit $£ 2-42$
Ref. 31. Cassette llead cleaner 58p
R.f. $3:$. Tape ctiting K it $\mathrm{fl} \cdot 88$ Mulel! Wire Stripper/Cutter 83p ReJ. +f. Splirit level 62p

ANTEX SOLDERING IRONS
X므․ 25 watt $£ 2.05$
CCN 240. 15 watt 22.48
Moicl ($: 18$ watt $£ 2.26$
SKL. Sullering Kit 23.25
STANDS: ST3, suitable for all motelafl
SOLIDR: 18SW (Multicure Toz $\mathbf{5 1 . 6 1}$
atsw: Toz t1.61. 18sw wett 51p
2sw: Tube 33p
ANTEX BITS and ELEMENTS Bits, No.
$10 \pm$ For inolel $\mathrm{CN} 2403^{3} 3^{\circ}$
104 For model $\mathrm{CN}^{2} 40$?
1100 For momel CCN240 ${ }^{3} \mathbf{3}^{3}$
1101 For mmel CCN240 á
10:2 For model CCN240 :-
1020 For model G2040 3iz
1021 For mollel 6240 :
Ref. B. Stylus and Turntable Cleaning Kit Hef. P. Hi-HiC Cleaner 31p
Hef Thy in balance 1.37
Rei. jf. Hi.Fis Stereo Hints and Tips 4
Rel. $4 \overline{\mathrm{~L}}$. Alito Changer (itoove Cleaner $£ 1.08$

PLUGS AND SOCKETS

 plogs22 For model 6240 :
30 For model X $255^{\frac{3}{3}}$ "
51 For model X254*
32 For morlel X 25
ELEments
ECN $240 \mathrm{E1}$.30
ECCN 240 \{1-32 EG 240 81.07 EX 2 251.16

ANTEX HEAT SINKS 10p

vat included in all prices. Please add 10p P. \& P. (U.K. oniy). Overseat ordersplease add extra for poatage.

NEW COMPONENT PAK BARGAINS
Pack
No. Qty
No. Qty. Demeription Price
C1 200 Resistors mixed values approx connt by weight 0.54
Capacitors mixed values approx.
C2 $150 \begin{gathered}\text { Capacitors mixed } \\ \text { count by weight }\end{gathered}$
C3 of Precision Resistors mixed values
C4 is :th ralues
Pieces assorted Ferrite Rodo 0.54 Tuning Gangs, MW/LW VHF 0.54 Pack Wire 50 metres assorted colours
C8 10 Reed Switches
Micro 8 witches
C10 15 Assorted Pots \& Preseta
C'11 J Jack Sockets $3 \times 3.5 \mathrm{~m} \cong \times$ Standard Switch Type
C'I: 30 Paper Condensers preferred types
Ca3 20 Electrolytics Trans. types
C14 1 Pack assorted Hard'ware-
Clj if Mains Slide Switches
Clf 20 Assorted Tag Strips \& Panels 0.54
Cli 10 Asmorted Control Knobs
Rotary Wave Change S_{w} itches 0.54
Relays 6-94V Operating
Pack Sheets of Copp
approx. 20 sq. ins.
VISIT OUR COMPONENT SHOP
18 BALDOCK ST., WARE, Herts. (A10)
Open Mon.-世at. 9-5.30 p.m. Tel. 61593

SOLVE THOSE STICKY PROBLEMS!

CYANOACRYLATE C2 ADHESIVE
The wonder boud which works is secondybond plaatic, rubber, metais, transistors

OUR PRICE ONLY 54p

for 2 gm . phial
BATTERY HOLDER
Takes 6, HPi's complete with terminal, clip and icad. 34p

WORLD SCOOP

JUMBO

SEMICONDUCTOR PACK

Transistors, Germ. and silicon Rectifiers, Diodes, Triacs, Thyristors, I.Cs and Zeners ALLes, Triacs, Thyristors,
AND CODED.

APPROX. 100 PIECES
Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data sheet in every Pak.

Only $\leqslant 2 \mathrm{p}$, \& p. 20p
RECORD STORAGE/ CARRY CASES iin EP. 18 in $\times 7 \mathrm{in} \times 8 \mathrm{in}$ (50 records

CASSETTE CASES £1.30 Holds $12,10 \mathrm{in} \times 3^{3} \mathrm{in} \times \operatorname{iin}$. Lock and handle
8-TRACK CART. CASES
Holds 14. $13 \mathrm{in} \times 5 \mathrm{in} \times 6$ in $£ 1.95$
Holds $24,13 \mathrm{in} \times 8 \operatorname{in} \times 5$ in E 2.70
Both with lock and handle.

SPECIAL PURCHASE

2N3055. Silicon Power Transistors NPN. Famous manufacturers out-ot-spec derices free from open and short defects-every one ablel 115 W . TO3. Metal Case OUR SPECIAL PRICE 8 for $\& 1$
REPANCO TRANSFORMERS
240 V . Primary. Secondary voltages avail able from selected tappings a $, 1,8 \mathrm{~V}, 10 \mathrm{~V}$

Type Amps
$\begin{array}{lcrr}\text { Type } & \text { Amps } & \text { Price } & \text { P. \& P } \\ \text { MT50/1 } & 1 & 62.42 & 48 \mathrm{p} \\ \text { MT50/2 } & 2 & \text { £3.30 } & 80 \mathrm{p}\end{array}$
CARTRIOGES
Acos
GP91-18C 200 mV at $1-2 \mathrm{~cm} / \mathrm{sec} \quad 21.35$
GP93-1 280 mV at $1 \mathrm{~cm} / \mathrm{sec}$ GP96.1 100 my at $1 \mathrm{~cm} / \mathrm{sec}$
J- 2010 C Crystal/Hi Output Compatible $\$ 1.20$
J- 20068 Stereo/H Output
J. 2203 Magnetic $5 \mathrm{mV} / \mathrm{Fen} / \mathrm{sec}$ including

J -220038 Replacement stylus for above $\begin{array}{r}£ 4.85 \\ £ 3.00\end{array}$
AT- 5 J Audio-technica magnetic cartridge $4 \mathrm{mV} / \mathrm{ucm} / \mathrm{sec}$
$\$ 3.30$
CARBON FILM RESISTORS
The Ell2 Range of Carbon Film Resistors,
asported into the following groups: pieces,
R1 $\overline{0} 0$ Mired 100 ohms- 820 ohms

R4 50 Mixed $100 \mathrm{k} \Omega-1 \mathrm{M} \Omega$
THESE ARE UNBEATABLE PRICESJUST 1p EACH INCL. V.A.T.
BI-PAK SUPERIOR QUALITY
LOW - NOISE CASSETTES C60, 36p; C90, 48p; C120, 60p.

-the lowest prices!

BI-PAK QUALITY COMES TO AUDIO!

AL10/AL20/AL30 AUDIO AMPLIFIER MODULES

Parameter	Conditions	Performance
Harmonic digtortion	Po $=3$ WATTS $\mathrm{f}=1 \mathrm{KHz}$	0-20\%
LOAD IMPEDANCE	-	8-18』
INPUT IMPEDANCE	$\mathrm{t}=1 \mathrm{KHz}$	100 k ,
FREQUENCY Response -3dB	$\mathrm{PO}=2 \mathrm{~W}$ ATts	$50 \mathrm{Hz-25KHz}$
SENSITIVITY for Rated o/P	$\mathrm{V}_{\mathrm{B}}=2 \mathrm{~J}, ~ R 1=8 \mathrm{~S}$ ($=1 \mathrm{KHz}$	7 mmV . RMS
DIMENSIONS	-	$3^{*} \times 23^{* *}=1^{*}$

The above table relates to the AL10, AL20 and AL30 modules. The following table outlines the differences
in their working conditions.

Parameter	AL10	AL20	AL830
Maximum Supply Voltage	25	30	30
Power out for 2% T.H.D. ($\mathrm{RL}=8 \Omega 1=1 \mathrm{KHz}$)	3 watts RMS Min.	5 watta RM8 Min	10 watts RMS Min

AUDIO AMPLIFIER

 MODULESAL 10. 3 watts
AL ${ }_{30}$ 30. $\quad 5$ watts
10 watts

POWER SUPPLIES

 FRONT PANELS FP 12 wit) RONT PANELS FP 12 with K nobs

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTION! The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £4-25

\author{

- Max Heat Sink temp $9 \mathbf{0}^{\circ} \mathrm{C}$.
 - Frequency Response 20 Hz to 100 KHz - Distortion better than 0.1% at 1 KHz
 - Supply voltage 15-50 volts
}
- Thermal Feedback
- Latest Design Improvements - Load - 3, 4, 8 or 16 ohms - Signal to noise ratio 80 dB
- Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ $\times 13 \mathrm{~mm}$

Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F enthusiast.

STABILISED POWER MODULE SPM80

SPM80 is especially deaigned to power 2 of the AL60 Amplifers, up to 15 watt (r.m.s.) per channel simultaneousiy. This module embodiea the lateat component
nd circuit techniques incorporating complete short circuit protection. With the addition of the Maling Trant. former BMT80, the unit will provide outputa of up to 1.5 amps at 3.5 volta, size: $63 \mathrm{~mm} \times 10 \overline{\mathrm{~mm}} \times 30 \mathrm{~mm}$ These unite enable you to build Audio syatems of the bighest quality at a hitherto unobtainable price. Also ideal for many other applications including:- Disco systems, Public Addreas, Intercom Units, etc. Handbook available 100 PRICE £3.25 TRANSFORMER BMT80 £2.75 p. \& p. 40p

STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a price, and yet atill the greatent value on the market the PA100 atereo pre-amplifier has been conceived from the lateat circuit techniques. Deaigned for use with the AL60 power amplifer syatem, this quality fnade unlt incorporates Hess han eight sincon pianar transistors, two of these are apecially selected low noise TPN devices for une in the input stages.
Three switched stereo Inputs, and rumble and scratch Biters are features of the PA100, which also has a STEREO/MONO switch, volume. balance and continuously varlable
bass and treble controls.

ONLY £14.25
MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times$ SPM80, $1 \times$ BTM80, $1 \times$ PA 100 , 1 tront panei, 1 ktt of parts to include on-ofl switch, neon indicator, stereo hed phone sockets plus instruction

TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet aize $16 \mathfrak{t}^{\prime \prime} \times 111^{\prime \prime} \times 33^{\prime \prime}$, other parts include aluminium chassis, heatsink and front panel bracket, plua back panel and appropriate sockets, ete Kit price: 89.95 plus 45 p postage

AN INDISCRIMINATE TAX

THE electronics constructor has suffered a substantial blow from the April Budget, since the new V.A.T. rate of 25 per cent applies to all electronic parts and accessories which can be used in or with radio, television, or audio equipment, electronic musical instruments, and a wide range of electrically operated domestic appliances. Very few circuit devices will escape this definition; though just how in practice the authorities will determine the finer points of distinction is currently a subject of much interest and speculation.

In fact, the whole scheme for a higher rate of V.A.T. effecting electronic components has been greeted with dismay by the manufacturers, distributors, and retailers alike. Confusion runs rife; already conflicting interpretations are reported from different tax offices up and down the country, and the Chancellor is under pressure from industrial and trade organisations to modify this unworkable and illogical scheme.

As it stands, in the original form, we must assume that very few components will be allowed to slip through at the lower rate of 8 per cent.

Hearing aids and electronic calculators are excluded from the higher rate. But what does the retailer charge for a resistor or semiconductor required to repair one of these instruments? Does he demand an affidavit that this component will not be used to build or service a radio set or amplifier?

Impending or future developments could very well embrace certain components which at this particular moment may not have any plausible connection with the classes of goods that are subject to the higher rate. In terms of technical feasibility there is scarcely anywhere where it is prudent to draw the line. Thus practically all active and passive components designed for use in the field of electronic engineering could conceivably be applied sensibly in electronic equipment suitable for domestic or recreational use, or in certain domestic appliances, (if not today, quite probably tomorrow).

This is not to argue a case on behalf of Customs and Excise for a blanket imposition of the higher rate of V.A.T. upon all electronic components. It is to illustrate the ludicrous situation brought about by those responsible for drafting the new Budget proposals. The authors seem to be oblivious of the fact that electronics is the common base of a multitude of products which may differ widely in all other respects. Complete equipments, sets, and machines can indeed be divided arbitrarily into classes as "luxury items" or otherwise, if so desired. But their component parts and related accessories cannot, for the greater part, be segregated in this same neat and tidy way.

We support all those who claim that the new system is unfair and largely unworkable. In particular we are concerned at the indiscriminate way in which this higher rate of tax, supposedly created in order to curb public spending on luxury goods, penalises the home constructor no matter what kind of project he happens to be building. Many home assembled units and equipments are clearly in the nonluxury class; others, due to some strange quirk of our legislators, have to be considered luxury items and they include the like of d.c. to a.c. converters, electronic power controllers, and control systems for central heating systems, for example. The very kind of equipments that should be welcomed and encouraged by the Government as valuable weapons in the battle against the waste of energy!
And just why have components been brought into this higher rate? It must be because, we presume, a few individuals will be tempted to build the so-called luxury goods themselves and thus cheat the Exchequer of a few paltry pounds.

All the indications are that the far reaching repercussions of this extra tax imposition upon (in effect) all electronic components were never foreseen by those responsible for compiling this part of the Budget proposals. This is a charitable interpretation, but it cannot give the taxpayer cause for confidence in those who originate new tax schemes.
(See Market Place for some further information on the new V.A.T. situation.)

Editor

F. E. BENNETT

Editorial
R. D. RAILTON Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor

Art Dept.

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452
F.E.B.

- The first electronic spark gas ignitor powered by a 1.5 V cell for the home constructor simple circuifry provides a corstant stream of sparits capable of lighting natural, town and bottled gas easily and swiftly
Suited to use in the home, caravan, boat or anywhere gas ignition is required

FOR THOLSANES of ears an spark has been the consentional meen ns of obtaining ignition, and the conventiomll means of generatimg : he spark has been a fiint. However, attempting to ig ite natural gas rsiog a flint wonld have posed our ankestors with a rather tedious problem. Compared 0 even ordinary toven gas the energy required to igrit? natural gas is considerably higier and the conbustior limits of the gas/air mixture are considerably narower, see Fig. 1 .

Fortuiately here is on effective electronic solutiontwe following design will pravide a portable gas ignitor, which wil light easily and effective y both natural, town and hottled Eases.

The application of a hith voleare across a pair of electrodes procuces a field in the gas between them, this can leat 10 ionisation and trrakdown of the gas and produce a spark across the gap. The ignifor featured here relies on this priciciple to produce a contimums siream of high veitiace sparks from a 1.5 dry cell battery.

CIRCUIT CGNSIDERATIONS

The moth of of achieving the spark from a low voltage ssurce is aulined in Fig. 1. The power source feeds a d.c. to cis. converter. Whan the switch shown in the central blork is actuated the stored energy is released ifto the promary winding of a step-up transformer
and sufficient voltage is generated at the electrodes to cause air breakdown. The oscillation caused by the discharge of an associated capacitor is sufficient to maintain the breakdown for several tens of microseconds.

POWER ANO D.C./D.C. CONVERSION

Power is supplied from 1.5 V dry cell battery noted as B1 in Fig. 3 which shows the complete circuit of the ignitor. The oscillator circuit is a ringing choke type which utilises feedback between hase (AB) and collector (CD) windings for its operation.

When the circuit is switched on by S1, most of the rail voltage will appear across $C D$ as the collector current increases exponentially. The base winding $A B$ is wound in the opposite direction to the collector winding and so the inductive coupling from the collector winding tends to drive the base positive thus driving the transistor TR1 into saturation.

When the collector current reaches saturation the induced voltage in the base falls to zero causing a redection in base current. This tends to reduce the collector current and induce a reverse voltage in the collector winding. The overall effect is to bring the transistor out of saturation.
The regenerative effect continues until the transistor enter the cut-off region. The discharge of winding capacitance is sufficient to generate a voltage across
the collector winding which causes the cycle to be repeated. Hence whilst the switch remains closed a series of pulses are generated at the collector. Figs. 4a and b show the collector current and voltage waveforms.
A tertiary winding EF, wound in phase with the collector winding, steps up the voltage appearing across $C D$ to a level of approximately 600 V . The resulting pulses are used to charge C .

The transistor used should have a low $V_{\text {cc }}$ (sat) to minimise the energy loss and also have a good collector-to-base breakdown voltage.

WINDINGS

The design of windings is related to the transistor used. The base and collector windings should be optimised to achieve maximum output without drawing too large a collector current. For this design, using a Microelectronics type ME 8001 transistor or its equivalent (BFY 50, 2N2297), a base winding of 12 turns of 37 s.w.g. and a collector winding of 18 turns of 33 s.w.g. will be found suitable.

The collector voltage should be approximately 28 V , choice of 600 turns of 44 s.w.g. for the secondary provides the requisite intermediate voltage.

The oscillator windings are housed in a 14 mm pot core. The main requirement for the ferrite material is that the saturation level is not too low.

SWITCHING AND DISCHARGE CIRCUIT

Charging the capacitor is achieved through a rectifying diode D1 which should be an 800 V type. The diode should also have a fast switch-off time to minimise leakage from the capacitor. A BA 157 is chosen as a suitable component.
The main discharge capacitor is a 250 V type the capacitance of which is governed by the energy requirements of the spark. Generally a $0.47 \mu \mathrm{~F}$ is suitable for the application. The I.T.T. range of PMT capacitors is recommended as they appear to withstand the high current discharges which occur during the oscillation.

THE SWITCH

The switch used is a device known as a surge voltage protector. This component originated as a protection for equipment which was liable to high voltage spikes. The device is similar to a neon in that a pair of electrodes are contained in a glass envelope which is filled with an inert gas.
When sufficient electrical stress appears across the electrodes breakdown will occur and current of up to several tens of amps will be allowed to pass under pulse conditions. Subsequent to breakdown a voltage of about 25 V exists across the device. The type used in this case has a breakdown of about 220 V , thus the capacitor charges to 220 V , the protector flashes over and the resulting oscillation generates the high voltage for the spark.

TRANSFORMER DESIGN

The number of primary turns required may be estimated on the basis of impedance matching and energy input to the transformer. From this the secondary turns may be estimated from simple transformer theory. For the size of electrode gap used here an output of 8 kV will be required.

A primary of 40 turns of $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. and a secondary of 3000 turns of 40 s.w.g. will be found suitable. The

Fig. 1. The energy required to ignite natural gas/air mixtures compared with that required to ignite a town gas/air mixture

Fig. 2. System diagram of the high voltage production concept using a low voltage source

Fig. 3. Circuit diagram of the gas ignitor

Fig. 4. Collector current (above) and voltage (below) waveforms for TR1 in Fig. 3.

-MATRIX BOARD VERSION

Fig. 5. Constructional details of the output transformer T2

Fig. 6. Details of the oscillator transformer Ti

Fig. 7. Construction and component layout for the matrix board and case, together with details of the electrode tube

COMPONENTS...

Resistor

R1 $15 \Omega, \frac{1}{4} W$ carbon

Capacitor

C1 $0.47 \mu \mathrm{~F}, 750 \mathrm{VW}$, d.c.

Transistor

TR1 ME8001

Diode

D1 BA157

Coils

Oscillator coil: Single section 14 mm bobbin, 14 mm ferrite core, FX $3594,1 \mathrm{~g}$ of $44 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire, 0.1 g of $37 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. and 0.3 g of 33 s.w.g., tape to suit.
Output transformer: Ferrite rod, 27 mm by 8 mm ; bobbin, see text; $1 \mathrm{~g} 30 \mathrm{~s} . \mathrm{w} . g$. enamelled copper wire, 1 g 44 sw.g.; tape to suit.
Electrode tube: Brass or copper tube, 9 mm o.d., 0.5 to 1 mm wall thickness, 150 mm ; 20 s.w.g. tinned copper wire insulated with 1 mm wallthickness silicone rubber tube or equiv.; epoxy putty, fire clay etc. as needed.

Miscellaneous

Matrix board, 0.1 or 0.15 in . hole spacing; $S 1$, push-to-make switch; Voltage protector, Siemens KASO2; plastic box ref. 1005; solder, wire etc. as required.
For the fully described version the plastic case can be obtained from Crescent Radio Ltd., 11 Mayes Road, London, N.22. The case and a complete kit for the second proprietary version can be obtained from Greenweld, 51 Shirley Park Road, Southampton, SO14FX, Tel. 772501. The Siemens voltage protector can be obtained from Jermyn Distribution, Vestry Way, Sevenoaks, Kent.
magnetic core for the transformer should be a ferrite rod which will fit inside the former on which the secondary in wound.

The primary winding can be wound directly on to the ferrite rod which can then be inserted inside the secondary winding, see Fig. 5.

This coil is constructed in two separate parts to ensure adequate insulation between primary and secondary. Again both windings are in the same direction. The primary is wound using $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire directly onto the ferrite rod and consists of 40 turns close wound in a single layer wire so as to ensure a firm fit into the bore of the secondary bobbin.

The secondary requires a suitable plastic bobbin which approximates to the dimensions shown in Fig. 5, onto which are wound 3,000 turns of $40 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire. The start wire is brought out through a hole in the cheek and due to the thinness of the wire, re-inforcement of the lead is recommended, either by skeining or by soldering a more substantial insulated lead onto the wire prior to winding. In the latter case, the joint should be well insulated and secured inside

the winding with adhesive tape. To reduce the possibility of breakdown due to the voltage gradient across the coil, tape layers should be introduced at approximate intervals of 750 turns.

Finally the primary coil should be fitted into the bore of the secondary bobbin with a good fit.

OSCILLATOR COIL

This coil is wound on a proprietary bobbin in the form of three separate windings although when connected, the two primaries become a single winding with a tap. The windings should be as even as possible, reasonably tight and in the order shown in Fig. 6.

Insulation between windings is not necessary but a layer of tape may be usefully used. A final wrap of tape is recommended to secure the windings. All windings should be in the same direction to ensure correct phasing, with the ends left sufficiently long to allow connection. Turns details are given under windings.

P.C.B. VERSION

DIMENSIONS IN mm

Fig. 8. General layout, component details and p.c.b. master for the printed circuit version

ELECTRODE TUBE ASSEMBLY

Since it is the function of this unit to ignite gas virtually instantly, this part should be constructed in such a way that the best possible spark gap is produced and that gas is able to surround the electrode easily. Materials should be heat resistant, the tube being conductive and preferably solderable. For this purpose brass or copper are recommended.
Basically the assembly consists of a well insulated wire, the end of which is bared to discharge the spark across an air gap of 3 to 4 mm to the outer tube. An essential part of the structure is a heat resistant inner insulating tube which positions longitudinally and centralises the electrode wire.

For the model this part was constructed from a 2-part epoxy putty which cures hard, resists heat and adheres to the inside of the tube. This part could equally well be produced from clay or fabricated from fire brick, etc. and secured in position with an epoxy adhesive or the like.

Fig. 7 shows the electrode tube assembly.

ASSEMBLY AND MOUNTING

The first stage is to cut a $100 \times 37 \mathrm{~mm}$ section of matrix board to size, drill additional holes and fit the spring battery connection (28 s.w.g. brass or simiar) as shown in Fig. 7. The components are mounted as shown, securing the oscillator ferrite core halves together and to the board with a 6 B.A. brass screw. The output transformer was fixed in position with two layers of double-sided adhesive tape although a suitable adhesive would have been quite adequate.

Next the board assembly is slid into a plastic box in which two holes have been drilled as shown and the electrode tube positioned through one hole before soldering it to the double bar of 16 s s.w.g. tinned copper wire for retention and connection. The output wire is soldered to the electrode from J on the output winding and the joint well insulated. The switch is fitted and connections made to the board and the second battery spring which is bent to engage a pillar in the box chosen.

The battery is located between the two springs as shown in the accompanying photographs noting the polarity.

APPLICATION

Ignition is normally best obtained by touching the tip of the electrode tube against the gas burner and allowing 1 or 2 seconds after opening the burner before operating the igniter.

It has been suggested that in the absence of ignition after a few sparks, turn the gas off and blow away the surplus before trying again. Some experiment may be required before the best spark-to-burner distance is accurately achieved.

You will find this igniter ideal for camping, boating, caravanning as well as for use in the kitchen. It will provide you with many years of normal use.

PRINTED CIRCUIT VERSION

For those who wish, a second version of the ignitor is proposed here using a printed circuit board, a diagram of which appears in Fig. 8.

This version makes use of a proprietary clear plastic case with self-contained "trigger" switch, battery
retaining members, ignitor tube and even a spring clip with which the ignitor can be hung up on a hnok.

Of course, there is nothing to stop anyone from using p.c.b. techniques in the manufacture of the first version or, for that matter, Veroboard techniques.

The clear plastic case version makes use of a complex moulding which holds the trigger tube in place with snap-action clips. The tube holds the p.c.b. in place using two metal clips which engage through the board, and the whole is held in place finally with a moulded plastic element which acts as an end plate against which the battery is pressed by a cover.
The moulding includes an access through which a trigger passes to engage with a spring and suitable contacts on the end plate. The mouldings and various parts are available from Greenweld.

NEWS BRIEFS

Electronics For School Teachers

The University of Essex is holding its fourth Electronics Summer School for teachers from July 7-11. This will take the form of two courses which will be runt simultaneously.
The first course, ESS 8-Linear Circuit Design-is concerned with the use of transistors and operational amplifiers in linear applications such as amplifiers, filters and power supplies. The second course, ESS 9-Digital Circuit Design-concentrates on the use of the transistor as a switch and develops design using integrated logic circuits.
A full laboratory programme backs up the topics covered in the lectures, and tutorials are held to discuss the design for the practical sessions.
Further details can be obtained by writing to Bob Mack at The Department of Electrical Engineering Science, University of Essex. Wivenhoe Park, Colchester, Essex, CO4 3SQ.

Queen's Award

The Queen's Award to Industry, 1975 in recognition of its export achievemeht and for technological innovation in scientific electronic calculators has been awarded to Sinclair Radionics for their "Sinclair Scientific".
During a three year period ending in April 1974 the company, which is claimed to be Europe's largest manufacturer of electronic calculators, increased its exports tenfold to $£ 2,232,040$ p.a. or 56 per cent of turnover.
Sinclair is one of only two companies that have won the award in both categories this year. In the previous three years only three companies have been successful in both categories.

JUST THE IDEA!

VALUABLE PRIZES TO BE WON
A competition for the most novel ideas for practical applications of a particular circuit in this issue.
Details Next Month.

CHRISTMAS PRESENT

The name of Jocelyn Bell became recognised by the scientific world when her observations of the first pulsar were announced. Since then she has changed both her location and her name. Her new location is the Mullard Space Science Laboratory at Dorking and her new name Jocelyn Bell Burnell.

With the team at Dorking, John Ives, Peter Sanford, Jocelyn Bell Burnell is engaged on carrying out the task of reducing data from Ariel 5, the United Kingdom's first X-ray Satellite. The whole of the programme of this satellite is devoted to observations of existing X-ray sources and the search for new ones.

One new star which flared up at Christmas was named, by Jocelyn Bell Burnell, Cen-Xmas. It was observed from December 19 to January 27. This star may well supply the clue to a class of X-ray sources not previously known.

Cen-Xmas was discovered in the constellation of Centauras near to an already known source Cen X-3. Cen-Xmas flared up on Christmas day and showed a light curve much like that which appears at optical wavelengths by fast moving Novae.

The team observed that there was a regular rising and falling of intensity every 6.755 minutes. This was a point of great interest since the usual periods of variation for X-ray binary systems is hours or even days and the periods for pulsars a few seconds or less. It does not seem likely that it was a slowly rotating neutron star.

OPINION

The team are of the opinion that the source may be a binary system of two collapsed objects. These could be perhaps a white dwarf and a neutron star. Another possibility has been put forward and that is the objects could be a white dwarf and a black hole. Clearly the object is unusual in the present catalogue. The official catalogue number is Ariel 1118-61.

A search is now being made in the data of the Copernicus satellite to see whether there have been earlier bursts. A request has been made that Copernicus, which has better pointing facilities than Ariel, should specially observe this area of the sky.

Satellite Ariel 5 has more than justified its launch in this valuable study of X-ray sources.

ANOTHER DISCOVERY

A second bonus is the discovery of a very bright source near the galactic centre. This, according to Professor

BYFRANK W. HYDE
K. A. Pounds of Leicester, a pioneer in these observations, was not visible in November when that area was studied. The new source is second only in brightness to a source called Sco X-1.

This new source as yet un-named is at such a vast distance that its intensity must be at the upper limit for normal galactic X-ray sources. Both Cambridge and the Jodrell Bank teams have been asked to watch the area in case the X-ray flare up should be followed by radio bursts.

FURTHER EXPERIMENT

Another experiment aboard the satellite also controlled by Leicester, with the team led by Professor Pounds has indicated that an excess of heavy elements such as iron have been found in the super nova remnants of Tycho and Cassiopeia A. As this is the first report of the X-ray detection of spectral lines from a cosmic source it adds weight to the growing feeling that the heavy elements in the universe may be produced at the time of the explosions associated with supernovae.

It would seem that the fluctuating nature of X-ray sources is a common factor. Professor Pounds thinks that they may account for 30 per cent of the known sources. There are now more than two hundred recorded.

FADE-OUT!

A notable feature, derived from data received from Ariel, is the number of sources that do not last all the time. During the present period of observation some 16 sources have disappeared from the
areas. This may be because they are now out of the limits of detection or that there has been a change of such a nature that there are no longer X-ray types of emmission. The sixteen sources that have disappeared were originally detected by the Uhuru satellite.
It is expected that Ariel 5 will be able to continue operations for a year with the gas available on board. Thereafter it will be a waiting period till the next British X-ray satellite is launched in 1977.

SATELLITE DETAILS

The data handling system of the Ariel 5 satellite is effectively a fixed programme computer with two core stores. This enables the integration of experimental data so that the best may be made of the low data rate of transmission from the spacecraft. Only by keeping the data rate low is it possible to utilise long ground data-links.

The details of the satellite are:

Dimensions	Diameter 38 in, length 34 in , weight 298 lbs
Stabilisation	Spin 10 ± 2 r.p.m.
Attitude control	Propane gas jets
Power supply	Solar array 35W
Telemetry	PCM
Frequency	137.68 MHz
Real time	85m
Real time	
rate	2048 bits/second
Playback power	80W
Playback	
rate	2048 bits/second
Stations	Quito and Ascension (Nasa
	stations)
Telecommand	Digital tone
Frequency	148.25 MHz

NEWS FROM RUSSIA

India's first satellite is being prepared for launching from a Soviet site. Academician Boris Petrov, chairman of the Intercosmos council, said that the joint work of the Soviet scientists and experts had produced an elaborate spacecraft for experiments connected with research in the short wave radiation of celestial bodies, together with studies of the ionosphere.

Launched on March 27, Intercosmos 13 is a joint socialist countries enterprise. The main aim is to study dynamic processes in the magnetosphere and the polar ionosphere. Research is also directed to low frequency electromagnetic waves.

The satellite carries instrumentation from the Soviet Union and Czechoslovakia. The participating observation points are in Bulgaria, the German Democratic Republic, the Soviet Union and Czechoslovakia.

There are numerous guitar effects pedals available today, but there are still many areas of sound treatment in which it is possible for the amateur to produce something which is not just a copy of a commercial effect.
The pedal to be described makes use of voltage control techniques. There are two treatments, a voltage controlled amplifier and a voltage controlled filter; either of which can be selected by a switch. These are controlled by an oscillator which produces triangle, square and rising and falling ramps at controllable frequency and amplitude. The combination of four waveforms and two treatments gives eight basic effects, all of which can be considerably modified by adjustment of the controls.

WAVEFORM GENERATOR

The basic rising ramp wave is generated by IC1 and 2 (see Fig. 1). Integrator IC1 ramps upwards at a rate set by the speed control until it exceeds a limit set by comparator IC2. Then, a large reset current flows through D1 and R2 until the integrator is back to its starting point.
When the waveform switch is in the falling ramp position, IC3 acts as a unity gain inverter to give the required waveform.
In the square position, IC3 acts as a comparator. This gives a square wave of $\pm 8 \mathrm{~V}$ at the i.c. output, which is reduced by R14 to the same level as the other waveforms.
The triangle wave is shaped from the ramp wave by TR1. When out of saturation, this has a gain of -1 . It is biased by VR2 so that for half the cycle it is saturated, when it has a gain of +1 . The triangular wave at the collector of TR1 is amplified by IC3. VR3 is adjusted to offset the d.c. introduced by TRI and its associated components.

VOLTAGE CONTROLLED FILTER

When S2 is in the filter position, IC5 has multipath feedback with a minimum at a single frequency. The overall response is then bandpass peaking at that frequency, which can be changed by changing the voltage on the gate of the f.e.t.

VOLTAGE CONTROLLED AMPLIFIER

R22 and TR2 form an attenuator, and since the effective resistance of the f.e.t. can be varied by changing the gate voltage, the degree of attenuation can be changed. ICS becomes an amplifier with a gain of 10 with S2 in the envelope position; this amplifies the previously attenuated signal.
In both the v.c.a. and the v.c.f. the f.e.t. is being used as a voltage controlled resistor. The effective resistance between the drain and source depends on the amount of negative bias on the gate. As the amount required varies from transistor to transistor, preset VRS is included.
The control voltage from VR4 is also fed to the gate via a low-pass filter R15, R16, C5 and C6. This removes the sharp edges from the signal and so reduces the breakthrough of the control into the output.

BATTERY SWITCHING

There are two batteries to be switched on by the insertion of a jack plug to SK1. It is possible to get sockets which have a single make connection, which is used to turn on the positive supply. This tarns on TR3, which then turns on the negative rail. The leakage through TR3 when it is off is negligible.

Fig. 1. Circuit of the Effects Pedal

CONSTRUCTION

Most of the components are mounted on a piece of Veroboard $67 \mathrm{~mm} \times 112 \mathrm{~mm}$ (Fig. 2). These are rather tightly packed as there is a lot to be fitted on. The board is screwed into a plastic bracket to hold it in place.

The unit can be housed in any convenient case, which should be earthed to prevent hum. This could be done by soldering onto the back of a pot.

The batteries are prevented from moving with a sheet of foam rubber.

SETTING UP

Turn all presets to mid-positions. While monitoring the waveform at the output of IC3, with the waveform switch set to "triangle", adjust VR2 for the best triangle wave shape. A scope is useful for this. Now set VR3 for OV d.c. at IC3 output.

Set S2 to "filter". With the depth control at maximum, adjust VR5 for the best sound-a smooth change in filter frequency without it breaking into oscillation.

Finally set VR6 so that the volume of the treated signal is the same as in the straight through position.

PLAYING TECHNIQUE

All the effects are repetitive, so it is best used on sustained chords or single notes. Apart from that, there are no set rules to stick to.

It will be noticed that rising and falling ramps have opposite effects on the two treatments; this is so that subjectively more interesting changes can be made simply by switching effects with one's feet. Thus a rising ramp selected on the switch will produce a decaying sound on the v.c.a.

A fast decaying ramp on the v.c.a. produces a sound like a mandolin; the same control into the filter gives a bubbling, which slows down into a repeated "WaaWaa". A very slow triangle into the filter can be applied to any playing including fast runs.

The unit can of course be used to treat any instrument, with due attention to the matching of signal levels.

Fig. 2. Component layout and track cuts

COMPONENTS . . .

Resistors		
R1 $56 \mathrm{k} \Omega$	R14	$47 \mathrm{k} \Omega$
R2 470Ω	R15	$47 \mathrm{k} \Omega$
R3 10k Ω	R16	$47 \mathrm{k} \Omega$
R4 $47 \mathrm{k} \Omega$	R17	$100 \mathrm{k} \Omega$
R5 $47 \mathrm{k} \Omega$	R18	$1 \mathrm{M} \Omega$
R6 10k Ω	R19	$47 \mathrm{k} \Omega$
R7 $18 \mathrm{k} \Omega$	R20	$10 \mathrm{k} \Omega$
R8 $27 \mathrm{k} \Omega$	R21	$100 \mathrm{k} \Omega$
R9 $180 \mathrm{k} \Omega$	R22	$10 \mathrm{k} \Omega$
R10 $47 \mathrm{k} \Omega$	R23	$47 \mathrm{k} \Omega$
R11 $47 \mathrm{k} \Omega$	R24	$470 \mathrm{k} \Omega$
R12 47 k ת	R25	$15 \mathrm{k} \Omega$
R13 180k Ω		
All $\frac{1}{2}$ watt 10% carbon		
Potentiometers		
VR1 10k ${ }^{\text {log }}$		
VR2 $100 \mathrm{k} \Omega$ linear		
VR6 $100 \mathrm{k} \Omega$ linear		
Capacitors		
C1 $0.47 \mu \mathrm{~F}$		
C2 2.2 nF		
C3-C4 $100 \mu \mathrm{~F}$ elect. 25 V (2 off)		
C5 $0.01 \mu \mathrm{~F}$		
C6 $\quad 0.1 \mu \mathrm{~F}$		
Semiconductors		
IC1-IC5 741 (5 off)		
TR1 BC187		
TR2 2N3819		
TR3 BC108		
D1-D2 OA47 (2 off)		
Miscellaneous		
B1-B2 9V PP3 (2 off), S1-2 pole, 4 way switch, S2-2 pole, 2 way switch, S3-single pole change-		
over, SK1-jacket socket with make contacts,		

Fig. 3. Control panel wiring details

PART4unqudactivey Devices Heat Light Force Load Sound Frequency Distance Heat

THE second section on inductive devices is concerned mainly with synchronous and stepping transducers.

SYNCHRO TRANSFORMERS

This group includes a wide variety of devices such as torque-producing synchros, control synchros, resolvers and related devices. These devices are widely used in systems involving angular displacement and angular position control and are similar in construction to small three phase alternators of fractional horse power rating.

They are often classified according to their intended application, construction or manufacturers' trade names.

The form of the rotor and the arrangement of the rotor winding identify the type of synchro and its

function. Generally the syncro stator is a cylindrical slotted structure made up of laminations and having three separate windings arranged in slots which are displaced, spatially, by 120° from each other.
The slots are often skewed one slot pitch to avoid any tendency for slot locking and the resulting angular displacement error. Sometimes the stator slots are parallel to the rotor axis in which case the rotor laminations are normally skewed for the above reasons. Unlike the usual three phase system the voltages associated with the three stator windings are all in step or phase with each other as far as their voltage-time variation is concerned.
The rotor of a control or torque synchro usually carries a single winding and often has a salient-pole form, the coil connections being made available via slip rings. Resolvers on the other hand usually have two rotor and stator coils.

PRINCIPLE

The synchro principle is illustrated in Fig. 4.1. The magnitude of the voltages induced into the three stator coils depends on the rotor position and varies sinusoidally with shaft displacement from some reference position. The system is essentially a transformer with three output coils in which the degree of coupling to the primary rotor coil varies with rotor position.
There is always an output from the system whether the rotor is in motion or not-consequently slowly varying or static angular displacement can be determined.
The resolver usually operates as a two phase system as illustrated at Fig. 4.1b. The rotor coils provide output voltages which vary as the cosine and sine of the angular displacement, by virtue of the variation of coupling and the relative coil displacements. When output from coil O 1 is maximum, that from coil O 2 will be zero. A rotation of 90° will cause the output of coil O1 to be zero whilst that of coil O2 reaches its maximum.
ln some applications only one coil may be used in which case the unused coil is normally short circuited: With two primary and two secondary coils four vector combinations are possible for both coil sets according to the sense of the coils.

Synchros and resolvers are usually designed to operate at 50,60 or 400 Hz , of ten at specified voltage levels and in all cases it is essential to follow the manufacturers' advice and ratings if the best accuracy is to be achieved. For further details the reader should consult the references listed, together with manufacturers' data/application sheets.

[^2]

STEPPER MOTORS

Several devices have been invented for imparting a given amount of angular movement to a shaft, in response to an electrical input. Two common examples are the stepping uniselector mechanism and the Ledex solenoid system, both of which involve a form of ratchet action. The stepper motor, however, does not use a mechanical ratchet but achieves its position latching feature by virtue of its special magnetic system.

Two main types exist, those using permanent magnet rotors and those using variable reluctance techniques. The variable reluctance group can be further subdivided into vernier and non vernier types. (vernier motors achieve more steps per revolution than might be indicated by the number of teeth on the rotor or stator.)

Stepper motors do not have brushes or slip rings and are consequently robust and reliable with a low maintenance requirement. The electrical excitation is provided by a two, three or four phase coil system on the stator portion of the motor.
Fig. 4.2 illustrates the operation of a permanent magnet rotor, three phase stator, type of construction. The rotor only has two poles and with the stator un-energised, the motor has 12 magnetic "detent" positions as illustrated where the rotor is aligned on an axis midway between adjacent pairs of stator poles.

If the shaft of such a motor is rotated by hand these detent positions can easily be felt since the rotor tends to pull into the nearest available detent position as the shaft turns.

To illustrate the stepping action under drive conditions the motor stator is shown opened out into a straight line in Fig. 4.3. Each of the three separate stator coil sets is made up of four coils in series such as $A 1, A 2, A 3, A 4$ for the " A " phase. The sense of the currents that flow in these four coils is shown by arrows and it can be seen that coils $A 1, . A 2$ produce four south poles whilst coils $A 3, A 4$ produce four north poles.

The flux of the innermost two poles in each group of four is greater than that of the outermost poles since two aiding coils encircle the inner poles but only one coil encircles each of the outermost poles. The rotor thus aligns itself as illustrated in Fig. 4.3 if only the A phase is energised.

The B and C phases also employ four coils each, in exactly the same pattern as for phase A. However, the slots used are displaced by 120° in each case. Thus coil $A 1$ is displaced 120° from $B 1$ which in turn is displaced 120° from Cl . Likewise coils $A 2$, $B 2, C 2$ are displaced 120° apart and so on. The effect of this is that each of the 12 coil slots in the stator carries two coils from different phase coilgroups.

STEPPING ACTION

The stepping action is determined, for a given construction and coil system, by the manner in which the various phases are energised. If the phases are energised singly in the sequence A, B, C the rotor will take three steps to complete one complete revolution of 360°. Energising the A phase brings the rotor north pole to midway between poles 1 and 2 . Subsequent energisation of the B phase pulls the rotor north pole to an equivalent position with regard to coils $B 1, B 2$ which gives an axis midway between poles 5 and 6 , a rotation of four poles or 120°.

Subsequent energisation of the C phase gives a rotor axis midway between poles 9 and 10 .

Smaller angular steps can be achieved by controlling the phases in the sequence A only; A and B, B only, B and C, C only, C and A, etc. This gives six steps of 60° each.

ELECTROMAGNETIC TACHOMETERS

The most common tachometer arrangements are illustrated in Fig. 4.4. The d.c. tachometer uses a permanent magnet stator in conjunction with a rotor coil and commutator. The connections to the coil are made via the commutator and associated brushes and the output voltage is proportional to the angular velocity. Reversing the direction of rotation reverses the output voltage polarity and this is a useful characteristic in some applications. The brush/commutator arragement requires periodic maintenance if reliable operation is to be obtained.

The a.c. tachometer uses a rotating magnet and fixed' stator coil thus avoiding the need for brushes and commutator. Both the amplitude and frequency of the output depend on angular velocity and in modern systems an electronic frequency meter is usually employed to give the shaft speed directly, in, say, rev/min, as this avoids the inaccuracies associated with measurement of voltage.

Variable-reluctance pulse generating systems are also widely used due to their simplicity and reliability, the number of output pulses per revolution in this case depends on the number of teeth on the rotor wheel or disc.

INTERFERENCE

All magnetic devices can be influenced to some extent by external magnetic fields due to solenoids operating, mains wiring and stray fields of transformers and motors. In some instances the interfering field cannot be removed and the only course of action is to employ magnetic screening and select the best orientation of the transducer to minimise the unwanted coupling. In some situations humcancellation coils can be fitted to introduce an opposing interfering voltage into the output circuit. Connecting leads from low-output devices should be tightly twisted and screened to minimise the effective loop area available for flux linkage with the stray field.

hall effect devices

When a conductor carries a current at right angles to a magnetic field a charge difference is set up on the surface of the conductor in a direction which is mutually perpendicular to both the magnetic field and the current. Modern high mobility semiconducting materials such as Indium Arsenide and Indium Antimonide have made the Hall Effect a useful practical phenomenon due to the magnitude of the voltage available with reasonable levels of magnetic flux density and current. Fig. 4.5 illustrates the basic principles which can be incorporated into a transducer in various ways.

Either the current or magnetic field can be varied to give a change in the output voltage and Hall Effect plates, together with varying magnetic fields, have been used in flowmeters, tachometers, wattmeters, accelerometers and displacement transducers.
Next month: Piezoelectric devices.

If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course.
This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute mınimum of theory.
You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you
dimension not only to your hobby but also to your earning capacity.
This course is accepted by and used in a large number of \cdot schools and colleges and forms an invaluable grounding for professional training in the subject. All the training is planned to be carried out in the comfort of your own home and work in your own time. You send them in when you are ready and not before. These culminate in a final test and a certificate of success.

Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a professional test instrument that you willneed not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece PLUS of essential equipment.

ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CONTAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE AN EXCELLENT EXAMPLE OF CURRENT ELECTRONIC PRACTICE

> Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

Carry out over 40

 experiments on basic circuits. We show you how to conduct experiments on a wide variety of different circuits and turn the nformation gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

A selection of readers. sugaested circuits. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Any idea published will be awarded payment according to its merits. Why not submit YOUR IDEA?

TUNNEL DIODE B.F.O. I.F. MARKER

C"ircuit 1 shows a tunnel diode beat frequency oscillator, which was designed for reception of s.s.b. and c.w. in conjunction with a shortwave a.m. receiver. It also served as an i.f. marker by f.m. modulating the anode of the tunnel diode via a coupling capacitor.

By setting up a potential divider ($R 1 / R 2$) across the main d.c. supply rail, a low impedance voltage of around 150 mV can be supplied to the tunnel-diode which will oscillate when the current rises to about 5 mA . The frequency of oscillation is determined by the i.f. transformer which is chosen to suit the receiver i.f.

adding circuit

THe adding circuit of Fig. 1 outputs a number of pulses equal to the binary number set up at the control inputs. If the output is connected to a conventional decimal counter with decoder and display a simple adding circuit can be constructed giving the sum of the binary numbers set up on the inputs.

The first binary number is set up on the control inputs and entered by pulsing the $7473 \mathrm{~J}-\mathrm{K}$ flip-flop once with a bounce-free pulse. The next number can then be set up on the input, the 7473 pulsed and the sum will appear on the display of the associated counter.

The 7490 b.c.d. counter outputs are compared with the binary input numbers by the exclusive or gates G3 to G6 and the outputs of the latter are connected to a 4 -input NOR gate made up from three 2 -input NOR gates G7, G9 and G11 and two inverters G8 and G10.

To obtain a fine beat-frequency control a 10 pF air spaced variable capacitor can be connected across the i.f.t. primary. Beat frequency may also be adjusted by varying the bias voltage on the tunnel diode, this can be achieved by substituting R1 for a linear pot and a fixed resistor in series.

If no centre tap primary is available on the transformer the diode may be connected to one end of the primary, the other end being grounded.

The output of the b.f.o. can be taken from the i.f.t. secondary via a small ceramic capacitor to the last i.f.t. of the a.m. receiver.

Component values would have to be selected individually, but about 10 mA should be allowed through R1. R2 should be no greater than the negative resistance of the tunnel diode. Typical values for a 6 V rail, being R1 approximately 600 R and $R 2,15 R$ where R is the negative resistance of the diode.

The tunnel diode can be any general purpose 5 mA germanium device.
A. Morter,
Norwich

Fig. 1

When the 7490 ouputs and the control inputs are equal the 4 -input NOR gate gives a pulse which clears the 7473 and the 7490 . When the 7473 output goes low the NaND gate cuts off the clock pulses to the 7490 and the output.

A 7400 can be used for the Nand gate G1 and the inverters G8, G10 and G2. A 7402 can be used for the NOR gates G7, G9 and G11 and a 7486 for the exclusive or gates G3 to G6.
G. W. J. van der Berg, Pretoria, South Africa.

Fig. 1

Fig． 1

RANDOM NUMBER GENERATOR

ASIMPLE random number gener－ ator using TTL is shown in Fig．1．This may be of interest to anyone experimenting in＂psycho－ kinesis＂and associated e．s．p．pheno－ mena．

A telephone dial is used to gener－ ate pulses which are fed to the A input of an SN7490 decade counter． This counts round from 0 to 9 and gives an output in b．c．d．which is fed to an SN7447 b．c．d．－to－seven seg－ ment decoder－driver．The latter drives a Minitron 3015 F indicator．

Dial switch contact bounce ensures that the number of pulses counted by the circuit is always greater than the number dialled and completely random．Thus if a 10 is dialled something like 20 to 30 pulses are applied to the counter

which cycles and finally comes to rest on an effectively random figure．

If required，a pair of the normally open contacts in the dial can be used to blank the display whilst dial－ ling．An＂ 0 ＂is applied to the blank－ ing input of the SN7447 whilst the dial is moving．In addition，the ability to reset to＂ 0 ＂and＂ 9 ＂is useful in experimental work．

The circuit may be used as a ＂wide－range＂dice，operated by dialling 10.

If it is required to generate a specific number of pulses then the insertion of a large capacitor，about $125 \mu \mathrm{~F}$ ，across the pulsing switch， should dispose of the effects of switch bounce and convert the circuit to normal counting．

N．J．C．Ray，Northampton．

DESOLDERING COMPONENTS

MANY constructors are faced with the problem of removing i．c．s from circuit boards for various reasons without doing damage to the associated printed circuit track and， of course，the component itself．

The following method has been used for some time to save the out－ lay on special de－soldering tools．

Strip the end from a length of scrap p．v．c．wire and dip it in Fry＇s Fluxite soldering paste（available in most hardware stores），apply the wire and a hot iron to the joint to be cleaned and the solder will be drawn up the wire by capillary action．With large blobs of solder it may require more than one appli－ cation of clear wire and of course care should be exercised over the amount of heat applied to the joint．

After removal of the bulk of the solder the component may be lifted of without undue physical strain to the leads or thermal strain to the i．c．

Any residual flux should be re－ moved from the component and the board to avoid corrosion problems．

J．Barvie－Smith，
Fareham，Hants．

ASTOUNDING OFFER

We are offering you the choice of two superb scientific pocket slim calculators（size 13.5 cm $\times 6.75 \mathrm{~cm} \times 1.75 \mathrm{~cm}$ ）at a fantastic price．

DECIMO 2001

In addition to common functions it registers all functions appertaining to natural logs，
common logs，trigonometry in algebraic logic． A special feature is a memory exchange．

DECIMO 2001E

In addition to all the above features it has a 10 digit mantissa with 2 figure exponent， 2 figure display hyperbolics and functions on separate keys．

Functions		Functions			竒	
8 figure Mantissa		10 figure Mantissa			$\stackrel{\square}{\underline{\circ}}$	\％
Common Logs	－ranma ras	2 figure Exponents	DECIMO zoon－		萵	\pm
Natural Logs		2 sign display			물	$\stackrel{\square}{\circ}$
Trig．functions Memory		Common Logs Natural Logs		\bar{F}	立	旡
Memory＋－		Trig．functions		2	$\stackrel{\text { \％}}{\sim}$	${ }^{+}$
Memory Exchange		Memory	dag		$\frac{\mathrm{m}}{\underline{\text { m }}}$	$\%^{4}$ c
Sign Change	456189	Memory Exchange		－ic	毫	譀雱
Square Roots	－${ }^{\text {a }}$－	Radians／Degrees Grads．	-5	交号		
Radians／Degrees		Hyperbolics	，em m	뜬운		
Register Exchange		Register Exchange		쑬흥	馬	$\stackrel{\square}{\text { ¢ }}$
Algebraic Logic		Algebraic Logic	$8{ }^{9}$	근		＋
Floating point		Floating point Positive feel	4） 5680	－		$\stackrel{\circ}{\circ}$
Positive feel		25 hr Battery time	（1）3 3	圌		${ }_{4}^{8}$
25 hr battery time		\＆37．46	C0 $0 \cdot$			＋
$+ \text { P. \&P. }+8 \% \text { VAT }$ including carry case		+ P．\＆P．$+8 \%$ VAT including carry case				

In October of last year we ran several ads announcing a brandnew service for amateur electronics enthusiasts.

The new service was called

Doram.

And it promised the first-ever professional electronics service for amateurs.

We said that if you didn't get your order within seven days we'd refund your money. So you'd have no long wait.

We said that we'd only give you top quality, big-name components.

We said that we'd give you a no-quibble guarantee and replace any component which arrived faulty.

And finally we said that we'd offer you a choice of millions of components on over 4,000 product lines.

Buy the Doram catalogue for $25 p$, we said, and you'll get a fantastic electronic component mail
order service.
We were as good as our word. And your letters of thanks flooded in. Thousands tried our service. Hundreds went out of their way to write congratulating us.
"Your storeman must be power assisted', you said.
'I think you are a good firm and live up to your advertisement well,' you said.
'How nice to find a firm which actually stocks all the items in its catalogue, you said.

And an awful lot more we'd blush to admit.

The Doram catalogue is still available, price 25p.

To encourage you to try us we'll give a $£ 10$ voucher to the first catalogue buyer out of the post bag on 30th June. And a $£ 5$ voucher to the next 19 new buyers.

Similarly, on 31st July, we'll give a $£ 10$ voucher to the first new
catalogue buyer. And a $£ 5$ voucher to the next 19 new buyers.

Use the coupon now while the offer lasts. Only these coupons are eligible, and all unsuccessful coupons from the June draw will also be entered for the July draw.

TRANSFORMERS

SAFETY MAINS ISOLATING TRANSFORMERS $\begin{array}{ccccc}\text { Ref. } & \begin{array}{c}\text { VA } \\ \text { (Wotts) }\end{array} & \begin{array}{c}\text { Weight } \\ 16\end{array} \\ \text { No. }\end{array}$

CASED AUTO TRANSFORMERS
240 V mains lead input and U.S.A. 2-pin outlets, $20 \mathrm{VA} \in 3 \cdot 13$. P \& P 38p.
$500 \mathrm{VA} \in 10.45, \mathrm{P}$ \& P 80 p . $1000 \mathrm{VA} \& 17 \cdot 5 I$, via B.R.S.
LOW VOLTAGE SERIES (ISOLATED)
PRIMARY $200-250$ VOLTS 12 AND/OR 24 VOLT RANGE Ref. Amps. Weight Size em. Secondary Windings P \& P $\begin{array}{lll}\text { No. } 12 \mathrm{~V} 24 \mathrm{~V} \\ 116 & 02 \\ 11 & 0.5 & 0.25\end{array}$

 $\begin{array}{rrrrrrrr}12 & 6 & 6 & 12 & 9.9 \times 10.2 \times 8.6 & 0.12 \mathrm{~V} \text { at } 6 \mathrm{~A} \times 2 \\ 17 & 16 & 8 & 8 & 12 & 12.1 \times 9.9 \times 10.2 & 0.12 \mathrm{~V} \text { at } 8 \mathrm{AA} \times 2\end{array}$ $\begin{array}{lllllllll}187 & 20 & 10 & 11 & 8 & 140 \times 9.6 \times 11.8 & 0.12 V \text { at } 10 \mathrm{~A} \times 2 & 10 \\ 15 & 15 & 8 & 14.0 \times 12.1 \times 11.8 & 0.12 \mathrm{~V} \text { at } 15 A \times 2 & 13\end{array}$ N Ref. Amps Weigh
No.
12 30 VOLT RANGE

P.E. ORION

Complete Kit of semiconductors $£ 10.95$ High quality printed circuit
THIS GLASS FIBRE P.C.E. IS ROLLER TINNED AND
SCREEN PRINTED WITH COMPONENT LOCATIONS.
FERRANTI semiconductors

BFS59	17p	2T×304	24p	ZTX503	21p	ZS170	14p
BFS60	18p	ZTX310	14 p	21×504	25p	ZS171	16p
BFS61	19p	ZT $\times 311$	15p	2T×530	22p	2S172	22p
BFS96	180	ZTX312	17p	ZTX531	23p	2S174	26p
BFS97	19p	ZTX313	20p	ZTX550	20p	2S176	33p
BFS98	20p	21×314	25p	21×551	21p	2S178	58p
2TX107	14p	2TX320	20p	2 N 3055	$88 p$	2S270	15p
2TX108	12p	ZTX330	$21 p$			2S271	22p
2TX109	14 p	2TX331	23p	* DIO	*	2S272	25p
$2 \mathrm{~T} \times 212$	19 p	$2 T \times 382$	20p	ZS120	17p	2S274	29 p
ZTX213	18p	2TX383	19p	ZS121	19p	2S276	33 p
2 TX 214	22p	ZTX384	21 p	ZS122	22p	ZS278	81p
ZTX239	13p	ZTX450	${ }^{20} \mathrm{p}$	2S123	29p	* ZENERS ${ }^{*}$ KSO30A to	
ZTX300	15p	27×451	20p	2S124	33 p		
2TX301	18p	2TX500	16 p	2S140	30p	KS030	
ZTX302	19p	$2 T \times 501$	17 p	ZS141	46 p	KS180	
ZTX303	21p	ZTX502	20p	ZS142	45p	E2V19	18

MOTOROLA BD699 \&1-27, 30700 £1-41, MJE2955 \&1.50, M.JE3055 37p
SIGNETICS UAT48CV operational amplifler e4p each
FERRANTI ZN414, only $£ 1.50$ with circuits and dita
PE SCORPIO IGNITION SYSTEM. Complete kit of semiconductors $\mathrm{CE} \cdot 25$ PE JOANNA 77 ZTX108 \&6.25, 183 ZS170 £18.30, ZN7404 40p, ZN7472 50p, 2N7473 72p each
POSTAGE AND PACKING 10p per order. Orders over $£ 3$ post free.
All devices top grade, brand new, and to full manufacturers spec. We do not sell secondsh or relects. Send S.A.E. for our data sheet and price list. We can supply any Ferranti device to order. S. A.E. for quotation ALL PRICES INCLUDE 25% V.A. 7

DAVIAN ELECTRONICS
PO EOX 38, OLDHAM,LANC8, OL2 EXJ

Phoenix Electronics (Solent) Ltd.

139-141 Havant Road Drayton, Portsmouth, Hants PO6 2AA

You already know us-get to know us better! Our catalogue is now only 20 p-returnable on your first order.
Our prices on a wide range of semiconductors, i.c's and passive components include VAT, and, despite rising postal costs, carriage is only 20 p, too!

THIS MONTH'S BARGAIN OFFER!

74 TTL Digital logic kit-6 gates, 2 flip-flops, decoder decade counter, 8 -bit shift register +5 D.I.L. sockets Catalogue value $£ 6.76$. Bargain pack PEP/3A- $£ 4 \cdot 90$.

[^3]
Barrie Electronics Ltd.

3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8

NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST

mARRET PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

ELECTRONIC IGNITION

Well-known for their "Sparkrite" capacitive discharge ignition systems, Electronics Design Associates, of Walsall, have extended the range recently by the addition of two new models, the Sparkrite G.T. (12V -ve and + ve earth) and the Sparkrite G.T. 3 (12 V - ve earth only).

Both these new models, which are a development of the Sparkrite Mk 2, incorporate a high voltage a.c. accessory outlet socket into which can be plugged the Sparkrite G.T. Fluorescent Inspection Light (extremely useful for emergency repairs at night) and the Sparkrite G.T. Xenon Dynamic Timing Light for those who wish to accurately "time" the engine to help obtain the best fuel consumption and performance. Also, both models can be used with all types of tachometer.

The G.T. 3 version has two indicator lamps, one to tell you the system is wired in correctly and the other a static timing light which only lights if the unit is wired in correctly with the points open. Full details of the use of the latter are included with the comprehensive instructions accompanying each unit.

One other feature on the G.T. 3 version is the inclusion of an automatic contact breaker cleaning circuit which burns oil and dirt from the surfaces of the points. Thus the life of the points is increased, pitting and burning being virtually eliminated.

The G.T.3, which is suitable for all vehicles with conventional coil/ contact breaker ignition up to eight cylinders, was fitted to an Audi 100 LS in need of an engine tune. Also the car battery was in a poor condition and there was a bad connection to one of the sparking plugs. Before fitting the unit, starting -especially in the early morningwas, needless to say, difficult, and occasionally needed a bump start. After starting, it was not unusual for the spark plug with the faulty lead to foul up for a while.

After fitting the unit, which took about half an hour, the difference was incredible. The car did not start first time, but when it did, at the third attempt, it was running smooth
and quiet and purred like a tiger. Response to the accelerator was instant. The car was immediately taken for a trial run and found to have a lively response to accelerator demands with greatly increased acceleration. If it can transform a neglected engine to a lively powerful vehicle, just think what it can do for a tuned engine!

The device has been fitted to the car for about 1,000 miles. No precise quantitative measurements have been recorded during this period as far as fuel consumption is concerned, but it has been noticed that the number of visits to the garage for petrol has decreased. Since fitting the G.T. 3 no plug foul up has occurred and the car has always started at the first or second attempt.

For further details and price of the Sparkrite range of ignition systems and accessories, contact Electronics Design Associates, 82 Bath Street, Walsall, WS1 3DE.

GT3 Ignition from Electronics Design Associates

MODEL RAILWAY CONTROLLER

For those of our readers who are keen model railway enthusiasts, Routier (Electronic Engineers) Ltd., are producing a new power unit and controllers for gauge 00 and gauge N tracks.

Called the Brakeman Power-Pak and Brakeman Controllers, the units are of modular design, the controllers plugging in to the sides of the power units. A power unit can be used alone, with one or two controllers for gauge 00 or with up to six controllers for N gauge tracks.

Each controller has a forward, reverse and central off slide-lever control which governs the motion of one locomotive.

The Power-Pak is fitted with a double insulated transformer (no earth lead required) and an automatic resetting cut-out gives overload protection for all outputs. Two independent isolated output windings of 12 V d.c. provide 1 A on either side in addition to which a 16 V a.c. output with two wander plugs is located at the front panel to provide power for points, motors, signals, etc.

Further information and prices for the Power-Pak and Controller can be obtained from Routier (Electronic Engineers) Ltd., Ion House, Sheep Lane, London, E84QS.

LOUDSPEAKER KIT

You don't have to be a good carpenter to build the Easikit loudspeaker kits from Studio Electronics.

The teak veneer or white cabinets are ready built and the kit consists of 4 drive units, 4 tweeters, 2 Declon foam fronts, cabinet wadding and sealant, and a pac.b. crossover pack.

Capable of handling up to 20 W , the frequency response of the enclosure is 30 Hz to $20 \mathrm{kHz} \pm 5 \mathrm{~dB}$.

Full details and price list of the Easikit enclosures can be obtained from Studio Electronics Ltd., P.O. Box 18, Harlow, Essex, CM18 6SH.

COMPONENTS AND V.A.T.

How, precisely, the new V.A.T. rules will be interpreted is far from clear at the time of writing. But one thing is sure. Suppliers of components are in the front line and they have our sympathy. They face the wrath or indignation of their customers when they apply the higher rate of V.A.T. to all components (with perhaps those few unarguable exceptions). The suppliers are, of course, accountable to the tax authorities, so they cannot take chances. In short, when in doubt, the higher rate of 25 per cent is bound to be applied.

The individual customer has no option but to accept the increased price, though if he does feel there is a particular case for exemption from the higher rate he can take the matter up with his local V.A.T. office. This is the only advice we can offer our readers at this time. Some clarification of the situation must emerge before long, though it is doubtful whether much or any relief will be forthcoming.

Soldering irons (and other tools) remain at 8 per cent; so do electronic calculators and hearing aids. Multimeters should by our reckoning also remain as before, but any meter movement capable of being incorporated in radio or audio equipment is subject to the higher rate.
There are many other questionable items..

Brakeman model railway power supply and controllers from Routier

JN order to achieve independent operation for each note in the Piano it is necessary to provide a complete envelope generation system linked to each key on the keyboard. Each envelope shaper consists of a Touch Sensitive circuit followed by a Decay circuit. The latter is also designed to mix in the required pitch and to simulate the sustain pedal and damper action of a conventional piano.

TOUCH SENSITIVITY

The touch characteristics are shown in Fig. 3.1, together with the circuitry used to achieve the effect. The keyswitch is normally at ground potential until a note is played, such that the voltage across capacitor C_{T} is zero. On depression of a key, the switch leaves the ground busbar and starts to travel towards the rail (19 volts) busbar. This allows capacitor C_{T} to charge through the resistor R_{T}, such that the voltage on

A closer investigation of the attack pulse shows that two pulses do in fact occur. The first pulse is very small, and occurs at the moment when the keyswitch leaves the ground busbar, and is kept to a minimum by the choice of a high ratio for $\mathrm{R}_{\mathrm{T}}: \mathrm{R}_{\mathrm{I}}$. Later components in the Decay circuit ensure that this pulse does not get through to the preamplifiers. The values established for R_{T} are critical in obtaining maximum touch feel, and since they obviously take a fairly high current drain in the rest position, consumption has been minimised by the use of slightly higher values than optimum at the extreme ends of the keyboard. The attack trigger decays very quickly ($\mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{I}}$) due to the necessarily low value of $\mathrm{R}_{\mathbf{I}}$. The attack level is proportional to the average speed of depression of the key over the full travel, which is a very similar situation to the final key velocity characteristic of a conventional piano since the latter is normally achieved by an even application of energy.

 By A.J. BOOTHMAN b.sc.

the positive plate of C_{T} follows curve A , according to the time constant $\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}$ to the final touch level voltage on R_{T} of approximately 17 volts.

When the key completes its travel a 19 volt pulse is applied to C_{T}, which for a very short time raises the voltage at the junction of C_{T} and R_{T} by an amount equal to 19 volts minus the voltage across C_{T} at that time. This results in an output which follows curve B, over the range of normal key-travel times of between 40 ms and 2 ms , offering a variable attack voltage which is passed on to the Decay circuitry.

Fig. 3.1. Basic Touch circuitry and explanatory curves

Complete Envelope Board assembly

DECAY CHARACTERISTIC

The Decay circuitry is shown in Fig. 3.2 together with the resulting characteristics in the various modes of operation. The circuit consists of a capacitor Cs, which stores the energy passed to it from the attack pulse, a Damper and Early Decay circuit, and a chopper circuit via which the envelope is modulated to introduce the pitch.

At the moment when the keyswitch reaches the rail busbar, as described in the previous section, the rail voltage is applied to the Damper circuit and the attack pulse appears at the isolating diode D_{I} in Fig. 3.2. Damper diode D_{D} normally holds the voltage across capacitor Cs to nearly zero via the damper resistor R_{D}, but the application of the rail voltage lifts the voltage on the cathode of D_{D} to approximately three volts. Thus as the attack pulse is applied to C_{s} through diode D_{r} the capacitor is allowed to charge to a voltage determined by the ratio of C_{S} to C_{T}, followed by a quick decay to a level of three volts plus the forward volt drop of diode D_{D}. This action is termed the "early decay", and whilst it is fast compared with the final decay action, it is long compared with the collapse of the attack pulse ($\mathrm{C}_{\mathrm{T}} \mathrm{R}_{1}$), such that it is not influenced by the touch portion of the circuit which is isolated by diode D_{1} immediately after the attack voltage has appeared. The early decay characteristic emphasises the percussive nature of the instrument.

Assuming the key remains depressed the voltage across Cs will continue to decay, but at the much slower rate defined by resistors R_{A} and R_{B}. It will be shown later that the chopper transistor works on a 1:3 mark space ratio, such that for three quarters of the period the decay time is determined by R_{A}, and for the remaining quarter of the period it is defined by the sum of R_{A} and R_{B}. Different values of R_{A} and R_{B} are used for each octave to give a variation in decay time of from approximately 6 seconds to 3 seconds across the compass.
If the key is released before the voltage has fully decayed, the damper resistor R_{D} will determine the rate of final decay. This action will however be overridden if the sustain pedal is used since the voltage on the cathode of D_{D} is pulled up by the sustain voltage in a similar manner to the damper release action described above. Release of the sustain pedal brings back the $\mathrm{C}_{\mathrm{S}} \mathrm{R}_{\mathrm{D}}$ decay as before.

Fig. 3.2. Basic Decay circuit and curve

Fig. 3.3. Complete Envelope círcuit

Fig. 3.4. Harmonic spectrum of basic waveform is shown on right

Fig. 3.5. Circuit of an Envelope Board

> SUSTAIN

\bigcirc DD22-OG R77-O R87 -
O-R62-O O-R72-O O R92-O
G-R57-OQ-(D17-0 COO TR16
$O+C$ O-D12D-O O R82-O
KEY 1 - - R52 -

O R63-O R R3-O R R3-O
Θ (R58-OO-(D18-0 סOOTR17
$\mathrm{O}+\mathrm{C} 17-\mathrm{O}-\mathrm{O} 13 \mathrm{O} \mathrm{O} 83-\mathrm{O}$
$K E Y 2$ O

(M)

$$
O R-\mathrm{R} 64-\mathrm{B74}-\mathrm{O} 96-\mathrm{O}
$$

Θ R59-OG-(019-O סणOUTR18
$\mathrm{O}+\mathrm{C18}-\mathrm{O}-\mathrm{OLGO} \mathrm{OR6}-\mathrm{O}$
KEY $3-$

$\Theta-$ R25-OC-R80-R R90-O

O-R60-OG-(D20-O OUO TR19
$\mathrm{O}+\mathrm{C19}-\mathrm{O}$ (D15DO OR R-O
KEY $4-$

$\mathrm{O}+\mathrm{C20}-\mathrm{O}-\mathrm{D16DO} \mathrm{O}$ R86-
KEY 5 O-R
Θ R71-O

Fig. 3.6. Component layout and etching details for one Envelope Board

COMPONENTS

CHOPPER ACTION

The complete Envelope circuit is shown in Fig. 3.3, which also gives the chopper circuitry. The transistor is driven by two waveforms taken from the quad divider. The two basic frequencies are the fundamental and the second harmonic, both in the form of square waves. The resulting waveform on the collector of the transistor is shown in Fig. 3.4, together with its harmonic spectrum. This is a relatively easy waveform to handle in circuits which are inherently non-linear a more usual staircase type of waveform is completely unsuitable, producing a harmonic change over the period of the decay which is the inverse of the conventional piano tone. The fast edges of this waveform can be dangerous in their tendency to produce "beehive" breakthrough-i.e. a continuous background of every note in the instrument. Capacitor C_{N} slows the leading edge of the waveform to reduce this effect, and the output diode Do also acts as a noise reducing element. Further beehive reduction is incorporated in the Voice circuits.

FREQUENCY DIVIDERS

The square waves to drive the chopper transistors are produced by a divide-by-sixteen counter, which has four outputs at half (A), one quarter (B), one eighth (C), and one sixteenth (D) of the input frequency. The divider input is obtained from the gate outputs on the Tone Generator Board, described earlier, and is fed into the circuit shown in Fig. 3.5. The input frequency is also used to produce the top octave pitch waveforms which are simple 1:1 square waves.

PRACTICAL ENVELOPE CIRCUIT

The Envelope circuits are grouped as five per board, together with one quad-divider. Each of these combinations copes with all octaves of one semitone across the keyboard, leading to 12 identical

Envelope Boards being required. The full circuitry for one board is shown in Fig. 3.5. The board contains five key inputs, one sustain input, and one pitch input. The outputs are grouped to cover the bottom two octaves, the middle two octaves, and the top octave, at separate output terminals. The board requires only one 5 volt supply, to power the divider.

ENVELOPE BOARD CONSTRUCTION

Each group of Envelope circuits is constructed on a printed circuit board $203 \times 76 \mathrm{~mm}$, the etching and drilling details for which are given in Fig. 3.6 together with component details.

To assemble the board the terminal pins should be fitted, followed by resistors, capacitors, diodes, transistors and integrated circuit. It is important that both the transistors and the integrated circuit should be inserted with the correct orientation.

DIODES

The author has used diodes in the prototype which can be described loosely as manufacturer's rejects, of silicon planar type in DO-7 encapsulation. To test the diodes a multimeter was used with $20 \mathrm{k} \Omega /$ volt sensitivity ($1 \mathrm{k} \Omega$ range). Diodes were rejected where a movement of the needle was observed in the reverse polarity position, whilst the forward resistance was generally of the order of $12 \mathrm{k} \Omega$, although no specification was applied to this parameter. Occasionally a diode selected in this way gave some trouble if used in the output position (breakthrough) but the success rate was very high, after the diodes had passed the test. The forward resistance is measured when the negative lead of the multimeter is connected to the anode, and the positive lead to the cathode of the diode.

TESTING THE ENVELOPE BOARDS

The Envelope Boards can be tested one at a time using the jig described in earlier articles. Since the power supplies are unregulated (apart from the 5 volt logic supply) the warning is repeated to keep a check on the supply levels, particularly to the Tone Generator Board, whilst performing any partial check-out experiments.
NOTE: in Fig. 2.3 the 9 V and 17 V legends should be reversed.
Next month: Voice Filters and final circuitry

POUNITS Rilishin

ULTRASONIC DOPPLER SHIFT INTRUDER ALARM (March 1975)

The battery and S 1 connections as shown in Fig. 5, page 208, should be reversed to agree with the circuit diagram of Fig. 2.
LIGHT PIPE (January 1975)
Parts list, page 31, Veroboard dimensions should be 24 strips by 37 holes.
THERMOMETER/CONTROLLER (December 1974)

In the component layout of Fig. 2 the circuit points 1 and 8 should be reversed together with their polarities. In the Veroboard cutting details there is no need for a cut at B5, Fig. 2. In Fig. 3, the switch positions 3 and 4 should be identified 0 to $-100^{\circ} \mathrm{C}$ and 0 to $+100^{\circ} \mathrm{C}$ respectively.

INivit Moviris Issulv.

 T.V. SOUND UNIT

A sound unit designed to detect the 6 MH z radiation from a t.v. seti.f. strip and convert this into quality sound output suited to processing in the normal domestic hi-fi equipment, thus avoiding the hum and narrow bandwidth problems normally associated with t.v. sets

8-Channel Logic Trace Multiplier

Converts normal single-beam oscilloscope into an 8 -channel unit for logic waveform examination; or a double-beam unit info a 9-beam instrument capable of displaying one channel of analogue data and eight of logic

DIGITAL CLOCK

An electronic clock using proprietary components to achieve a simple and sensible design suited to use on 50 or 60 Hz mains as either a 12 or a 24 -hour unit with equal facility

PRACTICAL

AUGUST ISSUE ON SALE JULY 17, 1975 -PRICE 30p PLACE A FIRM ORDER WITH YOUR NEWSAGENT TO AVOID DISAPPOINTMENT

THIS is the second and final part for setting up the Minisonic for performing the specially prepared composition "Symbiosis".

SEQUENCE I TO O

This is the central section of the piece and the one requiring the most careful setting up. The pitches (which appear on the score as thick horizontal lines tapered at the end) are crucial to the effect produced.
Firstly the keyboard must have its Span set to give an equal-tempered scale (i.e. 12 equal divisions of pitch from one note to its counterpart an octave higher). Set KBD CON Span to 5, adjust KBD CON Tune to a comfortable mid-range level (about 6 with VCO 2 Freq at 6.2). Set the note a at Concert A pitch (440 Hz) using some external musical instrument. When you have this, insert a spare 3.5 mm jack into the keyboard over-ride plug of VCO1. Now tune VCO1 to an octave below the note on VCO2. This is now your standard reference frequency. By gradually adjusting KBD CON Tune and Span you will eventually reach a perfect octave span. This will take quite a long time to achieve, so do not be dismayed if things do not go well right away. Once the Span is fixed the niggling problems are over. Make quite sure that you do not accidentally move KBD CON Span whilst working on this sequence or all the blood, sweat and tears will have to be re-lived.

Remove the jack plug from VCO1 keyboard override and re-tune the oscillator to an octave below VCO2. The two v.c.o.s will track each other quite faithfully over a large part of the keyboard's range. The rest of the settings can now be made quite quickly. For controls:

VCAl and 2	Level 11
ES1	Attack 2
ES2	Decay $3 \cdot 8$
	Attack 1
VCF	Decay 4
	Level 11
CE	Q 9
VCOs, KBD CON	Freq 7.5
Fully clockwise	
as above	

For patch-cords:

$$
3 \mathrm{D} \text { to } 5 \mathrm{C} ; 3 \mathrm{C} \text { to } 3 \mathrm{~F}
$$

As you will see from the score there are 15 repetitions, lasting eight seconds each, of a simple
two-note figure along the bottom line. The first (A) lasts for two seconds, the second (A\#) lasts for six seconds. As you play these two notes, touch the keyboard for only about half a second to allow the resultant harmonics to sing through. With the control settings given the A\# will last about nine seconds, so the continuity of line is built in.

ADDING REVERBERATION

The last refinement concerns the tape machine. Arrange your input and output levels on both the mixer and the stereo machine (track one) so that a small touch of tape reverberation is added to the sound. Too much will muddy the signal, too little will take away its resonance. Make two separate recordings of this sequence of events; the second one will be used again towards the end of the piece.

At letter L you are free to choose which notes you play provided: (a) they begin at about one per second and accelerate to no more than three per second, and (b) they do not wander very far in pitch from the four or five notes immediately above A\#. At letter M you increase the amount of tape feedback until the sounds you are making distort into a general mess of reverberant tape noise; this reaches its peak after four seconds, and over the next ten seconds ease the feedback down to a level where the sound dies away of its own accord.

Having laid down one line on track one, change oyer to record on track two and set up the synthesiser for the line of thick horizontal strokes and the wedge-shapes above them. This musical line is dealt with in a similar way to the material just completed, although the control settings and patches are different-except, of course, for KBD CON Span and VCO2. For controls:

VCA1	Level 11
VCA2	Level 1
ES1	Attack 1; Decay 3.2
ES2	Attack 1; Decay 1
VCO1	Level 1
VCF	Level 11
	Q 11
CE	Freq 6•8
N	Fully Clockwise
	Level 3

For patch-cords:
3 C to $3 \mathrm{~F} ; 3 \mathrm{~A}$ to $3 \mathrm{E} ; 3 \mathrm{D}$ to 1 A
Set the previously recorded channel running. As soon as you have heard the first two notes of the
recorded sequence, add the next two notes (c^{\prime} and $\mathrm{c} \#$ ') in equal time-i.e. two seconds after the prerecorded second note and lasting two and six seconds respectively meanwhile increasing the level on the mixer from silence to a comfortable maximum over 24 seconds. When you arrive at letter L try to follow the speed of the notes in the recorded channel without wandering too far in pitch from $\mathrm{c} \mathrm{\#}$ ' and again, at M increase the reverberation as before until it overwhelms the system and then is allowed to die away.
The final overlay does not require tape reverberation, so feed both the recorded channels through the mixer into the second tape machine.

IMPROVISATION

The score at this point allows for some freedom of melodic line; for 40 seconds you improvise on the notes $\mathrm{f}, \mathrm{a}, \mathrm{a} \ddagger, \mathrm{ct}$ ', and $\mathrm{d} \#$, and for 48 further seconds the notes $\mathrm{f} \#, \mathrm{~g} \mathrm{\#}, \mathrm{a} \mathrm{\#}, \mathrm{c} \#, \mathrm{~d} \mathrm{\#}$. At letter L you stop playing until letter N where two slow notes appear amidst the aftermath of the tape reverberation- $\mathrm{g}_{\text {\# }}$ followed by g . The settings for this line of music are:

VCO1 and 2	As previous setting
KBD CON	Ditto
ES1	Attack 2.5; Delay 4.5
CE	Fully clockwise
VCF	Level 11; Q 11; Freq 3.5

For patch-cords: 3D to 1 A ; 3C to 3 F ; 5D to 3 E . At letter O the tape is cut.
The final triangular block in this sequence is a cataclysmic slam of white noise which is tape reverberated and allowed to die at its own rate, recorded separately and spliced on to the previous recording. The control setting is:

VCA1	Level 11
VCO1	Level 11
ES1	Attack 1; Decay 4
N	Level 10

For patch-cord: 3A to 1A.

FINAL SEQUENCE: P TO END

Between P and R three separate kinds of sounds are heard in counterpoint. The first to appear (small black arrowheads in the score) is a sequence of band-pass filtered white noise; the second (shown as a wavy line) is a modulated and filtered VCO signal; the third (small egg shapes) is a short-lived "Wah-Wah" sound.

The recording procedure is identical to that used in Sequence D to I but, of course, this time you need to make three separate control settings and patches. If you are to save time in producing this Sequence then pretty precise timing will be required between P and \mathbf{S}; the arrowhead sign appears consistently between P and Q , once only between Q and R , and very exposed between R and S -and all this over almost two minutes' duration. Similarly the occurrence of the other two symbols which appear at various times after Q.

The KBD CON Span is not critical in this Sequence since the randomness works much in the same way as the counterpoint beginning at D . However, the eggshaped symbols must be kept around mid-range and the overall speed of events is slower than before.

Begin by recording, with the aid of a watch with a seconds hand, the arrowheads at a fairly high dynamic level throughout; the lowering of dynamic at Q et seq. can be effected on the final dub using a mixer control. The single arrowhead between Q and R will appear at approximately 71 seconds from the beginning. Record
the whole of this line of music on your second tape machine. "Arrowhead" control settings are:

VCA1	Level 11
ES1	Attack 1; Decay 2.5
VCO1 and 2	Level 1
N	Level 9
VCF	Level 11
	Q 11
	Freq 7
KBD CON	Tune 10; Span 11

For patch-cords:

3D to $1 \mathrm{~A}: 3 \mathrm{~A}$ to $3 \mathrm{E} ; 2 \mathrm{E}$ to 3 F

Next play back the recording from the second tape machine through the mixer on to track one of the stereo tape machine along with the egg-shaped symbols. Again you will need to "watch the clock". Do not forget to let the tape run well over the 113 seconds required before switching off otherwise unwanted clicks will occur in the finished sequence.
"Egg-shaped" control settings:

VCA1 and 2	Level 1
ES1	Attack 2; Decay 2.5
VCO1	Level 10; Freq 7
VCO2	Level 10; Freq 6.5
VCF	Level 11
	Q 11
	Freq 4
CE	Fully clockwise
KBD CON	Tune 4; Span 5

For patch-cords:

```
3D to 1C; 1D to 3E to 5D; 3F to 3C
```

The next overlay will be recorded on to track two of the stereo tape machine. Your second tape machine has the tape made earlier of the eight-second note patterns in Sequence I to P. This will be fed in at R, rather quietly, just after you have finished your last bit of stylus work on the wavy line. For "Wavy Line" controls:

VCA1 and 2	Level 1
ES1	Attack 1; Decay 2.3
VCO1.	Level 11; Freq 4.5
VCO2	Level 11; Freq 7
VCF	Level 11
	Q11
	Freq 4
CE	Fully clockwise
RMOD	Level 10
KBD CON	Tune 6.5; Span 11

Patch-cords:
F1 (over-ride plug); 3E to 4D; 3C to 3F; 4E to 5D; 3D to 1 C
VCO1 frequency may need slight adjustment in order to give this sound a distinctive stuttering effect.
The last three surges of white noise are dealt with manually by means of the VCF frequency control and then spliced on to the rest of the work. For white sound controls:

N	Level 9
VCF	Level 11
	Q1
	Freq as required.

All other units level 1.
Patch-cords:
3D to 1 C ; 3A to 3 E
And that completes "Symbiosis".

SOLID-STATE POWER CONTROL

THE CONTROL of power to fairly large unity power factor loads, that is loads which do not normally include inductive and capacitive items, such as electrode water heaters and radiant heating processes, has always been difficult for two basic reasons.

The already well-known phase control technique which is used for power control in resistive loads, as shown in Fig. 1, is just out of the question since it causes disturbances in the supply waveform as in Fig. 2.

Such disturbances can be avoided by using zerocrossover switching, Fig. 3, when the power is controlled by allowing more or less cycles of the supply to pass to the load. Switching of the selected cycles occurs as the voltage (or current) passes through the zero condition, thus avoiding r.f.i. problems.

However, if a wide area of control is to be achieved as from zero to 100 per cent with a three-phase supply, then a new problem appears; lamp flicker can be induced because of subharmonics met in the various combinations of switching. Equally, conduction sequences can introduce periods of d.c. in the load which, for electrode water heaters, would cause electrolysis.

Two workers at the University of Nottingham, R. M. Davis and B. R. Downing, have developed a solid state svstem for control of power under such circumstances which avoids the problems.

SWITCHING SEQUENCE

Taking the case of three phase resistive loads and in particular an electrode water heater as an example, their method can be described with reference to Figs. 4 and 5 . With the load in a star-delta configuration and the contraint that the triacs be switched only at zero crossing, a switching sequence was developed.

With a switching sequence which repeated itself every three cycles the number of different permutations in which the three triacs could be switched can be shown to be in excess of 2×10^{6} but this number includes many identical power levels and many sequences which would produce a d.c. component.

A computer selection programme was utilised to remove these problem sources altogether, together with those other sequences which might produce 16 Hz or 25 Hz lamp flicker, and a final set of 24 acceptable power levels were produced.

Fig. 3

Fig. 2

Fig. 4

Fig. 5

From these some 19 were selected to give an even 0 to 100 per cent power control.

Currently a 75 kW version of the controller is in use with an electrode water heater. The temperature of the water is continuously monitored and fed back to the controller to provide temperature maintenance to a required level. The system is cheap, simple and compact, and other areas of application will include such items as paint-drying ovens, three-phase immersion heaters, ovens and so on.

Further information can be obtained from Electrical Engineering \& Electronics Group, NRDC, Kingsgate House, 66-74 Victoria Street, London, SW1E 6SL.

ULTRASONIC I.C.

Remote control of T.V. sets, particularly colour sets, is a subject which has gained particular interest in manufacturing circles for some time now. Various methods of linking the hand-held control unit to the set have been proposed ranging from the obvious hard-wired style through to infra-red and ultrasonic linking.

Each method has associated advantages and disadvantages but obviously any solution using hard wiring is out. Of the others, a great deal depends on the sound or light characteristics of the domestic environ.

After much deliberation and research, ITT Semiconductors have come up with an integrated circuit ultrasonic solution to the problem using two basic chips, a transmitter and a receiver. These are available in 15 -channel and a 30 -channel form as pairs and can be used to effect both discrete switching functions
for channel changing, and analogue (gradual) adjustments to such parameters as volume, colour and brilliance.

The new devices use discrete frequency steps in the 30 kHz to 45 kHz band and these are crystal-controlled at both transmitter and receiver to avoid incorrect triggering. Cost is envisaged to be in the region of $£ 10 /$ pair for 15 channels and $£ 15 /$ pair for the 30 channel. The final cost to the set user would of course be more.

Further details from ITT Semiconductors, Footscray, Sidcup, Kent.

SINGLE IC TV SOUND CHANNEL

The TDA 1190 is a new integrated circuit from SGSATES which, with the addition of a few external components, forms a complete TV sound channel taking the sound i.f. from the tuner and producing up to $4 \cdot 2 \mathrm{~W}$ into a 16 ohm load.

The input limiting voltage of the i.f. section is only $30 \mu \mathrm{~V}$ and the electrical characteristics remain constant over the range 4.5 to 6 MHz making the i.c. suitable for use with all television standards.

A single resistor is used to set the a.f. amplifier gain and a single capacitor sets the upper cut-off frequency. There is d.c. volume control which can be achieved by connecting a variable resistor between an i.c. pin and earth. This gives a control range of typically 90 dB .

Supply voltage can be anywhere between 9 and 28 V .
Further details from SGS-ATES, Planar House, Walton Street, Aylesbury, Bucks.

QUAD 80-BIT STATIC SHIFT REGISTER

Another new i.c. from SGS-ATES is the M142, a quad, 80 -bit static shift register. Most semiconductor manufacturers produce quad 80-bit MOS devices, but the M142 is unusual in that it only requires a single 5 V supply line. This completely eliminates the need for interface circuits when using the device with TTL.

Each of the four 80 -bit shift registers has an independent input, output and recirculate control, though the single clock line is common to all four registers.

The data can be shifted into or out of the registers at anything up to 3 MHz . Total power dissipation is a mere 125 mW .

P日
 A VOLUME OF PRACTICAL KNOW-HOW

. . can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the EasiBinder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ 1 \cdot 90$ (including VAT and postage), they are obtainable from:

Post Sales Department, IPC Magazines Ltd. Carlton House, 66-68 Great Queen Street London, W.C. 2

I enclose P.O./cheque value for binders at £1.90 each for Practical Electronics Vol. No's.....
Name.
Address

Date

By J. SMITH

Ageneral purpose oscillator is a useful item of test gear in any electronic workshop. The instrument described in this article is intended for audio, digital and general purpose use. The design employs simple components which are readily available from component suppliers. Output frequency is continuously variable over four decade ranges from 10 Hz to 100 kHz and the output signal, which is 10 V peak-to-peak, can be attenuated with a switched attenuator down to 1 mV .

The output will drive loads down to 600Ω on the 1 to 10 mV ranges and $100 \mathrm{k} \Omega$ on the ranges above 20 mV .

The oscillator requires a positive and a negative 15 V supply. Readers having suitable external power supplies can economise by using such a source. However, the full design incorporates a suitable power supply since we believe that most people will prefer a compact, self-contained instrument.

OSCILLATOR

Fig. 1 shows the sine oscillator circuit. In this circuit an SN 72709 integrated circuit ICl is wired as a thermistor-stabilised Wein Bridge oscillator, the main requirements of which are to produce positive feedback with unity gain. In this instance the Wein Bridge supplies the positive feedback required, but in doing so attenuates by $1 / 3$. Therefore, to sustain oscillation the resistor ratio R5 to R3 achieves the required gain of

Fig. 1. Circuit diagram of the sinewave generator and output amplifier/attenuator

Fig. 2. Double-rail power supply for the complete generator

3 ; here R5 is a thermistor. The circuit incorporates frequency compensating components $\mathrm{C} 7, \mathrm{C} 6$ and R4 to form a basic stable amplifier.

The stabilisation thermistor, R5, controls the output voltage level: an increase in voltage will heat up the thermistor, so decreasing its resistance, and reducing the gain. Conversly, a fall in output voltage reduces the power dissipated in R5, so it cools down, and its resistance increases. This arrangement stabilises the output level of the oscillator. This output feeds the positive feedback loop via the frequency selective components C8 to C11 and VR2 to pin 5 of IC1.

The product of capacitance C and resistance R determines the frequency of oscillator output according to the formula:

$$
\text { Frequency }=\frac{1}{2 \pi C R}
$$

Since in this oscillator both the series resistance R7 and the variable resistance VR2 affect the frequency, we must substitute (VR2 +R 7) for R in the formula, so that in this instance:

$$
\text { Frequency }=\frac{1}{2 \pi C(\mathrm{VR} 2+\mathrm{R} 7)}
$$

Because of its limited slew rate the 72709 operational amplifier ICl will produce a distorted large signal output at high frequencies, so the output swing is limited to a few volts. The Zener chain, R1, D1, ensures that the swing is either side of earth potential.

Coupling the limited output from IC1 to a transistor amplifier TR1 through capacitor C12 produces a high signal level. The amplified oscillator signal appears across R10, the collector load of TR1. This signal passes from the amplifier via switch S2 and C13 to the output driver circuit TR2/TR3.

OUTPUT ATTENUATION

The square wave generator is an add-on circuit which one can omit readily by coupling directly through C 13 , so leaving out the sine/square switch S2. TR2 and TR3 feed the output signal to a simple attenuator circuit, which gives off-load peak voltages from 10 V down to 1 mV in a $10,2,1$ sequence.

Loads down to 600Ω on the 1 to 10 mV ranges and loads of $100 \mathrm{k} \Omega$ or more on the 20 mV to 10 V ranges will have little effect on these output voltages.
Readers who have suitably stable power supplies to attach to it will find that the circuit shown in Fig. 1 makes an extremely simple and useful instrument in its own right. Anyone requiring more accurate control of the output voltage can easily fit a meter circuit measuring the 10 V peak across R17. In such an arrangement varying R10 or R11 by a small amount before making each measurement will adjust the output voltage to a pre-set level. We have not included such an arrangement since the instrument is stable enough for the majority of applications.

POWER SUPPLY

As many readers who decide to construct this instrument will require a self-contained unit, a suitable stable power supply is given. Fig. 2 shows the circuit diagram for this supply.
In this circuit 40 V output transformer T 1 together with diode bridge D1-D4 and the smoothing capacitor C 1 provide a roughly smoothed output of 55 V . This voltage feeds the Zener chain D5 to D8 through resistor R1 to provide the reference voltages shown on the circuit diagram.
The roughly smoothed d.c. also passes to a series regulator TR2. Primarily this section of the instrument provides a 30 V stabilised supply. IC2 samples the output voltage through R2 and compares it with a reference voltage of 30 V developed at the junction of D5 and D6. The error signal passes via R3 to amplifier TR1 which drives the series regulator TR2, thus forming a conventional 30 V stabilised supply. IC2 changes the 30 V supply into the $\pm 15 \mathrm{~V}$ supply required to drive the oscillator.
Because IC3 will only function correctly with the balanced load of the oscillator, this arrangement is quite unsuitable as a general purpose power supply and on no account should be used as such.
The two circuits shown in Figs. 1 and 2 together make a very compact instrument for constructors, who do not wish to incorporate the square wave circuits.

Fig. 3. The squarewave generator section circuit

SQUARE WAVE GENERATION

The sine wave oscillator is designed so that the square wave circuit is add-on, as it were. This enables users not immediately interested in square waves to use the signal generator and to add the squaring facility later. Fig. 3 shows the circuit diagram of the square wave generator with details of $\mathbf{S} 2$, Fig. 1, included.

When $\mathbf{S} 2$ is switched to square-wave, the sine wave signal passes to a Schmitt trigger circuit consisting of

COMPONENTS . . .

TR1 and TR2. In this trigger circuit TR1 is normally off and TR2 is fully conducting since its base is driven from the -15 V line via R4 and R6; the circuit remains in this condition as long as a positive half-cycle is applied to TR1 via R1.

When the sine wave input falls through zero to a negative potential, TRI starts to conduct and the potential at its collector starts to fall, so reducing the current through R5. This change in current is transferred via the emitter of TR2 to the emitter of TR1 and encourages TR1 to "switch on" even faster, so the circuit "changes over" regeneratively.

A similar regenerative action occurs as the sine wave passes from negative to positive. The collectors of both TR1 and TR2 show a square wave signal and that from TR2 passes to amplifier TR3 which ensures that the output signal switches between $\pm 10 \mathrm{~V}$.

Fig. 4. General arrangement of the circuit boards and main components on the front and back panels

COMPONENTS . . .

CONSTRUCTION

A standard instrument case measuring $8 \frac{1}{2} \times 5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$ ($216 \times 140 \times 140 \mathrm{~mm}$), provides a suitable unit in which to house the generator. The photograph of Fig. 4 shows the general arrangement of the three main sections, front panel, main board and back panel.

First the power supply components are mounted as shown in Figs. 5 and 6, with the exception of the capacitor Cl and mains transformer, on a $55 \times 95 \mathrm{~mm}$, $0 \cdot$ lin matrix board. The matrix is mounted on the back panel using 4BA spacers to give the required board clearance. Next mount the transformer and capacitor directly on to the back panel using a "P" clip to fasten the capacitor as in Fig. 4. FS1 and LP1 are omitted in the prototype.

The oscillator assembly is made up on a $175 \times 95 \mathrm{~mm}$ matrix board as in Figs. 7 and 8. This assembly includes the components which comprise the oscillator and square wave generator. This board is mounted on the bottom of the unit, again using 4BA spacers to provide the required board clearance.

Fig. 1 shows the oscillator as two distinct sections, oscillator and output amplifier, and the square wave generator. The recommended layout shown in Figs. 7 and 8 preserves these distinctions.

Board wiring is not critical providing one adopts a sensible approach. Mount all other components having control functions on the front panel, for example the attenuator output switch, S3, with the resistors R18 to R26 mounted on the switch itself.

Finally, attach the flexible interconnecting leads to the oscillator board, power supply and front panel.

Fig. 5 (top). Component layout for the power supply board

Fig. 6 (bottom). Wiring details for the layout of Fig. 5

Keep the transformer wiring separate and connect it directly to the mains switch S1 and bridge rectifier connections. Make the mains. earth connection to the chassis. Run the two wires from the output terminals directly to the output switch S3 pins 1 and 11.

The remaining interconnecting wiring in the prototype was divided into three distinct looms, wire idents providing individual wire identification. The first loom consisted of three power supply wires, the second of the wiring concerned with the sine-square switch $S 2$, and the third included the Wein bridge potentiometer wires and the output wiring to the attenuator switch S3. These wires must be screened and the screens connected to the chassis via a tag on the front panel. Keep wire lengths to a minimum, but long enough to enable back and front panels to be laid flat for wiring and test purposes.

COMPONENTS

Close tolerance capacitors in the timing circuits will yield the best results; silver mica capacitors are particularly suitable. Also the twin ganged potentiometer VR1, VR2 needs to be of good quality. Because single screened wire has an inherent capacitance, this affects the frequency output in the 100 kHz range, and to compensate for the value of the capacitor, C 8 is varied from that determined by the formula. Readers who do not have accurate resistance or frequency measuring test gear should obtain the best possible twin potentiometers they can afford, together with 1 or 2 per cent capacitors in the timing circuits. This helps to increase the accuracy of calibration.

Fig. 7. Component layout for the oscillator board

Fig. 8. Wiring details for the layout of Fig. 7

Fig. 9. Squarewave testing waveforms

CALIBRATION

The dial showing frequency settings may be a simple dial, knob and pointer, or an elaborate linear dial as used on a receiver. But whichever dial one uses, one must calibrate it. To allow for the various types of dial and potentiometer available, the calibration data is tabulated in Table 1. The best way of calibrating the instrument is to measure the frequency and to mark the dial accordingly; the next best method is to measure resistance.

However, if one does not have suitable measuring facilities one can still obtain quite good results by measuring dial positions with a protractor or ruler and using the data given in Table 1. Because the instrument has decade ranges, one needs only to plot one range of frequency.

If the instrument incorporates a linear dial, mark the two end stops to give 1.05 kHz and 10.6 kHz and use a rule to measure the distance between these two stops.

If it incorporates a rotary dial, mark the end stops to give 1.05 kHZ and 10.6 kHz and use a protractor to measure the angle (in degrees) between them.

Table 1 shows corresponding values of frequency measured directly with frequency measuring equipment, resistance measured with resistance measuring equipment, and the multiplying factor for determining the dial setting.

To calculate the dial setting corresponding to the required frequency, multiply the factor given in column 3 of Table 1 by the angle or distance measured between the two end stops. The result is the angle or distance from the 10.6 kHz marker which one should mark on the dial. To illustrate how multiplying the total angle by the factor gives the calibration angle required, column 4 gives the angles calculated for the prototype instrument.

Because frequency is proportional to the reciprocal of resistance, the frequency scale marked on the dial will not be linear.

SQUARE WAVE TESTING

Using a square wave source for testing digital circuits such as counters and frequency meters is a fairly obvious application for these units. In contrast many enthusiasts are not aware of the value of square wave testing of high-fidelity amplifiers.

Gain frequency plots of amplifiers tell us a little about their characteristics, but such a plot does not indicate how the amplifier responds to transient signals. Plotting may miss small changes in level at different frequencies which can contribute to a reduced performance under transient conditions.
A good-shaped square wave signal consists of the fundamental frequency plus a large number of harmonics, which are necessary to form a precise square wave signal. Therefore, when one applies a square wave to an amplifier one is, in effect, sweeping a whole band of frequencies. This means that when one views the square wave signal output with an oscilloscope, one sees the effect of the overall response of the amplifier.

One can investigate the principal characteristics of square wave testing by connecting an audio amplifier to a resistive load and applying a low frequency, low amplitude square wave to the input. This gives rise to the three basic output waveforms shown in Fig. 9b, c and d. Fig. 9 a represents the input square wave and also the output waveform which one might expect from a perfectly flat response amplifier.

The curve at b represents the output to be expected from a capacitively coupled amplifier. Here the pulse droops with an amount related to the low frequency characteristics of the amplifier.

Strictly speaking it is difficult to relate droop to the 3 dB point in an amplifier, because the rate at which the amplifier falls towards cut-off influences the droop. However, many people assume that a single time constant operates (6 dB per octave) and estimate the 3 dB point from the droop which this single time constant causes. These estimates are quite accurate enough for most applications. Droop is also caused by the bass cut control of the amplifier, so we can use a square wave source for evaluating the operation of the tone circuits as well.

Table 1: Calibration

Frequency			
(kHz)	Potentio- meter Resistance $\mathbf{k} \Omega$	Multiplying Factor Angle or Distance	Typical Dial Angle $\mathbf{2 8 5}$
1.05	20.1	1.0	285
1.5	13.40	0.652	190
2.0	9.50	0.475	135
2.5	7.16	0.358	102
3.0	5.60	0.28	78.8
3.5	4.49	0.224	64
4.0	3.65	0.182	52
4.5	3.00	0.15	43
5.0	2.48	0.124	35
5.5	2.05	0.10	28.5
6.0	1.70	0.085	24
6.5	1.40	0.07	20
7.0	1.14	0.057	16
7.5	0.92	0.046	12.8
8.0	0.72	0.036	10.2
8.5	0.55	0.028	7.9
9.0	0.40	0.02	5.7
9.5	0.26	0.013	3.7
10.0	0.14	0.007	1.9
10.6	0.01	0.00	0

LOW FREQUENCY RESPONSE

Fig. 9c shows the characteristic effect of a rising high frequency response. The leading edge of a pulse contains the majority of the high frequencies, so when one increases the treble boost control, the pulse acquires leading-edge spikes. Adjusting the "treble cut" will remove high frequencies from the pulse as shown in Fig. 9d. These tests are normally carried out with square wave frequencies below 500 Hz . The low frequency droop characteristics show up even better on lower frequencies, such as 50 to 100 Hz , while the high frequency effects are more apparent at the higher frequencies.

HIGH FREQUENCY RESPONSE

At much higher frequencies square wave testing has several useful applications. Fig. 10 shows examples of high frequency waveforms. At 10a, the response of a good amplifier to a well-shaped square wave is shown. This waveform has sloping sides caused by the fall off in high frequency response of the amplifier.

Specifications often quote rise times for amplifiers, especially oscilloscope amplifiers. The rise time is the time the pulse takes to grow from 10 per cent of its final amplitude to 90 per cent of its final amplitude, hence the expression "the 10 to 90 per cent rise time t ".

As with low frequency and droop, rise time may be related to the high frequency 3 dB point in the amplifier, if one assumes a single time constant cut-off. Since one may measure the 3 dB point directly using the sine generator, it is not worth making either of the latter calculations.

H.F. OSCILLATIONS

Waveform 10b represents a more important aspect of square wave testing in which the pulse causes some high frequency oscillation. Oscillations of this type are caused by stray capacity giving positive feedback and instability which shows up on transient signals. The source of such oscillations must be located and stopped.
The waveform of 10 c shows a typical underdamped response which one would expect from many electromechanical systems. A transformer coupled circuit,
for example, would often exhibit this type of characteristic. After finding a response of this type one would seek out the source of underdamped responses and in an effort to improve performance increase the damping to give a response as near as possible to Fig. 10a.

The frequency at which one should test amplifiers depends upon the high frequency 3 dB point $f 3 \mathrm{~dB}$. One should examine frequencies in the range $f 3 \mathrm{~dB} / 10$ to $f 3 \mathrm{~dB} / 2$ as different effects show up at various frequencies, for example a frequency of $f 3 \mathrm{~dB} / 4$ e.g. 25 kHz for a 100 kHz amplifier might produce the waveform depicted in Fig. 10a.

ENCLOSURE TESTING

The testing of loudspeaker enclosure damping will also interest the hi-fi enthusiast. In this test the square wave generator must drive a powerful amplifier coupled to the loudspeaker through a high impedance. An impedance some ten times that of the loudspeaker will be necessary using an amplifier which is capable of operating without the loudspeaker load. Few valve amplifiers can be used for this test. The amplifier must also be capable of amplifying at frequencies below that of the speaker resonance under test, and producing satisfactory square waves at 20 Hz or less.

Fig. 11. Loudspeaker test rig arrangement

Fig. 11 shows the test circuit arrangement. One needs a high gain oscilloscope to see the effects shown in Fig. 12a and b. Waveform 12a is the type of response one should try to achieve while 12 b shows an underdamped system. This method provides a means of investigating the effect of various cavities and baffles using a variety of loudspeakers.

Square wave frequencies of the order 20 to 30 Hz are necessary for these tests. Removing or omitting the high impedance will cause the amplifier to damp the loudspeaker system (a highly desirable characteristic .in practice), but will mask out the effects of the acoustic damping system, which is being investigated.

In square wave testing one must be absolutely sure that the circuits are not being overdriven as this will remove any ringing or oscillatory responses one is investigating, so it is better to start off with a very small amplitude and increase it to the desired level.

THE US SCENE

Arriving in New York for the IEEE electronics show, one expected tofind signs of recession and first impressions confirmed all expectations. Unemployment almost 9 per cent which meant 8 million workless citizens. Worse still, a survey showed that of these, over a million had given up all hope of finding a job and were not even bothering to try any more. The city itself is bankrupt-not enough income from rates and taxes to meet its bills.
In foreign affairs there was the added depression of the collapse of American policy in South East Asia and little comfort to be had from the Middle East where the Kissinger initiative had failed-at least for the time being.

Enough to give anyone the shivers and suddenly the European situation didn't look so bad after all. But strangely, when the show opened things seemed not nearly so desperate. True, Senator Barry Goldwater in the opening speech of the technical congress said the chips were down, the USA was running into bankruptcy, losing credibility in the world, but his was a political rather than a business speech.

At the New York Coliseum, where nearly 400 companies were exhibiting and attracting 22,000 visitors in three days, there was an optimistic outlook. Were these exhibitors and buyers just whistling in the dark to keep up their courage? This was not my impression. The consensus was
that the recession was about to bottom out, perhaps had already done so. Another three months, perhaps, and things would be taking off. In twelve months the outlook would really be bright. Old hands in the game remembered being caught unprepared in former trade cycles. They had cut back in times of recession and missed out on market shares when the upturn came. This time they wouldn't be caught with their pants down.

This was the busiest show I had seen in years and among the least gloomy. It demonstrated that whatever the shortcomings of Govern-ment-the Americans are still in a state of shock from 'Watergate and have little confidence in the present administration-the hard core of the US electronics industry is showing resilience and enterprise.

The United States, recession or not, remains more than 50 per cent of the world's total electronics market and should not be neglected. In Europe, and especially in Britain, we are so mesmerised by the new affluence in the Arab states that all eyes are looking East. Those British companies who exhibited in New York were not disappointed.

Companies already established in the US market like Marconi Instruments, Plessey and Ferranti, widened their business base this year. Newcomers like Brandenberg, Mirvalle and the still tiny Linton Laboratories found new markets, new opportunities. And did you know that American semi-conductor manufacturers send wafers to Harwell for ${ }^{*}$ ion implantation? Well, Harwell Industrial Research, who offer this specialised service. also did good business.
Ten British companies exhibited. There should have been a hundred. British technology is highly respected in the USA and is in demand provided, of course, the price is right. Our problem is inflation, not technology.

HOT MARKETS

The two hottest and toughest markets in the United States are calculators and watches. The British Sinclair-made model designed for Gillette was test-marketed in San Francisco and St. Louis and, according to reports, exceeded all expectations. It was planned to sell the 4 -function, 8 -digit model at 30 dollars ($£ 12 \cdot 50$) but the week before the test marketing started Novus came out with a competitive unit at 20 dollars so Gillette dropped the price to 25 dollars.

Although the operation was a success, Gillette has now pulled out of the business, blaming unstable pricing. Gillette was reported to have ordered 100,000 calculators for the test-marketing. It was good business
for Sinclair because the British company is left with world marketing rights and those machines designed for Gillette have now appeared as the Sinclair Oxford range.

The 5 -function 8 -digit calculat or from Texas Instruments had a retail price of 25 dollars (a little over £10) as I left for home, but even lower prices could be negotiated by individuals at the point of sale in many New York stores. One wag suggested to me that the way things are going the batteries will soon cost more than the calculators. He could be right!

Innovators are already working on getting some added value into calculators by making them part of a larger assembly. For example, by building a calculator into a notebook and daily diary. This model sells for 35 dollars and makes a nice present in a new market dubbed locally as "Gimmick Calculators".

PACESETTERS

Electronic watches are going the same way. If you are a watch manufacturer you can buy the complete l.e.d. electronics kit from Fairchild for a reported 10 dollars (just over £4) in 1,000 lots. This market is somewhat different because a lot of the value of a watch is not so much in the "movement" but in the case.

It is still not clear how many semiconductor manufacturers will go directly into the manufacture of complete watches but a number have already done so, two of them having already reached the low retail price level of 50 dollars (£21). It's hard to find any other product not going up in price but electronics goods still fall in price-Amazing!

Nobody's yet done it but the next step, believe it or not, is the combined wristwatch and calculator in a single case. An enterprising plastics manufacturer has already produced a prototype case which can be plated to look like metal. There are 18 tiny dimpled calculator keys which can be depressed with the tip of a pen or pencil.

Expected to be a popular new line in the States is a calculator variant which caters for the individual (actually, nearly everybody) who runs his bank balance perilously near the red. It's called the CheckMaster. You enter in your bank balance and every time you pay by check (we spell it cheque) you key in the amount and it gives you your new balance statement. You also enter any deposits. Snapping the lid shut switches the CheckMaster off but the balance remains stored in the memory and shows up again next time you use the machine.

A curvilinear lens on the l.e.d. display gives a very narrow angle of view so that Peeping Toms can't see how hard up you are.

PAGING BY PHONE

Radio paging systems often use a radio frequency carrier, modulated by a sub-audio tone signal to alert the attention of someone carrying the necessary receiver. But usually the centre of paging operations is remote from the transmitter and connection must be via standard telephone lines and these attenuate all signals below 300 Hz . Thus to transmit a sub-audio tone from a remote point involves the expense of hiring special phone line connections.

In BP 1373 748, Motorola Inc. provide a simple answer which could have wider uses in the art of remote control over phone lines.

As shown in the block schematic diagram (Fig. 1) an encoder at the centre of operations incorporates a bank of oscillators which develop audio tone signals. These signals, in the range from $300-3,000 \mathrm{~Hz}$, can be transmitted without attenuation over the phone line to the transmitter station.

The audio tones produced are exact harmonics of the sub-audible tones which are needed to actuate a paging receiver. In the example given two sequentially received sub-audio tones are needed to actuate the paging receiver and the encoder sequentially develops two corresponding audible tones.
D.C. signals are also sent down the line for transmitter switching, and at the transmitter station the d.c. separator directs these to the transmitter and directs the audio tone signals to an amplifier and bistable clipper.

The square wave signal at the output of the amp and clipper have the same frequency as the tones sent down the phone line. A divider network separates these square wave siqnals by the requisite number, to produce a second spectrum of square wave signals of the required sub-audio frequencies.

For example, $1,800 \mathrm{~Hz}$ square waves coupled to the divider will be divided by eight to develop 225 Hz square wave signals. The latter are coupled to the frequency selector which routes all signals

Fig. 1
with a frequency in excess of 125 Hz to filter 1 and all signals below 125 Hz to filter 2 .

Filter 1 has low pass characteristics to remove all harmonics above 250 Hz and prevent intermodulation products. Filter 2 functions similarly on all frequencies above 125 Hz .

An automatic gain control circuit (a.g.c.) compensates for filter variation, provides a constant amplitude output signal for all subaudio tones in the range 65225 Hz and passes them to the transmitter for transmission and reception in conventional manner.

The patent contains detailed descriptions of suitable circuitry for realising the schematic.

WORLD PATENT INDEX

Patents reported here are almost exclusively British issues and represent only a few culled monthly, on a purely arbitrary basis, from the vast number (around 50,000) published every year by the British Patent Office. Even more daunting to anyone interested in keeping a close watch on patents for inventions in their own particular field is the fact that comparable numbers of patents are continually being published in every other civilised country in the world.

The Derwent World Patents Index (WPI) is a weekly publication which seeks to give an early
warning of important patents by listing 12,000 per week from 24 countries. The aim is to break through the language barrier and provide a summarised and indexed world-wide surveillance for researchers.

The Foreign Patents Section of the Science Reference Library, just over the road from the British Patent Office, in Southampton Buildings, Chancery Lane, has the WPI material available for the public's use free of charge.

Part of the Derwent scheme is to identify "basic" and "equivalent" patents as such. As the terms imply, basic patents are concerned with initial protection for new inventions, and equivalents relate to further protection elsewhere.

The WPI material, at least initially, is somewhat off putting. A researcher will need time and patience to accustom himself to the terminology and symbols used. American and British patents are logically listed as US and GB, but their normal seven-digit numbers are broken up with hyphens in a manner which may confuse workers used to dealing with conventional patent numbers.

The Foreign Patents Section enquiry desk has a guide handbook available to help readers who wish to use the index and need to familiarise themselves with the system. In fields such as electronics, where new developments are continually emerging and there is a real risk of laboratories wasting time by duplicating work already done by others, it could be of value for small or medium sized firms to form a consortium and use the WPI together.

PHONOSONICS

SOUND-TO-LIGHT (P.E. Apr./Aug. 71)
The ever-popular AuRORA- or 8 channela each responding to a different sound frequency and confroling tis own light. Can be used with most audio systems and lamp intensities. A MUST for any Disco
and fascinating visual diaplay for the home.

4 channel component set (exel. thyristora) $\quad 817.40$ channel component set (excl. thyristors) power supply component set
PCB for 4 requency channela
PCB for power supply and B lamp drivers 1 Amp 400 V thyristora (1 per chan. requ.) each ${ }^{515 p}$

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during talk-over"-particularly usoful for Diaco work or for home-movie shows.
Component set incl. PCB
c2. 95
TAPE-NOISE LIMITER
Very effective circult for reducing the hiss round in most tape recordings.

Component set (incl. PCB)
Regulated power supply (inel. PCB) $\quad \begin{gathered}\text { E2.30 } \\ 53.71\end{gathered}$

P.E. SYNTHESISER

The well-acclaimed and highly versatile largeplete with keyberated Sound Synthealae wide range of functions inan the P.E. Minisonlc though the two may be used in conjunction with each other to great advantage. Published in

Full detalls of component sets. printed circuit boards and discount facilities are in our list Send S.A.E.

HI-FI TAPE-LINK (P.E. Mar./Apr. 73)
Designed for ute with reasonable quality tape-decke. this high performance pre-amp includes record, playback and metering circults.
$\begin{array}{ll}\text { Stereo component set (excl. panel meter) } & \text { E22.05 } \\ \text { Mono component set (excl. panel meter) } & \mathbf{E 1 3 . 3 1}\end{array}$ $\begin{array}{lr}\text { Mono component set (excl. panel meter) } & \mathbf{E 1 3 . 3 1} \\ \text { Power supply component set }\end{array}$ Power supply component set
Stereo main PCB
P.E. GEMINI 30W STEREO AMPLIFIER

An exceptionally high quality Stereo Amplifier system, specifications for which are shown in detail in our list. logether with semiconductor requirementa While stocks last
Main Ampllifer
Set of resistors, capacitors and presets
Stereo printed circuit board
Pe-Amplifler

Sot of resiator
 and awitches-

Sundard tolerance set
uparior
Stereo PCB (as published)
Set of resistors, capacitors and prese Printed circuit board

SIGNAL GENERATOR

SEND SAE FOR DETALLS
510.57

ع16.04
E2.20
4.58 -

Voltage controlled Filter (P.E. Oct. 74) An independently designed VCF that can be used with the P.E. Synthesiser.
Component set 23. 41

Printed circuit board
$1 \cdot 10$

RHYTHM GENERATOR

Programmable for 64,000 rhythm patterns from B effects circuits (high and low bongos, bass and snare drums. long and ahort brushes. blocks and cymbal). and with variable time signatures. Really fascinating and useful! (Published in P.E. Mar./Apr. 1974).
NOW AVAILABLE WITH ALTERNATIVE INDEPENDENTLY DESIGNED PRE-AMPS AND MIXER GIVING EVEN GREATER VERSATILITY.
Full details of component sets. PCB's and discounta are in our list-send S.A.E.

SOUND BENDER (P.E. May 74)

A multi-purpose sound controller, the functions of which include envelope shaper. tremolo, voice operated fader. automatic fader and frequencydoubler.
Component set for above functions (excl. sw's) $\mathbf{f 5} \cdot \mathbf{8 1 . 4 4}$ Printed circuit board

E 1.44
Optional extra-dditional Audlo Modulator, the use wet can produce unction with the above component Component set (incl. PCB)
¢2-10
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for Introducing the ' 'phasing' sound into live or recorded music.
Component set (incl. PCB)
c. $2 \cdot 20$

PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control the rate of phasing.
Component set (incl. PCB)

The new Etectronic Piano published in P.E.,
Ther series commencing May 1975. Send S.A.E. for our details and discounts.

WIND AND RAIN UNIT

A manually controlled unit for producing the abovenamed sounds.
Component set incl. PCB \quad E2.40
OTHER PCBs (all "as published") While stocks last
Bench Power Supply (P.E. Sept. 74)
Digttal Power Supply (P.E. Aug. 72)
Eiectronlc Plano:
Pre-amp PCB (P.E. Oct 72)
Power Supply PCB (P.E. Oct. 7
Gemini Stereo Tuner (P.E. June 72
Power Slaves (P.E. Aug. 74):
Power Supply PCB
last

CBSSQ Decoder PCB (P.E. Sept. 73) Tone. Batance and Vol-cont
Trifid I.C. Radlo (P.E. Feb. 73)

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie detector alphaphone. cardiophone, etc.
Pre-Amplifler Module
Basic Output Clrcults
c3. 48
Combined component set with PCBs, for
alphaphone, cardlophone, frequency meter
and vasual feed-back lamp driver circuits \quad s. 9
Audlo Amplliter Module
25. 50

PHOTOPRINT PROCESS CONTROL
(P.E. Jan./Feb. 72)

For colour and B \& W, an indispensable dark-room uni or finding exposure, controlling enlarger timing, and stabilising mains voltage.
Component set (excl. meter)
Printed circuit board
Panel meter (1mA)
58. 85
51.60

ENLARGER EXPOSURE METER AND
THERMOMETER (P.E. Sept. 73)
Dual-purpose dark-room unit with good accuracy.
Component set with PCB but excl. meter $\quad \mathbf{~} 4.00$
Panel meter $(100 \mu \mathrm{~A})$

P.E. MINISONIC

A portable, battery or malns operated, miniature sound synthesiser, with keyboard circuite. Although heving slightly fewer facilities than the large P.E. Synthesiser, the functions offered by this design give it great scope and versatility.
Full details of component sets. printed circult boards and discount facillities are in our list. Send S.A.E.

REVERBERATION UNIT (P.W. Nov./Dec. 72)
A high quality unit having microphone and line inpui pre-amps. and providing full control over
reverberation level.

Component set (excl. spring unit) Printed circuit board
inch spring unit
Panel meter $(50 \mu \mathrm{~A})$ (optional)
16.22
$\kappa 1.40$

ULTRASONIC TRANSMITTER-RECEIVER
(P.E. May 1972)

A highly sensitive, tight-beam, long-range, "'invisible beam" detection circuit with numerous applications. Componsnt set with PCBs but excluding 14.40

SEMICONDUCTOR TESTER (P.E. Oct. 73)
Easential test equipment for the enterprising home onstructor.
Set of resistors. capacitors, semiconductors. potentiometers, makaswitches and PCB panel meter ($500 \mu \mathrm{~A}$)
PCB LAYOUT.AND COLOUACODE
CIRCUIT DIAGRAMS IDENTIFICATION
UPPLIED WITH ALL
CBs DESIGNED BY
PHONOSONICS
SUPPLIED WITH MOST KITS AND AS PART OF

ALL PCBs ARE FIBRE-GLASS, DAILLED AND TINNED

Semleonductors	BFY50 efysi BFY52	$\begin{aligned} & 22 p \\ & 22 p \\ & 24 p \end{aligned}$	2N3703 2 N 3704 2N3:49	$\begin{aligned} & 12 p \\ & 12 p \\ & 33 p \end{aligned}$	Integrated C		Zeners 33 V 400 mw		Electrolytic Capachors ($\mu \mathrm{F} / \mathrm{N}$)						Polyester (μ F)		Tantalum ($\mu \mathrm{F} / \mathrm{V}$)			
${ }_{\text {AC128 }}{ }^{\text {c-178 }}$	BSYOSA	170	2N3azse 204080	30	700 4 -pin DIL	$4{ }_{40}$	3 3 gV 3 gV 4	$15 p$ 150								$3 p$				
	MUE2955	${ }_{7}^{109 p}$	2 N 40 CO 2N4871	120	${ }_{723} 7095$	$4{ }^{4}$	$47 \% 1 w$	${ }^{25}$	0 47/63v						${ }_{0} 0015$	3	0.2735	12 p		
$\underset{\text { BC109 }}{ }$	NKTO033	${ }_{132}{ }^{2}$	${ }_{2} \mathbf{N} 5245$	519	${ }_{741}^{723}$ a-pin OIL	${ }^{40}$	5.1 V 5.600 mW 0	${ }_{15}^{15}$	10.63 V	4	100.4	${ }_{p}$	400/40	200	0023	3	- 47/35	129		
BC109 15	${ }^{0} \mathrm{C} 28$	100	2N5777	4sp	7471 1-Pim DiL	1130		${ }_{20 \mathrm{p}}^{15}$	$15 / 83 \mathrm{~V}$		100.10	φ	S60/6 3	189	0033	4	10/35	$12 p$		
BC147 12p	$\bigcirc \mathrm{C} 71$	149			748105	${ }^{30}$	8.2 V 400 mW	$15 p$	2. 2183 V		100.25	${ }^{\text {p }}$	600,25	$20 p$	- ${ }^{0} 0047$	${ }^{3+p}$	+13/35	14p		
BC148 ${ }^{120}$	$\bigcirc{ }^{\circ} \mathrm{C} 72$	149	Diodes		7488 -pin DIL	$4{ }^{4}$	9 iv 400 mW	15p	4,7/63 $68 / 40$		100,40	9p	850/40	$23 p$	01	${ }^{*}$		${ }_{120}$		
${ }_{80}^{8 C 149}$ 12p	$\bigcirc{ }^{\circ} \mathrm{Cb4}$	$33 p$			$748^{144-\mathrm{pin}} \mathrm{OIL}$	40	liv iw	25p	${ }^{6} 10 / 25$		100\%83	$13 p$	$1000 \cdot 10$	$14 p$	015	p	10/16	129		
BC157 13p	ORP^{17}	0 \%	${ }^{\text {in }} \mathrm{N} 914$	40	7400	26	${ }^{12 \mathrm{~V}} 400 \mathrm{mw}$	${ }^{15}$	10/63		$150 / 76$ $150 / 83$	${ }_{10}{ }^{4} \mathrm{p}$	${ }^{1000 / 18}$	$25 p$	022	stp	10/25	$15 p$		
BC158 13p	27×107	129			7402	$20 p$	12V 1.3W	30p	-15/40			13 p	1000/25	3	${ }_{0} 33$	7	15/6 3	$18 p$		
BC159 130	\bigcirc	${ }^{159}$	1 N 4002	7 p	7410	200	10V 400 mw	15p	${ }_{22}{ }^{15} 10$		220/10		1000/40	549	047	*	$22 / 18$	14 p		
	${ }_{\text {2N706 }}$	${ }_{13 p}^{23 p}$	in in 40005	8	7420 747	${ }_{175}^{208}$	taV 16 20V 400 mw	${ }_{130}^{20}$	222125	9	220/25	11p	2200/75	${ }_{719}^{45}$	$\bigcirc 88$	$1{ }^{10}$	47/63	40		
BC204 14p	${ }^{2 N 814}$	20	${ }^{114.007}$	19p	7473	44 p	20V 1.3 w	23 p	${ }^{324} 3.18$		220040	140	28000180	309	10 20 20	${ }_{24}{ }_{4}$	47715\%	14p		
BC209C ${ }^{\text {c }}$	2N1304	27	On91	7 p	7450	425	27 V 400 mw	13p	3316 33.40		${ }^{220163}$	${ }^{24}$	3300633	1319						
$\mathrm{BCR12L}^{\text {P }}$	${ }^{2} \mathbf{2} 22+9$	${ }^{27 p}$	OA200	p					33/50		47018	8	$3300 \cdot 100$	34						
BCa7a	2N2507	2p	$1 \mathrm{BP7}$	12	MFCEO40	\%	Thyristors		47110		$470 \cdot 10$	12 P	$4700 / 25$	759	PRIC		PECT			
BCr7	2 2 3054	40	18.150	170	SG3402*	100	1 A 400 V	7sp	47/25		470.25	1*p	$4700 \cdot 40$	138	PRES	${ }^{\text {a }}$	-E. D			
BFi7s mp	2N3702	120	ZIL (ZLW)	73p				\cdots							sub	A	A			
LIST Send S.A.E. with all U.K. requesta for free list giving futier details of PCBs, kits, and other components. Overaeas enquiries for list: Europe-send 20p. Other countries-send 30p.				POST AND HANDLING U.K. add 22p. Optional: Fee for compensation againat loss or damage in post (U.K., Eire \& C.I. only): 35p.				Overseas-will be charged extra, minimum charge 70p. Details of kit weighte, and postage rates will be sent with list. Eire and Channel Imies classify at oversees for poating purposes.						VAT Add 25% (or current rate if different) to full total of goods, poet and handling. Oversens-VAT does not currently apply.						

PHONOSONICS, DEPT. PE37, 25 KENTISH ROAD, BELVEDERE, KENT DA17 5BW
MAIL ORDER AND C.W.O. ONLY
DON'T FORGET VAT!

PC ETCHING KIT

Contains 110 ferric chlorlde. 100sa.in copper clad board, DALO etch-resist pen abrasive cleaner. etching dish and instructions £3.50

FERRIC CHLORIDE

Anhydrous technical quality in 1 lb double sealed packs. 11b 90p; 31b £1.80; 1016 £4-65; 10016 £35.

COMPUTER PANELS

arge quantity always avallable. 3ib assorted $£ 1 \cdot 60 ; 71 \mathrm{~b}$ £2-85; 561 b £ 45 . Pack with about 500 components inc. at leas 50 transistors E 1 . Pack with 10200 V 1 A SCR's +120 other parts $£ 1 \cdot 10$. Pack with 10 2N236\% etc. 50 p

7b BARGAIN PARCELS
hundreds of new components-resistors capacitors, pots, switches, + PC board with transistors and dos, also bads odds and

POWER SUPPLY UNIT
G101: Mains transiormer. 2A thermal cutout, bridge rect., will give 1.7 to 10.5 With data $51 \cdot 30$

TRANSISTOR PACKS

-arge quantity of mostly unmarked transistors just arrived-samples tested show 75% O.K. All types included-pnp non, plastic. metal, RF. AF. smail signa and power. At least 200 for $£ 1 \cdot 50 ; 500 £ 3$

All prices quoted include U.K post and VAT at 8% or 25% as appropriate. Surplus components and equipist enauiries.

GREENWELD(PE7)

51 Shirley Park Road, Southam Also callers at 21 Deptiord Broad way SE8 Tel 01-692 2009 and 38 Lower Addiscombe Road Croydon. Tel. 01-688 2950

BARGAIN			
12 BC 107	£1-20	25 1N4001	£1.20
14 BC 108	§1. 20	22 1N4002	£1.20
12 BC 109	¢1.20	20 1N4003	£1. 20
15 BC148	\$1.20	181 N4004	£1.20
13 BC149	¢1 20	16 1N4005	£1. 20
12 BC 157	\$1.20	14 1N4006	§1.20
12 BC 158	£1. 20	12 1N4007	¢1.20
12 BC 159	\&1. 20	401 N 4148	£1. 20
2 2N2646	[1. 20	3 2N3055	[1. 20
10 BC328	[1. 20	$12 \mathrm{BC548}$	¢1. 20
12 BF 194	\$1-20	12 BF 195	¢1. 20
7 BF173	¢1.20	5 BF181	¢. 20

2N3055s-FULL SPEC.
$10+35 \mathrm{p} ; 25+32 \mathrm{p} i 100+30 \mathrm{p}$
555 TIMERS
$3+60 \mathrm{p} ; 10+50 \mathrm{p} ; 25+46 \mathrm{p} ; 100+43 \mathrm{p}$. $8-P I N$ DIL 741 s
$10+30 \mathrm{p} ; 25+26 \mathrm{p} ; 100+24 \mathrm{p} ; 250+23 \mathrm{p}$ 7 SEGMENT LEDS
Standard DIL package, $0 \cdot 33 \mathrm{in}$, 4 for $£ 3$-60; 6 for $55 \cdot 20$
VEROBOARD
100 sq in. about 8 pieces assorted sizes and pitches \&1-15.
TRANSFORMERS
All mains primary, $6-0-6 \mathrm{~V}$ at 100 mA 85 p ; 9-0-9V 90p; $12-\mathrm{L-12V} 95 \mathrm{p} ; 6 \cdot 5-0-6.5$ a $500 \mathrm{~mA} £ 1 \cdot 50 ; 3,4,5,6,8,9,10,12,1518$, $15-0-15 \mathrm{~V}$ £2, $70 ; 2 \mathrm{~A}$ version $£ 3.90$.
EDGE CONNECTORS
0.1 in pitch. gold plated. 11 way 30 p :

RESISTORS and CAPACITORS 400 assorted carbon resistors $\mathbf{1 1}$ - 40 , 250 Hl -stabs, 1,2 and 5% §1.35; 100 wire-
wounds. 2-15W $£ 2,200$ ceramic. etc., caps $£ 1 \cdot 10 ; 100 \mathrm{C} 280$ polyesters. 0.01-0.47uF £1-30; 200 minlature electrolytics. but mostly unmarked, so only 51 - 30
MISCELLANEOUS
9 poie 6 -way Yaxiey switches 50 p SPCO 5A microswitch 12p; 15 assorted pots $75 \mathrm{p} ; 15$ assorted trimmers $\mathrm{£1}$; Plug in reiay, 2500 ก $4 \mathrm{c} / 0$ 25p; Crystal mic. insert 40p; $4 \times 80 \mathrm{~V} 10 \mathrm{~A}$ rects. on heat sink, ideal batt. charger $£ 1 \cdot 20 ;$ SN76660N £1. Good range of close tolerance
resistors-S.A.E. list.
 Phone: 023-063 542

INSTRUMENT ENGINEERING

High Street, Riseley, Bedford, MK44 1DX

A high performance front-end com
bining high gain with low noise factor (8 dB typ.)
Each unit is fully tested and aligned before leaving the factory PRICE 510.90 (includes VAT and P. \& P.)
Sole Agents: REEDHAMPTON LTD., 182-184 Addington Road, Selsdon, Surrey, CR2 8LB

Redand A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the felephone.

Voice control

Sir,-I recently built the "Voice Operated Fader", described in your December 1973 issue of Practical Electronics. The fader worked quite well apart from one disadvantage. This was that when the unit operated, the signal from the deck was attenuated too much causing an unacceptable interruption in the music.

What was needed was some form of control over the level to which the music was attenuated. My first attempt at providing this is shown in Fig. 1. Although this enabled the final voltage level to which C5 charged and thus the level of attenuation, to be set, the rate of attenuation was markedly reduced. This was due to the operating point being at the top of the charging curve to C5.

After some thought the circuit shown in Fig. 2 was evolved. This operates as follows: Suppose VR2 is set so that its slider is at 2 V and TR4 is turned on. TR4 collector will be at 0.8 V and diode D1 reversed biased. Hence, ICl pin 2 will also be at approximately 0.8 V . When TR4 turns off, capacitor C 5 charges through R7. When the voltage across C 5 reaches 0.6 V greater than VR2 slider, D1 begins to conduct. Further increase of the voltage across C5 has little effect on VR2 slider voltage due to its relatively lower impedance than R7 and R10 and therefore IC1 pin 2 remains, substantially at 2.6 V .
The circuit effectively clamps the rising voltage on IC1 pin 2 (attenuation control input) at any level 0.6 V higher than that set by VR2 slider without effecting the rate of rise and hence the rate of attenuation.

Because of the increase in current due to R11 and VR2, R9 will need to be re-calculated to maintain the 9 V supply rail.
J. H. Taylor,

Sunderland, Tyne \& Wear.

So what!

Sir,-As a relative newcomer to P.E., I am amazed at some of the comments given with regard to electronically produced or synthesised music. I agree that some of the results are fairly hideous but I feel that some people allow their musical appreciation and technical ability to run away with common reasoning.

I speak as a fairly experienced D.J., also as a fairly experienced electrician dealing with radio/radar and so on in the aircraft industry. So what, if a machine is capable of producing over n thousand combinations of notes, etc. and only 100 of them are being used? So what, if a group chooses to use a simple application of $£ 10,000$ worth of electronic noise producing equipment? Surely, the general public have a say in the music that gets thrown at them. If they like a particular sound the record sales will reflect this; if it's not liked then it's tough luck on all concerned.

I suggest that if some of your readers are not satisfied with electronic music as it is now, they should make their own recordings, but I, as a D.J. do not relish the thought of playing "Handels Second Logical Computation", performed on an OC21! No sir, the proof of music is in its adaptation, not its rigid application.
M. D. Wells, Hayling Island.

Fig. 1

Fig. 2
"Borus-calculafii "
Sir, -With reference to the article Mild \& Bitter-"The Pocket Calculator Bore" by A.P.S. in your May issue, may I shine a ray of hope by offering a partial solution to the problem.

Recent research in the north-west shows that there exists a mutation of Borus-calculatii-simplex known as Borus-calculatii-simplex-erroneous, a particularly virulent strain of which appears to originate from the Oxbridge area. As far as can be ascertained, the mutation arosethrough no fault of the Fish Fryer's Association-from the consumption of questionable chips.
The strain can be readily discerned. On being approached the challenge " $0-3 \cdot 5=\mathrm{K} 8+$ " is given. If the reply " $-2 \cdot 285714$ " is obtained, then the menace is of the normal strain. If however, the reply is " 0.6530612 " then the mutant strain has been identified and isolated.

Now for the annihilation of the pest. Leaving the constant of -3.5 still set, ask the menace to perform $8.0 \div, 9 \div$ and $9.0 \div$ and closely observe his face. There should be some reddening accompanied by bulging of the eyes and general emission of steam. It is of the essence to move quickly at this stage before the blood pressure has a chance to subside.

The next step is to present the sequence " $0-3=\mathrm{K} 36998784$ " which will give " 26972112 " instead of "-8990704". Tension will be mounting at this point so step back two paces and ask that 10^{-12} should be added to, or subtracted from, 10^{+50}. This final operation will almost certainly cause the simultaneous bursting of several major blood vessels, which, according to my calculator, should leave the world one (or is it minus six) Borus-calculatii-simplex-erroneous fewer.
R. Lane,

Glossop, Derbyshire.

Moving speech

Sir,-In your article "Loudspeaker Breakthrough", published in the May edition, the author comments that C. W. Rice and E. W. Kellogg invented what is now known as the "moving-coil" or dynamic speaker "almost forty years ago".

It was in fact ten years earliernearly Half A Century ago-in the mid-twenties (not the thirties), when the R.K. was offered to the public.

The original production models were all energised from a low-voltage source (a car accumulator!), and in a 1929 wireless catalogue now in our archives, they are advertised side by side with balanced-armature cone units, and even horn-speakers!

Douglas Byrne, G3KPO,
The Wireless Museum,
Shanklin, I.o.W.

Sixih Sense, or Nonsense

Sir-Experiments with plants were reported by Mr Patrovsky (Readout, January 1975), in which he was able to speed germination and growth rate using either a magnetic field, hand movements of water acted upon by a magnetic field. He felt that the mechanism concerned was "polarisation" of water.
There have been many experiments of this nature around the world and some have yielded inexplicable results. A non-technical account of the whole subject can be found in "The Secret Life of Plants" by Peter Tomkins and Christopher Bird; a fascinating book.

One such experiment involved irradiating vermiculite using some kind of electronic apparatus. The vermiculite, which is an entirely inactive substance, was mixed with the earth in which plants were grown, and resulted in some 186 per cent increase in weight of those with irradiated vermiculite over the rest. The whole system was handed over to a commercial firm which tried it out and achieved no increased weight in their plants whatever. Later the original experimenters themselves (the De La Warrs) repeated the firm's trials at their nurseries and again showed increased growth. Finally, they supplied interested nurserymen with two lots of vermiculite. One was irradiated, and so labelled, and the other not. Again, increased growth was found in the plants grown with the irradiated vermiculite. The interesting part of this last experiment was that the De La Warrs in fact did nothing at all to either lot of vermiculite.
If Mr Patrovsky were to repeat his experiments by getting some other person to do them, and supplied him with two lots of water, one "polarised" and the other plain, and so labelled, the same increase in growth would most probably be observed even if nothing at all had been done to either supply of water.
The mechanism of this form of communication with plants is entirely unknown and it does the advancement of knowledge in this sphere a disservice by trying to tie it to magnetism, polarisation, radiation or any other well established physical process. Anyone doing so will be assumed by scientists to be either a charlatan or a fool.
That plants take heed of some as yet inexplicable message delivered to them can also be shown by a change in electrical resistance between two points, say, on a leaf, and lie detectors have been used to show it. This involves passing a current through the leaf and is
therefore suspect. Similar results have been obtained, however, using an electrocardiograph, which is a recording millivoltmeter capable of showing changes of a millivolt or two. Mr Baily reported the same kind of result in "ESP" (April 1974) using a voltage controlled oscillator as an indicator.

When life first started on this planet there must have been a time when there was a little chunk of something different from every other little chunk because it was living. It absorbed energy and nourishment from its surroundings and became larger. A time came when its bulk, and therefore the ratio between mass and surface area, became too large, so it divided into two smaller chunks, to be able to absorb essential nourishment more easily. The two may well have remained in contact. The process must have repeated itself countless times with the formation later of separate chunks of living matter. It was obviously advantageous for each chunk to maintain some kind of communication with its neighbours, and it is reasonable to assume that such communication existed, and that every chunk of life in a group communicated with every other chunk. As the number of living organisms increased and different types started to appear, such universal communication would have become impossibly complex and no longer advantageous. So presumably links between separate organisms grew less generalised. Links between parts of the same organism became highly specialised and ultimately in animals, as distinct from vegetables, formed the nervous system.

If human imagination can accept the possibility of a perhaps fortuitous grouping of atoms into molecules of some primitive form of protein from which we all have developed, it should not stretch that imagination beyond its limit to accept as possible that the remnants of this primitive form of communication exist still between humans and plants, and that it can be demonstrated by those with green fingers and possibly by all of us to some extent. If between humans and plants, then it would seem even more likely that it still exists between human and human. Telephathists and ju-ju witch doctors at least, would agree.

Mr Baily (ESP, June 1974) has described experiments where efforts have been made by thought alone to influence an electronic device producing random readings. If the communication system, whatever its mechanism, depends upon there being living tissue at both the sending and receiving ends, then such experiments' are doomed to failure. This may not be so, in which case there is presumably another system or sense and the astonishing feats
of Uri Geller suggest that living tissue can have some kind of influence on inanimate material.
Any experiment to try to probe this almost entirely unexplained region should be as simple as possible. In Mr Russell's 'Probability Anomaly Detector" (PE, Feb. 1975), supposing someone is found who can influence it, and that physical effects like hand capacity, static charge and so on can be eliminated, as well of course as chicanery, then one would still not be able to tell which part of it was being influenced.

A simpler system is needed. Such a system exists in the form of crystal growth, which some of us will remember from early chemistry days. A crystal of copper sulphate suspended by a strand of glass fibre in a saturated copper sulphate solution gradually grows larger as the water evaporates. It would be a simple matter to set up two equal crystals under identical conditions and try by will alone to influence the growth of one of them. Nothing could be more inanimate than copper sulphate. Perhaps something involved in animal metabolism would be more likely to be influenced. Glucose, urea or even common salt are possibilities.

This will not appeal to those who feel that electronics ought to be somehow involved. It may not perhaps be generally known that a neon lamp supplied with a voltage on the verge of its striking voltage can be triggered on by light, Xrays, cosmic rays and, who knows, Uri Geller and some of you, the readers-always assuming you have read this far. A possible device consists of a battery of about 180 volts with a 50 kilohm potentiometer across it. The voltage between the slider and one end is applied via a $0.25-0.5$ megohm resistor to a 0.1 mf capacitor. The neon lamp, an Osram Osglim, is connected across the capacitor via a pair of headphones. The neon lamp is enclosed in a tin to avoid the effects of light and the potentiometer adjusted so that a few clicks are heard per minute in the headphones. These clicks are due to natural radiation.

A simple experiment might consist of setting the device to give an occasional click and at the start to press simultaneously a typewriter key and the start button of a stopwatch. At each click a letter would be typed and when the bell rang at the end of the line the watch would be stopped. If by willing the count rate to increase and decrease line by line alternately, a significant difference in time for alternate lines typed could be shown-then such a result would be utterly inexplicable but a basis for further experiment.
R. Parfitt,
Croydon.

NEW! SPACE AGE KITS
THE WORLD'S FIRST LED DIGITAL WRIST WATCH KIT
SINGLE I.C. WATCH PROVIDES HOURS/MINUTES/ SECONDS/DATE ON DEMAND-SAVES BATTERY POWER

ONLY $\left\{36 \cdot 50 \begin{array}{l}\text { Complete kit } \\ \text { less band }\end{array}\right.$

+ +1.25 Airmail postage. insurance. etc. THE LOWEST PRICE ANYWHERE

LOOK AT THESE AMAZING FEATURES!

* Easy 3 button operation.
* Easy to read LED display with anti-glare
* Displa
demand.
Crystal.
2 seconds or bled accuracy. adjustable to
* Incorporates the latest in solid state
technology.
* Quality nickel-sitver case included
- Detailed pictorial instructions supplied with every kit.
- All parts included. except band.
\# Batteries included at no extra cos
* Batteries last up to one full year.

NOW YOU CAN BUY his kil not recommended for beginners
NOW YOU CAN BUY THE SPACE AGE WATCH OF TOMORROW-TODAY' YOU don t have to pay $£ 150$ for this amazing technological miracle. Order yours direct from the Batteries last up to one full year and are widely available. SILENT OPERATION BRIGHT LED DISPLAY visible in any light. Readout is on an on-demand basis. conserves battery power. SPECIAL INTRODUCTORY OFFER-ORDEA YOURS NOW AND SAVE Only $£ 36 \cdot 50$ complete kit, less band, $+£ 1 \cdot 25$ Airmail postage and insurance. ALL OTHER COUNTRIES U.S. $\$ 9000$ postage and insurance paid.

DIRECT FROM THE U.S.

 MULTIMETER KITwith features found only on more expensive types NEW BRIGHT YELLOW 0.27In HIGH LED DISPLAY EASY TO READ
BATTERY OPERATED • AUTO POLARITY • AUTO ZERO D.C. VOLTS

1 mV to 600 V
A.C. VOLTS

1 mV to 300 V
OHMS
1Ω to $6 \mathrm{M} \Omega$

CURRENT

$1 \mu \mathrm{~A}$ to 2A d.c.

Complete kit less batteries and test teads $+£ 125 \mathrm{P}$ \& P and insurance
TECHNICAL specifications
OC VOLTS $1 \mathrm{mV}-800$ volts in throe ranges Accuracy better than 1% on 3 - and 30 -volt fanges 1% on 300 - and

AC CUARENT THA to 300 mA in three ringoss Accurtcy ind frequency same as tor e C voits
AESISTANENT in 106 MO in three rengen Accurcur 1%
 Atmal portage and insurance thatior ien and lesi
ALL OTHEA COUNTRIES US 510950 post paid
 automatic polarity aulomatic Messures ac ac volut doc currant ressasiance dapplay moicated by binkting Easy 10 roed 027 in hugh Ant owlare disalay tilter Aniph-impert CYCOLAC ${ }^{\text {r }}$ ense - High.Z input mssures greater accuracy oparatea N a ar Batlery oparated. Ni-Ced or
regular 14 - pentight
 $w=155 \mathrm{in}$ H) light weight Complete anay to assemble kit

The above prices do not include taxes leviable by a purchaser's country of residence
For your safety send all remittance via registered mail
TRADE ENQUIRIES WELCOMED • ALL COUNTRIES
Distributed for export exclusively by
Send payment with order (U.S. FUNDS only) BANK DRAFT or INTERNATIONAL MONEY ORDER (include receipt with order). Shipment made via first class airmail parcel within five days after receipt of order. Sorry no C.O.D.

New valuculator IIs: lowerpricesfiromThuriby

Increasing demand for the XE series high performance calculator chips has resulted in increases in scale allowing us to offer even better value for money.

Thurlby Electronics offer you the opportunity to build yourself an advanced electronic calculator at amazingly low cost using one of the XE series MOS single chip calculator I.C's.

Every IC is brand new, tested and guaranteed. It comes complete with full data, circuit diagrams and wiring details covering the use of different types of displays, describing how to construct both very simple and more elaborate keyboards, and explaining the operation of the calculator - both in normal calculations and in more complex operations.

Full money back refund.
Cash with order.
Postage and packing 25p per order.
Please add 8% VAT to total order value.

XE303 Calculator IC New XE303 series with memory and \%

- 5 functions, $+-x \div$ with automatic constant facility on all 4 plus live $\%$ key. - Full performance memory, store-recall-exchange, or automatic accumulating. - Full 8 digits with floating decimal point and algebraic logic
- Built-in clock generator, single power supply.
- Direct segment drive, suppression of non-significant zeros.

XE202 Calculator IC XEO2 sereses 4 tinction and donstant

- Full 8 digits with floating decimal point and algebraic logic
- Powerful keyed constant facility on all 4 functions
- Enormous exponent range: 10^{-20} to 10^{+79}
- Single strobe line facilitates very simple keyboard construction
- Direct segment drive, suppression of non-significant zeros

Display driving interface chips

TK9 9 digit driver IC suitable for use with XE303 series.
71058 digit driver IC suitable for use with XE202 series.
$95 p+$ VAT
$75 p+V A T$

Special magnified LED displays
9 digit suitable for use with XE303 series. $£ 3 \cdot 75$ + VAT 8 digit suitable for use with XE202 series. $£ 3 \cdot 25$ + VAT

To Thurlby Electronics Church Farm House Church End, Over Cambs. CB4 5NH

Please supply

for which I enclose cash/cheque/PO for \& including VAT \& postage

Name

Address —— — ـ

ALL

BSR HI-FI AUTOCHANGER STEREO \& MONO
Plapy $12^{*}, 10^{*}$ or 7° records.
Anto or Arto or Manual. A higb relistility with 12 months guarantee. AC $200 / 850 \mathrm{~V}$ Size $13!\times 11!$ in

Above motor board 3 in . Below motor board $2 \frac{1}{2} \mathrm{in}$. with stereo and mono xtal $£ 9.25$ Pont 45 p .

PORTABLE PLAYER CABINET Modern detign. Rexine covered, Large tront grille. Lilt-up Lid. Chrome fittingi. Appror. size $17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}$, $\begin{aligned} & \text { Few only in red and black rexine. } \\ & \text { Motor board cat for Garrard deck }\end{aligned} \leq 5.25$ Post 50p

R.C.S. DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop. Compatible cartridge. Baseplate. Size $1 \operatorname{lin}$
$200,250 \mathrm{~V}$ motor has a separate winding 14 golt to Cower small ampliffer. Three speeds. Plays atl records.

SOLID MAHOGANY PLINTH Poot 75p With P.V.C. Cover. Cut out for most B.S.R, or Garrard decks.
Bize $18!\times 14 ; \times 7$ in.

COMPLETE STEREO HI-FI SYSTEM
Two full size loudspeakers $13 ; \times 10 \times 3$ tin. Player unit overall size only $13!\times 10 \times 8$ in., 3 watts per channel. plays all records 33 r.p.m.. 45 r.D.m. Separate volame and tone

SPECIAL OFFER! SMITH'S CLOCKWORK 15 AMP TIME SWITCH 0 TO 60 MINUTES

Single pole two-way Surface mounting with fxing screws. Will replace existing wall twitch to rive light for return home.
karage, antomatic anti-burglar lights, etc. Variable knob. Turn on or ofl at full or intermediate settingt. Fully insulated. Makers' last list price $\mathbf{5 4 - 5 0}$. Brand new and tulty
gumranted. OUR PRICE $\mathbf{1 2 . 5 0}$ Poat 35p

BLANE ALUMINIUM CHASSIS. 18 s.w.g. $2 \frac{1}{3} \mathrm{in}$ gide: 6×4 in $45 p ; 8 \times 8 i n 53 p ; 10 \times 7 i n 65 p ; 12 \times 8$ in $85 p ;$

 16×6 in $34 \mathrm{p} ; 14 \times 9$ in $40 \mathrm{p} ; 12 \times 12 \mathrm{in} 47 \mathrm{p} ; 12 \times 8 \mathrm{in} 34 \mathrm{p} ;$ $1!$ inch DIAMETER WAVECHANGE SWITCHES. 45 pea . \& p. 2-way, or 2 p. 6 -way, or 3 p. 4-why.

BRITISH FM/VHF TUNING HEART 88 to 108 Mc/a British made. 2 Transistors ready aligned - requires 10.7 Mc/a l.F. Complete with tuning gang. Ceqnires Connections smpplied but some technical erperience
 SUTFABLE I.F. STRIP E4.95. DECODER $44 \cdot 05$

OUR PRICES INCLUDE V.A.T.
R.C.S. STEREO FM TUNER

BRITISH MADE

This completely cased mains powered Hi-Pi Tnner with brathed alumininm lacia is British € 30 made uaing the lateat circaitry.

Post 45p.
R,C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P,U.. Guitar, etc. Can be uted with Battery 9-12V or H.T. line $200-300 \mathrm{~V}$ d.c. operation. Size $1: \times 1 \frac{x^{2}}{}{ }^{2} \mathrm{in}$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$. 26 dB gain. For use with valve or transistor equipment. \quad F $1 / 45 \begin{aligned} & \text { Podt } \\ & \text { 10p }\end{aligned}$
R.C.S. POWER PACK KIT

12 VOLT, 750 mA . Complete with printed $\mathbf{6 3 \cdot 2 5}$ Post 12 VOLT 300 mA KIT, 239 VOLT 1 AMP KIT, 23.25.
 LOW VOLTAGE ELECTROLYTICS.
$1.2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$ $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 80 \mathrm{p}$.
$1000 \mathrm{~m} \mathrm{~F} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 4 \mathrm{p}$
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p}$; $50 \mathrm{~V} 57 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
$2600 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$; 50 V 65 p
$5000 \mathrm{mP} 8 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}$ CERAMIC 1 pF to $0.01 \mathrm{mP}, 4 \mathrm{p}$. Silver Mica 2 to 5000 pF , 4 D PAPER 350V-0.1 7p; $0.518 \mathrm{p} ; 1 \mathrm{mF} 15 \mathrm{p} ; 2 \mathrm{mP} 150 \mathrm{~V}$ 15p. $500 \mathrm{~V}-0.001$ to $0.054 \mathrm{p} ; 0.110 \mathrm{p} ; 0.258 \mathrm{p} ; 0.47 \mathrm{25p}$. TWIN GANG. "0-0" $208 \mathrm{pF}+178 \mathrm{pF}, 21.20 \mathrm{p}$
Slow motion drive $365 \mathrm{pF}+305 \mathrm{pF}$ with $25 \mathrm{pF}+25 \mathrm{pF}, 50 \mathrm{p}$ Twin 500pF 75p. Twin 410 pF 50p. Twin 120p 50 p GHORT WAVE SINGLE. $85 p \mathrm{~F}, 45 \mathrm{p}$; $50 \mathrm{pF}, 55 \mathrm{p}$. NEON PANEL INDICATORS 250V AC/DC. Amber 80 p . RESISTORS. $1 \mathrm{~W}, \frac{1}{1} \mathrm{~W}, 1 \mathrm{~W} .20 \% 1 \mathrm{p}: 2 \mathrm{~W}, 10 \mathrm{p}$. 10Ω to 10 K HIGH STABILITY. 1 W 2° o 10 ohms to 6 meg. 10 p Ditto $5^{\circ}{ }^{\circ}$. Preferred values 10 ohma to 10 meg., $4 p$
WIRE-WOUND RESISTOR8 5 watt, 10 watt, 15 watt, 10 ohms to 100K 10p each.
TAPE OSCILLATOR COIL Valve type 35p.
FERRITE ROD $8 \times$ in $20 \mathrm{p} ; 6 \times \operatorname{lin} 20 \mathrm{p} ; 3 \times \operatorname{in} 10 \mathrm{p}$.

\section*{MAINS TRANSFORMERS | ALL PoBT |
| :---: |
| 45 p oach |}

250-0-250 80mA. $6 \cdot 3 \mathrm{~V} 2$ amp $82 \cdot 90$ $250-0-95080 \mathrm{~mA}$. $6.3 \mathrm{~V} ~ 3.5 \mathrm{SA} 6.3 \mathrm{~V}$ 1A or 5 V 2A... 84.60 $350-0-350$
$300-0.300 \mathrm{~V}$
$120 \mathrm{~mA}, 6.3 \mathrm{~V}$
4 A
$\mathrm{~m} . \mathrm{T} . ;-6.8 \mathrm{~V}$
$\mathrm{RA} .$. MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 2 \mathrm{~A} 23 \times 24 \times \mathrm{in}$ 24.80
85.80
27.00
 GENERAL PURPOSE LOW VOLTAGE. Tapped outpats at 2 amp. 3,4, 5, 6, 8, $9,10,12,15,18$. R4 and 80 V 44.60 1 amp. 6, 8, 10, 18, 16, 18, 20, 24, 30, 36, 40, 48, 6084.60 2 amp. $8,8,10.12,16,18,20,24,30,36,40,48,60$ ef7.00 amp. $6.8,10,12,16,18,20,24,30,30,40,48,60211.25$
$10,30,40 \mathrm{~V} 2 \mathrm{mp} . ~ £ 2.50 ; ~ 20 \mathrm{~V} 3 \mathrm{mmp}, 22 \cdot 30.5,8,13 \mathrm{~V}, 5$

 $40 \mathrm{~V} 3 \mathrm{amp} .28 \cdot 75 ; 22-0-28 \mathrm{~V} 4 \mathrm{gmp}$. $23 \cdot 45 ; 16 \mathrm{~V}$ / amp .85 p ; 16 V 2 amp . 2R ; $5 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}, 16 \mathrm{~V} 1 \mathrm{gmg} .21 .90$ AUTO TRANSFORMERS. 115 V to 280 V or 230 V to 115 V 50W £4.60; 500W 88.70 ; 750W $817 \cdot 50$; 1000W CHARGER TRANSFORMERS. 200/250V, 4 amp E4.00. BATTERY CHARGERS. Ready built with leade and clipe 4 amp 24: 5 amp. 24.50.

RGER RECTIPIERE

MAINS ISOLATING TRANSFORMER
Primery $0-110-240 V$. Secondary 0.240 V 3 amp: 720 watts. Insulated terminals. Varninh impregnated. Folly

VOLUME CONTROLS
Long apindles. Midget Size K. obma to \& Mez. LOG or LIN. L/S 20p. D.P. 35p. STEREO L/S 55p. D.P. 35p. Edge 5K. 8.P.Transiator 85p.

80 hm Coax 5p rd.
BRITISH AERIALITE AERAXIAL-AIR BPACED FRIMGELOW YOSS Ideal 625 and colour. 10 p yd
Wire Wound controls 1 itin diam. 3 W att. 10 ohms to 100 K Britith Made with long spindlet lin dia. 85p each.

KIM D.P.
RADIO COMPONENT
Illustrated Brochure, Radio Books Component Lists 10 p Written guarantee.
 $66.75 \begin{aligned} & \text { THE PARR, Pont 45p. } \\ & \text { (Available } \\ & \text { Weparately. }\end{aligned}$ Wooler $84 \cdot 25$; Tweeter \&1.80)
Comprining a fine example of a Wooter 08×6 in with a masnivo Coramic Magnet, 440z Gausa 18,000 lines. midaminan and top cene centre to improve Tweeter 3hin aquare hat so special lishtweight paper cone and magnet fux 10,000 lines. Cromover condonser and Iall instructions supplied.
Impedance Standard 8 ohma
Haximum power 12 watt
Uselul Remponse $\quad 85$ to $18,000 \mathrm{cps}$ Baz Resonance 45 cps UITABLE ENCLOSURE $20 \times 13 \times 12 \mathrm{in}$.

$\notin 14$ Poat 75p

ANOTHER R.C.S. BARGAIN!

ELAC $9 \times 5 \mathrm{in}$. HI-FI SPEAKER TYPE 59RM
This ismous unit now a vailable, 10 watts, 8 ohm. Price $\mathbf{E B}^{-45}{ }_{30 \mathrm{p}}^{\text {Post }}$

$8^{\prime \prime}$ or $10^{\prime \prime} \times 6^{\prime \prime}$ ELAC HI-FI SPEAKER

Dual cone platicied roll arur round. Large ceramic magnet. $50-16,000 \mathrm{cps}$. Bass resonance
55 cps .8 ohm impedance. 55 cps .8 ohm impedance.
10 watt.
10 in round 55 .

TEAK VENEER HI-FI SPEAKER CABINETS Fluted Wood Fronts
MODEL "A", $20 \times 18 \times 1$ in For 12 in in. dias. or $\quad £ \mid 4^{\text {Poant }}$ MODEL "B". $16 \times 10 \times 7 \mathrm{in}$ For $18 \times 8 \mathrm{in}$. or $\mathrm{E} 7.60{ }^{\text {Pott }}$ in. apeaki MODEL "4C", $80 \times 20 \times 12 \mathrm{in}$. Reflex cabinet will accept $1-1$ qin. bakis unit, $1-5 i n$. mid rapgo, $1-8 \mathrm{in}$. tront \quad E21.50 carr.
LOUDSPEAKER CABLIEET

GOODMANS CONE TWEETER

 31in. diam. 18,000 C.P.s. 25 WATTS 8 a $\quad £ 3 \cdot 60$BABGAIN CAEAEEL
MIKER. Add masics
fighlighte and sound offects
to recordings. Will mix
ficrophone, records, tape
and tuner with separate
controlstinto aingle ontpat.
9 volt battery
operated.
5.20

8TEREO VERBION OF ABOVE 26.85.
BARGAIN 3 WATT AMPLIPIER. 4 Tranaistor $\mathbf{~} \mathbf{~ P} 50$ bage controle. 18 volt battery operated. Mains Supply $83 \cdot 45$.
THE "IMSTANT" BULK TAPE
ERASER \& HEAD DEMAGNETIBER.
vitable for ceswettes, and all sizes of ape reel. A.C. meing 2001200 V .
£4.35 ${ }_{20 \mathrm{p}}^{\text {Pont }}$

WAFER HEATING ELEMENTS

OFFERING 1001 U8ES for overy type of hesting and drying applications in the home, garage, greenhouse factory (available in manufacturing quantities) Approx gise 107×8; \times hin. Operating voltege 200/250V. a.c. 250 Watts approx. Printed circait eloment enclosed in asbentos fitted with connecting wires. Completely flerible providing safe Black heat. British-made for use in photocopiors and print drying equipment.
for Feating Pads Pood wermer experimenters. Suitable ior Heating Pad, food Warmers, convector Heaterg, etc. etc., to make efficient clotaes dryers, towel rails-ideal lor airing cupboards. Idesl for anti-front device or the garage -preventing irozen radiators or acting as oil tump haster. Une in greenhouse for seed raising and plant protection. Invaluablo sid for bird houses, incubstors, eic., etc. Can be used in ceriea for lower hest. Or in parallel for higher
heat applications. heat epplication
ONLY 40, EACH (FOUR FOR $£ 1.50$)
ALL P08T PAID-Discounts Ior quantity.
BAKER MAJOR $1 \mathbf{2}^{\prime \prime}$ \& 1 1-50

$30-14,500 \mathrm{c} / \mathrm{s}, 18 \mathrm{in}$. double cone, woofer and twetter cone ogether with a BAEER ceramic magnet antembly heving a fux density of 14.000 gause and a total flux of 145,000 Waxwells. Hass resonance $40 \mathrm{c} / \mathrm{s}$ Rated 20 15 ohmin mut be stated.

Module kit, $30-17,000 \mathrm{c} / \mathrm{s}$ rith tweeter, crossover, basio and instractions. ≤ 14.50
Please state 3 or 8 or 15 ohms.

BAKER SPEAKERS "BIG SOUND"

Robuatily constructed to atand up to long periods of olectronic power Useifal responve $80-18,000 \mathrm{cpa}$ Bass Resonance 55 cpa .
GROUP " 25 "
12in 25 watt
3,8 or 15 ohms.
GROUP "35"
18in 85 watt
3,8 or 15 ohme.

GROUP " 50 "
15 in .50 watt
8 or 15 ohms.

Post 50p

GROUP "50/12"

and
8 ohms or 15 ohms
MAJOR 100 WATT ALL PURPOSE TRANSISTOR AMPLIFIER
All purpose transistorized Ides! for Groaps, Disco snd P.A.
4 inputs apeech and music. 4 way miring. Ontput $8 / 15$ ohm a.c. Mai
 Guaranteed. Detaila 8.A.E.
DE-LUKE MODEL IN WOOD CABINET. BLACK. 809.
NEW MODEL MAJOR 50 WATT 4 inputs, 2 way mising, 249'05. Carr. s1. Ideal disco amp.

QUALITY LOUDSPEAKER ENCLOSURE

Teak veneered 3 in thick wood ca binet. Sise $181 \mathrm{in} \times 181$ in $\times 81 \mathrm{in}$. Weight 281b. This cabinet features a wide compartment for moanting Tweetera or Mid-Range Horn. The fully sealed
bass compartment is cut out 10 r
61 in wooter 88.50 Carr 85 R Rorewood verion 80.50 Carr. 85p. Banle could be cut for larger speaker.

$$
\begin{aligned}
& \text { SPECIAL OFFER } \\
& 100 \text { Ohm } 20 \text { watt Rheostat } 2 \text { ? in dia. Coramic Former. }
\end{aligned}
$$ screw Terminals $\mathfrak{\text { fin }}$, dia, apindle.

R.C.S. STEREO DECODER

British made. Ready aligned and tested. complete $\mathbf{~} 4.95$ with instructions, Bize 8 in $\times 2$ in

WEYRAD COILS

P50/8CC	$40 p$	RA2W	$85 p$
P50/1AC	$60 p$	OPT1	$65 p$
P50/3CC	$40 p$	LPDT4	$65 p$
PCA1	$85 p$	Twingang	81.20

DELUXE 4 POLE MOTOR
1,400 r.p.m. reversible 42 Watt , nindie 1 in $\times 7 / 32 i n$, sise $3 i \operatorname{in} \times$ 3in. Ag illantrated. 240V e.c. mains.
E.M.I. GRAM MOTOR

1207 or 240 V a.c. 2,400 rpm. 2 -pole
70 mA , Bize $2 t \times 24 \times 24 \mathrm{in}$
12.60

Pont 25p E1.25
Post 25p

BAKER HI-FI SPEAKERS HIGH QUALITY-BRITISH MADE REGENT
12in. 15 watts
An inerpensive unit for the beginner in high fidelity and lor general purposes. May be uted to improve any Redio, Amplifer, Et-Fi or Television receiver.
Bras Resonance 19000 55pa Plux Density 12,000 gaus Jer 8 or 15 abm

£9.50

DE-LUXE Mk II

12in. 15 watts
Especially denigned to provido lull range reprodnction at an aconomical cont. suitable for nse with any high Adelity cyatem. Built-in concentric tweoter cone.
Bast Benonance $14,00080 \mathrm{cpl}$ $\begin{array}{ll}\text { Flux Denity } & 14,000 \text { gavas }\end{array}$ 8 or 15 ohm model.
14 E 5

SUPERB

I2in. 20 watts
A high quality loudapeaker, its remarkable low cone resonance onsuros clear beprod Fitted with a epectal copper drive and concentric tweeter cone reaulting in Irull range reproduction with remarkable emieiency in the upper register. Basa Resonance Plax Density 18,500 25cps Urelal respone 90,00 gaus 8 or 15 ohms modeln.
$\notin 17$ Post

AUDITORIUM
I2in. 25 watts
A fall range reproducer tor high power, Electric Guitars, public address, multi-apeaker systems, efectric organs, Ideal for $\mathrm{Ei}-\mathrm{Fi}$ and Discothequer.
Pasini Dentityce 15000 35cps Plux Dentity $\quad 15,000$ ganal seinl responat $25-16,000$ ept

£ 16

AUDITORIUM

15 in 35 watts

A high wattage loudapeazer of exceptional quality with a level response to sbove $8,000 \mathrm{cpa}$. Idesl for Pablic Address, Discotheques, Electronic initruments and the Bame Resonance
Flux Dennity 15,000 gance Usefal response $20-14,000 \mathrm{cps}$ 8 or 15 ohms models.
£22 Poat
50 p

Hj-Fi Enclosure Manmal containing plans, denigns, crossover data and cubic tables. 68p.

OPEN 9.6 p.m. WEDNESDAYS 9-1 p.m., SATURDAYS 9-5 p.m. (Closed for Lunch 1.I5-2.30)

SPECIALISTS 337 whitehorse road

vat at the current rate must be added to all orders Send 25 p for COMPLETE CATALOGUE, relundable upon first order all odr merchandise is fully guaranteed Subiect to manufacturers' increase and a vailability

Riversdale Electronics

 Mall Order Department PE7 P.O.-Box 470. Manchester M60 4BU
CJL PRICES INCLUDE P\&P AND V.A.T

BIB HI-FI ACCESSORIES

DCASSETTE TAPE RECORDER CARE KIT DCASSETTE SPLICING AND EDITING KIT DHI-FI STEREO TEST CASSETTE
T.
-
NER COMPONENT PACKS
DCAPACITORS-Electrolytic-Tubular Submin-Mixed EO. 50 DCAPACITORS-P.C.B. Polyester-Mixed Preferred 50.50 DRESISTORS-Carbon Film-Mixed Preferred. ixed E0.50 DHAND DRILL, (Leytool) compact precision drill 5/16"chuck. Gears totally enclosed. S/L bearings INTEGRATED CIRCUITS
$\square A U D I O$ POWER AMPLIFIER (National) LM380 £1.00 DA.M.RADIO RECEIVER (RCA) -F.M.STEREO DECODER (Motorola) -TIMER (Signetics)

- VOLTAGE REGULATOR (Fairchild) DD.I.L.SOCKETS (PK of 3) 8 or 14 pin E0. 50 DKEYNECTOR, rapid connect to mains-single/multipie leads. Built-in piano switches, neon \& 13A fuse DLOCKFLEX RULE, (Aabone Chesterman), $3 \mathrm{~m} / 1$ oft precision pocket rule. Easy to read, $13 \mathrm{~mm} / \frac{1}{2}$ "wide steel tape. Blade length lockable-power return. A superb rule
GMICROPHONE, lightweight dynamic, remote start stop, 200 ohms, $100-10 \mathrm{kHz}, 6 \mathrm{mV}$ average output -SIGNAL INJECTOR, audio through video signals, excellent for servicing amplifiers, radio \& tv \square SOLDERING IRON, 25 WATT, (Antex) $\times 25,240 \mathrm{~V}$, Very low leakage, $1 / 8^{\prime \prime}$ long lifebit (Interchangeable) $£ 2.05$ $\square 3 / 32$ "bit $£ 0.47 \square 3 / 16$ "bit $\mathbb{C O} .47 \square$ Element £1. 10 D STAND, ST3. High grade base, chrome plated
spring, sponges and accomodation for spare bits. £1.00

CJJ CJL LTD. P.O. BOX 34,GANTERBURY, CTI IYT

DIGITAL CLOCK KITS SPECIAL OFFER £2 OFF

USUAL PRICE (COMPLETE KIT) exclusive to p.e. READERS

QUICK TO BUILD-NO KNOWLEDGE OF ELECTRONICS REQUIRED

LATEST 1975 DESIGN-ONLY £14
 (including P. \& P., VAT, Circuit) COMPARE OUR PRICES

1 MOS Clock Chip 12-24 hr option $\stackrel{\text { £ }}{4.00}$

$40.63^{\prime \prime}$ LED Displays (latest HI BRI Type).
$5 \cdot 00$

1 Segment Driver Chip 0.30

1 Pack Resistors, Caps., Transistors, Switch, etc.
1 Double Sided Glass Fibre P.C. Board $1 \cdot 20$ 1.00

1 Double-wound Mains Transformer 1.00

1 Circuit/Assembly Manual
1 Futuristically-styled Case (state colour)-Yellow. Orange, Red, Black. White, Mauve. Green, Blue
C.W.O. to

Pulse Electronics Ltd

Dept. PE1, 202 Shefford Road, Clifton, Beds.
Tel. Hitchin (0462) 813453

RELAYS SIEMENS, PLESSEY, Et
MINIATURE RELAYS Col. (1)
Coil ohm Col. (2) Working C.e. 3
Contacts
Col Col. (4)
Price $\mathrm{HD}=$ Heavy dury

 OPEN TYPEI amp (panel mount) $\& 10.00$

L.T. TRANSFORMERS

$0,6,12$ Volt at 10 amp . $\quad \mathbf{6 5} \mathbf{6 0}$. Post $70 \mathrm{D}_{\mathrm{p}}$

 $0,4,6,24,32$ Volt at 10 amp . 67.90 . Post 70 p $\begin{array}{ll}0,6,12 \text { Volt at } 20 \mathrm{amp} . & \text { 69.90. Post } 70 \mathrm{p} . \\ 0,1124 \text {. Post } 70 \mathrm{p}\end{array}$ $0,6,24$ Vit at 10 amp. \quad £9.20. Post 70p $0,6,12,17,18,20$ Volt at 20 amp . $10 \cdot 40$. Post 70 p enquiries.
AUTO TRANSFORMERS

Step up step down

$0-115 / 200 / 220 / 240$ Volts. 75 watt $\mathbf{2} \mathbf{6 4}$. Pose 40 p. 150 watt 63.50 . Post $50 p$. 300 watt $\mathrm{E} 6 \cdot 20$. Post 60p. 500 watt $\mathbf{6 9 . 2 0 .}$ Post 75p. 1000 watt F 12.00.
REVERSIBLE MOTOR A.E.I. To h.p. reversible motor $100 /$ 120 volt A.C. $50 / 60$ cycle $1400 / 1680$
r.p.m. Flange fixing length $61^{\prime \prime}$ shaft $I^{\prime \prime} \times$ s $^{\prime \prime}$ ". Brand
New. Price $€ 2.50$. Post 50 . Suit-
 able $110 / 240 \mathrm{v}$. I50 watt Auto Transformer $\mathbf{1 3} 50$ Post 50p. (Post for both items together 75 p .) 230/240 VOLT A.C. MINIATURE MOTOR 20 R.P.M. Price \& L 1 . Post 15p BODINE TYPE N.C.I. GEARED MOTOR
(Type J) 71 r.p.m, torque 10 lb . in.
Reversible Il70th h.p. cycle 0.38 amp. (Type 2) 28 r.p.m. torque 20 Th. in Reversible $1 / 80$ th h.p. 50 cycle 0.28 amp The above two precision made U.S.A. motors ar IISV A.C. Supplied complete with transformer for $\mathbf{2 3 0 / 2 4 0 V}$ A.C.input. 25 . Post 65 p or less trans Price, either type 66.25
former 63.75 . Post 50 p
"FRACMO' 240 VOLT A.C 50 cycle SINGLE PHASE GEARED MOTOR
 Fitted with mounting feet
Brand New. $£ 14$. Post $£ 1.00$ (Total price inct VAT £16.20).

PUSH BUTTON
MICRO SWITCH. 5 amp. c/o
contacts. NEW 20 15p. (Min. order 20). Ditto press to break, 20 for $\mathbf{C l} 1.50$. Post $15 p$.

SUB-MINIATURE REED RELAY $3-9 V$ d.c. 250 ohm Coil
 Ol for six fl 50 for ten ont (ix.) for six, 61.50 for ten. Post 15p. (Min. order

LATCHING RELAY

Twin latching relay, "flip-flop" $2 \mathrm{c} / \mathrm{o}$
each relay. Mains contacts. 115 V
A.C. or 50 V D.C. operation. 240 V \qquad

TRIAC

Raytheon Tag symmetrical Triac. Type TAG.
$250 / 500 \mathrm{~V}, 10$ amp, 500 p.i.y. Glass passivated plastic eriac. Swiss precision product for long term
 application sheet.) Suitable Diac 18p.

230/250 VOLT A.C. SOLENOID Approximately $1 \frac{1}{2} l \mathrm{~b}$ pull. Size of feet $1 \frac{5}{3} " \times 1$ rice Ll

24 VOLT DC SOLENOIDS

UNIT containing I heavy duty solenoid approx. 251b pull 1 inch travel. Two x approx. Ilb pull $\frac{1}{\frac{1}{2}}$ inch 24 volt d.c., I heavy duty single make relay. Price 62.50. Post 75 p. ABSOLUTE BARGAIN.

COIN MECHANISM (Ex London Transport)
Unit containing, selector mechanism for 1p, 2p and hopper. 24 volt D.C. Precision buitt to high stand

CENTRIFUGAL BLOWER but with
Post 50 .

Mig. Airflow Developments Lid Mig. Airflow Developments Lid.
Precision continuously rated, smooth running. $230 / 240 \mathrm{~V}$ a.c. motor 80 c.f.m. As illustration
e
m.

All Mail Orders-Callers-Ample Parking
Dept. PE7, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560
 Showroom open Mon.-Fri.

MOTOR

MOTOR

Machine cut gear train, giving final speed of 2 r.p.m. With cam driving ${ }^{3}$ sub-miniature micro12 mm long 6 mm dia. Built to $P O$ spec., in heavy metal hinged case. 63.75 . Post 40p.
'CARTER' 230 VOLT A.C. GEARED MOTOR
$230 / 240 \mathrm{~V}$ A.C., smooth, powerful,
continuously rated. Two r.p.m. or Ilo r.p.m. Either type

Superior Quality Precision Made NEW POWER RHEOSTATS
New ceramic construction, vitreous
enamel embedded winding, heavy enamel embedded winding, heavy
 C4.50. Post 50p

POWER RHEOSTATS : : !

 rated.25 WATT $10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / 1-5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ ohm. El.70. Post 15 P.
50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}$ ohm 62.10. Post 20p. 100 WATT I $110 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / \mathrm{l} \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ $3.5 \mathrm{k} / 5 \mathrm{k}$ ohm 63.30. Post 25p
Black Silver, Skirted knob calibrated in Nos. I$1 \frac{1}{3} i n . d i a, ~ b r a s s$ bush. Ideal for above 22 p each.

VAT

VAT AT THE APPROPRIATE RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE.
SERVICE
TRADING CO

STROBE
 STROBE! STROBE

Build a Strobe Unit, using the latest type Xenon
white light flash tube. Solid state timing and Eriggering circuit. URO 2 TRO A.c. operation. STOCK. PRICES FROM 68.30 to 622 .
5.A.E. for details.
400 Wate. MereuLACK LIGHT
Powerful. Mercury vapour ultra violet lamp Price of matched ballast and bulb $\in 21$ Post $£ 1$. Spare bulb $£ 8$. Post 40 p .
BLACK LIGHT FLUORESCENT U.V. TUBES
4 ft 40 watt, $65 \cdot 50$ (callers only).
2 ft 20 watt, 44.25 . Post 40 p . (For use in
standard bi-pin. MINI. 12 in 8 watt, $£ 1.60$ Post 25p. 9in 6 watt, $\mathbb{1} 1.30$. Post 25p 12 in tube. $\mathbf{1} 1.70$. Post 25p. (9 in and 12 in

METERS NEW

90 mm diameter
Yype 65C5. 2A D.C. MIC. 5AD.C.M/C 10ADC Ype 62T2. IA M/ 20 A A C. M/I; 300 V A.C M/I: ALL. ABOVE R2.50. Post 20p;
Type 65 L 5 . 300 V A.C. R/M/C; $\mathbf{2} 2.75$. Post 20p
$64 \mathrm{~mm} \times 56 \mathrm{~mm}$ RECTANGULAR
Type 85CI. 5A D.C. M/C; 20A D.C. M/C.
Type 85LI. 5A A.C. R/M/C; $10 A$ A.C. R/M/C; 300 V
Type $8511.5 A$ A.C. R/M/C; $10 A$ A
A.C. R/M/C: All at 63. Post 20p.

ROTARY VACUUM AIR PUMP AND

 COMPRESSOR
${ }_{1}^{1}$ h.p. moror, $50 / 60$ cycle, $2875 / 3450$ r.p.m., 20 in vacuum, comp. I 25
c.f.m., 10 p.s.i. (approx. figures). New unused surplus stock. Supplie with electrical connection data. FRACTION OF 50 watr auto 50 watt auto transformer 63.50. Post 50p. (Both

PROGRAMME TIMERS

$230 / 240 \mathrm{~V}$ a.c. 15 r.p.m. Motors Each cam operates a c/o micro animated displays. etc. Ex equipmen ested.
2 cam
2 cam model. $\mathbf{E 2 . 0 0}$ post 35 p
$\begin{array}{ll}4 \mathrm{cam} \text { model. } \mathrm{E2} 50 \text { post } 35 \mathrm{p} \\ \mathrm{B} \text { cam model. } & \text { C4.75 post } 40 \mathrm{p}\end{array}$
cam model, each cam fully ap

A.C. MAINS TIMER UNIT

Based on an electric clock, with
25 amp . single pole switch, which can be preser for any period up to 12 hrs . ahead to switch on for any length
of time, from 10 mins. to of time, from 10 mins. to
6 hrs. then switch off. An additional 60 min . audible

lectricBlankets, etc. Attractive satin copper finish. size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}$. Price E2. Post 40 p . (Total incl. VAT and Post $£ 2 \cdot 59$).
 600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. Will control up to 600 W of lizhting
except fluorescent at mains voltage. Complete with simple instructions.
E2.75. Post 250 .

NICKEL CADMIUM BATTERY

1.5 V . 15 A . Size 154 mm high, 76 mm wide, 29 mm
deep. Price $£ 1.50$. Post 50 p deep. Price $\mathbb{1} 1 \cdot 50$. Post 50 p.
'STC' 6" RED ALARM BELL
$24 / 48$ volt $D C$. Brand New.
'GENTS' 6" ALARM BELL
200/250V AC/DC. Brand New. Price 65. Post 75p.
INSULATION TESTERS ANEW! Test to I.E.E. Spec. Rugged metal construction, suitable for bench or
field work, constant speed clutch. Size L. 8 in, W. 4 in, H. 6 in, weight 61 b . $500 \mathrm{~V}, 500$ megohms, $£ 30$. Post 80 p

9 LITTLE NEWPORT STREET
LONDON WC2H 7JJ
Phone 01-437 0576

	MINISONIC COMPONENT KITSPRICES ARE DOWN	
MINISONIC P.C.E.S	$V . C . O$. (2 required) \quad ¢3.07	
	V C.F.-(1 required) \quad £4.24	
EA008a (Main	ES/V.C.A. (2 required) \quad ¢4.98	
	Voltage Ref.	
	Ring. Mod. (1 required) $£ 3.62$	
EA008b (Power	Noise Gen. (1 required) \quad £1.64	
EA008b (Power	Kbd. Control (1 required)	
Stabilisation) £1.	HF Osc and Det.	
Post tree	Power Amps \quad £2-41	
	All above prices are for single. kits of each type and include P. \& P. Full details are included in lists.	
CASSETTES NEW	M/scellaneous liems	
	5 way 180° DIN sockets 27p	
SYMBIOSIS'	5 way 180° DIN plugs $\quad 34 \mathrm{p}$	
	Battery connectors 9p/pair	
a companion tape to Malcolm Pointons latest article on using the Minisonlc. INTRODUCING the minisonic".	Hook up wire, 36 colours.	
	Min. DPDT toggle switch $\quad £ 1.20$	
	SAVE BY PURCHASING A COM-	
	PLETE SET OF KITS AS DETAILED	
Each tape $£ 1 \cdot 06$, U.K post free. One of each for $£ 1$ - 86 .	TOGETHER WITH SWITCH, BATTERY CONNECTORS, HOOK-UP	
	Price £38. U.K. post free.	
TERMS: MAIL ORDER ONLY. C.W.O. Cheques or P.O.'s payable to Eaton Audio. Orders over 15 free of P. \& P. Otherwise please add $10 p$ in the $£ 1$.		

BYHEDD

The company with the largest range of full spec. devices with new prices from 1st May

DISPLAYS

DL707
DL704
DL701
DL747
DL750
DL750
DL 746
3015 F
3015 F
3017F
RDS 1
RDM2
DG12

CLOCK CHIPS

Othe; chips and displays usually available, ring for details or S.A.E for catalogue and prices
VAT on clocks, clock chips and displays still 8%
We advise the use of sockets for all IC. s, 24/28/40-pin £1.

BYWOOD ELECTRONICS

181 Ebberns Road, Hemei Hempstead, Herts., HP3 9RD
Terms C.W.O. Access, Barclaycard (quote card No.).
All prices on this advert exclude VAT
Tel. 044262757 $\varepsilon 5.80$
$\varepsilon 5.18$ M £4.44* MM5316
£9.25 MK50250 55.60* HEEC2 CT7001 CT7002 CT7003 $£ 8.50$
$\varepsilon 7.30$ CT7003 $\varepsilon 7 \cdot 30^{*}$
$\varepsilon 7 \cdot 30$ 27.30
ع 7.30 CT6002 £15.00 ع10.50 in MH

ASTRO IGNITION SYSTEM

Complete Kit of Parts for this well proven Transistorised lgnition System. [9.50 Ready-bultt with only 2 connections to alter, E12.50
Thousands of these units are in use today and have been proven to give the following advantages: fuel economy, laster acceleration, exelient cold stapt. smoother running, no contact-breaker burning and many more.
Money back guarantee If you more not atiafled. Please state whether positive or negative earth.
Postage included in above prices but add V.A.T at a\%

Spring Bank Road, West Park, Chestertield, Derbyshire

WILMSLOW AUDIO

THE Firm for speakers!

SPEAKERS

Baker Group 253, 8 or 15 ohm
Baker Group 35 3, 8 or 15 hm
Baker Group $50 / 128$ or 15 ohm
Baker Deluxe 12 in d/cone
Baker Malor 12 in d/cone
Baker Regent
Baker Superb
aker Auditorium 12
Celestion MF1000, 8 or 15 ohm
elestion G12M 8 or 15
Celestion G12H 8 or 15 ohm
Celestion G15C 8 or 15 ohm
Celestion G18C 8 or 15 ohm
EMI $13 \ln \times 8$ in $150 \mathrm{~d} / \mathrm{c} 8$ ohm
EMI $131 \mathrm{n} \times 8$ in type 3508 or 15 ohm
EMI 3 in \times sin 20 W base
EMI Sin 14A/7030 mid range 8 ohm
EM1 2t|n tweeter 97492AT
Eagle DT33 30W tweeter
Eagle HT15 horn tweeter
Eagis CT5 cone tweeter
Eagle CT10 tweeter 8 or 16 ohm
Eagle MHT10 horn iweeter
Eagle crossover CN23. CN28. CN216
Eagle FR4
Eagle FR65
Elac $9 \times 559 R M 10915$ ohm, 59RM 114.8 ohm
Elac 6t in 6RM171 d/e roll surr
Elac 6tin $6 \mathrm{RM} 220 \mathrm{~d} /$ cone
Elac 6fin 8 RM220 c/c
Elac 10 in d/cone 10 RM 2398 ohm
Elac Bin BCS 1753 ohm
Fane Pop 15W 12 in
Fane Pop 25T 30W 12 in
Fane Pod 50W 12in
Fane Pop 55 60W 121
Fane Pop 6 ow 15 in
Fane Pop toow 18 in
Fane Crascenoo 12A 100W 12in
Fane Crescendo 12B bass Fane Crescendo 15in 100 W Fane Crescendo 18in 150 W Fane B01T 8 in dic roll sur Fane 807 T sin d/c roll surr Fane 808 P sin ac
Fane 701 iwin ribbon horn Fane 910 horn
Goodmans 8P 8 in 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm

Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm Goodmans Audiomar 12AX loow Goodmans Audiomax Goodmans 15 P 8 or 15 ohm Goodmans 18P 8 or 15 ohm
Goodmans Hitax 750
Goodmans Axent 100 tweeter
Goodmans Audiom 10012 in
Goodmans Axiom 402 12in
Goodmans Twinaxlom 8
Goodmans Twinaxlom 10
Kef T15
Kef B1to
Kef B200
Kef B139
Kef ON8
Kef ON 12
Kef ON13
STC 4001G Super Tweeter
2 in 64 ohm . 70 mm 80 ohm . 70 mm 8 ohm
$2+$ in 75 ohm
$81 \mathrm{n} \times 5$ in 3 or 8 ohm
$10 \mathrm{in} \times 6$ in 3.8 or 15 ohm

SPEAKER KITS

Baker Major Module
Decca London Ribbon Horn
Oecca London Crossover
Helme XLK25
Helme XLK25
Helme XLK 30
Helme XLK50
Jordan Watts Module
Kefkit 1
Kefkit 3
Peerless Dome Tweeter
Peerless Dome
Radford MOS
Radford FN 12
Richard Allan Twinkit
Richard Allan Triple 8
Richard Allan Triple 12
Richard Allan Super Triple
Super 8 RS/DO
Wharfedale Giendale 3 k Wharfedale Dovedale 3 kil

Baker. Linear and Eagle PA disco amplifiers in stock Send stamp for list

FREE with Speaker Orders over £7

All units guaranteed new and pertect. Prompt despatch. Carriage and packing: speakers 38peach, 12in and up 50 peach, speaker kits 75 p each ($£ \uparrow \cdot 50$ pair), iweeters and crossovers 25 p

Loudspeakers: Swan Works. Bank Square, Wilmslow, Cheshire, SK9 1HF Discount Radio. PA. Hi-Fi: 10 Swan Street, Wilmslow

	$4 y+$ Cassettes			The best buy!	
	Agfa Low Nolse Cassettes AT. LESS THAN HALF PRICE!				
	AGFA HIGHDYNAMIC SUPER	$\begin{gathered} c 50 \\ \substack{c 50 \\ c 90 \\ c 90 \\ c} \\ \hline 120 \end{gathered}$			
	AGFA STEREO-CHROM CHROMIUM DIOXIDE	${ }_{\text {coso }}^{\substack{60}}$	${ }_{\text {con }}^{10}$	¢	

P.E. JOANNA

Electronic Piano

ALL PARTS WILL BE AVAILABLE

Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors, Resistors, Capacitors Complete kits or easy stages Send $5 \frac{1}{2} p$ stamp for details

Clef Products

31 Mountield Road, Bramhall Stockport, Cheshire SK7 1LY

Solve your cummunica tion pris 4. Station Transistor Iatercom systell master and mount ine Call/talk/listen frou Master to Subs and Subs to Master. Iulcally suitable for lBusiness. Surpers. schools, Hospitals, onfice and ltome. Operates on one 95 battery. On/off switch Volume control. Completc with 3 connceting wires each joit and other accessorics. I'. \& P. ti5p.
MAINS INTERCOM NEW MODEL No batteries - no wires. Just piug it the mams for instant twoway, louland clear cormmunicationd
On olf switch and volume control. Price $£ 25.81$ per pair. P. \& P. 65p.

NEW! AMERICAN TYPE CRADLE TELEPHOME AMPLIIIER

ONLY
£ 11.95

Latest transistorised Telephone Amplitier with detached plug-in speaker. Placing the receiver on to the cradle activates a switch for inmediate two-way conversation without holding the bandset. Many people can listen at a tine. Increase efliciency,
in othice, shop, workhop. Periect for "conference", in othice, shop, workshop. Periect for "conference" calls: leaves the user's hands iree to make notes,
consult files. No long waiting, saves time with long-distance calls. On/off switch, volume. Direct tape recording model at $£ 12.95+$ VAT $£ 1.04$. P. \& P. 65p. 10 day price refund guarantee.

WEST LONDON DIRECT SOPPLIES (PE7)
169 KENSIAGTON EIGE STREET, LONDON, W. 8

Forall whowant to knowabout electronic circuits

Collected Circards

PWilliams J Carruthers JHEvans JKinsler

A wireless worlo publication

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including 29 additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs (1) is the first collection of its kind. Circuits covered are:

Basic acilive fitters	Constant-current circuits
Switching circults	Power amplilers
Wavelorm generators	Astable clrcults
AC measurements	Optoelectronics
Audio circulls	Micropower clicults

A new book fromWireless World

ORDER FORM

To: General Sales Department, IPC Business Press Limited
Room 11, Dorset House, Stamtord Street, London SE1 9LU.
Please send me \qquad copy/copies of Circuit Designs - Number 1 at
$£ 10.40$ each inclusive. 1 enclose remittance value $£$
(cheques payable to IPC Business Press Lid.)
NAME (please print)
ADDRESS
\qquad
\qquad

Company registered in England and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset House. Stamford Street, London SE19LU.

Dimmit

range of light

 dimmers and lighting control systemsIllustrated is the popular PMSD 1000 module. A 1 kW allder control dimmer, interference ouppressed, 60 mm ilidar range alze $12 \times 5 \times 4 \mathrm{~cm}$. Ideal for low coet stage and disco lighting. Used by echools, theatres, studios, etc Complete win scale plato, inc VAT end and full inetructions. \&e-40 inc. VAT and P. \&

IHuetrated is the D061 dimmer system Containa: $1 \times 1 \mathrm{~kW}$ alider dimmers type PD1000. six outtet sockets. a master control and a meins on/off switch. Size $59 \times 22 \times 12 \mathrm{~cm}$. A complete system in one unit for stage or disco lighting, aic. Aso avallable 0261 dimmer aysum, as abov, buth 2-preset errangement. Future systems availebie with 2 kW
dimmers. Specials made. DD61 E110 inc. VAT and P. \& P. DD261 dimmers. Specials made. D
$\mathbf{5 1 3 1 - 6 0}$ ine. VAT and P. 8 .
$31-60$ inc. VAT and P. \& P.
The Dimmit range includes standard wall mounting models for home and office, etc. Professional modules for industrial heating applications, etc. Rotary and slider control versions. Ratings: 1000W: 2000W: 3000 W ; 110 V and 240 V .
 with sound. Built-in microphone. No connections to apeaker required. Simple wiring-simitar to dimmer. Rating 800 W .

All product are guaranteed and are supplied with full instructions and epplicetions. Full after-sies service. Technical edvice given.

For full information on all modules and lighting confrol ayatems send 15 p for our illustrated catalogue and price list. Callers welcoma. vialt our showroom for a demonatration of any of the modulea or syetems. Món-Fri. 9.30 to $6.0 \mathrm{p} . \mathrm{m}$. Set. by arrangement.

YOUNG ELECTRONICS LTD.

184 Royal College Street, London NW1 9NN.
Tel. 01-287 0201

OSMABET LTD We make trentormers amongst other things

AUTO TAANSFORMERS $110-200 / 220 / 240 \mathrm{~V}$
AUTO TRAN8FORMERS $110-200 / 220 / 240 \mathrm{~V}$
30W. 750W, 516 . 50 ; $1000 \mathrm{~W}, 120 \cdot 25$, etc.
LOW VOLTAGE TMANBFOHMEDE

- +12 ひA,

LT TBANSFORMERE TAPPED SEC, PrIm 200/240V

$0-5-20-30-40-30 \mathrm{~V} 1 \mathrm{~A}$, f4.20; 2A. ©I.
$0-40-50-60-80-90-100-110 \mathrm{~V} 1 \mathrm{~A}$. $\mathrm{ce} \cdot 40$.
MIDGET AECTIFIEA TRAN SFORMERS
For FW roct. 200/240V A.c. $8-0-6 \mathrm{~V} 1.5 \mathrm{~A}$ or $9-0-9 \mathrm{~V} 1 \mathrm{~A}$ Ef.85 bach: $12-0-12 \mathrm{~V}$ AA or 20-0-20V 0.75A or 9-0-9V
0.3 A or $12-\mathrm{O}-12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20-0-20 \mathrm{~V}$ o. 15 A or 8 V
 $+12 \mathrm{~V} 0 \cdot 25 \mathrm{~A}$ or $20 \mathrm{~V} 0 \cdot 15 \mathrm{~A}+20 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$. All alci-80 each
MAIMS TRANSFOMMEMS

 $0-5-6.3 \mathrm{~V} 3 \mathrm{~A}$. E11-25; MT3 Prim. 0 - $110-240 \mathrm{~V}$. sec. 250V 100 MA 8.3V 2A, E/S. 13.75
OIP TRANSFORMERS FOR POWEA AMPLIFIERS P.P. ec.. tapped 3-8-15 ohms. A-A $6.6 \mathrm{k} \cap$ 30W हit. 7 A-A 3k Ω 50W Ete.15; 100W (EL34 KTAO, etc.). 517 -25 G.E.C. MANUAL DF POWER AM PLIFEAE
Covering valve mmpliflerr of 30W to 400 W 3 sp

HI FI BPEAKEME
in On, 1.15 .7
$\sin 8 \Omega, 81 \cdot 15 ; 7 \times 4 \ln 15 \Omega, 41 \cdot 40 ; 8 \times 5 \ln 3,8,15$ or
 LOUDSPEAKE青
 2th or son. tet emen: $\sin 3.8$ or 25Ω. $5 \times 3 \ln 3$ or 3Ω $\mathrm{Et} \cdot 15 ; 7 \times 4 \mathrm{in} 3$ or $15 \mathrm{n}, 10 \times 6 \mathrm{in} 3 \Omega$. $1 \mathrm{t}-50$.
sPEAKER AUTO MATCHINQ TRANSFORMEA 12W 3 to or or 15Ω up or down, $51-50$.
TAPE MECOMDEA MOTONs
New, blowere, fana, tc., 110 V e.c. 60 p . If pelr
"'FNSTANT' BULK TAPE/CABSETTE ERABER inatant orazura, any diametor tape apoole, canaettes
 Brand now, Smithm. Built-in gearbox, 2r, p.h. 7sp each
8.A.E. ENOLIRIES, Lists. MALL ORDER ONLY

48 Kenitworth Road, Edgware, Middx. HAB 8 YG Tel. 01-858 9314

$1 P$

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono mybrid preamplifier. Ideally sulted for both mono and stereo applications. Internally first contalns frequency equalisation and gain correction, while the second caters tor tone control and batance.
technical specification
inputa: Magnetic Pick-up 3 mV RIAA: Ceramic Pick-up 30 mV : Microphone 10 mV : Tuner 100 mV : Auxillary 3-100 mV Inputimpedance $47 \mathrm{k} \Omega$ at 1 kHz . Outputa: Tape 100 mV ;
 0.5% a 1 kHz SIonal/Nolse $\mathrm{Hall}: 68 \mathrm{db}$ Overlog Cep bllity: 40db on most sensitive input. Supply Voltage: $+16-25 \mathrm{~V}$
PRICE $£ 4.75$

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd.

Crossland House,
Nackington, Canterbury,
Kent CT4 7 AD.
Tel. (0227) 63218
incorporating its own hign conductivity heatsink her incorporating its own high conductivity heatsink her are provided, input. output. power lines and earth

TECHNICAL SPECIFICATION
Output Power: 25W RMS into 8Ω. Load Impedance 4-16n. Input Sensitivity: 0db ($0-775 \mathrm{~V}$ RMS). Inpul Impedance: $47 \mathrm{k} \Omega$. Distortion: Less than 0.1% at 25 W typically 0.05%. Signal/Nolse Ratio: Better than 75 db Frequancy fesponse: $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$. Supply Voltage $\pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$

PRICE £6.20

The PSU50 incorporates a specially designed transtormer and can be used for either mono or stereo system's

TECHNICAL SPECIFICATIONS
Output voltage: $\pm \mathbf{2 5 V}$. Input voltege: $210-240 \mathrm{~V}$. SIze: L. 70

Please Supply

Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature

				TI Lu. ERKS. E RO: yat ro. ahi	LiAROE STOCKS, LOY PRTCES. SPEC UEXICES CALAEAS WRLCOUEE, CATALOGOR/LIST WREE SEND SAE.
Dinila Displays	INTEGRATED CABITS		TRANSISTORS 2 DIODES		
DIGIT 0-9DP 89p ea	TIV	377 2x 2 Ws 2	e	G	
GREENaYELLOW ¢1.40	$\begin{array}{ll}555 \text { TIVER } & 54 \mathrm{p} \\ 703 \mathrm{RF} / \mathrm{IF} & 28 \mathrm{p}\end{array}$			INS, BUSH SET100	
JUYBCO LED 0.6"	709 T099 ${ }^{\text {709 }}$	LM3900 $4 \times 0 \mathrm{PA69p}$		TIP TIP 42	DIL IC's BOARDS $6 \times 4 \mathrm{I}^{\prime \prime}$ ¢ 1.50
	709 710 710 DIL l 14	MC1303 MC1306 ¢1.2		TIP 2955 90p	24 way edge connector ${ }^{6}$ 60p
¢	723 Reg.	MC13108 LEDE2.65	BC109 109	TIP 3055 55p	FACE CUTTER PLALN 4 . FEC ET
ENON FLASH TUBE	741 DIL $8{ }^{27 \mathrm{P}}$	MC1312 SQ \& 2.10	BC147/8/9 10p	TIS43 8ee 2 N2646	
			$\begin{array}{ll}\mathrm{BC} 157 / 8 / 9 & 12 \mathrm{p} \\ \mathrm{BC} 167 / 8 / 9 & 12 \mathrm{p}\end{array}$	ZTX1098301 13 p 1N4001 4p	$\text { D) } 41 \text { 18 } 0 \text { (5) } 0$
$4 \text { E S S rool } 3$	7472×741 700	MC1350 55p	BC177/8/9 18p	1 N 4004 a 7	PRINTED CIRCUIT BOARD KIT £1.69 decon no mess etch pak new 69p decon desolder braid reel 59p
	748 DIL 8 33p	NE536 fetopa $¢ 2$	BC182/3/4A8L10p	1N4148 \& 914	
	$78055 \mathrm{~V} \quad \$ 1.40$	NE540 Driver ${ }^{\text {c1 }}$	BC212/3/4A\& $L^{\text {d }} 1 \mathrm{p}$	${ }^{2} 1297$	
dS 209 STYLE ONLY 13p	$7812{ }^{2} 15$ E1.40	NE550 2vRef 79p	BCY70/1/2 17p	2N70688	HEATSINKS
TIL 209 WITH CLIP RED 15p	8038 SIG GEN ¢3	NE555 TImer 55p	BD131 \& 13239	2 N 2646 UJT 32 p	
TIL 211 \& CLIP GREEN 29p ea		NE556 $2 \times 11{ }^{\text {c }} 1.2$	BFR51	2N2904 \% 5 20p	5F/T05 \& 18F/TO18 5p ea.TV4 $15 p$. TV3/T03 16p. EXTRUDED 4" 4 Y 129 p.
ARGE $0.2^{\prime \prime}$ \& CLIP RED 17p ea	CA3028 ¢1	NE560 PLL ¢3.15	BFR50/51 23p	2N2926roye	
large 0.2" Clip Green 30p	CA3048 \&2	NE561 PLL	BFR50/51 23p	${ }^{2} \mathrm{~N} 3053-17 \mathrm{p}$	TGS308 GAS DETECTOR 11.80 ea. logic probe tTl tester pen $£ 5$
209 STYLE OR . 2 "ORANGE 39p		NE562 PLL $£ 3.19$	BFR88 250V 29p	2N3055 115N 37p	
INFRA RED LED ¿1.2N5777	CA3054 ¢1	NE 565 PLL ${ }^{\text {¢ } 2,69}$	50/1/20	2N3563 \& 6416 p	
		SN7	BSX19/20/21 16p	2N3614	LOGIC PROBE TTL TESTER PEN ¢5 CAPACITORS
	LM301 OPA 45p	SN72748 748 33p	MJE2955 90p	2N3704\& 5100	CAPACITORS CERAMIC 22pi to 0.1 uf 50 v 5 p ELECTROLYTIC: $10 / 50 / 100$ uf in 10v 5p. 25v 6p. 50v 8p. 2uf/10v 5p. 2000 uf/25v 18p. 200/500 25v 9p.
TEC12	LM304 0-40V โ3	SN76660 IF \&1	MJE3055 65p	2N3706 \& 7 9p	
訨	LM307 OPA 49p	SN76611 [P¢1.25	MPU131 PUT 49p	2N3708 \& 9	
	LM308 H180 95p TAD110 21 F ¢ 2		OA91 OABI 6 P	2N3710 \% 11	
		ZN414 RX $£ 1.09$	TlP $29 * 3052 \mathrm{p}$	2N3819E FET ${ }^{\text {2N323E }}$ FET 17 p	POTENTIOMETERS (POTS) Ab or EGIN LIN or LOG ROTARY 13p.SWITCH 14p DUAL 45p.SLIDERS 29p. STEREO 57p Knobs 7p. Presets 6pRESISTORS $1 \ddagger$ p
			fule selection in our free lists.		
	SPECIAL OFFERS				
FLUORESCENT LIGHTS 12V MADE IN 8 सATT 13" £3. 13W 22" £3.50	2N 3055 FULL HIGH SPEC 115 W 37p 741 C 8PIN DIL 27p.MFC4000 33p				
	NE555 TIMER 55p.ZN414 RX 11.09 BC109 9p.2N3819e 16p, BFY51 15p		PaK A 10 RED Leds our cholce \&1 PAK E 10 BC182 §1.F 11 2N3704 £1 		Din plugs all 12p, Sockets 17p, ALI CASES AB5/AB7 50p. AB13 65p TRANSFORMERS 1 A 6 v 6 v or 12 v 12 v Only $£ 1,34.100$ ma type CT 75 p .
IC AY51224 4 DIGIT CLOCK mm5311/4 6 DIGIT CLOCK	Π T				
	7400 GATES 13p	$\begin{array}{lll} 7473 / 74 / 76 & 29 p \\ 7475 & 45 p \end{array}$			
mec	7404 INVERT 17p	7490 52p	$88400 \mathrm{~mW} \quad 1 \mathrm{~A} / 50 \mathrm{~V}$ SCR 360		
NEW 8tk Cartridge mechanism q	$7401 / 2 / 10 e^{\text {a }}$ /c14p 7413 SCMITT 31p	$\begin{aligned} & 7491 / 2 / 3 / 4 \\ & 7410074185 \end{aligned}$	ZENER DIODES 9p		ILE
Chanisy	7440 BUFFER 14p	$74121 \quad 32 \mathrm{p}$	$\begin{aligned} & \text { IDGE } \\ & 50 \mathrm{~V} \end{aligned}$	$4 \mathrm{~A} / 400 \mathrm{~V}$, 53 p	
Suitable for 'PW ASCOT' recor	7447 DRIVER $89 p$ 7470 \& 7472890			46D TRIAC	0 PINS 50

CAPACITIVE DISCHARGE ELETTROMII ICHITION KIt

 Al weather gatrine you:

 and heotaink top quatity 5 your ouarantiod translormer and
compononte compononte cablet, coil conneciore, printed eircult board.

Voted best of 8 Ignitlon systems tested by a leading Motoring Magazine
 R\%OUHIIIS 5 of walsall ALUMINUM
B0x 3

FLUORESGENT

 order velue tor po
age and packing $\begin{array}{ll}2 t^{*} & \text { by } \\ 4^{\prime} & \text { by }\end{array}$

ELEGTROVALIE

The best of all!

CATALOGUE 7 ISSUE 3

With $25 p$ refund voucher

Up-dated Price and Product Information

12 pages plua cover. Aa comprehenaive and up-to-the-minute as possible. Thousands of Items from vast ranges of semi-conductors including I.C.s to componants. tools, accessorles, technical information and diagrama are included as well as a refund voucher worth 25 p for spending on orders list value 55 or mora SEND NOW FOA YOUR COPY BY RETURN \quad It's en investmentin practical monay-saving and rellabilty! post

PRICES as shown in our latest catalogue (No. 7, issue 3), were due for review by April 1st. In fact these have remained unchanged since January, reviewed only at 3 -monthly intervals as from July 1st next. This is instead of making day-to-day price changes.
DISCOUNTS apply on all items except the few where prices are shown NETT. 5% on orders from $£ 5$ to $£ 14 \cdot 99$; 10% on orders list value £15 or more.
FREE POST AND PACKING in U.K. for pre-paid mail orders over £2 (except Baxandall cabinets). If under there is an additional handling charge of 10p.
QUALITY GUARANTEE. All goods are sold on the understanding that they conform to maker's specification. No rejects, seconds or sub-standard merchandise.

EIEGTROVALIE LTD

All communications to Section 2/5, 28, sT. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SUAREY TW20 OHB. Telephone Egham 3603. Telex 264475. Shop hours: $9-5.30$ dally, $9-1 \mathrm{pm}$ Sats.

NORTHERN BAANCH: BEO, Burnage Lane, Burnage, Manchaster M 191 NA . Telephone (081) 432 4945. Shop hours: Daily 9-5.30 pm;9-1 pm Sats.

12In LONG PERSISTENCE CRT. Full spec Price [E-50 to include VAT and Carriage
MAKE YOUR SINGLE BEAM SCOPE MTO A OUUDLE WITH OUR NEW OPE NTO A SO SIO WTATE OWITCH. RICE SOLIO STATE SWITCH. 2 H2 To MHz Hook up to a 9 volt batery and races for ONLY E 5.25 P \& P 25p. (Nol 25, P \& P 25p. (Not cased. not calibrated)
WIDE RANGE WOBBULATOR. 5 MHz to 150 MHz up to 15 MHz sweep width. Only controls. preset RF lavel. sweep width and frequency ldeal for 107 or TV If lignment, fllters. recelvers. Can be used with any general purpose scope. Full nstructions supplied Conneet 6 3v a.c and use within minutes of recelving All this for ONLY ©8.75, P \& P 35p. (Not cased. not calibrated)
20 Hz to 200kHz WB, SINE and SQUAAE GENEAATOR. Four ranges Independent mplitude controts thermistor stabilised meady to cone gV supply required fo ech P \& $P 35$ (Not cased not cal brated)

GAATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each. P \& P 8p

Large quantity of good quatity com-ponents-NO PASSING TRADEwe offer 3ib of ELECTRONIC GOODIES for \$1.70. Post paid.

ROTARY SWITCH PACK-6 brand new switches (1 ceramic. 1 off 4 pole. 2 way 1c.). 50p, P. \& P 37p
.C.B. PACKS. S 8 D. Quantity 2 sq. ft no tiny piaces. 50p, P. \& P. 37p

CAPACITOR PACKponents, only 50p, P \& P. 37p

TRIMMER PACK. 2 iwIn 50/200pF ceramic. 2 twin 10/60pF ceramic: 2 min strip with a preset 5/20pF on each; 3 air spaced preset 30/100pf on ceramic base. ALL GRAND NEW. 25p the lot. P. \& P. 15p.
PHOTOCELL equ. OCP71. 13p each MULLARD OCP70. 10p each.

DELIVERED TO YOUR DOOR, Icwt of Electronic Scrap chassis. boards. etc. No rubbish. FOR ONLY E4.

MODEAN TELEPHONES. Type 706: two tone grey or black, E3. 75 each. Type 7006. iwo-tone grey or green. f3. 75 each. Siyle similar to Type 746: grey. green or black, [3 each. P. \& P. all types 45p each.
Ideal EXTENSION TELEPHONES with standard GPO type dial, bell and lead coding. 51.75 each, P. \& P. $45 p$
HANDSETS. Complete with 2 inserts and lead. 75p each, P. \& P. 37p
DIALS. ONLY 75p each. P. \& P. 25p
HIGH VALUE-PRINTED BOARD PACK. Hundreds of components. transistors. etc -No 2 boards the same. No short leaded transistor computer boards. [1.75, post paid.
BEEMIVE TRIMMER $3 / 30$ DF. Brand new. Oty 1-9 13p each. P. \& P. 15p. 10-99 10p each. P. \& P. 25 p. 100-999 7p each, P. \& P. tree.
HE CRYSTAL DRIVE UNIT. 19in rack mount. Standard 240 V input with superb crystal oven by Labgear (no crystals) \&5 each. Carr. $£ 2$.
1,000pF FEED TMRU CAPACITORS. Only sold in packs of 10. 30 p, P. \& P. 15p. ALWAYS SOME CHEAP SCOPES AVAIL. ABLE-or build your own. Send for our tube list with S.A.E
$7 / 9$ ARTHÚR ROAD, READING, BERKS.
 Tel.: Reading 502805/65916

Enough books are written about crime, this one stops it.

Outside it's a book. Inside it's an ingenious ultrasonic burglar alarm from Heathkit. The GD-39.

A complete kit that can be assembled in only a few enjoyable hours, with the help of a very easy to follow instruction manual.

The GD-39 works by transmitting a silent, ultrasonic signal throughout the room. And continuously monitoring it. Any movement made by an intruder in the room will then automatically produce a change in the signal. Which triggers off a lamp and, thirty seconds later, a remote buzzer, that just you hear, or a loud bell.

Enough to scare the living daylights out of a burglar.
For more details, and a bookful of other ideas, just post the coupon now for your free Heathkit catalogue.

Or, if you're in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

Heath (Gloucester) Limited, Dept. PE75. Bristol Road, Gloucester GL2 6EE.
Tel: (0452) 29451.
The GD-39

Ultrasonic Burglar Alarm

B. BAMBER ELECTRONICS

5 STATION ROAD, LITTLEPORT, CAMBS., CB6 1QE Telephone: ELY (0353) 860185 (2 lines) Tuesday-Saturday

MAINS TAANSFOAMERS
All 240 V input, voltages quoted approx Ordering)
TYPE $10.2 .10-0-10 \mathrm{~V}$ at $2 \mathrm{~A}, 51 \cdot 50$ each
TYPE 18/2. 18V at 2A. E1.65 日ach
TYPE 16 G .18 V at $6 \mathrm{~A}+45 \mathrm{~V}$ at 100 mA
TYPE $28 / 4.28 \mathrm{~V}$ at $4 \mathrm{~A}+425 \mathrm{~V}$ at 500 mA . F 4 .
TYPE TYPE 63/1, 6 JV ot 1 A . 85 p onch or 2 for K1. 50.
TYPE 12
TYPE 129.400 V at $20 \mathrm{~mA}+200 \mathrm{~V}$ a $10 \mathrm{~mA}+$ TYPE 72703 , 400 V at $10 \mathrm{~mA}+200 \mathrm{~V} 15 \mathrm{~mA}+$ $63 V$ a1 400 mA .11 .25.
TYPE $70482.250-0-250 \mathrm{~V}$ at $80 \mathrm{~mA}+6.3 \mathrm{Vat}$ RADIOSPARES 500 W AUTO TRANS FORMERS, $100-110-130-200-220-240-$ 250V rapped input and output. step-up or slep-down facillty, ex-new squip 66.
CURIY LEADS, 4 core telephone type. 2 for 20 p .

AKNSISTOA HEATSIMKS, to lako $2 \times$ size $i \times i \times f$ in, with holes for mounting 3 for 50p.
VARIABLE STABILISED PSU, solid-state 240 V . . input, oulput $0-24 \mathrm{~V}$ d c at
500 mA . +32 V of at approx 50 mA Voltuge controlled by external $5 \mathrm{k} \Omega$ pot
Size $7+\times 4 \times 2 \mathrm{in}$ (less $5 \mathrm{k} \Omega$ pot). 85 Size $7+\times 4 \times 2$ in (less 5 k n poll). 85 THAEE-TURN WIRE-WOUND POTS, $5 \mathrm{k} \Omega$. tor ebove. TSp each
LAAGE DIE CAST BOXES forand new

25-way ISEP PLUQS AND SOCKETS, 40p set (1 plug + 1 akt)
DIN SPEAKER SOCKETS (2-pin) 4 for 30p. TV PLUGS, matal type. 6 for 50 p .
TV sOCKETs, melal type. 5 for sop
TV LINE COWNECTOMs (back to back Hocket). 5 for 50p.
SOLDER (multicora) OAB1 DIODES, 15 for $25 p$.
OC20日 TRANSISTORS, 6 .
OCzog TAA NSISTOAS, 6 for 50 p
BSYESA TRANBISTOM. 6 for SOp.

HIGH QUALITY SPEAKERS, Bt \times Bin ellipticel. only 2 in deep. inverse magnet
i ohms. rated up 1010 W , $\Sigma 1.50$ sach. or 2 for $\mathbf{5 2} 75$ (q1y discount vailable). PL259 PLUG8, 50 p each, or 5 for $\mathrm{\Sigma 2} \cdot 25$.
AEDUCERS (for small co-ax) to fit $15 p$ asch
$\mathbf{s O 2 3 0}$ SOCKET8 (to tit PL259 plugas). 50 p $\mathbf{s 0 2 3 9}$ SOCKET8 (to fit PL259 pluga). 50p Each, or 5 fir I2.23.
MINIATURE SLIDER SWITCHES. 2 pOLE. I.C. Way ${ }^{2}$ tor 50 DNP . TEAB00. reted 5 W (sorry, no deta), [1 each DU'BILIER ELECTROLYTICS, 100 24 F. 275 V
 3 for 50p.
TCC ELECTAOLVTICS, $1000 \mu \mathrm{~F}, 30 \mathrm{~V} .3$ for 80p.
PLESSEY ELECTAOLYTICS, $1000 \mu \mathrm{~F}$
180V. 40 p EACh 180V. 40p tach (3 for $£ 1$
DUBILIER ELECTROLYTICS, 5.000 mid a
$35 V$. 50 p each 35V. 50p each
DUBILIEA ELECTROLYTICB, $5,000 \mu \mathrm{~F}$
5OV. AOP aich 50V. 00 p bach
DUBILIER ELECIRULVIICS, S.WUUTIS
70 V . E5D BRCN 70 V . 55 p each
TT ELECTROLVTICs, 6.800 mfa , 25 V ,
high grade. screw torminals. with high grade. screw to
mounting clip. $50 p$ each
Plessey Electrolytics. 10.000 ml d 63V. 75p each
PLESSEY CATHODE RAY CAPACITORS $004 \mu \mathrm{~F}$ at $12 \cdot 5 \mathrm{KVDC}$ Scraw terminala 150 B 2 Mullard 150 V Reg (equiv OA2 (new, boxed) ${ }^{40 \mathrm{p} \text { each }}$ (-pole (separate
Rolary switches 9,way 4 -po Rolary switches g-way 4-pole (separs, plastic) tinspindie, 40 peach. Waters, (Approx. 3 in $\times 4$ in $\times 2$ in high)
12 fins (drilled for $1 \times$ TO3 transistor 12 ling (drilled for $1 \times$ TOS transistor)
brand new. $45 p$ each.

TERMS OF BUSINESS CABH WITH OADER (minimum or
Export enquiries welcome. Callers welcome. Tues. to Sat
Plese enclose S.A.E. with ALL enquiries.

learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence
lraee:
Brochure, without obligation to:

BRITISH MATIOMAL RADIO \& ELECTROHICS SCHOOL Dept. EB75, P.O. Box 156, JERSEY

NAME
ADDRESS
BLOCK CAPS please

WATCH OUR Television

 NOW IT'S BIGGER \& BETTER More pages! Larger size! Extra features!

Special Features this month:
LARGE SCREEN TV OSCILLOSCOPE
How a large-screen monochrome receiver can be converted for displaying television waveforms.

CEEFAX/ORACLE RECEPTION

Start of a new series explaining the principles and the practical techniques used for teletext news displays.

LATEST COLOUR RECEIVER CIRCUITRY

An account of the many novel circuit techniques used in the latest Rank colour chassis.

VIDEO SIGNAL EXTRACTION

Many VCRs require a v.f. input. K. Cummins presents a suitable circuit for extracting the video signal from a domestic TV set.

COLOUR RECEIVER SERVICING

Les Lawry-Johns deals with faults experienced on the Philips G6 colour chassis

PLUS ALL THE REGULAR FEATURES

Practical Electronics Classified Advertisemenis

RATES: 11p per word (minimum 12 words). Box No. 30p extra. Semi-Display $£ 8.50$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4H 4AD

RECEIVERS AND COMPONENTS

BRAND NEW COMPONENTS BY RETURN, Electrolytics $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7$ $10 \mathrm{mfds}, 5 p ; 22,47,5 \frac{1}{2} p(50 \mathrm{~V}, 6 \mathrm{p}) ; 100,7 \mathrm{p}$ (50 V 8p); 220, $8 p(50 \mathrm{~V}, 10 \mathrm{p}) ; 500,11 \mathrm{p}$ (50V, 16p); $1000 / 25 \mathrm{~V}, 18 \mathrm{p}$. Nubminiature bead-type tantaluns. $0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, 1 \cdot(0) / 35 \mathrm{~V}$, $2 \cdot 2 / 35 \mathrm{~V}, \quad 4 \cdot 7 / 35 \mathrm{~V}, \quad 10 / 20 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}$, $100 / 3 \mathrm{~V}, 11 \mathrm{p}$. Mylar Film $100 \mathrm{~V}, 0 \cdot 001,0 \cdot 002$, $0.005,0.01,0 \cdot 02,3 \mathrm{p} ; 0.04,0.05,3 \frac{1}{2} \mathrm{p} . \quad$ Mullard $0.005,0.01,0.02,3 p ; 0.04,0 \cdot 05,3$ 2p. Mulard
tubular polyester 400 V L6 series $0.001-0.022$, tubular polyester 400 V L6 series $0 \cdot 00 \mathrm{t}-0-022$,
$3 \frac{1}{2} p ; 0 \cdot 033-0 \cdot 1,42 \mathrm{p}$. Mullard polyester 160 V $31 \mathrm{p} ; 0 \cdot 033-0 \cdot 1,43 p$. Mulard polyester 160 V
tubular or 250 V nitiature for vertical mounting Lí6 serifs, 0.01-0.047, $3 \frac{1}{2} \mathrm{p}$; $0 \cdot 06 \mathrm{c}, 0 \cdot 1,4 \frac{1}{2} \mathrm{P}$; $0.15,0.22,6 p ; 0 \cdot 33,7 p ; 0.47,9 p ; 0 \cdot 68,11 p ;$ $1.0,14 \mathrm{p}$; $1 \cdot 5 / 250 \mathrm{~V}, 18 \mathrm{p} ; \quad 2 \cdot 2 / 250 \mathrm{~V}, 22 \mathrm{p}$ Mullard miniature ($3: 33$; reramies $63 \mathrm{~S}^{2} \mathrm{l} 12$ series 2\% $1 \cdot \delta \mathrm{pH}-47 \mathrm{pF}, 3 \mathrm{p}$; $56 \mathrm{pF}-330 \mathrm{pF}$, $3 \frac{1}{2} p$ Plate cramios 50 V liti series 470 pF $47,000 \mathrm{pF}, 2 \mathrm{p}$. Polystyrene 6:3V. 1612 series $10 \mathrm{pF}-1,000 \mathrm{p}, \mathrm{F}^{2}, \quad 1,200 \mathrm{pF}-10,000 \mathrm{pF}$, 4p: Miniature hikhstab carbon film resistors b W E12 series $5^{" 1}$ ($10^{\circ \prime}$ over 1 MS) $1 \Omega-10 \mathrm{M} \Omega$ 。 $1-2 p ; 1 N 4002,6 p ; 1 N 4006,8 p ; 1 N 4148,4 p$ Postace 10 p . I'rices VAT inclusive. THF C.R. SUPPIV r(O., 19 ('hesterfleld Road, Shefticld, Ax ORS.

3 ASS. M.C. METERS EI.30 (40p). BANK OF 20 NEONS 74p (11p). 5-FIGURERESETTABLE COUNTER $18 / 22 \mathrm{~V}$, works on 12 , $\mathbf{6 2 . 5 0 (3 0 p)}$
BOX WITH $20 \times$ LA2 POT 1% CAPS EI. 50 (50p), COPPER CLAD FIBRE GLASS PANELS $12 \frac{1}{6} \times 7$ in 80 P: 18×4 in 75 p C.P. COPPER CLAD PAX. PANELS
$5 \frac{1}{2} \mathrm{in}, 6$ for $65 \mathrm{p} ; 8 \times 9 \frac{1}{2} \mathrm{in}, 3$ for $\mathrm{Cl}, 16 \times 9 \frac{1}{3}$ in 60p; $12 \times 12 \mathrm{in}, 60 \mathrm{p}$. All P.P. 74 SERIESI.C, ON PANEL(S) 10 for ROp (10 p). List of Valupaks, Computer panels, etc. 12p. Refund on purchas
716 ASSORTEDCOMPONENTS $\mathbf{E 2 \cdot 2 0} \mathrm{c}$. p . J.W.E. RADIO

2 Barnfield Crescent, Sale, Cheshire M33 INL
Postage in brackets
Mail order only

CLEARINE DIBTRIBUTOR STOCKS, tran sistors, diodes, components, etc. Sample pack 65 p incl. postage or send stamp for list REDHAWK SALES L'TD., 10 Maple Lodge Close, Rickmansworth, Herts. Mail order only.

"P.E. JOANNA". Kit of all semiconductors 831 inc. VAT, Fostage, etc., free. $124 \times$ $\$ 31$ inc. Vat. Fostage, etc., Iree.
$4.7 \mu \mathrm{~F}$
electrolytic capacitors (miniature) 87. $4.7 \mu \mathrm{~F}$ electrolytic capacitors
Resintor pack contajning $61 \times 56 R, 12 \times 2 \mathrm{~K} 2$, $61 \times 3.3 \mathrm{~K}, 170 \times 47 \mathrm{~K}, 122 \times 120 \mathrm{~K}, 50 \times$
$150 \mathrm{~K}, 24 \times 180 \mathrm{~K}, 26 \times 220 \mathrm{~K}, 12 \times 270 \mathrm{~K}$ $150 \mathrm{~K}, 24 \times 180 \mathrm{~K}, 26 \times 220 \mathrm{~K}, 12 \times 270 \mathrm{~K}$
and $12 \times 330 \mathrm{~K} 84.50$. All other components will be available. Send S.A.E. for lists. Mail order only to: G. NEWMAN, 12 Francis Avenue, St. Albans, AL3 6BX.

PRECLIIONPOLYCARBONATECAPPGCITORS

ALL HIGH 8TABILITY-EXTREMELY LOW LEAKAGE

TANTALOM BEAD CAPACITORS-Values avallable: $0 \cdot 1,0 \cdot 22,0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V
$10 \cdot 0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 16 V $10-0 \mu \mathrm{~F}$ at 66 V or $10 \mathrm{~V} ; 47 \cdot 0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100-0 \mu \mathrm{Fat} 3 \mathrm{~V}$. ALL at 10 p each. 10 for $85 \mathrm{p}, 50$ for $\$ 4$.

TRAME1STORE:	BC183/183L	11 p	BFY50	20p								
BC107/8/9	8p	BC184/184L	12p	BFY51		BC107/8/9	9p	BC184/184L	12 p	BFY51	20 p	
:---	---:	:---	:---	:---	:---							
BC114	18 p	BC212/212L	14 p	BFY 52	80 p							
BC147/8/9	10 p	BC547/558A	12 p	AF178	80 p		BC147/8/9	10 p	BC547/558A	12 p	AF178	80 p
:---	:---	:---	:---	:---	:---							
BC153/7/8	18 p	BF194	12 p	OC71	12 p							
BC182/182L	11 p	BF197	13 p	2N3055	50 p		BCI82/182L 11 p	BF197	13 p	2 N 3055	50 p	
:---	:---	:---	:---	:---								
POPULAR DIODES-1N914 6p, 8 for $45 \mathrm{p}, 18$ for 90p:												

 11 ; IN 41485 p , 6 for $27 \mathrm{p}, 12$ for 48 p ; IN 400151 p ; IN 4002
 IN 400781 p .
LOW PRICE ZERER DIODES -400 mW , Tol, $\pm 5 \%$ at 5 mA . Valuen a vailable: $3 \mathrm{~V}, 3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4 \cdot 7 \mathrm{~V}, \mathrm{E} \cdot 1 \mathrm{~V}, 5 \cdot 6 \mathrm{~V}$, $\begin{array}{ll}6.2 \mathrm{~V}, & 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, \\ 18.5 \mathrm{~V}, & 12 \mathrm{~V}, 13 \mathrm{~V}, \\ 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V} .\end{array}$ ALL it 7 p each, 6 for 89 p , 14 for 84 p . SPECIAL OFFER: 100 Zeners for E 5.50 .
Registorech High stability, low noise carbon fim 5% IW at $40^{\circ} \mathrm{C}$, IW at $70^{\circ} \mathrm{C}$. E12 aries only-Irom $2 \cdot 2 \mathrm{~A}$ to
$2 \cdot 2 \mathrm{Ma}$. ALL at ip each, 8p for 10 of any one value, 70 p 2.2 Mn 0 . ALL al lp each, 8 p for 10 of any one value, 70 p
tor 100 of any one value. SPECIAL PACK: 10 of each for 100 of any one value. SPECIAL PAO
value 2.2 n to 2.2 Mn (730 resistors) 85 . Falue $2 \cdot 2 n$ to $2 \cdot 2 \mathrm{Ma}(730$ resistors 25 .
SILICON PLABTIC RECTIFIERS- 1.5 amp, brand new wire ended D027: 100 P.I.V. 7p (4 for 26p); 400 P.I.V. 8p (4for 80p). 600V 65 p - ALL At 5 p each: $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{k} \Omega$, $2.2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega, 250 \Omega, 680 \mathrm{k} \Omega .1 \mathrm{M} \Omega, 2.5 \mathrm{M}, 5 \mathrm{M}$.
PLEASE ADD 1:5 POST AND PACKING ON ALL ORDERG BELOW EẼ. ALL EXPORT ORDERE ADD COBT OF SEA/AIRMAIL.
d S.A.E. for list of additional ex totock iteme
Send S.A.E. for lists of additional ex-stock items.
Wholesale price lists available to bons fide companies MARCO TRADING
Dopt. E. 7, The Old school, Edstaston,
Mr. Wem, shropshire
Tel.: Whixall $464 / 465$ (STD 0948 72)
(Propra.: Minicont Trading Ltd.)

Send S.A.E. for latest catalogue (includes TTL pinlayout guide). 10 p P. \& P. on orders under £2. PLEASE ADD VAT AT CURRENT RATES ALL. GOODS SENT BY Ist CLASS POST.

J. C. JONES

Dept. PET, 46 BURSTELLARS, ST. IVES, HUNTINGDON PEI7 $4 \times X$

TURN YOUR 8URPLUs capacitors, transistors, etc., into cash. Contact COLES.HARDING \& CO., P.O. Box 5, Frome, Somerset Immediate cash settlement.

Abstract

R.T. SERVICES (MAIL ORDER ONLY) 77 Hayfield Rd., Salford 6, Lancs. Tapped Auto Transformer, $240 \mathrm{~V}-110 \mathrm{~V}$, 80 watts, 22 P.P. New. Tapped Auto Transformer, 240V-115V, 200 wates, E4.50 P.P. New. 100 Watt Valve Output Transformer. KT88s, etc. 8 or 150 or 100 vole line output, E13•60 P.P. FM Tuner with R.F. Stage and A.G.C., 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, E1.54 P.P. Crouzet Geared Motors, 30 r.p.m. New, El.75 P.P. UHFTV Tuners. Transistorised, E2 $^{2} 10$ P.P. Panels with I.C's on $8 \frac{1}{2}$ p per I.C. min. order 10 I.C's. Transformers. $7.5 \mathrm{~V}+7.5 \mathrm{~V}, \frac{1}{2} \mathrm{~A}, \mathrm{El} \cdot 12$ inc. P.P. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, \ldots 1 \cdot 25$ inc. P.P. $9-0-9 \mathrm{~V}$, $100 \mathrm{~mA}, € 1 \cdot 25$ inc. P.P. $29 \vee 50 \mathrm{~mA}, 95$ p inc. P.P. $6-0-6 \mathrm{~V}, 100 \mathrm{~mA}$, E 1.25 inc. P.P. Transformer. 24 volt, approx. I amp + 6.3 V CT approx. 500 mA , 1.60 inc. P.P. 6.3 V CT approx. $500 \mathrm{~mA}, \mathrm{cI} \cdot 60$ inc. P.P. Transformer. 45 volt, $2 \mathrm{amp}, € 3 \cdot 38 \mathrm{P} . \mathrm{P}$. P.C. Board. S/S, $5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10$ for $E 1 \cdot 10^{\circ}$ P.P. Transistorised Timer. Variable delay, 110 or $250 V$ A.C. input. With instruetions. Brand new, $E 2.25$ ine. P.P. Size $3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$. Power Unit Components Transformer. 18 volt 1 amp F/W bridge rectifier, 21250 mid capacitors, all new $\mathbf{E} 1 \cdot 60$ per kit. P.P. Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$, $4 \frac{t^{\prime \prime}}{} \times 1 \frac{13^{\prime \prime}}{} 90 \mathrm{p}$. ine. P.P. tixed Pack of C280 series Mullard capacitors. 100 for $\mathbb{C} 1 \cdot 30$ inc. P.P.

Overall length 1.85° (Body length 1.1°). Diameter 0.14°. Max. ratings 250 v D.C. and per dozen: $14-12$ per 100 . $\mathbf{6 0 . 2 5}$ per 1,000 . C275 per 10,000 . VAT and post paid. G.W.M. RADIO LTD

40/48 Portiand Roed, Worthing. Brater 0003 ange7
VALVEs. Radio, TV, transmitting, industrial 1930 to 1975 . Many obsolete. 2,000 types in stock. List 20p. We wish to purchase new and boxed valves, also transistors. COX RADIO (SUSSEX) LTD., The Parade, East Wittering, Sussex. Tel. West Wittering 2023.

REVERB LINES

169* long-Twin Spring-600:2 input. Will drive from 741 1.C.
Phone for more data if required.
Price $£ 6.50$ plus $£ 1.65$ V.A.T.
P. \& P. free in U.K. Cash with order only.
G.P. ELECTRONICS

Pottery Rd., Bovey Tracey, Devon 0626832670

SITUATIONS VACANT

Jobs galore! Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks!
It can pay around $\mathbf{£ 3 5} \mathrm{p} . \mathrm{w}$. as a starter and can reach over $£ 90$ p.w. After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators Training Centre Y37, Oxford Hse. 9-15 Oxford St., W.1.Tel. 01-7342874

BOOKS AND PUBLICATIONS

THE MCCOURT T.V. REPAIR MANUALS MAKE REPAIRS SIMPLE AS A.B.C.

Set out in the easiest to follow style, showing symptom, cause and cure for every common fault and virtually every possible one, for every British standard or portable set plus many foreign. Contained in 4 large manuals, only 12 set or send your model, make and $£ 3.35$ for the correct manual by return. Colour manuals $£ 3.35$ each, full details from:
T.V. TECHNIC, 76 CHURCH ST., LARKHALL, LANARKS.

EDUCATIONAL

TECHNICAL TRAINING.
Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV. Audio Eng, and Servicing. Electronics, Computers: also selfbuild radio kits. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 316, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

CITY \& GUILDS EXAMS.

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians. Electrical Installations, Radio. TV \& Electronics Technicians, Radio Amateurs. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 315, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

TELEVISION TRAINING

I6 MONTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.
NEXT SESSION commences on September 15th.
Prospectus from London Electronics College, Dept. A7, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

COLOUR TV BERVICING.

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 317, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

LADDERS

LADDER8, timber and aluminium. Tel. Telford 586644 for brochure.

SERVICE SHEETS

SERVICE SHEET8, radio, TV, etc. 10,000 models. Catalogue 24 p plus S.A.E. with orders-enquiries, TELRAY, 154 Brook Street, Preston, PR1 7HP.

FOR SALE

PRACTICAL WIRELE88 1951 to 1972, Radio Constructor 1951 to 1972, Practical Electronics 50 issues. Offers to: JACKSON, 68 Hartforde Road, Boreham Wood, Herts. Tel. 01.953 5057.

WANTED

TOP PRICES PAID NEW VALVES AND TRANSISTORS Popular T.V. and Radio types KENSINGTON SUPPLIES (B)
 367 Kensington Street Bradford 8, Yorks.

MISCELLANEOUS

PCB MANUFACTURERS OFFER: SPECIAL

 this month, "P.W." Easybuild organ PCBs in Epoxy/flbreglass, roller-tinned and drilled I.P.C. approved, 25.50 (20p) the set. Also full spec., ready to assemble PCBs for: "P. W." Tricolour, $\$ 1.25$ (12p); Tele-tennis (6 P('Bs), 23.50 (15p); Telephone exchange, 270 (12p); Derby; 70 p (Bp). '" l^{2}, E ." "ORION with printed layout on $\mathrm{P}\left({ }^{\prime} \dot{B}, \quad \mathbf{2 1 \cdot 1 0}\right.$ (12p). Power printed (3 PCISs), $21 \cdot 35$ (I3p); C.C.T.V. (2 PCBs), \&1.40 (15p); Nmoke detectors 70p (12p); Digital leaf, scorpio 2, ferret locator, all 65 p Digital leaf, scorpio 2 , ferret locator, all $65 p$$(9 \mathrm{p})$. CW. $\mathbf{P} . \& \mathrm{P}$. in brackets. MANY OTHERS available, S.A.E. for lists. PRODUCTION SPACE FOR, I'C'B production, electroplating, silk-screen printing, tinning plus all ART/(rRAPH1C photographic and design facilities, Jistimates by return or phone. W.K.F. ELECTIRONICS, Welbeck Street, Whitwell, Worksop, Notts., S80 4 TW . Tel. Whitwell 695 (1)erby's.). Callers only to 2/3 Station Road.

35 WATT/CHANNEL

Stereo Amplifier Chassis

Just needs 50 volt, 2-3 amp power supply. I glass fibre P.C.B. board including DIN sockets, etc.

> 35 WATT RMS @ $4 \Omega \mathrm{ch}$.
> 25 WATT RMS @ $8 \Omega \mathrm{ch}$.

Disc $2 m v$. Aux. 1, Aux. 2, tape $200 \mathrm{mv}, \& 38$ inc. P. \& P. 50p.

P. F. STEVENS ELECTR--ACOUSTICS
 8A CLARENCE ROAD SOUTH BENFLEET, ESSEX

IC 8OCKET PINs for low cost mounting of 8 to 40 pin DILs. $50 \mathrm{p}(+4 \mathrm{p}$ VAT $)$ for strip of 100 , $81.50(+12 p$ VAT), for $3 \times 100,24(+32 p$ VAT) for 1,000 . Instructions supplied-send S.A.E. for sample. 10 p P. \& P. for orders under £2. SINTEL, 53b Aston Street, Oxford. Tel. 086543203.

THYR18TOR gold bonded BT119 95p, P. \& P 8p. Numerical read out tubes type GN4A 95p, P. \& P. 7p. H7G bases 3p, P. \& P. 7p, 8-pin octal bases 8p, P. \& P. 7 p , Gen/purpose diodes GEX54 6p, P. \& P. 7p, Neons W ended $8 p, P$. \&P. 7p. 1000 mf 16 V 10p, P. \& P 7p. Lead with two fernale bne plugs 32p, P. \& P. 7p. P/C'B B9A ceramic bases 4p, P, \&P. 7p, 24 V a.c. plug in relay octal base dp/co 75p, P. \& P. 27p. 6V miniature relay dp/co ex-equip new 75p, 1. \& P. 27p. Foot operated switch $3!\times 2 \frac{1}{2}$ in $95 p, 1$. d. 35 p . 10 damaged TV panels some colour delay lines, etc, and $13 / W$ fantastic value at $\$ 1.65$, P. \& P. 60p. 1 panel containing 7 common electrolytic capacitors ex-250mf 50 V , etc. and 1 1A bridge rectifier, \& 1 A diodes and 7 other dovices 75p, P. \& P. 35p. (iiant switch cleaner in aerosol can 80p, 1'. d P. 35p. Orders
 over 10 items l' \& 1'. 27 p . To: INDUSTRIAL, RF SERVICEA, 51 Deptford Hroadway, London, SE8 4 P'H. Tel. 01-692 4284.

HOME SCIENTISTS
Get the key to a FANTASTIC WORLD of
previously UNHEARD-OF PROJECTS. The previously UNHEARD-OF PROJECTS. The NEW Boffin catalogue lists LOTS of HIGHLY UNUSUAL' LOW-COS
Here are just a few examples, there are stock: more!
Dazzling MINI-STROBE (pocket size) PEOPLE DETECTOR
Big-Ear SOUND-CATCHER
$62 \cdot 90$
$63 \cdot 20$ Mini dream Laboratory $63 \cdot 20$
6320

Don't take our word for it though! GET COPY AND SEE! SEND ONLY 20D and We'll RUSH YOU A COPY (YOU'LL GET
'GOODIES' JUST AS QUICKLY TOO!)

BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh
Ewall, Surrey
(Mail Order U.K. only)

8UPERR INsTRUMENT GASE liy Bazelli, manufactured from heavy duty PVC faced steel. Hundreds of Radio, Electronle, $\mathrm{Hi}-\mathrm{Fi}$ enthusiasts and Industrial users are choosing the cases they requirc from our range. Make your VAT go further with our competitive your VAT go further with our competitive
prices which begin rt a low 75 p . Examples: prices which begin at a low 75 p . Examples:
Width, Depth, Height, $7^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime} 82-85$; ${\mathbf{y}^{\prime \prime}}^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime} \$ 3.60 ; 12^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime}$ 24; $12^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime \prime}$ 24.40. Over 200 Models to choose froni. Pronipt despatch. Free literature (stamp would be appreciated). BAZELII, Dept. No. 23, St. Wilfrid's, Foundry Lane Halton, Lancaster LA2 6LT

ULTRASONIC TRANSDUCERS

Suitable for INTRUDER DETECTOR
Practical Electronics, March 1975
Tx/Rx Pair $£ 3.50+28$ p VAT
NEW SE05B-25T/R 25 kHz Tx/Rx Pair E3.70 +30 p VAT
FIBRE OPTIC SUPPLIERS
2 Loudoun Road Mews, London NW8 ODN

DIFFICULT TO RET AT? Hold that screw with a Slot-Grip screwdriver. Split blade holds screw firnly. Screw can be driven home with same force as standard screwdriver High quality product. Blade tín wide 6 in long for M3-M4 screws. 81.70 plus 10 pP . \& P E. \& S., (ranbrook, Laverstock Park, Salis bury, Wilts

fibre optic suppliers

MARE's TAILs. Bulid a decorative dieplay with thia proteasionally finiahed unit.
FIRAOFLEX 812 E 1. Flexible. 440 atrand glase light condult bundle dia 1.14 mm . 40 p per motre (E3 per 10 m).
FIBMOFLEX SIZE 4. 2.28 mm bunde die. £ 1.50 per metre ($\mathbf{1} 12$ per 10 m).
 $1.8 \mathrm{~mm}, \mathrm{O} . \mathrm{D} 3.3 \mathrm{~mm}$. $\kappa 1$-20 per metre (CP per 10 m).
from one source dispheys, Internal illumination. effects. optical coupling. otc.
FP20 10.5 mm dia.) 00 per 10 m ; 44 per 100 m . FP40 (1 mm dla.) E2. 20 per 10 m ; Els por 100 m
OPTIKIT 103. Contains 2 m Groton 1610 plus 5 m each FP20. OPTIKIT 103 . Contains 2 m Groton 1610 plus 5 m ench FP20. the experimenter and laboratory, i4.s0.
 and 5 reflectors for use in proximity detectors. Intruder detectors, batch countere. thehometers. short range optical communications.
OPTIKIT Le. 1 each of 6 ienses, is.
OPTUKIT MR5. 1 each of 5 reflectors. $\mathbf{2 2} 50$.
CIACULAR POLARISER8. Cut that glare. Reduce apecular aflection by up $1020 \times-$ anhance conirast on che. LED diepleye, nixies, Inatrumente, etc. Avaliable in rod/amberf LIGMT SOURCES AND OETECTORS: MV54 Miniature (2 mm) Red LED. $20 \mathrm{p}(10+17 \mathrm{p})$; MLED500 TO92 Red LED. $20 \mathrm{p}(10+17 \mathrm{p})$; MLED92 infraped Emitter, $30 \mathrm{p}(10+25 \mathrm{p})$
 Photodarlington silicon Dotector, gain $\times 2,500$. 50 p $10+420)$: WRD 150 Silicon Phototranaletor-high speed tus good sensitivity. $70 p(10+87 p)$.
*NEW ML8203. Litest Motorola Light Activated SCa. High senalitvity $10 \mathrm{~mW} / \mathrm{cm}^{2}$; high current 400 mA (5 A peak) control, up to 24 W power. $51 \cdot 20(10+51 \cdot 10)$
SEOSB-4OTIR ULTRASONIC TAANSOUCER PAIR. Sulh able for "Ultrasonic Doppler Shifh Intruder Detector"' Prectical Electronice. March 1975. Tx/Rx pair 53.50 SEOSE-25T/R ULTRASONIC TRANBDUCER PAIA ** NEW ** The SEO5B-4OT/R has proved to be an extremely popular item 1 n our range and we ane
therefore introducing the 25 kHz version. Although band width to lems at $\pm 500 \mathrm{~Hz}$, cenaitivity is better by 10dB Sultable for burgiar alarm eystems. proximity owitches counters. mevel metere, antl-collision deviche. 25 kHz Tx/Rx pair $\mathbf{E 3}$. 70 .
Ploase add 8% VAT to prices above (plua 22p on order
lase than c 3 . Send 9 in $\times 8 \ln \mathrm{SA}$. E . for whort form flat. FIBRE OPTIC SUPPLIERS
(Dept. PE), 2 Loudoun Road Mews London NW8 ODN
(Please note change of addreas)

PRINTED CIRCUIT COPPER CLAD. tingle sided. Quality material. Flame retardant to N.E.M.A. Spec. Paper Base (Fif2) 㐭 $\times 7 \times 5,3$ for 81 . Epoxy Glass (FR4) ${ }_{8} \times 7 \times 5,2$ for 81 . Also panels cut to your requirements, quotation by return. Prices include P . \& P . ('ash with Order.

P. G. OLIVER \& CO.

4 Hearsall Lane, ('oventry, ('V5 6HH
CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, ta peheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.
Add 10 p P. \& P. for orders under $£ 2$. Data, and circuita whereappropriate. uppliad with orcers or avainable eparately (send gin x A. ADD ${ }^{\text {\% }}$ \% VAT-Not 25

			Clock ice-		
OLTOMECOn)	0.3		MR GNETN Alarm PCEA, man, for above		28.64
OLtor ${ }_{\text {ofly }}$					
					1.35
Namza 3×0.					c17-5s
			Arsim44		
CMOI from ach end motomola					
CDA001at	20.21	CDSaz3aE	${ }^{6} 8$	CO407	te
CDA011AE	ta. 21	CDSOMAE	${ }^{11.37}$	CD4073日E	
CDSOL2AE	20.21	CD4049aE	cter	CD4045E	${ }^{1} 17$
CD4013AE	\% 6.6	CD4050	ct. 62	CDA0088E	1.17
CD4018AE	tal ${ }^{\text {che }}$	CD40636E	c2. 22	MC14501CP	${ }^{41} 18$
CDa01gat	tir 7	CDSOBAE	21.85	MC14510CP	${ }^{11} 77$
cDatoz2aE	81.81	CD 4	50.29	MC145	81.
OImer deplaye. Cs , ACA CMOS. Reslistors. atc. svallable tend S.A.E. or phone (8.30 to $7 \mathrm{p} . \mathrm{m}$. .) for turther intormation					
BINTEL, SSE ABTOM STAEET, OXPORD. Tol. (0005) 43203					

QLAss FIBRE P.C.Bs for all projects. Drilled and tinned. Send master print and 30 p per board plus Sp per square inch. ELECTRO CIRCIITs, 4 Highcliffe Way, Wickford, Essex.

BE PROUD OF YOUR WORK AND BUILO IT IN A BEC (Book End Chassis) PUNCHING SERVICE IF REO'D.

GB1	$14 \times 6 \times 21 n$
GB1A	$9 \times 6 \times 21 n$
GB2	$14 \times 7 \times 3 / n$
GB3	$14 \times 9 \times 41 n$
GB4	$14 \times 9 \times 8 i n$

A beautifully designed modern cabinet with elmulated black leatherette top (PVC bonded to metal)

The PE OFION HI-FI STEREO AMPLIFIER uses our GB1 Bec cablnet (Illustrated In Jan. 1975, Practical Electronics). Cen be eupplled punched or unpunched.
Please send 15 p for folder of leaflets (rafundabie). H.M. ELECTRONICS (PE), 275a Fulwood Road, Sheftleld S10 380 (Behind Broomhill P.O.)

4×741 (8 DIL) $£$

$13 \times$ BCIOA EQUIV. IN PLASTIC CASE (BCI 48) \&I. $30 \times$ IN4148 G.P. DIODES \&I. FULL SPEC. DEVICES. PRICES INCLUDE 25% VAT. P. \& P. 20p. ON ORDERS UNDER 43. SCOTT ELECTRONICS (Dept. P.E.) P.O. Box 42, Wembley, Middx.

HARDWARE. Comprehensive range of screws, nuts, washers, etc, in small quantitiez, and niany useful constructors' items. Sheet aluminium to individual requirements, punched, drilled, etc. Fascia panels, dials, nameplates in etched aluminium. Printed circuit boards for this magazine, and other individual requirements, one-off's and smal runs. Machine engraving in metals and plastics, contour milling. Send $24 \frac{1}{2} p$ stamps for catalogue. RAMAR CONSTRUCTOR SERVICES, Masons Road, Strarford on Avon, Warwicks. CV37 9NF.

LOW COBT I.C. MOUNTING. 100 I.C. pin sockets 50p. Quantity rates. S.A.E. details and sample. 7 and 8 hole plastic supports 5p/pair. (P. \& P. 8p/order). LED (MLED500) $20 p$ each post free. Quantity rates. P.K.G. ELECTRONICS, Oak Lodge, Tansley. ELECTRONICS, Oa
Derbyshire, DE4 5 FE .
I.C. EXPERIMENTER'S KITS

Learn about modern electronics with our new step-by-step kits. Use and understand digital logic techniques. Kits contain specially selected 1.. s, Holders, Keroboard (Gates) and Kit Two tions and data. Kit One (Gates) and P. $\&$ P. 10 p . (Fip-in Offer-EXPERIMENTER'S PAK 62.90 Bargain Offer-EXPERIMENTER'S PAK \&2:90 Gates, Inverters, Fip Flops, Counters P. \& P. $10 p$
S.A.E. for further details to: AUTOMATED HOLEs, 69 Eigh 8t., BYTON, Coventry CV8 $8 F J$ (Mail Order Only)

ENAMELLED COPPER WIRE $\begin{array}{llr}\text { S.W.G. } & 116 \text { Reel } & 11 b \text { Reel } \\ 10-14 & 62.05 & \& 1.15 \\ 15-19 & 62.15 & 61.20 \\ 20-24 & 62.20 & 61.25 \\ 25-29 & 62.25 & 61.30 \\ 30-34 & 62.35 & 61.48 \\ 35-40 & & \end{array}$

 the above prices are inclusive in U.K.
COPPER SUPPLIES

102 Parrawood Rd., Withington, Manchester 20 Tulephone O61-4458753

DIQITAL CLOGK CHIP, AY-5-1224, with data and circuit diagram, $\mathbf{2 3 - 6 6}$ plus VAT. "Jumbo" LED digits (16 mm high), Economy type. DL-747, only $\mathbf{2} 204$ each plus VAT, post free. GREENBANK ELECTRONICS, 94 New Chester Road, Wirral, Merseyside, L62 5AG.

$$
+
$$

P. HOLROYD (Engineering)

Supplier of Alum. \& Steel BOXES CONSOLES
CASES \& HOUSINGS
Standard \& Made to Order GENERAL METALWORK
Write for details:
7 Nursery Road • Salisbury
Wiltshire Tel. (0722) 23120

BUDGET MINI AUDIO MIXERS

With Professional Facilities.
Slider Faders \star Tone Controls \star Monitoring \star V.U. Meter. Mono or Stereo $\&$ Ready to use or Kits.
Details Ref. PE:
PARTRIDGE ELECTRONICS
21-25 Hart Road, Benfleet, Essex.

LIGHTING CONTROL UNITS
$3 \times 1+\mathrm{kW}$ per channel sound-to-light converter using
isolated control circuitry for maximum sataty The isolated control circuitry for maximum sataty. The unit comes in kit or roady buili form and teatures
individual sonsifivity controis, sensitivity range switch and dimming switch. (Bypass controis ass an optional extra.) Kit: $£ 13 \cdot 9$. Ready built: $£ 18.99$. Deteilts of dimmers, sequencers and other Detalis of dimmors. sequencers and other lighting
control units availabie on request. Mail order or written enquilies only 10

SELEKTRON
21 Prior's Road, WIndsor, Berks. SL4 4PD

FANTASTIC NEW MICROTEST 80
MEASURES ONLY
$90 \times 70 \times 18 \mathrm{~mm}$ ELECTRONIC ZERO Ω

Amazing Value at $£ 11.95$ 8 fields of measurement and 40 ranges

PRINTED CIRCUIT

BOARD IS REMOVABLE
WITHOUT SOLDERING
Volts d.e. 6 ranges: 100 mV . 2 V . 10 V .50 V . $200 \mathrm{~V}, 1,000 \mathrm{~V}$
 Volfa a.c. 5 rangea: $1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$. $1,000 \mathrm{~V}(4 \mathrm{k} \cap / \mathrm{V})$) Amp. d.c. 6 ranges: $50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}$ Ohme 4 ranges: Low $\Omega \Omega \times 1, \Omega \times 10 \Omega \times 100$ (from $1 / 10$ di \cap until 5 Mn)
\checkmark output 5 ranges: $1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1.000 \mathrm{~V}$ Decloels 5 ranges: $+6 \mathrm{~dB},+22 \mathrm{~dB}$. + $36 \mathrm{~dB} .+50 \mathrm{~dB}$ +62 dB .
Capacity 4 renges: $25 \mu \mathrm{~F}, 250 \mu \mathrm{~F}, 2.500 \mu \mathrm{~F}, 25.000 \mu \mathrm{~F}$

SUPERTESTER 680R ICE 20,000 Ohm per Volt sensitivity - Fully screened against external magnetic fields Scale width and amall case dimensions ($128 \times$
$95 \times 32 \mathrm{~mm}$) Accurscy $95 \times 32 \mathrm{~mm})$ Accuracy and
stability (1% in D.C. 2% in A.C.) of indicated reading Simplicity and esase of uase and readability Fuli ranges of accessories

- 1.000 times overload - Printed
 do-soldering More ranges than any other meter. Ask for free catalogue. Accessorlos Exira Accessorias (extra) available to convert Microtest 80
and Supertester 680 A into following : LIGHTMETER and Supertester 680R into following: LIGHTMETER,
GAUSS METER. ELECTRONIC VOLTMETER. AMPERCLAMP, TRANSISTOR TESTER. TEMPERATURE PROBE, PHASE SEQUENCE INDIGATOR, $\Omega \times 100 \mathrm{k} \Omega$ Multiplier. SIGNAL INJECTOR-Send for detaila.
MORE RANGES FOR LESS MONEY! AC/DC Multimeter type U4324
A-DC 0.06-3A-6 Ranges
A-AC 0-3-3A-5 Ranges.
V-DC $0.6-1200$ V-9 Ranges
V-AC $3-900$ V-8 Ranges
V-AC $3-900$ V-8 Ranges.
Frequency in the range of 45 to
20 kHz . Resistance: 500 ohm 20 kHz . Resistance: 500 ohm to
$5 \mathrm{Mohm}-5$ ranges. Decibel: -10 to +12 dB . Accuracy: $\pm 25 \%$. DC $+4 \%$ AC. Dimenaions. 167×98 $\times 63 \mathrm{~mm}$ Only f 9.25

ALPHANUMERIC NIXIE TUBES B7971 The Alphanumeric NixIE tube has the all the letters of the alphabet. numerals 0 thru 9 and special characters in a single form the standpoint of both readability and electrical cheracteristics. the Alphanumeric NIXIE tube provides many unique benafits including $\star 170 \mathrm{~V}-21 \mathrm{~mA} \star$ All d.c. operation \star Uniform. continuous line characters of equal height \star Memory with simple solid state drive circuits \star Readability in
high ambient light. 200 tootlamberts brightnes high ambient light $\quad 200$ tootlamberts Drightness hoight 2tin.
Bases for above s0p each
Price only 99 p each plus 16p P./P

JUST ARRIVED! !

NUMERIC INDICATOR TUBES Ultra-long life, high quality, $0-9$ and 2 independent deci mal points. Supply voltage 200 V d.c. Current 14 mA pulse duration 1 . Brand n
requirements. Type B5853st
$1-25 £ 1 \cdot 00 ; 25+90 p ; 100+80 p ;$
$1,000+$ price on application.

49-53 Pancras Road, London NW1 2QB Tel. 01-837 7781

ELECTRONICS LTD. DEPT. PE13
7 COPTFOLD ROAD BRENTWOOD, ESSEX

\star ULTRASONICS \star

40 kHz transducers at low price as used in many magazine articles. Price includes suggested circuits, order as type RL400PP per pair s4-56 VAT inclusive.

CA3035-I.C.
3 amplifier array- $-129 D B$ at 40 kHz . Ideal for use in RL400PP transducer receiver. Price £1.78, VAT inclusive. Data only 17p.

COS-MOS LOGIC NEW LOW PRICES

CD4000AE	0.27	CD4025AE	0.27
CD4001AE	0.27	CD4026AE	2.21
CD4002AE	0.27	CD4027AE	1.03
CD4007AE	0.27	CD4028AE	1.59
CD4009AE	0.85	CD4029AE	2.21
CD4010AE	0.77	CD4030AE	0.77
CD4011AE	0.27	CD4035AE	1.85
CD4012AE	0.27	CD4040AE	2.11
CD4013AE	0.71	CD4042AE	1.56
CD4014AE	1.83	CD4043AE	2.29
CD4015AE	1.83	CD4044AE	2.29
CD4016AE	0.71	CD4046AE	2.29
CD4017AE	1.85	CD4049AE	0.27
CD4018AE	2.59	CD4050AE	0.71
CD4019AE	0.84	CD4051AE	2.92
CD4020AE	2.06	CD4056AE	1.83
CD4022AE	1.92	CD4069AE	0.27
CD4023AE	0.27		
CD4024AE	1.32	Data only 11p	

All prices include VAT

ALSO

AC128	0.22	MC1310P	2.85
AC176	0.25	NES55V	0.63
AD161	0.51	ORP12	0.56
AD162	0.51	TBA810S	1.29
BC107	0.12	TH209	0.14
BC108	0.12	ZTX300	0.15
BC109	0.12	ZTX500	0.15
BC109C	0.21	2N29Z6	0.12
BC182	0.14	all colours	
BC212	0.17	2N3055	0.48
BFY51	0.28	2N3702	0.15
BZY88	0.11	$741 / 8 D 1 L$	0.33
series		40673	0.68

IMPORTANT. All prices include VAT. No hidden extras

HRNDIII SERVICE PLUS

COMPREHENSIVE LIST
NO HIDDEN EXTRAS. TOP
QUALITY PRODUCTS BY RETURN
I enclose PO/Cheque for 20p
Name
Address

Arrow Electronles LImlted

Dept. PE13
7 Coptfold Road, Brentwood, Essex.

Minimum order £2. P. \& P. 20p. MAIL ORDER ONLY. Government, TECHNOMATC LTD Please add VAT as shown.

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now. With over 10 years' experience in mail-order, we have supplied many famcus people and groups. Over 30 types of synthesis modules, some of extremely precision design. e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 20 p for full catalogue to

254 RIngwood Road, Ferndown Dorset BH22 9AR

SCOTT ELECTRONICS
 ESTCOURT HOUSE, ESTCOURT ROAD GREAT YARMOUTH, NORFOLK Tel. Great Yarmouth 57066

5W Chassls Stereo Amplifler ($2.5 \mathrm{~W} / \mathrm{CH}$). Power requirements 12 V d.c. Output: $2 \cdot 5 \mathrm{~W} / \mathrm{CH}$ into 8 ohms. Two inputs: tape head (3 mV) and 100 mV mic./P.U. With suitable external components Controls: volume, balance and tone (slider controls) $\varepsilon 4$ plus 25% VA
12 V d.c. Solenolds (short duration). $2 \mathrm{in} \times 1$ in $\times 1$ in appro 55p inc. VAT
12V Minlature Lamps fitted with flying leads. Pack of 10 60p inc. VAT
8 Track Car Stereo Players, 12 V negative earth E14 plus 25% VAT
Decede Reslstence Box 0-111k In 0.1 ohm steps £38 plus 8% VAT
All prices include postage and packing.
All goods supplled are new and guaranteed

TUAC
 Important Announcement

Prices quoted in our June advertisement included 25% V.A.T. V.A.T. should be 8%. When ordering, the following prices apply: Disco Mix £31-50; 3 Channel Light Modulator £15•50, Single Channel version $£ 7 \cdot 25$; Power ModulesTP125 £19•50, TL30 £7•90, TL60 £12•50, TL100 £15•00; Preamplifiers-VAO8 $£ 5.75$, VAO6 $£ 5 \cdot 00$, SVAO1 $£ 10 \cdot 00$; PS125 £12.25, PS 100 £11•25, PS60 £10.00, PS30 $55 \cdot 90$, PSU2 £4. 75 .

TUAC
163 Mitcham Road, London SW17 9PG
01-672 3137/9080

[^4]
More than justa catagule

Projects for you to build.

4-digit clock, 6 -digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc. CIRCUITS ... Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.

Full details and pictures of our wide range of components. e.g. capacitors, cases, knobs, veroboards, edge connectors. plugs and sockets, lamps and lampholders, audio lead adaptor plugs, rotary and slide potentiometers, presets, relays
resistors (even 1\% types!), switches, interiocking pushbutton switches, pot
cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ
components, keyboards, L.E.D.'s. 7-segment displays, heatsinks. transistors, diodes,
integrated circuits, etc., etc., etc.
REALLY GOOD VALUE FOR MONEY AT JUST 40p.

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops.
Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.
Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, also priced at 15 p

No more doubts about prices

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods-and we'll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an S.A.E. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list-you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented!--plus details of any new lines, special offers, interesting projects-and clip-off coupons to spend on components to repay your 30p when used as directed
NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.
Call in at our shop, 284 London Road, Westcllff-on-Sea, Essex. Please address all mall to P.O. Box 3, Raylelgh, Essex, SS6 8LR.

SYNTHESISER

A reprint of the complete article giving full construc tion details published by "Electronics Today international between JanuarySeptember '74 of the International Voltage Controlled Synthesiser. developed as a "state of the art'" will be available shortly, price $£ 1 \cdot 50$ S.A.E. please for detailed price list

GRAPHIC EQUALISER

A really superior high quality stereo graphic equaliser as described in the January edition of "Electronics Today International". We stock all the parts (except woodwork) including the metalwork drilled and printed. 15p brings you a reprint of the article or a S.A.E. please for our detailed price list

[^0]: © IPC Magazines Limited 1975. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Publisher's Subscription Rate including postage for one year, Inland $£ 4 \cdot 80$, Overseas $£ 5 \cdot 00$. USA and Canada $\$ 13 \cdot 50$. International Giro facilities Account No. 5122007 . State reason for payment, "message to payee".

[^1]: Open daily to callers: Mon.-fri. 9 a.m. ${ }^{-5}$ p.m Tubes and Transistors " Closed Sat. 24.m.7
 All orders subject to Y.A.T. at $\mathbf{2 5 \%}$ rate. This must

[^2]: * North Staffordshire Polytechnic

[^3]: Please send your catalogue - now!
 Name
 Address

[^4]: Published approximately on the 15 th of each month by IPC Magazines Ltd.. Fleetway House. Farringdon Street. London. EC 4A 4AD. Printed in England by Chapel River Press. Andover
 Hants. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sla) Lid.. South Africa-Central News Agency Lid.
 Publisher's Subscription Rate including postage for one year. Inland 14.80 . Overseas $55-00 \mathrm{~d}$ U.S A. and Canada $\{13 \cdot 50$.
 International Giro facilities Account No. 5122007 . Please state reason for payment. "messagd to payee"
 Practical Electronics is sold subject to the following conditions. namely, that it shall not. without the written consent of the Publishers first given, be lent, resold, hired out or otherwise or hired out or otherwise disposed of in a mutilated condition or in any unauthonsed cover by tway of Trade or affixed selling price is subject to A A. T .. and that it sha!! not be lent. resold matter whatsoever

